Section 4.2 More on linear transformations and matrix multiplication

These notes give further examples and practice the concepts Section 4.2 in the textbook. Recall our two principles: for a linear transformation $L: V \rightarrow W$

- L is determined by what it does to the basis elements.
- After we choose a basis for V and a basis for W, L is described by a matrix A.

The matrix of a linear transformation $L: V \rightarrow W$ is built as follows:

1. Fix a basis $C=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ of V and a basis $D=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right\}$ of W.
2. For each i, write $L\left(\mathbf{v}_{i}\right)$ as a linear combination $\sum a_{i j} \mathbf{w}_{j}$ of the D-basis vectors, and put the coordinates into a column vector: $\left[L \mathbf{v}_{i}\right]_{D}=\left(\begin{array}{c}a_{1 i} \\ a_{2 i} \\ \vdots \\ a_{m i}\end{array}\right)$
3. Build the matrix A whose columns are $\left[L \mathbf{v}_{1}\right]_{D},\left[L \mathbf{v}_{2}\right]_{D}$, etc. :

$$
A=[L]_{D C}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 m} \\
a_{21} & a_{22} & \cdots & a_{2 m} \\
\vdots & & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n m}
\end{array}\right)
$$

This is called the matrix of L with respect to the bases C and D.

The linear transformation L is then given by multiplication by the matrix A in the following sense:
Theorem 4.2.2 For a vector $\mathbf{x} \in V$ with coordinates $[\mathbf{x}]_{C}$ in the basis C, the D-coordinates of $L \mathbf{x}$ are given by

$$
[L \mathbf{x}]_{D}=A[\mathbf{x}]_{C}
$$

where $A=[L]_{D C}$ is the above matrix.

Special Case. For linear transformations $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, we can use the standard bases. The procedure for finding the matrix is then easy:

1. Write $L(1,0,0, \ldots 0), L(0,1,0, \ldots 0), \ldots$ as a column vectors.
2. Assemble these column vectors into a matrix A.

Then the transformation is given by matrix multiplication by A.

Example 1. Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that takes $(1,0)^{T}$ to $(3,1)^{T}$ and $(0,1)^{T}$ to $(1,2)^{T}$. In column form

$$
L\binom{1}{0}=\binom{3}{1} \quad \text { and } \quad L\binom{0}{1}=\binom{1}{2}
$$

so the matrix of L is $A=\left(\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right)$. To find where L takes the vector $\binom{2}{-1}$, we calculate

$$
L\binom{2}{-1}=\left(\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right)\binom{2}{-1}=\binom{5}{0}
$$

Example 2. What is the matrix of the linear transformation $T\binom{x}{y}=\binom{4 x-2 y}{-x+7 y}$?
Solution: taking $x=1$ and $y=0$, then $x=0$ and $y=1$ we obtain:

$$
T\binom{1}{0}=\binom{4}{-1} \quad \text { and } \quad T\binom{0}{1}=\binom{-2}{7} \quad \text { so the matrix is } \quad A=\left(\begin{array}{cc}
4 & -2 \\
-1 & 7
\end{array}\right)
$$

Examples of six types of linear transformations $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.

1. Dilation by factor of 3 horizontally, factor of 5 vertically: $D=\left(\begin{array}{ll}3 & 0 \\ 0 & 5\end{array}\right)$.
2. Rotation counterclockwise by $90^{\circ}: R_{90}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and by angle $\theta: R_{\theta}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$.
3. The reflection across the x-axis: $R_{x}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
4. A shear that fixes the first basis vector \mathbf{e}_{1} and moves \mathbf{e}_{2} to $\mathbf{e}_{1}+\mathbf{e}_{2}: S=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
5. The orthogonal projection onto the x-axis: $P=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.
6. The embedding $E: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ that takes \mathbb{R}^{2} into the $x y$-plane: $E:\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$.

Supplemental Homework Problems

1. Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that takes $\mathbf{e}_{1}=(1,0)$ to $3 \mathbf{e}_{1}+4 \mathbf{e}_{2}$ and takes $\mathbf{e}_{2}=(0,1)$ to $-2 \mathbf{e}_{1}+5 \mathbf{e}_{2}$. What is the matrix for L with respect to the (standard) basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$?
2. Let $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be counterclockwise rotation about the origin by 60°.
(a) What is $R\left(\mathbf{e}_{1}\right)$? What is $R\left(\mathbf{e}_{2}\right)$?
(b) What is the matrix of R with respect to the standard basis?
(c) What is the image $R(\mathbf{v})$ of the vector $\mathbf{v}=(1,1)$?
3. Let $P: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the orthogonal projection onto the $y z$ plane, given by $P(x, y, z)=(0, y, z)$.
(a) What are $P\left(\mathbf{e}_{1}\right), P\left(\mathbf{e}_{2}\right)$ and $P\left(\mathbf{e}_{3}\right)$?
(b) What is the matrix of L with respect to the standard basis?
(c) What is the image $P(\mathbf{v})$ of the vector $\mathbf{v}=(1,2,-1)$?
4. (a) Using the formula given in Example 2 above, find the matrix of the rotation $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ about the origin by 30°.
(b) This rotation takes $\binom{4}{9}$ to what vector?
5. Given points \mathbf{v}_{0} and \mathbf{v}_{1} in a vector space, the line segment between them is

$$
S=\left\{v_{t}=(1-t) \mathbf{v}_{0}+t \mathbf{v}_{1} \mid 0 \leq t \leq 1\right\}
$$

Prove that a linear transformation $L: V \rightarrow W$ takes each line segment to the line segment between the image points $L\left(\mathbf{v}_{0}\right)$ and $L\left(\mathbf{v}_{1}\right)$.
6. Letdenote the unit square in \mathbb{R}^{2} with corners at $(0,0),(1,0),(0,1)$ and $(1,1)$. Using the fact that you proved in Problem 4, sketch the image ofunder the linear transformation $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ whose matrix is

$$
\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)
$$

7. Find the matrix of the orthogonal projection $P: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ onto the z-axis.
8. Let $\lambda=\{y=-x\}$ be the "anti-diagonal" line in \mathbb{R}^{2}. Reflection through the line λ (obtained by moving along the line segment perpendicular to λ, going an equal distance to the opposite side of λ) is a linear transformation.
(a) What is $R(1,0)$? What is $R(0,1)$?
(b) Find the matrix of this reflection R.
(c) Where does R take the vector $\binom{-2}{5}$?
9. Find a non-zero 2×2 matrix A such that $A \mathbf{v}$ is perpendicular to $\binom{1}{2}$ for all $\mathbf{v} \in \mathbb{R}^{2}$. Hint: Find one perpendicular vector \mathbf{w} and define A by $A \mathbf{e}_{1}=\mathbf{w}$ and $A \mathbf{e}_{2}=r \mathbf{w}$ for you favorite $r \in \mathbb{R}$.

10 . Find the matrices of the following transformations from \mathbb{R}^{3} to \mathbb{R}^{3}.
(a) The reflection across the $x z$-plane.
(b) The rotation about the z-axis through an angle θ counterclockwise as viewed from the positive z-axis.
(c) Reflection across the plane $y=z$.
11. Let D be the dilation $\left(\begin{array}{ll}3 & 0 \\ 0 & 5\end{array}\right)$. Show that D takes the unit circle $x^{2}+y^{2}=1$ to an ellipse. Sketch the ellipse. Hint: What is the image point $\binom{z}{w}$ of $\binom{x}{y}$? What equation do z and w satisfy?
12. Let $T: P_{3} \rightarrow P_{3}$ be the linear transformation that takes a polynomial $p(x)=a x^{3}+b x^{2}+c x+d$ to $p(x-2)$. What is the matrix for T with respect to the basis $\left\{x^{3}, x^{2}, x, 1\right\}$ of P_{3} ? (Be sure to keep the basis elements in this order.)

