Section 4.2 More on linear transformations and matrix multiplication

These notes give further examples and practice the concepts Section 4.2 in the textbook. Recall our two principles: for a linear transformation $L: V \to W$

- L is determined by what it does to the basis elements.
- After we choose a basis for V and a basis for W, L is described by a matrix A.

The matrix of a linear transformation $L: V \to W$ is built as follows:

- 1. Fix a basis $C = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ of V and a basis $D = {\mathbf{w}_1, \dots, \mathbf{w}_m}$ of W.
- 2. For each *i*, write $L(\mathbf{v}_i)$ as a linear combination $\sum a_{ij}\mathbf{w}_j$ of the *D*-basis vectors, and put the coordinates into a column vector: $[L\mathbf{v}_i]_D = \begin{pmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{ij} \end{pmatrix}$
- 3. Build the matrix A whose columns are $[L\mathbf{v}_1]_D, [L\mathbf{v}_2]_D$, etc. :

$$A = [L]_{DC} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix}$$

This is called the matrix of L with respect to the bases C and D.

The linear transformation L is then given by multiplication by the matrix A in the following sense:

Theorem 4.2.2 For a vector $\mathbf{x} \in V$ with coordinates $[\mathbf{x}]_C$ in the basis C, the D-coordinates of $L\mathbf{x}$ are given by

$$[L\mathbf{x}]_D = A[\mathbf{x}]_C$$

where $A = [L]_{DC}$ is the above matrix.

Special Case. For linear transformations $L : \mathbb{R}^n \to \mathbb{R}^m$, we can use the standard bases. The procedure for finding the matrix is then easy:

- 1. Write L(1, 0, 0, ..., 0), L(0, 1, 0, ..., 0), ... as a column vectors.
- 2. Assemble these column vectors into a matrix A.

Then the transformation is given by matrix multiplication by A.

Example 1. Let $L : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that takes $(1,0)^T$ to $(3,1)^T$ and $(0,1)^T$ to $(1,2)^T$. In column form

$$L\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}3\\1\end{pmatrix}$$
 and $L\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}1\\2\end{pmatrix}$,

so the matrix of L is $A = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$. To find where L takes

Example 2. What is the matrix of the linear transformation $T\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 4x-2y\\ -x+7y \end{pmatrix}$? Solution: taking x = 1 and y = 0, then x = 0 and y = 1 we obtain:

$$T\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}4\\-1\end{pmatrix}$$
 and $T\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}-2\\7\end{pmatrix}$ so the matrix is $A = \begin{pmatrix}4&-2\\-1&7\end{pmatrix}$

Examples of six types of linear transformations $L : \mathbb{R}^2 \to \mathbb{R}^2$.

- 1. Dilation by factor of 3 horizontally, factor of 5 vertically: $D = \begin{pmatrix} 3 & 0 \\ 0 & 5 \end{pmatrix}$.
- 2. Rotation counterclockwise by 90°: $R_{90} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and by angle θ : $R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.
- 3. The reflection across the *x*-axis: $R_x = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

4. A shear that fixes the first basis vector \mathbf{e}_1 and moves \mathbf{e}_2 to $\mathbf{e}_1 + \mathbf{e}_2$: $S = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

- 5. The orthogonal projection onto the *x*-axis: $P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.
- 6. The embedding $E : \mathbb{R}^2 \to \mathbb{R}^3$ that takes \mathbb{R}^2 into the xy-plane: $E : \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Supplemental Homework Problems

- 1. Let $L : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that takes $\mathbf{e}_1 = (1,0)$ to $3\mathbf{e}_1 + 4\mathbf{e}_2$ and takes $\mathbf{e}_2 = (0,1)$ to $-2\mathbf{e}_1 + 5\mathbf{e}_2$. What is the matrix for L with respect to the (standard) basis $\{\mathbf{e}_1, \mathbf{e}_2\}$?
- 2. Let $R: \mathbb{R}^2 \to \mathbb{R}^2$ be counterclockwise rotation about the origin by 60°.
 - (a) What is $R(\mathbf{e}_1)$? What is $R(\mathbf{e}_2)$?
 - (b) What is the matrix of R with respect to the standard basis?
 - (c) What is the image $R(\mathbf{v})$ of the vector $\mathbf{v} = (1, 1)$?
- 3. Let $P : \mathbb{R}^3 \to \mathbb{R}^3$ be the orthogonal projection onto the yz plane, given by P(x, y, z) = (0, y, z).
 - (a) What are $P(\mathbf{e}_1)$, $P(\mathbf{e}_2)$ and $P(\mathbf{e}_3)$?
 - (b) What is the matrix of L with respect to the standard basis?
 - (c) What is the image $P(\mathbf{v})$ of the vector $\mathbf{v} = (1, 2, -1)$?
- 4. (a) Using the formula given in Example 2 above, find the matrix of the rotation $R : \mathbb{R}^2 \to \mathbb{R}^2$ about the origin by 30°.

(b) This rotation takes $\begin{pmatrix} 4\\ 9 \end{pmatrix}$ to what vector?

5. Given points \mathbf{v}_0 and \mathbf{v}_1 in a vector space, the line segment between them is

$$S = \{ v_t = (1-t)\mathbf{v}_0 + t\mathbf{v}_1 \mid 0 \le t \le 1 \}.$$

Prove that a linear transformation $L: V \to W$ takes each line segment to the line segment between the image points $L(\mathbf{v}_0)$ and $L(\mathbf{v}_1)$. 6. Let \Box denote the unit square in \mathbb{R}^2 with corners at (0,0), (1,0), (0,1) and (1,1). Using the fact that you proved in Problem 4, sketch the image of \Box under the linear transformation $L : \mathbb{R}^2 \to \mathbb{R}^2$ whose matrix is

$$\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

- 7. Find the matrix of the orthogonal projection $P : \mathbb{R}^3 \to \mathbb{R}^3$ onto the z-axis.
- 8. Let $\lambda = \{y = -x\}$ be the "anti-diagonal" line in \mathbb{R}^2 . Reflection through the line λ (obtained by moving along the line segment perpendicular to λ , going an equal distance to the opposite side of λ) is a linear transformation.
 - (a) What is R(1,0)? What is R(0,1)?
 - (b) Find the matrix of this reflection R.
 - (c) Where does R take the vector $\begin{pmatrix} -2\\5 \end{pmatrix}$?
- 9. Find a non-zero 2 × 2 matrix A such that A**v** is perpendicular to $\begin{pmatrix} 1\\ 2 \end{pmatrix}$ for all $\mathbf{v} \in \mathbb{R}^2$. *Hint: Find one perpendicular vector* **w** *and define A by* A**e**₁ = **w** *and* A**e**₂ = r**w** *for you favorite* $r \in \mathbb{R}$.
- 10. Find the matrices of the following transformations from \mathbb{R}^3 to \mathbb{R}^3 .
 - (a) The reflection across the xz-plane.
 - (b) The rotation about the z-axis through an angle θ counterclockwise as viewed from the positive z-axis.
 - (c) Reflection across the plane y = z.
- 11. Let *D* be the dilation $\begin{pmatrix} 3 & 0 \\ 0 & 5 \end{pmatrix}$. Show that *D* takes the unit circle $x^2 + y^2 = 1$ to an ellipse. Sketch the ellipse. *Hint: What is the image point* $\begin{pmatrix} z \\ w \end{pmatrix}$ *of* $\begin{pmatrix} x \\ y \end{pmatrix}$? *What equation do z and w satisfy*?
- 12. Let $T: P_3 \to P_3$ be the linear transformation that takes a polynomial $p(x) = ax^3 + bx^2 + cx + d$ to p(x-2). What is the matrix for T with respect to the basis $\{x^3, x^2, x, 1\}$ of P_3 ? (Be sure to keep the basis elements in this order.)