
Compositions and Inverses

Chapter 4 of the textbook is missing some important concepts. These notes fill them in.

Definition. The composition of transformations L : U → V and M : V → W is the transformation
M ◦ L : U →W defined by

(M ◦ L)(u) = M(L(u)).

Caution – read backwards! M ◦L means “do L first, then do M”. To keep things straight, write down this
diagram:

U
L−→ V

M−→W

Composing maps in this manner keeps us in the world of linear transformations:

Lemma. If L and M are linear transformations, then so is M ◦ L.

Proof. If u,v ∈ U and α, β ∈ R then

(M ◦ L)(αu + βv) = M(L(αu + βv)) Def. of M ◦ L

= M(αL(u + βL(v)) L is a LM

= (αM(Lu)) + βM(L(v)) M is a LM

= α(M ◦ L)(u) + β(M ◦ L)(v)) Def. of M ◦ L

�

After we choose bases of the vector spaces U, V and W , then we can write L : U → V and M : V → W
as matrices. What is the matrix of M ◦ L?

Theorem. Fix bases of the vector spaces U, V and W . If the matrix of L : U → V is A and the matrix of
M : V →W is B, then the matrix of M ◦ L is the matrix product BA.

Example. Let L : R2 → R2 be the dilation by a factor of 2 in the x direction and 4 in the y direction, and
let M : R2 → R2 be the reflection across the line x = y. In terms of matrices,

L =

(
2 0
0 4

)
M =

(
0 1
1 0

)
M ◦ L =

(
0 1
1 0

)(
2 0
0 4

)
=

(
0 2
4 0

)

Homework – due Monday Oct. 31

1. Sketch the image of the unit square under the linear transformation M : R2 → R2 whose matrix is

(
−2 −3
0 4

)
.

This image will be a parallelogram.

2. Write down the matrix for the linear transformation M =

xy
z

 =

 6x− 9y + z
5x+ 8y − 2z
4x− 3y + 7z


3. Construct the 2 × 2 matrix for the linear transformations R2 → R2 defined by the following compositions. In

each case, write down the matrix of each transformation, then multiply the matrices in the correct order.
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(a) A dilation by a factor of 4, then a reflection across the x-axis.

(b) A counterclockwise rotation through π
2

, then a dilation by a factor of 1
2
.

(c) A reflection about the line x = y, then a rotation though an angle of π.

4. (a) Let L : R2 → R2 be the composition: A scaling factor of 6 in the x direction and 2 in the y direction, then
a clockwise rotation of 45◦ (= a counterclockwise rotation of −45◦).

(a) Write down the matrix for L.

(b) Find the images under L of each of the four corners of the unit square.

(c) Plot the points found in (b) and sketch the image of the unit square under L.

5. (a) Write down the matrix R for a counterclockwise rotation through π
4

radians.

(b) Compute R2, R4 (square R2), and show that R8 = Id.

(c) Give a geometric explanation why R8 = Id.

6. Verify the associative property of matrix multiplication in one example by computing A(BC) and (AB)C for
the matrices

A =

 1 2
−1 0

1 1

 B =

(
2 4
−2 3

)
C =

(
1
2

)
7. Consider the matrices

A =

(
1 2
−1 0

)
B =

(
0 5 4
−2 1 3

)
C =

(
2 3
6 1

)
D =

(
2 −2
1 3

)
Calculate, if possible, (a) AB and BA, (b) AC and CA, (c) AD and DA.

Observe that AB 6= BA since one of these does not exist, AC 6= CA, and AD = DA, illustrating all possibilities
when the order of multiplication is reversed.

8. Let A =

(
2 3
−1 5

)
and let I2 =

(
1 0
0 1

)
be the 2 × 2 identity matrix. Calculate A2 and use your answer to

find the matrices

(a) A2 + 2A− 5I2 and (b) A2 − 7A+ 13I2.

9. The matrix L =

 0 3 4
0 0 −2
0 0 0

 is called strictly upper triangular for the obvious reason.

(a) Compute L2 and L3.

(b) Formulate and prove a theorem about general strictly upper triangular 3× 3 matrices.

Inverses and Isomorphisms

This section considers the important question “When does a linear transformation have an inverse?”
Most of the theorems stated here are in the textbook, but are scattered through several sections and are
partly done in exercises.

First recall the definition of the kernel and the range of a linear transformation L : V →W :

kerL = {v ∈ V |Lv = 0} R(L) = {Lv |v ∈ V }.

We call the number dim kerL the nullity of L, and the number dimR(L) the rank of L.
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Also recall that the inverse of a linear transformation (if it exists) is automatically linear.

Lemma. If a linear transformation L : V →W has an inverse, then L−1 is also linear.

Proof. Given any w1,w2 ∈ W , set v1 = L−1(w1) and v2 = L−1(w2). Then Lv1 = w1 and Lv2 = w2, so
for any α, β ∈ R we have

L−1(αw1 + βw2) = L−1(aL(v1) + βL(v2)) substitution

= L−1(L(αv1 + βv2)) L is linear.

= αv1 + βv2 L−1L = Id.

= αL−1(w1) + βL−1(w2) substitution.

Thus L−1 is a linear transformation. �

Rank-Nullity Theorem (version 2). For any linear transformation L : V →W

dimR(L) + dim kerL = dimV,

that is, rank(L)+ nullity(L) = dimV .

Proof. We proceed in four steps:

(1) Choose a basis v1, . . . ,vk of kerL ⊂ V . Then k is the nullity.

(2) Expand this to a basis v1, . . . ,vk, . . . ,vn of V . Then n = dimV .

(3) Set wi = Lvi. Then wk+1, . . .wn are a basis for R(L) (see below). This consists of n − k vectors, so
dimR(L) = n− k.

(4) Expand to a basis wk+1, . . .wn, . . .wm of W .

Then
dimR(L) + dim kerL = (n− k) + k = n = dimV.

To verify the claim in Step (3), we argue as follows.

(a) For i = 1, . . . , k, vi ∈ kerL, so Lvi = 0. Hence

R(L) = span(Lv1, . . . , Lvn) = span(Lvk+1, . . . , Lvn) = span(wk+1, . . . ,wn)

so {wk+1, . . . ,wn} spans the range.

(b) To see that {wk+1, . . . ,wn} are linearly independent, suppose that

0 =

n∑
k+1

αiwi =
∑

αiLvi = L
(∑

αivi

)
.

then v =
∑
αivi ∈ kerL. But then v ∈ span(v1, . . . ,vn), so v =

∑n
i βivi. This shows that

0 = v − v =
∑ n∑

i

βivi +

n∑
k+1

αivi

But then all αi and βi are 0 because {v1, . . . ,vn} are LI. Thus {wk+1, . . . ,wn} are linearly independent.
�
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In the bases v1, . . . ,vn and wk+1, . . . ,wm defined in this proof, we have Lvi = 0 for ı = 1, . . . , k and
Lvi = wi for i = k + 1, . . . n. Hence the matrix for L in these bases has the block form

AL =

 0
1 0

. . .
0 1

0 0

 =

(
0 In−k
0 0

)
(21.1)

Isomorphisms

Definition (a) A linear map L : V →W is called an isomorphism if it is invertible.

(b) Two vector spaces V and W are isomorphic, written V ∼= W , if there exists an isomorphism
L : V →W .

Caution about (b): If there is one isomorphism, then there will be many different isomorphisms L.

Isomorphism Theorem. Let V and W be finite-dimensional vector spaces. Then

(a) V and W are isomorphic if and only if dimV = dimW .

(b) For a linear transformation L : V →W between vector spaces of the same dimension

L is an isomorphism ⇐⇒ N(L) = 0 ⇐⇒ R(L) = W.

Proof. (a) If V and W are isomorphic, then there is an invertible transformation L : V →W . Then

• If Lv = 0 then v = L−1Lv = L−1(0) = 0, so kerL = 0.

• For any w ∈ W , we can write w = LL−1w = Lv for v = L−1w ∈ V . This shows that w ∈ R(L), so
R(L) = W .

Then by the Rank-Nullity Theorem, dimV = dimR(L) + dim kerL = dimW + 0.
Conversely, if dimV = dimW then we can choose bases {v1, . . .vn} of V and {w1, . . .wn} of W with

the same number of elements. Lhen

L(a1v1 + · · ·+ anvn) = a1w1 + · · ·+ anwn.

defines a linear transformation that has an inverse, namely L−1(a1w1 + · · ·+ anwn) = a1v1 + · · ·+ anvn.
Hence V ∼= W .

(b) For a linear transformation L : V → W with dimV = dimW = n, we can find bases as in the proof
of the Rank-Nullity Theorem. In these bases, the matrix AL of L has the block form (21.1):

AL =

(
0 In−k
0 0

)
But then L is an isomorphism ⇔ detAL 6= 0. But detAL is the product of the diagonal entries, so is zero
only if the (n−k)× (n−k) block In−k is the entire matrix. This means that k = 0 and Al = In, so kerL = 0
and R(L) = W . �
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Summary.

After fixing bases {v1, . . . ,vn} of V and {w1, . . . ,wm} of W , each linear transformation L : V →W has
an associated matrix A = AL. Then L is invertible is and only if the matrix A is invertible. Combining lots
of previous facts, we have:

Invertibility Theorem. A linear transformation L : V → W can be an isomorphism only if dimV =
dimW = n. If so, then A = AL is an n× n matrix and the following are are equivalent:

• L is an isomorphism.

• L−1 exists and is linear.

• A is invertible.

• The columns of A are linearly independent.

• The columns span Rn.

• The columns are a basis of Rn.

• The equation Ax = b has a unique solution for all b ∈ Rn.

• detA 6= 0.

• A ≈ In by row operations.

Homework – due Wednesday Nov. 2

1. Let Q : R4 →M(2, 2) be the transformation Q

abc
d

 =

(
a b
c d

)
.

(a) Show that Q is linear.

(b) Show that Q is invertible by defining a linear map R : M(2, 2)→ R4 and showing that Q ◦R = I
and R ◦Q = I.

2. Prove that the vector spaces P4 and M(2, 2) are isomorphic by defining a transformation L : P4 →
M(2, 2) and showing that it is linear and invertible.

3. Which pairs of the following vector spaces are isomorphic?

R7 R12 M(3, 3) M(3, 4) M(4, 3) P6 P8 P11.

4. For each of the following linear transformations, determine whether L is invertible and justify your
answer.

(a) L : R2 → R3 by L(x, y) = (x− y, y, 3x+ y)T .

(b) L : R3 → R3 by L(x, y, z) = (3x− 2z, y, 3x+ 4y)T .

(c) L : P4 → P3 by L(p(x)) = p′(x).

(d) L : M(2, 2)→M(2, 2) by L

(
a b
c d

)
=

(
a+ b a
c c− d

)
.

5. Prove that if A is an invertible matrix and AB = 0, then B = 0 (here 0 denotes the matrix with all
entries equal to 0). This can be done in one line!
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6. Let A be an n× n matrix.

(a) Suppose that A2 = 0. Use determinants to prove that A is not invertible.

(b) Suppose that AB = 0 for some non-zero n×n matrix B. Could A be invertible? Explain. Suppose
that A−1 exists. What can you say?

7. Let L : V → W be an isomorphism between finite-dimensional vector spaces, and let S be a vector
subspace of V .

(a) Prove that L(S) is a subspace of W . See Theorem 4.1.1 of the textbook.

(b) Prove that dim(L(S)) = dimS. One approach: pick a basis {v1, . . . ,vk} of S and show that
{L(v1), . . . , L(vk)} is a basis of L(S).
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