Definitions
- A power series centered at \(x = a \) is a series of the form
 \[
 \sum_{n=0}^{\infty} c_n(x-a)^n
 \]
 The constants \(c_n \) are the coefficients.
- For a function \(f(x) \), its Taylor series centered at \(x = a \) is
 \[
 f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n
 \]
- A Taylor series centered at zero is called a Maclauren series:
 \[
 f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n
 \]

Important Theorems
- There are three possibilities for convergence of power series centered at \(x = a \):
 1. The series converges only at \(x = a \)
 2. The series converges for all \(x \)
 3. The series converges when \(|x-a| < R\) and diverges when \(|x-a| > R\). Here \(R \) is the “radius of convergence”. Use the ratio test to find \(R \).