Name: ________________________________ Section: __________

Clear your desk of everything except pens, pencils and erasers. Show all your work. If you have a question raise your hand and I will come to you.

1. Use Newton’s Method to approximate \(\sqrt[3]{25} \).

 (a) (1 point) **Multiple Choice. Circle the best answer. No partial credit available**

 When approximating \(\sqrt[3]{25} \) using newton’s method we should use the function \(f(x) \) and starting point \(x_1 \) where:

 A. \(f(x) = x^3 - 25, x_1 = 27 \)

 B. \(f(x) = x^3 - 25, x_1 = 3 \)

 C. \(f(x) = \sqrt[3]{x}, x_1 = 27 \)

 D. \(f(x) = \sqrt[3]{x}, x_1 = 3 \)

 (b) (2 points) **Fill-in-the-Blank. No partial credit available**

 Using (a) above and Newton’s method we can find that: \(x_2 = 3 - \frac{2}{27} \)

2. (1 point) Find the most general antiderivative of each function:

 (a) \(f(x) = \sec(x)(3 \sec(x) - \tan(x)) = 3 \sec^2(x) - \sec(x) \tan(x) \)

 Solution: The antiderivative \(F(x) \) is given by

 \[
 F(x) = 3 \tan(x) - \sec(x) + C
 \]

 (b) \(f(x) = 1 + x + x^2 + x^3 \)

 Solution: The antiderivative \(F(x) \) is given by

 \[
 F(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + C
 \]