Clear your desk of everything except pens, pencils and erasers. **Show all your work.**

If you have a question raise your hand and I will come to you.

1. (1 point) **Multiple Choice. Circle the best answer. No partial credit available**

 Find the derivative of \(f(t) = \frac{\tan t - 1}{\sec t} \) at \(t = \pi \).

 A. \(f'(\pi) = -1 \)

 B. \(f'(\pi) = 0 \)

 C. \(f'(\pi) = 1 \)

 D. \(f'(\pi) = 2 \)

 E. None of the above.

Solution: You can use the quotient rule, using the derivatives of \(\tan(t) \) and \(\sec(t) \):

\[
f'(t) = \frac{\sec^2(t) \cdot \sec(t) - (\tan(t) - 1) \sec(t) \tan(t)}{\sec^2(t)} = \frac{\sec^3(t) - (\tan(t) - 1) \sec(t) \tan(t)}{\sec^2(t)}
\]

Then just plug in \(t = \pi \) to get

\[
f'(\pi) = \frac{(-1)^3 - (0 - 1)(-1)(0)}{(-1)^2} = -1
\]

An easier way however, is to first simplify the expression by writing \(\tan(t) \) as \(\frac{\sin(t)}{\cos(t)} \) and \(\sec(t) \) as \(\frac{1}{\cos(t)} \), so we can also write \(f(t) \) as

\[
f(t) = \sin(t) - \cos(t)
\]

Then differentiating, we get

\[
f'(t) = \cos(t) + \sin(t)
\]

Plugging in \(t = \pi \), we get

\[
f'(\pi) = -1 + 0 = -1
\]
2. (1 point) **Fill-in-the-Blank. No partial credit available**

Suppose \(f \) and \(g \) are functions of \(x \) that are differentiable at \(x = 1 \) and that

\[
\begin{align*}
 f(1) &= 7 & f'(1) &= -5 & g(1) &= -4 & g'(1) &= 2 \\
\end{align*}
\]

(a) \[
\frac{d}{dx} \left(fg \right) \bigg|_{x=1} = f'(1) \cdot g(1) + f(1) \cdot g'(1) = 34 \\
\]

(b) \[
\frac{d}{dx} \left(\frac{f}{g} \right) \bigg|_{x=1} = \frac{f'(1) \cdot g(1) - f(1) \cdot g'(1)}{g(1)^2} = \frac{3}{8} \\
\]

(c) \[
\frac{d}{dx} \left(2g - 3f \right) \bigg|_{x=1} = 2 \cdot g'(1) - 3 \cdot f'(1) = 19 \\
\]
3. (1 point) Find the derivative of \(f(x) = \sin \left(\sqrt{\frac{1}{x+2}} \right) \)

Solution: If we denote \(g(x) = \sin(x), h(x) = \sqrt{x}, \) and \(k(x) = \frac{1}{x+2}, \) then we can write \(f \) as the composition \(f = g \circ h \circ k. \) Then the chain rule says:

\[
 f' = g'(h(k)) \cdot h'(k) \cdot k'
\]

We know the derivatives of \(g, h, \) and \(k: \)

\[
 g' = \cos(x) \\
 h' = \frac{1}{2\sqrt{x}} \\
 k' = \frac{-1}{(x+2)^2}
\]

So we have that

\[
 f' = \cos \left(\sqrt{\frac{1}{x+2}} \right) \cdot \frac{1}{2\sqrt{\frac{1}{x+2}}} \cdot \frac{-1}{(x+2)^2}
\]

4. (1 point) Use the quotient rule (and the fact that \(\cot(x) = \frac{\cos(x)}{\sin(x)} \)) to show that

\[
 \frac{d}{dx}(\cot(x)) = -\csc^2(x)
\]

Solution:

\[
 \frac{d}{dx}(\cot(x)) = \frac{d}{dx} \left(\frac{\cos(x)}{\sin(x)} \right) \\
 = \frac{d}{dx}(\cos(x)) \cdot \sin(x) - \cos(x) \cdot d\frac{\sin(x)}{dx} \\
 = \frac{-\sin(x)^2 - \cos(x)^2}{\sin(x)^2} \\
 = \frac{-(\sin(x)^2 + \cos(x)^2)}{\sin(x)^2} \\
 = \frac{-1}{\sin(x)^2} \\
 = -\csc^2(x)
\]