Example 8.7 A sphere is growing, its volume increasing at a constant rate of 10 in3 per second. Let $r(t)$, $V(t)$, and $S(t)$ be the radius, volume, and surface area of the sphere at time t. If $r(1) = 2$, then compute:

(a) $r'(1)$

Solution. Relate the volume and the radius by the equation

$$V = \frac{4\pi}{3}r^3$$

Remember that everything is a function of t, so we really have

$$V(t) = \frac{4\pi}{3}r(t)^3$$

We can differentiate both sides (with respect to t):

$$V'(t) = \frac{4\pi}{3} \cdot 3r(t)^2 \cdot r'(t)$$

The right-hand side follows from the chain rule. Now solve for $r'(t)$ to get:

$$r'(t) = \frac{10}{4\pi r(t)^2}$$

Now plug in $t = 1$, and use the fact that we know $r(1) = 2$:

$$r'(1) = \frac{10}{4\pi(2)^2} = \frac{10}{16\pi} = \frac{5}{8\pi}$$

So the radius is increasing at a rate $\frac{5}{8\pi}$ inches per second at $t = 1$.

(b) $S'(1)$

Solution. First write down the equation for the surface area of a sphere

$$S = 4\pi r^2$$

Remember that everything is a function of t, so this is

$$S(t) = 4\pi r(t)^2$$

Differentiate both sides:

$$S'(t) = 4\pi \cdot 2r(t) \cdot r'(t) = 8\pi r(t) \cdot r'(t)$$

Plugging in $t = 1$, and using part (a), we get

$$S'(1) = 8\pi r(1) \cdot r'(1) = 8\pi \cdot 2 \cdot \frac{5}{8\pi} = 10$$

So the surface area is increasing at a rate of 10 square inches per second at $t = 1$.
Example 8.8 A circle is growing, its radius (in inches) give by \(r(t) = \sqrt{t} \) for \(t \) in seconds. How fast is the area growing at time \(t = 4 \)?

Solution. Write down the equation for the area of a circle:

\[
A = \pi r^2
\]

Remember everything is a function of \(t \), so we have

\[
A(t) = \pi r(t)^2
\]

Differentiate, to get

\[
A'(t) = 2\pi r(t) \cdot r'(t)
\]

We want to find \(A'(4) \). To do so, we need to know \(r'(t) \), so differentiate:

\[
r'(t) = \frac{1}{2\sqrt{t}}
\]

So we get

\[
A'(4) = 2\pi \cdot \sqrt{4} \cdot \frac{1}{2\sqrt{4}} = \pi
\]

Example 8.9 A right triangle is growing, with its vertical side growing at a constant rate of 1 unit per second, and its horizontal side growing at a constant rate of 2 units per second. At time \(t = 2 \) seconds, how fast is the hypotenuse growing?

Solution. Let’s call the horizontal side \(x \) and the vertical \(y \), and the hypotenuse \(h \). We need to find \(h'(2) \). First write down the Pythagorean Theorem:

\[
x^2 + y^2 = h^2
\]

Now differentiate (with respect to \(t \)), to get

\[
2x \cdot x' + 2y \cdot y' = 2h \cdot h'
\]

Solve for \(h' \) to get

\[
h' = \frac{x \cdot x' + y \cdot y'}{h}
\]

We know that \(x' = 1 \) and \(y' = 2 \). Assuming that \(x(t) = 2t \) and \(y(t) = t \), we get that at \(t = 2 \),

\[
h' = \frac{4 \cdot 2 + 2 \cdot 1}{\sqrt{4^2 + 2^2}} = \frac{10}{\sqrt{20}} = \sqrt{5}
\]