1 Area Between Curves

Theorem 1.1. If \(f(x) \) and \(g(x) \) are continuous functions on \([a, b]\) where \(f(x) \geq g(x) \) for all \(x \) in \([a, b]\), then the area of the region in between the graphs of \(y = f(x) \) and \(y = g(x) \) between \(x = a \) and \(x = b \) is given by

\[
\text{Area} = \int_{a}^{b} (f(x) - g(x)) \, dx
\]

Remark 1.2. This theorem only applies if \(f(x) \geq g(x) \) on \([a, b]\). In the more general case (where the graphs cross), we can use the following theorem.

Theorem 1.3. If \(f(x) \) and \(g(x) \) are continuous functions on \([a, b]\), then the area of the region in between the graphs of \(y = f(x) \) and \(y = g(x) \) between \(x = a \) and \(x = b \) is given by

\[
\text{Area} = \int_{a}^{b} |f(x) - g(x)| \, dx
\]

Remark 1.4. If it is more convenient, you can think of \(x \) as a function of \(y \), and integrate with respect to \(y \). For example, to find the area between the graphs of \(x = f(y) \) and \(x = g(y) \) between \(y = a \) and \(y = b \), compute

\[
\text{Area} = \int_{a}^{b} |f(y) - g(y)| \, dy
\]

Example 1.5 (Instructor). Find the area between the graphs of \(y = -x \) and \(y = \cos(x) \) between \(x = 0 \) and \(x = \frac{\pi}{2} \).

Example 1.6 (Instructor). Find the area enclosed by the curves \(y = \sec^2(x) \) and \(y = 8 \cos(x) \) on the interval \([-\frac{\pi}{3}, \frac{\pi}{3}] \).

Example 1.7 (Instructor). Find the area of the region bounded by the graphs of \(y = 5x - x^2 \) and \(y = x \).

Example 1.8 (Instructor). Find a positive value of \(c \) so that the area between \(y = x^2 + 1 \) and \(y = x - c \) from \(x = 0 \) to \(x = 1 \) is equal to 1.

Example 1.9 (Instructor). Find the area enclosed by the line \(y = x - 1 \) and the parabola \(y^2 = 2x + 6 \).

Example 1.10 (Student). (WW1) Find the area of the region bounded by the curves \(y = \frac{1}{2}x^2 + 6 \) and \(y = x \) and the vertical lines \(x = -3 \) and \(x = 5 \).

Example 1.11 (Student). (WW4) Sketch the region bounded by the curves \(2x^2 + y = 19 \) and \(x^4 - y = 5 \), then find the area of the region.

Example 1.12 (Student). (WW6) Find \(c > 0 \) such that the area of the region enclosed by the parabolas \(y = x^2 - c^2 \) and \(y = c^2 - x^2 \) is 18.

Example 1.13 (Student). (WW7) Consider the area between the graphs \(x + 6y = 8 \) and \(x + 8 = y^2 \). Compute this area in two different ways:

(a) by integrating with respect to \(x \)
(Hint: split into two integrals)
(b) by integrating with respect to \(y \)