1. Calculate the derivatives of the following functions:

(a) \(f(x) = \sin^2(3x) \)

Solution. Use the chain rule. If \(F(x) = x^2, G(x) = \sin(x), \) and \(H(x) = 3x, \) then our function can be written as \(f = F \circ G \circ H. \) So the chain rule says

\[
\frac{df}{dx} = F'(G(H(x))) \cdot G'(H(x)) \cdot H'(x)
\]

The derivatives are \(F'(x) = 2x, G'(x) = \cos(x), \) and \(H'(x) = 3. \) So we get

\[
\frac{df}{dx} = 2 \sin(3x) \cos(3x) \cdot 3 = 6 \sin(3x) \cos(3x)
\]

(b) \(f(x) = \frac{\sqrt{x} \tan(x)}{x^4 + x^2 + 1} \)

Solution. Use the quotient rule. If \(F(x) = \sqrt{x} \cdot \tan(x) \) and \(G(x) = x^4 + x^2 + 1, \) then \(f = \frac{F}{G}, \) and so

\[
\frac{df}{dx} = \frac{F'(x) \cdot G(x) - F(x) \cdot G'(x)}{G(x)^2}
\]

The derivative of \(G \) is easy: just use the power rule and get \(G'(x) = 4x^3 + 2x. \) For the derivative of \(F, \) use the product rule:

\[
F'(x) = \frac{d}{dx}(\sqrt{x}) \cdot \tan(x) + \sqrt{x} \cdot \frac{d}{dx}(\tan(x)) = \frac{1}{2\sqrt{x}} \tan(x) + \sqrt{x} \sec^2(x)
\]

So all together, we get

\[
\frac{df}{dx} = \left(\frac{1}{2\sqrt{x}} \tan(x) + \sqrt{x} \sec^2(x) \right) (x^4 + x^2 + 1) - \sqrt{x} \tan(x)(4x^3 + 2x)
\]

\[
= \frac{(x^4 + x^2 + 1)^2}{x^4 + x^2 + 1}
\]

2. Evaluate the limit

\[
\lim_{x \to 0} \frac{\sin(x)}{\sqrt{x}}
\]

Solution.

\[
\lim_{x \to 0} \frac{\sin(x)}{\sqrt{x}} = \lim_{x \to 0} \left(\frac{\sin(x)}{\sqrt{x}} \cdot \frac{\sqrt{x}}{\sqrt{x}} \right)
\]

\[
= \lim_{x \to 0} \left(\frac{\sin(x)}{x} \cdot \sqrt{x} \right)
\]

\[
= \left(\lim_{x \to 0} \frac{\sin(x)}{x} \right) \cdot \left(\lim_{x \to 0} \sqrt{x} \right)
\]

\[
= 1 \cdot 0
\]

\[
= 0
\]
3. A car is driving down a straight road, and its distance (in miles) from the starting point at time \(t \) (in minutes), for \(0 \leq t \leq 4 \), is given by the function

\[s(t) = \sqrt{t} - \frac{t^2}{8} \]

(a) What is the velocity (in miles per hour) at time \(t = 1 \) minute?

Solution. The velocity at time \(t \) is given by \(s'(t) = \frac{1}{2\sqrt{t}} - \frac{t}{4} \). So at \(t = 1 \), we have \(s'(1) = \frac{1}{2} - \frac{1}{4} = \frac{1}{4} \) miles per minute.

(b) When is the car’s velocity zero?

Solution. Take the velocity function we got earlier, set it equal to zero, and solve for \(t \) (this is actually just algebra; no calculus involved).

\[
\begin{align*}
\frac{1}{2\sqrt{t}} - \frac{t}{4} &= 0 \\
\frac{1}{2\sqrt{t}} &= \frac{t}{4} \\
\frac{2}{\sqrt{t}} &= t \\
\frac{4}{t} &= t^2 \\
t^3 &= 4 \\
t &= \sqrt[3]{4}
\end{align*}
\]