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Abstract

We show how an island (isola) evolves out of the usual S-curve of steady states
of diffusion flames when radiation losses are accounted for and how it eventually
disappears when radiation increases further. At small activation temperatures there
are never any islands. We show that stable oscillations evolve first out of perturbations
of steady states on the S-curve at large Damköhler numbers. Only if, the activation
temperature is large enough they do appear also on the islands. The region of the
stable oscillations grows larger as activation temperature decreases.
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1 Introduction

The theoretical and numerical examination of the response of a pure diffusion flame (in
which the physics include only diffusion, chemical reaction, and possibly convection: volu-
metric heat losses by radiation or other means are not considered) to small perturbations
using analytical and numerical techniques has produced a clear picture of the expected
flame behavior. In particular, Vance et al. [14], characterizes it through extensive numeri-
cal study of the eigenvalues of the linearized equations. Kukuck and Matalon [8] later used
the method of matched asymptotic expansions. Earlier studies by Kim and coworkers used
high activation energy asymptotic techniques to study the stability problem, see [5, 6, 7].
Cheatham and Matalon [2] provided a detailed and lengthy discussion and asymptotic
formulation of the stability of diffusion flames in the large-activation energy limit. One of
the outcomes of these stability analyses is the predictions for flame oscillations. In partic-
ular, Kim and coworkers [5, 7] predicted a pulsating instability when the Lewis number
is slightly greater than unity. Sohn et al [11] observed, by direct numerical simulation,
decaying oscillations and oscillations leading to flame extinction. A stability analysis by
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Vance et al. [14] gave a description of conditions under which oscillations can occur. This
analysis did not address long term behaviors of the oscillations.

In the later 1990s studies also were made of heat-losing diffusion flames. Perhaps the
first of these articles is the work of Cheatham and Matalon [1] in which the volumetric
heat loss term in the energy equation is linearized as h(T − T0). Kukuck and Matalon
[8] used the same model and looked at the modifications of the S-curve of steady flames
only near the upper turn. Sohn et al. ([12]) used the nonlinear optically thin radiation
approximation RD(T 4 − T 4

0 ) and obtained an island of steady state flames instead of the
S-curve. On the back of the island (i.e for large Damkohler number) they found a small
region of unstable steady flames which, when perturbed, evolved into stable oscillations.
Nothing like that was ever reported before. The recent numerical study of Christiansen et
al. [3] still used the optically thin volumetric radiant heat-loss approximation. However,
it incorporated variable properties and full species multicomponent diffusion, as well as
detailed multistep reaction chemistry. They were not able to find stable oscillations during
their many numerical simulations. They explain that this is due either to the different
geometry (i.e. spherical not planar [14, 11, 12]) or to the fact that the stable oscillations
appeared only in “an extremely narrow regime.” Here we show that the region of stable
oscillations is actually very large for flames with small activation energy, in which case
the stable oscillations appear on the transformed S-curve and not on the island. We also
show how the islands develop from the S-curve and how they eventually disappear as the
radiation losses increase.

2 Mathematical model

We assume that fuel issues from the large reservoir behind a porous wall at x = −1 and
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Figure 1: The one-dimensional diffusion flame between two porous walls.

that the oxidizer diffuses from the free stream through the porous wall at x = 1, see Figure
1. The equations governing the flame evolution over time t > 0 can be written as

∂T

∂t
=

∂2T

∂x2
+ w −RD(T 4 − T 4

0 ), (1)

L
∂Yo

∂t
=

∂2Yo

∂x2
− w, (2)

L
∂Yf

∂t
=

∂2Yf

∂x2
− w. (3)
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Here T = T (x, t) denotes the temperature, Yo is the oxidizer mass fraction and Yf gives
the fuel mass fraction of the mixture. L is the Lewis number, taken to be the same for
fuel and oxidizer, and R is the ratio of characteristic chemical and radiation time scales.
In the limit as R → 0 chemistry dominates and radiation becomes unimportant. The
nondimensional reaction term w for the one-step reaction is given by

w = DYoYfe−Ta/T (4)

where D is the Damköhler number and Ta is the activation temperature. We assume the
following boundary conditions at the porous walls:

at x = −1: T = T0, Yf = 1, Yo = 0, (5)

at x = +1: T = T0, Yf = 0, Yo = 1. (6)

This model has been studied extensively before. In particular, nondimensionalization
was carried out exactly as in Sohn et al. [12]. A slightly different configuration is preferred
by Matalon and his coworkers [1, 2]. Christiansen et al.[3] added many complicated real-
world influences. For a discussion of radiative loss see T’ien [13]. They all provide excellent
physical descriptions of diffusion flames and cite many references.

The equations used by Sohn et al. [12] are equivalent to the above equations (1-6)
when Ta = 5, T0 = 0.1 and L = 1. Except for a brief discussion in the next Section 3, we
shall also take L = 1. We shall keep T0 = 0.1. In our experience, the introduction of other
parameters, like the Peclet number of convection, different starting fuel fractions Yf at
x = −1 and different wall temperatures T0 do not change the resulting stability behavior
substantially.

Our analysis starts with finding steady state solutions of (1-6). When radiation is
neglected (R = 0) plotting T (x = 0) of the steady solution vs. D gives the classical
S-curve, see Figure 2. We will show that as R increases the S-curve typically breaks
into 2 pieces: an island (isola) and an ignition branch (This does not happen at low Ta).
We investigate the stability of each steady state by examining eigenvalues of the system
linearized around the steady state solution. In particular, let T̄ , Ȳo, Ȳf be a steady solution.
Using

T (x, t) = T̄ (x) + eσtu(x) (7)

Yo(x, t) = Ȳo(x) + eσtyo(x) (8)

Yf (x, t) = Ȳf (x) + eσtyf (x) (9)

in (1-6) and neglecting nonlinear terms leads to the following eigenvalue problem

σu = u′′ + ω − 4RDT̄ 3u (10)

Lσyo = y′′o − ω (11)

Lσyf = y′′f − ω (12)

u = yo = yf = 0 at x = ±1, (13)

where
ω = D(Ȳoyf + yoȲf + ȲoȲfTau/T̄ 2)e−Ta/T̄ . (14)
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The difference between equations (11) and (12) gives Lσ(yo− yf ) = (yo− yf )′′. Hence,
when yo 6= yf the boundary condition (13) implies that Lσ = −(nπ/2)2 for some n ≥ 1.
This gives one branch of eigenvalues.

It is easy to see [9] that the system (10-14) has a nontrivial solution for infinitely many
eigenvalues σ, which have no finite accumulation point. It is well known [4, 9] that if
all eigenvalues σ have negative real parts then all solutions of (1-6) that start as small
perturbations of the steady state solution decay exponentially to the steady state, i.e. the
steady state is stable. The steady state is unstable [4, 9] if there exists an eigenvalue σ
with a positive real part, in which case there exists a number r > 0 such that for every
number ε > 0 one can find a perturbation of the steady solution which is initially closer
to the steady solution than ε yet eventually differs from it by more than r.

On the graphs we will use thick curves to denote stable steady states and thin curves to
denote unstable states. When the leading eigenvalue is complex the curve will be dashed.
For example, in Figure 2, the leading eigenvalue is positive between the lower turn and
the point labeled 4, it is complex with positive real part between 4 and 5, it is complex
with negative real part between 5 and 6 and it is negative after 6.

2.5 3 3.5 4 4.5 5 5.5
Log10 D

0.2

0.3

0.4

0.5

T@0D

4

5
6

R=0, L=5, Ta=1.2

Figure 2: S-curve of steady states and their stability.

Every unstable state could be stabilized if oscillations in a second space direction
would be allowed. To see that when L = 1, replace ∂/∂x2 with ∆ and introduce spatial
oscillations in a direction orthogonal to x, with a wave number k. This leads to a simple
shift of eigenvalues, σ → σ−k2. This was observed in [1, 14] and leads to many interesting
cellular flames. When L 6= 1 a similar shift occurs but there is no such simple formula for
the shift - see the Appendix for the proof of stabilization for large k at any L > 0.

A Hopf bifurcation [4] occurs when the leading eigenvalue is complex and its real part
changes sign. On Figure 2 this happens at point 5. It is either supercritical or subcritical.
When it is supercritical a stable time periodic solution ( = SPO = stable limit cycle)
of (1-6) exists near the bifurcation point on the side where the leading eigenvalue has
a positive real part. In other words, small perturbations of unstable steady states near
the supercritical bifurcation evolve into a stable time periodic solution of (1-6). As an
example, in Figure 3 we have supercritical Hopf bifurcations at points marked by SPO
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- perturbations of the unstable steady flames between them result in a stable oscillatory
flame (see Figure 6). When the bifurcation is subcritical an unstable periodic solution
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Figure 3: Changes in the S-curve as radiation R increases. We have stable periodic oscillations
(SPO) at the points indicated, due to the appearance of a supercritical Hopf bifurcation.

exists on the side where the leading eigenvalue has a negative real part. Small perturba-
tions of unstable steady states near the subcritical bifurcation point lead to extinction, as
illustrated in Figure 5. We have a subcritical bifurcation at point 5 on Figure 2.

We find steady states by using the shooting method with Newton’s method for finding
zeros. This can be done fast if a suitable continuation method is employed. We use either
continuation in D or in T ′(−1) and we must switch several times when islands appear.
For each steady state we solve a higher order discretized version of the eigenvalue problem
(10-14). This information is presented by graphs like Figure 2. To determine the type of
Hopf bifurcation we make a small initial perturbation of an unstable steady state solution
near the bifurcation point and solve (1-6) directly using a higher order finite difference
scheme. It is important to be close enough to the bifurcation point and for the size of
the perturbation to be small enough; the perturbation shape does not matter. However,
if one is too close to the bifurcation point or the perturbation is too small, then it takes
too long to determine whether a periodic solution evolves, see Figure 4. A careful analysis
of small oscillations actually provides a very good independent verification of the steady
solution and of the leading eigenvalue since it determines the growth rate and frequency
of the oscillations.



6 MIKLAVČIČ et al.

3 Hopf bifurcations when R = 0.

Much previous work has been done in this case [3, 8, 11, 12, 14]. Steady state solutions
form the S-curve shown in Figure 2. There exists an Lcrit > 1 such that if L < Lcrit then
the upper branch consists of stable steady state solutions and the middle branch consists
of unstable steady state solutions. When L > Lcrit the stability picture looks like the
one in Figure 2 with the Hopf bifurcation at point 5. We made many calculations for
many different values of the physical parameters, yet we always found the bifurcation to
be subcritical when R = 0.

The growth or the decay of small perturbations, as obtained directly from (1-6), is very
slow if the steady state is very close to the bifurcation point. For example, Figure 4 shows
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Figure 4: R = 0, L = 5, Ta = 1.2, T̄ (0) = 0.44. Unstable oscillations at D = 703.5 (bifurcation
at D = 703.64) that lead to extinction, as on Figure 5, after about 5300 periods. The growth is
exponential but at first is very slow and virtually unnoticable.

only about a 1% growth in amplitude after the first cycle. A first noticable increase in the
growth rate in this case happens if we start with a 300 times larger initial perturbation (or
continue for about 5000 periods), and it leads to extinction after about an 800 times larger
initial perturbation, see Figure 5. This contrasts sharply with statements made by Sohn et
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Figure 5: As on Figure 4 but with 800 times larger initial perturbation.

al. in [12] and in the previous nonlinear analysis (Sohn et al. in [11]), concluding that the
oscillations should be terminated after a few cycles. However, it is unlikely that an actual
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experiment would produce these kind of oscillations which would last virtually unchanged
for hundreds of cycles. The key reasons for being able to produce graphs like Figure 4 is
the ability to choose D very close to the bifurcation value and make small perturbations of
the unstable steady state. For example, if the Damköhler number is dropped to D = 700
from D = 703.5 the growth rate jumps from 0.0004 to .0100, i.e. a 0.5% drop in the
Damköhler number causes a 25 fold increase in growth rate, which shortens the period of
persistence of oscillations by roughly a factor of 25.

The frequency of these types of oscillations decreases to 0 as L → Lcrit - hence they
allow for arbitrarily long periods. They have been studied extensively by Christiansen et
al. [3]. Nayagam and Williams [10] observed them in experiment.

The same observations apply whenever the bifurcation is subcritical, even when radia-
tion is accounted for. However, we will focus on supercritical bifurcations from now on. At
fixed R we may have both supercritical and subcritical bifurcations. For example, when
R = 0.2 in Figure 14 we have a subcritical bifurcation at the top and two supercritical
bifurcations on the back of the curve (and this is not limited to low Ta).

4 Islands and oscillations when R > 0 and Ta = 1.2.

We use L = 1 in the rest of the article.
We shall now describe the appearance and disappearance of islands (isolas) as well

as the appearance of a supercritical Hopf bifurcation when we account for radiation. We
chose a very low activation temperature Ta = 1.2 to start the discussion because at this
Ta it is much easier to show the evolution of the stability diagram. We found essentially
exactly the same behavior for all Ta > 1 that we analyzed - we will later show some results
also for Ta = 3 to highlight changes with increasing activation temperature.

Let us focus on Figure 3 first. Note that if R = 0 then T (0) → 0.6 as D →∞ which is
the Burke-Schumann limit. On the other hand, when radiation is accounted for T (0) → 0
as D →∞. This asymptotic behavior is discussed in more detail in Section 6.

When R = 0.01, supercritical Hopf bifurcations occur at D = 268973 and D = 843180
on the back of the S-curve, see Figure 3. Between the bifurcation points the steady states
are linearly unstable, however, perturbations of all those unstable states lead to stable
oscillations as shown in Figure 6. Now, let us look at the leading eigenvalue, which is
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Figure 6: Evolution of stable oscillations near D = 797500, R = 0.01, Ta = 1.2. Although the
steady state is unstable, the perturbations of it lead to stable oscillations.
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complex and has a positive real part between the two bifurcation points. As D decreases
the real part of the leading eigenvalue quickly sinks under the constant eigenvalue −(π/2)2,
however, it re-emerges as a leading eigenvalue near the upper turn. As D further decreases
the eigenvalue splits into two real eigenvalues, the largest of them becomes 0 at the turn
and becomes positive on the middle branch. The difference between (11) and (12) is
responsible for the eigenvalue −(π/2)2.

As R decreases the region where the leading eigenvalue is complex and has positive
real part shrinks and disappears at R = 0.0063, D = 1.0× 106. Hence, when R < 0.0063
the whole upper branch is stable, see Figure 3.

As R increases to R = 0.04, Figures 3 and 7, the real part of the leading eigenvalue
increases, at the turn we still have the same behavior of the eigenvalue as when R = 0.01
and between the bifurcation points we have stable oscillations which will be discussed
below.
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Figure 7: The island is formed from the S-curve near R = 0.05 and it disappears for R > 0.07 -
the lower ignition branch remains.

The top part of the S-curve gets pinched off near R = 0.05 creating an island and
a lower branch, see Figure 7. As R increases further, the island shrinks and disappears
near R = 0.07. The lower branch persists and approaches closer and closer to T0 = 0.1.
We were not able to find stable oscillations near the bifurcation point on the island at
R = 0.05. At higher values of Ta we do find stable oscillations near the bifurcation point
on the island when R is close to the value at which the island is created. Note that all the
steady states on the island are unstable when R = 0.06 - hence there is no Hopf bifurcation
point on the island.

Now, let us have a closer look at the stable oscillations. Figure 6 shows a slight
amount of asymmetry between times spent at high vs. low temperature, which becomes
more pronounced further away from the bifurcation point. The asymmetry increases
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Figure 8: Evolution of stable oscillations at D = 40000, R = 0.04. T̄ (0) = 0.1441.

considerably at R = 0.04, see Figure 8. When R = 0.04 bifurcations occur at D = 11368
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Figure 9: Detailed examination of one cycle on Figure 8. The cycle length is 1.313.

and D = 99561 and between them all unstable states evolve into stable periodic solutions.
The growth rate of linear oscillations is the largest near D = 40000, hence the transition
is very fast on Figure 8. Note that the flame temperature is for the most part of the cycle
close to the surrounding temperature T0 = 0.1, however, it bursts, for a short time, beyond
the unstable steady state temperature close to the highest stable steady temperature at
R = 0.04, see Figure 7. Details on Figure 9 seem to suggest that the burst causes fuel
depletion, hence the dip in Yf , which takes a long time to recover.

5 Islands and oscillations when R > 0 and Ta = 3.

When Ta = 3 the islands are created near R = 3.1× 10−9 the same way as when Ta = 1.2,
see Figures 10, 11, 12 below.



10 MIKLAVČIČ et al.
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Figure 10: Creation of an island at Ta = 3. At SPO a supercritical Hopf bifurcation occurs.

In Figure 10, near SPO, the real part of the leading eigenvalue increases with D very
fast, so, as D decreases it dips under the constant eigenvalue −(π/2)2 too fast to be shown
in the figure, hence a regular Hopf bifurcation occurs at SPO even though the picture
can not show it. We found that stable oscillations with period of about 0.04 evolve from
perturbations of unstable steady states near SPO. As R decreases the region with unstable
states on the back shrinks and then disappears as in Figures 3 and 14.

We take a closer look at Figure 12 when R = 10−5. Between 1 and 2 the leading
eigenvalue is complex with a positive real part. At 2 the real part changes sign and it
sinks under the constant eigenvaule at 3. The leading eigenvalue between 3 and 4 has the
value −(π/2)2. At 4 the complex conjugate pair re-emerges as the leading eigenvalue and
at 5 it splits into 2 real eigenvalues. The largest of them changes sign at 6. Between 1 and
2, but only near 2, we found stable oscillations. Hence, at 2 we have a supercritical Hopf
bifurcation.

When R = 1.5 × 10−5 the same description applies as when R = 10−5. When D =
8 × 106 we found the period of stable oscillations to be 0.506. There is some asymmetry
in the oscillations, but not as pronounced as in Figure 8. The mean temperature of the
oscillations is much higher in this case since T̄ (0) = 0.291.

When R ≥ 2 × 10−5 we were no longer able to find stable oscillations on the island.
As Figure 12 shows, the island still has stable steady solutions when R = 5 × 10−5, but
their number decreases as R increases. All steady states on the island are unstable at
R = 6.4 × 10−5; the island disappears near R = 7 × 10−5 even though the lower branch
that is very close to T0 = 0.1 remains.
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Figure 11: Islands and S-curve when Ta = 3.

6 Reaction sheet limit

We examinined the behavior of solutions on the back (large D) of the islands and the
back of S-curves for large D. The reactivity w, equation (4), resembles a delta function,
the fuel fraction of the mixture decreases linearly to 0 at x = 0 and there is almost no
fuel in the region x > 0. For the oxidizer the reverse is true. Using w = δ(x) in the time
independent version of (1-3) implies that Ȳ ′

o , Ȳ ′
f and −T̄ ′ jump by 1 at x = 0. This and

the symmetry of T̄ imply

Ȳf (x) = −x, Ȳo(x) = 0 for − 1 ≤ x < 0, (15)

Ȳf (x) = 0, Ȳo(x) = x for 0 < x ≤ 1, (16)

T̄ ′′(x) = RD(T̄ (x)4 − T 4
0 ) for 0 ≤ x ≤ 1, T̄ ′(0) = −1/2, T̄ (1) = T0. (17)

In other words, we have a reaction sheet at x = 0 in the Burke-Schumann limit of in-
finitesimally thin reaction zone with added radiative heat loss. Equation 17 implies that
T̄ (0) is given by

∫ T̄ (0)

T0

2 dT√
1 + 8RD((T 5 − T̄ (0)5)/5− T 4

0 (T − T̄ (0)))
= 1. (18)

We note that the solution depends only on the composite parameter RD in this infinite-
rate chemistry limit. We solved (18) for T̄ (0) and plotted it vs. D in Figure 13. Note that
when RD = 0 we recover the non-radiative Burke-Schumann limit T̄ (0) = 1/2 + T0 = 0.6,
and for small RD we obtain

T̄ (0) .= 1/2 + T0 −RD(320T 3
0 + 180T 2

0 + 48T0 + 5)/480 for small RD. (19)
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Figure 12: Details on the islands when Ta = 3.

Note also that as R decreases the steady state solutions on the back of S-curves approach
very close to their reaction sheet limit.

In order to keep the dominator in (18) positive for large RD we need T̄ (0)− T0 to be
small. Setting the dominator to zero at T = T0 and inverting the series up to quadratic
terms in (T̄ (0)− T0)/T0 gives

T̄ (0) .= T0 +
4T0

1 + 8
√

RDT 5
0 +

√
64RDT 5

0 + 16
√

RDT 5
0 − 1

for large RD. (20)

It turns out that (20) produces an error smaller than 10−5 when RD > 104 (recall,
T0 = 0.1). One can show that the correction to (20) which would account also for the
equality in (18) is actually exponentially small.

7 Conclusions

We shall organize our conclusions in order of increasing R at any given Ta. “Small R” ...
has quite a different range of values at different values of Ta.

When R is very small the back of the S-curve gets pushed down to T0 and the whole
upper branch is stable as seen in Figure 13. The back of the S-curve is very close to the
reaction sheet limit when R is very small (Figure 13).

As R increases an interval of unstable steady states appears on the back of the S-curve.
When these steady states are slightly perturbed they evolve into stable oscillations because
supercritical Hopf bifurcations occur at the two ends of the region. A typical example can
be seen in Figure 3 (R = 0.01). For smaller values of Ta perturbations of all unstable
states in the interval lead to stable oscillations. For larger values of Ta only states near
the bifurcation points evolve into stable oscillations.
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Figure 13: S-curves with the corresponding reaction sheet limits from equation (18)

When Ta = 1 the S-curve simply flattens out as R increases further, see Figure 14.

When Ta > 1 the S-curve breaks at a certain value of R, creating an island (isola) and
a lower branch (Figures 7, 10). As R further increases the island becomes a collection of
completely unstable steady states that eventually disappears. The lower branch persists.

Ta Rappear Rdisappear

1.1 0.1111 0.117
1.2 .05 0.07
2 3.9× 10−5 1.9× 10−3

3 3.1× 10−9 7× 10−5

5 1.2× 10−17 3.1× 10−7

6 6.7× 10−22 2.9× 10−8

Table 1: Ta vs. values of R where the islands appear and disappear.

Right after the island appears we have a Hopf bifurcation on the back of the island,
as shown in Figure 10. At high values of Ta the bifurcation is supercritical - implying the
appearance of stable oscillations. This was first observed by Sohn et al. [12]. At smaller
values of Ta we determined that the bifucation is actually subcritcal - implying no stable
oscillations on any island (Figure 7). We found that as R increases the Hopf bifurcation
always becomes first subcritical and then it disappears.
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Figure 14: No islands appear when Ta = 1. The region of unstable steady states was first observed
near R = 0.1113 and D = 20000. All unstable steady states on the backs of the curves evolve into
stable oscillations.

8 Appendix

Here we want to show that every steady state solution can be stabilized if spatial ocillations
in a direction orthogonal to x-direction are allowed. Equations (10, 11,12) modified to
account for the oscillations with a wave number k are

σu = u′′ − k2u + ω − 4RDT̄ 3u

Lσyo = y′′o − k2yo − ω

Lσyf = y′′f − k2yf − ω.

Multiplying these equations with ū, ȳo, ȳf , integrating from -1 to 1 and using boundary
conditions (13) gives

σ

∫
|u|2 = −

∫
|u′|2 − k2

∫
|u|2 +

∫
ωū− 4RD

∫
T̄ 3|u|2

Lσ

∫
|yo|2 = −

∫
|y′o|2 − k2

∫
|yo|2 −

∫
ωȳo

Lσ

∫
|yf |2 = −

∫
|y′f |2 − k2

∫
|yf |2 −

∫
ωȳf .

Define
h =

√
|u|2 + |yo|2 + |yf |2
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hence

Re(σ)
∫

h2 ≤ −k2 min{1, 1/L}
∫

h2 + Re
∫

ω(ū− ȳo/L− ȳf/L)− 4RD

∫
T̄ 3|u|2.

Using Schwarz inequality in equation (14) gives a real number C such that

Reω(ū− ȳo/L− ȳf/L)− 4RDT̄ 3|u|2 ≤ Ch2.

Therefore
Re(σ) ≤ C − k2 min{1, 1/L}

hence at any fixed L > 0 one can find k such that all eigenvalues become negative.
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[13] T’ien J S, Diffusion Flame Extinction at Small Stretch Rates: The Mechanism of
Radiative Loss, Combustion and Flame, 65(1986), 31-34
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