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Abstract Flowdriven by an externally imposedpressure gradient in a vertical porous channel
is analysed. The combined effects of viscous dissipation and thermal buoyancy are taken into
account. These effects yield a basic mixed convection regime given by dual flow branches.
Duality of flow emerges for a given vertical pressure gradient. In the case of downward
pressure gradient, i.e. upward mean flow, dual solutions coincide when the intensity of the
downward pressure gradient attains a maximum. Above this maximum no stationary and
parallel flow solution exists. A nonlinear stability analysis of the dual solution branches is
carried out limited to parallel flow perturbations. This analysis is sufficient to prove that one
of the dual solution branches is unstable. The evolution in time of a solution in the unstable
branch is also studied by a direct numerical solution of the governing equation.

Keywords Porous medium · Vertical channel · Fully developed flow · Viscous dissipation ·
Mixed convection · Instability

1 Introduction

Viscous dissipation acts as a heat source in channel flows. If coupled with effects of thermal
buoyancy or temperature-dependent viscosity, viscous dissipation may be the cause of flow
instability. This phenomenon is known from several decades, ever since the pioneering work
by Joseph (1964, 1965). A survey on this topic and on the relative recent literature can be
found in Barletta (2015).
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Most of the existing literature on dissipation instability in channel flows deals with hor-
izontal channels, either filled with a porous medium or not. On the other hand, vertical
channels or inclined channels have received little attention. An exception is the paper by
Nield et al. (2011), which, however, investigates primarily small inclinations to the horizon-
tal. The main reason for restrictive assumptions is the general difficulty to express the basic
velocity and temperature fields in terms of an analytical solution when the channel is inclined
to the horizontal. As a consequence, the stability analysis is even more complicated from a
computational viewpoint.

A well-known feature of viscous dissipation flows in vertical channels is the lack of
uniqueness in the steady parallel flow solution with a given value of the imposed pressure
gradient. The steady parallel flows belong to dual branches whose characteristics have been
widely investigated for either clear fluids (Barletta et al. 2005, 2008; Miklavčič and Wang
2011) or fluid saturated porous media (Barletta et al. 2007). Indeed, studies about stability
of the dual branches of solutions have been carried out only for clear fluids (Miklavčič
2015; Barletta and Miklavčič 2016). An interesting aspect pointed out in these studies is
the role played by the choice of the reference temperature to be used within the Oberbeck-
Boussinesq approximation. In fact, this choice influences not only the basic parallel flow
(Barletta and Zanchini 1999), but also its stability analysis. In Miklavčič (2015) and in
Barletta and Miklavčič (2016), the same type of flow is investigated, but with two different
choices of the reference temperature: either the temperature of the channel walls (Miklavčič
2015) or the mean temperature over a channel cross section (Barletta and Miklavčič 2016).
The last choice leads to amore complicatedmathematical formulation, but it is to be preferred
on physical grounds (Barletta and Zanchini 1999).

Wemention that a nonlinear analysis of instability induced by viscous dissipation has been
recently carried out by Celli et al. (2016) with reference to a horizontal porous channel. We
also point out that a linear stability analysis of dissipation-induced dual flows in a horizontal
porous channel has been performed by Barletta and Rees (2009).

The aim of the present contribution is to study the nonlinear instability in a vertical
porous channel along the lines sketched by Barletta and Miklavčič (2016). Here, the local
momentum balance equation is formulated according to Darcy’s law instead of the Navier–
Stokes equation. The simpler mathematical nature of Darcy’s law allows a straightforward
manipulation of the coupled localmomentumand energy balance equations leading to a single
nonlinear governing equationwhose solutionyields the temperaturefield.Thebasic stationary
flows display a structure of dual solutions as in the case of aNavier–Stokes fluid, parametrised
by the vertical pressure gradient within the channel. The stability theory for semilinear
parabolic equations is invoked to test the evolution in time of perturbations superposed to
the basic stationary dual flows. A class of parallel flow perturbations is considered. These
perturbations are unstable for a branch of dual solutions and stable for the other one. Finally,
a direct numerical simulation of the time evolution of a basic flow belonging to the unstable
branch is carried out.

2 Governing equations

We consider fully developed buoyant flow in a vertical porous channel. The flow regime
is assumed to be two-dimensional in the (y, z)–plane, with y ∈ [−L , L] and z ∈ R. We
denote by g = −g ez the gravitational acceleration, where g is its modulus, and ez is the
unit vector along the vertical z axis. The flow is partly driven by the buoyancy force and
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partly by a prescribed constant vertical pressure gradient P = ∂p/∂z. To be precise, we
denote by p the local difference between the fluid pressure and the hydrostatic pressure.
Under the assumption of fully developed regime, the velocity field is parallel to the z axis,
and symbol W is used to denote the z component of velocity. According to Darcy’s law and
to the Oberbeck–Boussinesq approximation (Barletta and Zanchini 1999; Barletta 2009), the
local momentum balance equation and the local energy balance equations can be written as

μ

K
W = −P + ρgβ (T − Tm) , (1a)

〈ρc〉 ∂T

∂t
= 〈k〉 ∂2T

∂y2
+ μ

K
W 2. (1b)

Here, μ is the dynamic viscosity of the fluid, K is the permeability, ρ is the fluid density, β is
the fluid coefficient of thermal expansion, 〈ρc〉 is the average value of the product between
the density and the specific heat of the saturated porous medium, 〈k〉 is the average thermal
conductivity of the saturated porous medium. The boundary conditions can be written as

y = ±L : T = T0. (2)

We point out that, unlike the case of Navier–Stokes’ flow (Barletta and Miklavčič 2016),
Darcy’s flow implies in general slip conditions (W �= 0) at the impermeable boundary walls,
y = ±L (Nield and Bejan 2013).
In Eqs. (1) and (2), T stands for temperature and t for time. The fluid properties are considered
as constants. The reference temperature Tm that appears in Eq. (1a) is the mean temperature,
defined as

Tm = 1

2L

L∫

−L

T dy. (3)

2.1 Dimensional analysis

Equations (1)–(3) can be written in a dimensionless form through the scaling

y

L
→ y,

t

L2〈ρc〉/〈k〉 → t,
W

〈k〉/(ρgβL2)
→ W,

T − T0
〈k〉μ/(Kρ2g2β2L2)

→ T,

Tm − T0
〈k〉μ/(Kρ2g2β2L2)

→ Tm,
P

〈k〉μ/(ρgβK L2)
→ P. (4)

Therefore, Eq. (1) can be expressed as,

W = − P + T − Tm, (5a)

∂T

∂t
= ∂2T

∂y2
+ W 2, (5b)

where the boundary conditions (2) and the additional integral constraint (3) are written as

y = ±1 : T = 0, (6a)

1

2

1∫

−1

T dy = Tm . (6b)
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Equations (1) can be collapsed into a single partial differential equation,

∂T

∂t
= ∂2T

∂y2
+ (T − Tm − P)2 . (7)

In Eqs. (6) and (7), T is a function of y and t , while Tm is a function of t . These equations
yield effectively an integro-differential initial value problem whose solution can be sought
for prescribed values of the input parameter P and initial temperature distribution.

2.2 Basic dual flows

Stationary solutions of (6) and (7) satisfy

d2T

dy2
+ (T − Tm − P)2 = 0, (8a)

y = ±1 : T = 0, (8b)

1

2

1∫

−1

T dy = Tm . (8c)

By employing the usual ODE techniques, one can show that stationary solutions T have to
be even functions of y. Equation (8) can be solved numerically, for any large enough value of
P , by adopting a shooting method based on a Runge–Kutta solver. In the “Appendix”, it will
be shown that the solutions can also be represented in terms of some nonstandard functions.

Figure 1 shows that, for a given value of P , there exists a pair of solutions of Eq. (8):
one on the upper branch and one on the lower branch of either Tm , T (0) or W (0) graph.
Equation (5a) implies that these dual solutions have the same mean flow velocity

Wm = 1

2

1∫

−1

W dy = − P. (9)

The flow marked by A in Fig. 1 corresponds to the trivial solution of Eq. (8) and describes
the system at rest. The dual of the rest state is marked by B in Fig. 1, and it is a rather peculiar
flow since it is caused by viscous dissipation alone, without any externally imposed pressure
gradient. Some authors (Miklavčič and Wang 2011; Barletta and Miklavčič 2016) call such
flows completely passive flows. The branches merge at point C in Fig. 1 where P is at its
minimum. No stationary flow is possible when P < −2.11512. Some details about these
flows are summarised in Table 1.

Figure 2 illustrates the temperature and velocity profiles of flows B and C. Observe that
upward flow,W (y) > 0, occurs at the central core of the porous layer, while downward flow,
W (y) < 0, takes place close to the boundary planes y = ± 1, for both flows B and C.

3 Stability analysis

At given P , we can write a time-dependent solution of Eq. (7) as

T (y) + u(y, t) (10)
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Fig. 1 Dual basic flows: plots of Tm , T (0) and W (0) versus P

Table 1 Some data about the
flows marked in Fig. 1

Point P Tm T (0) W (0) λ1

A 0 0 0 0 −π2/4

B 0 16.8633 27.4021 10.5388 2.70885

C −2.11512 4.23024 7.09844 4.98332 0

where T is a stationary solution of Eqs. (8) and u is the time varying perturbation whose
evolution is governed by

∂u

∂t
= ∂2u

∂y2
+ 2(T − Tm − P)

(
u − 1

2

∫ 1

−1
u dy

)
+

(
u − 1

2

∫ 1

−1
u dy

)2

, (11a)

u(±1, t) = 0. (11b)
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Fig. 2 Dual basic flows: plots of T (y) and W (y) for solutions B and C

Equations (11) define a semilinear parabolic equation in L2(−1, 1) and growth/decay of u
is determined by the corresponding eigenvalues (Henry 1981; Miklavčič 1998). A complex
number λ is a corresponding eigenvalue if there exists v ∈ L2(−1, 1) such that

λv = d2v

dy2
+ 2(T − Tm − P)

(
v − 1

2

∫ 1

−1
v dy

)
, (12a)

v(±1) = 0, v �≡ 0. (12b)

It can be shown (Henry 1981; Miklavčič 1998) that all perturbations u, which are initially
small enough, will decay with time if all the corresponding eigenvalues have negative real
parts. If, on the other hand, there exists an eigenvalue which has a positive real part, then
there exists a fixed threshold value such that for arbitrary small ε one can find a solution of
Eq. (11) which is initially smaller than ε but grows eventually past the threshold value. In
other words, a stationary solution T of Eq. (8) is stable if all the eigenvalues determined by
Eq. (12) have negative real parts. A stationary solution T of Eq. (8) is unstable if Eq. (12)
have an eigenvalue with a positive real part.

We point out that the usual reasoning in applied stability analysis goes as follows. The
perturbation u in Eq. (11) is initially small. Hence, one would expect that the last term in
Eq. (11a), which is quadratic in u, does not initially affect the growth of u. This leads in fact
to a linearisation of Eq. (11). One may drop the last term in Eq. (11a) and look for solutions
in the form u = eλtv(y). Then, λ and v have to satisfy Eq. (12). The sign of the real part
of λ determines whether the small perturbations will grow or decay. This kind of reasoning
has been proven to be applicable to general semilinear parabolic equations (Henry 1981;
Miklavčič 1998). However, the detailed proofs are very technical and will be omitted here.

Equations (12) have infinitely many eigenvalues. We ordered them so that the real parts
are decreasing. For the system at rest, at point A in Fig. 1, the eigenvalues are

− (nπ/2)2, n = 1, 2, . . . . (13)

We discretised Eqs. (12) using central differences and use Richardson extrapolation to cal-
culate the eigenvalues.

Dependence of the first eigenvalue on T (0) is shown in Fig. 3. Note that it changes sign
at C. One can show that there is an eigenvalue 0 at point C as follows. Consider T and P in
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Fig. 3 Dependence of the first eigenvalue on T (0)
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Fig. 4 Dependence of the first two eigenvalues λ1, λ2 on P

Eqs. (8) as functions of a parameter ξ = T (0) and take the derivative of Eq. (8a) with respect
to ξ to obtain

d2

dy2
∂T

∂ξ
+ 2(T − Tm − P)

(
∂T

∂ξ
− 1

2

∫ 1

−1

∂T

∂ξ
dy − dP

dξ

)
= 0. (14)

P has minimum at C hence dP/dξ = 0 and v = ∂T /∂ξ satisfies Eq. (12) with λ = 0.
Computed eigenvalues happened to be purely real. The largest two eigenvalues are shown

in Fig. 4. This shows that solutions of Eq. (8) that are on the upper branch in Fig. 1 are
unstable, and that the lower branch in Fig. 1 consists of stable solutions.

4 Evolution of perturbations

Equation (7) was solved numerically to determine evolution of perturbations of stationary
solutions. Small perturbations of solutions on the lower branch in Fig. 1 decay since those
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Fig. 5 Blow up of a slightly perturbed completely passive solution when the average of the initial perturbation
is 0. The initial size of perturbations is under 1%
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Fig. 6 Perturbations of the completely passive flow with initially slightly negative average lead to transition
to the rest state

stationary solutions are stable, which was established in the previous section. For perturba-
tions of stationary solutions on the upper branch, we found two kind of outcomes. When
the average of the perturbation is a bit negative, the perturbed solution will approach the
stationary solution at the same P on the lower branch. However, when the average of the
perturbation is bigger than this threshold, the perturbation grows explosively.Wewill present
the details for perturbations of the completely passive flow, which is marked by B in Fig. 1.

We made random, up to ±1%, initial changes in the temperature profile at n = 99 equally
spaced points on the interval −1 < y < 1 and solved the discrete version of Eq. (7) directly
with P = 0. The solution blew up at about t = 2.534 as is shown in Fig. 5.

However, when the average initial perturbation was in the range −1.07 to +0.93%, the
solution collapsed to the trivial solution as is illustrated in Fig. 6. The same perturbation but
raised into range −1.06 to +0.94% leads to blow up. To study the transition to the rest state
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Fig. 7 Evolution of the perturbed completely passive flow shown in Fig. 5

in more detail we first calculated and graphed in Fig. 7 the size of the perturbation√
1

n

∑n

i=1
(T (yi , t) − TB(yi ))2, (15)

where TB is the temperature distribution for the completely passive solution as presented in
Fig. 2 and yi = −1+ 2i/(n + 1). Near t = 2.5, the perturbations grow exponentially. From
values of perturbations given by (15), we estimated the growth rate to be 2.52 which is not
too far from the leading eigenvalue λ1 = 2.70885 for the completely passive flow.We expect
that the growth rate would approach λ1 as the initial size of perturbation would go to 0 and
n → ∞. In Fig. 7, we also plotted the size of the solution√

1

n

∑n

i=1
T (yi , t)2. (16)

At t = 6.5, we estimated that the size of the solution decays exponentially at the rate−2.464
which is very close to the leading eigenvalue λ1 = −π2/4 = −2.467 for the rest state.

5 Conclusions

The stability of dual parallel flows in a vertical porous channel has been analysed. A vertical
channel with impermeable boundaries kept at a fixed temperature has been considered. Since
no temperature gap is prescribed across the porous layer, the buoyant flow is entirely caused
by the effect of viscous dissipation. For every given value of the vertical pressure gradient
larger than a minimum, dual flows have been shown to exist. Nonlinear stability of these
flows have been investigated, by limiting the type of perturbations to parallel flow modes.
This class of perturbations proved to display an unstable behaviour for the upper branch
of dual flows and a stable response for the lower branch. Finally, a numerical solution of
the nonlinear equations of parallel flow in the channel has been employed to prove that the
flows in the unstable branch can either evolve to the corresponding flow in the stable branch
or undergo an explosive evolution in time. The ultimate trend of the perturbations turned
out to be a consequence of the initial perturbation prescribed on the basic flow, whether its
amplitude exceeds or not a given range. This analysis cannot exclude that instability of the
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lower branch of dual solutions can arise when perturbations of a different type are considered.
Further future work is needed in this direction to check if a different outcome emerges with
a fully three-dimensional analysis of perturbations.

Appendix

If we multiply Eq. (8a) by T ′ and integrate, we obtain

1

2

(
dT

dy

)2

+ 1

3
(T − Tm − P)3 = 1

3
[T (0) − Tm − P]3 , (17)

after noting that T ′(0) = 0. If we use Eq. (17) and scale with T (0)− Tm − P , we obtain two
branches.

When T (0) − Tm − P > 0, one can describe T parametrically as follows:

T (y) = 6s2[ϕ(s)2 − ϕ(s|y|)2], (18)

where 0 ≤ s < smax = ∫ ∞
0 (3 − 3x2 + x4)−1/2dx = 2.103 and ϕ is defined on [0, smax) by

ϕ′ =
√
3 − 3ϕ2 + ϕ4, ϕ(0) = 0. (19)

In this case

T (0) = 6s2ϕ(s)2, P = −6s2 + 6s
∫ s

0
ϕ(x)2 dx,

Tm = 6s2ϕ(s)2 − 6s
∫ s

0
ϕ(x)2 dx . (20)

These solutions make up the entire upper branch in Fig. 1 and the piece between C and A on
the lower branch.

When T (0) − Tm − P < 0 one can describe T parametrically as follows:

T (y) = 6s2[ψ(s)2 − ψ(s|y|)2], (21)

where 0 ≤ s < zmax = ∫ ∞
0 (3+ 3x2 + x4)−1/2dx = 1.214 and ψ is defined on [0, zmax) by

ψ ′ =
√
3 + 3ψ2 + ψ4, ψ(0) = 0. (22)

In this case

T (0) = 6s2ψ(s)2,

P = 6s2 + 6s
∫ s

0
ψ(x)2 dx,

Tm = 6s2ψ(s)2 − 6s
∫ s

0
ψ(x)2 dx . (23)

These solutions make up the lower branch in Fig. 1 without the piece between C and A.
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