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It is shown that unstable dual solutions in fully developed
mixed convection flow in a vertical channel disappear in the
presence of relatively strong thermal radiation. In this case, we
have a unique stable flow at each pressure gradient. When the
effect of thermal radiation is weak another branch of stable
solutions is created, resulting in bistable flows. In this case, the
flow exhibits hysteresis with variation of the pressure gradient.
Optically, a thin radiation model is used.

1. Introduction
Dual mixed convection flows have been studied for a long time.
Joseph [1,2] studied them for Couette and Poiseuille flows. Wilks
& Barmley [3] observed them in boundary layers. In these cases,
they established instability of one branch of flows and existence
of the critical stress. Barletta et al. [4] found dual solutions in
vertical channels and the existence of a critical stress (minimum
pressure gradient). Instability of one branch of flows in vertical
channels was established by Miklavčič [5] and by Barletta &
Miklavčič [6]. These unstable dual solutions are due to the
nonlinear viscous term in the energy balance equation and are
discussed in detail by Barletta [7]. Here, the focus is on the
effects of thermal radiation on such flows. It is shown that the
dual solutions in vertical channels disappear when the effect of
thermal radiation is strong enough. In this case, one unique stable
flow appears at all pressure gradients and there is no critical
stress. On the other hand, when thermal radiation is relatively
weak, another stable branch of flows appears in addition to
the unstable dual branch. This creates bistable flows and the
effect of the pressure gradient on the flow exhibits hysteresis.
An evaluation of parameters in the cases of water and air flows
shows that both scenarios are within the realm of possibility.
On the new branch of solutions, the temperature attains the
maximum near the walls. Laminar flows with hysteresis are
rather rare but have been observed before; see, for example, [8].
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Table 1. Using data at 300 K, normal atmospheric pressure and channel width 2L= 0.1 m.

Pr ε r

air 0.69 1.5 0.16
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

water 6.9 0.065 0.073
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. Model
We consider a fully developed viscous flow in a vertical channel between parallel plates −L < y∗ < L
with wall temperature Ta. Gravitational acceleration points in the direction of the negative z-axis. The
flow is driven by a constant vertical pressure gradient ∂p/∂z∗ and by the buoyancy force induced
by the temperature gradient. In a fully developed regime, the velocity field is parallel to the z-axis
and expressed by its z-component W∗. Using Oberbeck–Boussinesq approximation [5,9,10], the local
momentum balance equation and the local energy balance equations can be formulated as

ρ
∂W∗

∂t∗
= μ

∂2W∗

∂y∗2 − ∂p
∂z∗ + ρgβ(T − Ta), (2.1)

ρc
∂T
∂t∗

= k
∂2T
∂y∗2 + μ

(
∂W∗

∂y∗

)2
− σ (T4 − T4

a)
2L

(2.2)

and W∗ = 0, T = Ta at y∗ = ±L. (2.3)

Here, ρ denotes the density, μ the dynamic viscosity, β is the coefficient of thermal expansion, k is the
thermal conductivity and c is the specific heat of the fluid. g is the gravitational acceleration and σ is the
Stefan–Boltzmann constant.

Equation (2.1) is often stated [6,10,11] with a mean temperature

Tm = 1
2L

∫L

−L
T dy∗,

in place of the fixed ambient temperature Ta. Different choices produce different quantative results,
but the qualitative behaviour remains the same [5,6]. The nonlinear optically thin thermal radiation
approximation σ (T4 − T4

a) in equation (2.2) has been used before when studying the heat transfer in a
medium between parallel walls [12–14]. It is divided by 2L because the energy balance equation (2.2) is
given per unit volume. In applications, one should consider replacing the Stefan–Boltzmann constant σ

with one that more properly reflects absorption and reflectivity.
Using scaling

y = y∗
L

, t = t∗
μ

L2ρ
, w = W∗ ρgβL2

k
, θ = (T − Ta)

(ρgβL2)2

kμ
(2.4)

in equations (2.1)–(2.3) gives

∂w
∂t

= ∂2w
∂y2 − Π + θ , (2.5)

Pr
∂θ

∂t
= ∂2θ

∂y2 +
(

∂w
∂y

)2
− εθ (4 + 6rθ + 4r2θ2 + r3θ3) (2.6)

and w = 0, θ = 0 at y = ±1, (2.7)

where

Pr = cμ
k

, ε = LT3
aσ

2k
, r = kμ

(ρgβL2)2Ta
, Π = ρgβL4

kμ
∂p
∂z∗ . (2.8)

Pr is the Prandtl number. The values ε and r greatly depend on L. Some sample values of the parameters
are listed in table 1.

3. Stationary flows
The time-independent solutions of equations (2.5) and (2.6) satisfy

0 = w′′ − Π + θ (3.1)
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Figure 1. Stationary flows when ε = 0.01 and r = 0.1.
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Figure 2. Stationary flows when r = 0.1 and ε increases from 0.06 (a) to 0.1 (b).

Table 2. Data for the stationary flows marked in figures 1, 3, 4 when ε = 0.01 and r = 0.1.

flow Π w(0) θ (0) λ1

A 12 −3.834986 4.608805 −1.86858 ± 1.89609i
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B 0 0 0 −(16ε + π 2)/(4Pr)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C −3.221423 3.219782 3.443091 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D 0 6.688761 14.207656 0.60146
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E 13.764045 20.771750 50.348734 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F 0 42.864480 66.340718 −1.04022
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and
0 = θ ′′ + (w′)2 − εθ (4 + 6rθ + 4r2θ2 + r3θ3), (3.2)

on the interval (−1, 1) and boundary conditions given by (2.7). Symmetry implies

w′(0) = θ ′(0) = 0 and w(1) = θ (1) = 0. (3.3)

For any given values of Π , w(0), θ (0), we get at most one solution of (3.1)–(3.3). We pick one of the three
and use the two-dimensional Newton’s method to find the other two values so that the two conditions
w(1) = θ (1) = 0 are met. Some sample values are listed in table 2.

A good overview of stationary flows is shown in figure 1 for the case when ε = 0.01 and r = 0.1. Using
data for water in table 1, we get similar curves.

If ε (or r) is increased, the second turning point E moves to the left and it disappears as shown in
figure 2. Using data for air in table 1, we get a curve that is a bit more stretched out than the curve in
figure 2b.

If ε (or r) is decreased, the second turning point E moves to the right towards infinity. When ε = 0, the
no radiation case, there is no second turning point and no third branch and we are left with the mixed
convection flows studied before [5,6]. As ε → 0, the flow marked by D on figure 1a,b approaches the flow
called completely passive natural convection flow with w(0) = 6.111 and θ (0) = 13.155 [15]—which are
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Figure 3. Temperature distributions when ε = 0.01 and r = 0.1.
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Figure 4. Velocities when ε = 0.01 and r = 0.1.

not too far from the values given in table 2 for D. However, the transition ε → 0 is rather complicated far
from the origin as the radiation term is a singular perturbation at high temperatures.

The rest state is at point B in figure 1 where Π = w = θ = 0. Along the path from B to F, the temperature
monotonically increases, as shown in figure 3. However, the temperature increases also as we move on
the lower branch towards A. Observe that the temperature is much higher near the wall at F.

Figure 4 shows that velocities monotonically increase all the way from A to F. In the no radiation case,
back flows were found [5,6]; however, in the region of the values of parameters considered here, there
are no back flows. When moving from B towards F in figure 1, velocity profiles start having inflection
points at D, just as in the no radiation case, even though this is not obvious in figure 4.

If one were to use Tm in place of Ta in equation (2.1), then the stationary solutions would be exactly
the same provided that the pressure gradient is shifted as follows:

Πusing Tm = Π −
∫ 1

0
θ dy.

4. Stability
Let w, θ be even stationary solutions of (3.1)–(3.3) at some Π . If perturbations

w(y) + u1(y, t) and θ (y) + u2(y, t)

satisfy equations (2.5)–(2.7), then

∂u1

∂t
= ∂2u1

∂y2 + u2 (4.1)

Pr
∂u2

∂t
= ∂2u2

∂y2 + 2w′ ∂u1

∂y
+

(
∂u1

∂y

)2
− εu2(4(1 + rθ )3 + 6(1 + rθ )2ru2 + 4(1 + rθ )r2u2

2 + r3u3
2) (4.2)

and u1 = 0, u2 = 0 at y = ±1. (4.3)
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This system can be considered as an abstract evolution equation

∂u
∂t

+ Au = f (u), (4.4)

of u = (u1, u2) in (L2(−1, 1))2, where the linear operator A is given by

(Au)1 = −u′′
1 − u2, (Au)2 = −u′′

2 − 2w′u′
1 + 4ε(1 + rθ )3u2

Pr
, (4.5)

with the domain D(A) = (W1
0(−1, 1) ∩ W2(−1, 1))2 and

f (u)1 = 0, f (u)2 = (u′
1)2 − εru2

2(6(1 + rθ )2 + 4(1 + rθ )ru2 + r2u2
2)

Pr
. (4.6)

One can prove that (4.4) is a semilinear parabolic equation [16,17] and that A has compact resolvent.
Hence, the well-known stability theory for semilinear parabolic equations (see, for example, [17]) can be
applied to show that (nonlinear) stability of stationary solutions w, θ is determined by the eigenvalues
of A. −λ is an eigenvalue of A if there exists a non-trivial solution of

λv = v′′ + τ , (4.7)

Pr λτ = τ ′′ + 2w′v′ − 4ε(1 + rθ )3τ (4.8)

and v = τ = 0 at y = ±1. (4.9)

We will denote by λ1 the eigenvalue with the largest real part. If Re(λ1) < 0, then all solutions of the
nonlinear equation (4.4) that are initially small enough will decay (p. 265 in [17]). Hence, all small
perturbations will decay if Re(λ1) < 0. If Re(λ1) > 0, then one can find arbitrarily small perturbations
of the stationary solution which evolve according to the nonlinear equation (4.4) to eventually become
larger than a fixed threshold (p. 266 in [17]).

The central difference approximations were used to discretize (4.7) and (4.8) and then the eigenvalues
of the corresponding matrix were calculated. Richardson extrapolation was used to improve accuracy.
For reference values, see table 2. For the rest state w = θ = Π = 0, the eigenvalues are equal to

− (nπ )2

4
and − 16ε + (nπ )2

4Pr
, where n = 1, 2, . . . , (4.10)

hence the rest state is always stable.
Figure 5 shows the leading eigenvalue of stationary flows mentioned above. Observe that λ1 > 0

between C and E, hence the flows on the middle branch in figure 1 are unstable and the flows on the
upper and the lower branches in figure 1 are stable.

The change of stability occurs at exactly the turning points C and E, as the following argument proves.
Consider the solutions w and θ of (3.1)–(3.3) as functions of ξ = w(0) and define

v = ∂w
∂ξ

and τ = ∂θ

∂ξ
.
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If we differentiate (3.1)–(3.3) with respect to ξ and keep using prime to denote ∂/∂y, we obtain

∂Π

∂ξ
= v′′ + τ , (4.11)

0 = τ ′′ + 2w′v′ − 4ε(1 + rθ )3τ (4.12)

and v′ = τ ′ = 0 at y = 0, v = τ = 0 at y = 1, v(0) = 1. (4.13)

At the turning points ∂Π/∂ξ = 0; hence, at the turning points (4.7)–(4.9) have a non-trivial solution, with
λ = 0. This shows an existence of eigenvalue λ = 0 at the turning points and, in the range of parameters
under consideration, this happens to be the leading eigenvalue.

As the branch between C and E in figure 1 consists of unstable stationary solutions, flow velocities
and temperatures exhibit hysteresis with variation of the pressure gradient.

If ε (or r) is increased, the unstable bump in figure 5 moves down until it sinks into the negative
half-plane near ε = 0.1 (figure 6), indicating stability of all solutions.

If ε (or r) is decreased, the unstable bump on figure 5 moves up. When ε = 0, the leading eigenvalue
simply increases after the turning point [5,6]. Introduction of radiation ε > 0 has a stabilizing effect, which
is rather obvious in view of equation (2.6).

5. Direct evolution calculation
Starting with any initial velocity and temperature distributions, one would expect that evolution
equations (2.5)–(2.7) would make those distributions approach the nearest stable stationary solution.
To illustrate this, we chose initial distributions to be

w(0, y) = 0, θ (0, y) = (1 − y2)θmax for − 1 ≤ y ≤ 1, (5.1)

i.e. we start with a stationary heated fluid, and we let w and θ evolve according to equations (2.5)–(2.7)—
with no imposed pressure gradient (Π = 0). Results are presented for the case when ε = 0.01, r = 0.1
(effect of thermal radiation is weak) and Pr = 2.

When a stationary fluid, under no pressure gradient, is initially heated slightly, buoyancy starts the
fluid motion, but then the fluid returns to the resting state. This is a normal expected outcome and it
always happens when the effect of thermal radiation is strong enough. However, when ε = 0.01, r = 0.1
the effect of thermal radiation is weak, and when the maximum initial temperature θmax is sufficiently
large, the fluid state approaches the stable equilibrium F on the upper branch in figure 1. During the
approach to the stable equilibrium F, the fluid sustains high temperatures near the wall.

For values of θmax ≤ 28, the solution approaches the rest state B. The average temperature simply
decays to 0. The average velocity starts at zero, peaks and then decays to 0. A typical example can be
seen in figure 7. The decay is exponential for both, and the decay rate approaches the first eigenvalue as
time increases. The observed decay rate of the average temperature near t = 10 is −1.2532, while the first
eigenvalue is −1.2537. Note also that the solution must pass close to the unstable stationary flow D.

When θmax ≥ 29, the solution approaches the stable solution on the upper branch. An example is
shown in figure 8. Note that on the upper branch the temperature in the middle of the channel is 66,
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and its maximum near the wall is about 123, yet in its basin of attraction is the state with temperature
distribution that has maximum 29 in the centre—and 0 velocity. Hence, it has a ‘large’ basin of attraction.
The decay of the average difference between the solution and the limiting solution is exponential, and
the decay rate of the average temperature difference near t = 10 is −1.0396, which matches well with the
first eigenvalue λ1 = −1.0402.

6. Conclusion
A new kind of stable convection flows of a viscous fluid are shown to exist when the effect of thermal
radiation is weak. They attract flows that are initially sufficiently hot. The maximum temperature of the
new flows is attained near the walls, which may trigger interaction with the wall. Flows exhibit hysteresis
with variation of the pressure gradient.

When the effect of thermal radiation is strong enough, the unstable dual branch disappears. In this
case, we get a unique flow at each pressure gradient and there is no critical stress.
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