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ASYMPTOTIC PERIODICITY OF THE ITERATES
OF POSITIVITY PRESERVING OPERATORS

M. MIKLAVCIC

ABSTRACT. Assume that
(A1) X is a real Banach space.
(A2) X7 is a closed subset of X with the following properties:
(ifze Xt,ye X+, a€[0,00) thenz+y € X+ and az € XT;
(ii) there exists Mp € (0, 00) such that for each z € X there exist 4+ € X+
and z_ € Xt which satisfy

z=z+-2-, |let[l < Mollzll,  |lz-|l < Mol|z|l

and if z = y4 — y- forsome y4 € X*,y_ € Xt then yy —z4+ € XT;

(i) if z € X*, y € XT then ||z|| < ||z + ¥||-
(A3) B is a bounded linear operator on X.
(A4) BXt c Xt.
(A5) Fp is a nonempty compact subset of X and lim,_  dist(B™z, Fp) = 0
whenever z € X%t and ||z|| = 1.

Then B™z is asymptotically periodic for every z € X. This, and other
properties of B, are proven in the paper.

1. Introduction. It is well known that the iterates of operators with some com-
pactness and some positivity properties are asymptotically periodic, e.g. [1, 3, 4, 5,
7, 8]. This implies that the peripheral point spectrum of the operator consists of
finitely many roots of unity which is quite remarkable. Assumptions A1-A5 repre-
sent results of an attempt to isolate the crucial properties of the space and of the
operator which make the asymptotic periodicity possible.

It may be somewhat surprising that the space has to satisfy only assumptions Al
and A2 [1, p. 714]; see also [7], however, this is important in the statistical theory
of deterministic processes (2, 5]. For example, if 7 is a map of the unit interval into

itself and if 4
B =g [ S

for a probability density f € L!(0,1), then B™ f describes the evolution of densities
generated by the deterministic system {r"}. Assumption A5 can be verified for
some 7 [5]. In certain cases, although B™f is not eventually periodic in L!, it
is, however, eventually periodic in a space that contains Dirac-delta functions.
One would expect that such situations occur typically when the sequence {r"z} is
eventually periodic for almost all z. There are plenty of such spaces which satisfy
also Al and A2. For example, we can take that X = ba(S,&,R) [1, p. 160], the
space of bounded, real-valued, finitely additive set functions on a field &€ of subsets
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of aset S and Xt = {u € X|u(E) >0 for all E € &}, or, if & is a o-field, we can
take X = ca(S,&,R) [1], the space of countably additive members of ba(S, &, R).

Assumption A2 seems to be intuitively clear, except possibly for “and if” part
in A2ii. However, if X = R3, X+ = {(z,y,2)|z > /22 + y2} and if B represents
the rotation around z-axis by an angle equal to irrational multiple of 7w then all
assumptions A1-Ab are satisfied except for “and if” part in A2ii, and of course, we
do not have asymptotic periodicity in this case.

Assumption A5 was introduced in [5] and a simple way to verify it is given by
the following:

THEOREM 1.1. Suppose that T is a bounded linear operator on a (real or
complex) Banach space W and that

(1) limp—oo (1/n)(T"z,y) =0 for allz € W and all y € W*,

(2) ||IT™ — K|| < 1 for some integer m > 1 and some compact linear operator K
on W.

Then there exist a € (0,1), b < oo, and a nonempty compact set F C W such
that dist(T"z, F) < ba™ whenever n > 1, z € W and ||z]| < 1.

We write (z,y) instead of y(z) whenever z € W and y € W* (the dual of W).
This theorem is a slightly modified version of Theorem VIII.8.3 [1] and is proven
in §6. Condition 2 of the theorem was introduced in [4] and has been very often
used in studies of the behaviour of the iterates of T', e.g. [1, 7, 8]. Assumptions of
the theorem are more restrictive than A5; for example, let X = L?(0,1) for some
1<p<ooand (Bf)(z) =zf(z) ae. for f € X.

If (S, &, u) is a positive measure space and if W is any of the spaces L!(S, &, u),
ba(S,&,R), ca(S,&,R),... [1, p. 51i] then the assumption 2 of Theorem 1.1
is satisfied if T™ is a weakly compact operator on W for some n > 1. If X =
LY(S,&,u) for some o-finite measure space (S,&,u) and if B is Markov opera-
tor on X then A5 is satisfied if there is a weakly compact set F' in X such that
lim,,_, oo dist(B™z, F) = 0 whenever z € Xt and ||z|| = 1 [3].

I wish to thank T. Y. Li for many illuminating discussions and a critical reading
of the manuscript.

2. Results. Assumptions Al through A5 will be in effect throughout the rest
of the paper. Define

M = sup ||B",
n>0
Y = {y€X|y= lim B™iz for some z € X and some 1 < n; <n2<~~}.
1— 00

THEOREM 2.1. M < 0o and Y is finite-dimensional vector space. If Y = {0}
then lim, o ||B"z|| = 0 for every z € X.

This theorem and some other important properties of Y are proved in §3. Define
N =dimY > 0 and let E be the set of all z € Xt NY such that ||z|]| = 1 and if
z=y+zforsomey€ XTNY,z2€ XTNY then y =tz for some t € [0,1]. Some
results of §4 are represented in the following theorem.
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THEOREM 2.2. E is a set of N elements and if N > 1 then E is a basis for
Y. Moreover

(1) If z € E then |Bz|| > M~ and Bz = ||Bz|ly for somey € E.

(2) If ||B]| = 1 then ||Bz|| =1 for allz € E.

(8)Ifz€eE,yc E,x#yandh € XT are such thatz—h € Xt andy—h e X+
then lim, o || B™h|| = 0, moreover, if | B|| =1 then ||z — k|| = |ly — k|| = 1.

Note that part 3 is commenting on “disjoint support” of elements of E.
If N >1letey,...,ex be an enumeration of E. In this case define p: {1,...,N}
—{1,...,N}and X: {1,...,N} — (0,||BJ|] by

Bei = )\(i)ep(i) .

p is one-to-one (Lemma 4.6). Let mg be the smallest positive integer such that
moth iterate of p is the identity map. We have that mg < e/¥/¢ and that B™°z =z
for all z € E (Lemma 4.7). Observe that if z = e; + Be; + - -+ + B™0~l¢; then
z€ X, ||z|| > 1 by A2iii and Bz = z.

THEOREM 2.3. Suppose that N > 1. Then there exist fy,...,fn itn X* such
that for alli,5 € {1,...,N}
(1) limp— o0 || B™ (& — Sh_, (2, fi)ex)|| = 0 for all z € X,
(2) (s, fj) = bij (Kronecker delta),
(3) 0 < (x, f;) < M||z|| for allz € X,
(4) £l < M Mo,
( B* fp(z) = ’\( )fz,
(6) limp, oo (2, B*™(y — Sn—, (ex,¥) fx)) = 0 for all z € X and all y € X*.

~N
\_/\_/\_/v

This is our main theorem. It is proven in §5. Observe that if M = My = 1 then
fi is actually a positive tangent functional to e; and hence, in some spaces X, f; is
uniquely determined by e;. The following theorem concerning the spectrum of B
is also proven in §5 and it implies that if N > 1 then

[o 0]
Y={zeX|B™z=2}= U {z € X|B"z = z}.
n=1
THEOREM 2.4. Suppose that
B*z = cos pz — sin oy, B*y=sinpz+ cospy

for some integer k > 1, p € [0,27) and some z € X, y € X such that ||z||+||y|| > 0.
Then N>1,z€Y,y€Y and p = 2rn/mg for some n € {0,1,...,mg — 1}.

The following theorem has applications in the study of the Boltzmann equation
[5, 6] and is proven in §5.

THEOREM 2.5. For each z € X there exist z; € Y and a unique 2o € Y such

that
llm [|B™(z — zo)|| = hm Z B'z — 1,

n—
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moreover,
lim [le~teBtz — 2,|| =0,
t—o00

Bzy =1 and if N > 1 then z; = mg*' 312%™ Bz,

For z € X define Pyx = g, Pyx = z; where zg and z; correspond to z as in the
Theorem 2.5. Py and P; are projections and both commute with B. The following
theorem is proven in §6.

THEOREM 2.6. If ||B™ — K|| < 1 for some integer m > 1 and some compact
linear operator K then there ezist a € (0,00) and b € (0,00) such that

1 n—1 )
IB™(I = Po)ll < be™®", ||~ Y B -Pif<—, [eteP — Py <bem
=0

S|

foralln>1 and allt > 0.

3. Properties of Y. Since Fy is a bounded set, A5 and A2ii imply that
{l|B"z|||n > 0} is bounded for every z € X. The principle of uniform boundedness
implies that M < oo.

For z € X define

Q(z) = {yly = lim B™z for some 1 < n; <ng < }
1—00

Note that Y = |J,cx Q(z) and if y € Q(z) then By € Q(z) and |y|| < M||z||;
hence BY CY.

LEMMA 3.1. Ifz € X then every sequence in {B"z|n > 0} has a subsequence
that converges to some element in X.

PROOF. If z € X* and ||z|| = 1 then ||B"z — z,|| < dist(B"z, Fy) + 1/n for
some z,, € Fy and all n > 1. A2ii and the fact that Fy is compact imply the lemma.

LEMMA 3.2. Ifzg € X, z € Q(z0), y € Q(z0) theny € Q(z) and ||ly|| < M||z||.

PROOF. Pick € > 0, m > 1 and note that ||z — B™'zo|| < ¢/(1 + M), |y —
B™2zq|| < ¢/(1 + M) for some n; > 1 and some ny > n; + m. Therefore ||y —
B ™| <e.

LEMMA 3.3. Ifzg € X and z1,22,... are in Q(xo) then there exist 1 < n; <
ng < --- and z € Q(zo) such that lim; o0 T, = .

PROOF. Pick 1 < m; < mg < --- such that |[B™zo — 2| < 1/7 for 7 > 1 and
apply Lemma 3.1.

Above lemmas imply the following.

LEMMA 3.4. Ifz € X then

(1) Q(z) s a compact set,

(2) Q(z) = {0} uff nf{|lyllly € Q(z)} = 0 1ff limp—.co Bz =0,

(3) f y € Q(z) then Q(y) = Q(z),

(4) ze€Y iff z € Q(z),

(5) if z€ X+ then Q(z) C XT.

LEMMA 3.5. Ifz €Y, n >0, then x = B"y for some y € Q(z).

PROOF. By Lemma 3.4 £ = lim;_,o, B™ z for some n < n; < ng < ---. Apply
Lemma 3.1 to B™ "z
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LEMMA 3.6. IfzreY,yeY,ac€R,B€R thenaz+pyeY.

PROOF. By Lemma 3.5 there exist z,, € Q(z), yn € Q(y) such that z = B"z,,,
y = B"y, for n > 1. Lemma 3.3 implies that lim; oo ZTn, = Zo, liM; 00 Yn; = Yo
for some o € Q(z), yo € Q(y), n1 < ng < ---; hence

az + fy = lim B™ (azo + fyo).
LEMMA 3.7. Ifz€Y,y€Y,n>0 and B"z = B"y then z = y.
PROOF. Lemmas 3.6, 3.4 imply that z —y € Q(z — y) = {0}.
LEMMA 3.8. For each z € X there exists a unique g € Y such that

lim B™(z — z0) = 0;
n—00

moreover, zg € Q(z).

PROOF. Pick n; < np < -+ and y € Q(z) such that lim; ,,, Bz = y. Let
Yn € Q(z) be such that y = B"™y,, for n > 1 (Lemmas 3.5, 3.4). Lemma 3.3 implies
that (by renaming a subsequence) we may assume that lim; o yn, = 2o for some
zo € Q(z). If m > n; then

[ B™(z — zo)|l < M||B™ z — y|| + M||yn, — ol|

and therefore lim,_,o B™(z — z¢) = 0. If lim, 0o B"(z — 2) = 0 for some z € Y
then B™(z — zg9) = B™(z — 2¢) — B"(z — 2) — 0 as n — 00, s0, Q(z — zo) = {0} by
Lemma 3.4 and since z — 29 € Q(z — z¢) we have z = z.

LEMMA 3.9. Ifz€Y,y€eQ(z) andy—z € X+ theny =1.

PROOF. Define y; =y, yo =2, 20 =y — € Xt NY and suppose that zg # 0.
Since 29 € Q(20) we have by Lemma 3.4 that o = inf{||2|||z2 € Q(20)} > 0 and that
Q(20) C X*. Suppose that we have found yo, y1,- . -, Yk+1 in Q(z) and 2, 21, . .. , 2k
in Q(zp) for some k > 0 such that y;+1 = y; + 2; for 0 < 7 < k. By Lemma 3.2
Yk+1 = lim;_, o0 B™y, for some n; < ng < --- and by choosing a subsequence
we may assume (Lemma 3.1) that both B™y,,; and B™z; converge. Define
Ye+2 = limi oo BYyky1, 2641 = lim;_oo B™2x. By Lemma 3.4 yxyo € Q(z)
and zx+1 € @Q(20) and also yx4+2 = Yk+1 + 2k+1- Therefore there exist yo,y1,y2,. ..
in Q(z) and 2o, 21, 22, ... in Q(20) such that yx4+1 =yo+20+---+2x forall k > 0.
Assumption A2iii implies that if 0 < n < m then ||ym —yn|| = |l2n + -+ 2m—1|| =
|lzn|| = & > 0 and this contradicts Lemma 3.3; therefore zg = 0.

LEMMA 3.10. Ifz€ X,y€ Q(z) andy—z € X thenlim,_ o B"(y—z) = 0.

PROOF. Let z = y—z and pick ny <ng < -+, 21 € Q(2), y1 € Q(y), z1 € Q(x)
such that B*z — 2;, By — y;, Bz — z; as ¢t - 00. So, z1 €Y, y; € Q(z1)
by Lemma 3.4, 2; = y; — z; € Q(2) C Xt and Lemma 3.9 implies that z; = 0.
Lemma 3.4 implies that B"z — 0 as n — oo.

THEOREM 3.11. For eachz €Y there exrist 2, € XT NY, 2_ € Xt NY such
that

T=zy =2, |24l < MMollz|l, [lz-|| £ MMollz||
andif =y, —y_ for somey, € XTNY,y_ € Xt NY thenyy — 24 € XT.
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PROOF. Take z,,z_ as in A2il. ¢ = z4 — z_ = lim; oo B™ (24 — z_) for
some n; < ng < ---. We may assume (by renaming a subsequence of n;) that
lim; oo B™ 24+ = 24 for some z4 € Q(z+). By Lemma 3.10

lim Bn(2+ — (L‘+) =0.

n—oo
Ifz =y —y_ for some yy € XT NY then g :== y; — 2, € X, so, y; —
zy = g+ 24 — z4 and since y4 — 24 € Q(y4+ — z4+) there are m; < mg < ---
such that y4 — 24 = lim;_,oo B™ (y4+ — 24) = lim;_, o0 (B™ig — B™i(24 —14)) =
lim; ., B™ge XT.

PROOF OF THEOREM 2.1. All that we still have to show is that dimY < oo.
Let F; denote the closed convex hull of Fy U {0}. Note that F; is compact, convex
and 0 € Fy. Define

St={zeXtnY||z| <1}.
If 2 € ST\{0} let y = z/||z||, and since y € Y there are n; < ny < --- such that
y = lim;_,oc B™y; hence y € Fy by A5 and z = ||z|ly + (1 — ||z||)0 € F;. Therefore
S* C Fy and S is compact. Define

S; ={z € X|z =y — z for some y€§+,z€§+},
S={zeY|MM|z| < 1}.

Clearly, S is totally bounded and hence it is compact. Theorem 3.11 implies that
S C S; and hence S is compact. Thus S is compact in Y and therefore dimY < oo.

4. Properties of E. If N =0 then E = JJ, so, assume N > 1 throughout this
section.

N+1

LEMMA 4.1. E is not empty and {}_,_] o;zila; € [0,00), z; € E for ¢ =

1,...,N +1} isdense in Xt NY.
PROOF. Let z;,...,zxn be a basis of Y. Define T: RY — Y by

N
T(al,. ..,aN) = Zaizi.
=1

Define C = T~!X*. The following properties of C will be needed.
(HIfzeC,yeC,a€(0,0) thenz+yeC,azeC.
(2) If z € C and —z € C then z = 0 (by A2iii).
(3) C is closed and C # {0} (by Theorem 3.11 and N > 0).
Let C; be the convex hull of {z € C|||z|| = 1}. Note that C; is nonempty, compact
and the property 2 of C implies that 0 ¢ C,. Hahn-Banach theorem gives us
Yo € RN and ~ € R such that

0<7< (zayO)

for all z € C,. Hence (z,yo) > ~||z|| for all z € C. Define D = {z € C|(z,y0) = 1}.
D is nonempty, compact and convex. Let E; be the set of extreme points of D. By

verification
1
FE = { —Tz
1Tzl
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The Krein-Milman theorem implies that

N+1
D ot

i=1

N+1
a; >0, z, € Eyfori=1,...,N+1 and Zai=1}

i=1

is dense in D and this completes the proof.

LEMMA 4.2. Suppose that x,,. ..,z are distinct elements of E. If (a1, ..., 0x)
€ Rk andezlaizi €Xt thena; >0 fori=1,...,k.

PROOF. Let Py be the lemma as stated. P; is implied by A2iii. Assume that
k > 1 and Py_, is true. Suppose (ay,...,ox) € R, y = Z;;l a;z; € Xt and
aj < 0 for some j. Since Ei#j a;z; =y — a;z; € X1, Pe_y implies o > 0
whenever ¢ # 7; and A2iii implies @,, > 0 for some m. Define £ = o, z,, — y and
let 24,2_ be as in Theorem 3.11; hence

z=amxm—y=—2aizi=z+—z_.
i#Em
Py_; and j # m imply z4 # 0. Theorem 3.11 implies apTm — 24 € XT NY and
—ojz; — z4 € XT NY. Definition of E implies z; = tz,, and 21 = rz; for some
t € (0, o), 7 € (0, —c;] and therefore z,, = z;. Contradiction.
LEMMA 4.3. E contains precisely N elements and these form a basis for Y.

PROOF. Let z,...,x, be distinct elements of E. Lemma 4.2 and A2iii imply
that if z = ZLI a;z; € Xt then 0 < a; < ||z for s = 1,...,k. Thus z1,...,2k
are linearly independent; hence |E| < N. Assume k = |E|. By Lemma 4.1 S =
{Ef=1 Bizi|Bi € [0,00) fori =1,...,k} is dense in X*NY, and because Zi;l B2 <
k|l E;;l Biz:||> whenever 3; € [0,00) for s = 1,...,k we have that S = Xt NY.
Theorem 3.11 implies span{z;,...,zx} =Y and k = N.

LEMMA 4.4. Ifz € E then |Bz| > 0 and Bz = ||Bz||ly for somey € E.

PROOF. Lemma 3.7 implies ||Bz|| > 0. Let y = ||Bz||~!Bz and suppose y =
u + v for some u,v in X+ NY. Lemma 3.5 implies u = Bu; and v = Bv; for some
u; € Q(u) C Xt, v1 € Q(v) C X*. Lemma 3.7 implies z = ||Bz|lu; + ||Bz||v1;
hence ||Bz||u; = tz for some t € [0,1], so, u =ty and y € E.

LEMMA 4.5. Ifz€ E,n>1, A€ R and B"z = Az then A = 1.

PROOF. |A| < 1 because M < co. Lemma 3.4 implies z € Q(z) # {0} and
therefore |A| = 1. AZ2iii implies A = 1.

LEMMA 4.6. p is one-to-one.

PROOF. If p(¢) = p(j) then BA(:)~'e; = BA(j) e, and by Lemma 3.7 A(¢)le;
= A7)~ 'ej; hence 7 = j.

LEMMA 4.7. mg < eM/¢ and B™z = z for every x € E. Moreover, M~! <
|Bz|| < ||B|| for every z € E.

PROOF. Since p is one-to-one myq is well defined and mg < eV/¢. Lemma 4.5
implies B™°z = z for all z € E. If z € E then 1 = ||[B™~!Bz|| < M||Bz||.
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LEMMA 4.8. Ifzre E,ye E,z#y and h€ X" are such thatz—h € X* and
y—h € Xt thenlim,_.oc B™h = 0; moreover, if | B|| = 1 then ||z—h|| = |ly—h| = 1.

PROOF. Let f = z— h, g = y — h and note that £ = B®™° f + B"™oh and
y = B"™og + B"™oh for n > 0. Lemma 3.1 implies that there are fy, go, ko in
X*tNY and ny < ny < --- such that B™o f — f,, B"i™Mog — gy, B"™0h — hg as
t — 00. Therefore x = hg+ fo and y = ho+go. Definition of E implies hg = 0 and by
Lemma 3.4 lim,_,oc B"h = 0. Since z € Q(f) we have 1 < M||f|| = M|jlz—h| <M
and similarly 1 < M|jy — h|| < M.

5. Asymptotic periodicity.

PROOF OF THEOREM 2.3. For r € X and 1 < ¢ < N define ~;(z) by
Zf’:l ~i(z)e; = zo where zo is as in Lemma 3.8. Lemmas 3.8, 4.2 imply that
vi(z) >0ifzeXtand1<i<N.Ifze X, ye X,a€R, B €R then

=1 N N
B (:1: - Z %(z)ei) B" (y - Z%’(y)ei) |
1=1 =1

and therefore ~;(-) are linear functionals. If z € X then (Lemma 3.4) for some
ng<ng<---

N
Z vi(z)e:
=1

Thus, A2iii implies that 0 < ~;(z) < || Zf’:l vi(z)eil| < M|z|| forz e XT,1<5<
N. A2ii implies that |v,(z)] < MMol|z|| for all 1 < 7 < N, z € X. Define f; € X*
by {(z, fi) = vi(z) for z € X, 1 <1 < N. This proves parts 1, 2, 3, 4 of the theorem.
Since

N
B" (az + By =Y (avi(=) + ﬂm(y))ei)

< lef +18]

N
B™ Y ~(z)e

= lim
j—o0 .
1=1

= lim [|B™z|| < M|z].
J—o0

N N

Bz - (Bz, fi)e; = Bz — Y (2, A(6) "' B* fpi)) A()ep(a)

1=1 =1
N
=B (a: — Z(I, )\(i)“‘B*fp(i))ei>
1=1
for every z € X part 5 is proven. Part 5 implies

N N

Yz, fe)(B ek, y) = D (, B™ fi){ex,y)

k=1 k=1

N N
<z,B*" (y - > fex, y)fk>> = <B" (z - Z(Lfk)@c) y>
k=1 k=1

whenever z € X, y € X* and n > 1. This proves part 6.

and
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PROOF OF THEOREM 2.4. Note that for n > 1
B™¥z = cos(np)z — sin(np)y,
By = sin(np)z + cos(np)y,
gr;%{n cos Bz — sin By|| + || sin Bz + cos By||} > 0.

Theorem 2.1 implies Y # {0} and hence N > 1. Pick u € Y, v € Y such that
limy, 00 B™(z — u) = lim,—0 B®(y — v) = 0. Note that B™°u = u, B™ov = v.
Define o = mgp and

uj = cos(ja)z — sin(ja)y = Bi*moz 4 asj — oo,
v; == sin(ja)z + cos(ja)y = B*™oy — v as j — oo.

Therefore u;4+; = cosau; F sinowv; and vj+; = cosav; £ sinau; for 5 > 2 and
||| + ||v]] > 0. This implies that cosa =1, sina =0, z=u, y =v.

LEMMA 5.1. Ifm>1,0<n<m-—1,t>0 then

oo km+n
t 1 -1 2
< m exp<—t (1 — CoS _7r>> .
m m
oo tkm+n

ety — =
kgo(lcm+n)! m
_tz(km+n Zz ™ exp(zFt —t).

PROOF. If z = exp(27i/m) then
PROOF OF THEOREM 2.5. Existence and uniqueness of g is given in Lemma
3.8. Note that forn >1,t>0

1 n—1 1 n—1 1 n—1
;ZBkz=EZBk(z—xo)+;ZBkzo,

—teBiy ‘tz k|B’c z—xo)+e'tz kao

and that both first sums converge to 0 as n — 0o, t — oo. Thus, if Y = {0} take
z; =0and if Y # {0} then let z; = mg! Z;":"O_l Bz and observe that for n > 1

1% 2moM
! S Brro— i < moM ||zo|
k=0

n
and that Lemma 5.1 implies for ¢ > 0

- 2m
tZ o Bka:o -z || < (mo — 1)M||zo]| exp(—t (1 — cos ————)) .

k=0 mo

This completes the proof.

6. Quasi-compactness. If W is a Banach space let .2(W) denote the set
of all bounded linear maps from W into W. If W is complex Banach space and
C :W — W is such that C? = I, ||Cz|| = ||z|| and C(az + By) = az + By for all
zeW,yeW,aeC, (e C then C is called conjugation on W. The following
theorem follows directly from the Theorem VIII.8.3 [1], see also [8].
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THEOREM 6.1. Suppose that W s a complez Banach space, T € 2 (W),
limp oo (T"2,y)/n = 0 for allz € W and all y € W*, and || T™ — K|| < 1 for
some integer m > 1 and some compact K € £ (W). Then there exist K; € &L (W),
VieZ W), ae(0,1), b< oo such that

(1) Ran(K,) is finite dimensional and sup,,>q ||K7|| < oo,

(2) IVl £ ba™ forn=1,2,..., -

B)Tr=KP+ V] forn=1,2,...,

(4) +f C is a conjugation on W and TC = CT then K;C = CK,,

(5) if zo € Ran(K,) then there exist z1,...,2, tn Ran(K;) and Ay,..., A, in C
such that zo =21 + -+ + zp, K1z, =Tz = Aizy, | M| =1 for 1 <i<n.

PROOF OF THEOREM 1.1. If W is complex then the statement is obvious.
Assume W isreal. Let Z =W x W, Z; = W* x W* be the usual complexifications
of W,W* defined by

|(z,y)|| = sup{y/]laz — By||2 + ||Bz + ay|?|a € R,B € R,a? + 3% = 1}.

Define V. = T™ — Kv TO(z?y) = (TZIJ,Ty), K()(Z,y) = (KIL',Ky), V()(Z,y) =
(Vz,Vy), Ci(z,y) = (y,z), C2(z,y) = (z,-y) for (z,y) € Z. It is easy to ver-
ify that To, Ko, Vp are in £ (Z), Ky is compact, Vo = Tg" — Ko, |[Voll = V]| < 1
and C; and C; are conjugations on Z and both commute with Ty. If z € Z, y € Z*
then

(T(;lzﬂy) = (Tnx’l'v y’l') - (Tnzi’ y2> + i(Tnva y'l) + 7‘.<Tnz‘ia yr)
for some (z,,z;) € Z, (yr,y:i) € Z1. Let K, € Z(2), V; € L(Z), a € (0,1),
b < oo be as given by Theorem 6.1. Applying C; and C; one can show that
Ki(z,y) = (Kqz, K2y), Vi(z,y) = (Vaz,Vay) for some V, € F (W), some compact
K; € Z(W) and all (z,y) € Z; moreover, |[VF*|| = |[V*|| < ba™, ||KZ| = [|KT],
T" = K} + V3 for n > 1. Let F be the closure of Ko{z € W|||z|| < sup,,>¢ [|KZ||}-

PROOF OF THEOREM 2.6. Let Z =X x X and Y, =Y x Y be the complexifi-
cations of X and Y (as above). Define By(z,y) = (Bz, By), Ko(z,y) = (Kz,Ky)
for (z,y) € Z. Let Ky € £(2),V, € £ (Z), a € (0,1), b < oo be as in Theorem
6.1 (corresponding to Bg). As above K;(z,y) = (Kaz, Kay), Vi(z,y) = (Vaz,Vay)
for some Ky € Z(X), Vo € Z(X) and all (z,y) € Z.

Suppose zg € Ran(K;) and let z;,...,Zn, A1,..., Ap be as in Theorem 6.1. Since
[Ai] = 1 and Boz; = A;z; for 1 < ¢ < n Theorem 2.4 implies that 2o € Y. and,
clearly, Bozg = K;zo. This implies that if £ € Ran(K3) then z € Y and Koz = Bz.

Pick £ € X,n > 1. Then B"z = K}z + VJ’z = B" 'Kz + VJ'z and since
Koz € Y there exists (Lemma 3.5) 79 € Y such that Koz = Bzg. Therefore
B"z = B"zo + V3*z and by Lemma 3.8

1B™(I — Po)ll = [[V*]| < ba™.
If this inequality is used in the proof of Theorem 2.5 (§5) then the other two
inequalities are obtained.
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