Section 5.4 Work

if an object moves along a straight line, with position function \(S(t) \), then the force \(F \) on the object is given by \(F = m \frac{d^2s}{dt^2} \), where \(m \) = mass of object. \(F \) is in Newtons, \(s \) in m, and \(t \) in seconds (SI).

If acceleration is constant (constant force), the work done is defined to be \(W = F \cdot d \), where \(d \) is the distance the object moves. \(W \) is in Joules, when \(F \) (N) and \(d \) (m).

\(W \) is in ft-lb, when \(F \) (lb) and \(d \) (ft).

Ex: lifting a 2Kg book off the floor 1.5 m high requires

\[W = F \cdot d = mg \cdot d = 2 \cdot 9.8 \cdot 1.5 = 29.4 \text{ N.} \]

b) lifting a 10-lb weight 8 ft off the ground requires

\[W = 10 \cdot 8 = 80 \text{ lb-ft} \]

Now, what happens when the force is not constant? Say \(F(t) \) is the force acting on the body moving along the x-axis.
if body moves from \(x = a \) to \(x = b \)

divide \([a, b]\) into subintervals of width \(\Delta x \).

from each subinterval \([x_{i-1}, x_i]\), pick a point \(x^*_i \).

Then \(f(x^*_i) \Delta x \) is approximately the force in \([x_{i-1}, x_i]\), and

\[
W_i = f(x^*_i) \Delta x
\]

is the work done by moving the object from \(x_{i-1} \) to \(x_i \).

So, total work is:

\[
W = \sum_{i=1}^{n} f(x^*_i) \Delta x \quad \text{if we let } n \to \infty \quad (\Delta x \to 0),
\]

Then

\[
W = \lim_{n \to \infty} \sum_{i=1}^{n} f(x^*_i) \Delta x = \int_{a}^{b} f(x) \, dx.
\]

Example 2: when an object is located \(x \) feet from the origin, a force of \(x^3 + 3x^2 \) acts on it. How much work is done in moving it from \(x = 1 \) to \(x = 2 \).

\[
W = \int_{1}^{2} (x^3 + 3x^2) \, dx = 10.75 \text{ ft-lb}.
\]

Hooke's Law: force required to maintain a spring stretched \(x \) units beyond its natural length is \(f(x) = Kx \), \(K \): spring constant.

Example 3 A force of 50N is required to hold a spring that has been stretched from 90 cm (natural length) to 95 cm. How much work is done in stretching the spring from 95 cm to 30 cm.

\[
K = \frac{F}{x} = \frac{50}{0.05} = 1000. \quad f(x) = 1000x. \quad W = \int_{0.05}^{0.05} 1000x \, dx = 3.75 \text{ J}
\]
Example 4

A 300-ft long cable is hung vertically from the top of a tall building. How much work is required to lift the cable to the top of the building. The cable weighs 3 lbs/ft.

To lift the section S_i, we need $W_i = \text{weight}(S_i) \times \text{distance}$.

So, $W_i = 3 \Delta x \times x_i^*$.

Thus $W = \lim_{n \to \infty} \sum_{i=1}^{n} 3 \Delta x \times x_i^* = \int_{0}^{300} 3 \, dx = 135,000 \text{ ft-lb}$

Example 5

A tank has a shape of a circular cone, height 10 m, radius 4 m, filled with water to height of 8 m.

Water density: 1000 Kg/m3.

Volume of $S_i = \pi (0.4 x_i^*)^2 \Delta x$.

Weight of $S_i = \pi (0.4 x_i^*)^2 \Delta x \times 1000 \times 9.8$.

Height to be pulled = $(10 - x_i^*)$.

Thus, $W_i = \pi (0.4 x_i^*)^2 \Delta x \times 1000 \times (10 - x_i^*) \times 9.8$

$W = \lim_{n \to \infty} \sum_{i=1}^{n} W_i = \int_{0}^{8} \pi (0.4x)^2 \times 1000 \times (10-x) \, dx = 336,9827.7977$