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In this paper we describe our discovery that the sporadic simple groups Ru, HS and M22
are contained in the simple Chevalley group E7(5).

The work of [9] produces a short list of the possibilities for a sporadic simple subgroup
of an exceptional group of Lie type. Apart from possible embeddings of M22, HS and Ru in
groups of type E7 in characteristic 5, all of the embeddings of [9] are already known to occur.
Thus our paper completes the classification of sporadic simple subgroups of exceptional groups
of Lie type.

We offer two proofs of the embedding Ru < E7(5). The first is a computer proof, and the
second is totally by hand. In particular, the second proof provides the only known computer-
free construction of Ru. Moreover, our computer proof includes the first published presentation
of Ru and thus gives the first easily verifyable computer construction of Ru. Similarly we give
a hand proof and a computer proof of the embedding HS < E7(5). As a step in our hand proof
of HS < E7(5) we establish the embedding M22 < E7(5): of course, since M22 is a subgroup
of HS, this result also follows as a consequence of our computer proof of HS < E7(5).

We were led to conjecture the inclusions Ru < E7(5) and HS < E7(5) for the following
reasons. The double cover 2.Ru has a faithful 28-dimensional character χ, and the character
values of χ + χ∗ are all compatible with the character values of groups of type E7 acting
on their natural 56-dimensional module. Similarly the double cover 2.HS has a faithful 56-
dimensional character, whose values are compatible with the character values of groups of type
E7 acting on their natural 56-dimensional module. Now Ru, 2.Ru,HS and 2.HS all contain a
subgroup 52:20, an elementary abelian group of order 25 extended by a cyclic group of order
20 acting faithfully on the 52. Since 20 is not the order of an element in the Weyl group
W (E7) = 2 × S6(2), it can be shown that 52:20 does not embed in groups of type E7(K),
where K is a field of characteristic prime to 5. Thus Ru and HS embed in E7(q) only if
5 | q. On the other hand, all local subgroups of 2.Ru and 2.HS embed in 2.E7(5), whence our
conjectures Ru < E7(5) and HS < E7(5).

Throughout, G denotes the double cover 2.E7(5), G denotes the simple group E7(5) and V
is the natural 56-dimensional module for G over GF (5). Most of our notation follows that of the
ATLAS[At]. The four sections of our paper are independent and are arranged in chronological
order. A later, independent, proof of Ru < E7(5) appears in [7].
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Figure 1: Generating 2Ru
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1 A Computer Construction of Ru as a Subgroup of E7(5).

We used R. A. Parker’s meataxe system (see [10]) to work with 56× 56 matrices over GF (5),
representing G. Since Ru contains 26.G2(2), where the G2(2) acts transitively on the 63
hyperplanes in the normal 26, it follows that any faithful representation of Ru over a field
in odd characteristic has dimension at least 63. In particular Ru can not act on V and so
Ru 6≤ G. Thus we seek to classify subgroups 2.Ru in G.

Any subgroup 2.Ru can be generated as in Figure 1. There is a unique class of groups of
order 29 in G, with normalizer

(6× (29× 449).7).2 < (6× U7(5)).2 < (2× U8(5)).2.

Moreover, an element of order 7 in NG(29) satisfies

C∗G(7) = (SU3(5).3× 7).2× SL2(125).

(Here C∗ denotes the invertilizer: that is the set of elements which either invert or centralize
a given element.) An involution inverting the 7 extends SU3(5).3 to SU3(5).Sym(3). There
are precisely 9450 involutions in SU3(5).Sym(3)\SU3(5), and so the 7 is contained in precisely
2× 9450 groups D14 in G. The factor of 2 comes from the involution in SL2(125), which lies
in the center of G. Now G has just 3 classes of involutions, with representatives Z,X,ZX.
Here 〈Z〉 = Z(G), and X and ZX have respective traces +8 and −8 on V . Thus we call
the involutions conjugate to X and ZX plus involutions and minus involutions, respectively.
Obviously the 2× 9450 groups D14 come in pairs – one containing plus involutions, the other
containing minus involutions.

Thus to classify subgroups isomorphic to 2.Ru in G, it suffices to check each of these 9450
plus D14’s, and determine which ones together with the 29 generate 2.Ru. On the computer,
we found all 9450 such D14 groups, called X1, . . . , X9450 say, and investigated the groups
Yi = 〈29, Xi〉. We discarded any Yi that contains an element with an order which is not the
order of an element of 2.Ru. Precisely 6 remained, Y1, . . . , Y6 say. In order to identify these
six groups, we use the presentation of Ru given by the following Theorem.
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Figure 2: The Coxeter group X
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Let X denote the Coxeter group with the Coxeter diagram given in Figure 2. (Thus X
is generated by involutions a, b, c, d, e, f, g and w whose pairwise products have orders
2, 3, 4, or 12 according as the corresponding nodes of the diagram are unjoined, joined by
an unmarked single edge, joined by a double edge, or joined by an edge marked 12.) Let
R be the quotient of X obtained by adjoining the following additional relations: c = gfed,
w = cgbagcgabgc, d = (bfg)8, e = (bc)6 = (abc)4, (be)d(be)dfbef = dbagbfabgbfg = (ec)de(ec)dw =
(cw)bcba(cw)bwc = cbcdewb(db)wedcbcbcdewd = 1.

Theorem 1.1 The group R is isomorphic to the Rudvalis group.

Proof: Let T (respectively L) denote the group presented by those generators and relations
of R that do not mention f or g, (respectively f, g, or w). Computer coset enumeration shows
that the image of T in R has index 8120. Moreover, standard permutation group computations
show that in the resulting permutation representation of R the images of T and L have sizes
11232 = |L3(3):2| and 1600 × |L3(3):2| = |2F4(2)′|. Moreover, the image of T has orbits of
lengths 1, 1755 and 2304 in the permutation representation of R.

A second enumeration (of the cosets of the trivial subgroup in L) shows that |L| = |L3(3):2|.
It is routine to show that L3(3):2 is a quotient of L, and thus the group L and its images in T
and R are copies of L3(3):2. A final coset enumeration shows that there are 1600 cosets of the
image of L in T, and hence |T | = |2F4(2)′|. Our earlier computation of the size of the image
of T in a permutation representation of R proves that the image of T in R has size |2F4(2)′|
and thus |R| = 8120|T | = |Ru|.

We now use a standard argument (see for example [17]) to show that the groups T and R
must be simple. We illustrate this argument for the group T. The image of L in the permutation
representation of T on the 1600 cosets of the image of L in T has orbits of sizes 1, 312, 351
and 936. In particular this faithful permutation representation of T must be primitive. Thus
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any minimal non-identity normal subgroup, N say, in T must be transitive on the cosets of
the image of L. Moreover N ∩ L is isomorphic to a normal subgroup of L3(3):2 and therefore
|N ∩ L| ∈ {1, |L3(3)|, |L3(3):2|}. We deduce that the characteristically simple group N has
order 1600, |2F4(2)′/2|, or |2F4(2)′|. The classification of finite simple group shows that only
the last of these orders is possible, and in particular T must be simple. Another appeal to
the classification of finite simple groups gives T ∼= 2F4(2)′. A similar (slightly easier) argument
now shows that R is simple and thus since the simple group Ru is characterized by its order,
R ∼= Ru. QED

We now apply Theorem 1.1 to identify the six subgroups Y1, . . . , Y6 of G. For each of
these groups we know generating matrices x, y, z of orders 29, 7, 2 (from the subgroups
29:7, 7 and D14 of Figure 1). We may assume that the element y is replaced by one of its
powers so that xy = x16. Moreover, in each of the groups Y1, . . . , Y6, experiment shows that
we may replace x by one of its powers so that, modulo scalar matrices, xz has order 15 and
xzx has order 20. (In fact there are two mutually inverse choices for x with these properties.
We can make either choice of x.) We compute the following matrices in the group generated
by x, y and z. Let j = (x3zxz)10z, a = [z, j]6, b = [z, j2]4, c = (b[z, j3]3)6[z, j3]3, d =
([z, j3]3(abj

2
)2)2([z, j3]3(abj

2
)2)z

j
, e = z, k = [a, x4](b[a,x

4]5)6ab, l = ck
4
, f = lcdldcl, g = cdef ,

and w = cgbagcgabgc. Modulo scalar matrices, each of the groups Y1, . . . , Y6 is generated by
its elements a, b, c, d, e, f, g, w — since in each case the following words recover the generators
x, y, z (modulo scalars): z = e, m = aba(abgc)5abg, y = [(mf)13e(md)12e(md)12, e], n =
e[b, aw](abgc)

5gc, p = (ewg(abgc)5a(abgc)5bg(abgc)5bawg(abgc)5cbg)fw(nefw)3
, q = (pa)7, r =

(pb)6, s = (pc)10, x = (y−1psrqrsqsqr)−2. Moreover, modulo scalar matrices, for each of the
groups Y1, . . . , Y6 the generators a, b, c, d, e, f, g, w satisfy the relations of R of Theorem 1.1.
Therefore, Z(G)Yi/Z(G) ∼= Ru, for i = 1, . . . , 6. Since we have already observed that Ru can
not be a subgroup of G, we must have Yi ∼= 2.Ru for i = 1, . . . , 6.

Now NG(29) ∩ NG(7) ∼= 12 acts on Y1, . . . , Y6. Furthermore, N2.Ru(29) ∩ N2.Ru(7) ∼= 4,
and so each of Y1, . . . , Y6 contains the subgroup of order 4 in NG(29) ∩NG(7). Moreover, the
group of order 3 in NG(29)∩NG(7) cannot normalize one of Y1, . . . , Y6, for this group of order
3 centralizes the 29 (in G) and yet there is no group of order 3 in the 29−centralizer of 2.Ru.
Thus NG(29)∩NG(7) has two orbits of size 3 on Y1, . . . , Y6. Now 2.Ru contains a unique class
of 29:7, and we have

C∗2.Ru(7) = Q8 ×D14 ≤ Q8 × Sz(8).

Thus the 7 is contained in precisely two groups D14. Consequently each 2.Ru in G can be
generated in just two ways as in (∗), one way with a plus D14 and the other with the minus
D14. We have therefore proved that there are just two classes of 2.Ru in G.

Therefore, there are just two classes of subgroup isomorphic to Ru in G. The non-abelian
composition factors of centralizers of involutions in Aut(G) are L2(5), O+

12(5), L8(5), U8(5),
E6(5), and 2E6(5), none of which contain Ru. Consequently the outer automorphism of G
must interchange the two classes of Ru in G.

We have now proved assertions (A) and (B), as well as part of (D), in the Theorem be-
low. Our construction gives an explicit matrix action of 2.Ru on the natural 56-dimensional
GF (5)-module for 2.E7(5) and a standard application of the meataxe (see [10]) provides the
decomposition of this module given in (D). The 133−dimensional adjoint module for the Lie
algebra associated with E7(5) is a constituent of the symmetric square of the 56-dimensional
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module. We used the meataxe to determine that 133 is the smallest degree of a non-trivial
constituent of the action of Ru on the symmetric square of the 56−dimensional module. (The
56−dimensional module has two irreducible 28−dimensional constituents, thus we analyzed
the two 406−dimensional modules obtained as symmetric squares of 28−dimensional represen-
tations, and the 784−dimensional tensor product of the two 28−dimensional representations.
The last of these computations is close to the size limit for our implementation of the Meataxe.)
The statements in (C) follow.

Theorem 1.2 (A) The simple Chevalley group E7(5) contains precisely two classes of
subgroups isomorphic to Ru.

(B) The outer automorphism of E7(5) fuses the two classes.

(C) Each subgroup Ru acts irreducibly on the 133-dimensional Lie algebra associated with
E7(5).

(D) In the double cover 2.E7(5), each Ru lifts to 2.Ru, and acts indecomposably with two
irreducible constituents of dimension 28 on the natural 56-dimensional GF (5)-module for
2.E7(5).

2 A Computer-free Construction of the Rudvalis Group as a
Subgroup of E7(5).

In this chapter we will give a computer-free proof of the following Theorem.

Theorem 2.1 Suppose that E6(5) has a subgroup 2F4(2) which acts irreducibly on the 27-
dimensional GF (5)E6(5)-modules, then E7(5) has a subgroup isomorphic to the Rudvalis group.

We remark that an unpublished paper of M. Aschbacher on the maximal subgroups of E6
contains a computer free proof that E6(5) indeed has a subgroup isomorphic to 2F4(2) which
acts irreducibly on the 27−spaces for E6(5).

Lemma 2.2 Let X be a 2-dimensional vector space over GF (5), S a Sylow 2-subgroup of
GL(X), A the unique subgroup of S isomorphic to C4×C4, φ an automorphism of S such that
Xφ ∼= X∗, the dual module of X. Then φs inverts A for some s in S.

Proof: Note first that there exist 1-dimensional subspaces X1, X2 of X with X = X1⊕X2,
S = NGL(X)({X1, X2}) and A = NGL(X)(X1)∩NGL(X)(X2). Let ψ be the automorphism of A
given by inversion. Then X∗ and Xψ are isomorphic as A−modules. Hence also Xφ and Xψ

are isomorphic as A−modules and there exists s ∈ NGL(X)(A)) such that φs and ψ agree on
A. Since NGL(X)(A) = S, s ∈ S and the lemma is proved. QED

Let E be the parabolic subgroup of G such that E = QL with Q = O5(E), |Q| = 527

and L ∼= C4 × E6(5). By assumption, L has 2F4(2) as a subgroup. But it can be proved that
such a 2F4(2) cannot be extended to a 2.Ru in G. Instead we will look for a different class
of complements with respect to Q. For this we first have to study the action of 2F4(2) on its
27-dimensional irreducible module over GF (5).
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Let F be a group with 2F4(2)′ ≤ F ≤ C4×2F4(2). Let S be a Sylow 2-subgroup of F and let
P1 and P2 be the two maximal subgroups of F containing S, ordered so that Z(P1/Z(F )) 6= 1.
Let Γ0 be the coset-graph of F with respect to P1 and P2. Then Γ0 is the generalized octagon
associated with 2F4(2). For γ ∈ Γ0, let 4k(γ) be the set of vertices in Γ0 at distance exactly
k from γ. Further put α = P1 and β = P2 and note that α and β are vertices of Γ0. Put
T = F ′, Li = Pi ∩ T, Qi = O2(Li), Zi = Z(Qi) and V1 = 〈Z2

P1〉. Let 1 6= z1 ∈ Z1. If Pi
normalizes a subgroup Ri in F or in some F−module, and if δ = Pig ∈ Γ0, put Rδ = Rgi .

We assume that the reader is familiar with the structures of P1, P2 and S (see for example
[11] or [5]). We remark here that |S∩T | = 211, L1/Q1 is a Frobenius group of order 20, Z1 has
order 2, V1/Z1 is the unique irreducible L1/Q1 module of order 16, V1 is elementary abelian,
L2/Q2 ∼= Sym(3) and Z2 is the unique irreducible L2/Q2−module of order 4.

We pay special attention to groups F such that

F/Z(F ) ∼= 2F4(2), |Z(F )| = 2, F ′ ∼= (2F4(2))′ and F/F ′ ∼= C4. (+)

Lemma 2.3 Let W be a faithful irreducible 27−dimensional GF (5)F -module.
(a) Let U1 = CW (V1).

(aa) W = CW (V1)⊕ [CW (Z1), V1] ⊕ [W,Z1] ,

(ab) [CW (Z1), V1] =
⊕
γ∈42(α) Uγ ,

(ac) [W,Z1] =
∑
γ∈44(α) Uγ =

⊕
γ∈43(β)\42(α) Uγ ,

(ad) U1 = CW (V1) is 1-dimensional, CW (V1) = CW (Q1), P1/CP1(U1) ∼= C4 and U1 is
not isomorphic to its dual GF (5)P1 module,

(ae) [CW (Z1), V1] is irreducible of dimension 10 and if φ is any automorphism of P1,
then [CW (Z1), V1]φ and the dual of [CW (Z1), V1] are not isomorphic as GF (5)P1−modules,

(af) [W,Z1] is irreducible of dimension 16. If (+) holds [W,Z1] is isomorphic to its
dual GF (5)P1−module.

(b)

(ba) W = CW (Z2)
⊕

[W,Z2].

(bb) [W,Z2] =
⊕
γ∈43(β) Uγ,

(bc) CW (Z2) =
⊕

γ∈41(β) Uγ,

(bd) [W,Z2] is irreducible of dimension 24. If (+) holds [W,Z2] is isomorphic to its
dual GF (5)P2−module,

(be) CW (Z2) is irreducible of dimension 3 and not isomorphic to its dual GF (5)P2
module.

6



(c) Let X ≤ Y be GF (5)P1−modules such that Y and Y/X are isomorphic to [W,Z1] as
P1−modules. Then Y splits over X.

(d) F ′ has two classes of involutions. If z1 and i are representatives of these classes then
CW (z1) is 11-dimensional while CW (i) is 15-dimensional. Moreover, |CF (i)| = 211 · 3.

(e) F has a unique class of elements d of order three such that CF ′(d) has even order.
Moreover, for any such d and any t ∈ CF ′(d) with |t| = 2, we have NF ′(D) ∩ CF ′(t) ∼= D24. If
(+) holds then |CF (d)| = 25 · 33

(f) Let d be an element of order five in F . Then CF (d) is a {2, 5}−group.

Proof: (aa) and (ba) follow from the fact that V1, Z2 and Z1 are 2−groups and so coprime
action applies.

Let R1 = [W,Z1] and Σ = {H ≤ V1 | V1 = Z1 ⊕H} . Note that Q1 and P1 act transitively
on Σ. By co-prime action

R1 = ⊕H∈ΣCR1(H).

It follows that dimR1 is a multiple of 16. Since dimW = 27 we conclude that dimR1 = 16,
hence dimCR1(H) = 1 and thus Q1 acts irreducibly on R1. In particular the first half of (af)
holds. Let γ ∈ 4(β) with γ 6= α. Since there exist exactly 8 elements of Σ containing Zγ , we
have dimCR1(Zγ) = 8. Further, dimCW (Zγ) = dimCW (Z1) = 27− 16 = 11 and so

dimCW (Z2) = dim(CW (Z1) ∩ CW (Zγ)) = 11− 8 = 3.

Let Σ1 = {H ≤ V1 | Z1 ≤ H, |V1/H| = 2} and Y1 = [CW (Z1), V1]. Then

Y1 =
⊕
H∈Σ1

CY1(H).

Note that P1 has two orbits Σ2 and Σ3 on Σ1 of lengths 5 and 10, respectively. So the
dimension of Y1 is a multiple of 5. Since dim [Y1, Zγ ] = dim [CW (Z1), Zγ ] = dim [CW (Zγ), Z1] =
dimCR1(Zγ) = 8 and dimCW (Z1) = 11, we get dimY1 = 10. Suppose that CY1(H) 6= 0 for
H ∈ Σ3. Since Zγ lies in exactly one member of Σ2, the group Zγ lies in exactly 6 members of
Σ3 and thus CY1(Zγ) is 6-dimensional, a contradiction to dimCY1(Zγ) = 10− 8 = 2. So

Y1 =
⊕
H∈Σ2

CY1(H) and dimCY1(H) = 2 for H ∈ Z2.

Recall that U1 = CW (V1). Then CW (Z1) = U1 ⊕ Y1 and hence dimU1 = 11− 10 = 1.
AsW is irreducible, U1 6= Uγ , and so we have [Uγ , V1] 6= 1. Observe that CLγ (Uγ) ≥ O2(Lγ)

(since Lγ acts as a subgroup of GL1(5) ∼= C4 on Uγ). However, V1 ≤ CT (Zγ) = Lγ , and V1 does
not centralize Uγ . As V1O

2(Lγ)/O2(Lγ) ∼= C2 is the unique proper subgroup of Lγ/O2(Lγ) ∼=
C4 we deduce that CT (Uγ) = CLγ (Uγ) = O2(Lγ), thus Lγ/CLγ (Uγ) ∼= C4 ∼= Pγ/CPγ (Uγ) and
hence U1 is not self-dual as a GF (5)P1−module.

Since V1 inverts Uγ and Z1 centralizes Uγ , Uγ lies in Y1. Moreover, since V1 ≤ Lγ , the
group V1 acts on Uγ , thus CV1(Uγ) is the hyperplane in Σ2 that contains Zγ . Now CV1(Uγ) =
V1 ∩ O2(Lγ) = V1 ∩ Qγ . Moreover the single hyperplane of Σ2 that contains Zγ also contains
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ZγZ1 = Zβ and so also contains Zγ′ , where 41(β) = {α, γ, γ′}. Hence V1 ∩Qγ = V1 ∩Qγ′ , and
Σ2 = {V1 ∩Qδ | δ ∈ 42(α)}. So CY1(V1 ∩Qγ) = Uγ + Uγ′ , and

Y1 =
⊕

δ∈42(α)

Uδ.

In particular (ab) holds. Now CT (Uγ + Uγ′) = O2(Lγ) ∩ O2(Lγ′) = Qγ ∩ Qγ′ and∣∣S ∩ T/Qγ ∩Qγ′
∣∣ = 32. Since a Sylow 2−subgroup of GL2(5) has order 32 and is isomorphic to

C4 wreath C2 we conclude that S∩T/Qγ∩Qγ′ ∼= C4 wreath C2, that S = (S∩T )CS
(
Uγ + Uγ′

)
and that the action of S on Uγ + Uγ′ is irreducible, but not self-dual. Thus Y1 is irreducible
of dimension 10. Suppose there exists an automorphism φ of P1 so that [CW (Z1), V1]φ is
isomorphic to the dual module of [CW (Z1), V1]. As Frob20 has no outer automorphisms, we
may assume without loss that φ centralizes P1/O2(P1). Then

(
Uγ + Uγ′

)φ is isomorphic, as
an S−module, to the dual module of Uγ + Uγ′ . In particular, φ normalizes CS(Uγ + Uγ′).
Now O2(P2)/CS(Uγ + Uγ′) is the unique subgroup of S/CS(Uγ + Uγ′) isomorphic to C4 × C4
and so by Lemma 2.2, up to an inner automorphism of S, the automorphism φ inverts
O2(P2)/CS(Uγ + Uγ′)). As O2(P2)O2(P1) = S and CS(Uγ + Uγ′) ≤ O2(P1) we conclude
that φ inverts S/O2(P1) ∼= C4, a contradiction to [P1, φ] ≤ O2(P1). Thus no such φ exists and
(ad) is proved.

Let U2 = CW (Z2). Then

U2 = Uα + Uγ + Uγ′ .

and so (bc) holds. For X ≤ P2, let X̃ = XCP2(U2)/CP2(U2). As CL2(Uα) = O2(L1) ∩ L2 =
Q1 =

⋂
ρ∈41(α) Lρ, we have CL2(U2) =

⋂
ρ∈42(β) Lρ and so by [5, 9.4.3]

L̃2 ∼= (C4 × C4).Sym(3)

In particular, (be) holds.
We will now determine P̃2, which does depend on the precise structure of F . Since, by

assumption, F is irreducible on W and since CW (Q1) is 1−dimensional, F acts absolutely
irreducibly on W . Hence all elements of Z(F ) act as scalars on W and so also on U2. Now no
element of L̃2 acts as a scalar and so ˜Z(F )L̃2 ∼= Z(F )× L̃2. As the full monomial subgroup of
GL(U2) is isomorphic to C4 × L̃2 we see that at least one of the following holds

• Z(F ) = 1 and P̃2 ∼= (C4 × C4).Sym(3)

• |Z(F )| ≤ 2, F ∼= Z(F )× 2F4(2) and P̃2 ∼= C2 × (C4 × C4).Sym(3)

• F/F ′ ∼= C4 or C2 × C4 and P̃2 ∼= C4 o Sym(3)

We remark that P̃2 is uniquely determined by the structure of F except when F ∼= 2F4(2).
In this case its easy to see that F has two different irreducible 27−dimensional representations
giving rise to the two different possibilities for P̃2.

Note that Q1 is a normal subgroup of S generated by involutions. Furthermore we have
CS∩T (Uγ + Uγ′) ≤ Q1 and so Q1/CQ1(Uγ + Uγ′) has order eight. Hence by the structure of
C4 o C2, Q1 acts as a D8 on Uγ + Uγ′ . In particular O2(P1) acts irreducibly on Uγ + Uγ′ .
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Suppose in this paragraph that (+) holds. We wish to show that Uγ + Uγ′ is self–dual
as an O2(P1)−module. Let B be the set of elements in P2 that act as scalars on U2, let
C = CP2(Uγ + Uγ′), let D = O2(P1) ∩ O2(P2) and let E = [O2(P2), S]. As B is normal in P2
with O2(P2)/B ∼= C4 × C4, [5, 9.4.3] implies B 6≤ O2(P1) and so B 6≤ D. On the other hand,
by the structure of S̃, there are exactly two subgroups X̃ of ˜O2(P2) such that ˜Z(F )Ẽ ≤ X̃

and ˜O2(P2)/X̃ ∼= C4, namely C̃Ẽ and B̃Ẽ. Since S/O2(P1) ∼= C4, the group D̃ meets the
conditions on X̃ and so D̃ = C̃Ẽ and D = CE. But E ≤ Q1 ∩Q2 and thus D = C(Q1 ∩Q2).
Since O2(P1) = Q1D we conclude that O2(P1) = CQ1. In particular, O2(P1) acts as a D8 and
so self–dually on Uγ + Uγ′ .

Back to the general case. Recall (ab) and put Y2 =
⊕
δ∈42(α)\41(β) Uδ. Let g ∈ L1 \ L2.

Then P g2 ∩S = O2(P1). Further (Uγ+Uγ′)g is a Wedderburn component for O2(P1) on Y2 (and
is self–dual if (+) holds). It follows that the S−module Y2 is isomorphic to the S−module
induced from the O2(P1)−module (Uγ +Uγ′)g and is irreducible (and is self dual if (+) holds).

Pick δ ∈ 44(α). By [5, 7.4,7.5], Z1 ≤ Lδ and Z1 6≤ Qδ. So Z1 inverts Uδ and Uδ ≤ [W,Z1].
As seen above Q1 acts irreducibly on R1 = [W,Z1]. Further, Q1 acts transitively on the subset
43(β) \ 42(α) of 44(α), dim[W,Z1] = 16 and | 43 (β) \ 42(α)| = 16. So

R1 = [W,Z1] =
⊕

δ∈43(β)\42(α)

Uδ =
∑

δ∈44(α)

Uδ.

Let R2 = [W,Z2]. From its definition, Y2 is 8−dimensional and from our earlier calcu-
lation of dim[W,Z2], the space C[W,Z2](Z1) is 8−dimensional. Hence Y2 = [CW (Z1), Z2] =
C[W,Z2](Z1). So by coprime action, R2 =

⊕
δ∈41(β) CR2(Zd) = Y2 ⊕ Y2

d ⊕ Y2
d2

, where d is an
element of order 3 in L2. It follows that

R2 =
⊕

δ∈43(β)

Uδ.

Moreover, as Y2 is irreducible (and self-dual if (+) holds) as an S−module, R2 is irreducible
(and self-dual if (+) holds) as a P2−module. In particular, (bb) and (bd) hold.

So to complete the proof of (a) and (b), it remains to show that R1 is self-dual as a
P1−module if (+) holds. Pick H ∈ Σ. Then O2 (NP1(H)) centralizes CR1(H). As R2 is
self-dual as a P2−module, S acts self-dually on R2 and on R1. This implies that NP1(H) =
SO2(NP1(H)) acts self-dually on CR1(H). Since R1 =

⊕
H∈Σ CR1(H), the group P1 is self-dual

on R1 and (a) and (b) are proved.
To prove (c) let H ∈ Σ. Then Y (respectively X) is induced from the 2 (1)-dimensional

NP1(H) module CY (H), (CX(H)). As Q1 acts transitively on Σ, we have NP1(H)Q1 = P1.
Thus NP1(H)/O2(NP1(H)) ∼= Frob20 and NP1(H) is generated by its 2-elements. Since CX(H)
and CY (H)/CX(H) are isomorphic as NP1(H)−modules, all the 2−elements and so all the
elements of NP1(H) act as scalars on CY (H). Hence CY (H) splits over CX(H) and so also Y
splits over X.

That F ′ has two classes of involutions is well known (see for example [3]). Clearly CW (z1)
is 11-dimensional. We can choose i ∈ V1. Namely, choose i ∈ V1 but i 6∈ Zδ for δ ∈ 41(α).
Then i centralizes U1, moreover i lies in exactly three elements of Σ2 and in eight elements of
Σ. Hence dimCW (i) = 1 + 2 · 3 + 8 = 15 and so (d) holds.

(e) and (f) are well known and are easily deduced from [3]. QED
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Lemma 2.4 Let K = D8 o Sym(5) and let t be an automorphism of order 2 which centralizes
K/O2(K) but not O2(K)/Z(O2(K)). Let A be a non-abelian subgroup of O2(O2(K)) such that
|NK(A)| is divisible by five and Z(K) 6≤ A. Then |A| = 28, NK〈t〉(A)/A ∼ D8.F rob20 and
NK〈t〉(A) induces an outer automorphism on O2(NK〈t〉(A))/A.

Proof: Let x be an element of order five in K normalizing A. Put X = 〈x〉, I =
O2(O2(K)) and J = [Z(I),K]. Then I/Z(K) has order 212, the group X acts fixed point
freely on I/Z(K), also |J | = 24 and Z(I) = I ′ = Z(K)J . As A is not abelian and Z(K) 6≤ A,
A′ = J = Z(A). Also AZ(I) 6= I since otherwise Z(K) ≤ I ′ ≤ A′ ≤ A. Hence |A/J | = 24

and |A| = 28. Let A∗ = AZ(I) and note that Φ(A∗) = Φ(A) = J . Let D1, . . . , D5 be the five
D′8s that are naturally permuted by K, ordered so that Di+1 = Dx

i . Let D1 = 〈a∗1, b∗1〉, with
a∗1 and b∗1 of order two. Inductively define a∗i+1 = axi and b∗i+1 = bxi . Let z∗i = [a∗i , b

∗
i ] ∈ Z(Di).

For c ∈ {a, b, z} let ci be the product of the c∗j with 1 ≤ j ≤ 5 and j 6= i. If a1 ∈ A∗ then
A∗ ≤ 〈aX1 〉Z(I) = 〈a1, . . . a5〉Z(I) and A∗ is abelian, a contradiction. Similarly b1 6∈ A∗ and
a1b1 6∈ A∗. Thus A∗ has an element s of the form a1bi with 2 ≤ i ≤ 5 or of the form a1bibj
with 1 ≤ i < j ≤ 5. Note that (a1b2)2 = [a1, b2] = z∗3z

∗
4z
∗
5 6∈ J and so the case s = a1b2,

and more generally the case s = a1bi, is impossible. Note also that (a1b1)2 = z1 ∈ J . So we
get i 6= 1 in the second case. Suppose that i = 2 and j = 3. Then sx = a2b3b4 and [s, sx] =
[a1, b2b3][b2, a2][b3, a2]. Since the first two of these factors are in J but the last one is not,
this case is impossible. Similarly, the cases (i, j) = (2, 4), (3, 5) and (4, 5) are ruled out. Thus
(i, j) = (2, 5) or (3, 4). Since [A∗, X] = A, there exist exactly two choices for A for a given X.
Note that an element in the normalizer of X which acts as (2354) on D1, . . . , D5 interchanges
these two choices. Let L = K〈t〉. Then |NL(X)/NL(X) ∩NL(A)| = 2. Let D0 = CO2(K)(X).
Then [D0, I] ≤ J and so D0 ≤ NK(A) and NO2(K)(A) = D0A. Since O2(K) does not normalize
A∗ we conclude that NL(A) ≤ NL(X)O2(K) and we have to decide whether NL(A)/D0A is
isomorphic to C2×D10 or to Frob20. In the first case we may assume that t normalizes A. As
X acts irreducibly on A/J we conclude that [A, t] ≤ J and so A∗/Z(I) = CI/Z(I)(t). But then
K normalizes A∗/Z(I), a contradiction. The very last statement follows as NK〈t〉(A) 6≤ K.
QED

Lemma 2.5 (a) E6(5) has two conjugacy classes of involutions. There exist representatives
r and s of these classes such that

CE6(5)(r) ∼ 4.D5(5).4 and CE6(5)(s) ∼ 2.(L2(5)× L6(5)).2.

Moreover, if U is a 27-dimensional GF (5)−module for E6(5), then CU (r) is 11-dimensional
and CU (s) is 15-dimensional. As a CE6(5)(r)−module U is the direct sum of three irreducible
submodules of dimensions 1, 10 and 16. The kernel of the action of CE6(5)(r) on the invariant
1-space is CE6(5)(r)′.

(b) 2.E7(5) has three conjugacy classes of involutions. There exist representatives z, z0 and
i of these classes such that z0 ∈ Z(2.E7(5)), i = z · z0 and

C2.E7(5)(z) ∼ 22.(L2(5)×D6(5)).2

Moreover, CV (z) is a tensor product of natural modules for SL2(5) and Ω+
12(5), and [V, z]

is a half-spin module for 2.D6(5).
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Proof: The conjugacy classes of involutions and their centralizers are well known and
easily deduced, for example by the methods found in [2]. The information about U and V is
easily computed using the subgroup 527E6(5) of E7(5), the subgroup 51+562E7(5) of E8(5), the
Steinberg relations and the weight theory of modules for groups of Lie type. QED

Recall that E is a parabolic subgroup QL ∼ 527.(4×E6(5)) in G. Let X1 = CV (Q), X3 =
[V,Q] and X2 = [X3, Q]. Then

0 < X1 < X2 < X3 < V

is the unique chief series for E on V , moreover E = NG(X1), the modules X1 and V/X3 are
1-dimensional and X2 and X3/X2 are 27−dimensional mutually dual E−modules.

By assumption L′ contains a subgroup 2F4(2) acting irreducibly on Q. Hence L contains a
subgroup F̃ fulfilling (+), and acting irreducibly on Q.

Define S̃, P̃1 and P̃2 (as subgroups of F̃ ) in a way analogous to the above. The reader
should notice that Z(F̃ ) = Z(G) centralizes Q, thus Q is irreducible, but not faithful as an
F̃−module. But we still can apply Lemma 2.3 to F̃ /Z(G) and conclude that P̃1 normalizes a
non-trivial subgroup 〈f−〉 of Q. Let f+ ∈ P̃1 be of order 5 and r ∈ P̃1 ∩ F̃ ′ of order 4 with
f+

r = f+
2. As seen in the proof of Lemma 2.3, 〈r〉 acts faithfully on 〈f−〉. So either f−r = f−

2

or f−r = f−
3. Note that there exists σ in NG(L) inducing a graph automorphism on L (indeed

such a σ can be chosen to invert the Cartan subgroup of G). Then the action of L on Qσ

is dual to the action of L on Q and replacing F̃ and f by F̃ σ and fσ if necessary, we may
assume that f−r = f−

2. Put f = f+ f−. Then f r = f2. Let u be an element of order 4 in P̃1
centralized by f+. Let Z1 = Z(P̃1 ∩ F̃ ′).

Lemma 2.6 (a) The element u centralizes f−.
(b) f− is a root element of G and CG(f−) ∼ 51+32.22.D6(5). The CG(f−)−module [V, f−]

is a natural orthogonal 12−space for Ω+
12(5) and the subspace X1 is a singular 1-space. The

quotient, ([V, f−] +X2)/X2 is 1−dimensional and [V, f−] ∩X2 = X1 ⊕ [CX2(Z1), Q1].
(c) CG(f−) ∩ CG(Z1) ∼ 〈f−〉 × 22.D6(5)
(d) CV (f−) ≤ [X3, Z1] + [V, f−] +X2

Proof: (a): Pick s ∈ Z(L) and e ∈ L′ with u = se. Note that e ∈ F̃ and so e2 ∈ F̃ ′ = F ′

and e2 ∈ Q1. In particular, u2F ′ = s2F ′. Since F/F ′ ∼= C4 and F = 〈u〉Z(F )F ′ we get s2 6= 1
and |s| = 4. Since s inverts Q, it is enough to show that e inverts f−. Let D = CL′(Z1). By
Lemma 2.3, CQ(Z1) has order 511 and 〈f−〉 is the unique cyclic subgroup of Q normalized by P̃1
and so by Lemma 2.5a, D has shape 4.D5(5).4, moreover D normalizes 〈f−〉 and CD(f−) = D′.
As a D−module, Q is the direct sum of irreducible modules of dimensions 1, 10 and 16. Using
Lemma 2.3ab we conclude, by the action of P̃1 on the 10-dimensional space, that P̃1 is contained
in a subgroup Y of D, such that Y/Z1 is isomorphic to the subgroup of index 4 in D8 o Sym(5).
In addition, CY (f+) ∩D′ = Z1, and so su 6∈ D′. Thus e does not centralize f−. As e2 ∈ Q1,
the element e2 does centralize f− and so e inverts f−. Thus (a) holds.

(b): As D lies in a parabolic P (of shape 516D in E6(5)) that fixes a 1−space in Q, the
group 〈f−〉 is normalized by the parabolic QZ(L)P of G and thus is a root group. Hence also
the second, third and fourth statements in (b) hold. As Q centralizes V/X3 and X3/X2 but not
V/X2 and as V/X3 is one dimensional, ([V, f−]+X2)/X2 is 1-dimensional. Now [X2, f−] = X1
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and ([X2, Q1] + X1)/X1 is the unique 10-dimensional subspace of X2/X1 invariant under P1
and thus also the last statement in (b) holds.

(c): By (b), Z1 centralizes [V, f−] and so (c) holds.
(d): As Z1 centralizes [V, f−], the element f− centralizes [V, Z−]. Now both CV (f−)+X2/X2

and [X3, Z1] + [V, f−] +X2/X2 are 17-dimensional and (d) holds. QED

Since S̃ = O2(O2(P̃1))〈u〉〈r〉, the group S̃ normalizes O2(P̃1)〈f〉. Put S = S̃, P1 =
〈S, f〉, P2 = P̃2 and F = 〈P1, P2〉.

Lemma 2.7 (a) F normalizes a complement M0 in X3 to X2. Put M = M0 + X1. Then
NE(M) ∩Q = 1. In particular, F ∩Q = 1 and F fulfills (+).

(b) P1 normalizes exactly two 1-spaces in V namely X1 and U1, where U1 ≤M0. Moreover,
CV (O2(P1)) = X1 + U1.

(c) [V, f−] = X1 + U1 + [CX2(Z1), Q1]

Proof: Put U1 = [CV (Q1), f, r]. Note that Q1 centralizes a 1-space in each of the modules
Xi/Xi−1, and CV (Q1) is 4-dimensional. As [V,Q] 6≤ X2, [V, f−] 6≤ X2. Since [X3, f−] ≤ X2
and V = CV (Q1)X3, we conclude [CV (Q1), f−] 6≤ X2. On the other hand as L acts completely
reducibly on V , we have [CV (Q1), f+] = 1. Thus [CV (Q1), f ] 6≤ X2. By Lemma 2.3ad applied
to F ′ and the modules X3/X2 and X2/X1, the element r2 inverts CX3/X1(Q1). In particular,
[r, f ] centralizes X3 and, as r inverts f and f has odd order, we conclude that f centralizes
CX3/X1(Q1). It follows that ([CV (Q1), f ] + X1)/X1 is 1−dimensional and not contained in
X2/X1. Hence U1 is 1−dimensional, U1 ≤ X3, U1 6≤ X2 and P1 normalizes U1.

Let U2 = 〈UP2
1 〉. As |P2/S| = 3, the space U2 is at most 3-dimensional. By Lemma 2.3

applied to W = X3/X2, we know that (U2 + X2)/X2 is 3-dimensional. Thus U2 is a 3-space
and U2 ∩ X2 = 1. Let U3 = 〈[U2, Q1]P1〉. Since [U2, Q1] is a 2-space and |P1/S| = 5, we
similarly have that U3 is 10-dimensional and U3∩X2 = 1. Let U4 = 〈[U3, Z2]P2〉. Since [U3, Z2]
is eight dimensional, U4 is 24-dimensional and U4 ∩X2 = 1. Let U5 = [U4, Z1]. Since X3/X2
and X2/X1 are dual as E−modules, Lemma 2.3af implies that [V, Z1]X2/X2 and [X2, Z1] are
isomorphic and absolutely irreducible as P1−modules and as S−modules. (Note here that Z1
is trivial on X1 and V/X3.) By Lemma 2.3c, [V, Z1] splits over [X2, Z1] as a P1−module. It
is now easy to see that every S−submodule of [V, Z1] is invariant under P1. In particular P1
normalizes U5. Put M0 = U2 + U4. Note that by Lemma 2.3, (M0 + X2)/X2 = X3/X2 and
that M0 has dimension at most 3 + 24 = 27. Thus M0 ∩X2 = 0 and M0 is a complement to
X2 in X3. Then

M0 = U1 + (U2 ∩ U3) + (U3 ∩ U4) + U5 = U1 + U3 + U5.

and so F = 〈P1, P2〉 normalizes M0.
It follows that [X3, NE(M) ∩Q] ≤M ∩X2 = X1. Since Q does not centralize X3/X1 and

E is irreducible on Q, we have NE(M) ∩ Q = 1. Since FQ = F̃Q, the last statement of (a)
also holds.

As f+ centralizes CV (Q1) the last statement in (b) holds once we prove that CCV (Q1)(f−) =
X1 + U1. As seen above [CV (Q1), f−] 6≤ X2 and by a dual argument [CV (Q1), f−] 6= 0. Hence
CCV (Q1)(f−) is at most 2-dimensional and so CCV (Q1)(f−) = X1 +U1. As r centralizes X1 but
not U1, the P1-modules X1 and U1 are not isomorphic. Thus (b) holds.
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As seen above U1 ≤ [V, f−]. Thus (c) follows from Lemma 2.6b. QED

Let χ0 = XG
1 and ζ0 = ZG1 .

Lemma 2.8 U1 ∈ χ0 and CM (Z1) =
⊕
{X | X ∈ χ0, X ≤ CM (Z1)}.

Proof: We claim that E acts transitively on {Z ∈ ζ0 | [X1, Z] = 1}. Indeed, for any
such Z, we have dim[V, Z] = 32 = dim[X3/X1, Z] = 2 · dim[X2/X1, Z]. Thus the claim
follows from Lemma 2.5a. By this claim, G acts transitively on {(Z,X) ∈ ζ0 × χ0 | [X,Z] = 1}
and thus CG(Z1) acts transitively on {X ∈ χ0 | [X,Z1] = 1}. By Lemma 2.5b, CG(Z1) ∼
22.(L2(5) × D6(5)).2 and CV (Z1) is the tensor product of natural modules for SL2(5) and
Ω+

12(5). By Lemma 2.6c, f− lies in the factor SL2(5) and so [V, f−] is one of six 12-spaces
invariant under 22.D6(5). By Lemma 2.6b, X1 is a singular point in [V, f−] and it follows that
{X ∈ χ0 | [X,Z1] = 1} is precisely the union of the sets of singular points in the six 12-spaces.
By Lemma 2.7c, X1 +U1 = C[V,f−](Q1) and so X1 +U1 is a non-degenerate subspace of [V, f−].
As X1 is singular in [V, f−], the space X1 + U1 is of “+”-type and so contains exactly one
member of χ0 distinct from X1. By Lemma 2.5c, U1 is the only 1−space in X1 + U1, which
is invariant under P1 and distinct from X1. So U1 ∈ χ0. By the proof of Lemma 2.3ab,
[CM0(Z1), V1] is the direct sum of 5 pairwise non-isomorphic irreducible Q1−modules, each of
which is the direct sum of two conjugates of U1 under F . Moreover, Q1 normalizes each of the
six 12-spaces and it is now easy to see that CM (Z1) intersects each of the six 12-spaces in a
2-space of “+”- type. This clearly implies the lemma. QED

Lemma 2.9 NE(M) ∩ CG(Z1) = P1 and F contains a Sylow 2-subgroup of NE(M).

Proof: Put N = NE(M) and Y = CN (Z1). By Lemma 2.7, N ∩Q = 1. By Lemma 2.5a,

CE(Z1) ∼ 511.(C4 × 4.D5(5).4)

and CE(Z1) normalizes a 10-space in X3/X2. By the proof of Lemma 2.8, Y normalizes X1+U1
and a decomposition of this 10-space into an orthogonal sum of five 2-spaces of “+”-type. Let
K be the full normalizer in CE(Z1) of this decomposition. Then

K ∼ 511(C4 × 2.
1
2

(D8 o Sym(5)).2).

Let M1 be the complement in X3 to X2 normalized by L. We claim that U3 6≤ M1 and
U5 6≤M1. As U1 is S−invariant and S ≤ L, we have U1 ≤M1. Since P2 ≤ L we get U2 ≤M1.
Suppose that U3 ≤ M1. Then P̃1 normalizes U3 and since f− ∈ P1P̃1 we conclude that f−
normalizes U3. Note that f− centralizes X3/X2 and U3 ≤ X3. Hence [U3, f−] ≤ X2 ∩ U2 = 0
and so f− centralizes U3, a contradiction to Lemma 2.6d. Thus U3 is not contained in M1. It
follows that neither U3 ∩U4 nor U4 are contained in M1. As P2 ≤ L acts irreducibly on U4 we
conclude that U4 ∩M1 = 0 and so finally U5 6≤M1.

As Y ∩Q = 1, Y is isomorphic to a subgroup of K/O3(K) and so Y/O2(Y ) is isomorphic to
a section of Sym(5). As 5 divides the order of P1 we conclude that O2(P1O2(Y )/O2(Y )) = 1
and so O2(P1) ≤ O2(Y ). As CQ(O2(P1)) = 〈f−〉, any conjugate of L in E containing O2(P1)
is of the form Lx for some x ∈ 〈f−〉. By Sylow’s theorem O2(Y ) lies in some conjugate of L in
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E and so O2(Y ) ≤ Lx for some x ∈ 〈f−〉. Thus O2(Y ) normalizes [M1, Z1]x. By Lemma 2.6b,
x centralizes [M1, Z1] and so O2(Y ) normalizes [M1, Z1], [X2, Z1] and U5 = [M,Z1]. Since all
of these Y−modules are irreducible and U5 ≤ [V, Z1] = [X2, Z1] ⊕ [M1, Z1] we conclude that
these O2(Y )−modules are pairwise isomorphic and so O2(Y ) acts self-dually on [X2, Z1].

For each X ≤ E, we write X∗ for CX(X1). Since Z(L) acts transitively on X#
1 , the groups

F̃ , F and P1 also act transitively on X#
1 . Thus Y = Y ∗P1. Let C (respectively Ĉ) be the largest

subgroup of K∗ centralizing (centralizing or inverting) (U3+X2)/X2. Then ĈQ/Q ∼= C4. Since
O2(Y ) acts self-dually on [X2, Z1] and the elements of Ĉ act as scalars we conclude that Ĉ ∩Y
centralizes or inverts [X2, Z1]. Hence Ĉ ∩ Y ∗ ≤ C and Y ∗C ∩ Ĉ = (Y ∗ ∩ Ĉ)C = C. Thus
no element of Y ∗C/C inverts (U3 + X2)/X2. We are now in a position to apply Lemma 2.4
(with K〈t〉 = K∗/C and A = O2(Y ∗)C/C ∩ O2(O2(K∗/C)). Note that A is not abelian as
Q1C/C ≤ A and Q1 ∩ C = Z1. As r ∈ P ∗1 , the group P ∗1 has Frob20 as a quotient. Since
Y ∗C normalizes A we conclude that Y ∗C ≤ O2(Y ∗)P ∗1 and A = Q1C/C. From the structure
of D8, from the last two statements in Lemma 2.4 and from O2(Y ∗)∩ Ĉ ≤ C we conclude that
O2(Y ∗)C = Q1C. Thus Y ∗C = P ∗1C. Since C ∩ Y ∗ ∩Q = 1, we have C ∩ Y ∗ = Z1 ≤ P ∗1 . So
Y ∗ = P ∗1 and Y = P1, proving the first statement of the lemma.

Since Z1 = Z(S) ∩ S′, NG(S) ≤ CG(Z1) and so S a Sylow 2-subgroup of N . QED.

Lemma 2.10 There exists t ∈ NG(P1) ∩NG(M) with X1 6= Xt
1.

Proof: Let t ∈ NG(P1). By Lemma 2.7b, CV (O2(P1)) = U1 + X1 and so t normalizes
U1 + X1. Also by Lemma 2.3ae, the isomorphism types of the two 10−dimensional modules
in V invariant under P1 are not conjugate under an automorphism of P1. So t normalizes U3.
Hence t ∈ NG(M) if and only if t ∈ NG(U5).

Note that P1 is contained in 〈f−〉CL(Z1). Let 〈t1〉 = Z(CL′(Z1)). Then by Lemma 2.5a, t1
is of order 4 and [t1, P1] ≤ Z1. So t1 ∈ NG(P1). Further CG(Z1) is of shape 22.(L2(q)×D6(5)).2.
Note that [V, f−] is 12-dimensional and there exists a quadratic form on [V, f−] invariant (up
to scalar multiplication) under the action of NG(〈f−〉). Moreover, [V, f−] is equal to the sum
of X1, U1 and the 10-dimensional subspace of X2, which is normalized by P1. In particular P1
normalizes a decomposition of [V, f−] into an orthogonal sum of six 2-dimensional subspaces
of “+”-type. Let T0 be the largest subgroup of 22.D6(5), which normalizes this decomposition
and normalizes X1 + U1. Then P1 normalizes T0 and T0/Z1 is isomorphic to a subgroup of
index 4 in (D8 ×D8 o Σ5).

Let T = CT0(f). Then T/Z1 ∼= D8 × C2 and T normalizes O2(P1) and so also Q1 and
V1 = Q′1. Moreover, t1 ∈ T , [t1, T ] ≤ Z1, T

′ = Z(G)Z1 and T ∩ P1/Z1 ∼= C4. Pick t2 ∈ T
with t22 ∈ Z1 and [t2, T ] 6≤ Z1. We will show that either t2 or t1t2 fulfills the conclusion of the
lemma. It is easy to check in T0 that t2 centralizes a 1-space in each of the six 2-spaces and
that these six 1-spaces form a 6-space of “+”-type. As the central involution of Ω+

6 (5) lifts to
an element of order four in 2.Ω+

6 (5) ∼= SL4(5) we conclude that t2 and by symmetry t1t2 are
elements of order 4. It follows that

〈t1, t2〉 ∼= Q8 and 〈t1, t2〉 ∩ P1 = Z1.

We will now examine the action of 〈t1, t2〉 on the set Π of 16-spaces in V invariant under
O2(P1). Note that |Π| = 5 + 1 = 6. Put H = [V1, f ]. Then 〈t1, t2〉 normalizes H and acts
faithfully on the 2-dimensional space C[V,Z1](H). So the orbits of 〈t1, t2〉 on the 1-dimensional
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subspaces of C[V,Z1](H), and hence also on Π, are all of length 2. Now by Lemma 2.9, t1
does not normalize M and so [M,Z1] 6= [M,Z1]t1 . Hence [M,Z1] = [M,Z1]t for t = t2 or for
t = t1t2. Recall that U5 = [M,Z1] and thus the selected t is in NG(M).

It remains to show that t normalizes P1. Since t normalizes O2(P1), it is enough to prove
that [t1, NS(〈f〉)] ≤ P1. Since T = 〈t1, t2〉 (T ∩ P1), T ∩ P1 is the largest subgroup of T
acting trivially on Π. As NS(〈f〉) acts trivially on Π, the same is true for [t1, NS(〈f〉)] and so
[t1, NS(〈f〉)] ≤ T ∩ P1 ≤ P1, completing the proof of the Lemma. QED

Lemma 2.11 Let R = 〈F, F t〉. Then F has three orbits on the right cosets of F in R. The
orbit stabilizers are F, P1 and a group of order 25·3·52·13. In particular |R| = 215·33·53·7·13·29.

Proof: Note first that R normalizes M . We will divide the proof into several steps.

1 Let χ = XR
1 and ζ = zR1 . Then R acts transitively on

(a) {(X, z) | X ∈ χ, z ∈ ζ and z centralizes X},
(b) {(X, z) | X ∈ χ, z ∈ ζ and z inverts X}.

Clearly a Sylow 2-subgroup of NR(X1) contains representatives of each class of involutions
in NR(X1). By Lemma 2.9, S is Sylow 2−subgroup of NR(X1) and so F contains represen-
tatives of each class of involutions in NR(X1). As F/F ′ ∼= C4, all the involutions in F are
contained in Z(G)×F ′. By Lemma 2.3, F ′ has two classes of involutions with representatives
z1 and i. Moreover CW (i) is 15-dimensional and so dimCV (i) = 2 + 2 · 15 = 32. Hence F has
two orbits on F ∩ ζ with representatives z1 and z0i, where z0 is the central involution in G.
Now z1 centralizes X1 and z0i inverts X1. Thus (1) holds.

2 (a) CR(z1) acts transitively on CM (z1) ∩ χ and |CM (z1) ∩ χ| = 12,
(b) CR(z1) and P1 act transitively on [M, z1] ∩ χ and |[M, z1] ∩ χ| = 80,
(c) |CR(z1)| = 215 · 3 · 5,
(d) CNR(X1)(i) ≤ F .

The two transitivity statements for CR(z1) follow from (1). By Lemma 2.8, |CM (z1) ∩ χ0| =
12. Moreover, by Lemma 2.3, U3 contains 10 elements of UF1 and so CM (z1) ∩ χ contains at
least the 11 elements of CM (z1) ∩ χ0 \ {X1}. Conjugation by t shows that CM (z1) ∩ χ also
contains the 11 elements of CM (z1)∩χ0 \{U1}. Thus CM (z1)∩χ = CM (z1)∩χ0 and (a) holds.
By Lemma 2.9, CR(z1) ∩NR(X1) = P1 and so

|CR(z1)| = 12 · |CR(z1) ∩NR(X1)| = 12 · |P1| = 215 · 3 · 5.

Now |[M, z1] ∩ χ| = |CR(z1)| / |CR(z1) ∩NR(X)|, where X ∈ χ is inverted by z1. By
Lemma 2.3d, |CF (i)| = 211 · 3. Further, |CR(z1) ∩NR(X)| ≥ |CF (i)| and so |[M, z1] ∩ χ| ≤ 80.
Finally, P1 has an orbit of length 80 on [M, z1]∩χ. Indeed, there are 80 points at distance 4 from
a in Γ0 (the generalized octagon associated to F ), these 80 points correspond to 80 elements
in UF0 and UF0 is a subset of χ. So |[M, z1] ∩ χ| = 80, moreover |CR(z1) ∩NR(X)| = |CF (i)|
and P1 acts transitively on [M, z1] ∩ χ. This completes the proof of (2).

3 NR(X1) = F = NR(F ). In particular, the actions of R on XR
1 and on R/F are isomorphic.
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Let N = CR(X1). Then, as in (1), N has two classes of involutions, with representatives
z1 and i. By (2)(d) and Lemma 2.8, F ′ contains the centralizers of z1 and i in N . Hence by
a standard argument, see for example [6, 9.2.1], F ′ = N . Thus NR(X1) = F . Now X1 is the
unique 1-space in M normalized by F and so NR(F ) ≤ NR(X1).

Let Γ be the graph with vertices χ and edges {X1, U1}R. Since R = 〈F, F t〉 we have

4 Γ is connected.

5 Let a, b ∈ χ. Suppose there exists z ∈ ζ, such that z normalizes a and b. Then a and b have
distance at most 2 in Γ. If z centralizes a or b, then a and b have distance at most 1.

Suppose first that z centralizes a. Then we may assume without loss that a = X1 and
z = z1. Then (2) implies that b = X1 or b ∈ UF1 and so a and b are at distance at most 1.

In the general case pick c ∈ χ so that z centralizes c. Then a and b are at distance at most
1 from c, and (5) is proved.

For a vertex a, put Ra = NR(a), and for an edge {a, b}, let 1 6= z(a, b) ∈ Z(R′a ∩R′b). Note
that, if (a, b) = (X1, U1)g, then z(a, b) = zg1 = z(b, a). For g ∈ F , we identify αg ∈ Γ0 with
Ug1 ∈ Γ.

6 (a) R acts transitively on geodesics of length 2 in Γ. Moreover, the stabilizer of a geodesic
of length 2 is isomorphic to C2 × Frob20

(b) Let d and e be at distance 2 in Γ. Then Rd ∩ Re acts transitively on the set of pairs
(a, b) such that {a, b} is an edge with z(a, b) ∈ Rd ∩ Re. Moreover, Ra ∩ Rb ∩ Rd ∩ Re is
isomorphic to C2 × C4.

Let a and b be in αF . Suppose that a and b are at distance less than or equal to 6 in Γ0.
Then there exists c ∈ αF , such that c is (in Γ0) at distance 2 from a and at distance at most 4
from b. Put z = z(X1, c). Then by Lemma 2.3ab&ac, z centralizes a and normalizes b. Thus
(5) implies that either a = b or a is adjacent to b in Γ. Suppose that every pair of elements
in αF are adjacent in Γ. Then every pair of elements in αF ∪ {X1} are adjacent. Since Γ is
connected, we conclude that αF ∪{X1} is the set of vertices of Γ. Hence |R| = |F |·(|F |+1) and
so |R|2 = 214, a contradiction to (2)(c). So there are two elements of αF , that have distance
8 in Γ0, and have distance 2 in Γ. Since P1 is transitive on 48(α) and since every geodesic of
length two in Γ is conjugate to one with X1 as its midpoint, we conclude that R is transitive
on geodesics of length 2 in Γ. Moreover, the stabilizer in F of two elements of distance 8 in
αF is a C2 × F20. Hence (a) is proved.

To prove (b) we assume without loss that a = X1 and b = U1. Since z(a, b) normalizes d
and e, we get by (5) that d, e ∈ αF and that d and e are at distance less than or equal to 4
from b in Γ0. Since d and e are at distance 8 from each other, b lies on a geodesic from d to e
in Γ0 and is at distance 4 from both d and e. Now F acts transitively on paths of length 8 in
Γ0 starting with a vertex in αF and the stabilizer of such a path is a C2×C4. This proves (b).

7 Let d and e be at distance 2 in Γ. Then Rd∩Re acts transitively on Rd∩Re∩ ζ. Moreover,
if z ∈ Rd ∩Re ∩ ζ, then Rd ∩Re ∩ CR(z) has order 25.3 and has a normal Sylow 3−subgroup.
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Let z ∈ Rd ∩Re ∩ ζ. By (6), Rd ∩Re acts transitively on Rd ∩Re ∩ ζ and Rd ∩Re ∩CR(z)
acts transitively on all pairs (a, b) such that {a, b} is an edge with z = z(a, b). Put A =
Ra ∩ Rb ∩ Rd ∩ Re and B = Rd ∩ Re ∩ CR(z). Then |A| = 8. Next we show that there are
exactly 12 choices for (a, b). Indeed a is in CV (z)∩χ and so by (2)(a), there are exactly twelve
choices for a. Moreover, as Ra ∩ Rb = CRa(z), b is uniquely determine by z and a. It follows
that |B| = 8 · 12 = 25 · 3. We claim that A is normal in B. For this let {ā, b̄} be an edge
different from {a, b} with z = z(ā, b̄). Again choose notation so that a = X1. Since z = z(ā, b̄),
z centralizes ā and b̄ and so ā and b̄ are at distance 2 from b in Γ0. It follows from [5] that
A normalizes ā and b̄, and so A = Rā ∩ Rb̄ ∩ Rd ∩ Re. Thus A is independent of the choice
of (a, b) and therefore normal in B. Let B̃ = CB(d) and Ã = CA(d). Let g ∈ A with |g| = 4.
As 〈g〉 acts faithfully on the group of order five in Ra ∩ Rd ∩ Re, g2 6= z0. As g 6∈ Z(G)F ′,
g2 6∈ F ′ and so g2 6= z. Thus g2 = z0z. Since z and z0 invert d, g2 centralizes d. Thus A/Ã
is elementary abelian, |A/Ã| = 2 and Ã ∼= C4. Let i be the involution in Ã. Suppose that the
Sylow 3−subgroups of B are not normal in B. Since 3 divides B̃ and |B̃/Ã|2 ≤ 4, B̃/Ã ∼= A4.
Let Y = O2(B̃) and Y ∗ = [Y,O2(B̃)]. Then Y = Y ∗Ã and [Y ∗, Ã] = 1. Hence Ã ≤ Z(Y ) and
Y/Z(Y ) is elementary abelian. It follows that |Y ′| ≤ 2. Hence either Y is abelian, Y ∗ ∩ Ã = 1
and Y ∼= C4×C2×C2 or Y is not abelian, Y ∗ ∼= Q8 and Y ∼= C4 ◦Q8 ∼= C4 ◦D8. In particular,
〈i〉 = Φ(Y ). Note that Ã = CR(d) ∩ Re ∩ CR(i). We claim that all involutions in CR(d) ∩ Re
are conjugate under Rd ∩Re. Indeed let j be any such involution. Since d and e have distance
2, (5) implies that j 6∈ ζ. Thus z0j ∈ ζ and by the first part of (7), the conjugacy class of z0j in
Rd ∩Re is uniquely determined. Thus the claim holds. Moreover, by the structure of Y there
exists an involution j in B̃ different from i. Then by the claim j = ih for some h ∈ Rd ∩ Re.
Now [Ã, j] = 1 and Ã ≤ CR(d)∩Re∩CR(j) = B̃h. As B̃h/Y h has order three, Ã ≤ Y h. Hence

i ∈ Φ(Ã) ≤ Φ(Y h) = 〈ih〉 = 〈j〉

a contradiction, which proves (7).

8 Let a be at distance 2 from X1 in Γ. Then |F ∩Ra| = 25 · 3 · 52 · 13 and F ∩Ra has exactly
two orbits on the neighbors of X1 in Γ.

Let z ∈ F ∩ Ra ∩ ζ and D be the Sylow 3−subgroup of CF∩Ra(z). By Lemma 2.3e
|NF (D)| = 33 · 25 and so by (7), CF∩Ra(z) contains a Sylow 2-subgroup of NF (D). Put
K = F ′ ∩ Ra. Then by Lemma 2.3, CK(z) ∼= D24. Since F ∩ Ra acts transitively on the
involutions in K, we conclude that the Sylow 2-subgroups of K are dihedral groups of order
8 and that K has exactly one class of involutions. By (6), |K| is divisible by 5, and since
|F ′| = 211 · 33 · 52 · 13, we have |K| = 23 · 31+u · 51+v · 13w, where u is 0, 1 or 2, and v and w are
0 or 1. Since CK(z) is a maximal subgroup of NF ′(D), u is 0 or 2. We claim that K has an
orbit on αF with orbit stabilizer C2×Frob20 and an orbit with an orbit stabilizer of order 25.
Indeed let b be at distance 1 from X1 and a in Γ. Then by (6), F ∩ Rb ∩ Ra ∼= C2 × Frob20.
Moreover, any 2-subgroup of F fixes a point in αF and so there exists c in αF so that 25 divides
|F ∩ Ra ∩ Rc|. Suppose 5 divides |F ∩ Ra ∩ Rc|. Then 2 ≤ |O2(F ′ ∩ Ra ∩ Rc)| ≤ 8 and so
O2(F ′ ∩Ra ∩Rc) centralizes O2(F ′ ∩Ra ∩Rc), a contradiction since the involutions in K are
not centralized by elements of order 5 in K. So |F ∩Ra ∩Rc| = 25. In particular

1755 = |αF | ≥ |bK |+ |cK | = 22 · 31+u · 5v · 13w + 31+u · 51+v · 13w,
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and so

(∗) 65 ≥ 3u · 5v · 13w.

Now |K/NK(D)| = 51+v ·13w and |K/NK(D)| is congruent to 1 modulo 3, so we must have
v = 1. By Lemma 2.3, the centralizers of elements of order 5 in F are {2, 5}−groups and no
involution in K is centralized by an element of order five . Thus the centralizers of elements
of order five in K are 5-groups. In particular the Sylow 5-subgroups of K are TI−sets, and so
the number of Sylow 5-subgroups in K is congruent to 1 modulo 25. Since no divisor of 23 · 33

is 1 mod 25, w 6= 0. Thus w = 1 and by (∗), u = 0 and the equal sign holds in (∗). This means
that F ∩Rb has no further orbit on αF and (8) is proved.

We remark that using the list of maximal subgroups of the Tits group or the classification
of groups with dihedral Sylow 2-subgroups it is not difficult to see that K ∼= L2(25), but we
will not need this fact.

9 F has three orbits on R/F with lengths 1, 1755 and 2304.

In view of (8) it is enough to prove that there exist no points at distance 3 from X1 in Γ.
One easily checks in Γ0 that there exist points b, c, d in αF such that b has distance 8 from
both c and d in Γ0 and c and d are at distance 2 in Γ0. Then c and d are adjacent in Γ and b
is at distance 2 from c and d in Γ. Let a be at distance 2 from X1. By (8), F ∩ Ra has two
orbits on the neighbors of a in Γ. One orbit is the set of common neighbors of X1 and a. By
(6) there exists g ∈ R with bg = X1 and cg = a. Then dg lies in the second orbit and has
distance 2 from X1 In particular every point adjacent to a is at distance at most 2 to X1 in Γ.
This completes the proof of (9) and of Lemma 2.11. QED

It now follows from Lemma 2.11 that R has the following properties:
(a) R has a subgroup F with F/Z(G) ∼= 2F4(2).
(b) F has 3 orbits on R/F with lengths 1, 1755 and 2304.
By [12] we conclude that R is isomorphic to the Rudvalis group. This completes the proof

of Theorem 2.1.

3 A Computer-free Construction of the Higman-Sims Group
as a Subgroup of E7(5).

In this chapter we will prove the following Theorem:

Theorem 3.1 E7(5) contains subgroups isomorphic to M22 and the Higman-Sims group.

We start with some of the properties of M22 we will need in the proof of the theorem.

Lemma 3.2 Let M = M22 act faithfully on Ω = {1, 2, . . . , 22}, let ω ∈ Ω and let D be the
stabilizer of a hexad H in Ω.
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(a) Mω acts transitively on Ω \ {ω} and Mω
∼= L3(4).

(b) D ∼ 24.Alt(6), D acts transitively on Ω \H and any subgroup of shape 24Alt(6) in M
is conjugate to D.

(c) Let E ≤ Mω with E ∼= 24Alt(5). Then E has orbits of lengths 1, 5 and 16 or of
lengths 1, 1 and 20 on Ω. In the first case E stabilizes a hexad, and in the second case
NM (E) ∼ 24Sym(5).

(d) Let A ≤ B ≤ M with A ∼= Alt(6) and B ∼= Alt(7). Then A is not contained in a
conjugate of D.

(e) Let A ≤ D such that A ∼= Alt(5) and such that O2(D) is a natural SL2(4)−module
for A. Then A has orbits of lengths 1 and 5 on H and orbits of lengths 1 and 15 or of
lengths 6 and 10 on Ω \ H.

(f) Let A ≤ D such that A ∼= Alt(5) and such that O2(D) is a natural Ω4
−(2)−module

for A. Then A acts transitively on H and has orbits of lengths 1, 5 and 10 on Ω \ H.

(g) If A ≤ D with A ∼= Alt(6), then A has orbits of lengths 1 and 15 or of lengths 6 and
10 on Ω \ H.

(h) If A ≤Mω with A ∼= Alt(6), then A has orbits of lengths 1, 6 and 15 on Ω.

(i) M has no subgroup of index 56.

Proof: The maximal subgroups of M22 and their orbits on Ω are listed in Table 10.3 on
page 285 of [4]. We use this table without further reference. In particular, (a) and (b) hold.
¿From the definition of a Steiner system, the set Ω \ {ω} together with the set of hexads
containing ω form a projective plane of order 4. In particular both the two point stabilizer and
the stabilizer of an incident point hexad pair have shape 24SL2(4) = 24Alt(5) where the 24 is
a natural SL2(4)−module. Let E∗ be the normalizer of a pair of points. Then E∗ ∼= 24Sym(5)
and (c) holds.

To prove (h), let f be an element of order five in A. Then f has exactly one fixed point
η on Ω \ {ω}. Clearly A does not fix η and |ηA| divides |A| and is congruent to 1 modulo 5.
Thus |ηA| = 6. As f acts fixed-point freely on the remaining 15 points and A has no orbit of
length 5, (h) holds.

(g): By (h) we may assume that A has no fixed points on Ω. Then by the same argument
as in the proof of (h), A has orbits of length 6 and 10 on Ω \ H.

For (e) and (f) we note that if A fixes a point η outside H, then the action of A on
Ω \ (H ∪ {ω}) is isomorphic to the action of A on O2(D)#. Since in case (f) there exists a
unique class of subgroups Alt(5) in O2(D)A, (f) holds. In case (e), we need to rule out the
possibility that the orbits of A on Ω \ H have lengths 5, 5 and 6. In this case, the elements
of order three in A would have 4 fixed-points on Ω \ H, but only one fixed-point on O2(D), a
contradiction.

(d) Note that B is unique up to conjugation and has an orbit Ξ of length 7. Hence A has
orbits of length 1 and 6 on Ξ and so is transitive on Ω \ Ξ by (h). As no two hexads can
intersect in a set of size 5, the orbit of length 6 is not a hexad. Thus (d) holds.
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Since M has no maximal subgroup of index dividing 56, (i) holds. QED

For the convenience of the reader we recall the definition of the HS group as found [8]. Let
(S,B) be the Steiner System of type (3, 6, 22). Let G be the (undirected) graph with vertex
set {∗} ∪ S ∪ B, where ∗ is a new symbol. In G

(a) The vertex ∗ is joined to each point in S.
(b) Each point α ∈ S is joined to the 21 hexads containing α.
(c) Two hexads are joined if and only if they are disjoint.
Then by [8], Aut(G) is transitive on G and Aut(G) has a simple subgroup of index 2 and

order 44,352,000, now called the Higman Sims group HS. We refer to G as the Higman-Sims
graph.

The next two lemmas characterize M22 and HS in terms of certain subgroups.

Lemma 3.3 Let M be a group and L,M1 and M2 subgroups of M such that L ∼= L3(4), M1 ∼
24Sym(5), M2 ∼ 24Alt(6), L∩M1 ∼= L∩M2 ∼ 24Alt(5), M1∩M2 ∼ 24Sym(4), L∩M1∩M2 ∼
24Alt(4) and M = 〈L,M1,M2〉. Then M ∼= M22.

Proof: Put Γ = M/L and α = L ∈ Γ. Let t ∈ M1 ∩M2 \ L. Since M1 ∩ L is normal in
M1, we have M1 ∩ L ≤ Lt. As M1 ∩M2 does not normalize L ∩M2, the element t does not
normalize L and so L ∩ Lt = L ∩M1. Put Γ0 = {α} ∪ αtL. Then |Γ0| = 1 + 21 = 22.

Now |αM2 | = |M2/M2 ∩ L| = 6 and αM2 = {α} ∪ αt(M2∩L) ⊂ Γ0. Further, as M1 =
〈t〉(M1 ∩ L), we have

αM2M1 = αM2〈t〉 (M1∩L) = αM2(M1∩L) = α ∪ αt(M2∩L)(M1∩L).

Since M1 ∩ L acts transitively on αtL \ {α} we get that αM2M1 = Γ0. Hence M1 and L
normalize Γ0. Note that M2 = 〈M2 ∩ L, M2 ∩M1〉 and so M = 〈M1, M2, L〉 = 〈M1, L〉.
Thus M normalizes Γ0, also Γ = Γ0 and |M/L| = 22. Put B = αM2 and B = {Bm|m ∈ M}.
We claim that (Γ,B) is a Steiner System of type (3, 6, 22). Since L is doubly transitive on
Γ \ {α}, M is triply transitive on Γ. Hence each set of three elements in Γ lies in e elements
of B where e is a positive integer independent of the set of three. Counting tuples (H, a, b, c)
such that H ∈ B and a, b, c are pairwise different elements of H we get

|B| · 6 · 5 · 4 = 22 · 21 · 20 · e.

As |B| = |M/M2| = 22 · |L|/|M2| = 77 we get e = 1 and the claim is established.
Since M ≤ Aut(Γ,B) ∼= Aut(M22) and |M | = 22 · |L| = |M22|, we deduce that M ∼= M22.

QED

Lemma 3.4 Let H be a group, M and D subgroups of H, and L a subgroup of M . Suppose
that each of the following holds:

(i) M ∼= M22, L ∼= L3(4) and D ∼ 24Sym(6),

(ii) There exists t ∈ NH(L) with t2 ∈ L such that D∩M ∼ 24Sym(5), D∩M t ∼ 24Alt(6),
and D ∩Dt ∼ 24Sym(4).
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(iii) H = 〈M,L,D, t〉.
Then H is isomorphic to HS, C2 ×HS or Aut(HS).

Proof: Let Γ be the graph whose vertices are the right cosets of M in H, and whose
edges are the sets {Mh,Mth} for h ∈ H. Put α = M and β = Mt.

Note that 〈Hα,H{α,β}〉 = 〈M,L〈t〉 〉 and D = 〈D ∩M, D ∩M t〉. So 〈Hα,H{α,β}〉 = H and
Γ is connected.

Let 4i(α) be the set of vertices at distance exactly i from α and put 4(α) = 41(α). Then
| 4 (α)| = 22, L = Hαβ and L acts transitively on 4(β) \ {α}. Let r ∈ D ∩M \ L and put
γ = αtrt. Then {β, γ} = {α, β}rt and {β, γ} is an edge. Since r ∈ D and D ∩M t is normal
in D, r normalizes D ∩M t. Moreover, t2 ∈ L ≤ M and so rt normalizes Dt ∩M . Thus
Dt ∩M ≤ Hα ∩Hα

rt = Hαγ . In particular γ is not adjacent to α and thus γ ∈ 42(α).
Suppose that Hαγ 6= Dt ∩M . As Dt ∩M is maximal in M we get Hαγ = Hα = Hγ , and

4(α) ∩ 4(γ) = βHα = 4(α) = 4(γ), and since Γ is connected, Γ = {α, γ} ∪ 4(α). Thus L
fixes exactly the vertices α, β and γ. Hence γ = γt and t ∈ Hγ = Hα, a contradiction. We
have proved

1 H acts transitively on geodesics of length 2, Hαγ ∼ 24Alt(6), |42(α)| = 77, |4(α)∩4(γ)| =
6 and Hαβγ ∼ 24Alt(5).

By part (c) of Lemma 3.2, Hαβγ acts transitively on4(γ)\4(α). Let δ ∈ 4(γ)\4(α). Then
Hαγδ

∼= Alt(6) and Hαβγδ
∼= Alt(5). Suppose that δ is at distance 2 from a. Then 43(α) = ∅,

thus Γ = {α} ∪4(a) ∪42(α) and |Γ| = 100. It is now easy to see that Γ is isomorphic to the
Higman-Sims graph (see for example [19] for a formal proof). As |H| = 100 · |M22| = |HS|,
H ∼= HS.

So we may assume from now on that δ is not in distance 2 from α. It follows that

2 δ ∈ 43(α) and H acts transitively on geodesics of length 3.

By Lemma 3.2 part (h), Hαγδ has orbits of lengths 1, 6 and 15 on4(δ). Further by (2), Hαδ

acts transitively on 42(α)∩4(δ). Since 4(β)∩4(δ) ⊂ 42(α)∩4(δ), we get |42 (α)∩4(δ)|
is 7, 16 or 22.

Suppose | 42 (α) ∩ 4(δ)| = 7. Then |Hαδ| = 7 · |Hαγδ| and Hαδ
∼= Alt(7). Now Hαγ ∼

24.Alt(6) and Hαγ ∩Hαδ = Hαγδ
∼= Alt(6). This contradicts Lemma 3.2, part (d).

Suppose that | 42 (α) ∩ 4(δ)| = 22. Then |Hαδ| = 22 · |Hαγδ| = 24 · 32 · 5 · 11 and
|Hα/Hαδ| = 56, a contradiction to Lemma 3.2, part (i).

Thus | 42 (α) ∩ 4(δ)| = 16 and |Hαδ| = 16 · |Alt(6)|. Since Hαδ acts non-trivially on the
six points in 4(d) \ 42(α), we conclude that Hαδ has a factor group Alt(6) or Sym(6). This
implies Hαδ ∼ 24Alt(6) and 4(δ)\42(α) is a hexad in the Hδ−invariant Steiner system 4(δ).
Since Hαγδ has orbits of lengths 1 and 15 on 42(α) ∩4(δ), the group Hαβγδ (∼= Alt(5)) fixes
a unique point in 42(α) ∩ 4(δ), namely γ. Note that Hαβδ

∼= Hαγδ
∼= Alt(6) and that Hαβδ

does not fix γ. So Hαβδ fixes no point in 42(α)∩4(δ) and by Lemma 3.2, part (g), Hαβδ has
orbits of lengths 6 and 10 on 42(α) ∩4(δ). Now parts (e) and (f) of Lemma 3.2 imply that
Hαβγδ has orbits of lengths 1, 5 and 10 on 42(α)∩4(δ) and acts transitively on 4(δ)\42(a).
Let ε ∈ 4(d) \ 42(α). Then Hαδε ∼ 24Alt(5). Since Hαδε lies in a unique subgroup 24.Alt(6)
of Hα and since the stabilizer in Hα of points at distance 3 from α are 24Alt(6)’s, we get that
δ is the unique point in 43(α) fixed by Hαδε. In particular ε 6∈ 43(α). We have proved
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3 Hαδ ∼ 24Alt(6), | 43 (α)| = 77, ε ∈ 44(α), Hαδε ∼ 24Alt(5), Hαβγδε
∼= D10 and H acts

transitively on geodesics of length 4.

By (1) and part (b) of Lemma 3.2, a subgroup 24Alt(5) of Hβγ which has orbits of lengths
1, 1 and 20 on 4(β) has orbits of lengths 1, 5 and 16 on 4(γ). Note that 4(δ) \ 42(a) is an
orbit of length 16 for Hαδε on 4(δ), and so Hαδε has orbits of lengths 1, 1 and 20 on 4(ε).
Since Hαε acts transitively on 43(α) ∩ 4(ε) and since 4(γ) ∩ 4(ε) ⊂ 43(α) ∩ 4(ε), we get
that |43 (α)∩4(ε)| is 21 or 22. Suppose that |43 (α)∩4(ε)| = 22, then |Hαε| = 22 · |Hαδε| =
22 · |24Alt(5)| and thus |Hα/Hαε| = 21, a contradiction. Thus | 43 (α) ∩ 4(ε)| = 21 and
4(ε) \ 43(α) = {η} for some η. Thus Hαε = Hαεη

∼= L3(4). Thus | 44 (α)| = 22 and ε is the
unique point in 44(α) fixed by Hαεη and so η 6∈ 44(α). Hence

4 Hαε
∼= L3(4), | 44 (α)| = 22, η ∈ 45(α), Hαεη = Hαε and H is transitive on geodesics of

length 5.

Since Hαη is transitive on 44(α) ∩ 4(η) and 4(δ) ∩ 4(η) ⊂ 44(α) ∩ 4(η) we conclude
that 44(α) ∩4(η) = 4(η) and Hαη = Hα

∼= M22. Thus

5 Hαη = Hα, 45(α) = {η}, Γ =
∑

0≤i≤5 4i(α) and |Γ| = 200.

Let φ be the map that sends a vertex µ in Γ to the unique point at distance 5 from µ.
Then φ is obviously a bijection and (µφ)g = (µg)φ for all µ in Γ and g in Aut(Γ). In particular
{αφ, βφ} is the set of fixed-points of Hαβ on Γ. So βφ is adjacent to αφ and therefore φ is a
graph automorphism of Γ. Put Γ0 =

{
{µ, µφ} | µ ∈ Γ

}
and let {µ, µφ} be adjacent to {λ, λφ}

if µ is adjacent to λ or λφ. Then |Γ0| = 100, M has orbits of lengths 1, 22 and 77 on Γ0 and H
acts transitively on Γ0. So as above Γ0 is the Higman-Sims graph and Aut(Γ0) ∼= Aut(HS). Let
N be the kernel of the action of Aut(Γ) on Γ0. We claim that N = {1, φ}. Indeed, let n ∈ N .
Then αn ∈ {α, αφ} and replacing n by nφ if necessary we may assume that αn = α. Since
βφ is not adjacent to α, we have βn = β. So n fixes the neighbors of all its fixed-points and
since Γ is connected, we conclude that n = 1. Thus N = {1, φ} and Aut(Γ) ∼= C2 ×Aut(HS).
Further, |H| = 200 · |M | = 2 · |HS| and so H ∼= Aut(HS) or C2×HS and the lemma is proved.
QED

Lemma 3.5 (a) G has a subgroup T of order 3 with NG(T ) ∼ SU6(5) ◦ SU3(5)).Sym(3).
(b) Put U = NG(T ), U1 = [V, T ] and U2 = CV (T ). Then V = U1 ⊕ U2, moreover, U1 and

U2 are irreducible as U modules, U1 ∼= W6 ⊗GF (25) W3 and GF (25)⊗GF (5) U2 ∼=
∧3W6, where

Wi is the natural i−dimensional GF (25)−module for SUi(5), for i=3,6.
(c) NG(U1) = U .

Proof: It is clear from the extended Dynkin diagram of type E7 that 2.E7(K) has a
subgroup H ∼= SL3(K) ◦ SL6(K). Moreover, the central involution of the Weyl group induces
a graph automorphism on both of the factors and so an application of Lang’s theorem yields
a subgroup (SU6(5) ◦ SU3(5)).Sym(3) in E7(5). Using the embedding of K1+562.E7(K) in
E8(K), the Steinberg relations and weight theory it is easy to check that the 56−dimensional
KE7(K)−module is as an H−module the direct sum of X3 ⊗X6, X∗3 ⊗X∗6 and

∧3X6 where
Xi is a natural module for SLi(K), i = 3, 6. As H is a maximal connected closed subgroup of
2.E7(K) and is of index two in its normalizer, all the statements of the lemma are now readily
verified.
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Lemma 3.6 There exists an involution f̄ in U \U ′ such that CU (f̄) ∼ L4(5).22×Sym(5)×〈f̄〉.
Moreover, for any such f̄ ,

CG(f̄) ∼ (2× L8(5)).2

and CU (f̄) acts transitively on the elementary abelian subgroups of order 16 contained in the
normal subgroup L4(5) in CU (f).

Proof: It is easy to verify that Aut(U6(5)) has three classes of involutions that do not
induce a diagonal automorphism on U6(5). The derived groups of the respective centralizers
in U6(5) are PSp6(5), D3(5) and 2D3(5), and the first two of these three classes of involutions
lie in the same coset of Inn(U6(5)).

Since Ω−6 (5) (∼= 2.2D3(5)) acts absolutely irreducibly on the exterior cube of its natural
module, we conclude that the centralizer of Ω−6 (5) on the 20−dimensional module lies in the
center of the full linear group acting on the 20−space. It follows that U \ U ′ contains no
involution centralizing a 2D3(5) in U6(5) and so contains an involution centralizing a D3(5) in
U6(5).

Let f̄ be any such involution. Note that the normalizer of D3(5) in U6(5) is PSO6
−(5)

extended by an involution which multiplies the quadratic form associated to PSO6
−(5) by

a fourth root of unity. So CU6(5)(f̄) ∼ L4(5).22 and the two classes of elementary abelian
subgroups of order 16 in CU6(5)(f̄)′ are fused in CU6(5)(f̄). Moreover, Aut(U3(5)) has exactly
one class of involutions outside Inn(U3(5)) and the corresponding centralizers are Sym(5)’s.
Therefore C

U
′(f̄) ∼ L4(5).22 × Sym(5).

It remains to determine CG(f̄). Note that G has three classes of involutions whose central-
izers have shapes 2.(L2(5)×D6(5)).2, (C2×E6(5)).2, and (C2×L8(5)).2. Under the actions of
the derived groups of these centralizers V decomposes into direct sums of irreducible modules
of dimensions 24 and 32; 1, 1, 27, and 27; and 28 and 28, respectively. On the other hand,
from the action on the 20− and 36−spaces, we know that V is the direct sum of irreducible
modules of dimensions 18, 18, 10 and 10 for CU (f)′. It follows that CG(f̄) ∼ (C2 × L8(5)).2,
and the lemma is proved. QED

From now on let T,U and f be as in Lemma 3.6. Note that f2 is the central involution
of G. Put N = CU (f), F = 〈f〉 and R = NG(F ). Then R = CG(f̄) and so by Lemma 3.6
R ∼ C4 ◦ 2 · L8(5).2. Let R̂′ be a group with R̂′ ∼= SL8(5) so that R̂′ has R′ as a quotient
group. For X in R′, let X̂ be the inverse image of X in R̂′. As Z(N̄ ′) = 1, it is easy to see
that the natural 8−dimensional module for R̂′ is, as a module for N̂ ′, the tensor product of
a 4−dimensional module for SL4(5) and a 2−dimensional module for SL2(5). Since elements
in GL4(5) ⊗ GL2(5) ≤ GL8(5) have determinant plus or minus one, R′ has two classes of
subgroups isomorphic to L4(5) × L2(5). Since R = NR′, R fixes these classes. Moreover, as
the element inverting f can be chosen to invert a Cartan subgroup of R′, R does not induce
an outer diagonal automorphism on R′.

The character tables of L3(4) and its covers (see [3]) show that there is a group of shape
4.L3(4) which has a faithful irreducible character χ of degree 8. Note that R contains a
subgroup L of shape 2.L3(4). We plan to extend L to a subgroup M22 and then to a subgroup
HS of G. Let S be a Sylow 2−subgroup of L, let B = NL(S) and let A1 and A2 be the
two elementary abelian groups of order 25 in S. Note that L̂ is perfect and that Âi is the
central product of a cyclic group of order 4 with an extra-special group of order 25. Moreover
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a natural 8−dimensional module for R̂′ is as an Âi−module the direct sum of two isomorphic
irreducible modules of dimension 4. Thus C

R̂′
(Âi) ∼= GL2(5) and we can choose L, S and A1,

so that A1 is contained in the normal L4(5) in N . It follows that N
R
′(A1) ≤ N and has shape

24Sym(6) × Sym(5). Let B2 be the projection of A2 onto the L4(5) in N . Let B2 be the
projection of A2 onto the L4(5) in N . Put Li = NL(Ai). Our goal is to show that both Li’s
can be extended to a subgroup 25Sym(6) in U . Inside 25Sym(6) we will choose appropriate
subgroups 25Sym(5) and 25Alt(6) which will allow us to apply Lemma 3.3 and Lemma 3.4 to
find M22 and HS in G.

Lemma 3.7 In R′, the subgroup A2 is conjugate to B2 but not to A1.

Proof: Put Ci = O2(C
R̂′

(Âi)). Then Ci ∼= SL2(5). Suppose that [S,C1] = 1. Then C1 ≤
C
R̂′

(Â2) and C1 = C2. Since L = 〈L1, L2〉, the group L normalizes C1, a contradiction. Hence
[S,C1] 6= 1 and similarly [S,C2] 6= 1. As B/Ai ∼= Alt(4), we have B = O2(B)Ai. Since Out(Ci)
is a 2−group and Ai centralizes Ci we conclude that S induces inner automorphisms on Ci.
Hence S normalizes a unique subgroup Q8 in Ci. Denote this Q8 by Qi and note that S induces
inner automorphisms on Q1. In particular [Â2, Q1] ≤ Z(Q1) · Z(R̂′). Thus Q1 induces inner
automorphisms on Â2. Put Ri = Q1Âi (where we really mean Q1 and not Qi). Then R1 and
R2 are both the central product of an extra-special group of order 27 with a cyclic group of
order 4. Put X = CR2(Â2). It follows that R2 = XÂ2, that S normalizes X and that X
contains a Q8 invariant under S. Thus Q2 ≤ X, R2 = Q2Â2 = Q2B2 and B̂2 = CR2(Q1).

Note that N
R̂′

(R1)/R1 ∼= Sp6(2). Note Ā1 and B̄2 are both nondegenerate 4−spaces in
the 6−dimensional symplectic space R1/Z(R1) (where the symplectic form is given by the
commutator map). Hence by Witt’s theorem, A1 and B2 are conjugate under N

R̂′
(R1) proving

the first statement of the lemma.
Since C

R̂′
(Âi) acts transitively on the Q8’s in C

R̂′
(Âi) and since N

R̂′
(A1)∩N

R̂′(Q1) induces
the full automorphism group of Q1 on Q1, we conclude that A1 and B2 are conjugate in R′ if
and only if they are conjugate under Y = C

R̂′
(Q1). Note that Y is isomorphic to the subgroup

of index two in GL4(5). Since B normalizes Y and [A1, B] = A1, A1 and hence also B2 are
contained in Y ′. Put S0 = A1B2. Since A1 and B2 normalize each other we conclude that
S0 is a Sylow 2−subgroup of Y/Z(Y ) and that A1 and B2 are the two maximal elementary
abelian subgroups of S0. It follows that A1 and B2 are not conjugate in Y ′. Moreover,
Out(Y ′) ∼= D8, Out(Y ′) acts on {AY ′1 , BY ′

2 } and Out(Y ′)′ fixes AY
′

1 and BY ′
2 . As the group of

outer automorphisms of Y ′ induced by Y is Out(Y ′)′, A1 and B2 are not conjugate in Y . So
A1 and B2 are not conjugate in R′ and lemma is established. QED

Lemma 3.8 N
R
′(A1) acts transitively on L3(4)’s in R′ containing A1 and on subgroups 24Alt(5)

in N
R
′(A1) which can be extended to an L3(4) in R

′.

Proof: Recall that N
R
′(A1) ∼ 24Sym(6)× Sym(5) and, as [S,Ci] 6= 1 in the notation of

the previous lemma, any 24Alt(5) in N
R
′(A1), which can be extended to a L3(4) in R′, projects

non-trivially on the Sym(5). Hence N
R
′(A1) acts transitively on such subgroups. Note that

L1 is such a subgroup and that L∗1
def
= N

R
′(L1) ∼ 24Sym(5). Put W = N

R
′(L1) ∩ N

R
′(A2).

As Ā1 and Ā2 are the only maximal elementary abelian subgroups of S̄ = Ā1Ā2, we have
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NL∗1
(A2) = NL∗1

(S). Since S/A1 is the Sylow 2−subgroup of L1/A1, we have W ∼ 24Sym(4).
We claim that W is contained in a 24Alt(6)× Sym(5) subgroup of N

R
′(A1). For this let i be

an involution in W \ L1. Then it is enough to show that the inverse image of [Â2, i] is not
elementary abelian. Let C2 be the projection of A2 onto the normal Sym(5) in N . Then [B̂2, i]
is elementary abelian, while [Ĉ2, i] is not. So also [Â2, i] is not elementary abelian, and the
claim is proved.

It is now easy to see that W ∩L1 is contained in exactly two subgroups 24Alt(5) of N
R
′(A2)

and these two subgroups are interchanged by W . Since any L3(4) in R
′ containing L1 is

generated by L1 and a 24Alt(5) in N
R
′(A2) containing W ∩ L1 the lemma is proved. QED

Lemma 3.9 Put L0 = NR(L). Then |L0/LF | = 2 and A1 and A2 are conjugate in L0.

Proof: Since Out(R′/Z(R′)) ∼= D8, since R′ has four orbits on A
Aut(R′)
1 and since

PGL8(5) acts transitively on those four orbits, the normalizer of any such orbit in Out(R′) is
a group of order 2 that is not contained in the center of Out(R′). It follows that R fixes two
of these orbits and interchanges the remaining two. Moreover, by Lemma 3.8, L8(5) has four
orbits on (A1, L)Aut(R′) and, by Lemma 3.7, each orbit of subgroups L3(4) in R

′ leads to two
orbits of R′ on (A1, L)Aut(R′). It follows that R′ has exactly two classes of subgroups L3(4).
Suppose R interchanges those two classes. Then R could not normalize any of the orbits of R′

on A
Aut(R′)
1 , a contradiction. So |L0/LF | = 2. Suppose that A1 and A2 are not conjugate in

L0. Then they are also not conjugate in R. By Lemma 3.7, we conclude that A1 and B2 are
not conjugate in R, and this contradicts Lemma 3.6. So A1 and A2 must be conjugate in L0.
QED

Lemma 3.10 Put X = NG(A1). Then X ≤ U and X ∼ 6.(24.34.Sym(6)× U3(5)).Sym(3).

Proof: LetX0 = NU (A1). By the action ofA1 on the natural 6−dimensionalGF (25)−module
W for SU6(5) we see that, modulo the normal SU3(5) in U, X0 is a full monomial subgroup
of U6(5).Sym(3). It follows that X0 ∼ 6.(24.34.Sym(6) × U3(5)).Sym(3). Moreover, X0 has
two orbits Σ1 and Σ2 on the hyperplanes in A1 which do not contain Z(G). Choose notation
so that |Σ1| = 6 and |Σ2| = 10. Recall that V ∼= U1 ⊕ U2 where U1 and U2 are defined and
described in Lemma 3.5.

Let H1,H2,H3 be three different elements of Σ1. Then its is easy to check that H1 ∩H2 6≤
H3. As W =

⊕
H∈Σ1

(CW (H)), this implies that H1 acts fixed–point freely on U2. Since U1 is
a direct sum of copies of W as an A1−module, we get

⊕
H∈Σ1

CV (H) = U1.
Also CV (H) is either 6−dimensional, if H ∈ Σ1, or 20/10 = 2−dimensional, if H ∈ Σ2.

Thus NG(A1) normalizes Σ1 and so also U1. Since U is maximal in G, we conclude that X ≤ U .
Hence X = X0. QED

Lemma 3.11 There exists t ∈ NR(L) and D ≤ U such that t2 ∈ L, At1 = A2, L1 ≤ D,
D ∼ 25Sym(6), t normalizes ND(B) and t does not normalize ND′(B).

Proof: Let Y = X/A1. Then Y ∼ 3.(34Sym(6) × U3(5))Sym(3). Let K be the image of
L1 in Y . Then K ∼= Alt(5) and we are looking for subgroups Sym(6) of Y containing K. Let
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Y1 be the normal subgroup 3.34Sym(6) of Y , let Y2 be the normal subgroup SU3(5) of Y and
let Ki be the projection of K onto Yi. Then Y acts transitively on subgroups 3 · Alt(6) (the
triple cover of Alt(6)) and transitively on subgroups Alt(5) in Y2. Moreover, the normalizer of
an Alt(5) in U3(5).Sym(3) is a C2×Sym(5) and the normalizer of an Alt(6) is Aut(Alt(6)). It
follows that K2 can be embedded into exactly two subgroups 3 ·Alt(6) of Y2 and f interchanges
these two 3 ·Alt(6)’s. Furthermore Y has one orbit on subgroups 3 ·Alt(6) in Y1 and one orbit
on subgroups Alt(5) in Y1 for which A1 is a natural SL2(4)−module. (Note here that 3 ·Alt(6)
exists in Y1, since 34Alt(6) has 9 classes of Alt(6)’s while 31+4Alt(6) has only 3 classes.) Now
Y/Y2 ∼ 34+1(C2 × Sym(6)). The normalizer of the image of K in Y/Y2 is a C2 × Sym(5) and
the normalizer of the image of a 3 ·Alt(6) of Y1 in Y/Y2 is a Sym(6). It follows that K1 can be
embedded into exactly two subgroups 3 ·Alt(6) of Y1 and f interchanges these two 3 ·Alt(6)’s.
Let Di be any of the two subgroups 3 ·Alt(6) in Yi with Ki ≤ Di. Then there exists precisely
one subgroup A in D1D2 such that K ≤ A, A = A′ and A/Z(A) ∼= Alt(6). Similarly there
exists precisely one subgroup Â in Df

1D2 such that K ≤ Â, Â = Â′ and Â/Z(Â) ∼= Alt(6).
We claim that exactly one of A and Â is an Alt(6), while the other is the triple cover. Indeed,
let xi, yi be elements of order 3 in Di such that 〈x1x2, y1y2〉Z(Y ) is a Sylow 3−subgroup of
AZ(Y ). Then 〈x1

fx2
f , y1y2〉Z(Y ) is a Sylow 3−subgroup of ÂZ(Y ). Note that

[x1x2, y1y2] = [x1, y1] [x2, y2] and [x1
fx2

f , y1y2] = [x1, y1]f [x2, y2]. (∗)

Since [x1, y1] and [x2, y2] are both contained in Z(Y ) and unequal to 1 and since f inverts
Z(Y ), we see that exactly one of the two expressions in (∗) is equal to 1. This proves our
claim.

Choose notation so that A ∼= Alt(6). From what we proved so far it follows that A
and Af are the only two Alt(6) subgroups in Y which contain K. It is easy to see that
NY (K)/Z(Y ) ∼= C2 × Sym(5). Furthermore, there exists a subgroup of index 2 in NY (K)
which normalizes A. Since f does not normalize A, this subgroup is, modulo the center of Y ,
isomorphic to Sym(5). Put E = A(NY (K) ∪ NY (A)) and let D̂ be the inverse image of E
in X. Then E/Z(Y ) ∼= Sym(6) and D̂/T ∼= 25Sym(6). (Recall that T is the cyclic group of
order three with U = NG(T ).)

By Lemma 3.9, there exists t ∈ NR(L) with A1
t = A2. Choose t so that t normalizes B.

Then t2 ∈ BF and since t inverts F , we have t2 ∈ B. In particular t2 ∈ L. Note that A1 and
A2 are the only elementary abelian groups of order 25 in B. Put J = NG(B) ∩ NG(A1). As
t ∈ NG(B) \ J , we conclude that J is of index two in NG(B). For Q ⊂ NG(B) let Q∗ be the
image of Q in NG(B)/B. Since J ≤ X, it is easily verified that J∗ is an elementary abelian
group of order 9 extended by an elementary abelian group of order 8. Pick a in N

D̂′
(B) \BT

and b in N
D̂

(B) with [a,B] ≤ A1 and such that a∗ and b∗ are involutions. Since U3(5) contains
no Sym(6), b induces an outer automorphism on Y2. The same is true for f and so b and f
both invert O3(J∗). Note that a centralizes T and inverts O3(J∗)/T . As A1 is in the SU6(5)
subgroup of U but A2 is not, the element t is not in U . Since T ≤ O3(J), we conclude
O3(J)∗ = T ∗T ∗t = O3(J∗). It follows that 〈a∗, t∗〉 acts as a D8 on O3(J∗). Since 〈a∗, t∗〉 is a
dihedral group, we conclude that 〈a∗, t∗〉 ∼= D8. Let x∗ = [a∗, t∗].

We claim that x∗T ∗ = b∗T ∗. Indeed, x∗ inverts O3(J∗) and |CNG(B)∗(O3(J)∗)/O3(J∗)| = 2.
Hence x∗ lies in the same coset of O3(J∗) as f∗ or as b∗. Since NR̄′(A1) ∼ 24.Sym(6)×Sym(5),
NR′(B)∗ ∼= C2×C2. Furthermore f and t are in NR(B) and so NR(B)∗ is a Sylow 2−subgroup
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of NG(B)∗. Since f 6∈ R′ we conclude that f∗ 6∈ NG(B)∗′O3(J∗) = 〈x∗〉O3(J∗). So x∗O3(J∗) =
b∗O3(J∗). Moreover, a∗ centralizes b∗ and x∗ and hence b∗T ∗ = Cx∗O3(J∗)(a∗) = x∗T ∗.

In particular, we can choose b so that b∗ = x∗ = [a∗, b∗]. Put D = D̂′〈b〉. Then D ∼
24Sym(6). In addition, ND(B) = B 〈a, b〉 and so t normalizes ND(B). On the other hand,
ND′(B) = B〈a〉 and so ND′(B)t = B〈ab〉 6= ND′(B). QED

Proof of Theorem 3.1:

We are now able to construct HS and M22 in Ḡ. For this choose L, t and D as in Lemma
3.11 and put M1 = ND(L1). By Lemma 3.10, ND′ t(B) is contained in D, but not in D′. Since
ND′ t(B)/O2(D) ∼= Sym(4), we conclude that ND′ t(B) is contained in M1. Note that Lt1 = L2
and so L2 ≤ D′ t. Put M2 = D′ t. Then M1 ∼ 24Sym(5) and M2 ∼ 24Alt(6). Moreover,

M1 ∩ L = L1, M2 ∩ L = L2, and M1 ∩M2 = ND′ t(B).

Put M = 〈L,M1,M2〉. Then by Lemma 3.3, M ∼= M22. Now D∩M = M1, D
t∩M = M2 and

D ∩Dt = ND(B). Let H = 〈D,L, t〉. Then by Lemma 3.4, H̄ ∼= HS,C2 ×HS or Aut(HS).
Thus in any case H̄ ′ ∼= HS and Theorem 3.1 is proved. The dedicated reader might check that
actually H̄ itself is already the Higman-Sims group.

4 A Computational proof that HS is a Subgroup of E7(5).

In this section we give a computer dependent proof that HS < E7(5). Our strategy is to use
a machine calculation to prove that HS acts (absolutely) irreducibly on a 133−dimensional,
5−modular, Lie algebra. We then apply the extensive theory of modular Lie algebras to deduce
that the Lie algebra is simple, that it is a classical modular Lie algebra of type E7 over GF (5),
and thence HS < E7(5).

Computation 4.1 We construct an explicit 133−dimensional (absolutely) irreducible matrix
representation of HS over GF (5).

Method: We remark that although it seems natural to construct the 133−dimensional rep-
resentation as a constituent of a tensor product of smaller representations of HS, all use-
ful tensor products are too large for our implementation of the meataxe. For example, the
133−dimensional, 5−modular representations of HS are constituents in the symmetric cube
of the 21−dimensional representation and in the tensor product of a 21−dimensional repre-
sentation with a 55−dimensional representation, however these representations have degrees
1771 and 1155. In order to avoid such large computations, we shall locate a 133−dimensional
representation as a constituent of the symmetric square of a 28−dimensional representation
of the double cover of HS: this latter representation can be found in a previously known
representation of the Harada–Norton group.

We start with the 133−dimensional matrix representation of HN over GF (5) that is con-
structed in [15]. We locate matrices, x1 and y1, that represent HN elements of classes 40A and
12C (since these classes have small centralizers, we locate such elements by a random search).
Let x = x1

20. Every dihedral group generated by the 2A−element x and a conjugate of the
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2B−element y1
6 has a central involution. By collecting such involutio ns together with the

matrix x1, it is an easy matter to generate enough matrices to represent the centralizer of x
in HN (we just keep adding involutions until we observe a group that contains an element of
order 11). The group CHN (x) has structure 2.HS.2.

We use the meataxe [10] to decompose the restriction of ourHN−module into its irreducible
constituents of degrees 1, 21, 28, 28, and 55, under the group 2.HS = (CHN (x))′. Another
application of the meataxe to the symmetric square of either of the irreducible 28−dimensional
2.HS−modules yields an (absolutely) irreducible matrix representation of HS of degree 133.
QED

Let E denote the 133−dimensional HS−module afforded by the matrix representation of
Computation 4.1. In our calculations with E we shall use a fixed basis e1, e2, . . . , e133 of E:
moreover for technical reasons, we use a basis on which a particular subgroup

P ∼ 24.23 < 24.(2× Sym(4)) < 24.Sym(6) < HS

acts monomially. We let e1
∗, e2

∗, . . . , e133
∗ denote the dual basis of the dual module E∗ (this

module is isomorphic to E, but for computational purposes it is convenient to distinguish E
and E∗).

Computation 4.2 We compute an HS−invariant product, ∗: Λ2E → E.

Method: The output from this computation is a list of components, ai,j,k of an invariant rank
three tensor such that the map ei ∧ ej 7→

∑
k ai,j,k ek extends to an HS−invariant multilinear

map. It is convenient to use duality to observe that the map ek∗ 7→
∑
i,j ai,j,k ei

∗ ∧ ej∗ extends
to an HS−invariant multilinear map. Moreover, since the group HS acts irreducibly on E∗, it
is easy to use the group action to compute these tensor components once we know the image
of any single vector of E∗ under an HS−invariant map: E∗ → Λ2E∗.

The module Λ2E∗ has degree 8778 and is too large to decompose directly with our imple-
mentation of the meataxe: in order to locate all copies of E∗ in Λ2E∗ we use the condensation
techniques described in [14]. Let π denote the idempotent (

∑
p∈P p)/|P | of the group algebra

GF (5)HS. The condensation programs of [14] compute matrix representations of the Hecke
algebra πGF (5)HSπ on the condensed modules E∗π and Λ2E∗π (which have degrees 1 and
50). (It is in the computation of these matrix representations of the Hecke algebra that our
programs require the group P to act monomially on E and E∗.) A standard meataxe cal-
culation locates the single copy of E∗π in the πGF (5)HSπ−module Λ2E∗π. Thus there is a
single embedding of E∗ in the HS−module Λ2E∗. Moreover, the embedding of Hecke algebra
modules gives the image of the 1−dimensional space of fixed points of P on E∗ under the
HS−invariant map: E∗ → Λ2E∗. As we remarked above, the action of HS now determines
the components of the HS−invariant tensor ai,j,k. QED

For each e ∈ E we write ∗e for the matrix that represents the action of right multiplication
by e on our HS−invariant algebra. After completing Computation 4.2, we ran a simple
precautionary program to verify HS−invariance of our tensor. For each basis vector ei and
for each of generator, h, of HS, we checked that the matrices (∗ei)h and ∗(eih) are identical.
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Computation 4.3 The HS−invariant product ∗: Λ2E → E of Computation 2 is a Lie prod-
uct on E. Moreover the Killing form on (E, ∗) is non-singular.

Method: A straightforward computation shows that for each basis vector ei we have

(∗ei)(∗e1)− (∗e1)(∗ei)− (∗((ei)(∗e1))) = 0.

Hence the Jacobi identity holds for any triple of basis vectors of the form e1, ei, ej . Therefore
right multiplication by e1 is a derivation of (E, ∗); and, by applying the action of HS, we deduce
that ∗(eh1) is a derivation of (E, ∗) for any choice of h ∈ HS. Since HS is irreducible on E, we
deduce that ∗ is a Lie product on E.

A random search quickly produces e ∈ E with Tr((∗e)(∗e)) 6= 0. It follows that the Killing
form on E is not identically zero: irreducibility of E as a HS−module now shows that the
Killing form is non-singular. QED

We complete the proof that HS < E7(5) by applying standard results to show that the
automorphism group of (E, ∗) can only be Aut(E7(5)). The following lemma from [13] shows
that (E, ∗) is a simple Lie algebra.

Lemma 4.4 Suppose that (X, ∗) is a finite dimensional (non-associative) algebra and that
A ≤ Aut(X, ∗) acts irreducibly on X. Then one of the following holds:

(a) The algebra (X, ∗) is simple.
(b) The A−module X is induced from a module of a proper subgroup of A.
(c) The product ∗ is identically zero.

Proof: Let I be a minimal non-zero ideal of (X, ∗), and let I = {Ia|a ∈ A}. We say that
a subset of I is independent if it consists of independent (vector) subspaces of X. Let J =
{I1, I2, . . . Il} be a maximal independent subset of I. Let Y = ⊕lk=1 Ik, then Y is an ideal of
(X, ∗).

Let Ia be any A−image of I. Maximality of J shows that Ia∩Y is a non-zero ideal; hence,
since Ia is a minimal ideal, we have Ia ⊂ Y. Thus, Y contains a non-zero A−submodule of X,
and, since X is irreducible, we have X = Y.

We now suppose that neither (a) nor (b) holds: thus I 6= X and hence StabAI is a proper
subgroup of A. Moreover, since X is not induced, there is an a ∈ A with Ia /∈ J . Then,
Ia ∗ Ik ⊂ Ia ∩ Ik = {0}, for each Ik ∈ J . Thus Ia ∗ X = Ia ∗ Y =

∑
Ia ∗ Ik = {0}. The

A−invariance of ∗ now gives Ik ∗X = {0} for each Ik ∈ J , and thus X ∗X =
∑
Ik ∗X = {0}.

QED

Let (E, ∗) be the Lie algebra obtained from (E, ∗) by extending the scalars to the algebraic
closure of GF (5). Since E is absolutely irreducible as a HS−module and it is not induced (since
HS has no subgroup of index 133), Lemma 4.4 shows that the Lie algebra (E, ∗) is simple.
Moreover, by Computation 4.3, the simple Lie algebra (E, ∗) has a non-singular Killing form.

Over an algebraically closed field, F say, of characteristic p > 3, the modular Lie algebras
with a non-singular trace form are completely classified by a theorem of Block and Zassenhaus
[1] (this result is also given in [16], page 49). Block and Zassenhaus show that such a modular
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Lie algebra is a direct sum of abelian Lie algebras, total matrix algebras Mn(F ) where p|n,
and classical simple Lie algebras of types A1, . . . , E8. In particular, our algebra (E, ∗) must be
the classical simple Lie algebra of type E7 (since no other simple algebra in the list provided
by [1] has dimension 133). Therefore, the HS−invariant algebra (E, ∗) is a GF (5)−form of
E7. By Theorem IV.6.1 of [16] there is just one GF (5)−form of E7 : thus (E, ∗) is the classical
simple Lie algebra of type E7 over GF (5). It now follows from [18] that Aut(E, ∗) has structure
E7(5).2 and we obtain HS < E7(5).
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