$\mathrm{Ru}<\mathrm{E}_{7}(5)$ and $\mathrm{HS}<\mathrm{E}_{7}(5)$

P. B. Kleidman
30 West 10th Street
New York, NY 10011
U. Meierfrankenfeld
Michigan State University
East Lansing, MI 48824
A. J. E. Ryba
Marquette University
Milwaukee, WI 53233

In this paper we describe our discovery that the sporadic simple groups $R u, H S$ and M_{22} are contained in the simple Chevalley group $E_{7}(5)$.

The work of [9] produces a short list of the possibilities for a sporadic simple subgroup of an exceptional group of Lie type. Apart from possible embeddings of $M_{22}, H S$ and $R u$ in groups of type E_{7} in characteristic 5, all of the embeddings of [9] are already known to occur. Thus our paper completes the classification of sporadic simple subgroups of exceptional groups of Lie type.

We offer two proofs of the embedding $R u<E_{7}(5)$. The first is a computer proof, and the second is totally by hand. In particular, the second proof provides the only known computerfree construction of $R u$. Moreover, our computer proof includes the first published presentation of $R u$ and thus gives the first easily verifyable computer construction of $R u$. Similarly we give a hand proof and a computer proof of the embedding $H S<E_{7}(5)$. As a step in our hand proof of $H S<E_{7}(5)$ we establish the embedding $M_{22}<E_{7}(5)$: of course, since M_{22} is a subgroup of $H S$, this result also follows as a consequence of our computer proof of $H S<E_{7}(5)$.

We were led to conjecture the inclusions $R u<E_{7}(5)$ and $H S<E_{7}(5)$ for the following reasons. The double cover $2 . R u$ has a faithful 28 -dimensional character χ, and the character values of $\chi+\chi^{*}$ are all compatible with the character values of groups of type E_{7} acting on their natural 56 -dimensional module. Similarly the double cover $2 . H S$ has a faithful 56dimensional character, whose values are compatible with the character values of groups of type E_{7} acting on their natural 56 -dimensional module. Now $R u, 2 . R u, H S$ and $2 . H S$ all contain a subgroup $5^{2}: 20$, an elementary abelian group of order 25 extended by a cyclic group of order 20 acting faithfully on the 5^{2}. Since 20 is not the order of an element in the Weyl group $W\left(E_{7}\right)=2 \times S_{6}(2)$, it can be shown that $5^{2}: 20$ does not embed in groups of type $E_{7}(\mathbf{K})$, where \mathbf{K} is a field of characteristic prime to 5 . Thus $R u$ and $H S$ embed in $E_{7}(q)$ only if $5 \mid q$. On the other hand, all local subgroups of $2 . R u$ and $2 . H S$ embed in $2 . E_{7}(5)$, whence our conjectures $R u<E_{7}(5)$ and $H S<E_{7}(5)$.

Throughout, G denotes the double cover $2 . E_{7}(5), \bar{G}$ denotes the simple group $E_{7}(5)$ and V is the natural 56-dimensional module for G over $G F(5)$. Most of our notation follows that of the ATLAS[At]. The four sections of our paper are independent and are arranged in chronological order. A later, independent, proof of $R u<E_{7}(5)$ appears in [7].

Figure 1: Generating $2 R u$

1 A Computer Construction of $R u$ as a Subgroup of $\mathrm{E}_{7}(5)$.

We used R. A. Parker's meataxe system (see [10]) to work with 56×56 matrices over $G F(5)$, representing G. Since $R u$ contains $2^{6} . G_{2}(2)$, where the $G_{2}(2)$ acts transitively on the 63 hyperplanes in the normal 2^{6}, it follows that any faithful representation of $R u$ over a field in odd characteristic has dimension at least 63. In particular $R u$ can not act on V and so $R u \not \leq G$. Thus we seek to classify subgroups $2 . R u$ in G.

Any subgroup 2.Ru can be generated as in Figure 1. There is a unique class of groups of order 29 in G, with normalizer

$$
(6 \times(29 \times 449) \cdot 7) \cdot 2<\left(6 \times U_{7}(5)\right) \cdot 2<\left(2 \times U_{8}(5)\right) \cdot 2 .
$$

Moreover, an element of order 7 in $N_{G}(29)$ satisfies

$$
C_{G}^{*}(7)=\left(S U_{3}(5) .3 \times 7\right) .2 \times S L_{2}(125) .
$$

(Here C^{*} denotes the invertilizer: that is the set of elements which either invert or centralize a given element.) An involution inverting the 7 extends $S U_{3}(5) .3$ to $S U_{3}(5) . \operatorname{Sym}(3)$. There are precisely 9450 involutions in $S U_{3}(5) . \operatorname{Sym}(3) \backslash S U_{3}(5)$, and so the 7 is contained in precisely 2×9450 groups D_{14} in G. The factor of 2 comes from the involution in $S L_{2}(125)$, which lies in the center of G. Now G has just 3 classes of involutions, with representatives $Z, X, Z X$. Here $\langle Z\rangle=Z(G)$, and X and $Z X$ have respective traces +8 and -8 on V. Thus we call the involutions conjugate to X and $Z X$ plus involutions and minus involutions, respectively. Obviously the 2×9450 groups D_{14} come in pairs - one containing plus involutions, the other containing minus involutions.

Thus to classify subgroups isomorphic to $2 . R u$ in G, it suffices to check each of these 9450 plus D_{14} 's, and determine which ones together with the 29 generate 2.Ru. On the computer, we found all 9450 such D_{14} groups, called X_{1}, \ldots, X_{9450} say, and investigated the groups $Y_{i}=\left\langle 29, X_{i}\right\rangle$. We discarded any Y_{i} that contains an element with an order which is not the order of an element of $2 . R u$. Precisely 6 remained, Y_{1}, \ldots, Y_{6} say. In order to identify these six groups, we use the presentation of $R u$ given by the following Theorem.

Figure 2: The Coxeter group X

Let X denote the Coxeter group with the Coxeter diagram given in Figure 2. (Thus X is generated by involutions a, b, c, d, e, f, g and w whose pairwise products have orders $2,3,4$, or 12 according as the corresponding nodes of the diagram are unjoined, joined by an unmarked single edge, joined by a double edge, or joined by an edge marked 12.) Let R be the quotient of X obtained by adjoining the following additional relations: $c=g^{f e d}$, $w=c^{g b a g} c^{g a b g} c, d=(b f g)^{8}, e=(b c)^{6}=(a b c)^{4},(b e)^{d}(b e)^{d f b e f}=d b^{a} g^{b f a b g b f g}=(e c)^{d e}(e c)^{d w}=$ $(c w)^{b c b a}(c w)^{b w c}=c^{b c d e w b}(d b)^{w e d c b c b c d e w d}=1$.

Theorem 1.1 The group R is isomorphic to the Rudvalis group.
Proof: Let T (respectively L) denote the group presented by those generators and relations of R that do not mention f or g, (respectively f, g, or w). Computer coset enumeration shows that the image of T in R has index 8120. Moreover, standard permutation group computations show that in the resulting permutation representation of R the images of T and L have sizes $11232=\left|L_{3}(3): 2\right|$ and $1600 \times\left|L_{3}(3): 2\right|=\left|{ }^{2} F_{4}(2)^{\prime}\right|$. Moreover, the image of T has orbits of lengths 1,1755 and 2304 in the permutation representation of R.

A second enumeration (of the cosets of the trivial subgroup in L) shows that $|L|=\left|L_{3}(3): 2\right|$. It is routine to show that $L_{3}(3): 2$ is a quotient of L, and thus the group L and its images in T and R are copies of $L_{3}(3): 2$. A final coset enumeration shows that there are 1600 cosets of the image of L in T, and hence $|T|=\left|{ }^{2} F_{4}(2)^{\prime}\right|$. Our earlier computation of the size of the image of T in a permutation representation of R proves that the image of T in R has size $\left|{ }^{2} F_{4}(2)^{\prime}\right|$ and thus $|R|=8120|T|=|R u|$.

We now use a standard argument (see for example [17]) to show that the groups T and R must be simple. We illustrate this argument for the group T. The image of L in the permutation representation of T on the 1600 cosets of the image of L in T has orbits of sizes $1,312,351$ and 936. In particular this faithful permutation representation of T must be primitive. Thus
any minimal non-identity normal subgroup, N say, in T must be transitive on the cosets of the image of L. Moreover $N \cap L$ is isomorphic to a normal subgroup of $L_{3}(3): 2$ and therefore $|N \cap L| \in\left\{1,\left|L_{3}(3)\right|,\left|L_{3}(3): 2\right|\right\}$. We deduce that the characteristically simple group N has order $1600,\left.\right|^{2} F_{4}(2)^{\prime} / 2 \mid$, or $\left|{ }^{2} F_{4}(2)^{\prime}\right|$. The classification of finite simple group shows that only the last of these orders is possible, and in particular T must be simple. Another appeal to the classification of finite simple groups gives $T \cong{ }^{2} F_{4}(2)^{\prime}$. A similar (slightly easier) argument now shows that R is simple and thus since the simple group $R u$ is characterized by its order, $R \cong R u$.

QED
We now apply Theorem 1.1 to identify the six subgroups Y_{1}, \ldots, Y_{6} of G. For each of these groups we know generating matrices x, y, z of orders $29,7,2$ (from the subgroups 29:7, 7 and D_{14} of Figure 1). We may assume that the element y is replaced by one of its powers so that $x^{y}=x^{16}$. Moreover, in each of the groups Y_{1}, \ldots, Y_{6}, experiment shows that we may replace x by one of its powers so that, modulo scalar matrices, $x z$ has order 15 and $x z x$ has order 20. (In fact there are two mutually inverse choices for x with these properties. We can make either choice of x.) We compute the following matrices in the group generated by x, y and z. Let $j=\left(x^{3} z x z\right)^{10} z, a=[z, j]^{6}, b=\left[z, j^{2}\right]^{4}, c=\left(b\left[z, j^{3}\right]^{3}\right)^{6}\left[z, j^{3}\right]^{3}, d=$ $\left(\left[z, j^{3}\right]^{3}\left(a b^{2}\right)^{2}\right)^{2}\left(\left[z, j^{3}\right]^{3}\left(a b^{j^{2}}\right)^{2}\right)^{z^{j}}, e=z, k=\left[a, x^{4}\right]^{\left(b\left[a, x^{4}\right]^{5}\right)^{6} a b}, l=c^{k^{4}}, f=l^{c d} l^{d c} l, g=c^{d e f}$, and $w=c^{g b a g} c^{g a b g} c$. Modulo scalar matrices, each of the groups Y_{1}, \ldots, Y_{6} is generated by its elements a, b, c, d, e, f, g, w - since in each case the following words recover the generators x, y, z (modulo scalars): $z=e, m=a b a(a b g c)^{5} a b g, y=\left[(m f)^{13} e(m d)^{12} e(m d)^{12}, e\right], n=$ $e[b, a w]^{(a b g c)^{5} g c}, p=\left(e w g(a b g c)^{5} a(a b g c)^{5} b g(a b g c)^{5} b a w g(a b g c)^{5} c b g\right)^{f w\left(n e^{f w}\right)^{3}}, q=(p a)^{7}, r=$ $(p b)^{6}, s=(p c)^{10}, x=\left(y^{-1} p s^{r} q^{r s q s q r}\right)^{-2}$. Moreover, modulo scalar matrices, for each of the groups Y_{1}, \ldots, Y_{6} the generators a, b, c, d, e, f, g, w satisfy the relations of R of Theorem 1.1. Therefore, $Z(G) Y_{i} / Z(G) \cong R u$, for $i=1, \ldots, 6$. Since we have already observed that $R u$ can not be a subgroup of G, we must have $Y_{i} \cong 2 . R u$ for $i=1, \ldots, 6$.

Now $N_{G}(29) \cap N_{G}(7) \cong 12$ acts on Y_{1}, \ldots, Y_{6}. Furthermore, $N_{2 . R u}(29) \cap N_{2 . R u}(7) \cong 4$, and so each of Y_{1}, \ldots, Y_{6} contains the subgroup of order 4 in $N_{G}(29) \cap N_{G}(7)$. Moreover, the group of order 3 in $N_{G}(29) \cap N_{G}(7)$ cannot normalize one of Y_{1}, \ldots, Y_{6}, for this group of order 3 centralizes the 29 (in G) and yet there is no group of order 3 in the 29 -centralizer of 2.Ru. Thus $N_{G}(29) \cap N_{G}(7)$ has two orbits of size 3 on Y_{1}, \ldots, Y_{6}. Now 2 . $R u$ contains a unique class of $29: 7$, and we have

$$
C_{2 . R u}^{*}(7)=Q_{8} \times D_{14} \leq Q_{8} \times S z(8)
$$

Thus the 7 is contained in precisely two groups D_{14}. Consequently each $2 . R u$ in G can be generated in just two ways as in (*), one way with a plus D_{14} and the other with the minus D_{14}. We have therefore proved that there are just two classes of $2 . R u$ in G.

Therefore, there are just two classes of subgroup isomorphic to $R u$ in \bar{G}. The non-abelian composition factors of centralizers of involutions in $\operatorname{Aut}(\bar{G})$ are $L_{2}(5), O_{12}^{+}(5), L_{8}(5), U_{8}(5)$, $E_{6}(5)$, and ${ }^{2} E_{6}(5)$, none of which contain $R u$. Consequently the outer automorphism of \bar{G} must interchange the two classes of $R u$ in \bar{G}.

We have now proved assertions (A) and (B), as well as part of (D), in the Theorem below. Our construction gives an explicit matrix action of $2 . R u$ on the natural 56 -dimensional $G F(5)$-module for $2 . E_{7}(5)$ and a standard application of the meataxe (see [10]) provides the decomposition of this module given in (D). The 133-dimensional adjoint module for the Lie algebra associated with $E_{7}(5)$ is a constituent of the symmetric square of the 56 -dimensional
module. We used the meataxe to determine that 133 is the smallest degree of a non-trivial constituent of the action of $R u$ on the symmetric square of the 56 -dimensional module. (The 56 -dimensional module has two irreducible 28-dimensional constituents, thus we analyzed the two 406-dimensional modules obtained as symmetric squares of 28 -dimensional representations, and the 784-dimensional tensor product of the two 28 -dimensional representations. The last of these computations is close to the size limit for our implementation of the Meataxe.) The statements in (C) follow.

Theorem 1.2 (A) The simple Chevalley group $E_{7}(5)$ contains precisely two classes of subgroups isomorphic to $R u$.
(B) The outer automorphism of $E_{7}(5)$ fuses the two classes.
(C) Each subgroup Ru acts irreducibly on the 133-dimensional Lie algebra associated with $E_{7}(5)$.
(D) In the double cover $2 . E_{7}(5)$, each Ru lifts to $2 . R u$, and acts indecomposably with two irreducible constituents of dimension 28 on the natural 56 -dimensional $G F(5)$-module for 2. $E_{7}(5)$.

2 A Computer-free Construction of the Rudvalis Group as a Subgroup of $E_{7}(5)$.

In this chapter we will give a computer-free proof of the following Theorem.
Theorem 2.1 Suppose that $E_{6}(5)$ has a subgroup ${ }^{2} F_{4}(2)$ which acts irreducibly on the 27dimensional $G F(5) E_{6}(5)$-modules, then $E_{7}(5)$ has a subgroup isomorphic to the Rudvalis group.

We remark that an unpublished paper of M. Aschbacher on the maximal subgroups of E_{6} contains a computer free proof that $E_{6}(5)$ indeed has a subgroup isomorphic to ${ }^{2} F_{4}(2)$ which acts irreducibly on the 27 -spaces for $E_{6}(5)$.

Lemma 2.2 Let X be a 2-dimensional vector space over $G F(5)$, S a Sylow 2-subgroup of $G L(X)$, A the unique subgroup of S isomorphic to $C_{4} \times C_{4}, \phi$ an automorphism of S such that $X^{\phi} \cong X^{*}$, the dual module of X. Then ϕ s inverts A for some s in S.

Proof: Note first that there exist 1-dimensional subspaces X_{1}, X_{2} of X with $X=X_{1} \oplus X_{2}$, $S=N_{G L(X)}\left(\left\{X_{1}, X_{2}\right\}\right)$ and $A=N_{G L(X)}\left(X_{1}\right) \cap N_{G L(X)}\left(X_{2}\right)$. Let ψ be the automorphism of A given by inversion. Then X^{*} and X^{ψ} are isomorphic as A-modules. Hence also X^{ϕ} and X^{ψ} are isomorphic as A-modules and there exists $\left.s \in N_{G L(X)}(A)\right)$ such that ϕs and ψ agree on A. Since $N_{G L(X)}(A)=S, s \in S$ and the lemma is proved.

QED
Let E be the parabolic subgroup of G such that $E=Q L$ with $Q=O_{5}(E),|Q|=5^{27}$ and $L \cong C_{4} \times E_{6}(5)$. By assumption, L has ${ }^{2} F_{4}(2)$ as a subgroup. But it can be proved that such a ${ }^{2} F_{4}(2)$ cannot be extended to a $2 . R u$ in G. Instead we will look for a different class of complements with respect to Q. For this we first have to study the action of ${ }^{2} F_{4}(2)$ on its 27-dimensional irreducible module over $G F(5)$.

Let F be a group with ${ }^{2} F_{4}(2)^{\prime} \leq F \leq C_{4} \times{ }^{2} F_{4}(2)$. Let S be a Sylow 2-subgroup of F and let P_{1} and P_{2} be the two maximal subgroups of F containing S, ordered so that $Z\left(P_{1} / Z(F)\right) \neq 1$. Let Γ_{0} be the coset-graph of F with respect to P_{1} and P_{2}. Then Γ_{0} is the generalized octagon associated with ${ }^{2} F_{4}(2)$. For $\gamma \in \Gamma_{0}$, let $\triangle^{k}(\gamma)$ be the set of vertices in Γ_{0} at distance exactly k from γ. Further put $\alpha=P_{1}$ and $\beta=P_{2}$ and note that α and β are vertices of Γ_{0}. Put $T=F^{\prime}, L_{i}=P_{i} \cap T, Q_{i}=O_{2}\left(L_{i}\right), Z_{i}=Z\left(Q_{i}\right)$ and $V_{1}=\left\langle Z_{2}{ }^{P_{1}}\right\rangle$. Let $1 \neq z_{1} \in Z_{1}$. If P_{i} normalizes a subgroup R_{i} in F or in some F-module, and if $\delta=P_{i} g \in \Gamma_{0}$, put $R_{\delta}=R_{i}^{g}$.

We assume that the reader is familiar with the structures of P_{1}, P_{2} and S (see for example [11] or [5]). We remark here that $|S \cap T|=2^{11}, L_{1} / Q_{1}$ is a Frobenius group of order $20, Z_{1}$ has order $2, V_{1} / Z_{1}$ is the unique irreducible L_{1} / Q_{1} module of order $16, V_{1}$ is elementary abelian, $L_{2} / Q_{2} \cong \operatorname{Sym}(3)$ and Z_{2} is the unique irreducible L_{2} / Q_{2}-module of order 4.

We pay special attention to groups F such that

$$
\begin{equation*}
F / Z(F) \cong{ }^{2} F_{4}(2),|Z(F)|=2, F^{\prime} \cong\left({ }^{2} F_{4}(2)\right)^{\prime} \quad \text { and } \quad F / F^{\prime} \cong C_{4} . \tag{+}
\end{equation*}
$$

Lemma 2.3 Let W be a faithful irreducible 27-dimensional GF(5)F-module.
(a) Let $U_{1}=C_{W}\left(V_{1}\right)$.
(aa) $W=C_{W}\left(V_{1}\right) \oplus\left[C_{W}\left(Z_{1}\right), V_{1}\right] \oplus\left[W, Z_{1}\right]$,
(ab) $\left[C_{W}\left(Z_{1}\right), V_{1}\right]=\bigoplus_{\gamma \in \Delta^{2}(\alpha)} U_{\gamma}$,
(ac) $\left[W, Z_{1}\right]=\sum_{\gamma \in \Delta^{4}(\alpha)} U_{\gamma}=\bigoplus_{\gamma \in \Delta^{3}(\beta) \backslash \Delta^{2}(\alpha)} U_{\gamma}$,
(ad) $\quad U_{1}=C_{W}\left(V_{1}\right)$ is 1-dimensional, $C_{W}\left(V_{1}\right)=C_{W}\left(Q_{1}\right), P_{1} / C_{P_{1}}\left(U_{1}\right) \cong C_{4}$ and U_{1} is not isomorphic to its dual $G F(5) P_{1}$ module,
(ae) $\left[C_{W}\left(Z_{1}\right), V_{1}\right]$ is irreducible of dimension 10 and if ϕ is any automorphism of P_{1}, then $\left[C_{W}\left(Z_{1}\right), V_{1}\right]^{\phi}$ and the dual of $\left[C_{W}\left(Z_{1}\right), V_{1}\right]$ are not isomorphic as $G F(5) P_{1}$ - modules,
(af) $\left[W, Z_{1}\right]$ is irreducible of dimension 16. If (+) holds $\left[W, Z_{1}\right]$ is isomorphic to its dual $G F(5) P_{1}-$ module.
(b)
(ba) $\quad W=C_{W}\left(Z_{2}\right) \oplus\left[W, Z_{2}\right]$.
(bb) $\left[W, Z_{2}\right]=\oplus_{\gamma \in \Delta^{3}(\beta)} U_{\gamma}$,
(bc) $\quad C_{W}\left(Z_{2}\right)=\bigoplus_{\gamma \in \Delta^{1}(\beta)} U_{\gamma}$,
(bd) $\left[W, Z_{2}\right]$ is irreducible of dimension 24. If (+) holds $\left[W, Z_{2}\right]$ is isomorphic to its dual $G F(5) P_{2}-$ module,
(be) $\quad C_{W}\left(Z_{2}\right)$ is irreducible of dimension 3 and not isomorphic to its dual $G F(5) P_{2}$ module.
(c) Let $X \leq Y$ be $G F(5) P_{1}$-modules such that Y and Y / X are isomorphic to $\left[W, Z_{1}\right]$ as P_{1}-modules. Then Y splits over X.
(d) F^{\prime} has two classes of involutions. If z_{1} and i are representatives of these classes then $C_{W}\left(z_{1}\right)$ is 11-dimensional while $C_{W}(i)$ is 15-dimensional. Moreover, $\left|C_{F}(i)\right|=2^{11} \cdot 3$.
(e) F has a unique class of elements d of order three such that $C_{F^{\prime}}(d)$ has even order. Moreover, for any such d and any $t \in C_{F^{\prime}}(d)$ with $|t|=2$, we have $N_{F^{\prime}}(D) \cap C_{F^{\prime}}(t) \cong D_{24}$. If $(+)$ holds then $\left|C_{F}(d)\right|=2^{5} \cdot 3^{3}$
(f) Let d be an element of order five in F. Then $C_{F}(d)$ is a $\{2,5\}$-group.

Proof: (aa) and (ba) follow from the fact that V_{1}, Z_{2} and Z_{1} are $2-$ groups and so coprime action applies.

Let $R_{1}=\left[W, Z_{1}\right]$ and $\Sigma=\left\{H \leq V_{1} \mid V_{1}=Z_{1} \oplus H\right\}$. Note that Q_{1} and P_{1} act transitively on Σ. By co-prime action

$$
R_{1}=\oplus_{H \in \Sigma} C_{R_{1}}(H)
$$

It follows that $\operatorname{dim} R_{1}$ is a multiple of 16 . Since $\operatorname{dim} W=27$ we conclude that $\operatorname{dim} R_{1}=16$, hence $\operatorname{dim} C_{R_{1}}(H)=1$ and thus Q_{1} acts irreducibly on R_{1}. In particular the first half of (af) holds. Let $\gamma \in \triangle(\beta)$ with $\gamma \neq \alpha$. Since there exist exactly 8 elements of Σ containing Z_{γ}, we have $\operatorname{dim} C_{R_{1}}\left(Z_{\gamma}\right)=8$. Further, $\operatorname{dim} C_{W}\left(Z_{\gamma}\right)=\operatorname{dim} C_{W}\left(Z_{1}\right)=27-16=11$ and so

$$
\operatorname{dim} C_{W}\left(Z_{2}\right)=\operatorname{dim}\left(C_{W}\left(Z_{1}\right) \cap C_{W}\left(Z_{\gamma}\right)\right)=11-8=3
$$

Let $\Sigma_{1}=\left\{H \leq V_{1}\left|Z_{1} \leq H,\left|V_{1} / H\right|=2\right\}\right.$ and $Y_{1}=\left[C_{W}\left(Z_{1}\right), V_{1}\right]$. Then

$$
Y_{1}=\bigoplus_{H \in \Sigma_{1}} C_{Y_{1}}(H)
$$

Note that P_{1} has two orbits Σ_{2} and Σ_{3} on Σ_{1} of lengths 5 and 10 , respectively. So the dimension of Y_{1} is a multiple of 5 . Since $\operatorname{dim}\left[Y_{1}, Z_{\gamma}\right]=\operatorname{dim}\left[C_{W}\left(Z_{1}\right), Z_{\gamma}\right]=\operatorname{dim}\left[C_{W}\left(Z_{\gamma}\right), Z_{1}\right]=$ $\operatorname{dim} C_{R_{1}}\left(Z_{\gamma}\right)=8$ and $\operatorname{dim} C_{W}\left(Z_{1}\right)=11$, we get $\operatorname{dim} Y_{1}=10$. Suppose that $C_{Y_{1}}(H) \neq 0$ for $H \in \Sigma_{3}$. Since Z_{γ} lies in exactly one member of Σ_{2}, the group Z_{γ} lies in exactly 6 members of Σ_{3} and thus $C_{Y_{1}}\left(Z_{\gamma}\right)$ is 6-dimensional, a contradiction to $\operatorname{dim} C_{Y_{1}}\left(Z_{\gamma}\right)=10-8=2$. So

$$
Y_{1}=\bigoplus_{H \in \Sigma_{2}} C_{Y_{1}}(H) \text { and } \operatorname{dim} C_{Y_{1}}(H)=2 \text { for } H \in Z_{2}
$$

Recall that $U_{1}=C_{W}\left(V_{1}\right)$. Then $C_{W}\left(Z_{1}\right)=U_{1} \oplus Y_{1}$ and hence $\operatorname{dim} U_{1}=11-10=1$.
As W is irreducible, $U_{1} \neq U_{\gamma}$, and so we have $\left[U_{\gamma}, V_{1}\right] \neq 1$. Observe that $C_{L_{\gamma}}\left(U_{\gamma}\right) \geq O^{2}\left(L_{\gamma}\right)$ (since L_{γ} acts as a subgroup of $G L_{1}(5) \cong C_{4}$ on U_{γ}). However, $V_{1} \leq C_{T}\left(Z_{\gamma}\right)=L_{\gamma}$, and V_{1} does not centralize U_{γ}. As $V_{1} O^{2}\left(L_{\gamma}\right) / O^{2}\left(L_{\gamma}\right) \cong C_{2}$ is the unique proper subgroup of $L_{\gamma} / O^{2}\left(L_{\gamma}\right) \cong$ C_{4} we deduce that $C_{T}\left(U_{\gamma}\right)=C_{L_{\gamma}}\left(U_{\gamma}\right)=O^{2}\left(L_{\gamma}\right)$, thus $L_{\gamma} / C_{L_{\gamma}}\left(U_{\gamma}\right) \cong C_{4} \cong P_{\gamma} / C_{P_{\gamma}}\left(U_{\gamma}\right)$ and hence U_{1} is not self-dual as a $G F(5) P_{1}$-module.

Since V_{1} inverts U_{γ} and Z_{1} centralizes U_{γ}, U_{γ} lies in Y_{1}. Moreover, since $V_{1} \leq L_{\gamma}$, the group V_{1} acts on U_{γ}, thus $C_{V_{1}}\left(U_{\gamma}\right)$ is the hyperplane in Σ_{2} that contains Z_{γ}. Now $C_{V_{1}}\left(U_{\gamma}\right)=$ $V_{1} \cap O^{2}\left(L_{\gamma}\right)=V_{1} \cap Q_{\gamma}$. Moreover the single hyperplane of Σ_{2} that contains Z_{γ} also contains
$Z_{\gamma} Z_{1}=Z_{\beta}$ and so also contains $Z_{\gamma^{\prime}}$, where $\triangle^{1}(\beta)=\left\{\alpha, \gamma, \gamma^{\prime}\right\}$. Hence $V_{1} \cap Q_{\gamma}=V_{1} \cap Q_{\gamma^{\prime}}$, and $\Sigma_{2}=\left\{V_{1} \cap Q_{\delta} \mid \delta \in \triangle^{2}(\alpha)\right\}$. So $C_{Y_{1}}\left(V_{1} \cap Q_{\gamma}\right)=U_{\gamma}+U_{\gamma^{\prime}}$, and

$$
Y_{1}=\bigoplus_{\delta \in \Delta^{2}(\alpha)} U_{\delta}
$$

In particular (ab) holds. Now $C_{T}\left(U_{\gamma}+U_{\gamma^{\prime}}\right)=O^{2}\left(L_{\gamma}\right) \cap O^{2}\left(L_{\gamma^{\prime}}\right)=Q_{\gamma} \cap Q_{\gamma^{\prime}}$ and $\left|S \cap T / Q_{\gamma} \cap Q_{\gamma^{\prime}}\right|=32$. Since a Sylow 2 -subgroup of $G L_{2}(5)$ has order 32 and is isomorphic to C_{4} wreath C_{2} we conclude that $S \cap T / Q_{\gamma} \cap Q_{\gamma^{\prime}} \cong C_{4}$ wreath C_{2}, that $S=(S \cap T) C_{S}\left(U_{\gamma}+U_{\gamma^{\prime}}\right)$ and that the action of S on $U_{\gamma}+U_{\gamma^{\prime}}$ is irreducible, but not self-dual. Thus Y_{1} is irreducible of dimension 10. Suppose there exists an automorphism ϕ of P_{1} so that $\left[C_{W}\left(Z_{1}\right), V_{1}\right]^{\phi}$ is isomorphic to the dual module of $\left[C_{W}\left(Z_{1}\right), V_{1}\right]$. As Frob $_{20}$ has no outer automorphisms, we may assume without loss that ϕ centralizes $P_{1} / O_{2}\left(P_{1}\right)$. Then $\left(U_{\gamma}+U_{\gamma^{\prime}}\right)^{\phi}$ is isomorphic, as an S-module, to the dual module of $U_{\gamma}+U_{\gamma^{\prime}}$. In particular, ϕ normalizes $C_{S}\left(U_{\gamma}+U_{\gamma^{\prime}}\right)$. Now $O_{2}\left(P_{2}\right) / C_{S}\left(U_{\gamma}+U_{\gamma^{\prime}}\right)$ is the unique subgroup of $S / C_{S}\left(U_{\gamma}+U_{\gamma^{\prime}}\right)$ isomorphic to $C_{4} \times C_{4}$ and so by Lemma 2.2, up to an inner automorphism of S, the automorphism ϕ inverts $\left.O_{2}\left(P_{2}\right) / C_{S}\left(U_{\gamma}+U_{\gamma^{\prime}}\right)\right)$. As $O_{2}\left(P_{2}\right) O_{2}\left(P_{1}\right)=S$ and $C_{S}\left(U_{\gamma}+U_{\gamma^{\prime}}\right) \leq O_{2}\left(P_{1}\right)$ we conclude that ϕ inverts $S / O_{2}\left(P_{1}\right) \cong C_{4}$, a contradiction to $\left[P_{1}, \phi\right] \leq O_{2}\left(P_{1}\right)$. Thus no such ϕ exists and (ad) is proved.

Let $U_{2}=C_{W}\left(Z_{2}\right)$. Then

$$
U_{2}=U_{\alpha}+U_{\gamma}+U_{\gamma^{\prime}}
$$

and so (bc) holds. For $X \leq P_{2}$, let $\tilde{X}=X C_{P_{2}}\left(U_{2}\right) / C_{P_{2}}\left(U_{2}\right)$. As $C_{L_{2}}\left(U_{\alpha}\right)=O^{2}\left(L_{1}\right) \cap L_{2}=$ $Q_{1}=\bigcap_{\rho \in \Delta^{1}(\alpha)} L_{\rho}$, we have $C_{L_{2}}\left(U_{2}\right)=\bigcap_{\rho \in \Delta^{2}(\beta)} L_{\rho}$ and so by [5, 9.4.3]

$$
\tilde{L_{2}} \cong\left(C_{4} \times C_{4}\right) \cdot \operatorname{Sym}(3)
$$

In particular, (be) holds.
We will now determine \tilde{P}_{2}, which does depend on the precise structure of F. Since, by assumption, F is irreducible on W and since $C_{W}\left(Q_{1}\right)$ is 1 -dimensional, F acts absolutely irreducibly on W. Hence all elements of $Z(F)$ act as scalars on W and so also on U_{2}. Now no element of $\tilde{L_{2}}$ acts as a scalar and so $Z \tilde{(F)} \tilde{L_{2}} \cong Z(F) \times \tilde{L_{2}}$. As the full monomial subgroup of $G L\left(U_{2}\right)$ is isomorphic to $C_{4} \times \tilde{L_{2}}$ we see that at least one of the following holds

- $Z(F)=1$ and $\tilde{P}_{2} \cong\left(C_{4} \times C_{4}\right) \cdot \operatorname{Sym}(3)$
- $|Z(F)| \leq 2, F \cong Z(F) \times{ }^{2} F_{4}(2)$ and $\tilde{P}_{2} \cong C_{2} \times\left(C_{4} \times C_{4}\right) . \operatorname{Sym}(3)$
- $F / F^{\prime} \cong C_{4}$ or $C_{2} \times C_{4}$ and $\tilde{P}_{2} \cong C_{4}$ 乙Sym(3)

We remark that \tilde{P}_{2} is uniquely determined by the structure of F except when $F \cong{ }^{2} F_{4}(2)$. In this case its easy to see that F has two different irreducible 27 -dimensional representations giving rise to the two different possibilities for \tilde{P}_{2}.

Note that Q_{1} is a normal subgroup of S generated by involutions. Furthermore we have $C_{S \cap T}\left(U_{\gamma}+U_{\gamma^{\prime}}\right) \leq Q_{1}$ and so $Q_{1} / C_{Q_{1}}\left(U_{\gamma}+U_{\gamma^{\prime}}\right)$ has order eight. Hence by the structure of C_{4} 乙 C_{2}, Q_{1} acts as a D_{8} on $U_{\gamma}+U_{\gamma^{\prime}}$. In particular $O_{2}\left(P_{1}\right)$ acts irreducibly on $U_{\gamma}+U_{\gamma^{\prime}}$.

Suppose in this paragraph that $(+)$ holds. We wish to show that $U_{\gamma}+U_{\gamma^{\prime}}$ is self-dual as an $O_{2}\left(P_{1}\right)$-module. Let B be the set of elements in P_{2} that act as scalars on U_{2}, let $C=C_{P_{2}}\left(U_{\gamma}+U_{\gamma^{\prime}}\right)$, let $D=O_{2}\left(P_{1}\right) \cap O_{2}\left(P_{2}\right)$ and let $E=\left[O_{2}\left(P_{2}\right), S\right]$. As B is normal in P_{2} with $O_{2}\left(P_{2}\right) / B \cong C_{4} \times C_{4},[5,9.4 .3]$ implies $B \not \leq O_{2}\left(P_{1}\right)$ and so $B \not \leq D$. On the other hand, by the structure of \tilde{S}, there are exactly two subgroups \tilde{X} of $\widetilde{O_{2}\left(P_{2}\right)}$ such that $Z \tilde{(F)} \tilde{E} \leq \tilde{X}$
 conditions on \tilde{X} and so $\tilde{D}=\tilde{C} \tilde{E}$ and $D=C E$. But $E \leq Q_{1} \cap Q_{2}$ and thus $D=C\left(Q_{1} \cap Q_{2}\right)$. Since $O_{2}\left(P_{1}\right)=Q_{1} D$ we conclude that $O_{2}\left(P_{1}\right)=C Q_{1}$. In particular, $O_{2}\left(P_{1}\right)$ acts as a D_{8} and so self-dually on $U_{\gamma}+U_{\gamma^{\prime}}$.

Back to the general case. Recall (ab) and put $Y_{2}=\bigoplus_{\delta \in \Delta^{2}(\alpha) \backslash \Delta^{1}(\beta)} U_{\delta}$. Let $g \in L_{1} \backslash L_{2}$. Then $P_{2}^{g} \cap S=O_{2}\left(P_{1}\right)$. Further $\left(U_{\gamma}+U_{\gamma^{\prime}}\right)^{g}$ is a Wedderburn component for $O_{2}\left(P_{1}\right)$ on Y_{2} (and is self-dual if (+) holds). It follows that the S-module Y_{2} is isomorphic to the S-module induced from the $O_{2}\left(P_{1}\right)$-module $\left(U_{\gamma}+U_{\gamma^{\prime}}\right)^{g}$ and is irreducible (and is self dual if (+) holds).

Pick $\delta \in \triangle^{4}(\alpha)$. By [5, 7.4,7.5], $Z_{1} \leq L_{\delta}$ and $Z_{1} \not \leq Q_{\delta}$. So Z_{1} inverts U_{δ} and $U_{\delta} \leq\left[W, Z_{1}\right]$. As seen above Q_{1} acts irreducibly on $R_{1}=\left[W, Z_{1}\right]$. Further, Q_{1} acts transitively on the subset $\triangle^{3}(\beta) \backslash \triangle^{2}(\alpha)$ of $\triangle^{4}(\alpha), \operatorname{dim}\left[W, Z_{1}\right]=16$ and $\left|\triangle^{3}(\beta) \backslash \triangle^{2}(\alpha)\right|=16$. So

$$
R_{1}=\left[W, Z_{1}\right]=\bigoplus_{\delta \in \Delta^{3}(\beta) \backslash \Delta^{2}(\alpha)} U_{\delta}=\sum_{\delta \in \Delta^{4}(\alpha)} U_{\delta} .
$$

Let $R_{2}=\left[W, Z_{2}\right]$. From its definition, Y_{2} is 8 -dimensional and from our earlier calculation of $\operatorname{dim}\left[W, Z_{2}\right]$, the space $C_{\left[W, Z_{2}\right]}\left(Z_{1}\right)$ is 8 -dimensional. Hence $Y_{2}=\left[C_{W}\left(Z_{1}\right), Z_{2}\right]=$ $C_{\left[W, Z_{2}\right]}\left(Z_{1}\right)$. So by coprime action, $R_{2}=\bigoplus_{\delta \in \Delta^{1}(\beta)} C_{R_{2}}\left(Z_{d}\right)=Y_{2} \oplus Y_{2}{ }^{d} \oplus Y_{2}{ }^{d^{2}}$, where d is an element of order 3 in L_{2}. It follows that

$$
R_{2}=\bigoplus_{\delta \in \Delta^{3}(\beta)} U_{\delta} .
$$

Moreover, as Y_{2} is irreducible (and self-dual if (+) holds) as an S-module, R_{2} is irreducible (and self-dual if (+) holds) as a P_{2}-module. In particular, (bb) and (bd) hold.

So to complete the proof of (a) and (b), it remains to show that R_{1} is self-dual as a P_{1}-module if $(+)$ holds. Pick $H \in \Sigma$. Then $O^{2}\left(N_{P_{1}}(H)\right)$ centralizes $C_{R_{1}}(H)$. As R_{2} is self-dual as a P_{2}-module, S acts self-dually on R_{2} and on R_{1}. This implies that $N_{P_{1}}(H)=$ $S O^{2}\left(N_{P_{1}}(H)\right)$ acts self-dually on $C_{R_{1}}(H)$. Since $R_{1}=\bigoplus_{H \in \Sigma} C_{R_{1}}(H)$, the group P_{1} is self-dual on R_{1} and (a) and (b) are proved.

To prove (c) let $H \in \Sigma$. Then Y (respectively X) is induced from the 2 (1)-dimensional $N_{P_{1}}(H)$ module $C_{Y}(H),\left(C_{X}(H)\right)$. As Q_{1} acts transitively on Σ, we have $N_{P_{1}}(H) Q_{1}=P_{1}$. Thus $N_{P_{1}}(H) / O_{2}\left(N_{P_{1}}(H)\right) \cong \operatorname{Frob}_{20}$ and $N_{P_{1}}(H)$ is generated by its 2-elements. Since $C_{X}(H)$ and $C_{Y}(H) / C_{X}(H)$ are isomorphic as $N_{P_{1}}(H)$-modules, all the 2-elements and so all the elements of $N_{P_{1}}(H)$ act as scalars on $C_{Y}(H)$. Hence $C_{Y}(H)$ splits over $C_{X}(H)$ and so also Y splits over X.

That F^{\prime} has two classes of involutions is well known (see for example [3]). Clearly $C_{W}\left(z_{1}\right)$ is 11 -dimensional. We can choose $i \in V_{1}$. Namely, choose $i \in V_{1}$ but $i \notin Z_{\delta}$ for $\delta \in \triangle^{1}(\alpha)$. Then i centralizes U_{1}, moreover i lies in exactly three elements of Σ_{2} and in eight elements of Σ. Hence $\operatorname{dim} C_{W}(i)=1+2 \cdot 3+8=15$ and so (d) holds.
(e) and (f) are well known and are easily deduced from [3].

QED

Lemma 2.4 Let $K=D_{8}$ 亿 Sym(5) and let t be an automorphism of order 2 which centralizes $K / O_{2}(K)$ but not $O_{2}(K) / Z\left(O_{2}(K)\right)$. Let A be a non-abelian subgroup of $O_{2}\left(O^{2}(K)\right)$ such that $\left|N_{K}(A)\right|$ is divisible by five and $Z(K) \not \leq A$. Then $|A|=2^{8}, N_{K\langle t\rangle}(A) / A \sim D_{8} . F r o b_{20}$ and $N_{K\langle t\rangle}(A)$ induces an outer automorphism on $O_{2}\left(N_{K\langle t\rangle}(A)\right) / A$.

Proof: Let x be an element of order five in K normalizing A. Put $X=\langle x\rangle, I=$ $O_{2}\left(O^{2}(K)\right)$ and $J=[Z(I), K]$. Then $I / Z(K)$ has order 2^{12}, the group X acts fixed point freely on $I / Z(K)$, also $|J|=2^{4}$ and $Z(I)=I^{\prime}=Z(K) J$. As A is not abelian and $Z(K) \not 又 A$, $A^{\prime}=J=Z(A)$. Also $A Z(I) \neq I$ since otherwise $Z(K) \leq I^{\prime} \leq A^{\prime} \leq A$. Hence $|A / J|=2^{4}$ and $|A|=2^{8}$. Let $A^{*}=A Z(I)$ and note that $\Phi\left(A^{*}\right)=\Phi(A)=J$. Let D_{1}, \ldots, D_{5} be the five $D_{8}^{\prime} s$ that are naturally permuted by K, ordered so that $D_{i+1}=D_{i}^{x}$. Let $D_{1}=\left\langle a_{1}^{*}, b_{1}^{*}\right\rangle$, with a_{1}^{*} and b_{1}^{*} of order two. Inductively define $a_{i+1}^{*}=a_{i}^{x}$ and $b_{i+1}^{*}=b_{i}^{x}$. Let $z_{i}^{*}=\left[a_{i}^{*}, b_{i}^{*}\right] \in Z\left(D_{i}\right)$. For $c \in\{a, b, z\}$ let c_{i} be the product of the c_{j}^{*} with $1 \leq j \leq 5$ and $j \neq i$. If $a_{1} \in A^{*}$ then $A^{*} \leq\left\langle a_{1}^{X}\right\rangle Z(I)=\left\langle a_{1}, \ldots a_{5}\right\rangle Z(I)$ and A^{*} is abelian, a contradiction. Similarly $b_{1} \notin A^{*}$ and $a_{1} b_{1} \notin A^{*}$. Thus A^{*} has an element s of the form $a_{1} b_{i}$ with $2 \leq i \leq 5$ or of the form $a_{1} b_{i} b_{j}$ with $1 \leq i<j \leq 5$. Note that $\left(a_{1} b_{2}\right)^{2}=\left[a_{1}, b_{2}\right]=z_{3}^{*} z_{4}^{*} z_{5}^{*} \notin J$ and so the case $s=a_{1} b_{2}$, and more generally the case $s=a_{1} b_{i}$, is impossible. Note also that $\left(a_{1} b_{1}\right)^{2}=z_{1} \in J$. So we get $i \neq 1$ in the second case. Suppose that $i=2$ and $j=3$. Then $s^{x}=a_{2} b_{3} b_{4}$ and $\left[s, s^{x}\right]=$ $\left[a_{1}, b_{2} b_{3}\right]\left[b_{2}, a_{2}\right]\left[b_{3}, a_{2}\right]$. Since the first two of these factors are in J but the last one is not, this case is impossible. Similarly, the cases $(i, j)=(2,4),(3,5)$ and $(4,5)$ are ruled out. Thus $(i, j)=(2,5)$ or $(3,4)$. Since $\left[A^{*}, X\right]=A$, there exist exactly two choices for A for a given X. Note that an element in the normalizer of X which acts as (2354) on D_{1}, \ldots, D_{5} interchanges these two choices. Let $L=K\langle t\rangle$. Then $\left|N_{L}(X) / N_{L}(X) \cap N_{L}(A)\right|=2$. Let $D_{0}=C_{O_{2}(K)}(X)$. Then $\left[D_{0}, I\right] \leq J$ and so $D_{0} \leq N_{K}(A)$ and $N_{O_{2}(K)}(A)=D_{0} A$. Since $O^{2}(K)$ does not normalize A^{*} we conclude that $N_{L}(A) \leq N_{L}(X) O_{2}(K)$ and we have to decide whether $N_{L}(A) / D_{0} A$ is isomorphic to $C_{2} \times D_{10}$ or to Frob_{20}. In the first case we may assume that t normalizes A. As X acts irreducibly on A / J we conclude that $[A, t] \leq J$ and so $A^{*} / Z(I)=C_{I / Z(I)}(t)$. But then K normalizes $A^{*} / Z(I)$, a contradiction. The very last statement follows as $N_{K\langle t\rangle}(A) \notin K$. QED

Lemma 2.5 (a) $E_{6}(5)$ has two conjugacy classes of involutions. There exist representatives r and s of these classes such that

$$
C_{E_{6}(5)}(r) \sim 4 . D_{5}(5) .4 \quad \text { and } \quad C_{E_{6}(5)}(s) \sim 2 .\left(L_{2}(5) \times L_{6}(5)\right) .2 .
$$

Moreover, if U is a 27-dimensional $G F(5)$-module for $E_{6}(5)$, then $C_{U}(r)$ is 11-dimensional and $C_{U}(s)$ is 15-dimensional. As a $C_{E_{6}(5)}(r)$-module U is the direct sum of three irreducible submodules of dimensions 1, 10 and 16. The kernel of the action of $C_{E_{6}(5)}(r)$ on the invariant 1-space is $C_{E_{6}(5)}(r)^{\prime}$.
(b) $2 . E_{7}(5)$ has three conjugacy classes of involutions. There exist representatives z, z_{0} and i of these classes such that $z_{0} \in Z\left(2 . E_{7}(5)\right), i=z \cdot z_{0}$ and

$$
C_{2 . E_{7}(5)}(z) \sim 2^{2} .\left(L_{2}(5) \times D_{6}(5)\right) .2
$$

Moreover, $C_{V}(z)$ is a tensor product of natural modules for $S L_{2}(5)$ and $\Omega_{12}^{+}(5)$, and $[V, z]$ is a half-spin module for $2 . D_{6}(5)$.

Proof: The conjugacy classes of involutions and their centralizers are well known and easily deduced, for example by the methods found in [2]. The information about U and V is easily computed using the subgroup $5^{27} E_{6}(5)$ of $E_{7}(5)$, the subgroup $5^{1+56} 2 E_{7}(5)$ of $E_{8}(5)$, the Steinberg relations and the weight theory of modules for groups of Lie type.

QED
Recall that E is a parabolic subgroup $Q L \sim 5^{27} .\left(4 \times E_{6}(5)\right)$ in G. Let $X_{1}=C_{V}(Q), X_{3}=$ $[V, Q]$ and $X_{2}=\left[X_{3}, Q\right]$. Then

$$
0<X_{1}<X_{2}<X_{3}<V
$$

is the unique chief series for E on V, moreover $E=N_{G}\left(X_{1}\right)$, the modules X_{1} and V / X_{3} are 1-dimensional and X_{2} and X_{3} / X_{2} are 27-dimensional mutually dual E-modules.

By assumption L^{\prime} contains a subgroup ${ }^{2} F_{4}(2)$ acting irreducibly on Q. Hence L contains a subgroup \tilde{F} fulfilling $(+)$, and acting irreducibly on Q.

Define $\widetilde{S}, \widetilde{P}_{1}$ and \widetilde{P}_{2} (as subgroups of \tilde{F}) in a way analogous to the above. The reader should notice that $Z(\tilde{F})=Z(G)$ centralizes Q, thus Q is irreducible, but not faithful as an \tilde{F}-module. But we still can apply Lemma 2.3 to $\tilde{F} / Z(G)$ and conclude that \widetilde{P}_{1} normalizes a non-trivial subgroup $\left\langle f_{-}\right\rangle$of Q. Let $f_{+} \in \widetilde{P}_{1}$ be of order 5 and $r \in \widetilde{P}_{1} \cap \widetilde{F}^{\prime}$ of order 4 with $f_{+}{ }^{r}=f_{+}{ }^{2}$. As seen in the proof of Lemma 2.3, $\langle r\rangle$ acts faithfully on $\left\langle f_{-}\right\rangle$. So either $f_{-}{ }^{r}=f_{-}{ }^{2}$ or $f_{-}{ }^{r}=f_{-}{ }^{3}$. Note that there exists σ in $N_{G}(L)$ inducing a graph automorphism on L (indeed such a σ can be chosen to invert the Cartan subgroup of G). Then the action of L on Q^{σ} is dual to the action of L on Q and replacing \tilde{F} and f by \tilde{F}^{σ} and f^{σ} if necessary, we may assume that $f_{-}^{r}=f_{-}{ }^{2}$. Put $f \underset{\tilde{P}}{\sim} f_{+} f_{-}$. Then $f^{r}=f^{2}$. Let u be an element of order 4 in \tilde{P}_{1} centralized by f_{+}. Let $Z_{1}=Z\left(\widetilde{P}_{1} \cap \widetilde{F}^{\prime}\right)$.

Lemma 2.6 (a) The element u centralizes f_{-}.
(b) f_{-}is a root element of G and $C_{G}\left(f_{-}\right) \sim 5^{1+32} .2^{2} . D_{6}(5)$. The $C_{G}\left(f_{-}\right)-$module $\left[V, f_{-}\right]$ is a natural orthogonal 12-space for $\Omega_{12}^{+}(5)$ and the subspace X_{1} is a singular 1-space. The quotient, $\left(\left[V, f_{-}\right]+X_{2}\right) / X_{2}$ is 1 -dimensional and $\left[V, f_{-}\right] \cap X_{2}=X_{1} \oplus\left[C_{X_{2}}\left(Z_{1}\right), Q_{1}\right]$.
(c) $C_{G}\left(f_{-}\right) \cap C_{G}\left(Z_{1}\right) \sim\left\langle f_{-}\right\rangle \times 2^{2} . D_{6}(5)$
(d) $C_{V}\left(f_{-}\right) \leq\left[X_{3}, Z_{1}\right]+\left[V, f_{-}\right]+X_{2}$

Proof: (a): Pick $s \in Z(L)$ and $e \in L^{\prime}$ with $u=s e$. Note that $e \in \tilde{F}$ and so $e^{2} \in \tilde{F}^{\prime}=F^{\prime}$ and $e^{2} \in Q_{1}$. In particular, $u^{2} F^{\prime}=s^{2} F^{\prime}$. Since $F / F^{\prime} \cong C_{4}$ and $F=\langle u\rangle Z(F) F^{\prime}$ we get $s^{2} \neq 1$ and $|s|=4$. Since s inverts Q, it is enough to show that e inverts f_{-}. Let $D=C_{L^{\prime}}\left(Z_{1}\right)$. By Lemma 2.3, $C_{Q}\left(Z_{1}\right)$ has order 5^{11} and $\left\langle f_{-}\right\rangle$is the unique cyclic subgroup of Q normalized by \widetilde{P}_{1} and so by Lemma 2.5 a, D has shape $4 . D_{5}(5) .4$, moreover D normalizes $\left\langle f_{-}\right\rangle$and $C_{D}\left(f_{-}\right)=D^{\prime}$. As a D-module, Q is the direct sum of irreducible modules of dimensions 1,10 and 16 . Using Lemma 2.3ab we conclude, by the action of \widetilde{P}_{1} on the 10 -dimensional space, that \widetilde{P}_{1} is contained in a subgroup Y of D, such that Y / Z_{1} is isomorphic to the subgroup of index 4 in D_{8} l $\operatorname{Sym}(5)$. In addition, $C_{Y}\left(f_{+}\right) \cap D^{\prime}=Z_{1}$, and so $s u \notin D^{\prime}$. Thus e does not centralize f_{-}. As $e^{2} \in Q_{1}$, the element e^{2} does centralize f_{-}and so e inverts f_{-}. Thus (a) holds.
(b): As D lies in a parabolic P (of shape $5^{16} D$ in $\left.E_{6}(5)\right)$ that fixes a 1 -space in Q, the group $\left\langle f_{-}\right\rangle$is normalized by the parabolic $Q Z(L) P$ of G and thus is a root group. Hence also the second, third and fourth statements in (b) hold. As Q centralizes V / X_{3} and X_{3} / X_{2} but not V / X_{2} and as V / X_{3} is one dimensional, $\left(\left[V, f_{-}\right]+X_{2}\right) / X_{2}$ is 1-dimensional. Now $\left[X_{2}, f_{-}\right]=X_{1}$
and $\left(\left[X_{2}, Q_{1}\right]+X_{1}\right) / X_{1}$ is the unique 10-dimensional subspace of X_{2} / X_{1} invariant under P_{1} and thus also the last statement in (b) holds.
(c): By (b), Z_{1} centralizes $\left[V, f_{-}\right]$and so (c) holds.
(d): As Z_{1} centralizes [V, f_{-}], the element f_{-}centralizes $\left[V, Z_{-}\right]$. Now both $C_{V}\left(f_{-}\right)+X_{2} / X_{2}$ and $\left[X_{3}, Z_{1}\right]+\left[V, f_{-}\right]+X_{2} / X_{2}$ are 17-dimensional and (d) holds.

QED
Since $\tilde{S}=O_{2}\left(O^{2}\left(\tilde{P}_{1}\right)\right)\langle u\rangle\langle r\rangle$, the group \widetilde{S} normalizes $O^{2}\left(\widetilde{P}_{1}\right)\langle f\rangle$. Put $S=\widetilde{S}, P_{1}=$ $\langle S, f\rangle, P_{2}=\widetilde{P}_{2}$ and $F=\left\langle P_{1}, P_{2}\right\rangle$.

Lemma 2.7 (a) F normalizes a complement M_{0} in X_{3} to X_{2}. Put $M=M_{0}+X_{1}$. Then $N_{E}(M) \cap Q=1$. In particular, $F \cap Q=1$ and F fulfills $(+)$.
(b) P_{1} normalizes exactly two 1-spaces in V namely X_{1} and U_{1}, where $U_{1} \leq M_{0}$. Moreover, $C_{V}\left(O^{2}\left(P_{1}\right)\right)=X_{1}+U_{1}$.
(c) $\left[V, f_{-}\right]=X_{1}+U_{1}+\left[C_{X_{2}}\left(Z_{1}\right), Q_{1}\right]$

Proof: Put $U_{1}=\left[C_{V}\left(Q_{1}\right), f, r\right]$. Note that Q_{1} centralizes a 1 -space in each of the modules X_{i} / X_{i-1}, and $C_{V}\left(Q_{1}\right)$ is 4-dimensional. As $[V, Q] \not \leq X_{2},\left[V, f_{-}\right] \not \leq X_{2}$. Since $\left[X_{3}, f_{-}\right] \leq X_{2}$ and $V=C_{V}\left(Q_{1}\right) X_{3}$, we conclude $\left[C_{V}\left(Q_{1}\right), f_{-}\right] \not \subset X_{2}$. On the other hand as L acts completely reducibly on V, we have $\left[C_{V}\left(Q_{1}\right), f_{+}\right]=1$. Thus $\left[C_{V}\left(Q_{1}\right), f\right] \not \leq X_{2}$. By Lemma 2.3ad applied to F^{\prime} and the modules X_{3} / X_{2} and X_{2} / X_{1}, the element r^{2} inverts $C_{X_{3} / X_{1}}\left(Q_{1}\right)$. In particular, $[r, f]$ centralizes X_{3} and, as r inverts f and f has odd order, we conclude that f centralizes $C_{X_{3} / X_{1}}\left(Q_{1}\right)$. It follows that $\left(\left[C_{V}\left(Q_{1}\right), f\right]+X_{1}\right) / X_{1}$ is 1 -dimensional and not contained in X_{2} / X_{1}. Hence U_{1} is 1 -dimensional, $U_{1} \leq X_{3}, U_{1} \not \leq X_{2}$ and P_{1} normalizes U_{1}.

Let $U_{2}=\left\langle U_{1}^{P_{2}}\right\rangle$. As $\left|P_{2} / S\right|=3$, the space U_{2} is at most 3-dimensional. By Lemma 2.3 applied to $W=X_{3} / X_{2}$, we know that $\left(U_{2}+X_{2}\right) / X_{2}$ is 3-dimensional. Thus U_{2} is a 3 -space and $U_{2} \cap X_{2}=1$. Let $U_{3}=\left\langle\left[U_{2}, Q_{1}\right]^{P_{1}}\right\rangle$. Since $\left[U_{2}, Q_{1}\right]$ is a 2 -space and $\left|P_{1} / S\right|=5$, we similarly have that U_{3} is 10 -dimensional and $U_{3} \cap X_{2}=1$. Let $U_{4}=\left\langle\left[U_{3}, Z_{2}\right]^{P_{2}}\right\rangle$. Since $\left[U_{3}, Z_{2}\right]$ is eight dimensional, U_{4} is 24-dimensional and $U_{4} \cap X_{2}=1$. Let $U_{5}=\left[U_{4}, Z_{1}\right]$. Since X_{3} / X_{2} and X_{2} / X_{1} are dual as E-modules, Lemma 2.3af implies that $\left[V, Z_{1}\right] X_{2} / X_{2}$ and $\left[X_{2}, Z_{1}\right]$ are isomorphic and absolutely irreducible as P_{1}-modules and as S-modules. (Note here that Z_{1} is trivial on X_{1} and V / X_{3}.) By Lemma 2.3c, $\left[V, Z_{1}\right.$] splits over $\left[X_{2}, Z_{1}\right.$] as a P_{1}-module. It is now easy to see that every S-submodule of $\left[V, Z_{1}\right]$ is invariant under P_{1}. In particular P_{1} normalizes U_{5}. Put $M_{0}=U_{2}+U_{4}$. Note that by Lemma 2.3, $\left(M_{0}+X_{2}\right) / X_{2}=X_{3} / X_{2}$ and that M_{0} has dimension at most $3+24=27$. Thus $M_{0} \cap X_{2}=0$ and M_{0} is a complement to X_{2} in X_{3}. Then

$$
M_{0}=U_{1}+\left(U_{2} \cap U_{3}\right)+\left(U_{3} \cap U_{4}\right)+U_{5}=U_{1}+U_{3}+U_{5} .
$$

and so $F=\left\langle P_{1}, P_{2}\right\rangle$ normalizes M_{0}.
It follows that $\left[X_{3}, N_{E}(M) \cap Q\right] \leq M \cap X_{2}=X_{1}$. Since Q does not centralize X_{3} / X_{1} and E is irreducible on Q, we have $N_{E}(M) \cap Q=1$. Since $F Q=\widetilde{F} Q$, the last statement of (a) also holds.

As f_{+}centralizes $C_{V}\left(Q_{1}\right)$ the last statement in (b) holds once we prove that $C_{C_{V}\left(Q_{1}\right)}\left(f_{-}\right)=$ $X_{1}+U_{1}$. As seen above $\left[C_{V}\left(Q_{1}\right), f_{-}\right] \not \subset X_{2}$ and by a dual argument $\left[C_{V}\left(Q_{1}\right), f_{-}\right] \neq 0$. Hence $C_{C_{V}\left(Q_{1}\right)}\left(f_{-}\right)$is at most 2-dimensional and so $C_{C_{V}\left(Q_{1}\right)}\left(f_{-}\right)=X_{1}+U_{1}$. As r centralizes X_{1} but not U_{1}, the P_{1}-modules X_{1} and U_{1} are not isomorphic. Thus (b) holds.

As seen above $U_{1} \leq\left[V, f_{-}\right]$. Thus (c) follows from Lemma 2.6b.
QED
Let $\chi_{0}=X_{1}^{G}$ and $\zeta_{0}=Z_{1}^{G}$.
Lemma $2.8 U_{1} \in \chi_{0}$ and $C_{M}\left(Z_{1}\right)=\bigoplus\left\{X \mid X \in \chi_{0}, X \leq C_{M}\left(Z_{1}\right)\right\}$.
Proof: We claim that E acts transitively on $\left\{Z \in \zeta_{0} \mid\left[X_{1}, Z\right]=1\right\}$. Indeed, for any such Z, we have $\operatorname{dim}[V, Z]=32=\operatorname{dim}\left[X_{3} / X_{1}, Z\right]=2 \cdot \operatorname{dim}\left[X_{2} / X_{1}, Z\right]$. Thus the claim follows from Lemma 2.5a. By this claim, G acts transitively on $\left\{(Z, X) \in \zeta_{0} \times \chi_{0} \mid[X, Z]=1\right\}$ and thus $C_{G}\left(Z_{1}\right)$ acts transitively on $\left\{X \in \chi_{0} \mid\left[X, Z_{1}\right]=1\right\}$. By Lemma 2.5b, $C_{G}\left(Z_{1}\right) \sim$ $2^{2} .\left(L_{2}(5) \times D_{6}(5)\right) .2$ and $C_{V}\left(Z_{1}\right)$ is the tensor product of natural modules for $S L_{2}(5)$ and $\Omega_{12}^{+}(5)$. By Lemma 2.6c, f_{-}lies in the factor $S L_{2}(5)$ and so $\left[V, f_{-}\right]$is one of six 12 -spaces invariant under $2^{2} . D_{6}(5)$. By Lemma $2.6 \mathrm{~b}, X_{1}$ is a singular point in $\left[V, f_{-}\right]$and it follows that $\left\{X \in \chi_{0} \mid\left[X, Z_{1}\right]=1\right\}$ is precisely the union of the sets of singular points in the six 12 -spaces. By Lemma $2.7 \mathrm{c}, X_{1}+U_{1}=C_{\left[V, f_{-}\right]}\left(Q_{1}\right)$ and so $X_{1}+U_{1}$ is a non-degenerate subspace of $\left[V, f_{-}\right]$. As X_{1} is singular in $\left[V, f_{-}\right]$, the space $X_{1}+U_{1}$ is of " + "-type and so contains exactly one member of χ_{0} distinct from X_{1}. By Lemma $2.5 \mathrm{c}, U_{1}$ is the only $1-$ space in $X_{1}+U_{1}$, which is invariant under P_{1} and distinct from X_{1}. So $U_{1} \in \chi_{0}$. By the proof of Lemma 2.3ab, [$\left.C_{M_{0}}\left(Z_{1}\right), V_{1}\right]$ is the direct sum of 5 pairwise non-isomorphic irreducible Q_{1}-modules, each of which is the direct sum of two conjugates of U_{1} under F. Moreover, Q_{1} normalizes each of the six 12 -spaces and it is now easy to see that $C_{M}\left(Z_{1}\right)$ intersects each of the six 12 -spaces in a 2 -space of " + "- type. This clearly implies the lemma.

QED
Lemma 2.9 $N_{E}(M) \cap C_{G}\left(Z_{1}\right)=P_{1}$ and F contains a Sylow 2-subgroup of $N_{E}(M)$.
Proof: Put $N=N_{E}(M)$ and $Y=C_{N}\left(Z_{1}\right)$. By Lemma 2.7, $N \cap Q=1$. By Lemma 2.5a,

$$
C_{E}\left(Z_{1}\right) \sim 5^{11} .\left(C_{4} \times 4 . D_{5}(5) .4\right)
$$

and $C_{E}\left(Z_{1}\right)$ normalizes a 10-space in X_{3} / X_{2}. By the proof of Lemma 2.8, Y normalizes $X_{1}+U_{1}$ and a decomposition of this 10 -space into an orthogonal sum of five 2 -spaces of "+"-type. Let K be the full normalizer in $C_{E}\left(Z_{1}\right)$ of this decomposition. Then

$$
K \sim 5^{11}\left(C_{4} \times 2 \cdot \frac{1}{2}\left(D_{8} \text { 乙 Sym }(5)\right) \cdot 2\right) .
$$

Let M_{1} be the complement in X_{3} to X_{2} normalized by L. We claim that $U_{3} \not 又 M_{1}$ and $U_{5} \not \leq M_{1}$. As U_{1} is S-invariant and $S \leq L$, we have $U_{1} \leq M_{1}$. Since $P_{2} \leq L$ we get $U_{2} \leq M_{1}$. Suppose that $U_{3} \leq M_{1}$. Then \tilde{P}_{1} normalizes U_{3} and since $f_{-} \in P_{1} \widetilde{P}_{1}$ we conclude that f_{-} normalizes U_{3}. Note that f_{-}centralizes X_{3} / X_{2} and $U_{3} \leq X_{3}$. Hence $\left[U_{3}, f_{-}\right] \leq X_{2} \cap U_{2}=0$ and so f_{-}centralizes U_{3}, a contradiction to Lemma 2.6d. Thus U_{3} is not contained in M_{1}. It follows that neither $U_{3} \cap U_{4}$ nor U_{4} are contained in M_{1}. As $P_{2} \leq L$ acts irreducibly on U_{4} we conclude that $U_{4} \cap M_{1}=0$ and so finally $U_{5} \not \leq M_{1}$.

As $Y \cap Q=1, Y$ is isomorphic to a subgroup of $K / O_{3}(K)$ and so $Y / O_{2}(Y)$ is isomorphic to a section of $\operatorname{Sym}(5)$. As 5 divides the order of P_{1} we conclude that $O_{2}\left(P_{1} O_{2}(Y) / O_{2}(Y)\right)=1$ and so $O_{2}\left(P_{1}\right) \leq O_{2}(Y)$. As $C_{Q}\left(O_{2}\left(P_{1}\right)\right)=\left\langle f_{-}\right\rangle$, any conjugate of L in E containing $O_{2}\left(P_{1}\right)$ is of the form L^{x} for some $x \in\left\langle f_{-}\right\rangle$. By Sylow's theorem $O_{2}(Y)$ lies in some conjugate of L in
E and so $O_{2}(Y) \leq L^{x}$ for some $x \in\left\langle f_{-}\right\rangle$. Thus $O_{2}(Y)$ normalizes $\left[M_{1}, Z_{1}\right]^{x}$. By Lemma 2.6b, x centralizes $\left[M_{1}, Z_{1}\right]$ and so $O_{2}(Y)$ normalizes $\left[M_{1}, Z_{1}\right],\left[X_{2}, Z_{1}\right]$ and $U_{5}=\left[M, Z_{1}\right]$. Since all of these Y-modules are irreducible and $U_{5} \leq\left[V, Z_{1}\right]=\left[X_{2}, Z_{1}\right] \oplus\left[M_{1}, Z_{1}\right]$ we conclude that these $O_{2}(Y)$-modules are pairwise isomorphic and so $O_{2}(Y)$ acts self-dually on $\left[X_{2}, Z_{1}\right]$.

For each $X \leq E$, we write X^{*} for $C_{X}\left(X_{1}\right)$. Since $Z(L)$ acts transitively on $X_{1}^{\#}$, the groups \tilde{F}, F and P_{1} also act transitively on $X_{1}^{\#}$. Thus $Y=Y^{*} P_{1}$. Let C (respectively \hat{C}) be the largest subgroup of K^{*} centralizing (centralizing or inverting) $\left(U_{3}+X_{2}\right) / X_{2}$. Then $\hat{C} Q / Q \cong C_{4}$. Since $O_{2}(Y)$ acts self-dually on $\left[X_{2}, Z_{1}\right]$ and the elements of \hat{C} act as scalars we conclude that $\hat{C} \cap Y$ centralizes or inverts $\left[X_{2}, Z_{1}\right]$. Hence $\hat{C} \cap Y^{*} \leq C$ and $Y^{*} C \cap \hat{C}=\left(Y^{*} \cap \hat{C}\right) C=C$. Thus no element of $Y^{*} C / C$ inverts $\left(U_{3}+X_{2}\right) / X_{2}$. We are now in a position to apply Lemma 2.4 (with $K\langle t\rangle=K^{*} / C$ and $A=O_{2}\left(Y^{*}\right) C / C \cap O_{2}\left(O^{2}\left(K^{*} / C\right)\right.$). Note that A is not abelian as $Q_{1} C / C \leq A$ and $Q_{1} \cap C=Z_{1}$. As $r \in P_{1}^{*}$, the group P_{1}^{*} has $F r o b_{20}$ as a quotient. Since $Y^{*} C$ normalizes A we conclude that $Y^{*} C \leq O_{2}\left(Y^{*}\right) P_{1}^{*}$ and $A=Q_{1} C / C$. From the structure of D_{8}, from the last two statements in Lemma 2.4 and from $O_{2}\left(Y^{*}\right) \cap \hat{C} \leq C$ we conclude that $O_{2}\left(Y^{*}\right) C=Q_{1} C$. Thus $Y^{*} C=P_{1}^{*} C$. Since $C \cap Y^{*} \cap Q=1$, we have $C \cap Y^{*}=Z_{1} \leq P_{1}^{*}$. So $Y^{*}=P_{1}^{*}$ and $Y=P_{1}$, proving the first statement of the lemma.

Since $Z_{1}=Z(S) \cap S^{\prime}, N_{G}(S) \leq C_{G}\left(Z_{1}\right)$ and so S a Sylow 2-subgroup of N.
QED.
Lemma 2.10 There exists $t \in N_{G}\left(P_{1}\right) \cap N_{G}(M)$ with $X_{1} \neq X_{1}^{t}$.
Proof: Let $t \in N_{G}\left(P_{1}\right)$. By Lemma 2.7b, $C_{V}\left(O^{2}\left(P_{1}\right)\right)=U_{1}+X_{1}$ and so t normalizes $U_{1}+X_{1}$. Also by Lemma 2.3ae, the isomorphism types of the two 10 -dimensional modules in V invariant under P_{1} are not conjugate under an automorphism of P_{1}. So t normalizes U_{3}. Hence $t \in N_{G}(M)$ if and only if $t \in N_{G}\left(U_{5}\right)$.

Note that P_{1} is contained in $\left\langle f_{-}\right\rangle C_{L}\left(Z_{1}\right)$. Let $\left\langle t_{1}\right\rangle=Z\left(C_{L^{\prime}}\left(Z_{1}\right)\right)$. Then by Lemma 2.5a, t_{1} is of order 4 and $\left[t_{1}, P_{1}\right] \leq Z_{1}$. So $t_{1} \in N_{G}\left(P_{1}\right)$. Further $C_{G}\left(Z_{1}\right)$ is of shape $2^{2} .\left(L_{2}(q) \times D_{6}(5)\right) .2$. Note that $\left[V, f_{-}\right]$is 12 -dimensional and there exists a quadratic form on $\left[V, f_{-}\right]$invariant (up to scalar multiplication) under the action of $N_{G}\left(\left\langle f_{-}\right\rangle\right)$. Moreover, $\left[V, f_{-}\right]$is equal to the sum of X_{1}, U_{1} and the 10 -dimensional subspace of X_{2}, which is normalized by P_{1}. In particular P_{1} normalizes a decomposition of $\left[V, f_{-}\right]$into an orthogonal sum of six 2-dimensional subspaces of "+"-type. Let T_{0} be the largest subgroup of $2^{2} . D_{6}(5)$, which normalizes this decomposition and normalizes $X_{1}+U_{1}$. Then P_{1} normalizes T_{0} and T_{0} / Z_{1} is isomorphic to a subgroup of index 4 in $\left(D_{8} \times D_{8} \imath \Sigma_{5}\right)$.

Let $T=C_{T_{0}}(f)$. Then $T / Z_{1} \cong D_{8} \times C_{2}$ and T normalizes $O^{2}\left(P_{1}\right)$ and so also Q_{1} and $V_{1}=Q_{1}^{\prime}$. Moreover, $t_{1} \in T,\left[t_{1}, T\right] \leq Z_{1}, T^{\prime}=Z(G) Z_{1}$ and $T \cap P_{1} / Z_{1} \cong C_{4}$. Pick $t_{2} \in T$ with $t_{2}^{2} \in Z_{1}$ and $\left[t_{2}, T\right] \nsubseteq Z_{1}$. We will show that either t_{2} or $t_{1} t_{2}$ fulfills the conclusion of the lemma. It is easy to check in T_{0} that t_{2} centralizes a 1 -space in each of the six 2 -spaces and that these six 1 -spaces form a 6 -space of "+"-type. As the central involution of $\Omega_{6}^{+}(5)$ lifts to an element of order four in $2 . \Omega_{6}^{+}(5) \cong S L_{4}(5)$ we conclude that t_{2} and by symmetry $t_{1} t_{2}$ are elements of order 4. It follows that

$$
\left\langle t_{1}, t_{2}\right\rangle \cong Q_{8} \quad \text { and } \quad\left\langle t_{1}, t_{2}\right\rangle \cap P_{1}=Z_{1} .
$$

We will now examine the action of $\left\langle t_{1}, t_{2}\right\rangle$ on the set Π of 16 -spaces in V invariant under $O^{2}\left(P_{1}\right)$. Note that $|\Pi|=5+1=6$. Put $H=\left[V_{1}, f\right]$. Then $\left\langle t_{1}, t_{2}\right\rangle$ normalizes H and acts faithfully on the 2-dimensional space $C_{\left[V, Z_{1}\right]}(H)$. So the orbits of $\left\langle t_{1}, t_{2}\right\rangle$ on the 1-dimensional
subspaces of $C_{\left[V, Z_{1}\right]}(H)$, and hence also on Π, are all of length 2. Now by Lemma 2.9, t_{1} does not normalize M and so $\left[M, Z_{1}\right] \neq\left[M, Z_{1}\right]^{t_{1}}$. Hence $\left[M, Z_{1}\right]=\left[M, Z_{1}\right]^{t}$ for $t=t_{2}$ or for $t=t_{1} t_{2}$. Recall that $U_{5}=\left[M, Z_{1}\right]$ and thus the selected t is in $N_{G}(M)$.

It remains to show that t normalizes P_{1}. Since t normalizes $O^{2}\left(P_{1}\right)$, it is enough to prove that $\left[t_{1}, N_{S}(\langle f\rangle)\right] \leq P_{1}$. Since $T=\left\langle t_{1}, t_{2}\right\rangle\left(T \cap P_{1}\right), T \cap P_{1}$ is the largest subgroup of T acting trivially on Π. As $N_{S}(\langle f\rangle)$ acts trivially on Π, the same is true for $\left[t_{1}, N_{S}(\langle f\rangle)\right]$ and so $\left[t_{1}, N_{S}(\langle f\rangle)\right] \leq T \cap P_{1} \leq P_{1}$, completing the proof of the Lemma.

QED
Lemma 2.11 Let $R=\left\langle F, F^{t}\right\rangle$. Then F has three orbits on the right cosets of F in R. The orbit stabilizers are F, P_{1} and a group of order $2^{5} \cdot 3 \cdot 5^{2} \cdot 13$. In particular $|R|=2^{15} \cdot 3^{3} \cdot 5^{3} \cdot 7 \cdot 13 \cdot 29$.

Proof: Note first that R normalizes M. We will divide the proof into several steps.
$1 \quad$ Let $\chi=X_{1}^{R}$ and $\zeta=z_{1}^{R}$. Then R acts transitively on
(a) $\{(X, z) \mid X \in \chi, z \in \zeta$ and z centralizes $X\}$,
(b) $\{(X, z) \mid X \in \chi, z \in \zeta$ and z inverts $X\}$.

Clearly a Sylow 2-subgroup of $N_{R}\left(X_{1}\right)$ contains representatives of each class of involutions in $N_{R}\left(X_{1}\right)$. By Lemma 2.9, S is Sylow 2 -subgroup of $N_{R}\left(X_{1}\right)$ and so F contains representatives of each class of involutions in $N_{R}\left(X_{1}\right)$. As $F / F^{\prime} \cong C_{4}$, all the involutions in F are contained in $Z(G) \times F^{\prime}$. By Lemma 2.3, F^{\prime} has two classes of involutions with representatives z_{1} and i. Moreover $C_{W}(i)$ is 15 -dimensional and so $\operatorname{dim} C_{V}(i)=2+2 \cdot 15=32$. Hence F has two orbits on $F \cap \zeta$ with representatives z_{1} and $z_{0} i$, where z_{0} is the central involution in G. Now z_{1} centralizes X_{1} and $z_{0} i$ inverts X_{1}. Thus (1) holds.

2 (a) $C_{R}\left(z_{1}\right)$ acts transitively on $C_{M}\left(z_{1}\right) \cap \chi$ and $\left|C_{M}\left(z_{1}\right) \cap \chi\right|=12$,
(b) $C_{R}\left(z_{1}\right)$ and P_{1} act transitively on $\left[M, z_{1}\right] \cap \chi$ and $\left|\left[M, z_{1}\right] \cap \chi\right|=80$,
(c) $\left|C_{R}\left(z_{1}\right)\right|=2^{15} \cdot 3 \cdot 5$,
(d) $C_{N_{R}\left(X_{1}\right)}(i) \leq F$.

The two transitivity statements for $C_{R}\left(z_{1}\right)$ follow from (1). By Lemma 2.8, $\left|C_{M}\left(z_{1}\right) \cap \chi_{0}\right|=$ 12. Moreover, by Lemma $2.3, U_{3}$ contains 10 elements of U_{1}^{F} and so $C_{M}\left(z_{1}\right) \cap \chi$ contains at least the 11 elements of $C_{M}\left(z_{1}\right) \cap \chi_{0} \backslash\left\{X_{1}\right\}$. Conjugation by t shows that $C_{M}\left(z_{1}\right) \cap \chi$ also contains the 11 elements of $C_{M}\left(z_{1}\right) \cap \chi_{0} \backslash\left\{U_{1}\right\}$. Thus $C_{M}\left(z_{1}\right) \cap \chi=C_{M}\left(z_{1}\right) \cap \chi_{0}$ and (a) holds. By Lemma 2.9, $C_{R}\left(z_{1}\right) \cap N_{R}\left(X_{1}\right)=P_{1}$ and so

$$
\left|C_{R}\left(z_{1}\right)\right|=12 \cdot\left|C_{R}\left(z_{1}\right) \cap N_{R}\left(X_{1}\right)\right|=12 \cdot\left|P_{1}\right|=2^{15} \cdot 3 \cdot 5 .
$$

Now $\left|\left[M, z_{1}\right] \cap \chi\right|=\left|C_{R}\left(z_{1}\right)\right| /\left|C_{R}\left(z_{1}\right) \cap N_{R}(X)\right|$, where $X \in \chi$ is inverted by z_{1}. By Lemma 2.3d, $\left|C_{F}(i)\right|=2^{11} \cdot 3$. Further, $\left|C_{R}\left(z_{1}\right) \cap N_{R}(X)\right| \geq\left|C_{F}(i)\right|$ and so $\left|\left[M, z_{1}\right] \cap \chi\right| \leq 80$. Finally, P_{1} has an orbit of length 80 on $\left[M, z_{1}\right] \cap \chi$. Indeed, there are 80 points at distance 4 from a in Γ_{0} (the generalized octagon associated to F), these 80 points correspond to 80 elements in U_{0}^{F} and U_{0}^{F} is a subset of χ. So $\left|\left[M, z_{1}\right] \cap \chi\right|=80$, moreover $\left|C_{R}\left(z_{1}\right) \cap N_{R}(X)\right|=\left|C_{F}(i)\right|$ and P_{1} acts transitively on $\left[M, z_{1}\right] \cap \chi$. This completes the proof of (2).
$3 N_{R}\left(X_{1}\right)=F=N_{R}(F)$. In particular, the actions of R on X_{1}^{R} and on R / F are isomorphic.

Let $N=C_{R}\left(X_{1}\right)$. Then, as in (1), N has two classes of involutions, with representatives z_{1} and i. By $(2)(d)$ and Lemma 2.8, F^{\prime} contains the centralizers of z_{1} and i in N. Hence by a standard argument, see for example $[6,9.2 .1], F^{\prime}=N$. Thus $N_{R}\left(X_{1}\right)=F$. Now X_{1} is the unique 1-space in M normalized by F and so $N_{R}(F) \leq N_{R}\left(X_{1}\right)$.

Let Γ be the graph with vertices χ and edges $\left\{X_{1}, U_{1}\right\}^{R}$. Since $R=\left\langle F, F^{t}\right\rangle$ we have
4Γ is connected.
5 Let $a, b \in \chi$. Suppose there exists $z \in \zeta$, such that z normalizes a and b. Then a and b have distance at most 2 in Γ. If z centralizes a or b, then a and b have distance at most 1 .

Suppose first that z centralizes a. Then we may assume without loss that $a=X_{1}$ and $z=z_{1}$. Then (2) implies that $b=X_{1}$ or $b \in U_{1}^{F}$ and so a and b are at distance at most 1 .

In the general case pick $c \in \chi$ so that z centralizes c. Then a and b are at distance at most 1 from c, and (5) is proved.

For a vertex a, put $R_{a}=N_{R}(a)$, and for an edge $\{a, b\}$, let $1 \neq z(a, b) \in Z\left(R_{a}^{\prime} \cap R_{b}^{\prime}\right)$. Note that, if $(a, b)=\left(X_{1}, U_{1}\right)^{g}$, then $z(a, b)=z_{1}^{g}=z(b, a)$. For $g \in F$, we identify $\alpha^{g} \in \Gamma_{0}$ with $U_{1}^{g} \in \Gamma$.

6 (a) R acts transitively on geodesics of length 2 in Γ. Moreover, the stabilizer of a geodesic of length 2 is isomorphic to $C_{2} \times$ Frob $_{20}$
(b) Let d and e be at distance 2 in Γ. Then $R_{d} \cap R_{e}$ acts transitively on the set of pairs (a,b) such that $\{a, b\}$ is an edge with $z(a, b) \in R_{d} \cap R_{e}$. Moreover, $R_{a} \cap R_{b} \cap R_{d} \cap R_{e}$ is isomorphic to $C_{2} \times C_{4}$.

Let a and b be in α^{F}. Suppose that a and b are at distance less than or equal to 6 in Γ_{0}. Then there exists $c \in \alpha^{F}$, such that c is (in Γ_{0}) at distance 2 from a and at distance at most 4 from b. Put $z=z\left(X_{1}, c\right)$. Then by Lemma 2.3ab\&ac, z centralizes a and normalizes b. Thus (5) implies that either $a=b$ or a is adjacent to b in Γ. Suppose that every pair of elements in α^{F} are adjacent in Γ. Then every pair of elements in $\alpha^{F} \cup\left\{X_{1}\right\}$ are adjacent. Since Γ is connected, we conclude that $\alpha^{F} \cup\left\{X_{1}\right\}$ is the set of vertices of Γ. Hence $|R|=|F| \cdot(|F|+1)$ and so $|R|_{2}=2^{14}$, a contradiction to (2)(c). So there are two elements of α^{F}, that have distance 8 in Γ_{0}, and have distance 2 in Γ. Since P_{1} is transitive on $\triangle^{8}(\alpha)$ and since every geodesic of length two in Γ is conjugate to one with X_{1} as its midpoint, we conclude that R is transitive on geodesics of length 2 in Γ. Moreover, the stabilizer in F of two elements of distance 8 in α^{F} is a $C_{2} \times F_{20}$. Hence (a) is proved.

To prove (b) we assume without loss that $a=X_{1}$ and $b=U_{1}$. Since $z(a, b)$ normalizes d and e, we get by (5) that $d, e \in \alpha^{F}$ and that d and e are at distance less than or equal to 4 from b in Γ_{0}. Since d and e are at distance 8 from each other, b lies on a geodesic from d to e in Γ_{0} and is at distance 4 from both d and e. Now F acts transitively on paths of length 8 in Γ_{0} starting with a vertex in α^{F} and the stabilizer of such a path is a $C_{2} \times C_{4}$. This proves (b).

7 Let d and e be at distance 2 in Γ. Then $R_{d} \cap R_{e}$ acts transitively on $R_{d} \cap R_{e} \cap \zeta$. Moreover, if $z \in R_{d} \cap R_{e} \cap \zeta$, then $R_{d} \cap R_{e} \cap C_{R}(z)$ has order $2^{5} .3$ and has a normal Sylow 3-subgroup.

Let $z \in R_{d} \cap R_{e} \cap \zeta$. By (6), $R_{d} \cap R_{e}$ acts transitively on $R_{d} \cap R_{e} \cap \zeta$ and $R_{d} \cap R_{e} \cap C_{R}(z)$ acts transitively on all pairs (a, b) such that $\{a, b\}$ is an edge with $z=z(a, b)$. Put $A=$ $R_{a} \cap R_{b} \cap R_{d} \cap R_{e}$ and $B=R_{d} \cap R_{e} \cap C_{R}(z)$. Then $|A|=8$. Next we show that there are exactly 12 choices for (a, b). Indeed a is in $C_{V}(z) \cap \chi$ and so by (2)(a), there are exactly twelve choices for a. Moreover, as $R_{a} \cap R_{b}=C_{R_{a}}(z), b$ is uniquely determine by z and a. It follows that $|B|=8 \cdot 12=2^{5} \cdot 3$. We claim that A is normal in B. For this let $\{\bar{a}, \bar{b}\}$ be an edge different from $\{a, b\}$ with $z=z(\bar{a}, \bar{b})$. Again choose notation so that $a=X_{1}$. Since $z=z(\bar{a}, \bar{b})$, z centralizes \bar{a} and \bar{b} and so \bar{a} and \bar{b} are at distance 2 from b in Γ_{0}. It follows from [5] that A normalizes \bar{a} and \bar{b}, and so $A=R_{\bar{a}} \cap R_{\bar{b}} \cap R_{d} \cap R_{e}$. Thus A is independent of the choice of (a, b) and therefore normal in B. Let $\widetilde{B}=C_{B}(d)$ and $\widetilde{A}=C_{A}(d)$. Let $g \in A$ with $|g|=4$. As $\langle g\rangle$ acts faithfully on the group of order five in $R_{a} \cap R_{d} \cap R_{e}, g^{2} \neq z_{0}$. As $g \notin Z(G) F^{\prime}$, $g^{2} \notin F^{\prime}$ and so $g^{2} \neq z$. Thus $g^{2}=z_{0} z$. Since z and z_{0} invert d, g^{2} centralizes d. Thus A / \widetilde{A} is elementary abelian, $|A / \widetilde{A}|=2$ and $\widetilde{A} \cong C_{4}$. Let i be the involution in \widetilde{A}. Suppose that the Sylow 3 -subgroups of B are not normal in B. Since 3 divides \widetilde{B} and $|\widetilde{B} / \widetilde{A}|_{2} \leq \underset{\sim}{4}, \widetilde{B} / \widetilde{A} \cong A_{4}$. Let $Y=O_{2}(\widetilde{B})$ and $Y^{*}=\left[Y, O^{2}(\widetilde{B})\right]$. Then $Y=Y^{*} \widetilde{A}$ and $\left[Y^{*}, \widetilde{A}\right]=1$. Hence $\widetilde{A} \leq Z(Y)$ and $Y / Z(Y)$ is elementary abelian. It follows that $\left|Y^{\prime}\right| \leq 2$. Hence either Y is abelian, $Y^{*} \cap \widetilde{A}=1$ and $Y \cong C_{4} \times C_{2} \times C_{2}$ or Y is not abelian, $Y^{*} \cong Q_{8}$ and $Y \cong C_{4} \circ Q_{8} \cong C_{4} \circ D_{8}$. In particular, $\langle i\rangle=\Phi(Y)$. Note that $\widetilde{A}=C_{R}(d) \cap R_{e} \cap C_{R}(i)$. We claim that all involutions in $C_{R}(d) \cap R_{e}$ are conjugate under $R_{d} \cap R_{e}$. Indeed let j be any such involution. Since d and e have distance 2 , (5) implies that $j \notin \zeta$. Thus $z_{0} j \in \zeta$ and by the first part of (7), the conjugacy class of $z_{0} j$ in $R_{d} \cap R_{e}$ is uniquely determined. Thus the claim holds. Moreover, by the structure of Y there exists an involution j in \widetilde{B} different from i. Then by the claim $j=i^{h}$ for some $h \in R_{d} \cap R_{e}$. Now $[\widetilde{A}, j]=1$ and $\widetilde{A} \leq C_{R}(d) \cap R_{e} \cap C_{R}(j)=\widetilde{B}^{h}$. As $\widetilde{B}^{h} / Y^{h}$ has order three, $\widetilde{A} \leq Y^{h}$. Hence

$$
i \in \Phi(\widetilde{A}) \leq \Phi\left(Y^{h}\right)=\left\langle i^{h}\right\rangle=\langle j\rangle
$$

a contradiction, which proves (7).
8 Let a be at distance 2 from X_{1} in Γ. Then $\left|F \cap R_{a}\right|=2^{5} \cdot 3 \cdot 5^{2} \cdot 13$ and $F \cap R_{a}$ has exactly two orbits on the neighbors of X_{1} in Γ.

Let $z \in F \cap R_{a} \cap \zeta$ and D be the Sylow 3-subgroup of $C_{F \cap R_{a}}(z)$. By Lemma 2.3e $\left|N_{F}(D)\right|=3^{3} \cdot 2^{5}$ and so by (7), $C_{F \cap R_{a}}(z)$ contains a Sylow 2-subgroup of $N_{F}(D)$. Put $K=F^{\prime} \cap R_{a}$. Then by Lemma 2.3, $C_{K}(z) \cong D_{24}$. Since $F \cap R_{a}$ acts transitively on the involutions in K, we conclude that the Sylow 2-subgroups of K are dihedral groups of order 8 and that K has exactly one class of involutions. By (6), $|K|$ is divisible by 5 , and since $\left|F^{\prime}\right|=2^{11} \cdot 3^{3} \cdot 5^{2} \cdot 13$, we have $|K|=2^{3} \cdot 3^{1+u} \cdot 5^{1+v} \cdot 13^{w}$, where u is 0,1 or 2 , and v and w are 0 or 1 . Since $C_{K}(z)$ is a maximal subgroup of $N_{F^{\prime}}(D), u$ is 0 or 2 . We claim that K has an orbit on α^{F} with orbit stabilizer $C_{2} \times$ Frob $_{20}$ and an orbit with an orbit stabilizer of order 2^{5}. Indeed let b be at distance 1 from X_{1} and a in Γ. Then by (6), $F \cap R_{b} \cap R_{a} \cong C_{2} \times$ Frob $_{20}$. Moreover, any 2-subgroup of F fixes a point in α^{F} and so there exists c in α^{F} so that 2^{5} divides $\left|F \cap R_{a} \cap R_{c}\right|$. Suppose 5 divides $\left|F \cap R_{a} \cap R_{c}\right|$. Then $2 \leq\left|O_{2}\left(F^{\prime} \cap R_{a} \cap R_{c}\right)\right| \leq 8$ and so $O^{2}\left(F^{\prime} \cap R_{a} \cap R_{c}\right)$ centralizes $O_{2}\left(F^{\prime} \cap R_{a} \cap R_{c}\right)$, a contradiction since the involutions in K are not centralized by elements of order 5 in K. So $\left|F \cap R_{a} \cap R_{c}\right|=2^{5}$. In particular

$$
1755=\left|\alpha^{F}\right| \geq\left|b^{K}\right|+\left|c^{K}\right|=2^{2} \cdot 3^{1+u} \cdot 5^{v} \cdot 13^{w}+3^{1+u} \cdot 5^{1+v} \cdot 13^{w}
$$

and so
(*)
$65 \geq 3^{u} \cdot 5^{v} \cdot 13^{w}$.
Now $\left|K / N_{K}(D)\right|=5^{1+v} \cdot 13^{w}$ and $\left|K / N_{K}(D)\right|$ is congruent to 1 modulo 3 , so we must have $v=1$. By Lemma 2.3, the centralizers of elements of order 5 in F are $\{2,5\}$-groups and no involution in K is centralized by an element of order five. Thus the centralizers of elements of order five in K are 5 -groups. In particular the Sylow 5 -subgroups of K are $T I$-sets, and so the number of Sylow 5 -subgroups in K is congruent to 1 modulo 25 . Since no divisor of $2^{3} \cdot 3^{3}$ is $1 \bmod 25, w \neq 0$. Thus $w=1$ and by $(*), u=0$ and the equal sign holds in $(*)$. This means that $F \cap R_{b}$ has no further orbit on α^{F} and (8) is proved.

We remark that using the list of maximal subgroups of the Tits group or the classification of groups with dihedral Sylow 2-subgroups it is not difficult to see that $K \cong L_{2}(25)$, but we will not need this fact.
$9 F$ has three orbits on R / F with lengths 1, 1755 and 2304.
In view of (8) it is enough to prove that there exist no points at distance 3 from X_{1} in Γ. One easily checks in Γ_{0} that there exist points b, c, d in α^{F} such that b has distance 8 from both c and d in Γ_{0} and c and d are at distance 2 in Γ_{0}. Then c and d are adjacent in Γ and b is at distance 2 from c and d in Γ. Let a be at distance 2 from X_{1}. By (8), $F \cap R_{a}$ has two orbits on the neighbors of a in Γ. One orbit is the set of common neighbors of X_{1} and a. By (6) there exists $g \in R$ with $b^{g}=X_{1}$ and $c^{g}=a$. Then d^{g} lies in the second orbit and has distance 2 from X_{1} In particular every point adjacent to a is at distance at most 2 to X_{1} in Γ. This completes the proof of (9) and of Lemma 2.11.

QED
It now follows from Lemma 2.11 that R has the following properties:
(a) $\quad R$ has a subgroup F with $F / Z(G) \cong{ }^{2} F_{4}(2)$.
(b) F has 3 orbits on R / F with lengths 1, 1755 and 2304.

By [12] we conclude that \bar{R} is isomorphic to the Rudvalis group. This completes the proof of Theorem 2.1.

3 A Computer-free Construction of the Higman-Sims Group as a Subgroup of $\mathrm{E}_{7}(5)$.

In this chapter we will prove the following Theorem:
Theorem 3.1 $E_{7}(5)$ contains subgroups isomorphic to M_{22} and the Higman-Sims group.
We start with some of the properties of M_{22} we will need in the proof of the theorem.
Lemma 3.2 Let $M=M_{22}$ act faithfully on $\Omega=\{1,2, \ldots, 22\}$, let $\omega \in \Omega$ and let D be the stabilizer of a hexad \mathcal{H} in Ω.
(a) M_{ω} acts transitively on $\Omega \backslash\{\omega\}$ and $M_{\omega} \cong L_{3}(4)$.
(b) $D \sim 2^{4}$.Alt(6), D acts transitively on $\Omega \backslash \mathcal{H}$ and any subgroup of shape $2^{4} \operatorname{Alt}(6)$ in M is conjugate to D.
(c) Let $E \leq M_{\omega}$ with $E \cong 2^{4} \operatorname{Alt}(5)$. Then E has orbits of lengths 1,5 and 16 or of lengths 1,1 and 20 on Ω. In the first case E stabilizes a hexad, and in the second case $N_{M}(E) \sim 2^{4} \operatorname{Sym}(5)$.
(d) Let $A \leq B \leq M$ with $A \cong \operatorname{Alt}(6)$ and $B \cong \operatorname{Alt}(7)$. Then A is not contained in a conjugate of D.
(e) Let $A \leq D$ such that $A \cong \operatorname{Alt}(5)$ and such that $O_{2}(D)$ is a natural $S L_{2}(4)-$ module for A. Then A has orbits of lengths 1 and 5 on \mathcal{H} and orbits of lengths 1 and 15 or of lengths 6 and 10 on $\Omega \backslash \mathcal{H}$.
(f) Let $A \leq D$ such that $A \cong \operatorname{Alt}(5)$ and such that $O_{2}(D)$ is a natural $\Omega_{4}{ }^{-}(2)-$ module for A. Then A acts transitively on \mathcal{H} and has orbits of lengths 1,5 and 10 on $\Omega \backslash \mathcal{H}$.
(g) If $A \leq D$ with $A \cong \operatorname{Alt}(6)$, then A has orbits of lengths 1 and 15 or of lengths 6 and 10 on $\Omega \backslash \mathcal{H}$.
(h) If $A \leq M_{\omega}$ with $A \cong \operatorname{Alt}(6)$, then A has orbits of lengths 1,6 and 15 on Ω.
(i) M has no subgroup of index 56 .

Proof: The maximal subgroups of M_{22} and their orbits on Ω are listed in Table 10.3 on page 285 of [4]. We use this table without further reference. In particular, (a) and (b) hold. ¿From the definition of a Steiner system, the set $\Omega \backslash\{\omega\}$ together with the set of hexads containing ω form a projective plane of order 4 . In particular both the two point stabilizer and the stabilizer of an incident point hexad pair have shape $2^{4} S L_{2}(4)=2^{4} \operatorname{Alt}(5)$ where the 2^{4} is a natural $S L_{2}(4)$-module. Let E^{*} be the normalizer of a pair of points. Then $E^{*} \cong 2^{4} \operatorname{Sym}(5)$ and (c) holds.

To prove (h), let f be an element of order five in A. Then f has exactly one fixed point η on $\Omega \backslash\{\omega\}$. Clearly A does not fix η and $\left|\eta^{A}\right|$ divides $|A|$ and is congruent to 1 modulo 5 . Thus $\left|\eta^{A}\right|=6$. As f acts fixed-point freely on the remaining 15 points and A has no orbit of length 5 , (h) holds.
(g): By (h) we may assume that A has no fixed points on Ω. Then by the same argument as in the proof of (h), A has orbits of length 6 and 10 on $\Omega \backslash \mathcal{H}$.

For (e) and (f) we note that if A fixes a point η outside \mathcal{H}, then the action of A on $\Omega \backslash(\mathcal{H} \cup\{\omega\})$ is isomorphic to the action of A on $O_{2}(D)^{\#}$. Since in case (f) there exists a unique class of subgroups $\operatorname{Alt}(5)$ in $O_{2}(D) A$, (f) holds. In case (e), we need to rule out the possibility that the orbits of A on $\Omega \backslash \mathcal{H}$ have lengths 5,5 and 6 . In this case, the elements of order three in A would have 4 fixed-points on $\Omega \backslash \mathcal{H}$, but only one fixed-point on $O_{2}(D)$, a contradiction.
(d) Note that B is unique up to conjugation and has an orbit Ξ of length 7 . Hence A has orbits of length 1 and 6 on Ξ and so is transitive on $\Omega \backslash \Xi$ by (h). As no two hexads can intersect in a set of size 5 , the orbit of length 6 is not a hexad. Thus (d) holds.

For the convenience of the reader we recall the definition of the HS group as found [8]. Let (S, B) be the Steiner System of type $(3,6,22)$. Let \mathcal{G} be the (undirected) graph with vertex set $\{*\} \cup S \cup \mathcal{B}$, where $*$ is a new symbol. In \mathcal{G}
(a) The vertex $*$ is joined to each point in S.
(b) Each point $\alpha \in S$ is joined to the 21 hexads containing α.
(c) Two hexads are joined if and only if they are disjoint.

Then by [8], $\operatorname{Aut}(\mathcal{G})$ is transitive on \mathcal{G} and $\operatorname{Aut}(\mathcal{G})$ has a simple subgroup of index 2 and order $44,352,000$, now called the Higman Sims group $H S$. We refer to \mathcal{G} as the Higman-Sims graph.

The next two lemmas characterize M_{22} and $H S$ in terms of certain subgroups.
Lemma 3.3 Let M be a group and L, M_{1} and M_{2} subgroups of M such that $L \cong L_{3}(4), M_{1} \sim$ $2^{4} \operatorname{Sym}(5), M_{2} \sim 2^{4} \operatorname{Alt}(6), L \cap M_{1} \cong L \cap M_{2} \sim 2^{4} \operatorname{Alt}(5), M_{1} \cap M_{2} \sim 2^{4} \operatorname{Sym}(4), L \cap M_{1} \cap M_{2} \sim$ $2^{4} \operatorname{Alt}(4)$ and $M=\left\langle L, M_{1}, M_{2}\right\rangle$. Then $M \cong M_{22}$.

Proof: Put $\Gamma=M / L$ and $\alpha=L \in \Gamma$. Let $t \in M_{1} \cap M_{2} \backslash L$. Since $M_{1} \cap L$ is normal in M_{1}, we have $M_{1} \cap L \leq L^{t}$. As $M_{1} \cap M_{2}$ does not normalize $L \cap M_{2}$, the element t does not normalize L and so $L \cap L^{t}=L \cap M_{1}$. Put $\Gamma_{0}=\{\alpha\} \cup \alpha^{t L}$. Then $\left|\Gamma_{0}\right|=1+21=22$.

Now $\left|\alpha^{M_{2}}\right|=\left|M_{2} / M_{2} \cap L\right|=6$ and $\alpha^{M_{2}}=\{\alpha\} \cup \alpha^{t\left(M_{2} \cap L\right)} \subset \Gamma_{0}$. Further, as $M_{1}=$ $\langle t\rangle\left(M_{1} \cap L\right)$, we have

$$
\alpha^{M_{2} M_{1}}=\alpha^{M_{2}\langle t\rangle\left(M_{1} \cap L\right)}=\alpha^{M_{2}\left(M_{1} \cap L\right)}=\alpha \cup \alpha^{t\left(M_{2} \cap L\right)\left(M_{1} \cap L\right)} .
$$

Since $M_{1} \cap L$ acts transitively on $\alpha^{t L} \backslash\{\alpha\}$ we get that $\alpha^{M_{2} M_{1}}=\Gamma_{0}$. Hence M_{1} and L normalize Γ_{0}. Note that $M_{2}=\left\langle M_{2} \cap L, M_{2} \cap M_{1}\right\rangle$ and so $M=\left\langle M_{1}, M_{2}, L\right\rangle=\left\langle M_{1}, L\right\rangle$. Thus M normalizes Γ_{0}, also $\Gamma=\Gamma_{0}$ and $|M / L|=22$. Put $B=\alpha^{M_{2}}$ and $\mathcal{B}=\left\{B^{m} \mid m \in M\right\}$. We claim that (Γ, \mathcal{B}) is a Steiner System of type $(3,6,22)$. Since L is doubly transitive on $\Gamma \backslash\{\alpha\}, M$ is triply transitive on Γ. Hence each set of three elements in Γ lies in e elements of \mathcal{B} where e is a positive integer independent of the set of three. Counting tuples (H, a, b, c) such that $H \in \mathcal{B}$ and a, b, c are pairwise different elements of H we get

$$
|\mathcal{B}| \cdot 6 \cdot 5 \cdot 4=22 \cdot 21 \cdot 20 \cdot e .
$$

As $|\mathcal{B}|=\left|M / M_{2}\right|=22 \cdot|L| /\left|M_{2}\right|=77$ we get $e=1$ and the claim is established.
Since $M \leq \operatorname{Aut}(\Gamma, \mathcal{B}) \cong \operatorname{Aut}\left(M_{22}\right)$ and $|M|=22 \cdot|L|=\left|M_{22}\right|$, we deduce that $M \cong M_{22}$. QED

Lemma 3.4 Let H be a group, M and D subgroups of H, and L a subgroup of M. Suppose that each of the following holds:
(i) $M \cong M_{22}, L \cong L_{3}(4)$ and $D \sim 2^{4} \operatorname{Sym}(6)$,
(ii) There exists $t \in N_{H}(L)$ with $t^{2} \in L$ such that $D \cap M \sim 2^{4} \operatorname{Sym}(5), D \cap M^{t} \sim 2^{4} \operatorname{Alt}(6)$, and $D \cap D^{t} \sim 2^{4} \operatorname{Sym}(4)$.
(iii) $H=\langle M, L, D, t\rangle$.

Then H is isomorphic to HS, $C_{2} \times H S$ or $\operatorname{Aut}(H S)$.
Proof: Let Γ be the graph whose vertices are the right cosets of M in H, and whose edges are the sets $\{M h, M t h\}$ for $h \in H$. Put $\alpha=M$ and $\beta=M t$.

Note that $\left\langle H_{\alpha}, H_{\{\alpha, \beta\}}\right\rangle=\langle M, L\langle t\rangle\rangle$ and $D=\left\langle D \cap M, D \cap M^{t}\right\rangle$. So $\left\langle H_{\alpha}, H_{\{\alpha, \beta\}}\right\rangle=H$ and Γ is connected.

Let $\triangle^{i}(\alpha)$ be the set of vertices at distance exactly i from α and put $\triangle(\alpha)=\Delta^{1}(\alpha)$. Then $|\triangle(\alpha)|=22, L=H_{\alpha \beta}$ and L acts transitively on $\triangle(\beta) \backslash\{\alpha\}$. Let $r \in D \cap M \backslash L$ and put $\gamma=\alpha^{\text {trt }}$. Then $\{\beta, \gamma\}=\{\alpha, \beta\}^{r t}$ and $\{\beta, \gamma\}$ is an edge. Since $r \in D$ and $D \cap M^{t}$ is normal in D, r normalizes $D \cap M^{t}$. Moreover, $t^{2} \in L \leq M$ and so r^{t} normalizes $D^{t} \cap M$. Thus $D^{t} \cap M \leq H_{\alpha} \cap H_{\alpha}{ }^{r^{t}}=H_{\alpha \gamma}$. In particular γ is not adjacent to α and thus $\gamma \in \triangle^{2}(\alpha)$.

Suppose that $H_{\alpha \gamma} \neq D^{t} \cap M$. As $D^{t} \cap M$ is maximal in M we get $H_{\alpha \gamma}=H_{\alpha}=H_{\gamma}$, and $\triangle(\alpha) \cap \triangle(\gamma)=\beta^{H \alpha}=\triangle(\alpha)=\triangle(\gamma)$, and since Γ is connected, $\Gamma=\{\alpha, \gamma\} \cup \triangle(\alpha)$. Thus L fixes exactly the vertices α, β and γ. Hence $\gamma=\gamma^{t}$ and $t \in H_{\gamma}=H_{\alpha}$, a contradiction. We have proved
$1 H$ acts transitively on geodesics of length 2, $H_{\alpha \gamma} \sim 2^{4}$ Alt (6), $\left|\triangle^{2}(\alpha)\right|=77,|\triangle(\alpha) \cap \triangle(\gamma)|=$ 6 and $H_{\alpha \beta \gamma} \sim 2^{4} \operatorname{Alt}(5)$.

By part (c) of Lemma 3.2, $H_{\alpha \beta \gamma}$ acts transitively on $\triangle(\gamma) \backslash \triangle(\alpha)$. Let $\delta \in \triangle(\gamma) \backslash \triangle(\alpha)$. Then $H_{\alpha \gamma \delta} \cong \operatorname{Alt}(6)$ and $H_{\alpha \beta \gamma \delta} \cong \operatorname{Alt}(5)$. Suppose that δ is at distance 2 from a. Then $\triangle^{3}(\alpha)=\emptyset$, thus $\Gamma=\{\alpha\} \cup \triangle(a) \cup \triangle^{2}(\alpha)$ and $|\Gamma|=100$. It is now easy to see that Γ is isomorphic to the Higman-Sims graph (see for example [19] for a formal proof). As $|H|=100 \cdot\left|M_{22}\right|=|H S|$, $H \cong H S$.

So we may assume from now on that δ is not in distance 2 from α. It follows that
$2 \delta \in \triangle^{3}(\alpha)$ and H acts transitively on geodesics of length 3.
By Lemma 3.2 part (h), $H_{\alpha \gamma \delta}$ has orbits of lengths 1,6 and 15 on $\triangle(\delta)$. Further by (2), $H_{\alpha \delta}$ acts transitively on $\triangle^{2}(\alpha) \cap \triangle(\delta)$. Since $\triangle(\beta) \cap \triangle(\delta) \subset \triangle^{2}(\alpha) \cap \triangle(\delta)$, we get $\left|\triangle^{2}(\alpha) \cap \triangle(\delta)\right|$ is 7,16 or 22 .

Suppose $\left|\triangle^{2}(\alpha) \cap \triangle(\delta)\right|=7$. Then $\left|H_{\alpha \delta}\right|=7 \cdot\left|H_{\alpha \gamma \delta}\right|$ and $H_{\alpha \delta} \cong \operatorname{Alt}(7)$. Now $H_{\alpha \gamma} \sim$ $2^{4} . \operatorname{Alt}(6)$ and $H_{\alpha \gamma} \cap H_{\alpha \delta}=H_{\alpha \gamma \delta} \cong \operatorname{Alt}(6)$. This contradicts Lemma 3.2, part (d).

Suppose that $\left|\triangle^{2}(\alpha) \cap \triangle(\delta)\right|=22$. Then $\left|H_{\alpha \delta}\right|=22 \cdot\left|H_{\alpha \gamma \delta}\right|=2^{4} \cdot 3^{2} \cdot 5 \cdot 11$ and $\left|H_{\alpha} / H_{\alpha \delta}\right|=56$, a contradiction to Lemma 3.2, part (i).

Thus $\left|\triangle^{2}(\alpha) \cap \triangle(\delta)\right|=16$ and $\left|H_{\alpha \delta}\right|=16 \cdot|\operatorname{Alt}(6)|$. Since $H_{\alpha \delta}$ acts non-trivially on the six points in $\triangle(d) \backslash \triangle^{2}(\alpha)$, we conclude that $H_{\alpha \delta}$ has a factor group $\operatorname{Alt}(6)$ or $\operatorname{Sym}(6)$. This implies $H_{\alpha \delta} \sim 2^{4} \operatorname{Alt}(6)$ and $\triangle(\delta) \backslash \triangle^{2}(\alpha)$ is a hexad in the H_{δ}-invariant Steiner system $\triangle(\delta)$. Since $H_{\alpha \gamma \delta}$ has orbits of lengths 1 and 15 on $\triangle^{2}(\alpha) \cap \triangle(\delta)$, the group $H_{\alpha \beta \gamma \delta}(\cong \operatorname{Alt}(5))$ fixes a unique point in $\triangle^{2}(\alpha) \cap \triangle(\delta)$, namely γ. Note that $H_{\alpha \beta \delta} \cong H_{\alpha \gamma \delta} \cong \operatorname{Alt}(6)$ and that $H_{\alpha \beta \delta}$ does not fix γ. So $H_{\alpha \beta \delta}$ fixes no point in $\triangle^{2}(\alpha) \cap \triangle(\delta)$ and by Lemma 3.2, part (g), $H_{\alpha \beta \delta}$ has orbits of lengths 6 and 10 on $\triangle^{2}(\alpha) \cap \triangle(\delta)$. Now parts (e) and (f) of Lemma 3.2 imply that $H_{\alpha \beta \gamma \delta}$ has orbits of lengths 1,5 and 10 on $\triangle^{2}(\alpha) \cap \triangle(\delta)$ and acts transitively on $\triangle(\delta) \backslash \triangle^{2}(a)$. Let $\varepsilon \in \triangle(d) \backslash \triangle^{2}(\alpha)$. Then $H_{\alpha \delta \varepsilon} \sim 2^{4} \operatorname{Alt}(5)$. Since $H_{\alpha \delta \varepsilon}$ lies in a unique subgroup 2^{4}. Alt (6) of H_{α} and since the stabilizer in H_{α} of points at distance 3 from α are $2^{4} \operatorname{Alt}(6)$'s, we get that δ is the unique point in $\triangle^{3}(\alpha)$ fixed by $H_{\alpha \delta \varepsilon}$. In particular $\varepsilon \notin \triangle^{3}(\alpha)$. We have proved
$3 H_{\alpha \delta} \sim 2^{4} \operatorname{Alt}(6),\left|\triangle^{3}(\alpha)\right|=77, \varepsilon \in \triangle^{4}(\alpha), H_{\alpha \delta \varepsilon} \sim 2^{4} A l t(5), H_{\alpha \beta \gamma \delta \varepsilon} \cong D_{10}$ and H acts transitively on geodesics of length 4.

By (1) and part (b) of Lemma 3.2, a subgroup $2^{4} \operatorname{Alt}(5)$ of $H_{\beta \gamma}$ which has orbits of lengths 1,1 and 20 on $\triangle(\beta)$ has orbits of lengths 1,5 and 16 on $\triangle(\gamma)$. Note that $\triangle(\delta) \backslash \triangle^{2}(a)$ is an orbit of length 16 for $H_{\alpha \delta \varepsilon}$ on $\triangle(\delta)$, and so $H_{\alpha \delta \varepsilon}$ has orbits of lengths 1,1 and 20 on $\triangle(\varepsilon)$. Since $H_{\alpha \varepsilon}$ acts transitively on $\triangle^{3}(\alpha) \cap \triangle(\varepsilon)$ and since $\triangle(\gamma) \cap \triangle(\varepsilon) \subset \triangle^{3}(\alpha) \cap \triangle(\varepsilon)$, we get that $\left|\triangle^{3}(\alpha) \cap \triangle(\varepsilon)\right|$ is 21 or 22 . Suppose that $\left|\triangle^{3}(\alpha) \cap \triangle(\varepsilon)\right|=22$, then $\left|H_{\alpha \varepsilon}\right|=22 \cdot\left|H_{\alpha \delta \varepsilon}\right|=$ $22 \cdot\left|2^{4} \operatorname{Alt}(5)\right|$ and thus $\left|H_{\alpha} / H_{\alpha \varepsilon}\right|=21$, a contradiction. Thus $\left|\triangle^{3}(\alpha) \cap \triangle(\varepsilon)\right|=21$ and $\triangle(\varepsilon) \backslash \triangle^{3}(\alpha)=\{\eta\}$ for some η. Thus $H_{\alpha \varepsilon}=H_{\alpha \varepsilon \eta} \cong L_{3}(4)$. Thus $\left|\triangle^{4}(\alpha)\right|=22$ and ε is the unique point in $\triangle^{4}(\alpha)$ fixed by $H_{\alpha \varepsilon \eta}$ and so $\eta \notin \triangle^{4}(\alpha)$. Hence
$4 H_{\alpha \varepsilon} \cong L_{3}(4),\left|\triangle^{4}(\alpha)\right|=22, \eta \in \triangle^{5}(\alpha), H_{\alpha \varepsilon \eta}=H_{\alpha \varepsilon}$ and H is transitive on geodesics of length 5.

Since $H_{\alpha \eta}$ is transitive on $\triangle^{4}(\alpha) \cap \triangle(\eta)$ and $\triangle(\delta) \cap \triangle(\eta) \subset \triangle^{4}(\alpha) \cap \triangle(\eta)$ we conclude that $\triangle^{4}(\alpha) \cap \triangle(\eta)=\triangle(\eta)$ and $H_{\alpha \eta}=H_{\alpha} \cong M_{22}$. Thus

$$
5 H_{\alpha \eta}=H_{\alpha}, \triangle^{5}(\alpha)=\{\eta\}, \Gamma=\sum_{0 \leq i \leq 5} \triangle^{i}(\alpha) \text { and }|\Gamma|=200 .
$$

Let ϕ be the map that sends a vertex μ in Γ to the unique point at distance 5 from μ. Then ϕ is obviously a bijection and $\left(\mu^{\phi}\right)^{g}=\left(\mu^{g}\right)^{\phi}$ for all μ in Γ and g in $\operatorname{Aut}(\Gamma)$. In particular $\left\{\alpha^{\phi}, \beta^{\phi}\right\}$ is the set of fixed-points of $H_{\alpha \beta}$ on Γ. So β^{ϕ} is adjacent to α^{ϕ} and therefore ϕ is a graph automorphism of Γ. Put $\Gamma_{0}=\left\{\left\{\mu, \mu^{\phi}\right\} \mid \mu \in \Gamma\right\}$ and let $\left\{\mu, \mu^{\phi}\right\}$ be adjacent to $\left\{\lambda, \lambda^{\phi}\right\}$ if μ is adjacent to λ or λ^{ϕ}. Then $\left|\Gamma_{0}\right|=100, M$ has orbits of lengths 1,22 and 77 on Γ_{0} and H acts transitively on Γ_{0}. So as above Γ_{0} is the Higman-Sims graph and $\operatorname{Aut}\left(\Gamma_{0}\right) \cong \operatorname{Aut}(H S)$. Let N be the kernel of the action of $\operatorname{Aut}(\Gamma)$ on Γ_{0}. We claim that $N=\{1, \phi\}$. Indeed, let $n \in N$. Then $\alpha^{n} \in\left\{\alpha, \alpha^{\phi}\right\}$ and replacing n by $n \phi$ if necessary we may assume that $\alpha^{n}=\alpha$. Since β^{ϕ} is not adjacent to α, we have $\beta^{n}=\beta$. So n fixes the neighbors of all its fixed-points and since Γ is connected, we conclude that $n=1$. Thus $N=\{1, \phi\}$ and $\operatorname{Aut}(\Gamma) \cong C_{2} \times \operatorname{Aut}(H S)$. Further, $|H|=200 \cdot|M|=2 \cdot|H S|$ and so $H \cong \operatorname{Aut}(H S)$ or $C_{2} \times H S$ and the lemma is proved. QED

Lemma 3.5 (a) G has a subgroup T of order 3 with $\left.N_{G}(T) \sim S U_{6}(5) \circ S U_{3}(5)\right) . \operatorname{Sym}(3)$.
(b) Put $U=N_{G}(T), U_{1}=[V, T]$ and $U_{2}=C_{V}(T)$. Then $V=U_{1} \oplus U_{2}$, moreover, U_{1} and U_{2} are irreducible as U modules, $U_{1} \cong W_{6} \otimes_{G F(25)} W_{3}$ and $G F(25) \otimes_{G F(5)} U_{2} \cong \bigwedge^{3} W_{6}$, where W_{i} is the natural i - dimensional $G F(25)$ - module for $S U_{i}(5)$, for $i=3,6$.
(c) $N_{G}\left(U_{1}\right)=U$.

Proof: It is clear from the extended Dynkin diagram of type E_{7} that 2. $E_{7}(\mathbf{K})$ has a subgroup $H \cong S L_{3}(\mathbf{K}) \circ S L_{6}(\mathbf{K})$. Moreover, the central involution of the Weyl group induces a graph automorphism on both of the factors and so an application of Lang's theorem yields a subgroup $\left(S U_{6}(5) \circ S U_{3}(5)\right) \cdot \operatorname{Sym}(3)$ in $E_{7}(5)$. Using the embedding of $\mathbf{K}^{1+56} 2 . E_{7}(\mathbf{K})$ in $E_{8}(\mathbf{K})$, the Steinberg relations and weight theory it is easy to check that the 56 -dimensional $\mathbf{K} E_{7}(\mathbf{K})$ - module is as an H-module the direct sum of $X_{3} \otimes X_{6}, X_{3}^{*} \otimes X_{6}^{*}$ and $\wedge^{3} X_{6}$ where X_{i} is a natural module for $S L_{i}(\mathbf{K}), i=3,6$. As H is a maximal connected closed subgroup of $2 . E_{7}(\mathbf{K})$ and is of index two in its normalizer, all the statements of the lemma are now readily verified.

Lemma 3.6 There exists an involution \bar{f} in $\bar{U} \backslash \bar{U}^{\prime}$ such that $C_{\bar{U}}(\bar{f}) \sim L_{4}(5) .2^{2} \times \operatorname{Sym}(5) \times\langle\bar{f}\rangle$. Moreover, for any such \bar{f},

$$
C_{\bar{G}}(\bar{f}) \sim\left(2 \times L_{8}(5)\right) \cdot 2
$$

and $C_{\bar{U}}(\bar{f})$ acts transitively on the elementary abelian subgroups of order 16 contained in the normal subgroup $L_{4}(5)$ in $C_{\bar{U}}(f)$.

Proof: It is easy to verify that $\operatorname{Aut}\left(U_{6}(5)\right)$ has three classes of involutions that do not induce a diagonal automorphism on $U_{6}(5)$. The derived groups of the respective centralizers in $U_{6}(5)$ are $P S p_{6}(5), D_{3}(5)$ and ${ }^{2} D_{3}(5)$, and the first two of these three classes of involutions lie in the same coset of $\operatorname{Inn}\left(U_{6}(5)\right)$.

Since $\Omega_{6}^{-}(5)\left(\cong 2 .^{2} D_{3}(5)\right)$ acts absolutely irreducibly on the exterior cube of its natural module, we conclude that the centralizer of $\Omega_{6}^{-}(5)$ on the 20 -dimensional module lies in the center of the full linear group acting on the 20 -space. It follows that $\bar{U} \backslash \bar{U}^{\prime}$ contains no involution centralizing a ${ }^{2} D_{3}(5)$ in $U_{6}(5)$ and so contains an involution centralizing a $D_{3}(5)$ in $U_{6}(5)$.

Let \bar{f} be any such involution. Note that the normalizer of $D_{3}(5)$ in $U_{6}(5)$ is $\mathrm{PSO}_{6}{ }^{-}(5)$ extended by an involution which multiplies the quadratic form associated to $\mathrm{PSO}_{6}{ }^{-}$(5) by a fourth root of unity. So $C_{U_{6}(5)}(\bar{f}) \sim L_{4}(5) .2^{2}$ and the two classes of elementary abelian subgroups of order 16 in $C_{U_{6}(5)}(\bar{f})^{\prime}$ are fused in $C_{U_{6}(5)}(\bar{f})$. Moreover, $\operatorname{Aut}\left(U_{3}(5)\right)$ has exactly one class of involutions outside $\operatorname{Inn}\left(U_{3}(5)\right)$ and the corresponding centralizers are $\operatorname{Sym}(5)$'s. Therefore $C_{\bar{U}^{\prime}}(\bar{f}) \sim L_{4}(5) .2^{2} \times \operatorname{Sym}(5)$.

It remains to determine $C_{\bar{G}}(\bar{f})$. Note that \bar{G} has three classes of involutions whose centralizers have shapes $2 .\left(L_{2}(5) \times D_{6}(5)\right) .2,\left(C_{2} \times E_{6}(5)\right) .2$, and $\left(C_{2} \times L_{8}(5)\right) .2$. Under the actions of the derived groups of these centralizers V decomposes into direct sums of irreducible modules of dimensions 24 and $32 ; 1,1,27$, and 27 ; and 28 and 28 , respectively. On the other hand, from the action on the 20 - and 36 -spaces, we know that V is the direct sum of irreducible modules of dimensions $18,18,10$ and 10 for $C_{U}(f)^{\prime}$. It follows that $C_{\bar{G}}(\bar{f}) \sim\left(C_{2} \times L_{8}(5)\right) .2$, and the lemma is proved.

QED
From now on let T, U and f be as in Lemma 3.6. Note that f^{2} is the central involution of G. Put $N=C_{U}(f), F=\langle f\rangle$ and $R=N_{G}(F)$. Then $\bar{R}=C_{\bar{G}}(\bar{f})$ and so by Lemma 3.6 $R \sim C_{4} \circ 2 \cdot L_{8}(5) .2$. Let \widehat{R}^{\prime} be a group with $\widehat{R}^{\prime} \cong S L_{8}(5)$ so that \widehat{R}^{\prime} has R^{\prime} as a quotient group. For X in R^{\prime}, let \widehat{X} be the inverse image of X in \widehat{R}^{\prime}. As $Z\left(\bar{N}^{\prime}\right)=1$, it is easy to see that the natural 8 -dimensional module for \widehat{R}^{\prime} is, as a module for \hat{N}^{\prime}, the tensor product of a 4 -dimensional module for $S L_{4}(5)$ and a 2 -dimensional module for $S L_{2}(5)$. Since elements in $G L_{4}(5) \otimes G L_{2}(5) \leq G L_{8}(5)$ have determinant plus or minus one, \bar{R}^{\prime} has two classes of subgroups isomorphic to $L_{4}(5) \times L_{2}(5)$. Since $R=N R^{\prime}, R$ fixes these classes. Moreover, as the element inverting f can be chosen to invert a Cartan subgroup of R^{\prime}, R does not induce an outer diagonal automorphism on R^{\prime}.

The character tables of $L_{3}(4)$ and its covers (see [3]) show that there is a group of shape 4. $L_{3}(4)$ which has a faithful irreducible character χ of degree 8 . Note that R contains a subgroup L of shape $2 . L_{3}(4)$. We plan to extend L to a subgroup M_{22} and then to a subgroup $H S$ of G. Let S be a Sylow 2-subgroup of L, let $B=N_{L}(S)$ and let A_{1} and A_{2} be the two elementary abelian groups of order 2^{5} in S. Note that \widehat{L} is perfect and that \widehat{A}_{i} is the central product of a cyclic group of order 4 with an extra-special group of order 2^{5}. Moreover
a natural 8-dimensional module for \hat{R}^{\prime} is as an \widehat{A}_{i}-module the direct sum of two isomorphic irreducible modules of dimension 4. Thus $C_{\widehat{R}^{\prime}}\left(\widehat{A}_{i}\right) \cong G L_{2}(5)$ and we can choose L, S and A_{1}, so that \bar{A}_{1} is contained in the normal $L_{4}(5)$ in \bar{N}. It follows that $N_{\bar{R}^{\prime}}\left(\bar{A}_{1}\right) \leq N$ and has shape $2^{4} \operatorname{Sym}(6) \times \operatorname{Sym}(5)$. Let \bar{B}_{2} be the projection of A_{2} onto the $L_{4}(5)$ in N. Let \bar{B}_{2} be the projection of A_{2} onto the $L_{4}(5)$ in N. Put $L_{i}=N_{L}\left(A_{i}\right)$. Our goal is to show that both L_{i} 's can be extended to a subgroup $2^{5} \operatorname{Sym}(6)$ in U. Inside $2^{5} \operatorname{Sym}(6)$ we will choose appropriate subgroups $2^{5} \operatorname{Sym}(5)$ and $2^{5} \operatorname{Alt}(6)$ which will allow us to apply Lemma 3.3 and Lemma 3.4 to find M_{22} and $H S$ in \bar{G}.

Lemma 3.7 In R^{\prime}, the subgroup A_{2} is conjugate to B_{2} but not to A_{1}.
Proof: Put $C_{i}=O^{2}\left(C_{\widehat{R}^{\prime}}\left(\widehat{A}_{i}\right)\right)$. Then $C_{i} \cong S L_{2}(5)$. Suppose that $\left[S, C_{1}\right]=1$. Then $C_{1} \leq$ $C_{\widehat{R}^{\prime}}\left(\widehat{A}_{2}\right)$ and $C_{1}=C_{2}$. Since $L=\left\langle L_{1}, L_{2}\right\rangle$, the group L normalizes C_{1}, a contradiction. Hence $\left[S, C_{1}\right] \neq 1$ and similarly $\left[S, C_{2}\right] \neq 1$. As $B / A_{i} \cong \operatorname{Alt}(4)$, we have $B=O^{2}(B) A_{i}$. Since $\operatorname{Out}\left(C_{i}\right)$ is a 2 -group and A_{i} centralizes C_{i} we conclude that S induces inner automorphisms on C_{i}. Hence S normalizes a unique subgroup Q_{8} in C_{i}. Denote this Q_{8} by Q_{i} and note that S induces inner automorphisms on Q_{1}. In particular $\left[\widehat{A}_{2}, Q_{1}\right] \leq Z\left(Q_{1}\right) \cdot Z\left(\widehat{R}^{\prime}\right)$. Thus Q_{1} induces inner automorphisms on \widehat{A}_{2}. Put $R_{i}=Q_{1} \widehat{A}_{i}$ (where we really mean Q_{1} and not Q_{i}). Then R_{1} and R_{2} are both the central product of an extra-special group of order 2^{7} with a cyclic group of order 4. Put $X=C_{R_{2}}\left(\widehat{A}_{2}\right)$. It follows that $R_{2}=X \widehat{A}_{2}$, that S normalizes X and that X contains a Q_{8} invariant under S. Thus $Q_{2} \leq X, R_{2}=Q_{2} \widehat{A}_{2}=Q_{2} B_{2}$ and $\hat{B}_{2}=C_{R_{2}}\left(Q_{1}\right)$.

Note that $N_{\widehat{R}^{\prime}}\left(R_{1}\right) / R_{1} \cong S p_{6}(2)$. Note \bar{A}_{1} and \bar{B}_{2} are both nondegenerate 4 -spaces in the 6 -dimensional symplectic space $R_{1} / Z\left(R_{1}\right)$ (where the symplectic form is given by the commutator map). Hence by Witt's theorem, A_{1} and B_{2} are conjugate under $N_{\widehat{R}^{\prime}}\left(R_{1}\right)$ proving the first statement of the lemma.

Since $C_{\widehat{R}^{\prime}}\left(\widehat{A}_{i}\right)$ acts transitively on the $Q_{8}{ }^{\prime}$ s in $C_{\widehat{R}^{\prime}}\left(\widehat{A}_{i}\right)$ and since $N_{\widehat{R}^{\prime}}\left(A_{1}\right) \cap N_{\widehat{R^{\prime}}}\left(Q_{1}\right)$ induces the full automorphism group of Q_{1} on Q_{1}, we conclude that A_{1} and B_{2} are conjugate in R^{\prime} if and only if they are conjugate under $Y=C_{\widehat{R}^{\prime}}\left(Q_{1}\right)$. Note that Y is isomorphic to the subgroup of index two in $G L_{4}(5)$. Since B normalizes Y and $\left[A_{1}, B\right]=A_{1}, A_{1}$ and hence also B_{2} are contained in Y^{\prime}. Put $S_{0}=A_{1} B_{2}$. Since A_{1} and B_{2} normalize each other we conclude that S_{0} is a Sylow 2 -subgroup of $Y / Z(Y)$ and that A_{1} and B_{2} are the two maximal elementary abelian subgroups of S_{0}. It follows that A_{1} and B_{2} are not conjugate in Y^{\prime}. Moreover, $\operatorname{Out}\left(Y^{\prime}\right) \cong D_{8}, \operatorname{Out}\left(Y^{\prime}\right)$ acts on $\left\{A_{1}^{Y^{\prime}}, B_{2}^{Y^{\prime}}\right\}$ and $\operatorname{Out}\left(Y^{\prime}\right)^{\prime}$ fixes $A_{1}^{Y^{\prime}}$ and $B_{2}^{Y^{\prime}}$. As the group of outer automorphisms of Y^{\prime} induced by Y is $\operatorname{Out}\left(Y^{\prime}\right)^{\prime}, A_{1}$ and B_{2} are not conjugate in Y. So A_{1} and B_{2} are not conjugate in R^{\prime} and lemma is established.

QED

Lemma 3.8 $N_{\bar{R}^{\prime}}\left(\bar{A}_{1}\right)$ acts transitively on $L_{3}(4)$'s in \bar{R}^{\prime} containing \bar{A}_{1} and on subgroups 2^{4} Alt (5) in $N_{\bar{R}^{\prime}}\left(\bar{A}_{1}\right)$ which can be extended to an $L_{3}(4)$ in \bar{R}^{\prime}.

Proof: Recall that $N_{\bar{R}^{\prime}}\left(\bar{A}_{1}\right) \sim 2^{4} \operatorname{Sym}(6) \times \operatorname{Sym}(5)$ and, as $\left[S, C_{i}\right] \neq 1$ in the notation of the previous lemma, any $2^{4} \operatorname{Alt}(5)$ in $N_{\bar{R}^{\prime}}\left(\bar{A}_{1}\right)$, which can be extended to a $L_{3}(4)$ in \bar{R}^{\prime}, projects non-trivially on the $\operatorname{Sym}(5)$. Hence $N_{\bar{R}^{\prime}}\left(\bar{A}_{1}\right)$ acts transitively on such subgroups. Note that \bar{L}_{1} is such a subgroup and that $L_{1}^{*} \stackrel{\text { def }}{=} N_{\bar{R}^{\prime}}\left(\bar{L}_{1}\right) \sim 2^{4} \operatorname{Sym}(5)$. Put $\bar{W}=N_{\bar{R}^{\prime}}\left(\bar{L}_{1}\right) \cap N_{\bar{R}^{\prime}}\left(\bar{A}_{2}\right)$. As \bar{A}_{1} and \bar{A}_{2} are the only maximal elementary abelian subgroups of $\bar{S}=\bar{A}_{1} \bar{A}_{2}$, we have
$N_{L_{1}^{*}}\left(A_{2}\right)=N_{L_{1}^{*}}(S)$. Since S / A_{1} is the Sylow 2-subgroup of L_{1} / A_{1}, we have $\bar{W} \sim 2^{4} \operatorname{Sym}(4)$. We claim that W is contained in a $2^{4} \operatorname{Alt}(6) \times \operatorname{Sym}(5)$ subgroup of $N_{\bar{R}^{\prime}}\left(\bar{A}_{1}\right)$. For this let i be an involution in $\bar{W} \backslash \bar{L}_{1}$. Then it is enough to show that the inverse image of $\left[\widehat{A}_{2}, i\right]$ is not elementary abelian. Let C_{2} be the projection of A_{2} onto the normal $\operatorname{Sym}(5)$ in \bar{N}. Then $\left[\widehat{B}_{2}, i\right]$ is elementary abelian, while $\left[\widehat{C}_{2}, i\right]$ is not. So also $\left[\widehat{A}_{2}, i\right]$ is not elementary abelian, and the claim is proved.

It is now easy to see that $\bar{W} \cap \bar{L}_{1}$ is contained in exactly two subgroups $2^{4} \operatorname{Alt}(5)$ of $N_{\bar{R}^{\prime}}\left(\bar{A}_{2}\right)$ and these two subgroups are interchanged by W. Since any $L_{3}(4)$ in \bar{R}^{\prime} containing \bar{L}_{1} is generated by \bar{L}_{1} and a $2^{4} \operatorname{Alt(5)}$ in $N_{\bar{R}^{\prime}}\left(\bar{A}_{2}\right)$ containing $\bar{W} \cap \bar{L}_{1}$ the lemma is proved. QED

Lemma 3.9 Put $L_{0}=N_{R}(L)$. Then $\left|L_{0} / L F\right|=2$ and A_{1} and A_{2} are conjugate in L_{0}.
Proof: Since $\operatorname{Out}\left(R^{\prime} / Z\left(R^{\prime}\right)\right) \cong D_{8}$, since R^{\prime} has four orbits on $A_{1}^{\operatorname{Aut}\left(R^{\prime}\right)}$ and since $P G L_{8}(5)$ acts transitively on those four orbits, the normalizer of any such orbit in $\operatorname{Out}\left(R^{\prime}\right)$ is a group of order 2 that is not contained in the center of $\operatorname{Out}\left(R^{\prime}\right)$. It follows that R fixes two of these orbits and interchanges the remaining two. Moreover, by Lemma 3.8, $L_{8}(5)$ has four orbits on $\left(A_{1}, L\right)^{\operatorname{Aut}\left(R^{\prime}\right)}$ and, by Lemma 3.7, each orbit of subgroups $L_{3}(4)$ in \bar{R}^{\prime} leads to two orbits of R^{\prime} on $\left(A_{1}, L\right)^{\operatorname{Aut}\left(R^{\prime}\right)}$. It follows that \bar{R}^{\prime} has exactly two classes of subgroups $L_{3}(4)$. Suppose R interchanges those two classes. Then R could not normalize any of the orbits of R^{\prime} on $A_{1}^{\operatorname{Aut}\left(R^{\prime}\right)}$, a contradiction. So $\left|L_{0} / L F\right|=2$. Suppose that A_{1} and A_{2} are not conjugate in L_{0}. Then they are also not conjugate in R. By Lemma 3.7, we conclude that A_{1} and B_{2} are not conjugate in R, and this contradicts Lemma 3.6. So A_{1} and A_{2} must be conjugate in L_{0}. QED

Lemma 3.10 Put $X=N_{G}\left(A_{1}\right)$. Then $X \leq U$ and $X \sim 6 .\left(2^{4} .3^{4} . \operatorname{Sym}(6) \times U_{3}(5)\right) . \operatorname{Sym}(3)$.
Proof: Let $X_{0}=N_{U}\left(A_{1}\right)$. By the action of A_{1} on the natural 6-dimensional $G F(25)$-module W for $S U_{6}(5)$ we see that, modulo the normal $S U_{3}(5)$ in U, X_{0} is a full monomial subgroup of $U_{6}(5) . \operatorname{Sym}(3)$. It follows that $X_{0} \sim 6 .\left(2^{4} .3^{4} . \operatorname{Sym}(6) \times U_{3}(5)\right) . \operatorname{Sym}(3)$. Moreover, X_{0} has two orbits Σ_{1} and Σ_{2} on the hyperplanes in A_{1} which do not contain $Z(G)$. Choose notation so that $\left|\Sigma_{1}\right|=6$ and $\left|\Sigma_{2}\right|=10$. Recall that $V \cong U_{1} \oplus U_{2}$ where U_{1} and U_{2} are defined and described in Lemma 3.5.

Let H_{1}, H_{2}, H_{3} be three different elements of Σ_{1}. Then its is easy to check that $H_{1} \cap H_{2} \not 又$ H_{3}. As $W=\bigoplus_{H \in \Sigma_{1}}\left(C_{W}(H)\right)$, this implies that H_{1} acts fixed-point freely on U_{2}. Since U_{1} is a direct sum of copies of W as an A_{1}-module, we get $\bigoplus_{H \in \Sigma_{1}} C_{V}(H)=U_{1}$.

Also $C_{V}(H)$ is either 6 -dimensional, if $H \in \Sigma_{1}$, or $20 / 10=2$-dimensional, if $H \in \Sigma_{2}$. Thus $N_{G}\left(A_{1}\right)$ normalizes Σ_{1} and so also U_{1}. Since U is maximal in G, we conclude that $X \leq U$. Hence $X=X_{0}$.

Lemma 3.11 There exists $t \in N_{R}(L)$ and $D \leq U$ such that $t^{2} \in L, A_{1}^{t}=A_{2}, L_{1} \leq D$, $D \sim 2^{5} \operatorname{Sym}(6), t$ normalizes $N_{D}(B)$ and t does not normalize $N_{D^{\prime}}(B)$.

Proof: Let $Y=X / A_{1}$. Then $Y \sim 3 .\left(3^{4} \operatorname{Sym}(6) \times U_{3}(5)\right) S y m(3)$. Let K be the image of L_{1} in Y. Then $K \cong \operatorname{Alt}(5)$ and we are looking for subgroups $\operatorname{Sym}(6)$ of Y containing K. Let
Y_{1} be the normal subgroup $3.3^{4} \operatorname{Sym}(6)$ of Y, let Y_{2} be the normal subgroup $S U_{3}(5)$ of Y and let K_{i} be the projection of K onto Y_{i}. Then Y acts transitively on subgroups $3 \cdot \operatorname{Alt}(6)$ (the triple cover of $\operatorname{Alt}(6))$ and transitively on subgroups $\operatorname{Alt}(5)$ in Y_{2}. Moreover, the normalizer of an $\operatorname{Alt}(5)$ in $U_{3}(5) . \operatorname{Sym}(3)$ is a $C_{2} \times \operatorname{Sym}(5)$ and the normalizer of an $\operatorname{Alt}(6)$ is $\operatorname{Aut}(\operatorname{Alt}(6))$. It follows that K_{2} can be embedded into exactly two subgroups $3 \cdot \operatorname{Alt}(6)$ of Y_{2} and f interchanges these two $3 \cdot \operatorname{Alt}(6)$'s. Furthermore Y has one orbit on subgroups $3 \cdot \operatorname{Alt}(6)$ in Y_{1} and one orbit on subgroups $\operatorname{Alt}(5)$ in Y_{1} for which \bar{A}_{1} is a natural $S L_{2}(4)$-module. (Note here that $3 \cdot \operatorname{Alt}(6)$ exists in Y_{1}, since $3^{4} \operatorname{Alt}(6)$ has 9 classes of $\operatorname{Alt}(6)$'s while $3^{1+4} \operatorname{Alt}(6)$ has only 3 classes.) Now $Y / Y_{2} \sim 3^{4+1}\left(C_{2} \times \operatorname{Sym}(6)\right)$. The normalizer of the image of K in Y / Y_{2} is a $C_{2} \times \operatorname{Sym}(5)$ and the normalizer of the image of a $3 \cdot \operatorname{Alt}(6)$ of Y_{1} in Y / Y_{2} is a $\operatorname{Sym}(6)$. It follows that K_{1} can be embedded into exactly two subgroups $3 \cdot \operatorname{Alt}(6)$ of Y_{1} and f interchanges these two $3 \cdot \operatorname{Alt}(6)$'s. Let D_{i} be any of the two subgroups $3 \cdot \operatorname{Alt}(6)$ in Y_{i} with $K_{i} \leq D_{i}$. Then there exists precisely one subgroup A in $D_{1} D_{2}$ such that $K \leq A, A=A^{\prime}$ and $A / Z(A) \cong \operatorname{Alt}(6)$. Similarly there exists precisely one subgroup \widehat{A} in $D_{1}^{f} D_{2}$ such that $K \leq \widehat{A}, \widehat{A}=\widehat{A}^{\prime}$ and $\widehat{A} / Z(\widehat{A}) \cong \operatorname{Alt}(6)$. We claim that exactly one of A and \widehat{A} is an $\operatorname{Alt}(6)$, while the other is the triple cover. Indeed, let x_{i}, y_{i} be elements of order 3 in D_{i} such that $\left\langle x_{1} x_{2}, y_{1} y_{2}\right\rangle Z(Y)$ is a Sylow 3-subgroup of $A Z(Y)$. Then $\left\langle x_{1}{ }^{f} x_{2}{ }^{f}, y_{1} y_{2}\right\rangle Z(Y)$ is a Sylow $3-$ subgroup of $\widehat{A} Z(Y)$. Note that

$$
\begin{equation*}
\left[x_{1} x_{2}, y_{1} y_{2}\right]=\left[x_{1}, y_{1}\right]\left[x_{2}, y_{2}\right] \quad \text { and } \quad\left[x_{1}{ }^{f} x_{2}{ }^{f}, y_{1} y_{2}\right]=\left[x_{1}, y_{1}\right]^{f}\left[x_{2}, y_{2}\right] . \tag{*}
\end{equation*}
$$

Since $\left[x_{1}, y_{1}\right]$ and $\left[x_{2}, y_{2}\right]$ are both contained in $Z(Y)$ and unequal to 1 and since f inverts $Z(Y)$, we see that exactly one of the two expressions in (*) is equal to 1 . This proves our claim.

Choose notation so that $A \cong \operatorname{Alt}(6)$. From what we proved so far it follows that A and A^{f} are the only two $\operatorname{Alt}(6)$ subgroups in Y which contain K. It is easy to see that $N_{Y}(K) / Z(Y) \cong C_{2} \times \operatorname{Sym}(5)$. Furthermore, there exists a subgroup of index 2 in $N_{Y}(K)$ which normalizes A. Since f does not normalize A, this subgroup is, modulo the center of Y, isomorphic to $\operatorname{Sym}(5)$. Put $E=A\left(N_{Y}(K) \cup N_{Y}(A)\right)$ and let \widehat{D} be the inverse image of E in X. Then $E / Z(Y) \cong \operatorname{Sym}(6)$ and $\widehat{D} / T \cong 2^{5} \operatorname{Sym}(6)$. (Recall that T is the cyclic group of order three with $U=N_{G}(T)$.)

By Lemma 3.9, there exists $t \in N_{R}(L)$ with $A_{1}{ }^{t}=A_{2}$. Choose t so that t normalizes B. Then $t^{2} \in B F$ and since t inverts F, we have $t^{2} \in B$. In particular $t^{2} \in L$. Note that A_{1} and A_{2} are the only elementary abelian groups of order 2^{5} in B. Put $J=N_{G}(B) \cap N_{G}\left(A_{1}\right)$. As $t \in N_{G}(B) \backslash J$, we conclude that J is of index two in $N_{G}(B)$. For $Q \subset N_{G}(B)$ let Q^{*} be the image of Q in $N_{G}(B) / B$. Since $J \leq X$, it is easily verified that J^{*} is an elementary abelian group of order 9 extended by an elementary abelian group of order 8. Pick a in $N_{\widehat{D}^{\prime}}(B) \backslash B T$ and b in $N_{\widehat{D}}(B)$ with $[a, B] \leq A_{1}$ and such that a^{*} and b^{*} are involutions. Since $U_{3}(5)$ contains no $\operatorname{Sym}(6), b$ induces an outer automorphism on Y_{2}. The same is true for f and so b and f both invert $O_{3}\left(J^{*}\right)$. Note that a centralizes T and inverts $O_{3}\left(J^{*}\right) / T$. As A_{1} is in the $S U_{6}(5)$ subgroup of U but A_{2} is not, the element t is not in U. Since $T \leq O_{3}(J)$, we conclude $O_{3}(J)^{*}=T^{*} T^{* t}=O_{3}\left(J^{*}\right)$. It follows that $\left\langle a^{*}, t^{*}\right\rangle$ acts as a D_{8} on $O_{3}\left(J^{*}\right)$. Since $\left\langle a^{*}, t^{*}\right\rangle$ is a dihedral group, we conclude that $\left\langle a^{*}, t^{*}\right\rangle \cong D_{8}$. Let $x^{*}=\left[a^{*}, t^{*}\right]$.

We claim that $x^{*} T^{*}=b^{*} T^{*}$. Indeed, x^{*} inverts $O_{3}\left(J^{*}\right)$ and $\left|C_{N_{G}(B)^{*}}\left(O_{3}(J)^{*}\right) / O_{3}\left(J^{*}\right)\right|=2$. Hence x^{*} lies in the same coset of $O_{3}\left(J^{*}\right)$ as f^{*} or as b^{*}. Since $N_{\bar{R}^{\prime}}\left(A_{1}\right) \sim 2^{4} . \operatorname{Sym}(6) \times \operatorname{Sym}(5)$, $N_{R^{\prime}}(B)^{*} \cong C_{2} \times C_{2}$. Furthermore f and t are in $N_{R}(B)$ and so $N_{R}(B)^{*}$ is a Sylow $2-$ subgroup
of $N_{G}(B)^{*}$. Since $f \notin R^{\prime}$ we conclude that $f^{*} \notin N_{G}(B)^{* \prime} O_{3}\left(J^{*}\right)=\left\langle x^{*}\right\rangle O_{3}\left(J^{*}\right)$. So $x^{*} O_{3}\left(J^{*}\right)=$ $b^{*} O_{3}\left(J^{*}\right)$. Moreover, a^{*} centralizes b^{*} and x^{*} and hence $b^{*} T^{*}=C_{x^{*} O_{3}\left(J^{*}\right)}\left(a^{*}\right)=x^{*} T^{*}$.

In particular, we can choose b so that $b^{*}=x^{*}=\left[a^{*}, b^{*}\right]$. Put $D=\widehat{D}^{\prime}\langle b\rangle$. Then $\bar{D} \sim$ $2^{4} \operatorname{Sym}(6)$. In addition, $N_{D}(B)=B\langle a, b\rangle$ and so t normalizes $N_{D}(B)$. On the other hand, $N_{D^{\prime}}(B)=B\langle a\rangle$ and so $N_{D^{\prime}}(B)^{t}=B\langle a b\rangle \neq N_{D^{\prime}}(B)$.

QED

Proof of Theorem 3.1:

We are now able to construct $H S$ and M_{22} in \bar{G}. For this choose L, t and D as in Lemma 3.11 and put $M_{1}=N_{D}\left(L_{1}\right)$. By Lemma $3.10, N_{D^{\prime t}}(B)$ is contained in D, but not in D^{\prime}. Since $N_{D^{\prime t}}(B) / O_{2}(D) \cong \operatorname{Sym}(4)$, we conclude that $N_{D^{\prime t}}(B)$ is contained in M_{1}. Note that $L_{1}^{t}=L_{2}$ and so $L_{2} \leq D^{\prime t}$. Put $M_{2}=D^{\prime t}$. Then $\bar{M}_{1} \sim 2^{4} \operatorname{Sym}(5)$ and $\bar{M}_{2} \sim 2^{4} \operatorname{Alt}(6)$. Moreover,

$$
M_{1} \cap L=L_{1}, \quad M_{2} \cap L=L_{2}, \quad \text { and } \quad M_{1} \cap M_{2}=N_{D^{\prime t}}(B)
$$

Put $M=\left\langle L, M_{1}, M_{2}\right\rangle$. Then by Lemma $3.3, \bar{M} \cong M_{22}$. Now $D \cap M=M_{1}, D^{t} \cap M=M_{2}$ and $D \cap D^{t}=N_{D}(B)$. Let $H=\langle D, L, t\rangle$. Then by Lemma $3.4, \bar{H} \cong H S, C_{2} \times H S$ or Aut $(H S)$. Thus in any case $\bar{H}^{\prime} \cong H S$ and Theorem 3.1 is proved. The dedicated reader might check that actually \bar{H} itself is already the Higman-Sims group.

4 A Computational proof that HS is a Subgroup of $\mathrm{E}_{7}(5)$.

In this section we give a computer dependent proof that $H S<E_{7}(5)$. Our strategy is to use a machine calculation to prove that $H S$ acts (absolutely) irreducibly on a 133 -dimensional, 5 -modular, Lie algebra. We then apply the extensive theory of modular Lie algebras to deduce that the Lie algebra is simple, that it is a classical modular Lie algebra of type E_{7} over $G F(5)$, and thence $H S<E_{7}(5)$.

Computation 4.1 We construct an explicit 133-dimensional (absolutely) irreducible matrix representation of $H S$ over $G F(5)$.

Method: We remark that although it seems natural to construct the 133 -dimensional representation as a constituent of a tensor product of smaller representations of $H S$, all useful tensor products are too large for our implementation of the meataxe. For example, the 133-dimensional, 5 -modular representations of $H S$ are constituents in the symmetric cube of the 21 -dimensional representation and in the tensor product of a 21 -dimensional representation with a 55 -dimensional representation, however these representations have degrees 1771 and 1155. In order to avoid such large computations, we shall locate a 133 -dimensional representation as a constituent of the symmetric square of a 28 -dimensional representation of the double cover of $H S$: this latter representation can be found in a previously known representation of the Harada-Norton group.

We start with the 133 -dimensional matrix representation of $H N$ over $G F(5)$ that is constructed in [15]. We locate matrices, x_{1} and y_{1}, that represent $H N$ elements of classes $40 A$ and $12 C$ (since these classes have small centralizers, we locate such elements by a random search). Let $x=x_{1}{ }^{20}$. Every dihedral group generated by the $2 A$-element x and a conjugate of the
$2 B$-element $y_{1}{ }^{6}$ has a central involution. By collecting such involutio ns together with the matrix x_{1}, it is an easy matter to generate enough matrices to represent the centralizer of x in $H N$ (we just keep adding involutions until we observe a group that contains an element of order 11). The group $C_{H N}(x)$ has structure 2.HS.2.

We use the meataxe [10] to decompose the restriction of our $H N$-module into its irreducible constituents of degrees $1,21,28,28$, and 55 , under the group $2 . H S=\left(C_{H N}(x)\right)^{\prime}$. Another application of the meataxe to the symmetric square of either of the irreducible 28-dimensional 2.HS-modules yields an (absolutely) irreducible matrix representation of $H S$ of degree 133. QED

Let E denote the 133-dimensional $H S$-module afforded by the matrix representation of Computation 4.1. In our calculations with E we shall use a fixed basis $e_{1}, e_{2}, \ldots, e_{133}$ of E : moreover for technical reasons, we use a basis on which a particular subgroup

$$
P \sim 2^{4} .2^{3}<2^{4} .(2 \times \operatorname{Sym}(4))<2^{4} . \operatorname{Sym}(6)<H S
$$

acts monomially. We let $e_{1}{ }^{*}, e_{2}{ }^{*}, \ldots, e_{133}{ }^{*}$ denote the dual basis of the dual module E^{*} (this module is isomorphic to E, but for computational purposes it is convenient to distinguish E and $\left.E^{*}\right)$.

Computation 4.2 We compute an $H S$-invariant product, $*: \Lambda^{2} E \rightarrow E$.

Method: The output from this computation is a list of components, $a_{i, j, k}$ of an invariant rank three tensor such that the map $e_{i} \wedge e_{j} \mapsto \sum_{k} a_{i, j, k} e_{k}$ extends to an $H S$-invariant multilinear map. It is convenient to use duality to observe that the map $e_{k}{ }^{*} \mapsto \sum_{i, j} a_{i, j, k} e_{i}{ }^{*} \wedge e_{j}{ }^{*}$ extends to an $H S$-invariant multilinear map. Moreover, since the group $H S$ acts irreducibly on E^{*}, it is easy to use the group action to compute these tensor components once we know the image of any single vector of E^{*} under an $H S$-invariant map: $E^{*} \rightarrow \Lambda^{2} E^{*}$.

The module $\Lambda^{2} E^{*}$ has degree 8778 and is too large to decompose directly with our implementation of the meataxe: in order to locate all copies of E^{*} in $\Lambda^{2} E^{*}$ we use the condensation techniques described in [14]. Let π denote the idempotent $\left(\sum_{p \in P} p\right) /|P|$ of the group algebra $G F(5) H S$. The condensation programs of [14] compute matrix representations of the Hecke algebra $\pi G F(5) H S \pi$ on the condensed modules $E^{*} \pi$ and $\Lambda^{2} E^{*} \pi$ (which have degrees 1 and 50). (It is in the computation of these matrix representations of the Hecke algebra that our programs require the group P to act monomially on E and E^{*}.) A standard meataxe calculation locates the single copy of $E^{*} \pi$ in the $\pi G F(5) H S \pi$-module $\Lambda^{2} E^{*} \pi$. Thus there is a single embedding of E^{*} in the $H S$-module $\Lambda^{2} E^{*}$. Moreover, the embedding of Hecke algebra modules gives the image of the 1 -dimensional space of fixed points of P on E^{*} under the $H S$-invariant map: $E^{*} \rightarrow \Lambda^{2} E^{*}$. As we remarked above, the action of $H S$ now determines the components of the $H S$-invariant tensor $a_{i, j, k}$.

QED
For each $e \in E$ we write $* e$ for the matrix that represents the action of right multiplication by e on our $H S$-invariant algebra. After completing Computation 4.2, we ran a simple precautionary program to verify $H S$-invariance of our tensor. For each basis vector e_{i} and for each of generator, h, of $H S$, we checked that the matrices $\left(* e_{i}\right)^{h}$ and $*\left(e_{i}{ }^{h}\right)$ are identical.

Computation 4.3 The $H S$-invariant product $*: \Lambda^{2} E \rightarrow E$ of Computation 2 is a Lie product on E. Moreover the Killing form on $(E, *)$ is non-singular.

Method: A straightforward computation shows that for each basis vector e_{i} we have

$$
\left(* e_{i}\right)\left(* e_{1}\right)-\left(* e_{1}\right)\left(* e_{i}\right)-\left(*\left(\left(e_{i}\right)\left(* e_{1}\right)\right)\right)=0
$$

Hence the Jacobi identity holds for any triple of basis vectors of the form e_{1}, e_{i}, e_{j}. Therefore right multiplication by e_{1} is a derivation of $(E, *)$; and, by applying the action of $H S$, we deduce that $*\left(e_{1}^{h}\right)$ is a derivation of $(E, *)$ for any choice of $h \in H S$. Since $H S$ is irreducible on E, we deduce that $*$ is a Lie product on E.

A random search quickly produces $e \in E$ with $\operatorname{Tr}((* e)(* e)) \neq 0$. It follows that the Killing form on E is not identically zero: irreducibility of E as a $H S$-module now shows that the Killing form is non-singular.

We complete the proof that $H S<E_{7}(5)$ by applying standard results to show that the automorphism group of $(E, *)$ can only be $\operatorname{Aut}\left(E_{7}(5)\right)$. The following lemma from [13] shows that $(E, *)$ is a simple Lie algebra.

Lemma 4.4 Suppose that $(X, *)$ is a finite dimensional (non-associative) algebra and that $A \leq A u t(X, *)$ acts irreducibly on X. Then one of the following holds:
(a) The algebra $(X, *)$ is simple.
(b) The A-module X is induced from a module of a proper subgroup of A.
(c) The product * is identically zero.

Proof: Let I be a minimal non-zero ideal of $(X, *)$, and let $\mathcal{I}=\left\{I^{a} \mid a \in A\right\}$. We say that a subset of \mathcal{I} is independent if it consists of independent (vector) subspaces of X. Let $\mathcal{J}=$ $\left\{I_{1}, I_{2}, \ldots I_{l}\right\}$ be a maximal independent subset of \mathcal{I}. Let $Y=\oplus_{k=1}^{l} I_{k}$, then Y is an ideal of $(X, *)$.

Let I^{a} be any A-image of I. Maximality of \mathcal{J} shows that $I^{a} \cap Y$ is a non-zero ideal; hence, since I^{a} is a minimal ideal, we have $I^{a} \subset Y$. Thus, Y contains a non-zero A-submodule of X, and, since X is irreducible, we have $X=Y$.

We now suppose that neither (a) nor (b) holds: thus $I \neq X$ and hence $\operatorname{Stab}_{A} I$ is a proper subgroup of A. Moreover, since X is not induced, there is an $a \in A$ with $I^{a} \notin \mathcal{J}$. Then, $I^{a} * I_{k} \subset I^{a} \cap I_{k}=\{0\}$, for each $I_{k} \in \mathcal{J}$. Thus $I^{a} * X=I^{a} * Y=\sum I^{a} * I_{k}=\{0\}$. The A-invariance of $*$ now gives $I_{k} * X=\{0\}$ for each $I_{k} \in \mathcal{J}$, and thus $X * X=\sum I_{k} * X=\{0\}$. QED

Let $(\bar{E}, *)$ be the Lie algebra obtained from $(E, *)$ by extending the scalars to the algebraic closure of $G F(5)$. Since E is absolutely irreducible as a $H S$-module and it is not induced (since $H S$ has no subgroup of index 133), Lemma 4.4 shows that the Lie algebra $(\bar{E}, *)$ is simple. Moreover, by Computation 4.3, the simple Lie algebra $(\bar{E}, *)$ has a non-singular Killing form.

Over an algebraically closed field, F say, of characteristic $p>3$, the modular Lie algebras with a non-singular trace form are completely classified by a theorem of Block and Zassenhaus [1] (this result is also given in [16], page 49). Block and Zassenhaus show that such a modular

Lie algebra is a direct sum of abelian Lie algebras, total matrix algebras $M_{n}(F)$ where $p \mid n$, and classical simple Lie algebras of types A_{1}, \ldots, E_{8}. In particular, our algebra $(\bar{E}, *)$ must be the classical simple Lie algebra of type E_{7} (since no other simple algebra in the list provided by [1] has dimension 133). Therefore, the $H S$-invariant algebra $(E, *)$ is a $G F(5)$-form of E_{7}. By Theorem IV.6.1 of [16] there is just one $G F(5)$-form of E_{7} : thus $(E, *)$ is the classical simple Lie algebra of type E_{7} over $G F(5)$. It now follows from [18] that $\operatorname{Aut}(E, *)$ has structure $E_{7}(5) .2$ and we obtain $H S<E_{7}(5)$.

References

[1] R. Block and H. Zassenhaus, The Lie algebras with a nondegenerate trace form, Ill. J. Math. 8 (1964), 543-549.
[2] R. W. Carter, Finite groups of Lie type : Conjugacy classes and complex characters Wiley, New York, 1985.
[3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, The Atlas of Finite Group, Oxford University Press, London, 1985.
[4] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices, and groups 2nd ed., SpringerVerlag, New York, 1992.
[5] P. S. Fan: Amalgams of Prime Index, J. Algebra 98 (1986), 375-421.
[6] D. Gorenstein Finite Groups, Chelsea Publishing Company, New York, 1982.
[7] R. L. Griess and A. J. E. Ryba, Embeddings of $U_{3}(8), S z(8)$ and the Rudvalis group in algebraic groups of type E_{7}., Invent. Math. 116 (1994), 215-241.
[8] D. G. Higman and C. C. Sims, A Simple Group of Order 44,352,000, Math. Z. 105 (1968), 110-113.
[9] Peter B. Kleidman and R. A. Wilson, Sporadic Subgroups of Finite Exceptional Groups of Lie Type, J. Alg. 157 (1993), 316-330.
[10] R. A. Parker, The Computer Calculation of Modular Characters (the Meat-Axe), in M. D. Atkinson, ed., Computational Group Theory, Academic Press, London, 1984.
[11] R. Ree, A family of simple groups associated with the simple Lie algebra of type $\left(F_{4}\right)$, Amer. J. Math 83 (1961), 401-420.
[12] A. Rudvalis, A Rank 3 Simple Group of Order $2^{14} \cdot 3^{3} \cdot 5^{3} \cdot 7 \cdot 13 \cdot 29$ I, J. Algebra 86 (1984), 219-258.
[13] A. J. E. Ryba, Algebras related to some sporadic simple groups, Ph.D. Thesis, Cambridge University, 1985.
[14] A. J. E. Ryba, Condensation programs and their application to the decomposition of modular representations, J. Symbolic Comput. 9 (1990) 591-600.
[15] A. J. E. Ryba and R. A. Wilson, Matrix Generators for the Harada-Norton group, Experimental Math. 3 (1994), 137-145.
[16] G. B. Seligman, Modular Lie Algebras, Springer-Verlag, Berlin, 1967.
[17] L. H. Soicher, Presentations of some finite groups, Ph.D. Thesis, Cambridge University, 1985.
[18] R. Steinberg, Automorphisms of Classical Lie Algebras, Pac. J. Math. 11 (1961), 11191129.
[19] D. Wales, Uniqueness of the Graph of a Rank Three Group, Pacific J. Math. 30 (1969), 271-276.

