On normalizers of nilpotent subgroups
 Bernd Baumann
 Mathematisches Institut, Justus-Liebig-Universität, Arndtstr. 2, 35392 Gießen, Deutschland
 Bernd.Baumann@math.uni-giessen.de

Ulrich Meierfrankenfeld
Department of Mathematics, Michigan State University
East Lansing, MI 48840, USA
meier@math.msu.edu

Introduction

Let G be a group and Γ a collection of nilpotent subgroups of G satisfying:
(C) $\quad P^{g} \in \Gamma$ for $P \in \Gamma$ and $g \in G$.
(I) $\quad P \cap Q \in \Gamma$ for $P, Q \in \Gamma$.
(P) $\quad N_{P}(Q) \cdot N_{Q}(P) \in \Gamma$ for $P, Q \in \Gamma$.
(MM) The minimum and the maximum condition hold for Γ (i.e. each non empty subset of Γ contains a minimal and a maximal element with respect to inclusion of sets).

Then we call Γ a nilpotent subgroup system of G (NSS for short) and the members of Γ we call Γ-subgroups of G (here $P^{g}:=\left\{x^{g} \mid x \in P\right\}$, where $x^{g}:=g^{-1} x g$, is a conjugate of P and $N_{X}(Y)$ is the normalizer of Y in $\left.X\right)$.

The set of all nilpotent subgroups of a group is an example of a system satisfying (C), (I) and (P). Examples of NSS's are the set of p-subgroups of a finite group (p a prime), the set of closed unipotent subgroups of an algebraic group, and the set of maximal cyclic subgroups plus the trivial group in a free group.

To state our main theorem we introduce a good portion of the notations used in this paper. Let Σ be a set of subgroups of G.
Σ^{*} is the set of maximal elements of Σ (with respect to inclusion). The elements of Γ^{*} are called maximal Γ-subgroups.
Σ_{*} is the set of minimal non-trivial elements of Σ. The elements of Γ_{*} are called minimal Γ-subgroups.

If U is a subgroup of G set $\Sigma U:=\{A \in \Sigma \mid A \leq U\}$.
$\mathrm{R}(\Gamma):=\bigcap_{P \in \Gamma^{*}} P$ is called the radical of Γ.
If $\mathrm{R}(\Gamma)=1$ the NSS Γ is called reduced.
Let $P \in \Gamma$. Then $\Gamma_{P}:=\left\{T \in N_{\Gamma}(P) \mid T P \in \Gamma\right\}$ is the residue of P in Γ. It turns out that Γ_{P} is an NSS for $N_{G}(P)$, see Proposition 2.8(1).

Set $P^{\circ}:=\mathrm{R}\left(\Gamma_{P}\right)$ and call P closed if $P=P^{\circ}$.
Note that by (MM) any chain of Γ-subgroups is finite. Let $\operatorname{rank}(\Gamma)$ be the supremum of the lengths of chains

$$
P_{0}<P_{1}<\ldots<P_{n}
$$

of closed Γ-subgroups. (The length of such a chain is n).
$\Omega(P):=\left\langle\Gamma_{*} P\right\rangle$ is the subgroup of P generated by the minimal Γ-subgroups of P.
P is called decomposable if $P=\Omega(P)$.
$\mu(P)$ is the length of a maximal chain in ΓP. By Proposition 5.2 this is well defined. $\mu(P)$ is called the measure of P. If $Q \in \Gamma P$, then $\mu(P / Q)=$ $\mu(P)-\mu(Q)$. By Proposition 5.4(1), this is the length of any maximal Γ-chain from Q to P.

Let $A \in \Gamma_{P}$. If $[[P, A] A]=1$, we say that A acts quadratically on P. If A and P both are decomposable abelian Γ-subgroups, $[P, A] \neq 1$ and

$$
\mu\left(P / C_{P}(A)\right) \leq \mu\left(A / C_{A}(P)\right)
$$

then A is called a non-trivial Γ-offender on P. Note here that by Proposition 4.7 both $C_{P}(A)$ and $C_{A}(P)$ are Γ-subgroups.

Let V be a normal Γ-subgroup of G with $V \leq \Omega(Z(\mathrm{R}(\Gamma))$ and put $W=$ $V / C_{V}(\langle\Gamma\rangle)$. We say that W is a natural $S L_{2}$-module for Γ provided that
(i) W is the set of points and $\left\{w C_{W}(S) \mid S \in \Gamma^{*}\right\}$ is the set of lines of an affine Moufang plane;
(ii) For each $S \in \Gamma^{*}, C_{S}(W)=\mathrm{R}(\Gamma)$ and S induces the group of shears on W with axis $C_{W}(S)$; and
(iii) $\langle\Gamma\rangle$ induces on W the subgroup of a point stabilizer (of the point 1) generated by all shears.

We say that $N \in \Gamma$ is large in Γ provided that N is closed and $C_{P}(N) \leq$ N for all $P \in \Gamma_{N}$.

A theorem of Glauberman's [5, Theorem 2] characterizes finite two dimensional special linear groups as groups acting on p-groups with certain features. The object of the present paper is to prove the following generalization of Glauberman's Theorem:

Theorem A Let G be a group with an NSS Г. Assume:
(a) $\operatorname{rank}(\Gamma)=1$.
(b) V is a normal Γ-subgroup of G with $V \leq \Omega(Z(\mathrm{R}(\Gamma)))$.
(c) $S \in \Gamma^{*}$ and $\left[C_{G}(V), S\right] \leq \mathrm{R}(\Gamma)$.
(d) S contains a non-trivial Γ-offender on V.
(e) $\mathrm{R}(\Gamma)$ is large in Γ.

Then $V / C_{V}(\langle\Gamma\rangle)$ is a natural $S L_{2}$-module for Γ.
It is well known that an affine Moufang plane is isomorphic to a plane whose point set consists of the ordered pairs of an alternative field or a skew field K and whose lines are the point sets $L(a, b):=\{(x, x \cdot a+b) \mid x \in K\}$ and $L(c):=\{(c, y) \mid y \in K\}$. Then for example shears with axis $L(0)$ are the mappings $(x, y) \mapsto(x, x \cdot d+y)$ (see [4] page 128 ff . and the literature quoted there).

For the proof of Theorem A see section 6 and 7 and for other main results of this paper see section 8 .

We would like to thank G. Glauberman for pointing out an error in an earlier version of this paper.

1 Preliminaries

In this section we collect some elementary results about nilpotent groups. We start with some well known commutator properties (see for instance [6]).

Proposition 1.1 Let a, b, c be elements, A, B, C subgroups and N a normal subgroup of a group. Then

$$
\text { (1) }[a, b c]=[a, c][a, b][[a, b], c]=[a, c][a, b]^{c}
$$

(2) $[a b, c]=[a, c][[a, c], b][b, c]=[a, c]^{b}[b, c]$
(3) $[a, b]=[b, a]^{-1}=\left[b, a^{-1}\right]\left[\left[b, a^{-1}\right], a\right]$
(4) $a b[b, a]=b a$
(5) $[[B, C], A] \subseteq N$ and $[[C, A], B] \subseteq N$ imply $[[A, B], C] \subseteq N$.
(6) $[A, B]$ is a normal subgroup of $\langle A, B\rangle$.

Proposition 1.2 Let G be a group, V an abelian normal subgroup of G, U a subgroup of V and $g \in G$ with $[[V, g], g]=1$. Then the following hold:
(1) $\{[u, g] \mid u \in U\}$ is a subgroup of V
(2) $U U^{g}=U[U, g]$
(3) $U U^{g}=U \times[U, g]$ if and only if $U \cap U^{g}=C_{U}(g)$
(4) $C_{U U^{g}}(g)=C_{U \cap U^{g}}(g)[U, g]$

Proof. These properties are applications of Proposition 1.1.
Proposition 1.3 Let A and B be subgroups and let N be a normal subgroup of the group G. Then

$$
[N,\langle A, B\rangle]=\langle[N, A],[N, B]\rangle
$$

Proof. Obviously the right hand side is contained in the left hand side. Conversely, by Proposition $1.1(6) M:=\langle[N, A],[N, B]\rangle$ is a normal subgroup of $\langle A, B, N\rangle$ contained in N, as N is a normal subgroup. Now N / M is centralized by $\langle A, B\rangle$, whence $[N,\langle A, B\rangle] \subseteq M$.

Let A be a group acting on a group D. We say that A acts nilpotently on D if $[D, A, k]=1$ for some k (where $[D, A, 0]:=D$ and $[D, A, i+1]:=$ $[[D, A, i], A])$. The minimal such k is called the nilpotence length of A on D. For a group G let $L_{0}(G)=G$ and $L_{i+1}(G)=\left[L_{i}(G), G\right]$.

Lemma 1.4 (1) Suppose A acts nilpotently on D. Then $A / C_{A}(D)$ is nilpotent.
(2) Suppose G acts on $D, A \leq G$ and $B \leq N_{G}(A)$. If A and B act nilpotently on D, so does $A B$.
(3) Let N be normal in G. Then G is nilpotent if and only if G / N is nilpotent and G acts nilpotently on N.
(4) Let $G=A B$, where A and B are nilpotent subgroups of G, and A is normal in G. Assume N is a normal subgroup of G with $N \leq A \cap B$ such that G / N is nilpotent. Then G is nilpotent.
(5) Let A, B be normal in G such that G / A and G / B are nilpotent. Then $G / A \cap B$ is nilpotent.

Proof. (1) See [7, Corollary to Theorem 3.8]
(2) By induction on the nilpotency length of A on $D[[D, A], A B, i]=1$ for some i. Also if $[D, B, j]=1$, then $[D, A B, j] \subseteq[D, A]$ and so $[D, A B, i+j]=$ 1.
(3) One direction is obvious. So suppose G / N is nilpotent and G acts nilpotently on N. Then $L_{k}(G) \leq N$ for some k and $[N, G, i]=1$ for some i. Thus $L_{k+i}(G)=1$.
(4) Since $N \leq A \cap B$, both A and B act nilpotently on N. By (2) G acts nilpotently on N and so (4) follows from (3).
(5) Let k be the maximum of the nilpotency classes of G / A and G / B. Then $L_{k}(G) \leq A \cap B$.

Proposition 1.5 Let P and Q be nilpotent subgroups of the group G with $Q \subseteq P C_{G}(P)$. Then $P Q$ is a nilpotent subgroup of G.

Proof. Clearly P is normal in $P Q$ and $P Q$ acts nilpotently on P. Also $P Q / P \cong Q / Q \cap P$ and so $P Q / P$ is nilpotent. Hence the lemma follows from Lemma 1.4(3).

Proposition 1.6 Let X be a proper subgroup of the nilpotent group G.
(1) X is contained in a proper normal subgroup of G.
(2) X is a proper subgroup of $N_{G}(X)$.
(3) If $N_{G}(X)=N_{G}\left(N_{G}(X)\right)$, then X is normal in G.
(4) $\left\langle X^{G}\right\rangle$ is a proper subgroup of G.

Proof. Well-known.

Proposition 1.7 Let H be a nilpotent group of class k and $x, y \in H$, where x is an element of order p, p a prime. Then $\left[x, y^{p^{k+1}}\right]=1$.

Proof. By induction on $k,\left[x, y^{p^{k}}\right] \in Z(H)$. Then by Proposition 1.1

$$
1=\left[x^{p}, y^{p^{k}}\right]=\left[x, y^{p^{k}}\right]^{p}=\left[x, y^{p^{k+1}}\right] .
$$

Proposition 1.8 Let X be a subgroup of the group G and let U and A be subsets of G with $U \subseteq X$. Then $(U A) \cap X=U(A \cap X)$.

Proof. Let $u \in U$ and $a \in A$ with $u a \in X$. Then $a \in A \cap X$, hence $(U A) \cap X \subseteq U(A \cap X)$. If $d \in A \cap X$ then $u d \in(U A) \cap X$ as $U(A \cap X) \subseteq X$. Thus $U(A \cap X) \subseteq(U A) \cap X$ and Proposition 1.8.

2 Basic Properties of NSS's

In this section G is a group with an NSS Γ with $1 \in \Gamma$.
We remark that (MM) allows us to prove statements about Γ by induction. Namely suppose given a statement \mathcal{S} about Γ-subgroups. Suppose also that if $P \in \Gamma$ and \mathcal{S} is true for all $Q \in \Gamma$ with $Q<P$, then \mathcal{S} is also true for P. Then \mathcal{S} must be true for all $P \in \Gamma$. Indeed the set of Γ-subgroups for which \mathcal{S} is false, does not have a minimal element and so is empty.

Note also that (I) and (MM) imply, that arbitrary intersections of Γ subgroups are Γ-subgroups.

Lemma 2.1 Let $P, Q \in \Gamma$. Then $N_{P}(Q) \in \Gamma$.

Proof. Note that $N_{Q}(P) \cap P \subseteq Q \cap P \subseteq N_{P}(Q)$ and so by Proposition 1.8

$$
\left(N_{P}(Q) N_{Q}(P)\right) \cap P=N_{P}(Q)\left(N_{Q}(P) \cap P\right)=N_{P}(Q)
$$

By (\mathbf{P}) and (\mathbf{I}) the left hand side of this equation is in Γ.

Proposition 2.2 Let $P, Q \in \Gamma$ such that Q is a minimal element of $\{T \in$ $\Gamma \mid P<T\}$ or that P is a maximal element of $\{T \in \Gamma \mid T<Q\}$. Then P is normal in Q.

Proof. Note that the two conditions are actually equivalent. So suppose the first. By Lemma $2.1 P<N_{Q}(P) \in \Gamma$ and so $Q=N_{Q}(P)$ by minimality of Q.

Proposition 2.3 (1) If Δ is a nonempty subset of Γ, then $\bigcap_{X \in \Delta} X \in \Gamma$ and $\bigcap_{X \in \Delta} X=\bigcap_{X \in \Delta_{0}} X$ for some finite subset Δ_{0} of Δ.
(2) If Δ is a set of normal Γ - subgroups of G, then $\langle\Delta\rangle \in \Gamma$.
(3) If U is a subgroup of G, then ΓU is an NSS of U.
(4) $P^{\circ} \in \Gamma$ for all $P \in \Gamma$. In particular, $\mathrm{R}(\Gamma)$ is a normal Γ-subgroup of G.
(5) If $S \in \Gamma$ and $P \in \Gamma S \backslash\{S\}$, then $P \subset\left\langle\Gamma_{P} S\right\rangle$.
(6) If $\langle\Delta\rangle$ is nilpotent for $\Delta \subseteq \Gamma$, then $\langle\Delta\rangle \in \Gamma$.
(7) $\mathrm{R}(\Gamma)=\left\langle\bigcap_{T \in \Gamma^{*}} N_{\Gamma}(T)\right\rangle$.
(8) Let $S \in \Gamma^{*}$ and $A \in \Gamma\left(S C_{G}(S)\right)$. Then $A \leq S$.
(9) Let $S \subseteq G$ be nilpotent and put $A=\langle\Gamma S\rangle$. Then $A \in \Gamma, \Gamma^{*} S=\{A\}$ and A is normal in $N_{G}(S)$.

Proof.
(1) By (I) intersections of the members of finite subsets of Δ are elements of Γ. Then (1) follows from the minimal condition for Γ applied to the set of intersections of the members of finite subsets of Γ.
(2) If N and M are normal Γ-subgroups then $N M \in \Gamma$ by (P). Hence finite products of elements of Δ lie in Γ, and (2) follows from the maximal condition for Γ.
(3) is obvious by the definition of an $N S S$.
(4) is a consequence of (1).
(5) By Proposition 1.6(2) $P<N_{S}(P)$ and by Lemma $2.1 N_{S}(P) \in \Gamma$.
(6) Let $S=\langle\Delta\rangle$ and without loss $\Delta=\Gamma S$. Let $P \in \Delta^{*}$. If P is not normal in S, then Proposition 1.6(c) there exists $x \in N_{S}\left(N_{S}(P)\right)$ with $P \neq P^{x}$. By (C) and (P) we get $P P^{x} \in \Gamma S$, a contradiction to the maximality of P. So P is normal in S. Thus by (2) $S=\langle\Delta\rangle=\left\langle\Delta^{*}\right\rangle \in \Gamma$.
(7) Let

$$
\Lambda:=\bigcap_{T \in \Gamma^{*}} N_{\Gamma}(T)=\left\{A \in \Gamma \mid A \leq N_{G}(T) \forall T \in \Gamma^{*}\right\} .
$$

We claim that $\left|\Lambda^{*}\right|=1$. Indeed, let $X_{1}, X_{2} \in \Lambda^{*}$ and pick $T_{i} \in \Gamma^{*}$ with $X_{i} \leq T_{i}$. By (6), $\left\langle\Lambda T_{i}\right\rangle \in \Gamma$ and so the definition of Λ implies $\left\langle\Lambda T_{i}\right\rangle \in \Lambda$. The maximality of X_{i} implies $X_{i}=\left\langle\Lambda T_{i}\right\rangle$. Hence $X_{1} \leq N_{G}\left(T_{2}\right) \leq N_{G}\left(\left\langle\Lambda T_{2}\right\rangle\right) \leq$ $N_{G}\left(X_{2}\right)$. So X_{1} normalizes X_{2} and X_{2} normalizes X_{1}. Thus by (\mathbf{P}), $X_{1} X_{2} \in$ Γ. Hence also $X_{1} X_{2} \in \Lambda$ and $X_{1}=X_{2}$.

So indeed $\left|\Lambda^{*}\right|=1$. Let N be the unique element in Λ^{*}. Then N is normal in G. Let $T \in \Gamma^{*}$. The definition of Λ implies that N normalizes T. So by (P), NT $\in \Gamma$. Thus $N \leq T$ and $N \leq \mathrm{R}(\Gamma)$. Clearly $\mathrm{R}(\Gamma) \leq N$ and (7) holds.
(8) Obviously S is contained in the right hand side of this equation. Let $P \in \Gamma\left(S C_{G}(S)\right)$. Then $S P$ is nilpotent by Proposition 1.5 and therefore $S P \in \Gamma$ by (6). Hence $P \subseteq S$ because S is maximal.
(9) By (6) we get $A \in \Gamma$, which implies $\Gamma^{*} S=\{A\}$, and by (C) A is normal in $N_{G}(S)$.

Definition. A subset Δ of Γ is called a sub-NSS of Γ and we write $\Delta \leq \Gamma$ provided that:
(Suba) If $A \in \Gamma$ and $B \in \Delta$ with $A \subseteq B$ then $A \in \Delta$.
(Subb) If $A, B \in \Delta$ with $\langle A, B\rangle \in \Gamma$ then $\langle A, B\rangle \in \Delta$.
(Subc) If $A, B \in \Delta$ then $A^{B} \subseteq \Delta$.
Lemma 2.4 Let $\Delta \leq \Gamma$, then Δ is an NSS for $\langle\Delta\rangle$.
Proof. (C) follows from (Subc). Let $P, Q \in \Delta$. Then since (I) holds for $\Gamma, P \cap Q \in \Gamma$. So by (Suba), $P \cap Q \in \Delta$. So (I) holds. By Lemma 2.1, $N_{P}(Q)$ and $N_{Q}(P)$ are Γ-subgroups. So by (Suba), they are also Δ-subgroups. By (P) for $\Gamma, N_{P}(Q) N_{Q}(P) \in \Gamma$ and so by (Subb), $N_{P}(Q) N_{Q}(P) \in \Delta$. Thus (P) holds. (MM) follows from (MM) for Γ.

Lemma 2.5 Let $\Delta \leq \Gamma$.
(1) $\mathrm{R}(\Delta) \in \Delta$, and $\mathrm{R}(\Delta)$ is normal in $\langle\Delta\rangle$
(2) If $A \in \Delta$ then $A \mathrm{R}(\Delta) \in \Delta$.
(3) $\Delta \leq \Gamma_{R(\Delta)}$.
(4) Let $\Lambda \leq \Delta$. Then
(i) $\mathrm{R}(\Delta) \cap S=\mathrm{R}(\Delta) \cap \mathrm{R}(\Lambda)$ for all $S \in \Lambda^{*}$.
(ii) $\mathrm{R}(\Lambda) \cap \mathrm{R}(\Delta)$ is the unique maximal Λ-subgroup of $\mathrm{R}(\Delta)$.
(iii) Λ-subgroups of $\mathrm{R}(\Delta)$ are contained in $\mathrm{R}(\Lambda)$.
(5) Let $\Lambda \leq \Delta$ with $\mathrm{R}(\Delta) \in \Lambda$. Then $\mathrm{R}(\Delta) \leq \mathrm{R}(\Lambda)$.
(6) Suppose that $\Lambda \leq \Delta \leq \Gamma_{\mathrm{R}(\Lambda)}$ and $\mathrm{R}(\Delta) \in \Lambda$. Then $\mathrm{R}(\Lambda)=\mathrm{R}(\Delta)$.
(7) $\mathrm{R}(\Delta)$ is closed in Γ if and only if $\mathrm{R}(\Delta)^{\circ} \in \Delta$.

Proof.
(1) follows from Proposition 2.3(4) applied to the NSS Δ.
(2) By (MM) there exists $S \in \Delta^{*}$ with $A \subseteq S$. By Proposition 2.3(6) $A R(\Delta) \in \Gamma$ and so by (Subb), $A R(\Delta) \in \Delta$.
(3) Follows from (1) and (2).
(4) Let $S, T \in \Lambda^{*}$. By (2), $T \mathrm{R}(\Delta) \in \Delta$ and so by Proposition 2.3(6) also $T(\mathrm{R}(\Delta) \cap S) \in \Delta$. By (I) and (Suba), $\mathrm{R}(\Delta) \cap S \in \Gamma$ and so (Subb)
implies $T(\mathrm{R}(\Delta) \cap S) \in \Lambda$. Thus by maximality of $T, \mathrm{R}(\Delta) \cap S \subseteq T$. So $\mathrm{R}(\Delta) \cap S \subseteq \mathrm{R}(\Lambda)$. So (i) holds. (ii) and (iii) follow from (i).
(5) Follows from (4).
(6) By (5) $\mathrm{R}(\Delta) \leq \mathrm{R}(\Lambda)$. Note that $\mathrm{R}(\Lambda) \in \Lambda \leq \Delta$. Thus $\mathrm{R}(\Lambda)$ is a Δ subgroup of $R\left(\Gamma_{R(\Lambda)}\right)$ and so by (4)(iii) applied to $\Delta \leq \Gamma_{R(\Lambda)}, R(\Lambda) \leq R(\Delta)$.
(7) If $\mathrm{R}(\Delta)=\mathrm{R}(\Delta)^{\circ}$, then $\mathrm{R}(\Delta)^{\circ} \in \Delta$ by (1). So suppose $\mathrm{R}(\Delta)^{\circ} \in \Delta$. Then by (5) applied to $\Delta \leq \Gamma_{\mathrm{R}(\Delta)}, \mathrm{R}(\Delta)^{\circ} \leq \mathrm{R}(\Delta)$. So $\mathrm{R}(\Delta)$ is closed.

Lemma 2.6 Let $P \in \Delta \leq \Gamma$ such that $P=\mathrm{R}\left(\Gamma_{P} \cap \Delta\right)$. Then
(1) $\mathrm{R}(\Delta) \subseteq P$.
(2) If $\Gamma_{P}^{*} \cap \Delta \neq \emptyset$, then $\mathrm{R}(\Delta)$ is closed.

Proof. Let $T=\mathrm{R}(\Delta)$.
(1) Since $P \in \Delta$, Lemma 2.5(2) implies $P T \in \Delta$. Hence by Lemma 2.1, $N_{T}(P) \in \Delta$. Let $S \in\left(\Gamma_{P} \cap \Delta\right)^{*}$. Then again by Lemma 2.5(2), $S T \in$ Δ. Hence by Proposition 2.3(6), $N_{T}(P) S \in \Gamma_{P} \cap \Delta$. By maximality of S, $N_{T}(P) \subseteq S$. Thus $N_{T}(P) \leq \mathrm{R}\left(\Gamma_{P} \cap \Delta\right)=P$. Since $T P$ is nilpotent we conclude $T \subseteq P$.
(2) By Lemma 2.5(3), $\Delta \leq \Gamma_{T}$. Thus

$$
\text { (*) } \quad \Gamma_{P} \cap \Delta \leq \Gamma_{P} \cap \Gamma_{T} \leq \Gamma_{P}
$$

Let $Q=\mathrm{R}\left(\Gamma_{P} \cap \Gamma_{T}\right)$. By assumption there exists $S \in \Gamma_{P}^{*} \cap \Delta$. Then $S \in\left(\Gamma_{P} \cap \Gamma_{T}\right)^{*}$ and so $Q \subseteq S$. Hence by (Suba), $Q \in \Gamma_{P} \cap \Delta$. By (*) we can apply Lemma 2.5(6) (with $\Lambda=\Gamma_{P} \cap \Delta$ and $\Delta=\Gamma_{P} \cap \Gamma_{T}$) Thus $Q=\mathrm{R}\left(\Gamma_{P} \cap \Delta\right)=P$. So by (1) (applied to Γ_{T} in place of Δ), $T^{\circ} \subseteq P$ and thus $T^{\circ} \in \Delta$. By Lemma 2.5(7), $T=\mathrm{R}(\Delta)$ is closed.

Corollary 2.7 Suppose that $N \in \Gamma$ is closed and $\Gamma_{N} \leq \Delta \leq \Gamma$. Then $\mathrm{R}(\Delta) \leq N$ and $\mathrm{R}(\Delta)$ is closed.

Proof. Since N is closed and $\Gamma_{N}=\Gamma_{N} \cap \Delta$ we have $N=\mathrm{R}\left(\Gamma_{N} \cap \Delta\right)$. Also $\Gamma_{N}^{*} \subseteq \Gamma_{N} \subseteq \Delta$ and so $\Gamma_{N}^{*} \cap \Delta \neq \emptyset$. Thus the Corollary follows from Lemma 2.6.

Definition. If Q is a normal Γ-subgroup of G contained in $\mathrm{R}(\Gamma)$ we define

$$
\Gamma / Q:=\{P Q / Q \mid P \in \Gamma\}
$$

Note that $\Gamma / Q=\{P / Q \mid Q \leq P \in \Gamma\}$.
Proposition 2.8 Let $L \in \Gamma$. Then the following hold:
(1) Γ_{L} resp. Γ_{L} / L is an NSS of $N_{G}(L)$ resp. $N_{G}(L) / L$.
(2) $L \leq L^{\circ}$.
(3) $\Gamma=\Gamma_{R(\Gamma)}$.
(4) $\mathrm{R}\left(\Gamma_{L} / L\right)=\mathrm{R}\left(\Gamma_{L}\right) / L$.
(5) $\Gamma / R(\Gamma)$ is reduced.
(6) L is closed in Γ if and only if 1 is closed in Γ_{L} / L.
(7) If L is closed then $L=\bigcap\left\{S \in \Gamma^{*} \mid L \subseteq S\right\}$.
(8) $\Gamma_{L} \subseteq \Gamma_{L^{\circ}}$.
(9) If $M \in \Gamma$ with $\Gamma_{L} \leq \Gamma_{M}$, then $N_{M}(L) \leq L^{\circ}$. If in addition $L^{\circ} \leq M$, then $L^{\circ}=N_{M}(L)$.
(10) There is some (not necessarily uniquely determined) closed Γ-subgroup M with $L \subseteq M, \Gamma_{L} \subseteq \Gamma_{M}$ and $L^{\circ}=N_{M}(L)$.
(11) $L^{\circ}=N_{L^{\circ \circ}}(L)$.
(12) Let $S \in \Gamma^{*}$ and L be a normal Γ-subgroup of S. Then $L^{\circ}=L^{\circ \circ}$ is closed.

Proof.

(1) Let $P, Q \in \Gamma_{L}$. Then $(P \cap Q) L \subseteq P L \cap Q L \in \Gamma$ by (I). Hence $(P \cap$ Q) $L \in \Gamma$ by Proposition 2.3(6) and $P \cap Q \in \Gamma_{L}$. Similarly $N_{P}(Q) N_{Q}(P) L \subseteq$ $N_{P L}(Q L) N_{Q L}(P L) \in \Gamma$ by (\mathbf{P}) and therefore $N_{P}(Q) N_{Q}(P) L \in \Gamma$ implying $N_{P}(Q) N_{Q}(P) \in \Gamma_{L}$. Condition (MM) is satisfied for Γ_{L} as $\Gamma_{L} \subseteq \Gamma$, and (C) follows for Γ_{L} as (C) holds for Γ and thus $P^{g} L \in \Gamma$ if $P \in \Gamma_{L}$ and $g \in N_{G}(L)$. Thus Γ_{L} and Γ_{L} / L are NSS's.
(2) and (3) are obvious.
(4) follows from $\left(\Gamma_{L} / L\right)^{*}=\Gamma^{*} / L:=\left\{S / L \mid S \in \Gamma_{L}^{*}\right\}$.
(5) is a consequence of (4).
(6) is clear by (5) and (2).
(7) Put $D:=\bigcap\left\{S \in \Gamma^{*} \mid L \subseteq S\right\}$. Let $T \in \Gamma_{L}^{*}$ and pick $S \in \Gamma^{*}$ with $T \subseteq S$. Then $T \subseteq N_{S}(L) \in \Gamma_{L}$ by Lemma 2.1 and so $T=N_{S}(L)$. Since $D \subseteq S$ we conclude $N_{D}(L) \subseteq T$. As this is true for all $T \in \Gamma_{L}^{*}$, $N_{D}(L) \subseteq \mathrm{R}\left(\Gamma_{L}\right)=L$. Since $L \subseteq D$ and D is nilpotent, $L=D$.
(8) If $P \in \Gamma_{L}$ then there is $Q \in \Gamma_{L}^{*}$ with $P \subseteq Q$, hence $P L^{\circ} \in \Gamma Q \subseteq \Gamma$ by Proposition 2.3(6), and $P \in \Gamma_{L^{\circ}}$.
(9) Note that $N_{M}(L) \in \Gamma_{L}$ and $N_{M}(L) \leq M \leq \mathrm{R}\left(\Gamma_{M}\right)$. Thus by Lemma $2.5(4), N_{M}(L) \leq \mathrm{R}\left(\Gamma_{L}\right)=L^{\circ}$. If $L^{\circ} \leq M$, then $L^{\circ} \leq N_{M}(L) \leq L^{\circ}$ and so $L^{\circ}=N_{M}(L)$.
(10) Let M in Γ be maximal with respect to $L^{\circ} \leq M$ and $\Gamma_{L} \subseteq \Gamma_{M}$. Note that by (2) and (8) such an M exists. By (2) and (8) applied to M, $L^{\circ} \leq M \leq M^{\circ}$ and $\Gamma_{L} \subseteq \Gamma_{M} \subseteq \Gamma_{M^{\circ}}$. Thus the maximal choice of M implies $M=M^{\circ}$. So M is closed. By (9), $N_{M}(L)=L^{\circ}$ and all parts of (10) are verified.
(11) Follows from (2),(8) and (9).
(12) As $S \in \Gamma^{*}$ we get $S \in \Gamma_{L}^{*}$. It follows that L° is normal in S and thus $L^{\circ \circ} \leq S$. Hence L is normal in $L^{\circ \circ}$. So by (12) $L^{\circ}=N_{L^{\circ \circ}}(L)=L^{\circ \circ}$.

Lemma 2.9 Let $N \in \Gamma$ and $P, Q \in \Gamma_{N}$. If $\left[C_{P}(N),\langle P, Q\rangle\right] \subseteq N$ then $N_{Q}(P) P \in \Gamma$.

Proof. By Lemma 2.1 we may assume that $Q=N_{Q}(P)$. So Q normalizes P. Since $P N$ and $Q N$ are in Γ they are both nilpotent. So P and Q act nilpotently on N. By Lemma 1.4(2) $P Q$ acts nilpotently on N. Thus by Lemma 1.4(1), $P Q / C_{P Q}(N)$ is nilpotent. Also $P Q / P \cong Q / Q \cap P$ is nilpotent and so by Lemma 1.4(5) $P Q / C_{P}(N)$ is nilpotent. Since $\left[C_{P}(N), P Q\right] \subseteq N$ we get that $P Q$ acts nilpotently on $C_{P}(N)$. Thus the assertion follows from Lemma 1.4(3).

Proposition 2.10 Let $G=\langle A, B\rangle$, where A and B are nilpotent subgroups of G. Assume $A \in \Gamma, N$ is a normal subgroup of $G, N \subseteq A \cap B$ and G / N is nilpotent. Then G is nilpotent.

Proof. By (MM) A can be chosen maximal fulfilling the assumptions of the Proposition. Then by nilpotency of G / N and (\mathbf{P}) A is normal in G and Proposition 2.10 follows from Lemma 1.4(4).

Proposition 2.11 Let $S \in \Gamma^{*}$ be fixed.
(1) Let $T \in \Gamma^{*} \backslash\{S\}$ such that $S \cap T$ is maximal. Then $S \cap T$ is closed.
(2) Let $T \in \Gamma^{*} \backslash\{S\}$, then there exists a closed Γ-subgroup P with $S \cap T \leq$ $P<S$.

Proof. (1) Set $P:=S \cap T$ Then $P^{\circ} N_{S}(P) \in \Gamma$ by definition of Γ_{P} and 1.10(6). Therefore there is $X \in \Gamma^{*}$ with $P^{\circ} N_{S}(P) \subseteq X$. By maximality of $S, S \not \leq T$ and so $P<S$. Hence by Proposition 1.6(3), $P<N_{S}(P) \leq X \cap S$. By maximality of $P, X=S$. Thus $P^{\circ} \leq S$. Note also that $N_{T}(P) P^{\circ} \leq Y$ for some $Y \in \Gamma^{*}$. Since $P<N_{T}(P), N_{T}(P) \not \leq S$ and so $Y \neq S$. Thus by maximality of $P, Y \cap S=P$. Since $P^{\circ} \leq Y \cap S$ we get $P^{\circ}=P$ and P is closed.
(2) Let $T^{*} \in \Gamma^{*} \backslash\{S\}$ with $S \cap T \leq S \cap T^{*}$ and $S \cap T^{*}$ maximal. Then $S \cap T^{*}$ is closed by (1).

The following statement is a variant of Baer's famous theorem [1].
Theorem 2.12 Let $X \in \Gamma$ such that $\left\langle X, X^{g}\right\rangle \in \Gamma$ for all $g \in G$, then $\left\langle X^{G}\right\rangle \in \Gamma$.

Proof. Set $\Delta:=X^{G}$ and assume $\langle\Delta\rangle \notin \Gamma$. Then there are $Q=\langle\Delta Q\rangle \in \Gamma$ and $R=\langle\Delta R\rangle \in \Gamma$ with $\langle Q, R\rangle \notin \Gamma$. Choose Q and R such that $D:=$ $\langle\Delta(Q \cap R)\rangle$ is maximal. Suppose that $\Delta N_{Q}(D)=\Delta(Q \cap R)$. Then

$$
N_{Q}\left(N_{Q}(D)\right) \leq N_{Q}\left(\left\langle\Delta N_{Q}(D)\right\rangle\right)=N_{Q}(D)
$$

and so by Proposition $1.6(3), N_{Q}(D)=Q$. But $\Delta Q \neq \Delta(Q \cap R)$, a contradiction. Thus there exists $A \in \Delta$ with $A \not \leq N_{Q}(D)$ and $A \leq D$. Similarly there exists $B \in \Delta$ with $B \leq N_{R}(D)$ and $B \not \leq D$. By assumption $\langle A, B\rangle \in \Gamma$. By Proposition 2.10, applied with $A D, B D$ and D in place of A, B and $N, P:=\langle A, B, D\rangle$ is nilpotent. Since $D<A D \leq Q \cap P$, the maximality of D implies $\langle Q, P\rangle \in \Gamma$. Similarly $\langle R, P\rangle \leq \Gamma$. But $\langle R, P, Q\rangle \notin \Gamma$ and $D<P \leq\langle R, P\rangle \cap\langle Q, P\rangle$. This contradiction to the maximality of D completes the proof of Theorem 2.12.

3 NSS' of rank 1 and 2

As in the previous section let G be a group with an NSS Γ.
Theorem 3.1 Suppose $\left|\Gamma^{*}\right|>1$. Then following properties are equivalent:
(a) $\operatorname{rank}(\Gamma)=1$.
(b) $S \cap T=\mathrm{R}(\Gamma)$ for $S, T \in \Gamma^{*}$ with $S \neq T$.
(c) $S \cap S^{g}=\mathrm{R}(\Gamma)$ for $S \in \Gamma^{*}$ and $g \in G \backslash N_{G}(S)$.

Proof. Suppose (a) holds. Let $S, T \in \Gamma^{*}$ with $P=S \cap T$ maximal. Then P is closed by Proposition 2.11. and so $\mathrm{R}(\Gamma) \leq P<S$ is a chain of closed Γ-subgroups. Since Γ has rank 1, we get $P=\mathrm{R}(\Gamma)$. Thus $S \cap T=\mathrm{R}(\Gamma)$ for all $S \neq T \in \Gamma^{*}$ and so (b) holds.

From (C) we get $S^{g} \in \Gamma^{*}$ for $S \in \Gamma^{*}$ and $g \in G$. Thus (b) implies (c).
Suppose that (c) holds. Let P be a closed Γ subgroup. We will show that $P=\mathrm{R}(\Gamma)$ or $P \in \Gamma^{*}$ and note that this implies (a).

Assume that $\left|\Gamma_{P}^{*}\right|=1$. Since P is closed we get $P \in \Gamma_{P}^{*}$. Let $P \leq S \in \Gamma^{*}$. Then $P \leq N_{S}(P) \in \Gamma_{P}$ and so $P=N_{S}(P)$ and $P=S$.

Suppose next that $\left|\Gamma_{P}^{*}\right|>1$ and let $Q \neq T \in \Gamma_{P}^{*}$. By (P) applied to the NSS Γ_{P}, we may assume that T does not normalize Q. Let $Q \leq S \in$
Γ^{*}. Then $Q \leq N_{S}(P) \in \Gamma_{P}$ and so by maximality of $Q, Q=N_{S}(P)$. Thus $N_{G}(P) \cap N_{G}(S) \leq N_{G}(Q)$. Since T normalizes P but not Q we get $T \not \leq N_{G}(S)$. Pick $g \in T$ with $S \neq S^{g}$. Then $P \leq S \cap S^{g}=\mathrm{R}(\Gamma)$ and so $P \leq \mathrm{R}(\Gamma)$. By Corollary $2.7 \mathrm{R}(\Gamma) \leq P$ and so $P=\mathrm{R}(\Gamma)$.

Lemma 3.2 Suppose that N is large in Γ and $P, Q \in \Gamma_{N}$
(1) $N_{Q}(P) P \in \Gamma_{N}$.
(2) If $P \in \Gamma_{N}^{*}$, then $N_{Q}(P) \leq P$ and $\Gamma_{N} \cap \Gamma N_{G}(P)=\Gamma P$.

Proof. (1) By definition of large, $C_{P}(N) \leq N$. Hence $\left[C_{P}(N),\langle P, Q\rangle\right] \leq N$ and (1) follows from Lemma 2.9.
(2) By (1) and maximality of $P^{*}, N_{Q}(P) \leq P$. The second statement in (2) just rephrases the first.

Lemma 3.3 Suppose that $N \leq P \in \Gamma, N$ is large and P is closed. Then P is large.

Proof. Let $P \leq T \in \Gamma_{P}$. Then $C_{T}(P) \leq N_{T}(N) \in \Gamma_{N}$ and since N is large, $C_{T}(P) \leq N_{T}(N) \cap C_{G}(N) \leq N \leq P$. Thus P is large.

Lemma 3.4 Let Γ be an NSS of rank 1 and $P \in \Gamma$ with $P \not \approx \mathrm{R}(\Gamma)$.
(1) P is contained in a unique maximal Γ-subgroup P^{*}.
(2) Suppose $\mathrm{R}(\Gamma)$ is large and $x \in Q \in \Gamma$. If $\left\langle P, P^{x}\right\rangle \in \Gamma$ then $x \in P^{*}$.

Proof. (1) By Theorem 3.1, $S \cap T=\mathrm{R}(\Gamma)$ for all $S \neq T \in \mathrm{R}(\Gamma)$.
(2) By (1) $P^{*}=\left\langle P, P^{x}\right\rangle^{*}=P^{x *}=P^{* x}$. Thus $x \in N_{Q}\left(P^{*}\right)$. By Lemma $3.2(2) N_{Q}\left(P^{*}\right) \leq P^{*}$ and (2) holds.

Lemma 3.5 Let Γ be an NSS of rank 1 and $S \in \Gamma^{*}$. Define $\Pi=\bigcup_{g \in G} \Gamma S^{g}$. Then $\Pi \leq \Gamma$, Π has rank at most one and $\Pi^{*}=S^{G} \subseteq \Gamma^{*}$. If in addition $\mathrm{R}(\Gamma)$ is large then Π has rank 1 and $\mathrm{R}(\Pi)=\mathrm{R}(\Gamma)$.

Proof. Clearly Π fulfils (Suba) and (Subc). Now let $A, B \in \Pi$ with $\langle A, B\rangle \in$ Γ. If $A \leq \mathrm{R}(\Gamma)$, then $\langle A, B\rangle \leq B \mathrm{R}(\Gamma) \in \Pi$ and so also $\langle A, B\rangle \in \Pi$. So suppose $A \not \approx \mathrm{R}(\Gamma)$ and $B \not \leq \mathrm{R}(\Gamma)$. Then by Lemma 3.4(1)

$$
A^{*}=\langle A, B\rangle^{*}=B^{*} .
$$

Thus $\langle A, B\rangle \leq A^{*}$ and $\langle A, B\rangle \in \Pi$. Thus $\Pi \leq \Gamma$. Clearly $\Pi^{*}=S^{G} \subseteq \Gamma^{*}$.
Suppose first that $\left|\Pi^{*}\right|>1$. By Theorem 3.1, $A \cap B=\mathrm{R}(\Gamma)$ for all $A, B \in \Pi^{*}$ and $\mathrm{R}(\Pi)=\mathrm{R}(\Gamma)$. Hence by Theorem 3.1, Π has rank 1 . So the lemma holds in this case.

Suppose next that $\left|\Pi^{*}\right|=1$. Then $\Pi^{*}=\{S\}, S$ is normal in G and Π has rank 0 . So we may now assume that that $\mathrm{R}(\Gamma)$ is large. Since S is normal in G, Lemma 3.2 implies $P S \in \Gamma$ for all $P \in \Gamma$. But then $P \leq S$ by maximality of S and $\Gamma^{*}=S$, a contradiction to $\operatorname{rank}(\Gamma)=1$.

Lemma 3.6 Suppose that Γ has rank 1. Let $K \leq G$ with $\langle\Gamma K\rangle \notin \Gamma$ and $P \in \Gamma K$ with $P \not \leq \mathrm{R}(\Gamma)$. Then $\left\langle P, P^{x}\right\rangle \notin \Gamma$ for some $x \in K$.

Proof. Since $\langle\Gamma K\rangle \not \leq \Gamma$, Proposition 2.3(6) implies $Q \not \leq P^{*}$ for some $Q \in \Gamma K$. Let $x \in Q \backslash P^{*}$. Then by Lemma 3.4(2), $\left\langle P, P^{x}\right\rangle \notin \Gamma$.

Proposition 3.7 Let $N \in \Gamma$ be closed of co-rank 1, (here the co-rank of N is the supremum of the lengths of chains of closed Γ-subgroup starting with N).
(1) Let $N \leq S_{1} \cap S_{2}$ with $S_{1} \neq S_{2} \in \Gamma^{*}$. Then $N=S_{1} \cap S_{2}$.
(2) Γ_{N} has rank 1 .
(3) Let $N<P \in \Gamma$. Then P lies in a unique maximal Γ-subgroup P^{*}. Moreover, $N_{G}(P) \leq N_{G}\left(P^{*}\right)$,
(4) Let $P, S \in \Gamma$ with $S \in \Gamma^{*}$ and $N<S \cap P$. Then $P \subseteq S$.

Proof. (1) By Proposition 2.11(2) $N \leq S_{1} \cap S_{2} \leq T<S$ for some closed $T \in \Gamma$ and some $S \in \Gamma^{*}$. Since N has co-rank 1 we conclude that $N=T$ and so $N=S_{1} \cap S_{2}$.
(2) Let $Q_{1} \neq Q_{2} \in \Gamma^{*} P$ and $Q_{i} \leq S_{i} \in \Gamma^{*}$. Since $\left\langle Q_{1}, Q_{2}\right\rangle \notin \Gamma, S_{1} \neq S_{2}$. So by (1) and Theorem 3.1, Γ_{N} has rank at most 1. Suppose that Γ_{N} has rank 0 . Then since N is closed $\{N\}=\Gamma_{N}$. Let $N \leq S \in \Gamma^{*}$. Then $N \leq N_{S}(N) \in \Gamma_{N}$ and so $N=N_{S}(N)$. Hence $S=N$, a contradiction to $N \notin \Gamma^{*}$.
(3) and (4) are easy consequences of (1) and (2).

Theorem 3.8 If Γ is reduced of rank 2 then one of the following holds:

1. There are $S \in \Gamma^{*}$ and closed $P, Q \in \Gamma S \backslash\{S, 1\}$ such that $\Gamma\left\langle\Gamma_{P}, \Gamma_{Q}\right\rangle$ is reduced.
2. There is an reduced $N S S \Delta$ of G with $\operatorname{rank}(\Delta)=1$ and $\Delta \leq \Gamma$.

Proof. Suppose first that there are $S \in \Gamma^{*}$ and closed $P, Q \in \Gamma S \backslash\{1, S\}$ with $P \neq Q$. Let $N:=\mathrm{R}\left(\Gamma\left\langle\Gamma_{P}, \Gamma_{Q}\right\rangle\right)$. By Corollary $2.7, N \subseteq P \cap Q$ and N is closed. Since $\operatorname{rank}(\Gamma)=2$ we get $N=1$ and 1 . holds.

Suppose next that for all $S \in \Gamma^{*}$ there is at most one closed $P \in \Gamma S$ with $1 \neq P \neq S$. If such a P exists we denote it by $P(S)$. Otherwise let $P(S)=1$. We will show that
$\left(^{*}\right) \quad P(S)=P(T) \neq 1$ for all $S, T \in \Gamma^{*}$ with $S \cap T \neq 1$.
If $S \cap T$ is closed, $P(S)=S \cap T=P(T)$. So we may assume that $S \cap T$ is not closed. Then by Proposition $2.8(10)$ there exists a closed $M \in \Gamma$ with $S \cap T \subset M$ and $\Gamma_{S \cap T} \subseteq \Gamma_{M}$. By Lemma 2.5(2) $N_{S}(S \cap T) M \in \Gamma$. So there exists $\widetilde{S} \in \Gamma^{*}$ with $N_{S}(S \cap T) M \subseteq \widetilde{S}$ and similarly choose \widetilde{T}. Then $S \cap T \subset N_{S}(S \cap T) \subseteq S \cap \widetilde{S}, S \cap T \subset M \subseteq \widetilde{S} \cap \widetilde{T}$ and $S \cap T \subset N_{T}(S \cap T) \subseteq T \cap \widetilde{T}$. So by downwards induction on $S \cap T, P(S)=P(\widetilde{S})=P(\widetilde{T})=P(T) \neq 1$. Thus (*) holds.

Put $\Delta=\bigcup\left\{\Gamma P(S) \mid S \in \Gamma^{*}\right\}$. We claim that $\Delta \leq \Gamma$. (Suba) and Sub(c) are obvious from the definition of Δ. Let $A, B \in \Delta$ and $S, T \in \Gamma^{*}$ with $A \subseteq P(S)$ and $B \subseteq P(T)$.

To show (Subc) we assume $A \neq 1 \neq B$ and $\langle A, B\rangle \leq \Gamma$. Pick $Q \in \Gamma^{*}$ with $\langle A, B\rangle \leq Q$. Then $A \leq S \cap Q$ and $B \leq Q \cap T$ and $\left({ }^{*}\right)$ implies $P(S)=$ $P(Q)=P(T)$. Thus $\langle A, B\rangle \leq P(Q)$ and $\langle A, B\rangle \in \Delta$. Thus (Subb) holds. Thus $\Delta \leq \Gamma$ and by Lemma 2.4, Δ is an $N S S$.

Suppose that $\left|\Delta^{*}\right|>1$. Let $A, B \in \Gamma^{*}$ with $A \cap B \neq 1$ and let S, T be as above. Then by $\left(^{*}\right), A=P(S)=P(T)=B$ and by Theorem 3.1, Δ is reduced of rank 1. Thus 2 . holds in this case.

Suppose that $\left|\Delta^{*}\right|=1$ and let A be the unique member of Δ^{*}. Assume that $A=1$. Then $P(S)=1$ for all $S \in \Gamma^{*}$ and so Γ has rank 1 , a contradiction. Thus $A \neq 1$. Let $\Lambda=\Gamma \backslash \Gamma_{A} \cup\{1\}$. We claim that $\Lambda \leq \Gamma$. Let $P \leq Q \leq S$ with $1 \neq P \in \Gamma, Q \in \Lambda$ and $S \in \Gamma^{*}$. Since $\Gamma_{A} \leq \Gamma$ and $Q \notin \Gamma_{A}$, $S \notin \Gamma_{A}$. Thus $S \in \Lambda$. Suppose that $P \in \Gamma_{A}$. Then $P A \in \Gamma$. Put $P A \cap S \neq 1$ and (*) implies $A \leq S$. Thus $S \in \Gamma_{A}$, a contradiction. So $P \in \Lambda$ and we conclude that (Suba) holds for Λ. Clearly (Subb) and (Subc) hold.

We proved $\Lambda \leq \Gamma$. Since $A \not \leq R(\Gamma), \Lambda \neq\{1\}$. Suppose that Λ has a unique maximal element B. Then $B \in \Gamma^{*}$ and by $\left({ }^{*}\right), B \cap A=1$. Since both A and B are normal in $G,[A, B]=1$. Thus $A B$ is nilpotent and $A B \in \Gamma$, a contradiction to $B \notin \Gamma_{A}$. Thus $\left|\Lambda^{*}\right|>1$. By (*) $X \cap Y=1$ for any two maximal members of Λ and so Theorem 3.1 implies that Λ is a reduced NSS of rank 1 . Thus 2 . holds for Λ in place of Δ.

4 Minimal 「-subgroups

In this section we continue to assume that a G is group with an NSS Γ and $1 \in \Gamma$. We consider elements $X \in \Gamma_{*}$. Recall that this just means that X is a minimal non-trivial element of Γ. In particular for two different elements $X, Y \in \Gamma_{*}$ we have $X \cap Y=1$.

Proposition 4.1 Assume $P \in \Gamma$ and $X, Y \in \Gamma P_{*}$ with $X \neq Y$. If $N_{X}(Y) \neq$ 1 or $[x, y]=1$ for some $x \in X^{\#}$ and $y \in Y^{\#}$, then $\langle X, Y\rangle=X \times Y$.

Proof. If $[x, y]=1$, then $y \in Y \cap Y^{x}$ and so $Y=Y^{x}$. So we may assume $N_{X}(Y) \neq 1$. Using Lemma 2.1 we get $X=N_{X}(Y)$. Since $X Y \subseteq P, X Y$ is nilpotent. As Y is normal in $X Y, C_{Y}(X) \neq 1$. Hence $N_{Y}(X) \neq 1$ and $Y=N_{Y}(X)$. So $[X, Y] \leq X \cap Y=1$.

Proposition 4.2 Let $P \in \Gamma$ with $P=\langle X, Y\rangle$ where $X, Y \in \Gamma P_{*} \backslash\{P\}$. If $X^{\prime} \neq 1$ then X is a normal subgroup of P (here $X^{\prime}:=[X, X]$ is the commutator subgroup of X).

Proof. Consider a counterexample with P minimal. Then there is $y \in Y$ with $X^{y} \neq X$. Set $E:=\left\langle X, X^{y}\right\rangle$. So by Proposition 2.3(6) and Proposition $1.6, E \in \Gamma$ and $E<P$. Of course $X, X^{y} \neq E$ and by minimality of P, X and X^{y} are normal in E. Therefore by Proposition $4.1 E=X \times X^{y}$. Let $Q:=\left\langle Y^{P}\right\rangle$. Then Q is a proper Γ-subgroup of P by Proposition 2.3(6) and Proposition 1.6. Since $P=\langle X, Y\rangle, X \not 又 Q$ and $Q \cap X=1$ as $X \in \Gamma_{*}$ and $Q \cap X \in \Gamma$ by (I). Now $[X, y] \leq E \cap Q$ and $E \cap Q$ is normal in E. Since $X \times X^{y}=X[X, y]$ we have $1 \neq\left[X^{y}, X^{y}\right]=\left[X^{y},[X, y]\right] \leq X^{y} \cap Q$. Hence also $X \cap Q \neq 1$, a contradiction.

Corollary 4.3 Let $P \in \Gamma$ and $\Delta:=\left\{X \in \Gamma P_{*} \mid X^{\prime} \neq 1\right\}$. Then Δ is finite and $\langle\Delta\rangle=X_{1} \times \ldots \times X_{n}$, where $\Delta=\left\{X_{1}, \ldots, X_{n}\right\}$.

Proof. Let $X \neq Y \in \Delta$. Then by Proposition 4.2 and Proposition 4.1, $[X, Y]=1$. Let $Z=\langle\Delta \backslash\{X\}\rangle$. Then $Z \in \Gamma$ and $[X, Z]=1$. Thus $X \cap Z$ is a proper Γ-subgroup of X and so $X \cap Z$. Thus the Corollary holds by the definition of the direct product. (Note also that Δ is finite by (MM))

Define an elementary abelian p-group to be an an abelian group so that all non-trivial elements have order p. Note that this makes sense for p a prime or $p=\infty$. Indeed, an elementary abelian ∞-group is just a torsion free abelian group.

Proposition 4.4 Let $X, Y \in \Gamma_{*}, X \neq Y, H:=\langle X, Y\rangle \in \Gamma$ and $[X, Y] \neq 1$. Then X and Y are both elementary abelian p-groups, $p=\infty$ or a prime.

Proof. Suppose first Y is not elementary abelian. Let $M \in \Gamma$ maximal with respect to $X \leq M<H$. Then by Proposition 2.2, M is normal in H. Also $Y \not \leq M$. Since $Y \cap M \in \Gamma$ and $Y \in \Gamma_{*}, Y \cap M=1$. Let $1 \neq x \in X$. By Proposition 4.1, $N_{X}(Y)=1$ and so $Y \neq Y^{x}$. Hence by Proposition 4.2, Y is abelian. Since $\left\langle Y, Y^{x}\right\rangle \neq H$ we get by induction that $\left[Y, Y^{x}\right]=1$. Let $D=Y Y^{x} \cap M$. Since $[Y, x] \subseteq D, Y Y^{x}=Y D=Y^{x} D$. Let $E \in \Gamma_{*} D$. Then $1 \neq Y \cap\left(E Y^{x}\right) \in \Gamma$ and so $Y \subseteq E Y^{x}$. Thus $E=D$. Note that D is isomorphic to Y and $\langle D, X\rangle \leq M$. In particular, Y is not elementary abelian and so by induction $[D, X]=1$. Since $[Y, x] \leq D$ we get $[Y, x] \leq Z(\langle Y, x\rangle)$. Let $y \in Y$ has order p, p a prime. Then by Proposition 1.1, $\left[y, x^{p}\right]=\left[y^{p}, x\right]=1$ and so by Proposition $4.1 x^{p}=1$. Hence for all $z \in Y,\left[z^{p}, x\right]=\left[z, x^{p}\right]=1$ and so by Proposition $4.1 z^{p}=1$.

Hence Y is an elementary abelian p-group and by symmetry X is an elementary abelian q-group. To show $p=q$ we may assume $p \neq \infty$. Then by Proposition $1.7\left[y, x^{p^{k}}\right]=1$ for some positive integer k. So by Proposition 4.1, $x^{p^{k}}=1$ and $q=p$.

Proposition 4.5 Let A_{1} be a Γ-subgroup of the decomposable abelian Γ subgroup A. Then there is a decomposable Γ-subgroup A_{2} of A with $A=$ $A_{1} \times A_{2}$.

Proof. Let K be a decomposable Γ-subgroup maximal with $A_{1} K=A_{1} \times$ K. If $A=A_{1} K$ we are done. So suppose $A_{1} K<A$. Since A is decomposable, there exists $X \in \Gamma_{*} A$ with $X \not \leq A_{1} K$. Then $A_{1} K \cap X=1$ and $A_{1} K X=$ $\left(A_{1} \times K\right) \times X=A_{1} \times(K \times X)$. But $K<K X$ and we obtain a contradiction to the maximal choice of K.

Proposition 4.6 Γ-subgroups of decomposable abelian Γ-subgroups are decomposable.

Proof. Let A be a decomposable abelian Γ-subgroup and B a Γ-subgroup of A. By Proposition 4.5 there exists $D \in \Gamma A$ with $A=\Omega(B) \times D$. By Proposition $1.8 B=\Omega(B) \times(B \cap D)$. Also $\Omega(B \cap D) \leq \Omega(B) \cap D=1$ and since $B \cap D \in \Gamma, B \cap D=1$ and $B=\Omega(B)$.

Proposition 4.7 Let $A, B \in \Gamma$ such that A is decomposable abelian and B is generated by abelian Γ-subgroups. If $\langle A, B\rangle \in \Gamma$, then $C_{A}(B)$ is a decomposable abelian Γ-subgroup.

Proof. Since $C_{A}(B)=\bigcap\left\{C_{A}(E) \mid E \in \Gamma B, E\right.$ abelian $\}$ we may by (I) assume that B is abelian. By Proposition 4.6 we only need to show $C_{A}(B) \in \Gamma$. By Proposition 2.3(1) we get $C_{A}(B) \leq D:=\bigcap_{b \in B} A^{b} \in \Gamma$. Note that $C_{A}(B)=C_{D}(B)$ and that B normalizes D. By Proposition 4.6 D is decomposable.

If $D=C_{D}(B)=C_{A}(B)$ we are done. So suppose $[D, B] \neq 1$. Since $D B$ is nilpotent, there exists $d \in D$ with $1 \neq[d, B] \leq C_{D}(B)$. Then $B^{d} \leq$ $C_{D}(B) B \leq C_{G}(B)$. Thus $B B^{d}$ is abelian and $B B^{d} \in \Gamma$. Thus

$$
1 \neq[d, B] \leq B B^{d} \cap D \leq C_{D}(B)
$$

Put $E:=B B^{d} \cap D$. Then E is a non-trivial Γ subgroup of $C_{D}(B)$. By Proposition 4.5, $D=E \times F$ for some decomposable Γ subgroup F of D. Then $C_{D}(B)=E \times C_{F}(B)$. Since $F<A$, induction on A shows $C_{F}(B) \in \Gamma$. Hence also $C_{D}(B) \in \Gamma$ and the Proposition is proved.

Proposition 4.8 Let $A, B \in \Gamma$ such that A is decomposable, B an abelian Γ-subgroup and $A \in \Gamma_{B}$. Then $[B, A]$ is a Γ-subgroup of G.

Proof. Since $[B, A]=\left\langle[B, E] \mid E \in \Gamma_{*} A\right\rangle$ we may by Proposition 2.3(6) assume that $A \in \Gamma_{*}$. If $A \leq B$, then since B is abelian $[A, B]=1 \in \Gamma$. We therefore may assume $A \nsubseteq B$ and so $A \cap B=1$ by minimality of A. Note that $\left\langle A^{B}\right\rangle=A[B, A]$ and so

$$
\left\langle A^{B}\right\rangle \cap B=[B, A](A \cap B)=[B, A] .
$$

By Proposition 2.3(6) $\left\langle A^{B}\right\rangle \in \Gamma$ and so by (I), $[B, A] \in \Gamma$.

5 Measure and the Thompson subgroup

G continues to be a group with an NSS Γ with $1 \in \Gamma$. We define a measure function and use it to state and prove a variant of the Thompson Replacement Theorem.

Proposition 5.1 Let $X, Y \in \Gamma$ with $X Y \in \Gamma$. Let

$$
X=X_{0}<X_{1}<\ldots<X_{r}=X Y
$$

be any maximal chain of Γ-subgroups from X to $X Y$. Then

$$
X \cap Y=X_{0} \cap Y<X_{1} \cap Y<\ldots X_{r} \cap Y=Y
$$

is a maximal chain of Γ-subgroups from $X \cap Y$ to Y.
Proof. Let A be a Γ subgroup with $X_{i} \cap Y \leq A \leq X_{i+1} \cap Y$. Since $X \leq X_{i} \leq X Y$, Proposition 1.8 implies $X_{i}=X\left(X_{i} \cap Y\right)$. Thus

$$
X_{i} \leq A X \leq X_{i+1}
$$

X_{i} is a maximal Γ-subgroup of X_{i+1} and so by Proposition $2.2 X_{i}$ is normal in X_{i+1}. Thus $A X=A X_{i}$ is a subgroup of X_{i+1}. Since X_{i+1} is nilpotent, Proposition 2.3(6) implies $A X \in \Gamma$. By the maximality of the X_{i}-chain, $A X=X_{k}$ for some $k \in\{i, i+1\}$. Thus $X_{k} \cap Y=A X \cap Y=$ $A(X \cap Y)=A$.

Proposition 5.2 Let $X \in \Gamma$. Then there exists a maximal chain of Γ subgroups from 1 to X and any two such chains have the same length. We denote this common length by $\mu(X)$.

Proof. The existence of a maximal Γ-chain from 1 to X follows from (MM). Let A and B be maximal Γ-subgroups of X. By induction any maximal Γ-chain from 1 to X through A has unique length $\mu(A)+1$. It remains to show that $\mu(A)=\mu(B)$. Without loss $A \neq B$. By maximality of A and B, A is normal in $X, A B \in \Gamma$ and $A B=X$. Note that $A \leq X$ is a maximal chain from A to X and so by Proposition 5.1, $A \cap B<B$ is a maximal chain from $A \cap B$ to B. Thus $\mu(B)=\mu(A \cap B)+1=\mu(A)$.

Abusing the term we call μ of Proposition 5.2 a measure function on Γ and $\mu(A)$ is called the measure of A.

Proposition $5.3 \mu(P)=\mu\left(P^{g}\right)$ for all $P \in \Gamma$ and $g \in G$.
Proof. This follows from (C) and Proposition 5.2.

Proposition 5.4 Assume $X, Y \in \Gamma$.
(1) Suppose $X \leq Y$, then any maximal Γ-chain from X to Y has length $\mu(Y / X):=\mu(Y)-\mu(X)$.
(2) Suppose $X Y \in \Gamma$. Then $\mu(X Y)=\mu(X)+\mu(Y)-\mu(X \cap Y)$.

Proof. (1) follows from Proposition 5.2.
(2) By (1) $\mu(X Y / X)=\mu(X Y)-\mu(X)$. By (1) and Proposition 5.1, $\mu(X Y / X)=\mu(Y / X \cap Y)$. Again by (1) $\mu(Y / X \cap Y)=\mu(Y)-\mu(X \cap Y)$. Thus (2) holds.

Definition. For $P \in \Gamma$ let $\mathcal{A}(P)$ be the set of all decomposable abelian Γ subgroups of P with maximal measure. Let $J(P):=\langle\mathcal{A}(P)\rangle$, the Thompsonsubgroup of P (compare with the introduction of [5]).

Then $J(P)$ is a Γ-subgroup of P by Proposition 2.3(6).
Proposition 5.5 Let V be a decomposable abelian Γ-subgroup of G and $A \in$ Γ_{V} with $A \in \mathcal{A}(A V)$. Then $C_{V}(A)=V \cap A$ and $\mu\left(A / C_{A}(V)\right) \geq \mu\left(V / C_{V}(A)\right)$

Proof. By Proposition 4.7 and (P), $C_{V}(A) A$ is an decomposable abelian Γ-subgroup of P. The maximality of $\mu(A)$ implies $C_{V}(A) \leq A$ and thus $C_{V}(A)=V \cap A$. Thus $V \cap C_{A}(V)=V \cap A=C_{V}(A)$ and by maximality of A, Proposition 4.7 and Proposition 5.4:

$$
\begin{aligned}
\mu(A) \geq \mu\left(V C_{A}(V)\right) & =\mu\left(V C_{A}(V) / C_{A}(V)\right)+\mu\left(C_{A}(V)\right) \\
& =\mu\left(V / C_{V}(A)\right)+\mu\left(C_{A}(V)\right) .
\end{aligned}
$$

The next lemma is our version of the Thompson Replacement Theorem.
Lemma 5.6 Let A, V be decomposable abelian Γ-groups with $A \in \Gamma_{V} \cap$ $\mathcal{A}(A V)$. Let $x \in N_{V}\left(N_{V}(A) A\right)$ and define

$$
D=\left(\left(A A^{x}\right) \cap V\right)\left(A \cap A^{x}\right) .
$$

Then
(1) $D \in \mathcal{A}(A V)$ and $\langle x\rangle N_{V}(A) A \subseteq N_{G}(D)$.
(2) If $[V, A] \neq 1$, then $[V, D] \neq 1$.

Proof. (1) Let $P=N_{V}(A) A$. Since x normalizes P, both A and A^{x} are normal in P. Thus $A A^{x}=\left\langle A, A^{x}\right\rangle$. Since A is abelian, $A \cap A^{x} \subseteq Z\left(A A^{x}\right)$. By Proposition 4.6 both $A A^{x} \cap V$ and $A \cap A^{x}$ are decomposable Γ-groups and so D is an abelian decomposable Γ-group. Also $[x, A] \subseteq V \cap\left(A A^{x}\right) \subseteq D$ and so $x \in N_{G}(D)$. Note that
$\left(^{*}\right) \quad \mu\left(A A^{x}\right)=\mu(A)+\mu\left(A^{x}\right)-\mu\left(A \cap A^{x}\right)=2 \mu(A)-\mu\left(A \cap A^{x}\right)$.
Also $A A^{x} \subseteq V A$ and so $A A^{x}=A A^{x} \cap V A=A\left(V \cap A A^{x}\right)=A D$. Moreover, $D \cap A=(V \cap A)\left(A \cap A^{x}\right)$ and $V \cap A \subseteq C_{A}(x) \subseteq A \cap A^{x}$. Thus
$D \cap A=A \cap A^{x}$. Hence $\mu\left(A A^{x}\right)=\mu(D A)=\mu(D)+\mu(A)-\mu\left(A \cap A^{x}\right)$. Comparing with $\left(^{*}\right)$ we obtain $\mu(A)=\mu(D)$ and so $D \in \mathcal{A}(A V)$.
(2) Suppose that $[V, D]=1$. Then $A \cap A^{x} \leq C_{A}(V)$ and so by Proposition 5.5, $A \cap A^{x}=A \cap V$. Hence $D \leq V$. Since $D \in \mathcal{A}(A V)$ we get $V=D \subseteq$ $P \subseteq N_{G}(A)$. Thus $A=A^{x}=A \cap A^{x} \leq D$ and $[V, A]=1$. Thus (2) holds.

Proposition 5.7 Let V be a decomposable abelian Γ-subgroup of G and $P \in \Gamma_{V}$ with $V \subseteq P$ and $J(P) \nsubseteq C_{G}(V)$. Then there exists $A \in \mathcal{A}(P)$ such that $[[V, A], A]=1 \neq[V, A] \leq A$.

Proof. Since $J(P) \nsubseteq C_{G}(V)$ there exists $A \in \mathcal{A}(P)$ with $1 \neq[V, A]$. Choose such an A with $N_{V}(A)$ maximal.

Suppose that V does not normalize A. Then $V \not \leq N_{V}(A) A$ and so by Proposition 1.6(2) there exists $x \in N_{V}\left(N_{V}(A) A\right)$ with $x \notin N_{V}(A)$. Let D be defined as in Lemma 5.6. Then $D \in \mathcal{A}(A V),[V, D] \neq 1$ and $\langle x\rangle N_{V}(A) \leq$ $N_{V}(D)$, contradiction to the maximal choice of $N_{V}(A)$.

Thus V normalizes $A,[V, A] \leq A$ and $[[V, A], A]=1$.

Lemma 5.8 Let A, B be abelian Γ-subgroups with $[A, B] \leq A \cap B$. Let $a \in A$. Suppose that B is decomposable and $C_{B}(a) \in \Gamma$. Then $[a, B] \in \Gamma$ and $\mu([a, B])=\mu\left(B / C_{B}(a)\right)$.

Proof. By Proposition 4.5 there exists a Γ-subgroup D of B with $B=$ $C_{B}(a) \times D$. Then $[D, a] \leq A \cap B \leq C_{A}(D)$ and so by Proposition 1.2(2) $D D^{a}=D[D, a] \in \Gamma$. Moreover, $D D^{a} \cap A=(D \cap A)[D, a]$ and $D \cap A \leq$ $C_{D}(a)=1 .[D, a]=D D^{a} \cap A \in \Gamma$. In particular, $D \cap[D, a]=1$ and so by Proposition 1.2(3), $D \cap D^{a}=C_{D}(a)=1$. Thus $2 \mu(D)=\mu\left(D D^{a}\right)=$ $\mu(D)+\mu([D, a])$ and

$$
\mu([a, B])=\mu([a, D])=\mu(D)=\mu\left(B / C_{B}(a)\right)
$$

6 Glauberman's Theorem, Part I

In this section we begin the proof of Theorem A stated in the introduction. Assume G, V, S, A, Γ have the meaning and the properties mentioned there.

Proposition 6.1 Set $\Pi:=\bigcup_{g \in G} \Gamma S^{g}$. Let $T \in \Pi^{*}$.
(1) Π is an NSS of rank 1 .
(2) $\Pi^{*}=S^{G} \subseteq \Gamma^{*}$.
(3) $\mathrm{R}(\Pi)=\mathrm{R}(\Gamma)$.
(4) $\left[C_{G}(V),\langle\Pi\rangle\right] \leq \mathrm{R}(\Gamma)$.
(5) Let $P \in \Gamma\left(T C_{G}(V)\right)$, then $P \leq T$.
(6) $\mathrm{R}(\Gamma)=C_{T}(V)$.

Proof. By (a) (that is assumption (a) of Theorem A), Γ has rank 1. By (e) $R(\Gamma)$ is large. So (1),(2) and (3) follow from Lemma 3.5.
(4) By (c) $\left[C_{G}(V), S\right] \leq \mathrm{R}(\Gamma)$. Thus (4) follows by conjugation.
(5) By (4) $[P, T] \leq\left[T C_{G}(V), T\right] \leq T \mathrm{R}(\Gamma) \leq T$. Thus $P \leq N_{G}(T)$. By (e), $\mathrm{R}(\Gamma)$ is large and so by Lemma 3.2 $P T \in \Gamma$. Since $T \in \Pi^{*}=S^{G} \subseteq \Gamma^{*}$, $P \leq T$.
(6) Let $R \in \Pi^{*}$. By (4) $\left[T \cap C_{G}(V), R\right] \leq \mathrm{R}(\Gamma) \leq R$. Thus $C_{T}(V) \leq$ $E:=\bigcap_{R \in \Pi^{*}} N_{T}(R)$. By (I) and (MM) $E \in \Gamma$ and by Proposition 2.3(8), $E \leq \mathrm{R}(\Pi)=\mathrm{R}(\Gamma)$.

Lemma 6.2 There exists a non-trivial quadratic Γ-offender E in S on V with $C_{V}(E)=V \cap E$.

Proof. By (d) there exists a non-trivial Γ-offender A in S on V. Since $V \leq \mathrm{R}(\Gamma), A \in \Gamma_{V}$. Let $B=C_{A}(V) V$ and $D=C_{V}(A) A$. By Proposition 4.7, $B \in \Gamma$. Since A is an offender on $V, \mu\left(V / C_{V}(A)\right) \leq \mu\left(A / C_{A}(V)\right)$. But this is equivalent to $\mu(B) \leq \mu(D)$. We will show that
$\left({ }^{*}\right) \quad J(A V) \not \leq C_{A V}(V)$.

Since $A V=A B, C_{A V}(V)=C_{A}(V) B=B$. From $\mu(D) \geq \mu(B)$, we get $D \in \mathcal{A}(A B)$ and $D \not \leq B$, since $1 \neq[A, V] \leq[B, D]$.

Thus $\left(^{*}\right)$ holds. The existence of E now follows from Proposition 5.7 and Proposition 5.5.

Notation.

$\Delta:=E^{G}$, where E is as in Lemma 6.2
$E, F \in \Delta$ such that $\mu([V, E][V, F])$ is minimal with respect to $\langle E, F\rangle \notin \Gamma$.
$W:=[V, E][V, F]$.
$H:=\langle E, F\rangle \mathrm{R}(\Gamma)$.
$Z:=[V, E] \cap[V, F]$.
$\Lambda:=\Delta H$.
$q:=\mu\left(A / C_{A}(V)\right)$ for $A \in \Delta$.
$m:=\mu([V, A])$.
Notice that $C_{A}(V),[V, A], W$ and Z are decomposable abelian subgroups by Proposition 4.5 - Proposition 4.8 , (P) and (I). Hence the measure of these groups is defined. Note that by Proposition 5.4 and the choice of E, F, $\mu(Z)$ is maximal with respect to $\langle E, F\rangle \notin \Gamma$. The existence of $F \in \Delta$ with $\langle E, F\rangle \notin \Gamma$ is guaranteed by Lemma 3.6. In view of Lemma 3.4(1) we denote by D^{*} the unique member of Γ^{*} which contains D provided $D \in \Gamma$ with $D \not \leq \mathrm{R}(\Gamma)$. Observe that by Proposition 6.1(6), $A \notin \mathrm{R}(\Gamma)$ for all $A \in \Delta$.

Proposition 6.3 Let $A, B \in \Delta$
(1) $\langle A, B\rangle \notin \Gamma$ if and only if $A^{*} \neq B^{*}$.
(2) If $A^{*} \neq B^{*}$, then $\left\langle A, A^{b}\right\rangle \notin \Gamma$ for all $b \in B \backslash R(\Gamma)$.
(3) If $A^{*} \neq B^{*}$, then $[V, A] \neq[V, B]$.

Proof. (1) If $\langle A, B\rangle \in \Gamma$ then $A^{*}=\langle A, B\rangle^{*}=B^{*}$. If $A^{*}=B^{*}$ then $\langle A, B\rangle \in \Gamma$ by Proposition 2.3(6). Hence (1).
(2) Let $b \in B$ with $\left\langle A, A^{b}\right\rangle \in \Gamma$. Then by Lemma 3.4(2), $b \in A^{*} \cap B^{*}$. So by Theorem 3.1(2), $b \in R(\Gamma)$.
(3) Assume $[V, A]=[V, B]$. By (c), A and B are quadratic and so $[[V, A], B]=[[B, V], A]=1$. Thus $[[A, B], V]=1$ by Proposition 1.1 (5)
and $[A, B] \subseteq C_{G}(V)$. Let $b \in B \backslash \mathrm{R}(\Gamma)$. Then $A^{b} \in A C_{G}(V) \leq A^{*} C_{G}(V)$ and so by Proposition 6.1(5), $A^{b} \leq A^{*}$, a contradiction to (2).

Proposition 6.4 Let $A \in \Lambda$ and $a \in A \backslash \mathrm{R}(\Gamma)$. Then
(1) $[V, A]=Z \times[W, a]=C_{W}(a)=C_{W}(A)$.
(2) $\left\langle B, B^{a}\right\rangle \notin \Gamma$ and $[V, B] \cap C_{V}(a)=[V, A] \cap[V, B]=Z$ for all $B \in \Lambda$ with $\langle A, B\rangle \notin \Gamma$.

Proof. By Lemma 3.6 there is $B \in \Lambda$ with $\langle A, B\rangle \notin \Gamma$. So by Proposition $6.3\left\langle B, B^{a}\right\rangle \notin \Gamma$. Hence $W=[V, A][V, B]=[V, B]\left[V, B^{a}\right]$ by minimality of $\mu(W)$. Put $D:=C_{[V, B]}(a)$. Then by Proposition 5.4, Proposition 1.2, and quadratic action,

$$
C_{W}(a)=D \times[[V, B], a]=[V, A]=C_{W}(A)
$$

Also $[W, a]=[[V, B], a]$ and

$$
D=[V, B] \cap C_{W}(a)=[V, B] \cap[V, A]=C_{W}(B) \cap C_{W}(A)=C_{W}(\langle A, B\rangle)
$$

Since H centralizes $Z, Z \leq D$. The maximality of $\mu(Z)$ now implies $Z=D$.

Proposition 6.5 Let $A, B \in \Lambda$ with $\langle A, B\rangle \notin \Gamma$, $w \in[V, B] \backslash Z$, and $a \in$ $A \backslash \mathrm{R}(\Gamma)$. Then
(1) $W=[V, B] \times[w, A]$.
(2) $V=W C_{V}(A)$.
(3) $q=\mu\left(V / C_{V}(A)\right)=\mu\left(W / C_{W}(A)\right)=\mu\left(A / C_{A}(V)\right)=\mu([w, A])=$ $\mu([V, a])$.

Proof. (1) By Proposition 4.8, $W \in \Gamma$. Since V is decomposable, also W is decomposable and by Proposition $4.7 C_{W}(A) \in \Gamma$. Hence also $C_{W}(A) A \in \Gamma$ and we can assume $[V, A]=C_{W}(A) \subseteq A$. Then $A \cap W=[V, A]$. By Proposition 6.4(2), $[w, a] \neq 1$ for all $a \in A \backslash \mathrm{R}(\Gamma)$ and so $C_{A}(w)=A \cap R(\Gamma) \in$ Γ. From Lemma 5.8 we conclude $[w, A] \in \Gamma$ and
$\left({ }^{*}\right) \quad \mu([w, A])=\mu\left(A / C_{A}(V)\right)=q$.
Note that $\mu([V, B])=m=\mu([V, A])=\mu\left(C_{W}(A)\right)$ and so
(**) $\quad \mu\left(V / C_{V}(A)\right) \geq \mu\left(W / C_{W}(A)\right)=\mu(W /[V, B])$.
By $\left({ }^{*}\right),\left({ }^{* *}\right)$ and since A is an offender, $\mu([w, A]) \geq \mu(W /[V, B])$. By Proposition $6.4[w, A] \cap[V, B] \leq[w, A] \cap Z=1$ and we conclude that $\mu([w, A])=\mu(W /[V, B])$ and $W=[V, B] \times[w, A]$. So (1) holds.
(2) We also conclude that the inequalilty in (**) actually is an equality. So $\mu\left(V / C_{V}(A)\right)=\mu\left(W / C_{W}(A)\right)$. Hence (2) holds.
(3) By Proposition 6.4, $C_{W}(a)=C_{W}(A) \in \Gamma$. So by Lemma 5.8, $[W, a] \in$ Γ and $\mu([W, a])=\mu\left(W / C_{W}(A)\right)=q$. By $(2),[V, a]=[W, a]$ and all parts of (3) are proved.

Proposition 6.6 Let $A, B \in \Lambda$ with $\langle A, B\rangle \notin \Gamma$ and $\Sigma:=[V, A]^{H}$. Then:
(1) If $B \in \Lambda$ with $\langle A, B\rangle \notin \Gamma$ then $\Sigma=\{[V, A]\} \cup[V, B]^{A}$.
(2) If $M, N \in \Sigma$ with $M \neq N$ then $M \cap N=Z$.
(3) $W=\bigcup_{M \in \Sigma} M$.
(4) For $D \in \Delta$ put $\hat{D}=D \mathrm{R}(\Gamma)$. Let $D \in \Lambda$ with $D^{*}=A^{*}$, then $\hat{D}=\hat{A}$.
(5) Let $\hat{\Lambda}=\{\hat{B} \mid B \in \Lambda\}$. Then $\hat{\Lambda}=\{\hat{A}\} \cup\left\{\hat{B}^{A}\right\}$.
(6) $H=\langle C, D\rangle \mathrm{R}(\Gamma)$ for all $C, D \in \Delta H$ with $\hat{C} \neq \hat{D}$.
(7) $V=C_{V}(H) W$ and $V=\bigcup_{D \in \Lambda} C_{V}(D)$.

Proof. Let $A, B \in \Lambda$ with $\langle A, B\rangle \notin \Gamma$. Then $W=[V, A][V, B]=[V, B] \times$ $[w, A]$ for $w \in[V, B] \backslash Z$ by Proposition 6.5 and $[V, A] \cap[V, B]=Z$ by Proposition 6.4. Therefore $w^{A} Z=w[V, A]$, which shows

$$
\left(^{*}\right) \quad W=[V, A] \cup \bigcup_{a \in A}[V, B]^{a} .
$$

By Lemma 3.6 we can apply (${ }^{*}$) to an element of A^{H} in the role of B and so (3) holds.

Also $[V, B]^{a_{1}} \cap[V, B]^{a_{2}}=Z$ for $a_{1}, a_{2} \in A$ with $a_{1} a_{2}^{-1} \notin \mathrm{R}(\Gamma)$ by Proposition 6.4. Let $C \in \Lambda$. Then there is $D \in\{A\} \cup B^{A}$ with $[V, C] \cap[V, D] \supset Z$.

Hence by maximality of $\mu(Z),\langle C, D\rangle \in \Gamma, C^{*}=D^{*}$ and $\langle C, K\rangle \notin \Gamma$ for $K \in\left(\{A\} \cup B^{A}\right) \backslash\{C\}$. But then by $\left(^{*}\right)$

$$
[V, C] \backslash Z \subseteq W \backslash \bigcup\left\{[V, K] \mid D \neq K \in\{A\} \cup B^{A}\right\} \subseteq[V, D]
$$

and $[V, C]=[V, D]$. Thus (1) and (2) hold.
(4) Let $d \in D$. By (1) $[V, B]^{d a}=[V, B]$ for some $a \in A$. Thus $d a \in$ $N_{G}\left(B^{*}\right)$ and so $d a \in \mathrm{R}(\Gamma)$. Hence $d \in A \mathrm{R}(\Gamma)=\hat{A}$. Thus (4) holds.
(5) Let $C \in \Lambda$ with $\hat{C} \neq \hat{A}$. By (4), $C^{*} \neq A^{*}$ and by Proposition 6.3(3), $[V, C] \neq[V, A]$. So by (1), $[V, C]=[V, B]^{a}$ for some $a \in A$. By Proposition $6.3(3), C^{*}=B^{a *}$ and so by (4) $\hat{C}=\hat{B^{a}}$.
(6) By (5), H is doubly transitive on $\hat{\Lambda}$. Since $H=\langle\hat{E}, \hat{F}\rangle$, (6) holds.
(7) Since $H=\langle A, B\rangle \mathrm{R}(\Gamma)$, we have $C_{V}(H)=C_{V}(A) \cap C_{V}(B)$. Since $\mu\left(V / C_{V}(A)\right)=q$ we get $\mu\left(V / C_{V}(H)\right) \leq 2 q$. Since $\mu\left(W / C_{W}(H)\right)=2 q$, the first part of (7) holds.

Let $v \in V$. Then $v=c w$ with $c \in C_{V}(H)$ and $w \in W$. By (1), $w \in[V, C]$ for some $C \in \Lambda$. So $v \in C_{V}(H)[V, C] \leq C_{V}(C)$.

Lemma 6.7 Let $t \in G$ and $B \in \Delta$. Suppose that one of the following holds:

1. $t \in A \in \Delta$ and $[V, t] \cap C_{V}(B) \neq 1$.
2. $\mu\left(C_{V}(B) /\left(C_{V}(B) \cap C_{V}(B)^{t}\right)\right)<q$.

Then $\left\langle B, B^{t}\right\rangle \in \Gamma$.
Proof. Suppose that 1. holds. Then by Proposition 1.2(2) $C_{V}\left(B^{t}\right) \subseteq$ $[V, t] C_{V}(B)$. By Proposition 6.5(3), $\mu([V, t])=q$ and so 1 . implies 2.

So we may assume that 2 . holds. Then

$$
\mu\left([V, B] /\left([V, B] \cap C_{V}(T)\right)\right)<q .
$$

Since $[V, B] \cap C_{V}(t) \leq[V, B] \cap[V, B]^{t}$ and $\mu([V, B] / Z)=q$, the maximality of $\mu(Z)$ implies $\left\langle B, B^{t}\right\rangle \in \Gamma$.

Lemma 6.8 Let $A \in \Delta$. Then $A \subseteq B \mathrm{R}(\Gamma) \subseteq H$ for some $B \in \Lambda$.

Proof. Let $a \in A \backslash C_{A}(V)$. By Proposition 6.6(7) there exists $B \in \Lambda$ with $[V, a] \cap C_{V}(B) \neq 1$. By Lemma 6.7, $\left\langle B, B^{a}\right\rangle \in \Gamma$. Thus by Lemma 3.4(2), $a \in B^{*}$. Hence $A \subseteq B^{*}$ and $A^{*}=B^{*}$. Since $\mathrm{R}(\Gamma) \leq C_{G}(V)$, Proposition 6.6(5) implies $[V, a] \subseteq C_{V}(B)$. By Lemma $6.7 a \in B^{*}$ and so $A^{*}=B^{*}$. So by Proposition 6.6(5), $B \mathrm{R}(\Gamma)$ is independent from the choice of a. Hence $[V, A] \subseteq C_{V}(B)$. Let $A=B^{g}$ for $g \in G$. Then $A \in \Lambda^{g}$ and so by symmetry $[V, B] \leq C_{V}(A)$. Thus $[V, A][V, B] \subseteq C_{V}(A B)$.

Let $D \in \Lambda \backslash \Lambda B^{*}$.
Put $T=\langle A, B, D\rangle, U=[V, T]=[V, A][V, B][V, D]$ and $Y=[V, A][V, B] \cap$ $C_{V}(D)$. Then Y is centralized by A, B and D and so $Y \subseteq C_{U}(T)$. Since $\mu\left(V / C_{V}(D)\right)=q=\mu\left([V, B] C_{V}(D) / C_{V}(D)\right),[V, A][V, B]=[V, B] Y$. Let $a \in A$ and $w \in[V, D] \backslash Z$. Note that $Z \subseteq[V, D] \cap C_{V}(B) \leq Y$. By Proposition $6.5(1),[w, B] Z=[V, B]$ and so $[V, A][V, B]=[w, B] Y$. Hence $[w, a] Y=$ $[w, b] Y$ for some $b \in B$. Let $t=b^{-1} a$. Then $w^{t} Y=w Y$. Since $w Y \subseteq$ $[V, D] Y \subseteq C_{V}(D), w Y=w^{t} Y \subseteq C_{V}\left(D^{t}\right)$. Hence $Z<\langle w\rangle Z \subseteq[V, D] \cap$ $C_{V}\left(D^{t}\right)$ and so $\mu\left([V, D] /\left([V, D] \cap C_{V}\left(D^{t}\right)\right)\right)<q$.

Thus by Lemma 6.7, $\left\langle D, D^{t}\right\rangle \in \Gamma$ and by Lemma 3.2(2), $t \in D^{*}$. Hence $t \in D^{*} \cap B^{*}=\mathrm{R}(\Gamma)$. So $a=b t \in B \mathrm{R}(\Gamma) \subseteq H$.

Theorem $6.9\langle\Gamma\rangle=H$ and $\Gamma^{*}=\{A \mathrm{R}(\Gamma) \mid A \in \Delta\}$.
Proof. Let $P \in \Gamma^{*}$. By Lemma 6.8, $H=\langle\Delta\rangle \mathrm{R}(\Gamma)$ and so H is normal in G. So P normalizes $W=[V, H]$ and $Z=C_{W}(H)$. As $P V$ is nilpotent, P centralizes some $1 \neq w Y$ in W / Z. By Proposition 6.6(3), $w \in[V, A]$ for some $A \in \Lambda$. Thus $P \subseteq N_{G}([V, A])$. By Proposition 6.3(3) $P \subseteq N_{G}\left(A^{*}\right)$ and so by Lemma 3.2, $P=A^{*}$. By Proposition 6.6(5), A acts transitively on $\hat{\Lambda} \backslash \hat{A}$, whence $P=A N_{P}(\hat{B})$ for $B \in \Lambda$ with $\langle A, B\rangle \notin \Gamma$. But $N_{P}(\hat{B}) \leq N_{P}\left(\hat{B}^{*}\right)=$ $P \cap B^{*}=\mathrm{R}(\Gamma)$ and so $P=A \mathrm{R}(\Gamma)$.

7 Glauberman's Theorem, Part II

In this section we complete the proof of Theorem A. We continue to use the notations from the previous section. In addition we define:
$V_{0}=W / Z$, written additively.
$V_{1}=[V, E] / Z$ and $V_{2}=[V, F] / Z$.

We view V_{0} as a left module over the endomorphism ring $\operatorname{End}\left(V_{0}\right)$. In particular if $\alpha, \delta \in \operatorname{End}\left(V_{0}\right)$ and $v \in V_{0}$, then $(\alpha \delta)(v)=\alpha(\delta(v))$. For $h \in H$ define $\sigma_{h} \in \operatorname{End}\left(V_{0}\right)$ by $\sigma_{h}(w Z)=w^{h} Z$ for $w \in W$. Note that $\sigma_{h h^{\prime}}=\sigma_{h^{\prime}} \sigma_{h}$. From Proposition 6.6 we obtain:
(i) $V_{1}=C_{V_{0}}(E)=\left[V_{0}, E\right]=\left[V_{0}, a\right]$ for all $a \in E \backslash C_{E}\left(V_{0}\right)$.
(ii) $V_{2}=C_{V_{0}}(F)=\left[V_{0}, F\right]=\left[V_{0}, b\right]$ for all $b \in F \backslash C_{F}\left(V_{0}\right)$.
(iii) $V_{0}=V_{1} \oplus V_{2}$.
(iv) For $g \in H$ with $\sigma_{g}\left(V_{1}\right) \neq V_{1}$ there is $a \in E$ with $\sigma_{g a}\left(V_{1}\right)=V_{2}$.

Take $b \in F$ fixed such that $\sigma_{b}\left(V_{1}\right) \neq V_{1}$ and set $\beta:=\sigma_{b}-1 \in \operatorname{End}\left(V_{0}\right)$. Similarly set $\chi_{a}=\sigma_{a}-1$. Moreover for $i=1,2$ let π_{i} be the projection from V_{0} on V_{i} according to the direct sum decomposition $V_{0}=V_{1} \oplus V_{2}$.

Proposition 7.1 The following equations hold, where $a, c \in E$:
(1) $\sigma_{b}=\pi_{1}+\pi_{2}+\beta$.
(2) $\sigma_{a}=\pi_{1}+\pi_{2}+\chi_{a}$.
(3) $\chi_{a} \pi_{1}=\pi_{2} \chi_{a}=\beta \pi_{2}=\pi_{1} \beta=0$.
(4) $\beta \pi_{1}=\pi_{2} \beta=\beta$ and $\pi_{1} \chi_{a}=\chi_{a} \pi_{2}=\chi_{a}$.
(5) $\beta^{2}=\chi_{a} \chi_{c}=0$.
(6) $\pi_{1} \sigma_{a}=\pi_{1}+\chi_{a}$.
(7) $\chi_{a c}=\chi_{a}+\chi_{c}$ and $\chi_{a^{-1}}=-\chi_{a}$.

Proof. Straightforward..

Proposition 7.2 There exists $a_{1} \in E$ such that $\left.\left(\chi_{a_{1}} \beta\right)\right|_{V_{1}}=i d_{V_{1}}$.
Proof. By (iv) there exists $a \in E$ such that $\sigma_{b a}\left(V_{1}\right)=V_{2}$. Now Proposition 7.1 affords

$$
\pi_{1} \sigma_{b a}=\left(\pi_{1} \sigma_{a}\right) \sigma_{b}=\left(\pi_{1}+\chi_{a}\right)\left(\pi_{1}+\pi_{2}+\beta\right)=\pi_{1}+\chi_{a}+\chi_{a} \beta
$$

and $0=\left.\pi_{1} \sigma_{b a}\right|_{V_{1}}=i d_{V_{1}}+\left.\left(\chi_{a} \beta\right)\right|_{V_{1}}$. Let $a_{1}=a^{-1}$.

Proposition 7.3 For every $a \in E \backslash C_{E}\left(V_{0}\right)$ there exists $\widehat{a} \in A$ such that $\left.\left(\chi_{\widehat{a}} \beta\right)\right|_{V_{1}}=\left(\left.\left(\chi_{a} \beta\right)\right|_{V_{1}}\right)^{-1}$.

Proof. Let $g=b^{-1} a b$. A straightforward calculation shows

$$
\left(^{*}\right) \quad \sigma_{g}=\left(\pi_{1}+\chi_{a}-\chi_{a} \beta\right)+\left(\pi_{2}+\beta \chi_{a}-\beta \chi_{a} \beta\right) .
$$

By Proposition $6.6 \sigma_{g}\left(V_{1}\right) \neq V_{1}$. Hence by (iv) there is $c \in E$ such that $\sigma_{g c}\left(V_{1}\right)=V_{2}$. Then $\pi_{1} \sigma_{g c}=\left(\pi_{1} \sigma_{c}\right) \sigma_{g}=\left(\pi_{1}+\chi_{c}\right) \sigma_{g}$. Using ($\left.{ }^{*}\right)$ we compute

$$
0=\left.\pi_{1} \sigma_{g c}\right|_{V_{1}}=i d_{V_{1}}-\left.\left(\chi_{a} \beta\right)\right|_{V_{1}}-\left.\left(\chi_{c} \beta \chi_{a} \beta\right)\right|_{V_{1}} .
$$

Multiplying this equation with $\left(\left.\left(\chi_{a} \beta\right)\right|_{V_{1}}\right)^{-1}$ from the right we obtain

$$
\left.\left(\chi_{c} \beta\right)\right|_{V_{1}}=\left(\left.\left(\chi_{a} \beta\right)\right|_{V_{1}}\right)^{-1}-i d_{V_{1}} .
$$

By Proposition 7.2 there exists $a_{1} \in E$ such that $\left.\left(\chi_{a_{1}} \beta\right)\right|_{V_{1}}=i d$. Let $\widehat{a}=c a_{1}$. Then $\chi_{\widehat{a}}=\chi_{c}+\chi_{a_{1}}$ we compute $\left.\left(\chi_{\widehat{a}} \beta\right)\right|_{V_{1}}=\left(\left.\left(\chi_{a} \beta\right)\right|_{V_{1}}\right)^{-1}$.

In Proposition 7.4 and Proposition 7.5 we pick a fixed $v_{1} \in V_{1}$ with $v_{1} \neq 0$.
Proposition 7.4 Let $a, a^{\prime} \in E$. Define

$$
\bar{\chi}_{a}=\left(\sigma_{a}-1\right) \beta \in \operatorname{End}\left(V_{0}\right) \quad \text { and } \quad x_{a}:=\bar{\chi}_{a}\left(v_{1}\right) .
$$

There is a unique coset $a^{\prime \prime} C_{E}\left(V_{0}\right)$ with $\bar{\chi}_{a^{\prime}}\left(x_{a}\right)=x_{a^{\prime \prime}}$. Define

$$
x_{a}+x_{a^{\prime}}:=x_{a a^{\prime}} \quad \text { and } \quad x_{a} \cdot x_{a^{\prime}}:=x_{a a^{\prime \prime}} .
$$

Set $D:=\left\{x_{a} \mid a \in E\right\}$. Then $(D,+, \cdot)$ is a Cayley-Dickson-Division-Algebra or a skew field with $(D,+) \simeq E / C_{E}\left(V_{0}\right)$.

Proof. For each $v \in V_{1}^{\#}$ we have $\bar{\chi}_{E}(v):=\left\{\bar{\chi}_{a}(v) \mid a \in E\right\}=V_{1}$ by Proposition 6.5. As elements of $\bar{\chi}_{A}$ are not singular we get $a^{-1} a^{\prime} \in C_{E}\left(V_{0}\right)$ if $\chi_{a}(v)=\bar{\chi}_{a^{\prime}}(v)$. Hence for $v, v^{\prime} \in V_{1} \backslash\{0\}$ there is a unique $\operatorname{coset} a^{\prime \prime} C_{E}\left(V_{0}\right)$ with $\bar{\chi}_{a^{\prime \prime}}(v)=v^{\prime}$. Thus the product $x_{a} \cdot x_{a^{\prime}}$ for $a, a^{\prime} \in E$ is well defined. Now the proof of Glauberman [5, (IX) on page 7 f$]$ shows that $(D,+, \cdot)$ is an alternative division ring or a skew field. Thus Proposition 7.4 follows from [2].

Proposition 7.5 Let D be as in Proposition 7.4. Then $\left\{V_{1}\right\} \cup V_{2}^{E}$ is a congruence partition of an affine plane over D.

Proof. By Proposition $6.6\left\{V_{1}\right\} \cup V_{2}^{E}$ is a congruence partition. Let $a_{0} \in E$. Then $\left(\bar{\chi}_{a_{0}} \bar{\chi}_{a}\right)\left(v_{1}\right)=-\left(\beta \bar{\chi}_{a}\right)\left(v_{1}\right)+\left(\sigma_{a_{0}} \beta \bar{\chi}_{a}\right)\left(v_{1}\right)$ for $a \in E$. Hence $\sigma_{a_{0}}\left(V_{2}\right)=$ $\left\{\left(\bar{\chi}_{a_{0}} \bar{\chi}_{a}\right)\left(v_{1}\right)+\left(\beta \bar{\chi}_{a}\right)\left(v_{1}\right) \mid a \in E\right\}$. Now $\bar{\chi}_{a}\left(v_{1}\right) \leftrightarrow a C_{E}\left(V_{0}\right) \leftrightarrow\left(\beta \bar{\chi}_{a}\right)\left(v_{1}\right)$ define bijective maps between $D \simeq E / C_{E}\left(V_{0}\right), V_{1}$ and V_{2} which induce a bijective map between V_{0} and $D \times D$. Then $\sigma_{a_{0}}\left(V_{2}\right)$ is mapped on $\left\{\left(\bar{\chi}_{a_{0}} \bar{\chi}_{a}, \bar{\chi}_{a}\right) \mid\right.$ $a \in E\}$ and we get Proposition 7.5 (see [4, page 131 f$]$).

Proposition 7.6 By Proposition 7.5 we may view V_{0} as an affine plane over D. Then E induces the group of shears with axis V_{1} on V_{0} and $H=L$ induces the subgroup of a point-stabilizer of V_{0} generated by all shears.

Proof. Since E is transitive on all lines through 0 different from V_{1} by Proposition 6.6, E contains all shears by [4, page 122]. As H is transitive on the lines through 0 we get Proposition 7.6.

Theorem A now follows from Proposition 7.6 and Theorem 6.9.

8 Strong NSS's

We say that an NSS Γ is strong provided that
(Z) $\Omega(Z(N)) \neq 1$ for all $1 \neq N \in \Gamma$.

Throughout this section we assume that G is a group with a reduced strong NSS Γ with $1 \in \Gamma$. In addition to our previous notations we let

$$
\Theta:=\left\{N \in \Gamma \backslash \Gamma^{*} \mid N \text { is large in } \Gamma\right\} .
$$

Lemma 8.1 Let $\operatorname{rank} \Gamma=2, N \in \Theta, V=\Omega(Z(N)), P \in \Gamma_{N}^{*}$ and $Z \in \Gamma$ with Z normal in P. Then:
(1) Let $1 \neq D \in \Gamma$ be normal in $N_{G}(N)$. Then $D^{\circ}=N$ and $N_{G}(D)=$ $N_{G}(N)$
(2) $N_{G}(V)=N_{G}(N)$.
(3) If $\mathrm{R}\left(\Gamma_{N} \cap \Gamma_{Z}\right) \neq N$ then $\left(\Gamma_{N} \cap \Gamma_{Z}\right)^{*}=\{P\}$.
(4) If $Z \subseteq V$ and $\mathrm{R}\left(\Gamma_{N} \cap \Gamma_{Z}\right) \neq N$, then $\left[C_{G}(V), P\right] \subseteq C_{P}(V)=N$.

Proof. (1) Note that $\Gamma_{N} \leq \Gamma_{D}$. So by Corollary 2.7, D° is closed and contained in N. Since $1 \neq D \leq D^{\circ} \leq N<S \in \Gamma^{*}$ and Γ is reduced of rank $2, D^{\circ}=N$. So $N_{G}(D) \subseteq N_{G}(N)$. By assumption $N_{G}(N) \leq N_{G}(D)$ and (1) holds.
(2) follows from (1) applied to $D=V$.
(3) Put $T=\mathrm{R}\left(\Gamma_{N} \cap \Gamma_{Z}\right)$ and suppose $T \not \leq N$. Since $N \leq T$ we get $N<T$. Since Γ_{N} has rank 1, Proposition 3.7(3) implies $\left(\Gamma_{N} \cap \Gamma_{Z}\right)^{*}=\{P\}$.
(4) Since $Z \subseteq V, C_{G}(V) \subseteq N_{G}(N) \cap N_{G}(Z)$ and so $C_{G}(V) \subseteq N_{G}\left(\left(\left(\Gamma_{N}\right)_{Z}\right)^{*}\right)=$ $N_{G}(P)$. Thus

$$
\left[C_{G}(V), P\right] \subseteq C_{P}(V)
$$

Suppose that $N_{G}(N) \leq N_{G}(P)$ and let $Q \in \Gamma_{N}$. By definition of Θ, $C_{P}(N) \leq N$ and thus $\left[C_{P}(N),\langle P, Q\rangle\right] \leq N$. So by Lemma 2.9, $Q P \in$ Γ. Thus $Q \in \Gamma_{P}$ and $\Gamma_{N} \leq \Gamma_{P}$. Corollary 2.7 implies $P \leq P^{\circ} \leq N$, a contradiction. Thus $N_{G}(N) \not \pm N_{G}(P)$.

Let $g \in N_{G}(N) \backslash N_{G}(P)$. Then $C_{P}(V) \subseteq N_{P}(N) \cap C_{G}\left(Z^{g}\right) \subseteq N_{P}\left(P^{g}\right)$, whence $C_{P}(V) C_{P}(V)^{g} \subseteq N_{P}\left(P^{g}\right) N_{P^{g}}(P) \in \Gamma$. Pick $Q \in \Gamma_{N}^{*}$ with

$$
N_{P}\left(P^{g}\right) N_{P^{g}}(P) \subseteq Q
$$

If $Q \neq P$, then $C_{P}(V) \subseteq P \cap Q \subseteq N$, by Proposition 3.7(1).
If $Q=P$, then $C_{P}(V)^{g} \subseteq P^{g} \cap P=N$, again by Proposition 3.7(1). Since $N=N^{g}$ we get $C_{P}(V) \leq N$.

Theorem 8.2 Let G be a group with a reduced strong NSS Γ of rank 2. Let $N \in \Theta, S \in \Gamma_{N}^{*}, V:=\Omega(Z(N))$ and $Z:=C_{V}(J(S))$. Then $1 \neq Z \in \Gamma$. Moreover,
(1) If $J(S) \leq N$, then $J(S)^{\circ}=N$ and $N_{G}(J(S))=N_{G}(N)$.
(2) If $J(S) \not \leq N$ and $N=Z^{\circ}$, then $N=\Omega(Z(P))^{\circ}$ for any $P \in \Gamma^{*}$ with $S \leq P$.
(3) If $N \neq Z^{\circ}$, then $V / C_{V}\left(\left\langle\Gamma_{N}\right\rangle\right)$ is a natural $S L_{2}$-module for Γ_{N} and $S=J(S) N$.

Proof. Since $V \neq 1$ and $V J(S)$ is nilpotent, $Z \neq 1$. By Proposition 4.7 $Z \in \Gamma$.
(1) Follows from Lemma 8.1(1).
(2) Suppose that $\left(\Gamma C_{G}(Z)\right)^{*}=\{T\}$ for some T. Then T is normal in $N_{G}(Z)$. Since $N=Z^{\circ}$ is large, we get from Lemma 3.2 that $T \leq Q$ for all $Q \in \Gamma_{Z}^{*}$. Thus $T \leq Z^{\circ}=N$, a contradiction since $J(S) \leq T$ and $J(S) \neq N$.

Thus there exist $L, Q \in \Gamma C_{G}(Z)^{*}$ with $L \neq Q$. Then $\langle L, Q\rangle \notin \Gamma$. Put $M=\Omega(Z(P))^{\circ}$. Note that $N \subseteq L \cap Q$, and both $L N_{M}(N)$ and $Q N_{M}(N)$ are in Γ. Thus $N N_{M}(N) \subseteq L N_{M}(N) \cap Q N_{M}(N) \subseteq N$, by Proposition 3.7(1). Thus $1 \neq M \subseteq N$. Since $M \unlhd P$, Proposition 2.8(12) implies M is closed and as $\operatorname{rank} G=2, M=N$.
(3) From $\operatorname{rank}(\Gamma)=2$, Proposition 3.7(1) and Theorem 3.1 we get $P \cap Q=$ N and $\operatorname{rank}\left(\Gamma_{N}\right)=1$ for $P, Q \in \Gamma_{N}^{*}$ with $P \neq Q$. Suppose $N=\mathrm{R}\left(\Gamma_{N} \cap \Gamma_{Z}\right)$. Then by Lemma 2.6 (applied with $\Lambda=\Gamma_{N} \cap \Gamma_{Z}, \Delta=\Gamma_{Z}$ and $P=N$), $Z^{\circ}=\mathrm{R}\left(\Gamma_{Z}\right) \subseteq N$ and Z° is closed. Thus

$$
1 \neq Z \subseteq Z^{\circ} \leq N \notin \Gamma^{*}
$$

Since $\operatorname{rank}(\Gamma)=2$ we get $N=Z^{\circ}$, a contradiction. Therefore $N \neq \mathrm{R}\left(\left(\Gamma_{N} \cap\right.\right.$ $\left.\Gamma_{Z}\right)$). In particular, $\Gamma_{N} \cap \Gamma_{Z} \neq \Gamma_{N}$ and so $\Gamma_{N} \nsubseteq \Gamma_{Z}$.

Moreover, by Lemma 8.1(4) $\left[C_{G}(V), S\right] \subseteq N=C_{S}(V)$.
Assume $J(S) \subseteq N$. Then $Z=V$ and $\Gamma_{N} \subseteq \Gamma_{Z}$, a contradiction. Thus $J(S) \nsubseteq N=C_{S}(V)$. Pick $A \in \mathcal{A}(S)$ with $A \nsubseteq C_{S}(V)$. Then by Proposition 5.5 A is a non-trivial Γ-offender on V. By Proposition 3.7(2) Γ_{N} has rank 1. By definition of Θ, N is large in Γ_{N}.

We verified that all the the assumptions of Theorem A are satisfied for $N_{G}(N), \Gamma_{N}, S, A$ and V. Hence $V / C_{V}\left(\left\langle\Gamma_{N}\right\rangle\right)$ is a natural $S L_{2}$-module for Γ_{N}. By Theorem 6.9, $S=A \mathrm{R}\left(\Gamma_{N}\right)=A N$ and so $S=J(S) N$.

Theorem 8.3 Suppose $\operatorname{rank}(\Gamma)=2, N \in \Theta$ and $S \in \Gamma_{N}^{*}$ with $N_{G}(S) \nsubseteq$ $N_{G}(N)$. Put $V=\Omega(Z(N))$. Then $V / C_{V}\left(\left\langle\Gamma_{N}\right\rangle\right)$ is a natural $S L_{2}$-module for Γ_{N}.

Proof. Suppose that $J(S) \leq N$. Then using Theorem 8.2(1)

$$
N_{G}(S) \leq N_{G}(J(S)) \leq N_{G}\left(J(S)^{\circ}\right)=N_{G}(N)
$$

a contradiction to the assumptions.
Hence $J(S) \nsubseteq N$. Set $Z:=C_{V}(J(S))$. Suppose that $Z^{\circ}=N$. By Proposition $3.7(3) S$ lies in a unique maximal Γ-subgroup P. Then by Theorem 8.22, $N_{G}(S) \subseteq N_{G}(P) \leq N_{G}\left(\Omega(Z(P))^{\circ}=N_{G}(N)\right.$, a contradiction.

Hence $Z^{\circ} \neq N$ and Theorem 8.3 follows from Theorem 8.2(3)

Theorem 8.4 Suppose $\operatorname{rank}(\Gamma)=2, S \in \Gamma^{*}$ and $|\Theta S|>2$. Then there is $N \in \Theta S$ such that $V / C_{V}\left(\left\langle\Gamma_{N}\right\rangle\right)$ is a natural $S L_{2}$-module for Γ_{N}, where $V=\Omega(Z(N))$

Proof. Let $N \in \Theta S$. By Proposition 3.7(3), S is the unique maximal Γ subgroup containing $N_{S}(N)$. Hence $N_{S}(N) \in \Gamma_{N}^{*}$. If $N_{G}\left(N_{S}(N)\right) \not \pm N_{G}(N)$ we are done by Theorem 8.3.

So we may assume that $N_{G}\left(N_{S}(N)\right) \leq N_{G}(N)$ for all $N \in \Theta S$. In particular $N_{S}\left(N_{S}(N)\right) \leq N_{S}(N)$ and so $N_{S}(N)=S$. Thus $S \in \Gamma_{N}$ and $N_{G}(S) \leq N_{G}(N)$.

Since $|\Theta S| \geq 3$ there exists $N \in \Theta S$ with $N \neq J(S)^{\circ}$ and $N \neq \Omega Z(S)^{\circ}$. Thus by Theorem $8.2 J(S) \not \leq N$ and $N \neq Z^{\circ}$. So Theorem 8.4 follows from Theorem 8.2(c)

The following theorem deals with a situation which had been considered more detailed for finite groups in [3].

Theorem 8.5 Let $\operatorname{rank}(\Gamma)=2, S \in \Gamma^{*}$ and $M, N \in \Theta S$ with $M \neq N$. Assume there is $P \in \Gamma_{M}^{*} \cap \Gamma_{N}^{*}$ with

$$
\begin{equation*}
Z \cap Z^{g}=1 \text { for all } g \in G \backslash N_{G}(P) \tag{*}
\end{equation*}
$$

where $Z:=\Omega(Z(J(P)))$. Then N is a natural $S L_{2}$-module for Γ_{N}. Moreover $P=M N$ and P is of nilpotency class 2.

Proof. For $L \in\{M, N\}$ set $V_{L}:=\Omega(Z(L))$. As $\langle M, N\rangle \subseteq P \cap S$ and $\operatorname{rank}(\Gamma)=2$ we get $P \subseteq S$ by Proposition 3.7(4).

Since $\operatorname{rank}(\Gamma)=2,\langle M, N\rangle \notin\{M, N\}$. Thus by Lemma 3.2(2),

$$
\Gamma_{L} \cap \Gamma N_{G}(P)=\Gamma P .
$$

Suppose that $J(P) \subseteq L$. Then $V_{L} \subseteq Z$ and so by $\left(^{*}\right) N_{G}(L) \subseteq N_{G}(P)$. Thus $\Gamma_{L} \subseteq \Gamma_{L} \cap \Gamma N_{G}(P)=\Gamma P$ and $L=P$, a contradiction.

Thus $J(P) \nsubseteq L$. Let $X=\Omega(Z(P))$. Then

$$
1 \neq X \leq Z \cap V_{L} \subseteq V_{L}
$$

By $\left(^{*}\right) N_{G}(X) \subseteq N_{G}(P)$, and so $\Gamma_{L} \cap \Gamma_{X} \subseteq \Gamma_{L} \cap \Gamma N_{G}(P)$ and $\mathrm{R}\left(\Gamma_{L} \cap \Gamma_{X}\right)=P$. Thus by Lemma 8.1(4), $C_{S}\left(V_{L}\right) \subseteq L$. So we can apply Theorem 8.2(c) and $V_{L} / C_{V_{L}}\left(\left\langle\Gamma_{L}\right\rangle\right)$ is a natural $S L_{2}$-module for Γ_{L}.

Let $\{K, L\}=\{M, N\}$. By Theorem $6.9 K L=P=A L$ and $L=$ $C_{P}\left(V_{L}\right)$ for all $A \in \mathcal{A}(P)$ with $A \not \leq L$. Moreover $X=C_{V_{L}}(A)=V_{L} \cap$ $V_{K}=C_{V_{L}}\left(\left\langle\Gamma_{L}\right\rangle\right)\left[V_{L}, A\right]$. Since $X \cap X^{g}=1$ for $g \in G \backslash N_{G}(P)$ we conclude $C_{V_{L}}\left(\left\langle\Gamma_{L}\right\rangle\right)=1$. Thus by Proposition 6.5(3)

$$
q:=\mu(X)=\frac{1}{2} \mu\left(V_{L}\right)=\mu(X)=\mu(A / A \cap L) .
$$

In particular, $\mu\left(V_{L}(A \cap L)=\mu(A)\right.$ and so $V_{L}(A \cap L) \in \mathcal{A}(L) \cap \mathcal{A}(P)$. Using this and symmetry in K and $L, \mathcal{A}(K) \cup \mathcal{A}(L) \subseteq \mathcal{A}(P)$. Suppose that $\mathcal{A}(K)=$ $\mathcal{A}(L)$, then $\Gamma_{L} \cup \Gamma_{K} \subseteq \Gamma_{J(K)}$. Thus by Corollary $2.7 \mathrm{R}\left(\Gamma_{J(K)}\right)$ is closed and contained in $L \cap K$, a contradiction to $\operatorname{rank}(\Gamma)=2$. So $\mathcal{A}(K) \neq \mathcal{A}(L)$ and interchanging K and L if necessary we assume $\mathcal{A}(K) \nsubseteq \mathcal{A}(L)$.

So we can choose $A \in \mathcal{A}(K)$.
Suppose for a contradiction that $\left[V_{K}, V_{L}\right]=1$. Then $V_{K} V_{L} \leq K \cap L$. As $A L=P \nsubseteq C_{G}\left(V_{K}\right)$ we get $\left[V_{K}, L\right]=X$. Let $W \in V_{K}^{\left\langle\Gamma_{L}\right\rangle} \backslash\left\{V_{K}\right\}$. Then $\left[V_{K}, W\right] \subseteq\left(V_{K} \cap V_{L}\right) \cap\left(W \cap V_{L}\right)=1$. Since A normalizes $[A \cap W, L]$ and $[A \cap W, L] \leq W \cap V_{L}$ we get $[A \cap W, L]=1$ and so $A \cap W \leq A \cap W \cap V_{L}=1$. Now $\mu(W)=q=2 \mu(A / A \cap L)$ implies $\mu(W(A \cap L))>\mu(A)$. Thus $[A \cap L, W] \neq 1$ and so by Proposition 6.5(3) applied to $(A \cap L) V_{L},[A \cap L, W]=V_{L} \cap W$ and $\mu(A) / \mu\left(C_{A}(W)\right)=\mu(W)=2 \mu(X)$. Thus $C_{A}(W) W \in \mathcal{A}(L)$.

Let $a \in A \backslash L$. Since W centralizes $C_{A}(W)$, also W^{a} centralizes $C_{A}(W)$. Since $\left[W, W^{a}\right] \subseteq V_{L} \cap W \cap W^{a}=1$ we conclude that $C_{A}(W) W W^{a}$ is a decomposable abelian Γ-subgroup. Since $C_{A}(W) W \in \mathcal{A}(P), C_{A}(W) W=$ $C_{A}(W) W^{a}$. Thus

$$
V_{L} \cap W=[A \cap L, W]=\left[A \cap L, W^{a}\right]=V_{L} \cap W^{a},
$$

a contradiction to $V_{L} \cap W \cap W^{a}=1$.
Therefore $\left[V_{K}, V_{L}\right] \neq 1$ and so $V_{N} \not \leq M$ and $V_{M} \not \leq N$.
Let $h \in\left\langle\Gamma_{M}\right\rangle \backslash N_{G}(P)$. Note that $M=V_{M}\left(N \cap N^{h}\right)$. Hence $\Omega Z\left(N \cap N^{h}\right) \leq$ $\Omega Z(M)=V_{M}$. But V_{N} centralizes N and so

$$
\Omega Z\left(N \cap N^{h}\right) \leq C_{V_{M}}\left(V_{N}\right) \cap C_{V_{M}}\left(N^{h}\right)=V_{M} \cap V_{N} \cap V_{N}^{h}=1
$$

By the assumptions of this section, Γ is strong and so $N \cap N^{h}=1$. Thus $M=V_{M}, N=V_{N}$ and $P=V_{M} V_{N}=M N$. Now $P^{\prime}=X=M \cap N$ and P has class 2.

Theorem 8.6 Suppose that Π is a G-invariant subset of Θ such that
(i) $\bigcap_{g \in G} A^{g}=1$ for all $A \in \Pi$.
(ii) If $S \in \Gamma^{*}$ with $|\Theta S \cap \Pi| \geq 2$, then $|\Theta S|=2$.
(iii) Whenever $X, Y \in \Pi$ with $X \in Y^{G}$ and $X \neq Y$ then $\mathrm{R}(\Gamma\langle X, Y\rangle) \in \Pi$.

Let Π_{p} be an arbitrary orbit for G on Π and define $\check{\Pi}_{p}=\{\mathrm{R}(\Gamma\langle A, B\rangle) \mid$ $A, B \in \Pi_{p}$ with $\left.A \neq B\right\}$. Then
(1) $\check{\Pi}_{p}=\Pi_{p}$.
(2) Π_{p} is the set of points, Π_{p} is the set of lines of a projective Moufang plane π and $\left\langle\Pi_{p}\right\rangle=\left\langle\check{\Pi}_{p}\right\rangle$ induces the group generated by all the elations on π.
(3) $C_{G}(\pi) \leq C_{G}\left(\left\langle\Pi_{p}\right\rangle\right)$.

We remark that using knowledge of the automorphism group of a Moufang plane it should not be to difficult to show that G only has two orbits on Π.

Proof. From (i) we get
(1.) $N \nexists G$ for all $N \in \Pi$.

We say $X, Y \in \Pi$ are incident if $X \neq Y$ and $\langle X, Y\rangle \in \Gamma$. We show next
(2.) If X, Y are incident then $X \in \Gamma_{Y}$ and $Y \in \Gamma_{X}$.

Indeed by (ii) $\Theta\langle X, Y\rangle=\{X, Y\}$ and so X and Y are normal in $\langle X, Y\rangle$.
For $X, Y \in \Pi$ with $X \neq Y$ write $\widehat{X Y}:=R(\Gamma\langle X, Y\rangle)$.
(3.) $F \nless E$ for all $E, F \in \Pi$.

Otherwise let $g \in G \backslash N_{G}(E)$. Then $\left|\Theta E \widehat{E E^{g}}\right|=2$ and so by (iii) $F=$ $\widehat{E E^{g}}=F^{g}$. Since $\{F\}=\Theta E \backslash\{E\}, F^{g}=F$ for all $g \in G$. Thus $F \unlhd G$, a contradiction to (1.), proving (3.)

Let $A \in \Pi$. By (1.) there exists $B \in A^{G}$ with $A \neq B$. By (iii) $\widehat{A B} \in \Theta$. Let $D=\widehat{A B} \in \Gamma$.

Suppose that A and B are incident. Then $\langle A, B\rangle \in \Gamma$ and $D=\langle A, B\rangle$. By (ii), $|\Theta D|=2$. Since $A \neq B$ we may assume $A=D$. Hence $B \leq A$. Since A and B are conjugate $\mu(A)=\mu(B)$ and we conclude that $A=B$, a contradiction.

We proved
(4.) No two distinct conjugate elements of Π are incident.

Suppose $C \in \Pi$ is incident with A and B, Then $\langle A, B\rangle \leq \Gamma_{C}$ and so $C \leq D$. Since $\Theta A D=\{A, D\}$ and $A \not \leq D, C=D$. Thus
(5.) $\widehat{A B}$ is the unique element of Π incident with A and B.

Let $\Sigma(A)=\Pi \cap \Gamma_{A} \backslash\{A\}$, the set of elements of Π incident with A. Let $\Xi_{A}:=\bigcup\{\Gamma A E \mid E \in \Sigma(A)\}$.
(6.) Let $A<X \in \Xi_{A}$. Then there exists a unique $X^{*} \in \Gamma^{*}$ with $X \leq X^{*}$ and a unique $E \in \Sigma(A)$ with $\Theta\left(X^{*}\right)=\{E, A\}$ and $X \leq A E$.

Pick $E \in \Sigma(A)$ with $X \leq E A$ and $P \in \Gamma^{*}$ with $E A \leq P$. Suppose there exists $Q \in \Gamma^{*}$ with $X \leq Q$ but $Q \neq P$. Choose such a Q with $P \cap Q$ maximal. Then by Proposition 2.11(1), $P \cap Q$ is closed. Since $A \leq P \cap Q$, Lemma 3.3 implies that $P \cap Q$ is large. So $P \cap Q \in \Theta P$. But $\Theta P=\{A, E\}$ and we conclude that $E=P \cap Q$, but then $A<E$, a contradiction to (3.).
(7.) $\Xi_{A} \leq \Gamma_{A}, \Xi_{A}$ is an NSS of rank 1 for $N_{G}(A), \Xi_{A}^{*}=\{A E \mid E \in$ $\Sigma(A)\}$ and $\mathrm{R}\left(\Xi_{A}\right)=A$.

Clearly $\Xi_{A}^{*}=\{A E \mid E \in \Sigma(A)\}$, and (Suba) and (Subc) are fulfilled. Let $X, Y \in \Xi_{A}$ with $\langle X, Y\rangle \in \Gamma$. We need to show that $\langle X, Y\rangle \in \Xi_{A}$. If $X \leq A$ or $Y \leq A$ this is obvious. We may assume $A<X$ and $A<Y$. Pick $Q \in \Gamma^{*}$ with $\langle X, Y\rangle \leq Q$. Let $E, F \in \Sigma(A)$ with $X \leq E A$ and $Y \leq F A$. By (6.), $\Theta(Q)=\{A, E\}=\{A, F\}$ and so $E=F$. Thus $\langle X, Y\rangle \leq E A$ and $\langle X, Y\rangle \in \Xi_{A}$.

By Theorem 3.1 it remains to show that $\left|\Xi_{A}^{*}\right|>1$. Otherwise we conclude that $\Sigma_{A}=\{K\}$ for some K, and $K=\widehat{A A^{g}}$ for all g with $A \neq A^{g}$ and then $K \unlhd G$, a contradiction to (1.). This completes the proof of (7.).
(8.) Let $1 \neq X \in \Gamma A$. Then $N_{\Gamma}(X) \subseteq N_{\Gamma}(A)$.

Suppose not and pick $Q \in N_{\Gamma}(X)$ with $Q \npreceq N_{G}(A)$. Pick $g \in Q$ with $A \neq A^{g}$. Let $E \in \Sigma(A)$.

Suppose that $X \not \leq L$ for some $L \in \Sigma(A)$.
If A^{g} is incident with L, then both A and A^{g} are incident with L and so $L=\widehat{A A^{g}}$. By (6) applied to L in place of $A, X \leq A \cap A^{g} \leq L$.

Thus neither A^{g} nor $A^{g^{-1}}$ are incident with L. In particular $L \neq L^{g}$. Note that X normalizes L and L^{g} and so also $F:=\widehat{L L^{g}}$. By Lemma 3.2(1) applied to L in the place of N, we get $X L F \in \Gamma$. By $X \not \leq L$ and (6.), XL lies in a unique maximal Γ-subgroup of G. Hence $\langle A L, X L F\rangle \in \Gamma$ and (ii) implies $A=F$. Thus L^{g} is incident with A and so $A^{g^{-1}}$ is incident with L, a contradiction.

Thus $X \leq L$ for all $L \in \Sigma(A)$. Let $Y:=\bigcap \Sigma(A)$. Then $X \leq Y$ and so $Y \neq 1$. Since $N_{G}(A) \leq N_{G}(Y)$ we have $N_{G}(Y) \not \leq N_{G}(L)$. The claim we just proved applied to (Y, L) in place of (X, A) yields $Y \leq K$ for all $K \in \Sigma(L)$ and all $L \in \Sigma(A)$. Thus $Y \leq A^{g}$ for all $g \in G$ and (i) implies $Y=1$, a contradiction.
(9.) Let $E \in \Sigma(A)$ and $V_{A}=\Omega(Z(A))$. Then $\left[C_{G}\left(V_{A}\right), E A\right] \leq A$.

Let $F \in \Sigma(A)$ and put $X=\Omega(Z(A F))$. Since A and F are large, $X \leq A \cap F$. Since Γ is strong, $X \neq 1$. By (8.) applied to F in place of $A, N_{G}(X) \leq N_{G}(F)$. Since $X \leq V_{A}$ we conclude that $C_{G}\left(V_{A}\right) \leq N_{G}(F)$ for all $F \in \Sigma(A)$. So by (6.) $C_{G}\left(V_{A}\right) \leq N_{G}(P)$ for all $P \in \Xi_{A}^{*}$. Define $U:=\bigcap\left\{N_{E A}(P) \mid P \in \Xi_{A}^{*}\right\}$. Then $U \in \Xi_{A}$ and by Proposition 2.3(8), $U=\mathrm{R}\left(\Xi_{A}\right)=A$. But $\left[C_{G}\left(V_{A}\right), E A\right] \leq C_{G}\left(V_{A}\right) \cap E A \leq U$ and so (9.) holds.
(10.) Let $E \in \Sigma(A)$. Then $J(E A) \not \pm E \cap A$.

If $J(E A) \leq E \cap A$ then $J(E)=J(A)$. Then $N_{G}(E) \leq N_{G}(J(A))$ and so $N_{G}(J(A)) \not \leq N_{G}(A)$, a contradiction to (8.)

By (10.) and interchanging A and E if necessary
(11.) we can choose $A \in \Pi$ and $E \in \Sigma(A)$ with $J(E A) \not \subset A$.

By (8.) and Proposition 5.5 there exists a non-trivial offender in $E A$ on V_{A}. Let $H_{A}=:\left\langle\Xi_{A}\right\rangle$. Note that $C_{V_{A}}\left(H_{A}\right) \leq C_{V_{A}}(E) \leq E$ and so by (8.) $C_{V_{A}}\left(H_{A}\right)=1$. We conclude that the Hypothesis of Theorem A holds for $N_{G}(A), \Xi_{A}, V_{A}$ and $E A$. So V_{A} is a natural $S L_{2}$-module for Ξ_{A}. In particular,
(12.) E acts transitively on $\Sigma(A) \backslash\{E\}, N_{G}(A)$ acts transitively on $\Sigma(A)$ and $C_{E A}\left(V_{A}\right)=A$.

By (8.), $V_{A} \not \leq E$. Let $X \in \mathcal{A}(A E)$. By Proposition 6.5(3), $(X \cap A) V_{A} \in$ $\mathcal{A}(A E)$ and we reestablish symmetry in A and E. Let $R:=\left\langle V_{E}, V_{E}^{h}\right\rangle$ for
some $h \in H_{A}$ with $V_{E} \neq V_{E}^{h}$. Then $A \cap E \cap E^{h} \leq C_{A}(R)$ and so by (8.), $A \cap E \cap E^{h}=1$. It follows that $N=V_{N}$ and so N is a natural $S L_{2}$-module for Ξ_{N} for all $N \in \Pi$.

It follows from (12.) that $\widehat{A A^{g}} \in E^{G}$ and $\widehat{E E^{g}} \in A^{G}$ for all $g \in G$. Thus A^{G} and E^{G} form a projective plane.

By (12.) we have (N, N)-transitivity. Then [4, page 130] shows that we have got a projective Moufang plane.

Let C_{A} be the kernel of the action of G on A^{G}. Then clearly C_{A} also acts trivially on E^{G}. Moreover $\left[C_{A}, A\right] \leq A \cap C_{A} \leq C_{A}(E) \leq A \cap E$ and (8.) implies $\left[C_{A}, A\right]=1$.

References

[1] R. Baer: Engelsche Elemente noetherscher Gruppen. Math. Ann. 133, 256-270 (1957)
[2] R. H. Bruck, E. Kleinfeld: The structure of alternative division rings. Proc. Nat. Acad. Sci. USA 37, 88-90 (1951)
[3] A.Delgado, D. Goldschmidt, B. Stellmacher: Groups and graphs: new results and methods. DMV-Seminar, Bd. 6. Birkhäuser, 1985.
[4] P. Dembowski: Finite geometries. Ergebnisse der Mathematik, Bd. 44. Springer, 1968.
[5] G. Glauberman: Weakly closed elements of Sylow subgroups. Math. Zeitschr. 107, 1-20(1968)
[6] P. Hall: A contribution to the theory of groups of prime power orders. Proc. London Math. Soc. 36, 29-95 (1933).
[7] P. Hall: The Edmonten Notes on Nilpotent Groups, 1957. Reproduced by Queen Mary College, 1969. See also: The Collected Works of Philip Hall, Compiled by K. W. Gruenberg and J. E. Roseblade, Clarendon Press, Oxford, 1988, 415-462.

