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Introduction
Let G be a group and Γ a collection of nilpotent subgroups of G satisfying:

(C) P g ∈ Γ for P ∈ Γ and g ∈ G.
(I) P ∩Q ∈ Γ for P,Q ∈ Γ.
(P) NP (Q) ·NQ(P ) ∈ Γ for P,Q ∈ Γ.
(MM) The minimum and the maximum condition hold for Γ

(i.e. each non empty subset of Γ contains a minimal and
a maximal element with respect to inclusion of sets).

Then we call Γ a nilpotent subgroup system of G (NSS for short) and the
members of Γ we call Γ-subgroups of G (here P g := {xg | x ∈ P}, where
xg := g−1xg, is a conjugate of P and NX(Y ) is the normalizer of Y in X).

The set of all nilpotent subgroups of a group is an example of a system
satisfying (C), (I) and (P). Examples of NSS’s are the set of p-subgroups
of a finite group (p a prime), the set of closed unipotent subgroups of an
algebraic group, and the set of maximal cyclic subgroups plus the trivial
group in a free group.

To state our main theorem we introduce a good portion of the notations
used in this paper. Let Σ be a set of subgroups of G.

Σ∗ is the set of maximal elements of Σ (with respect to inclusion). The
elements of Γ∗ are called maximal Γ-subgroups.

Σ∗ is the set of minimal non-trivial elements of Σ. The elements of Γ∗
are called minimal Γ-subgroups.
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If U is a subgroup of G set ΣU := {A ∈ Σ | A ≤ U}.
R(Γ) :=

⋂
P∈Γ∗ P is called the radical of Γ.

If R(Γ) = 1 the NSS Γ is called reduced.
Let P ∈ Γ. Then ΓP := {T ∈ NΓ(P ) | TP ∈ Γ} is the residue of P in Γ.

It turns out that ΓP is an NSS for NG(P ), see Proposition 2.8(1).
Set P ◦ := R(ΓP ) and call P closed if P = P ◦.
Note that by (MM) any chain of Γ-subgroups is finite. Let rank(Γ) be

the supremum of the lengths of chains

P0 < P1 < . . . < Pn

of closed Γ-subgroups. (The length of such a chain is n).
Ω(P ) := 〈Γ∗P 〉 is the subgroup of P generated by the minimal Γ-subgroups

of P .
P is called decomposable if P = Ω(P ).
µ(P ) is the length of a maximal chain in ΓP . By Proposition 5.2 this is

well defined. µ(P ) is called the measure of P . If Q ∈ ΓP , then µ(P/Q) =
µ(P )−µ(Q). By Proposition 5.4(1), this is the length of any maximal Γ-chain
from Q to P .

Let A ∈ ΓP . If [[P,A]A] = 1, we say that A acts quadratically on P . If A
and P both are decomposable abelian Γ-subgroups, [P,A] 6= 1 and

µ(P/CP (A)) ≤ µ(A/CA(P ))

then A is called a non-trivial Γ-offender on P . Note here that by Proposition
4.7 both CP (A) and CA(P ) are Γ-subgroups.

Let V be a normal Γ-subgroup of G with V ≤ Ω(Z(R(Γ)) and put W =
V/CV (〈Γ〉). We say that W is a natural SL2-module for Γ provided that

(i) W is the set of points and {wCW (S) | S ∈ Γ∗} is the set of lines of an
affine Moufang plane;

(ii) For each S ∈ Γ∗, CS(W ) = R(Γ) and S induces the group of shears on
W with axis CW (S); and

(iii) 〈Γ〉 induces on W the subgroup of a point stabilizer (of the point 1)
generated by all shears.

We say that N ∈ Γ is large in Γ provided that N is closed and CP (N) ≤
N for all P ∈ ΓN .
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A theorem of Glauberman’s [5, Theorem 2] characterizes finite two di-
mensional special linear groups as groups acting on p-groups with certain
features. The object of the present paper is to prove the following general-
ization of Glauberman’s Theorem:

Theorem A Let G be a group with an NSS Γ. Assume:

(a) rank(Γ) = 1.

(b) V is a normal Γ-subgroup of G with V ≤ Ω(Z(R(Γ))).

(c) S ∈ Γ∗ and [CG(V ), S] ≤ R(Γ).

(d) S contains a non-trivial Γ-offender on V .

(e) R(Γ) is large in Γ.

Then V/CV (〈Γ〉) is a natural SL2-module for Γ.

It is well known that an affine Moufang plane is isomorphic to a plane
whose point set consists of the ordered pairs of an alternative field or a skew
field K and whose lines are the point sets L(a, b) := {(x, x · a + b) | x ∈ K}
and L(c) := {(c, y) | y ∈ K}. Then for example shears with axis L(0) are
the mappings (x, y) 7→ (x, x · d + y) (see [4] page 128 ff. and the literature
quoted there).

For the proof of Theorem A see section 6 and 7 and for other main results
of this paper see section 8.

We would like to thank G. Glauberman for pointing out an error in an
earlier version of this paper.

1 Preliminaries

In this section we collect some elementary results about nilpotent groups.
We start with some well known commutator properties (see for instance [6]).

Proposition 1.1 Let a, b, c be elements, A,B,C subgroups and N a normal
subgroup of a group. Then

(1) [a, bc] = [a, c][a, b][[a, b], c] = [a, c][a, b]c
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(2) [ab, c] = [a, c][[a, c], b][b, c] = [a, c]b[b, c]

(3) [a, b] = [b, a]−1 = [b, a−1][[b, a−1], a]

(4) ab[b, a] = ba

(5) [[B,C], A] ⊆ N and [[C,A], B] ⊆ N imply [[A,B], C] ⊆ N .

(6) [A,B] is a normal subgroup of 〈A,B〉.

Proposition 1.2 Let G be a group, V an abelian normal subgroup of G, U
a subgroup of V and g ∈ G with [[V, g], g] = 1. Then the following hold:

(1) {[u, g] | u ∈ U} is a subgroup of V

(2) UU g = U [U, g]

(3) UU g = U × [U, g] if and only if U ∩ U g = CU(g)

(4) CUUg(g) = CU∩Ug(g)[U, g]

Proof. These properties are applications of Proposition 1.1. 2

Proposition 1.3 Let A and B be subgroups and let N be a normal subgroup
of the group G. Then

[N, 〈A,B〉] = 〈[N,A], [N,B]〉.

Proof. Obviously the right hand side is contained in the left hand side.
Conversely, by Proposition 1.1(6) M := 〈[N,A], [N,B]〉 is a normal subgroup
of 〈A,B,N〉 contained in N , as N is a normal subgroup. Now N/M is
centralized by 〈A,B〉, whence [N, 〈A,B〉] ⊆M . 2

Let A be a group acting on a group D. We say that A acts nilpotently
on D if [D,A, k] = 1 for some k (where [D,A, 0] := D and [D,A, i + 1] :=
[[D,A, i], A]). The minimal such k is called the nilpotence length of A on D.
For a group G let L0(G) = G and Li+1(G) = [Li(G), G].

Lemma 1.4 (1) Suppose A acts nilpotently on D. Then A/CA(D) is
nilpotent.
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(2) Suppose G acts on D,A ≤ G and B ≤ NG(A). If A and B act nilpo-
tently on D, so does AB.

(3) Let N be normal in G. Then G is nilpotent if and only if G/N is
nilpotent and G acts nilpotently on N .

(4) Let G = AB, where A and B are nilpotent subgroups of G, and A is
normal in G. Assume N is a normal subgroup of G with N ≤ A ∩ B
such that G/N is nilpotent. Then G is nilpotent.

(5) Let A,B be normal in G such that G/A and G/B are nilpotent. Then
G/A ∩B is nilpotent.

Proof. (1) See [7, Corollary to Theorem 3.8]

(2) By induction on the nilpotency length of A on D [[D,A], AB, i] = 1 for
some i. Also if [D,B, j] = 1, then [D,AB, j] ⊆ [D,A] and so [D,AB, i+j] =
1.

(3) One direction is obvious. So suppose G/N is nilpotent and G acts
nilpotently on N . Then Lk(G) ≤ N for some k and [N,G, i] = 1 for some i.
Thus Lk+i(G) = 1.

(4) Since N ≤ A∩B, both A and B act nilpotently on N . By (2) G acts
nilpotently on N and so (4) follows from (3).

(5) Let k be the maximum of the nilpotency classes of G/A and G/B.
Then Lk(G) ≤ A ∩B. 2

Proposition 1.5 Let P and Q be nilpotent subgroups of the group G with
Q ⊆ PCG(P ). Then PQ is a nilpotent subgroup of G.

Proof. Clearly P is normal in PQ and PQ acts nilpotently on P . Also
PQ/P ∼= Q/Q∩P and so PQ/P is nilpotent. Hence the lemma follows from
Lemma 1.4(3). 2

Proposition 1.6 Let X be a proper subgroup of the nilpotent group G.

(1) X is contained in a proper normal subgroup of G.

(2) X is a proper subgroup of NG(X).
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(3) If NG(X) = NG(NG(X)), then X is normal in G.

(4) 〈XG〉 is a proper subgroup of G.

Proof. Well-known. 2

Proposition 1.7 Let H be a nilpotent group of class k and x, y ∈ H, where
x is an element of order p, p a prime. Then [x, ypk+1 ] = 1.

Proof. By induction on k , [x, ypk ] ∈ Z(H). Then by Proposition 1.1

1 = [xp, yp
k

] = [x, yp
k

]p = [x, yp
k+1

].

2

Proposition 1.8 Let X be a subgroup of the group G and let U and A be
subsets of G with U ⊆ X. Then (UA) ∩X = U(A ∩X).

Proof. Let u ∈ U and a ∈ A with ua ∈ X. Then a ∈ A ∩ X, hence
(UA)∩X ⊆ U(A∩X). If d ∈ A∩X then ud ∈ (UA)∩X as U(A∩X) ⊆ X.
Thus U(A ∩X) ⊆ (UA) ∩X and Proposition 1.8. 2

2 Basic Properties of NSS’s

In this section G is a group with an NSS Γ with 1 ∈ Γ.
We remark that (MM) allows us to prove statements about Γ by induc-

tion. Namely suppose given a statement S about Γ-subgroups. Suppose also
that if P ∈ Γ and S is true for all Q ∈ Γ with Q < P , then S is also true
for P . Then S must be true for all P ∈ Γ. Indeed the set of Γ-subgroups for
which S is false, does not have a minimal element and so is empty.

Note also that (I) and (MM) imply, that arbitrary intersections of Γ-
subgroups are Γ-subgroups.

Lemma 2.1 Let P,Q ∈ Γ. Then NP (Q) ∈ Γ.
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Proof. Note that NQ(P ) ∩ P ⊆ Q ∩ P ⊆ NP (Q) and so by Proposition 1.8

(NP (Q)NQ(P )) ∩ P = NP (Q)(NQ(P ) ∩ P ) = NP (Q).

By (P) and (I) the left hand side of this equation is in Γ. 2

Proposition 2.2 Let P,Q ∈ Γ such that Q is a minimal element of {T ∈
Γ | P < T} or that P is a maximal element of {T ∈ Γ | T < Q}. Then P is
normal in Q.

Proof. Note that the two conditions are actually equivalent. So suppose
the first. By Lemma 2.1 P < NQ(P ) ∈ Γ and so Q = NQ(P ) by minimality
of Q. 2

Proposition 2.3 (1) If ∆ is a nonempty subset of Γ, then
⋂
X∈∆ X ∈ Γ

and
⋂
X∈∆ X =

⋂
X∈∆0

X for some finite subset ∆0 of ∆.

(2) If ∆ is a set of normal Γ- subgroups of G, then 〈∆〉 ∈ Γ.

(3) If U is a subgroup of G, then ΓU is an NSS of U .

(4) P ◦ ∈ Γ for all P ∈ Γ. In particular, R(Γ) is a normal Γ-subgroup of
G.

(5) If S ∈ Γ and P ∈ ΓS\{S}, then P ⊂ 〈ΓPS〉.

(6) If 〈∆〉 is nilpotent for ∆ ⊆ Γ, then 〈∆〉 ∈ Γ.

(7) R(Γ) = 〈
⋂
T∈Γ∗ NΓ(T )〉.

(8) Let S ∈ Γ∗ and A ∈ Γ(SCG(S)). Then A ≤ S.

(9) Let S ⊆ G be nilpotent and put A = 〈ΓS〉. Then A ∈ Γ, Γ∗S = {A}
and A is normal in NG(S).

Proof.
(1) By (I) intersections of the members of finite subsets of ∆ are elements

of Γ. Then (1) follows from the minimal condition for Γ applied to the set of
intersections of the members of finite subsets of Γ.
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(2) If N and M are normal Γ-subgroups then NM ∈ Γ by (P). Hence
finite products of elements of ∆ lie in Γ, and (2) follows from the maximal
condition for Γ.

(3) is obvious by the definition of an NSS.

(4) is a consequence of (1).

(5) By Proposition 1.6(2) P < NS(P ) and by Lemma 2.1 NS(P ) ∈ Γ.

(6) Let S = 〈∆〉 and without loss ∆ = ΓS. Let P ∈ ∆∗. If P is not normal
in S, then Proposition 1.6(c) there exists x ∈ NS(NS(P )) with P 6= P x. By
(C) and (P) we get PP x ∈ ΓS, a contradiction to the maximality of P . So
P is normal in S. Thus by (2) S = 〈∆〉 = 〈∆∗〉 ∈ Γ.

(7) Let

Λ :=
⋂
T∈Γ∗

NΓ(T ) = {A ∈ Γ | A ≤ NG(T ) ∀T ∈ Γ∗}.

We claim that |Λ∗| = 1. Indeed, let X1, X2 ∈ Λ∗ and pick Ti ∈ Γ∗ with
Xi ≤ Ti. By (6), 〈ΛTi〉 ∈ Γ and so the definition of Λ implies 〈ΛTi〉 ∈ Λ. The
maximality of Xi implies Xi = 〈ΛTi〉. Hence X1 ≤ NG(T2) ≤ NG(〈ΛT2〉) ≤
NG(X2). So X1 normalizes X2 and X2 normalizes X1. Thus by (P), X1X2 ∈
Γ. Hence also X1X2 ∈ Λ and X1 = X2.

So indeed |Λ∗| = 1. Let N be the unique element in Λ∗. Then N is
normal in G. Let T ∈ Γ∗. The definition of Λ implies that N normalizes T .
So by (P), NT ∈ Γ. Thus N ≤ T and N ≤ R(Γ). Clearly R(Γ) ≤ N and
(7) holds.

(8) Obviously S is contained in the right hand side of this equation. Let
P ∈ Γ(SCG(S)). Then SP is nilpotent by Proposition 1.5 and therefore
SP ∈ Γ by (6). Hence P ⊆ S because S is maximal.

(9) By (6) we get A ∈ Γ, which implies Γ∗S = {A}, and by (C) A is
normal in NG(S).

2

Definition. A subset ∆ of Γ is called a sub-NSS of Γ and we write
∆ ≤ Γ provided that:

(Suba) If A ∈ Γ and B ∈ ∆ with A ⊆ B then A ∈ ∆.

(Subb) If A,B ∈ ∆ with 〈A,B〉 ∈ Γ then 〈A,B〉 ∈ ∆.
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(Subc) If A,B ∈ ∆ then AB ⊆ ∆.

Lemma 2.4 Let ∆ ≤ Γ, then ∆ is an NSS for 〈∆〉.

Proof. (C) follows from (Subc). Let P,Q ∈ ∆. Then since (I) holds for
Γ, P ∩Q ∈ Γ. So by (Suba), P ∩Q ∈ ∆. So (I) holds. By Lemma 2.1, NP (Q)
and NQ(P ) are Γ-subgroups. So by (Suba), they are also ∆-subgroups. By
(P) for Γ, NP (Q)NQ(P ) ∈ Γ and so by (Subb), NP (Q)NQ(P ) ∈ ∆. Thus
(P) holds. (MM) follows from (MM) for Γ. 2

Lemma 2.5 Let ∆ ≤ Γ.

(1) R(∆) ∈ ∆, and R(∆) is normal in 〈∆〉

(2) If A ∈ ∆ then AR(∆) ∈ ∆ .

(3) ∆ ≤ ΓR(∆).

(4) Let Λ ≤ ∆. Then

(i) R(∆) ∩ S = R(∆) ∩ R(Λ) for all S ∈ Λ∗.

(ii) R(Λ) ∩ R(∆) is the unique maximal Λ-subgroup of R(∆).

(iii) Λ-subgroups of R(∆) are contained in R(Λ).

(5) Let Λ ≤ ∆ with R(∆) ∈ Λ. Then R(∆) ≤ R(Λ).

(6) Suppose that Λ ≤ ∆ ≤ ΓR(Λ) and R(∆) ∈ Λ. Then R(Λ) = R(∆).

(7) R(∆) is closed in Γ if and only if R(∆)◦ ∈ ∆.

Proof.
(1) follows from Proposition 2.3(4) applied to the NSS ∆.

(2) By (MM) there exists S ∈ ∆∗ with A ⊆ S. By Proposition 2.3(6)
AR(∆) ∈ Γ and so by (Subb), AR(∆) ∈ ∆.

(3) Follows from (1) and (2).

(4) Let S, T ∈ Λ∗. By (2), T R(∆) ∈ ∆ and so by Proposition 2.3(6)
also T (R(∆) ∩ S) ∈ ∆. By (I) and (Suba), R(∆) ∩ S ∈ Γ and so (Subb)
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implies T (R(∆) ∩ S) ∈ Λ. Thus by maximality of T , R(∆) ∩ S ⊆ T . So
R(∆) ∩ S ⊆ R(Λ). So (i) holds. (ii) and (iii) follow from (i).

(5) Follows from (4).

(6) By (5) R(∆) ≤ R(Λ). Note that R(Λ) ∈ Λ ≤ ∆. Thus R(Λ) is a ∆-
subgroup of R(ΓR(Λ)) and so by (4)(iii) applied to ∆ ≤ ΓR(Λ),R(Λ) ≤ R(∆).

(7) If R(∆) = R(∆)◦, then R(∆)◦ ∈ ∆ by (1). So suppose R(∆)◦ ∈ ∆.
Then by (5) applied to ∆ ≤ ΓR(∆), R(∆)◦ ≤ R(∆). So R(∆) is closed. 2

Lemma 2.6 Let P ∈ ∆ ≤ Γ such that P = R(ΓP ∩∆). Then

(1) R(∆) ⊆ P .

(2) If Γ∗P ∩∆ 6= ∅, then R(∆) is closed.

Proof. Let T = R(∆).
(1) Since P ∈ ∆, Lemma 2.5(2) implies PT ∈ ∆. Hence by Lemma

2.1, NT (P ) ∈ ∆. Let S ∈ (ΓP ∩ ∆)∗. Then again by Lemma 2.5(2), ST ∈
∆. Hence by Proposition 2.3(6), NT (P )S ∈ ΓP ∩ ∆. By maximality of S,
NT (P ) ⊆ S. Thus NT (P ) ≤ R(ΓP ∩ ∆) = P . Since TP is nilpotent we
conclude T ⊆ P .

(2) By Lemma 2.5(3), ∆ ≤ ΓT . Thus

(∗) ΓP ∩∆ ≤ ΓP ∩ ΓT ≤ ΓP .

Let Q = R(ΓP ∩ ΓT ). By assumption there exists S ∈ Γ∗P ∩ ∆. Then
S ∈ (ΓP ∩ ΓT )∗ and so Q ⊆ S. Hence by (Suba), Q ∈ ΓP ∩ ∆. By (∗)
we can apply Lemma 2.5(6) (with Λ = ΓP ∩ ∆ and ∆ = ΓP ∩ ΓT ) Thus
Q = R(ΓP ∩∆) = P . So by (1) (applied to ΓT in place of ∆), T ◦ ⊆ P and
thus T ◦ ∈ ∆. By Lemma 2.5(7), T = R(∆) is closed. 2

Corollary 2.7 Suppose that N ∈ Γ is closed and ΓN ≤ ∆ ≤ Γ. Then
R(∆) ≤ N and R(∆) is closed.
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Proof. Since N is closed and ΓN = ΓN ∩∆ we have N = R(ΓN ∩∆). Also
Γ∗N ⊆ ΓN ⊆ ∆ and so Γ∗N ∩∆ 6= ∅. Thus the Corollary follows from Lemma
2.6. 2

Definition. If Q is a normal Γ-subgroup of G contained in R(Γ) we
define

Γ/Q := {PQ/Q | P ∈ Γ}.

Note that Γ/Q = {P/Q | Q ≤ P ∈ Γ}.

Proposition 2.8 Let L ∈ Γ. Then the following hold:

(1) ΓL resp. ΓL/L is an NSS of NG(L) resp. NG(L)/L.

(2) L ≤ L◦.

(3) Γ = ΓR(Γ).

(4) R(ΓL/L) = R(ΓL)/L.

(5) Γ/R(Γ) is reduced.

(6) L is closed in Γ if and only if 1 is closed in ΓL/L.

(7) If L is closed then L =
⋂
{S ∈ Γ∗ | L ⊆ S}.

(8) ΓL ⊆ ΓL◦.

(9) If M ∈ Γ with ΓL ≤ ΓM , then NM(L) ≤ L◦. If in addition L◦ ≤ M ,
then L◦ = NM(L).

(10) There is some (not necessarily uniquely determined) closed Γ -subgroup
M with L ⊆M,ΓL ⊆ ΓM and L◦ = NM(L).

(11) L◦ = NL◦◦(L).

(12) Let S ∈ Γ∗ and L be a normal Γ-subgroup of S. Then L◦ = L◦◦ is
closed.
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Proof.
(1) Let P,Q ∈ ΓL. Then (P ∩ Q)L ⊆ PL ∩ QL ∈ Γ by (I). Hence (P ∩
Q)L ∈ Γ by Proposition 2.3(6) and P ∩Q ∈ ΓL. Similarly NP (Q)NQ(P )L ⊆
NPL(QL)NQL(PL) ∈ Γ by (P) and therefore NP (Q)NQ(P )L ∈ Γ implying
NP (Q)NQ(P ) ∈ ΓL. Condition (MM) is satisfied for ΓL as ΓL ⊆ Γ, and
(C) follows for ΓL as (C) holds for Γ and thus P gL ∈ Γ if P ∈ ΓL and
g ∈ NG(L). Thus ΓL and ΓL/L are NSS’s.

(2) and (3) are obvious.

(4) follows from (ΓL/L)∗ = Γ∗/L := {S/L | S ∈ Γ∗L}.
(5) is a consequence of (4).

(6) is clear by (5) and (2).

(7) Put D :=
⋂
{S ∈ Γ∗ | L ⊆ S}. Let T ∈ Γ∗L and pick S ∈ Γ∗

with T ⊆ S. Then T ⊆ NS(L) ∈ ΓL by Lemma 2.1 and so T = NS(L).
Since D ⊆ S we conclude ND(L) ⊆ T . As this is true for all T ∈ Γ∗L,
ND(L) ⊆ R(ΓL) = L. Since L ⊆ D and D is nilpotent, L = D.

(8) If P ∈ ΓL then there is Q ∈ Γ∗L with P ⊆ Q, hence PL◦ ∈ ΓQ ⊆ Γ
by Proposition 2.3(6), and P ∈ ΓL◦ .

(9) Note that NM(L) ∈ ΓL and NM(L) ≤M ≤ R(ΓM). Thus by Lemma
2.5(4), NM(L) ≤ R(ΓL) = L◦. If L◦ ≤ M , then L◦ ≤ NM(L) ≤ L◦ and so
L◦ = NM(L).

(10) Let M in Γ be maximal with respect to L◦ ≤ M and ΓL ⊆ ΓM .
Note that by (2) and (8) such an M exists. By (2) and (8) applied to M ,
L◦ ≤M ≤M◦ and ΓL ⊆ ΓM ⊆ ΓM◦ . Thus the maximal choice of M implies
M = M◦. So M is closed. By (9), NM(L) = L◦ and all parts of (10) are
verified.

(11) Follows from (2),(8) and (9).

(12) As S ∈ Γ∗ we get S ∈ Γ∗L. It follows that L◦ is normal in S and thus
L◦◦ ≤ S. Hence L is normal in L◦◦. So by (12) L◦ = NL◦◦(L) = L◦◦.

2

Lemma 2.9 Let N ∈ Γ and P,Q ∈ ΓN . If [CP (N), 〈P,Q〉] ⊆ N then
NQ(P )P ∈ Γ.
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Proof. By Lemma 2.1 we may assume that Q = NQ(P ). So Q normalizes
P . Since PN and QN are in Γ they are both nilpotent. So P and Q
act nilpotently on N . By Lemma 1.4(2) PQ acts nilpotently on N . Thus by
Lemma 1.4(1), PQ/CPQ(N) is nilpotent. Also PQ/P ∼= Q/Q∩P is nilpotent
and so by Lemma 1.4(5) PQ/CP (N) is nilpotent. Since [CP (N), PQ] ⊆ N
we get that PQ acts nilpotently on CP (N). Thus the assertion follows from
Lemma 1.4(3). 2

Proposition 2.10 Let G = 〈A,B〉, where A and B are nilpotent subgroups
of G. Assume A ∈ Γ, N is a normal subgroup of G, N ⊆ A∩B and G/N is
nilpotent. Then G is nilpotent.

Proof. By (MM) A can be chosen maximal fulfilling the assumptions of
the Proposition. Then by nilpotency of G/N and (P), A is normal in G and
Proposition 2.10 follows from Lemma 1.4(4). 2

Proposition 2.11 Let S ∈ Γ∗ be fixed.

(1) Let T ∈ Γ∗\{S} such that S ∩ T is maximal. Then S ∩ T is closed.

(2) Let T ∈ Γ∗\{S}, then there exists a closed Γ-subgroup P with S ∩ T ≤
P < S.

Proof. (1) Set P := S ∩ T Then P ◦NS(P ) ∈ Γ by definition of ΓP and
1.10(6). Therefore there is X ∈ Γ∗ with P ◦NS(P ) ⊆ X. By maximality of
S, S � T and so P < S. Hence by Proposition 1.6(3), P < NS(P ) ≤ X ∩ S.
By maximality of P , X = S. Thus P ◦ ≤ S. Note also that NT (P )P ◦ ≤ Y
for some Y ∈ Γ∗. Since P < NT (P ), NT (P ) � S and so Y 6= S. Thus by
maximality of P , Y ∩ S = P . Since P ◦ ≤ Y ∩ S we get P ◦ = P and P is
closed.

(2) Let T ∗ ∈ Γ∗\{S} with S ∩ T ≤ S ∩ T ∗ and S ∩ T ∗ maximal. Then
S ∩ T ∗ is closed by (1). 2

The following statement is a variant of Baer’s famous theorem [1].

Theorem 2.12 Let X ∈ Γ such that 〈X,Xg〉 ∈ Γ for all g ∈ G, then
〈XG〉 ∈ Γ.
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Proof. Set ∆ := XG and assume 〈∆〉 6∈ Γ. Then there are Q = 〈∆Q〉 ∈ Γ
and R = 〈∆R〉 ∈ Γ with 〈Q,R〉 6∈ Γ. Choose Q and R such that D :=
〈∆(Q ∩R)〉 is maximal. Suppose that ∆NQ(D) = ∆(Q ∩R). Then

NQ(NQ(D)) ≤ NQ(〈∆NQ(D)〉) = NQ(D)

and so by Proposition 1.6(3), NQ(D) = Q. But ∆Q 6= ∆(Q ∩ R), a con-
tradiction. Thus there exists A ∈ ∆ with A � NQ(D) and A ≤ D. Sim-
ilarly there exists B ∈ ∆ with B ≤ NR(D) and B � D. By assumption
〈A,B〉 ∈ Γ. By Proposition 2.10, applied with AD,BD and D in place of A,
B and N , P := 〈A,B,D〉 is nilpotent. Since D < AD ≤ Q ∩ P , the max-
imality of D implies 〈Q,P 〉 ∈ Γ. Similarly 〈R,P 〉 ≤ Γ. But 〈R,P,Q〉 /∈ Γ
and D < P ≤ 〈R,P 〉 ∩ 〈Q,P 〉. This contradiction to the maximality of D
completes the proof of Theorem 2.12. 2

3 NSS’ of rank 1 and 2

As in the previous section let G be a group with an NSS Γ.

Theorem 3.1 Suppose |Γ∗| > 1. Then following properties are equivalent:

(a) rank(Γ) = 1.

(b) S ∩ T = R(Γ) for S, T ∈ Γ∗ with S 6= T .

(c) S ∩ Sg = R(Γ) for S ∈ Γ∗ and g ∈ G\NG(S).

Proof. Suppose (a) holds. Let S, T ∈ Γ∗ with P = S ∩ T maximal. Then
P is closed by Proposition 2.11. and so R(Γ) ≤ P < S is a chain of closed
Γ-subgroups. Since Γ has rank 1, we get P = R(Γ). Thus S ∩ T = R(Γ) for
all S 6= T ∈ Γ∗ and so (b) holds.

From (C) we get Sg ∈ Γ∗ for S ∈ Γ∗ and g ∈ G. Thus (b) implies (c).
Suppose that (c) holds. Let P be a closed Γ subgroup. We will show that

P = R(Γ) or P ∈ Γ∗ and note that this implies (a).
Assume that |Γ∗P | = 1. Since P is closed we get P ∈ Γ∗P . Let P ≤ S ∈ Γ∗.

Then P ≤ NS(P ) ∈ ΓP and so P = NS(P ) and P = S.
Suppose next that |Γ∗P | > 1 and let Q 6= T ∈ Γ∗P . By (P) applied to

the NSS ΓP , we may assume that T does not normalize Q. Let Q ≤ S ∈
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Γ∗. Then Q ≤ NS(P ) ∈ ΓP and so by maximality of Q, Q = NS(P ).
Thus NG(P ) ∩ NG(S) ≤ NG(Q). Since T normalizes P but not Q we get
T � NG(S). Pick g ∈ T with S 6= Sg. Then P ≤ S ∩ Sg = R(Γ) and so
P ≤ R(Γ). By Corollary 2.7 R(Γ) ≤ P and so P = R(Γ). 2

Lemma 3.2 Suppose that N is large in Γ and P,Q ∈ ΓN

(1) NQ(P )P ∈ ΓN .

(2) If P ∈ Γ∗N , then NQ(P ) ≤ P and ΓN ∩ ΓNG(P ) = ΓP .

Proof. (1) By definition of large, CP (N) ≤ N . Hence [CP (N), 〈P,Q〉] ≤ N
and (1) follows from Lemma 2.9.

(2) By (1) and maximality of P ∗, NQ(P ) ≤ P . The second statement in
(2) just rephrases the first. 2

Lemma 3.3 Suppose that N ≤ P ∈ Γ, N is large and P is closed. Then P
is large.

Proof. Let P ≤ T ∈ ΓP . Then CT (P ) ≤ NT (N) ∈ ΓN and since N is large,
CT (P ) ≤ NT (N) ∩ CG(N) ≤ N ≤ P . Thus P is large. 2

Lemma 3.4 Let Γ be an NSS of rank 1 and P ∈ Γ with P � R(Γ).

(1) P is contained in a unique maximal Γ-subgroup P ∗.

(2) Suppose R(Γ) is large and x ∈ Q ∈ Γ. If 〈P, P x〉 ∈ Γ then x ∈ P ∗.

Proof. (1) By Theorem 3.1, S ∩ T = R(Γ) for all S 6= T ∈ R(Γ).
(2) By (1) P ∗ = 〈P, P x〉∗ = P x∗ = P ∗x. Thus x ∈ NQ(P ∗). By Lemma

3.2(2) NQ(P ∗) ≤ P ∗ and (2) holds. 2

Lemma 3.5 Let Γ be an NSS of rank 1 and S ∈ Γ∗. Define Π =
⋃
g∈G ΓSg.

Then Π ≤ Γ, Π has rank at most one and Π∗ = SG ⊆ Γ∗. If in addition
R(Γ) is large then Π has rank 1 and R(Π) = R(Γ).
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Proof. Clearly Π fulfils (Suba) and (Subc). Now let A,B ∈ Π with 〈A,B〉 ∈
Γ. If A ≤ R(Γ), then 〈A,B〉 ≤ B R(Γ) ∈ Π and so also 〈A,B〉 ∈ Π. So
suppose A � R(Γ) and B � R(Γ). Then by Lemma 3.4(1)

A∗ = 〈A,B〉∗ = B∗.

Thus 〈A,B〉 ≤ A∗ and 〈A,B〉 ∈ Π. Thus Π ≤ Γ. Clearly Π∗ = SG ⊆ Γ∗.
Suppose first that |Π∗| > 1. By Theorem 3.1, A ∩ B = R(Γ) for all

A,B ∈ Π∗ and R(Π) = R(Γ). Hence by Theorem 3.1 , Π has rank 1. So the
lemma holds in this case.

Suppose next that |Π∗| = 1. Then Π∗ = {S}, S is normal in G and Π has
rank 0. So we may now assume that that R(Γ) is large. Since S is normal in
G, Lemma 3.2 implies PS ∈ Γ for all P ∈ Γ. But then P ≤ S by maximality
of S and Γ∗ = S, a contradiction to rank(Γ) = 1. 2

Lemma 3.6 Suppose that Γ has rank 1. Let K ≤ G with 〈ΓK〉 /∈ Γ and
P ∈ ΓK with P � R(Γ). Then 〈P, P x〉 /∈ Γ for some x ∈ K.

Proof. Since 〈ΓK〉 � Γ, Proposition 2.3(6) implies Q � P ∗ for some
Q ∈ ΓK. Let x ∈ Q\P ∗. Then by Lemma 3.4(2), 〈P, P x〉 /∈ Γ. 2

Proposition 3.7 Let N ∈ Γ be closed of co-rank 1, (here the co-rank of N
is the supremum of the lengths of chains of closed Γ-subgroup starting with
N).

(1) Let N ≤ S1 ∩ S2 with S1 6= S2 ∈ Γ∗. Then N = S1 ∩ S2.

(2) ΓN has rank 1.

(3) Let N < P ∈ Γ. Then P lies in a unique maximal Γ-subgroup P ∗.
Moreover, NG(P ) ≤ NG(P ∗),

(4) Let P, S ∈ Γ with S ∈ Γ∗ and N < S ∩ P . Then P ⊆ S.

Proof. (1) By Proposition 2.11(2) N ≤ S1 ∩ S2 ≤ T < S for some closed
T ∈ Γ and some S ∈ Γ∗. Since N has co-rank 1 we conclude that N = T
and so N = S1 ∩ S2.
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(2) Let Q1 6= Q2 ∈ Γ∗P and Qi ≤ Si ∈ Γ∗. Since 〈Q1, Q2〉 /∈ Γ, S1 6= S2.
So by (1) and Theorem 3.1, ΓN has rank at most 1. Suppose that ΓN has
rank 0. Then since N is closed {N} = ΓN . Let N ≤ S ∈ Γ∗. Then
N ≤ NS(N) ∈ ΓN and so N = NS(N). Hence S = N , a contradiction to
N 6∈ Γ∗.

(3) and (4) are easy consequences of (1) and (2). 2

Theorem 3.8 If Γ is reduced of rank 2 then one of the following holds:

1. There are S ∈ Γ∗ and closed P,Q ∈ ΓS\{S, 1} such that Γ〈ΓP ,ΓQ〉 is
reduced.

2. There is an reduced NSS ∆ of G with rank(∆) = 1 and ∆ ≤ Γ.

Proof. Suppose first that there are S ∈ Γ∗ and closed P,Q ∈ ΓS\{1, S} with
P 6= Q. Let N := R(Γ〈ΓP ,ΓQ〉). By Corollary 2.7, N ⊆ P ∩ Q and N is
closed. Since rank(Γ) = 2 we get N = 1 and 1. holds.

Suppose next that for all S ∈ Γ∗ there is at most one closed P ∈ ΓS with
1 6= P 6= S. If such a P exists we denote it by P (S). Otherwise let P (S) = 1.
We will show that

(∗) P (S) = P (T ) 6= 1 for all S, T ∈ Γ∗ with S ∩ T 6= 1.

If S ∩ T is closed, P (S) = S ∩ T = P (T ). So we may assume that S ∩ T is
not closed. Then by Proposition 2.8(10) there exists a closed M ∈ Γ with
S ∩ T ⊂ M and ΓS∩T ⊆ ΓM . By Lemma 2.5(2) NS(S ∩ T )M ∈ Γ. So
there exists S̃ ∈ Γ∗ with NS(S ∩ T )M ⊆ S̃ and similarly choose T̃ . Then
S∩T ⊂ NS(S∩T ) ⊆ S∩S̃, S∩T ⊂M ⊆ S̃∩T̃ and S∩T ⊂ NT (S∩T ) ⊆ T∩T̃ .
So by downwards induction on S ∩ T , P (S) = P (S̃) = P (T̃ ) = P (T ) 6= 1.
Thus (∗) holds.

Put ∆ =
⋃
{ΓP (S) | S ∈ Γ∗}. We claim that ∆ ≤ Γ. (Suba) and Sub(c)

are obvious from the definition of ∆. Let A,B ∈ ∆ and S, T ∈ Γ∗ with
A ⊆ P (S) and B ⊆ P (T ).

To show (Subc) we assume A 6= 1 6= B and 〈A,B〉 ≤ Γ. Pick Q ∈ Γ∗

with 〈A,B〉 ≤ Q. Then A ≤ S ∩Q and B ≤ Q ∩ T and (∗) implies P (S) =
P (Q) = P (T ). Thus 〈A,B〉 ≤ P (Q) and 〈A,B〉 ∈ ∆. Thus (Subb) holds.
Thus ∆ ≤ Γ and by Lemma 2.4, ∆ is an NSS.
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Suppose that |∆∗| > 1. Let A,B ∈ Γ∗ with A ∩ B 6= 1 and let S, T be
as above. Then by (∗), A = P (S) = P (T ) = B and by Theorem 3.1, ∆ is
reduced of rank 1. Thus 2. holds in this case.

Suppose that |∆∗| = 1 and let A be the unique member of ∆∗. Assume
that A = 1. Then P (S) = 1 for all S ∈ Γ∗ and so Γ has rank 1, a contra-
diction. Thus A 6= 1. Let Λ = Γ \ ΓA ∪ {1}. We claim that Λ ≤ Γ. Let
P ≤ Q ≤ S with 1 6= P ∈ Γ, Q ∈ Λ and S ∈ Γ∗. Since ΓA ≤ Γ and Q 6∈ ΓA,
S /∈ ΓA. Thus S ∈ Λ. Suppose that P ∈ ΓA. Then PA ∈ Γ. Put PA∩S 6= 1
and (∗) implies A ≤ S. Thus S ∈ ΓA, a contradiction. So P ∈ Λ and we
conclude that (Suba) holds for Λ. Clearly (Subb) and (Subc) hold.

We proved Λ ≤ Γ. Since A 6≤ R(Γ), Λ 6= {1}. Suppose that Λ has a
unique maximal element B. Then B ∈ Γ∗ and by (∗), B ∩A = 1. Since both
A and B are normal in G, [A,B] = 1. Thus AB is nilpotent and AB ∈ Γ,
a contradiction to B /∈ ΓA. Thus |Λ∗| > 1. By (∗) X ∩ Y = 1 for any two
maximal members of Λ and so Theorem 3.1 implies that Λ is a reduced NSS
of rank 1. Thus 2. holds for Λ in place of ∆. 2

4 Minimal Γ-subgroups

In this section we continue to assume that a G is group with an NSS Γ and
1 ∈ Γ. We consider elements X ∈ Γ∗. Recall that this just means that X is
a minimal non-trivial element of Γ. In particular for two different elements
X,Y ∈ Γ∗ we have X ∩ Y = 1.

Proposition 4.1 Assume P ∈ Γ and X,Y ∈ ΓP∗ with X 6= Y . If NX(Y ) 6=
1 or [x, y] = 1 for some x ∈ X# and y ∈ Y #, then 〈X,Y 〉 = X × Y .

Proof. If [x, y] = 1, then y ∈ Y ∩ Y x and so Y = Y x. So we may assume
NX(Y ) 6= 1. Using Lemma 2.1 we get X = NX(Y ). Since XY ⊆ P , XY
is nilpotent. As Y is normal in XY , CY (X) 6= 1. Hence NY (X) 6= 1 and
Y = NY (X). So [X,Y ] ≤ X ∩ Y = 1. 2

Proposition 4.2 Let P ∈ Γ with P = 〈X,Y 〉 where X,Y ∈ ΓP∗\{P}.
If X ′ 6= 1 then X is a normal subgroup of P (here X ′ := [X,X] is the
commutator subgroup of X).
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Proof. Consider a counterexample with P minimal. Then there is y ∈ Y
with Xy 6= X. Set E := 〈X,Xy〉. So by Proposition 2.3(6) and Proposition
1.6, E ∈ Γ and E < P . Of course X,Xy 6= E and by minimality of P , X
and Xy are normal in E. Therefore by Proposition 4.1 E = X × Xy. Let
Q := 〈Y P 〉. Then Q is a proper Γ-subgroup of P by Proposition 2.3(6) and
Proposition 1.6. Since P = 〈X,Y 〉, X 6≤ Q and Q ∩ X = 1 as X ∈ Γ∗ and
Q ∩ X ∈ Γ by (I). Now [X, y] ≤ E ∩ Q and E ∩ Q is normal in E. Since
X × Xy = X[X, y] we have 1 6= [Xy, Xy] = [Xy, [X, y]] ≤ Xy ∩ Q. Hence
also X ∩Q 6= 1, a contradiction. 2

Corollary 4.3 Let P ∈ Γ and ∆ := {X ∈ ΓP∗ | X ′ 6= 1}. Then ∆ is finite
and 〈∆〉 = X1 × . . .×Xn, where ∆ = {X1, . . . , Xn}.

Proof. Let X 6= Y ∈ ∆. Then by Proposition 4.2 and Proposition 4.1,
[X,Y ] = 1. Let Z = 〈∆ \ {X}〉. Then Z ∈ Γ and [X,Z] = 1. Thus X ∩ Z
is a proper Γ-subgroup of X and so X ∩Z. Thus the Corollary holds by the
definition of the direct product. (Note also that ∆ is finite by (MM).) 2

Define an elementary abelian p-group to be an an abelian group so that
all non-trivial elements have order p. Note that this makes sense for p a
prime or p = ∞. Indeed, an elementary abelian ∞-group is just a torsion
free abelian group.

Proposition 4.4 Let X,Y ∈ Γ∗, X 6= Y , H := 〈X,Y 〉 ∈ Γ and [X,Y ] 6= 1.
Then X and Y are both elementary abelian p-groups, p =∞ or a prime.

Proof. Suppose first Y is not elementary abelian. Let M ∈ Γ maximal
with respect to X ≤ M < H. Then by Proposition 2.2, M is normal in
H. Also Y � M . Since Y ∩ M ∈ Γ and Y ∈ Γ∗, Y ∩ M = 1. Let
1 6= x ∈ X. By Proposition 4.1, NX(Y ) = 1 and so Y 6= Y x. Hence by
Proposition 4.2, Y is abelian. Since 〈Y, Y x〉 6= H we get by induction that
[Y, Y x] = 1. Let D = Y Y x ∩M . Since [Y, x] ⊆ D, Y Y x = Y D = Y xD.
Let E ∈ Γ∗D. Then 1 6= Y ∩ (EY x) ∈ Γ and so Y ⊆ EY x. Thus E = D.
Note that D is isomorphic to Y and 〈D,X〉 ≤ M . In particular, Y is not
elementary abelian and so by induction [D,X] = 1. Since [Y, x] ≤ D we get
[Y, x] ≤ Z(〈Y, x〉). Let y ∈ Y has order p, p a prime. Then by Proposition
1.1, [y, xp] = [yp, x] = 1 and so by Proposition 4.1 xp = 1. Hence for all
z ∈ Y, [zp, x] = [z, xp] = 1 and so by Proposition 4.1 zp = 1.
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Hence Y is an elementary abelian p-group and by symmetry X is an
elementary abelian q-group. To show p = q we may assume p 6= ∞. Then
by Proposition 1.7 [y, xpk ] = 1 for some positive integer k. So by Proposition
4.1, xpk = 1 and q = p. 2

Proposition 4.5 Let A1 be a Γ-subgroup of the decomposable abelian Γ-
subgroup A. Then there is a decomposable Γ-subgroup A2 of A with A =
A1 × A2.

Proof. Let K be a decomposable Γ-subgroup maximal with A1K = A1×
K. If A = A1K we are done. So suppose A1K < A. Since A is decomposable,
there exists X ∈ Γ∗A with X 6≤ A1K. Then A1K ∩ X = 1 and A1KX =
(A1×K)×X = A1× (K×X). But K < KX and we obtain a contradiction
to the maximal choice of K. 2

Proposition 4.6 Γ-subgroups of decomposable abelian Γ-subgroups are de-
composable.

Proof. Let A be a decomposable abelian Γ-subgroup and B a Γ-subgroup
of A. By Proposition 4.5 there exists D ∈ ΓA with A = Ω(B) × D. By
Proposition 1.8 B = Ω(B)× (B ∩D). Also Ω(B ∩D) ≤ Ω(B) ∩D = 1 and
since B ∩D ∈ Γ, B ∩D = 1 and B = Ω(B). 2

Proposition 4.7 Let A,B ∈ Γ such that A is decomposable abelian and
B is generated by abelian Γ-subgroups. If 〈A,B〉 ∈ Γ, then CA(B) is a
decomposable abelian Γ-subgroup.

Proof. Since CA(B) =
⋂
{CA(E) | E ∈ ΓB,E abelian } we may by

(I) assume that B is abelian. By Proposition 4.6 we only need to show
CA(B) ∈ Γ. By Proposition 2.3(1) we get CA(B) ≤ D :=

⋂
b∈B A

b ∈ Γ. Note
that CA(B) = CD(B) and that B normalizes D. By Proposition 4.6 D is
decomposable.

If D = CD(B) = CA(B) we are done. So suppose [D,B] 6= 1. Since
DB is nilpotent, there exists d ∈ D with 1 6= [d,B] ≤ CD(B). Then Bd ≤
CD(B)B ≤ CG(B). Thus BBd is abelian and BBd ∈ Γ. Thus

1 6= [d,B] ≤ BBd ∩D ≤ CD(B).
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Put E := BBd ∩ D. Then E is a non-trivial Γ subgroup of CD(B). By
Proposition 4.5, D = E × F for some decomposable Γ subgroup F of D.
Then CD(B) = E×CF (B). Since F < A, induction on A shows CF (B) ∈ Γ.
Hence also CD(B) ∈ Γ and the Proposition is proved. 2

Proposition 4.8 Let A,B ∈ Γ such that A is decomposable, B an abelian
Γ-subgroup and A ∈ ΓB. Then [B,A] is a Γ-subgroup of G.

Proof. Since [B,A] = 〈[B,E] | E ∈ Γ∗A〉 we may by Proposition 2.3(6)
assume that A ∈ Γ∗. If A ≤ B, then since B is abelian [A,B] = 1 ∈ Γ. We
therefore may assume A 6⊆ B and so A ∩ B = 1 by minimality of A. Note
that 〈AB〉 = A[B,A] and so

〈AB〉 ∩B = [B,A](A ∩B) = [B,A].

By Proposition 2.3(6) 〈AB〉 ∈ Γ and so by (I), [B,A] ∈ Γ. 2

5 Measure and the Thompson subgroup

G continues to be a group with an NSS Γ with 1 ∈ Γ. We define a measure
function and use it to state and prove a variant of the Thompson Replacement
Theorem.

Proposition 5.1 Let X,Y ∈ Γ with XY ∈ Γ. Let

X = X0 < X1 < . . . < Xr = XY

be any maximal chain of Γ-subgroups from X to XY . Then

X ∩ Y = X0 ∩ Y < X1 ∩ Y < . . .Xr ∩ Y = Y

is a maximal chain of Γ-subgroups from X ∩ Y to Y .

Proof. Let A be a Γ subgroup with Xi ∩ Y ≤ A ≤ Xi+1 ∩ Y . Since
X ≤ Xi ≤ XY , Proposition 1.8 implies Xi = X(Xi ∩ Y ). Thus

Xi ≤ AX ≤ Xi+1.
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Xi is a maximal Γ-subgroup of Xi+1 and so by Proposition 2.2 Xi is
normal in Xi+1. Thus AX = AXi is a subgroup of Xi+1. Since Xi+1 is
nilpotent, Proposition 2.3(6) implies AX ∈ Γ. By the maximality of the
Xi-chain, AX = Xk for some k ∈ {i, i + 1}. Thus Xk ∩ Y = AX ∩ Y =
A(X ∩ Y ) = A. 2

Proposition 5.2 Let X ∈ Γ. Then there exists a maximal chain of Γ-
subgroups from 1 to X and any two such chains have the same length. We
denote this common length by µ(X).

Proof. The existence of a maximal Γ-chain from 1 to X follows from
(MM). Let A and B be maximal Γ-subgroups of X. By induction any
maximal Γ-chain from 1 to X through A has unique length µ(A) + 1. It
remains to show that µ(A) = µ(B). Without loss A 6= B. By maximality
of A and B, A is normal in X, AB ∈ Γ and AB = X. Note that A ≤ X
is a maximal chain from A to X and so by Proposition 5.1, A ∩ B < B is a
maximal chain from A ∩B to B. Thus µ(B) = µ(A ∩B) + 1 = µ(A). 2

Abusing the term we call µ of Proposition 5.2 a measure function on Γ
and µ(A) is called the measure of A.

Proposition 5.3 µ(P ) = µ(P g) for all P ∈ Γ and g ∈ G.

Proof. This follows from (C) and Proposition 5.2. 2

Proposition 5.4 Assume X,Y ∈ Γ .

(1) Suppose X ≤ Y , then any maximal Γ-chain from X to Y has length
µ(Y/X) := µ(Y )− µ(X).

(2) Suppose XY ∈ Γ. Then µ(XY ) = µ(X) + µ(Y )− µ(X ∩ Y ).

Proof. (1) follows from Proposition 5.2.

(2) By (1) µ(XY/X) = µ(XY ) − µ(X). By (1) and Proposition 5.1,
µ(XY/X) = µ(Y/X ∩ Y ). Again by (1) µ(Y/X ∩ Y ) = µ(Y ) − µ(X ∩ Y ).
Thus (2) holds.

2
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Definition. For P ∈ Γ let A(P ) be the set of all decomposable abelian Γ-
subgroups of P with maximal measure. Let J(P ) := 〈A(P )〉, the Thompson-
subgroup of P (compare with the introduction of [5]).

Then J(P ) is a Γ-subgroup of P by Proposition 2.3(6).

Proposition 5.5 Let V be a decomposable abelian Γ-subgroup of G and A ∈
ΓV with A ∈ A(AV ). Then CV (A) = V ∩A and µ(A/CA(V )) ≥ µ(V/CV (A))

Proof. By Proposition 4.7 and (P), CV (A)A is an decomposable abelian
Γ-subgroup of P . The maximality of µ(A) implies CV (A) ≤ A and thus
CV (A) = V ∩ A. Thus V ∩ CA(V ) = V ∩ A = CV (A) and by maximality of
A, Proposition 4.7 and Proposition 5.4:

µ(A) ≥ µ(V CA(V )) = µ(V CA(V )/CA(V )) + µ(CA(V ))
= µ(V/CV (A)) + µ(CA(V )).

2

The next lemma is our version of the Thompson Replacement Theorem.

Lemma 5.6 Let A, V be decomposable abelian Γ-groups with A ∈ ΓV ∩
A(AV ). Let x ∈ NV (NV (A)A) and define

D = ((AAx) ∩ V )(A ∩ Ax).

Then

(1) D ∈ A(AV ) and 〈x〉NV (A)A ⊆ NG(D).

(2) If [V,A] 6= 1, then [V,D] 6= 1.

Proof. (1) Let P = NV (A)A. Since x normalizes P , both A and Ax are
normal in P . Thus AAx = 〈A,Ax〉. Since A is abelian, A ∩ Ax ⊆ Z(AAx).
By Proposition 4.6 both AAx ∩ V and A ∩ Ax are decomposable Γ-groups
and so D is an abelian decomposable Γ-group. Also [x,A] ⊆ V ∩ (AAx) ⊆ D
and so x ∈ NG(D). Note that

(∗) µ(AAx) = µ(A) + µ(Ax)− µ(A ∩ Ax) = 2µ(A)− µ(A ∩ Ax).
Also AAx ⊆ V A and so AAx = AAx ∩ V A = A(V ∩ AAx) = AD.

Moreover, D ∩ A = (V ∩ A)(A ∩ Ax) and V ∩ A ⊆ CA(x) ⊆ A ∩ Ax. Thus
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D ∩ A = A ∩ Ax. Hence µ(AAx) = µ(DA) = µ(D) + µ(A) − µ(A ∩ Ax).
Comparing with (*) we obtain µ(A) = µ(D) and so D ∈ A(AV ).

(2) Suppose that [V,D] = 1. Then A∩Ax ≤ CA(V ) and so by Proposition
5.5, A ∩ Ax = A ∩ V . Hence D ≤ V . Since D ∈ A(AV ) we get V = D ⊆
P ⊆ NG(A). Thus A = Ax = A ∩ Ax ≤ D and [V,A] = 1. Thus (2) holds.

2

Proposition 5.7 Let V be a decomposable abelian Γ-subgroup of G and
P ∈ ΓV with V ⊆ P and J(P ) � CG(V ). Then there exists A ∈ A(P ) such
that [[V,A], A] = 1 6= [V,A] ≤ A.

Proof. Since J(P ) � CG(V ) there exists A ∈ A(P ) with 1 6= [V,A]. Choose
such an A with NV (A) maximal.

Suppose that V does not normalize A. Then V 6≤ NV (A)A and so by
Proposition 1.6(2) there exists x ∈ NV (NV (A)A) with x 6∈ NV (A). Let D
be defined as in Lemma 5.6. Then D ∈ A(AV ), [V,D] 6= 1 and 〈x〉NV (A) ≤
NV (D), contradiction to the maximal choice of NV (A).

Thus V normalizes A, [V,A] ≤ A and [[V,A], A] = 1. 2

Lemma 5.8 Let A,B be abelian Γ-subgroups with [A,B] ≤ A ∩ B. Let
a ∈ A. Suppose that B is decomposable and CB(a) ∈ Γ. Then [a,B] ∈ Γ and
µ([a,B]) = µ(B/CB(a)).

Proof. By Proposition 4.5 there exists a Γ-subgroup D of B with B =
CB(a) × D. Then [D, a] ≤ A ∩ B ≤ CA(D) and so by Proposition 1.2(2)
DDa = D[D, a] ∈ Γ. Moreover, DDa ∩ A = (D ∩ A)[D, a] and D ∩ A ≤
CD(a) = 1. [D, a] = DDa ∩ A ∈ Γ. In particular, D ∩ [D, a] = 1 and so
by Proposition 1.2(3), D ∩ Da = CD(a) = 1. Thus 2µ(D) = µ(DDa) =
µ(D) + µ([D, a]) and

µ([a,B]) = µ([a,D]) = µ(D) = µ(B/CB(a)).

2
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6 Glauberman’s Theorem, Part I

In this section we begin the proof of Theorem A stated in the introduction.
Assume G, V, S,A,Γ have the meaning and the properties mentioned there.

Proposition 6.1 Set Π :=
⋃
g∈G ΓSg. Let T ∈ Π∗.

(1) Π is an NSS of rank 1.

(2) Π∗ = SG ⊆ Γ∗.

(3) R(Π) = R(Γ).

(4) [CG(V ), 〈Π〉] ≤ R(Γ).

(5) Let P ∈ Γ(TCG(V )), then P ≤ T .

(6) R(Γ) = CT (V ).

Proof. By (a) (that is assumption (a) of Theorem A), Γ has rank 1. By (e)
R(Γ) is large. So (1),(2) and (3) follow from Lemma 3.5.

(4) By (c) [CG(V ), S] ≤ R(Γ). Thus (4) follows by conjugation.

(5) By (4) [P, T ] ≤ [TCG(V ), T ] ≤ T R(Γ) ≤ T . Thus P ≤ NG(T ). By
(e), R(Γ) is large and so by Lemma 3.2 PT ∈ Γ. Since T ∈ Π∗ = SG ⊆ Γ∗,
P ≤ T .

(6) Let R ∈ Π∗. By (4) [T ∩ CG(V ), R] ≤ R(Γ) ≤ R. Thus CT (V ) ≤
E :=

⋂
R∈Π∗ NT (R). By (I) and (MM) E ∈ Γ and by Proposition 2.3(8),

E ≤ R(Π) = R(Γ). 2

Lemma 6.2 There exists a non-trivial quadratic Γ-offender E in S on V
with CV (E) = V ∩ E.

Proof. By (d) there exists a non-trivial Γ-offender A in S on V . Since
V ≤ R(Γ), A ∈ ΓV . Let B = CA(V )V and D = CV (A)A. By Proposition
4.7, B ∈ Γ. Since A is an offender on V , µ(V/CV (A)) ≤ µ(A/CA(V )). But
this is equivalent to µ(B) ≤ µ(D). We will show that

(∗) J(AV ) � CAV (V ).
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Since AV = AB, CAV (V ) = CA(V )B = B. From µ(D) ≥ µ(B), we get
D ∈ A(AB) and D 6≤ B, since 1 6= [A, V ] ≤ [B,D].

Thus (*) holds. The existence of E now follows from Proposition 5.7 and
Proposition 5.5. 2

Notation.

∆ := EG, where E is as in Lemma 6.2
E,F ∈ ∆ such that µ([V,E][V, F ]) is minimal with respect to 〈E,F 〉 6∈ Γ.

W := [V,E][V, F ].
H := 〈E,F 〉R(Γ).
Z := [V,E] ∩ [V, F ].
Λ := ∆H.
q := µ(A/CA(V )) for A ∈ ∆.
m := µ([V,A]).

Notice that CA(V ), [V,A], W and Z are decomposable abelian subgroups
by Proposition 4.5 - Proposition 4.8, (P) and (I). Hence the measure of
these groups is defined. Note that by Proposition 5.4 and the choice of E,F ,
µ(Z) is maximal with respect to 〈E,F 〉 /∈ Γ. The existence of F ∈ ∆ with
〈E,F 〉 6∈ Γ is guaranteed by Lemma 3.6. In view of Lemma 3.4(1) we denote
by D∗ the unique member of Γ∗ which contains D provided D ∈ Γ with
D � R(Γ). Observe that by Proposition 6.1(6), A /∈ R(Γ) for all A ∈ ∆.

Proposition 6.3 Let A,B ∈ ∆

(1) 〈A,B〉 /∈ Γ if and only if A∗ 6= B∗.

(2) If A∗ 6= B∗, then 〈A,Ab〉 /∈ Γ for all b ∈ B\R(Γ).

(3) If A∗ 6= B∗, then [V,A] 6= [V,B].

Proof. (1) If 〈A,B〉 ∈ Γ then A∗ = 〈A,B〉∗ = B∗. If A∗ = B∗ then
〈A,B〉 ∈ Γ by Proposition 2.3(6). Hence (1).

(2) Let b ∈ B with 〈A,Ab〉 ∈ Γ. Then by Lemma 3.4(2), b ∈ A∗ ∩B∗. So
by Theorem 3.1(2), b ∈ R(Γ).

(3) Assume [V,A] = [V,B]. By (c), A and B are quadratic and so
[[V,A], B] = [[B, V ], A] = 1 . Thus [[A,B], V ] = 1 by Proposition 1.1 (5)
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and [A,B] ⊆ CG(V ). Let b ∈ B\R(Γ). Then Ab ∈ ACG(V ) ≤ A∗CG(V ) and
so by Proposition 6.1(5), Ab ≤ A∗, a contradiction to (2). 2

Proposition 6.4 Let A ∈ Λ and a ∈ A\R(Γ). Then

(1) [V,A] = Z × [W,a] = CW (a) = CW (A).

(2) 〈B,Ba〉 6∈ Γ and [V,B] ∩ CV (a) = [V,A] ∩ [V,B] = Z for all B ∈ Λ
with 〈A,B〉 6∈ Γ.

Proof. By Lemma 3.6 there is B ∈ Λ with 〈A,B〉 /∈ Γ. So by Proposition
6.3 〈B,Ba〉 6∈ Γ. Hence W = [V,A][V,B] = [V,B][V,Ba] by minimality of
µ(W ). Put D := C[V,B](a). Then by Proposition 5.4, Proposition 1.2, and
quadratic action,

CW (a) = D × [[V,B], a] = [V,A] = CW (A).

Also [W,a] = [[V,B], a] and

D = [V,B] ∩ CW (a) = [V,B] ∩ [V,A] = CW (B) ∩ CW (A) = CW (〈A,B〉).

Since H centralizes Z, Z ≤ D. The maximality of µ(Z) now implies
Z = D. 2

Proposition 6.5 Let A,B ∈ Λ with 〈A,B〉 6∈ Γ, w ∈ [V,B]\Z, and a ∈
A\R(Γ). Then

(1) W = [V,B]× [w,A].

(2) V = WCV (A).

(3) q = µ(V/CV (A)) = µ(W/CW (A)) = µ(A/CA(V )) = µ([w,A]) =
µ([V, a]).

Proof. (1) By Proposition 4.8, W ∈ Γ. Since V is decomposable, alsoW is
decomposable and by Proposition 4.7 CW (A) ∈ Γ. Hence also CW (A)A ∈ Γ
and we can assume [V,A] = CW (A) ⊆ A. Then A ∩ W = [V,A]. By
Proposition 6.4(2), [w, a] 6= 1 for all a ∈ A\R(Γ) and so CA(w) = A∩R(Γ) ∈
Γ. From Lemma 5.8 we conclude [w,A] ∈ Γ and
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(∗) µ([w,A]) = µ(A/CA(V )) = q.
Note that µ([V,B]) = m = µ([V,A]) = µ(CW (A)) and so
(∗∗) µ(V/CV (A)) ≥ µ(W/CW (A)) = µ(W/[V,B]).
By (∗),(∗∗) and since A is an offender, µ([w,A]) ≥ µ(W/[V,B]). By

Proposition 6.4 [w,A] ∩ [V,B] ≤ [w,A] ∩ Z = 1 and we conclude that
µ([w,A]) = µ(W/[V,B]) and W = [V,B]× [w,A]. So (1) holds.

(2) We also conclude that the inequalilty in (**) actually is an equality.
So µ(V/CV (A)) = µ(W/CW (A)). Hence (2) holds.

(3) By Proposition 6.4, CW (a) = CW (A) ∈ Γ. So by Lemma 5.8, [W,a] ∈
Γ and µ([W,a]) = µ(W/CW (A)) = q. By (2), [V, a] = [W,a] and all parts of
(3) are proved. 2

Proposition 6.6 Let A,B ∈ Λ with 〈A,B〉 /∈ Γ and Σ := [V,A]H . Then:

(1) If B ∈ Λ with 〈A,B〉 6∈ Γ then Σ = {[V,A]} ∪ [V,B]A.

(2) If M,N ∈ Σ with M 6= N then M ∩N = Z.

(3) W =
⋃
M∈Σ M .

(4) For D ∈ ∆ put D̂ = DR(Γ). Let D ∈ Λ with D∗ = A∗, then D̂ = Â.

(5) Let Λ̂ = {B̂ | B ∈ Λ}. Then Λ̂ = {Â} ∪ {B̂A}.

(6) H = 〈C,D〉R(Γ) for all C,D ∈ ∆H with Ĉ 6= D̂.

(7) V = CV (H)W and V =
⋃
D∈Λ CV (D).

Proof. Let A,B ∈ Λ with 〈A,B〉 6∈ Γ. Then W = [V,A][V,B] = [V,B] ×
[w,A] for w ∈ [V,B]\Z by Proposition 6.5 and [V,A]∩ [V,B] = Z by Propo-
sition 6.4. Therefore wAZ = w[V,A], which shows

(∗) W = [V,A] ∪
⋃
a∈A

[V,B]a.

By Lemma 3.6 we can apply (∗) to an element of AH in the role of B and
so (3) holds.

Also [V,B]a1 ∩ [V,B]a2 = Z for a1, a2 ∈ A with a1a
−1
2 6∈ R(Γ) by Proposi-

tion 6.4. Let C ∈ Λ. Then there is D ∈ {A} ∪ BA with [V,C] ∩ [V,D] ⊃ Z.
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Hence by maximality of µ(Z), 〈C,D〉 ∈ Γ, C∗ = D∗ and 〈C,K〉 6∈ Γ for
K ∈ ({A} ∪BA)\{C}. But then by (∗)

[V,C]\Z ⊆ W\
⋃{

[V,K] | D 6= K ∈ {A} ∪BA
}
⊆ [V,D]

and [V,C] = [V,D]. Thus (1) and (2) hold.

(4) Let d ∈ D. By (1) [V,B]da = [V,B] for some a ∈ A. Thus da ∈
NG(B∗) and so da ∈ R(Γ). Hence d ∈ AR(Γ) = Â. Thus (4) holds.

(5) Let C ∈ Λ with Ĉ 6= Â. By (4), C∗ 6= A∗ and by Proposition 6.3(3),
[V,C] 6= [V,A]. So by (1), [V,C] = [V,B]a for some a ∈ A. By Proposition
6.3(3), C∗ = Ba∗ and so by (4) Ĉ = B̂a.

(6) By (5), H is doubly transitive on Λ̂. Since H = 〈Ê, F̂ 〉, (6) holds.

(7) Since H = 〈A,B〉R(Γ), we have CV (H) = CV (A) ∩ CV (B). Since
µ(V/CV (A)) = q we get µ(V/CV (H)) ≤ 2q. Since µ(W/CW (H)) = 2q, the
first part of (7) holds.

Let v ∈ V . Then v = cw with c ∈ CV (H) and w ∈W . By (1), w ∈ [V,C]
for some C ∈ Λ. So v ∈ CV (H)[V,C] ≤ CV (C). 2

Lemma 6.7 Let t ∈ G and B ∈ ∆. Suppose that one of the following holds:

1. t ∈ A ∈ ∆ and [V, t] ∩ CV (B) 6= 1.

2. µ(CV (B)/(CV (B) ∩ CV (B)t)) < q.

Then 〈B,Bt〉 ∈ Γ.

Proof. Suppose that 1. holds. Then by Proposition 1.2(2) CV (Bt) ⊆
[V, t]CV (B). By Proposition 6.5(3), µ([V, t]) = q and so 1. implies 2.

So we may assume that 2. holds. Then

µ([V,B]/([V,B] ∩ CV (T ))) < q.

Since [V,B]∩CV (t) ≤ [V,B]∩[V,B]t and µ([V,B]/Z) = q, the maximality
of µ(Z) implies 〈B,Bt〉 ∈ Γ.

Lemma 6.8 Let A ∈ ∆. Then A ⊆ B R(Γ) ⊆ H for some B ∈ Λ.
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Proof. Let a ∈ A\CA(V ). By Proposition 6.6(7) there exists B ∈ Λ with
[V, a] ∩ CV (B) 6= 1. By Lemma 6.7, 〈B,Ba〉 ∈ Γ. Thus by Lemma 3.4(2),
a ∈ B∗. Hence A ⊆ B∗ and A∗ = B∗. Since R(Γ) ≤ CG(V ), Proposition
6.6(5) implies [V, a] ⊆ CV (B). By Lemma 6.7 a ∈ B∗ and so A∗ = B∗. So
by Proposition 6.6(5), B R(Γ) is independent from the choice of a. Hence
[V,A] ⊆ CV (B). Let A = Bg for g ∈ G. Then A ∈ Λg and so by symmetry
[V,B] ≤ CV (A). Thus [V,A][V,B] ⊆ CV (AB).

Let D ∈ Λ\ΛB∗.
Put T = 〈A,B,D〉, U = [V, T ] = [V,A][V,B][V,D] and Y = [V,A][V,B]∩

CV (D). Then Y is centralized by A,B and D and so Y ⊆ CU(T ). Since
µ(V/CV (D)) = q = µ([V,B]CV (D)/CV (D)), [V,A][V,B] = [V,B]Y . Let
a ∈ A and w ∈ [V,D]\Z. Note that Z ⊆ [V,D]∩CV (B) ≤ Y . By Proposition
6.5(1), [w,B]Z = [V,B] and so [V,A][V,B] = [w,B]Y . Hence [w, a]Y =
[w, b]Y for some b ∈ B. Let t = b−1a. Then wtY = wY . Since wY ⊆
[V,D]Y ⊆ CV (D), wY = wtY ⊆ CV (Dt). Hence Z < 〈w〉Z ⊆ [V,D] ∩
CV (Dt) and so µ([V,D]/([V,D] ∩ CV (Dt))) < q.

Thus by Lemma 6.7, 〈D,Dt〉 ∈ Γ and by Lemma 3.2(2), t ∈ D∗. Hence
t ∈ D∗ ∩B∗ = R(Γ). So a = bt ∈ B R(Γ) ⊆ H. 2

Theorem 6.9 〈Γ〉 = H and Γ∗ = {AR(Γ) | A ∈ ∆}.

Proof. Let P ∈ Γ∗. By Lemma 6.8, H = 〈∆〉R(Γ) and so H is normal in
G. So P normalizes W = [V,H] and Z = CW (H). As PV is nilpotent, P
centralizes some 1 6= wY in W/Z. By Proposition 6.6(3), w ∈ [V,A] for some
A ∈ Λ. Thus P ⊆ NG([V,A]). By Proposition 6.3(3) P ⊆ NG(A∗) and so
by Lemma 3.2, P = A∗. By Proposition 6.6(5), A acts transitively on Λ̂ \ Â,
whence P = ANP (B̂) for B ∈ Λ with 〈A,B〉 /∈ Γ. But NP (B̂) ≤ NP (B̂∗) =
P ∩B∗ = R(Γ) and so P = AR(Γ). 2

7 Glauberman’s Theorem, Part II

In this section we complete the proof of Theorem A. We continue to use the
notations from the previous section. In addition we define:

V0 = W/Z, written additively.
V1 = [V,E]/Z and V2 = [V, F ]/Z.
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We view V0 as a left module over the endomorphism ring End(V0). In
particular if α, δ ∈ End(V0) and v ∈ V0, then (αδ)(v) = α(δ(v)). For h ∈ H
define σh ∈ End(V0) by σh(wZ) = whZ for w ∈ W . Note that σhh′ = σh′σh.
From Proposition 6.6 we obtain:

(i) V1 = CV0(E) = [V0, E] = [V0, a] for all a ∈ E\CE(V0).

(ii) V2 = CV0(F ) = [V0, F ] = [V0, b] for all b ∈ F\CF (V0).

(iii) V0 = V1 ⊕ V2.

(iv) For g ∈ H with σg(V1) 6= V1 there is a ∈ E with σga(V1) = V2.

Take b ∈ F fixed such that σb(V1) 6= V1 and set β := σb − 1 ∈ End(V0).
Similarly set χa = σa− 1. Moreover for i = 1, 2 let πi be the projection from
V0 on Vi according to the direct sum decomposition V0 = V1 ⊕ V2.

Proposition 7.1 The following equations hold, where a, c ∈ E:

(1) σb = π1 + π2 + β.

(2) σa = π1 + π2 + χa.

(3) χaπ1 = π2χa = βπ2 = π1β = 0.

(4) βπ1 = π2β = β and π1χa = χaπ2 = χa.

(5) β2 = χaχc = 0.

(6) π1σa = π1 + χa.

(7) χac = χa + χc and χa−1 = −χa.

Proof. Straightforward.. 2

Proposition 7.2 There exists a1 ∈ E such that (χa1β) |V1= idV1.

Proof. By (iv) there exists a ∈ E such that σba(V1) = V2. Now Proposition
7.1 affords

π1σba = (π1σa)σb = (π1 + χa)(π1 + π2 + β) = π1 + χa + χaβ

and 0 = π1σba |V1= idV1 + (χaβ) |V1 . Let a1 = a−1. 2
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Proposition 7.3 For every a ∈ E\CE(V0) there exists â ∈ A such that
(χbaβ) |V1= ((χaβ) |V1)−1.

Proof. Let g = b−1ab. A straightforward calculation shows

(∗) σg = (π1 + χa − χaβ) + (π2 + β χa − βχaβ).

By Proposition 6.6 σg(V1) 6= V1. Hence by (iv) there is c ∈ E such that
σgc(V1) = V2. Then π1σgc = (π1σc)σg = (π1 + χc)σg. Using (∗) we compute

0 = π1σgc |V1= idV1 − (χaβ) |V1 −(χcβχaβ) |V1 .

Multiplying this equation with ((χaβ) |V1)−1 from the right we obtain

(χcβ) |V1= ((χaβ) |V1)−1 − idV1 .

By Proposition 7.2 there exists a1 ∈ E such that (χa1β) |V1= id. Let â = ca1.
Then χba = χc + χa1 we compute (χbaβ) |V1= ((χaβ) |V1)−1. 2

In Proposition 7.4 and Proposition 7.5 we pick a fixed v1 ∈ V1 with v1 6= 0.

Proposition 7.4 Let a, a′ ∈ E. Define

χa = (σa − 1)β ∈ End(V0) and xa := χa(v1).

There is a unique coset a′′CE(V0) with χa′(xa) = xa′′. Define

xa + xa′ := xaa′ and xa · xa′ := xaa′′ .

Set D := {xa | a ∈ E}. Then (D,+, ·) is a Cayley-Dickson-Division-Algebra
or a skew field with (D,+) ' E/CE(V0).

Proof. For each v ∈ V #
1 we have χE(v) := {χa(v) | a ∈ E} = V1 by

Proposition 6.5. As elements of χA are not singular we get a−1a′ ∈ CE(V0)
if χa(v) = χa′(v). Hence for v, v′ ∈ V1\{0} there is a unique coset a′′CE(V0)
with χa′′(v) = v′. Thus the product xa · xa′ for a, a′ ∈ E is well defined.
Now the proof of Glauberman [5, (IX) on page 7 f] shows that (D,+, ·) is an
alternative division ring or a skew field. Thus Proposition 7.4 follows from
[2]. 2
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Proposition 7.5 Let D be as in Proposition 7.4. Then {V1} ∪ V E
2 is a

congruence partition of an affine plane over D.

Proof. By Proposition 6.6 {V1} ∪ V E
2 is a congruence partition. Let a0 ∈ E.

Then (χa0
χa)(v1) = −(βχa)(v1) + (σa0βχa)(v1) for a ∈ E. Hence σa0(V2) =

{(χa0
χa)(v1) + (βχa)(v1) | a ∈ E}. Now χa(v1) ↔ aCE(V0) ↔ (βχa)(v1)

define bijective maps between D ' E/CE(V0), V1 and V2 which induce a bi-
jective map between V0 and D×D. Then σa0(V2) is mapped on {(χa0

χa, χa) |
a ∈ E} and we get Proposition 7.5 (see [4, page 131 f]). 2

Proposition 7.6 By Proposition 7.5 we may view V0 as an affine plane
over D. Then E induces the group of shears with axis V1 on V0 and H = L
induces the subgroup of a point-stabilizer of V0 generated by all shears.

Proof. Since E is transitive on all lines through 0 different from V1 by Propo-
sition 6.6, E contains all shears by [4, page 122]. As H is transitive on the
lines through 0 we get Proposition 7.6. 2

Theorem A now follows from Proposition 7.6 and Theorem 6.9.

8 Strong NSS’s

We say that an NSS Γ is strong provided that

(Z) Ω(Z(N)) 6= 1 for all 1 6= N ∈ Γ.

Throughout this section we assume that G is a group with a reduced
strong NSS Γ with 1 ∈ Γ. In addition to our previous notations we let

Θ := {N ∈ Γ\Γ∗ | N is large in Γ}.

Lemma 8.1 Let rank Γ = 2, N ∈ Θ, V = Ω(Z(N)), P ∈ Γ∗N and Z ∈ Γ
with Z normal in P . Then:

(1) Let 1 6= D ∈ Γ be normal in NG(N). Then D◦ = N and NG(D) =
NG(N)

(2) NG(V ) = NG(N).
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(3) If R(ΓN ∩ ΓZ) 6= N then (ΓN ∩ ΓZ)∗ = {P}.

(4) If Z ⊆ V and R(ΓN ∩ ΓZ) 6= N , then [CG(V ), P ] ⊆ CP (V ) = N .

Proof. (1) Note that ΓN ≤ ΓD. So by Corollary 2.7, D◦ is closed and
contained in N . Since 1 6= D ≤ D◦ ≤ N < S ∈ Γ∗ and Γ is reduced of
rank 2, D◦ = N . So NG(D) ⊆ NG(N). By assumption NG(N) ≤ NG(D) and
(1) holds.

(2) follows from (1) applied to D = V .

(3) Put T = R(ΓN ∩ ΓZ) and suppose T � N . Since N ≤ T we get
N < T . Since ΓN has rank 1, Proposition 3.7(3) implies (ΓN ∩ΓZ)∗ = {P}.

(4) Since Z ⊆ V , CG(V ) ⊆ NG(N)∩NG(Z) and so CG(V ) ⊆ NG(((ΓN)Z)∗) =
NG(P ). Thus

[CG(V ), P ] ⊆ CP (V ).

Suppose that NG(N) ≤ NG(P ) and let Q ∈ ΓN . By definition of Θ,
CP (N) ≤ N and thus [CP (N), 〈P,Q〉] ≤ N . So by Lemma 2.9, QP ∈
Γ. Thus Q ∈ ΓP and ΓN ≤ ΓP . Corollary 2.7 implies P ≤ P ◦ ≤ N , a
contradiction. Thus NG(N) � NG(P ).

Let g ∈ NG(N)\NG(P ). Then CP (V ) ⊆ NP (N) ∩ CG(Zg) ⊆ NP (P g),
whence CP (V )CP (V )g ⊆ NP (P g)NP g(P ) ∈ Γ. Pick Q ∈ Γ∗N with

NP (P g)NP g(P ) ⊆ Q.

If Q 6= P , then CP (V ) ⊆ P ∩Q ⊆ N , by Proposition 3.7(1).
If Q = P , then CP (V )g ⊆ P g∩P = N , again by Proposition 3.7(1). Since

N = N g we get CP (V ) ≤ N . 2

Theorem 8.2 Let G be a group with a reduced strong NSS Γ of rank 2. Let
N ∈ Θ, S ∈ Γ∗N , V := Ω(Z(N)) and Z := CV (J(S)). Then 1 6= Z ∈ Γ.
Moreover,

(1) If J(S) ≤ N , then J(S)◦ = N and NG(J(S)) = NG(N).

(2) If J(S) � N and N = Z◦, then N = Ω(Z(P ))◦ for any P ∈ Γ∗ with
S ≤ P .

(3) If N 6= Z◦, then V/CV (〈ΓN〉) is a natural SL2-module for ΓN and
S = J(S)N .
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Proof. Since V 6= 1 and V J(S) is nilpotent, Z 6= 1. By Proposition 4.7
Z ∈ Γ.

(1) Follows from Lemma 8.1(1).

(2) Suppose that (ΓCG(Z))∗ = {T} for some T . Then T is normal in
NG(Z). Since N = Z◦ is large, we get from Lemma 3.2 that T ≤ Q for all
Q ∈ Γ∗Z . Thus T ≤ Z◦ = N , a contradiction since J(S) ≤ T and J(S) 6= N .

Thus there exist L,Q ∈ ΓCG(Z)∗ with L 6= Q. Then 〈L,Q〉 6∈ Γ. Put
M = Ω(Z(P ))◦. Note that N ⊆ L∩Q, and both LNM(N) and QNM(N) are
in Γ. Thus NNM(N) ⊆ LNM(N) ∩ QNM(N) ⊆ N , by Proposition 3.7(1).
Thus 1 6= M ⊆ N . Since M � P , Proposition 2.8(12) implies M is closed
and as rankG = 2, M = N .

(3) From rank(Γ) = 2, Proposition 3.7(1) and Theorem 3.1 we get P∩Q =
N and rank(ΓN) = 1 for P,Q ∈ Γ∗N with P 6= Q. Suppose N = R(ΓN ∩ ΓZ).
Then by Lemma 2.6 (applied with Λ = ΓN ∩ ΓZ , ∆ = ΓZ and P = N),
Z◦ = R(ΓZ) ⊆ N and Z◦ is closed. Thus

1 6= Z ⊆ Z◦ ≤ N /∈ Γ∗.

Since rank(Γ) = 2 we get N = Z◦, a contradiction. Therefore N 6= R((ΓN ∩
ΓZ)). In particular, ΓN ∩ ΓZ 6= ΓN and so ΓN 6⊆ ΓZ .

Moreover, by Lemma 8.1(4) [CG(V ), S] ⊆ N = CS(V ).
Assume J(S) ⊆ N . Then Z = V and ΓN ⊆ ΓZ , a contradiction. Thus

J(S) 6⊆ N = CS(V ). Pick A ∈ A(S) with A � CS(V ). Then by Proposition
5.5 A is a non-trivial Γ-offender on V . By Proposition 3.7(2) ΓN has rank 1.
By definition of Θ, N is large in ΓN .

We verified that all the the assumptions of Theorem A are satisfied for
NG(N),ΓN , S,A and V . Hence V/CV (〈ΓN〉) is a natural SL2-module for ΓN .
By Theorem 6.9, S = AR(ΓN) = AN and so S = J(S)N . 2

Theorem 8.3 Suppose rank(Γ) = 2, N ∈ Θ and S ∈ Γ∗N with NG(S) 6⊆
NG(N). Put V = Ω(Z(N)). Then V/CV (〈ΓN〉) is a natural SL2-module for
ΓN .

Proof. Suppose that J(S) ≤ N . Then using Theorem 8.2(1)

NG(S) ≤ NG(J(S)) ≤ NG(J(S)◦) = NG(N),
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a contradiction to the assumptions.
Hence J(S) 6⊆ N . Set Z := CV (J(S)). Suppose that Z◦ = N . By Propo-

sition 3.7(3) S lies in a unique maximal Γ-subgroup P . Then by Theorem
8.22, NG(S) ⊆ NG(P ) ≤ NG(Ω(Z(P ))◦ = NG(N), a contradiction.

Hence Z◦ 6= N and Theorem 8.3 follows from Theorem 8.2(3) 2

Theorem 8.4 Suppose rank(Γ) = 2, S ∈ Γ∗ and |ΘS| > 2. Then there
is N ∈ ΘS such that V/CV (〈ΓN〉) is a natural SL2-module for ΓN , where
V = Ω(Z(N))

Proof. Let N ∈ ΘS. By Proposition 3.7(3), S is the unique maximal Γ-
subgroup containing NS(N). Hence NS(N) ∈ Γ∗N . If NG(NS(N)) � NG(N)
we are done by Theorem 8.3.

So we may assume that NG(NS(N)) ≤ NG(N) for all N ∈ ΘS. In
particular NS(NS(N)) ≤ NS(N) and so NS(N) = S. Thus S ∈ ΓN and
NG(S) ≤ NG(N).

Since |ΘS| ≥ 3 there exists N ∈ ΘS with N 6= J(S)◦ and N 6= ΩZ(S)◦.
Thus by Theorem 8.2 J(S) � N and N 6= Z◦. So Theorem 8.4 follows from
Theorem 8.2(c) 2

The following theorem deals with a situation which had been considered
more detailed for finite groups in [3].

Theorem 8.5 Let rank(Γ) = 2, S ∈ Γ∗ and M,N ∈ ΘS with M 6= N .
Assume there is P ∈ Γ∗M ∩ Γ∗N with

(∗) Z ∩ Zg = 1 for all g ∈ G\NG(P )

where Z := Ω(Z(J(P ))). Then N is a natural SL2-module for ΓN . Moreover
P = MN and P is of nilpotency class 2.

Proof. For L ∈ {M,N} set VL := Ω(Z(L)). As 〈M,N〉 ⊆ P ∩ S and
rank(Γ) = 2 we get P ⊆ S by Proposition 3.7(4).

Since rank(Γ) = 2, 〈M,N〉 /∈ {M,N}. Thus by Lemma 3.2(2),

ΓL ∩ ΓNG(P ) = ΓP.

Suppose that J(P ) ⊆ L. Then VL ⊆ Z and so by (∗) NG(L) ⊆ NG(P ). Thus
ΓL ⊆ ΓL ∩ ΓNG(P ) = ΓP and L = P , a contradiction.
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Thus J(P ) 6⊆ L. Let X = Ω(Z(P )). Then

1 6= X ≤ Z ∩ VL ⊆ VL.

By (∗) NG(X) ⊆ NG(P ), and so ΓL∩ΓX ⊆ ΓL∩ΓNG(P ) and R(ΓL∩ΓX) = P .
Thus by Lemma 8.1(4), CS(VL) ⊆ L. So we can apply Theorem 8.2(c) and
VL/CVL(〈ΓL〉) is a natural SL2-module for ΓL.

Let {K,L} = {M,N}. By Theorem 6.9 KL = P = AL and L =
CP (VL) for all A ∈ A(P ) with A � L. Moreover X = CVL(A) = VL ∩
VK = CVL(〈ΓL〉)[VL, A]. Since X ∩ Xg = 1 for g ∈ G\NG(P ) we conclude
CVL(〈ΓL〉) = 1. Thus by Proposition 6.5(3)

q := µ(X) =
1
2
µ(VL) = µ(X) = µ(A/A ∩ L).

In particular, µ(VL(A ∩ L) = µ(A) and so VL(A ∩ L) ∈ A(L) ∩A(P ). Using
this and symmetry in K and L, A(K)∪A(L) ⊆ A(P ). Suppose that A(K) =
A(L), then ΓL ∪ ΓK ⊆ ΓJ(K). Thus by Corollary 2.7 R(ΓJ(K)) is closed and
contained in L ∩K, a contradiction to rank(Γ) = 2. So A(K) 6= A(L) and
interchanging K and L if necessary we assume A(K) 6⊆ A(L).

So we can choose A ∈ A(K).
Suppose for a contradiction that [VK , VL] = 1. Then VKVL ≤ K ∩ L.

As AL = P 6⊆ CG(VK) we get [VK , L] = X. Let W ∈ V
〈ΓL〉
K \{VK}. Then

[VK ,W ] ⊆ (VK ∩ VL) ∩ (W ∩ VL) = 1. Since A normalizes [A ∩W,L] and
[A∩W,L] ≤ W∩VL we get [A∩W,L] = 1 and soA∩W ≤ A∩W∩VL = 1. Now
µ(W ) = q = 2µ(A/A∩L) implies µ(W (A∩L)) > µ(A). Thus [A∩L,W ] 6= 1
and so by Proposition 6.5(3) applied to (A∩L)VL, [A∩L,W ] = VL∩W and
µ(A)/µ(CA(W )) = µ(W ) = 2µ(X). Thus CA(W )W ∈ A(L).

Let a ∈ A\L. Since W centralizes CA(W ), also W a centralizes CA(W ).
Since [W,W a] ⊆ VL ∩ W ∩ W a = 1 we conclude that CA(W )WW a is a
decomposable abelian Γ-subgroup. Since CA(W )W ∈ A(P ), CA(W )W =
CA(W )W a. Thus

VL ∩W = [A ∩ L,W ] = [A ∩ L,W a] = VL ∩W a,

a contradiction to VL ∩W ∩W a = 1.
Therefore [VK , VL] 6= 1 and so VN �M and VM � N .
Let h ∈ 〈ΓM〉\NG(P ). Note thatM = VM(N∩Nh). Hence ΩZ(N∩Nh) ≤

ΩZ(M) = VM . But VN centralizes N and so

ΩZ(N ∩Nh) ≤ CVM (VN) ∩ CVM (Nh) = VM ∩ VN ∩ V h
N = 1.
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By the assumptions of this section, Γ is strong and so N ∩ Nh = 1. Thus
M = VM , N = VN and P = VMVN = MN . Now P ′ = X = M ∩ N and P
has class 2. 2

Theorem 8.6 Suppose that Π is a G-invariant subset of Θ such that

(i)
⋂
g∈GA

g = 1 for all A ∈ Π.

(ii) If S ∈ Γ∗ with |ΘS ∩ Π| ≥ 2, then |ΘS| = 2.

(iii) Whenever X,Y ∈ Π with X ∈ Y G and X 6= Y then R(Γ〈X,Y 〉) ∈ Π.

Let Πp be an arbitrary orbit for G on Π and define Π̌p = {R(Γ〈A,B〉) |
A,B ∈ Πp with A 6= B}. Then

(1) ˇ̌Πp = Πp.

(2) Πp is the set of points, Π̌p is the set of lines of a projective Moufang
plane π and 〈Πp〉 = 〈Π̌p〉 induces the group generated by all the elations
on π.

(3) CG(π) ≤ CG(〈Πp〉).

We remark that using knowledge of the automorphism group of a Moufang
plane it should not be to difficult to show that G only has two orbits on Π.

Proof. From (i) we get

(1.) N 6�G for all N ∈ Π.

We say X,Y ∈ Π are incident if X 6= Y and 〈X,Y 〉 ∈ Γ. We show next

(2.) If X,Y are incident then X ∈ ΓY and Y ∈ ΓX .

Indeed by (ii) Θ〈X,Y 〉 = {X,Y } and so X and Y are normal in 〈X,Y 〉.

For X,Y ∈ Π with X 6= Y write X̂Y := R(Γ〈X,Y 〉).
(3.) F 6< E for all E,F ∈ Π.

Otherwise let g ∈ G \ NG(E). Then |ΘE[EEg| = 2 and so by (iii) F =
[EEg = F g. Since {F} = ΘE \ {E}, F g = F for all g ∈ G. Thus F � G, a
contradiction to (1.), proving (3.)
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Let A ∈ Π. By (1.) there exists B ∈ AG with A 6= B. By (iii) ÂB ∈ Θ.
Let D = ÂB ∈ Γ.

Suppose that A and B are incident. Then 〈A,B〉 ∈ Γ and D = 〈A,B〉.
By (ii), |ΘD| = 2. Since A 6= B we may assume A = D. Hence B ≤ A.
Since A and B are conjugate µ(A) = µ(B) and we conclude that A = B, a
contradiction.

We proved

(4.) No two distinct conjugate elements of Π are incident.

Suppose C ∈ Π is incident with A and B, Then 〈A,B〉 ≤ ΓC and so
C ≤ D. Since ΘAD = {A,D} and A 6≤ D, C = D. Thus

(5.) ÂB is the unique element of Π incident with A and B.

Let Σ(A) = Π ∩ ΓA \ {A}, the set of elements of Π incident with A. Let
ΞA :=

⋃
{ΓAE | E ∈ Σ(A)}.

(6.) Let A < X ∈ ΞA. Then there exists a unique X∗ ∈ Γ∗ with X ≤ X∗

and a unique E ∈ Σ(A) with Θ(X∗) = {E,A} and X ≤ AE.

Pick E ∈ Σ(A) with X ≤ EA and P ∈ Γ∗ with EA ≤ P . Suppose there
exists Q ∈ Γ∗ with X ≤ Q but Q 6= P . Choose such a Q with P ∩Q maximal.
Then by Proposition 2.11(1), P ∩Q is closed. Since A ≤ P ∩Q, Lemma 3.3
implies that P ∩ Q is large. So P ∩ Q ∈ ΘP . But ΘP = {A,E} and we
conclude that E = P ∩Q, but then A < E, a contradiction to (3.).

(7.) ΞA ≤ ΓA, ΞA is an NSS of rank 1 for NG(A), Ξ∗A = {AE | E ∈
Σ(A)} and R(ΞA) = A.

Clearly Ξ∗A = {AE | E ∈ Σ(A)}, and (Suba) and (Subc) are fulfilled.
Let X,Y ∈ ΞA with 〈X,Y 〉 ∈ Γ. We need to show that 〈X,Y 〉 ∈ ΞA. If
X ≤ A or Y ≤ A this is obvious. We may assume A < X and A < Y . Pick
Q ∈ Γ∗ with 〈X,Y 〉 ≤ Q. Let E,F ∈ Σ(A) with X ≤ EA and Y ≤ FA.
By (6.), Θ(Q) = {A,E} = {A,F} and so E = F . Thus 〈X,Y 〉 ≤ EA and
〈X,Y 〉 ∈ ΞA.

By Theorem 3.1 it remains to show that |Ξ∗A| > 1. Otherwise we conclude
that ΣA = {K} for some K, and K = ÂAg for all g with A 6= Ag and then
K �G, a contradiction to (1.). This completes the proof of (7.).

(8.) Let 1 6= X ∈ ΓA. Then NΓ(X) ⊆ NΓ(A).

Suppose not and pick Q ∈ NΓ(X) with Q � NG(A). Pick g ∈ Q with
A 6= Ag. Let E ∈ Σ(A).
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Suppose that X � L for some L ∈ Σ(A).
If Ag is incident with L, then both A and Ag are incident with L and so

L = ÂAg. By (6) applied to L in place of A, X ≤ A ∩ Ag ≤ L.
Thus neither Ag nor Ag−1 are incident with L. In particular L 6= Lg.

Note that X normalizes L and Lg and so also F := L̂Lg. By Lemma 3.2(1)
applied to L in the place of N , we get XLF ∈ Γ. By X � L and (6.), XL
lies in a unique maximal Γ-subgroup of G. Hence 〈AL,XLF 〉 ∈ Γ and (ii)
implies A = F . Thus Lg is incident with A and so Ag−1 is incident with L,
a contradiction.

Thus X ≤ L for all L ∈ Σ(A). Let Y :=
⋂

Σ(A). Then X ≤ Y and so
Y 6= 1. Since NG(A) ≤ NG(Y ) we have NG(Y ) � NG(L).The claim we just
proved applied to (Y, L) in place of (X,A) yields Y ≤ K for all K ∈ Σ(L)
and all L ∈ Σ(A). Thus Y ≤ Ag for all g ∈ G and (i) implies Y = 1, a
contradiction.

(9.) Let E ∈ Σ(A) and VA = Ω(Z(A)). Then [CG(VA), EA] ≤ A.

Let F ∈ Σ(A) and put X = Ω(Z(AF )). Since A and F are large,
X ≤ A ∩ F . Since Γ is strong, X 6= 1. By (8.) applied to F in place
of A, NG(X) ≤ NG(F ). Since X ≤ VA we conclude that CG(VA) ≤ NG(F )
for all F ∈ Σ(A). So by (6.) CG(VA) ≤ NG(P ) for all P ∈ Ξ∗A. Define
U :=

⋂
{NEA(P ) | P ∈ Ξ∗A}. Then U ∈ ΞA and by Proposition 2.3(8),

U = R(ΞA) = A. But [CG(VA), EA] ≤ CG(VA) ∩ EA ≤ U and so (9.) holds.

(10.) Let E ∈ Σ(A). Then J(EA) � E ∩ A.

If J(EA) ≤ E ∩ A then J(E) = J(A). Then NG(E) ≤ NG(J(A)) and so
NG(J(A)) � NG(A), a contradiction to (8.)

By (10.) and interchanging A and E if necessary

(11.) we can choose A ∈ Π and E ∈ Σ(A) with J(EA) � A.

By (8.) and Proposition 5.5 there exists a non-trivial offender in EA
on VA. Let HA =: 〈ΞA〉. Note that CVA(HA) ≤ CVA(E) ≤ E and so by
(8.) CVA(HA) = 1. We conclude that the Hypothesis of Theorem A holds for
NG(A),ΞA, VA and EA. So VA is a natural SL2-module for ΞA. In particular,

(12.) E acts transitively on Σ(A) \ {E}, NG(A) acts transitively on Σ(A)
and CEA(VA) = A.

By (8.), VA 6≤ E. Let X ∈ A(AE). By Proposition 6.5(3), (X ∩ A)VA ∈
A(AE) and we reestablish symmetry in A and E. Let R := 〈VE, V h

E 〉 for
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some h ∈ HA with VE 6= V h
E . Then A ∩ E ∩ Eh ≤ CA(R) and so by (8.),

A ∩ E ∩ Eh = 1. It follows that N = VN and so N is a natural SL2-module
for ΞN for all N ∈ Π.

It follows from (12.) that ÂAg ∈ EG and [EEg ∈ AG for all g ∈ G. Thus
AG and EG form a projective plane.

By (12.) we have (N,N)-transitivity. Then [4, page 130] shows that we
have got a projective Moufang plane.

Let CA be the kernel of the action of G on AG. Then clearly CA also acts
trivially on EG. Moreover [CA, A] ≤ A ∩ CA ≤ CA(E) ≤ A ∩ E and (8.)
implies [CA, A] = 1. 2

References

[1] R. Baer: Engelsche Elemente noetherscher Gruppen. Math. Ann. 133,
256 - 270 (1957)

[2] R. H. Bruck, E. Kleinfeld: The structure of alternative division rings.
Proc. Nat. Acad. Sci. USA 37, 88-90 (1951)

[3] A.Delgado, D. Goldschmidt, B. Stellmacher: Groups and graphs: new
results and methods. DMV-Seminar, Bd. 6. Birkhäuser, 1985.
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