A Characterization of the Natural Module for some Classical Groups

U.Meierfrankenfeld

May 2, 2003
preliminary version

1 Introduction

Let K be a skew field, R a ring, G a "classical" group defined over K, Z a "long root" group contained in G and N a "natural" $K G$-module, where N is allowed to be finite or infinite dimensional over K. Further, put $L=C_{G}([N, Z])$ and let V be an $R G$-module such that $[V, Z, L]=0$ and $V=[V, G]$. The main goal of this paper is to prove that any such V has to be of the form $M \otimes_{K} N$, for some (R, K)-module M with G acting trivally on M. This is achieved in Theorems A and B. We became interested in this problem through the work of J.I.Hall and R.E.Phillips [Ha1], [Ha2], [Ph] on groups of finitary transformations. They classified certain classes of such groups. In Theorem C we are able to classify the corresponding modules. Theorems A, B and C partially generalize similar results found in [Cu],[LP], [Ha3], and [Tf].

In order to state exactly what we mean with "classical" groups, "natural "module" and "long root" groups we now introduce some notations and definitions which will be used throughout the paper:
K is a skew field.
R is a ring.
G is a group.
An (R, K)-module M is an abelian group, which is a left R-module and a right vector space over K such that $(r m) k=r(m k)$ for all $r \in R, k \in K$ and $m \in M . M$ is called unitary if R has a unit 1 and $1 m=m$ for all $\min M$.

An $R G$-module M is an abelian group, which is a left R-module and a right $\mathbb{Z} G$-module such that $(r m) k=r(m k)$ for all $r \in R, k \in K$ and $m \in M$.
N is a left vector space over $K . \tilde{N}$ is a subspace of the dual space N^{*} of N with $C_{N}(\tilde{N})=0$, i.e for every $0 \neq n \in N$ there exists $\tilde{n} \in \tilde{N}$ such that $n \tilde{n} \neq 0$. (Note that \tilde{N} is a right vector space over K and so a left vector space over $K_{o p}$, the opposite skew field of K.)

For $n \in N$ and $n^{*} \in N^{*}$ define $t(\tilde{n}, n) \in \operatorname{End}_{K}(N)$ by

$$
v \cdot t\left(n^{*}, n\right)=v+v n^{*} \cdot n
$$

For a subspace X of N and a subspace \tilde{X} of \tilde{N} the following subgroup of $G L_{K}(N)$ was introduced in [CH]

$$
T(\tilde{X}, X)=\langle t(\tilde{x}, x) \mid x \in X, \tilde{x} \in \tilde{X}, x \tilde{x}=0\rangle .
$$

For the convenience of the reader we will recall the definition of a pseudo quadratic space (see [Ti] and [Gr] for basic properties of pseudo quadratic spaces).
(N, q, f) is a (σ, s)-pseudo quadratic space provided that
(PQ1) σ is an anti-automorphism of K and $0 \neq s \in K$ such that for all $x \in K$

$$
x^{\sigma^{2}}=x^{s}=s^{-1} x s \text { and } s^{\sigma}=s^{-1} .
$$

(PQ2) f is a trace-valued (σ, s)-hermitian form on N, i.e

$$
\begin{gathered}
f: N \times N \rightarrow \mathrm{~K} \text { is biadditive, } \\
f(\mu v, \lambda w)=\mu f(v, w) \lambda^{\sigma}, \\
f(v, w)=s f(w, v)^{\sigma}, \\
f(v, v) \in K_{+},
\end{gathered}
$$

for all $\mu, \lambda \in K$ and $v, w \in N$. Here K_{+}is the additive subgroup of K defined by $K_{+}=\left\{k+s k^{\sigma} \mid k \in K\right\}$.
(PQ3) q is a map from N to $\bar{K}=K / K_{-}$so that

$$
\begin{gathered}
q(v, w)=q(v)+q(w)+\overline{f(v, w)}, \\
q(\lambda v)=\lambda * q(v) .
\end{gathered}
$$

Here $K_{-}=\left\{k-s k^{\sigma} \mid k \in K\right\}$ and $k * \bar{\lambda}=\overline{k \lambda k^{\sigma}}$.
(N, q, f) is called a quadratic space if $\sigma=i d_{K}$ and $s=1$, that is if $K_{-}=0$. Note that in this case K is necessarily commutative.

We mention some other special cases of pseudo-quadratic spaces. If $\sigma=i d_{K}, s=-1$ and char $K \neq 2$, then $K=K_{-}$and so $q=0$. Hence q is redundant and (N, f) is a symplectic space. The symplectic spaces over fields of even characteristic are also included, since they can be written as N / N^{\perp}, where N is an appropriate quadratic space. More generally, any vector space with a trace-valued (σ, s)-hermitian form can be written as N / N^{\perp}, where N is an appropriate pseudo-quadratic space (see [Ti]). Finally, the case $|\sigma|=2$ and $s=1$ covers the unitary spaces over fields.
$\mathcal{O}=O(N, q, f)$ is the group of invertible K-linear transformations g of N such that $f(v, w)=f(v g, w g)$ and $q(v)=q(v g)$ for all $v, w \in N$.

If U is a subset of N, then $U^{\perp}=\{v \in N \mid f(v, u)=0$ for all $u \in U\}$. A subspace U of N is called singular provided that the restrictions of q and f to U vanish.
$\operatorname{rad} N=\left\{n \in N^{\perp} \mid q(n)=0\right.$.
N is called degenerate if $\operatorname{rad} N \neq 0$ and defective if $N^{\perp} \neq 0$.
$\mathcal{S}(i)$ is the set of i-dimensional singular subspaces of N.
The Witt index of (N, q, f) is the maximal dimension of a singular subspace in N. Note that the Witt index can be zero, any positive integer or infinite.

For $U \in \mathcal{S}(i)$ let $P_{U}=N_{\mathcal{O}}(U), Q_{U}=C_{\mathcal{O}}\left(U^{\perp} / U\right) \cap C_{\mathcal{O}}(U), T_{U}=C_{\mathcal{O}}\left(U^{\perp}\right)$ and $Z_{U}=$ $C_{\mathcal{O}}(N / U)$. Let Σ be a set of subgroups of G. We will consider the following hypotheses:

Hypothesis (A) 1. Σ is the set of all $\{T(\tilde{X}, X)$ where X and \tilde{X} are 1-dimensional subspaces of N and \tilde{N}, respectively, with $X \tilde{X}=0$; and $G=\langle\Sigma\rangle=T(\tilde{N}, N)$
2. N is at least 3-dimensional over K.

Hypothesis (B) 1. $\Sigma=\left\{T_{U} \mid U \in \mathcal{S}(1)\right\}$ and $G=\langle\Sigma\rangle$ where (N, q, f) is a nondegenerate pseudo-quadratic space with Witt index at least two.
2. If (N, q, f) is quadratic, then (N, q, f) defective.

Hypothesis (C) $\Sigma=\left\{Z_{U} \mid U \in \mathcal{S}(2)\right\}$ and $G=\langle\Sigma\rangle$, where (N, q, f) is a nondegenerate quadratic space with Witt index at least two and $\operatorname{dim} N \geq 5$.

Hypothesis (\mathbf{C}^{*}) Hypothesis (C) holds and if char $K=2$, then $\operatorname{dim} N / N^{\perp} \geq 6$, and if $|K|=2$ and $\operatorname{dim} N=6$, then (N, q, f) has Witt index 2.

We define the following graph on Σ. Let $Z_{1}, Z_{2} \in \Sigma$. Then Z_{1} and Z_{2} are adjacent if, in case (A), $\left\langle Z_{1}, Z_{2}\right\rangle \cong S L_{2}(K)$, or if, in case (B) or (C), $\left[N, Z_{1}\right] \cap\left[N, Z_{2}\right]^{\perp}=0$.

For convenience we view N under Hypothesis (A) as a singular pseudo quadratic space. In particular, $\mathcal{O}=G L_{K}(N)$ and $Q_{X}=C_{G L_{K}(N)}(X) \cap C_{G L_{K}(N)}(N / X)$.

We are now able to state our main results:

Theorem A Suppose that (G, Σ) fulfills Hypothesis $(A),(B)$ or $\left(C^{*}\right)$ from above. Let $Z \in \Sigma$ and put $L=C_{G}([N, Z])$. Let V be an $R G$-module with $[V, Z, L]=0$. Then there exist an (R, K)-module M and an R-submodule C of $M \otimes_{K} N$ with $[C, G]=0$ such that one of the following holds:

1. $[V, G]$ and $\left(M \otimes_{K} N\right) / C$ are isomorphic as $R G$-modules.
2. G fulfills $(B),|K|=4, \sigma \neq i d, \operatorname{dim} N=4$ and $[V, G] / C_{V}(G)$ and $M \otimes_{K} N$ are isomorphic as $R G$-modules.

Theorem B Assume that (G, Σ) fulfills Hypothesis (A). Put $L_{0}=C_{G}([N, Z]) \cap C_{G}([\tilde{N}, Z])$ and let V_{0} be an $R G$-module with $\left[V_{0}, Z, L_{0}\right]=0$. Then there exists an (R, K)-module M and an $\left(R, K_{\text {op }}\right)$-module \tilde{M} such that
$\left[V_{0}, G\right]$ is isomorphic to $M \otimes_{K} N \oplus \tilde{M} \otimes_{K_{\text {op }}} \tilde{N}$ as $R G$-modules.
Theorem C Remark: Need Witt index assumption? Suppose that (G, Σ) fulfils Hypthesis $(A),(B)$ or (C) and that N / N^{\perp} is infinite dimensional over K. Let R be a divison ring and V be a non-trivial irreducible finitary $R G$-module. Then one of the following holds:

1. There exists an irreducible (R, K)-module M, which is finitely generated over R so that V is isomorphic to $M \otimes_{K} N$ as $R G$-module.
2. Hypothesis (B) holds and there exists an irreducible $\left(R, K_{\text {op }}\right)$-module \tilde{M}, which is finitely generated over R, so that V is isomorphic to $\tilde{M} \otimes_{K_{o p}} \tilde{N}$ as $R G$-module.

Some remarks on Hypothesis' (B) and (C). In case (B) the quadratic space are assumed to be defective to ensure that $T_{U} \neq 1$ for $U \in \mathcal{S}(1)$ (see 3.2). Note that Hypothesis (C) can be used to characterize the natural module of G for non-defective quadratic spaces. The assumption that N contains 2-dimensional singular subspaces is needed in the proof of 4.8. We do not know whether Theorem A holds also in the case where the maximal singular subspaces are 1-dimensional.

Under hypothesis (C) the assumption that (N, q, f) is quadratic rather then pseudoquadratic is redundant. Indeed, if N is pseudo-quadratic but not quadratic, it is easy to see that (G, V) fulfills the hypothesis $(\mathrm{B}) .\left(\mathrm{C}^{*}\right)$ is needed since, if char $K=2$ and $\operatorname{dim} N / N^{\perp}<6$, or if $|K|=2, \operatorname{dim} N=6$ and N has Witt index three, the half-spin module for G fullfills Hypothesis (C) but not the conclusion of Theorem A.

We conclude this introduction with some remarks on the structure of $M \otimes_{K} \bar{N}$, where $\bar{N}=N / N^{\perp}$. Since M is a right vector space over K, we can decompose M into a direct sum of 1-dimensional K-subspaces. This leads to a $\mathbb{Z} G$-decomposition of $M \otimes_{K} \bar{N}$ into a direct sum of copies of N. But as an RG-module $M \otimes_{K} \bar{N}$ might still be irreducible or indecomposable. For example, if $R=M=K, \phi$ is an embedding of K into itself and M is regarded as an R-module by multiplication from the left and as a K-module by multiplication from the right by $\phi(k)$, then $M \otimes_{K} \bar{N}$ is an irreducible $R G$-module. Now if ϕ is not onto, then $M \otimes_{K} \bar{N}$ is not irreducible as a $\mathbb{Z} G$-module. In particular, $M \otimes_{K} \bar{N}$ is not isomorphic to N. For another example, let K be a field with a non-trivial derivation δ, (that is a map $\delta: K \rightarrow K$ with $\delta(k l)=\delta(k) l+k \delta(l)), R=K$ and $M=R^{2}$, viewed as left vector space over R. Embed K into $\operatorname{Hom}_{R}(M)$ by mapping k to $\left(\begin{array}{cc}k & 0 \\ \delta(k) & k\end{array}\right)$. Since δ is a derivation this map is indeed a homomorphism. Via this homomorphism M becomes an (R, K)-module and $M \otimes_{K} \bar{N}$ is as an $R G$-module a non-split extension of \bar{N} by \bar{N}.

On the otherhand, if $R=K$ and K is an algebraic Galois extension of its ground field, $M \otimes_{K} \bar{N}$ is as an $R G$-module the direct sum of modules algebraically conjugate to \bar{N}. Indeed, this follows easily from 2.1 below.

2 Preliminaries

Preliminaries
KML

Lemma 2.1 Let K, L be such that L is isomorphic to a subfield of K and M an indecomposable unitary (K, L)-module.If L is algebraic and Galois over its ground field, then there exist a \mathbb{Z}-isomorphims $\alpha: M \rightarrow K$ and a field monomorphism $\sigma: L \rightarrow K$ such that $\alpha(k m l)=k \alpha(m) l^{\sigma}$ for all $k \in K, m \in M, l \in L$.

Proof: Let Q be the ground field of L and σ the isomorphism from Q to the ground field of K. View M as a left vector space over K. Since M is unitary, each $q \in Q$ acts as scalar multiplication by q^{σ} on M. Let $l \in L$ and f the minimal polynomial of l over Q. Then $f^{\sigma}(l)=0$ as an element of $\operatorname{End}_{K}(M)$. Since $L: Q$ is Galois, f splits over L and has no double roots. Since K contains a subfield isomorphic to L, f^{σ} splits over K and has no double roots. Thus as a left vector space over K, M decomposes into the direct sum of the eigenspaces for l on M. Since L is commutative, L normalizes each of the eigenspaces. But M is indecomposable as a (K, L)-module and so l acts as a scalar $l^{\sigma} \in K$ on M. Since this is true for each $l \in L, L$ normalizes all K-subspaces in M and M is 1 -dimensional over K. The lemma is now readily verified.

$B w B$

Lemma 2.2 Let S be a group, T a subgroup of $S, B=N_{S}(T), \omega \in S \backslash B$, W an $R S$-module and Y an RB-submodule of $C_{W}(T)$. Suppose that each of the following holds:
(i) $S=B \cup B \omega T$ and $S=\left\langle T^{S}\right\rangle$,
(ii) $[W, T, T]=0$,
(iii) $W=\langle Y S\rangle$.

Then each of the following is true:

1. $W=[W, S]+C_{W}(S)=Y+Y \omega+C_{W}(S)$,
2. $C_{W}(T)=Y+C_{W}(S)=Y+[W, T]=[W, T]+C_{W}(S)$,
3. Put $\bar{W}=W / C_{W}(S)$. Then $C_{\bar{W}}(S)=0$.
4. If $T=[T, H]$ and $[Y, H]=0$, for some $H \leq B$ with $H=H^{\omega}$, then $[W, S]=0$ and $W=Y$.

Proof: Put $Y_{0}=Y+[W, T]$. By the assumptions T centralizes Y_{0}. By (a)

$$
T^{S}=T^{B} \cup T^{B \omega T}=T \cup T^{\omega T}
$$

and hence

$$
S=\left\langle T^{S}\right\rangle=\left\langle T, T^{\omega}\right\rangle
$$

This implies

$$
W=\langle Y S\rangle=Y+[W, S]=Y+[W, T]+\left[W, T^{\omega}\right]=Y_{0}+[W, T] \omega .
$$

Similarly $W=\langle(Y \omega) S\rangle=Y_{0} \omega+[W, T]$. Form the last two statements and the modular laws

$$
Y_{0}+C_{[W, T] \omega}(T)=C_{W}(T)=C_{Y_{0} \omega}(T)+[W, T] .
$$

Moreover, $C_{Y_{0} \omega}(T) \leq C_{W}\left(\left\langle T, T^{\omega}\right\rangle\right)=C_{W}(S)$ and $C_{Y_{0} \omega}(T) \leq C_{W}(S) \cap Y_{0} \omega \leq Y_{0}$. So

$$
C_{W}(T)=Y_{0}=[W, T]+C_{W}(S) .
$$

Since $W=\langle Y S\rangle$ we conclude from (a) that

$$
W=Y+Y \omega T=Y+Y \omega+[Y \omega, T]=Y \omega+C_{W}(T) .
$$

Therefore

$$
C_{W}\left(T^{\omega}\right)=Y \omega+\left(C_{W}(T) \cap C_{W}\left(T^{\omega}\right)\right)=Y \omega+C_{W}(S)
$$

and

$$
\begin{aligned}
W=Y & +C_{W}\left(T^{\omega}\right)=C_{W}\left(T^{\omega}\right)+C_{W}(T)=Y \omega+C_{W}(S)+Y= \\
& =[W, T]+[W, T] \omega+C_{W}(S)=[W, S]+C_{W}(S) .
\end{aligned}
$$

This completes the proof of (1) and(2).
Let U be the inverse image of $C_{\bar{W}}(S)$ in W. By (2) applied to \bar{W} we have $\bar{U} \leq \bar{Y}[\bar{W}, T]$. Thus $U \leq Y[W, T] C_{W}(S) \leq C_{W}(T)$ and $[U, T]=0$. Since $S=\left\langle T^{S}\right\rangle$ we get $U \leq C_{W}(S)$ and $\bar{U}=0$, proving (3).

To prove (4) note that H centralizes $W=Y+Y w+C_{W}(S)$ and hence $H \leq C_{S}(W)$. It follows that

$$
T=[T, H] \leq C_{S}(W) \text { and } S=\left\langle T^{S}\right\rangle \leq C_{S}(W)
$$

So $[W, S]=0$ and the lemma is proved.
Lemma 2.3 Suppose that (G, Σ) fulfills $(A)(1)$ with $\operatorname{dim} N=2$. Let $Z \in \Sigma, L=C_{G}[N, Z]$ and V an $R G$ modules with $[V, Z, L]=0, V=[V, G]$ and $C_{V}(G)=0$, then there exists an (R, K)-module M such that $V \cong M \otimes_{K} N$.

Proof: We start with defining some elements of $G=S L_{2}(K)$. Let

$$
\begin{aligned}
& a(k)=\left(\begin{array}{cc}
1 & 0 \\
k & 1
\end{array}\right), k \in K ; h(\lambda)=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right), 0 \neq \lambda \in K ; \omega=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \\
& Z=\{a(k) \mid k \in K\} \text { and } H=\left\{\left.\left(\begin{array}{cc}
1 & 0 \\
0 & \lambda
\end{array}\right) \right\rvert\, \lambda \in\left(K \backslash\{0\}^{\prime}\right\} .\right.
\end{aligned}
$$

Note that Z as defined above is indeed an element of Σ. We reader might verify that the following relation holds for all $t \in K^{\#}$. (But the relation will follows from some computation below)

$$
\begin{equation*}
\omega^{-1} a(-t) \omega=a\left(t^{-1}\right) h(t) \omega a\left(t^{-1}\right) . \tag{*}
\end{equation*}
$$

Since both $a\left(t^{-1}\right)$ and $a(t)^{\omega}$ are in G, this implies $h(t) \omega \in G$. Hence $h(t) h\left(r^{-1}\right) \in G$ for all $t, r \in K^{*}$ and we conclude that all $h(t)$ and $\omega \in G$. Hence also $h(t) h(r) h\left(r^{-1} t^{-1} \in H\right.$ and so $H \leq G$. In particular, $Z H \leq L$ (actually $\mathrm{L}=\mathrm{ZH}$, but we will not need that). Put $M=[V, Z]$. Since $G=\left\langle Z, Z^{\omega}\right\rangle$ we get

$$
V=[V, G]=M+M \omega \text { and } M \cap M w \leq C_{V}(G)=0
$$

Hence,

$$
V=M \oplus M \omega
$$

Let $D=\operatorname{Hom}_{R}(M, M)$ and $M_{2}(D)$ the ring of 2×2-matrices with coefficients in D. We define a ring isomorphism from $M_{2}(D)$ to $\operatorname{Hom}_{R}(V, V)$ by sending $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ to ϕ where ϕ is defined by $(u+v) \phi=u a+v \omega^{-1} c+u b \omega+v \omega^{-1} d \omega$ for $u \in M$ and $v \in M \omega$. Direct computations show that this indeed defines a ring isomorphism. Furthermore we see that:

$$
\begin{aligned}
& \omega \leftrightarrow\left(\begin{array}{cc}
0 & 1 \\
\epsilon & 0
\end{array}\right), \epsilon^{2}=1, \\
& h(\lambda) \leftrightarrow\left(\begin{array}{cc}
y(\lambda) & 0 \\
0 & z(\lambda)
\end{array}\right), \\
& a(k) \leftrightarrow\left(\begin{array}{cc}
1 & 0 \\
x(a) & 1
\end{array}\right) .
\end{aligned}
$$

$a(k) a(l)=a(k+l)$ implies

$$
\begin{equation*}
x(k)+x(l)=x(k+l) \tag{1}
\end{equation*}
$$

Since $\omega^{2} \in Z(G)$ we have $\epsilon y(\lambda)=y(\lambda) \epsilon$. From $\omega^{-1} h(\lambda) \omega=h\left(\lambda^{-1}\right)$ we get

$$
\begin{equation*}
z(\lambda)=y\left(\lambda^{-1}\right) \tag{2}
\end{equation*}
$$

Since $h(\lambda) h(\kappa) \equiv h(\lambda \kappa)(\bmod H)$ and $[M, H]=0$, we have $h(\lambda) h(\kappa) \equiv h(\lambda \kappa)(\bmod$ $C_{G}(M)$). Thus

$$
\begin{equation*}
y(\lambda) y(\kappa)=y(\lambda \kappa) . \tag{3}
\end{equation*}
$$

Next we make another use of $\left(^{*}\right) . a\left(t^{-1}\right) h(t) \omega a\left(t^{-1}\right)$ corresponds to

$$
\begin{gathered}
\left(\begin{array}{cc}
1 & 0 \\
x\left(t^{-1}\right) & 1
\end{array}\right)\left(\begin{array}{cc}
y(t) & 0 \\
0 & y\left(t^{-1}\right)
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
\epsilon & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
x\left(t^{-1}\right) & 1
\end{array}\right) \\
=\left(\begin{array}{cc}
y(t) & 0 \\
x\left(t^{-1}\right) y(t) & y\left(t^{-1}\right)
\end{array}\right)\left(\begin{array}{cc}
x\left(t^{-1}\right) & 1 \\
\epsilon & 0
\end{array}\right) \\
=\left(\begin{array}{cc}
y(t) x\left(t^{-1}\right) \\
x\left(t^{-1}\right) y(t) x\left(t^{-1}\right)+y\left(t^{-1}\right) \epsilon & x\left(t^{-1}\right) y(t)
\end{array}\right)
\end{gathered}
$$

and $\omega^{-1} a(-t) \omega$ to

$$
\begin{gathered}
\left(\begin{array}{ll}
0 & \epsilon \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
x\left(t^{-1}\right) & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
\epsilon & 0
\end{array}\right)=\left(\begin{array}{cc}
\epsilon x(-t) & \epsilon \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
\epsilon & 0
\end{array}\right) \\
=\left(\begin{array}{cc}
1 & \epsilon x(-t) \\
0 & 1
\end{array}\right)
\end{gathered}
$$

So $y(t) x\left(t^{-1}\right)=x\left(t^{-1}\right) y(t)=1, x\left(t^{-1}\right)=y(t)^{-1}=y\left(t^{-1}\right)$ and hence

$$
\begin{equation*}
x(t)=y(t) \text {, for all } 0 \neq t \in K . \tag{4}
\end{equation*}
$$

Moreover, $y(t)=\epsilon x(-t)=-\epsilon x(t)=-\epsilon y(t)$ and since $y(1)=1$,

$$
\begin{equation*}
\epsilon=-1 . \tag{5}
\end{equation*}
$$

By (1),(3) and (4) $x: K \rightarrow D$ is a ring homomorphism. In particular, M is an (R, K) module. Moreover,

$$
\begin{gathered}
\omega \leftrightarrow\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{cc}
x(0) & x(1) \\
x(-1) & x(0)
\end{array}\right), \\
a(k) \leftrightarrow\left(\begin{array}{cc}
1 & 0 \\
x(a) & 1
\end{array}\right)=\left(\begin{array}{cc}
x(1) & x(0) \\
x(a) & x(1)
\end{array}\right) .
\end{gathered}
$$

Since $G=\left\langle Z, Z^{\omega}\right\rangle=\langle Z, \omega\rangle$ we conclude

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \leftrightarrow\left(\begin{array}{cc}
x(a) & x(b) \\
x(c) & x(d)
\end{array}\right)
$$

for all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$.
On the other hand cleary $M \otimes_{K} K \cong M$ as R-modules. Since $N \cong K \oplus K$ as K modules, we conclude that $M \otimes_{K} N \cong M \oplus M$ as R-modules. Let $e_{1}=(1,0) \in K \oplus K$, $e_{2}=(0,1) \in K \oplus K$ a nd $m_{1}, m_{2} \in M$. Direct computations now show that

$$
m_{1}+m_{2} \omega \rightarrow m_{1} \otimes e_{1}+m_{2} \otimes e_{2}
$$

defines an $R G$ isomorphism from V to $M \otimes_{K} N$

Lemma 2.4 Suppose that (G, Σ) fulfills part 1 of Hypothesis (A) with $\operatorname{dim} N=2$. Let $Z \in \Sigma, L=C_{G}[N, Z]$ and V an $R G$ modules with $[V, Z, L]=0$ and $V=[V, G]$. If char $K \neq 2$ or K is not commutative, then $C_{V}(G)=0$.

Proof: Put $\bar{V}=V / C_{V}(G)$. Since $V=[V, G], V=[V, Z]^{G}$ and we can apply 2.2(c). Thus $C_{\bar{V}}(G)=0$ and by $2.3 \bar{V} \cong M \otimes_{K} N$, for some (R, K)-module M.

Assume first that char $K \neq 2$ amd let $t=-\operatorname{id} \in Z(G)$. Then $\bar{V}=[\bar{V}, t]$ and $C_{\bar{V}}(t)=0$. It follows that $V=[V, t] \oplus C_{V}(G)$ and $V=[V, G]=[V, t]$, and so $C_{V}(G)=0$.

Next assume that char $K=2$ and K is not commutative. We claim that $2 v=v+v=0$ for all $v \in V$. Indeed let $X=\{v \in V \mid 2 v=0\}$. Since $2 \bar{V}=0,[2 V, G]=0$. Moreover, $V / X \cong 2 V$ and so $V=[V, G] \leq X$, proving the claim.

Let $a(t), \omega$ and Z be as in 2.3. By 2.2b, $C_{V}(Z)=[V, Z]+C_{V}(G)$. Pick $\lambda \in(K \backslash 0)^{\prime}$ with $\lambda \neq 1$ and put $h=\left(\begin{array}{cc}\lambda & 0 \\ 0 & 1\end{array}\right)$. Note that $h \in G$. Then $a(t)^{h}=a(t \lambda)$ and since $[N, h] \leq[N, Z],[V, h] \leq C_{V}(Z)$. So for $v \in V$ and $t \in K$ we get

$$
[v, a(t)] h=\left[v h, a(t)^{h}\right]=[v+[v, h], a(t \lambda)]=[v, a(t \lambda)] .
$$

Hence

$$
\begin{gathered}
{[v, a(t(1+\lambda))]=[v, a(t) a(t \lambda)]=[v, a(t)]+[v, a(t \lambda)]=} \\
=[v, a(t)]+[v, a(t)] h=[v, a(t), h]
\end{gathered}
$$

where we used $2 V=0$ in the last equality. So $[v, a(t(l+1))] \in[V, Z, h]$. Since every $s \in K$ is of the form $t(\lambda+1)$ for some t we conclude that $[V, Z] \leq[V, Z, h]$. Now $C_{[\bar{V}, Z]}(h)=0$ and so $[V, Z, h] \cap C_{V}(G)=0$. Thus $[V, Z] \cap C_{V}(G)=0$. On the other hand by 2.2 b applied to $Y=[V, Z], C_{V}(G) \leq[V, Z]$ and so $C_{V}(G)=0$.

Remark: we should make some remark on the existence of universial central extensions

Definition 2.5 Let X be an $\mathbb{Z} G$-module. Then $a \mathbb{Z} G$-module \hat{X} is called a universial central $\mathbb{Z} G$-extension of M provided that
(a) There exists $a \mathbb{X} G$-homomorphism $\phi: \hat{X} \rightarrow X$ with $[\operatorname{ker} \phi, G]=0$.
(b) Whenever W is a $\mathbb{Z} G$-module and $\psi: W \rightarrow X$ is a $\mathbb{Z} G$-homomorphism with $[\operatorname{ker} \psi, G]=0$, then there exist a unique $\mathbb{Z} G$-homomorphism $\alpha: \hat{X} \rightarrow W$ with $\phi=\psi \alpha$.

Lemma 2.6 Let X be a $K G$-module and (\hat{X}, ϕ) a universial central $\mathbb{Z} G$-extension of X.
(a) \hat{X} is a $K G$-module and ϕ is $K G$-linear.
(b) Let M be an right vector space over K. Then $M \otimes_{K} \hat{X}$ is a universial central $\mathbb{Z} G$-extension of $M \otimes_{K} X$.

Proof: (a) Let $0 \neq k \in K$. Then by part (b) of 2.5 applied $W=\hat{X}$ and $\psi=k^{-1} \phi$, there exists a $\mathbb{Z} G$-homomorphism $\alpha_{k}: \hat{M} \rightarrow \hat{M}$ with $\phi=k^{-1} \phi \alpha_{k}$, i.e such that $k \phi=\phi \alpha_{k}$. By the uniqueness of $\alpha_{k}, \alpha_{1}=i d, \alpha_{k+l}=\alpha_{k}+\alpha_{l}$ and $\alpha_{k l}=\alpha_{k} \alpha_{l}$. Defining $k \hat{x}=\alpha_{k}(\hat{x}), \hat{X}$ becomes a vector space over K and (a) is proved.
(b) Let W be a $\mathbb{Z} G$-module and $\psi: W \rightarrow M \otimes X$ be any $\mathbb{Z} G$-homomorphism with $[\operatorname{ker} \psi, G]=0$. For $0 \neq m \in M$, let W_{m} be the inverse image of $m \otimes X$ under ψ. The map $x \rightarrow m \otimes x$ is a $\mathbb{Z} G$ from X to $m \otimes X$ and we can define a $\mathbb{Z} G$-homomorphism $\psi_{m}: W_{m} \rightarrow X$ by $\psi(w)=m \otimes \psi_{m}(w)$. By the universial property of $\hat{X}(2.5 \mathrm{~b})$ there exists a $\mathbb{Z} G$ homomorphism $\alpha_{m}: \hat{X} \rightarrow W_{m}$ with $\phi=\psi_{m} \alpha_{m}$. Also put $\alpha_{0}=0$. We obtain a map $\alpha: M \times \hat{X} \rightarrow W,(m, x) \rightarrow \alpha_{m}(x)$. Clearly, α is additive in the second coordinate and by the uniqueness of α_{m} it is easy to check that α is additive in the first coordinate and is balanced (that is $\alpha(m, k x)=\alpha(m k, x)$ for all $m \in M, x \in X, k \in K$.) Thus by the universial property of a tensor product α can be extended to a \mathbb{Z}-homomorphism $\alpha: M \otimes_{K} \hat{X} \rightarrow W$. Moreover, one readily verifies that α commmutes with G and $\phi=\psi \alpha$.

Remark 2.7 Let \mathcal{C} be a class of $\mathbb{Z} G$-modules. For X in \mathcal{C} define a universial central \mathcal{C} extension of X as in 2.5 except that \hat{X} and W are assumed to be in \mathcal{C}. Then (with the same proof) 2.6 is still true for universial central \mathcal{C}-extensions provided that $M \otimes_{K} \hat{X}$ is in \mathcal{C}.

3 Some properties of pseudo quadratic spaces

Lemma 3.1 Let (N, q, f) be a pseudo quadratic space and put $K^{+}=\left\{k \in K \mid k+s k^{\sigma}=0\right\}$. Then
(a) $K_{-} \leq K^{+}$.
(b) For all $a \in N$ and $q \in q(a), f(a, a)=q+s q^{\sigma}$.
(c) Suppose that $K_{-}=K^{+}$. Then $q(a)$ is uniquely determine by $f(a, a)$. In particular, $f(a, a)=0$ implies $q(a)=0$ and $\operatorname{rad} N=N^{\perp}$.
(d) Suppose that char $K \neq 2$ or that σ acts non trivially on $Z(K)$. Then $K_{-}=K^{+}$.

Proof: (a) $\left(k-s k^{\sigma}\right)^{\sigma}=k^{\sigma}-k^{\sigma^{2}} s^{\sigma}=k^{\sigma}-s^{-1} k s s^{-1}=k^{\sigma}-s^{-1} k$ and so $k-s k^{\sigma}=$ $-s\left(k-s k^{\sigma}\right)^{\sigma}, k-s k^{\sigma} \in K^{+}$and $K_{-} \leq K^{+}$.
(b) Let $k, l \in K$. Then on the one hand

$$
\begin{aligned}
q(k a+l a)=q(k a)+ & q(l a)+\overline{f(k a, l a)}=k * q(a)+l * q(a)+\overline{k f(a, a) l^{\sigma}} \\
& =\overline{k q k^{\sigma}+l q l b^{\sigma}+k f(a, a) l^{\sigma}}
\end{aligned}
$$

and on the other hand

$$
q(k a+l a)=q((k+l) a)=(k+l) * q(a)=\overline{k q k^{\sigma}+k q l^{\sigma}+l q k^{\sigma}+l q l^{\sigma}} .
$$

Thus

$$
\overline{k f(a, a) l^{\sigma}}=\overline{k q l^{\sigma}+l q k^{\sigma}} .
$$

But $l q k^{\sigma}-k s q^{\sigma} l^{\sigma}=l q k^{\sigma}-s\left(l q k^{\sigma}\right)^{\sigma} \in K_{-}$and so

$$
\overline{k f(a, a) l^{\sigma}}=\overline{k\left(q+s q^{\sigma}\right) l^{\sigma}}
$$

for all $k, l \in K$. If $\bar{K} \neq 0$ this cleary implies $f(a, a)=q+s q^{\sigma}$. If $\bar{K}=0$, then $K=K_{-}$and so by (a) $K=K^{+}$. Thus $K_{+}=0$ and $q+s q^{\sigma}=0$. Moreover, by (PQ1), f is trace valued and so also $f(a, a)=0$.
(c) By (b) $q(a)$ is unique up to an element $\overline{K^{+}}$. Thus (c) holds
(d) If char $K \neq 2$, put $\lambda=1$ and if char $K=2$ and σ acts non trivially on $Z(K)$ pick $\lambda \in Z(K)$ with $\lambda \neq \lambda^{\sigma}$. Then in any case, $\lambda \in Z(K)$ and $\lambda+\lambda^{\sigma} \neq 0$. Put $\mu=\lambda\left(\lambda+\lambda^{\sigma}\right)^{-1}$. Since $\lambda \in Z(K), \lambda^{\sigma^{2}}=\lambda$. Thus $\mu+\mu^{\sigma}=1$ and $\mu^{\sigma} \in Z(K)$. Let $k \in K$ with $k=-s k^{\sigma}$. Then

$$
k \mu-s(k \mu)^{\sigma}=k \mu-s \mu^{\sigma} k^{\sigma}=k \mu-s k^{\sigma} \mu^{\sigma}=k\left(\mu+\mu^{\sigma}\right)=k .
$$

Hence $k \in K_{-}, K^{+} \leq K_{-}$and (d) follows from (a).
Lemma 3.2 Let N be a left vector space over $K, 0 \neq n \in N$ and $0 \neq \phi \in N^{*}$.
(a) $t(\phi, n)$ is invertible if and only if $n \phi \neq-1$, in which case the inverse is given by $t\left(\phi,-(1+n \phi)^{-1} n\right)$.
(b) Let (q, f) be a ($\sigma, s)$-pseudo quadratic form on N. Then $t(\phi, n) \in O(V, q, f)$ if and only if one of the following holds:
(b1) $n \in \operatorname{rad} N$ and $n \phi \neq-1$.
(b2) $n \notin N^{\perp}$ and there exists $0 \neq k \in K$ with $-k^{-1} \in q(n)$ and $v \phi=f(v, n) k$ for all $v \in N$.

Proof: Put $t=t\left(n^{*}, n\right)$.
(a) If $n \phi=-1$ then $n . t=0$ and t is not invertible. If $n \phi \neq-1$ it is trivial to verify that $t\left(\phi,-(1+n \phi)^{-1} . n\right)$ is an inverse for t.
(b) Recall that $t \in O(N, q, f)$ if and only if $f(a t, b t)=f(a, b)$ and $q(a t)=q(a)$ for all $a, b \in N$. Since $f(a t, b t)=f(a+a \phi . n, b+b \phi . n)$ weget

$$
\begin{equation*}
f(a t, b t)=f(a, b)+a \phi \cdot f(n, b)+f(a, n) \cdot(b \phi)^{\sigma}+a \phi \cdot f(n, n) \cdot(b \phi)^{\sigma} . \tag{1}
\end{equation*}
$$

and since $q(a t)=q(a \phi . n+a)$

$$
\begin{equation*}
q(a t)=a \phi * q(n)+\overline{a \phi \cdot f(n, a)}+q(a) . \tag{2}
\end{equation*}
$$

In particular, if $n \in \operatorname{rad} N$ and t is invertible, $t \in O(N, q, f)$. Thus we may assume that $n \notin \operatorname{rad} N$.

Assume now that $t \in O(V, q, f)$. Suppose that $n \in N^{\perp}$. Since $n \notin \operatorname{rad} V, q(n) \neq 0$. Hence by (2) $a \phi=0$ for all $a \in N$, a contradiction.

Thus $n \notin N^{\perp}$. Let $b \in \operatorname{ker} \phi$. Then by (1) $a \phi . f(n, b)=0$ for all a in N and so $b \in N^{\perp}$ and $\operatorname{ker} \phi \leq n^{\perp}$. Since both $\operatorname{ker} \phi$ and n^{\perp} are hyperplanes in N, $\operatorname{ker} \phi=n^{\perp}$. Therefore there exists $k \in K$ with

$$
\begin{equation*}
a \phi=f(a, n) k \text { for all } a \in N . \tag{3}
\end{equation*}
$$

Since $f(n, a)=s f(a, n)^{\sigma}$, (2) now implies $f(a, n) k * q(n)+\overline{f(a, n) k s f(a, n)^{\sigma}}=0$. Thus

$$
f(a, n) *(k * q(n))+f(a, n) * \overline{k s}=0
$$

Hence $k * q(n)=-\overline{k s}$ and $q(n)=k^{-1} * \overline{k s}=-\overline{s k^{-\sigma}}$. Now $k^{-1}-s k^{-\sigma} \in K_{-}$and so $\overline{k^{-1}}=\overline{s k^{-\sigma}}$. Thus $q(n)=\overline{-k^{-1}}$ and (b2) holds in this case.

Suppose next that t fulfils (b2). Reading the above calculations backwards we see that $q(a)=q(a t)$ for all $a \in N$. Put $q=-k^{-1}$. By assumption $q \in q(n)$ and so by 3.1 $f(n, n)=q+s q^{\sigma}$. Using (1) it is now readily verified that $f(a t, b t)=f(a, b)$ for all $a, b \in N$. It remains to show that t is invertible. Otherwise by (a), $-1=n \phi=f(n, n) k$ and so $q=k^{-1}=f(n, n)$. Thus $q=f(n, n)=q+s q^{\sigma}, s q^{\sigma}=0$ and $q=0$, a contradiction to the definition of q.

We denote the element in $O(V, q, f)$ of form $t(\phi, n)$ as in 3.2 b 2 by $t(k, n)$, that is

$$
v . t(k, n)=v+f(v, n) k \cdot n \text { where } n \in N \backslash N^{\perp}, k \in K^{\#},-k^{-1} \in q(n), v \in N
$$

$t(k, n)$ is called a pseudo-transvection with axis $K n$. We remark that for any given $n \in$ $N \backslash \operatorname{rad} N$, there exists a pseudo-transvection with axis $K n$, unless n is a singular vector in a quadratic space.

Lemma 3.3 Let (N, q, f) be a non-degenerate pseudo-quadratic space such that $\mathcal{S}(1) \neq \emptyset$.
(a) $N=\langle\mathcal{S}(1)\rangle$.
(b) Let i be a positive integer with $\mathcal{S}(i) \neq \emptyset$ and $U \in \mathcal{S}(i)$. Then Q_{U} acts transitively on the set of all $U_{0} \in \mathcal{S}(i)$ with $U_{0} \cap U^{\perp}=0$.

Proof: (a) Let $M=\langle\mathcal{S}(1)\rangle$ and suppose $N \neq M$. Let $n \in N \backslash M$. Then n is not singular and so there exists a pseudo-transvection t in $\mathcal{O}(N, q, f)$ with axis $K n$. Since t normalizes M and $n \notin M,[M, t] \leq M \cap K n=0$ and so n is perpendicular to M. It follows that $M \cup M^{\perp}=N, M^{\perp}=N$, and $M \leq N^{\perp}$. Since M is generated by singular vectors, $M \leq \operatorname{rad} N=0$, a contradiction.
(b) Let $U_{1}, U_{2} \in \mathcal{S}(i)$ with $U^{\perp} \cap U_{k}=0, k=1,2$. As N is non degenerate, $N \cap U=0$ and so $\operatorname{dim} N / U^{\perp}=i$. Thus $N=U^{\perp}+U_{k}$. Let $x_{1}, x_{2}, \ldots, x_{i}$ be a basis for U over K and for $k=1,2$ let $y_{1}(k), y_{2}(k), \ldots, y_{i}(k)$ be the basis for U_{k} with $f\left(x_{j}, y_{l}(k)=\delta_{j l}\right.$. Note that $U^{\perp}=U \oplus\left(U+U_{k}\right)^{\perp}$. Hence for every $x \in\left(U+U_{k}\right)^{\perp}$ there exists a unique $y \in\left(U+U_{2}\right)^{\perp}$ with $x+U=y+U$, and the map $x \rightarrow y$ is an isometry. Extend this map to $h \in G L_{K}(N)$ such that $x_{j} h=x_{j}$ and $y_{j}(1) h=y_{j}(2)$. Then it is easy to see that h is an isometry, $h \in Q_{U}$ and $U_{1} h=U_{2}$.

Lemma 3.4 Let (N, q, f) be a nondegenerate pseudo quadratic space, i a positive integer and $U \in \operatorname{calS}(i)$. Then
(a) $P_{U} / Q_{U} \cong G L_{K}(U) \times O\left(U^{\perp} / U, q, f\right)$.
(b) $Q_{U} / T_{U} \cong \operatorname{Hom}_{K}\left(U^{\perp} / U^{\perp \perp}, U\right) \cong \operatorname{Hom}_{K}\left(N / U^{\perp}, U^{p} \operatorname{erp} / U^{\perp \perp}\right.$.
(c) $T_{U} / Z_{U} \cong \operatorname{Hom}_{K}\left(N / U^{\perp}, N^{\perp}\right)$
(d) $Q_{U} / Z_{U} \cong \operatorname{Hom}_{K}\left(N / U^{\perp}, U^{\perp} / U\right)$
(e) Z_{U} is isomorphic to the additive group of all $i \times i$-matrices M with $M^{T}=-s M^{\sigma}$ and $M_{j j} \in K_{-}$for all $1 \leq j \leq i$.
(f) T_{U} is isomorphic to the additive group o fall $i \times i$-matrices M with $M^{T}=-s M^{\sigma}$ and $M_{j j}+K_{-} \in q\left(N^{\perp}\right)$ for all $1 \leq j \leq i$.
(g) $Z\left(Q_{U}\right)=T_{U}$ (unless $i=1$ and $K_{-}=0$, in which case Q_{U} is abelian)
(h) $Q_{U}^{\prime}=Z_{U}\left(\right.$ unless $Q_{U}=T_{U}$, that is $\left.U^{\perp}=U^{\perp \perp}\right)$

Proof: It follows easily from 3.3 a and induction that there exists a singular subspace E in N with $N=U^{\perp} \oplus E$.

Put $X=(U \oplus E)^{\perp}$. Since U is finite dimensional and $U \cap N^{\perp}=0, N=U \oplus X \oplus E$ and $U^{\perp \perp}=U \oplus N^{\perp}$.
(a) By 3.3b and a Frattini argument, $P_{U}=N_{P_{U}}(E) Q_{U}$. Since $N_{P_{U}}(E)$ normalizes $X, N_{P_{U}}(E) \cap Q_{U}=1$ and it suffices to show that $N_{P_{U}}(E) \cong G L_{K}(U) \times O(X, q, f)$. Let $g \in G L_{k}(U)$ and $h \in O(X, q, f)$. It is an easy exercise to show that there exists unique $\hat{g} \in G L_{K}(E)$ with $f(u g, e \hat{g})=f(u, e)$ for all $u \in U, e \in E$. Moreover, there exists a unique $t \in G L_{K}(N)$ which acts as g on U, as \hat{g} on E and as h on X. Clearly, $t \in \mathcal{O}$ and so (a) holds.
(b) Let $\alpha \in \operatorname{Hom}_{K}(X, U)$ with $N^{\perp} \alpha=0$. Put $X_{\alpha}=\{x+x . \alpha \mid x \in X\}$ and note that $U^{\perp}=U \oplus X_{\alpha}$, Moreover, $X_{\alpha}^{\perp}=U \oplus N^{\perp} \oplus E_{\alpha}$ for some i-dimensional singular subspace E_{α}. As in 3.3b, there exists $t \in \mathcal{O}$ such that t centralizes U and $x t=x+x \alpha$ for all $x \in X$. Clearly $t \in Q_{U}$ and so the map

$$
\begin{aligned}
Q_{U} & \rightarrow \operatorname{Hom}_{K}\left(X / N^{\perp}, U\right) \\
q & \rightarrow\left(x+N^{\perp} \rightarrow[x, q]\right)
\end{aligned}
$$

is onto. Its kernel is obviously T_{U} and so the first equality in (b) holds. The second is just the dual version of the first.

Let $\beta \in \operatorname{Hom}_{K}\left(N, N^{\perp}\right)$ with $U^{\perp} \beta=0$ and $\operatorname{dim} N \beta=1$. Then clearly $(\operatorname{ker} \beta)^{\perp}=$ $K u+N^{\perp}$ for some $0 \neq u \in U$. Let $e \in N$ with $f(e, u)=1$ and put $r=e \beta$. Then $0 \neq r \in N^{\perp}, q(r) \neq 0$ and so there exists $0 \neq \lambda \in K$ with $-\lambda^{-1} \in q(r)$. Pick $\mu \in K$ with
$\mu^{\sigma}=\lambda^{-1}$ and put $n=r+\mu \cdot e$. Since e is singular and perpendicular to $r, q(n)=q(e)$ and so we obtain the pseudo-transvection $t(\lambda, n) \in \mathcal{O}$. Moreover,

$$
\begin{equation*}
[e, t(\lambda, n)]=f(e, n) \lambda \cdot n=\mu^{\sigma} \lambda \cdot(r+\mu u)=r+\mu \cdot u \equiv r \bmod U . \tag{1}
\end{equation*}
$$

Note that $U^{\perp \perp}=U \oplus N^{\perp}$ and $[N, t] \in U^{\perp \perp}$ for all $t \in T_{U}=C_{\mathcal{O}}\left(U^{\perp}\right)$. Consider the homomorphism ρ;

$$
\begin{aligned}
T_{U} & \rightarrow \operatorname{Hom}_{K}\left(N / U^{\perp}, U^{\perp \perp} / U\right) \\
t & \rightarrow\left(x+U^{\perp} \rightarrow[x, t]+U\right)
\end{aligned}
$$

Clearly $\operatorname{ker} \rho=Z_{U}$. Let $\hat{\beta}$ the the compostion of β with the natural isomorphism $N^{\perp} \rightarrow$ $U^{\perp \perp} / U$. Then by (1), ρ maps $t(\lambda, n)$ onto $\hat{\beta}$. As the holds for all β 's,ρ is onto and (c) holds.
(d) Cosider the map

$$
\begin{gathered}
Q_{U} \rightarrow \operatorname{Hom}_{K}\left(N / U^{\perp}, U^{\perp} / U\right) \\
t \rightarrow\left(x+U^{\perp} \rightarrow[x, t]+U\right)
\end{gathered}
$$

By (b) and (c) this map is onto. Its kernel is Z_{U} and so (d) holds.
(e,f) Let $u_{1}, u_{2}, \ldots, u_{i}$ a basis for U and pick $e_{1}, e_{2}, \ldots e_{i} \in E$ with $f\left(u_{l}, e_{j}\right)=\delta_{l j}$. Let $z \in G L_{k}(N)$ with $[N, z] \leq U^{\perp \perp}$ and $\left[U^{\perp}, z\right]=0$. Define a $i \times i$ matrix $M=\left(m_{k l}\right)$ and $r_{k} \in N^{\perp}$ by $\left[e_{k}, z\right]=\sum_{l=1}^{l} m_{k l} u_{l}+r_{k}$. Then z is uniquely determined by M and $\left(r_{k}\right)$. We need to find necessary and sufficient conditions on M and $\left(r_{k}\right)$ for z to be in \mathcal{O}. So we compute

$$
\begin{gathered}
f\left(e_{j} z, e_{k} z\right)=f\left(e_{j}+\sum_{l=1}^{i} m_{j l} u_{l}, e_{k}+\sum_{l=1}^{i} m_{k l} u_{l}\right)= \\
=f\left(m_{j k} u_{k}, e_{k}\right)+f\left(e_{j}, m_{k j} u_{k}\right)=m_{j k}+s m_{k j}^{\sigma}
\end{gathered}
$$

and

$$
q\left(e_{k} z\right)=q\left(e_{k}+\sum_{l=1}^{i} m_{k l} u_{l}+r_{k}\right)=\overline{f\left(m_{k k} u_{k}, e_{k}\right)}+q\left(r_{k}\right)=\overline{m_{k k}}+q\left(r_{k}\right) .
$$

Thus $z \in \mathcal{O}$ if and only if $M^{T}=-s M^{\sigma}$ and $m_{k k}+K_{-} \in-q\left(r_{k}\right)$ for all $1 \leq k \leq i$. Note that $q_{N^{\perp}}$ is injective. Hence for any M with $M^{T}=-s M^{\sigma}$ and $m_{k k}+K_{-} \in q\left(N^{\perp}\right)$ there exists unique $r_{k} \in N^{\perp}$ with $m_{k k}+K_{-} \in q\left(r_{k}\right)$. Thus (f) holds. Moreover, $z \in T_{U}$ if and only if in addition $r_{k}=0$. Thus also (e) holds.
(g,h) By definition of $Q_{U},\left[N, Q_{U}\right] \leq U^{\perp}$ and $\left[U^{\perp}, Q_{U}\right] \leq U$. Thus $\left[N, Q_{U}, Q_{U}\right] \leq U$ and the three subgroup lemma implies $\left[N, Q_{U}^{\prime}\right] \leq U$. Thus $Q_{U}^{\prime} \leq Z_{U}$. Note that $\left[N, T_{U}\right] \leq$ $U^{\perp \perp}=U+\operatorname{rad} N$. Thus $\left[N, T_{U}, Q_{U}\right]=0$ and $\left[N, Q_{U}, T_{U}\right]=0$. Hence $\left[Q_{U}, T_{U}, N\right]=0$ and $T_{U} \leq Z\left(Q_{U}\right)$. So to prove (g) and (h) we need to show $Z\left(Q_{U}\right) \leq T_{U}$ and $Z_{U} \leq Q_{U}^{\prime}$.

Let $a, b \in Q_{U}$. We wish to compute $[a, b]$. For this put $a_{i}=\left[e_{i}, a\right]$ and $b_{i}=\left[e_{i}, b\right]$. Then $a_{i}, b_{i} \in U^{\perp}$. Let $x \in U^{\perp}$. Then $[x, a] \leq U$ and so $0=f\left(x, e_{i}\right)=f\left(x . a, e_{i} \cdot a\right)=$ $f\left(x+[x, a], e_{i}+a_{i}\right)=f\left(x, a_{i}\right)+f\left([x, a], e_{i}\right]$. Hence

$$
-[x, a]=\sum_{k=1}^{i} f\left(x, a_{k}\right) u_{k} .
$$

A similar formula holds for b. Furthermore, $\left[e_{k}, a^{-1}\right]=-a_{k}+r_{k}$ and $\left[e_{k}, b^{-1}\right]=-b_{k}+s_{k}$ for some $r_{k}, s_{k} \in U^{\perp \perp}$. Also $\left[x, a^{-1}\right]=-[x, a]$ and so

$$
\begin{aligned}
& \left(e_{k} \cdot[a, b]=e_{k} \cdot a^{-1} b^{-1} a b=\left(e_{k}-a_{k}+r_{k}\right) \cdot b^{-1} a b\right. \\
& \left.=e_{k}-b_{k}+s_{k}-a_{k}-\sum_{j=1}^{i} f\left(a_{k}, b_{j}\right) u_{j}+r_{k}\right) \cdot a b
\end{aligned}
$$

Using $\left(e_{k}-a_{k}+r_{k}\right) \cdot a=e_{k}$ we get

$$
\begin{aligned}
e_{k} \cdot[a, b]= & \left(e_{k}-b_{k}+\sum_{j=1}^{i} f\left(b_{k}, a_{j}\right) u_{j}-\sum_{j=1}^{i} f\left(a_{k}, b_{j}\right) u_{j}+s_{k}\right) \cdot b \\
& =e_{k}+\sum_{j=1}^{i} f\left(b_{k}, a_{j}\right) u_{j}-\sum_{j=1}^{i} f\left(a_{k}, b_{j}\right) u_{j} .
\end{aligned}
$$

Put $B=\left(f\left(a_{k}, b_{j}\right)\right)$. Then $[a, b] \in Z_{U}$ corresponds to the matrix $-B+s B^{T \sigma}$.
Suppose there exists $a \in Z\left(Q_{U}\right) \backslash T_{U}$. Then $a_{k} \not \leq U^{\perp \perp}$ for some k. Let $1 \leq k, j \leq i$ and $0 \neq \lambda \in K$. By (b) we can choose b such that $b_{l} \in U^{\perp \perp}$ if $l \neq j$ and $f\left(a_{k}, b_{j}\right)=\lambda$. Since $a \in Z\left(Q_{U}\right)$ we get $B=s B^{T \sigma}$. Since all but the j 'th colummns of B are zero and the $k-j$ spot of B is λ and so not zero, we conclude that $j=k$ and $\lambda=s \lambda^{\sigma}$. Since j and λ are arbitrary we conclude that $i=1$ and $K_{-}=0$. Also if $i=1$ and $K_{-}=0,[a, b]=1$ for any $a, b \in Q_{U}$ and so (g) holds.

To complete the proof for (h) we may assume that $U^{\perp} \neq U^{\perp \perp}$. Fix $1 \leq k, j \leq i$ and $\lambda \in K$ and choose $a, b \in Q_{U}$ such that $a_{l} \in U^{\perp \perp}$ if $l \neq k, b_{l} \in U^{\perp \perp}$ if $l \neq j$ and $f\left(a_{k}, b_{j}\right)=\lambda$. Then B is zero everywhere except in the $k-j$ spot, where it is λ. Clearly every matrix M with $M^{T}=-s M^{\sigma}$ and $m_{l l} \in K_{-}$for all l is the sum of matices of the form $-B+B^{T \sigma}$, $1 \leq k j \leq i, \lambda \in K$ and so (h) is proved.

Lemma 3.5 Let (N, q, f) be a non-degenerate pseudo-quadratic space with $\mathcal{S}(1) \neq \emptyset$.
(a) Suppose that (N, q, f) is not a 2-dimensional quadratic space.
(a1) $\left\langle Q_{U} \mid U \in \mathcal{S}(1)\right\rangle$ acts transitively on $\mathcal{S}(1)$.
(a2) If $x, y \in \mathcal{S}(1)$ with $x \neq y$, then $\mathcal{S}(1) \neq\left(\mathcal{S}(1) \cap x^{\perp}\right) \cup\left(\mathcal{S}(1) \cap y^{\perp}\right)$.
(a3) Define $x, y \in \mathcal{S}(1)$ to be adjacent if $x \not \perp y$. Then the corresponding graph on $\mathcal{S}(1)$ is connected.
(b) $\left\langle T_{U} \mid U \in \mathcal{S}(1)\right\rangle$ acts transitively on $\mathcal{S}(1)$ unless N is a non defective quadratic space.

Proof: (a1) Let $U_{1}, U_{2} \in \mathcal{S}(1)$ with $U_{1} \neq U_{2}$.
Suppose first that $U_{1} \perp U_{2}$. Pick $U_{3} \in \mathcal{S}(1)$ with $U_{3} \leq U_{1}+U_{2}$ and $U_{1} \neq U_{3} \neq U_{2}$. By 3.4a, $Q_{U_{3}}$ induces a full unipotent subgroup on $U_{1}+U_{2}$ and so U_{2} and U_{1} are conjugate under $Q_{U_{3}}$.

Suppose next that U_{1} and U_{2} are not perpendicular. Assume that $\mathcal{S}(2) \neq \emptyset$. Then U_{1} is contained in a 2-dimensional singular subspace space W. Put $U_{3}=W \cap U_{2}^{\perp}$. Then U_{1} and U_{2} are both conjugate to U_{3} under $\left\langle Q_{U}\right| U \in \mathcal{S}(1)$. Thus we may assume that $\mathcal{S}(2)=\emptyset$.

Suppose that there exists $U_{3} \in \mathcal{S}(1)$ with $U_{1} \neq U_{3} \neq U_{2}$. Then by $3.3 \mathrm{~b} U_{1}$ and U_{2} are conjugate under $Q_{U_{3}}$ and we may assume that no such U_{3} exists. Thus $\mathcal{S}(1)=\left\{U_{1}, U_{2}\right\}$, $Q_{U_{1}}$ centralizes U_{2} and so $Q_{U_{1}}=1$. By 3.4 this implies $U=U^{\perp}$ and $K_{-}=0$, i.e. N is a 2-dimensional quadratic space.
(a2) Let $x, y \in \mathcal{S}(1)$ and suppose that $\mathcal{S}(1)=\left(\mathcal{S}(1) \cap x^{\perp}\right) \cup\left(\mathcal{S}(1) \cap y^{\perp}\right)$.
If $\mathcal{S}(2)=\emptyset$, then $\mathcal{S}(1)=\left(\mathcal{S}(1) \cap x^{\perp}\right) \cup\left(\mathcal{S}(1) \cap y^{\perp}\right)=\{x, y\}$. As seen in the proof of(a) this implies that (N, q, f) is a 2 -dimensional quadratic space,.

So we may assume that $\mathcal{S}(2) \neq \emptyset$. By 3.3 a (a) applied to $y^{\perp} / y, y^{\perp}$ is generated by its singular subspaces. Thus there exists $z \in \mathcal{S}(1) \cap y^{\perp}$ with $z \neq y$ and $z \not \perp x$. Let $w \in \mathcal{S}(1) \cap z^{\perp}$ with $w \notin y^{\perp}$. Then $w \in x^{\perp}$. So $w+z \in \mathcal{S}(2),(w+z) \cap x^{\perp}=w$ and $(w+z) \cap y^{\perp}=z$. But $w+z$ contains more than two 1-dimensional subspaces contradicting the assumption that $\mathcal{S}(1)=\left(\mathcal{S}(1) \cap x^{\perp}\right) \cup\left(\mathcal{S}(1) \cap y^{\perp}\right)$.
(a3) By (a2) we can choose $z \in \mathcal{S}(1)$ with $z \not \perp x$ and $z \not \perp y$. Thus x is adjacent to z and z is adjacent to y, proving (a3).
(b) Without loss N is not a non defective quadratic space. Let $U_{1}, U_{2} \in \mathcal{S}(1)$ with $U_{1} \neq U_{2}$. We need to show that U_{1} and U_{2} are conjugate under $\left\langle T_{U} \mid U \in \mathcal{S}(1)\right\rangle$. By (a3) we may assume that U_{1} and U_{2} are not perpendicular. Put $R=U_{1}+U_{2}+N^{\perp}$. Then R itself is a non degenerate, pseudo quadratic space which is not non-defective quadratic. So we may assume $N=R$. By (a1) U_{1} and U_{2} are conjugated under $\left\langle Q_{U} \mid U \in \mathcal{S}(1)\right\rangle$. Let $U \in \mathcal{S}(1)$. As N / N^{\perp} is 2-dimensional, $U^{\perp}=U+N^{\perp}=U^{\perp \perp}$ and so $T_{U}=Q_{U}$. Thus (b) holds.

Lemma 3.6 Let (N, q, f) be a nondegenerate pseudo quadratic space and $0 \neq U$ a finite dimensional singular subspace of N. Then
(a) $T_{U}=\left\langle T_{U} \cap Q_{E} \mid E \in \mathcal{S}(1) \cap U\right\rangle$
(b) $Q_{U}=\left\langle Q_{U} \cap Q_{E} \mid E \in \mathcal{S}(1) \cap E\right\rangle$
(c) $T_{U}=\left\langle T_{E} \mid E \in \mathcal{S}(1) \cap E\right\rangle$, unless N is a non-defective quadratic space.
(d) Let $0 \neq E \leq U$. Then $C_{Q_{U}}\left(E^{\perp} / E\right)=Q_{U} \cap Q_{E}$ and $Q_{U} / Q_{U} \cap Q_{E} \cong C_{E \perp / E}\left(U^{\perp} / U\right) \cap$ $C_{E^{\perp} / E}(U / E)$

Proof: Let u_{1}, \ldots, u_{i} be a basis for U. We use the correspondence between T_{U} and certain $i \times i$ matrices established in the proof of 3.4 f without further reference.
(a) Let $1 \leq j \leq i$. Then $T_{U} \cap Q_{K u_{j}}$ corresponds to the set of matrices with $m_{k l}=0$ for all $1 \leq k, l \leq i$ with $k \neq j \neq l$. This implies (a).
(b) Let $E \in \mathcal{S}(1) \cap U$ and $\alpha \in \operatorname{Hom}_{K}\left(U^{\perp}, U\right)$ with $U^{\perp \perp} \alpha=0$ and $U^{\perp} \alpha \leq E$. Extend α to an element β of $\operatorname{Hom}_{K}\left(E^{\perp}, E\right)$. By 3.4 b , there exists $q \in Q_{E}$ with $\beta=q-\left.1\right|_{E^{\perp}}$. Then clearly $q \in Q_{U} \cap Q_{E}$ and $\alpha=q-\left.1\right|_{U^{\perp}}$. Thus

$$
Q_{U}=\left\langle Q_{U} \cap Q_{E} \mid E \in \mathcal{S}(1) \cap U\right\rangle T_{U}
$$

and so (b) follows from (a).
(c) Without loss N is not a non-defective quadratic space. Thus $K_{-} \neq 0$ or $N^{\perp} \neq 0$. Thus there exists $0 \neq \rho \in K$ with $\bar{\rho} \in q\left(N^{\perp}\right)$. Since f vanishes on N^{\perp}, 3.1 implies $\rho+s \rho^{\sigma}=0$. Let λ be an arbitrary element in K and put $\mu=-\lambda \rho^{-1} s \lambda^{\sigma}$. Then

$$
\mu=-\lambda \rho^{-1}\left(s \rho^{\sigma}\right) \rho^{-\sigma} \lambda^{\sigma}=\left(\lambda \rho^{-1}\right) \rho\left(\left(\lambda \rho^{-1}\right)^{\sigma}\right.
$$

and so $\bar{\mu}=\left(\lambda \rho^{-1}\right) * \bar{\rho} \in q\left(N^{\perp}\right)$.
Note that

$$
\left(\begin{array}{cc}
0 & -s \lambda^{\sigma} \\
\lambda & 0
\end{array}\right)=\left(\begin{array}{ll}
\rho & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & \mu
\end{array}\right)+\left(\begin{array}{cc}
-\rho & -s \lambda^{\sigma} \\
\lambda & \mu
\end{array}\right)
$$

and $-\lambda \rho^{-1} \cdot\left(-\rho,-s \lambda^{\sigma}\right)=(\lambda,-\mu)$. In particular all three matrices on the right side of the above equation correspond to transvections and it is easy to see that (c) holds.
(d) Let F be a complement to E^{\perp} and $X=(E+F)^{\perp}$. Then clearly $C_{O(X)}\left(X \cap U^{\perp} / X \cap\right.$ $U) \cap C_{O(X)}(U \cap X) \cong C_{Q_{U}}(E+F)$ and (d) is easily verified.

Lemma 3.7 Let (N, q, f) be a nondegenerate pseudo quadratic space such that $\mathcal{S}(2) \neq \emptyset$, and define $x, y \in \mathcal{S}(2)$ to be adjacent if $x \cap y^{\perp}=0$. Then the corresponding graph on $\mathcal{S}(2)$ is connected, unless (N, q, f) is a four dimensional quadratic space.

Proof: Without loss (N, q, f) is not a four dimensional quadratic space. Let $x \neq y \in$ $\mathcal{S}(2)$.

Consider first the case that $U=x \cap y \neq 0$. By 3.5a2 applied to U^{\perp} / U in place of N there exists $z \in \mathcal{S}(2)$ with $U \leq z, z \not \perp x$ and $z \not \perp y$. Let $F \in \mathcal{S}(1) \cap z$ with $F \neq U$ and choose $S \in \mathcal{S}(1) \cap F^{\perp}$ with $S \not \perp U$. Then $F+S \in \mathcal{S}(2)$.

We claim that $F+S$ is adjacent to x. Suppose not. Then $T=x \cap(F+S)^{\perp} \neq 0$. Since $U \not \perp S, U \not \leq T$. Hence $Z=F+U \perp T+U=x$ and $x \perp z$, contradicting our choice of z. Similarly $F+S$ is adjacent to y and so x and y lie in the same connected component.

Next consider the case with $x \cap y=0$. Let $P_{1} \in x \cap \mathcal{S}(1)$ and $P_{2} \leq y \cap P^{\perp} \cap \mathcal{S}(1)$. Then $P_{1}+P_{2} \in \mathcal{S}(2)$. By the previous paragraph $x, P_{1}+P_{2}$ and y lie in the same connected component and the lemma is proved.
Lemma 3.8 Suppose (G, Σ) fulfills Hypothesis' $(A),(B)$ or (C). Then graph on Σ is connected.

Proof: If (B) holds this is 3.5 a 3 and if (C) holds this is 3.7 . So suppose (A) holds. Let Z_{1} and Z_{2} be in Σ. Then it is readily verified that there exists Z_{3} in Σ such that Z_{3} is adjacent to Z_{1} and Z_{2}.

Lemma 3.9 Suppose (G, Σ) fulfills Hypothesis (B) or (C).
(a) Let $0 \neq U$ be a finite dimensional singular subspace of N. Then $Q_{U} \leq G$.
(2) Let $U \in \mathcal{S}(1)$. Then $C_{G}(U)$ acts transitively on the 1-dimensional singular subspaces of U^{\perp} / U.

Proof: (a) Let $U \in \mathcal{S}(1)$. Pick $x \in N \backslash U^{\perp}$. By 3.4 the map

$$
\alpha: Q_{U} / Z_{U} \rightarrow U^{\perp} / U, \quad q Z_{U} \rightarrow[x, q]+U
$$

is an isomorphism. For $V \in \mathcal{S}(2)$ with $U \leq V$ define $Z(U, V)=Z_{V} \cap Q_{U}$. Then under the isomorphism in 3.4 e (where we choose the first basis vector for V iin U), $Z(U, V)$ corresponds to the 2×2 matrices M with $M^{T}=-T^{\sigma}, m_{11} \in K_{-}$and $m_{22}=0$. It follows that $\alpha\left(Z(U, V) / Z_{U}\right)=V / U$. By 3.3a, U^{\perp} / U is spanned by its 1 -dimensional singular subspaces and so

$$
Q_{U}=\langle Z(U, V) \mid U \leq V \in \mathcal{S}(2)\rangle .
$$

We claim that $Z_{V} \leq G$. Indeed, in case (C) $Z_{V} \in \Sigma$ and in case (B) 3.6(c) yields $Z_{V} \leq$ $T_{V} \leq\left\langle T_{E} \mid E \in \mathcal{S}(1)\right\rangle \leq\langle\Sigma\rangle$. In particular, $Z(U, V) \leq G$ and so $Q_{U} \leq G$. Thus (a) follows from 3.6b.
(b) Suppose first that Hypothesis (B) holds. Then by 3.5 b applied to $U^{\perp} / U,\left\langle T_{E}\right| E \leq$ $\left.\mathcal{S} \cap U^{\perp}\right\rangle$ acts transitively on the singular 1-spaces of U^{\perp} / U.

Under Hypothesis $(C) U^{\perp} / U$ is at least three dimensional and so by 3.5 a1 (applied to $\left.U^{\perp} / U\right)$ and 3.6 d we get that $\left\langle Q_{V} \mid U \leq V \in \mathcal{S}(2)\right\rangle$ acts transitively on the singular 1-spaces of U^{\perp} / U. Thus (b) holds also in this case.

Lemma 3.10 Suppose that (G, Σ) fulfills Hypothesis (A).
(a) Let $0 \neq x \in N$ and $X=K x$. Then $Q_{X} \cap G=\{t(\phi, x) \mid \phi \in \tilde{N}, x \phi=0\}$, and $C_{G}(x)$ acts transitively on $Q_{X}^{\#} \cap G$. Moreover, $Q_{X} \cap G$ acts transitively on the 1-dimensional subspaces of \tilde{N} outside of $C_{\tilde{N}}(x)$.
(b) Let $0 \neq \phi \in \tilde{N}$ and $\Phi=K \phi$. Then $Q_{X} \cap G=\{t(\phi, x) \mid x \in \operatorname{ker} \phi\}$ and $C_{G}(x)$ acts transitively on $Q_{\Phi}^{\#} \cap G$. Moreover, $Q_{\Phi} \cap G$ acts transitively on the 1-dimensional subspaces of N outside of $\operatorname{ker} \phi$.
(c) Let $Z \in \Sigma$ and Q be the stabilizer in G of the series $0 \leq[N, Z] \leq C_{N}(Z) \leq N$. Then Q acts transitively on the set of all $Z_{0} \in \Sigma$ adjacent to Z.

Proof: (a) Let $1 \neq t \in Q_{X} \cap G$. The clearly x is a transvection with axis $K x$ and so $t=t(\phi, x)$ for some $\phi \in N^{*}$ with $x \phi=0$. Furthermore, $\phi \in\left[N^{*}, t\right] \leq\left[N^{*}, G\right] \leq \tilde{N}$ and so first part of (a) holds. $T\left(C_{\tilde{N}}(x), N\right)$ acts transitively on the nonzero vectors of \tilde{N} and so also on $Q_{X}^{\#} \cap G$. Finally, let $\phi_{1}, \phi_{2} \in \tilde{N}$ with $x \phi_{1}=1=x \phi_{2}$. Then $\phi_{1} \cdot t\left(\phi_{1}-\phi_{2}, x\right)=\phi_{2}$ and (a) is proved.
(b) Follows by a dual argument or by observing that $T(\tilde{N}, N)=T(N, \tilde{N})$ if we identify N with its copy in \tilde{N}^{*}.
(c) Let $Z=T(\Phi, X)$ and $Z_{i}=T\left(\Phi_{i}, X_{i}\right) \in \Sigma, i=1,2$ with Z_{i} adjacent to Z. We have to show that Z_{1} and Z_{2} are conjugate under Q. Since Z_{i} is adjacent to $Z, X \Phi_{i} \neq 0$ and $X_{i} \Phi \neq 0$. Note that $Q_{\Phi} \leq Q$ and so by (b) we may assume that $X_{1}=X_{2}$. Since $X_{i} \Phi_{i}=0$, the element of $t\left(\phi_{1}-\phi_{2}, x\right)$ (found in (a)), conjugates Φ_{1} to Φ_{2} and fixes $X_{1}=X_{2}$. This proves (c).

Lemma 3.11 Suppose that (G, Σ) fulfils Hypothesis' $(A),(B)$ or (C). Let $Z \in \Sigma, U$ a 1dimensional subspace of $[N, Z]$ and $Q=Q_{U} \cap G$. Let $x \in Q \backslash Q^{\prime}$ such that $[N, x]$ is singular. Then $Q=\left\langle x^{C_{G}(U)}\right\rangle$, unless $\operatorname{dim} N / N^{\perp}=4$ and $q\left(N^{\perp}\right) \neq K / K_{-}$.

Proof: Under Hypothesis (A) this follows directly from 3.10a.
So suppose Hypotesis' (B) or (C). Let $0 \neq y \in[N, x]+U / U U$ and A the subgroup of U^{\perp} / U generated by $y . C_{G}(U)$. In view of $3.4 \mathrm{~d}, \mathrm{~h} Q=\left\langle x^{C_{G}(U)}\right\rangle$ if and only if $A=U^{\perp} / U$. By 3.9 it suffices to show that A contains a singular 1 -space. Also A spans U^{\perp} / U as a K-space and so f does not vanish on A. Let $z \in A \backslash y^{\perp}$ and $E=[N, x] U$. By $3.6 \mathrm{~d}, Q_{E}$ acts as $Q_{E / U}$ on U^{\perp} / U.

Suppose that $A \cap y^{\perp} \not \leq E+\operatorname{rad} N / U$. Then by $3.4 \mathrm{~b}, E / U \leq\left[A \cap y^{\perp}, Q_{E}\right] \leq A$ and the lemma holds.

So we may assume that $A \cap y^{\perp} \leq E+\operatorname{rad} N / U$. In particular, $\left[z, Q_{E}\right] \leq E+\operatorname{rad} N / U$ and so by $3.4 \mathrm{~b}, E^{\perp}=E+\operatorname{rad} N$. Hence $\operatorname{dim} N / N^{\perp}=4$. If $q\left(N^{\perp}\right)=K / K_{-}$then by 3.4f, $\left[z, Q_{E}\right]+\operatorname{rad} N+U / U=E+\operatorname{rad} N / U$. Thus $A+\operatorname{rad}\left(U^{\perp} / U\right)=U^{\perp} / U$. Hence $\left[\left(U \perp / U, Q_{E}\right] \leq A\right.$. If $|K|=2,\{0, y\}$ is a singular 1 -space and we may assume that $|K| \neq 2$. But then $\left[\left(U^{\perp} / U, Q_{E}\right]=E+\operatorname{rad} N / U\right.$, and the lemma is proved.

Lemma 3.12 Suppose that Hypothesis (A), (B) or (C) holds, Then G is perfect.
Proof: Let

4 The structure of $[V, G] /[V, G] \cap C_{V}(G)$.

Throughout this section (G, Σ) fulfills Hypothesis (A),(B) or (C), $Z \in \Sigma, L=C_{G}([N, Z]$ and V is an $R G$-modules with $[V, Z, L]=0$. Let $Z_{0} \in \Sigma$ be adjacent to Z and let U be a 1-dimensional singular subspace of $[N, Z]$. Put $X=\left\langle Z, Z_{0}\right\rangle$, and $P=C_{G}(U)$.

Lemma 4.1 Suppose that Hypothesis (C) holds. The there exists $g_{1} \in P$ so that the following holds for $X_{1}=X^{g_{1}}$ and $L^{*}=L X_{1}$.
(a) $\left[X, X_{1}\right]=1$ and $[N, X]=\left[N, X_{1}\right]$.
(b) X_{1} nomalizes $[N, Z]$ and L. In particular L^{*} is a subgroup of $N_{G}([N, Z])$.
(c) $[N, Z] \cdot g_{1}=U+\left[N, Z_{O}\right] \cap U^{\perp},\left[N, Z_{0}\right] \cdot g_{1}=[N, Z] \cap\left[N, Z_{0}\right] \cdot g_{1}+\left[N, Z_{0}\right] \cap\left[N, Z_{0}\right] \cdot g_{1}$.

Proof: Let U_{1} be a singular 1-space in $[N, Z]$ different from U. Put $U_{2}=\left[N, Z_{0}\right] \cap U^{\perp}$ and $U_{3}=\left[N, Z_{0}\right] \cap U_{1}^{\perp}$. Then $U+U_{1}+U_{2}+U_{3}=[N, Z]+\left[N, Z_{0}\right]=[N, X]$ is a 4 dimensional quadratic space " + "-type. Let $E=[N, Z]=U+U_{1}, E_{0}=\left[N, Z_{0}\right]=U_{2}+U_{3}, E_{1}=U+U_{2}$, $E_{2}=U_{1}+U_{3}, Z_{i}=T_{E_{i}}, i=1,2$ and $X_{1}=\left\langle Z_{1}, Z_{2}\right\rangle$. Note that for $z \in Z$ and $n \in N$, n. z is perpendicular to n. Hence $\left[U_{1}, Z_{1}\right] \leq U_{1}^{\perp} \cap\left[N, Z_{1}\right]=U_{1}^{\perp} \cap\left(U+U_{2}\right)=U$. It follows that Z_{1} normalizes E and so centralizes Z. By symmetry, also Z_{2} normalises E and centralizes Z. So (b) holds. Morover, X_{1} centralizes Z and (by symmetry) Z_{O}. Thus (a) holds. To complete the proof of this lemma it now suffices to find $g_{1} \in P$ with $Z^{g_{1}}=Z_{1}$ and $Z_{O}^{g_{1}}=Z_{2}$, i.e with $E . g_{1}=E_{1}$ and $E_{O} . g_{1}=E_{2}$.

By 3.9b there exists $g \in P$ with $E . g=E_{1}$. Since $E^{\perp} \cap E_{0}^{=} 0, E_{1}^{\perp} \cap E_{0} . g=0$. Since also $E_{1} \perp \cap E_{2}=0$ we conclude from 3.3b that $E_{0} . g q=E_{2}$ for some $q \in Q_{E_{1}}$. Put $g_{1}=g q$. As g_{1} centralizes E_{1}, we get $g_{1} \in P, E . g_{1}=E_{1}$ and $E_{O} . g_{1}=E_{2}$.

Lemma 4.2 $G=\left\langle L, Z_{0}\right\rangle=\langle L, X\rangle$.
Proof: Let $\Sigma_{0}=Z^{\left\langle L, Z_{0}\right\rangle}$. By 3.3b, 3.9a and 3.10, Z_{0}^{L} contains all elements in Σ adjacent to Z. Further, if Z_{1} and Z_{2} are adjacent in Σ, then they are conjugated in $\left\langle Z_{1}, Z_{2}\right\rangle$. It follows that Σ_{0} contains the connected component of Σ which contains Z. So 3.8 implies $\Sigma_{0}=\Sigma$. Since $G=\langle\Sigma\rangle, G=\left\langle L, Z_{0}\right\rangle$.

Lemma 4.3 Let $B=N_{X}(Z)$ and W_{0} an $R(L B)$-submodule of V with $\left[W_{0}, L\right]=0$. Put $W=\left\langle W_{0} \cdot X\right\rangle$. Then
$C_{W}(X) \leq C_{V}(G),[W, Z]+C_{W}(G)=W_{0}+C_{W}(G)$ and $W=[W, X]+C_{W}(G)$.
Proof: By 2.2 we have $C_{W}(X) \leq W_{0}+[W, Z]$. Since $[V, Z, L]=0$ this implies $\left[C_{W}(X), L\right]=0$. By $4.2,\langle L, X\rangle=G$ and so $C_{W}(X) \leq C_{V}(G)$. The other assertions now follow from 2.2.

Lemma 4.4 Let M_{0} be an $R N_{G}(U)$-submodule of V with $\left[M_{0}, P\right]=0$. Put $M_{1}=M_{0}$, in cases (A) and (B), and $M_{1}=\left\langle M_{0} \cdot L^{*}\right\rangle$, in case (C). Put $M=\left\langle M_{0} \cdot G\right\rangle$. Then $[M, Z]+$ $C_{M}(G)=M_{1}+C_{M}(G)$.

Proof: Let $g \in G$. If $[U . g, Z]=0$, then $Z \leq P^{g}$ and $\left[M_{0} g, Z\right]=0$.
If $[U g, Z] \neq 0$, we claim that there exists $\omega \in N_{X}(Z)$ and $h \in L \cap C_{G}(Z)$ (or, in case (C), $h \in L^{*}$) with $U g=U \omega h$. Indeed, in case (A) this follows from 3.10b. In case (B) U.g and $U . \omega$ both are not perpendicular to U and the claim follows from 3.3b. In case (C) we first choose $h_{1} \in L_{*}$ with $U g h_{1} \perp U$. Then both $U . g h_{1}$ and $U . \omega$ are perpendicular to U and neither $U g h_{1}$ nor $U \omega$ are perpendicular to $[N, Z]$. Thus by 3.6 d and 3.3 b (the latter applied to $\left.U^{\perp} / U\right)$ we get $U . g h_{1} q=U . \omega$ for some $q \in Q_{[N, Z]}$. This proves the claim. In particular,

$$
\left[M_{0} \cdot g, Z\right]=\left[M_{0} \cdot \omega h, Z\right]=\left[M_{0} \cdot w, Z\right] h .
$$

By 4.3 we have

$$
\left[M_{0} \cdot \omega, Z\right]+C_{M}(G)=M_{0}+C_{M}(G)
$$

Thus $\left[M_{0} g, Z\right]+C_{M}(G)=M_{0} h+C_{M}(G)$ and $M_{0} h+C_{M}(G) \leq[M, Z]+C_{M}(G) \leq$ $M_{1}+C_{M}(G)$. Since L^{*} normalises $[M, Z]$ the lemma is established.
$C V L G$
Lemma 4.5 (a) $\left\langle C_{V}(L) \cdot X\right\rangle=\left[C_{V}(L), X\right]+C_{V}(G)$.
(b) $\left\langle C_{V}(L) \cdot G\right\rangle=[V, G]+C_{V}(G)$.
(c) If $V=\left\langle C_{V}(L) \cdot G\right\rangle$, then $[V, G]=[V, G, G]$.
(d) $[V, G, G, G]=[V, G, G]$.
(e) Let D be maximal in V with $[V, G, G]=0$, then $C_{V / D}(G)=0$.

Proof: (a) follows immediately from 4.3 applied to $W_{0}=C_{V}(L)$.
(b) By (a) $\left\langle C_{V}(L) \cdot G\right\rangle \leq[V, G]+C_{V}(L)$. Now $[V, G]=\langle[V, Z] \cdot G\rangle \leq\left\langle C_{V}(L) \cdot G\right\rangle$ and (b) is proved.
(c) follows from (b). (d) from (c) applied to $[V, G]$ in place of V and (e) from (d) applied the inverse image of $C_{V / D}(G)=0$ in V.

Lemma 4.6 Suppose that (C) holds. Then
(a) $\left[C_{V}(L), Q_{U}, P\right]=0$
(b) $\left[V, Q_{U}, Q_{U}, P\right]=0$ and $[V, Q, Q]=[V, Q, Z]$.
(c) $\left[V, Z, L^{*}\right] \leq\left\langle C_{V}(P) G\right\rangle$

Proof: Let $g \in P$ with $[N, Z] g \not \perp[N, Z]$. Then by ?? $P=\left\langle L, L^{g}\right\rangle$ and $Q_{U}=Z^{g}\left(Q_{U} \cap\right.$ L). Thus

$$
\left[V, Z, Q_{U}\right] \leq\left[C_{V}(L), Q_{U}\right]=\left[C_{V}(L), Z^{g}\right] \leq C_{V}\left(\left\langle L, L^{g}\right\rangle \leq C_{V}(P)\right.
$$

. Thus (a) is proved. Now (b) follows from $Q_{U}=\left\langle Z^{P}\right\rangle$ and (c) from $L^{*}=\left\langle Q_{U}^{L^{*}}\right\rangle L$.
Lemma 4.7 Suppose that $\left(C^{*}\right)$ holds and $\left[V, Z, L^{*}\right]=0$. Then $[V, G]=0$
Proof: By 4.5 we may assume that $C_{V}(G)=0$. Let $D=[V, Z]$. Since $G=\left\langle Z^{G}\right\rangle$ we need to show that $D=0$. Suppose not.

Assume first that char $K \neq 2$. Then $Z(X)=Z\left(X_{1}\right) \leq L_{*}$. Thus $[D, Z(X)=0$ and so we conclude from 2.3 that $[D, X]=0$. By $2.3, D \leq C_{V}(G)=0$ and we are done in this case.

Assume next that char $K=2$. We may assume without loss that $V=\langle D G\rangle$. We will first prove
(1) $\left.V, Q_{U}, Q_{U}\right]=0$.

Indeed by 4.6, $[V, Q, Q]=[V, Q, Z]$ is centralized by P and by L^{*} and so by G.
(2) If N has Witt index at least three, then N is nondefective of dimension 6 and $|K|=2$.

Pick $E \in \operatorname{calS}(2) \cap[N, Z]^{\perp}$ with $E \cap U=0$. Then $Z_{E} \leq P$ and so $\left[C_{V}\left(Q_{U}\right), Z_{E}\right]$ is centralized by $Y=\left\langle Q_{U}, L^{*} E\right.$. Hence if $\operatorname{dim} N>6$ we conclude from ?? that $Y=G$ and $C_{V}(G)=0 \mathrm{i}$ mplies $\left[C_{V}\left(Q_{U}\right), Z_{E}=0\right.$. Since $[V, Z] \leq C_{V}\left(Q_{U}\right),[V, Z]$ is centralized by $\left\langle Z_{E}^{P}\right\rangle$ and L^{*} and so by G. To show that $K=2$,pick $Z_{2} \in P \cap \Sigma$ adjacent to Z_{E}. Put $S=\left\langle Z_{E}, Z_{2}\right.$. Note that $N_{S}\left(Z_{E}\right) \leq L^{*}$ and so centalizes D. Suppose that $| K \mid \neq 2$. Then $Z_{E}=\left[Z_{E}, N_{S}\left(Z_{E}\right)\right]$ and so by $2.2 \mathrm{~d}, S$ centralise D. But $\left\langle S, L^{*}\right\rangle=G$ and (2) holds.
(3) N has Witt index at least three.

Suppose that N has Witt index 2. Since $Q_{[N, Z}=\left(Q_{[N, Z} \cap Q_{U}\right)\left(Q_{[N, Z]} \cap Q_{U}\right)^{g}$ for $\operatorname{gin} L^{*} \backslash N_{G}(U)$ we conclude from (1) that $\left[C_{V}\left(Q_{U}\right), Q_{[N, Z]}, Q_{[N, Z]}\right]=0$ and we can apply 2.2 to $\left\langle D^{P}\right\rangle$. Since L cenralizes D and since by ?? $Q_{E} Q_{U}=\left[Q_{E}, L\right] Q_{U}$ we conclude from 2.2 d that $\left\langle Q_{U}^{P}\right\rangle$ centralizes $[D]$. So again $[D, G]=0$.

Lemma 4.8 Suppose that $(A),(B)$ or $\left(C^{*}\right)$ holds. Then $\left\langle C_{V}(P) G\right\rangle=[V, G]+C_{V}(G)$.
Proof: If (A) or (B) holds this is 4.5. So suppose that (C*) holds. Then by the same reference, $C_{V}(P) \leq C_{V}(L) \leq[V, G]+C_{V}(G)$. Moreover, by 4.6 c and 4.7 (applied to $\left.V /\left\langle C_{V}(P) G\right\rangle\right),[V, G] \leq\left\langle C_{V}(P) G\right\rangle$.

For the case (B) we need to define a few more subgroups of G. Let $U_{1} \in(2)$ with $U \leq U_{1}$. Let $U 2 \in \mathcal{S}(2)$ with $U_{1} \cap U_{2}^{\perp}=0$ and put $F=U+\left(U_{2} \cap U^{\perp}\right.$. Define $\tilde{X}=$ $C_{\mathcal{O}}\left((U 1+U 2)^{)} \cap N_{\mathcal{O}}\left(U_{1}\right) \cap N_{\mathcal{O}}\left(U_{2}\right), Z^{*}=C_{\tilde{X}}(F)\right.$, and $X^{*}=\left\langle Z *^{\tilde{X}}\right\rangle$. Note that $X^{*} \cong S L_{2}(K)$ and Z^{*} is a maximal unipotent subgroup of X^{*}. Moreover, $Z^{*} \leq Z_{F} \leq Q_{F}$ and so by 3.9 both Z^{*} and X^{*} are contained in G.

Lemma 4.9 Suppose that (B) holds.
(a) $\left[V, T_{F}, C_{G}(F)\right)=0$. Inparticular, $\left[V, Z^{*}, Z^{*}\right]=0$.
(b) $G=\left\langle X^{*}, C_{G}(F)\right\rangle$.
(c) 4.3 still holdsif X, Z and L are replaced by X^{*}, Z^{*} and $C_{G}(F)$, respectively.

Proof: By 3.6, $T_{F}=\left\langle T_{E} \mid E \in \mathcal{S}(1) \cap F\right\rangle$. Futhermore, $C_{G}(F) \leq C_{G}(E) \leq C_{G}\left(\left[V, T_{E}\right]\right.$ for all E in $\mathcal{S}(1) \cap F$. Thus (a) holds.
(b) $G_{0}=\left\langle X^{*}, C_{G}(F)\right\rangle$ and $\Lambda=F G_{0} \subseteq \mathcal{S}(2)$. Since $F X^{*}$ contains elements adjacent to F (with respect to the graph defined in 3.7)3.3b implies that Λ containes all elements in $\operatorname{cal} S(2)$ adjacent to F. Since G_{0} acts transitive on Λ, Λ is a connected component of $c a l S(2)$ and so by $3.7 \Lambda=\operatorname{calS}(2)$. Since $T_{F} \leq G_{0}$ and $G=\langle\Sigma\rangle, G=G_{0}$.
(c) Using (a) and (b) the proof for 4.3 goes through.

Theorem 4.10 Suppose that $V=\left\langle C_{V}(P)^{G}\right\rangle$. Then there an (R, K)-module M such that $V / V_{V}(G) \cong M \otimes_{K} N / N^{\perp}$ as an $R G$-module.

Proof: By 4.5 we may assume that $C_{V}(G)=0$. Let $P_{0}=N G(U)$. In case (B) define X^{*} and Z^{*} as above. In cases (A) and (C) let $X^{*}=X$ and $Z^{*}=Z$. Then $X^{*} \cap P_{0}$ acts transitively on $U^{\#}$ and therefore $P_{0}=\left(X \cap P_{0}\right) P$.

Let $W=C_{V}(P)$ and $W_{1}=\left\langle W X^{\rangle}\right.$. It is easily checked that $\left.X \leq L, X^{*}\right\rangle$ and so by $4.2, G=\left\langle L, X^{*}\right.$. Note that by $4.9 \mathrm{~b} Z^{*}$ acts quadratically on W_{1}. By 4.3 and 4.9 c $C_{W_{1}}\left(X^{*}\right) \leq C_{V}(G)=0, W_{1}=\left[W_{1}, X *\right]$ and $W=\left[W_{1}, Z^{*}\right]$. Let $U_{1}=\langle U X *\rangle$. Then U_{1} is a natural module for $X * \cong S L_{2}(K), U=\left[U_{1}, Z^{*}\right]$ and $C_{X^{*}}(U)=P \cap X *$. Hence $\left[W, C_{X^{*}}(U)\right]=0$ and $\left[W_{1}, Z *, C_{X^{*}}(U)\right]=0$. Therefore we can apply 2.3 to X^{*} and W_{1} and find an (R, K)-module M such that
(1) $W_{1} \cong M \otimes_{K} U_{1}$ as an $R X^{*}$ - module.

Let $N_{0}=M \otimes K\left(N / N^{\perp}\right)$. We will show that N_{0} and V are isomorphic as $R G$ - modules. $P_{0}=\left(X^{*} \cap P_{0}\right) P$ and (1) imply that $M \otimes_{K} U$ and W are isomorphic $R P_{0}$-modules. Let M be the $R G$-module induced from the $R P_{0}$-module W. Let

$$
\tilde{M}=M /\left\langle[M, Z, L]^{G}\right\rangle \text { and } \bar{M}=\tilde{M} / C_{\tilde{M}}(G)
$$

By assumption $V=\langle W G\rangle$. Furthermore, $N_{0}=\left\langle M \otimes_{K} G\right\rangle$ and so by the universial property of induced modules there exist $R G$-epimorphisms:

$$
\phi_{1} M \rightarrow V \text { and } \phi_{2} M \rightarrow N_{0}
$$

Since $[V,, Z, L]=0$ and $\left[N_{0}, Z, L\right]=0$ we get that $\langle[M, Z, L]\rangle \leq \operatorname{ker} \phi_{i}$ for $\mathrm{i}=1,2$. Further, $C_{V}(G)=0$ and $C_{N} 0(G)=0$, the latter being true since N_{0} as a $\mathbb{Z} G$ module is the direct sum of copies of N / N^{\perp}. Thus ϕ_{1} and ϕ_{2} induce $R G$-epimorphism

$$
\overline{\phi_{1}} M \rightarrow V \text { and } \bar{\phi}_{2} M \rightarrow N_{0}
$$

We now prove that

$$
\text { (2) ker } \overline{p h i_{i}} \cap[\bar{M}, Z]=0
$$

For this note first that by 4.4 applied to $[\bar{M}, Z]=\left\langle\bar{W} L^{*}\right\rangle$, where we identified W with its canonical image in M. Obviously $\overline{\phi_{i}}$ restricted to W is one to one. So if $[I, Z]=W,(2)$ is proved. Otherwise (C) holds. Recall the definition of $X-1$ and g_{1} at the beginning of this section.Then

$$
[\bar{I}, Z]=\left\langle W L^{*}\right\rangle=\left\langle W X_{1}\right\rangle\langle W X\rangle g_{1}=\left\langle W_{1}\right\rangle g_{1}
$$

Now $\left[W_{1} g_{1}, Z_{1}^{g}\right]=W g_{1}=W$ and so $\left[W_{1} g_{1}, Z\right] \cap \operatorname{ker} \overline{\phi_{i}}=0,\left[\operatorname{ker} \overline{\phi_{i}} \cap W_{1} g_{1}, Z\right]=0$ and $\operatorname{ker} \overline{\phi_{i}} \cap W_{1} g_{1} \leq C_{W_{1} g_{1}}\left(X_{1}\right)=0$. This proves (2).

By (2) we get that $\left[\operatorname{ker} \overline{\phi_{i}}, Z\right]=0$ and so $\operatorname{ker} \overline{\phi_{i}} \leq C_{b a r M}(G)$. By $4.5 \mathrm{c}, C_{\bar{M}}(G)=0$ and thus $\overline{\phi_{i}}$ is one to one. Hence

$$
V \cong \bar{M} \cong N_{0} \text { as RG-modules, }
$$

Theorem 4.10 is established.

5 Determination of $[V, G] \cap C_{V}(G)$

Retain the assumptions and notation from the previous section. This section is entirely devoted to the proof of

Proposition 5.1 Suppose that $V / C_{V}(G) \cong M \otimes_{K} N / N^{\perp}$ for some (R, K)-module M and that $V=[V, G]$. Then one of the follwing holds
(a) There exists an R-submodule $C \leq M \otimes N^{\perp}$ such that $V \cong M \otimes_{K} N / C$ as $R G$ modules.
(b) $|K|=4, \sigma \neq i d$ and $\operatorname{dim} N=4$.

Proof: Recall the notations introduced in 2.5 and 2.7. Then we are trying to proof that $M \otimes_{K} N$ is a universial central \mathcal{C} extension, where \mathcal{C} is the class of $R G$-modules W with $[W, Z, L]=0$. In view of 2.7 we may assume without loss that $V / C_{V}(G) \cong N / N^{\perp}$. We first prove
(1) There exists an $R G$-module W and $R G$-submodules C_{1} and C_{2} of $C_{W}(G)$ such that $W / C_{1} \cong V, W / C_{2} \cong N$ and $[W, Z, L]=0$.

Let μ be an $R G$-isomorphism from $V / C_{V}(G)$ onto N / N^{\perp}. Put $W=\{(v, n) \mid v \in V, n \in$ $\left.N, \mu\left(v+C_{V}(G)\right)=n+N^{\perp}\right\}$, Let $C_{1}=\{0\} \times N^{\perp}$ and $C_{2}=C_{V}(G) \times\{0\}$. Then C_{i} is the kernel of the projection of W onto the i 'th coordinate and so $W / C_{1} \cong V$ and $W / C_{2} \cong N$.

In view of (1) we may assume that $C_{V}(G)$ has a submodule C such that $V / C \cong N$. Pick $x \in Q_{U} \backslash T_{U}$ such that $[N, x]$ is singular. Put $\bar{V}=V / C_{V}(G)$ and $A=\left[V, P, Q_{U}\right]$. Note that $\bar{V} \cong N / N^{\perp}$.
(2) $C_{\bar{V}}(x)=\overline{C_{V}(x)}$.

Let R be maximal in G with respect to acting trivially on $[\bar{V}, x], C_{\bar{V}}(x) /[\bar{V}, x]$ and $\bar{V} / C_{\bar{V}}(x)$. Then by 3.4b and3.10a, $[\bar{V}, R]=C_{\bar{V}}(x)$. Note that $[V, x, R, Z]=0$. Indeed, if x is contained in an element of Σ, then this follows from $[V, Z, L]=0$ and if not, (B) holds and it follows from 4.9a. Moreover, $[R, Z]=0$ anf the three subgroup lemma implies $[V, R, x]=0$.
(3) Asssume that (B) holds and $|K| \neq 2,4$. Then $\left[V, Z^{*}\right] \cap C_{V}(G)=0$.

Recall the definitions of X^{*}, \tilde{X} and Z^{*} (see before ??). It is enough to prove that $\left[V, X^{*}\right] \cap C_{V}(G)=0$. By (2), $V=\left[V, X^{*}\right] C_{V}\left(X^{*}\right)$ since the same statement holds for \bar{V} in
plcae of V. Thus if K is not commutative or char $K \neq 2$ we are done by 2.4 So assume that K is commutative. Since $|K| \neq 2,4$ there exist $\lambda \mu \in K \backslash\{0\}$ so that $\lambda \mu \neq 1$ and $\lambda^{2}=\mu^{-1} \mu^{\sigma}$. This in turn yields an element $1 \neq h \in X^{*}$ with $\left[h, X^{*}\right]=1$ and acting as $\lambda \mu$ on one of the 2 dimensional singular subspaces of $\left[N, X^{*}\right]$ normalised by X^{*}. Now $\left[\left[V, X^{*}\right], h\right] \cap C_{V}(G)=0$, $\left[V, X^{*}, X^{*}\right] \leq\left[\left[V, X^{*}\right], h\right]$ and since X^{*} is perfect $\left[V, X^{*}\right] \cap C_{V}(G)=0$. So (3) is proved.
(4) $A \cap C_{V}(G)=0$, except possibly in the case (B), $|K|=4, \operatorname{dim} N=4$ and $\sigma \neq i d$.

Suppose first that $Q=\left\langle x^{P}\right\rangle$. Since $[V, P, x, P]=0$ we get that $[V, P, Q]=\left\langle x^{P}\right\rangle=$ $\langle[V, P, x]\rangle=[V, P, x]$. Now by (1), $[V, x] \cap C_{V}(G)=0$ and (4) holds in this case. Suppose next that the hypothesis of (3) holds. Note that by ??, $Q=\left\langle Z^{* P}\right\rangle$. So replacing x by Z^{*} in the preceeding argument shows that (4) holds also in this case. Now by ?? we have covered all cases but the one excluded in (4).
(5) If $A \cap C_{V}(G)=0$, then $C=0$.

Let $v \in V \backslash\left([V, P]+C_{V}(G)\right)$. We claim that $[v, Q] \cap\left(C_{V}(G)+A\right) \leq A$. Suppose not and put $\tilde{V}=V / A$. Since $[\tilde{V}, Q, Q]=0$, we have $\left[V, Q^{\prime}\right]=0$ and $\left.[\tilde{v}, Q]=\{[\tilde{v}, q] \mid q \in Q]\right\}$. Hence there exists $q \in Q$ with $[\tilde{v}, q] \neq 0$ and $[v, q] \in C_{V}(G)+A$. Reading this equation modulo C and applying the " $Q^{\prime}=T$ "-statement of ?? we get that $q \in Q^{\prime}$, a contradiction to $[\tilde{v}, q] \neq 0$.

Therefore $([v, Q]+A) \cap C_{V}(G)=0$. Since P normalizes $[v, Q]+A$, we conclude that $[v, Q]+A=[V, P, P]=[V, Q]$ and $[V, Q] \cap C_{V}(G)=0$. Let $g \in G$ with $U^{g} \not Z U^{\perp}$. Then $V=[V, Q] \oplus C_{V}(G) \oplus A^{g} . P=\left(P \cap P^{g}\right) Q$ and $\left[A^{g}, P \cap P^{g}\right]=0$ imply that $[V, P]=[V, Q]$. Moreover, $[V, Q]=A \oplus\left[V, P \cap P^{g}\right]$ and so $V=[V, G]=[V, P]+[V, P]^{g}=A \oplus\left[V, P \cap P^{g}\right] \oplus$ A^{g}. Finally, this direct sum remains a direct sum modulo C and C intersects each of the summands trivally. This implies that $\mathrm{C}=0$, proving (5).

Theorem A is now a direct consequence of (4) and (5).

6 Proof of Theorem B

ProofOfTheorer
Reduction
$L_{2}=C_{G}([\tilde{N}, Z]), F=\left[V_{0}, Z\right], F_{i}=C_{F}\left(L_{i}\right)$ and $V_{i}=\left\langle F_{i}^{G}\right\rangle,(i=1,2)$. Then for $i=1,2$ $\left[V_{i}, Z, L_{i}\right]=0$ and $\left[V_{0}, G\right]=W_{1}+W_{2}$.

Proof: Since $\operatorname{dim} N>2$ we can choose 1-dimensional subspaces U and \tilde{U} of N and \tilde{N}, respectively, so that $\tilde{U}([N, Z])=0, \tilde{U}(U)=0,[\tilde{N}, Z](U) \neq 0$ and $\tilde{U} \neq[\tilde{N}, Z]$. Let $Z_{0}=T(\tilde{U},[N, Z])$. Then $\left[V_{0}, Z_{0}\right]$ is centralized by $C_{G}(\tilde{U}) \cap C_{G}([N, Z])$ and, in particular, by $Q:=C_{G}\left(\tilde{U}^{\perp}\right) \cap C G()$. Note that Z centralizes \tilde{U} and therefore normalizes Q. Now $\left[V_{0}, Z_{0}\right] \leq C_{V_{0}}(Q)$ and so

$$
\left[V_{0}, Z_{0}, Z\right] \leq C_{V_{0}}(Q)
$$

By ?? applied to $L_{1} / C_{L_{1}}\left(C_{\tilde{N}}([N, Z])\right.$ in place of G we have $\left\langle L_{0}, Z_{0}\right\rangle=L_{1}$. Hence $L_{1}=$ $\left\langle L_{0}, Q\right\rangle$ and

$$
\left[V_{0}, Z_{0}, Z\right] \leq C_{V_{0}}\left(L_{0}\right) \cap C_{V_{0}}(Q) \leq C_{V_{0}}(L 1)
$$

Since $\left\langle Z_{0}^{L_{0}}\right\rangle$ is normalized by $\left\langle L_{0}, Z_{0}\right\rangle=L_{1}$, we have $L_{1}=\left\langle Z_{0}^{L_{0}}\right\rangle$ and thus

$$
\left[V_{0},\left\langle Z_{0}^{L_{0}}\right\rangle, Z\right]=\left[V_{0}, L_{1}, Z\right] \leq C_{V_{0}}\left(L_{1}\right)
$$

By a symmetric argument $\left[V_{0}, L_{2}, Z\right] \leq C_{V_{0}}\left(L_{2}\right)$. Furthermore,

$$
\left[V_{0}, G\right]=\left[V_{0},\left\langle L_{1}, L_{2}\right\rangle\right]=\left[V_{0}, L_{1}\right]+\left[V_{0}, L_{2}\right]
$$

and thus It follows that $\left[V_{0}, G\right]=\left[V_{0}, G, G\right]=V_{1}+V_{2}$.
To complete the proof of 6.1 it is enough to show that $\left[V_{i}, Z\right] \leq F_{i}+C_{V_{i}}(G)$. A glance at the proofs of ??, ?? and ?? shows that these lemmas hold with V replaced by V_{i} and L replaced by L_{0}. It follows that $\left[V_{i}, Z\right] \leq F_{i}+C_{V}(G)$. So $\left[V_{i}, Z, L_{i}\right]=0$ and 6.1 is established.

To prove Theorem B we now merely have to apply Theorem A to the modules V_{1} and V_{2} of 6.1. Note here that we can view N as a subspace of the dual space of \tilde{N} and that then $T(\tilde{,} N)=T(N, \tilde{N})$.

7 Finitary modules for Classical Groups

Remark: we need to be more precise

Suppose G is one of the groups in the introduction and that N is infinite dimensional over K. Furthermore, let W be a G-module over the integers such that $[W, g]$ has finite rank for all $g \in G$. In case (A) let L_{0} be defined as in Theorem B, otherwise let $L_{0}=L$. Then in any case $\left[Z, L_{0}\right]=0$. Now it is well-known(?) that L_{0} has no non-central Z-module of finite rang. Hence $\left[W, z, L_{0}\right]=0$, for all $z \in Z$, and so $\left[W, Z, L_{0}\right]=0$. Therefore we can apply our main theorems with R the ring of integers to see that $[W, G] /[W, G] \cap C_{W}(G)$ is a direct sum of natural modules. Thus Theorem C holds.

References

[CH] P. Cameron and J.I. Hall, Some groups generated by transvection subgroups, J.Algebra 140(1991),184-209.
$[\mathrm{Cu}]$ H.Cuypers, Symplectic geometries, transvection groups, and modules. J. Combin. Theory Ser. A 65(1994), no. 1, 39-59
[Di] J. Dieudonne, La Geometrie des Groupes Classiques, Springer-Verlag, Berlin(1971).
[Ha1] J.I. Hall, Infinite Alternating Groups as Finitary Linear Transformation Groups, J. Algebra 119 (1988) 337-359.
[Ha2] J.I.Hall, Locally finite simple groups of finitary linear transformations, in Finite and locally finite groups (Istanbul, 1994),147-188, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 471, Kluwer Acad. Publ., Dordrecht, 1995.
[Ha3] J.I. Hall, A characterization of the finite symplectic groups over fields with more than two elements, J. Algebra 136(1991)334-352.
[Gr] H. Gross Quadratic forms in Infinite Dimensional Vector Spaces, Birkhäuser, Boston,(1979).
[LP] F.Leinen and O.Puglisi, Countable Recognizability of Primitive Periodic Groups, Preprint, Universitá degli Studi di Trento (1995).
[Ph] R.E. Philips, The Structure of Finitary Linear Transformation, J. Algebra 119 (1988) 400-448.
[Tf] F. Timmesfeld, On the identification of the natural modules for symplectic and linear groups over arbitrary fields. Geom. Ded. 35(1990) 127-142.
[Ti] J. Tits, Buildings of Spherical Type and Finite (B,N)-Pairs, Springer-Verlag, Berlin, 1974.

Ulrich Meierfrankenfeld
Department of Mathematics
Michigan State University
East Lansing, Mi 48824
meier@math.msu.edu
http://www.math.msu.edu/ \sim meier/

