A computer free construction of J_{4}

A.A. Ivanov

U. Meierfrankenfeld

Abstract

Define a finite simple group J to be of J_{4}-type (or simply J_{4}) provided that J contains an involution z with $$
C_{J}(z) \sim 2_{+}^{1+12} 3 \text { Aut Mat } t_{22} .
$$

The purpose of this paper is to give the first computer free construction of a group of J_{4} type. In addition we achieve yet another uniqueness proof for groups of J_{4}-type via the simple connectedness of the 2-local geometry of such a group.

1 Introduction

Initial evidence for the existence of groups of J_{4}-type was given by Z. Janko in [10]. He has shown that the order $o\left(J_{4}\right)$ of such a group is

$$
86,775,571,046,077,562,880=2^{21} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11^{3} \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 43
$$

determined its conjugacy classes and much of the p-local structure. J. Conway, S. Norton, J. Thompson and D. Hunt used this information to determine the character table of J_{4} and, in particular, proved the existence of an irreducible (irrational) complex character of degree 1333. Looking at the 2-modular reduction of this character J. Thompson conjectured the existence of an irreducible 112 -dimensional representation of J_{4} over $G F(2)$. Based on this conjecture S . Norton with the help of D. Benson, J. Conway, R. Parker and J. Thackray constructed J_{4} as a subgroup of $G L_{112}(2)$. Their construction is outlined in [13], discussed in more detail in [3] and depends on the use of a computer. In [12], W. Lempken gave explicit generators for J_{4} as a subgroup of $G L_{1333}(11)$. The proof that the group generated is in fact J_{4} relies on its existence.

Definition 1.1 Let I be a set of size n. A (finite) amalgam of rank n (over I) is a tuple ($\mathcal{A} ; M_{i}, i \in$ $\left.I ; *_{i}, i \in I\right)$ where \mathcal{A} is a finite set, M_{i} is subset of \mathcal{A} and $*_{i}$ is binary operation defined on M_{i} so that the following conditions hold:
(i) $\left(M_{i}, *_{i}\right)$ is a group for every $i \in I$;
(ii) $\mathcal{A}=\cup_{i \in I} M_{i}$;
(iii) $\cap_{i \in I} M_{i} \neq \emptyset$;
(iv) if $x, y \in M_{i} \cap M_{j}$ for $i, j \in I$ then $x *_{i} y=x *_{j} y$.

We will write $\left(M_{i} \mid i \in I\right)$ for the amalgam \mathcal{A} as above (since $\mathcal{A}=\cup_{i \in I} M_{i}$, there is no need to refer to \mathcal{A} explicitly). Whenever x and y are in the same M_{i} there product $x *_{i} y$ is defined and it is independent of the choice of i. We will normally write this product simply by $x y$. Since $B:=\cap_{i \in I} M_{i}$ is non-empty, one can easily see that B contains the identity element of $\left(M_{i}, *_{i}\right)$ for every $i \in I$. Moreover, these identity elements must be equal. The reader may notice that a more
common definition of amalgams in terms of morphisms is essentially equivalent to the above one. For $J \subseteq I$ we put $M_{J}=\cap_{i \in J} M_{i}$. We will write, for instance $M_{i j k}$ instead of $M_{\{i, j, k\}}$ and consider $M_{i j}$ as a subgroup in M_{i} and $M_{j i}$ as a subgroup of M_{j}. An amalgam of rank 3 will also be called a triangle of groups. The isomorphism of amalgams is defined in the obvious way. Let $(M, *)$ be a group, $\left\{M_{i} \mid i \in I\right\}$ be a family of subgroups in M and $*_{i}$ be the restriction of $*$ to M_{i}. Then $\left(M_{i} \mid i \in I\right)$ is an amalgam. This is the most important example of amalgam but it is not difficult to construct an amalgam which is not isomorphic to a family of subgroups in a group.

Definition 1.2 A group M is said to be a completion of an amalgam $\left(M_{i} \mid i \in I\right)$ if there is a mapping φ of $\cup_{i \in I} M_{i}$ into M such that
(i) M is generated by the image of φ;
(ii) for every $i \in I$ the restriction of φ to M_{i} is a group homomorphism with respect to $*_{i}$ and the group operation in M.

If φ is injective then the completion M is said to be faithful.
Definition 1.3 A triangle $\left(M_{1}, M_{2}, M_{3}\right)$ of groups is called a J_{4}-triangle provided that
(i) M_{1} is the semidirect product of the Mathieu group M_{24} of degree 24 and the 11-dimensional Todd module;
(ii) M_{2} is the semidirect product of $L_{5}(2)$ and the exterior square of a natural module of $L_{5}(2)$;
(iii) $\left|O_{2}\left(M_{3}\right)\right|=2^{15}$ and $M_{3} / O_{2}\left(M_{3}\right) \cong \operatorname{Sym}(5) \times L_{3}(2)$;
(iv) $\left|M_{2} / M_{21}\right|=31,\left|M_{3} / M_{31}\right|=5,\left|M_{3} / M_{32}\right|=10$ and $\left|M_{23} / B\right|=3$.

It was shown in [10] (cf. Theorem A (4), (6), (9)) that every group of J_{4}-type is a faithful completion of a J_{4}-triangle of groups. This and the existence of the complex character of degree 1333 serve as motivation for our construction of J_{4}. The principal steps are as follows:

Step 1: Show that there exists a J_{4}-triangle of groups.
Step 2: Show that $G L_{1333}(\mathbf{C})$ contains a faithful completion of a J_{4}-triangle of groups.
Step 3: Show that any faithful completion of a J_{4}-triangle of groups is a group of J_{4}-type.
Steps 1 and 2 are realized in Lemma 5.9 and Theorem 7.1, respectively. Step 3 was done in [2] (as the main step in the uniqueness proof for J_{4}) and independently in [8]. Both these proofs were achieved by establishing the simple connectedness of the 2-local geometry of J_{4}; hence rely on the existence of J_{4} and do not suit our purposes. In order to establish the existence of J_{4} we need to carry out Step 3 without assuming that J_{4} exists. In this form Step 3 is realized in Section 8 (cf. Theorem 8.26) and the proof is necessarily more complicated than the proofs in [2] and [8]. In particular our proof uses extremely detailed information about the 2-local geometries of $M a t_{24}$ and $M a t_{22}$.

Although we do not need the uniqueness of J_{4} to establish its existence, we include a uniqueness proof since it can be achieved with only little extra effort. Namely, we prove in Lemma 5.7 that any two J_{4}-triangles are isomorphic and within the realization of Step 3 (cf. Theorem 8.26) we show that every faithful completion of a J_{4}-triangle is finite and that its order is equal to $o\left(J_{4}\right)$. Since every completion of an amalgam is a quotient of the universal completion, this immediately implies that the unique J_{4}-triangle of groups has a unique faithful completion, namely the universal one.

2 Preliminaries

Our notation concerning groups is mostly standard. The symmetric, alternating and Mathieu group of degree n are denoted by $\operatorname{Sym}(n), \operatorname{Alt}(n)$ and $M a t_{n}$, respectively. By writing $G \sim A_{1} A_{2} \ldots A_{n}$ we mean that G has a normal series

$$
1 \triangleleft G_{1} \triangleleft \ldots \triangleleft G_{n}=G
$$

such that $G_{i} / G_{i-1} \cong A_{i}$. We write p^{a} for a p-group of order $p^{a} ; p^{a_{1}+a_{2}+\ldots+a_{n}}$ for $p^{a_{1}} p^{a_{2}} \ldots p^{a_{n}}$ and $2_{\varepsilon}^{1+2 n}$ for the extraspecial group of order $2^{1+2 n}$ and of type $\varepsilon \in\{+,-\}$. Throughout the paper $3 \cdot \operatorname{Alt}(6)$ denotes the non-split extension of $\operatorname{Alt}(6)$ by a centre of order 3 and $3 \cdot \operatorname{Sym}(6)$ stands for the extension of $3 \cdot \operatorname{Alt}(6)$ by an outer automorphism which induces a transposition on the $\operatorname{Alt}(6)$ quotient. Given a subgroup H in a group G we denote by G / H the set of right cosets of H in G.

Definition 2.1 Let G be a group, $K \unlhd G, \bar{G}=G / K$ and V a $G F(2) G$-module of dimension n with kernel K. Then
(i) if $\bar{G} \cong L_{n}(2)$ then V is called a natural $L_{n}(2)$-module for G;
(ii) if $\bar{G} \cong \Omega_{n}(2)$ and G fixes a non-degenerate quadratic form of plus type on V then V is called a natural $\Omega_{n}^{+}(2)$-module for G;
(iii) if $\bar{G} \cong \operatorname{Sym}(5), n=4$ and G^{\prime} preserves a $G F(4)$-structure on V, then V is called a natural $\Gamma L_{2}(4)$-module for G;
(iv) if $\bar{G}^{\prime} \cong 3 \cdot \operatorname{Alt}(6)$ and $n=6$, then V is called a hexacode module for G.

The module dual to V will be denoted by V^{*}.
Notation 2.2 Let $\left(M_{i} \mid i \in I\right)$ be an amalgam. Then for $i, j \in I$ we put $Q_{i}=O_{2}\left(M_{i}\right)$, $Q_{i}^{*}=$ $O_{2,3}\left(M_{i}\right), Z_{i}=Z\left(Q_{i}\right)$ and $T_{i j}=O_{2}\left(M_{i j}\right)$.

Definition 2.3 Let I be a set of size n and let Γ be an undirected n-partite graph without loops, whose parts are $\Gamma_{i}, i \in I$. This means that if $a \in \Gamma_{i}$ is adjacent to $b \in \Gamma_{j}$ then $i \neq j$. Let d the usual distance function on Γ. Then
(i) if $a \in \Gamma_{i}$, then a is said to be of type i;
(ii) a path of type $n_{1}-n_{2}-\ldots-n_{k}$ is a tuple $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ of vertices in Γ such that a_{i} is of type n_{i} and a_{i} is adjacent to a_{i+1}; we denote such a path by

$$
\stackrel{a_{1}}{n_{1}}-\stackrel{a_{2}}{n_{2}}-\ldots-\stackrel{a_{k}}{n_{k}} ;
$$

(iii) a non-degenerate path (or nd-path) is a path $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ such that a_{i-1} is neither equal nor adjacent to a_{i+1};
(iv) let $\Lambda \subseteq \Gamma$ and $a_{1}, a_{2}, \ldots, a_{n} \in \Gamma$, then

$$
\Lambda\left(a_{1} a_{2} \ldots a_{n}\right)=\left\{b \in \Lambda \mid b \text { is adjacent to } a_{i} \text { for all } 1 \leq i \leq n\right\}
$$

Definition 2.4 Let M be a group and $\left(M_{i} \mid i \in I\right)$ a tuple of subgroups of M.
(i) The coset graph $\Gamma=\Gamma\left(M ; M_{i} \mid i \in I\right)$ is the graph with vertex set the disjoint union of the sets $\Gamma_{i}=M / M_{i}, i \in I$ and where two vertices are adjacent if they are distinct and have non-empty intersection. Note that the Γ_{i} are parts of Γ and that M acts on Γ by right multiplication.
(ii) A flag in Γ is a set of pairwise adjacent vertices. The type of a flag is the set of types of its elements.
(iii) Let $a \in \Gamma$. Then $\Gamma(a)$ is the graph whose vertices are the neighbours of a in Γ and two vertices are adjacent in $\Gamma(a)$ if and only if they are adjacent in Γ.
(iv) Let $a \in \Gamma$. Then the graph $\Gamma^{*}(a)$ on the neighbours of a in Γ is defined as follows. Assume without loss that $a=M_{i}$. Let b, c be adjacent to a, where $b=M_{j} r$ and $c=M_{k} s$ with $r, s \in M_{i}$. Then b is adjacent to c in $\Gamma^{*}(a)$ if and only if $j \neq k$ and $M_{i j} r \cap M_{i k} s \neq \varnothing$.
(v) Γ is called geometric if for all $a \in \Gamma$ the graphs $\Gamma(a)$ and $\Gamma^{*}(a)$ are equal.
(vi) If a, b, c, \ldots are vertices of Γ, then $M_{a b c \ldots \text {.. denotes their elementwise stabilizer in } M \text {. If } a \in \Gamma ~}^{\text {. }}$ then $Q_{a}=O_{2}\left(M_{a}\right), Q_{a}^{*}=O_{2,3}\left(M_{a}\right)$ and $Z_{a}=Z\left(Q_{a}\right)$.
(vii) Let $a, b, c \in \Gamma$. Then $\angle a b c=\left|c^{M_{a b}}\right|$.

We remark that if b, c are adjacent in $\Gamma^{*}(a)$ then they are also adjacent in $\Gamma(a)$. Furthermore, $\Gamma^{*}\left(M_{i}\right)$ is isomorphic to $\Gamma\left(M_{i} ; M_{i j} \mid j \in I \backslash\{i\}\right)$.

Lemma 2.5 Let Γ be as in 2.4.
(i) Let $\left\{a_{i}, a_{j}, a_{k}\right\}$ be a flag in Γ where a_{l} is of type l. Then the following statements are equivalent:
(a) a_{x} and a_{y} are adjacent in $\Gamma^{*}\left(a_{z}\right)$ for every $z \in\{i, j, k\}$ with $\{x, y, z\}=\{i, j, k\}$;
(b) a_{x} and a_{y} are adjacent in $\Gamma^{*}\left(a_{z}\right)$ for some $z \in\{i, j, k\}$ with $\{x, y, z\}=\{i, j, k\}$;
(c) $a_{i} \cap a_{j} \cap a_{k} \neq \varnothing$;
(d) $\left(a_{i}, a_{j}, a_{k}\right)$ is conjugate to $\left(M_{i}, M_{j}, M_{k}\right)$.
(ii) Γ is geometric if and only if M acts transitively on each set of flags of size three of a given type, that is if and only if all flags $\left\{a_{i}, a_{j}, a_{k}\right\}$ in Γ fulfill the equivalent conditions in (i).

Proof. (i) Clearly (a) implies (b). To show that (b) implies (c) we assume without loss that $a_{k}=M_{k}, a_{i}=M_{i} r$ and $a_{j}=M_{j} s$ for some $r, s \in M_{k}$. Since a_{i} and a_{j} are adjacent in $\Gamma^{*}\left(a_{k}\right)$, $\emptyset \neq M_{i j} r \cap M_{j k} s \subseteq M_{i} \cap M_{j} r \cap M_{k} s=a_{i} \cap a_{j} \cap a_{k}$ and so (c) holds. Clearly (c) implies (d), and (d) implies (a).
(ii) By the remark preceding this lemma, Γ is geometric if and only if (a) holds.

Throughout the paper we will refer to the following easy principle concerning a set of size five.
Lemma 2.6 Let Γ_{1} be a 5-element set and Γ_{2} be the set of 2-element subsets in Γ_{1}. Let Γ be the bipartite graph on $\Gamma_{1} \cup \Gamma_{2}$ where $a \in \Gamma_{1}$ is adjacent to $b \in \Gamma_{2}$ if and only if a is not contained in b. Suppose that $a \in \Gamma_{1}$ and $b \in \Gamma_{2}$ are adjacent. Put $R_{a}(b)=\Gamma_{1} \backslash(b \cup\{a\})$. Then every $c \in \Gamma_{1} \backslash\{a\}$ is adjacent to exactly one of b and $R_{a}(b)$.

Proof. This is clear since $b, R_{a}(b)$ is a partition of $\Gamma_{1} \backslash\{a\}$.
The next lemma contains some information on cohomologies of some small modules.
Lemma 2.7 (i) Let $E \cong L_{4}(2)$ and V be a natural $\Omega_{6}^{+}(2)$-module for E. Then $\left|H^{1}(V)\right|=2$, $H^{2}(V)=0$.
(ii) Let $E \cong L_{4}(2)$ and V be a natural $L_{4}(2)$-module for E. Then $H^{1}(V)=0$.
(iii) Let $E \cong L_{3}(2)$ and V be a natural $L_{3}(2)$-module for E. Then $\left|H^{1}(V)\right|=2$.

Proof. [4] and [11].
The following lemma describes the actions of various subgroups of $L_{5}(2)$ on the vectors of the exterior square of a natural $L_{5}(2)$-module.

Lemma 2.8 Let V be a 5-dimensional $G F(2)$-space and $M=G L(V)$, so that $M \cong L_{5}(2)$. Let $V_{1}<V_{3}<V$ where $\operatorname{dim} V_{1}=1$, $\operatorname{dim} V_{3}=2$. Let $M_{i}=N_{M}\left(V_{i}\right), i=1$ and $3, B=M_{1} \cap M_{3}$ and as usual let V^{*} denote the dual of V. Then
(i) M has precisely two orbits $H(2)$ and $H(s)$ on the set of hyperplanes in $\bigwedge^{2} V^{*}$; the hyperplanes in $H(2)$ are indexed by the 2-spaces of V and the hyperplanes in $H(s)$ are indexed by the pairs (W, s), where W is a hyperplane in V and s is a non-degenerate symplectic form on W;
(ii) if $H \in H(s)$ then $N_{M}(H) \sim 2^{4} \operatorname{Sym}(6)$;
(iii) the orbits of $M_{1} ; M_{3} ; B$ on $H(s)$ are of lengths 420 and 448; 84, 112 and $672 ; 84,112,224$ and 448, respectively;
(iv) let H be a hyperplane from the orbit of length 84 of B on $H(s)$; if N, N_{1}, N_{3}, and N_{0} are the normalizers of H in M, M_{1}, M_{3} and B, respectively, then

$$
N=N^{\prime} N_{0} \quad \text { and } \quad N^{\prime} \cap N_{0}=\left(N_{1}^{\prime} \cap N_{0}\right)\left(N_{3}^{\prime} \cap N_{0}\right) ;
$$

(v) the orbits of M_{3} on $H(2)$ are of lengths 1, 42 and 112 ; the action of B on the M_{3}-orbit of length 42 is intransitive.

Proof. (i) By the definition of the exterior square $\bigwedge^{2} V^{*}$, its hyperplanes are in one-to-one correspondence with the non-zero symplectic forms on V^{*}. Hence (i) follows from the following well known facts: (a) any two non-degenerate symplectic forms on a finite dimensional vector space are isomorphic, (b) any vector space with a non-degenerate symplectic form is even dimensional and (c) there is exactly one non-degenerate symplectic form on a vector space with 4 elements.
(ii) Let W be a hyperplane in V, s a non-degenerate symplectic form on W and $R=N_{M}(W, s)$. Then clearly $C_{R}(W)=C_{M}(W)$ is elementary abelian of order 2^{4} and $R / C_{R}(W) \cong S p_{4}(2) \cong \operatorname{Sym}(6)$.
(iii) Note that R acts transitively on the set of 1 -spaces in W and $C_{R}(W)$ acts regularly on the set of 1 -spaces in $V \backslash W$. Thus $R \cap M_{1} \sim 2^{4}\left(C_{2} \times \operatorname{Sym}(4)\right)$ if $V_{1} \leq W$ and $R \cap M_{1} \cong \operatorname{Sym}(6)$ otherwise. Moreover, R has three orbits on the set of 2-spaces in V, distinguished by $V_{3} \leq W$ and V_{3} is singular with respect to $s ; V_{3} \leq W$ and V_{3} is non-degenerate with respect to s; and $V_{3} \not \leq W$. The corresponding shapes of $R \cap M_{3}$ are $2^{4}\left(C_{2} \times \operatorname{Sym}(4)\right), 2^{4}(\operatorname{Sym}(3) \times \operatorname{Sym}(3))$ and $2\left(C_{2} \times \operatorname{Sym}(4)\right)$. Finally R has four orbits on the set of pairs of incident 1 - and 2 -spaces corresponding to the following four cases: $V_{3} \leq W$ and V_{3} is singular with respect to $s ; V_{3} \leq W$ and is non-degenerate with respect to $s ; V_{1} \leq W$ and $V_{3} \not \leq W$; and $V_{1} \not \leq W$. The corresponding shapes of $R \cap B$ are $2^{4}\left(C_{2} \times D_{8}\right)$,
$2^{4}\left(C_{2} \times \operatorname{Sym}(3)\right), 2\left(C_{2} \times \operatorname{Sym}(4)\right)$ and $C_{2} \times \operatorname{Sym}(4)$. Thus we have described the orbits of R on 1 - and 2-spaces in V and also on the incident pairs of such subspaces. This immediately gives us all the orbits of M_{1}, M_{3} and B on $H(s)$ and the corresponding stabilizers. That the lengths of the orbits are as given in (iii) is now a trivial computation.
(iv) Let H correspond to (W, s). Then $V_{3} \leq W$ and V_{3} is singular with respect to s. Notice that $C_{N}(W) \cong W$ as N-module and in particular, $C_{N}(W)=\left[C_{N}(W), N_{3}\right] \leq N_{3}^{\prime} \leq N^{\prime}$. Thus (iv) holds if and only if it holds modulo $C_{N}(W)$. But $N_{i} / C_{N}(W) \cong C_{2} \times \operatorname{Sym}(4)$ for $i=1,3$ and $N_{0} / C_{N}(W)$ is a Sylow 2-subgroup of $N / O_{2}(N) \cong \operatorname{Sym}(6)$. Now (iv) is readily verified.
(v) There is one 2 -space equal to $V_{3}, 42=3 \cdot 142$-spaces intersecting V_{3} in a 1 -space and $112=7 \cdot 162$-spaces which intersect V_{3} trivially. Since some 2 -spaces in the orbit of length 42 contain V_{1} while others do not, B does not act transitively on the M_{3}-orbit of length 42.

3 Mat $_{24}$

We assume that the reader is familiar with the basic properties of the unique Steiner system \mathcal{S} of type $(5,8,24)$ (see for instance [1] or [9]). Let Ω be the set of size 24 underlying \mathcal{S} and let Γ_{2} denote the block set of \mathcal{S}. This means that Γ_{2} is a collection of 8 -element subsets of Ω called octads such that every 5-element subset of Ω is in a unique octad. In particular $\left|\Gamma_{2}\right|=\binom{24}{5} /\binom{8}{5}=759$. A triple of pairwise disjoint octads is called a trio. Every 4 -element subset T of Ω is contained in a unique sextet, which is a partition of Ω into six 4-element subsets $T_{1}=T, T_{2}, \ldots, T_{6}$ called tetrads such that $T_{i} \cup T_{j} \in \Gamma_{2}$ for all $1 \leq i<j \leq 6$.

Let Γ_{3} denote the set of trios, let Γ_{4} denote the set of sextets and let $\Gamma=\Gamma_{2} \cup \Gamma_{3} \cup \Gamma_{4}$. Define a graph on Γ as follows: a trio is adjacent to an octad if it contains the octad; a sextet is adjacent to an octad if the octad is the union of two of the tetrads in the sextet; and a sextet is adjacent to a trio if it is adjacent to all of the three octads in the trio.

Throughout this section M will stand for the automorphism group of \mathcal{S} which is the Mathieu group $M a t_{24}$ of degree 24 . Let α, β and γ be pairwise adjacent octad, trio and sextet respectively, i.e. a maximal flag in Γ. If $\gamma=\left\{T_{1}, T_{2}, \ldots, T_{6}\right\}$ we can put $\alpha=T_{1} \cup T_{2}$ and $\beta=\left\{T_{1} \cup T_{2}, T_{3} \cup T_{4}, T_{5} \cup T_{6}\right\}$. Let $M_{2}=M_{\alpha}, M_{3}=M_{\beta}$ and $M_{4}=M_{\gamma}$ (the stabilizers in M of α, β and γ, respectively). Then $\left(M_{2}, M_{3}, M_{4}\right)$ is a triangle of groups and M is a faithful completion of this triangle. Since M is flag transitive on $\Gamma, \Gamma \cong \Gamma\left(M ; M_{2}, M_{3}, M_{4}\right)$. We have chosen the index set $\{2,3,4\}$ rather then $\{1,2,3\}$ since M_{2}, M_{3}, M_{4} will correspond to M_{12}, M_{13} and M_{14} in later sections.

We will need the following information on classes of elements in M of order 2 and 3 which can be deduced either from Section 21 in [1] together with the permutational characters of M on Γ_{2}, Γ_{3} and Γ_{4} given in [5] or from Sections 2.12-2.14 in [9].

Lemma 3.1 (i) M has two classes, $2 a$ and $2 b$ of involutions and two classes, $3 a$ and $3 b$ of elements of order 3 .
(ii) If $t \in 2 a$ then t is 2 -central, $C_{M}(t) \sim 2_{+}^{1+6} L_{3}(2)$, t fixes: 8 elements of Ω forming an octad, 71 octads, 99 trios and 91 sextets.
(iii) If $s \in 2 b$ then s is non-2-central, $C_{M}(s) \sim 2^{1+1+4} \operatorname{Sym}(5), C_{M}(s)$ fixes a unique sextet, s fixes: 15 octads, 75 trios and 51 sextets.
(iv) If $x \in 3 a$ then $C_{M}(x) \cong 3 \cdot \operatorname{Alt}(6)$, x does not commute with a $2 b$-involution and fixes: 21 octads, 15 trios and 16 sextets.
(v) If $y \in 3 b$ then $C_{M}(y) \cong C_{3} \times L_{3}(2)$, y commutes with a $2 b$-involution, acts fixed-points freely on the set of octads and fixes 15 trios and 7 sextets.

The basic properties of the triangle $\left(M_{2}, M_{3}, M_{4}\right)$ and of its completion M are given in the following lemma (cf. Section 19 in [1] or Section 2.10 in [9]).

Lemma 3.2 (i) $\left|M / M_{2}\right|=\left|\Gamma_{2}\right|=759, M_{2} \sim 2^{4} L_{4}(2)$ and Q_{2} is a natural $L_{4}(2)$-module for M_{2}, Q_{2} is 2a-pure, M_{2} acts as $\operatorname{Alt}(8) \cong L_{4}(2)$ on the elements in α and as the doubly transitive affine group $A G L_{4}(2)$ on the elements outside α, in particular M_{2} splits over Q_{2}.
(ii) $\left|M / M_{3}\right|=\left|\Gamma_{3}\right|=3795 ; M_{3} \sim 2^{6}\left(\operatorname{Sym}(3) \times L_{3}(2)\right), Q_{3} \cong D_{1} \otimes D_{2}$, where D_{1} and D_{2} are natural $L_{2}(2)$ - and $L_{3}(2)$-modules for M_{3}, respectively; M_{3} has two orbits on $Q_{3}^{\#}$ with lengths 21 and 42, consisting of involutions of type $2 a$ and $2 b$, respectively and if $y \in Q_{3}^{*} \backslash Q_{3}$ then y is of type $3 b$ and acts fixed-point freely on Q_{3}.
(iii) $\left|M / M_{4}\right|=\left|\Gamma_{4}\right|=1771, M_{4} \sim 2^{6} 3 \cdot \operatorname{Sym}(6), Q_{4}$ is a hexacode module for M_{4}, M_{4} has two orbits on $Q_{4}^{\#}$ with lengths 45 and 18 , consisting of involutions of type $2 a$ and $2 b$, respectively, if $x \in Q_{4}^{*} \backslash Q_{4}$ then x is of type $3 a$ and acts fixed-point freely on Q_{4}, M_{4} induces Sym(6) on the tetrads constituting γ and the kernel induces Alt(4) on the elements in each tetrad.
(iv) $\left|M_{3} / M_{34}\right|=7,\left|M_{3} / M_{23}\right|=3,\left|M_{4} / M_{24}\right|=15$ and $\left|M_{34} / B\right|=3$.
(v) $M_{24} / Q_{2} \sim 2^{4}(\operatorname{Sym}(3) \times \operatorname{Sym}(3))$ and $M_{23} / Q_{2} \sim 2^{3} L_{3}(2)$.
(vi) $M_{34} / Q_{3} \cong \operatorname{Sym}(3) \times \operatorname{Sym}(4)$ and $M_{23} / Q_{3} \cong \operatorname{Sym}(2) \times L_{3}(2)$.
(vii) $M_{24} / Q_{4}^{*} \cong M_{34} / Q_{4}^{*} \cong \operatorname{Sym}(4) \times \operatorname{Sym}(2)$.
(viii) $\left|Q_{2} \cap Q_{3}\right|=8,\left|Q_{2} \cap Q_{4}\right|=4$ and $\left|Q_{3} \cap Q_{4}\right|=16$.

Comparing 3.1 and 3.2 one can observe the following. If t is an involution in Q_{2}, s is an involution in the orbit of length 18 of M_{4} on $Q_{4}^{\#}, x$ is an element of order 3 in Q_{4}^{*} and y is an element of order 3 in Q_{3}^{*}, then

$$
C_{M}(t)=C_{M_{2}}(t), C_{M}(s)=C_{M_{4}}(s), C_{M}(x)=C_{M_{4}}(s), C_{M}(y)=C_{M_{3}}(y)
$$

As a direct corollary of 3.2 we have the following.
Lemma 3.3 (i) M_{2} acts on $\Gamma_{3}(\alpha)$ and $\Gamma_{4}(\alpha)$ of size 15 and 35 as it acts on the 3-and 2-spaces in Q_{2}, respectively;
(ii) M_{3} acts on $\Gamma_{2}(\beta)$ and $\Gamma_{4}(\beta)$ of size 3 and 7 as it acts on the 1-spaces in D_{1} and on the 2-spaces in D_{2}, respectively;
(iii) M_{4} acts on $\Gamma_{2}(\gamma)$ and $\Gamma_{4}(\gamma)$ of size 15 each as it acts on the 2 -element subsets of γ (considered as the set of six tetrads) and on the partitions of γ into three pairs.

Lemma 3.4 Let $B=M_{2} \cap M_{3} \cap M_{4}$ be the stabilizer in M of the flag $\mathcal{F}=\{\alpha, \beta, \gamma\}$. Let S be a Sylow 2-subgroup of B which is also a Sylow 2-subgroup of M.
(i) α is the unique octad, β is the unique tetrad and γ is the unique sextet stabilized by S.
(ii) Let H be a maximal subgroups of M containing S. Then $H=M_{i}$ for $i=2,3$ or 4 .
(iii) Let P be any subgroup of M containing S and let z denote the unique non-trivial element in $Z(S)$. Then one of the following holds:
(a) P is the normalizer of a subflag in \mathcal{F}.
(b) $|P|=2^{10} \cdot 3^{2}$ and $P=Q_{3}^{*} C_{M_{3}}(z)$.
(c) $|P|=2^{10} \cdot 3 \cdot 7$ and $P=C_{M}(z)$.
(d) $|P|=2^{10} \cdot 3$ and $P=Q_{3}^{*} S, C_{M_{3}}(z)$ or $C_{M_{4}}(z)$.
(e) $P=S$.

Proof. (ii) follows from [6], (i) follows from (ii) while (iii) follows from the structure of M_{2}, M_{3} and M_{4} as given in 3.2 (compare [15]).

In subsequent sections we will need detailed information about the graph Γ and the action of M on this graph. For this purpose for every $i \in\{2,3,4\}$ we describe the orbits of M_{i} on the vertex set of Γ and for any two such orbits A and B we calculate the number $n_{i}(A, B)$ of vertices in B adjacent in Γ to a given vertex $a \in A$ and finally determine how these vertices split into orbits under the stabilizer of a in M_{i}. It is clear that $n_{i}(A, B)$ is zero unless $A \subseteq \Gamma_{j}, B \subseteq \Gamma_{k}$ for $j \neq k$ and that $|A| \cdot n_{i}(A, B)=|B| \cdot n_{i}(B, A)$. Finally for $i \neq j$ there is a natural correspondence between the orbits of M_{i} on Γ_{j} and the orbits of M_{j} on Γ_{i}.

Let $\Gamma_{j}(m, i)$ denote an orbit of length m of M_{i} on Γ_{j}. It turns out that for every $i, j \in\{2,3,4\}$ the orbits of M_{i} on Γ_{j} all have different lengths so the orbit $\Gamma_{j}(m, i)$ is well defined. The information on the orbits of M_{i} on Γ is presented in the diagram $D_{i}\left(M a t_{24}\right)$. In this diagram the orbit $\Gamma_{j}(m, i)$ is denoted by m_{j} and the numbers $n_{i}(A, B)$ and $n_{i}(B, A)$ are attached to the edge joining A with B. When such a number is presented as a sum this indicates that there is more than one orbit of $M_{i} \cap M_{a}$ (where $a \in A$) on the vertices in B adjacent to a. Moreover the summands give the lengths of these orbits. The complete proof of the diagrams (originally given in the early version of the present work) can be found in Section 3.7 of [9].

We will need the following refinement of the information given on the diagram $D_{3}\left(M a t_{24}\right)$.
Lemma 3.5 Let $b \in \Gamma_{3}(2688,3)$. Then $M_{\beta b} \cap Q_{b}=1$ and $M_{\beta b} \cong \operatorname{Sym}(4)$.
Proof. $\left|M_{\beta b}\right|=\left|M_{3}\right| / 2688=24$ by direct calculation. By $D_{3}\left(M a t_{24}\right)$ the subgroup $M_{\beta b}$ acts transitively on $\Gamma_{2}(b)$ and has two orbits in $\Gamma_{4}(b)$ with lengths 1 and 6 . Since the action of $M_{\beta b}$ on $\Gamma_{4}(b)$ is a subgroup of $L_{3}(2)$, we conclude that the action is isomorphic either to $\operatorname{Sym}(4)$ or to Alt(4). Let K be the kernel of the action of $M_{\beta b}$ on $\Gamma_{4}(b)$. Then either $K=1$ and $M_{\beta b} \cong \operatorname{Sym}(4)$ or $|K|=2$ and $M_{\beta b} / K \cong \operatorname{Alt}(4)$. Assume the latter. Then $K=Z\left(M_{\beta b}\right)$ and as $M_{\beta b}$ acts transitively on $\Gamma_{2}(b), K \leq Q_{b}$. By symmetry we get $K=Q_{\beta} \cap Q_{b}$ and so $C_{M}(K)$ contains two elementary abelian groups of order 2^{6} (namely Q_{β} and Q_{b}) intersecting in a group of order 2 (namely K). But this contradicts to the structure of $C_{M}(K)$ given by 3.1 (i) - (iii).

Let \mathcal{P} be the $G F(2)$-permutation module of M on Ω, that is the space of all the subsets of Ω with addition performed by the symmetric difference operator. The octads from Γ_{2} generate in \mathcal{P} a 12-dimensional subspace Y_{0} known as the Golay code. The Golay code consists of: the empty set, the set Ω itself, 759 octads, 759 complements of octads and 2576 dodecads. The latter are 12 -element subsets of Ω transitively permuted by M. The stabilizer of a dodecad is the Mathieu group $M a t_{12}$ of degree 12 and it induces two non-equivalent 5 -fold transitive actions on the dodecad and on its complement, which is also a dodecad. The setwise stabilizer of a pair of complementary dodecads is isomorphic to Aut M_{12}. The empty set together with the whole set Ω constitute the unique proper M-submodule in Y_{0}. The quotient Y of Y_{0} over this submodule is called the irreducible Golay code module (of dimension 11). Let \mathcal{P}_{+}denote the subspace in \mathcal{P} of even subsets of Ω. Then $Y_{0} \leq \mathcal{P}_{+}$ and $X=\mathcal{P}_{+} / Y_{0}$ is the module dual to Y which is called the irreducible Todd module (of dimension 11). The following information can be found for instance in [1, 19.8].

Lemma 3.6 (i) The orbits of M on the non-zero vectors of Y (on the hyperplanes of X) are of length 759 and 1288. The vectors in these orbits are indexed by the octads and the complementary pairs of dodecads, respectively.
(ii) The orbits of M on the non-zero vectors of X (on the hyperplanes of Y) are of length 276 and 1771. The vectors in these orbits are indexed by the 2 -element subsets of Ω and by the sextets, respectively.

Lemma 3.7 (i) For $i=2,3$ and 4,

$$
1<C_{X}\left(Q_{i}\right)<\left[X, Q_{i}\right]<X
$$

is the unique composition series for M_{i} on X;
(ii) $C_{X}\left(Q_{2}\right)$ is isomorphic the exterior square of $Q_{2},\left[X, Q_{2}\right] / C_{X}\left(Q_{2}\right)$ is isomorphic to Q_{2} and $\left|X /\left[X, Q_{2}\right]\right|=2$.
(iii) Let D_{1} and D_{2} be as in 3.2 (ii). Then $C_{X}\left(Q_{3}\right)$ is dual to $D_{2},\left[X, Q_{3}\right] / C_{X}\left(Q_{3}\right)$ is isomorphic to $D_{1} \otimes D_{2}$ and $X /\left[X, Q_{3}\right]$ is isomorphic to D_{1}.
(iv) $\left|C_{X}\left(Q_{4}\right)\right|=2,\left[X, Q_{4}\right] / C_{X}\left(Q_{4}\right)$ is isomorphic to the dual of Q_{4} and $\left|X /\left[X, Q_{4}\right]\right|=2^{4}$.

Proof. The irreducible Todd module is dual to the irreducible Golay code module. Hence the result can be obtained by dualizing some of the information found in Sections 19 and 20 of [1].

Let D be the set of dodecads and H be the set of complementary pairs of dodecads. Recall that if $N(h)$ is the stabilizer of $h \in H$ in M then $N(h) \cong A u t M a t_{12}$ and $N(h)^{\prime} \cong M a t_{12}$ is the subgroup of index 2 in $N(h)$ which preserves each of the dodecads constituting h. We are interested in the orbits on H of M_{2}, M_{3} and M_{23}.

Lemma 3.8 M_{2} acting on the set D of dodecads has three orbits D_{2}, D_{4} and D_{6} with lengths 448, 1680 and 448, respectively. If $d_{i} \in D_{i}$ and K_{i} is the stabilizer of d_{i} in M_{2} then $\left|d_{i} \cap \alpha\right|=i$, $K_{2} \cong K_{6} \cong \operatorname{Sym}(6)$ and $K_{4} \sim 2^{5} \operatorname{Sym}(3)$.

Proof. [1, 19.6]
Lemma 3.9 Let $N \cong$ Aut $M a t_{12}$ and N_{2}, N_{3} and N_{23} subgroups of N such that $\left|N_{2}\right|=\left|N_{3}\right|=2^{7} \cdot 3$, $N_{23}=2^{7}$ and $N_{23}=N_{2} \cap N_{3}$. Then $N_{23} \cap N^{\prime}=\left(N_{23} \cap N_{2}^{\prime}\right)\left(N_{23} \cap N_{3}^{\prime}\right)$.

Proof. For $Z \leq N$ let $Z^{*}=Z \cap N^{\prime}$. Then $N^{*} \cong M a t_{12},\left|N / N^{*}\right|=2$ and $\left|N^{*}\right|_{2}=2^{6}$. Thus N_{23}^{*} is a Sylow 2-subgroup of N^{*} and $\left|N_{2}^{*}\right|=\left|N_{3}^{*}\right|=2^{6} \cdot 3$. It follows (see for example [15]) that N_{2}^{*} and N_{3}^{*} are two maximal subgroups of N^{*} containing N_{23}^{*}. Choose notation such that $Z\left(N_{2}^{*}\right) \neq 1$. Thus by the structure of N_{2}^{*} and $N_{3}^{*}, O_{2}\left(N_{2}^{*}\right) \leq N_{2}^{* \prime}, O_{2}\left(N_{3}^{*}\right) \cap N_{3}^{* \prime} \not \leq O_{2}\left(N_{2}^{*}\right)$ and $\left|N_{23}^{*} / O_{2}\left(N_{2}^{*}\right)\right|=2$. Thus $N_{23}^{*}=O_{2}\left(N_{2}^{*}\right)\left(O_{2}\left(N_{3}^{*}\right) \cap N_{3}^{* \prime}\right)=\left(N_{23} \cap N_{2}^{* \prime}\right)\left(N_{23} \cap N_{3}^{* \prime}\right)$.

Lemma 3.10 Let H be the set of complementary pairs of dodecads and for $h \in H$ let $N(h), N_{2}(h)$, $N_{3}(h)$ and $N_{23}(h)$ denote the stabilizers of h in M, M_{2}, M_{3} and M_{23}, respectively.
(i) M_{2} has precisely two orbits $H_{1}(2)$ and $H_{2}(2)$ on H, where $\left|H_{1}(2)\right|=840$ and $\left|H_{2}(2)\right|=$ 448. M_{3} has precisely three orbits $H_{1}(3), H_{2}(3)$, and $H_{3}(3)$ on H, where $\left|H_{1}(3)\right|=168$, $\left|H_{2}(3)\right|=672$ and $\left|H_{3}(3)\right|=448 . M_{23}$ has precisely four orbits H_{1}, H_{2}, H_{3} and H_{4} on H, where $\left|H_{1}\right|=168,\left|H_{2}\right|=224,\left|H_{3}\right|=448$ and $\left|H_{4}\right|=448$. Moreover, $H_{1}(2)=H_{1} \cup H_{2} \cup H_{3}$, $H_{2}(2)=H_{4}, H_{1}(3)=H_{1}, H_{2}(3)=H_{2} \cup H_{4}$ and $H_{3}(3)=H_{3}$.
(ii) If $h \in H_{1}$, then $N(h)=N_{23}(h) N(h)^{\prime}$ and $N_{23}(h) \cap N(h)^{\prime}=\left(N_{23}(h) \cap N_{2}(h)^{\prime}\right)\left(N_{23}(h) \cap N_{3}(h)^{\prime}\right)$.
(iii) If $h \in H_{3}$, then $N_{3}(h)=N_{23}(h) N_{3}(h)^{\prime}$.

Proof. (i) The lengths of the orbits of M_{2} on H follow directly from 3.8. Observe also that $N_{2}(h) \leq N(h)^{\prime}$ (that is $N_{2}(h)$ fixes the two dodecads forming h) if and only if $h \in H_{2}(2)$.

Let Δ be the octad graph, that is a graph on Γ_{2} in which two octads are adjacent if they are disjoint. For a vertex x of Δ let $\Delta^{i}(x)$ denote the set of vertices which are at distance i from x in Δ. It is well known and also easily seen from the diagram $D_{2}\left(M a t_{24}\right)$ that

$$
\Delta^{1}(\alpha)=\Gamma_{2}(30,2), \Delta^{2}(\alpha)=\Gamma_{2}(280,2), \Delta^{3}(\alpha)=\Gamma_{2}(448,2)
$$

and that

$$
|\alpha \cap \delta|=0,4,2 \text { if } \delta \in \Delta^{i}(\alpha) \text { for } i=1,2,3
$$

By 3.6 we can and will identify $\Delta \cup H$ with the set of non-zero vectors in the irreducible Golay code module Y. Let $e \in \Delta^{3}(\alpha)$. Then as α and e intersect in 2 elements, the symmetric difference of α and e is a dodecad intersecting α in 6 elements. Thus $\alpha+e \in H_{2}(2)$ and since $\left|\Delta^{3}(\alpha)\right|=\left|H_{2}(2)\right|=448$, we have a one-to-one correspondence between $H_{2}(2)$ and $\Delta^{3}(\alpha)$. By $D_{2}\left(M a t_{24}\right), M_{\alpha e}$ acts transitively on $\Gamma_{3}(\alpha)$. Thus M_{23} acts transitively on $\Delta^{3}(\alpha)$ and hence also on $H_{4} \stackrel{\text { def }}{=} H_{2}(2)$.

Let $h \in H_{1}(2)$. Then $N_{2}(h)$ has order $2^{7} \cdot 3$ and the intersections of α with the dodecads in h form a partition of α into two sets of sizes 4. Thus $N_{2}(h) Q_{\alpha} / Q_{\alpha}$ is contained in a subgroup $2^{4}(\operatorname{Sym}(3) \times \operatorname{Sym}(3))$ of M_{α} / Q_{α} and so normalizes a 2-subspace U_{2} in Q_{α}. Note that Q_{α} fixes 4 points in each of the two dodecads, $Q_{\alpha} \leq M a t_{8} \cong Q_{8}$. As Q_{α} is elementary abelian, $Q_{\alpha} \cap N(h)$ has order at most two. It follows that $N_{2}(h) Q_{\alpha} / Q_{\alpha}$ has order $2^{6} \cdot 3$ and $U_{1} \stackrel{\text { def }}{=} Q_{\alpha} \cap N(h)$ has order 2, $U_{1} \leq U_{2}$ and $Q_{\alpha} N_{2}(h)=N_{M_{\alpha}}\left(U_{1}\right) \cap N_{M_{\alpha}}\left(U_{2}\right)$. Thus the orbits of Q_{α} on $H_{1}(2)$ are in one-to-one correspondence with the pairs $\left(U_{1}, U_{2}\right)$, where U_{i} is a i-space in Q_{α} and $U_{1} \leq U_{2}$. This immediately implies that $M_{\alpha \beta}$ has three orbits H_{1}, H_{2} and H_{3} on $H_{1}(2)$ corresponding to the following three possibilities: (1) $U_{2} \leq Q_{\alpha} \cap Q_{\beta}$, (2) $U_{2} \not \leq Q_{\alpha} \cap Q_{\beta}$ and $U_{1} \leq Q_{\alpha} \cap Q_{\beta}$ and (3) $U_{1} \not \leq Q_{\alpha} \cap Q_{\beta}$. Now it is straightforward to calculate that $\left|H_{1}\right|=7 \cdot 3 \cdot 8=168,\left|H_{2}\right|=28 \cdot 1 \cdot 8=224$ and $\left|H_{3}\right|=28 \cdot 2 \cdot 8=448$. (Notice that $\left|Q_{\alpha} \cap Q_{\beta}\right|=8$ by 3.2 (i).)

Let L be the elementwise stabilizer in M of the octads in $\Delta(\beta)$. Then L is of index 2 in M_{23} and normal of index 6 in M_{3}. Hence each of the following holds (for the last statement note that $M=\left\langle M_{2}, M_{3}\right\rangle$ acts transitively on $\left.H\right)$:

- For every i, L either acts transitively on H_{i} or has two orbits of the same length.
- Every M_{3}-orbit in H is the union of l of the orbits of equal lengths for L in H where $l \in$ $\{1,2,3,6\}$.
- There exists an M_{3}-orbit on H which has non-empty intersecting with both $H_{1}(2)$ and $H_{2}(2)$.

It is easy to check that these three conditions uniquely determine the fusion of the M_{23}-orbits into M_{3}-orbits.
(ii) and (iii): Let $h \in H_{1}$. As $N(h) \cong$ Aut $M a t_{12},\left|N(h) / N(h)^{\prime}\right|=2$. Moreover, $\left|N(h) / N_{23}(h)\right|$ is odd and so the first statement in (ii) holds. (iii) follows from a similar argument. By (i) we can apply 3.9 and so also the second part of (ii) holds.

By [7] M has a 45-dimensional irreducible module V over the field \mathbf{C} of complex numbers. Let χ be the corresponding character. Define $V_{1}(3)=C_{V}\left(Q_{3}\right)$ and $V_{2}(3)=\left[V, Q_{3}\right]$.

Lemma 3.11 (i) Let z be a 2-central involution in M. Then $\chi(z)=-3, C_{V}(z)$ is 21-dimensional and $[V, z]$ is 24-dimensional.
(ii) $C_{V}\left(Q_{2}\right)=0$ and $C_{V}(H)$ is 3-dimensional for each hyperplane H of Q_{2}.
(iii) $V=V_{1}(3) \oplus V_{2}(3), V_{1}(3)$ is 3-dimensional and $V_{2}(3)$ is 42-dimensional.
(iv) $C_{V_{2}(3)}(H)=0$ for any hyperplane of Q_{3} containing $Q_{2} \cap Q_{3}$, while $C_{V_{2}(3)}(H)$ is 1-dimensional for any hyperplane of Q_{3} not containing any of the three conjugates of $Q_{2} \cap Q_{3}$ under M_{3}.

Proof. (i) The value for $\chi(z)$ is taken directly from the character table of $M a t_{24}$ in [7]. Since $\operatorname{dim} C_{V}(z)+\operatorname{dim}[V, z]=45$ and $\operatorname{dim} C_{V}(z)-\operatorname{dim}[V, z]=\chi(z)$ (i) holds.
(ii) Let $d=\operatorname{dim}\left[V, Q_{2}\right]$ and $e=\operatorname{dim} C_{\left[V, Q_{2}\right]}(H)$, where H is any hyperplane in Q_{2}. Since M_{2} acts transitively on the fifteen hyperplanes in Q_{2}, e is well defined and $d=15 e$. Let $1 \neq z \in Q_{2}$. Then exactly eight of the hyperplanes in Q_{2} do not contain z and so $24=\operatorname{dim}[V, z]=8 e$. Thus $e=3$, $d=45, V=\left[V, Q_{2}\right]$ and (ii) holds.
(iii) and (iv) By 3.2 (iii) the orbits of M_{3} on $Q_{3}^{\#}$ are of length 21 and 42 and by a dual argument the orbits of M_{3} on the hyperplanes of Q_{3} are of length 21 and 42. In particular, $\operatorname{dim}\left[V, Q_{3}\right]$ is divisible by 21. Moreover, by (ii) $C_{V}\left(Q_{2} \cap Q_{3}\right)$ has dimension 3 and so $\operatorname{dim} C_{V}\left(Q_{3}\right) \leq 3$. Thus $\operatorname{dim} V_{1}(3)=3$ and $\operatorname{dim} V_{2}(3)=42$. Let H be a hyperplane in Q_{3} with $f \stackrel{\text { def }}{=} \operatorname{dim} C_{V_{2}(3)}(H) \neq 0$. Then either $\left|H^{M_{3}}\right|=42$ and $f=1$; or $\left|H^{M_{3}}\right|=21$ and $f=2$. In particular H is unique up to conjugation. Suppose that $\left|H^{M_{3}}\right|=21$. Let $1 \neq z \in Q_{2} \cap Q_{3}$. Then it is easy to see that z lies in exactly $7+3+3=13$ of the elements of $H^{M_{3}}$ and so $\operatorname{dim}[V, z]=f \cdot(21-13)=16$, a contradiction to (i). Thus $\left|H^{M_{3}}\right|=42$ and the lemma is proved.

Lemma 3.12 (i) M_{2} acts irreducibly on V and as M_{2}-module $V \cong V_{1}(3) \otimes{ }_{\mathbf{C}}^{23}$ $\mathbf{C} M_{2}$.
(ii) $V_{1}(3)$ and $V_{2}(3)$ are irreducible M_{3}-modules of dimension 3 and 42, respectively, and stay irreducible when restricted to M_{23} or $O^{2}\left(M_{23}\right)$.
(iii) $C_{M_{3}}\left(V_{1}(3)\right)=O_{2,3}\left(M_{3}\right)$ and M_{3} acts faithfully on $V_{2}(3)$.

Proof. By 3.11 (ii), $V_{1}(3)=C_{V}\left(Q_{2} \cap Q_{3}\right)$ is a Wedderburn component for Q_{2} on V. Moreover, since M_{23} is maximal in $M_{2}, M_{23}=N_{M_{2}}\left(Q_{2} \cap Q_{3}\right)=N_{M_{2}}\left(V_{1}(3)\right)$ and so the second statement in (a) holds. Moreover, M_{2} is irreducible on V if and only if M_{23} is irreducible on $V_{1}(3)$. Since $L \stackrel{\text { def }}{=} O^{2}\left(M_{23}\right)$ acts transitively on the 42 hyperplanes in Q_{3} which have fixed-points in $V_{2}(3), L$ acts irreducibly on $V_{2}(3)$. Suppose that L does not act irreducibly on $V_{1}(3)$. Since $V_{1}(3)$ has odd dimension and $\left|M_{23} / L\right|=2$ we conclude that M_{23} does not act irreducibly on $V_{1}(3)$. Thus M_{23} has a 1- or 2-dimension submodule in $V_{1}(3)$ and M_{2} has a 15- or 30-dimensional submodule in V. But this contradicts the fact that $V_{2}(3)$ is a 42 -dimensional irreducible L-module. Hence L is irreducible on $V_{1}(3)$ and (i) and (ii) are proved.

To prove (iii) recall that $M_{3} \sim 2^{6}\left(\operatorname{Sym}(3) \times L_{3}(2)\right)$. Note that $Q_{2} \cap Q_{3}$ is a hyperplane in Q_{2} and centralizes $V_{1}(3)$. Since Q_{2} acts fixed-point freely on V we conclude that $Q_{2} Q_{3} / Q_{3}$ inverts $V_{1}(3)$. Furthermore, $O_{2,3}\left(M_{3}\right)=\left[M_{3}, Q_{2}\right]$ and so $O_{2,3}\left(M_{3}\right)$ centralizes $V_{1}(3)$. Hence either $C_{M_{3}}\left(V_{1}(3)\right)=$ $O_{2,3}\left(M_{3}\right)$ or M_{3}^{\prime} centralizes $V_{1}(3)$. But in the later case M_{3} is not irreducible on $V_{1}(3)$. The second statement in (iii) holds since Q_{3} is the unique minimal normal subgroup of M_{3} and does not centralize $V_{2}(3)$.

$4 \quad M a t_{22}$

Definition 4.1 (i) A Mat t_{22}-triangle is a triangle of groups $\left(M_{1}, M_{2}, M_{3}\right)$ such that
(a) $M_{1} \sim 2^{4} \operatorname{Alt}(6), M_{2} \sim 2^{3} L_{3}(2)$ and $M_{3} \sim 2^{4} \operatorname{Sym}(5)$.
(b) $\left|M_{2} / M_{23}\right|=\left|M_{2} / M_{12}\right|=7,\left|M_{3} / M_{13}\right|=5$ and $\left|M_{23} / B\right|=3$.
(ii) An Aut Mat t_{22}-triangle is a triangle of groups $\left(\hat{M}_{1}, \hat{M}_{2}, \hat{M}_{3}\right)$ such that
(a) $\hat{M}_{1} \sim 2^{4} \operatorname{Sym}(6), \hat{M}_{2} \sim 2^{4} L_{3}(2)$ and $\hat{M}_{3} \sim 2^{5} \operatorname{Sym}(5)$.
(b) $\left|\hat{M}_{2} / \hat{M}_{23}\right|=\left|\hat{M}_{2} / \hat{M}_{12}\right|=7,\left|\hat{M}_{3} / \hat{M}_{13}\right|=5$ and $\left|\hat{M}_{23} / B\right|=3$.

Lemma 4.2 Let $\left(M_{1}, M_{2}, M_{3}\right)$ be a Mat22-triangle. Then the following assertions hold.
(i) B is a Sylow 2-subgroup of M_{2} and $B=\left(Q_{1} \cap M_{2}\right) Q_{2} Q_{3}$.
(ii) $M_{13} / Q_{3} \cong \operatorname{Sym}(4)$ and $M_{23} / Q_{3} \cong \operatorname{Sym}(3) \times \operatorname{Sym}(2)$.
(iii) $M_{12} / Q_{2} \cong M_{23} / Q_{2} \cong \operatorname{Sym}(4)$.
(iv) $Q_{1} \not \leq M_{2}$ and $M_{13} / Q_{1} \cong M_{12} Q_{1} / Q_{1} \cong \operatorname{Sym}(4)$.
(v) $\left|Q_{1} \cap Q_{2}\right|=2,\left|Q_{1} \cap Q_{3}\right|=4,\left|Q_{2} \cap Q_{3}\right|=4$ and $Q_{1} \cap Q_{2} \leq Q_{1} \cap Q_{3}$.
(vi) $T_{12}=\left(Q_{1} \cap M_{2}\right) Q_{2}, T_{13}=Q_{1} Q_{3}, T_{23}=Q_{2} Q_{3}$.

Proof. Since M_{3} has a unique class of subgroups of index $5, M_{13} / Q_{3} \cong \operatorname{Sym}(4)$. Similarly $\operatorname{Sym}(4) \cong M_{12} / Q_{2} \cong M_{13} / Q_{1} \cong M_{23} / Q_{2}$ and B is a Sylow 2-subgroup of M_{2}. Since $\left|M_{23} / B\right|=3$, M_{23} has an orbit of length 3 on the cosets of M_{13} in M_{3}. Thus $M_{23} Q_{3} / Q_{3}$ is contained a subgroup $\operatorname{Sym}(3) \times \operatorname{Sym}(2)$ of M_{3} / Q_{3}. As M_{23} has index 10 in M_{3} and $\operatorname{Sym}(3) \times \operatorname{Sym}(2)$ has index 10 in $\operatorname{Sym}(5)$ we conclude that $Q_{3} \leq M_{23}$ and $M_{23} / Q_{3} \cong \operatorname{Sym}(3) \times \operatorname{Sym}(2)$. As $\left|Q_{3}\right|>\left|Q_{2}\right|, Q_{3} \not \leq Q_{2}$ and since M_{23} acts irreducibly on T_{23} / Q_{2}, we conclude that $T_{23}=Q_{2} Q_{3}$ and $\left|Q_{2} \cap Q_{3}\right|=4$. Suppose that $Q_{3}=Q_{1}$. Then $T_{23}=Q_{2} Q_{3}=Q_{2} Q_{1}$ is normalized both by M_{12} and M_{23}. Since $M_{2 i}=N_{M_{2}}\left(T_{2 i}\right)$ for $i=1$ and 3 , this means that $M_{12}=M_{23}$, a contradiction to $\left|M_{23} / B\right|=3$. Thus $Q_{3} \neq Q_{1}$, $T_{13}=Q_{1} Q_{3}$ and $\left|Q_{1} \cap Q_{3}\right|=4$. So $Q_{1} \leq O_{2}\left(M_{13}\right) \leq M_{3}^{\prime} Q_{3}, Q_{1} \not \leq M_{12}$ and as no element of Q_{1} acts as a 2 -cycle on $M_{3} / M_{13}, Q_{1} \cap M_{12} \not \leq Q_{2}$. Hence $T_{12}=Q_{2}\left(Q_{1} \cap M_{12}\right)$ and $\left|Q_{2} \cap Q_{1}\right|=2$. Since $B=T_{12} T_{23}$, the last statement in (i) holds and the proof is complete.

We remark that a similar lemma holds for Aut Mat_{22}-triangles. Indeed the only changes necessary are that in part (iv), $\operatorname{Sym}(4)$ has to be replaced by $\operatorname{Sym}(2) \times \operatorname{Sym}(4)$ and in part (v), $\hat{Q}_{2} \cap \hat{Q}_{3}$ has order 8 and not 4 .

As in the previous section let \mathcal{S} be the Steiner system of type $(5,8,24)$ and let p, q be a pair of elements from the basic set Ω. In this section M and \hat{M} will denote the elementwise and the setwise stabilizers of $\{p, q\}$ in the automorphism group $M a t_{24}$ of \mathcal{S}, respectively. This means that M is the Mathieu group M_{22} of degree 22 with $|M|=2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$ and \hat{M} is the automorphism group of M.

Let γ be a sextet $T_{1}, T_{2}, \ldots, T_{6}$ in \mathcal{S} such that p and q are in the same tetrad (say in T_{1}). Let α and β be disjoint octads adjacent to γ such that $\{p, q\} \subseteq \alpha$ (say $\alpha=T_{1} \cup T_{2}$ and $\beta=T_{3} \cup T_{4}$). Let M_{α}, M_{β} and M_{γ} be the stabilizers in M of α, β and γ, respectively. Similarly define $\hat{M}_{\alpha}, \hat{M}_{\beta}$ and \hat{M}_{γ}. The following lemma can be deduced directly from 3.2 (cf. Section 3.4 in [9]).
Lemma 4.3 (i) $\left(M_{\alpha}, M_{\beta}, M_{\gamma}\right)$ is a M_{22}-triangle.
(ii) $\left(\hat{M}_{\alpha}, \hat{M}_{\beta}, \hat{M}_{\gamma}\right)$ is an Aut Mat 2_{22}-triangle.

It is easy to deduce from the main result in [16] that every $A u t M a t_{22}$-triangle with a faithful completion is isomorphic to $\left(\hat{M}_{\alpha}, \hat{M}_{\beta}, \hat{M}_{\gamma}\right)$ and that \hat{M} is the unique completion of the triangle. In order to explain the deduction we need some definitions.

Recall that the Petersen graph has 2-element subsets of a fixed 5 -set as vertices and two subsets are adjacent if they are disjoint. The Petersen graph has 10 vertices, 15 edges and $\operatorname{Sym}(5)$ is its automorphism group.

Definition 4.4 Let $\Xi=\Xi_{1} \cup \Xi_{2} \cup \Xi_{3}$ be a 3-partite graph and suppose that for $a_{i} \in \Xi_{i}, 1 \leq i \leq 3$ the following conditions hold.
(i) $\left|\Xi_{2}\left(a_{1}\right)\right|=2,\left|\Xi_{3}\left(a_{1}\right)\right|=3$ and every vertex from $\Xi_{2}\left(a_{1}\right)$ is adjacent to every vertex from $\Xi_{3}\left(a_{1}\right)$.
(ii) $\Xi_{1}\left(a_{2}\right)$ are the points and $\Xi_{3}\left(a_{2}\right)$ are the lines of a projective plane of order 2 with the natural adjacency relation.
(iii) $\Xi_{1}\left(a_{3}\right)$ are the edges and $\Xi_{2}\left(a_{3}\right)$ are the vertices of the Petersen graph with the natural adjacency relation.

Then Ξ is called a rank 3 Petersen type geometry.
Theorem 4.5 Up to isomorphism there are exactly two rank 3 flag-transitive Petersen type geometries: $\Xi\left(M_{22}\right)$ and $\Xi\left(3 M a t_{22}\right)$. A flag-transitive automorphism group is isomorphic to M or \hat{M} for $\Xi\left(M a t_{22}\right)$ and to $3 M$ or $3 \hat{M}$ (non-split extensions) for $\Xi\left(3 M a t_{22}\right)$. The stabilizer of a vertex from Ξ_{3} in M and $3 M$ is $2^{4} \operatorname{Sym}(5)$ while in \hat{M} and $3 \hat{M}$ it is $2^{5} \operatorname{Sym}(5)$.

Proof. [16].
Lemma 4.6 (i) Every Mat t_{22}-triangle with a faithful completion is isomorphic to $\left(M_{\alpha}, M_{\beta}, M_{\gamma}\right)$ and M is the unique faithful completion of this triangle.
(ii) Every Aut Mat 2_{22}-triangle with a faithful completion is isomorphic to $\left(\hat{M}_{\alpha}, \hat{M}_{\beta}, \hat{M}_{\gamma}\right)$ and \hat{M} is the unique faithful completion of this triangle.

Proof. (i) Let $\left(M_{1}, M_{2}, M_{3}\right)$ be a $M a t_{22}$-triangle with a faithful completion N. Define a triangle $\left(N_{1}, N_{2}, N_{3}\right)$ by $N_{1}=C_{M_{1}}\left(Q_{1} \cap Q_{2}\right), N_{2}=M_{2}$ and $N_{3}=M_{3}$. Then $N_{1} \sim 2^{4} \operatorname{Sym}(4)$ by 4.2 and since $M_{1}=\left\langle N_{1}, M_{13}\right\rangle, N$ is also a faithful completion of $\left(N_{1}, N_{2}, N_{3}\right)$. Let $\Xi=\Gamma\left(N ; N_{1}, N_{2}, N_{3}\right)$. Then it is easy to check using the information in 4.2 that Γ is a rank 3 Petersen type geometry on which N acts flag-transitively. By 4.5 and since $N_{3}=M_{3} \sim 2^{4} \operatorname{Sym}(5)$ we have $N \cong M$ or $N \cong 3 M$, but in the latter case $M_{1} \sim 2^{4} 3 \cdot \operatorname{Alt}(6)$. Hence $N \cong M$ and (M_{1}, M_{2}, M_{3}) is isomorphic to $\left(M_{\alpha}, M_{\beta}, M_{\gamma}\right)$.
(ii) is proved similarly.

The coset graph $\Gamma=\Gamma\left(M ; M_{1}, M_{2}, M_{3}\right)$ (which coincides with $\left.\Gamma\left(\hat{M} ; \hat{M}_{1}, \hat{M}_{2}, \hat{M}_{3}\right)\right)$ possesses a natural description in terms of the Steiner system \mathcal{S} and a pair p, q of distinguished elements from the basic set Ω. Namely, Γ_{1} are the hexads which are octads containing $\{p, q\}$ with p and q removed; Γ_{2} are the octets which are the octads disjoint from $\{p, q\}$ and Γ_{3} are the pairs which are 2-element subsets of $\Omega \backslash\{p, q\}$. A hexad and an octet are adjacent if they are disjoint; the adjacency between the hexads and pairs is via inclusion, finally an octet is adjacent to a pair $\{r, s\}$ if it is the union of two tetrads from the sextet containing $\{p, q, r, s\}$. Below we present the diagrams $D_{i}\left(M a t_{22}\right)$ describing the orbits of M_{i} on Γ and the adjacencies between the vertices in these orbits. These
diagrams are analogous to the diagrams $D_{i}\left(M a t_{24}\right)$. The proofs of the diagrams can be found in Section 3.9 in [9].

We need some further refinement of the information given on the above diagrams.
Lemma 4.7 (i) Let $a \in \Gamma_{1}(32,3)$. View $\Gamma_{3}(a)$ as the set of points in a 4-dimensional symplectic space S over $G F(2)$ with \hat{M}_{a} / Q_{a} acting as the full group of automorphisms. Then $\hat{M}_{\gamma a}$ fixes a non-degenerate quadratic form Q of minus type on S and $\Gamma_{3}(40,3)$ is the set of singular points of Q. In particular, for each $b \in \Gamma_{2}(a)$, there is a unique $c \in \Gamma_{3}(a b) \cap \Gamma_{3}(40,3)$.
(ii) \hat{Q}_{γ} act regularly on $\Gamma_{1}(32,3)$.

Proof. Note that any subgroup of index 32 in \hat{M}_{γ} is isomorphic $\operatorname{Sym}(5)$ and so in particular $\hat{M}_{\gamma a} \cong \operatorname{Sym}(5)$ and \hat{Q}_{γ} acts regularly on $\Gamma_{1}(32,3)$. Thus the lemma follows directly from the diagram $D_{3}\left(M a t_{22}\right)$ and elementary properties of the 4 -dimensional symplectic $G F(2)$-geometry.

Lemma 4.8 Let $c \in \Gamma_{3}(160,3)$. Then $\hat{M}_{\gamma c} \hat{Q}_{c} / \hat{Q}_{c} \cong \operatorname{Sym}(3) \times C_{2}, Q_{c} \cap M_{\gamma}=1$ and $\hat{Q}_{c} \cap \hat{M}_{\gamma} \cong C_{2}$.
Proof. By $D_{3}\left(M a t_{22}\right), \gamma \cup c$ is not contained in a hexad. In particular γ and c are disjoint. Thus there exists exactly two hexads a_{1} and a_{2} such that $c \subset a_{i}$ and $\gamma \cap a_{i} \neq \emptyset$. Thus $\hat{M}_{\gamma c}$ normalizes a subset of size two of the five hexads adjacent to c. Thus $\hat{M}_{\gamma c} \hat{Q}_{c} / \hat{Q}_{c}$ is contained in a $\operatorname{Sym}(3) \times C_{2}$ subgroup of M_{c} / Q_{c}. Let $t \in Q_{c} \cap M_{\gamma}$. Then t normalizes a_{i} and fixes $\gamma \cap a_{i}$ for $i=1,2$ and also fixes the two elements in c. Thus t fixes three elements in a_{1}. Since $M_{a_{1}} / Q_{a_{1}} \cong \operatorname{Alt}(6), t$ does not induce a 2-cycle on a_{1} and thus fixes a_{1} elementwise. Since t also fixes the point $a_{2} \cap \gamma$ outside of a_{1} we conclude $t=1$ and $Q_{c} \cap M_{\gamma}=1$. Thus $\left|\hat{Q}_{c} \cap \hat{M}_{\gamma}\right| \leq 2$. Since $\left|\hat{M}_{\gamma c} \hat{Q}_{c} / \hat{Q}_{c}\right| \leq 12$ and $\left|\hat{M}_{\gamma c}\right|=24$, the lemma is established.

$5 \quad J_{4}$-triangles

In this section we establish the existence and uniqueness of a J_{4}-triangle of groups. We follow notation from Section 1.

Lemma 5.1 Let $\left(M_{1}, M_{2}, M_{3}\right)$ be a J_{4}-triangle. Let $K_{1} \cong M a t_{24}$ be a complement to Q_{1} in M_{1}; $K_{2} \cong L_{5}(2)$ be a complement to Q_{2} in M_{2} and let L be the unique normal subgroup in M_{3} such that $M_{3} / L \cong$ Sym $_{5}$. Let \mathcal{S} be the Steiner system of type $(5,8,24)$ such that Q_{1} is the irreducible Todd module associated with the action of K_{1} on \mathcal{S} and $\Omega(3)$ be an M_{3}-set of size 5 such that $C_{M_{3}}(\Omega(3))=L$. Then
(i) there are subsets $\Omega_{1}(3)$ and $\Omega_{2}(3)$ in $\Omega(3)$ of size 1 and 2 respectively with $\Omega_{1}(3) \nsubseteq \Omega_{2}(3)$ such that $M_{31}=N_{M_{3}}\left(\Omega_{1}(3)\right)$ and $M_{32}=N_{M_{3}}\left(\Omega_{2}(3)\right)$; in particular,
$M_{31} / Q_{3} \cong \operatorname{Sym}(4) \times L_{3}(2), \quad M_{32} / Q_{3} \cong C_{2} \times \operatorname{Sym}(3) \times L_{3}(2)$ and $B / Q_{3} \cong C_{2} \times C_{2} \times L_{3}(2)$, moreover, $Q_{1} \cap Q_{2} \leq Q_{3}$ and $T_{13} \not \leq M_{2}$;
(ii) there is a natural $L_{5}(2)$-module $V(2)$ of M_{2}, a 1-space $V_{1}(2)$ and a 2-space $V_{3}(2)$ in $V(2)$ with $V_{1}(2) \leq V_{3}(2)$ such that $M_{23}=N_{M_{2}}\left(V_{3}(2)\right)$ and $M_{21}=N_{M_{2}}\left(V_{1}(2)\right)$; in particular,

$$
M_{23} / Q_{2} \sim 2^{6}\left(\operatorname{Sym}(3) \times L_{3}(2)\right), \quad M_{21} / Q_{2} \sim 2^{4} L_{4}(2) \quad \text { and } \quad B / Q_{2} \sim 2^{3+3+1} L_{3}(2)
$$

(iii) there is an octad α and a trio β containing α such that $M_{12} Q_{1}=N_{M_{1}}(\alpha)$ and $M_{13}=N_{M_{1}}(\beta)$; in particular,

$$
M_{13} / Q_{1} \sim 2^{6}\left(\operatorname{Sym}(3) \times L_{3}(2)\right), \quad M_{12} Q_{1} / Q_{1} \sim 2^{4} L_{4}(2) \quad \text { and } B Q_{1} / Q_{1} \sim 2^{3+3+1} L_{3}(2)
$$

moreover, $\left|Q_{1} / Q_{1} \cap M_{2}\right|=2 ;$
(iv) For all $i \neq j, M_{i j}$ acts irreducibly on $T_{i j} / Q_{j}$.
(v) $T_{13}=Q_{1} Q_{3}, T_{23}=Q_{2} Q_{3}$ and $T_{12}=\left(Q_{1} \cap M_{2}\right) Q_{2}$.
(vi) $\left|Q_{2} / Q_{2} \cap Q_{3}\right|=2,\left|Q_{2} / Q_{1} \cap Q_{2}\right|=2^{4}$ and Q_{2} is isomorphic to $\bigwedge^{2} V(2)^{*}$ where $V(2)$ is as in (ii).
(vii) $\Phi\left(Q_{3}\right)=Z\left(Q_{3}\right)$ is a natural $L_{3}(2)$-module for M_{3} and $Q_{3} / \Phi\left(Q_{3}\right) \cong D_{1} \otimes D_{2}$, where D_{1} is a natural $\Gamma L_{2}(4)$-module for M_{3} and D_{2} is dual to $Z\left(Q_{3}\right)$.
(viii) $L=O^{2}(B)$.
(ix) $N_{M_{i}}\left(Q_{i} \cap Q_{j}\right)=M_{i j}$ if $(i, j) \neq(1,2)$ and $N_{M_{1}}\left(Q_{1} \cap Q_{2}\right)=Q_{1} M_{12}$.

Proof. Since $\left|M_{3} / M_{13}\right|=5$ and M_{3} has a unique class of subgroups of index 5 , we can put $\Omega(3)=M_{3} / M_{31}$ so that $L=\cap_{g \in M_{3}} M_{31}^{g}$. Since $\left|M_{32} / B\right|=3, M_{32}$ has on orbit of length 3 on $\Omega(3)$. Thus $M_{32} L / L$ is contained in a $\operatorname{Sym}(3) \times C_{2}$-subgroup of M_{3} / L. Since the index of M_{23} in M_{3} and the index of $\operatorname{Sym}(3) \times C_{2}$ in $S_{5 m_{5}}$ are both 10, we conclude that $L \leq M_{32}$ and $M_{32} / L \cong \operatorname{Sym}(3) \times C_{2}$. In particular, $L \leq B$ and since $\left|M_{32} / B\right|=3$ we have $B / L \cong C_{2} \times C_{2}$. This implies that B / L contains 2-cycles and so $B / L \neq O_{2}\left(M_{31} / L\right)$. As $O_{2}\left(M_{31} / L\right)=T_{31} L / L$ we get $T_{31} \not \leq B$ and $T_{13} \not \leq M_{2}$ which gives (i).

For (ii) let $i \in\{1,3\}$ and let $V(2)$ be some natural $L_{5}(2)$-module for M_{2}. Since $\left|M_{2} / M_{23}\right|=155$ and $\left|M_{2} / M_{21}\right|=31, M_{2 i}$ contains a Sylow 2-subgroup of M_{2}. In particular, $Q_{2} \leq M_{2 i}$ and $M_{2 i}$ is the normalizer of some flag in $V(2)$. Since $\left|M_{2} / M_{21}\right|=31, M_{21}=N_{M_{2}}\left(V_{1}(2)\right)$ for some 1- or 4-space $V_{1}(2)$ in $V(2)$. Replacing $V(2)$ by its dual if necessary we may assume that $V_{1}(2)$ is a 1-space. Since $\left|M_{2} / M_{23}\right|=155, M_{23}=N_{M_{2}}\left(V_{3}(2)\right)$ for some 2 - or 3 -space $V_{3}(2)$ in $V(2)$. Since $\left|M_{23} / M_{23} \cap M_{12}\right|=\left|M_{23} / B\right|=3$ which is odd, $V_{1}(2) \leq V_{3}(2)$ and $V_{3}(2)$ is a 2-space. Thus (ii) holds.
(iii) Since $\left|M_{1} / M_{13}\right|=3795, M_{13}$ contains a Sylow 2-subgroup of M_{1} and so by $3.4 M_{13}=N_{M_{1}}(\beta)$ for some trio β in \mathcal{S}. Suppose that $Q_{1} \leq Q_{3}$. Since $\left|Q_{1}\right|>\left|Q_{2}\right|, Q_{1} \not \leq Q_{2}$. By (ii) M_{12} acts irreducibly on T_{12} / Q_{2} and so $T_{12}=Q_{1} Q_{2}$. Hence $T_{12}=Q_{1} Q_{2} \leq Q_{3} Q_{2} \leq T_{23}$ a contradiction since by (ii) T_{23} centralizes $V_{3}(2)$ but T_{12} does not. Thus $Q_{1} \not \leq Q_{3}$ and so by (i), $Q_{1} Q_{3}=T_{13}$ and $Q_{1} \not \leq M_{2}$. Hence $Q_{1} \not \leq M_{12},\left|Q_{1} / Q_{1} \cap M_{2}\right|=2,\left|M_{1} / M_{12} Q_{1}\right|=759$ and by $3.4, M_{12} Q_{1}=N_{M_{1}}(\alpha)$ for some octad α. Also $\left|M_{13} / Q_{1} B\right|=3$. By $3.2, M_{13} / Q_{1}$ has a unique class of subgroups of index 3 and so $B Q_{1}=N_{M_{13}}\left(\alpha^{*}\right)$ for some octad α^{*} in β. By 3.4 (ii) $B Q_{1}$ fixes a unique octad, so $\alpha=\alpha^{*}$ and (iii) holds.
(iv) follows from (i), (ii) and (iii).

We already proved that $Q_{1} Q_{3}=T_{13}$. Now $\left(T_{13} L / L\right)^{\#}$ contains no 2-cycles and by (i) $Q_{1} \cap M_{2} \not \leq$ T_{23}. Thus $Q_{1} \cap M_{2} \not \leq Q_{2}$ and by (iv), $\left(Q_{1} \cap M_{2}\right) Q_{2}=T_{12}$. Since $\left|Q_{3}\right|>\left|Q_{2}\right|, Q_{3} \not \leq Q_{2}$ and by (iv) $Q_{2} Q_{3}=T_{23}$ and (v) holds.

By (v) and (i) $\left|Q_{2} /\left(Q_{2} \cap Q_{3}\right)\right|=\left|Q_{2} Q_{3} / Q_{3}\right|=\left|T_{23} / Q_{3}\right|=2$, by (v) and (iii) $\left|Q_{2} /\left(Q_{2} \cap Q_{1}\right)\right|=$ $\left|T_{12} / Q_{1}\right|=2^{4}$ and by (i) $Q_{2} \cap Q_{1} \leq Q_{3}$. By the definition of J_{4}-triangle Q_{2} is isomorphic either to $\bigwedge^{2} V(2)$ or to $\bigwedge^{2} V(2)^{*}$. Since $M_{21}=N_{M_{2}}\left(V_{1}(2)\right)$ for a 1-space $V_{1}(2)$ in $V(2)$, the only proper subspace in Q_{2} normalized by M_{12} has dimension 4 in the former case and dimension 6 in the latter case. Since $Q_{1} \cap Q_{2}$ is a 6 -space (vi) follows.

Let $Z_{3}=C_{Q_{1}}\left(Q_{3}\right)$. Since $T_{13}=Q_{1} Q_{3}$, we have $Z_{3}=C_{Q_{1}}\left(T_{13}\right)$. Since Q_{1} is the irreducible Todd module, by $3.7 Z_{3}$ has order 2^{3} and $Z_{3} \leq Q_{1} \cap Q_{3}$. By 3.7 (iii) $Z\left(Q_{3}\right) \leq Z_{3}$ and hence $Z_{3}=Z\left(Q_{3}\right)$. By (iv) and (v) $\Phi\left(Q_{3}\right) \leq Q_{1} \cap Q_{2}$. Since $Z_{3}<Q_{1} \cap Q_{2}<Q_{1} \cap Q_{3}$, since M_{13} acts irreducibly on $Q_{1} \cap Q_{3} / Z_{3}$ and since M_{31} normalizes $\Phi\left(Q_{3}\right)$ we conclude that $\Phi\left(Q_{3}\right) \leq Z_{3}$. On the other hand by $3.7\left[Q_{1} \cap Q_{3}, Q_{3}\right]=Z_{3}$ and so $\Phi\left(Q_{3}\right)=Z_{3}$. By $3.7,\left(Q_{1} \cap Q_{3}\right) / Z_{3}$ is the unique proper M_{31}-submodule in Q_{3} / Z_{3}. Moreover, all composition factors for L on Q_{3} / Z_{3} are dual to Z_{3} and the elements of order three in $C_{M_{31}}\left(Z_{3}\right)$ act fixed-point freely on Q_{3} / Z_{3}. By (ii) $Q_{2} \cap Q_{3} / Z_{3}$ is the unique proper M_{23}-submodule in Q_{3} / Z_{3} and since $Q_{1} \cap Q_{2}<Q_{2} \cap Q_{3}, Q_{1} \cap Q_{3} \neq Q_{2} \cap Q_{3}$. Thus M_{3} acts irreducible on Q_{3} / Z_{3} and (vii) holds.
(viii) By (i) $|B / L|=4$ and by (vii) $O^{2}(L)=L$. Thus (viii) holds.
(ix) Clearly $Q_{i} \cap Q_{j}$ is normal in $Q_{i} M_{i j}$ and the latter is equal to $M_{i j}$ unless $(i, j)=(1,2)$. On the other hand in each case $Q_{i} M_{i j} / Q_{i}$ is maximal in M_{i} / Q_{i} and hence the result follows.

Our next result will be used as a characterization of M_{12}.
Lemma 5.2 For $i=1$ and 2 let X_{i} be a group generated by subgroups Z_{i}, A_{i}, B_{i} and R_{i} such that
(i) R_{i} is isomorphic to $L_{4}(2)$;
(ii) Z_{i}, A_{i} and B_{i} are elementary abelian 2-groups of order $2^{6}, 2^{4}$ and 2^{4}, respectively;
(iii) R_{i} normalizes Z_{i}, A_{i}, and B_{i}, A_{i} and B_{i} are isomorphic natural $L_{4}(2)$-modules for R_{i} and Z_{i} is isomorphic to the exterior square of A_{i}, that is Z_{i} is a natural $\Omega_{6}^{+}(2)$-module for R_{i};
(iv) Z_{i} centralizes A_{i} and B_{i};
(v) $\left[A_{i}, B_{i}\right]=Z_{i}$.

Then
(a) there exists an isomorphism from X_{1} onto X_{2} mapping Y_{1} to Y_{2} for $Y=Z, A, B$ and R;
(b) Out X_{i} is elementary abelian of order 2^{2}.

Proof. Fix $i \in\{1,2\}$ and put $Y=Y_{i}$ for $Y \in\{X, R, A, B, Z\}$. Pick $1 \neq a \in A$ and put $P=C_{R}(a)$. Note that A, B and Z are absolutely irreducible $G F(2) R$-modules and so there exist unique $G F(2) R$-isomorphisms $\phi: A \rightarrow B$ and $\psi: \bigwedge^{2} A \rightarrow Z$. Define $\xi: A \times A \rightarrow Z$ by $\xi(v, w)=[v, \phi(w)]$. Since A is irreducible and $[A, B] \neq 1,[a, B] \neq 1$. Note that $[a, B]$ and $B / C_{B}(a)$ are isomorphic as $G F(2) P$-modules. Moreover, P fixes no non-zero vector in Z and so $[a, \phi(a)]=1$. Thus $\xi(a, a)=1$ and so ξ extends to a $G F(2) R$-homomorphism $\Xi: \bigwedge^{2} A \rightarrow Z$. Thus $\Xi=\psi$ and so $[v, \phi(w)]=\psi(v \wedge w)$ for all $v, w \in A$. It is now clear that (a) holds.

Put $Q=A B Z$. By 2.7 all complements to Q / Z in X / Z are conjugate in X / Z and $Z R$ has two classes of complements to Z. Thus X has two classes of complements to Q and it follows easily from (a) that there exists an automorphism of X interchanging these two classes. Let α be an automorphism of X normalizing R. Since the module for R dual to A is not involved in Q, α induces an inner automorphism on R. So we may assume that α centralizes R.

Let C / Z be the unique irreducible R-submodule in Q / Z different from $A Z / Z$ and $B Z / Z$. We claim that R does not normalize a complement to Z in C. First notice that if a complement in C exists, it should consist of the elements $b \phi(b), b \in A$, since $a \phi(a)$ is the only element in C invariant under the maximal parabolic P in R. However these elements are not closed under multiplication, since

$$
a \phi(a) b \phi(b)=a b \phi(a b)[\phi(a), b]
$$

and the factor $[\phi(a), b]$ is non-trivial when $a \neq b$. Thus the claim follows.
By the claim $A^{\alpha} \not \leq C$ and $\{A, B\}=\left\{A^{\alpha}, B^{\alpha}\right\}$. Again by (a) there exists an automorphism of X normalizing R and interchanging A and B. So we may assume that α normalizes A and B. Since α centralizes R and since A, B and Z are absolutely irreducible $G F(2) R$-modules, α centralizes A, B and Z and α is the identity automorphism.

Let $V(2)$ be a 5 -dimensional $G F(2)$-space, $K_{2}^{\circ}=G L(V(2)) \cong L_{5}(2)$ and M_{2}° be the semidirect product of $Q_{2}^{\circ}:=\bigwedge^{2} V(2)^{*}$ and K_{2}° with respect to the natural action. Let $V_{1}(2)$ be a 1 -space in $V(2), K_{21}^{\circ}$ be the stabilizer of $V_{1}(2)$ in K_{2}° and M_{21}° be the subgroup in M_{2}° which is the semidirect product of Q_{2}° and K_{21}°. Let \mathcal{S} be a Steiner system of type ($5,8,24$), $K_{1}^{\circ}=A u t \mathcal{S} \cong M a t_{24}, Q_{1}^{\circ}$ be the 11-dimensional Todd module associated with the action of K_{1}° on \mathcal{S} and M_{1}° be the semidirect product of Q_{1}° and M_{1}°. Let α be an octad in $\mathcal{S}, K_{12}^{\circ}$ be the stabilizer of α in K_{1}°, H_{1} be the unique hyperplane in Q_{1}° stabilized by K_{12}° (compare 3.2 and 3.7) and M_{12}° be the subgroup in M_{1}° which is the semidirect product of H_{1} and K_{12}°.

Lemma 5.3 Let $X_{i}=Z_{i} A_{i} B_{i} R_{i}$ the group introduced in 5.2, then
(i) there is an isomorphism of M_{21}° onto X_{i} which sends K_{21}° onto $A_{i} R_{i}$;
(ii) there is an isomorphism of M_{12}° onto X_{i} which sends K_{12}° onto $A_{i} R_{i}$.

Proof. By 2.8 and the obvious duality there is an orbit $H(2)^{*}$ of $L_{5}(2)$ on the set of vectors in Q_{2}° indexed by the 3 -spaces in $V(2)$. Let $A_{2}=O_{2}\left(K_{21}^{\circ}\right), Q_{21}^{\circ}=O_{2}\left(M_{21}^{\circ}\right)$ and R_{2} a complement to A_{2} in K_{21}° normalizing a complement U to $V_{1}(2)$ in $V(2)$. Then R_{2} is isomorphic to $L_{4}(2)$ and A_{2} is the kernel of the action of K_{21}° on the set of subspaces in $V(2)$ containing $V_{2}(1)$. This means that A_{2} is dual to U and the latter is canonically isomorphic to $V(2) / V_{1}(2)$. The elements from $H(2)^{*}$ corresponding to 3 -spaces containing $V_{1}(2)$ are centralized by A_{2} and by a standard property of exterior squares they generate an R_{2}-submodule Z_{21} in Q_{2}° isomorphic to $\bigwedge^{2} A_{2}$. The elements from
$H(2)^{*}$ corresponding to 3 -spaces taken from U generate a complement B_{2} to Z_{21} in Q_{2}° normalized by R_{2} and isomorphic to A_{2}. In particular $Z_{21}=C_{Q_{2}^{\circ}}\left(A_{2}\right)=Z\left(Q_{21}^{\circ}\right)$. Moreover, $M_{21}^{\circ}=Z_{21} A_{2} B_{2} R_{2}$ and (i) follows.

Next, let $A_{1}=O_{2}\left(K_{12}^{\circ}\right)$ and $Z_{12}=C_{Q_{1}^{\circ}}\left(A_{1}\right)$. Let $t \in Q_{1}^{\circ} \backslash H_{1}$. By 3.2 and 3.7 (i) A_{1} acts regularly on the elements in $t H_{1} / Z_{12}$. Put $R_{1}=N_{K_{12}^{\circ}}\left(t Z_{12}\right)$. Then by the Frattini argument R_{1} is a complement to A_{1} in K_{12}°. In particular $R_{1} \cong L_{4}(2)$. Put $B_{1}=A_{1}^{t}$. Since t normalizes $Z_{12} R_{1}$ and $Z_{12} R_{1}$ normalizes A_{1} we conclude that $Z_{12} R_{1}$ normalizes B_{1}. Thus B_{1} is R_{1}-invariant. Clearly A_{1} and B_{1} are isomorphic as R_{1}-modules and by $3.7 Z_{12}$ is isomorphic to the exterior square of A_{1}. Moreover, $M_{12}^{\circ}=Z_{12} A_{1} B_{1} R_{1}$ and so by 5.2 we obtain (ii).

Lemma 5.4 With $M_{1}^{\circ}, M_{2}^{\circ}, M_{12}^{\circ}$ and M_{21}° as above there exists a unique amalgam $\left(M_{1}^{\circ}, M_{2}^{\circ}\right)$ such that $M_{1}^{\circ} \cap M_{2}^{\circ}=M_{12}^{\circ}=M_{21}^{\circ}$ and $K_{12}^{\circ}=K_{21}^{\circ}$.

Proof. By 5.3 there is an isomorphism of M_{12}° onto M_{21}° which sends K_{12}° onto K_{21}° and hence the existence follows. In order to prove the uniqueness it is sufficient to show that for every automorphism σ of M_{12}° there is an automorphism δ of M_{1}° which normalizes M_{12}° such that the restriction of δ to M_{12}° coincides with σ. This is certainly true if σ is an inner automorphism and by $5.2(\mathrm{~b})$ and 5.3 the outer automorphism group of M_{12}° is of order 2^{2}. Thus it is sufficient to present a subgroup \hat{M}_{1} in the automorphism group of M_{1}°, containing the inner automorphisms such that M_{12}° (identified with a subgroup of inner automorphisms of M_{1}°) has trivial centralizer in \hat{M}_{1} and $N_{\hat{M}_{1}}\left(M_{12}^{\circ}\right) / M_{12}^{\circ} \cong 2^{2}$. Let \hat{Q}_{1} be the 12-dimensional $G F(2) M_{1}^{\circ}$-module obtained from the 24-dimensional permutational module on the element set Ω of the Steiner system \mathcal{S} modulo the 12-dimensional Golay code. Let \hat{M}_{1} be the semidirect product of \hat{Q}_{1} and K_{1}°. Then \hat{M}_{1} contains M_{1}° as a subgroup of index 2 . It is well known (cf. [1] or [9]) that K_{1}° has four orbits on $\hat{Q}_{1}^{\#}$ with lengths $24,276,2024$ and 1771 indexed by 1 -, 2-, 3 -element subsets of Ω and by the sextets, respectively. This shows that $C_{\hat{Q}_{1}}\left(K_{12}^{\circ}\right)=1$ and hence $C_{\hat{M}_{1}}\left(M_{12}^{\circ}\right)=1$. On the other hand it is clear that M_{12}° is a normal subgroup of index 2^{2} in the subgroup in \hat{M}_{1} which is the semidirect product of \hat{Q}_{1} and K_{12}° and the result follows.

In view of the preceding lemma we may and do identify M_{12}° with M_{21}° and K_{12}° with K_{21}°.
Lemma 5.5 Let $\left(M_{1}, M_{2}, M_{3}\right)$ be a J_{4}-triangle of groups. There exists an isomorphism κ of the amalgam $\left(M_{1}^{\circ}, M_{2}^{\circ}\right)$ as in 5.4 onto the subamalgam $\left(M_{1}, M_{2}\right)$.

Proof. By 1.3 (i), (ii) there are isomorphisms $\kappa_{1}: M_{1}^{\circ} \rightarrow M_{1}$ and $\kappa_{2}: M_{2}^{\circ} \rightarrow M_{2}$. By 5.1 (ii) and (iii) these isomorphisms can be chosen in such a way that that $\kappa\left(M_{12}^{\circ}\right)=M_{12}$ and $\kappa\left(M_{21}^{\circ}\right)=M_{21}$. Now the uniqueness statement in 5.4 ensures existence of the isomorphism κ of amalgams.

Notice that at this stage we do not know whether or not a J_{4}-triangle of groups exists but we do know that the rank two amalgam $\left(M_{1}^{\circ}, M_{2}^{\circ}\right)$ exists.

Let β be a trio containing the octad α. Put $M_{13}^{\circ}=N_{M_{1}^{\circ}}(\beta), B^{\circ}=M_{12}^{\circ} \cap M_{13}^{\circ}, L^{\circ}=O^{2}\left(B^{\circ}\right)$, $M_{23}^{\circ}=N_{M_{2}^{\circ}}\left(L^{\circ}\right), Q_{13}^{\circ}=O_{2}\left(M_{13}^{\circ}\right), Q_{3}^{\circ}=O_{2}\left(L^{\circ}\right)$ and $Z_{3}^{\circ}=Z\left(Q_{3}^{\circ}\right)$.

Lemma 5.6 (i) $L^{\circ}=O^{2,3}\left(M_{13}^{\circ}\right), M_{13}^{\circ}=N_{M_{1}^{\circ}}\left(L^{\circ}\right), L^{\circ} / Q_{3}^{\circ} \cong L_{3}(2), L^{\circ}$ splits over $Q_{3}^{\circ}, Q_{1}^{\circ} \cap Q_{3}^{\circ} \leq$ $H_{1} \not \subset L^{\circ}, Q_{1}^{\circ} \cap Q_{3}^{\circ}=\left[Q_{1}^{\circ}, Q_{13}^{\circ}\right], Q_{13}^{\circ}=Q_{1}^{\circ} Q_{3}^{\circ}, Z_{3}^{\circ}=\Phi\left(Q_{3}^{\circ}\right)=\left(Q_{3}^{\circ}\right)^{\prime}=C_{Q_{3}^{\circ}}\left(Q_{13}^{\circ}\right), Z_{3}^{\circ}$ is a natural $L_{3}(2)$-module for L° and $Q_{3}^{\circ} / Z_{3}^{\circ}$ is the direct sum of four natural $L_{3}(2)$-modules dual to Z_{3}°.
(ii) $M_{23}^{\circ}=N_{M_{2}^{\circ}}\left(V_{3}(2)\right)$ where $V_{3}(2)$ is some 2-space in $V(2)$ containing $V_{1}(2)$.
(iii) $M_{13}^{\circ} / L^{\circ} \cong \operatorname{Sym}(4)$ and $M_{23}^{\circ} / L^{\circ} \cong \operatorname{Sym}(3) \times C_{2}$.
(iv) $B^{\circ}=M_{21}^{\circ} \cap M_{23}^{\circ}, B^{\circ} / L^{\circ} \cong C_{2} \times C_{2}$ and B° is not normal in M_{13}°.
(v) $C_{M_{1}^{\circ}}\left(L^{\circ}\right)=1=C_{M_{2}^{\circ}}\left(L^{\circ}\right)$.
(vi) the isomorphism κ in 5.5 can be chosen in such a way that $\kappa\left(Y^{\circ}\right)=Y$ for $Y=B, L, M_{13}$, M_{23}, Q_{3} and Z_{3}.

Proof. Let L^{\prime} be the kernel of the action of M_{13}° on the three octads in β. Since $O^{2}\left(B^{\circ}\right)$ fixes the two octads in β different from $\alpha, L^{\circ} \leq L^{\prime} \leq B^{\circ}$ and so $L^{\circ}=O^{2}\left(L^{\prime}\right) \unlhd M_{13}^{\circ}$. Since M_{13}° is maximal in $M_{1}^{\circ}, M_{13}^{\circ}=N_{M_{1}^{\circ}}\left(L^{\circ}\right)$. The remaining statements in (i) now follow from 3.2 and 3.7 (i) - (iii).

Recall that we identified M_{12}° and M_{21}°. Since α is contained in 15 trios, B° has index 15 in M_{12}°. Thus $B^{\circ}=N_{M_{12}^{\circ}}\left(V_{3}(2)\right)$ where $V_{3}(2)$ is 2- or 4-space in $V(2)$ containing $V_{1}(2)$. If $V_{3}(2)$ is a 4-space then $B^{\circ} / Q_{2}^{\circ}$ is an extraspecial group of order 2^{7} extended by $L_{3}(2)$. Since $L^{\circ}=O^{2}\left(L^{\circ}\right)=O^{2}\left(B^{\circ}\right)$ we conclude that L° has a chief factor isomorphic to C_{2}, a contradiction to (i). Thus $V_{3}(2)$ is a 2-space and $L^{\circ}=O^{2}\left(B^{\circ}\right)=O^{2}\left(C_{M_{2}^{\circ}}\left(V_{3}(2)\right)\right)$. This means that L° is normal in $N_{M_{2}^{\circ}}\left(V_{3}(2)\right)$ and since the latter is maximal in M_{2}° it must be equal to $M_{23}^{\circ}=N_{M_{2}^{\circ}}\left(L^{\circ}\right)$ and (ii) follows.
(iii) By 3.2, $M_{13}^{\circ} / L^{\circ} Q_{1}^{\circ} \cong \operatorname{Sym}(3)$ and by 3.7 (iii) $Q_{1}^{\circ} / Q_{1}^{\circ} \cap Q_{3}^{\circ}$ is isomorphic to the natural $L_{2}(2)$-module for M_{13}°. Thus $M_{13}^{\circ} / L^{\circ} \cong \operatorname{Sym}(4)$. In M_{2}° we compute that $M_{23}^{\circ} / L^{\circ} Q_{2}^{\circ} \cong \operatorname{Sym}(3)$, M_{23}° splits over $L^{\circ} Q_{2}^{\circ}$ and $\left|Q_{2}^{\circ} / Q_{2}^{\circ} \cap Q_{3}^{\circ}\right|=2$. Thus $M_{23}^{\circ} / L^{\circ} \cong \operatorname{Sym}(3) \times C_{2}$.
(iv) Clearly $B^{\circ}=N_{M_{12}^{\circ}}\left(L^{\circ}\right)=M_{12}^{\circ} \cap M_{13}^{\circ}=M_{21}^{\circ} \cap M_{23}^{\circ}=N_{M_{2}^{\circ}}\left(V_{1}(2), V_{3}(2)\right)$. Hence we compute in M_{2}° that $B^{\circ} / L^{\circ} \cong C_{2} \times C_{2}$. Since $Q_{1}^{\circ} \not \leq M_{12}^{\circ}$, we have $B^{\circ} \neq Q_{1}^{\circ} L^{\circ}$. Since $Q_{1}^{\circ} L^{\circ} / L^{\circ}=O_{2}\left(M_{13}^{\circ} / L^{\circ}\right)$, B° is not normal in M_{13}°.
(v) is readily verified in M_{1}° (see 3.2) and M_{2}°.

Finally (vi) follows from (i) - (v) and 5.1.
Let M_{3}° be the universal completion of the amalgam $\left(M_{13}^{\circ}, M_{23}^{\circ}\right)$ (which is the free amalgamated product of M_{13}° and M_{23}° over B°) and let ($M_{1}^{\circ}, M_{2}^{\circ}, M_{3}^{\circ}$) be a triangle of groups where $M_{i}^{\circ} \cap M_{j}^{\circ}=$ $M_{i j}^{\circ}$ for $1 \leq i<j \leq 3$. We are ready to prove the uniqueness statement for J_{4}-triangles.

Lemma 5.7 Every J_{4}-triangle of groups is isomorphic to the triangle $\left(M_{1}^{\circ}, M_{2}^{\circ}, M_{3}^{\circ} / N\right)$, where $N=$ $C_{M_{3}^{\circ}}\left(L^{\circ}\right)$.

Proof. Let $\left(M_{1}, M_{2}, M_{3}\right)$ be a J_{4}-triangle of groups, κ be an isomorphism of $\left(M_{1}^{\circ}, M_{2}^{\circ}\right)$ onto $\left(M_{1}, M_{2}\right)$ as in 5.5 , satisfying the condition in 5.6 (vi). Since M_{3} is generated by the subgroups M_{31}, M_{32} there is a mapping of $\left(M_{1}^{\circ}, M_{2}^{\circ}, M_{3}^{\circ}\right)$ onto $\left(M_{1}, M_{2}, M_{3}\right)$ whose restriction to $M_{1}^{\circ} \cup M_{2}^{\circ}$ coincides with κ and whose restriction to M_{3}° is a homomorphism χ onto M_{3}. Thus the isomorphism type of $\left(M_{1}, M_{2}, M_{3}\right)$ is uniquely determined by the kernel N of χ. We claim that $N=C_{M_{3}^{\circ}}\left(L^{\circ}\right)$. On the one hand, N and L° are normal subgroups in M_{3}° and $N \cap L^{\circ}=1$ since the restriction of κ to L° is an isomorphism onto L, hence $N \leq C_{M_{3}^{\circ}}\left(L^{\circ}\right)$. On the other hand by $5.6(\mathrm{v})$ and since $M_{3} / L \cong \operatorname{Sym}(5)$ we have $C_{M_{3}}(L)=1$ and hence $N \geq C_{M_{3}^{\circ}}\left(L^{\circ}\right)$. Thus the claim follows and implies the result.

For the remainder of the section we identify $\left(M_{1}, M_{2}, M_{3}\right)$ with $\left(M_{1}^{\circ}, M_{2}^{\circ}, M_{3}^{\circ} / N\right)$ where $N=$ $C_{M_{3}^{\circ}}\left(L^{\circ}\right)$. In order to prove the existence we have to show that this is in fact a J_{4}-triangle of groups. For this we have to show that $M_{3} / L \cong \operatorname{Sym}(5)$. By the definition M_{3} is the subgroup in Aut L generated by M_{13} and M_{23} (identified with their isomorphic images in $A u t L$). We need the following preliminary result.

Lemma 5.8 Let S be the symmetric group $\operatorname{Sym}(6)$ of degree 6 . Let H_{1} and H_{2} be subgroups in S with $H_{1} \cong \operatorname{Sym}(4), H_{2} \cong \operatorname{Sym}(3) \times C_{2}$ and $H_{1} \cap H_{2} \cong C_{2} \times C_{2}$. Then $\left\langle H_{1}, H_{2}\right\rangle \cong \operatorname{Sym}(5)$.

Proof. Let A_{1} and A_{2} be representatives of the conjugacy classes of Sym(5) subgroups in S. Put $\Omega_{i}=S / A_{i}, i=1,2$. We choose representatives k_{1}, k_{2} and k_{3} of the conjugacy classes of involutions in S so that k_{i} acts as a transposition on Ω_{i} for $i=1,2$ and $k_{3} \in S^{\prime} \cong \operatorname{Alt}(6)$. Then $C_{S}\left(k_{1}\right) \cong C_{S}\left(k_{2}\right) \cong \operatorname{Sym}(4) \times C_{2}$ and $C_{S}\left(k_{3}\right) \cong D_{8} \times C_{2}$. There are two conjugacy classes of $\operatorname{Sym}(4)$ subgroups in S not contained in S^{\prime}. We choose representatives B_{1} and B_{2} of these classes so that B_{i} is the elementwise stabilizer in S of a pair of cosets from Ω_{i}, or equivalently, that B_{i} contains a conjugate of $k_{i}, i=1,2$. Applying the symmetry with respect to the full automorphism group of S, we assume that the central involution in H_{2} is k_{1}. Then H_{2} acting on Ω_{1} fixes a coset, say α and $H_{1} \cap H_{2}$ fixes two such cosets, say α and β. Since H_{1} contains k_{1}, it is a conjugate of B_{1} and hence fixes two cosets from Ω_{1}. Clearly these cosets must be α and β. This means that $\left\langle H_{1}, H_{2}\right\rangle$ fixes α and obviously it is the whole stabilizer of α in S, isomorphic to $\operatorname{Sym}(5)$.

Lemma 5.9 Let M_{3} be the subgroup of Aut L generated by M_{13} and M_{23}. Then $M_{3} / L \cong \operatorname{Sym}(5)$. In particular, $\left(M_{1}, M_{2}, M_{3}\right)$ is J_{4}-triangle of groups.

Proof. We will use the information about M_{13} and M_{23} obtained in 5.6 without further reference. Let U be a complement to Q_{3} in L and S a Sylow 7 -subgroup of U. Since Z_{3} is a natural module for L, M_{3} induces only inner automorphism on L / Q_{3} and so $M_{3}=C_{M_{3}}(S) L$. Put $C=C_{M_{3}}\left(Q_{3} / Z_{3}\right) \cap$ $C_{M_{3}}\left(Z_{3}\right)$ and $E=C_{C}(S)$. Then $C=Q_{3} E$. Let $e \in E$. Then the map

$$
\xi: Q_{3} / Z_{3} \rightarrow Z_{3}, \quad x Z_{3} \mapsto[x, e]
$$

is a $G F(2) S$-homomorphism. Since Q_{3} / Z_{3} is the direct sum of four $L_{3}(2)$-modules dual to Z_{3}, none of the S-composition factors in Q_{3} / Z_{3} are isomorphic to Z_{3}. Hence the image of ξ is the identity and E centralizes Q_{3}. In particular, $[U, E] \leq C_{L}\left(Q_{3}\right)=Z_{3}, E$ normalizes $Z_{3} U$ and E acts faithfully on $Z_{3} U$. By $2.7 Z_{3} U$ has two classes of complements and so $|E| \leq 2$ and $\left|C / Q_{3}\right| \leq 2$.

Put $D=C_{M_{3}}\left(Z_{3}\right)$ and $\bar{M}_{3}=M_{3} / C$. Then D centralizes L / Q_{3} and \bar{D} acts faithfully on Q_{3} / Z_{3}. Thus there exists a faithful four dimensional $G F(2) \bar{D}$-module R so that as D-module Q_{3} / Z_{3} is isomorphic to the direct sum of three copies of R. Let $D_{i}=C_{M_{i 3}}\left(Z_{3}\right)=M_{i 3} \cap D$. Notice that $\bar{M}_{3}=\bar{D} \times \bar{L}, \bar{M}_{i 3}=\bar{D}_{i} \times \bar{L}$ and $M_{3}=\left\langle M_{13}, M_{23}\right\rangle$. Thus $D=\left\langle D_{1}, D_{2}\right\rangle, \bar{D}_{1} \cong \operatorname{Sym}(4)$, $\bar{D}_{2} \cong \operatorname{Sym}(3) \times C_{2}$ and $\bar{D}_{1} \cap \bar{D}_{2} \cong C_{2} \times C_{2}$. By 3.7 (iii) $Q_{1} \cap Q_{3}$ is the only M_{13}-invariant subgroup between Z_{3} and Q_{3}. Similarly, Q_{2} is uniserial as $G F(2) M_{23}$-module and $Q_{2} \cap Q_{3}$ is the only $M_{23^{-}}$ invariant subgroup between Z_{3} and Q_{3}. In addition $Q_{2} \cap Q_{3}$ has index 2 in Q_{2} and $Q_{1} \cap Q_{2}$ has index 2^{4} in Q_{2}. Thus $Q_{1} \cap Q_{2} \cap Q_{3} \neq Q_{2} \cap Q_{3}$ and $Q_{1} \cap Q_{3} \neq Q_{2} \cap Q_{3}$. Hence D acts irreducibly on R.

We claim that \bar{D} preserves on R a non-degenerate symplectic form. Notice that Q_{3} is non-abelian and D centralizes $Q_{3}^{\prime}=Z_{3}$. Let $X \leq Z_{3}$ with $|X|=4$ and $Q_{3}^{\prime} \not \leq X$. Let Y be maximal in Q_{3} with respect to the condition $\left[Q_{3}, Y\right] \leq X$. Let W / Y be an irreducible D-submodule of Q_{3} / Y and let K be maximal in Q_{3} with $[W, K] \leq X$. Then we obtain a non-degenerate D-invariant bilinear map

$$
\begin{aligned}
\phi: W / Y \times Q_{3} / K & \rightarrow Z_{3} / X \cong G F(2) \\
(w Y, q K) & \mapsto[w, q] X
\end{aligned}
$$

Hence by linear algebra, Q_{3} / K is isomorphic to the dual of W / Y and so irreducible. On the other hand all composition factors of D in Q_{3} / Z_{3} are isomorphic to R. Hence ϕ induces a D-invariant non-degenerate bilinear map

$$
\psi: R \times R \rightarrow G F(2)
$$

It remains to show that we can choose ψ to be a symplectic form. Define $\psi^{*}(x, y)=\psi(x, y)+$ $\psi(y, x)$. Then clearly $\psi^{*}(x, y)$ is symmetric and $\psi^{*}(x, x)=0$. As D acts irreducibly on R, either $\psi^{*}(x, y)=0$ for every $x, y \in R$ or ψ^{*} is non-degenerate D-invariant symplectic form. Suppose that ψ^{*} is trivial. In this case ψ is symmetric. In particular, $\{r \in R \mid \psi(r, r)=0\}$ forms a D-invariant subspace of index at most 2 in R. As R is irreducible we conclude that $\psi(r, r)=0$ for all $r \in R$ and so ψ is a symplectic form and the claim follows. Thus \bar{D} is a subgroup in $\operatorname{Sp} p_{4}(2) \cong \operatorname{Sym}(6)$ generated by $\bar{D}_{1} \cong \operatorname{Sym}(4)$ and $\bar{D}_{2} \cong \operatorname{Sym}(3) \times C_{2}$ with $\bar{D}_{1} \cap \bar{D}_{2} \cong C_{2} \times C_{2}$. Hence $\bar{D} \cong \operatorname{Sym}(5)$ by 5.8 .

Notice that $M_{3} / C=D L / C$, and $\left|M_{3} / M_{13} C\right|=5$. Since $M_{13} / L \cong \operatorname{Sym}(4)$ does not contain normal subgroups of order $2, M_{13} \cap C \leq Q_{3}$ and hence M_{13} / Q_{3} is a complement to C / Q_{3} in $M_{13} C / Q_{3}$. Thus by Gaschütz's theorem, M_{3} / Q_{3} splits over C / Q_{3}. Since $D_{i}=D_{i}^{\prime}\left(D_{1} \cap D_{2}\right) Q_{3}$ and $\left|D_{1} \cap D_{2} /\left(D_{1} \cap D_{2} \cap D_{1}^{\prime}\right) Q_{3}\right|=2,\left|M_{3} / M_{3}^{\prime} Q_{3}\right| \leq 2$. But $\left|\operatorname{Sym}(5) / \operatorname{Sym}(5)^{\prime}\right|=2$, hence $C / Q_{3}=1$ and the lemma is proved.

Thus up to isomorphism there exists a unique J_{4}-triangle of groups.

6 Amalgams of Modules

In this section we prove a number of results to be used in the next section where a J_{4}-triangle of groups will be constructed inside $G L_{1333}(\mathbf{C})$. The following lemma is of crucial importance.

Lemma 6.1 Let $\left(M_{1}, M_{2}, M_{3}\right)$ be a triangle of groups, H be a group and A be a subgroup of Aut H. Suppose that for all $1 \leq i \leq 3$, there exist homomorphisms $\alpha_{i}: M_{i} \rightarrow H$ and elements $a_{i} \in A$ such that

$$
\left.\alpha_{1}\right|_{M_{13}} a_{2}=\left.\alpha_{3}\right|_{M_{13}},\left.\alpha_{2}\right|_{M_{12}} a_{3}=\left.\alpha_{1}\right|_{M_{12}} \text { and }\left.\alpha_{3}\right|_{M_{23}} a_{1}=\left.\alpha_{2}\right|_{M_{23}}
$$

Put $M_{23}^{*}=M_{23}^{\alpha_{3} a_{2}^{-1}}, M_{13}^{*}=M_{13}^{\alpha_{1}}, M_{12}^{*}=M_{12}^{\alpha_{1}}$ and $B^{*}=B^{\alpha_{1}}$. Then
(i) The following two statements are equivalent:
(a1) There exist $b_{i} \in A, 1 \leq i \leq 3$, such that

$$
\left.\alpha_{i} b_{i}\right|_{M_{i j}}=\left.\alpha_{j} b_{j}\right|_{M_{i j}}, \text { for all } i \neq j
$$

(a2) $a_{2} a_{1} a_{3} \in C_{A}\left(M_{23}^{*}\right) C_{A}\left(M_{13}^{*}\right) C_{A}\left(M_{12}^{*}\right)$.
(ii) $B^{*} \leq M_{12}^{*} \cap M_{13}^{*} \cap M_{23}^{*}$ and $a_{2} a_{1} a_{3} \in C_{A}\left(B^{*}\right)$. In particular, (a2) and (a1) hold if

$$
(*) \quad C_{A}\left(B^{*}\right)=C_{A}\left(M_{23}^{*}\right) C_{A}\left(M_{13}^{*}\right) C_{A}\left(M_{12}^{*}\right)
$$

(iii) Assume that (a1) holds and that each $\alpha_{i}, 1 \leq i \leq 3$, is one to one. Put $M_{i}^{*}=M_{i}^{\alpha_{i} b_{i}}$. If $M_{i}^{*} \cap M_{j}^{*}=M_{i j}^{\alpha_{i} b_{i}}$ for all $1 \leq i<j \leq 3$, then $\left(M_{1}^{*}, M_{2}^{*}, M_{3}^{*}\right)$ is a triangle of groups isomorphic to $\left(M_{1}, M_{2}, M_{3}\right)$

Proof. Replacing α_{2} by $\alpha_{2} a_{3}, \alpha_{3}$ by $\alpha_{3} a_{2}^{-1}$ and a_{1} by $a_{2} a_{1} a_{3}$ we may assume that $a_{2}=a_{3}=1$. (i) Replacing b_{i} by $b_{i} b_{1}^{-1}$, for all i, we see that (a1) is equivalent to :
(1) $\left.\alpha_{1}\right|_{M_{13}}=\left.\alpha_{3} b_{3}\right|_{M_{13}},\left.\alpha_{1}\right|_{M_{12}}=\left.\alpha_{2} b_{2}\right|_{M_{12}}$ and $\left.\alpha_{2} b_{2}\right|_{M_{23}}=\left.\alpha_{3} b_{3}\right|_{M_{23}}$ for some $b_{2}, b_{3} \in A$.

Since $\left.\alpha_{1}\right|_{M_{13}}=\left.\alpha_{3}\right|_{M_{13}},\left.\alpha_{1}\right|_{M_{12}}=\left.\alpha_{2}\right|_{M_{12}}$ and $\left.\alpha_{2}\right|_{M_{23}}=\left.\alpha_{3} a_{1}\right|_{M_{23}},(1)$ is equivalent to
(2) $b_{3} \in C_{A}\left(M_{13}^{*}\right), b_{2} \in C_{A}\left(M_{12}^{*}\right)$ and $a_{1} b_{2} b_{3}^{-1} \in C_{A}\left(M_{23}^{*}\right)$ for some $b_{2}, b_{3} \in A$.

Now (2) is obviously equivalent to (a2).
(ii) Since $a_{2}=a_{3}=1,\left.\alpha_{2}\right|_{B}=\left.\alpha_{1}\right|_{B}=\left.\alpha_{3}\right|_{B}$ and so $B^{*} \leq M_{12}^{*} \cap M_{13}^{*} \cap M_{23}^{*}$. Moreover, since $\left.\alpha_{2}\right|_{M_{23}}=\left.\alpha_{3}\right|_{M_{23}} a_{1}$, we get $\left.\alpha_{1}\right|_{B}=\left.\alpha_{1} a_{1}\right|_{B}$ and $a_{1} \in C_{A}\left(B^{*}\right)$.
(iii) is obvious.

Lemma 6.2 Let K be a field, G be a group, H be a subgroup of finite index m in G, W be a finite dimensional $K G$-module and U be a non-zero finite dimensional $K H$-module. Suppose that each of the following statements holds:
(i) U is isomorphic to a KH-submodule of W;
(ii) $\operatorname{dim}_{K} W=m \cdot \operatorname{dim}_{K} U$;
(iii) At least one of W and $U \bigotimes_{K H} K G$ is irreducible as a $K G$-module.

Then $W \cong U \bigotimes_{K H} K G$ as $K G$-modules.
Proof. By (i) and the universality property of induced modules, there exists a non-zero KHhomomorphism $\Phi: U \bigotimes_{K H} K G \rightarrow W$. By (iii) Φ is onto (in the first case) or one-to-one (in the second case). By (ii) $\operatorname{dim}_{K} W=m \cdot \operatorname{dim}_{K} U=\operatorname{dim}_{K} U \bigotimes_{K H} K G$ and so Φ is an isomorphism.

Fundamental to our construction of a J_{4}-triangle inside $G L_{1333}(\mathbf{C})$ is the concept of "amalgam of modules". Amalgams of modules are a special case of sheaves (see for example [14]) and can be discussed in broad generality, but we will restrict ourselves to what is needed in this paper.

Definition 6.3 Let H be a group and H_{1} and H_{2} subgroups of H with $H=\left\langle H_{1}, H_{2}\right\rangle$. Put $H_{0}=$ $H_{1} \cap H_{2}$ and let K be a field.
(i) An amalgam of K-modules for $H_{1} \leftarrow H_{0} \rightarrow H_{2}$ is a tuple $\left(W_{0}, W_{1}, W_{2}, \phi_{1}, \phi_{2}\right)$, where W_{i} is a KHi-module, $0 \leq i \leq 2$ and $\phi_{i}: W_{0} \rightarrow W_{i}$ is a KH H_{0}-monomorphism, $1 \leq i \leq 2$. Such an amalgam of modules is denoted by

$$
W_{1} \stackrel{\phi_{1}}{\leftarrow} W_{0} \xrightarrow{\phi_{2}} W_{2} .
$$

(ii) A faithful $K H$-completion for $W_{1} \stackrel{\phi_{1}}{\leftarrow} W_{0} \xrightarrow{\phi_{2}} W_{2}$ is a tuple $\left(W, \psi_{1}, \psi_{2}\right)$, where W is a KHmodule and, for $1 \leq i \leq 2, \psi_{i}: W_{i} \rightarrow W$ are $K H_{i}$-monomorphisms with $\phi_{1} \psi_{1}=\phi_{2} \psi_{2}$. Such a completion is denoted by

$$
W_{1} \xrightarrow{\psi_{1}} W \stackrel{\psi_{2}}{\rightleftarrows} W_{2} .
$$

Let W be as in part (ii) of the above definition. In abuse of notation, we will refer to W itself as a completion of the amalgam of modules.

We following elementary lemma is at the heart of the construction of J_{4}.
Lemma 6.4 Let $W_{1} \stackrel{\phi_{1}}{\leftarrow} W_{0} \xrightarrow{\phi_{2}} W_{2}$ be an amalgam of K-modules for $H_{1} \leftarrow H_{0} \rightarrow H_{2}$. Assume that each of the following three statements holds:
(1) W_{i} is irreducible for $0 \leq i \leq 2$.
(2) There exists a normal elementary abelian subgroup Q of H contained in H_{0} with $C_{W_{0}}(Q)=0$ and a hyperplane A in Q such that $C_{W_{i}}(A)$ is one dimensional for $0 \leq i \leq 2$.
(3) Put $N_{i}=N_{H_{i}}(A)$ for $0 \leq i \leq 2$ and $N=N_{H}(A)$. Then $N_{0} \cap N^{\prime}=\left(N_{0} \cap N_{1}^{\prime}\right)\left(N_{0} \cap N_{2}^{\prime}\right)$ and $N=N_{0} N^{\prime}$.

Then $W_{1} \leftarrow W_{0} \rightarrow W_{2}$ has a faithful and irreducible $K H$-completion W of dimension $|H / N|$. Moreover, the Wedderburn components for Q on W are 1-dimensional and the action of H on these Wedderburn components is isomorphic to the action on A^{H}.

Proof. Let $0 \leq i \leq 2$ and put $X_{i}=C_{W_{i}}(A)$. Then from (1) and (2), X_{i} is a Wedderburn component for Q on W_{i} and so $W_{i} \cong X_{i} \otimes_{K N_{i}} K H_{i}$. Since X_{i} is one dimensional, N_{i}^{\prime} centralizes X_{i}. Let $1 \leq j \leq 2$. Clearly $X_{0}^{\phi_{j}}=X_{j}$ and $N_{0} \cap N_{j}^{\prime}$ centralizes X_{j} and X_{0}. By (3), $N_{0} \cap N^{\prime}$ centralizes X_{0}. Define the $K N$-module X by $X=X_{0}$ as K-vector space and $x^{g}=x^{h}$ whenever $x \in X, g \in N$ and $h \in N_{0}$ with $N^{\prime} g=N^{\prime} h$. Since $N=N_{0} N^{\prime}$ such h always exists and since $N^{\prime} \cap N_{0}$ centralizes X_{0} this is well defined. Put $W=X \otimes_{K N} K H$. As $W_{i} \cong X_{i} \otimes_{K N_{i}} K H_{i}$ we conclude that W is a faithful $K H$-completion of $W_{1} \leftarrow W_{0} \rightarrow W_{2}$. Clearly X is a Wedderburn component for Q on W, $N_{H}(A)=N, W$ is irreducible and $\operatorname{dim} W=|H / N|$.

$7 \quad$ A J_{4}-triangle in $G L_{1333}(\mathbf{C})$

In this section $\left(M_{1}, M_{2}, M_{3}\right)$ is an arbitrary J_{4}-triangle of groups and \mathbf{C} is the field of complex numbers. Our goal is to define a J_{4}-triangle inside $G L_{1333}(\mathbf{C})$.

The following notations will be used throughout this section. Let $1 \leq i, j \leq 3$ with $i \neq j$. If X is an $\mathbf{C} M_{i}$-module, then $R_{i j}(X)$ is the restriction of X to $M_{i j}$; if Y is an $\mathbf{C} M_{i j}$-module then $I^{i}(Y)=Y \otimes_{\mathbf{C} M_{i j}} \mathbf{C} M_{i}$ (the module for $\mathbf{C} M_{i}$ induced from Y) and $R_{0}(Y)$ is the restriction of Y to B; and if Z is an $\mathbf{C} B$-module, then $I^{i j}(Z)=Z \otimes_{\mathbf{C} B} \mathbf{C} M_{i j}$.

In what follows $X_{t}(i)$ will always denote an $\mathbf{C} M_{i}$-module, $Y_{t}(i j)$ an $\mathbf{C} M_{i j}$-module and Z_{t} an $\mathbf{C} B$-module. If G is a group, $H \leq G, U$ is an $\mathbf{C} H$-module and W is an $\mathbf{C} G$-module we write $U \rightarrow W$ or $W \leftarrow U$ provided that U is isomorphic to a $\mathbf{C} H$-submodule of W. (We remark that in all cases below the $\mathbf{C} H$-submodule of W isomorphic to U will be unique).

Put $L=O^{2}(B)$.
Let $X_{1}(1)$ be an irreducible 45 -dimensional $\mathbf{C} M_{1} / Q_{1}$-module given by [7] regarded as an $\mathbf{C} M_{1-}{ }^{-}$ module. Then clearly
(1) $X_{1}(1)$ is irreducible of dimension 45 and $C_{M_{1}}\left(X_{1}(1)\right)=Q_{1}$.

The next three statements follow from 3.12.
(2) Put $Y_{1}(12)=R_{12}\left(X_{1}(1)\right)$. Then $Y_{1}(12)$ is irreducible of dimension 45 and $C_{M_{12}}\left(Y_{1}(12)\right)=$ $Q_{1} \cap M_{12}$.
(3) Restricted to $M_{13}, X_{1}(1)$ is the direct sum of irreducible $\mathbf{C} M_{13}$-modules $Y_{1}(13)$ and $Y_{2}(13)$, of dimension 3 and 42, respectively. Moreover, $C_{M_{13}}\left(Y_{1}(13)\right)=O_{2,3}\left(M_{13}\right)$ and $C_{M_{13}}\left(Y_{2}(13)\right)=Q_{1}$.
(4) For $i=1,2$ put $Z_{i}=R_{0}\left(Y_{i}(13)\right)$. Then Z_{1} and Z_{2} are irreducible of dimension 3 and 42, respectively. Moreover, restricted to $B, Y_{1}(12)$ is isomorphic to $Z_{1} \oplus Z_{2}$.

Let A / Q_{3} be the subgroup isomorphic to $\operatorname{Alt}(5)$ in M_{3} / Q_{3}. By $5.1\left(A \cap M_{13}\right) / Q_{3} \cong \operatorname{Alt}(4)$. Thus $A \cap M_{13} \leq O_{2,3}\left(M_{13}\right)$ and so by (3), $A \cap M_{13}$ centralizes $Y_{1}(13)$. Moreover, $M_{3}=A M_{13}$ and thus there exists an $\mathbf{C} M_{3}$-module $X_{1}(3)$ such that
(5) $X_{1}(3)$ is irreducible of dimension $3, C_{M_{3}}\left(X_{1}(3)\right) / Q_{3} \cong \operatorname{Alt}(5)$ and $X_{1}(3)$ is isomorphic to $Y_{1}(13)$ as an $\mathbf{C} M_{13}$-module.

By (4) and (5)
(6) Put $Y_{1}(23)=R_{23}\left(X_{1}(3)\right)$. Then $Y_{1}(23)$ is irreducible of dimension 3 and restricted to B isomorphic to Z_{1}.

Put $X_{1}(2)=I^{2}\left(Y_{1}(23)\right)$. There are 152 -spaces of $V(2)$ containing $V_{1}(2)$ and $140=155-15$ 2-spaces of $V(2)$ which do not contain $V_{1}(2)$. Hence the orbits of M_{12} on M_{2} / M_{23} have length 15 and 140. Moreover, $15=\left|M_{12} / B\right|, Y_{1}(12)$ is irreducible of dimension $45=15 \cdot 3=\left|M_{12} / B\right| \cdot \operatorname{dim} Z_{1}$ and so by $6.2, Y_{1}(12) \cong I^{12}\left(Z_{1}\right)$. Since $Z_{1}=R_{0}\left(Y_{1}(23)\right)$ the definition of $X_{1}(2)$ now implies
(7) $Y_{1}(23) \rightarrow X_{1}(2), X_{1}(2)$ is 465 -dimensional and is as an $\mathbf{C} M_{12}$-module isomorphic to the direct sum of $Y_{1}(12)$ and a 420 dimensional $\mathbf{C} M_{12}$-module $Y_{2}(12)$.

We remark that $X_{1}(2)$ and $Y_{2}(12)$ are irreducible. With some effort this could be proved directly at this stage, but we prefer to prove this later on (see (17) and (29)) in shorter but indirect way.

Put $X_{2}(3)=I^{3}\left(Y_{2}(13)\right)$. By 3.12 the restriction of $Y_{2}(13)$ to L is an irreducible module U. Hence $X_{2}(3)$ restricted to L is the sum of five irreducible $\mathbf{C} L$-modules $U_{1}=U, U_{2}, \ldots, U_{5}$. By (3) $C_{L}\left(U_{1}\right)=Q_{1} \cap L$. Since $Z\left(Q_{3}\right)<Q_{1} \cap L<Q_{3}$ and $Z\left(Q_{3}\right)$ is the only proper M_{3}-invariant subgroup properly contained in Q_{3}, we have $C_{L}\left(X_{2}(3)\right) \neq C_{L}\left(U_{1}\right)$. Also M_{3} acts primitively on $\left\{U_{1}, \ldots, U_{5}\right\}$ and hence $C_{L}\left(U_{i}\right) \neq C_{L}\left(U_{j}\right)$ for $i \neq j$ and we conclude:
(8) $X_{2}(3)$ is the direct sum of five pairwise non-isomorphic 42-dimensional $\mathbf{C} L$-modules naturally permuted by $M_{3} / L \cong \operatorname{Sym}(5)$.

By 5.1 (i) the orbits of M_{13}, M_{23} and B on M_{3} / M_{13} have lengths 1 and $4 ; 3$ and 2; and 1,2 and 2 , respectively. Thus (8) and Clifford theory implies the following four statements:
(9) $X_{2}(3)$ is irreducible of dimension 210.
(10) Restricted to $M_{13}, X_{2}(3)$ is isomorphic to the direct sum of $Y_{2}(13)$ and $Y_{3}(13)$, where $Y_{3}(13)$ is an irreducible $\mathbf{C} M_{23}$-module of dimension 168 .
(11) Restricted to $M_{23}, X_{2}(3)$ is the direct sum of irreducible $\mathbf{C} M_{23}$-modules $Y_{2}(23)$ and $Y_{3}(23)$ of dimension 126 and 84 , respectively.
(12) Restricted to $B, Y_{2}(23)$ is isomorphic to the direct sum of Z_{2} and an irreducible 84-dimensional $\mathbf{C} B$-module Z_{3}. Put $Z_{4}=R_{0}\left(Y_{3}(23)\right)$. Then Z_{4} is an irreducible 84-dimensional $\mathbf{C} B$-module and $Z_{4} \not \neq Z_{3}$. Moreover, restricted to $B, Y_{3}(13)$ is isomorphic to the direct sum of Z_{3} and Z_{4}.

Note that by definition (see (4)), Z_{2} is isomorphic to $Y_{2}(13)$ as an $\mathbf{C} B$-module, by (3) $Y_{2}(13) \rightarrow$ $X_{1}(1)$, and by definition (see (2)) $Y_{1}(12)$ is isomorphic to $X_{1}(1)$ as an $\mathbf{C} M_{12}$-module. Moreover, by (7) $Y_{1}(12) \rightarrow X_{1}(2)$. Hence as $\mathbf{C} B$-modules

$$
Z_{2} \cong Y_{2}(13) \rightarrow X_{1}(1) \cong Y_{1}(12) \rightarrow X_{1}(2)
$$

Hence by $(12), Y_{2}(23) \leftarrow Z_{2} \rightarrow X_{1}(2)$. By (11) $Y_{2}(23)$ is irreducible of dimension $126=3 \cdot 42=$ $\left|M_{23} / B\right| \cdot \operatorname{dim} Z_{2}$ and we conclude from 6.2 that $Y_{2}(23) \cong I^{23}\left(Z_{2}\right)$. As $Z_{2} \rightarrow X_{1}(2)$, the universal property of induced representations implies that there exists a non-zero $\mathbf{C} M_{23}$-homomorphism from $Y_{2}(23)\left(\cong I^{23}\left(Z_{2}\right)\right)$ to $X_{1}(2)$. As $Y_{2}(23)$ is irreducible, this homomorphism is one-to-one. So $Y_{2}(23) \rightarrow X_{1}(2)$. Then by (12) $Z_{3} \rightarrow Y_{2}(23)$ and so $Z_{3} \rightarrow X_{1}(2)$. Since $\operatorname{dim} Z_{3}>\operatorname{dim} Y_{1}(12)$ and Z_{3} is irreducible, by (7) we get $Z_{3} \rightarrow Y_{2}(12)$. We record:
(13) $Y_{2}(23) \rightarrow X_{1}(2)$ and $Z_{3} \rightarrow Y_{2}(12)$.

By 5.1 we can pick $t \in Q_{1} \backslash M_{2}$. Then clearly t normalizes B and M_{12}. So if T is one of B and M_{12} and W is an CT-module, then T acts on W by $w \rightarrow w^{\left(g^{t}\right)}$ for all $w \in W, g \in T$ and we obtain a new $\mathbf{C} T$-module denoted by W^{t}. Put $\hat{B}=B\langle t\rangle$ and $\hat{M}_{12}=M_{12}\langle t\rangle$. Since \hat{B} / L normalizes $B / L \cong C_{2} \times C_{2}$ in $M_{3} / L \cong \operatorname{Sym}(5)$, clearly $\hat{B} / L \cong D_{8}$ and has orbits of length 1 and 4 on M_{3} / M_{13}. In particular, \hat{B} interchanges the two orbits of length 2 for B on M_{3} / M_{13}. Thus (8) - (12) imply
(14) $Z_{4} \cong Z_{3}^{t}$ and \hat{B} acts irreducibly on $Y_{3}(13)$.

Let $X=Y_{2}(12) \bigotimes_{\mathbf{C} M_{12}} \mathbf{C} \hat{M}_{12}$ and $Y=Z_{3} \bigotimes_{\mathbf{C} B} \mathbf{C} \hat{B} . \quad$ By (13) $Z_{3} \rightarrow Y_{2}(12)$ and by (12) $Z_{3} \rightarrow Y_{3}(13)$. Hence the universal property of induced modules implies the first part of the following statement (the second part is still to be proved):
(15) $X \leftarrow Y \rightarrow Y_{3}(13)$ and $C_{Y_{2}(12)}\left(Q_{1} \cap Q_{2}\right)=0$.

Our nearest goal is to invoke 6.4 to find a faithful M_{1}-completion for the amalgam $X \leftarrow Y \rightarrow$ $Y_{3}(13)$ of C-modules for $\hat{M}_{12} \leftarrow \hat{B} \rightarrow M_{13}$. We start by proving the second part of (15) which is equivalent to the claim that $Q_{1} \cap Q_{2}$ acts fixed-point freely on $Y_{2}(12)$ and immediately implies that $Q_{1}=\left\langle Q_{1} \cap M_{2}, t\right\rangle$ acts fixed-point freely on Y. For this notice that by 5.1 (vi) $Q_{3} \cap Q_{2}$ is a hyperplane in Q_{2}. Furthermore, by definition (see (6)), $Y_{1}(23)=R_{23}\left(X_{1}(3)\right)$ and so by (5) Q_{3} and so also $Q_{3} \cap Q_{2}$ centralize $Y_{1}(23)$. Since $X_{1}(2)=I^{2}\left(Y_{1}(23)\right)$ and $N_{M_{2}}\left(Q_{2} \cap Q_{3}\right)=M_{23}$ by 5.1, every hyperplane of Q_{2} which centralizes a non-zero vector in $X_{1}(2)$ is $\left(Q_{2} \cap Q_{3}\right)^{m}$ for some $m \in M_{2}$ and the vectors centralized by such a hyperplane form a 3 -space in $X_{1}(2)$. By 5.1 (vi) $Q_{1} \cap Q_{2}$ lies in 15 hyperplanes of Q_{2} and by (1), (2) $Q_{1} \cap Q_{2}$ centralizes the 45 -dimensional space $Y_{1}(12)$ in $X_{1}(2)$. Since $45=15 \cdot 3$, this and (7) imply that $Q_{1} \cap Q_{2}$ acts fixed-point freely on $Y_{2}(12)$ and the claim follows.

Recall that $Y_{3}(13)$ restricted to \hat{B} is isomorphic to Y and Y restricted to B is the direct sum of two irreducible non-isomorphic $\mathbf{C} B$-modules Z_{3} and Z_{4}. Hence both Y and $Y_{3}(13)$ are irreducible 168-dimensional modules. Let A be a hyperplane in Q_{1} with $d \stackrel{\text { def }}{=} \operatorname{dim} C_{Y}(A) \neq 0$. Since Q_{1}
centralizes neither Y nor $Y_{3}(13), C_{Y}(A)$ is a Wedderburn component for Q_{1} on Y and $Y_{3}(13)$. Hence $d \cdot\left|A^{\hat{B}}\right|=168=d \cdot\left|A^{M_{13}}\right|$. By 3.6 there are two M_{1}-orbits on the set of hyperplanes in Q_{1}, one is indexed by the octads and the other one by complementary pairs of dodecads in \mathcal{S}. Suppose that A is from the former of the orbits. Recall that M_{13} is the stabilizer in M_{1} of a trio β and \hat{B} is the stabilizer of \mathcal{T} and an octad α contained in \mathcal{T}. By $D_{3}\left(M a t_{24}\right)$ there are exactly two orbits S_{1} and S_{2} of M_{13} on the octads with length less than or equal to 168 . Here S_{1} is the three octads in \mathcal{T} and S_{2} contains the octads which are disjoint from exactly one octad in \mathcal{T}. Since \hat{B} acts transitively neither on S_{1} nor on S_{2}, this is a contradiction. Thus A corresponds to a complementary pair of dodecads and by 3.10 (i), $\left|A^{M_{13}}\right|=\left|A^{\hat{B}}\right|=168, d=1$ and $\left|A^{M_{12}}\right|=840$. In particular, X is irreducible and $C_{X}(A)$ is 1-dimensional. By 3.10 (ii) we can apply 6.4 and obtain a $\mathbf{C} M_{1}$-module $X_{2}(1)$ such that
(16) $X \rightarrow X_{2}(1) \leftarrow Y_{3}(13), X_{2}(1)$ is irreducible of dimension 1288 , the Wedderburn components for Q_{1} on $X_{2}(1)$ are 1-dimensional and the action of M_{1} / Q_{1} on these Wedderburn components is isomorphic to the action of M_{1} / Q_{1} on pairs of complementary dodecads.

Put $Y_{3}(12)=Y_{2}(12)^{t}$. Then by definition, $X \cong Y_{2}(12) \bigoplus Y_{3}(12)$ as $\mathbf{C} M_{12}$-module. Moreover, by (12) and (14) $Z_{3} \not \approx Z_{3}^{t}$ and since X is irreducible we get
(17) $Y_{3}(12)$ and $Y_{2}(12)$ are irreducible of dimension $420, Z_{4} \rightarrow Y_{3}(12), Y_{3}(12) \not \not 二 Y_{2}(12), Y_{2}(12) \rightarrow$ $X_{2}(1)$ and $Y_{3}(12) \rightarrow X_{2}(1)$.
(16) and 3.10 (i) imply the following two statements:
(18) Restricted to $M_{13}, X_{2}(1)$ is isomorphic to the direct sum of $Y_{3}(13), Y_{4}(13)$ and $Y_{5}(13)$, where $Y_{4}(13)$ and $Y_{5}(13)$ are irreducible $\mathbf{C} M_{13}$-modules of dimension 672 and 448 , respectively.
(19) \hat{B} acts irreducibly on $Y_{5}(13)$.

By (12) and (17) $Y_{3}(23) \leftarrow Z_{4} \rightarrow Y_{3}(12)$ and we will use 6.4 to find a faithful M_{2}-completion for this amalgam of \mathbf{C}-modules for $M_{23} \leftarrow B \rightarrow M_{12}$. By (15), $C_{Y_{2}(12)}\left(Q_{1} \cap Q_{2}\right)=0$ and as t normalizes $Q_{1} \cap Q_{2}, C_{Y_{3}(12)}\left(Q_{1} \cap Q_{2}\right)=0=C_{Y_{3}(12)}\left(Q_{2}\right)=C_{Z_{4}}\left(Q_{2}\right)$. Let A be a hyperplane in Q_{2} with $C_{Z_{4}}(A) \neq 0$.

The hyperplanes in Q_{2} are described in 2.8. Suppose that A corresponds to a 2-space in $V(2)$. Then by 2.8 e the orbits of M_{23} on $A^{M_{2}}$ have lengths 1,42 and 112. If A is normal in M_{23}, then since $Y_{3}(23)$ is irreducible, Q_{2} inverts $Y_{3}(23)$. This is a contradiction, since by (8) and (11) Q_{2} interchanges two of the three irreducible L-submodules in $Y_{3}(23)$. Moreover, $112>\operatorname{dim} Y_{3}(23)$ and hence the only possibility to consider is that $\left|A^{M_{23}}\right|=42$. In this case by $2.8 B$ does not act transitively on $A^{M_{23}}$, contradicting the irreducibility of Z_{4}.

So $A \in H(s)$. By 2.8 (iii) the orbits of M_{23} on $H(s)$ have lengths 84,112 and 672 . It follows that $\left|A^{M_{23}}\right|=84, C_{Y_{3}(23)}(A)$ is 1-dimensional, $\left|A^{B}\right|=84,\left|A^{M_{12}}\right|=420$ and $C_{Y_{3}(12)}(A)$ is 1-dimensional. By 2.8 (iv) we can apply 6.4 and so there exists an $\mathbf{C} M_{2}$-module $X_{2}(2)$ such that
(20) $Y_{3}(23) \rightarrow X_{2}(2) \leftarrow Y_{3}(12), X_{2}(2)$ is irreducible of dimension 868 , the Wedderburn components for Q_{2} on $X_{2}(2)$ are 1-dimensional and the action of M_{2} / Q_{2} on these Wedderburn components is isomorphic to the action of M_{2} / Q_{2} on $H(s)$.

In particular, 2.8 (iii) yields the following three statements:
(21) Restricted to $M_{23}, X_{2}(2)$ is isomorphic to the direct sum of $Y_{3}(23), Y_{4}(23)$ and $Y_{5}(23)$, where $Y_{4}(23)$ and $Y_{5}(23)$ are irreducible $\mathbf{C} M_{23}$-modules of dimension 112 and 672 , respectively.
(22) Restricted to $M_{12}, X_{2}(2)$ is isomorphic to the direct sum of $Y_{3}(12)$ and $Y_{4}(12)$, where $Y_{4}(12)$ is an irreducible $\mathbf{C} M_{12}$-module of dimension 448.
(23) Put $Z_{5}=R_{0}\left(Y_{4}(23)\right)$ and $Z_{6}=R_{0}\left(Y_{4}(12)\right)$. Then Z_{5} and Z_{6} are irreducible of dimension 112 and 448, respectively. Moreover, restricted to $B ; X_{2}(2)$ is isomorphic to the direct sum of Z_{4}, Z_{5}, Z_{6} and $Z_{7} ; Y_{5}(23)$ is isomorphic to the direct sum of Z_{6} and Z_{7}; and $Y_{3}(12)$ is isomorphic to the direct sum of Z_{4}, Z_{5} and Z_{7}. Here Z_{7} is an irreducible $\mathbf{C} B$-module of dimension 224.

Put $Z_{8}=Z_{5}^{t}$ and $Z_{9}=Z_{7}^{t}$. By (14), $Z_{4} \cong Z_{3}^{t}$ and by definition (see after (17)) $Y_{3}(12)=Y_{2}(12)^{t}$. By $(23) Y_{3}(12) \cong Z_{4} \bigoplus Z_{5} \bigoplus Z_{7}$ as an $\mathbf{C} B$-module and since $t^{2}=1$ we conclude that
(24) Restricted to $B, Y_{2}(12)$ is isomorphic to the direct sum of Z_{3}, Z_{8} and Z_{9}.

Put $X_{3}(3)=I^{3}\left(Y_{4}(23)\right)$. Note that by (23) and (17) $Z_{5} \rightarrow Y_{3}(12) \rightarrow X_{2}(1)$ and that by (22) and $(23) \operatorname{dim} Y_{5}(13)=448>2 \cdot 112=2 \cdot \operatorname{dim} Z_{5}$. Thus by (19) and since $|\hat{B} / B|=2, Z_{5} \nrightarrow Y_{5}(13)$. Further by (12) $Z_{5} \nrightarrow Y_{3}$ (13) and so by (18), $Z_{5} \rightarrow Y_{4}(13)$. Since $Y_{4}(13)$ is irreducible of dimension $672=6 \cdot 112=\left|M_{13} / B\right| \cdot \operatorname{dim} Z_{5}, 6.2$ implies $Y_{4}(13) \cong I^{13}\left(Z_{5}\right)$. Thus
(25) $Y_{4}(13) \rightarrow X_{3}(3)$.

We claim that L acts irreducibly on $Y_{4}(23)$. For this let A be a hyperplane in Q_{2} with $C_{Y_{4}(23)}(A) \neq 0$. By (20) and $(21),\left|A^{M_{23}}\right|=112$ and A corresponds to a pair (W, s), where W is a 4 -space in $V(2)$ and s is a non-degenerate symplectic form on W. Let U be the 2 -space in $V(2)$ normalized by M_{23}. Since $\left|A^{M_{23}}\right|=112$ the proof of 2.8 (iii) implies $U \leq W$ and $\left.s\right|_{U}$ is nondegenerate. Let $U=\left\langle u_{1}, u_{2}\right\rangle$ and $W=U+\left\langle v_{1}, v_{2}\right\rangle$ with $s\left(u_{i}, v_{j}\right)=0$. Note that each hyperplane of Q_{2} corresponds to a vector in $V(2) \wedge V(2)$ and, in particular, $Q_{2} \cap L$ corresponds to $u_{1} \wedge u_{2}$ and A corresponds to $u_{1} \wedge u_{2}+v_{1} \wedge v_{2}$. Thus the third hyperplane of Q_{2} containing $A \cap L$ corresponds to $v_{1} \wedge v_{2}$ and A is the unique element of $H(s)$ containing $A \cap L$. Thus $N_{L}(A)=N_{L}(A \cap L)$ and $C_{Y_{4}(23)}(A \cap L)=C_{Y_{4}(23)}(A)$ is 1-dimensional. Since $N_{M_{23}}(A)=N_{M_{2}}(U, W, s)$ acts as $G L(U)$ on U and $C_{M_{23}}(U)=L Q_{2}, M_{23}=N_{M_{23}}(A) L$. Thus $\left|(A \cap L)^{L}\right|=\left|A^{L}\right|=112$ and L acts irreducibly on $Y_{4}(23)$.

Since L is normal in M_{3} we conclude from the definition of $X_{3}(3)$ that $X_{3}(3)$ is the direct sum of ten irreducible $\mathbf{C} L$-modules of dimension 112. Suppose these ten irreducibles are pairwise isomorphic. As $Y_{4}(13)$ has dimension $6 \cdot 112$, we conclude from (25) that $Y_{4}(13)$ is the direct sum of six isomorphic irreducible $\mathbf{C} L$-submodules. Let H be a hyperplane in $Q_{1} \cap Q_{3}$ with $C_{Y_{4}(13)}(H) \neq 1$. Since $Q_{1} \cap Q_{3} \leq L, C_{Y_{4}(13)}(H)$ is at least 6-dimensional and H lies in at least six hyperplanes of Q_{1} corresponding to complementary pairs of dodecads. On the other hand all three hyperplanes of Q_{1} containing $Q_{1} \cap Q_{3}$ correspond to octads. Hence H is contained in at least nine hyperplanes of Q_{1}, a contradiction to $\left|Q_{1} / H\right|=8$.

Thus $X_{3}(3)$ is not the direct sum of isomorphic $\mathbf{C} L$-modules. Since M_{23} is maximal in M_{2}, M_{3} acts primitively on the cosets of M_{23} in M_{3} and we conclude
(26) $X_{3}(3)$ is irreducible of dimension $1120, Y_{4}(23)$ is an irreducible Wedderburn component for L on $X_{3}(3)$ and $N_{M_{3}}\left(Y_{4}(23)\right)=M_{23}$.

Put $Y_{6}(23)=I^{23}\left(Z_{8}\right)$. By definition, $Z_{5} \rightarrow Y_{4}(23) \rightarrow X_{3}(3)$ and $Z_{8}=Z_{5}^{t}$. Thus 6.2 and (26) imply:
(27) $Y_{6}(23) \rightarrow X_{3}(3), Y_{6}(23)$ is irreducible of dimension 336 and $Z_{8} \not \neq Z_{5}$.

By (24) and (7), $Z_{8} \rightarrow X_{1}(2)$. So by (27) and $6.2, Y_{6}(23) \rightarrow X_{1}(2)$. By (13) $Y_{2}(23) \rightarrow X_{1}(2)$ and by $(7) Y_{1}(23) \rightarrow X_{1}(2)$. Since $\operatorname{dim} X_{1}(2)=465=3+126+336=\operatorname{dim} Y_{1}(23)+\operatorname{dim} Y_{2}(23)+\operatorname{dim} Y_{6}(23)$ we conclude:
(28) Restricted to $M_{23}, X_{1}(2)$ is isomorphic to the direct sum of $Y_{1}(23), Y_{2}(23)$ and $Y_{6}(23)$.

Since $Y_{1}(23), Y_{2}(23), Y_{6}(23), Y_{1}(12)$ and $Y_{2}(12)$ are all irreducible, by (7) and (28) we get
(29) $X_{1}(2)$ is irreducible.

By $(2),(3)$ and $(4), Y_{1}(12) \cong Z_{1} \bigoplus Z_{2}$, by $(24) Y_{2}(12) \cong Z_{3} \bigoplus Z_{8} \bigoplus Z_{9}$ and by $(12) Y_{2}(23) \cong$ $Z_{2} \bigoplus Z_{3}$ as $\mathbf{C} B$-modules. Hence using (7) and (28) we get
(30) Restricted to $B, X_{1}(2)$ is isomorphic to the direct sum of $Z_{1}, Z_{2}, Z_{3}, Z_{8}$ and Z_{9}. Restricted to $B, Y_{6}(23)$ is isomorphic to the direct sum of Z_{8} and Z_{9}.

In particular, $Z_{9} \rightarrow Y_{6}(23) \rightarrow X_{3}(3)$ and since $Z_{9}=Z_{7}^{t}$ we get $Z_{7} \rightarrow X_{3}(3)$ and thus by (26), $Z_{7} \nsubseteq Z_{9}$. Moreover, by $(23), Z_{7} \rightarrow Y_{5}(23)$ and by $6.2, I^{23}\left(Z_{7}\right) \cong Y_{5}(23)$. Hence $Y_{5}(23) \rightarrow X_{3}(3)$. By definition of $X_{3}(3), Y_{4}(23) \rightarrow X_{3}(3)$ and by (27), $Y_{6}(23) \rightarrow X_{3}(3)$. Therefore:
(31) $Z_{7} \not \neq Z_{9}$ and restricted to $M_{23}, X_{3}(3)$ is isomorphic to the direct sum of $Y_{4}(23), Y_{5}(23)$ and $Y_{6}(23)$.

Put $X(1)=X_{1}(1) \bigoplus X_{2}(1), X(2)=X_{1}(2) \bigoplus X_{2}(2)$ and $X(3)=X_{1}(3) \bigoplus X_{2}(3) \bigoplus X_{3}(3)$. Then by the definition of $Y_{1}(23)$, (11), (21), (28) and (31):
(32) $X(2), X(3)$ and $\bigoplus_{i=1}^{6} Y_{i}(23)$ are isomorphic as $\mathbf{C} M_{23}$-modules.

By (6), (12), (23) and (30) each of the $Y_{i}(23)^{\prime} s$ can as $\mathbf{C} B$-module be decomposed into a direct sum of some of the $Z_{j}^{\prime} s$. Hence by (32):
(33) $X(2), X(3)$ and $\bigoplus_{i=1}^{9} Z_{i}$ are isomorphic as $\mathbf{C} B$-modules.

Note that M_{13} has orbits of length 6 and 4 on M_{3} / M_{23}. Hence by (25) and (26), $X_{3}(3) \cong$ $Y_{4}(13) \bigoplus Y_{5}^{a}(13)$ as $\mathbf{C} M_{13}$-modules, where $Y_{5}^{a}(13)$ is an irreducible 448-dimensional $\mathbf{C} M_{13}$-module. Let Z be the restriction of $Y_{5}^{a}(13)$ to \hat{B}. Then by (26) and (33), Z is irreducible and restricted to B isomorphic to $Z_{7} \bigoplus Z_{9}$. Hence 6.2 implies that $Z \cong Z_{9} \otimes_{\mathbf{C} B} \mathbf{C} \hat{B}$. By (24) and (17), $Z_{9} \rightarrow Y_{2}(12) \rightarrow$ $X_{2}(1)$ and hence Z is isomorphic to a $\mathbf{C} \hat{B}$-submodule of $X_{2}(1)$. From 3.10 (i) and (18) we conclude $Y_{5}(13), Y_{5}^{a}(13)$ and Z are isomorphic as $\mathbf{C} \hat{B}$-modules. Let H be a hyperplane in Q_{1} with $C_{Z}(H) \neq 0$ and N and N_{0} the normalizers of H in M_{13} and \hat{B}, respectively. By 3.10 (iii), $N=N_{0} N^{\prime}$. Let D and D^{a} be the centralizers of H in $Y_{5}(13)$ and $Y_{5}^{a}(13)$, respectively. Then D and D^{a} are 1-dimensional and so N^{\prime} centralizes D and D^{a}. Since D and D^{a} are isomorphic as $\mathbf{C} N_{0}$-modules, we conclude that D and D^{a} are isomorphic as $\mathbf{C} N$-modules. Thus $Y_{5}(13) \cong D \otimes_{\mathbf{C} N} \mathbf{C} M_{13} \cong D^{a} \otimes_{\mathbf{C} N} \mathbf{C} M_{13} \cong Y_{5}^{a}(13)$. We have proved:
(34) Restricted to $M_{13}, X_{3}(3)$ is isomorphic to the direct sum of $Y_{4}(13)$ and $Y_{5}(13)$. Restricted to $B, Y_{5}(13)$ is isomorphic to the direct sum of Z_{7} and Z_{9}.

From (3), (5), (10), (18) and (34) we conclude that:
(35) $X(1), X(3)$ and $\bigoplus_{i=1}^{5} Y_{i}(13)$ are isomorphic as $\mathbf{C} M_{13}$-modules.

From (33) and (35)
(36) $X(1), X(2), X(3)$ and $\bigoplus_{i=1}^{9} Z_{i}$ are isomorphic as $\mathbf{C} B$-modules.

By (17) and 3.10 (i), $X_{2}(1)$ restricted to M_{12} is isomorphic to the direct sum of $Y_{2}(12), Y_{3}(12)$ and $Y_{4}^{a}(12)$, where $Y_{4}^{a}(12)$ is a 448-dimensional $\mathbf{C} M_{12}$-module. It follows from (36) that both $Y_{4}(12)$ and $Y_{4}^{a}(12)$ are isomorphic to Z_{6} as $\mathbf{C} B$-modules. In particular, $Y_{4}^{a}(12)$ is irreducible. Let H be a hyperplane in Q_{2} with $C_{Z_{6}}(H) \neq 0$. Let N and N_{0} be the normalizers of H in M_{12} and B respectively. Then $N / Q_{2} \cong \operatorname{Sym}(6),\left|N / N_{0}\right|=\left|M_{12} / B\right|=15, N=N_{0} N^{\prime}$ and as in the proof of (34) we get $Y_{4}(12) \cong Y_{4}^{a}(12)$. Thus
(37) $X_{2}(1)$ restricted to M_{12} is isomorphic to the direct sum of $Y_{2}(12), Y_{3}(12)$ and $Y_{4}(12)$.

Now (2), (7), (22) and (37) imply:
(38) $X(1), X(2)$ and $\bigoplus_{i=1}^{4} Y_{i}(12)$ are isomorphic as $\mathbf{C} M_{12}$-modules.

We are now able to construct a completion of the J_{4}-triangle in $G L_{1333}(\mathbf{C})$. Let $\{i, j, k\}=$ $\{1,2,3\}$. Then by (32), (35) and (38) $X(i)$ and $X(j)$ are isomorphic as $\mathbf{C} M_{i j}$-modules. Let X be a 1333 -dimensional vector space over \mathbf{C}. Then there exist monomorphisms $\alpha_{i}: M_{i} \rightarrow G L(X)$, $1 \leq i \leq 3$, and inner automorphisms a_{i} of $G L(X)$ such that

$$
\left.\alpha_{1} a_{2}\right|_{M_{13}}=\left.\alpha_{3}\right|_{M_{13}},\left.\alpha_{2} a_{3}\right|_{M_{12}}=\left.\alpha_{1}\right|_{M_{12}} \text { and }\left.\alpha_{3} a_{1}\right|_{M_{12}}=\left.\alpha_{2}\right|_{M_{23}}
$$

Thus the assumptions of 6.1 are fulfilled with $H=G L(X)$ and $A=\operatorname{Inn}(G L(X))$. Note that if Y is one of $B^{*}, M_{23}^{*}, M_{13}^{*}$ and M_{12}^{*}, then X is the direct sum of pairwise non-isomorphic, absolutely irreducible $\mathbf{C} Y$-modules and so $C_{G L(X)}(Y)$ consists of exactly those linear transformations which act as non-zero scalars on each of the irreducible $\mathbf{C} Y$-submodules. By 6.1 b (ii), $B^{*} \leq Y$ and so $C_{G L(X)}(Y) \leq C_{G L(X)}\left(B^{*}\right)$. It is now easy to verify that $C_{A}\left(B^{*}\right)=C_{A}\left(M_{23}^{*}\right) C_{A}\left(M_{13}^{*}\right) C_{A}\left(M_{12}^{*}\right)$. Thus by 6.1 (i), (a1) in 6.1 holds. Put $M_{i}^{*}=M_{i}^{\alpha_{i} b_{i}}$. Then by 6.1 (iii)

Theorem 7.1 There exist subgroups $M_{1}^{*}, M_{2}^{*}, M_{3}^{*}$ of $G L_{1333}(\mathbf{C})$ such that $\left(M_{1}^{*}, M_{2}^{*}, M_{3}^{*}\right)$ is a J_{4} triangle isomorphic to $\left(M_{1}, M_{2}, M_{3}\right)$.

8 Faithful Completions of J_{4}-triangles

This section is devoted to study completions of J_{4}-triangles. Let $\left(M_{1}, M_{2}, M_{3}\right)$ be a J_{4}-triangle of groups with a faithful completion M. Let S be a Sylow 2-subgroup of $B, Z_{4}=Z(S), M_{i 4}=C_{M_{i}}\left(Z_{4}\right)$ and M_{4} the subgroup of M generated by M_{14}, M_{24} and M_{34}.

We will use the definitions introduced in 2.4 and 2.3 with respect to $I=\{1,2,3,4\}$ and $\Gamma_{i}=$ M / M_{i}.

Let $R=C_{B}\left(Z_{4}\right), Q_{4}^{*}=O^{2}(R), Q_{4}=O_{2}\left(Q_{4}^{*}\right)$ and $Z_{3}=Z\left(Q_{3}\right)$. Let $V(2), V_{1}(2)$ and $V_{3}(2)$ be as in 5.1 (ii).

Lemma 8.1 (i) $Q_{4} \cong 2_{+}^{1+12}, Z\left(Q_{4}\right)=Z_{4}, Q_{4}^{*} / Q_{4} \cong C_{3}$ and Q_{4}^{*} / Q_{4} acts fixed-point freely on Q_{4} / Z_{4}.
(ii) Q_{4}^{*} is normal in M_{4} and $M_{4} / Q_{4}^{*} \cong$ Aut $M a t_{22}$.
(iii) $M_{i 4}=M_{i} \cap M_{4}$ for all $1 \leq i \leq 3$.
(iv) $M_{14} \sim 2^{1+6+4} 2^{6} 3 \cdot \operatorname{Sym}(6), M_{24} \sim 2^{1+6+3}\left(2^{6}\left(\operatorname{Sym}(3) \times L_{3}(2)\right)\right)$ and $M_{34} \sim 2^{1+2+8+4}(\operatorname{Sym}(5) \times$ Sym(4)).

Proof. First notice that Z_{4} is non-trivial since it is the centre of S which is a 2-group. Since $Z_{4} \leq Z\left(M_{4}\right), M_{i 4} \leq M_{i} \cap M_{4} \leq C_{M_{i}}\left(Z_{4}\right)=M_{i 4}$ and so (iii) holds. Put $Y_{i}=O_{2,3}\left(M_{i 4}\right)$ for $1 \leq i \leq 3$. Let us locate Z_{4} in M_{1} and determine M_{14}. Consider M_{1} as the semidirect product of Q_{1} and K_{1} where $K_{1} \cong M_{24}$ and Q_{1} is the irreducible Todd module for K_{1}. One can see, for instance from 3.7 (i) that a Sylow 2-subgroup of K_{1} acts faithfully on $Q_{1} \cap M_{2}$ and hence $Z_{4} \leq Q_{1}$. Let K_{14} be the stabilizer in K_{1} of a sextet \mathcal{H} and $R_{14}=O_{2}\left(K_{14}\right)$. Since R_{14} stabilizes all octads and trios incident to \mathcal{H}, R_{14} is contained in S. On the other hand by 3.7 (iv) R_{14} centralizes a unique non-zero vector in Q_{1} and clearly this is the vector which corresponds to \mathcal{H} in the sense of 3.6 (ii). Thus $\left|Z_{4}\right|=2, Z_{4}=C_{Q_{1}}\left(R_{14}\right)$ and $M_{14}=N_{M_{1}}(\mathcal{H})$. By 3.2 (iii) and 3.7 (iv) we have that $M_{14} \sim 2^{1+6+4} 2^{6} 3 \cdot \operatorname{Sym}(6)$. Now Y_{1} normalizes all the trios and octads adjacent to \mathcal{H} and so $Y_{1} \leq R Q_{1}$. Also, $R Y_{1} / Y_{1}$ is a Sylow 2-subgroup of M_{14} / Y_{1} and so $\left.Q_{4}^{*}=O^{2}(R)=O_{2}\left(O^{2}\left(Y_{1}\right)\right)\right)$. One can see from 3.7 (iv) that $\left.O_{2}\left(O^{2}\left(Y_{1}\right)\right)\right)=\left\langle\left[Q_{1}, R_{14}\right], R_{14}\right\rangle$ is extraspecial of order 2^{13}, a Sylow 3-subgroup of Y_{1} acts fixed-point freely on $\left.O_{2}\left(O^{2}\left(Y_{1}\right)\right)\right) / Z_{4}$ and so (i) follows.

Since Q_{2} is isomorphic to $\bigwedge^{2}\left(V(2)^{*}\right)$, and S is a Sylow 2-subgroup of M_{2}, by $2.8 Z_{4}$ corresponds to a 2 -subspace in $V(2)^{*}$ and dually to a 3 -space $V_{4}(2)$ in $V(2)$ with $V_{3}(2) \leq V_{4}(2)$. Thus $M_{24}=N_{M_{2}}\left(V_{4}(2)\right)$ and from 3.2 (ii) together with standard properties of Q_{2} we have $M_{24} \sim 2^{1+6+3}\left(2^{6}\left(\operatorname{Sym}(3) \times L_{3}(2)\right)\right)$. Note that $Y_{2} \leq C_{M_{2}}\left(V_{4}(2)\right) \leq M_{123}=B$. Thus similar to the above, $Q_{4}^{*}=O^{2}\left(Y_{2}\right)$ and $M_{24} / Q_{4}^{*} \sim C_{2} \times 2^{3} L_{3}(2)$. Since $Q_{3} \leq S, Z_{4} \leq Z_{3}$ and so by 5.1 (vii), $M_{34} \sim 2^{1+2+8+4}(\operatorname{Sym}(5) \times \operatorname{Sym}(4))$. Thus $Y_{3} \leq L \leq B$ (recall that $L=O^{2}(B)$). As above $Q_{4}^{*}=O^{2}\left(Y_{3}\right)$ and $M_{34} / Q_{4}^{*} \sim 2^{4+1} \operatorname{Sym}(5)$. Since $Q_{4}^{*}=O^{2}\left(Y_{i}\right)$ for $1 \leq i \leq 3$, we conclude that Q_{4}^{*} is normal in $M_{i 4}$ for all $1 \leq i \leq 3$ and so Q_{4}^{*} is normal in M_{4}. In particular all statements but the last one in (ii) are proved. It is now straightforward to verify that ($M_{14} / Q_{4}^{*}, M_{24} / Q_{4}^{*}, M_{34} / Q_{4}^{*}$) is an Aut M_{22}-triangle of groups (compare 4.1) and thus by $4.6 M_{4} / Q_{4}^{*} \cong$ Aut $M a t_{22}$, completing the proof of the lemma.

Lemma 8.2 (i) $M_{12} Q_{1}, M_{13}$ and M_{14} are normalizers in M_{1} of an octad, a trio and a sextet, which are pairwise adjacent.
(ii) M_{12}, M_{23} and M_{24} are the normalizers in M_{2} of 1-space, 2-space and 3-space in a flag in $V(2)$.
(iii) M_{13} and M_{23} are the normalizers in M_{3} of 1- and 2-subsets in the 5-set $\Omega(3)$, which are disjoint; M_{34} is the normalizer in M_{3} of a 1-space in Z_{3}.
(iv) M_{14}, M_{24} and M_{34} are the normalizers in M_{4} of a hexad, an octet and a pair, which form a flag.
(v) Γ is geometric.

Proof. (i) - (iv) follow from 8.1 and 5.1.
(v) We will appeal to 2.5. Let $\left\{a_{1}, a_{2}, a_{3}\right\}$ be a flag of type $\{i, j, k\}$. If $i=3$ and $j=4$, then by (iii) $M_{43} M_{k 3}=M_{3}$ and so any two vertices of type 4 and k in $\Gamma^{*}\left(M_{3}\right)$ are adjacent. Hence a_{2} and a_{3} are adjacent. So we may assume that $a_{1}=M_{1}$ and $a_{2}=M_{2}$. Since $V_{1}(2)=C_{V(2)}\left(Q_{1} \cap M_{2}\right)$ is 1-dimensional, any $Q_{1} \cap M_{2}$-invariant proper subspace of $V(2)$ contains $V_{1}(2)$. Now a_{3} is adjacent to
M_{1} and its type is different from 2. So $Q_{1} \leq M_{a_{3}}, V_{a_{3}}(2)$ is $Q_{1} \cap M_{2}$-invariant and $V_{1}(2) \leq V_{a_{3}}(2)$. Hence by (ii) a_{1} and a_{3} are adjacent in $\Gamma^{*}\left(a_{2}\right)$ and (v) follows from 2.5.

Recall that $\angle a b c=\left|c^{M_{b a}}\right|$. We remark that for all nd-paths $(a, b, c), c^{M_{b a}}$ is completely determined by a, b, the type of c and $\angle a b c$. Furthermore, if a and d are both adjacent to b and c, put $\angle a \stackrel{b}{c} d=\left|d^{M_{a b c}}\right|$.

Recall also that $\stackrel{a}{n}_{1}^{n_{1}}-\stackrel{a_{2}}{n_{2}}-\ldots-\stackrel{a_{k}}{n}$ stands for a path $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ of type $n_{1}-n_{2}-\ldots-n_{k}$.
Given $\stackrel{a}{1}-\stackrel{b}{2}$, define $R_{a}(b)$ by $\left\{b, R_{a}(b)\right\}=b^{Q_{a}}$.
For b of type 2 , let $V(b)$ be a natural 5 -dimensional $G F(2) M_{b} / Q_{b}$-module such that Q_{b} is isomorphic to $\bigwedge^{2} V(b)^{*}$, the exterior square of the dual of $V(b)$. For $c \in \Gamma(b)$ let $V_{c}(b)=C_{V(b)}\left(Q_{c}\right)$ and note that $V_{c}(b)$ is a 1 -space in $V(b)$, if c is of type 1 , a 2 -space if c has type 3 and 3 -space if c is of type 4. Similarly, put $V_{c}^{*}(b)=C_{V(b)^{*}}\left(Q_{c}\right)=\left\{\phi \in V(b)^{*} \mid \phi\left(V_{c}(b)\right)=0\right\}$ and note that $V_{c}^{*}(b)$ is a 4-, 3- and 2 -space, respectively.

For c of type 3 let $\Omega(c)$ (see 5.1) be the M_{c}-set of size 5 with $M_{c} / C_{M_{c}}(\Omega(c)) \cong \operatorname{Sym}(5)$. For $a \in \Gamma_{1}(c)$ let $\Omega_{a}(c)$ be the element of $\Omega(c)$ fixed by $M_{a c}$ and for $b \in \Gamma_{2}(c)$ let $\Omega_{b}(c)$ be the subset of size 2 in $\Omega(c)$ fixed by $M_{b c}$.

If a and b are adjacent, $D_{a}(b)$ denotes the orbit-diagram for the orbits of $M_{a b}$ on $\Gamma(b)$. We will use these diagrams only for b of type 1 or 4 , in which case they can be found in before 3.1 and 4.7.

Let a be a fixed vertex of type 1 . For b, c of type $1, b \neq c$, write $b \sim c$ if b and c are adjacent to a common vertex of type 3 , and let $d(b, c)$ be the distance between b and c in $\left(\Gamma_{1}, \sim\right)$. Let $X_{0}(a)=\{a\}$ and $X_{1}(a)=\left\{b \in \Gamma_{1} \mid a \sim b\right\}$.

Throughout this section we will often use 5.1 and 8.2 without further reference.
Lemma 8.3 Let $a \in \Gamma_{1}$ and $a_{i} \in \Gamma_{i}(a), 2 \leq i \leq 4$. Then
(i) For $k=3,4, a_{2}$ is adjacent to a_{k} if and only if $Z_{a_{k}} \leq Q_{a_{2}} \cap Q_{a}$ and if and only if $Q_{a_{k}} \cap Q_{a} \leq$ $M_{a_{2}} \cap Q_{a}$.
(ii) a_{3} is adjacent to a_{4} if and only if $Z_{a_{4}} \leq Z_{a_{3}}$ and if and only if $Q_{a_{4}} \cap Q_{a} \leq Q_{a_{3}} \cap Q_{a}$.
(iii) $Z_{a_{4}} \leq Q_{a_{3}}$ if and only if $\angle a_{3} a a_{4} \neq 1344$.

Proof. (i) Without loss $a=M_{1}$ and $a_{2}=M_{2}$. Suppose that $Z_{a_{k}} \leq Q_{2} \cap Q_{1}$. Then Q_{2} centralizes $Z_{a_{k}}$. Since $M_{1 k}$ is maximal in $M_{1}, N_{M_{1}}\left(Z_{k}\right)=M_{1 k}$ and thus Q_{2} fixes a_{k}. Now $Q_{2} Q_{1}=O_{2}\left(M_{12} Q_{1}\right)$ and so $O_{2}\left(M_{12} Q_{1}\right)$ fixes a_{k}. But this easily implies that a_{k} is adjacent to M_{2}. Suppose next that $Q_{a_{k}} \cap Q_{1} \leq M_{2} \cap Q_{1}$. Since $\left[Q_{1}, Q_{a_{k}}\right] \leq Q_{1} \cap Q_{a_{k}}$ we conclude that $Q_{a_{k}}$ normalizes $M_{2} \cap Q_{1}$ and so $Q_{a_{k}} \leq M_{12} Q_{1}$. As above a_{k} is adjacent to M_{2}. Hence one direction of (i) is proved. The other direction is obvious.
(ii) is proved similar to (i).

For (iii) assume that $L a_{3} a a_{4} \neq 1344$. Then by $D_{a_{3}}(a)$ there exists a path $\stackrel{a}{3}_{3}-{ }_{4}^{b}-\stackrel{c}{3}-{ }_{4}^{a_{4}}$ in $\Gamma(a)$. Hence $Z_{a_{4}} \leq Z_{c} \leq Q_{b} \cap Q_{1} \leq Q_{a_{3}} \cap Q_{1}$.

Lemma 8.4 (i) Given a path $\stackrel{b}{3}-\stackrel{c}{1}-\stackrel{d}{3}$ with $b \neq d$. Then $\left(Q_{b} \cap Q_{c}\right)\left(Q_{d} \cap Q_{c}\right)=Q_{c}$ if $\Gamma_{2}(b c d)=\varnothing$, and $\left(Q_{b} \cap Q_{c}\right)\left(Q_{d} \cap Q_{c}\right)=Q_{c} \cap M_{x}$, if $x \in \Gamma_{2}(b c d)$.
(ii) Given a path $\stackrel{b}{4}-\stackrel{c}{1}-\stackrel{d}{3}$ with $\Gamma_{2}(b c d)=\varnothing$. Then $\left(Q_{b} \cap Q_{c}\right)\left(Q_{d} \cap Q_{c}\right)=Q_{c}$.
(iii) Given a path $\stackrel{a}{1}-\stackrel{b}{4}-\stackrel{c}{3}$ with $\angle a b c=96$. Then $Q_{a} \cap M_{c}=Q_{a} \cap Q_{b}, M_{a c}=M_{a b c},\left(Q_{a} \cap\right.$ $\left.Q_{b}\right)\left(Q_{c} \cap Q_{b}\right)=Q_{b}, Q_{a} \cap Z_{c}=Z_{b}$ and $\left|\left(Q_{a} \cap Q_{c}\right) Z_{c} / Z_{c}\right|=2^{4}$.

Proof. (i) Since $M_{b c}$ is maximal in $M_{c}, N_{M_{c}}\left(Q_{b} \cap Q_{c}\right)=M_{b c}$ and so $Q_{b} \cap Q_{c} \neq Q_{d} \cap Q_{c}$. Suppose that $\left(Q_{b} \cap Q_{c}\right)\left(Q_{d} \cap Q_{c}\right) \neq Q_{c}$. Since the three hyperplanes of Q_{c} containing $Q_{b} \cap Q_{c}$ are conjugated under $M_{b c}$, we conclude that $\left(Q_{b} \cap Q_{c}\right)\left(Q_{d} \cap Q_{c}\right) \leq Q_{c} \cap M_{x}$ for some $x \in \Gamma_{2}(b c)$. Thus by 8.3 $x \in \Gamma(b c d)$. Since $\left|Q_{c} / Q_{b} \cap Q_{c}\right|=4,\left(Q_{b} \cap Q_{c}\right)\left(Q_{d} \cap Q_{c}\right)=Q_{c} \cap M_{x}$.
(ii) Similar to (i).
(iii) Since $\angle a b c=96$, it is easy to see that $Q_{a} \cap M_{c} \leq Q_{b}$. Since Q_{a} does not fix c, Q_{a} does not normalize $Q_{b} \cap Q_{c}$. Thus $Q_{a} \cap Q_{b} \not \leq Q_{b} \cap Q_{c}$. Since Q_{b}^{*} acts irreducibly on $Q_{b} / Q_{b} \cap Q_{c}$, $Q_{b}=\left(Q_{a} \cap Q_{b}\right)\left(Q_{c} \cap Q_{b}\right)$. In particular, $Q_{a} \cap Q_{c}$ has order $\left|Q_{a} \cap Q_{b}\right| /\left|Q_{b} / Q_{c} \cap Q_{b}\right|=2^{7} / 2^{2}=2^{5}$.

Suppose that $Q_{a} \cap Z_{c} \neq Z_{b}$. Since Q_{b}^{*} acts irreducibly on Z_{c} / Z_{b} we conclude that $Z_{c} \leq Q_{a}$. But then Q_{a} centralizes Z_{c} and $Q_{a} \leq M_{c}$, a contradiction. Hence $Q_{a} \cap Z_{c}=Z_{b}$, which implies that $M_{a c}=M_{a b c}$ and also that $\left|\left(Q_{a} \cap Q_{c}\right) Z_{c} / Z_{c}\right|=\left|\left(Q_{a} \cap Q_{c}\right) / Z_{b}\right|=2^{5} / 2=2^{4}$.

Lemma 8.5 Given a path ${ }_{1}^{b}-3-4$ or ${ }_{4}^{b}-3-\stackrel{c}{4}$. Then b is adjacent to c.
Proof. Let $i \in\{1,2\}$. Then $M_{i 3} M_{43}=M_{3}$. So if $g \in M_{3}$, then $M_{i 3} g=M_{i 3} h$ for some $h \in M_{43}$. Thus $M_{i} g$ is adjacent to M_{4}.

Lemma 8.6 (i) There exists a unique class of nd-paths $\stackrel{a}{1}-\stackrel{b}{3}-\stackrel{c}{1}$. Moreover, for any such path $M_{a b c} / Q_{b} \cong L_{3}(2) \times \operatorname{Sym}(3), Q_{a} M_{a b c}=M_{a b}, M_{a c}=M_{a b c}$ and $Q_{a} \cap Q_{c}=Z_{b}$.
(ii) M_{a} acts transitively on $X_{1}(a)$ and $\left(\Gamma_{1}, \sim\right)$ is connected.
(iii) $\left|X_{1}(a)\right|=2^{2} \cdot 3 \cdot 5 \cdot 11 \cdot 23=15,180$.

Proof. (i) Q_{a} acts transitively on the four elements of $\Gamma_{1}(b) \backslash\{a\}$ and so all but the last two statements of (i) follow. Since $M_{a b}$ is maximal in $M_{a}, N_{M_{a}}\left(Q_{a} \cap Q_{b}\right)=M_{a b}$. Since $Q_{a} \cap Q_{b}=Q_{a} \cap M_{c}$, $M_{a c} \leq N_{M_{a}}\left(Q_{a} \cap Q_{b}\right)=M_{a b}$. Since $\left\langle Q_{a}, Q_{c}\right\rangle Q_{b} / Q_{b} \cong \operatorname{Alt}(5)$ and since $\left\langle Q_{a}, Q_{c}\right\rangle$ centralizes $Q_{a} \cap Q_{c}$, $Q_{a} \cap Q_{c}=Z_{b}$.
(ii) By (i) M_{a} is transitive on $X_{1}(a)$. Let $c \in X_{1}(a)$ and $b \in \Gamma_{3}(a c)$. Then $\left\langle M_{a b}, M_{b c}\right\rangle=M_{b}$ and so $\left\langle M_{a}, M_{c}\right\rangle=\left\langle M_{a}, M_{b}\right\rangle=M$ and hence $\left(\Gamma_{1}, \sim\right)$ is connected.
(iii) $\left|X_{1}(a)\right|=4 \cdot\left|\Gamma_{3}(a)\right|=2^{2} \cdot 3 \cdot 5 \cdot 11 \cdot 23$.

Lemma 8.7 There exists a unique class of nd-paths $\stackrel{a}{1}-\stackrel{b}{3}-\stackrel{c}{2}$. Moreover for any such path, $M_{a b c} / Q_{b} \cong L_{3}(2) \times \operatorname{Sym}(3), M_{a b c} Q_{a}=M_{a b}, M_{a b c} Q_{c}=M_{b c}, Q_{a} \cap M_{c}=Q_{a} \cap Q_{b}, Q_{c} \cap M_{a}=Q_{c} \cap Q_{b}$, $Q_{a} \cap Q_{c}=Z_{b},\left(Q_{a} \cap M_{c}\right) Q_{c}=O_{2}\left(M_{b c}\right),\left(Q_{c} \cap M_{a}\right) Q_{a}=O_{2}\left(M_{a b}\right)$ and $M_{a c}=M_{a b c}$.

Proof. $\quad Q_{a}$ acts transitively on the four elements of $\Gamma_{2}(b) \backslash \Gamma_{2}(a)$ and Q_{c} acts transitively on the two elements of $\Gamma_{1}(b) \backslash \Gamma_{1}(c)$. Furthermore $\left\langle Q_{a}, Q_{c}\right\rangle Q_{b} / Q_{b} \cong \operatorname{Sym}(5)$ and since $Q_{a} \cap Q_{c}$ is centralized by $\left\langle Q_{a}, Q_{c}\right\rangle$ we conclude that $Q_{a} \cap Q_{c}=Z_{b}$. In particular, $M_{a c} \leq N_{M_{a}}\left(Z_{b}\right)=M_{a b}$. Moreover, by an order argument $Q_{b}=\left(Q_{b} \cap Q_{a}\right)\left(Q_{b} \cap Q_{c}\right)$ and the remaining statements are readily verified.

Lemma 8.8 Given a path $\stackrel{b}{i}-\stackrel{c}{2}-\stackrel{d}{3}$ with $i=3$ or 4 . Then $Z_{b} \notin Q_{d}$ if and only if $V_{b}(c) \cap V_{d}(c)=0$.
Proof. Note that $Q_{c} \not \leq Q_{d}, Q_{c}=\left\langle Z_{x} \mid x \in \Gamma_{i}(c)\right\rangle$ and $M_{c d}$ acts transitively on $\left\{x \in \Gamma_{i}(c) \mid\right.$ $\left.V_{x}(c) \cap V_{d}(c)=0\right\}$. Hence it suffices to show that $Z_{x} \leq Q_{d}$ whenever $x \in \Gamma_{i}(c)$ with $V_{x}(c) \cap V_{d}(c) \neq 0$. Pick $y \in \Gamma_{1}(c)$ with $V_{y}(c) \leq V_{x}(c) \cap V_{d}(c)$, i.e. $y \in \Gamma_{1}(x c d)$. Then by $8.3 Z_{x} \leq Q_{y} \cap Q_{c} \leq Q_{d} \cap Q_{c}$.

Lemma 8.9 There exists a unique class of nd-paths $\stackrel{a}{1}-\stackrel{b}{3}-\stackrel{c}{2}-\stackrel{d}{3}-\stackrel{e}{1}$ with $V_{b}(c) \cap V_{d}(c)=0$. Moreover, for any such path $\left|M_{a e}\right|=\left|M_{a b c d e}\right|=2^{14} \cdot 3^{2},\left|Z_{b} \cap M_{e}\right|=4, Q_{a} \cap Q_{e}=1, M_{a e} Q_{a}=$ $N_{M_{a}}\left(Z_{b} \cap M_{e}\right), M_{a e} Q_{c}=M_{b c d}$ and $M_{a e} Q_{c} / Q_{c} \cong \operatorname{Sym}(4) \times \operatorname{Sym}(4)$.

Proof. By 8.7 $M_{a b c} Q_{c}=M_{b c}$ and so there exists a unique class of nd-paths $\stackrel{a}{1}-\stackrel{b}{3}-\stackrel{c}{2}-\stackrel{d}{3}$ with $V_{b}(c) \cap V_{d}(c)=0$. By $8.8 Z_{b} \not \leq Q_{d}$ and so Z_{b} acts transitively on the two elements of $\Gamma_{1}(d) \backslash \Gamma_{1}(c)$. Thus the uniqueness assertion in the lemma is proved and $Z_{b} \cap M_{e}=8 / 2=4$. In particular, $\left|M_{a b c d e}\right|=\left|M_{a b c}\right| /(\angle b c d \cdot \angle c d e)=2^{19} \cdot 3^{2} \cdot 7 /\left(2^{4} \cdot 7 \cdot 2\right)=2^{14} \cdot 3^{2}$. Moreover, $M_{a b c d e} Z_{b}=M_{a b c d}$. By 8.7, $\left(Q_{a} \cap M_{c}\right) Q_{c}=O_{2}\left(M_{b c}\right)$ and thus $Q_{a} \cap M_{c}$ acts transitively on the 2-spaces in $V_{b}(c)+V_{d}(c)$ which intersect $V_{b}(c)$ trivially (there are 16 such 2-spaces). Hence $M_{b c d}=M_{a b c d} Q_{c}=M_{a b c d e} Q_{c}$, $\left|Q_{a} \cap M_{c} / Q_{a} \cap M_{c d}\right|=2^{4},\left|Q_{a} \cap M_{c d}\right|=2^{9} / 2^{4}=2^{5}$ and $\left|Q_{a} \cap M_{c d e}\right|=2^{4}$. It follows that $\left|M_{a b c d e} Q_{a} / Q_{a}\right|=2^{10} \cdot 3^{2}$. Since $\left|M_{a b} / Q_{a}\right|=2^{10} \cdot 3^{2} \cdot 7$ and $M_{a b}$ acts transitively on the 7 subgroups of order 4 in $Z_{b},\left|N_{M_{a b}}\left(Z_{b} \cap M_{e}\right) / Q_{a}\right|=2^{10} \cdot 3^{2}$. So $M_{a b c d e} Q_{a}=N_{M_{a b}}\left(Z_{b} \cap M_{e}\right)$.

Since $V_{b}(c) \cap V_{d}(c)=0, \Gamma_{4}(b c d)=\varnothing$ and so $Z_{b} \cap Z_{d}=1$. By $8.7, Q_{c} \cap Q_{e}=Z_{d}$ and so $Z_{b} \cap Q_{e}=Z_{b} \cap Z_{d}=1$. In particular, $Q_{a} \cap M_{e} \not \leq Q_{e}$ and since $M_{a e}$ normalizes $Q_{a} \cap M_{e}$ we conclude $M_{a e} Q_{e} \neq M_{e}$. By symmetry $M_{a e} Q_{a} \neq M_{a}$. By 3.4 the only group between $N_{M_{a b}}\left(Z_{b} \cap M_{e}\right)$ and M_{a} is $M_{a b}$. Hence $M_{a e} \leq M_{b}$. By symmetry $M_{a e} \leq M_{d}$. Since $Z_{b} Q_{d}=Q_{c} Q_{d}, M_{b d} \leq N_{M_{d}}\left(Q_{c} Q_{d}\right)=M_{c d}$, $M_{b d}=M_{b c d}$ and $M_{a e}=M_{a b c d e}$. Hence $M_{a e} Q_{c} / Q_{c}=M_{a b c d e} Q_{c} / Q_{c}=M_{b c d} / Q_{c} \cong \operatorname{Sym}(4) \times \operatorname{Sym}(4)$. It remains to prove that $Q_{a} \cap Q_{e}=1$. As $V_{b}(c) \cap V_{d}(c)=0, Q_{b} \cap Q_{d} \leq Q_{c}$. By 8.7, $Q_{a} \cap M_{c} \leq Q_{b}$ and so

$$
Q_{a} \cap Q_{e} \leq Q_{a} \cap Q_{b} \cap Q_{d} \cap Q_{e} \leq\left(Q_{a} \cap Q_{c}\right) \cap\left(Q_{e} \cap Q_{c}\right)=Z_{b} \cap Z_{d}=1
$$

Lemma 8.10 Given an nd-path $\stackrel{b}{4}-\stackrel{c}{3}-\stackrel{d}{4}$. Then Q_{b}^{*} acts transitively on $\Gamma_{4}(c) \backslash\{b\}, M_{b c d} Q_{d}^{*}=M_{c d}$, $\left|Q_{b} \cap Q_{d} / Z_{c}\right|=2^{4}, Q_{b} \cap Q_{d} \leq Q_{c}, Q_{c}=\left(Q_{b} \cap Q_{c}\right)\left(Q_{d} \cap Q_{c}\right),\left(Q_{b} \cap M_{d}\right) Q_{d}^{*} / Q_{d}^{*}=O_{2}\left(M_{d c} / Q_{d}^{*}\right)$ and $M_{b c d}=C_{M_{b}}\left(Z_{d}\right)=M_{b d}$.

Proof. Since $Z_{b} \leq Z_{c} \leq Q_{b}$ and Q_{b}^{*} acts fixed-point freely on $Q_{b} / Z_{b}, Q_{b}^{*}$ acts transitively on Z_{c} / Z_{b}. Now $\left[Z_{c}, Q_{b}\right]=Z_{b}$ and so Q_{b}^{*} acts transitively on $Z_{c} \backslash Z_{b}$ and so also on $\Gamma_{4}(c) \backslash\{b\}$. In particular, $M_{b c d} Q_{b}^{*}=M_{b c}$ and by symmetry, $M_{b c d} Q_{d}^{*}=M_{c d}$. Since $\left|Q_{b} \cap Q_{c} / Z_{c}\right|=2^{13} / 2^{2+3}=2^{8}$ and $\left|Q_{c} / Z_{c}\right|=2^{12}, 2^{4} \leq\left|Q_{b} \cap Q_{c} \cap Q_{d} / Z_{c}\right| \leq 2^{8}$, where 2^{4} occurs exactly then $Q_{c}=\left(Q_{c} \cap\right.$ $\left.Q_{b}\right)\left(Q_{c} \cap Q_{d}\right)$. Since $M_{b c}$ is a maximal subgroup of $M_{c}, Q_{b} \cap Q_{c} \neq Q_{d} \cap Q_{c}$. Moreover, the elements of order 5 in $M_{b c d}$ act fixed-point freely on Q_{c} / Z_{c} and so also on $Q_{b} \cap Q_{c} \cap Q_{d} / Z_{c}$. Thus $\left|Q_{b} \cap Q_{c} \cap Q_{d} / Z_{c}\right|=2^{4}$ and $\left(Q_{b} \cap Q_{c}\right)\left(Q_{d} \cap Q_{c}\right)=Q_{c}$. Since $Q_{c} Q_{d}=O_{2}\left(M_{c d}\right)$ we conclude $\left(Q_{b} \cap Q_{c}\right) Q_{d}=O_{2}\left(M_{d c}\right)$. Clearly, $\left(Q_{b} \cap M_{d}\right) Q_{d}^{*} / Q_{d}^{*} \leq O_{2}\left(M_{d c} / Q_{d}^{*}\right)$. Now since Q_{b} is extraspecial, $\left[Z_{c}, Q_{b} \cap M_{d}\right]=\left[Z_{c}, C_{Q_{b}}\left(Z_{d}\right)\right]=Z_{b} \not \leq Z_{d}$ and so $Q_{b} \cap M_{d}$ inverts Q_{d}^{*} / Q_{d}. Since $\left\langle Z_{d}^{Q_{b}^{*}}\right\rangle=Z_{c}$, $C_{M_{b}}\left(Z_{d}\right) \leq N_{M_{b}}\left(Z_{c}\right)=M_{b c}$ and so $M_{b d} \leq C_{M_{b}}\left(Z_{d}\right) \leq C_{M_{b c}}\left(Z_{d}\right)=M_{b c d}$.

Lemma 8.11 There exists a unique class of nd-paths $\stackrel{a}{1}-\stackrel{b}{4}-\stackrel{c}{3}-\stackrel{d}{4}$ with $\angle a b c=96$. Moreover, for any such path $M_{a b c d} Q_{d}^{*}=M_{c d}, M_{a b c d}=C_{M_{a}}\left(Z_{d}\right)=M_{a d}, M_{a b c d} Q_{a} / Q_{a}=C_{M_{a} / Q_{a}}\left(Z_{d} Q_{a} / Q_{a}\right)$ and $Z_{d} Q_{a} / Q_{a}$ is in the class of non 2-central involutions of M_{a} / Q_{a}.

Proof. Let $\stackrel{a}{1}-\stackrel{b}{4}-\stackrel{c}{3}$ be an nd-path with $\angle a b c=96$. By 8.10 Q_{b}^{*} acts transitively on $\Gamma_{4}(c) \backslash\{b\}$. In particular, the existence and uniqueness statements hold with $\left|M_{a b c d}\right|=\left|M_{a b}\right| /(\angle a b c \cdot \angle b c d)=$ $2^{21} \cdot 3^{3} \cdot 5 /(96 \cdot 6)=2^{15} \cdot 3 \cdot 5$.

By $8.10\left(Q_{b} \cap M_{d}\right) Q_{d}^{*} / Q_{d}^{*}=O_{2}\left(M_{d c} / Q_{d}^{*}\right)$ and by $4.7 Q_{b} Q_{c} / Q_{b}$ acts regularly on $\{a \mid a \in$ $\left.\Gamma_{1}(b), \angle a b c=96\right\}$. Hence $M_{a b c d} Q_{d}^{*}=M_{c d}$. Note that $Z_{d} \leq Z_{c}$ and $Z_{d} \neq Z_{b}$. By 8.4 (iii),
$Q_{a} \cap Z_{c}=Z_{b}$. Thus $Z_{d} \not \leq Q_{a}$ and d is not adjacent to a. Since $M_{a b c d}$ centralizes Z_{d} and has order divisible by $5, Z_{d} Q_{a} / Q_{a}$ is in the class of non 2 -central involutions in $M_{a} / Q_{a} \cong M a t_{24}$ (see 3.1). Thus $\left|C_{M_{a} / Q_{a}}\left(Z_{d} Q_{a} / Q_{a}\right)\right|=2^{9} \cdot 3 \cdot 5$. Since $Q_{a} \cap M_{c} \leq Q_{b}$ by 8.4 (iii) and $C_{M_{b}}\left(Z_{d}\right)=M_{b c d}$ by 8.10 we have $C_{Q_{a}}\left(Z_{d}\right)=Q_{a} \cap M_{b c d}=C_{Q_{a} \cap Q_{b}}\left(Z_{d}\right)$ and as Q_{b} is extraspecial $\left|Q_{a} \cap M_{b c d}\right|=$ $\left|Q_{a} \cap Q_{b}\right| / 2=2^{6}$. Thus $\left|M_{a b c d} Q_{a} / Q_{a}\right|=\left|M_{a b c d}\right| / 2^{6}=2^{9} \cdot 3 \cdot 5, M_{a b c d} Q_{a} / Q_{a}=C_{M_{a} / Q_{a}}\left(Z_{d} Q_{a} / Q_{a}\right)$ and $M_{a b c d}=C_{M_{a}}\left(Z_{d}\right)=M_{a d}$.

Lemma 8.12 There exists a unique class of nd-paths $\stackrel{a}{1}-\stackrel{b}{4}-\stackrel{c}{3}-\stackrel{d}{4}-\stackrel{e}{1}$ with $\angle a b c=96=\angle e d c$. Moreover, for any such path $M_{a e}=M_{a b c d e}, Q_{a} \cap Q_{e}=1, M_{a e} /\left(Q_{b} \cap Q_{d}\right) \cong \operatorname{Sym}(5),\left|\left(Q_{b} \cap Q_{d}\right) / Z_{c}\right|=$ 2^{4} and $\left|M_{a e}\right|=2^{10} \cdot 3 \cdot 5$.

Proof. The uniqueness statement follows from 8.11. By 8.10, $\left|\left(Q_{b} \cap Q_{d}\right) / Z_{c}\right|=2^{4}$. By 8.4 (iii), $\left|\left(Q_{a} \cap Q_{c}\right) Z_{c} / Z_{c}\right|=2^{4}$. By 8.10 with the rôles of b and d interchanged, $\left(Q_{d} \cap M_{b}\right) Q_{b}^{*} / Q_{b}^{*}=$ $O_{2}\left(M_{b c} / Q_{b}^{*}\right)$ and so by $4.7 Q_{d} \cap M_{b}$ acts transitively on the 32 elements x in $\Gamma_{1}(b)$ with $\angle x b c=96$. Thus $M_{b c}=M_{a b c}\left(Q_{d} \cap M_{b}\right)$. Suppose $\left(Q_{a} \cap Q_{c}\right) Z_{c}=Q_{b} \cap Q_{d}$. Then $M_{b c}=M_{a b c}\left(Q_{d} \cap M_{b}\right)$ normalizes $\left(Q_{a} \cap Q_{c}\right) Z_{c} / Z_{c}$. A contradiction, since by $8.1 M_{b c}$ does not normalize a subgroup of order 2^{4} in Q_{c} / Z_{c}. So $\left(Q_{a} \cap Q_{c}\right) Z_{c} \neq Q_{b} \cap Q_{d}$. Since 5 divides $\left|M_{a b c d}\right|, Q_{a} \cap Q_{c} \cap Q_{d} \leq Z_{c}$.

Since $O_{2}\left(M_{c d} / Q_{d}^{*}\right) \cap M_{d e} / Q_{d}^{*}=1, Q_{a} \cap M_{c d e} \leq Q_{d}$. Similarly $Q_{a} \cap M_{c} \leq Q_{b}$. By $8.10 Q_{b} \cap Q_{d} \leq$ Q_{c}. Hence $Q_{a} \cap M_{c d e} \leq Q_{a} \cap Q_{c} \cap Q_{d} \leq Z_{c}$. By 8.4 (iii), $Q_{a} \cap Z_{c} \leq Z_{b}$ and thus $Q_{a} \cap M_{c d e}=Z_{b}$. By symmetry $Q_{e} \cap M_{a b c}=Z_{d}$. By $8.11 M_{a b c d}=M_{a d}$ and so $Q_{e} \cap M_{a}=Q_{e} \cap M_{a b c}=Z_{d}$. Thus $M_{a e} \leq C_{M_{e}}\left(Z_{d}\right)=M_{e d}$ and $M_{a e}=M_{a b c d e}$. By symmetry, $Q_{a} \cap M_{e}=Z_{b}$ and so $Q_{a} \cap Q_{e}=1$. Note that $M_{a e} / O_{2}\left(M_{a e}\right) \cong \operatorname{Sym}(5)$ and $O_{2}\left(M_{a e}\right) \leq Q_{b} \cap Q_{d}$ and so $M_{a e} /\left(Q_{b} \cap Q_{d}\right) \cong \operatorname{Sym}(5)$.

Lemma 8.13Γ has five classes of nd-paths $\stackrel{a}{1}-\stackrel{b}{3}-\stackrel{c}{1}-\stackrel{d}{3}-\stackrel{e}{1}$. The classes can be described as follows:

Class 1: $\angle b c d=42, e \in X_{1}(a)$ and $\left|\Gamma_{1}(d) \cap X_{1}(a)\right|=3$.
Class 2: $\angle b c d=42$, e $\notin X_{1}(a)$ and there exists a unique $f \in \Gamma_{4}(a) \cap \Gamma_{4}(e)$. For f we have $\angle a f e=16, M_{a e} / Q_{f}^{*} \cong \operatorname{Sym}(6)$ and $M_{a e} Q_{a}=M_{a f} \cdot n$

Class 3: $\angle b c d=56$ and $\Gamma_{1}(d) \subset X_{1}(a)$.
Class 4: $\angle b c d=1008$ and there exists an nd-path $\stackrel{a}{1}-\stackrel{l}{3}-\stackrel{j}{2}-\stackrel{m}{3}-\stackrel{e}{1}$ with $V_{l}(j) \cap V_{m}(j)=0$.
Class 5: $\angle b c d=2688$ and there exists an nd-path $\stackrel{a}{1}-4-\stackrel{f}{4}-\stackrel{h}{-}-\stackrel{e}{1}$ with $f, g, h \in \Gamma(c)$ and $\angle a f g=96=\angle e h g$.

Proof. By 8.6 (i), $M_{a c} Q_{c}=M_{b c}$ and so by $D_{b}(c), \angle b c d$ determines the nd-path (a, b, c, d) up to conjugacy.

Since $Q_{c} Q_{d} / Q_{d}$ acts regularly on the four elements of $\Gamma_{1}(d) \backslash\{c\}$ we conclude that $Q_{b} \cap Q_{c}$ acts transitively on $\Gamma_{1}(d) \backslash\{c\}$ provided that $\left(Q_{b} \cap Q_{c}\right)\left(Q_{d} \cap Q_{c}\right)=Q_{c}$ and has two orbits if $\left(Q_{b} \cap Q_{c}\right)\left(Q_{d} \cap Q_{c}\right)$ is a hyperplane in Q_{c}. Thus 8.4 (i) implies:
(*) For $r=56,1008$ and 2688 there exists exactly one class of nd-paths $\stackrel{a}{1}-\stackrel{b}{3}-\stackrel{c}{1}-\stackrel{d}{3}-\stackrel{e}{1}$ with $\angle b c d=r$, and for $r=42$ there exist at most two classes of such paths.

Assume now that $\angle b c d=42$. Then by $D_{b}(c)$ there exist $f \in \Gamma_{4}(b c d)$ and $g \in \Gamma_{2}(b c d)$. Note that f and g are adjacent. By 8.5, f is adjacent to a and e. Replacing g by $R_{c}(g)$ if necessary, we may assume that g is adjacent to a (see 2.6 applied to $\Gamma(b)$). Then by $D_{b}(c), f$ and g are uniquely
determined by (a, b, c, d) and so $M_{a b c d} \leq M_{f g}$. Consider $D_{a}(f)$. Exactly three of the five elements in $\Gamma_{1}(d)$ are adjacent to g. If e is adjacent to g then $\angle a f e=60$ and $e \in X_{1}(a)$. If e is not adjacent to g, then $\angle a f e=16, M_{a f e} / Q_{f}^{*} \cong \operatorname{Sym}(6), Q_{a} \cap M_{e}=Q_{a} \cap Q_{f}, Q_{a} M_{a f e}=M_{a f}$ and, since $M_{a f}$ is maximal in $M_{a}, M_{a e} \leq N_{M_{a}}\left(Q_{a} \cap M_{e}\right)=N_{M_{a}}\left(Q_{a} \cap Q_{f}\right)=M_{a f}$. Thus (a, b, c, d, e) is in Class 1 if e is adjacent to g and in Class 2 if e is not adjacent to g.

Assume next that $\angle b c d=56$. Then by $D_{b}(c)$ there exists $f \in \Gamma_{4}(b c d)$ and a and e are adjacent to f. Since $\Gamma_{2}(b c d)=\emptyset, D_{a}(f)$ shows that $\angle a f d=96$ and $\Gamma_{1}(d) \subset X_{1}(a)$. So (a, b, c, d, e) is in Class 3.

Assume now that $\angle b c d=1008$. Then by $D_{b}(c)$ there exists an nd-path $\stackrel{b}{3}-\stackrel{f}{2}-\stackrel{g}{3}-\stackrel{h}{2}-\stackrel{d}{3}$ in $\Gamma(c)$ with $R_{c}(f) \neq h$. Using 2.6 and replacing f by $R_{c}(f)$ and h by $R_{c}(h)$, if necessary, we assume that a is adjacent to f and e is adjacent to h. Note $c \in \Gamma_{1}(f g h)$ and $f \neq R_{c}(h)$, which means that $\Omega_{f}(g) \cap \Omega_{h}(g) \neq \varnothing$. In $\Gamma(g)$ we find a unique nd-path $\stackrel{f}{2}-{ }_{1}^{i}-{ }_{2}^{j}-{ }_{1}^{k}-{ }_{2}^{h}$ with $R_{i}(f)=j=R_{k}(h)$ (indeed if $\Omega_{f}(g)=\{1,2\}$ and $\Omega_{h}(g)=\{1,3\}$, then $\Omega_{j}(g)=\{4,5\}, \Omega_{i}(g)=3$ and $\Omega_{k}(g)=2$). In $\Gamma(f)$ there exists a unique vertex l of type 3 adjacent to a and i (indeed, l is defined by $\left.V_{l}(f)=V_{a}(f)+V_{i}(f)\right)$ and similarly there exists a unique $m \in \Gamma_{3}(e h k)$. Since $R_{i}(f)=j=R_{k}(h), l$ and m are both adjacent to j. Furthermore, a is adjacent to f and $j=R_{i}(f)$. Thus by 2.6 applied to $\Gamma(l), a$ and j are not adjacent and by symmetry e and j are not adjacent. Suppose that there exists $x \in \Gamma_{4}(l j m)$. By $8.5 x$ is adjacent to i and k and we see in $\Gamma(j)$ that x is adjacent to g and so also to f and c. Moreover, a and x are adjacent to l and thus a and x are adjacent. So x is adjacent to a and $c, V_{b}(f)=V_{a}(f)+V_{c}(f) \leq V_{x}(f)$ and b is adjacent to x. By symmetry x is adjacent to d and so $x \in \Gamma_{4}(b c d)$, a contradiction to $\angle b c d=1008$ and $D_{b}(c)$. Thus no such x exists and we found an nd-path $\stackrel{a}{1}-\stackrel{l}{3}-\stackrel{j}{2}-\stackrel{m}{3}-\stackrel{e}{1}$ with $V_{l}(j) \cap V_{m}(j)=0$. Hence (a, b, c, d, e) is in Class 4.

Assume finally that $\angle b c d=2688$. Then by $D_{b}(c)$ there exists an nd-path $\stackrel{b}{3}-\stackrel{f}{4}-\frac{g}{3}-\stackrel{h}{4}-\stackrel{d}{3}$ in $\Gamma(c)$ with $\angle b^{\stackrel{f}{c}} g=8=\angle d \stackrel{h}{c} g$. By 8.5, a is adjacent to f and e is adjacent to h. Since $\angle b^{f} \stackrel{f}{c} g=8$ we conclude from $D_{a}(f)$ that $\angle a f g=96$ and by symmetry, $\angle e h g=96$. Hence (a, b, c, d, e) is in Class 5.

Lemma 8.14 M_{a} has exactly three orbits $X_{2}(a), X_{3}(a)$ and $X_{4}(a)$ on $\left\{e \in \Gamma_{1} \mid d(a, e)=2\right\}$. Moreover we can choose notation so that
(i) $\left|X_{2}(a)\right|=2^{4} \cdot 7 \cdot 11 \cdot 23=28,336$ and $M_{a e} \sim 2^{1+6+6} 3 \cdot \operatorname{Sym}(6)$ if $e \in X_{2}(a)$,
(ii) $\left|X_{3}(a)\right|=2^{7} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 23=3,400,320$ and $M_{a e} \sim 2^{12}(\operatorname{Sym}(3) \times \operatorname{Sym}(3))$ if $e \in X_{3}(a)$,
(iii) $\left|X_{4}(a)\right|=2^{11} \cdot 3^{2} \cdot 7 \cdot 11 \cdot 23=32,643,072$ and $M_{a e} \sim 2^{3+4} \operatorname{Sym}(5)$ if $e \in X_{4}(a)$.

Proof. 8.13, 8.9 and 8.12.
Lemma 8.15 Given a path $\stackrel{a}{1}-\stackrel{b}{4}-\stackrel{c}{1}-\stackrel{d}{3}-\stackrel{e}{1}$ with $d(a, e)=3$. Then $\angle a b c=16$ and $\angle b c d=2880$.
Proof. Clearly $d(a, c)=2$ and so $\angle a b c=16$. If d is adjacent to b, b is adjacent to e and by $D_{a}(b), d(a, e) \leq 2$, a contradiction. Thus $\angle b c d \neq 15$.

Let $x \in \Gamma_{3}(b c)$ and suppose that $\angle x c d=56$. Then by $8.13, \Gamma_{1}(x) \leq X_{1}(e)$. On the other hand by $D_{a}(b), X_{1}(a) \cap \Gamma_{1}(x) \neq \emptyset$. Thus $X_{1}(a) \cap X_{1}(e) \neq \emptyset$ and $d(a, e) \leq 2$, a contradiction.

Thus $\angle x c d \neq 56$ for all $x \in \Gamma_{3}(b c)$. Suppose that $\angle b c d=720$. Then by $D_{b}(c)$ there exists an nd-path $\stackrel{b}{4}-\stackrel{x}{3}-\stackrel{y}{4}-\stackrel{d}{3}$ in $\Gamma(c)$ with $\angle x \stackrel{c}{y} d=8$. Thus by $D_{x}(c), \angle x c d=56$, a contradiction.

Suppose that $\angle b c d=180$. Then there exists an nd-path $\stackrel{b}{4}-\stackrel{x}{2}-\stackrel{d}{3}$ in $\Gamma(c)$. Since $\angle a b c=16$, replacing x by $R_{c}(x)$, if necessary, we may assume that $\angle a b x=60$ (compare $D_{a}(b)$), in which case there exists $y \in \Gamma_{3}(a b x)$. So we found an nd-path $\stackrel{a}{1}-\stackrel{y}{3}-\stackrel{x}{2}-\stackrel{d}{3}-\stackrel{e}{1}$. Since $d(a, e)=3, \Gamma_{1}(y x d)=\emptyset$, and so $V_{y}(x) \cap V_{d}(x)=0$. By 8.9 and 8.13 Class $4, d(a, e)=2$, a contradiction.

Thus $\angle b c d=2880$ and the lemma is proved.
Lemma 8.16 There exists a unique class of nd-paths $\stackrel{a}{1}-\stackrel{b}{4}-\stackrel{c}{1}-\stackrel{d}{3}-\stackrel{e}{1}$ with $\angle a b c=16$ and $\angle b c d=2880$. Moreover, for any such nd-path there exists an nd-path $\stackrel{a}{1}-\stackrel{h}{3}-\stackrel{f}{2}-\stackrel{g}{4}-\stackrel{e}{1}$ with $V_{h}(f) \cap V_{g}(f)=0$ and $\angle f g e=56$.

Proof. By 8.13 Class $2, M_{a c} Q_{c}=M_{b c}$ and so there exists a unique class of nd-paths $\stackrel{a}{1}-\stackrel{b}{4}-\stackrel{c}{1}-\stackrel{d}{3}$ with $\angle a b c=16$ and $\angle b c d=2880$. Moreover, $\Gamma_{2}(b c d)=\varnothing$ and so by 8.4 (ii), $\left(Q_{b} \cap Q_{c}\right)\left(Q_{d} \cap Q_{c}\right)=Q_{c}$. Since Q_{c} acts transitively on $\Gamma_{1}(d) \backslash\{c\}$, the uniqueness part of the lemma is proved.

By $D_{b}(c)$ there exists an nd-path $\stackrel{b}{4}-\stackrel{f}{2}-\stackrel{g}{4}-\stackrel{d}{3}$ in $\Gamma(c)$. Replacing f by $R_{c}(f)$, if necessary, we may assume that $\angle a b f=60$ (compare $\left.D_{a}(b)\right)$, in which case there exists $h \in \Gamma_{3}(a b f)$. Note that d is adjacent to e and g and so e and g are adjacent by 8.5. Since $\angle b c d=2880$ we see from $D_{b}(c)$ that $\Gamma_{3}(b c g)=\emptyset$ and so $V_{b}(f) \cap V_{g}(f)=V_{c}(f)$. Moreover, since $\angle a b c=16, c$ and h are not adjacent. So $V_{c}(f) \not \leq V_{h}(f) \leq V_{b}(f)$ and $V_{h}(f) \cap V_{g}(f)=0$.

Since $\angle b c d=2880, d$ is not adjacent to f. On the other hand both d and f are adjacent to c and we see from the $D_{f}(g)$ that $\angle f g d=84$ and hence $\angle f g e=56$.

Lemma 8.17 Given a path $\stackrel{a}{2}-\stackrel{b}{1}-\stackrel{c}{1}$ with $c=R_{b}(a)$. Then
(i) $Q_{a} \cap Q_{c}=Q_{b} \cap Q_{c}$ and $Q_{a} \cap Q_{c}$ is maped to $\bigwedge^{2} V_{b}^{*}(c)$ under the isomorphism $Q_{c} \rightarrow \bigwedge^{2} V^{*}(c)$.
(ii) $\left[Q_{c}, V(a)\right]=V_{b}(a)$.

Proof. Since $Q_{a} \cap Q_{b}$ is centralized by Q_{b} and $c=R_{b}(a)$ we have $Q_{a} \cap Q_{b}=Q_{c} \cap Q_{b}=Q_{a} \cap Q_{b} \cap Q_{c}$. Note that $\Lambda^{2} V_{b}^{*}(c)$ is the unique proper $M_{b c}$-submodule in $\bigwedge^{2} V^{*}(c)$. Thus $Q_{b} \cap Q_{c}$ is maped to $\bigwedge^{2} V_{b}^{*}(c)$. Moreover, since $M_{b c}=M_{a b c}$ we also conclude that $Q_{a} \cap Q_{c}=Q_{b} \cap Q_{c}$. Thus (i) holds.
(ii) holds since $V_{b}(a)$ is the unique proper $M_{a b c}$-submodule in $V(a)$.

Lemma 8.18 (i) There exists a unique class of nd-paths $\stackrel{a}{1}-\stackrel{b}{3}-\stackrel{c}{2}-\stackrel{d}{4}-\stackrel{e}{1}$ with $V_{b}(c) \cap V_{d}(c)=0$ and $\angle c d e=56$. Moreover, for any such path $d(a, e)=3,\left|M_{a e}\right|=2^{10} \cdot 3^{2}, M_{a e}=M_{a b c d e}$, $Q_{a} \cap M_{e}=1$ and there exists an nd-path $\stackrel{e}{1}-\stackrel{h}{3}-\stackrel{g}{2}-\stackrel{i}{4}-\stackrel{a}{1}$ with $V_{h}(g) \cap V_{i}(g)=0$ and $\angle g i a=56$.
(ii) Put $X_{5}(a)=e^{M_{a}}$. Then $\left|X_{5}(a)\right|=2^{11} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 23=54,405120$.
(iii) Given a path $\stackrel{a}{1}-\stackrel{j}{4}-\stackrel{k}{1}-\stackrel{l}{3}-\stackrel{e}{1}$. Then $e \in \bigcup_{i=0}^{5} X_{i}(a)$.

Proof. (i) and (ii) By 8.7, $\left(Q_{a} \cap M_{c}\right) Q_{c}=O_{2}\left(M_{b c}\right)$ and so $Q_{a} \cap M_{c}$ acts transitively on the 64 elements of $\left\{x \in \Gamma_{4}(c) \mid V_{b}(c) \cap V_{x}(c)=0\right\}$. Hence there exists a unique class of nd-paths $\stackrel{a}{1}-\stackrel{b}{3}-\stackrel{c}{2}-\stackrel{d}{4}$ with $V_{b}(c) \cap V_{d}(c)=0$. Moreover, we see in M_{c} / Q_{c} that $M_{b c d} / Q_{c}$ is a complement to $O_{2}\left(M_{c d} / Q_{c}\right)=Q_{d} Q_{c} / Q_{c}$ in $M_{c d} / Q_{c}$. Thus $M_{c d}=M_{b c d} Q_{d}$. By $8.7 M_{b c}=M_{a b c} Q_{c}$ and so $M_{c d}=M_{b c d} Q_{d}=\left(\left(M_{a b c} Q_{c}\right) \cap M_{d}\right) Q_{d}=M_{a b c d} Q_{c} Q_{d}$. We claim that $Z_{b}\left(Q_{c} \cap Q_{d}\right)=Q_{c}$. Indeed,
identifying Q_{c} with $\bigwedge^{2} V(c)^{*}$ we have $Z_{b}=\bigwedge^{2} V_{b}(c)^{*}$ and $Q_{c} \cap Q_{d}=V(c)^{*} \bigwedge V_{d}(c)^{*}$ and the claim follows from $V(c)^{*}=V_{b}(c)^{*} \oplus V_{d}(c)^{*}$. Since $Z_{b} \leq M_{a b c d}, M_{c d}=M_{a b c d} Q_{c} Q_{d}=M_{a b c d} Q_{d}$. In particular, the uniqueness statement is proved.

Put $K=M_{a b c d e}$. Let x be the number of paths as in (i) starting with a. Then $x=\left|\Gamma_{3}(a)\right|$. $\angle a b c \cdot \angle b c d \cdot \angle c d e=(3 \cdot 5 \cdot 11 \cdot 23) \cdot 4 \cdot 64 \cdot 56=2^{11} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 23$ and so $|K|=\left|M_{a}\right| / x=2^{10} \cdot 3^{2}$.

Since $\angle c d e=56, \angle e d c=240$ and so by $D_{e}(d)$ there exists a unique $f \in \Gamma_{1}(c d)$ with $\angle e d f=16$. Moreover, if we define $g=R_{f}(c)$ then there exists $h \in \Gamma_{3}(g d e)$. Since $V_{f}(c) \leq V_{d}(c), V_{f}(c) \not \leq V_{b}(c)$ and so there exists a unique element $i \in \Gamma_{4}(b c f)$, namely i is determined by $V_{i}(c)=V_{f}(c)+V_{b}(c)$. Then i is adjacent to a by 8.5 and, since $g=R_{f}(c)$, to g as well. Since $V_{b}(c) \cap V_{d}(c)=0$ and $V_{b}(c) \leq V_{i}(c)$ we have $V_{i}(c) \cap V_{d}(c)=V_{f}(c)$. Conjugation under Q_{f} yields $V_{i}(g) \cap V_{d}(g)=V_{f}(g)$. Since $L f d e=16, f$ is not adjacent to h and so since $V_{h}(g) \leq V_{d}(g), V_{i}(g) \cap V_{h}(g)=0$. Consider the nd-path $\stackrel{g}{2}-\stackrel{f}{1}-\stackrel{c}{2}-\stackrel{b}{3}-\stackrel{a}{1}$ in $\Gamma(i)$. By $D_{g}(i)$ since $R_{f}(g)=c$, we have $\angle g i c=7$ and $\angle g i b=28$. Now one can see from $D_{c}(i)$ that $\Gamma_{1}(i c)$ and $\Gamma_{3}(i c)$ are points and lines of the projective plane of order 2 with the natural incidence relation. In view of this observation and indexes in $D_{g}(i)$, every element from $\left\{x \mid x \in \Gamma_{1}(i b), \angle g i x=14\right\}$ is adjacent to c. Hence $\angle g i a=56$. In particular, the path (e, h, g, i, a) has all the properties stated in the lemma.

Since $\left[Q_{i} \cap M_{h}, V(g)\right]=\left[Q_{i} \cap M_{h}, V_{i}(g)+V_{h}(g)\right] \leq V_{i}(g) \cap V_{h}(g)=0$ we have

$$
Q_{i} \cap M_{h} \leq Q_{g}
$$

and so $Z_{b} \cap M_{h} \leq Q_{c} \cap Q_{g}$. Identify Q_{c} with $\bigwedge^{2} V(c)^{*}$. By 8.17 (i), $Q_{c} \cap Q_{g}=\bigwedge^{2} V_{f}^{*}(c)$ and so

$$
Z_{b} \cap Q_{c} \cap Q_{g}=\bigwedge^{2} V_{b}(c)^{*} \cap \bigwedge^{2} V_{f}(c)^{*}=\bigwedge^{2}\left(V_{b}(c)^{*} \cap V_{f}(c)^{*}\right)=\bigwedge^{2} V_{i}(c)^{*}=Z_{i}
$$

Hence $Z_{b} \cap M_{h}=Z_{i}$. Since $V_{i}(g) \cap V_{h}(g)=0, Z_{i}=\bigwedge^{2} V_{i}(g)^{*} \not \leq V(g)^{*} \bigwedge V_{h}(g)^{*}=Q_{g} \cap Q_{h}$. Moreover, $Q_{g} \cap M_{e} \leq Q_{h}$ and thus $Z_{i} \not \leq M_{e}$. Since f, g, h and i are uniquely determined in terms of $(a, b, c, d, e), K \leq M_{f g h i}$ and, in particular, $Z_{b} \cap M_{e}=Z_{b} \cap K \leq Z_{i} \cap M_{e}=1$. From $Q_{a} \cap M_{c} \leq Q_{b}$, $Q_{b} \cap M_{d} \leq Q_{c}$ and (see 8.7) $Q_{a} \cap Q_{c}=Z_{b}$ we conclude that $Q_{a} \cap K=1$. Recall that $|K|=2^{10} \cdot 3^{2}$. Since $K \leq M_{a b i}$ and $\left|M_{a b i} / Q_{a}\right|=\left|M_{a b} / Q_{a}\right| / 7=2^{10} \cdot 3^{2}$ we have $K Q_{a}=M_{a b i}$.

Suppose, that $Q_{a} \cap M_{e} \neq 1$ and pick a Sylow 2-subgroup R of K. Then $C_{Q_{a} \cap M_{e}}(R) \neq 1$ and since $C_{Q_{a}}(R)=C_{Q_{a}}\left(R Q_{a}\right)=Z_{i}$ we get $Z_{i} \leq M_{e}$, a contradiction.

Hence $Q_{a} \cap M_{e}=1$. Since $Q_{a} \cap M_{y} \neq 1$ for all $y \in \Gamma_{1}$ with $d(a, y) \leq 2, d(a, e)=3$.
Suppose $K \neq M_{a e}$. Then by 3.4, $M_{a e} Q_{a}$ is equal to one of $M_{a}, M_{a b}$ or $M_{a i}$. Suppose $M_{a b e} \neq K$. Then $M_{a b e} Q_{a}=M_{a b}$. In particular, $\left|M_{a b e} / K\right|=7$ and so $M_{a b e}=O^{2,3}\left(M_{a b e}\right) K$. From $\angle a b c=4$ we conclude $O^{2,3}\left(M_{b}\right) \leq M_{c}$. Now also $K \leq M_{c}$ and so $M_{a b e} \leq M_{c}$. Note that $Q_{c} \cap M_{e}=$ $Z_{b}\left(Q_{c} \cap Q_{d}\right) \cap M_{e}=Q_{c} \cap Q_{d}$ and so $M_{c e} \leq N_{M_{c}}\left(Q_{c} \cap Q_{d}\right)=M_{c d}$. Thus $M_{c e}=M_{c d e}$ and $M_{a b e}=M_{a b c e}=M_{a b c d e}=K$, a contradiction.

Thus $M_{a b e}=K$ and $M_{a e} Q_{a}=M_{a i}$. On the other hand, by $8.7 M_{g e} \leq M_{g h e}$ and as seen above $Q_{i} \cap M_{h} \leq Q_{g}$. In particular, $Q_{i} \cap M_{e} \leq Q_{i} \cap M_{h}=Q_{i} \cap Q_{g}$. Since Z_{i} acts transitively on the two elements in $\Gamma_{1}(h) \backslash \Gamma_{1}(g h), Q_{i} \cap Q_{g}=Z_{i}\left(Q_{i} \cap M_{e}\right)$. Thus $M_{a e}=M_{a i e} \leq N_{M_{i}}\left(Q_{i} \cap Q_{g}\right)=M_{i g}$, a contradiction, since 3^{3} divides $\left|M_{a e}\right|=\left|M_{a i} / Q_{a}\right|$ but not $\left|M_{i g}\right|$.

Thus $M_{a e}=M_{a b c d e}=M_{a b c d e f g h i}$ and (i) and (ii) hold.
(iii) follows from 8.16, 8.15, 8.14 and (i).

Lemma 8.19 Given an nd-path $\stackrel{a}{1}-4-1-4-\stackrel{e}{1}$. Then $e \in X_{l}(a)$ for some $0 \leq l \leq 5$.

Proof. Consider first a path $\stackrel{a}{1}-\stackrel{b}{2}-\stackrel{c}{4}-\stackrel{d}{2}-\stackrel{e}{1}$. Then by $D_{b}(c)$ there exists a path $\stackrel{b}{2}-\stackrel{f}{3}-\stackrel{g}{1}-\stackrel{d}{2}$ in $\Gamma(c)$. Pick $i \in \Gamma_{4}(a b f)$ and $h \in \Gamma_{3}(g d e)$. Then by $8.5 i$ is adjacent to g and we found a path $\stackrel{a}{1}-\stackrel{i}{4}-\stackrel{g}{1}-\stackrel{h}{3}-\stackrel{e}{1}$. So by 8.18 (iii), $e \in X_{l}(a)$, for some $0 \leq l \leq 5$.

Consider now an nd-path $\stackrel{a}{1}-\stackrel{b}{4}-\stackrel{c}{1}-\stackrel{d}{4}-\stackrel{e}{1}$. By $D_{b}(c)$ there exists a path $\stackrel{b}{4}-\stackrel{f}{3}-\stackrel{g}{4}-\frac{h}{3}-\stackrel{d}{4}$ in $\Gamma(c)$. If $d(a, c) \leq 1$ or $d(c, e) \leq 1$ we are done by 8.18 (iii). So suppose that $\angle a b c=16=\angle c d e$. Then by $D_{a}(b)$ and $D_{e}(d)$ we have $\angle a b f \neq 96 \neq \angle e d h$ and there exist $i \in \Gamma_{2}(a b f)$ and $j \in \Gamma_{2}(h d e)$. Then by 8.5 both i and j are adjacent to g and we are done by the first paragraph of the proof.

Lemma 8.20 Let $\stackrel{b}{4}-\stackrel{c}{3}-\stackrel{d}{4}-\stackrel{e}{3}-\stackrel{f}{4}$ be an nd-path with $\left[Z_{b}, Z_{f}\right] \neq 1$. Then \angle cde $=160$, $Q_{b} \cap Q_{f}=Z_{d}, Q_{b} \cap M_{e}$ acts transitively on the four elements in $\left\{\alpha \in \Gamma_{4}(e) \mid\left[Z_{b}, Z_{\alpha}\right] \neq 1\right\}$, $M_{b d f} Q_{d} / Q_{d} \cong \operatorname{Sym}(3) \times C_{2}$ and $\left(Q_{b} \cap Q_{d} \cap M_{f}\right) Q_{f}^{*} / Q_{f}^{*}=\left(Q_{d} \cap M_{f}\right) Q_{f}^{*} / Q_{f}^{*}=O_{2}\left(M_{e f} / Q_{f}^{*}\right)$.

Proof. By $D_{c}(d)$, if $\angle c d e \neq 160$, then there exists $\alpha \in \Gamma_{1}(c d e)$. Hence $Z_{c} Z_{e} \leq Q_{\alpha}$ and $\left[Z_{c}, Z_{e}\right]=1$, a contradiction.

Thus $\angle c d e=160$ and by $D_{c}(d)$ there exists a unique nd-path $\stackrel{c}{3}-\stackrel{g}{2}-\stackrel{h}{1}-\stackrel{i}{2}-\stackrel{e}{3}$ in $\Gamma(d)$, such that $R_{h}(g)=i$, in which case h is not adjacent to c. Moreover, by $8.5 b$ is adjacent to g and f is adjacent to i. Notice that $V_{b}(g) \cap V_{d}(g)=V_{c}(g), V_{h}(g) \not \leq V_{c}(g)$ and $V_{h}(g) \leq V_{d}(g)$. Thus $V_{h}(g) \not \leq V_{b}(g)$ and so h is not adjacent to b. By symmetry, h is not adjacent to f. Hence $Z_{f} \not \leq Q_{h} \cap Q_{i}=Q_{h} \cap Q_{g}$. Put $R=Q_{g} \cap Q_{h}$. We compute in Q_{g} :
$R \cap Q_{b}=\left(Q_{b} \cap Q_{g}\right) \cap\left(Q_{h} \cap Q_{g}\right)=\left(V_{b}(g)^{*} \wedge V(g)^{*}\right) \cap\left(V_{h}(g)^{*} \wedge V_{h}(g)^{*}\right)=\left(V_{b}(g)^{*} \cap V_{h}(g)^{*}\right) \wedge V_{h}(g)^{*}$.
Since $V_{b}(g)^{*} \cap V_{h}(g)^{*}$ has order two we conclude that the subgroups of order two in $R \cap Q_{b}$ are all of the form Z_{δ} for some $\delta \in \Gamma_{4}(g h)=\Gamma_{4}(g h i)$ with $V_{b}(g)^{*} \cap V_{h}(g)^{*} \leq V_{\delta}(g)^{*} \leq V_{h}(g)^{*}$. Notice that for any such δ there exists $\gamma \in \Gamma_{3}(b g \delta)$ and so $Z_{b} \leq Z_{\gamma} \leq Q_{\delta}$.

Suppose that $R \cap Q_{b} \cap Q_{f} \neq Z_{d}$ and pick $\delta \in \Gamma_{4}(g h i) \backslash\{d\}$ with $Z_{\delta} \leq R \cap Q_{b} \cap Q_{f}$. Then $Z_{b} \leq Q_{\delta}$ and similarly, $Z_{f} \leq Q_{\delta}$. Thus Z_{b} and Z_{f} are both contained in the elementary abelian group $Q_{d} \cap Q_{\delta}$, a contradiction.

Thus $R \cap Q_{b} \cap Q_{f}=Z_{d}$. Since $|R|=2^{6}$ and $\left|R \cap Q_{b}\right|=2^{3}=\left|R \cap Q_{f}\right|$ we get $\left|R /\left(R \cap Q_{b}\right)\left(R \cap Q_{f}\right)\right|=$ 2. Since $\left[R \cap Q_{b}, Q_{b} \cap Q_{f}\right] \leq Z_{b} \cap R=1$ we have $\left[\left(R \cap Q_{b}\right)\left(R \cap Q_{f}\right), Q_{b} \cap Q_{f}\right]=1$. Now R is a natural $\Omega_{6}^{+}(2)$-module for $M_{i g} / Q_{i} Q_{g} \cong L_{4}(2)$ and so no element of $M_{i g}$ acts as a transvection on R. Thus $Q_{b} \cap Q_{f} \leq C_{M_{i g}}(R)=Q_{i} Q_{g}$. Now by 8.17 (ii) $\left[Q_{i} Q_{g}, V(i)\right] \leq V_{h}(i),\left[Q_{f}, V(i)\right] \leq V_{f}(i)$, $\left[Q_{i} Q_{g} \cap Q_{f}, V(i)\right] \leq V_{f}(i) \cap V_{h}(i)=1$ and so $Q_{g} Q_{i} \cap Q_{f} \leq Q_{i}$. By symmetry, $Q_{g} Q_{i} \cap Q_{b} \leq Q_{g}$ and thus

$$
Z_{d} \leq Q_{b} \cap Q_{f} \leq\left(Q_{i} Q_{g} \cap Q_{b}\right) \cap\left(Q_{i} Q_{g} \cap Q_{f}\right)=Q_{b} \cap Q_{g} \cap Q_{i} \cap Q_{f}=Q_{b} \cap R \cap Q_{f}=Z_{d}
$$

Since $\left|Q_{b} \cap Q_{d}\right|=2^{7}=\left|Q_{f} \cap Q_{d}\right|$ and $\left|Q_{d}\right|=2^{13}$ we conclude

$$
\begin{equation*}
Q_{d}=\left(Q_{b} \cap Q_{d}\right)\left(Q_{f} \cap Q_{d}\right) \leq\left(Q_{b} \cap Q_{d}\right) Q_{e} \tag{*}
\end{equation*}
$$

By $8.10\left(Q_{b} \cap M_{d}\right) Q_{d}^{*} / Q_{d}^{*}=O_{2}\left(M_{c d} / Q_{d}^{*}\right)$ and $M_{b c d} Q_{d}^{*}=M_{c d}$. Thus $M_{b c d e} Q_{d}^{*}=M_{c d e}$. Also $\left(\left(Q_{b} \cap M_{d}\right) Q_{d}^{*} \cap M_{b c d e} Q_{d}^{*}\right)=\left(\left(Q_{b} \cap M_{d}\right) \cap\left(M_{b c d e} Q_{d}^{*}\right)\right) Q_{d}^{*}=\left(Q_{b} \cap M_{e}\right) Q_{d}^{*}$ and and $\left(Q_{b} \cap M_{e}\right) Q_{d}^{*} / Q_{d}^{*}=$ $O_{2}\left(M_{c d} / Q_{d}^{*}\right) \cap M_{c d e} / Q_{d}^{*}$. Thus by 4.8, $M_{b d e} Q_{d} /\left(Q_{b} \cap M_{e}\right) Q_{d} \cong \operatorname{Sym}(3) \times C_{2}$ and $\left(Q_{b} \cap M_{e}\right) Q_{d} / Q_{d}$ has order two and inverts Q_{d}^{*} / Q_{d}. Since $Q_{d}^{*} Q_{e} / Q_{e} \cong \operatorname{Alt}(4)$ and since by (*), $Q_{d} Q_{e} / Q_{e}=\left(Q_{b} \cap\right.$ $\left.Q_{d}\right) Q_{e} / Q_{e}$ we conclude that $Q_{b} \cap M_{e}$ acts as a dihedral group of order eight on Z_{e} with Z_{b} mapping
onto the centre of the D_{8}. Hence $Q_{b} \cap M_{e}$ acts transitively on $\left\{\alpha \in \Gamma_{4}(e) \mid\left[Z_{b}, Z_{\alpha}\right] \neq 1\right\},\left[Q_{b} \cap\right.$ $\left.M_{f}, Z_{e}\right]=\left[Q_{b} \cap M_{f}, C_{Z_{e}}\left(Z_{b}\right) Z_{f}\right] \leq Z_{d}, Q_{b} \cap M_{f} \leq Q_{d}$ and $M_{b d f} Q_{d} / Q_{d} \cong \operatorname{Sym}(3) \times C_{2}$.

Since by $\left(^{*}\right)\left(Q_{b} \cap M_{f}\right) Q_{f}^{*}=\left(Q_{b} \cap Q_{d} \cap M_{f}\right) Q_{f}^{*}=\left(Q_{d} \cap M_{f}\right) Q_{f}^{*}$, the last statement follows from 8.10.

Lemma 8.21 There exists a unique class of nd-paths $\stackrel{a}{1}-\stackrel{b}{4}-\stackrel{c}{3}-\stackrel{d}{4}-\stackrel{e}{3}-\stackrel{f}{4}-\stackrel{g}{1}$ such that $\angle a b c=96=\angle g f e$ and $\left[Z_{b}, Z_{f}\right] \neq 1$. Moreover, for any such path, $C_{M_{a g}}\left(Z_{d}\right)=M_{a d g}=M_{a b c d e f g}$, $\left|M_{a d g}\right|=24, M_{a g} \cap Q_{a}=1, Q_{d} \cap M_{a d g}=Z_{d}, M_{a d g} Q_{d} / Q_{d} \cong \operatorname{Sym}(3) \times C_{2}, g \notin \bigcup_{i=0}^{5} X_{i}(a)$ and there exists an nd-path $p=\stackrel{a}{1}-3-2-3-\stackrel{\alpha}{1}-\stackrel{\beta}{3}-\stackrel{g}{1}$ with $\left|M_{a d g} / M_{d p}\right|=3, \alpha \in \Gamma_{1}(d)$ and $Z_{d} \leq Q_{\alpha} \cap M_{d p}$.

Proof. By 8.11 there exists a unique class of nd-paths $\stackrel{a}{1}-\stackrel{b}{4}-\stackrel{c}{3}-\stackrel{d}{4}$ with $\angle a b c=96$. Moreover, by the same lemma $M_{a b c d} Q_{d}^{*}=M_{c d}, M_{a b c d} Q_{a} / Q_{a}=C_{M_{a} / Q_{a}}\left(Z_{d}\right)$ and $M_{a b c d}=C_{M_{a}}\left(Z_{d}\right)=M_{a d}$. Thus $C_{M_{a g}}\left(Z_{d}\right)=M_{a d g}=M_{a b c d e f g}$.

By $8.20 \angle c d e=160, Q_{b} \cap Q_{f}=Z_{d}$ and $Q_{b} \cap M_{e}$ acts transitively on $Z_{e} \backslash M_{b}$. Thus our path from b to f is unique up to conjugation and $M_{b d f} Q_{d} / Q_{d} \cong \operatorname{Sym}(3) \times C_{2}$. By $4.7 O_{2}\left(M_{e f} / Q_{f}^{*}\right)$ acts regularly on $\left\{\alpha \in \Gamma_{1}(f) \mid \angle e f \alpha=32\right\}$. By $8.20 O_{2}\left(M_{e f} / Q_{f}^{*}\right)=\left(Q_{b} \cap Q_{d} \cap M_{f}\right) Q_{f}^{*} / Q_{f}^{*}=\left(Q_{d} \cap M_{f}\right) Q_{f}^{*} / Q_{f}^{*}$, so $Q_{b} \cap Q_{d} \cap M_{f}$ is transitive on the same set and $Q_{d} \cap M_{f g} \leq Q_{f}$. Similarly $Q_{d} \cap Q_{f} \cap M_{b}$ is transitive on the set $\left\{\alpha \in \Gamma_{1}(b) \mid \angle c b \alpha=32\right\}$ and $Q_{d} \cap M_{b a} \leq Q_{b}$. Since $\left(Q_{b} \cap Q_{d}\right) \cap\left(Q_{f} \cap Q_{d}\right)=Z_{d}$ the uniqueness follows and $M_{a d g} Q_{d} / Q_{d} \cong \operatorname{Sym}(3) \times C_{2}$. Notice that $C_{Q_{b} \cap M_{g}}\left(Z_{d}\right) \leq Q_{b} \cap M_{g f} \leq$ $Q_{b} \cap Q_{f}=Z_{d}$ and so $Q_{b} \cap M_{g}=Z_{d}$. Thus $Q_{d} \cap M_{a d g}=Q_{b} \cap Q_{d} \cap Q_{f}=Z_{d}$. Furthermore, $\left|M_{a d g}\right|=\left|M_{a b}\right| /(96 \cdot 6 \cdot 160 \cdot 4 \cdot 32)=24, Q_{a} \cap M_{c} \leq Q_{b}$ and so $Q_{a} \cap M_{d g}=Q_{a} \cap Q_{b} \cap M_{g}=Q_{a} \cap Z_{d}=1$. Hence $C_{Q_{a} \cap M_{g}}\left(Z_{d}\right)=1$ and $Q_{a} \cap M_{g}=1$.

Suppose that $g \in X_{i}(a)$ for some $0 \leq i \leq 5$. Since $\left|Q_{a} \cap M_{g}\right|=1, i=5$. It follows from 8.18 that $M_{a g}$ has an elementary abelian normal subgroup A of order 2^{6}. If Z_{d} is in A, then 2^{6} divides $\left|C_{M_{a g}}\left(Z_{d}\right)\right|$ and if $Z_{d} \not \leq A, 2^{3}$ divides $\left|C_{A}\left(Z_{d}\right)\right|$ and so 2^{4} divides $\left|C_{A}\left(Z_{d}\right) Z_{d}\right|$, and in any case we get contradiction to $\left|M_{a d g}\right|=24$. Thus $g \notin X_{i}(a)$ for all $0 \leq i \leq 5$.

By $D_{c}(d)$ there exist three nd-paths of type $3-2-1-3$ from c to e in $\Gamma(d)$. Moreover they are transitively permuted by $M_{c d e}$. Since the elements of order three in Q_{d}^{*} act fixed-point freely on Q_{d} / Z_{d} and since $Z_{b} \leq Q_{d}, Q_{d}^{*} \cap M_{b} \leq Q_{d}$. Thus $O^{3}\left(M_{a d g}\right) \not \leq Q_{d}^{*}$ and $\left|M_{c d e} / Q_{d}^{*}\right|_{3}=3$ implies that $M_{a d g}$ acts transitively on those three nd-paths. Let (c, h, i, e) be one of them. Then h is adjacent to b and since $\angle a b c=96, D_{a}(b)$ yields a unique nd-path $\stackrel{a}{1}-\stackrel{l}{3}-\stackrel{k}{2}-{ }_{1}^{j}-\stackrel{h}{2}$ in $\Gamma(b)$ with $R_{j}(h)=k$. Let m be the unique vertex of type 3 , adjacent to j, h and i. Since $k=R_{j}(h), m$ is adjacent to k. Since $\angle g f e=96$ and i is adjacent to e and $f, D_{g}(f)$ shows that there exists a unique $n \in \Gamma_{3}(g f i)$. Put $p=(a, l, k, m, i, n, g)$. Then $M_{p d}=M_{a d g h i}$ and so $\left|M_{a d g} / M_{p d}\right|=3$. Since h and i are adjacent to $d, Z_{d} \leq M_{a d g h i}=M_{p d}$ and $Z_{d} \leq Q_{i}$. Thus the lemma holds (with $\alpha=i$ and $\beta=n$).

Lemma 8.22 There exists a unique class of nd-paths $q=\stackrel{a}{1}-\stackrel{b}{3}-\stackrel{c}{2}-\stackrel{d}{3}-\stackrel{e}{1}-\stackrel{f}{3}-\stackrel{g}{1}$ with $g \notin \bigcup_{i=0}^{5} X_{i}(a)$. Moreover, for any such path $\left|M_{q}\right|=24$ and $M_{q} / O_{2}\left(M_{q}\right) \cong \operatorname{Sym}(3)$.

Proof. The existence of such a path has been established in 8.21.
Suppose there exists $x \in \Gamma_{4}(b c d)$. Then by $8.5 x$ is adjacent to a and e, a contradiction to 8.19. So $V_{b}(c) \cap V_{d}(c)=0$ and the path $\stackrel{a}{1}-\stackrel{b}{3}-\stackrel{c}{2}-\stackrel{d}{3}-\stackrel{e}{1}$ is as in 8.9.

Suppose that $Z_{d} \cap M_{a} \cap Q_{f} \neq 1$ and pick $x \in \Gamma_{4}(d e)$ with $Z_{x} \leq Z_{d} \cap M_{a} \cap Q_{f}$. Then x is adjacent to c and $Z_{x} \leq Q_{c}$. Since $Q_{c} \cap M_{a} \leq Q_{b}$ we get $Z_{x} \leq Q_{b}$. Thus by $8.8, V_{x}(c) \cap V_{b}(c) \neq 0$. In particular, there exists $y \in \Gamma_{1}(b c x)$. Since $Z_{x} \leq Q_{f}, 8.3$ (iii) implies also that $\angle f e x \neq 1344$ and so by $D_{f}(e)$ there exists a path $\stackrel{x}{4}-\stackrel{z}{3}-\stackrel{u}{4}-\stackrel{f}{3}$ in $\Gamma(e)$. Then g is adjacent to u. Put $v=R_{y}(c)$. Since
c is not adjacent to $a, 2.6$ applied to $\Gamma(b)$ implies that v is adjacent to a. Clearly v is also adjacent to x. By $D_{z}(x)$ there exists a path $\stackrel{v}{2}-\stackrel{w}{3}-\stackrel{t}{1}-\stackrel{z}{3}$ in $\Gamma(x)$. Then u is adjacent to t and g. Pick $s \in \Gamma_{4}(a v w)$. Then s is adjacent to t and we found a path $\stackrel{a}{1}-\stackrel{s}{4}-\stackrel{t}{1}-\stackrel{u}{4}-\stackrel{g}{1}$. Since $g \notin \bigcup_{i=0}^{5} X_{i}(a)$ this must be an nd-path, a contradiction to 8.19.

Hence $Z_{d} \cap M_{a} \cap Q_{f}=1$. If $\angle \operatorname{def} \neq 2688$, then $D_{f}(e)$ and 8.3 (iii) imply $\left|Z_{d} \cap Q_{f}\right| \geq 4$. By 8.9, $\left|Z_{d} \cap M_{a}\right|=4$. Since $\left|Z_{d}\right|=8$, the latter means that $Z_{d} \cap Q_{f} \cap M_{a} \neq 1$. So $\angle \operatorname{def}=$ 2688, $\left|Z_{d} \cap Q_{f}\right|=2$ and by $8.9, M_{a e} Q_{e}=N_{M_{d e}}\left(Z_{d} \cap M_{a}\right)$. Put $X=C_{M_{d e}}\left(Z_{d}\right)$. Then by 3.5 $M_{d e f} X=N_{M_{d e}}\left(Z_{d} \cap Q_{f}\right)$ and $M_{d e f} / Q_{e} \cong \operatorname{Sym}(4)$. It follows that $M_{d e f}$ acts transitively on $\left\{A \leq Z_{d}| | A \mid=4, A \cap Q_{f}=1\right\}$. Moreover, $N_{M_{\text {def }}}(A) / Q_{e} \cong \operatorname{Sym}(3)$ for any such A. Thus both $N_{M_{d e}}\left(Z_{d} \cap M_{a}\right)$ and $M_{a e}$ act transitively on $\left\{f \in \Gamma_{3}(e) \mid \angle d e f=2688, Z_{d} \cap M_{a} \cap Q_{f}=1\right\}$ and $M_{a e f} Q_{e} / Q_{e} \cong \operatorname{Sym}(3) \cong M_{a e f} / O_{2}\left(M_{a e f}\right)$. Moreover, $Q_{e}=\left(Z_{d} \cap M_{a}\right)\left(Q_{e} \cap Q_{f}\right)$ and so $Z_{d} \cap M_{a}$ acts transitively on $\Gamma_{1}(f) \backslash\{e\}$. Thus our nd-path from a to g is unique up to conjugacy and $M_{q} Q_{e} / Q_{e} \cong \operatorname{Sym}(3) \cong M_{q} / O_{2}\left(M_{q}\right)$. Finally, $\left|M_{a b c d e f g}\right|=\left|M_{a e}\right| /\left(\frac{4}{7} \cdot 2688 \cdot 4\right)=24$ and the lemma is proved.

Let $X_{6}(a)=g^{M_{a}}$, where g is as in 8.21 or equally well as in 8.22 .

Lemma 8.23 (i) Let $g \in X_{6}(a)$. Then $\left|M_{a g}\right|=2^{3} \cdot 3 \cdot 11 \cdot 23, M_{a g}$ has two orbits on $\Gamma_{2}(g)$ and acts transitively on $\left\{\left\{\rho, \rho^{Q_{g}}\right\} \mid \rho \in \Gamma_{2}(g)\right\}$.
(ii) $\left|X_{6}(a)\right|=2^{18} \cdot 3^{2} \cdot 5 \cdot 7=82,575,360$.

Proof. Let (a, b, c, d, e, f, g) and p be as in 8.21. Then by 8.21 and $8.22,\left|M_{a d g}\right|=24=\left|M_{p}\right|$, $M_{a d g} / Z_{d} \cong \operatorname{Sym}(3) \times C_{2},\left|M_{p d}\right|=8, C_{M_{a g}}\left(Z_{d}\right)=M_{a d g}, M_{p} / O_{2}\left(M_{p}\right) \cong \operatorname{Sym}(3)$ and $M_{a g} \cap Q_{g}=1$. Put $A=M_{p} \cap Q_{\alpha}$, then by 8.21, $Z_{d} \leq A$. Hence A is a nontrivial normal 2-subgroup of M_{p} and $C_{M_{p}}(A) \leq M_{p d}$ is a 2-group. Since $\left|O_{2}\left(M_{p}\right)\right|=4$ we get that A is elementary abelian of order 4 and that $M_{p} \cong \operatorname{Sym}(4)$. Thus $M_{d p}$ is a dihedral group of order 8 and so $N_{M_{a g}}\left(M_{d p}\right) \leq$ $C_{M_{a g}}\left(Z_{d}\right)$. In particular, $M_{p d}$ is a Sylow 2-subgroup of $M_{a g}$. Moreover, there exists t in M with $(a, b, c, d, e, f, g)^{t}=(g, f, e, d, c, b, a)$. Notice that $t \in M_{d}$ and so t normalizes $M_{a d g}$. Thus we may assume that $M_{d p}^{t}=M_{d p}$.

We claim that $A \cap A^{t}=Z_{d}$. Clearly $Z_{d} \leq A \cap A^{t}$. By 8.21α is adjacent to d and since $t \in M_{d}$, also α^{t} is adjacent to d. Since $d(a, g)>2, \alpha \neq \alpha^{t}$. We claim that $Q_{\alpha} \cap Q_{\alpha}^{t} \leq Q_{d}$. Indeed if $\Gamma_{3}\left(\alpha d \alpha^{t}\right)=\emptyset$, i.e. if $\angle \alpha d \alpha^{t}=16$, then $Q_{\alpha} \cap Q_{\alpha}^{t} \leq O_{2}\left(M_{\alpha d \alpha^{t}}\right) \leq Q_{d}$, and if $\delta \in \Gamma_{3}\left(\alpha d \alpha^{t}\right) 8.6$ implies $Q_{\alpha} \cap Q_{\alpha}^{t}=Z_{\delta} \leq Q_{d}$. By 8.21, $Q_{d} \cap M_{a g}=Z_{d}$ and so $A \cap A^{t} \leq M_{a g} \cap Q_{\alpha} \cap Q_{\alpha}^{t} \leq M_{a g} \cap Q_{d} \leq Z_{d}$.

In particular, $A \neq A^{t}$. Put $E=O_{2}\left(M_{a d g}\right)$. Since $M_{a d g} / Z_{d} \cong \operatorname{Sym}(3) \times C_{2},|E|=4$. Moreover, t normalizes E and so $A \neq E \neq A^{t}, E \cong C_{4}$ and $M_{a d g}$ is a dihedral group of order 24. Let $D=O_{3}\left(M_{a d g}\right)$ and note that $E D=C_{M_{a g}}\left(Z_{d} D\right)$. Since D centralizes $Z_{d}, 3.1$ implies $C_{M_{g} / Q_{g}}(D) \cong$ $C_{3} \times L_{3}(2)$. Now a subgroup of $L_{3}(2)$ with a centralizer of an involution a cyclic group of order four clearly is a cyclic group of order four and so $C_{M_{a g}}(D)=D E$. In particular, D is a Sylow 3-subgroup of $M_{a g}$. Note that all involutions in $M_{p d}$ are contained in $A \cup A^{t}$ and so conjugate into Z_{d} under M_{p} and M_{p}^{t}, respectively. Thus $M_{a g}$ has a unique class of involutions. Let z be any involution in $M_{a g}$ and put $C(z)=M_{a d g} \cap C_{M_{a g}}(z)$. If 3 divides $|C(z)|, z \in C_{M_{a g}}(D)=D E$ and $z \in Z_{d}$. Hence exactly one of the following holds: $z \in M_{a d g},|C(z)|=2$ or $C(z)=1$. Moreover, if $C(z)=\langle y\rangle$ for one of the twelve involutions $y \in M_{a d g} \backslash Z_{d}$, then z is one of the ten involutions in $C_{M_{a g}}(y) \backslash M_{a d g}$. Thus, if r is the number of involutions in $M_{a g}$, i.e. $r=\left|M_{a g} / M_{a d g}\right|$, then $r=13+12 \cdot 10+24 s=133+24 s$ for some non-negative integer s. On the other hand, since $\left|M_{g} / Q_{g}\right|=2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 23, r$ divides $5 \cdot 7 \cdot 11 \cdot 23$ and we conclude that $r=11 \cdot 23$ or $r=5 \cdot 7 \cdot 23$. The latter case is impossible by Burnside's p-complement theorem for $p=23$ and so $r=11 \cdot 23$.

Hence $\left|M_{a g}\right|=2^{3} \cdot 3 \cdot 11 \cdot 23$. In particular $M_{a d g}$ and M_{p} are maximal $\{2,3,5,7\}$-subgroups of $M_{a g}$. Since both $M_{f g}$ and $M_{\beta g}$ are $\{2,3,5,7\}$-groups we conclude that $M_{a f g}=M_{a d g}$ and $M_{a \beta g}=M_{p}$.

Since $\left|\Gamma_{2}(\alpha \beta g)\right|=3$ we can choose $x \in \Gamma_{2}(\alpha \beta g)$ with $M_{d p} \leq M_{x}$. Since the non-trivial elements of odd order in $M_{a g}$ act fixed-point freely on $\Gamma_{2}(g)$ we conclude that $M_{a g x}=M_{d p}=M_{a g y}=M_{a g\{x, y\}}$, where $y=R_{g}(x)$. In particular, $\left|M_{a g} / M_{a g x}\right|=759$ and the lemma is proved.

We remark that using the list of maximal subgroups of Mat_{24} or the classification of groups with dihedral Sylow 2-subgroups it is not difficult to see that $M_{a g}$ for $g \in X_{6}(a)$ is isomorphic to $L_{2}(23)$. But we will not need this fact.

Lemma 8.24 Let $g \in \Gamma_{1}$ with $d(g, a)=3$. Then $g \in X_{5}(a) \cup X_{6}(a)$.
Proof. Pick $e \in \Gamma_{1}$ with $d(e, a)=2$ and $e \sim g$. If $e \in X_{2}(a)$, then $g \in X_{5}(a)$ by 8.18 (iii). If $e \in X_{3}(a)$ then $g \in X_{5}(a) \cup X_{6}(a)$ by 8.22.

So we may assume that $e \in X_{4}(a)$. In particular, by 8.13 there exists an nd-path ${ }_{1}^{a}-{ }_{4}^{b}-{ }_{3}^{c}-{ }_{4}^{d}$ $-\stackrel{e}{1}-\stackrel{f}{3}-\frac{g}{1}$ with $\angle a b c=96=\angle e d c$. By $D_{d}(e)$ there exists a path $\stackrel{d}{4}-{ }_{2}^{h}-\stackrel{i}{3}-\stackrel{j}{2}-\stackrel{f}{3}$ in $\Gamma(e)$. Note that $\angle c d e=32$ and so by 4.7 there exists $k \in \Gamma_{3}(d e h)$ with $\angle c d k=40$. Thus by $D_{c}(d)$ there exists $l \in \Gamma_{1}(c d k)$. Then l is adjacent to b by 8.5. By $D_{a}(b)$ and $\angle a b c=96$ there exists $m \in \Gamma_{3}(a b l)$ and so $a \sim l$. Considering the path $\stackrel{k}{3}-\frac{h}{2}-\stackrel{i}{3}-{ }_{2}^{j}-\frac{f}{3}$ in $\Gamma(e)$ we see in $D_{k}(e)$ that $\angle k e f \neq 2688$. Thus by 8.13 applied to $(g, f, e, k, l), l \in X_{r}(g)$ for some $0 \leq r \leq 3$. Thus, by the first paragraph of the proof (applied to (g, l, a)) in place of $(a, e, g), a \in X_{5}(g) \cup X_{6}(g)$ and the lemma is established.

Lemma 8.25 Let $z \in \Gamma_{1}$. Then $d(a, z) \leq 3$. In particular, $\Gamma_{1}=\bigcup_{i=0}^{6} X_{i}(a)$.
Proof. Suppose not. Since $\left(\Gamma_{1}, \sim\right)$ is connected, there exists $z \in \Gamma_{1}$ with $d(a, z)=4$.
We claim that there does not exist an nd-path ${ }_{1}^{a}-\stackrel{b}{4}-\stackrel{c}{1}-\stackrel{d}{3}-\frac{e}{1}-\frac{f}{3}-\frac{z}{1}$. If such a path exists then $d(a, e)=3$ and $d(c, z)=2$. By 8.15 and 8.13 this means that $\angle a b c=16, \angle b c d=2880$ and $c \in X_{2}(z) \cup X_{3}(z) \cup X_{4}(z)$.

Suppose first that $c \in X_{2}(z)$. Then there exists $\rho \in \Gamma_{4}(c z)$ and we found an nd-path $\stackrel{a}{1}-4-1$ $-\stackrel{\rho}{4}-\stackrel{z}{1}$. Hence by $8.19, d(a, z) \leq 3$, a contradiction.

Suppose next that $c \in X_{3}(z)$ and choose an nd-path $\stackrel{c}{1}-\stackrel{g}{3}-\stackrel{h}{2}-\stackrel{i}{3}-\frac{z}{1}$ with $V_{g}(h) \cap V_{i}(h)=0$. By $D_{b}(c)$ there exists $j \in \Gamma_{2}(c g)$ with $\angle b c j \neq 384$. Replacing j by $R_{c}(j)$ if necessary, we may assume that $j=R_{k}(h)$ for some $k \in \Gamma_{1}(g h)$. (Indeed, we may assume $\Omega_{c}(g)=1, \Omega_{h}(g)=\{1,2\}$ and $\Omega_{j}(g)=\{2,3\}$ or $\{4,5\}$. Replacing j by $R_{c}(j)$ in the first case we may assume that the second case holds and so $k \in \Gamma_{1}(g)$ with $\Omega_{k}(g)=3$ does the trick.) Pick $l \in \Gamma_{4}(k h i)$. Then l is adjacent to j and z. Since $c \in X_{3}(z), \Gamma_{4}(c z)=\emptyset$ thus l is not adjacent to c. Let $\Lambda=\left\{V_{x}(j) / V_{c}(j) \mid x \in\right.$ $\left.\Gamma_{3}(c j), V_{x}(j) \leq V_{c}(j)+V_{l}(j)\right\}$ and $\Theta=\left\{V_{x}(j) / V_{c}(j) \mid x \in \Gamma_{3}(c j), \angle b c x \neq 2880\right\}$. Then Λ is the set 1 -spaces in a 3 -subspace of $V(j) / V_{c}(j)$. Moreover, since $\angle b c j \neq 384$ we get from $D_{b}(c)$, that Θ is the set of 1 -spaces in a 3 - or 4 -subspace of $V(j) / V_{c}(j)$. Thus $|\Theta \cap \Lambda| \geq 3$ and there exists $m \in \Gamma_{3}(c j)$ with $m \neq g, \angle b c m \neq 2880$ and $V_{m}(j) \leq V_{c}(j)+V_{l}(j)$. In particular, $V_{m}(j) \cap V_{l}(j)=V_{n}(j)$ for some $n \in \Gamma_{1}(m j l)$. If $n=k, V_{g}(j)=V_{k}(j)+V_{c}(j)=V_{m}(j)$, a contradiction to $m \neq g$. Thus $n \neq k$ and there exists a unique $o \in \Gamma_{3}(k j n)$. Since $V_{o}(j)=V_{k}(j)+V_{n}(j) \leq V_{l}(j)$, o is adjacent to l. Since $h=R_{k}(j), o$ and i are both adjacent to l and h. Hence there exists $p \in \Gamma_{1}(i h o l)$. Put $q=R_{p}(h)$. Since n is adjacent to j and o, n is not adjacent to $h=R_{k}(j)$ by 2.6 applied to $\Gamma(o)$. Since also $p \in \Gamma(o), n$ is adjacent to $q=R_{p}(h)$. Similarly, since z is not adjacent to h, we see in $\Gamma(i)$ that z is
adjacent to q. Hence there exists $r \in \Gamma_{3}(n q z)$ and we found an nd-path $\stackrel{a}{1}-\stackrel{b}{4}-\stackrel{c}{1}-\stackrel{m}{3}-\stackrel{n}{1}-\stackrel{r}{3}-\stackrel{z}{1}$ with $\angle b c m \neq 2880$, a contradiction to the second paragraph of the proof.

Suppose finally that $c \in X_{4}(z)$ and choose an nd-path $\stackrel{c}{1}-\stackrel{g}{4}-\stackrel{h}{3}-\stackrel{i}{4}_{4}^{-}-\stackrel{z}{1}$ with $\angle c g h=96=\angle z i h$. Regard $\Gamma_{3}(c g)$ as 1-spaces and $\Gamma_{2}(c g)$ as the isotropic 2-spaces of a four dimensional symplectic space S over $G F(2)$. With the help of $D_{b}(c)$ we will show that there exists $y \in \Gamma_{2}(c g)$ such that $\angle b c m \neq 2880$ for all $m \in \Gamma_{3}(c g y)$. Indeed, if $\angle b c g \neq 1440$ choose y such that y is adjacent to b. If $\angle b c g=1440$, there exists $u \in \Gamma_{2}(c g)$ such that $v \in \Gamma_{3}(c g)$ is perpendicular to u in S if and only if $\angle b c v \neq 2880$. Choose $y=u$ in this case. By 4.7 there exists $m \in \Gamma_{3}(c g y)$ with $\angle g h m=40$. Hence by $D_{h}(g)$ there exists $n \in \Gamma_{1}(m g h)$. Then n is adjacent to h and i and since $\angle z i h=96$, there exists $r \in \Gamma_{3}(h n z)$ and again we found an nd-path $\stackrel{a}{1}-\stackrel{b}{4}-\stackrel{c}{1}-\stackrel{m}{3}-\stackrel{n}{1}-\stackrel{r}{3}-\stackrel{z}{1}$ with $\angle b c m \neq 2880$, a contradiction.

This completes the proof of the claim. Pick $g \in \Gamma_{1}$ with $g \sim z$ and $d(g, a)=3$. By 8.24, $g \in X_{5}(a) \cup X_{6}(a)$. By the claim $g \notin X_{5}(a)$ and so $g \in X_{6}(a)$. Pick an nd-path $\stackrel{e}{1}-\stackrel{f}{3}-\frac{g}{1}-\stackrel{h}{3}-\stackrel{z}{1}$ with $d(e, a)=2$. Let $j \in \Gamma_{2}(g h z)$. Then by 8.23 there exists $t \in M_{a g}$ such that j^{t} is adjacent to f and so $f^{t^{-1}}$ is adjacent to j. Replacing (e, f) by $\left(e^{t^{-1}}, f^{t^{-1}}\right)$ we may assume that f is adjacent to j. Since $V_{g}(j) \leq V_{f}(j) \cap V_{h}(j)$, there exists $k \in \Gamma_{4}(f j h)$. Then k is adjacent to e and z and we get a contradiction to the claim applied with the rôles of a and z interchanged.

Theorem 8.26 Let M be a faithful completion of the J_{4}-triangle of groups $\left(M_{1}, M_{2}, M_{3}\right)$ and let M_{4} be as above. Then
(i) M_{1} has seven orbits on M / M_{1}. The lengths of these orbits are $1 ; 2^{2} \cdot 3 \cdot 5 \cdot 11 \cdot 23=15,180 ; 2^{4} \cdot 7$. $11 \cdot 23=28,336 ; \quad 2^{7} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 23=3,400,320 ; \quad 2^{11} \cdot 3^{2} \cdot 7 \cdot 11 \cdot 23=32,643,072 ; \quad 2^{11} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 23=$ $54,405,120$ and $2^{18} \cdot 3^{2} \cdot 5 \cdot 7=82,575,360$.
(ii) $|M|=2^{21} \cdot 3^{3} \cdot 5 \cdot 11^{3} \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 43=86,775,571,046,077,562,880$.
(iii) M is simple.
(iv) Let $1 \neq z \in Z\left(M_{4}\right)$. Then $C_{M}(z)=M_{4}$.

Proof. (i) follows from $8.25,8.6,8.14,8.18$ and 8.23 and (ii) follows from (i).
(iii) Let N be a normal subgroup of M. If $N \cap M_{i} \neq 1$ for some $1 \leq i \leq 3$ we conclude that $Z_{4} \leq Z_{i} \leq N$ (notice that $Z_{1}=Q_{1}$ and $Z_{2}=Q_{2}$). Hence $Q_{2}=\left\langle Z_{4}^{M_{2}}\right\rangle \leq \bar{N}, M_{1}=\left\langle Q_{2}^{M_{1}}\right\rangle \leq N$ and for $j=2,3, M_{j}=\left\langle M_{1 j}^{M_{j}}\right\rangle \leq N$. Thus $M=N$. So suppose that $M_{i} \cap N=1$ for all i. Let $1 \leq i<j \leq 3$. Then $M_{i j}$ is a maximal subgroup of M_{j} and M_{i} is not isomorphic to an overgroup of $M_{i j}$ in M_{j}. Thus $M_{i} N \cap M_{j} N=M_{i j} N$ and so M / N is a faithful completion of a J_{4}-triangle. By (ii) $|M|=|M / N|$ and so $N=1$.
(iv) Let $t \in C_{M}(z)$ and put $a=M_{1}, b=M_{1} t=a^{t}$ and $c=M_{4}$. Then $z \in Q_{a} \cap Q_{b}$ and so by $8.21,8.18,8.12$ and $8.9, b \in X_{i}(a)$ for some $0 \leq i \leq 2$. It is now easy to check that $\left\{d \in \Gamma_{4}(b) \mid Z_{d} \leq Q_{a} \cap Q_{b}\right\}=\Gamma_{4}(a, b)$. Thus $c, c^{t} \in \Gamma_{4}(a)$ and $Z_{c}=Z_{c}^{t}$ implies $c=c^{t}$ and $t \in M_{4} . \square$

Acknowledgement

The authors are sincerely thankful to Sergey V. Shpectorov and to Corinna Wiedorn who have read very carefully the previous version of the paper and made a number of very helpful suggestions on how to improve the exposition.

References

[1] M. Aschbacher, Sporadic Groups, Cambridge Tracts in Mathematics 104, Cambridge University Press, 1994.
[2] M. Aschbacher and Y. Segev, The uniqueness of groups of type J_{4}. Invent. Math. 105 (1991), 589-607.
[3] D.J. Benson, The simple group J_{4}, Ph.D. Thesis, University of Cambridge, April 1981.
[4] G. Bell, On the cohomology of finite special linear groups I, J. Algebra 54 (1978), 216-238.
[5] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of Finite Groups Clarendon Press, Oxford, 1985.
[6] R. Curtis, On the maximal subgroups of M_{24}, Math. Proc. Cambridge Phil. Soc. 81 (1977), 185-192.
[7] G. Frobenius, Über die Charaktere der mehrfach transitiven Gruppen, Sitzungsberichte der Akademie Berlin (1904), 558-571.
[8] A.A. Ivanov, A presentation for J_{4}, Proc. London Math. Soc. (3) 64 (1992), 369-396.
[9] A.A. Ivanov, Geometry of Sporadic Groups I. Petersen and Tilde Geometries, Cambridge University Press (to appear)
[10] Z. Janko, A new finite simple group of order $86 \cdot 775 \cdot 571 \cdot 046 \cdot 077 \cdot 562 \cdot 880$ which possesses M_{24} and the full covering group of M_{22} as subgroups, J. Algebra 42 (1976), 564-596.
[11] W. Jones and B. Parshall, On the 1-cohomology of finite groups of Lie type, In: Proc. Conf. Finite Groups (W.R. Scott and F. Gross eds.), pp. 313-327, Academic Press, 1976.
[12] W. Lempken, Constructing J_{4} in $G L(1333,11)$, Comm. Algebra 21(12) (1993), 4311-4351.
[13] S. Norton, The construction of J_{4}, In: Proc. Symp. Pure Math. 37 (1980), 271-277.
[14] M. Ronan and S. Smith, Sheaves on buildings and modular representations of Chevalley groups, J. Algebra 96 (1985), 319-346.
[15] M. Ronan and G. Stroth, Minimal parabolic geometries for the sporadic groups, Europ. J. Combin. 5 (1984), 59-91.
[16] S.V. Shpectorov, A geometric characterization of the group M_{22}. In: Investigations in Algebraic Theory of Combinatorial Objects pp. 112-123, Moscow, 1985 [Russian, English translation by Kluwer Acad. Publ. 1994]

Department of Mathematics
Imperial College
London SW7 2BZ, UK
a.ivanov@ic.ac.uk

Department of Mathematics
Michigan State University
East Lansing, Michigan 48824
meier@math.msu.edu

