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Abstract

Define a finite simple group J to be of J4-type (or simply J4) provided that J contains an
involution z with

CJ(z) ∼ 21+12
+ 3Aut Mat22.

The purpose of this paper is to give the first computer free construction of a group of J4-
type. In addition we achieve yet another uniqueness proof for groups of J4-type via the simple
connectedness of the 2-local geometry of such a group.

1 Introduction

Initial evidence for the existence of groups of J4-type was given by Z. Janko in [10]. He has shown
that the order o(J4) of such a group is

86, 775, 571, 046, 077, 562, 880 = 221 · 33 · 5 · 7 · 113 · 23 · 29 · 31 · 37 · 43,

determined its conjugacy classes and much of the p-local structure. J. Conway, S. Norton, J. Thomp-
son and D. Hunt used this information to determine the character table of J4 and, in particular,
proved the existence of an irreducible (irrational) complex character of degree 1333. Looking at
the 2-modular reduction of this character J. Thompson conjectured the existence of an irreducible
112-dimensional representation of J4 over GF (2). Based on this conjecture S. Norton with the help
of D. Benson, J. Conway, R. Parker and J. Thackray constructed J4 as a subgroup of GL112(2).
Their construction is outlined in [13], discussed in more detail in [3] and depends on the use of a
computer. In [12], W. Lempken gave explicit generators for J4 as a subgroup of GL1333(11). The
proof that the group generated is in fact J4 relies on its existence.

Definition 1.1 Let I be a set of size n. A (finite) amalgam of rank n ( over I) is a tuple (A;Mi, i ∈
I; ∗i, i ∈ I) where A is a finite set, Mi is subset of A and ∗i is binary operation defined on Mi so
that the following conditions hold:

(i) (Mi, ∗i) is a group for every i ∈ I;

(ii) A = ∪i∈IMi;

(iii) ∩i∈IMi 6=Ø;

(iv) if x, y ∈Mi ∩Mj for i, j ∈ I then x ∗i y = x ∗j y.

We will write (Mi | i ∈ I) for the amalgam A as above (since A = ∪i∈IMi, there is no need
to refer to A explicitly). Whenever x and y are in the same Mi there product x ∗i y is defined
and it is independent of the choice of i. We will normally write this product simply by xy. Since
B := ∩i∈IMi is non-empty, one can easily see that B contains the identity element of (Mi, ∗i) for
every i ∈ I. Moreover, these identity elements must be equal. The reader may notice that a more
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common definition of amalgams in terms of morphisms is essentially equivalent to the above one.
For J ⊆ I we put MJ = ∩i∈JMi. We will write, for instance Mijk instead of M{i,j,k} and consider
Mij as a subgroup in Mi and Mji as a subgroup of Mj . An amalgam of rank 3 will also be called
a triangle of groups. The isomorphism of amalgams is defined in the obvious way. Let (M, ∗) be
a group, {Mi | i ∈ I} be a family of subgroups in M and ∗i be the restriction of ∗ to Mi. Then
(Mi | i ∈ I) is an amalgam. This is the most important example of amalgam but it is not difficult
to construct an amalgam which is not isomorphic to a family of subgroups in a group.

Definition 1.2 A group M is said to be a completion of an amalgam (Mi | i ∈ I) if there is a
mapping ϕ of ∪i∈IMi into M such that

(i) M is generated by the image of ϕ;

(ii) for every i ∈ I the restriction of ϕ to Mi is a group homomorphism with respect to ∗i and the
group operation in M .

If ϕ is injective then the completion M is said to be faithful.

Definition 1.3 A triangle (M1,M2,M3) of groups is called a J4-triangle provided that

(i) M1 is the semidirect product of the Mathieu group Mat24 of degree 24 and the 11-dimensional
Todd module;

(ii) M2 is the semidirect product of L5(2) and the exterior square of a natural module of L5(2);

(iii) |O2(M3)| = 215 and M3/O2(M3) ∼= Sym(5)× L3(2);

(iv) |M2/M21| = 31, |M3/M31| = 5, |M3/M32| = 10 and |M23/B| = 3.

It was shown in [10] (cf. Theorem A (4), (6), (9)) that every group of J4-type is a faithful
completion of a J4-triangle of groups. This and the existence of the complex character of degree
1333 serve as motivation for our construction of J4. The principal steps are as follows:

Step 1: Show that there exists a J4-triangle of groups.

Step 2: Show that GL1333(C) contains a faithful completion of a J4-triangle of groups.

Step 3: Show that any faithful completion of a J4-triangle of groups is a group of J4-type.

Steps 1 and 2 are realized in Lemma 5.9 and Theorem 7.1, respectively. Step 3 was done in
[2] (as the main step in the uniqueness proof for J4) and independently in [8]. Both these proofs
were achieved by establishing the simple connectedness of the 2-local geometry of J4; hence rely on
the existence of J4 and do not suit our purposes. In order to establish the existence of J4 we need
to carry out Step 3 without assuming that J4 exists. In this form Step 3 is realized in Section 8
(cf. Theorem 8.26) and the proof is necessarily more complicated than the proofs in [2] and [8]. In
particular our proof uses extremely detailed information about the 2-local geometries of Mat24 and
Mat22.

Although we do not need the uniqueness of J4 to establish its existence, we include a uniqueness
proof since it can be achieved with only little extra effort. Namely, we prove in Lemma 5.7 that any
two J4-triangles are isomorphic and within the realization of Step 3 (cf. Theorem 8.26) we show
that every faithful completion of a J4-triangle is finite and that its order is equal to o(J4). Since
every completion of an amalgam is a quotient of the universal completion, this immediately implies
that the unique J4-triangle of groups has a unique faithful completion, namely the universal one.
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2 Preliminaries

Our notation concerning groups is mostly standard. The symmetric, alternating and Mathieu group
of degree n are denoted by Sym(n), Alt(n) and Matn, respectively. By writing G ∼ A1A2...An we
mean that G has a normal series

1 �G1 � ...�Gn = G

such that Gi/Gi−1 ∼= Ai. We write pa for a p-group of order pa; pa1+a2+...+an for pa1pa2 ...pan and
21+2n
ε for the extraspecial group of order 21+2n and of type ε ∈ {+,−}. Throughout the paper

3 ·Alt(6) denotes the non-split extension of Alt(6) by a centre of order 3 and 3 · Sym(6) stands for
the extension of 3 · Alt(6) by an outer automorphism which induces a transposition on the Alt(6)-
quotient. Given a subgroup H in a group G we denote by G/H the set of right cosets of H in
G.

Definition 2.1 Let G be a group, K �G, Ḡ = G/K and V a GF (2)G-module of dimension n with
kernel K. Then

(i) if Ḡ ∼= Ln(2) then V is called a natural Ln(2)-module for G;

(ii) if Ḡ ∼= Ωn(2) and G fixes a non-degenerate quadratic form of plus type on V then V is called
a natural Ω+

n (2)-module for G;

(iii) if Ḡ ∼= Sym(5), n = 4 and G′ preserves a GF (4)-structure on V , then V is called a natural
ΓL2(4)-module for G;

(iv) if Ḡ′ ∼= 3 ·Alt(6) and n = 6, then V is called a hexacode module for G.

The module dual to V will be denoted by V ∗.

Notation 2.2 Let (Mi | i ∈ I) be an amalgam. Then for i, j ∈ I we put Qi = O2(Mi), Q∗i =
O2,3(Mi), Zi = Z(Qi) and Tij = O2(Mij).

Definition 2.3 Let I be a set of size n and let Γ be an undirected n-partite graph without loops,
whose parts are Γi, i ∈ I. This means that if a ∈ Γi is adjacent to b ∈ Γj then i 6= j. Let d the usual
distance function on Γ. Then

(i) if a ∈ Γi, then a is said to be of type i;

(ii) a path of type n1 − n2 − . . . − nk is a tuple (a1, a2, . . . , ak) of vertices in Γ such that ai is of
type ni and ai is adjacent to ai+1; we denote such a path by

a1
n1 −

a2
n2 − . . .−

ak
nk;

(iii) a non-degenerate path (or nd-path) is a path (a1, a2, . . . , ak) such that ai−1 is neither equal
nor adjacent to ai+1;

(iv) let Λ ⊆ Γ and a1, a2, . . . , an ∈ Γ, then

Λ(a1a2 . . . an) = {b ∈ Λ | b is adjacent to ai for all 1 ≤ i ≤ n}.

Definition 2.4 Let M be a group and (Mi | i ∈ I) a tuple of subgroups of M.
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(i) The coset graph Γ = Γ(M ;Mi | i ∈ I) is the graph with vertex set the disjoint union of the sets
Γi = M/Mi, i ∈ I and where two vertices are adjacent if they are distinct and have non-empty
intersection. Note that the Γi are parts of Γ and that M acts on Γ by right multiplication.

(ii) A flag in Γ is a set of pairwise adjacent vertices. The type of a flag is the set of types of its
elements.

(iii) Let a ∈ Γ. Then Γ(a) is the graph whose vertices are the neighbours of a in Γ and two vertices
are adjacent in Γ(a) if and only if they are adjacent in Γ.

(iv) Let a ∈ Γ. Then the graph Γ∗(a) on the neighbours of a in Γ is defined as follows. Assume
without loss that a = Mi. Let b, c be adjacent to a, where b = Mjr and c = Mks with r, s ∈Mi.
Then b is adjacent to c in Γ∗(a) if and only if j 6= k and Mijr ∩Miks 6=Ø.

(v) Γ is called geometric if for all a ∈ Γ the graphs Γ(a) and Γ∗(a) are equal.

(vi) If a, b, c, ... are vertices of Γ, then Mabc... denotes their elementwise stabilizer in M . If a ∈ Γ
then Qa = O2(Ma), Q∗a = O2,3(Ma) and Za = Z(Qa).

(vii) Let a, b, c ∈ Γ. Then 6 abc = |cMab |.

We remark that if b, c are adjacent in Γ∗(a) then they are also adjacent in Γ(a). Furthermore,
Γ∗(Mi) is isomorphic to Γ(Mi;Mij | j ∈ I \ {i}).

Lemma 2.5 Let Γ be as in 2.4.

(i) Let {ai, aj , ak} be a flag in Γ where al is of type l. Then the following statements are equivalent:

(a) ax and ay are adjacent in Γ∗(az) for every z ∈ {i, j, k} with {x, y, z} = {i, j, k};
(b) ax and ay are adjacent in Γ∗(az) for some z ∈ {i, j, k} with {x, y, z} = {i, j, k};
(c) ai ∩ aj ∩ ak 6=Ø;

(d) (ai, aj , ak) is conjugate to (Mi,Mj ,Mk).

(ii) Γ is geometric if and only if M acts transitively on each set of flags of size three of a given
type, that is if and only if all flags {ai, aj , ak} in Γ fulfill the equivalent conditions in (i).

Proof. (i) Clearly (a) implies (b). To show that (b) implies (c) we assume without loss that
ak = Mk, ai = Mir and aj = Mjs for some r, s ∈ Mk. Since ai and aj are adjacent in Γ∗(ak),
Ø 6= Mijr∩Mjks ⊆Mi ∩Mjr∩Mks = ai ∩ aj ∩ ak and so (c) holds. Clearly (c) implies (d), and (d)
implies (a).

(ii) By the remark preceding this lemma, Γ is geometric if and only if (a) holds. 2

Throughout the paper we will refer to the following easy principle concerning a set of size five.

Lemma 2.6 Let Γ1 be a 5-element set and Γ2 be the set of 2-element subsets in Γ1. Let Γ be the
bipartite graph on Γ1 ∪ Γ2 where a ∈ Γ1 is adjacent to b ∈ Γ2 if and only if a is not contained in b.
Suppose that a ∈ Γ1 and b ∈ Γ2 are adjacent. Put Ra(b) = Γ1 \ (b ∪ {a}). Then every c ∈ Γ1 \ {a}
is adjacent to exactly one of b and Ra(b).
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Proof. This is clear since b,Ra(b) is a partition of Γ1 \ {a}. 2

The next lemma contains some information on cohomologies of some small modules.

Lemma 2.7 (i) Let E ∼= L4(2) and V be a natural Ω+
6 (2)-module for E. Then |H1(V )| = 2,

H2(V ) = 0.

(ii) Let E ∼= L4(2) and V be a natural L4(2)-module for E. Then H1(V ) = 0.

(iii) Let E ∼= L3(2) and V be a natural L3(2)-module for E. Then |H1(V )| = 2.

Proof. [4] and [11]. 2

The following lemma describes the actions of various subgroups of L5(2) on the vectors of the
exterior square of a natural L5(2)-module.

Lemma 2.8 Let V be a 5-dimensional GF (2)-space and M = GL(V ), so that M ∼= L5(2). Let
V1 < V3 < V where dim V1 = 1, dim V3 = 2. Let Mi = NM (Vi), i = 1 and 3, B = M1 ∩M3 and as
usual let V ∗ denote the dual of V . Then

(i) M has precisely two orbits H(2) and H(s) on the set of hyperplanes in
∧2

V ∗; the hyperplanes
in H(2) are indexed by the 2-spaces of V and the hyperplanes in H(s) are indexed by the pairs
(W, s), where W is a hyperplane in V and s is a non-degenerate symplectic form on W ;

(ii) if H ∈ H(s) then NM (H) ∼ 24Sym(6);

(iii) the orbits of M1; M3; B on H(s) are of lengths 420 and 448; 84, 112 and 672; 84, 112, 224
and 448, respectively;

(iv) let H be a hyperplane from the orbit of length 84 of B on H(s); if N,N1, N3, and N0 are the
normalizers of H in M , M1, M3 and B, respectively, then

N = N ′N0 and N ′ ∩N0 = (N ′1 ∩N0)(N ′3 ∩N0);

(v) the orbits of M3 on H(2) are of lengths 1, 42 and 112; the action of B on the M3-orbit of
length 42 is intransitive.

Proof. (i) By the definition of the exterior square
∧2

V ∗, its hyperplanes are in one-to-one
correspondence with the non-zero symplectic forms on V ∗. Hence (i) follows from the following well
known facts: (a) any two non-degenerate symplectic forms on a finite dimensional vector space are
isomorphic, (b) any vector space with a non-degenerate symplectic form is even dimensional and (c)
there is exactly one non-degenerate symplectic form on a vector space with 4 elements.

(ii) Let W be a hyperplane in V , s a non-degenerate symplectic form on W and R = NM (W, s).
Then clearly CR(W ) = CM (W ) is elementary abelian of order 24 andR/CR(W ) ∼= Sp4(2) ∼= Sym(6).

(iii) Note that R acts transitively on the set of 1-spaces in W and CR(W ) acts regularly on
the set of 1-spaces in V \W . Thus R ∩M1 ∼ 24(C2 × Sym(4)) if V1 ≤ W and R ∩M1 ∼= Sym(6)
otherwise. Moreover, R has three orbits on the set of 2-spaces in V , distinguished by V3 ≤W and V3
is singular with respect to s; V3 ≤W and V3 is non-degenerate with respect to s; and V3 6≤W . The
corresponding shapes of R ∩M3 are 24(C2 × Sym(4)), 24(Sym(3)× Sym(3)) and 2(C2 × Sym(4)).
Finally R has four orbits on the set of pairs of incident 1- and 2-spaces corresponding to the following
four cases: V3 ≤W and V3 is singular with respect to s; V3 ≤W and is non-degenerate with respect
to s; V1 ≤ W and V3 6≤ W ; and V1 6≤ W . The corresponding shapes of R ∩ B are 24(C2 × D8),
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24(C2 × Sym(3)), 2(C2 × Sym(4)) and C2 × Sym(4). Thus we have described the orbits of R on
1- and 2-spaces in V and also on the incident pairs of such subspaces. This immediately gives us
all the orbits of M1, M3 and B on H(s) and the corresponding stabilizers. That the lengths of the
orbits are as given in (iii) is now a trivial computation.

(iv) Let H correspond to (W, s). Then V3 ≤W and V3 is singular with respect to s. Notice that
CN (W ) ∼= W as N -module and in particular, CN (W ) = [CN (W ), N3] ≤ N ′3 ≤ N ′. Thus (iv) holds
if and only if it holds modulo CN (W ). But Ni/CN (W ) ∼= C2 × Sym(4) for i = 1, 3 and N0/CN (W )
is a Sylow 2-subgroup of N/O2(N) ∼= Sym(6). Now (iv) is readily verified.

(v) There is one 2-space equal to V3, 42 = 3 · 14 2-spaces intersecting V3 in a 1-space and
112 = 7 · 16 2-spaces which intersect V3 trivially. Since some 2-spaces in the orbit of length 42
contain V1 while others do not, B does not act transitively on the M3-orbit of length 42. 2

3 Mat24

We assume that the reader is familiar with the basic properties of the unique Steiner system S of
type (5,8,24) (see for instance [1] or [9]). Let Ω be the set of size 24 underlying S and let Γ2 denote
the block set of S. This means that Γ2 is a collection of 8-element subsets of Ω called octads such
that every 5-element subset of Ω is in a unique octad. In particular |Γ2| = (24

5 )/(8
5) = 759. A triple

of pairwise disjoint octads is called a trio. Every 4-element subset T of Ω is contained in a unique
sextet, which is a partition of Ω into six 4-element subsets T1 = T, T2, ..., T6 called tetrads such that
Ti ∪ Tj ∈ Γ2 for all 1 ≤ i < j ≤ 6.

Let Γ3 denote the set of trios, let Γ4 denote the set of sextets and let Γ = Γ2 ∪Γ3 ∪Γ4. Define a
graph on Γ as follows: a trio is adjacent to an octad if it contains the octad; a sextet is adjacent to
an octad if the octad is the union of two of the tetrads in the sextet; and a sextet is adjacent to a
trio if it is adjacent to all of the three octads in the trio.

Throughout this section M will stand for the automorphism group of S which is the Mathieu
group Mat24 of degree 24. Let α, β and γ be pairwise adjacent octad, trio and sextet respectively, i.e.
a maximal flag in Γ. If γ = {T1, T2, ..., T6} we can put α = T1∪T2 and β = {T1∪T2, T3∪T4, T5∪T6}.
Let M2 = Mα, M3 = Mβ and M4 = Mγ (the stabilizers in M of α, β and γ, respectively). Then
(M2,M3,M4) is a triangle of groups and M is a faithful completion of this triangle. Since M is flag
transitive on Γ, Γ ∼= Γ(M ;M2,M3,M4). We have chosen the index set {2, 3, 4} rather then {1, 2, 3}
since M2,M3,M4 will correspond to M12,M13 and M14 in later sections.

We will need the following information on classes of elements in M of order 2 and 3 which can
be deduced either from Section 21 in [1] together with the permutational characters of M on Γ2, Γ3
and Γ4 given in [5] or from Sections 2.12 - 2.14 in [9].

Lemma 3.1 (i) M has two classes, 2a and 2b of involutions and two classes, 3a and 3b of ele-
ments of order 3.

(ii) If t ∈ 2a then t is 2-central, CM (t) ∼ 21+6
+ L3(2), t fixes: 8 elements of Ω forming an octad, 71

octads, 99 trios and 91 sextets.

(iii) If s ∈ 2b then s is non-2-central, CM (s) ∼ 21+1+4Sym(5), CM (s) fixes a unique sextet, s fixes:
15 octads, 75 trios and 51 sextets.

(iv) If x ∈ 3a then CM (x) ∼= 3 · Alt(6), x does not commute with a 2b-involution and fixes: 21
octads, 15 trios and 16 sextets.
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(v) If y ∈ 3b then CM (y) ∼= C3 × L3(2), y commutes with a 2b-involution, acts fixed-points freely
on the set of octads and fixes 15 trios and 7 sextets. 2

The basic properties of the triangle (M2,M3,M4) and of its completion M are given in the
following lemma (cf. Section 19 in [1] or Section 2.10 in [9]).

Lemma 3.2 (i) |M/M2| = |Γ2| = 759, M2 ∼ 24L4(2) and Q2 is a natural L4(2)-module for M2,
Q2 is 2a-pure, M2 acts as Alt(8) ∼= L4(2) on the elements in α and as the doubly transitive
affine group AGL4(2) on the elements outside α, in particular M2 splits over Q2.

(ii) |M/M3| = |Γ3| = 3795; M3 ∼ 26(Sym(3) × L3(2)), Q3 ∼= D1 ⊗ D2, where D1 and D2 are
natural L2(2)- and L3(2)-modules for M3, respectively; M3 has two orbits on Q#

3 with lengths
21 and 42, consisting of involutions of type 2a and 2b, respectively and if y ∈ Q∗3 \Q3 then y
is of type 3b and acts fixed-point freely on Q3.

(iii) |M/M4| = |Γ4| = 1771, M4 ∼ 263 · Sym(6), Q4 is a hexacode module for M4, M4 has two
orbits on Q#

4 with lengths 45 and 18, consisting of involutions of type 2a and 2b, respectively,
if x ∈ Q∗4 \ Q4 then x is of type 3a and acts fixed-point freely on Q4, M4 induces Sym(6) on
the tetrads constituting γ and the kernel induces Alt(4) on the elements in each tetrad.

(iv) |M3/M34| = 7, |M3/M23| = 3, |M4/M24| = 15 and |M34/B| = 3.

(v) M24/Q2 ∼ 24(Sym(3)× Sym(3)) and M23/Q2 ∼ 23L3(2).

(vi) M34/Q3 ∼= Sym(3)× Sym(4) and M23/Q3 ∼= Sym(2)× L3(2).

(vii) M24/Q
∗
4
∼= M34/Q

∗
4
∼= Sym(4)× Sym(2).

(viii) |Q2 ∩Q3| = 8, |Q2 ∩Q4| = 4 and |Q3 ∩Q4| = 16. 2

Comparing 3.1 and 3.2 one can observe the following. If t is an involution in Q2, s is an involution
in the orbit of length 18 of M4 on Q#

4 , x is an element of order 3 in Q∗4 and y is an element of order
3 in Q∗3, then

CM (t) = CM2(t), CM (s) = CM4(s), CM (x) = CM4(s), CM (y) = CM3(y).

As a direct corollary of 3.2 we have the following.

Lemma 3.3 (i) M2 acts on Γ3(α) and Γ4(α) of size 15 and 35 as it acts on the 3- and 2-spaces
in Q2, respectively;

(ii) M3 acts on Γ2(β) and Γ4(β) of size 3 and 7 as it acts on the 1-spaces in D1 and on the 2-spaces
in D2, respectively;

(iii) M4 acts on Γ2(γ) and Γ4(γ) of size 15 each as it acts on the 2-element subsets of γ (considered
as the set of six tetrads) and on the partitions of γ into three pairs. 2

Lemma 3.4 Let B = M2 ∩M3 ∩M4 be the stabilizer in M of the flag F = {α, β, γ}. Let S be a
Sylow 2-subgroup of B which is also a Sylow 2-subgroup of M .

(i) α is the unique octad, β is the unique tetrad and γ is the unique sextet stabilized by S.
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(ii) Let H be a maximal subgroups of M containing S. Then H = Mi for i = 2, 3 or 4.

(iii) Let P be any subgroup of M containing S and let z denote the unique non-trivial element in
Z(S). Then one of the following holds:

(a) P is the normalizer of a subflag in F .

(b) |P | = 210 · 32 and P = Q∗3CM3(z).

(c) |P | = 210 · 3 · 7 and P = CM (z).

(d) |P | = 210 · 3 and P = Q∗3S, CM3(z) or CM4(z).

(e) P = S.

Proof. (ii) follows from [6], (i) follows from (ii) while (iii) follows from the structure of M2, M3
and M4 as given in 3.2 (compare [15]). 2

In subsequent sections we will need detailed information about the graph Γ and the action of M
on this graph. For this purpose for every i ∈ {2, 3, 4} we describe the orbits of Mi on the vertex
set of Γ and for any two such orbits A and B we calculate the number ni(A,B) of vertices in B
adjacent in Γ to a given vertex a ∈ A and finally determine how these vertices split into orbits under
the stabilizer of a in Mi. It is clear that ni(A,B) is zero unless A ⊆ Γj , B ⊆ Γk for j 6= k and that
|A| ·ni(A,B) = |B| ·ni(B,A). Finally for i 6= j there is a natural correspondence between the orbits
of Mi on Γj and the orbits of Mj on Γi.

Let Γj(m, i) denote an orbit of length m of Mi on Γj . It turns out that for every i, j ∈ {2, 3, 4}
the orbits of Mi on Γj all have different lengths so the orbit Γj(m, i) is well defined. The information
on the orbits of Mi on Γ is presented in the diagram Di(Mat24). In this diagram the orbit Γj(m, i)
is denoted by mj and the numbers ni(A,B) and ni(B,A) are attached to the edge joining A with
B. When such a number is presented as a sum this indicates that there is more than one orbit of
Mi∩Ma (where a ∈ A) on the vertices in B adjacent to a. Moreover the summands give the lengths
of these orbits. The complete proof of the diagrams (originally given in the early version of the
present work) can be found in Section 3.7 of [9].
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We will need the following refinement of the information given on the diagram D3(Mat24).

Lemma 3.5 Let b ∈ Γ3(2688, 3). Then Mβb ∩Qb = 1 and Mβb
∼= Sym(4).

Proof. |Mβb| = |M3|/2688 = 24 by direct calculation. By D3(Mat24) the subgroup Mβb acts
transitively on Γ2(b) and has two orbits in Γ4(b) with lengths 1 and 6. Since the action of Mβb

on Γ4(b) is a subgroup of L3(2), we conclude that the action is isomorphic either to Sym(4) or to
Alt(4). Let K be the kernel of the action of Mβb on Γ4(b). Then either K = 1 and Mβb

∼= Sym(4) or
|K| = 2 and Mβb/K ∼= Alt(4). Assume the latter. Then K = Z(Mβb) and as Mβb acts transitively
on Γ2(b), K ≤ Qb. By symmetry we get K = Qβ ∩ Qb and so CM (K) contains two elementary
abelian groups of order 26 (namely Qβ and Qb) intersecting in a group of order 2 (namely K). But
this contradicts to the structure of CM (K) given by 3.1 (i) - (iii). 2

Let P be the GF (2)-permutation module of M on Ω, that is the space of all the subsets of Ω
with addition performed by the symmetric difference operator. The octads from Γ2 generate in P a
12-dimensional subspace Y0 known as the Golay code. The Golay code consists of: the empty set,
the set Ω itself, 759 octads, 759 complements of octads and 2576 dodecads. The latter are 12-element
subsets of Ω transitively permuted by M . The stabilizer of a dodecad is the Mathieu group Mat12
of degree 12 and it induces two non-equivalent 5-fold transitive actions on the dodecad and on its
complement, which is also a dodecad. The setwise stabilizer of a pair of complementary dodecads is
isomorphic to Aut Mat12. The empty set together with the whole set Ω constitute the unique proper
M -submodule in Y0. The quotient Y of Y0 over this submodule is called the irreducible Golay code
module (of dimension 11). Let P+ denote the subspace in P of even subsets of Ω. Then Y0 ≤ P+
and X = P+/Y0 is the module dual to Y which is called the irreducible Todd module (of dimension
11). The following information can be found for instance in [1, 19.8].

Lemma 3.6 (i) The orbits of M on the non-zero vectors of Y (on the hyperplanes of X) are of
length 759 and 1288. The vectors in these orbits are indexed by the octads and the complemen-
tary pairs of dodecads, respectively.
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(ii) The orbits of M on the non-zero vectors of X (on the hyperplanes of Y ) are of length 276 and
1771. The vectors in these orbits are indexed by the 2-element subsets of Ω and by the sextets,
respectively. 2

Lemma 3.7 (i) For i = 2, 3 and 4,

1 < CX(Qi) < [X,Qi] < X

is the unique composition series for Mi on X;

(ii) CX(Q2) is isomorphic the exterior square of Q2, [X,Q2]/CX(Q2) is isomorphic to Q2 and
|X/[X,Q2]| = 2.

(iii) Let D1 and D2 be as in 3.2 (ii). Then CX(Q3) is dual to D2, [X,Q3]/CX(Q3) is isomorphic
to D1 ⊗D2 and X/[X,Q3] is isomorphic to D1.

(iv) |CX(Q4)| = 2, [X,Q4]/CX(Q4) is isomorphic to the dual of Q4 and |X/[X,Q4]| = 24.

Proof. The irreducible Todd module is dual to the irreducible Golay code module. Hence the
result can be obtained by dualizing some of the information found in Sections 19 and 20 of [1]. 2

Let D be the set of dodecads and H be the set of complementary pairs of dodecads. Recall that
if N(h) is the stabilizer of h ∈ H in M then N(h) ∼= Aut Mat12 and N(h)′ ∼= Mat12 is the subgroup
of index 2 in N(h) which preserves each of the dodecads constituting h. We are interested in the
orbits on H of M2, M3 and M23.

Lemma 3.8 M2 acting on the set D of dodecads has three orbits D2, D4 and D6 with lengths 448,
1680 and 448, respectively. If di ∈ Di and Ki is the stabilizer of di in M2 then |di ∩ α| = i,
K2 ∼= K6 ∼= Sym(6) and K4 ∼ 25Sym(3).

Proof. [1, 19.6] 2

Lemma 3.9 Let N ∼= Aut Mat12 and N2, N3 and N23 subgroups of N such that |N2| = |N3| = 27 ·3,
N23 = 27 and N23 = N2 ∩N3. Then N23 ∩N ′ = (N23 ∩N ′2)(N23 ∩N ′3).

Proof. For Z ≤ N let Z∗ = Z ∩N ′. Then N∗ ∼= Mat12, |N/N∗| = 2 and |N∗|2 = 26. Thus N∗23
is a Sylow 2-subgroup of N∗ and |N∗2 | = |N∗3 | = 26 · 3. It follows ( see for example [15]) that N∗2 and
N∗3 are two maximal subgroups of N∗ containing N∗23. Choose notation such that Z(N∗2 ) 6= 1. Thus
by the structure of N∗2 and N∗3 , O2(N∗2 ) ≤ N∗′2 , O2(N∗3 ) ∩ N∗′3 6≤ O2(N∗2 ) and |N∗23/O2(N∗2 )| = 2.
Thus N∗23 = O2(N∗2 )(O2(N∗3 ) ∩N∗′3 ) = (N23 ∩N∗′2 )(N23 ∩N∗′3 ). 2

Lemma 3.10 Let H be the set of complementary pairs of dodecads and for h ∈ H let N(h), N2(h),
N3(h) and N23(h) denote the stabilizers of h in M , M2, M3 and M23, respectively.

(i) M2 has precisely two orbits H1(2) and H2(2) on H, where |H1(2)| = 840 and |H2(2)| =
448. M3 has precisely three orbits H1(3), H2(3), and H3(3) on H, where |H1(3)| = 168,
|H2(3)| = 672 and |H3(3)| = 448. M23 has precisely four orbits H1,H2,H3 and H4 on H,
where |H1| = 168, |H2| = 224, |H3| = 448 and |H4| = 448. Moreover, H1(2) = H1 ∪H2 ∪H3,
H2(2) = H4, H1(3) = H1, H2(3) = H2 ∪H4 and H3(3) = H3.

(ii) If h ∈ H1, then N(h) = N23(h)N(h)′ and N23(h)∩N(h)′ = (N23(h)∩N2(h)′)(N23(h)∩N3(h)′).

11



(iii) If h ∈ H3, then N3(h) = N23(h)N3(h)′.

Proof. (i) The lengths of the orbits of M2 on H follow directly from 3.8. Observe also that
N2(h) ≤ N(h)′ (that is N2(h) fixes the two dodecads forming h) if and only if h ∈ H2(2).

Let ∆ be the octad graph, that is a graph on Γ2 in which two octads are adjacent if they are
disjoint. For a vertex x of ∆ let ∆i(x) denote the set of vertices which are at distance i from x in
∆. It is well known and also easily seen from the diagram D2(Mat24) that

∆1(α) = Γ2(30, 2), ∆2(α) = Γ2(280, 2), ∆3(α) = Γ2(448, 2)

and that
| α ∩ δ |= 0, 4, 2 if δ ∈ ∆i(α) for i = 1, 2, 3.

By 3.6 we can and will identify ∆∪H with the set of non-zero vectors in the irreducible Golay code
module Y . Let e ∈ ∆3(α). Then as α and e intersect in 2 elements, the symmetric difference of α and
e is a dodecad intersecting α in 6 elements. Thus α+e ∈ H2(2) and since |∆3(α)| = |H2(2)| = 448, we
have a one-to-one correspondence between H2(2) and ∆3(α). By D2(Mat24), Mαe acts transitively

on Γ3(α). Thus M23 acts transitively on ∆3(α) and hence also on H4
def
= H2(2).

Let h ∈ H1(2). Then N2(h) has order 27 · 3 and the intersections of α with the dodecads in
h form a partition of α into two sets of sizes 4. Thus N2(h)Qα/Qαis contained in a subgroup
24(Sym(3) × Sym(3)) of Mα/Qα and so normalizes a 2-subspace U2 in Qα. Note that Qα fixes 4
points in each of the two dodecads, Qα ≤Mat8 ∼= Q8. As Qα is elementary abelian, Qα ∩N(h) has

order at most two. It follows that N2(h)Qα/Qα has order 26 · 3 and U1
def
= Qα ∩N(h) has order 2,

U1 ≤ U2 and QαN2(h) = NMα(U1) ∩ NMα(U2). Thus the orbits of Qα on H1(2) are in one-to-one
correspondence with the pairs (U1, U2), where Ui is a i-space in Qα and U1 ≤ U2. This immediately
implies that Mαβ has three orbits H1, H2 and H3 on H1(2) corresponding to the following three
possibilities: (1) U2 ≤ Qα ∩ Qβ , (2) U2 6≤ Qα ∩ Qβ and U1 ≤ Qα ∩ Qβ and (3) U1 6≤ Qα ∩ Qβ .
Now it is straightforward to calculate that |H1| = 7 · 3 · 8 = 168, |H2| = 28 · 1 · 8 = 224 and
|H3| = 28 · 2 · 8 = 448. (Notice that | Qα ∩Qβ |= 8 by 3.2 (i).)

Let L be the elementwise stabilizer in M of the octads in ∆(β). Then L is of index 2 in M23
and normal of index 6 in M3. Hence each of the following holds ( for the last statement note that
M = 〈M2,M3〉 acts transitively on H):

• For every i, L either acts transitively on Hi or has two orbits of the same length.

• Every M3-orbit in H is the union of l of the orbits of equal lengths for L in H where l ∈
{1, 2, 3, 6}.

• There exists an M3-orbit on H which has non-empty intersecting with both H1(2) and H2(2).

It is easy to check that these three conditions uniquely determine the fusion of the M23-orbits
into M3-orbits.

(ii) and (iii): Let h ∈ H1. As N(h) ∼= Aut Mat12, |N(h)/N(h)′| = 2. Moreover, |N(h)/N23(h)|
is odd and so the first statement in (ii) holds. (iii) follows from a similar argument. By (i) we can
apply 3.9 and so also the second part of (ii) holds. 2

By [7] M has a 45-dimensional irreducible module V over the field C of complex numbers. Let
χ be the corresponding character. Define V1(3) = CV (Q3) and V2(3) = [V,Q3].

Lemma 3.11 (i) Let z be a 2-central involution in M . Then χ(z) = −3, CV (z) is 21-dimensional
and [V, z] is 24-dimensional.
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(ii) CV (Q2) = 0 and CV (H) is 3-dimensional for each hyperplane H of Q2.

(iii) V = V1(3)⊕ V2(3), V1(3) is 3-dimensional and V2(3) is 42-dimensional.

(iv) CV2(3)(H) = 0 for any hyperplane of Q3 containing Q2 ∩Q3, while CV2(3)(H) is 1-dimensional
for any hyperplane of Q3 not containing any of the three conjugates of Q2 ∩Q3 under M3.

Proof. (i) The value for χ(z) is taken directly from the character table of Mat24 in [7]. Since
dimCV (z) + dim[V, z] = 45 and dimCV (z)− dim[V, z] = χ(z) (i) holds.

(ii) Let d = dim[V,Q2] and e = dimC[V,Q2](H), where H is any hyperplane in Q2. Since M2 acts
transitively on the fifteen hyperplanes in Q2, e is well defined and d = 15e. Let 1 6= z ∈ Q2. Then
exactly eight of the hyperplanes in Q2 do not contain z and so 24 = dim[V, z] = 8e. Thus e = 3,
d = 45, V = [V,Q2] and (ii) holds.

(iii) and (iv) By 3.2 (iii) the orbits of M3 on Q#
3 are of length 21 and 42 and by a dual argument

the orbits of M3 on the hyperplanes of Q3 are of length 21 and 42. In particular, dim[V,Q3] is
divisible by 21. Moreover, by (ii) CV (Q2 ∩ Q3) has dimension 3 and so dimCV (Q3) ≤ 3. Thus

dimV1(3) = 3 and dimV2(3) = 42. Let H be a hyperplane in Q3 with f
def
= dimCV2(3)(H) 6= 0.

Then either |HM3 | = 42 and f = 1; or |HM3 | = 21 and f = 2. In particular H is unique up to
conjugation. Suppose that |HM3 | = 21. Let 1 6= z ∈ Q2 ∩ Q3. Then it is easy to see that z lies in
exactly 7 + 3 + 3 = 13 of the elements of HM3 and so dim[V, z] = f · (21− 13) = 16, a contradiction
to (i). Thus |HM3 | = 42 and the lemma is proved. 2

Lemma 3.12 (i) M2 acts irreducibly on V and as M2-module V ∼= V1(3)⊗CM23 CM2.

(ii) V1(3) and V2(3) are irreducible M3-modules of dimension 3 and 42, respectively, and stay
irreducible when restricted to M23 or O2(M23).

(iii) CM3(V1(3)) = O2,3(M3) and M3 acts faithfully on V2(3).

Proof. By 3.11 (ii), V1(3) = CV (Q2 ∩Q3) is a Wedderburn component for Q2 on V . Moreover,
since M23 is maximal in M2, M23 = NM2(Q2 ∩ Q3) = NM2(V1(3)) and so the second statement
in (a) holds. Moreover, M2 is irreducible on V if and only if M23 is irreducible on V1(3). Since

L
def
= O2(M23) acts transitively on the 42 hyperplanes in Q3 which have fixed-points in V2(3), L

acts irreducibly on V2(3). Suppose that L does not act irreducibly on V1(3). Since V1(3) has odd
dimension and |M23/L| = 2 we conclude that M23 does not act irreducibly on V1(3). Thus M23 has
a 1- or 2-dimension submodule in V1(3) and M2 has a 15- or 30-dimensional submodule in V . But
this contradicts the fact that V2(3) is a 42-dimensional irreducible L-module. Hence L is irreducible
on V1(3) and (i) and (ii) are proved.

To prove (iii) recall that M3 ∼ 26(Sym(3)×L3(2)). Note that Q2∩Q3 is a hyperplane in Q2 and
centralizes V1(3). Since Q2 acts fixed-point freely on V we conclude that Q2Q3/Q3 inverts V1(3).
Furthermore, O2,3(M3) = [M3, Q2] and so O2,3(M3) centralizes V1(3). Hence either CM3(V1(3)) =
O2,3(M3) or M ′3 centralizes V1(3). But in the later case M3 is not irreducible on V1(3). The second
statement in (iii) holds since Q3 is the unique minimal normal subgroup of M3 and does not centralize
V2(3). 2

4 Mat22

Definition 4.1 (i) A Mat22-triangle is a triangle of groups (M1,M2,M3) such that
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(a) M1 ∼ 24Alt(6),M2 ∼ 23L3(2) and M3 ∼ 24Sym(5).

(b) |M2/M23| = |M2/M12| = 7, |M3/M13| = 5 and |M23/B| = 3.

(ii) An Aut Mat22-triangle is a triangle of groups (M̂1, M̂2, M̂3) such that

(a) M̂1 ∼ 24Sym(6), M̂2 ∼ 24L3(2) and M̂3 ∼ 25Sym(5).

(b) |M̂2/M̂23| = |M̂2/M̂12| = 7, |M̂3/M̂13| = 5 and |M̂23/B| = 3.

Lemma 4.2 Let (M1,M2,M3) be a Mat22-triangle. Then the following assertions hold.

(i) B is a Sylow 2-subgroup of M2 and B = (Q1 ∩M2)Q2Q3.

(ii) M13/Q3 ∼= Sym(4) and M23/Q3 ∼= Sym(3)× Sym(2).

(iii) M12/Q2 ∼= M23/Q2 ∼= Sym(4).

(iv) Q1 6≤M2 and M13/Q1 ∼= M12Q1/Q1 ∼= Sym(4).

(v) |Q1 ∩Q2| = 2, |Q1 ∩Q3| = 4, |Q2 ∩Q3| = 4 and Q1 ∩Q2 ≤ Q1 ∩Q3.

(vi) T12 = (Q1 ∩M2)Q2, T13 = Q1Q3, T23 = Q2Q3.

Proof. Since M3 has a unique class of subgroups of index 5, M13/Q3 ∼= Sym(4). Similarly
Sym(4) ∼= M12/Q2 ∼= M13/Q1 ∼= M23/Q2 and B is a Sylow 2-subgroup of M2. Since |M23/B| = 3,
M23 has an orbit of length 3 on the cosets of M13 in M3. Thus M23Q3/Q3 is contained a subgroup
Sym(3) × Sym(2) of M3/Q3. As M23 has index 10 in M3 and Sym(3) × Sym(2) has index 10 in
Sym(5) we conclude that Q3 ≤M23 and M23/Q3 ∼= Sym(3)×Sym(2). As |Q3| > |Q2|, Q3 6≤ Q2 and
since M23 acts irreducibly on T23/Q2, we conclude that T23 = Q2Q3 and |Q2∩Q3| = 4. Suppose that
Q3 = Q1. Then T23 = Q2Q3 = Q2Q1 is normalized both by M12 and M23. Since M2i = NM2(T2i)
for i = 1 and 3, this means that M12 = M23, a contradiction to |M23/B| = 3. Thus Q3 6= Q1,
T13 = Q1Q3 and |Q1 ∩ Q3| = 4. So Q1 ≤ O2(M13) ≤ M ′3Q3, Q1 6≤ M12 and as no element of Q1
acts as a 2-cycle on M3/M13, Q1 ∩M12 6≤ Q2. Hence T12 = Q2(Q1 ∩M12) and |Q2 ∩Q1| = 2. Since
B = T12T23, the last statement in (i) holds and the proof is complete. 2

We remark that a similar lemma holds for Aut Mat22-triangles. Indeed the only changes neces-
sary are that in part (iv), Sym(4) has to be replaced by Sym(2)×Sym(4) and in part (v), Q̂2 ∩ Q̂3
has order 8 and not 4.

As in the previous section let S be the Steiner system of type (5, 8, 24) and let p, q be a pair of
elements from the basic set Ω. In this section M and M̂ will denote the elementwise and the setwise
stabilizers of {p, q} in the automorphism group Mat24 of S, respectively. This means that M is the
Mathieu group Mat22 of degree 22 with |M | = 27 · 32 · 5 · 7 · 11 and M̂ is the automorphism group
of M .

Let γ be a sextet T1, T2, ..., T6 in S such that p and q are in the same tetrad (say in T1). Let α
and β be disjoint octads adjacent to γ such that {p, q} ⊆ α (say α = T1 ∪ T2 and β = T3 ∪ T4). Let
Mα, Mβ and Mγ be the stabilizers in M of α, β and γ, respectively. Similarly define M̂α, M̂β and
M̂γ . The following lemma can be deduced directly from 3.2 (cf. Section 3.4 in [9]).

Lemma 4.3 (i) (Mα,Mβ ,Mγ) is a Mat22-triangle.
(ii) (M̂α, M̂β , M̂γ) is an Aut Mat22-triangle. 2
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It is easy to deduce from the main result in [16] that every Aut Mat22-triangle with a faithful
completion is isomorphic to (M̂α, M̂β , M̂γ) and that M̂ is the unique completion of the triangle. In
order to explain the deduction we need some definitions.

Recall that the Petersen graph has 2-element subsets of a fixed 5-set as vertices and two subsets
are adjacent if they are disjoint. The Petersen graph has 10 vertices, 15 edges and Sym(5) is its
automorphism group.

Definition 4.4 Let Ξ = Ξ1 ∪ Ξ2 ∪ Ξ3 be a 3-partite graph and suppose that for ai ∈ Ξi, 1 ≤ i ≤ 3
the following conditions hold.

(i) |Ξ2(a1)| = 2, |Ξ3(a1)| = 3 and every vertex from Ξ2(a1) is adjacent to every vertex from
Ξ3(a1).

(ii) Ξ1(a2) are the points and Ξ3(a2) are the lines of a projective plane of order 2 with the natural
adjacency relation.

(iii) Ξ1(a3) are the edges and Ξ2(a3) are the vertices of the Petersen graph with the natural adja-
cency relation.

Then Ξ is called a rank 3 Petersen type geometry.

Theorem 4.5 Up to isomorphism there are exactly two rank 3 flag-transitive Petersen type geome-
tries: Ξ(Mat22) and Ξ(3Mat22). A flag-transitive automorphism group is isomorphic to M or M̂
for Ξ(Mat22) and to 3M or 3M̂ (non-split extensions) for Ξ(3Mat22). The stabilizer of a vertex
from Ξ3 in M and 3M is 24Sym(5) while in M̂ and 3M̂ it is 25Sym(5).

Proof. [16]. 2

Lemma 4.6 (i) Every Mat22-triangle with a faithful completion is isomorphic to (Mα,Mβ ,Mγ)
and M is the unique faithful completion of this triangle.

(ii) Every Aut Mat22-triangle with a faithful completion is isomorphic to (M̂α, M̂β , M̂γ) and M̂ is
the unique faithful completion of this triangle.

Proof. (i) Let (M1,M2,M3) be a Mat22-triangle with a faithful completion N . Define a triangle
(N1, N2, N3) by N1 = CM1(Q1 ∩ Q2), N2 = M2 and N3 = M3. Then N1 ∼ 24Sym(4) by 4.2 and
since M1 = 〈N1,M13〉, N is also a faithful completion of (N1, N2, N3). Let Ξ = Γ(N ;N1, N2, N3).
Then it is easy to check using the information in 4.2 that Γ is a rank 3 Petersen type geometry
on which N acts flag-transitively. By 4.5 and since N3 = M3 ∼ 24Sym(5) we have N ∼= M or
N ∼= 3M , but in the latter case M1 ∼ 243 · Alt(6). Hence N ∼= M and (M1,M2,M3) is isomorphic
to (Mα,Mβ ,Mγ).

(ii) is proved similarly. 2

The coset graph Γ = Γ(M ;M1,M2,M3) (which coincides with Γ(M̂ ; M̂1, M̂2, M̂3)) possesses a
natural description in terms of the Steiner system S and a pair p, q of distinguished elements from
the basic set Ω. Namely, Γ1 are the hexads which are octads containing {p, q} with p and q removed;
Γ2 are the octets which are the octads disjoint from {p, q} and Γ3 are the pairs which are 2-element
subsets of Ω \ {p, q}. A hexad and an octet are adjacent if they are disjoint; the adjacency between
the hexads and pairs is via inclusion, finally an octet is adjacent to a pair {r, s} if it is the union
of two tetrads from the sextet containing {p, q, r, s}. Below we present the diagrams Di(Mat22)
describing the orbits of Mi on Γ and the adjacencies between the vertices in these orbits. These
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diagrams are analogous to the diagrams Di(Mat24). The proofs of the diagrams can be found in
Section 3.9 in [9].
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We need some further refinement of the information given on the above diagrams.

Lemma 4.7 (i) Let a ∈ Γ1(32, 3). View Γ3(a) as the set of points in a 4-dimensional symplectic
space S over GF (2) with M̂a/Qa acting as the full group of automorphisms. Then M̂γa fixes a
non-degenerate quadratic form Q of minus type on S and Γ3(40, 3) is the set of singular points
of Q. In particular, for each b ∈ Γ2(a), there is a unique c ∈ Γ3(ab) ∩ Γ3(40, 3).

(ii) Q̂γ act regularly on Γ1(32, 3).

Proof. Note that any subgroup of index 32 in M̂γ is isomorphic Sym(5) and so in particular
M̂γa

∼= Sym(5) and Q̂γ acts regularly on Γ1(32, 3). Thus the lemma follows directly from the
diagram D3(Mat22) and elementary properties of the 4-dimensional symplectic GF (2)-geometry. 2

Lemma 4.8 Let c ∈ Γ3(160, 3). Then M̂γcQ̂c/Q̂c ∼= Sym(3)×C2, Qc∩Mγ = 1 and Q̂c∩M̂γ
∼= C2.

Proof. By D3(Mat22), γ∪ c is not contained in a hexad. In particular γ and c are disjoint. Thus
there exists exactly two hexads a1 and a2 such that c ⊂ ai and γ ∩ ai 6=Ø. Thus M̂γc normalizes a
subset of size two of the five hexads adjacent to c. Thus M̂γcQ̂c/Q̂c is contained in a Sym(3)× C2
subgroup of Mc/Qc. Let t ∈ Qc ∩Mγ . Then t normalizes ai and fixes γ ∩ ai for i = 1, 2 and also
fixes the two elements in c. Thus t fixes three elements in a1. Since Ma1/Qa1

∼= Alt(6), t does not
induce a 2-cycle on a1 and thus fixes a1 elementwise. Since t also fixes the point a2 ∩ γ outside of a1
we conclude t = 1 and Qc ∩Mγ = 1. Thus |Q̂c ∩ M̂γ | ≤ 2. Since |M̂γcQ̂c/Q̂c| ≤ 12 and |M̂γc| = 24,
the lemma is established. 2

5 J4-triangles

In this section we establish the existence and uniqueness of a J4-triangle of groups. We follow
notation from Section 1.
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Lemma 5.1 Let (M1,M2,M3) be a J4-triangle. Let K1 ∼= Mat24 be a complement to Q1 in M1;
K2 ∼= L5(2) be a complement to Q2 in M2 and let L be the unique normal subgroup in M3 such
that M3/L ∼= Sym5. Let S be the Steiner system of type (5, 8, 24) such that Q1 is the irreducible
Todd module associated with the action of K1 on S and Ω(3) be an M3-set of size 5 such that
CM3(Ω(3)) = L. Then

(i) there are subsets Ω1(3) and Ω2(3) in Ω(3) of size 1 and 2 respectively with Ω1(3) 6⊆ Ω2(3) such
that M31 = NM3(Ω1(3)) and M32 = NM3(Ω2(3)); in particular,

M31/Q3 ∼= Sym(4)×L3(2), M32/Q3 ∼= C2×Sym(3)×L3(2) and B/Q3 ∼= C2×C2×L3(2),

moreover, Q1 ∩Q2 ≤ Q3 and T13 6≤M2;

(ii) there is a natural L5(2)-module V (2) of M2, a 1-space V1(2) and a 2-space V3(2) in V (2) with
V1(2) ≤ V3(2) such that M23 = NM2(V3(2)) and M21 = NM2(V1(2)); in particular,

M23/Q2 ∼ 26(Sym(3)× L3(2)), M21/Q2 ∼ 24L4(2) and B/Q2 ∼ 23+3+1L3(2);

(iii) there is an octad α and a trio β containing α such that M12Q1 = NM1(α) and M13 = NM1(β);
in particular,

M13/Q1 ∼ 26(Sym(3)× L3(2)), M12Q1/Q1 ∼ 24L4(2) and BQ1/Q1 ∼ 23+3+1L3(2),

moreover, |Q1/Q1 ∩M2| = 2;

(iv) For all i 6= j, Mij acts irreducibly on Tij/Qj.

(v) T13 = Q1Q3, T23 = Q2Q3 and T12 = (Q1 ∩M2)Q2.

(vi) |Q2/Q2 ∩Q3| = 2, |Q2/Q1 ∩Q2| = 24 and Q2 is isomorphic to
∧2

V (2)∗ where V (2) is as in
(ii).

(vii) Φ(Q3) = Z(Q3) is a natural L3(2)-module for M3 and Q3/Φ(Q3) ∼= D1 ⊗D2, where D1 is a
natural ΓL2(4)-module for M3 and D2 is dual to Z(Q3).

(viii) L = O2(B).

(ix) NMi(Qi ∩Qj) = Mij if (i, j) 6= (1, 2) and NM1(Q1 ∩Q2) = Q1M12.

Proof. Since |M3/M13| = 5 and M3 has a unique class of subgroups of index 5, we can put
Ω(3) = M3/M31 so that L = ∩g∈M3M

g
31. Since |M32/B| = 3, M32 has on orbit of length 3 on Ω(3).

Thus M32L/L is contained in a Sym(3)×C2-subgroup of M3/L. Since the index of M23 in M3 and
the index of Sym(3)×C2 in Sym5 are both 10, we conclude that L ≤M32 and M32/L ∼= Sym(3)×C2.
In particular, L ≤ B and since |M32/B| = 3 we have B/L ∼= C2×C2. This implies that B/L contains
2-cycles and so B/L 6= O2(M31/L). As O2(M31/L) = T31L/L we get T31 6≤ B and T13 6≤M2 which
gives (i).

For (ii) let i ∈ {1, 3} and let V (2) be some natural L5(2)-module for M2. Since |M2/M23| = 155
and |M2/M21| = 31, M2i contains a Sylow 2-subgroup of M2. In particular, Q2 ≤ M2i and M2i
is the normalizer of some flag in V (2). Since |M2/M21| = 31, M21 = NM2(V1(2)) for some 1- or
4-space V1(2) in V (2). Replacing V (2) by its dual if necessary we may assume that V1(2) is a
1-space. Since |M2/M23| = 155, M23 = NM2(V3(2)) for some 2- or 3-space V3(2) in V (2). Since
|M23/M23∩M12| = |M23/B| = 3 which is odd, V1(2) ≤ V3(2) and V3(2) is a 2-space. Thus (ii) holds.
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(iii) Since |M1/M13| = 3795, M13 contains a Sylow 2-subgroup ofM1 and so by 3.4M13 = NM1(β)
for some trio β in S. Suppose that Q1 ≤ Q3. Since |Q1| > |Q2|, Q1 6≤ Q2. By (ii) M12 acts
irreducibly on T12/Q2 and so T12 = Q1Q2. Hence T12 = Q1Q2 ≤ Q3Q2 ≤ T23 a contradiction
since by (ii) T23 centralizes V3(2) but T12 does not. Thus Q1 6≤ Q3 and so by (i), Q1Q3 = T13 and
Q1 6≤ M2. Hence Q1 6≤ M12, |Q1/Q1 ∩M2| = 2, |M1/M12Q1| = 759 and by 3.4, M12Q1 = NM1(α)
for some octad α. Also |M13/Q1B| = 3. By 3.2, M13/Q1 has a unique class of subgroups of index 3
and so BQ1 = NM13(α∗) for some octad α∗ in β. By 3.4 (ii) BQ1 fixes a unique octad, so α = α∗

and (iii) holds.
(iv) follows from (i), (ii) and (iii).
We already proved that Q1Q3 = T13. Now (T13L/L)# contains no 2-cycles and by (i) Q1∩M2 6≤

T23. Thus Q1 ∩M2 6≤ Q2 and by (iv), (Q1 ∩M2)Q2 = T12. Since |Q3| > |Q2|, Q3 6≤ Q2 and by (iv)
Q2Q3 = T23 and (v) holds.

By (v) and (i) |Q2/(Q2 ∩Q3)| = |Q2Q3/Q3| = |T23/Q3| = 2, by (v) and (iii) |Q2/(Q2 ∩Q1)| =
|T12/Q1| = 24 and by (i) Q2 ∩ Q1 ≤ Q3. By the definition of J4-triangle Q2 is isomorphic either
to
∧2

V (2) or to
∧2

V (2)∗. Since M21 = NM2(V1(2)) for a 1-space V1(2) in V (2), the only proper
subspace in Q2 normalized by M12 has dimension 4 in the former case and dimension 6 in the latter
case. Since Q1 ∩Q2 is a 6-space (vi) follows.

Let Z3 = CQ1(Q3). Since T13 = Q1Q3, we have Z3 = CQ1(T13). Since Q1 is the irreducible
Todd module, by 3.7 Z3 has order 23 and Z3 ≤ Q1 ∩ Q3. By 3.7 (iii) Z(Q3) ≤ Z3 and hence
Z3 = Z(Q3). By (iv) and (v) Φ(Q3) ≤ Q1 ∩ Q2. Since Z3 < Q1 ∩ Q2 < Q1 ∩ Q3, since M13 acts
irreducibly on Q1 ∩Q3/Z3 and since M31 normalizes Φ(Q3) we conclude that Φ(Q3) ≤ Z3. On the
other hand by 3.7 [Q1 ∩ Q3, Q3] = Z3 and so Φ(Q3) = Z3. By 3.7, (Q1 ∩ Q3)/Z3 is the unique
proper M31-submodule in Q3/Z3. Moreover, all composition factors for L on Q3/Z3 are dual to Z3
and the elements of order three in CM31(Z3) act fixed-point freely on Q3/Z3. By (ii) Q2 ∩ Q3/Z3
is the unique proper M23-submodule in Q3/Z3 and since Q1 ∩Q2 < Q2 ∩Q3, Q1 ∩Q3 6= Q2 ∩Q3.
Thus M3 acts irreducible on Q3/Z3 and (vii) holds.

(viii) By (i) |B/L| = 4 and by (vii) O2(L) = L. Thus (viii) holds.
(ix) Clearly Qi ∩Qj is normal in QiMij and the latter is equal to Mij unless (i, j) = (1, 2). On

the other hand in each case QiMij/Qi is maximal in Mi/Qi and hence the result follows. 2

Our next result will be used as a characterization of M12.

Lemma 5.2 For i = 1 and 2 let Xi be a group generated by subgroups Zi, Ai, Bi and Ri such that

(i) Ri is isomorphic to L4(2);

(ii) Zi, Ai and Bi are elementary abelian 2-groups of order 26, 24 and 24, respectively;

(iii) Ri normalizes Zi, Ai, and Bi, Ai and Bi are isomorphic natural L4(2)-modules for Ri and Zi
is isomorphic to the exterior square of Ai, that is Zi is a natural Ω+

6 (2)-module for Ri;

(iv) Zi centralizes Ai and Bi;

(v) [Ai, Bi] = Zi.

Then

(a) there exists an isomorphism from X1 onto X2 mapping Y1 to Y2 for Y = Z, A, B and R;
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(b) Out Xi is elementary abelian of order 22.

Proof. Fix i ∈ {1, 2} and put Y = Yi for Y ∈ {X,R,A,B,Z}. Pick 1 6= a ∈ A and put
P = CR(a). Note that A, B and Z are absolutely irreducible GF (2)R-modules and so there
exist unique GF (2)R-isomorphisms φ : A → B and ψ :

∧2
A → Z. Define ξ : A × A → Z by

ξ(v, w) = [v, φ(w)]. Since A is irreducible and [A,B] 6= 1, [a,B] 6= 1. Note that [a,B] and B/CB(a)
are isomorphic as GF (2)P -modules. Moreover, P fixes no non-zero vector in Z and so [a, φ(a)] = 1.
Thus ξ(a, a) = 1 and so ξ extends to a GF (2)R-homomorphism Ξ :

∧2
A→ Z. Thus Ξ = ψ and so

[v, φ(w)] = ψ(v ∧ w) for all v, w ∈ A. It is now clear that (a) holds.
Put Q = ABZ. By 2.7 all complements to Q/Z in X/Z are conjugate in X/Z and ZR has

two classes of complements to Z. Thus X has two classes of complements to Q and it follows
easily from (a) that there exists an automorphism of X interchanging these two classes. Let α be
an automorphism of X normalizing R. Since the module for R dual to A is not involved in Q, α
induces an inner automorphism on R. So we may assume that α centralizes R.

Let C/Z be the unique irreducible R-submodule in Q/Z different from AZ/Z and BZ/Z. We
claim that R does not normalize a complement to Z in C. First notice that if a complement in C
exists, it should consist of the elements bφ(b), b ∈ A, since aφ(a) is the only element in C invariant
under the maximal parabolic P in R. However these elements are not closed under multiplication,
since

aφ(a)bφ(b) = abφ(ab)[φ(a), b]

and the factor [φ(a), b] is non-trivial when a 6= b. Thus the claim follows.
By the claim Aα 6≤ C and {A,B} = {Aα, Bα}. Again by (a) there exists an automorphism of X

normalizing R and interchanging A and B. So we may assume that α normalizes A and B. Since α
centralizes R and since A, B and Z are absolutely irreducible GF (2)R-modules, α centralizes A, B
and Z and α is the identity automorphism. 2

Let V (2) be a 5-dimensional GF (2)-space, K◦2 = GL(V (2)) ∼= L5(2) and M◦2 be the semidirect
product of Q◦2 :=

∧2
V (2)∗ and K◦2 with respect to the natural action. Let V1(2) be a 1-space in

V (2), K◦21 be the stabilizer of V1(2) in K◦2 and M◦21 be the subgroup in M◦2 which is the semidirect
product of Q◦2 and K◦21. Let S be a Steiner system of type (5,8,24), K◦1 = Aut S ∼= Mat24, Q◦1 be
the 11-dimensional Todd module associated with the action of K◦1 on S and M◦1 be the semidirect
product of Q◦1 and M◦1 . Let α be an octad in S, K◦12 be the stabilizer of α in K◦1 , H1 be the unique
hyperplane in Q◦1 stabilized by K◦12 (compare 3.2 and 3.7) and M◦12 be the subgroup in M◦1 which is
the semidirect product of H1 and K◦12.

Lemma 5.3 Let Xi = ZiAiBiRi the group introduced in 5.2, then

(i) there is an isomorphism of M◦21 onto Xi which sends K◦21 onto AiRi;

(ii) there is an isomorphism of M◦12 onto Xi which sends K◦12 onto AiRi.

Proof. By 2.8 and the obvious duality there is an orbit H(2)∗ of L5(2) on the set of vectors in
Q◦2 indexed by the 3-spaces in V (2). Let A2 = O2(K◦21), Q◦21 = O2(M◦21) and R2 a complement to
A2 in K◦21 normalizing a complement U to V1(2) in V (2). Then R2 is isomorphic to L4(2) and A2
is the kernel of the action of K◦21 on the set of subspaces in V (2) containing V2(1). This means that
A2 is dual to U and the latter is canonically isomorphic to V (2)/V1(2). The elements from H(2)∗

corresponding to 3-spaces containing V1(2) are centralized by A2 and by a standard property of
exterior squares they generate an R2-submodule Z21 in Q◦2 isomorphic to

∧2
A2. The elements from
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H(2)∗ corresponding to 3-spaces taken from U generate a complement B2 to Z21 in Q◦2 normalized
by R2 and isomorphic to A2. In particular Z21 = CQ◦2 (A2) = Z(Q◦21). Moreover, M◦21 = Z21A2B2R2
and (i) follows.

Next, let A1 = O2(K◦12) and Z12 = CQ◦1 (A1). Let t ∈ Q◦1 \ H1. By 3.2 and 3.7 (i) A1 acts
regularly on the elements in tH1/Z12. Put R1 = NK◦12

(tZ12). Then by the Frattini argument R1 is
a complement to A1 in K◦12. In particular R1 ∼= L4(2). Put B1 = At1. Since t normalizes Z12R1
and Z12R1 normalizes A1 we conclude that Z12R1 normalizes B1. Thus B1 is R1-invariant. Clearly
A1 and B1 are isomorphic as R1-modules and by 3.7 Z12 is isomorphic to the exterior square of A1.
Moreover, M◦12 = Z12A1B1R1 and so by 5.2 we obtain (ii). 2

Lemma 5.4 With M◦1 , M◦2 , M◦12 and M◦21 as above there exists a unique amalgam (M◦1 ,M
◦
2 ) such

that M◦1 ∩M◦2 = M◦12 = M◦21 and K◦12 = K◦21.

Proof. By 5.3 there is an isomorphism of M◦12 onto M◦21 which sends K◦12 onto K◦21 and hence the
existence follows. In order to prove the uniqueness it is sufficient to show that for every automorphism
σ of M◦12 there is an automorphism δ of M◦1 which normalizes M◦12 such that the restriction of δ to
M◦12 coincides with σ. This is certainly true if σ is an inner automorphism and by 5.2 (b) and 5.3 the
outer automorphism group of M◦12 is of order 22. Thus it is sufficient to present a subgroup M̂1 in
the automorphism group of M◦1 , containing the inner automorphisms such that M◦12 (identified with
a subgroup of inner automorphisms of M◦1 ) has trivial centralizer in M̂1 and NM̂1

(M◦12)/M◦12
∼= 22.

Let Q̂1 be the 12-dimensional GF (2)M◦1 -module obtained from the 24-dimensional permutational
module on the element set Ω of the Steiner system S modulo the 12-dimensional Golay code. Let M̂1
be the semidirect product of Q̂1 and K◦1 . Then M̂1 contains M◦1 as a subgroup of index 2. It is well
known (cf. [1] or [9]) that K◦1 has four orbits on Q̂#

1 with lengths 24, 276, 2024 and 1771 indexed by
1-, 2-, 3-element subsets of Ω and by the sextets, respectively. This shows that CQ̂1

(K◦12) = 1 and
hence CM̂1

(M◦12) = 1. On the other hand it is clear that M◦12 is a normal subgroup of index 22 in
the subgroup in M̂1 which is the semidirect product of Q̂1 and K◦12 and the result follows. 2

In view of the preceding lemma we may and do identify M◦12 with M◦21 and K◦12 with K◦21.

Lemma 5.5 Let (M1,M2,M3) be a J4-triangle of groups. There exists an isomorphism κ of the
amalgam (M◦1 ,M

◦
2 ) as in 5.4 onto the subamalgam (M1,M2).

Proof. By 1.3 (i), (ii) there are isomorphisms κ1 : M◦1 →M1 and κ2 : M◦2 →M2. By 5.1 (ii) and
(iii) these isomorphisms can be chosen in such a way that that κ(M◦12) = M12 and κ(M◦21) = M21.
Now the uniqueness statement in 5.4 ensures existence of the isomorphism κ of amalgams. 2

Notice that at this stage we do not know whether or not a J4-triangle of groups exists but we do
know that the rank two amalgam (M◦1 ,M

◦
2 ) exists.

Let β be a trio containing the octad α. Put M◦13 = NM◦1 (β), B◦ = M◦12 ∩M◦13, L◦ = O2(B◦),
M◦23 = NM◦2 (L◦), Q◦13 = O2(M◦13), Q◦3 = O2(L◦) and Z◦3 = Z(Q◦3).

Lemma 5.6 (i) L◦ = O2,3(M◦13), M◦13 = NM◦1 (L◦), L◦/Q◦3 ∼= L3(2), L◦ splits over Q◦3, Q◦1∩Q◦3 ≤
H1 6≤ L◦, Q◦1∩Q◦3 = [Q◦1, Q

◦
13], Q◦13 = Q◦1Q

◦
3, Z◦3 = Φ(Q◦3) = (Q◦3)′ = CQ◦3 (Q◦13), Z◦3 is a natural

L3(2)-module for L◦ and Q◦3/Z
◦
3 is the direct sum of four natural L3(2)-modules dual to Z◦3 .

(ii) M◦23 = NM◦2 (V3(2)) where V3(2) is some 2-space in V (2) containing V1(2).

(iii) M◦13/L
◦ ∼= Sym(4) and M◦23/L

◦ ∼= Sym(3)× C2.
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(iv) B◦ = M◦21 ∩M◦23, B◦/L◦ ∼= C2 × C2 and B◦ is not normal in M◦13.

(v) CM◦1 (L◦) = 1 = CM◦2 (L◦).

(vi) the isomorphism κ in 5.5 can be chosen in such a way that κ(Y ◦) = Y for Y = B, L, M13,
M23, Q3 and Z3.

Proof. Let L′ be the kernel of the action of M◦13 on the three octads in β. Since O2(B◦) fixes the
two octads in β different from α, L◦ ≤ L′ ≤ B◦ and so L◦ = O2(L′) �M◦13. Since M◦13 is maximal
in M◦1 , M◦13 = NM◦1 (L◦). The remaining statements in (i) now follow from 3.2 and 3.7 (i) - (iii).

Recall that we identified M◦12 and M◦21. Since α is contained in 15 trios, B◦ has index 15 in M◦12.
Thus B◦ = NM◦12

(V3(2)) where V3(2) is 2- or 4-space in V (2) containing V1(2). If V3(2) is a 4-space
then B◦/Q◦2 is an extraspecial group of order 27 extended by L3(2). Since L◦ = O2(L◦) = O2(B◦)
we conclude that L◦ has a chief factor isomorphic to C2, a contradiction to (i). Thus V3(2) is a
2-space and L◦ = O2(B◦) = O2(CM◦2 (V3(2))). This means that L◦ is normal in NM◦2 (V3(2)) and
since the latter is maximal in M◦2 it must be equal to M◦23 = NM◦2 (L◦) and (ii) follows.

(iii) By 3.2, M◦13/L
◦Q◦1

∼= Sym(3) and by 3.7 (iii) Q◦1/Q
◦
1 ∩ Q◦3 is isomorphic to the natural

L2(2)-module for M◦13. Thus M◦13/L
◦ ∼= Sym(4). In M◦2 we compute that M◦23/L

◦Q◦2
∼= Sym(3),

M◦23 splits over L◦Q◦2 and |Q◦2/Q◦2 ∩Q◦3| = 2. Thus M◦23/L
◦ ∼= Sym(3)× C2.

(iv) Clearly B◦ = NM◦12
(L◦) = M◦12∩M◦13 = M◦21∩M◦23 = NM◦2 (V1(2), V3(2)). Hence we compute

in M◦2 that B◦/L◦ ∼= C2×C2. Since Q◦1 6≤M◦12, we have B◦ 6= Q◦1L
◦. Since Q◦1L

◦/L◦ = O2(M◦13/L
◦),

B◦ is not normal in M◦13.
(v) is readily verified in M◦1 (see 3.2) and M◦2 .
Finally (vi) follows from (i) - (v) and 5.1. 2

Let M◦3 be the universal completion of the amalgam (M◦13,M
◦
23) (which is the free amalgamated

product of M◦13 and M◦23 over B◦) and let (M◦1 ,M
◦
2 ,M

◦
3 ) be a triangle of groups where M◦i ∩M◦j =

M◦ij for 1 ≤ i < j ≤ 3. We are ready to prove the uniqueness statement for J4-triangles.

Lemma 5.7 Every J4-triangle of groups is isomorphic to the triangle (M◦1 ,M
◦
2 ,M

◦
3 /N), where N =

CM◦3 (L◦).

Proof. Let (M1,M2,M3) be a J4-triangle of groups, κ be an isomorphism of (M◦1 ,M
◦
2 ) onto

(M1,M2) as in 5.5, satisfying the condition in 5.6 (vi). Since M3 is generated by the subgroups
M31, M32 there is a mapping of (M◦1 ,M

◦
2 ,M

◦
3 ) onto (M1,M2,M3) whose restriction to M◦1 ∪M◦2

coincides with κ and whose restriction to M◦3 is a homomorphism χ onto M3. Thus the isomorphism
type of (M1,M2,M3) is uniquely determined by the kernel N of χ. We claim that N = CM◦3 (L◦).
On the one hand, N and L◦ are normal subgroups in M◦3 and N ∩ L◦ = 1 since the restriction of
κ to L◦ is an isomorphism onto L, hence N ≤ CM◦3 (L◦). On the other hand by 5.6 (v) and since
M3/L ∼= Sym(5) we have CM3(L) = 1 and hence N ≥ CM◦3 (L◦). Thus the claim follows and implies
the result. 2

For the remainder of the section we identify (M1,M2,M3) with (M◦1 ,M
◦
2 ,M

◦
3 /N) where N =

CM◦3 (L◦). In order to prove the existence we have to show that this is in fact a J4-triangle of groups.
For this we have to show that M3/L ∼= Sym(5). By the definition M3 is the subgroup in Aut L
generated by M13 and M23 (identified with their isomorphic images in Aut L). We need the following
preliminary result.

Lemma 5.8 Let S be the symmetric group Sym(6) of degree 6. Let H1 and H2 be subgroups in S
with H1 ∼= Sym(4), H2 ∼= Sym(3)× C2 and H1 ∩H2 ∼= C2 × C2. Then 〈H1,H2〉 ∼= Sym(5).
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Proof. Let A1 and A2 be representatives of the conjugacy classes of Sym(5) subgroups in S.
Put Ωi = S/Ai, i = 1, 2. We choose representatives k1, k2 and k3 of the conjugacy classes of
involutions in S so that ki acts as a transposition on Ωi for i = 1, 2 and k3 ∈ S′ ∼= Alt(6). Then
CS(k1) ∼= CS(k2) ∼= Sym(4)×C2 and CS(k3) ∼= D8×C2. There are two conjugacy classes of Sym(4)
subgroups in S not contained in S′. We choose representatives B1 and B2 of these classes so that
Bi is the elementwise stabilizer in S of a pair of cosets from Ωi, or equivalently, that Bi contains a
conjugate of ki, i = 1, 2. Applying the symmetry with respect to the full automorphism group of S,
we assume that the central involution in H2 is k1. Then H2 acting on Ω1 fixes a coset, say α and
H1 ∩H2 fixes two such cosets, say α and β. Since H1 contains k1, it is a conjugate of B1 and hence
fixes two cosets from Ω1. Clearly these cosets must be α and β. This means that 〈H1,H2〉 fixes α
and obviously it is the whole stabilizer of α in S, isomorphic to Sym(5). 2

Lemma 5.9 Let M3 be the subgroup of Aut L generated by M13 and M23. Then M3/L ∼= Sym(5).
In particular, (M1,M2,M3) is J4-triangle of groups.

Proof. We will use the information about M13 and M23 obtained in 5.6 without further reference.
Let U be a complement to Q3 in L and S a Sylow 7-subgroup of U . Since Z3 is a natural module for
L, M3 induces only inner automorphism on L/Q3 and so M3 = CM3(S)L. Put C = CM3(Q3/Z3) ∩
CM3(Z3) and E = CC(S). Then C = Q3E. Let e ∈ E. Then the map

ξ : Q3/Z3 → Z3, xZ3 7→ [x, e]

is a GF (2)S-homomorphism. Since Q3/Z3 is the direct sum of four L3(2)-modules dual to Z3, none
of the S-composition factors in Q3/Z3 are isomorphic to Z3. Hence the image of ξ is the identity
and E centralizes Q3. In particular, [U,E] ≤ CL(Q3) = Z3, E normalizes Z3U and E acts faithfully
on Z3U . By 2.7 Z3U has two classes of complements and so |E| ≤ 2 and |C/Q3| ≤ 2.

Put D = CM3(Z3) and M̄3 = M3/C. Then D centralizes L/Q3 and D̄ acts faithfully on
Q3/Z3. Thus there exists a faithful four dimensional GF (2)D̄-module R so that as D-module
Q3/Z3 is isomorphic to the direct sum of three copies of R. Let Di = CMi3(Z3) = Mi3 ∩D. Notice
that M̄3 = D̄ × L̄, M̄i3 = D̄i × L̄ and M3 = 〈M13,M23〉. Thus D = 〈D1, D2〉, D̄1 ∼= Sym(4),
D̄2 ∼= Sym(3)×C2 and D̄1 ∩ D̄2 ∼= C2×C2. By 3.7 (iii) Q1 ∩Q3 is the only M13-invariant subgroup
between Z3 and Q3. Similarly, Q2 is uniserial as GF (2)M23-module and Q2 ∩Q3 is the only M23-
invariant subgroup between Z3 and Q3. In addition Q2 ∩ Q3 has index 2 in Q2 and Q1 ∩ Q2 has
index 24 in Q2. Thus Q1 ∩Q2 ∩Q3 6= Q2 ∩Q3 and Q1 ∩Q3 6= Q2 ∩Q3. Hence D acts irreducibly
on R.

We claim that D̄ preserves on R a non-degenerate symplectic form. Notice that Q3 is non-abelian
and D centralizes Q′3 = Z3. Let X ≤ Z3 with |X| = 4 and Q′3 6≤ X. Let Y be maximal in Q3 with
respect to the condition [Q3, Y ] ≤ X. Let W/Y be an irreducible D-submodule of Q3/Y and let K
be maximal in Q3 with [W,K] ≤ X. Then we obtain a non-degenerate D-invariant bilinear map

φ : W/Y ×Q3/K → Z3/X ∼= GF (2)

(wY, qK) 7→ [w, q]X.

Hence by linear algebra, Q3/K is isomorphic to the dual of W/Y and so irreducible. On the other
hand all composition factors of D in Q3/Z3 are isomorphic to R. Hence φ induces a D-invariant
non-degenerate bilinear map

ψ : R×R→ GF (2).
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It remains to show that we can choose ψ to be a symplectic form. Define ψ∗(x, y) = ψ(x, y) +
ψ(y, x). Then clearly ψ∗(x, y) is symmetric and ψ∗(x, x) = 0. As D acts irreducibly on R, either
ψ∗(x, y) = 0 for every x, y ∈ R or ψ∗ is non-degenerate D-invariant symplectic form. Suppose that
ψ∗ is trivial. In this case ψ is symmetric. In particular, {r ∈ R | ψ(r, r) = 0} forms a D-invariant
subspace of index at most 2 in R. As R is irreducible we conclude that ψ(r, r) = 0 for all r ∈ R
and so ψ is a symplectic form and the claim follows. Thus D̄ is a subgroup in Sp4(2) ∼= Sym(6)
generated by D̄1 ∼= Sym(4) and D̄2 ∼= Sym(3)× C2 with D̄1 ∩ D̄2 ∼= C2 × C2. Hence D̄ ∼= Sym(5)
by 5.8.

Notice that M3/C = DL/C, and |M3/M13C| = 5. Since M13/L ∼= Sym(4) does not contain
normal subgroups of order 2, M13 ∩ C ≤ Q3 and hence M13/Q3 is a complement to C/Q3 in
M13C/Q3. Thus by Gaschütz’s theorem, M3/Q3 splits over C/Q3. Since Di = D′i(D1 ∩D2)Q3 and
|D1 ∩D2/(D1 ∩D2 ∩D′1)Q3| = 2, |M3/M

′
3Q3| ≤ 2. But |Sym(5)/Sym(5)′| = 2, hence C/Q3 = 1

and the lemma is proved. 2

Thus up to isomorphism there exists a unique J4-triangle of groups.

6 Amalgams of Modules

In this section we prove a number of results to be used in the next section where a J4-triangle of
groups will be constructed inside GL1333(C). The following lemma is of crucial importance.

Lemma 6.1 Let (M1,M2,M3) be a triangle of groups, H be a group and A be a subgroup of Aut H.
Suppose that for all 1 ≤ i ≤ 3, there exist homomorphisms αi : Mi → H and elements ai ∈ A such
that

α1|M13a2 = α3|M13 , α2|M12a3 = α1|M12 and α3|M23a1 = α2|M23 .

Put M∗23 = M
α3a
−1
2

23 ,M∗13 = Mα1
13 ,M

∗
12 = Mα1

12 and B∗ = Bα1 . Then

(i) The following two statements are equivalent:

(a1) There exist bi ∈ A, 1 ≤ i ≤ 3, such that

αibi|Mij = αjbj |Mij , for all i 6= j.

(a2) a2a1a3 ∈ CA(M∗23)CA(M∗13)CA(M∗12).

(ii) B∗ ≤M∗12 ∩M∗13 ∩M∗23 and a2a1a3 ∈ CA(B∗). In particular, (a2) and (a1) hold if

(∗) CA(B∗) = CA(M∗23)CA(M∗13)CA(M∗12).

(iii) Assume that (a1) holds and that each αi, 1 ≤ i ≤ 3, is one to one. Put M∗i = Mαibi
i . If

M∗i ∩M∗j = Mαibi
ij for all 1 ≤ i < j ≤ 3, then (M∗1 ,M

∗
2 ,M

∗
3 ) is a triangle of groups isomorphic

to (M1,M2,M3)
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Proof. Replacing α2 by α2a3, α3 by α3a
−1
2 and a1 by a2a1a3 we may assume that a2 = a3 = 1.

(i) Replacing bi by bib−1
1 , for all i, we see that (a1) is equivalent to :

(1) α1|M13 = α3b3|M13 , α1|M12 = α2b2|M12 and α2b2|M23 = α3b3|M23 for some b2, b3 ∈ A.

Since α1|M13 = α3|M13 , α1|M12 = α2|M12 and α2|M23 = α3a1|M23 , (1) is equivalent to

(2) b3 ∈ CA(M∗13), b2 ∈ CA(M∗12) and a1b2b
−1
3 ∈ CA(M∗23) for some b2, b3 ∈ A.

Now (2) is obviously equivalent to (a2).

(ii) Since a2 = a3 = 1, α2|B = α1|B = α3|B and so B∗ ≤ M∗12 ∩M∗13 ∩M∗23. Moreover, since
α2|M23 = α3|M23a1, we get α1|B = α1a1|B and a1 ∈ CA(B∗).

(iii) is obvious. 2

Lemma 6.2 Let K be a field, G be a group, H be a subgroup of finite index m in G, W be a finite
dimensional KG-module and U be a non-zero finite dimensional KH-module. Suppose that each of
the following statements holds:

(i) U is isomorphic to a KH-submodule of W ;

(ii) dimKW = m · dimKU ;

(iii) At least one of W and U
⊗

KH KG is irreducible as a KG-module.

Then W ∼= U
⊗

KH KG as KG-modules.

Proof. By (i) and the universality property of induced modules, there exists a non-zero KH-
homomorphism Φ : U

⊗
KH KG → W . By (iii) Φ is onto (in the first case) or one-to-one (in the

second case). By (ii) dimKW = m · dimK U = dimK U
⊗

KH KG and so Φ is an isomorphism. 2

Fundamental to our construction of a J4-triangle inside GL1333(C) is the concept of ”amalgam
of modules”. Amalgams of modules are a special case of sheaves ( see for example [14]) and can be
discussed in broad generality, but we will restrict ourselves to what is needed in this paper.

Definition 6.3 Let H be a group and H1 and H2 subgroups of H with H = 〈H1,H2〉. Put H0 =
H1 ∩H2 and let K be a field.

(i) An amalgam of K-modules for H1 ← H0 → H2 is a tuple (W0,W1,W2, φ1, φ2), where Wi is
a KHi-module, 0 ≤ i ≤ 2 and φi : W0 → Wi is a KH0-monomorphism, 1 ≤ i ≤ 2. Such an
amalgam of modules is denoted by

W1
φ1←W0

φ2→W2.

(ii) A faithful KH-completion for W1
φ1← W0

φ2→ W2 is a tuple (W,ψ1, ψ2), where W is a KH-
module and, for 1 ≤ i ≤ 2, ψi : Wi → W are KHi-monomorphisms with φ1ψ1 = φ2ψ2. Such
a completion is denoted by

W1
ψ1→W

ψ2←W2.
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Let W be as in part (ii) of the above definition. In abuse of notation, we will refer to W itself as
a completion of the amalgam of modules.

We following elementary lemma is at the heart of the construction of J4.

Lemma 6.4 Let W1
φ1← W0

φ2→ W2 be an amalgam of K-modules for H1 ← H0 → H2. Assume that
each of the following three statements holds:

(1) Wi is irreducible for 0 ≤ i ≤ 2.

(2) There exists a normal elementary abelian subgroup Q of H contained in H0 with CW0(Q) = 0
and a hyperplane A in Q such that CWi(A) is one dimensional for 0 ≤ i ≤ 2.

(3) Put Ni = NHi(A) for 0 ≤ i ≤ 2 and N = NH(A). Then N0 ∩N ′ = (N0 ∩N ′1)(N0 ∩N ′2) and
N = N0N

′.

Then W1 ← W0 → W2 has a faithful and irreducible KH-completion W of dimension |H/N |.
Moreover, the Wedderburn components for Q on W are 1-dimensional and the action of H on these
Wedderburn components is isomorphic to the action on AH .

Proof. Let 0 ≤ i ≤ 2 and put Xi = CWi(A). Then from (1) and (2), Xi is a Wedderburn
component for Q on Wi and so Wi

∼= Xi⊗KNiKHi. Since Xi is one dimensional, N ′i centralizes Xi.
Let 1 ≤ j ≤ 2. Clearly Xφj

0 = Xj and N0 ∩N ′j centralizes Xj and X0. By (3), N0 ∩N ′ centralizes
X0. Define the KN -module X by X = X0 as K-vector space and xg = xh whenever x ∈ X, g ∈ N
and h ∈ N0 with N ′g = N ′h. Since N = N0N

′ such h always exists and since N ′ ∩N0 centralizes
X0 this is well defined. Put W = X ⊗KN KH . As Wi

∼= Xi ⊗KNi KHi we conclude that W is a
faithful KH-completion of W1 ← W0 → W2. Clearly X is a Wedderburn component for Q on W ,
NH(A) = N , W is irreducible and dimW = |H/N |. 2

7 A J4-triangle in GL1333(C)
In this section (M1,M2,M3) is an arbitrary J4-triangle of groups and C is the field of complex
numbers. Our goal is to define a J4-triangle inside GL1333(C).

The following notations will be used throughout this section. Let 1 ≤ i, j ≤ 3 with i 6= j. If
X is an CMi-module, then Rij(X) is the restriction of X to Mij ; if Y is an CMij-module then
Ii(Y ) = Y ⊗CMij CMi ( the module for CMi induced from Y ) and R0(Y ) is the restriction of Y to
B; and if Z is an CB-module, then Iij(Z) = Z ⊗CB CMij .

In what follows Xt(i) will always denote an CMi-module, Yt(ij) an CMij-module and Zt an
CB-module. If G is a group, H ≤ G, U is an CH-module and W is an CG-module we write
U → W or W ← U provided that U is isomorphic to a CH-submodule of W . (We remark that in
all cases below the CH-submodule of W isomorphic to U will be unique).

Put L = O2(B).

Let X1(1) be an irreducible 45-dimensional CM1/Q1-module given by [7] regarded as an CM1-
module. Then clearly

(1) X1(1) is irreducible of dimension 45 and CM1(X1(1)) = Q1.
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The next three statements follow from 3.12.

(2) Put Y1(12) = R12(X1(1)). Then Y1(12) is irreducible of dimension 45 and CM12(Y1(12)) =
Q1 ∩M12.

(3) Restricted to M13, X1(1) is the direct sum of irreducible CM13-modules Y1(13) and Y2(13), of
dimension 3 and 42, respectively. Moreover, CM13(Y1(13)) = O2,3(M13) and CM13(Y2(13)) = Q1.

(4) For i = 1, 2 put Zi = R0(Yi(13)). Then Z1 and Z2 are irreducible of dimension 3 and 42,
respectively. Moreover, restricted to B, Y1(12) is isomorphic to Z1 ⊕ Z2.

Let A/Q3 be the subgroup isomorphic to Alt(5) in M3/Q3. By 5.1 (A∩M13)/Q3 ∼= Alt(4). Thus
A ∩M13 ≤ O2,3(M13) and so by (3), A ∩M13 centralizes Y1(13). Moreover, M3 = AM13 and thus
there exists an CM3-module X1(3) such that

(5) X1(3) is irreducible of dimension 3, CM3(X1(3))/Q3 ∼= Alt(5) and X1(3) is isomorphic to
Y1(13) as an CM13-module.

By (4) and (5)

(6) Put Y1(23) = R23(X1(3)). Then Y1(23) is irreducible of dimension 3 and restricted to B
isomorphic to Z1.

Put X1(2) = I2(Y1(23)). There are 15 2-spaces of V (2) containing V1(2) and 140 = 155 − 15
2-spaces of V (2) which do not contain V1(2). Hence the orbits of M12 on M2/M23 have length 15
and 140. Moreover, 15 = |M12/B| , Y1(12) is irreducible of dimension 45 = 15 ·3 = |M12/B| ·dimZ1
and so by 6.2, Y1(12) ∼= I12(Z1). Since Z1 = R0(Y1(23)) the definition of X1(2) now implies

(7) Y1(23)→ X1(2), X1(2) is 465-dimensional and is as an CM12-module isomorphic to the direct
sum of Y1(12) and a 420 dimensional CM12-module Y2(12).

We remark that X1(2) and Y2(12) are irreducible. With some effort this could be proved directly
at this stage, but we prefer to prove this later on ( see (17) and (29)) in shorter but indirect way.

Put X2(3) = I3(Y2(13)). By 3.12 the restriction of Y2(13) to L is an irreducible module U .
Hence X2(3) restricted to L is the sum of five irreducible CL-modules U1 = U, U2, ..., U5. By (3)
CL(U1) = Q1∩L. Since Z(Q3) < Q1∩L < Q3 and Z(Q3) is the only proper M3-invariant subgroup
properly contained in Q3, we have CL(X2(3)) 6= CL(U1). Also M3 acts primitively on {U1, ..., U5}
and hence CL(Ui) 6= CL(Uj) for i 6= j and we conclude:

(8) X2(3) is the direct sum of five pairwise non-isomorphic 42-dimensional CL-modules naturally
permuted by M3/L ∼= Sym(5).

By 5.1 (i) the orbits of M13, M23 and B on M3/M13 have lengths 1 and 4; 3 and 2; and 1, 2 and
2, respectively. Thus (8) and Clifford theory implies the following four statements:

(9) X2(3) is irreducible of dimension 210.

(10) Restricted to M13, X2(3) is isomorphic to the direct sum of Y2(13) and Y3(13), where Y3(13)
is an irreducible CM23-module of dimension 168.
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(11) Restricted to M23, X2(3) is the direct sum of irreducible CM23-modules Y2(23) and Y3(23)
of dimension 126 and 84, respectively.

(12) Restricted to B, Y2(23) is isomorphic to the direct sum of Z2 and an irreducible 84-dimensional
CB-module Z3. Put Z4 = R0(Y3(23)). Then Z4 is an irreducible 84-dimensional CB-module and
Z4 6∼= Z3. Moreover, restricted to B, Y3(13) is isomorphic to the direct sum of Z3 and Z4.

Note that by definition (see (4)), Z2 is isomorphic to Y2(13) as an CB-module, by (3) Y2(13)→
X1(1), and by definition (see (2)) Y1(12) is isomorphic to X1(1) as an CM12-module. Moreover, by
(7) Y1(12)→ X1(2). Hence as CB-modules

Z2 ∼= Y2(13)→ X1(1) ∼= Y1(12)→ X1(2).

Hence by (12), Y2(23)← Z2 → X1(2). By (11) Y2(23) is irreducible of dimension 126 = 3 · 42 =
|M23/B| · dimZ2 and we conclude from 6.2 that Y2(23) ∼= I23(Z2). As Z2 → X1(2), the univer-
sal property of induced representations implies that there exists a non-zero CM23-homomorphism
from Y2(23) (∼= I23(Z2)) to X1(2). As Y2(23) is irreducible, this homomorphism is one-to-one. So
Y2(23) → X1(2). Then by (12) Z3 → Y2(23) and so Z3 → X1(2). Since dim Z3 > dim Y1(12) and
Z3 is irreducible, by (7) we get Z3 → Y2(12). We record:

(13) Y2(23)→ X1(2) and Z3 → Y2(12).

By 5.1 we can pick t ∈ Q1 \M2. Then clearly t normalizes B and M12. So if T is one of B
and M12 and W is an CT -module, then T acts on W by w → w(gt) for all w ∈ W, g ∈ T and we
obtain a new CT -module denoted by W t. Put B̂ = B〈t〉 and M̂12 = M12〈t〉. Since B̂/L normalizes
B/L ∼= C2×C2 in M3/L ∼= Sym(5), clearly B̂/L ∼= D8 and has orbits of length 1 and 4 on M3/M13.
In particular, B̂ interchanges the two orbits of length 2 for B on M3/M13. Thus (8) - (12) imply

(14) Z4 ∼= Zt3 and B̂ acts irreducibly on Y3(13).

Let X = Y2(12)
⊗

CM12
CM̂12 and Y = Z3

⊗
CB CB̂. By (13) Z3 → Y2(12) and by (12)

Z3 → Y3(13). Hence the universal property of induced modules implies the first part of the following
statement (the second part is still to be proved):

(15) X ← Y → Y3(13) and CY2(12)(Q1 ∩Q2) = 0 .

Our nearest goal is to invoke 6.4 to find a faithful M1-completion for the amalgam X ← Y →
Y3(13) of C-modules for M̂12 ← B̂ → M13. We start by proving the second part of (15) which
is equivalent to the claim that Q1 ∩ Q2 acts fixed-point freely on Y2(12) and immediately implies
that Q1 = 〈Q1 ∩M2, t〉 acts fixed-point freely on Y . For this notice that by 5.1 (vi) Q3 ∩ Q2 is a
hyperplane in Q2. Furthermore, by definition (see (6)), Y1(23) = R23(X1(3)) and so by (5) Q3 and
so also Q3 ∩Q2 centralize Y1(23). Since X1(2) = I2(Y1(23)) and NM2(Q2 ∩Q3) = M23 by 5.1, every
hyperplane of Q2 which centralizes a non-zero vector in X1(2) is (Q2 ∩Q3)m for some m ∈M2 and
the vectors centralized by such a hyperplane form a 3-space in X1(2). By 5.1 (vi) Q1 ∩ Q2 lies in
15 hyperplanes of Q2 and by (1), (2) Q1 ∩Q2 centralizes the 45-dimensional space Y1(12) in X1(2).
Since 45 = 15 · 3, this and (7) imply that Q1 ∩ Q2 acts fixed-point freely on Y2(12) and the claim
follows.

Recall that Y3(13) restricted to B̂ is isomorphic to Y and Y restricted to B is the direct sum of
two irreducible non-isomorphic CB-modules Z3 and Z4. Hence both Y and Y3(13) are irreducible

168-dimensional modules. Let A be a hyperplane in Q1 with d
def
= dimCY (A) 6= 0. Since Q1
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centralizes neither Y nor Y3(13), CY (A) is a Wedderburn component for Q1 on Y and Y3(13).
Hence d · |AB̂ | = 168 = d · |AM13 |. By 3.6 there are two M1-orbits on the set of hyperplanes in Q1,
one is indexed by the octads and the other one by complementary pairs of dodecads in S. Suppose
that A is from the former of the orbits. Recall that M13 is the stabilizer in M1 of a trio β and B̂ is
the stabilizer of T and an octad α contained in T . By D3(Mat24) there are exactly two orbits S1
and S2 of M13 on the octads with length less than or equal to 168. Here S1 is the three octads in T
and S2 contains the octads which are disjoint from exactly one octad in T . Since B̂ acts transitively
neither on S1 nor on S2, this is a contradiction. Thus A corresponds to a complementary pair of
dodecads and by 3.10 (i), |AM13 | = |AB̂ | = 168, d = 1 and |AM̂12 | = 840. In particular, X is
irreducible and CX(A) is 1-dimensional. By 3.10 (ii) we can apply 6.4 and obtain a CM1-module
X2(1) such that

(16) X → X2(1) ← Y3(13), X2(1) is irreducible of dimension 1288, the Wedderburn components
for Q1 on X2(1) are 1-dimensional and the action of M1/Q1 on these Wedderburn components is
isomorphic to the action of M1/Q1 on pairs of complementary dodecads.

Put Y3(12) = Y2(12)t. Then by definition, X ∼= Y2(12)
⊕
Y3(12) as CM12-module. Moreover,

by (12) and (14) Z3 6∼= Zt3 and since X is irreducible we get

(17) Y3(12) and Y2(12) are irreducible of dimension 420, Z4 → Y3(12), Y3(12) 6∼= Y2(12), Y2(12)→
X2(1) and Y3(12)→ X2(1).

(16) and 3.10 (i) imply the following two statements:

(18) Restricted to M13, X2(1) is isomorphic to the direct sum of Y3(13), Y4(13) and Y5(13), where
Y4(13) and Y5(13) are irreducible CM13-modules of dimension 672 and 448, respectively.

(19) B̂ acts irreducibly on Y5(13).

By (12) and (17) Y3(23) ← Z4 → Y3(12) and we will use 6.4 to find a faithful M2-completion
for this amalgam of C-modules for M23 ← B → M12. By (15), CY2(12)(Q1 ∩ Q2) = 0 and as t
normalizes Q1 ∩Q2, CY3(12)(Q1 ∩Q2) = 0 = CY3(12)(Q2) = CZ4(Q2). Let A be a hyperplane in Q2
with CZ4(A) 6= 0.

The hyperplanes in Q2 are described in 2.8. Suppose that A corresponds to a 2-space in V (2).
Then by 2.8e the orbits of M23 on AM2 have lengths 1, 42 and 112. If A is normal in M23, then
since Y3(23) is irreducible, Q2 inverts Y3(23). This is a contradiction, since by (8) and (11) Q2
interchanges two of the three irreducible L-submodules in Y3(23) . Moreover, 112 > dimY3(23)
and hence the only possibility to consider is that |AM23 | = 42. In this case by 2.8 B does not act
transitively on AM23 , contradicting the irreducibility of Z4.

So A ∈ H(s). By 2.8 (iii) the orbits of M23 on H(s) have lengths 84, 112 and 672. It follows that
|AM23 | = 84, CY3(23)(A) is 1-dimensional, |AB | = 84, |AM12 | = 420 and CY3(12)(A) is 1-dimensional.
By 2.8 (iv) we can apply 6.4 and so there exists an CM2-module X2(2) such that

(20) Y3(23)→ X2(2)← Y3(12), X2(2) is irreducible of dimension 868, the Wedderburn components
for Q2 on X2(2) are 1-dimensional and the action of M2/Q2 on these Wedderburn components is
isomorphic to the action of M2/Q2 on H(s).

In particular, 2.8 (iii) yields the following three statements:

(21) Restricted to M23, X2(2) is isomorphic to the direct sum of Y3(23), Y4(23) and Y5(23), where
Y4(23) and Y5(23) are irreducible CM23-modules of dimension 112 and 672, respectively.
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(22) Restricted to M12, X2(2) is isomorphic to the direct sum of Y3(12) and Y4(12), where Y4(12)
is an irreducible CM12-module of dimension 448.

(23) Put Z5 = R0(Y4(23)) and Z6 = R0(Y4(12)). Then Z5 and Z6 are irreducible of dimension
112 and 448, respectively. Moreover, restricted to B; X2(2) is isomorphic to the direct sum of Z4,
Z5, Z6 and Z7; Y5(23) is isomorphic to the direct sum of Z6 and Z7; and Y3(12) is isomorphic to the
direct sum of Z4, Z5 and Z7. Here Z7 is an irreducible CB-module of dimension 224.

Put Z8 = Zt5 and Z9 = Zt7. By (14), Z4 ∼= Zt3 and by definition ( see after (17)) Y3(12) = Y2(12)t.
By (23) Y3(12) ∼= Z4

⊕
Z5
⊕
Z7 as an CB-module and since t2 = 1 we conclude that

(24) Restricted to B, Y2(12) is isomorphic to the direct sum of Z3, Z8 and Z9.

Put X3(3) = I3(Y4(23)). Note that by (23) and (17) Z5 → Y3(12) → X2(1) and that by (22)
and (23) dimY5(13) = 448 > 2 · 112 = 2 · dimZ5. Thus by (19) and since |B̂/B| = 2, Z5 6→ Y5(13).
Further by (12) Z5 6→ Y3(13) and so by (18), Z5 → Y4(13). Since Y4(13) is irreducible of dimension
672 = 6 · 112 = |M13/B| · dimZ5, 6.2 implies Y4(13) ∼= I13(Z5). Thus

(25) Y4(13)→ X3(3).

We claim that L acts irreducibly on Y4(23). For this let A be a hyperplane in Q2 with
CY4(23)(A) 6= 0. By (20) and (21), |AM23 | = 112 and A corresponds to a pair (W, s), where W
is a 4-space in V (2) and s is a non-degenerate symplectic form on W . Let U be the 2-space in
V (2) normalized by M23. Since |AM23 | = 112 the proof of 2.8 (iii) implies U ≤ W and s|U is non-
degenerate. Let U = 〈u1, u2〉 and W = U + 〈v1, v2〉 with s(ui, vj) = 0. Note that each hyperplane
of Q2 corresponds to a vector in V (2) ∧ V (2) and, in particular, Q2 ∩ L corresponds to u1 ∧ u2 and
A corresponds to u1 ∧ u2 + v1 ∧ v2. Thus the third hyperplane of Q2 containing A ∩ L corresponds
to v1 ∧ v2 and A is the unique element of H(s) containing A ∩ L. Thus NL(A) = NL(A ∩ L) and
CY4(23)(A ∩ L) = CY4(23)(A) is 1-dimensional. Since NM23(A) = NM2(U,W, s) acts as GL(U) on U
and CM23(U) = LQ2, M23 = NM23(A)L. Thus |(A ∩ L)L| = |AL| = 112 and L acts irreducibly on
Y4(23).

Since L is normal in M3 we conclude from the definition of X3(3) that X3(3) is the direct
sum of ten irreducible CL-modules of dimension 112. Suppose these ten irreducibles are pairwise
isomorphic. As Y4(13) has dimension 6 · 112, we conclude from (25) that Y4(13) is the direct sum of
six isomorphic irreducible CL-submodules. Let H be a hyperplane in Q1 ∩Q3 with CY4(13)(H) 6= 1.
Since Q1 ∩Q3 ≤ L, CY4(13)(H) is at least 6-dimensional and H lies in at least six hyperplanes of Q1
corresponding to complementary pairs of dodecads. On the other hand all three hyperplanes of Q1
containing Q1 ∩Q3 correspond to octads. Hence H is contained in at least nine hyperplanes of Q1,
a contradiction to |Q1/H| = 8.

Thus X3(3) is not the direct sum of isomorphic CL-modules. Since M23 is maximal in M2, M3
acts primitively on the cosets of M23 in M3 and we conclude

(26) X3(3) is irreducible of dimension 1120, Y4(23) is an irreducible Wedderburn component for
L on X3(3) and NM3(Y4(23)) = M23.

Put Y6(23) = I23(Z8). By definition, Z5 → Y4(23) → X3(3) and Z8 = Zt5. Thus 6.2 and (26)
imply:

(27) Y6(23)→ X3(3), Y6(23) is irreducible of dimension 336 and Z8 6∼= Z5.
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By (24) and (7), Z8 → X1(2). So by (27) and 6.2, Y6(23)→ X1(2). By (13) Y2(23)→ X1(2) and
by (7) Y1(23)→ X1(2). Since dimX1(2) = 465 = 3+126+336 = dimY1(23)+dimY2(23)+dimY6(23)
we conclude:

(28) Restricted to M23, X1(2) is isomorphic to the direct sum of Y1(23), Y2(23) and Y6(23).

Since Y1(23), Y2(23), Y6(23), Y1(12) and Y2(12) are all irreducible, by (7) and (28) we get

(29) X1(2) is irreducible.

By (2), (3) and (4), Y1(12) ∼= Z1
⊕
Z2, by (24) Y2(12) ∼= Z3

⊕
Z8
⊕
Z9 and by (12) Y2(23) ∼=

Z2
⊕
Z3 as CB-modules. Hence using (7) and (28) we get

(30) Restricted to B, X1(2) is isomorphic to the direct sum of Z1, Z2, Z3, Z8 and Z9. Restricted
to B, Y6(23) is isomorphic to the direct sum of Z8 and Z9.

In particular, Z9 → Y6(23) → X3(3) and since Z9 = Zt7 we get Z7 → X3(3) and thus by (26),
Z7 6∼= Z9. Moreover, by (23), Z7 → Y5(23) and by 6.2, I23(Z7) ∼= Y5(23). Hence Y5(23) → X3(3).
By definition of X3(3), Y4(23)→ X3(3) and by (27), Y6(23)→ X3(3). Therefore:

(31) Z7 6∼= Z9 and restricted to M23, X3(3) is isomorphic to the direct sum of Y4(23), Y5(23) and
Y6(23).

Put X(1) = X1(1)
⊕
X2(1), X(2) = X1(2)

⊕
X2(2) and X(3) = X1(3)

⊕
X2(3)

⊕
X3(3). Then

by the definition of Y1(23), (11), (21), (28) and (31):

(32) X(2), X(3) and
⊕6

i=1 Yi(23) are isomorphic as CM23-modules.

By (6), (12), (23) and (30) each of the Yi(23)′s can as CB-module be decomposed into a direct
sum of some of the Z ′js. Hence by (32):

(33) X(2), X(3) and
⊕9

i=1 Zi are isomorphic as CB-modules.

Note that M13 has orbits of length 6 and 4 on M3/M23. Hence by (25) and (26), X3(3) ∼=
Y4(13)

⊕
Y a5 (13) as CM13-modules, where Y a5 (13) is an irreducible 448-dimensional CM13-module.

Let Z be the restriction of Y a5 (13) to B̂. Then by (26) and (33), Z is irreducible and restricted to B
isomorphic to Z7

⊕
Z9. Hence 6.2 implies that Z ∼= Z9⊗CB CB̂. By (24) and (17), Z9 → Y2(12)→

X2(1) and hence Z is isomorphic to a CB̂-submodule of X2(1). From 3.10 (i) and (18) we conclude
Y5(13), Y a5 (13) and Z are isomorphic as CB̂-modules. Let H be a hyperplane in Q1 with CZ(H) 6= 0
and N and N0 the normalizers of H in M13 and B̂, respectively. By 3.10 (iii), N = N0N

′. Let D and
Da be the centralizers of H in Y5(13) and Y a5 (13), respectively. Then D and Da are 1-dimensional
and so N ′ centralizes D and Da. Since D and Da are isomorphic as CN0-modules, we conclude that
D and Da are isomorphic as CN -modules. Thus Y5(13) ∼= D⊗CNCM13 ∼= Da⊗CNCM13 ∼= Y a5 (13).
We have proved:

(34) Restricted to M13, X3(3) is isomorphic to the direct sum of Y4(13) and Y5(13). Restricted to
B, Y5(13) is isomorphic to the direct sum of Z7 and Z9.

From (3), (5), (10), (18) and (34) we conclude that:

(35) X(1), X(3) and
⊕5

i=1 Yi(13) are isomorphic as CM13-modules.
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From (33) and (35)

(36) X(1), X(2), X(3) and
⊕9

i=1 Zi are isomorphic as CB-modules.

By (17) and 3.10 (i), X2(1) restricted to M12 is isomorphic to the direct sum of Y2(12), Y3(12)
and Y a4 (12), where Y a4 (12) is a 448-dimensional CM12-module. It follows from (36) that both Y4(12)
and Y a4 (12) are isomorphic to Z6 as CB-modules. In particular, Y a4 (12) is irreducible. Let H be
a hyperplane in Q2 with CZ6(H) 6= 0. Let N and N0 be the normalizers of H in M12 and B
respectively. Then N/Q2 ∼= Sym(6), |N/N0| = |M12/B| = 15, N = N0N

′ and as in the proof of
(34) we get Y4(12) ∼= Y a4 (12). Thus

(37) X2(1) restricted to M12 is isomorphic to the direct sum of Y2(12), Y3(12) and Y4(12).

Now (2), (7), (22) and (37) imply:

(38) X(1), X(2) and
⊕4

i=1 Yi(12) are isomorphic as CM12-modules.

We are now able to construct a completion of the J4-triangle in GL1333(C). Let {i, j, k} =
{1, 2, 3}. Then by (32), (35) and (38) X(i) and X(j) are isomorphic as CMij-modules. Let X
be a 1333-dimensional vector space over C. Then there exist monomorphisms αi : Mi → GL(X),
1 ≤ i ≤ 3, and inner automorphisms ai of GL(X) such that

α1a2|M13 = α3|M13 , α2a3|M12 = α1|M12 and α3a1|M12 = α2|M23 .

Thus the assumptions of 6.1 are fulfilled with H = GL(X) and A = Inn(GL(X)). Note that if
Y is one of B∗, M∗23,M

∗
13 and M∗12, then X is the direct sum of pairwise non-isomorphic, absolutely

irreducible CY -modules and so CGL(X)(Y ) consists of exactly those linear transformations which
act as non-zero scalars on each of the irreducible CY -submodules. By 6.1b (ii), B∗ ≤ Y and so
CGL(X)(Y ) ≤ CGL(X)(B∗). It is now easy to verify that CA(B∗) = CA(M∗23)CA(M∗13)CA(M∗12).
Thus by 6.1 (i), (a1) in 6.1 holds. Put M∗i = Mαibi

i . Then by 6.1 (iii)

Theorem 7.1 There exist subgroups M∗1 ,M
∗
2 ,M

∗
3 of GL1333(C) such that (M∗1 ,M

∗
2 ,M

∗
3 ) is a J4-

triangle isomorphic to (M1,M2,M3).

8 Faithful Completions of J4-triangles

This section is devoted to study completions of J4-triangles. Let (M1,M2,M3) be a J4-triangle of
groups with a faithful completion M . Let S be a Sylow 2-subgroup of B, Z4 = Z(S), Mi4 = CMi(Z4)
and M4 the subgroup of M generated by M14,M24 and M34.

We will use the definitions introduced in 2.4 and 2.3 with respect to I = {1, 2, 3, 4} and Γi =
M/Mi.

Let R = CB(Z4), Q∗4 = O2(R), Q4 = O2(Q∗4) and Z3 = Z(Q3). Let V (2), V1(2) and V3(2) be as
in 5.1 (ii).

Lemma 8.1 (i) Q4 ∼= 21+12
+ , Z(Q4) = Z4, Q∗4/Q4 ∼= C3 and Q∗4/Q4 acts fixed-point freely on

Q4/Z4.
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(ii) Q∗4 is normal in M4 and M4/Q
∗
4
∼= Aut Mat22.

(iii) Mi4 = Mi ∩M4 for all 1 ≤ i ≤ 3.

(iv) M14 ∼ 21+6+4263·Sym(6), M24 ∼ 21+6+3(26(Sym(3)×L3(2))) and M34 ∼ 21+2+8+4(Sym(5)×
Sym(4)).

Proof. First notice that Z4 is non-trivial since it is the centre of S which is a 2-group. Since
Z4 ≤ Z(M4), Mi4 ≤ Mi ∩ M4 ≤ CMi(Z4) = Mi4 and so (iii) holds. Put Yi = O2,3(Mi4) for
1 ≤ i ≤ 3. Let us locate Z4 in M1 and determine M14. Consider M1 as the semidirect product of
Q1 and K1 where K1 ∼= Mat24 and Q1 is the irreducible Todd module for K1. One can see, for
instance from 3.7 (i) that a Sylow 2-subgroup of K1 acts faithfully on Q1 ∩M2 and hence Z4 ≤ Q1.
Let K14 be the stabilizer in K1 of a sextet H and R14 = O2(K14). Since R14 stabilizes all octads
and trios incident to H, R14 is contained in S. On the other hand by 3.7 (iv) R14 centralizes a
unique non-zero vector in Q1 and clearly this is the vector which corresponds to H in the sense of
3.6 (ii). Thus |Z4| = 2, Z4 = CQ1(R14) and M14 = NM1(H). By 3.2 (iii) and 3.7 (iv) we have
that M14 ∼ 21+6+4263 · Sym(6). Now Y1 normalizes all the trios and octads adjacent to H and so
Y1 ≤ RQ1. Also, RY1/Y1 is a Sylow 2-subgroup of M14/Y1 and so Q∗4 = O2(R) = O2(O2(Y1))).
One can see from 3.7 (iv) that O2(O2(Y1))) = 〈[Q1, R14], R14〉 is extraspecial of order 213, a Sylow
3-subgroup of Y1 acts fixed-point freely on O2(O2(Y1)))/Z4 and so (i) follows.

Since Q2 is isomorphic to
∧2(V (2)∗), and S is a Sylow 2-subgroup of M2, by 2.8 Z4 cor-

responds to a 2-subspace in V (2)∗ and dually to a 3-space V4(2) in V (2) with V3(2) ≤ V4(2).
Thus M24 = NM2(V4(2)) and from 3.2 (ii) together with standard properties of Q2 we have
M24 ∼ 21+6+3(26(Sym(3) × L3(2))). Note that Y2 ≤ CM2(V4(2)) ≤ M123 = B. Thus similar
to the above, Q∗4 = O2(Y2) and M24/Q

∗
4 ∼ C2 × 23L3(2). Since Q3 ≤ S, Z4 ≤ Z3 and so by 5.1

(vii), M34 ∼ 21+2+8+4(Sym(5) × Sym(4)). Thus Y3 ≤ L ≤ B (recall that L = O2(B)). As above
Q∗4 = O2(Y3) and M34/Q

∗
4 ∼ 24+1Sym(5). Since Q∗4 = O2(Yi) for 1 ≤ i ≤ 3, we conclude that Q∗4

is normal in Mi4 for all 1 ≤ i ≤ 3 and so Q∗4 is normal in M4. In particular all statements but the
last one in (ii) are proved. It is now straightforward to verify that (M14/Q

∗
4,M24/Q

∗
4,M34/Q

∗
4) is

an Aut Mat22-triangle of groups (compare 4.1) and thus by 4.6 M4/Q
∗
4
∼= Aut Mat22, completing

the proof of the lemma. 2

Lemma 8.2 (i) M12Q1, M13 and M14 are normalizers in M1 of an octad, a trio and a sextet,
which are pairwise adjacent.

(ii) M12, M23 and M24 are the normalizers in M2 of 1-space, 2-space and 3-space in a flag in
V (2).

(iii) M13 and M23 are the normalizers in M3 of 1- and 2-subsets in the 5-set Ω(3), which are
disjoint; M34 is the normalizer in M3 of a 1-space in Z3.

(iv) M14, M24 and M34 are the normalizers in M4 of a hexad, an octet and a pair, which form a
flag.

(v) Γ is geometric.

Proof. (i) - (iv) follow from 8.1 and 5.1.
(v) We will appeal to 2.5. Let {a1, a2, a3} be a flag of type {i, j, k}. If i = 3 and j = 4, then by

(iii) M43Mk3 = M3 and so any two vertices of type 4 and k in Γ∗(M3) are adjacent. Hence a2 and
a3 are adjacent. So we may assume that a1 = M1 and a2 = M2. Since V1(2) = CV (2)(Q1 ∩M2) is
1-dimensional, any Q1∩M2-invariant proper subspace of V (2) contains V1(2). Now a3 is adjacent to
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M1 and its type is different from 2. So Q1 ≤Ma3 , Va3(2) is Q1 ∩M2-invariant and V1(2) ≤ Va3(2).
Hence by (ii) a1 and a3 are adjacent in Γ∗(a2) and (v) follows from 2.5. 2

Recall that 6 abc = |cMba |. We remark that for all nd-paths (a, b, c), cMba is completely deter-
mined by a, b, the type of c and 6 abc. Furthermore, if a and d are both adjacent to b and c, put
6 a

b
c d = |dMabc |.
Recall also that

a1
n1 −

a2
n2 − . . .−

ak
nk stands for a path (a1, a2, . . . , ak) of type n1 − n2 − . . .− nk.

Given
a
1 −

b
2, define Ra(b) by {b,Ra(b)} = bQa .

For b of type 2, let V (b) be a natural 5-dimensional GF (2)Mb/Qb-module such that Qb is iso-
morphic to

∧2
V (b)∗, the exterior square of the dual of V (b). For c ∈ Γ(b) let Vc(b) = CV (b)(Qc)

and note that Vc(b) is a 1-space in V (b), if c is of type 1, a 2-space if c has type 3 and 3-space if c
is of type 4. Similarly, put V ∗c (b) = CV (b)∗(Qc) = {φ ∈ V (b)∗ | φ(Vc(b)) = 0} and note that V ∗c (b) is
a 4-, 3- and 2-space, respectively.

For c of type 3 let Ω(c) (see 5.1) be the Mc-set of size 5 with Mc/CMc(Ω(c)) ∼= Sym(5). For
a ∈ Γ1(c) let Ωa(c) be the element of Ω(c) fixed by Mac and for b ∈ Γ2(c) let Ωb(c) be the subset of
size 2 in Ω(c) fixed by Mbc.

If a and b are adjacent, Da(b) denotes the orbit-diagram for the orbits of Mab on Γ(b). We will
use these diagrams only for b of type 1 or 4, in which case they can be found in before 3.1 and 4.7.

Let a be a fixed vertex of type 1. For b, c of type 1, b 6= c, write b ∼ c if b and c are adjacent to a
common vertex of type 3, and let d(b, c) be the distance between b and c in (Γ1,∼). Let X0(a) = {a}
and X1(a) = {b ∈ Γ1 | a ∼ b}.

Throughout this section we will often use 5.1 and 8.2 without further reference.

Lemma 8.3 Let a ∈ Γ1 and ai ∈ Γi(a), 2 ≤ i ≤ 4. Then

(i) For k = 3, 4, a2 is adjacent to ak if and only if Zak ≤ Qa2 ∩Qa and if and only if Qak ∩Qa ≤
Ma2 ∩Qa.

(ii) a3 is adjacent to a4 if and only if Za4 ≤ Za3 and if and only if Qa4 ∩Qa ≤ Qa3 ∩Qa.

(iii) Za4 ≤ Qa3 if and only if 6 a3aa4 6= 1344.

Proof. (i) Without loss a = M1 and a2 = M2. Suppose that Zak ≤ Q2∩Q1. Then Q2 centralizes
Zak . Since M1k is maximal in M1, NM1(Zk) = M1k and thus Q2 fixes ak. Now Q2Q1 = O2(M12Q1)
and so O2(M12Q1) fixes ak. But this easily implies that ak is adjacent to M2. Suppose next that
Qak ∩ Q1 ≤ M2 ∩ Q1. Since [Q1, Qak ] ≤ Q1 ∩ Qak we conclude that Qak normalizes M2 ∩ Q1 and
so Qak ≤ M12Q1. As above ak is adjacent to M2. Hence one direction of (i) is proved. The other
direction is obvious.

(ii) is proved similar to (i).

For (iii) assume that 6 a3aa4 6= 1344. Then by Da3(a) there exists a path
a3
3 −

b
4 −

c
3 −

a4
4 in

Γ(a). Hence Za4 ≤ Zc ≤ Qb ∩Q1 ≤ Qa3 ∩Q1. 2

Lemma 8.4 (i) Given a path
b
3 −

c
1 −

d
3 with b 6= d. Then (Qb∩Qc)(Qd∩Qc) = Qc if Γ2(bcd) =Ø,

and (Qb ∩Qc)(Qd ∩Qc) = Qc ∩Mx, if x ∈ Γ2(bcd).

(ii) Given a path
b
4 −

c
1 −

d
3 with Γ2(bcd) =Ø. Then (Qb ∩Qc)(Qd ∩Qc) = Qc.
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(iii) Given a path
a
1 −

b
4 −

c
3 with 6 abc = 96. Then Qa ∩Mc = Qa ∩ Qb, Mac = Mabc, (Qa ∩

Qb)(Qc ∩Qb) = Qb, Qa ∩ Zc = Zb and |(Qa ∩Qc)Zc/Zc| = 24.

Proof. (i) Since Mbc is maximal in Mc, NMc
(Qb∩Qc) = Mbc and so Qb∩Qc 6= Qd∩Qc. Suppose

that (Qb∩Qc)(Qd∩Qc) 6= Qc. Since the three hyperplanes of Qc containing Qb∩Qc are conjugated
under Mbc, we conclude that (Qb ∩ Qc)(Qd ∩ Qc) ≤ Qc ∩Mx for some x ∈ Γ2(bc). Thus by 8.3
x ∈ Γ(bcd). Since |Qc/Qb ∩Qc| = 4, (Qb ∩Qc)(Qd ∩Qc) = Qc ∩Mx.

(ii) Similar to (i).
(iii) Since 6 abc = 96, it is easy to see that Qa ∩Mc ≤ Qb. Since Qa does not fix c, Qa does

not normalize Qb ∩ Qc. Thus Qa ∩ Qb 6≤ Qb ∩ Qc. Since Q∗b acts irreducibly on Qb/Qb ∩ Qc,
Qb = (Qa ∩Qb)(Qc ∩Qb). In particular, Qa ∩Qc has order |Qa ∩Qb|/|Qb/Qc ∩Qb| = 27/22 = 25.

Suppose that Qa ∩Zc 6= Zb. Since Q∗b acts irreducibly on Zc/Zb we conclude that Zc ≤ Qa. But
then Qa centralizes Zc and Qa ≤ Mc, a contradiction. Hence Qa ∩ Zc = Zb, which implies that
Mac = Mabc and also that |(Qa ∩Qc)Zc/Zc| = |(Qa ∩Qc)/Zb| = 25/2 = 24. 2

Lemma 8.5 Given a path
b
1 −3−

c
4 or

b
2 −3−

c
4. Then b is adjacent to c.

Proof. Let i ∈ {1, 2}. Then Mi3M43 = M3. So if g ∈M3, then Mi3g = Mi3h for some h ∈M43.
Thus Mig is adjacent to M4. 2

Lemma 8.6 (i) There exists a unique class of nd-paths
a
1 −

b
3 −

c
1. Moreover, for any such path

Mabc/Qb ∼= L3(2)× Sym(3), QaMabc = Mab, Mac = Mabc and Qa ∩Qc = Zb.

(ii) Ma acts transitively on X1(a) and (Γ1,∼) is connected.

(iii) |X1(a)| = 22 · 3 · 5 · 11 · 23 = 15, 180.

Proof. (i) Qa acts transitively on the four elements of Γ1(b) \ {a} and so all but the last two
statements of (i) follow. SinceMab is maximal inMa, NMa(Qa∩Qb) = Mab. SinceQa∩Qb = Qa∩Mc,
Mac ≤ NMa(Qa∩Qb) = Mab. Since 〈Qa, Qc〉Qb/Qb ∼= Alt(5) and since 〈Qa, Qc〉 centralizes Qa∩Qc,
Qa ∩Qc = Zb.

(ii) By (i) Ma is transitive on X1(a). Let c ∈ X1(a) and b ∈ Γ3(ac). Then 〈Mab,Mbc〉 = Mb and
so 〈Ma,Mc〉 = 〈Ma,Mb〉 = M and hence (Γ1,∼) is connected.

(iii) |X1(a)| = 4 · |Γ3(a)| = 22 · 3 · 5 · 11 · 23. 2

Lemma 8.7 There exists a unique class of nd-paths
a
1 −

b
3 −

c
2. Moreover for any such path,

Mabc/Qb ∼= L3(2)×Sym(3), MabcQa = Mab, MabcQc = Mbc, Qa∩Mc = Qa∩Qb, Qc∩Ma = Qc∩Qb,
Qa ∩Qc = Zb, (Qa ∩Mc)Qc = O2(Mbc), (Qc ∩Ma)Qa = O2(Mab) and Mac = Mabc.

Proof. Qa acts transitively on the four elements of Γ2(b) \ Γ2(a) and Qc acts transitively on
the two elements of Γ1(b) \ Γ1(c). Furthermore 〈Qa, Qc〉Qb/Qb ∼= Sym(5) and since Qa ∩ Qc is
centralized by 〈Qa, Qc〉 we conclude that Qa ∩ Qc = Zb. In particular, Mac ≤ NMa(Zb) = Mab.
Moreover, by an order argument Qb = (Qb∩Qa)(Qb∩Qc) and the remaining statements are readily
verified. 2

Lemma 8.8 Given a path
b
i −

c
2 −

d
3 with i = 3 or 4. Then Zb 6≤ Qd if and only if Vb(c)∩Vd(c) = 0.

Proof. Note that Qc 6≤ Qd, Qc = 〈Zx | x ∈ Γi(c)〉 and Mcd acts transitively on {x ∈ Γi(c) |
Vx(c)∩Vd(c) = 0}. Hence it suffices to show that Zx ≤ Qd whenever x ∈ Γi(c) with Vx(c)∩Vd(c) 6= 0.
Pick y ∈ Γ1(c) with Vy(c) ≤ Vx(c)∩Vd(c), i.e. y ∈ Γ1(xcd). Then by 8.3 Zx ≤ Qy ∩Qc ≤ Qd ∩Qc.2
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Lemma 8.9 There exists a unique class of nd-paths
a
1 −

b
3 −

c
2 −

d
3 −

e
1 with Vb(c) ∩ Vd(c) = 0.

Moreover, for any such path |Mae| = |Mabcde| = 214 · 32, |Zb ∩Me| = 4, Qa ∩ Qe = 1, MaeQa =
NMa

(Zb ∩Me), MaeQc = Mbcd and MaeQc/Qc ∼= Sym(4)× Sym(4).

Proof. By 8.7 MabcQc = Mbc and so there exists a unique class of nd-paths
a
1 −

b
3 −

c
2 −

d
3 with

Vb(c) ∩ Vd(c) = 0. By 8.8 Zb 6≤ Qd and so Zb acts transitively on the two elements of Γ1(d) \ Γ1(c).
Thus the uniqueness assertion in the lemma is proved and Zb ∩ Me = 8/2 = 4. In particular,
|Mabcde| = |Mabc|/(6 bcd · 6 cde) = 219 · 32 · 7/(24 · 7 · 2) = 214 · 32. Moreover, MabcdeZb = Mabcd.
By 8.7, (Qa ∩Mc)Qc = O2(Mbc) and thus Qa ∩Mc acts transitively on the 2-spaces in Vb(c) +Vd(c)
which intersect Vb(c) trivially (there are 16 such 2-spaces). Hence Mbcd = MabcdQc = MabcdeQc,
|Qa ∩ Mc/Qa ∩ Mcd| = 24, |Qa ∩ Mcd| = 29/24 = 25 and |Qa ∩ Mcde| = 24. It follows that
|MabcdeQa/Qa| = 210 · 32. Since |Mab/Qa| = 210 · 32 · 7 and Mab acts transitively on the 7 subgroups
of order 4 in Zb, |NMab

(Zb ∩Me)/Qa| = 210 · 32. So MabcdeQa = NMab
(Zb ∩Me).

Since Vb(c) ∩ Vd(c) = 0, Γ4(bcd) = Ø and so Zb ∩ Zd = 1. By 8.7, Qc ∩ Qe = Zd and so
Zb∩Qe = Zb∩Zd = 1. In particular, Qa∩Me 6≤ Qe and since Mae normalizes Qa∩Me we conclude
MaeQe 6= Me. By symmetry MaeQa 6= Ma. By 3.4 the only group between NMab

(Zb∩Me) and Ma is
Mab. Hence Mae ≤Mb. By symmetry Mae ≤Md. Since ZbQd = QcQd, Mbd ≤ NMd

(QcQd) = Mcd,
Mbd = Mbcd and Mae = Mabcde. Hence MaeQc/Qc = MabcdeQc/Qc = Mbcd/Qc ∼= Sym(4)×Sym(4).
It remains to prove that Qa ∩Qe = 1. As Vb(c) ∩ Vd(c) = 0, Qb ∩Qd ≤ Qc. By 8.7, Qa ∩Mc ≤ Qb
and so

Qa ∩Qe ≤ Qa ∩Qb ∩Qd ∩Qe ≤ (Qa ∩Qc) ∩ (Qe ∩Qc) = Zb ∩ Zd = 1. 2

Lemma 8.10 Given an nd-path
b
4 −

c
3 −

d
4. Then Q∗b acts transitively on Γ4(c)\{b}, MbcdQ

∗
d = Mcd,

|Qb ∩Qd/Zc| = 24, Qb ∩Qd ≤ Qc, Qc = (Qb ∩Qc)(Qd ∩Qc), (Qb ∩Md)Q∗d/Q
∗
d = O2(Mdc/Q

∗
d) and

Mbcd = CMb
(Zd) = Mbd.

Proof. Since Zb ≤ Zc ≤ Qb and Q∗b acts fixed-point freely on Qb/Zb, Q∗b acts transitively on
Zc/Zb. Now [Zc, Qb] = Zb and so Q∗b acts transitively on Zc \ Zb and so also on Γ4(c) \ {b}. In
particular, MbcdQ

∗
b = Mbc and by symmetry, MbcdQ

∗
d = Mcd. Since |Qb ∩ Qc/Zc| = 213/22+3 = 28

and |Qc/Zc| = 212, 24 ≤ |Qb ∩ Qc ∩ Qd/Zc| ≤ 28, where 24 occurs exactly then Qc = (Qc ∩
Qb)(Qc ∩ Qd). Since Mbc is a maximal subgroup of Mc, Qb ∩ Qc 6= Qd ∩ Qc. Moreover, the
elements of order 5 in Mbcd act fixed-point freely on Qc/Zc and so also on Qb ∩Qc ∩Qd/Zc. Thus
|Qb ∩ Qc ∩ Qd/Zc| = 24 and (Qb ∩ Qc)(Qd ∩ Qc) = Qc. Since QcQd = O2(Mcd) we conclude
(Qb ∩ Qc)Qd = O2(Mdc). Clearly, (Qb ∩Md)Q∗d/Q

∗
d ≤ O2(Mdc/Q

∗
d). Now since Qb is extraspecial,

[Zc, Qb ∩ Md] = [Zc, CQb(Zd)] = Zb 6≤ Zd and so Qb ∩ Md inverts Q∗d/Qd. Since 〈ZQ
∗
b

d 〉 = Zc,
CMb

(Zd) ≤ NMb
(Zc) = Mbc and so Mbd ≤ CMb

(Zd) ≤ CMbc
(Zd) = Mbcd. 2

Lemma 8.11 There exists a unique class of nd-paths
a
1 −

b
4 −

c
3 −

d
4 with 6 abc = 96. Moreover, for

any such path MabcdQ
∗
d = Mcd, Mabcd = CMa(Zd) = Mad, MabcdQa/Qa = CMa/Qa(ZdQa/Qa) and

ZdQa/Qa is in the class of non 2-central involutions of Ma/Qa.

Proof. Let
a
1 −

b
4 −

c
3 be an nd-path with 6 abc = 96. By 8.10 Q∗b acts transitively on Γ4(c)\{b}.

In particular, the existence and uniqueness statements hold with |Mabcd| = |Mab|/(6 abc · 6 bcd) =
221 · 33 · 5/(96 · 6) = 215 · 3 · 5.

By 8.10 (Qb ∩ Md)Q∗d/Q
∗
d = O2(Mdc/Q

∗
d) and by 4.7 QbQc/Qb acts regularly on {a | a ∈

Γ1(b), 6 abc = 96}. Hence MabcdQ
∗
d = Mcd. Note that Zd ≤ Zc and Zd 6= Zb. By 8.4 (iii),
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Qa ∩ Zc = Zb. Thus Zd 6≤ Qa and d is not adjacent to a. Since Mabcd centralizes Zd and has
order divisible by 5, ZdQa/Qa is in the class of non 2-central involutions in Ma/Qa ∼= Mat24 (see
3.1). Thus |CMa/Qa(ZdQa/Qa)| = 29 · 3 · 5. Since Qa ∩Mc ≤ Qb by 8.4 (iii) and CMb

(Zd) = Mbcd

by 8.10 we have CQa(Zd) = Qa ∩ Mbcd = CQa∩Qb(Zd) and as Qb is extraspecial |Qa ∩Mbcd| =
|Qa ∩Qb|/2 = 26. Thus |MabcdQa/Qa| = |Mabcd|/26 = 29 · 3 · 5, MabcdQa/Qa = CMa/Qa(ZdQa/Qa)
and Mabcd = CMa(Zd) = Mad. 2

Lemma 8.12 There exists a unique class of nd-paths
a
1 −

b
4 −

c
3 −

d
4 −

e
1 with 6 abc = 96 = 6 edc.

Moreover, for any such path Mae = Mabcde, Qa∩Qe = 1, Mae/(Qb∩Qd) ∼= Sym(5), |(Qb∩Qd)/Zc| =
24 and |Mae| = 210 · 3 · 5.

Proof. The uniqueness statement follows from 8.11. By 8.10, |(Qb ∩ Qd)/Zc| = 24. By 8.4
(iii), |(Qa ∩ Qc)Zc/Zc| = 24. By 8.10 with the rôles of b and d interchanged, (Qd ∩Mb)Q∗b/Q

∗
b =

O2(Mbc/Q
∗
b) and so by 4.7 Qd ∩Mb acts transitively on the 32 elements x in Γ1(b) with 6 xbc = 96.

Thus Mbc = Mabc(Qd ∩ Mb). Suppose (Qa ∩ Qc)Zc = Qb ∩ Qd. Then Mbc = Mabc(Qd ∩ Mb)
normalizes (Qa ∩ Qc)Zc/Zc. A contradiction, since by 8.1 Mbc does not normalize a subgroup of
order 24 in Qc/Zc. So (Qa ∩Qc)Zc 6= Qb ∩Qd. Since 5 divides |Mabcd|, Qa ∩Qc ∩Qd ≤ Zc.

Since O2(Mcd/Q
∗
d)∩Mde/Q

∗
d = 1, Qa∩Mcde ≤ Qd. Similarly Qa∩Mc ≤ Qb. By 8.10 Qb∩Qd ≤

Qc. Hence Qa ∩Mcde ≤ Qa ∩Qc ∩Qd ≤ Zc. By 8.4 (iii), Qa ∩ Zc ≤ Zb and thus Qa ∩Mcde = Zb.
By symmetry Qe ∩Mabc = Zd. By 8.11 Mabcd = Mad and so Qe ∩Ma = Qe ∩Mabc = Zd. Thus
Mae ≤ CMe(Zd) = Med and Mae = Mabcde. By symmetry, Qa ∩Me = Zb and so Qa ∩Qe = 1. Note
that Mae/O2(Mae) ∼= Sym(5) and O2(Mae) ≤ Qb ∩Qd and so Mae/(Qb ∩Qd) ∼= Sym(5). 2

Lemma 8.13 Γ has five classes of nd-paths
a
1 −

b
3 −

c
1 −

d
3 −

e
1. The classes can be described as

follows:

Class 1: 6 bcd = 42, e ∈ X1(a) and |Γ1(d) ∩X1(a)| = 3.

Class 2: 6 bcd = 42, e 6∈ X1(a) and there exists a unique f ∈ Γ4(a) ∩ Γ4(e). For f we have
6 afe = 16, Mae/Q

∗
f
∼= Sym(6) and MaeQa = Maf . n

Class 3: 6 bcd = 56 and Γ1(d) ⊂ X1(a).

Class 4: 6 bcd = 1008 and there exists an nd-path
a
1 −

l
3 −

j

2 −
m
3 −

e
1 with Vl(j) ∩ Vm(j) = 0.

Class 5: 6 bcd = 2688 and there exists an nd-path
a
1 −

f

4 −
g

3 −
h
4 −

e
1 with f, g, h ∈ Γ(c) and

6 afg = 96 = 6 ehg.

Proof. By 8.6 (i), MacQc = Mbc and so by Db(c), 6 bcd determines the nd-path (a, b, c, d) up to
conjugacy.

Since QcQd/Qd acts regularly on the four elements of Γ1(d) \ {c} we conclude that Qb ∩ Qc
acts transitively on Γ1(d) \ {c} provided that (Qb ∩ Qc)(Qd ∩ Qc) = Qc and has two orbits if
(Qb ∩Qc)(Qd ∩Qc) is a hyperplane in Qc. Thus 8.4 (i) implies:

(*) For r = 56, 1008 and 2688 there exists exactly one class of nd-paths
a
1 −

b
3 −

c
1 −

d
3 −

e
1 with

6 bcd = r, and for r = 42 there exist at most two classes of such paths.

Assume now that 6 bcd = 42. Then by Db(c) there exist f ∈ Γ4(bcd) and g ∈ Γ2(bcd). Note
that f and g are adjacent. By 8.5, f is adjacent to a and e. Replacing g by Rc(g) if necessary, we
may assume that g is adjacent to a (see 2.6 applied to Γ(b)). Then by Db(c), f and g are uniquely
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determined by (a, b, c, d) and so Mabcd ≤ Mfg. Consider Da(f). Exactly three of the five elements
in Γ1(d) are adjacent to g. If e is adjacent to g then 6 afe = 60 and e ∈ X1(a). If e is not adjacent
to g, then 6 afe = 16, Mafe/Q

∗
f
∼= Sym(6), Qa ∩Me = Qa ∩Qf , QaMafe = Maf and, since Maf is

maximal in Ma, Mae ≤ NMa(Qa ∩Me) = NMa(Qa ∩Qf ) = Maf . Thus (a, b, c, d, e) is in Class 1 if
e is adjacent to g and in Class 2 if e is not adjacent to g.

Assume next that 6 bcd = 56. Then by Db(c) there exists f ∈ Γ4(bcd) and a and e are adjacent
to f . Since Γ2(bcd) = Ø, Da(f) shows that 6 afd = 96 and Γ1(d) ⊂ X1(a). So (a, b, c, d, e) is in
Class 3.

Assume now that 6 bcd = 1008. Then by Db(c) there exists an nd-path
b
3 −

f

2 −
g

3 −
h
2 −

d
3

in Γ(c) with Rc(f) 6= h. Using 2.6 and replacing f by Rc(f) and h by Rc(h), if necessary, we
assume that a is adjacent to f and e is adjacent to h. Note c ∈ Γ1(fgh) and f 6= Rc(h), which

means that Ωf (g) ∩ Ωh(g) 6=Ø. In Γ(g) we find a unique nd-path
f

2 −
i
1 −

j

2 −
k
1 −

h
2 with

Ri(f) = j = Rk(h) ( indeed if Ωf (g) = {1, 2} and Ωh(g) = {1, 3}, then Ωj(g) = {4, 5}, Ωi(g) = 3
and Ωk(g) = 2). In Γ(f) there exists a unique vertex l of type 3 adjacent to a and i (indeed,
l is defined by Vl(f) = Va(f) + Vi(f)) and similarly there exists a unique m ∈ Γ3(ehk). Since
Ri(f) = j = Rk(h), l and m are both adjacent to j. Furthermore, a is adjacent to f and j = Ri(f).
Thus by 2.6 applied to Γ(l), a and j are not adjacent and by symmetry e and j are not adjacent.
Suppose that there exists x ∈ Γ4(ljm). By 8.5 x is adjacent to i and k and we see in Γ(j) that x
is adjacent to g and so also to f and c. Moreover, a and x are adjacent to l and thus a and x are
adjacent. So x is adjacent to a and c, Vb(f) = Va(f) + Vc(f) ≤ Vx(f) and b is adjacent to x. By
symmetry x is adjacent to d and so x ∈ Γ4(bcd), a contradiction to 6 bcd = 1008 and Db(c). Thus

no such x exists and we found an nd-path
a
1 −

l
3 −

j

2 −
m
3 −

e
1 with Vl(j) ∩ Vm(j) = 0. Hence

(a, b, c, d, e) is in Class 4.

Assume finally that 6 bcd = 2688. Then by Db(c) there exists an nd-path
b
3 −

f

4 −
g

3 −
h
4 −

d
3 in

Γ(c) with 6 b
f
c g = 8 = 6 d

h
c g. By 8.5, a is adjacent to f and e is adjacent to h. Since 6 b

f
c g = 8

we conclude from Da(f) that 6 afg = 96 and by symmetry, 6 ehg = 96. Hence (a, b, c, d, e) is in
Class 5. 2

Lemma 8.14 Ma has exactly three orbits X2(a), X3(a) and X4(a) on {e ∈ Γ1 | d(a, e) = 2}.
Moreover we can choose notation so that

(i) |X2(a)| = 24 · 7 · 11 · 23 = 28, 336 and Mae ∼ 21+6+63 · Sym(6) if e ∈ X2(a),

(ii) |X3(a)| = 27 · 3 · 5 · 7 · 11 · 23 = 3, 400, 320 and Mae ∼ 212(Sym(3)× Sym(3)) if e ∈ X3(a),

(iii) |X4(a)| = 211 · 32 · 7 · 11 · 23 = 32, 643, 072 and Mae ∼ 23+4Sym(5) if e ∈ X4(a).

Proof. 8.13, 8.9 and 8.12. 2

Lemma 8.15 Given a path
a
1 −

b
4 −

c
1 −

d
3 −

e
1 with d(a, e) = 3. Then 6 abc = 16 and 6 bcd = 2880.

Proof. Clearly d(a, c) = 2 and so 6 abc = 16. If d is adjacent to b, b is adjacent to e and by
Da(b), d(a, e) ≤ 2, a contradiction. Thus 6 bcd 6= 15.

Let x ∈ Γ3(bc) and suppose that 6 xcd = 56. Then by 8.13, Γ1(x) ≤ X1(e). On the other hand
by Da(b), X1(a) ∩ Γ1(x) 6=Ø. Thus X1(a) ∩X1(e) 6= Ø and d(a, e) ≤ 2, a contradiction.

Thus 6 xcd 6= 56 for all x ∈ Γ3(bc). Suppose that 6 bcd = 720. Then by Db(c) there exists an

nd-path
b
4 −

x
3 −

y

4 −
d
3 in Γ(c) with 6 x

c
y d = 8. Thus by Dx(c), 6 xcd = 56, a contradiction.
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Suppose that 6 bcd = 180. Then there exists an nd-path
b
4 −

x
2 −

d
3 in Γ(c). Since 6 abc = 16,

replacing x by Rc(x), if necessary, we may assume that 6 abx = 60 (compare Da(b)), in which case

there exists y ∈ Γ3(abx). So we found an nd-path
a
1 −

y

3 −
x
2 −

d
3 −

e
1. Since d(a, e) = 3, Γ1(yxd) =Ø,

and so Vy(x) ∩ Vd(x) = 0. By 8.9 and 8.13 Class 4, d(a, e)=2, a contradiction.
Thus 6 bcd = 2880 and the lemma is proved. 2

Lemma 8.16 There exists a unique class of nd-paths
a
1 −

b
4 −

c
1 −

d
3 −

e
1 with 6 abc = 16 and

6 bcd = 2880. Moreover, for any such nd-path there exists an nd-path
a
1 −

h
3 −

f

2 −
g

4 −
e
1 with

Vh(f) ∩ Vg(f) = 0 and 6 fge = 56.

Proof. By 8.13 Class 2, MacQc = Mbc and so there exists a unique class of nd-paths
a
1 −

b
4 −

c
1 −

d
3

with 6 abc = 16 and 6 bcd = 2880. Moreover, Γ2(bcd) =Ø and so by 8.4 (ii), (Qb∩Qc)(Qd∩Qc) = Qc.
Since Qc acts transitively on Γ1(d) \ {c}, the uniqueness part of the lemma is proved.

By Db(c) there exists an nd-path
b
4 −

f

2 −
g

4 −
d
3 in Γ(c). Replacing f by Rc(f), if necessary, we

may assume that 6 abf = 60 (compare Da(b)), in which case there exists h ∈ Γ3(abf). Note that d
is adjacent to e and g and so e and g are adjacent by 8.5. Since 6 bcd = 2880 we see from Db(c) that
Γ3(bcg) =Ø and so Vb(f)∩Vg(f) = Vc(f). Moreover, since 6 abc = 16, c and h are not adjacent. So
Vc(f) 6≤ Vh(f) ≤ Vb(f) and Vh(f) ∩ Vg(f) = 0.

Since 6 bcd = 2880, d is not adjacent to f . On the other hand both d and f are adjacent to c
and we see from the Df (g) that 6 fgd = 84 and hence 6 fge = 56. 2

Lemma 8.17 Given a path
a
2 −

b
1 −

c
1 with c = Rb(a). Then

(i) Qa∩Qc = Qb∩Qc and Qa∩Qc is maped to
∧2

V ∗b (c) under the isomorphism Qc →
∧2

V ∗(c).

(ii) [Qc, V (a)] = Vb(a).

Proof. Since Qa∩Qb is centralized by Qb and c = Rb(a) we have Qa∩Qb = Qc∩Qb = Qa∩Qb∩Qc.
Note that

∧2
V ∗b (c) is the unique proper Mbc-submodule in

∧2
V ∗(c). Thus Qb ∩ Qc is maped to∧2

V ∗b (c). Moreover, since Mbc = Mabc we also conclude that Qa ∩Qc = Qb ∩Qc. Thus (i) holds.
(ii) holds since Vb(a) is the unique proper Mabc-submodule in V (a). 2

Lemma 8.18 (i) There exists a unique class of nd-paths
a
1 −

b
3 −

c
2 −

d
4 −

e
1 with Vb(c)∩Vd(c) = 0

and 6 cde = 56. Moreover, for any such path d(a, e) = 3, |Mae| = 210 · 32, Mae = Mabcde,

Qa ∩Me = 1 and there exists an nd-path
e
1 −

h
3 −

g

2 −
i
4 −

a
1 with Vh(g) ∩ Vi(g) = 0 and

6 gia = 56.

(ii) Put X5(a) = eMa . Then |X5(a)| = 211 · 3 · 5 · 7 · 11 · 23 = 54, 405120.

(iii) Given a path
a
1 −

j

4 −
k
1 −

l
3 −

e
1. Then e ∈

⋃5
i=0Xi(a).

Proof. (i) and (ii) By 8.7, (Qa ∩Mc)Qc = O2(Mbc) and so Qa ∩Mc acts transitively on the
64 elements of {x ∈ Γ4(c) | Vb(c) ∩ Vx(c) = 0}. Hence there exists a unique class of nd-paths
a
1 −

b
3 −

c
2 −

d
4 with Vb(c) ∩ Vd(c) = 0. Moreover, we see in Mc/Qc that Mbcd/Qc is a complement

to O2(Mcd/Qc) = QdQc/Qc in Mcd/Qc. Thus Mcd = MbcdQd. By 8.7 Mbc = MabcQc and so
Mcd = MbcdQd = ((MabcQc) ∩Md)Qd = MabcdQcQd. We claim that Zb(Qc ∩ Qd) = Qc. Indeed,
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identifying Qc with
∧2

V (c)∗ we have Zb =
∧2

Vb(c)∗ and Qc ∩Qd = V (c)∗
∧
Vd(c)∗ and the claim

follows from V (c)∗ = Vb(c)∗ ⊕ Vd(c)∗. Since Zb ≤ Mabcd, Mcd = MabcdQcQd = MabcdQd. In
particular, the uniqueness statement is proved.

Put K = Mabcde. Let x be the number of paths as in (i) starting with a. Then x = |Γ3(a)| ·
6 abc · 6 bcd · 6 cde = (3 · 5 · 11 · 23) · 4 · 64 · 56 = 211 · 3 · 5 · 7 · 11 · 23 and so |K| = |Ma|/x = 210 · 32.

Since 6 cde = 56, 6 edc = 240 and so by De(d) there exists a unique f ∈ Γ1(cd) with 6 edf = 16.
Moreover, if we define g = Rf (c) then there exists h ∈ Γ3(gde). Since Vf (c) ≤ Vd(c), Vf (c) 6≤ Vb(c)
and so there exists a unique element i ∈ Γ4(bcf), namely i is determined by Vi(c) = Vf (c) + Vb(c).
Then i is adjacent to a by 8.5 and, since g = Rf (c), to g as well. Since Vb(c) ∩ Vd(c) = 0 and
Vb(c) ≤ Vi(c) we have Vi(c) ∩ Vd(c) = Vf (c). Conjugation under Qf yields Vi(g) ∩ Vd(g) = Vf (g).
Since 6 fde = 16, f is not adjacent to h and so since Vh(g) ≤ Vd(g), Vi(g) ∩ Vh(g) = 0. Consider

the nd-path
g

2 −
f

1 −
c
2 −

b
3 −

a
1 in Γ(i). By Dg(i) since Rf (g) = c, we have 6 gic = 7 and 6 gib = 28.

Now one can see from Dc(i) that Γ1(ic) and Γ3(ic) are points and lines of the projective plane of
order 2 with the natural incidence relation. In view of this observation and indexes in Dg(i), every
element from {x | x ∈ Γ1(ib), 6 gix = 14} is adjacent to c. Hence 6 gia = 56. In particular, the path
(e, h, g, i, a) has all the properties stated in the lemma.

Since [Qi ∩Mh, V (g)] = [Qi ∩Mh, Vi(g) + Vh(g)] ≤ Vi(g) ∩ Vh(g) = 0 we have

Qi ∩Mh ≤ Qg

and so Zb ∩Mh ≤ Qc ∩Qg. Identify Qc with
∧2

V (c)∗. By 8.17 (i), Qc ∩Qg =
∧2

V ∗f (c) and so

Zb ∩Qc ∩Qg =
∧2

Vb(c)∗ ∩
∧2

Vf (c)∗ =
∧2(Vb(c)∗ ∩ Vf (c)∗) =

∧2
Vi(c)∗ = Zi.

Hence Zb ∩Mh = Zi. Since Vi(g) ∩ Vh(g) = 0, Zi =
∧2

Vi(g)∗ 6≤ V (g)∗
∧
Vh(g)∗ = Qg ∩ Qh.

Moreover, Qg ∩Me ≤ Qh and thus Zi 6≤Me. Since f, g, h and i are uniquely determined in terms of
(a, b, c, d, e), K ≤Mfghi and, in particular, Zb ∩Me = Zb ∩K ≤ Zi ∩Me = 1. From Qa ∩Mc ≤ Qb,
Qb ∩Md ≤ Qc and (see 8.7) Qa ∩Qc = Zb we conclude that Qa ∩K = 1. Recall that |K| = 210 · 32.
Since K ≤Mabi and |Mabi/Qa| = |Mab/Qa|/7 = 210 · 32 we have KQa = Mabi.

Suppose, that Qa ∩Me 6= 1 and pick a Sylow 2-subgroup R of K. Then CQa∩Me(R) 6= 1 and
since CQa(R) = CQa(RQa) = Zi we get Zi ≤Me, a contradiction.

Hence Qa ∩Me = 1. Since Qa ∩My 6= 1 for all y ∈ Γ1 with d(a, y) ≤ 2, d(a, e) = 3.
Suppose K 6= Mae. Then by 3.4, MaeQa is equal to one of Ma, Mab or Mai. Suppose Mabe 6= K.

Then MabeQa = Mab. In particular, |Mabe/K| = 7 and so Mabe = O2,3(Mabe)K. From 6 abc = 4
we conclude O2,3(Mb) ≤ Mc. Now also K ≤ Mc and so Mabe ≤ Mc. Note that Qc ∩ Me =
Zb(Qc ∩ Qd) ∩ Me = Qc ∩ Qd and so Mce ≤ NMc(Qc ∩ Qd) = Mcd. Thus Mce = Mcde and
Mabe = Mabce = Mabcde = K, a contradiction.

Thus Mabe = K and MaeQa = Mai. On the other hand, by 8.7 Mge ≤ Mghe and as seen above
Qi ∩Mh ≤ Qg. In particular, Qi ∩Me ≤ Qi ∩Mh = Qi ∩Qg. Since Zi acts transitively on the two
elements in Γ1(h) \ Γ1(gh), Qi ∩ Qg = Zi(Qi ∩Me). Thus Mae = Maie ≤ NMi(Qi ∩ Qg) = Mig, a
contradiction, since 33 divides |Mae| = |Mai/Qa| but not |Mig|.

Thus Mae = Mabcde = Mabcdefghi and (i) and (ii) hold.
(iii) follows from 8.16, 8.15, 8.14 and (i). 2

Lemma 8.19 Given an nd-path
a
1 −4− 1− 4−

e
1. Then e ∈ Xl(a) for some 0 ≤ l ≤ 5.
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Proof. Consider first a path
a
1 −

b
2 −

c
4 −

d
2 −

e
1. Then by Db(c) there exists a path

b
2 −

f

3 −
g

1 −
d
2

in Γ(c). Pick i ∈ Γ4(abf) and h ∈ Γ3(gde). Then by 8.5 i is adjacent to g and we found a path
a
1 −

i
4 −

g

1 −
h
3 −

e
1. So by 8.18 (iii), e ∈ Xl(a), for some 0 ≤ l ≤ 5.

Consider now an nd-path
a
1 −

b
4 −

c
1 −

d
4 −

e
1. By Db(c) there exists a path

b
4 −

f

3 −
g

4 −
h
3 −

d
4

in Γ(c). If d(a, c) ≤ 1 or d(c, e) ≤ 1 we are done by 8.18 (iii). So suppose that 6 abc = 16 = 6 cde.
Then by Da(b) and De(d) we have 6 abf 6= 96 6= 6 edh and there exist i ∈ Γ2(abf) and j ∈ Γ2(hde).
Then by 8.5 both i and j are adjacent to g and we are done by the first paragraph of the proof. 2

Lemma 8.20 Let
b
4 −

c
3 −

d
4 −

e
3 −

f

4 be an nd-path with [Zb, Zf ] 6= 1. Then 6 cde = 160,
Qb ∩ Qf = Zd, Qb ∩ Me acts transitively on the four elements in {α ∈ Γ4(e) | [Zb, Zα] 6= 1},
MbdfQd/Qd ∼= Sym(3)× C2 and (Qb ∩Qd ∩Mf )Q∗f/Q

∗
f = (Qd ∩Mf )Q∗f/Q

∗
f = O2(Mef/Q

∗
f ).

Proof. By Dc(d), if 6 cde 6= 160, then there exists α ∈ Γ1(cde). Hence ZcZe ≤ Qα and
[Zc, Ze] = 1, a contradiction.

Thus 6 cde = 160 and by Dc(d) there exists a unique nd-path
c
3 −

g

2 −
h
1 −

i
2 −

e
3 in Γ(d),

such that Rh(g) = i, in which case h is not adjacent to c. Moreover, by 8.5 b is adjacent to g
and f is adjacent to i. Notice that Vb(g) ∩ Vd(g) = Vc(g), Vh(g) 6≤ Vc(g) and Vh(g) ≤ Vd(g).
Thus Vh(g) 6≤ Vb(g) and so h is not adjacent to b. By symmetry, h is not adjacent to f . Hence
Zf 6≤ Qh ∩Qi = Qh ∩Qg. Put R = Qg ∩Qh. We compute in Qg:

R∩Qb = (Qb ∩Qg)∩ (Qh ∩Qg) = (Vb(g)∗ ∧V (g)∗)∩ (Vh(g)∗ ∧Vh(g)∗) = (Vb(g)∗ ∩Vh(g)∗)∧Vh(g)∗.

Since Vb(g)∗ ∩ Vh(g)∗ has order two we conclude that the subgroups of order two in R ∩Qb are
all of the form Zδ for some δ ∈ Γ4(gh) = Γ4(ghi) with Vb(g)∗ ∩ Vh(g)∗ ≤ Vδ(g)∗ ≤ Vh(g)∗. Notice
that for any such δ there exists γ ∈ Γ3(bgδ) and so Zb ≤ Zγ ≤ Qδ.

Suppose that R ∩ Qb ∩ Qf 6= Zd and pick δ ∈ Γ4(ghi) \ {d} with Zδ ≤ R ∩ Qb ∩ Qf . Then
Zb ≤ Qδ and similarly, Zf ≤ Qδ. Thus Zb and Zf are both contained in the elementary abelian
group Qd ∩Qδ, a contradiction.

Thus R∩Qb∩Qf = Zd. Since |R| = 26 and |R∩Qb| = 23 = |R∩Qf | we get |R/(R∩Qb)(R∩Qf )| =
2. Since [R ∩ Qb, Qb ∩ Qf ] ≤ Zb ∩ R = 1 we have [(R ∩ Qb)(R ∩ Qf ), Qb ∩ Qf ] = 1. Now R is a
natural Ω+

6 (2)-module for Mig/QiQg ∼= L4(2) and so no element of Mig acts as a transvection on
R. Thus Qb ∩ Qf ≤ CMig

(R) = QiQg. Now by 8.17 (ii) [QiQg, V (i)] ≤ Vh(i), [Qf , V (i)] ≤ Vf (i),
[QiQg ∩Qf , V (i)] ≤ Vf (i) ∩ Vh(i) = 1 and so QgQi ∩Qf ≤ Qi. By symmetry, QgQi ∩Qb ≤ Qg and
thus

Zd ≤ Qb ∩Qf ≤ (QiQg ∩Qb) ∩ (QiQg ∩Qf ) = Qb ∩Qg ∩Qi ∩Qf = Qb ∩R ∩Qf = Zd.

Since |Qb ∩Qd| = 27 = |Qf ∩Qd| and |Qd| = 213 we conclude

Qd = (Qb ∩Qd)(Qf ∩Qd) ≤ (Qb ∩Qd)Qe. (∗)

By 8.10 (Qb ∩Md)Q∗d/Q
∗
d = O2(Mcd/Q

∗
d) and MbcdQ

∗
d = Mcd. Thus MbcdeQ

∗
d = Mcde. Also

((Qb∩Md)Q∗d∩MbcdeQ
∗
d) = ((Qb∩Md)∩(MbcdeQ

∗
d))Q

∗
d = (Qb∩Me)Q∗d and and (Qb∩Me)Q∗d/Q

∗
d =

O2(Mcd/Q
∗
d)∩Mcde/Q

∗
d. Thus by 4.8, MbdeQd/(Qb ∩Me)Qd ∼= Sym(3)×C2 and (Qb ∩Me)Qd/Qd

has order two and inverts Q∗d/Qd. Since Q∗dQe/Qe ∼= Alt(4) and since by (*), QdQe/Qe = (Qb ∩
Qd)Qe/Qe we conclude that Qb ∩Me acts as a dihedral group of order eight on Ze with Zb mapping
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onto the centre of the D8. Hence Qb ∩Me acts transitively on {α ∈ Γ4(e) | [Zb, Zα] 6= 1}, [Qb ∩
Mf , Ze] = [Qb ∩Mf , CZe(Zb)Zf ] ≤ Zd, Qb ∩Mf ≤ Qd and MbdfQd/Qd ∼= Sym(3)× C2.

Since by (*) (Qb ∩Mf )Q∗f = (Qb ∩Qd ∩Mf )Q∗f = (Qd ∩Mf )Q∗f , the last statement follows from
8.10. 2

Lemma 8.21 There exists a unique class of nd-paths
a
1 −

b
4 −

c
3 −

d
4 −

e
3 −

f

4 −
g

1 such that
6 abc = 96 = 6 gfe and [Zb, Zf ] 6= 1. Moreover, for any such path, CMag (Zd) = Madg = Mabcdefg,
|Madg| = 24, Mag∩Qa = 1, Qd∩Madg = Zd, MadgQd/Qd ∼= Sym(3)×C2, g 6∈

⋃5
i=0Xi(a) and there

exists an nd-path p =
a
1 −3− 2− 3−

α
1 −

β

3 −
g

1 with |Madg/Mdp| = 3, α ∈ Γ1(d) and Zd ≤ Qα ∩Mdp.

Proof. By 8.11 there exists a unique class of nd-paths
a
1 −

b
4 −

c
3 −

d
4 with 6 abc = 96. Moreover,

by the same lemma MabcdQ
∗
d = Mcd, MabcdQa/Qa = CMa/Qa(Zd) and Mabcd = CMa(Zd) = Mad.

Thus CMag
(Zd) = Madg = Mabcdefg.

By 8.20 6 cde = 160, Qb∩Qf = Zd and Qb∩Me acts transitively on Ze\Mb. Thus our path from b
to f is unique up to conjugation and MbdfQd/Qd ∼= Sym(3)×C2. By 4.7 O2(Mef/Q

∗
f ) acts regularly

on {α ∈ Γ1(f) | 6 efα = 32}. By 8.20 O2(Mef/Q
∗
f ) = (Qb ∩Qd ∩Mf )Q∗f/Q

∗
f = (Qd ∩Mf )Q∗f/Q

∗
f ,

so Qb ∩ Qd ∩Mf is transitive on the same set and Qd ∩Mfg ≤ Qf . Similarly Qd ∩ Qf ∩Mb is
transitive on the set {α ∈ Γ1(b) | 6 cbα = 32} and Qd∩Mba ≤ Qb. Since (Qb∩Qd)∩ (Qf ∩Qd) = Zd
the uniqueness follows and MadgQd/Qd ∼= Sym(3) × C2. Notice that CQb∩Mg

(Zd) ≤ Qb ∩Mgf ≤
Qb ∩ Qf = Zd and so Qb ∩ Mg = Zd. Thus Qd ∩ Madg = Qb ∩ Qd ∩ Qf = Zd. Furthermore,
|Madg| = |Mab|/(96·6·160·4·32) = 24, Qa∩Mc ≤ Qb and so Qa∩Mdg = Qa∩Qb∩Mg = Qa∩Zd = 1.
Hence CQa∩Mg (Zd) = 1 and Qa ∩Mg = 1.

Suppose that g ∈ Xi(a) for some 0 ≤ i ≤ 5. Since |Qa ∩Mg| = 1, i = 5. It follows from 8.18
that Mag has an elementary abelian normal subgroup A of order 26. If Zd is in A, then 26 divides
|CMag (Zd)| and if Zd 6≤ A, 23 divides |CA(Zd)| and so 24 divides |CA(Zd)Zd|, and in any case we
get contradiction to |Madg| = 24. Thus g 6∈ Xi(a) for all 0 ≤ i ≤ 5.

By Dc(d) there exist three nd-paths of type 3 − 2 − 1 − 3 from c to e in Γ(d). Moreover they
are transitively permuted by Mcde. Since the elements of order three in Q∗d act fixed-point freely on
Qd/Zd and since Zb ≤ Qd, Q∗d ∩Mb ≤ Qd. Thus O3(Madg) 6≤ Q∗d and |Mcde/Q

∗
d|3 = 3 implies that

Madg acts transitively on those three nd-paths. Let (c, h, i, e) be one of them. Then h is adjacent

to b and since 6 abc = 96, Da(b) yields a unique nd-path
a
1 −

l
3 −

k
2 −

j

1 −
h
2 in Γ(b) with Rj(h) = k.

Let m be the unique vertex of type 3, adjacent to j, h and i. Since k = Rj(h), m is adjacent to k.
Since 6 gfe = 96 and i is adjacent to e and f , Dg(f) shows that there exists a unique n ∈ Γ3(gfi).
Put p = (a, l, k,m, i, n, g). Then Mpd = Madghi and so |Madg/Mpd| = 3. Since h and i are adjacent
to d, Zd ≤Madghi = Mpd and Zd ≤ Qi. Thus the lemma holds (with α = i and β = n). 2

Lemma 8.22 There exists a unique class of nd-paths q =
a
1 −

b
3 −

c
2 −

d
3 −

e
1 −

f

3 −
g

1 with
g 6∈

⋃5
i=0Xi(a). Moreover, for any such path |Mq| = 24 and Mq/O2(Mq) ∼= Sym(3).

Proof. The existence of such a path has been established in 8.21.
Suppose there exists x ∈ Γ4(bcd). Then by 8.5 x is adjacent to a and e, a contradiction to 8.19.

So Vb(c) ∩ Vd(c) = 0 and the path
a
1 −

b
3 −

c
2 −

d
3 −

e
1 is as in 8.9.

Suppose that Zd ∩Ma ∩ Qf 6= 1 and pick x ∈ Γ4(de) with Zx ≤ Zd ∩Ma ∩ Qf . Then x is
adjacent to c and Zx ≤ Qc. Since Qc ∩Ma ≤ Qb we get Zx ≤ Qb. Thus by 8.8, Vx(c)∩Vb(c) 6= 0. In
particular, there exists y ∈ Γ1(bcx). Since Zx ≤ Qf , 8.3 (iii) implies also that 6 fex 6= 1344 and so

by Df (e) there exists a path
x
4 −

z
3 −

u
4 −

f

3 in Γ(e). Then g is adjacent to u. Put v = Ry(c). Since
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c is not adjacent to a, 2.6 applied to Γ(b) implies that v is adjacent to a. Clearly v is also adjacent

to x. By Dz(x) there exists a path
v
2 −

w
3 −

t
1 −

z
3 in Γ(x). Then u is adjacent to t and g. Pick

s ∈ Γ4(avw). Then s is adjacent to t and we found a path
a
1 −

s
4 −

t
1 −

u
4 −

g

1. Since g 6∈
⋃5
i=0Xi(a)

this must be an nd-path, a contradiction to 8.19.
Hence Zd ∩ Ma ∩ Qf = 1. If 6 def 6= 2688, then Df (e) and 8.3 (iii) imply |Zd ∩ Qf | ≥ 4.

By 8.9, |Zd ∩Ma| = 4. Since |Zd| = 8, the latter means that Zd ∩ Qf ∩Ma 6= 1. So 6 def =
2688, |Zd ∩ Qf | = 2 and by 8.9, MaeQe = NMde

(Zd ∩ Ma). Put X = CMde
(Zd). Then by 3.5

MdefX = NMde
(Zd ∩ Qf ) and Mdef/Qe ∼= Sym(4). It follows that Mdef acts transitively on

{A ≤ Zd | |A| = 4, A ∩ Qf = 1}. Moreover, NMdef
(A)/Qe ∼= Sym(3) for any such A. Thus both

NMde
(Zd ∩Ma) and Mae act transitively on {f ∈ Γ3(e) | 6 def = 2688, Zd ∩Ma ∩ Qf = 1} and

MaefQe/Qe ∼= Sym(3) ∼= Maef/O2(Maef ). Moreover, Qe = (Zd ∩Ma)(Qe ∩ Qf ) and so Zd ∩Ma

acts transitively on Γ1(f) \ {e}. Thus our nd-path from a to g is unique up to conjugacy and
MqQe/Qe ∼= Sym(3) ∼= Mq/O2(Mq). Finally, |Mabcdefg| = |Mae|/( 4

7 · 2688 · 4) = 24 and the lemma
is proved. 2

Let X6(a) = gMa , where g is as in 8.21 or equally well as in 8.22.

Lemma 8.23 (i) Let g ∈ X6(a). Then |Mag| = 23 · 3 · 11 · 23, Mag has two orbits on Γ2(g) and
acts transitively on {{ρ, ρQg} | ρ ∈ Γ2(g)}.

(ii) |X6(a)| = 218 · 32 · 5 · 7 = 82, 575, 360.

Proof. Let (a, b, c, d, e, f, g) and p be as in 8.21. Then by 8.21 and 8.22, |Madg| = 24 = |Mp|,
Madg/Zd ∼= Sym(3)×C2, |Mpd| = 8, CMag (Zd) = Madg, Mp/O2(Mp) ∼= Sym(3) and Mag ∩Qg = 1.
Put A = Mp ∩ Qα, then by 8.21, Zd ≤ A. Hence A is a nontrivial normal 2-subgroup of Mp

and CMp
(A) ≤ Mpd is a 2-group. Since |O2(Mp)| = 4 we get that A is elementary abelian of

order 4 and that Mp
∼= Sym(4). Thus Mdp is a dihedral group of order 8 and so NMag (Mdp) ≤

CMag
(Zd). In particular, Mpd is a Sylow 2-subgroup of Mag. Moreover, there exists t in M with

(a, b, c, d, e, f, g)t = (g, f, e, d, c, b, a). Notice that t ∈ Md and so t normalizes Madg. Thus we may
assume that M t

dp = Mdp.
We claim that A ∩ At = Zd. Clearly Zd ≤ A ∩ At. By 8.21 α is adjacent to d and since

t ∈Md, also αt is adjacent to d. Since d(a, g) > 2, α 6= αt. We claim that Qα ∩Qtα ≤ Qd. Indeed if
Γ3(αdαt) = Ø, i.e. if 6 αdαt = 16, then Qα∩Qtα ≤ O2(Mαdαt) ≤ Qd, and if δ ∈ Γ3(αdαt) 8.6 implies
Qα ∩Qtα = Zδ ≤ Qd. By 8.21, Qd ∩Mag = Zd and so A ∩At ≤Mag ∩Qα ∩Qtα ≤Mag ∩Qd ≤ Zd.

In particular, A 6= At. Put E = O2(Madg). Since Madg/Zd ∼= Sym(3)× C2, |E| = 4. Moreover,
t normalizes E and so A 6= E 6= At, E ∼= C4 and Madg is a dihedral group of order 24. Let
D = O3(Madg) and note that ED = CMag

(ZdD). Since D centralizes Zd, 3.1 implies CMg/Qg (D) ∼=
C3×L3(2). Now a subgroup of L3(2) with a centralizer of an involution a cyclic group of order four
clearly is a cyclic group of order four and so CMag (D) = DE. In particular, D is a Sylow 3-subgroup
of Mag. Note that all involutions in Mpd are contained in A∪At and so conjugate into Zd under Mp

and M t
p, respectively. Thus Mag has a unique class of involutions. Let z be any involution in Mag

and put C(z) = Madg ∩CMag (z). If 3 divides |C(z)|, z ∈ CMag (D) = DE and z ∈ Zd. Hence exactly
one of the following holds: z ∈Madg, |C(z)| = 2 or C(z) = 1. Moreover, if C(z) = 〈y〉 for one of the
twelve involutions y ∈Madg \ Zd, then z is one of the ten involutions in CMag (y) \Madg. Thus, if r
is the number of involutions in Mag, i.e. r = |Mag/Madg|, then r = 13 + 12 · 10 + 24s = 133 + 24s
for some non-negative integer s. On the other hand, since |Mg/Qg| = 210 · 33 · 5 · 7 · 11 · 23, r divides
5 · 7 · 11 · 23 and we conclude that r = 11 · 23 or r = 5 · 7 · 23. The latter case is impossible by
Burnside’s p-complement theorem for p = 23 and so r = 11 · 23.
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Hence |Mag| = 23 ·3·11·23. In particular Madg and Mp are maximal {2, 3, 5, 7}-subgroups of Mag.
Since both Mfg and Mβg are {2, 3, 5, 7}-groups we conclude that Mafg = Madg and Maβg = Mp.

Since |Γ2(αβg)| = 3 we can choose x ∈ Γ2(αβg) with Mdp ≤Mx. Since the non-trivial elements of
odd order in Mag act fixed-point freely on Γ2(g) we conclude that Magx = Mdp = Magy = Mag{x,y},
where y = Rg(x). In particular, |Mag/Magx| = 759 and the lemma is proved. 2

We remark that using the list of maximal subgroups of Mat24 or the classification of groups with
dihedral Sylow 2-subgroups it is not difficult to see that Mag for g ∈ X6(a) is isomorphic to L2(23).
But we will not need this fact.

Lemma 8.24 Let g ∈ Γ1 with d(g, a) = 3. Then g ∈ X5(a) ∪X6(a).

Proof. Pick e ∈ Γ1 with d(e, a) = 2 and e ∼ g. If e ∈ X2(a), then g ∈ X5(a) by 8.18 (iii). If
e ∈ X3(a) then g ∈ X5(a) ∪X6(a) by 8.22.

So we may assume that e ∈ X4(a). In particular, by 8.13 there exists an nd-path
a
1 −

b
4 −

c
3 −

d
4

−
e
1 −

f

3 −
g

1 with 6 abc = 96 = 6 edc. By Dd(e) there exists a path
d
4 −

h
2 −

i
3 −

j

2 −
f

3 in Γ(e). Note
that 6 cde = 32 and so by 4.7 there exists k ∈ Γ3(deh) with 6 cdk = 40. Thus by Dc(d) there exists
l ∈ Γ1(cdk). Then l is adjacent to b by 8.5. By Da(b) and 6 abc = 96 there exists m ∈ Γ3(abl) and

so a ∼ l. Considering the path
k
3 −

h
2 −

i
3 −

j

2 −
f

3 in Γ(e) we see in Dk(e) that 6 kef 6= 2688. Thus
by 8.13 applied to (g, f, e, k, l), l ∈ Xr(g) for some 0 ≤ r ≤ 3. Thus, by the first paragraph of the
proof ( applied to (g, l, a)) in place of (a, e, g), a ∈ X5(g) ∪X6(g) and the lemma is established. 2

Lemma 8.25 Let z ∈ Γ1. Then d(a, z) ≤ 3. In particular, Γ1 =
⋃6
i=0Xi(a).

Proof. Suppose not. Since (Γ1,∼) is connected, there exists z ∈ Γ1 with d(a, z) = 4.

We claim that there does not exist an nd-path
a
1 −

b
4 −

c
1 −

d
3 −

e
1 −

f

3 −
z
1. If such a path exists

then d(a, e) = 3 and d(c, z) = 2. By 8.15 and 8.13 this means that 6 abc = 16, 6 bcd = 2880 and
c ∈ X2(z) ∪X3(z) ∪X4(z).

Suppose first that c ∈ X2(z). Then there exists ρ ∈ Γ4(cz) and we found an nd-path
a
1 −

b
4 −

c
1

−
ρ

4 −
z
1. Hence by 8.19, d(a, z) ≤ 3, a contradiction.

Suppose next that c ∈ X3(z) and choose an nd-path
c
1 −

g

3 −
h
2 −

i
3 −

z
1 with Vg(h) ∩ Vi(h) = 0.

By Db(c) there exists j ∈ Γ2(cg) with 6 bcj 6= 384. Replacing j by Rc(j) if necessary, we may
assume that j = Rk(h) for some k ∈ Γ1(gh). (Indeed, we may assume Ωc(g) = 1,Ωh(g) = {1, 2}
and Ωj(g) = {2, 3} or {4, 5}. Replacing j by Rc(j) in the first case we may assume that the second
case holds and so k ∈ Γ1(g) with Ωk(g) = 3 does the trick.) Pick l ∈ Γ4(khi). Then l is adjacent
to j and z. Since c ∈ X3(z), Γ4(cz) =Ø thus l is not adjacent to c. Let Λ = {Vx(j)/Vc(j) | x ∈
Γ3(cj), Vx(j) ≤ Vc(j) + Vl(j)} and Θ = {Vx(j)/Vc(j) | x ∈ Γ3(cj), 6 bcx 6= 2880}. Then Λ is the set
1-spaces in a 3-subspace of V (j)/Vc(j). Moreover, since 6 bcj 6= 384 we get from Db(c), that Θ is
the set of 1-spaces in a 3- or 4-subspace of V (j)/Vc(j). Thus |Θ∩Λ| ≥ 3 and there exists m ∈ Γ3(cj)
with m 6= g, 6 bcm 6= 2880 and Vm(j) ≤ Vc(j) + Vl(j). In particular, Vm(j)∩ Vl(j) = Vn(j) for some
n ∈ Γ1(mjl). If n = k, Vg(j) = Vk(j) + Vc(j) = Vm(j), a contradiction to m 6= g. Thus n 6= k and
there exists a unique o ∈ Γ3(kjn). Since Vo(j) = Vk(j) + Vn(j) ≤ Vl(j), o is adjacent to l. Since
h = Rk(j), o and i are both adjacent to l and h. Hence there exists p ∈ Γ1(ihol). Put q = Rp(h).
Since n is adjacent to j and o, n is not adjacent to h = Rk(j) by 2.6 applied to Γ(o). Since also
p ∈ Γ(o), n is adjacent to q = Rp(h). Similarly, since z is not adjacent to h, we see in Γ(i) that z is
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adjacent to q. Hence there exists r ∈ Γ3(nqz) and we found an nd-path
a
1 −

b
4 −

c
1 −

m
3 −

n
1 −

r
3 −

z
1

with 6 bcm 6= 2880, a contradiction to the second paragraph of the proof.

Suppose finally that c ∈ X4(z) and choose an nd-path
c
1 −

g

4 −
h
3 −

i
4 −

z
1 with 6 cgh = 96 = 6 zih.

Regard Γ3(cg) as 1-spaces and Γ2(cg) as the isotropic 2-spaces of a four dimensional symplectic
space S over GF (2). With the help of Db(c) we will show that there exists y ∈ Γ2(cg) such that
6 bcm 6= 2880 for all m ∈ Γ3(cgy). Indeed, if 6 bcg 6= 1440 choose y such that y is adjacent to b. If
6 bcg = 1440, there exists u ∈ Γ2(cg) such that v ∈ Γ3(cg) is perpendicular to u in S if and only if
6 bcv 6= 2880. Choose y = u in this case. By 4.7 there exists m ∈ Γ3(cgy) with 6 ghm = 40. Hence
by Dh(g) there exists n ∈ Γ1(mgh). Then n is adjacent to h and i and since 6 zih = 96, there exists

r ∈ Γ3(hnz) and again we found an nd-path
a
1 −

b
4 −

c
1 −

m
3 −

n
1 −

r
3 −

z
1 with 6 bcm 6= 2880, a

contradiction.
This completes the proof of the claim. Pick g ∈ Γ1 with g ∼ z and d(g, a) = 3. By 8.24,

g ∈ X5(a) ∪X6(a). By the claim g 6∈ X5(a) and so g ∈ X6(a). Pick an nd-path
e
1 −

f

3 −
g

1 −
h
3 −

z
1

with d(e, a) = 2. Let j ∈ Γ2(ghz). Then by 8.23 there exists t ∈ Mag such that jt is adjacent to f
and so f t

−1
is adjacent to j. Replacing (e, f) by (et

−1
, f t
−1

) we may assume that f is adjacent to j.
Since Vg(j) ≤ Vf (j) ∩ Vh(j), there exists k ∈ Γ4(fjh). Then k is adjacent to e and z and we get a
contradiction to the claim applied with the rôles of a and z interchanged. 2

Theorem 8.26 Let M be a faithful completion of the J4-triangle of groups (M1,M2,M3) and let
M4 be as above. Then

(i) M1 has seven orbits on M/M1. The lengths of these orbits are 1; 22·3·5·11·23 = 15, 180; 24·7·
11·23 = 28, 336; 27·3·5·7·11·23 = 3, 400, 320; 211·32·7·11·23 = 32, 643, 072; 211·3·5·7·11·23 =
54, 405, 120 and 218 · 32 · 5 · 7 = 82, 575, 360.

(ii) |M | = 221 · 33 · 5 · 113 · 23 · 29 · 31 · 37 · 43 = 86, 775, 571, 046, 077, 562, 880.

(iii) M is simple.

(iv) Let 1 6= z ∈ Z(M4). Then CM (z) = M4.

Proof. (i) follows from 8.25, 8.6, 8.14, 8.18 and 8.23 and (ii) follows from (i).
(iii) Let N be a normal subgroup of M . If N ∩Mi 6= 1 for some 1 ≤ i ≤ 3 we conclude that

Z4 ≤ Zi ≤ N (notice that Z1 = Q1 and Z2 = Q2). Hence Q2 = 〈ZM2
4 〉 ≤ N , M1 = 〈QM1

2 〉 ≤ N

and for j = 2, 3, Mj = 〈MMj

1j 〉 ≤ N . Thus M = N . So suppose that Mi ∩ N = 1 for all i. Let
1 ≤ i < j ≤ 3. Then Mij is a maximal subgroup of Mj and Mi is not isomorphic to an overgroup
of Mij in Mj . Thus MiN ∩MjN = MijN and so M/N is a faithful completion of a J4-triangle. By
(ii) |M | = |M/N | and so N = 1.

(iv) Let t ∈ CM (z) and put a = M1, b = M1t = at and c = M4. Then z ∈ Qa ∩ Qb and
so by 8.21, 8.18, 8.12 and 8.9, b ∈ Xi(a) for some 0 ≤ i ≤ 2. It is now easy to check that
{d ∈ Γ4(b) | Zd ≤ Qa ∩Qb} = Γ4(a, b). Thus c, ct ∈ Γ4(a) and Zc = Ztc implies c = ct and t ∈M4.2
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