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Abstract

Call a group G hypersolvable if it has an ascending series with G/CG(A) solvable
for each factor A of the series. In this paper we establish some basic facts about
hypersolvable groups. We also prove that if G is a perfect Fitting p-group such that
every proper subgroup is contained in a proper normal subgroup, then G has a proper
non-hypersolvable subgroup.

1 Introduction

Let D be a class of pairs (B,A) such that B is a group acting faithfully on the group A.
Let G be a group acting on a group N . A G-invariant normal series A of N is called a
D-series for G on N if (G/CG(A), A) ∈ D for all factors A of A.

An ascending D-series for G on N is called a hyper-D series. If such a series exists
we say that G acts hyper-D on N . G is hyper-D means that G acts hyper-D on G. If
G1, G2 are classes of groups, then (G1,G2) denotes the class of pairs (B,A) with B ∈ G1,
A ∈ G2 and B acting faithfully on A. We denote the class of all groups with ∗. So (∗, ∗)
denotes the class of all pairs of groups (B,A) with B acting faithfully on A.

Consider the case N = G. Observe that hyper-(∗,abelian) groups are the hyper-
abelian groups and hyper-(1,∗) groups are the hypercentral groups. We say that G
is hypersolvable if G is hyper-(solvable,∗). This notation might be slightly mislead-
ing since one probably would be tempted to define a hypersolvable group to be a
hyper-(∗,solvable) group. But as the hyper-(∗,solvable) groups are just the hyperabelian
groups such a definition would not be of much use. Similarly we define a hypernilpotent
group to be a hyper-(nilpotent,∗)-group.

Unwinding the definitions we see that a group G is hypersolvable if and only if G
has a normal ascending series A such that G/CG(A) is solvable for all factors A of A.
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We say that G acts strongly hyper-D on N if for all G-invariant M CN there exists
a G-invariant M < M̃ E N with (G/CG(M̃/M), M̃/M) ∈ D.

In section 2 we establish some basic facts about hyper-D groups. In particular, we
show that if D is closed under quotients, then G acts hyper-D on N if and only if G
acts strongly hyper-D on N .

In section 3 we investigate hyper-(G, ∗)-groups, where G is a countable union of
group varieties.

In section 4 we apply Theorem 3.9 to obtain commutator conditions which charac-
terize hypersolvable and hypernilpotent groups.

In section 5 it is shown that the class of hypersolvable groups lies strictly between
the classes of hypercentral-by-solvable and hypercentral-by-(residually solvable) groups.
Similarly we show that the class of hypernilpotent groups lies strictly between the classes
of hypercentral-by-nilpotent and hypercentral-by-(residually nilpotent) groups.

Recall that a Fitting group is a locally (nilpotent and normal) group, that is a group
in which every finitely generated subgroup lies in a nilpotent, normal subgroup. We
say that a group G is NNC-proper if G is not the normal closure of a proper subgroup.
NNC-proper Fitting p-groups are considered in [AÖ1] and given a criterion for these
groups to be non-perfect. In Theorem 7.3 we prove that every NNC-proper, perfect,
Fitting p-group has a proper non-hypersolvable subgroup.

As a supplement to Theorem 7.3, in section 8 we provide some conditions which
ensure that a group is NNC-proper.

2 Basic Properties of hyper-D groups

Let D ⊆ (∗, ∗) (that is a class of pairs (A,B) of groups A and B with A acting faithfully
on B, which is closed under isomorphism). We say that D is closed under subgroups if
for all (A,B) ∈ D, all D ≤ A and all D-invariant E ≤ B we have (D/CD(E), E) ∈ D.
We say that D is closed under quotients if for all (A,B) ∈ D and all A-invariant E EB,
(A/CA(B/E), B/E) ∈ D. A group G is finitely hyper-D if it has a finite hyper-D-series.

Lemma 2.1 Let D ⊆ (∗, ∗) and let G be acting hyper-D on N .

(a) Suppose that D is closed under subgroups. Let H ≤ G and let M be an H-invariant
subgroup of N . Then H acts hyper-D on M .

(b) Suppose that D is closed under quotients and that M is a G-invariant normal
subgroup of N . Then G acts hyper-D on N/M .

Proof: Let (Nα)α be a hyper-D series for G on N .
(a) Just observe that (M ∩Nα)α is a hyper-D series for H on M .
(b) Since quotients of ascending series are again ascending series, (NαM/M)α is a

hyper-D series for G on N/M . �

Lemma 2.2 Let D ⊆ (∗, ∗) and let G be acting on N .

(a) If G acts strongly hyper-D on N , then G acts hyper-D on N .

(b) If D is closed under quotients, then G acts strongly hyper-D on N if and only if
it acts hyper-D on N .
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Proof: (a) Define N0 = 1. If α is a limit ordinal, put Nα =
⋃

β<α Nβ . If α = β + 1
and Nβ 6= N , put Nα = Ñβ . Then (Nα)α is a hyper-D series on N .

(b) Follows from (a) and 2.1(b). �

Lemma 2.3 Let D ⊆ (∗, ∗) and let G be acting on N . Suppose that there exists a
G-invariant normal ascending series on N such that G acts hyper-D on each of the
factors. Then G acts hyper-D on N . In particular, if (Ni, i ∈ I) is a family of groups
with G acting hyper-D on each Ni, then G acts hyper-D on

⊕
i∈I Ni.

Proof: For the first statement use the series on the factors to refine the given series
to a hyper-D series.

For the second statement well-order I such that I has a maximal element. For
i ∈ I define N+

i =
⊕

j≤i Nj and N−
i =

⊕
j<i Nj . Then {N−

i , N+
i | i ∈ I} is G-

invariant normal ascending series on
⊕

i∈I Ni with factors N+
i /N−

i
∼= Ni. So the second

statement follows from the first. �

Proposition 2.4 Let G be any class of groups.

(a) Suppose G is closed under quotients. Then hypercentral-by-G groups are hyper-
(G, ∗) and nilpotent-by-G groups are finitely hyper-(G, ∗).

(b) Hyper-(G, ∗) groups are hypercentral-by-(residually G). If G is closed under finite
subdirect products then finitely hyper-(G, ∗)-groups are nilpotent-by-G.

(c) If G is closed under quotients and finite subdirect products, then the nilpotent-by-
G-groups are exactly the finitely hyper-(G, ∗) groups.

Proof: (a) Let H E G such that H is hypercentral and G/H ∈ G. Let Z be the
hypercentral series for H. Then Z is G-invariant. If Z is a factor of Z, then [Z,H] = 1
and so G/CG(Z) is a quotient of G/H. Thus G/CG(Z) ∈ G. Also G/CG(G/H) is a
quotient of G/H and so Z ∪ {G} is a hyper-(G, ∗) series for G. If H is nilpotent, Z is
finite and (a) is proved.

(b) Let A = (Aα)α be a hyper-(G, ∗)-series for G and put

H =
⋂
{CG(A) | A a factor of A}.

Since G/CG(A) ∈ G for all factors A, G/H is subdirect product of members of
G and so residually-G. Moreover (Aα ∩ H)α is a hypercentral series for H and so H
is hypercentral. If A is finite and G is closed under finite subdirect products, then
G/H ∈ G and H is nilpotent. So (b) holds.

(c) Follows from (a) and (b). �

3 Countable unions of group varieties

For n ∈ N, F (n) denotes the free group on n-generators x1, x2, . . . , xn. Let G be
a group, m ∈ N ∪ {∞} with m ≥ n and g = (gi)m

i=1 ∈ Gm. Then there exists a
unique homomorphism φg : F (n) → G with xi → gi for all 1 ≤ i ≤ n. Given a
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word w ∈ F (n) we write w(g) for φg(w). So if w = xi1xi2 . . . xim with 1 ≤ ik ≤ n, then
w(g) = gi1gi2 . . . gim

. If m ≤ n we view F (m) as a subgroup of F (n). Let m = m(w) ∈ N
be minimal with w ∈ F (m). Let F :=

⋃∞
n=1 F (n) and let W be the set of subsets of F .

So the elements of W are sets of words.
Put Gw := 〈w(g) | g ∈ Gn〉 and note that Gw is a normal subgroup of G. For a set

W ∈ W let GW = 〈Gw | w ∈ W 〉. Let G(W ) be the class of groups G with GW = 1,
that is G(W ) is the variety defined by W .

Proposition 3.1 Let W ∈ W and let G be a group. Then G is hyper-(G(W ), ∗) if and
only if GW is hypercentral.

Proof: Let N E G. Then G/N ∈ G(W ) if and only if GW ≤ N if and only if G/N is
residually G(W ). Thus the proposition follows from 2.4. �

Definition 3.2 Let W = (Wi)∞i=1 ∈ W∞ be a sequence of sets of words.

(a) W is decreasing if FWi+1 ≤ FWi for all i.

(b) W is almost decreasing if for all i, j ∈ Z+ there exists k ≥ j with FWk ≤ FWi .

(c) G(W ) =
⋃∞

i=1 G(Wi).

Lemma 3.3 Let G be group.

(a) Let V,W ∈ W with FV ≤ FW . Then GV ≤ GW .

(b) Let W ∈ W∞ be almost decreasing. Then (GWi)∞i=1 is almost decreasing, that is
for i, j ∈ Z+ there exists k ≥ j with GWk ≤ GWi .

Proof: (a) Let g ∈ GV . Then g ∈ HV for some finitely generated subgroup H of G.
Let α : F → H be an onto homomorphism. Then HV = α(FV ) ≤ α(FW ) = HW and
so g ∈ HW ≤ GW .

(b) follows from (a). �

Definition 3.4 Let G be a group acting on a group N , W ∈ W∞ and α an ordinal.

(a) Define Hα = HypW
α (G, N) inductively as follows:

Hα = 1 if α = 0
Hα =

⋃
β<α Hβ if 0 6= α is a limit ordinal

Hα/Hα−1 = CN/Hα−1([N,GWk ]GWk) if α = β + k with

β a limit ordinal and k ∈ Z+.

(b) δ = δW (G, N) is the least ordinal such that Hδ = Hβ for all β ≥ δ. Moreover,
HypW (G, N) := Hδ

(c) A hyper-W series is a hyper-(G(W ),∗) series and a hyper-W group is a hyper-
(G(W ),∗) group.

If α = β +k, β a limit ordinal and k ∈ Z+, then Hα/Hα−1 is the largest N -invariant
subgroup of N/Hα−1 centralized by GWk .

Define HypW
α (G) = HypW

α (G, G) and HypW (G) = HypW (G, G). If there is no doubt
about the group G and the sequence W in question define Hα = HypW

α (G).
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Proposition 3.5 Let G be a group and W ∈ W∞.

(a) (Hα)α is a hyper-W series for G on HypW (G).

(b) Let A E G and (Aα)α be a hyper-W series for G on A.

(a) For every ordinal α there exists an ordinal α∗ with Aα ≤ Hα∗ . In particular,
A ≤ HypW (G).

(b) If W is almost decreasing we can choose α∗ such that α∗ = α + nα for some
nα ∈ N and nα = 0 if α is a limit ordinal.

(c) G is hyper-W if and only if G = HypW (G).

Proof: (a) Let α = β + k for some limit ordinal β and some k ∈ Z+. Then GWk

centralizes Hα/Hα−1. Hence G/CG(Hα/Hα−1) ∈ G(Wk) ⊆ G(W ) and (a) holds.
(b) By induction we may assume that for all β < α there exists β∗ with Aβ ≤ Hβ∗ .
Suppose first that α is a limit ordinal. Let α∗ be the least ordinal with α ≤ α∗ and

Hα∗ =
⋃

β<α Hβ∗ . Then

Aα =
⋃

β<α

Aβ ⊆
⋃

β<α

Hβ∗ = Hα∗

Moreover, if for all β < α, β∗ = β + nβ for some nβ ∈ N then α∗ = α. So (b:a) and
(b:b) hold for α.

Suppose next that α = β+k for some limit ordinal β and some k ∈ Z+. Since (Aα)α

is hyper-W there exists i ∈ Z+ with [Aα, GW i

] ≤ Aα−1.
Assume that W is almost decreasing. By induction Aα−1 ≤ Hα−1+nα−1 for some

nα−1 ∈ Z+. Since W is almost decreasing there exists n ∈ Z+ with n ≥ k + nα−1 and
GWn ≤ GWi . Then

[Aα, GWn ] ≤ [Aα, GWi ] ≤ Aα−1 ≤ Hα−1+nα−1 = Hβ+k−1+nα−1 ≤ Hβ+n−1.

Thus Aα ≤ Hβ+n = Hα+n−k and (b:b) holds with nα = n− k.
Assume next that W is not almost decreasing. Let γ be the smallest limit ordinal

with (α− 1)∗ ≤ γ. Then

[Aα, GWi ] ≤ Aα−1 ≤ H(α−1)∗ ≤ Hγ ≤ Hγ+i−1

and so Aα ≤ Hγ+i. Thus (b:a) holds.
(c) Follows from (a) and (b). �

Definition 3.6 (a) For i = 1, 2 let wi be a word and mi = m(wi). Put

dw1, w2e := [ w1( (xi)m1
i=1 ) , w2( (xm1+i)m2

i=1 ) ] ∈ F (m1 + m2)

dw1, w2e is called the outer commutator of w1 and w2.

(b) Following Möhres [M3, (3) Definition], outer commutator words are inductively
defined as follows:

(a) w = x1 is the only outer commutator word with m(w) = 1.
(b) If m(w) > 1 then w is an outer commutator word provided that there exist

outer commutator words w1, w2 with m(wi) < m(w) and w = dw1, w2e.
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(c) Let w ∈ Fn, n ∈ N ∪ {∞}. Then w̌ ∈ Fn+1 is inductively defined as follows:
w̌1 = x1 and w̌i+1 = dw̌i, wie.

(d) Let W ∈ Wn, n ∈ N ∪ {∞}. Then W̌ ∈ Wn+1 is inductively defined as follows:
W̌1 = {x1} and W̌i+1 = {dv, we | v ∈ W̌i, w ∈ Wi}.

For example, dx1x
3
2, x1x

2
2e = [x1x

3
2, x3x

2
4]. Note that m(dw1, w2e) = m1 + m2. Also

W̌i+1 = {w̌i+1 | w ∈ \/i
j=1 Wj}. To improve readability we sometimes write wˇfor w̌.

Lemma 3.7 Let G be a group, w ∈ F∞, g ∈ G∞ and i ∈ Z+.

(a) Put n = m(w̌i) and m = m(wi). Then

w̌i+1(g) = [w̌i(g), wi( (gn+j)m
j=1 )].

(b) Let N E G. If w̌i(g) ∈ N then also w̌j(g) ∈ N for all j ≥ i.

(c) Let W ∈ W∞. Then GW̌i+1 = [GW̌i , GWi ] ≤ GW̌i ∩GWi .

In particular, W̌ is decreasing.

Proof: (a) By definition w̌i+1 = dw̌i, wie. So (a) follows from the definition of the
outer commutator.

(b) and (c) follow from (a). �

Definition 3.8 (a) Let W ∈ W∞. Then H(W ) is the class of groups G such that
for all g ∈ G∞ and all w ∈ \/∞i=1 Wi there exists n ∈ Z+ with wn(g) = 1 (or
equivalently for all g ∈ G∞, there exists n ∈ Z+ with wn(g) = 1 for all wn ∈ Wn.)

(b) Let D ⊆ (∗, ∗). Then HD is the class of hyper-D-groups. FD is the class of
finitely hyper-D-groups.

Observe that G(W ) is the class of groups G for which there exists n ∈ Z+ with
wn(g) = 1 for all g ∈ G∞ and all wn ∈ Wn. Thus G(W ) ⊆ H(W ).

Theorem 3.9 Let W ∈ W∞. Then

(a) G(W̌ ) ⊆ F(G(W ), ∗) with equality if W is almost decreasing.

(b) H(W̌ ) ⊆ H(G(W ), ∗) with equality if W is almost decreasing.

Proof: Suppose that GW̌n = 1 for some n. Then by 3.7(c)

1 = GW̌n ≤ GW̌n−1 ≤ . . . ≤ GW̌2 ≤ GW̌1 = G

is a finite hyper-W series on G. Thus G(W̌ ) ⊆ F(G(W ), ∗).

Let G be a group which is not hyper-W . We will show that G is also not contained
in H(W̌ ). By 2.2 there exists N C G such that

(∗) CG/N (GWn) = 1 for all n ∈ Z+.

Let g1 ∈ G \ N . Note that x1(g1) = g1 /∈ N . Suppose inductively that we already
found (gi)nk

i=1 ∈ Gnk and wi ∈ Wi, 1 ≤ i < k with w̌k( (gi)nk
i=1 ) /∈ N . Then by (*)
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[w̌k( (gi)nk
i=1 ), GWk ] � N and there exist wk ∈ Wk and (gnk+j)

m(wk)
j=1 ∈ Gm(wk) with

[w̌k(gi)nk
i=1, wk( (gnk+j)

m(wk)
j=1 )] /∈ N . Put nk+1 = nk + m(wk). Then by 3.7(a),

w̌k+1( (gi)
nk+1
i=1 ) /∈ N.

Put g = (gi)∞i=1 and w = (wi)∞i=1. Then w̌k(g) 6= 1 for all k and so G /∈ H(W̌ ). Thus
H(W̌ ) ⊆ H(G(W ), ∗).

Suppose next that W is almost decreasing. We will prove the second assertions in
(a) and (b) simultaneously. Let G be hyper-W and let (Aα)α≤ρ be any hyper-W series
on G. Let i ∈ Z+. If ρ is finite let Vi = Wi and Hi = Gi. If ρ is infinite pick wi ∈ Wi

and gi ∈ G and put Hi = {gi} and Vi = {wi}
Let g ∈ \/∞i=1 Hi and w ∈ \/∞i=1 Vi. Then w̌1(g1) = g1 ∈ G = Aρ. So we can choose an

ordinal α minimal such that there exists n ∈ Z+ with w̌n(g) ∈ Gα for all w ∈ \/∞i=1 Vi

and g ∈ \/∞i=1 Hi.
We will show that α = 0. Suppose that α = β + 1 for some ordinal β. Since

G/CG(Aα/Aβ) ∈ G(W ), there exists m ∈ Z+ with [Aα, GWm ] ≤ Aβ . Since W is almost
decreasing we may assume m ≥ n. Let w ∈ \/∞i=1 Vi. Then w̌n(g) ∈ Aα and m ≥ n. So
by 3.7(b), w̌m(g) ∈ Aα. Hence

w̌m+1(g) ∈ [w̌m(g), GWm ] ≤ [Aα, GWm ] ≤ Aβ

for all w ∈ \/∞i=1 Vi and g ∈ \/∞i=1 Hi, a contradiction to the minimal choice of α. Thus α
is a limit ordinal.

Suppose that α 6= 0. Then ρ is infinite and so by our choice of Vi, |Vi| = 1 = |Hi

and there exist a unique w ∈ \/∞i=1 Vi and a unique g ∈ \/i∈I Hi. Since Aα =
⋃

β<α Aβ

there exists β < α with w̌n(g) ∈ Aβ , a contradiction to the choice of α.
Thus α = 0 and so w̌n(g) = 1 for all w ∈ \/∞i=1 Vi.
If ρ is finite, Vi = Wi and Hi = Gi. Thus GW̌n = 1 and G ∈ G(W̌ ). So (a) is proved.
In any case, wn(g) = 1 shows that G ∈ H(W̌ ) and (b) holds. �

The following example shows that the inclusions in 3.9 may be proper if W is not
almost decreasing:

Let G = Sym(3), x = x1, W1 = {x2} and Wi = {x} for i ≥ 2. Then w =
(x2, x, x, x, . . .) is the unique element in \/∞i=1 Wi. Also 1 ≤ Alt(3) ≤ Sym(3) is a finite
hyper-(G(W ), ∗) series. Thus Sym(3) ∈ F(G(W ), ∗) ⊆ H(G(W ), ∗).

Put g = ((12), (123), (12), (12), (12), . . .). Then w̌1(g) = g1 = (12), w̌2(g) =
[(12), (123)2] = (123), w̌3(g) = [(123), (12)] = (123) and so for all n ≥ 2, w̌n(g) = (123).
Thus wn(g) 6= 1 for all n and Sym(3) /∈ H(W̌ ). Since G(W̌ ) ⊆ H(W̌ ) we see that
G(W̌ ) 6= F(G(W ), ∗) and H(W̌ ) 6= H(G(W, ∗).

On the other hand, given an arbitrary W ∈ W∞ define

V = (W1,W1,W2,W1,W2,W3,W1,W2,W3,W4,W1, . . .).

Then clearly V is almost decreasing. For any group G, G(W ) only depends on {Wi |
i ∈ Z+} and so G(W ) = G(V ). Thus by 3.9

G(V̌ ) = F(G(W ), ∗) and H(V̌ ) = H(G(W ), ∗).
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4 Hypersolvable and hypernilpotent groups

Definition 4.1 (a) τ(0) = (x1)∞i=1 and inductively τ(i + 1) = τ(i)̌ .

(b) φ is the unique sequence of words with φ = φ̌. So φ1 = x1 and inductively
φi+1 = dφi, φie.

It might be worthwhile to list the first few terms of the above sequence of words:

τ(0) : x1 x1 x1 x1

τ(1) : x1 [x1, x2] [[x1, x2], x3] [[[x1, x2], x3], x4]
τ(2) : x1 [x1, x2] [[x1, x2], [x3, x4]] [[[x1, x2], [x3, x4]], [[x5, x6], x7]]]

φ : x1 [x1, x2] [[x1, x2], [x3, x4]] [[[x1, x2], [x3, x4]], [[x5, x6], [x7, x8]]]

Lemma 4.2 (a) Let N (0) be the class of trivial groups and inductively let N (n + 1)
be the class of nilpotent-by-N (n) groups. Then G(τ(n)) = N (n). In particular,
G(τ(1)) the class of nilpotent groups.

(b) G(φ) is the class of solvable groups.

(c) H(τ(1)) is the class of hypercentral groups and H(τ(2)) is the class of hypernilpo-
tent groups.

(d) H(φ) is the class of hypersolvable groups.

Proof: (a) Let w ∈ F∞ be decreasing. By 3.9(a), G(w̌) = F(G(w), ∗) and so by 2.4(c):

(∗) G(w̌) is the class of nilpotent-by-G(w)groups.

Clearly G(τ(0))) is the class of trivial groups. Since τ(1) = τ(0)̌ , (*) says that
G(τ(1)) is the class of nilpotent-by-trivial groups and so the class of nilpotent groups.
Hence G(τ(1)) = N (1). Inductively suppose that G(τ(n)) = N (n). So (*) implies that
G(τ(n+1)) is the class of nilpotent-by-N (n) groups. Thus G(τ(n+1)) = N (n+1) and
(a) holds.

(b) We have G = Gφ1 = G(0) and so inductively

Gφi+1 = [Gφi , Gφi ] = [G(i−1), G(i−1)] = G(i).

Hence G(φi) is the class of solvable groups of derived length less than i and (b) holds.
(c) and (d) follow from (a), (b) and 3.9(b). �

Lemma 4.3 Let G be a group and w an outer commutator word. Put m = m(w).
Then Gφm ≤ Gw.

Proof: For m = 1 we have w = x1 = φ1. If m > 1, then w = dw1, w2e where w1, w2

are outer commutator words with mi := m(wi) < m. So

Gφm−1 ≤ Gφmi ≤ Gwi

and thus
Gφm = [Gφm−1 , Gφm−1 ] ≤ [Gw1 , Gw2 ] = Gw.

�
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Corollary 4.4 Let w be a sequence of outer commutator words. Then

H(w̌) ⊆ H(G(w), ∗) ⊆ H(φ).

Proof: The first statement follows from 3.9(b). Now let G be a group with a hyper-
(G(w), ∗) series and T a factor of that series. Then [T,Gwk ] = 1 for some k. By 4.3
[T,G(m)] = 1 for some m and so G is hypersolvable. Thus by 4.2(d), G ∈ H(φ). �

5 Examples

In this section we construct various examples of groups which are hyper-(G, ∗) for some
class G of groups. By 2.4 we know that any such group is hypercentral-by-(residually
G). The next proposition gives a partial converse:

Example 5.1 Let G be a class of groups, (Hi, i ∈ I) a family of members of G and H
a subdirect product of (Hi, i ∈ I). For i ∈ I let Ai be a group with Hi acting on Ai.
Suppose that

(i) H is hyper-(G, ∗).
(ii) For each i ∈ I, Ai is abelian and Hi acts faithfully on Ai.

(iii) For each 1 6= N EH, there exists i ∈ I such that N does not act hypercentrally on
Ai.

Put A =
⊕

Ai. Note that H acts on Ai via its projection onto Hi and so also
acts on A. Put G = AH. Then G is hyper-(G, ∗). Moreover, any hypercentral normal
subgroup of G is contained in A.

Proof: Since G/CG(Ai) ∼= Hi ∈ G, G acts hyper-(G, ∗) on Ai. So by 2.3, G is hyper-
(G, ∗) on A. Also G/A ∼= H is hyper-(G, ∗) and hence by 2.3 G is hyper-(G, ∗).

Let M E G with M � A. Then AM = AN for some 1 6= N E H. By (iii) there
exists i ∈ I such that N does not act hypercentrally on Ai. So N also does not act
hypercentrally on [Ai, N ]. Since A is abelian, [Ai, N ] = [Ai,M ] ≤ M and M does not
act hypercentrally on [Ai,M ]. Thus M is not hypercentral. �

Example 5.2 Let G be a class of groups and H a group. Suppose H is residually-G and
hyper-(G, ∗). Then there exists a hyper-(G, ∗) group G and an abelian normal subgroup
A of G such that G/A ∼= H and such that every hypercentral normal subgroup of G is
contained in A.

Proof: Let M = {M E H | G/M ∈ G}. Since H is residually-G,
⋂
M = 1. In

particular, H is a subdirect product of (G/M | M ∈ M). For M ∈ M put AM =
Z[G/M ]. Then AM is an abelian group with G/M acting faithfully on AM by right
multiplication. Let 1 6= N EH and choose M ∈M with N � M . Then N does not act
hypercentrally on AM (indeed if NM/M is infinite, CAM

(N) = 0 and if NM/M is finite,
choose a prime p with p - |NM/M | and observe that N does not act hypercentrally on
AM/pAM .)

So 5.1 completes the proof. �
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Example 5.3 For each prime p there exists a locally finite, hypersolvable p-group which
is not hypercentral-by-solvable.

Proof: For 1 < k ∈ N let Hk be a solvable p-group of derived length k with Z(Hk) = 1.
Let Ak = FpHk and H =

⊕∞
k=2 Hk. Let 1 6= N E H and choose k such that the

projection Nk of N in Hk is not trivial. If Nk is finite, Hk/CNk
(Hk) is a finite p-group

acting on the finite p-group Nk and so CNk
(Hk) 6= 1, contrary to Z(Hk) = 1. So Nk is

infinite. Hence CAk
(N) = 1 and N does not act hypercentrally on Ak. Put A =

⊕
Ak

and G = AH. 5.1 now completes the proof. �

Example 5.4 For each prime p there exists a hypernilpotent, 3-step elementary abelian,
p-group G which is not hypercentral-by-hypercentral.

Proof: Let F be an infinite field of characteristic p.
Let W be a vector space over F with basis (wi, i ∈ N). For i ∈ N let i =

∑∞
j=0 bij2j

with bij ∈ {0, 1}. For j ∈ N and f ∈ F define tjf ∈ GLF(W ) by tjf (wi) = wi + fwi+2j

if bij = 0 and tjf (wi) = wi if bij = 1.
Let Tj = {tjf | f ∈ F}. Then Tj is an infinite elementary abelian p-group isomorphic

to (F,+). Also [Tj , Tk] = 1 for all j, k and so also T =: 〈Tj | j ∈ Z+〉 is an elementary
abelian p-subgroup of GL(W ).

Define Wi = 〈Fwk | k ≥ 2i〉. Then clearly Wi is an FT -submodule of W and so Wi

is a normal subgroup of the semidirect product H = WT . Moreover, W/Wi is finite
dimensional and H/Wi is nilpotent. Since

⋂∞
i=1 Wi = 1, H is residually nilpotent.

Let 1 6= N E H. We prove next that

(*) there exists k such that NWk/Wk is infinite.

Since CH(W ) = W either [N,W ] 6= 1 or N ≤ W . In either case there exists
1 6= n ∈ N ∩ W . Let n =

∑l
i=0 kiwi with ki ∈ F and pick j ∈ N with 2j > l. Put

m =
∑l

i=0 kiwi+2j . Then tjf (n) = n + fm. Since F is infinite and fm /∈ Wj+1 for all
0 6= f ∈ F we conclude that (*) holds for k = j + 1.

Since H is a p-group, (*) implies Z(H) = 1 and so H is not hypercentral. Since
H/CH(W ) ∼= T is abelian and H/CH(H/W ) = 1 we conclude that 1 ≤ W ≤ H is a
hypernilpotent series on H. Therefore H is hypernilpotent.

Let Ai = Fp[H/Wi] and put A =
⊕∞

i=1 Ai. Then A is an elementary abelian p-group.
Choose k as in (*). Then CAk

(N) = 1 and so N does not act hypercentrally on Ak.
Therefore the assumptions of 5.1 are fulfilled. Thus G = AH = AWT is hypernilpotent
and every hypercentral normal subgroup of G is contained in A. Since G/A ∼= H is not
hypercentral, G is not hypercentral-by-hypercentral. �

Many thanks to Jon Hall who simplified the description of the action of T on W in
the preceding lemma.

6 Möhres’ Lemma

Fix a group G and let F be the set of finitely generated subgroups of G. For H,K ≤ G let
F(H) = {E ∈ F | H ≤ E} and F(H,K) = {E ∈ F(H) | E � K}. Put D(H,K) = G
if F(H,K) = ∅, and D(H,K) =

⋂
F(H,K), otherwise. If the group G in question
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needs to be emphasized, we will also use the notations FG, DG(H,K), . . . in place of
F , D(H,K), . . ..

For K ≤ G let K◦ ≤ G be such that 〈KG〉 ≤ K◦ and K◦/〈KG〉 is the hypercenter
of G/〈KG〉.

Lemma 6.1 Let G be a group and K ≤ G.

(a) Let E ≤ G and put D = D(E,K). Then E ≤ D, F(E,K) = F(D,K) and
D = D(D,K).

(b) K = K◦ if and only if K E G and Z(G/K) = 1.

(c) Let K ≤ L ≤ K◦. Then L◦ = K◦. In particular 〈KG〉◦ = K◦ = (K◦)◦.

(d) Suppose G is perfect. Then [K◦, G] ≤ 〈KG〉. Moreover, G = 〈KG〉 if and only if
G = K◦.

Proof: (a) Clearly E ≤ D. Let E ≤ H ∈ F with H � K. Then by definition of D,
D ≤ H and so F(E,K) ⊆ F(D,K). Clearly F(D,K) ⊆ F(E,K) and so (a) holds.

(b) is obvious.
(c) Clearly 〈KG〉◦ = K◦ and 〈LG〉 ≤ K◦. So we may assume that both K and L

are normal in G. Since K◦/K is hypercentral for G also K◦/L is hypercentral for G.
Thus K◦ ≤ L◦. Since L◦/K◦ and K◦/K are hypercentral for G, L◦/K is hypercentral
for G and so L◦ ≤ K◦.

(d) The first statement holds since the hypercenter of a perfect group is its center.
The second follows from the first. �

The following lemma and its corollary have been abstracted from the proof of [M3,
(4)Lemma].

Lemma 6.2 (Möhres’ Lemma) Let G be an NNC-proper, perfect group. Let U ∈ F
and a ∈ G \ U . Then one of the following holds.

1. There exists N C G and a /∈ V ∈ F(U) with a ∈ D(V,N).

2. Let α be any outer commutator word and a /∈ V ∈ F(U). Then

G = 〈Hα | a /∈ H ∈ F(V )〉.

Proof: We assume that (1) and (2) are both false. Since (1) is false:

(*) a /∈ D(V,N) for all N C G and all a /∈ V ∈ F(U).

Since (2) is false, there exist an outer commutator word α with m(α) minimal and
a 6∈ V ∈ F(U) such that K := 〈Hα | a /∈ H ∈ F(V )〉 6= G. Let N = K◦. Since G is
NNC-proper, G 6= 〈KG〉 and so by 6.1(d), N 6= G.

Suppose that m(α) = 1, that is α = x1. From (*), a 6∈ D(V,N) and so there exists
H ∈ F(V ) with a /∈ H and H � N , a contradiction to H = Hx1 = Hα ≤ K ≤ N .

Thus m(α) 6= 1 and so there exist outer commutator words β and γ with α = dβ, γe.
By the minimal choice of m(α), G = 〈Hβ | a /∈ H ∈ F(V )〉 and so there exists
a /∈ H ∈ F(V ) with Hβ � N . Since Z(G/N) = 1, [Hβ , G] � N . Again by the minimal
choice of m(α), G = 〈Rγ | a /∈ R ∈ F(H)〉 and thus there exists a /∈ R ∈ F(H) with
[Hβ , Rγ ] � N . Since H ≤ R, Hβ ≤ Rβ and so Rα = [Rβ , Rγ ] � N , a contradiction to
Rα ≤ K ≤ N . �
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Corollary 6.3 Let G be an NNC-proper, perfect group. Let U ∈ F and a ∈ G \ U .
Then one of the following holds:

1. There exist N C G and a /∈ V ∈ F(U) with a ∈ D(V,N).

2. Let w = (wi)∞i=1 be any sequence of outer commutator words. Then there exists
g ∈ G∞ such that a /∈ 〈U, g〉 and w̌k(g) 6= 1 for all k ∈ Z+. In particular, there
exists a non-hypersolvable H ≤ G with a /∈ H and U ≤ H.

Proof: Suppose that (1) is false. Then 6.2(2) holds. In particular, there exists g1 ∈
G\Z(G) with a /∈ 〈U, g1〉. Put mk = m(wk) and nk = m(w̌k). Let k ∈ Z+ and suppose
inductively that we have found

(*) gi ∈ Gi, 1 ≤ i ≤ nk such that a /∈ Uk := 〈U, gi, 1 ≤ i ≤ nk〉 and hk :=
w̌k( (gi)nk

i=1 ) /∈ Z(G).

Note that (*) holds for k = 1. Since G is perfect and hk /∈ Z(G), [hk, G] � Z(G).
So by 6.2(2), applied with α = wk and V = Uk there exists Hk ∈ F(Uk) such that
a /∈ Hk and [hk,Hwk

k ] � Z(G). Hence we can choose gnk+i ∈ Hk, 1 ≤ i ≤ mk with
with [hk, wk( (gnk+i)mk

i=1 )] /∈ Z(G). Thus hk+1 /∈ Z(G). Moreover Uk+1 ≤ Hk and so
a 6∈ Uk+1.

By induction (*) holds for all k ∈ N. Put g = (gi)∞i=1. Then w̌k(g) 6= 1 for all
k ∈ Z+.

In the special case wi = φi, 4.2(d) shows that 〈U, g〉 is not hypersolvable. �

7 Perfect NNC-proper Fitting p-groups

In this section we prove that every perfect, NNC-proper, Fitting p-group has a proper
non-hypersolvable subgroup.

Lemma 7.1 Let G be a nilpotent p-group. Let H be a normal subgroup of G such that
G/H is an infinite elementary abelian p-group. Let U be a finite subgroup of G and let
a ∈ G \U . Then there exists a subgroup V of G such that U ≤ V , a 6∈ V and V/V ∩H
is infinite.

Proof: [M2, (6)Satz]. �

Corollary 7.2 Let G be a perfect Fitting p-group. Then U = D(U,N) for all finite
subgroups U of G and all N C G.

Proof: Suppose U 6= D(U,N) for some finite U ≤ G and some N C G. Let U <
D ≤ D(U,N) with D finite. Since G is perfect, G/N is not nilpotent. As G is a Fitting
group, 〈DG〉N/N is nilpotent. Thus G 6= 〈DG〉N and we may assume that D ≤ N . Also
G 6= N◦ and so we may assume N = N◦. Since G/N is a Fitting group, there exists a
non-trivial abelian normal subgroup E/N in G/N . Choose g ∈ E \N with gp ∈ N and
put M = 〈DG, gG〉. Then M is nilpotent, M/M ∩ N ∼= MN/N is elementary abelian
and U < D ≤ DM (U,M ∩N).

Suppose that M/M∩N is infinite. Pick a ∈ D\U . Then by 7.1 (applied with G = M
and H = N ∩M) there exists U ≤ V ≤ M with a /∈ V and V/V ∩ (M ∩ N) infinite.
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Pick v ∈ V \ (M ∩N). Then 〈U, v〉 ≤ V and so a /∈ 〈U, v〉. Hence a /∈ D(U,M ∩N), a
contradiction to a ∈ D.

Thus M/M ∩ N is finite. So also MN/N is finite. Since G is perfect, we get
[M,G] ≤ N and M ≤ N◦ = N , a contradiction to g ∈ M \N . �

Proposition 7.3 Let G be a NNC-proper, perfect, Fitting p-group. Let U be a finite
subgroup of G and a ∈ G \ U . Then there exists a non-hypersolvable subgroup H of G
with a /∈ H and U ≤ H.

Proof: From 7.2 V = D(V,N) for all finite subgroups V of G. Thus 6.3(1) does not
hold and so 6.3(2) does. �

8 Normal closure of subgroups

Let S be a set of subgroups of a group G. We say that G is NNC-S if G 6= 〈SG〉 for
all S ∈ S (here NNC stands for “not normal closure”). Note that this is the case if
and only if every member of S lies in a proper normal subgroup of G. If G is a class
of groups, we say that G is NNC-G if G is NNC-S, where S = {S ≤ G | S ∈ G}. So
G is NNC-abelian if G is not the normal closure of an abelian subgroup. G is strongly
NNC-G if each non-trivial quotient of G is NNC-G. We say that G is NNC-proper if G
is NNC-P where P is the set of proper subgroups of G. We say G is NNC-centralizers
if G is NNC-C where C = {CG(x) | 1 6= x ∈ G}. Note that G is NNC-centralizer if and
only if G 6= 〈HG〉 for all H ≤ G with Z(H) 6= 1.

The goal of this section is to prove Proposition 8.4, which provides conditions which
imply that G is NNC-proper.

Lemma 8.1 Let G be a group and i ∈ Z+. Then the following are equivalent:

(a) G is strongly NNC-abelian.

(b) G is strongly NNC-solvable.

(c) Let K ≤ G. Then G = 〈KG〉 if and only if G = 〈(K(i))G〉.

Proof:
(a) implies (b): Let H be a non-trivial quotient of G and let S be a solvable subgroup

of H. By induction on the derived length of S, N := 〈S′H〉 6= H. Since SN/N is abelian,
H/N 6= 〈SN/NH〉 and so also H 6= 〈SH〉.

(b) implies (c): Put N := 〈(K(i))G〉. Clearly G 6= 〈KG〉 implies N 6= G. Now
suppose N 6= G. Since KN/N is solvable, (b) implies G/N 6= 〈KN/NG〉 and so
〈KG〉 6= G.

(c) implies (a): Let H = G/N be a non-trivial quotient of G and A = K/N an
abelian subgroup of G/N . Then K(i) ≤ N < G and so G 6= 〈(K(i))G〉. Thus by (c)
G 6= 〈KG〉 and so also H 6= 〈AH〉. �

Definition 8.2 Let G be a group. Then Sol∗(H) = Hypφ(G).

Observe that by 4.2 and 3.5 Sol∗(H) is the largest normal subgroup of G on which G
acts hypersolvablely.
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Lemma 8.3 Let G be an NNC-centralizer and strongly NNC-abelian group. Then G 6=
〈KG〉 for all K ≤ H such that Sol∗(K) 6= 1. In particular, G is NNC-hypersolvable.

Proof: Let K ≤ G with Sol∗(K) 6= 1. Then there exists a non-trivial normal subgroup
A of K such that K/CK(A) is solvable. Let 1 6= x ∈ A. Then CK(A) ≤ CG(x) and
since G is NNC-centralizer we get N := 〈CK(A)G〉 6= G. Then KN/N is solvable.
Since G is strongly NNC-abelian, 8.1 implies that G is strongly NNC-solvable. Thus
G/N 6= 〈KN/NG〉 and G 6= 〈KG〉. �

Proposition 8.4 Suppose G is NNC-centralizer and that one of the following holds:

(i) G is minimal non-hypercentral.

(ii) G is minimal non-hypersolvable and strongly NNC-abelian.

Then G is NNC-proper.

Proof: Let K be a proper subgroup of G.
If (i) holds, K is hypercentral. Hence Z(K) 6= 1 and since G is NNC, G 6= 〈KG〉.
If (ii) holds, then K is hypersolvable and so Sol∗(K) = K 6= 1. Thus by 8.3,

G 6= 〈KG〉. �

Corollary 8.5 Every non-trivial, NNC-centralizer, strongly NNC-abelian, perfect Fit-
ting p-group has a proper non-hypersolvable subgroup.

Proof: Suppose G is a counterexample. Since G is non-trivial and perfect, G is not hy-
persolvable. So G is minimal non-hypersolvable. Thus 8.4 implies that G is NNC-proper.
But then the assumption but not the conclusion of 7.3 are fulfilled, contradiction. �
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