# Perfect Frobenius Complements 

U. Meierfrankenfeld

May 17, 2002


#### Abstract

Let $H$ be a finite Frobenius group with a perfect Frobenius complement $G$. Two new proofs that $G$ is isomorphic to $S L_{2}(5)$ are given.


## 1 Introduction

A Frobenius group is a transitive but not regular permutation group on a set $\Omega$ such that every non-trivial element has at most one fixed-point. Let $H$ be a finite Frobenius group with kernel $N$ and complement $G$. That is, $N$ consists of the identity and all the fixed-point free elements; and $G$ is the stabilizer of some element in $\Omega$. In [Fr, V] Frobenius proved that $N$ is a normal subgroup of $H$. In [Za1, Satz 16] (and in revised form in [Za2]) Zassenhaus showed that if $G$ is perfect then $G \cong S L_{2}(5)$. Both of these proofs involve character theory. A further proof of Zassenhaus' theorem based on the elementary theory of exceptional characters can be found in [Be]. In this note we will give two new proofs of Zassenhaus' theorem without using character theory (except that we assume Frobenius' theorem).

Theorem A Let $H$ be a finite Frobenius group with complement $G$. If $G$ is perfect, then $G \cong S L_{2}(5)$.

The first proof is based purely on standard group theory text book material. The second proof is slightly shorter but relies on a couple of simple facts about modular representations of finite groups ( see the end of the introduction for the details).

Note that the action of $G$ on $\Omega$ and the action of $G$ on $N$ by conjugation are isomorphic. Hence $C_{N}(g)=1$ for all $g \in G^{\#}$. Let $p$ be a prime dividing the order of $N$ and put $V=\Omega_{1}\left(Z\left(O_{p}(N)\right)\right.$. By [Th], $N$ is nilpotent and so $V \neq 1$. ( For perfect $G$ a more elementary argument is possible: Let $q$ the smallest prime dividing the order of $G$ and $S$ a Sylow $q$-subgroup of $G$. By [Go, 10.3.10], $S$ is cylic or $q=2$ and $S$ is generalized quaternion. As $G$ is perfect, Burnside's $p$-complement theorem [Go, 7.4.5] implies that $S$ is not cyclic. Thus
$q=2$ and $G$ contains an involution $t$. But then $t$ inverts $N$ and so $N$ is abelian and again $V \neq 1$.) Now $V$ is a $G F(p) G$-module and all non-trivial elements of $G$ act fixed-point freely on $V$. Hence Theorem A follows at once from (and is in fact equivalent to) Theorem B, which is also a theorem of Zassenhaus:
Theorem B Let $G$ be a non-trivial, finite perfect group, $K$ a field and $V$ a faithful $K G$-module so that all non-trivial elements of $G$ act fixed-point freely on $V$. Then $G \cong S L_{2}(5)$.

In section 3 we establish some basic facts about $G$ which will be used in both of our proofs of Theorem B. Section 4 contains the first proof of Theorem B, while in section 5 we prove:

Theorem C Let $G$ be a non-trivial finite perfect group with cyclic or dihedral Sylow 2-subgroups, $K$ a field of characteristic 2 and $W$ a faithful $K G$-module so that all non-trivial elements of odd order of $G$ act fixed-point freely on $W$. Then $G \cong \operatorname{Alt}(5)$.

We finish the introduction by showing how Theorem C implies Theorem B, and thus obtain our second proof of Theorem B.

The starting point are the following simple facts from the theory of modular representations of finite groups ( which can be extracted for example from [CR]):

1. Let $p$ be a prime and $G$ a finite group so that $p$ does not divide the order of $G$. Then every $G F(p) G$ module is isomorphic to the reduction modulo $p$ of some module for $G$ in characteristic 0 .
2. Let $G$ be a finite group, $p$ a prime, $V$ a $G$-module in characteristic 0 and $W$ a reduction of $V$ modulo $p$. Then a $p^{\prime}$-element in $G$ acts fixed-point freely on $V$ if and only if it acts fixed-point freely on $W$.

Let $G$ and $V$ be as in Theorem $B$. Without loss $K$ is a ground field. Since $|G|$ is co-prime to the characteristic of $K, V$ is the reduction of some $G$-module $X$ in characteristic zero. Then all non-trivial elements of $G$ act fixed-point freely on $X$. Let $W$ be a reduction of $X$ modulo 2 . Then all non-trivial $2^{\prime}$-elements of $G$ still act fixed-point freely on $W$.

Assume $t$ is an involution in $G$ and let $v \in V$. Then $v+v^{t}$ is fixed by $t$, $v^{t}=-v$ and so $t$ is the unique involution in $G$. Hence $t \in Z(G)$. Moreover, $w=w^{t}$ for all $w \in W$. By [Go, 10.3.1] the Sylow 2-subgroups of $S$ are cyclic or quaternion and so the Sylow 2 -subgroups of $G /\langle t\rangle$ are cyclic or dihedral. By Lemma 3.6 below, $O_{2}(G)=\langle t\rangle$ and so $G /\langle t\rangle$ acts faithfully on $W$.

Hence we can apply Theorem C, to $G$ if $|G|$ is odd, and to $G /\langle t\rangle$ if $|G|$ is even. We conclude that $|G|$ is even and $G /\langle t\rangle \cong \operatorname{Alt}(5)$. Thus by [Hu, V25.7], $G \cong S L_{2}(5)$.

Acknowledgement: I would like to thank the Mathematisches Seminar der Universität Kiel for its hospitality. I also would like to thank B. Doerr, P. Hewitt, H. Schnabel, B. Stellmacher and most of all H. Bender for useful comments on an earlier draft of this paper.

## $2 \quad S L_{2}(3)$

In this section we proof a lemma on $S L_{2}(3)$ with fixed-point freely acting elements of order three. This lemma is at the heart of both of our proofs of theorem B.

Proposition 2.1 Let $H \cong S L_{2}(3), A=O_{2}(H), K$ a field and $V$ a $K H-$ module. Let $d$ be an element of order three in $H$ and $a \in A \backslash Z(H)$ so that also ad has order three. Let $b=a^{d^{2}}$ and $1 \neq z \in Z(H)$. Suppose that
(i) The elements of order three in $H$ act fixed-point freely on $V$.
(ii) $v z=-v$ for all $v \in V$.

Then
(a) The following relations hold in the ring $\operatorname{End}_{K}(V)$ :

$$
(1+a) d=b-1 \quad \text { and }-2 d=(a-1)(b-1) .
$$

(b) If $\operatorname{char} K=2$, then $C_{V}(a)=C_{V}(b)=C_{V}(A)$.
(c) If char $K \neq 2$, then any $A$-invariant subspace of $V$ is also $H$-invariant.

Proof: Since $d$ has order three, $\left(1+d+d^{2}\right)(d-1)=0$. As $d$ is fixed-point free we conclude

$$
\begin{equation*}
1+d+d^{2}=0 \tag{1}
\end{equation*}
$$

As $a d$ also as order three, $1+a d+a d a d=0$. Multiplying this equation with $d$ from the right we get $d+a d^{2}+a d a d^{2}=0$. Hence by (1), $d-a-a d+a d a d^{2}=0$. Furthermore, $d a d^{2}=a^{d^{2}}=b$ and so $d-a-a d+a b=0$. Thus $d-a d=a-a b$ and $(1-a) d=a(1-b)$. As $a^{2}=z=-1$ we can multiply the last equation with $a$ from the left to obtain

$$
\begin{equation*}
(a+1) d=b-1 . \tag{2}
\end{equation*}
$$

Since $(a-1)(a+1)=a^{2}-1=-2$ we get

$$
\begin{equation*}
-2 d=(a-1)(b-1) . \tag{3}
\end{equation*}
$$

In particular, (a) holds. Suppose now that $\operatorname{char} K=2$ and let $v \in C_{V}(a)$. Then $v=v a, v+v a=0$ and so $v(1+a) d=0$. Hence by (2) $v(b-1)=0$ and $v \in C_{V}(b)$. As $A=\langle a, b\rangle$, (b) holds.

So suppose that char $K \neq 2$. Then by (3), $d=-\frac{1}{2}(a-1)(b-1)$ and so every subspace invariant under $A$ is also invariant under $H=A\langle d\rangle$.

## 3 Alt (4)

In this section we assume that $G$ is a non-trivial finite group with the following three properties:
(i) $G$ is perfect.
(ii) The Sylow 2-subgroups of $G$ are dihedral or cylic.
(iii) Every subgroup of $G$ of order $p q, p$ and $q$ odd primes, is cyclic.

The main result of this section is Propostion 3.9 which establishes a subgroup isomorphic to $\operatorname{Alt}(4)$ in $G$.

Let $p$ be an odd prime dividing the order of $G, T$ a Sylow $p$-subgroup and $S$ a Sylow 2-subgroup of $G$.

Lemma 3.1 All p-subgroups of $G$ are cylic.
Proof: By (iii) applied to the case $p=q$, all abelian $p$-subgroups of $G$ are cyclic. Hence the lemma follows from [Go, 5.4.10i].

The following observations will be useful later on.
Lemma 3.2 (a) If $A$ is a $p^{\prime}$-group acting on a cyclic p-group $B$, then either $[B, A]=1$ or $C_{B}(A)=1$.
(b) If $\alpha$ is an automorphism of order 2 of the cyclic p-group $B$, then $\alpha$ inverts $B$.

Lemma 3.3 $N_{G}(T) / C_{G}(T)$ is a 2-group and each p-subgroup of $G$ is inverted by some element in $G$.

Proof: By induction on $p$. Suppose first that $q$ is an odd prime dividing the order of $N_{G}(T) / C_{G}(T)$. Then $q \neq p$ and as $T$ is cyclic, $q$ divides $p-1$ and so $q<p$. Let $R$ be a Sylow $q$-subgroup of $N_{G}(T)$ and $E=C_{R}(T)$. If $E=1$ then $\Omega_{1}(R) \Omega_{1}(T)$ is not cylic, a contradiction to (iii). Thus $E \neq 1$. By induction there exists $y \in N_{G}(E)$ which inverts $E$. Note that $T$ is a Sylow $p$ -subgroup of $C_{G}(E)$. Thus by the Frattini argument [Go, 1.3.7] we may assume that $y$ normalizes $T$. Now $R$ is a Sylow $q$-subgroup of $N_{G}(T) \cap N_{G}(E)$ and so by another application of the Frattini argument we may assume that $y$ also normalizes $R$. Since $y$ does not centralize $E$, it does not centralize $R$. Thus by $3.2 y$ inverts $R$ and so $R=[R, y]$. As the autmorphism group of $T$ is abelian we conclude $R=[R, y] \leq C_{G}(T)$, a contradiction.

Thus $N_{G}(T) / C_{G}(T)$ is a 2-group. By Burnside's p-complement theorem [Go, 7.4.5], $N_{G}(T) \neq C_{G}(T)$. Hence $T$ is inverted by some element of $G$ and as any $p$-subgroup is conjugate to a subgroup of $T, 3.3$ is proved.

Lemma 3.4 $C_{G}(S) \leq S$.

Proof: Suppose $C_{G}(S)$ contains an element $x$ of order $p$. Then $S$ is a Sylow 2-subgroup of $N_{G}(\langle x\rangle)$ and centralizes $x$. But this contradicts 3.3.

Lemma 3.5 All involutions in $G$ are conjugate.
Proof: Since $S$ is dihedral or cylic, $S$ has a cyclic subgroup of index two. Since $G$ has no subgroup of index two, Thompson transfer [Su, 5.1.8] implies that all the involutions in $G$ are conjugate to the unique involution in this cyclic subgroup.

Lemma 3.6 $S$ is dihedral of order at least four and $Z(G)=O_{2}(G)=1$.
Proof: By 3.3, $G$ has even order and no element of odd order is in the center of $G$. Thus $Z(G) \leq Z(S)$. By Burnside's $p$-complement theorem, $S$ is not cylic and so is $S$ is dihedral of order at least four. Hence $G$ has more then one involution and so by $3.5 S \cap Z(G)=1$ and so $Z(G)=1$. Since $O_{2}(G)$ is cyclic or dihedral, $\operatorname{Aut}\left(O_{2}(G)\right)$ is solvable and as $G$ is perfect, $O_{2}(G) \leq Z(G)$.

Lemma 3.7 Let $A$ be a fours group in $S$. Then 3 divides $\left|N_{G}(A) / C_{G}(A)\right|$.
Proof: It suffices to show that $N_{G}(A)$ acts transitively on $A^{\#}$. If $A=S$ this follows from 3.5 and a theorem of Burnside [Go, 7.1.1]. So suppose $A \neq S$ and let $a, b$ be any two distinct involutions in $A$. Let $c$ be the third involution in $A$. By 3.5, $c \in Z(S)^{g}$ for some $g \in G$. Then $S^{g}$ is Sylow 2-subgroup of $C_{G}(c)$ and so we may assume that $A \leq S^{g}$. As $S^{g}$ is dihedral, $A=C_{S^{g}}(A)<N_{S^{g}}(A)$. Since $N_{S^{g}}(A)$ fixes $c$ it must permute $a$ and $b$.

Let $F \leq Z(S)$ with $|F|=2$.
Lemma 3.8 $C_{G}(F)=O\left(C_{G}(F)\right) S$.
Proof: Put $R=O^{2}\left(C_{G}(F)\right)$. If $R$ has odd order we are done. So suppose that $R$ has even order. Since $R$ has no subgroup of index two we get as in 3.5 and 3.6 that all involutions in $R$ are conjugate and $R \cap S$ is dihedral of order at least four. But then $F \leq R \cap S$ and we get a contradiction as $F$ is normal in $R$.

Proposition 3.9 G has a subgroup isomorphic to $\operatorname{Alt}(4)$.
Proof: By [Go, 6.2.2i] there exists an $S$-invariant Sylow 3-subgroup $L$ of $O\left(C_{G}(F)\right)$. Let $A$ be a fours group in $S$. We consider the cases that $C_{G}(A)$ is a $3^{\prime}$-group and that 3 divides $\left|C_{G}(A)\right|$ seperately.
3.9.1 If $C_{G}(A)$ is a $3^{\prime}$-group, then $A$ is contained in a subgroup of $G$ isomorphic to Alt(4).

Indeed, let $D$ be a Sylow 3-subgroup of $N_{G}(A)$. By assumption $C_{D}(A)=1$ and by $3.7, D$ does not centralizes $A$. Thus $D \cong C_{3}$ and $D A \cong \operatorname{Alt}(4)$.
3.9.2 If $C_{G}(A)$ is not a $3^{\prime}$-group, then $1 \neq L$ is a Sylow 3 -subgroup of $C_{G}(A)$, $S \neq A$ and if $B$ is a fours group in $S$ not conjugate to $A$ in $S$, then $B$ inverts $L$.

Indeed by 3.4 we first conclude that $S \neq A$. Let $L^{*} \in \operatorname{Syl}_{3}\left(C_{G}(A)\right)$. As $S$ is dihedral, $F \leq A$ and so $L^{*} \leq C_{G}(F)$. By $3.8 L^{*} \leq O\left(C_{G}(F)\right)$. Since $L^{*}$ is $A$-invariant we conclude from [Go, $6.2 .2 \mathrm{ii}, \mathrm{iii}]$ that some conjugate of $L^{*}$ under $C_{G}(A)$ is contained in $L$. Hence we may assume without loss that $L^{*} \leq L$. Thus by $3.2, A$ centralizes $L$ and so $L=L^{*}$. Hence $\left\langle A^{S}\right\rangle$ centralizes $L$. Note that $S$ is a Sylow 2-subgroup of $N_{G}(L)$ and so by $3.3 S$ inverts $L$. As $S$ is dihedral, $S=\left\langle A^{S}\right\rangle B$ and so $B$ inverts $L$.

We are now able to prove 3.9. In case 3.9.1 we are done. So assume 3.9.2 holds. Then $B$ does not centralize $L$. If $C_{G}(B)$ is not a $3^{\prime}$-group, then 3.9 .2 applied to $B$ gives the contradiction $L \leq C_{G}(B)$. Thus $C_{G}(B)$ is a $3^{\prime}$-group and by 3.9.1 $B$ is contained in a subgroup isomorphic to $\operatorname{Alt}(4)$.

The next lemma is well known. For completeness we provide a simple ( and also well known) counting argument.

Lemma 3.10 If the centralizer of some involution in $G$ has order four, then $G \cong \operatorname{Alt}(5)$.

Proof: Recall that by $3.5 G$ has a unique conjugacy class of involutions. Moreover, $C_{G}(F)=S$ and all elements in $G$ have order either odd or two.
3.10.1 Let $M$ and $M^{*}$ be a maximal abelian subgroup of $G$ of odd order with $M \neq M^{*}$. Then $\left|N_{G}(M) / M\right|=2$ and $M \cap M^{*}=1$.

Let $b$ be an element of prime order in $M$ and $C=C_{G}(b)$. Then $C$ has odd order and by 3.4 there exists an involution $z$ in $G$ which inverts $b$. Then $C_{C}(z)=1$ and so $C$ is abelian and $C=M$. In particular, $b \notin M^{*}$ and $M \cap M^{*}=1$. As any involution normalizing $M$ has to invert $M, M$ can not be normalized by a fours group. Thus $N_{G}(M) \cap C_{G}(z)=\langle z\rangle$ and by a Frattini argument applied to $M\langle z\rangle \unlhd N_{G}(M)$,

$$
N_{G}(M)=M\left(N_{G}(M) \cap C_{G}(z)\right)=M\langle z\rangle
$$

Thus 3.10.1 holds.
Let $M_{1}, M_{2}, \ldots, M_{k}$ be representatives for the conjugacy classes of maximal abelian subgroups of odd order in $G, n=|G|$ and $m_{i}=\left|M_{i}\right|$. By 3.10.1 each non-trivial element of odd order in $G$ lies in exactly one conjugate of the $M_{i}$ 's. Moreover, there are $\frac{n}{4}$ involutions and so

$$
n=1+\frac{n}{4}+\sum_{i=1}^{k} \frac{n}{2 m_{i}} \cdot\left(m_{i}-1\right)
$$

Multipliying by $\frac{2}{n}$ we obtain

$$
\frac{3}{2}>\sum_{i=1}^{k} \frac{m_{i}-1}{m_{i}}
$$

Since $\frac{2}{3}+\frac{6}{7}=\frac{32}{21}>\frac{3}{2}$, we conclude $k=2, m_{1}=3$, and $m_{2}=5$. Hence $n=60$. In particular, the subgroup of $G$ isomorphic to $\operatorname{Alt}(4)$ has index five in $G$ and so $G \cong \operatorname{Alt}(5)$.

## 4 The first proof of Theorem B

Let $G$ and $V$ be as in Theorem $B$. Morever, we assume without loss that $K$ is algebraicly closed. Let $S$ be a Sylow 2-subgroup of $G$. By [Go, 10.3.1] we have

Lemma 4.1 (a) $S$ is cylic or generalized quaternion.
(b) Every subgroup of $G$ of order $p q, p$ and $q$ primes, is cyclic.

If $G$ has odd order then $G$ fullfils the assumptions but not the conclusion of section 3. Thus $G$ contains an involution $t$. Then $t$ inverts $V, t$ is unique and $t \in Z(G)$. Put $\bar{G}=G /\langle t\rangle$. Then $\bar{S}$ is cyclic or dihedral and so we can apply the results of section 3 to $\bar{G}$. In particular, there exists $H \leq G$ with $\bar{H} \cong \operatorname{Alt}(4)$. Let $A=O_{2}(H)$ and $D \in S y l_{3}(H)$. Then $A \cong Q_{8}$ and $H \cong S L_{2}(3)$. Without $\operatorname{loss} A \leq S$. Let $\bar{F}$ be a subgroup of order two of $Z(\bar{S})$. Then $F \cong C_{4}$ and $F \leq A$. By 2.1 c we have

Lemma 4.2 All A-invariant subspaces of $V$ are also invariant under $H$.
Lemma 4.3 Let $H \leq R \leq G$ so that $R$ normalizes a 2-dimensional subspace of $V$. Put $E=\left\langle H^{R}\right\rangle$. Then $E=H$ or $E \cong S L_{2}(5)$. Moreover, $C_{R}(E)=$ $Z(R)=O(Z(R)) Z(H)$ and $R / Z(R) \cong \operatorname{Alt}(4), S y m(4)$ or $\operatorname{Alt}(5)$.

Proof: Let $W$ be a 2-dimensional subspace of $V$ normalized by $R$. By the fixed-point free action $R$ acts faithfully on $W$ and we may view $R$ as a subgroup of $G L_{K}(W)$. Let $M$ be a maximal abelian subgroup of $R$. As $K$ is algebraicly closed, $W$ is the direct sum of two 1 -dimensional $M$-submodules. As $M$ is maximal, $M \not \leq Z(R)$ and so these submodules are non-isomorphic and uniquely determined by each $m \in M \backslash Z(R)$. Hence $M \cap M^{*}=Z(R)$ for any two distinct maximal abelian subgroups $M$ and $M^{*}$ of $R$. Moreover $\left|N_{R}(M) / M\right| \leq 2$. Let $M_{1}, M_{2}, \ldots M_{k}$ representatives for the classes of maximal abelian subgroups of $R, m_{i}=\left|M_{i} / Z(R)\right|, n=|R / Z(R)|$ and $\epsilon_{i}=\left|N_{N_{R}\left(M_{i}\right)} / M_{i}\right|$. Then

$$
\begin{equation*}
n=1+\sum_{i=1}^{k} \frac{n}{\epsilon_{i} m_{i}}\left(m_{i}-1\right) \tag{1}
\end{equation*}
$$

If $k=1$ we conclude that $R=M_{1}$ is abelian, a contradiction to $H \leq R$. Hence we may assume from now on that $k \geq 2$. By (1)

$$
\begin{equation*}
1=\frac{1}{n}+\sum_{i=1}^{k} \frac{m_{i}-1}{\epsilon_{i} m_{i}} . \tag{2}
\end{equation*}
$$

Since $\frac{m_{i}-1}{\epsilon_{i} m_{i}} \geq \frac{1}{4}$ we get $k \leq 3$.
Suppose first that $\epsilon_{1}=1$. Then $\frac{m_{1}-1}{m_{1}}<1-\frac{1}{4}(k-1)$ and so $k=2$ and $m_{1} \leq 3$. If $m_{1}=2$ we compute from (2) that $n=2 m_{2}$ and so $M_{2}$ is of index two in $R$. Then as $H$ has no subgroup of index two, $H \leq M_{2}$, a contradiction. If $m_{1}=3$ we get $n=\frac{6 m_{2}}{3-m_{2}}$. Thus $m_{2}=2, n=12$ and $R=H Z(R)$.

Suppose next that $\epsilon_{i}=2$ for all $i$. Then by (1), $k>2$. Thus $k=3$ and so by (2) $\frac{1}{m_{1}}+\frac{1}{m_{2}}+\frac{1}{m_{3}}=\frac{2}{n}+1$. In particular, at least one of the $m_{i}^{\prime} s$ has to be 2. Say $m_{1}=2$. Then $\frac{1}{m_{2}}+\frac{1}{m_{3}}=\frac{2}{n}+\frac{1}{2}$. Then at least one of $m_{2}$ and $m_{3}$ has to be at most 3 . Say $m_{2} \leq 3$ and $m_{2} \leq m_{3}$.

If $m_{2}=2$, then $n=2 m_{3}$, a contradiction as above.
If $m_{2}=3$, then $n=\frac{12 m_{3}}{6-m_{3}}$. Thus $m_{3}$ is 3,4 , or 5 and $n=12,24$ or 60 respectively. Hence $H Z(R)$ has index 1,2 or 5 in $R$. As $m_{2}=3$ and $e_{2}=2$ elements of order three in $H$ are inverted by some element in $R$. So the case of index 1 is impossible while in the remaining two cases it is easy to see that $R / Z(R) \cong \operatorname{Sym}(4)$ and $\operatorname{Alt}(5)$, respectively.

Furthermore, as $S$ is generalized quaternion, $O_{2}(Z(R))=Z(H)$ and $Z(R)=$ $O(Z(R)) Z(H)$.

Lemma 4.4 $A \leq O_{2}\left(N_{G}(F)\right)$. In particular, $O^{2}\left(N_{G}(F)\right) \leq C_{G}(A)$.
Proof: Let $g \in N_{G}(F), a \in A \backslash F, E=\left\langle a a^{g}\right\rangle$ and $D=\left\langle a, a^{g}\right\rangle$. Then $\bar{D}$ is dihedral, and $E F$ as index at most 2 in $D F$. Since $E$ centralizes $F$, $E F$ is abelian. Since $K$ is algebraically closed, $E F$ normalizes a 1-dimensional subspace in $V$. Hence $D F$ normalizes a 2-dimensional subspace $W$ in $V$. Since $A=\langle a\rangle F \leq D F$, we conclude from 4.2 that also $H$ normalizes $W$. Let $R=$ $\langle D, H\rangle=\left\langle a^{g}, H\right\rangle$ and $E=\left\langle H^{R}\right\rangle$. Then $R=\left\langle a^{g}\right\rangle E$ and we conclude from 4.3 that $\bar{R} \cong \operatorname{Alt}(4), \operatorname{Sym}(4)$ or $\operatorname{Alt}(5)$. Hence $D F \leq N_{R}(F) \cong Q_{8}$ or $Q_{16}$. In particular, $A$ and $A^{g}$ commute modulo $F$. Thus $\left\langle A^{N_{G}(F)}\right\rangle$ is a 2 -group and so $A \leq Q:=O_{2}\left(N_{G}(F)\right)$. Clearly each element of odd order in $N_{G}(F)$ centralizes $F$ and, as $Q$ is quaternion, also $Q$.

Lemma 4.5 $S=A$.

Suppose $S \neq A$ and let $B$ be a quaternion group of order eight in $S$ not conjugate to $A$ in $S$.

Suppose that $B$ is contained in a subgroup $H^{*} \cong S L_{2}(3)$. Put $R=$ $\left\langle H, H^{*}, S\right\rangle$. As $S$ has a cyclic subgroup of index two, there exists a 2-dimensional $K S$-submodule $W$ in $V$. Then by 4.2 applied to $H$ and $H^{*}, R$ normalizes $W$. As $|S| \geq 2^{4}$ we conclude from 4.3 that $R / Z(R) \cong \operatorname{Sym}(4)$. But then $A=O_{2}(H)=O_{2}(R)=O_{2}\left(H^{*}\right)=B$, a contradiction.

Thus $B$ is not contained in an $S L_{2}(3)$. From 3.9.1 applied to $B$ in place of $A$, we conclude that 3 divides $\left|C_{G}(B)\right|$. As $F \leq B$, 3 divides $\left|C_{G}(F)\right|$ and so by 4.4, 3 also divides $\left|C_{G}(A)\right|$. As the Sylow 3 -subgroups of $N_{G}(A)$ are cyclic this implies that all elements of order three in $N_{G}(A)$ are already in $C_{G}(A)$, a contradiction to $H \leq N_{G}(A)$.

We are now able to complete our first proof of Theorem B. Since $A=S$, 3.4 implies that $C_{\bar{G}}(\bar{A})=\bar{A}$ is a 2 -group. Hence by 4.4 also $C_{\bar{G}}(\bar{F})$ is a 2 -group and so $C_{\bar{G}}(\bar{F})=\bar{A}$. Thus by $3.10, \bar{G} \cong \operatorname{Alt}(5)$ and by $[\mathrm{Hu}, \mathrm{V} 25.7], G \cong S L_{2}(5)$.

## 5 Theorem C

Let $G$ and $W$ be as in Theorem C. As in [Go, 10.3.1] we have that subgroups of order $p q, p$ and $q$ odd primes, are cyclic. Thus we can apply the results of section 3. In particular by 3.9 there exists $H \leq G$ with $H \cong \operatorname{Alt}(4)$. Put $A=O_{2}(H)$ and let $S$ be a Sylow 2-subgroup of $G$ containing $A$. Let $1 \neq a \in Z(S) \leq A$.

Lemma 5.1 $A=C_{G}(a) \cap C_{G}\left(C_{W}(a)\right)$ and in particular, $A$ is normal in $C_{G}(a)$.
Let $B=C_{G}(a) \cap C_{G}\left(C_{W}(a)\right)$. By definition, $B$ centralizes $C_{W}(a)$. Since $[W, a] \leq C_{W}(a)$ and $[W, a]$ is isomorphic to $W / C_{W}(a)$ as $C_{G}(a)$-module, $B$ also centralizes $W / C_{W}(a)$. It follows that $[W, B, B]=0$. Hence $B$ is elementary abelian. By $2.1 \mathrm{~b}, A \leq B$. Since $S$ is a dihedral group, $S$ has no elementary abelian subgroup of order larger than four, and so $B=A$.

Lemma 5.2 $S=A$
Suppose that $S \neq A$ and let $B$ be a fours group in $S$ distinct fom $A$. If $B$ is not contained in an $\operatorname{Alt}(4)$ then by 3.9.2 (with the roles of $A$ and $B$ interchanged), $A$ inverts an element of order three in $C_{G}(B) \leq C_{G}(a)$, a contradiction since by $5.1, A$ is normal in $C_{G}(a)$. Thus $B$ is contained in an $\operatorname{Alt}(4)$ and hence 2.1 b (applied to $B$ in place of $A$ ) yields $B \leq C_{G}(a) \cap$ $C_{G}\left(C_{W}(a)\right)$. Thus by $5.1 B \leq A$, a contradiction.

Lemma 5.3 $C_{G}(a)=S$.
By $5.2 S=A$ is a fours group. By 5.1, $C_{G}(a)$ normalizes $A$ and so stabilizes the series $1 \leq\langle a\rangle \leq A$. Thus $O^{2}\left(C_{G}(a)\right)$ centralizes $A$ and so by $3.4 C_{G}(a)$ is a 2-group. Thus $C_{G}(a)=S$.

Theorem C now follows from 3.10.

## References

[Be] H. Bender, Endliche Fastkörper und Zassenhausgruppen, in Group Theory, Algebra and Number Theory-Colloquium in Memory of Hans Zassenhaus,(1996).
[CR] C.W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics XI, John Wiley \& Sons, New York, (1962).
[Fr] G. Frobenius, Über auflösbare Gruppen IV, Sitz. Wiss. Akad. Berlin (1901)1216-1230.
[Go] D. Gorenstein, Finite Groups, Harper, New York (1980).
[Hu] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin (1983).
[Su] M. Suzuki, Group Theory II, Grundlehren der Mathematik 248, Springer Verlag,(1986).
[Th] J. Thompson, Finite groups with fixed-point free automorphisms of prime order, Proc.Nat.Acad.Sci.,45(1959), 578-581.
[Za1] H. Zassenhaus, Über endliche Fastkörper, Abhand.Math.Sem.Hamburg 11(1936),187-220.
[Za2] H. Zassenhaus, On Frobenius groups I, Results in Math. 8(1985),132-145.
Ulrich Meierfrankenfeld
Department of Mathematics
Michigan State University
East Lansing, Mi 48824
meier@math.msu.edu
http://www.math.msu.edu/ $\sim$ meier/

