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Abstract
A group is called p-linear if it is isomorphic to a subgroup of GL(n;K) for some�eld K of characteristic p and some integer n. Let H be a normal subgroup of Gand assume that bothH andG=H are periodic and p-linear. In addition, assumethat both H and G=H have �nite unipotent radicals and that the �nite residualof G=H has �nite index in G=H. The main result of this article is a proof thatunder these assumptions G is p-linear. An example is provided showing theresult is false if the assumption regarding the �nite residual is removed.
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1. Results
For �nite n, the group G is said to be K-linear of degree n if it is isomorphicto a subgroup of GL(n;K) and is p-linear if it is K-linear for some �eld K ofcharacteristic p.The following theorem was proven as [5, Theorem A].
(1.1) Theorem. Let G be a periodic subgroup of GL(n;K) with trivial unipo-
tent radical. Then for every normal subgroup H of G, the image G=H is K-
linear of degree bounded by a function of n.
Here the statement on bounded degree indicates that there is a positive, non-decreasing function f such that the degree of G=H is always less than or equalto f(n).Wehrfritz [9] gave a second proof of the theorem and was able to weaken thehypotheses by assuming only that H has trivial unipotent radical. A slightlydi�erent proof of the theorem is given below (one that in fact includes groupsG with �nite unipotent radical, as remarked below).The main concern here is proving a converse result to this theorem. It isnot in general the case that an extension of a linear group by a linear group islinear. It is also not clear what shape the best converse to the theorem wouldtake.Consider the following:

Hypothesis (�)
G is a locally �nite group andM a normal subgroup of G satisfying:
(i) M is a central product A Y L1 Y � � � Y Li Y � � � Y Ls, for somes;
(ii) each Li is a quasisimple group of Lie type in characteristic p;
(iii) A is a periodic abelian p0-group of �nite rank r;
(iv) G=M is �nite.

The rank of a periodic abelian group B is the largest m for which there is aprime q and an elementary abelian q-subgroup C of B having order qm. If p = 0,then s = 0 in (i) and A is periodic abelian of �nite rank in (iii).Each of the groups Li in (i) has, naturally de�ned, a Lie rank ri and a�eld of de�nition Ki � Fp. (See [5, Lemma 9(iv)] or Theorem 2.6 below.) (Incharacteristic p = 0 we set Fp = Q hence Fp = Q.) We de�ne the M -rank of Gwith (�) to be r+Psi=1 ri. We de�ne the �eld KM to be the smallest sub�eld of
Fp that contains each Ki and all qkth roots of unity, for every k and all primesq for which A contains a subgroup Zq1 . Thus M is KM -linear.
(1.2) Theorem. If G is a periodic K-linear group of degree n with �nite
unipotent radical U(G), then G has a characteristic subgroup M for which(G;M) satis�es (�), where p = Char(K). In this case, M can be chosen so
that the M -rank of G is bounded by a function of n and the index jG=M j is
bounded by functions of n and jU(G)j.
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(1.3) Theorem. A group G with (�) is KM -linear of degree bounded by a
function of its M -rank and the index jG=M j.

As a corollary, we get Winter's theorem [10]. The usual proofs are moreelementary than this; see [3, Theorem 1.L.2] and [7, Theorem 9.5].
(1.4) Corollary. If G is a periodic K-linear group with trivial unipotent
radical, then G is Fp-linear, where p is the characteristic of K. In particular,G is countable.

Since uncountable unipotent linear groups of exponent p exist, Winter'stheorem is false without some restriction on the radical. Nevertheless, becauseof it we can restrict (most) discussion to the question of whether or not a givengroup is p-linear (that is, linear over some �eld of characteristic p).We have a partial converse to Theorem 1.1. For a group G let Res(G) bethe �nite residual of G, that is the intersection of the subgroups of �nite indexin G.
(1.5) Theorem. Let H be a normal subgroup of G and assume that(a) H is a periodic p-linear group with �nite unipotent radical;(b) G=H is a periodic p-linear group with �nite unipotent radical;(c) Res(G=H) has �nite index in G=H.
Then G is p-linear of degree bounded by a function of degH;degG=H andjG=H:Res(G=H)j.

We claim that assumption (c) of the previous theorem is ful�lled if theHirsch-Plotkin radical of G=H is �Cernikov. Indeed, let M be as in Theorem 1.2applied to G=H in place of G. Let E1 be the product of all the in�nite L0is.Since A has �nite rank, Res(A) is the divisible part of A. Then (�) implies thatRes(G=H) = Res(A)E1 and so Res(G=H) has �nite index in G=H if and onlyif Res(A) has �nite index in A. Note that this ful�lled if the Hirsch Plotkinradical of G=H is �Cernikov.
(1.6) Theorem. Let G be a periodic linear group with �nite unipotent radical.
Let Res(G)� be the image of Res(G) in Aut(G). Then Out(G) is residually �nite
and Res(Aut(G)) = Res(G)�.

The next section contains proofs of Theorems 1.1-1.6. The �nal sectioncontains two examples. The �rst example shows that Theorem 1.5 is falseunder (a) and (b) alone. The other example demonstrates the impossibility inTheorem 1.5 of bounding the representing degree of G in terms of degG=H anddegH, indeed in terms of the isomorphism class of H and the degree of G=H.The theorem shows that the degree is bounded in terms of the degree of H andthe isomorphism class of G=H.The problem discussed in this article was one that Richard Phillips wasworking on during the last years of his life. He wrote an initial draft of thisarticle in conjunction with Julianne Rainbolt. After Richard Phillips' death,
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Jonathan Hall, Ulrich Meierfrankenfeld, and Julianne Rainbolt completed therevisions of the article. The authors thank Felix Leinen and the referees forhelpful remarks on earlier drafts of this article.We also would like to thank Bert Wehrfritz for noticing that Theorem 1.5 inthe published version of this article is false.

2. Proofs
Let G be a locally �nite group and � be any set of primes. Then O�(G) denotesthe largest normal subgroup of G all of whose elements are �-elements. If G isperiodic and linear in characteristic p, then Op(G) is the unipotent radical of G.In the following, E(G) denotes the subgroup of G generated by the componentsof G, where a component of G is a subnormal quasisimple subgroup.
(2.1) Theorem. (Schur, [3, Theorem 1.L.1]) Periodic linear groups are
locally �nite.

The next two lemmas are elementary.
(2.2) Lemma. If G is K0-linear of degree n and K is a sub�eld of K0 such
that jK0 : Kj is �nite, then G is K-linear of degree njK0:Kj.
(2.3) Lemma. If M is K-linear of degree m and has �nite index in G, thenG is K-linear of degree mjG:M j via the induced representation.
(2.4) Lemma. Let H be K-linear and Z a �nite normal subgroup of the centerZ(H). Then H=Z is K-linear of degree bounded by a function of the degree ofH and jZj.

In particular, if the factors Hi are K-linear, then a central product H1 Y H2 =(H1 �H2)=Z over a �nite central subgroup Z is K-linear of degree bounded by
a function of the degrees of the Hi and jZj.
Proof. As the direct product of two K-linear groups is K-linear with degreeequal to the sum of the two degrees, this an immediate consequence of [5,Proposition 3(ii)].
(2.5) Lemma. Let B be a periodic abelian group and let A be the divisible hull
of B. Suppose K contains an n-root of unity whenever A contains an element
of order n. Let V be faithful �nite dimensional KB-module. If the unipotent
radical of B is trivial, then V can be extended to a faithful KA-module withEndKA(V ) = EndKB(V ).
Proof. As V is �nite dimensioal and B has trivial unipotent radical, B has�nite rank. Note that every non-trivial subgroup of A intersects B and so anyextension of V to a KA is faithful. Any direct summand of B is contained in adirect summand of A and so by induction on the rank of B we may assume thatB = hbi is cylic and hence A is locally cyclic. Let � be an eigenvalue for b on V .
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Then there exists an homomorphism �� : A! (K]; �) with �(b) = �. From theassumption, V is the direct sum of the eigenspaces for b. De�ne va = ��(a)vwhenever a 2 A and v is in the eigenspace corresponding to �.
A proof of the following theorem can be found at [4, Lemmas 15.6, 15.10,and Theorem 15.12]. It is very similar to [5, Proposition A] and [8, 1.2].

(2.6) Theorem. Let G be a periodic linear group of degree n over a �eld in
characteristic p and having trivial unipotent radical.

Let fLi j 1 � i � t g consist of all components of G that have Lie type in
characteristic p. The central product EL;p(G) = L1 Y � � � Y Lt is characteristicin G, and t � n=2. Furthermore, G has a characteristic abelian subgroup A
such that the subgroup M(G) = A Y EL;p(G) is characteristic in G and has
�nite index bounded by a function of n.
Proof of Theorem 1.2.G is locally �nite by Theorem 2.1.As the unipotent radical U = U(G) is �nite, CG(U) is a characterisiticsubgroup of G of �nite index bounded by a function of jU j. Therefore we mayassume that U � Z(G).By Lemma 2.4, �G = G=U is K-linear with trivial unipotent radical of degreebounded by a function of jU j and n.Let �N =M( �G) be the subgroup �A Y �L1 Y � � � Y �Ls of Theorem 2.6. Let Libe the derived group of the preimage of �Li in G, A the p0-part of the preimageof �A, and M = A Y L1 Y � � � Y Ls. Then M is characteristic in G, and thepair (G;M) satis�es (�).The various rank(Li) are bounded by a function of n [5, Lemma 9(b)(i)].Since A is p0 and periodic, it has �nite rank bounded by a function of n byMaschke's Theorem.
Proof of Theorem 1.3.By (iv) and Lemma 2.3, we may assume G = M . Each Li is KM -linear byassumption and has a center that is �nite of order bounded by a function of theLie rank of Li ([5, Lemma 10(viii)] or Lemma 2.8). Thus E(G) = L1 Y � � � Y Lsis KM -linear by Lemma 2.4 and has �nite center of order bounded in terms ofthe Lie ranks of the Li. By de�nition, (KM )� contains a copy of Zq1 wheneverA has in�nite q-part, so A is KM -linear of degree equal to its rank r. A secondapplication of Lemma 2.4 then proves that G = M = A Y E(G) is KM -linear,as desired. Furthermore, its degree is controlled as described.
Proof of Corollary 1.4.As G is periodic and K-linear, it has (�) by Theorem 1.2 and so is Fp-linearby Theorem 1.3.
Proof of Theorem 1.1.
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By Theorem 1.2, G has (�) for a normal subgroup M , and the M -rank ofG and jG=M j are both bounded by functions of n. In �G = G=H, set �M =MH=H. Then the pair ( �G; �M) inherits (�), so by Theorem 1.3 �G is linear ofdegree bounded in terms of the �M -rank of �G (at most the M -rank of G) andj �G: �M j (� jG:M j). Thus the degree of G=H is bounded by a function of n, asdesired.
Remark. The same proof actually gives something slightly stronger than The-orem 1.1. We need only require that the unipotent radical of G be �nite, inwhich case the representation degree of G=H is bounded by a function of n andof the order of the radical.
(2.7) Lemma. Let B be a class 2 nilpotent group with B0 � H � Z(B).
Assume that B=H is divisible and periodic. Then B is abelian.
Proof. Let b 2 B and choose an integer n with bn 2 H. Then B=CB(b) �= [B; b]has exponent dividing n. But H � CB(b) and so B=CB(b) is divisible. ThusB = CB(b) and B is abelian.
(2.8) Lemma. Let periodic N have a central subgroup H such that �N = N=H
is a central product �M1 Y � � � Y �Mt of �nitely many in�nite quasisimple groups�Mi of Lie type in characteristic p. Then N = H Y E(N), where E(N) =N1 Y � � � Y Nt has �nite center of deg �N -bounded order, and is a central product
of quasisimple groups Ni of Lie type with �Ni = �Mi. Moreover, E(N) is p-linear
of deg �N -bounded degree.

Proof. By the Three Subgroups Lemma, Z2(N) = Z(N). Also N 0 =[N 0H;N 0H] � N 00; so N 0 is perfect, and N = H Y N 0. Indeed N=H =N 0H=H ' N 0=N 0 \H has image N 0=Z(N 0). Therefore N 0 = E(N), the centralproduct of the components Ni = (Mi)0, the derived subgroups of the preimagesMi of the various �Mi.Each simple periodic in�nite Lie type group L is a direct limit of �nite sim-ple groups of the same Lie type, and so any element of its multiplier occursalready within the multiplier of some �nite subgroup of Lie type. Exceptionalmultipliers for �nite Lie type groups occur only over small �elds, and the canon-icial multipliers come from the natural or spin representations of �xed degreebounded in terms of the Lie rank [2]. Thus the multiplier of L is �nite of or-der bounded by the rank of L and comes from a representation of degree alsobounded by the rank. (See also [5, Lemma 10].)
Proof of Theorem 1.6. By 1.2 there exists a characteristic subgroup M ofG ful�lling (�). Let E be the product of the in�nite Li. Using Lemma 2.8 wemay choose A to be a characteristic subgroup of M . Then EA is a characterisicsubgroup of �nite index. Let H = Res(G) and note that H = Res(A)E andRes(A) is the largest divisible subgroup of A. For g 2 G let g� 2 Aut(G); h!hg.
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We �rst treat the case where E = 1. Let � be the set of prime divisors ofjG=Aj and let D be the largest �-divisible subgroups of A. Note that A has �niterank, O�0(A) � D and H = Res(A) � D. Therefore A=D and G=D are �nite�-groups. Let n = jG=Dj and for a positive integer i let Di = f d 2 D j di = 1 g.Then Di is �nite. The following cohomological argument is taken from [1,Propostions 3.7.5]. SinceD is n divisible, the following is a short exact sequence:
1 �! Dn �! D a!an�! D �! 1

Hence we also obtain the long exact sequence

: : : �! Hm(G=D;Dn) �! Hm(G=D;D) �!n��! Hm(G=D;D) �! : : :
Suppose m > 0. By [1, Proposition 3.6.17] the map �! n� factors throughthe restriction map to the trivial subgroup of G=D and so is 0. Thus

Hm(G=D;Dn)! Hm(G=D;D)
is onto. That is every cocyle for G=D in D arises from a cocycle of G=D in Dn.For m = 2 we conclude that there exists T � G with G = DT and D \ T =Dn. For m = 1 and G replaced by G=Dn we see that for all ~T � G withG = D ~T and G\ ~T = Dn, there exists d 2 D with ~T � T dDn2 . Put R = TDn2 .Let � 2 Aut(G) and choose d 2 D with T� � T dDn2 . Then R� = Rd and soAut(G) = NAut(G)(R)D�.Put F = CAut(G)(R). Since R is �nite we get that FD� has �nite index inAut(G). Note that CF (D) � CF (G) = 1 and so F is isomorphic to a subgroupof Aut(D). Since D is generated by its �nite characteristic subgroup, Aut(D)is residually �nite. Thus F is residually �nite. Note that F \D� � CF (D) =1. Hence FD�=D� is residually �nite and since this group has �nite index inAut(G)=D�, Aut(G)=D� is residually �nite. Moreover, G�=D� is �nite and soAut(G)=G� is residually �nite.Let p be a prime. Then Op0(D)H has �nite index in D and so FOp0(D)�H�
has �nite index in Aut(G). Also FOp0(D)�H�=Op0(D)�H� �= F is residually�nite and so Res(Aut(G)) � Op0(D)�H�. Since this holds for all primes,Res(Aut(G)) � H�. But H� has no proper subgroups of �nite index and soRes(Aut(G)) = H�.Hence 1.6 holds if E = 1. In the general case, we have E = L1L2 : : : Lkwhere Li is a group of Lie type �i�i over an in�nite �eld Ki. Let Fi be a �nitesub�eld of Ki such that if �i 6= 1, �i acts nontrivially on Fi. Let Li(Fi) bethe group of Lie type �i�i over the �eld Fi naturally embedded into Li. Wechoose the Fi such that the Schur multipliers of Li and Li(Fi) are identical.
Let X = Qki=1 Li(Fi) � E. Since G=CG(E)E is �nite we we can choose theFi's such that CG(X) � CG(E). Note that Li(Fi) is normalized by any �eldor graph automorphism of Li. Moreover, our condition on the Schur multiplierensures that every diagonal automorphism of Li can be written as a product ofan inner automorphism and an automorphism normalizing Li(Fi).
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Put B = NG(X) and F = NAut(G)(X). By the preceeding discussion G =EB and Aut(G) = FE�. Since B has no in�nite component, we can apply theE = 1-case to B. We conclude that both F=Res(B)�CF (B) and F=B�CF (B)are residually �nite. Note that
Aut(G)=G� = FG�=G� �= F=F \G� = F=B�

and so Res(Aut(G)=G�) � CF (B)G�=G�. Also CG�(B) � CG�(X) � CG�(E).Since BE = G we conclude that CG�(B) = 1. In particular, G� \ CF (B) = 1.Thus
\CF (B)G� = (\CF (B))G� = G�

where the intersection is taken over all the eligible Fi. Thus Res(Aut(G)=G�) =1. Since B=CB(X), CG(X)=CG(E) and CG(E)=A all are �nite we concludethat Res(B) = Res(A) � F and H = Res(B)E. So CF (B)Res(B)� � F ,

F \ (CF (B)Res(B)�E�) = CF (B)Res(B)�(F \E�) = CF (B)Res(B)�(B \E)�
and
Aut(G)=CF (B)H� �= FE�=CF (B)Res(B)�E� �= F=CF (B)Res(B)�(B \ E)�:
SinceB\E is �nite and F=CF (B)Res(B)� is residually �nite, Res(Aut(G)) �CF (B)H�. Intersecting over the various choices for Fi gives Res(Aut(G)) � H�.Also H has no proper subgroup of �nite index and so Res(Aut(G)) = H�.

Proof of Theorem 1.5.By 2.3 we may assume that G=H = Res(G=H) and so G=H has no non-trivially residually �nite quotient. By Theorem 1.6 G=CG(H)H is residually�nite and so G = CG(H)H. Thus CG(H)=Z(H) �= G=H. Since Res(G)=H =G=H we conclude that CG(H) = A=Z(H)�L=Z(H) where A=Z(H) is divisibleabelian and L=Z(H) is the central product of in�nite groups of Lie type. By2.8, L = E(L)Z(H), E(L) is p-linear of degG=H-bounded degree and jZ(L0)jis degG=H-bounded. So by 2.4 there exists a faithful FpE(L)H module V ofdimension bounded by a function of degH and degG=H.By 2.7 A is abelian. Let A0 � Res(A) with Res(A) = Res(Z(H)) � A0.Let A1 be a divisible hull for Z(H) \ A0 in A0. Then there exists A2 � A0with A0 = A2 � A1. Moreover, G = A2 � (A1E(L)H. According to 2.5 we canextend the Fp(Z(H) \ A0)-module W to a module for A1. So W becomes an
FpG module with A2 acting trivially. Take the direct sum of W with a faithfulG=H module we obtain a faithful FpG-module of dimension bounded in termsof degH and degG=H.
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3. Examples
(3.1) Lemma. There is an in�nite sequence of primes

q1 < p1 < � � � < qi < pi < � � �
for i 2 Z+, with qij pi � 1.

Proof. The proof is by induction on i. Let q1 be any prime number.A theorem of Dirichlet [6, p. 250] asserts that the sequence f1 + kq1 j k =1; 2; : : :g contains an in�nite number of primes. Let p1 be any such prime. Thenq1j(p1 � 1). Now let q2 be a prime greater than p1.Suppose that we have chosen q1; : : : ; qs+1 and p1; : : : ; ps such that
q1 < p1 < � � � < qs < ps < qs+1

Now choose the prime ps+1 in the sequence f1 + kqs+1 j k = 1; 2; : : :g and theprime qs+2 with qs+2 > ps+1.
(3.2) Example.
We �rst show that Theorem 1.5 is false when only (a) and (b) are assumed(even when (a) and (b) are strengthened to require that the unipotent radicalsbe trivial).For pi; qi (i 2 Z+) as in Lemma 3.1, let Si be cyclic of order pi and Ricyclic of order qi. Let Fi = Si:Ri be the Frobenius group of order piqi. ThenF k = �Pki=1 Fi has representation degree at least 2k in each characteristic,
even though it is the extension Sk:Rk of cyclic Sk = �Pki=1 Si of degree 1over any prime not in the sequence (and degree at most 2 in general) by cyclic
Rk = �Pki=1Ri also of degree 1 over any prime not in the sequence (and degreeat most 2 in general).Thus F1 = �Pi Fi = limk F k is not linear in any characteristic eventhough it is the extension of rank 1 linear S1 = �Pi Si = limk Sk by rank 1linear R1 = �PiRi = limk Rk. The residual core of F1=S1 is trivial andhas in�nite index in F1=S1.
(3.3) Example.
The groups F k of the �rst example show that the degree of linear G can not bebounded in terms of the degree, degH, of the normal subgroup H and degG=H.The next example will show that the degree of linear G can not in general bebounded in terms of degG=H and the isomorphism type of H.Fix a characteristic p and a prime q 6= p. Let, for n 2 Z+,

E(n) = hx; y; z jxqn = yqn = zqn = 1; [x; y] = z; [x; z] = [y; z] = 1 i :
Let E�(n) be the central product of E(n) and Zq1 with z identi�ed withan element of order qn of Zq1 . Then H = Zq1 is p-linear of degree 1 andE�(n)=H ' Zqn � Zqn is p-linear of degree 2.
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We claim that the degree of E(n) (and hence of E�(n)) in characteristic p isqn. Abelian W = hx; zi has index qn, so this is an upper bound on the degree.Consider the restriction of a faithful representation to W . There is some degree1 constituent � with W = hw; zi = CE(n)(w), where hwi = ker(�). Then by
Cli�ord's Theorem the �yi , for i = 0; : : : ; qn� 1, are distinct constituents of therestriction.
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