Barbara Baumeister 
David Bundy 
Andy Chermak 
Niels Hebbinghaus 
Ulrich Meierfrankenfeld 
Mario Mainardis 
Chris Parker 
Gemma Parmeggiani 
Peter Rowley 
Bernd Stellmacher 
Gernot Stroth 

Let G be a finite group and p a prime. G is of characteristic p if C_{G}(O_{p}(G)) < O_{p}(G). G is of local characteristic p if all plocal subgroups of G are of characteristic p. Below are links to various talks, preprints and drafts on the classification of the finite groups of local characteristic p.
Title  Authors  Status 
The Structure Theorem  Bernd/Gernot/Ulrich  submitted 
The FFmodule Theorems and Applications  Bernd/Ulrich  submitted 
A characterization of G_2(3)  Gernot/Ulrich  J. Group Theory 
Isolated Subgroups in Finite Groups  Chris/Peter/Ulrich  J. London Math. Soc. 
FStability  Bernd/Ulrich  Trans. Amer. Math. Soc. 
Nearly Quadratic Modules  Bernd/Ulrich  J. Algebra 
The Fitting Submodule  Bernd/Ulrich  Arch.Math. 
The Other P(G,V)Theorem  Bernd/Ulrich  Rend. Padova 
The P! Theorem  Bernd/Chris/Gemma  Journal of Algebra 
The local CGT Theorem  Bernd/Dave/Niels  J. Algebra 
The P^{~}! Theorem  Bernd/Gemma/Mario/Ulrich  J. Algebra 
An Overview  Bernd,Gernot/Ulrich  Proceed. Durham Conf. 
Talks  Ulrich  
Generic Groups of ptype  Bernd/Ulrich  Random Results/Draft 
The Pushing Up Theorem

Andy/Gemma/Ulrich 
Beginning of a Draft 
The Rank 2 Case  Andy  Draft 
The Big Book of Small Modules  Andy/Barbara/Ulrich  Beginning of a Draft 
The Non Euniqueness Case  Bernd/Gernot/Ulrich  Beginning of a Draft 
The Small World Theorem  Bernd//Ulrich  Beginning of a Draft 
The b=2 Case  Chris/Peter//Ulrich  Beginning of a Draft 