The Local Structure Theorem For Finite Groups With A Large p-Subgroup

U. Meierfrankenfeld
B. Stellmacher
G. Stroth

[^0] Halle

Contents

Contents i
Introduction vii
Chapter 1. Definitions and Preliminary Results 1
1.1. Elementary Properties of Finite Groups 1
1.2. The Largest \boldsymbol{p}-Reduced Elementary Abelian Normal Subgroup 6
1.3. \boldsymbol{p}-Irreducible Groups 10
1.4. $\quad \boldsymbol{Y}$-Minimal Groups 12
1.5. Weakly Closed Subgroups 17
1.6. Large Subgroups 20
Chapter 2. The Case Subdivision and Preliminary Results 27
2.1. Notation and Elementary Properties 27
2.2. Asymmetry 29
2.3. Symmetric Pairs 37
2.4. Tall Natural Symplectic Modules 42
Chapter 3. The Orthogonal Groups 45
3.1. Notation and Elementary Properties 45
3.2. The Proof of Theorem \mid C 50
Chapter 4. The Symmetric Case 65
4.1. The Proof of Theorem D 66
Chapter 5. The Short Asymmetric Case 81
Chapter 6. The Tall char p-Short Asymmetric Case 97
Chapter 7. The char \boldsymbol{p}-Tall \boldsymbol{Q}-Short Asymmetric Case 99
7.1. The Proof of Theorem|G 100
Chapter 8. The \boldsymbol{Q}-Tall Asymmetric Case I 119
8.1. Notation and Preliminary Results 121
8.2. The Case $\boldsymbol{I} \leqslant \boldsymbol{A}$ 124
8.3. The Case $\boldsymbol{I} \$ \boldsymbol{A}$ and $\Omega_{1} \boldsymbol{Z}(\boldsymbol{A}) \nleftarrow \boldsymbol{Z}(\boldsymbol{L})$ 145
8.4. The Case $\boldsymbol{I} \neq \boldsymbol{A}$ and $\boldsymbol{\Omega}_{1} \boldsymbol{Z}(\boldsymbol{A}) \leqslant \boldsymbol{Z}(\boldsymbol{L})$ 145
8.5. The Proof of Theorem|H| 148
Chapter 9. The \boldsymbol{Q}-tall Asymmetric Case II 149
9.1. Notation and Preliminary Results 150
9.2. The Proof of TheoremII 156
9.3. The Proof of Corollary 9.1 | 169

| 9.4 . The Proof of Corollary 9.2 |
| :--- | :--- | :--- | 171

Chapter 10. Proof of the Local Structure Theorem 175
10.1. Proof of Theorem|J 176
10.2. Proof of the Local Structure Theorem 177
10.3. Proof of the Corollary to the Local Structure Theorem 183

Appendix A. Module theoretic Definitions and Results 185
A.1. Module-theoretic Definitions 185
A.2. Naming Modules 186
A.3. p-Reduced Modules 188
A.4. Wreath Product Modules 190
A.5. Offenders 194
A.6. Nearly Quadratic Modules 198
A.7. Q!-Modules 199
A.8. Genuine Groups of Lie Type 202

Appendix B. Classical Spaces and Classical Groups 205
B.1. Elementary Properties 206
B.2. The Classification of Classical Spaces 211
B.3. The Clifford Algebra 212
B.4. Normalizers of Singular Subspaces 215
B.5. Point-Stabilizers 216
B.6. Simplicity of the Natural Module 220
B.7. Normalizers of Classical Groups 221
B.8. \quad Q-Uniqueness in Classical Groups 224

Appendix C. FF-Module Theorems and Related Results 229
C.1. FF-Module Theorems 229
C.2. \boldsymbol{H}^{1} - and \boldsymbol{H}^{2}-Results 236
C.3. Q!-Module Theorems 239
C.4. The Asymmetric Module Theorems 242

Appendix D. The Fitting Submodule 245
D.1. The Definition of the Fitting Submodule and Results from [MS2] 245
D.2. The Fitting Submodule and Large Subgroups 246
D.3. The Nearly Quadratic Q!-Module Theorem 247

Appendix E. The Amalgam Method 255
E.1. The Coset Graph 255
E.2. Elementary Properties 255
E.3. Critical Pairs 257
E.4. The Case $|I|=2$ 2 258
E.5. An Application of the Amalgam Method 260

Appendix. Bibliography 263

Appendix. List of Symbols	265

Appendix. List of Definitions	267

Abstract

Let p be a prime, G a finite \mathcal{K}_{p}-group S a Sylow p-subgroup of G and Q a large subgroup of G in S (i.e., $C_{G}(Q) \leqslant Q$ and $N_{G}(U) \leqslant N_{G}(Q)$ for $1 \neq U \leqslant C_{G}(Q)$). Let L be any subgroup of G with $S \leqslant L, O_{p}(L) \neq 1$ and $Q \notin L$. In this paper we determine the action of L on the largest elementary abelian normal p-reduced p-subgroup Y_{L} of L.

2010 Mathematics Subject Classification. Primary 20D05.
Key words and phrases. local characteristic p, large subgroup, finite simple groups.
partially supported by Humboldt foundation.
partially supported by DFG.

Introduction

Historical Background. One of the great achievements of 20th century mathematics is the classification of the finite simple groups. At least from hindsight, the quest for this classification began with a talk of R. Brauer at the ICM in Amsterdam 1952, where he demonstrated a method, the centralizer method, that makes it possible to characterize finite simple groups by means of the centralizer of an involution, and of course with the celebrated Odd Order Theorem of Feit-Thompson 1963, [FT], which shows that every finite (non-abelian) simple group possesses involutions. It was quite natural from these beginnings that the prime 2 played an overwhelmingly important role in the classification.

On the other hand, apart from the alternating groups, the classes $\operatorname{Lie}(p)$ of finite simple groups of Lie type in characteristic p, p a prime, provide the generic examples for finite simple groups. So for these examples there exists a distinguished prime p associated to these groups. Moreover, in 1974 J. Tits, [T], presented the theory of buildings of spherical type, which makes it possible to understand and characterize the groups in $\operatorname{Lie}(p)$ by means of a geometry that reflects properties of their parabolic subgroups and focuses on that distinguished prime p. So one might wonder if there is also a way to classify the finite simple groups more prominently based on this geometric approach.

Both of theses approaches, Brauer's centralizer approach based on the prime 2 and used in the classification and Tits' geometric approach, can only be applied successfully to a general finite simple group, if one is able to set the stage properly. More precisely, one has to get a satisfactory answer to the following fundamental questions:

- In case of the centralizer approach: What does the centralizer of a (properly chosen) involution look like in a general simple group G ?
- In case of the geometric approach: How can one detect a distinguished prime p (if there is any) in a general simple group G ? And how does this then lead to a geometry that characterizes G ?

The answer of the first question can be read from the classification. The Standard Component Theorem of Aschbacher 1975, As1, shows that either
(char 2)

$$
C_{G}\left(O_{2}(M)\right) \leqslant O_{2}(M) \text { for all 2-local subgroups } M \text { of } G \bigsqcup^{\top}
$$

or that there exists an involution t whose centralizer $C_{G}(t)$ is classical or of standard form. The latter case can be treated nicely using Brauer's centralizer method; either by the Classical Involution Theorem of Aschbacher 1977, As2, or by solving various standard form problems.

The first case causes many more problems. It is not accidental that the examples from Lie(2) have property (char 2). As there, in groups satisfying (char 2) the centralizers of involutions have non-central normal 2 -subgroups which in most cases are an obstruction to applying the centralizer method effectively. In this case the classification shifts from 2 to a properly chosen odd prime r. In fact, for groups in Lie(2) defined over not too small fields, r divides the order of a maximal torus. Then the proof proceeds as before using a standard component theorem for the prime r rather than 2. Unfortunately, this switch of primes cannot be executed in all cases. So one ends up with some unpleasant cases that have to be treated separately; for example in the Quasithin Group Theorem by Aschbacher-Smith 2004, $\mathbf{A S}$, and the Uniqueness Theorem by Aschbacher 1983, As3.

[^1]The other two questions are more difficult to answer since there is as yet no classification using the geometric approach that would justify such an answer. But - similar to Aschbacher's Standard Component Theorem - one would expect an answer that gives a few cases that then can be treated independently. In addition, any of these cases should be inspired by properties of the generic examples involving the distinguished prime p.

Property (char 2) is a good example for this. It reflects an important property that the groups in $L i e(2)$ have in common without using the terminology and conceptual background of groups of Lie type, so it also applies to finite groups in general, and it easily generalizes to arbitrary primes p.

We turn this into a definition. A finite group G is of local characteristic p if G satisfies
(charp)

$$
C_{G}\left(O_{p}(M)\right) \leqslant O_{p}(M) \text { for all } p \text {-local subgroups of } M \text { of } G \text {. }
$$

In particular, the finite simple groups of local characteristic 2 are exactly the exceptions in the Standard Component Theorem that force the switch of primes. So even in this case alone, successfully carrying out a geometric approach for groups of local characteristic 2 would give an alternative proof for that part of the classification, avoiding not only the switch of primes but also the above mentioned cases where this switch fails.

There is another property which nearly all the generic examples share and which the authors believe is important for a classification following the geometric approach: the existence of a large subgroup. For any finite group G a non-trivial p-subgroup Q is large if
(i) $C_{G}(Q) \leqslant Q$, and
(ii) $N_{G}(U) \leqslant N_{G}(Q)$ for all $1 \neq U \leqslant C_{G}(Q)$.

Note that the first property is equivalent to $C_{G}(Q)=Z(Q)$. We will refer to the second property as the $Q!$-property, or just as Q !.

If $G \in \operatorname{Lie}(p)$ and $S \in S y l_{p}(G)$, then $O_{p}\left(N_{G}\left(\Omega_{1} Z(S)\right)\right)$ is a large subgroup if and only if $\Omega_{1} Z(S)$ is a root subgroup of G. Thus, every simple group of Lie type possesses such a large subgroup, except $S p_{2 n}\left(2^{m}\right)$, $n \geqslant 2, F_{4}\left(2^{m}\right)$ and $G_{2}\left(3^{m}\right)$.

From a group theoretic point of view, the concept of groups with large subgroups also generalizes the concept of groups of $G F(2)$-type introduced in $\mathbf{G L}$. In particular, Timmesfeld's result, $\mathbf{T i}$, on centralizers of involutions whose generalized Fitting subgroup is extraspecial, is an important part of the classification of the finite simple groups. But he has concentrated on the structure of the centralizer of a 2-central involution (which in our case is $N_{G}(Q)$), so at least in a formal sense he follows Brauer's centralizer approach. In contrast to this we will investigate every p-local subgroup not in $N_{G}(Q)$, where Q is a large subgroup.

For several years the authors and various other collaborators have worked on a classification project for finite groups of local characteristic p that uses the geometric approach; and the classification of the finite groups of local characteristic p possessing a large subgroup is a major part of this project. An outline of this project can be found in MSS. There it is also demonstrated in which context large subgroups arise and what role the Local Structure Theorem plays in this classification.

Up to now several contributions to this project have been published or submitted for publication. For example, the local $C(G, T)$-Theorem $\mathbf{B H S}$, the $P!$-Theorem $\mathbf{P P S}$, the $\widetilde{P}!$-Uniqueness Theorem MMPS, plus MeiStr3, $\mathbf{P 1}$ and $\mathbf{P 2}$, and results about strongly p-embedded subgroups, PS1 and PS2], and as relevant background material about modules the Nearly Quadratic Module Theorem [MS3], the General FF-module Theorem MS5] and its applications [MS6.

Some of these results rest upon properties or hypotheses derived from or justified by the Local Structure Theorem which is presented in this paper. In this sense the Local Structure Theorem is the cornerstone for the investigation of finite groups G of local characteristic p possessing a large subgroup Q. In fact, local characteristic p is not really required in full strength for the proof of the Local Structure Theorem, but we will ignore this for the moment.

The Local Structure Theorem determines the action of M on $\Omega_{1} Z\left(O_{p}(M)\right)$ for every p-local subgroup M which contains a Sylow p-subgroup of $N_{G}(Q)$ and is not contained in $N_{G}(Q)$. Speaking
in the geometric language of the generic examples, this information allows to determine the residues of the maximal parabolic subgroups different from the normalizer of a long root subgroup.

In a forthcoming paper the Local Structure Theorem will be used to prove the H-Structure Theorem, where under an additional assumption the structure of $N_{G}(Q) / Q$ is determined. Speaking again in the geometric language of the generic examples, the Local Structure Theorem and H Structure Theorem combined give all the possibilities for the residues of maximal local parabolic subgroups of G. This then allows to determine up to isomorphism a parabolic subgroup H of G with $O_{p}(H)=1$. If the residues resemble the residues of a group of Lie-type of rank at least three, this can be achieved via Tits' theory of buildings, see MSW, Theorem 6.9]. Otherwise by a case-by-case discussion based on the detailed description of the maximal local parabolic subgroups of G provided by the Local Structure Theorem and the H-Structure Theorem.

Having determined H one proceeds by computing the group G_{0} generated by all the p-local subgroups containing a given Sylow p-subgroup of G. Then one still has to show that $G=G_{0}$. But this part of the project has already been treated. A result of M. Salarian and G. Stroth $\mathbf{S a S}$, shows that G_{0} is strongly p-embedded in G if $G \neq G_{0}$, and results of Ch. Parker and G. Stroth, PS1] and [PS2, show that this is impossible, so $G=G_{0}$.

Notation used in the Local Structure Theorem. We will now give the notation that is needed to state the Local Structure Theorem below. Some of this notation will be repeated and refined in the definitions given in later chapters.

In contrast to the Brauer method, where the centralizers of p-subgroups are of prime interest, in this paper we investigate the non-trivial action of p-local subgroups M on suitable elementary abelian normal p-subgroups $V \vDash M$. The basic idea is to identify the group $M / C_{M}(V)$ and the $\mathbb{F}_{p} M$-module V at the same time. This requires an inductive hypothesis that is called the \mathcal{K}_{p}-group Hypothesis.

A finite group G is a \mathcal{K}_{p}-group if the simple sections of any p-local subgroup of G are known simple groups (i.e., these sections are isomorphic to groups of prime order, groups of Lie type, alternating groups or one of the 26 sporadic groups). This hypothesis is related to (and compatible with) the proper \mathcal{K}-group Hypothesis used in the first and second generation proofs of the classification of the finite simple groups, which reflects the only inductive property needed in a minimal counterexample to the Classification Theorem.

This \mathcal{K}_{p}-group Hypothesis allows us to use module-theoretic results provided in MS3, MS5, MS6, GM1 and GM2 for the identification of $M / C_{M}(V)$ and V.

Let H be an arbitrary finite group. Then H has characteristic p if $C_{H}\left(O_{p}(H)\right) \leqslant O_{p}(H)$. Any subgroup of H containing a Sylow p-subgroup of H is a parabolic subgroup of H; and H has parabolic characteristic p if every p-local parabolic subgroup of H has characteristic p. So the notion of parabolic characteristic generalizes the notion of local characteristic introduced earlier.

For $A \leqslant H$ we say that H is A-minimal if $H=\left\langle A^{H}\right\rangle$, and A is contained in a unique maximal subgroup of H; and H is p-minimal if H is A-minimal for $A \in S y l_{p}(H)$.

Let A be an elementary abelian p-subgroup of H. We say that A is symmetric in H if there exists $g \in H$ such that

$$
\left[A, A^{g}\right] \neq 1 \quad \text { and } \quad\left[A, A^{g}\right] \leqslant A \cap A^{g}
$$

otherwise A is called asymmetric in H.
Let $T \in \operatorname{Syl}_{p}\left(C_{H}(A)\right)$. We say that A is tall in H if there exists $T \leqslant L \leqslant H$ such that $O_{p}(L) \neq 1$ and $A \nleftarrow O_{p}(L)$; and A is char p-tall in H if there exists $T \leqslant L \leqslant H$ such that $A \not O_{p}(L)$ and L has characteristic p. Note here that these definitions are independent of the choice of $T \in S y l_{p}\left(C_{H}(A)\right)$.

Of prime interest in this paper will be the set

$$
\mathcal{L} 1_{H}:=\left\{L \leqslant H \mid C_{H}\left(O_{p}(L)\right) \leqslant O_{p}(L) \text { and } O_{p}(L) \neq 1\right\}
$$

By \mathcal{M}_{H} we denote the set of maximal elements of \mathcal{L}_{H} with respect to inclusion, and by \mathcal{P}_{H} the set of p-minimal elements of \mathcal{L}_{H}. Moreover, for $K \leqslant H$

$$
\mathcal{L}_{H}(K):=\left\{L \in \mathcal{L}_{H} \mid K \leqslant L\right\} ;
$$

similarly we define $\mathcal{M}_{H}(K)$ and $\mathcal{P}_{H}(K)$.
By Y_{H} we denote the largest p-reduced normal subgroup of H, i.e., the largest elementary abelian normal p-subgroup of H satisfying $O_{p}\left(H / C_{H}\left(Y_{H}\right)\right)=1$. (For the existence and elementary properties see [MS4, 2.2] and 1.24 .

Let \mathfrak{M}_{H} be the set of all $M \in \mathcal{L}_{H}$ such that
(i) $\mathcal{M}_{H}(M)=\left\{M^{\dagger}\right\}$ and $Y_{M}=Y_{M^{\dagger}}$, where $M^{\dagger}:=M C_{H}\left(Y_{M}\right)$.
(ii) $C_{M}\left(Y_{M}\right)$ is p-closed and $C_{M}\left(Y_{M}\right) / O_{p}(M) \leqslant \Phi\left(M / O_{p}(M)\right)$.

As above, for $K \leqslant H$ let $\mathfrak{M}_{H}(K)=\left\{M \in \mathfrak{M}_{H} \mid K \leqslant M\right\}$. In the following, if $M \in \mathfrak{M}_{H}$, we will refer to (i) and (ii) as the basic property of M.

If A, B and C are groups, then $A \sim B . C$ means that A has a normal subgroup B_{1} such that $B_{1} \cong B$ and $A / B_{1} \cong C . A \sim B \cdot C$ means that, in addition, there does not exists a complement to B_{1} in A. If such an A is unique up to isomorphism, we may also write $A \cong B \cdot C$.

Suppose that V is a faithful H-module and \mathcal{K} is a non-empty H-invariant set of subgroups of H. Then we say that V is a natural $S L_{2}(q)$-wreath product module for H with respect to \mathcal{K} if

$$
V=\bigoplus_{K \in \mathcal{K}}[V, K] \quad \text { and } \quad\langle\mathcal{K}\rangle=\underset{K \in \mathcal{K}}{X} K
$$

and for each $K \in \mathcal{K}, K \cong S L_{2}(q)$ and $[V, K]$ is a natural $S L_{2}(q)$-module for K.
Note here that a natural $S L_{2}(q)$-module is a natural $S L_{2}(q)$-wreath product module with $|\mathcal{K}|=$ 1.

If V is a vector space over the finite field \mathbb{K}, then $\Lambda^{2}(V), S^{2}(V)$ and $U^{2}(V)$, denote the exterior, symmetric and unitary square of V, that is, the set of symplectic, symmetric and unitary forms on the dual of V, respectively. For further details for our naming of modules see A. 2 ,

The Local Structure Theorem. Suppose now that G is a finite group and Q is a (fixed) large subgroup of G. For $M \leqslant G$ we set

$$
M^{\circ}:=\left\langle Q^{g} \mid g \in G, Q^{g} \leqslant M\right\rangle
$$

and

$$
Q^{\bullet}:=O_{p}\left(N_{G}(Q)\right)
$$

Let $Q \leqslant S \in S y l_{p}(G)$. Clearly, either S is contained in a unique maximal p-local subgroup M of G, or there exists a p-local subgroup M of G with $S \leqslant M$ and $Q \nleftarrow M$. For the generic examples from $\operatorname{Lie}(p)$, the first case corresponds to groups of Lie rank 1, the second to those of Lie rank larger than 1.

In general, in the first case M contains the normalizer of every non-trivial characteristic subgroup of S. Then, at least if G has local characteristic p, either M is a strongly p-embedded subgroup of G or the p-local structure of G is well-understood and was investigated in BHS. Finally, if G possesses a strongly p-embedded subgroup, the p-local analysis is no longer of any help. Fortunately, at least for $p=2$, a Theorem of Bender, $1971[\mathbf{B e}$, gives a complete classification, for odd primes such a theorem is not known.

In this paper we consider the second case, where S is contained in more than one maximal p-local subgroup of G, and we investigate the action of L on Y_{L} for all p-local subgroups L of G with Q not normal in L. We will prove:

Theorem A (Local Structure Theorem). Let G be a finite \mathcal{K}_{p}-group and $S \in \operatorname{Syl}_{p}(G)$. Suppose that S is contained in at least two maximal p-local subgroups and that Q is a large subgroup of G in S. Let $L \leqslant G$ with $S \leqslant L, O_{p}(L) \neq 1$ and $Q \nleftarrow L$.

Then there exist $M \in \mathfrak{M}_{G}(S)$ and $L^{*} \leqslant M$ with

$$
S \leqslant L^{*}, Y_{L}=Y_{L *}, L C_{G}\left(Y_{L}\right)=L^{*} C_{G}\left(Y_{L}\right), \text { and } L^{\circ}=\left(L^{*}\right)^{\circ}
$$

Moreover, for any such L and M one of the following holds, where $\widetilde{L}:=L / C_{L}\left(Y_{L}\right)$ and q is a power of p.
(1) The linear case.
(a) $\widetilde{L^{\circ}} \cong S L_{n}(q), n \geqslant 3$, and $\left[Y_{L}, L^{\circ}\right]$ is a corresponding natural module for $\widetilde{L^{\circ}}$.
(b) If $Y_{L} \neq\left[Y_{L}, L^{\circ}\right]$ then $\widetilde{L^{\circ}} \cong S L_{3}(2),\left|Y_{L} /\left[Y, L^{\circ}\right]\right|=2,\left[Y_{L}, L^{\circ}\right] \leqslant Q \leqslant Q^{\bullet}, Y_{M}=Y_{L}$ and $M^{\circ}=L^{\circ}$.
(2) The symplectic case.
(a) $\widetilde{L^{\circ}} \cong S p_{2 n}(q), n \geqslant 2$, or $S p_{4}(q)^{\prime}($ and $q=2)$, and $\left[Y_{L}, L^{\circ}\right]$ is the corresponding natural module for $\widetilde{L^{\circ}}$
(b) If $Y_{L} \neq\left[Y_{L}, L^{\circ}\right]$, then $p=2$ and $\left|Y_{L} /\left[Y_{L}, L^{\circ}\right]\right| \leqslant q$.
(c) If $Y_{L} \not \leqslant Q^{\bullet}$, then $p=2$ and $\left[Y_{L}, L^{\circ}\right] \$ Q^{\bullet}$.
(d) Either $L^{\circ}=M^{\circ}$ and $Y_{L}=Y_{M}$, or one of following holds:
(1) $p=2, \widetilde{L^{\circ}} \cong S p_{4}(2)^{\prime}, Y_{L}=\left[Y_{L}, L^{\circ}\right], Y_{L} \neq Q^{\bullet}, M^{\circ} / C_{M^{\circ}}\left(Y_{M}\right) \cong M a t_{24}$, and Y_{M} is the simple Golay code module of \mathbb{F}_{2}-dimension 11 for M°.
(2) $p=2, \widetilde{L^{\circ}} \cong S p_{4}(2),\left|Y_{L} /\left[Y_{L}, L^{\circ}\right]\right|=2,\left[Y_{L}, L^{\circ}\right] \nless Q^{\bullet}, M^{\circ} / C_{M^{\circ}}\left(Y_{M}\right) \cong$ Aut $\left(M a t_{22}\right)$, and Y_{M} is the simple Todd module of \mathbb{F}_{2}-dimension 10 for M°.

(3) The Wreath Product Case.

(a) There exists a unique \widetilde{L}-invariant set \mathcal{K} of subgroups of \widetilde{L} such that $\left[Y_{L}, L^{\circ}\right]$ is a natural $S L_{2}(q)$-wreath product module for \widetilde{L} with respect to \mathcal{K}. Moreover, $\widetilde{L^{\circ}}=O^{p}(\langle\mathcal{K}\rangle) \widetilde{Q}$ and Q acts transitively on \mathcal{K}.
(b) If $Y_{L} \neq\left[Y_{L}, L^{\circ}\right]$, then $p=2, \widetilde{L} \cong \Gamma S L_{2}(4), \widetilde{L^{\circ}} \cong S L_{2}(4)$ or $\Gamma S L_{2}(4),\left|Y_{L} /\left[Y_{L}, L^{\circ}\right]\right|=$ $2,\left[Y_{L}, L^{\circ}\right] \not Q^{\bullet}, Y_{M}=Y_{L}$ and $M C_{G}\left(Y_{L}\right)=L C_{G}\left(Y_{L}\right)$.
(c) Either $Y_{M}=Y_{L}$ and $M^{\circ}=L^{\circ}$ or $\widetilde{L^{\circ}} \cong S L_{2}(q)$.
(4) The Weak Wreath Product Case. $O^{p}\left(\widetilde{L^{\circ}}\right)$ is abelian and $Y_{L}=\left[Y_{L}, L^{\circ}\right]$. Let
$U_{1}, U_{2}, \ldots, U_{s}$ be the Wedderburn components of $O^{p}\left(L^{\circ}\right)$ on Y_{L}. Then the following hold:
(a) $Y_{L}=U_{1} \oplus \ldots \oplus U_{s}, O^{p}\left(L^{\circ}\right) / C_{O^{p}\left(L^{\circ}\right)}\left(U_{i}\right)$ is cyclic of order dividing $q-1$, and $q>2$.
(b) Q permutes the subgroups U_{i} in (4:a) transitively.
(c) Y_{M} is a natural $S L_{2}(q)$-wreath product module for $M / C_{M}\left(Y_{M}\right)$ with respect to some \mathcal{K}, $M^{\circ} / C_{M^{\circ}}\left(Y_{M}\right) \not \equiv S L_{2}(q)$, and for the inverse image P^{*} of $\langle\mathcal{K}\rangle$ in $M, P^{*} \cap S \vDash L^{\circ} S$, $Y_{L} \leqslant C_{Y_{M}}\left(P^{*} \cap S\right)$, and there exists an L-invariant partition $\mathcal{K}_{1}, \mathcal{K}_{2}, \ldots, \mathcal{K}_{s}$ of \mathcal{K} with $U_{i}=Y_{L} \cap\left[Y_{M},\left\langle\mathcal{K}_{i}\right\rangle\right]$ for all $1 \leqslant i \leqslant s$.
(5) The orthogonal case. $Y_{L} \leqslant Q^{\bullet}, \widetilde{L^{\circ}} \cong \Omega_{n}^{\epsilon}(q)$, $n \geqslant 5$, where q is odd if n is odd, and Y_{L} is a corresponding natural module for $\widetilde{L^{\circ}}$. Moreover, either $Y_{M}=Y_{L}$ and $L^{\circ}=M^{\circ}$ or one of the following holds:
(1) $\widetilde{L^{\circ}} \cong \Omega_{6}^{+}(q)$, and Y_{M} is the exterior square of a natural $S L_{m}(q)$-module for M°.
(2) $p=2, \widetilde{L^{\circ}} \cong \Omega_{6}^{+}(2)$ and $M^{\circ} / C_{M^{\circ}}\left(Y_{M}\right) \cong M a t_{24}$, and Y_{M} is the simple Todd- module of \mathbb{F}_{2}-dimension 11 for M°.
(3) ${\widetilde{L^{\circ}}}^{\sim} \cong \Omega_{8}^{+}(q)$ and $M^{\circ} / C_{M^{\circ}}\left(Y_{M}\right) \cong \operatorname{Spin}_{10}^{+}(q)$, and Y_{M} is the half-spin module for M°.
(4) $\widetilde{L^{\circ}} \cong \Omega_{10}^{+}(q)$ and $M^{\circ} / C_{M^{\circ}}\left(Y_{M}\right) \cong E_{6}(q)$, and Y_{M} is simple module of \mathbb{F}_{q}-dimension 27 for M°.
(6) The tensor product case. $Y_{L} \not Q^{\bullet}$, and there exist subgroups $\widetilde{L}_{1}, \widetilde{L}_{2}$ of \tilde{L} such that
(a) $\widetilde{L}_{i} \cong S L_{t_{i}}(q), t_{i} \geqslant 2,\left[\widetilde{L}_{1}, \widetilde{L}_{2}\right]=1$, and $\widetilde{L}_{1} \widetilde{L}_{2} \vDash \widetilde{L}$,
(b) $Y_{L} \cong Y_{1} \otimes_{\mathbb{F}_{q}} Y_{2}$, where Y_{i} is a corresponding natural module for \widetilde{L}_{i} (and \mathbb{F}_{q} is a field of order q),
(c) $\widetilde{L}=\widetilde{L^{\circ}} \cong S L_{2}(2)$ C C_{2} and $p=2$, or $\widetilde{L^{\circ}}$ is one of $\widetilde{L}_{1}, \widetilde{L}_{2}$, or $\widetilde{L}_{1} \widetilde{L}_{2}$,
(d) Moreover, either M fulfills the tensor product case, or $p=2, \widetilde{L}=\widetilde{L}_{1} \widetilde{L}_{2} \cong S L_{2}(2) \times$ $S L_{2}(2), M / C_{M}\left(Y_{M}\right) \cong 3 \cdot \operatorname{Sym}(6)$, and Y_{M} is the simple module of \mathbb{F}_{2}-dimension 6 for M.
(7) The non-natural $S L_{n}(q)$-case. $\left[Y_{L}, L^{\circ}\right] \not Q^{\bullet}$, and one of the following holds:
(1) $\widetilde{L^{\circ}} \cong S L_{n}(q) /\left\langle(-i d)^{n-1}\right\rangle, n \geqslant 5, Y_{L}$ is the exterior square of a natural $S L_{n}(q)$-module for L°, and Y_{M} is the exterior square of a natural $S L_{m}(q)$-module for M°.
(2) p is odd, $\widetilde{L^{\circ}} \cong S L_{n}(q) /\left\langle(-i d)^{n-1}\right\rangle, n \geqslant 2$, and Y_{L} is the symmetric square of a natural $S L_{n}(q)$ for L°, and Y_{M} is the symmetric square of a natural $S L_{m}(q)$-module for M°.
(3) $\widetilde{L^{\circ}} \cong S L_{n}(q) /\left\langle\lambda i d \mid \lambda \in \mathbb{F}_{q}, \lambda^{n}=\lambda^{q_{0}+1}=1\right\rangle, n \geqslant 2, q=q_{0}^{2}$, and $\left[Y_{L}, L^{\circ}\right]$ is the unitary square of a natural $S L_{n}(q)$-module for L°. Moreover, one of the following holds:
(1) $Y_{L}=\left[Y_{L}, L^{\circ}\right]$, and Y_{M} is the unitary square of a natural $S L_{m}(q)$-module for M°.
(2) $p=3,\left|Y_{L} /\left[Y_{L}, L^{\circ}\right]\right|=3, \widetilde{L^{\circ}} \cong L_{2}(9), M^{\circ} / C_{M^{\circ}}\left(Y_{M}\right) \cong M a t_{11}, Y_{L}=Y_{M}$, and Y_{M} is the simple Golay-code module of \mathbb{F}_{3}-dimension 5 for M°.
(3) $p=2, Y_{L}=\left[Y_{L}, L^{\circ}\right], \widetilde{L^{\circ}} \cong S L_{2}(4), M^{\circ} / C_{M^{\circ}}\left(Y_{M}\right) \cong M a t_{22}$, and Y_{M} is the simple Golay-code module of \mathbb{F}_{2}-dimension 10 for M°.
(4) $p=3, Y_{L}=\left[Y_{L}, L^{\circ}\right], \widetilde{L}^{\circ} \cong L_{2}(3), Y_{L} \nless Q^{\bullet}, M^{\circ} / C_{M^{\circ}}\left(Y_{M}\right) \cong 2 \cdot M a t_{12}, Y_{M}$ is the simple Golay-code module of \mathbb{F}_{3}-dimension 6 , and $Y_{L} \$ Q^{\bullet}$.
(8) The exceptional case. $Y_{L} \leqslant Q^{\bullet}, Y_{M}=Y_{L}, M^{\circ}=L^{\circ}$, and one of the following holds:
(1) $\widetilde{L^{\circ}} \cong \operatorname{Spin}_{10}^{+}(q)$, and Y_{L} is a half-spin module.
(2) $\widetilde{L^{\circ}} \cong E_{6}(q)$, and Y_{L} is one of the (up to isomorphism) two simple $\mathbb{F}_{p} L^{\circ}$-modules of order q^{27}.
(9) The sporadic case. $Y_{L} \leqslant Q^{\bullet}, Y_{L}=Y_{M}, L^{\circ}=M^{\circ}$, and one of the following holds:
(1) $p=2, \widetilde{L} \sim 3 \cdot \operatorname{Sym}(6), \widetilde{L^{\circ}} \sim 3 \cdot \operatorname{Alt}(6)$ or $3 \cdot \operatorname{Sym}(6)$, and Y_{L} is a simple module of \mathbb{F}_{2}-dimension 6.
(2) $p=2, \widetilde{L^{\circ}} \cong M a t_{22}$, and Y_{L} is the simple Golay-code module of \mathbb{F}_{2}-dimension 10 .
(3) $p=2, \widetilde{L^{\circ}} \cong M a t_{24}$, and Y_{L} is the simple Todd or Golay-code module of \mathbb{F}_{2}-dimension 11.
(4) $p=3, \widetilde{L^{\circ}} \cong M a t_{11}$, and Y_{L} is the simple Golay-code module of \mathbb{F}_{3}-dimension 5 .
(10) The non-characteristic \boldsymbol{p} case. There exists $1 \neq y \in Y_{L}$ such that $C_{G}(y)$ is not of characteristic p, and one of the following holds:
(1) Y_{L} is tall and asymmetric in G, but Y_{L} is not char p-tall in G.
(2) $p=2, \widetilde{L^{\circ}} \cong A u t\left(M_{22}\right), Y_{L}$ is the simple Todd module of \mathbb{F}_{2}-dimension 10 , and $Y_{L} \nless Q^{\bullet}$
(3) $p=3, \widetilde{L^{\circ}} \cong 2 \cdot M a t_{12}, Y_{L}$ is the simple Golay-code module of \mathbb{F}_{3}-dimension 6 , and $Y_{L} * Q^{\bullet}$.
(4) $p=2, \widetilde{L} \cong O_{2 n}^{\epsilon}(2), \widetilde{L^{\circ}} \cong \Omega_{2 n}^{\epsilon}(2), 2 n \geqslant 4,(2 n, \epsilon) \neq(4,+), Y_{L}$ is a corresponding natural module and $Y_{L} \leqslant Q^{\bullet}$.
(5) $p=3, \widetilde{L^{\circ}} \cong \Omega_{4}^{-}(3),\left[Y_{L}, L^{\circ}\right]$ is the corresponding natural module, $\left|Y_{L} /\left[Y_{L}, L^{\circ}\right]\right|=$ 3, Y_{L} is isomorphic to the 5-dimensional quotient of a six dimensional permutation module for $\widetilde{L^{\circ}} \cong \operatorname{Alt}(6)$, and $\left[Y_{L}, L^{\circ}\right] \not \approx Q^{\bullet}$.
(6) $p=3, \widetilde{L^{\circ}} \cong \Omega_{5}(3),\left[Y_{L}, L^{\circ}\right]$ is the corresponding natural module, $\left|Y_{L} /\left[Y_{L}, L^{\circ}\right]\right|=3$, and $\left[Y_{L}, L^{\circ}\right] \$ Q^{\bullet}$.
(7) $p=2, \widetilde{L^{\circ}} \cong \Omega_{6}^{+}(2),\left[Y_{L}, L^{\circ}\right]$ is the corresponding natural module, and $\left|Y_{L} /\left[Y, L^{\circ}\right]\right|=2$.
(8) $p=2, \widetilde{L^{\circ}} \cong \operatorname{Mat}_{24},\left[Y_{L}, L^{\circ}\right]$ is the simple Todd-module of \mathbb{F}_{2}-dimension 11, $\left|Y_{L} /\left[Y_{L}, L^{\circ}\right]\right|=2$, and $\left[Y_{L}, L^{\circ}\right] * Q^{\bullet}$.
Moreover, either $Y_{L}=Y_{M}$ and $L^{\circ}=M^{\circ}$, or $\widetilde{L^{\circ}} \cong \Omega_{6}^{+}(2),\left[Y_{L}, L^{\circ}\right] 末 Q^{\bullet}, M^{\circ} / C_{M^{\circ}}\left(Y_{M}\right) \cong$ Mat ${ }_{24},\left[Y_{M}, M^{\circ}\right]$ is the simple Todd-module of \mathbb{F}_{2}-dimension 11 and $\left|Y_{M} /\left[Y_{M}, M^{\circ}\right]\right|=2$.

Note that there is some overlap between the last case of the Local Structure Theorem and the previous cases: If $\left[Y_{L}, L^{\circ}\right]$ is a natural $\Omega_{5}(3), \Omega_{4}^{-}(3)$ or $\Omega_{6}^{+}(2)$-module or the Todd module for $M a t_{24}$

Table 1. Examples for the Local Structure Theorem. Cases (1)-(9)

one might have $Y_{L}=\left[Y_{L}, L^{\circ}\right]$ or $Y_{L} \neq\left[Y_{L}, L^{\circ}\right]$. Similarly, if $\left[Y_{L}, L\right]$ is a natural $\Omega_{2 n}^{\epsilon}(2)$-module one might have $Y_{L} \leqslant Q^{\bullet}$ or $Y_{L} \leqslant Q^{\bullet}$. But each time the second possibility can only occur if there exists $1 \neq y \in Y_{L}$ such that $C_{G}(y)$ is not of characteristic p.

TABLE 2. Examples for the Local Structure Theorem where (char $\left.\boldsymbol{Y}_{\boldsymbol{M}}\right)$ fails

Case	[Y_{M}, M°] for M°	c	Remarks	examples for G
1:b	nat $S L_{3}(2)$	2	$G \neq G^{\circ}$	Aut (G2 $\mathrm{F}_{2}(3)$
$\underline{2}$	nat $S p_{4}(2)^{\prime}$ or $S p_{4}(2)$	2	-	$P \Omega_{6}^{-}(3)\langle\omega\rangle$ or $P O_{6}^{-}(3)$
2	nat $S p_{8}(2)$	2	-	BM
3	nat $S L_{2}(q)$ wreath	1	$\underline{\mid \mathcal{K}} \mid>1$	(Г) $L_{3}(q)$ 2 2-group, $q=2,4$
3:b	nat $S L_{2}(4)[.2]$	2	$\bar{M} \cong \Gamma S L_{2}(4)$	Aut(Mat $_{22}$)
3 6	nat $S L_{2}(2) \otimes S L_{2}(2)$	1		$\operatorname{Sym}(9), \operatorname{Alt}(10)$
6	nat $\left.S L_{2}(2)\right)\left[\otimes S L_{2}(2)\right]$	1	-	Alt (9)
6	nat $S L_{2}(3) \otimes S L_{2}(3)$	1	-	HN
:2	nat $\Omega_{3}(3)$	1	-	$S p_{6}(2), \Omega_{8}^{-}(2)$
$7: 2$	nat $\Omega_{3}(5)$	1	-	Co_{1}
$7{ }^{7}$	nat $\Omega_{4}^{-}(2)$	1	-	$L_{4}(3), \operatorname{Alt}(10)$
7:3 10:5	nat $\Omega_{4}^{-}(3)$	$\leqslant 3$	-	$U_{6}(2) . c(.2)$
	nat $\Omega_{5}(3)$	1	-	$\mathrm{Fi}_{22}(.2)$
510:6	nat $\Omega_{5}(3)$	$\leqslant 3$	-	${ }^{2} E_{6}(2) . c(.2)$
-5	nat $\Omega_{6}^{+}(2)$	1	-	$P \Omega_{8}^{+}(3)(.3)(.2)$
10:7	nat $\Omega_{6}^{+}(2)$	2	-	$P \Omega_{8}^{+}(3) .2 .(2), P \Omega_{8}^{+}(3) . S y m(3)$
	nat $\Omega_{7}(3)$	1	-	$F i_{24}^{\prime}(.2)$
	nat $\Omega_{10}^{+}(2)$	1	-	M
** 10:4	nat $\Omega_{2 n}^{\epsilon}(2),(2 n, \epsilon) \neq(4,+)$	$\leqslant 2$	$\underline{Y_{M}} \leqslant Q^{\bullet}$	-
9:1	2^{6} for $3 \cdot \operatorname{Sym}(6)$	1	$\bar{M} \sim 3 \cdot \operatorname{Sym}(6)$	He
9:3 10:8	Todd 2^{11} for Mat ${ }_{24}$	$\leqslant 2$		$F i_{24}^{\prime} . c$
10:2	Todd 2^{10} for $\operatorname{Aut}\left(\mathrm{Mat}_{22}\right)$	1	-	Aut (Fi 22 $^{\text {) }}$
10:3	Golay 3^{6} for $2 \cdot M a t_{12}$	1	-	Co ${ }_{1}$
** 10:1	?	?	tall, asymmetric, not char p-tall	

Note also that last case is not the only case of the Local Structure Theorem, where $C_{G}(y)$ may not be of characteristic p for some $1 \neq y \in Y_{L}$. For example both J_{4} and $F i_{24}^{\prime}$ contain a parabolic subgroup $M \sim 2^{11} M a t_{24}$, with Y_{M} the Todd module. In $J_{4}, C_{G}(y)$ is of characteristic 2 for all $1 \neq y \in Y_{M}$, but this does not hold in $F i_{24}^{\prime}$. On the other hand, $M \sim 2^{11+1} M a t_{24}$ only occurs in $F i_{24}$, matching the fact that the 2^{11+1} only appears in last case of the Local Structure Theorem.

The cases of the Local Structure Theorem are disjoint with one exception: The case $p=2$, $O^{2}(\widetilde{L}) \cong C_{3} \times C_{3}$ and $\left|Y_{L}\right|=16$ appears in the wreath product and tensor product case. Combining the two cases we get the following possibilities:

- $\widetilde{L} \cong S L_{2}(2)$ \} C_{2}, Y_{L} is a natural $O_{4}^{+}(2)$-module for $\widetilde{L}, \widetilde{Q} \cong C_{4}$ or $D_{8}, Y_{M}=Y_{L}$ and $M^{\circ}=L^{\circ}$. Both $Y_{L} \leqslant Q^{\bullet}$ and $Y_{L} \$ Q^{\bullet}$ are possible.
$\left.-\widetilde{L} \cong S L_{2}(2)\right\} C_{2}, \widetilde{L^{\circ}} \cong S L_{2}(2) \times S L_{2}(2)$, and Y_{L} is a natural $\Omega_{4}^{+}(2)$-module for \widetilde{L}. Both $Y_{L} \leqslant Q^{\bullet}$ and $Y_{L} \$ Q^{\bullet}$ are possible. Either $Y_{L}=Y_{M}$ and $L^{\circ}=M^{\circ}$, or $Y_{L} \$ Q^{\bullet}$ and M fulfills the tensor product case with $M / C_{M}\left(Y_{M}\right) \cong S L_{t}(2)$) C_{2}, and $M^{\circ} / C_{M}{ }^{\circ}\left(Y_{M}\right) \cong$ $S L_{t}(2) \times S L_{t}(2)$.
$-\widetilde{L}=\widetilde{L^{\circ}} \cong S L_{2}(2) \times S L_{2}(2), Y_{L}$ is a natural $\Omega_{4}^{+}(2)$-module for \widetilde{L}, and $Y_{L} \not Q^{\bullet}$. Either $Y_{L}=Y_{M}$ and $L^{\circ}=M^{\circ}$, or M fulfills the tensor product case with $M / C_{M}\left(Y_{M}\right) \cong$ $M^{\circ} / C_{M^{\circ}}\left(Y_{M}\right) \cong S L_{t_{1}}(2) \times S L_{t_{2}}(2)$, or $M / C_{M}\left(Y_{M}\right) \cong M^{\circ} / C_{M^{\circ}}\left(Y_{M}\right) \cong 3 \cdot \operatorname{Sym}(6)$ and $\left|Y_{M}\right|=2^{6}$.
- $\widetilde{L} \cong S L_{2}(2) \times S L_{2}(2), Y_{L}$ is a natural $\Omega_{4}^{+}(2)$-module for $\widetilde{L}, \widetilde{L^{\circ}} \cong S L_{2}(2), Y_{L}$ is the direct sum of two natural $S L_{2}(2)$-modules for $\widetilde{L^{\circ}}$, and $Y_{L} \not \approx Q^{\bullet}$. Either $Y_{L}=Y_{M}$ and $L^{\circ}=M^{\circ}$, or M fulfills the tensor product case with $M^{\circ} / C_{\overline{M^{\circ}}}\left(Y_{M}\right) \cong S L_{t_{1}}(2)$, or $M / C_{M}\left(Y_{M}\right) \cong$ $3 \cdot \operatorname{Sym}(6), M^{\circ} / C_{M^{\circ}}\left(Y_{M}\right) \cong 3 \cdot \operatorname{Alt}(6)$ and $\left|Y_{M}\right|=2^{6}$.

Most of the cases listed in the Local Structure Theorem occur in interesting finite groups, see tables 1 and 2

Consider the property
$\left(\operatorname{char} Y_{M}\right) \quad C_{G}(y)$ is of characteristic p for all $y \in Y_{M}^{\sharp}$.
In those cases of the first table marked with '*' property (char Y_{M}) fails in the listed example, but we currently do not have a proof that (char Y_{M}) has to fail other than using the classification of finite simple groups to determine all the possible examples. For the case marked with '**' we do not know any example (with or without (char Y_{M})). Showing that (char Y_{M}) fails in the '*' cases and that the '**' cases do not occur seems to require the determination of the whole structure of M (and not only the action on Y_{M}) and sometimes even the structure of G, and will be done in separate papers. For example, case 1:b of Theorem A has already been treated in MeiStr3] and case 3 (for $r>1$ and $Y_{M} \leqslant Q^{\bullet}$) in $\mathbf{P P S}$.

In the table $c:=\left|Y_{M} /\left[Y_{M}, M^{\circ}\right]\right|$ and Φ_{i} is a group of graph automorphism of order i. In the example $G=K . X$ with $K=P \Omega_{6}^{-}(3)$ or $P \Omega_{8}^{+}(3), X \leqslant O u t(K)$ such that X acts transitively on the four elements of $\mathcal{P}_{N_{K}(Q)}(K \cap S)$. In the examples $G=P \Omega_{6}^{-}(3)\langle\omega\rangle, \omega$ is a reflection in $P O_{6}^{-}(3)$. An entry of the form $A[B]$ in the $\left[Y_{M}, M^{\circ}\right]$ column indicates that there exists more than one choice for Q in the example G. Depending on this choice the structure of $\left[Y_{M}, M^{\circ}\right]$ as an M°-module is either described by A or $A B$.

The strategy for the proof of the Local Structure Theorem. Suppose that G is a finite group possessing a large subgroup Q with $Q \leqslant S \in S y l_{p}(G)$. In 1.55 it is shown that G has parabolic characteristic p, and in 1.56 that for every $L \in \mathcal{L}_{G}(S)$ there exist $M \in \mathfrak{M}_{G}(S)$ and $L^{*} \leqslant M$ satisfying:

- $L C_{G}\left(Y_{L}\right)=L^{*} C_{G}\left(Y_{L *}\right), L^{\circ}=\left(L^{*}\right)^{\circ}$ and $Y_{L}=Y_{L^{*}} \leqslant Y_{M}$.
- If $Q \nleftarrow L$ then also $Q \nleftarrow L^{*}$ and $Q \nRightarrow M$.

In other words, the action of L on Y_{L} can be investigated via the action of the subgroup L^{*} of M on the submodule Y_{L} of Y_{M} since $L / C_{L}\left(Y_{L}\right) \cong L^{*} / C_{L *}\left(Y_{L}\right)$. Hence, the structure of Y_{M} and $M / C_{M}\left(Y_{M}\right)$ will also determine the possibilities for Y_{L} and $L / C_{L}\left(Y_{L}\right)$. For this reason nearly the entire paper, Chapters $3-9$, is devoted to the analysis of the action of $M / C_{M}\left(Y_{M}\right)$ on Y_{M}.

The global strategy. The basic idea is to find subgroups in $M / C_{M}\left(Y_{M}\right)$ that act in a "nice way" on Y_{M} and then to identify $M / C_{M}\left(Y_{M}\right)$ and the M-module Y_{M} via the action of these subgroups.

Of course, the crucial point is to find out what "nice way" should mean. On one side, it should be a property that arises naturally in the local analysis, and on the other side, it should be a property strong enough to allow to identify the action of M on Y_{M}.

It turns out that in most cases being some kind of (non-trivial) offender, like quadratic offender, strong offender, etc., is the right property, and this then leads to one of the FF-Module Theorems from Appendix C. In other cases, when no non-trivial offenders are at hand, acting nearly quadratically or as a $2 F$-offender is the property we work with, and again results are available that can be used; in particular, the classification of simple $2 F$-modules for almost quasisimple groups by Guralnick and Malle, GM1 and GM2.

The list of possibilities for groups and modules in these results is usually much longer than the list we actually get as the final result of our analysis, so a major part of our proof is devoted to exclude groups and modules from such lists. Usually this is not done by beginning a case by case discussion right away, but by finding some general arguments first that allow to treat (some of) the cases in a uniform way. For example, the cases where Y_{M} carries an M-invariant form usually can be treated uniformly using some general arguments from linear algebra.

The local strategy. It is obvious that one cannot get any information about M and its action on Y_{M} without discussing in one way or another the embedding of M into G. But a priori, it is not clear at all what type of embedding properties one should study and how they would help to get this information. In the following we will describe in general terms the strategy we follow and
which allows to subdivide the proof into a few cases which to a large extend are independent from each other.

Using the above definition of symmetry, it is clear that Y_{M} is either symmetric or asymmetric in G, and this is the first major subdivision of the proof.

In Chapter 4 we treat the symmetric case, that is, Y_{M} is symmetric in G, so there exists a conjugate Y_{M}^{g} such that

$$
1 \neq\left[Y_{M}, Y_{M}^{g}\right] \leqslant Y_{M} \cap Y_{M}^{g} .
$$

Then Y_{M} and Y_{M}^{g} act quadratically and non-trivially on each other, and it is easy to see that Y_{M} is a non-trivial quadratic offender on Y_{M}^{g}, or vice versa. In any case we can apply the General FF-Module TheoremC. 2 to both, M and M^{g}. The trick is now to use the Q !-property to show that $M \cap M^{g}$ contains a conjugate of the large subgroup Q. Now the action of such a "common" large subgroup allows to pin down the structure of $M / C_{M}\left(Y_{M}\right)$ and its action of Y_{M}.

The asymmetric case is much harder to handle. But here a fundamental property holds: $O_{p}(M)$ is a weakly closed subgroup of G (see 2.6). As a consequence we get that $M^{\dagger} \cap H$ is a parabolic subgroup of H for all subgroups H containing $O_{p}(M)$. Since by the basic property of $M, O_{p}(M) \in$ $S y l_{p}\left(C_{G}\left(Y_{M}\right)\right)$, the properties "tall", "char p-tall" and "short" (here "short" means "not tall"), are tailored to further subdivide the asymmetric case.

In Chapter 5 we treat the short asymmetric case. Here $Y_{M} \leqslant O_{p}(P)$ for all $P \leqslant G$ with $O_{p}(M) \leqslant P$ and $O_{p}(P) \neq 1$. Asymmetry then implies that the closure $V:=\left\langle Y_{M}^{P}\right\rangle$ is abelian. This property is used to show the existence of a symmetric pair $\left(Y_{1}, Y_{2}\right)$ of conjugates of Y_{M} (see 2.19 and 2.23). In this pair no longer Y_{1} and Y_{2} act non-trivially on each other, as in the symmetric case, but abelian subgroups V_{1} and V_{2}, where V_{i} is the normal closure of Y_{i} in a particularly chosen subgroup L_{i}.

The arguments used in the short asymmetric case are related to those used in the qrc-Lemma from MS4.

The remaining case, the tall asymmetric case, is by far the hardest one. Here Y_{M} is asymmetric, and there exists $P \leqslant G$ with $O_{p}(M) \leqslant P, O_{p}(P) \neq 1$ and $Y_{M} \leqslant O_{p}(P)$. First of all, it may be that all such subgroups P are not of characteristic p, in our notation, that Y_{M} is tall but not char p-tall. The short Chapter 6 partially handles this case by showing that this cannot happen if $C_{G}(x)$ has characteristic p for all $1 \neq x \in Y_{M}$.

Suppose that Y_{M} is char p-tall. Then the Asymmetric L-Lemma 2.16 can be applied and provides us with a subgroup L of characteristic p such that $Y_{M} \leqslant L$ and $L / O_{p}(L) \cong S L_{2}(q), S z(q)$, or $D_{2 r}$, where $p=2$ in the last two case and r is an odd prime, and $q=\left|Y_{M} / Y_{M} \cap O_{p}(L)\right|$.

It turns out that $\Omega_{1} Z\left(O_{p}(L)\right)$ is a non-trivial strong offender on Y_{M} or L normalizes a conjugate of Q. In the first case we can use the FF-Module Theorems from Appendix C in the second case we show that $O_{p}(L)$ acts as a (non-trivial) nearly quadratic $2 F$-offender on Y_{M}, and then MS2 and the 2 F-Module Theorems of Guralnick and Malle are the main tools in the investigation.

For more details see the introductions to Chapters 4-9.

In earlier publications the Local Structure Theorem is quoted under the name "Structure Theorem". In PPS the following earlier (weaker) version of the Local Structure Theorem was used, except that we correct a misprint, it should read $F^{*}\left(\bar{M}_{0}\right)$ rather than $F^{*}(\bar{M})$, and we added property (1:i) for better understanding.

Corollary B. Let G be a finite \mathcal{K}_{p}-group of local characteristic pand $S \in \operatorname{Syl}_{p}(G)$. Suppose that there exist $M, \widetilde{C} \in \mathcal{M}_{G}(S)$ such that the following hold for $Q:=O_{p}(\widetilde{C})$:
(i) $N_{G}\left(\Omega_{1} Z(S)\right) \leqslant \widetilde{C}$.
(ii) $C_{G}(x) \leqslant \widetilde{C}$ for every $1 \neq x \in Z(Q)$.
(iii) $M \neq \widetilde{C}$, and $M=L$ for every $L \in \mathcal{M}_{G}(S)$ with $M=(M \cap L) C_{M}\left(Y_{M}\right)$.
(iv) $Y_{M} \leqslant Q$.

Then for $M_{0}:=\left\langle Q^{M}\right\rangle C_{S}\left(Y_{M}\right)$ and $\bar{M}:=M / C_{M}\left(Y_{M}\right)$ one of the following holds:
(1) $F^{*}\left(\overline{M_{0}}\right)={\overline{M_{0}}}^{\prime}, \overline{M_{0}} \cong S L_{n}\left(p^{m}\right), n \geqslant 2$, $S p_{2 n}\left(p^{m}\right), n \geqslant 2$, or $S p_{4}(2)^{\prime} \quad$ (and $p=2$), and $\left[Y_{M}, M_{0}\right]$ is a corresponding natural module for $\overline{M_{0}}$. Moreover,
(i) $Y_{M}=\left[Y_{M}, M_{0}\right]$ or $p=2$ and $\overline{M_{0}} \cong S p_{2 n}(q), n \geqslant 2$, and
(ii) either $C_{M_{0}}\left(Y_{M}\right)=O_{p}\left(M_{0}\right)$, or $p=2$ and $M_{0} / O_{p}\left(M_{0}\right) \cong 3 \cdot S p_{4}(2)^{\prime}$.
(2) $P_{1}:=M_{0} S \in \mathcal{P}_{G}(S), Y_{M}=Y_{P_{1}}$, and there exists a normal subgroup $P_{1}^{*} \leqslant P_{1}$ containing $C_{P_{1}}\left(\underline{Y_{P_{1}}}\right)$ but not Q such that
(i) $\overline{P_{1}^{*}}=K_{1} \times \cdots \times K_{r}, K_{i} \cong S L_{2}\left(p^{m}\right), Y_{M}=V_{1} \times \cdots \times V_{r}$, where $V_{i}:=\left[Y_{M}, K_{i}\right]$ is a natural K_{i}-module,
(ii) Q permutes the components K_{i} of (i) transitively,
(iii) $O^{p}\left(P_{1}^{*}\right)=O^{p}\left(M_{0}\right)$, and $P_{1}^{*} C_{M}\left(Y_{M}\right)$ is normal in M,
(iv) $C_{P_{1}}\left(Y_{P_{1}}\right)=O_{p}\left(P_{1}\right)$, or $r>1, K_{i} \cong S L_{2}(2)$ (and $p=2$) and $C_{P_{1}}\left(Y_{P_{1}}\right) / O_{2}\left(P_{1}\right)$ is a 3-group.

The proof of this Corollary to the Local Structure Theorem is contained in Chapter 10.
We assume the reader to be familiar with the basic concepts of finite group theory, for example coprime action, components and the generalized Fitting subgroup. In addition, in Chapters 9 and 10 we assume basic knowledge of the parabolic subgroups of groups of Lie type and the sporadic simple groups and their action on some low dimensional modules. Most of this information can be found in $\mathbf{C a}, \mathbf{R S}$ and $\mathbf{M S t}$. Note also that the action of $\Omega_{10}^{+}(q)$ on the half spin modules and the action of $E_{6}(q)$ on the 27 -dimensional modules can be seen inside the groups $E_{6}(q)$ and $E_{7}(q)$, respectively.

Acknowledgement: We would like to thank the referee for pointing out numerous inconveniences in the original manuscript which encouraged us to add more details and information for the reader.

CHAPTER 1

Definitions and Preliminary Results

In this chapter we provide elementary group theoretic results needed in this paper. Some of them already indicate the kind of technical tools used throughout this paper.

In Section 1.2 some properties of p-reduced normal p-subgroups are given, since p-reduced subgroups are the typical modules for parabolic subgroups investigated in this paper. In Sections 1.3 and 1.4 we discuss p-irreducible and Y-minimal groups. They naturally occur as subgroups of p-local subgroups and belong to our most important tools.

In Section 1.6 we have a first look at large p-subgroups. In particular, we show that such subgroups are weakly-closed. Consequently, in Section 1.5 weakly closed subgroup are investigated.

Throughout this chapter H always denotes a finite group and p is a prime.

1.1. Elementary Properties of Finite Groups

Definition 1.1. (a) H is p-irreducible if H is not p-closed and $O^{p}(H) \leqslant N$ for any normal subgroup N of H which is not p-closed.
(b) H is strongly p-irreducible if H is not p-closed and $O^{p}(H) \leqslant N$ for every normal subgroup N of H with $[N, H] \$ O_{p}(H)$.
(c) $Z_{H}:=\left\langle\Omega_{1} Z(T) \mid T \in \operatorname{Syl}_{p}(H)\right\rangle$.
(d) \mathcal{A}_{H} is the set of elementary abelian p-subgroups of H of maximal order, $J(H):=\left\langle\mathcal{A}_{H}\right\rangle$ is the Thompson subgroup of H and

$$
B(H):= \begin{cases}C_{H}\left(\Omega_{1} Z(J(H))\right) & \text { if } H \text { is a } p \text {-group } \\ \left\langle B(T) \mid T \in \operatorname{Syl}_{p}(H)\right\rangle & \text { in general }\end{cases}
$$

is the Baumann subgroup of H.
(e) Let $R \leqslant T \leqslant H$. Then R is weakly closed in T with respect to H if R is the only H conjugate of R contained in T; and a p-subgroup R is a weakly closed subgroup of H if R is weakly closed with respect to H in some Sylow p-subgroup of H.
(f) Let $A \leqslant H$. The subnormal closure of A in H is the intersection of all subnormal subgroups of H containing A.
Lemma 1.2. Let H be a finite group of characteristic p and $T \in \operatorname{Syl}_{p}(H)$. Then the following hold:
(a) Every subnormal subgroup of H has characteristic p.
(b) Every subgroup containing T has characteristic p.
(c) H has local characteristic p.

Proof. MS6, 1.2].

Lemma 1.3. Let R be a p-subgroup of H with $C_{H}(R) \leqslant R$. Let $L \leqslant N_{G}(R)$ and suppose that L acts nilpotenly on R. Then L is a p-group.

Proof. Since L act nilpotenly in the p-group R, coprime actions shows that $O^{p}(L)$ centralizes R. By hypothesis, $C_{H}(R) \leqslant O_{p}(R)$. So $O^{p}(L) \leqslant R$ and $O^{p}(L)$ is p-group. Thus $O^{p}(L)=1$, and L is a p-group.

Lemma 1.4. Let $L \leqslant H$. Suppose that H has characteristic p.
(a) Suppose that L acts nilpotently on $O_{p}(H)$. Then L is a p-group.
(b) Suppose that $L \unlhd \leftrightarrow H$ and L acts nilpotently on $O_{p}(H)$. Then $L \leqslant O_{p}(H)$.
(c) Suppose that L centralizes the factors of an H-invariant series

$$
1=A_{0} \leqslant A_{1} \leqslant \ldots \leqslant A_{n-1} \leqslant A_{n}=O_{p}(H)
$$

Then $L \leqslant O_{p}(H)$.
Proof. (a): Since H has characteristic $p, C_{H}\left(O_{p}(H)\right) \leqslant O_{p}(H)$. Thus 1.3 applied with $R=O_{p}(H)$ shows that L is a p-group.
(b): By (a) L is a p-group and since $L \geqq \& H$, this gives $L \leqslant O_{p}(H)$.
(c): Since L centralizes A_{i} / A_{i-1} and H acts on A_{i} / A_{i-1} also $\left\langle L^{H}\right\rangle$ centralizes A_{i} / A_{i-1}. Thus $\left\langle L^{H}\right\rangle$ acts nilpotently on $O_{p}(H)$, and $\sqrt{\mathrm{b}}$ implies that $\left\langle L^{H}\right\rangle \leqslant O_{p}(H)$.

Lemma 1.5. Suppose that $C_{H}(Y)$ has characteristic p for some $Y \leqslant O_{p}(H)$. Then H is of characteristic p.

Proof. Put $D:=C_{H}\left(O_{p}(H)\right)$. Note that $D \preccurlyeq H$ and since $Y \leqslant O_{p}(H), D \leqslant C_{H}(Y)$. Thus

$$
\left[O_{p}\left(C_{H}(Y)\right), D\right] \leqslant D \cap O_{p}\left(C_{H}(Y)\right) \leqslant O_{p}(D) \leqslant O_{p}(H) \leqslant C_{H}(D)
$$

In particular, $\left[O_{p}\left(C_{H}(Y)\right), D, D\right]=1$ and D acts nilpotently on $O_{p}\left(C_{H}(Y)\right)$. By hypothesis $C_{H}(Y)$ has characteristic p, and since $D \leqslant C_{H}(Y), 1.4$ shows that D is a p-group. Since $D \preccurlyeq H$ this gives $D \leqslant O_{p}(H)$, and so H has characteristic p.

Lemma 1.6. Let $M \in \mathcal{L}_{H}$ and $K \leqslant M$ with $O_{p}(M) \leqslant K$. Then

$$
\mathcal{L}_{M}(K)=\{L \mid K \leqslant L \leqslant M\}=\left\{L \in \mathcal{L}_{H}(K) \mid L \leqslant M\right\} .
$$

Proof. Let $L \leqslant H$.
Suppose that $L \in \mathcal{L}_{M}(K)$. Then $K \leqslant L \leqslant M$ by the definition of $\mathcal{L}_{M}(K)$.
Suppose that $K \leqslant L \leqslant M$. Then $O_{p}(M) \leqslant K \leqslant L$ and since $L \leqslant M, O_{p}(M) \leqslant O_{p}(L)$. Thus $C_{H}\left(O_{p}(L)\right) \leqslant C_{H}\left(O_{p}(M)\right)$. Since $M \in \mathcal{L}_{H}, C_{H}\left(O_{p}(M)\right) \leqslant O_{p}(M)$ and so $C_{H}\left(O_{p}(L)\right) \leqslant O_{p}(M) \leqslant$ $O_{p}(L)$. Hence $L \in \mathcal{L}_{H}(K)$ and $L \leqslant M$.

Suppose that $L \in \mathcal{L}_{H}(K)$ and $L \leqslant M$. Then $C_{M}\left(O_{p}(L)\right) \leqslant C_{H}\left(O_{p}(L)\right) \leqslant O_{p}(L)$ and so $L \in \mathcal{L}_{M}(K)$.

Lemma 1.7. (a) Suppose that $O_{p}(H)=1$. Then $\Phi(H)=\Phi\left(O^{p}(H)\right)$.
(b) Suppose that $H=O^{p^{\prime}}(H)$ and $O_{p}(H)=1$. Then $Z(H) \leqslant \Phi(H)$.

Proof. (a): This the case $\pi=\{p\}$ of MS6, 1.9].
(b): Since $O_{p}(H)=1, Z(H)$ is a p^{\prime}-group. Let $M \leqslant H$ such that $H=M Z(H)$. Then $M \leqslant H$ and H / M is a p^{\prime}-group. As $H=O^{p^{\prime}}(H)$ we get $H=M$. This shows that $Z(H)$ is contained in every maximal subgroup of H and so $Z(H) \leqslant \Phi(H)$.

Lemma 1.8. Let Y be a finite p-group acting on H and L a Y-invariant subnormal subgroup of $F^{*}(H)$. Suppose that $O_{p}(H)=1$.
(a) $L=[L, Y] C_{L}(Y)$,
(b) $[L, Y]=[L, Y, Y]$.

Proof. It is evident that (a) implies (b). Thus, it suffices to show (a).
Set $L_{0}:=[L, Y] C_{L}(Y)$. Note that $L \geqq H H$ and so by [KS, 6.5.7b], $F^{*}(L)=F^{*}(H) \cap L=L$ and so $L=F(L) E(L)$, where $E(L)$ is the subgroup generated by the components of $L . O_{p}(F(L)) \leqslant$ $O_{p}(H)=1$ and $F(L)$ is nilpotent, $F(L)$ is a p^{\prime}-group. Hence, the properties of coprime action show that $F(L) \leqslant L_{0}$.

Let K be a component of L. Then $[Y, K] \vDash\left\langle K^{Y}\right\rangle \vDash ⺀ L$, so by a fundamental property of components either $K \leqslant[Y, K]$ or $[Y, K, K]=1$ (see for example 6.5.2 in [KS]). In the first case $K \leqslant L_{0}$, in the second case with the Three Subgroup Lemma $[Y, K]=1$ since K is perfect. Thus, also in this case $K \leqslant H_{0}$, and (a) follows.

Lemma 1.9. Let K be subgroup of H with $O_{p}(K)=1$ and Y be a p-subgroup of $N_{H}(K)$ with $[K, Y, Y]=1$. Then $[K, Y]=1$.

Proof. Since $[K, Y, Y]=1$,

$$
Y \vDash Y[K, Y]=\left\langle Y^{K}\right\rangle=\left\langle Y^{Y K}\right\rangle \vDash K Y
$$

and so $Y \leqslant O_{p}(K Y)$. Thus

$$
[K, Y] \leqslant O_{p}(K Y) \cap K \leqslant O_{p}(K)=1
$$

Lemma 1.10. Let Y be a finite p-group acting on H, and let A and B be normal subgroups of Y. Suppose that $O_{p}(H)=1$ and $\left[F^{*}(H), A, B\right] \neq 1$. Let X be a Y-invariant subnormal subgroup of $F^{*}(H)$ minimal with respect to $[X, A, B] \neq 1$. Then

$$
X=[X, A] \quad \text { and } \quad X=[X, B]
$$

Proof. By 1.8 baplied to (X, A) in place of (L, Y) we have $[X, A, A]=[X, A]$. Hence $[X, A, A, B]=[X, A, B] \neq 1$. So the minimal choice of X gives $X=[X, A]$.

Suppose that $[X, A \cap B] \neq 1$. Then 1.8 b applied with $Y=A \cap B$ shows

$$
1 \neq[X, A \cap B]=[X, A \cap B, A \cap B]=[X, A \cap B, A \cap B, A \cap B] \leqslant[X, A \cap B, A, B]
$$

Thus the minimal choice of X implies that $X=[X, A \cap B]$ and so also $X=[X, B]$.
Suppose next that $[X, A \cap B]=1$. Since $[A, B] \leqslant A \cap B$ this gives $[A, B, X]=1$. Since $[X, A, B] \neq 1$, the Three Subgroups Lemma shows that $[X, B, A] \neq 1$. As above, 1.8 b gives $[X, B, B]=[X, B]$ and so $[X, B, B, A]=[X, B, A] \neq 1$. Since $[A, B,[X, B]] \leqslant[[A, B], X]=1$ another application of the Three Subgroups Lemma yields $[X, B, A, B] \neq 1$ and the minimal choice of X implies $X=[X, B]$.

Lemma 1.11. Let $A, B, K \leqslant H$ with $A=[A, B]$ and $B \leqslant K \leqslant ⺀ H$. Then $A \leqslant K$.
Proof. If $K=H$ the claim is obvious. In the other case there exists $L \leqslant H$ such that $K \leqslant L \neq H$ since $K \triangleq \forall H$. Hence $A=[A, B] \leqslant[A, L] \leqslant L$. Since also $K \leqslant L$, we conclude that $A \leqslant K$ by induction on $|H|$.

Lemma 1.12. Let H be a group and \mathcal{G} a function which assigns to each subgroup X of H a $N_{H}(X)$-invariant subgroup $\mathcal{G}(X)$ of H such that $\mathcal{G}(X) \leqslant \mathcal{G}(Y)$ whenever $X \leqslant Y \leqslant H$.

Let $A \leqslant \forall B \leqslant H$ and suppose that $\mathcal{G}(A)=\mathcal{G}(C)$ for some $C \leqslant H$ with $N_{H}(\mathcal{G}(A)) \leqslant C$. Then $\mathcal{G}(A)=\mathcal{G}(B)$.

Proof. By induction on the subnormal length of A in B we may assume that $A \vDash B$. Then

$$
B \leqslant N_{H}(A) \leqslant N_{H}(\mathcal{G}(A)) \leqslant C
$$

Thus $A \leqslant B \leqslant C$ and

$$
\mathcal{G}(A) \leqslant \mathcal{G}(B) \leqslant \mathcal{G}(C)=\mathcal{G}(A)
$$

Lemma 1.13. Let $A \leqslant H$ and K be the subnormal closure of A in H.
(a) $K=\left\langle A^{K}\right\rangle$ and $N_{H}(A) \leqslant N_{H}(K)$.
(b) $K=A O^{p}(K)=\left\langle A^{p}(K)\right\rangle$.
(c) If A is a p-group, then $O^{p}(K)=\left[O^{p}(K), A\right]$.

Proof. (a): Note that $A \leqslant\left\langle A^{K}\right\rangle \leqslant K \lessgtr \leftrightarrow H$ and so $K=\left\langle A^{K}\right\rangle$ by the minimality of K. The second statement should be evident.
(b): Note that $K / O^{p}(K)$ is a p-group, and so $A O^{p}(K) / O^{p}(K)$ is subnormal in $K / O^{p}(K)$. Hence $A \leqslant A O^{p}(K) \triangleq \leqslant K \triangleq \Leftrightarrow H$ and $K=A O^{p}(K)$ by minimality of K. Thus using (a)

$$
K=\left\langle A^{K}\right\rangle=\left\langle A^{A O^{p}(K)}\right\rangle=\left\langle A^{O^{p}(K)}\right\rangle
$$

(c): By (c), $K=\left\langle A^{O^{p}(K)}\right\rangle=\left[O^{p}(K), A\right] A$. If A is a p-group, then $O^{p}(K) \leqslant\left[O^{p}(K), A\right]$, and (c) holds.

Lemma 1.14. Put $K:=O^{p}(H)$. Suppose that $O_{p}(H)=1$ and K is quasisimple. Then
(a) $K=F^{*}(H)$.
(b) $K=[K, Y] \leqslant\left\langle Y^{K}\right\rangle$ for all non-trivial p-subgroups Y of H.
(c) If $C \preccurlyeq H$ with $K \nless C$, then C is a p^{\prime}-group. In particular, H is p-irreducible.

Proof. (a): Note that K is a component of H and so $K \leqslant F^{*}(H)$. Since $O_{p}(H)=1, F(H)$ is a p^{\prime}-group. Thus $F^{*}(H)=F(H) E(H) \leqslant O^{p}(H)=K$ and so $K=F^{*}(H)$.
(b): In particular, $C_{H}(K) \leqslant Z(K)$ and so $C_{H}(K)$ is a p^{\prime}-group. Thus $[Y, K] \neq 1$, and since K is perfect, $[Y, K, K] \neq 1$. Hence $[Y, K] \not Z Z(K)$, and since K is quasisimple, $K=[Y, K] \leqslant\left\langle Y^{K}\right\rangle$.
(c) follows immediately from (b).

Lemma 1.15. Suppose that $O_{p}(H)=1$, and let Y be a p-subgroup of H. Then
(a) $\left[F^{*}(H), Y\right]=\left[F^{*}(K), Y\right]=\left[F^{*}(K), Y, Y\right]$ for every $K \leqslant \leqslant H$ with $Y \leqslant K$,
(b) If $\left[F^{*}(H), Y\right]=1$ then $Y=1$,
(c) If $Y_{0} \leqslant Y$ with $\left[F^{*}(H), Y, Y_{0}\right]=1$ then $Y_{0}=1$.

Proof. (a): Since $O_{p}(H)=1,1.8$ b gives $\left[F^{*}(H), Y\right]=\left[F^{*}(H), Y, Y\right]$. Hence 1.11 implies $\left[F^{*}(H), Y\right] \leqslant K$ and so $\left[F^{*}(H), Y\right] \leqslant F^{*}(H) \cap K$. By [KS 6.5 .7 b$], F^{*}(H) \cap K=F^{*}(K)$. Thus

$$
\left[F^{*}(H), Y\right]=\left[F^{*}(H), Y, Y\right] \leqslant\left[F^{*}(K), Y\right] \leqslant\left[F^{*}(H), Y\right]
$$

and (a) holds.
(b): Since $C_{H}\left(F^{*}(H)\right) \leqslant F^{*}(H),\left[F^{*}(H), Y\right]=1$ implies $Y \leqslant O_{p}\left(Z\left(F^{*}(H)\right)\right) \leqslant O_{p}(H)=1$.
(c): Note that $\left[F^{*}(H), Y_{0}, Y_{0}\right] \leqslant\left[F^{*}(H), Y, Y_{0}\right]=1$. On the other hand, by $1.8,\left[F^{*}(H), Y_{0}\right]=$ $\left[F^{*}(H), Y_{0}, Y_{0}\right]$, so $\left[F^{*}(H), Y_{0}\right]=1$, and bives $Y_{0}=1$.

Lemma 1.16. Let N and E be subnormal subgroups of H. Suppose that E is a direct product of perfect simple groups. Then

$$
[N, E]=1 \quad \Longleftrightarrow \quad\left[F^{*}(N), E\right]=1 \quad \Longleftrightarrow \quad N \cap E=1
$$

Proof. Note that $F(E)=1$ and E is generated by its components. If $[N, E]=1$, then also $\left[F^{*}(N), E\right]=1$.

Suppose that $\left[F^{*}(N), E\right]=1$. Since $F^{*}(N \cap E) \leqslant F^{*}(E) \cap N$ we conclude that $F^{*}(N \cap E)$ is abelian. Hence $F^{*}(N \cap E)=F(N \cap E) \leqslant F(E)=1$ and so also $N \cap E=1$.

Suppose that $N \cap E=1$, and let K be a component of E. Then $N \cap K=1$ and so by $\mathbf{K S}$ $6.5 .2],[N, K]=1$. Since E is generated by its components, this gives $[N, E]=1$.

Lemma 1.17. Suppose that $O_{p}(H)=1$. Let Q be a p-subgroup of H, put $L:=\left[F^{*}(H), Q\right]$, and let F be the largest normal subgroup of $F^{*}(H)$ centralized by Q. Then the following hold:
(a) $F=C_{F^{*}(H)}(L Q)$.
(b) $L=[L, Q]$.
(c) $L \cap F \leqslant \Phi(L)$.
(d) If $B \leqslant N_{H}(Q)$ is a p-subgroup with $[L, B] \leqslant F$, then $[L, B]=1$.
(e) $C_{H}(F L)$ is a p^{\prime}-group.

Proof. (a): Note that $L Q=\left[F^{*}(H), Q\right] Q=\left\langle Q^{F^{*}(H)}\right\rangle$. Since $F \preccurlyeq F^{*}(H)$ and $[F, Q]=1$ we conclude that $F \leqslant C_{F^{*}(H)}(L Q)$. On the other hand $C_{F^{*}(H)}(L Q)$ is a normal subgroup of $F^{*}(H)$ centralized by Q and so $C_{F(H)}(L Q) \leqslant F$.
(b): Since $O_{p}(H)=1$ we can apply 1.8 b and conclude that $\left[F^{*}(H), Q\right]=\left[F^{*}(H), Q, Q\right]$. Thus (b) holds
(c): Let N be a subgroup of L with $L=N(L \cap F)$. It suffices to show that $N=L$. By (a) $L=N Z(L)$ and thus $L^{\prime}=N^{\prime}$. As $L \preccurlyeq F^{*}(H)$ and $O_{p}(H)=1, O^{p}(L)=L$ and L / L^{\prime} is a p^{\prime}-group. By (b) $\left[L / L^{\prime}, Q\right]=L / L^{\prime}$ and since L / L^{\prime} is a p^{\prime}-group we get $C_{L / L^{\prime}}(Q)=1$. So $F \cap L \leqslant L^{\prime} \leqslant N$ and $N=L$ 。
(d): By hypothesis, $B \leqslant N_{H}(Q)$ and $[L, B] \leqslant F$. Hence B normalizes $\left[F^{*}(H), Q\right]=L$ and $[L, B] \leqslant L \cap F$. By (c) $L \cap F \leqslant \Phi(L)$. Since $L \preccurlyeq F^{*}(H)$ we get from 1.8 a that $L=[L, B] C_{L}(B)$. Thus $L=\Phi(L) C_{L}(B)$ and so $L=C_{L}(B)$.
(e): Observe that

$$
\left[F^{*}(H), C_{H}(F L)\right] \leqslant F^{*}(H) \cap C_{H}(F L)=: F_{0}
$$

Since $F L \preccurlyeq F^{*}(H)$ also $F_{0} \diamond F^{*}(H)$. Hence 1.8 a) gives $F_{0}=\left[F_{0}, Q\right] C_{F_{0}}(Q)$. Note that $\left[F_{0}, Q\right] \leqslant$ $\left[F^{*}(H) Q\right] \leqslant L$ and $C_{F_{0}}(Q)=C_{F_{0}}(L Q)$. By (a), $C_{F_{0}}(L Q) \leqslant F$, so $F_{0} \leqslant L F$. It follows that $\left[F^{*}(H), C_{H}(F L), C_{H}(F L)\right]=1$. Let Y be a p-subgroup of $C_{H}(F L)$. Then $\left[F^{*}(H), Y, Y\right]=1$. Now 1.15 c gives $Y=1$ since $O_{p}(H)=1$. Hence $C_{H}(F L)$ is a p^{\prime}-group.

Lemma 1.18. Suppose that H acts on the finite p-group P and $[P, H] \leqslant \Omega_{1} Z(P)$. Then $[\Phi(P), H]=1$.

Proof. Since $[P, H, P]=1$, the Three Subgroups Lemma shows that $\left[P^{\prime}, H\right]=1$, and since [P, H] is elementary abelian and central in P,

$$
\left(a^{p}\right)^{h}=\left(a^{h}\right)^{p}=(a[a, h])^{p}=a^{p}[a, h]^{p}=a^{p} \quad \text { for all } a \in P \text { and } h \in H
$$

and $\left[P^{p}, H\right]=1$. By $[\mathbf{K S}, 5.2 .8], \Phi(P)$ is the smallest normal subgroup of P that has elementary abelian factor group, so $\Phi(P)=P^{\prime} P^{p}$, and the lemma follows.

Lemma 1.19. Suppose that H acts on a finite p-group P. Let $Y \leqslant C_{H}\left(P^{\prime}\right)$ such that $[P, Y]$ is elementary abelian. Then $O^{p}\left(\left\langle Y^{H}\right\rangle\right)$ centralizes $\Phi(P)$.

Proof. Put $\bar{P}=P / P^{\prime}$ and $L=\left\langle Y^{H}\right\rangle$. Since \bar{P} is abelian and $[P, Y$] is elementary abelian we have $[\bar{P}, L]=\left\langle[\bar{P}, Y]^{H}\right\rangle \leqslant \Omega_{1} Z(\bar{P})$. Thus by 1.18. $[\Phi(\bar{P}), L]=1$. Note that L centralizes P^{\prime} since Y does. Since $\Phi(\bar{P})=\Phi(P) / P^{\prime}$ we conclude that $[\Phi(P), L, L]=1$ and thus $\left[\Phi(P), O^{p}(L)\right]=1$.

Lemma 1.20. Let A and B be subgroups of H. Then $C_{A}(b)=C_{A}(B)$ for all $b \in B \backslash C_{B}(A)$ if and only if $C_{B}(a)=C_{B}(A)$ for all $a \in A \backslash C_{A}(B)$.

Proof. Both statements just say that $[a, b] \neq 1$ for all $a \in A \backslash C_{A}(B)$ and $b \in B \backslash C_{B}(A)$.

For the next lemma recall from A.7 that W is a root offender on V if W is an offender on V and

$$
C_{V}(W)=C_{V}(w) \quad \text { and } \quad[V, w]=[V, W] \quad \text { for every } w \in W \backslash C_{W}(V)
$$

Lemma 1.21. Let V and W be elementary abelian p-subgroups of H with $[V, W] \leqslant V \cap W$. Then V is a root offender on W if and only if W is a root offender on V.

Proof. We may assume that W is a root offender on V. Then by A.37, a $\left|V / C_{V}(W)\right|=$ $\left|W / C_{V}(W)\right|$, and so V is an offender on W. By A.37b W is a strong dual offender on V. Hence $[v, W]=[V, W]$ for all $v \in V \backslash C_{V}(W)$. Moreover, by definition of a root offender $C_{V}(W)=C_{V}(w)$ for all $w \in W \backslash V$, and so by 1.20 also $C_{W}(V)=C_{W}(v)$ for all $v \in V \backslash C_{V}(W)$. Thus V is a root offender on W.

Lemma 1.22. Let V_{1} and V_{2} be elementary abelian p-subgroups of H with $\left[V_{1}, V_{2}\right] \leqslant V_{1} \cap V_{2}$, and let \mathbb{K}_{i} is a subfield of $E n d_{\mathbb{F}_{p}}\left(V_{i}\right)$ with $\left|\mathbb{K}_{i}\right|>p, i=1,2$. Suppose that
(i) V_{j} acts \mathbb{K}_{i}-semilinearly on V_{i} for all $\{i, j\}=\{1,2\}$.
(ii) V_{2} does not act \mathbb{K}_{1}-linearly on V_{1}.

Then $p=2$ and, for or all $\{i, j\}=\{1,2\},\left|\mathbb{K}_{i}\right|=\left|V_{i}\right|=4, \operatorname{dim}_{\mathbb{K}_{i}} V_{i}=1,\left|V_{i} / C_{V_{i}}\left(V_{j}\right)\right|=2$, and V_{j} does not act \mathbb{K}_{i}-linearly on V_{i}.

Proof. Let $\{i, j\}=\{1,2\}$ and put $W_{j}:=C_{V_{j}}\left(\mathbb{K}_{j}\right)$, so W_{j} is the largest subgroup of V_{j} acting \mathbb{K}_{i}-linearly on V_{i} and V_{j} / W_{j} is isomorphic to subgroup of $\operatorname{Aut}\left(\mathbb{K}_{i}\right)$. Since $\operatorname{Aut}\left(\mathbb{K}_{i}\right)$ is cyclic and V_{j} is elementary abelian, we conclude that $\left|V_{j} / W_{j}\right| \leqslant p$. By hypothesis, V_{2} does not act \mathbb{K}_{1}-linearly in V_{1}, so $\left|V_{1} / W_{1}\right|=p$. Note that $\left[V_{1}, W_{2}\right] \leqslant\left[V_{1}, V_{2}\right] \leqslant V_{1} \cap V_{2} \leqslant C_{V_{1}}\left(V_{2}\right)$. Since W_{2} acts \mathbb{K}_{1}-linearly on V_{1}, [V_{1}, W_{2}] is a \mathbb{K}_{1}-subspace of V_{1} centralized by V_{2}. Since V_{2} does not act K_{1}-linearly on V_{1}, this shows that $\left[V_{1}, W_{2}\right]=1$. Observe that $C_{V_{2}}\left(V_{1}\right) \leqslant W_{2}$, so $W_{2}=C_{V_{1}}\left(V_{2}\right)$. Thus $\left|V_{2} / C_{V_{2}}\left(V_{1}\right)\right|=\left|V_{2} / W_{2}\right|=p$.

Let $\mathbb{E}_{i}:=C_{\mathbb{K}_{i}}\left(V_{j}\right)$, so \mathbb{E}_{i} is the largest subfield of \mathbb{K}_{i} such that V_{j} acts \mathbb{E}_{i}-linearly on V_{i}. Then $C_{V_{2}}\left(V_{1}\right)$ is an \mathbb{E}_{2}-subspace of V_{2}, so $V_{2} / C_{V_{2}}\left(V_{1}\right)$ is an \mathbb{E}_{2}-space. As $\left|V_{2} / C_{V_{2}}\left(V_{1}\right)\right|=p$, this shows that $\left|\mathbb{E}_{2}\right|=p$. Since $\left|\mathbb{K}_{2}\right|>p$, we infer $\mathbb{E}_{2} \neq \mathbb{K}_{2}$. So also V_{1} does not act \mathbb{K}_{2}-linearly on V_{2}, and the setup is symmetric in 1 and 2 . In particular, also $p=\left|V_{1} / W_{1}\right| \leqslant\left|A u t\left(\mathbb{K}_{2}\right)\right|$.

Note that any \mathbb{E}_{2}-hyperplane of V_{2} contains a \mathbb{K}_{2}-hyperplane of V_{2}. In particular, $C_{V_{2}}\left(V_{1}\right)$ contains a \mathbb{K}_{2}-hyperplane H_{2}. As V_{1} centralizes H_{2} and does not act \mathbb{K}_{2}-linearly, we conclude that $H_{2}=1$. So $\operatorname{dim}_{\mathbb{K}_{2}} V_{2}=1$. In particular, the action of V_{1} on V_{2} is isomorphic to the action on V_{2} on \mathbb{K}_{2}. It follows that $\left|C_{V_{2}}\left(V_{1}\right)\right|=\left|C_{\mathbb{K}_{2}}\left(V_{1}\right)\right|=\left|\mathbb{E}_{2}\right|=p$. As $\left|V_{2} / C_{V_{2}}\left(V_{1}\right)\right|=p$ this gives $\left|\mathbb{K}_{2}\right|=\left|V_{2}\right|=p^{2}$, so $\left|\operatorname{Aut}\left(\mathbb{K}_{2}\right)\right|=2$ and $p=2$. By symmetry, $\left|\mathbb{K}_{1}\right|=\left|V_{1}\right|=p^{2}=4$, and the lemma is proved.

Lemma 1.23. Let π be a set of primes, and let A and B be subnormal subgroups of H. Suppose that A is a π-group and $B=O^{\pi}(B)$. Then A normalizes B and $B=O^{\pi}(A B)$.

Proof. If $B=H$ then the claim is obvious. Assume that $B \neq H$. Then there exists $N \vDash H$ such that $B \leqslant N$ and $N \neq H$. As $A \lessgtr \lessgtr H$, we have $A \leqslant O_{\pi}(H) \lessgtr H$ and so $[A, B]$ is a π-group. Since $[A, B] \lessgtr\langle A, B\rangle \leqslant \forall H$ and $[A, B] \leqslant N$, we get that $[A, B], B$ and N satisfy the hypothesis in place of A, B and H. Hence by induction on $|H|, B=O^{\pi}([A, B] B)$. Since $[A, B] B=\left\langle B^{A}\right\rangle$ is normalized by A, we conclude that A normalizes B. Thus $A B / B$ is a π-group and so

$$
O^{\pi}(B) \leqslant O^{\pi}(A B) \leqslant B=O^{\pi}(B)
$$

1.2. The Largest \boldsymbol{p}-Reduced Elementary Abelian Normal Subgroup

Lemma 1.24. Let $T \in \operatorname{Syl}_{p}(H)$ and $L, M \leqslant H$ with $T \leqslant L \cap M$. Suppose that L and M are of characteristic p and put $T_{0}:=C_{T}\left(Y_{L}\right)$ and $L_{0}:=N_{L}\left(T_{0}\right)$.
(a) $T_{0} \in \operatorname{Syl}_{p}\left(C_{H}\left(Y_{L}\right)\right)$.
(b) Suppose that $L C_{H}\left(Y_{M}\right)=M C_{H}\left(Y_{M}\right)$. Then $Y_{M} \leqslant Y_{L}$.
(c) If $L \leqslant M$ and Y is a p-reduced elementary abelian normal subgroup of L, then $\left\langle Y^{M}\right\rangle$ is a p-reduced elementary abelian normal p-subgroup of M.
(d) Z_{L} is a p-reduced elementary abelian normal p-subgroup of L.
(e) $Z_{L}=\Omega_{1} Z(L)\left[Z_{L}, O^{p}(L)\right]$ and $\left[Z_{L}, L\right]=\left[Z_{L}, O^{p}(L)\right]$.
(f) If $L \leqslant M$, then $Y_{L} \leqslant Y_{M}$.
(g) $O_{p}(L) \leqslant T_{0} \leqslant C_{L}\left(Y_{L}\right)$ and $\Omega_{1} Z(T) \leqslant Z_{L} \leqslant Y_{L} \leqslant \Omega_{1} Z\left(O_{p}(L)\right)$.
(h) Suppose that $L \leqslant M$ and $M \subseteq L C_{H}(Y)$ for some $Y \leqslant H$ with $Y_{M} \leqslant Y$. Then $Y_{L}=Y_{M}$ and $L C_{H}\left(Y_{L}\right)=M C_{H}\left(Y_{L}\right)$.
(i) $L=L_{0} C_{L}\left(Y_{L}\right), T_{0}=O_{p}\left(L_{0}\right), C_{T}\left(T_{0}\right) \leqslant T_{0}$, and $Y_{L}=\Omega_{1} Z\left(T_{0}\right)=Y_{L_{0}}$.
(j) Suppose that $M C_{H}\left(Y_{L}\right)=L C_{H}\left(Y_{L}\right)$ and put $L^{*}=N_{M}\left(T_{0}\right)$. Then $Y_{L^{*}}=Y_{L}$ and $L C_{H}\left(Y_{L}\right)=L^{*} C_{H}\left(Y_{L}\right)$.
(k) If $C_{L}\left(Y_{L}\right)$ is p-closed, then $Y_{L}=\Omega_{1} Z\left(O_{p}(L)\right)$ and $O_{p}(L)=T_{0} \in \operatorname{Syl}_{p}\left(C_{H}\left(Y_{L}\right)\right)$.

Proof. Note first that $Y_{M} \leqslant O_{p}(M) \leqslant T \leqslant L$. For the definition of a p-reduced module and nilpotent action see Definition A.4
(a): Since $T \in \operatorname{Syl}_{p}(H)$ and $T \leqslant L \leqslant N_{H}\left(Y_{L}\right), T \in \operatorname{Syl}_{p}\left(N_{H}\left(Y_{L}\right)\right)$, and since $C_{H}\left(Y_{L}\right) \leqslant N_{H}\left(Y_{L}\right)$ we conclude that $T_{0}=C_{T}\left(Y_{L}\right)=T \cap C_{H}\left(Y_{L}\right) \in \operatorname{Syl}_{p}\left(C_{H}\left(Y_{L}\right)\right)$.
(b): Observe that L normalizes Y_{M} and since $Y_{M} \leqslant L, Y_{M} \leqslant O_{p}(L)$. We have

$$
O_{p}\left(L / C_{L}\left(Y_{M}\right)\right) \cong O_{p}\left(L C_{H}\left(Y_{M}\right) / C_{H}\left(Y_{M}\right)\right)=O_{p}\left(M C_{H}\left(Y_{M}\right) / C_{H}\left(Y_{M}\right)\right) \cong O_{p}\left(M / C_{M}\left(Y_{M}\right)\right)=1
$$

and so Y_{M} is p-reduced for L. Thus $Y_{M} \leqslant Y_{L}$.
(c): This is [MS4, (2.2)(b].
(d): Note that $\Omega_{1} Z(T)$ is p-reduced for $T, T \leqslant L$ and $Z_{L}=\left\langle\Omega_{1} Z(T)^{L}\right\rangle$. So (d) follows from (c).
(e): Note that L normalizes $\Omega_{1} Z(T)\left[Z_{L}, L\right]$. Since $Z_{L}=\left\langle\Omega_{1} Z(T)^{L}\right\rangle$ we get $Z_{L}=\Omega_{1} Z(T)\left[Z_{L}, L\right]$. Hence Gaschütz's Theorem gives $Z_{L}=C_{Z_{L}}(L)\left[Z_{L}, L\right]=\Omega_{1} Z(L)[Z, L]$, see C.17. This implies $\left[Z_{L}, L\right]=\left[Z_{L}, L, L\right]$ and so $\left[Z_{L}, L\right]=\left[Z_{L}, O^{p}(L)\right]$, and (e) is proved.
(f): This is [MS4, (2.2)(c)].
(g): By the definition of Z_{L} we have $\Omega_{1} Z(T) \leqslant Z_{L}$. By (d), Z_{L} is p-reduced for L and so $Z_{L} \leqslant Y_{L}$. Since Y_{L} is a normal p-subgroup of $L, Y_{L} \leqslant O_{p}(L)$. As $O_{p}\left(L / C_{L}\left(Y_{L}\right)\right)=1$ we have $O_{p}(L) \leqslant C_{L}\left(Y_{L}\right)$. Thus $Y_{L} \leqslant \Omega_{1} Z\left(O_{p}(L)\right)$ and $O_{p}(L) \leqslant C_{T}\left(Y_{L}\right)=T_{0}$.
(h): By (f), $Y_{L} \leqslant Y_{M}$. By hypothesis $Y_{M} \leqslant Y$ and $M \subseteq L C_{H}(Y)$. Thus $C_{H}(Y) \leqslant C_{H}\left(Y_{M}\right)$ and so $M \subseteq L C_{H}\left(Y_{M}\right)$. As $L \leqslant M$ this implies $L C_{H}\left(Y_{M}\right)=M C_{H}\left(Y_{M}\right)$. So bb gives $Y_{M} \leqslant Y_{L}$. Hence $Y_{L}=Y_{M}$ and (h) holds.
(i): Recall that $T_{0} \leqslant L$. By (a) $T_{0} \in \operatorname{Syl}_{p}\left(C_{H}\left(Y_{L}\right)\right)$ and so also $T_{0} \in \operatorname{Syl}_{p}\left(C_{L}\left(Y_{L}\right)\right)$. A Frattini argument gives $L=L_{0} C_{L}\left(Y_{L}\right)$, and $T \leqslant L_{0}$ since $T_{0} \leqslant T$. Since L is of characteristic p and $O_{p}(L) \leqslant T_{0} \leqslant O_{p}\left(L_{0}\right)$, also L_{0} is of characteristic p. So h) (applied with $L=L_{0}, M=L$ and $Y=Y_{L}$) implies that $Y_{L_{0}}=Y_{L}$. By (g) $Y_{L_{0}} \leqslant \Omega_{1} Z\left(O_{p}\left(L_{0}\right)\right)$. We record

$$
Y_{L}=Y_{L_{0}} \leqslant \Omega_{1} Z\left(O_{p}\left(L_{0}\right)\right)
$$

Let U be the largest normal subgroup of L_{0} acting nilpotently on $\Omega_{1} Z\left(O_{p}\left(L_{0}\right)\right)$. Then U acts nilpotently on $Y_{L_{0}}$. As $Y_{L_{0}}$ is p-reduced for L_{0}, A. 10 implies that $U \leqslant C_{L_{0}}\left(Y_{L_{0}}\right)$. So

$$
O_{p}\left(L_{0}\right) \leqslant U \cap T \leqslant C_{T}\left(Y_{L_{0}}\right)=C_{T}\left(Y_{L}\right)=T_{0} \leqslant O_{p}\left(L_{0}\right)
$$

Therefore, $O_{p}\left(L_{0}\right)=T_{0}$. Note that $O^{p}\left(L_{0}\right) \leqslant C_{L_{0}}\left(\Omega_{1} Z\left(O_{p}\left(L_{0}\right)\right)\right)$ and thus

$$
U=(U \cap T) C_{L_{0}}\left(\Omega_{1} Z\left(O_{p}\left(L_{0}\right)\right)\right)=C_{L_{0}}\left(\Omega_{1} Z\left(O_{p}\left(L_{0}\right)\right)\right)
$$

Now A. 10 shows that $\Omega_{1} Z\left(O_{p}\left(L_{0}\right)\right)$ is p-reduced for L_{0} and thus

$$
Y_{L} \leqslant \Omega_{1} Z\left(T_{0}\right)=\Omega_{1} Z\left(O_{p}\left(L_{0}\right)\right) \leqslant Y_{L_{0}}=Y_{L}
$$

Since L_{0} is of characteristic p and $T_{0}=O_{p}\left(L_{0}\right), C_{L_{0}}\left(T_{0}\right) \leqslant T_{0}$ and (i) is proved.
(j]): By hypothesis $M C_{H}\left(Y_{L}\right)=L C_{H}\left(Y_{L}\right)$ and so M normalizes Y_{L}. Hence T_{0} is a Sylow p subgroup of $C_{M}\left(Y_{L}\right)$ and $C_{M}\left(Y_{L}\right)$ is a normal subgroup of M. So by a Frattini argument $M=$ $N_{M}\left(T_{0}\right) C_{M}\left(Y_{L}\right)=L^{*} C_{M}\left(Y_{L}\right)$. Thus $L C_{H}\left(Y_{L}\right)=M C_{H}\left(Y_{L}\right)=L^{*} C_{H}\left(Y_{L}\right)$. By (ii), $Y_{L}=\Omega_{1} Z\left(T_{0}\right)$ and $C_{T}\left(T_{0}\right) \leqslant T_{0}$. Since $T_{0} \leqslant O_{p}\left(L^{*}\right)$ we conclude $Y_{L^{*}} \leqslant \Omega_{1} Z\left(T_{0}\right)=Y_{L}$. By (b), $Y_{L} \leqslant Y_{L^{*}}$ and so $Y_{L}=Y_{L *}$.
(k): By (g) $O_{p}(L) \leqslant T_{0}$. Since $C_{L}\left(Y_{L}\right)$ is p-closed and $T_{0} \in \operatorname{Syl}_{p}\left(C_{L}\left(Y_{L}\right)\right)$, we have

$$
T_{0}=O_{p}\left(C_{L}\left(Y_{L}\right)\right) \leqslant O_{p}(L) \leqslant T_{0}
$$

So $T_{0}=O_{p}(L)$, and (i) shows that $Y_{L}=\Omega_{1} Z\left(T_{0}\right)=\Omega_{1} Z\left(O_{p}(L)\right)$. By (a), $T_{0} \in \operatorname{Syl}_{p}\left(C_{H}\left(Y_{L}\right)\right)$ and so (k) is proved.

Lemma 1.25. Suppose that H is of parabolic characteristic p. Let $T \in \operatorname{Syl}_{p}(H)$ and $L \in \mathcal{L}_{H}(T)$. Then there exist $M \in \mathfrak{M}_{H}(T)$ and $L^{*} \in \mathcal{L}_{H}(T)$ such that $L^{*} \leqslant M, Y_{L}=Y_{L^{*}}, Y_{L} \leqslant Y_{M}$ and $L C_{H}\left(Y_{L}\right)=L^{*} C_{H}\left(Y_{L}\right)$.

Proof. Put $T_{0}:=C_{T}\left(Y_{L}\right)$ and $L_{1}:=L C_{H}\left(Y_{L}\right)$. Then $Y_{L} \leqslant L_{1}$ and $C_{H}\left(O_{p}\left(L_{1}\right)\right) \leqslant C_{H}\left(Y_{L}\right) \leqslant$ L_{1}. Since H is of parabolic characteristic p we conclude that $C_{H}\left(O_{p}\left(L_{1}\right)\right)=C_{L_{1}}\left(O_{p}\left(L_{1}\right)\right) \leqslant O_{p}\left(L_{1}\right)$, so $L_{1} \in \mathcal{L}_{H}(T)$. Note that $L C_{H}\left(Y_{L}\right)=L_{1}=L_{1} C_{H}\left(Y_{L}\right)$ and so by 1.24 b), $Y_{L} \leqslant Y_{L_{1}}$. Thus $C_{H}\left(Y_{L_{1}}\right) \leqslant C_{H}\left(Y_{L}\right)$.

Suppose that there exist $M \in \mathfrak{M}_{H}(T)$ and $L_{1}^{*} \in \mathcal{L}_{H}(T)$ such that $L_{1}^{*} \leqslant M, Y_{L_{1}}=Y_{L_{1}^{*}} \leqslant Y_{M}$ and $L_{1} C_{H}\left(Y_{L_{1}}\right)=L_{1}^{*} C_{H}\left(Y_{L_{1}}\right)$. As $C_{H}\left(Y_{L_{1}}\right) \leqslant C_{H}\left(Y_{L}\right)$ this gives $L_{1} C_{H}\left(Y_{L}\right)=L_{1}^{*} C_{H}\left(Y_{L}\right)$. Together with $L_{1}=L C_{H}\left(Y_{L}\right)$ we get

$$
L C_{H}\left(Y_{L}\right)=L_{1}=L_{1} C_{H}\left(Y_{L}\right)=L_{1}^{*} C_{H}\left(Y_{L}\right)
$$

Put $L^{*}=N_{L_{1}^{*}}\left(T_{0}\right)$. Since $T \leqslant L \cap L_{1}^{*}$ we can apply $1.24(j)$ with $\left(L_{1}^{*}, L\right)$ in place of (M, L) and conclude that $Y_{L}=Y_{L *}$ and $L C_{L}\left(Y_{L}\right)=L^{*} C_{L^{*}}\left(Y_{L}\right)$. Also $T \leqslant L^{*} \leqslant L_{1}^{*} \leqslant M$, and thus $1.24(\mathrm{f})$ with $\left(L^{*}, M\right)$ in place of (L, M) yields $Y_{L^{*}} \leqslant Y_{M}$. So the lemma holds in this case.

Hence it suffices to prove the lemma for L_{1} in place of L. Since $C_{H}\left(Y_{L_{1}}\right) \leqslant C_{H}\left(Y_{L}\right) \leqslant L_{1}$ we therefore may assume that $C_{H}\left(Y_{L}\right) \leqslant L$. By [MS4, Theorem 1.3] there exists a set \mathcal{F} of parabolic subgroups of H containing T such that the following hold:
(i) For every $L \in \mathcal{L}_{H}(T)$ there exists $F \in \mathcal{F}$ such that $L \subseteq C_{H}\left(Y_{L}\right) F$ and $Y_{L} \leqslant Y_{F}$.
(ii) If $L \in \mathcal{L}_{H}(T)$ and $F \in \mathcal{F}$ with $F \subseteq C_{H}\left(Y_{F}\right) L$ and $Y_{F} \leqslant Y_{L}$, then $Y_{L}=Y_{F}$ and $L \leqslant F$.

According to (i) there exists $F \in \mathcal{F}$ with $L \subseteq C_{H}\left(Y_{L}\right) F$ and $Y_{L} \leqslant Y_{F}$. Since $C_{H}\left(Y_{L}\right) \leqslant L$, we get $L \leqslant C_{L}\left(Y_{L}\right) F$ and so $L=C_{L}\left(Y_{L}\right)(L \cap F)=(L \cap F) C_{L}\left(Y_{L}\right)$. In particular, by 1.24 h) (applied with $\left(L, L \cap F, Y_{L}\right)$ in place of $\left.(M, L, Y)\right) Y_{L}=Y_{L \cap F}$.

Let $M \leqslant F$ be minimal with $T \leqslant M$ and $F=M C_{F}\left(Y_{F}\right)$. By 1.24(f), $Y_{L \cap F} \leqslant Y_{F}$ and so $Y_{L}=Y_{L \cap F} \leqslant Y_{F}$. Then $C_{F}\left(Y_{F}\right) \leqslant C_{H}\left(Y_{L}\right) \leqslant L, F=M C_{F \cap L}\left(Y_{F}\right)$ and $L \cap F=(L \cap M) C_{L \cap F}\left(Y_{L}\right)$. Thus $L=(L \cap F) C_{H}\left(Y_{L}\right)=(L \cap M) C_{H}\left(Y_{L}\right)$. Since $\left.L \cap M \leqslant L, 1.24 \mathrm{~h}\right)$ gives $Y_{L}=Y_{L \cap M}$ and since $L \cap M \leqslant M, 1.24 \mathrm{f})$ gives $Y_{L \cap M} \leqslant Y_{M}$. Thus if $M \in \mathfrak{M}_{H}(T)$ then $L^{*}:=L \cap M$ has the required properties. It remains to show that $M \in \mathfrak{M}_{H}(T)$.

By [MS4, 3.5] F is the unique maximal p-local subgroup containing M. Since H is of parabolic characteristic p, both F and M are of characteristic p. Since $M \leqslant F$ and $F=M C_{F}\left(Y_{F}\right)$ we conclude from 1.24 h that $Y_{M}=Y_{F}$. Thus $F=M C_{F}\left(Y_{M}\right)$ and $\mathcal{M}(M)=\{F\}$. This shows condition (i) of the basic property for M.

Put $M_{0}:=N_{M}\left(C_{T}\left(Y_{M}\right)\right)$. Since $O_{p}(M) \leqslant O_{p}\left(M_{0}\right)$ and

$$
C_{H}\left(O_{p}\left(M_{0}\right)\right) \leqslant C_{H}\left(O_{p}(M)\right) \leqslant O_{p}(M) \leqslant O_{p}\left(M_{0}\right)
$$

$M_{0} \in \mathcal{L}_{H}(T)$. Moreover, the minimality of M and a Frattini argument show that $M=M_{0}$. Thus $C_{M}\left(Y_{M}\right)$ is p-closed. In particular, by $1.24 \mathrm{k}, O_{p}(M) \in \operatorname{Syl}_{p}\left(C_{M}\left(Y_{M}\right)\right)$.

Let X be a maximal subgroup of M containing $O_{p}(M)$. Assume that $X C_{M}\left(Y_{M}\right)=M$. Since $F=M C_{M}\left(Y_{F}\right)$ and $Y_{F}=Y_{M}$ we get $F=X C_{F}\left(Y_{F}\right)$. In addition, X contains a Sylow p-subgroup of M since $O_{p}(M) \in \operatorname{Syl}_{p}\left(C_{M}\left(Y_{M}\right)\right)$. Hence without loss $T \leqslant X$, which contradicts the minimal choice of M. Thus $X C_{M}\left(Y_{M}\right) \neq M$, i.e. $C_{M}\left(Y_{M}\right) \leqslant X$, and so $C_{M}\left(Y_{M}\right) / O_{p}(M) \leqslant \Phi\left(M / C_{M}\left(Y_{M}\right)\right)$. So also condition (ii) of the basic property holds for M.

Lemma 1.26. Let $L \preccurlyeq ⺀ H$. Then
(a) $Y_{H} \cap L=Y_{H} \cap Y_{L}$ is p-reduced for L.
(b) $C_{L}\left(Y_{L}\right)=C_{L}\left(Y_{H}\right)=C_{L}\left(Y_{H} \cap L\right)$. In particular $\left[Y_{L}, L\right]=1$ if and only if $\left[Y_{H}, L\right]=1$.
(c) Suppose that $O^{p}(H) \leqslant L$. Then $\left[Y_{L}, L\right]=1$ if and only if $\left[Y_{H}, H\right]=1$.

Proof. Let R be the inverse image of $O_{p}\left(L / C_{L}\left(Y_{H} \cap L\right)\right)$ in L, so $R \curvearrowright L \curvearrowright \vDash H$. Then $O^{p}(R)$ centralizes $Y_{H} \cap L$. Note that $O^{p}(R)=O^{p}\left(R Y_{H}\right) \gtrless R Y_{H}$ since $R \geqq \& H$, and so $\left[O^{p}(R), Y_{H}\right] \leqslant$ $O^{p}(R) \cap Y_{H} \leqslant Y_{H} \cap L$. Hence

$$
\left[Y_{H}, O^{p}(R)\right]=\left[Y_{H}, O^{p}(R), O^{p}(R)\right] \leqslant\left[Y_{H} \cap L, O^{p}(R)\right]=1
$$

Thus R acts nilpotently on Y_{H}. Since $R \unlhd \triangleleft H$ and Y_{H} is a p-reduced H-module, A. 10 now implies that R centralizes Y_{H}. Hence

$$
C_{L}\left(Y_{H} \cap L\right) \leqslant R \leqslant C_{L}\left(Y_{H}\right) \leqslant C_{L}\left(Y_{H} \cap L\right)
$$

and thus

$$
\begin{equation*}
C_{L}\left(Y_{H} \cap L\right)=R=C_{L}\left(Y_{H}\right) \tag{*}
\end{equation*}
$$

In particular, $Y_{H} \cap L$ is p-reduced for L. Hence $Y_{H} \cap L \leqslant Y_{L}$ and $Y_{H} \cap L=Y_{H} \cap Y_{L}$. Thus (a) holds.
(b): By induction we may assume that $L \geqq H$. Then H acts on Y_{L} and by A.15 b) (applied with $\left.V=Y_{L}\right) C_{L}\left(Y_{Y_{L}}(L)\right)=C_{L}\left(Y_{Y_{L}}(H)\right)$, where $Y_{Y_{L}}(H)$ is the largest p-reduced H-submodule of Y_{L}. Since Y_{L} is p-reduced for $L, Y_{Y_{L}}(L)=Y_{L}$, and since $Y_{Y_{L}}(H)$ is p-reduced for $H, Y_{Y_{L}}(H) \leqslant Y_{H}$. So

$$
C_{L}\left(Y_{H}\right) \leqslant C_{L}\left(Y_{Y_{L}}(H)\right)=C_{L}\left(Y_{Y_{L}}(L)\right)=C_{L}\left(Y_{L}\right) \leqslant C_{L}\left(Y_{H} \cap Y_{L}\right)=C_{L}\left(Y_{H}\right)
$$

where the last equality follows from $(*)$. Hence (b) holds.
(c): By (b), $\left[Y_{L}, L\right]=1$ if and only if $\left[Y_{H}, L\right]=1$. If $\left[Y_{H}, L\right]=1$ then $\left[Y_{H}, O^{p}(H)\right]=1$ and since Y_{H} is p-reduced, also $\left[Y_{H}, H\right]=1$. Hence $\left[Y_{H}, L\right]=1$ if and only if $\left[Y_{H}, H\right]=1$.

Lemma 1.27. Suppose that H has characteristic p. Let $T \in \operatorname{Syl}_{p}(H)$.
(a) (Kieler Lemma) Let E be a subnormal subgroup of H. Then

$$
C_{E}\left(\Omega_{1} Z(T)\right)=C_{E}\left(\Omega_{1} Z(T \cap N)\right)
$$

(b) Let V be an elementary abelian normal p-subgroup of H containing $\Omega_{1} Z(T)$. Then

$$
C_{H}\left(\Omega_{1} Z(T)\right)=C_{H}\left(\left[V, O^{p}(H)\right] \cap \Omega_{1} Z(T)\right)
$$

Proof. (a): If $E=1$ this if obvious. So suppose that $E \neq 1$. By 1.2 a), E has characteristic p and so $O_{p}(E) \neq 1$. In particular, p divides $|E|$. Since H has characteristic p, H also has local characteristic p, see 1.2 c). Now (a) follows from [MS6, 1.5].
(b): By MS6, 1,6] $C_{E}\left(C_{V}(T)\right)=C_{E}\left(C_{[V, E]}(T \cap E)\right.$) for any subnormal subgroup E of H. For $E=\nRightarrow$ this gives

$$
\begin{equation*}
C_{H}\left(C_{V}(T)\right)=C_{H}\left(C_{[V, H]}(T)\right) \tag{*}
\end{equation*}
$$

Put $[V, H, 1]=[V, H]$ and $[V, H, n]=[[V, H, n-1], H]$ for $n \geqslant 2$. Now an elementary induction on n using (*) gives

$$
C_{H}\left(C_{V}(T)\right)=C_{H}\left(C_{[V, H, n]}(T)\right)
$$

For n large enough, $[V, H, n]=\left[V, O^{p}(H)\right]$ since H acts nilpotently on $V /\left[V, O^{p}(H)\right]$. Thus

$$
C_{H}\left(C_{V}(T)\right)=C_{H}\left(C_{\left[V, O^{p}(H)\right]}(T)\right)
$$

Since $\Omega_{1} Z(T) \leqslant V$ and V is elementary abelian,

$$
\Omega_{1} Z(T)=C_{V}(T) \quad \text { and } \quad C_{\left[V, O^{p}(H)\right]}(T)=\left[V, O^{p}(H)\right] \cap \Omega_{1} Z(T)
$$

So (b) holds.

Lemma 1.28. Suppose that H is of characteristic p and $N \geqq \& H$.
(a) $C_{N}\left(Z_{H}\right)=C_{N}\left(Z_{N}\right)$.
(b) The following are equivalent:
(1) $\left[\Omega_{1} Z(T), N\right]=1$ for some $T \in \operatorname{Syl}_{p}(H)$.
(2) $\left[\Omega_{1} Z(R), N\right]=1$ for some $R \in \operatorname{Syl}_{p}(N)$.
(3) $\left[Z_{N}, N\right]=1$.
(4) $\left[Z_{H}, N\right]=1$.

Proof. Let $T \in \operatorname{Syl}_{p}(H)$. By the Kieler Lemma 1.27

$$
\begin{equation*}
C_{N}\left(\Omega_{1} Z(T)\right)=C_{N}\left(\Omega_{1} Z(T \cap N)\right) \tag{*}
\end{equation*}
$$

(a): Note that $\operatorname{Syl}_{p}(N)=\left\{T \cap N \mid T \in \operatorname{Syl}_{p}(H)\right\}$. So (a) follows from (*) and the definition of Z_{H} and Z_{N}.
(b): Since $T \cap N \in S y l_{p}(N)$ for $T \in S y l_{p}(H),(*)$ shows that b:1) implies (b:2). Since N acts transitively on $S y l_{p}(N)$, b:2) implies b:3). By (a), b:3) implies b:4). Clearly (b:4) implies b:11).

1.3. p-Irreducible Groups

Lemma 1.29. Suppose that H is p-irreducible. Let $T \in \operatorname{Syl}_{p}(H)$.
(a) $H=\left\langle T^{H}\right\rangle=H^{\prime} T$.
(b) $O^{p}(H) \leqslant H^{\prime}$.
(c) $O^{p}(H)=\left[O^{p}(H), Y\right] \leqslant\left\langle Y^{O^{p}(H)}\right\rangle=\left\langle Y^{H}\right\rangle$ for every $Y \approx T$ with $Y \$ O_{p}(H)$.

Proof. (a): Since H is not p-closed, T is not normal in H. Hence $\left\langle T^{H}\right\rangle$ is not p-closed. By definition of p-irreducible this gives $O^{p}(H) \leqslant\left\langle T^{H}\right\rangle$, and so $H=O^{p}(H) T=\left\langle T^{H}\right\rangle$. Since $H^{\prime} T \approx H$, we have $H=\left\langle T^{H}\right\rangle \leqslant H^{\prime} T$, and thus $H=H^{\prime} T$.
(b): This is an immediate consequence of $H=H^{\prime} T$.
(c): Since $Y \not \approx O_{p}(H)$, and $\left\langle Y^{H}\right\rangle \vDash H$, we get that $Y \not \approx O_{p}\left(\left\langle Y^{H}\right\rangle\right)$. Hence $\left\langle Y^{H}\right\rangle$ is not p-closed, and since H is p-irreducible, $O^{p}(H) \leqslant\left\langle Y^{H}\right\rangle$. Since T normalizes Y and $H=O^{p}(H) T$, we have $\left\langle Y^{H}\right\rangle=\left\langle Y^{O^{p}(H)}\right\rangle$ and so

$$
O^{p}(H) \leqslant\left\langle Y^{O^{p}(H)}\right\rangle=\left[O^{p}(H), Y\right] Y .
$$

Hence $O^{p}(H) \leqslant\left[O^{p}(H), Y\right]$, and (c) is proved.
Lemma 1.30. (a) Let D be a normal p-subgroup of H. Then H is (strongly) p-irreducible if and only if H / D is (strongly) p-irreducible.
(b) Let $K \leqslant H$ and D a K-invariant p-subgroup of H. Then K is (strongly) p-irreducible, if and only if $K D$ is (strongly) p-irreducible and if and only if $K D / D$ is (strongly) p irreducible.
Proof. (a): Let $N \vDash H$ and put $\bar{H}:=H / D$. Since D is a p-group

$$
N p \text {-closed } \quad \Longleftrightarrow \quad N D p \text {-closed } \quad \Longleftrightarrow \quad \bar{N} p \text {-closed. }
$$

Moreover, since for every $X \leqslant H, O^{p}(X)$ does not have any non-trivial p-factor groups, one easily gets $O^{p}(N)=O^{p}(N D)$ and $O^{p}(\bar{H})=\overline{O^{p}(H)}$. This gives

$$
O^{p}(H) \leqslant N \quad \Longleftrightarrow \quad O^{p}(H) \leqslant N D \quad \Longleftrightarrow \quad O^{p}(\bar{H}) \leqslant \bar{N},
$$

and

$$
[N, H] \leqslant O_{p}(H) \quad \Longleftrightarrow[N D, H] \leqslant O_{p}(H) \quad \Longleftrightarrow[\bar{N}, \bar{H}] \leqslant O_{p}(\bar{H})
$$

Now (a) follows from the definition of (strongly) p-irreducible.
(b): Since $K \cap D$ is a normal p-subgroup of K, (a) shows that K is (strongly) p-irreducible if and only if $K / K \cap D$ is (strongly) p-irreducible. Also D is a normal p-subgroup of $K D$ and so $K D$ is (strongly) p-irreducible if and only $K D / D$ is (strongly) p-irreducible. Since $K / K \cap D \cong K D / D$, this gives (b).

Lemma 1.31. Every strongly p-irreducible finite group is p-irreducible.
Proof. Suppose H is strongly p-irreducible. Then H is not p-closed. Let $N \approx H$. If $[N, H] \leqslant$ $O_{p}(H)$, then $N / N \cap O_{p}(H)$ is abelian and N is p-closed. If $[N, H] \nless O_{p}(H)$, then the definition of strongly p-irreducible gives $O^{p}(H) \leqslant N$. Thus H is p-irreducible.

Lemma 1.32. Suppose that there exists a non-empty H-invariant set of subgroups \mathcal{K} of H such that for $R:=\langle\mathcal{K}\rangle$ and $E \in \mathcal{K}$:
(i) H acts transitively on \mathcal{K}.
(ii) $O^{p}(H) \leqslant R$.
(iii) $E O_{p}(H) \preccurlyeq R O_{p}(H)$.
(iv) E is strongly p-irreducible.

Then the following hold:
(a) For $E, K \in \mathcal{K}$ either $O^{p}\left(E O_{p}(H)\right)=O^{p}\left(K O_{p}(H)\right)$ or $[E, K] \leqslant O_{p}(H)$.
(b) H is p-irreducible.

Proof. Put $\bar{H}:=H / O_{p}(H)$. Then \bar{H} and $\overline{\mathcal{K}}$ satisfy (i)-iii). By iv E is strongly p-irreducible and so by 1.30 b also $\bar{E}=E O_{p}(H) / O_{p}(H)$ is strongly p-irreducible. Thus iv holds for \bar{E}. Hence \bar{H} and $\overline{\mathcal{K}}$ satisfy (ii)-iv.

Moreover, if the claims (a) and bold for \bar{H} and $\overline{\mathcal{K}}$, then they also hold for H and \mathcal{K}, again with the help of 1.30 in the case of (b). Thus, we may assume that $O_{p}(H)=1$. Then $E \leqslant R$. As H acts transitively on $\mathcal{K}, R=\left\langle E^{H}\right\rangle$. Since E is strongly p-irreducible, E is p-irreducible by 1.31 . Hence 1.29 bives $O^{p}(E) \leqslant E^{\prime}$ and so

$$
\begin{equation*}
O^{p}(R)=\left\langle O^{p}(E)^{H}\right\rangle \leqslant\left\langle E^{\prime H}\right\rangle \leqslant R^{\prime} \tag{*}
\end{equation*}
$$

(a): Let $E, K \in \mathcal{K}$. Since E and K normalize each other, $D:=[K, E] \leqslant K \cap E$, and D is normal in E and K. Since E is strongly p-irreducible, either $D \leqslant Z(E)$ or $O^{p}(E) \leqslant D$ and by symmetry also $D \leqslant Z(K)$ or $O^{p}(K) \leqslant D$.

If $O^{p}(E) \leqslant D$ and $O^{p}(K) \leqslant D$, then $O^{p}(K)=O^{p}(D)=O^{p}(E)$, and (a) holds. Thus, we may assume without loss that $D \leqslant Z(E)$. Pick $T_{E} \in \operatorname{Syl}_{p}(E)$. Since $O_{p}(E) \leqslant O_{p}(H)=1$, both $Z(E)$ and D are p^{\prime}-groups. Note that T_{E} centralizes D. We conclude that $D T_{E}=D \times T_{E}$ and $T_{E}=O_{p}\left(D T_{E}\right)$. Since K normalizes $D T_{E}$, it also normalizes T_{E}, and $\left[T_{E}, K\right] \leqslant T_{E} \cap D=1$. We conclude that K centralizes every Sylow p-subgroup of E. Since E is p-irreducible, 1.29 a gives $E=\left\langle T_{E}^{E}\right\rangle$. Hence $[E, K]=1$, and a) is proved.
(b): Let N be a normal subgroup of H. We need to show that $O^{p}(H) \leqslant N$ or N is p-closed. Suppose first that $O^{p}(E) \leqslant N$. Then by $(*) O^{p}(R)=\left\langle O^{p}(E)^{H}\right\rangle \leqslant N$. By (iii) $O^{p}(H) \leqslant R$ and so $O^{p}(H) \leqslant O^{p}(R) \leqslant N$.

Suppose next that $O^{p}(E) \not \approx N$ for all $E \in \mathcal{K}$. Since E is strongly p-irreducible by (iv), this gives $[E \cap N, E] \leqslant O_{p}(E)=1$. Since $E \leqslant R,[R \cap N, E] \leqslant E \cap N$. So $[R \cap N, E, E]=1$ and with the Three Subgroups Lemma $\left[R \cap N, E^{\prime}\right]=1$. Since $R \cap N \vDash H$ we get $\left[R \cap N,\left\langle E^{\prime H}\right\rangle\right]=1$. By (*), $O^{p}(R) \leqslant\left\langle E^{\prime H}\right\rangle$, and thus [$\left.R \cap N, O^{p}(R)\right]=1$. In particular, $\left[R \cap N, O^{p}(R \cap N)\right]=1$, so $R \cap N$ is p-closed. As $O_{p}(H)=1$ this shows that $R \cap N$ is a p^{\prime}-group. Since $\left[R \cap N, O^{p}(R)\right]=1, R$ and so also E acts a p-group on $N \cap R$. Thus coprime action gives $[R \cap N, E]=[R \cap N, E, E]=1$. Since this holds for all $E \in \mathcal{K}$ and since $R=\langle\mathcal{K}\rangle$ this gives $[R \cap N, R]=1$. Hence $[N, R, R]=1$ and by the Three Subgroups Lemma, $\left[R^{\prime}, N\right]=1$. By $(*) O^{p}(R) \leqslant R^{\prime}$ and thus $\left[O^{p}(R), N\right]=1$. By (iii) $O^{p}(H) \leqslant O^{p}(R)$. It follows that $\left[O^{p}(H), N\right]=1$, so $\left[O^{p}(N), N\right]=1$, and N is p-closed.

Lemma 1.33. Suppose that H is p-irreducible. Let V be an $\mathbb{F}_{p} H$-module with $\left[V, O^{p}(H)\right] \neq 0$.
(a) $C_{H}(V)$ is p-closed.
(b) $C_{T}(V) \leqslant O_{p}(H)$ for all p-subgroups T of H.

Proof. Note that $O^{p}(H) \not C_{H}(V)$. Hence (a) follows from the definition of p-irreducible, and (b) follows from (a).

Lemma 1.34. Suppose that H is p-irreducible. Let V be an $\mathbb{F}_{p} H$-module with $\left[V, O^{p}(H)\right] \neq 1$ and $\left[V, O_{p}(H)\right]=1$.
(a) $C_{T}(V)=T \cap O_{p}(H)$ for all p-subgroups T of H.
(b) V is p-reduced for H.
(c) Let U be an H-submodule of V minimal with $\left[U, O^{p}(H)\right] \neq 0$. Then U is a quasisimple H-module.

Proof. a): By 1.33a, $C_{T}(V) \leqslant O_{p}(H)$. Since $\left[V, O_{p}(H)\right]=0$, this gives a.
(b): Let $R / C_{H}(V)=O_{p}\left(H / C_{H}(V)\right)$. Then $O^{p}(R) \leqslant C_{H}(V)$. Since $O^{p}\left(O^{p}(H)\right)=O^{p}(H) \neq$ $C_{H}(\bar{V})$ this gives $O^{p}(H) \nleftarrow R$. The definition of p-irreducible now shows that R is p-closed. Since $O_{p}(R) \leqslant O_{p}(H) \leqslant C_{H}(V)$ we conclude that $R / C_{R}(V)$ is a p^{\prime}-group. Thus $R=C_{H}(V)$ and V is p-reduced.
(c): Recall from the definitions, see A.2, that U is a perfect H-module if $0 \neq U=[U, H]$ and that U is a quasisimple H-module if U is perfect and p-reduced for H and $U / C_{U}\left(O^{p}(H)\right)$ is a simple H-module.

Since $\left[U, O^{p}(H)\right] \neq 0$ we have $\left[U, O^{p}(H)\right] \not C_{U}\left(O^{p}(H)\right)$. By minimality of $U, C_{U}\left(O^{p}(H)\right)$ is the unique maximal H-submodule of U and so $U=\left[U, O^{p}(H)\right]$ and $U / C_{U}\left(O^{p}(H)\right)$ is simple. In particular, $U=[U, H]$ and thus U is a perfect H-module. By \square applied to U, U is p-reduced for H. Thus U is H-quasisimple.

Lemma 1.35. Suppose that H is p-irreducible and of characteristic p. Then either

$$
\left.Y_{H}=\Omega_{1} Z\left(O_{p}(H)\right) \quad \text { and } \quad\left[Y_{H}, O^{p}(H)\right)\right] \neq 1
$$

or

$$
\left[Y_{H}, H\right]=1 \quad \text { and } \quad\left[\Omega_{1} Z\left(O_{p}(H)\right), O^{p}(H)\right]=1
$$

Proof. Put $V:=\Omega_{1} Z\left(O_{p}(H)\right)$. Recall from 1.24 g$)$ that $Y_{H} \leqslant V$.
Assume first that $\left[V, O^{p}(H)\right] \neq 1$. Then 1.34 b$)$ shows that V is p-reduced for H. Hence $V \leqslant Y_{H}$. Since $Y_{H} \leqslant V$ this gives $V=Y_{H}$.

Assume next that $\left[V, O^{p}(H)\right]=1$. Then $\left[Y_{H}, O^{p}(H)\right]=1$ since $Y_{H} \leqslant V$, and $H / C_{H}\left(Y_{H}\right)$ is a p-group. Since Y_{H} is p-reduced this gives $\left[Y_{H}, H\right]=1$.

1.4. Y-Minimal Groups

Recall from the introduction:
Definition 1.36. H is Y-minimal for $Y \leqslant H$, if $H=\left\langle Y^{H}\right\rangle$ and Y-is contained in unique maximal subgroup of H; and H is p-minimal if H is T-minimal for $T \in S y l_{p}(H)$.

Lemma 1.37. Suppose that H is p-minimal. Then H is p-irreducible.
Proof. Let $T \in S y l_{p}(H)$. By the definition of p-minimality, $H=\left\langle T^{H}\right\rangle$ and T is contained in a unique maximal subgroup M of H. Hence $T \leqslant M<H,\left\langle T^{H}\right\rangle \$ M$ and $T \nRightarrow H$. So H is not p-closed.

Let $N \vDash H$. Then either $N T=H$ or $N \leqslant M$. In the first case $O^{p}(H) \leqslant N$. In the second case by a Frattini argument $H=N N_{H}(N \cap T)$, so $T \leqslant N_{H}(N \cap T) \not M$ and thus $N_{H}(T \cap N)=H$. Hence $T \cap N \leqslant O_{p}(H)$, and N is p-closed.

Lemma 1.38. Suppose that H is p-minimal and $N \vDash H$. Then either H / N is a p-group or H / N is p-minimal.

Proof. Let $T \in S y l_{p}(H)$. Since H is p-minimal, $H=\left\langle T^{H}\right\rangle$ and T is contained in a unique maximal subgroup M of H. If $N \leqslant M$, then $H / N=\left\langle(T N / N)^{H / N}\right\rangle$ and M / N is the unique maximal subgroups of H / N containing $T N / N$, and so H / N is p-minimal. So suppose $N \$ M$. Since $T \leqslant N T$ and $N T \leqslant M, N T$ is not contained in any maximal subgroup of H. Thus $N T=H$ and H / N is a p-group.

Lemma 1.39. Suppose that there exists a non-empty H-invariant set of subgroups \mathcal{K} of H such that for $R:=\langle\mathcal{K}\rangle$ and $E \in \mathcal{K}$:
(i) H acts transitively on \mathcal{K}.
(ii) $O^{p}(H) \leqslant R$.
(iii) $E O_{p}(H) \preccurlyeq R O_{p}(H)$.
(iv) E is p-minimal.

Then H is p-minimal.
Proof. Put $\bar{H}:=H / O_{p}(H)$. Clearly, \bar{E} is p-minimal since E is. Hence \bar{H} and $\overline{\mathcal{K}}$ satisfy (i) (iv). Moreover, \bar{H} is p-minimal if and only if H is p-minimal. Thus, we may assume that $O_{p}(H)=1$. In particular, by (iii), $E \leqslant R$ for $E \in \mathcal{K}$.

Since $O^{p}(H) \leqslant R, H=R T$. Since $E \preccurlyeq R$ we know that R acts trivially on \mathcal{K}, while by (i) $H=R T$ acts transitively on \mathcal{K}. Hence T acts transitively on \mathcal{K}.

Let $E \in \mathcal{K}$. Then $E \lessgtr R \lessgtr H$ and so $T \cap E \in \operatorname{Syl}_{p}(E)$. Since E is p-minimal, $T \cap E$ is contained in a unique maximal subgroup E_{T} of E and $E=\left\langle(T \cap E)^{E}\right\rangle \leqslant\left\langle T^{H}\right\rangle$. Thus $R \leqslant\left\langle T^{H}\right\rangle$ and $H=R T=\left\langle T^{H}\right\rangle$. Put $D:=\bigcap_{E \in \mathcal{K}} N_{R}\left(E_{T}\right)$. Suppose that $H=D T$. Then $O^{p}(H) \leqslant D$ and so also $O^{p}(E) \leqslant D$. Hence

$$
E=O^{p}(E)(E \cap T)=O^{p}(E) E_{T} \leqslant D E_{T} \leqslant N_{R}\left(E_{T}\right)
$$

But then $\left\langle(E \cap T)^{E}\right\rangle \leqslant E_{T}$, a contradiction since E is p-minimal. Thus $H \neq D T$.
We will show that $D T$ is the unique maximal subgroup of H containing T. For this let $M \leqslant H$ with $T \leqslant M$. Suppose first that $M \cap E \not E_{T}$ for some $E \in \mathcal{K}$. Since $T \cap E \leqslant M \cap E$ and E_{T} is the unique maximal subgroup of E containing $T \cap E$, this gives $E=M \cap E \leqslant M$. The transitivity of T on \mathcal{K} now shows that $R=\langle\mathcal{K}\rangle=\left\langle E^{T}\right\rangle \leqslant M$ and $H=R T=M$.

Suppose next that $M \cap E \leqslant E_{T}$ for all $E \in \mathcal{K}$. Since $T \cap E \leqslant M \cap E, E_{T}$ is the unique maximal subgroup of E containing $M \cap E$. Note that $M \cap R$ normalizes E and $M \cap E$ and so $M \cap R$ normalizes E_{T}. Since this holds for all $E \in \mathcal{K}, M \cap R \leqslant D$. From $T \leqslant M \leqslant H=R T$ we have $M=(M \cap R) T$ and so $M \leqslant D T$.

We have proved that $D T$ is the unique maximal subgroup of H containing T and that $H=\left\langle T^{H}\right\rangle$. Thus H is p-minimal.

Lemma 1.40. Let L be a group acting on a group V. Suppose that $X \leqslant L$ and $g \in L$ such that $[V, X, X]=1$ and $L=\left\langle X, X^{g}\right\rangle$. Then for $W:=[V, L]$

$$
W=[V, X]\left[V, X^{g}\right], C_{W}(X)=[V, X] \text { and } C_{W}(L)=[V, X] \cap\left[V, X^{g}\right]
$$

Proof. Clearly

$$
W=[V, L]=\left[V,\left\langle X, X^{g}\right\rangle\right]=[V, X]\left[V, X^{g}\right]
$$

and

$$
C_{W}(L)=C_{W}\left(\left\langle X, X^{g}\right\rangle\right)=C_{W}(X) \cap C_{W}\left(X^{g}\right)
$$

Thus, it remains to show that $C_{W}(X)=[V, X]$.
Since $[V, X, X]=1,[V, X] \leqslant C_{W}(X)$. As $W=[V, X]\left[V, X^{g}\right]$, this implies

$$
C_{W}(X)=[V, X]\left(\left[V, X^{g}\right] \cap C_{W}(X)\right)
$$

Moreover,
$\left[V, X^{g}\right] \cap C_{W}(X)=\left[V, X^{g}\right] \cap C_{W}(X) \cap C_{W}\left(X^{g}\right)=\left[V, X^{g}\right] \cap C_{W}(L) \leqslant\left[V, X^{g}\right] \cap C_{W}(g) \leqslant[V, X]$. This shows that $C_{W}(X)=[V, X]$.

Lemma 1.41 (L-Lemma). Suppose that H is p-minimal. Let $T \in \operatorname{Syl}_{p}(H)$, and $A \leqslant T$ such that $A \$ O_{p}(H)$. Also let M be the unique maximal subgroup of H containing T. Then there exists a subgroup $L \leqslant H$ with $A O_{p}(H) \leqslant L$ satisfying:
(a) $A O_{p}(L)$ is contained in a unique maximal subgroup L_{0} of L, and $L_{0}=L \cap M^{g}$ for some $g \in H$.
(b) $L=\left\langle A, A^{x}\right\rangle O_{p}(L)$ for every $x \in L \backslash L_{0}$.

Proof. This is the L-Lemma on page 34 of $\mathbf{P P S}$. Note that although formally the L-Lemma was proved under Hypothesis 1 of Section 3 in [PPS], this hypothesis was never used in the proof. \square

Lemma 1.42. Let L be a finite group and L_{0} a maximal subgroup of L, and let $Y \leqslant T \in \operatorname{Syl}_{p}\left(L_{0}\right)$. Suppose that L is Y-minimal. Then the following hold:
(a) $Y \neq O_{p}(L)$.
(b) $N_{L}(T) \leqslant L_{0}$ and $O_{p}(L) \leqslant L_{0}$. In particular, $T \in \operatorname{Syl}_{p}(L)$.
(c) $N_{L}\left(L_{0}\right)=L_{0}$.
(d) $\bigcap L_{0}^{L} / O_{p}(L)=\Phi\left(L / O_{p}(L)\right)$. In particular, $\bigcap L_{0}^{L}$ is p-closed.
(e) Let $N \leqslant L$ with $N \leqslant L_{0}$. Then $N / O_{p}(N)$ is a nilpotent p^{\prime}-group. In particular, N is p-closed.
(f) $L=\left\langle Y, Y^{g}\right\rangle$ for each $g \in L \backslash L_{0}$.
(g) $Y \cap Y^{g}=C_{Y}(L)$ if Y is abelian and $g \in L \backslash L_{0}$.

Proof. a): By MS6, Lemma 2.5(b)] Y is not subnormal in L and so $Y \not O_{p}(L)$.
(b): By [MS6, Lemma 2.5(h)], L_{0} contains the normalizer of a Sylow p-subgroup of L. Hence $N_{L}(T) \leqslant L_{0}$ and $O_{p}(L) \leqslant L_{0}$.
(c): See MS6 Lemma 2.5(b)].
(d): Put $D:=\bigcap L_{0}^{L}$. By MS6, Lemma 2.7(c)] applied to $L / O_{p}(L), D / O_{p}(L)$ is a p^{\prime}-group and $D / O_{p}(L)=\Phi\left(L / O_{p}(L)\right)$. In particular, D is p-closed and so (d) holds.
(e): Since $N \leqslant \bigcap L_{0}^{L}$, this follows from (d).
(f): See [MS6, Lemma 2.5(c)].
(g): Let Y be abelian and $g \in L \backslash L_{0}$. By (f) $L=\left\langle Y, Y^{g}\right\rangle$. Thus $Y \cap Y^{g} \leqslant C_{Y}(L)$, and clearly $C_{Y}(L) \leqslant Y \cap Y^{g}$ 。

Lemma 1.43. Let L be a finite group and L_{0} a maximal subgroup of L, and let Y be an elementary abelian p-subgroup of L_{0}. Suppose that
(i) L is Y-minimal and of characteristic p, and
(ii) $O_{p}(L) \leqslant N_{L}(Y)$.

Put

$$
A:=\left\langle\left(O_{p}(L) \cap Y\right)^{L}\right\rangle \text { and } \bar{L}:=L / C_{Y}(L)
$$

and let B be an L-invariant subgroup of A. Then the following hold for every $g \in L \backslash L_{0}$:
(a) $\Phi(A)=A^{\prime}=[A \cap Y, A]=\left[A \cap Y, A \cap Y^{g}\right] \leqslant C_{Y}(L)$.
(b) $Y \cap Y^{g}=(A \cap Y) \cap\left(A \cap Y^{g}\right)=C_{Y}(L)=C_{A}(L)$.
(c) $C_{L}(\bar{a}) \leqslant L_{0}$ for every $1 \neq \bar{a} \in \overline{A \cap Y}$.
(d) $\overline{B \cap Y}=C_{\bar{B}}(Y)=C_{\bar{B}}(y)=[\bar{B}, y]$ for every $y \in Y \backslash O_{p}(L)$.
(e) $\bar{B}=\overline{B \cap Y} \times \overline{B \cap Y^{g}}, B=(B \cap Y)\left(B \cap Y^{g}\right)$ and $|B / B \cap Y|=\left|B \cap Y / C_{B \cap Y}(L)\right|$.
(f) If $\bar{B} \neq 1$ and $b \in B \backslash Y$, then $C_{Y}(\bar{b})=C_{Y}(\bar{B})=A \cap Y$ and $C_{Y}(B) \leqslant C_{Y}(b) \leqslant A \cap Y$.
(g) $B \cap Y=C_{B}(Y)=C_{B}(y)=[B, Y] C_{B \cap Y}(L)=[B, y] C_{B \cap Y}(L)$ for every $y \in Y \backslash O_{p}(L)$.
(h) $C_{\bar{B}}(L)=1$ and $C_{B}\left(O^{p}(L)\right)=C_{B}(L)=B \cap C_{Y}(L)=B \cap Y \cap Y^{g}$.
(i) $[a, Y] \cap C_{Y}(L)=1$ for all $a \in Z(A)$.
(j) $\bar{A} \neq 1, C_{A}(A \cap Y)=Z(A)(A \cap Y)$ and $C_{Y}(A)=Z(A) \cap Y$.
(k) $L_{0}^{g} \cap Y=A \cap Y$.
(l) $\left|Y / C_{Y}(B)\right|=|Y / A \cap Y|\left|A \cap Y / C_{Y}(B)\right| \leqslant\left|B / C_{B}(Y)\right|\left|A \cap Y / C_{Y}(B)\right|$ if $\bar{B} \neq 1$.
(m) $A / C_{A}(Y)$ is elementary abelian, $[Y, A] \neq 1$ and A acts nearly quadratically ${ }^{1}$ on Y.
(n) $\left|Y / C_{Y}(A)\right| \leqslant\left|A / C_{A}(Y)\right|^{2}$.
(o) If $B \leqslant Z(A)$, then B is a strong offende ${ }^{2}$ on Y.
(p) L has no central chief factor on \bar{A}.
(q) $Z(A)=\Omega_{1} Z(A)$.

Proof.
1°. $\quad L=\left\langle Y, Y^{g}\right\rangle$.

[^2]This holds by 1.42 f$)$.
$2^{\circ} . \quad C_{Y}(L)=Y \cap Y^{g}=(A \cap Y) \cap\left(A \cap Y^{g}\right)$.
By 1.42 g $Y \cap Y^{g}=C_{Y}(L)$. Also $C_{Y}(L) \leqslant Y \cap O_{p}(L) \leqslant A$ and so 2° follows.
3°. $A=(A \cap Y)\left(A \cap Y^{g}\right)$.
Since $A \leqslant O_{p}(L) \leqslant N_{L}(Y) \cap N_{L}\left(Y^{g}\right)$, we get $[A, Y] \leqslant A \cap Y$ and $\left[A, Y^{g}\right] \leqslant A \cap Y^{g}$. As $L=\left\langle Y, Y^{g}\right\rangle$, we have $[A, L]=[A, Y]\left[A, Y^{g}\right]$. Thus

$$
A=\left\langle\left(O_{p}(L) \cap Y\right)^{L}\right\rangle=\left\langle(A \cap Y)^{L}\right\rangle=(A \cap Y)[A, L]=(A \cap Y)[A, Y]\left[A, Y^{g}\right]=(A \cap Y)\left(A \cap Y^{g}\right)
$$ and $3{ }^{\circ}$ is proved.

$4^{\circ} . \quad \Phi(A)=\left[A \cap Y, A \cap Y^{g}\right] \leqslant Y \cap Y^{g}=C_{Y}(L)$. In particular, \bar{A} is elementary abelian.
Since $A \cap Y$ and $A \cap Y^{g}$ are elementary abelian, the first equality follows from $\left(3^{\circ}\right)$. The inequality holds since A normalizes Y and Y^{g}, and the last equality follows from 2°.
5. $\quad \bar{A}=\overline{A \cap Y} \times \overline{A \cap Y^{g}}$. In particular, $|\bar{A}|=|\overline{A \cap Y}|^{2}$.

Since \bar{A} is abelian, this follows from 2° and 3°.
6°. $\quad\left|\bar{B} / C_{\bar{B}}(y)\right|=|[\bar{B}, y]| \leqslant\left|C_{\bar{B}}(y)\right|$ for $y \in Y$. In particular, $|\bar{B}|=|[\bar{B}, y]|\left|C_{\bar{B}}(y)\right|$.
Since $B \leqslant O_{p}(L) \leqslant N_{L}(Y)$ we get $[B, Y, Y] \leqslant[Y, Y]=1$, and Y acts quadratically on the abelian group \bar{B}. Thus

$$
\phi: \bar{B} \rightarrow C_{\bar{B}}(y) \text { defined by } \bar{b} \mapsto[\bar{b}, y]
$$

is a homomorphism with $\operatorname{ker} \phi=C_{\bar{B}}(y)$ and so 6 holds.
$7^{\circ} . \quad[\bar{A}, y]=[\bar{A}, Y]=C_{\bar{A}}(y)=\overline{A \cap Y}=C_{\bar{A}}(Y)$ for each $y \in Y \backslash O_{p}(L)$.
By 1.42 d , $\bigcap L_{0}^{L}$ is p-closed. Since $y \notin O_{p}(L)$, this implies $y \notin \bigcap L_{0}^{L}$, and there exists $h \in L$ such that $y \notin L_{0}^{h}$. Hence by 1.42 f$) L=\left\langle Y^{h}, Y^{h y}\right\rangle$ and thus also $L=\left\langle y, Y^{h}\right\rangle$. In particular, $h \notin L_{0}$, and 55° applied to h in place of g gives

$$
\bar{A}=\overline{A \cap Y} \times \overline{A \cap Y^{h}}
$$

Since Y^{h} is abelian, $\overline{A \cap Y^{h}} \leqslant C_{\bar{A}}\left(Y^{h}\right)$. Thus

$$
C_{\bar{A}}(y) \cap \overline{A \cap Y^{h}} \leqslant C_{\bar{A}}\left(\left\langle y, Y^{h}\right\rangle\right)=C_{\overline{A \cap Y^{h}}}(L) \leqslant \overline{A \cap Y} \cap \overline{A \cap Y^{h}}=1
$$

and using that $\overline{A \cap Y} \leqslant C_{\bar{A}}(y)$,

$$
C_{\bar{A}}(y)=C_{\bar{A}}(y) \cap\left(\overline{A \cap Y} \times \overline{A \cap Y^{h}}\right)=\overline{A \cap Y}\left(C_{\bar{A}}(y) \cap \overline{A \cap Y^{h}}\right)=\overline{A \cap Y}
$$

By 5° we get $|\bar{A}|=|\overline{A \cap Y}|^{2}=\left|C_{\bar{A}}(y)\right|^{2}$ and by $6{ }^{\circ}$ applied to A in place of $B,|\bar{A}|=$ $|[\bar{A}, y]|\left|C_{\bar{A}}(y)\right|$. Thus $|[\bar{A}, y]|=\left|C_{\bar{A}}(y)\right|$.

Moreover, the quadratic action of Y on \bar{A} gives

$$
[\bar{A}, y] \leqslant[\bar{A}, Y] \leqslant C_{\bar{A}}(Y) \leqslant C_{\bar{A}}(y)=\overline{A \cap Y}
$$

As $|[\bar{A}, y]|=\left|C_{\bar{A}}(y)\right|$, equality holds everywhere and 7° is proved.
(a): This is 4 .
(b): Note that $\overline{C_{A}(L)} \leqslant C_{\bar{A}}(Y)$. By $77^{\circ} C_{\bar{A}}(Y)=\overline{A \cap Y}$ and so $C_{A}(L) \leqslant A \cap Y \cap Y^{g}$. By 22° $A \cap \bar{Y} \cap Y^{g}=Y \cap Y^{g}=C_{Y}(L) \leqslant C_{A}(L)$. Hence $C_{A}(L)=A \cap Y \cap Y^{g}$, and (b) holds.
(c): Pick $1 \neq \bar{a} \in \overline{A \cap Y}$. Then $Y \leqslant C_{L}(\bar{a})$ and so either $C_{L}(\bar{a}) \leqslant L_{0}$ or $C_{L}(\bar{a})=L$. In the second case $\bar{a} \in \overline{A \cap Y^{g}}$, and $\sqrt{5}$ yields $\bar{a}=1$, a contradiction.
(d) and (e): By 7°), $[\bar{A}, y]=[\bar{A}, Y]=C_{\bar{A}}(y)=\overline{A \cap Y}$, and intersecting with B gives

$$
[\bar{B}, y] \leqslant[\bar{B}, Y] \leqslant C_{\bar{B}}(y)=\overline{B \cap Y}
$$

By 5 . $\bar{A}=\overline{A \cap Y} \times \overline{A \cap Y^{g}}$ and so $\overline{B \cap Y} \cap \overline{B \cap Y^{g}}=1$. Thus

$$
|\overline{B \cap Y}|^{2}=\left|\overline{B \cap Y} \overline{B \cap Y^{g}}\right| \leqslant|\bar{B}|
$$

In addition, by 6°

$$
|[\bar{B}, y]|\left|C_{\bar{B}}(y)\right|=|\bar{B}|
$$

Combining the last three displayed equations we get

$$
|\bar{B}|=|[\bar{B}, y]|\left|C_{\bar{B}}(y)\right| \leqslant|\overline{B \cap Y}|^{2}=\left|\overline{B \cap Y} \overline{B \cap Y^{g}}\right| \leqslant|\bar{B}|
$$

and so (d) and (e) follow.
(f): Let $b \in B \backslash Y$ and $y \in Y \backslash A$. By (d) $C_{\bar{B}}(y)=\overline{B \cap Y}$, so $y \notin C_{Y}(\bar{b})$ and $C_{Y}(\bar{b}) \leqslant A \cap Y$. By (a) $[A, A \cap Y] \leqslant C_{Y}(L)$ and so $A \cap Y \leqslant C_{Y}(\bar{b})$. Hence $C_{Y}(\bar{b})=A \cap Y$, and (f) holds.
(g): This follows from (d) by taking preimages in B.
(h): We have

$$
C_{\bar{B}}(L) \leqslant C_{\bar{B}}(Y) \cap C_{\bar{B}}\left(Y^{g}\right) \stackrel{\text { d }}{\overline{B \cap Y} \cap \overline{B \cap Y^{g}} \stackrel{\text { ® }}{\text { ® }} 1 ~}
$$

Hence also $C_{\bar{B}}\left(O^{p}(L)\right)=1$ and

$$
C_{B}\left(O^{p}(L)\right) \leqslant C_{Y}(L) \cap B \leqslant C_{B}(L) \leqslant C_{B}\left(O^{p}(L)\right)
$$

(i): Let $y \in Y$ and $a \in Z(A)$ with $[a, y] \in C_{Y}(L)$. If $y \in O_{p}(L)$, then $y \in A$ and $[a, y]=1$. If $y \notin O_{p}(L)$, then e] gives $\bar{a} \in C_{\bar{A}}(y)=\overline{A \cap Y}$. So $a \in Y$ and again $[a, y]=1$. As Y is abelian, $[a, Y]=\{[a, y] \mid y \in Y\}$, and we conclude that $[a, Y] \cap C_{Y}(L)=1$. Hence (i) holds.
(j): By $A=(A \cap Y)\left(A \cap Y^{g}\right)$ and so

$$
C_{A}(A \cap Y)=(A \cap Y) C_{A \cap Y^{g}}(A \cap Y)=(A \cap Y) Z(A)
$$

Since $\left[O_{p}(L), Y\right] \leqslant O_{p}(L) \cap Y \leqslant A$, we get that $C_{Y}(\bar{A})$ centralizes the factors of the normal L series $1 \leqslant C_{Y}(L) \leqslant A \leqslant O_{p}(L)$. Since by Hypothesis (i) L has characteristic $p, 1.4$ C shows that $C_{Y}(\bar{A}) \leqslant O_{p}(L)$. As $Y \nless O_{p}(L)$ we conclude that $\bar{A} \neq 1$. Moreover, since $C_{Y}(A) \leqslant C_{Y}(\bar{A}) \leqslant O_{p}(L)$

$$
C_{Y}(A)=A \cap C_{Y}(A)=Z(A) \cap Y
$$

(k): Choose $T_{0} \in \operatorname{Syl}_{p}\left(L_{0}^{g}\right)$ with $L_{0}^{g} \cap Y \leqslant T_{0}$. Then choose $x \in L_{0}^{g}$ with $Y^{g x} \leqslant T_{0}$. Note that $L_{0}^{g x}=L_{0}^{g}$ and $g x \notin L_{0}$. So replacing g by $g x$ we may assume that $Y^{g} \leqslant T_{0}$. If $L_{0}^{g} \cap Y \leqslant O_{p}(L)$, then $L_{0}^{g} \cap Y=O_{p}(L) \cap Y=A \cap Y$ and (k) holds. Assume that $L_{0} \cap Y \leqslant O_{p}(L)$. Since $\left\langle L_{0}^{g} \cap Y, Y^{g}\right\rangle \leqslant T_{0}$

$$
C_{\bar{A}}\left(T_{0}\right) \leqslant C_{\bar{A}}\left(L_{0}^{g} \cap Y\right) \cap C_{\bar{A}}\left(Y^{g}\right) \stackrel{7^{0}}{=} \overline{A \cap Y} \cap \overline{A \cap Y^{g}} \stackrel{5^{\circ}}{=} 1
$$

which is impossible since T_{0} and \bar{A} are p-groups and $\bar{A} \neq 1$ by (j).
(1]): Suppose that $\bar{B} \neq 1$. Then

$$
C_{Y}(L) \leqslant C_{Y}(B) \stackrel{\text { 何 }}{\lessgtr} A \cap Y \quad \text { and } \quad\left|B / C_{B}(Y)\right| \stackrel{\text { e® }}{=}\left|B \cap Y / C_{B \cap Y}(L)\right|=|\overline{B \cap Y}|
$$

Since $\bar{B} \neq 1$ we can pick $b \in B \backslash Y$. Then

$$
|Y / A \cap Y| \stackrel{|\mathbb{f}|}{=}\left|Y / C_{Y}(\bar{b})\right| \stackrel{\sqrt[6]{6^{\circ}}}{=}|[\bar{b}, Y]| \leqslant|\overline{B \cap Y}|=\left|B / C_{B}(Y)\right|
$$

Thus

$$
\left|Y / C_{Y}(B)\right|=\left|Y / A \cap Y \| A \cap Y / C_{Y}(B)\right| \leqslant\left|B / C_{B}(Y)\right|\left|A \cap Y / C_{Y}(B)\right|
$$

(m): By (a) $A^{\prime}=\Phi(A) \leqslant C_{Y}(L) \leqslant C_{A}(Y)$, and so $A / C_{A}(Y)$ is elementary abelian. By (j), $\bar{A} \neq 1$ and so $[A, L] \neq 1$. Since $L=\left\langle A^{L}\right\rangle$ this gives $[A, Y] \neq 1$. Note that $[Y, A] \leqslant A$ and, as seen above, $[A, A]=A^{\prime} \leqslant C_{Y}(L) \leqslant C_{Y}(A)$. Thus A acts cubically on Y. By (g) $A \cap Y=[Y, A] C_{Y}(L) \leqslant$ $[Y, A] C_{Y}(A)$ and by (f) $C_{Y}(A) \leqslant A \cap Y$. So

$$
[Y, A] C_{Y}(A)=A \cap Y
$$

Let $y \in Y \backslash[Y, A] C_{Y}(A)$. We conclude that $y \in Y \backslash A=Y \backslash O_{p}(L)$, and (g) gives $[A, y] C_{Y}(L)=$ $A \cap Y$. Since $[Y, A] C_{Y}(A)=A \cap Y$ this implies

$$
[A, y] C_{Y}(A)=[Y, A] C_{Y}(A)
$$

Hence A acts nearly quadratically on Y.
(n): By bb $C_{A}(Y)=A \cap Y$ and so $C_{Y}(L) \leqslant C_{A}(Y)=A \cap Y$. We get

$$
\left|A \cap Y / C_{A}(Y)\right| \leqslant\left|A \cap Y / C_{Y}(L)\right| \stackrel{\text { ę }}{=}|A / A \cap Y|
$$

and so
$\left|Y / C_{Y}(A)\right| \stackrel{\mathbb{1 B}}{\lessgtr}|A / A \cap Y|\left|A \cap Y / C_{Y}(A)\right| \leqslant|A / A \cap Y|\left|A \cap Y / C_{Y}(L)\right|=|A / A \cap Y|^{2}=\left|A / C_{A}(Y)\right|^{2}$.
(o): Suppose that $B \leqslant Z(A)$. If $\bar{B}=1$, then $[B, Y]=1$ and holds. So suppose that $\bar{B} \neq 1$. Then by (f) $C_{Y}(B) \leqslant A \cap Y$. Since $B \leqslant Z(A)$ this gives $C_{Y}(B)=A \cap Y$. Thus

$$
\left|Y / C_{Y}(B)\right| \stackrel{\mathbb{1}}{\approx}\left|B / C_{B}(Y)\right|\left|A \cap Y / C_{Y}(B)\right|=\left|B / C_{B}(Y)\right|,
$$

so B is an offender on Y. Let $b \in B \backslash C_{B}(Y)$. Then $b \notin Y$. Thus

$$
C_{Y}(B) \leqslant C_{Y}(b) \stackrel{\sqrt{\mathbb{f}}}{\lessgtr} A \cap Y=C_{Y}(B)
$$

so B is a strong offender on Y.
(p): Suppose that L has a central chief factor on \bar{A}. Then there exists an L-invariant subgroup \underline{B} of A with $C_{Y}(L) \leqslant B$ and $[\bar{B}, L]<\bar{B}$. But by (d), $\overline{Y \cap B}=[\bar{B}, y] \leqslant[\bar{B}, L]$ and so by (e) $\bar{B}=\overline{B \cap Y} \times \overline{B \cap Y^{g}} \leqslant[\bar{B}, L]$, a contradiction.
(q): By (e) $Z(A)=(Z(A) \cap Y)\left(Z(A) \cap Y^{g}\right)$. Since $Z(A)$ is abelian and Y is elementary abelian we conclude that $Z(A)$ is elementary abelian.

1.5. Weakly Closed Subgroups

In this section Q is a fixed non-trivial p-subgroup of H. Recall that Q is a weakly closed subgroup of H if every Sylow p-subgroup of H contains exactly one H-conjugate of Q.

Notation 1.44. For $L \leqslant H$

$$
L^{\circ}:=\left\langle P \in Q^{G} \mid P \leqslant L\right\rangle \text { and } L_{\circ}=O^{p}\left(L^{\circ}\right)
$$

(So L° is the weak closure of Q in L with respect to H.)
Lemma 1.45. The following statements are equivalent:
(a) Q is a weakly closed subgroup of H.
(b) $Q=P$ for all $P \in Q^{G}$ with $[Q, P] \leqslant Q \cap P$.
(c) $Q \curvearrowright N_{H}(R)$ for all p subgroups R of H with $Q \leqslant R$.

Proof. (a) \Longrightarrow b): Let $P \in Q^{H}$ with $[Q, P] \leqslant Q \cap P$. Then $Q P$ is a p-group, and since Q is weakly closed in $H, P Q$ contains only one conjugate of Q in H. Thus $P=Q$, and (b) holds.
(b) \Longrightarrow (c): Let R be p-subgroup with $Q \leqslant R$, and let $r \in N_{H}\left(N_{R}(Q)\right)$. Then both Q and Q^{r} are normal in $N_{R}(Q)$ and so bhows $Q=Q^{r}$. Thus $N_{H}\left(N_{R}(Q)\right) \leqslant N_{H}(Q)$. In particular, $N_{R}\left(N_{R}(Q)\right)=N_{R}(Q)$. Hence $N_{R}(Q)=R$ and $N_{H}(R) \leqslant N_{H}(Q)$.
(c) \Longrightarrow a): Let $Q \leqslant T \in \operatorname{Syl}_{p}(H)$ and $P \in Q^{H}$ with $P \leqslant T$. By (c) both P and Q are normal in $N_{H}(T)$. In particular, Q and P are normal in T and so by Burnside's Lemma [KS 7.1.5], $P=Q^{h}$ for some $h \in N_{H}(T)$. Thus $P=Q^{h}=Q$ and Q is a weakly closed subgroup of H.

Lemma 1.46. Let Q be a weakly closed p-subgroup of $H, Q \leqslant K \leqslant H$ and $N \vDash H$. Then the following hold:
(a) Q is a weakly closed subgroup of K.
(b) Let $g \in H$ with $Q^{g} \leqslant K$, then $Q^{g}=Q^{k}$ for some $k \in K$.
(c) $Q^{K}=Q^{K^{\circ}}$ and $K^{\circ}=\left\langle Q^{K}\right\rangle=\left\langle Q^{K^{\circ}}\right\rangle$.
(d) K° is the subnormal closure of Q in K. In particular, $K^{\circ}=K_{\circ} Q=\left\langle Q^{O^{p}(K)}\right\rangle=\left\langle Q^{K \circ}\right\rangle$.
(e) $K_{\circ}=\left[K_{\circ}, Q\right]$.
(f) $K^{\circ} \leqslant \boxtimes H$ iff $K^{\circ}=H^{\circ}$ iff $Q^{H}=Q^{K}$ iff $H=K N_{H}(Q)$.
(g) $N_{K}(Q)$ is a parabolic subgroup of K, in particular $N=N_{N}(Q) O^{p}(N)$.
(h) $N=N_{N}(Q)[N, Q]$.
(i) $[N, Q]=(Q \cap[N, Q])[N, Q, Q]$.
(j) $Q N / N$ is a weakly closed subgroup of H / N.

Proof. (a): This is an immediate consequence of the definition of a weakly closed subgroup.
(b): Let $Q \leqslant T \in \operatorname{Syl}_{p}(K)$ and choose $k \in H$ with $Q^{g} \leqslant T^{k}$. Since Q is weakly closed in T with respect to $H, Q^{g}=Q^{k}$.
(c): Let $\mathcal{Q}=\left\{Q^{g} \mid g \in H, Q^{g} \leqslant K\right\}$. By bl $\mathcal{Q}=Q^{K}$ and by bpplied to K° in place of K, $\mathcal{Q}=Q^{K^{\circ}}$. Hence $Q^{K}=Q^{K^{\circ}}$ and $K^{\circ}=\langle\mathcal{Q}\rangle=\left\langle Q^{K}\right\rangle=\left\langle Q^{K^{\circ}}\right\rangle$.
(d): Since $K^{\circ}=\left\langle Q^{K}\right\rangle=\left\langle Q^{K^{\circ}}\right\rangle, K^{\circ}$ is the subnormal closure of Q in K. Now 1.13 shows that $K^{\circ}=O^{p}\left(K^{\circ}\right) Q=K_{\circ} Q$ and $K^{\circ}=\left\langle Q^{O^{p}\left(K^{\circ}\right)}\right\rangle=\left\langle Q^{K_{\circ}}\right\rangle$. Note that $K_{\circ} \leqslant O^{p}(K) \leqslant K$ and so

$$
K^{\circ}=\left\langle Q^{K_{0}}\right\rangle \leqslant\left\langle Q^{O^{p}(K)}\right\rangle \leqslant\left\langle Q^{K}\right\rangle=K^{\circ} .
$$

Thus $K^{\circ}=\left\langle Q^{O^{p}(K)}\right\rangle$, and dd is proved.
(e): By dd $K^{\circ}=\left\langle Q^{K_{\circ}}\right\rangle=\left[K_{\circ}, Q\right] Q$ and so $K_{\circ}=O^{p}\left(K^{\circ}\right) \leqslant\left[K_{\circ}, Q\right]$. Hence $K_{\circ}=\left[K_{\circ}, Q\right]$.
(f): Suppose that $K^{\circ} \unlhd \unlhd H$. By (d) K° is the subnormal closure of Q in K, and since $K^{\circ} \unlhd \unlhd H$, K° is also the subnormal closure of Q in H. Thus $K^{\circ}=H^{\circ}$.

If $K^{\circ}=H^{\circ}$, then by (b) applied to K and $H, Q^{K}=Q^{K^{\circ}}=Q^{H^{\circ}}=Q^{H}$.
If $Q^{H}=Q^{K}$ then (c) gives $H^{\circ}=\left\langle Q^{H}\right\rangle=\left\langle Q^{K}\right\rangle=\left\langle K^{Q}\right\rangle=K^{\circ}$ and so $K^{\circ} \leqslant H$ and $K^{\circ} \leqslant s H$.
So the first three statements in (f) are equivalent. By a Frattini argument, $H=N_{H}(Q) K$ if and only if $Q^{H}=Q^{K}$. Hence (f) holds.
(g): Let $Q \leqslant T \in S y l_{p}(K)$. Then $T \leqslant N_{K}(Q)$ and so $N_{K}(Q)$ is a parabolic subgroup of K.
(h): Note that $Q[N, Q] \vDash N Q$. So

$$
Q^{[N, Q]}=Q^{Q[N, Q]} \stackrel{\mathbb{E}]}{=} Q^{Q N}=Q^{N},
$$

and thus (h) follows from a Frattini argument.
(il): By (h),

$$
[N, Q]=\left[N_{N}(Q)[N, Q], Q\right]=\left[N_{N}(Q), Q\right][N, Q, Q] \leqslant(Q \cap[N, Q])[N, Q, Q] .
$$

(j): Put $\bar{H}:=H / N$ and let $\bar{S} \in \operatorname{Syl}_{p}(\bar{H})$ with $\bar{Q} \leqslant \bar{S}$ and $h \in H$ with $\bar{Q}^{\bar{h}} \leqslant \bar{S}$. Pick $R \in S y l_{p}(H)$ with $Q \leqslant R$ and $\bar{R}=\bar{S}$. Then $Q \approx R$ and $Q^{h} \leqslant R N$. Hence by (b) $Q^{h} \in Q^{R N}=Q^{N}$ and so $\bar{Q}^{\bar{h}}=\bar{Q}$.

Lemma 1.47. Let Q be a weakly closed subgroup of H. Suppose that H_{1} and H_{2} are normal subgroups of H° such that
(i) $H^{\circ}=H_{1} H_{2}$, and
(ii) $\left[H_{1}, H_{2}\right] \leqslant N_{H}(Q)$.

Let $i \in\{1,2\}$ and set $K_{i}:=\left(H_{i} Q\right)_{\circ}$. Then
(a) $K_{i}=\left[K_{i}, Q\right]=\left[K_{i}, H_{i}\right] \leqslant H_{i}^{\prime}$ and $K_{i} \vDash H^{\circ}$,
(b) $H_{\circ}=K_{1} K_{2}$ and $\left[K_{1}, K_{2}\right] \leqslant\left[K_{1}, H_{2}\right]\left[H_{2}, K_{1}\right]\left[H_{1} \cap H_{2}, H^{\circ}\right] \leqslant O_{p}\left(H^{\circ}\right)$.
(c) Let $N \unlhd H$. Then $F^{*}(H / N)$ normalizes $K_{i} N / N$.

Proof. Let $\{i, j\}=\{1,2\}$. By hypothesis $H_{i} \vDash H^{\circ}$ and so

$$
K_{i}=\left(H_{i} Q\right)_{\circ}=O^{p}\left(\left(H_{i} Q\right)^{\circ}\right) \leqslant O^{p}\left(H_{i} Q\right) \leqslant O^{p}\left(H_{i}\right) ;
$$

in particular, $K_{i} \& H_{i}$. Put $Z:=\left[H_{1}, H_{2}\right]$. We first show:

$$
1^{\circ} . \quad O_{p}(Z) \approx H^{\circ}, K_{i} Z \leqslant H^{\circ} \text { and }\left[Z, H^{\circ}\right] \leqslant O_{p}(Z) .
$$

By (ii) $H^{\circ}=H_{1} H_{2}$, so $Z \gtrless H_{1} H_{2}=H^{\circ}$ and thus also $O_{p}(Z) \preccurlyeq H^{\circ}$, and by (ii) $Z \leqslant N_{H}(Q)$. Thus

$$
\left[K_{i}, H^{\circ}\right]=\left[K_{i}, H_{i} H_{j}\right] \leqslant\left[K_{i}, H_{i}\right]\left[K_{i}, H_{j}\right] \leqslant K_{i} Z \quad \text { and } \quad[Z, Q] \leqslant Z \cap Q \leqslant O_{p}(Z)
$$

Since $Z \curvearrowright H^{\circ}$ the first chain of inequalities gives $K_{i} Z \curvearrowright H^{\circ}$, and since by $1.46(\mathrm{c}), H^{\circ}=\left\langle Q^{H^{\circ}}\right\rangle$, the second one gives $\left[Z, H^{\circ}\right] \leqslant O_{p}(Z)$.
$2^{\circ} . \quad R_{i}:=\left[K_{i}, H_{i}\right] O_{p}(Z) \vDash H^{\circ}$.
By $\left.1^{\circ}\right) K_{i} Z$ and $O_{p}(Z)$ are normal in H°. Since also $H_{i} \& H^{\circ}$, we get $\left[K_{i} Z, H_{i}\right] O_{p}(Z) \vDash H^{\circ}$. Again by $\left.1^{\circ}\right]\left[Z, H_{i}\right] \leqslant\left[Z, H^{\circ}\right] \leqslant O_{p}(Z)$ and so

$$
\left[K_{i} Z, H_{i}\right] O_{p}(Z)=\left[K_{i}, H_{i}\right]\left[Z, H_{i}\right] O_{p}(Z)=\left[K_{i}, H_{i}\right] O_{p}(Z)=R_{i}
$$

Thus 2° holds.
$3^{\circ} . \quad K_{i} \leqslant R_{i}$.
By $1.46 \mathrm{e}, K_{i}=\left[K_{i}, Q\right]$ and so

$$
K_{i}=\left[K_{i}, Q\right] \leqslant\left[K_{i}, H^{\circ}\right]=\left[K_{i}, H_{1} H_{2}\right]=\left[K_{i}, H_{i}\right]\left[K_{i}, H_{j}\right] \leqslant\left[K_{i}, H_{i}\right] Z \leqslant R_{i} Z
$$

Thus

$$
K_{i}=\left[K_{i}, Q\right] \leqslant\left[R_{i} Z, Q\right]=\left[R_{i}, Q\right][Z, Q] \leqslant R_{i} O_{p}(Z)=R_{i}
$$

(a): Recall that $K_{i} \leqslant H_{i}$, so $\left[K_{i}, H_{i}\right] \leqslant K_{i} \cap H_{i}^{\prime}$. Hence $R_{i} \leqslant K_{i} O_{p}(Z)$, and by (3), $R_{i}=$ $K_{i} O_{p}(Z)$.

Since $Z \leqslant H_{1} \cap H_{2} \leqslant H_{i}, O_{p}(Z)$ normalizes K_{i} and [K_{i}, H_{i}]. Thus

$$
O^{p}\left(\left[K_{i}, H_{i}\right]\right)=O^{p}\left(\left[K_{i}, H_{i}\right] O_{p}(Z)\right)=O^{p}\left(R_{i}\right)=O^{p}\left(K_{i} O_{p}(Z)\right)=O^{p}\left(K_{i}\right)=K_{i} .
$$

Since by $2^{\circ} R_{i} \leqslant H^{\circ}$, this shows that $K_{i} \leqslant H^{\circ}$ and $K_{i} \leqslant\left[K_{i}, H_{i}\right]$. As [$\left.K_{i}, H_{i}\right] \leqslant K_{i}$ we get $K_{i}=\left[K_{i}, H_{i}\right] \leqslant H_{i}^{\prime}$, and (a) is proved.
(b): Again by 1.46 e $H_{\circ}=\left[H_{\circ}, Q\right]$. Since $H^{\circ}=H_{1} H_{2}$ we have $H_{\circ}=O^{p}\left(H_{1}\right) O^{p}\left(H_{2}\right)$. By 1.46 d $),\left(H_{i} Q\right)^{\circ}=\left(H_{i} Q\right) \circ Q=K_{i} Q$ and so $\left[O^{p}\left(H_{i}\right), Q\right] \leqslant\left(H_{i} Q\right)^{\circ} \leqslant K_{i} Q$. Hence

$$
H_{\circ}=\left[H_{\circ}, Q\right]=\left[O^{p}\left(H_{1}\right) O^{p}\left(H_{2}\right), Q\right]=\left[O^{p}\left(H_{1}\right), Q\right]\left[O^{p}\left(H_{2}\right), Q\right] \leqslant K_{1} Q K_{2} Q=K_{1} K_{2} Q
$$

and as $K_{1} K_{2} \leqslant H_{\circ}=O^{p}\left(H_{\circ}\right)$ and by (a) $K_{1} K_{2} \vDash H^{\circ}, H_{\circ}=O^{p}\left(K_{1} K_{2} Q\right)=K_{1} K_{2}$.
Note that by $\left.1{ }^{\top}\right],\left[H_{j}, H_{i}, H_{i}\right]=\left[Z, H_{i}\right] \leqslant O_{p}(Z)$. Hence, the Three Subgroups Lemma shows that $\left[H_{i}, H_{i}, H_{j}\right]=\left[H_{i}^{\prime}, H_{j}\right] \leqslant O_{p}(Z)$. Since by a) $K_{i} \leqslant H_{i}^{\prime}$, we get

$$
\left[K_{i}, K_{j}\right] \leqslant\left[K_{i}, H_{j}\right] \leqslant\left[H_{i}^{\prime}, H_{j}\right] \leqslant O_{p}(Z) \leqslant O_{p}\left(H^{\circ}\right)
$$

As $H_{\circ}=K_{1} K_{2}$, we also get $\left[H_{1} \cap H_{2}, H_{\circ}\right]=\left[H_{1} \cap H_{2}, K_{1}\right]\left[H_{1} \cap H_{2}, K_{2}\right] \leqslant O_{p}\left(H^{\circ}\right)$, and (b) is proved.
(c): Put $\bar{H}=H / N$. By $1.46(\mathrm{j}) \bar{Q}$ is a weakly closed subgroup of \bar{H}. Hence $\bar{H}, \overline{H_{1}}, \overline{H_{2}}, \bar{Q}$ fulfill the hypothesis of the lemma and $\overline{K_{i}}=\left(\overline{H_{1}} \bar{Q}\right)_{\circ}$. So replacing H by H / N we may assume that $N=1$. Put $L_{i}:=O^{p^{\prime}}\left(H_{i}\right)$. We first show:

$4^{\circ} . \quad K_{i}=\left(L_{i} Q\right)$.

Note that $H^{\circ}=O^{p^{\prime}}\left(H^{\circ}\right)$. Since $H^{\circ}=H_{1} H_{2}$ we get $H^{\circ}=L_{1} L_{2}$. As $L_{i} \leqslant H_{i}$ we conclude that $H_{i}=L_{i}\left(H_{1} \cap H_{2}\right)$. By (b), $\left[H_{1} \cap H_{2}, Q\right] \leqslant\left[H_{1} \cap H_{2}, H^{\circ}\right] \leqslant O_{p}\left(H^{\circ}\right)$. So $H_{1} \cap H_{2}$ normalizes $O_{p}\left(H^{\circ}\right) Q$. Since Q is weakly closed, this shows that $H_{1} \cap H_{2} \leqslant N_{H}(Q)$ and $H_{i}=L_{i}\left(H_{1} \cap H_{2}\right)=$ $L_{i} N_{H_{i}}(Q)$. Hence 1.46 £ gives $\left(H_{i} Q\right)^{\circ}=\left(L_{i} Q\right)^{\circ}$. Thus also $K_{i}=\left(L_{i} Q\right)_{\circ}$.

Observe that $F^{*}(H)=E(H) O_{p}(H) D$, where $E(H)$ is the product of the components of H and $D:=O_{p^{\prime}}(F(H))$. Thus, to prove (C) it suffices to show that each of the factors $E(H), O_{p}(H)$ and D normalizes K_{1}.

Note that K_{1} is a subnormal subgroup of H. Thus, by $\left[\mathbf{K S}\right.$ 5.5.7(c)] $E(H)=E\left(K_{1}\right) C_{E(H)}\left(K_{1}\right)$ and so $E(H) \leqslant N_{H}\left(K_{1}\right)$. Moreover, since $K_{1}=O^{p}\left(K_{1}\right), 1.23$ (with $\pi=\{p\}$) shows that also $O_{p}(H) \leqslant N_{H}\left(K_{1}\right)$.

The coprime action of Q on D gives $D=C_{D}(Q)[D, Q]$, and by (a) $[D, Q] \leqslant H^{\circ} \leqslant N_{H}\left(K_{1}\right)$. Since $L_{1} \leftrightarrow \forall H$ and $L_{1}=O^{p^{\prime}}\left(L_{1}\right), D$ normalizes L_{1} by 1.23 . It follows that $C_{D}(Q)$ normalizes L_{1}, Q and $\left(L_{1} Q\right)_{\circ}$. By $4^{\circ} K_{1}=\left(L_{1} Q\right)$ 。and so $C_{D}(Q) \leqslant N_{H}\left(K_{1}\right)$. This shows that also $D=$ $C_{D}(Q)[D, Q]$ normalizes K_{1}, and (C) is proved.

Lemma 1.48. Suppose that Q is a weakly closed subgroup of H.
(a) Let $X \subseteq Z(Q)$ and $h \in H$ with $X^{h} \subseteq Z(Q)$. Then there exists $g \in N_{H}(Q)$ with $x^{g}=x^{h}$ for all $x \in X$.
(b) $x^{H} \cap Z(Q)=x^{N_{H}(Q)}$ for every $x \in Z(Q)$.

Proof. (a): Note that $\left\langle Q, Q^{h}\right\rangle \leqslant C_{H}\left(X^{h}\right)$ and so by 1.46 b) there exists $c \in C_{H}\left(X^{h}\right)$ such that $Q^{h c}=Q$. Hence $h c \in N_{H}(Q)$ and $x^{h c}=x^{h}$ for all $x \in X$. Thus (a) holds.
(b) follows from (a) applied with $X=\{x\}$.

Lemma 1.49. Let Q be a weakly closed p-subgroup of H, and let $Q \leqslant L \leqslant H$. Suppose that $C_{H}(Q) \leqslant Q$ and H is of characteristic p. Then $\left[Q, C_{H}\left(O_{p}(L)\right)\right] \leqslant Q \cap O_{p}(L), C_{H}\left(O_{p}(L)\right)$ is a p-group, and L is of characteristic p.

Proof. Put $D:=C_{H}\left(O_{p}(L)\right)$. Since Q is weakly closed, $O_{p}(H)$ normalizes Q. Thus

$$
\left[O_{p}(H), Q\right] \leqslant O_{p}(H) \cap Q \leqslant O_{p}(H) \cap L \leqslant O_{p}(H) \cap O_{p}(L)
$$

Hence Q centralizes $O_{p}(H) / O_{p}(H) \cap O_{p}(L)$. Since D centralizes $O_{p}(H) \cap O_{p}(L)$, we conclude that $[Q, D]$ centralizes the factors of the series

$$
1 \leqslant O_{p}(H) \leqslant O_{p}(L) \leqslant O_{p}(H)
$$

Since H is of characteristic $p, 1.4$ shows that $[Q, D]$ is a p-group It follows that $Q[Q, D]$ is a p-group normalized by D and since Q is weakly closed this implies that D normalizes Q. Thus

$$
[Q, D] \leqslant Q \cap D \leqslant Q \cap O_{p}(D) \leqslant Q \cap L \cap O_{p}(D) \leqslant Q \cap O_{p}(L) \leqslant O_{p}(L) \leqslant C_{H}(D)
$$

Hence $[Q, D, D]=1$, and 1.3 shows that D is a p-group. Hence also $C_{L}\left(O_{p}(L)\right)$ is a p-group, so $C_{L}\left(O_{p}(L)\right) \leqslant O_{p}(L)$ and L is of characteristic p.

Corollary 1.50. Let Q be a weakly closed p-subgroup of H, and let $Q \leqslant L \leqslant H$. Suppose that $C_{H}(Q) \leqslant Q$ and that $C_{H}(y)$ is of characteristic p for some $1 \neq y \in C_{O_{p}(L)}(Q)$. Then $\left[Q, C_{H}\left(O_{p}(L)\right)\right] \leqslant Q \cap O_{p}(L), C_{H}\left(O_{p}(L)\right)$ is a p-group, and L has characteristic p.

Proof. Put $K:=N_{H}\left(O_{p}(L)\right)$ and note that $Q \leqslant C_{K}(y) \leqslant C_{H}(y)$. By hypothesis, $C_{H}(y)$ is of characteristic p. Since Q is also a weakly closed subgroup of $C_{H}(y)$, we can apply 1.49 with $C_{H}(y)$ and $C_{K}(y)$ in place of H and L. Then $C_{K}(y)$ is of characteristic p. Note that $y \in O_{p}(L) \leqslant O_{p}(K)$ and so 1.5 shows that K has characteristic p. Now 1.49 (with K in place of H) shows that
$\left[Q, C_{K}\left(O_{p}(L)\right)\right] \leqslant Q \cap O_{p}(L), C_{K}\left(O_{p}(L)\right)$ is a p-group, and L is of characteristic p. As $C_{H}\left(O_{p}(L)\right) \leqslant K$ we have $C_{H}\left(O_{p}(L)\right)=C_{K}\left(O_{p}(L)\right)$ and so the corollary is proved.

1.6. Large Subgroups

In this section Q is a fixed non-trivial p-subgroup of H.
Definition 1.51. Recall from the introduction: Q is large (in H) if $C_{H}(Q) \leqslant Q$ and

$$
\begin{equation*}
N_{H}(U) \leqslant N_{H}(Q) \text { for every } 1 \neq U \leqslant C_{H}(Q) \tag{Q!}
\end{equation*}
$$

We will refer to this property as the Q !-property, or shorter just Q !.
Moreover

$$
Q^{\bullet}:=O_{p}\left(N_{G}(Q)\right), \quad M^{\circ}:=\left\langle Q^{g} \mid g \in G, Q^{g} \leqslant M\right\rangle, \quad M_{\circ}:=O^{p}\left(M^{\circ}\right)
$$

Note that according to 1.52 b below Q is a weakly closed subgroup of G, so the notions M° and M_{\circ} correspond to those introduced in 1.44 for weakly closed subgroups.

Lemma 1.52. Let Q be large in H and $Q \leqslant L \leqslant H$ and let Y be a non-trivial p-subgroup of H normalized by L. Then the following hold:
(a) $N_{H}(T) \leqslant N_{H}(Q)$ for every p-subgroup T of H with $Q \leqslant T$.
(b) Q is a weakly closed subgroup of H.
(c) $L^{\circ}=\left(L C_{H}(Y)\right)^{\circ}$ and $\left[L^{\circ}, C_{H}(Y)\right] \leqslant O_{p}\left(L^{\circ}\right)$. In particular, $C_{H}(Y)$ normalizes L°.
(d) Let $\widetilde{L}:=L / O_{p}(L)$. Suppose that $O^{p}(L) \leqslant L^{\circ}$ and $L=O^{p^{\prime}}(L)$. Then $\widetilde{C_{L}(Y)} \leqslant Z\left(\widetilde{\left.L^{\circ}\right)} \leqslant\right.$ $\Phi(\widetilde{L})=\Phi\left(\widetilde{L_{\circ}}\right)$.
(e) $C_{H}(Q) \cap C_{H}\left(Q^{g}\right)=C_{H}\left(Q^{\bullet}\right) \cap C_{H}\left(Q^{\bullet g}\right)=Z(Q) \cap Z\left(Q^{g}\right)=Z\left(Q^{\bullet}\right) \cap Z\left(Q^{\bullet g}\right)=1$ for every $g \in H \backslash N_{H}(Q)$; in particular, $N_{H}(Q)=N_{H}\left(Q^{\bullet}\right)$, and Q^{\bullet} is a large subgroup of H.
Proof. (a): Let $Q \leqslant T$, T a p-subgroup of H. Then $N_{H}(T) \leqslant N_{H}(Z(T)) \leqslant N_{H}(Q)$ since $Z(T) \leqslant C_{H}(Q)$.
(b): By 1.45 the condition in (a) is equivalent to Q being a weakly closed subgroup of H.
(c): We may assume that $H=L C_{H}(Y)$. Note that $C_{Y}(Q) \neq 1$ since $Y \neq 1$, and so by Q !, $C_{H}(Y) \leqslant N_{H}\left(C_{Y}(Q)\right) \leqslant N_{H}(Q)$. Thus $H=L N_{H}(Q)$. Since Q is a weakly closed subgroup of H, 1.46 fives $L^{\circ}=H^{\circ}=\left(L C_{H}(Y)\right)^{\circ}$.

In addition

$$
\left[C_{H}(Y), Q\right] \leqslant Q \cap C_{H}(Y) \vDash C_{L^{\circ}}(Y) \vDash L^{\circ}
$$

so $\left[C_{H}(Y), Q\right] \leqslant O_{p}\left(L^{\circ}\right)$. Since Q is a weakly closed subgroup of $H, 1.46$ c implies $L^{\circ}=\left\langle Q^{L^{\circ}}\right\rangle$ and so conjugation with L° gives $\left[C_{H}(Y), L^{\circ}\right] \leqslant O_{p}\left(L^{\circ}\right)$.
(d): Since $O^{p}(L) \leqslant L^{\circ}, O^{p}(L)=O^{p}\left(L^{\circ}\right)=L_{\circ}$ and thus also $O^{p}(\widetilde{L})=\widetilde{L_{\circ}}$. Put $D:=C_{L}(Y)$. By (c) $\left[L^{\circ}, D\right]=\left[L^{\circ}, C_{L}(Y)\right] \leqslant O_{p}\left(L^{\circ}\right) \leqslant O_{p}(L)$ and so $\left[\widetilde{L^{\circ}}, \widetilde{D}\right]=1$. Since $O^{p}(D) \leqslant L^{\circ}$, this shows $O^{p}(\widetilde{D}) \leqslant Z(\widetilde{D})$, therefore \widetilde{D} is nilpotent. As $O_{p}(\widetilde{D}) \leqslant O_{p}(\widetilde{L})=1$, we conclude that \widetilde{D} is a p^{\prime}-group and thus $\widetilde{D} \leqslant O^{p}(\widetilde{L})=\widetilde{L_{\circ}} \leqslant \widetilde{L^{\circ}}$. Hence $\widetilde{C_{L}(Y)}=\widetilde{D} \leqslant Z\left(\widetilde{L^{\circ}}\right)$. Since L° is generated by p-elements, $\widetilde{L^{\circ}}=O^{p^{\prime}}\left(\widetilde{L^{\circ}}\right)$. Thus $\left.1.7, \mathrm{~b}\right)$ applied to $\widetilde{L^{\circ}}$ gives $Z\left(\widetilde{L^{\circ}}\right) \leqslant \Phi\left(\widetilde{L^{\circ}}\right)$. By 1.7 a $\Phi\left(\widetilde{L^{\circ}}\right)=\Phi\left(\widetilde{L_{\circ}}\right)$, and so (d) holds.
(e): By definition of a large subgroup, Q contains its centralizer in H. Hence $C_{H}\left(Q^{\bullet}\right) \leqslant$ $C_{H}(Q) \leqslant Q \leqslant Q^{\bullet}$ and $Z\left(Q^{\bullet}\right) \leqslant Z(Q)$ since $Q \leqslant Q^{\bullet}$. Moreover, $C_{H}(Q)=Z(Q)$ and $C_{H}\left(Q^{\bullet}\right)=$ $Z\left(Q^{\bullet}\right)$.

Let $g \in H$ with $Z(Q) \cap Z(Q)^{g} \neq 1$. By $Q!, Q$ and Q^{g} are normal in $N_{H}\left(Z(Q) \cap Z(Q)^{g}\right)$. Since Q is a weakly closed subgroup of H, this gives $Q=Q^{g}$ and thus $g \in N_{H}(Q)$. Hence $Z\left(Q^{\bullet}\right) \cap$ $Z\left(Q^{\bullet}\right)^{g} \leqslant Z(Q) \cap Z(Q)^{g}=1$ for all $g \in H \backslash N_{H}(Q)$ and $N_{H}\left(Q^{\bullet}\right) \leqslant N_{H}\left(Z\left(Q^{\bullet}\right)\right) \leqslant N_{H}(Q)$. Clearly $N_{H}(Q) \leqslant N_{H}\left(Q^{\bullet}\right)$ and so $N_{H}\left(Q^{\bullet}\right)=N_{H}(Q)$.

Let $1 \neq X \leqslant C_{H}\left(Q^{\bullet}\right)$, Then $X \leqslant C_{H}(Q)$ and by $Q!, N_{H}(X) \leqslant N_{H}(Q)=N_{H}\left(Q^{\bullet}\right)$. Moreover, as seen above, $C_{H}\left(Q^{\bullet}\right) \leqslant Q^{\bullet}$, and so Q^{\bullet} is a large subgroup of H.

Lemma 1.53. Let Q be large in H and $H=H^{\circ} S$ for $Q \leqslant S \in \operatorname{Syl}_{p}(H)$. Suppose that there exists $R \leqslant H$ such that $R \leqslant N_{H}(Q)$ and H / R is p-minimal. Then H is p-minimal.

Proof. Since H / R is p-minimal, there exists a unique maximal subgroup H_{0} of H containing $S R$. Let H_{1} be any maximal subgroup of H containing S. Assume $H_{1} \neq H_{0}$. Then $R \not H_{1}$ and so $H=H_{1} R$. Since $R \leqslant N_{H}(Q), H=H_{1} N_{H}(Q)$. Since Q is a weakly closed subgroup of $H, 1.46$ f gives $H_{1}^{\circ}=H^{\circ}$, and so $H=H^{\circ} S \leqslant H_{1}$, which contradicts $H_{1} \neq H$.

Lemma 1.54. Suppose that Q is a large p-subgroup of H. Let U be a non-trivial elementary abelian p-subgroup of H and $Q \leqslant E \leqslant N_{H}(U)$. Suppose that $Q \nleftarrow E, O_{p}\left(E / C_{E}(U)\right)=1$ and $O^{p}(E) C_{E}(U) / C_{E}(U)$ is quasisimple. Then the following hold:
(a) $O^{p}(E) C_{E}(U)=E_{\circ} C_{E}(U)$ and $E_{\circ}=E_{\circ}^{\prime}=O^{p}\left(E_{\circ}\right)$.
(b) $E_{\circ} / C_{E_{\circ}}(U), E_{\circ} / O_{p}\left(E_{\circ}\right)$ and $E_{\circ} /\left[O_{p}\left(E_{\circ}\right), E_{\circ}\right]$ all are quasisimple.
(c) $E_{\circ}=\left[E_{\circ}, Y\right] \leqslant\left\langle Y^{E_{\circ}}\right\rangle$ for all p-subgroups Y of E with $[U, Y] \neq 1$.

Proof. Put $\bar{E}=E / C_{E}(U)$. Then $O_{p}(\bar{E})=1$ and $\overline{O^{p}(E)}$ is quasisimple.
(a): Since $Q \notin E, Q$! shows that $[U, Q] \neq 1$. So $\bar{Q} \neq 1$ and, as $\overline{O^{p}(E)}$ is quasisimple and $\underline{O_{p}}(\bar{E})=1,1.14$ b gives $O^{p}(\bar{E}) \leqslant\left\langle\bar{Q}^{O^{p}(\bar{E})}\right\rangle \leqslant \overline{E^{\circ}}$. Also $E^{\circ}=O^{p}\left(E^{\circ}\right)=O^{p}\left(E_{\circ}\right)$. Thus $O^{p}(\bar{E})=$ $\overline{E_{\circ}}$, and the first statement in (a) holds. In particular, $\overline{E_{0}}$ is quasisimple and so perfect. By 1.46 d. $E^{\circ}=E_{\circ} Q$. Since $\overline{E_{\circ}}$ is perfect, $E_{\circ}=E_{\circ}^{\prime} C_{E_{\circ}}(U)$ and so $E^{\circ}=E_{\circ}^{\prime} Q C_{E^{\circ}}(U)$. By 1.52 c,

$$
E^{\circ}=\left(E_{\circ}^{\prime} Q C_{E \circ}(U)\right)^{\circ}=\left(E_{\circ}^{\prime} Q\right)^{\circ} \leqslant E_{\circ}^{\prime} Q
$$

and so $E_{\circ} \leqslant E_{\circ}^{\prime}$. Thus E_{\circ} is perfect, and (a) is proved.
(b): As seen above, $E^{\circ} / C_{E^{\circ}}(U) \cong \overline{E_{\circ}}=O^{p}(\bar{E})$ is quasisimple. By $1.52(\mathrm{c}),\left[E^{\circ}, C_{E}(U)\right] \leqslant O_{p}(E)$ and so $\left[E_{\circ}, C_{E_{\circ}}(U)\right] \leqslant O_{p}\left(E_{\circ}\right)$. Let L be the inverse image of $Z\left(E_{\circ} / C_{E_{\circ}}(U)\right)$ in L. Then $\left[L, E_{\circ}\right] \leqslant$ $C_{E_{\circ}}(U)$ and $\left[C_{E_{\circ}}(U), E_{\circ}\right] \leqslant O_{p}\left(E_{\circ}\right)$. Since E_{\circ} is perfect the Three Subgroups Lemma gives $\left[L, E_{\circ}\right] \leqslant$ $\left[E_{\circ}, O_{p}\left(E_{\circ}\right)\right]$. Thus $L / O_{p}\left(E_{\circ}\right)=Z\left(E_{\circ} / O_{p}\left(E_{\circ}\right)\right)$ and $L /\left[O_{p}\left(E_{\circ}\right), E_{\circ}\right]=Z\left(E_{\circ} /\left[E_{\circ}, O_{p}\left(E_{\circ}\right)\right]\right)$. Since E_{\circ} / L is simple and E_{\circ} is perfect, this shows that $E_{\circ} / O_{p}\left(E_{\circ}\right)$ and $E_{\circ} /\left[O_{p}\left(E_{\circ}\right), E_{\circ}\right]$ are quasisimple. So b holds.
(c): By 1.14 b $\overline{E_{\circ}}=\left[\overline{E_{\circ}}, \bar{Y}\right]$. Since $E_{\circ} / O_{p}\left(E_{\circ}\right)$ is quasisimple this gives $E_{\circ}=\left[E_{\circ}, Y\right] O_{p}\left(E_{\circ}\right)$. As $E_{\circ}=O^{p}\left(E_{\circ}\right)$, we conclude that $E_{\circ}=\left[E_{\circ}, Y\right] \leqslant\left\langle Y^{E_{\circ}}\right\rangle$.

Lemma 1.55. Let Q be large in H and $L \leqslant H$ with $Q \leqslant L$ and $O_{p}(L) \neq 1$. Then
(a) $C_{H}\left(O_{p}(L)\right)$ is a p-group; in particular, L has characteristic p.
(b) Let R be a parabolic subgroup of H with $O_{p}(R) \neq 1$. Then $C_{H}\left(O_{p}(R)\right) \leqslant O_{p}(R)$.
(c) H has parabolic characteristic p.
(d) Either $L^{\circ}=Q$ or $C_{H}\left(L^{\circ}\right)=1$.

Proof. (a): To show that $C_{H}\left(O_{p}(L)\right)$ is a p-group, it suffices to verify the hypothesis of 1.50 . Note that $C_{H}(Q) \leqslant Q$ since Q is large and that Q is a weakly closed subgroup by 1.52 b . Since $O_{p}(L) \neq 1$ and Q normalizes $O_{p}(L)$, there exists $1 \neq y \in C_{O_{p}(L)}(Q)$. So it remains to show that $C_{H}(y)$ has characteristic p.

Put $Y:=\langle y\rangle$. Then by $Q!, N_{H}(Y) \leqslant N_{H}(Q)$ and so $N_{H}(Y)$ is a local subgroup of $N_{H}(Q)$. Since $C_{H}(Q) \leqslant Q, N_{H}(Q)$ has characteristic p and so by 1.2 C $) N_{H}(Q)$ has local characteristic p. Thus $N_{H}(Y)$ has characteristic p. Since $C_{H}(y)=C_{H}(Y) \approx N_{H}(Y)$, also $C_{H}(y)$ has characteristic p (see 1.2 a $)$.
(b): Since R is parabolic subgroup of H, R contains a Sylow p-subgroup T of H and so also a conjugate of Q. So by (a) $C_{H}\left(O_{p}(R)\right)$ is a p-group. Observe that T normalizes $C_{H}\left(O_{p}(R)\right)$ and so $C_{H}\left(O_{p}(R)\right) \leqslant T \leqslant R$. As R normalizes $C_{H}\left(O_{p}(R)\right)$ this gives $\left.C_{H}\left(O_{p}(R)\right) \leqslant O_{p}(R)\right)$.
(c) follows from (b).
(d): If $C_{H}\left(L^{\circ}\right) \neq 1$, then Q ! implies that $Q \vDash N_{H}\left(C_{H}\left(L^{\circ}\right)\right)$ and so $Q \vDash L$. As $L^{\circ}=\left\langle Q^{L}\right\rangle$ by 1.46 C), this gives $L^{\circ}=Q$.

Lemma 1.56. Let Q be large in H and $Q \leqslant S \in \operatorname{Syl}_{p}(H)$, and let $L \in \mathcal{L}_{H}(S)$.
(a) There exist $M \in \mathfrak{M}_{H}(S)$ and $L^{*} \in \mathcal{L}_{H}(S)$ such that $L^{*} \leqslant M, L C_{H}\left(Y_{L}\right)=L^{*} C_{H}\left(Y_{L}\right)$, $L^{\circ}=\left(L^{*}\right)^{\circ} \leqslant M^{\circ}$ and $Y_{L}=Y_{L^{*}} \leqslant Y_{M}$.
(b) Suppose that $Q \notin L$, and let M and L^{*} be as in (a). Then $Q \nRightarrow L^{*}$ and $Q \nRightarrow M$.
(c) Either $\mathcal{M}_{H}(S)=\left\{N_{H}(Q)\right\}$ or there exists $M \in \mathfrak{M}_{H}(S)$ with $Q \notin M$.

Proof. (a): By $1.55 H$ has parabolic characteristic p. Hence 1.25 shows that there exists $M \in \mathfrak{M}_{H}(S)$ and $L^{*} \in \mathcal{L}_{H}(S)$ with $L^{*} \leqslant M, L C_{H}\left(Y_{L}\right)=L^{*} C_{H}\left(Y_{L}\right)$ and $Y_{L}=Y_{L^{*}} \leqslant Y_{M}$. Thus 1.52 c) gives

$$
L^{\circ}=\left(L C_{H}\left(Y_{L}\right)\right)^{\circ}=\left(L^{*} C_{H}\left(Y_{L}\right)\right)^{\circ}=\left(L^{*}\right)^{\circ}
$$

and (a) holds.
(b): Q ! shows that $C_{H}\left(Y_{L}\right) \leqslant C_{H}\left(C_{Y_{L}}(Q)\right) \leqslant N_{H}(Q)$. Since $Q \nleftarrow L$ and $L C_{H}\left(Y_{L}\right)=L^{*} C_{H}\left(Y_{L}\right)$ we conclude that $Q \nleftarrow L^{*}$ and so also $Q \nleftarrow M$.
(c): Suppose that $\mathcal{M}_{H}(S) \neq\left\{N_{H}(Q)\right\}$. Then there exists $L \in \mathcal{L}_{H}(S)$ with $Q \notin L$ and so by (b) there exists $M \in \mathfrak{M}_{H}(S)$ with $Q \neq M$.

Lemma 1.57. Let Q be large in H. Suppose that $M \leqslant H$ with $Q \leqslant M$ and V is a non-trivial elementary abelian M-invariant p-subgroup of H. Then the following hold:
(a) $N_{M}(A) \leqslant N_{M}(Q)$ for every $1 \neq A \leqslant C_{V}(Q)$.
(b) Suppose that $M \not N_{H}(Q)$. Then V is a faithful Q !-module ${ }^{3}$ for $M / C_{M}(V)$ with respect to $Q C_{M}(V) / C_{M}(V)$.
(c) Let $U \leqslant M$ be transitive on V. Then $M^{\circ}=\left\langle Q^{U}\right\rangle$.

Proof. (a): This is a direct consequence of the Q !-property.
(b): Since $M \nless N_{H}(Q), Q \notin H$. Together with (a) this shows that V is a Q !-module for H with respect to Q. Now (b) follows from A.51.
(c): Let $1 \neq v \in C_{V}(Q)$. By a Frattini argument $M=U C_{M}(v)$, and Q ! implies $C_{M}(v) \leqslant$ $N_{M}(Q)$. So $M=U N_{M}(Q)$, and 1.46(f) gives $M^{\circ}=\left\langle Q^{U}\right\rangle$.

Lemma 1.58. Let Q be large in H, let $S \in \operatorname{Syl}_{p}(H)$ with $Q \leqslant S$, and let $L \in \mathcal{L}_{H}(S)$. Put $P:=L^{\circ} S$ and $\widetilde{L}:=L / C_{L}\left(Y_{L}\right)$. Let \mathcal{K} be a non-empty P-invariant set of subgroups of \widetilde{P} and suppose that Y_{L} is a natural $S L_{2}(q)$-wreath product module for \widetilde{P} with respect to \mathcal{K}. Then \mathcal{K} is uniquely determined by that property. Moreover, the following hold, where P^{*} is the inverse image of $\langle\mathcal{K}\rangle$ in P.
(a) Q acts transitively on \mathcal{K}.
(b) $Y_{L}=Y_{P}, Y_{P}$ is a simple P-module, and $O_{p}(P)=C_{S}\left(Y_{L}\right)$.
(c) $O^{p}(P)=O^{p}\left(P^{*}\right)=L_{\circ}$, and $\widetilde{P^{*}}$ is normal in \widetilde{L}.
(d) $P_{1}=P^{*}$ for all $P_{1} \vDash P$ with $O_{p}(P) \leqslant P_{1}$ and $\widetilde{P_{1}}=\langle\mathcal{K}\rangle$.
(e) $P \in \mathcal{P}_{H}(S)$.
(f) One of the following holds:
(1) $C_{P}\left(Y_{P}\right)=O_{p}(P)$.
(2) $p=2=|\mathcal{K}|, \widetilde{Q} \cong C_{4}$, and, for any $T \in \operatorname{Syl}_{3}\left(L^{\circ}\right)$, T is extraspecial of order 3^{3}, $\left[Z(T), L^{\circ}\right] \leqslant O_{2}(P)$. and $L_{\circ}=T O_{2}\left(L_{\circ}\right)$.
Proof. Since Y_{L} is a faithful natural $S L_{2}(q)$-wreath product module for \widetilde{P} with respect to \mathcal{K}, A. 25 gives
$1^{\circ} . Y_{L}=\chi_{K \in K}\left[Y_{L}, K\right]$ and $\widetilde{P^{*}}=\chi_{K \in \mathcal{K}} K$, and for $K \in \mathcal{K}, K \cong S L_{2}(q)$ and $\left[Y_{L}, K\right]$ is a natural $S L_{2}(q)$-module for K.

In particular, $O^{p}\left(\widetilde{P^{*}}\right) \neq 1$ and thus also $L^{\circ} \neq Q$. Hence by 1.55 d $C_{Y_{L}}\left(\left\langle K^{Q}\right\rangle\right)=1$, and so
2°. $\mathcal{K}=K^{Q}$ for $K \in \mathcal{K}$, and (a) holds.
Thus \widetilde{P} and Y_{L} satisfy the hypothesis of A.28 in place of H and V, and A.28 bives:
3°. $\quad \widetilde{P}$ is p-minimal.
By 1.52 c
$4^{\circ} . \quad\left[C_{L}\left(Y_{L}\right), L^{\circ}\right] \leqslant O_{p}\left(L^{\circ}\right) \leqslant O_{p}(L) \leqslant O_{p}(P)$.
Since Q is weakly closed, 1.46 gives
5°. $L_{\circ}=\left[L_{\circ}, Q\right]$.
By 1.24 f$) Y_{P} \leqslant Y_{L}$. Since $\left[Y_{L}, K\right]$ is a simple K-module for $K \in \mathcal{K}$ and Q acts transitively on \mathcal{K}, Y_{L} is a simple P-module, so $Y_{P}=Y_{L}$ and $O_{p}(\widetilde{P})=1$. Hence $O_{p}(P) \leqslant C_{S}\left(Y_{L}\right)$, and by $44^{\circ}\left[C_{S}\left(Y_{L}\right), L^{\circ}\right] \leqslant O_{p}(P) \leqslant C_{S}\left(Y_{L}\right)$. Since $P=L^{\circ} S$ we conclude that $C_{S}\left(Y_{L}\right) \leqslant P$. Hence $C_{S}\left(Y_{P}\right)=O_{p}(P)$. We have proved:
${ }^{3}$ See A. 5 for the definition of a $Q!$-module
6. $\quad Y_{P}=Y_{L}, Y_{L}$ is a simple P-module and $C_{S}\left(Y_{P}\right)=O_{p}(P)$. In particular, holds.

Let $P_{1} \vDash P$ with $O_{p}(P) \leqslant P_{1}$ and $\widetilde{P_{1}}=\langle\mathcal{K}\rangle$. The p-minimality of \widetilde{P} implies that either $\widetilde{S} \cap \widetilde{P_{1}} \leqslant O_{p}(\widetilde{P})$ or $\widetilde{P}=\widetilde{P_{1}} \widetilde{S}$. The first case is clearly impossible since $O_{p}(\widetilde{P})=1$ and $\langle\mathcal{K}\rangle$ is not a p^{\prime}-group. Hence $\widetilde{P}=\widetilde{P_{1}} \widetilde{S}$. As $P=L_{\circ} S$ we have $O^{p}(P)=O^{p}\left(L_{\circ}\right)=L_{\circ}$, and we conclude that

$$
O^{p}\left(\widetilde{P_{1}}\right)=O^{p}(\widetilde{P})=\widetilde{L_{\circ}}
$$

In particular, $O^{p}\left(P_{1}\right) \leqslant L_{\circ} C_{P}\left(Y_{L}\right)$. Since $O^{p}\left(P_{1}\right) \leqslant O^{p}(P)=L_{\circ}$ this gives

$$
L_{\circ}=O^{p}\left(P_{1}\right)\left(L^{\circ} \cap C_{P}\left(Y_{L}\right)\right)
$$

So

$$
L_{\circ} \stackrel{\sqrt[50]{=}}{=}\left[L_{\circ}, Q\right]=\left[O^{p}\left(P_{1}\right)\left(L^{\circ} \cap C_{P}\left(Y_{L}\right)\right), Q\right] \leqslant\left[O^{p}\left(P_{1}\right), Q\right]\left[C_{P}\left(Y_{L}\right), L^{\circ}\right] \stackrel{4^{\circ}}{\leqslant} O^{p}\left(P_{1}\right) O_{p}(P) .
$$

Hence $L_{\mathrm{o}}=O^{p}\left(L_{\mathrm{o}}\right)=O^{p}\left(P_{1}\right)$. Note that $O_{p}(P) \leqslant P^{*}$ and $\widetilde{P^{*}}=\langle\mathcal{K}\rangle$. So P^{*} fulfills the assumptions on P_{1}, and we conclude
$7^{\circ} . \quad O^{p}(P)=L_{\circ}=O^{p}\left(P_{1}\right)=O^{p}\left(P^{*}\right)$; in particular $P=O^{p}\left(P_{1}\right) S$.
Thus $O^{p}(\langle\mathcal{K}\rangle)=O^{p}\left(\widetilde{P^{*}}\right)=\widetilde{L_{\circ}} \& \widetilde{L}$. Hence by A. 27 any subgroup E of \widetilde{L} such that $\left[Y_{L}, E\right]$ is a faithful natural $S L_{2}(q)$-module for E is contained in \mathcal{K}. It follows that
8. \mathcal{K} is uniquely determined and $\widetilde{P^{*}}=\langle\mathcal{K}\rangle \vDash \widetilde{L}$. In particular, (c) holds.

Put $T:=S \cap P^{*}$. Then $\widetilde{T} \in \operatorname{Syl}_{p}\left(\widetilde{P^{*}}\right)=\operatorname{Syl}_{p}\left(\widetilde{P_{1}}\right)$, and since $C_{T}\left(Y_{L}\right) \leqslant C_{S}\left(Y_{L}\right)=O_{p}(P) \leqslant P_{1}$, $T \in \operatorname{Syl}_{p}\left(P_{1}\right)$. By $\left.7^{\circ}\right), O^{p}\left(P_{1}\right)=L_{\circ}$ and so $P_{1}=O^{p}\left(P_{1}\right) T=L_{\circ} T$. This result also applies to P^{*}. Thus

9 $. \quad P_{1}=L_{0} T=P^{*}$. In particular, (d) holds.
Set

$$
Q^{*}:=Q \cap P^{*}, \quad \widehat{P}:=P / O_{p}(P), \quad r:=|\mathcal{K}|, \quad \text { and } \quad\left\{K_{1}, \ldots, K_{r}\right\}:=\mathcal{K},
$$

and let $1 \leqslant i \leqslant r$. Then $K_{i} \cong S L_{2}(q)$ and $\widetilde{S} \cap K_{i} \neq 1$.
We claim that $\widetilde{Q^{*}} \neq 1$. Since $Q \triangleleft S,\left[\widetilde{S} \cap K_{i}, \widetilde{Q}\right] \leqslant \widetilde{Q^{*}}$. If $r>1$, the transitive action of Q on \mathcal{K} shows that $\left[\widetilde{S} \cap K_{i}, \widetilde{Q}\right] \neq 1$ and so $\widetilde{Q^{*}} \neq 1$. If $r=1$ and $\widetilde{Q} \not K_{1}$, then \widetilde{Q} induces some non-trivial field automorphism on K_{1} and hence $\left[\widetilde{S} \cap K_{1}, \widetilde{Q}\right] \neq 1$ and $\widetilde{Q^{*}} \neq 1$. If $r=1$ and $\widetilde{Q} \leqslant K_{1}$, then $\widetilde{Q^{*}}=\widetilde{Q} \neq 1$. So indeed $\widetilde{Q^{*}} \neq 1$.

Recall that \widetilde{P} is p-minimal and thus also p-irreducible. Hence 1.29 C shows that $O^{p}(\widetilde{P})=$ [$\left.O^{p}(\widetilde{P}), \widetilde{Q^{*}}\right]$. Also

$$
\begin{equation*}
O^{p}(\widetilde{P})=O^{p}\left(\widetilde{P^{*}}\right)=O^{p}\left(\underset{i=1}{\underset{X}{X}} K_{i}\right)=\stackrel{r}{\underset{i=1}{X} O^{p}\left(K_{i}\right)} \tag{*}
\end{equation*}
$$

As $O^{p}(\widetilde{P})=\left[O^{p}(\widetilde{P}), \widetilde{Q^{*}}\right]$ and $\widetilde{Q^{*}}$ normalizes each $O^{p}\left(K_{i}\right)$, this gives $\left[O^{p}\left(K_{i}\right), \widetilde{Q^{*}}\right]=O^{p}\left(K_{i}\right)$.
Let $K_{i}^{*} \leqslant P^{*}$ be minimal with $\widetilde{K_{i}^{*}}=O^{p}\left(K_{i}\right)$ and $\left[K_{i}^{*}, Q^{*}\right] \leqslant K_{i}^{*}$. Observe that

$$
\left[\widetilde{K_{i}^{*}, Q_{i}^{*}}\right]=\left[\widetilde{K_{i}^{*}}, \widetilde{Q_{i}^{*}}\right]=\left[O^{p}\left(K_{i}\right), \widetilde{Q_{i}^{*}}\right]=O^{p}\left(K_{i}\right),
$$

and the minimality of K_{i}^{*} gives $K_{i}^{*}=\left[K_{i}^{*}, Q_{i}^{*}\right]$ and $K_{i}^{*}=O^{p}\left(K_{i}^{*}\right)$. By (C) $O^{p}\left(P^{*}\right)=L_{\circ}$ and so $K_{i}^{*} \leqslant L_{\circ}$. Thus by $\left.4^{\circ}\right\}\left[C_{P}\left(Y_{L}\right), Q^{*} K_{i}^{*}\right] \leqslant\left[C_{L}\left(Y_{L}\right), L^{\circ}\right] \leqslant O_{p}(P)$. With $R:=\widehat{K_{i}^{*}}$ and $D:=C_{R}\left(Y_{L}\right)$ this gives $D \leqslant Z\left(\widehat{R Q^{*}}\right)$. Observe that R / R^{\prime} is an abelian p^{\prime}-group. Since $\left[R / R^{\prime}, Q^{*}\right]=R / R^{\prime}$, coprime actions shows $C_{R / R^{\prime}}\left(Q^{*}\right)=1$ and since Q^{*} centralizes D, we get $D \leqslant R^{\prime}$. Hence R is a non-split central extension of $R / D \cong \widetilde{R} \cong O^{p}\left(S L_{2}(q)\right)=S L_{2}(q)^{\prime}$ by the p^{\prime}-group D.

If $q \leqslant 3$ then $R / D \cong C_{3}$ or Q_{8}. By [Hu V.25.3] the Schur multiplier of cyclic and quaternion groups is trivial and so $D=1$. If $q>3$ then $R / D \cong S L_{2}(q)^{\prime}=S L_{2}(q)$. As the Schur multiplier of $S L_{2}(q)$ is a p^{\prime}-group (cf. [Hu, V.25.7]) we again have $D=1$. We have proved:
$10^{\circ} . \quad O^{p}\left(K_{i}^{*}\right)=K_{i}^{*}, \widehat{K_{i}^{*}} \cong O^{p}\left(K_{i}\right)$ and $C_{K_{i}^{*}}\left(Y_{L}\right) \leqslant O_{p}(P)$.

Next we show:
11. . Put $K^{*}:=\left\langle K_{i}^{*} \mid 1 \leqslant i \leqslant r\right\rangle$. Then $O^{p}(\widehat{P})=\widehat{K^{*}}, P=K^{*} S$ and $\left[\widehat{K_{i}}, \widehat{K_{j}}\right] \leqslant C_{\widehat{K^{*}}}\left(Y_{L}\right) \leqslant$ $Z\left(\widehat{K^{*}} \widehat{Q^{*}}\right)$ for all $1 \neq i<j \leqslant r$.

Note that $O^{p}\left(\widehat{P^{*}}\right)=C_{\widehat{P^{*}}}\left(Y_{L}\right) \widehat{K^{*}}$. As Q^{*} centralizes $C_{\widehat{P^{*}}}\left(Y_{L}\right)$ and $\left[K_{i}^{*}, Q^{*}\right]=K_{i}^{*}$ we conclude $\widehat{K^{*}}=\left[\widehat{P^{*}}, Q^{*}\right]$ and $K^{*} \leqslant L^{\circ}$. In particular, S normalizes $\widehat{K^{*}}$. Hence S normalizes $K^{*} O_{p}(P)$, and 7°), applied to $P_{1}=K^{*}\left(S \cap P^{*}\right)$, gives $L_{\circ}=O^{p}\left(K^{*}\left(S \cap P^{*}\right)\right) \leqslant O_{p}(P) K^{*}$ and $P=L_{0} S=$ $O^{p}\left(\left(K^{*}\left(S \cap P^{*}\right)\right) S=K^{*} S\right.$. By $10^{\circ}, O^{p}\left(K_{i}^{*}\right)=K_{i}^{*}$ and so also $O^{p}\left(K^{*}\right)=K^{*}$. Since S normalizes $\widehat{K^{*}}$ and $P=K^{*} S$ we conclude that $O^{p}(\widehat{P})=\widehat{K^{*}}$. By $1^{0}\left[K_{i}, K_{j}\right]=1$ and so $\left[K_{i}^{*}, K_{j}^{*}\right] \leqslant C_{K^{*}}\left(Y_{L}\right)$. As $K^{*} Q^{*} \leqslant L^{\circ}$ and by $4^{\circ}\left[C_{L}\left(Y_{L}\right), L^{\circ}\right] \leqslant O_{p}(P)$ we have $C_{\widehat{K^{*}}}\left(Y_{L}\right) \leqslant Z\left(\widehat{K^{*}} \widehat{Q^{*}}\right)$.
12°. Suppose that $\left[\widehat{K_{i}^{*}}, \widehat{K_{j}^{*}}\right]=1$ for all $1 \leqslant i<j \leqslant r$. Then $C_{P}\left(Y_{P}\right)=O_{p}(P)$ and P is p-minimal. In particular, (e) and (f) hold.

Since $\left[\widehat{K_{i}^{*}}, \widehat{K_{j}^{*}}\right]=1$ we have $\left|\widehat{K^{*}}\right| \leqslant\left|\prod_{i=1}^{r} \widehat{K_{i}^{*}}\right| \leqslant\left|\widehat{K_{i}^{*}}\right|^{r}$. Moreover, by $\sqrt{10^{\circ} \mid}\left|\widehat{K_{i}^{*}}\right|=\left|O^{p}\left(K_{i}\right)\right|$ and by $11^{\circ} \mid \widehat{K^{*}}=O^{p}(\widehat{P})$. Now $(*)$ implies $\left|\overparen{K^{*}}\right|=\left|O^{p}(\widehat{P})\right|=\left|O^{p}\left(K_{i}\right)\right|^{r}$ and so $\left|\widehat{K^{*}}\right| \leqslant\left|\widetilde{K^{*}}\right|$. Since $\widetilde{K^{*}}$ is a factor group of $\widehat{K^{*}}$, we get that $\left|\widetilde{K^{*}}\right|=\left|\widehat{K^{*}}\right|$ and $C_{\widehat{K^{*}}}\left(Y_{L}\right)=1$. As $O^{p}(\widehat{P})=\widehat{K^{*}}$, it follows that $\widehat{C_{P}\left(Y_{P}\right)}$ is a p-group and so $C_{P}\left(Y_{P}\right)=O_{p}(P)$. Hence $P / O_{p}(P)=\widetilde{P}$. By $3^{\circ} \widetilde{P}$ is p-minimal and so also P is p-minimal. Therefore (e) and (£) hold.

We now distinguish the cases $r=1, r=2$ and $r \geqslant 3$. If $r=1$, we are done by 12°. Assume next that $r=2$. Since Q acts transitively on \mathcal{K} by (a), we have $p=2$. Suppose that $q>2$. Then $q \geqslant 4, K_{i}$ is perfect, and $\widehat{K_{i}^{*}}$ is a component of \widehat{P}. Thus $\left[\widehat{K_{1}}, \widehat{K_{2}}\right]=1$ and we are done by 12°).

Suppose that $q=2$. Then $\left|\widehat{K_{i}^{*}}\right|=3$ and by 12° we may assume that $\left[\widehat{K_{1}^{*}}, \widehat{K_{2}^{*}}\right] \neq 1$. By 11° $\left[\widehat{K_{1}^{*}}, \widehat{K_{2}^{*}}\right] \leqslant Z\left(\widehat{K^{*}}\right)$. Since $r=2, \widehat{K^{*}}=\left\langle\widehat{K_{1}^{*}}, \widehat{K_{2}^{*}}\right\rangle$, and we conclude that that $\widehat{K^{*}}$ is extra special of order 3^{3}. By $11^{\circ} \widehat{K^{*}}=O^{p}(\widehat{P})$, and so (f) holds. As $\widehat{P} / \Phi\left(\widehat{K^{*}}\right) \cong \widetilde{P}$ is p-minimal, so are \widehat{P} and P.

Since $\widehat{K^{*}}$ is extra special of order 3^{3}, any involution in $\operatorname{Aut}\left(\widehat{K^{*}}\right)$ which centralizes $\Phi\left(\widehat{K^{*}}\right)$ inverts $\widehat{K^{*}} / \Phi\left(\widehat{K^{*}}\right)$. By (f) \widehat{Q} centralizes $\Phi\left(\widehat{K^{*}}\right)$, and so \widehat{Q} contains only one involution. As $\widetilde{Q^{*}}$ is non-trivial and elementary abelian and has index 2 in \widetilde{Q} we conclude that $\widetilde{Q} \cong C_{4}$. Thus holds.

Assume finally that $r \geqslant 3$. Let i, j, k be three different elements in $\{1, \ldots, r\}$. Pick $z \in S \cap$ $K_{i} \backslash O_{p}(P)$. Since Q acts transitively on \mathcal{K} we can choose $y \in Q$ with $K_{i}^{y}=K_{k}$. Put $x:=[y, z]=$ $z^{-1 y} z$. Then $x \in Q^{*}, \widetilde{x} \in K_{i} K_{k}$ and $\widetilde{x} \in \widetilde{z} K_{k}$. Since $K_{i} \cong S L_{2}(q)$, we have $K_{i}=\left\langle\widetilde{z}^{K_{i}}\right\rangle$. Now $\left[K_{i}, K_{k}\right]=1$ implies

$$
\left[O^{p}\left(K_{i}\right), x\right]=\left[O^{p}\left(K_{i}\right), z\right]=O^{p}\left(K_{i}\right)
$$

and since $\left[K_{i} K_{k}, K_{j}\right]=1$ and $\widetilde{x} \in K_{i} K_{k}$, we also have $\left[K_{j}, x\right]=1$. Recall that Q^{*} normalizes $\widehat{K_{i}}$, $\widetilde{K_{i}^{*}}=O^{p}\left(K_{i}\right)$ and $C_{\widehat{K_{i}}}\left(Y_{L}\right)=1$. Thus

$$
\left[\widehat{K_{i}}, \widehat{x}\right]=\widehat{K}_{i} \quad \text { and } \quad\left[\widehat{K_{j}}, \widehat{x}\right]=1
$$

In particular,

$$
\left[\widehat{K_{j}}, \widehat{x}, \widehat{K}_{i}\right]=1
$$

By $11^{\circ}\left[\widehat{K}_{i}, \widehat{K}_{j}\right] \leqslant Z\left(\widehat{K} \widehat{Q}^{*}\right)$ and so

$$
\left[\widehat{K_{i}}, \widehat{K}_{j}, \widehat{x}\right]=1
$$

With the Three Subgroups Lemma $\left[\widehat{x}, \widehat{K}_{i}, \widehat{K}_{j}\right]=1$, and since $\left[\widehat{x}, \widehat{K}_{i}\right]=\widehat{K}_{i}$,

$$
\left[\widehat{K_{i}}, \widehat{K_{j}}\right]=1
$$

Another reference to 12° completes the proof of the lemma.

CHAPTER 2

The Case Subdivision and Preliminary Results

In this chapter we give the relevant definitions that allow to subdivide the proof of our main result stated in the introduction. This partition of the proof enables us to treat the different parts independently and sometimes under a slightly more general hypothesis.

We believe that concepts like symmetry, asymmetry, shortness and tallness can also be useful in other situations. In a certain sense they reflect the general behavior of conjugates of (abelian) subgroups in finite groups. In the amalgam method these concepts have already proved their relevance (without getting particular names). For example, symmetry is closely related (and generalizes) the " b even"-case of the amalgam method, while tallness corresponds to the " $b=1$ "-case.

In Section 2.2 general properties of asymmetry are investigated. Most of these properties are elementary, the exception being 2.15 where the Quadratic L-Lemma of MS6 is used and so also a \mathcal{K}_{p}-group Hypothesis is needed.

Finally in Section 2.3 symmetric pairs are introduced. It is probably our most complicated and technical definition. Also the existence of symmetric pairs requires a rather long and sophisticated argument, see 2.22 and 2.23 .

In this chapter G is a finite group, $S \in S y l_{p}(G)$, and Q is a large p-subgroup of G contained in S. Moreover, $M \in \mathfrak{M}_{G}(S)$ and $M^{\dagger}=M C_{G}\left(Y_{M}\right)$. So M fulfills the basic property defined in the Introduction.

2.1. Notation and Elementary Properties

Notation 2.1. Recall from the introduction that $Q^{\bullet}=O_{p}\left(N_{G}(Q)\right)$ and that L is Y_{M}-minimal if $L=\left\langle Y_{M}^{L}\right\rangle$ and Y_{M} is contained in a unique maximal subgroup of L.

Let A be an abelian p-subgroup of G. Then

- A is symmetric in G if there exist $A_{1}, A_{2} \in A^{G}$ such that $1 \neq\left[A_{1}, A_{2}\right] \leqslant A_{1} \cap A_{2}$,
- A is asymmetric in G if A is not symmetric in G.

Let \mathcal{N} be a set of subgroups of G. Then

- A is \mathcal{N}-tall if there exist $T \in \operatorname{Syl}_{p}\left(C_{G}(A)\right)$ and $L \in \mathcal{N}$ such that $T \leqslant L$ and $A \not O_{p}(L)$,
- A is \mathcal{N}-short if $A \leqslant O_{p}(L)$ for all $T \in \operatorname{Syl}_{p}\left(C_{G}(A)\right)$ and $L \in \mathcal{N}$ with $T \leqslant L$. (So A is \mathcal{N}-short if and only if A is not \mathcal{N}-tall.)
- A is tall (short) if A is \mathcal{N}-tall $(\mathcal{N}$-short), where \mathcal{N} is the set of all subgroups L of G with $O_{p}(L) \neq 1$,
- A is char p-tall (char p-short) if A is \mathcal{N}-tall $(\mathcal{N}$-short), where \mathcal{N} is the set of all subgroups of characteristic p of G,
- A is Q-tall $\left(Q\right.$-short) if A is \mathcal{N}-tall $\left(\mathcal{N}\right.$-short), where $\mathcal{N}=N_{G}(Q)^{G}$.

For $K \leqslant G$ with $O_{p}(M) \leqslant K$ let $\mathfrak{H}_{K}\left(O_{p}(M)\right)$ be the set of subgroups H of K such that
(i) H is of characteristic p,
(ii) $O_{p}(M) \leqslant H$ and $Y_{M} \leqslant O_{p}(H)$, and
(iii) $Y_{M} \leqslant O_{p}(P)$ whenever P is proper subgroup of H containing $O_{p}(M)$.

For $K \leqslant G$ with $Y_{M} \leqslant K$ let $\mathfrak{L}_{K}\left(Y_{M}\right)$ be the set of subgroups L of K such that
(i) $Y_{M} \leqslant L$ and $O_{p}(L)=\left\langle\left(Y_{M} \cap O_{p}(L)\right)^{L}\right\rangle \leqslant N_{L}\left(Y_{M}\right)$,
(ii) L is Y_{M}-minimal and of characteristic p,
(iii) $N_{L}\left(Y_{M}\right)$ is the unique maximal subgroup of L containing Y_{M}, and
(iv) $L / O_{p}(L) \cong S L_{2}(q), S z(q), q:=\left|Y_{M} / Y_{M} \cap O_{p}(L)\right|$ or $L / O_{p}(L) \cong D_{2 r}$, where $p=2$ in the last two cases and r is an odd.
Note that, since $Y_{M}=\Omega_{1} Z\left(O_{p}(M)\right), \mathfrak{H}_{K}\left(O_{p}(M)\right)$ only depends on K and $O_{p}(M)$.
We use the following subdivision:
The Symmetric Case. $\quad Y_{M}$ is symmetric in G.
The Short Asymmetric Case. $\quad Y_{M}$ is short and asymmetric in G.
The Tall char p-Short Asymmetric Case. $\quad Y_{M}$ is tall, char p-short and asymmetric in G.
The char p-Tall Q-short Asymmetric Case. $\quad Y_{M}$ is char p-tall, Q-short and asymmetric in G.
The Q-Tall Asymmetric Case. $\quad Y_{M}$ is Q-tall and asymmetric in G.
Lemma 2.2. (a) $C_{G}\left(O_{p}(M)\right) \leqslant O_{p}(M)$.
(b) Q is a weakly closed subgroup of G.
(c) $N_{G}(K) \leqslant M^{\dagger}$ for all $1 \neq K \leqslant M$, in particular, $N_{G}\left(O_{p}(M)\right) \leqslant M^{\dagger}$.
(d) $M^{\dagger}=N_{G}\left(Y_{M}\right)=M C_{G}\left(Y_{M}\right)$.
(e) $Y_{M}=\Omega_{1} Z\left(O_{p}(M)\right)$.
(f) $O_{p}(M) \in \operatorname{Syl}_{p}\left(C_{G}\left(Y_{M}\right)\right)$; in particular, $C_{S}\left(Y_{M}\right)=O_{p}(M)$.
(g) $Q \leqslant M$ if and only if $Q \leqslant M^{\dagger}$.
(h) $M^{\circ}=\left(M^{\dagger}\right)^{\circ}$.

Proof. (a): We have $M \in \mathfrak{M}_{G}(S) \subseteq \mathfrak{M}_{G} \subseteq \mathcal{L}_{G}$ and so $C_{G}\left(O_{p}(M)\right) \leqslant O_{p}(M)$ by definition of \mathcal{L}_{G}.
(b): Since Q is a large subgroup of $G, 1.52$ b shows that Q is a weakly closed subgroup of G.
(c) Put $R:=N_{G}(K)$. Since M has characteristic p and $K \diamond M$, also K has characteristic p, see 1.2 a . In particular, $O_{p}(K) \neq 1$ and so also $O_{p}(R) \neq 1$. Note that $S \leqslant M \leqslant R$ and so R is a parabolic subgroup of G. Thus 1.55 a) implies that $C_{G}\left(O_{p}(R)\right) \leqslant O_{p}(R)$ and so $R \in \mathcal{L}_{G}$. Let R^{*} be maximal in \mathcal{L}_{G} with $R \leqslant R^{*}$. Since $M \leqslant R \leqslant R^{*}, R^{*} \in \mathcal{M}_{G}(M)$. By the basic property of $M \in \mathfrak{M}_{G}$, we have $\mathcal{M}_{G}(M)=\left\{M^{\dagger}\right\}$ and so $R^{*}=M^{\dagger}$ and $R \leqslant M^{\dagger}$.
(d): By (b), $N_{G}\left(Y_{M}\right) \leqslant M^{\dagger}$, and by the basic property of $M, M^{\dagger}=M C_{G}\left(Y_{M}\right)$ and $Y_{M}=Y_{M^{\dagger}}$. So $M^{\top} \leqslant N_{G}\left(Y_{M}\right)$ and da holds.
(e), (f\rangle : By the basic property of $M, C_{M}\left(Y_{M}\right)$ is p-closed. Thus 1.24 k gives $Y_{M}=\Omega_{1} Z\left(O_{p}(M)\right)$ and $\widehat{O}_{p}(M) \in S y l_{p}\left(C_{G}\left(Y_{M}\right)\right)$.
(g), (h): By $Q!, C_{G}\left(Y_{M}\right) \leqslant N_{G}(Q)$ and so $M^{\dagger}=M C_{G}\left(Y_{M}\right)=M N_{M^{\dagger}}(Q)$. Thus $Q \leqslant M$ if and only if $Q \leqslant M^{\dagger}$. Moreover, by 1.52 c) $M^{\circ}=\left(M C_{G}\left(Y_{M}\right)\right)^{\circ}=\left(M^{\dagger}\right)^{\circ}$.

Lemma 2.3. Let $A \leqslant Z(Q)$. Then the following hold:
(a) Let $g \in G$ and $\widetilde{A} \leqslant Z\left(Q^{g}\right)$ such that $[A, \widetilde{A}] \leqslant A \cap \widetilde{A}$. Then $[A, \widetilde{A}]=1$.
(b) A is asymmetric in G.
(c) Suppose that $B \leqslant G$ is a Q-short abelian p-subgroup, $A \leqslant Z\left(Q^{\bullet}\right)$ and $A \cap B \neq 1$. Then $[A, B]=1$.
Proof. a): If $g \in N_{G}(Q)$, then $A \widetilde{A} \leqslant Z(Q)$ and $[A, \widetilde{A}]=1$. If $g \notin N_{G}(Q)$, then 1.52 e, gives $Z(Q) \cap Z\left(Q^{g}\right)=1$. Thus

$$
[A, \widetilde{A}] \leqslant A \cap \widetilde{A} \leqslant Z(Q) \cap Z\left(Q^{g}\right)=1
$$

(b): This is a direct consequence of (a) and the definition of asymmetric.
(c): Assume that $R:=A \cap B \neq 1$. Then $R \leqslant A \leqslant C_{G}(Q)$ and Q ! implies $N_{G}(R) \leqslant N_{G}(Q)$. Since B is abelian, $B \leqslant C_{G}(B) \leqslant N_{G}(R) \leqslant N_{G}(Q)$. In particular, $N_{G}(Q)$ contains a Sylow p subgroup of $C_{G}(B)$, and as B is Q-short, we conclude that $B \leqslant O_{p}\left(N_{G}(Q)\right)=Q^{\bullet}$. So $[B, A]=1$.

Lemma 2.4. (a) $O_{p}(M)$ is a weakly closed subgroup of M^{\dagger}.
(b) Let B be a p-subgroup of M^{\dagger} with $O_{p}(M) \leqslant B$. If $N_{G}(B) \neq M^{\dagger}$, then Y_{M} is symmetric in G.

Proof. (a): By the basic property of $M, Y_{M}=Y_{M^{\dagger}}$ is normal in M^{\dagger}. Hence $C_{G}\left(Y_{M}\right)=$ $C_{M^{\dagger}}\left(Y_{M}\right) \leqslant M^{\dagger}$. By 2.2 f$) O_{p}(M) \in \operatorname{Syl}_{p}\left(C_{G}\left(Y_{M}\right)\right)$. Sylow subgroups of normal subgroups are clearly weakly closed (even strongly closed) subgroups of the whole group.
(b): Since S is a Sylow p-subgroup of M^{\dagger}, there exists $g \in M^{\dagger}$ with $B^{g} \leqslant S$. Then $O_{p}(M)^{g} \leqslant$ $B^{g} \leqslant S$, and since $O_{p}(M)$ is a weakly closed subgroup of $M^{\dagger}, O_{p}(M)=O_{p}(M)^{g}$. So replacing B by B^{g} we may assume that $B \leqslant S \leqslant M$. We will now verify that the assumptions of E.16a) are fulfilled. Note that $O_{p}(M) \leqslant B \geqq N_{G}(B)$ and Y_{M} is a non-trivial normal p-subgroup of M. By $2.2(\mathrm{f}), O_{p}(M) \in \operatorname{Syl}_{p}\left(C_{G}\left(Y_{M}\right)\right)$ and so $C_{M}\left(Y_{M}\right)$ is p-closed. By assumption, $N_{G}(B) \not M^{\dagger}$. By 2.2 C), $N_{G}(K) \leqslant M^{\dagger}$ for all $1 \neq K \leqslant M$, and so no non-trivial p-subgroup of $M \cap N_{G}(B)$ is normal in M and $N_{G}(B)$.

Thus indeed all assumptions of E.16 are fulfilled for $H_{1}:=M, H_{2}:=N_{G}(B), A_{1}:=Y_{M}$ and $H:=G$. Hence there exists $h \in H=G$ with $1 \neq\left[A_{1}, A_{1}^{h}\right] \leqslant A_{1} \cap A_{1}^{h}$, and so $A_{1}=Y_{M}$ is symmetric in G.

2.2. Asymmetry

Lemma 2.5. Suppose that Y_{M} is asymmetric in G. Let $Y_{M} \leqslant R \leqslant M^{\dagger}$. Then $\left\langle Y_{M}^{N_{G}(R)}\right\rangle$ is elementary abelian.

Proof. Recall from the basic property that $Y_{M}=Y_{M^{\dagger}}$, so $Y_{M} \leqslant R$ since $R \leqslant M^{\dagger}$. Thus Y_{M}^{x} is normal in R for every $x \in N_{G}(R)$. Hence, the claim is an immediate consequence of the definition of asymmetry.

Lemma 2.6. Suppose that Y_{M} is asymmetric in G. Then the following hold:
(a) Let L be a p-subgroup of G with $O_{p}(M) \leqslant L$. Then $N_{G}(L) \leqslant N_{G}\left(O_{p}(M)\right) \leqslant M^{\dagger}$.
(b) $O_{p}(M)$ is a weakly closed subgroup of G.
(c) Let $O_{p}(M) \leqslant L \leqslant G$. Then $L \cap M^{\dagger}$ is a parabolic subgroup of L.
(d) $x^{G} \cap Y_{M}=x^{M}$ for every $x \in Y_{M}$.
(e) Y_{M} is Q-tall if and only if $Y_{M} \neq O_{p}\left(N_{G}(Q)\right)$.

Proof. (a): Put $B:=M^{\dagger} \cap L$. Since Y_{M} is asymmetric, 2.4 bimplies that $N_{G}(B) \leqslant M^{\dagger}$. In particular, $N_{L}(B) \leqslant M^{\dagger} \cap L=B$ and so $L=B$ since L is a p-group. By 2.4 a) $O_{p}(M)$ is a weakly closed subgroup of M^{\dagger}. Thus

$$
N_{G}(L)=N_{G}(B)=N_{M^{\dagger}}(B) \leqslant N_{M^{\dagger}}\left(O_{p}(M)\right) \leqslant N_{G}\left(O_{p}(M)\right) \stackrel{\sqrt[2.2 \mathrm{c}]{\approx}}{\approx} M^{\dagger}
$$

and (a) is proved.
(b): By (a) $O_{p}(M) \preccurlyeq N_{G}(L)$ for all p-subgroups L of G containing $O_{p}(M)$. Thus 1.45 shows that $\widehat{O}_{p}(M)$ is a weakly closed subgroup of G.
(c): Since $O_{p}(M)$ is a weakly closed subgroup of $G, 1.46$ g) shows that $N_{L}\left(O_{p}(M)\right)$ is a parabolic subgroup of L, and since $N_{L}\left(O_{p}(M)\right) \leqslant L \cap M^{\dagger}$, also $L \cap M^{\dagger}$ is a parabolic subgroup of L.
(d): Since $O_{p}(M)$ is a weakly closed subgroup of G and $Y_{M} \leqslant Z\left(O_{p}(M), 1.48\right.$ b shows that $x^{G} \cap Y_{M}=x^{N_{G}\left(O_{p}(M)\right)}$. By 2.2 c) $N_{G}\left(O_{p}(M)\right) \leqslant M^{\dagger}=C_{G}\left(Y_{M}\right) M$, and so dd holds.
(e): Recall from 2.2 f that $O_{p}(M) \in \operatorname{Syl}_{p}\left(C_{G}\left(Y_{M}\right)\right)$.

Suppose that $Y_{M} \approx O_{p}\left(N_{G}(Q)\right)$. Since $O_{p}(M) \leqslant N_{G}(Q)$, we conclude that Y_{M} is Q-tall.
Suppose that Y_{M} is Q-tall. Then there exists $g \in G$ such that $O_{p}(M) \leqslant N_{G}\left(Q^{g}\right)$ and Y_{M} $O_{p}\left(N_{G}\left(Q^{g}\right)\right)$. Since $O_{p}(M)$ is a weakly closed subgroup of G by $\sqrt{\mathrm{b}}$, $Q^{g} \leqslant N_{G}\left(O_{p}(M)\right)$ and since Q is a weakly closed subgroup of G by 1.52 b , $Q^{g h}=Q$ for some $h \in N_{G}\left(O_{p}(M)\right) \leqslant N_{G}\left(Y_{M}\right)$. Thus $Y_{M} \leqslant O_{p}\left(N_{G}(Q)\right)$.

Lemma 2.7. Suppose that Y_{M} is asymmetric in G.
(a) Let $g \in G$ with $C_{Y_{M}}\left(Q^{g}\right) \neq 1$. Then $Q^{g} \leqslant M^{\circ}$.
(b) Let $1 \neq U_{0} \leqslant U \leqslant Y_{M}$. Put $E_{U}:=\left\langle Q^{g} \mid g \in G, C_{U}\left(Q^{g}\right) \neq 1\right\rangle$. Then $N_{G}\left(U_{0}\right)^{\circ} \leqslant E_{U} \leqslant M^{\circ}$.

Proof. (a): Let $g \in G$ with $C_{Y_{M}}\left(Q^{g}\right) \neq 1$. Since $1 \neq C_{Y_{M}}\left(Q^{g}\right) \leqslant Y_{M} \leqslant C_{G}\left(O_{p}(M)\right), Q$! implies $O_{p}(M) \leqslant N_{G}\left(Q^{g}\right)$. By 2.6 b) $O_{p}(M)$ is a weakly closed subgroup of G and so $Q^{g} \leqslant N_{G}\left(O_{p}(M)\right)$. By 2.2 c$) N_{G}\left(O_{p}(M)\right) \leqslant M^{\dagger}$. By $2.2 \mathrm{~h},\left(M^{\dagger}\right)^{\circ}=M^{\circ}$ and so $Q^{g} \leqslant M^{\circ}$.
(b): Let $h \in G$ with $Q^{h} \leqslant N_{G}\left(U_{0}\right)$. Then $C_{U_{0}}\left(Q^{h}\right) \neq 1$, so $C_{U}\left(Q^{h}\right) \neq 1$ and $Q^{h} \leqslant E_{U}$. Thus $N_{G}\left(U_{0}\right)^{\circ} \leqslant E_{U}$. By (a) $E_{U} \leqslant M^{\circ}$, and so (b) holds.

Lemma 2.8. Let F be the inverse image of $F^{*}\left(M^{\dagger} / C_{M^{\dagger}}\left(Y_{M}\right)\right)$ in M^{\dagger}. Suppose that Y_{M} is asymmetric in $G, F \leqslant H \leqslant G$ and H is of characteristic p. Then $Y_{M} \leqslant Y_{H}$.

Proof. Since Y_{M} is asymmetric in G and $O_{p}(M) \leqslant F \leqslant H, 2.6 \mathrm{c}$ implies that $H \cap M^{\dagger}$ contains a Sylow p-subgroup of H. Thus by 1.24 f$), Y_{M^{\dagger} \cap H} \leqslant Y_{H}$.

Now let $\overline{M^{\dagger}}:=M^{\dagger} / C_{M^{\dagger}}\left(Y_{M}\right)$. Then $O_{p}(\bar{F}) \leqslant O_{p}\left(\overline{M^{\dagger}}\right)=1$ and $C_{\overline{M^{\dagger} \cap H}}(\bar{F}) \leqslant \bar{F}$. Note that $\bar{F} \preccurlyeq \overline{M^{\dagger} \cap H}$ and so $\left[O_{p}\left(\overline{M^{\dagger} \cap H}\right), \bar{F}\right] \leqslant O_{p}(\bar{F})=1$. It follows that $O_{p}\left(\overline{M^{\dagger} \cap H}\right)=1$. Thus Y_{M} is p-reduced for $M^{\dagger} \cap H$ and so $Y_{M} \leqslant Y_{M^{\dagger} \cap H} \leqslant Y_{H}$.

Lemma 2.9. Suppose that Y_{M} is asymmetric in G and that there exists a subgroup H^{*} of characteristic p such that $O_{p}(M) \leqslant H^{*}$ and $Y_{M} \not \approx O_{p}\left(H^{*}\right)$. Let $H \leqslant H^{*}$ be minimal with $O_{p}(M) \leqslant$ H and $Y_{M} \neq O_{p}(H)$. Then $H \in \mathfrak{H}_{G}\left(O_{p}(M)\right)$.

Proof. By 2.2 a $C_{G}\left(O_{p}(M)\right) \leqslant O_{p}(M)$. Since Y_{M} is asymmetric in $G, 2.6$ b shows that $O_{p}(M)$ is a weakly closed subgroup of G. Thus the hypothesis of 1.49 are fulfilled and we conclude that H is of characteristic p. Let $O_{p}(M) \leqslant P<H$. Then the minimal choice of H implies that $Y_{M} \leqslant O_{p}(P)$ and so $H \in \mathfrak{H}_{G}\left(O_{p}(M)\right)$.

Lemma 2.10. Suppose that Y_{M} is char p-tall and asymmetric in G. Then $\mathfrak{H}_{G}\left(O_{p}(M)\right) \neq \varnothing$.
Proof. Since Y_{M} is char p-tall there exists $H^{*} \leqslant G$ such that H^{*} is of characteristic $p, Y_{M} *$ $O_{p}\left(H^{*}\right)$, and H^{*} contains a Sylow p-subgroup of $C_{G}\left(Y_{M}\right)$. By 2.2 e, $O_{p}(M) \in S y l_{p}\left(C_{G}\left(Y_{M}\right)\right)$ and after conjugation in $C_{G}\left(Y_{M}\right)$ we may assume that $O_{p}(M) \leqslant H^{*}$. Then by $2.9 \mathfrak{H}_{G}\left(O_{p}(M)\right) \neq \varnothing$.

Lemma 2.11. Suppose that Y_{M} is char p-tall and asymmetric in G. Let $H \in \mathfrak{H}_{G}\left(O_{p}(M)\right)$ and put $\bar{H}:=H / O_{p}(H)$. Then the following hold:
(a) Let $T_{H} \in S y l_{p}\left(H \cap M^{\dagger}\right)$. Then $T_{H} \in S y l_{p}(H)$. In particular, $H=O^{p}(H) T_{H}$.
(b) $O_{p}(H)$ normalizes $O_{p}(M)$ and Y_{M}.
(c) $O^{p}(H)=\left[O^{p}(H), Y_{M}\right]$ and $H=O^{p}(H) O_{p}(M)$.
(d) $O^{p}(H) Y_{M}=\left\langle Y_{M}^{O^{p}(H)}\right\rangle=\left\langle Y_{M}^{H}\right\rangle \vDash H$ and $H=\left\langle O_{p}(M)^{H}\right\rangle$.
(e) Let $N \leqslant H$. Then either $O^{p}(H) \leqslant N$, or N is p-closed and $\left[\bar{N}, \bar{Y}_{M} \overline{O^{p}(H)}\right]=1$. In particular, H is p-irreducible.
(f) $Z\left(\overline{O^{p}(H) Y_{M}}\right)$ is a normal p^{\prime}-subgroup of \bar{H}.
(g) $\Phi(\bar{H})=\Phi\left(\overline{O^{p}(H)}\right)=Z\left(\overline{O^{p}(H) Y_{M}}\right)$, and $\overline{O^{p}(H)} / \Phi(\bar{H})$ is a minimal normal subgroup of $\bar{H} / \Phi(\bar{H})$.
(h) Either $\overline{O^{p}(H)}$ is a q-group for some prime $q \neq p$, or $\overline{O^{p}(H)}$ is a product of components, which are permuted transitively by $\overline{O_{p}(M)}$.
(i) If $Y_{M} \leqslant L \leqslant H$ and $L=\left\langle Y_{M}^{L}\right\rangle$, then $\left[O_{p}(H), L\right] \leqslant O_{p}(L)$, and L is of characteristic p.

Proof. Put $H_{0}:=O^{p}(H)$, and let $T_{H} \in \operatorname{Syl}_{p}(H)$ with $O_{p}(M) \leqslant T_{H}$.
(a): By 2.6.c) $H \cap M^{\dagger}$ is a parabolic subgroup of H and so (a) holds.
(b): Since $O_{p}(M) O_{p}(H)$ is p-group containing $O_{p}(M), 2.6$ a) shows that

$$
O_{p}(M) O_{p}(H) \leqslant N_{G}\left(O_{p}(M)\right) \leqslant M^{\dagger}=N_{G}\left(Y_{M}\right)
$$

(c): By (a) $H=H_{0} T_{H}$, so $\left[H_{0}, Y_{M}\right] Y_{M}$ is normal in H. Hence $O_{p}\left(\left[H_{0}, Y_{M}\right] Y_{M}\right) \leqslant O_{p}(H)$ and thus $Y_{M} \nleftarrow O_{p}\left(\left[H_{0}, Y_{M}\right] Y_{M}\right)$ since $Y_{M} \not \approx O_{p}(H)$. Now the definition of $\mathfrak{H}_{G}\left(O_{p}(M)\right)$ implies [$\left.H_{0}, Y_{M}\right] O_{p}(M)=H$, so $H_{0}=O^{p}(H) \leqslant\left[H_{0}, Y_{M}\right] \leqslant H_{0}$, and (c) follows.
(d): By (c) $H=H_{0} O_{p}(M)$. Thus $H_{0} Y_{M}$ is normal in H and so $\left\langle Y_{M}^{H}\right\rangle \leqslant H_{0} Y_{M}$. Also by (c) $H_{0}=\left[H_{0}, Y_{M}\right]$. We get

$$
H_{0} Y_{M}=\left[H_{0}, Y_{M}\right] Y_{M}=\left\langle Y_{M}^{H_{0}}\right\rangle \leqslant\left\langle Y_{M}^{H}\right\rangle \leqslant H_{0} Y_{M}
$$

Hence equality holds everywhere and the first statement in (d) is proved. Similarly,

$$
H=H_{0} O_{p}(M)=\left[H_{0}, Y_{M}\right] O_{p}(M) \leqslant\left[H, O_{p}(M)\right] O_{p}(M) \leqslant\left\langle O_{p}(M)^{H}\right\rangle \leqslant H
$$

and so $H=\left\langle O_{p}(M)^{H}\right\rangle$.
(e): By the definition of $\mathfrak{H}_{G}\left(O_{p}(M)\right), H=N T_{H}$ or $Y_{M} \leqslant O_{p}\left(N T_{H}\right)$. In the first case $H_{0} \leqslant N$. In the second case

$$
\left[N, Y_{M}\right] \leqslant N \cap O_{p}\left(N T_{H}\right) \leqslant O_{p}(N) \leqslant O_{p}(H)
$$

so $\left[\bar{N}, \overline{Y_{M}}\right]=1$. Since by $\bar{d} \overline{H_{0} Y_{M}}=\left\langle\overline{Y_{M}} \overline{H_{0}}\right\rangle$, we conclude that $\left[\bar{N}, \overline{H_{0} Y_{M}}\right]=1$; in particular, H_{0} centralizes $T_{H} \cap N$. By (a) $H=H_{0} T_{H}$. Thus $T_{H} \cap N$ is normal in H and N is p-closed. So (e) is proved.
(f): Put $\bar{D}:=Z\left(\overline{H_{0} Y_{M}}\right)$. By (a) $H=H_{0} T_{H}$, so $\bar{D} \preccurlyeq \bar{H}$, and since \bar{D} is abelian and $O_{p}(\bar{H})=1$, \bar{D} is a p^{\prime}-group.
(g): Since $O_{p}(\bar{H})=1,1.7$ a shows that $\Phi\left(\overline{H_{0}}\right)=\Phi\left(\overline{O^{p}(H)}\right)=\Phi(\bar{H})$. In particular, $\overline{H_{0}}$ 米 $\Phi(\bar{H})$. Hence (e) shows that $\Phi(\bar{H}) \leqslant Z\left(\overline{H_{0} Y_{M}}\right)=: \bar{D}$.

Suppose that $\bar{D} \nsubseteq(\bar{H})$. Then there exists a maximal subgroup \bar{K} of \bar{H} with $\bar{D} \nless \bar{K}$. By (f) \bar{D} is a normal p^{\prime}-subgroup of \bar{H}, so $\bar{H}=\overline{D K}$ and \bar{K} contains a Sylow p-subgroup of \bar{H}. Thus we may choose \bar{K} such that $\overline{O_{p}(M)} \leqslant \bar{K}$. Hence the definition of $\mathfrak{H}_{G}\left(O_{p}(M)\right)$ gives $\overline{Y_{M}} \leqslant O_{p}(\bar{K})$. Since $\left[\bar{D}, \overline{Y_{M}}\right]=1$ this shows that $\left\langle\overline{Y_{M}} \overline{\bar{H}}\right\rangle=\left\langle\overline{Y_{M}}{ }^{\overline{D K}}\right\rangle=\left\langle\overline{Y_{M}}{ }^{\bar{K}}\right\rangle$ is p-group, a contradiction to $O_{p}(\bar{H})=1$. Thus $\bar{D}=\Phi(\bar{H})$, and the first part of (g) is proved.

By (e) every normal subgroup of \bar{H} properly contained in $\overline{H_{0}}$ is contained in \bar{D}. Hence $\overline{H_{0}} / \bar{D}$ is a minimal normal subgroup of \bar{H} and (g) is proved.
(h): By (g) $\overline{H_{0}} / \overline{\Phi(H)}$ is a minimal normal subgroup of \bar{H}. So either $\overline{H_{0}} / \overline{\Phi(H)}$ is a q-group for some prime q or $\overline{H_{0}} / \overline{\Phi(H)}$ is the direct product of non-abelian simple groups transitively permuted by \bar{H}. By (g) $\Phi\left(\overline{H_{0}}\right)=\Phi(\bar{H}) \leqslant Z\left(\overline{H_{0}}\right)$. So in the first case, $\overline{H_{0}}$ is nilpotent and

$$
\overline{H_{0}}=\Phi(\bar{H}) O_{q}\left(\overline{H_{0}}\right)=\Phi\left(\overline{H_{0}}\right) O_{q}\left(\overline{H_{0}}\right)
$$

so $\overline{H_{0}}=O_{q}\left(\overline{H_{0}}\right)$ is a q-group.
In the second case, $\overline{H_{0}}=\Phi\left(\overline{H_{0}}\right){\overline{H_{0}}}^{\prime}, \overline{H_{0}}={\overline{H_{0}}}^{\prime}$ and $\overline{H_{0}}$ is the product of components transitively permuted by \bar{H}. In particular, each component of $\overline{H_{0}}$ is normal in $\overline{H_{0}}$, and since $\bar{H}=\overline{H_{0}} \overline{O_{p}(M)}$, already $\overline{O_{p}(M)}$ permutes the components transitively.
(i): By b $O_{p}(H)$ normalizes Y_{M} and so $\left[O_{p}(H), Y_{M}\right] \leqslant Y_{M} \leqslant L$. Since $L=\left\langle Y_{M}^{L}\right\rangle$ this gives

$$
\left[O_{p}(H), L\right]=\left[O_{p}(H),\left\langle Y_{M}^{L}\right\rangle\right] \leqslant O_{p}(H) \cap L \leqslant O_{p}(H) \cap O_{p}(L)
$$

It follows that $C_{L}\left(O_{p}(L)\right)$ acts quadratically on $O_{p}(H)$. By the definition of $\mathfrak{H}_{G}\left(O_{p}(M)\right), H$ is of characteristic p, and so 1.4 a shows that $C_{L}\left(O_{p}(L)\right)$ is a p-group. Hence L is of characteristic p.

Lemma 2.12. Let $H \in \mathfrak{H}_{G}\left(O_{p}(M)\right)$. Suppose that Y_{M} is asymmetric in G and that there exists $g \in G$ such that $H \leqslant N_{G}\left(Q^{g}\right)$. Then the following hold:
(a) Y_{M} is Q-tall.
(b) $Q^{g} \leqslant O_{p}\left(H Q^{g}\right) \leqslant N_{G}\left(O_{p}(M)\right) \leqslant N_{G}\left(Y_{M}\right)=M^{\dagger}$.
(c) $H \vDash H Q^{g}$; in particular $O^{p}(H)=O^{p}\left(H Q^{g}\right)$.
(d) $H Q^{g}$ is p-irreducible.

Proof. (a): By the definition of $\mathfrak{H}_{G}\left(O_{p}(M)\right), Y_{M} \leqslant O_{p}(H)$ and $O_{p}(M) \leqslant H$. Since $H \leqslant$ $N_{G}\left(Q^{g}\right)$ this gives $Y_{M} \neq O_{p}\left(N_{G}\left(Q^{g}\right)\right)$ and $O_{p}(M) \leqslant N_{G}\left(Q^{g}\right)$. By 2.2 § $), O_{p}(M) \in \operatorname{Syl}_{p}\left(C_{G}\left(Y_{M}\right)\right)$ and so Y_{M} is Q-tall.
(b): Clearly $Q^{g} \leqslant O_{p}\left(H Q^{g}\right)$ and $O_{p}(M) O_{p}\left(H Q^{g}\right)$ is a p-group. By 2.6 b $O_{p}(M)$ is a weakly closed subgroup of G, and we conclude that $Q^{g} \leqslant O_{p}\left(H Q^{g}\right) \leqslant N_{G}\left(O_{p}(M)\right)$. By 2.2 (c), (d), $N_{G}\left(O_{p}(M)\right) \leqslant M^{\dagger}=N_{G}\left(Y_{M}\right)$, and so b is proved.
(c): By (b), Q^{g} normalizes $O_{p}(M)$ and thus also every $N_{G}\left(Q^{g}\right)$-conjugate of $O_{p}(M)$. Since by 2.11d $H=\left\langle O_{p}(M)^{H}\right\rangle$ and $H \leqslant N_{G}\left(Q^{g}\right), Q^{g}$ normalizes H and $H \leqslant H Q^{g}$.
(d): By 2.11 e) H is p-irreducible. Since H normalizes $Q^{g}, 1.30$ b) shows that $H Q^{g}$ is p irreducible.

Recall the definition of a minimal asymmetric module from Definition A. 4 for the next lemma.
Lemma 2.13. Suppose that Y_{M} is char p-tall and asymmetric in G. Let $H \in \mathfrak{H}_{G}\left(O_{p}(M)\right)$ and let V be a non-central H-chief factor of $O_{p}(H)$. Put $\widetilde{H}:=H / C_{H}(V), A:=\widetilde{Y_{M}}$ and $B:=\widetilde{O_{p}(M)}$. Then V is a faithful simple minimal asymmetric $\mathbb{F}_{p} \widetilde{H}$-module with respect to A and B.

Proof. We have to verify A.4 (i) - (iv). By 2.6 b) $O_{p}(M)$ is a weakly closed subgroup of G and so by $1.46(\mathrm{j}) B=\widetilde{O_{p}(M)}$ is a weakly closed subgroup of \tilde{H}. Hence A.4 i holds.

By 2.11b), $O_{p}(H)$ normalizes Y_{M} and $O_{p}(M)$. Therefore,

$$
\left[O_{p}(H), Y_{M}\right] \leqslant Y_{M} \leqslant C_{G}\left(O_{p}(M)\right) \text { and }\left[O_{p}(H), O_{p}(M)\right] \leqslant O_{p}(M) \leqslant C_{G}\left(Y_{M}\right)
$$

Thus

$$
\left[O_{p}(H), Y_{M}, O_{p}(M)\right]=1 \text { and }\left[O_{p}(H), O_{p}(M), Y_{M}\right]=1
$$

and Property A.4 iii holds.
Assume for a contradiction that $\left\langle Y_{M}^{H}\right\rangle$ acts nilpotently on V. Since V is a chief factor and so a simple H-module, $\left[V,\left\langle Y_{M}^{H}\right\rangle\right]=1$. By 2.11,c), $O^{p}(H) \leqslant\left\langle Y_{M}^{H}\right\rangle$ and thus $\left[V, O^{p}(H)\right]=1$. But then V is a central H-chief factor, a contradiction. So $\left\langle Y_{M}^{H}\right\rangle$ does not act nilpotently on V, and A.4(iii) holds.

Finally let $C_{H}(V) \leqslant P \leqslant H$ such that $B \leqslant \widetilde{P}<\widetilde{H}$. Then P is a proper subgroup of H containing $O_{p}(M)$, so by the definition of $\mathfrak{H}_{G}\left(O_{p}(M)\right), Y_{M} \leqslant O_{p}(P)$. By 2.6 a) $O_{p}(P) \leqslant M^{\dagger}$ and thus by $2.5\left\langle Y_{M}^{P}\right\rangle$ is elementary abelian. Let W be the inverse image of V in H. Then

$$
\left[W,\left\langle Y_{M}^{P}\right\rangle\right] \leqslant W \cap\left\langle Y_{M}^{P}\right\rangle \text { and }\left[W,\left\langle Y_{M}^{P}\right\rangle,\left\langle Y_{M}^{P}\right\rangle\right]=1
$$

This gives A.4 iv.
Lemma 2.14. Let $L \in \mathfrak{L}_{G}\left(Y_{M}\right)$ and put $A:=O_{p}(L)$. Then $Y_{M} A / A$ is the unique non-trivial elementary abelian normal p-subgroup of $N_{L}\left(Y_{M}\right) / A$.

Proof. Let $T \in \operatorname{Syl}_{p}\left(N_{L}(Y)\right)$. By definition of $\mathfrak{L}_{G}\left(Y_{M}\right)$,

$$
L / A \cong S L_{2}(q), S z(q), \text { or } D i h_{2 r}
$$

where $p=2$ in the last two cases, r is an odd prime, and $N_{L}\left(Y_{M}\right)$ is the unique maximal subgroup L containing Y_{M}. If $L / A \cong S L_{2}(q)$ or $S z(q)$, then $N_{L}(Y) / A$ is a Borel subgroup of L / A and $T / A=O_{p}\left(N_{L}(Y) / A\right)$.

In the $S L_{2}(q)$-case T / A is elementary abelian and $N_{L}(Y)$ acts simply on T / A. Thus $Y A / A=$ T / A and the lemma holds.

In the $S z(q)$-case all involutions of T / A are contained in $Z(T / A)$, and $N_{L}(Y)$ acts simply on $Z(T / A)$. Thus $Y A / A=Z(T / A)$, and the lemma holds.

In the $D i h_{2 r}$-case, $N_{L}(Y)=T$ and $|T / A|=2$, and the lemma holds.

For the next lemma recall the definition of $\mathfrak{L}_{K}\left(Y_{M}\right)$ from 2.1 and the definition of a $\mathcal{C} \mathcal{K}$-group from C. 1

Lemma 2.15. Let $Y_{M} \leqslant L \leqslant G$ and suppose that L is a $\mathcal{C K}$-group of characteristic p. Then $L \in \mathfrak{L}_{G}\left(Y_{M}\right)$ if and only if L is Y_{M}-minimal and $N_{L}\left(Y_{M}\right)$ is a maximal subgroup of L.

Proof. If $L \in \mathfrak{L}_{G}\left(Y_{M}\right)$, then by definition, L is Y_{M}-minimal and $N_{L}\left(Y_{M}\right)$ is a maximal subgroup of L.

Suppose now that L is Y_{M}-minimal and $N_{L}\left(Y_{M}\right)$ is a maximal subgroup of L. Let $T \in$ $\operatorname{Syl}_{p}\left(N_{L}\left(Y_{M}\right)\right)$ with $Y_{M} \leqslant T$. By $1.42 \mathrm{~b}, N_{L}(T) \leqslant N_{L}\left(Y_{M}\right)$ and $O_{p}(L) \leqslant T \in \operatorname{Syl}_{p}(L)$. In particular, $O_{p}(L) \leqslant N_{L}\left(Y_{M}\right)$.

Let V be the direct sum of the L-chief factors on $O_{p}(L)$ (in a given chief series). Since L is of characteristic $p, 1.4 \mathrm{C})$ shows that $C_{L}(V) \leqslant O_{p}(L)$, and since $O_{p}(L) \leqslant C_{L}(V)$, we get $C_{L}(V)=$ $O_{p}(L)$. Hence V is a faithful $\mathbb{F}_{p} L / O_{p}(L)$-module.

As $O_{p}(L)$ normalizes Y_{M}, we have $\left[O_{p}(L), Y_{M}\right] \leqslant Y_{M}$ and $\left[O_{p}(L), Y_{M}, Y_{M}\right]=1$. It follows that Y_{M} acts quadratically on V, and we can apply the Quadratic L-Lemma MS6, Lemma 2.9] to $L / O_{p}(L)$ and V. This gives

$$
L / O_{p}(L) \cong S L_{2}(q), S z(q) \text { or } D i h_{2 r^{k}}
$$

where q is a power of p, r is an odd prime, and $p=2$ in the last two cases.
Set $X:=\left\langle\left(Y_{M} \cap O_{p}(L)\right)^{L}\right\rangle$ and $\widehat{L}:=L / X$. Suppose that $\left|\widehat{Y_{M}}\right|=2$. Then \widehat{L} is a dihedral group, but not a 2 -group. So there exists $\widehat{Y_{M}} \leqslant \widehat{D} \leqslant \widehat{L}$ with $\widehat{D} \cong D i h_{2 r}, r$ an odd prime. Then $\widehat{Y}_{M} \notin \widehat{D}$ and so $D \nleftarrow L \cap M^{\dagger}$. Since L is Y_{M}-minimal with $L \cap M^{\dagger}$ being the maximal subgroup containing Y_{M}, we conclude that $\widehat{D}=\widehat{L}$ and $X=O_{2}(L)$.

Hence we may assume that $\left|\widehat{Y_{M}}\right|>2$. In particular, $L / O_{p}(L) \cong S L_{2}(q)$ or $S z(q)$. As seen above, $N_{L}(T) \leqslant N_{L}\left(Y_{M}\right)$ and $T \in \operatorname{Syl}_{p}(L)$. It follows that $N_{L}\left(Y_{M}\right) / / O_{p}(L)$ is a Borel subgroup of $L / O_{p}(L)$ and normalizes the elementary abelian group $Y_{M} O_{p}(L) / O_{p}(L)$. Thus the structure of $S L_{2}(q)$ and $S z(q)$ shows that $q=\left|Y_{M} O_{p}(L) / O_{p}(L)\right|=\left|\widehat{Y_{M}}\right|$. It remains to show that $O_{p}(L)=X$.

Suppose for a contradiction that $O_{p}(L) \neq X$. Since $\left[O_{p}(L), Y_{M}\right] \leqslant Y_{M} \cap O_{p}(L) \leqslant X, \hat{L}$ is a non-trivial central extension of $L / O_{p}(L)$ by a p-group. Hence Gr1 shows that either $q=9$ and
 of $\widetilde{L}, O_{p}(\widehat{L})=Z(\widehat{T})$. In particular $\widehat{Y_{M}} \cap Z(\widehat{T})=1$, a contradiction as \widehat{T} normalizes $\widehat{Y_{M}}$.

Lemma 2.16 (Asymmetric L-Lemma). Suppose that Y_{M} is char p-tall and asymmetric in G. Let $H \in \mathfrak{H}_{G}\left(O_{p}(M)\right)$ and L be minimal among all subgroups $L \leqslant H$ satisfying $Y_{M} \leqslant L$ and $Y_{M} \leqslant O_{p}(L)$. Then the following hold:
(a) $H=\left\langle L, O_{p}(M)\right\rangle=\left\langle Y_{M}^{h}, O_{p}(M)\right\rangle$ for all $h \in L \backslash N_{L}\left(Y_{M}\right)$.
(b) L is Y_{M}-minimal and of characteristic p, and $N_{L}\left(Y_{M}\right)$ is the unique maximal subgroup of L containing Y_{M}.
(c) $\left[V, O^{p}(L)\right] \neq 1$ for all non-central chief factors V of H on $O_{p}(H)$.
(d) $\left\langle\left(O_{p}(L) \cap Y_{M}\right)^{L}\right\rangle \leqslant O_{p}(H)$.
(e) Suppose that L is a $\mathcal{C K}$-group. Then $L \in \mathfrak{L}_{H}\left(Y_{M}\right)$ and $O_{p}(L) \leqslant O_{p}(H)$.

Proof. Define
$H^{*}:=\left\langle Y_{M}^{H}\right\rangle, B:=\left[O_{p}(H), H^{*}\right]=\left\langle\left[O_{p}(H), Y_{M}\right]^{H}\right\rangle$, and $P:=N_{L}\left(\left[O_{p}(H), Y_{M}\right]\right) \cap N_{L}\left(C_{B}\left(Y_{M}\right)\right)$
1°. $L=\left\langle Y_{M}, Y_{M}^{g}\right\rangle$ for some $g \in L$. In particular, $L=\left\langle Y_{M}^{L}\right\rangle$.
Suppose that $\left\langle Y_{M}, Y_{M}^{g}\right\rangle$ is a p-group for all $g \in L$. Then Baer's Theorem [KS, 6.7.6] shows that $Y_{M} \leqslant O_{p}(L)$, a contradiction to the choice of L. Thus there exists $g \in L$ such that $\left\langle Y_{M}, Y_{M}^{g}\right\rangle$ is not p-group. Then $Y_{M} \leqslant O_{p}\left(\left\langle Y_{M}, Y_{M}^{g}\right\rangle\right)$ and the minimal choice of L gives $\left\langle Y_{M}, Y_{M}^{g}\right\rangle=L$.

In the following we fix $g \in L$ such hat $L=\left\langle Y_{M}, Y_{M}^{g}\right\rangle$.
$2^{\circ} . \quad H=\left\langle L, O_{p}(M)\right\rangle=\left\langle Y_{M}^{g}, O_{p}(M)\right\rangle$.

Note that $O_{p}(M) \leqslant\left\langle L, O_{p}(M)\right\rangle$ and $Y_{M} * O_{p}\left(\left\langle L, O_{p}(M)\right\rangle\right.$. So the definition of $\mathfrak{H}_{G}\left(O_{p}(M)\right)$ gives $H=\left\langle L, O_{p}(M)\right\rangle=\left\langle Y_{M}^{g}, O_{p}(M)\right\rangle$.
$3^{\circ} . \quad\left[O_{p}(H), Y_{M}\right] \leqslant Y_{M} \cap B \leqslant C_{B}\left(O_{p}(M)\right) \leqslant C_{B}\left(Y_{M}\right)$ and $\left[B, O_{p}(M)\right] \leqslant B \cap O_{p}(M) \leqslant$ $C_{B}\left(Y_{M}\right)$.

By 2.11b $O_{p}(H)$ normalizes Y_{M} and $O_{p}(M)$. By definition of $B,\left[O_{p}(M), Y_{M}\right] \leqslant B \leqslant O_{p}(H)$ and so $\left.3^{\circ}\right)$ holds.
4°. L has characteristic p.
By $1^{\circ}, L=\left\langle Y_{M}^{L}\right\rangle$, and so 4° follows from 2.11, i).
5°. $\quad B=\left[O_{p}(H), Y_{M}^{g}\right] C_{B}\left(Y_{M}\right)$.
Since $\left[B, Y_{M}^{g}\right] \leqslant\left[O_{p}(H), Y_{M}^{g}\right]$ and by $3^{\circ},\left[B, O_{p}(M)\right] \leqslant C_{B}\left(Y_{M}\right)$, both Y_{M}^{g} and $O_{p}(M)$ normalize $\left[O_{p}(H), Y_{M}^{g}\right] C_{B}\left(Y_{M}\right)$. As $H=\left\langle Y_{M}^{g}, O_{p}(M)\right\rangle$ and $B=\left\langle\left[O_{p}(H), Y_{M}^{g}\right]^{H}\right\rangle$, this gives $B=\left[O_{p}(H), Y_{M}^{g}\right] C_{B}\left(Y_{M}\right)$.
$6^{\circ} . \quad C_{B}\left(Y_{M}\right)=\left[O_{p}(H), Y_{M}\right] C_{B}(L)$.
Since $\left[O_{p}(H), Y_{M}^{g}\right] \leqslant C_{B}\left(Y_{M}^{g}\right)$ and $L=\left\langle Y_{M}, Y_{M}^{g}\right\rangle, 5{ }^{0}$ implies

$$
C_{B}\left(Y_{M}^{g}\right)=\left[O_{p}(H), Y_{M}^{g}\right]\left(C_{B}\left(Y_{M}\right) \cap C_{B}\left(\overline{Y_{M}^{g}}\right)\right)=\left[O_{p}(H), Y_{M}^{g}\right] C_{B}(L)
$$

$7^{\circ} . \quad P=N_{L}\left(Y_{M}\right)=N_{L}\left(O_{p}(M)\right)$.
By 2.2 e,$Y_{M}=\Omega_{1} Z\left(O_{p}(M)\right)$ and so $N_{L}\left(O_{p}(M)\right) \leqslant N_{L}\left(Y_{M}\right)$. Clearly $N_{L}\left(Y_{M}\right)$ normalizes $\left[O_{p}(H), Y_{M}\right]$ and $C_{B}\left(Y_{M}\right)$. Thus $N_{L}\left(Y_{M}\right) \leqslant P$. So it remains to show that $P \leqslant N_{L}\left(O_{p}(M)\right)$.

Both, P and $O_{p}(M)$ normalize the series

$$
1 \leqslant\left[O_{p}(H), Y_{M}\right] \leqslant C_{B}\left(Y_{M}\right) \leqslant B \leqslant O_{p}(H)
$$

By $\left[3^{\circ}\left[B, O_{p}(M)\right] \leqslant C_{B}\left(Y_{M}\right)\right.$ and $\left[O_{p}(H), Y_{M}\right] \leqslant Y_{M}$, so $O_{p}(M)$ centralizes $\left[O_{p}(H), Y_{M}\right]$ and $B / C_{B}\left(Y_{M}\right)$. As $L=\left\langle Y_{M}, Y_{M}^{g}\right\rangle \leqslant H^{*}$, we know that L centralizes $O_{p}(H) / B$. By $6^{\circ} C_{B}\left(Y_{M}\right)=$ $\left[O_{p}(H), Y_{M}\right] C_{B}(L)$. Since $P \leqslant L$ and P normalizes $\left[O_{p}(H), Y_{M}\right]$, we conclude that P centralizes $C_{B}\left(Y_{M}\right) /\left[O_{p}(H), Y_{M}\right]$. It follows that $\left[P, O_{p}(M)\right]$ centralizes all factors of the above series and so acts nilpotently on $O_{p}(H)$. As H is of characteristic $p, 1.4$ a implies that that $\left[P, O_{p}(M)\right]$ is a p-group. So $\left[P, O_{p}(M)\right] O_{p}(M)$ is a p-group normalized by P and since $O_{p}(M)$ is a weakly closed subgroup of $G, P \leqslant N_{L}\left(O_{p}(M)\right)$.
$8^{\circ} . \quad Y_{M}$ is a weakly closed subgroup of L.
Let $r \in L$ with $\left[Y_{M}, Y_{M}^{r}\right] \leqslant Y_{M} \cap Y_{M}^{r}$. By 1.45 b it suffices to show that $Y_{M}=Y_{M}^{r}$.
As Y_{M} is asymmetric in $G,\left[Y_{M}, Y_{M}^{r}\right] \leqslant Y_{M} \cap Y_{M}^{r}$ implies $\left[Y_{M}, Y_{M}^{r}\right]=1$. By $\left(3^{\circ}\right]\left[O_{p}(H), Y_{M}\right] \leqslant$ Y_{M} and so $\left[O_{p}(H), Y_{M}\right] \leqslant C_{B}\left(Y_{M}^{r}\right)$. Now gives $C_{B}\left(Y_{M}\right) \leqslant C_{B}\left(Y_{M}^{r}\right)$ and so $C_{B}\left(Y_{M}\right)=$ $C_{B}\left(Y_{M}\right)^{r}$. So r normalizes $C_{B}\left(Y_{M}\right)$. Put $W:=\left[O_{p}(H), L\right]$. Since $L=\left\langle Y_{M}, Y_{M}^{g}\right\rangle, 1.40$ shows that $\left[O_{p}(H), Y_{M}\right]=C_{W}\left(Y_{M}\right)$. Note that $W \leqslant B$, and so $W \cap C_{B}\left(Y_{M}\right)=C_{W}\left(Y_{M}\right)=\left[O_{p}(H), Y_{M}\right]$. Thus r also normalizes $\left[O_{p}(H), Y_{M}\right]$ and so $r \in P$. By $7^{\circ} P=N_{L}\left(Y_{M}\right)$. Hence $Y_{M}^{r}=Y_{M}$, and 88° is proved.
$9^{\circ} . \quad L$ is Y_{M}-minimal, and $N_{L}\left(Y_{M}\right)$ is the unique maximal subgroup of L containing Y_{M}.
Let $Y_{M} \leqslant U<L$. By the minimal choice of $L, Y_{M} \leqslant O_{p}(U)$. By $8^{\circ} Y_{M}$ is a weakly closed subgroup of L and so $Y_{M} \vDash U$. Thus $N_{L}\left(Y_{M}\right)$ is the unique maximal subgroup of L containing Y_{M}. By $1{ }^{\circ} L=\left\langle Y_{M}^{L}\right\rangle$ and thus L is Y_{M}-minimal.
$10^{\circ} . \quad O_{p}(L) \cap Y_{M} \leqslant O_{p}(H)$.
By $9^{\circ} O_{p}(L) \leqslant N_{L}\left(Y_{M}\right)$ and so also $O_{p}(L) \leqslant N_{L}\left(Y_{M}^{g}\right)$. By 3^{0}, $\left[O_{p}(H), Y_{M}^{g}\right] \leqslant Y_{M}^{g}$ and thus

$$
\left[\left[O_{p}(H), Y_{M}^{g}\right], O_{p}(L) \cap Y_{M}\right] \leqslant Y_{M} \cap Y_{M}^{g} \cap B \leqslant C_{B}\left(\left\langle Y_{M}^{g}, O_{p}(M)\right\rangle\right)=C_{B}(H)
$$

By $B=\left[O_{p}(H), Y_{M}^{g}\right] C_{B}\left(Y_{M}\right)$ and so $\left[B, O_{p}(L) \cap Y_{M}\right] \leqslant C_{B}(H)$. Hence $O_{p}(L) \cap Y_{M}$ centralizes all factor of the H-invariant series

$$
1 \leqslant C_{B}(H) \leqslant B \leqslant O_{p}(H)
$$

Since H is of characteristic $p, 1.4$ c) shows that $O_{p}(L) \cap Y_{M} \leqslant O_{p}(H)$. So 10° holds.
(a), (b), (d): This follows from (2, 4° and 9°, and 10°, respectively.
(c): Let V be a non-central H-chief factor on $O_{p}(H)$ and assume that $O^{p}(L) \leqslant C_{H}(V)$. By 1° $L=\left\langle Y_{M}^{L}\right\rangle$, so $L=O^{p}(L) Y_{M}$. Thus 2° implies

$$
H=\left\langle L, O_{p}(M)\right\rangle=\left\langle O^{p}(L) Y_{M}, O_{p}(M)\right\rangle \leqslant C_{H}(V) O_{p}(M)
$$

and $\left[V, O^{p}(H)\right]=1$. But then V is a central H-factor, a contradiction.
(e): By (9 L is Y_{M}-minimal and $N_{L}\left(Y_{M}\right)$ is a maximal subgroup of L. Thus 2.15 shows that $L \in \mathfrak{L}_{G}\left(Y_{M}\right)$. In particular, $O_{p}(L)=\left\langle\left(O_{p}(L) \cap Y_{M}\right)^{L}\right\rangle$. By $10^{\circ} O_{p}(L) \cap Y_{M} \leqslant O_{p}(H)$ and so $O_{p}(L) \leqslant O_{p}(H)$.

For the next lemma recall the definition of a quasisimple module from A.2.
Lemma 2.17. Suppose that G is a \mathcal{K}_{p}-group, Y_{M} is char p-tall and asymmetric in G and there exists $H \in \mathfrak{H}_{G}\left(O_{p}(M)\right)$ with $\left[\Omega_{1} Z\left(O_{p}(H)\right), O^{p}(H)\right] \neq 1$. Then there exist $L \in \mathfrak{L}_{H}\left(Y_{M}\right)$ and a quasisimple H-submodule V of Y_{H}. Moreover, the following holds for any such L and V and $W:=$ $[V, L]:$
(a) $H=\left\langle O_{p}(M), L\right\rangle$.
(b) $W \leqslant Z\left(O_{p}(L)\right)$ and $\left[O_{p}(H), L\right] \leqslant O_{p}(L) \leqslant O_{p}(H) \leqslant N_{H}\left(Y_{M}\right)$.
(c) $1 \neq W=[W, L]=\left[W, O^{p}(L)\right]=\left[V, O^{p}(L)\right], V=W C_{V}\left(Y_{M}\right)=W C_{V}(L)$, and W is a non-trivial strong offender on Y_{M}.
(d) $C_{V}\left(O^{p}(L)\right)=C_{V}(L)$, and $C_{V}\left(O^{p}(H)\right)=C_{V}\left(\left\langle Y_{M}^{H}\right\rangle\right)$.
(e) $W \cap C_{Y_{M}}(L)=C_{W}\left(O^{p}(L)\right)=C_{W}\left(O^{p}(H)\right)=C_{W}(H)$.
(f) $\left[W, Y_{M}\right]=[W, X]$ for every $X \leqslant Y_{M}$ with $\left|X / C_{X}(W)\right|>2$.

Proof. Let V_{0} be minimal in $\Omega_{1} Z\left(O_{p}(H)\right)$ with $\left[V_{0}, O^{p}(H)\right] \neq 1$. By 2.11 g , H is p-irreducible and so by 1.34 c$), V_{0}$ is quasisimple. In particular, V_{0} is p-reduced for H and so $V_{0} \leqslant Y_{H}$ by definition of Y_{H}. By definition of $\mathfrak{H}_{G}\left(O_{p}(M)\right), Y_{M} \leqslant O_{p}(H)$ and so we can choose $L_{0} \leqslant H$ minimal with respect to $Y_{M} \leqslant L_{0}$ and $Y_{M} \leqslant O_{p}\left(L_{0}\right)$. By 2.16 e) $L_{0} \in \mathfrak{L}_{H}\left(Y_{M}\right)$. This shows the existence of L and V.

Now let V be any quasisimple H-submodule of Y_{H} and $L \in \mathfrak{L}_{H}\left(Y_{M}\right)$. Then $V / C_{V}\left(O^{p}(H)\right)$ is a non-central chief factor for H on $O_{p}(H)$. Let $Y_{M} \leqslant R<L$. By definition of $\mathfrak{L}_{G}\left(Y_{M}\right)$, L is Y-minimal and $N_{L}\left(Y_{M}\right)$ is the unique maximal subgroup of L containing Y_{M}. Thus $R \leqslant N_{L}\left(Y_{M}\right)$ and so $Y_{M} \leqslant R$ and $Y_{M} \leqslant O_{p}(R)$. So L satisfies the assumptions of 2.16. We conclude that $H=\left\langle L, O_{p}(M)\right\rangle, O_{p}(L) \leqslant O_{p}(H)$ and $\left[V, O^{p}(L)\right] \neq 1$. In particular, a) holds and $W:=[V, L] \neq 1$.
(b): Since $W \leqslant V \leqslant Y_{H} \leqslant Z\left(O_{p}(H)\right)$ and $O_{p}(L) \leqslant O_{p}(H)$ we have $W \leqslant Z\left(O_{p}(L)\right)$. By 2.11(i), $\left[O_{p}(\vec{H}), L\right] \leqslant O_{p}(L)$, and by 2.11 b), $O_{p}(H)$ normalizes Y_{M}. Thus

$$
W \leqslant\left[O_{p}(H), L\right] \leqslant O_{p}(L) \leqslant O_{p}(H) \leqslant N_{H}\left(Y_{M}\right)
$$

and (b) holds.
(c): By $1.43 \mathrm{O} W$ is a strong offender on Y_{M}. Let $h \in L \backslash N_{L}\left(Y_{M}\right)$. By 1.42 f$), L=\left\langle Y_{M}, Y_{M}^{h}\right\rangle$, and by 2.16 a), $H=\left\langle Y_{L}^{h}, O_{p}(M)\right\rangle$. As V is a perfect ${ }^{1} H$-module, $V=[V, H]=\left[V, Y_{M}^{h}\right]\left[V, O_{p}(M)\right]$. By 2.11 b), $O_{p}(H)$ normalizes $O_{p}(M)$, so $\left[V, O_{p}(M)\right] \leqslant V \cap O_{p}(M) \leqslant C_{V}\left(Y_{M}\right)$, and we conclude that

$$
V=\left[V, Y_{M}^{h}\right] C_{V}\left(Y_{M}\right)
$$

In particular, $V=W C_{Y}\left(Y_{M}\right)$. Moreover, $\left[V, Y_{M}\right] \leqslant V \cap Y_{M} \leqslant C_{V}\left(Y_{M}\right)$, and since also $h^{-1} \in$ $L \backslash N_{L}\left(Y_{M}\right), V=\left[V, Y_{M}\right] C_{V}\left(Y_{M}^{h}\right)$, so

$$
C_{V}\left(Y_{M}\right)=\left[V, Y_{M}\right]\left(C_{V}\left(Y_{M}\right) \cap C_{V}\left(Y_{M}^{h}\right)\right)=\left[V, Y_{M}\right] C_{V}(L)
$$

${ }^{1}$ for the definition of a perfect module see A. 2

Hence $V=\left[V, Y_{M}^{h}\right]\left[V, Y_{M}\right] C_{V}(L)=W C_{V}(L)$. It follows that $W=[V, L]=[W, L], W=$ $\left[W, O^{p}(L)\right]=\left[V, L, O^{p}(L)\right]=\left[V, O^{p}(L)\right]$ and $\left[W, Y_{M}\right]=\left[V, Y_{M}\right]$. Since V is quasisimple, we have $\left[V, O^{p}(H)\right] \neq 1$. As $O^{p}(H) \leqslant\left\langle Y_{M}^{H}\right\rangle$ by 2.11 d), this gives $\left[W, Y_{M}\right]=\left[V, Y_{M}\right] \neq 1$. So (c) holds.
(d): Since $V=W C_{V}(L), C_{V}\left(O^{p}(L)\right)=C_{W}\left(O^{p}(L)\right) C_{V}(L)$. By 1.43,h), $C_{W}\left(O^{p}(L)\right)=C_{W}(L)$ and so $C_{V}\left(O^{p}(L)\right)=C_{V}(L)$. Since $O^{p}(H) \leqslant\left\langle Y_{M}^{H}\right\rangle$ we have $C_{V}\left(\left\langle Y_{M}^{H}\right\rangle\right) \leqslant C_{V}\left(O^{p}(H)\right)$. Also

$$
C_{V}\left(O^{p}(H)\right) \leqslant C_{V}\left(O^{p}(L)\right)=C_{V}(L) \leqslant C_{V}\left(Y_{M}\right)
$$

and so $\left\langle Y_{M}^{H}\right\rangle$ centralizes $C_{V}\left(O^{p}(H)\right)$.
(e): By 1.43,h) $C_{W}\left(O^{p}(L)\right)=W \cap C_{Y_{M}}(L)$, and so

$$
C_{W}(H) \leqslant C_{W}\left(O^{p}(H)\right) \leqslant C_{W}\left(O^{p}(L)\right)=W \cap C_{Y_{M}}(L) \leqslant C_{W}\left(\left\langle L, O_{p}(M)\right\rangle\right) \stackrel{\text { a }}{=} C_{W}(H)
$$

Hence (e) holds.
(f): If $\left|Y_{M} / Y_{M} \cap O_{p}(L)\right|=p$, there is nothing to prove. Thus, we may assume that $q:=$ $\left|Y_{M} / Y_{M} \cap O_{p}(L)\right|>p$. Since $L \in \mathfrak{L}_{H}\left(Y_{M}\right)$, we get $L / O_{p}(L) \cong S L_{2}(q)$ or $S z(q)$; in particular, $L / O_{p}(L)$ is quasisimple.

Assume that q is odd. Then $L / O_{p}(L) \cong S L_{2}(q)$ and $V=\left[V, Z\left(L / O_{p}(L)\right)\right] \times C_{V}\left(Z\left(L / O_{p}(L)\right)\right)$. Put $V_{1}:=C_{V}\left(Z\left(L / O_{p}(L)\right)\right)$. Then $L / C_{L}\left(V_{1}\right)$ has dihedral Sylow 2-subgroups. As $\left[V_{1}, Y_{M}, Y_{M}\right] \leqslant$ $\left[Y_{M}, Y_{M}\right]=1$, Gor, Theorem 8.1.2] shows that $Y_{M} \leqslant C_{L}\left(V_{1}\right)$ and $V_{1}=C_{V}(L)$. Hence $W=$ $[V, L]=\left[V, Z\left(L / O_{p}(L)\right)\right]$ and $C_{W}(L)=1$. On the other hand 1.43 d shows that $\left[W / C_{W}(L), x\right]=$ $\left[W / C_{W}(L), Y_{M}\right]$ for all $x \in Y_{M} \backslash C_{Y_{M}}(X)$, and so ($\left.\mathbb{f}\right)$ holds.

Assume now that q is even. Let $X \leqslant Y_{M}$ such that $\left|X / X \cap O_{2}(L)\right| \geqslant 4$. Then there exists $y \in Y_{M}$ and $g \in L$ such that

$$
L=\left\langle X, y^{g}\right\rangle O_{2}(L)=\left\langle X, X^{g}\right\rangle O_{2}(L)=\left\langle Y_{M}, Y_{M}^{g}\right\rangle O_{2}(L)
$$

Put $\bar{L}:=L / C_{L}(W)$. Since by (b) $O_{p}(L) \leqslant C_{L}(W)$, we get $\bar{L}=\left\langle\bar{X}, \bar{X}^{\bar{g}}\right\rangle$ and so are allowed to apply 1.40 with \bar{L}, W and \bar{X} in place of L, V and X. This gives $C_{[W, L]}(X)=[W, X]$. As $[W, X] \leqslant\left[W, Y_{M}\right] \leqslant C_{[W, L]}(X)$ we conclude $\left[W, Y_{M}\right]=[W, X]$, and (\mathbb{f}) is proved.

Lemma 2.18. Let $L \in \mathfrak{L}_{G}\left(Y_{M}\right)$ and put $A:=O_{p}(L), Y:=Y_{M}$ and $\tilde{q}:=|Y / Y \cap A|$.
(a) Let $h \in L$. If h is not a p-element then h acts fixed-point freely on $A / C_{Y}(L)$.
(b) Let U be any chief factor for $N_{L}(Y)$ on $A Y / C_{Y}(L)$. Then $|U|=\widetilde{q}$, and if $\widetilde{q}>2$, then $U=\left[U, N_{L}(Y)\right]$.
(c) Let U be any $N_{L}(Y)$-invariant section of $A Y / C_{Y}(L)$. Then $|U|$ is a power of \widetilde{q}.

Proof. (a): Recall form the definition of $\mathfrak{L}_{G}\left(Y_{M}\right)$ that $L / A \cong D i h_{2 r}, r$ an odd prime, $S L_{2}(\widetilde{q})$ or $S z(\widetilde{q})$. Moreover, by 1.43 p L has no central chief factors in $A / C_{Y}(L)$. Thus, the claim is obvious if $L / A \cong D i h_{2 r}$.

So suppose that $L / A \cong S L_{2}(\widetilde{q})$ or $S z(\widetilde{q})$. Then by C. 15 every chief factor is a natural module for L / A. As the non-trivial p^{\prime}-elements of L / A act fixed-point freely on these modules, they also act fixed-point freely on $A / C_{Y}(L)$.
(b): Now let U be a chief factor for $N_{L}(Y)$ on $A / C_{Y}(L)$. Then the p^{\prime}-elements of $N_{L}(Y)$ acts fixed-point freely on U, so U is a faithful simple module for $N_{L}(Y) / O_{p}\left(N_{L}(Y)\right)$ over \mathbb{F}_{p}. Since $N_{L}(Y) / O_{p}\left(N_{L}(Y)\right)$ is cyclic of order $\widetilde{q}-1$, we get that $|U|=\widetilde{q}$, and if $\widetilde{q}>2, U=\left[U, N_{L}(Y)\right]$.

Since $Y A / A$ is a simple $N_{L}(Y)$-module of order \tilde{q} we conclude that bolds.
(c) follows immediately from (b).

2.3. Symmetric Pairs

In this section we study how Y_{M} is embedded in parabolic subgroups of G if Y_{M} is short and asymmetric in G.

Definition 2.19. Let Y be a conjugate of Y_{M} in G. A subgroup $L \leqslant G$ is a Y-indicator if either
(1) L is p-group and $Y \leqslant L$, or
(2) L is p-minimal, $Y \leqslant O_{p}(L), N_{L}(Y)$ is a maximal and parabolic subgroup of L (so $Y \notin L$), and one of the following holds:
(i) There exists $Q_{0} \in Q^{G}$ with $Q_{0}^{\bullet} \leqslant N_{G}(Y)$ and $L \leqslant N_{G}\left(Q_{0}\right)$.
(ii) There exists $T \in \operatorname{Syl}_{p}\left(N_{G}(Y)\right)$ such that $T \cap L \in \operatorname{Syl}_{p}\left(N_{L}(Y)\right),\left[\Omega_{1} Z(T), O^{p}(L)\right] \neq 1$, and $\left[Y, O^{p}(L)\right] \$\left[\Omega_{1} Z(T), O^{p}(L)\right]$.
A pair $\left(Y_{1}, Y_{2}\right)$ of conjugates of Y_{M} is a symmetric pair if there exist Y_{i}-indicators $L_{i}, i=1,2$, such that for $V_{i}:=\left\langle Y_{i}^{L_{i}}\right\rangle$

$$
V_{1} V_{2} \leqslant L_{1} \cap L_{2} \quad \text { and } \quad\left[V_{1}, V_{2}\right] \neq 1
$$

Lemma 2.20. Suppose that Y_{M} is asymmetric in G. Let Y be a conjugate of Y_{M} and L be a Y-indicator. Then $\left\langle Y^{L}\right\rangle$ is elementary abelian.

Proof. Without loss of generality we may assume that $Y=Y_{M}$. We discuss the cases given in 2.19. Observe that in every case $Y_{M} \leqslant O_{p}(L)$. In case 2.19, 1) $Y_{M} \leqslant L$, so the lemma holds in this case.

In case 2.192 $N_{L}\left(Y_{M}\right)$ is a parabolic subgroup of L, so $O_{p}(L) \leqslant N_{L}\left(Y_{M}\right) \leqslant M^{\dagger}$. Now 2.5 yields the assertion.

Lemma 2.21. Suppose that Y_{M} is $\mathcal{P}_{G}(S)$-short and asymmetric in G and that $\mathcal{M}_{G}(S) \neq\left\{M^{\dagger}\right\}$. Then there exists $\widetilde{P} \in \mathcal{P}_{G}(S)$ such that $\widetilde{P} \cap M^{\dagger}$ is a maximal subgroup of \widetilde{P}. Moreover, for any such \widetilde{P} :
(a) $O_{p}(\langle M, \widetilde{P}\rangle)=1$.
(b) $Y_{M} \leqslant O_{p}(\tilde{P}) \leqslant S \leqslant M^{\dagger}$.
(c) $\left\langle Y_{M}^{\tilde{P}}\right\rangle$ is an elementary abelian p-group.

Proof. Since $\mathcal{M}_{G}(S) \neq\left\{M^{\dagger}\right\}$ there exists $\widetilde{P} \in \mathcal{L}_{G}(S)$ with $\widetilde{P} \not M^{\dagger}$. We choose \widetilde{P} minimal with this property. Since $O_{p}(\widetilde{P}) \leqslant S \leqslant \widetilde{P} \cap M^{\dagger}, 1.6$ shows that $\left\{U \mid \widetilde{P} \cap M^{\dagger} \leqslant U \leqslant \widetilde{P}\right\} \subseteq \mathcal{L}_{G}(S)$. Thus, the minimal choice of \widetilde{P} implies that $\widetilde{P} \cap M^{\dagger}$ is a maximal subgroup of \widetilde{P}.

Since Y_{M} is asymmetric in $G, 2.6$ a implies that $N_{G}(S) \leqslant M^{\dagger}$, so $S \notin \widetilde{P}$. Now the minimality of \widetilde{P} shows that $\widetilde{P} \in \mathcal{P}_{G}(S)$. This shows the existence of \widetilde{P}.

Now suppose that $\widetilde{P} \in \mathcal{P}_{G}(S)$ such that $\widetilde{P} \cap M^{\dagger}$ is a maximal subgroup of \widetilde{P}. Then $\widetilde{P} \not M^{\dagger}$, and since $\mathcal{M}_{G}(M)=\left\{M^{\dagger}\right\}$, a holds.

Note that $O_{p}(M) \leqslant S \leqslant \widetilde{P}, O_{p}(M) \in S y l_{p}\left(C_{G}(M)\right)$ and Y_{M} is $\mathcal{P}_{G}(S)$-short. Thus $Y_{M} \leqslant$ $O_{p}(\widetilde{P}) \leqslant S \leqslant M^{\dagger}$, and b is proved.

As Y_{M} is asymmetric, 2.5 now shows that $\left\langle Y_{M}^{\widetilde{P}}\right\rangle$ is an elementary abelian p-group.
Lemma 2.22. Let $L \in \mathcal{P}_{G}(S)$ such that $L \cap M^{\dagger}$ is a maximal subgroup of L. Suppose that $Q \nleftarrow M^{\dagger}$ and that Y_{M} is short and asymmetric in G. Then L is a $Y_{M \text {-indicator. }}$

Proof. Since $L \in \mathcal{P}_{G}(S) \subseteq \mathcal{L}_{G}, L$ is of characteristic p. Thus 1.24gg gives

$$
1^{\circ} . \quad \Omega_{1} Z(S) \leqslant Y_{L} \leqslant \Omega_{1} Z\left(O_{p}(L)\right)
$$

By 2.21, b, $Y_{M} \leqslant O_{p}(L) \leqslant S \leqslant M^{\dagger}$. Suppose that $Q \leqslant O_{p}(L)$. Then $L \leqslant N_{G}(Q)$ by 1.52 a). As $Q^{\bullet} \leqslant S \leqslant N_{G}\left(Y_{M}\right)$ we conclude that L satisfies 2.19 2:i) with $Y=Y_{M}$ and $Q_{0}=Q$, so L is a Y_{M}-indicator in this case. Thus we may assume that $Q \not O_{p}(L)$. If $\left[\Omega_{1} Z(S), L\right]=1$, then $L \leqslant N_{G}(Q)$ by $Q!$ and $Q \leqslant O_{p}(L)$. Hence
2°. $\quad\left[\Omega_{1} Z(S), O^{p}(L)\right] \neq 1$.
So if $\left[Y_{M}, O^{p}(L)\right] \$\left[\Omega_{1} Z(S), O^{p}(L)\right]$, then L satisfies 2.19(2:ii), with $Y=Y_{M}$ and $T=S$ and L is a Y_{M}-indicator. Hence we may assume for the rest of the proof that
3°. $Q \neq O_{p}(L)$ and $\left[Y_{M}, O^{p}(L)\right] \leqslant\left[\Omega_{1} Z(S), O^{p}(L)\right] \leqslant Y_{L}$.
In particular,
$4^{\circ} . \quad Y_{M} Y_{L} \approx L$.
By 2.21a),
$5^{\circ} . \quad O_{p}(\langle M, L\rangle)=1$.
If $O_{p}(M) \leqslant O_{p}(L)$, then 2.6 a gives $L \leqslant N_{G}\left(O_{p}(L)\right) \leqslant M^{\dagger}$, a contradiction. Thus
$6^{\circ} . \quad O_{p}(M) \neq O_{p}(L)$.
Next we show:
$7^{\circ} . \quad Y_{M} \leqslant \Omega_{1} Z\left(O_{p}(L)\right)$.
Assume that $R:=\left[Y_{M}, O_{p}(L)\right] \neq 1$. By $\left.4{ }^{9}\right) Y_{M} Y_{L} \vDash L$ and so $R \unlhd L$ and $C_{L}(R) \vDash L$. Since $\left[R, O_{p}(M)\right]=1$ and $O_{p}(M) \nVdash O_{p}(L), C_{L}(R)$ is not p-closed. Hence 1.37 implies that $O^{p}(L) \leqslant$ $C_{L}(R)$. Thus $L=O^{p}(L) S \leqslant N_{G}\left(C_{R}(Q)\right)$, and since $C_{R}(Q) \neq 1, Q$! shows that $L \leqslant N_{G}(Q)$ and $Q \leqslant O_{p}(L)$, a contradiction to 3°.

Let $V:=\Omega_{1} Z\left(O_{p}(L)\right), J:=J_{L}(V)$ (for the definition see A.7), and $\bar{L}:=L / C_{L}(V)$.
8°. $\quad C_{S}(V)=O_{p}(L)$, and V is a p-reduced L-module.
Put $\left.\bar{N}:=O_{p}(\bar{L})\right)$ and let N be the inverse image of \bar{N} in L. By $1^{\circ} \Omega_{1} Z(S) \leqslant V$ and by 2° $\left[\Omega_{1} Z(S), O^{p}(L)\right] \neq 1$, so $\left[V, O^{p}(L)\right] \neq 1$. Hence $O^{p}(L) \neq N$ and 1.37 gives that N is p-closed. Thus $\left.N \cap S=O_{p}(L)\right), C_{S}(V)=O_{p}(L), \bar{N}=1$ and V is a p-reduced L-module.

By A.40 each $A \in \mathcal{A}_{O_{p}(M)}$ induces a best offender on V. In particular $\overline{J_{O_{p}(M)}(V)} \neq 1$ if $J\left(O_{p}(M)\right) \nless C_{L}(V)$.
$9^{\circ} . \quad O_{p}(L) \leqslant O_{p}(M)$ and $J\left(O_{p}(L)\right) \neq C_{L}(V)$; in particular, $\overline{J_{O_{p}(M)}(V)} \neq 1$.
By $7^{\circ} O_{p}(L) \leqslant C_{S}\left(Y_{M}\right)=O_{p}(M)$, and by (50$O_{p}(\langle M, L\rangle)=1$. Hence no non-trivial characteristic subgroup of $O_{p}(M)$ is normal in L. In particular $J\left(O_{p}(M)\right) \notin L$. Since $O_{p}(L) \leqslant$ $O_{p}(M)$ this gives $J\left(O_{p}(M)\right) \not \approx O_{p}(L)$. By $8^{\circ} O_{p}(L)=C_{S}(V)$ and so $\overline{J_{O_{p}(M)}(V)} \neq 1$.
10°. There exists subgroups E_{1}, \ldots, E_{k} in L such that for $i=1, \ldots, k$ and $U_{i}:=E_{i} C_{L}(V) \cap$ M^{\dagger} :
(a) $\bar{J}=\overline{E_{1}} \times \cdots \times \overline{E_{k}}, L=J S, V=\left[V, E_{1}\right] \times \cdots \times\left[V, E_{k}\right]$, and ${\overline{E_{1}}}^{\prime}, \ldots,{\overline{E_{k}}}^{\prime}$ are the $J_{\bar{L}}(V)-$ components of \bar{L}.
(b) $\overline{E_{i}} \cong S L_{2}(q), q=p^{n}$, or $p=2$ and $\overline{E_{i}} \cong \operatorname{Sym}(5)$, and $\left[V, E_{i}\right]$ is the corresponding natural module for $\overline{E_{i}}$.
(c) \bar{Q} is transitive on $\left\{\overline{E_{1}}, \ldots, \overline{E_{k}}\right\}$.
(d) $\overline{E_{i}} \cong S L_{2}(q)$ and $\overline{U_{i}}=N_{\overline{E_{i}}}\left(\bar{S} \cap \overline{E_{i}}\right)$, or $\overline{E_{i}} \cong \operatorname{Sym}(5)$ and $\overline{U_{i}} \cong \operatorname{Sym}(4)$.

Since V is a $Q!$-module for L, (a), (b) and (c) are a straightforward application of C. 13 and C.24. Note here that the case $\overline{E_{i}} \cong \operatorname{Sym}\left(2^{n}+1\right)$ in C. 13 only appears for $n=2$ via $\operatorname{Sym}(5) \cong O_{4}^{-}(2)$ in C.24. Moreover, (d) follows from the structure of the groups given in (b) and the fact that L is p-minimal with $L \cap M^{\dagger}$ being the unique maximal subgroup containing S.

In the following we use the notation of 10° and put

$$
W_{i}:=\left[V, E_{i}\right], \quad J_{0}:=J\left(O_{p}(M)\right), \quad R_{i}:=\left[W_{i}, J_{0}\right] .
$$

11. $\quad \overline{E_{i}} \cong S L_{2}(q), \overline{O_{p}\left(U_{i}\right)}=\overline{J_{0}} \cap \overline{E_{i}}, V \leqslant J_{0}$, and $\left|R_{i}\right|=q, i=1, \ldots, k$. Moreover, $Y_{M} \cap W_{i}=R_{i}$ if $q>2$.

By (9ㅇ) $J_{0} \not C_{L}(V)$. Let $A \in \mathcal{A}_{J_{0}}$ such that $A \nless C_{L}(V)$ and $\left|A / C_{A}(V)\right|$ is minimal with this property. By C. 13

$$
\bar{A}=\bar{A} \cap \overline{E_{1}} \times \cdots \times \bar{A} \cap \overline{E_{r}} \text { and }\left|W_{i} / C_{W_{i}}\left(\bar{A} \cap \overline{E_{i}}\right)\right|=\left|\bar{A} \cap \overline{E_{i}}\right|
$$

Hence $|A|=\left|A_{i}\right|=\left|V C_{A}(V)\right|$, where $A_{i}:=\left(A \cap U_{i}\right) C_{V}\left(A \cap U_{i}\right)$. Since by $9{ }^{\circ} V \leqslant O_{p}(M)$, we get $V C_{A}(V) \in \mathcal{A}_{O_{p}(M)}$ and $A_{i} \in \mathcal{A}_{O_{p}(M)}$. In particular, $V \leqslant J_{0}$. Moreover, the minimality of A implies that $A=A_{l}$ for some $l \in\{1, \ldots, k\}$, so $\bar{A} \leqslant \overline{E_{l}}$ and $\bar{A} \leqslant O_{p}\left(\overline{U_{l}}\right)$. Suppose that $\overline{E_{l}} \cong \operatorname{Sym}(5)$. Since \bar{A} is an offender on W_{l}, C.4 ghows that \bar{A} is generated by transpositions, a contradiction since $\overline{U_{l}} \cong \operatorname{Sym}(4)$ and so $O_{p}\left(\overline{U_{l}}\right)$ contains no transpositions.

Thus $\overline{E_{i}} \cong S L_{2}(q)$ and by $10^{\circ} \overline{U_{i}}=N_{\overline{E_{i}}}\left(\bar{S} \cap \overline{E_{i}}\right)$. From the structure of $S L_{2}(q)$ we get that $\overline{U_{i}}=\left(\bar{S} \cap \overline{E_{i}}\right) \overline{K_{i}}, \bar{K}_{i} \cong C_{q-1}$. Since A is an offender on W_{l} we have $\left|W_{l} / C_{W_{l}}(A)\right|=|\bar{A}|=q$, and $\bar{A} \in S y l_{p}\left(\bar{E}_{l}\right)$. In particular, $\bar{A}=O_{p}\left(\overline{U_{l}}\right)=\overline{J_{0}} \cap \overline{E_{l}}$ and $\overline{J_{0}}=\bar{A} \times C_{\overline{J_{0}}}\left(W_{l}\right)$, and $R_{l}=\left[W_{l}, J_{0}\right]=$ $C_{W_{l}}(A)$ is a 1-dimensional \mathbb{F}_{q}-subspace of W_{l}. Since S normalizes $O_{p}(M)$ and acts transitively on $\left\{\overline{E_{1}}, \ldots \overline{E_{k}}\right\}$ we conclude that the first sentence in 11° holds.

Assume now that in addition $q>2$, so $\overline{K_{l}} \neq 1$. Since $U_{l} \leqslant M^{\dagger}$ and $Y_{M} \leqslant C_{V}(A),\left[Y_{M}, U_{l}\right] \leqslant$ $Y_{M} \cap C_{W_{l}}(A)$, and either $\left[Y_{M}, U_{l}\right]=1$ or $\left[Y_{M}, U_{l}\right]=C_{W_{l}}(A)=R_{l}$. In the latter case the last part of $11{ }^{\circ}$ holds. In the first case $\left[Y_{M}, \overline{K_{l}}\right]=1$, and the action of $\overline{K_{l}}$ on W_{l} shows that $C_{V}\left(\overline{K_{l}}\right)=C_{V}\left(\overline{E_{l}}\right)$. But then $Y_{M} \leqslant C_{V}\left(E_{l}\right)$ and $E_{l} \leqslant C_{G}\left(Y_{M}\right) \leqslant M^{\dagger}$. Hence $\overline{E_{l}}=\overline{U_{l}}$, a contradiction.
$12^{\circ} . \quad O_{p}(L)=V=C_{L}(V)$.
By $11^{\circ} \overline{E_{i}} \cong S L_{2}(q)$ and $\overline{O_{p}\left(U_{i}\right)}=\overline{J_{0}} \cap \overline{E_{i}}$ and by 10° d d $\overline{U_{i}}=N_{\overline{E_{i}}}\left(\bar{S} \cap \overline{E_{i}}\right)$. So $\overline{J_{0}} \cap \overline{E_{i}} \in$ $S y l_{p}\left(\overline{E_{i}}\right)$ and thus $\overline{J_{0}} \in S y l_{p}(\bar{J})$. According to $9^{\circ} O_{p}(L) \leqslant O_{p}(M)$ and so $O_{p}(M) \in S y l_{p}\left(O_{p}(M) J\right)$. By 10° (a) $L=J S$ and so $\langle M, L\rangle=\langle M, J\rangle$. Thus by (5) $O_{p}(\langle M, J\rangle)=1$ and so no non-trivial characteristic subgroup of $O_{p}(M)$ is normal in $O_{p}(M) J$. Moreover, by 10° (a) $Z\left(O_{p}(M) J\right)=1$. Hence, the $C(G, T)$-Theorem [BHS, applied to $O_{p}(M) J$, shows that $\left[O_{p}(L), O^{p}(J)\right] \leqslant V$ and $\left[\Phi\left(O_{p}(L)\right), O^{p}(J)\right]=1$. As $O^{p}(J)=O^{p}(L)$ and $Z\left(O_{p}(M) J\right)=1$, we get $\Phi\left(O_{p}(L)\right)=1$ and so $V=O_{p}(L)$. Since L is of characteristic p, also $V=C_{L}(V)$.
$13^{\circ} . \quad q>p$ and $k=1$.
Let $\Omega:=\left\{R_{i} \mid i=1, \ldots, k\right\}$. By $11^{\circ}\left|R_{i}\right|=q$, and by 10° (c) Q is transitive on Ω. We will show that M acts on Ω. For this let $x \in M$ and $i \in\{1, \ldots, k\}$. Note that $W_{i}^{x} \leqslant V^{x} \leqslant J_{0}^{x}=J_{0} \leqslant L$, and so $\left[W_{i}^{x}, J_{0}\right]=R_{i}^{x}$.

Suppose that $\left[W_{i}^{x}, V\right]=1$. By $12^{\circ} C_{L}(V)=V$ and so $W_{i}^{x} \leqslant V=W_{1} \times \ldots \times W_{r}$. Since $\left[W_{i}^{x}, J_{0}\right] \neq 1$ we can choose $j \in\{1, \ldots, r\}$ such that the projection of W_{i}^{x} to W_{j} is not centralized by J_{0}. Then

$$
R_{j}=\left[W_{i}^{x}, \overline{J_{0}} \cap \overline{E_{j}}\right] \leqslant\left[W_{i}^{x}, J_{0}\right]=R_{i}^{x}
$$

Hence $R_{j}=R_{i}^{x} \in \Omega$.
Suppose that $\left[W_{i}^{x}, V\right] \neq 1$. Then there exists $j \in\{1, \ldots, k\}$ such that $\left[W_{i}^{x}, W_{j}\right] \neq 1$. Hence $R_{j}=\left[W_{i}^{x}, W_{j}\right] \leqslant\left[W_{i}^{x}, J_{0}\right]=R_{i}^{x}$, so again $R_{j}=R_{i}^{x} \in \Omega$.

We have shown that M acts on Ω. Let $\Lambda \subseteq \Omega$ be an orbit of $O_{p}(M)$ and $R_{0}:=\prod_{R_{\ell} \in \Lambda} R_{\ell}$. Observe that $O_{p}(M) \leqslant N_{G}\left(R_{0}\right)$ and $O_{p}(M) \in \operatorname{Syl}_{p}\left(C_{G}\left(Y_{M}\right)\right)$. Hence $\Omega_{1} Z(S) \leqslant Y_{M} \leqslant O_{p}\left(N_{G}\left(R_{0}\right)\right)$ since Y_{M} is short ${ }^{2}$.

Assume that $\Lambda \neq \Omega$. Then there exists $i \in\{1, \ldots, k\}$ such that $R_{i} \neq R_{0}$. Note that

$$
\begin{equation*}
\left[R_{l}, E_{j}\right]=1 \text { for all } 1 \leqslant l, j \leqslant k \text { with } l \neq j \tag{*}
\end{equation*}
$$

Hence $\left[R_{0}, E_{i}\right]=1$, so $E_{i} \leqslant N_{G}\left(R_{0}\right)$ and $W_{i}=\left[\Omega_{1} Z(S), E_{i}\right] \leqslant O_{p}\left(N_{G}\left(R_{0}\right)\right)$. On the other hand, by (50) $O_{p}(\langle M, L\rangle)=1$. So $V \nsubseteq M$, and there exists $y \in M$ such that $V^{y} \neq V$. Then $V^{y} \leqslant J_{0}$. Moreover, by 10° (c) Q is transitive on Ω, so y can be chosen such that $\left[W_{i}, V^{y}\right]=R_{i}$. Since M acts on $\Omega, R_{i}^{y^{-1}} \in \Omega$ and so there exists $j \in\{1, \ldots, k\}$ such that $\left[W_{i}, V^{y}\right]=R_{i}=R_{j}^{y}$. Conjugating (*) by y gives

$$
\left[R_{l}^{y}, E_{j}^{y}\right]=1 \text { for all } 1 \leqslant l, j \leqslant k \text { with } l \neq j
$$

[^3]Since $R_{j}^{y}=R_{i}$ and y acts in Ω this shows $\left[R_{l}, E_{j}^{y}\right]=1$ for all $1 \leqslant l \leqslant k$ with $l \neq i$. Then also [$\left.R_{0}, E_{j}^{y}\right]=1$, so $E_{j}^{y} \leqslant N_{G}\left(R_{0}\right)$. Since $W_{i} \leqslant O_{p}\left(N_{G}\left(R_{0}\right)\right)$ this shows that [W_{i}, E_{j}^{y}] is a p-group. But $W_{i} \leqslant J_{0}=J_{0}^{y} \leqslant J^{y}$ and $\left[V^{y}, W_{i}\right]=R_{j}^{y}$. So the action of J^{y} on V^{y} implies that $\left[E_{j}^{y}, W_{i}\right]$ is not a p-group, a contradiction.

We have shown that $\Lambda=\Omega$. Hence $O_{p}(M)$ is transitive on Ω and thus also on the groups $\overline{E_{1}}, \ldots, \overline{E_{k}}$. Suppose that $q=p$, then the transitivity of $O_{p}(M)$ shows that $\left|Y_{M}\right|=\left|C_{V}\left(O_{p}(M)\right)\right|=p$. Thus $Y_{M} \leqslant C_{G}(Q)$ and Q ! gives $M^{\dagger} \leqslant N_{G}\left(Y_{M}\right) \leqslant N_{G}(Q)$, a contradiction since $Q \notin M^{\dagger}$ by assumption. Therefore $q>p$. Now 11° shows that $W_{i} \cap Y_{M} \neq 1$ and thus $\overline{O_{p}(M)} \leqslant C_{\bar{L}}\left(W_{i} \cap Y_{M}\right) \leqslant$ $N_{\bar{L}}\left(\overline{E_{i}}\right)$. Hence, the transitivity of $\overline{O_{p}(M)}$ gives $k=1$.
14. $\quad J / V \cong S L_{2}(q), q>p$, and V is a natural $S L_{2}(q)$-module for J.

By $12^{\circ} V=C_{L}(V)$, and by 11° and $13^{\circ} J / V \cong S L_{2}(q), q>p$. Moreover, by 10° b $V=W_{1}$ is a natural $S L_{2}(q)$-module.
15°. $J_{0} \in \operatorname{Syl}_{p}(J)$, and there exists $x \in M \backslash L$ with $J_{0}=V V^{x}$.
By $\left(5^{\circ} O_{p}(\langle M, L\rangle)=1\right.$ and so $M \leqslant N_{G}(V)$. Pick $x \in M \backslash N_{G}(V)$. Then $V \neq V^{x}$ and so by $12^{\circ}, V^{x} \leqslant C_{L}(V)$. Since M normalizes $J_{0}, V^{x} \leqslant J_{0} \leqslant J$. By $14^{\circ} V$ is a natural $\left.S L_{2}(q)\right)$-module for J, and we conclude that $\left|C_{V}\left(V^{x}\right)\right|=q$. So $\left|V \cap V^{x}\right| \leqslant q,\left|V^{x} V / V\right| \geqslant q$ and $V V^{x}=J_{0} \in S y l_{p}(J)$.
$16^{\circ} . \quad O_{p}(M)=J_{0}, Y_{M}=C_{V}\left(O_{p}(M)\right),\left|Y_{M}\right|=q$, and $M \cap J$ acts transitively on Y_{M}.
By $7^{0} Y_{M} \leqslant V$, so $Y_{M} \leqslant C_{V}\left(J_{0}\right)$. By $14^{\circ} V$ is a natural $S L_{2}(q)$-module for J, and so U_{i} acts transitively on $C_{V}\left(J_{0}\right)$. As $U_{i} \leqslant M^{\dagger}, U_{i}$ normalizes Y_{M} and hence $Y_{M}=C_{V}\left(J_{0}\right)$.

It remains to be shown that $O_{p}(M)=J_{0}$. Since $O_{p}(M)$ centralizes the \mathbb{F}_{q}-subspace $Y_{M}=$ $C_{V}\left(J_{0}\right)$ of $V, O_{p}(M)$ acts \mathbb{F}_{q}-linearly on V. As $G L_{2}(q) / S L_{2}(q)$ is a p^{\prime}-group, this gives $\overline{O_{p}(M)} \leqslant \bar{J}$ and so $O_{p}(M) \leqslant J$. Since $J_{0} \leqslant O_{p}(M)$ and $J_{0} \in \operatorname{Syl}_{p}(J)$, this shows that $O_{p}(M)=J_{0}$.
17°. p is odd.
Assume that $p=2$. By 15° and $16^{\circ} O_{2}(M)=J_{0}=V V^{x}$. As V is a natural $S L_{2}(q)$-module for J, this implies that V and V^{x} are the only maximal elementary abelian subgroups of $O_{2}(M)$, so $\left|M / N_{M}(V)\right|=2$. But this contradicts the fact that V is normalized by the Sylow 2-subgroup S of M.

18。 $\quad Q \leqslant J$.
Assume that $Q \leqslant J$. By 15° and $16^{\circ} O_{p}(M)=J_{0} \in S y l_{p}(J)$ and so $Q \leqslant O_{p}(M)$. Thus by $1.52 \mathrm{a}, N_{G}\left(O_{p}(M)\right) \leqslant N_{G}(Q)$. Hence $Q \leqslant M$ and by 2.2 g , $Q \leqslant M^{\dagger}$, a contradiction to the assumption.
$19^{\circ} . \quad M_{\circ} \leqslant M \cap J$, and $N_{G}(V)^{\circ}=(Q J)^{\circ}$.
By $16^{\circ} M \cap J$ acts transitively on Y_{M} and so by $1.57 \mathrm{c}, M^{\circ}=\left\langle Q^{M \cap J}\right\rangle \leqslant Q(M \cap J)$. Thus $M_{\circ}=O^{p}\left(M^{\circ}\right) \leqslant M \cap J$. Since J acts transitively on V another application of 1.57 c) gives $N_{G}(V)^{\circ}=\left\langle Q^{J}\right\rangle=(Q J)^{\circ}$.

Put $B:=M^{\dagger} \cap J$ and $\check{B}:=B / C_{B}\left(Y_{M}\right)$.
$20^{\circ} . \quad B=N_{J}\left(O_{p}(M)\right), \underbrace{}_{B}\left(Y_{M}\right)=O_{p}(M)=O_{p}(B), \check{B}$ is cyclic of order $q-1$ and acts regularly on Y_{M}^{\sharp}. In particular, \widetilde{M}_{\circ} acts fixed-point freely on Y_{M}.

By $15^{\circ}, J_{0} \in \operatorname{Syl}_{p}(J)$, and by 16°, $O_{p}(M)=J_{0}$ and $Y_{M}=C_{V}\left(O_{p}\left(M_{0}\right)\right)$. In particular, $O_{p}(M) \in S y l_{p}(J)$. By $14^{\circ} J / V \cong S L_{2}(q)$ and V is a natural $S L_{2}(q)$-module. It follows that $B=N_{J}\left(O_{p}(M)\right), C_{B}\left(Y_{M}\right)=O_{p}(M)=O_{p}(B)$ and \check{B} is cyclic of order $q-1$. By $19^{\circ}, M_{\circ} \leqslant B$ and so also the last statement holds.

$$
21^{\circ} . \quad \sqrt{q}+1<\left|\widetilde{M}_{\circ}\right|
$$

The elements of $Q \backslash J$ induce field automorphisms on J / V, and by $18^{\circ} Q * J$. This shows that $\left|C_{\check{B}}(Q)\right|=q_{0}-1$, where q_{0} is a power of p with $q_{0}^{p} \leqslant q$. By 2.2 c $B \leqslant N_{G}\left(O_{p}(M)\right) \leqslant M^{\dagger}$ and by $2.2 \mathrm{~h}) M^{\circ}=\left(M^{\dagger}\right)^{\circ}$. So $[B, Q] \leqslant M^{\circ}$. Since $[\check{B}, Q]$ is a p^{\prime}-group and M° / M_{\circ} is a p-group, this gives $[\breve{B}, Q] \leqslant \widetilde{M}_{\circ}$. Hence $|[\check{B}, Q]| \leqslant\left|\widetilde{M}_{\circ}\right|$ and $\check{B}=[\check{B}, Q] \times C_{\check{B}}(Q)$, so

$$
q-1=|\check{B}|=|[\check{B}, Q]|\left|C_{\breve{B}}(Q)\right| \leqslant\left|\widetilde{M}_{\circ}\right|\left(q_{0}-1\right)
$$

As $q_{0}^{p} \leqslant q$ and $p>2$, we have $q_{0}<\sqrt{q}$ and we conclude

$$
\left|\overline{M^{\circ}}\right| \geqslant \frac{q-1}{q_{0}-1}>\frac{q-1}{\sqrt{q}-1}=\sqrt{q}+1
$$

$22^{\circ} . \quad Y_{M}$ is a simple \bar{M}_{\circ}-module.
By $20^{\circ} \widetilde{M}_{\circ}$ acts fixed-point freely on Y_{M} and by $21^{\circ}\left|\widetilde{M}_{\circ}\right|>\sqrt{q}+1$. Thus any non-trivial M°-invariant section of Y_{M} has order larger than $\sqrt{q}+1$. As $\left|Y_{M}\right|=q$ by 16° we conclude that a composition series for M° on Y_{M} has at most one factor and so 22° holds.

We now derive a final contradiction. Put $\mathbb{F}:=\operatorname{End}_{M_{\circ}}\left(Y_{M}\right), \mathbb{K}:=\operatorname{End}_{J}(V)$ and $\widetilde{\mathbb{K}}:=$ $E n d_{J^{x}}\left(V^{x}\right)$, where x is as in 15°. By $22^{\circ} \mathbb{F}$ is a finite field, and by $14^{\circ} V$ is the natural $S L_{2}(q)-$ module for J, so \mathbb{K} is a finite field of order q. By $19^{\circ} M_{\circ} \leqslant J$, and since $Y_{M}=C_{V}\left(O_{p}(M)\right)$, M_{\circ} acts \mathbb{K}-linearly on Y_{M}. Thus \mathbb{F} contains a field isomorphic to \mathbb{K}. Since $\left|Y_{M}\right|=q=|\mathbb{K}|$ and $|\mathbb{F}| \leqslant\left|Y_{M}\right|$ this show that \mathbb{F} is a field isomorphic to \mathbb{K}, indeed \mathbb{F} is the restriction of \mathbb{K} to Y_{M}. Note that \mathbb{F} is invariant under x and so also $\widetilde{\mathbb{K}}$ is a isomorphic to \mathbb{F}, and \mathbb{F} is the restriction of $\widetilde{\mathbb{K}}$ to Y_{M}. Moreover, since \widetilde{M}_{\circ} is abelian, \widetilde{M}_{\circ} embeds into \mathbb{F} via its action on Y_{M}.

Pick $y \in V^{x} \backslash V, v \in V \backslash Y_{M}$, and $d \in M_{\circ}$. Then there exists $\mu \in \mathbb{F}$ such that d acts on Y_{M} as multiplication by μ. Let $\lambda \in \mathbb{K}$ and $\widetilde{\lambda} \in \widetilde{\mathbb{K}}$ such that

$$
\left.\lambda\right|_{Y_{M}}=\mu=\left.\widetilde{\lambda}\right|_{Y_{M}} .
$$

Then

$$
v^{d} \in v \lambda^{-1}+Y_{M} \text { and } y^{d} \in y \tilde{\lambda}^{-1}+Y_{M}
$$

since the action of d on V and V^{x} has determinant 1. The mappings

$$
\begin{array}{rllll}
V / Y_{M} & \rightarrow & Y_{M} & \text { with } \quad w+Y_{M} \mapsto[w, y], \quad \text { and } \\
V^{x} / Y_{M} & \rightarrow & Y_{M} & \text { with } \quad w+Y_{M} \mapsto[v, w] .
\end{array}
$$

are \mathbb{K} - and $\widetilde{\mathbb{K}}$-linear, respectively. It follows that

$$
[v, y] \mu=[v, y]^{d}=\left[v^{d}, y^{d}\right]=\left[v \lambda^{-1}, y \tilde{\lambda}^{-1}\right]=\left.\left.[v, y] \lambda^{-1}\right|_{Y_{M}} \tilde{\lambda}^{-1}\right|_{Y_{M}}=[v, y] \mu^{-2}
$$

This shows that $\mu=\mu^{-2}$ and $\mu^{3}=1$. Since the multiplicative group of \mathbb{F} is cyclic, we get that $\left|\widetilde{M}_{\circ}\right| \leqslant 3$. Hence 21° implies that $\sqrt{q}+1<3$, so $q<4$. On the other hand, by $13^{\circ} p<q$ and by $17^{\circ} p$ is odd, a contradiction.

Lemma 2.23. Suppose that Y_{M} is short and asymmetric in G, that $\mathcal{M}_{G}(S) \neq\left\{M^{\dagger}\right\}$ and that $Q \nRightarrow M^{\dagger}$. Then G possesses a symmetric pair.

Proof. Note that the assumptions of 2.21 are fulfilled and so we can choose $\widetilde{P} \in \mathcal{P}_{G}(S)$ as there. Since $Q \not M^{\dagger}, \widetilde{P}$ satisfies the hypothesis of 2.22 in place of L. Hence \widetilde{P} is a Y_{M}-indicator. We will now verify the assumptions of E.16 bor $\left(G, Y_{M}, M, \widetilde{P}\right)$ in place of $\left(H, A_{1}, H_{1}, H_{2}\right)$.

Observe that Y_{M} is a non-trivial normal p-subgroup of M and by $\left.2.2, \mathbb{f}\right)_{\widetilde{P}} C_{M}\left(Y_{M}\right)$ is p-closed. By 2.21, a, $O_{p}(\langle M, \widetilde{P}\rangle)=1$ and so no nontrivial normal p-subgroup of $M \cap \widetilde{P}$ is normal in M and in \widetilde{P}. Since $S \leqslant M \cap \widetilde{P}, M \cap \widetilde{P}$ is parabolic subgroup of M and \widetilde{P}. By 2.21 b $Y_{M} \leqslant O_{p}(\widetilde{P})$, and as $\widetilde{P} \in \mathcal{P}_{G}(S), \widetilde{P}$ is p-minimal and so by $1.37 p$-irreducible.

We have shown that $\left(G, Y_{M}, M, \widetilde{P}\right)$ satisfy the hypothesis of E.16 in place of $\left(H, A_{1}, H_{1}, H_{2}\right)$. Hence there exist $i \in\{1,2\}$ and $h \in G$ with $1 \neq\left[A_{i}, A_{i}^{h}\right] \neq A_{i} \cap A_{i}^{h}$ and $A_{i} A_{i}^{h} \leqslant H_{i} \cap H_{i}^{g}$, where $A_{2}:=\left\langle A_{1}^{H_{2}}\right\rangle=\left\langle Y_{M}^{\tilde{P}}\right\rangle$. Since Y_{M} is asymmetric in G, we conclude that $i \neq 1$. So $i=2$. As already observed, \widetilde{P} is a Y_{M}-indicator and thus $\left(Y_{M}, Y_{M}^{h}\right)$ is a symmetric pair with indicators \widetilde{P} and \widetilde{P}^{h}.

2.4. Tall Natural Symplectic Modules

Lemma 2.24. Let I be a non-trivial normal p-subgroup of M and $Y \leqslant O_{p}\left(M^{\dagger}\right)$. Let $L \leqslant G$ and let A be a normal p-subgroup of L. Suppose that $I \leqslant A \leqslant M$ and $Y \leqslant L$. If $[Y, A] \leqslant[I, A]$, then $Y \leqslant O_{p}(L)$.

Proof. Let H be the subnormal closure of Y in L. Put $W:=\left\langle[I, A]^{H}\right\rangle$. Since $[Y, A] \leqslant[I, A]$ and $H=\left\langle Y^{H}\right\rangle$ (see 1.13), we get $[H, A] \leqslant W$, and H acts trivially on A / W. Since $I \leqslant A$ we conclude that H normalizes $I W$ and so

$$
W=\left\langle[I, A]^{H}\right\rangle=\left[\left\langle I^{H}\right\rangle, A\right] \leqslant[I W, A] \leqslant I[W, A]
$$

Since $A \leqslant M, A$ acts in $I W / I$, and we conclude that $I W / I=[I W / I, A]$. so $I W=I$, and H normalizes I. As $I \leqslant M, 2.2$ (c) gives $N_{G}(I) \leqslant M^{\dagger}$. Thus $H \leqslant M^{\dagger}$. In particular, since

Lemma 2.25. Suppose that $p=2$ and Y is an M-submodule of Y_{M} such that $I:=\left[Y, M_{\circ}\right]$ is natural $S p_{2 m}\left(2^{k}\right)^{\prime}$-module for $M_{\circ}, m \geqslant 1$.
(a) Let $L \leqslant G$ and A a normal p-subgroup of L. Suppose that $I \leqslant A \leqslant M$ and $Y \leqslant L$. Then $Y \leqslant O_{p}(L)$.
(b) If $I \leqslant Q^{\bullet}$, then $Y \leqslant Q^{\bullet}$.

Proof. ap: Put $q=2^{k}$. By 1.55 d, $C_{G}\left(M^{\circ}\right)=1$. In particular, $C_{Y}\left(M^{\circ}\right)=1$ and so also $C_{Y}\left(M_{\circ}\right)=1$.

We claim that $C_{M}(Y)=C_{M}(I)$. Indeed by 1.52 c$),\left[M^{\circ}, C_{M}(I)\right] \leqslant O_{p}(M) \leqslant C_{M}(Y)$. Thus $\left[M_{\circ}, C_{M}(I), Y\right]=1$. Also $\left[Y, M_{\circ}, C_{M}(I)\right]=\left[I, C_{M}(I)\right]=1$, and so the Three Subgroups Lemma implies $\left[Y, C_{M}(I), M_{\circ}\right]=1$. Since $C_{Y}\left(M_{\circ}\right)=1$, this gives $\left[Y, C_{M}(I)\right]=1$ and $C_{M}(Y)=C_{M}(I)$.

Suppose that $\overline{M^{\circ}} \not \equiv S p_{2}(2)^{\prime}$ and put $\mathbb{K}:=\operatorname{End}_{M_{\circ}}(I)$. Then \mathbb{K} is a finite field of order q and $\operatorname{dim}_{\mathbb{K}} I \geqslant 2$. Put $D:=\left\langle I^{L}\right\rangle$. Then $D \leqslant A \leqslant M \leqslant N_{G}(I)$, and so $[D, I] \leqslant I$. Suppose that I^{x} does not act \mathbb{K}-linearly on I. Then $|\mathbb{K}|>2$, and 1.22 shows that $\operatorname{dim}_{\mathbb{K}} I=1$, a contradiction. Hence I^{x} and so also D acts \mathbb{K}-linearly in I. Note that the set of M_{\circ}-invariant symplectic forms on I form a 1 -dimensional \mathbb{K}-space, on which D acts \mathbb{K}-linearly and so trivially. We conclude that D leaves all these forms invariant. Thus I is a natural $S p_{2 m}(q)$ - or $S p_{2 m}(q)^{\prime}$-module for $M_{\circ} D$. Note that the same statement holds if $\overline{M^{\circ}} \cong S p_{2}(2)^{\prime}$.

Now C.20 shows that $[I, D]=[Y, D]$, and so 2.24 , applied with D in place of A, gives $Y \leqslant O_{p}(L)$. (b): Just apply (a) with $L=N_{G}(Q)$ and $A=Q^{\bullet}$.

LEmmA 2.26. Suppose that X is an M-submodule of Y_{M} and a natural $S p_{2 m}\left(p^{k}\right)$-module for $M^{\circ}, 2 m \geqslant 4$ and p odd. Then $X \leqslant Q^{\bullet}$.

Proof. Note that X is an $\mathbb{F}_{q} M^{\circ}$-module equipped with a non-degenerate M°-invariant symplectic form, where $q:=p^{k}$. Put $\widetilde{M}=M / C_{M}(X), X_{0}:=C_{X}(Q)$ and $X_{1}:=[X, Q]$. Note that $X_{1}=X_{0}^{\perp}$ in the symplectic space X. By B.37 X_{0} is 1 -dimensional over \mathbb{F}_{q} and

$$
\widetilde{Q}=C_{\widetilde{M^{\circ}}}\left(X_{1} / X_{0}\right) \cap C_{\widetilde{M^{\circ}}}\left(X_{0}\right)
$$

In particular, $\left[X_{1}, Q\right]=X_{0}$. Moreover, by B.28 b:a

$$
\begin{equation*}
Z(\widetilde{Q})=C_{\widetilde{Q}}\left(X_{1}\right) \tag{*}
\end{equation*}
$$

Put

$$
H:=N_{G}(Q) \quad \text { and } \quad W:=\left\langle X_{1}^{H}\right\rangle
$$

Suppose first that W is non-abelian. Then $\left[X_{1}, W\right] \neq 1$ and we can choose $g \in H$ with $\left[X_{1}, X_{1}^{g}\right] \neq$ 1. From $X_{1} \leqslant Q$ we conclude $X_{1}^{g} \leqslant Q$. As $\left[X_{1}, Q\right]=X_{0}$ and X_{0} is 1-dimensional we get $\left[X_{1}, X_{1}^{g}\right]=$ X_{0}. This gives

$$
\left[X_{1}, Q\right]=\left[X_{1}, X_{1}^{g}\right]=X_{0}=X_{0}^{g}=\left[X_{1}^{g}, Q\right]
$$

Thus $\left[X_{1}^{g}, Q\right] \leqslant X_{0} \leqslant C_{M}(X)$ and ${\widetilde{X_{1}}}^{g} \leqslant Z(\widetilde{Q})$. As $Z(\widetilde{Q})=C_{\widetilde{Q}}\left(X_{1}\right)$ by $(*)$ this gives $\widetilde{X_{1}^{g}} \leqslant$ $C_{\widetilde{Q}}\left(X_{1}\right)$ and so $\left[X_{1}^{g}, X_{1}\right]=1$, a contradiction to the choice of g.

Suppose now that W is abelian. Then $W \leqslant C_{Q}\left(X_{1}\right)$ and so $\widetilde{W} \leqslant C_{\widetilde{Q}}\left(X_{1}\right)=Z(\widetilde{Q})$. Thus $[W, Q] \leqslant C_{M}(X)$ and $[W, Q, X]=1$. As $X_{1} \leqslant C_{X}(W)$ we have $[W, X] \leqslant X_{1}^{\perp}=X_{0}=\left[X_{1}, Q\right] \leqslant$ [$W, Q]$. Also $[Q, X]=X_{1} \leqslant W$ and so X centralizes all factors of the series

$$
1 \leqslant[W, Q] \leqslant W \leqslant Q
$$

This series is H-invariant and so also $\left\langle X^{H}\right\rangle$ centralizes these factors. Hence $\left\langle X^{H}\right\rangle$ acts nilpotently on Q. Since $C_{G}(Q) \leqslant Q$ this implies that $\left\langle X^{H}\right\rangle$ is a p-group, see 1.3 , and so $X \leqslant\left\langle X^{H}\right\rangle \leqslant O_{p}(H)=Q^{\bullet}$.

CHAPTER 3

The Orthogonal Groups

In this chapter we treat a particular situation, which arises in Chapter 4 and in Chapter 5 . In this situation, $\left[Y_{M}, O^{2}(M)\right]$ is a natural $O_{2 n}^{\epsilon}(2)$-module some $M \in \mathfrak{M}_{G}$. Natural $O_{2 n}^{\epsilon}(2)$-modules for $p=2$ are the only examples of simple $Q!$-modules V with a non-trivial offender A such that $[V, A]$ does not contain non-trivial 2-central elements of M. This forces us to look at centralizers of non-2-central involutions and requires a line of arguments quite different from those of later chapters.

Theorem C. Let G be a finite \mathcal{K}_{2}-group and $S \in \operatorname{Syl}_{2}(G)$, and let $Q \leqslant S$ be a large 2-subgroup of G. Let $M \in \mathfrak{M}_{G}(S)$ and suppose that the following hold:
(i) $M / C_{M}\left(Y_{M}\right) \cong O_{2 n}^{\epsilon}(2), n \geqslant 2$.
(ii) $\left[Y_{M}, O^{2}(M)\right]$ is a natural $O_{2 n}^{\epsilon}(2)$-module for $M / C_{M}\left(Y_{M}\right)$.
(iii) $C_{G}(y) \not M^{\dagger}$ for all non-singular elements $y \in\left[Y_{M}, O^{2}(M)\right]$.
(iv) $Q \neq M$.

Then $C_{G}(y)$ is not of characteristic 2 for all non-singular elements $y \in\left[Y_{M}, O^{2}(M)\right]$.
Here an element of a natural $O_{2 n}^{\epsilon}(2)$-module V is singular if $h(v)=0$, where h is the M-invariant quadratic form on V. For the definition of M° see 1.51 Recall from 1.52 b that Q is a weakly closed subgroup of G. In particular, by 1.46 c$) M^{\circ}=\left\langle Q^{M}\right\rangle$.

3.1. Notation and Elementary Properties

In this section we assume the hypothesis of Theorem C apart from Ciiii. The first lemma collects elementary facts about a natural $O_{2 n}^{\epsilon}(2)$-module V with quadratic form h and associate symplectic bilinear form f.

Lemma 3.1. Let V be a natural $O_{2 n}^{\epsilon}(2)$-module for $X=O_{2 n}^{\epsilon}(2), n \geqslant 2$.
(a) X is transitive on the non-singular elements of V and on the non-trivial singular elements of V.
(b) Let $0 \neq z \in V$ be singular. Then $C_{X}(z)=A K$, where
(a) $K \cong O_{2 n-2}^{\epsilon}(2)$ and A is a natural $O_{2 n-2}^{\epsilon}(2)$-module for K.
(b) $\left[z^{\perp}, A\right]=\langle z\rangle, C_{X}\left(z^{\perp}\right)=1$ and A induces $\operatorname{Hom}\left(z^{\perp} /\langle z\rangle,\langle z\rangle\right)$ on z^{\perp}.
(c) $C_{X}(z)$ is a parabolic subgroup of X.
(d) If $(2 n, \epsilon) \neq(4,+)$, then $O_{2}\left(C_{X}(z)\right)=A \leqslant \Omega_{2 n}^{\epsilon}(2)$.
(c) Let $y \in V$ be non-singular. Then $C_{X}(y)=T \times E$, where
(a) $T \cong C_{2}, E \cong S p_{2 n-2}(2)$, y^{\perp} is a natural $O_{2 n-1}(2)$-module for E, and $y^{\perp} /\langle y\rangle$ is a natural $S p_{2 n-2}(2)$-module for E.
(b) $T=C_{X}\left(y^{\perp}\right),[X, T]=\langle y\rangle, y^{\perp}=C_{X}(T)$, and $T \$ \Omega_{2 n}^{\epsilon}(2)$.
(c) Let \mathcal{Z} be the set of non-trivial singular elements of y^{\perp}. Then $y^{\perp}=\langle\mathcal{Z}\rangle$, and E acts transitively on \mathcal{Z}.
(d) Let $0 \neq v \in V$. If $X=O_{4}^{+}(2)$ suppose that v is singular. Then $C_{X}(v)$ is a maximal subgroup of X.

Proof. (a): Note that $h(v)=1=h(w)$ for any two non-singular vectors. It follows that any two non-singular and any two singular vectors are isometric. Thus (a) follows from B. 16
(b): Put $Z:=\langle z\rangle$ and $A:=C_{X}(Z) \cap C_{X}\left(Z^{\perp} / Z\right)$. Let $v \in V \backslash Z^{\perp}$ and put $K:=C_{X}(z) \cap C_{X}(v)$. Then B.25(c) shows that b:a) holds. It follows from B.24(a), that A induces $\operatorname{Hom}\left(Z^{\perp} / Z\right)$ on Z^{\perp}, via the commutator map. So b:b holds. By B.12 C) any 2-subgroup of X centralizes a non-trivial singular vector and so $C_{X}(z)$ is a parabolic subgroups of X.

Suppose that $n \geqslant 4$ or $\epsilon=-$. Then $O_{2}(K)=1$ and so $O_{2}\left(C_{X}(z)\right)=A \leqslant \Omega_{2 n}^{\epsilon}(2)$.
(c): Since $y^{\perp \perp}=\langle y\rangle$ and y is non-singular, y^{\perp} is a non-degenerate orthogonal space. By Witt's Lemma B. $15 C_{X}(y)$ induces $O\left(y^{\perp}\right)=O_{2 n-1}(2)$ on y^{\perp}, and by B. $14 O_{2 n-1}(2) \cong S p_{2 n}(2)$. Put $T:=C_{X}\left(y^{\perp}\right)$. Then $T=\left\langle\omega_{y}\right\rangle$ where ω_{y} is the reflection associated to y. In particular, $|T|=2$, $[X, T]=\langle y\rangle, C_{X}(T)=y^{\perp}$, and $T \nleftarrow \Omega_{2 m}^{\epsilon}(2)$.

Put $E:=C_{X}(y) \cap \Omega_{2 n}^{\epsilon}(2)$. Since $\Omega_{2 n}^{\epsilon}(2)$ has index 2 in $X, C_{X}(y)=T \times E$. In particular, E acts faithfully on y^{\perp}, y^{\perp} is natural $O_{2 n-1}(2)$-module for E and $E \cong S p_{2 n-2}$ (2).

Now B. 16 shows that $C_{X}(y)$ acts transitively on \mathcal{Z}. By B.13 $y^{\perp}=\langle\mathcal{Z}\rangle$. Thus (c) is proved.
(d): By Witt's Lemma B. $15 C_{X}(v)$ has at most three orbits on v^{X}, namely

$$
\begin{aligned}
& \{v\}, \\
& \mathcal{T}_{0}(v):=\left\{w \in V^{\sharp} \mid h(w)=h(v), f(v, w)=0, v \neq w\right\}, \text { and } \\
& T_{1}(v):=\left\{w \in V^{\sharp} \mid h(w)=h(v), f(v, w)=1\right\} .
\end{aligned}
$$

Suppose that $C_{X}(v)<H<X$. Then $\{v\} \neq v^{H} \neq v^{X}$, so both $\mathcal{T}_{0}(v)$ and $\mathcal{T}_{1}(v)$ are non-empty, and $\Delta:=v^{H}=\{v\} \cup \mathcal{T}_{i}(v)$ for some $i \in\{0,1\}$. In particular, H acts 2-transitively on Δ, and $\Delta=\{u\} \cup \mathcal{T}_{i}(u)$ for all $u \in \Delta$. Let $\{1,2\}=:\{i, j\}$. Since H is transitive on Δ and leaves invariant $\mathcal{T}_{j}(v)$, we have $\mathcal{T}_{j}(v)=\mathcal{T}_{j}(u)$ for all $u \in \Delta$. Put $W:=\langle\Delta\rangle=\langle v\rangle+W_{i}$ and, for $k=0,1, W_{k}:=\left\langle\mathcal{T}_{k}(v)\right\rangle$ and $W:=\langle\Delta\rangle=\langle v\rangle+W_{i}$.

We claim that $v^{\perp}=\langle v\rangle+W_{0}$. Clearly $\langle v\rangle+W_{0} \leqslant v^{\perp}$. Suppose first that v is singular. Then $\{v\} \cup \mathcal{T}_{0}(v)$ is the set of singular vectors of v^{\perp}. On the other hand, since $\mathcal{T}_{0}(v) \neq \varnothing$, there exist singular vectors in $v^{\perp} \backslash\langle v\rangle$. Thus, by B. $13 v^{\perp}$ is generated by its singular vectors, and so $v^{\perp}=\langle v\rangle+W_{0}$. Suppose next that v is non-singular. Then $\{v\} \cup \mathcal{T}_{0}(v)$ is the set of non-singular vectors of v^{\perp}. Let $w \in v^{\perp}$ be non-zero and singular. Then $h(v)=h(v+w)$ and $v+w \in \mathcal{T}_{0}(v)$, so $w=(v+w)-v \in\langle v\rangle+W_{0}$. Thus $\langle v\rangle+W_{0}$ contains all singular and non-singular vectors of v^{\perp} and again $v^{\perp}=\langle v\rangle+W_{0}$

Assume that $i=0$. Then $W=\langle v\rangle+W_{0}=v^{\perp}$ and so $\langle v\rangle=W^{\perp}$. Since H normalizes W this gives $H \leqslant C_{X}(v)$, a contradiction.

Hence $i=1$ and so $j=0$. Thus, as seen above, $\mathcal{T}_{0}(v)=\mathcal{T}_{0}(u)$ for $u \in \Delta$ and so $W_{0}=\left\langle\mathcal{T}_{0}(v)\right\rangle=$ $\left\langle\mathcal{T}_{0}(u)\right\rangle \leqslant u^{\perp}$. Thus $W_{0} \leqslant W^{\perp}$. Therefore, $W \leqslant W_{0}^{\perp}$ and so $W \cap v^{\perp} \leqslant\left(\langle v\rangle+W_{0}\right)^{\perp}=v^{\perp \perp}=\langle v\rangle$. Thus $|W| \leqslant 4$. Let $u \in \mathcal{T}_{1}(v)$. Then $W=\langle u, v\rangle$ has order 4 and since $u \notin v^{\perp}, W \cap W^{\perp}=0$.

Let $d \in W^{\perp}$ be singular. Then $h(d+u)=h(u)$ and so $d+u \in \mathcal{T}_{1}(v) \subseteq W$. Thus $d \in W \cap W^{\perp}=0$. Hence W^{\perp} does not contain any non-zero singular vectors. Since $\mathcal{T}_{0}(v) \subseteq W_{0} \leqslant W^{\perp}$ this shows that v is not singular. Also B.19 C) shows that $\operatorname{dim}_{\mathbb{F}_{2}} W^{\perp} \leqslant 2$. Since $\operatorname{dim}_{\mathbb{F}_{2}} W+\operatorname{dim}_{\mathbb{F}_{2}} W^{\perp}=\operatorname{dim}_{\mathbb{F}_{2}} V \geqslant 4$, this gives $\operatorname{dim}_{\mathbb{F}_{2}} W^{\perp}=2$ and $\operatorname{dim}_{\mathbb{F}_{2}} V=4$. Let v^{\prime} and u^{\prime} be distinct non-zero elements in W^{\perp}. Then $\left\langle v+v^{\prime}, u+u^{\prime}\right\rangle$ is a singular subspace of dimension 2 , and so V has Witt index 2 . Hence $X=O_{4}^{+}(2)$, and (d) is proved.

Notation 3.2. Let $\overline{M^{\dagger}}:=M^{\dagger} / C_{M^{\dagger}}\left(Y_{M}\right)$ and recall from 1.1 that

$$
Z_{M}=\left\langle\Omega_{1} Z(X) \mid X \in \operatorname{Syl}_{2}(M)\right\rangle
$$

By our hypothesis [$Y_{M}, O^{2}(M)$] is a natural $O_{2 n}^{\epsilon}(2)$-module for M, and we will use the corresponding orthogonal structure for the following notation.

We choose $y, z \in\left[Y_{M}, O^{2}(M)\right]^{\sharp}$ such that z is singular, y is non-singular, and $y \perp z$.

Recall from 3.1 that z is 2-central in M. Thus we can fix our notation such that $z \in \Omega_{1} Z(S)$ and $C_{S}(y) \in \operatorname{Syl}_{2}\left(C_{M}(y)\right)$.

Since $z \in C_{G}(Q), Q$! implies $C_{G}(z) \leqslant N_{G}(Q)$. Hence, we can define

$$
Q_{z^{g}}:=Q^{g} \text { for } g \in G
$$

We further put

$$
F_{0}:=C_{M}(y), \quad T^{*}:=C_{S}(y), \quad Y:=y^{\perp}\left(\operatorname{in}\left[Y_{M}, O^{2}(M)\right]\right), \quad F:=\left\langle\left(Q_{z} \cap F_{0}\right)^{F_{0}}\right\rangle, \quad T:=C_{S}(Y)
$$

Note that $T^{*} \in \operatorname{Syl}_{2}\left(F_{0}\right)$.
Lemma 3.3. (a) $C_{G}\left(M^{\circ}\right)=1$ and $Z(M)=1$.
(b) $\left[Y_{M}, O^{2}(M)\right]=Z_{M}$. In particular, Z_{M} is a natural $O_{2 n}^{\epsilon}(2)$-module for \bar{M}.
(c) Either $\overline{Q_{z}}=O_{2}\left(C_{\bar{M}}(z)\right)$, or $(2 n, \epsilon)=(4,+)$, and $\overline{Q_{z}} \cong C_{4}, D_{8}$ or $C_{2} \times C_{2}$, with $\overline{Q_{z}} \leqslant$ $\Omega_{4}^{+}(2)$ in the last case. In all cases $C_{Z_{M}}\left(Q_{z}\right)$ is a 1-dimensional singular subspace and $\left|Z_{M} /\left[Y_{M}, O^{2}(M), Q_{z}\right]\right|=2$.
(d) $\overline{M^{\circ}} \sim \Omega_{2 n}^{\epsilon}(2), 3^{2} C_{4}$ or $3^{2} D_{8}$.
(e) Suppose that $(2 n, \epsilon)=(4,+)$. Then $T Q_{z}=S$.
(f) Either $Y_{M}=Z_{M}$, or $(2 n, \epsilon)=(6,+)$ and Y_{M} is the factor module of order 2^{7} of the natural permutation module for $\operatorname{Sym}(8) \cong O_{6}^{+}(2)$.
(g) $\left[Y_{M}, T\right]=\langle y\rangle$.
(h) $M / O_{2}(M) \cong O_{2 n}^{\epsilon}(2)$; or $M / O_{2}(M) \sim 3 \cdot O_{4}^{+}(2), O_{3}\left(M / O_{2}(M)\right)$ is extra-special of order 3^{3} and exponent 3 and $\bar{Q} \cong C_{4}$.
(i) $M=M^{\circ} S$.

Proof. (a): By Hypothesis Civ $Q \neq M$. So $M^{\circ} \neq Q$, and 1.55d shows that $C_{G}\left(M^{\circ}\right)=1$. In particular, $Z(M)=1$.
(b): Since $\left[Y_{M}, O^{2}(M)\right]$ is a simple M-module, we have $\left[Y_{M}, O^{2}(M)\right] \leqslant Z_{M}$. By 1.24 ed $Z_{M}=$ $\Omega_{1} Z(M)\left[Z_{M}, O^{2}(M)\right]$. Also $Z(M)=1$ by a , and so bolds.
(c) and (d) : By Hypothesis C(iv) $Q \nsubseteq M$ and since Q is large, 1.57 b) shows that Z_{M} is a Q !-module for M° with respect to \bar{Q}. Thus we can apply B.37. Since $O_{4}^{+}(2)$ does not have a normal subgroup isomorphic to $S L_{2}(2)$, Case B.37, 4) does not occur. Hence (C) and (d) follow from B.37.
(e): Note that $|\bar{S}|=8$ and $\bar{T} \not \Omega_{4}^{+}(2)$. Now (c) implies $\left|\overline{Q_{z}}\right|=8$ or $\left|\overline{Q_{z}}\right|=4$ and $\bar{T} \neq \overline{Q_{z}}$. Thus $\bar{S}=\overline{T Q_{z}}$. As $C_{S}\left(Y_{M}\right) \leqslant C_{S}(Y)=T$ this gives $S=T Q_{z}$.
(f): By $\overline{\text { C.18 }}, H^{1}\left(\overline{O^{2}(M)}, Z_{M}\right)=1$, unless $(2 n, \epsilon)=(6,+)$, in which case it has order 2. Since $Z_{M}=\left[Y_{M}, O^{2}(M)\right]$ and $C_{Y_{M}}\left(O^{2}(M)\right)=1$, this implies (f).
(g): Note that by 3.1 c:b), $\left[Z_{M}, T\right]=\langle y\rangle$. So if $Y_{M}=Z_{M}$, (g) holds. Otherwise, (f) shows that Y_{M} is quotient of the natural Sym(8)-permutation module. As $\left[Z_{M}, T\right]=\langle y\rangle, \bar{T}$ is generated by a transposition and so again $\left[Y_{M}, T\right]=\langle y\rangle$.

Put $\widetilde{M}:=M / O_{2}(M)$ and $D:=C_{M}\left(Y_{M}\right)$.
(h): By the basic property of $M, \check{D} \leqslant \Phi(\widetilde{M})$. From $\Phi\left(O_{2 n}^{\epsilon}(2)\right)=1$, we conclude that $\Phi(\widetilde{M})=\check{D}$. By 1.7 a $\Phi(\widetilde{M})=\Phi\left(O^{2}(\widetilde{M})\right)$ and thus $\check{D}=\Phi\left(\overline{M^{\circ}}\right)$. By 2.2 f$) O_{2}(M) \in \operatorname{Syl}_{2}\left(C_{M}\left(Y_{M}\right)\right)$ and so \check{D} has odd order.

Moreover, by $1.52 \mathrm{~d}\left[M^{\circ}, C_{M}\left(Y_{M}\right)\right] \leqslant O_{2}\left(M^{\circ}\right) \leqslant O_{2}(M)$. Thus M° centralizes \check{D}, and \widetilde{M}_{\circ} is a non-split central extension of $\widetilde{M}_{\circ} / \check{D}$ by a group of odd order. If $(2 n, \epsilon) \neq(4,+)$, then $\widetilde{M}_{\circ} / \check{D} \cong \Omega_{2 n}^{\epsilon}(2)$ is simple. Also the odd part of the Schur multiplier of $\Omega_{2 n}^{\epsilon}(2)$ is trivial in this case (see [Gr1]), and (h) follows.

Assume now that $(2 n, \epsilon)=(4,+)$. By (f) $Y_{M}=Z_{M}$. It follows that Y_{M} is a natural $S L_{2}(2)$ wreath product module for M. So we can apply $1.58(\mathrm{f})$ and conclude that (h) also holds in the $O_{4}^{+}(2)$-case.
(i): Note that (d) implies that $O^{2}(\bar{M}) \leqslant \overline{M^{\circ}}$ and so $\bar{M}=\overline{M^{\circ} S}$. By the basic property of M, $\check{D} \leqslant \Phi(\widetilde{M})$ and so $\bar{M}=\overline{M^{\circ} S}$. As $O_{p}(M) \leqslant S$ this gives $M=M^{\circ} S$.

Lemma 3.4. The following hold:
(a) $\left|Q_{z} / C_{Q_{z}}(y)\right|=2,\left[y, Q_{z}\right]=\langle z\rangle$ and $y^{Q_{z}}=\{y, y z\}$.
(b) $T M^{\circ}=M$ and $\overline{F_{0}}=\overline{F T}$. Moreover, either $C_{M}\left(Y_{M}\right)=O_{2}(M)$ and $F_{0}=F T$, or $M / O_{2}(M) \sim 3 \cdot O_{4}^{+}(2)$ and $\left|F_{0} / F T\right|=3$.
(c) $C_{F}\left(Y_{M}\right) \leqslant O_{2}(M), F / F \cap T \cong S p_{2 n-2}(2), Y$ is a natural $O_{2 n-1}(2)$-module for $F T / T$, $Y /\langle y\rangle$ is a natural $S p_{2 n-2}(2)$-module for $F T / T$, and $\left[Y_{M}, T\right]=\langle y\rangle$. In particular, $T=$ $O_{2}(F T),\left|T / O_{2}(M)\right|=2$, and $T^{*} \in S y l_{2}(F T)$.
(d) Suppose that $n \geqslant 6$. Then $\overline{Q_{z} \cap F}$ is a natural $O_{2 n-3}(2)$-module for $C_{F}(z)$. In particular, $\overline{Q_{z} \cap F}$ is elementary abelian of order $2^{2 n-3}$ and $\left[Q_{z} \cap F, C_{F}(z)\right] \$ T$.
(e) $N_{M^{\dagger}}(T) \leqslant C_{M^{\dagger}}(y)$ and $O_{2}\left(N_{M^{\dagger}}(T)\right)=T$.
(f) $\langle y, z\rangle=\Omega_{1} Z\left(T^{*}\right)=C_{Y_{M}}\left(T^{*}\right)=C_{Y_{M}}\left(Q_{z} \cap T^{*}\right)$.
(g) $\Omega_{1} Z(S)=\langle z\rangle$.
(h) There exists $M_{1} \leqslant M$ such that
(a) $T \in \operatorname{Syl}_{2}\left(M_{1}\right)$ and $M_{1} / O_{2}(M) \cong \operatorname{Sym}(3)$;
(b) if $2 n=4$, then T^{*} normalizes M_{1} and $\left\langle M_{1}, S\right\rangle=\left\langle M_{1}, N_{M}\left(T^{*}\right)\right\rangle=M$; and
(c) if $(2 n, \epsilon) \neq(4,+)$, then $\left\langle M_{1}, N_{M}(T)\right\rangle=M$.
(i) $\left\langle Q_{z}, F\right\rangle=M^{\circ}$ and, if $(2 n, \epsilon) \neq(4,+), F_{0}$ is a maximal subgroup of M.
(j) Suppose that $(2 n, \epsilon) \neq(4,+)$ and $A \leqslant O_{2}\left(C_{M}(z)\right)$ is an offender on Y_{M}. Then $A \leqslant O_{2}(M)$.
(k) $F \preccurlyeq C_{M^{\dagger}}(y)=F T C_{M^{\dagger}}\left(Y_{M}\right)$ and $F=\left\langle\left(Q_{z} \cap F\right)^{F}\right\rangle$.

Proof. ap: Suppose first that $(2 n, \epsilon) \neq(4,+)$. Then by 3.3 c) $\bar{Q}_{z}=O_{2}\left(C_{\bar{M}}(z)\right)$ and so by 3.1 b:b Q_{z} induces $\operatorname{Hom}\left(z^{\perp} /\langle z\rangle,\langle z\rangle\right)$ on Z_{M}. This gives a. Suppose next that $(2 n, \epsilon)=(4,+)$. Then y and $y z$ are the only non-singular vectors in z^{\perp}. By 3.1 c:a , $C_{\bar{M}}(y) \cong S p_{2}(2) \times C_{2}$. As $T \leqslant C_{M}(y)$ and $\bar{T} \not \Omega_{4}^{+}(2)$, we conclude that $\overline{T^{*}} \cong C_{2} \times C_{2}$ and $T^{*} \not \Omega_{4}^{+}(2)$. Hence by 3.3 h $\bar{Q} \not \bar{T}^{*}$ and so Q does not centralize y. Since Q_{z} acts on the non-singular vectors of z^{\perp}, (a) follows.
(b) - da : By 3.1 ch, $\overline{F_{0}}=C_{\bar{M}}(y) \cong C_{2} \times S p_{2 n-2}(2),\left|C_{\bar{M}}(Y)\right|=2$ and Y is natural $O_{2 n-1}(2)$ module for F_{0}. In particular, $\bar{T}=C_{\bar{S}}(Y)=C_{\bar{M}}(Y)=O_{2}\left(\overline{F_{0}}\right),\left[Y_{M}, T\right]=\left[Z_{M}, T\right]=\langle y\rangle, \overline{F_{0}} / \bar{T} \cong$ $S p_{2 n-2}(2), Y /\langle y\rangle$ is a natural $S p_{2 n-2}(2)$-module for F_{0} and $\bar{T} \overline{M^{\circ}}=\bar{M}$.

Suppose now that $(2 n, \epsilon) \neq(4,+)$. Then 3.3 h) gives $M / O_{2}(M) \cong O_{2 n}^{\epsilon}(2)$, so $C_{M}\left(Y_{M}\right)=O_{2}(M)$ and $T=C_{M}(Y)$. By 3.3 c) $\overline{Q_{z}}=O_{2}\left(C_{\bar{M}}(z)\right)$ and so by 3.1 a $\overline{Q_{z}}$ is a natural $O_{2 n-2}^{\epsilon}(2)$-module for $C_{\bar{M}}(z)$. Observe that $\bar{Q}_{z} \cap F$ is the hyperplane corresponding to a non-singular vector of $\overline{Q_{z}}$. Thus by 3.1 c:a applied to $C_{\bar{M}}(z) / \overline{Q_{z}}$ and $\overline{Q_{z}}$ in place of X and V, we have $C_{\overline{F_{0}}}(z) / \overline{Q_{z} \cap F} \cong$ $C_{2} \times S p_{2 n-4}(2)$, and $\overline{Q_{z} \cap F}$ is a natural $O_{2 n-3}(2)$-module for $C_{F_{0}}(z)$. Note also that $\bar{T} \$ \overline{Q_{z}}$ and $T=C_{M}(Y)=C_{F_{0}}(Y)$. Thus $\overline{Q_{z} \cap F}$ acts faithfully on Y and $C_{F_{0}}(z) /\left(Q_{z} \cap F\right) C_{F_{0}}(Y) \cong S p_{2 n-4}(2)$. It follows that

$$
\left(Q_{z} \cap F\right) C_{F_{0}}(Y) / C_{F_{0}}(Y)=O_{2}\left(C_{F_{0}}(z) / C_{F_{0}}(Y)\right)
$$

As $F_{0} / C_{F_{0}}(Y) \cong S p_{2 n-2}(2)$, we have $F_{0} / C_{F_{0}}(Y)=\left\langle O_{2}\left(C_{F_{0}}(z) / C_{F_{0}}(Y)\right)^{F_{0}}\right\rangle$. Since $F=\left\langle\left(Q_{z} \cap\right.\right.$ $\left.F)^{F_{0}}\right\rangle$, this gives $F_{0}=F C_{F_{0}}(Y)=F T$. Hence - (d) hold for $(2 n, \epsilon) \neq(4,+)$.

Suppose next that $(2 n, \epsilon)=(4,+)$. By 3.3(e), $\bar{S}=\overline{T Q_{z}}$. Thus $\overline{T^{*}}=\bar{T}\left(\overline{Q_{z}} \cap \overline{T^{*}}\right)$ and so $\overline{Q_{z}} \cap \bar{F}_{0} \nless \bar{T}$. Since $\overline{F_{0}} / \bar{T} \cong F_{0} / C_{F_{0}}(Y) \cong S p_{2}(2)$, this gives $\overline{F_{0}}=\overline{F T}$. If $C_{M}\left(Y_{M}\right)=O_{2}(M)$ we conclude that (b) and (c) hold. Assume that $C_{M}\left(Y_{M}\right) \neq O_{2}(M)$. Then by 3.3 h $) M / O_{2}(M) \sim$ $3 \cdot O_{4}^{+}(2), O_{3}\left(M / O_{2}(M)\right)$ is extra-special of order 3^{3} and $\bar{Q} \cong C_{4}$. In particular, $C_{M}\left(Y_{M}\right) / O_{2}(M) \leqslant$ $M^{\circ} O_{2}(M)$ and so $M=M^{\circ} T$.

Also $F_{0} / O_{2}(M) \sim 3 .\left(C_{2} \times S y m(3)\right)$. Since T neither centralizes nor inverts $O_{3}\left(M / O_{2}(M)\right), T$ inverts $C_{M}\left(Y_{M}\right) / O_{2}(M)$. As $C_{M}(Y)=T C_{M}\left(Y_{M}\right)$, this gives $C_{M}(Y) / O_{2}(M) \cong \operatorname{Sym}(3)$. By 1.52 c C , $\left[C_{M}(Y), M^{\circ}\right] \leqslant O_{2}\left(M^{\circ}\right) \leqslant O_{2}(M)$, and so $Q_{z} \cap F_{0}$ centralizes $C_{M}\left(Y_{M}\right) / O_{2}(M)$. It follows that $F / O_{2}(M) \cong \operatorname{Sym}(3), F_{0} / O_{2}(M) \cong \operatorname{Sym}(3) \times \operatorname{Sym}(3), F T / O_{2}(M) \cong C_{2} \times \operatorname{Sym}(3),\left|F_{0} / F T\right|=3$ and $O_{2}(F T)=T$. Also $T\left(Q_{z} \cap F_{0}\right) \in \operatorname{Syl}_{2}\left(F_{0}\right)$ and so $T^{*}=T\left(Q_{z} \cap F_{0}\right) \in S y l_{2}(F)$. Thus again (b) and (c) hold.
(e): Note that $C_{S}\left(Y_{M}\right)$ is a Sylow 2-subgroup of $C_{M^{\dagger}}\left(Y_{M}\right)$ and $C_{S}\left(Y_{M}\right) \leqslant C_{S}(Y)=T$. Hence T is Sylow 2-subgroup of $C_{M^{\dagger}}\left(Y_{M}\right) T$. Also

$$
F T \leqslant N_{M^{\dagger}}(T) \leqslant N_{M^{\dagger}}\left(\left[Y_{M}, T\right]\right)=C_{M^{\dagger}}(y)=C_{M^{\dagger}}\left(Y_{M}\right) F T
$$

and so $O_{2}\left(\overline{N_{M^{\dagger}}(T)}\right) \leqslant O_{2}(\overline{F T})=\bar{T}$. Thus $O_{2}\left(N_{M^{\dagger}}(T)\right)=T$.
(f): By 2.2 e) $\Omega_{1} Z\left(O_{2}(M)\right)=Y_{M}$. Since $O_{2}(M) \leqslant T^{*}$ and $\Omega_{1} Z\left(T^{*}\right) \leqslant C_{G}\left(O_{2}(M)\right) \leqslant O_{2}(M)$, we conclude that $\Omega_{1} Z\left(T^{*}\right) \leqslant Y_{M}$.

Assume first that $\Omega_{1} Z\left(T^{*}\right) \leqslant Z_{M}$. Suppose that $(n, \epsilon)=(4,+)$. Then $\left|Z_{M}\right|=2^{4}$ and $\bar{S} \cong D_{8}$, so $\bar{U}:=Z(\bar{S})$ has order 2 . Hence $\bar{U} \leqslant \overline{Q_{z}}$ since $\overline{Q_{z}} \vDash \bar{S}$, and $\bar{U}=\overline{S^{\prime}} \leqslant \Omega_{4}^{+}(2)$. In particular, \bar{U} does not act as a transvection group on Z_{M} and thus $\left|C_{Z_{M}}(\bar{U})\right| \leqslant 4$. Since y and $y z$ are the only nonsingular vectors in z^{\perp}, S acts on $\{y, y z\}$ and since $\bar{U} \leqslant \overline{S^{\prime}}, \bar{U}$ centralizes y. Hence $C_{Z_{M}}(\bar{U})=\langle y, z\rangle$. Since $\bar{U} \leqslant \overline{Q_{z}}$ it follows that

$$
\langle y, z\rangle \leqslant C_{Z_{M}}\left(T^{*}\right) \leqslant C_{Z_{M}}\left(T^{*} \cap Q_{z}\right) \leqslant C_{Z_{M}}(\bar{U})=\langle y, z\rangle
$$

and (f) holds on this case.
Suppose that $(n, \epsilon) \neq(4,+)$. Put $\bar{A}:=O_{2}\left(C_{\bar{M}}(z)\right)$ and $\overline{A_{u}}:=C_{\bar{A}}(u)$ for $u \in z^{\perp}$. Then by 3.1 c:a $\bar{A}=\bar{Q}_{z}$, and by 3.1 b:b \bar{A} induces $\operatorname{Hom}\left(z^{\perp} /\langle z\rangle,\langle z\rangle\right)$ on y^{\perp}. Hence

$$
\overline{A_{y}}=\bar{A}_{w} \Longleftrightarrow w \in y+\langle z\rangle
$$

Thus $C_{Z_{M}}\left(\overline{A_{y}}\right)=\langle y, z\rangle=C_{Z_{M}}\left(T^{*}\right)$, and again (f) follows.
Assume now that $\Omega_{1} Z\left(T^{*}\right) \not Z_{M}$ and pick $v \in \Omega_{1} Z\left(T^{*}\right) \backslash Z_{M}$. By 3.3 f ${ }^{\text {f }} Y_{M}$ is the 7 -dimensional quotient of the natural permutation module for $\bar{M} \cong O_{6}^{+}(2) \cong \operatorname{Sym}(8)$. Hence $C_{\bar{M}}(v) \cong \operatorname{Sym}(7)$ or $\operatorname{Sym}(3) \times \operatorname{Sym}(5)$. By 3.3 d$) \overline{M^{\circ}}=\Omega_{6}^{+}(2) \cong \operatorname{Alt}(8)$ and so the Sylow 2-subgroups of $C_{\overline{M^{\circ}}}(v)$ are dihedral of order 8. On the other hand $Q_{z} \cap F \leqslant Q_{z} \cap T^{*} \leqslant C_{M^{\circ}}(v)$ and by $\sqrt{\mathrm{d}}$, $\overline{Q_{z} \cap F}$ is elementary abelian of order $2^{6-3}=8$, a contradiction.
(g): Note that $\Omega_{1} Z(S) \leqslant \Omega_{1} Z\left(T^{*}\right)$. By (f) $\Omega_{1} Z\left(T^{*}\right)=\langle z, y\rangle$ and by (a) $\left[y, Q_{z}\right] \neq 1$. Thus $\Omega_{1} Z(S)=\langle z\rangle$.
(h): Let $q \in Q_{z}$ with $y^{q}=y z$. Then $Y \neq Y^{q}$ and so there exists $y_{1} \in Y^{q} \backslash Y$. Replacing y_{1} by $y_{1}(y z)$ if necessary, we may assume that y_{1} is non-singular. Thus $y_{1}=y^{u}$ for some $u \in M$. Note that $\left\langle y, y^{u}\right\rangle \leqslant Y^{q}=C_{Z_{M}}\left(T^{q}\right)$ and so T^{q} centralizes $\overline{T^{u}}$. As $T^{u} \in S y l_{2}\left(T^{u} C_{M}\left(Y_{M}\right)\right)$ we can choose u such that T^{q} normalizes T^{u}.

Put $M_{1}:=\left\langle T, T^{u}\right\rangle$ and $W:=\left\langle y, y^{u}\right\rangle$. Since $T=C_{S}\left(y^{\perp}\right)$ we have $\left[Z_{M}, T\right]=\langle y\rangle$, and so $\left[Z_{M}, M_{1}\right]=W$. As $Z_{M}=W \oplus W^{\perp}$, we conclude that M_{1} centralizes W^{\perp} and $M_{1} / C_{M_{1}}\left(Z_{M}\right) \cong$ $S L_{2}(2) \cong \operatorname{Sym}(3)$. Together with $C_{M}\left(Y_{M}\right)=C_{M}\left(Z_{M}\right)$ this gives $\overline{M_{1}} \cong \operatorname{Sym}(3)$. If $C_{M}\left(Y_{M}\right)=$ $O_{2}(M)$, then obviously $M_{1} / O_{2}(M) \cong \operatorname{Sym}(3)$. If $C_{M}\left(Y_{M}\right) \neq O_{2}(M)$, then by 3.3hh, $O^{2}\left(M / O_{2}(M)\right)$ is extra-special of exponent 3 . Since $M_{1} / O_{2}(M)$ is a dihedral group, we conclude again that $M_{1} / O_{2}(M) \cong \operatorname{Sym}(3)$. Thus (h:a holds.

Suppose that $2 n=4$. Then $T \vDash T^{*}=T T^{q} \leqslant S$. As T^{q} normalizes T^{u} we conclude that T^{*} normalizes $M_{1}=\left\langle T, T^{u}\right\rangle$. Note that \bar{M} is 2-minimal and so $\bar{M}=\left\langle\overline{M_{1}}, \bar{S}\right\rangle$. As $O_{2}(M) \leqslant S$ and $C_{M}\left(Y_{M}\right) / O_{2}(M) \leqslant \Phi\left(M / O_{2}(M)\right)$, we get $M=\left\langle M_{1}, S\right\rangle=\left\langle M_{1}, N_{M}\left(T^{*}\right)\right\rangle$. So h:b is proved.

Suppose that $(2 n, \epsilon) \neq(4,+)$. Then by 3.3 h$) C_{M}\left(Y_{M}\right)=O_{2}(M)$ and so $T=C_{M}(Y) \vDash F_{0}$. Also by 3.1 d) F_{0} is maximal subgroup of M. Thus $M=\left\langle M_{1}, F_{0}\right\rangle=\left\langle M_{1}, M_{M}(T)\right\rangle$, and h:c holds.
(i): Put $L=\left\langle F, Q_{z}\right\rangle$. Note that $L \leqslant M^{\circ}$ and T normalizes L. If $(2 n, \epsilon)=(4,+)$, then by $3.3 \mathrm{~h}), S=Q_{z} T$ and \bar{S} is a maximal subgroup of \bar{M}, so $\overline{L S}=\bar{M}$. As above, $O_{2}(M) \leqslant S$ and $C_{M}\left(Y_{M}\right) / O_{2}(M) \leqslant \Phi\left(M / O_{2}(M)\right)$ give $M=L S$, and so $M=L Q_{z} T=L T$. Hence $L \leqslant M$ and $M^{\circ}=\left\langle Q_{z}^{M}\right\rangle \leqslant L \leqslant M^{\circ}$. So (i) holds in this case.

Suppose that $(2 n, \epsilon) \neq(4,+)$. Then by (b) $C_{M}\left(Y_{M}\right)=O_{2}(M)$ and $F_{0}=F T$. By 3.1 d,$\overline{F_{0}}$ is a maximal subgroup of \bar{M}. Thus $F T$ is maximal subgroup of M and again $L T=M$, and (i) holds.
(j]): This follows for example from C.8.
(k): By 1.52 ch, $\left[C_{G}(Y), M^{\circ}\right] \leqslant O_{2}\left(M^{\circ}\right) \leqslant O_{2}\left(M^{\circ}\right)$. Since $F \leqslant M^{\circ}$, we get $\left[F, C_{M^{\dagger}}\left(Y_{M}\right)\right] \leqslant$ $O_{2}(M) \leqslant F$. As $M^{\dagger}=C_{M^{\dagger}}\left(Y_{M}\right) M$, we have $C_{M^{\dagger}}(y)=C_{M^{\dagger}}\left(Y_{M}\right) C_{M}(y)=C_{M^{\dagger}}\left(Y_{M}\right) F_{0}$. By bb) $\overline{F_{0}}=\overline{T F}$, and we conclude that

$$
C_{M^{\dagger}}(y)=C_{M^{\dagger}}\left(Y_{M}\right) T F=C_{M^{\dagger}}(\langle y, z\rangle) F=C_{M^{\dagger}}(\langle y, z\rangle) F_{0}
$$

Note that $C_{Q_{z}}(y)=Q_{z} \cap F_{0}=Q_{z} \cap F$ and so $C_{M^{\dagger}}(\langle y, z\rangle)$ normalizes $Q_{z} \cap F_{0}$. Hence

$$
F=\left\langle\left(Q_{z} \cap F_{0}\right)^{F_{0}}\right\rangle=\left\langle\left(Q_{z} \cap F_{0}\right)^{C_{M^{\dagger}}(y)}\right\rangle=\left\langle\left(Q_{z} \cap F_{0}\right)^{F}\right\rangle=\left\langle\left(Q_{z} \cap F\right)^{F}\right\rangle
$$

Thus (k) holds.

3.2. The Proof of Theorem \mathbf{C}

In this section we will prove Theorem C. For this we assume that (G, M) is a counterexample to Theorem C Thus $C_{G}(x)$ is of characteristic 2 for some non-singular $x \in Z_{M}$. We continue to use the notation introduced in section 3.1. By 3.1 a) M acts transitively on the non-singular elements of Z_{M} and so $C_{G}(y)$ is of characteristic 2 . We will derive a contradiction in a sequence of lemmas.

Lemma 3.5. Suppose that $\left[O_{2}(M), O^{2}(M)\right] \leqslant Y_{M}$. Then $Y_{M}=O_{2}(M)=C_{G}\left(Y_{M}\right)$ and $M^{\dagger}=$ M.

Proof. Since $\left[O_{2}(M), O^{2}(M)\right] \leqslant Y_{M} \leqslant \Omega_{1} Z\left(O_{2}(M)\right), 1.18$ implies that $\left[\Phi\left(O_{2}(M)\right), O^{2}(M)\right]=$ 1. As $Z(M)=1$ by 3.3 a), we conclude that $\Phi\left(O_{2}(M)\right)=1$ and $O_{2}(M)=Y_{M}=O_{2}\left(M^{\dagger}\right)$. In particular $C_{G}\left(Y_{M}\right)=\bar{Y}_{M}$ since M^{\dagger} is of characteristic 2 . Thus $M^{\dagger}=M C_{G}\left(Y_{M}\right)=M$.

Lemma 3.6. (a) If $2 n=4$, then $N_{G}\left(T^{*}\right) \leqslant M^{\dagger}$ and $T^{*} \in S y l_{2}\left(C_{G}(y)\right)$. In particular, y is not 2 -central.
(b) If $(2 n, \epsilon) \neq(4,+)$, then $N_{G}(T) \leqslant N_{G}(B(T)) \leqslant M^{\dagger}$ and $T=\left.O_{2}\left(N_{M^{\dagger}}(T)\right)\right|^{1}$

Proof. (a): Let M_{1} be as in 3.4 ha). Since $2 n=4, T^{*}$ normalizes M_{1}. Put $M^{*}=T^{*} M_{1}$. Note that $T^{*} \in \operatorname{Syl}_{2}\left(M^{*}\right)$ and $M^{*} / O_{2}\left(M^{*}\right) \cong \operatorname{Sym}(3)$.

We claim that $N_{G}\left(T^{*}\right) \leqslant M^{\dagger}$. For this, suppose first that no non-trivial characteristic subgroup of $B\left(T^{*}\right)$ is normal in $B\left(M^{*}\right)$. By the Baumann argument (see for example [PPS, 2.8 and 2.9(a)]) $B\left(T^{*}\right) \in \operatorname{Syl}_{2}\left(B\left(M^{*}\right)\right)$. Note that $B\left(M^{*}\right) / O_{2}\left(B\left(M^{*}\right)\right) \cong \operatorname{Sym}(3)$, and so the pushing up result for $\operatorname{Sym}(3)$, see Gl2, shows that $B\left(M^{*}\right)$ has a unique non-central chief factor in $O_{2}\left(B\left(M^{*}\right)\right)$. Since $O^{2}\left(M^{*}\right) \leqslant B\left(M^{*}\right)$, the same holds for M^{*}, and since $\left[Y_{M}, O^{2}\left(M^{*}\right)\right] \neq 1$ we conclude that

$$
\left[O_{2}(M), O^{2}\left(M^{*}\right)\right] \leqslant\left[O_{2}\left(M^{*}\right), O^{2}\left(M^{*}\right)\right] \leqslant Y_{M}
$$

Hence also $\left[O_{2}(M), O^{2}(M)\right] \leqslant Y_{M}$ and by $3.5 Y_{M}=O_{2}(M)$.
A straightforward computation shows that $\mathcal{A}_{T^{*}}=\left\{Y_{M}, A, A_{1}, A_{2}\right\}$, where $\left|A_{i} Y_{M} / Y_{M}\right|=2=$ $\left|Y_{M} / Y_{M} \cap A_{i}\right|$, and $\left|A Y_{M} / Y_{M}\right|=4=\left|Y_{M} / Y_{M} \cap A\right|$. So $\left\{A_{1}, A_{2}\right\}$ and $\left\{Y_{M}, A\right\}$ are the only pairs of elements of $\mathcal{A}_{T *}$ which intersect in a group of order 4. Hence $N_{G}\left(T^{*}\right) / C_{G}\left(\mathcal{A}_{T *}\right)$ is a 2-group. Since $N_{G}\left(T^{*}\right) \cap M^{\dagger}$ contains the Sylow 2-subgroup S of G and $C_{G}\left(\mathcal{A}_{T *}\right) \leqslant N_{G}\left(Y_{M}\right)=M^{\dagger}$, we conclude that $N_{G}\left(T^{*}\right) \leqslant M^{\dagger}$, and the claim holds in this case.

Suppose next that K is non-trivial characteristic subgroup of $B\left(T^{*}\right)$ which is normal in M^{*}. By 3.4 h:b $M=\left\langle M_{1}, N_{M}\left(T^{*}\right)\right\rangle=\left\langle M^{*}, N_{M}\left(T^{*}\right)\right\rangle$ and so $K \preccurlyeq M$. Thus by 2.2 c), $N_{G}(K) \leqslant M^{\dagger}$. Since K is a characteristic subgroup of T^{*} this implies $N_{G}\left(T^{*}\right) \leqslant M^{\dagger}$.

We have shown that $N_{G}\left(T^{*}\right) \leqslant M^{\dagger}$. Note that $C_{S}\left(Y_{M}\right) \in \operatorname{Syl}_{2}\left(C_{G}\left(Y_{M}\right)\right)$. Since $M^{\dagger}=$ $C_{G}\left(Y_{M}\right) M$ and $C_{S}\left(Y_{M}\right) \leqslant C_{S}(y)=T^{*} \in \operatorname{Syl}_{2}\left(C_{M}(y)\right)$ we have $T^{*} \in \operatorname{Syl}_{2}\left(C_{M^{\dagger}}(y)\right)$. Let $T_{1} \in$ $\operatorname{Syl}_{2}\left(C_{G}(y)\right)$ with $T^{*} \leqslant T_{1}$. Then $N_{T_{1}}\left(T^{*}\right) \leqslant N_{C_{M \dagger}(y)}\left(T^{*}\right)$ and so $T^{*}=N_{T_{1}}\left(T^{*}\right)$ and $T_{1}=T^{*}$. Thus (a) holds.
(b): Suppose now that $(2 n, \epsilon) \neq(4,+)$ and that $L:=N_{G}(B(T)) \not M^{\dagger}$. We derive a contradiction using a similar pushing up argument as in the proof of (a). Let K be non-trivial characteristic subgroup of $B(T)$ normal in M_{1}. By 3.4 h $M=\left\langle M_{1}, N_{M}(T)\right\rangle$ and so $K \leqslant M$. Thus by 2.2 C. , $N_{G}(K) \leqslant M^{\dagger}$, contrary to $L \nless M^{\dagger}$. Hence no non-trivial characteristic subgroup of $B(T)$ is normal in $B\left(M_{1}\right)$.

The same pushing up argument as in a) shows that $\left[O_{2}(M), O^{2}(M)\right] \leqslant Y_{M}$. So by $3.5 Y_{M}=$ $O_{2}(M)=C_{M}\left(Y_{M}\right)$ and $M=M^{\dagger}$. Let $t \in L \backslash M^{\dagger}$. Then $Y_{M} \neq Y_{M}^{t}$ and so $Y_{M} Y_{M}^{t}=T=B(T)$. Note that all involutions in T are contained in $Y_{M} \cup Y_{M}^{t}$ and thus $\mathcal{A}_{T}=\left\{Y_{M}, Y_{M}^{t}\right\}$. Since $N_{L}\left(Y_{M}\right)=$ $L \cap M^{\dagger}=L \cap M=N_{M}(T)=F T$ we conclude that $|L / F T|=2$ and $F T \leqslant L$. Let $T_{1} \in \operatorname{Syl}_{2}(L)$ with $T^{*} \leqslant T_{1}$. Then $L=(F T) T_{1}=F T_{1}$ and so $T_{1} \nless M$. By 3.4(i) $\left\langle F T, Q_{z}\right\rangle=M^{\circ} T=M$. Since $N_{G}(M) \leqslant M^{\dagger}=M$ we conclude that $T_{1} \not \approx N_{G}\left(Q_{z}\right)$ and so $\left[z, T_{1}\right] \neq 1$.

Put $H:=N_{G}\left(T^{*}\right)$. Since $T^{*}=C_{S}(y)=C_{S}(\langle z, y\rangle)$ and $y^{Q_{z}}=\{y, y z\}$ we have $Q_{z} \leqslant H$. Also $T_{1} \leqslant H$. By 3.4 fi, $\Omega_{1} Z\left(T^{*}\right)=\langle z, y\rangle$. Since $\Omega_{1} Z\left(T^{*}\right) \leqslant H$, the action of Q_{z} and T_{1} on

[^4]$\Omega_{1} Z\left(T^{*}\right)$ shows that $H / C_{H}\left(\Omega_{1} Z\left(T^{*}\right)\right) \cong \operatorname{Sym}(3)$, and H acts transitively on $\Omega_{1} Z\left(T^{*}\right)$. So there exists $h \in H$ with $z^{h}=y$. Thus $y \in z^{G}$. Since z is 2-central, (a) gives $2 n \geqslant 6$. Also $Q_{z}^{h}=Q_{y}$ and $\left|Q_{y} / Q_{y} \cap T^{*}\right|=\left|Q_{z} / Q_{z} \cap T^{*}\right|=2$. Since
$$
Q_{y} \cap T^{*} \leqslant Q_{y} \cap M \leqslant O_{2}\left(C_{M}(y)\right)=O_{2}\left(F_{0}\right)=O_{2}(F T)=T
$$
we have $\left|Q_{y} / Q_{y} \cap T\right| \leqslant 2$. As $\left|T / Y_{M}\right|=\left|T / O_{2}(M)\right|=2$ this gives $\left|Q_{y} / Q_{y} \cap Y_{M}\right| \leqslant 4$ and so
$$
\left|Q_{y}\right| \leqslant 4\left|Q_{y} \cap Y_{M}\right| \leqslant 4\left|Y_{M}\right|
$$

Since $2 n \geqslant 6,3.3 \mathrm{c})$ implies $\left|Q_{z} Y_{M} / Y_{M}\right|=\left|Q_{z} O_{2}(M) / O_{2}(M)\right|=\left|O_{2}\left(C_{\bar{M}}(z)\right)\right|=2^{2 n-2}$. By $3.3 \mathrm{c})\left|Z_{M} / Z_{M} \cap Q_{z}\right| \leqslant\left|Z_{M} /\left[Z_{M}, Q_{z}\right]\right|=2$ and by 3.3 (f) $\left|Y_{M} / Z_{M}\right| \leqslant 2$. Therefore

$$
\left|Q_{z}\right|=2^{2 n-2}\left|Y_{M} \cap Q_{z}\right| \geqslant 2^{2 n-2}\left|Z_{M} \cap Q_{z}\right| \geqslant 2^{2 n-4}\left|Y_{M}\right| \geqslant 4\left|Y_{M}\right|
$$

Since $\left|Q_{y}\right|=\left|Q_{z}\right|$ equality must hold in each of the last two displayed inequalities. Thus $Y_{M} \cap Q_{y}=Y_{M}$ and $Y_{M} \cap Q_{z}=\left[Z_{M}, Q_{z}\right]$. Hence $Y_{M} \leqslant Q_{y}$ and $Y_{M} \nless Q_{z}$. Therefore $Y_{M}^{h^{-1}}$ is an elementary abelian normal subgroup of order $\left|Y_{M}\right|$ in Q_{z} and $Y_{M} \neq Y_{M}^{h^{-1}}$. Since $Y_{M}=C_{M}\left(Y_{M}\right)$ we conclude from A.40 that $Q_{z} Y_{M}$ contains a non-trivial offender on Y_{M}, a contradiction to 3.4 (j).

We have shown that $N_{G}(B(T)) \leqslant M^{\dagger}$. Since $N_{G}(T) \leqslant N_{G}(B(T))$ this gives $N_{G}(T)=N_{M^{\dagger}}(T)$. By 3.4 e, $O_{2}\left(N_{M^{\dagger}}(T)\right)=T$, and so (b) holds.

LEMMA 3.7. $z^{G} \cap Y_{M}=z^{M}=z^{G} \cap Z_{M}$.
Proof. Suppose that there exists $u \in z^{G} \cap Y_{M}$ with $u \notin z^{M}$. Assume first that $u \in Z_{M}$. By 3.1 (a) M has two orbits on Z_{M}^{\sharp}, and since $u \notin Z^{m}$, we have $u=y^{m}$ for some $m \in M$, so $y \in z^{G}$. If $2 n=4$ then 3.6 a shows that y is not 2 -central, a contradiction. Thus $2 n \neq 4$. By Q ! we have $Q_{y} * C_{G}(y)$. By 3.6 b and 3.4 eb $N_{G}(T)=N_{M^{\dagger}}(T) \leqslant C_{M^{\dagger}}(y) \leqslant C_{G}(y)$ and so $N_{G}(T)$ normalizes Q_{y}. Thus $N_{Q_{y}}(T) \leqslant O_{2}\left(N_{G}(T)\right)$. By $3.6 \quad O_{2}\left(N_{G}(T)\right)=T$ and so $N_{Q_{y}}(T) \leqslant T$. It follows that $Q_{y} \leqslant T \leqslant S$. By $2.2 \mathrm{~b}, Q$ is weakly closed in S with respect to G, so $Q_{z}=Q_{y}$. In particular $\left[Q_{z}, y\right]=1$, which contradicts 3.4 a).

Assume now that $u \in Y_{M} \backslash Z_{M}$. By 3.3 f f$),(2 n, \epsilon)=(6,+)$ and Y_{M} is the 7-dimensional quotient of the natural permutation module for $\bar{M} \cong O_{6}^{+}(2) \cong \operatorname{Sym}(8)$. Hence $C_{\bar{M}}(v) \cong \operatorname{Sym}(7)$ or $\operatorname{Sym}(3) \times$ $\operatorname{Sym}(5)$. In both cases $O_{2}\left(C_{M^{\dagger}}(u)\right) \leqslant C_{M^{\dagger}}\left(Y_{M}\right)$ and thus

$$
O_{2}\left(C_{M^{\dagger}}(u)\right)=O_{2}\left(C_{M^{\dagger}}\left(Y_{M}\right)\right)=O_{2}\left(M^{\dagger}\right) \leqslant O_{2}(M)
$$

Since $N_{G}\left(O_{2}(M)\right) \leqslant M^{\dagger}$ by 2.2 c) and $Q_{u} \leqslant O_{2}\left(C_{G}(u)\right)$, we conclude that

$$
N_{Q_{u}}\left(O_{2}(M)\right) \leqslant O_{2}\left(C_{M^{\dagger}}(u)\right) \leqslant O_{2}(M)
$$

and so $Q_{u} \leqslant O_{2}(M)$. Since Q is a weakly closed subgroup of G, this implies $Q_{u}=Q^{g}$ for all $g \in M$ and so $Q \& M$, a contradiction to Hypothesis Civ.

Lemma 3.8. The following hold:
(a) $\Omega_{1} Z(T)=C_{Y_{M}}(T)$ and $Y=C_{Z_{M}}(T)=\Omega_{1} Z(T) \cap Z_{M}$.
(b) Let $\mathcal{Z}=\left\{u \in Y \mid 1 \neq u\right.$ is singular in $\left.Z_{M}\right\}$. Then $N_{G}(T) \leqslant N_{G}\left(\Omega_{1} Z(T)\right)=N_{G}(\mathcal{Z})=$ $N_{G}(Y)=F T C_{M^{\dagger}}\left(Y_{M}\right) \leqslant M^{\dagger}$.
(c) $O_{2}\left(N_{G}(T)\right)=T$ and $C_{G}(Y)=T C_{M^{\dagger}}\left(Y_{M}\right)$.

Proof. (a): By 2.2 ed, $\Omega_{1} Z\left(O_{2}(M)\right)=Y_{M}$. Since $O_{2}(M) \leqslant T$ we get $\Omega_{1} Z(T)=C_{Y_{M}}(T)$. Thus $C_{Z_{M}}(T)=\Omega_{1} Z(T) \cap Z_{M}$. By 3.1 c:b $C_{Z_{M}}(T)=y^{\perp}=Y$, and so (a) is proved.
(b): Observe that $z \in \mathcal{Z}$ and so

$$
Q_{z} \leqslant L:=\left\langle Q_{u} \mid u \in \mathcal{Z}\right\rangle \leqslant M^{\circ} .
$$

By 3.1 c:c

$$
\langle\mathcal{Z}\rangle=Y
$$

in particular, $N_{G}(\mathcal{Z}) \leqslant N_{G}(Y)$. Since M acts transitively on the non-trivial singular vectors in Z_{M}, $\mathcal{Z}=Y \cap z^{M}$. By (a) $Y=\Omega_{1} Z(T) \cap Z_{M}$ and since $z^{M} \subseteq Z_{M}$ we get $\mathcal{Z}=\Omega_{1} Z(T) \cap z^{M}$. By 3.7 $z^{M}=z^{G} \cap Y_{M}$, and since $\Omega_{1} Z(T) \subseteq Y_{M}$, we conclude that $\mathcal{Z}=\Omega_{1} Z(T) \cap z^{G}=Y \cap z^{G}$. Hence

$$
N_{G}(T) \leqslant N_{G}\left(\Omega_{1} Z(T)\right) \leqslant N_{G}(\mathcal{Z}) \leqslant N_{G}(Y) \leqslant N_{G}(\mathcal{Z}) \leqslant N_{G}(L)
$$

In particular, $N_{G}(\mathcal{Z})=N_{G}(Y)$.
Since $F_{0} \leqslant N_{M}(Y)$, we get $F=\left\langle\left(Q_{z} \cap F_{0}\right)^{F_{0}}\right\rangle \leqslant L$ and so by 3.4 i , $M^{\circ}=\left\langle Q_{z}, F\right\rangle \leqslant L \leqslant M^{\circ}$. Hence $L=M^{\circ}$ and $N_{G}(\mathcal{Z}) \leqslant N_{G}\left(M^{\circ}\right)=M^{\dagger}$. Thus $N_{G}(Y)=N_{G}(\mathcal{Z})=N_{M^{\dagger}}(\mathcal{Z})=N_{M^{\dagger}}(Y)$. Since $Y=y^{\perp}, N_{M^{\dagger}}(Y)=C_{M^{\dagger}}(y)$. By 3.4 k we have $C_{M^{\dagger}}(y)=C_{M^{\dagger}}\left(Y_{M}\right) F T$, and bb is proved.
(c): By (b) $N_{G}(T)=N_{M^{\dagger}}(T)$ and $C_{G}(Y)=C_{M^{\dagger}}(Y)$. Hence 3.4 ed gives the first part of (c), and $3.1 \mathrm{c}: \mathrm{b}$ the second part.

Notation 3.9. By Hypothesis Ciii $C_{G}(y) \not M^{\dagger}$, and so there exists a subgroup $L \leqslant C_{G}(y)$ with $F T \leqslant L$ and $L \leqslant M^{\dagger}$. Among all such subgroups we choose L such that $|L|$ is minimal.

Observe that the minimality of L implies that $L \cap M^{\dagger}$ is the unique maximal subgroup of L containing $F T$. By 3.4 C , $T^{*} \in \operatorname{Syl}_{2}(F T)$ and we can pick $T_{0} \in S y l_{2}(L)$ such that $T^{*} \leqslant T_{0}$. We set

$$
D:=L \cap M^{\dagger}, \quad Z_{L}:=\left\langle\Omega_{1} Z\left(T_{0}\right)^{L}\right\rangle, \quad P:=C_{L}(z), \quad \text { and } \quad P^{*}:=O^{2^{\prime}}(P)
$$

Lemma 3.10. The following hold:
(a) $O_{2}\left(\left\langle Q_{z}, L\right\rangle\right)=1$.
(b) $\left[Q_{z}, P\right] \leqslant Q_{z} \cap P=Q_{z} \cap L=Q_{z} \cap F \leqslant O_{2}(P)$.
(c) $O_{2}\left(\left\langle L, L^{t}\right\rangle\right)=1$ for $t \in Q_{z} \backslash L$.
(d) $Z_{L} Z_{L}^{t} \nRightarrow L$ and $Z_{L} Z_{L}^{t} \nRightarrow L^{t}$ for $t \in Q_{z} \backslash L$.
(e) $O_{2}\left(C_{G}(y)\right) \leqslant O_{2}(L) \leqslant T$.
(f) $\Omega_{1} Z\left(T_{0}\right)=\Omega_{1} Z\left(T^{*}\right)=\langle y, z\rangle$.
(g) $P=C_{L}\left(\Omega_{1} Z\left(T_{0}\right)\right)$, so P^{*} is a point-stabilizer for L on Y_{L} and on $Z_{L}{ }^{2}$
(h) $Z_{L}=\left\langle Y^{L}\right\rangle$ and $Y \leqslant C_{Z_{L}}(T) \leqslant C_{Y_{M}}(T)$.
(i) $D=F T C_{D}\left(Y_{M}\right)=F C_{D}(Y)$. In particular, Y is a natural $O_{2 n-1}(2)$-module and $Y /\langle y\rangle$ is a natural $S p_{2 n-2}(2)$-module for D.
(j) F is normal in D.
(k) If $2 n=4$, then $T^{*}=T_{0} \in \operatorname{Syl}_{2}(L)$.

Proof. (a): By 3.4 (b) and (i), $M=M^{\circ} T=\left\langle Q_{z}, T F\right\rangle \leqslant\left\langle Q_{z}, L\right\rangle$. Since $L \nless M^{\dagger}, \mathcal{M}_{G}(M)=$ $\left\{M^{\dagger}\right\}$ implies $O_{2}\left(\left\langle Q_{z}, L\right\rangle\right)=1$.
(b): Note that $C_{Q_{z}}(y)=Q_{z} \cap F=Q_{z} \cap L=Q_{z} \cap P$ and that by 3.4 a) $\left|Q_{z} / C_{Q_{z}}(y)\right|=2$. By $Q!, P$ normalizes Q_{z} and so also $Q_{z} \cap P$, and $\sqrt{\mathrm{b}}$ follows.
(c): Since $\left|Q_{z} / Q_{z} \cap L\right|=2$ we conclude that $\langle L, t\rangle=\left\langle L, Q_{z}\right\rangle, t^{2} \in Q_{z} \cap L$ and t normalizes $\left\langle L, L^{t}\right\rangle$. So (c) follows from (a).
(d): Note that t normalizes $Z_{L} Z_{L}^{t}$. Thus (d) follows from (c).
(e): Put $U:=O_{2}(L) O_{2}\left(C_{G}(y)\right)$. Then $F T$ normalizes U. By 3.8 b $N_{G}(T) \leqslant C_{M^{\dagger}}\left(Y_{M}\right) F T$ and by 3.4 c) $O_{2}(\overline{F T})=\bar{T}$, so $\overline{N_{U}(T)} \leqslant O_{2}(\overline{F T})=\bar{T}$. Hence $N_{U}(T) \leqslant C_{M^{\dagger}}\left(Y_{M}\right) T$. Since T is a Sylow 2-subgroup of $C_{M^{\dagger}}\left(Y_{M}\right) T$ and T normalizes $N_{U}(T)$ we get $N_{U}(T) \leqslant T$. It follows that $U \leqslant T \leqslant L$. Since L normalizes $O_{2}\left(C_{G}(y)\right)$, this gives $O_{2}\left(C_{G}(y)\right) \leqslant O_{2}(L) \leqslant T$.
(f): Choose $g \in G$ with $T_{0} \leqslant S^{g}$. Since G is a counterexample to Theorem C $C_{G}(y)$ is of characteristic 2 and so

$$
C_{G}\left(O_{2}\left(C_{G}(y)\right)\right) \leqslant O_{2}\left(C_{G}(y)\right)
$$

By (e)

$$
\left.O_{2}\left(C_{G}(y)\right)\right) \leqslant T \leqslant T^{*} \leqslant T_{0} \leqslant S^{g}
$$

Thus

$$
\Omega_{1} Z\left(S^{g}\right) \Omega_{1} Z\left(T_{0}\right) \leqslant C_{G}\left(O_{2}\left(C_{G}(y)\right)\right) \leqslant T \leqslant T^{*} \leqslant T_{0}
$$

[^5]and so
$$
\Omega_{1} Z\left(S^{g}\right) \leqslant \Omega_{1} Z\left(T_{0}\right) \leqslant \Omega_{1} Z\left(T^{*}\right)
$$

By 3.4 e $\Omega_{1} Z\left(T^{*}\right)=\langle y, z\rangle$, and by 3.4 g) $\Omega_{1} Z(S)=\langle z\rangle$. Hence $\Omega_{1} Z\left(S^{g}\right)=\left\langle z^{g}\right\rangle$ and

$$
\left\langle y, z^{g}\right\rangle \leqslant \Omega_{1} Z\left(T_{0}\right) \leqslant\langle y, z\rangle .
$$

By $3.7 Y_{M} \cap z^{G}=z^{M}$. Thus $y \notin z^{G}, z^{g} \neq y$ and $\Omega_{1} Z\left(T_{0}\right)=\langle y, z\rangle$.
(g): By (f), $\Omega_{1} Z\left(T_{0}\right)=\langle y, z\rangle$. Since $L \leqslant C_{G}(y)$ we have $C_{L}\left(\Omega_{1} Z\left(T_{0}\right)\right)=C_{L}(z)=P$.
(h): Let \mathcal{Z} be the set of non-trivial singular vectors in Y. By $3.1 \mathrm{c}: \mathrm{C}) Y=\langle\mathcal{Z}\rangle$ and $C_{\bar{M}}(y)$ acts transitively on \mathcal{Z}. By 3.4 $C_{\bar{M}}(y)=\overline{F_{0}}=\overline{F T}$, and we conclude that $Y=\left\langle z^{F}\right\rangle=\left\langle\Omega_{1} Z\left(T_{0}\right)^{F}\right\rangle$. Therefore $Z_{L}=\left\langle Y^{L}\right\rangle$. Moreover, by (e) $Z_{L} \leqslant T$ and so

$$
Y \leqslant C_{Z_{L}}(T) \leqslant \Omega_{1} Z(T)
$$

By 3.8 a) $\Omega_{1} Z(T)=C_{Y_{M}}(T)$, and so (h) holds.
(i): By 3.4 k), $C_{M^{\dagger}}(y)=F T C_{M^{\dagger}}\left(Y_{M}\right)$. Since $F T \leqslant D=M^{\dagger} \cap L \leqslant C_{M^{\dagger}}(y)$, this gives $D=F T\left(D \cap C_{M^{\dagger}}\left(Y_{M}\right)\right)=F T C_{D}\left(Y_{M}\right)$. Since T centralizes Y we get $D=F C_{D}(Y)$. By 3.4 (c), Y is a natural $O_{2 n-1}(2)$-module and $Y /\langle y\rangle$ is a natural $S p_{2 n}(2)$-module for $F T$ and so also for D. Thus (i) holds.
(j): By 3.4 k . $F \leqslant C_{M^{\dagger}}(y)$ and since $D=M^{\dagger} \cap L \leqslant C_{M^{\dagger}}(y)$ we get $F \leqslant D$.
(k): Suppose that $2 n=4$. Then by 3.6 b , $T^{*} \in \operatorname{Syl}_{2}\left(C_{G}(y)\right)$. Since $T^{*} \leqslant T_{0} \in S y l_{2}(L)$ and $L \leqslant C_{G}(y)$ this gives $T^{*}=T_{0}$.

LEMMA 3.11. L is of characteristic $2, C_{L}\left(Z_{L}\right)=O_{2}(L)=C_{L}\left(Y_{L}\right)$ and $Y_{L}=\Omega_{1} Z\left(O_{2}(L)\right)$.
Proof. Since G is a counterexample to Theorem C, $C_{G}(y)$ is of characteristic 2. Moreover, by 3.10 $O_{2}\left(C_{G}(y)\right) \leqslant O_{2}(L)$ and so L is of characteristic 2 .

By 3.10h $Y \leqslant Z_{L}$, and 3.8 implies $C_{L}\left(Z_{L}\right) \leqslant C_{L}(Y) \leqslant T C_{M^{\dagger}}\left(Y_{M}\right)$, so $O^{2}\left(C_{L}\left(Z_{L}\right)\right) \leqslant$ $C_{M^{\dagger}}\left(Y_{M}\right)$. On the other hand, by 1.52 c) $\left[M^{\circ}, C_{M^{\dagger}}\left(Y_{M}\right)\right] \leqslant O_{2}\left(M^{\circ}\right) \leqslant O_{2}\left(M^{\dagger}\right)$, and thus Q_{z} normalizes $O^{2}\left(C_{L}\left(Z_{L}\right)\right) O_{2}\left(M^{\dagger}\right)$. But $O^{2}\left(C_{L}\left(Z_{L}\right)\right)=O^{2}\left(C_{L}\left(Z_{L}\right) O_{2}\left(M^{\dagger}\right)\right)$ since $O_{2}\left(M^{\dagger}\right) \leqslant T \leqslant$ L. Hence $O^{2}\left(C_{L}\left(Z_{L}\right)\right)$ is normalized by Q_{z} and L. As $O_{2}\left(\left\langle Q_{z}, L\right\rangle\right)=1$ by 3.10, we get $O_{2}\left(O^{2}\left(C_{L}\left(Z_{L}\right)\right)\right)=1$. This yields $O^{2}\left(C_{L}\left(Z_{L}\right)\right)=1$ since L is of characteristic 2 . Hence $C_{L}\left(Z_{L}\right)=$ $O_{2}(L)$.

Put $U:=\Omega_{1} Z\left(O_{2}(L)\right)$. Since $Z_{L} \leqslant Y_{L} \leqslant U$ this implies

$$
O_{2}(L) \leqslant C_{L}(U) \leqslant C_{L}\left(Y_{L}\right) \leqslant C_{L}\left(Z_{L}\right)=O_{2}(L)
$$

Hence $O_{2}(L)=C_{L}(U)$ and $O_{2}\left(L / C_{L}(U)\right)=1$. Thus U is 2-reduced for L, so $U \leqslant Y_{L}$ and $Y_{L}=U$.

Lemma 3.12. Let N_{0} be a subnormal subgroup of D.
(a) Suppose that $O^{2}(F) \nLeftarrow N_{0}$. Then $O^{2^{\prime}}\left(O^{2}\left(N_{0}\right)\right) \leqslant T C_{M^{\dagger}}\left(Y_{M}\right)$ and if in addition $N_{0} \leqslant D$, then $N_{0} \leqslant T C_{M^{\dagger}}\left(Y_{M}\right)$ and $O^{2}\left(N_{0}\right) \leqslant C_{M^{\dagger}}\left(Y_{M}\right)$.
(b) If N_{0} is subnormal in L, then either $O^{2}(F)=O^{2}\left(N_{0}\right)$ or $N_{0} \leqslant O_{2}(L)$.

Proof. From 3.4 k we get that $F \leqslant C_{M^{\dagger}}(y)$ and from 3.4 C) that

$$
\begin{equation*}
\bar{D}=\overline{F T} \cong C_{2} \times S p_{2 n-2}(2) \tag{I}
\end{equation*}
$$

and
(II)

$$
F / O_{2}(F) \cong S p_{2 n-2}(2)
$$

(a): By (II) either $O^{2}(F) \leqslant X$ or $\left[O^{2}(F), X\right] \leqslant O_{2}(F)$ for every subnormal subgroup X of D. By the hypothesis of (a), $O^{2}(F) \not N_{0}$, and hence $\left[O^{2}(F), N_{0}\right] \leqslant O_{2}(F)$. By (II) $\overline{N_{0}} \leqslant \bar{T}$, or $2 n=4$ and $O^{2}\left(\overline{N_{0}}\right)=O^{2}(\bar{F}) \cong C_{3}$. The first case gives $N_{0} \leqslant T C_{M^{\dagger}}\left(Y_{M}\right)$, while the second case gives $O^{2^{\prime}}\left(O^{2}\left(N_{0}\right)\right) \leqslant T C_{M^{\dagger}}\left(Y_{M}\right)$.

Moreover, if N_{0} is normal in D, then $\left[F, N_{0}\right] \leqslant F \cap N_{0}$. Since $O^{2}(F) \not N_{0}$, we conclude that $\left[F, N_{0}\right] \leqslant O_{2}(F)$. But then also in this case $\overline{N_{0}} \leqslant \bar{T}$.
(b): Assume now that N_{0} is subnormal in L. Note that if (b) holds for $\left\langle N_{0}^{D}\right\rangle$ in place of N_{0}, then (III) shows that (b) also holds for N_{0}. So we may assume that $N_{0} \approx D$. We first treat the case

$$
\begin{equation*}
O^{2}(F) \nLeftarrow N_{0} \tag{*}
\end{equation*}
$$

By 3.10,fi $\Omega_{1} Z\left(T_{0}\right)=\langle y, z\rangle \leqslant Z_{M}$ and by (a) $O^{2}\left(N_{0}\right) \leqslant C_{N_{0}}\left(Y_{M}\right)$. Since $T_{0} \cap N_{0} \in \operatorname{Syl}_{2}\left(N_{0}\right)$, this gives

$$
N_{0}=\left(N_{0} \cap T_{0}\right) O^{2}\left(N_{0}\right)=\left(N_{0} \cap T_{0}\right) C_{N_{0}}\left(Y_{M}\right) \leqslant C_{G}\left(\Omega_{1} Z\left(T_{0}\right)\right)
$$

Thus by 1.28 b,$\left[Z_{L}, N_{0}\right]=1$, and 3.11 implies $N_{0} \leqslant C_{L}\left(Z_{L}\right) \leqslant O_{2}(L)$.
Assume next that $O^{2}(F) \leqslant N_{0}$. By (II), $\bar{D}=\overline{F T}$ and so $O^{2}\left(N_{0}\right) \leqslant O^{2}(F) C_{M^{\dagger}}\left(Y_{M}\right)$. As $O^{2}(F) \leqslant N_{0}$, we get

$$
\begin{equation*}
O^{2}\left(N_{0}\right)=O^{2}(F)\left(O^{2}\left(N_{0}\right) \cap C_{M^{\dagger}}\left(Y_{M}\right)\right) \tag{III}
\end{equation*}
$$

Note that $O^{2}\left(N_{0}\right) \cap C_{M^{\dagger}}\left(Y_{M}\right)$ is subnormal in L, normal in D and satisfies (*) in place of N_{0}. As we have seen already, $O^{2}\left(N_{0}\right) \cap C_{M^{\dagger}}\left(Y_{M}\right) \leqslant O_{2}(L)$, and so by III) $O^{2}\left(N_{0}\right) \leqslant O^{2}(F) O_{2}(L)$. Thus $O^{2}\left(N_{0}\right) \leqslant O^{2}(F)$. By III) $O^{2}(F) \leqslant O_{2}\left(N_{0}\right)$ and so $O^{2}\left(N_{0}\right)=O^{2}(F)$.

Lemma 3.13. Let N_{0} be a normal subgroup of L. Then $O^{2}(F) \leqslant N_{0}$ or $T_{0} \cap N_{0}=T \cap N_{0}$.
Proof. By 3.4 ch, $F T / T \cong S p_{2 n}(2)$. Since $F T \cap N_{0} \preccurlyeq F T$ we conclude that either $O^{2}(F T) \leqslant$ $F T \cap N_{0}$ or $F T \cap N_{0} \leqslant T$. In the first case we are done. So we may assume that $F T \cap N_{0} \leqslant T$. Since $T^{*} \leqslant F T$ also

$$
\begin{equation*}
T^{*} \cap N_{0} \leqslant T \tag{*}
\end{equation*}
$$

in particular, $\left[N_{T_{0} \cap N_{0}}\left(T^{*}\right), T^{*}\right] \leqslant T^{*} \cap N_{0} \leqslant T$. It follows that $N_{T_{0} \cap N_{0}}\left(T^{*}\right) \leqslant N_{T_{0} \cap N_{0}}(T)$. By 3.8 b) $N_{G}(T) \leqslant M^{\dagger}$ and thus $N_{T_{0} \cap N_{0}}\left(T^{*}\right) \leqslant T_{0} \cap M^{\dagger} \leqslant T^{*}$. This shows that $T_{0} \cap N_{0} \leqslant T^{*} \cap N_{0}$ and by $(*) T_{0} \cap N_{0}=T \cap N_{0}$.

Lemma 3.14. Let $t \in Q_{z} \backslash L$.
(a) $J\left(O_{2}(L) O_{2}\left(L^{t}\right)\right) \not O_{2}(L)$.
(b) If $(2 n, \epsilon) \neq(4,+)$ then $J(T) \neq O_{2}(L)$.
(c) $O_{2}(L) O_{2}\left(L^{t}\right) \vDash P$ and $O_{2}(L) O_{2}\left(L^{t}\right) \leqslant O_{2}(P)=O_{2}\left(P^{*}\right)$.
(d) There exists $A \leqslant O_{2}\left(P^{*}\right)$ such that A is a minimal non-trivial quadratic best offender on Y_{L}.
Proof. (a): Assume that $J\left(O_{2}(L) O_{2}\left(L^{t}\right)\right) \leqslant O_{2}(L)$. Then $J\left(O_{2}(L) O_{2}\left(L^{t}\right)\right)=J\left(O_{2}(L)\right)=$ $J\left(O_{2}\left(L^{t}\right)\right)$, and so t normalizes $J\left(O_{2}(L)\right)$. A contradiction, since $O_{2}\left(\left\langle L, L^{t}\right\rangle\right)=1$ by 3.10.c). Hence (a) holds.
(b): Assume now that $J(T) \leqslant O_{2}(L)$ and $(2 n, \epsilon) \neq(4,+)$. By 3.10 e) $O_{2}(L) \leqslant T$ and so $J(T)=J\left(O_{2}(L)\right)$. Since $Z_{L} \leqslant Z\left(J\left(O_{2}(L)\right)\right.$ we conclude that $Z_{L} \leqslant Z(J(T))$. As $C_{L}\left(Z_{L}\right)=O_{2}(L)$ by 3.11, this gives $B(T) \leqslant C_{L}\left(Z_{L}\right)=O_{2}(L)$. Thus $B(T)=B\left(O_{2}(L)\right)$ and $B(T)$ is normal in L, a contradiction, since by 3.6 b $N_{G}(B(T)) \leqslant M^{\dagger}$.
(c): By 3.10b Q_{z} and so also t normalizes P. Since $O_{2}(L) \boxtimes P$ we get $O_{2}\left(L^{t}\right) \vDash P$. Since $O_{2}(L) O_{2}\left(L^{t}\right)$ is a 2-group, this gives $O_{2}(L) O_{2}\left(L^{t}\right) \leqslant O_{2}(P)$. Recall that $P^{*}=O^{2^{\prime}}(P)$, so $O_{2}\left(P^{*}\right)=$ $O_{2}(P)$.
(d): By (a) we can choose $B \in \mathcal{A}_{J\left(O_{2}(L) O_{2}\left(L^{t}\right)\right.}$ such that $B \neq O_{2}(L)$. By (c), $B \leqslant O_{2}\left(P^{*}\right)$. Since by 3.11 $C_{L}\left(Y_{L}\right)=O_{2}(L),\left[Y_{L}, B\right] \neq 1$. Thus by A.40, $C_{B}\left(\left[Y_{L}, B\right]\right)$ is a non-trivial quadratic best offender on Y_{L}. Hence there also exists such a minimal offender A in $C_{B}\left(\left[Y_{L}, B\right]\right)$ and (d) holds.

Notation 3.15. Recall from 3.11 that $C_{L}\left(Z_{L}\right)=O_{2}(L)$. So $\widetilde{L}:=L / O_{2}(L)$ is faithful on Z_{L}. According to 3.14 d we can choose $A \leqslant O_{2}\left(P^{*}\right)$ such that
\widetilde{A} is a minimal non-trivial quadratic offender on Y_{L}.
Put $H:=\left\langle A^{L}\right\rangle O_{2}(L)$ and $Y_{L}^{+}:=Y_{L} / C_{Y_{L}}(H)$. For $X \subseteq Y_{L}$, let $X^{+}:=X C_{Y_{L}}(H) / C_{Y_{L}}(H)$, the image of X in Y_{L}^{+}.

Lemma 3.16. There exist subgroups $H_{i}, i=1, \ldots, m$, of H such that for $V_{i}:=\left[Z_{L}, H_{i}\right]$:
(a) $O_{2}(H) \leqslant H_{i} \vDash H$.
(b) $\widetilde{H}=\widetilde{H_{1}} \times \widetilde{H_{2}} \times \ldots \times \widetilde{H_{m}}$.
(c) $Z_{L}^{+}=V_{1}^{+} \times V_{2}^{+} \times \ldots V_{m}^{+}$.
(d) $\widetilde{H}_{i} \cong S L_{l}\left(2^{k}\right), l \geqslant 2, \operatorname{Sp} 2 l\left(2^{k}\right), l \geqslant 2, G_{2}\left(2^{k}\right)$ or $\operatorname{Sym}(l), l>6, l \equiv 2,3(\bmod 4)$. Moreover V_{i}^{+}is a corresponding natural module.
(e) L acts transitively on $\left\{H_{1}, H_{2}, \ldots, H_{m}\right\}$.

Proof. Let H_{1} be the smallest subnormal subgroup of L containing $A O_{2}(L)$ and put

$$
H_{1}^{L}=:\left\{H_{1}, \ldots, H_{m}\right\}
$$

By Gaschütz' Theorem $C_{Z_{L}}\left(T_{0} \cap H\right) \leqslant C_{Z_{L}}(H)\left[Z_{L}, H\right]$, see C.17. Since $\Omega_{1} Z\left(T_{0}\right) \leqslant C_{Z_{L}}\left(T_{0} \cap H\right)$ and $Z_{L}=\left\langle\Omega_{1} Z\left(T_{0}\right)^{L}\right\rangle$, this gives $Z_{L}=C_{Z_{L}}(H)\left[Z_{L}, H\right]$ and so $Z_{L}^{+}=\left[Z_{L}^{+}, H\right]$. The lemma now follows from C. 9 .

Notation 3.17. In the following we will use the notation introduced in 3.16 .
Lemma 3.18. $H \nleftarrow D, L=H F T$ and $T_{0}=\left(H \cap T_{0}\right) T^{*}$.
Proof. Suppose that $H \leqslant D$. Then we can apply 3.12 with $N_{0}=H$. Since $H \not O_{2}(L)$ we conclude $O^{2}(H)=O^{2}(F)$ and so $O^{2}(H) / O_{2}\left(O^{2}(H)\right) \cong S p_{2 n-2}(2)^{\prime}$. Now 3.16 shows that $m=1$ and

$$
\left[Z_{L}, O^{2}(H)\right] C_{Z_{L}}(H) / C_{Z_{L}}(H)
$$

is a simple $O^{2}(H)$-module. From 3.10 h we get $Y \leqslant Z_{L}$. Since $\left[Y, O^{2}(F)\right] \neq 1$ this gives $\left[Z_{L}, O^{2}(H)\right]=\left[Y, O^{2}(F)\right]$. Hence $Y=\langle y\rangle\left[Y, O^{2}(F)\right]$ is normal in L, a contradiction since $N_{G}(Y) \leqslant$ M^{\dagger} by 3.8 b.

Thus $H \nleftarrow D$ and the minimal choice of L implies $L=H F T$. Since $T^{*} \in S y l_{2}(F T)$ and $T^{*} \leqslant T_{0}$ we conclude that $T_{0} \leqslant H T^{*}$ and so $T_{0}=\left(H \cap T_{0}\right) T^{*}$.

LEmma 3.19. $\widetilde{H_{i}} \not \equiv S L_{2}\left(2^{k}\right)$.
Proof. Suppose for a contradiction that $\widetilde{H_{i}} \cong S L_{2}\left(2^{k}\right)$. We will first show
$1^{\circ} . \quad Y^{+} \neq 1$.
Otherwise $H \leqslant C_{G}(Y)$. By 3.8 b $C_{G}(Y) \leqslant M^{\dagger}$ and so $H \leqslant L \cap M^{\dagger}=D$, a contradiction to 3.18
$2^{\circ} . \quad O^{2}(F) \leqslant H$.
Assume that $O^{2}(F) \nLeftarrow H$. Then by 3.13, $H \cap T_{0}=H \cap T$ and by $3.18 T_{0}=\left(H \cap T_{0}\right) T^{*}=T^{*}$. In particular, $H \cap T_{0} \vDash F T$. Since D is the unique maximal subgroup of L containing $F T$ we conclude that $N_{L}\left(H \cap T_{0}\right) \leqslant D$. On the other hand by 3.12 a , applied with $N_{0}=D \cap H, O^{2}(D \cap H) \leqslant C_{L}(Y)$, so $O^{2}\left(N_{H}\left(H \cap T_{0}\right)\right)$ centralizes Y. For $k \neq 1$ this yields a contradiction since by $1^{\circ} Y^{+} \neq 1$ while $O^{2}\left(N_{H}\left(H \cap T_{0}\right)\right)$ acts fixed-point freely on the direct sum Z_{L}^{+}of natural $S L_{2}\left(2^{k}\right)$-modules.

Thus $k=1$. Then $O^{2}(\widetilde{H})$ is an abelian 3-group, $D \cap H=H \cap T_{0},\left[Z_{L}, H\right] \cap \Omega_{1} Z(H)=1$ and, for $1 \leqslant i \leqslant m, V_{i}$ is a natural $S L_{2}(2)$-module for H_{i}. In particular, $\left|C_{V_{i}}\left(T_{0} \cap H\right)\right|=2$. Let $1 \neq v_{i} \in C_{V_{i}}\left(T_{0} \cap H\right)$, and put $v=\prod_{i=1}^{m} v_{i}$. Then $D=N_{H}\left(T_{0} \cap H\right)$ centralizes v and $1 \neq v \in\left[Z_{L}, H\right]$. Since $F T \leqslant D, v \in \Omega_{1} Z(F T)$. By 3.4 (\zh10 $\Omega_{1} Z\left(T^{*}\right)=\langle y, z\rangle$. Hence $\Omega_{1} Z(F T) \leqslant \Omega_{1} Z\left(T^{*}\right)=\langle y, z\rangle$ and since $[z, F] \neq 1, \Omega_{1} Z(F T)=\langle y\rangle \leqslant \Omega_{1} Z(H)$. This shows that $v=y$ and so $v \in\left[Z_{L}, H\right] \cap \Omega_{1} Z(H)=1$, a contradiction.
$3^{\circ} . \quad L=H T^{*}, 2 n=4, T^{*}=T_{0}, D=N_{L}\left(T_{0} \cap H\right)$ and $k>1$.
By 3.18, $L=H F T$, and by $2^{\circ}, O^{2}(F) \leqslant H$. As $F=O^{2}(F) T^{*}$, we get $L=H T^{*}$. Since $\tilde{H}_{i} \cong S L_{2}\left(2^{k}\right), \tilde{H}$ does not have any section isomorphic to $S p_{2 t}(2)$ for any $2 t \geqslant 4$. Since by 3.4(c), $F T / T \cong S p_{2 n-2}(2)$ and by $2^{\circ} O^{2}(F) \leqslant H$, we conclude that $2 n-2=2$ and $2 n=4$. Now 3.10 k gives $T^{*}=T_{0}$. Since $L=H T^{*}$, the structure of \widetilde{L} shows that $N_{L}\left(T_{0} \cap H\right)$ is the unique maximal subgroup of L containing T^{*}. Thus $F T \leqslant N_{L}\left(T_{0} \cap H\right)$ and $D=N_{L}\left(T_{0} \cap H\right)$. If $k=1$, this implies that $D=T^{*}$, a contradiction to $F \leqslant D$.
$4^{\circ} . \quad k=2, m=1, \widetilde{L} \cong \operatorname{Sym}(5), D=F T$ and $O_{2}(D)=T$.
By 3.16ed, L acts transitively on $\left\{H_{1}, \ldots, H_{m}\right\}$ and by (3) $L=H T^{*}$. Hence T^{*} acts transitively on $\left\{H_{1}, \ldots, H_{m}\right\}$.

Recall from 3.101i] that $D=F T C_{D}\left(Y_{M}\right)$, so D normalizes Y. From (30) we get $D=N_{L}\left(T_{0} \cap H\right)$ and $k>1$, so $O^{2}\left(D \cap H_{1}\right) \neq 1$. Since V_{1}^{+}is a natural $S L_{2}(q)$-module for H_{1}, we conclude that $C_{V_{1}^{+}}\left(O^{2}\left(D \cap H_{1}\right)\right)=1$. As $Z_{L}^{+}=V_{1}^{+} \times \ldots \times V_{m}^{+}$, this gives $C_{Z_{L}^{+}}\left(O^{2}(D \cap H)\right)=1$.

Put $X^{+}:=\left[Y^{+}, O^{2}\left(D \cap H_{1}\right)\right]$ that $X^{+}=1$. Then $Y^{+} \leqslant C_{Z_{L}^{+}}\left(O^{2}\left(D \cap H_{1}\right)\right)$ and so $Y^{+} \leqslant$ $C_{Z_{L}^{+}}\left(O^{2}(D \cap H)\right)=1$, since T^{*} normalizes Y^{+}and acts transitively on $\left\{H_{1}, \ldots, H_{m}\right\}$. But $Y^{+} \neq 1$ by (10), a contradiction.

Thus $X^{+} \neq 1$, and as $X^{+}=\left[X^{+}, O^{2}\left(D \cap H_{1}\right)\right],\left|X^{+}\right| \geqslant 4$. Since $Z_{L}^{+}=V_{1}^{+} \times \ldots \times V_{m}^{+}$, we have $X^{+} \leqslant\left[Z_{L}^{+}, H_{1}\right]=V_{1}^{+}$, and since D normalizes $Y, X^{+} \leqslant Y^{+}$. Thus $X^{+} \leqslant V_{1}^{+} \cap Y^{+}$. By $3^{\circ} 2 n=4$ and so $\left|Y^{+}\right| \leqslant|Y /\langle y\rangle|=4 \leqslant\left|X^{+}\right|$. Hence $Y^{+}=X^{+} \leqslant V_{1}^{+}$. Since Y^{+}is T^{*}-invariant, we conclude that T^{*} normalizes V_{1}^{+}and so $m=1$. Moreover, Y^{+}is D-invariant and by $D=N_{L}\left(H \cap T_{0}\right)$. Since $Z_{L}^{+}=V_{1}^{+}$is a natural $S L_{2}\left(2^{k}\right)$-module for H, any non-trivial $N_{H}\left(H \cap T_{0}\right)$-submodule of Z_{L}^{+} has order 2^{k} or $2^{2 k}$. As $\left|Y^{+}\right|=4$ and $k>1$. we get $k=2$. In particular, $\widehat{H \cap D} \cong \operatorname{Alt}(4)$. By (3) $T^{*}=T_{0}$ and $L=H T^{*}$. Hence $O^{2}(\widetilde{D}) \leqslant \widetilde{H \cap D}$, and $F \leqslant D$ implies $O^{2}(F)=O^{2}(D)$. Since $T_{0}=T^{*}$ and $T^{*} \in S y l_{2}(F T)$ this gives $D=O^{2}(D) T_{0}=O^{2}(F) T^{*}=F T$. By 3.4 C ,,$T=O_{2}(F T)$ and $F T / T \cong \operatorname{Sym}(3)$. Thus $\widetilde{T^{*}} \approx \widetilde{H}, \widetilde{L} \cong \operatorname{Sym}(5)$ and all parts of 4° are proved.

By $\left.3^{\circ}\right) T_{0}=T^{*}$ and by 3.10 (b) $\left[Q_{z}, P\right] \leqslant Q_{z} \cap P \leqslant T_{0}$. Hence $Q_{z} \leqslant N_{G}\left(T_{0}\right)$. Let $t \in Q_{z} \backslash L$. By 3.10 (c),$O_{2}\left(\left\langle L, L^{t}\right\rangle\right)=1$. In particular, since t normalizes T_{0}, no non-trivial characteristic subgroup of T_{0} is normal in L. Since $L \cap M^{\dagger}$ is the unique maximal subgroup of L containing T_{0}, we conclude that $N_{L}(X) \leqslant L \cap M^{\dagger}$ for every non-trivial characteristic subgroup X of T_{0}. The main result of BHS now shows that $\left[O_{2}(L), O^{2}(L)\right]=\left[Z_{L}, H\right]$. By 3.10 d , $Z_{L} Z_{L}^{t}$ is not normal in L. Thus $Z_{L}^{t} * O_{2}(L)$ and so $\left[Z_{L}, Z_{L}^{t}\right] \neq 1$. Observe that no element in T_{0} acts as a transvection on Z_{L} or Z_{L}^{t}. Thus $\left|\widetilde{Z_{L}^{t}}\right|=\left|Z_{L}^{t} / C_{Z_{L}^{t}}\left(Z_{L}\right)\right| \geqslant 4$. Since $Z_{L}^{t} \vDash T_{0}, Z_{L}^{t}$ acts quadratically on Z_{L}. Note that $\widetilde{H \cap T_{0}}$ is the unique subgroup of order at least four in $\widetilde{T_{0}}$ acting quadratically on Z_{L}, so

$$
H \cap T_{0}=C_{T_{0}}\left(\left[Z_{L}, Z_{L}^{t}\right]\right)=Z_{L}^{t} O_{2}(L)=Z_{L} O_{2}\left(L^{t}\right) .
$$

Hence $O_{2}(L)=Z_{L}\left(O_{2}(L) \cap O_{2}(L)^{t}\right)$ and $\Phi\left(O_{2}(L)\right)=\Phi\left(O_{2}(L) \cap O_{2}\left(L^{t}\right)\right)$. Since $\left[O_{2}(L), O^{2}(L)\right] \leqslant$ $Z_{L} \leqslant \Omega_{1} Z\left(O_{2}(L)\right), 1.18$ shows that $O^{2}(L)$ centralizes $\Phi\left(O_{2}(L)\right)$ and so $\Phi\left(O_{2}(L) \cap O_{2}\left(L^{t}\right)\right)$ is normalized by $O^{2}(L), T_{0}$ and t. This forces $\Phi\left(O_{2}(L) \cap O_{2}\left(L^{t}\right)\right)=1$, whence $O_{2}(L)$ is elementary abelian. By $\sqrt{3^{\circ}} T_{0}=T^{*} \leqslant D$ and by $\sqrt{4^{\top}} \widetilde{L} \cong \operatorname{Sym}(5)$. Since \widetilde{D} is maximal subgroup of \widetilde{L}, this gives $D / O_{2}(L) \cong \operatorname{Sym}(4)$ and so D has no central composition factor on $O_{2}(D) / O_{2}(L)$. But $\left|Z_{M} / Y\right|=2$ and $Y \leqslant O_{2}(L)$, so $Z_{M} \leqslant O_{2}(L)$ and $\left[Z_{M}, O_{2}(L)\right]=1$. Since $T=O_{2}(D)$ by $\left.4^{\circ}\right)$ and $\left|T / O_{2}(M)\right|=2$ by 3.1.c), a similar argument yields $T \leqslant O_{2}(L) O_{2}(M)$. But then T centralizes Z_{M}, a contradiction.

Lemma 3.20. $C_{\widetilde{L}}(\widetilde{H})=1$.
Proof. Put $N:=C_{L}(\widetilde{H})$. Note that $Z\left(\widetilde{H_{i}}\right)=1$ for all the groups listed in 3.16 dd. Also $\widetilde{H}=\widetilde{H_{1}} \times \ldots \times \widetilde{H_{m}}$. Thus $Z(\widetilde{H})=1$ and so $N \cap H=O_{2}(L)$.

Suppose for a contradiction that $O^{2}(F) \leqslant N$. We claim that $D \cap H T^{*}$ is the unique maximal subgroup of $H T^{*}$ containing T^{*}. So let $T^{*} \leqslant U \leqslant H T^{*}$ and put $E:=O^{2}(U) O_{2}(L)$. Then $U=E T^{*}$ and $E \leqslant H$. Thus $O^{2}(F) \leqslant N \leqslant C_{L}(\widetilde{E})$ and so $F T=O^{2}(F) T^{*}$ normalizes E. Hence $E F T$ is a subgroup of L containing $F T$. Note that $E T F=E T^{*} F=U F$. By the minimal choice of L either $U F \leqslant D$ or $L=U F$. In the first case $U \leqslant D \cap H T^{*}$. In the second case $L=E T^{*} F$ and $E T^{*} \leqslant H T^{*}$, so

$$
H T^{*}=E T^{*}\left(H T^{*} \cap F\right)=E T^{*}\left(O^{2}\left(H T^{*} \cap F\right)\right)=U O^{2}\left(H T^{*} \cap F\right) .
$$

Since $O^{2}\left(H T^{*} \cap F\right) \leqslant O^{2}\left(H T^{*}\right) \cap O^{2}(F) \leqslant H \cap N=O_{2}(L) \leqslant T^{*} \leqslant U$ we conclude that $H T^{*}=U$. This completes the proof of the claim. It follows that $\widetilde{H T^{*}}$ is 2-minimal. Hence C. 13 shows that
$\tilde{H}_{i} \cong S L_{2}\left(2^{k}\right)$ or $\operatorname{Sym}(r), r=2^{s}+1, s \geqslant 2$. The first case contradicts 3.19. In the second case $r \equiv 1(\bmod 4)$, a contradiction to 3.16 d.

Thus $O^{2}(F) \nless N$. Now 3.13 gives $N \cap T_{0}=N \cap T \leqslant T \leqslant T H$. Since $N \cap H=O_{2}(L), N \cap T H$ is 2-group. By $3.18 L=H F T$. Since F normalizes T, this gives $T H \approx L$. So $N \cap T_{0} \leqslant N \cap T H \leqslant$ $O_{2}(N) \leqslant O_{2}(L)$. Thus \tilde{N} is a 2^{\prime}-group. Assume for a contradiction $\tilde{N} \neq 1$. Since $N \cap T H=O_{2}(L)$,

$$
\widetilde{N} \cong N T H / T H \preccurlyeq L / T H=F T H / T H
$$

On the other hand, as $F T / T \cong S p_{2 n-2}(2)$ and \tilde{N} is a non-trivial 2^{\prime}-group, we conclude that $2 n-2=2$. Hence F and N are solvable.

Suppose that $N \nsubseteq D$. Then the minimality of L implies $L=N F T$, and so L is solvable. The only solvable group listed in 3.16 d is $\widetilde{H}_{i} \cong S L_{2}(2)$, a contradiction to 3.19 . Hence $N \leqslant D$. Since $O^{2}(F) \leqslant N, 3.12 \mathrm{~b}$ implies that $N \leqslant O_{2}(L)$.

Lemma 3.21. $m=1, F \leqslant H_{1}=H, L=H T$ and $P \cap H=C_{H}\left(z^{+}\right)$.
Proof. Note that $C_{H}\left(z^{+}\right)$centralizes $\left\langle z^{+}\right\rangle$and $C_{Y_{L}}(H)$. Thus $C_{H}\left(z^{+}\right) / C_{H}(z)$ is a 2-group. Since $T_{0} \cap H$ centralizes z and is a Sylow 2-subgroup of H we conclude that $P \cap H=C_{H}(z)=$ $C_{H}\left(z^{+}\right)$.

Recall from 3.16 that

$$
\widetilde{H}=\widetilde{H_{1}} \times \ldots \widetilde{H_{m}} \quad \text { and } \quad Z_{L}^{+}=V_{1}^{+} \times \ldots V_{m}^{+}
$$

where $V_{i}^{+}=\left[Z_{L}^{+}, \widetilde{H}_{i}\right]$. Let z_{i}^{+}be the projection of z^{+}onto V_{i}^{+}and put $P_{i}:=C_{H_{i}}\left(z_{i}^{+}\right)$. Then $P \cap H=\left\langle P_{i} \mid i=1, \ldots, m\right\rangle$. By $3.19 \widetilde{H}_{i} \not \equiv S L_{2}\left(2^{k}\right)$ and so by 3.16 d
$(*) \quad \widetilde{H}_{i} \cong S L_{l}\left(2^{k}\right), l \geqslant 3, S p_{2 l}\left(2^{k}\right), l \geqslant 2, G_{2}\left(2^{k}\right)$ or $\operatorname{Sym}(l), l>6, k \equiv 2,3 \quad(\bmod 4)$.
Moreover, V_{i}^{+}is a corresponding natural module. In each of these cases we conclude that $\widetilde{P}_{i}=$ $C_{\widetilde{H}_{i}}\left(z_{i}^{+}\right)$is not a 2 -group. On the other hand, $\left[P_{i}, O_{2}(P)\right]$ is a p-group, and so $O_{2}(P)$ normalizes H_{i}. Since $Q_{z} \cap L \leqslant O_{2}(P)$ by Q !, we get that

$$
Q_{z} \cap L \leqslant O_{2}(P) \leqslant N_{L}\left(H_{i}\right), i=1, \ldots, m
$$

By 3.4 k $F=\left\langle\left(Q_{z} \cap F\right)^{F}\right\rangle$ and we conclude that $F \leqslant N_{L}\left(H_{i}\right), i=1, \ldots, m$. The structure of the groups in ($*$) shows that no element of $O_{2}(P)$ induces an outer automorphism on $\widetilde{H_{i}}$. So $Q_{z} \cap F$ and thus also F induces inner automorphisms on \tilde{H}. Hence $F \leqslant C_{L}(\tilde{H}) H$, and 3.20 yields $F \leqslant H$. In particular, $L=H F T=H T$, and by 3.16 e , L and so also T acts transitively on $\left\{H_{1}, \ldots, H_{m}\right\}$.

Let $O_{2}(L) \leqslant F_{i} \leqslant H_{i}$ such that \widetilde{F}_{i} is the projection of \widetilde{F} in \widetilde{H}_{i}, and put $N_{0}:=F_{1} \cdots F_{m}$. Then $F \leqslant N_{0}$ and the minimality of L shows that either $N_{0} \leqslant D$ or $N_{0} T=L$.

Assume first that $N_{0} \leqslant D$. By $3.10(\mathrm{j}) F \bowtie D$ and so $F \lessgtr N_{0}$. Since F^{\prime} is not a 2-group, also $\left[F_{1}, F\right]$ is not a 2-group. As $F / O_{2}(F) \cong S p_{2 n-2}(2)$ and $\left[F_{1}, F\right] \vDash F$, we conclude that $O^{2}(F) \leqslant$ $\left[F_{1}, F\right] \leqslant F_{1} \cap F$. Hence T normalizes H_{1} and the transitivity of T gives $m=1$. So the lemma holds in this case.

Assume now that $N_{0} T=L$. Then $O^{2}(H) \leqslant N_{0}$. Note that none of the groups in $(*)$ is solvable. Hence also H, N_{0} and F are not solvable and thus $2 n \geqslant 6$. By 3.4d $\left[Q_{z} \cap F, F \cap P\right] \not T$. Hence also $\left[Q_{z} \cap P, P\right] \nleftarrow T$ and by the transitivity of $T,\left[Q_{z} \cap P, P_{1}\right] \neq T$. Since by 3.4 a $Q_{z} \nleftarrow L$ and $\left|Q_{z} / Q_{z} \cap F\right|=2$, we have $Q_{z} \cap H \leqslant F$. Thus $\left[Q_{z} \cap P, P_{1}\right] \leqslant Q_{z} \cap H_{1} \leqslant F \cap H_{1}$ and $Q_{z} \cap F \cap H_{1} \leqslant T$. Since $F \cap H_{1}$ is normal in F and $F T / T \cong S p_{2 n-2}(2)$ we get that $O^{2}(F) \leqslant H_{1}$, so T normalizes H_{1} and $m=1$.

Lemma 3.22. $\tilde{H} \nsupseteq \operatorname{Sym}(l), l>6$.
Proof. By 3.16d $l \equiv 2,3(\bmod 4)$, and Z_{L}^{+}is the corresponding natural module. Since $\operatorname{Out}(\operatorname{Sym}(l))=1$, for $l>6, L$ induces inner automorphism on \widetilde{H}. By $3.20 C_{\widetilde{L}}(\widetilde{H})=1$ and so $L=H$.

By 3.10 ff $Z_{0}:=C_{Z_{L}}\left(T_{0}\right)=\langle y, z\rangle$ has order 4. Since $[y, L]=1$ and $[z, H] \neq 1$, this gives $C_{Z_{L}}(H)=\Omega_{1} Z(L)=\langle y\rangle$. Thus either $Z_{L}=\Omega_{1} Z(L) \times\left[Z_{L}, L\right]$ or $\left[Z_{L}, L\right]$ is the even $\operatorname{Sym}(l)-$ permutation module of order 2^{l-1} for \tilde{H}. As $\left|C_{Z_{L}}\left(T_{0}\right)\right|=4$, the action of T_{0} on Z_{L} implies that $l=2+2^{k}$; in particular, $l \equiv 2(\bmod 4)$. Since $l>6$, we have $k \geqslant 3$. Then $\widetilde{P}=C_{\widetilde{L}}\left(z^{+}\right) \cong$ $C_{2} \times \operatorname{Sym}(l-2), \widetilde{A}=O_{2}(\widetilde{P})$ is generated by a transposition and $\left[Z_{L}^{+}, A\right]=\left\langle z^{+}\right\rangle$. In particular $\widetilde{A}=\widetilde{Q_{z} \cap L}$.

Since by 3.4 k $F=\left\langle\left(Q_{z} \cap F\right)^{F}\right\rangle, \widetilde{F}$ is generated by a conjugacy class of transpositions. Thus \widetilde{F} is a naturally embedded symmetric subgroup of $\widetilde{H} \cong \operatorname{Sym}(l)$. As $F / O_{2}(F) \cong S p_{2 n-2}(2)$, we get $\widetilde{F} \cong \operatorname{Sym}(s)$ with $s=3,4$ or 6 , and since $s\left\langle l,\left\langle z^{+F}\right\rangle\right.$ is the natural even permutation module of order 2^{s-1}.

Suppose that s is even. Then, as an F-module, $\left\langle z^{+F}\right\rangle$ is a non-split central extension of a simple module. On the other hand $Y^{+} \cong Y /\langle y\rangle$ is simple for F and by 3.1 c:c $Y=\left\langle z^{F}\right\rangle$, so $\left\langle z^{+F}\right\rangle$ is simple F-module, a contradiction.

Thus $s=3, \widetilde{F} \cong \operatorname{Sym}(3)$ and $2 n=4$. By $3.10 \mathrm{k}, T_{0}=T^{*}$, and so T_{0} normalizes F. Hence T_{0} has an orbit of length 1 on $\{1, \ldots, l\}$. But then $l \not \equiv 2 \bmod 4$, a contradiction.

Lemma 3.23. The following hold:
(a) $L=H, \widetilde{L} \cong S L_{3}(2), S p_{4}(2)$ or $G_{2}(2), Z_{L}^{+}$is a corresponding natural module, $2 n=4$, and $\widetilde{F} / O_{2}(\widetilde{F}) \cong S L_{2}(2)$.
(b) $\bar{M} \cong O_{4}^{\epsilon}(2), Y_{M}$ is a corresponding natural module, $T_{0}=T^{*}$ and $D=F T$.
(c) D and P are the two maximal subgroups of L containing T_{0}. Moreover, $C_{Z_{L}^{+}}\left(T_{0}\right)=$ $C_{Z_{L}^{+}}\left(O_{2}(P)\right)=\Omega_{1} Z\left(T_{0}\right)^{+}=\left\langle z^{+}\right\rangle$and $P=C_{L}\left(z^{+}\right)$, and $C_{Z_{L}^{+}}\left(O_{2}(D)\right)=Y^{+}$is natural $S L_{2}^{L}(2)$-module for D.
(d) $C_{Y_{L}}(H)=C_{Y_{L}}\left(O^{2}(L)\right)=\langle y\rangle=C_{Y_{L}}\left(O^{2}(F)\right)$.
(e) Either $Z_{L}=Y_{L}$ or $\widetilde{L} \cong S p_{4}(2)$ and $\left|Y_{L} / Z_{L}\right|=2$.

Proof. (a) and ba : By $3.21 L=H T, F \leqslant H$ and $m=1$. By $3.19 \tilde{L} \nsupseteq S L_{2}\left(2^{k}\right)$ and by 3.22 $\widetilde{L} \not \equiv \operatorname{Sym}(l), l>6$. Thus, 3.16 shows that

$$
\begin{equation*}
\widetilde{H} \cong S L_{l}\left(2^{k}\right), l \geqslant 3, \quad S p_{2 l}\left(2^{k}\right), l \geqslant 2, \quad \text { or } \quad G_{2}\left(2^{k}\right) \tag{*}
\end{equation*}
$$

and Z_{L}^{+}is a corresponding natural module. This implies that $\widetilde{J(T)} \leqslant \widetilde{H}$ and that no element of \widetilde{L} induces a graph automorphism on \widetilde{H}. Moreover, by 3.14 bither $\widetilde{J(T)} \neq 1$ or $(2 n, \epsilon)=(4,+)$.

Suppose that $\widetilde{J(T)} \neq 1$, and choose a 2-subgroup E of H maximal with $F T \leqslant N_{L}(E)$ and $J(T) \leqslant E$. Then $E=O_{2}\left(N_{H}(E)\right)$ and so by GLS3, 3.1.5] (a corollary of the Borel-Tits Theorem) $\widetilde{D_{0}}:=N_{\widetilde{H}}(\widetilde{E})$ is a proper Lie-parabolic subgroup of \widetilde{H} normalized by $F T$. Observe that $F \leqslant$ $F T \cap H \leqslant N_{H}(E)$, so $\widetilde{F} \leqslant \widetilde{F T \cap H} \leqslant \widetilde{D_{0}}$.

Suppose that $(2 n, \epsilon)=(4,+)$, then by $3.10 \mathrm{kp}, T^{*} \in \operatorname{Syl}_{2}(L)$ and so $\widetilde{D_{0}}:=N_{\widetilde{H}}(\widetilde{F T \cap H})$ is a proper Lie-parabolic subgroup of \tilde{H} normalized by $F T$. Moreover, $\widetilde{F} \leqslant \widetilde{F T \cap H} \leqslant \widetilde{D_{0}}$.

We have shown that in both cases $\widetilde{D_{0}}$ is a proper $F T$-invariant Lie-parabolic subgroup of H with $\widetilde{F} \leqslant \widetilde{D_{0}}$. Let $\widetilde{T}_{2} \in \operatorname{Syl}_{2}\left(\widetilde{T} \widetilde{D_{0}}\right)$ with $\widetilde{T} \leqslant \widetilde{T}_{2}$. Then $\widetilde{T}_{2} \cap \widetilde{H}$ is a Sylow 2 -subgroup of \widetilde{H}. Let Δ be the set of Lie-parabolic subgroups of \widetilde{H} containing $\widetilde{T}_{2} \cap \widetilde{H}$. Then T acts on Δ and since no element of L induces a graph automorphism on \tilde{H}, T acts trivially on Δ. We conclude that $F T$ normalizes all Lie-parabolic subgroups of \widetilde{H} containing $\widetilde{D_{0}}$. Thus, by the minimal choice of $L, \widetilde{D_{0}}$ is a maximal Lie-parabolic subgroup of \widetilde{H} and $\widetilde{D_{0}}=\widetilde{H} \cap \widetilde{D}$. In particular, $O_{2}\left(\widetilde{D_{0}}\right) \neq 1$ and by Smith's Lemma A. $63 C_{Z_{L}^{+}}\left(O_{2}\left(\widetilde{D_{0}}\right)\right)$ is a simple $\widetilde{D_{0}}$-module.

Since $T \leqslant D \leqslant L=H T$ we have $\widetilde{D}=(\widetilde{H} \cap \widetilde{D}) \widetilde{T}=\widetilde{D_{0}} \widetilde{T}=\widetilde{D_{0}} C_{\widetilde{D}}(Y)$. By 3.10 ii $Y /\langle y\rangle$ is natural $S p_{2 n-2}(2)$-module for D. Hence $\langle y\rangle=C_{Y}(D)=C_{Y}\left(\widetilde{D_{0}}\right)=C_{Y}(H)$ and Y^{+}is a natural $S p_{2 n-2}(2)$-module for $\widetilde{D_{0}}$. In particular, $1 \neq Y^{+} \leqslant C_{Z_{L}^{+}}\left(O_{2}\left(\widetilde{D_{0}}\right)\right)$. The simplicity of $C_{Z_{L}^{+}}\left(O_{2}\left(\widetilde{D_{0}}\right)\right)$ as a $\widetilde{D_{0}}$-module now shows that $Y^{+}=C_{Z_{L}^{+}}\left(O_{2}\left(\widetilde{D_{0}}\right)\right.$. Thus $\widetilde{D_{0}}$ is a maximal Lie-parabolic subgroup
in \widetilde{H} such that

$$
\begin{equation*}
Y^{+}=C_{Z_{L}^{+}}\left(O_{2}\left(\widetilde{D_{0}}\right)\right) \text { is a natural } S p_{2 n-2}(2) \text {-module for } \widetilde{D_{0}} \tag{**}
\end{equation*}
$$

From the possible isomorphism types for \widetilde{H} and Z_{L}^{+}listed in (*) we conclude that Z_{L}^{+}is a natural $S p_{2}(2)$-module for $\widetilde{D_{0}}$. Thus $2 n-2=2,\left|Y^{+}\right|=4$ and $k=1$. Recall that $C_{\widetilde{L}}(\widetilde{H})=1$. Since $k=1$ and no element of L induces a graph automorphism on \tilde{H} we get $L=H$.

Since $2 n-2=2$ we have $2 n=4$. So $\bar{M} \cong O_{4}^{\epsilon}(2)$. From 3.3(f) we conclude that $Y_{M}=Z_{M}$ and thus Y_{M} is natural $O_{4}^{\epsilon}(2)$-module for M. Also 3.10 k shows that $T^{*}=T_{0}$. So $T_{0}=T^{*} \leqslant F T$ and $F T$ is parabolic subgroup of H. Since $k=1$ this implies that $\widetilde{F T}$ is a Lie-parabolic subgroup of \widetilde{H}. As $\widetilde{F T} / O_{2}(\widetilde{F T}) \cong F T / T \cong S p_{2 n-2}(2) \cong S L_{2}(2), \widetilde{F T}$ has Lie rank 1 . Since $F T$ is contained in a unique maximal subgroup of L , we conclude that \widetilde{L} has Lie-rank two. Thus $\widetilde{L} \cong S L_{3}(2), S p_{4}(2)$ or $G_{2}(2)$ and $F T$ is maximal subgroup of H. Thus $D=F T$ and all parts of a and are proved.
(c): By the choice of L, D is a maximal subgroup of L. By (b) $T_{0}=T^{*} \leqslant F T \leqslant D$. By (a) $2 n=4$ and $H=L$. So $\widetilde{D}=\widetilde{D_{0}}$, and $(* *)$ shows that $C_{Z_{L}+}\left(O_{2}(D)\right)=Y^{+}$is a natural $S L_{2}(2)$-module for D and $T_{0} \leqslant D$. Hence, D satisfies the statements of (c).

By $3.21 P \cap H=C_{H}\left(z^{+}\right)$and since $H=L, P=C_{H}\left(z^{+}\right)$. By Smith's Lemma A.63. $C_{Z_{L}^{+}}\left(O_{2}(\widetilde{P})\right)$ is a simple P-module and so $C_{Z_{l}^{+}}\left(O_{2}(\widetilde{P})\right)=\left\langle z^{+}\right\rangle$. Since $O_{2}(\widetilde{P}) \leqslant \widetilde{T_{0}} \leqslant \widetilde{P}$, this gives $C_{Z_{L}^{+}}\left(T_{0}\right)=$ $\left\langle z^{+}\right\rangle$. By 3.10 d), $\Omega_{1} Z\left(T_{0}\right)=\langle y, z\rangle$ and so $\Omega_{1} Z\left(T_{0}\right)^{+}=\left\langle z^{+}\right\rangle$. Since Z_{L}^{+}is a natural $S L_{3}(2)-, S p_{4}(2)-$ or $G_{2}(2)$-module for L and $P=C_{L}\left(z^{+}\right)$, we conclude that P is a maximal subgroup of L. As L is a group of Lie-type of rank $2, T_{0}$ is contained in exactly two maximal subgroups of L, namely P and D. So (c) is proved.
(d): From (a) we get $H=L, C_{Z_{L}}(H)=C_{Z_{L}}(L) \leqslant \Omega_{1} Z(F)=\langle y\rangle$. We now use $A \leqslant O_{2}(P)$ as chosen in 3.15 By C.9 e , $\left[C_{Y_{L}}\left(O^{2}(L)\right), A\right]=1$. For $\widetilde{L} \cong S p_{4}(2)$ or $G_{2}(2)$, C. 8 c , shows that $A \nleftarrow O^{2}(L) O_{2}(L)$. Thus $L=A O_{2}(L) O^{2}(L)$ and $C_{Y_{L}}\left(O^{2}(L)\right)=C_{Y_{L}}(L)=\langle y\rangle$.

For the equality $C_{Y_{L}}\left(O^{2}(F)\right)=\langle y\rangle$ it suffices to show that $C_{Y_{L}^{+}}(F T)=1$. By C.10 b:b $Y_{L}=Z_{L} C_{Y_{L}}(A)$. We conclude that $\left[Y_{L}, O^{2}(L)\right] \leqslant Z_{L}$, and by (b) $T_{0}=T^{*} \leqslant F T$. Now Gaschütz's Theorem shows that $C_{Y_{L}^{+}}(F T) \leqslant C_{Y_{L}^{+}}\left(T_{0}\right) \leqslant C_{Y_{L}^{+}}(L) Z_{L}^{+}$, see C.17. But $C_{Y_{L}}\left(O^{2}(L)\right)=\langle y\rangle \leqslant Z_{L}$, and so $C_{Y_{L}^{+}}(F T) \leqslant Z_{L}^{+}$. As seen above $C_{Z_{L}^{+}}\left(O_{2}\left(\widetilde{D_{0}}\right)\right)$ is a natural $S p_{2}(2)$-module for $\widetilde{D_{0}}$. Since $\widetilde{F T}=\widetilde{D}=\widetilde{D_{0}}$ we conclude that $C_{Z_{L}^{+}}(F T)=1$.
(e): Suppose that $Y_{L} \neq Z_{L}$. By (d) $C_{Y_{L}}\left(O^{2}(L)\right)=\langle y\rangle \leqslant Z_{L}$ and thus Y_{L} does not split over Z_{L} as an L-module. Since A is an offender on Y_{L}, al and C. 22 give $\left|Y_{L} / Z_{L}\right|=2$ and $\widetilde{L} \cong S L_{3}(2)$ or $S p_{4}(2)$. Moreover, in the $S L_{3}(2)$ case, $\left|\left[Z_{L}^{+}, A\right]\right|=4$, which is a contradiction since $A \leqslant O_{2}(P)$ and $\left[Z_{L}^{+}, O_{2}(P)\right] \mid=2$.

Notation 3.24. We fix $t \in Q_{z} \backslash F$ and set $G_{0}:=\left\langle L, L^{t}\right\rangle$.
Lemma 3.25. The following hold:
(a) $Q_{z}=\langle t\rangle\left(Q_{z} \cap F\right)$ and $t^{2} \in F$.
(b) $Y_{M} \leqslant O_{2}(L)$.
(c) $O_{2}\left(G_{0}\right)=1$, and $L \cap L^{t}=P=P^{t}$.
(d) $Y \nleftarrow Y_{L} \cap Y_{L}^{t}$.

Proof. (a): By 3.4 a) $\left|Q_{z} / C_{Q_{z}}(y)\right|=2$ and by 3.10,b $C_{Q_{z}}(y)=Q_{z} \cap F$. Hence $Q_{z}=$ $\langle t\rangle\left(Q_{z} \cap F\right)$ and $t^{2} \in Q_{z} \cap F \leqslant F$.
(b): By 3.10 (e), $O_{2}(L) \leqslant T$ and thus $Y_{L} \leqslant T$, and by 3.3 g) we have $\left[Y_{M}, T\right]=\langle y\rangle$. Thus $\left[Y_{M}, Y_{L}\right] \leqslant\langle y\rangle$. Since L centralizes y, this gives $\left[\left\langle Y_{M}^{L}\right\rangle, Y_{L}\right] \leqslant\langle y\rangle$, and as Y_{L} is p-reduced, $\left[\left\langle Y_{M}^{L}\right\rangle, Y_{L}\right]=1$. By 3.11 $C_{L}\left(Y_{L}\right)=O_{p}(L)$ and so $Y_{M} \leqslant O_{2}(L)$. Hence b holds.
(c): By 3.10.c) $O_{2}\left(G_{0}\right)=1 \neq O_{2}(L)$. So $G_{0} \neq L$ and $L \neq L^{t}$. By 3.10 b we have $\left[Q_{z}, P\right] \leqslant$ $O_{p}(P)$, and since $t \in Q_{z}$ we get $P=P^{t} \leqslant L \cap L^{t}<L$. As P is a maximal subgroup of L by 3.23 c), this gives $P=L \cap L^{t}$ and (c) is proved.
(d): Note that by 3.23 b $\bar{M} \cong O_{4}^{\epsilon}(2)$ and Y_{M} is a natural $O_{4}^{\epsilon}(2)$-module. Also by 3.4(c) $\overline{F T} \cong C_{2} \times S p_{2}(2)$. It follows that $O^{2}(\bar{F}) \cong S p_{2}(2)^{\prime} \cong C_{3}$ and $C_{Y_{M}}\left(O^{2}(F)\right)$ has order 4. By 3.23dd $C_{Y_{L}}\left(O^{2}(F)\right)=\langle y\rangle$ has order 2. Hence $Y_{M} \leqslant Y_{L}$. Since $Y_{M}=Y Y^{t}$ we get $Y^{t} \$ Y_{L}$ and $Y \not Y_{L}^{t}$.

LEMMA 3.26. (a) $O_{2}(L) O_{2}\left(L^{t}\right)=O_{2}(P)$.
(b) $Z_{L} \cap Y_{L}^{t}=\langle y, z\rangle=Z\left(T_{0}\right)$.
(c) $Y_{L} Y_{M}$ is not normal in L.
(d) $\left[O_{2}(L), O^{2}(L)\right] \neq Y_{L}$.
(e) $Y_{L}=Z_{L}$.

Proof. Put $R:=O_{2}(L) O_{2}\left(L^{t}\right)$. By 3.14 C $R \leqslant P$ and $R \leqslant O_{2}(P)$, and by 3.14 a $J(R) \nLeftarrow$ $O_{2}(L)$. Thus, we can choose $B \in \mathcal{A}_{R}$ with $B \not O_{2}(L)$. By $3.11 C_{L}\left(Z_{L}\right)=O_{2}(L)$ and so $\left[Z_{L}, B\right] \neq 1$. By A.40 B is an offender on Z_{L} and therefore, since $C_{L}\left(Z_{L}\right)=C_{L}\left(Z_{L}^{+}\right), B$ is also an offender on Z_{L}^{+}.

Suppose for the moment that $\widetilde{L} \cong S p_{4}(2) \cong \operatorname{Sym}(6)$. Them Z_{L}^{+}is a natural $\operatorname{Sym}(6)$-module for \widetilde{L}, and since $P=C_{L}\left(z^{+}\right), \widetilde{P}=C_{L}\left(t_{0}\right)$, where t_{0} is the transposition in \widetilde{L} with $\left[Z_{L}^{+}, t_{0}\right]=\left\langle z^{+}\right\rangle$. Note also that t_{0} is the only transposition in $O_{2}(\widetilde{P})$. Part h) of the Best Offender Theorem C. 4 now shows that

$$
\begin{equation*}
\widetilde{B}=\left\langle t_{0}\right\rangle, \quad \widetilde{B}=\left\langle t_{1} t_{2}, t_{0}\right\rangle \quad \text { or } \quad \widetilde{B}=\left\langle t_{1} t_{2}, s_{1} s_{2}, t_{0}\right\rangle \tag{*}
\end{equation*}
$$

where t_{0}, t_{1}, t_{2} are pairwise commuting transpositions and s_{1} and s_{2} are transpositions distinct from t_{1} and t_{2} and moving the same four symbols as $t_{1} t_{2}$.
(a): By 3.25 (b), d), $Y_{M} \leqslant O_{2}(L)$ and $Y \not Y_{L}^{t}$, so $Y_{M} \neq Y_{L}$. By 3.11 $Y_{L}=\Omega_{1} Z\left(O_{2}(L)\right)$ and hence $\left[Y_{M}, O_{2}(L)\right] \neq 1$. Since $O_{2}(L) \leqslant T$ this gives $\left[Y_{M}, O_{2}(L)\right]=\left[Y_{M}, T\right]=\langle y\rangle$. Thus $\left[Y_{M}, R\right]=\left\langle y, y^{t}\right\rangle=\langle y, z\rangle$ and so $R * T$. Since by 3.4 c $T=O_{2}(F T)$ and by 3.23 b $F T=D$, this gives $R \nless O_{2}(D)$.

As $C_{L}\left(Z_{L}\right)=O_{2}(L) \leqslant R$, we get $\widetilde{R} \not \approx O_{2}(\widetilde{D})$, and to prove it suffices to show $O_{2}(\widetilde{P})=\widetilde{R}$. We do this by discussing the cases for \widetilde{L} given in 3.23 . By 3.23 c) \widetilde{P} and \widetilde{D} are the two maximal parabolic subgroups of \widetilde{L} containing $\widetilde{T_{0}}$ and, as seen above, $\widetilde{R} \approx \widetilde{P}$ and $\widetilde{R} \not \approx O_{2}(\widetilde{D})$.

Suppose first that $\widetilde{L} \cong S L_{3}(2)$. Then $O_{2}(\widetilde{P})$ is the unique non-trivial normal subgroup of \widetilde{P}. Since $1 \neq \widetilde{B} \leqslant \widetilde{R} \lessgtr \widetilde{P}$, we get $R=O_{2}(P)$.

Suppose next that $\widetilde{L} \cong G_{2}(q)$. Then by C. $8, \widetilde{B} \preccurlyeq \widetilde{P}$ and $|\widetilde{B}|=8$. It follows that P acts simply on $O_{2}(\widetilde{P}) / \widetilde{B}$. Note that $\widetilde{B} \leqslant O_{2}(\widetilde{D})$. Since $\widetilde{R} \not O_{2}(\widetilde{D})$ and $\widetilde{B} \leqslant \widetilde{R} \leqslant \widetilde{P}$, we conclude that $\widetilde{R}=O_{2}(\widetilde{P})$.

Suppose now that $\widetilde{L} \cong S p_{4}(\underset{\sim}{\sim})$. Choose notation as in $(*)$. Then $t_{0} \in \widetilde{\sim} \underset{\sim}{\sim} \leqslant \widetilde{R}, t_{0} \in O_{2}(\widetilde{D})$ and P acts simply on $O_{2}(\widetilde{P}) /\left\langle t_{0}\right\rangle$. As $\widetilde{R} \neq O_{2}(\widetilde{D})$, we again get that $\widetilde{R}=O_{2}(\widetilde{P})$. Thus a is proved.
(b): By 3.23 c$) C_{Z_{L}^{+}}(R)=C_{Z_{L}^{+}}\left(O_{2}(P)\right)=\left\langle z^{+}\right\rangle$and so $C_{Z_{L}}(R)=\langle y, z\rangle$. Since $R=O_{2}(L) O_{2}\left(L^{t}\right)$ this gives $Z_{L} \cap Y_{L}^{t}=\langle y, z\rangle$, and b is proved.
(c): Assume for a contradiction that $Y_{L} Y_{M}$ is normal in L. By 3.10h $Y \leqslant Y_{M} \cap Z_{L} \leqslant Y_{M} \cap Y_{L}$ and so $\left|Y_{M} / Y_{M} \cap Y_{L}\right| \leqslant 2$. Hence $\left[Y_{M}, P\right] \leqslant Y_{L}$. On the other hand, t normalizes Y_{M} and P, so $\left[Y_{M}, P\right] \leqslant Y_{L} \cap Y_{L}^{t}$. Since $Y \leqslant Z_{L}$, this gives

$$
[Y, P] \leqslant Z_{L} \cap Y_{L}^{t} \stackrel{\sqrt{\mathrm{~b}}}{\overline{=}}\langle y, z\rangle \leqslant Y
$$

Thus P normalizes Y and so by 3.8 b $P \leqslant N_{G}(Y) \leqslant M^{\dagger}$, a contradiction.
(d): Suppose that $\left[O_{2}(L), O^{2}(L)\right] \leqslant Y_{L}$. Since $Y_{M} \leqslant O_{2}(L)$ we get $\left[Y_{M}, O^{2}(L)\right] \leqslant Y_{L}$ and $Y_{M} Y_{L} \leqslant O^{2}(L) F T=L$, which contradicts (c).
(e): According to 3.23 we may assume that $\widetilde{L} \cong S p_{4}(2)$ and Z_{L}^{+}is a natural $S p_{4}(2)$-module for \widetilde{L}. As we have seen already above \widetilde{P} is a point stabilizer of \widetilde{L} on Z_{L}^{+}.

Suppose for a contradiction that $\widetilde{J(R)}=\left\langle t_{0}\right\rangle, t_{0}$ as in $(* *)$. Then $\widetilde{J(R))}=\widetilde{B}$, and it follows that $Z_{0}:=C_{Z_{L}}(J(R))=C_{Z_{L}}(B)$. As $|\widetilde{B}|=2$ and B is an offender on Z_{L}, we have $\left|Z_{L} / Z_{0}\right|=2$. Recall that $Z\left(T_{0}\right)=Z\left(T^{*}\right)=\langle y, z\rangle$. By the action of P on Z_{L}

$$
\begin{gathered}
\left|Z_{0} / \Omega_{1} Z\left(T_{0}\right)\right|=4 \text { and }\left[Z_{0}, O^{2}(P)\right] \Omega_{1} Z\left(T_{0}\right)=Z_{0} . \\
\text { By C.10,f) }\left[\Omega_{1} Z(J(R)),\left\langle J(R)^{L}\right\rangle\right] \leqslant Z_{L} \text { and so }\left[\Omega_{1} Z(J(R)), O^{2}(L)\right] \leqslant Z_{L} . \text { Since } Z_{0}^{t} \leqslant \Omega_{1} Z(J(R)) \\
Z_{0}^{t}=\left[Z_{0}^{t}, O^{2}(P)\right] \Omega_{1} Z\left(T_{0}\right) \leqslant Z_{L}
\end{gathered}
$$

Thus $Z_{0}^{t} \leqslant Y^{t} \cap Z_{L}=\langle y, z\rangle=Z\left(T_{0}\right)$. Hence $Z_{0} \leqslant Z\left(T_{0}\right)$ a contradiction.
Thus $\widetilde{J(R)} \neq\left\langle t_{0}\right\rangle$. Suppose that $Y_{L}^{+} \neq Z_{L}^{+}$. Then Case e:1) or e:2 in C.22 holds, and so \widetilde{B} is generated by transpositions in $\widetilde{L} \cong \operatorname{Sym}(6)$. But then $(* *)$ shows that $\widetilde{B}=\left\langle t_{0}\right\rangle$, so also $\widetilde{J(R)}=\left\langle t_{0}\right\rangle$, a contradiction. Hence (e) is proved.

Lemma 3.27. $Y_{L}^{t} \leqslant O_{2}(L)$.
Proof. Assume for a contradiction that $Y_{L}^{t} \not O_{2}(L)$. Since $t^{2} \in F \leqslant L \cap L^{t}$ we have $L^{t^{2}}=L$ and the situation is symmetric in L and L^{t}. By 3.11, $C_{L}\left(Y_{L}\right)=O_{2}(L)$ and so $\left[Y_{L}^{t}, Y_{L}\right] \neq 1$. Since $\widetilde{Y_{L}^{t}} \leqslant O_{2}(\widetilde{P})$, C.9 9 f$)$ shows that $\widetilde{Y_{L}^{t}}$ is not an over-offender ${ }^{3}$ on Y_{L}, so $\left|Y_{L} / C_{Y_{L}}\left(Y_{L}^{t}\right)\right| \geqslant \mid Y_{L}^{t} / C_{Y_{L}^{t}}\left(Y_{L}\right)$. Since the situation is symmetric in L and L^{t} equality holds in the preceding equation. Hence $\widetilde{Y_{L}^{t}}$ is an offender on Y_{L} contained in $O_{2}(\widetilde{P})$. By $3.11 C_{L}\left(Y_{L}\right)=C_{L}\left(Z_{L}\right)$, and as $\left[Y_{L}^{t}, Y_{L}\right] \neq 1$, we conclude that $\left[Z_{L}^{t}, Y_{L}\right] \neq 1$.

$$
1^{\circ} . \quad O^{2}(L) \leqslant\left\langle Y_{L}^{t L}\right\rangle
$$

Observe that $O^{2}(\widetilde{L})$ is the unique minimal normal subgroup of \widetilde{L} and so $O^{2}(\widetilde{L}) \leqslant\left\langle\widetilde{Y_{L}^{t L}}\right\rangle$. Hence $O^{2}(L) \leqslant\left\langle Y_{L}^{t L}\right\rangle O_{2}(L)$ and 1^{0} follows.
2°. $\quad O_{2}\left(L^{t}\right) \nleftarrow Y_{L}^{t} O_{2}(L)$ and $\widetilde{Y_{L}^{t}} \neq O_{2}(\widetilde{P})$.
Assume that $O_{2}\left(L^{t}\right) \leqslant Y_{L}^{t} O_{2}(L)$. Then $\left[Y_{L}, O_{2}\left(L^{t}\right)\right] \leqslant\left[Y_{L}, Y_{L}^{t}\right] \leqslant Y_{L}^{t}$ and after conjugation with $t,\left[O_{2}(L), Y_{L}^{t}\right] \leqslant Y_{L}$. Since $O^{2}(L) \leqslant\left\langle Y_{L}^{t L}\right\rangle$ by 1°, we conclude that $\left[O_{2}(L), O^{2}(L)\right] \leqslant Y_{L}$, which contradicts 3.26 c . Hence $O_{2}\left(L^{t}\right) \not \leqslant Y_{L}^{t} O_{2}(L)$. Since $O_{2}\left(L^{t}\right) \leqslant O_{2}(P)$ this gives $Y_{L}^{t} O_{2}(L) \neq O_{2}(P)$ and so $\widetilde{Y_{L}^{t}} \neq O_{2}(\widetilde{P})$.
3°. $\quad \widetilde{L} \cong S p_{4}(2)$ and $\left|\widetilde{Y_{L}^{t}}\right|=\left|\widetilde{Z_{L}^{t}}\right|=2$.
Recall that $\widetilde{Y_{L}^{t}}$ is a non-trivial offender on Y_{L} in $O_{2}(\widetilde{P})$ and that P normalizes $\widetilde{Y_{L}^{t}}$ since $P=P^{t}$. Also by 3.23 C), $P=C_{L}\left(z^{+}\right)$.

By 3.23 a Z_{L}^{+}is natural $S L_{3}(2), S p_{4}(2)$ or $G_{2}(2)$-module for L. We treat these three cases one by one.

Suppose that Z_{L}^{+}is a natural $S L_{3}(2)$-module for L. Since $P=C_{L}\left(z^{+}\right)$we conclude that \widetilde{P} acts simply on $O_{2}(\widetilde{P})$ (see for example B.30. But then $\widetilde{Y_{L}^{t}}=O_{2}(\widetilde{P})$, contrary to 2°.

Suppose that Z_{L}^{+}is a natural $S p_{4}(2)$-module of L. Observe that $O_{2}\left(L^{t}\right)$ centralizes $\left[Z_{L}^{+}, Y_{L}^{t}\right]$. By 3.26a we have $O_{2}(P)=O_{2}(L) O_{2}\left(L^{t}\right)$, and by 3.23 d.,$C_{Z_{L}^{+}}\left(O_{2}(P)\right)=\left\langle z^{+}\right\rangle$. It follows that $\left[Z_{L}^{+}, Y_{L}^{t}\right]=\left\langle z^{+}\right\rangle$and so $\left|\widetilde{Y_{L}^{t}}\right|=2=\left|\widetilde{Z_{L}^{t}}\right|$.

Suppose that Z_{L}^{+}is a natural $G_{2}(2)$-module of L. Note that $O_{2}\left(L^{t}\right)$ centralizes Z_{L}^{t}. By the Best Offender Theorem C.4 a, $C_{\widetilde{T_{0}}}\left(\widetilde{Z_{L}^{t}}\right)=\widetilde{Z_{L}^{t}}$ and so $O_{2}\left(L^{t}\right) \leqslant Y_{L}^{t} O_{2}(L)$, a contradiction to 2°.
$4^{\circ} . \quad \Phi\left(O_{2}(L)\right) \cap \Phi\left(O_{2}\left(L^{t}\right)\right)=1$.
By $33^{\circ} \widetilde{L} \cong S p_{4}(2)$ and so $O_{2}(\widetilde{P})$ is elementary abelian. Thus $\Phi\left(O_{2}\left(L^{t}\right)\right) \leqslant O_{2}(L)$ and $\left[\Phi\left(O_{2}\left(L^{t}\right)\right), Y_{L}\right]=1$. By 1° we have $O^{2}\left(L^{t}\right\rangle \leqslant\left\langle Y_{L}^{L^{t}}\right\rangle$, so $\left[\Phi\left(O_{2}\left(L^{t}\right)\right), O^{2}\left(L^{t}\right)\right]=1$. This shows that $\Phi\left(O_{2}(L)\right) \cap \Phi\left(O_{2}\left(L^{t}\right)\right)$ is centralized by $O^{2}\left(L^{t}\right)$ and normalized by t and P. Since $L=O^{2}(L) P$
$3_{\text {for the definition of over-offender see A. } 7 \text {, }}$
we conclude that $\Phi\left(O_{2}(L)\right) \cap \Phi\left(O_{2}\left(L^{t}\right)\right)$ is normalized by $\left\langle L, L^{t}\right\rangle$. By 3.10.c $O_{2}\left(\left\langle L, L^{t}\right\rangle\right)=1$ and, (4) holds.

Put $U:=Z_{L}^{t} \cap O_{2}(L)$ and $X:=C_{O_{2}(L)}(U)$.
5°. $\left|O_{2}(L) / X\right|=4$, and X is elementary abelian.
By $33^{\circ} U$ is a hyperplane of Z_{L}^{t} centralized by Y_{L}. The action of L^{t} on Z_{L}^{t} shows that $O_{2}(P) / C_{O_{2}(P)}(U)$ and $C_{O_{2}(P)}(U) / O_{2}\left(L^{t}\right)$ have order 4 and 2, respectively. By 3.26a) $O_{2}(P)=$ $O_{2}(L) O_{2}\left(L^{t}\right)$ and so

$$
X=Y_{L}\left(X \cap O_{2}\left(L^{t}\right)\right) \text { and }\left|O_{2}(L) / X\right|=4
$$

Moreover,

$$
\Phi(X)=\Phi\left(X \cap O_{2}\left(L^{t}\right)\right) \leqslant \Phi\left(O_{2}(L)\right) \cap \Phi\left(O_{2}\left(L^{t}\right)\right)
$$

Now 4° yields $\Phi(X)=1$.
$6^{\circ} . \quad\left|O_{2}(L) / Y_{L}\right|=2^{4}$ and $\left[O_{2}(L), O^{2}(L)\right] Y_{L}=O_{2}(L)$.
Observe that the smallest \mathbb{F}_{2}-module V for $S p_{4}(2)$ with $\left[V, S p_{4}(2)^{\prime}\right] \neq 1$ has order 2^{4}, while by (5) $\left|O_{2}(L) / X\right|=4$. By 3.26] $\left[O_{2}(L), O^{2}(L)\right] \$ Y_{L}$ and so $\left|\left[O_{2}(L), O^{2}(L)\right] Y_{L} / Y_{L}\right| \geqslant 2^{4}$. Also by 3.11. $Y_{L}=\Omega_{1} Z\left(O_{2}(L)\right)$. Hence it suffices to show that $\left|O_{2}(L) / \Omega_{1} Z\left(O_{2}(L)\right)\right| \leqslant 2^{4}$.

Let $d \in L$ and put $B:=X X^{d}$. Note that by $5^{\circ} X$ is elementary abelian. Thus $X \cap X^{d} \leqslant$ $\Omega_{1} Z(B)$. So

$$
\begin{equation*}
\left|B / \Omega_{1} Z(B)\right| \leqslant\left|B / X \cap X^{d}\right|=\left|X / X \cap X^{d}\right|\left|X^{d} / X \cap X^{d}\right|=\left|X / X \cap X^{d}\right|^{2} \tag{*}
\end{equation*}
$$

Suppose that $4 \leqslant|B / X|$. By (5) $\left|O_{2}(L) / X\right|=4$ and so $|B / X|=4$ and $B=O_{2}(L)$. Since $|B / X|=\left|B / X^{d}\right|=\left|X X^{d} / X^{d}\right|=\left|X / X \cap X^{d}\right|$, also $\left|X / X \cap X^{d}\right|=4$, and

$$
\left|O_{2}(L) / \Omega_{1} Z\left(O_{2}(L)\right)\right|=\left|B / \Omega_{1} Z(B)\right| \stackrel{(*)}{\leqslant}\left|X / X \cap X^{d}\right|^{2}=4^{2}
$$

Thus we may assume that $|B / X|=\left|X / X \cap X^{d}\right| \leqslant 2$ (for all $d \in L$). In particular, $\left|B / \Omega_{1} Z(B)\right| \leqslant 4$ by (*). Suppose that $B \lessgtr L$. Since $\left|O_{2}(L) / B\right| \leqslant\left|O_{2}(L) / X\right| \leqslant 4$ and $\left|B / \Omega_{1} Z(B)\right| \leqslant 4$, it follows that $\left[O_{2}(L), O^{2}(L)\right] \leqslant \Omega_{1} Z(B)$. From $U \leqslant X \leqslant B$, we conclude that $\left[O_{2}(L), O^{2}(P)\right] \leqslant C_{P}(U)$. This contradicts $O_{2}(L) O_{2}\left(L^{t}\right)=O_{2}(P)$ and $\left[O_{2}(P), O^{2}(P)\right] \not C_{P}(U)$.

Thus $X X^{d} \not \ddagger L$ for all $d \in L$. In particular, $X \nleftarrow L$ and $X X^{d} \neq O_{2}(L)$. Moreover, we can choose $d, h \in L$ such that $X \neq X X^{d} \neq X X^{d} X^{h}$. By $5^{\circ}\left|O_{2}(L) / X\right|=4$, so $O_{2}(L)=X X^{d} X^{h}$, $X \cap X^{d} \cap X^{h} \leqslant \Omega_{1} Z\left(O_{2}(L)\right)$ and $\left|X / \Omega_{1} Z\left(O_{2}(L)\right)\right| \leqslant 4$. Thus $\left|O_{2}(L) / \Omega_{1} Z\left(O_{2}(L)\right)\right| \leqslant 2^{4}$ and 6° is proved.

We now are now able to derive a contradiction. By $\left|O_{2}(L) / Y_{L}\right| \leqslant 2^{4}=1+15$. Since the maximal parabolic subgroups of $S p_{4}(2)$ have index 15 , we conclude that L is transitive on the non-trivial elements of $O_{2}(L) / Y_{L}$. Since X is elementary abelian, $O_{2}(L) \backslash Y_{L}$ Hence all cosets of Y_{L} in $O_{2}(L)$ contain involutions. As $Y_{L} \leqslant \Omega_{1} Z\left(O_{2}(L)\right)$ this implies that all non-trivial elements in $O_{2}(L)$ are involutions, so $O_{2}(L)=\Omega_{1} Z\left(O_{2}(L)\right)=Y_{L}$. But this contradicts $\left|O_{2}(L) / Y_{L}\right|=2^{4}$.

3.28. Proof of Theorem \mathbf{C};

Put $R:=O_{2}(L) O_{2}\left(L^{t}\right)$, and let G^{*} be the free amalgamated product of L and L^{t} over R. Let L_{1} and L_{2} be the image of L and L^{t} in G^{*}, respectively, and identify R with its image in G^{*}. An elementary property of free amalgamated products shows that $L_{1} \cap L_{2}=R$. We will now verify that Hypothesis 1 in $\mathbf{P 2}$ is satisfied for G^{*}, L_{1}, L_{2}, R and $p=2$.

Hypothesis 3.29 (Hypothesis $1\left[\mathbf{P 2}\right.$). Let p be a prime and G^{*} be a group generated by two finite subgroups L_{1} and L_{2}. For every $i \in\{1,2\}$ put

$$
R:=L_{1} \cap L_{2}, \quad Z_{i}:=\Omega_{1} Z\left(O_{p}\left(L_{i}\right)\right), \quad Z_{i}^{+}:=Z_{i} / C_{Z_{i}}\left(L_{i}\right), \quad \widetilde{L}_{i}:=L_{i} / O_{p}\left(L_{i}\right)
$$

and suppose that the following hold:
(1) R is a p-group with $C_{L_{i}}\left(Z_{i}\right) \leqslant R$.
(2) $\widetilde{L}_{i} \cong S L_{n_{i}}\left(q_{i}\right), S p_{2 n_{i}}\left(q_{i}\right)$ or $G_{2}\left(q_{i}\right)$, where q_{i} is a power of p and $p=2$ in the last case; and Z_{i}^{+}is a corresponding natural module for \widetilde{L}_{i}.
(3) There exists $S_{i} \in \operatorname{Syl}_{p}\left(L_{i}\right)$ such that $R \preccurlyeq P_{L_{i}}\left(S_{i}\right)$ and either $R=O_{p}\left(P_{L_{i}}\left(S_{i}\right)\right)$ or $\widetilde{L}_{i} \cong$ $G_{2}\left(q_{i}\right)$ and \widetilde{R} is elementary abelian of order q_{i}^{3}. (Here $P_{L_{i}}\left(S_{i}\right):=O^{p^{\prime}}\left(C_{L}\left(\left(\Omega_{1} Z\left(S_{i}\right)\right)\right)\right)$
(4) $Z_{1} Z_{2} \leqslant O_{p}\left(L_{i}\right)$, and $Z_{1} Z_{2}$ is not normal in L_{i}.
(5) No subgroup $U \neq 1$ of R is normal in G^{*}.
(11): By 3.14 c) $\left.R=O_{p}(L) O_{p}(L)^{t}\right) \leqslant P$. In particular, R is a p-group. By $3.11 Y_{L}=\Omega_{1} Z\left(O_{p}(L)\right)$ and by $3.26 Y_{L}=Z_{L}$, so $Z_{L}=\Omega_{1} Z\left(O_{p}(L)\right)$. By $3.11 C_{L}\left(Z_{L}\right)=O_{p}(L) \leqslant R$ and thus $C_{L_{i}}\left(Z_{i}\right) \leqslant R$ and (1) holds.
(22): By 3.23) a $\widetilde{L} \cong S L_{3}(2), S p_{4}(2)$ or $G_{2}(2)$, and Z_{L}^{+}is a corresponding natural module. Thus (2) holds.
(3): Recall that $R \vee P$. By 3.10 g) $P=C_{L}\left(\Omega_{1} Z\left(T_{0}\right)\right)$ and so also $R \curvearrowright P^{*}=O^{2^{\prime}}\left(C_{L}\left(\Omega_{1} Z\left(T_{0}\right)\right)\right.$. By $3.26 O_{p}(L) O_{p}\left(L^{t}\right)=O_{p}(P)$ and so also $R=O_{p}\left(P^{*}\right)$. Thus (3) holds.
(4): By $3.27 Z_{L}^{t} \leqslant O_{p}(L)$ and so also $Z_{L} Z_{L}^{t} \leqslant O_{p}(L)$. By 3.10d. $Z_{L} Z_{L}^{t} \nRightarrow L$, and so (4) is proved.
(5) Let $U \leqslant R$ such that $U \leqslant G^{*}$. Then U is normal in L_{1} and L_{2} and so $U \leqslant O_{2}\left(\left\langle L, L^{t}\right\rangle\right)$. Since $O_{2}\left(\left\langle L, L^{t}\right\rangle\right)=1$ by 3.10 c), this gives $U=1$ and (5) holds.

So indeed Hypothesis 1 holds. According to the Main Theorem in [P2 this implies that $\widetilde{L}_{i} \cong$ $S L_{n_{i}}\left(q_{i}\right)$ and either $p=3$ and $n_{i}=2$ or $q_{i}=2$ and $n_{i}=4$. Since in our case $p=2$ and \widetilde{L}_{i} is one of $S L_{3}(2), S p_{4}(2)$ and $G_{2}(2)$, we finally have reached a contradiction.

The Symmetric Case

Recall from Section 2.1 that an abelian subgroup Y of G is called symmetric in G if

$$
\begin{equation*}
1 \neq\left[Y, Y^{g}\right] \leqslant Y \cap Y^{g} \text { for some } g \in G \tag{*}
\end{equation*}
$$

In this chapter we investigate the action of M on Y when $M \in \mathfrak{M}_{G}(S), Y$ is a p-reduced elementary abelian normal p-subgroup of M, and Y is symmetric in G. Note that for $Y=Y_{M}$ this is the symmetric case as defined in Section 2.1. Allowing Y to be proper subgroup of Y_{M} will turn out to be useful in Chapter 8

It is immediate from $(*)$ that Y is a quadratic offender on Y^{g}, or vice versa. So we are able to apply the General FF-module Theorem C. 2 from Appendix C. But it is still a fairly general situation; for example, the General FF-module Theorem puts no restriction on number of components of $M / C_{M}\left(Y_{M}\right)$. This is one of the points where the existence of a large subgroup comes in handy, it allows us to apply the more restrictive Q!FF-Module Theorem C. 24 .

There is another point in the proof where large subgroups are essential. Assuming for a moment that $F^{*}\left(M / C_{M}(Y)\right)$ is a classical group and Y a corresponding natural module. Then again (*) shows that $Y \cap Y^{g}$ is non-trivial and contains the commutator of a quadratic offender (either on Y or $\left.Y^{g}\right)$. The structure of the natural module in question shows that, with very few exceptions, $\left[Y, Y^{g}\right]$ contains non-trivial elements that are centralized by conjugates of Q in $N_{G}(Y)$ and in $N_{G}\left(Y^{g}\right)$. Then Q ! shows that $N_{G}(Y) \cap N_{G}\left(Y^{g}\right)$ contains these conjugates of Q and so acts non-trivially on Y and Y^{g}.

On the other hand

$$
Y / C_{Y}\left(Y^{g}\right) \cong Y C_{G}\left(Y^{g}\right) / C_{G}\left(Y^{g}\right)
$$

and $N_{G}(Y) \cap N_{G}\left(Y^{g}\right)$ acts on the the left hand side as a subgroup of $N_{G}(Y)$ and on the right hand side as a subgroup of $N_{G}\left(Y^{g}\right)$. So these two actions must be isomorphic. But typically $Y / C_{Y}\left(Y^{g}\right)$ is a "natural" module for $N_{G}(Y) \cap N_{G}\left(Y^{g}\right)$, while $Y C_{G}\left(Y^{g}\right) / C_{G}\left(Y^{g}\right)$ is the "square" of a natural module (cf. B.21). This simple observation poses a further restriction on the possible action of M on Y.

We now state the main result of this chapter.

Theorem D. Let G be finite \mathcal{K}_{p}-group, $S \in \operatorname{Syl}_{p}(G)$, and let $Q \leqslant S$ be a large subgroup of G. Suppose that $M \in \mathfrak{M}_{G}(S)$ and Y is an elementary abelian normal p-subgroup of M such that
(i) $O_{p}\left(M / C_{M}(Y)\right)=1$, and
(ii) Y is symmetric in G.

Then one of the following holds, where q is some power of p and $\bar{M}:=M / C_{M}(Y)$:
(1) $\overline{M^{\circ}} \cong S L_{n}(q), n \geqslant 3$, and Y is a corresponding natural module.
(2) (a) $\overline{M^{\circ}} \cong S p_{2 n}(q), n \geqslant 2$, or $S p_{4}(q)^{\prime}$ (and $q=2$), and $\left[Y, M^{\circ}\right]$ is a corresponding natural module.
(b) If $Y \neq\left[Y, M^{\circ}\right]$, then $p=2$ and $\left|Y /\left[Y, M^{\circ}\right]\right| \leqslant q$.
(c) If $Y \$ Q^{\bullet}$, then $p=2$ and $\left[Y, M^{\circ}\right] \$ Q^{\bullet}$.
(3) There exists a unique \bar{M}-invariant set \mathcal{K} of subgroups of \bar{M} such that Y_{M} is a natural $S L_{2}(q)$-wreath product module for \bar{M} with respect to \mathcal{K}. Moreover,
(a) $\overline{M^{\circ}}=O^{p}(\langle\mathcal{K}\rangle) \bar{Q}$,
(b) Q acts transitively on \mathcal{K},
(c) If $Y=Y_{M}$, then $Y_{M}=Y_{M{ }^{\circ} S}$.
(4) $Y \nless Q^{\bullet}$ and one of the following holds:
(1) $\overline{M^{\circ}} \cong \Omega_{2 n}^{+}(q)$ for $2 n \geqslant 6, \Omega_{2 n}^{-}(q)$ for $p=2$ and $2 n \geqslant 6, \Omega_{2 n}^{-}(q)$ for p odd and $2 n \geqslant 8$, or $\Omega_{2 n+1}(q)$ for p odd and $2 n+1 \geqslant 7$, and Y is a corresponding natural-module.
(2) $\overline{M^{\circ}} \cong S L_{n}(q) /\left\langle(-i d)^{n-1}\right\rangle, n \geqslant 5$, and Y is the exterior square of a corresponding natural module.
(3) $\overline{M^{\circ}} \cong \operatorname{Spin}_{10}^{+}(q)$, and Y is a corresponding half-spin module.
(4) $\overline{M^{\circ}} \cong S L_{n}(q) \circ S L_{m}(q)$, $n, m \geqslant 2, n+m \geqslant 5$, p is odd, and Y is the tensor product of corresponding natural modules.
(5) (a) $\bar{M} \cong O_{2 n}^{\epsilon}(2), \overline{M^{\circ}} \cong \Omega_{2 n}^{\epsilon}(2), 2 n \geqslant 4$ and $(2 n, \epsilon) \neq(4,+)^{1}$ and $[Y, M]$ is a corresponding natural module.
(b) If $Y \neq[Y, M]$, then $\bar{M} \cong O_{6}^{+}(2)$ and $|Y /[Y, M]|=2$.
(c) $C_{G}(y) \not M^{\dagger}$ for every non-singular element $y \in[Y, M]$.
(d) If $Y=Y_{M}$, then $C_{G}(y)$ is not of characteristic 2 for every non-singular element $y \in[Y, M]$.

Table 1 lists examples for Y, M and G fulfilling the hypothesis of Theorem D .
Table 1. Examples for Theorem D

	Case	[Y, M°] for M°	c	Remarks	examples
	1	nat $S L_{n}(q)$		p odd	$L_{n+1}(q) \Phi_{2}$
	1	nat $S L_{n}(q)$	1	$n=7,8$	$E_{n}(q)$
	1	nat $S L_{3}(2)$	1	-	$G_{2}(3), \mathrm{HS}(.2), \mathrm{Ru}, \mathrm{HN}$
	1	nat $S L_{3}(3)$	1	-	$F i_{22,23,24}^{\prime}, F_{4}(2),{ }^{2} E_{6}(2), \mathrm{BM}$
	1	nat $S L_{3}(5)$	1	-	Ly, BM, M
	1	nat $S L_{5}(2)$	1	-	Th, BM
	2	nat $S p_{8}(2)$	$\leqslant 2$	-	BM
	3	nat $S L_{2}(q)$	1	-	$L_{3}(q), G_{2}(q) p \neq 3, D_{4}(q) \Phi_{3} p=3,{ }^{3} D_{4}(q)$
	3	nat $S L_{2}(2)$	1	-	$G_{2}(2)^{\prime}, J_{2}, J_{3}, \Omega_{6}^{-}(3) \cdot X, \Omega_{8}^{+}(3) \cdot X$
	3	nat $S L_{2}(3)$	1	-	Mat ${ }_{12} \cdot 2,{ }^{2} F_{4}(2)^{\prime}$,
	3	nat $S L_{2}(5)$	1	-	Ru, HN, Th
	3	nat $S L_{2}(7)$	1	-	O'N, M
	3	nat $S L_{2}(13)$	1	-	M
	4:1	nat $\Omega_{7}(q)$	1	p odd	$F_{4}(q)$
	4:1	nat $\Omega_{6}^{-}(q)$	1	-	${ }^{2} E_{6}(q)$
	$4: 1$	nat $\Omega_{8}^{+}(q)$	1	-	$E_{6}(q) \Phi_{2}$
	4:1	nat $\Omega_{14}^{+}(q)$	1	-	$E_{8}(q)$
	4:1	nat $\Omega_{6}^{+}(2)$	1	-	$P \Omega_{8}^{+}(3) .3(.2)$
	4:1	nat $\Omega_{10}^{+}(2)$	1	-	M
	14:1, 4:2	Λ^{2} (nat) $S L_{n}(q), n \geqslant 3$	1	$p=2$	$O_{2 n+2}^{+}(q)$
	$4: 3$	half-spin $\operatorname{Spin}_{10}^{+}(q)$	1	p odd	$E_{6}(q) \Phi_{2}$
	4:4	nat $S L_{t_{1}}(q) \otimes S L_{t_{2}}(q)$	1	p odd	$L_{t_{1}+t_{2}}(q) \Phi_{2}, t_{1} \neq t_{2}$

Here $c:=\left|Y_{M} /\left[Y_{M}, M^{\circ}\right]\right|$ and Φ_{i} denotes a group of graph automorphisms of order i. In the example $G=K . X$ with $K=\Omega_{6}^{-}(3)$ or $P \Omega_{8}^{+}(3), X$ is a subgroup of $O u t(K)$ such that X acts transitively on $\mathcal{P}_{N_{K}(Q)}(K \cap S)$. Moreover, * indicates that (char $\left.Y_{M}\right)$ fails in G.

4.1. The Proof of Theorem D

In this section we assume the hypothesis of Theorem D and use the notation given there. We will prove this theorem in a sequence of lemmas.

[^6]Lemma 4.1. $Y \leqslant Y_{M}$ and $N_{G}(Y)=M^{\dagger}$.
Proof. By hypothesis, $O_{p}\left(M / C_{M}(Y)\right)=1$ and so Y is p-reduced for M. Hence $Y \leqslant Y_{M}$ and so $M^{\dagger}=M C_{G}\left(Y_{M}\right) \leqslant N_{G}(Y)$. As $Y \approx M, 2.2$ c) gives $N_{G}(Y) \leqslant M^{\dagger}$, and 4.1 is proved.

Lemma 4.2. There exists $u \in G$ such that $Y Y^{u} \leqslant S \cap S^{u}$ and $\left[Y, Y^{u}\right] \neq 1$.
Proof. As Y is symmetric in G, there exists $u^{\prime} \in G$ such that $1 \neq\left[Y^{u^{\prime}}, Y\right] \leqslant Y^{u^{\prime}} \cap Y$, so $Y^{u^{\prime}} \leqslant N_{G}(Y)=M^{\dagger}$ and $Y \leqslant N_{G}\left(Y^{u^{\prime}}\right) \leqslant M^{\dagger u^{\prime}}$.

Since S is a Sylow p-subgroup of M^{\dagger} and $S^{u^{\prime}}$ is a Sylow p-subgroup of $M^{\dagger u^{\prime}}$, we can choose $m \in M^{\dagger}$ and $m^{\prime} \in M^{\dagger u^{\prime}}$ such that

$$
Y^{u^{\prime}} \leqslant S^{m} \quad \text { and } \quad Y \leqslant S^{u^{\prime} m^{\prime}}
$$

Set $u:=u^{\prime} m^{\prime} m^{-1}$. Then $Y^{m^{-1}}=Y, Y^{u^{\prime} m^{\prime}}=Y^{u^{\prime}}, Y^{u}=Y^{u^{\prime} m^{\prime} m^{-1}}=Y^{u^{\prime} m^{-1}}$, and so

$$
\left[Y, Y^{u}\right]=\left[Y^{m^{-1}}, Y^{u^{\prime} m^{-1}}\right]=\left[Y, Y^{u^{\prime}}\right]^{m^{-1}} \neq 1
$$

and

$$
Y^{u}=Y^{u^{\prime} m^{-1}} \leqslant\left(S^{m}\right)^{m^{-1}}=S \quad \text { and } \quad Y=Y^{m^{-1}} \leqslant\left(S^{u^{\prime} m^{\prime}}\right)^{m^{-1}}=S^{u}
$$

Also $Y \leqslant S$ and $Y^{u} \leqslant S^{u}$ and so $Y Y^{u} \leqslant S \cap S^{u}$.

Notation 4.3. We fix u as in 4.2, Let

$$
M_{1}:=M, \quad S_{1}:=S, \quad Q_{1}:=Q, \quad Q_{1}^{\bullet}:=Q^{\bullet}, \quad Y_{1}:=Y
$$

and

$$
M_{2}:=M^{u}, \quad S_{2}:=S^{u}, \quad Q_{2}:=Q^{u}, \quad Q_{2}^{\bullet}:=\left(Q^{\bullet}\right)^{u}, \quad Y_{2}:=Y^{u}
$$

Note that $Y_{1} Y_{2} \leqslant S_{1} \cap S_{2} \leqslant M_{1} \cap M_{2}$ and $\left[Y_{1}, Y_{2}\right] \neq 1$.
For $i \in\{1,2\}$ we further set $\overline{M_{i}}:=M_{i} / C_{M_{i}}\left(Y_{i}\right), A_{i}:=C_{Y_{i}}\left(Q_{i}\right)$ and $\bar{L}_{i}:=\left[F^{*}\left(\overline{M_{i}}\right), Q_{i}\right]$. Let $\overline{F_{i}}$ be the largest normal subgroup of $F^{*}\left(\overline{M_{i}}\right)$ centralized by $Q_{i} . F_{i}$ and L_{i} are the inverse images of $\overline{L_{i}}$ and $\overline{F_{i}}$ in M_{i}. If $\underline{U_{i}}$ is a subgroup of M_{i}, then $\overline{U_{i}}:=U_{i} C_{M_{i}}\left(Y_{i}\right) / C_{M_{i}}\left(Y_{i}\right)$. (So whether $\overline{U_{i}}$ denotes the image of U_{i} in $\overline{M_{1}}$ or in $\overline{M_{2}}$ is determined by the subscript used to denoted U_{i}).

Lemma 4.4. Y_{1} acts quadratically on Y_{2} and vice versa.
Proof. Since Y_{1} and Y_{2} normalize each other, $\left[Y_{1}, Y_{2}\right] \leqslant Y_{1} \cap Y_{2}$. Hence $\left[Y_{2}, Y_{1}, Y_{i}\right] \leqslant\left[Y_{i}, Y_{i}\right]=$ 1 for $i=1,2$.

Lemma 4.5. (a) $F_{i} \leqslant N_{G}\left(Q_{i}\right)$.
(b) $\overline{L_{i}}$ and $\overline{F_{i}}$ are normal in $F^{*}\left(\overline{M_{i}}\right) \overline{S_{i}}$. In particular, L_{i} and F_{i} are normal in $L_{i} F_{i} S_{i}$.
(c) $\overline{F_{i}}=C_{F *\left(\overline{\left.M_{i}\right)}\right.}\left(L_{i} Q_{i}\right)$. In particular, $\left[\overline{L_{i}}, \overline{F_{i}}\right]=1$.
(d) $\overline{L_{i}}=\left[\overline{L_{i}}, Q_{i}\right]$.
(e) $C_{\overline{M_{i}}}\left(\overline{L_{i} F_{i}}\right)$ is a p^{\prime}-group.
(f) If B is a p-subgroup of $N_{M_{i}}\left(Q_{i}\right)$ with $\left[\overline{L_{i}}, B\right] \leqslant \overline{F_{i}}$, then $\left[\overline{L_{i}}, B\right]=1$.
(g) $\overline{L_{i}} \cap \overline{F_{i}} \leqslant \Phi\left(\overline{L_{i}}\right)$.

Proof. a): Note that $Q_{i} \leqslant O_{p}\left(Q_{i} C_{M_{i}}\left(Y_{i}\right)\right)$ since by Q !, $C_{M_{i}}\left(Y_{i}\right) \leqslant N_{G}\left(Q_{i}\right)$. Since Q is weakly closed (or by 1.52 ap), $N_{G}\left(O_{p}\left(Q_{i} C_{M_{i}}\left(Y_{i}\right)\right)\right) \leqslant N_{G}\left(Q_{i}\right)$. As F_{i} normalizes $O_{p}\left(Q_{i} C_{M_{i}}\left(Y_{i}\right)\right)$, we conclude that $F_{i} \leqslant N_{G}\left(Q_{i}\right)$.
(b): Since $\overline{L_{i}}=\left[F^{*}\left(\overline{M_{i}}\right), Q_{i}\right], \overline{L_{i}} \& \overline{F^{*}\left(M_{i}\right)}$. By definition, $\overline{F_{i}} \& \overline{F^{*}\left(M_{i}\right)}$. As S_{i} normalizes Q_{i}, it also normalizes $\overline{L_{i}}$ and $\overline{F_{i}}$.

The remaining claims follow from 1.17 applied to $\overline{M_{i}}$.

Lemma 4.6. Either Y_{2} centralizes $\overline{L_{1}}$ or $C_{Y_{2}}\left(\overline{L_{1}}\right)=C_{Y_{2}}\left(Y_{1}\right)$.

Proof. Recall from Hypothesis (i) of Theorem D that $O_{p}\left(\overline{M_{1}}\right)=1$. As $\overline{L_{1} F_{1}}$ is subnormal in $\overline{M_{1}}$, this gives $O_{p}\left(\overline{L_{1} F_{1}}\right)=1$. Put $H_{1}:=L_{1} F_{1} Q_{1} Y_{2}$ and $X:=C_{Y_{2}}\left(\overline{L_{1}}\right)$. By 4.5 bb both F_{1} and L_{1} are normal in H_{1}. Since Q_{1} is weakly closed, 1.46 c) gives $H_{1}^{\circ}=\left\langle Q_{1}^{H_{1}}\right\rangle$. By 4.5 a) $F_{i} \leqslant N_{G}\left(Q_{1}\right)$, so $F_{1} Q_{1} Y_{2}$ normalizes $\overline{Q_{1}}$. As $\overline{L_{1}}=\left[\overline{L_{1}}, \overline{Q_{1}}\right]$ by 4.5 d$]$, we get

$$
\overline{H_{1}^{\circ}}=\left\langle\overline{Q_{1}} \overline{\overline{L_{1} F_{1} Q_{1} Y_{2}}}\right\rangle=\left\langle\overline{Q_{1}} \overline{\bar{L}_{1}}\right\rangle=\left[\overline{L_{1}}, \overline{Q_{1}}\right] \overline{Q_{1}}=\overline{L_{1} Q_{1}} .
$$

Also $\left[O_{p}\left(\overline{H_{1}}\right), \overline{L_{1} F_{1}}\right] \leqslant O_{p}\left(\overline{L_{1} F_{1}}\right)=1$. Since X centralizes $\overline{L_{1}}$ and Q_{1} centralizes $\overline{F_{1}}$ we have $\left[X, \overline{Q_{1}}\right] \leqslant C_{\overline{Q_{1}}}\left(\overline{L_{1} F_{1}}\right)$. By 4.5 ep $C_{\overline{M_{1}}}\left(\overline{L_{1} F_{1}}\right)$ is a p^{\prime}-group, whence $\left[X, \overline{Q_{1}}\right]=1$ and $O_{p}\left(\overline{H_{1}}\right)=1$. The first property shows that

$$
\begin{equation*}
X=C_{Y_{2}}\left(\overline{L_{1} Q_{1}}\right)=C_{Y_{2}}\left(\overline{H_{1}^{\circ}}\right) \tag{*}
\end{equation*}
$$

We may assume that Y_{2} does not centralize $\overline{L_{1}}$. Abusing our general convention, let $\overline{Y_{2}}:=$ $Y_{2} C_{M_{1}}\left(Y_{1}\right) / C_{M_{1}}\left(Y_{1}\right)$. Then $\overline{Y_{2}} \neq 1, \overline{L_{1}} \neq 1$ and $\overline{Q_{1}} \neq 1$. We will now show that the hypothesis of A.57, with $\left(Y_{1}, \overline{Q_{1}}, \overline{H_{1}}, \overline{Y_{2}}\right)$ in place of (V, Q, H, Y), is fulfilled.

We already have proved that $O_{p}\left(\overline{H_{1}}\right)=1$. As $\overline{Q_{1}} \neq 1$, this gives that $\overline{Q_{1}} \notin \overline{H_{1}}$. Hence by 1.57 b Y_{1} is a faithful Q !-module for $\overline{H_{1}}$ with respect to $\overline{Q_{1}}$. By $4.4 Y_{2}$ acts quadratically on Y_{1} and so $C_{\overline{Y_{2}}}\left(\left[Y_{1}, \overline{Y_{2}}\right]\right)=\overline{Y_{2}} \neq 1$. Since Y_{2} does not centralize $\overline{L_{1}}$ and $\overline{L_{1}} \leqslant \overline{H_{1}^{\circ}}$, we get $\left[\overline{H_{1}^{\circ}}, \overline{Y_{2}}\right] \neq 1$.

We have verified the hypothesis of A.57, and this result gives $C_{\overline{Y_{2}}}\left(\overline{H_{1}^{\circ}}\right)=1$. Thus $C_{Y_{2}}\left(\overline{H_{1}^{\circ}}\right)=$ $C_{Y_{2}}\left(Y_{1}\right)$ and so by $(*) C_{Y_{2}}\left(Y_{1}\right)=X=C_{Y_{2}}\left(\overline{L_{1}}\right)$.

Lemma 4.7. Let $U \leqslant S_{i}$ with $\left[\overline{L_{i}}, U\right]=1$ and $\left[Y_{i}, U\right] \neq 1$. Then $\left[A_{i}, U\right] \neq 1$.
Proof. Put $\bar{U}:=U C_{M_{i}}\left(Y_{i}\right) / C_{M_{i}}\left(Y_{i}\right)$. Since $U \leqslant S_{i}$ and $\left[Y_{i}, U\right] \neq 1, \bar{U}$ is a non-trivial p subgroup of $\overline{M_{i}}$. By 4.5 e] $C_{\overline{M_{i}}}\left(\overline{L_{i} F_{i}}\right)$ is a p^{\prime}-group. Thus $\overline{R_{i}}:=\left[\overline{F_{i}}, \bar{U}\right] \neq 1$ and so $\left[Y_{i}, \overline{R_{i}}\right] \neq 1$. By 4.5 b S_{i} and so also U normalizes F_{i}. So $\overline{R_{i}} \leqslant \overline{F_{i}}$, and we get $\left[\overline{R_{i}}, Q_{i}\right]=1$. Since $\overline{R_{i}} \triangleq \leqslant F^{*}\left(\overline{M_{i}}\right)$ and $O_{\underline{p}}\left(\overline{M_{i}}\right)=1$, we have $\overline{R_{i}}=O^{p}\left(\overline{R_{i}}\right)$. Hence the $P \times Q$-Lemma gives $\left[A_{i}, \overline{R_{i}}\right]=\left[C_{Y_{i}}\left(Q_{i}\right), \overline{R_{i}}\right] \neq 1$. Since $\overline{F_{i}} \leqslant F^{*}\left(\overline{M_{i}}\right)$ we conclude that $\left(\overline{M_{i}}, \overline{F_{i}}, \bar{U}\right)$ satisfy the hypothesis on (H, L, Y) in 1.8 . By 1.8 b,$\left[\overline{F_{i}}, \bar{U}\right]=\left[\overline{F_{i}}, \bar{U}, \bar{U}\right]$. Thus $\overline{R_{i}}=\left[\overline{R_{i}}, \bar{U}\right]$. Together with $\left[A_{i}, \overline{R_{i}}\right] \neq 1$ this implies $\left[A_{i}, U\right] \neq 1$.

Lemma 4.8. $\left[\overline{L_{1}}, Y_{2}\right] \neq 1$ and $\left[\overline{L_{2}}, Y_{1}\right] \neq 1$.
Proof. By symmetry it suffices to show the claim for $\left[\overline{L_{1}}, Y_{2}\right]$. Therefore, we assume by way of contradiction:

$$
1^{\circ} . \quad\left[\overline{L_{1}}, Y_{2}\right]=1
$$

By the choice of $u,\left[Y_{1}, Y_{2}\right] \neq 1$ (see 4.3). So we can apply 4.7 with $U=Y_{2}$ and $i=1$, and conclude that $\left[A_{1}, Y_{2}\right] \neq 1$. Assume that also $\left[\overline{L_{2}}, Y_{1}\right]=1$. Since $A_{1} \leqslant Y_{1}$, also $\left[\overline{L_{2}}, A_{1}\right]=1$. Thus 4.7 applied with $U=A_{1}$ and $i=2$ gives $\left[A_{2}, A_{1}\right] \neq 1$. As $A_{i} \leqslant Z\left(Q_{i}\right)$, this is a contradiction to 2.3 (a). Thus
$2^{\circ} . \quad\left[\overline{L_{2}}, Y_{1}\right] \neq 1$.

Then 4.6 gives

$3^{\circ} . \quad C_{Y_{1}}\left(\overline{L_{2}}\right)=C_{Y_{1}}\left(Y_{2}\right)$.
We now use the Fitting submodule $F_{Y_{1}}\left(\overline{M_{1}}\right)$ defined in Appendix D. By D.6 $F_{Y_{1}}\left(\overline{M_{1}}\right)$ is faithful for \bar{M}, and by D.8 $F_{Y_{1}}\left(\overline{M_{1}}\right)$ is semisimple for M_{1}°. Since $\overline{L_{1}} \sharp \unlhd \overline{M_{1}^{\circ}}, \bar{F}_{Y_{1}}\left(\overline{M_{1}}\right)$ is also semisimple for $\overline{L_{1}}$, and since $\overline{F_{Y_{1}}\left(\overline{M_{1}}\right) \text { is faithful, }\left[F_{Y_{1}}\left(\overline{M_{1}}\right), Y_{2}\right] \neq 1 \text {. Hence there exists a simple } L_{1} \text {-submodule } I_{1}, ~(1)}$ of $F_{Y_{1}}\left(\overline{M_{1}}\right)$ such that $\left[I_{1}, Y_{2}\right] \neq 1$; in particular, by
$4^{\circ} . \quad\left[\overline{L_{2}}, I_{1}\right] \neq 1$.
Next we prove:
5°. Put $I_{2}:=I_{1}^{u}$. Then there exists $J_{2} \in I_{2}^{F^{*}\left(\overline{M_{2}}\right) \overline{Q_{2}}}$ with $\left[J_{2},\left[L_{2}, I_{1}\right]\right] \neq 1$; in particular $\left[J_{2}, I_{1}\right] \neq 1$.

Put $U:=\left\langle I_{2}^{F^{*}\left(\overline{M_{2}}\right) \overline{Q_{2}}}\right\rangle$ and $\bar{F}:=C_{F^{*}\left(\overline{M_{2}}\right)}(U)$, and let F be the inverse image of \bar{F} in M_{2}. Note that $C_{U}\left(Q_{2}\right) \neq 1$ and so by $Q!, F \leqslant N_{G}\left(C_{U}\left(Q_{2}\right)\right) \leqslant N_{G}\left(Q_{2}\right)$. Also \bar{F} is normal in $F^{*}\left(\overline{M_{2}}\right)$. Hence

$$
\left[\bar{F}, \overline{Q_{2}}\right] \leqslant \overline{Q_{2}} \cap \bar{F} \leqslant O_{p}(\bar{F}) \leqslant O_{p}\left(\overline{M_{2}}\right)=1
$$

and thus $\bar{F} \leqslant \overline{F_{2}}$.
Suppose that $\left[\overline{L_{2}}, I_{1}\right] \leqslant \bar{F}$. Then $\left[\overline{L_{2}}, I_{1}\right] \leqslant \overline{F_{2}}$ and 4.5 (f) implies $\left[\overline{L_{2}}, I_{1}\right]=1$, a contradiction to 4°. Hence $\left[\overline{L_{2}}, I_{1}\right] \$ \bar{F}$, that is, $\left[U,\left[\overline{L_{2}}, I_{1}\right]\right] \neq 1$, and 5° holds.

Let J_{2} be as in 55°. Observe that $\left|I_{1}\right|=\left|I_{2}\right|=\left|J_{2}\right|$. Let $x \in J_{2}$ with $\left[I_{1}, x\right] \neq 1$. Thus, $C_{I_{1}}(x)$ is a proper subgroup of I_{1}. By $1^{\circ}\left[\bar{L}_{1}, x\right] \leqslant\left[\overline{L_{1}}, Y_{2}\right]=1$. Hence $C_{I_{1}}(x)$ is a proper L_{1}-submodule of I_{1}. Since I_{1} is a simple L_{1}-module we conclude:
$6^{\circ} . \quad C_{I_{1}}(x)=1$. In particular, $\left|I_{1}\right|=\left|\left[I_{1}, x\right]\right|$.
Suppose that $C_{J_{2}}\left(I_{1}\right) \neq 1$. Let $y \in I_{1}$. Then $1 \neq C_{J_{2}}\left(I_{1}\right) \leqslant J_{2} \cap J_{2}^{y}$. Since J_{2} is a simple L_{2}-module and y normalizes L_{2}, J_{2}^{y} and J_{2}^{y} are simple L_{2}-modules and $J_{2} \cap J_{2}^{y}$ is a non-trivial L_{2} submodule of J_{2} and J_{2}^{y}. Thus $J_{2}=J_{2} \cap J_{2}^{y}=J_{2}^{y}$, and so I_{1} normalizes J_{2}. But then $\left[I_{1}, J_{2}\right]<J_{2}$ and so $\left|\left[I_{1}, x\right]\right|<\left|J_{2}\right|=\left|I_{1}\right|$, a contradiction to 6°. We have proved:
$7^{\circ} . \quad C_{J_{2}}\left(I_{1}\right)=1$.
By $\left[5^{\circ}\left[J_{2},\left[L_{2}, I_{1}\right]\right] \neq 1\right.$, and so there exists $y \in I_{1}$ such that $\left[J_{2},\left[L_{2}, y\right]\right] \neq 1$. Put $W:=J_{2} J_{2}^{y}$. By 4.4 Y_{1} acts quadratically on Y_{2}. So $\left[J_{2}, y\right] \leqslant C_{W}\left(I_{1}\right)$ and $\left[W, I_{1}\right] \leqslant C_{Y_{2}}\left(I_{1}\right)$. By $\left(7^{0}\right) C_{J_{2}}\left(I_{1}\right)=1$, and we conclude that
$8^{\circ} . \quad\left[J_{2}, y\right] \leqslant C_{W}\left(I_{1}\right), J_{2} \cap\left[J_{2}, y\right]=1$ and $J_{2} \cap\left[W, I_{1}\right]=1$.
In particular, $\left[J_{2}, N_{I_{1}}\left(J_{2}\right)\right] \leqslant J_{2} \cap\left[W, I_{1}\right]=1$ and so $N_{I_{1}}\left(J_{2}\right)=C_{I_{1}}\left(J_{2}\right) \leqslant C_{I_{1}}(x)$. By 69 $C_{I_{1}}(x)=1$ and thus
$9^{\circ} . \quad N_{I_{1}}\left(J_{2}\right)=1$.
In particular, $J_{2} \neq J_{2}^{y}$. Since J_{2} and J_{2}^{y} are simple L_{2}-modules, we conclude that $J_{2} \cap J_{2}^{y}=1$. By $8^{\circ}, J_{2} \cap\left[J_{2}, y\right]=1$ and so $W=J_{2} J_{2}^{y}=J_{2}\left[J_{2}, y\right]=J_{2} \times\left[J_{2}, y\right]$. This gives
$10^{\circ} . W=J_{2} \times\left[J_{2}, y\right]=J_{2}^{y} \times\left[J_{2}, y\right]=J_{2} \times J_{2}^{y}$.
Suppose for a contradiction that $\left[J_{2}, y\right]$ is L_{2}-invariant. Then 10° shows that J_{2} and $\left[J_{2}, y\right]$ are both isomorphic to W / J_{2}^{y} as L_{2}-modules. Moreover, y centralizes $\left[J_{2}, y\right]$ and so $\left[L_{2}, y\right]$ centralizes $\left[J_{2}, y\right]$. Hence $\left[L_{2}, y\right]$ also centralizes J_{2}, which contradicts the choice of y. Therefore,
$11^{\circ} . \quad\left[J_{2}, y\right]$ is not L_{2}-invariant.
By $8^{\circ}\left[J_{2}, y\right] \leqslant C_{W}\left(I_{1}\right) \leqslant W \cap W^{y^{\prime}}$ for every $y^{\prime} \in I_{1}$. On the other hand, J_{2} is a simple L_{2}-module and $W \cap W^{y^{\prime}}$ is an L_{2}-submodule. By $10^{\circ} W=J_{2} \times J_{2}^{y}$. Hence every non-trivial L_{2}-submodule of W has order $\left|J_{2}\right|$. Since $\left|W \cap W^{y^{\prime}}\right| \geqslant\left|\left[J_{2}, y\right]\right|=\left|J_{2}\right|$, we conclude that either $W=W \cap W^{y^{\prime}}=W^{y^{\prime}}$ or $W \cap W^{y^{\prime}}=\left[J_{2}, y\right]$. In the latter case, $\left[J_{2}, y\right]$ is L_{2}-invariant, a contradiction to 11°. Thus $W=W^{y^{\prime}}$.

We have shown that I_{1} normalizes W. By $9^{\circ} N_{I_{1}}\left(J_{2}\right)=1$, and so there are $\left|I_{1}\right| I_{1}$-conjugates of J_{2}. Since $J_{2} \cap\left[J_{2}, y\right]=1$ and I_{1} centralizes $\left[J_{2}, y\right]$, each of these conjugates intersects $\left[J_{2}, y\right]$ trivially and is L_{2}-invariant. Since J_{2} is a simple L_{2}-module, the conjugates have pairwise trivial intersection. Note also that $\left|I_{1}\right|=\left|J_{2}\right|$ and by $10^{\circ}|W|=\left|J_{2}\right|\left|J_{2}^{y}\right|=\left|J_{2}\right|^{2}$ and $\left|\left[J_{2}, y\right]=\left|J_{2}\right|\right.$. We conclude that these conjugates together with $\left[\overline{J_{2}}, y\right]$ form a partition of W. Thus, L_{2} also leaves invariant $\left[J_{2}, y\right]$, a contradiction to 11°.

Lemma 4.9. (a) $\left[\overline{M_{1}^{\circ}}, Y_{2}\right] \neq 1$ and $\left[\overline{M_{1}^{\circ}}, Y_{1}^{u^{-1}}\right] \neq 1$, in particular $\overline{M^{\circ}} \neq 1$.
(b) Y_{i} is a faithful Q !-module for $\overline{M_{i}}$ with respect to $\overline{Q_{i}}$.
(c) Y_{2} or $Y_{1}^{u^{-1}}$ is a non-trivial quadratic offender on Y_{1}.
(d) The hypothesis of the Q!FF-Module Theorem C.24 is fulfilled for $\left(\overline{M_{i}}, Y_{i}, \overline{Q_{i}}\right)$ in place of (H, V, Q).

Proof. (a): Recall from 4.3 that $\overline{L_{i}}=\left[F^{*}\left(\overline{M_{i}}\right), Q_{i}\right]$ and so $\overline{L_{i}} \leqslant \overline{M_{i}^{\circ}}$. By $4.8\left[\overline{L_{1}}, Y_{2}\right] \neq 1$ and $\left[\overline{L_{2}}, Y_{1}\right] \neq 1$ and so also $\left[\overline{M_{2}^{\circ}}, Y_{1}\right] \neq 1$ and $\left[\overline{M_{1}^{\circ}}, Y_{2}\right] \neq 1$. Conjugating the last equation by u^{-1} gives $\left[\overline{M_{1}^{\circ}}, Y_{1}^{u^{-1}}\right] \neq 1$, and so (a) holds.
(b): Since $\overline{M_{i}^{\circ}} \neq 1$ we also have $\overline{Q_{i}} \neq 1$. As $O_{p}\left(\overline{M_{i}}\right)=1$ this implies $Q_{i} \nRightarrow M_{i}$. Hence by 1.57 b Y_{i} is a faithful $Q!$-module for \bar{M}_{i} with respect to $\overline{Q_{i}}$.
(c): By $4.4 Y_{1}$ acts quadratically on Y_{2} and vice versa. If Y_{2} is not an offender on Y_{1}, then $\left|Y_{2} / C_{Y_{2}}\left(Y_{1}\right)\right| \leqslant\left|Y_{1} / C_{Y_{1}}\left(Y_{2}\right)\right|$, and since $Y_{2}=Y_{1}^{u}$, conjugation with u^{-1} gives

$$
\left|Y_{1} / C_{Y_{1}}\left(Y_{1}^{u^{-1}}\right)\right| \leqslant\left|Y_{1}^{u^{-1}} / C_{Y_{1}^{u-1}}\left(Y_{1}\right)\right|
$$

Hence $Y_{1}^{u^{-1}}$ is an offender on Y_{1}.
(d): According to (c) we can choose $Y_{3} \in\left\{Y_{2}, Y_{1}^{u^{-1}}\right\}$ such that Y_{3} is a non-trivial quadratic offender on Y_{1}. By a) $\left[\overline{M_{1}^{\circ}}, Y_{3}\right] \neq 1$. Thus Y_{3} fulfills the condition for Y in the Q!FF-Module Theorem. By (b) Y_{1} is a faithful Q !-module for \bar{M}_{1} with respect to $\overline{Q_{1}}$. Also $O_{p}\left(\overline{M_{1}}\right)=1$ and so the Hypothesis of the Q!FF-Module Theorem is fulfilled.

Lemma 4.10. Suppose that the following hold:
(i) $M^{\circ} / C_{M^{\circ}}(Y) \cong \Omega_{2 n}^{\epsilon}(2), 2 n \geqslant 4$, and $M \nVdash M^{\circ} C_{M}(Y)$.
(ii) $\left[Y, M^{\circ}\right]$ is a natural $\Omega_{2 n}^{\epsilon}(2)$-module for M°.
(iii) $\left[Y_{1}, Y_{2}\right]$ contains a non-singular vector of $\left[Y_{1}, M_{1}^{\circ}\right]$ or $\left[Y_{2}, M_{2}^{\circ}\right]$.

Then Theorem D(5) holds if $(2 n, \epsilon) \neq(4,+)$, and Theorem D(3) holds if $(2 n, \epsilon)=(4,+)$.
Proof. By B.35d d, $N_{A u t\left(\left[Y, M^{\circ}\right]\right)}\left(\overline{M^{\circ}}\right) \cong O_{2 n}^{\epsilon}(2)$. Since $\Omega_{2 n}^{\epsilon}(2)$ has index 2 in $O_{2 n}^{\epsilon}(2)$ and $\bar{M} \neq \overline{M^{\circ}}$, we conclude that $\bar{M} \cong O_{2 n}^{\epsilon}(2)$ and $\left[Y, M^{\circ}\right]$ is a corresponding natural module.

If $Y \neq\left[Y, M^{\circ}\right]$ then C. 22 shows that $\bar{M} \cong O_{6}^{+}(2)$ and $\left|Y /\left[Y, M^{\circ}\right]\right|=2$. In particular, $\left[Y, M^{\circ}\right]=$ $[Y, M]$.

By (iii) and since the setup is symmetric in M_{1} and M_{2}, we may assume that [Y_{1}, Y_{2}] contains a non-singular vector t of $\left[Y_{1}, M_{1}\right]$. As $M_{1}^{\dagger}=M_{1} C_{G}\left(Y_{1}\right)$ fixes the M_{1}-invariant quadratic from on $\left[Y_{1}, M_{1}\right]$, we know that the non-singular elements of $\left[Y_{1} \cdot M_{1}\right]$ are precisely those elements that are not centralized by a Sylow p-subgroup of M_{1}^{\dagger}. In particular, $C_{M_{1}^{\dagger}}(t)$ does not contain a Sylow p-subgroup of M_{1}^{\dagger}. We claim that $C_{G}(t) \not M_{1}^{\dagger}$.

For this suppose first that t is singular in $\left[Y_{2}, M_{2}\right]$. Then $C_{M_{2}}(t)$ contains a Sylow p-subgroup of M_{2} and so also of G. As $C_{M_{1}^{\dagger}}(t)$ does not contain a Sylow p-subgroup of M_{1}^{\dagger}, we conclude that $C_{M_{2}}(t) \nleftarrow C_{M_{1}^{\dagger}}(t)$ and so $C_{G}(t) \nleftarrow M_{1}^{\dagger}$ 。

Suppose next that t is non-singular in [$\left.Y_{2}, M_{2}\right]$. Recall that $M_{2}=M_{1}^{u}$, so as t is non-singular in $\left[Y_{1}, M_{1}\right], t^{u}$ is non-singular in $\left[Y_{2}, M_{2}\right]=\left[Y_{1}, M_{1}\right]^{u}$. Since M_{2} is transitive on the non-singular vectors of $\left[Y_{2}, M_{2}\right]$, there exists $m \in M_{2}$ such that $t^{u m}=t$. Since $Y_{1}^{u m}=Y_{2}^{m}=Y_{2} \neq Y_{1}$ we have $u m \notin M_{1}^{\dagger}$ and so again $C_{G}(t) \nleftarrow M^{\dagger}$.

We proved that $C_{G}(t) \$ M_{1}^{\dagger}$. Since $M_{1}=M$ and M acts transitively on the non-singular vectors of $[Y, M]$, we conclude that $C_{G}(y) \not M^{\dagger}$ for all non-singular $y \in[Y, M]$.

Suppose that $\bar{M} \cong O_{4}^{+}(2)$. Then $\bar{M} \cong S L_{2}(2)$ 亿 C_{2} and Theorem D 3 holds.
Suppose next that $\bar{M} \not \equiv O_{4}^{+}(2)$. By hypothesis $\overline{M^{\circ}} \cong \Omega_{2 n}^{\epsilon}(2)$. Assume in addition that $Y=$ Y_{M}. Then Theorem C shows that $C_{G}(y)$ is not of characteristic 2 for every non-singular element $y \in[Y, M]$. Thus Theorem D5 holds in this case.

By 4.9 d the Hypothesis of the Q!FF-Module Theorem C. 24 is fulfilled for $\left(\overline{M_{i}}, Y_{i}, \overline{Q_{i}}\right)$. In the following we will discuss the various outcomes of the Q!FF-Module Theorem.

Notation 4.11. Let $\{i, j\}:=\{1,2\}$. Put

$$
J_{i}:=J_{M_{i}}\left(Y_{i}\right) \quad \text { and } \quad \overline{R_{i}}:=F^{*}\left(\overline{J_{i}}\right)
$$

Let R_{i} be the inverse image of $\overline{R_{i}}$ in M_{i}. Put

$$
W_{i}:=\left[Y_{i}, R_{i}\right] \quad \text { and } \quad T_{i}:=Y_{j} R_{i} .
$$

Lemma 4.12. Suppose that C.24 1) holds. Then Theorem (B) holds.
Proof. By C.24 1 there exists an $\overline{M_{1}}$-invariant set \mathcal{K} of subgroups of $\overline{M_{1}}$ such that Y_{1} is a natural $S L_{2}(q)$-wreath product module for $\overline{M_{1}}$ with respect to $\mathcal{K}, \overline{M_{1}^{\circ}}=O^{p}(\langle\mathcal{K}\rangle) \overline{Q_{1}}$ and Q_{1} acts transitively on \mathcal{K}. By A.27 this set is unique. By 1.24 f$), Y_{M \circ S} \leqslant Y_{M}$ and since Y_{M} is a simple $M^{\circ} S$-module, $Y_{M}=Y_{M^{\circ} S}$. So Theorem D 3 holds.

Lemma 4.13. Suppose that C.24(2) holds and W_{1} is not a simple R_{1}-module. Then Theorem D (4:4) holds.

Proof. Note that by 4.9 c) $Y_{2}\left(=Y_{1}^{u}\right)$ or $Y_{1}^{u^{-1}}$ is an offender on Y_{1}. Also u^{-1} in place of u fulfills the conclusion of 4.2 . So possibly after replacing u by u^{-1} we may assume that Y_{2} is a offender on Y_{1}. Also $\left[Y_{1}, Y_{2}\right] \neq 1$, and so we can choose a minimal non-trivial offender A on Y_{1} with $A \leqslant Y_{2}$. By A.39 A is a quadratic best offender on Y_{1}, so $A \leqslant J_{1}$.

Recall that $\{i, j\}=\{1,2\}$. For now let I_{i} be any simple R_{i}-submodules of W_{i}. From C.24 2:a, (2:b) we conclude that
1°.
(a) $\overline{R_{i}}$ is quasisimple and $\overline{R_{i}} \leqslant \overline{M_{i}^{\circ}}$.
(b) $C_{Y_{i}}\left(R_{i}\right)=1, W_{i}$ is a semisimple J_{i}-module, and $\overline{M_{i}}$ acts faithfully on W_{i}.

Next we prove:
2°. Let $x \in M_{j}$ with $C_{I_{j}}(x) \neq 1$. Then x normalizes I_{j}.
Note that $1 \neq C_{I_{j}}(x) \leqslant I_{j} \cap I_{j}^{x}$. Since $R_{j} \leqslant M_{j}, I_{j}$ and I_{j}^{x} are simple R_{j}-modules, and so $I_{j}=I_{j} \cap I_{j}^{x}=I_{j}^{x}$.
3. \quad Let $X_{i} \leqslant Y_{i}$. Suppose that $\left[X_{i}, Y_{j}\right] \neq 1$ and X_{i} normalizes all the simple R_{j}-submodules of W_{j}. Then $\left[\overline{R_{j}}, X_{i}\right]=\overline{R_{j}} \neq 1,\left[I_{j}, X_{i}\right] \neq 1 \neq\left[I_{j}, Y_{i}\right]$, and Y_{i} normalizes all simple R_{j}-submodules of W_{j}.

Suppose for a contradiction that $\left[\overline{R_{j}}, X_{i}\right]=1$. Since X_{i} is a p-group and normalizes the simple R_{j}-submodule I_{j}, we conclude that X_{i} centralizes I_{j}. By 1° (b) W_{j} is a semisimple J_{j}-module. Since $R_{j} \& J_{j}, W_{j}$ is also a semisimple R_{j}-module. It follows that X_{i} centralizes W_{j}. As by (10) W_{j} is a faithful $\overline{M_{j}}$-module, we conclude that $\left[X_{i}, Y_{j}\right]=1$, a contradiction to the hypothesis of $\left(3^{\circ}\right)$.

Thus $\left[\overline{R_{j}}, X_{i}\right] \neq 1$. By $\overline{1}$, (a) $\overline{R_{j}}$ is quasisimple, and we conclude that $\left[\overline{R_{j}}, X_{i}\right]=\overline{R_{j}}$. By 11° b $C_{Y_{j}}\left(R_{j}\right)=1$ and so $\left[I_{j}, R_{j}\right] \neq 1$. Together with $\left[\overline{R_{j}}, X_{i}\right]=\overline{R_{j}}$ this gives $\left[I_{j}, X_{i}\right] \neq 1$. Since Y_{i} acts quadratically on Y_{j}, we conclude that $1 \neq\left[I_{j}, X_{i}\right] \leqslant C_{I_{j}}\left(Y_{i}\right)$ and so 2° shows that Y_{j} normalizes I_{j}, and 3 is proved.

Recall from 4.11 that $T_{i}=Y_{j} R_{i}$.
4. $\quad T_{i}$ normalizes all simple R_{i}-submodules of W_{i}. In particular, W_{i} is a faithful semisimple $\overline{T_{i}}$-module and $O_{p}\left(\overline{T_{i}}\right)=1$.

We apply $\sqrt{1^{\circ}}$. Since $\overline{R_{1}}$ is quasisimple, $\overline{R_{1}}$ is a $J_{\overline{M_{1}}}\left(Y_{1}\right)$-component of $\overline{M_{1}}$, and since $C_{Y_{1}}\left(R_{1}\right)=$ 1 and I_{1} is simple, I_{1} is a perfect R_{1}-submodule of Y_{1}. Hence by A.44 J_{1} and so also A normalizes I_{1}. Since I_{1} is any simple R_{1}-submodule of W_{1}, A normalizes every simple R_{1}-submodule of W_{1}. Thus, we can apply $\left(3^{\circ}\right)$ with $X_{2}=A$ and conclude that also Y_{2} normalizes I_{1} and that $\left[I_{1}, Y_{2}\right] \neq 1$. Therefore $T_{2}=Y_{2} R_{1}$ normalizes I_{1}.

In particular, $\left|\left[I_{1}, Y_{2}\right]\right|<\left|I_{1}\right|=\left|I_{2}\right|$. This implies that $C_{I_{2}}(y) \neq 1$ for all $y \in I_{1}$, and 2° shows that I_{1} normalizes I_{2}. Hence, I_{1} normalizes all simple R_{2}-submodules of W_{2}. As $\left[Y_{2}, I_{1}\right] \neq 1$ we can
apply $\sqrt[3]{ }$) with $X_{1}=I_{1}$ and conclude that also Y_{1} normalizes all simple R_{2}-submodules of Y_{2}. So the same holds for $T_{2}=Y_{1} R_{2}$.
$5^{\circ} . \quad C_{Y_{1}}\left(I_{2}\right)=C_{Y_{1}}\left(Y_{2}\right)$ and $C_{Y_{2}}\left(I_{1}\right)=C_{Y_{2}}\left(Y_{1}\right)$; in particular $\left[I_{1}, I_{2}\right] \neq 1$.
By $\left(4{ }^{\circ} X_{i}:=C_{Y_{i}}\left(I_{j}\right)\right.$ normalizes all simple R_{j}-submodules of W_{j}. If $\left[X_{i}, Y_{j}\right] \neq 1$, then (3${ }^{\circ}$ shows that $\left[I_{j}, X_{i}\right] \neq 1$, a contradiction. Thus $\left[X_{i}, Y_{j}\right]=1$ and $C_{Y_{i}}\left(I_{j}\right)=X_{i} \leqslant C_{Y_{i}}\left(Y_{j}\right)$. The other inclusion is obvious.
$6^{\circ} . \quad W_{i}$ is not selfdual as a T_{i}-module.
Suppose that W_{i} is a selfdual T_{i}-module. Since $\left.W_{i} \leqslant Y_{i}, 5^{\circ}\right)$ shows that $C_{W_{i}}\left(I_{j}\right)=C_{W_{i}}\left(Y_{j}\right)$. As W_{i} is selfdual, this gives $\left[W_{i}, I_{j}\right]=\left[W_{i}, Y_{j}\right]$ (cf. B.6.c). By (4) W_{i} normalizes I_{j}, thus $\left[W_{i}, Y_{j}\right]=$ $\left[W_{i}, I_{j}\right] \leqslant I_{j}$. As $\left[Y_{j}, W_{i}\right] \neq 1,3^{\circ}$ gives $\overline{R_{j}}=\left[\overline{R_{j}}, W_{i}\right]$, and we conclude that $W_{j}=\left[Y_{j}, R_{j}\right] \leqslant I_{j}$, so $W_{j}=I_{j}$ is a simple R_{j}-module, a contradiction.

Put $\mathbb{K}_{i}:=\operatorname{End}_{R_{i}}\left(I_{i}\right)$.
7°. $\quad T_{i}$ acts \mathbb{K}_{i}-linearly on I_{i}.
In this paragraph choose $I_{j}=I_{i}^{u}$ if $i=1$ and $I_{j}=I_{i}^{u^{-1}}$ if $i=2$. So $\left|\mathbb{K}_{j}\right|=\left|\mathbb{K}_{i}\right|$. By 4 , and (5) I_{j} normalizes and acts non-trivially on each of the simple R_{i}-submodules of W_{i}. Suppose that \bar{I}_{j} does not act \mathbb{K}_{i}-linearly on I_{i}. Then $p<\left|\mathbb{K}_{i}\right|=\left|\mathbb{K}_{j}\right|$, and 1.22 implies that $\operatorname{dim}_{\mathbb{K}_{i}} I_{i}=1$, a contradiction, since R_{i} is quasisimple (and so perfect) and I_{i} is non-central $\mathbb{K}_{i} R_{i}$-module. Thus I_{j} acts \mathbb{K}_{i}-linearly on I_{i}. As Y_{j} acts quadratically on I_{i}, Y_{j} centralizes the non-trivial \mathbb{K}_{i}-subspace [$\left.I_{i}, I_{j}\right]$ of I_{i}, and so Y_{j} acts \mathbb{K}_{i}-linearly on I_{i}. Since $T_{i}=R_{i} Y_{j}, 7^{\circ}$ follows.
8°. One of the following holds.
(1) (a) $\overline{R_{i}}=\overline{J_{i}} \cap \overline{M_{i}^{\circ}} \cong S L_{n}(q), n \geqslant 3, S p_{2 n}(q), n \geqslant 3, S U_{n}(q), n \geqslant 8$, or $\Omega_{n}^{ \pm}(q), n \geqslant 10$.
(b) W_{i} is the direct sum of at least two isomorphic natural modules for $\overline{R_{1}}$.
(c) $\overline{M_{i}^{\circ}}=\overline{R_{i}} C_{\overline{M_{i}^{\circ}}}\left(\overline{R_{i}}\right)$.
(d) If $Y_{i} \neq W_{i}$, then $\overline{R_{i}} \cong S p_{2 n}(q), p=2$, and $n \geqslant 4$.
(2) $p=2, \overline{J_{i}}=\overline{R_{i}} \cong S L_{4}(q)$, and Y_{i} is the direct sum of two non-isomorphic natural modules for $\overline{R_{i}}$.
We consider the three cases of C.24 2:c).
In Case (1), (80 (1) holds.
In Case (2), $W_{1}=\left[Y_{1}, R_{1}\right]$ is a simple R_{1}-module, contrary to the hypothesis of this lemma.
In Case (3), 8^{8} (2) holds.
9°. $\overline{T_{i}}$ acts faithfully on I_{i}.
By $44^{\circ} O_{p}\left(\overline{T_{i}}\right)=1$, and by $8^{\circ} \overline{R_{i}}$ acts faithfully on I_{i}. As $\overline{T_{i}} / \overline{R_{i}}$ is a p-group, we conclude $C_{\overline{T_{i}}}\left(I_{i}\right) \leqslant O_{p}\left(\overline{T_{i}}\right)=1$.
$10^{\circ} . \quad R_{i}=J_{i}, \overline{J_{i}} \cong S L_{n}(q), n \geqslant 3, W_{i}=Y_{i}, \overline{M^{\circ}}=\overline{J_{i}} C_{\overline{M^{\circ}}}\left(\overline{J_{i}}\right)$, and Y_{i} is the direct sum of m isomorphic natural modules for $\overline{J_{i}}, m \geqslant 2$.

Suppose first that 8° (1) holds and $\overline{R_{i}} \cong S L_{n}(q), n \geqslant 3$. Then C.24 2:a shows that $\overline{J_{i}}=\overline{R_{i}}$, so also $R_{i}=J_{i}$. The remaining assertion in 10° now follows from $8^{\circ} 11$.

Suppose next that $88^{8}(1)$ holds and $\overline{R_{i}} \not \approx S L_{n}(q), n \geqslant 3$. Then $\overline{R_{i}} \cong S p_{2 n}(q), n \geqslant 3, S U_{n}(q)$, $n \geqslant 8$, or $\Omega \frac{ \pm}{n}(q), n \geqslant 10$, and I_{i} is a corresponding natural module. Note that $T_{i}=Y_{j} R_{i}=O^{p^{\prime}}\left(T_{i}\right) R_{i}$. Also I_{i} is a selfdual as an $\mathbb{F}_{p} R_{i}$-module and T_{i} acts \mathbb{K}_{i}-linearly on I_{i}. Thus, B.7 fi shows that there exists a T_{i}-invariant non-degenerate symmetric, symplectic or unitary \mathbb{K}_{i}-form on I_{i}. Hence I_{i} is selfdual as an $\mathbb{F}_{p} T_{i}$-module. Since this holds for any simple R_{i}-submodule I_{i} of W_{i} and W_{i} is a semisimple R_{i}-module, this shows that W_{i} is a selfdual T_{i}-module, a contradiction to 6°.

Suppose now that $88^{\circ}(2)$ holds. Then $W_{i}=I_{i} \oplus I_{i}^{\star}$, where I_{i} and I_{i}^{\star} are non-isomorphic natural $S L_{4}(q)$-modules for $\overline{R_{i}}$. It follows that I_{i}^{\star} is dual to I_{i} as an $\mathbb{F}_{p} R_{i}$-module, and so W_{i} is a selfdual R_{i}-module. By 7° and 9°, $\overline{T_{i}}$ acts faithfully and \mathbb{K}_{i}-linearly on I_{i}. As $\overline{T_{i}} / \overline{R_{i}}$ is a p-group and $G L_{4}(q) / S L_{4}(q)$ is p^{\prime}-group we conclude that $\overline{T_{i}}=\overline{R_{i}}$ and so again W_{i} is a selfdual T_{i}-module, a contradiction.

11 $. \quad Y_{j} \leqslant J_{i}$.
Just as in the previous paragraph, I_{i} acts \mathbb{K}_{i}-linearly on $I_{i}, G L_{n}(q) / S L_{n}(q)$ is a p^{\prime}-group and $\overline{T_{i}} / \overline{R_{i}}$ is a p-group. As there we conclude that $\overline{T_{i}}=\overline{R_{i}}=\overline{J_{i}}$, and 11° is established.

Since Y_{i} is a direct sum of m isomorphic simple J_{i}-modules, $\mathbf{M S 3}, 5.2(\mathrm{~d})$] implies that there exists an S_{i}-invariant simple J_{i}-submodule in Y_{i}. From now on I_{1} and I_{2} denote such S_{i}-invariant submodules with $I_{1}^{u}=I_{2}$.

Let C_{i} be the inverse image of $C_{\overline{M_{i}^{\circ}}}\left(\overline{J_{i}}\right)$ in M_{i}°. By $\sqrt{5}$, $\left[I_{1}, I_{2}\right] \neq 1$. Pick $1 \neq x \in\left[I_{1}, I_{2}\right]$ and put $X_{i}:=\mathbb{K}_{i} x$

We use the following simple facts about the action of $\overline{J_{i}}$ on the natural $S L_{n}(q)$-module I_{i} and the structure of $\overline{J_{i}} \cong S L_{n}(q)$ and $J_{i} C_{i} / C_{i} \cong P S L_{n}(q)$.
(i) $\overline{J_{i}}$ is transitive on I_{i}.
(ii) $O^{p^{\prime}}\left(N_{\overline{J_{i}}}\left(X_{i}\right)\right)=C_{\overline{J_{i}}}(x)$.
(iii) $O_{p}\left(C_{\overline{J_{i}}}(x)\right)$ induces $\operatorname{Hom}_{\mathbb{K}_{i}}\left(I_{i} / X_{i}, X_{i}\right)$ on I_{i}. In particular, $X_{i}=C_{I_{i}}\left(O_{p}\left(C_{\overline{J_{i}}}(x)\right)\right)$ and $X_{i}=\left[I_{i}, O_{p}\left(C_{\overline{J_{i}}}(x)\right)\right]$.
(iv) $O_{p}\left(C_{J_{i}}(x) C_{i} / C_{i}\right)$ is a natural $S L_{n-1}(q)$-module for $C_{J_{i}}(x)$. In particular, since $n-1 \geqslant 2$, $O_{p}\left(C_{J_{i}}(x) C_{i} / C_{i}\right)$ is a non-central simple $C_{J_{i}}(x)$-module.
(v) Let W be an \mathbb{K}_{i}-subspace of I_{i}. Then $O^{p^{\prime}}\left(N_{\overline{J_{i}}}(W) / C_{\overline{J_{i}}}(W)\right) \cong S L_{\mathbb{K}_{i}}(W)$ and $N_{\overline{J_{i}}}(W)$ acts transitively on W.
Note that $C_{I_{i}}\left(Q_{i}\right) \neq 1$. So by (i) there exists $y_{i} \in J_{i}$ with $x \in C_{I_{i}}\left(Q_{i}\right)^{y_{i}} \leqslant Z\left(Q_{i}^{y_{i}}\right)$. By 1.52 (e) $Z(Q)$ is a TI-set, so $Q_{1}^{y_{1}}=Q_{2}^{y_{2}}=: Q_{0}$. By $\sqrt{10^{\circ}}, \overline{M_{i}^{\circ}}=\overline{J_{i} C_{i}}$ and thus $Q_{0} \leqslant J_{i} C_{i}$ and $Q_{0} \leqslant C_{i}$. By $Q!, C_{J_{i}}(x)$ normalizes Q_{0}. Observe that $C_{J_{i}}(x) C_{i}$ contains a Sylow p-subgroup of $J_{i} C_{i}$ and so $Q_{0} \leqslant C_{J_{i}}(x) C_{i}$ and $Q_{0} C_{i} / C_{i}$ is a non-trivial normal p-subgroup of $C_{J_{i}}(x) C_{i} / C_{i}$. Now (iv) implies that

$$
O_{p}\left(C_{J_{i}}(x) C_{i} / C_{i}\right)=Q_{0} C_{i} / C_{i}=\left[Q_{0}, C_{J_{i}}(x)\right] C_{i} / C_{i} \leqslant\left(Q_{0} \cap J_{i}\right) C_{i} / C_{i} \leqslant O_{p}\left(C_{J_{i}}(x) C_{i} / C_{i}\right)
$$

Thus

$$
12^{\circ} . \quad O_{p}\left(C_{J_{i}}(x) C_{i} / C_{i}\right)=Q_{0} C_{i} / C_{i}=\left(Q_{0} \cap J_{i}\right) C_{i} / C_{i}
$$

In particular, $Q_{0} C_{i}=\left(Q_{0} \cap J_{i}\right) C_{i}$ and so $Q_{0}=\left(Q_{0} \cap J_{i}\right)\left(Q_{0} \cap C_{i}\right)$. From $Q_{0}=Q_{i}^{y_{i}} \leqslant J_{i} Q_{i}$ we get that Q_{0} normalizes I_{i}. Since J_{i} centralizes the p-group $\overline{Q_{0} \cap C_{i}}$ and acts simply on I_{i} we conclude that $Q_{0} \cap C_{i}$ centralizes I_{i}. Thus
$13^{\circ} . \quad Q_{0}=\left(Q_{0} \cap J_{i}\right)\left(Q_{0} \cap C_{i}\right)=\left(Q_{0} \cap J_{i}\right) C_{Q_{0}}\left(I_{i}\right) \leqslant N_{M_{i}}\left(I_{i}\right)$.
As $\overline{J_{i}} \cap \overline{C_{i}}$ is a central p^{\prime}-subgroup of $\overline{J_{i}}, 12^{\circ}$ implies
$14^{\circ} . \quad O_{p}\left(C_{\bar{J}_{i}}(x)\right)=\overline{Q_{0} \cap J_{i}}$.
Hence using (iii), we get $X_{i}=C_{I_{i}}\left(O_{p}\left(C_{\bar{J}_{i}}(x)\right)\right)=C_{I_{i}}\left(Q_{0} \cap J_{i}\right)$ and $X_{i}=\left[I_{i}, O_{p}\left(C_{\bar{J}_{i}}(x)\right)\right]=$ $\left[I_{i}, Q_{0} \cap J_{i}\right]$. As by $13^{\circ} Q_{0}=\left(Q_{0} \cap J_{i}\right) C_{Q_{0}}\left(I_{i}\right)$, this gives $X_{i}=C_{I_{i}}\left(Q_{0}\right)$ and $X_{i}=\left[I_{i}, Q_{0}\right]$.

Observe that $\left[I_{1}, I_{2}\right]$ is a \mathbb{K}_{i}-subspace of I_{i}. As $x \in\left[I_{1}, I_{2}\right]$ this gives $X_{i} \leqslant\left[I_{1}, I_{2}\right]$ and so $\left[I_{i}, Q_{0}\right] \leqslant\left[I_{1}, I_{2}\right]$. In particular, Q_{0} normalizes $\left[I_{1}, I_{2}\right]$. Put $H:=N_{G}\left(\left[I_{1}, I_{2}\right]\right)$. Then $H_{i}:=$ $\left.N_{J_{i}}\left(\left[I_{1}, I_{2}\right]\right)\right) Q_{0} \leqslant H$. Since Q_{0} is weakly closed, 1.46 c) gives $H_{i}^{\circ}=\left\langle Q_{0}^{H_{i}^{\circ}}\right\rangle$, and since $\left[I_{i}, Q_{0}\right] \leqslant$ [I_{1}, I_{2}] and H_{i} normalizes both, I_{i} and $\left[I_{1}, I_{2}\right]$, we conclude that $\left[I_{i}, H_{i}^{\circ}\right] \leqslant\left[I_{1}, I_{2}\right]$.

By ve H_{i} acts transitively and so simply on $\left[I_{1}, I_{2}\right]$. Thus $\left[I_{i}, H_{i}^{\circ}\right]=\left[I_{1}, I_{2}\right]$. Moreover, the transitive action and 1.57 C imply $H^{\circ}=H_{i}^{\circ}$. In particular, $\left[I_{i}, H^{\circ}\right]=\left[I_{1}, I_{2}\right]$ and $\left[I_{i}, H^{\circ}, I_{j}\right]=1$. This holds for any $\{i, j\}=\{1,2\}$. So $\left[I_{1}, H^{\circ}, I_{2}\right]=1$ and $\left[I_{2}, H^{\circ}, I_{1}\right]=1$. The Three Subgroups Lemma now gives $\left[I_{1}, I_{2}, H^{\circ}\right]=1$. As $Q_{0} \leqslant H^{\circ}$ and, as seen above, $C_{I_{i}}\left(Q_{0}\right)=X_{i}$, this gives $\left[I_{1}, I_{2}\right]=X_{1}=X_{2}$. We have shown:
$15^{\circ} . \quad X_{i}=\left[I_{1}, I_{2}\right]=\left[I_{i}, Q_{0}\right]=C_{I_{i}}\left(Q_{0}\right)$. In particular, $\left[I_{1}, I_{2}\right]$ is a 1-dimensional \mathbb{K}_{i}-subspace of I_{i} and $\left|\left[I_{1}, I_{2}\right]\right|=q$.

Put $Z_{j}:=\left[I_{i}, Y_{j}\right]$ and $K_{j}:=N_{G}\left(Z_{j}\right)$. We calculate the size of Z_{j} by comparing the action of Y_{j} on I_{i} with the action of I_{i} on Y_{j}. By $11^{\circ} Y_{i} \leqslant J_{j}$ and $Y_{j} \leqslant J_{i}$. Since Y_{i} is a direct sum of m
copies of $I_{j}, 15^{\circ}$) shows that $\left|\left[Y_{j}, I_{i}\right]\right|=\left|\left[I_{1}, I_{2}\right]\right|^{m}=q^{m}$. Since Y_{j} acts \mathbb{K}_{i}-linearly on I_{i}, it follows that Z_{j} is an m-dimensional \mathbb{K}_{i}-subspace of I_{i}. We have proved:
$16^{\circ} . \quad Z_{j}$ is an m-dimensional \mathbb{K}_{i}-subspace of I_{i}.
Assume that $Y_{i} \leqslant Q_{i}^{\boldsymbol{\bullet}}$. Since Q is weakly closed, $Q_{i}^{\boldsymbol{\bullet}}$ and $Q_{0}^{\boldsymbol{\bullet}}$ are conjugate in M_{i}, and as $Y_{i} \leqslant M_{i}$, we get $Y_{i} \leqslant Q_{0}^{\mathbf{0}}$. Thus $Y_{i} \leqslant J_{j} \cap Q_{0}^{\mathbf{\bullet}} \leqslant O_{p}\left(C_{J_{j}}(x)\right)$. Hence (iii) shows that $\left[I_{j}, Y_{i}\right] \leqslant X_{j}$. Thus $Z_{i} \leqslant X_{j}$, a contradiction since $\left|Z_{i}\right|=q^{m}>q=\left|X_{j}\right|$. We have proved:
$17^{\circ} . \quad Y_{i} \$ Q_{i}^{\boldsymbol{\bullet}}$.
By $\left.13^{\circ}\right) Q_{0}$ normalizes I_{i}. As $Q_{0} \leqslant M_{j}, Q_{0}$ normalizes Y_{j} and so also normalizes $Z_{i}=\left[I_{i}, Y_{j}\right]$. Thus $Q_{0} \leqslant K_{j}$.

By $11^{\circ} I_{i} \leqslant Y_{i} \leqslant J_{j} \leqslant C_{M_{j}}\left(\overline{C_{j}}\right)$. So C_{j} normalizes $Z_{j}=\left[I_{i}, Y_{j}\right]$ and $C_{j} \leqslant K_{j}$. Since I_{j} is a simple J_{j}-module, $\left\langle\left[I_{i}, I_{j}\right]^{J_{j}}\right\rangle=I_{j}$. As Y_{j} is a direct sum of simple J_{j}-modules isomorphic to I_{j} we conclude that $\left\langle\left[I_{i}, Y_{j}\right]^{J_{j}}\right\rangle=Y_{j}$. Thus $\left\langle Z_{j}^{J_{j}}\right\rangle=Y_{j}$, and since J_{j} centralizes $\overline{C_{j}}$, we conclude that $C_{\bar{C}_{j}}\left(Z_{j}\right)$ centralizes Y_{j}. We record:

18。 ${ }^{\circ} \quad Q_{0} C_{j} \leqslant K_{j}$ and $\overline{C_{j}}$ acts faithfully on Z_{j}.
By (13จ) $Q_{0}=\left(Q_{0} \cap J_{i}\right) C_{Q_{0}}\left(I_{i}\right)$. Since $Q_{0} \leqslant K_{j}$ and $Z_{j} \leqslant I_{i}$, this gives
$Q_{0}=\left(Q_{0} \cap J_{i}\right) C_{Q_{0}}\left(Z_{j}\right) \quad$ and $\quad Q_{0}=\left(Q_{0} \cap\left(J_{i} \cap K_{j}\right)\right) C_{Q_{0}}\left(Z_{j}\right) \leqslant\left(J_{i} \cap K_{j}\right) C_{M_{i}}\left(Z_{j}\right)$.
By $\left(16^{\circ}\right) Z_{j}$ is an \mathbb{K}_{i}-subspace of I_{i} and so (v) shows $J_{i} \cap K_{j}$ acts transitively on Z_{j}. Hence three applications of 1.57 C) give

19․ $\left\langle Q_{0}^{J_{i} \cap K_{j}}\right\rangle=K_{j}^{\circ}=\left(\left(J_{i} \cap K_{j}\right) Q_{0}\right)^{\circ}=\left(\left(J_{i} \cap K_{j}\right) C_{M_{i}}\left(Z_{j}\right)\right)^{\circ}$.
Put $\widetilde{K}_{j}:=K_{j} / C_{K_{j}}\left(Z_{j}\right)$. By v, Z_{j} is a natural $S L_{m}(q)$-module for $O^{p^{\prime}}\left(J_{i} \cap K_{j}\right)$. By 19°, $K_{j}^{\circ}=\left(\left(J_{i} \cap K_{j}\right) C_{M_{i}}\left(Z_{j}\right)\right)^{\circ}$ and so $\widetilde{K_{j}^{\circ}} \leqslant O^{p^{\prime}}\left(\widetilde{J_{i} \cap K_{j}}\right) \cong S L_{m}(q)$. As $S L_{m}(q)$ has no non-trivial proper normal subgroup generated by p-elements, we conclude that $\widetilde{K_{j}^{\circ}}=O^{p^{\prime}}\left(\widetilde{J_{i} \cap K_{j}}\right)$. Thus
20°. $\quad Z_{j}$ is a natural $S L_{m}(q)$-module for K_{j}°, and K_{j}° acts \mathbb{K}_{i}-linearly on Z_{j}.
By $\left.15^{\circ}\right) Q_{0}$ centralizes $\left[I_{1}, I_{2}\right]=\left[I_{i}, I_{j}\right]$. Since $Z_{j}=\left[I_{i}, Y_{j}\right]$ and Y_{j} is, as an J_{j}-module, the direct sum of copies of I_{j}, we conclude that $Q_{0} \cap J_{j}$ centralizes Z_{j}. By 13°, $Q_{0}=\left(Q_{0} \cap J_{j}\right)\left(Q_{0} \cap C_{j}\right)$ and thus $Q_{0}=\left(Q_{0} \cap C_{j}\right) C_{Q_{0}}\left(Z_{j}\right)$.

By $14^{\circ} \overline{Q_{0} \cap J_{i}}=O_{p}\left(C_{\overline{J_{i}}}(x)\right)$. Hence, by diii), $Q_{0} \cap J_{i}$ induces $\operatorname{Hom}_{\mathbb{K}_{i}}\left(I_{i} / X_{i}, X_{i}\right)$ on I_{i}. As by $15^{\circ} X_{i}=\left[I_{1}, I_{2}\right] \leqslant Z_{j}$ and by $\left.16^{\circ}\right) Z_{j}$ is a \mathbb{K}_{i}-subspace of I_{i}, we conclude that $Q_{0} \cap J_{i}$ induces $\operatorname{Hom}_{\mathbb{K}_{i}}\left(Z_{j} / X_{i}, X_{i}\right)$ on Z_{j}. Since

$$
\left(Q_{0} \cap J_{i}\right) C_{Q_{0}}\left(Z_{j}\right)=Q_{0}=\left(Q_{0} \cap C_{j}\right) C_{Q_{0}}\left(Z_{j}\right)
$$

we infer:
21. ${ }^{\circ} Q_{0} \cap C_{j}$ induces $\operatorname{Hom}_{\mathbb{K}_{i}}\left(Z_{j} / X_{i}, X_{i}\right)$ on Z_{j}.

In this paragraph, $\bar{X}:=X C_{M_{j}}\left(Y_{j}\right) / C_{M_{j}}\left(Y_{j}\right)$ for all $X \leqslant M_{j}$. Define

$$
J_{j}^{\star}:=\left\langle\left(Q_{0} \cap J_{j}\right)^{J_{j}}\right\rangle \quad \text { and } \quad C_{j}^{\star}:=\left\langle\left(Q_{0} \cap C_{j}\right)^{C_{j}}\right\rangle .
$$

Recall from 10°) that $R_{i}=J_{i}$ and $\overline{J_{j}} \cong S L_{n}(q), n \geqslant 3$, and that by $14^{\circ} \overline{Q_{0} \cap J_{j}}=O_{p}\left(C_{\overline{J_{j}}}(x)\right)$. Thus, we have $\overline{J_{j}^{\star}}=\overline{J_{j}}$, and by $\overline{8^{\circ}}$ 1:c,$\overline{M_{j}^{\circ}}=\overline{J_{j} C_{j}}$. Also $\left[\overline{J_{j}}, \overline{C_{j}}\right]=1$, and by $13^{\circ} \overline{Q_{0}}=$ $\left(\overline{Q_{0} \cap J_{j}}\right)\left(\overline{Q_{0} \cap C_{j}}\right)$. It follows that

$$
\overline{M_{j}^{\circ}}=\left\langle\overline{Q_{0}} \overline{M_{j}^{\circ}}\right\rangle=\overline{J_{j}^{\star}} \overline{C_{j}^{\star}}=\overline{J_{j}} \overline{C_{j}^{\star}} \quad \text { and } \quad\left[\overline{J_{j}}, \overline{C_{j}^{\star}}\right]=1 .
$$

In addition, $O_{p}\left(\overline{C_{j}^{\star}}\right) \leqslant O_{p}\left(\overline{C_{j}}\right) \leqslant O_{p}\left(\overline{M_{j}}\right)=1$, and by $18^{\circ} \overline{C_{j}}$ is faithful on Z_{j}.
Recall that $C_{j} \leqslant K_{j}$ and $\widetilde{K_{j}}=K_{j} / C_{K_{j}}\left(Z_{j}\right)$. Hence $C_{j}^{\star} \leqslant K_{j}^{\circ}, \overline{C_{j}^{\star}} \cong \widetilde{C_{j}^{\star}}$ and $O_{p}\left(\widetilde{C_{j}^{\star}}\right)=1$. By $20^{\circ} Z_{j}$ is a natural $S L_{m}(q)$-module for $\widetilde{K_{j}}$ and by $21^{\circ} Q_{0} \cap C_{j}$ induces $H o m_{\mathbb{K}_{i}}\left(Z_{j} / X_{i}, X_{i}\right)$ on Z_{j}. Now [MS3, 7.2] implies that
22°. $\quad \widetilde{C_{j}^{\star}}=\widetilde{K_{j}^{\circ}} \cong S L_{m}(q)$. In particular, Z_{j} a natural $S L_{m}(q)$-module for $\widetilde{C_{j}^{\star}}$.
Since Y_{j} is, as a J_{j}-module, the direct sum of natural $S L_{n}(q)$-modules isomorphic to I_{j} and since $\left[\overline{J_{j}}, \overline{C_{j}^{\star}}\right]=1, Y_{j}$ is, as a module for $\overline{M_{j}^{\circ}}=\overline{J_{j}} \overline{C_{j}^{\star}}$, isomorphic to $I_{j} \otimes_{\mathbb{K}_{j}} U_{j}$ for some $\mathbb{K}_{j} C_{j}^{\star}$-module U_{j} (see for example MS3, Lemma 5.2]).

Since $I_{i} \leqslant J_{j}$ by 11° and $\left[I_{1}, I_{2}\right]$ is 1-dimensional in I_{j} by 15°,

$$
U_{j} \cong\left[I_{1}, I_{2}\right] \otimes U_{j}=\left[I_{j} \otimes U_{j}, I_{i}\right] \cong\left[Y_{j}, I_{i}\right]=Z_{j}
$$

as a C_{j}^{\star}-module. Thus U_{j} is a natural $S L_{m}(q)$-module for C_{j}^{\star}. Hence in order to establish Theorem D 4:4) it remains to prove that p is odd.

By 22° we have $\widetilde{C_{j}^{\star}}=\widetilde{K_{j}^{\circ}}$. Since $C_{j}^{\star} Q_{0} \leqslant K_{j}^{\circ}$ we get $\widetilde{C_{j}^{\star} Q_{0}}=\widetilde{K_{j}^{\circ}}$. Hence 1.52 ch gives
$23^{\circ} . \quad K_{j}^{\circ}=\left(C_{j}^{\star} Q_{0}\right)^{\circ}$.
By $16^{\circ} Z_{2}=\left[I_{1}, Y_{2}\right]$ is an m-dimensional \mathbb{K}_{1}-subspace of I_{1}, so Z_{2}^{u} is an m-dimensional \mathbb{K}_{2}-subspace of $I_{1}^{u}=I_{2}$ with $\left[I_{1}, I_{2}\right]^{u} \leqslant Z_{2}^{u}$. Also $\left[I_{1}, I_{2}\right]^{u}$ and $\left[I_{1}, I_{2}\right]$ are 1-dimensional $\mathbb{K}_{2^{-}}$ subspaces of I_{2} by 15°), and again by $16^{\circ} Z_{1}=\left[I_{2}, Y_{1}\right]$ is an m-dimensional \mathbb{K}_{2}-subspace of I_{2} with $\left[I_{1}, I_{2}\right] \leqslant Z_{2}$. As I_{2} is a natural $S L_{m}(q)$-module for J_{2}, J_{2} is transitive on the pairs of incident 1- and m-dimensional \mathbb{K}_{2}-subspaces of I_{2}. Hence, there exists $v \in J_{2}$ with $Z_{2}^{u v}=Z_{1}$ and $\left[I_{1}, I_{2}\right]^{u v}=\left[I_{1}, I_{2}\right]$. Put $g:=u v$. Then

$$
\left[I_{1}, I_{2}\right]^{g}=\left[I_{1}, I_{2}\right], \quad I_{1}^{g}=I_{2}^{v}=I_{2}, \quad Y_{1}^{g}=Y_{2}^{v}=Y_{2}, \quad Z_{2}^{g}=Z_{1}
$$

and

$$
Z_{1}^{g}=\left[I_{2}^{g}, Y_{1}^{g}\right]=\left[I_{2}^{g}, Y_{2}\right], \quad\left[I_{2}^{g}, I_{2}\right]=\left[I_{2}^{g}, I_{1}^{g}\right]=\left[I_{1}, I_{2}\right]^{g}=\left[I_{1}, I_{2}\right]
$$

Since $I_{2} \leqslant Y_{2} \leqslant J_{1}, I_{2}^{g} \leqslant J_{1}^{g}=J_{2}$. Also $I_{1} \leqslant J_{2}$, and since Y_{2} is the direct sum of copies of the J_{2}-module I_{2}, we conclude from $\left[I_{2}^{g}, I_{2}\right]=\left[I_{1}, I_{2}\right]$ that $\left[I_{2}^{g}, Y_{2}\right]=\left[I_{1}, Y_{2}\right]=Z_{2}$. Thus $Z_{1}^{g}=Z_{2}$ and so g acts non-trivially on the sets $\left\{Z_{1}, Z_{2}\right\}$. Thus g also acts non-trivially on $\left\{K_{1}, K_{2}\right\}$ and $\left\{K_{1}^{\circ}, K_{2}^{\circ}\right\}$. By $23^{\circ} K_{1}^{\circ}=\left(C_{1}^{\star} Q_{0}\right)^{\circ}$ and by $19^{\circ} K_{2}^{\circ}=\left(\left(J_{1} \cap K_{2}\right) Q_{0}\right)^{\circ}$. Thus

$$
\left\{K_{1}^{\circ}, K_{2}^{\circ}\right\}=\left\{\left(C_{1}^{\star} Q_{0}\right)^{\circ},\left(\left(J_{1} \cap K_{2}\right) Q_{0}\right)^{\circ}\right\}
$$

Recall that S_{1} normalizes I_{1} and $1 \neq x \in\left[I_{1}, I_{2}\right]$. Note that the number of pairs $\left(x_{0}, Z_{0}\right)$, where Z_{0} is an m-dimensional \mathbb{K}_{1}-subspaces of I_{1} and $1 \neq x_{0} \in Z_{0}$, is not divisible by p and that J_{1} acts transitively on such pairs. Hence every such pair is normalized by a Sylow p-subgroup of M_{1}. Since Z_{2} is an m-dimensional subspace of I_{1} and $x \in Z_{2}$, we conclude that $N_{M_{1}}\left(Z_{2}\right) \cap C_{M_{1}}(x)$ contains a Sylow p-subgroup S_{0} of M_{1}. Then $S_{0} \leqslant M_{1} \cap K_{2}$ and by Q !, S_{0} normalizes Q_{0}. It follows that S_{0} acts trivially on $\left\{\left(C_{1}^{\star} Q_{0}\right)^{\circ},\left(\left(J_{1} \cap K_{2}\right) Q_{0}\right)^{\circ}\right\}$, that is on $\left\{K_{1}^{\circ}, K_{2}^{\circ}\right\}$. Since S_{0} is a Sylow p-subgroup of G and g acts non-trivially on $\left\{K_{1}^{\circ}, K_{2}^{\circ}\right\}$, this shows $p \neq 2$.

Lemma 4.14. Suppose that C.24(2) holds and W_{1} is a simple R_{1}-module. Then Theorem D holds.

Proof. Since C.24 22 holds and W_{1} is a simple R_{1}-module we are in case 2:c:2 of C.24. Thus 1°.
(a) $\overline{R_{i}}$ is quasisimple, $\overline{R_{i}} \leqslant \overline{M_{i}^{\circ}}$, and either $\overline{J_{i}}=\overline{R_{i}}$ or $p=2$ and $\overline{J_{i}} \cong O_{2 n}^{ \pm}(q), S p_{4}(2)$ or $G_{2}(2)$.
(b) $C_{Y_{i}}\left(R_{i}\right)=1$ and $\overline{M_{i}}$ acts faithfully on W_{i}. In particular, $C_{M_{i}}\left(W_{i}\right)=C_{M_{i}}\left(Y_{i}\right)$.
(c) Either $\overline{M_{i}^{\circ}}=\overline{R_{i}}=\overline{M_{i}^{\circ}} \cap \overline{J_{i}}$ or $\overline{M_{i}^{\circ}} \cong S p_{4}(2), 3 \cdot \operatorname{Sym}(6), S U_{4}(q) \cdot 2\left(\cong O_{6}^{-}(q)\right.$ and W_{i} is the natural $S U_{4}(q)$-module), or $G_{2}(2)$.
(d) One of the cases C.3 (1) - (9), (12) applies to $\left(\overline{J_{i}}, W_{i}\right)$, with $n \geqslant 3$ in case (1), $n \geqslant 2$ in case (2), and $n=6$ in case (12).

Recall that $M_{i \circ}=O^{p}\left(M_{i}^{\circ}\right)$. Next we show:
$2^{\circ} . \quad \overline{R_{i}}=F^{*}\left(\overline{M_{i}^{\circ}}\right)=\overline{M_{i \circ}}$. In particular, $W_{i}=\left[Y_{i}, M_{i \circ}\right]$.

Suppose first that $\overline{R_{i}}=\overline{M_{i}^{\circ}}$. As by 1° (a) $\overline{R_{i}}$ is quasisimple, we conclude that 2° holds.
Suppose next that $\overline{R_{i}} \neq \overline{M_{i}^{\circ}}$. Then by 1° (c), $\overline{M_{i}^{\circ}} \cong S p_{4}(2), 3 \cdot \operatorname{Sym}(6), S U_{4}(q) \cdot 2$ or $G_{2}(2)$. In each case $F^{*}\left(\overline{M_{i}^{\circ}}\right)$ is quasisimple and has index 2 in $\overline{M_{i}^{\circ}}$. Thus $F^{*}\left(\overline{M_{i}^{\circ}}\right)=O^{2}\left(\overline{M_{i}^{\circ}}\right)=\overline{M_{i \circ}}$. As $\overline{R_{i}} \leqslant \overline{M_{i}^{\circ}}$ and $\overline{R_{i}}$ is a quasisimple normal subgroup of $\overline{M_{i}}$ we conclude that $\overline{R_{i}}=F^{*}\left(\overline{M_{i}^{\circ}}\right)$ and again $\left(2^{\circ}\right.$ holds. Hence 2° is proved.

Note that

$$
\left|W_{1} / C_{W_{1}}\left(W_{2}\right)\right| \leqslant\left|W_{2} / C_{W_{2}}\left(W_{1}\right)\right| \quad \text { or } \quad\left|W_{2} / C_{W_{2}}\left(W_{1}\right)\right| \leqslant\left|W_{1} / C_{W_{1}}\left(W_{2}\right)\right|
$$

In the second case, conjugation by u^{-1} shows that $\left|W_{1} / C_{W_{1}}\left(W_{1}^{u^{-1}}\right)\right| \leqslant\left|\left|W_{1}^{u^{-1}} / C_{W_{1}^{u-1}}\left(W_{1}\right)\right|\right.$. Also u^{-1} in place of u fulfills the conclusion of 4.2. So possibly after replacing u by u^{-1}, we may assume W_{2} is an offender in W_{1}.

Put $Z:=\left[W_{1}, W_{2}\right]$. Abusing our general convention, define

$$
\overline{W_{i}}:=W_{i} C_{M_{j}}\left(Y_{j}\right) / C_{M_{j}}\left(Y_{j}\right) \quad\left(\text { and not } \overline{W_{i}}=W_{i} C_{M_{i}}\left(W_{i}\right) / C_{M_{i}}\left(W_{i}\right)\right)
$$

By 10 $C_{M_{i}}\left(Y_{j}\right)=C_{M_{j}}\left(W_{j}\right)$ and so $\overline{W_{i}} \cong C_{W_{i}} / C_{W_{i}}\left(W_{j}\right)$ as an $M_{1} \cap M_{2}$-module.
3°. $\quad W_{2}$ is a non-trivial quadratic offender on W_{1}; in particular $Z \neq 1$.
Recall from 4.4 that Y_{2} acts quadratically on Y_{1} and from 4.3 that $\left[Y_{1}, Y_{2}\right] \neq 1$. In particular W_{2} is a quadratic offender on W_{1}. It remains to prove that W_{1} acts non-trivially on W_{2}.

By 10 (b) $C_{M_{i}}\left(Y_{i}\right)=C_{M_{i}}\left(W_{i}\right)$. For $i=1$ this shows that $\left[Y_{1}, Y_{2}\right] \neq 1$ implies $\left[W_{1}, Y_{2}\right] \neq 1$, and then for $i=2$ that $\left[W_{1}, Y_{2}\right] \neq 1$ implies $\left[W_{1}, W_{2}\right] \neq 1$.

Let $v \in G^{\sharp}$ and suppose that v is centralized by a conjugate Q^{g} of Q in G. Since $C_{G}(Q) \leqslant Q$ we get $v \in Z\left(Q^{g}\right)$. By 1.52 e $Z(Q)$ is a TI-set. Thus Q^{g} is unique determined by v and we define $Q_{v}:=Q^{g}$.

Let \mathcal{V} be the set of all $1 \neq v \in Z$ such that for each $i \in\{1,2\}$ there exists $Q_{v, i} \in Q^{G}$ with $Q_{v, i} \leqslant M_{i}$ and $\left[v, Q_{v, i}\right]=1$. Note that $Q_{v}=Q_{v, 1}=Q_{v, 2} \leqslant M_{1} \cap M_{2}$.

Let $L:=\left\langle Q_{v} \mid v \in \mathcal{V}\right\rangle$. Then $L \leqslant M_{1} \cap M_{2}$.
4°.
(a) $M_{1} \cap M_{2}$ normalizes W_{1}, W_{2} and Z; in particular $L \leqslant N_{M_{i}}(Z)$.
(b) $L=\left(M_{1} \cap M_{2}\right)^{\circ} \leqslant N_{M_{1}}(Z)^{\circ} \cap N_{M_{2}}(Z)^{\circ}$.
(c) Suppose $\mathcal{V}=Z^{\sharp}$. Then $L=N_{M_{1}}(Z)^{\circ}=N_{M_{2}}(Z)^{\circ}$.
(a): $M_{1} \cap M_{2}$ normalizes W_{1} and W_{2}, so also $Z=\left[W_{1}, W_{2}\right]$. Since $L \leqslant M_{1} \cap M_{2}$, a) follows.
(b): As $L \leqslant M_{1} \cap M_{2}$ and L is generated by conjugates of $Q, L \leqslant\left(M_{1} \cap M_{2}\right)^{\circ}$. Let $g \in G$ with $Q^{g} \leqslant M_{1} \cap M_{2}$. Then Q^{g} normalizes Z, and since $Z \neq 1$ by 3°, there exists $1 \neq v \in C_{Z}\left(Q^{g}\right)$. Thus $Q_{v}=Q^{g} \leqslant M_{1} \cap M_{2}$. Hence $v \in \mathcal{V}$ and $Q^{g}=Q_{v} \leqslant L$. Thus $\left(M_{1} \cap M_{2}\right)^{\circ} \leqslant L$ and so $\left(M_{1} \cap M_{2}\right)^{\circ}=L$. As $M_{1} \cap M_{2} \leqslant N_{M_{i}}(Z)$, we have $L=\left(M_{1} \cap M_{2}\right)^{\circ} \leqslant M_{M_{i}}(Z)^{\circ}$.
(c): Suppose that $\mathcal{V}=Z^{\sharp}$ and let $g \in G$ with $Q^{g} \leqslant N_{M_{i}}(Z)$. Again there exists $1 \neq z \in C_{Z}\left(Q^{g}\right)$ and so $z \in \mathcal{V}$ and $Q^{g}=Q_{v} \leqslant L$. Hence $N_{M_{i}}(Z)^{\circ} \leqslant L$ and so $N_{M_{i}}(Z)^{\circ}=L$.
5°. Suppose M_{i} acts transitively on W_{i}. Then $\mathcal{V}=Z^{\sharp}$.
Since M_{i} acts transitively on W_{i} and $C_{W_{i}}\left(Q_{i}\right) \neq 1$ each elements of W_{i} (and so also of Z) is centralized by a conjugate of Q_{i} in M_{i}. Thus $Z^{\sharp}=\mathcal{V}$.
6°. Suppose $1 \neq z \in C_{Z}(L)$ and $K_{i} \leqslant M_{i}$ acts transitively on W_{i}. Then $L=Q_{z}$ and $Z^{\sharp} \subseteq z^{N_{K_{i}}(L)}$.

Let $v \in Z^{\sharp}$. By $55^{\circ}, \mathcal{V}=Z^{\sharp}$ and so $Q_{v} \leqslant L$ and $\left[z, Q_{v}\right]=1$. Thus $Q_{v}=Q_{z}$, and we conclude that $L=Q_{z}$. Since $\overline{K_{i}}$ acts transitively on W_{i}, there exists $k \in K_{i}$ with $z^{k}=v$. Then $Q_{z}^{k}=Q_{v}=Q_{z}$ and $k \in N_{K_{i}}(L)$. Hence, 6° holds.

Let $\{i, j\}:=\{1,2\}$ and put $\mathbb{K}_{i}:=\operatorname{End}_{R_{i}}\left(W_{i}\right)$.
7°. $\quad T_{j}$ acts \mathbb{K}_{j}-linearly on W_{j}. In particular, Z is a \mathbb{K}_{j}-subspace of W_{j}.

Suppose for a contradiction, that W_{i} does not act \mathbb{K}_{j}-linearly on W_{j}. Then $p<\left|\mathbb{K}_{j}\right|=\left|\mathbb{K}_{i}\right|$, and 1.22 shows that $\operatorname{dim}_{\mathbb{K}_{i}} W_{i}=1$, a contradiction. Hence W_{i} acts \mathbb{K}_{j}-linearly on W_{j}. Recall that Y_{i} acts quadratically on V_{j}, so Y_{i} centralizes the non-trivial \mathbb{K}_{i}-subspace $\left[W_{j}, W_{i}\right]$ of W_{j}. Thus Y_{i} and so also $T_{j}=Y_{i} R_{j}$ acts \mathbb{K}_{j}-linearly on W_{j}.

We now discuss the cases of C. 3 listed in (d). Observe that a natural Sym(6)- or $\operatorname{Alt}(6)$ module (Case 12) of C. 3 for $n=6$), is also a natural $S p_{4}(2)$ - or $S p_{4}(2)^{\prime}$-module, respectively. We will treat this case together with the symplectic groups in (Case 2).

Case 1. Case (1) of C.3 holds with $n \geqslant 3$, that is, $\overline{J_{1}} \cong S L_{n}(q)$ and W_{1} is a corresponding natural module.

By (10) (a), (c) $\overline{J_{1}}=\overline{R_{1}}=\overline{M_{1}^{\circ}}$. Also C.22 shows that either $Y_{1}=\left[Y_{1}, R_{1}\right]=W_{1}$ or $\overline{J_{1}} \cong S L_{3}(2)$ and $\left|Y_{1}\right|=2^{4}$. In the first case Theorem D(1) holds. So we need to rule out the second case.

Assume that $\overline{J_{1}} \cong S L_{3}(2)$ and $\left|Y_{1}\right|=2^{4}$, so $\overline{J_{i}}=\overline{M_{i}}$. Put $Z_{0}:=\left[Y_{1}, Y_{2}\right]$ and note that $Z_{0} \leqslant W_{1} \cap W_{2} \leqslant C_{Y_{i}}\left(Y_{j}\right)$. Since J_{i} acts transitively on W_{i} each $v \in Z_{0}^{\sharp}$ is centralized by some $Q_{v i} \in Q_{i}^{M_{i}}$. Thus $Q_{v}=Q_{v 1}=Q_{v 2} \leqslant M_{1} \cap M_{2}$ and $L_{0}:=\left\langle Q_{v} \mid v \in Z_{0}^{\sharp}\right\rangle \leqslant M_{1} \cap M_{2}$. Choose $\{i, j\}$ such that Y_{j} is an offender on Y_{i}. Then Y_{j} contains a non-trivial best offender A on Y_{i}. From C.22 we conclude that $C_{Y_{i}}(A)=\left[Y_{i}, A\right]$ has order 4. Since Y_{j} acts quadratically on Y_{i}, this implies that $C_{Y_{i}}\left(Y_{j}\right)=C_{Y_{i}}(A)=\left[Y_{i}, A\right]=\left[Y_{i}, Y_{j}\right]=Z_{0}$. Thus Z_{0} has order 4. Note that $L_{0}=\left\langle Q_{i}^{g} \mid g \in J_{i}, C_{W_{i}}\left(Q_{i}^{g}\right) \neq 1\right\rangle$, and so B.38C) shows that Z_{0} is natural $S L_{2}(2)$-module for L_{0}. As $Z_{0} \leqslant Y_{j}$ this implies that $O^{2}\left(L_{0}\right) \neq C_{M_{j}}\left(Y_{j}\right)$. Since $\left|Y_{i} / W_{i}\right|=2=\left|W_{i} / Z_{0}\right|, O^{2}\left(L_{0}\right)$ centralizes Y_{i} / Z_{0} and so $\left[Y_{i}, O^{2}\left(L_{0}\right)\right] \leqslant Z_{0}$. As $Z_{0} \leqslant Y_{j} \leqslant C_{M_{j}}\left(Y_{j}\right)$, we conclude that $\left[Y_{i}, O^{2}\left(L_{0}\right)\right] \leqslant C_{M_{j}}\left(Y_{j}\right)$. On the other hand, $L_{0} \leqslant M_{1} \cap M_{2}$ and $M_{j} / C_{M_{j}}\left(Y_{j}\right)=\overline{J_{j}} \cong S L_{3}(2)$. Hence, the centralizer of an involution in $M_{j} / C_{M_{j}}\left(Y_{j}\right)$ is a 2-group, so $O^{2}\left(L_{0}\right) \leqslant C_{M_{i}}\left(Y_{i}\right)$, a contradiction.

Case 2. Case (2) of C.3 holds with $n \geqslant 2$ or Case(12) holds with $n=6$, that is, $\overline{J_{1}} \cong S p_{2 n}(q)$, $n \geqslant 2$, or $S p_{4}(q)^{\prime}$ (and $q=2$), and W_{1} is a corresponding natural module.

Suppose that p is odd. Then by 10 (a), (c) $\overline{J_{1}}=\overline{R_{1}}=\overline{M_{1}^{\circ}}$ and so by $2.26 W_{1} \leqslant Q^{\bullet}$. Since p is odd, $\left|Z\left(\overline{J_{1}}\right)\right|=2$, and coprime action gives

$$
Y_{1}=\left[Y_{1}, Z\left(\overline{J_{1}}\right)\right] \times C_{Y_{1}}\left(Z\left(\overline{J_{1}}\right)\right)=W_{1} \times C_{Y_{1}}\left(J_{1}\right)
$$

Moreover, by (10) (b), $C_{Y_{1}}\left(J_{1}\right)=1$ and so $Y_{1}=W_{1}$. Thus Theorem (2) holds.
Suppose that $p=2$. Then (a), (c) show that also $\overline{M_{1}^{\circ}} \cong S p_{2 n}(q), n \geqslant 2$, or $S p_{4}(q)^{\prime}$ (note that $\overline{J_{1}}$ and $\overline{M_{1}^{\circ}}$ do not need to be equal if one of them is isomorphic to $\left.S p_{4}(q)^{\prime}\right)$. Since $C_{Y_{1}}\left(J_{1}\right)=1$, C. 22 shows $W_{1}=\left[Y_{1}, R_{1}\right]=\left[Y_{1}, J_{1}\right]$ and $\left|Y_{1} / W_{1}\right| \leqslant q$. Since either $\overline{M_{1}^{\circ}}=\overline{R_{1}}$ or $q=2$ and $\left|\overline{M_{1}^{\circ}} / \overline{R_{1}}\right|=2$, this gives $W_{1}=\left[Y_{1}, M_{1}^{\circ}\right]$. If $W_{1} \leqslant Q^{\bullet}$, then 2.25 b shows that $Y_{1} \leqslant Q^{\bullet}$. So again Theorem D 2) holds.

Case 3. Case (3) of C.3 holds, that is, $\overline{J_{1}} \cong S U_{n}(q), n \geqslant 4$, and W_{1} is a corresponding natural module.

Note that $\mathbb{K}_{j} \cong \mathbb{F}_{q^{2}}$. By $7^{\circ} W_{i}$ is p-group acting \mathbb{K}_{j}-linearly on W_{j}. As W_{i} normalizes $\overline{J_{j}}$, we conclude from B.35d that $W_{i} \leqslant J_{i}$. Since W_{i} acts quadratically on W_{j}, Z is an isotropic and so also a singular subspace of W_{j}, see B.6 ba B.5. It follows that each element of Z is p-central in M_{i} and so centralized by a conjugate of Q_{i}. Thus $Z^{\sharp}=\mathcal{V}$. Put $m:=\operatorname{dim}_{\mathbb{F}_{q^{2}}} Z$ and $E:=C_{\overline{J_{1}}}\left(C_{W_{1}}\left(W_{2}\right)\right)$. Note that $1 \neq W_{2} / C_{W_{2}}\left(W_{1}\right) \cong \overline{W_{2}} \leqslant E$. Let H_{1} be an \mathbb{K}_{1}-hyperplane of W_{1} with $C_{W_{1}}\left(W_{2}\right) \leqslant H_{1}$. Then $\left|C_{\bar{J}_{1}}\left(H_{1}\right)\right|=q$ and so

$$
\left|C_{W_{2}}\left(H_{1}\right) / C_{W_{2}}\left(W_{1}\right)\right|=\left|\overline{W_{2}} \cap C_{\bar{J}_{1}}\left(H_{1}\right)\right| \leqslant q
$$

As W_{1} acts \mathbb{K}_{2}-linearly on W_{2} this gives $C_{W_{2}}\left(H_{1}\right)=C_{W_{2}}\left(W_{1}\right)$. In particular, $H_{1} \neq C_{W_{2}}\left(W_{1}\right)$ and so $m \geqslant 2$. Moreover, $\overline{W_{2}} \cap C_{\bar{J}_{1}}\left(H_{1}\right)=1$, and as $1 \neq C_{\bar{J}_{1}}\left(H_{1}\right) \leqslant E$, we get

$$
1<\overline{W_{2}}<E
$$

Since L normalizes this series, E is not a simple L-module. As $Z^{\sharp}=\mathcal{V}$, (4) (c) shows that $L=N_{M_{1}}(Z)^{\circ}$. Now B.38(c) implies that there exists a subgroup $F \leqslant L \cap J_{1}$ such that Z is a natural
$S L_{m}\left(q^{2}\right)$-module for F. Since $G L_{m}\left(q^{2}\right) / S L_{m}\left(q^{2}\right)$ is a p^{\prime}-group this implies that $O^{p^{\prime}}\left(N_{J_{1}}(Z)\right) \leqslant$ $F C_{J_{1}}(Z)$. Note that $C_{J_{1}}(Z)$ centralizes W_{1} / Z^{\perp} and so (for example by the Three Subgroups Lemma) also E. By B.21b b $E=C_{\overline{J_{1}}}\left(W_{1} / Z\right) \cap C_{\overline{J_{1}}}(Z)$. Hence, by B.22 a E is a simple $O^{p^{\prime}}\left(N_{J_{1}}(Z)\right)$-module and we infer that E is a simple F - and a simple L-module, a contradiction.

Case 4. Case (4) of C.3 holds, that is, $\overline{J_{1}} \cong \Omega_{2 n}^{+}(q)$ for $2 n \geqslant 6, \Omega_{2 n}^{-}(q)$ for $p=2$ and $2 n \geqslant 6$, $\Omega_{2 n}^{-}(q)$ for p odd and $2 n \geqslant 8, \Omega_{2 n+1}(q)$ for p odd and $2 n+1 \geqslant 7, O_{4}^{-}(2)$, or $O_{2 n}^{\epsilon}(q)$ for $p=2$ and $2 n \geqslant 6$, and W_{1} is a corresponding natural module.

Note that in all these cases $\overline{R_{i}}=F^{*}\left(\overline{J_{i}}\right) \cong \Omega_{m}^{\epsilon}(q)$ for appropriate ϵ and m. Moreover, by (10) (c) $\overline{M_{i}^{\circ}}=\overline{R_{i}}$ and so $W_{i}=\left[Y_{i}, M_{i}^{\circ}\right]$.

Recall that $T_{j}=Y_{i} R_{j}$. Since Y_{i} is p-subgroup acting \mathbb{K}_{j}-linearly on W_{j} and since Y_{i} normalizes $\overline{R_{1}}$, we conclude from B.35 d that either $\overline{T_{j}}=\overline{R_{j}} \cong \Omega_{m}^{\epsilon}(q)$ or $p=2$ and $\overline{T_{j}} \cong O_{m}^{\epsilon}(q)$. Moreover, W_{j} is the corresponding natural module.

Assume first that $|Z| \leqslant q$. Then by B.9(c) $p=2$ and Z is not singular in W_{1}, and $\left|\overline{W_{2}}\right|=2$. Since W_{2} is an offender on W_{1}, we get $q=2$ and $\overline{T_{1}} \cong O_{2 n}^{\epsilon}(2)$. Hence 4.10 shows that Theorem D(5) holds.

Assume next that $Y_{1} \neq W_{1}$. Then C.22 shows that $\overline{J_{1}} \cong O_{6}^{+}(2) \cong \operatorname{Sym}(8)$. Hence by C.4 h) every offender in $\overline{T_{i}}$ on Y_{i} is a best offender. Choose i and j such that Y_{i} is an offender (and so a best offender) on Y_{j}. Then C.22 shows that image of Y_{i} in $\overline{M_{j}}$ is generated by transpositions and thus [Y_{i}, Y_{j}] contains a non-singular vector of Y_{j}. So using 4.10 a second time, this shows that Theorem D(5) holds.

Assume finally that $Y_{1}=W_{1}$ and $|Z|>q$. Suppose that $\overline{J_{1}} \cong O_{4}^{-}(2) \cong \operatorname{Sym}(5)$. Then $\overline{T_{1}} \cong \operatorname{Alt}(5)$ or $\operatorname{Sym}(5)$. Since W_{2} is an offender on $W_{1}, \mathrm{C} .4 \mathrm{~g}$ shows that $\overline{W_{2}}$ is generated by transpositions in $\overline{T_{1}}$. Thus Z contains a non-singular element of W_{1}, and so using 4.10 a third time, this shows that Theorem D (5) holds. If $\overline{J_{1}} \not \equiv O_{4}^{-}(2)$, then $2 n \geqslant 6$, and Theorem D 4:1) holds, except that we still need to show that $Y \$ Q^{\bullet}$.

Suppose that $Y \leqslant Q^{\bullet}$, so $Y_{i} \leqslant Q_{i}^{\bullet}, i=1,2$. Since W_{1} acts quadratically on W_{2}, an isotropic subspace of W_{2}, see B. 6 b). By B. 5 the singular vectors of W_{2} contained in Z form a \mathbb{K}_{2}-subspace of Z of codimension at most 1 . Thus, as $|Z|>q$, there exists $1 \neq v \in Z$ such that v is singular in W_{2}. Hence there exists $x \in M_{2}$ such that $\left[v, Q_{2}^{x}\right]=1$. By $Q!, C_{G}(v) \leqslant N_{G}\left(Q_{2}^{x}\right)$, and since $Y_{2} \leqslant\left(Q_{2}^{\bullet}\right)^{x}$, we get $Y_{2} \leqslant O_{p}\left(C_{G}(v)\right)$. In particular, $W_{2} \leqslant O_{p}\left(C_{M_{1}}(v)\right)$.

Suppose that v is singular in W_{1}. Then v is centralized by a Sylow p-subgroup of M_{1}, and since W_{2} is a non-trivial offender on W_{1}, we obtain a contradiction to the Point-Stabilizer Theorem C.8. Thus v is non-singular. It follows that $\left|O_{p}\left(C_{\overline{M_{1}}}(v)\right)\right|=1$ if p is odd and $\left|O_{p}\left(C_{\overline{M_{1}}}(v)\right)\right| \leqslant 2$ if $p=2$. Hence $\left|W_{2} / C_{W_{2}}\left(W_{1}\right)\right| \leqslant 2$ and then $|Z|=\left|C_{W_{2}}\left(W_{1}\right)^{\perp}\right|=2 \leqslant q$, a contradiction.

Case 5. Case (5) of C.3 holds, that is, $p=2, \overline{J_{1}} \cong G_{2}(q)$, and W_{1} is a corresponding natural module.

Put $L_{i}:=N_{J_{i}}\left(W_{j} C_{M_{i}}\left(W_{i}\right)\right)$, so $\overline{L_{i}}=N_{\overline{J_{i}}}\left(\overline{W_{i}}\right)$. Since W_{2} is a non-trivial offender on W_{1}, we conclude from the Best Offender Theorem C.4 a that $Z=C_{W_{1}}\left(W_{2}\right),|Z|=\left|W_{1} / Z\right|=\left|\overline{W_{2}}\right|=q^{3}$, and L_{1} is a maximal parabolic subgroup of J_{1}. Note also that L_{1} normalizes Z and by the action of J_{1} on the natural $G_{2}(q)$-module $W_{1}, L_{1}=N_{J_{1}}\left(Z_{1}\right)$ for some 1-dimensional \mathbb{K}_{1}-subspace Z_{1} of W_{1}. Observe that $\left[Z_{1}, O^{p^{\prime}}\left(L_{1}\right)\right]=1$.

By (1) (c) $\overline{M_{1}^{\circ}}=\overline{R_{1}}$ or $\overline{M_{1}^{\circ}}=\overline{J_{1}}$. Thus $\overline{M_{1}^{\circ}} \leqslant \overline{J_{1}}$. In particular, $M_{1}^{\circ} \leqslant J_{1}, M_{1}^{\circ}$ acts \mathbb{K}_{1}-linearly on W_{1} and $L \leqslant N_{M_{1}^{\circ}}(Z) \leqslant L_{1}$. Since $O^{p^{\prime}}\left(L_{1}\right)$ centralizes Z_{1} and L is generated by p-elements, we get that $L \leqslant C_{J_{1}}\left(Z_{1}\right)$. Note that J_{1} acts transitively on W_{1}. Thus by $5^{\circ} \mathcal{V}=Z^{\sharp}$ and by 6°, $Z^{\sharp} \subseteq z^{N_{J_{1}}(L)}$, where $1 \neq z \in Z_{1}$. As $\mathcal{V}=Z^{\sharp}, L_{1}$ normalizes L and so, since L_{1} is maximal subgroup of J_{1}, we get $N_{J_{1}}(L)=L_{1}$. But then $Z^{\sharp} \subseteq z^{L_{1}} \subseteq Z_{1}$, a contradiction.

Case 6. Case (6) of C.3 holds, that is, $\overline{J_{1}} \cong S L_{n}(q) /\left\langle(-i d)^{n-1}\right\rangle, n \geqslant 5$, and W_{1} is the corresponding exterior square of a natural module.

Then $Y_{1}=W_{1}$ by C.22. Since W_{i} is the exterior square of a natural $S L_{n}(q)$-module, there exists a central p^{\prime}-extension $\widehat{L_{i}}$ of $\overline{L_{i}}$ and a natural $S L_{n}(q)$-module N_{i} for $\widehat{L_{i}}$ such that $Y_{i} \cong \Lambda^{2} N_{i}$
as $\widehat{L_{i}}$-module. By C. $4 W_{2}$ is not an over-offender on W_{1} and so W_{1} is an offender on W_{2}. This also shows that W_{i} is a best offender on W_{j} and so $W_{i} \leqslant J_{j}$. Let \widehat{W}_{i} be the unique Sylow p-subgroup of the inverse image of $W_{j} C_{J_{i}}\left(Y_{i}\right) / C_{J_{i}}\left(Y_{i}\right)$ in \widehat{J}. By C.4 there exists a \mathbb{K}_{i}-hyperplane H_{i} of N_{i} with $\widehat{W_{j}}=C_{\widehat{J_{i}}}\left(H_{i}\right)$. Put $L_{i}:=C_{\widehat{J_{i}}}\left(N_{i} / H_{i}\right)$. The action of $\widehat{J_{i}}$ on N_{i} shows that $\widehat{W}_{j}=C_{L_{i}}\left(H_{i}\right)=O_{p}\left(L_{i}\right)$ is a natural $S L_{n-1}(q)$-module for L_{i} isomorphic to $H_{i}, Z=C_{W_{i}}\left(W_{j}\right), W_{i} / Z \cong H_{i}$ and $Z \cong \Lambda^{2} H_{i}$ as L_{i}-modules. Let $X \leqslant W_{1}$ such that $Z \leqslant X$ and $|X / Z|=p$.

Consider the action of L_{2} on N_{2} and W_{2}. Note that $\left|X / C_{X}\left(W_{2}\right)\right|=p$ and so X acts as a subgroup of the transvection group with axis H_{2} and center say P_{2} on N_{2}. It follows that $\left[W_{2}, X\right] \cong P_{2} \wedge H_{2}$ and so $\left[W_{2}, X\right]$ is a natural $S L_{n-2}(q)$-module isomorphic to H_{2} / P_{2} for $C_{L_{2}}\left(P_{2}\right)$. Thus each element of $\left[W_{2}, X\right]$ is centralized by a Sylow p-subgroup of $C_{L_{2}}\left(P_{2}\right)$ and so also by a Sylow p-subgroup of J_{2}, since $C_{L_{2}}\left(P_{2}\right)$ is a parabolic subgroup of L_{2} and $\widehat{J_{2}}$.

Next consider the action of L_{1} on N_{1} and W_{1}. Identify W_{1} with $\Lambda^{2} N_{1}$. Then $X=\langle n \wedge x\rangle Z$, where $n \in N_{1} \backslash H_{1}$ and $1 \neq x \in H_{1}$. If T is the transvection group with axis H_{1} and center say P_{1}, then $[X, T]=P_{1} \wedge x$ and so $\left[X, W_{2}\right]=\left[X, C_{L_{1}}\left(H_{1}\right)\right]=P_{1} \wedge H_{1}$. So as above each element of [X, W_{2}] is centralized by a Sylow p-subgroups of J_{1}.

Let $1 \neq v \in\left[X, W_{2}\right]$. We have proved that v is centralized by a Sylow p-subgroup S_{i}^{*} of J_{i}. By (19) (C), $M_{i}^{\circ} \leqslant J_{i}$ so S_{i}^{*} contains a J_{i} - conjugate of Q_{i} and thus $v \in \mathcal{V}$. Since $v \in C_{W_{2}}\left(S_{2}^{*}\right), C_{J_{2}}(v)$ contains the point-stabilizer of J_{2} on W_{2} with respect to S_{2}. Since the exterior square of a natural module does not appear in the conclusion of the Point-Stabilizer Theorem C. 8 and since W_{1} is an quadratic offender on W_{2}, we conclude that $W_{1} \$ O_{p}\left(C_{J_{2}}(v)\right)$ and so also $Y_{1}=W_{1} \$ Q_{v}^{\bullet}$. Hence Theorem D (4:2) holds.

Case 7. Case (7) of C.3 holds, that is, $\overline{J_{1}} \cong \operatorname{Spin}_{7}(q)$ and W_{1} is the corresponding spinmodule.
Observe that $\overline{J_{i}}$ is quasisimple and so $\sqrt{1}$ (c) gives $\overline{M_{i}^{\circ}}=\overline{R_{i}}=\overline{J_{i}}$. Hence $M_{i}^{\circ} \leqslant R_{i}=J_{i}$. Put $L_{i}:=O^{p^{\prime}}\left(N_{M_{i}^{\circ}}(Z)\right)$.

Note that W_{i} is a selfdual J_{i}-module (see for example A.65). Since by 77° acts \mathbb{K}_{i}-linearly on W_{i} and T_{i} / J_{i} is p-group we conclude from B.7 7 f) that W_{i} is also a self-dual T_{i}-module. Hence $C_{W_{i}}\left(W_{j}\right)=Z^{\perp}$ (in W_{i}) and so $\left|W_{1} / C_{W_{1}}\left(W_{2}\right)\right|=|Z|=\mid W_{2} / C_{W_{2}}\left(W_{1} \mid\right.$. Thus W_{j} is non-trivial quadratic offender on W_{i} and we can apply C.4 (C).

Let A_{i} be maximal offender in $\overline{J_{i}}$ on W_{i} with $\overline{W_{j}} \leqslant A_{i}$. We conclude from C.4 (c) that $Z=$ $C_{W_{i}}\left(W_{j}\right),|Z|=q^{4}=\left|W_{i} / Z\right|,\left|\left[W_{i}, A_{i}\right]\right|=q^{4}$ and $O^{p^{\prime}}\left(N_{J_{i}}\left(A_{i}\right) / A_{i}\right) \cong S p_{4}(q)$. It follows that $Z=\left[W_{i}, A_{i}\right], N_{\bar{J}_{i}}\left(A_{i}\right) \leqslant N_{J_{i}}(Z)$, and $N_{\bar{J}_{i}}\left(A_{i}\right)$ is maximal parabolic subgroup of $\overline{J_{i}}$. Therefore $\overline{L_{i}}=O^{p^{\prime}}\left(N_{\bar{J}_{i}}\left(A_{i}\right)\right)$, and Z is natural $S p_{4}(q)$-module for L_{i}. Hence L_{i} is transitive on Z. In particular, each element of Z is p-central in L_{i} and so also in J_{i}. As $M_{i}^{\circ} \leqslant J_{i}$, this shows that each element of Z is centralized by a conjugate of Q_{i} in J_{i}, and so $Z^{\sharp}=\mathcal{V}$. Thus (4) (c) shows that $L=L_{i}^{\circ} \& L_{i}$.

Let $g \in J_{i}$ with $Q_{i}^{g} \leqslant L_{i}$. Suppose for a contradiction that $\left[Z, Q_{i}^{g}\right]=1$, and let Z_{i} be a 1dimensional \mathbb{K}_{i} subspace of Z. Then Q ! implies that $Q_{i}^{g} \vDash L_{i}$ and $Q_{i}^{g} \vDash N_{J_{i}}\left(Z_{i}\right)$; in particular $\left\langle L_{i}, N_{J_{i}}\left(Z_{i}\right)\right\rangle \leqslant N_{J_{i}}\left(Q_{i}^{g}\right)$. On the other hand, by the action of J_{i} on the spin module $W_{i}, N_{J_{1}}\left(Z_{i}\right)$ is a maximal parabolic of J_{i}. We conclude that $N_{J_{i}}\left(Q^{g}\right)=N_{J_{i}}\left(Z_{i}\right)$ and $L_{i} \leqslant N_{J_{i}}\left(Z_{i}\right)$, a contradiction since L_{i} is transitive on Z. Thus $[Z, L] \neq 1$. As $S p_{4}(q)$ is quasisimple, except for $q=2$, we conclude that $L / C_{L}(Z) \cong S p_{4}(q)$ or $S p_{4}(2)^{\prime}$. Put $E:=C_{\bar{J}_{1}}(Z)$. In $\overline{J_{1}}$ we see that E is natural $\Omega_{5}(q)$ - respectively $\Omega_{5}(2)^{\prime}$-module for L and so by B. $29 E$ has no L - submodule of order q^{4}, Put $E:=C_{\overline{J_{1}}}(Z)$. On the other hand, $\overline{W_{2}} \leqslant E$ and $\left|\overline{W_{2}}\right|=\left|W_{2} / Z\right|=q^{4}$, so $\overline{W_{2}}$ is an L-submodule of E order q^{4}, a contradiction.

Case 8. Case (8) of C. 3 holds, that is, $\overline{J_{1}} \cong \operatorname{Spin}_{10}^{+}(q)$, and W_{1} is the corresponding halfspinmodule.

Just as in the previous case, the fact that $\overline{J_{i}}$ is quasisimple implies that $\overline{M_{i}^{\circ}}=\overline{R_{i}}=\overline{J_{i}}$, and $M_{i}^{\circ} \leqslant R_{i}=J_{i}$. Put $L_{i}:=O^{p^{\prime}}\left(N_{M_{i}^{\circ}}(Z)\right)$.

Since W_{2} is a non-trivial offender on W_{1}, C.4 dd shows that $\left|\overline{W_{2}}\right|=q^{8}=\left|W_{1} / C_{W_{1}}\left(W_{2}\right)\right|$. Hence also W_{1} is a non-trivial offender on W_{2}, so W_{i} is a best offender on $W_{j}, W_{i} \leqslant J_{j}$, and we can apply
C. 4 d to J_{1} and J_{2}. It follows that $Z=C_{W_{i}}\left(W_{j}\right),|Z|=q^{8}$, and $O^{p^{\prime}}\left(N_{\overline{J_{i}}}\left(\overline{W_{j}}\right)\right) / \overline{W_{j}} \cong \operatorname{Spin}_{8}^{+}(q)$. In particular, $N_{J_{i}}\left(\overline{W_{j}}\right)$ contains a Sylow p-subgroup of $\overline{J_{i}}$ and $O_{p}\left(N_{\overline{J_{i}}}\left(\overline{W_{i}}\right)\right)=\overline{W_{i}}$. The structure of $\overline{J_{i}}$ now implies that $N_{\overline{J_{i}}}\left(\overline{W_{j}}\right)$ is maximal parabolic subgroup of $\overline{J_{i}}$. As $N_{J_{i}}\left(\overline{W_{j}}\right)$ normalizes $Z=\left[W_{i}, W_{j}\right]$, we conclude that $\overline{L_{i}}=O^{p^{\prime}}\left(N_{J_{i}}\left(\overline{W_{j}}\right)\right)$, and Z is a natural $\Omega_{8}^{+}(q)$-module for L_{i} (note here that a half-spin $\operatorname{Spin}_{8}^{+}(q)$-module is also a natural $\Omega_{8}^{+}(q)$-module). Thus L_{i} preserves a nondegenerate quadratic form q_{i} of +-type on Z. Note that the q_{i}-singular elements in Z are p-central in L_{i} and so also in J_{i}. Hence each of these singular elements is centralized by a J_{i}-conjugate of Q_{i}. Observe that more than half of the non-trivial elements in Z are q_{i}-singular and so there exists $1 \neq v \in Z$ such that z is singular with respect to q_{1} and q_{2}. Thus, $v \in \mathcal{V}$ and $Q_{v} \leqslant M_{1} \cap M_{2}$. Let Z_{1} be the 1-dimensional \mathbb{K}_{1}-subspace of Z with $v \in Z_{1}$. From $Q_{v} \leqslant M_{1}^{\circ} \leqslant J_{1}$ we conclude that Q_{v} acts \mathbb{K}_{1}-linearly on W_{1}, and so $\left[Z_{1}, Q_{v}\right]=1$. Thus by $Q!, N_{J_{1}}\left(Z_{1}\right) \leqslant N_{G}\left(Q_{v}\right)$. By the action of J_{1} on the half-spin module $W_{1}, N_{J_{1}}\left(Z_{1}\right)$ is a maximal parabolic subgroups of J_{1} distinct from the maximal parabolic subgroup $N_{J_{1}}(Z)$. Hence $O_{p}\left(N_{\overline{J_{1}}}(Z)\right) \not O_{p}\left(N_{\overline{J_{1}}}\left(Z_{1}\right)\right)$. As seen above $\overline{W_{2}}=O_{p}\left(N_{\overline{J_{1}}}(Z)\right)$ and so $W_{2} \leqslant O_{p}\left(N_{J_{1}}\left(Z_{1}\right)\right)$ and $Y_{2} \leqslant O_{p}\left(N_{G}\left(Q_{v}\right)\right)$. Thus $Y_{2} \leqslant Q_{2}^{\bullet}$ and $Y \$ Q^{\bullet}$. Moreover C. 22 shows that $Y_{1}=W_{1}$. Therefore Theorem D 4:3 holds.

Case 9. Case (9) of C.3 holds, that is, $\overline{J_{1}} \cong 3 \cdot \operatorname{Alt}(6)$ and $\left|W_{1}\right|=2^{6}$.
As in the $S p_{2 n}(q)$-case for odd q, the action of $Z\left(\overline{J_{1}}\right)$ on Y_{1} and $C_{Y_{1}}\left(J_{1}\right)=1$ give $W_{1}=Y_{1}$ and thus also $W_{2}=Y_{2}$. This action also shows that $\mathbb{K}_{1} \cong \mathbb{F}_{4}$. Since $W_{i}=Y_{i}, Y_{2}$ is an nontrivial offender on Y_{1}. Hence C.4 shows that $\left|Y_{2} / C_{Y_{2}}\left(Y_{1}\right)\right|=4=\left|Y_{1} / C_{Y_{1}}\left(Y_{2}\right)\right|$. In particular, Y_{1} is a non-trivial offender on Y_{2}. Now C.4 e shows that the non-trivial offenders in $\overline{J_{i}}$ on W_{i} are conjugate in $\overline{J_{i}},|Z|=2^{4}$, and $Z=C_{Y_{i}}\left(Y_{j}\right)$. Since also Y_{2}^{u} is an offender on $Y_{1}^{u}=Y_{2}$ we see in $\overline{M_{2}}$ that $\overline{Y_{2}^{u h}}=\overline{Y_{1}}$ for some $h \in M_{2}$. Put $g:=u h$. Then $Y_{1}^{g}=Y_{2}^{h}=Y_{2}, \overline{Y_{2}^{g}}=\overline{Y_{1}}\left(\right.$ in $\left.\overline{M_{2}}\right)$ and $Z^{g}=\left[Y_{1}^{g}, Y_{2}^{g}\right]=\left[Y_{2}, Y_{2}^{g}\right]=\left[Y_{2}, Y_{1}\right]=Z$. Define

$$
\Delta:=\left\{\left[y_{1}, y_{2}\right] \mid y_{1} \in Y_{1} \backslash Z, y_{2} \in Y_{2} \backslash Z\right\}
$$

For $y_{j} \in Y_{j} \backslash Z,\left[Y_{i}, y_{j}\right]$ is a 1-dimensional \mathbb{K}_{i}-subspace of Y_{i}. It follows that

$$
\Delta_{i}:=\left\{\left[Y_{i}, y_{j}\right]^{\sharp} \mid y_{j} \in Y_{j} \backslash Z\right\}
$$

is a partition of Δ into three subsets of size three. From $\left(Y_{1}, Y_{2}\right)^{g}=\left(Y_{2}, Y_{2}^{g}\right)$ and $\overline{Y_{2}^{g}}=\overline{Y_{1}}\left(\right.$ in $\left.\overline{M_{2}}\right)$ we conclude that $\Delta^{g}=\Delta, \Delta_{1}^{g}=\Delta_{2}$ and $\Delta_{2}^{g}=\Delta_{1}$. Thus $g \in N_{G}\left(\left\{\Delta_{1}, \Delta_{2}\right\}\right)$. On the other hand, in $\overline{M_{1}}, \overline{Y_{2}}$ is normalized by a Sylow 2-subgroup of $\overline{M_{1}}$. It follows that $C_{G}\left(\left\{\Delta_{1}, \Delta_{2}\right\}\right)$ contains a Sylow 2-subgroup of G. Thus $N_{G}\left(\left\{\Delta_{1}, \Delta_{2}\right\}\right)=C_{G}\left(\left\{\Delta_{1}, \Delta_{2}\right\}\right)$ and $\Delta_{1}=\Delta_{2}$, and so $\left[y_{1}, Y_{2}\right]^{\sharp} \in \Delta_{1}$ for $y_{1} \in Y_{1} \backslash Z$. But $\left[y_{1}, Y_{2}\right]^{\sharp}$ has an element in common with each [$\left.Y_{1}, y_{2}\right], y_{2} \in Y_{2} \backslash Z$ of Δ_{1} (namely $\left.\left[y_{1}, y_{2}\right]\right)$, a contradiction since Δ_{1} is a partition of Δ.

4.15. Proof of Theorem D;

By 4.9 d the hypothesis of the Q!FF-Module Theorem C.24 is fulfilled for $\left(\overline{M_{i}}, Y_{i}, \overline{Q_{i}}\right)$ in place of (H, V, Q). Hence Theorem D follows from 4.12 if C.24 1) holds, from 4.13 if C.24 2) holds and W_{1} is not a simple R_{1}-module, and from 4.14 if 24 holds and W_{1} is a simple R_{1}-module.

CHAPTER 5

The Short Asymmetric Case

In this chapter we begin to investigate the action of $M \in \mathfrak{M}_{G}(S)$ on Y_{M}, when Y_{M} is asymmetric. This investigation will occupy the next five chapters. In this chapter we treat the short asymmetric case, that is, in addition,

$$
Y_{M} \leqslant O_{p}(L) \text { for all } L \leqslant G \text { with } O_{p}(M) \leqslant L \text { and } O_{p}(L) \neq 1
$$

For all such L asymmetry shows that $L \cap M^{\dagger}$ is a parabolic subgroup of L and then shortness that $\left\langle Y_{M}^{L}\right\rangle$ is an elementary abelian normal subgroup of L (see 2.6.

The proof of Theorem E is carried out using particular choices for L, namely the Y_{i}-indicators L_{i} of a symmetric pair $\left(V_{1}, V_{2}\right)$. It is here where for the first time p-minimal subgroups enter the stage. Apart from technical details, Y_{i} is a conjugate of $Y_{M}, V_{i}=\left\langle Y_{i}^{L_{i}}\right\rangle$ is elementary abelian, and

$$
V_{1} V_{2} \leqslant L_{1} \cap L_{2} \text { and } 1 \neq\left[V_{1}, V_{2}\right] \leqslant V_{1} \cap V_{2}
$$

From a formal point of view the last property is very similar to the one discussed at the beginning of the previous chapter. But in contrast to the situation there neither is V_{i} a p-reduced normal subgroup of L_{i} nor are we really interested in the structure of L_{i} but in the structure of $N_{G}\left(Y_{i}\right) / C_{G}\left(Y_{i}\right)$. So we use the action of L_{i} on non-central L_{i}-chief factors of V_{i} to get information about the action of $N_{G}\left(Y_{i}\right)$ on Y_{i}. This is carried out be a rather technical argument. A maybe easier way to understand how the action of L_{i} on V_{i} influences the action of $N_{G}\left(Y_{i}\right)$ on Y_{i} is by studying the more transparent situation of the $q r c$-Lemma in MS4], from where some of our arguments are borrowed.

Here is the main result of this chapter.

Theorem E. Let G be finite \mathcal{K}_{p}-group, $S \in \operatorname{Syl}_{p}(G)$, and let $Q \leqslant S$ be a large subgroup of G. Suppose that $M \in \mathfrak{M}_{G}(S)$ such that
(i) $Q \nRightarrow M$ and $\mathcal{M}_{G}(S) \neq\left\{M^{\dagger}\right\}$, and
(ii) Y_{M} is short and asymmetric in G.

Then one of the following holds, where q is a power of p and $\bar{M}:=M / C_{M}\left(Y_{M}\right)$:
(1) (a) $\overline{M^{\circ}} \cong S L_{n}(q), n \geqslant 3$, and $\left[Y, M^{\circ}\right]$ is a corresponding natural module for $\overline{M^{\circ}}$.
(b) If $Y \neq\left[Y, M^{\circ}\right]$ then $\overline{M^{\circ}} \cong S L_{3}(2)$ and $\left|Y /\left[Y, M^{\circ}\right]\right|=2$.
(2) (a) $\overline{M^{\circ}} \cong S p_{2 n}(q), n \geqslant 2$, or $S p_{4}(q)^{\prime}$ (and $q=2$), and $\left[Y, M^{\circ}\right]$ is the corresponding natural module for $\overline{M^{\circ}}$.
(b) If $Y \neq\left[Y, M^{\circ}\right]$, then $p=2$ and $\left|Y /\left[Y, M^{\circ}\right]\right| \leqslant q$.
(3) There exists a unique \bar{M}-invariant set \mathcal{K} of subgroups of \bar{M} such that Y_{M} is a natural $S L_{2}(q)$-wreath product module for \bar{M} with respect to \mathcal{K}. Moreover, $\overline{M^{\circ}}=O^{p}(\langle\mathcal{K}\rangle) \bar{Q}$ and Q acts transitively on \mathcal{K}.
(4) (a) $\bar{M} \cong O_{2 n}^{\epsilon}(2), \overline{M^{\circ}} \cong \Omega_{2 n}^{\epsilon}(2), 2 n \geqslant 4$ and $(2 n, \epsilon) \neq(4,+){ }_{1}^{1}$ and $[Y, M]$ is a corresponding natural module.
(b) If $Y_{M} \neq\left[Y_{M}, M\right]$, then $\bar{M} \cong O_{6}^{+}(2)$ and $\left|Y_{M} /\left[Y_{M}, M\right]\right|=2$.
(c) $C_{G}(y) \not M^{\dagger}$ and $C_{G}(y)$ is not of characteristic 2 for every non-singular element $y \in[Y, M]$.

[^7]Table 1 lists examples for Y_{M}, M and G fulfilling the hypothesis of Theorem E
Table 1. Examples for Theorem E

Case	[Y_{M}, M°] for M°	c examples for G
3 3 3	nat $S L_{2}(q)$	$1{ }^{2} F_{4}(q)$
	nat $S L_{2}(2)$	$1 \mathrm{Mat}_{12}(.2),{ }^{2} F_{4}(2)^{\prime}(.2)$
	nat $S L_{2}(3)$	1 Th
	Here $c=\mid Y_{M}$	/[$\left.Y_{M}, M^{\circ}\right]$.

We fix the following hypothesis and notation for the remainder of this chapter. For the definition of a symmetric pair and a Y-indicator see Definition 2.19 .

Hypothesis and Notation 5.1. The groups G, S, Q, M^{\dagger}, and M have the properties given in the hypothesis of Theorem E In particular $Q \nleftarrow M^{\dagger}, \mathcal{M}_{G}(M)=\left\{M^{\dagger}\right\}$, and $Y_{M}=Y_{M^{\dagger}}$ is asymmetric and short in G

By 2.23 there exist conjugates Y_{1} and Y_{2} of Y_{M} such that $\left(Y_{1}, Y_{2}\right)$ is a symmetric pair; i.e., there exist Y_{i}-indicators L_{i} for $i=1,2$ such that for $V_{i}:=\left\langle Y_{i}^{L_{i}}\right\rangle$

$$
V_{1} V_{2} \leqslant L_{1} \cap L_{2} \text { and }\left[V_{1}, V_{2}\right] \neq 1
$$

Recall from 2.20 that V_{1} and V_{2} are elementary abelian p-subgroups. We choose such Y_{1}, Y_{2}, L_{1} and L_{2} with the additional property that $\left|L_{1} \| L_{2}\right|$ is minimal. We further fix:
(a) $\{i, j\}=\{1,2\}$.
(b) (1) If case 2.19 2:i holds for $\left(Y_{i}, L_{i}\right)$ then $Q_{i} \in Q^{G}$ such that $Q_{i}^{\bullet} \leqslant N_{G}\left(Y_{i}\right)$ and $L_{i} \leqslant$ $N_{G}\left(Q_{i}\right)$.
(2) If case 2.19 2:ii holds for $\left(Y_{i}, L_{i}\right)$ then $S_{i} \in \operatorname{Syl}_{p}\left(N_{G}\left(Y_{i}\right)\right)$ such that $S_{i} \cap L_{i} \in$ $\operatorname{Syl}_{p}\left(N_{L_{i}}\left(Y_{i}\right)\right)$, and $\left.\left[Y_{i}, O^{p}\left(L_{i}\right)\right] \not \approx\left[\Omega_{1} Z\left(S_{i}\right), O^{p}\left(L_{i}\right)\right)\right] \neq 1$.
(c) $R_{i}:=O_{p}\left(L_{i}\right)$.
(d) $g_{i} \in G$ such that $Y_{M}^{g_{i}}=Y_{i}$ and $M^{g_{i}} \cap L_{i}$ is a parabolic subgroup of L_{i}. Note that that such a g_{i} exists since $N_{L_{i}}\left(Y_{i}\right)$ is a parabolic subgroup of L_{i} and M a parabolic subgroup of $M^{\dagger}=N_{G}\left(Y_{M}\right)$.
(e) $M_{i}:=M^{g_{i}}$ and $M_{i}^{\dagger}:=M^{\dagger g_{i}}$. In particular, $M_{i}^{\dagger}=M_{i} C_{G}\left(Y_{i}\right)=N_{G}\left(Y_{i}\right)$, see 2.2 d. .

Lemma 5.2. (a) $V_{i} \leqslant R_{i} \leqslant N_{L_{i}}\left(Y_{i}\right) \leqslant M_{i}^{\dagger}$. In particular, $\left[Y_{i}^{t}, V_{i}\right] \leqslant Y_{i}^{t} \cap V_{i}$ and $\left[Y_{i}^{t}, R_{i}\right] \leqslant$ $Y_{i}^{t} \cap R_{i}$ for all $t \in L_{i}$.
(b) Suppose 2.19 2) holds for $\left(L_{i}, Y_{i}\right)$. Then $O^{p}\left(L_{i}\right) \nleftarrow M_{i}^{\dagger}$ and $\left[Y_{i}, O^{p}\left(L_{i}\right)\right] \neq 1$.

Proof. Since by definition V_{i} is normal p-subgroup of $L_{i}, V_{i} \leqslant R_{i}$. Also $N_{L_{i}}\left(Y_{i}\right) \leqslant N_{G}\left(Y_{i}\right)=$ M_{i}^{\dagger}.

Suppose that Case 2.19, 1) holds. Then $Y_{i} \vDash L_{i}$ and (a) holds.
Suppose that 2.19 2) holds. Then $N_{L_{i}}\left(Y_{i}\right)$ is a maximal and parabolic subgroup of L_{i}. In particular, $N_{L_{i}}\left(Y_{i}\right) \neq L_{i}$ and $N_{L_{i}}\left(Y_{i}\right)$ contains a Sylow p-subgroup T_{i} of L_{i}. Hence $R_{i}=O_{p}\left(L_{i}\right) \leqslant$ $T_{i} \leqslant N_{L_{i}}\left(Y_{i}\right), L_{i}=T_{i} O^{p}\left(L_{i}\right)=N_{L_{i}}\left(Y_{i}\right) O^{p}\left(L_{i}\right)$ and $O^{p}\left(L_{i}\right) \neq N_{L_{i}}\left(Y_{i}\right) ;$ in particular, $O^{p}\left(L_{i}\right)$ $C_{L_{i}}\left(Y_{i}\right)$.

Thus (a) and b hold.

Lemma 5.3. Suppose that one of the following holds:
(i) There exists $Y \in Y_{i}^{L_{i}}$ with $1 \neq\left[Y, V_{j}\right] \leqslant Y$, or
(ii) $V_{j} \leqslant R_{i}$.

Then

(a) Case 1 of 2.19 holds for $\left(L_{i}, Y_{i}\right)$.
(b) $L_{i}=\breve{Y}_{i} V_{j}=R_{i}$. In particular, $V_{j} \leqslant R_{i}$ and L_{i} is a p-group.
(c) $Y_{i} \vDash L_{i}$. In particular, $V_{i}=Y_{i}$.

Proof. Suppose first that (i) holds. Then $Y V_{j}$ is a p-group with $Y \vDash Y V_{j}$. Thus $Y V_{j}$ fulfills Case 1 in the Definition 2.19 of Y-indicator, so $Y V_{j}$ is a Y-indicator. Moreover

$$
Y V_{j} \leqslant V_{i} V_{j} \leqslant L_{j} \quad \text { and } \quad 1 \neq\left[Y, V_{j}\right]
$$

Hence $\left(Y, Y_{j}\right)$ is a symmetric pair and $\left|Y V_{j}\right|\left|L_{j}\right| \leqslant\left|L_{i}\right|\left|L_{j}\right|=\left|L_{1}\right|\left|L_{2}\right|$. The minimal choice of $\left|L_{1}\right|\left|L_{2}\right|$ now implies $L_{i}=Y V_{j}$. Then $Y \gtrless L_{i}$ and so $Y=V_{i}=Y_{i}$. If Case 2 of 2.19 holds for $\left(L_{i}, Y_{i}\right)$ then $Y_{i} \nleftarrow L_{i}$, which is not the case. So Case 1 holds for $\left(L_{i}, Y_{i}\right)$, and the Lemma is proved in this case.

Suppose next that (ii) holds. Since $V_{i}=\left\langle Y_{i}^{L_{i}}\right\rangle$ and $\left[V_{i}, V_{j}\right] \neq 1$, we can choose $Y \in Y_{i}^{L_{i}}$ with $\left[Y, V_{j}\right] \neq 1$. By 5.2 a $\left[Y, R_{i}\right] \leqslant Y$ and by assumption $V_{j} \leqslant R_{i}$. Hence $1 \neq\left[Y, V_{j}\right] \leqslant Y$. Thus (i) holds, and we are done by the previous case.

Lemma 5.4. Suppose that $V_{j} \leqslant R_{i}$.
(a) Case 2 of 2.19 holds for $\left(L_{i}, Y_{i}\right)$. In particular, $Y_{i} \nLeftarrow L_{i}$ and $L_{i} \not M_{i}^{\dagger}$.
(b) $C_{V_{j}}\left(\overline{V_{i}}\right) \leqslant R_{i}$.
(c) L_{i} is $V_{i} V_{j}$-minimal.
(d) There exists $X_{i} \in Y_{i}^{L_{i}}$ such that $\left[V_{j}, X_{i}\right]=1$ and $N_{L_{i}}\left(X_{i}\right)$ is the unique maximal subgroup of L_{i} containing $V_{i} V_{j}$. In particular, $Y_{i} \not \& L_{i}$ and $L_{i}=\left\langle V_{j}, V_{j}^{x}\right\rangle V_{i}$ for every $x \in L_{i} \backslash N_{L_{i}}\left(X_{i}\right)$.

Proof. Since $V_{j} \leqslant R_{i}$ we know that L_{i} is a not a p-group, so Case 2 of 2.19 holds for $\left(L_{i}, Y_{i}\right)$. Then $N_{L_{i}}\left(Y_{i}\right)$ is a maximal and parabolic subgroup of L_{i}. In particular $Y_{i} \not \approx L_{i}$, and as V_{j} is a p subgroup of $L_{i}, V_{j}^{g} \leqslant N_{L_{i}}\left(Y_{i}\right)$ for some $g \in L_{i}$. By 5.2 a also $V_{i}^{g}=V_{i} \leqslant N_{L_{i}}\left(Y_{i}\right)$. Put $X_{i}:=Y_{i}^{g^{-1}}$. Then $V_{i} V_{j} \leqslant N_{L_{i}}\left(X_{i}\right)$ and $V_{i}=\left\langle X_{i}^{L_{i}}\right\rangle$.
1°. There exist $L_{i}^{*} \leqslant L_{i}$ and $h \in L_{i}$ such that for $Y_{i}^{*}:=X_{i}^{h}$:
(a) L_{i}^{*} is $V_{i} V_{j}$-minimal and $N_{L_{i}^{*}}\left(Y_{i}^{*}\right)$ is the unique maximal subgroup of L_{i}^{*} containing $V_{i} V_{j}$. In particular, $V_{j} \neq O_{p}\left(L_{i}^{*}\right)$.
(b) $\left\langle V_{j}^{L_{i}^{*}}\right\rangle V_{i}=L_{i}^{*}$ and $\left\langle V_{j}, V_{j}^{x}\right\rangle V_{i}=L_{i}^{*}$ for all $x \in L_{i}^{*} \backslash N_{L_{i}^{*}}\left(Y_{i}^{*}\right)$.

Observe that the L-Lemma 1.41 applies with $\left(L_{i}, V_{j}, N_{L_{i}}\left(X_{i}\right)\right)$ in place of (H, A, M). Hence, there exist $L \leqslant L_{i}$ and $h \in L_{i}$ such that for $Y_{i}^{*}:=X_{i}^{h}$

$$
\begin{equation*}
L=\left\langle V_{j}, V_{j}^{x}\right\rangle O_{p}(L) \quad \text { for all } x \in L \backslash N_{L}\left(Y_{i}^{*}\right) \tag{*}
\end{equation*}
$$

and $N_{L}\left(Y_{i}^{*}\right)$ is the unique maximal subgroup of L containing $V_{j} O_{p}(L)$.
Pick $t \in L \backslash N_{L}\left(Y_{i}^{*}\right)$ such that $L_{i}^{*}:=\left\langle V_{j}, V_{j}^{t}\right\rangle V_{i}$ is minimal. Let $x \in L_{i}^{*} \backslash N_{L_{i}^{*}}\left(Y_{i}^{*}\right)$. Then $\left\langle V_{j}, V_{j}^{x}\right\rangle V_{i} \leqslant L_{i}^{*}$, and the minimal choice of L_{i}^{*} shows $\left\langle V_{j}, V_{j}^{x}\right\rangle V_{i}=L_{i}^{*}$. By $(*), L=L_{i}^{*} O_{p}(L)$. Since $V_{j} O_{p}(L) \leqslant N_{L}\left(Y_{i}^{*}\right)<L$ we conclude that $V_{i} V_{j} \leqslant N_{L_{i}^{*}}\left(Y_{i}^{*}\right)<L_{i}^{*}$. In particular, $N_{L_{i}^{*}}\left(Y_{i}^{*}\right)$ is the unique maximal subgroup of L_{i}^{*} containing $V_{i} V_{j}$. Thus, there exists $x \in L_{i}^{*} \backslash N_{L_{i}^{*}}\left(Y_{i}^{*}\right)$, and so $L_{i}^{*}=\left\langle V_{j}, V_{j}^{x}\right\rangle V_{i}=\left\langle V_{j}^{L_{i}^{*}}\right\rangle$. Hence 1° holds.

We fix the groups L_{i}^{*} and Y_{i}^{*} given in 1^{1}; in particular, $Y_{i}^{*}=X_{i}^{h}=Y_{i}^{g^{-1} h}$ for certain $g, h \in L_{i}$. Furthermore we set $V_{i}^{*}:=\left\langle Y_{i}^{* L_{i}^{*}}\right\rangle$. Note that $V_{i} \leqslant C_{L_{i}^{*}}\left(V_{i}^{*}\right) \leqslant N_{L_{i}^{*}}\left(Y_{i}^{*}\right)$. Since $N_{L_{i}^{*}}\left(Y_{i}^{*}\right)$ is the unique maximal subgroup of L_{i}^{*} containing $V_{i} V_{j}$, the assumptions of 1.42 e are fulfilled with $\left(C_{L_{i}^{*}}\left(V_{i}^{*}\right), N_{L_{i}^{*}}\left(Y_{i}^{*}\right)\right)$ in place of $\left(N, L_{0}\right)$. Thus $C_{L_{i}^{*}}\left(V_{i}^{*}\right)$ is p-closed. Also by (a) $V_{j} \neq O_{p}\left(L_{i}^{*}\right)$, and it follows that
$2^{\circ} . \quad C_{V_{j}}\left(V_{i}^{*}\right) \leqslant O_{p}\left(L_{i}^{*}\right)$ and $\left[V_{j}, V_{i}^{*}\right] \neq 1$.
Next we show:
$3^{\circ} . \quad L_{i}^{*}$ is an Y_{i}^{*}-indicator.

By $1{ }^{\circ}$ (a) L_{i}^{*} is $V_{i} V_{j}$-minimal and so also p-minimal. Moreover, $N_{L_{i}^{*}}\left(Y_{i}^{*}\right)$ is a maximal and parabolic subgroup of L_{i}^{*}. Recall that $\left(V_{i}, V_{j}\right)$ is a symmetric pair with $V_{j} * R_{i}$. Thus, L_{i} is not a p-group and one of of the cases $2.192: 1$) or 2 :ii) holds for L_{i} and Y_{i}.

Suppose that 2.19 2:i holds for L_{i} and Y_{i}. Then $L_{i}^{*} \leqslant L_{i} \leqslant N_{G}\left(Q_{i}\right) \leqslant N_{G}\left(Q_{i}^{*}\right)$ and $Q_{i}^{\bullet} \leqslant$ $N_{G}\left(Y_{i}\right)$. Since $Y_{i}^{*}=X_{i}^{h}=Y_{i}^{g^{-1} h}$ and $g^{-1} h \in L_{i} \leqslant N_{G}\left(Q_{i}^{\bullet}\right)$, this implies $Q_{i}^{\bullet} \leqslant N_{G}\left(Y_{i}^{*}\right)$ and so L_{i}^{*} is an Y_{i}^{*}-indicator.

Suppose next that 2.19 2:ii holds for L_{i} and Y_{i}. Let $T_{i}^{*} \in \operatorname{Syl}_{p}\left(N_{L_{i}^{*}}\left(Y_{i}^{*}\right)\right)$ with $V_{i} V_{j} \leqslant T_{i}^{*}$ and let $T_{i} \in \operatorname{Syl}_{p}\left(N_{L_{i}}\left(Y_{i}^{*}\right)\right)$ with $T_{i}^{*} \leqslant T_{i}$. Since $S_{i} \cap L_{i} \in \operatorname{Syl}_{p}\left(N_{L_{i}}\left(Y_{i}\right)\right)$ and $Y_{i}^{*} \in Y_{i}^{L_{i}}$, there exists $t \in L_{i}$ with $Y_{i}^{t}=Y_{i}^{*}$ and $T_{i}=S_{i}^{t} \cap L_{i}$. Put $S_{i}^{*}:=S_{i}^{t}$. Then $T_{i}=S_{i}^{*} \cap L_{i}$, in particular $T_{i}^{*} \leqslant S_{i}^{*} \cap L_{i}^{*}$. Since $S_{i} \in S y l_{p}\left(N_{G}\left(Y_{i}\right)\right)$ we have $S_{i}^{*} \in \operatorname{Syl}_{p}\left(N_{G}\left(Y_{i}^{*}\right)\right)$. As $N_{L_{i}^{*}}\left(Y_{i}\right)$ is a parabolic subgroup of $L_{i}^{*}, T_{i}^{*} \in \operatorname{Syl}_{p}\left(L_{i}^{*}\right)$, and $T_{i}^{*} \leqslant S_{i}^{*} \cap L_{i}^{*}$ gives $T_{i}^{*}=S_{i}^{*} \cap L_{i}^{*}$. We collect:

$$
S_{i}^{*} \in \operatorname{Syl}_{p}\left(N_{G}\left(Y_{i}^{*}\right)\right), V_{i} V_{j} \leqslant T_{i}^{*}=S_{i}^{*} \cap L_{i}^{*} \in \operatorname{Syl}_{p}\left(N_{L_{i}^{*}}\left(Y_{i}^{*}\right)\right) \text { and } S_{i}^{*} \cap L_{i}=T_{i} \in \operatorname{Syl}_{p}\left(N_{L_{i}}\left(Y_{i}^{*}\right)\right)
$$

Also $\left[\Omega_{1} Z\left(S_{i}\right), O^{p}\left(L_{i}\right)\right] \neq 1$ implies $\left[\Omega_{1} Z\left(S_{i}^{*}\right), O^{p}\left(L_{i}\right)\right] \neq 1$.
Note that L_{i} is p-minimal, $N_{L_{i}}\left(Y_{i}^{*}\right)$ is the unique maximal subgroup of L_{i} containing $S_{i}^{*} \cap L_{i}$, $L_{i}^{*} \nless N_{L_{i}}\left(Y_{i}^{*}\right)$ and $L_{i}^{*}=O^{p}\left(L_{i}\right)\left(S_{i}^{*} \cap L_{i}^{*}\right)$. Hence

$$
L_{i}=\left\langle S_{i}^{*} \cap L_{i}, L_{i}^{*}\right\rangle=\left\langle S_{i}^{*} \cap L_{i}, O^{p}\left(L_{i}^{*}\right)\right\rangle .
$$

Thus $\left[\Omega_{1} Z\left(S_{i}^{*}\right), O^{p}\left(L_{i}^{*}\right)\right] \neq 1$. Moreover,

$$
L_{i}=\left\langle O^{p}\left(L_{i}^{*}\right)^{S_{i}^{*} \cap L_{i}}\right\rangle\left(S_{i}^{*} \cap L_{i}\right) \quad \text { and } \quad O^{p}\left(L_{i}\right)=\left\langle O^{p}\left(L_{i}^{*}\right)^{S_{i}^{*} \cap L_{i}}\right\rangle
$$

Suppose that $\left[Y_{i}^{*}, O^{p}\left(L_{i}^{*}\right)\right] \leqslant\left[\Omega_{1} Z\left(S_{i}^{*}\right), O^{p}\left(L_{i}^{*}\right)\right]$. Then

$$
\begin{aligned}
{\left[Y_{i}^{*}, O^{p}\left(L_{i}\right)\right] } & =\left[Y_{i}^{*},\left\langle O^{p}\left(L_{i}^{*}\right)^{S_{i}^{*} \cap L_{i}}\right\rangle\right]=\left\langle\left[Y_{i}^{*}, O^{p}\left(L_{i}^{*}\right)\right]_{i}^{S_{i}^{*} \cap L_{i}}\right\rangle \leqslant\left\langle\left[\Omega_{1} Z\left(S_{i}^{*}\right), O^{p}\left(L_{i}^{*}\right)\right]_{i}^{S_{i}^{*} \cap L_{i}}\right\rangle \\
& =\left[\Omega_{1} Z\left(S_{i}^{*}\right),\left\langle O^{p}\left(L_{i}^{*}\right)^{S_{i}^{*} \cap L_{i}}\right\rangle\right]
\end{aligned}
$$

Conjugation by t^{-1} shows $\left[Y_{i}, O^{p}\left(L_{i}\right)\right] \leqslant\left[\Omega_{1} Z\left(S_{i}\right), O^{p}\left(L_{i}\right)\right]$, a contradiction to 2.19 2:ii .
Hence $\left[Y_{i}^{*}, O^{p}\left(L_{i}^{*}\right)\right]\left[\Omega_{1} Z\left(S_{i}^{*}\right), O^{p}\left(L_{i}^{*}\right)\right]$ and so also in this case L_{i}^{*} is a Y_{i}^{*} indicator.
By 2° and 3° we know that $\left[V_{i}^{*}, V_{j}\right]=\neq 1$ and that L_{i}^{*} is a Y_{i}^{*}-indicator. So $\left(Y_{i}^{*}, Y_{j}\right)$ is a symmetric pair, and the minimality of $\left|L_{i} \| L_{j}\right|$ yields $L_{i}=L_{i}^{*}$. Hence $V_{i}^{*}=V_{i}$, and 2° gives $C_{V_{j}}\left(V_{i}\right) \leqslant O_{p}\left(L_{i}^{*}\right)=R_{i}$. Since V_{j} normalizes Y_{i}^{*} we have $\left[V_{j}, Y_{i}^{*}\right] \leqslant Y_{i}^{*}$. If $\left[V_{j}, Y_{i}^{*}\right] \neq 1$ then hypothesis 5.3(i) is satisfied, and 5.3 (b) shows that $L_{i}=R_{i}$. But then $V_{j} \leqslant R_{i}$, contrary to the hypothesis of the lemma. If $\left[V_{j}, Y_{i}^{*}\right]=1$ then 1° shows that (b) holds with Y_{i}^{*} in place of X_{i}.

Recall from Definition A. 7 that a strong dual offender A on a module V satisfies $[V, A]=[v, A]$ for every $v \in V \backslash C_{V}(A)$.

Lemma 5.5. Suppose that there exists $A \leqslant M$ such that the following hold:
(i) A is a non-trivial strong dual offender on Y_{M}.
(ii) If $\left|A / C_{A}\left(Y_{M}\right)\right|=2$, then $C_{G}\left(\left[Y_{M}, A\right]\right) \not M^{\dagger}$.

Then Theorem E holds.
Proof. By 1.57 b Y_{M} is a faithful p-reduced $Q!$-module for \bar{M} with respect to \bar{Q}. Since \bar{A} is a non-trivial strong dual offender on Y_{M}, we can apply C.27. This shows that Theorem E holds, except that, in Case C.27 4) ([YM, M] a natural $O_{2 n}^{\epsilon}(2)$-module for M), we still have to verify that $C_{G}(y)$ is not of characteristic 2 for every non-singular element $y \in\left[Y_{M}, M\right]$.

By C.27 4:c) $|\bar{A}|=2$. Since \bar{A} is a strong dual offender, this gives $\left|Y_{M} / C_{Y}(A)\right|=2$ and $\left|\left[Y_{M}, A\right]\right|=2$. Let $1 \neq y \in\left[Y_{M}, A\right]$. Then, for example by B.9 c), y is non-singular, and by 3.1 a every non-singular element of $\left[Y_{M}, M\right]$ is conjugate to y. By Hypothesis (ii) $C_{G}\left(\left[Y_{M}, A\right]\right) \not M^{\dagger}$ and so also $C_{G}(y) \not M^{\dagger}$. Hence the hypothesis of Theorem C is fulfilled, and we conclude that $C_{G}(y)$ is not of characteristic 2 .

Lemma 5.6. Suppose that $V_{j} \approx R_{i}$ and let $D \leqslant V_{j}$.
(a) $\left[Y_{i}, O^{p}\left(L_{i}\right)\right] \neq 1$. In particular, $\left[V_{i}, O^{p}\left(L_{i}\right)\right] \neq 1$ and there exists non-central chief factor for L_{i} on V_{i}.
(b) L_{i} is p-irreducible.
(c) Let X be any L_{i}-section of V_{j} with $\left[X, O^{p}\left(L_{i}\right)\right] \neq 1$. Then $C_{D}(X) \leqslant D \cap R_{j}$. In particular, if $D \neq R_{j}$ then $[X, D] \neq 1$.
(d) Let X be any L_{i}-section of V_{j} with $\left[X, O^{p}\left(L_{i}\right)\right] \neq 1$ and $\left[X, O_{p}\left(L_{i}\right)\right]=11^{2}$. Then $C_{D}(X)=$ $D \cap R$ and

$$
\left|X / C_{X}(D)\right| \geqslant\left|D / C_{D}(X)\right|=\left|D / D \cap R_{i}\right|=\left|D R_{i} / R_{i}\right|
$$

Proof. Note first that by 5.4 a Case 2 of 2.19 holds for $\left(L_{i}, Y_{i}\right)$. In particular, L_{i} is p-minimal.
(a): This holds by 5.2 b).
(b): Since L_{i} is p-minimal, L_{i} is also p-irreducible, see 1.37 .
(c): As V_{i} is an elementary abelian p-group, X is an $\mathbb{F}_{p} L_{i}$-module. Since L_{i} is p-irreducible and D is p-subgroup of $L_{i}, 1.33$ b) shows that $C_{D}(X) \leqslant O_{p}\left(L_{i}\right)=R_{i}$. Thus (c) holds.
(d): By (c) $C_{D}(X) \leqslant D \cap R_{i}$, and since by hypothesis R_{i} centralizes X, we get $C_{D}(X)=D \cap R_{i}$. Since L_{i} is p-minimal, C.13 ed shows that no subgroup of L_{i} is an over-offender on X. As $D \leqslant V_{i}, D$ is an elementary abelian p-group, and we conclude that $\left|X / C_{X}(D)\right| \geqslant\left|D / C_{D}(X)\right|$. Together with $C_{D}(X)=D \cap X$ this gives (d).

Lemma 5.7. Suppose that $Y_{j} * R_{i}$.
(a) $\left[V_{i}, V_{j} \cap R_{i}\right] \leqslant Y_{i} \cap Z\left(L_{i}\right)$.
(b) $Y_{j} \cap Z\left(L_{i}\right)=1$.
(c) $\left[V_{i} \cap R_{j}, V_{j}\right] \cap Z\left(L_{i}\right)=1$.
(d) $\left[V_{i} \cap R_{j}, V_{j} \cap R_{i}\right]=1$.
(e) $C_{V_{i}}\left(V_{j}\right)=\left[V_{i}, V_{j}\right] C_{V_{i}}\left(L_{i}\right)=\left[V_{i}, v\right] C_{V_{i}}\left(L_{i}\right)=C_{V_{i}}(v)=C_{V_{i}}\left(Y_{j}\right)$ for every $v \in V_{j} \backslash R_{i}$.

Proof. Since $V_{j} \not \approx R_{i}$ we can apply 5.4. By 5.4 d there exists $X_{i} \in Y_{i}^{L_{i}}$ with $\left[X_{i}, V_{j}\right]=1$ and $(+)$

$$
L_{i}=\left\langle V_{j}, V_{j}^{x}\right\rangle V_{i} \quad \text { for every } x \in L_{i} \backslash N_{L_{i}}\left(X_{i}\right)
$$

Recall from 2.20 that V_{i} and V_{j} are elementary abelian p-groups.
(a): Let $t \in L_{i}$. Since $\left[X_{i}, V_{j}\right]=1$ we have $\left[X_{i}^{t}, V_{j}^{t}\right]=1$. By 5.2 a) $\left[X_{i}^{t}, R_{i}\right] \leqslant X_{i}^{t} \cap R_{i}$. As V_{j} is abelian, it follows that

$$
\left[X_{i}^{t}, V_{j} \cap R_{i}\right] \leqslant X_{i}^{t} \cap V_{j} \leqslant C_{X_{i}^{t}}\left(\left\langle V_{j}, V_{j}^{t}\right\rangle V_{i}\right)
$$

If $t \in N_{L_{i}}\left(X_{i}\right)$ then $\left[X_{i}^{t}, V_{j}\right]=1$, and if $t \notin N_{L_{i}}\left(X_{i}\right)$ then by $(+)$ and the previous line $\left[X_{i}^{t}, V_{j} \cap R_{i}\right] \leqslant$ $X_{i}^{t} \cap Z\left(L_{i}\right)$. Since $X_{i}^{t} \cap Z\left(L_{i}\right)=Y_{i} \cap Z\left(L_{i}\right)$ for every $t \in L_{i}$, a) holds.
(b): Suppose that $Y_{j} \cap Z\left(L_{i}\right) \neq 1$. Then $N:=N_{G}\left(Y_{j} \cap Z\left(L_{i}\right)\right)$ is a p-local subgroup of G. Also $O_{p}\left(M_{j}\right) \leqslant N$ since $Y_{j} \leqslant Z\left(O_{p}\left(M_{j}\right)\right)$. Hence $Y_{j} \leqslant O_{p}(N)$ since Y_{j} is short ${ }^{3}$ But this contradicts $L_{i} \leqslant N$ and $Y_{j} \leqslant R_{i}$.
(c): According to (b) it suffices to show that

$$
\begin{equation*}
\left[V_{j}, V_{i} \cap R_{j}\right] \leqslant Y_{j} \tag{*}
\end{equation*}
$$

If $V_{i} \leqslant R_{j}$, then 5.3 gives $V_{j}=Y_{j}$ and so $(*)$ holds. If $V_{i} * R_{j}$, then the hypothesis of this lemma is satisfied with i and j interchanged, and (a) yields (*).
(d): By (a) and (c), $\left[V_{i} \cap R_{j}, V_{j} \cap R_{i}\right] \leqslant Z\left(L_{i}\right) \cap\left[V_{i} \cap R_{j}, V_{j}\right]=1$.
(e): Let $v \in V_{j} \backslash R_{i}$. By 5.4 (c), (d) L_{i} is $V_{i} V_{j}$-minimal and $N_{L_{i}}\left(X_{i}\right)$ is a maximal subgroup of L_{i} containing $V_{i} V_{j}$. So by 1.42 d$) \bigcap N_{L_{i}}\left(X_{i}\right)^{L_{i}}$ is p-closed. Hence there exists $t \in L_{i}$ with $v \notin N_{L_{i}}\left(X_{i}^{t}\right)$. Thus by (+)

$$
L_{i}=\left\langle V_{j}^{t}, V_{j}^{t v}\right\rangle V_{i}=\left\langle v, V_{j}^{t}\right\rangle V_{i}
$$

[^8]Since V_{i} normalizes V_{j} and V_{j} is abelian, $\left[V_{i}, V_{j}\right] \leqslant V_{i} \cap V_{j} \leqslant C_{V_{i}}\left(V_{j}\right)$. As $\left[X_{i}^{t}, V_{j}^{t}\right]=1$, we get

$$
C_{V_{i}}(v) \cap\left[V_{i}, V_{j}^{t}\right] X_{i}^{t} \leqslant C_{V_{i}}(v) \cap C_{V_{i}}\left(V_{j}^{t}\right)=C_{V_{i}}\left(\left\langle v, V_{j}^{t}\right\rangle V_{i}\right)=C_{V_{i}}\left(L_{i}\right)
$$

and

$$
V_{i}=\left\langle Y_{i}^{L_{i}}\right\rangle=\left\langle X_{i}^{t L_{i}}\right\rangle=\left[V_{i}, L_{i}\right] X_{i}^{t}=\left[V_{i}, v\right]\left[V_{i}, V_{j}^{t}\right] X_{i}^{t}
$$

Therefore,

$$
C_{V_{i}}(v)=\left[V_{i}, v\right]\left(C_{V_{i}}(v) \cap\left[V_{i}, V_{j}^{t}\right] X_{i}^{t}\right)=\left[V_{i}, v\right] C_{V_{i}}\left(L_{i}\right) \leqslant\left[V_{i}, V_{j}\right] C_{V_{i}}\left(L_{j}\right) \leqslant C_{V_{i}}\left(V_{j}\right) \leqslant C_{V_{i}}(v)
$$

so equality holds everywhere in the preceding chain of inclusions; in particular $C_{V_{i}}\left(V_{j}\right)=C_{V_{i}}(v)$. Since $Y_{j} \not R_{i}$ we can choose $v \in Y_{j} \backslash R_{i}$. Then $v \in Y_{j} \leqslant V_{j}$, and we conclude that also $C_{V_{i}}\left(Y_{j}\right)=$ $C_{V_{i}}\left(V_{j}\right)$. Thus holds.

Lemma 5.8. Suppose that $Y_{j} \$ R_{i}$ and L_{i} has a unique non-central chief factor on V_{i}. Then Theorem E holds.

Proof. As $Y_{j} \leqslant R_{i}$, 5.4 a shows that we are in case 2.19 2). Suppose that 2.19 2:ii) holds for the Y_{i}-indicator L_{i}. Then $\left[\Omega_{1} Z\left(S_{i}\right), O^{p}\left(L_{i}\right)\right] \neq 1$, and $\left[Y_{i}, O^{p}\left(L_{i}\right)\right] *\left[\Omega_{1} Z\left(S_{i}\right), O^{p}\left(L_{i}\right)\right]$ (see 5.1 b). Hence L_{i} has a non-trivial chief factor on both, $\left[\Omega_{1} Z\left(S_{i}\right), O^{p}\left(L_{i}\right)\right]$ and $V_{i} /\left[\Omega_{1} Z\left(S_{i}\right), O^{p}\left(L_{i}\right)\right]$, a contradiction.

Thus 2.19 2:i holds for L_{i}, so $L_{i} \leqslant N_{G}\left(Q_{i}\right) \leqslant N_{G}\left(Q_{i}^{\bullet}\right)$ and $Q_{i}^{\bullet} \leqslant N_{G}\left(Y_{i}\right)$. Since $V_{i}=\left\langle Y_{i}^{L_{i}}\right\rangle$, we conclude that $Q_{i}^{\bullet} \leqslant N_{G}\left(V_{i}\right)$. Hence $L_{i} Q_{i}^{\bullet}$ acts on $V_{i}, Q_{i}^{\bullet} \leqslant O_{p}\left(L_{i} Q_{i}^{\bullet}\right)$ and Q_{i}^{\bullet} centralizes any chief factor of $L_{i} Q_{i}^{\bullet}$ on V_{i}. It follows that $L_{i} Q_{i}^{\bullet}$ has a unique non-central chief factor on V_{i}. Set $A_{i}:=\left[O^{p}\left(L_{i} Q_{i}^{\bullet}\right), O_{p}\left(L_{i} Q_{i}^{\bullet}\right)\right]$.
1°. Suppose that $\left[C_{V_{i}}\left(A_{i}\right), O^{p}\left(L_{i}\right)\right]=1$. Then Theorem E holds.
Note that we can apply A. 45 with $\left(L_{i} Q_{i}^{\bullet}, Y_{i}, A_{i}, S_{i}, V_{i}\right)$ in place of (H, Y, R, T, V). We conclude that one of the following holds:
(A) $\left[V_{i}, A_{i}\right]=1$,
(B) A_{i} is a non-trivial strong dual offender on Y_{i},
(C) There exist $A_{i} O^{p}\left(L_{i} Q_{i}^{\bullet}\right)$-invariant subgroups $Z_{1} \leqslant X_{1} \leqslant Z_{2} \leqslant X_{2}$ of V_{i} such that for $l=1,2, X_{l} / Z_{l}$ is a non-central simple $O^{p}\left(L_{i} Q_{i}^{\bullet}\right)$-module and $X_{l} \cap Y_{i} \leqslant Z_{l}$.
Suppose that A holds. Then $C_{V_{i}}\left(A_{i}\right)=V_{i}$, a contradiction since $\left[C_{V_{i}}\left(A_{i}\right), O^{p}\left(L_{i}\right)\right]=1$ in the current case while L_{i} has a non-central chief factor on V_{i}.

Suppose that (B) holds. By A.32(a) any strong dual offender is quadratic and so $\left[Y_{i}, A_{i}\right] \leqslant$ $C_{V_{i}}\left(A_{i}\right) \leqslant C_{V_{i}}\left(O^{p}\left(L_{i}\right)\right)$. Since $O^{p}\left(L_{i}\right) \leqslant M_{i}^{\dagger}$ by 5.2 b$)$, this gives $C_{G}\left(\left[Y_{i}, A_{i}\right]\right) \not M_{i}^{\dagger}$. Thus the hypothesis of 5.5 is fulfilled, and we conclude that Theorem E holds.

Suppose that (C) holds. Let $l \in\{1,2\}$ and put $X_{l}^{*}:=\left\langle\left(X_{l} \cap Y_{i}\right)^{O^{p}\left(L_{i}\right)}\right\rangle$. Then $X_{1}^{*} \leqslant X_{1} \leqslant Z_{2}$ and $X_{1}^{*} \leqslant X_{2}^{*}$. Since X_{l} / Z_{l} is a non-central simple $O^{p}\left(L_{i}\right)$-module and $X_{l} \cap Y_{i} \leqslant Z_{l}$, we have $\left[X_{l}^{*}, O^{p}\left(L_{i}\right)\right] \neq Z_{l}$. Thus $\left[X_{1}^{*}, O^{p}\left(L_{i}\right)\right] \neq 1$, and since $X_{1}^{*} \leqslant Z_{2},\left[X_{2}^{*}, O^{p}\left(L_{i}\right)\right] * X_{1}^{*}$. By 5.4 d V_{j} centralizes an L_{i}-conjugate of Y_{i}. Thus there exists $t \in L_{i}$ with $\left[Y_{i}, V_{j}^{t}\right]=1$. Also by 5.4 c), L_{i} is $V_{i} V_{j}$ minimal and so $L_{i}=O^{p}\left(L_{i}\right) V_{i} V_{j}=O^{p}\left(L_{i}\right) V_{i} V_{j}^{t}$. As $V_{i} V_{j}^{t}$ centralizes Y_{i} and so also $X_{l} \cap Y_{i}$, this implies that $X_{l}^{*}=\left\langle\left(X_{l} \cap Y_{i}\right)^{L_{i}}\right\rangle$. Hence X_{l}^{*} is L_{i}-invariant for $l=1,2$, and L_{i} has at least two non-central chief factors on V_{i}, a contradiction.
2°. Suppose that $\left[C_{V_{i}}\left(A_{i}\right), O^{p}\left(L_{i}\right)\right] \neq 1$. Then Theorem E holds.
Put $D_{i}:=C_{V_{i}}\left(O_{p}\left(L_{i} Q_{i}^{\bullet}\right)\right)$. Since Q_{i} is large, $C_{G}\left(Q_{i}\right) \leqslant Q_{i} \leqslant Q_{i}^{\bullet}$, so $D_{i} \leqslant Z\left(Q_{i}^{\bullet}\right) \leqslant Z\left(Q_{i}\right)$. Also as $Q_{i}^{\bullet} \leqslant O_{p}\left(L_{i} Q_{i}^{\bullet}\right)$, we have $D_{i} \leqslant C_{V_{i}}\left(A_{i}\right)$ and

$$
\left[O_{p}\left(L_{i} Q_{i}^{\bullet}\right), O^{p}\left(L_{i}\right)\right] \leqslant A_{i} \leqslant C_{L_{i} Q_{i}^{\bullet}}\left(C_{V_{i}}\left(A_{i}\right)\right)
$$

so the $P \times Q$-Lemma implies

$$
\begin{equation*}
\left[D_{i}, O^{p}\left(L_{i}\right)\right] \neq 1 \tag{*}
\end{equation*}
$$

Since $V_{j} * R_{i}, 5.6$ c applied with $\left(V_{j}, D_{i}\right)$ in place of (D, X) gives $\left[V_{j}, D_{i}\right] \neq 1$. Moreover, as [D_{i}, R_{i}] $=1$ we can also apply 5.6 d) and conclude that

$$
\begin{equation*}
\left|V_{j} / V_{j} \cap R_{i}\right|=\left|V_{j} / C_{V_{j}}\left(D_{i}\right)\right| \leqslant\left|D_{i} / C_{D_{i}}\left(V_{j}\right)\right| \tag{**}
\end{equation*}
$$

Suppose for a contradiction that $\left[V_{j}, D_{i} \cap R_{j}\right] \neq 1$ and choose $Y_{j}^{*} \in Y_{j}^{L_{j}}$ with $\left[Y_{j}^{*}, D_{i} \cap R_{j}\right] \neq 1$. By 5.2 a $\left[Y_{j}^{*}, R_{j}\right] \leqslant Y_{j}^{*}$ and so $\left[Y_{j}^{*}, D_{i} \cap R_{j}\right] \leqslant D_{i} \cap Y_{j}^{*}$. Thus $D_{i} \cap Y_{j}^{*} \neq 1$. Since $D_{i} \leqslant Z\left(Q_{i}^{\bullet}\right)$ and Y_{j}^{*} is short and so also Q-short, we conclude from 2.3 c$)$ that $\left[Y_{j}^{*}, D_{i}\right]=1$, a contradiction.

We have shown that $\left[V_{j}, D_{i}\right] \neq 1$ and $\left[V_{j}, D_{i} \cap R_{j}\right]=1$. Hence $D_{i} \nless R_{j}$ and so also $V_{i} \nless R_{j}$. Thus we can apply 5.6 with the roles of i and j interchanged. In particular, there exists a non-central chief factor W for L_{j} on V_{j}. Moreover, 5.6 d) shows that $C_{D_{i}}(W)=D_{i} \cap R_{j}=C_{D_{i}}\left(V_{j}\right)$ and

$$
\left|V_{j} / C_{V_{j}}\left(D_{i}\right)\right| \geqslant\left|W / \overline{C_{W}}\left(D_{i}\right)\right| \geqslant\left|D_{i} / C_{D_{i}}(W)\right|=\left|D_{i} / C_{D_{i}}\left(V_{j}\right)\right|
$$

Combined with (**) this gives

$$
\left|W / C_{W}\left(D_{i}\right)\right|=\left|V_{j} / C_{V_{j}}\left(D_{i}\right)\right|=\left|D_{i} / C_{D_{i}}\left(V_{j}\right)\right|
$$

In particular, there exists a unique non-central chief factor of L_{j} in V_{j}, so also L_{j} satisfies the hypothesis of this lemma (for some L_{i}-conjugate of Y_{i}). Put $A_{j}:=\left[O^{p}\left(L_{j} Q_{j}^{\bullet}\right), O_{p}\left(L_{j} Q_{j}^{\bullet}\right)\right]$ and $D_{j}:=C_{V_{j}}\left(O_{p}\left(L_{j} Q_{j}^{\bullet}\right)\right)$.

If $\left[C_{V_{j}}\left(A_{j}\right), O^{p}\left(L_{j}\right)\right]=1$, then 1^{0}, with j in place of i, shows that we are done. Otherwise $(*)$, again with j in place of i, gives $\left[D_{j}, O^{p}\left(L_{j}\right)\right] \neq 1$. Since $D_{i} * R_{j}$, we conclude from 5.6 c that $1 \neq\left[D_{i}, D_{j}\right] \leqslant D_{i} \cap D_{j}$. As $D_{i} \leqslant Z\left(Q_{i}\right)$, this contradicts 2.3 a).

Lemma 5.9. Suppose that $V_{j} \leqslant R_{i}$. Then Theorem E holds.
Proof. By 5.3 $Y_{i}=V_{i}$. Assume that also $V_{i} \leqslant R_{j}$. Then $V_{i}=Y_{i}$ and $V_{j}=Y_{j}$ and so $1 \neq\left[Y_{i}, Y_{j}\right] \leqslant V_{i} \cap V_{j}=Y_{i} \cap Y_{j}$. Hence Y_{M} is not asymmetric in G, a contradiction.

Thus $Y_{i}=V_{i} \leqslant R_{j}$, and we can apply 5.7 with the roles of i and j interchanged. By 5.7 d

$$
\left[V_{j}, V_{i} \cap R_{j}\right]=\left[V_{j} \cap R_{i}, V_{i} \cap R_{j}\right]=1
$$

Since $Y_{i}=V_{j}$ and by 5.4 b, again with i and j interchanged, $C_{V_{i}}\left(V_{j}\right) \leqslant R_{j}$, this gives

$$
Y_{i} \cap R_{j}=V_{i} \cap R_{j}=C_{V_{i}}\left(V_{j}\right)=C_{Y_{i}}\left(V_{j}\right)
$$

By 5.7b $V_{i} \cap Z\left(L_{j}\right)=Y_{i} \cap Z\left(L_{j}\right)=1$, in particular $\left[Y_{i}, V_{j}\right] \cap C_{V_{j}}\left(L_{j}\right)=1$. Let $v \in Y_{i} \backslash C_{Y_{i}}\left(V_{j}\right)$. Then $v \in V_{i} \backslash R_{i}$, and 5.7 e] shows

$$
\left[Y_{i}, V_{j}\right] \leqslant C_{V_{j}}\left(V_{i}\right)=\left[v, V_{j}\right] C_{V_{j}}\left(L_{j}\right)
$$

Thus $\left[Y_{i}, V_{j}\right]=\left[v, V_{j}\right]\left(\left[Y_{i}, V_{j}\right] \cap C_{V_{j}}\left(L_{j}\right)\right)=\left[v, V_{j}\right]$. We conclude that V_{j} is a non-trivial strong dual offender on Y_{i}.

If $\left|V_{j} / C_{V_{j}}\left(Y_{i}\right)\right|>2$, we are done by 5.5. If $\left|V_{j} / C_{V_{j}}\left(Y_{i}\right)\right|=2$, then L_{j} has a unique non-central chief factor on V_{j} since $Y_{i} \not \approx R_{j}$ and L_{j} is 2-minimal. So we are done by 5.8.

LEMMA 5.10. Let q be a power of $p, H \cong S L_{2}(q)$, W a natural $S L_{2}(q)$-module for H and V an $\mathbb{F}_{p} H$-module isomorphic to $W^{n}, n \geqslant 1$, the direct sum of n copies of W. Let $B_{1}, B_{2} \leqslant H$ with $B_{1} B_{2} \in \operatorname{Syl}_{p}(H)$ and $B_{1} \neq 1 \neq B_{2}$. Suppose that there exists $A \leqslant V$ with $C_{V}\left(B_{1} B_{2}\right) \leqslant A$, $\left[A, B_{1}\right] \cap\left[A, B_{2}\right]=0$ and $|V / A| \leqslant\left|A / C_{V}\left(B_{1} B_{2}\right)\right|$. Then
(a) There exist a subfield \mathbb{F} of $\mathbb{K}:=\operatorname{End}_{H}(W)$ with $\operatorname{dim}_{\mathbb{F}} \mathbb{K}=2$, a 3-dimensional \mathbb{F}-subspace D of W with $C_{W}\left(B_{1} B_{2}\right) \leqslant D$ and $\mathbb{F}_{p} H$-monomorphisms $\alpha_{i}: W \rightarrow V, 1 \leqslant i \leqslant n$, such that

$$
V=\bigoplus_{i=1}^{n} V_{i} \quad \text { and } \quad A=\bigoplus_{i=1}^{n} A_{i}, \quad \text { where } V_{i}:=\alpha_{i}(W) \text { and } A_{i}:=\alpha_{i}(D)
$$

(b) $|V / A|=\left|A / C_{V}\left(B_{1} B_{2}\right)\right|$ and $\left|B_{1}\right|=\left|B_{2}\right|$.
(c) There exists $h \in H$ with $\left[A, B_{1}\right] \leqslant A^{h}$ and $\left[A, B_{2}\right] \cap A^{h}=0$.

Proof. Let \mathcal{I} be the set of simple $\mathbb{F}_{p} H$-submodules of V and put $Z:=C_{V}\left(B_{1} B_{2}\right)$. Since W is a natural $S L_{2}(q)$-module for $H, C_{W}\left(B_{1} B_{2}\right)=C_{W}\left(B_{i}\right)$ is a one dimensional \mathbb{F}_{q}-submodule of W. So $Z=C_{V}\left(B_{i}\right), i=1,2$, since $V \cong W^{n}$. Observe that $V=\bigcup_{I \in \mathcal{I}}(I+Z)$ and so, since $Z \leqslant A$, $A=\bigcup_{I \in \mathcal{I}}((A \cap I)+Z)$. Put

$$
\mathcal{J}:=\{I \in \mathcal{I} \mid A \cap I \nVdash Z\} \quad \text { and } \quad X:=\sum \mathcal{J} .
$$

Then $A=(X \cap A)+Z$ and $C_{X}\left(B_{1} B_{2}\right)=X \cap Z \leqslant X \cap A$. By assumption $|V / A| \leqslant\left|A / C_{V}\left(B_{1} B_{2}\right)\right|=$ $|A / Z|$. Thus

$$
\left.\begin{array}{rllll}
|X \cap A / X \cap Z| & = & |X \cap A /(X \cap A) \cap Z| & = & |(X \cap A)+Z / Z|
\end{array}\right)=|A / Z|
$$

So $(X, X \cap A)$ in place of (V, A) fulfills the assumption of the lemma. Suppose that $X \neq V$. Then induction on $|V|$ gives $|X \cap A / X \cap Z|=|X / X \cap A|$. Thus equality holds in (*) and so $V=X+A=X+(A \cap X)+Z=X+Z$. But then $\left[V, B_{1} B_{2}\right] \leqslant X$, a contradiction.

Thus $X=V$ and so there exist $V_{1}, \ldots, V_{n} \in \mathcal{J}$ with $V=\bigoplus_{i=1}^{n} V_{i}$. Pick $a \in W \backslash C_{W}\left(B_{1} B_{2}\right)$ and choose an $\mathbb{F}_{p} H$-isomorphism $\alpha_{i}: W \rightarrow V_{i}$ for each $1 \leqslant i \leqslant n$. By definition of $\mathcal{J}, V_{i} \cap Z<V_{i} \cap A$. Also $W=C_{W}\left(B_{1} B_{2}\right)+\mathbb{K} a$ and so there exists $k_{i} \in \mathbb{K}$ with $\alpha_{i}\left(k_{i} a\right) \in V_{i} \cap A \backslash V_{i} \cap Z$. Replacing α_{i} by $\alpha_{i} \circ k_{i}$ we may assume that $a_{i}:=\alpha_{i}(a) \in V_{i} \cap A \backslash V_{i} \cap Z$. View V as a \mathbb{K}-module such that each α_{i} is a $\mathbb{K} H$-isomorphism.

If $d \in A$ then $d+Z=\left(\sum_{i=1}^{n} f_{i}(d) a_{i}\right)+Z$ for some $f_{i}(d) \in \mathbb{K}$. Put $\mathbb{F}_{i}:=\left\{f_{i}(d) \mid d \in A\right\}$. Then \mathbb{F}_{i} is an additive subgroup of \mathbb{K} and $A \leqslant Z+\sum_{i=1}^{n} \mathbb{F}_{i} a_{i}$.

For $l=1,2$ fix $1 \neq b_{l} \in B_{l}$ and put $x_{l}:=\left[a, b_{l}\right]$ and $x_{i l}:=\alpha_{i}\left(x_{l}\right)$. Define $\mathbb{K}_{l} \subseteq \mathbb{K}$ by $\left[a, B_{l}\right]=\mathbb{K}_{l} x_{l}$. Since $\left[a, b_{l}\right]=1 x_{l}, 1 \in \mathbb{K}_{l}$. Also \mathbb{K}_{l} is an additive subgroup of \mathbb{K} and $\left|\mathbb{K}_{l}\right|=$ $\left|B_{l}\right|$. Thus $Z_{l}:=\sum_{i=1}^{n} \mathbb{K}_{l} x_{i l}$ has order $\left|B_{l}\right|^{n}$. Since $\left[a_{i}, B_{l}\right]=\mathbb{K}_{l} x_{i l}$ we have $Z_{l} \leqslant\left[A, B_{l}\right]$. From $\left[A, B_{1}\right] \cap\left[A, B_{2}\right]=0$ we get $Z_{1} \cap Z_{2}=0$ and $B_{1} \cap B_{2}=1$. We conclude that

$$
\left|Z_{1}+Z_{2}\right|=\left|Z_{1}\right|\left|Z_{2}\right|=\left|B_{1}\right|^{n}\left|B_{2}\right|^{n}=\left|B_{1} B_{2}\right|^{n}=q^{n}=|Z|
$$

Thus $Z=Z_{1} \oplus Z_{2}$ and $\left[A, B_{l}\right]=Z_{l}$.
Fix m and l with $1 \leqslant m \leqslant n$ and $l \in\{1,2\}$. Let $g_{m} \in \mathbb{F}_{m}$ and $k_{l} \in \mathbb{K}_{l}$. Then there exists $d \in A$ with $g_{m}=f_{m}(d)$ and $e \in B_{l}$ with $k_{l} x_{l}=[a, e]$. Since α_{i} is an H-monomorphism we get $k_{l} x_{i l}=\left[a_{i}, e\right]$ for all $1 \leqslant i \leqslant n$. Thus

$$
[d, e]=\left[\sum_{i=1}^{n} f_{i}(d) a_{i}, e\right]=\sum_{i=1}^{n} f_{i}(d)\left[a_{i}, e\right]=\sum_{i=1}^{n} f_{i}(d) k_{l} x_{i l}
$$

As $[d, e] \in\left[A, B_{l}\right]=Z_{l}$ we get that $f_{i}(d) k_{l} x_{i l} \in \mathbb{K}_{l} x_{i l}$ and so $f_{i}(d) k_{l} \in \mathbb{K}_{l}$ for all $1 \leqslant i \leqslant n$. For $i=m$ we infer $g_{m} k_{l} \in \mathbb{K}_{l}$ and so

$$
\begin{equation*}
\mathbb{F}_{m} \mathbb{K}_{l} \subseteq \mathbb{K}_{l} \tag{**}
\end{equation*}
$$

Since $1 \in \mathbb{K}_{l}$, we conclude $\mathbb{F}_{m} \leqslant \mathbb{K}_{l}$ and so $\left|\mathbb{F}_{m}\right| \leqslant \min \left(\left|\mathbb{K}_{1}\right|,\left|\mathbb{K}_{2}\right|\right)$. From $\left|\mathbb{K}_{1}\right|\left|\mathbb{K}_{2}\right|=\left|B_{1}\right|\left|B_{2}\right|=q$ we get $\left|\mathbb{F}_{m}\right| \leqslant \sqrt{q}$ for all $1 \leqslant m \leqslant n$. Recall that $A \leqslant Z+\sum_{i=1}^{n} \mathbb{F}_{i} a_{i}$, so $|A / Z| \leqslant \prod_{i=1}^{n}\left|\mathbb{F}_{i}\right| \leqslant \sqrt{q^{n}}$. As $|V / Z|=q^{n}$ and $|V / A| \leqslant|A / Z|$, this gives $|V / A|=|A / Z|$, and equality holds in all of the preceding inequalities. So $\left|\mathbb{F}_{m}\right|=\left|\mathbb{K}_{l}\right|=\sqrt{q}, \mathbb{F}_{m}=\mathbb{K}_{l}$, and $A=Z+\sum_{i=1}^{n} \mathbb{F}_{i} a_{i}$. In particular, $\left|B_{l}\right|=\left|\mathbb{K}_{l}\right|=\sqrt{q}$ and $\left|B_{1}\right|=\left|B_{2}\right|$.

Hence $\mathbb{F}:=\mathbb{F}_{m}=\mathbb{K}_{l}$ for all $1 \leqslant m \leqslant n$ and $1 \leqslant l \leqslant 2$, and $A=Z+\sum_{i=1}^{n} \mathbb{F} a_{i}$. By $(* *) \mathbb{F} \mathbb{F} \subseteq \mathbb{F}$ and so \mathbb{F} is a subring of \mathbb{K}. Thus \mathbb{F} is a finite integral domain and so a field. Since $|\mathbb{K}|=q=|\mathbb{F}|^{2}$, $\operatorname{dim}_{\mathbb{F}} \mathbb{K}=2$. Put $E:=C_{W}\left(B_{1} B_{2}\right)$ and $D:=E+\mathbb{F} a$. Then $A=Z+\sum_{i=1}^{n} \mathbb{F} a_{i}=\sum_{i=1}^{n} \alpha_{i}(D)$. So a and (b) hold.

Let $h \in H \backslash N_{H}(E)$. Note that $W=E \oplus E^{h}$. So $D^{h}=\left(D^{h} \cap E\right) \oplus E^{h}$ and thus $D^{h} \cap E$ is a 1-dimensional \mathbb{F}-subspace of E. Since $N_{H}(E)$ acts transitively on E, we can choose h such that $x_{1} \in D^{h} \cap E$. Then $D^{h} \cap E=\mathbb{F} x_{1}$. Applying the α_{i} 's gives $A_{i}^{h} \cap Z=\mathbb{F} x_{i 1}$. As $A=\bigoplus_{i=1}^{m} A_{i}$ and $Z=\bigoplus_{i=1}^{m} V_{i} \cap Z$, this yields $A^{h} \cap Z=\sum_{i=1}^{n} \mathbb{F} x_{i 1}=\left[A, B_{1}\right]$. In particular, $\left[A, B_{1}\right] \leqslant A^{h}$ and, since $\left[A, B_{2}\right] \leqslant Z$,

$$
\left[A, B_{2}\right] \cap A^{h}=\left[A, B_{2}\right] \cap\left(A^{h} \cap Z\right) \leqslant\left[A, B_{2}\right] \cap\left[A, B_{1}\right]=0
$$

So (c) is proved.

Lemma 5.11. Suppose that $Y_{1} \approx R_{2}$ and $Y_{2} * R_{1}$. Then Theorem E holds.
Proof. Since $Y_{1} \nless R_{2}$ and $Y_{2} \nless R_{2}$, we can apply 5.4 with $(i, j)=(1,2)$ and $(i, j)=(2,1)$. As the hypothesis is symmetric in i and j we choose our notation such that

$$
1^{\circ} . \quad\left|V_{1} R_{2} / R_{2}\right| \geqslant\left|V_{2} R_{1} / R_{1}\right|
$$

By 5.7 e $C_{V_{i}}\left(V_{j}\right)=C_{V_{i}}\left(Y_{j}\right)$. Also 5.4 (applied to (j, i) in place of $\left.(i, j)\right)$ gives $C_{V_{i}}\left(V_{j}\right) \leqslant R_{j}$. Thus
$2^{\circ} . \quad C_{V_{i}}\left(Y_{j}\right)=C_{V_{i}}\left(V_{j}\right) \leqslant V_{i} \cap R_{j}$.
Let r_{i} be the number of non-central chief factors for L_{i} on V_{i}. By 5.6 we have $\left[V_{i}, O^{p}\left(L_{i}\right)\right] \neq 1$. So $r_{i} \geqslant 1$. If $r_{i}=1$ then 5.8 shows that Theorem E holds. So we may assume that $r_{i} \geqslant 2$ for $i=1,2$. By 5.6 d) we have

$$
\left|X / C_{X}\left(V_{j}\right)\right| \geqslant\left|V_{j} / C_{V_{j}}(X)\right|=\left|V_{j} R_{i} / R_{i}\right|
$$

for any non-central chief factor X of L_{i} on V_{i}. Thus
3 $. \quad\left|V_{i} / C_{V_{i}}\left(V_{j}\right)\right| \geqslant\left|V_{j} R_{i} / R_{i}\right|^{r_{i}} \geqslant\left|V_{j} R_{i} / R_{i}\right|^{2}$. Moreover, if $\left|V_{i} / C_{V_{i}}\left(V_{j}\right)\right|=\left|V_{j} R_{i} / R_{i}\right|^{2}$, then $r_{i}=2$ and V_{j} is a non-trivial offender on each non-central chief factor of L_{i} on V_{i}.

As $C_{V_{i}}\left(Y_{j}\right)=C_{V_{i}}\left(V_{j}\right)$ by 2^{2}, this gives
$4^{\circ} . \quad\left|V_{i} / C_{V_{i}}\left(Y_{j}\right)\right| \geqslant\left|V_{j} R_{i} / R_{i}\right|^{2}$.
Hence
$5^{\circ} . \quad\left|V_{2} / C_{V_{2}}\left(Y_{1}\right)\right| \stackrel{\sqrt[49]{\mid 4}}{\geqslant}\left|V_{1} R_{2} / R_{2}\right|^{2} \stackrel{\left.\sqrt{1^{\circ}}\right)}{\geqslant}\left|V_{2} R_{1} / R_{1}\right|\left|V_{1} R_{2} / R_{2}\right|=\left|V_{2} / V_{2} \cap R_{1}\right|\left|V_{1} R_{2} / R_{2}\right|$.
Since $V_{1} \nless R_{2}$, this gives $\left|V_{2} / C_{V_{2}}\left(Y_{1}\right)\right|>\left|V_{2} / V_{2} \cap R_{1}\right|$, so
$6^{\circ} . \quad\left[Y_{1}, V_{2} \cap R_{1}\right] \neq 1$.
By 5.7 d $\left[Y_{1} \cap R_{2}, V_{2} \cap R_{1}\right]=1$. Let $x \in V_{2} \cap R_{1} \backslash C_{V_{2}}\left(V_{1}\right)$ and $y \in Y_{1} \backslash R_{2}$. By 5.7.e. $C_{V_{2}}\left(V_{1}\right)=C_{V_{2}}(y)$. Thus $[x, y] \neq 1$, so $C_{Y_{1}}(x) \leqslant Y_{1} \cap R_{2}$, and

$$
C_{Y_{1}}(x) \leqslant Y_{1} \cap R_{2} \leqslant C_{Y_{1}}\left(V_{2} \cap R_{1}\right) \leqslant C_{Y_{1}}(x)
$$

Hence
$7^{\circ} . \quad C_{Y_{1}}(x)=Y_{1} \cap R_{2}=C_{Y_{1}}\left(V_{2} \cap R_{1}\right)$ for $x \in V_{2} \cap R_{1} \backslash C_{V_{2}}\left(Y_{1}\right)$.
Recall from 2 that $C_{V_{2}}\left(Y_{1}\right) \leqslant V_{2} \cap R_{1}$. So $C_{V_{2}}\left(Y_{1}\right)=C_{V_{2} \cap R_{1}}\left(Y_{1}\right)$ and

$$
\left|V_{2} / C_{V_{2}}\left(Y_{1}\right)\right|=\left|V_{2} / V_{2} \cap R_{1}\right|\left|V_{2} \cap R_{1} / C_{V_{2} \cap R_{1}}\left(Y_{1}\right)\right|
$$

By 5°

$$
\left|V_{2} / C_{V_{2}}\left(Y_{1}\right)\right| \geqslant\left|V_{2} / V_{2} \cap R_{1}\right|\left|V_{1} R_{2} / R_{2}\right|
$$

Comparing the last two displayed statements gives
$8^{\circ} . \quad\left|V_{2} \cap R_{1} / C_{V_{2} \cap R_{1}}\left(Y_{1}\right)\right| \geqslant\left|V_{1} R_{2} / R_{2}\right| \geqslant\left|Y_{1} R_{2} / R_{2}\right|=\left|Y_{1} / Y_{1} \cap R_{2}\right|$,
and so, since $Y_{1} \cap R_{2}=C_{Y_{1}}\left(V_{2} \cap R_{1}\right)$ by 7°,
$9^{\circ} . \quad\left|V_{2} \cap R_{1} / C_{V_{2} \cap R_{1}}\left(Y_{1}\right)\right| \geqslant\left|Y_{1} / C_{Y_{1}}\left(V_{2} \cap R_{1}\right)\right|$.
Combining $6^{\circ}, 7^{\circ}$ and 9° we get:
10°. $\quad A:=V_{2} \cap R_{1}$ is a non-trivial strong offender on Y_{1}.
By A. 34 all strong offenders are best offenders, so
11. $\quad A$ is a non-trivial best offender on Y_{1}.

By 5.7 a, $\left[V_{1}, V_{2} \cap R_{1}\right] \leqslant Z\left(L_{1}\right)$, so $L_{1} \leqslant C_{G}\left(\left[Y_{1}, A\right]\right)$. By 5.4 a $L_{1} \nVdash M_{1}^{\dagger}$. We record:
12° 。 $L_{1} \leqslant M_{1}^{\dagger}$ and $L_{1} \leqslant C_{G}\left(\left[Y_{1}, A\right]\right) \neq M_{1}^{\dagger}$ 。
Next we prove:
13°. Let $N \leqslant M_{1}$ with $N=N^{\circ}$ and $1 \neq O^{p}(N) \boxtimes M_{1}$, then N does not normalize any non-trivial subgroup of $\left[Y_{1}, A\right]$.

Suppose that there exists $1 \neq U \leqslant\left[Y_{1}, A\right]$ with $N \leqslant N_{G}(U)$. Pick $Q_{0} \in Q^{G}$ with $Q_{0} \leqslant N$. Then $C_{U}\left(Q_{0}\right) \neq 1$ and thus by $Q!, C_{G}(U) \leqslant N_{G}\left(Q_{0}\right)$. Now 1.52 gives $\left(N C_{G}(U)\right)^{\circ}=N^{\circ}=N$, so N is normalized by $C_{G}(U)$. Hence

$$
C_{G}\left(\left[Y_{1}, A\right]\right) \leqslant C_{G}(U) \leqslant N_{G}(N) \leqslant N_{G}\left(O^{p}(N)\right)
$$

By hypothesis, $1 \neq O^{p}(N) \vDash M_{1}$, and so 2.2 c gives $N_{G}\left(O^{p}(N)\right) \leqslant M_{1}^{\dagger}$. Thus $C_{G}\left(\left[Y_{1}, A\right]\right) \leqslant M_{1}^{\dagger}$, a contradiction to 12°.
$14^{\circ} . \quad\left[M_{1}^{\circ}, A\right] \not C_{M_{1}}\left(Y_{1}\right)$.
Otherwise, M_{1}° normalizes $\left[Y_{1}, A\right]$, a contradiction to 13° applied to $N=M_{1}^{\circ}$.
Define

$$
\overline{M_{1}}:=M_{1} / C_{M_{1}}\left(Y_{1}\right), \quad J:=J_{M_{1}}\left(Y_{1}\right), \quad \bar{J}:=J / C_{M_{1}}\left(Y_{1}\right) \quad \bar{K}:=F^{*}(\bar{J})
$$

Since Q_{1} is large and $Q_{1} \notin M_{1}, 1.57 \mathrm{~b}$ shows that Y_{1} is a Q !-module for \bar{M}_{1} with respect to $\overline{Q_{1}}$. Since Y_{1} is p-reduced for $M_{1}, \overline{O_{p}\left(\overline{M_{1}}\right)}=1$. By $11^{\circ} A$ is a best offender on Y_{1}. By 114°, $\left[\overline{M_{1}^{\circ}}, A\right] \neq 1$. Thus the assumption of the Q!FF-Module Theorem C. 24 are fulfilled for $\left(\overline{M_{1}}, \overline{Q_{1}}, \bar{A}, Y_{1}\right)$ in place of (H, Q, Y, V).

Suppose that C.24 1 holds. Then there exists an $\overline{M_{1}}$-invariant set \mathcal{K} of subgroups of $\overline{M_{1}}$ such that Y_{1} is a natural $S L_{2}(q)$-wreath product module for $\overline{M_{1}}$ with respect to $\mathcal{K}, \overline{M_{1}^{\circ}}=O^{p}(\langle\mathcal{K}\rangle) \overline{Q_{1}}$ and $\overline{Q_{1}}$ acts transitively on \mathcal{K}. By A.27, C) \mathcal{K} is unique. So Case (3) of Theorem E holds.

Thus, we may assume from now:
15. C.24 2) holds for $\overline{M_{1}}$ and Y_{1}.

In particular, by C.24 2:a and 2:b
16°.
(a) \bar{K} is quasisimple.
(b) $C_{Y_{1}}(\bar{K})=0$ and $\left[Y_{1}, \bar{K}\right]$ is a semisimple \bar{J}-module.

Note that by 16° all non-trivial \bar{J}-submodules of $\left[Y_{1}, \bar{K}\right]$ are perfect. Thus A. 44 shows that all \bar{K}-submodules of $\left[Y_{1}, \bar{K}\right]$ are \bar{J}-invariant. In particular, the simple \bar{K}-submodules of $\left[Y_{1}, \bar{K}\right]$ are exactly the simple \bar{J}-submodules of $\left[Y_{1}, \bar{K}\right]$.

By $11^{\circ} A$ is a best offender on Y_{1}. Thus $\bar{A} \leqslant \bar{J}$. Put $T:=K A$ and let I be a simple T-submodule of $\left[Y_{1}, \bar{K}\right]$.

Suppose that there exists a simple T-submodule I_{0} in Y_{1} such that $I^{*} \cong I_{0}$ as a T-module, where I^{*} is the dual of the $\mathbb{F}_{p} \bar{J}$-module I. (Note that we can choose $I=I_{0}$ if $I \cong I^{*}$). By 10°. A is a strong offender on Y_{1}, so A is also a strong offender on the submodules I and I_{0}. It follows that A is strong offender on I^{*}, and so by A.35 A is a root offender on I. Hence A.37 shows that $\left|I / C_{I}(A)\right|=\left|A / C_{A}(I)\right|$ and A is strong dual offender on I. As A is strong offender on Y_{1}, $C_{A}\left(Y_{1}\right)=C_{A}(I)$. Thus

$$
\left|A / C_{A}\left(Y_{1}\right)\right|=\left|A / C_{A}(I)\right|=\left|I / C_{I}(A)\right|=\left|I C_{Y_{1}}(A) / C_{Y_{1}}(A)\right| \leqslant\left|Y_{1} / C_{Y_{1}}(A)\right| \leqslant\left|A / C_{A}\left(Y_{1}\right)\right|
$$

Hence equality holds everywhere, $Y_{1}=I C_{Y_{1}}(A)$, and A is a strong dual offender on Y_{1}. By 12°, $C_{G}\left(\left[Y_{1}, A\right]\right) \$ M_{1}^{\dagger}$ and so M_{1} and A satisfy the hypothesis of 5.5 and Theorem E follows. So we may assume from now on:
17°. I^{*} is not isomorphic to any T-submodule of Y_{M}; in particular I is not selfdual as an $\mathbb{F}_{p} T$-module.

Since $\bar{K}=F^{*}(\bar{J})$ is quasisimple and $\bar{A} \leqslant \bar{J}$, we get $\bar{T}=\overline{A K}=\left\langle\bar{A}^{T}\right\rangle$ and $\bar{K}=F^{*}(\bar{T})$. As seen above, \bar{A} is a strong offender on I, so we can apply the Strong Offender Theorem C. 6 to $(\bar{T}, \bar{K}, I, \bar{A})$ in place of (M, K, V, A). Hence one of the following holds:
(A) $\bar{T} \cong S L_{n}(\tilde{q})$ or $S p_{2 n}(\tilde{q})$ and I is a corresponding natural module.
(B) $p=2, \bar{T} \cong \operatorname{Alt}(6), 3 \cdot \operatorname{Alt}(6)$ or $\operatorname{Alt}(7),|V|=2^{4}, 2^{6}$ or 2^{4}, respectively, and $|\bar{A}|=4$.
(C) $p=2, \bar{T} \cong O_{2 n}^{\epsilon}(2)$ or $\operatorname{Sym}(n), V$ is a corresponding natural module, and $|\bar{A}|=2$.

Note that the natural $S L_{2}(\tilde{q})-, S p_{2 n}(\tilde{q}), \operatorname{Alt}(6)-, O_{2 n}^{\epsilon}(2)$ - and $\operatorname{Sym}(n)$-modules all are selfdual and so are ruled out by 17°. Moreover, the module of order 2^{4} for $\operatorname{Alt}(7)$ is rule out since it does not appear as a conclusion of the Q!FF-module Theorem (in fact this module is not a Q !-module).

We have proved:
18. $\bar{T} \cong S L_{n}(\tilde{q}), n \geqslant 3$, or $3 \cdot \operatorname{Alt}(6)$, and I is a corresponding natural module for \bar{T}.

Next we prove
19. $\bar{J}=\bar{T}=\bar{K} \leqslant \overline{M^{\circ}}$ and one of the following holds:
(1) $\bar{K} \cong S L_{n}(\tilde{q}), n \geqslant 3, \overline{M^{\circ}}=\bar{K} C_{\bar{M}}(\bar{K})$, and $Y_{1}=\oplus_{l=1}^{k} Y_{1 l}$, where $k \geqslant 2$ and the modules $Y_{1 l}$ are isomorphic natural $S L_{n}(\tilde{q})$-modules for \bar{K}.
(2) $\bar{K} \cong 3 \cdot \operatorname{Alt}(6), \overline{M^{\circ}} \cong 3 \cdot \operatorname{Alt}(6)$ or $3 \cdot \operatorname{Sym}(6)$ and $Y_{1}=\left[Y_{1}, \bar{K}\right]$ has order 2^{6}.
(3) $\overline{\bar{K}} \cong S L_{n}(\tilde{q}), n \geqslant 3, \overline{M^{\circ}}=\bar{K}$, and $\left[Y_{1}, K\right]$ is natural $S L_{n}(\tilde{q})$-modules for \bar{K}. Moreover, either $Y_{1}=\left[Y_{1}, \bar{K}\right]$ or $\bar{K} \cong S L_{3}(2)$ and $\left|Y_{1} /\left[Y_{1}, K\right]\right|=2$.
Since $\bar{T} \cong S L_{n}(\tilde{q}), n \geqslant 3$, or $3 \cdot \operatorname{Alt}(6)$, we have $\bar{K}=F^{*}(\bar{T})=\bar{T}$. Recall that C.24 2h holds. By C.24 2:a $\bar{K} \leqslant \overline{M_{1}^{\circ}}$ and either $\bar{J}=\bar{K}$ or $\bar{J} \cong O_{2 n}^{\epsilon}(2), S p_{4}(2)$ or $G_{2}(2)$. As $\bar{K} \cong S L_{n}(\tilde{q}), n \geqslant 3$, or $3 \cdot A l t(6)$, we get $\bar{J}=\bar{K}$ or $\bar{K} \cong S L_{4}(2)$ and $\bar{J} \cong O_{6}^{+}(2)$. In the later case, recall that I is J-invariant, which contradicts the fact that $\bar{J} \cong O_{6}^{+}(2)$ induces graph automorphisms on $\bar{K} \cong S L_{4}(2)$ and so does not act on that natural $S L_{4}(2)$-module I. Thus $\bar{J}=\bar{K}$ and the initial statement in 19° is proved. We now consider the three cases of C.24 2:c).

Suppose that C.24 2:c:1) holds. Since $3 \cdot A l t(6)$ does not appear in C.24 2:c:1:a we conclude that $\bar{K} \cong S L_{n}(\tilde{q})$. Moreover, $\left[Y_{1}, \bar{K}\right]$ is a direct sum of at least two isomorphic natural modules and $\overline{M^{\circ}}=\bar{K} C_{\bar{M}}{ }^{\circ}(\bar{K})$. Since $S L_{n}(\tilde{q})$ does not appear in C.24 2:c:1:d , we have $Y_{1}=\left[Y_{1}, \bar{K}\right]$ and so (19 ${ }^{\circ}$ (1) holds.

Suppose that C.24 2:c:2 holds. Then $\left[Y_{1}, \bar{K}\right]$ is a simple \bar{K}-module and either $\overline{M^{\circ}}=\bar{K}$ or $\overline{M^{\circ}} \cong S p_{4}(2), 3 \cdot \operatorname{Sym}(6), S U_{4}(q) .2$ or $G_{2}(2)$. Thus $I=\left[Y_{1}, \bar{K}\right]$.

Assume that I is natural $S L_{n}(\tilde{q})$-module for \bar{K}. Then $\overline{M^{\circ}}=\bar{K}$. Moreover, by 16° b $C_{Y_{1}}(\bar{K})=1$, and C.22 shows that either $Y_{1}=\left[Y_{1}, \bar{K}\right]$ or $\bar{K} \cong S L_{3}(2)$ and $\left|Y_{1} /\left[Y_{1}, \bar{K}\right]\right|=2$. Thus 19° (3) holds.

Assume that I is a natural $3 \cdot \operatorname{Alt}(6)$-module for \bar{K}. Then $\overline{M^{\circ}}=\bar{K} \cong 3 \cdot \operatorname{Alt}(6)$ or $\overline{M^{\circ}} \cong 3 \cdot \operatorname{Sym}(6)$. As $C_{Y_{1}}(\bar{K})=1$, the fixed-point free action of $Z(\bar{K})$ on I shows that $I=Y_{1}$. Thus 19°, 2 holds.

Suppose that C.24 2:c:3 holds. Then Y_{1} is the direct sum of two non-isomorphic natural $S L_{4}(\tilde{q})$-modules for \bar{K}. Since non-isomorphic natural $S L_{4}(\tilde{q})$-modules are dual to each other, this contradicts 17°. This completes the proof of 19°.

Observe that
20°. If (190) holds, then Case 1 of Theorem E holds.
So we may assume from now on that 19° (1) or 2 holds. The next statement will allow us to derive a contradiction in these two cases, simultaneously.
21°.
(a) $N_{M_{1}}\left(\left[Y_{1}, A\right]\right)$ is a parabolic subgroup of M_{1}. In particular, there exists an M_{1}-conjugate Q_{3} of Q_{1} with $Q_{2} \leqslant N_{M_{1}}\left(\left[Y_{1}, A\right]\right)$.
(b) Put $E_{1}:=O^{p^{\prime}}\left(N_{J}\left(\left[Y_{1}, A\right]\right)\right)$. There exist isomorphic E_{1}-submodules $Y_{1 l}, 1 \leqslant l \leqslant k$, with $Y_{1}=\oplus_{l=1}^{k} Y_{1 l}$ and $k \geqslant 2$.
Suppose first that 19° (1) holds. Then $Y_{1}=\bigoplus_{l=1}^{k} Y_{1 l}$ as an $\mathbb{F}_{p} J$-module and so also as an $E_{1^{-}}$ module. Since $[I, A]$ is an $\mathbb{F}_{\tilde{q}}$-subspace of I and I is natural $S L_{n}(\tilde{q})$-module, $N_{J}([I, A])$ is a parabolic subgroup of J and $[I, A]=\left[I, O_{p}\left(N_{\bar{J}}([I, A])\right)\right]$. Since each $Y_{1 l}$ is isomorphic to I, this implies that $E_{1}=O^{p^{\prime}}\left(N_{J}([I, A])\right), E_{1}$ is parabolic subgroup of J and $\left[Y_{1}, A\right]=\left[Y_{1}, O_{p}\left(\overline{E_{1}}\right)\right]$. Since I^{*} is not isomorphic to any J-submodule of Y_{1}, no element of M_{1} induces a non-trivial graph automorphism on $\bar{J} \cong S L_{n}(\tilde{q})$. It follows that

$$
\overline{M_{1}}=N_{\overline{M_{1}}}\left(\overline{E_{1}}\right) \bar{J}=N_{\overline{M_{1}}}\left(O_{p}\left(\overline{E_{1}}\right)\right) \bar{J}=N_{\overline{M_{1}}}\left(\left[Y_{1}, A\right]\right) \bar{J}=\overline{N_{M_{1}}\left(\left[Y_{1}, A\right]\right) J}
$$

As $E_{1} \leqslant N_{M_{1}}\left(\left[Y_{1}, A\right]\right)$ and E_{1} is parabolic subgroup of J, this shows that $N_{M_{1}}\left(\left[Y_{1}, A\right]\right)$ is parabolic subgroup of M_{1}.

Suppose next that 19° (2) holds. By C.16 b), $C_{Y_{1}}(A)=\left[Y_{1}, A\right]$, so by C.16 c), $N_{M_{1}}\left(\left[Y_{1}, A\right]\right)$ is parabolic subgroup of M_{1}. Put $\overline{K_{2}}:=C_{\overline{M_{1}}}\left(Y_{1} / C_{Y_{1}}(A)\right)$ and let \mathcal{V} be the set of 3-dimensional $\overline{K_{2}}$-submodules of Y_{1}. Then by C.16(e) $\mathcal{V}=\left\{Y_{11}, Y_{12}, Y_{13}\right\}$ and $Z(\bar{K})$ acts transitively on \mathcal{V}. By C.16 d), $\overline{K_{2}}=\overline{E_{1}}$, and we conclude that Y_{11} and Y_{12} are isomorphic E_{1}-submodules of Y_{1}. By C.16 (f), $Y=Y_{11} \times Y_{12}$, and so 21° (b) holds with $k=2$.
$22^{\circ} . \quad \overline{M_{1}^{\circ}}=\bar{J}$ and $C_{\left[Y_{1 l}, A\right]}\left(Q_{3}\right) \neq 1$ for all $1 \leqslant l \leqslant k$.
Put $F:=C_{M_{1}^{\circ}}(\bar{J})$ and $F_{0}:=O^{p}\left(\left(F Q_{3}\right)^{\circ}\right)$. Note that F_{0} is normalized by $F N_{M_{1}}\left(Q_{3}\right)$. We claim that F_{0} is normal in M_{1}.

Define $J_{0}:=\left(J \cap M_{1}^{\circ}\right)^{\infty}$, so J_{0} is the largest perfect subgroup of $J \cap M_{1}^{\circ}$. By $19^{\circ} \bar{J}=\bar{K} \leqslant \overline{M_{1}^{\circ}}$ and so $J=\left(J \cap M_{1}^{\circ}\right) C_{M_{1}}\left(Y_{1}\right)$. As \bar{J} is perfect, we conclude that $J=J_{0} C_{M_{1}}\left(Y_{1}\right)$. By 1.52 c) $\left[C_{M_{1}}\left(Y_{1}\right), M_{1}^{\circ}\right] \leqslant O_{p}\left(M_{1}^{\circ}\right)$. Since $\left[F, J_{0}\right] \leqslant C_{M_{1}}\left(Y_{1}\right)$ and $J_{0} \leqslant M_{1}^{\circ}$, this gives $\left[F, J_{0}, J_{0}\right] \leqslant O_{p}\left(M_{1}^{\circ}\right)$. As J_{0} is perfect, the Three Subgroups Lemma implies $\left[F, J_{0}\right] \leqslant O_{p}\left(M_{1}^{\circ}\right)$. In particular, J_{0} normalizes $F_{0} O_{p}\left(M_{1}^{\circ}\right)$. Since $O_{p}\left(M_{1}^{\circ}\right) \leqslant F, O_{p}\left(M_{1}^{\circ}\right)$ normalizes F_{0}. Hence $O^{p}\left(F_{0} O_{p}\left(M_{1}^{\circ}\right)\right)=O^{p}\left(F_{0}\right)=F_{0}$, and F_{0} is normalized by J_{0}. As seen above, also $F N_{M_{1}}\left(Q_{3}\right)$ normalizes F_{0}. Since $C_{M_{1}}\left(Y_{1}\right) \leqslant N_{M_{1}}\left(Q_{3}\right)$ by $Q!$ and $J=J_{0} C_{M_{1}}\left(Y_{1}\right)$, this shows that $F_{0} \boxtimes J F N_{M_{1}}\left(Q_{3}\right)$.

By 19° either $\bar{J} \cong S L_{n}(q)$ and $\overline{M_{1}^{\circ}}=\overline{F J}$ or $\bar{J} \sim 3 \cdot \operatorname{Alt}(6)$ and $\left|\overline{M^{\circ}} / \bar{J}\right| \leqslant 2$, thus in any case $\overline{M_{1}^{\circ}}=\overline{F J Q}_{3}$. Moreover, since Q_{3} is a weakly closed subgroup of G, a Frattini argument shows $M_{1}=F J N_{M_{1}}\left(Q_{3}\right)$. As proved above $F_{0} \& J F N_{M_{1}}\left(Q_{3}\right)$ and thus $F_{0} \& M_{1}$, as claimed.

Suppose that $F_{0} \neq 1$. Then we can apply 13° with $N=\left(F Q_{3}\right)^{\circ}$ and conclude that $\left(F Q_{3}\right)^{\circ}$ does not normalizes any non-trivial subgroup of $\left[Y_{1}, A\right]$. But $\bar{A} \leqslant \bar{J}$, so $[\bar{A}, F]=1$, and F normalizes [$\left.Y_{1}, A\right]$. By the choice of Q_{3}, also Q_{3} normalizes $\left[Y_{1}, A\right]$, a contradiction.

Thus $F_{0}=1,\left(F Q_{3}\right)^{\circ}$ is a p-group and $\left(F Q_{3}\right)^{\circ}=Q_{3}$. Hence

$$
\left[\bar{F}, \overline{Q_{3}}\right] \leqslant \bar{F} \cap \overline{Q_{3}} \leqslant O_{p}(\bar{F}) \leqslant O_{p}\left(\overline{M_{1}}\right)=1
$$

If $\bar{J} \sim 3 \cdot \operatorname{Alt}(6)$ we get $\left[Z(\bar{J}), Q_{3}\right]=1$ and so $\overline{M_{1}^{\circ}} \nsucc 3 \cdot \operatorname{Sym}(6)$ and $\bar{J}=\overline{M_{1}^{\circ}}$.
Suppose now that $\bar{J} \cong S L_{n}(q)$. We have

$$
M_{1}^{\circ}=\left\langle Q_{3}^{M_{1}}\right\rangle=\left\langle Q_{3}^{F J N_{M_{1}}\left(Q_{3}\right)}\right\rangle=\left\langle Q_{3}^{J}\right\rangle \leqslant Q_{3} J
$$

and so $\overline{M_{1}^{\circ}}=\overline{Q_{3} J}$. Hence $\overline{F J} / \bar{J}$ is a p-group. Since $\bar{F} \cap \bar{J} \leqslant Z(\bar{F})$ this implies that \bar{F} is nilpotent. As $O_{p}(\bar{F})=1$ we conclude that \bar{F} is a p^{\prime}-group. Since $\overline{F J} / \bar{J}$ is a p-group, we get $\bar{F}=\bar{F} \cap \bar{J} \leqslant \bar{J}$ and again $\overline{M_{1}^{\circ}}=\bar{J}$. So the first statement in 22° holds. In particular, $Q_{3} \leqslant O^{p^{\prime}}\left(N_{J}\left(\left[Y_{1}, A\right]\right)\right)$ and Q_{3} normalizes each $Y_{1 l}$. Hence also the second statement holds.

Recall that $A=V_{2} \cap R_{1}$.
23 ${ }^{\circ}$. Put $q:=\left|V_{1} R_{2} / R_{2}\right|$ and $\widehat{V_{2}}:=V_{2} / V_{2} \cap Z\left(L_{2}\right)$. Then the following hold:
(a) $q=\left|V_{1} R_{2} / R_{2}\right|=\left|V_{2} R_{1} / R_{1}\right|=\left|V_{2} / A\right|$.
(b) $k=2=r_{2}$.
(c) $\left|\widehat{V_{2}}\right|=q^{4}$, and every composition factor for L_{2} on $\widehat{V_{2}}$ is a natural $S L_{2}(q)$-module for L_{2}. In particular, every non-trivial proper L_{2}-submodule of $\widehat{V_{2}}$ is a natural $S L_{2}(q)$-module for L_{2}.
By $\left.2^{\circ}\right) C_{V_{2}}\left(V_{1}\right)=C_{V_{2}}\left(Y_{1}\right)$. Since $A=V_{2} \cap R_{1}$, also $C_{A}\left(V_{1}\right)=C_{A}\left(Y_{1}\right)$ and

$$
\begin{equation*}
\left|A / C_{A}\left(V_{1}\right)\right|=\left|A / C_{A}\left(Y_{1}\right)\right| \stackrel{\sqrt[8^{\circ}]{\geqslant}}{\geqslant}\left|V_{1} R_{2} / R_{2}\right| \stackrel{\sqrt{1^{\circ}}}{\geqslant}\left|V_{2} R_{1} / R_{1}\right|=\left|V_{2} / V_{2} \cap R_{1}\right|=\left|V_{2} / A\right| . \tag{I}
\end{equation*}
$$

From 5.4 d we get $L_{2}=\left\langle V_{1}, V_{1}^{x}\right\rangle V_{2}$ for a suitable $x \in L_{2}$, and [$\left.X_{2}, V_{1}\right]=1$ for suitable $X_{2} \in Y_{2}^{L_{2}}$. Note that $\left[V_{2}, V_{1}\right] \leqslant V_{1} \cap V_{2} \leqslant C_{V_{2}}\left(V_{1}\right)$ and so $X_{2}\left[V_{2}, V_{1}\right] \leqslant C_{V_{2}}\left(V_{1}\right)$ and recall that V_{2} is abelian. It follows that

$$
V_{2}=\left\langle Y_{2}^{L_{2}}\right\rangle=\left\langle X_{2}^{L_{2}}\right\rangle=X_{2}\left[V_{2}, L_{2}\right]=X_{2}\left[V_{2},\left\langle V_{1}, V_{1}^{x}\right\rangle V_{2}\right]=X_{2}\left[V_{2}, V_{1}\right]\left[V_{2}, V_{1}^{x}\right]=C_{V_{2}}\left(V_{1}\right) C_{V_{2}}\left(V_{1}^{x}\right)
$$

and

$$
C_{V_{2}}\left(V_{1}\right) \cap C_{V_{2}}\left(V_{1}^{x}\right)=C_{V_{2}}\left(\left\langle V_{1}, V_{1}^{x}\right\rangle V_{2}\right)=C_{V_{2}}\left(L_{2}\right)=V_{2} \cap Z\left(L_{2}\right)
$$

Thus

$$
\begin{equation*}
\widehat{V_{2}}=\widehat{C_{V_{2}}\left(V_{1}\right)} \times \widehat{C_{V_{2}}\left(V_{1}^{x}\right)} . \tag{II}
\end{equation*}
$$

and so

$$
\begin{equation*}
\left|\widehat{C_{V_{2}}\left(V_{1}\right)}\right|=\left|\widehat{V_{2}} / \widehat{C_{V_{2}}\left(V_{1}^{x}\right)}\right|=\left|V_{2} / C_{V_{2}}\left(V_{1}^{x}\right)\right|=\left|V_{2} / C_{V_{2}}\left(V_{1}\right)\right|=\left|V_{2} / A\right|\left|A / C_{A}\left(V_{1}\right)\right| \tag{III}
\end{equation*}
$$

As by (II) $\left|V_{2} / A\right| \leqslant\left|A / C_{A}\left(V_{1}\right)\right|$, this gives

$$
\begin{equation*}
\left.\mid \widehat{C_{V_{2}}\left(V_{1}\right.}\right)\left|=\left|V_{2} / A\right|\right| A / C_{A}\left(V_{1}\right) \leqslant\left|A / C_{A}\left(V_{1}\right)\right|^{2} \tag{IV}
\end{equation*}
$$

By 5.7.c $\left[V_{1}, A\right] \cap Z\left(L_{2}\right)=1$ and so

$$
\begin{equation*}
\left|\left[V_{1}, A\right]\right|=\left|\left[\widehat{V_{1}, A}\right]\right| \leqslant\left|\widehat{C_{V_{2}}\left(V_{1}\right)}\right| \leqslant\left|A / C_{A}\left(V_{1}\right)\right|^{2} \tag{V}
\end{equation*}
$$

Let $y \in Y_{1 l} \backslash C_{Y_{1}}(A)$ and $a \in A \backslash C_{A}\left(Y_{1}\right)$. Since by $10^{\circ} A$ is a strong offender on $Y_{1}, C_{Y_{1}}(A)=C_{Y_{1}}(a)$ and so $[y, a] \neq 1$. Thus $C_{A}(y)=C_{A}\left(Y_{1}\right)$. Hence

$$
\left|\left[Y_{1 l}, A\right]\right| \geqslant|[y, A]| \geqslant\left|A / C_{A}(y)\right|=\left|A / C_{A}\left(Y_{1}\right)\right|
$$

Since this holds for all $1 \leqslant l \leqslant k$,

$$
\left|\left[Y_{1}, A\right]\right| \geqslant\left|A / C_{A}\left(Y_{1}\right)\right|^{k}
$$

Now (V) implies

$$
\left.\mid A / C_{A} / V_{1}\right)\left.\right|^{2} \geqslant\left|\left[V_{1}, A\right]\right| \geqslant\left|\left[Y_{1}, A\right]\right| \geqslant\left|A / C_{A}\left(Y_{1}\right)\right|^{k} \geqslant\left|A / C_{A}\left(V_{1}\right)\right|^{k}
$$

Hence $k=2$ since $k>1$, and $\left|\left[V_{1}, A\right]\right|=\left|A / C_{A}\left(V_{1}\right)\right|^{2}$. From this we conclude that equality holds in (V), so

$$
\begin{equation*}
\left|\widehat{C_{V_{2}}\left(V_{1}\right)}\right|=\left|A / C_{A}\left(V_{1}\right)\right|^{2} \tag{VI}
\end{equation*}
$$

As a consequence equality holds in (IV) so $\left|V_{2} / A\right|=\left|A / C_{A}\left(V_{1}\right)\right|$, and then equality holds in (I), so

$$
\begin{equation*}
q=\left|V_{1} R_{2} / R_{2}\right|=\left|V_{2} R_{1} / R_{1}\right|=\left|A / C_{A}\left(V_{1}\right)\right|=\left|V_{2} / A\right| \tag{VII}
\end{equation*}
$$

In particular, 23° (a) is proved. Moreover,

$$
\begin{equation*}
\left.\left.\mid \widehat{C_{V_{2}}\left(V_{1}\right.}\right)|\stackrel{\sqrt{\text { VII }}}{=}| A /\left.C_{A}\left(V_{1}\right)\right|^{2} \stackrel{\text { VII }}{=} q^{2} \quad \text { and } \quad\left|V_{2} / C_{V_{2}}\left(V_{1}\right)\right| \stackrel{\sqrt{\text { IIII }}}{=} \mid \widehat{C_{V_{2}}\left(V_{1}\right.}\right) \mid=q^{2} \tag{VIII}
\end{equation*}
$$

Hence

$$
\left.\left|\widehat{V_{2}}\right| \stackrel{\boxed{I I} \mid}{=}\left|\widehat{C_{V_{2}}\left(V_{1}\right)} \times \widehat{C_{V_{2}}\left(V_{1}^{x}\right)}\right|=\left|\widehat{C_{V_{2}}\left(V_{1}\right)}\right| \mid \widehat{C_{V_{2}}\left(V_{1}^{x}\right.}\right)\left|=\left|\widehat{C_{V_{2}}\left(V_{1}\right)}\right|^{2}=\left(q^{2}\right)^{2}=q^{4}\right.
$$

Also $\left|V_{2} / C_{V_{2}}\left(V_{1}\right)\right|=q^{2}=\left|V_{1} R_{2} / R_{2}\right|^{2}$, and so 3° shows that $r_{2}=2$ and V_{1} is a non-trivial offender on each non-central chief factor X of L_{2} on V_{2}. Since L_{2} is $V_{1} V_{2}$-minimal we can apply C. 11 and conclude that X is natural $S L_{2}(q)$-module for L_{2}. In particular, $|X|=q^{2}$. Since $r_{2}=2$ and $\left|\widehat{V_{2}}\right|=q^{4}$ this show that all composition factors of L_{2} on $\widehat{V_{2}}$ are non-central. Thus 23° (c) holds.

As proved above $k=2$ and $r_{2}=2$. So also 23° (b) holds, and 23° is proved.
Define $J_{2}:=J_{M_{2}}\left(Y_{2}\right)$. By (23) (a) $\left|V_{1} R_{2} / R_{2}\right|=\left|V_{2} R_{1} / R_{1}\right|$, so our initial choice of notation given in 1° holds with 1 and 2 interchanged. Hence also all the results proven are also valid with 1 and 2 interchanged. In particular, 21° shows that there exist isomorphic $O^{p^{\prime}}\left(N_{J_{2}}\left(\left[Y_{2}, V_{1} \cap R_{2}\right]\right)\right)$ submodules $Y_{2 l}, 1 \leqslant l \leqslant 2$, such that $Y_{2}=Y_{21} \times Y_{22}$.

Put $V_{2 l}:=\left\langle Y_{2 l}^{L_{2}}\right\rangle$ and $E:=\left\langle\left(V_{1} \cap R_{2}\right)^{L_{2}}\right\rangle$. By 5.7 a), $\left[V_{2}, V_{1} \cap R_{2}\right] \leqslant Y_{2} \cap Z\left(L_{2}\right)$, and so conjugation in L_{2} gives $\left[V_{2}, E\right] \leqslant Y_{2} \cap Z\left(L_{2}\right)$. Note that $Y_{2 l} \leqslant V_{2}$. So [Y$\left.Y_{2 l}, E\right] \leqslant Y_{2} \cap Z\left(L_{2}\right)$ and again by conjugation in $L_{2},\left[Y_{2 l}, E\right]=\left[V_{2 l}, E\right]$. Hence

$$
\left[V_{2 l}, E\right]=\left[Y_{2 l}, E\right] \leqslant Y_{2} \cap Z\left(L_{2}\right)
$$

Moreover, since $\left[Y_{2}, V_{1} \cap R_{2}\right] \leqslant Y_{2} \cap Z\left(L_{2}\right)$ and $E \leqslant L_{2}, E$ centralizes [$Y_{2}, V_{1} \cap R_{2}$].
We first show that $E \leqslant J_{2}$. Let $x \in L_{2}$. Note that $\left(Y_{2}, Y_{1}^{x}\right)$ is a symmetric pair with indicators L_{2} and L_{1}^{x}. Moreover, $Y_{1}^{x} \neq R_{2}$ 。

Suppose that $Y_{2} \not R_{1}^{x}$. Then $\left(Y_{2}, Y_{1}^{x}\right)$ fulfills the hypothesis of the lemma and so by 11°, applied to the symmetric pair $\left(Y_{1}^{x}, Y_{2}\right)$ in place of $\left(Y_{2}, Y_{1}\right), V_{1}^{x} \cap R_{2}$ is a best offender on Y_{2}. Thus $V_{1}^{x} \cap R_{2} \leqslant J_{2}$. Suppose that $Y_{2} \leqslant R_{1}^{x}$. By 5.7d) applied with $\left(Y_{1}^{x}, Y_{2}\right)$ in place of $\left(Y_{j}, Y_{i}\right)$ we have $\left[V_{2} \cap R_{1}^{x}, V_{1}^{x} \cap R_{2}\right]=1$. In particular, $\left[Y_{2}, V_{1}^{x} \cap R_{2}\right]=1$ since $Y_{2} \leqslant R_{1}^{x}$. So again $V_{1}^{x} \cap R_{2} \leqslant J_{2}$.

We have shown that all L_{2}-conjugates of $V_{1} \cap R_{2}$ are in J_{2}, and so $E=\left\langle\left(V_{2} \cap R_{1}\right\rangle^{L_{2}}\right\rangle \leqslant J_{2}$. Therefore, $E \leqslant O^{p^{\prime}}\left(C_{J_{2}}\left(\left[Y_{2}, V_{1} \cap R_{2}\right]\right)\right)$. Thus Y_{21} and Y_{22} are isomorphic E-submodules of Y_{2}. Hence

$$
\begin{equation*}
\left[V_{2 l}, E\right]=\left[Y_{2 l}, E\right] \leqslant Y_{2 l} \cap Z\left(L_{2}\right) \tag{IX}
\end{equation*}
$$

Note that $\left[Y_{2}, V_{1} \cap R_{2}\right] \neq 1, Y_{2}=Y_{21} \times Y_{22}$ and Y_{21} and Y_{22} are isomorphic $V_{1} \cap R_{2}$-modules. Thus $\left[Y_{21}, V_{1} \cap R_{2}\right] \neq 1$. Suppose that $\widehat{V_{21}} \leqslant \widehat{V_{22}}$. Then

$$
1 \neq\left[Y_{21}, V_{1} \cap R_{2}\right] \leqslant\left[V_{22}, V_{1} \cap R_{2}\right] \leqslant\left[V_{22}, E\right] \stackrel{\sqrt{\text { IX }}}{\leqslant} Y_{22} \cap Z\left(L_{2}\right)
$$

which contradicts $\left[Y_{21}, V_{1} \cap R_{2}\right] \leqslant Y_{21}$ and $Y_{21} \cap Y_{22}=1$.
Thus $\widehat{V_{21}} \not \leqslant \widehat{V_{22}}$ and by symmetry $\widehat{V_{22}} \not \leqslant \widehat{V_{21}}$. By 23° (c) every non-trivial proper L_{2}-submodule of $\widehat{V_{2}}$ is natural $S L_{2}(q)$-module. It follows that $\widehat{V_{2}}=\widehat{V_{21}} \times \widehat{V_{22}}$, and $\widehat{V_{2 l}}$ is a natural $S L_{2}(q)$-module for L_{2}.

Put $\widetilde{L_{2}}:=L_{2} / C_{L_{2}}\left(\widehat{V_{2}}\right)$. By C.14 $\widehat{V_{21}}$ and $\widehat{V_{22}}$ are isomorphic L_{2}-modules and $\widetilde{L_{2}} \cong S L_{2}(q)$. Since by 23°, a) $\left|V_{1} R_{2} / R_{2}\right|=q$, this gives $\widetilde{V_{1}} \in S y l_{p}\left(\widetilde{L_{2}}\right)$. By 5.4 d there exists $X_{2} \in Y_{2}^{L_{2}}$ with $\left[X_{2}, V_{1}\right]=1$. Since $N_{L_{2}}\left(X_{2}\right)$ is a maximal parabolic subgroup of L_{2} containing V_{1}, we conclude that $N_{\widetilde{L_{2}}}\left(X_{2}\right)=N_{\widetilde{L_{2}}}\left(\widetilde{V_{1}}\right)$. As $\widehat{V_{2}}$ is the direct sum of isomorphic natural $S L_{2}(q)$-modules, $C_{\widehat{V_{2}}}\left(V_{1}\right)$ is a direct sum of simple $N_{L_{2}}\left(X_{2}\right)$ submodules (of order q), and any simple $N_{L_{2}}\left(X_{2}\right)$-submodule of $C_{\widehat{V_{2}}}\left(V_{1}\right)$ is contained in a simple L_{2}-submodule of $\widehat{V_{2}}$. Since $\left[\widehat{X_{2}}, V_{1}\right]=1$ and $\widehat{V_{2}}=\left\langle\widehat{Y}_{2}^{L_{2}}\right\rangle=\left\langle\widehat{X}_{2}^{L_{2}}\right\rangle$, this implies that $\widehat{X_{2}}=C_{\widehat{V_{2}}}\left(V_{1}\right)$. In particular, either $\widehat{X_{2}}=\widehat{Y_{2}}$ or $\widehat{V_{2}}=\widehat{X_{2}} \widehat{Y_{2}}$.

By $\widehat{\mathrm{VIII}}\left|\widehat{C_{V_{2}}\left(V_{1}\right)}\right|=q^{2}$. Since also $\left|C_{\widehat{V_{2}}}\left(V_{1}\right)\right|=q^{2}$, we conclude that $\left.\widehat{C_{V_{2}}\left(V_{1}\right.}\right)=C_{\widehat{V_{2}}}\left(V_{1}\right)$. Together with $\left[Y_{2}, V_{1}\right] \neq 1$ this gives $\widehat{Y_{2}} \neq C_{\widehat{V_{2}}}\left(V_{1}\right)$. Thus $\widehat{V_{2}}=\widehat{X_{2}} \widehat{Y_{2}}$ and $V_{2}=C_{V_{2}}\left(V_{1}\right) Y_{2}$. In particular, since by $22^{\circ} C_{V_{2}}\left(V_{1}\right) \leqslant V_{2} \cap R_{1}=A, Y_{2} R_{1}=V_{2} R_{1}$. By symmetry, also $Y_{1} R_{2}=V_{1} R_{2}$ and so

$$
\widetilde{Y_{11}} \widetilde{Y_{12}}=\widetilde{Y_{1}}=\widetilde{V_{1}} \in \operatorname{Syl}_{p}\left(\widetilde{L_{2}}\right)
$$

By 23°, ap, $\left|\widehat{V_{2}} / \widehat{A}\right|=\left|V_{2} / A\right|=q$. Also $\left|C_{\widehat{V_{2}}}\left(Y_{1}\right)=\left|C_{\widehat{V_{2}}}\left(V_{1}\right)\right|=q^{2}\right.$ and therefore $| \widehat{A} / C_{\widehat{V_{2}}}\left(Y_{1}\right) \mid=q=$ $\left|\widehat{V_{2}} / \widehat{A}\right|$.

By (IX) $\left[Y_{2 l}, E\right] \leqslant Y_{2 l}$, so $\left[Y_{2 l}, V_{1} \cap R_{2}\right] \leqslant Y_{2 l}$. By symmetry also $\left[Y_{1 l}, V_{2} \cap R_{1}\right]=\left[Y_{1 l}, A\right] \leqslant Y_{1 l}$. Since $Y_{11} \cap Y_{12}=1$, we get $\left[Y_{11}, A\right] \cap\left[Y_{12}, A\right]=1$. By 5.7 C$]\left[V_{2}, V_{2} \cap R_{1}\right] \cap Z\left(L_{2}\right)=1$, and since $A=V_{2} \cap R_{1}$, we conclude that $\left[\hat{A}, Y_{11}\right] \cap\left[\hat{A}, Y_{12}\right]=1$.

Thus we can apply 5.10 with $\left(\widetilde{L_{2}}, \widetilde{Y_{11}}, \widetilde{Y_{12}}, \widehat{V_{2}}, \widehat{A}\right)$ in place of $\left(H, B_{1}, B_{2}, V, A\right)$. Hence, there exists $h \in L_{2}$ with $\left[Y_{11}, \widehat{A}\right] \leqslant \widehat{A}^{h}$ and $\left[Y_{12}, \widehat{A}\right] \cap \widehat{A}^{h}=1$, so $\left[Y_{11}, A\right] \leqslant A^{h}$ and $\left[Y_{12}, A\right] \cap A^{h} \leqslant Y_{1} \cap Z\left(L_{2}\right)$. By 5.7 b$), Y_{1} \cap Z\left(L_{2}\right)=1$. Thus

$$
\left[Y_{12}, A\right] \cap A^{h} \leqslant Y_{1} \cap Z\left(L_{2}\right)=1
$$

On the other hand, 22° gives $C_{l}:=C_{\left[Y_{1 l}, A\right]}\left(Q_{3}\right) \neq 1$. We conclude that $1 \neq C_{1} \leqslant A^{h}, C_{2} \cap A^{h}=1$ and $C_{2} * A^{h}$ 。

Put $U:=\left(Y_{1} \cap R_{2}\right)^{h}$. Recall that $V_{2}=C_{V_{2}}\left(V_{1}\right) Y_{2}$, so

$$
A=V_{2} \cap R_{1}=C_{V_{2}}\left(V_{1}\right)\left(Y_{2} \cap R_{1}\right)
$$

Since $\left[Y_{1}, A\right] \neq 1$, this gives $\left[Y_{1}, Y_{2} \cap R_{1}\right] \neq 1$. By symmetry $\left[Y_{2}, Y_{1} \cap R_{2}\right] \neq 1$. By 7° applied with 1 and 2 interchanged, $C_{Y_{2}}(x)=Y_{2} \cap R_{1}$ for all $x \in V_{1} \cap R_{2} \backslash C_{V_{1}}\left(Y_{2}\right)$ and so $C_{Y_{2}}\left(Y_{1} \cap R_{2}\right)=Y_{2} \cap R_{1}$. Thus

$$
C_{V_{2}}\left(Y_{1} \cap R_{2}\right)=C_{C_{V_{2}}\left(V_{1}\right) Y_{2}}\left(Y_{1} \cap R_{2}\right)=C_{V_{2}}\left(V_{1}\right) C_{Y_{2}}\left(Y_{1} \cap R_{2}\right)=C_{V_{2}}\left(V_{1}\right)\left(Y_{2} \cap R_{1}\right)=A
$$

Conjugation by h gives $C_{V_{2}}(U)=A^{h}$. As $C_{1} \leqslant A^{h}$ and $C_{2} * A^{h}$, this shows that $\left[C_{1}, U\right]=1$ while $\left[C_{2}, U\right] \neq 1$.

By 5.7 a), $\left[V_{2}, V_{1} \cap R_{2}\right] \leqslant Z\left(L_{2}\right)$. Since $C_{2} \leqslant V_{2}$ and $U \leqslant V_{1} \cap R_{2}$, we get $\left[C_{2}, U\right] \leqslant Z\left(L_{2}\right)$. Since $C_{1} \leqslant C_{G}\left(Q_{3}\right), Q$! implies $U \leqslant C_{G}\left(C_{1}\right) \leqslant N_{G}\left(Q_{3}\right)$, and since $C_{2} \leqslant C_{G}\left(Q_{3}\right)$, also $1 \neq\left[C_{2}, U\right] \leqslant$ $C_{G}\left(Q_{3}\right)$. We conclude, again by $Q!$, that $N_{G}\left(\left[C_{2}, U\right]\right) \leqslant N_{G}\left(Q_{3}\right)$. As seen above, $\left[C_{2}, U\right] \leqslant Z\left(L_{2}\right)$, so

$$
Y_{1} \leqslant L_{2} \leqslant N_{G}\left(\left[C_{2}, U\right]\right) \leqslant N_{G}\left(Q_{3}\right)
$$

Since $Y_{1} \nless R_{2}=O_{p}\left(L_{2}\right)$ this gives $Y_{2} \$ O_{p}\left(N_{G}\left(Q_{3}\right)\right)$, a contradiction since Y_{1} is short and so also Q-short.

This contradiction completes the proof of 5.11

5.12. Proof of Theorem \mathbf{E};

If $V_{1} \leqslant R_{2}$ or $V_{2} \leqslant R_{1}$, then Theorem E follows from 5.9 ,
Suppose that $V_{1} \neq R_{2}$ and $V_{2} \leqslant R_{1}$. Since $V_{i}=\left\langle Y_{i}^{L_{i}}\right\rangle$ there exist $h_{i} \in L_{i}$ with $Y_{1}^{h_{1}} \neq R_{2}$ and $Y_{2}^{h_{2}} \not \approx R_{1}$. As also $\left(Y_{1}^{h_{1}}, Y_{2}^{h_{2}}\right)$ is a symmetric pair for every $h_{1} \in L_{1}, h_{2} \in L_{2}$, we may assume that $Y_{1} \leqslant R_{2}$ and $Y_{2} \leqslant R_{1}$. Now Theorem E follows from 5.11,

CHAPTER 6

The Tall char p-Short Asymmetric Case

In this short chapter we will show that Y_{M} is char p-tall in G provided that Y_{M} is tall and asymmetric in G and the centralizers of the non-trivial elements of Y_{M} are of characteristic p. In other words we show that the tall char p-short asymmetric case does not occur if the centralizers of the non-trivial elements of Y_{M} are of characteristic p.

Theorem F. Let G be finite \mathcal{K}_{p}-group, $S \in \operatorname{Syl}_{p}(G)$, and let $Q \leqslant S$ be a large subgroup of G. Suppose that $M \in \mathfrak{M}_{G}(S)$ such that
(i) Y_{M} is tall and asymmetric in G.
(ii) $C_{G}(y)$ is of characteristic p for all $1 \neq y \in Y_{M}$.

Then Y_{M} is char p-tall.
Proof. By 2.2ff $O_{p}(M) \in \operatorname{Syl}_{p}\left(C_{G}\left(Y_{M}\right)\right)$. Since Y_{M} is tall we conclude that there exits a subgroup L of G with $O_{p}(M) \leqslant L, O_{p}(L) \neq 1$ and $Y_{M} \leqslant O_{p}(L)$. By 2.2 a $C_{G}\left(O_{p}(M)\right) \leqslant O_{p}(M)$. Since Y_{M} is asymmetric in $G, 2.6 \mathrm{~b}$ shows that $O_{p}(M)$ is a weakly closed subgroup of G. By 2.2 $\mathrm{e} Y_{M}=\Omega_{1} Z\left(O_{p}(M)\right)$ and so by Hypothesis (iii) of Theorem F $C_{G}(y)$ is of characteristic p for all $1 \neq y \in \Omega_{1} Z\left(O_{p}(M)\right)$. Thus the hypothesis of 1.50 is fulfilled and we conclude that L is of characteristic p. Hence Y_{M} is char p-tall.

We remark that $G=\operatorname{Sym}(9)$ and $M=\operatorname{Sym}(3) \imath \operatorname{Sym}(3)$ provides an example for $p=3$ where Y_{M} is tall and asymmetric in G, but not char p-tall. Similar examples occur in $\operatorname{Alt}(9)$, $\operatorname{Alt}(10)$, $\operatorname{Sym}(10)$ and $\operatorname{Alt}(11)$.

CHAPTER 7

The char p-Tall Q-Short Asymmetric Case

In this chapter we treat the char p-tall Q-short asymmetric case. That is, $M \in \mathfrak{M}_{G}(S), Y_{M}$ is asymmetric in G, and there exists a subgroup L such that

$$
\begin{equation*}
L \text { has characteristic } p, \quad O_{p}(M) \leqslant L \quad \text { and } \quad Y_{M} \leqslant O_{p}(L), \tag{*}
\end{equation*}
$$

but $Y_{M} \leqslant O_{p}\left(N_{G}(Q)\right)$. Here and in the next two chapters the subgroups in $\mathfrak{H}_{G}\left(O_{p}(M)\right)$ introduced in Chapter 2 play a prominent role. These subgroups can be seen as being minimal satisfying (*). But the crucial trick is to choose even smaller subgroups by looking at subgroups $L \leqslant H \in \mathfrak{H}_{G}\left(O_{p}(M)\right)$ such that L is minimal satisfying $Y_{M} \leqslant L$ and $Y_{M} \$ O_{p}(L)$. According to the Asymmetric L-Lemma these subgroups L are in $\mathfrak{L}_{G}\left(Y_{M}\right)$, see 2.16, so they have a very transparent structure. For example, $O_{p}(L)=\left\langle\left(Y_{M} \cap O_{p}(L)\right)^{L}\right\rangle$ and

$$
L / O_{p}(L) \cong S L_{2}(q), S z(q), q:=\left|Y_{M} O_{p}(L) / O_{p}(L)\right|, \text { or } D_{2 r} .
$$

Since Y_{M} is Q-short we have $\left[\Omega_{1} Z\left(O_{p}(H)\right), H\right] \neq 1$, see 7.1 ed , and one can investigate the action of L on quasisimple H-submodules U of $\Omega_{1} Z\left(O_{p}(H)\right)$. By 2.17. $W:=[U, L]$ is a strong offender on Y_{M}, so the action of $\left\langle W^{M}\right\rangle$ on Y_{M} can be investigated via some of the FF-module results from Appendix C

Here is the main result of this chapter.

Theorem G. Let p be a prime, G be finite \mathcal{K}_{p}-group, $S \in \operatorname{Syl}_{p}(G)$, and let $Q \leqslant S$ be a large p-subgroup of G. Suppose that $M \in \mathfrak{M}_{G}(S)$ such that
(i) Y_{M} is Q-short ${ }^{1}$ and $Q \nRightarrow M$,
(ii) Y_{M} is char p-tall and asymmetric in G.

Then one of the following holds, where q is some power of p and $\overline{M^{\dagger}}:=M^{\dagger} / C_{M^{\dagger}}\left(Y_{M}\right)$:
(1) $\overline{M^{\circ}} \cong S L_{n}(q), n \geqslant 3$, and Y_{M} is a corresponding natural module.
(2) $p=2, \bar{M} \cong O_{4}^{-}(2), S p_{4}(2)^{\prime}$ or $S p_{4}(2), Y_{M}$ is a corresponding natural module, $Y_{M}=$ $O_{2}(M)$, and $N_{G}(Q) \leqslant M^{\dagger}$. Moreover, (in the $O_{4}^{-}(2)$-case) for all non-singular $x \in Y_{M}$, $C_{G}(x)$ is not of characteristic 2.
(3) There exists a unique \bar{M}-invariant set \mathcal{K} of subgroups of \bar{M} such that Y_{M} is a natural $S L_{2}(q)$-wreath product module for \bar{M} with respect to \mathcal{K}. Moreover,
(a) $Y_{M}=O_{p}(M)$.
(b) $N_{G}(Q) \leqslant M^{\dagger}$.
(c) $\overline{M^{\circ}}=O^{p}(\langle\mathcal{K}\rangle) \bar{Q}$.
(d) Q acts transitively on \mathcal{K}.
(e) If $|\mathcal{K}| \geqslant 2$ then $q=2$ or 4 and, for all $K \in \mathcal{K}, C_{G}(\langle[V, A] \mid A \in \mathcal{K} \backslash\{K\}\rangle)$ is not of characteristic 2 .

Table 1 lists examples for Y_{M}, M and G fulfilling the hypothesis of Theorem G.

[^9]Table 1. Examples for Theorem G

	Case	[Y_{M}, M°] for M°	c	Remarks	examples for G
*	1	nat $S L_{n}(q)$	1	$N_{G}(Q) \leqslant M$	$L_{n+1}(q)$
	1	nat $S L_{3}(2)$	1	$N_{G}(Q) \leqslant M$	Alt (9)
	1	nat $S L_{4}(2)$	1	$N_{G}(Q) \leqslant M$	Mat ${ }_{24}$
	2	nat $\Omega_{4}^{-}(2)$	1	$\bar{M} \cong O_{4}^{-}(2)$	Alt(10)
	2	nat $S p_{4}(2)^{\prime}$	1		Mat 22 $^{\text {(.2) }}$
	2	nat $S p_{4}(2)$	1	-	Mat ${ }_{22} .2$
	3	nat $S L_{2}(q)$	1	-	$L_{3}(q)$
	3	nat $S L_{2}(2)$	1	-	$S p_{4}(2)^{\prime}$
	$\frac{3}{3}$	nat $S L_{2}(3)$	1	-	Mat ${ }_{12}$
	3	nat $\Gamma S L_{2}(4)$	1	-	$\Gamma L_{3}(4)$
	3	nat $S L_{2}(q)$ wreath	1	$\|\mathcal{K}\|>1$	(Г) $L_{3}(q) 2$ 2-group, $q=2,4$

Here $c=\mid Y_{M} /\left[Y_{M}, M^{\circ}\right]$, and $*$ indicates that (char Y_{M}) fails in G.

7.1. The Proof of Theorem G

Throughout this section we assume the hypothesis of Theorem G and use the notation introduced there. Note that by $2.10 \mathfrak{H}_{G}\left(O_{p}(M)\right) \neq \varnothing$ (for the definition of $\mathfrak{H}_{G}\left(O_{p}(M)\right)$ see 2.1p.

Choose $H \in \mathfrak{H}_{G}\left(O_{p}(M)\right)$. By definition of $\mathfrak{H}_{G}\left(O_{p}(M)\right), O_{p}(M) \leqslant H$ and so we can choose $T \in \operatorname{Syl}_{p}\left(H \cap M^{\dagger}\right)$ with $O_{p}(M) \leqslant T$. By 2.6 b $O_{p}(M)$ is a weakly closed subgroup of G, and so $T \leqslant N_{G}\left(O_{p}(M)\right) \leqslant N_{G}\left(Y_{M}\right)$. Thus there exists $g \in N_{G}\left(O_{p}(M)\right)$ with $T^{g} \leqslant S$. Since g normalizes $O_{p}(M)$ and $Y_{M}, H^{g} \in \mathfrak{H}_{G}\left(O_{p}(M)\right)$, and replacing H by H^{g} we may assume that $T \leqslant S$.

Lemma 7.1. (a) $T \in \operatorname{Syl}_{p}(H)$ and $O_{p}(H) \leqslant T \leqslant S \leqslant M$.
(b) $Y_{M} \leqslant O_{p}(M) \leqslant T$ and $Y_{H} \leqslant O_{p}(H)$.
(c) $\Omega_{1} Z(S) \leqslant \Omega_{1} Z(T) \leqslant Y_{M} \cap Y_{H}$.
(d) $\left[\Omega_{1} Z(S), H\right] \neq 1,\left[Y_{H}, H\right] \neq 1,\left[\Omega_{1} Z\left(O_{p}(H)\right), O^{p}(H)\right] \neq 1$ and $Y_{H}=\Omega_{1} Z\left(O_{p}(H)\right)$.
(e) $Y_{M} \leqslant O_{p}\left(C_{H}\left(C_{Y_{H}}(T)\right)\right)$.
(f) $Y_{M} \cap Y_{H}=C_{Y_{H}}\left(O_{p}(M)\right)=C_{Y_{M}}\left(O_{p}(H)\right)$.

Proof. ab: By 2.6 ch $H \cap M^{\dagger}$ is a parabolic subgroup of H and so $T \in S y l_{p}(H)$. In particular, $O_{p}(H) \leqslant T$. By the above choice $T \leqslant S \leqslant M$ and so (a) holds.
(b): The first statement is true by choice of T and the second by definition of $\mathfrak{H}_{G}\left(O_{p}(M)\right)$.
(c): By 2.2 a) and (e), $C_{G}\left(O_{p}(M)\right) \leqslant O_{p}(M)$ and $\Omega_{1} Z\left(O_{p}(M)\right)=Y_{M}$. Since $O_{p}(M) \leqslant T \leqslant S$ this gives $\Omega_{1} Z(T) \Omega_{1} Z(S) \leqslant Y_{M}$ and

$$
\Omega_{1} Z(S)=C_{Y_{M}}(S) \leqslant C_{Y_{M}}(T)=\Omega_{1} Z(T)
$$

Thus $\Omega_{1} Z(S) \leqslant \Omega_{1} Z(T) \leqslant Y_{M}$, and by $1.24(\mathrm{~g}), \Omega_{1} Z(T) \leqslant Y_{H}$, and (c) holds.
(d): Suppose that $\left[\Omega_{1} Z(S), H\right]=1$. Then Q ! shows that $H \leqslant C_{G}\left(\Omega_{1} Z(S)\right) \leqslant N_{G}(Q)$. But then by 2.12 a Y_{M} is Q-tall, a contradiction.

Hence $\left[\Omega_{1} Z(S), H\right] \neq 1$. By (c), $\Omega_{1} Z(S) \leqslant Y_{H}$ and so $\left[Y_{H}, H\right] \neq 1$. Since by 2.11, e) H is p-irreducible, 1.35 implies $\left[\Omega_{1} Z\left(O_{p}(H)\right), O^{p}(H)\right] \neq 1$ and $Y_{H}=\Omega_{1} Z\left(O_{p}(H)\right)$. Hence (d) holds.
(e): By (c) $\Omega_{1} Z(S) \leqslant Y_{H}$ and so $\Omega_{1} Z(S) \leqslant C_{Y_{H}}(T)$. Put $C:=C_{H}\left(C_{Y_{H}}(T)\right)$. Then

$$
Y_{M} \leqslant O_{p}(M) \leqslant C \leqslant C_{G}\left(\Omega_{1} Z(S)\right)
$$

By Q !, $C_{G}\left(\Omega_{1} Z(S)\right) \leqslant N_{G}(Q)$, and by Hypothesis (i) of Theorem G (and its footnote) $Y_{M} \leqslant$ $O_{p}\left(N_{G}(Q)\right)$. Hence $Y_{M} \leqslant C \cap O_{p}\left(N_{G}(Q)\right) \leqslant O_{p}(C)$, and so holds.
(f): Both groups, H and M, are of characteristic p, and by (d) and 2.2 ed, respectively, $Y_{H}=$ $\Omega_{1} Z\left(O_{p}(H)\right)$ and $Y_{M}=\Omega_{1} Z\left(O_{p}(M)\right)$. Hence $C_{H}\left(O_{p}(H)\right) \leqslant O_{p}(H)$ and so

$$
Y_{M} \cap Y_{H} \leqslant C_{Y_{M}}\left(O_{p}(H)\right) \leqslant \Omega_{1} Z\left(O_{p}(H)\right)=Y_{H}
$$

and with a symmetric argument $Y_{M} \cap Y_{H} \leqslant C_{Y_{H}}\left(O_{p}(M)\right) \leqslant Y_{M}$. Now (f) follows.
According to 7.1 d $\left[\Omega_{1} Z\left(O_{p}(H)\right), O^{p}(H)\right] \neq 1$. Hence H satisfies the hypothesis of 2.17. In particular, $\mathfrak{L}_{H}\left(Y_{M}\right) \neq \varnothing$ and there exists a quasisimple H-submodule of Y_{M}. We fix the following notation:

Notation 7.2. (a) U is a quasisimple H-submodule of $Y_{H}, \widehat{U}=U / C_{U}\left(O^{p}(H)\right), \widetilde{H}=$ $H / C_{H}(U)$ and $\widetilde{q}=\left|\widetilde{Y_{M}}\right|$.
(b) $L \in \mathfrak{L}_{H}\left(Y_{M}\right), W:=[U, L], R:=C_{Y_{M}}(L), A=O_{p}(L)$ and $l \in L \backslash N_{L}\left(Y_{M}\right)$.
(c) K is the subnormal closure of W in $M, K^{*}:=\left\langle W^{M}\right\rangle=\left\langle K^{M}\right\rangle$ and $Y:=\left[Y_{M}, K\right]$.

Remark 7.3. Note that we can apply 2.17 with (H, L, U, W) in place of (H, L, V, W). In particular, W is a strong offender on Y_{M}.

By definition of $\mathfrak{L}_{G}\left(Y_{M}\right)$, L is Y_{M}-minimal with $L \cap M^{\dagger}$ the unique maximal subgroup of L containing Y_{M}. In particular, $O_{p}(L) Y_{M} \leqslant L \cap M^{\dagger}$. So $O_{p}(L)$ normalizes Y_{M}, and we can apply 1.43 with Y_{M} in place of Y.

We will use these two results, 2.17 and 1.43 , frequently.
Lemma 7.4. (a) If $\left[O_{p}(H), Y_{M}\right] \leqslant\left[W, Y_{M}\right]$ then $\left[O_{p}(H), O^{p}(H) Y_{M}\right]=\left[O_{p}(H), O^{p}(H)\right]=$ U.
(b) $K=\left\langle W^{K}\right\rangle=O^{p}(K) W$.
(c) $W \leqslant Z(A) \leqslant A \leqslant O_{p}(H)$.
(d) $A=L \cap O_{p}(H)$ and $Y_{M} \cap A=Y_{M} \cap O_{p}(H)$.
(e) $C_{Y_{M}}(A) \leqslant C_{Y_{M}}(W)=C_{A}\left(Y_{M}\right)=Y_{M} \cap A=[y, A] R=C_{A}(y)$ for every $y \in Y_{M} \backslash A$.
(f) $O_{p}(H)$ normalizes K, Q and any perfect K-submodule of Y_{M}.

Proof. (a): Suppose that $\left[O_{p}(H), Y_{M}\right] \leqslant\left[W, Y_{M}\right]$. As $W \leqslant U \leqslant H$ this gives $\left[O_{p}(H), Y_{M}\right] \leqslant$ U. By 2.11d $\left\langle Y_{M}^{H}\right\rangle=O^{p}(H) Y_{M}$, and since U is H-quasisimple, $U=[U, H]=\left[U, O^{p}(H)\right]$. So

$$
U=\left[U, O^{p}(H)\right] \leqslant\left[O_{p}(H), O^{p}(H) Y_{M}\right]=\left[O_{p}(H),\left\langle Y_{M}^{H}\right\rangle\right] \leqslant U
$$

and (a) holds.
(b): Since K is the subnormal closure of W, this follows from 1.13 .
(c): $\mathrm{By} 2.17 \sqrt{\mathrm{~b}} W \leqslant Z(A)$ and $A \leqslant O_{p}(H)$.
(d): Note that $A \leqslant L \cap O_{p}(H) \leqslant O_{p}(L)=A$ and so $L \cap O_{p}(H)=A$. Since $Y_{M} \leqslant L$ we also get $Y_{M} \cap A=Y_{M} \cap O_{p}(H)$.
(e): By 1.43 (g) applied with $Y=Y_{M}$ and $B=A$,

$$
Y_{M} \cap A=C_{A}\left(Y_{M}\right)=C_{A}(y)=[A, y] C_{Y_{M}}(L)=[A, y] R
$$

for $y \in Y_{M} \backslash A$. Since L is p-minimal, L is p-irreducible. Also [$\left.W, O^{p}(L)\right]=W \neq 1$, and 1.34a) gives $C_{Y_{M}}(W)=Y_{M} \cap O_{p}(L)=Y_{M} \cap A$. Since by (c) $W \leqslant A, C_{Y_{M}}(A) \leqslant C_{Y_{M}}(W)$.
(f): Since $W \leqslant U \leqslant Y_{H}, O_{p}(H)$ centralizes W. As $O_{p}(H) \leqslant T \leqslant S \leqslant M$, we get $O_{p}(H) \leqslant$ $N_{M}(W)$. Hence $O_{p}(H)$ normalizes the subnormal closure K of W in M. Since $O_{p}(H) \leqslant S, O_{p}(H)$ also normalizes Q.

Let X be a perfect K-submodule of Y_{M}, and let $h \in O_{p}(H)$. Since $X \leqslant L, X$ normalizes W and since $W \leqslant K$, W normalizes X. So $[X, W] \leqslant X \cap W \leqslant C_{X}(h) \leqslant X^{h}$. Since h normalizes K, K normalizes X^{h}. Also $K=\left\langle W^{K}\right\rangle$ and thus $X=[X, K]=\left[X,\left\langle W^{K}\right\rangle\right] \leqslant X^{h}$ and so $X=X^{h}$.

Lemma 7.5. (a) $R=C_{Y_{H}}(H)$. In particular, $R \cap U=C_{U}(H)$.
(b) $U \cap Y_{M}=\left[W, Y_{M}\right](U \cap R)=\left[U, Y_{M}\right](U \cap R)$.
(c) $W \cap Y_{M}=\left[W, Y_{M}\right]$ and $W \cap R=\left[W, Y_{M}\right] \cap R$.
(d) $C_{U}\left(Y_{M}\right)=U \cap O_{p}(M)$ and $C_{U}\left(O_{p}(M)\right)=U \cap Y_{M}$.
(e) $C_{R}\left(Q^{g}\right)=1$ for all $g \in G$.
(f) $C_{G}\left(M^{\circ}\right)=1$. In particular, $C_{Y_{M}}\left(M^{\circ}\right)=1$.
(g) $C_{T}(U)=C_{T}(\widehat{U})=O_{p}(H)$.

Proof. (a): By 7.1|f), $C_{Y_{H}}\left(O_{p}(M)\right)=Y_{M} \cap Y_{H}=C_{Y_{M}}\left(O_{p}(H)\right)$. Since $O_{p}(M) O_{p}(H) \leqslant H$ this gives $C_{Y_{H}}(H)=C_{Y_{H} \cap Y_{M}}(H)=C_{Y_{M}}(H)$.

By 2.17,,$H=\left\langle O_{p}(M), L\right\rangle$. Recall that $R=C_{Y_{M}}(L)$ and both $O_{p}(M)$ and L centralize R. Thus $R=C_{Y_{M}}(H)$, and (a) holds.
(b): Since $B:=U \cap A$ is an L-invariant subgroup of $A, 1.43 \mathrm{~g}$ gives

$$
B \cap Y_{M}=\left[B, Y_{M}\right] C_{B \cap Y_{M}}(L)=\left[B, Y_{M}\right](B \cap R)
$$

Note that $U \cap Y_{M} \leqslant O_{p}(H) \cap Y_{M}$ and by 7.4d), $O_{p}(H) \cap Y_{M}=A \cap Y_{M}$. So $U \cap Y_{M}=$ $U \cap\left(A \cap Y_{M}\right)=B \cap Y_{M}$. By 2.17C $U=W C_{U}\left(Y_{M}\right)$. Since $W \leqslant U \cap A=B \leqslant U$ this gives $\left[W, Y_{M}\right]=\left[B, Y_{M}\right]=\left[U, Y_{M}\right]$, and so (b) holds.
(c): Recall from Notation 7.2 b that $l \in L \backslash N_{L}\left(Y_{M}\right)$ and so by 1.42 f$) L=\left\langle Y_{M}, Y_{M}^{l}\right\rangle$. Since $W=[U, L], 1.40$ shows $C_{W}\left(Y_{M}\right)=\left[W, Y_{M}\right]$. Thus $W \cap R=C_{W}(L) \leqslant C_{W}\left(Y_{M}\right)=\left[W, Y_{M}\right]$ and so $W \cap R=\left[W, Y_{M}\right] \cap R$.
(d): Note that $U \leqslant O_{p}(H) \leqslant S$ and by 2.2 f $C_{S}\left(Y_{M}\right)=O_{p}(M)$. Thus $C_{U}\left(Y_{M}\right)=U \cap O_{p}(M)$. Also $U \leqslant Y_{H}$, and by 7.1 f), $C_{Y_{H}}\left(O_{p}(M)\right)=Y_{H} \cap Y_{M}$. So $C_{U}\left(O_{p}(M)\right)=U \cap Y_{M}$, and (d) holds.
(e): Assume that there exists $g \in G$ such that $C_{R}\left(Q^{g}\right) \neq 1$. By (a) H centralizes R and so also $C_{R}\left(Q^{g}\right)$. Thus by Q !, $H \leqslant N_{G}\left(Q^{g}\right)$, and by 2.12 a Y_{M} is Q-tall, a contradiction, since Y_{M} is Q-short by Hypothesis (i) of Theorem G.
(f): By Hypothesis (i) of Theorem $\mathrm{G} Q \notin M$. Thus $M^{\circ} \neq Q$ and 1.55 d implies $C_{G}\left(M^{\circ}\right)=1$.
(g): Since U is quasisimple, \hat{U} is a non-central simple H-module. Thus $\left[\hat{U}, O^{p}(H)\right] \neq 1$. By 2.11 e H is p-irreducible, and so 1.34 a) gives (g).

Lemma 7.6. Put $H_{0}:=\left\langle Y_{M}^{H}\right\rangle$.
(a) \widehat{U} is a non-central simple H_{0}-module, and U is a quasisimple H_{0}-module.
(b) Put $\mathbb{K}:=\operatorname{End}_{H_{0}}(\widehat{U})$. Then \mathbb{K} is a finite field and $O_{p}(M)$ and H act \mathbb{K}-linearly on \hat{U}.
(c) $C_{H}(U)=C_{H}(\widehat{U})$.
(d) Suppose that $\widetilde{O_{p}(M)} \leqslant \widetilde{H_{0}}$. Then $H=H_{0} C_{H}(\hat{U})=H_{0} C_{H}(U)=H_{0} O_{p}(H)$ and $U \cap R=$ $C_{U}\left(O^{p}(H)\right)$.
(e) $C_{\widetilde{H}}\left(\widetilde{H_{0}}\right) \leqslant \widetilde{H_{0}}$.

Proof. By 2.11 ch, d], $H=O^{p}(H) O_{p}(M)$ and $Y_{M} O^{p}(H)=\left\langle Y_{M}^{O^{p}(H)}\right\rangle=\left\langle Y_{M}^{H}\right\rangle=H_{0}$. So $H_{0}=\left\langle Y_{M}^{H_{0}}\right\rangle$, and since \widehat{U} is a non-central simple H-module, $C_{\widehat{U}}\left(H_{0}\right)=1$.

Note also that $\left[U, Y_{M}, O_{p}(M)\right] \leqslant\left[Y_{M}, O_{p}(M)\right]=1$ and so $\left[\hat{U}, Y_{M}\right] \leqslant C_{\hat{U}}\left(O_{p}(M)\right)$.
(a) : Let \hat{I} be a simple H_{0}-submodule of \hat{U}. Since \hat{U} is a simple H-module with $[\hat{U}, H] \neq 1$ and $H_{0} \leqslant H$, also $\left[\hat{I}, H_{0}\right] \neq 1$, and since $H_{0}=\left\langle Y_{M}^{H_{0}}\right\rangle,\left[\hat{I}, Y_{M}\right] \neq 1$. Hence also $C_{\hat{I}}\left(O_{p}(M)\right) \neq 1$, and since distinct simple H_{0}-submodules have trivial intersection, $O_{p}(M)$ normalizes \hat{I}. Thus \hat{I} is invariant under $H_{0} O_{p}(M)=H$, and since \hat{U} is a simple H-module, $\hat{I}=\hat{U}$. Since U is a perfect H-module and $O^{p}(H) \leqslant H_{0}, U$ is a perfect H_{0}-module. As $H_{0} \vDash H$ and U is a p-reduced H-module, U is a p-reduced H_{0}-module. Hence U is a quasisimple H_{0}-module, and (a) holds.
(b): Since by (a) \hat{U} is a simple H_{0}-module, Schur's Lemma shows that \mathbb{K} is a finite division ring and so by Wedderburn's Theorem a field. Since H normalizes H_{0}, H acts \mathbb{K}-semilinearly on \hat{U}. Note that $\left[\widehat{U}, Y_{M}\right]$ is a non-trivial \mathbb{K}-subspace of \hat{U} centralized by $O_{p}(M)$. Thus $O_{p}(M)$ acts \mathbb{K}-linearly on \widehat{U}, and since $H=H_{0} O_{p}(M)$, also H acts \mathbb{K}-linearly on \widehat{U}.
(c): By 7.5 (g) $C_{T}(\hat{U})=O_{p}(H) \leqslant C_{H}(U)$. Also $\left[U, C_{H}(\hat{U})\right] \leqslant C_{U}\left(O^{p}(H)\right)$ and therefore $\left[U, O^{p}\left(C_{H}(\hat{U})\right)\right]=1$. Thus $C_{H}(\widehat{U})=O^{p}\left(C_{H}(\hat{U})\right) C_{T}(\hat{U}) \leqslant C_{H}(U) \leqslant C_{H}(\widehat{U})$.
(d): Suppose that $O_{p}(M) \leqslant H_{0} C_{H}(\hat{U})$. Then $H=H_{0} O_{p}(M)=H_{0} C_{H}(\hat{U})$, and by (c) also $H=H_{0} C_{H}(U)$. Hence $O_{p}(M) \leqslant T \leqslant\left(T \cap H_{0}\right) C_{T}(\widehat{U})$. By 7.5 g $C_{T}(\widehat{U})=O_{p}(H)$ and so $O_{p}(M) \leqslant\left(T \cap H_{0}\right) O_{p}(H)$. This shows that $H=H_{0} O_{p}(M)=H_{0} O_{p}(H)$, and the first part of (d) is
proved. By 2.17d), $C_{U}\left(O^{p}(H)\right)=C_{U}\left(H_{0}\right)$. Since $H=H_{0} C_{H}(U), C_{U}(H)=C_{U}\left(H_{0}\right)$ and by 7.5 a), $C_{U}(H)=U \cap R$. Thus $C_{H}\left(O^{p}(H)\right)=U \cap R$.
(e): By (c) $\widetilde{H}=H / C_{H}(\widehat{U})$. Since \widehat{U} is a simple H_{0}-module we conclude that $C_{\widetilde{H}}\left(\widetilde{H_{0}}\right)$ is p^{\prime}-group. As $H=H_{0} O_{p}(M), H / H_{0}$ is a p-group and so $C_{\widetilde{H}}\left(\widetilde{H_{0}}\right) \leqslant \widetilde{H_{0}}$.

LEMMA 7.7. (a) $C_{Y_{M}}(K) \cap C_{Y_{M}}(Q)=1$.
(b) $C_{O_{p}(M)}\left(\left\langle K^{Q}\right\rangle\right)=1$.

Proof. (a): Suppose for a contradiction that $C_{Y_{M}}(K) \cap C_{Y_{M}}(Q) \neq 1$. Then by A.54 c) $\bar{K} \leqslant$ $N_{\bar{M}}(\bar{Q})$, and by A.54 \bar{K} acts faithfully on $X:=C_{Y_{M}}(Q)$. In particular, $[X, K] \neq 1$ and since $K=\left\langle W^{K}\right\rangle$, also $[X, W] \neq 1$.

Suppose first that $\left|X / C_{X}(W)\right|>2$. Then 2.17 fi shows that $\left[W, Y_{M}\right]=[W, X] \leqslant X$. Using $K=\left\langle W^{K}\right\rangle$ this gives $\left[K, Y_{M}\right] \leqslant X=C_{Y_{M}}(Q)$ and $\left[Y_{M}, K, Q\right]=1$. Since $\bar{K} \neq 1$, this contradicts A. 54 d. .

Hence $\left|X / C_{X}(W)\right|=2$. By 7.4 (c), (f) $A \leqslant O_{p}(H)$, and $O_{p}(H)$ normalizes Q and K. In particular, A normalizes Q and K, and so

$$
\begin{equation*}
[K, A] \leqslant K \quad \text { and } \quad[X, A] \leqslant X \tag{I}
\end{equation*}
$$

Choose $y \in X \backslash C_{X}(W)$. By 7.4.c), $W \leqslant Z(A)$. So $y \notin A$, and 7.4 ed gives $Y_{M} \cap A=C_{Y_{M}}(W)=$ $[y, A] R$. Also by 7.5 e),$R \cap X \leqslant C_{R}(Q)=1$. Note that $C_{X}(K)=C_{Y_{M}}(K) \cap C_{Y_{M}}(Q) \neq 1$, and by (I) $[y, A] \leqslant[X, A] \leqslant X$, so

$$
1 \neq C_{X}(K) \leqslant C_{Y_{M}}(W) \cap X \leqslant[y, A] R \cap X=[y, A](R \cap X)=[y, A]
$$

By 1.43 a

$$
A^{\prime}=\left[Y_{M} \cap A, A\right] \leqslant C_{Y_{M}}(L)=R
$$

On the other hand $\left[Y_{M} \cap A, A\right] \leqslant[X R, A]=[X, A] \leqslant X$ and so $A^{\prime}=\left[Y_{M} \cap A, A\right] \leqslant R \cap X=1$. Thus A is abelian and so $[y, A]=\{[y, a] \mid a \in A\}$. As $1 \neq C_{X}(K) \leqslant[y, A]$ we can choose $a \in A$ with $1 \neq[y, a] \in C_{X}(K)$. From $C_{X}(W) \leqslant C_{Y_{M}}(W)=Y_{M} \cap A$ we also get $\left[C_{X}(W), A\right]=$ 1. Since $\left|X / C_{X}(W)\right|=2, X=\langle y\rangle C_{X}(W)$, and it follows that $[X, a]=\langle[y, a]\rangle \leqslant C_{X}(K)$ and $C_{X}(a)=C_{X}(W)$. By (I) $[K, A] \leqslant K$, and so $[K, a]$ centralizes the factors of the K-invariant series $1 \leqslant C_{X}(K) \leqslant X$. As X is a faithful \bar{K}-module we get $[\bar{K}, \bar{a}] \leqslant O_{p}(\bar{K}) \leqslant O_{p}(\bar{M})=1$. The Three Subgroups Lemma now shows that $[X, K, a]=1$ and $[X, K] \leqslant C_{X}(a)=C_{X}(W)$. But then $[X, K, W]=1$, and since $K=\left\langle W^{K}\right\rangle,[X, K, K]=1$, a contradiction since \bar{K} is not a p-group and acts faithfully on X. This completes the proof of (a).
(b): Put $K_{0}:=O^{p}\left(\left\langle K^{Q}\right\rangle\right)$ and $C:=C_{O_{p}(M)}\left(K_{0}\right)$. Since K is subnormal in $M, O_{p}(M)$ normalizes $O^{p}(K)$ and thus also K_{0} and C; in particular $C \leqslant O_{p}(M)$. Assume that $C \neq 1$. Then $C \cap Z\left(O_{p}(M)\right) \neq 1$, and since $\Omega_{1} Z\left(O_{p}(M)\right)=Y_{M}$, also $C \cap Y_{M} \neq 1$. On the other hand, $\langle Q, K\rangle / K_{0}$ is a p-group, and so $C \cap Y_{M} \neq 1$ implies $C_{C \cap Y_{M}}(\langle Q, K\rangle) \neq 1$. This contradicts (a). Hence $C=1$, and (b) holds.

Lemma 7.8. Let $1 \neq X \leqslant R$ and suppose that

$$
O_{p}\left(C_{\bar{M}}(X)\right)=1 \quad \text { or } \quad\left[C_{Y_{M}}\left(O_{p}\left(C_{\bar{M}}(X)\right)\right), W\right] \neq 1
$$

Then $C_{G}(X)$ is not of characteristic p.
Proof. Note that $O_{p}\left(C_{\bar{M}}(X)\right)=1$ implies $Y_{M}=C_{Y_{M}}\left(O_{p}\left(C_{\bar{M}}(X)\right)\right)$. Thus, also in this case

$$
\begin{equation*}
\left[C_{Y_{M}}\left(O_{p}\left(C_{\bar{M}}(X)\right)\right), W\right] \neq 1 \tag{*}
\end{equation*}
$$

Put $P:=O_{p}\left(C_{G}(X)\right)$. Since $R \leqslant Y_{M}, X \leqslant Y_{M}$ and $O_{p}(M) \leqslant C_{G}(X)$. Hence 2.6 c shows that $M^{\dagger} \cap C_{G}(X)$ is a parabolic subgroup of $C_{G}(X)$, and so $P \leqslant M^{\dagger}$. Thus $\bar{P} \leqslant \bar{O}_{p}\left(C_{M^{\dagger}}(X)\right)$. As $M^{\dagger}=M C_{G}\left(Y_{M}\right), \bar{M}=\overline{M^{\dagger}}$ and so $\bar{P} \leqslant O_{p}\left(C_{\bar{M}}(X)\right)$. Hence $C_{Y_{M}}\left(O_{p}\left(C_{\bar{M}}(X)\right)\right) \leqslant C_{Y_{M}}(P)$. Now $(*)$ implies $\left[C_{Y_{M}}(P), W\right] \neq 1$. By 7.4 e] $C_{Y_{M}}(W)=Y_{M} \cap A$, and so $C_{Y_{M}}(P) \nleftarrow A=O_{p}(L)$.

As $X \leqslant R=C_{Y_{M}}(L), L \leqslant C_{G}(X)$, and since $C_{Y_{M}}(P) \not \approx O_{p}(L), C_{Y_{M}}(P) \not \approx O_{p}\left(C_{G}(X)\right)=P$. Thus $C_{G}(X)$ is not of characteristic p.

Lemma 7.9. Suppose that $N_{G}(Q) \leqslant N_{G}\left(Y_{M}\right)$. Then there exists $t \in A \backslash C_{A}\left(Y_{M}\right)$ such that $\left[C_{D}(t), L\right] \leqslant A$ for all p-subgroups D of M with $\left[Y_{M}, D\right] \leqslant A$.

Proof. By 7.5 (ed, $\Omega_{1} Z(S) \leqslant Y_{M} \cap Y_{H} \leqslant Y_{M} \cap O_{p}(H)$, and by 7.4dd, $Y_{M} \cap O_{p}(H)=Y_{M} \cap A$, so $\Omega_{1} Z(S) \leqslant C_{Y_{M} \cap A}(Q) \neq 1$. Let $l \in L \backslash N_{L}\left(Y_{M}\right)$ and choose $1 \neq t \in C_{Y_{M} \cap A}(Q)^{l}$. By 7.5 (e) $C_{R}\left(Q^{l}\right)=1$, so $t \notin R$. Since $L=\left\langle Y_{M}^{l}, Y_{M}\right\rangle$, this gives $\left[t, Y_{M}\right] \neq 1$. By $Q!, C_{G}(t) \leqslant N_{G}\left(Q^{l}\right)$, and as $N_{G}\left(Q^{l}\right) \leqslant N_{G}\left(Y_{M}^{l}\right), C_{G}(t)$ normalizes Y_{M}^{l}. Since D normalizes $Y_{M}, C_{D}(t) \leqslant N_{G}\left(\left\langle Y_{M}, Y_{M}^{l}\right\rangle\right)=$ $N_{G}(L)$. In particular, $C_{D}(t)$ acts on $Y_{M}^{l} A / A$, and since $C_{D}(t)$ is a p-group, we can choose $h \in Y_{M}^{l} \backslash A$ with $\left[h, C_{D}(t)\right] \leqslant A$. By 1.43 k$) N_{L}\left(Y_{M}\right) \cap Y_{M}^{l} \leqslant A$. So $h \notin N_{L}\left(Y_{M}\right)$ and $L=\left\langle h, Y_{M}\right\rangle$. Since $\left[Y_{M}, C_{D}(t)\right] \leqslant Y_{M} \cap A \leqslant A$ and $\left[h, C_{D}(t)\right] \leqslant A$ this gives $\left[L, C_{D}(t)\right] \leqslant A$.

Lemma 7.10. Suppose that Y_{M} is an offender on W. Then $\widetilde{Y_{M}} \in \operatorname{Syl}_{p}(\widetilde{L})$, and both, $W / W \cap R$ and \widehat{W}, are natural $S L_{2}(\widetilde{q})$-modules for \widetilde{L}.

Proof. By 1.43hh $C_{W / W \cap R}(L)=1$. Also $W=\left[W, O^{p}(L)\right] \$ W \cap R$ and $\left[W, O_{p}(L)\right]=1$. Hence 1.34 bhows that W and $W / W \cap R$ are p-reduced for L and $C_{Y_{M}}(W / W \cap R)=Y_{M} \cap A=$ $C_{Y_{M}}(W)$. So Y_{M} is an offender on $W / W \cap R$. Since L is Y_{M}-minimal, C.13 shows that $W / W \cap R$ is a natural $S L_{2}(\widetilde{q})$-module for L / A and $Y_{M} A / A \in \operatorname{Syl}_{p}(L / A)$. By 7.4/d $A=L \cap O_{p}(H)$, so $\widetilde{L}=L O_{p}(H) / O_{p}(H) \cong L / A$ and $\widetilde{Y_{M}} \in \operatorname{Syl}_{p}(\widetilde{L})$.

By 2.17 e $W \cap R=W \cap C_{Y_{M}}(L)=C_{W}\left(O^{p}(H)\right)$. Hence $\widehat{W} \cong W / W \cap R$ and so also \widehat{W} is a natural $S L_{2}(\widetilde{q})$-module for \widetilde{L}, and the lemma is proved.

Lemma 7.11. Suppose that Y_{M} is an offender on W. Then one of the following holds:
(1) \hat{U} is natural $S L_{2}(\widetilde{q})$-module for $H, Y_{M}=O_{p}(M)=C_{G}\left(Y_{M}\right), M=M^{\dagger}, N_{G}(Q) \leqslant M$, $H=L$ and $U=W$.
(2) U is a natural $S L_{m}(\widetilde{q})$-module for $H, m \geqslant 3, U \cap R=1$ and $\widetilde{Y_{M}}=Z(\widetilde{T})$ is a transvection group on U.
Proof. Since Y_{M} is an offender on $W, 7.10$ shows $\widetilde{Y_{M}} \in \operatorname{Syl} l_{p}(\widetilde{L})$ and \widehat{W} is a natural $S L_{2}(\widetilde{q})$ module for \widetilde{L}. It follows that

$$
C_{\widehat{W}}(y)=C_{\widehat{W}}\left(Y_{M}\right) \quad \text { and } \quad[\widehat{W}, y]=\left[\widehat{W}, Y_{M}\right]
$$

for all $y \in Y_{M} \backslash C_{Y_{M}}(W)$. Also $\left|\widetilde{Y_{M}}\right|=|\widetilde{q}|=\left|\widehat{W} / C_{\widehat{W}}\left(Y_{M}\right)\right|$ and so Y_{M} is a root offender ${ }^{2}$ on \widehat{W}. By $2.17 \mathrm{c}, U=W C_{U}\left(Y_{M}\right)$. Hence $\hat{U}=\widehat{W} C_{\hat{U}}\left(Y_{M}\right)$. It follows that Y_{M} is a root offender on \hat{U}. By A.37 Db any root offender is a strong dual offender. Thus
$1^{\circ} . \quad Y_{M}$ is a strong dual offender and a root offender on \hat{U}.
Put $H_{0}:=\left\langle Y_{M}^{H}\right\rangle$ and $\mathbb{K}:=\operatorname{End}_{H_{0}}(\hat{U})$. By 7.6 a) \hat{U} is a non-central simple H_{0}-module. Hence we can apply the Strong Dual FF-Module Theorem C. 5 , and get:
2°. One of the following cases holds:
(A) $\widetilde{H_{0}} \cong \operatorname{Alt}(7), p=2$, and \hat{U} is a spin module of order 2^{4} for $\widetilde{H_{0}}$.
(B) $\widetilde{H_{0}} \cong O_{2 m}^{\epsilon}(2), m \geqslant 2$ and $p=2,\left|\widetilde{Y_{M}}\right|=2$, and \hat{U} is a natural $O_{2 m}^{\epsilon}(2)$-module for $\widetilde{H_{0}}$.
(C) $\widetilde{H_{0}} \cong S L_{m}\left(q_{1}\right), m \geqslant 3$, and \hat{U} is a natural $S L_{m}\left(q_{1}\right)$-module for $\widetilde{H_{0}}$.
(D) $\widetilde{H}_{0} \cong S p_{2 m}\left(q_{1}\right), m \geqslant 1$, or $S p_{4}(2)^{\prime}$ (and $p=2$), and \hat{U} is a corresponding natural module for $\widetilde{H_{0}}$.
(E) $\widetilde{H_{0}} \cong \operatorname{Sym}(m), m \geqslant 5, m \neq 6$ and $p=2$, and \hat{U} is a natural Sym (m)-module for $\widetilde{H_{0}}$.

[^10]Note here that $\operatorname{Alt}(6) \cong S p_{4}(2)^{\prime}$ and a natural $\operatorname{Alt}(6)$-module is also a natural $S p_{4}(2)^{\prime}$-module. Similarly, $S L_{2}\left(q_{1}\right) \cong S p_{2}\left(q_{1}\right)$, and a natural $S L_{2}\left(q_{1}\right)$-module is also a natural $S p_{2}\left(q_{1}\right)$-module. So these two cases are included in Case (D).

Suppose that Case A holds. Then $\widetilde{H_{0}} \cong \operatorname{Alt}(7)$ and $|\hat{U}|=2^{4}$. Since $\operatorname{Alt}(7)$ is a maximal subgroup of $A l t(8) \cong G L_{4}(2)$ and $H_{0} \geqq H$, we conclude that $\widetilde{H}=\widetilde{H_{0}} \cong A l t(7)$. It follows that there exists a proper subgroup P of H with $O_{2}(M) \leqslant P$ and $\widetilde{P} \cong \operatorname{Alt}(6)$. Note that $O_{2}(\widetilde{P})=1$ and so $\widetilde{Y_{M}} \nless O_{2}(\widetilde{P})$. Hence also $Y_{M} \not \approx O_{2}(P)$. Since $H \in \mathfrak{H}_{G}\left(O_{2}(M)\right)$ this contradicts the definition of $\mathfrak{H}_{G}\left(O_{2}(M)\right)$.

Suppose that Case holds. Then \tilde{U} is a natural $O_{2 m}^{\epsilon}(2)$-module for H_{0} and $\left|\widetilde{Y_{M}}\right|=2$. Since $Y_{M} \vDash T$ and $\left[\hat{U}, Y_{M}\right]=2$ we conclude that $\left[\hat{U}, Y_{M}\right] \leqslant C_{\hat{U}}(T)$, a contradiction since $\left[\hat{U}, Y_{M}\right]$ is non-singular and $C_{\hat{U}}(T)$ is singular by B.9 C and B.23 g respectively.

Suppose that Case C holds. Then \tilde{U} is a natural $S L_{m}\left(q_{1}\right)$-module for $H_{0}, m \geqslant 3$. Recall that $\mathbb{K}=\operatorname{End}_{H_{0}}(\widehat{U})$. Hence \mathbb{K} is a finite field of order q_{1}, and by 7.6 b$), O_{p}(M)$ acts \mathbb{K}-linearly on \hat{U}. Since $G L_{m}\left(q_{1}\right) / S L_{m}\left(q_{1}\right)$ is a p^{\prime}-group this gives $\widetilde{O_{p}(M)} \leqslant \widetilde{H_{0}}$. So 7.6 d implies

$$
H=H_{0} C_{H}(\widehat{U})=H_{0} C_{H}(U)=H_{0} O_{p}(H)
$$

Since $Y_{M} \vDash T$ we can choose $y \in Y_{M} \backslash C_{Y_{M}}(U)$ with $\tilde{y} \in Z(\widetilde{T})$. Note that $Z(\widetilde{T})$ is a transvection group. So $[\widehat{U}, y]$ and $\widehat{U} / C_{\widehat{U}}(y)$ are 1-dimensional over \mathbb{K} and

$$
Z(\widetilde{T})=C_{\widehat{H}}([\widetilde{U}, y]) \cap C_{\widetilde{H}}\left(C_{\widehat{U}}(y)\right)
$$

By $1^{1} Y_{M}$ is a root offender on \hat{U}. Thus $\left[\hat{U}, Y_{M}\right]=[\hat{U}, y]$ and $C_{\hat{U}}\left(Y_{M}\right)=C_{\hat{U}}(y)$. It follows that $\widetilde{Y_{M}} \leqslant Z(\widetilde{T})$, and since Y_{M} is an offender on $\hat{U}, \widetilde{Y_{M}}=Z(\widetilde{T}), \widetilde{Y_{M}}$ is a transvection group, and $q_{1}=|Z(\widetilde{T})|=\left|\widetilde{Y_{M}}\right|=\widetilde{q}$.

Suppose that $C_{U}(H) \neq 1$. Since $U=[U, H]$ and Y_{M} is a offender on W and so on U, C. 22 shows that \hat{U} is a natural $S L_{3}(2)$-module for H and $\left|\widetilde{Y_{M}}\right|=4$, a contradiction to $2=q_{1}=\widetilde{q}=\left|Y_{M}\right|$. Thus $C_{U}(H)=1, U$ is a natural $S L_{n}(\widetilde{q})$-module and $U \cap R=1$. So 2 holds in this case.

For the remainder of the proof we can assume now that Case D or E holds. We show next:
3. $\quad H=H_{0} O_{p}(H)=H C_{H}(\hat{U})=H C_{H}(U)$, and one of the following holds:
(i) \hat{U} is a natural $S p_{2 m}(\widetilde{q})$-module for $H, m \geqslant 1$, and $\widetilde{Y_{M}}$ acts as a transvection group on \hat{U}.
(ii) $p=2, \widehat{U}$ is a natural Sym (m) module for $H, m \geqslant 5$ and $m \neq 6$, and $\widetilde{Y_{M}}$ is generated by a transposition of \widetilde{H}.

Suppose that Case holds, so \hat{U} is a natural $S p_{2 m}\left(q_{1}\right)$-module, $m \geqslant 1$, or $S p_{4}(2)^{\prime}$-module for H_{0}. By 7.6 b, H acts \mathbb{K}-linearly on \widehat{U}. Note hat \mathbb{K} is a field of order q_{1} and the set of H_{0}-invariant symplectic forms on \widehat{U} form 1-dimensional \mathbb{K}-space. Since $O_{p}(M)$ acts \mathbb{K}-linearly on \widehat{U} and is a p group, we conclude that $O_{p}(M)$ acts trivially on this \mathbb{K}-space. So any H_{0}-invariant non-degenerate symplectic form on \widehat{U} is also $O_{p}(M)$-invariant.

Let $X=C_{\widehat{U}}(T)$ and $P=C_{H}(X)$. Note that X is a 1-dimensional singular \mathbb{K}-subspace of \hat{U} and $\left[X^{\perp}, O_{p}(P)\right] \leqslant X$, cf. B.23 g) and B.28 b:b. Since $O_{p}(M) \leqslant T \leqslant P<H$ and $H \in \mathfrak{H}_{G}\left(O_{p}(M)\right)$ we have $Y_{M} \leqslant O_{p}(P)$. Suppose that $\left[X^{\perp}, Y_{M}\right] \neq 1$. By $1^{\circ} Y_{M}$ is a strong dual offender on \hat{U} and so $\left[\hat{U}, Y_{M}\right]=\left[X^{\perp}, Y_{M}\right]=X$. But then $C_{\hat{U}}\left(Y_{M}\right)=\left[\hat{U}, Y_{M}\right]^{\perp}=X^{\perp}$ contrary to $\left[X^{\perp}, Y_{M}\right] \neq 1$. Thus $\left[X^{\perp}, Y_{M}\right]=1$. Hence

$$
q_{1}=\left|\widehat{U} / X^{\perp}\right|=\left|U / C_{U}\left(Y_{M}\right)\right| \leqslant\left|\widetilde{Y_{M}}\right| \leqslant\left|C_{\widetilde{H_{0}}}\left(X^{\perp}\right)\right| \leqslant q_{1}
$$

Thus $\widetilde{Y_{M}}$ is a transvection group on \widehat{U}, and $q_{1}=\left|\widetilde{Y_{M}}\right|=\widetilde{q}$. Moreover, since $S p_{4}(2)^{\prime}$ does not contain a transvection, $\widetilde{H_{0}} \cong S p_{2 n}(\widetilde{q})$. As $O_{p}(M)$ fixes the $\widetilde{H_{0}}$-invariant symplectic forms we get $\left.\widetilde{O_{p}(M)}\right) \leqslant \widetilde{H_{0}}$. Now 7.6 d shows that the first statement of 3° holds. In particular, $\widetilde{H}=\widetilde{H_{0}}$ and (3° (i) holds.

Suppose that Case holds, so \hat{U} is a natural $\operatorname{Sym}(m)$ module for $H_{0}, m \geqslant 5$ and $m \neq 6$, and $\left|\widetilde{Y_{M}}\right|=2$. Since $\left|\widetilde{Y_{M}}\right|=2$ and Y_{M} is an offender, $\widetilde{Y_{M}}$ is generated by a transposition. Note that $\operatorname{Out}(\operatorname{Sym}(m))=1$ since $m \neq 6$. Hence $O_{p}(M)$ induces inner automorphisms of $\widetilde{H_{0}}$. By 7.6 (e), $C_{\widetilde{H}}\left(\widetilde{H_{0}}\right) \leqslant \widetilde{H_{0}}$ and thus $\widetilde{O_{p}(M)} \leqslant \widetilde{H_{0}}$. Now 7.6 d shows that the first statement of 3° holds. Thus $\widetilde{H}=\widetilde{H_{0}}$, and 3° (ii) follows. This completes the proof of 3°.
4. $\quad U \cap R=C_{U}\left(O^{p}(H)\right)$. In particular, $\hat{U}=U / U \cap R$.

By 7.5, a) $U \cap R=C_{U}(H)$, by (3) $H=H_{0} C_{H}(U)$, and by 2.17dd) $C_{U}\left(H_{0}\right)=C_{H}\left(O^{p}(H)\right)$. Hence $U \cap \bar{R}=C_{U}\left(H_{0}\right)=C_{U}\left(O^{p}(H)\right)$.

Let Z_{2} be maximal in $U \cap O_{p}(M)$ with $\left[Z_{2}, O_{p}(M)\right] \leqslant U \cap Y_{M}$ and put $E:=\left[Z_{2}, O_{p}(M)\right]$.
5°. $\widehat{Z_{2}}$ and \widehat{E} are \mathbb{K}-subspaces of $\widehat{U}, \widehat{E} \leqslant\left[\widehat{U}, Y_{M}\right],\left[\widehat{U}, Y_{M}\right]$ is 1-dimensional, and \widehat{E} is at most 1-dimensional over \mathbb{K}.

By 7.5 b), $U \cap Y_{M}=\left[U, Y_{M}\right](U \cap R)$. Since by $44^{\circ} \hat{U}=U / U \cap R$, it follows that $\widehat{U \cap Y_{M}}=$ $\left[\widehat{U}, Y_{M}\right]$ is a \mathbb{K}-subspace of \widehat{U}, and as $U \cap R \leqslant U \cap Y_{M}, \widehat{Z_{2}}$ is maximal in \widehat{U} with $\left[\widehat{Z_{2}}, O_{p}(M)\right] \leqslant$ $\widehat{U \cap Y_{M}}$. By 7.6 b), $O_{p}(M)$ acts \mathbb{K}-linearly on \widehat{U} and so $\widehat{Z_{2}}$ is a \mathbb{K}-subspace of \widehat{U}. Hence also $\widehat{E}=\left[\widehat{Z_{2}}, O_{p}(M)\right]$ is a \mathbb{K}-subspace of \widehat{U}. By definition of E and $Z_{2}, \widehat{E}=\left[\widehat{Z_{2}}, O_{p}(M)\right] \leqslant \widehat{U \cap Y_{M}}=$ [$\left.\widehat{U}, Y_{M}\right]$.

Since by $3^{\circ} \widetilde{Y_{M}}$ is a transvection group (in the $S p_{2 n}(\widetilde{q})$-case) or generated by a transposition (in the $\operatorname{Sym}(m)$-case), $\left[\widehat{U}, Y_{M}\right]$ is 1-dimensional over \mathbb{K}.
$6^{\circ} . \quad E \cap R=1$.
If $U \cap R=1$ then also $E \cap R=1$. So we may assume that $U \cap R \neq 1$. Suppose first that Case 3° (i) holds, that is, \widehat{U} is a natural $S p_{2 m}(\widetilde{q})$-module. Note that $C_{U}(H)=U \cap R \neq 1$ and $U=[\bar{U}, H]$. Thus C.22 shows that $p=2$, and U is a central quotient of a natural $\Omega_{2 m+1}(\widetilde{q})$-module \check{U} for H. For $X \subseteq U$, let \check{X} be the inverse image of X in \check{U}. Since $Z_{2} \leqslant U \cap O_{2}(M)=C_{U}\left(Y_{M}\right)$,

$$
\widehat{Z_{2}} \leqslant U \widehat{\cap O_{2}(M)} \leqslant C_{\hat{U}}\left(Y_{M}\right)=\left[\hat{U}, Y_{M}\right]^{\perp}
$$

As $\left[\widehat{Z_{2}}, O_{2}(M)\right] \leqslant\left[\widehat{U}, Y_{M}\right]$ this gives $\left[\widetilde{Z_{2}}, O_{2}(M)\right] \leqslant \widetilde{Z}_{2}{ }^{\perp}$. Hence by B.9 d $\left[\widetilde{Z_{2}}, O_{2}(M)\right]$ is a singular subspace in \check{U}. Since all the non-trivial vectors in \check{U}^{\perp} are non-singular, this gives $\left[\check{Z_{2}}, O_{p}(M)\right] \cap \check{U}^{\perp}=$ 1. Taking images in U gives $E \cap R=E \cap(U \cap R)=1$.

Suppose next that Case 3° (ii) holds, that is, \widehat{U} is a natural $\operatorname{Sym}(m)$-module. Since $U \cap R \neq 1$, C. 22 shows that m is even and U is the even permutation module for $\operatorname{Sym}(m)$. Let \check{U} be the permutation module for H with H-invariant basis v_{1}, \ldots, v_{m}. Identify U with $[\breve{U}, H]=\left\langle v_{i}+v_{j}\right|$ $1 \leqslant i<j \leqslant m\rangle$ such that $\widetilde{Y_{M}}$ acts as $\langle(1,2)\rangle$. Put $P:=N_{H}\left(\widetilde{Y_{M}}\right)$. Then $\widetilde{P} \cong C_{2} \times \operatorname{Sym}(m-2)$,

$$
U \cap O_{2}(M)=C_{U}\left(Y_{M}\right)=\left\langle v_{1}+v_{2}, v_{i}+v_{j} \mid 3 \leqslant i<j \leqslant m\right\rangle
$$

and

$$
\left[U \cap O_{2}(M), P\right] \leqslant\left\langle v_{i}+v_{j} \mid 3 \leqslant i<j \leqslant m\right\rangle
$$

Thus $\left[U \cap O_{2}(M), P\right] \cap R=1$. Since $Z_{2} \leqslant U \cap O_{2}(M)$ and $O_{2}(M) \leqslant P$ we have $E=\left[Z_{2}, O_{2}(M)\right] \leqslant$ [$\left.U \cap O_{2}(M), P\right]$ and so $E \cap R=1$. Thus 6° is proved.

$7^{\circ} . \quad E=1$.

Suppose that $E \neq 1$. Note that $E \leqslant Y_{M}, W \leqslant U, \overline{K^{*}}=\left\langle\bar{W}^{\bar{M}}\right\rangle=\left\langle K^{M}\right\rangle$, and by 7.7 bb $C_{O_{p}(M)}\left(\left\langle K^{Q}\right\rangle\right)=1$. Hence $C_{Y_{M}}\left(\overline{K^{*}}\right)=1$. It follows that $\left[E, U^{g}\right] \neq 1$ for some $g \in M$. By definition of Z_{2} and $E,\left[Z_{2}, U^{g} \cap O_{p}(M)\right] \leqslant\left[Z_{2}, O_{p}(M)\right]=E$. On the other hand $Z_{2} \leqslant U \cap O_{p}(M) \leqslant$ $O_{p}(M)=O_{p}(M)^{g} \leqslant H^{g}$ and so Z_{2} normalizes U^{g}. Since U^{g} is abelian we have

$$
\left[U^{g} \cap O_{p}(M), Z_{2}\right] \leqslant U^{g} \cap E \leqslant C_{E}\left(U^{g}\right)<E
$$

As by $R \cap E=1$, this gives

$$
\left[U^{g} \cap O_{p}(M), \widehat{Z_{2}}\right]<\widehat{E}
$$

Since $U^{g} \cap O_{p}(M)$ acts \mathbb{K}-linearly on \widehat{U} and $\widehat{Z_{2}}$ is a \mathbb{K}-subspace of \hat{U}, also [$U^{g} \cap O_{p}(M), \widehat{Z_{2}}$] is a \mathbb{K}-subspace of \hat{U}. As by $\sqrt[5^{\circ}]{ } \widehat{E}$ is at most 1-dimensional over \mathbb{K}, this gives $\left[U^{g} \cap O_{p}(M), \widehat{Z_{2}}\right]=1$ and $\left[U^{g} \cap O_{p}(M), Z_{2}\right] \leqslant R \cap E=1$.

We now shift attention to H^{g} and the H^{g}-modules U^{g} and $\widehat{U^{g}}:=U^{g} / C_{U^{g}}\left(O^{p}\left(H^{g}\right)\right)$. Observe that $O_{p}(M) \leqslant H^{g}$ since $g \in M$. From $\left[U^{g}, O_{p}(M)\right] \leqslant U^{g} \cap O_{p}(M)$ we conclude that $\left[U^{g}, O_{p}(M), Z_{2}\right]=1$ and so also $\left[\widehat{U^{g}}, O_{p}(M), Z_{2}\right]=1$. Since $\widehat{U^{g}}$ is selfdual as an H^{g} module, B. 8 shows $\left[\widehat{U^{g}}, Z_{2}, O_{p}(M)\right]=1$, and the Three Subgroup Lemma gives $\left[E, \widehat{U^{g}}\right]=\left[Z_{2}, O_{p}(M), \widehat{U^{g}}\right]=1$. By 7.5 (g) $C_{T}(U)=C_{T}(\widehat{U})$, and thus also $C_{T^{g}}\left(U^{g}\right)=C_{T^{g}}\left(\widehat{U^{g}}\right)$, so $\left[E, U^{g}\right]=1$. This contradicts the choice of g. Hence 7° holds.
$8^{\circ} . \quad U \cap O_{p}(M)=U \cap Y_{M}$.
By $\left(7^{\circ}\right),\left[Z_{2}, O_{p}(M)\right]=E=1$. By the definition of Z_{2} this means

$$
C_{U \cap O_{p}(M) / U \cap Y_{M}}\left(O_{p}(M)\right)=Z_{2} / U \cap Y_{M}=1
$$

and so $U \cap O_{p}(M)=U \cap Y_{M}$.
We are now able to prove the Lemma. From (8) we have, $\left[U, O_{p}(M)\right] \leqslant U \cap Y_{M} \leqslant Y_{M}$, and since $W \leqslant U$ and $K=\left\langle W^{K}\right\rangle,\left[K, O_{p}(M)\right] \leqslant Y_{M}=\Omega \Omega_{1} Z\left(O_{p}(M)\right)$. Thus, 1.18 gives $\left[\Phi\left(O_{p}(M)\right), K\right]=1$ and so also $\left[\Phi\left(O_{p}(M)\right),\left\langle K^{Q}\right\rangle\right]=1$. By 7.7 b$), C_{O_{p}(M)}\left(\left\langle K^{Q}\right\rangle\right)=1$ and so $\Phi\left(O_{p}(H)\right)=1$. It follows that $O_{p}(M)$ is elementary abelian. Hence $O_{p}(M)=\Omega_{1} Z\left(O_{p}(M)\right)=Y_{M}$. Since $M \in \mathcal{L}_{G}(S)$ we have $Y_{M} \leqslant C_{G}\left(O_{p}(M)\right) \leqslant O_{p}(M)$, and so $C_{G}\left(Y_{M}\right)=Y_{M}$ and $M^{\dagger}=M C_{G}\left(Y_{M}\right)=M Y_{M}=M$. Since Y_{M} is Q-short, $O_{p}(M)=Y_{M} \leqslant Q$, and since by 2.6b $O_{p}(M)$ is a weakly closed subgroup of G, $\left.N_{G}(Q) \leqslant N_{G}\left(O_{p}(M)\right)\right) \leqslant M^{\dagger}=M$.

Also by 2.17(a) $H=\left\langle L, O_{p}(M)\right\rangle=\left\langle L, Y_{M}\right\rangle=L$ and so $U=W$. By $7.10 \widehat{W}$ is a natural $S L_{2}(\widetilde{q})$-module for L, and so Case (1) of the lemma holds.

Lemma 7.12. Suppose that there exists a non-degenerate $\overline{K^{*} S}$-invariant symplectic form on $V:=\left[Y_{M}, \overline{K^{*}}\right]$. Put $H_{0}:=\left\langle Y_{M}^{H}\right\rangle$.
(a) $Y_{M}=V C_{Y_{M}}(W)$ and $C_{Y_{M}}(W)=Y_{M} \cap A$; in particular $[V, W]=\left[Y_{M}, W\right]$ and $C_{W}(V)=$ $C_{W}\left(Y_{M}\right)$.
(b) W is a root offender on V and Y_{M}.
(c) V and Y_{M} are root offenders on W.
(d) $|\bar{W}|=\left|W / C_{W}(V)\right|=|[V, W]|=\left|V / C_{V}(W)\right|$.
(e) $A=W \times R, C_{Y_{M}}(W)=[V, W] \times R,\left[Y_{M}, O_{p}(H)\right]=[V, W],\left[O_{p}(H), O^{p}(H)\right]=U$, and W is a natural $S L_{2}(\widetilde{q})$-module for \widetilde{L}.
(f) $C_{V}(W)=[V, W]^{\perp}=[V, W] \times(V \cap R)$, and $[V, W]$ is a singular subspace of V.
(g) $|V|=|\bar{W}|^{2}|V \cap R|$.
(h) $C_{G}\left(Y_{M}\right)=O_{p}(M)=Y_{M}=V R, M=M^{\dagger}$ and $N_{G}(Q) \leqslant M$.
(i) $H=L$ and $O_{p}(H)=Y_{H}=A=W \times R=C_{L}(W)$.

Proof. Since V carries a $\overline{K^{*} S}$-invariant non-degenerate symplectic form, V is selfdual as an $\mathbb{F}_{p} \overline{K^{*} S}$-module. By 2.17 c) W is a strong offender on Y_{M} and so W is also a strong offender on the submodule V of Y_{M}. Since V is selfdual, A.38 shows that W is a root offender on V. In particular, by A.37.
(I)

$$
|[W, V]|=\left|V / C_{V}(W)\right|=\left|W / C_{W}(V)\right|
$$

(a): Since W is an offender on $Y_{M},\left|Y_{M} / C_{Y_{M}}(W)\right| \leqslant|\bar{W}|$, and (I) yields

$$
\left|Y_{M} / C_{Y_{M}}(W)\right| \leqslant|\bar{W}|=\left|W / C_{W}(V)\right|=\left|V / C_{V}(W)\right|=\left|V C_{Y_{M}}(W) / C_{Y_{M}}(W)\right| \leqslant\left|Y_{M} / C_{Y_{M}}(W)\right|
$$

Thus $Y_{M}=V C_{Y_{M}}(W)$, and 7.4 gives $C_{Y_{M}}(W)=Y_{M} \cap A$.
(b): We already know that W is a root offender on V. Since $Y_{M}=V C_{Y_{M}}(W)$ by (a), W is also a root offender on Y_{M}.
(c): Since W is a root offender on $V, 1.21$ shows that V is a root offender on W. Since $Y_{M}=V C_{Y_{M}}(W)$, also Y_{M} is a root offender on W.
(d): By at $C_{W}(V)=C_{W}\left(Y_{M}\right)$, and so $\left|W / C_{W}(V)\right|=|\bar{W}|$. Now (d) follows from (II).
(e) and (f): By (a) $\left[Y_{M}, W\right]=[V, W]$. Let $w \in W \backslash C_{W}(V)$. Then by 1.43)i], $\left[w, Y_{M}\right] \cap C_{Y_{M}}(L)=$ 1. By (c) V is a root offender on W and so by A.37 b), V is a strong dual offender on W. Thus $[w, V]=[W, V]$, and we conclude that $[W, V] \cap R=1$. By 7.5 c,$W \cap R=\left[Y_{M}, W\right] \cap R$. Since $\left[Y_{M}, W\right]=[V, W]$, this gives $W \cap R=[V, W] \cap R=1$. By (c) Y_{M} is an offender on W, so 7.10 shows that $W \cong W / W \cap R$ is a natural $S L_{2}(\widetilde{q})$-module for L.

By (a) $C_{Y_{M}}(W)=Y_{M} \cap A$, and we conclude that

$$
V \cap A=C_{V}(W)=[V, W]^{\perp}
$$

As $[V, W] \leqslant V \cap A$, this implies that $[V, W]$ is singular.
By 1.43 a), $A^{\prime} \leqslant C_{Y_{M}}(L)=R$ and so

$$
[A, V \cap A] \cap[W, V] \leqslant R \cap[W, V]=1
$$

Hence there exists a subgroup V_{0} of $V \cap A$ with $[A, V \cap A] \leqslant V_{0}$ and $V \cap A=[V, W] \times V_{0}$. Note that A normalizes V_{0} and so also V_{0}^{\perp}. From $V_{0} \cap[V, W]=1$ we get $V=V_{0}^{\perp}[V, W]$. Since $V \cap A=[V, W]^{\perp}$ this gives $V=V_{0}^{\perp}(V \cap A)$. Also

$$
\begin{array}{rlrl}
{\left[A, V_{0}^{\perp}\right]} & \leqslant V_{0}^{\perp} \cap[A, V] & \leqslant V_{0}^{\perp} \cap(V \cap A) & =V_{0}^{\perp} \cap[V, W]^{\perp} \\
& =\left(V_{0}+[V, W]\right)^{\perp} \\
& =(V \cap A)^{\perp}=[V, W]^{\perp \perp} \quad=[V, W] & \leqslant W .
\end{array}
$$

Since $V=V_{0}^{\perp}(V \cap A)$ and $Y_{M}=V C_{Y_{M}}(W)=V\left(Y_{M} \cap A\right)$ we have $Y_{M} \leqslant V A \leqslant V_{0}^{\perp} A$, and so

$$
\left[A, Y_{M}\right] \leqslant\left[A, V_{0}^{\perp} A\right]=\left[A, V_{0}^{\perp}\right][A, A] \leqslant W A^{\prime} \leqslant W R
$$

From $L=\left\langle Y_{M}^{L}\right\rangle$ we conclude $[A, L] \leqslant W R$. By 1.43 p L has no central chief factors on A / R and so $A=W R$, and since $W \cap R=1, A=W \times R$. In particular, A is abelian.

Note that $[W, V] \leqslant W \cap V \leqslant W \cap Y_{M} \leqslant C_{W}(V)$. Since W is a natural $S L_{2}(\tilde{q})$ module for L we have $[W, V]=C_{W}(V)$ and so $[W, V]=W \cap V=W \cap Y_{M}$. Recall that $C_{Y_{M}}(A)=Y_{M} \cap A$, $A=W \times R$ and $R \leqslant Y_{M} \cap A$. Hence

$$
C_{Y_{M}}(W)=Y_{M} \cap A=\left(Y_{M} \cap W\right) R=[V, W] \times R \text { and } C_{V}(W)=[V, W] \cap(R \cap W)
$$

Since $A \leqslant W R \leqslant U R$ we have $\left[A, O_{p}(H)\right]=1$. In particular, $V \cap A \leqslant C_{V}\left(O_{p}(H)\right)$ and so

$$
\left[V, O_{p}(H)\right]=C_{V}\left(O_{p}(H)\right)^{\perp} \leqslant(V \cap A)^{\perp}=[V, W]
$$

Since by (a) $Y_{M}=V\left(Y_{M} \cap A\right)$ we get that $\left[Y_{M}, O_{p}(H)\right]=[V, W]=\left[Y_{M}, W\right]$. Hence, (e) and (f) are proved.
(g): By (f) $C_{V}(W)=[V, W] \times(V \cap R)$ and by (d) $|\bar{W}|=|[V, W]|=\left|V / C_{V}(W)\right|$. Thus $|V|=\left|V / C_{V}(W)\right|\left|C_{V}(W)\right|=|\bar{W}|^{2}|V \cap R|$.
(h) and (i): Since Y_{M} is an offender on W, we can apply 7.11. We now treat the two cases arising there separately.

Case 1. Suppose that 7.11 1) holds (\widehat{U} is a natural $S L_{2}(\widetilde{q})$-module for H).
According to 7.11(1) we have

$$
Y_{M}=O_{p}(M)=C_{G}\left(Y_{M}\right), \quad M=M^{\dagger}, \quad N_{G}(Q) \leqslant M, \quad H=L, \quad U=W
$$

Then $O_{p}(H)=O_{p}(L)=A$, and by (e) $A \cap Y_{M}=\left[W, Y_{M}\right] R$ and $A=W \times R \leqslant Y_{H}$, so $A=Y_{H}$ follows. By (e) $C_{Y_{M}}(W)=[V, W] R$, so (a) implies

$$
Y_{M}=V C_{Y_{M}}(W)=V[V, W] R=V R
$$

Since H is of characteristic p and $A=O_{p}(H), C_{H}(A) \leqslant A$. As A is abelian, $C_{H}(A)=A$. By 7.5 a), $R=C_{Y_{H}}(R)$ and so H centralizes R. Thus

$$
C_{L}(W)=C_{H}(W)=C_{H}(W R)=C_{H}(A)=A=W R
$$

Hence (h) and (i) hold in this case.
Case 2. Suppose that 7.11(2) holds.
According to 7.11 2 U is a natural $S L_{m}(\widetilde{q})$-module for $H, m \geqslant 3$, and $\widetilde{Y_{M}}$ is a transvection group on U. Our goal is to derive a contradiction in this situation.

Put $H_{1}:=O^{p}\left(C_{H}\left(Y_{M} \cap A\right)\right)$ and $B:=\left\langle V^{H_{1}}\right\rangle$. We show:
1°. $\quad C_{Y_{M} \cap A}(Q) \neq 1$. In particular, $H_{1} \leqslant N_{H}(Q)$.
By (a) $Y_{M} \cap A=C_{Y_{M}}(W)$. Note that $W \leqslant S$ and $Q \leqslant S$. Thus $1 \neq C_{Y_{M}}(S) \leqslant Y_{M} \cap A$ and so $C_{Y_{M} \cap A}(\bar{Q}) \neq 1$. Then Q ! implies $H_{1} \leqslant C_{G}\left(C_{Y_{M} \cap A}(Q)\right) \leqslant N_{G}(Q)$.
2°. $\quad B / B \cap O_{p}(H)$ is a non-central simple H_{1}-module and $B \cap O_{p}(H)=C_{B}\left(H_{1}\right)$.
By (e) $Y_{M} \cap A=\left[W, Y_{M}\right] \times R=\left[U, Y_{M}\right] \times R$ and by 7.5) $[R, H]=1$. Hence $H_{1}=$ $O^{p}\left(C_{H}\left(\left[U, Y_{M}\right]\right)\right)$. Since $\widetilde{Y_{M}}$ acts as a transvection group on $U,\left[W, Y_{M}\right]=\left[U, Y_{M}\right]$ is a 1-dimensional \mathbb{K}-space, where $\mathbb{K}:=\operatorname{End}_{H}(U)$. Note that $U /\left[U, Y_{M}\right]$ and $C_{\widetilde{H}}\left(U /\left[U, Y_{M}\right]\right)$ are natural $S L_{m-1}(q)^{\prime}$ modules for H_{1} dual to each other. In particular, H_{1} acts simply on $C_{\widetilde{H}}\left(\left[U, Y_{M}\right]\right)$ and $C_{\widetilde{H}}\left(\left[U, Y_{M}\right]\right)=$ $O_{p}\left(\widetilde{H}_{1}\right)$. As

$$
1 \neq \widetilde{Y_{M}}=\widetilde{V} \leqslant C_{\widetilde{H}}\left(\left[U, Y_{M}\right]\right)=O_{p}\left(\widetilde{H_{1}}\right)
$$

the simple action of H_{1} gives $\widetilde{B}=O_{p}\left(\widetilde{H_{1}}\right)$. Since $B / B \cap O_{p}(H) \cong \widetilde{B}$ the first statement in 2° holds.

As H_{1} acts simply on $U /\left[U, Y_{M}\right]$ and centralizes $\left[U, Y_{M}\right]$, we have

$$
C_{U}(B)=\left[U, Y_{M}\right]=C_{U}\left(H_{1}\right)
$$

Since Y_{M} is Q-short, $Y_{M} \leqslant O_{p}\left(N_{G}(Q)\right)$. Also $S \leqslant \operatorname{Syl}_{p}\left(N_{G}(Q)\right)$ and so $O_{p}\left(N_{G}(Q)\right) \leqslant S$ and $Y_{M} \triangleq O_{p}\left(N_{G}(Q)\right)$. Now 2.5 shows that $\left\langle Y_{M}^{N_{G}\left(O_{p}(Q)\right)}\right\rangle$ is abelian. Since $V \leqslant Y_{M}$ and by (1) $H_{1} \leqslant N_{G}(Q)$, we conclude that B is abelian. Moreover, by (a) $Y_{M}=V\left(Y_{M} \cap A\right)$ and so $\left[U, Y_{M}\right]=[U, V]$. Hence

$$
\left[U, Y_{M}\right]=[U, V] \leqslant U \cap B \leqslant C_{U}(B)=\left[U, Y_{M}\right]=C_{U}\left(H_{1}\right)
$$

and so $U \cap B=C_{U}\left(H_{1}\right)$.
By (e) $\left[O_{p}(H), O^{p}(H)\right]=U$. Since $H_{1} \leqslant O^{p}(H)$ this gives $\left[O_{p}(H), H_{1}\right] \leqslant U$. Thus

$$
\left[B \cap O_{p}(H), H_{1}\right] \leqslant U \cap B \leqslant C_{U}\left(H_{1}\right)
$$

and since $H_{1}=O^{p}\left(H_{1}\right), B \cap O_{p}(H) \leqslant C_{B}\left(H_{1}\right)$. Since $B / B \cap O_{p}(H)$ is a non-central simple H_{1} module, $C_{B}\left(H_{1}\right) \leqslant B \cap O_{p}(H)$ and so 2° holds.
$3^{\circ} . \quad[V, W, Q]=1$. Moreover, $Q=Q^{g}$ for all $g \in M$ with $C_{Y_{M} \cap A}\left(Q^{g}\right) \neq 1$.
Let $g \in M$ with $C_{Y_{M} \cap A}\left(Q^{g}\right) \neq 1$. Suppose for contradiction that $\left[V, W, Q^{g}\right] \neq 1$. Then B. 8 gives $\left[V^{*}, Q^{g}, W\right] \neq 1$, where V^{*} is the $\mathbb{F}_{p^{-}}$-dual of V. Note that V is a selfdual $\overline{K^{*} Q}$-module and so also a selfdual $\overline{K^{*} Q^{g}}$-module. Since $\overline{W Q^{g}} \leqslant \overline{K^{*} Q^{g}}$ we conclude that $\left[V, Q^{g}, W\right] \neq 1$. Hence $\left[V, Q^{g}\right] \neq O_{p}(H)$ and so also $\left[B, Q^{g}\right] \neq O_{p}(H)$.

Note that $\left[H_{1}, C_{Y_{M} \cap A}\left(Q^{g}\right)\right]=1$ and Q ! show that H_{1} normalizes Q^{g}. Since Q^{g} normalizes V, we conclude that Q^{g} normalizes V^{h} for any $h \in H_{1}$. It follows that Q^{g} normalizes B, and H_{1} normalizes $\left[B, Q^{g}\right]$. By $2^{\circ} H_{1}$ acts simply on $B / B \cap O_{p}(H)$ and $C_{B}\left(H_{1}\right)=B \cap O_{p}(H)$. As $\left[B, Q^{g}\right] \not B \cap O_{p}(H)$ this gives $B=\left[B, Q^{g}\right] C_{B}\left(H_{1}\right)$. Hence $\left[B, H_{1}\right] \leqslant\left[B, Q^{g}\right]$ and H_{1} normalizes $\left[B, Q^{g}\right] V$. Thus

$$
B=\left\langle V^{H_{1}}\right\rangle=\left[V, H_{1}\right] V \leqslant\left[B, Q^{g}\right]
$$

and $B / V=\left[B / V, Q^{g}\right]$, so $B=V$. But since $m \geqslant 3, \widetilde{V} \leqslant \widetilde{Y_{M}} \neq O_{p}\left(\widetilde{H_{1}}\right)=\widetilde{B}$ and so $B \neq V$, a contradiction.

We have proved that $\left[V, W, Q^{g}\right]=1$. But then also $[V, W, Q]=1$, since by $1^{\circ} C_{Y_{M} \cap A}(Q) \neq 1$, and so $1 \neq[V, W] \leqslant C_{G}(Q) \cap C_{G}\left(Q^{g}\right)$. Hence 1.52 e gives $Q=Q^{g}$ and 3° is proved.
4. Put $q:=|\bar{W}|$. Then $q=\widetilde{q}, \bar{W}=\bar{Q}=\bar{U}, \bar{K}=\overline{K^{*}}=\overline{M^{\circ}} \cong S L_{2}(q)$, and V is a natural $S L_{2}(q)$-module for \bar{K}.

Let $g \in M$ with $Q \neq Q^{g}$. Then (3) shows that $C_{Y_{M} \cap A}\left(Q^{g}\right)=1$ and $[V, W, Q]=1$. So also $\left[V, W^{g}, Q^{g}\right]=1$. Since $[V, W] \leqslant C_{V}(W)=V \cap A$, this gives

$$
\begin{equation*}
C_{V}(W) \cap[V, W]^{g} \leqslant C_{V}(W) \cap C_{V}\left(Q^{g}\right)=V \cap A \cap C_{V}\left(Q^{g}\right)=1 \text { for all } g \in M \backslash N_{M}(Q) . \tag{II}
\end{equation*}
$$

In particular, $\left|C_{V}\left(Q^{g}\right)\right| \leqslant\left|V / C_{V}(W)\right|$. By d $],\left|V / C_{V}(W)\right|=|[V, W]|$, and so $\left|C_{V}\left(Q^{g}\right)\right| \leqslant|[V, W]|$. Since by (30) $[V, W] \leqslant C_{V}(Q)$. we conclude that $|[V, W]| \leqslant\left|C_{V}(Q)\right|=\left|C_{V}\left(Q^{g}\right)\right|$ and so $[V, W]=$ $C_{V}(Q)$. Now Q ! shows that $N_{M}([V, W])=N_{M}(Q)$. Hence (II) gives $C_{V}(W) \cap[V, W]^{g}=1$ for all $g \in M \backslash N_{M}([V, W])$.

Since $\left[Y_{M}, W\right]=[V, W]$ we have $V=\left[V, K^{*}\right]$. Moreover, by (b) W is a root offender on V. Hence $\bar{M}, \mathcal{D}:=\bar{W}^{\bar{M}}$ and V satisfy the hypothesis of C.12. We conclude that V is a natural $S L_{2}(q)$ module for K^{*}. Moreover, $|\bar{W}|=q=|[W, V]|=\widetilde{q}$. As $[V, W, Q]=1$ and $N_{M}([V, W])$ normalizes $\bar{Q}, \bar{Q}=\bar{W}$. Hence

$$
\overline{M^{\circ}}=\left\langle\bar{Q}^{\overline{K^{*}}}\right\rangle=\left\langle\bar{W}^{\overline{K^{*}}}\right\rangle=\overline{K^{*}}=\bar{K} .
$$

By $2.17 \mathrm{C} ~ U=W C_{U}\left(Y_{M}\right)$. Hence $\bar{U}=\bar{W}$, and 4° holds.
5 $. \quad O_{p}(H)=Y_{H}=U, C_{H}(U)=U$ and $H / U \cong S L_{m}(q)$.
As $R \leqslant C_{Y_{M}}(W)$ and by $4{ }^{4} \bar{W}=\bar{Q},[R, Q]=1$. By $7.5(\mathrm{e}), C_{R}(Q)=1$, and so $R=1$. Hence by 7.5 (a) $C_{Y_{H}}(H)=R=1$. Since $Y_{H}=\Omega_{1} Z\left(O_{p}(H)\right)$ by 7.1 d), this gives $C_{O_{p}(H)}(H)=$ $C_{O_{p}(H)}\left(O^{p}(H)\right)=1$. By (h),

$$
\left[O_{p}(H), O^{p}(H)\right]=U \leqslant Y_{H}=\Omega_{1} Z\left(O_{p}(H)\right),
$$

and 1.18 yields $\left[\Phi\left(O_{p}(H)\right), O^{p}(H)\right]=1$. Hence $\Phi\left(O_{p}(H)\right)=1$ and $O_{p}(H)=\Omega_{1} Z\left(O_{p}(H)\right)=Y_{H}$.
By (40 V is a natural $S L_{2}(q)$-module for $\overline{K^{*}}$ and $q=|\bar{W}|$. Since Y_{H} centralizes the $\mathbb{F}_{q^{-}}$ subspace $[V, W]$ of Y_{H} we conclude that Y_{H} acts \mathbb{F}_{q}-linearly on V. Hence $\overline{Y_{H}} \leqslant \overline{K^{*}}, \overline{Y_{H}}=\bar{W}=\bar{U}$ and $Y_{H} \leqslant U C_{M}(V)$. Thus $Y_{H}=C_{Y_{H}}(V) U$ and V is an offender on Y_{H}. Hence C. 22 shows that $Y_{H}=U C_{U}(H)=U$. Thus $O_{p}(H)=U$, and since H is of characteristic $p, C_{H}(U)=U$ and $H / U \cong S L_{m}(q)$, and 5° is proved.

We are now able to show that Case 2) leads to a contradiction. By $\sqrt{4^{\circ}}, \overline{M^{\circ}} \cong S L_{2}(q)$ and $\bar{Q}=$ \bar{U}. So we can choose M_{1} minimal in $M^{\circ} U$ with $U \leqslant M_{1}$ and $[V, U] \notin \overline{M_{1}}$. It follows $\overline{M_{1}}=\overline{M^{\circ}}$ and $C_{S}\left(Y_{M}\right) U=O_{p}(M) U=O_{p}(M) Q$. Thus $U \leqslant M^{\circ} O_{p}(M)$ and $M_{1} \leqslant M^{\circ} U \leqslant M^{\circ} O_{p}(M)$. Also M_{1} acts transitively on V, and so by $1.57 \mathrm{cc}, M^{\circ}=\left\langle Q^{M_{1}}\right\rangle \leqslant M_{1} O_{p}(M)$. Thus $M_{1} O_{p}(M)=M^{\circ} O_{p}(M)$. The minimal choice of M_{1} shows that $M_{1}=\left\langle U^{M_{1}}\right\rangle$. Thus, since $O_{p}(M)$ normalizes U, it also normalizes M_{1}. Therefore

$$
O^{p}\left(M_{1}\right)=O^{p}\left(M_{1} O_{p}(M)\right)=O^{p}\left(M^{\circ} O_{p}(M)\right)=O^{p}\left(M^{\circ}\right)=M_{\circ} .
$$

Since by 1.55 d $C_{O_{p}(M)}\left(M^{\circ}\right)=1$, this gives $C_{O_{p}(M)}\left(M_{1}\right)=1$ and thus $C_{U}\left(M_{1}\right)=1$. Note that $U \notin M_{1}$ and $N_{M_{1}}([V, U])$ is the unique maximal subgroup of M_{1} containing U. Hence M_{1} is U-minimal, and we can apply 1.43 .

Put $D:=\left\langle U \cap O_{p}\left(M_{1}\right)^{M 1}\right\rangle$ and let $m \in M_{1} \backslash N_{M_{1}}([V, U])$. Then by 1.43 (ed, $D=(U \cap D) \times$ ($U^{m} \cap D$), by 1.43 a), $\Phi(D) \leqslant C_{U}\left(M_{1}\right)=1$, and by 1.43 p) M_{1} has no central chief factor on $D / C_{D}\left(M_{1}\right) \cong D$. Hence $D=\left[D, M_{1}\right]$. Note that

$$
\left[U, O_{p}(M)\right] \leqslant U \cap O_{p}(M) \leqslant U \cap O_{p}\left(M_{1}\right) \leqslant C_{U}(V) \leqslant U \cap O_{p}(M),
$$

and so

$$
\left[U, O_{p}(M)\right] \leqslant U \cap O_{p}(M)=C_{U}(V)=U \cap O_{p}\left(M_{1}\right)=U \cap D .
$$

Hence $D=\left[O_{p}(M), O^{p}\left(M_{1}\right)\right]=\left[O_{p}(M), M_{\circ}\right] \vDash M$.
Recall that U is a natural $S L_{m}(\widetilde{q})$ module and $\widetilde{Y_{M}}$ is a transvection group on U. By $4^{\circ} q=\widetilde{q}$, and by (a) $\widetilde{V}=\widetilde{Y_{M}}$. Hence $U \cap D=C_{U}(V)$ is an \mathbb{F}_{q}-hyperplane of U. In particular, $U \cap D$ has order q^{m-1}. As $D=(U \cap D) \times\left(U^{m} \cap D\right), D$ has order $q^{2(m-1)}$ and $U D$ has order $q^{2 m-1}$.

Put $H_{2}:=N_{H}\left(C_{U}(V)\right)=N_{H}(U \cap D)$. By $5^{\circ} C_{H}(U)=U$ and thus $\left|C_{H}(U)\right|=q^{m}$. Since U is a natural $S L_{m}(q)$-module for $U, C_{H}\left(C_{U}(V)\right) / C_{H}(U)$ is a natural $S L_{m-1}(q)$-module for $O^{p^{\prime}}\left(H_{2}\right)$ (isomorphic to $C_{U}(V)$), and so has order q^{m-1}. Thus, $\left|C_{H}\left(C_{U}(V)\right)\right|=q^{m} q^{m-1}=q^{2 m-1}=|U D|$. Note that D and V are abelian. Hence $U D \leqslant C_{H}(U \cap D)=C_{H}(U V)$ and $U D=C_{H}\left(C_{U}(V)\right) \leqslant H_{2}$.

As $U \cap D$ is an \mathbb{F}_{q}-hyperplane of U and the elements of D act \mathbb{F}_{q}-linearly on U, for every $d \in D \backslash C_{D}(U)$

$$
C_{D U}(d)=D C_{U}(d)=D(U \cap D)=D
$$

In particular, for every elementary abelian subgroup $E \leqslant D U$ either $E \leqslant D$ or $E \cap D=E \cap C_{D}(U)$. In the latter case $\left|E / E \cap C_{D}(U)\right| \leqslant q$ since $|D U / D|=q$, while $\left|D / C_{D}(U)\right|=q^{m-1}$. As $m \geqslant 3$ we conclude that D is the only maximal elementary abelian subgroup of order $q^{2(m-1)}$ in $D U$. Since $U D \preccurlyeq H_{2}$ we get $H_{2} \leqslant N_{G}(D)$.

As we have seen above, $D \leqslant M$ and so $M \leqslant N_{G}(D)$. The basic property of M gives $H_{2} \leqslant$ $N_{G}(D) \leqslant M^{\dagger}$ and $Y_{M} \leqslant H_{2}$. But $\widetilde{Y_{M}}$ is a transvection group on U and since $m \geqslant 3$ we get $\widetilde{Y_{M}} \not \approx \widetilde{H_{2}}$, a contradiction.

Lemma 7.13. Put $\mathcal{K}:=\bar{K}^{\bar{M}}$. Then

$$
\begin{equation*}
\overline{K^{*}}=\underset{F \in \mathcal{K}}{X} F \quad \text { and }\left[Y_{M}, \overline{K^{*}}\right]=\underset{F \in \mathcal{K}}{X}[V, F] \tag{*}
\end{equation*}
$$

Moreover, one of the following holds, where q is a power of p :
(A) $\bar{K} \triangleq \bar{M}, \bar{K}=\overline{M^{\circ}} \cong S L_{n}(q), n \geqslant 3$, and Y is a natural $S L_{n}(q)$-module for K.
(B) $\overline{M^{\circ}}=O^{p}\left(\overline{K^{*}}\right) \bar{Q}$ and there exists a non-degenerate $\overline{K^{*}} \bar{S}$-invariant symplectic form on [$\left.Y_{M}, \overline{K^{*}}\right]$. In addition, one of the following holds:
(1) $\bar{K} \preccurlyeq \bar{M}, \bar{K} \cong S p_{2 n}(q)$, $n \geqslant 1$, or $S p_{4}(2)^{\prime}$ (and $p=2$), and Y is a corresponding natural module for \bar{K},
(2) $\bar{K} \preccurlyeq \bar{M}, p=2, \bar{K} \cong O_{2 n}^{\epsilon}(2), n \geqslant 2$ and $(n, \epsilon) \neq(2,+)$, and Y is a corresponding natural module for \bar{K}. Moreover, $\overline{M^{\circ}}=\bar{K}^{\prime} \cong \Omega_{2 n}^{\epsilon}(2)$ and $|\bar{W}|=\left|Y_{M} / C_{Y_{M}}(W)\right|=2$.
(3) $\bar{K} \notin \bar{M}, Y_{M}$ is a natural $S L_{2}(q)$-wreath product module for \bar{M} with respect to \mathcal{K}, and \bar{Q} acts transitively on \mathcal{K}.
(C) (a) $\bar{K} \leqslant M, Y=Y_{M}$ and $\left|Y / C_{Y}(W)\right|=4$.
(b) Put $M_{2}:=N_{M}\left(C_{Y}(W)\right)$ and $K_{2}:=C_{M_{2}}\left(Y / C_{Y}(W)\right)$. Then $\overline{K_{2}} \leqslant \bar{K}$, and there exists an M_{2}-invariant set $\left\{V_{1}, V_{2}, V_{3}\right\}$ of K_{2}-submodules of Y such that $Y=V_{i} \times V_{j}$ for all $1 \leqslant i<j \leqslant 3$.
(c) For all $1 \leqslant i \leqslant 3$ and $1 \neq x \in C_{V_{i}}(W)$ there exists $g \in M$ with $\left[x, Q^{g}\right]=1$.
(d) One of the following holds:
(1) $p=2, \bar{K}=\bar{K}^{\prime} \cong S L_{n}(2), n \geqslant 3,\left\{V_{1}, V_{2}, V_{3}\right\}$ is the set of proper K-submodules of Y_{M}, and the V_{i} 's are isomorphic natural $S L_{n}(2)$-modules for K. Moreover, $\overline{M^{\circ}} \cong S L_{n}(2), S L_{n}(2) \times S L_{2}(2)$ or $S L_{2}(2)$, with $\bar{K} \leqslant \overline{M^{\circ}}$ in the first two cases and $\left[\bar{K}, \overline{M^{\circ}}\right]=1$ in the last case.
(2) $p=2, \bar{K}=\bar{K}^{\prime} \leqslant \overline{M^{\circ}}, \bar{K} \cong 3 \cdot \operatorname{Alt}(6)$ and $\overline{M^{\circ}} \cong 3 \cdot \operatorname{Alt}(6)$ or $3 \cdot \operatorname{Sym}(6)$, and Y_{M} is corresponding natural module for K.
Proof. Recall that Y_{M} is a p-reduced $Q!$-module for \bar{M}. By 2.17 c , W is a non-trivial strong offender on Y_{M}, and by 2.17 (a), $\left[W, Y_{M}\right]=[W, X]$ for all $X \leqslant Y_{M}$ with $\left|X / C_{X}(W)\right|>2$. Thus we can apply C.25. Hence (*) holds. Also most of the other statements follow directly from C.25, but we still need to show:
(Task 1) In cases C.25 1:b:2, 1:b:3), 1:b:5 , 22 (Y is a natural $S p_{2 n}(q)-, S p_{4}(2)-, S p_{4}(2)^{\prime}-, O_{2 n}^{\epsilon}(2)-$ or $S L_{2}(q)$-module for $\left.K\right)$ show that there exists an $\overline{K^{*}} \bar{S}$-invariant non-degenerate symplectic form on $\left[Y_{M}, \overline{K^{*}}\right]$ over \mathbb{F}_{p} (to prove (B)).
(Task 2) In case C.25 1:b:4) (Y is natural $3 \cdot \operatorname{Alt}(6)$-module for K) show that $Y_{M}=Y,\left|Y / C_{Y}(W)\right|=$ $4, \overline{K_{2}} \leqslant \bar{K}$, and prove the existence of $\left\{V_{1}, V_{2}, V_{3}\right\}$ fulfilling (C:b) and (C:c).
(Task 3) In case C.25, 4) (Y is a direct sum of two isomorphic natural $S L_{n}(q)$-module and $\left[\bar{K}, \overline{M^{\circ}}\right]=$ 1) show that $\bar{K} \& \bar{M}$ and $Y=Y_{M}$ (to prove (C).
(Task 4) In cases C.25 3) and (4) (Y is a direct sum of two isomorphic natural $S L_{n}(q)$-modules) prove $\overline{K_{2}} \leqslant \bar{K}$ and the existence of $\left\{V_{1}, V_{2}, V_{3}\right\}$ fulfilling (C:b), C:c and C:d:1.
(Task 1): Put $\mathbb{K}:=\operatorname{End}_{K}(Y)$. Then \mathbb{K} is a finite field (of order q or 2 depending on the case). Also in each case there exists a K-invariant non-degenerate symplectic form s on Y over \mathbb{K}. Note here that $S L_{2}(q) \cong S p_{2}(q)$ and a natural $S L_{2}(q)$-module is also a natural $S p_{2}(q)$-module. Moreover, s is unique up to multiplication by a non-zero $k \in \mathbb{K}$. Since $|\mathbb{K}|-1$ is not divisible by p, we can choose s to be $N_{\bar{S}}(\bar{K})$-invariant. If $\bar{K} \vDash \bar{M}$ we are done.

Assume that $\bar{K} \not \approx \bar{M}$. Then we are in Case 2) of Theorem C.25. so $\bar{K} \cong S L_{2}(q), Y$ is a natural $S L_{2}(q)$-module for \bar{K}, and Q and so also S acts transitively on \mathcal{K}.

Let $F \in \mathcal{K}$ with $F \neq \bar{K}$. Then $(*)$ shows that $[F, \bar{K}]=1$ and $\left[Y_{M}, K\right] \cap\left[Y_{M}, F\right]=1$. So $F \leqslant C_{\overline{K^{*}}}(Y)$ and

$$
\overline{K^{*}}=K C_{\overline{K^{*}}}(Y)
$$

For any $F \in \mathcal{K}$ choose $g \in \overline{K^{*}} \bar{S}$ with $F=\bar{K}^{g}$. Define a symplectic form s_{F} on $\left[Y_{M}, F\right]=Y^{g}$ via $s_{F}\left(v^{g}, w^{g}\right):=s(v, w)$ for all $v, w \in Y$. If also $F=\bar{K}^{h}$ for some $h \in \overline{K^{*} S}$, then

$$
h^{-1} g \in N_{\overline{K^{*}}(}(K)=N_{\bar{S}}(\bar{K}) \overline{K^{*}}=N_{\bar{S}}(\bar{K}) \bar{K} C_{\overline{K^{*}}}(Y)
$$

and we conclude that the definition of s_{F} is independent of the choice of g.
By $(*), Y_{M}=X_{F \in \mathcal{K}}\left[Y_{M}, F\right]$, and so there exists a unique symplectic form t on Y_{M} such that the restriction of t to $\left[Y_{M}, F\right]$ is s_{F} for all $F \in \mathcal{K}$, and $\left[Y_{M}, F\right] \perp\left[Y_{M}, F^{*}\right]$ for distinct $F, F^{*} \in \mathcal{K}$. Then t is $\overline{K^{*} S}$-invariant, and Task 1) is accomplished
(Task 2): By coprime action $Y_{M}=C_{Y_{M}}(Z(\bar{K})) \times\left[Y_{M}, Z(\bar{K})\right]$, and since $Z(\bar{K})$ acts fixed-point freely on $Y=\left[Y_{M}, K\right], Y_{M}=C_{Y_{M}}(K) \times Y$. Since $\overline{M_{\circ}} \leqslant \bar{K}$ and by $1.55 \mathrm{~d} C_{Y_{M}}\left(M^{\circ}\right)=1$, this gives $Y_{M}=Y$.

As W is a nontrivial (strong) offender on Y_{M}, the Offender Theorem C.4 ee gives

$$
\left|Y / C_{Y}(W)\right|=4=|\bar{W}| \quad \text { and } \quad C_{Y}(W)=[W, Y]
$$

Let \mathcal{V} be the set of 3-dimensional K_{2}-submodules of Y. By C.16 M_{2} is a parabolic subgroup of $M, M_{2}=N_{M}(\bar{W}), \overline{K_{2}}=O^{2^{\prime}}\left(N_{\bar{K}}(\bar{W})\right), \mathcal{V}=\left\{V_{1}, V_{2}, V_{3}\right\}, Z(\bar{K})$ acts transitively on $\mathcal{V}, Y=V_{i} \times V_{j}$ for all $1 \leqslant i<j \leqslant 3$, and $C_{V_{i}}(W)$ is a natural $S L_{2}(2)$-module for K_{2}. In particular, $\overline{K_{2}} \leqslant \bar{K}$. Let $1 \neq x \in C_{V_{i}}(W)$. Since $Z(\bar{K}) \leqslant \overline{M_{2}}, M_{2}$ acts transitively on the three elements of \mathcal{V} and, since $K_{2} \leqslant N_{M_{2}}\left(V_{i}\right), N_{M_{2}}\left(V_{1}\right)$ acts transitively the three elements of $C_{V_{i}}(W)^{\sharp}$. Thus $C_{M_{2}}(x)$ has index 9 in M_{2}, so $C_{M}(x)$ contains a Sylow 2-subgroup of M_{2} and of M. Hence $C_{M}(x)$ also contains a conjugate of Q in M.

Task 3): Since $\left[\bar{K}, \overline{M^{\circ}}\right]=1,\left\langle\bar{K}^{\bar{Q}}\right\rangle=\bar{K}$. Thus 7.7 shows that

$$
\left.\left.C_{Y_{M}}(K)=C_{Y_{M}}\left(\left\langle K^{Q}\right\rangle\right) \leqslant C_{O_{p}(M)}\right)\left\langle K^{Q}\right\rangle\right)=1
$$

Hence $(*)$ implies $Y_{M}=\left[Y_{M}, K\right] \times C_{Y_{M}}(K)=\left[Y_{M}, K\right]=Y$ and $\mathcal{K}=\bar{K}$. Thus $\bar{K} \curvearrowright \bar{M}$ and Task (3) is accomplished.
(Task 4): Since Y is the direct sum of two isomorphic natural $S L_{n}(2)$-modules for K, there exist exactly three simple K-submodules V_{1}, V_{2} and V_{3} in Y. Moreover, $Y=V_{i} \times V_{j}$ for any $1 \leqslant i<j \leqslant 3$. Since K induces $A u t\left(V_{i}\right)$ on V_{i} and $\bar{K} \leqslant \bar{M}, \bar{M}=\bar{K} \times C_{\bar{M}}(\bar{K})$. Also $C_{\bar{M}}(K)$ is isomorphic to a subgroup of $S L_{2}(2)$ and $O_{2}(\bar{M})=1$. Thus $C_{\bar{M}}(K)$ is isomorphic to one of $1, C_{3}$ or $S L_{2}(2)$. So M acts either trivially or transitively on $\left\{V_{1}, V_{2}, V_{3}\right\}$. In either case V_{i} is normalized by a Sylow 2 -subgroup of M, and since K acts transitively on V_{i} each $1 \neq x \in V_{i}$ is centralized by a Sylow 2 subgroup of V. So again $C_{M}(x)$ contains a conjugate of Q in M. Note that $C_{Y}(W)=C_{Y_{1}}(W) \times C_{Y_{2}}(W)$ and $C_{\bar{M}}(K)$ normalizes $C_{Y}(W)$. It follows that $\overline{M_{2}}=\left(\overline{M_{2}} \cap \bar{K}\right) C_{\bar{M}}(K), C_{\bar{M}}(K)$ acts faithfully on $Y / C_{Y}(W)$, and $\overline{M_{2}} \cap \bar{K}$ centralizes $Y / C_{Y}(W)$. Thus $\overline{K_{2}}=\overline{M_{2}} \cap \bar{K} \leqslant \bar{K}$, and all assertions in Task (4) hold.

Lemma 7.14. Suppose that Case 7.13 A) holds. Then $Y_{M}=Y$ and Theorem (1) holds.

Proof. In this case Y is a natural $S L_{n}(q)$-module for $\bar{K}=\overline{M^{\circ}}$ with $n \geqslant 3$, and by 7.5 f), $C_{Y_{M}}\left(M^{\circ}\right)=1$. If $Y_{M}=Y$ we conclude that Theorem G 1 holds.

Suppose that $Y_{M} \neq Y$. Then Y_{M} is a non-trivial non-split central extension of Y. Since, by 2.17 c , W is a (strong) offender on Y_{M}, C. 22 shows that $p=2$, and

$$
\bar{K} \cong S L_{3}(2),\left|Y_{M}\right|=2^{4}, C_{Y_{M}}(W)=C_{Y}(W) \text { and } \widetilde{q}=\left|Y_{M} / C_{Y_{M}}(W)\right|=|\bar{W}|=4
$$

In particular, $\left[Y_{M}, M^{\dagger}\right]=[Y, M]=Y$, and Y_{M} is an offender on W. Now 7.10 implies $\widetilde{L} \cong S L_{2}(4)$ and $\widetilde{Y_{M}} \in S y l_{2}(\widetilde{L})$. By definition of $\mathfrak{L}_{H}\left(Y_{M}\right), N_{L}\left(Y_{M}\right)\left(=L \cap M^{\dagger}\right)$ is unique maximal subgroup of L containing Y_{M}, and the structure of $S L_{2}(4)$ shows that $\left[\widetilde{Y_{M}}, L \cap M^{\dagger}\right]=\widetilde{Y_{M}}$. It follows that

$$
Y_{M}=\left[Y_{M}, L \cap M^{\dagger}\right] C_{Y_{M}}(U)=Y C_{Y_{M}}(W)=Y C_{Y}(W)=Y
$$

which contradicts $Y_{M} \neq Y$.

Lemma 7.15. Suppose that Case 7.13(B) holds. Then Theorem (G) or Theorem (G) holds.
Proof. Put $H_{0}:=\left\langle Y_{M}^{H}\right\rangle$. Note that in Case 7.13 B there exists a $\overline{K^{*}} \bar{S}$-invariant nondegenerate symplectic form on $V:=\left[Y_{M}, \overline{K^{*}}\right]$. Thus we can apply 7.12 . We will now treat each of the three subcases of $7.13, B$ separately.

Case 1. Suppose that $7.13(B: 1)$ holds, that is, $\bar{K} \triangleleft \bar{M}$ and $Y=V$ is a natural $S p_{2 n}(q)$-module $(n \geqslant 1)$ or a natural $S p_{4}(2)^{\prime}$-module $(p=2)$ for K.

Put $n:=2$ and $q:=2$ in the $S p_{4}(2)^{\prime}$-case. Note that K^{\prime} acts transitively on the natural $S p_{2 n}(q)^{\prime}$-module V, and so each non-trivial element of V is centralized by a conjugate Q^{g} of Q under K. Since by 7.5 e $C_{R}\left(Q^{g}\right)=1$ for all such Q^{g}, this gives $V \cap R=1$.

Suppose for a contradiction that $Y \neq Y_{M}$. By 7.7 a $C_{Y_{M}}(K) \cap C_{Y_{M}}(Q)=1$. Since $\bar{K} \vDash \bar{M}$, this gives $C_{Y_{M}}(K)=1$. Hence, Y_{M} is a non-split central extension of Y. Also by 2.17 C) W is a strong offender on Y_{M}. Since strong offenders are best offenders, C.22 shows that Y_{M} is a submodule of the dual of a natural $O_{2 n+1}(q)$-module, $n \geqslant 2$, or a natural $O_{5}(2)^{\prime}$-module for \bar{K}.

By 7.12 h $Y_{M}=V R$, and so there exists $y \in R \backslash V$. Since Y_{M} is a submodule of the dual of the orthogonal module for $\bar{K}, C_{\bar{K}}(y) \cong O_{2 n}^{\epsilon}(q)$ or $\Omega_{4}^{\epsilon}(2)$. Since by $7.12 \mathrm{~b}, W$ is a root offender on V, and since $\bar{W} \leqslant C_{\bar{K}}(y)$, C.6 shows that $|\bar{W}|=2$ Hence by 7.12 g), $|V|=|\bar{W}|^{2}|V \cap R|=2^{2} \cdot 1=4$, a contradiction since $|V|=q^{2 n}$ and $n \geqslant 2$.

We have shown that

$$
Y=Y_{M}=V \quad \text { and } \quad R=R \cap V=1
$$

By 7.12h $O_{p}(M)=C_{G}\left(Y_{M}\right)=Y_{M}=V$ and $N_{G}(Q) \leqslant M$. So if $\bar{K} \cong S p_{4}(2)^{\prime}$, then Theorem G(2) holds. We therefore may assume that $\bar{K} \cong S p_{2 n}(q)$.

Since $R=1,7.12 \mathrm{e}$ gives $A=W \times R=W$, and A is a natural $S L_{2}(\widetilde{q})$ module. Put $D:=$ $C_{K}\left(V /[V, W) \cap C_{K}([V, W])\right.$. Then D acts nilpotenly on V and so $D / C_{D}(V)$ is a p-group. As $C_{G}(V)=C_{G}(V)=Y_{M}, D$ is a p-group. Since $V=Y_{M}$ we have $\left[Y_{M}, D\right]=[V, D] \leqslant[V, W] \leqslant A$. Also by 7.12 h$) N_{G}(Q) \leqslant M$. Thus, by 7.9 there exists $t \in A$ with $\left[t, Y_{M}\right] \neq 1$ and $\left[C_{D}(t), L\right] \leqslant$ $A=W$. Put $B:=C_{D}(t) W$. Then B and W are normal in $L B$, and since W is a simple L-module, $[B, W]=1$. Hence $\Phi(B)=\Phi\left(C_{D}(t)\right)$ is centralized by $L=\left\langle Y_{M}^{L}\right\rangle$. From $C_{G}\left(Y_{M}\right)=Y_{M}$ we get $C_{G}(L) \leqslant C_{Y_{M}}(L)=R=1$. In particular, $\Phi(B)=1$, and B is elementary abelian with $C_{B}(L)=1$. It follows that B is isomorphic to a submodule of the dual of the natural $\Omega_{3}(\widetilde{q})$-module for \widetilde{L}. Let $d \in C_{D}(t) \leqslant B$. Then $C_{\widetilde{L}}(d)$ is isomorphic to $\mathbb{F}_{\widetilde{q}}$ or $O_{2}^{ \pm}(q)$,

$$
\begin{equation*}
\left|Y_{M} / C_{Y_{M}}(d)\right| \in\left\{1, \frac{\widetilde{q}}{2}, \widetilde{q}\right\} \tag{I}
\end{equation*}
$$

Since $t \in A=W$ and W is the natural $S L_{2}(\widetilde{q})$-module, $\left\{[t, y] \mid y \in Y_{M}\right\}=\left[t, Y_{M}\right]=\left[W, Y_{M}\right]$. Let $d \in D$. Using the definition of D we have $[t, d] \in[D, V] \leqslant[W, V]=\left[W, Y_{M}\right]$. Thus $[t, d]=[t, y]$ for some $y \in Y_{M}$. Hence $t^{d}=t^{y}, d y^{-1} \in C_{D}(t)$ and $D=C_{D}(t) Y_{M}$. By 7.12 ff $),[V, W]$ is singular subspace of V and $[V, W]^{\perp}=[V, W] \times(V \cap R)=[V, W]$. Hence $[V, W]$ is a maximal singular
subspace of V and $|V|=q^{n}$. The action of D on the natural $S p_{2 n}(q)$-module Y_{M} now shows $\left\{\left|Y_{M} / C_{Y_{M}}(d)\right| \mid d \in D\right\}=\left\{q^{i} \mid 0 \leqslant i \leqslant n\right\}$, and so also
(II)

$$
\left\{\left|Y_{M} / C_{Y_{M}}(d)\right| \mid d \in C_{D}(t)\right\}=\left\{q^{i} \mid 0 \leqslant i \leqslant n\right\} .
$$

A comparison of (I) and (II) shows that either $n=1$ and $\widetilde{q}=q$ or $n=2, \widetilde{q}=4$ and $q=2$. We already know that $Y_{M}=O_{p}(M)$ and $N_{G}(Q) \leqslant M$. If $n=1$ and $q=\tilde{q}$, then Y_{M} is a natural $S L_{2}(q)$-module for \bar{K}, and Theorem G 3) holds with $r=1$. If $n=2$ and $q=2$, then Y_{M} is a natural $S p_{4}(2)$-module, and Theorem G/22 holds.

Case 2. Suppose that 7.13 (B:2) holds, that is, $\bar{K} \geqq \bar{M}, p=2, \bar{K} \cong O_{2 n}^{\epsilon}(2), n \geqslant 2$ and $(n, \epsilon) \neq(2,+), Y$ is a corresponding natural module for $\bar{K}, \overline{M^{\circ}}=\bar{K}^{\prime} \cong \Omega_{2 n}^{\epsilon}(2)$, and $|\bar{W}|=$ $\left|Y_{M} / C_{Y_{M}}(W)\right|=2$.

Since $\bar{K} \& \bar{M}, \overline{K^{*}}=\bar{K}$ and so $Y=\left[Y_{M}, K\right]=\left[Y_{M}, K^{*}\right]=V$. Moreover, \bar{M} fixes the unique \bar{K} - invariant quadratic form h on Y and so $\bar{M}=\bar{K}$. Note also that the \bar{K}-invariant symplectic form on V given by 7.13 (B) is exactly the symmetric form associated with h.

Note that each singular vector in V is centralized by a Sylow 2-subgroup of M and so also by a conjugate of Q. By 7.5 $C_{R}\left(Q^{g}\right)=1$ for all $g \in R$, so this implies that R contains no non-trivial singular vectors. Thus $R \cap V$ has dimension at most 2 and so $|R \cap V| \leqslant 2^{2}$. Hence, by 7.12 g), $|V|=|\bar{W}|^{2}|V \cap R| \leqslant 2^{2} \cdot 2^{2}=2^{4}$. Thus $n=4$. Since $(2 n, \epsilon) \neq(4,+), V$ is a natural $O_{4}^{-}(2)$-module for \bar{M}.

As above, since $\bar{K} \& \bar{M}, 7.7$ a shows that $C_{Y_{M}}(K)=1$. Thus C. 18 implies that $Y_{M}=V$. Hence $R=R \cap V, R$ has order 4 , and all non-trivial elements in R are non-singular vectors of V.

Pick $1 \neq x \in R$ and put $\bar{B}:=O_{2}\left(C_{\bar{M}}(x)\right)$. Then $C_{\bar{M}}(x) \cong C_{2} \times S p_{2}(2)$ and $\left[Y_{M}, \bar{B}\right]=\langle x\rangle$. Since $\left[Y_{M}, W\right] \notin R$ this means $\left[C_{Y_{M}}(\bar{B}), W\right] \neq 1$. Thus by $7.8 C_{G}(x)$ is not of characteristic 2. Since by 7.12 h) $O_{2}(M)=Y_{M}=V$ and $N_{G}(Q) \leqslant Y_{M}$, and since $\bar{M}=\bar{K} \cong O_{4}^{-}(2)$, Theorem G holds.

Case 3. Suppose that (7.13 B:3) holds, that is, $\bar{K} \nsubseteq \bar{M}, Y_{M}$ is a natural $S L_{2}(q)$-wreath product module for \bar{M} with respect to $\mathcal{K}:=\bar{K}^{\bar{M}}, \overline{M^{\circ}}=O^{p}\left(\overline{K^{*}}\right) \bar{Q}$, and \bar{Q} acts transitively on \mathcal{K}.

Put $\mathcal{K}=:\left\{\overline{K_{1}}, \ldots, \overline{K_{r}}\right\}$ and $V_{i}:=\left[Y, \overline{K_{i}}\right]$ with $\bar{K}=\overline{K_{1}}$, so $Y=V_{1}$. Since Y_{M} is a natural $S L_{2}(q)$-wreath product module, Y is a natural $S L_{2}(q)$-module for K, and

$$
Y_{M}=V=V_{1} \times V_{2} \times \ldots \times V_{r}
$$

Since $\bar{K} \nleftarrow \bar{M}, r \geqslant 2$. Put

$$
\mathcal{S}:=\{v \in V \mid[v, F] \neq 1 \text { for all } F \in \mathcal{K}\} .
$$

In the following we apply A.28 to $\overline{K^{*} S}$ in place of H. Since \bar{Q} acts transitively on \mathcal{K}, A.28 e shows that $\overline{K^{*}}$ acts transitively on \mathcal{S} and $C_{V}(Q)^{\sharp} \subseteq \mathcal{S}$. Thus $C_{\mathcal{S}}(Q) \neq \varnothing$, and every element of \mathcal{S} is centralized by a conjugate of Q. As by 7.5 e $C_{R}\left(Q^{g}\right)=1$, we get

$$
R \cap \mathcal{S}=\varnothing
$$

Since $\bar{W} \leqslant \bar{K}=\overline{K_{1}}$ we get

$$
C_{V}(W)=C_{V_{1}}(W) \times V_{2} \times \ldots \times V_{r}
$$

Since V_{i} is 2-dimensional over $\left.\mathbb{F}_{q},[V, W]=\left[V_{1}, W\right]=C_{V_{1}}(W)\right)$. Thus by 7.12 ee

$$
C_{V}(W)=[V, W] \times R=C_{V_{1}}(W) \times R .
$$

As $\left|C_{V_{1}}(W)\right|=q$ this gives $\left|C_{V}(W) / R\right|=q$. Let $2 \leqslant i \leqslant r$. Then $V_{i} \leqslant C_{V}(W)$, and since $\left|V_{i}\right|=q^{2}$ and $\left|C_{V}(W) / R\right|=q$, we get $\left|V_{i} \cap R\right| \geqslant q$. In particular, there exists $1 \neq t_{i} \in V_{i} \cap R$.

Suppose that $V_{j} \leqslant R$ for some $2 \leqslant j \leqslant r$. Say $j=2$. Since $V_{2} \leqslant C_{V}(A)=C_{V_{1}}(W) \times R$ there exist $1 \neq s_{2} \in V_{2}$ and $1 \neq s_{1} \in C_{V_{1}}(W)$ with $s_{1} s_{2} \in R$. Put $t=s_{1} s_{2} t_{3} \ldots t_{r}$. Then $t \in R \cap \mathcal{S}=\varnothing$, a contradiction. Thus $V_{j} \leqslant R$ and so $V_{2} \ldots V_{r} \leqslant R$. Together with

$$
C_{V_{1}}(W) \times V_{2} \times \cdots \times V_{r}=C_{V}(W)=C_{V_{1}}(W) \times R
$$

this gives $R=V_{2} \times \cdots \times V_{r}$. In particular, $\overline{K_{1}} \leqslant C_{\bar{M}}(R)$ and so $\left[V_{1}, O_{p}\left(C_{\bar{M}}(R)\right)\right]=1$. Since $\left[V_{1}, W\right] \neq 1,7.8$ shows that $C_{G}(R)$ is not of characteristic p.

We will now show that $q \in\{2,4\}$. For this put $M_{1}:=C_{M}(R) \cap N_{M}([V, W])$ and let $1 \neq x \in$ $C_{V}\left(\left\langle W^{Q}\right\rangle\right) \cap C_{V}(Q)$ and x_{1} be the projection of x onto V_{1}. As already seen above, A.28 e gives $C_{V}(Q)^{\sharp} \subseteq \mathcal{S}$. Thus $x \in \mathcal{S}$ and so $x_{1} \neq 1$. Moreover, $x \in x_{1} V_{2} \cdots V_{r}=x_{1} R$, and so Q ! implies $C_{M_{1}}\left(x_{1}\right) \leqslant C_{G}(x) \leqslant N_{G}(Q)$. Thus $\left[Q, C_{M_{1}}\left(x_{1}\right)\right] \leqslant Q$.

Let $m \in C_{M_{1}}\left(x_{1}\right)$ and $q \in Q$ with $V_{1}=V_{2}^{q}$. Since m centralizes V_{2}, m^{q} centralizes V_{1}. Hence

$$
m=m^{q}\left[q^{-1}, m\right] \in m^{q} Q \subseteq C_{M}\left(V_{1}\right) Q
$$

and so m acts a p-element on V_{1}. It follows that $C_{M_{1}}\left(x_{1}\right) / C_{M_{1}}\left(V_{1}\right)$ is a p-group. Since $C_{M_{1}}\left(V_{1}\right)=$ $C_{M}\left(V_{1} R\right)=C_{M}(V)=C_{M}\left(Y_{M}\right)$ and by 7.12 h) $C_{G}\left(Y_{M}\right)=Y_{M}, C_{M_{1}}\left(x_{1}\right)$ is a p-group.

Put $B_{1}:=M_{1} \cap K V$. Then $B_{1} \vDash M_{1}, V W \in S y l_{p}\left(B_{1}\right), B_{1} / V W \cong C_{q-1}$, and B_{1} acts transitively on [V, W]. It follows that $M_{1}=C_{M_{1}}\left(x_{1}\right) B_{1}$ and M_{1} / B_{1} is a p-group. Thus $O^{p}\left(M_{1}\right) \leqslant B_{1}$. Since $[R, L]=1$ and $[V, W] \vDash N_{L}(V), N_{L}(V) \leqslant M_{1}$, and since $L / A=L / W R \cong S L_{2}(q)$ and $V W \in$ $\operatorname{Syl}_{p}(L), N_{L}(V) / V W$ is cyclic of order $q-1$. Let H_{1} be a complement to $V W$ in $N_{L}(V)$. Then $H_{1} \leqslant O^{p}\left(M_{1}\right) \leqslant B_{1}$. As $B_{1} / V W$ has order $q-1$, we get $B_{1}=H_{1} V W=N_{L}(V)$.

Suppose that p is odd and let i be the involution in H_{1}. In L we see that $[V W, i]=W$ and in M we see that $[V W, i]=V_{1}$, a contradiction.

Thus $p=2$. In L we see that the $\mathbb{F}_{2} H_{1}$-module $W / C_{W}(V)$ is isomorphic to the dual of [V, W] and in M that the $\mathbb{F}_{2} H_{1}$-module $V / C_{V}(W)$ is isomorphic to the dual of [V, W]. It follows that $W / C_{W}(V)$ and $V / C_{V}(W)$ are isomorphic $\mathbb{F}_{2} H_{1}$-module. Let $H_{1}=:\left\langle h_{1}\right\rangle$. In L we see that there exists $\xi \in \mathbb{F}_{q}$ and $\mathbb{F}_{q} H_{1}$-module structures on $[V, W], W / C_{W}(V)$ and $V / C_{V}(W)$ such that h_{1} acts as multiplication by ξ, ξ^{-1} and ξ^{2}, respectively. It follows that there exists $\sigma \in A u t\left(\mathbb{F}_{q}\right)$ with $\left(\xi^{2}\right)^{\sigma}=\xi^{-1}$. Since $|\xi|=\left|h_{1}\right|=q-1=\left|\mathbb{F}_{q}^{\sharp}\right|$ and also squaring is an field automorphism of \mathbb{F}_{q}, we conclude that $\mu: \mathbb{F}_{q} \mapsto \mathbb{F}_{q}, \lambda \rightarrow\left(\lambda^{2}\right)^{\sigma}$, is a field automorphism and $\lambda^{\mu}=\lambda^{-1}$ for all $\lambda \in \mathbb{F}_{q}^{\sharp}$. It follows that \mathbb{F}_{2} is the fixed field of μ, and μ as order 1 or 2 ; so $\mathbb{F}_{q}=\mathbb{F}_{2}$ or $\mathbb{F}_{q}=\mathbb{F}_{4}$.

Thus indeed $q \in\{2,4\}$. We already know that $C_{G}(R)=C_{G}\left(V_{2} \ldots V_{r}\right)$ is not of characteristic 2 . By 7.12h we have $N_{G}(Q) \leqslant M$ and $O_{2}(M)=Y_{M}$. Hence, Theorem G3 holds with $\mathcal{K}:=\bar{K}^{\bar{M}}$, where the uniqueness of \mathcal{K} follows from A.27.C.

Lemma 7.16. Case 7.13(C) does not hold.
Proof. Let $\{i, j, k\}=\{1,2,3\}$. Recall from 7.13 C that $p=2, Y=Y_{M}, M_{2}=N_{M}\left(C_{Y}(W)\right)$, $K_{2}=C_{M_{2}}\left(Y / C_{Y}(M)\right), \overline{K_{2}} \leqslant \bar{K}$ and that there exists an M_{2}-invariant set $\left\{V_{1}, V_{2}, V_{3}\right\}$ of $K_{2^{-}}$ submodules of Y with $Y=V_{i} \times V_{j}$. Note that the projection of V_{k} onto V_{i} and V_{j} shows that V_{k} is isomorphic to V_{i} and V_{j} as an K_{2}-module. In particular, $\overline{K_{2}}$ acts faithfully on V_{i}.

Define n by $2^{n}:=\left|V_{i}\right|$. Then by 7.13 C) either $n=3$ and Y is a natural $3 \cdot \operatorname{Alt}(6)$-module for K, or $n \geqslant 3$ and each V_{i} is a natural $S L_{n}(2)$-module for K.

$1^{\circ} . \quad V_{i} \cap R=1$.

Since $[R, W]=1, V_{i} \cap R=C_{V_{i}}(W) \cap R$. Let $1 \neq x \in C_{V_{i}}(W)$. According to 7.13 C:c for all $1 \neq x \in C_{V_{i}}(W)$ there exists $g \in M$ with $\left[x, Q^{g}\right]=1$. By 7.5 g $C_{R}\left(Q^{g}\right)=1$ for all $g \in G$ and so $x \notin R$. Hence $V_{i} \cap R=1$.
$2^{\circ} . \quad A \cap Y=C_{Y}(W)$ and $A \leqslant K_{2}$. In particular, W and A normalize V_{i}.
By 7.4 we conclude that A normalizes $C_{Y}(W)$ and centralizes $Y / C_{Y}(W)$, so $A \leqslant K_{2}$. As $W \leqslant A$ and K_{2} normalizes $V_{i}, 22^{\circ}$ holds.
$3^{\circ} . \quad A \cap Y=\left(A \cap V_{i}\right) \times\left(A \cap V_{j}\right)$.
By $\left.2^{\circ}\right) A \cap Y=C_{Y}(W)$, and W normalizes V_{i}. As $Y=V_{i} \times V_{j}$, this implies

$$
A \cap Y=C_{Y}(W)=C_{V_{i}}(W) \times C_{V_{j}}(W)=\left(A \cap V_{i}\right) \times\left(A \cap V_{j}\right)
$$

and $3{ }^{\circ}$ is proved.
$4^{\circ} . \quad A$ is elementary abelian.

By (20) A normalizes V_{i}, and by 1.43(a),

$$
\Phi(A)=[A \cap Y, A] \leqslant C_{Y}(L)=R,
$$

so

$$
\left[A \cap V_{i}, A\right] \leqslant V_{i} \cap R \stackrel{1^{\circ}}{=} 1 .
$$

By (3) $A \cap Y=\left(A \cap V_{i}\right) \times\left(A \cap V_{j}\right)$ and so $[A \cap Y, A]=1$. It follows that $\Phi(A)=1$ and A is elementary abelian.
5°.
(a) $|A|=2^{3(n-1)}$ and $|\bar{A}|=|A / A \cap Y|=|R|=2^{n-1}$.
(b) $A \cap V_{i}$ is a hyperplane of V_{i} and $\bar{A}=C_{\overline{K_{2}}}\left(A \cap V_{i}\right)$.
(c) Let B be any L-invariant subgroup of A. Then $|Y \cap B / R \cap B| \leqslant|R \cap B|$.

By 7.13 C:a) $\left|Y / C_{Y}(W)\right|=4$. Since $Y=V_{i} \times V_{j}$, this gives $\left|V_{i} / C_{V_{i}}(W)\right|=2$, and since by (29) $C_{Y}(W)=Y \cap W, V_{i} \cap A=C_{V_{i}}(W)$. Hence $V_{i} \cap A$ is a hyperplane of V_{i}. As by 4 A is abelian, A centralizes $V_{i} \cap A$ and so $V_{i} \cap A=C_{V_{i}}(A)$.

Let B be any L-invariant subgroup of A. Pick $v_{i} \in V_{i} \backslash A$. By 1.43(g), $Y \cap B=\left[v_{i}, B\right](R \cap B)$, and so $Y \cap B=\left[v_{i}, B\right](R \cap B)$. Since by $\left.\overline{1^{\circ}}\right) V_{i} \cap R=1$, we have $\left[v_{i}, B\right] \cap(R \cap B)=1$. This gives

$$
\begin{equation*}
|Y \cap B|=\left|\left[v_{i}, B\right]\right||R \cap B| . \tag{*}
\end{equation*}
$$

Also $|Y \cap B| \geqslant|[Y, B]|=\left|\left[v_{i}, B\right] \times\left[v_{j}, B\right]\right|=\left|\left[v_{i}, B\right]\right|^{2}$, and we conclude with (*) that

$$
|R \cap B| \geqslant\left|\left[v_{i}, B\right]\right|=|Y \cap B / R \cap B|
$$

Thus (C) holds.
Using $A=B$ in $(*),|Y \cap A|=\left|\left[v_{i}, A\right]\right| R \mid$ and so $|R|=|Y \cap A|\left|\left[v_{i}, A\right]\right|^{-1}$. On the other hand, by 10) $V_{i} \cap A \cap R=1$ and so

$$
|R|=\left|R\left(V_{i} \cap A\right) / V_{i} \cap A\right| \leqslant\left|Y \cap A / V_{i} \cap A\right| .
$$

Since $\left[v_{i}, A\right] \leqslant V_{i} \cap A$, we get

$$
\left|Y \cap A / V_{i} \cap A\right| \leqslant\left|Y \cap A /\left[v_{i}, A\right]\right|=|R| \leqslant\left|Y \cap A / V_{i} \cap A\right| .
$$

It follows that equality holds in the preceding inequalities. In particular, $\left[v_{i}, A\right]=V_{i} \cap A$ and so

$$
\left|\left[v_{i}, A\right]\right|=\left|V_{i} \cap A\right|=2^{n-1}
$$

Thus

$$
\bar{A}=\left|A / C_{A}\left(V_{i}\right)\right|=\left|A / C_{A}\left(v_{i}\right)\right|=\left|\left[v_{i}, A\right]\right|=2^{n-1} .
$$

Since $\bar{A} \leqslant C_{\overline{K_{2}}}\left(A \cap V_{i}\right)$ and $\left|C_{\overline{K_{2}}}\left(A \cap V_{i}\right)\right| \leqslant\left|A \cap V_{i}\right|=2^{n-1}$ this gives $\bar{A}=C_{\overline{K_{2}}}\left(A \cap V_{i}\right)$. So all parts of (5) are proved.
6°.
(a) $Y=Y_{M}=O_{2}(M), M=M^{\dagger}$ and $N_{G}(Q) \leqslant M$.
(b) $H=L, U=W, \widehat{U}$ is natural $S L_{2}(4)$-module for H, and U is a natural $\Omega_{3}(4)$-module for H.
Recall that $L \in \mathfrak{L}_{G}\left(Y_{M}\right)$ and so $L / A \cong S L_{2}(\widetilde{q}), S z(\widetilde{q})$ or $\operatorname{Dih}_{2 r}$. In the $S z(\tilde{q})$-case \tilde{q} is an odd power of 2 and in the $D i h_{2 r^{-}}$case $\widetilde{q}=2$. Since $\widetilde{q}=\left|Y_{M} / C_{Y_{M}}(W)\right|=\left|Y_{M} / Y_{M} \cap A\right|=4$ we get $\widetilde{L} \cong S L_{2}(4)$.

By $2.13 \hat{U}$ is a faithful simple minimal asymmetric $\mathbb{F}_{2} \widetilde{H}$-module, so we can apply the Minimal Asymmetric Modules Theorems C. 28 and C. 29 Put $H_{0}:=\left\langle Y_{M}^{H}\right\rangle$. Since $\widetilde{L} \cong S L_{2}(4), \widetilde{H}_{0}$ is not solvable. Thus we are in Case 1 of C.29. In particular, $\widetilde{H_{0}}$ is a group of Lie-type defined over \mathbb{F}_{4} and $\widetilde{Y_{M}}$ is a long root subgroup of $\widetilde{H_{0}}$. Note that $U \cap Y=(U \cap A) \cap Y$ and $U \cap R=(U \cap A) \cap R$. Thus by (5) applied to $B=U \cap A$
(**)

$$
|U \cap Y / U \cap R| \leqslant|U \cap R| .
$$

In particular, $U \cap R \neq 1$. So by 7.5 (a) $C_{U}(H)=U \cap R \neq 1$ and $C_{U}\left(H_{0}\right) \neq 1$. By 7.6ab U is a quasisimple H_{0}-module. A comparison of C.29(1) with C. 18 shows that $p=2$ and either
$\widetilde{H_{0}} \cong S p_{2 m}(4)$ and U is a quotient of the natural $\Omega_{2 m+1}(4)$-module for $\widetilde{H_{0}}$, or $\widetilde{H_{0}} \cong G_{2}(4)$ and \hat{U} is the corresponding natural module of order 4^{6}. In the first case $\left|\left[\hat{U}, Y_{M}\right]\right|=4$ and in the second case $\left|\left[\hat{U}, Y_{M}\right]\right|=16$, and in both cases $|U \cap R| \leqslant\left|C_{U}\left(H_{0}\right)\right| \leqslant 4$.

By 2.17 (e)

$$
W \cap R=C_{W}\left(O^{2}(H)\right)=W \cap C_{U}\left(O^{2}(H)\right) .
$$

It follows that

$$
\widehat{W \cap Y}=(W \cap Y) C_{U}\left(O^{2}(H)\right) / C_{U}\left(O^{2}(H)\right) \cong W \cap Y / W \cap R \cong(W \cap Y)(U \cap R) / U \cap R \leqslant U \cap Y / U \cap R .
$$

Hence

$$
|\widehat{W \cap Y}| \leqslant|U \cap Y / U \cap R| \stackrel{(* *)}{\leqslant}|U \cap R| \leqslant\left|C_{U}\left(H_{0}\right)\right| \leqslant 4 .
$$

On the other hand, by 2.17c) $U=W C_{U}\left(Y_{M}\right)$. Thus $[\hat{U}, Y]=[\widehat{W}, Y] \leqslant \widehat{W \cap Y}$ and so $|[\hat{U}, Y]| \leqslant 4$. This excludes the $G_{2}(q)$-case and shows that $\left|C_{U}\left(H_{0}\right)\right|=4$, so U is a natural $\Omega_{2 m+1}(4)$ for \widetilde{H}_{0} and $|\widehat{W \cap Y}|=4$. Moreover, by $1.43 \mathrm{e}\left|W / C_{W}(Y)\right|=\left|W \cap Y / C_{W \cap Y}(L)\right|=|\widehat{W \cap Y}|=4$. Hence Y_{M} is an offender on W, and so also an offender on U since $U=W C_{U}(Y)$. Thus we can apply 7.11. In the second case of $7.11 U \cap R=1$, a contradiction. So the first case holds. Hence \hat{U} is natural $S L_{2}(\widetilde{q})$-module for H and

$$
Y_{M}=O_{2}(M), M=M^{\dagger}, N_{G}(Q) \leqslant M, H=L \text { and } U=W .
$$

Since $\widetilde{q}=4$ and U is a natural $\Omega_{2 m+1}(4)$-module, this gives (6).
7. $\quad C_{M}(Y)=Y, M=N_{G}(Y), A Y=C_{K_{2}}(Y \cap A)$ and $A \vDash M_{2}$.

By (60) (a) $Y=O_{2}(M)$ and $N_{G}(Y)=M^{\dagger}=M$. By (50) $\bar{A}=C_{\overline{K_{2}}}(Y \cap A)$ and so $A Y=$ $A C_{M}(Y)=C_{K_{2}}(Y \cap A)$. In particular, $A Y \vDash M_{2}$.

Let $v \in Y \backslash Y \cap A$. Then $v \in V_{i}(Y \cap A)$ for some i. Since V_{i} is a faithful K_{2}-module and $\left|V_{i} / V_{i} \cap A\right|=2$ we get $C_{\bar{A}}(v)=C_{\bar{A}}\left(V_{i}\right)=1$ and so $C_{A}(v)=A \cap Y$. It follows that $[v, a] \neq 1$ for all $v \in Y \backslash A$ and $a \in A \backslash Y$. Hence $v a$ is not an involution and so Y and A are the only maximal elementary abelian subgroups of $A Y$. Since M_{2} normalizes $A Y$ and Y, M_{2} normalizes A.
8°. $n=3$ and $O^{2}(M) / Y \cong C_{3} \times S L_{3}(2)$ or $3 \cdot \operatorname{Alt}(6)$.
By $\left.7^{0}\right) Y=C_{M}(Y)$. Thus if Y is a natural $3 \cdot \operatorname{Alt}(6)$-module, then (8°) holds. So suppose that Y is the direct sum of two $S L_{n}(2)$-modules, $n \geqslant 3$. In particular, $M / Y=\bar{M}=\bar{K} \times \bar{C}$ where \bar{C} is isomorphic to a subgroup of $S L_{2}(2)$ with $O_{2}(\bar{C})=1$. Thus $\bar{C} \cong 1, C_{3}$ or $S L_{2}(2)$. Note that $M_{2} \cap K$ centralizes $Y / Y \cap A$ and that $N_{L}(Y) \leqslant N_{M}(A \cap Y)=M_{2}$. Since by (6) $L / A \cong S L_{2}(4)$, we infer that $N_{L}(Y) / C_{N_{L}(Y)}(Y / Y \cap A) \cong C_{3}$. Thus 3 divides $|M / K|$. Hence $C \cong C_{3}$ or $S L_{2}(2)$ and $O^{2}(M) / Y \cong C_{3} \times S L_{n}(2)$. It remains to show that $n=3$.

If $n=4$, then by $5^{0}|A|=2^{3(n-1)}=2^{9}$ and $|R|=2^{n-1}=2^{3}$, and so $|A / R|=2^{6}$. Since $L / A \cong S L_{2}(4)$ all non-central simple L-modules have order 2^{4}, and we conclude that L has a central composition factor on A / R, a contradiction to 1.43 (p).

Suppose that $n \geqslant 5$. Let $X \leqslant M$ such that $X \xlongequal{\cong} C_{3}$ and $X Y \approx M$. Since $\left[K_{2}, X\right] \leqslant Y$ and X acts fix-point freely on $Y, K_{2}=C_{K_{2}}(X) Y$. For $i=1,2$ put $A_{i}:=A \cap V_{i}$. Then $A \cap Y=A_{1} \times A_{2}$. Put $A_{3}:=C_{A}(X)$. Since $X \leqslant M_{2}, X$ normalizes A and so $A=(A \cap Y) \times A_{3}=A_{1} \times A_{2} \times A_{3}$. Let $v \in V_{1} \backslash A_{1}$ and put $K_{1}:=C_{K_{2}}(v) \cap C_{K_{2}}(X)$. Note that K_{1} is a complement to A_{3} in $C_{K_{2}}(X)$, $K_{1} \cong S L_{n-1}(2)$ and the $A_{i}, 1 \leqslant i \leqslant 3$, are isomorphic natural $S L_{n-1}(2)$-modules for K_{1}.

According to 7.9 there exists $t \in A \backslash C_{A}(Y)$ such that $\left[C_{D}(t), L\right] \leqslant A$ for all 2 -subgroups D of M with $[Y, D] \leqslant A$. Since $t \in A, t=t_{1} t_{2} t_{3}$ with $t_{i} \in A_{i}$. Since $n-1>3$, there exists a transvection $d \in K_{1}$ with $\left[t_{i}, d\right]=1$ for all $1 \leqslant i \leqslant 3$. Then

$$
|[A, d]|=\left|\left[A_{1}, d\right]\right|^{3}=8 .
$$

Since $d \in K_{1} \leqslant K_{2},[Y, d] \leqslant Y \cap A \leqslant A$. Also $[d, t]=1$, and the choice of t implies $[d, L] \leqslant$ $A \leqslant C_{G}(A)$. Thus L normalizes $[A, d]$. Since $L / A \cong S L_{2}(4)$ and $|[A, d]|=8$ we conclude that $[A, d, L]=1$ and $[A, d] \leqslant C_{A}(L)=R \leqslant Y$, a contradiction since $1 \neq\left[A_{3}, t\right] \leqslant A_{3}$ and $A_{3} \cap Y=1$. Thus (8) is proved.

We are now able to derive a final contradiction. Since $n=3$, 5° (a) shows that $|A|=2^{3(3-1)}=$ $2^{6}=|Y|$. By $6^{\circ} \mid$ b U is the natural $\Omega_{3}(4)$-module for L and $U=W$. Hence $|U|=2^{6}$ and $A=W$. In particular, $A / R=\widehat{U}$ is a natural $S L_{2}(4)$-module of L,

Note that either $K / Y \cong S L_{3}(2)$ and $Y=V_{1} \oplus V_{2}$, or $K / Y \cong 3 \cdot \operatorname{Alt}(6)$. Since $|\bar{W}|=4$ and $\left|V_{i}\right|=8$, it is straight forward to verify that $K_{2} / Y \cong \operatorname{Sym}(4)$ and $V_{i} \cap A$ is a natural $S L_{2}(2)$ module for K_{2}. In particular, $Y \cap A$ is a direct sum of two natural $S L_{2}(2)$-modules for K_{2}, and $V_{i} \cap A, 1 \leqslant i \leqslant 3$, are simple K_{2}-submodules in $Y \cap A$.

Put $F:=N_{G}(A)$. Then $L \leqslant F$ and by $77^{\circ} A \leqslant M_{2}$ and so $M_{2} \leqslant F$. Also $F \cap M \leqslant$ $N_{M}\left(C_{Y}(A)\right)=M_{2}$ and so $F \cap M=M_{2}$.

In particular, $L_{2}:=L \cap M=L \cap M_{2}$. Since $L / A \cong S L_{2}(4), L_{2} / A Y \cong C_{3}$ and L_{2} acts transitively on $A Y / Y \cong Y / Y \cap A=Y / C_{Y}(W)$. Hence L_{2} also acts transitively on $\left\{V_{1}, V_{2}, V_{3}\right\}$. Since $V_{i} \cap A, 1 \leqslant i \leqslant 3$, are the simple K_{2}-submodules of $Y \cap A$ we conclude that $Y \cap A$ is a simple module for $L_{2} K_{2} / A Y \cong C_{3} \times S L_{2}(2)$. Also $L_{2} K_{2}$ acts transitively on the nine elements in $V_{1}^{\sharp} \cup V_{2}^{\sharp} \cup V_{3}^{\sharp}$. Let $1 \neq r \in R$. Note that $O^{2}\left(K_{2}\right)$ normalizes L_{2} and so also $C_{Y \cap A}\left(L_{2}\right)$. Moreover, $O^{2}\left(K_{2}\right)$ acts fixed-point freely on $Y \cap A, R \leqslant C_{Y \cap A}\left(L_{2}\right)$ and $|R|=4$. We conclude that $R=C_{Y \cap A}\left(L_{2}\right)$ and $O^{2}\left(K_{2}\right)$ acts transitively on R. Since $K_{2} L_{2}$ acts simply on $Y \cap A$ and $\left|L_{2} K_{2} / L_{2} O^{2}\left(K_{2}\right)\right|=2$ we get $\left|R^{L_{2} K_{2}}\right|=2$ and $\left|r^{L_{2} K_{2}}\right|=6$.

Let $1 \neq z \in \Omega_{1} Z(S)$. By 7.1/c), $\Omega_{1} Z(S) \leqslant Y_{H} \cap Y_{M}=A \cap Y$ and by 7.5(g), $C_{R}\left(Q^{g}\right)=1$ for all $g \in G$. Since $[z, Q]=1$ we conclude that z and r are not conjugate in G. It follows that $z^{M_{2}}=z^{K_{2} L_{2}}$ has size nine and $r^{M_{2}}=r^{K_{2} L_{2}}$ has size six.

Put $F_{1}:=N_{F}(R)$ and note that $L \leqslant F_{1}$ and $L_{2} O^{2}\left(K_{2}\right) \leqslant F_{1}$. In particular, $z^{M_{2} \cap F_{1}}=z^{M_{2}}$. We now calculate the size of $z^{F}, z^{F_{1}}$ and r^{F}. Note that each of these sets is an L-invariant subset of A.

Since A / R is the natural $S L_{2}(4)$-module for $L, A / R$ is partitioned by the five L-conjugates of $A \cap Y / R$. Also $z^{M_{2}} \cap R=\varnothing$ and $\left|r^{M_{2}} \cap R\right|=3$. Hence $\left|z^{F}\right| \geqslant\left|z^{F_{1}}\right| \geqslant 5 \cdot 9$ and $\left|r^{F}\right| \geqslant 3+5 \cdot 3$. Now $\left|A^{\sharp}\right|=2^{6}-1=45+18$ gives $\left|z^{F}\right|=\left|z^{F_{1}}\right|=45$ and $\left|r^{F}\right|=18$.

By $\left(6^{\circ}\right) N_{G}(Q) \leqslant M$. Since $[z, Q]=1, Q$! implies $C_{G}(z) \leqslant M$. In particular, $C_{F}(z) \leqslant$ $M \cap F=M_{2}$. Note that $K_{2} \& M_{2}$ and R^{\sharp} is one of the two orbits of K_{2} on $r^{M_{2}}$. Thus $\mid M_{2} / M_{2} \cap$ $F_{1}\left|=\left|M_{2} / N_{M_{2}}\left(R^{\sharp}\right)\right|=2\right.$. Since $C_{F}(z) \leqslant M_{2}$ this gives $| C_{F}(z) / C_{F_{1}}(z) \mid \leqslant 2$. Together with $|F|=45\left|C_{F}(z)\right|$ and $\left|F_{1}\right|=45\left|C_{F_{1}}(z)\right|$ we conclude that $\left|F / F_{1}\right| \leqslant 2$. Thus $\left|R^{F}\right| \leqslant 2$ and $\left|r^{F}\right| \leqslant$ $\left|R^{\sharp}\right|\left|R^{F}\right|=3 \cdot 2=6$, a contradiction to $\left|r^{F}\right|=18$.

Note that the three cases in 7.13 have been treated in $7.14,7.15$ and 7.16 . Thus, the proof of Theorem G is complete.

CHAPTER 8

The Q-Tall Asymmetric Case I

In this chapter we begin the investigation of the Q-tall asymmetric case. That is, $M \in \mathfrak{M}_{G}(S)$, Y_{M} is asymmetric in G, and $Y_{M} \leqslant O_{p}\left(N_{G}(Q)\right)$. The main result of this chapter reduces the problem to what might be called the generic case, namely, where $\left[Y_{M}, M^{\circ}\right] \$ Q, M / C_{M}\left(Y_{M}\right)$ possesses a unique component K, and $\left[Y_{M}, K\right]$ is a simple K-module, see Case (1) of Theorem H for more details. This is achieved by studying the action of M on the Fitting submodule I of Y_{M}, introduced in Appendix D, rather than on Y_{M} itself. The Fitting submodule is close to being semisimple and so much easier to work with. And, since I is faithful for $M / C_{M}\left(Y_{M}\right)$, it still allows to identify $M / C_{M}\left(Y_{M}\right)$.

As in the previous chapter a member H of $\mathfrak{H}_{G}\left(O_{p}(M)\right)$ is used to obtain a subgroup L of H with $L \in \mathfrak{L}_{G}\left(Y_{M}\right)$. But in this chapter internal properties of L, like

$$
A:=O_{p}(L)=\left\langle\left(Y_{M} \cap O_{p}(L)\right)^{L}\right\rangle \quad \text { and } \quad C_{Y_{M}}(L)=Y_{M} \cap Y_{M}^{g} \quad \text { for } \quad g \in L \backslash L \cap M^{\dagger},
$$

are in the center of our attention. Due to Q-tallness, H and thus also L can be chosen in $N_{G}(Q)$. It is then easy to see that Q, L and A normalize each other. We subdivide the proof into three cases, treated in separate sections:
(1) $I \leqslant A$
(2) $I * A$ and $\left[\Omega_{1} Z(A), L\right] \neq 1$,
(3) $I \leqslant A$ and $\left[\Omega_{1} Z(A), L\right]=1$.

In the first case it is easy to see that I is symmetric in G (see 8.13 b$)$. So the main result of Chapter 4 can be applied to I, and the different outcomes of this result are then discussed.

In the second case the non-trivial action of L on $\Omega_{1} Z(A)$ shows that also H acts non-trivially on $\Omega_{1} Z\left(O_{p}(H)\right)$, and similar to the previous chapter we get a strong offender that allows to apply the FF-module theorems from Appendix C.

In the third case we prove that A acts nearly quadratically on I. We then apply the Nearly Quadratic Q !-Theorem proved in Appendix D , and treat each of its cases.

Here is the main result of this chapter.
Theorem H. Let G be a finite \mathcal{K}_{p}-group, $S \in \operatorname{Syl}_{p}(G)$, and let $Q \leqslant S$ be a large subgroup of G. Suppose that $M \in \mathfrak{M}_{G}(S)$ such that Y_{M} is asymmetric in G and Q-tall.

Then $\mathfrak{H}_{N_{G}(Q)}\left(O_{p}(M)\right) \neq \varnothing$ and for every $H \in \mathfrak{H}_{N_{G}(Q)}\left(O_{p}(M)\right)$ also $\mathfrak{L}_{H}\left(Y_{M}\right) \neq \varnothing$. Moreover, one of the following holds, where $Y:=Y_{M}, \overline{M^{\dagger}}:=M^{\dagger} / C_{M^{\dagger}}(Y), I:=F_{Y}(\bar{M})$ is the Fitting submodule of Y, and q is some power of p :
(1) For every $H \in \mathfrak{H}_{N_{G}(Q)}\left(O_{p}(M)\right)$ and every $L \in \mathfrak{L}_{H}\left(Y_{M}\right)$ and $A:=O_{p}(L)$:
(a) Q normalizes L and A,
(b) \bar{A} is a non-trivial elementary abelian subgroup of \bar{M},
(c) $Y=I C_{Y}(A), I * Q^{\bullet}$ and $C_{Y}(A)=Z(A)=C_{Y}(L)$,
(d) $K:=\left[F^{*}(\bar{M}), A\right]$ is the unique component of $\bar{M}, K \leqslant \overline{M^{\circ}}$, and I is a simple K module,
(e) A acts nearly quadratically on Y and not quadratically on I, and $[Y, K \bar{A}]=I$,
(f) $\left|Y / C_{Y}(A)\right| \leqslant|\bar{A}|^{2}$,
(g) $A Q$ acts \mathbb{K}-linearly on I, where $\mathbb{K}:=\operatorname{End}_{K}(I)$,
(h) If $g \in M$ and $C_{Y}\left(Q^{g}\right) \cap C_{Y}(A) \neq 1$, then $\left[\overline{Q^{g}}, \bar{A}\right] \leqslant \overline{Q^{g}} \cap \bar{A}$ and $\left[Y, Q^{g}\right] \leqslant[Y, A] C_{Y}(A)$.
(2) $p=2, \overline{M^{\circ}} \cong L_{3}(2), I$ is a corresponding natural module, $|Y / I|=2, I$ is symmetric in G, and $I \leqslant Q$.
(3) $p=2, \overline{M^{\circ}} \cong \Omega_{6}^{+}(2), I$ is a corresponding natural module, $|Y / I|=2, I$ is symmetric in G, $I \not Q^{\bullet}, Y=O_{2}(M), M=M^{\dagger}$, and $C_{G}(t)$ is not of characteristic 2 for any non-singular $t \in I$.
(4) $p=2, \overline{M^{\circ}} \cong S p_{2 n}(2), n \geqslant 2, I$ is a corresponding natural module, $I \nleftarrow Q^{\bullet}$ and $|Y / I|=2$.
(5) $\overline{M^{\circ}} \cong S L_{n}(q), n \geqslant 2$, and Y is a corresponding natural module.
(6) $p=2, \overline{M^{\circ}} \cong S p_{2 n}(q), n \geqslant 2$, and Y is a corresponding natural module.
(7) $p=3, \overline{M^{\circ}} \cong \Omega_{3}(3)$, and Y is a corresponding natural module for $\overline{M^{\circ}}$.
(8) $p=2, \bar{M} \cong \Gamma S L_{2}(4), \overline{M^{\circ}} \cong S L_{2}(4)$ or $\Gamma S L_{2}(4), I$ is a corresponding natural module, $I \nless Q^{\bullet}$ and $|Y / I| \leqslant 2$.
(9) $p=2, \bar{M} \cong 3 \cdot \operatorname{Sym}(6), \overline{M^{\circ}} \cong 3 \cdot \operatorname{Alt}(6)$ or $3 \cdot \operatorname{Sym}(6)$, and Y is a simple \bar{M}-module of order 2^{6}
(10) There exists an \bar{M}-invariant set $\left\{\overline{K_{1}}, \overline{K_{2}}\right\}$ of subgroups of \bar{M} such that $\bar{K}_{i} \cong S L_{m_{i}}(q)$, $\left[\overline{K_{1}}, \overline{K_{2}}\right]=1, \overline{K_{1} K_{2}} \vDash \bar{M}$, and $Y=I$ is the tensor product over \mathbb{F}_{q} of corresponding natural modules for K_{1} and K_{2}. Moreover, either $\bar{M}=\overline{M^{\circ}} \cong S L_{2}(2)$ 亿 C_{2}, or $\overline{M^{\circ}}$ is one of $\overline{K_{1}}, \overline{K_{2}}$ or $\overline{K_{1} K_{2}}$.

In particular, $I=\left[Y_{M}, M^{\circ}\right]$, and (2) is the only case where $I \leqslant Q^{\bullet}$.

Table 1 lists examples for Y_{M}, M and G fulfilling the hypothesis of Theorem H and one of the cases (2) - 10).

Table 1. Examples for Cases 210 of Theorem H

	Case	[Y_{M}, M°] for M°	c	Remarks	examples for G
*	2	nat $S L_{3}(2)$	2	$G \neq G^{\circ}$	Aut (G2 ${ }_{2}(3)$)
*	3	nat $\Omega_{6}^{+}(2)$	2	-	$\Omega_{8}^{+}(3) . S y m(3)$
*	4	nat $S p_{4}(2)^{\prime}$ or $S p_{4}(2)$	2	-	$P \Omega_{6}^{-}(3)\langle\omega\rangle$ or $P O_{6}^{-}(3)$
	5	nat $S L_{n}(q)$	1	-	$L_{n+1}(q)$
	5	nat $S L_{2}(2)$	1	-	$S p_{4}(2)^{\prime}$
	5	nat $S L_{2}(3)$	1	-	Mat ${ }_{12}$
	5	nat $S L_{2}(4)$	1	-	Mat ${ }_{22}, M_{\text {at }}{ }_{23}$
	5	nat $S L_{3}(2)$	1	-	Alt (9)
	$\overline{6}$	nat $S p_{4}(2)$	1	-	$P S O_{6}^{-}(3), P \Omega_{6}^{-}(3)\langle\omega\rangle$
	$\overline{6}$	nat $S p_{4}(2)^{\prime}$	1	-	$\Omega_{6}^{-}(3)$, Suz
	7	nat $\Omega_{3}(3)$	1	-	$\Omega_{5}(3)$
	7	nat $\Omega_{3}(3)$	1	-	Sp $p_{6}(2), \Omega_{8}^{-}(2)$
	8	nat $\Gamma S L_{2}(4)$	1	- \bar{M}	$\Gamma L_{3}(4), M a t_{22}$
*	8	nat $S L_{2}(4)[.2]$	2	$\overline{\bar{M}} \cong \Gamma S L_{2}(4)$	Aut(Mat ${ }_{22}$)
	9	2^{6} for $3 \cdot \operatorname{Alt}(6)[.2]$	1	$\bar{M} \sim 3 \cdot \operatorname{Sym}(6)$	Mat ${ }_{24}$
*	9	2^{6} for $3 \cdot \operatorname{Sym}(6)$	1	$\bar{M} \sim 3 \cdot \operatorname{Sym}(6)$	He
	10	nat $S L_{t_{1}}(q)\left[\otimes S L_{t_{2}}(q)\right]$	1	-	$L_{t_{1}+t_{2}}(q), L_{2 t_{1}+1}(q) \Phi_{2} t_{1}=t_{2}$
	10	nat $\left.S L_{2}(2)\right)\left[\otimes S L_{3}(2)\right]$	1	-	Mat ${ }_{24}$
	10	nat $\left.S L_{2}(2)\right)\left[\otimes S L_{2}(2)\right]$	1	-	Alt (9)
	10	nat $S L_{2}(2) \otimes S L_{2}(2)$	1	-	Sym(9), Alt(10)
	7	nat $S L_{2}(3) \otimes S L_{2}(3)$	1	-	HN

In the table $c:=\left|Y_{M} /\left[Y_{M}, M^{\circ}\right]\right|$ and Φ_{2} is a group of graph automorphisms of order 2. In the examples with $G=P \Omega_{6}^{-}(3)\langle\omega\rangle, \omega$ is a reflection in $P O_{6}^{-}(3)$. An entry of the form $A[B]$ in the $\left[Y_{M}, M^{\circ}\right]$ column indicates that there exists more than one choice for Q in the example G. Depending on this choice the structure of $\left[Y_{M}, M^{\circ}\right]$ as an M°-module is either described by A or $A B$.

* indicates that $\left(\operatorname{char} Y_{M}\right)$ fails in G.

8.1. Notation and Preliminary Results

In this section we assume the hypothesis and notation of Theorem H in particular $Y=Y_{M}$ and $I=F_{Y}(M)$.

Lemma 8.1. $Y_{M} \leqslant O_{p}\left(N_{G}(Q)\right)$.
Proof. By Hypothesis, Y_{M} is Q-tall and so by 2.6 e $Y_{M} \leqslant O_{p}\left(N_{G}(Q)\right)$.
Lemma 8.2. $\mathfrak{H}_{N_{G}(Q)}\left(O_{p}(M)\right) \neq \varnothing$, and for $H \in \mathfrak{H}_{N_{G}(Q)}\left(O_{p}(M)\right), \mathfrak{L}_{H}\left(Y_{M}\right) \neq \varnothing$.
Proof. By 1.55 a) $N_{G}(Q)$ has characteristic p, and by $8.1 Y_{M} \not \approx O_{p}\left(N_{G}(Q)\right)$. Hence 2.9 implies that $\mathfrak{H}_{N_{G}(Q)}\left(O_{p}(M)\right) \neq \varnothing$.

Pick $H \in \mathfrak{H}_{N_{G}(Q)}\left(O_{p}(M)\right)$, and let L be minimal among all subgroups of H satisfying $Y \leqslant L$ and $Y \nless O_{p}(L)$. Then the Asymmetric L-Lemma 2.16 ed shows that $L \in \mathfrak{L}_{H}\left(Y_{M}\right)$.

Notation 8.3. According to 8.2 we are allowed to fix $H \in \mathfrak{H}_{N_{G}(Q)}\left(O_{p}(M)\right)$ and $L \in \mathfrak{L}_{H}\left(Y_{M}\right)$. Recall from the definition of $\mathfrak{L}_{G}\left(Y_{M}\right)$:
(i) L is Y-minimal of characteristic p, and $N_{L}(Y)$ is the unique maximal subgroup of L containing Y.
(ii) $L / A \cong S L_{2}(\widetilde{q}), S z(\widetilde{q})$ or $D i h_{2 r}$ and $|Y / Y \cap A|=\widetilde{q}$, where $p=2$ in the last two cases, r is an odd prime, and $\widetilde{q}=2$ in the last case.
(iii) $A=\left\langle(Y \cap A)^{L}\right\rangle$.

Also observe that L satisfies the hypothesis of 1.43 , since by $1.42 \mathrm{~b} O_{p}(L) \leqslant N_{L}(Y)$.
Lemma 8.4. (a) $C_{M}(I)=C_{M}(Y)=C_{M}\left(I / \operatorname{rad}_{I}(M)\right)$.
(b) $N_{G}(I)=M^{\dagger}=N_{G}(Y)=M C_{G}(Y)=M C_{G}(I)$.
(c) $C_{G}(I)=C_{G}(Y)=C_{M^{\dagger}}(Y)=C_{M^{\dagger}}\left(I / \operatorname{rad}_{I}(M)\right)$.
(d) $M \nless N_{G}(Q)$.
(e) Y, I and $I / \operatorname{rad}_{I}(M)$ are Q !-modules for \bar{M} with respect to \bar{Q}.
(f) I is a semisimple M°-module, $C_{Y}\left(M^{\circ}\right)=C_{Y}\left(M_{\circ}\right)=1$ and $I=\left[I, M^{\circ}\right]=\left[I, M_{\circ}\right]$.

Proof. (a): By D.6, I and $I / \operatorname{rad}_{I}(M)$ are faithful \bar{M}-modules, so $C_{M}(I)=C_{M}\left(I / \operatorname{rad}_{I}(M)\right)=$ $C_{M}(Y)$. This is (a).
(b): By the basic property of $M, M^{\dagger}=M C_{G}(Y)$. Since $I \leqslant Y$, this gives $M^{\dagger}=M C_{M^{\dagger}}(I)$. In particular, $M^{\dagger} \leqslant N_{G}(I)$ and $M^{\dagger} \leqslant N_{G}(Y)$. Again by the basic property of M, M^{\dagger} is a maximal p-local subgroup of G, and so $M^{\dagger}=N_{G}(I)=N_{G}(Y)$. Hence $C_{M^{\dagger}}(I)=C_{G}(I)$, and b is proved.
(c): By b $N_{G}(I)=M^{\dagger}=M C_{G}(Y)$, and $C_{G}(Y)$ centralizes I and $I / \operatorname{rad}_{I}(M)$. Hence

$$
C_{G}(I)=C_{M}(I) C_{G}(Y) \quad \text { and } \quad C_{M^{\dagger}}\left(I / \operatorname{rad}_{I}(M)\right)=C_{M}\left(I / \operatorname{rad}_{I}(M)\right) C_{G}(Y)
$$

Thus (c) follows from (a).
(d): Otherwise 1.24 f) implies $Y_{M} \leqslant Y_{N_{G}(Q)} \leqslant O_{p}\left(N_{G}(Q)\right)$, contrary to 8.1 .
(e): By (d) $M \not N_{G}(Q)$ and by (c) $C_{G}(Y)=C_{G}(I)$. Since Q is a large subgroup of $G, 1.57$ b) shows that Y and I are faithful $Q!$-modules for \bar{M} with respect to \bar{Q}. So we can apply D. 10 with $V=Y$ and $H=\bar{M}$ and conclude that also $I / \operatorname{rad}_{I}(M)$ is a $Q!$-module for \bar{M} with respect to \bar{Q}.
(f): By (e), Y is a faithful, p-reduced $Q!$-module for \bar{M} with respect to \bar{Q}. Thus by D. $8, I$ is a semisimple M°-module and so also a semisimple M°-module. Since by (d) $M \leqslant N_{G}(Q)$, we get $Q \neq M^{\circ}$, and so by 1.55 d $C_{I}\left(M^{\circ}\right) \leqslant C_{G}\left(M^{\circ}\right)=1$. As I is a semisimple M°-module, this gives $I=\left[I, M^{\circ}\right]=\left[I, M_{\circ}\right]$.

LEMMA 8.5. (a) Let $g \in G$ with $Q^{g} \leqslant M^{\dagger}$ and $L \leqslant N_{G}\left(Q^{g}\right)$. Then Q^{g} normalizes L and A.
(b) L and A normalize Q, and Q normalizes L and A.

Proof. at: Since $Q^{g} \leqslant M^{\dagger}, Q^{g}$ normalizes Y. Since L normalizes Q^{g}, Q^{g} also normalizes Y^{l} for all $l \in L$, and we conclude that Q^{g} normalizes $\left\langle Y^{L}\right\rangle$. As L is Y-minimal, $L=\left\langle Y^{L}\right\rangle$ and so Q^{g} normalizes L and $O_{p}(L)$. Since $A=O_{p}(L)$ this gives a).
(b): Since $L \in \mathfrak{L}_{H}\left(Y_{M}\right)$ and $H \in \mathfrak{H}_{N_{G}(Q)}\left(O_{p}(M)\right), L \leqslant H \leqslant N_{G}(Q)$. So (b) follows from (a).

Lemma 8.6. Suppose that $\left[\Omega_{1} Z(A), L\right] \neq 1$. Then $I * A$ and $\left[Y_{H Q}, H Q\right] \neq 1$.
Proof. By 8.4c) $C_{G}(I)=C_{G}(Y)$ and thus also $C_{\Omega_{1} Z(A)}(Y)=C_{\Omega_{1} Z(A)}(I)$. Since $L=\left\langle Y^{L}\right\rangle$, $\left[\Omega_{1} Z(A), L\right] \neq 1$ implies $\left[\Omega_{1} Z(A), Y\right] \neq 1$. Hence also $\left[\Omega_{1} Z(A), I\right] \neq 1$ and $I \neq A$. It remains to prove $\left[Y_{H Q}, H Q\right] \neq 1$.

Since $L \in \mathfrak{L}_{G}\left(Y_{M}\right), 1.43$ applies to L. So 1.43 hives $C_{A}(L)=C_{A}\left(O^{p}(L)\right)$. As $\left[\Omega_{1} Z(A), L\right] \neq 1$ this implies $\left[\Omega_{1} Z(A), O^{p}(L)\right] \neq 1$. By 2.17 b$)\left[L, O_{p}(H)\right] \leqslant O_{p}(L)=A \leqslant O_{p}(H)$. So $O_{p}(H)$ normalizes L and A, and $\left[L, O_{p}(H)\right]$ centralizes $\Omega_{1} Z(A)$.

Now the $P \times Q$-Lemma gives $\left[C_{\Omega_{1} Z(A)}\left(O_{p}(H)\right), O^{p}(L)\right] \neq 1$. Since $A \leqslant O_{p}(H)$, we have $C_{\Omega_{1} Z(A)}\left(O_{p}(H)\right) \leqslant \Omega_{1} Z\left(O_{p}(H)\right)$. Thus $\left[\Omega_{1} Z\left(O_{p}(H)\right), O^{p}(L)\right] \neq 1$ and so $\left[\Omega_{1} Z\left(O_{p}(H)\right), O^{p}(H)\right] \neq 1$. Since by 2.11 e H is p-irreducible, 1.35 gives $\left[Y_{H}, H\right] \neq 1$. As $O^{p}(H Q) \leqslant H, 1.26$ c shows that $\left[Y_{H Q}, H Q\right] \neq 1$.

Lemma 8.7. Let $U \leqslant Y$ be A-invariant and $U \neq A$. Suppose that U is $N_{L}(Y)$-invariant or $Y \leqslant U A$.
(a) $Y A=U A$ and $Y \cap A=[U, A] C_{Y}(L)=(U \cap A) C_{Y}(L)$.
(b) $[A, Y]=[A, u] C_{[A, U]}(L)=[A, U]$ for every $u \in U \backslash A$.

Proof. By assumption, U is $N_{L}(Y)$-invariant or $Y \leqslant U A$. We will first show that in either case $Y A=U A$.

Suppose that U is $N_{L}(Y)$-invariant. Since $L \in \mathfrak{L}_{G}\left(Y_{M}\right), 2.14$ shows that $N_{L}(Y) / A$ has a unique non-trivial elementary abelian normal p-subgroup. Thus $Y A / A=U A / A$ and so $Y A=U A$. Suppose that $Y \leqslant U A$. Since $U \leqslant Y$, this gives $Y A=U A$.

Since $Y A=U A$ we get $Y=U(Y \cap A)$. Let $u \in U \backslash A$. Then 1.43(g) shows that

$$
\begin{equation*}
Y \cap A=[A, u] C_{Y}(L) \tag{*}
\end{equation*}
$$

In particular,

$$
Y \cap A=[A, U] C_{Y}(L)=(U \cap A) C_{Y}(L) \quad \text { and } \quad Y=U(Y \cap A)=U C_{Y}(L)
$$

This gives $[A, Y]=[A, U] \leqslant U$. Intersecting both sides of the equation in $(*)$ with $[A, U]$ gives

$$
[A, U]=[A, u]\left([A, U] \cap C_{Y}(L)=[A, u] C_{[A, U]}(L)\right.
$$

So all parts of the lemma are proved.

Lemma 8.8. Put $U:=C_{I}(L)$ and $E:=\left\langle Q^{g} \mid g \in G, C_{U}\left(Q^{g}\right) \neq 1\right\rangle$. Suppose that $U \neq 1$. Then
(a) $Q \leqslant E \leqslant M^{\circ}$ and $[E, L] \leqslant A$. In particular, E normalizes L.
(b) $[E, Y] \leqslant Y \cap A$.
(c) $E=N_{M}(U)^{\circ}=N_{G}(U)^{\circ}$.
(d) Let $x \in L \backslash N_{L}(Y)$. If $I \leqslant A$, then $I / U \cong \overline{I^{x}}$ as an $\mathbb{F}_{p} E$-module.

Proof. (a): By 2.7b $E \leqslant M^{\circ}$, and by 8.5 a Q normalizes L and so also U. Hence $C_{U}(Q) \neq 1$ and $Q \leqslant E$.

Let $g \in G$ with $C_{U}\left(Q^{g}\right) \neq 1$. Then $L \leqslant C_{G}(U) \leqslant C_{G}\left(C_{U}\left(Q^{g}\right)\right)$, and Q ! implies $L \leqslant N_{G}\left(Q^{g}\right)$. Also $Q^{g} \leqslant E \leqslant M^{\circ} \leqslant M^{\dagger}$, and 8.5 a shows that Q^{g} normalizes L and A. In particular,

$$
\left[L, Q^{g}\right] \leqslant L \cap Q^{g} \leqslant O_{p}(L)=A
$$

and (a) follows.
(b): Since $Y \leqslant L$ (a) gives $[E, Y] \leqslant A$. By (a) $E \leqslant M^{\circ} \leqslant M$ and so also $[E, Y] \leqslant Y$.
(c): By (a) E normalizes L. Since L centralizes U, we conclude that L centralizes $\left\langle U^{E}\right\rangle$. By (a), $E \leqslant M^{\circ} \leqslant M$. So E normalizes I and since $U \leqslant I,\left\langle U^{E}\right\rangle \leqslant I$. Thus $U \leqslant\left\langle U^{E}\right\rangle \leqslant C_{I}(L)=U$, and E normalizes U. Hence $E \leqslant N_{M}(U)$. Since E is generated by conjugates of Q this gives

$$
E \leqslant N_{M}(U)^{\circ}
$$

Clearly,

$$
N_{M}(U)^{\circ} \leqslant N_{G}(U)^{\circ}
$$

and by 2.7 b

$$
N_{G}(U)^{\circ} \leqslant E
$$

so (c) holds.
(d): Let $x \in L \backslash N_{L}(Y)$. By 1.43a, $A^{\prime} \leqslant C_{Y}(L)$ and so, since $I \leqslant A$ and I is A-invariant, $[I, A] \leqslant I \cap A^{\prime} \leqslant C_{I}(L)=U$. Since by (a) $[E, x] \leqslant A$, we conclude that $[E, x]$ centralizes $I U / U$ and so $I U / U \rightarrow I^{x} U / U, y U \mapsto y^{x} U$, is an E-isomorphism. Note the $I U / U \cong I / I \cap U$. Also by $1.42 \mathrm{f}), L=\left\langle Y, Y^{x}\right\rangle$ and so since Y is abelian, $C_{I^{x}}(Y)=C_{I^{x}}\left(\left\langle Y, Y^{x}\right\rangle\right)=C_{I^{x}}(L)=C_{I}(L)=U$. Hence $C_{I^{x}}(Y)=I^{x} \cap U$ and

$$
I^{x} U / U \cong I^{x} / I^{x} \cap U=I^{x} / C_{I^{x}}(Y) \cong \overline{I^{x}}
$$

Thus (d) holds.

Lemma 8.9. Let $K \leqslant M$ with $1 \neq \bar{K} \leqslant F^{*}(\bar{M})$ and $\bar{K}=[\bar{K}, \bar{Q}]$. Suppose that $I \leqslant A$ and $\left[F^{*}\left(\overline{M^{\circ}}\right), \bar{Q}\right] \leqslant \overline{N_{M}\left([K, Q] O_{p}\left(M^{\circ}\right)\right)}$. Then $C_{\bar{A}}(\bar{K})=1$.

Proof. Let F be the inverse image of $F^{*}(\bar{M})$ in M^{\dagger} and $R:=K C_{M^{\dagger}}(Y) \cap M^{\circ}$. Since \bar{F} normalizes \bar{K}, F normalizes $K C_{M^{\dagger}}(Y)$ and R. Note that $\bar{K}=[\bar{K}, Q]$ implies $\bar{K} \leqslant \overline{M^{\circ}}$, so $K C_{M^{\dagger}}(Y) \leqslant M^{\circ} C_{M^{\dagger}}(Y)$ and

$$
K C_{M^{\dagger}}(Y)=K C_{M^{\dagger}}(Y) \cap M^{\circ} C_{M^{\dagger}}(Y)=\left(K C_{M^{\dagger}}(Y) \cap M^{\circ}\right) C_{M^{\dagger}}(Y)=R C_{M^{\dagger}}(Y)
$$

Hence $\bar{K}=\bar{R}$. By 1.52 c) (applied with $L:=M$),

$$
\left[C_{M^{\dagger}}(Y), Q R\right] \leqslant\left[C_{G}(Y), M^{\circ}\right] \leqslant O_{p}\left(M^{\circ}\right)
$$

In particular $\left[C_{M^{\dagger}}(Y), Q\right] \leqslant O_{p}\left(M^{\circ}\right)$. Using $K C_{M^{\dagger}}(Y)=R C_{M^{\dagger}}(Y)$ we get

$$
\begin{equation*}
[K, Q] O_{p}\left(M^{\circ}\right)=[R, Q] O_{p}\left(M^{\circ}\right) \quad \text { and } \quad\left[C_{R}(Y), R Q\right] \leqslant O_{p}\left(M^{\circ}\right) \tag{I}
\end{equation*}
$$

Put $E:=O^{p}([R, Q])$ and $N:=N_{G}(\underline{E})$. Since $1 \neq K \leqslant F^{*}(\bar{M})$ and $O_{p}(\bar{M})=1$ we have $1 \neq \bar{K}=O^{p}(\bar{K})$. As $\bar{K}=[\bar{K}, Q]=[\bar{R}, Q]$ this gives $\bar{E}=\bar{K} \neq 1$. Since F normalizes R, $N_{F}(Q) \leqslant N$. In particular, by $Q!$,

$$
\begin{equation*}
O_{p}\left(M^{\circ}\right) \leqslant C_{M^{\dagger}}(Y) \leqslant N_{F}(Q) \leqslant N \tag{II}
\end{equation*}
$$

Thus $O_{p}\left(M^{\circ}\right)$ normalizes $[R, Q]$ and so

$$
E=O^{p}([R, Q])=O^{p}\left([R, Q] O_{p}\left(M^{\circ}\right)\right) \stackrel{\mathbb{I}]}{=} O^{p}\left([K, Q] O_{p}\left(M^{\circ}\right)\right)
$$

It follows that $N_{M}\left([K, Q] O_{p}\left(M^{\circ}\right)\right) \leqslant N \cap M$. By assumption, $\left[F^{*}\left(\overline{M^{\circ}}\right), \bar{Q}\right] \leqslant \overline{N_{M}\left([K, Q] O_{p}\left(M^{\circ}\right)\right)}$ and so

$$
\begin{equation*}
\left[F^{*}\left(\overline{M^{\circ}}\right), \bar{Q}\right] \leqslant \overline{N \cap M} \tag{III}
\end{equation*}
$$

By $1.8 \bar{F}=[\bar{F}, \bar{Q}] C_{\bar{F}}(\bar{Q})$ and $[\bar{F}, \bar{Q}]=[\bar{F}, \bar{Q}, \bar{Q}]$. As $[\bar{F}, Q] \leqslant F^{*}\left(\overline{M^{\circ}}\right) \leqslant \bar{F}$ this gives
(IV)

$$
\bar{F}=\left[F^{*}\left(\overline{M^{\circ}}\right), \bar{Q}\right] C_{\bar{F}}(\bar{Q})
$$

Since by $1.52 \mathrm{~b} Q$ is a weakly closed subgroup of G, a Frattini argument gives

$$
\begin{equation*}
C_{\bar{F}}(\bar{Q}) \leqslant N_{\bar{F}}(\bar{Q})=\overline{N_{F}(Q)} \leqslant \overline{N \cap M^{\dagger}} \tag{V}
\end{equation*}
$$

Combining (III, IV) and V) we get $\bar{F} \leqslant \overline{N \cap M^{\dagger}}$, and since by II $C_{M^{\dagger}}(Y) \leqslant N, F \leqslant N$.

Note that E is subnormal in M and so, since M is of characteristic p, by also E is of characteristic p. As $E \neq 1$ we get $1 \neq O_{p}(E) \preccurlyeq N$ and $O_{p}(N) \neq 1$. Clearly $Q \leqslant N$, and 1.55 shows that N has characteristic p. Since $F \leqslant N 2.8$ implies $Y=Y_{M} \leqslant Y_{N}$, so

$$
\begin{equation*}
Y \leqslant O_{p}(N) \tag{VI}
\end{equation*}
$$

By 1.43 a $A^{\prime} \leqslant C_{Y}(L)$. By the assumption of this lemma $I \leqslant A$. Put $B:=C_{A}(\bar{K})$. Then (VII)

$$
[I, B] \leqslant[A, A] \leqslant C_{Y}(L)
$$

Suppose for a contradiction that $C_{\bar{A}}(\bar{K}) \neq 1$, so $\bar{B} \neq 1$ and $[Y, B] \neq 1$. By 8.4 c) $C_{G}(Y)=C_{G}(I)$ and so $[I, B] \neq 1$. By 8.5 b Q normalizes A. Since Q also normalizes \bar{K}, Q normalizes B. As seen above $\bar{R}=\bar{K}$ and so $\bar{B}=C_{A}(\bar{R})$. Hence R normalizes \bar{B}. We conclude that $R Q$ normalizes \bar{B}. As $[I, \bar{B}]=[I, B]$ this shows that $R Q$ also normalizes $[I, B]$. Hence, by 1.52 c $C_{G}([I, B])$ normalizes $(R Q)^{\circ}$. By (VII) L centralizes $[I, B]$, and so L normalizes $(R Q)^{\circ}$. Since Q is weakly closed 1.46(C) gives $(R Q)^{\circ}=\left\langle Q^{R}\right\rangle=[Q, R] Q$ and so $O^{p}\left((R Q)^{\circ}\right)=O^{p}([Q, R])=E$. Thus L normalizes E and $L \leqslant N$. Since $Y \not O_{p}(L)$ we get $Y * O_{p}(N)$, a contradiction to (VI).

Lemma 8.10. Suppose that \bar{Q} is homocyclic abelian. Then \bar{Q} is elementary abelian.
Proof. Put $N:=N_{G}(Q)$ and $F:=\left\langle Y^{N}\right\rangle$. Note that $Q^{\prime} \leqslant C_{M}(Y)$ and so $Y \leqslant C_{M}\left(Q^{\prime}\right)$. Also $[Q, Y] \leqslant Y$ is elementary abelian and 1.19 now shows that $O^{p}(F)$ centralizes $\Phi(Q)$.

Suppose for a contradiction that \bar{Q} is not elementary abelian. Since \bar{Q} is homocyclic this gives $\Omega_{1}(Q) \leqslant \Phi(Q) O_{p}(M)$. Then $[Q, Y] \leqslant Q \cap Y \leqslant \Omega_{1}(Q)$ and $\left[\Omega_{1}(Q), Y\right] \leqslant\left[\Phi(Q) O_{p}(M), Y\right] \leqslant \Phi(Q)$. Since $\Omega_{1}(Q)$ and $\Phi(Q)$ are N-invariant, we get that $[Q, F] \leqslant \Omega_{1}(Q)$ and $\left[\Omega_{1}(Q), F\right] \leqslant \Phi(Q)$. Hence $O^{p}(F)$ centralizes each factor of the series $1 \leqslant \Phi(Q) \leqslant \Omega_{1}(Q) \Phi(Q) \leqslant Q$. Coprime action shows that $O^{p}(F)$ centralizes Q. Since $C_{G}(Q) \leqslant Q$, we conclude that $O^{p}(F)=1$. Hence F is a p-group and $Y \leqslant F \leqslant O_{p}(N)=O_{p}\left(N_{G}(Q)\right)$. This contradicts 8.1.

8.2. The Case $I \leqslant A$

In this section we continue to assume the hypothesis and notation of Theorem H. Furthermore, we assume $I \leqslant A$. We start with a summary of the notation used in this section:

Notation 8.11. $\quad-x \in L$ with $1 \neq\left[I, I^{x}\right] \leqslant I \cap I^{x}$, see 8.12 ,
$-\underset{\tilde{Y}}{ }:=\left\langle I^{L}\right\rangle, U:=C_{I}(L)$ and $W:=C_{I}(Q)$.
$-\tilde{Y}:=Y / I$.
$-E:=\left\langle Q^{g}\right| g \in G\left|C_{U}\left(Q^{g}\right) \neq 1\right\rangle$, as in 8.8.
$-\mathbb{K}:=\operatorname{End}_{M_{\circ}}(I)$, as in 8.18 .
If I is a natural $\Omega_{6}^{+}(2)$-module for $\overline{M^{\circ}}$:

- I_{0} is natural $S L_{4}(2)$-module for $\overline{M^{\circ}}$.
- $W_{0}:=C_{I_{0}}(Q)$ and $U_{0}:=C_{I_{0}}(A)$, with I_{0} chosen such that U_{0} is a hyperplane of I_{0}, see the discussion before 8.23 .
$-N:=N_{G}(U), C:=C_{G}(U), B:=\left\langle I^{N}\right\rangle, \widehat{B}:=B / U$, and $N_{0}:=C_{N}(\widehat{B})$.
$-X:=\left\langle\left(B \cap O_{2}(M)\right)^{M^{\circ}}\right\rangle$.
$-K:=\operatorname{Hom}_{E}\left(U_{0}, \widehat{B}\right)$, and s is a C-invariant symplectic form on K, see 8.28 .
$-C_{0}:=C_{C}\left(K^{\perp}\right)$. For $F \leqslant C, \check{F}$ is the image of F in $S p\left(K / K^{\perp}\right)$.
Lemma 8.12. Suppose that $I \leqslant A$. Then there exists $x \in L$ such that $1 \neq\left[I, I^{x}\right] \leqslant I \cap I^{x}$. Moreover, I^{x} and A are non-trivial quadratic offenders on I, and Q normalizes I^{x}.

Proof. Since $Y \nless O_{p}(L),\left\langle Y^{L}\right\rangle$ is not abelian. Thus there exists $x \in L$ with $\left[Y, Y^{x}\right] \neq 1$. By 8.4 (b), cc),
(*)

$$
N_{G}(Y)=N_{G}(I) \quad \text { and } \quad C_{G}(Y)=C_{G}(I)
$$

As $\left[Y, X^{x}\right] \neq 1$ this implies $\left[I, Y^{x}\right] \neq 1$, and since also $C_{G}\left(Y^{x}\right)=C_{G}\left(I^{x}\right),\left[I, I^{x}\right] \neq 1$.
Since A normalizes Y and $I^{x} \leqslant A$ we conclude that $I^{x} \leqslant N_{G}(Y)$, so by $(*) I^{x} \leqslant N_{G}(I)$. By symmetry also $I \leqslant N_{G}\left(I^{x}\right)$ and thus $\left[I, I^{x}\right] \leqslant I \cap I^{x}$. Since I is abelian, this shows that I acts
quadratically on I^{x}. Possibly after replacing x by x^{-1}, we also have $\left|I / C_{I}\left(I^{x}\right)\right| \geqslant\left|I^{x} / C_{I^{x}}(I)\right|$, so I^{x} is a quadratic offender on I.

Again by $(*) C_{A}(I)=C_{A}(Y)$, and 1.43 g), $C_{A}(Y)=Y \cap A$. Hence $C_{A}(I)=Y \cap A$. Put $\widehat{A}:=A / C_{Y}(L)$. By 1.43 e $\widehat{A}=\widehat{A \cap Y} \times \widehat{A \cap Y^{l}}$ for $l \in L \backslash N_{L}(Y)$. Thus

$$
\left|A / C_{A}(I)\right|=|A / A \cap Y|=|\widehat{A} / \widehat{A \cap Y}|=|\widehat{A \cap Y} l|=|\widehat{A \cap Y}| \geqslant|\widehat{I}|=\left|I / C_{I}(L)\right| \geqslant\left|I / C_{I}(A)\right|
$$

Also by 1.43 a $[I, A] \leqslant A^{\prime} \leqslant C_{Y}(L)$ and so $[I, A, A]=1$. Thus also A is a quadratic offender on I.
Finally, by 8.5 L normalizes Q, and $Q \leqslant N_{G}(I)$. Hence $Q \leqslant N_{G}\left(I^{x}\right)$.

Put $D:=\left\langle I^{L}\right\rangle, U:=C_{I}(L)$ and $W:=C_{I}(Q)$, and (if $I \leqslant A$) let $x \in L$ be as in 8.12 .
Lemma 8.13. Suppose that $I \leqslant A$.
(a) $D \leqslant A$ and D is not abelian.
(b) I is symmetric in G.
(c) $L=\left\langle Y, Y^{x}\right\rangle$. In particular, $L=\left\langle Y^{L}\right\rangle$.
(d) $C_{L}(D)=Z(L)$ and $C_{Y}\left(I^{x}\right)=C_{Y}(L)$.
(e) $C_{I}\left(I^{x}\right)=C_{I}(A)=C_{I}(D)=C_{I}(L)=U$.
(f) D is a non-trivial quadratic offender on I.
(g) $[Y, A] \leqslant Y \cap A$.
(h) $[D, A] \leqslant C_{I}(L)=U$.

Proof. (a) and b): By hypothesis $I \leqslant A$ and so $D=\left\langle I^{L}\right\rangle \leqslant A$. Let x be as in 8.12 Then $1 \neq\left[I, I^{x}\right] \leqslant I \cap I^{x}$, so D is not abelian and I is symmetric in G.
(c): Since I is abelian, $I \neq I^{x}$. By 8.4 b), $N_{G}(I)=N_{G}(Y)$ and thus $x \notin N_{L}(Y)$. Since $L \in \mathfrak{L}_{G}\left(Y_{M}\right), N_{L}(Y)$ is the unique maximal subgroup of L containing Y, and so $L=\left\langle Y, Y^{x}\right\rangle$ by 1.42 f).
(d): By 8.4 C $C_{G}(I)=C_{G}(Y)$. Thus by (c)

$$
C_{L}(D)=C_{L}\left(\left\langle I^{L}\right\rangle\right)=C_{L}\left(\left\langle Y^{L}\right\rangle\right)=C_{L}(L)=Z(L)
$$

Since Y is abelian,

$$
C_{Y}\left(I^{x}\right)=C_{Y}\left(\left\langle I, I^{x}\right\rangle\right)=C_{Y}\left(\left\langle Y, Y^{x}\right\rangle\right)=C_{Y}(L)
$$

(e): Note that $I^{x} \leqslant D \leqslant A \leqslant L$ and by (d) $C_{I}\left(I^{x}\right)=C_{I}(L)$. Hence (e) follows.
(f): By $8.12 A$ is quadratic on I. Since $D \leqslant A$, also D acts quadratically on I. By $8.12 I^{x}$ is a non-trivial offender on I, and by (e) $C_{I}(D)=C_{I}\left(I^{x}\right)$. Since $I^{x} \leqslant D$ we get

$$
\left|I / C_{I}(D)\right|=\left|I / C_{I}\left(I^{x}\right)\right| \leqslant\left|I^{x} / C_{I^{x}}(I)\right| \leqslant\left|D / C_{D}(I)\right|
$$

So D is a non-trivial offender on I.
(g) and (h): By definition of $\mathfrak{L}_{G}\left(Y_{M}\right), N_{L}(Y)$ is a maximal subgroup of L and $A \leqslant N_{L}(Y)$. This gives (g) and $[I, A] \leqslant I$. By 1.43 a), $A^{\prime} \leqslant C_{Y}(L)$, and since $I \leqslant A,[I, A] \leqslant I \cap C_{Y}(L)=C_{I}(L)$. Conjugation with L gives $[D, A] \leqslant C_{I}(L)=U$.

Lemma 8.14. Suppose that $I \leqslant A$ and $\left|D / C_{D}(Y)\right|<|Y / Y \cap A|^{2}$. Then $[Y, D] \leqslant I$.
Proof. By 1.43 h), (e), (g) applied with $B=D$,

$$
\begin{equation*}
C_{D}(L)=D \cap C_{Y}(L)=C_{D \cap Y}(L),|D / D \cap Y|=\left|D \cap Y / C_{D \cap Y}(L)\right| \text { and } C_{D}(Y)=D \cap Y \tag{I}
\end{equation*}
$$

and so

$$
\begin{equation*}
\left|D / C_{D}(L)\right|=\left|D / C_{D \cap Y}(L)\right|=|D / D \cap Y|\left|D \cap Y / C_{D \cap Y}(L)\right|=|D / D \cap Y|^{2}=\left|D / C_{D}(Y)\right|^{2} \tag{II}
\end{equation*}
$$

Put $\tilde{q}:=|Y / Y \cap A|$. By assumption $\left|D / C_{D}(Y)\right|<|Y / Y \cap A|^{2}=\widetilde{q}^{2}$. Thus (II) gives

$$
\begin{equation*}
\left|D / C_{D}(L)\right|<\widetilde{q}^{4} \tag{III}
\end{equation*}
$$

Recall from 8.3 that

$$
L / A \cong S L_{2}(\widetilde{q}), S z(\widetilde{q}) \text { or } D i h_{2 r} \quad \text { and } \quad|Y / Y \cap A|=\widetilde{q}
$$

where $p=2$ in the last two cases, r is an odd prime, and $\widetilde{q}=2$ in the last case.
Suppose that $p=2$ and $L / O_{2}(L) \cong \operatorname{Dih}_{2 r}$. Then $\widetilde{q}=2$ and by (III) $\left|D / C_{D}(L)\right|<16$. Since $G L_{3}(2)$ has order $2^{3} \cdot 3 \cdot 7$ and contains no dihedral group of order 14 . We conclude that $L / O_{2}(L) \cong D i h_{6} \cong S L_{2}(2)$.

So we may assume that $L / A \cong S L_{2}(\widetilde{q})$ or $S z(\widetilde{q})$. Since $[D, Y, Y] \leqslant[Y, Y]=1, Y$ acts quadratically on $D / C_{D}(L)$. Thus C.15 shows that all non-central chief factors of L on $D / C_{D}(L)$ are natural $S L_{2}(\widetilde{q})$ - and $S z(\widetilde{q})$-modules, respectively. The natural $S z(\widetilde{q})$ - module has order \widetilde{q}^{4}, a contradiction to (III). Hence $L / A \cong S L_{2}(\widetilde{q})$.

The natural $S L_{2}(\widetilde{q})$-module has order \widetilde{q}^{2}, and so III shows that L has a unique non-central chief factor on $D / C_{D}(L)$. By 1.43 p L has no central chief factors on $D / C_{D}(L)$. Thus $D / C_{D}(L)$ is a natural $S L_{2}(q)$-module. In particular, L acts transitively on $D / C_{D}(L)$.

By (I) $C_{D}(L) \leqslant Y$, so $I C_{D}(L) \leqslant Y$, and $I C_{D}(L)$ is elementary abelian. The transitivity of L on $D / C_{D}(L)$ now implies that D has exponent p. As D is not abelian by 8.13(a), this shows that p is odd. Since $L / A \cong S L_{2}(\widetilde{q})$ and $D / C_{D}(L)$ is a natural $S L_{2}(\widetilde{q})$-module we conclude that there exists an involution $t \in L$ with $[t, L] \leqslant A$, and t inverts $D / C_{D}(L)$. Thus $C_{D}(t)=C_{D}(L)$ and $C_{I}(t)=C_{I}(L)$. Since $t \in N_{L}(Y)=N_{L}(I)$, coprime action shows

$$
I=[I, t] C_{I}(t)=[I, t] C_{I}(L) \leqslant[D, t] C_{I}(L)
$$

By 8.13 h $[D, A] \leqslant C_{I}(L)$. Thus $[D,\langle t\rangle A] C_{I}(L)=[D, t] C_{I}(L)$ is L-invariant and contains I. Since $D=\left\langle I^{L}\right\rangle$, this gives $D=[D, t] C_{I}(L)$. As $D^{\prime} \leqslant[D, A] \leqslant C_{I}(L), D / C_{I}(L)$ is abelian. Coprime action now shows

$$
D / C_{I}(L)=[D, t] C_{I}(L) / C_{I}(L) \times C_{D}(t) / C_{I}(L)
$$

Since $D=[D, t] C_{I}(L)$, this gives $C_{D}(t)=C_{I}(t)$ and so $C_{D}(L)=C_{I}(L)$. Thus $D / C_{I}(L)$ is a natural $S L_{2}(\widetilde{q})$-module. It follows that $N_{L}(Y)$ acts simple on $C_{D / C_{I}(L)}(Y)$. Note that

$$
1 \neq I / C_{I}(L) \leqslant(Y \cap D) / C_{I}(L) \leqslant C_{D / C_{I}(L)}(Y)
$$

and that $N_{L}(Y)$ normalizes this series. Thus $I / C_{I}(L)=Y \cap D / C_{I}(L)$ and $I=Y \cap D$. Hence $[Y, D] \leqslant Y \cap D \leqslant I$, and 8.14 is proved.

Put $\tilde{Y}:=Y / I$, and recall from 8.3 and 8.4 b) that $D \leqslant N_{G}(Y)=N_{G}(I)$, so D acts on Y and \tilde{Y}.

Lemma 8.15. Suppose that $I \leqslant A$.
(a) $[Y, D, D] \leqslant C_{I}(L)$ and $[\tilde{Y}, D, D]=1$.
(b) Either $[\widetilde{Y}, D]=1$ or $\left|\tilde{Y} / C_{\tilde{Y}}(D)\right|^{2} \leqslant|Y / Y \cap A|^{2} \leqslant\left|D / C_{D}(Y)\right|$.
(c) If $\overline{I^{x}}=\bar{A}$, then $Y \cap A=I C_{Y}\left(I^{x}\right)=I C_{Y}(L)$ and $A=I I^{x} C_{Y}(L)$.

Proof. (a): By 8.13h $[A, D] \leqslant C_{I}(L)$. Since $[Y, D] \leqslant D \leqslant A$, this gives $[Y, D, D] \leqslant[A, D] \leqslant$ $C_{I}(L) \leqslant I$. Hence $[\tilde{Y}, D, D]=1$ and a holds.
(b): Suppose that $|Y / Y \cap A|^{2}>\left|D / C_{D}(Y)\right|$. Then 8.14 shows that $[Y, D] \leqslant I$ and so $[\tilde{Y}, D]=1$.

Suppose that $|Y / Y \cap A|^{2} \leqslant\left|D / C_{D}(Y)\right|$. Since $[Y \cap A, D] \leqslant[A, D] \leqslant C_{I}(L) \leqslant I$ we have $\widetilde{Y \cap A} \leqslant C_{\widetilde{Y}}(D)$ and so $\left|\tilde{Y} / C_{\widetilde{Y}}(D)\right|^{2} \leqslant|Y / Y \cap A|^{2} \leqslant\left|D / C_{D}(Y)\right|$.
(c): Assume that $\overline{I^{x}}=\bar{A}$, so $A=I^{x} C_{A}(Y)$. By 1.43,g) $C_{A}(Y)=A \cap Y$, so $A=I^{x}(A \cap Y)$ and $A \cap Y^{x}=I^{x}\left(A \cap Y^{x} \cap Y\right)$. By 1.43 h $A \cap Y \cap Y^{x}=C_{Y}(L)$ and so $A \cap Y^{x}=I^{x} C_{Y}(L)$. Hence also $A \cap Y=I C_{I}(L)$, and 1.43 e) gives $A=(A \cap Y)\left(A \cap Y^{x}\right)=I I^{x} C_{Y}(L)$. Finally, by 8.13 d) $C_{Y}\left(I^{x}\right)=C_{Y}(L)$, and (C) is proved.

According to 8.13 b) I is symmetric in G. Thus, we can apply Theorem D with I in place of Y. We will do this considering the various outcomes of Theorem D separately, and we will use the notation of Theorem D

Lemma 8.16. Suppose that $I \leqslant A$. Then Case (3) of Theorem D does not hold for I in place of Y.

Proof. Assume that Case (3) of Theorem Dholds. Then I is a natural $S L_{2}(q)$-wreath product module for \bar{M} with respect to some $\mathcal{K}, \overline{M_{\circ}}=O^{p}(\langle\mathcal{K}\rangle) \bar{Q}$, and Q acts transitively on \mathcal{K}.

Put $P:=M^{\circ} S$ and let P^{*} be the inverse image of $\langle\mathcal{K}\rangle$ in M. Then I is also a natural $S L_{2}(q)-$ wreath product module for \bar{P} and $O^{p}(\bar{P})=\overline{M_{\circ}}=O^{p}(\langle\mathcal{K}\rangle)$. Hence A.28 b shows
$1^{\circ} . \quad \bar{P}$ is p-minimal.
Moreover, by A.28(c), $O_{p}\left(P / C_{P}(I)\right)=1$ and by 8.4 c) $C_{P}(I)=C_{P}(Y)$. Thus
$2^{\circ} . \quad O_{p}(\bar{P})=1$.
We now investigate the action of P on \tilde{Y}. Note that $C_{P}(Y) \leqslant C_{P}(\tilde{Y})$, so $P / C_{P}(\tilde{Y}) \cong \bar{P} / C_{\bar{P}}(\tilde{Y})$. Since \bar{P} is p-minimal and so p-irreducible, we either have
3°. $\quad C_{\bar{S}}(\tilde{Y}) \leqslant O_{p}(\bar{P})$ or $O^{p}(\bar{P}) \leqslant C_{\bar{P}}(\tilde{Y})$.
We now discuss these two cases separately and show that both of them lead to a contradiction.
4. $\quad C_{\bar{S}}(\tilde{Y}) \leqslant O_{p}(\bar{P})$ does not hold.

Suppose that $C_{\bar{S}}(\tilde{Y}) \leqslant O_{p}(\bar{P})$. By $2^{\circ} O_{p}(\bar{P})=1$ and so $C_{\bar{S}}(\tilde{Y})=1$. In particular $C_{D}(Y)=$ $C_{D}(\tilde{Y})$, and $[\tilde{Y}, D] \neq 1$ since $D \nleftarrow C_{M}(Y)$. This gives

$$
\left|\widetilde{Y} / C_{\widetilde{Y}}(D)\right|<\left|\tilde{Y} / C_{\widetilde{Y}}(D)\right|^{2} \stackrel{8.15}{\leqslant}\left|D / C_{D}(Y)\right|=\left|D / C_{D}(\tilde{Y})\right| .
$$

So D is an over-offender on \tilde{Y}. On the other hand, since $C_{\bar{S}}(\tilde{Y}), \tilde{Y}$ is p-reduced for P. Moreover, since \bar{P} is p-minimal, 1.38 shows that also $\bar{P} / C_{\bar{P}}(\tilde{Y})$ is p-minimal. Hence C.13 ed yields a contradiction.
5. $\quad O^{p}(\bar{P}) \leqslant C_{\bar{P}}(\tilde{Y})$ does not hold.

Suppose that $O^{p}(\bar{P}) \leqslant C_{\bar{P}}(\tilde{Y})$. Then $\left[Y, M_{\circ}\right]=\left[Y, O^{p}(P)\right] \leqslant I$, and by 8.4 f$) C_{Y}\left(M_{\circ}\right)=1$.
Since I is a natural $S L_{2}(q)$-wreath product module for \bar{M} with respect to \mathcal{K},

$$
\overline{P^{*}}=\langle\mathcal{K}\rangle=\underset{K \in \mathcal{K}}{X} K, \quad \text { and } \quad I=\underset{K \in \mathcal{K}}{X}[I, K]
$$

and for $K \in \mathcal{K}, K \cong S L_{2}(q)$ and $[I, K]$ is a natural $S L_{2}(q)$-module for K.
Assume first first that p is odd or $q=2$. Put $\bar{Z}:=O_{p^{\prime}}\left(\overline{P^{*}}\right)$. Then \bar{Z} is a normal p^{\prime}-subgroup of \bar{P} and $I=[I, \bar{Z}]$. Coprime action shows $Y=C_{Y}(\bar{Z}) \times I$. Since M_{\circ} normalizes $C_{Y}(\bar{Z})$ and $\left[Y, M_{\circ}\right] \leqslant I, C_{Y}(\bar{Z}) \leqslant C_{Y}\left(M_{\circ}\right)=1$. But then $Y=I$, which is impossible since $I \leqslant A$ and $Y \leqslant A$.

Assume now that $p=2$ and $q \neq 2$. Then $q \geqslant 4$ and $K \cong S L_{2}(q)$ is simple. Since $\left[Y, O^{p}(P)\right] \leqslant I$, $C_{\bar{P}}(I)$ is a p-group, and since $O_{p}(\bar{P})=1$, we conclude that I is faithful \bar{P}-module.

Let $K \in \mathcal{K}$. Observe that $K \cap \bar{S}$ is an offender on I. Since K is simple, K is $J_{K}(V)$-component of K, and since $K \triangleq \boxtimes \bar{P}$, we conclude from A. 42 that K is a $J_{\bar{P}}(I)$ component of \bar{P}. By C. 13 there exists subgroups E_{1}, \ldots, E_{r} of \bar{P} such that

$$
J_{\bar{P}}(I)=E_{1} \times \cdots \times E_{r}, \quad \mathcal{J}_{\bar{P}}(I)=\left\{E_{1}^{\prime}, \ldots, E_{r}^{\prime},\right\}
$$

Q acts transitively on $\left\{E_{1}, \ldots, E_{r}\right\}$, and either $E_{i} \cong S L_{2}\left(q^{*}\right)$ and $\left[\left[I, E_{i}\right] / C_{[} I, E_{i}\right]\left(E_{i}\right)$ is a natural $S L_{2}\left(q^{*}\right)$-module for E_{i} or $E_{i} \cong \operatorname{Sym}\left(2^{n}+1\right)$ and $\left[I, E_{i}\right]$ is natural $\operatorname{Sym}\left(2^{n}+1\right)$-module for E_{i}.

As we have seen, $K \in \mathcal{J}_{\bar{P}}(I)$ and so $K=E_{i}^{\prime}$ for some $1 \leqslant i \leqslant r$. Since $[I, K]$ is natural $S L_{2}(q)$-module for $q \geqslant 4,\left[I, E_{i}\right]$ cannot be a natural $\operatorname{Sym}\left(2^{n}+1\right)$-module. It follows that $K=E_{i}$. Now the transitive action of Q on \mathcal{K} and $\left\{E_{1}, \ldots, E_{r}\right\}$ gives $\mathcal{K}=\left\{E_{1}, \ldots, E_{r}\right\}$ and $\mathcal{J}_{\bar{P}}(V)=\langle\mathcal{K}\rangle=$ $O^{p}(\langle\mathcal{K}\rangle)=\overline{M_{\circ}}$.

By $8.12 A$ is an offender on I and so by C.13 g)

$$
\bar{A}=\left(\bar{A} \cap E_{1}\right) \times \cdot \times\left(\bar{A} \cap E_{n}\right) \leqslant\langle\mathcal{K}\rangle=\overline{M_{\circ}} .
$$

Since $\left[Y, M_{\circ}\right] \leqslant I$ this implies $[Y, A] \leqslant I$.

By 8.5 b Q normalizes A. Thus there exists $d \in A$ with $1 \neq \bar{d} \in C_{\bar{A}}(Q)$. Since $[I,\langle K\rangle]=I$ we have $[I, K, d] \neq 1$ for some $K \in \mathcal{K}$ and since Q centralizes \bar{d} and acts transitively $\mathcal{K},[I, K, d] \neq 1$ for all $K \in \mathcal{K}$. Since $[I, K]$ is a natural $S L_{2}(q)$-module for $\overline{M_{\circ}}$ and d is a 2-element, $[I, K, d]=C_{[I, K]}(d)$. As $I=\times_{K \in \mathcal{K}}[I, K]$ we get $[I, d]=C_{I}(d)$. On the other hand, \bar{A} is elementary abelian and so $|\bar{d}|=p=2$. Hence d acts quadratically on Y and

$$
[Y, d] \leqslant[Y, A] \cap C_{Y}(d) \leqslant I \cap C_{Y}(d)=C_{I}(d)=[I, d]
$$

Hence $[Y, d]=[I, d]$ and $Y=C_{Y}(d) I$. Note that $d \in A \backslash Y$, and so by 1.43ff $C_{Y}(d) \leqslant A$. Now $Y=C_{Y}(d) I \leqslant A$, a contradiction.

Recall that $M_{\circ}=O^{p}\left(M^{\circ}\right)$. For the definition of $J_{\bar{M}}(I)$ and a $J_{\bar{M}}(I)$-component of \bar{M} see A. 7 .
Lemma 8.17. Suppose that $I \leqslant A$. Then Case (4:4) of Theorem D does not hold for Y in place of I.

Proof. Assume case 4:4 of Theorem D. Then p is odd, $\overline{M^{\circ}}=\overline{L_{1} L_{2}}$ with $\left[\overline{L_{1}}, \bar{L}_{2}\right]=1$, $\overline{L_{i}} \cong S L_{n_{i}}(q), n_{i} \geqslant 2$ and $n_{1}+n_{2} \geqslant 5$, and $I \cong V_{1} \otimes_{\mathbb{F}_{q}} V_{2}$, where V_{i} is a natural $S L_{n_{i}}(q)$-module for $\overline{L_{i}}$. Note that for $n \geqslant 2$ and odd q :
1°. $\quad O^{p}\left(S L_{n}(q)\right)=S L_{n}(q)^{\prime}$, and $S L_{n}(q)^{\prime}$ is either quasisimple or isomorphic to Q_{8} (and $n=2$ and $q=3$).

Let $\{i, j\}=\{1,2\}$, and let L_{i} be the inverse image of $\overline{L_{i}}$ in M°, and put $K_{i}:=\left(L_{i} Q\right)$ 。. Note that $M^{\circ}=L_{1} L_{2}$ and $\left[L_{1}, L_{2}\right] \leqslant C_{M}(Y) \leqslant N_{M}(Q)$. Also Q is a weakly closed subgroup of M, and so we can apply 1.47 It follows that
$2^{\circ} . \quad K_{i} \vDash M^{\circ}, M_{\circ}=K_{1} K_{2}, K_{i}=\left[K_{i}, Q\right]$ and $F^{*}(\bar{M}) \leqslant N_{\bar{M}}\left(\overline{K_{i}}\right)$.
In particular, $K_{i}=O^{p}\left(K_{i}\right) \leqslant O^{p}\left(L_{i}\right) \leqslant M_{\circ}=K_{i} K_{j}$ and so $O^{p}\left(L_{i}\right)=K_{i}\left(O^{p}\left(L_{i}\right) \cap L_{j}\right)$. Since $\overline{L_{i}} \cong S L_{n_{i}}(q)$ and $\overline{L_{i}} \cap \overline{L_{j}} \leqslant Z\left(\overline{L_{i}}\right)$ we conclude from conclude from 1^{0} that
$3^{\circ} . \quad \overline{K_{i}}={\overline{L_{i}}}^{\prime}=O^{p}\left(\overline{L_{i}}\right) \cong S L_{n_{i}}(q)^{\prime}$.
We will now verify the hypothesis of 8.9 with K_{i} in place of K. By $22^{\circ}, K_{i} \vDash M^{\circ}$ and $K_{i}=\left[K_{i}, Q\right]$. Hence $[M, Q] \leqslant M^{\circ} \leqslant N_{M}\left(\left[\overline{K_{i}}, Q\right]\right)$ and thus

$$
\left[F^{*}\left(\overline{M^{\circ}}\right), Q\right] \leqslant[\bar{M}, Q] \leqslant \overline{N_{M}\left(\left[K_{i}, Q\right]\right)} \leqslant \overline{N_{M}\left(\left[K_{i}, Q\right] O_{p}\left(M^{\circ}\right)\right)}
$$

Moreover, by $33^{\circ} \overline{K_{i}} \neq 1$ and $\overline{K_{i}}=F^{*}\left(\overline{K_{i}}\right)$. Since $\overline{K_{i}} \gtrless \overline{M^{\circ}}, \overline{K_{i}}$ is subnormal in \bar{M}. Hence $\overline{K_{i}}=F^{*}\left(\overline{K_{i}}\right) \leqslant F^{*}(\bar{M})$. Now $\overline{2^{\circ}}$ shows that $\overline{K_{i}} \& F^{*}(\bar{M})$. Thus, indeed M and K_{i} satisfies the hypothesis of 8.9. Hence

$$
4^{\circ} . \quad C_{\bar{A}}\left(\overline{K_{i}}\right)=1
$$

By $8.12 A$ is a non-trivial quadratic offender on I. Thus, there exists a best offender $B \leqslant A$ on I with $[I, B] \neq 1$. Then $\bar{B} \neq 1$ and so by $4{ }^{\circ}\left[\overline{K_{i}}, \bar{B}\right] \neq 1$. On the other hand, since $\overline{L_{i}} \cong S L_{n_{i}}(q)$, $\left[\overline{L_{1}}, \overline{L_{2}}\right]=1$ and $\overline{M^{\circ}}=\bar{L}_{1} \overline{L_{2}}$ we conclude that ${\overline{L_{1}}}^{\prime}$ and ${\overline{L_{2}}}^{\prime}$ are the only minimal non-central normal subgroups of $\overline{M_{\circ}}$. Thus $\left\{{\overline{L_{1}}}^{\prime},{\overline{L_{2}}}^{\prime}\right\}$ is \bar{M}-invariant. In particular $O^{2}(\bar{M}) \leqslant N_{\bar{M}}\left({\overline{L_{i}}}^{\prime}\right)$. Since p is odd, we get that $\bar{B} \leqslant J_{\bar{M}}(I) \leqslant N_{\bar{M}}\left(\bar{L}_{i}^{\prime}\right)$. But then by $3^{\circ}\left[\overline{K_{i}}, \bar{B}\right]=\overline{K_{i}} \& J_{\bar{M}}(I)$, and $\overline{K_{i}}$ is minimal with that property. Hence $\overline{K_{1}}$ and $\overline{K_{2}}$ are $J_{\bar{M}}(I)$-components of \bar{M}. Now The Other $P(G, V)$-Theorem MS1 (or A.41, f) implies $\left[I, \overline{K_{1}}, \overline{K_{2}}\right]=1$, a contradiction to the fact that $I \cong V_{1} \otimes_{\mathbb{F}_{q}} V_{2}$ as an M°-module.

Lemma 8.18. Suppose that $I \leqslant A$. Then $\overline{M_{\circ}}$ is quasisimple, I is a simple M_{\circ}-module, and A acts \mathbb{K}-linearly on I, where $\mathbb{K}:=\operatorname{End}_{M_{\circ}}(I)$.

Proof. Note that we have excluded cases (3) and 4:4) of Theorem D, see 8.16 and 8.17 . In all the remaining cases of Theorem $\mathrm{D} \overline{M_{\circ}}$ is quasisimple and $\left[I, M^{\circ}\right]$ is a simple M_{\circ}-module. By 8.4 (f) $I=\left[I, M^{\circ}\right]=\left[I, M_{\circ}\right]$, and so I is a simple M_{\circ}-module. In particular, \mathbb{K} is a field, and since A normalizes M_{\circ}, A acts \mathbb{K}-semilinearly on I. By $8.12 A$ is an offender on I and so by MS5, 2.5] either A acts \mathbb{K}-linearly on I or $|I|=4$. The latter case is impossible as $\overline{M_{\circ}}$ is quasisimple.

For the next step recall that $U=C_{I}(L), W=C_{I}(Q)$ and $D=\left\langle I^{L}\right\rangle$. As in 8.8 define

$$
E:=\left\langle Q^{g}\right| g \in G\left|C_{U}\left(Q^{g}\right) \neq 1\right\rangle .
$$

Moreover $\mathbb{K}=\operatorname{End}_{M_{\circ}}(I)$ as in 8.18 .
Lemma 8.19. Suppose that $I \leqslant A$. Then
(a) L normalizes E.
(b) U is a non-trivial \mathbb{K}-subspace of I.
(c) $E=N_{G}(U)^{\circ}=N_{M}(U)^{\circ}$. In particular, $E \leqslant M$.
(d) $I / U \cong \overline{I^{h}}$ as an $\mathbb{F}_{p} E$-module for all $h \in L \backslash N_{L}(Y)$.

Proof. Since L centralizes and so normalizes U, L normalizes E. By $8.18 A$ acts \mathbb{K}-linearly on I and by 8.13 e, $U=C_{I}(L)=C_{I}(A)$. So U is a non-trivial \mathbb{K}-subspace of I. By 8.8 (C) $E=N_{G}(U)^{\circ}=N_{M}(U)^{\circ}$; in particular, $E \leqslant M$. Since $I \leqslant A, 8.8 \mathrm{~d}$ shows that $I / U \cong \overline{I^{h}}$ as an $\mathbb{F}_{p} E$-module.

Lemma 8.20. Suppose that $I \leqslant A$. Then $\left[Y, M_{\circ}\right] \leqslant I$.
Proof. We first show :
1°. $\quad E$ normalizes D and $[\tilde{Y}, E, D]=1$.
By 8.19 c) $E \leqslant M$ and so E normalizes I. By 8.19.a), L normalizes E, whence E normalizes $D=\left\langle I^{L}\right\rangle$. By 8.8 bl, $[Y, E] \leqslant Y \cap A$ and by 8.13h $[A, D] \leqslant C_{I}(L) \leqslant I$. Thus $[Y, E, D] \leqslant$ $[A, D] \leqslant I$ and $[Y, E, D]=1$.

For the next steps recall that $M_{\circ}=O^{p}\left(M^{\circ}\right)$ and $W=C_{I}(Q)$.
2°. Suppose that $[I, E, D]=1$. Then $\left[Y, M_{\circ}\right] \leqslant I$.
By 8.13 e $C_{I}(D)=U$ and so, since $[I, E, D]=1,[I, E] \leqslant C_{I}(D)=U$, and E centralizes I / U. By 8.19 d$)$ the $\mathbb{F}_{p} E$-modules I / U and $\overline{I^{h}}$ are isomorphic for all $h \in L \backslash N_{L}(Y)$. This gives $\left[\overline{I^{h}}, E\right]=1$ for all such h, and so also $[\bar{D}, \bar{E}]=1$ and $[D, E, I]=1$. The Three Subgroups Lemma now implies that $[I, D, E]=1$. In particular, $[I, D] \leqslant C_{I}\left(Q^{g}\right)$ for all $g \in G$ with $Q^{g} \leqslant E$. By 8.13 a) $[I, D] \neq 1$, and so for all such $Q^{g}, 1 \neq[I, D] \leqslant C_{G}(Q) \cap C_{G}\left(Q^{g}\right)$, and 1.52 e gives $Q=Q^{g}$. Hence

$$
\begin{equation*}
E=Q \quad \text { and } \quad[I, D, Q]=1 \tag{I}
\end{equation*}
$$

Put

$$
T:=\{s \in M \mid[I, s] \leqslant W \text { and }[I, s, s]=1\}
$$

Let $t \in T$ with $[I, t] \neq 1$. Since $W=C_{I}(Q)$, A.55d) (with $V=I$) shows that $W=[I, t]$. From $[I, t, t]=1$ we get $[W, t]=1$. In particular

$$
\begin{equation*}
[I, t]=W \text { for all } t \in T \backslash C_{T}(I) \text { and } T=C_{M}(W) \cap C_{M}(I / W) \tag{II}
\end{equation*}
$$

By (I) $[I, D, Q]=1$ and so $[I, D] \leqslant C_{I}(Q)=W$, and by 8.13(f) \bar{D} is a non-trivial quadratic offender on I. This shows that $D \leqslant T$, so $[I, T] \neq 1$ and $C_{I}(T) \leqslant C_{I}(D)$. By 8.13 e, $C_{I}(D)=U$ and so $C_{I}(T) \leqslant U$. Since $[I, T] \neq 1$, (II) gives $[I, T]=W$. Moreover, since $N_{M}(Q)$ normalizes $C_{I}(Q)=W,(\mathrm{II})$ shows that $N_{M}(Q)$ normalizes T, and Q ! shows that $T \leqslant N_{M}(Q)$. We record:

$$
\begin{equation*}
D \leqslant T \leqslant N_{M}(Q), \quad C_{I}(T) \leqslant U \quad \text { and } \quad[I, T]=W \tag{III}
\end{equation*}
$$

Next we prove:
\bar{T} is a weakly closed subgroup of \bar{M}.
Otherwise, 1.45 shows that there exists $g \in M$ such that $\overline{T^{g}} \neq \bar{T}$ and $\left[\overline{T^{g}}, \bar{T}\right] \leqslant \overline{T^{g}} \cap \bar{T}$. In particular $\overline{T^{g}} \leqslant N_{\bar{M}}(\bar{T})$. Then T^{g} normalizes $[I, T]$ and so $\left[I, T, T^{g}\right] \leqslant[I, T]$. Thus $\left[I, T, T^{g}\right] \leqslant$ $[I, T] \cap\left[I, T^{g}\right]$. By (III) $[I, T]=W$ and so

$$
\left[I, T, T^{g}\right] \leqslant W \cap W^{g}
$$

By (III) $N_{M}(Q)$ normalizes T. Thus $\overline{T^{g}} \neq \bar{T}$ implies that $g \notin N_{M}(Q)$, so $Q \neq Q^{g}$, and 1.52 e gives $C_{G}(Q) \cap C_{G}\left(Q^{g}\right)=1$. Then also $W \cap W^{g}=1$ and $\left[I, T, T^{g}\right]=1$. By (III) $[I, T]=W$ and $C_{I}(T) \leqslant U$. Hence $W \leqslant C_{I}\left(T^{g}\right) \leqslant U^{g}$. Thus $C_{U^{g}}(Q) \neq 1$ and $Q \leqslant E^{g}$. By (II), $E=Q$ and so $Q \leqslant E^{g}=Q^{g}$ and $Q=Q^{g}$, a contradiction. Hence (IV) is proved.

Note that by III, $\bar{D} \leqslant \bar{T} \leqslant \overline{N_{M}(Q)}$, and by $Q!, N_{\bar{M}}\left(C_{I}(S)\right) \leqslant \overline{N_{M}(Q)}$, and so

$$
\bar{D} \leqslant \bar{T} \leqslant O_{p}\left(N_{\bar{M}}\left(C_{I}(S)\right)\right)
$$

By 8.13 fi \bar{D} is a non-trivial quadratic offender on I, and by [MS6, Corollary 3.7] every offender contained in $O_{p}\left(N_{\bar{M}}\left(C_{I}(S)\right)\right)$ is a best offender. Thus D is a best offender on I. Since by $8.18 \overline{M_{\circ}}$ is quasisimple and I is a simple $\overline{M_{\circ}}$-module, we are allowed to apply the Point-Stabilizer Theorem C. 8 to $\overline{M_{\circ} D_{0}}$.

Now C. 8 shows that $\overline{M_{\circ} D} \cong S L_{n}(q), n \geqslant 2, S p_{2 n}(q), n \geqslant 2, G_{2}(q)$ or $\operatorname{Sym}(n), n>6$, and I is a corresponding natural module for $\overline{M_{\circ} D}$. The last two cases are impossible since they do not appear in Theorem D.

Suppose that I is a natural $S p_{2 n}(q)$ module with $n \geqslant 2$. By B.37, W is 1-dimensional. Hence by (III) $[I, T]=W$ is 1-dimensional, and \bar{T} acts as a transvection group on I. But then \bar{T} is not a weakly closed subgroup of \bar{M} since $n \geqslant 2$. Therefore $\overline{M_{\circ} D} \cong S L_{n}(q)$. Note that the natural $S L_{2}(q)$-module also is a natural $S L_{2}(q)$-wreath product module and so has been ruled out by 8.16 Thus $n \geqslant 3$ and $\overline{M_{\circ} D}$ is perfect. Hence $\bar{D} \leqslant \overline{M_{\circ}}$ and

$$
\begin{equation*}
\overline{M_{\circ}} \cong S L_{n}(q), n \geqslant 3, \text { and } I \text { is a corresponding natural module for } \bar{M}_{\circ} \text {. } \tag{V}
\end{equation*}
$$

Again by B.37, W is 1 -dimensional. Let $1 \neq u \in U$. Since M acts transitively on $I,\left[u, Q^{g}\right]=1$ for some $g \in M$. Thus $C_{U}\left(Q^{g}\right) \neq 1$ and $Q^{g} \leqslant E$. Since $E=Q$ by (II), this gives $Q^{g}=Q$ and $u \in W$. So $U=W$, and by 8.13 e

$$
W=U=C_{I}\left(I^{x}\right)=C_{I}(D)=C_{I}(A)
$$

and since by $8.12 A$ acts quadratically on I,

$$
\left[I, I^{x}\right] \leqslant[I, D] \leqslant[I, A] \leqslant C_{I}(A)=U=W
$$

By B.37.1] $\bar{Q}=C_{\overline{M^{\circ}}}(W) \cap C_{\overline{M^{\circ}}}(I / W)$, and so $|\bar{Q}|=\left|q^{n-1}\right|=|I / U|$ and $\overline{I^{x}} \leqslant \bar{D} \leqslant \bar{A} \leqslant \bar{Q}$. Since by 8.19 d$) I / U \cong \overline{I^{x}},\left|\overline{I^{x}}\right|=|I / U|=\mid \bar{Q}$ and

$$
\begin{equation*}
\bar{A}=\bar{D}=\overline{I^{x}}=\bar{Q} \tag{VI}
\end{equation*}
$$

As $\overline{I^{x}}=\bar{A}, 8.15$ (c) shows that $Y \cap A=I C_{Y}\left(I^{x}\right)$, and since $\bar{Q}=\overline{I^{x}}, Y \cap A=I C_{Y}(Q)$. Put $a:=|Y / Y \cap A|$ and $b:=|W|$. (Actually $b=q$, but this will not be important.) Let $s \in Q$ with $\bar{s} \neq 1$. Then $[Y \cap A, s]=\left[I C_{Y}(Q), s\right]=[I, s] \leqslant W$ and so $|[Y \cap A, s]| \leqslant b$. Hence

$$
\left|Y / C_{Y}(s)\right| \leqslant|Y / Y \cap A|\left|Y \cap A / C_{Y \cap A}(s)\right||\leqslant a|[Y \cap A, s] \mid \leqslant a b
$$

Since $s \in Q,\left[C_{Y}(Q), s\right]=1$. Now A.55 C gives

$$
\left|C_{Y}(Q)\right| \leqslant|[Y, s]|=\left|Y / C_{Y}(s)\right| \leqslant a b
$$

As $C_{Y}(Q) \cap I=W$ has order $b,\left|C_{Y}(Q) I / I\right| \leqslant \frac{a b}{b}=a$. Using $Y \cap A=I C_{Y}(Q)$ we get

$$
|Y / I|=|Y / Y \cap A||Y \cap A / I|=|Y / Y \cap A|\left|C_{Y}(Q) I / I\right| \leqslant a a=a^{2}
$$

We are now in the position to prove 22°.

Assume that that $\left|D / C_{D}(Y)\right|<|Y / Y \cap A|^{2}$. Then 8.14 implies $[Y, D] \leqslant I$. Since $\bar{D}=\bar{Q}$ and $M_{\circ} \leqslant M^{\circ}=\left\langle Q^{M}\right\rangle$, this gives $\left[Y, M_{\circ}\right] \leqslant I$, and 2° holds.

Assume that $\left|D / C_{D}(Y)\right| \geqslant|Y / Y \cap A|^{2}$. Then

$$
|Y / I| \leqslant a^{2}=|Y / Y \cap A|^{2} \leqslant\left|D / C_{D}(Y)\right|=|\bar{D}|=q^{n-1}
$$

Since $S L_{n}(q)$ has no non-central simple (FF-)modules of order at most q^{n-1}, we get $\left[Y / I, M_{\circ}\right]=1$. So again $\left[Y, M_{\circ}\right] \leqslant I$, and 2° is proved.

Suppose now for a contradiction that $\left[Y, M_{\circ}\right] * I$ and choose an $M_{\circ} D$-submodule X of Y minimal with respect to $\left[X, M_{\circ}\right] \$ I$. Put

$$
X_{1} / I:=C_{X / I}\left(M_{\circ}\right), \quad V:=X / X_{1}, \quad \widehat{M_{\circ} D}:=M_{\circ} D / C_{M_{\circ} D}(V)
$$

Next we show:
$3^{\circ} . \quad V$ is a simple $M_{\circ} D$-module, $F^{*}\left(\widehat{M_{\circ} D}\right)=\widehat{M_{\circ}}, \widehat{M_{\circ} D}=\left\langle\widehat{D}^{\widehat{M_{\circ} D}}\right\rangle$, and

$$
\begin{equation*}
\left|V / C_{V}(D)\right| \leqslant \sqrt{\left|D / C_{D}(V)\right|}<\left|D / C_{D}(V)\right| \tag{VII}
\end{equation*}
$$

Note that $\left[\overline{M_{\circ}}, \overline{C_{M_{\circ} D}(V)}\right]=1$ since $\overline{M_{0}}$ is quasisimple and $\overline{M_{\circ}} \neq \overline{C_{M_{\circ} D}(V)}$, . Since also I is a simple $\overline{M_{0}}$-module and $O_{p}(\bar{M})=1,1.14 \mathrm{c}$ shows that $\overline{C_{M_{\circ} D}(V)}$, is a p^{\prime}-group and so $C_{D}(V)=$ $C_{D}(Y)$. In particular, $\hat{D} \neq 1$.

By the choice of X, V is a simple $M_{\circ} D$-module with $\left[V, M_{\circ}\right] \neq 1$. Since $C_{M_{\circ}}(Y) \leqslant C_{M_{\circ}}(V)$, \widehat{M}_{\circ} is a non-trivial quotient of the quasisimple group $\overline{M_{\circ}}$, and so also \widehat{M}_{\circ} is quasisimple. As V is a simple $M_{\circ} D$-module, $O_{p}\left(\widehat{M_{\circ} D}\right)=1$. Thus 1.14 a implies that $F^{*}\left(\widehat{M_{\circ} D}\right)=\widehat{M}_{\circ}$ is quasisimple, and $\left[\widehat{M}_{\circ}, \widehat{D}\right]=\widehat{M_{\circ}}$. Hence $\widehat{M_{\circ} D}=\left\langle\widehat{D^{M_{\circ} D}}\right\rangle$.

Moreover,

$$
\left|V / C_{V}(D)\right|^{2} \leqslant\left|\tilde{Y} / C_{\tilde{Y}}(D)\right|^{2} \stackrel{8.15 \mathrm{~b}}{\leqslant}\left|D / C_{D}(Y)\right|=\left|D / C_{D}(V)\right|
$$

and so

$$
\left|V / C_{V}(D)\right| \leqslant \sqrt{\left|D / C_{D}(V)\right|}<\left|D / C_{D}(V)\right|
$$

Hence $\sqrt{3}$ is proved.
$4^{\circ} . \quad[I, E, D] \neq 1$, and V is not selfdual as an $\mathbb{F}_{p} M_{\circ} D$-module.
Since $\left[Y, M_{\circ}\right] \$ I, 2^{\circ}$ shows
(VIII)

$$
[I, E, D] \neq 1
$$

By 8.13 e) $C_{I}(D)=U$, and so $[I, E] \nleftarrow U$. Since by 8.19 d $\overline{I^{x}} \cong I / U$ as an E-module, also $\left[\bar{E}, \bar{I}^{x}\right] \neq 1$ and thus $[\bar{E}, \bar{D}] \neq 1$. Hence $[E, D] \neq C_{D}(Y)=C_{D}(V)$ and $[E, D, V] \neq 1$. By 1 . $[\tilde{Y}, E, D]=1$ and hence also $[V, E, D]=1$. Since $[E, D, V] \neq 1$, the Three Subgroups Lemma implies that $[V, D, E] \neq 1$.

Let V^{*} be the \mathbb{F}_{p}-dual of the $\mathbb{F}_{p} M_{\circ} D$-module V. Since $[V, E, D]=1, \mathrm{~B} .8$ gives $\left[V^{*}, D, E\right]=1$. Hence $[V, D, E] \neq 1$ implies that V is not isomorphic to V^{*} as an $\mathbb{F}_{p} M_{\circ} D$-module. Thus 4° has been established.

By 8.15 a), D acts quadratically on \tilde{Y} and so also on V. Hence, according to VII, \hat{D} is a quadratic (over-) offender on V. Now $\left(3^{\circ}\right.$) shows that we can apply the FF-Module Theorem C. 3 to $\widehat{M_{\circ} D}$. We will discuss the various outcomes of this theorem.

In cases C.3 (2)-(4) V is a natural $S p_{2 n}(q)-, S U_{n}(q)-, \Omega_{n}(q)$-module,respectively. But then V is selfdual over \mathbb{F}_{p}, which contradicts 4 .

In cases C.3 50-12, the Best Offender Theorem C.4 shows that either

$$
\left|V / C_{V}(D)\right|=\left|D / C_{D}(V)\right|
$$

or

$$
\left|V / C_{V}(D)\right|=q^{4} \leqslant\left|D / C_{D}(V)\right| \leqslant q^{5}\left(\text { in the } \operatorname{Spin}_{7}(q) \text {-case }\right)
$$

or

$$
2\left|V / C_{V}(D)\right|=\left|D / C_{D}(V)\right|,\left|D / C_{D}(V)\right|=2^{k} \text { and } n=2 k \geqslant 6 \text { (in the } \operatorname{Sym}(n) \text {-cases). }
$$

In either of these cases $\left|V / C_{V}(D)\right|>\sqrt{\left|D / C_{D}(V)\right|}$, which contradicts VII.
Thus C.3 1) holds. So V is a natural $S L_{m}\left(p^{l}\right)$-module, $m \geqslant 2$. If $m=2$ we get (for example by C.13.g) $\left|V / C_{V}(D)\right|=\left|D / C_{D}(V)\right|$, which again contradicts VII). Thus $\widehat{M_{0} D} \cong S L_{m}\left(p^{l}\right), m \geqslant 3$. In particular $\widehat{M_{\circ} D}=\widehat{M}_{\circ}$, so $\widehat{D} \leqslant \widehat{M}_{\circ}$. Since $\overline{C_{M_{\circ} D}(V)}$ is a p^{\prime}-group, this gives $\bar{D} \leqslant \overline{M_{\circ}}$. Moreover, comparing \widehat{M}_{\circ} with $\overline{M_{\circ}}$ in Theorem D , we get:
$5^{\circ} . \quad \bar{D} \leqslant \overline{M^{\circ}}=\overline{M_{\circ}}$, and one of the following holds:
(A) I is a natural $S L_{n}(q)$-module for $\overline{M_{\circ}}, n=m \geqslant 3, q=p^{l}$.
(B) I is a natural $\Omega_{6}^{+}(q)$ module for $\overline{M_{\circ}}, m=4$ and $q=p^{l}$.
(C) I is the exterior square of an natural $S L_{n}(q)$-module for $\overline{M_{\circ}}, n=m \geqslant 5, q=p^{l}$.

We now derive a contradiction to our assumption $\left[Y, M^{\circ}\right] \$$ by showing that none of the above three cases holds. And we do this by comparing the action of \widehat{M}_{\circ} on V with that of $\overline{M_{\circ}}$ on I.

Suppose that Case holds, so I is a natural $S L_{n}(q)$-module for $\overline{M_{\circ}}$. Then by B.38 b $[I, E] \leqslant$ U, a contradiction to VIII.

Thus A does not hold and so $m \geqslant 4$. Hence C. 18 shows that $H^{1}\left(\overline{M_{\circ}}, V^{*}\right)=0$. Thus $X / I=\left[X / I, M_{\circ}\right] \times X_{1} / I$ and the minimality of X shows $X_{1}=I$ and $V=X / I$. So
$6^{\circ} . \quad X / I$ is an natural $S L_{m}(q)$-module for $\overline{M_{\circ}}$, where $m \geqslant 4$.
Suppose next that Case Bolds, so I is a natural $\Omega_{6}^{+}(q)$ module for $\overline{M_{\circ}}$ and $m=4$. In particular V has \mathbb{F}_{q}-dimension 4, where $\mathbb{F}_{q}:=\operatorname{End}_{\widehat{M_{\circ}}}(V)$ is a field of order q. By B.37, W is 1dimensional and $\bar{Q}=C_{\overline{M_{\circ}}}\left(W^{\perp} / W\right) \cap C_{\overline{M_{\odot}}}(W)$. It follows that $|\bar{Q}|=q^{4}$, and $C_{V}(Q)=[V, Q]$ is a 2-dimensional subspace of V. Since by $1{ }^{\circ}[V, E, D]=1,[V, Q] \leqslant[V, E] \leqslant C_{V}(D)$.

If $C_{V}(D)=[V, Q]$, the quadratic action of D shows $[V, D] \leqslant[V, Q]$ and so

$$
\widehat{D} \leqslant C_{\widehat{M_{\circ}}}([V, Q]) \cap C_{\widehat{M_{\circ}}}(V /[V, Q])=\widehat{Q}
$$

Thus $\bar{D} \leqslant \bar{Q}$, a contradiction, since, for example by the Point-Stabilizer Theorem C. 8 , no subgroup of \bar{Q} is a non-trivial offender on I, while by 8.13 f$) \bar{D}$ is a non-trivial offender on \bar{I}.

We have shown that $[V, Q]<C_{V}(D)<V$. Since $\operatorname{dim}_{\mathbb{F}_{q}}[V, Q]=2$ and $\operatorname{dim}_{\mathbb{F}_{q}} V=m=4$, we get that $C_{V}(D)$ is an \mathbb{F}_{q}-hyperplane of V.

Put $T:=C_{M_{\circ}}\left(C_{V}(D)\right) \cap C_{M_{\circ}}\left(V / C_{V}(D)\right)$, so $D \leqslant T$ and \widehat{T} is the unipotent radical of the normalizer of a hyperplane in \widehat{M}_{\circ}. Note that T centralizes a 3-dimensional singular subspace W_{0} of I. Since $D \leqslant T, W_{0} \leqslant C_{I}(D)=U$, and so by 2.7 b) $N_{M}\left(W_{0}\right)^{\circ} \leqslant E$. By 8.19 c) E normalizes U, so also $N_{M}\left(W_{0}\right)^{\circ}$ normalizes U. Now B.38 a shows that $W_{0} \leqslant U \leqslant W_{0}^{\perp}$, so $U=W_{0}$ since $W_{0}=W_{0}^{\perp}$. Thus $\left|\overline{I^{x}}\right|=|I / U|=q^{3}=|\bar{T}|$, and $\bar{I}^{x} \leqslant \bar{D} \leqslant T$ gives $\overline{I^{x}}=\bar{T}$.

By 8.13 h$)[A, D] \leqslant C_{I}(L) \leqslant C_{M}(Y)$ and since $I^{x} \leqslant D, A$ centralizes $\overline{I^{x}}=\bar{T}$. Since \bar{T} is a Sylow p-subgroup of $C_{\bar{M}}(\bar{T})$, we conclude that $A \leqslant T$, and

$$
|\bar{T}|=\left|\overline{I^{x}}\right| \leqslant|\bar{A}|=|\bar{T}|
$$

so $\bar{A}=\overline{I^{x}}$ and by 8.15 (c) $Y \cap A=I C_{Y}(L)$. Hence also $X \cap A=I C_{X}(L)=I C_{X}(A)$. In particular, $C_{X}(A) \neq I$. Since a natural $\Omega_{6}^{+}(q)$-module is isomorphic to the exterior square of the natural $S L_{4}(q)$-module and since $\bar{A}=\bar{T}$, we can apply [MS5, 6.3]. We conclude that X is not a $Q!$-module for M° with respect to any p-group, a contradiction to Q !. This shows that also Case (B) does not hold.

Suppose that Case ((C) holds. Then I is the exterior square of a natural $S L_{n}(q)$-module V_{0} with $n \geqslant 5$. By 8.12 and 8.13 f$) I^{x}, D$ and A are non-trivial offenders on I. Hence C.4 shows that there exist a \mathbb{F}_{q}-hyperplane V_{1} of V_{0} such that

$$
\bar{D}=\overline{I^{x}}=\bar{A}=C_{\overline{M_{\circ}}}\left(V_{1}\right) \text { and }|\bar{D}|=q^{n-1}
$$

If V_{0} is dual to V as an $\mathbb{F}_{p} M_{\circ}$-module we get $\left|C_{V}(D)\right|=q$ and so $\left|V / C_{V}(D)\right|=q^{n-1}=|\bar{D}|$. But this contradicts VII. Thus, V_{0} is isomorphic to V as an $\mathbb{F}_{p} M_{\circ}$-module. As above, using $\overline{I^{x}}=\bar{A}$
and 8.15 (c), we conclude that $X \cap A=I C_{X}(A)$. Since $[X, A] \leqslant X \cap A$, we have $X \cap A \not I$ and so also $C_{X}(\bar{A}) \neq I$. Applying [MS5, 6.3] shows that X is not a Q !-module, a contradiction.

We have seen that each of the three cases in 55° lead to a contradiction, and so 8.20 is proved.

Lemma 8.21. Suppose that $I \leqslant A$. Then one of the following holds:
(a) $p=2, \overline{M^{\circ}} \cong S L_{3}(2), I$ is a corresponding natural module, $|Y / I|=2$, and Case (2) of Theorem $[$ holds.
(b) $p=2, \overline{M^{\circ}} \cong \Omega_{6}^{+}(2) \cong \operatorname{Alt}(8)$, I is the corresponding natural module, $|Y / I|=2$, and Y is the central quotient of the permutation module on a set Λ of eight objects.

Proof. According to $8.20\left[Y, M_{\circ}\right] \leqslant I$. By 8.4 f$], C_{Y}(M)=1$ and so Y does not split over I. Moreover, by $8.18 \overline{M_{\circ}}$ is quasisimple. Comparing Theorem D (for quasisimple \bar{M}_{\circ}) with C. 18 yields $p=2$ and one of the following three cases:
(A) I is a natural $S L_{3}(2)$-module for M°, and $|Y / I|=2$.
(B) I is natural $S p_{2 n}(q)$ - or $S p_{4}(2)^{\prime}$-module for M°.
(C) $\overline{M^{\circ}} \cong \Omega_{6}^{+}(2) \cong \operatorname{Alt}(8), I$ is the corresponding natural module, $|Y / I|=2$, and Y is the central quotient of the permutation module on a set Λ of eight objects.
Suppose that A holds. By B. $37|W|=2$ and $\bar{Q}=C_{\bar{M}}(I / W)$ has order 4. Suppose that $|[Y, Q]|=2$. Then $\left|Y / C_{Y}(a)\right|=2$ for any $1 \neq a \in \bar{Q}$. Since \bar{Q} is generated by two such elements, $\left|Y / C_{Y}(Q)\right| \leqslant 4$ and Q is an offender on Y. But this contradicts C.22. Hence $W<[Y, Q] \leqslant I$, and since $N_{M}(W)$ acts simply on $I / W, I=[Y, Q] \leqslant Q$. Thus, case 2) of Theorem holds, and (a) is verified.

Suppose that $\sqrt{\mathrm{B}}$ holds. Note that $I \leqslant A \leqslant L$ and $A \leqslant M$. So 2.25 shows that $Y \leqslant O_{p}(L)$, a contradiction to $L \in \mathfrak{L}_{H}\left(Y_{M}\right)$.

Finally in Case (C), (b) holds, and so the lemma is proved.

By the preceding lemma, I is either a natural $S L_{3}(2)$-module or a natural $\Omega_{6}^{+}(2)$-module for M°. Moreover, if I is natural $S L_{3}(2)$-module then Theorem H holds. So we assume for the remainder of this subsection that I is a natural $\Omega_{6}^{+}(2)$-module for M°. In particular, Case (b) of 8.21 holds and so Y is the central quotient of the permutation module on a set Λ of eight objects.

We will make use of the fact that $\Omega_{6}^{+}(2) \cong S L_{4}(2) \cong \operatorname{Alt}(\Lambda) \cong \operatorname{Alt}(8)$. Let I_{0} be a natural $S L_{4}(2)$-module for $\overline{M^{\circ}}$ and $W_{0}:=C_{I_{0}}(\bar{Q})$.

Lemma 8.22. Suppose that $I \leqslant A$ and I is the natural $\Omega_{6}^{+}(2)$-module for M°.
(a) $\bar{M} \cong \Omega_{6}^{+}(2) \cong \operatorname{Alt}(8)$ or $\bar{M} \cong O_{6}^{+}(2) \cong \operatorname{Sym}(8)$. In particular, $\bar{M}=\overline{M_{\circ}} \bar{S}$.
(b) $Y \cap A=I$ and $A=D$.
(c) W is a singular 1-space in $I, \bar{Q}=\overline{Q^{\bullet}}=C_{\overline{M^{\circ}}}\left(W^{\perp} / W\right) \cap C_{\overline{M^{\circ}}}(W)=O_{2}\left(N_{\bar{M}}(W)\right)$, and \bar{Q} is a natural $\Omega_{4}^{+}(2)$-module for $M_{\overline{M^{\circ}}}(W)$.
(d) $|\bar{Q}|=16, \bar{Q}$ has two orbits of length 4 on Λ, W_{0} is a 2-subspace of $I_{0}, \bar{Q}=C_{\overline{M^{\circ}}}\left(W_{0}\right) \cap$ $C_{\overline{M^{\circ}}}\left(I_{0} / W_{0}\right)=O_{2}\left(N_{\overline{M^{\circ}}}\left(W_{0}\right)\right)$.
(e) $\overline{I^{x}}=\bar{A}$ is elementary abelian of order $8, \bar{A}$ acts regularly on $\Lambda, \bar{A} \leqslant \overline{M^{\circ}}$, and $I=[Y, A]$.
(f) $I * Q^{\bullet}$.

Proof. aa): Since I is natural $\Omega_{6}^{+}(2)$-module for M_{\circ} and since M normalizes M_{\circ}, M fixes the unique M_{\circ}-invariant non-degenerate quadratic form on I. Now $\left|O_{6}^{+}(2) / \Omega_{6}^{+}(2)\right|=2$ implies $\bar{M} \cong \Omega_{6}^{+}(2)$ or $\bar{M} \cong O_{6}^{+}(2)$.
(b): We have $I \leqslant Y \cap A<Y$ and $|Y / I|=2$, thus $Y \cap A=I$. Since $L \in \mathfrak{L}_{G}\left(Y_{M}\right), A=\left\langle(Y \cap A)^{L}\right\rangle$ and so $A=\left\langle I^{L}\right\rangle=D$.
(c): Since both Q and Q^{\bullet} are large subgroups of $G, B .37$ shows that W is a singular 1-space in I and $\bar{Q}=\overline{Q^{\bullet}}=C_{\overline{M^{\circ}}}\left(W^{\perp} / W\right) \cap C_{\overline{M^{\circ}}}(W)$. Now B.28 implies that $\bar{Q}=O_{2}\left(N_{\bar{M}}(W)\right)$ and \bar{Q} is a natural $\Omega_{4}^{+}(2)$-module for $M_{\overline{M^{\circ}}}(W)$.
(d): Since \bar{Q} is a natural $\Omega_{4}^{+}(2)$-module, $|\bar{Q}|=16$. Up to conjugacy

$$
\langle(12)(34),(13)(24)\rangle \times\langle(56)(78),(57)(68)\rangle
$$

is the only (elementary) abelian subgroup of order 16 in $\operatorname{Alt}(8)$, and so \bar{Q} has two orbits of length 4 on Λ. If W_{1} is 2-subspace of I_{0}, then $O_{2}\left(N_{\overline{M^{\circ}}}\left(W_{1}\right)\right)$ is elementary abelian of order 16 , and so (d) holds.
(e): For $\lambda \in \Lambda$ let y_{λ} be the unique non-trivial element in Y fixed by $C_{M}(\lambda)$. Then $y_{\lambda} \notin I$ and since by (b) $Y \cap A=I, y_{\lambda} \notin A$. Hence 1.43 g) gives $Y \cap A=\left[y_{\lambda}, A\right] C_{Y}(A)$. Since $[Y \cap A, A]=$ $[I, A] \neq 1$, we get $\left[y_{\lambda}, A, A\right] \neq 1$. Thus $\left|\lambda^{A}\right| \geqslant 4$. So either \bar{A} acts regularly on Λ or has two orbits of length 4 . On the other hand by $8.12, A$ is an offender on I. The Offender Theorem C.4 h now shows that A acts regularly on Λ. In particular, all orbits of I^{x} on Λ have the same length. Again by $8.12 I^{x}$ is an offender on I, and C.4 hhows that also I^{x} acts regularly in Λ. Hence $\bar{A}=\overline{I^{x}}$. The regularity of \bar{A} also gives

$$
Y=\left\langle y_{\lambda}^{A}\right\rangle=\left\langle y_{\lambda}\right\rangle[Y, A] \leqslant\left\langle y_{\lambda}\right\rangle I=Y,
$$

so $I=[Y, A]$. Moreover, every element of \bar{A} is an even permutation, so $\bar{A} \leqslant \overline{M^{\circ}}$. Thus holds.
(f): Suppose that $I \leqslant Q^{\bullet}$. Since $L \leqslant N_{G}(Q) \leqslant N_{G}\left(Q^{\bullet}\right)$ this gives $I^{x} \leqslant Q^{\bullet}$. By (c) $\bar{Q}=\overline{Q^{\bullet}}$, so $\overline{I^{x}} \leqslant \bar{Q}$, and by (d) \bar{Q} has an orbit of length 4 on Λ. Hence $\overline{I^{x}}$ is not regular on Λ, which contradicts (e).

Put $U_{0}:=C_{I_{0}}(\bar{A})$. Note that $\overline{M^{\circ}}$ has two classes of regular elementary abelian subgroups, interchanged by the outer automorphism. By (a) $\bar{M} \cong \operatorname{Alt}(8)$ or $\bar{M} \cong \operatorname{Sym}(8)$, and we conclude that $N_{\bar{M}}(\bar{A}) \leqslant \overline{M^{\circ}}$. Moreover, each member of one of these classes centralizes a hyperplane in I_{0}, each member of the other a 1-subspace. So replacing I_{0} but its dual, if necessary, we may assume that \bar{A} centralizes a hyperplane in I_{0}, so U_{0} is a hyperplane of I_{0}.

Lemma 8.23. Suppose that $I \leqslant A$ and I is the natural $\Omega_{6}^{+}(2)$-module for M°. Then
(a) U_{0} is hyperplane in $I_{0}, \overline{I^{x}}=\bar{A}=C_{\overline{M^{\circ}}}\left(U_{0}\right), N_{\bar{M}}(\bar{A})=N_{\overline{M^{\circ}}}\left(U_{0}\right), N_{\bar{M}}(\bar{A}) / \bar{A} \cong S L_{3}(2)$, and \bar{A} is a natural $S L_{3}(2)$-module for $N_{\bar{M}}(\bar{A})$ isomorphic to U_{0}.
(b) U is a singular 3-space in $I, N_{\bar{M}}(U)=N_{\bar{M}}(\bar{A})=M_{\overline{M^{\circ}}}\left(U_{0}\right), U$ is natural $S L_{3}(2)$-module for $N_{\bar{M}}(U)$ dual to $U_{0}, I / U$ and \bar{A} are natural $S L_{3}(2)$-module for $M_{\bar{M}}(U)$ isomorphic to U_{0}, and $\overline{I^{x}}=\bar{A}=C_{\bar{M}}(U)=C_{\bar{M}}(I / U)=C_{\overline{M^{\circ}}}\left(U_{0}\right)$.

Proof. (a): By the choice of I_{0}, U_{0} is a hyperplane of I_{0}, and by 8.22 e) $\bar{A}=\overline{I^{x}}$ has order eight. This gives $\bar{A}=C_{\bar{M}}\left(U_{0}\right)$, and follows.
(b): Observe that $I \cong I_{0} \wedge I_{0}$ as an M_{\circ}-module and recall from 8.13 that $U=C_{I}(A)$. Thus (b) follows from (a).

Lemma 8.24. Suppose that $I \leqslant A$ and I is the natural $\Omega_{6}^{+}(2)$-module for M°.
(a) $\bar{E}=N_{\bar{M}}(U)=N_{\bar{M}}(\bar{A})=N_{\overline{M^{\circ}}}\left(U_{0}\right)$.
(b) $\bar{E} / \bar{A} \cong S L_{3}(2)$, U is a natural $S L_{3}(2)$-module for E dual to U_{0}, and I / U and \bar{A} are natural $S L_{3}(2)$-modules for E isomorphic to U_{0}.
(c) $A \backsim E$ and $\bar{A}=O_{2}(\bar{E})=\overline{O_{2}(E)}$.
(d) $I=[I, E]=[Y, A]=\left[Y, O_{2}(E)\right]$.
(e) $U=[I, A]=\left[I, O_{2}(E)\right]$.

Proof. (a) and (b): Recall from 8.19(c) that $E=N_{M}(U)^{\circ}$. By B.38(c) U is a natural $S L_{3}(2)$ module for E and so $N_{\bar{M}}(U)=\bar{E} C_{\bar{M}}(U)$. By 8.23 b) $C_{\bar{M}}(U)=\bar{A}$ is a natural $S L_{3}(2)$-module and thus non-central simple module for $N_{\bar{M}}(U)$. Since $E \preccurlyeq N_{M}(U)$ we conclude that $\bar{A} \leqslant \bar{E}$ and $\bar{E}=N_{\bar{M}}(U)$. Now (a) and ballow from 8.23 bb.
(c): From (b) we get $I=[I, E]$. Since I normalizes U and so E, we have $[I, E] \leqslant E$ and thus $I \leqslant E$. As L normalizes U and thus E, we conclude that E normalizes $\left\langle I^{L}\right\rangle \leqslant E$. By 8.22b b
$A=D=\left\langle I^{L}\right\rangle$ and so $A \preccurlyeq E$, in particular $A \leqslant O_{2}(E)$. By (b) $\bar{E} / \bar{A} \cong S L_{3}(2)$ and thus $O_{2}(\bar{E})=\bar{A}$. Hence $\bar{A} \leqslant \overline{O_{2}(E)} \leqslant O_{2}(\bar{E})=\bar{A}$, and (c) follows.
(d) and (e): As we have already seen above, (b) gives $I=[I, E]$, and by 8.22 (e) $I=[Y, A]$. Moreover, since by (b) both, U and I / U, are simple \bar{E}-modules, $[I, A]=U$. Since by (c) $\bar{A}=\overline{O_{2}(E)}$, (d) and (e) follow.

Put

$$
N:=N_{G}(U), \quad C:=C_{G}(U), \quad B:=\left\langle I^{N}\right\rangle, \quad \widehat{B}:=B / U, \quad N_{0}:=C_{N}(\widehat{B})
$$

Lemma 8.25. Suppose that $I \leqslant A$ and I is the natural $\Omega_{6}^{+}(2)$-module for M°.
(a) $E \leqslant N$, and $L \leqslant C$.
(b) $A \leqslant B \leqslant O_{2}(E) \leqslant O_{2}(N)$ and $\bar{A}=\bar{B}=O_{2}(\bar{E})=C_{\bar{M}}(U)=C_{\overline{M^{\circ}}}\left(U_{0}\right)$.
(c) $\left[B, O_{2}(E)\right]=B^{\prime}=\Phi(B)=U \leqslant \Omega_{1} Z(B)$.
(d) $O_{2}(E) \leqslant N_{0} \leqslant C \cap M^{\dagger}$.
(e) $[B, Y]=I$.
(f) $N=E C, N_{N}(Y)=E C_{G}(Y)$ and $[E, C] \leqslant O_{2}(E) \leqslant N_{0}$.

Proof. a): By 8.19 c) $E=N_{G}(U)^{\circ}$, so $E \leqslant N$, and by definition, $U=C_{I}(L)$ and so $L \leqslant C$.
(b): By 8.22 b$)\left\langle I^{L}\right\rangle=A=D \leqslant B$, and by $8.24(\mathrm{c}), A \leqslant E$, so $I \leqslant A \leqslant O_{2}(E)$. Since by (a) $E \leqslant N$ also $O_{2}(E) \vDash N$, whence $B=\left\langle I^{N}\right\rangle \leqslant O_{2}(E) \leqslant O_{2}(N)$. By 8.24 c$) \bar{A}=O_{2}(\bar{E})$ and by 8.23 b $\bar{A}=C_{\bar{M}}(U)=C_{\overline{M^{\circ}}}\left(U_{0}\right)$. So also the second part of bblds.
(c): Recall from (a) that $O_{2}(E) \& N$ and from (b) that $A \leqslant B \leqslant O_{2}(E)$. By 8.24 (e), $U=$ $[I, A]=\left[I, O_{2}(E)\right]$. Since U and $O_{2}(E)$ are N-invariant and $B=\left\langle I^{N}\right\rangle$, this gives $\left[B, O_{2}(\vec{E})\right]=U$ and

$$
U=[I, A] \leqslant[I, B] \leqslant\left[I, O_{2}(E)\right]=\left[B, O_{2}(E)\right]=U
$$

Since $[B, B] \leqslant\left[B, O_{2}(E)\right]$ we conclude that $U=B^{\prime}=\left[B, O_{2}(E)\right]$. Moreover, as I / U is elementary abelian and $[U, I]=1$, also $U=\Phi(B)$ and $U \leqslant \Omega_{1} Z(B)$.
(d): By (c) $\left[B, O_{2}(E)\right]=U$ and so $O_{2}(E) \leqslant C_{N}(B / U)=N_{0}$. Since $I \leqslant B$, we get $\left[I, N_{0}\right] \leqslant$ $\left[B, N_{0}\right] \leqslant U \leqslant I$ and so $N_{0} \leqslant N_{G}(I)=N_{G}(Y)=M^{\dagger}$. Since $\left[B, N_{0}\right] \leqslant U \leqslant \Omega_{1} Z(B), N_{0}$ centralizes $\Phi(B)=U$, see 1.18 . Thus $N_{0} \leqslant C$.
(e): By (b) $A \leqslant B \leqslant O_{2}(E)$ and by 8.24 d) $[Y, A]=\left[Y, O_{2}(E)\right]=I$. Hence $[Y, B]=I$, and (e) holds.
(f): By 8.24b U is a natural $S L_{3}(2)$-module for E and thus E induces $A u t(U)$ on U, so $N=E C$. By 8.24 a $\bar{E}=N_{\bar{M}}(U)$, and we conclude that $N_{N}(Y)=N_{N_{G}(Y)}(U)=E C_{G}(Y)$. From 1.52 c we get $\left[N_{G}(U)^{\circ}, C_{G}(U)\right] \leqslant O_{2}\left(N_{G}(U)^{\circ}\right)$. As $E=N_{G}(U)^{\circ}$, this gives $[E, C] \leqslant O_{2}(E)$. Also by (d) $O_{2}(E) \leqslant N_{0}$.

Lemma 8.26. Suppose that $I \leqslant A$ and I is the natural $\Omega_{6}^{+}(2)$-module for M°.
(a) $N_{N}(Y)$ is a parabolic subgroup of N, and $N_{N}\left(Y N_{0}\right)=N_{N}(Y)$.
(b) \widehat{B} is the direct sum of m natural $S L_{3}(2)$-modules isomorphic to I / U (and U_{0}) for E, for some $m \geqslant 2$.
(c) $\left[B, C_{E}(Y)\right] \leqslant U \leqslant I$ and $C_{E}(U)=E \cap C \leqslant N_{0}$.
(d) $F=[F, E]=\left[F, E_{\circ}\right]$ for any E-invariant subgroup of F of B. In particular, $B=\left[B, E_{\circ}\right] \leqslant$ $E_{\circ} \leqslant M_{\circ}$.
(e) \widehat{B} is a 2 -reduced N-module.

Proof. ap: Since $O_{2}(M) \leqslant N$ and Y is asymmetric, $N_{N}(Y)$ is a parabolic subgroup of N (see 2.6 (c). By definition of $N_{0},\left[B, N_{0}\right] \leqslant U \leqslant I$, and by 8.25 ed, $[B, Y]=I$, so

$$
N_{N}(Y) \leqslant N_{N}\left(Y N_{0}\right) \leqslant N_{N}\left(\left[\widehat{B}, Y N_{0}\right]\right)=N_{N}([\widehat{B}, Y])=N_{N}(\widehat{I})=N_{N}(I)=N_{N}(Y)
$$

(b): By 8.25 f $[E, C] \leqslant N_{0}$ and $N=E C$. Hence $\widehat{I}^{c} \cong \widehat{I}$ as an E-module for every $c \in C$, and $\widehat{B}=\left\langle\hat{I}^{N}\right\rangle=\left\langle\hat{I}^{C}\right\rangle$. Since by 8.24 $\hat{I}=I / U \cong U_{0}$ as an E-module, bollows.
(c): Since $C_{E}(Y)$ centralizes I / U, b) gives $C_{E}(Y) \leqslant C_{E}(\widehat{B}) \leqslant N_{0}$. Hence $\left[B, C_{E}(Y)\right] \leqslant U \leqslant I$ and $C_{E}(Y) \leqslant C \cap N_{0}$.
(d): This is a direct consequence of (b).
(e): By 8.25 (f) $N_{N}(Y)=E C_{G}(Y)$. As $\hat{I}=I / U$ is a natural $S L_{3}(2)$-module for E, we conclude that \hat{I} is 2-reduced for $N_{N}(Y)$. Since $\widehat{B}=\left\langle\hat{I}^{N}\right\rangle$ and by (a) $N_{N}(Y)$ is a parabolic subgroup of N, A. 12 shows that \widehat{B} is a 2 -reduced N-module.

Put $X:=\left\langle\left(B \cap O_{2}(M)\right)^{M^{\circ}}\right\rangle$. Moreover the integer m is chosen as in 8.26b).
Lemma 8.27. Suppose that $I \leqslant A$ and I is the natural $\Omega_{6}^{+}(2)$-module for M°.
(a) $X=O_{2}\left(M_{\circ}\right)=\left[X, M_{\circ}\right]=\left[O_{2}(M), M_{\circ}\right]$ and $M_{\circ} / X \cong S L_{4}(2)$. In particular, $C_{M_{\circ}}(Y)=$ X.
(b) $X^{\prime} \leqslant \Phi(X) \leqslant I$.
(c) $\left[X, E_{\circ}\right]=X \cap B$.
(d) X / I is the direct sum of $m-2$ natural $S L_{4}(2)$ modules for M_{\circ} isomorphic to I_{0}. In particular, $|X / I|=2^{4(m-2)}$ and $|X \cap B / I|=2^{3(m-2)}$.
(e) $Y \cap X=I,|X / X \cap B|=2^{m-2}$ and $|Y X / X \cap B|=2^{m-1}$.

Proof. (a): Note that $\left[B, O_{2}(M)\right] \leqslant B \cap O_{2}(M)=B \cap X$ and $X=\left\langle(B \cap X)^{M^{\circ}}\right\rangle$. Since $\overline{M^{\circ}}$ is simple, 1.54 c shows that $M_{\circ} \leqslant\left\langle B^{M^{\circ}}\right\rangle$. Thus

$$
\begin{equation*}
\left[O_{2}(M), M_{\circ}\right] \leqslant\left[O_{2}(M),\left\langle B^{M^{\circ}}\right\rangle\right]=\left\langle\left[O_{2}(M), B\right]^{M^{\circ}}\right\rangle \leqslant X \tag{I}
\end{equation*}
$$

Since $B \cap O_{2}(M)$ is E-invariant, 8.26 d$]$ gives $B \cap O_{2}(M)=\left[B \cap O_{2}(M), E_{\circ}\right]$, and since $E_{\circ} \leqslant M_{\circ}$, we get $B \cap O_{2}(M) \leqslant\left[X, M_{\circ}\right]$, so

$$
X=\left\langle\left(B \cap O_{2}(M)\right)^{M^{\circ}}\right\rangle \leqslant\left[X, M_{\circ}\right] \leqslant X
$$

It follows that $X=\left[X, M^{\circ}\right]=\left[X, M_{\circ}\right] \leqslant O_{2}\left(M_{\circ}\right)$; in particular $X \leqslant O_{2}\left(M_{\circ}\right) \leqslant O_{2}\left(M^{\circ}\right) \leqslant O_{2}(M)$. By (II) $\left[O_{2}(M), M_{\circ}\right] \leqslant X$ and thus

$$
X=\left[X, M_{\circ}\right]=\left[O_{2}\left(M_{\circ}\right), M_{\circ}\right]=\left[O_{2}(M), M_{\circ}\right]
$$

As M° is normal in M^{\dagger}, also $\left[O_{2}\left(M_{\circ}\right), M_{\circ}\right]$ is normal in M^{\dagger}, so $X \lessgtr M^{\dagger}$.
Since $\overline{M^{\circ}}$ is simple, 1.54 b shows that $M_{\circ} /\left[O_{2}\left(M_{\circ}\right), M_{\circ}\right]$ is quasisimple, that is, M_{\circ} / X is quasisimple. Note that

$$
C_{B X}(Y)=B X \cap O_{2}(M)=\left(B \cap O_{2}(M)\right) X=X
$$

By 8.25 b $\bar{B}=C_{\overline{M^{\circ}}}\left(U_{0}\right)$ and by 8.26 d $B \leqslant M_{\circ}$. Together with $\overline{M_{\circ}}=\overline{M^{\circ}}$ we get $B C_{M_{\circ}}(Y)=$ $C_{M_{\circ}}\left(U_{0}\right)$. Since by 8.24 a) $N_{M^{\circ}}\left(U_{0}\right)=N_{M^{\circ}}(U)=M_{\circ} \cap N, N_{M_{\circ}}\left(U_{0}\right)$ normalizes B. Hence $B X / X$ is a $N_{M_{\circ}}\left(U_{0}\right)$-invariant complement to $C_{M_{\circ}}(Y) / X$ in $C_{M^{\circ}}\left(U_{0}\right) / X$. Now C.21 shows that $C_{M_{\circ}}(Y) / X=$ 1 and so $M_{\circ} / X \cong S L_{4}(2)$. So (a) holds.

Before proving (b) - (e) we have a closer look at the structure of E.
$1^{\circ} . \quad E=E_{\circ} C_{E}(Y), M_{\circ} \cap N=E_{\circ} X$ and $O_{2}\left(M_{\circ} \cap N\right)=B X=C_{M_{\circ}}(U)=C_{M_{\circ}}\left(U_{0}\right)$.
By 8.24 ab $\overline{M \cap N}=\overline{N_{M}(U)}=\bar{E}$ and so $M \cap N=E C_{M}(Y)$, and by 8.24 bb $\bar{E} / \bar{A} \cong S L_{3}(2)$ and \bar{A} is a natural $S L_{3}(2)$-module for E. Thus $O^{2}(\bar{E})=\bar{E}$ and so $E=E_{\circ} C_{E}(Y)$ and $M \cap N=E_{\circ} C_{M}(Y)$. Since $E_{\circ} \leqslant M_{\circ}$, this gives $M_{\circ} \cap N=E_{\circ} C_{M_{\circ}}(Y)$. Moreover, (a) shows that $X=C_{M_{\circ}}(Y)$ and so $M_{\circ} \cap N=E_{\circ} X$.

By 8.26 d$), B \leqslant E_{\circ}$ and so $B X \leqslant O_{2}\left(M^{\circ} \cap N\right)$. Since $\bar{B}=O_{2}(\bar{E})=O_{2}\left(\overline{M_{\circ} \cap N}\right)$, we get $B X=O_{2}\left(M_{\circ} \cap N\right)$. By 8.25 b), $\bar{B}=C_{\bar{M}}(U)=C_{\overline{M^{\circ}}}\left(U_{0}\right)$ and hence $C_{M_{\circ}}(U)=B C_{M_{\circ}}(Y)=B X=$ $C_{M_{\circ}}\left(U_{0}\right)$.
$2^{\circ} . \quad[X, E, B] \leqslant I$ and $[X \cap B, B] \leqslant\left[X \cap B, O_{2}(E)\right] \leqslant I$.
Note that $[X, E] \leqslant X \cap E \leqslant O_{2}(E), B \leqslant O_{2}(E)$ and by 8.25,c] $\left[O_{2}(E), B\right]=U \leqslant I$. Thus

$$
[X, E, B] \leqslant\left[O_{2}(E), B\right] \leqslant I \quad \text { and } \quad[X \cap B, B] \leqslant\left[X \cap B, O_{2}(E)\right] \leqslant\left[B, O_{2}(E)\right] \leqslant I
$$

$3^{\circ} . \quad\left[X, E_{0}\right] \leqslant X \cap B$ and $X^{\prime} \leqslant \Phi(X) \leqslant I$.
Let $g \in M_{\circ} \backslash N$. Since M_{\circ} is doubly transitive on the hyperplanes of I_{0} and $N_{M_{\circ}}\left(U_{0}\right)=N_{M_{\circ}}(U)=$ $M_{\circ} \cap N \leqslant N_{M_{\circ}}(B \cap X)$,

$$
(B \cap X)^{M_{\circ}}=(B \cap X)^{M_{\circ} \cap N^{g}} \cup\left\{B^{g} \cap X\right\}
$$

Also by $1^{\circ} M_{\circ} \cap N=E_{\circ} X$, and X normalizes $B \cap X$. Thus $(B \cap X)^{M \circ \cap N^{g}}=(B \cap X)^{E_{\circ}^{g}}$ and

$$
\begin{align*}
X & =\left\langle(B \cap X)^{M_{\circ}}\right\rangle \\
& =\left(B^{g} \cap X\right)\left\langle(B \cap X)^{M_{\circ} \cap N^{g}}\right\rangle \tag{II}\\
& =\left(B^{g} \cap X\right)\left\langle(B \cap X)^{E_{\circ}^{g}}\right\rangle=\left(B^{g} \cap X\right)(B \cap X)\left[X, E_{\circ}^{g}\right]
\end{align*}
$$

By (2) $\left[B^{g} \cap X, B^{g}\right] \leqslant I$ and $\left[X, E^{g}, B^{g}\right] \leqslant I$. Also $B^{g} \cap N$ normalizes $B \cap X$. Hence (II) yields

$$
\left[X, B^{g} \cap N\right]=\left[\left(B^{g} \cap X\right)(B \cap X)\left[X, E^{g}\right], B^{g} \cap N\right] \leqslant\left[B \cap X, B^{g} \cap N\right] I \leqslant(B \cap X) I=B \cap X
$$

By 8.25 b $\bar{B}=C_{\overline{M^{\circ}}}\left(U_{0}\right)$. It follows that $\overline{B^{g} \cap N}=C_{\overline{M^{\circ}}}\left(U_{0}^{g}\right) \cap C_{\overline{M^{\circ}}}\left(I_{0} / U_{0} \cap U_{0}^{g}\right)$ has index 2 in $\overline{B^{g}}$ and acts faithfully on U_{0}. Thus $\left[U_{0}, B^{g} \cap N\right] \neq 1$ and so also $\left[U, B^{g} \cap N\right] \neq 1$. Note that $E / C_{E}(U) \cong S L_{3}(2)$ is simple and $E=N_{G}(U)^{\circ}=E^{\circ}$. Hence U and $N_{G}(U)$ satisfy the hypothesis of 1.54 and 1.54 c) shows that $E_{\circ} \leqslant\left\langle\left(B^{g} \cap N\right)^{E_{\circ}}\right\rangle$. As $\left[X, B^{g} \cap N\right] \leqslant B \cap X$ and $B \cap X$ is E-invariant, this implies $\left[X, E_{0}\right] \leqslant B \cap X$, and the first statement in 3° is proved.

Then also $\left[X, E_{\circ}^{g}\right] \leqslant B^{g} \cap X$, and (II) gives

$$
X=(B \cap X)\left(B^{g} \cap X\right)
$$

Again using that $\left[B^{g} \cap X, B^{g}\right] \leqslant I$ we have $\left[B^{g} \cap X, B^{g} \cap N\right] \leqslant I \leqslant B \cap B^{g} \cap X$ and since $B \cap X$ and $B^{g} \cap N$ normalize each other, $\left[B \cap X, B^{g} \cap N\right] \leqslant B \cap B^{g} \cap X$. We conclude that $\left[X, B^{g} \cap N\right] \leqslant B \cap B^{g} \cap X$. Since by 8.25 c) $\Phi(B)=B^{\prime} \leqslant U$,

$$
\left[X, B^{g} \cap N, X\right]=\left[B \cap B^{g} \cap X, X\right]=\left[B \cap B^{g} \cap X,(B \cap X)\left(B^{g} \cap X\right)\right] \leqslant B^{\prime} B^{\prime g}=U U^{g} \leqslant I
$$

As before, 1.54 gives $M_{\circ}=\left\langle\left(B^{g} \cap N\right)^{M_{\circ}}\right\rangle$, and as X is M_{\circ}-invariant, $\left[X, M_{\circ}, X\right] \leqslant I$ follows. By (a) $X=\left[X, M_{\circ}\right]$ and so $[X, X] \leqslant I$, and by 8.25 c) $\Phi(B)=B^{\prime} \leqslant U \leqslant I$. Since $\Phi(X \cap B) \leqslant \Phi(B)$ and $X=\left\langle(X \cap B)^{M^{\circ}}\right\rangle, X / I$ is elementary abelian. Thus, 3° is proved.
$4^{\circ} . \quad\left[X, E_{\circ}\right]=\left[X, M_{\circ} \cap N\right]=X \cap B$ and $\left[X \cap B, O_{2}\left(M_{\circ} \cap N\right)\right] \leqslant I$.
By 8.26 d,$X \cap B=\left[X \cap B, E_{\circ}\right]$ and by $\left[3^{\circ}\left[X, E_{\circ}\right] \leqslant X \cap B\right.$. Hence $\left[X, E_{\circ}\right]=X \cap B$. Since by (10) $M_{\circ} \cap N=E_{\circ} X$ and again by $3^{\circ} X^{\prime} \leqslant I \leqslant X \cap B$, we also get $\left[X, M_{\circ} \cap N\right]=\left[X, E_{\circ} X\right]=X \cap B$.

By 8.25(c) $[X \cap B, B] \leqslant B^{\prime} \leqslant I$ and by $1^{\circ} O_{2}\left(M_{\circ} \cap N\right)=B X$. Hence

$$
\left[X \cap B, O_{2}\left(M_{\circ} \cap N\right)\right]=[X \cap B, B X]=[X \cap B, B] X^{\prime} \leqslant I
$$

After this preparation we are now able to prove (b) - (e).
(b) and (c): This follows from $\left(3^{\circ}\right.$ and 4 , respectively.
(d): By $\left(3^{\circ}\right) \Phi(X / I)=1$, so X centralizes X / I, and X / I is an M_{\circ} / X-module. Moreover, by (a) $M_{\circ} / X \cong L_{4}(2)$. By $\left.1^{\circ}\right) E_{\circ} X=M_{\circ} \cap N=N_{M_{\circ}}(U)=N_{M_{\circ}}\left(U_{0}\right)$, and so $E_{\circ} X$ is the normalizer of the hyperplane U_{0} of the natural $S L_{4}(2)$-module I_{0} for M_{\circ}. Also by $1{ }^{\circ} B X=O_{2}\left(E_{\circ} X\right)=$ $C_{M_{\circ}}\left(U_{0}\right)$.

Let R_{0} be a 1-dimensional subspace of U_{0}. Put $P:=C_{M_{\circ}}\left(R_{0}\right)$ and note that

$$
R_{0}=\left[I_{0}, O_{2}(P)\right]=\left[U_{0}, O_{2}(P)\right] \leqslant U_{0}
$$

Hence $O_{2}(P) \leqslant N_{M_{\circ}}\left(U_{0}\right)=M_{\circ} \cap N$. Thus using both statements in 4° :

$$
\left[X, O_{2}(P)\right] \leqslant\left[X, M_{\circ} \cap N\right]=X \cap B \text { and }\left[X, O_{2}(P), O_{2}\left(M_{\circ} \cap N\right)\right] \leqslant\left[X \cap B, O_{2}\left(M_{\circ} \cap N\right)\right] \leqslant I
$$

Note that $P / X \sim 2^{3} S L_{3}(2)$ and $X \leqslant O_{2}\left(M_{\circ} \cap N\right) \not O_{2}(P)$. Thus $P=\left\langle O_{2}\left(M_{\circ} \cap N\right)^{P}\right\rangle$, and since X and $O_{2}(P)$ are P-invariant, $\left[X, O_{2}(P), P\right] \leqslant I$.

Let U_{1} be an E_{0}-submodule of $B \cap X / I$ isomorphic to U_{0}. Since X centralizes X / I we conclude that $E_{\circ} X$ normalizes U_{1}. Thus $U_{1} \cong U_{0}$ as an $E X$-module and so $R_{1}:=\left[U_{1}, O_{2}(P)\right]$ is an 1dimensional subspace of U_{1}. As $\left[X, O_{2}(P), P\right] \leqslant I$ we get $\left[R_{1}, P\right]=1$. Let $1 \neq r \in R_{1}$ and $h \in$ $E_{\circ} X \backslash P$. Since E_{\circ} acts transitively on $U_{1}, r r^{h} \in r^{E_{\circ}} \subseteq r^{M_{\circ}}$. Since M_{\circ} acts doubly transitive on the

1-spaces in I_{0} and since $C_{M_{\circ}}(r)=P=C_{M_{\circ}}\left(R_{0}\right), M_{\circ}$ also acts doubly transitive on $r^{M_{\circ}}$. It follows that $r^{M_{\circ}} \cup\{1\}$ is closed under multiplication and so $I_{1}:=\left\langle r^{M_{\circ}}\right\rangle$ has order $\left|M_{\circ} / P\right|+1=15+1=2^{4}$.

Note that $U_{1} \leqslant I_{1}$. So $I_{1}=\left\langle U_{1}^{M_{\circ}}\right\rangle$, and I_{1} is a natural $S L_{4}(2)$-module for M_{\circ} isomorphic to I_{0}. As $B / B \cap X$ and I / U are natural $S L_{3}(2)$-modules for E_{\circ} and as by 8.26al X / I is the direct sum of m natural $S L_{3}(2)$-modules for E_{\circ} isomorphic to $U_{0}, B \cap X / I$ is the direct sum of $m-2$ E_{0}-submodules isomorphic to U_{0}. Since $X / I=\left\langle(B \cap X / I)^{M_{0}}\right\rangle$, we conclude that X / I is the direct sum of $m-2$ natural $S L_{4}(2)$-modules for M_{\circ} isomorphic to I_{0}. So (d) is proved.
(e): Recall from 8.21 that $|Y / I|=2$ and so $\left[Y, M_{\circ}\right] \leqslant I$, and by (d) M_{\circ} has no central chief factors on X / I. Thus $Y \cap X \leqslant I \leqslant Y \cap X$, so $Y \cap X=I$ and $|Y X / X|=2$. By (d) $|X / I|=2^{4(m-2)}$ and $|X \cap B / I|=2^{3(m-2)}$, so $|X / X \cap B|=2^{m-2}$ and $|Y X / X \cap B|=|Y X / X||X / X \cap B|=2 \cdot 2^{m-2}=$ 2^{m-1}. Hence (e) holds.

Recall that $\widehat{B}=B / U$ and $N_{0}=C_{N}(\widehat{B})$. We now investigate \widehat{B} as an N / N_{0}-module.
Lemma 8.28. Suppose that $I \leqslant A$ and I is the natural $\Omega_{6}^{+}(2)$-module for M°.
(a) $N / N_{0}=C / N_{0} \times E N_{0} / N_{0}$.
(b) Put $K:=\operatorname{Hom}_{E}\left(U_{0}, \widehat{B}\right)$. View K as an $\mathbb{F}_{2} N$-module with $E \leqslant C_{N}(K)$ and U_{0} as a natural $S L_{3}(2)$-module for N with C acting trivially. Then $|K|=2^{m}$ and there exists an $\mathbb{F}_{2} N$ isomorphism

$$
K \otimes_{\mathbb{F}_{2}} U_{0} \rightarrow \widehat{B} \quad \text { with } \quad \alpha \otimes v \mapsto \alpha v .
$$

(c) For $a, b \in B$ define $[\hat{a}, \hat{b}]=[a, b]$ and $\widehat{a}^{2}=a^{2}$. 1 Put $\mathbb{F}:=\operatorname{Hom}_{E}\left(U_{0} \wedge U_{0}, U\right)$. Then $|\mathbb{F}|=2$ and there exists a C-invariant symplectic form

$$
s: K \times K \mapsto \mathbb{F}, \quad(\alpha, \beta) \mapsto s(\alpha, \beta)
$$

on K such that

$$
s(\alpha, \beta)(v \wedge w)=[\alpha v, \beta w]
$$

for all $v, w \in U_{0}$ and $\alpha, \beta \in K$.
Proof. (a): By 8.25dd $N_{0} \leqslant C$, by 8.25yf) $N=E C$ and $[E, C] \leqslant N_{0}$, and by 8.26 C] $E \cap C \leqslant N_{0}$. Thus, $C \cap E N_{0}=N_{0}$ and

$$
N / N_{0}=C / N_{0} \times E N_{0} / N_{0}
$$

(b): By 8.26 b \hat{B} is the sum of m natural $S L_{3}(2)$-modules isomorphic to U_{0} for E. Since $\operatorname{End}_{E}\left(U_{0}\right)=\mathbb{F}_{2}$ this gives (b).
(c): Let $1 \neq v \in U_{0}$. By 8.24 (b) U is dual to U_{0} as an E-module. So $C_{E}(v)$ is the normalizer in E of a hyperplane of U and so $C_{U}\left(C_{E}(v)\right)=1$. Let $\alpha, \beta \in K$. Since α and β are E-homomorphisms from U_{0} to $\widehat{B}, C_{E}(v)$ centralizes $\alpha v, \beta v$ and so also $(\alpha v)^{2}$ and $[\alpha v, \beta v]$. As $C_{U}\left(C_{E}(v)\right)=1$ this gives $(\alpha v)^{2}=1$ and $[\alpha v, \beta v]=1$. Thus the inverse image of $\alpha\left(U_{0}\right)$ in B is elementary abelian, and for given $\alpha, \beta \in K$ we obtain a well defined E-linear function

$$
s(\alpha, \beta): U_{0} \wedge U_{0} \rightarrow U, \quad v \wedge w \mapsto[\alpha v, \beta w] .
$$

Thus $s(\alpha, \beta) \in \mathbb{F}=\operatorname{Hom}_{E}\left(U_{0} \wedge U_{0}, U\right)$. Note that $U_{0} \wedge U_{0}$ is a natural $S L_{3}(2)$-module for E dual to U_{0} and so isomorphic to U. Thus $|\mathbb{F}|=2$ and so

$$
s: K \times K \mapsto \mathbb{F}, \quad(\alpha, \beta) \mapsto s(\alpha, \beta),
$$

is a well-defined C-invariant bilinear form on K.
Since the inverse image of $\alpha\left(U_{0}\right)$ is abelian, it follows that $s(\alpha, \alpha)=0$ and s is a (possible degenerate) symplectic form on K.

Note that s induces a non-degenerate symplectic form on K / K^{\perp}. Put $C_{0}:=C_{C}\left(K^{\perp}\right)$. For $F \leqslant C$ let \check{F} be the image of F in $S p\left(K / K^{\perp}\right)$.

[^11]Lemma 8.29. Suppose that $I \leqslant A$ and I is the natural $\Omega_{6}^{+}(2)$-module for M°.
(a) K is a faithful 2-reduced C / N_{0}-module, and K / K^{\perp} is faithful 2-reduced C_{0} / N_{0}-module.
(b) $C_{Y X}\left(K / K^{\perp}\right)=Y X \cap N_{0}=C_{Y X}(K)=X \cap B$.
(c) $K^{\perp}=1$ and $C=C_{0}$.
(d) $C / N_{0} \cong \check{C}=S p(K)$.
(e) $N_{C}(Y)$ is the normalizer in C of a 1-subspace of K.
(f) $m=2$ or 4 .
(g) $O_{2}\left(N_{C}(Y) / N_{0}\right)=Y X N_{0} / N_{0}$ and $N_{C}(Y) / Y X N_{0} \cong S p_{m-2}(2)$.

Proof. (a): By 8.26 ed \hat{B} is a 2-reduced N-module, and since $C \geqq N$, also a 2-reduced C module. Since by 8.28 b) $\widehat{B} \cong K \otimes U_{0}$ as an N-module, \widehat{B} is as an C-module the direct sum of (three) copies of K. Hence $C_{C}(K)=C_{C}(\widehat{B})=N_{0}$, and K is a faithful 2-reduced C / N_{0}-module.

Since $C_{0} \leqslant C$ we conclude that K is a 2-reduced C_{0}-module. Note that $C_{C_{0}}\left(K / K^{\perp}\right)$ acts nilpotently on K and so centralizes K. It follows that K / K^{\perp} is a faithful 2-reduced C_{0} / N_{0}-module and (a) holds.
(b): Put

$$
K_{1}:=\operatorname{Hom}_{E}\left(U_{0}, \widehat{I}\right) \quad \text { and } \quad K_{2}:=\operatorname{Hom}_{E}\left(U_{0}, \widehat{B \cap X}\right)
$$

By 8.25 e,$[B, Y]=I$ and so $[\widehat{B}, Y]=\widehat{I}$ is isomorphic to U_{0}. Hence K_{1} is 1 -subspace of K. Since $Y \leqslant C$ and $\widehat{B} \cong K \otimes U_{0}$ we have $[\widehat{B}, Y] \cong[K, Y] \otimes U_{0}$ and so

$$
K_{1}=[K, Y]
$$

As $B / B \cap X \cong \bar{B} \cong U_{0}, K_{2}$ is hyperplane of K. From $[B \cap X, Y]=1$ we get $[\widehat{B \cap X}, Y]=1$ and $\left[K_{2}, Y\right]=1$. Thus

$$
K_{2} \leqslant C_{K_{2}}(Y) \leqslant[K, Y]^{\perp}=K_{1}^{\perp}
$$

Suppose that $K_{1}^{\perp}=K$. Then $s(\alpha, \beta)=0$ for all $\alpha \in K_{1}, \beta \in K$ and

$$
1=s(\alpha, \beta)(v \wedge w)=[\alpha(v), \beta(w)] \text { for all } v, w \in U_{0}
$$

But this implies $[I, B]=1$, a contradiction.
Hence $K_{1}^{\perp} \neq K$, and since K_{1}^{\perp} contains the hyperplane K_{2}, we get $K_{2}=K_{1}^{\perp}$. Moreover, since $K_{2} \leqslant C_{K}(Y)$,

$$
K_{1}=[K, Y] \quad \text { and } \quad K_{2}=C_{K}(Y)=K_{1}^{\perp}
$$

Since $[B \cap X, Y X] \leqslant I$ and $[I, Y X]=1, Y X$ centralizes $K_{2} / K_{1}=K_{1}^{\perp} / K_{1}$ and K_{1}. Note that $K^{\perp} \leqslant K_{1}^{\perp}=K_{2},\left[K_{2}, Y X\right] \leqslant K_{1}$ and $K_{1} \cap K^{\perp}=1$. Thus $\left[K^{\perp}, Y X\right]=1$ and $Y X \leqslant C_{0}$. Put $Z_{1}:=K_{1} K^{\perp} / K^{\perp}$. Then Z_{1} is a 1 -space in $K / K^{\perp}, Z_{1}^{\perp}=K_{1}^{\perp} / K^{\perp}$ and

$$
\begin{equation*}
\check{Y} \check{X} \leqslant C_{\widetilde{C}_{0}}\left(Z_{1}^{\perp} / Z_{1}\right) \tag{I}
\end{equation*}
$$

Observe that $C_{I_{0}}(B)=U_{0}=\left[I_{0}, E_{\circ}\right]$, and by $8.27 \mathrm{~d} X / I$ is a direct sum of copies of I_{0}, so $C_{X / I}(B)=\left[X / I, E_{0}\right]$. By 8.27/C), $\left[X, E_{0}\right]=X \cap B$ and thus

$$
C_{X / I}(B)=(X \cap B) / I
$$

Regarding the action of X on B / I, this means $C_{X}(B / I)=X \cap B$ and so

$$
C_{Y X}\left(K / K_{1}\right)=C_{Y X}(B / I)=Y C_{X}(B / I)=Y(X \cap B)
$$

Note that $|Y / I|=2$ and I but not Y centralizes B / U. So $C_{Y}(B / U)=I$ and

$$
C_{Y X}(K)=(X \cap B) C_{Y}(B / U)=(X \cap B) I=X \cap B
$$

By 8.29 a both K and K / K^{\perp} are faithful C_{0} / N_{0}-modules. So

$$
C_{Y X}\left(K / K^{\perp}\right)=Y X \cap N_{0}=C_{Y X}(K)=X \cap B
$$

and (b) holds.
(c): By 8.27 e) $|Y X / X \cap B|=2^{m-1}$, and we get

$$
\begin{equation*}
|\check{Y} \check{X}|=2^{m-1} \tag{II}
\end{equation*}
$$

Put $c:=\operatorname{dim}_{\mathbb{F}_{2}}\left(K / K^{\perp}\right)$. Then $c \leqslant \operatorname{dim}_{\mathbb{F}_{2}} K=m$ and

$$
\left|C_{S p\left(K / K^{\perp}\right)}\left(Z_{1}^{\perp} / Z_{1}\right)\right|=2^{c-1} .
$$

Since $\check{Y} \check{X}$ has order 2^{m-1} and by (I) is contained in $C_{S p\left(K / K^{\perp}\right)}\left(Z_{1}^{\perp} / Z_{1}\right)$, we conclude that $2^{m-1} \leqslant 2^{c-1}$. Now $c \leqslant m$ gives $c=m$,

$$
K^{\perp}=1, C_{0}=C \text { and } \check{Y} \check{X}=C_{S p\left(K / K^{\perp}\right)}\left(Z_{1}^{\perp} / Z_{1}\right)=C_{S p(K)}\left(K_{1}^{\perp} / K_{1}\right) ;
$$

in particular (C) holds.
(d): Since $\left[I, I^{x}\right] \neq 1$ we have $K_{1} \pm K_{1}^{x}$. By B.26a)

$$
\left\langle C_{S p(K)}\left(K_{1}^{\perp} / K_{1}\right), C_{S p(K)}\left(K_{1}^{x \perp} / K_{1}^{x}\right)\right\rangle=S p(K),
$$

and so $\left\langle Y X,(Y X)^{x}\right\rangle$ induces $S p(K)$ on K. Thus $\check{C}=S p(K)$, and dd holds.
(e): Since $[K, Y]=K_{1}, \check{Y}$ is a transvection group on K. It follows that

$$
\check{Y}=C_{\check{C}}\left(K_{1}^{\perp}\right) \quad \text { and } \quad N_{\check{C}}(\check{Y})=N_{\check{C}}\left(K_{1}\right),
$$

and (e) holds.
(f): Since $C_{C}(K)=N_{0}, N_{C}(\breve{Y})=N_{C}\left(Y N_{0}\right)$. By 8.26at $N_{N}\left(Y N_{0}\right)=N_{N}(Y)$ and so $N_{C}\left(K_{1}\right)=N_{C}(Y) \leqslant M^{\dagger}$. Since M^{\dagger} normalizes Y and X we conclude that \check{X} is an $N_{\check{C}}\left(K_{1}\right)-$ invariant complement to \check{Y} in $\check{Y} \check{X}$. In particular, \check{Y} is not the only $N_{S p(K)}\left(K_{1}\right)$-invariant subgroup of $C_{S p(K)}\left(K_{1}^{\perp} / K_{1}\right)$. Hence B. 30 shows that $m \leqslant 4$, and (f) holds.
(g): Note that $O_{2}\left(N_{S p(K)}\left(K_{1}\right)\right)=C_{S p(K)}\left(K_{1}^{\perp} / K_{1}\right)=\check{Y} \check{X}$ and that K_{1}^{\perp} / K_{1} is a natural $S p_{m-2}(2)$-module for $\left.N_{S p(K)}\left(K_{1}\right)\right)=N_{C}(Y)$, so also (g) holds.

Lemma 8.30. Suppose that $I \leqslant A$ and I is the natural $\Omega_{6}^{+}(2)$-module for M°. Then $M^{\circ}=M_{\circ}$, $N_{0}=B$, and one of the following holds:
(1) $m=2, O_{2}(M)=Y, M^{\dagger}=M, \overline{M^{\dagger}} \cong \Omega_{6}^{+}(2)$ or $O_{6}^{+}(2)$ and

$$
M^{\dagger} \sim 2^{6+1} \Omega_{6}^{+}(2) \text { or } 2^{6+1} O_{6}^{+}(2) \quad \text { and } \quad N \sim 2^{3+\overline{3} \cdot 2} S L_{3}(2) \times S L_{2}(2),
$$

(2) $m=4,\left[M^{\circ}, C_{G}(Y)\right]=X, M^{\dagger}=M_{\circ} C_{G}(Y)$,

$$
M^{\dagger} / Y X=M_{\circ} / Y X \times C_{G}(Y) / Y X \cong S L_{2}(2) \times S L_{4}(2)
$$

$X / I \cong Y X / Y$ is a tensor product over \mathbb{F}_{2} of corresponding natural modules and

$$
M^{\dagger} \sim 2^{6+1+4 \cdot 2} S L_{4}(2) \times S L_{2}(2) \quad \text { and } \quad N \sim 2^{3+\overline{3} \cdot 4} S L_{3}(2) \times S p_{4}(2)
$$

Proof. We first show:

1. $\quad N / N_{0} \cong S p_{m}(2) \times S L_{3}(2), m=2$ or 4 , and \widehat{B} is a tensor product over \mathbb{F}_{2} of corresponding natural modules.

By 8.28 a $N / N_{0}=C / N_{0} \times E N_{0} / N_{0}$, and by 8.28b) $\hat{B} \cong K \otimes_{\mathbb{F}_{2}} U_{0}$, where $K=E n d E\left(U_{0}, \widehat{B}\right)$. By $8.29 \| \mathrm{d}) C / N_{0} \cong S p(K)$ and so K is a natural $S p_{m}(2)$-module for C, and by 8.29 (f) $m=2$ or 4 . Also U_{0} is a natural $S L_{3}(2)$-module for E, and so 1°) holds.
$2^{\circ} . \quad C_{M^{\dagger}}(X / I) \cap C_{M^{\dagger}}(I)=Y X$ and $N_{0}=B$.
Put

$$
X_{1}:=C_{O_{2}(M)}(X / I) \quad \text { and } \quad X_{2} / I:=C_{X_{1} / I}\left(M_{\circ}\right) .
$$

Then $\left[X_{1}, X\right] \leqslant I$ and so M_{0} / X acts on X_{1} / I. By 8.27 b $X^{\prime} \leqslant I$ and thus $X \leqslant X_{1}$, and by 8.27ab, $\left[O_{2}(M), M^{\circ}\right]=X$ and so $\left[X_{1}, M_{\circ}\right]=X$. Since I_{0} is a natural $S L_{4}(2)$-module for $M_{\circ} / X \cong S L_{4}(2)$, C. 18 shows that $H^{1}\left(M_{\circ} / X, I_{0}\right)=1$. By $\left.8.27 / \mathrm{d}\right) X / I$ is a direct sum of copies of I_{0}. Hence also $H^{1}\left(M_{\circ} / X, X / I\right)=1$ and so $X_{1}=X_{2} X$.

Pick $t \in X_{2}$. Then $\left[t, M_{\circ}\right] \leqslant I \leqslant Z(X)$, so $[t, X]$ and $C_{X}(t)$ are M_{\circ}-invariant. Hence $\left[t, M_{\circ}\right]$ and $X / C_{X}(t)$ are isomorphic M_{\circ}-modules. But I is the natural $\Omega_{6}^{+}(2)$-module for M_{\circ} and by 8.27 d d each M_{\circ}-chief factor of X / I is a natural $S L_{4}(2)$-module. It follows that $[X, t]=1$ and so $\left[X_{2}, X\right]=1$.

Since $\left[O_{2}(M), M_{\circ}\right]=X$ and $\left[M_{\circ}, X_{2}\right] \leqslant I$ we get $\left[O_{2}(M), M_{\circ}, X_{2}\right]=1$ and $\left[M^{\circ}, X_{2}, O_{2}(M)\right]=$ 1. The Three Subgroup Lemma now implies $\left[X_{2}, O_{2}(M), M^{\circ}\right]=1$. By 1.55 d $C_{G}\left(M^{\circ}\right)=1$, so $\left[X_{2}, O_{2}(M)\right]=1$ and $X_{2} \leqslant Z\left(O_{2}(M)\right)$. Since $\left[X_{2}, M_{\circ}\right] \leqslant I \leqslant \Omega_{1} Z\left(X_{2}\right), 1.18$ gives $\left[\Phi\left(X_{2}\right), M_{\circ}\right]=$ 1. As $C_{G}\left(M^{\circ}\right)=1, X_{2}$ is elementary abelian. Therefore $X_{2} \leqslant \Omega_{1} Z\left(O_{2}(M)\right)$, and by 2.2 e), $\Omega_{1} Z\left(O_{2}(M)\right)=Y$. Hence $X_{2}=Y$ and so

$$
X_{1}=X_{2} X=Y X
$$

Let $X_{3}:=C_{M^{\dagger}}(X / I) \cap C_{M^{\dagger}}(I)$. Then

$$
\left[O_{2}\left(M^{\dagger}\right), X_{3}\right] \leqslant\left[O_{2}(M), X_{3}\right] \leqslant O_{2}(M) \cap X_{3}=X_{1}=Y X
$$

$\left[Y X, X_{3}\right]=\left[Y, X_{3}\right]\left[X, X_{3}\right] \leqslant I$ and $\left[I, X_{3}\right]=1$. Hence X_{3} acts nilpotently on $O_{2}\left(M^{\dagger}\right)$, and since M^{\dagger} is of characteristic 2 , we conclude that X_{3} is a 2-group. So $X_{3} \leqslant O_{2}\left(M^{\dagger}\right) \leqslant O_{2}(M)$ and $X_{3} \leqslant X_{1}=Y X \leqslant X_{3}$. Thus

$$
X_{3}=Y X
$$

This is the first part of 2°.
By 8.25 d $N_{0} \leqslant M^{\dagger}$. Put $N_{2}:=C_{N_{0}}(Y)$. By 1.52 C] $\left[M^{\circ}, C_{M^{\dagger}}(Y)\right] \leqslant O_{2}\left(M^{\circ}\right)$ and so $\left[M_{\circ}, N_{2}\right] \leqslant O_{2}\left(M^{\circ}\right) \cap M_{\circ}=O_{2}\left(M_{\circ}\right)$. By 8.27 a) $O_{2}\left(M_{\circ}\right)=X$ and so M_{\circ} normalizes $N_{2} X$. Since $\left[B, N_{0}\right] \leqslant U \leqslant I$ and by 8.27 b $[X, X] \leqslant I$, we get $\left[X \cap B, N_{2} X\right] \leqslant I$. As M_{\circ} normalizes $N_{2} X$, we conclude that

$$
\left[X, N_{2} X\right]=\left[\left\langle(X \cap B)^{M_{\circ}}\right\rangle, N_{2} X\right] \leqslant I
$$

Thus N_{2} centralizes X / I and I and so $N_{2} \leqslant X_{3}=Y X$. Hence

$$
N_{2}=Y X \cap N_{2}=Y X \cap C_{N_{0}}(Y)=Y X \cap N_{0}
$$

By 8.29 b) $Y X \cap N_{0}=X \cap B$ and so $N_{2}=X \cap B$. Since $\overline{N_{0}} \leqslant C_{\bar{M}}(U)=\bar{B}$, this gives $N_{0}=$ $B N_{2}=\bar{B}(X \cap B)=B$, and 2° is proved.
$3^{\circ} . \quad E=E \circ$ and $M^{\circ}=M_{\circ}$.
By 8.26 C $C_{E}(U) \leqslant N_{0}$, by $2^{\circ} N_{0}=B$, and by 8.26 d $B \leqslant E_{0}$. Thus $E=E_{\circ} C_{E}(U)=$ $E_{\circ} B=E_{\circ}$. Since $E_{\circ} \leqslant M_{\circ}$, this gives $Q \leqslant E \leqslant M_{\circ}$ and so $M^{\circ}=\left\langle Q^{M}\right\rangle \leqslant M_{\circ}$.
$4^{\circ} . \quad O_{2}\left(M^{\dagger}\right)=Y X$ and $C_{G}(Y) / Y X \cong S p_{m-2}(2)$.
By 8.29 g), $O_{2}\left(N_{C}(Y) / N_{0}\right)=Y X N_{0} / N_{0}$ and by $2^{\circ} B=N_{0}$. It follows that

$$
O_{2}\left(N_{C}(Y)\right) \leqslant Y X N_{0}=Y X B \leqslant O_{2}\left(N_{C}(Y)\right)
$$

and so

$$
\begin{equation*}
O_{2}\left(N_{C}(Y)\right)=Y X B \tag{I}
\end{equation*}
$$

Thus

$$
Y X \leqslant O_{2}\left(M^{\dagger}\right) \leqslant O_{2}\left(N_{C}(Y)\right)=Y X B=Y X N_{0}
$$

and

$$
O_{2}\left(M^{\dagger}\right)=Y X\left(O_{2}\left(M^{\dagger} \cap B\right)\right)
$$

Also $O_{2}\left(M^{\dagger}\right) \cap B \leqslant O_{2}(M) \cap B \leqslant X$ and so $O_{2}\left(M^{\dagger}\right)=Y X$.
Note that $\overline{M^{\dagger}}=\bar{M}$ and by 8.25 b $C_{\bar{M}}(U)=\bar{B}$. As $N_{C}(Y)=C_{M^{\dagger}}(U)$ this gives $N_{C}(Y)=$ $C_{G}(Y) B=C_{G}(Y) Y X B$. Hence

$$
\begin{aligned}
N_{C}(Y) / Y X N_{0} & \stackrel{\text { l }}{=} N_{C}(Y) / Y X B=C_{G}(Y) Y X B / Y X B \\
& \cong C_{G}(Y) / Y X B \cap C_{G}(Y)=C_{G}(Y) / Y X C_{B}(Y)
\end{aligned}
$$

Since $C_{B}(Y)=C_{M}(Y) \cap B=B \cap O_{2}(M) \leqslant X$, we get that $N_{C}(Y) / Y X N_{0} \cong C_{G}(Y) / Y X$. By 8.29 g), $N_{C}(Y) / Y X N_{0} \cong S p_{m-2}(2)$ and so $C_{G}(Y) / Y X \cong S p_{m-2}(2)$, and 4° is proved.

We are now able to prove the lemma. By 8.22 a $\bar{M} \cong \Omega_{6}^{+}(2)$ or $\bar{M} \cong O_{6}^{+}(2)$, and $\bar{M}=\overline{M_{\circ}} \bar{S}$, and by 8.29 (f) $m=2$ or 4 . Moreover, 1° shows that $N / N_{0} \cong S p_{m}(2) \times S L_{3}(2)$ and $\widehat{B}=B / U$ is a tensor product over \mathbb{F}_{2} of corresponding natural modules. By $\left(2^{\circ} N_{0}=B\right.$. Also U is the natural $S L_{3}(2)$-modules for E dual to U_{0}, and so the structure of N is as described in (1) (for $m=2$) and in(2) (for $m=4$).

By 8.27d X / I is a direct sum of $m-2$ natural $S L_{4}(2)$-modules for M_{\circ} isomorphic to I_{0}, and by $4^{\circ} C_{G}(Y) / Y X \cong S p_{m-2}(2)$.

Suppose first that $m=2$. Then $m-2=0$ and so $X=I, Y X=I$ and $C_{G}(Y)=Y$. Thus $M^{\dagger}=M C_{G}(Y)=M$ and since $Y \leqslant O_{2}(M) \leqslant C_{G}(Y), Y=O_{2}(M)$. Thus 11) holds if $m=2$.

Suppose next that $m=4$. Then X / I is a direct sum of two natural ${ }_{S} L_{4}(2)$-modules for M_{\circ} and $C_{G}(Y) / X Y \cong S L_{2}(2)$. By $\left.\sqrt{2^{\circ}}\right) C_{M^{\dagger}}(X / I) \cap C_{M^{\dagger}}(I)=Y X$ and so $C_{G}(Y) / X Y$ acts faithfully on X / I. By 1.52 c$)\left[M^{\circ}, C_{G}(Y)\right] \leqslant O_{2}\left(M^{\circ}\right)$ and so $\left[M_{\circ}, C_{G}(Y)\right] \leqslant X$. Thus $C_{G}(Y) M_{\circ} / Y X \cong$ $S L_{2}(2) \times S L_{4}(2)$, and X / I is a tensor product over F_{2} of corresponding natural modules.

Note that S normalizes at least one of the three simple M_{\circ}-submodules of X / I. Let R be such a simple M_{\circ}-module. Since M_{\circ} induces $S L_{4}(2) \cong A u t(R)$ on R we conclude that S induces inner automorphism on $M_{\circ} / C_{M_{\circ}}(R)=M_{\circ} / X$. Since $\bar{M}=\overline{M_{\circ}} \bar{S}$ this gives $\overline{M^{\dagger}}=\bar{M}=\overline{M_{\circ}}$ and $M^{\dagger}=M_{\circ} C_{G}(Y)$. Thus 2) holds.

Lemma 8.31. Suppose that $I \leqslant A$ and I is the natural $\Omega_{6}^{+}(2)$-module for M°. Then $m=2$. In particular, 8.30 (1) holds.

Proof. Suppose not. Then 8.30 helds. In particular, $m=4, M^{\dagger}=M_{\circ} C_{G}(Y)$ and $N_{0}=B$. Since $\bar{M} \cong S L_{4}(2) \cong \Omega_{6}^{+}(2)$ and \bar{I} is a natural $\Omega_{6}^{+}(2)$-module for $M, N_{M}(U)$ is a parabolic subgroup of M. So we may choose notation such that S normalizes U. Then $S \leqslant N$. Recall from 8.29(d) that K is a natural $S p_{4}(2)$-module for $C / N_{0}=C / B$.

Let K_{1} be as in the proof of 8.29 , that is, $K_{1}=[K, Y]$ and K_{1} is 1-space in K. In particular, S normalizes K_{1}. Let K_{3} be the 2-subspace of K such that $K_{1}<K_{3}<K_{1}^{\perp}$ and S normalize K_{3}. Then K_{2} is a singular 2-subspace of K. Put

$$
C_{3}:=N_{C}\left(K_{3}\right), \quad Y_{3}:=\left\langle Y^{C_{3}}\right\rangle, \quad I_{3}:=\left\langle I^{C_{3}}\right\rangle
$$

Note that K_{3} is the natural $S L_{2}(2)$-module for C_{3}. Thus $K_{3}=\left\langle K_{1}^{C_{3}}\right\rangle$ and so

$$
I_{3} / U \cong K_{3} \otimes U_{0} \text { and } I_{3} / U=\left\langle\alpha(v) \mid \alpha \in K_{3}, v \in U_{0}\right\rangle
$$

Since K_{3} is a 2-space, we get $\left|I_{3} / U\right|=2^{6}$ and $\left|I_{3}\right|=2^{9}$, and since K_{3} is singular, I_{3} is abelian. As $C_{G}(I)=C_{G}(Y)$, we conclude that Y_{3} is abelian. ${ }^{2}$

Since C_{3} acts transitively on the 1-spaces in K_{3}, C_{3} also acts transitively on the corresponding transvections. It follows that $Y_{3} B=C_{C}\left(K_{3}\right)$ and $\left|Y_{3} B / B\right|=2^{3}$. Hence $C_{K}\left(Y_{3}\right)=K_{3}$, and since $\widehat{B} \cong K \otimes U_{0}$, we infer $C_{\hat{B}}\left(Y_{3}\right) \cong K_{3} \otimes U_{0}$ and $C_{\widehat{B}}\left(Y_{3}\right)=I_{3} / U$.

Since Y_{3} is abelian we get $Y_{3} \cap B / U \leqslant C_{B / U}\left(Y_{3}\right)=I_{3} / U$ and so $Y_{3} \cap B=I_{3}$. Hence Y_{3} has order 2^{12}. As Y_{3} is abelian and generated by involutions, Y_{3} is elementary abelian.

Since Y_{3} is abelian, $Y_{3} \leqslant C_{G}(Y)$. Note that $Y B / B$ is the only transvection group contained in $O_{2}\left(N_{C}\left(K_{1}\right) / B\right)$. As $N_{C}\left(K_{1}\right)=N_{C}(Y)$ we get $Y_{3} \neq O_{2}\left(C_{G}(Y)\right)=X Y$. Since $C_{G}(Y) / X Y \cong S L_{2}(2)$ and $Y X / Y$ is the tensor product of natural modules for

$$
M^{\dagger} / X Y=M_{\circ} Y / X \times C_{G}(Y) / X Y \cong S L_{2}(2) \times S L_{4}(2)
$$

we get

$$
\left|Y_{3} X / Y X\right|=2 \quad \text { and } \quad\left|C_{Y X / Y}\left(Y_{3}\right)\right|=2^{4}
$$

Since Y_{3} has order 2^{12} and Y has order 2^{7}, we conclude that $Y_{3} \cap Y X$ has order $2^{11},\left|Y_{3} \cap Y X / Y\right|=2^{4}$ and

$$
C_{Y X / Y}\left(Y_{3}\right)=Y_{3} \cap X Y / Y
$$

It follows that $Y_{3} X / Y$ has exactly two maximal elementary abelian subgroups, namely $Y X / Y$ and Y_{3} / Y.

[^12]Since $\left[M_{\circ}, C_{G}(Y)\right]=X, M_{\circ}$ normalizes $Y_{3} X$. As M_{\circ} normalizes $Y X / Y$, it also normalizes the unique other maximal elementary abelian subgroup of Y_{3} / Y. Hence M_{\circ} normalizes Y_{3}. Since S normalizes K_{3}, S normalizes Y_{3} and so $M=M_{\circ} S \leqslant N_{G}\left(Y_{3}\right)$. The basic property of M now implies $N_{G}\left(Y_{3}\right) \leqslant M^{\dagger}=N_{G}(Y)$, a contradiction since $C_{3} \leqslant N_{G}\left(Y_{3}\right)$ and $Y \nleftarrow C_{3}$.

This completes our proof-by-contradiction, and the lemma holds.

It remains to analyze Case 8.30, 1 .
Lemma 8.32. Suppose that $I \leqslant A$ and I is the natural $\Omega_{6}^{+}(2)$-module for M°. Let t be a non-singular vector in I. Then $C_{G}(t) \nleftarrow M$.

Proof. Recall that $U=C_{Y}(L)$ and so $L \leqslant C$. Since $C / N_{0}=C / B \cong S L_{2}(2)$ we infer $N_{C}(Y)=Y B$ and $\left|C / N_{C}(Y)\right|=3$. So $\left|I^{C}\right|=3$. Let $I^{C}=:\left\{I_{1}, I_{2}, I_{3}\right\}$ with $I=I_{1}$. Let V_{0} be a 2-subspace of U. Note that for $i \in\{1,2,3\}, U$ is singular 3 -subspace of I_{i} and so V_{0} is a singular 2 -space in I_{i}. Hence V_{0} is contained in a unique singular 3-space V_{i} of I_{i} different from U. Note also that $V_{0}^{\perp}=U V_{i}$ in I_{i}. Define

$$
M_{i}:=N_{G}\left(I_{i}\right), \quad Y_{i}:=C_{G}\left(I_{i}\right), \quad E_{i}:=N_{G}\left(V_{i}\right)^{\circ}, \quad B_{i}:=O_{2}\left(E_{i}\right)
$$

So $M_{1}=M$ and $Y_{1}=Y$. Note that by $8.30, M^{\circ}=M_{\circ}$. Since $O_{2}\left(M_{\circ}\right)=X=I$ we have $M_{i}^{\circ} / I_{i} \cong \Omega_{6}^{+}(2)$. By 2.7b $E_{i} \leqslant M_{i}^{\circ}$, and B.38 C) shows that V_{i} is a natural $S L_{3}(2)$-module for E_{i}. Note that $E_{i} \leqslant N_{M_{i}^{\circ}}\left(V_{i}\right)$ and both I_{i} / V_{i} and $C_{M_{i}^{\circ}}\left(V_{i}\right) / I_{i}$ are natural $S L_{3}(2)$-modules (dual to $\left.V_{i}\right)$. Hence $C_{M_{i}^{\circ}}\left(V_{i}\right)=\left[C_{M_{i}^{\circ}}\left(V_{i}\right), E_{i}\right] \leqslant E_{i} . E_{i}=N_{M_{i}^{\circ}}\left(V_{i}\right), B_{i}=C_{M_{i}^{\circ}}\left(V_{i}\right)$, and B_{i} has order 2^{9}.

Put

$$
E_{0}:=N_{G}\left(V_{0}\right)^{\circ} \quad \text { and } \quad B_{0}:=O_{2}\left(E_{0}\right)
$$

Since $V_{0} \leqslant V_{i} \leqslant I_{i}, 2.7$ b shows that $E_{0} \leqslant E_{i} \leqslant M_{i}^{\circ}$. By B.38 c) V_{0} is natural $S L_{2}(2)$-module for E_{0}. Also $I_{i}=\left[I_{i}, E_{0}\right] \leqslant E_{0}, C_{M_{i}^{\circ}}\left(V_{0}\right) / I_{i}$ is extra special of order 2^{5} with center $C_{M_{i}^{\circ}}\left(U V_{i}\right) / I_{i}$, and $C_{M_{i}^{\circ}}\left(V_{0}\right) / C_{M_{i}^{\circ}}\left(U V_{i}\right)$ is the direct sum of two natural $S L_{2}(2)$-modules for E_{0}. Hence $C_{M_{i}^{\circ}}\left(V_{0}\right)=$ $\left[C_{M_{i}^{\circ}}\left(V_{0}\right), E_{0}\right] \leqslant E_{0} . E_{0}=N_{M_{i}^{\circ}}\left(V_{0}\right), B_{0}=C_{M_{i}^{\circ}}\left(V_{0}\right)$ and B_{0} has order $2^{6+5}=2^{11}$. Note also that $E=N_{M_{i}^{\circ}}(U)$ and so $E_{i} \cap E=E_{0}$. Since C centralizes U, C centralizes V_{0} and so C normalizes E_{0}. Moreover, since C acts as $\operatorname{Sym}(3)$ on $\left\{I_{1}, I_{2}, I_{3}\right\}$ it also act as $\operatorname{Sym}(3)$ on $\left\{V_{1}, V_{3}, V_{3}\right\}$ with B the kernel of the action.

Let $\{i, j, k\}=\{1,2,3\}$. Note that Y_{i} fixes $I_{i}, Y_{i} \leqslant C$ and $Y_{i} * B$, so Y_{i} acts non-trivially on $\left\{I_{j}, I_{k}\right\}$ and $\left\{V_{j}, V_{k}\right\}$.

Put

$$
V_{i j}:=\left\langle V_{j}^{E_{i}}\right\rangle
$$

$1^{\circ} . \quad V_{i j}$ is the unique elementary abelian subgroup of 2^{6} in B_{0} containing $V_{i} V_{j}$. In particular, $V_{i j}=V_{j i}$.

Put $Z / V_{0}=Z\left(E_{0} / V_{0}\right)$. Note that $\left[U, E_{0}\right] \leqslant V_{0}$ and $\left[V_{i}, E_{0}\right] \leqslant V_{0}$. So $U V_{i} \leqslant Z \cap I_{i}$. Since $I_{i} / U V_{i}=I_{i} / V_{0}^{\perp}$ is a natural $S L_{2}(2)$ module for E_{0} we conclude that $Z \cap I_{i}=U V_{i}$. Also $Z I_{i} / I_{i} \leqslant$ $Z\left(E_{0} / I_{i}\right)=C_{E_{0}}\left(U V_{i}\right) / I_{i}$. The latter group has order 2. As E normalizes I_{i} and $I_{j}, I_{i} \cap I_{j}=U$ and so $V_{j} \not I_{i}$. Since $V_{j} \leqslant Z$ we conclude that $\left|Z I_{i} / I_{i}\right|=2$ and $Z=U V_{i} V_{j}$ is elementary abelian of order 2^{5}. In particular,

$$
Z I_{i} / I_{i}=C_{E_{0}}\left(U V_{i}\right) / I_{i} \quad \text { and } \quad C_{I_{i}}(Z)=U V_{i}
$$

Since $B_{i}=C_{M_{i}^{\circ}}\left(V_{i}\right) \leqslant E_{0}$, we have $B_{i}=C_{E_{0}}\left(V_{i}\right)$ and so

$$
\begin{equation*}
B_{i} \cap I_{j}=C_{I_{j}}\left(V_{i}\right)=C_{I_{j}}(Z)=U V_{j} \tag{I}
\end{equation*}
$$

Thus $\left|I_{j} B_{i} / B_{i}\right|=\left|I_{j} / U V_{j}\right|=4=\left|B_{0} / B_{i}\right|$ and so $B_{0}=I_{j} B_{i}$. Since $\left[Z, B_{i}\right] \leqslant\left[Z, B_{0}\right] \leqslant V_{0} \leqslant V_{i}$, $Z / V_{i} \leqslant \Omega_{1} Z\left(B_{i} / V_{i}\right)$. Also $Z \cap I_{i} / V_{i} \neq 1$ and $Z I_{i} / I_{i} \neq 1$. Since I_{i} / V_{i} and B_{i} / I_{i} are simple E_{i}-module we conclude that $B_{i}=\left\langle Z^{E_{i}}\right\rangle$ and thus B_{i} / V_{i} is elementary abelian. Since $\left[B_{i}, I_{j}\right]=\left[B_{i} I_{j}, I_{j}\right]=$ $\left[B_{0}, I_{j}\right]=V_{j} U$, we get

$$
\left[B_{i} / V_{i}, B_{0}\right]=\left[B_{i} / V_{i}, I_{j} B_{i}\right]=\left[B_{i}, I_{j}\right] V_{i} / V_{i}=V_{i} V_{j} U / I_{i}=Z / I_{i}
$$

Note that $C_{E_{i}}\left(B_{i} / I_{i}\right)=B_{i}$ and so $\left|B_{0} / C_{B_{0}}\left(B_{i} / I_{i}\right)\right|=\left|B_{0} / B_{i}\right|=4$ and

$$
\left|\left[B_{i} / V_{i}, B_{0}\right]\right|=\left|Z / I_{i}\right|=4=\left|B_{0} / C_{B_{0}}\left(B_{i} / I_{i}\right)\right|
$$

Hence B_{0} is an offender on the dual of B_{i} / V_{i}. The General FF-Module Theorem C.2 d now implies that B_{i} / V_{i} is the direct sum of natural $S L_{3}(2)$-modules for E_{i}. Since B_{i} / I_{i} and I_{i} / V_{i} are both dual to V_{i}, the summands are isomorphic. It follows that there exists three simple E_{i}-submodules in B_{i} / V_{i}. As $\left[B_{i} / V_{i}, B_{0}\right]=Z / V_{i}$ has order four, each of the simple submodules intersects Z / V_{i} in a subgroups of order 2. Hence each subgroup of order 2 of Z / V_{i} lies is a simple E_{i} submodule. Recall that $V_{i j}=\left\langle V_{j}^{E_{i}}\right\rangle$ and note that $V_{i} V_{j} \leqslant V_{i j}$. Since $V_{i} V_{j} \leqslant Z$ and $V_{j} V_{i} / V_{i}$ has order 2 we conclude that $V_{i j} / V_{i}$ is a simple E_{i}-submodule of B_{i} / V_{i}. So $V_{i j} / V_{i}$ is a natural $S L_{3}(2)$-module for E_{i}. Note that $I_{i} I_{j}$ is elementary abelian and E_{i} acts transitively on $V_{i j} / V_{i}$. Thus all non-trivial elements in $V_{i j}$ have order 2 and so $V_{i j}$ is elementary abelian of order 2^{6}. Since both I_{i} / V_{i} and $V_{i j} / V_{i}$ are simple E_{i}-submodules of $B_{i} / V_{i}, B_{i}=I_{i} V_{i j}$ and so

$$
B_{i} \cap B_{j}=C_{B_{i}}\left(V_{j}\right)=C_{I_{i}}\left(V_{j}\right) V_{i j} \stackrel{\text { II }}{=} U V_{i} V_{i j}=U V_{i} V_{j} V_{i j}=Z V_{i j}
$$

Note that $C_{B_{0}}(Z) \leqslant C_{B_{0}}\left(U V_{i}\right)=I_{i} Z$ and $C_{I_{i}}(Z)=U V_{i} \leqslant Z$. So $C_{B_{0}}(Z)=Z$. Also $Z \cap V_{i j}=$ $V_{i} V_{j}$ has index 2 in Z. It follows that Z and $V_{i j}$ are the only maximal elementary abelian subgroups of $Z V_{i j}=B_{i} \cap B_{j}$. Since Z has order $2^{5}, V_{i j}$ is the only elementary abelian subgroup of order 2^{6} in $B_{i} \cap B_{j}$. As $B_{i} \cap B_{j}=C_{B_{0}}\left(V_{i} V_{j}\right)$ this shows that $V_{i j}$ is the only elementary abelian subgroups in B_{0} of order 2^{6} containing $V_{i} V_{j}$. Thus 1° holds.

Recall that that $\overline{M^{\circ}} \cong \operatorname{Alt}(8)$ acts on a set Λ of 8 objects and Y is the central quotient of the permutation module on Λ. Let $1 \neq y_{\lambda} \in Y$ with $C_{\overline{M^{\circ}}}\left(y_{\lambda}\right) \cong \operatorname{Alt}(7)$. Note \bar{Z} is 2 -central in $\overline{M^{\circ}}$ and so we may assume that \bar{Z} corresponds to $\langle(12)(34)(56)(78)\rangle$ in $\operatorname{Alt}(8)$. Then $[Y, Z]=\left\langle y_{12}, y_{34}, y_{56}, y_{78}\right\rangle$. It follows that $[Y, Z]$ is a non-singular isotropic 3 -space of I. Hence the elements of $[Y, Z] \backslash V_{0}$ are non-singular. Since $C / B \cong S L_{2}(2)$ and $Y B \in S y l_{2}(C)$ we conclude that $[C, Z] / V_{0}$ has order four and the elements in $[C, Z] \backslash V_{0}$ are not 2-central in G. Recall here that since $O_{2}(M)$ is weakly closed, elements of Y are conjugate in G if and only if they are conjugate in M, see 2.6 d). Also $Z / V_{0}=U / V_{0} \times[C, Z] / V_{0}$ as an C-module. Since $V_{i} \neq U$ and V_{i} is a singular 3-space we conclude that $\left\langle V_{i}, V_{j}, V_{k}\right\rangle=Z$ and $V_{i} V_{j} \cap I_{k}=\left[Y_{k}, Z\right]$ is a non-singular isotropic 3-space in I_{k}. It follows that E_{0} has two orbits on $I_{i} I_{j} \backslash I_{i}$, namely the four 2-central involutions in $I_{j} \backslash V_{0}$ and the four non-2-central involutions in $\left[Y_{k}, Z\right] \backslash V_{0}$.

Put $M_{i j}:=N_{G}\left(V_{i j}\right)$. Then by $\left.1{ }^{\circ}\right) V_{i j}=V_{j i}$ and so $\left\langle E_{i}, E_{j}\right\rangle \leqslant M_{i j}$. Let $v \in I_{i} I_{j} \backslash I_{i}$. Then $C_{E_{i}}\left(v I_{i} / I_{i}\right)=E_{0}$ and $\left|E_{i} / E_{0}\right|=7$. We conclude that E_{i} has two orbits on $V_{i j} \backslash I_{i}$, namely the twentyeight 2-central involutions and the twenty-eight non-2-central involutions. Also E_{i} acts transitively on the seven 2-central involutions in I_{i}. Note that the same holds with i and j interchanged. Since $I_{i} \neq I_{j}$ we conclude that $M_{i j}$ acts transitively on thirty-five 2-central involutions and transitively on the twenty-eight non-2-central involutions in $V_{i j}$. It follows that 35 and so also 5 divides $\left|M_{i j}\right|$.

Let $t_{k} \in\left[Y_{K}, Z\right] \backslash U_{0}$. Then $\left|t_{k}^{M_{i j}}\right|=28$ and we conclude that 5 divides $\left|C_{M_{i j}}(t)\right|$. Since $M_{i j} \cap$ $M_{k} \leqslant N_{M_{k}}\left(V_{i j} \cap I_{k}\right)=N_{M_{k}}\left(\left[Y_{k}, Z\right]\right), 5$ does not divide $M_{i j} \cap M_{k}$ and so $C_{M_{i j}}\left(t_{k}\right) \not M_{k}$. Since t_{k} is non-singular in I_{k} this gives $C_{G}(t) \$ M$, and the lemma is proved.

Lemma 8.33. Suppose that $I \leqslant A$ and I is the natural $\Omega_{6}^{+}(2)$-module for M°. Then Case (3) of Theorem H holds.

Proof. Recall that case 8.30 11 holds, in particular $p=2,|Y / I|=2, \overline{M^{\circ}} \cong \Omega_{6}^{+}(2)$, and I is a natural $\Omega_{6}^{+}(2)$-module for M°. Let t be a non-singular vector of I. If $C_{G}(t)$ is not of characteristic 2, then Case (3) of Theorem H holds.

So suppose for a contradiction that $C_{G}(t)$ is of characteristic 2 . Since $Y=O_{2}(M) \leqslant C_{G}(t)$, 2.6 C shows $M^{\dagger} \cap C_{G}(t)$ is a parabolic subgroup of $C_{G}(t)$. Since $M^{\dagger}=M$, this gives $P:=$ $O_{2}\left(C_{G}(t)\right) \leqslant O_{2}\left(C_{M}(t)\right)$. Since t is non-singular in I and $\bar{M} \cong \Omega_{6}^{+}(2)$ or $O_{6}^{+}(2)$, we have $C_{\bar{M}}(t) \cong$ $S p_{4}(2)$ or $C_{2} \times S p_{4}(2)$. Hence either $\bar{P}=1$, or $|\bar{P}|=2$ and $[Y, \bar{P}]=\langle t\rangle$. In either case $[Y, P] \leqslant\langle t\rangle$ and so also $\left[\left\langle Y^{C_{G}(t)}\right\rangle, P\right] \leqslant\langle t\rangle$. As $C_{G}(t)$ is of characteristic 2 , this implies $Y \leqslant P \leqslant C_{G}(t)$. Since $Y=O_{2}(M)$ is weakly closed, we conclude that $C_{G}(t) \leqslant N_{G}(Y)=M^{\dagger}=M$. But this contradicts 8.32

Proposition 8.34. Suppose that $I \leqslant A$. Then Case (2) or Case (3) of Theorem Holds.
Proof. By 8.21 either I is a natural $S L_{3}(2)$-module for M° and Theorem $\mathrm{H} \mid 2$ holds, or I is a natural $\Omega_{6}^{+}(2)$-module for M°. In the latter case 8.33 shows that Theorem H3 holds.

8.3. The Case $I \neq A$ and $\Omega_{1} Z(A) \neq Z(L)$

In this short section we continue to assume the hypothesis and notation of Theorem H. Furthermore, we assume that $I \$ A$ and $\Omega_{1} Z(A) 末 Z(L)$.

Proposition 8.35. Suppose that $I \leqslant A$ and $\Omega_{1} Z(A) * Z(L)$. Then Theorem (H) (5) or (6) holds.

Proof. Then $\left[\Omega_{1} Z(A), L\right] \neq 1$ and so by $8.6\left[Y_{H Q}, H Q\right] \neq 1$. Note that $Q \leqslant O_{p}(H Q)$ and so $\left[Y_{H Q}, Q\right]=1, H Q=H C_{N}\left(Y_{H Q}\right)$ and $\left[Y_{H Q}, H\right] \neq 1$. Let V be an H-submodule of $Y_{H Q}$ minimal with $\left[V, O^{p}(H)\right] \neq 1$. Since $H \in \mathfrak{H}_{G}\left(O_{p}(M)\right), 2.11$ e] shows that H is p-irreducible and so by 1.34 c), V is H-quasisimple. Note that $V=[V, H] \leqslant H$ and since V is p-reduced for $H, V \leqslant Y_{H}$. Hence, according to 2.17 there exists a non-trivial strong offender W on Y such that $W \leqslant V \leqslant Y_{H Q}$ and

$$
[X, W]=[Y, W] \text { for all } X \leqslant Y \text { with }\left|X / C_{X}(W)\right|>2
$$

Since $\left[Y_{H Q}, Q\right]=1, Y_{H Q} \leqslant C_{G}(Q)=Z(Q)$ and $[Y, W] \leqslant W \leqslant Z(Q)$; in particular, $W \leqslant Q$ and $[Y, W, Q]=1$. So we can apply C.26. Since $[V, W, Q]=1$ we get that $\overline{M^{\circ}} \cong S L_{n}(q)$ or $S p_{2 n}(q), n \geqslant 2$, and $\left[Y, M^{\circ}\right]$ is a corresponding natural module. Moreover, either $Y=\left[Y, M^{\circ}\right]$ or $\overline{M^{\circ}} \cong S p_{2 n}(2), n \geqslant 2$, and $\left|Y /\left[Y, M^{\circ}\right]\right|=2$. By the definition of the Fitting submodule, $I=\left[Y_{M}, M^{\circ}\right]$ since $\left[Y, M^{\circ}\right]$ is the unique M-component of Y.

If $\overline{M^{\circ}} \cong S L_{n}(q)$, then Theorem H 5 holds.
If $\overline{M^{\circ}} \cong S p_{2 n}(q)$ and $I=Y$, then $I \$ Q^{\bullet}$ and so by $2.26 p$ is even. Thus Theorem H 6 holds.
If $I \neq Y$, then Theorem $H(4)$ holds.

8.4. The Case $I \neq A$ and $\Omega_{1} Z(A) \leqslant Z(L)$

In this section we continue to assume the hypothesis and notation of Theorem H . Furthermore, we assume that $I \approx A$ and $\Omega_{1} Z(A) \leqslant Z(L)$.

Lemma 8.36. Suppose that $I * A$ and $\Omega_{1} Z(A) \leqslant Z(L)$. Then
(a) $Z(A)=C_{Y}(L)=C_{Y}(A) \leqslant Y \cap A$.
(b) $Y A=I A$ and $[Y, A]=[I, A] \leqslant I \cap A$.
(c) $C_{A}(I \cap A)=Y \cap A=[I, A] C_{Y}(L)=(I \cap A) C_{Y}(L)$; in particular $C_{A}(Y)=C_{A}(I)=$ $C_{A}(I \cap A)$.
(d) $\left|I / C_{I}(A)\right| \leqslant\left|A / C_{A}(I)\right|^{2}$,
(e) A acts nearly quadratically but not quadratically on I.

Proof. (a): By 1.43 q) $\Omega_{1} Z(A)=Z(A)$. As $\Omega_{1} Z(A) \leqslant Z(L)$ this gives $Z(A)=A \cap Z(L)$. By 1.43 b) $A \cap Z(L)=C_{Y}(L)$, and by 1.43 (j)

$$
C_{Y}(A)=Y \cap Z(A) \leqslant C_{Y}(L) \leqslant C_{Y}(A)
$$

so $C_{Y}(A)=C_{Y}(L)$.
(b) and (c): Since I is $N_{L}(Y)$-invariant, 8.7 implies that $Y A=I A,[Y, A]=[I, A] \leqslant I \cap A$ and $Y \cap A=[I, A] C_{Y}(L)$. By 8.4 c),$C_{G}(Y)=C_{G}(I)$ and so also $C_{A}(Y)=C_{A}(I)$. Moreover, by 1.43 g) $C_{A}(Y)=Y \cap A$ and by 1.43(j) $C_{A}(Y \cap A)=Z(A)(Y \cap A)$. As $Z(A) \leqslant Y \cap A$ by (a), this gives $C_{A}(Y \cap A)=Y \cap A$, and since $Y \cap A=[I, A] C_{Y}(L)=(I \cap A) C_{Y}(L), C_{A}(Y \cap A)=C_{A}(I \cap A)$ follows.
(d) and (e): By (b) $A=\left\langle(Y \cap A)^{L}\right\rangle=\left\langle\left([I, A] C_{Y}(L)\right)^{L}\right\rangle$. Since by (a) $[A, A] \neq 1$, this gives $[I, A, A] \neq 1$, i.e. A does not act quadratically on I. Moreover, by $1.43 \cap \mathrm{n}\left|Y / C_{Y}(A)\right| \leqslant\left|A / C_{A}(Y)\right|^{2}$. Since $\left|I / C_{I}(A)\right| \leqslant\left|Y / C_{Y}(A)\right|$ and by (c) $C_{A}(Y)=C_{A}(I)$, this gives $\left|I / C_{I}(A)\right| \leqslant\left|A / C_{A}(I)\right|^{2}$.

By $1.43 \mathrm{~m} A$ acts nearly quadratically on Y and so also on I.

Lemma 8.37. Suppose that $I * A$ and $\Omega_{1} Z(A) \leqslant Z(L)$. Then
(a) $Y=I C_{Y}(A)$.
(b) A is a non-trivial offender on $I \cap A$.
(c) Suppose that no subgroup of A is a non-trivial offender on I. Then A is a non-trivial best offender on $I \cap A$.
Proof. Recall that $\widetilde{q}=|Y / Y \cap A|$. By 8.36(b) $I A=Y A$, and so

$$
\begin{equation*}
|I / I \cap A|=|Y / Y \cap A|=\widetilde{q}, \tag{I}
\end{equation*}
$$

and by 8.36 C
(II)

$$
Y \cap A=C_{Y}(I \cap A) .
$$

Moreover, by 1.43 $\left|A \cap Y / C_{A \cap Y}(L)\right|=|A / A \cap Y|$. Since by 8.36ab $C_{Y}(A)=Z(A)=$ $C_{A \cap Y}(L)$, we get

$$
\begin{equation*}
\left|A \cap Y / C_{Y}(A)\right|=|A / A \cap Y| . \tag{III}
\end{equation*}
$$

(a): By 8.36 b) $Y A=I A$ and so $Y=I(Y \cap A)$. Now (a) follows from 8.36 cc.
(b): By 8.36/e) A does not acts quadratically on I. So $[I, A, A] \neq 1$ and $[I \cap A, A] \neq 1$. Also

$$
\begin{array}{rlr}
\left|A / C_{A}(I \cap A)\right| & \stackrel{\text { III }}{=}|A / Y \cap A| & \stackrel{\text { IIII }}{=}\left|Y \cap A / C_{Y}(A)\right| \\
& \stackrel{\text { IIIT }}{=}\left|(I \cap A) C_{Y}(A) / C_{Y}(A)\right|=\left|I \cap A / C_{I \cap A}(A)\right|
\end{array}
$$

and thus A is a non-trivial offender on $I \cap A$.
(c): Observe that by 1.43 al $\Phi(A) \leqslant C_{Y}(L)$ and so $A / C_{A}(I \cap A)$ is elementary abelian. Since $I \cap A$ and A are $N_{L}(Y)$-invariant and A is a non-trivial offender on $I \cap A, A$ A.29 shows that there exists a non-trivial $N_{L}(Y)$-invariant best offender D on $I \cap A$ with $C_{A}(I \cap A) \leqslant D \leqslant A$ such that $|B|\left|C_{I \cap A}(B)\right| \leqslant|D|\left|C_{I \cap A}(D)\right|$ for all $B \leqslant A$. Since $[I \cap A, D] \neq 1$ and Y is abelian, we have $D \neq Y \cap A$. Thus by 1.43 §f,$C_{Y}(D) \leqslant A$ and we conclude that

$$
\begin{equation*}
C_{I}(D)=C_{I \cap A}(D) . \tag{IV}
\end{equation*}
$$

Note that by the choice of $D, C_{A}(I \cap A) \leqslant D$ and so $C_{A}(I \cap A)=C_{D}(I \cap A)$. By 8.36 C , $C_{A}(I)=C_{A}(I \cap A)=Y \cap A$, and we conclude that

$$
\begin{equation*}
C_{A}(I)=C_{D}(I)=C_{D}(I \cap A)=C_{A}(I \cap A)=Y \cap A . \tag{V}
\end{equation*}
$$

By 8.36ab $C_{Y}(L) \leqslant Y \cap A$. Thus $C_{Y}(L) \leqslant C_{D}(I) \leqslant D \leqslant A$ and so $D / C_{D}(I)$ is an $N_{L}(Y)$ invariant section of $A / C_{Y}(L)$. Since

$$
I \cap A / C_{I \cap A}(L)=I \cap A /(I \cap A) \cap C_{Y}(L) \cong(I \cap A) C_{Y}(L) / C_{Y}(L)
$$

as $N_{L}(Y)$-modules and $C_{I \cap A}(L) \leqslant C_{I \cap A}(D)$, also $I \cap A / C_{I \cap A}(D)$ is (as an $N_{L}(Y)$-module) isomorphic to a section of $A / C_{Y}(L)$.

By 2.18 any chief factor for $N_{L}(Y)$ on $A / C_{Y}(L)$ has order \widetilde{q} and so $\left|D / C_{D}(I)\right|$ and $\mid I \cap$ $A / C_{I \cap A}(D) \mid$ both are powers of \widetilde{q}. As
(VI) $\quad \tilde{q}\left|I \cap A / C_{I \cap A}(D)\right| \stackrel{\text { II }}{=}|I / I \cap A|\left|I \cap A / C_{I \cap A}(D)\right| \stackrel{\text { IV] }}{=}|I / I \cap A|\left|I \cap A / C_{I}(D)\right|=\left|I / C_{I}(D)\right|$, we get that $\left|I / C_{I}(D)\right|$ is a power of \widetilde{q}.

On the other hand, by the assumption of (C), D is not an offender on I. Thus $\left|D / C_{D}(I)\right|<$ $\left|I / C_{I}(D)\right|$ and so, since both sides are powers of \widetilde{q},

$$
\begin{equation*}
\widetilde{q}\left|D / C_{D}(I)\right| \leqslant\left|I / C_{I}(D)\right| \stackrel{\text { VI }}{=} \widetilde{q}\left|I \cap A / C_{I \cap A}(D)\right| \stackrel{\text { bl }}{\lessgtr} \widetilde{q}\left|D / C_{D}(I \cap A)\right| . \tag{VII}
\end{equation*}
$$

By (V) $C_{D}(I)=C_{D}(I \cap A)$ and so $\left|D / C_{D}(I)\right|=\left|D / C_{D}(I \cap A)\right|$. Thus equality must hold in VII). Hence

$$
\left|I \cap A / C_{I \cap A}(D)\right|=\left|D / C_{D}(I \cap A)\right|
$$

and so

$$
\left|D \| C_{I \cap A}(D)\right|=|I \cap A|\left|C_{D}(I \cap A)\right| \leqslant|I \cap A|\left|C_{A}(I \cap A)\right|
$$

Since A is an offender on $I \cap A,|I \cap A|\left|C_{A}(I \cap A)\right||\leqslant|A|| C_{I \cap A}(A) \mid$. So

$$
\left|D \| C_{I \cap A}(D)\right| \leqslant|A|\left|C_{I \cap A}(A)\right|
$$

and the maximality of $\left|D \| C_{I \cap A}(D)\right|$ shows that A is a best offender on $I \cap A$.
Proposition 8.38. Suppose that $I \neq A$ and $\Omega_{1} Z(A) \leqslant Z(L)$. Then Case (1), (5) (for $n=2$ and $q=4$), (7), (8), (9) or (10) of Theorem Holds.

Proof. We will first show:
1°. Let $g \in M$ such that $C_{Y}\left(Q^{g}\right) \cap C_{Y}(A) \neq 1$. Then

$$
\left[\overline{Q^{g}}, \bar{A}\right] \leqslant \overline{Q^{g}} \cap \bar{A} \text { and }\left[Y, Q^{g}\right] \leqslant[A, I] C_{Y}(A)
$$

By 8.36at $C_{Y}(L)=C_{Y}(A)$ and so $\left[C_{Y}\left(Q^{g}\right) \cap C_{Y}(A), L\right]=1$. Now Q ! implies $L \leqslant N_{G}\left(Q^{g}\right)$ and thus by 8.5 (a) Q^{g} normalizes A. So

$$
\left[A, Q^{g}\right] \leqslant A \cap Q^{g} \text { and }\left[Y, Q^{g}\right] \leqslant Y \cap Q^{g} \leqslant Y \cap O_{p}(L)=Y \cap A
$$

By 8.36 C $Y \cap A=[I, A] C_{Y}(A)$ and so 1° holds.
2°. Suppose that I is a vector space over the field \mathbb{K}, Q acts \mathbb{K}-semilinearly on I and A acts \mathbb{K}-linearly on I. Then Q acts \mathbb{K}-linearly on I.

As A acts non-trivially and \mathbb{K}-linearly on $I,[I, A] C_{I}(A)$ is a proper \mathbb{K}-subspace of I. Since Q normalizes $A, C_{Y}(Q) \cap C_{Y}(A) \neq 1$ and

$$
[I, Q] \leqslant I \cap[Y, Q] \stackrel{\sqrt{1}^{0}}{\lessgtr} I \cap[A, I] C_{Y}(A)=[A, I] C_{I}(A)
$$

Thus Q centralizes the non-trivial \mathbb{K}-space $I /[I, A] C_{I}(A)$. Hence Q acts \mathbb{K}-linearly on I.
Note that Y is a p-reduced faithful $Q!$-module for \bar{M} with respect to \bar{Q}. By 8.36 we have that $[Y, A] \leqslant I$, and A acts nearly quadratically but not quadratically on I. By 8.5 b) Q normalizes A, and A normalizes Q. Thus the assumptions of the Nearly Quadratic $Q!$-Theorem D.11 are fulfilled for \bar{M}, \bar{Q} and \bar{A}. We will now discuss the seven cases of that Theorem.

Case 1. $K:=\left[F^{*}(\bar{M}), A\right]$ is the unique component of $\bar{M}, K \leqslant \overline{M^{\circ}}, I$ is a simple K-module, $I=[Y, K \bar{A}]$ and A acts \mathbb{K}-linearly on I, where $\mathbb{K}:=\operatorname{End}_{K}(I)$.

By 8.5 b$) ~ Q$ normalizes L and A, by $1.43 \mathrm{~m}, \bar{A} \cong A / C_{A}(Y)$ is elementary abelian and $[Y, A] \neq 1$, and by 8.37 a), $Y=I C_{Y}(A)$. Moreover, by 8.36a), $Z(A)=C_{Y}(L)=C_{Y}(A)$, and by 8.36dd $\left|I / C_{I}(A)\right| \leqslant\left|A / C_{A}(I)\right|^{2}$. Since A acts \mathbb{K}-linearly on I, by 2° also Q acts \mathbb{K}-linearly on I. As seen above, A acts nearly quadratically but not quadratically on I. Together with 10 this shows that Case (1) of Theorem H holds.

Case 2. $\quad M^{\circ} \cong \Omega_{3}(3)$, and Y is the corresponding natural module for M°.
Then Case 7) of Theorem H holds.
Case 3. $\quad Y=I$, and there exists an \bar{M}-invariant set $\left\{K_{1}, K_{2}\right\}$ of subnormal subgroups of \bar{M} such that $K_{i} \cong S L_{m_{i}}(q), m_{i} \leqslant 2$, q a power of $p,\left[K_{1}, K_{2}\right]=1$ and as a $K_{1} K_{2}$-module $Y \cong Y_{1} \otimes_{\mathbb{F}_{q}} Y_{2}$ where Y_{i} is a natural $S L_{m_{i}}(q)$-module for K_{i}. Moreover, $\mathbb{K}:=\operatorname{End}_{K_{1} K_{2}}(I) \cong \mathbb{F}_{q}$, and one of the following holds:
(1) $\overline{M^{\circ}}$ is one of K_{1}, K_{2} or $K_{1} K_{2}$,
(2) $m_{1}=m_{2}=q=2, \bar{M} \cong S L_{2}(2) \imath C_{2}, \overline{M^{\circ}}=O_{3}(\bar{M}) \bar{Q}$ and $\bar{Q} \cong C_{4}$ or D_{8}.
(3) $m_{1}=m_{2}=p=2, q=4, \overline{M^{\circ}}=K_{1} K_{2} \bar{Q} \cong S L_{2}(4) 乙 C_{2}, A$ acts \mathbb{K}-linearly on I and M° does not.

If \bar{Q} is homocyclic, then 8.10 shows that \bar{Q} is elementary abelian. This rules out the case $\bar{Q} \cong C_{4}$ in (2). So $\bar{Q} \cong D_{8}$ and $\overline{M^{\circ}}=K_{1} K_{2} \bar{Q}=\bar{M} \cong S L_{2}(2)$ ८ C_{2} in (2). In (3), since $K_{1} K_{2} \& \bar{M}, M^{\circ}$ acts \mathbb{K}-semilinearly on I, but not \mathbb{K}-linear. Hence also Q acts \mathbb{K}-semilinearly but not \mathbb{K}-linearly on I. Since A acts \mathbb{K}-linearly on I this contradicts $\left(2^{\circ}\right)$.

Now (1) and (2) show that Case (10) of Theorem H holds.
Case 4. $\bar{M} \cong \Gamma S L_{2}(4), \overline{M^{\circ}} \cong S L_{2}(4)$ or $\Gamma S L_{2}(4), I$ is the corresponding natural module, and $|Y / I| \leqslant 2$.

Then Case (8) of Theorem H holds.
Case 5. $\quad \bar{M} \cong \Gamma G L_{2}(4), \overline{M^{\circ}} \cong S L_{2}(4), I$ is the corresponding natural module, and $Y=I$.
Then Case (5) of Theorem Holds with $n=2$ and $q=4$.
Case $6 . \quad \bar{M} \cong 3 \cdot \operatorname{Sym}(6), \overline{M^{\circ}} \cong 3 \cdot \operatorname{Alt}(6)$ or $3 \cdot \operatorname{Sym}(6)$, and $Y=I$ is simple of order 2^{6}.
Then Case (9) of Theorem Holds.
Case 7. $\quad M \cong \operatorname{Frob}(39)$ or $C_{2} \times \operatorname{Frob}(39), \overline{M^{\circ}} \cong \operatorname{Frob}(39)$ and $Y=I$ is simple of order 3^{3}.
Note that $|\bar{A}|=3,|[Y, A]|=3^{2},\left|C_{Y}(A)\right|=3$ and $C_{Y}(A) \leqslant[Y, A]$. By 8.36, a , $C_{Y}(A)=C_{Y}(L)$, and by 8.36(C), $Y \cap A=[Y, A] C_{Y}(L)=[Y, A]$. Hence $\left|Y \cap A / C_{Y}(L)\right|=3$ and $\left|A / C_{Y}(L)\right|=$ $|A / Y \cap A|\left|Y \cap A / C_{Y}(L)\right|=9$. It follows that $L / O_{3}(L) \cong S L_{2}(3)$ and $A / C_{Y}(L)$ is the natural $S L_{2}(3)$-module for L. In particular, there exists an involution $t \in L \cap M^{\dagger}$ that inverts $A / C_{Y}(L)$ and so also \bar{A}. Thus $\bar{t} \notin Z(\bar{M})$, a contradiction since $\bar{M} / Z(\bar{M})$ has odd order.

8.5. The Proof of Theorem \mathbf{H}

Clearly, one of the cases $I \leqslant A, I \neq A$ and $\Omega_{1} Z(A) \nleftarrow Z(L)$, and $I \nleftarrow A$ and $\Omega_{1} Z(A) \leqslant Z(L)$ holds. Hence Theorem H follows from $8.34,8.35$, and 8.38 , respectively.

CHAPTER 9

The Q-tall Asymmetric Case II

In this chapter we continue the discussion of the Q-tall asymmetric case. More precisely, we discuss Case (1) of Theorem H proved in Chapter 8. As there we use a subgroup $L \in \mathfrak{L}_{G}\left(Y_{M}\right)$ with $L \leqslant N_{G}(Q)$ and investigate the action of $A\left(=O_{p}(L)\right)$ on Y_{M}.

At this point in the proof of the Local Structure Theorem we have already left behind all cases where one might have detected a non-trivial offender on Y_{M} or its Fitting submodule I by using properties of conjugates of Y_{M} or the subgroups of $\mathfrak{H}_{G}\left(O_{p}(M)\right)$ and $\mathfrak{L}_{G}\left(Y_{M}\right)$. Also the theorems on nearly quadratic action have already been exploited by showing that $\bar{M}=M C_{G}\left(Y_{M}\right) / C_{G}\left(Y_{M}\right)$ has a unique component K, that I is a simple K-module and that $A Q$ acts \mathbb{K}-linearly on I, where $\mathbb{K}=\operatorname{End}_{K}(I)$.

So in this chapter we need to apply the Theorems of Guralnick and Malle GM1 and GM2 on simple modules V for almost quasisimple groups that allow a non-trivial $2 F$-offender. In our case, A is such a $2 F$-offender on I. That is,

$$
[I, A] \neq 0 \quad \text { and } \quad\left|I / C_{I}(A)\right| \leqslant\left|A / C_{A}(I)\right|^{2}
$$

But not all the pairs (K, I) which we obtain by applying the Guralnick-Malle Theorems appear in the conclusion of the main theorem of this chapter. In section 9.1 we therefore provide some generic arguments which help to trim down the Guralnick-Malle list: If K is a genuine group of Lie type in characteristic p we show that $\bar{A} \leqslant K$ by using information about the outer automorphism group of K; and if I is a selfdual K-module we obtain a wealth of additional information and are able to give a fairly precise description of the action of A on I.

Here is the main result of this chapter.

Theorem I. Let G be a finite \mathcal{K}_{p}-group, $S \in \operatorname{Syl}_{p}(G)$, and let $Q \leqslant S$ be a large subgroup of G. Suppose that $M \in \mathfrak{M}_{G}(S)$ such that Y_{M} is asymmetric in G and Q-tall and that Case 1 of Theorem H holds. Then one of the following holds, where $Y:=Y_{M}, \overline{M^{\dagger}}:=M^{\dagger} / C_{M^{\dagger}}(Y), I:=F_{Y}(\bar{M})$, and q is some power of p :
(1) $\overline{M^{\circ}} \cong S L_{n}(q), n \geqslant 3$, and I is a corresponding natural module.
(2) $p=2, \overline{M^{\circ}} \cong S p_{2 n}(q), n \geqslant 2$, or $S p_{4}(2)^{\prime}$, and I is a corresponding natural module.
(3) $\overline{M^{\circ}} \cong \Omega_{n}^{\epsilon}(q), n \geqslant 3,(n, q) \neq(3,3), p$ is odd if n is odd, and I is a corresponding natural module.
(4) $\overline{M^{\circ}} \cong S L_{n}(q) /\left\langle(-i d)^{n-1}\right\rangle, n \geqslant 5$, and I is the exterior square of a corresponding natural module.
(5) p is odd, $\overline{M^{\circ}} \cong S L_{n}(q) /\left\langle(-i d)^{n-1}\right\rangle, n \geqslant 3$, and I is the symmetric square of a corresponding natural module.
(6) $\overline{M^{\circ}} \cong S L_{n}(q) /\left\langle\lambda i d \mid \lambda \in \mathbb{F}_{q}, \lambda^{n}=\lambda^{q_{0}+1}=1\right\rangle, n \geqslant 3, q=q_{0}^{2}$, and I is the unitary square of a corresponding natural module.
(7) $\overline{M^{\circ}} \cong \operatorname{Spin}_{10}^{+}(q)$, and I is a corresponding half-spin module.
(8) $\overline{M^{\circ}} \cong E_{6}(q)$, and I is one of the (up to isomorphism) two simple $\mathbb{F}_{p} M^{\circ}$-modules of $\mathbb{F}_{q^{-}}$ dimension 27.
(9) $p=2, \bar{M}=\overline{M^{\circ}}=M a t_{24}$, and I is the simple Todd or Golay-code module of \mathbb{F}_{2}-dimension 11.
(10) $p=2, \overline{M^{\circ}} \cong M a t_{22}$, and I is the simple Golay-code module of \mathbb{F}_{2}-dimension 10 .
(11) $p=2, \bar{M}=\overline{M^{\circ}} \cong$ Aut $\left(M a t_{22}\right)$, and I is the simple Todd module of \mathbb{F}_{2}-dimension 10.
(12) $p=3, \overline{M^{\circ}} \cong M_{11}$, and I is the simple Golay-code module of \mathbb{F}_{3}-dimension 5 .
(13) $p=3, \overline{M^{\circ}} \cong 2 \cdot M a t_{12}$, and I is the simple Golay-code module of \mathbb{F}_{3}-dimension 6 .

Corollary 9.1. Assume the hypothesis and notation of Theorem [1. Suppose in addition that $Y \neq I$. Then one of the following holds:
(1) $\overline{M^{\circ}} \cong S p_{2 n}(q)$ or $S p_{4}(2)^{\prime}, p=2$, I is the corresponding natural module and $|Y / I| \leqslant q$.
(2) $\overline{M^{\circ}} \cong \Omega_{4}^{-}(3), I$ is the corresponding natural module, $|Y / I|=3$, and Y is isomorphic to the 5 -dimensional quotient of a six dimensional permutation module for $\overline{M^{\circ}} \cong \operatorname{Alt}(6)$.
(3) $\overline{M^{\circ}} \cong \Omega_{5}(3), I$ is the corresponding natural module, and $|Y / I|=3$.
(4) $\overline{M^{\circ}} \cong \Omega_{6}^{+}(2), I$ is the corresponding natural module, and $|Y / I|=2$.
(5) $p=2, \bar{M}=\overline{M^{\circ}} \cong M a t_{24}, I$ is the simple Todd-module of \mathbb{F}_{2}-dimension 11 , and $|Y / I|=2$.

Corollary 9.2. Assume the hypothesis and notation of Theorem [1. Suppose in addition that $C_{G}(y)$ is of characteristic p for all $1 \neq y \in Y_{M}$. Then $Y=I$. Moreover, the cases 11) (Todd-module for Aut $\left(M a t_{22}\right)$) and and (13) (Golay-module for $2 \cdot M a t_{12}$) of Theorem $\overline{1}$ do not occur.

Table 1 lists examples for Y_{M}, M and G fulfilling the hypothesis of Theorem \mathbb{I}.
Table 1. Examples for Theorem \mathbb{I}

	Case	[$\left.Y_{M}, M^{\circ}\right]$ for M°	c	Remarks	examples for G
*	3	nat $\Omega_{n}^{\epsilon}(q)$	1	-	$P \Omega_{n+2}^{\epsilon}(q)$
	3	nat $\left.\Omega_{3}(5)\right)$	1	-	Co_{1}
	3	nat $\Omega_{4}^{-}(2)$	1	-	$L_{4}(3)$
*	3	nat $\Omega_{4}^{-}(3)$	$\leqslant 3$	-	$U_{6}(2) . c(.2)$
	3	nat $\Omega_{4}^{-}(3)$	1	-	McL
	3	nat $\Omega_{5}(3)$	1	-	$F i_{22}(.2)$
	3	nat $\Omega_{5}(3)$	$\leqslant 3$	-	${ }^{2} E_{6}(2) . c(.2)$
	3	nat $\Omega_{6}^{+}(2)$	$\leqslant 2$	-	$P \Omega_{8}^{+}(3) . c(.2)$
*	3	nat $\Omega_{7}^{+}(3)$	1	-	$F i_{24}^{\prime}(.2)$
	3	nat $\Omega_{10}^{+}(2)$	1	-	M
	3, 4	Λ^{2} (nat) $S L_{n}(q)$	1	$n \geqslant 4$	$\begin{aligned} & P \Omega_{2 n}^{+}(q), \Omega_{2 n+1}(q) p \text { odd } \\ & P \Omega_{2 n+2}^{-}(q), O_{2 n}^{+}(q) p=2 \end{aligned}$
	5	$S^{2}($ nat $) S L_{n}(q)$	1	-	$P \operatorname{Sp}_{2 n}(q)$
	$\overline{6}$	U^{2} (nat) $S L_{n}\left(q_{0}^{2}\right)$	1	-	$U_{2 n}\left(q_{0}\right), U_{2 n+1}\left(q_{0}\right)$
	7	half-spin $\operatorname{Spin}_{10}^{+}(q)$	1	-	$E_{6}(q)$
	8	q^{27} for $E_{6}(q)$	1	-	$E_{7}(q)$
	9	Golay 2^{11} for Mat_{24}	1	-	$C o_{1}$
	9	Todd 2^{11} for $M_{\text {at }}{ }^{14}$	1	-	J_{4}
*	9	Todd 2^{11} for Mat ${ }_{24}$	$\leqslant 2$	-	$F i_{24}^{\prime} . c$
	10	Golay 2^{10} for Mat ${ }_{22}$	1	-	Co_{2}
*	11	Todd 2^{10} for $\mathrm{Aut}\left(\mathrm{Mat}_{22}\right)$	1	-	Aut (Fi ${ }_{22}$)
	12	Golay 3^{5} for Mat_{11}	1	-	Co_{3}
	12	Golay 3^{6} for $2 \cdot M a t_{12}$	1	-	Co_{1}

Here $c:=\left|Y_{M} /\left[Y_{M}, M^{\circ}\right]\right|$, and $*$ indicates that (char $\left.Y_{M}\right)$ fails in G.

9.1. Notation and Preliminary Results

Notation 9.3. We will use the notation introduced in Theorem \square and in 8.3 . In particular, since $L \in \mathfrak{L}_{G}\left(Y_{M}\right)$,

$$
L / A \cong S L_{2}(\widetilde{q}), S z(\widetilde{q}), \text { or } D_{2 r} \text { and } \widetilde{q}=|Y / Y \cap A|
$$

Moreover, by our hypothesis we are in case (1) of Theorem H. Summing up we have:
(a) A is Q-invariant, \bar{A} is elementary abelian, and A acts nearly quadratically on Y, but not quadratically on I.
(b) $K:=\left[F^{*}(\bar{M}), \bar{A}\right]$ is the unique component of $\bar{M}, K \leqslant \overline{M^{\circ}}$, and I is a simple K-module.
(c) $\left|Y / C_{Y}(A)\right| \leqslant|\bar{A}|^{2}$ and $[Y, K \bar{A}]=I$.
(d) $A Q$ acts \mathbb{K}-linearly on I, where $\mathbb{K}:=\operatorname{End}_{K}(I)$.
(e) If $g \in M$ with $C_{Y}\left(Q^{g}\right) \cap C_{Y}(A) \neq 1$, then $\left[\overline{Q^{g}}, \bar{A}\right] \leqslant \overline{Q^{g}} \cap \bar{A}$ and $\left[Y, Q^{g}\right] \leqslant[Y, A] C_{Y}(A)$.
(f) $Y=I Z(A)=I C_{Y}(A)$ and $C_{Y}(A)=Z(A)=C_{Y}(L)$. In particular, $I \$ A$ and $[Z(A), I]=$ 1.

For any group H and finite dimensional $\mathbb{F}_{p} H$-module V we denote by $Y_{V}(H)$ the largest p reduced submodule of V, i.e., the largest submodule U satisfying $O_{p}\left(H / C_{H}(U)\right)=1$.

Lemma 9.4. Let X be a non-trivial p-subgroup of \bar{M}. Then $C_{X}(K)=C_{X}(K / Z(K))=$ $C_{X}\left(\overline{M^{\circ}}\right)=1, X \cap C_{\bar{M}}(K / Z(K)) K \leqslant K$ and $K=[K, X]$.

Proof. From 9.3 b we get that K is the unique component of $\bar{M}, K \leqslant \overline{M^{\circ}}$ and I is a simple K-module. The last fact implies that $C_{\bar{M}}(K)$ is a p^{\prime}-group. Thus $C_{X}(K)=1$ and so $C_{X}\left(\overline{M^{\circ}}\right)=1$ since $K \leqslant \overline{M^{\circ}}$.

As K is quasisimple, $C_{\bar{M}}(K / Z(K))=C_{\bar{M}}(K)$ and $X \cap C_{\bar{M}}(K / Z(K)) K=X \cap C_{\bar{M}}(K) K$. Since $C_{\bar{M}}(K)$ is a p^{\prime}-group, we conclude that $O^{p^{\prime}}\left(C_{\bar{M}}(K) K\right) \leqslant K$ and so $X \cap C_{\bar{M}}(K) K \leqslant K$.

Note that K is quasisimple, $K \leqslant \bar{M}$ and $[K, X] \neq 1$. Thus $K=[K, X]$, and 9.4 is proved.
Lemma 9.5. (a) $A^{\prime}=\Phi(A) \leqslant C_{Y}(L)$. In particular, A acts quadratically on $I \cap A$.
(b) $I \cap A=[I, A] C_{I}(A)$. In particular, $I \cap A$ is a \mathbb{K}-subspace of I.
(c) $C_{A}(I \cap A)=Y \cap A=(I \cap A) C_{Y}(A)$.
(d) A is a non-trivial offender on $I \cap A$.
(e) Suppose that no subgroup of A is a non-trivial offender on I. Then A is a non-trivial best offender on $I \cap A$.
Proof. By 9.3 f $I \leqslant A$ and $Z(A)=C_{Y}(L)$. Thus also $\Omega_{1} Z(A) \leqslant Z(L)$ and we can apply 8.36 and 8.37 .
(a): By 1.43 a) $A^{\prime}=\Phi(A) \leqslant C_{Y}(L)$ and so (a) holds.
(b): By 8.36 b) $[I, A] \leqslant I \cap A$ and by 8.36 d $Y \cap A=[I, A] C_{Y}(L)$. Hence $I \cap A=[I, A] C_{I}(L)$.
(c), (d) and (e): These claims follow from 8.36(c), 8.37, b) and 8.37(c), respectively.

Lemma 9.6. Let $P \leqslant M$ with $A Q \leqslant P$ and $\bar{A} \leqslant O_{p}(\bar{P})$. Then P° normalizes \bar{A} and $\left[I, P^{\circ}\right] \leqslant$ $I \cap A$.

Proof. Since $\bar{A} \leqslant O_{p}(\bar{P}), C_{Y}\left(O_{p}(\bar{P})\right) \leqslant C_{Y}(A)$. Thus, for $g \in P$,

$$
1 \neq C_{Y}\left(O_{p}(\bar{P})\right) \cap C_{Y}\left(Q^{g}\right) \leqslant C_{Y}(A) \cap C_{Y}\left(Q^{g}\right)
$$

and so 9.3 e gives

$$
\left[\overline{Q^{g}}, \bar{A}\right] \leqslant \bar{A} \cap \bar{Q}^{g} \text { and }\left[Y, Q^{g}\right] \leqslant[Y, A] C_{Y}(A)
$$

Hence Q^{g} normalizes \bar{A} and since $[Y, A] C_{Y}(A) \leqslant Y \cap A,\left[I, Q^{g}\right] \leqslant I \cap A$. Thus P° normalizes \bar{A} and $\left[I, P^{\circ}\right] \leqslant I \cap A$.

Lemma 9.7. Suppose that I is selfdual as an $\mathbb{F}_{p} K$-module. Put $D:=[I, A] \cap C_{I}(A)$. Then there there exists a non-degenerate K-invariant symplectic, symmetric or unitary \mathbb{K}-form s on I. Moreover, for any such form s the following hold:
(a) $M^{\circ}\left\langle A^{M}\right\rangle$ acts \mathbb{K}-linearly on I, and s is $M^{\circ}\left\langle A^{M}\right\rangle$-invariant.
(b) $|\mathbb{K}|=\widetilde{q}$.
(c) D is 1-dimensional over \mathbb{K} and $I \cap A=[I, A] C_{I}(A)=D^{\perp}$.
(d) $\operatorname{dim}_{\mathbb{K}}[I, a] \leqslant 2$ for all $a \in A$.
(e) $D \leqslant C_{I}(Q)$.
(f) A centralizes D^{\perp} / D and $\bar{A} \leqslant O_{p}\left(N_{\bar{M}}(D)\right)$.
(g) Let X be a \mathbb{K}-subspace of $C_{I}(A)$ with $C_{I}(A)=D \times X$. Put

$$
T:=\left\{g \in G L_{\mathbb{K}}\left(X^{\perp}\right) \mid s(u, v)=s\left(u^{g}, v^{g}\right) \text { for all } u, v \in X^{\perp}\right\}
$$

and let \check{A} be the image of A in T. Then $X \cap X^{\perp}=1$ and

$$
\check{A} C_{T}\left(X^{\perp} \cap D^{\perp}\right)=C_{T}(D) \cap C_{T}\left(X^{\perp} / D\right)
$$

(h) s is symmetric.
(i) $|Z(K)| \leqslant 2$.
(j) Let $R_{1} \leqslant M$ with $Q A \leqslant R_{1}, Q \nleftarrow R_{1}$ and $O_{p}\left(\overline{R_{1}}\right) \neq 1$, and let $I_{1}:=Y_{I}\left(R_{1}\right)$ be the largest p-reduced R_{1}-submodule of I. Then I_{1} is a natural $S L_{n}(\widetilde{q})$-module for R_{1}° and for $\left\langle A^{R_{1}}\right\rangle$. Moreover, $D=\left[I_{1}, A\right]=C_{I_{1}}(Q)$.
Proof. By 9.3 b,I is a simple K-module and by assumption I is a selfdual $\mathbb{F}_{p} K$-module. So we can apply B.7 with $\left(M, K, I, \mathbb{F}_{p}\right)$ in place of (H, N, V, \mathbb{F}). In particular, the existence of s follows from B.7 a).

For $U \subseteq I$ put

$$
U^{\perp}:=\{v \in I \mid s(u, v)=0 \text { for all } u \in U\}
$$

Recall from basic linear algebra :
1°. Let U and V be \mathbb{K}-subspaces of I. Then
(a) $U^{\perp \perp}=U$.
(b) $U^{\perp} \cap V^{\perp}=(U V)^{\perp}$.
(c) $(U \cap V)^{\perp}=U^{\perp} V^{\perp}$
(d) $\operatorname{dim} I=\operatorname{dim} U+\operatorname{dim} U^{\perp}$.
and
2°. Let N be a group acting K-linearly on I and suppose that s is N-invariant. Then
(a) $C_{I}(N)^{\perp}=[I, N]$.
(b) $[I, N]^{\perp}=C_{I}(N)$.
(c) Let U be an N-submodule of I. Then $C_{N}(U)=C_{N}\left(I / U^{\perp}\right)$.

Next we prove:
3°. (a) holds.
By B.7.C M acts \mathbb{K}-semilinearly on I. Let M_{1} consists of those elements in M that act \mathbb{K} linearly on I. Then by B.7 f , s is $O^{p^{\prime}}\left(M_{1}\right)$-invariant. By 9.3 d$) Q A$ is \mathbb{K}-linear on I and so is contained in $O^{p^{\prime}}\left(M_{1}\right)$. It follows that $M^{\circ}\left\langle A^{M}\right\rangle=\left\langle(Q A)^{M}\right\rangle \leqslant O^{p^{\prime}}\left(M_{1}\right)$ and (a) holds.
4°. (b) and (c) hold.
By 9.5 b $I \cap A=[I, A] C_{I}(A)$, and so (using 10 and 2°)

$$
(I \cap A)^{\perp}=[I, A]^{\perp} \cap C_{I}(A)^{\perp}=C_{I}(A) \cap[I, A]=D
$$

and

$$
I \cap A=(I \cap A)^{\perp \perp}=D^{\perp} .
$$

Thus the the second part of (c) holds.
Since

$$
\operatorname{dim}_{\mathbb{K}} I=\operatorname{dim}_{\mathbb{K}} D+\operatorname{dim}_{\mathbb{K}} D^{\perp}=\operatorname{dim}_{\mathbb{K}} D+\operatorname{dim}_{\mathbb{K}} I \cap A
$$

we have $|D|=|I / I \cap A|$. By $2.14 Y A / A$ is the unique non-trivial elementary abelian normal p-subgroup of $N_{L}(Y) / A$. It follows that $Y A=I A$, and $N_{L}(Y)$ acts simply on

$$
Y / Y \cap A \cong Y A / A=I A / A \cong I / I \cap A=I / D^{\perp}
$$

In particular, $|D|=|I / I \cap A|=|Y / Y \cap A|=\widetilde{q}$. In addition, by 9.3 $\mid \mathrm{f}), C_{Y}(A)=C_{Y}(L)$. Since $D \leqslant C_{I}(A) \leqslant C_{Y}(A)$ we conclude that $N_{L}(Y)$ centralizes D and so $C_{M}(D)$ acts simply on I / D^{\perp}. Now B.7 e shows that D is 1-dimensional over \mathbb{K}. Thus $|\mathbb{K}|=|D|=\widetilde{q}$, and (b) and (c) are proved.

5 . $\quad\left[D^{\perp}, A\right]=[I \cap A, A]=[I, A, A]=D$.
From (C),

$$
\left[D^{\perp}, A\right]=[I \cap A, A]=\left[[I, A] C_{I}(A), A\right]=[I, A, A] .
$$

By 9.3 (a), A is nearly quadratic but not quadratic on I. So A is cubic on I and

$$
1 \neq[I, A, A] \leqslant C_{I}(A) \cap[I, A]=D .
$$

By (C), D is 1 -dimensional over \mathbb{K}, and we get $[I, A, A]=D$. Thus (5°) is proved.
6°. (d) and (e) hold.
Let $a \in A$. Since a acts \mathbb{K}-linearly on I and $\operatorname{dim}_{\mathbb{K}} D=1$, $\left.5^{\circ}\right)$ gives $\operatorname{dim}_{\mathbb{K}}[I \cap A, a] \leqslant 1$. As by (c) also $\operatorname{dim}_{\mathbb{K}} I / I \cap A=\operatorname{dim}_{\mathbb{K}} I / D^{\perp}=1$, we get that $\operatorname{dim}_{\mathbb{K}}[I, a] \leqslant 2$. So (d) holds.

By 9.3 (a) A and so also D is Q-invariant, and by (C) Q acts \mathbb{K}-linearly on I. As D is 1-dimensional over \mathbb{K}, this gives $D \leqslant C_{I}(Q)$. Hence (e) is proved.
7° ($\left.\ddagger\right)$ holds.
By $5{ }^{\circ}\left[D^{\perp}, A\right]=D$, by definition $D \leqslant C_{I}(A)$, and by (C), $[I, A] C_{I}(A)=D^{\perp}$. Hence A centralizes $I / D^{\perp}, D^{\perp} / D$ and D. Moreover, by B.7 d $\mathrm{d}, N_{M}(D)$ normalizes the chain $D \leqslant D^{\perp} \leqslant I$. Thus $\left\langle A^{N_{M}(D)}\right\rangle$ centralizes all factors of this series and so acts as a p-group on I. By 8.4 ab $C_{M}(Y)=C_{M}(I)$ and so $\bar{A} \leqslant O_{p}\left(N_{\bar{M}}(D)\right)$.
8°. (g) holds.
Note that $X \leqslant C_{I}(A)=[I, A]^{\perp}$ and

$$
[I, A]=C_{I}(A)^{\perp}=(D \times X)^{\perp} \stackrel{\text { 10 }}{\text { a }} D^{\perp} \cap X^{\perp} \text { and } D^{\perp} X^{\perp}(D \cap X)^{\perp}=I
$$

In particular, $X^{\perp} \nleftarrow D^{\perp}$ and by (c) $X \leqslant C_{I}(A) \leqslant D^{\perp}$, so $X=X \cap D^{\perp}$ and $X=X \cap C_{I}(A)$. It follows that

$$
X \cap X^{\perp}=X \cap D^{\perp} \cap X^{\perp}=X \cap[I, A]=X \cap C_{I}(A) \cap[I, A]=X \cap D=1 .
$$

Hence X is a non-degenerate subspace of I, and $I=X^{\perp} \times X$. Let $i \in X^{\perp} \backslash D^{\perp}$. As $D^{\perp}=[I, A] C_{I}(A)$ and A acts nearly quadratically on I, we have $[i, A] C_{I}(A)=[I, A] C_{I}(A)=D^{\perp}$. Intersecting with $[I, A]$ gives $[I, A]=[i, A]\left(C_{I}(A) \cap[I, A]\right)=[i, A] D$. As $[I, A]=X^{\perp} \cap D^{\perp}$ we conclude that

$$
\begin{equation*}
[i, A] D=X^{\perp} \cap D^{\perp} . \tag{*}
\end{equation*}
$$

Put $T_{1}:=C_{T}(D) \cap C_{T}\left(X^{\perp} \cap D^{\perp} / D\right)$ and $T_{2}=C_{T}\left(X^{\perp} \cap D^{\perp}\right)$. Recall from (5) that $\left[D^{\perp}, A\right]=D$, so $\breve{A} \leqslant T_{1}$. Since by (c) D is 1 -dimensional, D^{\perp} is a \mathbb{K}-hyperplane of I, and since $X^{\perp} \neq D^{\perp}$, $X^{\perp} / X^{\perp} \cap D^{\perp}$ is 1-dimensional. Hence by the choice of $i \in X^{\perp}, X^{\perp}=(\mathbb{K} i)\left(X^{\perp} \cap D^{\perp}\right)$. Since T_{1} centralizes $X^{\perp} \cap D^{\perp} / D$, this gives $C_{T_{1}}(i D / D)=C_{T_{1}}\left(X^{\perp} / D\right)$.

Observe that $T=C l\left(X^{\perp}\right)$ (in the notation of Appendix B). Hence by B.6Wa) $X^{\perp} / X^{\perp} \cap D^{\perp} \cong D^{*}$ as $\mathbb{K} T_{1}$-modules and $C_{T_{1}}\left(X^{\perp} / D\right)=C_{T_{1}}\left(X^{\perp} \cap D^{\perp}\right)$, and so $T_{2}=C_{T_{1}}(i D / D)$. By (*) A acts transitively on $i\left(X^{\perp} \cap D^{\perp}\right) / D$ and so a Frattini argument implies that $T_{1}=\check{A} T_{2}$ and (g) holds.
9°. (h) holds.
Let X, T and \check{A} be as in (g), and let T_{1} and T_{2} be as in the proof of g$)$. Suppose that s is not symmetric. Then s is a unitary or symplectic form, where in the latter case p is odd since s is not symmetric. Hence B.28 c:a) and B. 28 b:a) show that $\Phi\left(T_{1}\right)=T_{2}$. On the other hand, by (g) $T_{1}=\check{A} T_{2}$. This gives $T_{1}=\breve{A}$, and T_{1} is abelian, since \check{A} is abelian by 9.3 a). This contradiction shows that s is symmetric and so (h) holds.
10°. (i) holds.
Let $k \in Z(K)$. By 9.3 b I is a simple K-module, and by 9.3 dd $\mathbb{K}=E n d_{K}(I)$, so k acts as scalar $\lambda \in \mathbb{K}$ on I. By (h), s is \mathbb{K}-bilinear and so for any $v, w \in I$:

$$
s(v, w)=s\left(v^{k}, w^{k}\right)=s(\lambda v, \lambda w)=\lambda^{2} s(v, w) .
$$

Since s is non-zero we conclude that $\lambda^{2}=1$, and (i) holds.
We now begin with the proof of (j]. Put $R:=\left\langle A^{R_{1}}\right\rangle$.
11°. $\quad R R_{1}^{\circ}$ acts \mathbb{K}-linearly on I, and s is $R R_{1}^{\circ}$-invariant.
Note that $R R_{1}^{\circ} \leqslant M^{\circ}\left\langle A^{M}\right\rangle$. Hence (a) implies 11°.
$12^{\circ} . \quad C_{I}\left(R_{1}^{\circ}\right)=1$ and $I=\left[I, R_{1}^{\circ}\right]$.
Since $Q \nleftarrow R_{1}, Q$! implies $C_{I}\left(R_{1}^{\circ}\right)=1$. By $11^{\circ} R_{1}^{\circ}$ acts \mathbb{K}-linearly on I and s is R_{1}°-invariant. Hence

$$
\left[I, R_{1}^{\circ}\right]=C_{I}\left(R_{1}^{\circ}\right)^{\perp}=I
$$

and 12° follows.
13°. $\quad C_{I}(R)=1$, and $[W, A] \neq 1$ and $W \neq I$ for every non-trivial p-reduced R_{1}-submodule of I. In particular $\left[I_{1}, A\right] \neq 1$ and $I_{1} \neq I$.

Set $I_{0}:=C_{I}(R)$ and suppose that $I_{0} \neq 1$. Let $l \in R_{1}$. Since $A \leqslant R \leqslant R_{1}$ and $Q \leqslant R_{1}, I_{0}$ is R_{1} invariant and $1 \neq C_{I_{0}}\left(Q^{l}\right) \leqslant C_{Y}\left(Q^{l}\right) \cap C_{Y}(A)$. Now 9.3 el shows that $\left[Y, Q^{l}\right] \leqslant[Y, A] C_{Y}(A)$. By $9.3, \mathrm{f}), Y=I Z(A)$. So $[Y, A]=[I, A]$ and thus

$$
\left[I, Q^{l}\right] \leqslant I \cap[Y, A] C_{Y}(A)=[I, A] C_{I}(A)
$$

By (c) $[I, A] C_{I}(A)=I \cap A$. Hence $\left[I, Q^{l}\right] \leqslant I \cap A$ and so $\left[I, R_{1}^{\circ}\right] \leqslant I \cap A$. But by 12°, $I=\left[I, R_{1}^{\circ}\right]$ and by 9.3 f$) I \$ A$, a contradiction. Hence $C_{I}(R)=1$.

Let W be a non-trivial p-reduced R_{1}-submodule of I. Then $C_{W}(R)=1$, and since $W \neq 1$ and $R=\left\langle A^{R_{1}}\right\rangle,[W, A] \neq 1$. Moreover, since $O_{p}\left(\overline{R_{1}}\right) \neq 1, I$ is not p-reduced for R_{1}, and $W \neq I$.
$14^{\circ} . \quad I=[I, R]$.
By $11^{\circ} R$ acts \mathbb{K}-linearly on I and s is R-invariant, and by $13^{\circ}, C_{I}(R)=1$. Hence $[I, R]=$ $C_{I}(R)^{\perp}=I$.
15°. $\quad A$ is a best offender and a strong dual offender on every A-submodule of $I \cap A$.
By 9.5 d), A is a non-trivial offender on $I \cap A$. By $\left[5{ }^{\circ}\right.$. $\left.I \cap A, A\right]=D$ and so $[I \cap A, A]$ is 1 -dimensional over \mathbb{K} by (C). Hence A.33 C) shows that A is a best offender and a strong dual offender on every A-submodule of $I \cap A$. So 15° holds.
$16^{\circ} . \quad D=\left[I_{1} \cap A, A\right] \leqslant I_{1}$.
Since I_{1} is A-invariant, $\left[I_{1} \cap A, A\right] \leqslant\left[I_{1}, A\right] \leqslant I_{1}$. Recall from $5{ }^{\circ}$ that $D=[I \cap A, A]$. By $15^{\circ} A$ is a strong dual offender on $I \cap A$, so either $D=\left[I_{1} \cap A, A\right] \leqslant I_{1}$ or $\left[I_{1} \cap A, A\right]=1$. In the former case we are done. So suppose the latter. Then $I_{1} \neq A$ since by $13^{\circ}\left[I_{1}, A\right] \neq 1$. Then

$$
\left[I_{1}, A\right] C_{I}(A)=[I, A] C_{I}(A)
$$

since A is nearly quadratic on I. By (c) $I \cap A=[I, A] C_{I}(A)$, and so $I \cap A\left[I_{1}, A\right] C_{I}(A)$. Thus

$$
D=[I \cap A, A]=\left[\left[I_{1}, A\right] C_{I}(A), A\right]=\left[I_{1}, A, A\right] \leqslant\left[I_{1} \cap A, A\right] \leqslant[I \cap A, A]
$$

So again $D=\left[I_{1} \cap A, A\right]$, and 16° is proved.
$17^{\circ} . \quad I_{1}$ is a \mathbb{K}-subspace of I. In particular, I_{1} is a $\mathbb{K} R Q$-submodule of I.
Put $R_{0}:=C_{R_{1}}\left(I_{1}\right)$. By $16^{\circ} D \leqslant I_{1}$, and since D is a non-trivial \mathbb{K}-subspace of I and M acts \mathbb{K}-semilinearly on I, we conclude that R_{0} acts \mathbb{K}-linearly on I. Thus R_{0} centralizes $\mathbb{K} I_{1}$ and so $C_{R_{1}}\left(I_{1}\right)=R_{0}=C_{R_{1}}\left(\mathbb{K} I_{1}\right)$. Since I_{1} is p-reduced for R_{1} we get

$$
O_{p}\left(R_{1} / C_{R_{1}}\left(\mathbb{K} I_{1}\right)\right)=O_{p}\left(R_{1} / C_{R_{1}}\left(I_{1}\right)\right)=1
$$

and $\mathbb{K} I_{1}$ is p-reduced. Thus $I_{1}=\mathbb{K} I_{1}$, and I_{1} is \mathbb{K}-subspace of I.
Clearly I_{1} is R_{1}-invariant and so also $R Q$-invariant, and by $11^{\circ} R Q$ acts \mathbb{K}-linearly on I. Thus I_{1} is a $\mathbb{K} R Q$-submodule of I.
$18^{\circ} . \quad D=\left[I_{1}, A\right] \leqslant I_{1} \leqslant A$.

If $I_{1} \leqslant A$, then $D=\left[I_{1} \cap A, A\right]=\left[I_{1}, A\right]$ by 16°. So we may assume for a contradiction that $I_{1} \nLeftarrow A$. Then

$$
\left[I_{1}, A\right] C_{I}(A)=[I, A] C_{I}(A)=I \cap A
$$

since A is nearly quadratic on I.
By (c) $I \cap A=D^{\perp}$ is a \mathbb{K}-hyperplane in I, and by $17^{\circ} I_{1}$ is a \mathbb{K}-space. Hence

$$
I=I_{1}(I \cap A)=I_{1}\left[I_{1}, A\right] C_{I}(A)=I_{1} C_{I}(A)
$$

and so $[I, A] \leqslant\left[I_{1}, A\right] \leqslant I_{1}$. Thus $[I, R] \leqslant I_{1}$. But $\left[I_{1}, R\right]=I$ by 14° and $I \neq I_{1}$ by 13°, a contradiction.
$19^{\circ} . \quad U:=\left[I_{1}, R\right]$ is a simple $\mathbb{F}_{p} R$-submodule of $I_{1},[U, A]=D$, and A is a non-trivial strong dual offender on U. In particular, R is generated by strong dual offenders on U.

Let U_{1} be a simple $\mathbb{F}_{p} R$-submodule of I_{1}. Since $C_{I}(R)=1$ by 13°, we have $\left[U_{1}, A\right] \neq 1$, and since A is a strong dual offender on I_{1} by $15^{\circ},\left[I_{1}, A\right]=\left[U_{1}, A\right] \leqslant U_{1}$ and so $U=\left[I_{1}, R\right] \leqslant U_{1}$. The simplicity of U_{1} implies $U_{1}=U$, so U is a simple $\mathbb{F}_{p} R$-submodule of I_{1}.

By $17^{\circ} I_{1}$ and thus also $U=\left[I_{1}, R\right]$ are $\mathbb{K} R$-modules. Since by (C) D is a 1 -dimensional \mathbb{K}-space, $1 \neq[U, A]$ shows that $[U, A]=D$.

By $18^{\circ} I_{1} \leqslant A$ and so $U \leqslant I \cap A$. Thus 15° shows that A is a strong dual offender on U. Since $R=\left\langle A^{R_{1}}\right\rangle$ we conclude that R is generated strong dual offenders on U and so 19° holds.

Observe that Q normalizes I_{1} and R, so U is an $R Q$-module. Put $H:=R Q, \tilde{H}:=H / C_{H}(U)$ and $\mathbb{F}:=\operatorname{End}_{R}(U)$.
20°. U is a simple Q !-module for \widetilde{H} with respect to \widetilde{Q}.
By $19^{\circ} U$ is a simple R-module. Since $U=\left[I_{1}, R\right]$ and $R \vDash R_{1}, U$ is also an H-module. Suppose that $Q \unlhd H$. Since U is a simple R-module, we conclude that $[U, Q]=1$. But then also $\left[U, R_{1}^{\circ}\right]=1$, a contradiction since $C_{\tilde{\sim}}\left(R_{1}^{\circ}\right)=1$ by 12°. Hence $Q \nRightarrow H$, and 1.57b shows that U is a Q !-module for \widetilde{H} with respect to \widetilde{Q}.
$21^{\circ} . \quad|\mathbb{F}|=|\mathbb{K}|=\tilde{q}, Q$ acts \mathbb{F}-linearly on U, and $\operatorname{dim}_{\mathbb{F}} D=1$.
Let \mathbb{K}_{U} be the image of \mathbb{K} in $\operatorname{End}(U)$. By $17^{\circ} H$ acts \mathbb{K}-linearly on I_{1}, so $\mathbb{K}_{U} \leqslant \mathbb{F}$. As $A \leqslant R,[U, A]$ is \mathbb{F}-invariant. By $\left.19^{\circ}\right)[U, A]=D$ and so $[U, A]$ is 1-dimensional over \mathbb{K}. Hence $d \mathbb{F} \subseteq D=d \mathbb{K}_{U}$ for $1 \neq d \in D$. By Schur's Lemma \mathbb{F} is a division ring and we conclude that $\mathbb{F}=\mathbb{K}_{U}$. Since Q acts \mathbb{K}-linearly on I we conclude that Q acts \mathbb{F}-linearly on U. Moreover, (d) gives $|\mathbb{F}|=\left|\mathbb{K}_{U}\right|=|\mathbb{K}|=\widetilde{q}$.
22°. (J) holds.
By $19^{\circ} U$ is a simple \widetilde{R}-module and \widetilde{R} is generated by strong dual offender on U. So we can apply C.5. We conclude that one of the following holds:
(1) $\widetilde{R} \cong S L_{n}(q), n \geqslant 2$, or $S p_{2 n}(q), n \geqslant 2$, and U is a corresponding natural module.
(2) $p=2, \widetilde{R} \cong \operatorname{Alt}(6)$ or $\operatorname{Alt}(7), U$ is a spin-module of order 2^{4} and $\widetilde{A} \cong\langle(12)(34),(13)(24)\rangle$
(3) $p=2, \widetilde{R} \cong O_{2 n}^{\epsilon}(2), n \geqslant 3$, or $\operatorname{Sym}(n), n=5$ or $n \geqslant 7, U$ is a corresponding natural module, and $|\widetilde{A}|=2$.
Recall from 9.3 a that A is Q-invariant. Hence \widetilde{Q} normalizes $\widetilde{A},[U, A]$ and $C_{U}(A)$. Moreover, by (e) $D \leqslant C_{I}(Q)$ and by $\left.19^{\circ}\right) D=[U, A]$, so Q ! shows that $Q \leqslant N_{H}([U, A])$. In particular

$$
\begin{equation*}
Q \leqslant N_{H}([U, A]) \quad \text { and } \quad \widetilde{Q} \leqslant O_{p}\left(N_{\widetilde{H}}([U, A])\right) \tag{*}
\end{equation*}
$$

Suppose that (2) holds. Then $|\mathbb{F}|=2$ and $|[U, A]|=4$. But this is a contradiction since $|\mathbb{K}|=|\mathbb{F}|$ by 21° and $|[U, A]|=|D|=|\mathbb{K}|$ by 19°.

Suppose that 3 holds. Then $p=2$, and $N_{\tilde{R}}([U, A]) \cong C_{2} \times \widetilde{E}, \widetilde{E} \cong \operatorname{Sp} p_{2 n}(2)$ or $\operatorname{Sym}(n-2)$, and $C_{U}(A) /[U, A]$ is a simple $N_{\widetilde{R}}([U, A])$-module. By $(*)\left[\widetilde{Q}, N_{\widetilde{R}}([U, A])\right] \leqslant \widetilde{A} \leqslant C_{\widetilde{R}}\left(C_{U}(A)\right)$, and by the simplicity of $C_{U}(A) /[U, A],\left[C_{U}(A), Q, N_{\widetilde{R}}([U, A])\right]=1$. Hence the Three Subgroups Lemma gives $\left[N_{\widetilde{H}}([U, A]), C_{U}(A), \widetilde{Q}\right]=1$, and so, since $C_{U}(A)=\left[N_{\widetilde{H}}([U, A]), C_{U}(A)\right][U, A], C_{U}(A) \leqslant C_{H}(Q)$. But this contradicts Q ! since $C_{U}(A)$ is a hyperplane in U.

Suppose that (1) holds. Then $|\mathbb{F}|=q$, and by $21^{\circ} D$ is a 1 -dimensional \mathbb{F}-space and Q acts \mathbb{F}-linearly on U. If $R \cong S L_{n}(q)$ then, since $G L_{n}(q) / S L_{n}(q)$ is a p^{\prime}-group, $\widetilde{Q} \leqslant \widetilde{R}$ and so $\widetilde{H}=\widetilde{R}$. If $\widetilde{R} \cong S p_{2 n}(q)$, then the R-invariant symplectic forms on U form a 1-dimensional \mathbb{F}-space. Since Q is a p-group acting \mathbb{F}-linearly, Q centralizes this 1 -space. Thus again $\widetilde{Q} \leqslant \widetilde{H}$ and $\widetilde{H}=\widetilde{R}$.

We have shown that $\widetilde{H}=\widetilde{R}$. Suppose that $\widetilde{R} \cong S p_{2 n}(q), n \geqslant 2$. Since U is a $Q!$-module, B.37 yields $D=C_{U}(Q)$. Note that $\operatorname{dim}_{\mathbb{F}} U=2 n \geqslant 4, \operatorname{dim}_{\mathbb{F}}[U, A]=\operatorname{dim}_{\mathbb{F}} D=1$ and $\operatorname{dim}_{\mathbb{F}}[U, A]+$ $\operatorname{dim}_{\mathbb{F}} C_{V}(A)=\operatorname{dim}_{\mathbb{F}} U$. Thus $\operatorname{dim}_{\mathbb{F}} C_{U}(A) \geqslant 3$, and we can choose a Q-invariant 2-dimensional \mathbb{F}-subspace I_{2} of $C_{U}(A)$. Put $R_{2}:=N_{R_{1}}\left(I_{2}\right)$. Then R_{2} induces a group on I_{2} that contains $S L_{2}(q)$. Hence, I_{2} is a simple and thus p-reduced R_{2}-module. Moreover, since $\left[I_{2}, Q\right] \neq 1, Q$ is not normal in R_{2}, and since $O_{p}\left(\bar{R}_{1}\right) \leqslant O_{p}\left(\overline{R_{2}}\right)$ we have $O_{p}\left(\overline{R_{2}}\right) \neq 1$. So 13° applied to $\left(R_{2}, I_{2}\right)$ in place of $\left(R_{1}, W\right)$ gives $\left[I_{2}, A\right] \neq 1$, a contradiction to $I_{2} \leqslant C_{U}(A)$.

Hence $\widetilde{R} \cong S L_{n}(q), n \geqslant 2$. Suppose for a contradiction that $U \neq I_{1}$. Since $C_{I_{1}}(R)=1$ and $\left[I_{1}, R\right]=U$, C.22 shows that $R / C_{R}\left(I_{1}\right) \cong S L_{3}(2)$ and the commutator [U, A] is 2-dimensional, a contradiction since by $19^{\circ}[U, A]=D$, and by $21^{\circ} D$ has dimension 1 . Thus $U=I_{1}$.

Finally if $n \geqslant 3$ or $n=2$ and $|\mathbb{F}|>3$ then \widetilde{H} is quasisimple and so $\widetilde{H}=\widetilde{R_{1}^{\circ}}$. In the exceptional case $\widetilde{H} \cong S L_{2}(q), q \leqslant 3$, the equality $\widetilde{H}=\widetilde{R_{1}^{\circ}}$ is easy to check. By $21^{\circ},|\mathbb{F}|=q=\widetilde{q}$, so (\mathfrak{j}) holds.

9.2. The Proof of Theorem $\mathbb{1}$

We will use the notation given in 9.3 and Theorem I.
Lemma 9.8. Suppose that one of the following holds, where q is a power of p.
(a) $K \cong S U_{n}(q)$ or $\Omega_{n}^{\epsilon}(q)$, $n \geqslant 3$, and I is the corresponding natural module.
(b) $K \cong G_{2}(q)^{\prime}$, and I has \mathbb{F}_{q}-dimension 6 or 7 , depending on q being even or odd.
(c) I is an FF-module for \bar{M}.

Then Theorem \square holds.

Proof. Suppose first that (a) holds. If I is a natural $S U_{n}(q)$-module for K, then $\mathbb{K}=\mathbb{F}_{q^{2}}$ and there exists a K-invariant non-degenerate unitary \mathbb{K}-form s on I. So we can apply 9.7 h and conclude that s is symmetric, a contradiction.

Thus I is a natural $\Omega_{n}^{\epsilon}(q)$-module for $K, n \geqslant 3$. As K is quasisimple, $(n, q) \neq(3,3)$. Since I is a simple K-module, p is odd if n is odd. By 9.3 d, Q acts \mathbb{K}-linearly on I and thus B.35d shows that either $\bar{Q} \leqslant K$ or $p=2$ and $K \cong \Omega_{n}^{\epsilon}(q)$. Suppose the latter, then $n \geqslant 4$, and since K is quasisimple, $K \not \equiv \Omega_{4}^{+}(q)$. Thus B.37 shows that $\bar{Q} \leqslant K$ also in this case. As K is quasisimple we conclude that $K=\overline{M^{\circ}}$. Thus Theorem I 3 holds.

Suppose next that bolds, that is, $K \cong G_{2}(q)^{\prime}$ and I has dimension 6 or 7 . Then $\mathbb{K}=\mathbb{F}_{q}$ and I is selfdual. In particular, we again can apply 9.7 . Then for $D:=[I, A] \cap C_{I}(A)$

$$
q=\widetilde{q} \quad \text { and } \quad \operatorname{dim}_{\mathbb{K}} D=1
$$

Since A acts \mathbb{K}-linearly on I, A does not induce any non-trivial field automorphisms on K. It follows that either $\bar{A} \leqslant K$ or $q=2$ and $K \bar{A} \cong G_{2}(2)$. Thus either $K \bar{A} \cong G_{2}(q)$ or $q=2$ and $K \bar{A}=K \cong G_{2}(2)^{\prime}$. Put $R:=C_{K \bar{A}}(D)$. Since D is a singular 1-subspace of I and K acts transitively on the singular 1-spaces, D is centralized by a Sylow p-subgroup of $K \bar{A}$. Thus $R \sim q^{2+1+2} S L_{2}(q)$ (if $K \bar{A} \cong G_{2}(q)$) or $2^{2+2} S L_{2}(2)$ (if $q=2$ and $\left.K \bar{A} \cong G_{2}(2)^{\prime}\right)$. In either case, $C_{R}\left(D^{\perp} / D\right)$ is the unique elementary abelian normal subgroup of order q^{2} in R and acts quadratically on I. This is a contradiction, since A does not act quadratically on I by 9.3 a and $A \leqslant C_{R}\left(D^{\perp} / D\right)$ by 9.7 £

Suppose now that (c) holds and let X be a non-trivial best offender in \bar{M} on I. By $9.4 K=[K, X]$ and $C_{X}\left(\overline{M^{\circ}}\right)=1$. In particular, C. 24 applies to \bar{M} and I. Put $J=J_{\bar{M}}(I)$. Then $K=[K, X] \leqslant J$.

Assume that C.24 holds. Then $J \cong S L_{2}(q)^{n}$ and I is a direct sum of natural $S L_{2}(q)$-modules for J. Since I is a simple K-module and $K \leqslant J$ we conclude that $J \cong S L_{2}(q)$ and I is a natural $S L_{2}(q)$-module. It follows that $\mathbb{K}=\mathbb{F}_{q}$ and $\operatorname{dim}_{\mathbb{K}} I=2$. Since A acts \mathbb{K}-linearly on I this implies that A acts quadratically on I, a contradiction.

Thus C.24 2 holds. Then $F^{*}(J)$ is quasisimple and so $K=F^{*}(J)$. In the cases C.24 2:c:1) and (2:c:3) I is a direct sum of at least two non-trivial $F^{*}(J)$-submodules, a contradiction since I is a simple K-module.

Hence C.24 2:c:2 holds. So by C.24 2:c:2:b

$$
\begin{equation*}
\text { either } \quad \overline{M^{\circ}}=K \quad \text { or } \quad \overline{M^{\circ}} \cong S p_{4}(2), 3 \cdot \operatorname{Sym}(6), S U_{4}(q) \cdot 2, \text { or } G_{2}(2) \tag{*}
\end{equation*}
$$

where I is the natural $S U_{4}(q)$-module for K in the $S U_{4}(q) .2$-case. Moreover, by C.24 2:c:2:c) one of the cases C. 3 (1) - (9), (12) applies to (J, I), with $n \geqslant 3$ in case (1), $n \geqslant 2$ in case (2), and $n=6$ in case (12). We will now treat these cases of C. 3 one by one.

Suppose that C. 3 (1) holds with $n \geqslant 3$. Then I is a natural $S L_{n}(q)$-module for J. Thus $K=F^{*}(J)=J$ and by $(*), K=\overline{M^{\circ}}$. So I is a natural $S L_{n}(q)$ for $\overline{M^{\circ}}$, and Theorem I holds.

Suppose that C. 3 (2) holds with $n \geqslant 2$. Then I is a natural $S p_{2 n}(q)$-module for J. Moreover, $K=F^{*}(J) \cong S p_{2 n}(q)^{\prime}, \mathbb{K}=\mathbb{F}_{q}$, and there exists a K-invariant non-degenerate symplectic \mathbb{K}-form on I. By 9.7 h$)$ this form is symmetric, and we conclude that $p=2$. By ($*$) either $\overline{M^{\circ}}=K \cong S p_{2 n}(q)^{\prime}$ or $\overline{M^{\circ}} \cong S p_{4}(2)$. Thus Theorem I 2 h holds.

Suppose that C. 3 (3) holds. Then I is natural $S U_{4}(q)$-module for J. Hence I is also a natural $S U_{4}(q)$-module for $K=F^{*}(J)=J$, a case we have already treaded assuming (a).

Suppose that C. 3 (4) holds. Then I is a natural $\Omega_{n}^{\epsilon}(q)$ - or $O_{n}^{\epsilon}(q)$-module for J for various (n, q, ϵ) with $n \geqslant 4$. Since $K=F^{*}(J)$ is quasisimple we conclude that $K \cong \Omega_{n}^{\epsilon}(q)$, a case we have already treaded assuming (a).

Suppose that C. 3 (5) holds. Then $J \cong G_{2}(q), p=2$ and I is the natural $G_{2}(q)$-module of order q^{6}. Then $K=F^{*}(J)=J^{\prime} \cong G_{2}(q)^{\prime}$, a case we have already treaded assuming (b).

Suppose thatC.3 (6) holds. Then $J \cong S L_{n}(q) /\left\langle-i d^{n-1}\right\rangle, n \geqslant 5$, and V is the exterior square of a natural $S L_{n}(q)$-module. Thus $K=F^{*}(J)=J$ and by $(*) \overline{M^{\circ}}=K$. Hence Theorem IV 4 holds.

Suppose that C. 3 (7) holds. Then $J \cong \operatorname{Spin}_{7}(q)$ and I is the spin module of order q^{8}. Thus $K=F^{*}(J)=J \cong \operatorname{Spin}_{7}(q)$. Let R be the centralizer in K of a $Q A$-invariant 1-dimensional singular subspace of the natural $\Omega_{7}(q)$-module. Put $R_{1}=R \overline{Q A}$ and $I_{1}=C_{I}\left(O_{p}(R)\right)$. Then I_{1} is a natural $S p_{4}(q)$-module for R. In particular, I_{1} is a simple R_{1} module and so $I_{1}=Y_{I}\left(R_{1}\right)$. Then Q ! implies that $\left[I_{1}, Q\right] \neq 1$ and so $\bar{Q} \nRightarrow R_{1}$. Thus $9.7(\mathrm{j})$ shows that I_{1} is a natural $S L_{n}(\widetilde{q})$-module for R_{1}°. Since both R and R_{1}° are normal in R_{1}, this is a contradiction.

Suppose that C.3(8) holds. Then $J \cong \operatorname{Spin}_{10}^{+}(q)$ and I is the half-spin module. Thus $K=$ $F^{*}(J)=J$ and by $(*), \overline{M^{\circ}}=K$. Hence Theorem I 7) holds.

Suppose that C.3(9) holds. Then $J \cong 3 \cdot A l t(6)$ and $|V|=2^{6}$; in particular, $K=F^{*}(J)=J$ and $\mathbb{K}=\mathbb{F}_{4}$. Since A acts \mathbb{K}-linearly on I and any elementary abelian 2 -subgroup of $G L_{3}(4)$ acts quadratically, we conclude that A acts quadratically on I, a contradiction.

Suppose finally that C.3(12) holds with $n=6$. Then $J \cong \operatorname{Alt}(6)$ or $\operatorname{Sym}(6)$ and I is a corresponding natural module; in particular, $K=F^{*}(J)=\operatorname{Alt}(6)=S p_{4}(2)^{\prime}$. By (*), $\overline{M^{\circ}}=K \cong S p_{4}(2)^{\prime}$ or $\overline{M^{\circ}} \cong S p_{4}(2)$ and TheoremIT2 holds.

Lemma 9.9. Suppose that K is a quasisimple genuine group of Lie-typ $母^{11}$ defined over a field of characteristic p and I is not an FF-module for \bar{M}. Then $\bar{A} \leqslant K$.

Proof. Let $K={ }^{d} \Sigma(q)$ (see A.58 bor the definition). So q is a power of p and $d \in\{1,2,3\}$. By way of contradiction we assume $\bar{A} \neq K$. Since $K \& \bar{M}$ by 9.3 b , the action of \bar{M} on K induces a chain of homomorphisms

$$
\overline{M^{\dagger}}=\bar{M} \rightarrow \operatorname{Aut}(K / Z(K)) \rightarrow \operatorname{Out}(K / Z(K)):=\operatorname{Aut}(K / Z(K)) / \operatorname{Inn}(K / Z(K))
$$

Let ϕ be the resulting homomorphism from \bar{M} to $\operatorname{Out}(K / Z(K))$, and for $X \leqslant \overline{M^{\dagger}}$ let $\hat{X}:=\bar{X} \phi$. Note that $C_{\bar{M}}(K / Z(K)) K$ is the kernel of ϕ in \bar{M}.
1°. Let $X \leqslant S$. Then $\hat{X} \cong \bar{X} / \bar{X} \cap K$. In particular, \widehat{A} is a non-trivial elementary abelian p-subgroup of $\operatorname{Out}(K / Z(K))$ of order $|\bar{A} / \bar{A} \cap K|$.

[^13]This holds since by 9.4. $\bar{X} \cap \operatorname{ker} \phi=\bar{X} \cap C_{\bar{M}}(K / Z(K)) K=\bar{X} \cap K$.
We fix the following notation:
Let Δ be the Dynkin diagram of K. We often identify Δ with its set of vertices. For a subdiagram $\Lambda \subseteq \Delta$, let P_{Λ} be the corresponding Lie-Parabolic subgroup of K with $\bar{S} \cap K \leqslant P_{\Lambda}$. In case of a minimal Lie-parabolic subgroup; i.e., if $\Lambda=\{\lambda\}$, we also write P_{λ} rather than P_{Λ}.

Put $K_{\Lambda}:=O^{p^{\prime}}\left(P_{\Lambda}\right)$ and $Z_{\Lambda}:=C_{K}\left(K / O_{p}(K)\right)$. If Λ is connected then $K_{\Lambda} / O_{p}\left(K_{\Lambda}\right)$ and $K_{\Lambda} / Z_{\Lambda}$ are genuine groups of Lie-type with Dynkin diagram Λ and defined over $\mathbb{F}_{q^{d}}$ or \mathbb{F}_{q}. If $\Lambda_{1}, \ldots \Lambda_{l}$ are the connected components of Λ then $K_{\Lambda} / O_{p}\left(K_{\Lambda}\right)$ is isomorphic to a central product of the groups $K_{\Lambda_{i}} / O_{p}\left(K_{\Lambda_{i}}\right), 1 \leqslant i \leqslant l$. Note that $\Lambda=\varnothing$ iff P_{Λ} is p-closed and iff $K_{\Lambda}=\bar{S} \cap K$. Also $\Lambda=\Delta$ iff $K_{\Lambda}=K$ and iff $O_{p}\left(K_{\Lambda}\right)=1$.

If Λ is $Q A$-invariant put $R_{\Lambda}:=K_{\Lambda} \overline{Q A}$; in particular $R_{\Delta}=K \overline{Q A}$. Observe that $K \cap \overline{Q A} \leqslant$ $K \cap \bar{S} \leqslant P_{\Lambda}$ and so

$$
R_{\Lambda} \cap K=K_{\Lambda}(K \cap \overline{Q A}) \leqslant O^{p^{\prime}}\left(P_{\Lambda}\right) .
$$

It follows that $R_{\Lambda} \cap K=K_{\Lambda}$ and that R_{Λ} is a parabolic subgroup of R_{Δ} with $\bar{S} \cap R_{\Delta}=(\bar{S} \cap K) \overline{Q A} \leqslant$ R_{Λ}.

Conversely, let R be a parabolic subgroup of R_{Δ} with $\bar{S} \cap R_{\Delta} \leqslant R$ and $O^{p^{\prime}}(R \cap K)=R \cap K$. Then by A.63 $N_{K}(R \cap K)$ is a Lie-parabolic subgroups of K and so $R=R_{\Lambda}$ for a unique $Q A$-invariant $\Lambda \subseteq \Delta$. We denote this Λ by $\Delta(R \cap K)$.

Finally, let $I^{*}:=\operatorname{Hom}_{\mathbb{F}_{p}}\left(I, \mathbb{F}_{p}\right)$ be the dual module of the \mathbb{F}_{p}-module I.
In the following we fix a proper (possible empty) $Q A$-invariant subdiagram $\Lambda \subseteq \Delta$. Put $R:=R_{\Lambda}$, and let $I_{R}:=Y_{I}(R)$ be the largest p-reduced R-submodule of I. If $Q A$ acts transitively on Δ, observe that $\Lambda=\varnothing$ and $R=\bar{S} \cap K \overline{Q A}$.

From A. 60 applied to the adjoint version $K / Z(K)$:
2°. There exist subgroups Diag and Φ and a subset Γ of $\operatorname{Out}(K / Z(K))$ such that
(a) $\Phi \Gamma$ is a subgroup of $\operatorname{Out}(K / Z(K)), \Phi \lessgtr \Phi \Gamma, \operatorname{Out}(K / Z(K))=\operatorname{Diag} \Phi \Gamma, \operatorname{Diag} \cap \Phi \Gamma=1$ and Diag $\vDash O u t(K / Z(K))$, and
(b) Diag is a p^{\prime}-group.
(c) $\Phi \cong \operatorname{Aut}\left(\mathbb{F}_{q^{a}}\right)$. In particular, Φ is cyclic.
(d) $C_{D i a g \Phi Г}(\Delta)=\operatorname{Diag} \Phi$.

Observe that $\Phi \Gamma$ contains a Sylow p-subgroup of $\operatorname{Out}(K / Z(K))$, since $\operatorname{Out}(K / Z(K))=\operatorname{Diag} \Phi \Gamma$ and Diag is p^{\prime}-group. Thus, replacing $\Phi \Gamma$ by a suitable conjugate under Diag, we may assume that
3°. $\hat{S} \leqslant \Phi \Gamma$. In particular, $\widehat{S} \cap \operatorname{Diag}=1$.
By A. 65
4°. There exists $\tau \in \Gamma$ such that $\tau^{2}=1$ and $I^{*} \cong I^{\tau}$ as an $\mathbb{F}_{p} K$-module. Moreover,
(1) If $K=A_{n}(q), n \neq 2, D_{2 n+1}(q), n \geqslant 2$, or $E_{6}(q)$, then $\Gamma=\langle\tau\rangle$ and τ induces the unique non-trivial graph automorphism on Δ,
(2) otherwise $\tau=1$.

Next we show:
5°. Let $s \in S$. Suppose that s acts trivially on Δ and induces an inner automorphism on K_{δ} / Z_{δ} for each $\delta \in \Delta$. Then $\bar{s} \in K$.

By 1° it suffices to show that $\hat{s}=1$. Since s acts trivially on Δ, (d) shows that $\hat{s} \in \operatorname{Diag} \Phi$. By ($\left.3^{\circ}\right), \widehat{s} \in \Phi \Gamma$ and so $\widehat{s} \in \Phi$. Choose $\delta \in \Delta$ such that K_{δ} / Z_{δ} is defined over $\mathbb{F}_{q^{d}}$. Then s induces the same field automorphism on K_{δ} / Z_{δ} as on K (see the description of field automorphism in GLS3, 2.5].) As s induces inner automorphism on K_{δ} / Z_{δ} we conclude that $\widehat{s}=1$.
6. There exists $\epsilon \in \Delta$ such that either A does not fix ϵ or A fixes ϵ and induces some non-trivial outer automorphism group on $K_{\epsilon} / Z_{\epsilon}$. In particular, $\left[K_{\epsilon}, A\right]$ is not a p-group.

We first show the existence of an $\epsilon \in \Delta$ with the required property. For this we may assume that A acts trivially on Δ. Since $\bar{A} \not \bar{K}, 5^{\circ}$ shows that A induces a non-trivial outer automorphism group on $K_{\epsilon} / Z_{\epsilon}$ for every $\epsilon \in \Delta$. This establishes the existence of ϵ.

Assume that $\left[K_{\epsilon}, A\right]$ is p-group. Then $\left[K_{\epsilon}, A\right](\bar{S} \cap K)$ is p-subgroup of K. Hence

$$
\left[K_{\epsilon}, A\right] \leqslant \bar{S} \cap K \leqslant K_{\epsilon} \quad \text { and } \quad\left[K_{\epsilon}, A\right] \leqslant O_{p}\left(K_{\epsilon}\right) \leqslant Z_{\epsilon}
$$

It follows that A normalizes K_{ϵ}, so A fixes ϵ and centralizes $K_{\epsilon} / Z_{\epsilon}$. In particular, A does not induce a non-trivial outer automorphism group on $K_{\epsilon} / Z_{\epsilon}$, a contradiction.

In the following let ϵ be any element of Δ such that either A does not fix ϵ or A fixes ϵ and induces some non-trivial outer automorphism group on $K_{\epsilon} / Z_{\epsilon}$.

$$
7^{\circ} . \quad \widetilde{q}=p \leqslant 3 ; \text { and if } \widetilde{q}=3 \text { then } K=D_{4}(q), \widehat{A}=\Gamma^{\prime} \cong C_{3}, \text { and } \widehat{A} \text { acts non-trivially on } \Delta .
$$

Suppose that $\tilde{q}>2$. Then by $2.18 \bar{A}=\left[\bar{A}, N_{L}(Y)\right]$ and any composition factor of $N_{L}(Y)$ on \bar{A} has order \widetilde{q}. Thus $\widehat{A}=\left[\hat{A}, \widehat{N_{L}(Y)}\right] \leqslant O u t(K / Z(K))^{\prime}$, and \widetilde{q} divides $|\hat{A}|$ since by $\sqrt{1}||\bar{A} / \bar{A} \cap K|=|\hat{A}|$. By $22^{\circ} \operatorname{Out}\left(K / Z(K)\right.$) is a semidirect product of Diag by $\Phi \Gamma$, and by $33^{\circ} \hat{A} \leqslant \widehat{S} \leqslant \Phi \Gamma$. It follows that $\widehat{A} \leqslant(\Phi \Gamma)^{\prime}$. Thus $\Phi \Gamma$ is not abelian, and we can apply A.61 So Δ is of type $D_{4}, \Gamma \cong \operatorname{Sym}(3)$ and $(\Phi \Gamma)^{\prime} \cong C_{3}$. Thus $\widehat{A} \cong C_{3}$. Since \widetilde{q} divides $|\widehat{A}|$, we conclude that $\widetilde{q}=3$, and so 7° holds.
$8^{\circ} . \quad \mathbb{K}=\mathbb{F}_{p}, I_{R}=C_{I}\left(O_{p}(R \cap K)\right)$ is a simple $R \cap K$-module, and $C_{I}(S)=C_{I_{R}}(S)=$ $C_{I_{R}}(\bar{S} \cap K)=C_{I}(\bar{S} \cap K)$ has order p.

By $7^{\circ} \widetilde{q}=p$ and so $|I / I \cap A|=\widetilde{q}=p$. Since by 9.5 b $I \cap A$ is \mathbb{K}-subspace of I we conclude that $|\mathbb{K}|=p$ and the first statement in 88° holds.

Clearly $1 \neq I_{R} \leqslant C_{I}\left(O_{p}(R \cap K)\right)$. Recall from 9.3 b that I is a simple K-module. By Smith's Lemma A. $63 C_{I}\left(O_{p}(R \cap K)\right)$ is a simple $\mathbb{K}(R \cap \bar{K})$-module. Since $\mathbb{K}=\mathbb{F}_{p}$ we conclude that $C_{I}\left(O_{p}(R \cap K)\right)$ is a simple $R \cap K$-module. So $I_{R}=C_{I}\left(O_{p}(R \cap K)\right)$, and the second statement holds.

Steinberg's Lemma A. 62 shows that $C_{I}(\bar{S} \cap K)$ is 1-dimensional over \mathbb{K} and so has order p. Since $C_{I_{R}}(\bar{S} \cap K) \neq 1$ and $C_{I}(S) \leqslant C_{I}(\bar{S} \cap K)$ also the last statement holds.

9°. $Q A$ does not act transitively on Δ.

Suppose that $Q A$ acts transitively on Δ. Then every vertex of Δ has the same valency, and since Δ has vertices of valency 1 , we get $|\Delta|=1$ or $|\Delta|=2$. This rules out the case $p=3$ in 7° and so $p=\widetilde{q}=2$. By $\left.8^{\circ}\right) \mathbb{K}=\mathbb{F}_{p}=\mathbb{F}_{2}$ and $C_{I}(S)=C_{I}(\bar{S} \cap K)$ has order 2. Hence $\left[C_{I}(\bar{S} \cap K), N_{K}(\bar{S} \cap K)\right]=1$. Let P_{1} be a minimal Lie-parabolic subgroup of K containing $\bar{S} \cap K$ and put $R_{1}:=O^{2^{\prime}}\left(P_{1}\right)$. The transitive action of $Q A$ on Δ implies $K=\left\langle R_{1}^{Q A}\right\rangle$. Since $C_{I}\left(R_{1}\right) \leqslant C_{I}(\bar{S} \cap K)$ and $Q A$ centralizes $C_{I}(\bar{S} \cap K)$, this gives $C_{I}\left(R_{1}\right)=C_{I}(K)=1$ and so

$$
\left[C_{I}(S), R_{1}\right]=\left[C_{I}(\bar{S} \cap K), R_{1}\right] \neq 1
$$

Hence A. 66 shows that
I is the Steinberg module of \mathbb{F}_{2}-dimension $|\bar{S} \cap K|$,
and I is, as an $\bar{S} \cap K$ module, isomorphic to the regular permutation module $\mathbb{F}_{2}[\bar{S} \cap K]$. The latter fact shows that

$$
|I|=|[I, t]|^{2} \quad \text { for every involution } t \in K
$$

Note that I is selfdual (for example $I^{*} \cong I^{\tau}$ by 4° and I^{τ} is the Steinberg module by A.66). Let $1 \neq a \in A$. Then 9.7 d gives $\operatorname{dim}_{\mathbb{K}}[I, a] \leqslant 2$ and so

$$
\begin{equation*}
|[I, a]| \leqslant 4 \quad \text { for all } 1 \neq a \in \bar{A} \tag{**}
\end{equation*}
$$

Suppose that there exists $1 \neq a \in \bar{A} \cap K$. Then $|I|=|[I, a]|^{2} \leqslant 4^{2}=2^{4}$. By (*) I has \mathbb{F}_{2}-dimension $|\bar{S} \cap K|$ and we conclude $|\bar{S} \cap K| \leqslant 4$. Hence $K \cong S L_{2}(4)$ and I is the natural $\operatorname{Sym}(5)$-module for $K \bar{A}$. But $\operatorname{Sym}(5)$ has two classes of maximal elementary abelian 2 -subgroups, one acts quadratically on the natural $\operatorname{Sym}(5)$-module, and the other is contained in $\operatorname{Alt}(5)$. Since $\bar{A} \not K K$ we conclude that A acts quadratically on I, which contradicts 9.3 a).

Hence $\bar{A} \cap K=1$ and $1{ }^{\circ}$ gives $|\hat{A}|=|\bar{A} / \bar{A} \cap K|=|\bar{A}|$. Since A does not act quadratically on I, we have $|\bar{A}| \geqslant 4$ and so $|\widehat{A}| \geqslant 4$. Note that \hat{A} is elementary abelian, $\widehat{A} \leqslant \Gamma \Phi$ (by $\sqrt{\circ}$), Φ is cyclic (by $\left.2^{\circ}\right)$ and $|\Gamma| \leqslant|\Delta| \leqslant 2$. We conclude that $|\Delta|=|\Gamma|=2, \Gamma \leqslant \widehat{A},|\hat{A}|=4$ and $\Phi \neq 1$. In particular, A acts transitively on Δ. As seen above $\left[C_{I}(S), R_{1}\right] \neq 1$ and so $\left[C_{I}\left(O_{p}\left(R_{1}\right)\right), O^{p}\left(R_{1}\right)\right] \neq 1$. Let $a \in A \backslash C_{A}(\Delta)$. Since $\Phi \neq 1$ and A acts transitively on $\Delta, R_{1} / O_{p}\left(R_{1}\right)$ is a group of Lie-type defined over a field of order larger than 2. Hence $\left|C_{I}\left(O_{p}\left(R_{1}\right)\right)\right| \geqslant 2^{4}$. Observe that

$$
\left|C_{I}\left(O_{p}\left(R_{1}\right)\right) \cap C_{I}\left(O_{p}\left(R_{1}\right)\right)^{a}\right| \leqslant\left|C_{I}\left(O_{p}\left(R_{1}\right) O_{p}\left(R_{1}\right)^{a}\right)\right|=\left|C_{I}(\bar{S} \cap K)\right|=2
$$

and so $\left|\left[C_{I}\left(O_{p}\left(R_{1}\right)\right), a\right]\right| \geqslant \frac{2^{4}}{2}=8>4$, a contradiction to $(* *)$. Thus 9° is proved.
10°. Suppose that $O^{p}(R) \neq 1$. Then $\left[I, O^{p}(R)\right] \not I_{R}$.
Suppose for a contradiction that $\left[I, O^{p}(R)\right] \leqslant I_{R}$. Since K is a group of Lie-type defined over a field of characteristic p, K has parabolic characteristic p. So $O^{p}(R) \neq 1$ gives $E:=O_{p}\left(O^{p}(R)\right) \neq 1$. In particular, $[I, E] \neq 1$. Moreover, by $8^{\circ} I_{R}$ is a simple R-module and thus $\left[I_{R}, E\right]=1$. As

$$
[I, E] \leqslant\left[I, O^{p}(R)\right] \leqslant I_{R} \leqslant C_{I}(E)
$$

we have $C_{I / C_{I}(E)}(R) \neq 1$. Hence there exists $i \in I$ such that $[i, R] \leqslant C_{I}(E)$ and $[i, E] \neq 1$. Since E and $i C_{I}(E)$ are R-invariant, also $[i, E]$ is R-invariant. As I_{R} is a simple R-module and $[i, E] \leqslant[I, E] \leqslant I_{R}$ this gives $[i, E]=I_{R}$. Thus

$$
|E| \geqslant\left|E / C_{E}(i)\right|=|[i, E]|=\left|I_{R}\right|=|[I, E]|
$$

so E is an offender on I^{*}. Since $[I, E] \leqslant C_{I}(E), E$ acts quadratically on I and so E is elementary abelian. By $4^{\circ} I^{*} \cong I^{\tau}$ as an $\mathbb{F}_{p} K$-module and therefore $E^{\tau^{-1}}$ is an elementary abelian offender on I, contrary to the assumption that I is not an $F F$-module.
11. \quad. Suppose that $O^{p}(R) \leqslant\left\langle\bar{A}^{R}\right\rangle$. Then $I_{R} \leqslant I \cap A$, and A is a quadratic best offender on I_{R}.

We first apply 9.5 By 9.5 a) A acts quadratically on $I \cap A$ and so also on I_{R}. Since I is not an FF-module for $\bar{M}, 9.5$ e shows that A is a best offender on $I \cap A$. Thus, by A.31 A is also a best offender on every A-submodule of $I \cap A$. Hence, it suffices to prove $I_{R} \leqslant I \cap A$.

So suppose for a contradiction that $I_{R} \leqslant A$. Since $\widetilde{q}=p$ by 7° we have $Y \leqslant Y A=I_{R} A$. Hence 8.7 applied with $U=I_{R}$ gives $[Y, A] \leqslant\left[I_{R}, A\right]$ and thus $[I, A] \leqslant I_{R}$. By assumption $O^{p}(R) \leqslant\left\langle\bar{A}^{R}\right\rangle$, and we conclude that $\left[I, O^{p}(R)\right] \leqslant I_{R}$. If $O^{p}(R)=1$, then R is a p-group and $I_{R} \leqslant C_{I}(R) \leqslant C_{I}(A)$, a contradiction as $C_{I}(A) \leqslant I \cap A$ by 9.5 b). Thus $O^{p}(R) \neq 1$. But then 10° shows that $\left[I, O^{p}(R)\right] \not I_{R}$, again a contradiction.
12°. Suppose that $\Delta(R \cap K) \neq \varnothing$ and $\overline{Q A}$ acts transitively on $\Delta(R \cap K)$. Then R is p-minimal.

Since Δ has no closed circuits, $\Delta(R \cap K)$ contains a vertex of valency 1. Now the transitivity of $\overline{Q A}$ shows that the connected components of $\Delta(R \cap K)$ have size 1 .

Note that $O^{p}(R) \leqslant R \cap K$ and since $R \cap K=O^{p^{\prime}}(R \cap K)$,

$$
R \cap K / O_{p}(R \cap K)=E_{1} \circ E_{2} \circ \ldots \circ E_{n}
$$

where n is the number of connected components of $\Delta(R \cap K)$, and E_{i} is a rank 1 group of Lie-type. The latter fact shows that E_{i} is also p-minimal. Hence the hypothesis of 1.39 is satisfied, and we conclude that R is p-minimal.

Case 1. I is selfdual as an $\mathbb{F}_{p} K$-module.
We now refine the choice of R from the beginning of the proof. By $9^{\circ} Q A$ is not transitive on Δ. Thus, every $Q A$-orbit of Δ is a proper subset of Δ. Choose R in addition such that
(i) $\Delta(R \cap K)$ is a $Q A$-orbit on Δ;
(ii) if $C_{K}\left(C_{I}(S)\right)$ is not p-closed then $R \cap K \leqslant C_{K}\left(C_{I}(S)\right)$; and
(iii) if $C_{K}\left(C_{I}(S)\right)$ is p-closed and $N_{K}(\bar{Q})$ is not p-closed then $R \cap K \leqslant N_{K}(\bar{Q})$.

Put $R_{1}:=R_{\Delta \backslash \Delta(R \cap K)}$ and $I_{1}:=Y_{I}\left(R_{1}\right)$. Observe that also $\Delta \backslash \Delta(R \cap K)$ is a proper $Q A$ invariant subset of Δ.

If $R \cap K \leqslant C_{K}\left(C_{I}(S)\right)$ then Q ! gives $R \cap K \leqslant N_{R \cap K}(Q)$. So the choice of R implies $\bar{Q} \vDash R$ unless $N_{K}(\bar{Q})$ is p-closed, and if $N_{K}(\bar{Q})$ is p-closed then $R_{1} \not \approx N_{\bar{M}}(\bar{Q})$. Therefore, since \bar{Q} is not normalized by $K, \bar{Q} \notin R_{1}$.

Put $D:=[I, A] \cap C_{I}(A)$. Since I is selfdual we can apply 9.7 and get:
13°.
(a) D is 1-dimensional over $\mathbb{K},|\mathbb{K}|=\widetilde{q}$, and $D^{\perp}=[I, A] C_{I}(A)=I \cap A$. In particular, by (70), $|D|=\widetilde{q}=p$.
(b) A centralizes D^{\perp} / D and $\bar{A} \leqslant O_{p}\left(N_{\bar{M}}(D)\right)$.
(c) I_{1} is a natural $S L_{m}(\widetilde{q})$-module for R_{1}° and $\left\langle\bar{A}^{R_{1}}\right\rangle$.
(d) $D=\left[I_{1}, A\right]=C_{I_{1}}(Q)$.

Next we show:
14. $D=C_{I}(S) \leqslant I_{1}$ and $K_{\epsilon} \$ N_{K}(D)$. In particular, $\left[C_{I}(S), K_{\epsilon}\right] \neq 1$.

Note that $\bar{S} \cap K$ normalizes $C_{I_{1}}(Q)$. By $\left.13^{\circ}\right)\left(\right.$ ab), (d) $|D|=p$ and $C_{I_{1}}(Q)=D$, and by 8° $C_{I}(\bar{S} \cap K)=C_{I}(S)$ and $\left|C_{I}(S)\right|=p$, so $D=C_{I}(S) \leqslant I_{1}$.

By $6^{\circ}\left[K_{\epsilon}, A\right]$ is not a p-group and by 13° b, $\bar{A} \leqslant O_{p}\left(N_{\bar{M}}(D)\right)$. Thus $K_{\epsilon} \leqslant N_{K}(D)$.
15°. For $X \subseteq R_{1}$ let X^{\triangle} be the image of X in Aut $\left(I_{1}\right)$. Then $\left(R_{1} \cap K\right)^{\triangle}=R_{1}^{\triangle}$ and I_{1} is a natural $S L_{m}(p)$-module for $R_{1} \cap K$.

Since $\left.\widetilde{q}=p, 13^{\circ}\right)(\mathrm{C})$ shows that $R_{1}^{\mathrm{o} \triangle} \cong S L_{m}(p)$ and $\left|I_{1}\right|=p^{m}$. So $\operatorname{Aut}\left(I_{1}\right) \cong G L_{m}(p)$. As $R_{1}=$ $\left(R_{1} \cap K\right) \overline{Q A}=O^{p^{\prime}}\left(R_{1}\right)$ and $G L_{m}(p) / S L_{m}(p)$ is a p^{\prime}-group, we conclude that $R_{1}^{\triangle}=R_{1}^{\circ \Delta} \cong S L_{m}(p)$. Note that, for $m \geqslant 3$ or $p>3, S L_{m}(p)=O^{p}\left(S L_{m}(p)\right)$; and for $m=2$ and $p \leqslant 3, O^{p}\left(S L_{m}(p)\right)$ is a p^{\prime}-group and $\left|S L_{m}(p) / O^{p}\left(S L_{m}(p)\right)\right|=p$. Since $O^{p}\left(R_{1}\right) \leqslant R_{1} \cap K$ and $R_{1} \cap K=O^{p^{\prime}}\left(R_{1} \cap K\right)$ we conclude that $\left(R_{1} \cap K\right)^{\triangle}=R_{1}^{\triangle}$.
16. $\quad \epsilon \in \Delta(R \cap K)$ and $K_{\epsilon} \leqslant R \cap K$.

Clearly, $\epsilon \in \Delta(R \cap K)$ implies $K_{\epsilon} \leqslant R \cap K$. Assume that $\epsilon \notin \Delta(R \cap K)$. Then $\epsilon \in \Delta\left(R_{1} \cap K\right)$ and $K_{\epsilon} \leqslant R_{1} \cap K$. By $\left.14^{\circ}\right) K_{\epsilon} \notin N_{K}(D)$ and since $D \leqslant I_{1}$ we get $\left[I_{1}, O^{p}\left(K_{\epsilon}\right)\right] \neq 1$. Thus $C_{K_{\epsilon}}\left(I_{1}\right) \leqslant Z_{\epsilon}$. By 15°, $\left(R_{1} \cap K\right)^{\Delta}=R_{1}^{\triangle}$ and so $A^{\Delta} \leqslant(\bar{S} \cap K)^{\Delta}$. Hence A normalizes K_{ϵ}^{\triangle} and induces inner automorphisms on K_{ϵ}. It follows that A fixes ϵ and induces inner automorphism on $K_{\epsilon} / Z_{\epsilon}$, contrary to the choice of ϵ.

17 ${ }^{\circ} . \quad N_{K}(D)$ is p-closed.
By (16) $K_{\epsilon} \leqslant R \cap K$ and by $\left.14^{\circ}\right]\left[C_{I}(S), K_{\epsilon}\right] \neq 1$. Thus $R \cap K \$ C_{K}\left(C_{I}(S)\right)$ and choice of R implies that $C_{K}\left(C_{I}(S)\right)$ is p-closed. Since $\bar{S} \cap K \in \operatorname{Syl}_{p}(K)$, also $N_{K}\left(C_{I}(S)\right)$ is p-closed. By $14{ }^{\circ}$ $C_{I}(S)=D$ and so 17° holds.
18. $\quad R$ is p-minimal, $O^{p}(R) \leqslant\left\langle\bar{A}^{R}\right\rangle,\left[I_{R}, O^{p}(R)\right] \neq 1$ and $\left[I_{R}, A\right]=D$.

By $16^{\circ} K_{\epsilon} \leqslant R$. Moreover, by $14^{\circ}\left[C_{I}(S), K_{\epsilon}\right] \neq 1$, and by A.12 $C_{I}(S) \leqslant C_{I}(\bar{S} \cap R) \leqslant I_{R}$. Hence $\left[I_{R}, K_{\epsilon}\right] \neq 1$ and thus also $\left[I_{R}, O^{p}(R)\right] \neq 1$.

By $\left(15^{\circ}\right) I_{1}$ is a natural $S L_{m}(p)$-module for $R_{1} \cap K$, by (130) (a) $|D|=p$ and by (14) $D \leqslant I_{1}$. Hence $C_{R_{1} \cap K}(D)^{\Delta}$ is the stabilizer of a point of I_{1}. On the other hand, by $\left.17^{\circ}\right) N_{K}(D)$ is p-closed and thus also $C_{R_{1} \cap K}(D)$ is p-closed. This shows that $m=2$ and $\Delta\left(R_{1} \cap K\right)=\{\delta\}$ for some $\delta \in \Delta$. Note that Δ is connected, $Q A$ normalizes δ, and $Q A$ acts transitively $\Delta(R \cap K)=\Delta \backslash\{\delta\}$. Hence (12°) shows that R is p-minimal. In particular, R is p-irreducible by 1.37 .

By the choice of $K_{\epsilon},\left[K_{\epsilon}, A\right]$ is not a p-group. Since $K_{\epsilon} \leqslant R$, we conclude that $\bar{A} \not \approx O_{p}(R)$, and so, since R is p-irreducible, $O^{p}(R) \leqslant\left\langle\bar{A}^{R}\right\rangle$. As $\left[I_{R}, O^{p}(R)\right] \neq 1$ this gives $\left[I_{R}, A\right] \neq 1$, and by 11° A acts quadratically on I_{R}. So $1 \neq\left[I_{R}, A\right] \leqslant[I, A] \cap C_{I}(A)=D$. Since $|D|=p$, we conclude that $\left[I_{R}, A\right]=D$, and 18° is proved.

We are now able to derive a contradiction which shows that Case 1 does not occur. By 18° R is p-minimal, $O^{p}(R) \leqslant\left\langle\bar{A}^{R}\right\rangle$, and by 13° u10a $|D|=p$. Hence 11° shows that A is a nontrivial quadratic best offender on I_{R}, and we are allowed to apply C.13 with $\left.\widetilde{R}:=R / C_{R}\left(I_{R}\right)\right)$ and $J:=J_{\widetilde{R}}\left(I_{R}\right)$. Hence

$$
J=E_{1} \times \cdots \times E_{r}, \quad I_{R}=C_{I_{R}}(J) \prod_{i=1}^{r}\left[I_{R}, E_{i}\right], \quad \text { and } \quad\left[I_{R}, E_{i}, E_{j}\right]=1 \text { for } i \neq j
$$

where for $i=1, \ldots, r, E_{i} \cong S L_{2}\left(p^{k}\right)$ or $\operatorname{Sym}\left(2^{k}+1\right)$ (and $p=2$), and $\left[I_{R}, E_{i}\right] / C_{\left[I_{R}, E_{i}\right]}\left(E_{i}\right)$ is a corresponding natural module for E_{i}, and $\bar{S} \cap R$ acts transitively on $\left\{E_{1}, \ldots, E_{r}\right\}$. In particular, $C_{\left[I_{R}, E_{i}\right]}\left(E_{i}\right) \leqslant C_{I_{R}}(J)$. By $\left(8^{\circ}\right), I_{R}$ is a simple R-module, so $C_{I_{R}}(J)=1$. Thus [$\left.I_{R}, E_{i}\right]$ is natural $S L_{2}\left(p^{k}\right)$ - or $\operatorname{Sym}\left(2^{k}+\right)$-module for E_{i} and

$$
I_{R}=\left[I_{R}, E_{1}\right] \times \cdots \times\left[I_{R}, E_{r}\right] .
$$

As $\bar{A} \leqslant J$ and $\left[I_{R}, A\right]=D$ has order p, there exists a unique E_{j} such that $D \leqslant\left[I_{R}, E_{j}\right]$. Since by $14^{\circ} D=C_{S}(I)$ we conclude that $\bar{S} \cap R$ normalizes $\left[I_{R}, E_{j}\right]$ and so E_{j}. Hence the transitivity of $S \cap R$ on $\left\{E_{1}, \ldots, E_{r}\right\}$ gives $J=E_{1}$.

If $J \cong \operatorname{Sym}\left(2^{k}+1\right)$ then $\left[I_{R}, A\right]$ is not centralized by a Sylow 2 -subgroup of J, a contradiction since $\left[I_{R}, A\right]=D=C_{I}(S)$. Thus $J \cong S L_{2}\left(p^{k}\right)$. As $\left[I_{R}, A\right]=D$ has order p we get $k=1$. It follows that $J=\widetilde{R \cap K} \cong S L_{2}(p)$. Thus $\Delta(R \cap K)=\{\epsilon\}$ and $R \cap K=K_{\epsilon}$. In particular, $K_{\epsilon} / O_{p}\left(K_{\epsilon}\right) \cong$ $S L_{2}(p)$ and $C_{K_{\epsilon}}\left(I_{R}\right) \leqslant Z_{\epsilon}$. Now $\bar{A} \leqslant K_{\epsilon} C_{R}\left(I_{R}\right)$ shows that \bar{A} induces inner automorphisms on $K_{\epsilon} C_{R}\left(I_{R}\right) / C_{R}\left(I_{R}\right) \cong K_{\epsilon} / C_{K_{\epsilon}}\left(I_{R}\right)$ and thus on $K_{\epsilon} / Z_{\epsilon}$, a contradiction to the choice of ϵ.

Case 2. $\quad I$ is not selfdual as an $\mathbb{F}_{p} K$-module.
19°.
(a) $K=A_{n}\left(t^{2}\right), n \geqslant 2, D_{2 n+1}\left(t^{2}\right), n \geqslant 2$, or $E_{6}\left(t^{2}\right)$; in particular, Δ has only single bonds.
(b) $p=\widetilde{q}=2, S$ acts trivially on Δ, and $\widehat{S} \leqslant \Phi \cong \operatorname{Aut}\left(\mathbb{F}_{t^{2}}\right)$.
(c) \widehat{A} is the unique subgroup of order 2 in Φ.

By $4^{\circ} I^{*} \cong I^{\tau}$ with $\tau^{2}=1$, and since I is not selfdual, we have $\tau \neq 1$. Thus 4^{0} implies

$$
K=A_{n}(q), n \geqslant 2, D_{2 n+1}(q), n \geqslant 2, \text { or } E_{6}(q)
$$

and τ induces the unique non-trivial graph automorphism of Δ, so $\Gamma=\langle\tau\rangle$ has order 2 . In particular, (a) holds, except that we still need to show that q is a square. Also $K \neq D_{4}(q)$, and $\left.\sqrt{7^{\circ}}\right)$ shows that $p=\widetilde{q}=2$.

Let $s \in S$. Recall from 3° that $\widehat{S} \leqslant \Gamma \Phi$. If $\widehat{s} \notin \Phi$, we conclude that $\tau \in \widehat{s} \Phi$ since Γ has order 2. But $I \cong I^{x}$ as an $\mathbb{F}_{2} K$-module for all $x \in \Phi$ and so $I^{*} \cong I^{\tau} \cong I^{\widehat{s}}=I$ as an $\mathbb{F}_{2} K$-module; a contradiction since I is not selfdual. Thus $\widehat{S} \leqslant \Phi$, and by $4^{\circ} S$ acts trivially on Δ. So bb is proved.

Recall that \hat{A} is non-trivial and elementary abelian, $\widehat{A} \leqslant \widehat{S} \leqslant \Phi$ and Φ is cyclic. Thus (c) follows.
Note that $d=1$ for the groups in 19° (a) (see A.60), and so by 2° (c) $\Phi \cong \operatorname{Aut}\left(\mathbb{F}_{q}\right)$. We conclude that \mathbb{F}_{q} has an automorphism of order 2 and so $q=t^{2}$ for some power t of p, which completes the proof of (a).

By 19° (c) $Q A$ acts trivially on Δ, so all subdiagrams of Δ are $Q A$-invariant. Hence we can choose R such $Q \not \approx R, \Delta(R \cap K)$ is connected and either $|\Delta| \geqslant 3$ and $|\Delta(R \cap K)|=2$, or $|\Delta|=2$ and $|\Delta(R \cap K)|=1$. Put

$$
m:=|\Delta(R \cap K)|, \quad \widetilde{R}:=R / C_{R}\left(I_{R}\right), \quad P:=\bar{A}(R \cap K)
$$

and let \widetilde{A} be the image of \bar{A} in \widetilde{R}. Recall from 19° that $p=2$.
20․ $\quad \widetilde{R \cap K}=A_{m}\left(t^{2}\right), m \leqslant 2,|\widetilde{P} / \widetilde{R \cap K}|=2$, each $a \in \widetilde{A} \backslash \widetilde{R \cap K}$ acts as a field automorphism of order 2 on $\widetilde{R \cap K}, F^{*}(\widetilde{P})=\widetilde{R \cap K}$ is quasisimple, $\left\langle\widetilde{A}^{\widetilde{P}}\right\rangle=\widetilde{P}$ and $O^{2}(R) \leqslant\left\langle A^{R}\right\rangle$.

Since Δ has only single bonds and $\Delta(R \cap K)$ is connected of size $m \leqslant 2, \Delta(R \cap K)$ is of type A_{m}. As by $19^{\circ} K$ is defined over $\mathbb{F}_{t^{2}}$ we conclude that $R \cap K / O_{2}(R \cap K)=A_{m}\left(t^{2}\right)$. In particular, $R \cap K / O_{2}(R \cap K)$ is quasisimple. Since $\bar{Q} \nRightarrow R$ and $R=(R \cap K) \overline{Q A}, Q$! shows that $\left[I_{R}, R \cap K\right] \neq 1$. It follows that $C_{R \cap K}\left(I_{R}\right) \leqslant Z_{\Delta(R \cap K)}$. Hence, also $\widetilde{R \cap K}$ is a version of $A_{m}\left(t^{2}\right)$ and so quasisimple. Let $a \in \bar{A} \backslash K$. Note that $|\bar{A} / \bar{A} \cap K|=|\widehat{A}|=2$ and a acts as a field automorphism of order 2 on K. Hence a also acts as a field automorphism of order 2 on $\widetilde{R \cap K}$, and $\widetilde{P}=\widetilde{R \cap K}\langle\widetilde{a}\rangle$. In particular, $\widetilde{R \cap K}=[\widetilde{R \cap K}, a]$ and so

$$
\widetilde{P}=\widetilde{R \cap K} \tilde{A}=[\widetilde{R \cap K}, \widetilde{A}] \widetilde{A}=\left\langle\widetilde{A}^{\widetilde{P}}\right\rangle
$$

Since $R \cap K / O_{2}(R \cap K)$ is quasisimple, this implies $O^{2}(R)=O^{2}(R \cap K) \leqslant\left\langle\bar{A}^{R}\right\rangle$, and 20° is proved.
21. $\quad P / O_{2}(P) \cong \operatorname{Sym}(5)$, and I_{R} is the corresponding natural module. In particular, $m=1$, $t^{2}=4$, and $K / Z(K) \cong L_{3}(4)$.

By $20^{\circ} O^{2}(R) \leqslant\left\langle\bar{A}^{R}\right\rangle$, and so 11° shows that $I_{R} \leqslant I \cap A$ and A is a quadratic best offender on I_{R}. Moreover, since by $20^{\circ}\left[I_{R}, O^{2}(R)\right] \neq 1, A$ is a non-trivial best offender on I_{R}.

By $20^{\circ} \widetilde{P}=\left\langle\widetilde{A}^{\widetilde{P}}\right\rangle$ and so $J_{\widetilde{P}}\left(I_{R}\right)=\widetilde{P}$. As I_{R} is a simple $R \cap K$-module by 8°, I_{R} is simple a \widetilde{P}-module. Thus we can apply the FF-Module Theorem C. 3 . Since by $20^{\circ}|\widetilde{P} / \widetilde{R \cap K}|=2$, $m \leqslant 2$, and $\overparen{R \cap K}=A_{m}\left(t^{2}\right)$ is a central quotient of $S L_{m+1}\left(t^{2}\right)(2 \leqslant m+1 \leqslant 3)$, we conclude that $m+1=2, t^{2}=4, \widetilde{P} \cong \operatorname{Sym}(5)$, and I_{R} is the corresponding natural module. (Note here that the natural $\operatorname{Sym}(5)$-module also appears as the natural $O_{4}^{-}(2)$-module in the FF-Module Theorem.)

Since $|\Delta(R \cap K)|=m=1$, the choice of R shows that $|\Delta|=2$. The only rank 2 group of Lie-type listed in 19° (a) is $L_{3}\left(t^{2}\right)=A_{2}\left(t^{2}\right)$, and so 21° is proved.
22°. There exists an involution t in $R \cap K$ with $t \notin O_{2}(R \cap K)$ and $\left|I / C_{I}(t)\right| \leqslant 2^{3}$.
Recall that $|I / I \cap A|=\widetilde{q}=2$ and that by $11^{\circ} A$ is best offender on $I \cap A$. Thus
$(* * *) \quad\left|I / C_{I}(A)\right|=|I / I \cap A|\left|I \cap A / C_{I \cap A}(A)\right| \leqslant 2\left|A / C_{A}(I)\right|=2|\bar{A}|$.
Put $B:=O_{2}(R \cap K)$. Suppose first that $\bar{A} \cap B=1$. Since $P / B \cong \operatorname{Sym}(5)$ and \bar{A} is elementary abelian we conclude that $|\bar{A}| \leqslant 4$. As A does not act quadratically on $I,|\bar{A}| \geqslant 4$ and so $\bar{A} \cap K \neq 1$. Let $1 \neq t \in \bar{A} \cap K$. Then $(* * *)$ gives $\left|I / C_{I}(t)\right| \leqslant 2|\bar{A}|=8$, and 22° holds.

Suppose next that $\bar{A} \cap B \neq 1$. Since $K / Z(K) \cong L_{3}(4), B$ is a natural $\Gamma S L_{2}(4)$-module for P and so $\left|C_{B}(A)\right| \leqslant 4$. In particular, $|\bar{A} \cap B| \leqslant 4$. Note that $\bar{A} \cap B=C_{\bar{A}}\left(I_{R}\right)$ and \bar{A} is not an over-offender on I_{R}. Thus $\left|I_{R} / C_{I_{R}}(\bar{A})\right| \geqslant|\bar{A}| /|\bar{A} \cap B|$, and so using $(* * *)$

$$
\left|I / C_{I}(\bar{A} \cap B)\right| \leqslant\left|I / C_{I}(\bar{A}) I_{R}\right|=\frac{\left|I / C_{I}(\bar{A})\right|}{\left|I_{R} / C_{I_{R}}(\bar{A})\right|} \leqslant \frac{2|\bar{A}|}{|\bar{A}| /|\bar{A} \cap B|}=2|\bar{A} \cap B| \leqslant 2^{3}
$$

Since $\bar{A} \cap B \neq 1$ and all involutions in $L_{3}(4)$ are conjugate, and since there exist involutions in $R \cap K \backslash B$, we again conclude that 22° holds.

We are now able to derive a final contradiction. Choose t as in 22°. Note that, for example since t inverts an elements of order five in $R \cap K / B \cong A l t(5),\left|W / C_{W}(t)\right| \geqslant 4$ for any non-central simple $\mathbb{F}_{2}(R \cap K)$-module. On the other hand $\left|I / C_{I}(t)\right| \leqslant 2^{3}$, and so I has at most one non-central $R \cap K$-composition factor. Thus $\left[I, O^{2}(R)\right]=\left[I, O^{2}(R \cap K)\right] \leqslant I_{R}$, a contradiction to 10°.

In the following we will use a result of Guralnick-Malle on simple $2 F$-modules for quasisimple groups H, GM1 and GM2. Here an $\mathbb{F}_{p} H$-module V is a $2 F$-module for H if there exists an elementary abelian p-subgroup $A \leqslant H$ such that

$$
\left|V / C_{V}(A)\right| \leqslant\left|A / C_{A}(V)\right|^{2} \text { and }[V, A] \neq 0
$$

According to $9.3 \mathrm{~b} I$ is a simple module for K. By 9.3 c$) \bar{A}$ satisfies the above inequality with respect to Y. Clearly $\left|I / C_{I}(A)\right| \leqslant\left|Y / C_{Y}(A)\right|$ and by $8.4 \mathbb{c} C_{A}(I)=C_{A}(Y)$. Hence \bar{A} satisfies the above inequality also with respect to I. Moreover, the case where I is an $F F$-module has been
treated already in 9.8. In the remaining case, if K is the genuine group of Lie-type, $\bar{A} \leqslant K$ by 9.9 and the pair (K, I) satisfies the hypothesis of GM1 or GM2.

We will distinguish the cases, where K is a genuine group of Lie type, a non-genuine group of Lie type, an alternating group, and a sporadic group, respectively. For this purpose we break up the result of Guralnick-Malle into four parts which we will quote separately.

Theorem 9.10 (Guralnick-Malle). Let H be a genuine quasisimple group of Lie-type defined over a field of characteristic p and V a faithful simple $2 F$-module for $\mathbb{F}_{p} H$. Put $\mathbb{F}:=E n d_{H}(V)$ and $d:=\operatorname{dim}_{\mathbb{F}} V$. Let $\delta_{x \mid y}=1$, if x divides y, and $\delta_{x \mid y}=0$, otherwise. Then H, V, d and \mathbb{F} are given in the following table:

H	d	V	$\|\mathbb{F}\|$	conditions
$S L_{n}\left(p^{a}\right)$	n	$V_{\text {nat }}$	p^{a}	
$S L_{n}\left(p^{a}\right)$	$\binom{n}{2}$	$\Lambda^{2} V_{n a t}$	p^{a}	$n \geqslant 3$
$S L_{n}\left(p^{a}\right)$	$\binom{n+1}{2}$	Sym ${ }^{2} V_{\text {nat }}$	p^{a}	p odd, $n \geqslant 3$
$S L_{n}\left(p^{2 a}\right)$	n^{2}	$\frac{\mathbb{F}_{p^{a}}}{\mathbb{F}_{p^{2 a}}} V_{\text {nat }} V_{\text {nat }}^{p^{a}}$	p^{a}	
$S L_{6}\left(p^{a}\right)$	20	$\bigwedge^{3} V_{\text {nat }}$	p^{a}	
$S U_{n}\left(p^{a}\right)$	n	$V_{\text {nat }}$	$p^{2 a}$	
$S p_{2 n}\left(p^{a}\right)$	$2 n$	$V_{\text {nat }}$	p^{a}	
$S p_{2 n}\left(p^{a}\right)$	$\binom{n}{2}-1-\delta_{p \mid n}$	$\widetilde{\bigwedge}^{2} V_{n a t}$	p^{a}	$\begin{gathered} n=2,3 \\ \text { or } p=2, n=4 \end{gathered}$
$S p_{4}\left(p^{2 a}\right)$	16	$\frac{\mathbb{F}_{p} a}{\mathbb{F}_{p^{2 a}}} V_{n a t} \otimes V_{n a t}^{p^{a}}$	p^{a}	
$\Omega \pm \begin{aligned} & \pm \\ & \left(p^{a}\right)\end{aligned}$	n	$V_{n a t}$	p^{a}	
$\operatorname{Spin}_{2 n+1}\left(p^{a}\right)$	2^{n}	Spin	p^{a}	$n=3,4,5$
$\operatorname{Spin}_{2 n}^{+}\left(p^{a}\right)$	2^{n-1}	Half - Spin	p^{a}	$n=4,5,6$
$\operatorname{Spin}_{2 n}^{-}\left(p^{a}\right)$	2^{n-1}	Spin	$p^{2 a}$	$n=4,5$
$S z\left(2^{2 a+1}\right)$	4	$M\left(\lambda_{1}\right)$	$2^{2 a+1}$	
$G_{2}\left(p^{a}\right)$	$7-\delta_{2 \mid n}$	$M\left(\lambda_{2}\right)$	p^{a}	
$F_{4}\left(2^{a}\right)$	26	$M\left(\lambda_{1}\right), M\left(\lambda_{4}\right)$	2^{a}	
$E_{6}\left(p^{a}\right)$	27	$M\left(\lambda_{1}\right), M\left(\lambda_{6}\right)$	p^{a}	
$F_{4}\left(p^{a}\right)$	$26-\delta_{3 \mid p}$	$M\left(\lambda_{4}\right)$	p^{a}	p odd
${ }^{2} E_{6}\left(p^{a}\right)$	27	$M\left(\lambda_{1}\right)$	$p^{2 a}$	
$E_{7}\left(p^{a}\right)$	56	$M\left(\lambda_{7}\right)$	p^{a}	

We remark that it has been shown in $\mathbf{G L M}$ that the last three cases of the table do not occur. But since they only add two lines of arguments to our proof, we prefer to work with the original list.

Lemma 9.11. Suppose that K is a quasisimple genuine group of Lie-type defined over a field of characteristic p. Then Theorem \square holds.

Proof. By 9.8 we may assume that
1°. I is not an FF-module for $K \overline{Q A}$.
Thus by $9.9 \bar{A} \leqslant K$. So we can apply 9.10 with (K, I, \mathbb{K}) in place of (H, V, \mathbb{F}). Removing all the $F F$-modules and all the modules which have been treated in 9.8 we are left with the following list:
2°.

K	d	I	$\|\mathbb{K}\|$	conditions
$S L_{n}\left(p^{a}\right)$	$\binom{n+1}{2}$	$S y m^{2} V_{n a t}$	p^{a}	odd,$n \geqslant 3$
$S L_{n}\left(p^{2 a}\right)$	n^{2}	$\frac{\mathbb{F}_{p^{a}}}{\mathbb{F}_{p^{2 a}}} V_{n a t} \otimes V_{n a t}^{p^{a}}$	$p^{2 a}$	$n \geqslant 3$
$S L_{6}\left(p^{a}\right)$	20	$\bigwedge^{3} V_{n a t}$	p^{a}	
$S p_{2 n}\left(p^{a}\right)$	$\binom{n}{2}-1-\delta_{p \mid n}$	$\widetilde{\bigwedge}^{2} V_{n a t}$	p^{a}	$n=2,3$
			or $p=2, n=4$	
$\operatorname{Sp}_{4}\left(p^{2 a}\right)$	16	$\frac{\mathbb{F}_{p} a}{\mathbb{F}_{p^{2 a}}} V_{n a t} \otimes V_{n a t}^{p^{a}}$	p^{a}	
$\operatorname{Spin}_{2 n+1}\left(p^{a}\right)$	2^{n}	$S p i n$	p^{a}	$n=3,4,5$
$\operatorname{Spin}_{2 n}^{+}\left(p^{a}\right)$	2^{n-1}	$H a l f-S p i n$	p^{a}	$n=6$
$\operatorname{Spin}_{2 n}^{-}\left(p^{a}\right)$	2^{n-1}	$S p i n$	$p^{2 a}$	$n=4,5$
$S z\left(2^{2 a+1}\right)$	4	$M\left(\lambda_{1}\right)$	$p^{2 a+1}$	
$F_{4}\left(2^{k}\right)$	26	$M\left(\lambda_{1}\right), M\left(\lambda_{4}\right)$	p^{a}	
$F_{4}\left(p^{a}\right)$	$26-\delta_{3 \mid p}$	$M\left(\lambda_{4}\right)$	p^{a}	p odd
$2 E_{6}\left(p^{a}\right)$	27	$M\left(\lambda_{1}\right)$	$p^{2 a}$	
$E_{7}\left(p^{a}\right)$	56	$M\left(\lambda_{7}\right)$	p^{a}	

If K has rank 1 we see that $K \cong S z\left(2^{2 a+1}\right)$ and $\operatorname{dim}_{\mathbb{K}} I=4$. But then every elementary abelian 2-subgroup of K acts quadratically on I, which contradicts 9.3 a since $\bar{A} \leqslant K$. Thus we may assume:
3°. K has Lie rank at least two.
Put $U:=C_{I}(K \cap \bar{S})$ and $R:=N_{K \bar{Q}}(U)$. By Smith's Lemma A.63 U is 1-dimensional over \mathbb{K}. Since Q acts \mathbb{K}-linear and U is 1-dimensional, Q centralizes U and Q ! implies $\bar{Q} \vDash R$.

Let Δ be the Dynkin diagram of K. Observe that in all cases there exists $i \in \Delta$ such that either $I \cong M\left(\lambda_{i}\right)$ or I is a simple $\mathbb{K} K$-submodule of $M\left(\lambda_{i}\right) \otimes_{\mathbb{F}} M\left(\lambda_{i}\right)^{\sigma}$, where \mathbb{F} is the field used to define K and σ is an automorphism of \mathbb{F} with $C_{\mathbb{F}}(\sigma)=\mathbb{K}$. Thus $R \cap K$ is the maximal parabolic corresponding to $\Delta \backslash\{i\}$. In particular, R is a maximal subgroup of $K \bar{Q}$ and so $R=N_{K \bar{Q}}(\bar{Q})$. Let P be the p-minimal subgroup of $K \bar{Q}$ corresponding to the node i and containing $(\bar{S} \cap K) \bar{Q}$. Then $P \nleftarrow R$ and so $\bar{Q} \nleftarrow P$. Since Q is weakly closed in $S, \bar{Q} \nVdash O_{p}(P)$.

Suppose that one of the first two cases of 2° holds. As $\left[(R \cap K) / O_{p}(R \cap K), Q\right]=1$ we conclude that Q induces inner automorphisms on K. Thus $\overline{M^{\circ}}=K$ and TheoremI(5) or (6) holds.

So assume for a contradiction that one of the remaining cases of $2{ }^{\circ}$ holds. We prove next:
4°. I is selfdual as $\mathbb{F}_{p} K$-module.
In the third case of $2^{\circ} I$ is that the exterior cube of a natural $S L_{6}(q)$-module, and so selfdual. In all other cases A. 65 shows that I is selfdual.

As Q fixes i we can choose a proper Q-invariant connected subdiagram Λ of Δ with $i \in \Lambda$, which is maximal with respect to these properties. Let R_{1} be the corresponding parabolic subgroup of $\overline{M^{\circ}}$ with $(\bar{S} \cap K) \bar{Q} \leqslant R_{1}$ and note that $P \leqslant R_{1}$. Put $R_{1}^{\circ}:=\left\langle\bar{Q}^{R_{1}}\right\rangle$. Since I is a selfdual $\mathbb{F}_{p} K$-module, we can apply 9.7.j) and conclude that $I_{R_{1}}$ is a natural $S L_{m}(q)$-module for R_{1}°. As Λ is connected, Λ is an A_{m-1}-diagram.

We will now derive a contradiction by showing that in all (remaining) cases R_{1} can be chosen such that either Λ is not of type A_{m-1} or $I_{R_{1}}$ is not a natural $S L_{m}(q)$-module for R_{1}° or I is an $F F$-module for K.

If $K \cong S L_{6}(q)$ and I is the exterior cube of a natural $S L_{6}(q)$-module, then $I_{R_{1}}$ is the exterior square of a natural $S L_{5}(q)$-module, a contradiction.

If $\mathbb{K} \cong S p_{2 n}(q), n \geqslant 3$, and I is a section of the exterior square of the natural module, we can choose Λ to be a B_{n-1}-diagram, a contradiction since $n \geqslant 3$.

If $K \cong S p_{4}\left(q^{2}\right)$ and I appears in $V_{\text {nat }} \otimes V_{n a t}^{q}$, then $P \cap K / O_{p}(P \cap K) \cong S L_{2}\left(q^{2}\right)$ and R_{1} is a natural $\Omega_{4}^{-}(q)$-module, a contradiction.

If $K \cong \operatorname{Spin}_{n}^{\epsilon}(q), n \geqslant 7$, we can choose R_{1} such that $I_{R_{1}}$ is a natural $\operatorname{Spin}_{n-2}^{\epsilon}(q)$-module. Since $I_{R_{1}}$ is also a natural $S L_{m}(q)$-module, we get $n=8$ and $\epsilon=+$. Thus I is an FF-module, contrary to 1°.

Suppose that $\bar{K} \cong F_{4}(q),{ }^{2} E_{6}(q)$ or $E_{7}(q)$. Then we can choose Λ to be a B_{3} - or C_{3}-diagram (in the first two cases) or a D_{6}-diagram (in the last case), a contradiction. This completes the proof of the lemma.

Theorem 9.12 (Guralnick-Malle). Let H be a finite group and V a faithful simple $2 F$-module for $\mathbb{F}_{p} H$. Suppose that $F^{*}(H)$ is a perfect central extension of an alternating group, but $F^{*}(H)$ is not a genuine group of Lie-type over a field of characteristic p. Put $\mathbb{F}:=\operatorname{End}_{\mathbb{F}}{ }_{(H)}(V), d:=\operatorname{dim}_{\mathbb{F}} V$, $\delta_{p \mid n}=1$, if $p \mid n$ and $\delta_{p \mid n}=0$ otherwise. Then one of the following holds:

H	d	V	$\|\mathbb{F}\|$
$\operatorname{Alt}(n), \operatorname{Sym}(n)$	$n-1-\delta_{2 \mid n}$	natural	2
$3 \cdot \operatorname{Alt}(6), 3 \cdot \operatorname{Sym}(6)$	3	ovoid	4
$\operatorname{Alt}(7)$	4	half-spin	2
$\operatorname{Sym}(7)$	8	spin	2
$\operatorname{Alt}(9)$	8	spin	2
$\operatorname{Alt}(n), \operatorname{Sym}(n)$	$n-1-\delta_{3 \mid n}$	natural	3
$2 \cdot \operatorname{Alt}(5), 2 \cdot \operatorname{Sym}(5)$	2	spin	9
$2 \cdot \operatorname{Alt}(9), 2 \cdot \operatorname{Sym}(9)$	8	spin	3

Lemma 9.13. Suppose that $K / Z(K)$ is an alternating group. Then Theorem η holds.
Proof. Since K is quasisimple, we have $K / Z(K) \cong \operatorname{Alt}(n)$ with $n \geqslant 5$. By 9.11 we may assume that $K / Z(K)$ is not a genuine group of Lie-Type defined over a field of characteristic p, and we may also assume that we are not in one of the cases treated in 9.8 . We use 9.12 with ($\overline{A Q} K, I, \mathbb{K})$ in place of (H, V, \mathbb{F}). In particular, we have $p=2$ or 3 .

Case 1. The case $p=2$.
Assume that I is a natural $\operatorname{Alt}(n)$-module. Since I is also a Q-module, C. 23 shows that $n=5,6$ or 8 and $K \cong S L_{2}(4), S p_{4}(2)^{\prime}$, and $S L_{4}(2)$, respectively. In the first and third case $K / Z(K)$ is a genuine group of Lie type in characteristic 2 contradicting our assumption. In the second case $|I|=2^{4}$, and I is an $F F$-module for K, a case which has been treated in 9.8 ,

If $K \sim 3 \cdot \operatorname{Alt}(6)$ and $|I|=2^{6}$, or $K \cong \operatorname{Alt}(7)$ and $|I|=2^{4}$, then I is an $F F$-module for K. Hence, also these cases have been treated in in 9.8 .

Observe that the fourth case of 9.12 is excluded by the fact that I is a simple K-module.
Assume that $K \cong \operatorname{Alt}(9)$ and I is the spin-module of order 2^{8}. Then $\widetilde{q}=2$ and I is selfdual. Note that all involutions in \bar{M} invert a 3 -cycle in K. As the 3 -cycles in K act fix-point freely on I we conclude $|[I, a]| \geqslant 2^{4}$ for all $a \in A \backslash C_{A}(I)$. But by 9.7$]$ d , $|[I, a]| \leqslant \widetilde{q}^{2}=2^{2}$, a contradiction.

Case 2. The case $p=3$.
If I is the a natural $\operatorname{Alt}(n)$-module for K, then again C.23 shows that $n=6$. But then $K \cong L_{2}(9)$ is a genuine group of Lie-type, contrary to the assumptions.

If $K \sim 2 \cdot \operatorname{Alt}(5)$ and $\operatorname{dim}_{\mathbb{K}} I=2$ then A acts quadratically on I, a contradiction.
Suppose that $K \sim 2 \cdot \operatorname{Alt}(9)$. Then I is selfdual and $\mathbb{K}=\mathbb{F}_{3}$. Now 9.7 shows that $\widetilde{q}=3$ and $|[I, a]| \leqslant 9$ for all $a \in A$, a contradiction since $|[I, k]| \geqslant 3^{4}$ for all $k \in K$ with $|k|=3$. (Indeed, there exists $E \leqslant K$ with $E \cong Q_{8}, Z(E)=Z(K)$ and $E=[E, k]$. Hence $Z(K) \leqslant\left\langle k, k^{e}\right\rangle$ for some $e \in E$ and so $3^{8}=|I|=|[I, Z(K)]| \leqslant|[I, k]|^{2}$. Thus $|[I, k]| \geqslant 3^{4}$.)

Theorem 9.14 (Guralnick-Malle). Let H be a finite group and V a faithful simple 2F-module for $\mathbb{F}_{p} H$. Suppose that $F^{*}(H) / Z\left(F^{*}(H)\right)$ is neither an alternating group nor a genuine group of Lietype over a field of characteristic p, but $F^{*}(H)$ is a perfect central extension of a group of Lie-type.

Put $\mathbb{F}:=\operatorname{End}_{\mathbb{F}^{*}(H)}(V)$ and $d:=\operatorname{dim}_{\mathbb{F}} V$. Then one of the following holds:

$F^{*}(H)$	d	$\|\mathbb{F}\|$
$U_{3}(3)$	6	2
$3 \cdot U_{4}(3)$	6	4
$2 \cdot L_{3}(4)$	6	3
$S p_{6}(2)$	7	3
$2 \cdot S p_{6}(2)$	8	3
$2 \cdot \Omega_{8}^{+}(2)$	8	3

Lemma 9.15. Suppose that $K / Z(K)$ is a group of Lie-type. Then $K / Z(K)$ is a genuine group of Lie type, and Theorem \square holds.

Proof. If $K / Z(K)$ is a genuine group of Lie typ, then 9.11 shows that Theorem holds. So assume for a contradiction that $K / Z(K)$ is not a genuine group of Lie-type defined over a field of characteristic p. Thus 9.14 can be applied with $(\overline{Q A} K, I, \mathbb{K})$ in place of (H, V, \mathbb{F}). In particular, $p=2$ or 3 .

Case 1. \quad The case $p=2$.
The case $K \cong U_{3}(3) \cong G_{2}(2)^{\prime}$ has been ruled out in (the proof of) 9.8 .
Suppose $K \cong 3 \cdot U_{4}(3)$. Then $\operatorname{dim}_{\mathbb{K}} I \mid=6$, and by JLPW] I is selfdual as an $\mathbb{F}_{2} K$-module. Since $|Z(K)|=3$ this contradicts 9.7 (i).

Case 2. \quad Suppose that $p=3$.
In all cases we have that $|\mathbb{K}|=3$, and by JLPW I is selfdual. So 9.7 applies. In particular, $\widetilde{q}=|\mathbb{K}|=3$ and $|[I, a]| \leqslant 9$ for all $a \in A$. Let $a \in A$ with $[I, a] \neq 1$.

Suppose that $K \cong 2 \cdot L_{3}(4)$ and $|I|=3^{6}$. Since the diagonal automorphism of order 3 of $K / Z(K)$ does not normalize $Z(K), \bar{A} \leqslant K$. Hence there exists $T \leqslant K$ with $|T|=7$ and $T=[T, a]$. Since I is selfdual, $I=[I, T]$ and so $|[I, a]| \geqslant 3^{3}$, a contradiction.

Suppose that $K \cong S p_{6}(2)$ and $|I|=3^{7}$. By [JLPW], I is the unique simple 7 -dimensional $F_{3} K$-module, and so I is the module arising from the isomorphism $C_{2} \times S p_{6}(2) \cong W e y l\left(E_{7}\right)$, the Weyl-group of type E_{7}. Choose $T \leqslant K$ with $T \cong O_{6}^{-}(2) \cong W e y l\left(E_{6}\right)$. Then T normalizes a 1-space in I. Since T contains a Sylow 3 -subgroup of K we may assume that $\bar{Q} \leqslant T$. But then Q ! implies $\bar{Q} \vDash T$, a contradiction to $O_{3}(T)=1$.

Suppose that $K \cong 2 \cdot S p_{6}(2)$ and $|I|=3^{8}$. Then we can choose $T \leqslant K$ with $\bar{a} \in T, T \sim$ 2. $\left(S p_{2}(2) \times S p_{4}(2)\right)$ and $\bar{a} \notin O_{3}(T)$. It follows that there exists $E \leqslant T^{\infty} \sim 2 \cdot \operatorname{Alt}(6)$ with $E=[E, a]$, $E \cong Q_{8}$ and $Z(E)=Z(K)$. Thus $[\mid I, a] \mid \geqslant 3^{4}$, a contradiction.

Suppose that $K \cong 2 \cdot \Omega_{8}^{+}(2)$. Then $|I|=3^{8}$. By JLPW, I is the unique simple 8 -dimensional $F_{3} K$-module, and so I is the module arising from the isomorphism $2 \cdot \Omega_{8}^{+}(2) \cong W e y l\left(E_{8}\right)^{\prime}$. Since the graph automorphism of order three does not centralize $Z(K), \bar{Q} \leqslant K$ and there exists $\bar{Q} \leqslant D \leqslant K$ with $D \cong C_{3} \times \Omega_{6}^{-}(2) \cong W e y l\left(A_{2} \times E_{6}\right)^{\prime}$. Since $p=3$, we see that D normalizes a 1-space in I. So by $Q!, \bar{Q}=O_{p}(D)$, a contradiction since \bar{Q} is weakly closed in K and $O_{p}(D)$ is not.

Theorem 9.16 (Guralnick-Malle). Let H be a finite group and V a faithful simple 2F-module for $\mathbb{F}_{p} H$. Suppose that $F^{*}(H)$ is a perfect central extension of a sporadic simple group. Put $\mathbb{F}:=$ $\operatorname{End}_{\mathbb{F}^{*}{ }_{(H)}}(V)$ and $d:=\operatorname{dim}_{\mathbb{K}} V$. Then one of the following holds:

$F^{*}(H)$	d	$\|\mathbb{F}\|$
Mat $_{12}$, Mat $_{22}$	10	2
Mat $_{23}$ Mat $_{24}$	11	2
$3 \cdot$ Mat $_{22}$	6	4
Co $_{2}$	22	2
Co $_{1}$	24	2
Mat $_{11}$	5	3
$2 \cdot$ Mat $_{12}$	6	3

The cases Co_{2} and Co_{1} have been ruled out in GLM, but again we decided to only refer to the original list.

Lemma 9.17. Suppose that $K / Z(K)$ is a sporadic simple group. Then Theorem $\lceil 1$ holds.
Proof. We can apply 9.16 with $(\overline{A Q} K, I, \mathbb{K})$ in place of (H, V, \mathbb{F}). In particular, $p=2$ or 3 .
Case 1. The case $p=3$.
By JLPW], Mat 11 has two simple 5 -dimensional modules over \mathbb{F}_{3}. Also $2 \cdot M a t_{12}$ has two simple 6 -dimensional modules over \mathbb{F}_{3} interchanged by the outer automorphism of $2 \cdot M a t_{12}$. Thus either $K \cong M a t_{11}$ and I is the simple Todd or Golay code module, or $K \cong 2 \cdot M a t_{12}$ and I is the simple Golay code module. Note that K has no outer automorphism of order 3 , and so $\overline{M^{\circ}}=K$. We need to rule out the case where $K \cong M a t_{11}$ and I is Todd-module. Then $M a t_{11}$ has an orbit of length 11 on the 1 -spaces in I. Hence $M a t_{10}$ normalizes a 1 -space in I, but this contradicts $Q!$, since $O_{3}\left(M a t_{10}\right)=1$ and $M a t_{10}$ contains a Sylow 3 -subgroup of $M a t_{11}$.

Case 2. \quad The case $p=2$.
Let $Z:=C_{I}(S)$ and $R:=C_{\bar{M}}(Z)$. Then by $Q!, \bar{Q} \leqslant O_{p}(R)$.
Suppose first that $K \cong M_{24}$. By JLPW], $M a t_{24}$ has two simple 11-dimensional modules over \mathbb{F}_{2}. Thus, I is the simple Todd or Golay code module. Since $\operatorname{Out}\left(M a t_{24}\right)=1$, we get that $\bar{M}=\overline{M^{\circ}}=K$, and Theorem IV holds.

Suppose next that $K \cong M a t_{22}$. By [JLPW], Mat ${ }_{22}$ has two simple 10-dimensional modules over \mathbb{F}_{2}. Thus, I is the simple Todd or Golay code module. Also $\overline{M^{\circ}}=K$ or $\bar{M}=\overline{M^{\circ}} \cong \operatorname{Aut}\left(M a t_{22}\right)$. Assume that I is the Golay-code module. Then $R \sim 2^{4} \operatorname{Alt}(6)$ or $2^{4} \operatorname{Sym}(6)$ with $O_{2}(R) \leqslant K$, so $\bar{Q} \leqslant K$. Hence $\overline{M^{\circ}}=K \cong M a t_{22}$ and Theorem I 10 holds.

Assume that I is the Todd module. If $\overline{M^{\circ}} \cong A u t\left(M a t_{22}\right)$, then Theorem 11 holds. So suppose that $\overline{M^{\circ}}=K$. Then $R \sim 2^{4} \operatorname{Sym}(5)$ and there exists $F \leqslant \overline{M^{\circ}}$ with $F \cong L_{3}(4), O_{2}(R) \leqslant F$ and $C_{I}(F) \neq 1$. Since $Q \leqslant O_{2}(R) \leqslant F$ and $O_{2}(F)=1$, we get a contradiction to Q !.

It remains to rule out the cases $K \cong M a t_{12}, 3 \cdot M a t_{22}, M a t_{23}, C o_{2}$ and $C o_{1}$ in 9.16 .
Suppose that $K \cong M a t_{12}$. By [JLPW], Mat ${ }_{12}$ has a unique simple 10-dimensional modules over \mathbb{F}_{2}. Hence, I is the non-central simple section of a natural permutation module on 12 letters. In particular, I is selfdual and $|\mathbb{K}|=2$. Thus by $9.7 \mid \mathrm{j}]|,|[V, a]| \leqslant 4$, a contradiction, since no involution fixes more than 4 of the 12 letters.

Suppose that $K \cong 3 \cdot M a t_{22}$. By JLPW, any 6 -dimensional simple $3 \cdot M a t_{22}$ module over \mathbb{F}_{4} is selfdual as an $\mathbb{F}_{2} K$-module. As $|Z(K)|=3$, this contradicts 9.7 (i).

Suppose that $K \cong M a t_{23}$. By [JLPW], $M a t_{23}$ has two simple 11-dimensional modules over \mathbb{F}_{2}. Thus, I is the simple Todd or Golay code module of \mathbb{F}_{2}-dimension 11 . Since $\operatorname{Out}(K)=1$ we have $\bar{M}=K$. If I is the Todd-module, then there exists $\bar{Q} \leqslant E \leqslant K$ with $E \cong M a t_{22}$ and $C_{I}(E) \neq 1$, a contradiction to Q !. Thus I is the Golay code module and so $R \sim 2^{4} \operatorname{Alt}(7), \bar{Q}=O_{2}(R)$ is elementary abelian of order 2^{4}, and $\left|C_{I}(Q)\right|=2$. Suppose that $\bar{A} \leqslant \bar{Q}$. Since A is an $2 F$-offender and R acts simply on $O_{2}(R)$ A.29 a implies that \bar{Q} is a $2 F$-offender. But $\left|I / C_{I}(Q)\right|=2^{10}>\left(2^{4}\right)^{2}=|\bar{Q}|^{2}$, a contradiction.

Hence $\bar{A} \neq \bar{Q}$. Let Ω be a set of size 23 with $\bar{M} \cong M a t_{23}$ acting faithfully on Ω. Then $R=N_{\bar{M}}(\Theta)$ for some $\Theta \subseteq \Omega$ with $|\Theta|=7$. Let $\Lambda \subseteq \Theta$ with $|\Lambda|=3$ and put $R_{1}=N_{\bar{M}}(\Lambda)$. Then $R_{1} / C_{R_{1}}(\Lambda) \cong \operatorname{Sym}(3)$ and $C_{R_{1}}(\Lambda) \cong \operatorname{Mat}_{20} \sim 2^{4} S L_{2}(4)$, where $O_{2}\left(R_{1}\right)$ is a natural $S L_{2}(4)$-module for $C_{R_{1}}(\Lambda) / O_{2}\left(R_{1}\right)$. Also $\bar{Q}=C_{\bar{M}}(\Theta) \leqslant C_{R_{1}}(\Lambda)$ and so $R_{1}^{\circ}=C_{R_{1}}(\Lambda)$.

Since R induces $\operatorname{Alt}(7)$ on $\Theta, R_{1} \cap R / C_{R_{1} \cap R}(\Lambda) \cong \operatorname{Sym}(3)$ and $C_{R_{1} \cap R}(\Lambda) / \bar{Q} \cong \operatorname{Alt}(4)$. Thus $\left|R_{1} \cap R\right|=2^{7} 3^{2},\left|R / R \cap R_{1}\right|=5=\left|R_{1}^{\circ} / R_{1}^{\circ} \cap R\right|$ and $O_{2}\left(R_{1} \cap R\right) \in \operatorname{Syl}_{2}\left(R_{1}^{\circ}\right)$. Note also that $O_{2}\left(R_{1} \cap R_{2}\right) / \bar{Q}$ corresponds to $\langle(12)(34),(14)(23)\rangle$ in $A l t(7)$ and so by [MS5, 7.5] is, up to conjugacy, the unique maximal quadratically acting subgroup of R / \bar{Q} on \bar{Q}.

Since \bar{Q} normalizes \bar{A} by 8.5 b) and \bar{A} is elementary abelian, we conclude that \bar{A} acts quadratically on \bar{Q}. Hence \bar{A} is contained in an R-conjugate of $O_{2}\left(R \cap R_{1}\right)$. So we may choose Λ such that $\bar{A} \leqslant O_{2}\left(R \cap R_{1}\right)$. As seen above, $O_{2}\left(R \cap R_{1}\right) \in S y l_{2}\left(R_{1}^{\circ}\right)$ and $O_{2}\left(R_{1}\right)$ is a natural $S L_{2}(4)$-module for R_{1}°. Hence $O_{2}\left(R \cap R_{1}\right)=\bar{Q} O_{2}\left(R_{1}\right)$, and \bar{Q} and $O_{2}\left(R_{1}\right)$ are the only maximal elementary abelian
subgroups of $O_{2}\left(R \cap R_{1}\right)$, so $\bar{A} \leqslant O_{2}\left(R_{1}\right)$ since $\bar{A} \leqslant \bar{Q}$. Thus 9.6 implies that $R_{1}^{\circ} \leqslant N_{R_{1}}(\bar{A})$. Since R_{1}° acts simply on $O_{2}\left(R_{1}\right)$ this gives $\bar{A}=O_{2}\left(R_{1}\right)$,

Put $U:=\left\langle Z^{R_{1}}\right\rangle$. Since R centralizes Z and $\left|R / R \cap R_{1}\right|=5, U$ is a quotient of the $\operatorname{Sym}(5)$ permutation module for R_{1}. Note that $C_{U}\left(R_{1}\right)=1$ by Q ! and that the permutation module is the direct sum of simple submodules of order 2 and 2^{4}. Thus $|U|=2^{4}$.

Since A is not an offender on $I,\left|I / C_{I}(A)\right|>|\bar{A}|=2^{4}$ and so $\left|C_{I}(A)\right| \leqslant \frac{2^{11}}{2^{5}}=2^{6}$. Note that $U \leqslant C_{I}(A)$ since $\bar{A}=O_{2}\left(R_{1}\right)$. Thus $\left|C_{I}(A) / U\right| \leqslant \frac{2^{6}}{2^{4}}=2^{2}$. Since R_{1}° is perfect, this gives $\left[C_{I}(A), R_{1}^{\circ}\right]=U$. Observe that $H^{1}\left(U, R_{1}^{\circ} / A\right)=1$ (for example by C.18) and since $C_{I}\left(R_{1}^{\circ}\right)=0$ we get $U=C_{I}(A)$, so $\left|C_{I}(A)\right|=2^{4}$.

Since I is not an $F F$-module, 9.5 a) shows that A is an offender on $I \cap A$ and therefore $\mid I \cap$ $A / C_{I}(A)\left|\leqslant|\bar{A}|=2^{4}\right.$. Thus $| I \cap A \mid \leqslant 2^{8}$ and $\widetilde{q}=|I / I \cap A| \geqslant 2^{3}$. Note that $\bar{A}=A / C_{A}(Y)$ and $I / C_{I}(A)$ both are $N_{L}(Y)$-invariant sections of $A Y / C_{Y}(L)$. Thus by 2.18 ch, both, $|\bar{A}|=2^{4}$ and $\left|I / C_{I}(A)\right|=2^{7}$, are powers of \widetilde{q}. But then $\widetilde{q}=2$, a contradiction to $\widetilde{q} \geqslant 8$.

Suppose that $\bar{K} \cong C o_{2}$ or $C o_{1}$. By $\left.\mathbf{S W}\right], C o_{2}$ has a unique simple 22 -dimensional module over \mathbb{F}_{2}, and by Gr2, $C o_{1}$ has a unique simple 24 -dimensional module over \mathbb{F}_{2}. Hence I is selfdual and isomorphic to the non-central simple section of the Leech-lattice modulo 2 . Also $\widetilde{q}=|\mathbb{K}|=2$. Thus by $9.7\left([\mathrm{j}),|[I, a]| \leqslant 4\right.$ for all $a \in A$. But the commutator space of any involution in $C o_{1}$ on the Leech-lattice modulo 2 is at least 8 -dimensional, and since $2^{24} /|I| \leqslant 2^{2}$, we conclude that $|[I, a]| \geqslant 2^{8} / 2^{2}=2^{6}$, a contradiction.

9.3. The Proof of Corollary 9.1

In this section we will proof Corollary 9.1 . So we continue to assume the hypothesis of Theorem I and use the notation introduced in 9.3 .

Lemma 9.18. Suppose that $Y=I C_{Y}(\bar{S} \cap K)$. Then $Y=I$. In particular, $Y=I$ if $\bar{A} \in$ $\operatorname{Syl}_{p}(K \bar{A})$.

Proof. By 9.3 ch $[Y, K] \leqslant I$ and, by $Q!, C_{Y}(K)=1$. As $\bar{S} \cap K \in \operatorname{Syl}_{p}(K)$, Gaschütz' Theorem gives $Y=I C_{Y}(\bar{S} \cap K)=C_{Y}(K) I=I$, see C.17.

Note that by 9.3 f$) Y=I C_{Y}(\bar{A})$. Thus if $\bar{A} \in \operatorname{Syl}_{p}(K \bar{A})$ then $\bar{A} \cap K=\bar{S} \cap K$ and $Y=$ $I C_{Y}(\bar{S} \cap K)$, and so $Y=I$.

9.19. Proof of Corollary 9.1 ;

Suppose that $Y \neq I$. By $Q!, C_{Y}(K)=1$, and by 9.3 b , c) $[Y, K]=I$, so $|Y / I| \leqslant\left|H^{1}(K, I)\right|$. Comparing Theorem \square with C. 18 we obtain one of the following cases:
(A) $\bar{M} \cong L_{3}(2),|Y|=2^{4}$ and I is a natural $S L_{3}(2)$-module for \bar{M}.
(B) $\overline{M^{\circ}} \cong S p_{2 n}(q)$ or $S p_{4}(2)^{\prime}, p=2, I$ is the corresponding natural module and $|Y / I| \leqslant q$.
(C) $\overline{M^{\circ}} \cong \Omega_{3}(5), \Omega_{4}^{-}(3), \Omega_{5}(3)$ or $\Omega_{6}^{+}(2), I$ is the corresponding natural module, and $|Y / I| \leqslant$ 5, 9,3 and 2 respectively.
(D) $\overline{M^{\circ}} \cong L_{3}(4), I$ is the unitary square of corresponding natural module and $|Y / I| \leqslant 4$.
(E) $p=2, \overline{M^{\circ}} \cong M a t_{24}, I$ is the simple Todd-module of \mathbb{F}_{2}-dimension 11 and $|Y / I|=2$.
(F) $p=2, \overline{M^{\circ}} \cong M a t_{22}, I$ is the simple Golay code module of \mathbb{F}_{2}-dimension 10 and $|Y / I|=2$.
(G) $p=3, \overline{M^{\circ}} \cong M a t_{11}, I$ is the simple of Golay code module of \mathbb{F}_{3}-dimension 5 and $|Y / I|=3$.

It remains to treat each of these seven cases. Recall first that by 9.3 f$) Y=I C_{Y}(A)$ and so we can pick $t \in Y \backslash C_{Y}(A)$.

In Case I is a natural $S L_{3}(2)$-module for \bar{M} and so $C_{\bar{M}}(t) \cong \operatorname{Frob}(21)$ has odd order, a contradiction since $\bar{A} \leqslant C_{\bar{M}}(t)$.

In Case (B), I is a natural $S p_{2 n}(2)$ - or $S p_{4}(2)^{\prime}$-module for $\overline{M^{\circ}}$ and so Corollary 9.1, 1 holds.
Suppose that Case (C) holds with $\overline{M^{\circ}} \cong \Omega_{3}(5)$. By B.35 d we conclude that $\bar{A} \leqslant \overline{M^{\circ}}$. Thus $\bar{A} \in S y l_{3}\left(\overline{M^{\circ}}\right)$ and 9.18 gives $Y=I$, contradiction.

Suppose that Case (C) holds with $\overline{M^{\circ}} \cong \Omega_{4}^{-}(3) \cong \operatorname{Alt}(6)$. Again B.35 d gives $\bar{A} \leqslant \overline{M^{\circ}}$. Let W be an $\mathbb{F}_{3} \overline{M^{\circ}}$-module with $Y \leqslant W, C_{W}\left(\overline{M^{\circ}}\right)=1$ and $|W / I|=3^{2}$. Let X_{1} and X_{2} be non-conjugate subgroups of $\overline{M^{\circ}}$ with $X_{i} \cong \operatorname{Alt}(5)$. Choose notation such that $\overline{A_{1}}:=\bar{A} \cap X_{1} \neq 1$. For $i=1,2$, put $W_{i}:=C_{W}\left(X_{i}\right) I$ and note that W_{i} is a $\overline{M^{\circ}}$-module isomorphic to the 5 -dimensional quotient of permutation module $\mathbb{F}_{3}^{\overline{M^{\circ}} / X_{i}}$. Then $W_{1}=I C_{W_{1}}\left(\overline{A_{1}}\right)$ and, since $\overline{A_{1}}$ acts fixed-point freely on $\overline{M^{\circ}} / X_{2}$, $\left.C_{W_{2}}\left(\overline{A_{1}}\right)\right) \leqslant I$. It follows that $I C_{W}\left(\bar{A}_{1}\right)=W_{1}$. As $Y=I C_{Y}(A) \leqslant I C_{W}\left(\overline{A_{1}}\right)$ this gives $Y=W_{1}$. Thus 9.1 2 holds in this case.

Suppose that Case (C) holds with $\overline{M^{\circ}} \cong \Omega_{5}(3)$ or $\Omega_{6}^{+}(2)$. Then I is the corresponding natural module, $|Y / I| \leqslant 3$ and 2 , respectively, and 9.1/3) or 4 holds.

Suppose that Case (D) holds. Then I is the unitary square of a natural $S L_{3}(4)$-module for $K \cong L_{3}(4)$. Since I is not an FF-module, we can apply 9.9 and conclude that $\bar{A} \leqslant K$. Let P_{1} and P_{2} be the two maximal subgroups of K containing $\bar{S} \cap K$ such that $C_{I}(K \cap \bar{S}) \vDash P_{1}$, and let $\underline{Q_{i}}:=O_{p}\left(P_{i}\right)$. Then $C_{I}\left(Q_{1}\right)=C_{I}(K \cap \bar{S})$ has order 2 , and so $\left.\mid I / C_{I}\left(Q_{1}\right)\right)\left|=2^{8}=\left|Q_{1}\right|^{2}\right.$. By $Q!$, $\bar{Q} \vDash P_{1}$ and the simple action of P_{1} on Q_{1} implies $\bar{Q}=Q_{1}$.

Suppose that $\bar{A} \leqslant Q_{1}$. Since $\left|Y / C_{Y}(A)\right| \leqslant|\bar{A}|^{2}, A .29$ shows that $\left|Y / C_{Y}(B)\right| \leqslant|B|^{2}$ for some non-trivial P_{1}-invariant subgroup B of Q_{1}. As P_{1} acts simply on Q_{1} we get $B=Q_{1}$ and

$$
\left|Y / C_{Y}\left(Q_{1}\right)\right| \leqslant\left|Q_{1}\right|^{2}=\left|I / C_{I}\left(Q_{1}\right)\right|
$$

Hence $Y=C_{Y}\left(Q_{1}\right) I$. Since P_{1} is perfect and $\left[C_{Y}\left(Q_{1}\right), P_{1}, P_{1}\right] \leqslant\left[C_{I}\left(Q_{1}\right), P_{1}\right]=1$, we get $C_{Y}\left(Q_{1}\right) \leqslant$ $C_{Y}\left(P_{1}\right)$ and $Y=I C_{Y}\left(P_{1}\right)$. Since $\bar{S} \cap K \leqslant P_{1}, 9.18$ gives $I=Y$, a contradiction.

Suppose now that $\bar{A} \not Q_{1}$. Since Q_{1} and Q_{2} are the only maximal elementary abelian subgroups of $\bar{K} \cap S, \bar{A} \leqslant Q_{2}$. Thus 9.6 shows that $P_{2}^{\circ}\left(:=\left\langle\bar{Q}^{P_{2}}\right\rangle\right)$ normalizes \bar{A}. As $\bar{Q} \nless Q_{2}, P_{2}=P_{2}^{\circ} Q_{2}$, and as Q_{2} is a simple P_{2}-module, $\bar{A}=Q_{2}$ and so $Y=C_{Y}\left(Q_{2}\right) I$. Since $C_{I}\left(Q_{2}\right)$ is a natural $\operatorname{Alt}(5)$-module for $P_{2}, H^{1}\left(C_{I}\left(P_{2}\right), P_{2} / Q_{2}\right)=1$ (sect.18) and so $C_{Y}\left(Q_{2}\right)=C_{I}\left(Q_{2}\right) C_{Y}\left(P_{2}\right)$ and $Y=I C_{Y}\left(P_{2}\right)$, again a contradiction to 9.18 since $\bar{S} \cap K \leqslant P_{2}$.

Suppose that Case E holds. Then $\overline{M^{\circ}} \cong M a t_{24}, I$ is the simple Todd-module, and $|Y / I| \leqslant 2$. So 9.1 5 holds.

Suppose that Case F holds. Then $\bar{M} \cong M a t_{22}$ or $A u t\left(M a t_{22}\right)$, and I is the simple Golay code module. Hence Y is isomorphic to the restriction of the 11 dimensional simple Golay-code module for $M a t_{24}$ to \bar{M}. Let (Ω, \mathcal{B}) be a Steiner system of type $(24,8,5), H:=\operatorname{Aut}(\Omega, \mathcal{B})=M a t_{24}, T \subseteq \Omega$ with $|T|=2$. Then $N_{H}(T) \cong A u t\left(M a t_{22}\right)$. Let V be the simple Golay code module for H. Then H has two orbits on V^{\sharp}, one orbit corresponding to the octads in Ω and the other to the partitions of Ω into two dodecads. Also $\left[V, N_{H}(T)\right]^{\sharp}$ consists of all elements in V 'perpendicular' to T, that is, the elements corresponding to octads and pairs of dodecads, each intersecting T in a subset of even size. So $V \backslash\left[V, N_{H}(T)\right]$ consists of all octads and pairs of dodecads intersecting T in exactly one element.

Let B be an octad with $|B \cap T|=1$. Then $N_{H}(B) \sim 2^{4} \operatorname{Alt}(8)$ induces $\operatorname{Alt}(8)$ on B while $C_{H}(B)$ acts regularly on $\Omega \backslash B$. Thus $N_{H}(B) \cap N_{H}(T) \cong \operatorname{Alt}(7)$. Let $\{C, D\}$ be a partition of Ω into two dodecads with $|C \cap T|=|D \cap T|=1$. Then $N_{H}(C) \cong M a t_{12}$ acts transitively on C, and $N_{H}(C) \cap N_{H}(C \cap T) \cong M a t_{11}$ acts transitively on D with point-stabilizer $L_{2}(11)$. Hence $N_{H}(T) \cap N_{H}(\{C, D\}) \cong \operatorname{Aut}\left(L_{2}(11)\right)$.

It follows that $C_{\bar{M}}(t)$ is isomorphic to a subgroup of index at most two of $\operatorname{Alt}(7)$ or $\operatorname{Aut}\left(L_{2}(11)\right)$. In particular, $C_{\bar{M}}(t)$ has dihedral Sylow 2 subgroups. Since \bar{A} is elementary abelian, we conclude that $|\bar{A}| \leqslant 4$. Thus $\left|I / C_{I}(A)\right| \leqslant|\bar{A}|^{2} \leqslant 2^{4}$. Since A does not act quadratically, $C_{I}(A) \neq C_{I}(a)$ for some $1 \neq a \in \bar{A}$ and so $\left|I / C_{I}(a)\right| \leqslant 2^{3}$. But this is a contradiction, for example, since each involution in $C_{\bar{M}}(t)$ inverts an elements of order 5 , and all elements of order five in $\overline{M^{\circ}}$ have an 8-dimensional commutator on I.

Suppose that Case (G) holds. Then $\overline{M^{\circ}} \cong M a t_{11}$ and I is the simple Golay code module. Since $\operatorname{Out}\left(\operatorname{Mat}_{11}\right)=1$ and $C_{M}(I)=C_{M}(Y)$, we get $O^{3^{\prime}}(\bar{M})=K$. By $9.18 \bar{A}$ is not a Sylow 3 -subgroup of K. Thus $|\bar{A}|=3$ and so $\left|I / C_{I}(A)\right| \leqslant|\bar{A}|^{2}=9$. Let $R \leqslant K$ with $R \cong M a t_{10} \sim \operatorname{Alt}(6) .2$ and $\bar{A} \leqslant R$, and let $g \in R \backslash R^{\prime}$. Then \bar{A} and \bar{A}^{g} are not conjugate in R^{\prime} and we choose g such that \bar{A} and
\bar{A}^{g} correspond to $\langle(123)\rangle$ and $\langle(124)(356)\rangle$ in $\operatorname{Alt}(6)$. Then $R^{\prime}=\left\langle\bar{A}, \bar{A}^{g}\right\rangle$. Thus $\left|I / C_{I}\left(R^{\prime}\right)\right| \leqslant 3^{4}$ and so $\left|C_{I}\left(R^{\prime}\right)\right|=3$, a contradiction since I is the Golay-code module (or to $Q!$).

9.4. The Proof of Corollary 9.2

In this section we will proof Corollary 9.2 For this we continue to assume the hypothesis of Theorem \rrbracket and use the notation introduced in 9.3. In addition, we assume
(char Y_{M})
$C_{G}(y)$ is of characteristic p for all $y \in Y^{\sharp}$.
The following lemma is crucial for the proof of the corollary. Exactly here property (char Y_{M}) is used.

Lemma 9.20. Suppose that property $\left(\operatorname{char} Y_{M}\right)$ holds. Then $O_{p}\left(N_{\bar{M}}(B)\right) \neq 1$ for all $1 \neq B \leqslant$ $C_{Y}(A)$.

Proof. Suppose that $O_{p}\left(N_{\bar{M}}(B)\right)=1$ for some $1 \neq B \leqslant C_{Y}(A)$. Note that $O_{p}(M)$ normalizes $O_{p}\left(N_{G}(B)\right)$ and that by 2.6 b) $O_{p}(M)$ is weakly closed in G. Hence $O_{p}\left(N_{G}(B)\right) \leqslant N_{G}\left(O_{p}(M)\right) \leqslant$ M^{\dagger} and so $\overline{O_{p}\left(N_{G}(B)\right)} \leqslant O_{p}\left(N_{\bar{M}}(B)\right)=1$. Thus $\left[Y_{M}, O_{p}\left(N_{G}(B)\right)\right]=1$.

By $\left(\right.$ char $\left.Y_{M}\right) C_{G}(b)$ is of characteristic p for $1 \neq b \in B^{2}$ and so by 1.2 c$) C_{G}(b)$ is of local characteristic p. It follows that $C_{G}(B)$ has characteristic p. In particular,

$$
Y_{M} \leqslant C_{G}\left(O_{p}\left(N_{G}(B)\right)\right) \leqslant C_{G}\left(O_{p}\left(C_{G}(B)\right)\right) \leqslant O_{p}\left(C_{G}(B)\right) \leqslant O_{p}\left(N_{G}(B)\right)
$$

On the other hand, by 9.3 f$) B \leqslant Z(A) \leqslant Z(L)$ and so $L \leqslant N_{G}(B)$. This contradicts $Y_{M} \leqslant O_{p}(L)$.

Lemma 9.21. Suppose that property $\left(\right.$ char $\left.Y_{M}\right)$ holds. Then Case 11) of Theorem 1 does not occur.

Proof. Suppose that Case 11 of Theorem ITh. holds. Then $p=2, \overline{M^{\dagger}}=\bar{M}=\overline{M^{\circ}} \cong$ Aut $\left(M a t_{22}\right)$, and I is the Todd module of order 2^{10}. Choose a set Ω of size 22 with \bar{M} acting faithfully and 4 -transitively on Ω. Let $\alpha, \beta \in \Omega$ with $\alpha \neq \beta$. Since \bar{M} acts 4 -transitively in Ω, $F:=C_{\bar{M}}(\alpha)$ and $P:=N_{\bar{M}}(\{a, \beta\})$ are maximal subgroups of \bar{M}. Since I is the Todd-module there exists $1 \neq x \in C_{I}(F)$. Define $\{x, y\}:=x^{P}$ and $z:=x y$. By the maximality of F and $P, F=C_{\bar{M}}(x)$, $x \neq y$, and $P=C_{M}(z)$.

Note that

$$
F \cap K \cong M a t_{21} \cong L_{3}(4), P \sim 2^{4+1} \Gamma S L_{2}(4), P^{\prime}=P \cap K \cap F \cong M a t_{20} \sim 2^{4} S L_{2}(4)
$$

Moreover, $O_{2}\left(P^{\prime}\right)$ is a natural $S L_{2}(4)$-module for P^{\prime}, and $Z(F)=Z(P)=1$. Since $|F / F \cap K|=2$ we conclude that $O_{2}(F)=1$. Also $|\bar{M} / P|=\binom{22}{2}=21 \cdot 11$, and so P is a parabolic subgroup of \bar{M}. Thus we may assume that $\bar{S} \leqslant P$. Then $z \leqslant C_{I}(\bar{S}) \leqslant C_{I}(A)$ and so by 9.3 f$), z \in C_{I}(L)$.

If $x \in C_{I}(A)$ then by $9.20 O_{2}\left(C_{\bar{M}}(x)\right) \neq 1$, which contradicts $O_{2}(F)=1$. Thus
$1^{\circ} . \quad x \notin C_{I}(A)$ and $\bar{A} \nLeftarrow F$.
Since $z \in C_{I}(L)$, we have $\overline{N_{L}(Y)} \leqslant C_{\bar{M}}(z)=P$. It follows that $\langle x, y\rangle /\langle z\rangle$ is a composition factor for $N_{L}(Y)$ on $A Y / C_{Y}(L)$ of order 2 . On the other hand by 2.18 b any such composition factor has order \widetilde{q}. Hence $\widetilde{q}=2$ and so $|I / I \cap A|=2$. Since by 9.5 b), $I \cap A=[I, A] C_{I}(A)$, this shows that
$2^{\circ} . \quad\left|I /[I, A] C_{I}(A)\right|=2$.
As Q centralizes z, Q ! implies that $\bar{Q} \leqslant P$. Since $\overline{M^{\circ}} \neq K$ we have $\bar{Q} \neq K$. Also P acts simply on $R:=O_{2}\left(P^{\prime}\right),\left|O_{2}(P) / R\right|=2$ and $Z(P)=1$. Thus $\bar{Q}=O_{2}(P)$. It follows that (see for example [MSt, Theorem 3])
3°.
(a) $C_{I}(Q)=[I, Q, Q]=\langle z\rangle$,
(b) $[I, Q] /\langle x, y\rangle$ is a natural $S L_{2}(4)$-module for P^{\prime},

[^14](c) $\widetilde{I}:=I /[I, Q]$ is a natural Sym(5)-module for P. In particular, \widetilde{I} is a selfdual P-module.

We claim that $\bar{A} \cap R \neq 1$. If $\bar{A} \neq \bar{Q}$, then $1 \neq[\bar{Q}, \bar{A}] \leqslant \bar{A} \cap R$. So suppose that $\bar{A} \leqslant \bar{Q}$. Since A does not act quadratically on $I,|\bar{A}| \geqslant 4$. As $|\bar{Q} / R|=2$ this gives $\bar{A} \cap R \neq 1$.

So we can choose $a \in A$ with $1 \neq \bar{a} \leqslant R \leqslant K$. Since all involutions in K are conjugate, $\bar{a}^{g} \in P^{\prime} \backslash O_{2}(P)$ for some $g \in K$. By $3^{\circ} P^{\prime}$ has two non-central composition factors on I and so $\left|I / C_{I}(a)\right| \geqslant 2^{4}$ and $\left|C_{I}(a)\right| \leqslant 2^{6}$. Since $\bar{a} \in R \leqslant \bar{Q}$, $\left.3^{\circ}\right)$ gives $[[I, Q], a] \leqslant\langle z\rangle$ and thus $\left|C_{I}(a) \cap[I, Q]\right| \geqslant 2^{5}$. Hence $\left|C_{I}(a)[I, Q] /[I, Q]\right| \leqslant 2$ and so $\left|C_{I}(a)\right| \leqslant 2$.

By $\left[2^{\circ}[\widetilde{I}, A] \widetilde{C_{I}(A)}\right.$ has index at most 2 in \widetilde{I}. Suppose that A acts quadratically on \widetilde{I}. Then $\widetilde{C_{I}(A)}[\widetilde{I}, A] \leqslant C_{\widetilde{I}}(A)$ and so $\left|\widetilde{I} / C_{\widetilde{I}}(A)\right| \leqslant 2$. As by 3° (c) \widetilde{I} is selfdual this gives $|[\widetilde{I}, A]| \leqslant 2$ and so $\widetilde{C_{I}(A)}[\widetilde{I}, A]$ has order at most 4 , a contradiction. Hence A does not act quadratically on \widetilde{I}. Note that the only elementary abelian subgroups of $\operatorname{Sym}(5)$, which do not act quadratically on the natural $\operatorname{Sym}(5)$-module, are the Sylow 2-subgroups of $\operatorname{Alt}(5)$. Thus $T:=\bar{A} O_{2}(P) \in S y l_{2}\left(P^{\prime} O_{2}(P)\right)$.

As $Z(P)=1$, Gaschütz' Theorem gives $C_{\left.O_{2}(P)\right)}(T) \leqslant R$, see C.17. Since R is a natural $S L_{2}(4)$ module for $P^{\prime}, T \cap P^{\prime}$ has exactly two maximal elementary abelian subgroups, namely R and say R^{*}. Moreover, $R R^{*}=T \cap P^{\prime}$ and so $C_{O_{2}(P)}\left(R^{*}\right) \leqslant R$. Since $\left|\bar{A} O_{2}(P) / O_{2}(P)\right|=4$ and $\left|P^{\prime} O_{2}(P) / P^{\prime}\right|=2$ we can choose $b \in \bar{A} \cap P^{\prime} \backslash O_{2}(P)$. Then $b \in R^{*}$. Also $\left[O_{2}(P), b\right] \leqslant C_{R}(b)=[R, b]=R \cap R^{*}$ has order 4 and so $B:=C_{O_{2}(P)}(b) \nleftarrow R$. In particular, since $C_{O_{2}(P)}\left(R^{*}\right) \leqslant R,\left[B, R^{*}\right] \neq 1$. It follows that $C_{T}(b)=B R^{*}$ and $C_{T}(b)$ has exactly two maximal elementary abelian subgroups, namely $B\langle b\rangle$ and R^{*}. As $\bar{A} \leqslant C_{T}(b)$ and $\bar{A} O_{2}(P)=T$ this gives $A \leqslant R^{*} \leqslant P^{\prime}$. Since $P^{\prime}=P \cap K \cap F$, we have $\bar{A} \leqslant F$, a contradiction to $1{ }^{\circ}$.

Lemma 9.22. Suppose that property (char Y_{M}) holds. Then 13) of Theorem \square does not occur.
Proof. Suppose that $p=3, \overline{M^{\circ}} \sim 2 \cdot M a t_{12}$ and I is the simple Golay code module of order 3^{6}. Observe that there exists a subgroup P of $\overline{M^{\circ}}$ with $\bar{A} \leqslant P$ such that $P \sim 3^{2} S L_{2}(3), C_{I}\left(O_{3}(P)\right)$ is a natural $\Omega_{3}(3)$-module, and $\left[I, O_{3}(P)\right] / C_{I}\left(O_{3}(P)\right)$ is a natural $S L_{2}(3)$-module for P. If $\bar{A} \leqslant O_{3}(P)$, then we can choose $1 \neq x \in C_{I}\left(O_{3}(P)\right) \leqslant C_{I}(A)$ with $C_{\bar{M}}(x) \cong M a t_{11}$, a contradiction to 9.20 . Thus $\bar{A} \neq O_{3}(P)$. Let $1 \neq e \in \bar{A}$. Then $e^{g} \in P \backslash O_{3}(P)$ for some $g \in \bar{M}$. In particular, e^{g} acts non-trivially on $C_{I}\left(O_{3}(P)\right.$) and $[I, Q] / C_{I}\left(O_{3}(P)\right)$. Hence $|[I, e]| \geqslant 3^{3}$ and $\left|C_{I}(e)\right| \leqslant 3^{3}$. Since $\left|I / C_{I}(A)\right| \leqslant|\bar{A}|^{2}$ by 9.3 (c), this gives $\bar{A} \neq\langle e\rangle$. Hence, as \bar{A} is abelian, $|\bar{A}|=3^{2}$ and $\left|\bar{A} \cap O_{3}(P)\right|=3$. Since

$$
3^{3}=\left|C_{I}\left(O_{3}(P)\right)\right| \leqslant\left|C_{I}\left(\bar{A} \cap O_{3}(P)\right)\right| \leqslant\left|C_{I}(e)\right| \leqslant 3^{3}
$$

$C_{I}\left(\bar{A} \cap O_{3}(P)\right)=C_{I}\left(O_{3}(P)\right)$ and so $\left|C_{I}(A)\right|=\left|C_{I}\left(O_{3}(P) A\right)\right|=3$. But this contradicts $\left|I / C_{I}(A)\right| \leqslant$ $|\bar{A}|^{2}=3^{4}$.

9.23. Proof of Corollary $\mathbf{9 . 2}$;

In view of 9.21 and 9.22 it remains to show that $Y=I$. Hence, we assume property (char Y_{M}) and $Y \neq I$ and discuss the five cases of Corollary 9.1. By 9.3 (f) $Y=I C_{Y}(A)$, so we can pick $t \in C_{Y}(A) \backslash I$.

Suppose that case 9.1 1 holds. Then $p=2$ and I is a natural $S p_{2 n}(q)$ - or $S p_{4}(2)^{\prime}$-module for $\overline{M^{\circ}}$. In the first case $C_{\overline{M^{\circ}}}(t) \cong O_{2 n}^{\epsilon}(q)$ and the second case $C_{\overline{M^{\circ}}}(t) \sim 3^{2} . C_{4}$ or $\Omega_{4}^{-}(2)$. In either case we conclude that $C_{\overline{M^{\circ}}}(t)$ and so also $C_{\bar{M}}(t)$ acts simply on I. Thus $O_{2}\left(C_{\bar{M}}(t)\right)$ centralizes I, and since $C_{M}(Y)=C_{M}(I)$, we get $O_{2}\left(C_{\bar{M}}(t)\right)=1$, a contradiction to 9.20 .

Suppose that case 9.1 2) or (3) holds. Then I is a natural $\Omega_{4}^{-}(3)$ - or $\Omega_{5}(3)$-module for K. Thus B.35 d) shows that $S \leqslant K$. Let x be a non-singular vector in I. Then $O_{3}\left(C_{\bar{M}}(x)\right) \leqslant K$ and $C_{K}(x) \cong \Omega_{n-1}^{\epsilon}(3)$, where $n=\operatorname{dim}_{\mathbb{F}_{3}}(I)$. Thus $O_{3}\left(C_{\bar{M}}(x)\right)=1$, and 9.20 shows that $x \notin C_{I}(A)$. Hence $C_{I}(A)$ does not contain any non-singular vectors. Since 3 is odd we conclude that $C_{I}(A)$ is singular.

Put $D:=[I, A] \cap C_{I}(A)$. Observe that $\mathbb{K}:=\operatorname{End}_{K}(I) \cong \mathbb{F}_{3}$, and let X be a \mathbb{K}-subspace of $C_{I}(A)$ with $C_{I}(A)=D \times X$. Since $C_{I}(A)$ is singular, $X \leqslant X^{\perp}$. On the other hand, I is a selfdual K-module, and so 9.7 g gives $X \cap X^{\perp}=1$. Thus $X=1$ and $D=C_{I}(A)$. By $9.7|\mathrm{c},|D|=3$.

Hence $C_{K}\left(D^{\perp}\right)=1$, and by 9.7 (g), $\bar{A}=\bar{A} C_{K}\left(D^{\perp}\right)=C_{K}\left(D^{\perp} / D\right) \cap C_{K}(D)$. If $K \cong \Omega_{4}^{-}(3)$ this gives $\bar{A} \in S y l_{3}(K)$, a contradiction to 9.18 .

Thus $K \cong \Omega_{5}(3)$. Let E be 2 -dimensional subspace of I with $D \leqslant E$ and $E D^{\perp}$. Then $C_{K}(E) \cong \Omega_{3}(3)$ is a complement to \bar{A} in $C_{K}(D)$. Let $g \in K$ with $D^{g} \leqslant E^{\perp}$ and put $B:=C_{K}(E) \cap$ $C_{K}\left(D^{g}\right) \cap C_{K}\left(E^{\perp} / D^{g}\right)$. Then B is a Sylow 3-subgroup of $C_{K}(E), B \leqslant \bar{A}^{g}$ and $\bar{A} B \in \operatorname{Syl}_{3}(K)$. Also $[I, B] \leqslant E^{\perp}$ and $[I, B] \cap D=1$. Since $Y=C_{Y}(A) I=C_{Y}\left(\bar{A}^{g}\right) I$ we have $[Y, A]=[I, A]$ and $[Y, B]=[I, B]$. Thus

$$
\left[C_{Y}(A), \bar{A} B\right] \leqslant[Y, B] \cap C_{I}(A)=[I, B] \cap D=1
$$

and so $Y=I C_{Y}(\bar{A} B)$. Since $\bar{A} B \in S y l_{3}(K), 9.18$ shows that $Y=I$, a contradiction.
Suppose that case 9.1 4 holds. Then I is a natural $\Omega_{6}^{+}(2)$-module for $K \cong \Omega_{6}^{+}(2) \cong \operatorname{Alt}(8)$. Hence Y is the central quotient of the permutation module on eight objects, and so $C_{\bar{M}}(t)$ is isomorphic to a subgroup of index at most two of $\operatorname{Sym}(7)$ or $\operatorname{Sym}(3) \times \operatorname{Sym}(5)$. It follows that $O_{2}\left(C_{\bar{M}}(t)\right)=1$, a contradiction to 9.20 .

Suppose that case $9.1(5)$ holds. Then $\overline{M^{\circ}} \cong M a t_{24}$ and I is the simple Todd-module. It follows that $\bar{M}=K$ and Y is the quotient of the 24-dimensional permutation module by the Golay-code module. Hence $C_{K}(t)$ is isomorphic to $M a t_{23}$ or $L_{3}(4) \cdot \operatorname{Sym}(3)$. So $O_{2}\left(C_{\bar{M}}(t)\right)=1$, a contradiction to 9.20 .

CHAPTER 10

Proof of the Local Structure Theorem

In this chapter we prove the Local Structure Theorem and its corollary stated in the introduction. But before doing this we prove the Structure Theorem for Maximal Local Parabolic Subgroups, which combines the theorems proved in Chapters $4-9$ into one.

Theorem J (Structure Theorem for Maximal Local Parabolic Subgroups). Let G be a finite \mathcal{K}_{p}-group and $S \in \operatorname{Syl}_{p}(G)$. Suppose that $\left|\mathcal{M}_{G}(S)\right|>1$ and there exists a large subgroup Q of G in S. Then there exists $M \in \mathfrak{M}_{G}(S)$ with $Q \nleftarrow M$. Moreover, for every $M \in \mathfrak{M}_{G}(S)$ with $Q \notin M$ one of the following cases holds, where $Y:=Y_{M}, \bar{M}:=M / C_{M}\left(Y_{M}\right), Q^{\bullet}:=O_{p}\left(N_{G}(Q)\right)$, and q is a power of p :
(1) The linear case.
(a) $\overline{M^{\circ}} \cong S L_{n}(q), n \geqslant 3$, and $\left[Y, M^{\circ}\right]$ is a corresponding natural module for $\overline{M^{\circ}}$.
(b) If $Y \neq\left[Y, M^{\circ}\right]$ then $\overline{M^{\circ}} \cong S L_{3}(2),\left|Y /\left[Y, M^{\circ}\right]\right|=2$ and $\left[Y_{M}, M^{\circ}\right] \leqslant Q \leqslant Q^{\bullet}$.
(2) The symplectic case.
(a) $\overline{M^{\circ}} \cong S p_{2 n}(q), n \geqslant 2$, or $S p_{4}(q)^{\prime} \quad($ and $q=2)$, and $\left[Y, M^{\circ}\right]$ is the corresponding natural module for $\overline{M^{\circ}}$
(b) If $Y \neq\left[Y, M^{\circ}\right]$, then $p=2$ and $\left|Y /\left[Y, M^{\circ}\right]\right| \leqslant q$.
(c) If $Y \nless Q^{\bullet}$, then $p=2$ and $\left[Y, M^{\circ}\right] 末 Q^{\bullet}$.
(3) The wreath product case.
(a) There exists a unique \bar{M}-invariant set \mathcal{K} of subgroups of \bar{M} such that $\left[Y, M^{\circ}\right]$ is a natural $S L_{2}(q)$-wreath product module for \bar{M} with respect to \mathcal{K}. Moreover, $\overline{M^{\circ}}=$ $O^{p}(\langle\mathcal{K}\rangle) \bar{Q}$ and Q acts transitively on \mathcal{K}.
(b) If $Y \neq\left[Y, M^{\circ}\right]$, then $p=2, \bar{M} \cong \Gamma S L_{2}(4), \overline{M^{\circ}} \cong S L_{2}(4)$ or $\Gamma S L_{2}(4),\left|Y /\left[Y, M^{\circ}\right]\right|=$ 2 and $\left[Y, M^{\circ}\right] \neq Q^{\bullet}$.
(4) The orthogonal case. $Y * Q^{\bullet}, \overline{M^{\circ}} \cong \Omega_{n}^{\epsilon}(q), n \geqslant 5$, where q is odd if n is odd, and Y is a corresponding natural module for $\overline{M^{\circ}}$.
(5) The tensor product case. $Y \nless Q^{\bullet}$, and there exist subgroups $\overline{K_{1}}, \overline{K_{2}}$ of \bar{M} such that
(a) $\overline{K_{i}} \cong S L_{m_{i}}(q), m_{i} \geqslant 2,\left[\overline{K_{1}}, \overline{K_{2}}\right]=1$, and $\overline{K_{1} K_{2}} \approx \bar{M}$,
(b) Y is the tensor product over \mathbb{F}_{q} of corresponding natural modules for $\overline{K_{1}}$ and $\overline{K_{2}}$,
(c) $\overline{M^{\circ}}$ is one of $\overline{K_{1}}, \overline{K_{2}}$, or $\overline{K_{1} K_{2}}$.
(6) The non-natural $S L_{n}(q)$-case. $Y \$ Q^{\bullet}$ and one of the following holds:
(1) $\overline{M^{\circ}} \cong S L_{n}(q) /\left\langle(-i d)^{n-1}\right\rangle, n \geqslant 5$, and Y is the exterior square of a natural $S L_{n}(q)$ module.
(2) p is odd, $\overline{M^{\circ}} \cong S L_{n}(q) /\left\langle(-i d)^{n-1}\right\rangle, n \geqslant 2$, and Y is the symmetric square of a natural module.
(3) $\overline{M^{\circ}} \cong S L_{n}(q) /\left\langle\lambda i d \mid \lambda \in \mathbb{F}_{q}, \lambda^{n}=\lambda^{q_{0}+1}=1\right\rangle, n \geqslant 2, q=q_{0}^{2}$, and Y is the unitary square of a natural module.
(7) The exceptional case. $Y \$ Q^{\bullet}$ and one of the following holds:
(1) $\overline{M^{\circ}} \cong \operatorname{Spin}_{10}^{+}(q)$, and Y is a half-spin module.
(2) $\overline{M^{\circ}} \cong E_{6}(q)$, and Y is one of the (up to isomorphism) two simple $\mathbb{F}_{p} M^{\circ}$-modules of order q^{27}.
(8) The sporadic case. $Y \$ Q^{\bullet}$ and one of the following holds:
(1) $\bar{M} \sim 3 \cdot \operatorname{Sym}(6), \overline{M^{\circ}} \sim 3 \cdot \operatorname{Alt}(6)$ or $3 \cdot \operatorname{Sym}(6)$, and Y is simple of order 2^{6}.
(2) $p=2, \overline{M^{\circ}} \cong M a t_{22}$, and Y is the simple Golay-code module of \mathbb{F}_{2}-dimension 10 .
(3) $p=2, \overline{M^{\circ}} \cong M a t_{24}$, and Y is the simple Todd or Golay-code module of \mathbb{F}_{2}-dimension 11.
(4) $p=3, \overline{M^{\circ}} \cong M_{11}$, and Y is the simple Golay-code module of \mathbb{F}_{3}-dimension 5.
(9) The non-characteristic \boldsymbol{p} case. There exists $1 \neq y \in Y$ such that $C_{G}(y)$ is not of characteristic p and one of the following holds:
(1) Y is tall and asymmetric in G, but Y is not char p-tall in G.
(2) $p=2, \overline{M^{\circ}} \cong \operatorname{Aut}\left(M a t_{22}\right), Y$ is the simple Todd module of \mathbb{F}_{2}-dimension 10 , and $Y \nless Q^{\bullet}$.
(3) $p=3$, $\overline{M^{\circ}} \cong 2 \cdot M a t_{12}$, Y is the simple Golay-code module of \mathbb{F}_{3}-dimension 6 , and $Y \nless Q^{\bullet}$.
(4) $p=2, \bar{M} \cong O_{2 n}^{\epsilon}(2), \overline{M^{\circ}} \cong \Omega_{2 n}^{\epsilon}(2), 2 n \geqslant 4,(2 n, \epsilon) \neq(4,+), Y$ is a corresponding natural module and $Y \leqslant Q^{\bullet}$.
(5) $p=3, \overline{M^{\circ}} \cong \Omega_{4}^{-}(3),\left[Y, M^{\circ}\right]$ is the corresponding natural module, $\left|Y /\left[Y, M^{\circ}\right]\right|=3, Y$ is isomorphic to the 5 -dimensional quotient of a six dimensional permutation module for $\overline{M^{\circ}} \cong \operatorname{Alt}(6)$, and $\left[Y, M^{\circ}\right] \not Q^{\bullet}$.
(6) $p=3, \overline{M^{\circ}} \cong \Omega_{5}(3),\left[Y, M^{\circ}\right]$ is the corresponding natural module, $\left|Y /\left[Y, M^{\circ}\right]\right|=3$ and $\left[Y, M^{\circ}\right] \neq Q^{\bullet}$.
(7) $p=2, \overline{M^{\circ}} \cong \Omega_{6}^{+}(2),\left[Y, M^{\circ}\right]$ is the corresponding natural module, and $\left|Y /\left[Y, M^{\circ}\right]\right|=$ 2.
(8) $p=2, \overline{M^{\circ}} \cong M a t_{24},\left[Y, M^{\circ}\right]$ is the simple Todd-module of \mathbb{F}_{2}-dimension 11, $\left|Y /\left[Y, M^{\circ}\right]\right|=2$ and $\left[Y, M^{\circ}\right] \$ Q^{\bullet}$.

We remark that there is some overlap between the different cases and that the last case is not the only case, where $C_{G}(y)$ may not be of characteristic p for some $1 \neq y \in Y$. See the comment after the Local Structure Theorem (Theorem A) in the introduction for more details.

10.1. Proof of Theorem J

In this section we prove Theorem J, so we assume the hypothesis and notation given there.
The existence of M follows from 1.56 c). Now let $M \in \mathfrak{M}_{G}(S)$ with $Q \nRightarrow M$.
Suppose first that Y is symmetric in G. Then we can apply Theorem D. Assume that Case 5 of Theorem D holds. Then $\bar{M} \cong O_{2 n}^{\epsilon}(2), \overline{M^{\circ}} \cong \Omega_{2 n}^{\epsilon}(2),(2 n, \epsilon) \neq(4,+),[Y, M]$ is a corresponding natural module, $C_{G}(y)$ is not of characteristic 2 for every non-singular $y \in[Y, M]$, and either $Y=[Y, M]$ or $\bar{M}=O_{6}^{+}(2)$ and $|Y /[Y, M]|=2$. If $Y \neq\left[Y, M^{\circ}\right]$, we conclude that J 9:7] holds. If $Y=[Y, M]$ and $Y \not Q^{\bullet}$ either J4) (for $2 n \geqslant 6$) or $J 6: 3$ (for $(2 n, \epsilon)=(4,-)$) holds. If $Y=[Y, M]$ and $Y \leqslant Q^{\bullet}$, then $J 9: 4$ holds. All other case of Theorem Dalso appear in Theorem J,

Suppose next that Y is asymmetric in G and short. Then Theorem Eimplies Theorem J, where the $O_{2 n}^{\epsilon}(2)$-Case of Theorem E is treated as in the previous paragraph.

Suppose that Y is asymmetric in G and tall. Assume that Y is not char p-tall in G. Then Theorem F shows that $C_{G}(y)$ is not of characteristic p for some $1 \neq y \in Y$ and thus J 9:1) holds. So we may assume that Y is char p-tall. If, in addition, Y is Q-short we can apply Theorem G and conclude that Theorem Jolds.

Suppose finally that Y is asymmetric in G and Q-tall. Then we can apply Theorems H and Put $I=F_{Y}(\bar{M})$. Then by Theorem $I=\left[Y, M^{\circ}\right]$ and $I \$ Q^{\bullet}$ except in Case H 2 , where I is a natural $S L_{3}(2)$-module for $M^{\circ}, I \leqslant \bar{Q}$ and $|Y / I|=2$.

Assume that one of the cases of Theorem \square holds and $Y \neq I$. Then Corollary 9.2 shows $C_{G}(x)$ is not of characteristic p for some $1 \neq x \in Y$. Now Corollary 9.1 implies that Case 2 or one of the Cases 9:5- $9: 8$ of Theorem J holds. Also by Corollary 9.2 the Cases 11 (Todd-module for $\operatorname{Aut}\left(\right.$ Mat $\left._{22}\right)$) and 13 (Golay code module for $2 \cdot M a t_{12}$) of Theorem 9.2 only occur if $C_{G}(x)$ is not of characteristic p for some $1 \neq x \in Y$, and so Cases $9: 2$ and $9: 3$ of Theorem Jhold, respectively.

In all remaining cases of Theorems H and \mathbb{I} a careful comparison shows that Theorem Jholds, see Tables 1 and 2.

Table 1. The Cases of Theorem \boldsymbol{H} and Theorem J

Th H	I	$\|Y / I\|$	Remark	Th J
(1)	-	-	leads to Theorem II	
(2)	nat $S L_{3}(2)$	2	$I \leqslant Q, Y \nleftarrow Q^{\bullet}$	(1:b)
($\overline{3})$	nat $\Omega_{6}^{+}(2)$	2	$C_{G}(x)$ not of characteristic p	(9:7
(4)	nat $S p_{2 n}(2)$	2	$Y>I \nleftarrow Q^{\bullet}$	(2)
(5)	nat $S L_{n}(q), n \geqslant 3$	1	$p=2, Y=I \not Q^{\bullet}$	(1)
(5)	nat $S L_{2}(q)$	1	$I=Y \not Q^{\bullet}$	($\overline{3}$
(6)	nat $S p_{2 n}(q)$	1	$Y=I \nleftarrow Q^{\bullet}$	(2)
(7)	nat $\Omega_{3}(3) \cong S^{2}($ nat $) S L_{2}(3)$	1	$Y=I * Q^{\bullet}$	6:2
(8)	nat (Г) $S L_{2}(4)$	2	$Y>I * Q^{\bullet}$	3:b
(9)	2^{6} for $3 \cdot \operatorname{Alt}(6), 3 \cdot \operatorname{Sym}(6)$	1	$I=Y * Q^{\bullet}$	8:1
10	nat $\left.S L_{m_{1}}(q) \otimes S L_{m_{2}}(q)\right)$	1	$I=Y * Q^{\bullet}$	(5)
(10)	2^{4} for $S L_{2}(2)$ 乙 C_{2}	1	$I=Y \nless Q^{\bullet}$	(3)

Table 2. The Cases $Y=I$ of Theorem \square and Theorem J

Th I	I	Remark	Th J
(1)	nat $S L_{m}(q)$	$Y=I 末 Q^{\bullet}$	1)
(2)	nat $S p_{2 n}(q), S p_{4}(2)^{\prime}, p=2$	$Y=I * Q^{\bullet}$	(2)
(3)	nat $\Omega_{n}^{\epsilon}(q), n \geqslant 5$	$Y=I \nleftarrow Q^{\bullet}$	(4)
(3)	nat $\Omega_{3}(q) \cong S^{2}$ (nat) $S L_{2}(q)$	$Y=I \nleftarrow Q^{\bullet}$	6:2
(3)	nat $\Omega_{4}^{+}(q) \cong$ nat $S L_{2}(q) \otimes$ nat $S L_{2}(q)$	$Y=I \$ Q^{\bullet}$	(5)
(3)	nat $\Omega_{4}^{-}(q) \cong U^{2}($ nat $) S L_{2}(q)$	$Y=I \nleftarrow Q^{\bullet}$	6:3
(4)	Λ^{2} (nat) $S L_{m}(q)$	$Y=I \nleftarrow Q^{\bullet}$	6:1
(5)	S^{2} (nat) $S L_{m}(q)$	$Y=I \nleftarrow Q^{\bullet}$	6:2)
(6)	U^{2} (nat) $S L_{m}(q)$	$Y=I \nleftarrow Q^{\bullet}$	6:3
(7)	half spin $\operatorname{Spin}_{10}^{+}(q)$	$Y=I \nleftarrow Q^{\bullet}$	(7:1)
(8)	q^{27} for $E_{6}(q)$	$Y=I \nleftarrow Q^{\bullet}$	(7:2)
(9)	Todd or Golay for $M a t_{24}$	$Y=I * Q^{\bullet}$	(8:3)
10)	Golay for $M a t_{22}$	$Y=I * Q^{\bullet}$	8:2)
(11)	Todd for $\operatorname{Aut}\left(M_{\text {at }}^{22}\right.$)	not (char Y) by Cor. 9.2	(9:2)
12	Golay for $M a t_{11}$	$Y=I \nleftarrow Q^{\bullet}$	(8:4
(13)	Golay for $2 \cdot M a t_{12}$	not (char Y) by Cor. 9.2	(9:3)

10.2. Proof of the Local Structure Theorem

This section is devoted to the proof of the Local Structure Theorem (Theorem A).
Let p be a prime, G a finite \mathcal{K}_{p}-group, $S \in \operatorname{Syl}_{p}(G)$ and $Q \leqslant S$. Suppose that Q is a large subgroup of G and $\left|\mathcal{M}_{G}(S)\right|>1$. Recall that Q is a weakly closed subgroup of G by 1.52b.

Let $L \leqslant G$ with $S \leqslant L, O_{p}(L) \neq 1$ and $Q \nleftarrow L$. Since L is a parabolic subgroup of H with $O_{p}(L) \neq 1,1.55$ b shows that $C_{G}\left(O_{p}(L)\right) \leqslant O_{p}(L)$. Hence $L \in \mathcal{L}_{G}(S)$.

By 1.56 a), b) there exists $M \in \mathfrak{M}_{G}(S)$ and $L^{*} \in \mathcal{L}_{G}(S)$ such that $L^{*} \leqslant M$ and

$$
Y_{L}=Y_{L^{*}} \leqslant Y_{M}, L C_{G}\left(Y_{L}\right)=L^{*} C_{G}\left(Y_{L}\right), L^{\circ}=\left(L^{*}\right)^{\circ}, Q \notin L^{*}, \text { and } Q \nsubseteq M
$$

Since $L^{\circ}=\left(L^{*}\right)^{\circ} \leqslant M$ and $L / C_{L}\left(Y_{L}\right) \cong L^{*} / C_{L^{*}}\left(Y_{L}\right)$ we are allowed to replace L be L^{*}, so we may assume that $L \leqslant M$. Put $\bar{M}:=M / C_{M}\left(Y_{M}\right)$ and $\widetilde{L}:=L / C_{L}\left(Y_{L}\right)$. Then $\bar{S} \leqslant \bar{L} \leqslant \bar{M}$. Hence by $1.24 \mathrm{f}) Y_{L} \leqslant Y_{M}$ and so $Y_{L}=Y_{Y_{M}}(\bar{L})$ (the largest p-reduced \bar{L}-submodule of Y_{M}).

Put
$Y:=Y_{M}, V:=\left[Y, M^{\circ}\right], U:=C_{V}\left(O_{p}\left(L \cap M^{\circ}\right)\right), \mathbb{K}:=\operatorname{End}_{M^{\circ}}(V), Z:=C_{V}\left(S \cap M^{\circ}\right), k:=\operatorname{dim}_{\mathbb{K}} U$.
Then $Y_{L} \leqslant C_{Y}\left(O_{p}(L)\right) \leqslant C_{Y}\left(O_{p}\left(L \cap M^{\circ}\right)\right) \leqslant C_{Y}\left(O_{p}\left(L^{\circ}\right)\right)$ and $Y_{L} \cap V \leqslant U$. Moreover, if U is a simple $\mathbb{F}_{p} L$-module, then $Y_{L} \cap V=U$.
1°.
(a) $C_{Y}\left(L^{\circ}\right)=1$.
(b) $\widetilde{Q} \neq 1$ and $\bar{Q} \not \approx O_{p}\left(\overline{L^{\circ}}\right)$.
(c) $\overline{L \cap M^{\circ}}$ is not p-closed.
(d) $V \cap Y_{L}$ is a faithful $\widetilde{L^{\circ}}$-module. In particular, $\left[V \cap Y_{L}, Q\right] \neq 1$.
(a): Since $Q \not \& L, 1.55$ d gives $C_{G}\left(L^{\circ}\right)=1$; in particular $C_{Y}\left(L^{\circ}\right)=1$.
b): If $\widetilde{Q}=1$, then $1 \neq Y_{L} \leqslant C_{G}(Q)$ and so Q ! gives $L \leqslant N_{G}(Q)$, a contradiction. Thus $\widetilde{Q} \neq 1$. Since Y_{L} is p-reduced, $O_{p}\left(\widetilde{L^{\circ}}\right) \leqslant O_{p}(\widetilde{L})=1$. Hence $\widetilde{Q} \leqslant O_{p}\left(\widetilde{L^{\circ}}\right)$ and so also $\bar{Q} \leqslant O_{p}\left(\overline{L^{\circ}}\right)$.
(c): If $\overline{L \cap M^{\circ}}$ is p-closed then $\bar{Q} \leqslant O_{p}\left(\overline{L \cap M^{\circ}}\right)$. Since $Q \leqslant L^{\circ} \leqslant L \cap M^{\circ}$, this gives $\bar{Q} \leqslant$ $O_{p}\left(\overline{L^{\circ}}\right)$, which contradicts (b).
(d) : Since Y_{L} is faithful p-reduced \widetilde{L}-module, A.9.d) shows that $\left[Y_{L}, L^{\circ}\right]$ is faithful $\widetilde{L^{\circ}}$-module. As $\left[Y_{L}, L^{\circ}\right] \leqslant\left[Y, M^{\circ}\right] \cap Y_{L}=V \cap Y_{L}$, also $V \cap Y_{L}$ is a faithful $\widetilde{L^{\circ}}$-module.

Note that we can apply Theorem Jto M. Our strategy is to discuss each of the cases of Theorem J. where we first determine all the subgroups \bar{L} of \bar{M} with $\bar{S} \leqslant \bar{L}$ and $\bar{Q} \notin \bar{L}$ and then the module structure of $Y_{L}=Y_{Y}(\bar{L})$.

Moreover, in some of the cases we will use the following observation to prove that $Y_{L} \not Q^{\bullet}$:
2°. Suppose that $V \not Q^{\bullet}$ and $N_{M}(Q)$ acts simply on $V /[V, Q]$.
(a) $V \cap Q^{\bullet}=[V, Q]$.
(b) If $[V, Q, Q]=1$, then $V \cap Y_{L} \leqslant Q^{\bullet}$.
(c) If $[V, Q, Q, Q]=1$ and $\left[V \cap Y_{L}, Q, Q\right] \neq 1$, then $V \cap Y_{L} \not Q^{\bullet}$.

Indeed, we have $[V, Q] \leqslant V \cap Q^{\bullet}<V$, and so the simple action of $N_{M}(Q)$ on $V /[V, Q]$ implies (2ㅇ).

Suppose that $[V, Q, Q]=1$. By (2) $V \cap Q^{\bullet}=[V, Q]$ and so $\left[V \cap Q^{\bullet}, Q\right]=1$. Since by (19) d $\left[V \cap Y_{L}, Q\right] \neq 1$, this gives $V \cap Y_{L} \not Q^{\bullet}$, and (2$)$ b holds.

Suppose next that $[V, Q, Q, Q]=1$ and $\left[V \cap Y_{L}, Q, Q\right] \neq 1$. By (a) $V \cap Q^{\bullet}=[V, Q]$ and so $\left[V \cap Q^{\bullet}, Q, Q\right]=[V, Q, Q, Q]=1$. By hypothesis, $\left[V \cap Y_{L}, Q, Q\right] \neq 1$, and we conclude that $V \cap Y_{L} \not \approx Q^{\bullet}$. Hence, 2° (c) holds.

Case 1. Suppose that the wreath product case of Theorem J holds for M.
Then Y is a natural $S L_{2}(q)$-wreath product module for \bar{M} with respect to some \bar{M}-invariant set of subgroups \mathcal{K} of \bar{M}. Moreover, Q acts transitively on \mathcal{K}. Put $r=|\mathcal{K}|,\left\{K_{1}, \ldots, K_{r}\right\}:=\mathcal{K}$ and $V_{i}:=\left[Y, K_{i}\right]$. Then

$$
Y=V_{1} \times \ldots \times V_{r}, \quad K:=\langle\mathcal{K}\rangle=K_{1} \times \ldots \times K_{r}
$$

with $K_{i} \cong S L_{2}(q)$, and V_{i} is a natural $S L_{2}(q)$-module for K_{i}.
Assume that $\overline{M^{\circ}} \leqslant \bar{L}$. Then $M^{\circ}=L^{\circ}$. Now 1.58 shows that $Y_{L}=Y$ and that Theorem A(3) holds. So assume that $\overline{M^{\circ}} \leqslant \bar{L}$. By A.28 $N_{K \bar{S}}(\bar{S} \cap K)$ is the unique maximal subgroup of $K \bar{S}$ containing \bar{S}. It follows that $O_{p}(\bar{L} \cap \bar{K})=\bar{S} \cap K$. In particular, $Y_{L} \leqslant C_{Y}(\bar{S} \cap K)$. Since $K_{i} \cong S L_{2}(q), N_{K_{i}}\left(\bar{S} \cap K_{i}\right) / \bar{S} \cap K_{i} \cong C_{q-1}$ and so $N_{K}(\bar{S} \cap K) / \bar{S} \cap K \cong C_{q-1}^{r}$. As $\overline{L_{\circ}} \leqslant O^{p}\left(\overline{M^{\circ}}\right) \leqslant K$, we conclude that $\widetilde{L_{\circ}}$ is abelian and every cyclic quotient of $\widetilde{L_{\circ}}$ has order dividing $q-1$. In particular, $q>2$.

Let $U_{1}, U_{2}, \ldots, U_{s}$ be the Wedderburn components of L_{\circ} on Y_{L}. Since $\widetilde{L_{\circ}}$ is an abelian p^{\prime}-group, $Y_{L}=U_{1} \oplus U_{2} \oplus \ldots \oplus U_{s}$ and $L_{\circ} / C_{L_{\circ}}\left(U_{i}\right)$ is cyclic. Let $W_{i}:=C_{V_{i}}(\bar{S} \cap K)$. Then $Y_{L} \leqslant W_{1} \oplus \ldots \oplus W_{r}$, and each W_{j} is a homogeneous $N_{K}(\bar{S} \cap K)$-module. Hence W_{i} is also a homogeneous L°-module. For $1 \leqslant i \leqslant s$, let R_{i} consists of all $1 \leqslant j \leqslant r$ such that the projection of U_{i} onto W_{j} is non-trivial. Put $W_{R_{i}}:=\oplus_{j \in R_{i}} W_{j}$. Then $W_{R_{i}}$ is an homogeneous L°-submodule of $C_{V}(\bar{S} \cap K)$ and $R_{i} \cap R_{k}=\varnothing$ for $1 \leqslant i<k \leqslant r$. Note that Q normalizes L_{\circ} and so also $\bigcup_{i=1}^{s} R_{i}$. Since Q acts transitively on the subgroups W_{i}, we conclude that, $R_{1}, R_{2}, \ldots, R_{s}$ is a Q-invariant partition of $\{1, \ldots, r\}$ and that Q acts transitively on R_{1}, \ldots, R_{s}. It follows that Q acts transitively on $U_{1}, U_{2} \ldots, U_{s}$. Since $\bar{S} \cap K \leqslant O_{p}(\bar{L}), \bar{Q} \nVdash K$. In particular, $\overline{M^{\circ}} \not \equiv S L_{2}(q)$, and Theorem A 4 holds.

Case 2. Suppose that the tensor product case of Theorem J holds for M.
If $\overline{M^{\circ}}=\bar{M} \cong S L_{2}(2)$ 乙 C_{2}, then \bar{S} is a maximal subgroup of \bar{M} and $\bar{M}=\bar{L}$. Thus, Theorem A(6) holds. So assume that $\overline{M^{\circ}}$ is one of $\overline{K_{1}}, \overline{K_{2}}$ or $\overline{K_{1} K_{2}}$. Let K_{i} be the inverse image of $\overline{K_{i}}$ in M, and let V_{i} be a natural $S L_{m_{i}}(q)$-module for K_{i} such that $Y \cong V_{1} \otimes_{\mathbb{F}_{q}} V_{2}$ as a $K_{1} K_{2}$-module.

Note that either $\overline{K_{i}} \& \bar{M}$ or $p=2$ and ${\overline{K_{1}}}^{\bar{x}}=\overline{K_{2}}$ for some $\bar{x} \in \bar{S}$. In particular $N_{L}\left(K_{1}\right)=$ $N_{L}\left(K_{2}\right)$. Put

$$
L_{0}:=N_{L}\left(K_{1}\right)=N_{L}\left(K_{2}\right), L_{i}:=\left\langle\left(S \cap K_{i}\right)^{L_{0}}\right\rangle, U_{i}:=C_{V_{i}}\left(O_{p}\left(L_{i}\right)\right)
$$

Then $L_{1} L_{2} \leqslant L,\left[\overline{L_{1}}, \overline{L_{2}}\right]=1$ and $Q \leqslant L_{1} L_{2}$. Since $\overline{L_{i}}$ is a parabolic subgroup of $\overline{K_{i}}$ generated by p-elements and $\overline{K_{i}} \cong S L_{m_{i}}(q)$, we get that U_{i} is a natural $S L_{t_{i}}(q)$-module for L_{i}, where $1 \leqslant t_{i} \leqslant m_{i}$. Moreover, $Y_{L} \leqslant C_{Y}\left(O_{p}\left(\overline{L_{1} L_{2}}\right)\right) \cong U_{1} \otimes_{\mathbb{F}_{q}} U_{2}$ as an $L_{1} L_{2}$-module. Since $Q \notin L, t_{i} \geqslant 2$ for some $i \in\{1,2\}$. It follows that $U_{1} \otimes_{\mathbb{F}_{q}} U_{2}$ is a simple $\mathbb{F}_{p} L_{1} L_{2}$-module and so $Y_{L} \cong U_{1} \otimes_{\mathbb{F}_{q}} U_{2}$ as an $L_{1} L_{2}$-module. Let $\{i, j\}:=\{1,2\}$.

Assume that $t_{j}=1$. Then Y_{L} is a natural $S L_{t_{i}}(q)$-module for L_{i} and $\bar{S} \cap \overline{K_{j}} \& \bar{L}$; in particular $Y_{L}=\left[Y_{L}, L^{\circ}\right]$. Since $\bar{Q} \notin \bar{L}$ we conclude that $\widetilde{L^{\circ}}=\widetilde{L_{i}}$. Hence Theorem A 1 holds, if $t_{i} \geqslant 3$, and A/3) holds if $t_{i}=2$.

Assume next that $t_{j} \geqslant 2$ and $\overline{M^{\circ}}=\overline{K_{r}}$ for some $r \in\{1,2\}$. Then $\widetilde{L^{\circ}}=\widetilde{L_{r}}$. Let $\{r, s\}:=\{1,2\}$. Then $\overline{K_{s}}$ normalizes $\overline{Q^{\bullet}}$ and $N_{\bar{K}_{r}}(Z) \sim q^{m_{r}-1} S L_{m_{r-1}}(q)$, where $O_{p}\left(N_{\overline{K_{r}}}(Z)\right)$ is a natural module for $S L_{m_{r-1}}(q)$. Thus, $N_{\overline{K_{r}}}(Z)$ acts simply on $O_{p}\left(N_{\overline{K_{r}}}(Z)\right)$, and $\bar{Q}=O_{p}\left(N_{\overline{K_{r}}}(Z)\right)$. It follows that $N_{M}(Q)$ acts simply on $C_{V}(Q)$ and $V / C_{V}(Q)$. In particular, $C_{V}(Q)=[V, Q]$ and $[V, Q, Q]=1$, and so by $\left(2^{\circ}\right), Y_{L} * Q^{\bullet}$. Thus Theorem A 6) holds.

Assume now that $t_{j} \geqslant 2$ and $\overline{M^{\circ}}=\overline{K_{1} K_{2}}$. Then $\widetilde{L^{\circ}}=\widetilde{L_{1}} \widetilde{L_{2}}$ and, for $r \in\{1,2\}, N_{\overline{K_{r}}}(Z) \sim$ $q^{m_{r}-1} S L_{m_{r-1}}(q)$. Hence as above, the simple action of $N_{\bar{K}_{r}}(Z)$ on $O_{p}\left(N_{\overline{K_{r}}}(Z)\right)$ shows that $\bar{Q}=$ $O_{p}\left(N_{\overline{K_{1}}}(Z)\right) O_{p}\left(N_{\bar{K}_{2}}(Z)\right)$. Moreover, $V /[V, Q]$ is a simple $N_{M}(Q)$-module, $[V, Q, Q]=Z$, and Q does not act quadratically on Y_{L}. Thus by $2^{\circ} Y_{L} \leqslant Q^{\bullet}$, and again Theorem A holds. This finishes (Case 2).

In all the remaining cases of Theorem $J V$ is a simple M°-module. Suppose that $\overline{M^{\circ}} \leqslant \bar{L}$. Then V is a simple L-module and so $\left[Y, M^{\circ}, O_{p}(\bar{L})\right]=\left[V, O_{p}(\bar{L})\right]=1$. Also $\left[O_{p}(\bar{L}), \overline{M^{\circ}}\right] \leqslant O_{p}\left(\overline{M^{\circ}}\right)=1$, and the Three Subgroups Lemma implies $\left[Y, O_{p}(\bar{L}), M^{\circ}\right]=1$. Since $C_{Y}\left(M^{\circ}\right)=1$ by Q !, we have $\left[Y, O_{p}(\bar{L})\right]=1$ and so $O_{p}(\bar{L})=1$. Thus $Y=Y_{L}$. Moreover $\overline{L^{\circ}}=\overline{M^{\circ}}$ and so by 1.52 c. ,

$$
L^{\circ}=\left(L^{\circ} C_{M}(Y)\right)^{\circ}=\left(M^{\circ} C_{M}(Y)\right)^{\circ}=M^{\circ}
$$

We conclude that one of the cases of Theorem J holds for L in place of M, which gives the corresponding case for L in Theorem A. Thus we may assume
$3^{\circ} . \overline{M^{\circ}} \leqslant \bar{L}$. In particular, $\bar{L} \cap \overline{M^{\circ}}$ is a proper parabolic subgroup of $\overline{M^{\circ}}$.
We first consider the case where $\overline{M^{\circ}}$ is a genuine group of Lie-Type in characteristic p. Then by $\left(3^{\circ} O_{p}\left(\bar{L} \cap \overline{M^{\circ}}\right) \neq 1\right.$. Let Δ be the corresponding Dynkin diagram for $\overline{M^{\circ}}$. For any $\Psi \subseteq \Delta$ let $\overline{M_{\Psi}}$ be the Lie-parabolic subgroup of $\overline{M^{\circ}}$ with $\bar{S} \cap \overline{M^{\circ}} \leqslant \bar{M}_{\Psi}$ and Dynkin diagram Ψ. Put $\overline{R_{\Psi}}:=O^{p^{\prime}}\left(\overline{M_{\Psi}}\right)$, and let R_{Ψ} be the inverse image of \bar{R}_{Ψ} in M°.

By A. 63 there exists a unique $\Lambda \subsetneq \Delta$ with

$$
\bar{R}_{\Lambda}=O^{p^{\prime}}\left(\bar{L} \cap \overline{M^{\circ}}\right) \leqslant \bar{L} \cap \overline{M^{\circ}} \leqslant \bar{M}_{\Lambda}
$$

Recall that $\mathbb{K}=\operatorname{End}_{M^{\circ}}(V)$. Observe also that in all cases of TheoremJ where $\overline{M^{\circ}}$ is a genuine group of Lie-type there exists a unique $\delta \in \Delta$ with $\left[Z, \bar{R}_{\delta}\right] \neq 1$. Moreover, $\vec{U}_{\delta}:=C_{V}\left(O_{p}\left(\bar{R}_{\delta}\right)\right)$ is a natural $S L_{2}(\mathbb{K})$-module or the symmetric or unitary square of a natural $S L_{2}(\mathbb{K})$-module, i.e U_{δ} is a natural $S L_{2}(\mathbb{K})-, \Omega_{3}(\mathbb{K})$ - or $\Omega_{4}^{-}(q)$-module for \bar{R}_{δ}. By $Q!, Q \vDash R_{\rho}$ for all $\delta \neq \rho \in \Delta$. Since $Q \notin L \cap M^{\circ}$
 We conclude that $\overline{L^{\circ}\left(S \cap M^{\circ}\right)}=\bar{R}_{\Xi}$. Smith's Lemma A.63, applied to \bar{M}_{Λ} and V, shows that U is a simple $\mathbb{K} \bar{R}_{\Lambda}$-module. Hence $R_{\Lambda \backslash \Xi}$ centralizes U, and U is a semisimple $\mathbb{F}_{p} R_{\Xi}$-module. Since U_{δ} is a simple $\mathbb{F}_{p} R_{\delta}$-module we conclude that U is a simple $\mathbb{F}_{p} R_{\Xi}$-module. Hence U is a simple $\mathbb{F}_{p} L^{\circ}\left(S \cap M^{\circ}\right)$-module, and $U=V \cap Y_{L}$ by an earlier remark. Since each $R_{\rho}, \rho \in \Xi \backslash\{\delta\}$, centralizes
Z, the Ronan-Smith's Lemma A. 64 implies that the isomorphism type of U as an R_{Ξ}-module (and so as an $L^{\circ}\left(S \cap M^{\circ}\right)$-module) is uniquely determined by δ and the isomorphism type of U_{δ} as an R_{δ}-module. We have proved:
4°. Suppose that $\overline{M^{\circ}}$ is a genuine group of Lie type. Then
(a) $\overline{L^{\circ}\left(S \cap M^{\circ}\right)}=\bar{R}_{\Xi}$.
(b) U is the simple $\mathbb{F}_{p} \bar{R}_{\Xi}$-module uniquely determined by $\delta, \quad\left[Z, \bar{R}_{\rho}\right]=1$ for $\rho \in \Xi \backslash\{\delta\}$, and the isomorphism type of U_{δ} as an \bar{R}_{δ}-module.
Next we show:
5°. Suppose that $\overline{M^{\circ}}$ is a genuine group of Lie type, $V \$ Q^{\bullet}, N_{\overline{M^{0}}}(Z)$ acts simply on $O_{p}\left(N_{\overline{M^{\circ}}}(Z)\right),[V, Q, Q] \leqslant Z$, and $\left[Y_{L}, Q, Q\right] \neq 1$. Then $Y_{L} * Q^{\bullet}$.

Since $N_{\overline{M^{\circ}}}(Z)$ acts simply on $O_{p}\left(N_{\overline{M^{\circ}}}(Z)\right)$ we have $\bar{Q}=O_{p}\left(N_{\overline{M^{\circ}}}(Z)\right)$. Hence Smith's Lemma A.63 applied to the dual of V shows that $N_{M}(Q)$ acts simply on $V /[V, Q]$. From $[V, Q, Q] \leqslant Z$ we get $[V, Q, Q, Q]=1$. Thus $\left(2^{\circ}\right)$ implies that $Y_{L} * Q^{\bullet}$.
6°. Suppose that $\overline{M^{\circ}}$ is a genuine group of Lie type. Then $Y_{L}=U$; in particular, Y_{L} is the simple $\mathbb{F}_{p} \bar{R}_{\Xi}$-module uniquely determined by $\delta,\left[Z, \bar{R}_{\rho}\right]=1$ for $\rho \in \Xi \backslash\{\delta\}$, and the isomorphism type of U_{δ} as an \bar{R}_{δ}-module.

Otherwise, $Y_{L} \approx V$ and $V \neq Y$. Then Theorem J shows that one of the following holds
(A) $p=2 .|Y / V|=2$ and V is a natural $S L_{3}(2)$-module,
(B) $p=2, \overline{M^{\circ}} \cong S p_{2 n}(q), n \geqslant 2$ and $|Y / V| \leqslant q$.
(C) $p=3, \overline{M^{\circ}} \cong \Omega_{4}^{-}(3), V$ is the corresponding natural module, $|Y / V|=3, Y$ is isomorphic to the 5 -dimensional quotient of a 6 -dimensional permutation module for $\overline{M^{\circ}} \cong \operatorname{Alt}(6)$, and $V \neq Q^{\bullet}$.
(D) $p=3, \overline{M^{\circ}} \cong \Omega_{5}(3), V$ is the corresponding natural module, $|Y / V|=3$ and $V \$ Q^{\bullet}$.
(E) $p=2, \overline{M^{\circ}} \cong \Omega_{6}^{+}(2), V$ is the corresponding natural module, and $|Y / V|=2$.

Let $x \in Y_{L} \backslash U$. We discuss the cases $(A)-(E)$ one by one.
Suppose that $\overline{M^{0}} \cong S L_{3}(2)$. Then $C_{\bar{S}}(x)=1$, a contradiction to $\left.1 \neq O_{2}(\bar{L})\right) \leqslant C_{\bar{S}}(x)$.
Suppose that $\overline{M^{\circ}} \cong S p_{2 n}(q)$. Let s be an M°-invariant non-degenerate symplectic form on V. Then $C_{\overline{M^{\circ}}}(x) \cong O_{2 n}^{\epsilon}(q)$, and there exists a non-degenerate $C_{\overline{M^{0}}}(x)$-invariant quadratic form t on V with s being the associate symmetric form. With respect to the symplectic form s on V, the Lie-parabolic subgroups of $\overline{M^{\circ}}$ normalize a unique s-singular \mathbb{K}-subspace of V. Since U is a simple \bar{R}_{Ξ}-module, we conclude that U is the s-singular \mathbb{K}-subspace of V corresponding to \bar{M}_{Ξ}, and $\operatorname{dim}_{\mathbb{K}} U \geqslant 2$ since $\delta \in \Xi$. In particular, $\left[U, R_{\Xi}\right] \neq 1$. Note that radical of t on U has codimension at most 1 in U (see B.5), and so there exists $u \in U^{\sharp}$ with $t(u)=0$.

Choose $\bar{g} \in \overline{M^{\circ}}$ with $[V, g]=\mathbb{K} u$. Then g centralizes the hyperplane u^{\perp} in the symplectic space V, and since U is singular with respect to $s, U \leqslant C_{V}(g)$. Thus g centralizes $U, V / U$ and Y / V. It follows that $\bar{g} \in \bar{S}$ and $\bar{g} \in O_{2}\left(\overline{M^{\circ}} \cap \bar{L}\right) \leqslant O_{2}(\bar{L})$. Hence $Y_{L} \leqslant C_{Y}\left(O_{2}(\bar{L})\right) \leqslant C_{Y}(x)$ and $\bar{g} \in C_{M^{\circ}}(x)$. Thus \bar{g} leaves invariant the quadratic form t, a contradiction to $t(u)=0$ (see B.9.C $)$.

Suppose that $\overline{M^{\circ}} \cong \Omega_{4}^{-}(3)$. Then $|\Delta|=1$ a contradiction to $\varnothing \neq \Lambda \subsetneq \Delta$.
Suppose that $\overline{M_{\circ}} \cong \Omega_{5}(3)$. Then U is natural $S L_{2}(3)$-module for $\widetilde{L^{\circ}}$. Since $\left[Y_{L}, L^{\circ}\right] \leqslant U$ and $C_{Y_{L}}\left(L^{\circ}\right)=1$ this gives $U=Y_{L}$.

Suppose that $\overline{M^{\circ}} \cong \Omega_{6}^{+}(2)$. Then Y is isomorphic to the 7 -dimensional quotient of the 8 dimensional permutation module for $\overline{M^{\circ}} \cong \operatorname{Alt}(8)$. Moreover, since $L^{\circ} \not \approx N_{M}(Z)$, there exists $\bar{R} \leqslant \overline{M^{\circ}}$ with $\bar{R} \sim 2^{3} L_{3}(2)$ and $\overline{L \cap M^{\circ}} \leqslant R$. Moreover, $O_{2}(\bar{R})$ acts regularly on the eight objects, so $C_{Y}\left(O_{2}(R)\right) \leqslant V$. Then $O_{2}(\bar{R}) \leqslant O_{2}\left(L \cap M^{\circ}\right) \leqslant O_{2}(L)$ and $Y_{L} \leqslant C_{Y}\left(O_{2}(L)\right) \leqslant C_{Y}\left(O_{2}(R)\right) \leqslant V$. So $Y_{L}=Y_{L} \cap V=U$.

We have shown that $U=Y_{L}$ in all cases, and $\sqrt{6^{\circ}}$ is proved.
Case 3. Suppose that V is a natural $S L_{n}(q), S p_{2 n}(q)$ or $\Omega_{n}^{\epsilon}(q)$-module for $\overline{M^{\circ}}$ (with p odd if n is odd in the $\Omega_{n}^{\epsilon}(q)$-module case).

Then δ is an end-node of Δ, with δ being short in the $S p_{2 n}(q)$-case and long in the $\Omega_{n}^{\epsilon}(q)$-case. Since Ξ is a proper connected subdiagram of Δ containing δ, Ξ is a Dynkin diagram of type A_{m-1}. Also U_{δ} is a natural $S L_{2}(q)$-module for R_{δ} and so by $\left.6^{\circ}\right) Y_{L}$ is a natural $S L_{m}(q)$-module for L°. Thus Theorem A 3) holds if $m=2$, and Theorem A,1) holds if $m \geqslant 3$.

Case 4. Suppose that V is the exterior square of a natural $S L_{n}(q)$-module for $\overline{M^{\circ}}$, where $n \geqslant 5$.

In this case δ is adjacent to an end-node of Δ and U_{δ} is the natural $S L_{2}(q)$-module for R_{δ}. Hence by $6{ }^{\circ} Y_{L}$ is a natural $S L_{m}(q)$ - or the exterior square of a natural $S L_{m}(q)$-module (with $m \geqslant 4$ in the second case). In the first case Theorem A 1 holds if $m \geqslant 3$, and Theorem A 3) holds if $m=2$. So suppose that Y_{L} is the exterior square of a natural $S L_{m}(q)$-module with $m \geqslant 4$. Note that $O^{p^{\prime}}\left(C_{\overline{M^{\circ}}}(Z)\right) \sim q^{2(n-2)}\left(S L_{2}(q) \times S L_{n-2}(q)\right)$ and so $\bar{Q}=O_{p}\left(C_{M^{\circ}}(Z)\right)$. In particular, $[V, Q, Q]=Z$ and Q does not act quadratically on Y_{L}. Thus by 5 . we see that $Y_{L} \$ Q^{\bullet}$. If $m=4$, then the exterior square of a natural $S L_{m}(q)$-module is the natural $\Omega_{6}^{+}(q)$-module and so Theorem A(5) holds. If $m \geqslant 5$, then Theorem A 7:1) holds.

Case 5. Suppose that V is the symmetric or unitary square of a natural $S L_{n}(q)$-module for $\overline{M^{\circ}}$.

In this case δ is an end-note, and U_{δ} is the symmetric or unitary square of a natural $S L_{2}(q)$ module. Hence by $\left(6^{\circ}\right) Y_{L}$ is the symmetric or unitary square of a natural $S L_{m}(q)$-module for L°. Also $\left.O^{p^{\prime}}\left(C_{\overline{M^{\circ}}}(Z)\right) \sim q^{n-1} S L_{n-1}(q), \bar{Q}=O_{p}\left(C_{\overline{M^{\circ}}}(Z)\right)\right),[V, Q, Q] \leqslant Z$, and Q does not act quadratically on Y_{L}. Thus (50) gives $Y_{L} * Q^{\bullet}$ and Theorem A $7: 2$ or $\mathrm{A}, 7: 3$ holds.

Case 6. Suppose that $\overline{M^{\circ}} \cong \operatorname{Spin}_{10}^{+}(q)$ and V is the half-spin module.
In this case δ is one of the end notes of Δ corresponding to an $S L_{5}(q)$-parabolic and so Ξ is of type $A_{m-1}, 2 \leqslant m \leqslant 5$, or D_{4}. Moreover, U_{δ} is a natural $S L_{2}(q)$-module for R_{δ}. Thus by $6 Y_{L}$ is a natural $S L_{m}(q)$-module, $2 \leqslant m \leqslant 5$, or a natural $\Omega_{8}^{+}(q)$-module for L°. In the $S L_{m}(q)$-case, Theorem A 1) holds if $m \geqslant 3$, and Theorem A(3) holds if $m=2$. So suppose that Y_{L} is a natural $\Omega_{8}^{+}(q)$-module. We have $O^{p^{\prime}}\left(C_{\overline{M^{\circ}}}(Z)\right) \sim q^{10} S L_{5}(q)$ and so $\bar{Q}=O_{p}\left(C_{\overline{M^{\circ}}}(Z)\right)$. Thus $[V, Q, Q]=Z$, and Q does not act quadratically on Y_{L}. Hence by $2 Y_{L} \not \approx Q^{\bullet}$, and Theorem A 5 holds.

Case 7. Suppose that $\overline{M^{\circ}} \cong E_{6}(q)$ and $|V|=q^{27}$.
In this case δ is one of the end nodes of Δ corresponding to an $\Omega_{10}^{+}(q)$-parabolic and so Ξ is of type $A_{m-1}, 2 \leqslant m \leqslant 6$, or D_{5}. Moreover, U_{δ} is a natural $S L_{2}(q)$-module for R_{δ}. Hence by (6) Y_{L} is a natural $S L_{m}(q)$-module $(2 \leqslant m \leqslant 6)$, or the natural $\Omega_{10}^{+}(q)$-module for L°. In the $S_{m}(q)$-case, Theorem A 1) holds if $m \geqslant 3$, and Theorem A 3 holds if $m=2$. So suppose that Y_{L} is the natural $\Omega_{10}^{+}(q)$-module. We have $O^{p^{\prime}}\left(C_{\overline{M^{0}}}(Z)\right) \sim q^{16} S p i n_{10}^{+}(q)$ and so $\bar{Q}=O_{p}\left(C_{\overline{M^{0}}}(Z)\right)$. Hence $[V, Q, Q]=Z$, and Q does not act quadratically on Y_{L}. Thus by $22^{\circ} Y_{L} \not Q^{\bullet}$, and Theorem A 5 holds.

This concludes the discussion of the cases where $\overline{M^{\circ}}$ is a genuine group of Lie-type.
Case 8. Suppose that $\overline{M^{\circ}} \cong S p_{4}(2)^{\prime}$ and $|V|=2^{4}$.
Then $\bar{L} \cap \overline{M^{\circ}} \cong \operatorname{Sym}(4), U$ is a natural $S L_{2}(2)$-module for $L^{\circ}, C_{Y}\left(O_{2}(\bar{L} \cap \bar{M})\right) \leqslant V$, and so $Y_{L}=Y_{L} \cap V=U$. Thus by 1.58 Theorem A 3) holds.

Case 9. Suppose that $\bar{M} \sim 3 \cdot \operatorname{Sym}(6)$ and $|Y|=2^{6}$.
Then $\bar{L} \cong C_{2} \times \operatorname{Sym}(4), \operatorname{Sym}(3) \times \operatorname{Dih}_{8}$ or $\operatorname{Sym}(3) \times \operatorname{Sym}(4)$. In the first two cases Y_{L} is the natural $S L_{2}(2)$-module for L. Thus Theorem A (3) holds.

So suppose that $\bar{L} \cong \operatorname{Sym}(3) \times \operatorname{Sym}(4)$. Then Y_{L} has order 2^{4} and is the tensor product of two natural $S L_{2}(2)$-modules. Since $\left\langle Y_{L}^{C_{M^{\prime}}(Z)}\right\rangle=Y$ and $Y \nless Q^{\bullet}$, we have $Y_{L} \leqslant Q^{\bullet}$. If $\overline{M^{\circ}} \sim$ $3 \cdot \operatorname{Alt}(6)$, then $\overline{L^{\circ}} \cong \operatorname{Sym}(4)$ and so $\widetilde{L^{\circ}} \cong S L_{2}(2)$; and if $\overline{M^{\circ}} \sim 3 \cdot \operatorname{Sym}(6)$, then $\bar{L}=\overline{L^{\circ}}$ and $\widetilde{L^{\circ}} \cong S L_{2}(2) \times S L_{2}(2)$. Thus Theorem A(6) holds.

Case 10. Suppose that $p=2, \overline{M^{\circ}} \cong M a t_{22}$, and Y is the simple Golay-code module of \mathbb{F}_{2}-dimension 10 .

Then $Y=V$ and $C_{\overline{M^{\circ}}}(Z) \sim 2^{4} \operatorname{Alt}(6)$. For a description of the action of the maximal parabolic subgroups of $\overline{M^{\circ}}$ on (the dual of) V see [MSt, 3.3]. It follows that $\bar{L} \cap \overline{M^{\circ}} \sim 2^{4} \Gamma S L_{2}(4)$ and so $\overline{L^{\circ}} \sim 2^{4} S L_{2}(4)$. Moreover, $Y_{L}=C_{V}\left(O_{2}\left(L^{\circ}\right)\right)$ is a natural $\Omega_{4}^{-}(2)$-module for L°, and so also the unitary square of natural $S L_{2}(4)$-module. Also $[V, Q, Q, Q]=1$ an $\left[Y_{L}, Q, Q\right] \neq 1$ and so 2° (c) shows that $Y_{L} \not \approx Q^{\bullet}$. Thus Theorem 7 7:3:3 holds.

Case 11. Suppose that $p=2, \overline{M^{\circ}} \cong M a t_{24}$, and Y is the 11-dimensional simple Golay code module.

Then $\bar{M}=\overline{M^{\circ}}$ and $Y=V$. For a description of the action of the maximal parabolic subgroups of M on (the dual of) V see [MSt, 3.5]. In particular, $C_{\bar{M}}(Z) \sim 2^{4} S L_{4}(2)$.

Assume that \bar{L} is a maximal subgroup of \bar{M}. Then $\bar{L} \sim 2^{6} .3 . \operatorname{Sym}(6)$ or $2^{6} .\left(S L_{2}(2) \times S L_{3}(2)\right)$, and U is a natural $S p_{4}(2)$ - or $S L_{2}(2)$-module, respectively. Thus $Y_{L}=U$. In the first case, since $\left[C_{L}\left(Y_{L}\right), Q\right] \leqslant O_{p}(L)$ and $3 \cdot \operatorname{Sym}(6)$ acts non-trivially on $Z(3 \cdot \operatorname{Alt}(6)), Y_{L}$ is a natural $S p_{4}(2)^{\prime}$-module for L°. Moreover, as $[V, Q, Q, Q]=1$ and $\left[Y_{L}, Q, Q\right] \neq 1,\left(2^{\circ}\right)(\mathrm{c})$ gives $Y_{L} \leqslant Q^{\bullet}$, and so Theorem A 2 holds. In the second case Theorem A (3) holds.

If \bar{L} is not a maximal subgroup, then L is contained in a maximal subgroup $\bar{P} \sim 2^{6}\left(S L_{2}(2) \times\right.$ $\left.S L_{3}(2)\right), \widetilde{L} \cong S L_{2}(2)$, and U is a natural $S L_{2}(2)$-module for L. Hence Theorem A 3 holds.

Case 12. Suppose that $p=2, \overline{M^{\circ}} \cong M a t_{24}$, and V is the 11 dimensional simple Todd-module.
Then $\bar{M}=\overline{M^{\circ}}$ and $|Y / V| \leqslant 2$. For a description of the action of the maximal parabolic subgroups of M on V see [MSt, 3.5]. In particular, $C_{\bar{M}}(Z) \sim 2^{6} .3 \cdot \operatorname{Sym}(6)$ and $[V, Q, Q, Q]=1$.

Assume that \bar{L} is a maximal subgroup of \bar{M}. Then $\bar{L} \sim 2^{4} . L_{4}(2)$ or $2^{6} .\left(S L_{2}(2) \times S L_{3}(2)\right)$, and U is a natural $\Omega_{6}^{+}(2)$ - or $S L_{3}(2)$-module, respectively. Thus $Y_{L} \cap V=U$.

Suppose that U is a natural $\Omega_{6}^{+}(2)$-module. Then Q does not act quadratically on U. So by 2° (c) $U \neq Q^{\bullet}$. If $Y=V$ then Theorem A 5 holds. Suppose $Y \neq V$ and let $x \in Y \backslash V$. Then $C_{\bar{M}}(x) \cong M a t_{23}$ or $L_{3}(4) \cdot \operatorname{Sym}(3)$ and so $C_{\bar{M}}(x)$ contains a conjugate of $O_{2}(\bar{L})$. Thus $\left|Y_{L} / U\right|=2$ and Theorem A 10:5 holds,

Suppose that U is a natural $S L_{3}(2)$-module. Since for $x \in Y \backslash V, C_{\bar{M}}(x)$ does not contain an elementary abelian subgroup of order 2^{6}, we get $C_{Y}\left(O_{2}(\bar{L})\right) \leqslant V$. Hence $Y_{L}=U$ and Theorem A, 1 , holds.

Assume that \bar{L} is not a maximal subgroup of \bar{M}, then \bar{L} is contained in one of the above maximal subgroups. Thus $U=Y_{L}$ and Y_{L} is a natural $S L_{2}(2)$ or $S L_{3}(2)$-module for L°. Hence Theorem A 3) or Theorem A, 1) holds.

Case 13. Suppose that $p=3, \overline{M^{\circ}} \cong M a t_{11}$ and Y is the 5 -dimensional simple Golay-code module.

Then $Y=V$ and $C_{\overline{M^{\circ}}}(Z) \sim 3^{2} S D i h_{16}$. It follows that $L^{\circ} \cong \operatorname{Alt}(6), Y_{L}=V$ and $\left[Y_{L}, L^{\circ}\right]$ is the natural $\Omega_{4}^{-}(3)$-module. Since $Y=\left\langle\left[Y, L^{\circ}\right]^{C^{M^{\circ}}}(Z)\right\rangle$ and $Y \$ Q^{\bullet}$, we have $\left[Y_{L}, L^{\circ}\right] \not Q^{\bullet}$, and Theorem A 7:3:2 holds.

Case 14. Suppose that $p=2, \overline{M^{\circ}} \cong \operatorname{Aut}\left(M a t_{22}\right)$, and Y is the 10 -dimensional simple Toddmodule.

Then $Y=V$ and $\bar{M}=\overline{M^{\circ}}$. For a description of the action of the maximal parabolic subgroups of $\overline{M^{\circ}}$ on V see [MSt, 3.3]. In particular, $C_{M}(Z) \sim 2^{4+1} . \operatorname{Sym}(5)$, and $\bar{Q}=O_{2}\left(C_{M}(Z)\right),[V, Q, Q, Q]=$ 1.

Suppose first that $\overline{L^{\circ}}$ is a maximal subgroup of \bar{M}. Then $\overline{L^{\circ}} \sim 2^{4} \cdot S p_{4}(2),\left[U, L^{\circ}\right]$ is a natural $S p_{4}(2)$-module for $L^{\circ},\left|U /\left[U, L^{\circ}\right]\right|=2$ and $\left[\left[U, L^{\circ}\right], Q, Q\right] \neq 1$. It follows that $U=Y_{L}$ and by (20)(c) $\left[Y_{L}, L^{\circ}\right] \neq \bar{Q}$, and Theorem A $2: \mathrm{d}: 2$ holds.

Suppose next that $\overline{L^{\circ}}$ is not maximal subgroup of \bar{M}. Then $\overline{L^{\circ}}$ is contained in the above maximal subgroup of shape $2^{4} \cdot S p_{4}(2)$ and we conclude that Y_{L} is a natural $S L_{2}(2)$-module for $\overline{L^{\circ}}$. Hence Theorem A(3) holds.

Case 15. Suppose that $p=3, \overline{M^{\circ}} \cong 2 \cdot M_{12}$, and Y is the 6 -dimensional simple Golay-code module.

Then $Y=V, C_{\overline{M^{\circ}}}(Z) \sim 3^{2} . G L_{2}(3)$ and $[V, Q, Q, Q]=1$. It follows that $L^{\circ} \sim 3^{2} S L_{2}(3), U$ is symmetric square of a natural $S L_{2}(3)$ for L°, and $[U, Q, Q] \neq 1$. Hence $U=Y_{L}$ and by (2) (c) $Y_{L} \leqslant \bar{Q}$. Thus Theorem A 7:3:4 holds.

10.3. Proof of the Corollary to the Local Structure Theorem

In this section we prove Corollary B. So as there let G be a finite \mathcal{K}_{p}-group of local characteristic p, let $S \in \operatorname{Syl}_{p}(G)$ and suppose that there exist $M, \widetilde{C} \in \mathcal{M}_{G}(S)$ such that the following hold for $Q:=O_{p}(\widetilde{C}):$
(i) $N_{G}\left(\Omega_{1} Z(S)\right) \leqslant \widetilde{C}$.
(ii) $C_{G}(x) \leqslant \widetilde{C}$ for every $1 \neq x \in Z(Q)$.
(iii) $M \neq \widetilde{C}$, and $M=L$ for every $L \in \mathcal{M}_{G}(S)$ with $M=(M \cap L) C_{M}\left(Y_{M}\right)$.
(iv) $Y_{M} \leqslant Q$.

It follows easily from (ii) and (iii) that Q is a weakly closed subgroup of G, see [MSS, 2.4.2(a)] for a proof. Since $\widetilde{C} \in \mathcal{M}_{G}(S)$ and $Q \leqslant \widetilde{C}$ we have $N_{G}(Q)=\widetilde{C}$. Hence, by a Frattini argument and again (iii),

$$
N_{G}(A)=C_{G}(A)\left(N_{G}(A) \cap N_{G}(Q)\right) \leqslant \widetilde{C}
$$

for every $1 \neq A \leqslant Z(Q)$. Since G is of local characteristic p, \widetilde{C} is of characteristic p. So $C_{G}(Q) \leqslant Q$, and we get that Q is a large subgroup of G. Note here that $Q=O_{p}(\widetilde{C})=O_{p}\left(N_{G}(Q)\right)$, so $Q=Q^{\bullet}$ in the notation of Theorem (J)

By (iii) $M \neq \widetilde{C}$, and since $M \in \mathcal{M}_{G}(S)$, we conclude that $G \neq \widetilde{C}=N_{G}(Q)$. So $Q \nRightarrow M$. By 1.56 a), applied with the roles of M and L reversed, there exist $L \in \mathfrak{M}_{G}(S)$ and $M^{*} \leqslant L$ with

$$
S \leqslant M^{*}, Y_{M}=Y_{M^{*}}, M C_{G}\left(Y_{M}\right)=M^{*} C_{G}\left(Y_{M}\right), M^{\circ}=\left(M^{*}\right)^{\circ} . \text { and } Q \nleftarrow L
$$

Recall from the definition of $\mathfrak{M}_{G}(S)$ that $\mathcal{M}_{G}(L)=\left\{L^{\dagger}\right\}$ and $Y_{L}=Y_{L^{\dagger}}$. Also 2.2 bives $C_{S}\left(Y_{L}\right)=$ $O_{p}(L)$. Since $M \in \mathcal{M}_{G}(S)$ and $Y_{M}=Y_{M^{*}}$, we have $M^{*} \leqslant N_{G}\left(Y_{M^{*}}\right)=N_{G}\left(Y_{M}\right)=M$. From $M C_{G}\left(Y_{M}\right)=M^{*} C_{G}\left(Y_{M}\right)$ we get

$$
M=(M \cap L) C_{G}\left(Y_{M}\right)=\left(M \cap L^{\dagger}\right) C_{G}\left(Y_{M}\right)
$$

As $L^{\dagger} \in \mathcal{M}_{G}(S)$, iiii) shows that $M=L^{\dagger}=L C_{G}\left(Y_{L}\right)$ and $Y_{M}=Y_{L^{\dagger}}=Y_{L}$. In particular, $M^{\circ}=\left(L^{\dagger}\right)^{\circ}=L^{\circ}$.

Since G is of local characteristic $p, C_{G}(x)$ is of characteristic p for all non-trivial p-elements x of G, and in particular, for all $1 \neq x \in Y_{L}$. Thus Theorem J the Structure Theorem for Maximal Local Parabolic Subgroups, applies to L. By (iv) $Y_{M}=Y_{L} \leqslant Q=Q^{\bullet}$, and so only the first three cases, namely the linear, symplectic and wreath product case, of TheoremJare relevant. Moreover, as $Y_{L} \leqslant Q^{\bullet}$ we have $Y_{L}=\left[Y_{L}, L^{\circ}\right]$ in the wreath product case. Hence one of the following holds, where $\overline{L^{\dagger}}:=L^{\dagger} / C_{L^{\dagger}}\left(Y_{L}\right)$.
(I) $\overline{L^{\circ}} \cong S L_{n}(q), n \geqslant 3, S p_{2 n}(q), n \geqslant 2$, or $S p_{4}(2)^{\prime}($ and $p=2)$ and $\left[Y_{L}, L^{\circ}\right]$ is a corresponding natural module for $\overline{L^{\circ}}$. Moreover, $Y_{L}=\left[Y_{L}, L^{\circ}\right]$ or $p=2$ and $\overline{L^{\circ}} \cong S p_{2 n}(q), n \geqslant 2$.
(II) There exists a unique \bar{L}-invariant set \mathcal{K} of subgroups of \bar{L} such that Y_{L} is a natural $S L_{2}(q)$ wreath product module for \bar{L} with respect to \mathcal{K}. Moreover, $\overline{L^{\circ}}=O^{p}(\langle\mathcal{K}\rangle) \bar{Q}$, and Q acts transitively on \mathcal{K}.
Put $M_{1}:=\left\langle Q^{M}\right\rangle C_{S}\left(Y_{M}\right)$ and $P_{1}:=M_{1} S$. Note that $M_{1}=M^{\circ} C_{S}\left(Y_{L}\right)=L^{\circ} O_{p}(L)$ and so $O^{p}\left(M_{1}\right)=O^{p}\left(P_{1}\right)=M_{\circ}$. In particular $P_{1} S=L^{\circ} S$.

Assume Case (II). Let P_{1}^{*} be the inverse image of $\langle\mathcal{K}\rangle$ in P_{1}. We apply 1.58 . By 1.58 (c) $O^{p}\left(P_{1}\right)=O^{p}\left(P_{1}^{*}\right)$ and $\overline{P_{1}^{*}} \vee \bar{L}$; in particular $P_{1}^{*} \vee M$. Since $O^{p}\left(P_{1}\right)=O^{p}\left(M_{1}\right)$, we conclude that Corollary B 2:i - 2:iii) hold. Moreover, 1.58 fi implies Corollary B 2:iv.

If $|\mathcal{K}|=1$ then Corollary $\operatorname{B}(1)$ holds with $n=2$ and $Y_{M}=\left[Y_{M}, M^{\circ}\right]$. If $|\mathcal{K}|>1$ then $Q \leqslant P^{*}$, and Corollary B/2 holds.

Assume that Case (II) holds. Note that $S L_{n}(q), n \geqslant 3, S p_{2 n}(q), n \geqslant 2$ and $S p_{4}(2)^{\prime}$ all are quasisimple, except for $S p_{4}(2)$. As $\overline{M_{1}} \cong \overline{L^{\circ}}$ we conclude that $F^{*}\left(\overline{M_{1}}\right)={\overline{M_{1}}}^{\prime}$ and $\left[Y, M_{1}\right]$ is a natural $S L_{n}(q), S p_{2 n}(q)$ or $S p_{4}(2)^{\prime}$-module for M_{1}. To show that Corollary B1 holds, it remains to determine $C_{M_{1}}\left(Y_{M}\right)$.

Since $M_{1}=L^{\circ} O_{p}(L)=M^{\circ} O_{p}\left(M_{1}\right)$, we have $C_{M_{1}}\left(Y_{M}\right)=C_{M^{\circ}}\left(Y_{M}\right) O_{p}\left(M_{1}\right)$. Also 1.52 c) gives $\left[M^{\circ}, C_{M}\left(Y_{M}\right)\right] \leqslant O_{p}\left(M^{\circ}\right) \leqslant O_{p}\left(M_{1}\right)$. Thus $M_{1} / O_{p}\left(M_{1}\right)$ is a central extension of $\overline{M_{1}}=$ $\overline{L^{\circ}}$ by the p^{\prime}-group $C_{M_{1}}\left(Y_{M}\right) / O_{p}\left(M_{1}\right)$. Since M_{1} is generated by p-elements we conclude that $C_{M_{1}}\left(Y_{M}\right) / O_{p}\left(M_{1}\right) \leqslant \Phi\left(M_{1} / O_{p}\left(M_{1}\right)\right)$ and therefore $C_{M_{1}}\left(Y_{M}\right) / O_{p}\left(M_{1}\right)$ embeds into the Schur multiplier of $\overline{M_{1}}$. By Gr1 the p^{\prime}-part of the Schur multiplier of $S L_{n}(q)$ and $S p_{2 n}(q)$ is trivial, while the 2^{\prime}-part of the Schur multiplier of $S p_{4}(2)^{\prime}$ has order 3. (Note here that $S p_{4}(2)$ inverts the Schur multiplier of $\left.S p_{4}(2)^{\prime}\right)$. It follows that either $C_{M_{1}}\left(Y_{M}\right)=O_{p}(M)$ or $M_{1} / O_{p}\left(M_{1}\right) \cong 3 \cdot S p_{4}(2)^{\prime}$. Thus Corollary B 1 holds.

APPENDIX A

Module theoretic Definitions and Results

In this chapter we present the module-theoretic definitions used throughout this paper. Results based on these definitions can be found in MS1, MS2, MS3, MS4, MS5, and MS6. Some of these results are used so often in various different places that we state them either in this or in one of the later appendices.

Throughout this appendix H is always a finite group and all modules considered are finite dimensional.

A.1. Module-theoretic Definitions

Definition A.1. Let V be an $\mathbb{F}_{p} H$-module and $A \leqslant H$. Then A acts
(1) quadratically on V if $[V, A, A]=0$,
(2) cubically on V if $[V, A, A, A]=0$,
(3) nilpotently on V if $[U, A]<U$ for every non-zero A-submodule $U \leqslant V$,
(4) nearly quadratically on V if A acts cubically on V and

$$
[v, A]+C_{V}(A)=[V, A]+C_{V}(A) \text { for every } v \in V \backslash[V, A]+C_{V}(A)
$$

Moreover, V is a quadratic, cubic or nearly quadratic module for H, if there exists a subgroup $A \leqslant H$ with $[V, A] \neq 0$ that acts quadratically, cubically and nearly quadratically on V, respectively.

Definition A.2. An $\mathbb{F}_{p} H$-module V is
(1) simple if $V \neq 0$, and 0 and V are the only H-submodules of V,
(2) central if $[V, H]=0$,
(3) p-reduced if $O_{p}\left(H / C_{H}(V)\right)=1$,
(4) perfect if $V \neq 0$ and $[V, H]=V$,
(5) quasisimple if V is perfect and p-reduced, and $V / C_{V}\left(O^{p}(H)\right)$ is a simple $\mathbb{F}_{p} H$-module.

Definition A.3. Let V an be $\mathbb{F}_{p} H$-module and $S \in S_{\text {S }} l_{p}(H)$.
(a) $\operatorname{rad}_{V}(H)$ is the intersection of all maximal H-submodules of V.
(b) $P_{H}(S, V):=O^{p^{\prime}}\left(C_{H}\left(C_{V}(S)\right)\right.$) is the point-stabilizer of H on V with respect to S.

Definition A.4. Let V be an $\mathbb{F}_{p} H$-module and let A and B be p-subgroups of H with $A \leqslant B$. Then V is a minimal asymmetric $\mathbb{F}_{p} H$-module with respect to $A \leqslant B$ provided that
(i) $A \approx N_{H}(B)$, and B is a weakly closed subgroup of H,
(ii) $[V, A, B]=[V, B, A]=0$,
(iii) $\left\langle A^{H}\right\rangle$ does not act nilpotently on V,
(iv) $\left\langle A^{F}\right\rangle$ acts quadratically on V for every proper subgroup F of H with $B \leqslant F$.

Definition A.5. Let V be an $\mathbb{F}_{p} H$-module and Q a p-subgroup of H. Then V is a Q--module for H with respect to Q if
(i) Q is not normal in H, and
(ii) $N_{H}(A) \leqslant N_{H}(Q) \quad$ for every $0 \neq A \leqslant C_{V}(Q)$.

Definition A.6. Let \mathcal{K} be a non-empty H-invariant set of subgroups of H. Then V is a wreath product module for H (with respect to \mathcal{K}) if

$$
V=\bigoplus_{K \in \mathcal{K}}[V, K] \quad \text { and } \quad C_{V}(\langle\mathcal{K}\rangle)=0
$$

Definition A.7. Let V be an $\mathbb{F}_{p} H$-module, and let A be a subgroup of H such that $A / C_{A}(V)$ is an elementary abelian p-group. Then
(1) A is an offender on V if $\left|V / C_{V}(A)\right| \leqslant\left|A / C_{A}(V)\right|$,
(2) A is an over-offender if $\left|V / C_{V}(A)\right|<\left|A / C_{A}(V)\right|$,
(3) A is a best offender on V if

$$
|B|\left|C_{V}(B)\right| \leqslant|A|\left|C_{V}(A)\right| \quad \text { for every } B \leqslant A
$$

(4) A is a strong offender on V if A is an offender on V and

$$
C_{V}(A)=C_{V}(a) \quad \text { for every } a \in A \backslash C_{A}(V)
$$

(5) A is a root offender on V if A is an offender on V and

$$
C_{V}(A)=C_{V}(a) \quad \text { and } \quad[V, A]=[V, a] \quad \text { for every } a \in A \backslash C_{A}(V)
$$

(6) A is a strong dual offender on V if A acts nilpotently on V and

$$
[V, A]=[v, A] \text { for every } v \in V \backslash C_{V}(A)
$$

By $J_{H}(V)$ we denote the normal subgroup of H generated by the best offenders of H on V. A non-trivial subgroup $K \leqslant J_{H}(V)$ with $K \nless C_{H}(V)$ that is minimal with respect to $K=\left[K, J_{H}(V)\right]$ is a $J_{H}(V)$-component of H. By $\mathcal{J}_{H}(V)$ we denote the set of $J_{H}(V)$-components of H and by $J_{H}^{*}(V)$ the normal subgroup generated by $\mathcal{J}_{H}(V)$.

A.2. Naming Modules

In this section we assign names to certain modules.
Let \mathbb{K} be a finite field of characteristic p and let V be a vector space of finite dimension m over \mathbb{K}. Let $\Lambda_{2}(V), S_{2}(V)$ and $U_{2}(V)$ be the set of symplectic, symmetric, and unitary forms on V, where in the last case we assume that \mathbb{K} is a quadratic extension of a subfield \mathbb{F} and so has a unique automorphism of order 2. Let $V^{*}:=\operatorname{Hom}_{\mathbb{K}}(V, \mathbb{K})$ be the dual of V. Then $\Lambda^{2}(V):=\Lambda_{2}\left(V^{*}\right)$ is the exterior (or symplectic) square of $V, S^{2}(V):=S_{2}\left(V^{*}\right)$ is the symmetric square of V, and $U^{2}(V):=U_{2}\left(V^{*}\right)$ is the unitary square of V. Note that $\Lambda^{2}(V)$ and $S^{2}(V)$ are vector spaces of dimension $\binom{m}{2}$ and $\binom{m+1}{2}$, respectively, over \mathbb{K}, and $U^{2}(V)$ is a vector space of dimension m^{2} over \mathbb{F}. Also $\Lambda^{2}(V), S^{2}(V)$ and $U^{2}(V)$ are $\mathbb{F}_{p} S L_{\mathbb{K}}(V)$-modules.

Suppose now that V is an $\mathbb{F}_{p} H$-module. Let K be a group and W an $\mathbb{F}_{p} K$-module. Suppose that there exists a surjective homomorphism

$$
\tau: \quad H \rightarrow K / C_{K}(W), \quad h \mapsto \tau_{h}
$$

and an \mathbb{F}_{p}-isomorphism $\phi: V \rightarrow W, v \mapsto \phi(v)$, such that

$$
\begin{equation*}
\phi\left(v^{h}\right)=\phi(v)^{\tau_{h}} \quad \text { for all } \quad v \in V \text { and } h \in H \tag{*}
\end{equation*}
$$

- If $K \leqslant G L_{\mathbb{F}_{p}}(W)$, then V is a natural K-module for $H{ }^{1}$. In particular, if (W, f, h) is a non-degenerate classical space over the field \mathbb{K} and $\left.K=C l_{\mathbb{K}}(W)\right]^{2}$ then V is a natural $C l_{\mathbb{K}}(W)$-module for V.
- If W_{0} is vector space over $\mathbb{K}, K=S L_{\mathbb{K}}\left(W_{0}\right)$, and W is $\Lambda^{2}\left(W_{0}\right), S^{2}\left(W_{0}\right)$ or $U^{2}\left(W_{0}\right)$, then W is the exterior, symmetric or unitary (respectively) square of a natural $S L_{\mathbb{K}}\left(W_{0}\right)$-module for H.
- Let I be a finite set and $K \leqslant \operatorname{Sym}(I)$. View \mathbb{F}_{p}^{I} as an K-module via $\left(w_{i}\right)_{i \in I}^{\pi}=\left(w_{i \pi^{-1}}\right)_{i \in I}$.
- If $W=\mathbb{F}_{p}^{I}$ then V is an $\mathbb{F}_{p} K$-permutation module for H.
- If $p=2$ and $W=\left\{\left(w_{i}\right)_{i \in I} \in \mathbb{F}_{p}^{I} \mid \sum_{i \in I} w_{i}=0\right\}$ then V is an even $\mathbb{F}_{p} K$-permutation module for H.
- If $K=\operatorname{Alt}(I)$ or $\operatorname{Sym}(I)$ and W is the non-central simple section of K on \mathbb{F}_{p}^{I}, then V is a natural $\mathbb{F}_{p} K$-module for H.
 natural $S z\left(2^{k}\right)$-module.

[^15]- If $K=G_{2}\left(2^{k}\right)$ and W is the simple $\mathbb{F}_{2} G_{2}\left(2^{k}\right)$-module of $\mathbb{F}_{2^{k} \text {-dimension } 6 \text {, then } V \text { is a }}$ natural $G_{2}\left(2^{k}\right)$-module.
- If $K={ }^{3} D_{4}\left(p^{k}\right)$ and W is the simple $\mathbb{F}_{p}{ }^{3} D_{4}\left(p^{k}\right)$-module of $\mathbb{F}_{p^{3 k} \text {-dimension } 8 \text {, then } V \text { is a }}$ natural ${ }^{3} D_{4}\left(p^{k}\right)$-module.
- If $K=E_{6}\left(p^{k}\right)$ and W is a simple $\mathbb{F}_{p} E_{6}\left(p^{k}\right)$-module of $\mathbb{F}_{p^{k}}$-dimension 27 , then V is a natural $E_{6}\left(p^{k}\right)$-module.
- Suppose that (U, f, h) is a non-degenerate orthogonal space with Clifford algebra C with grading $\left.C=C_{1} \oplus C_{-1}\right]^{3}$ Suppose also that $K=\operatorname{Spin}(U)$ and note that C is a K-module by right multiplication. If W is a minimal right ideal of C, then V is a spin K-module for H. If W is a minimal right ideal of C_{1}, then V is a half-spin K-module for H.
- Let $U \leqslant \mathbb{F}_{2}^{24}$ be the binary Golay-code of length 24 , dimension 12 and minimum distance 8. Note that $M:=A u t(U)=M a t_{24}$ and let K be one of $M=M a t_{24}, C_{M}(24)=M a t_{23}$, $C_{M}(\{23,24\})=M a t_{22}$ or $N_{M}(\{23,24\})=\operatorname{Aut}\left(M a t_{22}\right)$. If W is the non-central simple section of K on U, then V is a Golay code K-module for H. If W is the non-central simple section of K on \mathbb{F}_{2}^{24} / U, then V is a Todd K-module.
- Let $U \leqslant \mathbb{F}_{3}^{12}$ be the ternary Golay code of length 12 , dimension 6 and minimal distance 6. Let $M=\operatorname{Aut}(U) \sim 2 \cdot M a t_{12}$ and let K be one of M or $C_{M}(12)^{\prime}=M a t_{11}$. If W is the non-central simple section of K in U, then V is a Golay code K-module for H. If W is the non-central simple section of K on \mathbb{F}_{3}^{12} / U, then V is a Todd K-module.
Note that the Todd K-module and Golay-code K-module are simple and dual to each other. The following table lists the order of some of the modules defined above.

V	$\|V\|$
natural $C l_{\mathbb{K}}(W)$	$\|W\|$
exterior square of natural $S L_{n}(q)$	$q^{\binom{n}{2}}$
symmetric square of natural $S L_{n}(q)$	$q{ }^{\binom{n+1}{2}}$
unitary square of natural $S L_{n}\left(q_{0}^{2}\right)$	$q_{0}^{n^{2}}$
half-spin $\operatorname{Spin}_{2 n}^{+}(q)$	$q^{2^{n-1}}$
half-spin $\operatorname{Spin}_{2 n}^{-}(q)$	$q^{2^{n}}$
half-spin $\operatorname{Spin}_{2 n+1}(q)$	$q^{2^{n}}$
natural $\mathbb{F}_{p} \operatorname{Sym}(n)$, natural $\mathbb{F}_{p} \operatorname{Alt}(n)$	p^{n-1} if $p \nmid n, p^{n-2}$ if $p \mid n$
natural $S z\left(2^{k}\right)$	$2^{4 k}$
natural $G_{2}\left(2^{k}\right)$	$2^{6 k}$
natural ${ }^{3} D_{4}\left(p^{k}\right)$	$p^{24 k}$
natural $E_{6}\left(p^{k}\right)$	$p^{27 k}$
Todd $M a t_{22}(.2)$, Golay-code $M a t_{22}(.2)$	2^{10}
Todd Mat_{23}, Golay-code Mat_{23}	2^{11}
Todd $M^{\text {at }}$ 24, Golay-code $M a t_{24}$	2^{11}
Todd Mat ${ }_{11}$, Golay-code $M a t_{11}$	3^{5}
Todd $2 \cdot M a t_{12}$, Golay-code $2 \cdot M a t_{12}$	3^{6}

We remark that, for given H, K and W, the $\mathbb{F}_{p} H$-module V fulfilling $(*)$ might not be unique up to isomorphism. For example, if H has two different normal subgroups H_{1} and H_{2} with $H / H_{i} \cong$ $K / C_{K}(W)$ then there exist $\mathbb{F}_{p} H$-modules V_{1} and V_{2} fulfilling $(*)$ with $C_{H}\left(V_{i}\right)=H_{i}$, and so V_{1} and V_{2} are not isomorphic. Also if $K / C_{K}(W)$ has outer automorphisms which are not induced by elements of $G L_{\mathbb{F}_{p}}(W)$ there will exist non-isomorphic V 's with the same $C_{H}(V)$. We list some examples which occur in this paper:

- $S L_{\mathbb{K}}(V), \operatorname{dim}_{\mathbb{K}} V \geqslant 3$, has two natural $S L_{\mathbb{K}}(V)$-modules, namely V and its dual V^{*}.
- $S L_{\mathbb{K}}(V), \operatorname{dim}_{\mathbb{K}} V \geqslant 5$, has two exterior squares of natural $S L_{\mathbb{K}}(V)$-modules, namely $\Lambda^{2}(V)$ and $\Lambda^{2}(V)^{*}$.
$-S L_{\mathbb{K}}(V), \operatorname{dim}_{\mathbb{K}} V \geqslant 3$, char \mathbb{K} odd, has two symmetric squares of natural $S L_{\mathbb{K}}(V)$-modules, namely $S^{2}(V)$ and $S^{2}(V)^{*}$.

[^16]$-S L_{\mathbb{K}}(V), \operatorname{dim}_{\mathbb{K}} V \geqslant 3, \operatorname{dim}_{\mathbb{F}_{p}} \mathbb{K}$ even, has two unitary squares of natural $S L_{\mathbb{K}}(V)$-modules, namely $U^{2}(V)$ and $U^{2}(V)^{*}$.

- $O_{4}^{+}(2)$ has two natural $O_{4}^{+}(2)$-modules.
- $S p_{4}(q), q$ even, has two natural $S p_{4}(q)$-modules. For $q=2$, these are also natural $\operatorname{Sym}(6)$ modules.
- $S p_{4}(2)^{\prime}$ has two natural $S p_{4}(2)^{\prime}$-modules, which are also natural $\operatorname{Alt}(6)$-modules.
$-\operatorname{Spin}_{8}^{+}(q)$ has three natural $\Omega_{8}^{+}(q)$-modules, all of which are also half-spin $\operatorname{Spin}_{8}^{+}(q)-$ modules. For q odd, these are distinguished by the kernel of the action.
- $\operatorname{Spin}_{10}^{+}(q)$ has two half-spin $\operatorname{Spin}_{10}^{+}(q)$-modules dual to each other.
- $E_{6}(q)$ has two natural $E_{6}(q)$-modules, dual to each other.

We also remark that a group H can have the exterior, symmetric or unitary square of a natural $S L_{\mathbb{K}}(V)$-module without having a natural $S L_{\mathbb{K}}(V)$-module. For example, if p is odd and $\operatorname{dim}_{\mathbb{K}} V=2$, then $S^{2}(V)$, viewed as a module for $P S L_{\mathbb{K}}(V)$, is the symmetric square of a natural $S L_{\mathbb{K}}(V)$-module, but $P S L_{\mathbb{K}}(V)$ does not have a natural $S L_{\mathbb{K}}(V)$-module.

A.3. p-Reduced Modules

In this section H is a finite group, p is a prime and V is an $\mathbb{F}_{p} H$-module.
Definition A.8. (a) $C_{H}^{*}(V)$ is inverse image $O_{p}\left(H / C_{H}(V)\right)$ in H.
(b) $Y_{V}(H)$ is the H-submodule of V generated by all the p-reduced H-submodules of V.

Lemma A.9. Let $L \geqq \& H$. Then
(a) L acts nilpotently on V if and only if $L \leqslant C_{H}^{*}(V)$.
(b) $C_{L}^{*}(V)=C_{L}^{*}([V, L])=C_{L}^{*}\left(\left[V, O^{p}(L)\right]\right) \leqslant C_{H}^{*}(V)$.
(c) If V is p-reduced for H then $[V, L]$ and $\left[V, O^{p}(L)\right]$ are p-reduced for L.
(d) If V is p-reduced and faithful for H, then each of V, $[V, L]$ and $\left[V, O^{p}(L)\right]$ is p-reduced and faithful for L.

Proof. (a): Without loss V is a faithful H-module. Then $C_{H}^{*}(V)=O_{p}(H)$. Note that L acts nilpotently on V if and only if L is a p-group and so if and only if $L \leqslant O_{p}(H)$.
(b): Put $X:=C_{L}^{*}\left(\left[V, O^{p}(L)\right]\right)$. Observe that $X, C_{L}^{*}(V)$ and $C_{L}^{*}([V, L])$ are normal in L and thus subnormal in H. By a) $C_{L}^{*}(V)$ and $C_{L}^{*}([V, L])$ act nilpotently on $[V, L]$ and $\left[V, O^{p}(L)\right]$, so again by (a),

$$
\begin{equation*}
C_{L}^{*}(V) \leqslant C_{L}^{*}([V, L]) \leqslant X \tag{*}
\end{equation*}
$$

Note that X acts as a p-group on $V /\left[V, O^{p}(L)\right]$. Since V is an \mathbb{F}_{p}-module, X acts nilpotently on $V /\left[V, O^{p}(L)\right]$ and thus also nilpotently on V. Hence $X \leqslant C_{L}^{*}(V)$ and $X=C_{L}^{*}(V)$, and equality holds in (*). Since $X \leqslant \leftrightarrow H$, (a) shows that $X \leqslant C_{H}^{*}(V)$.
(c) and (d): These are direct consequences of (b).

Lemma A.10. The following are equivalent:
(a) V is p-reduced for H.
(b) $C_{H}^{*}(V)=C_{H}(V)$.
(c) Any normal subgroup of H which acts nilpotently on V centralizes V.
(d) Any subnormal subgroup of H which acts nilpotently on V centralizes V.

Proof. By definition V is p-reduced for H if and only if $O_{p}\left(H / C_{H}(V)\right)=1$, that is, if and only if $C_{H}^{*}(V) / C_{H}(V)=1$, that is, if and only if $C_{H}^{*}(V)=C_{H}(V)$. Also by A.9 a a subnormal subgroup of H acts nilpotently on V if and only if it is contained in $C_{H}^{*}(V)$. It follows that both (c) and (d) are equivalent to (a).

Lemma A.11. (a) Let \mathcal{W} be a set of p-reduced H-submodule of V. Then $\langle\mathcal{W}\rangle$ is a p-reduced H-module.
(b) $Y_{V}(H)$ is the unique maximal p-reduced H-submodule of V.

Proof. (a): Let K be a normal subgroup of H acting nilpotently on $\langle\mathcal{W}\rangle$. Then K acts nilpotently on each $W \in \mathcal{W}$ and so centralizes W and $\langle\mathcal{W}\rangle$. Thus A. 10 shows that $\langle\mathcal{W}\rangle$ is p-reduced.
(b): By definition, $Y_{V}(H)$ is the submodule of V generated by all the p-reduced H-submodules of V, and by (a) $Y_{V}(H)$ is p-reduced. Hence bolds.

Lemma A.12. Let L be a parabolic subgroup of H and U a p-reduced L-submodule of V. Then $\left\langle U^{H}\right\rangle$ is p-reduced for H. In particular, $Y_{V}(L) \leqslant Y_{V}(H)$.

Proof. Let M be a normal subgroup of H acting nilpotently on $W:=\left\langle U^{H}\right\rangle$. Then $M \cap L$ is a normal subgroup of L acting nilpotently on U. Thus $M \cap L \leqslant C_{M}(U)$. Since $M / C_{M}(W)$ is a p-group and normal in $H / C_{H}(W)$ and L is a parabolic subgroup of $H, M=(M \cap L) C_{M}(W)$. Thus $[M, U]=1$ and since $M \vDash H$, also $\left[M,\left\langle U^{H}\right\rangle\right]=1$. Hence by A.10, $\left\langle U^{H}\right\rangle$ is p-reduced for H.

Lemma A.13. Let $P, Q \leqslant H$ and suppose that $P / C_{P}(V)$ is a p-group and $[P, Q] \leqslant C_{H}(V)$. Then
(a) If $Q / C_{Q}(V)$ is a p^{\prime}-group, $C_{Q}\left(C_{V}(P)\right)=C_{Q}(V)$.
(b) $C_{Q}^{*}\left(C_{V}(P)\right)=C_{Q}^{*}(V)$.
(c) If V is p-reduced for Q, then $C_{Q}^{*}\left(C_{V}(P)\right)=C_{Q}\left(C_{V}(P)\right)=C_{Q}(V)$.
(d) Suppose that V is a faithful Q-module and $O_{p}(Q)=1$, then $C_{V}(P)$ is a faithful Q-module.

Proof. We may assume that V is a faithful H-module, so $[P, Q]=1$ and P is a p-group.
(a): This follows from the $P \times Q$-Lemma.
(b): Let x be a p^{\prime} - element in $C_{Q}^{*}\left(C_{V}(P)\right)$. Then x centralizes $C_{V}(P)$, and so by (a) applied with $Q=\langle x\rangle, x$ centralizes V. Thus $x=1$ and $C_{Q}^{*}\left(C_{V}(P)\right)$ is a p-group. Hence $C_{Q}^{*}\left(C_{V}(P)\right)$ is a normal p-subgroup of Q and so $C_{Q}^{*}\left(C_{V}(P)\right) \leqslant C_{Q}^{*}(V)$. The other inclusion is obvious.
(c): Since V is p-reduced for $Q, C_{Q}(V)=C_{Q}^{*}(V)$. Thus using (b),

$$
C_{Q}\left(C_{V}(P)\right) \leqslant C_{Q}^{*}\left(C_{V}(P)\right)=C_{Q}^{*}(V)=C_{Q}(V) \leqslant C_{Q}\left(C_{V}(P)\right)
$$

and so (c) holds.
(d): Since $O_{p}(Q)=1$ and V is a faithful Q-module, V is a p-reduced Q-module. Thus (c) gives $C_{Q}\left(C_{V}(P)\right)=C_{Q}(V)=1$ 。

Lemma A.14. Let U and W be H-submodules of V with $C_{H}(W)=C_{H}(U)$. Then $C_{H}^{*}(U)=$ $C_{H}^{*}(W)$. In particular, U is p-reduced for H if and only if W is p-reduced for H.

Proof. Just recall that, by definition, $C_{H}^{*}(U)$ and $C_{H}^{*}(W)$ are the preimages of $O_{p}\left(H / C_{H}(U)\right)$ and of $O_{p}\left(H / C_{H}(W)\right)$, respectively, in H.

Lemma A.15. Let $L \geqq \leftrightarrow H$.
(a) If V is p-reduced for H, V is p-reduced for L.
(b) $Y_{V}(H) \leqslant Y_{V}(L)$ and $C_{L}\left(Y_{V}(H)\right)=C_{L}\left(Y_{V}(L)\right)$.

Proof. (a): By A. $10 V$ is p-reduced if and only if any subnormal subgroup of H which acts nilpotently on V centralizes V. As any subnormal subgroup of L is subnormal in H, this gives (a).
(b): By (a) $Y_{V}(H)$ is p-reduced for L and so $Y_{V}(H) \leqslant Y_{V}(L)$ and $C_{L}\left(Y_{V}(L)\right) \leqslant C_{L}\left(Y_{V}(H)\right)$. It remains to show that $C_{L}\left(Y_{V}(H)\right) \leqslant C_{L}\left(Y_{V}(L)\right)$. By induction on H / L we may assume that $L \vDash H$. Hence $Y_{V}(L)$ is an H-submodule of V. To simplify notation we replace V by $Y_{V}(L)$ and so V is p-reduced for L. Let W be an H-submodule of V minimal with $C_{L}(W)=C_{L}(V)$. Since V is p-reduced for L, A. 14 shows that W is also p-reduced for L. Let $P:=C_{H}^{*}(W)$. Then $P / C_{P}(W)$ is a p-group and $[P, L] \leqslant C_{L}^{*}(W)=C_{L}(W)$. Thus A.13 C shows that $C_{L}\left(C_{W}(P)\right)=C_{L}(W)=C_{L}(V)$. The minimal choice of W implies that $W=C_{W}(P)$. Thus $P=C_{H}(W)$ and W is p-reduced for H. Hence $W \leqslant Y_{V}(H)$ and so

$$
C_{L}\left(Y_{V}(H)\right) \leqslant C_{L}(W)=C_{L}(V)
$$

A.4. Wreath Product Modules

In this section H is a finite group and V a finite $\mathbb{F}_{p} H$-module.
Lemma A.16. Let \mathcal{K} be an H-invariant set of subgroups of H and suppose that V is a wreath product module for H with respect to \mathcal{K}. Then for each $A \in \mathcal{K}$:
(a) If $[V, A] \neq 0$. then $N_{H}([V, A])=N_{H}(A)$.
(b) $[V, B] \leqslant C_{V}(A)$ for all $B \in \mathcal{K} \backslash\{A\}$; in particular

$$
V=[V, A] \oplus C_{V}(A), \quad C_{V}(A)=[V,\langle\mathcal{K} \backslash\{A\}\rangle], \quad \text { and } \quad[V, A]=C_{V}(\langle\mathcal{K} \backslash\{A\}\rangle)
$$

(c) $[V, A]=[V, A, A]$ and $C_{A}([V, A])=C_{A}(V)$.
(d) $[A, B] \leqslant C_{\langle\mathcal{K}\rangle}(V)$ for all $B \in \mathcal{K} \backslash\{A\}$.

Proof. By the definition of a wreath product module

$$
\begin{equation*}
V=\bigoplus_{K \in \mathcal{K}}[V, K] \quad \text { and } \quad C_{V}(\langle\mathcal{K}\rangle)=0 . \tag{*}
\end{equation*}
$$

(a): Clearly $N_{H}(A) \leqslant N_{H}([V, A])$. Let $h \in H$ and assume that $[V, A] \neq 0$. Since \mathcal{K} is H invariant, $A^{h} \in \mathcal{K}$. Hence $(*)$ shows that either $A=A^{h}$ or $[V, A] \cap\left[V, A^{h}\right]=0$. In the second case $[V, A] \neq[V, A]^{h}$ since $[V, A] \neq 0$. Thus also $N_{H}([V, A]) \leqslant N_{H}(A)$.
(b): Put $\mathcal{K}_{A}:=\mathcal{K} \backslash\{A\}$ and $W:=\sum_{B \in \mathcal{K}_{A}}[V, B]$. Note that $V=[V, A] \oplus W$ by (*). Since \mathcal{K}_{A} is A-invariant, also W is A-invariant, and so $[W, A] \leqslant[V, A] \cap W=0$. Hence $W \leqslant C_{V}(A)$ and $V=[V, A]+C_{V}(A)$.

Since this is true for all $A \in \mathcal{K},[V, A]$ is centralized by each $B \in \mathcal{K}_{A}$. Hence $C_{[V, A]}(A) \leqslant$ $C_{V}(\langle\mathcal{K}\rangle)=0$ and $V=[V, A] \oplus C_{V}(A)$.
(c): By (b), $V=[V, A]+C_{V}(A)$, and (c) follows.
(d): Let $B \in \mathcal{K}_{A}$. By (b) $[V, A, B]=[V, B, A]=0$, and the Three Subgroups Lemma gives $[A, B, V]=0$. Thus $[A, B] \leqslant C_{\langle\mathcal{K}\rangle}(V)$.

Lemma A.17. Let \mathcal{K} be an H-invariant set of subgroups of H. Suppose that V is a faithful $\langle\mathcal{K}\rangle$-module and a wreath product module for H with respect to \mathcal{K}. Then for all $A \in \mathcal{K}$:
(a) $[V, A]$ is a faithful A-module.
(b) $\langle\mathcal{K}\rangle=\times_{K \in \mathcal{K}} K$.

Proof. (a): Since $\langle\mathcal{K}\rangle$ acts faithfully on $V, C_{A}(V)=1$. By A.16.c) $C_{A}([V, A])=C_{A}(V)$ and so (a) holds.
(b): Put $L_{A}:=\langle\mathcal{K} \backslash\{A\}\rangle$. By A.16,b) L_{A} centralizes [V, A] and so by (a) $L_{A} \cap A=1$. By A.16 d $[A, B] \leqslant C_{\langle\mathcal{K}\rangle}(V)$. The faithful action of $\langle\mathcal{K}\rangle$ implies that $[A, B]=1$ and thus $A \leqslant\langle\mathcal{K}\rangle$.

We have proved that $A \geqq\langle\mathcal{K}\rangle$ and $A \cap L_{A}=1$ for all $A \in \mathcal{K}$. Hence $\langle\mathcal{K}\rangle=\times_{K \in \mathcal{K}} K$.

Lemma A.18. Let \mathcal{K} be an H-invariant set of subgroups of H. Suppose that V is a faithful p-reduced $\langle\mathcal{K}\rangle$-module and $[V,\langle\mathcal{K}\rangle]$ is a wreath product module for H with respect to \mathcal{K}. Then $[V, K]=[V,\langle\mathcal{K}\rangle, K]$ for each $K \in \mathcal{K}$.

Proof. Put $R:=\langle\mathcal{K}\rangle$ and $W:=[V, R]$. Since V is a faithful and p-reduced R-module, A.9d shows that W is a faithful R-module. Thus by A.17 $R=\times_{K \in \mathcal{K}} K$.

Let $K \in \mathcal{K}$ and put $L:=\langle\mathcal{K} \backslash\{K\}\rangle$. Note that $[L, K]=1$ and $[V, L, K] \leqslant[W, K]$. The Three Subgroups Lemma gives $[V, K, L] \leqslant[W, K]$. On the other hand by A.16b $W=[W, K] \oplus C_{V}(K)$, $[W, K]=C_{W}(L)$ and $C_{W}(K)=[W, L]$. Hence $C_{[W, L]}(L)=0$ and $[W, L]$ and $W /[W, K]$ are isomorphic L-modules. It follows that $C_{W /[W, K]}(L)=0$, and since $[V, K, L] \leqslant[W, K]$ we get $[V, K] \leqslant[W, K]$. Thus $[V, K]=[W, K]$.

Definition A.19. Let Δ be a set of non-zero subspaces of V. Then Δ is a system of imprimitivity for H on V if

$$
\Delta \text { is } H \text {-invariant, } \quad|\Delta|>1, \quad \text { and } V=\bigoplus_{W \in \Delta} W
$$

Lemma A.20. Let Δ be a system of imprimitivity for H on V. Suppose that E is a subgroup of H that acts non-trivially on Δ and that $|[V, E]| \leqslant|W|$ for some $W \in \Delta \backslash C_{\Delta}(E)$. Then
(a) $|W|=|[V, E]|, W \cap[V, E]=0$ and $N_{E}(W)=C_{E}(V)=C_{E}(\Delta)$ for all $W \in \Delta \backslash C_{\Delta}(E)$,
(b) $\left|E / C_{E}(V)\right|=2=\left|\Delta \backslash C_{\Delta}(E)\right|$, and
(c) $[X, E]=0$ for all $X \in C_{\Delta}(E)$.

Proof. Pick $e \in E$ with $W^{e} \neq W$ and put $\Lambda:=\left\{w^{e}-w \mid w \in W\right\}$. Since $W \cap W^{e}=0$ we get $\Lambda \cap W=0$ and $|\Lambda|=|W|$. Now $|[V, E]| \leqslant|W|$ and $\Lambda \subseteq[V, E]$ imply $[V, E]=\Lambda$, and so $[V, E]=\Lambda \leqslant W+W^{e}$. It follows that $\left\langle W^{E}\right\rangle=W+[W, E] \leqslant W+W^{e}$. Since $V=\oplus_{D \in \Delta} D$ this gives $W^{E}=\left\{W, W^{e}\right\}$. Put $Y=\left\langle\Delta \backslash W^{E}\right\rangle$. Then Y is E-invariant and so $[Y, E] \leqslant Y \cap$ $[V, E] \leqslant Y \cap\left(W+W^{e}\right)=0$. In particular, $\Delta \backslash C_{\Delta}(E)=\left\{W, W^{e}\right\}$ and $\left|E / C_{E}(\Delta)\right|=2$. Moreover, $\left[W, C_{E}(\Delta)\right] \leqslant W \cap[V, E]=W \cap \Lambda=0$ and since $C_{E}(\Delta) \leqslant E$ also [$\left.W^{e}, C_{E}(\Delta)\right]=0$. Thus $C_{E}(\Delta)=C_{E}(V)$ and the lemma is proved.

Lemma A.21. Let \mathcal{K} be a non-empty H-invariant set of subgroups of H. Suppose that
(i) $[V, A, A]=[V, A]$ and $[V, A] \cap C_{V}(A)=0$ for all $A \in \mathcal{K}$, and
(ii) $[A, B] \leqslant A$ and $[V, A] \cap[V, B]=0$ for all distinct $A, B \in \mathcal{K}$.

Then $[V,\langle\mathcal{K}\rangle]$ is a wreath product module for H with respect to \mathcal{K}.
Proof. Observe that (ii) shows that any two subgroups in \mathcal{K} normalize each other. Let $A \in \mathcal{K}$ and put $W=\sum_{A \neq B \in \mathcal{K}}[V, B]$. Since A normalizes $B,[V, B, A] \leqslant[V, B] \cap[V, A]=0$ and so $[W, A]=0$ and $[V, A] \cap W \leqslant[V, A] \cap C_{V}(A)=0$.

Also $[V,\langle\mathcal{K}\rangle]=\sum_{A \in \mathcal{K}}[V, A]$ and so $[V,\langle\mathcal{K}\rangle]=\oplus_{A \in \mathcal{K}}[V, A]$ by the definition of an internal direct sum. From $W \leqslant C_{V}(A)$ and $[V, A] \cap C_{V}(A)=0$ we conclude that $C_{[V,\langle\mathcal{K}\rangle]}(A)=W$. As this holds for all $A \in \mathcal{K}$ we get $C_{[V,\langle\mathcal{K}\rangle]}(\langle\mathcal{K}\rangle)=0$.

Since $[V, A]=[V, A, A]$ we have $[[V,\langle\mathcal{K}\rangle], A]=[V, A]$, and so $[V,\langle\mathcal{K}\rangle]$ is a wreath product module for H with respect to \mathcal{K}.

Lemma A.22. Let \mathcal{K} be a non-empty H-invariant set of subnormal subgroups of H. Suppose that
(i) $\left|K / C_{K}([V, K])\right|>2$ for all $K \in \mathcal{K}$,
(ii) $[V, K] \cap C_{V}(K)=0$ and $[V, K, K]=[V, K]$ for all $K \in \mathcal{K}$,
(iii) $[V, A] \cap[V, B]=0$ for all distinct A, B in \mathcal{K} with $[A, B] \leqslant A \cap B$, and
(iv) $[V, B] \neq[V, A]$ for all distinct A, B in \mathcal{K}.

Then $[V,\langle\mathcal{K}\rangle]$ is a wreath product module for H with respect to \mathcal{K}.
Proof. If $h \in N_{H}([V, K])$, then $[V, K]=\left[V, K^{h}\right]$ and by iv $K=K^{h}$. We have shown:

$$
\begin{equation*}
N_{H}([V, K]) \leqslant N_{H}(K) \text { for every } K \in \mathcal{K} \tag{*}
\end{equation*}
$$

Let A, B be distinct elements of \mathcal{K}. In view of A.21, (iii) and (iii) it suffices to show that A and B normalizes each other. Put $R:=\langle A, B\rangle$. If $R=A$, then $[V, B] \leqslant[V, R]=[V, A]$ a contradiction to (iv). Thus $A \neq R$ and so A is a proper subnormal subgroup of R. Hence $\left\langle A^{R}\right\rangle \neq R$ and by induction on $|\langle\mathcal{K}\rangle|,\left[V,\left\langle A^{R}\right\rangle\right]$ is a wreath product module for R with respect to A^{R}. By symmetry, also $B \neq R$, and $\left[V,\left\langle B^{R}\right\rangle\right]$ is a wreath product module for R with respect to B^{R}.

We now assume without loss that $|[V, B]| \leqslant|[V, A]|$. Suppose for a contradiction that B does not normalize A. Then by (*) B does not normalize $[V, A]$. Put $\Delta:=[V, A]^{R}$. Since $U:=\left[V,\left\langle A^{R}\right\rangle\right]$ is a wreath product module for R with respect to A^{R}, Δ is a system of imprimitivity for R on U. Since $|[V, B]| \leqslant|[V, A]|$, we can apply A.20 and conclude that $\left|B / C_{B}(U)\right|=2$ and $|[U, B]|=|[V, A]|$. Since $|[V, B]| \leqslant|[V, A]|$ this gives $|[V, B]|=|[U, B]|=|[V, A]|$ and $[V, B]=[U, B] \leqslant U$. But then $C_{B}(U) \leqslant C_{B}([V, B])$ and $\left|B / C_{B}([V, B])\right| \leqslant\left|B / C_{B}(U)\right| \leqslant 2$, contrary to (ii).

Thus B normalize A; in particular $A B$ is a subgroup of H. Suppose for a contradiction that A does not normalizes B and pick $a \in A$ with $B^{a} \neq B$. Since V is a wreath product module for R with respect to B^{R}, A.16 c) shows that $\left[V, B, B^{a}\right]=0$. Note that $B \leqslant B A=B^{a} A$. Also by (iii), $[V, B]=[V, B, B]$ and so

$$
[V, B]=[V, B, B] \leqslant\left[V, B, B^{a} A\right]=[V, B, A] \leqslant[V, A]
$$

a contradiction to (iv)
Hence A and B normalize each other, and the lemma is proved.

Lemma A.23. Let \mathcal{K} be a non-empty H-invariant set of subnormal subgroups of H and suppose that
(i) $\left|A / C_{K}([V, A])\right|>2$ for all $A \in \mathcal{K}$.
(ii) $[V, A]$ is a simple K-module for all $A \in \mathcal{K}$.
(iii) $[V, B] \nless[V, A]$ for all distinct A and B in \mathcal{K}.

Then $[V,\langle\mathcal{K}\rangle]$ is a wreath product module for H with respect to \mathcal{K}.
Proof. We will verify that the hypothesis of A. 22 holds. Let $K \in \mathcal{K}$. Since $\left|K / C_{K}([V, K])\right|>2$, K does not centralize $[V, K]$, and since $[V, K]$ is a simple K-module, we conclude that $[V, K]=$ $[V, K, K]$ and $[V, K] \cap C_{V}(K)=0$. So A.22(i) and (iii) hold.

Now let A, B be distinct elements of \mathcal{K} with $[A, B] \leqslant A \cap B$. Then B normalizes A and $[V, A] \cap[V, B]$ is an B-submodule of $[V, B]$. Since $[V, B] \$[V, A]$, it is a proper B-submodule, and since $[V, B]$ is simple, we conclude that $[V, A] \cap[V, B]=0$. Hence also A.22 iii) holds. Also, (iii) is the same as A.22 iv.

Thus, we can apply A.22, and $[V,\langle\mathcal{K}\rangle]$ is a wreath product module for H with respect to \mathcal{K}.

Definition A.24. Let H be a finite group, \mathcal{K} a non-empty H-invariant set of subgroups of H and Ξ a class of modules. Then V is a Ξ-wreath product module for H with respect to \mathcal{K} provided that V is wreath product module for H with respect to \mathcal{K} and for each $K \in \mathcal{K},[V, K]$ is a Ξ-module for K.

Most important for our paper are faithful natural $S L_{2}(q)$-wreath product modules, that is, where Ξ consists only of the natural $\mathbb{F}_{p} S L_{2}(q)$ - modules and the action of H is faithful. The next remark gives an explicit description of natural $S L_{n}(q)$-wreath product modules.

Remark A.25. Suppose that V is a faithful H-module and \mathcal{K} is non-empty H-invariant set of subgroups of H. Then V is a natural $S L_{n}(q)$-wreath product module for H with respect to \mathcal{K} if and only if

$$
V=\bigoplus_{K \in \mathcal{K}}[V, K] \quad \text { and } \quad\langle\mathcal{K}\rangle=\underset{K \in \mathcal{K}}{X} K
$$

and for each $K \in \mathcal{K}, K \cong S L_{n}(q)$ and $[V, K]$ is a natural $S L_{n}(q)$-module for K.
Proof. Suppose that V is a natural $S L_{n}(q)$-wreath product-module for H with respect to V. Then by definition, $V=\oplus_{K \in \mathcal{K}}[V, K]$ and for each $K \in \mathcal{K},[V, K]$ is a natural $S L_{n}(q)$-module for K. Since V is faithful, A. 17 shows that $[V, K]$ is a faithful K-module and $\langle\mathcal{K}\rangle=\times_{K \in \mathcal{K}} K$. So $[V, K]$ is a faithful natural $S L_{n}(q)$-module for K and thus $K \cong S L_{n}(q)$.

The converse should be obvious.

Lemma A.26. Let \mathcal{K} be a non-empty H-invariant set of subnormal subgroups of H.
(a) Suppose that for all $K \in \mathcal{K}, K$ is quasisimple and $[V, K]$ is a simple K-module. Then $[V,\langle\mathcal{K}\rangle]$ is a wreath product module for H with respect to \mathcal{K}.
(b) Let q be a power of p and $n \geqslant 2$. Suppose that V is a faithful H-module and
(i) for all $K \in \mathcal{K}, K \cong S L_{n}(q)$ and $[V, K]$ is a natural $S L_{n}(q)$-module for K, or
(ii) for all $K \in \mathcal{K}, K \cong S L_{2}(q)^{\prime}$ and $[V, K]$ is a natural $S L_{2}(q)^{\prime}$-module for K. Then $[V,\langle\mathcal{K}\rangle]$ is a natural $S L_{n}(q)$ - or natural $S L_{2}(q)^{\prime}$-wreath product module for H with respect to $\langle\mathcal{K}\rangle$.

Proof. We will prove (a) and (b) simultaneously by verifying the hypothesis of A.23. Let $K \in$ \mathcal{K}. Observe that in both cases $[V, K]$ is a non-central simple K-module. Also $\left|K / C_{K}([V, K])\right|>2$ since in (a) K is quasisimple and in (b) $\left|K / C_{K}([V, K])\right| \geqslant\left|S L_{2}(q)^{\prime}\right| \geqslant 3$. Hence A.23(ii) and (ii) hold and it remains to verify that $K=E$ for all $E, K \in \mathcal{K}$ with $[V, E] \leqslant[V, K]$.

Put $W:=[V, K]$, so $[V, E] \leqslant W$. Since W is a simple K-module, $E n d_{\mathbb{F}_{p} H}(W)$ is a finite division ring by Schur's Lemma, and so is commutative by Wedderburn's theorem. We get

$$
\begin{equation*}
[W,[E, K]] \neq 0 \quad \text { or } \quad E / C_{E}(W) \text { is abelian. } \tag{*}
\end{equation*}
$$

Suppose first that K and E are quasisimple. Then K and E are components of H, so $K=E$ or $[K, E]=1$. By $(*)$ either $[W,[E, K]] \neq 0$ or $E / C_{E}(W)$ is abelian. In the first case $[E, K] \neq 1$ and so $E=K$. In the second case $E=C_{E}(W)$ since E is quasisimple. But then $[V, E]=[V, E, E] \leqslant$ $[W, E]=0$, and $[V, E]$ is central E-module, a contradiction.

Suppose next that one of K and E is not quasisimple. Then we are in case (b) and $K \cong E \cong$ $S L_{2}(p)$ or $S L_{2}(p)^{\prime}$ with $p=2$ or 3 . In particular, $O_{p^{\prime}}(K) \neq 1$ and $W=[V, E]=\left[W, O_{p^{\prime}}(K)\right]$. Put $F:=\langle E, K\rangle$ and $R:=O_{p^{\prime}}(F)$. Since K is subnormal in $F, 1 \neq O_{p^{\prime}}(K) \leqslant R$. Hence $[V, R]=W=$ [$V, F]$, and coprime action shows that $V=W \oplus C_{V}(R)$. Since F normalizes R, we conclude that $\left[C_{V}(R), F\right] \leqslant C_{V}(R) \cap W=0$. Thus $V=W \oplus C_{V}(F)$. Since V is a faithful H-module, F acts faithfully on W. Note that $|W|=p^{2}$ and $\operatorname{Aut}(W)=G L_{2}(p)$ has a unique subgroup isomorphic to K. So E and K have the same image in $\operatorname{Aut}(W)$ and since $C_{F}(W)=1, E=K$.

Lemma A.27. Let $P \leqslant H$ and let \mathcal{K} be a non-empty P-invariant set of subgroups of P. Suppose that
(i) $O^{p}(\langle\mathcal{K}\rangle) \approx H$,
(ii) V is natural $S L_{2}(q)$-wreath product module for P with respect to $\mathcal{K}, q=p^{n}$,
(iii) V is a faithful H-module.

Then
(a) If $E \leqslant H$ such that $[V, E]$ is a faithful natural $S L_{2}(q)$-module for E, then $E \in \mathcal{K}$.
(b) V is a natural $S L_{2}(q)$-wreath product module for H with respect to \mathcal{K}.
(c) \mathcal{K} is the unique H-invariant set of subgroups of H such that V is a natural $S L_{2}(q)$-wreath product module for H with respect to \mathcal{K}.
Proof. (a): Put $R:=O^{p}(\langle\mathcal{K}\rangle)$. Since V is a natural $S L_{2}(q)$-wreath product module for P with respect to \mathcal{K} and by (iii) V is a faithful P-module, the definition of a wreath product module and A.17 b give

$$
V=\bigoplus_{K \in \mathcal{K}}[V, K] \quad \text { and } \quad\langle\mathcal{K}\rangle=\underset{K \in \mathcal{K}}{\chi} K
$$

and $[V, K]$ is a natural $S L_{2}(q)$ modules for each $K \in \mathcal{K}$. By A.17, $[V, K]$ is a faithful K-module and so $K \cong S L_{2}(q)$. In particular, $[V, K]$ is a natural $S L_{2}(q)^{\prime}$ module for $O^{p}(K)$ and for R. It follows that $[V, K], K \in \mathcal{K}$, are pairwise non-isomorphic simple R-submodules of V and so $\Delta:=\{[V, K] \mid K \in \mathcal{K}\}$ is the set of Wedderburn components for R on V. Since $R \triangleleft H$ we conclude that H acts on Δ.

Note that $|[V, K]|=q^{2}=|[V, E]|$. Suppose that E acts non-trivially on Δ. Then $|\Delta| \geqslant 2$ and Δ is a system on imprimitivity for H on V. Hence A.20 implies that $\left|E / C_{E}(V)\right|=2$, a contradiction. Thus E acts trivially on Δ. In particular, $[V, E]=\oplus_{W \in \Delta}[W, E]$, and since $[V, E]$ is a simple E module, there exists a unique $W \in \Delta$ with $[W, E] \neq 0$. Let K be the unique element of \mathcal{K} with $W=[V, K]$.

Put $F:=\langle K, E\rangle$ and $U:=\sum_{X \in \Delta \backslash\{W\}} X$. Then $V=W \oplus U$ and F centralizes U. So F acts faithfully on W. Moreover, since $R \leqslant H, F$ normalizes $C_{R}(U)=O^{p}(K)$. Put $\mathbb{F}:=E n d_{K}(W)$ and observe that $\mathbb{F} \cong \mathbb{F}_{q}$.

We claim that F acts \mathbb{F}-linearly on W. If $p=q$, then $\mathbb{F}=\mathbb{F}_{q}$ and this is obvious. If $q>p$, then $K=O^{p}(K)$ and F normalizes K. Since $F=E K$ is perfect and $A u t(\mathbb{F})$ is abelian, we again conclude that F acts \mathbb{F}-linearly.

Note that $G L_{\mathbb{F}}(W) / S L_{\mathbb{F}}(W)$ is a p^{\prime}-group and $S L_{2}(q)$ is generated by p-elements, so $S L_{\mathbb{F}}(W) \cong$ $S L_{2}(q)$ is the unique subgroup of $G L_{\mathbb{F}}(W)$ isomorphic to $S L_{2}(q)$. Since F acts faithfully on W and both E and K are isomorphic to $S L_{2}(q)$, this gives $E=F=K$. So $E \in \mathcal{K}$.
(b): From (a) we conclude that \mathcal{K} is H-invariant and so (b) holds.
(c) follows immediately from (a).

Lemma A.28. Let $K \leqslant H$ and $S \in \operatorname{Syl}_{p}(H)$, and suppose that V is a faithful H-module. Put $\mathcal{K}:=K^{H}$ and $R:=\langle\mathcal{K}\rangle$. Suppose that $O^{p}(H) \leqslant R$ and V is a natural $S L_{2}(q)$-wreath product module for H with respect to $\mathcal{K}, q=p^{n}$. Then the following hold:
(a) $H=R S$, and S is transitive on \mathcal{K}.
(b) H is p-minimal, and $N_{H}(R \cap S)$ is the unique maximal subgroup of H containing S.
(c) V is a simple H-module. In particular, V is a p-reduced H-module and $O_{p}(H)=1$.
(d) Up to conjugation in H, K is the unique subgroup of H such that $K \cong S L_{2}(q)$ and $[V, K]$ is a natural $S L_{2}(q)$-module for K.
(e) Let $\mathcal{S}:=\{v \in V \mid[v, F] \neq 0$ for all $F \in \mathcal{K}\}$. Then R is transitive on \mathcal{S}, and $C_{V}(T)^{\sharp} \subseteq \mathcal{S}$ for every $T \leqslant H$ that is transitive on \mathcal{K}.
Proof. (a): Since $O^{p}(H) \leqslant R, H=R S$, and since R normalizes $K, K^{H}=K^{R S}=K^{S}$.
(b): Let L be a maximal subgroup of H containing S. Since $K \cong S L_{2}(q)$, and $N_{K}(K \cap S)$ is the only maximal subgroup of K containing $K \cap S$, it follows that $K \leqslant L$ or $K \cap L \leqslant N_{K}(K \cap S)$. In the first case $R \leqslant L$ since S is transitive on \mathcal{K}, and so $L=H$, a contradiction. Hence $K \cap L \leqslant N_{K}(K \cap S)$; in particular $K \cap S=O_{p}(K \cap L)$. Since $K \cap L \boxtimes R \cap L$, we conclude that $R \cap L \lessgtr N_{R}(K \cap S)$. Now again the transitivity of S on \mathcal{K} gives $R \cap S=\left\langle(K \cap S)^{S}\right\rangle$ and $R \cap L \leqslant N_{R}(R \cap S)$ and so $L \leqslant N_{H}(R \cap S)$. Since $N_{H}(R \cap S)$ is a proper subgroup of $H, L=N_{H}(R \cap S)$ follows.
(c): Let W be a non-zero H-submodule of V. By definition of a wreath product module, $C_{V}(\langle\mathcal{K}\rangle)=0$ and so $[W, A] \neq 0$ for some $A \in \mathcal{K}$. Thus $W \cap[V, A] \neq 0$. Since $[V, A]$ is a natural $S L_{2}(q)$-module for $A,[V, A]$ is simple A-module and so $[V, A] \leqslant W$. As H acts transitively on \mathcal{K}, this gives $[V, A] \leqslant W$ for all $A \in \mathcal{K}$. By definition of wreath product module, $V=\bigoplus_{A \in \mathcal{K}}[V, A]$ and so $V=W$.
(d): By A.27, applied with (H, H, \mathcal{K}) in place of (P, H, \mathcal{K}), any $E \leqslant H$ such that [V, E] is a faithful natural $S L_{2}(q)$-module for E is contained in \mathcal{K} and so is conjugate to K.
(e): Let $v \in C_{V}(T) \backslash \mathcal{S}$. Then $[v, F]=0$ for some $F \in \mathcal{K}$. Since T acts transitively on \mathcal{K}, this gives $v \in C_{V}(\langle\mathcal{K}\rangle)=0$. Thus $C_{V}(T)^{\sharp} \subseteq \mathcal{S}$. Since K is transitive on $[V, K], R$ is transitive on \mathcal{S}.

A.5. Offenders

In this section p is a prime, H is a finite group, V is an $\mathbb{F}_{p} H$-module and $V^{*}:=H o m_{\mathbb{F}_{p}}\left(V, \mathbb{F}_{p}\right)$ is the dual of V.

Lemma A. 29 (Chermak-Delgado Measuring Argument). Let α be a positive real number and $X \leqslant H$.
(a) Suppose that $\left|V / C_{V}(B)\right| \leqslant\left|B / C_{B}(V)\right|^{\alpha}$ for some $B \leqslant X$ with $[V, B] \neq 1$. Then there exists a $N_{H}(X)$-invariant subgroup D of X such that $[V, D] \neq 1,\left|V / C_{V}(D)\right| \leqslant\left|D / C_{D}(V)\right|^{\alpha}$ and $|A|^{\alpha}\left|C_{V}(A)\right| \leqslant|D|^{\alpha}\left|C_{V}(D)\right|$ for all $A \leqslant X$.
(b) Suppose that $X / C_{X}(V)$ is elementary abelian and X contains a non-trivial offender on V. Then X contains an $N_{H}(X)$-invariant non-trivial best offender D on V with $\left|A \| C_{V}(A)\right| \leqslant$ $\left|D \| C_{V}(D)\right|$ for all $A \leqslant X$.

Proof. Replacing H be $H / C_{H}(V)$ we may assume that V is a faithful H-module. (a): Since $B \neq 1$ also $X \neq 1$ and we can define

$$
m_{\alpha}=\max \left\{|A|^{\alpha}\left|C_{V}(A)\right| \mid 1 \neq A \leqslant X\right\}
$$

and

$$
\alpha \mathcal{M}=\left\{1 \neq A \leqslant\left. X| | A\right|^{\alpha}\left|C_{V}(A)\right|=m_{\alpha}\right\}
$$

Observe that $\alpha \mathcal{M} \neq \varnothing$. Since $\left|V / C_{V}(B)\right| \leqslant\left|B / C_{B}(V)\right|^{\alpha}=|B|^{\alpha}$, we have

$$
m_{\alpha} \geqslant|B|^{\alpha}\left|C_{V}(B)\right| \geqslant|V|
$$

Thus [CD, 1.2] shows that $\alpha \mathcal{M}$ has a unique maximal element D. Since D is unique, D is $N_{H}(X)$ invariant. Also

$$
|D|^{\alpha}\left|C_{V}(D)\right|=m_{\alpha} \geqslant|V|
$$

and so $\left|V / C_{V}(D)\right| \leqslant|D|^{\alpha}=\left|D / C_{D}(V)\right|^{\alpha}$.
By the definition of $\alpha \mathcal{M}, D \neq 1$ and so $[V, D] \neq 1$, and by the definition of m_{α},

$$
|A|^{\alpha}\left|C_{V}(A)\right| \leqslant m_{\alpha}=|D|^{\alpha}\left|C_{D}(V)\right|
$$

for all $1 \neq A \leqslant X$. Since $m_{\alpha} \geqslant|V|$, this also holds for $A=1$.
(b): Let D be as in (a) for $\alpha=1$. Since $X / C_{X}(V)$ is elementary abelian, also $D / C_{D}(V)$ is elementary abelian. Thus (a) shows that (b) holds.

Lemma A.30. Suppose that H does not contain any over-offenders on V. Then every offender in H on V is a best offender.

Proof. Let $A \leqslant H$ be an offender on V and let $B \leqslant A$. Since A is an offender, $\left|V / C_{V}(A)\right| \leqslant$ $\left|A / C_{A}(V)\right|$ and so $|V|\left|C_{A}(V)\right| \leqslant|A|\left|C_{V}(A)\right|$. By hypothesis, B is not an over-offender and so $\left|V / C_{V}(B)\right| \geqslant\left|B / C_{B}(V)\right|$. Thus

$$
\left|B \| C_{V}(B)\right| \leqslant|V|\left|C_{B}(V)\right| \leqslant|V|\left|C_{A}(V)\right| \leqslant|A|\left|C_{V}(A)\right|
$$

and A is a best offender on V.

Lemma A. 31 ([MS5, 1.2]). Let $A \leqslant H$. Then A is a best offender on V if and only if A is an offender on every A-submodule of V.

Lemma A. 32 ([MS5, 1.5]). Let A be a strong dual offender on V. Then the following hold:
(a) A is quadratic on V.
(b) A is a strong dual offender on every A-submodule of V and V^{*}.
(c) A is best offender on V and on V^{*}.
(d) If $|[V, A]|=\left|A / C_{A}(V)\right|$, then A is a strong offender on V.

Lemma A.33. Let $A \leqslant H, \mathbb{F}$ a finite field and V an $\mathbb{F} A$-module. Suppose that A is an offender on V and $[V, A]$ is 1-dimensional over \mathbb{F}. Then
(a) $\left|V / C_{V}(A)\right|=\left|A / C_{A}(V)\right|$.
(b) The canonical commutator map $A / C_{A}(V) \rightarrow \operatorname{Hom}_{\mathbb{F}}\left(V / C_{V}(A),[V, A]\right)$ is an isomorphism.
(c) A is a strong dual offender and a best offender on every A-submodule of V.

Proof. For and bee MS6, 3.4]. Note that ba implies $[v, A]=[V, A]$ for all $v \in$ $V \backslash C_{V}(A)$. Thus A is a strong dual offender on V and on every A-submodule of V. Hence by A.32 C) A is also a best offender on every A-submodule of V.

Lemma A. 34 ([MS5, 1.6]). Let A be a strong offender on V. Then A is a quadratic best offender on V.

Lemma A.35. Let $A \leqslant H$ be a strong offender on V. Then the following statements are equivalent:
(a) A is a root offender on V.
(b) $|[V, A]|=\left|V / C_{V}(A)\right|$.
(c) $[V, A]=[V, a]$ for some $a \in A$.
(d) $[V, A]=[V, a]$ for some $1 \neq a \in A$.
(e) $C_{V^{*}}(A)=C_{V^{*}}(a)$ for some $a \in A$.
(f) $C_{V^{*}}(A)=C_{V^{*}}(a)$ for all $1 \neq a \in A$
(g) A is a strong offender on V^{*}.

Proof. Without loss V is a faithful A-module. If $A=1$, the statements of the lemma are obvious. So suppose that $A \neq 1$.
$(\mathrm{a}) \Longleftrightarrow(\mathrm{b}) \Longleftrightarrow(\mathrm{c}) \Longleftrightarrow(\mathrm{d})$: Let $1 \neq a \in A$. Since A is a strong offender, $C_{V}(a)=C_{V}(A)$.
Thus

$$
\left|V / C_{V}(A)\right|=\left|V / C_{V}(a)\right|=|[V, a]| \leqslant|[V, A]| .
$$

Hence

$$
\left|V / C_{V}(A)\right|=|[V, A]| \quad \Longleftrightarrow \quad|[V, a]|=|[V, A]| \quad \Longleftrightarrow \quad[V, a]=[V, A] .
$$

It follows that $\left|V / C_{V}(A)\right|=|[V, A]|$ iff $[V, a]=[V, A]$ for some $a \in A$ iff $[V, a]=[V, A]$ for all $1 \neq a \in A$. Since A is a strong offender, the latter condition holds if and only if A is a root offender on V. Thus (a), (b), (d) and (c) are equivalent.
(c) \Longleftrightarrow (e) and $\sqrt{\mathrm{d}} \Longleftrightarrow(\mathrm{f})$: Since $C_{V} *(A)=[V, A]^{\perp}$ and $C_{V *}(a)=[V, a]^{\perp}$, (c) and (e) are equivalent, and also (d) and (f) are equivalent
(f) \Longrightarrow (g): Suppose that (f) holds. Then also (a) holds. Since A is an offender we get $|[V, A]|=\left|V / C_{V}(A)\right| \leqslant|A|$. As $\left|V^{*} / C_{V^{*}}(A)\right|=\left|V^{*} /[V, A]^{\perp}\right|=|[V, A]|$ we conclude that A is an offender on V^{*}. Together with ((\mathbb{f}) this shows that A is a strong offender on V^{*}.
$(\mathrm{g}) \Longrightarrow(\mathrm{f}): \quad$ If A is a strong offender on V^{*}, then by definition $C_{V *}(A)=C_{V *}(a)$ for all $1 \neq a \in A$. So (e) holds.

Lemma A.36. Let $A \leqslant H$. Then the following are equivalent
(a) A is a root offender on V.
(b) A is a strong offender on V and a strong offender on V^{*}.
(c) A is a root offender on V^{*}.

Proof. Note that any root offender is a strong offender. By A. 35 a strong offender is a root offender on V if and only if it is a strong offender on V^{*}. So (a) and (b) are equivalent. This equivalence applied to V^{*} in place of V shows that (b) and (c) are equivalent.

Lemma A.37. Let $A \leqslant H$ be a root offender on V. Then
(a) $\left|V / C_{V}(A)\right|=|[V, A]|=\left|A / C_{A}(V)\right|$.
(b) A is strong dual offender on V.
(c) A is quadratic on V.

Proof. (a) and (b): Let $v \in V \backslash C_{V}(A)$. By definition of a root offender, $C_{V}(a)=C_{V}(A)$ for all $1 \neq a \in A$. So $[v, a] \neq 1$ for all such a, and $C_{A}(v)=C_{A}(V)$. Thus

$$
\left|A / C_{A}(V)\right|=\left|A / C_{A}(v)\right| \leqslant|[v, A]| \leqslant|[V, A]|
$$

By definition any root offender is a strong offender. So we can apply A.35 and conclude that $|[V, A]|=\left|V / C_{V}(A)\right|$, and since A is an offender, $|[V, A]| \leqslant\left|A / C_{A}(V)\right|$. Hence equality holds in all these inequalities. In particular, a) holds and $[v, A]=[V, A]$. So A is strong dual offender, and (b) holds.
(c): By A.32, al all strong dual offenders are quadratic, and so (c) follows from (b).

Lemma A.38. Let A be a subgroup of H. Suppose that V is selfdual as an $\mathbb{F}_{p} A$-module. Then the following statements are equivalent:
(a) A is a root offender on V.
(b) A is a strong offender on V.
(c) $\left|V / C_{V}(A)\right|=|A|$ and A is a strong dual offender.

Proof. (a) \Longleftrightarrow b): Since V is selfdual, A is a strong offender on V if and only if A is a strong offender on V and V^{*}. By A.36 this is the case if and only if A is a root offender on V.
$(\mathrm{b}) \Longleftrightarrow(\mathrm{c}): \quad$ This is MS5, 1.7].

Lemma A. 39 (MS5, 1.3]). Suppose that B is a minimal offender on V and W is a B-submodule of V. Then B is a quadratic best offender on W. In particular, every non-trivial offender on V contains a non-trivial quadratic best offender on V.

Lemma A.40. Let Y be an elementary abelian normal subgroup of H and A an elementary abelian p-subgroup of maximal order in H. Suppose that $[Y, A] \neq 1$. Then A acts as a non-trivial best offender on Y. Moreover, $C_{A}([Y, A])$ is a non-trivial quadratic best offender on Y.

Proof. Pick $B \leqslant A$. By the maximality of $|A|$,

$$
|B|\left|C_{Y}(B)\right||B \cap Y|^{-1}=\left|B C_{Y}(B)\right| \leqslant|A|
$$

Hence

$$
\left|B \| C_{Y}(B)\right| \leqslant|A||B \cap Y| \leqslant|A||A \cap Y| \leqslant|A|\left|C_{Y}(A)\right|
$$

This shows that A acts as a best offender on Y. The second statement now follows from Timmesfeld's replacement theorem [KS, 9.2.3].

Lemma A. 41 (MS5, 2.2]). Suppose that V is a faithful p-reduced $\mathbb{F}_{p} H$-module and $J:=$ $J_{H}(V) \neq 1$. Put $\mathcal{J}:=\mathcal{J}_{H}(V)$. Let \mathcal{K} be the set of non-solvable members of \mathcal{J} and put

$$
\mathcal{I}:=\mathcal{J} \backslash \mathcal{K}, E:=\langle\mathcal{K}\rangle, I:=\langle\mathcal{I}\rangle
$$

Then the following hold:
(a) $C_{H}(J / Z(J))=C_{H}(J)$.
(b) Let N be a J-invariant subgroup of H with $[N, J] \neq 1$. Then there exists $K \in \mathcal{J}$ with $K \leqslant N$.
(c) $\mathcal{J} \neq \varnothing, \mathcal{J}=\mathcal{I} \cup \mathcal{K}$, and \mathcal{K} is the set of components of J.
(d) Let $K \in \mathcal{I}$. Then either $p=2, K \cong C_{3} \cong S L_{2}(2)^{\prime}$, and $[V, K] \cong \mathbb{F}_{2}^{2}$, or $p=3, K \cong Q_{8} \cong$ $S L_{2}(3)^{\prime}$, and $[V, K] \cong \mathbb{F}_{3}^{2}$.
(e) $[W, K]=[W, K, K]$ for every $K \in \mathcal{J}$ and every K-submodule W of V.
(f) $[K, F]=1$ and $[V, K, F]=0$ for every $K, F \in \mathcal{J}$ with $K \neq F$.
(g) $C_{J}(I E)=Z(J)$, or $p=2$ and $C_{J}(I E)=Z(J) I$. So in both cases $C_{J}(I E)$ is an abelian p^{\prime}-group.
(h) Let $U \leqslant H$ and $K \in \mathcal{J}$. Then either $[K, U]=1$ or $[W, K] \leqslant[W,[K, U]]$ for every K-submodule $W \leqslant V$.

Lemma A.42. Suppose V is faithful and p-reduced for H, and let $L \geqq \& H$. Then $\mathcal{J}_{L}(V)=\{E \in$ $\left.\mathcal{J}_{H}(V) \mid\left[E, J_{L}(V)\right] \neq 1\right\}$. In particular, $\mathcal{J}_{L}(V) \subseteq \mathcal{J}_{H}(V)$.

Proof. Since V is faithful p-reduced H-module and $L \unlhd ⺀ H, V$ is also a faithful p-reduced L-module, se A.9 d). In particular, we can apply A. 41 to H and to L.

Let $E \in \mathcal{\mathcal { J } _ { H }}(V)$. Observe that both, $J_{L}(V)$ and E, are subnormal in H. Also observe that $J_{L}(V) \leqslant J_{H}(V)$, so $J_{L}(V) \triangleq \vDash J_{H}(V)$. By definition of a $J_{H}(V)$-component, $E=\left[E, J_{H}(V)\right]$ and so $J_{L}(V)$ normalizes E.
1°. Either $E \in \mathcal{J}_{L}(V)$ or $\left[E, J_{L}(V)\right]=1$.
Assume that E is a component of $J_{H}(V)$. Since $J_{L}(V) \geqq \boxtimes J_{H}(V)$, KS, 6.5.2] implies that $\left[E, J_{L}(V)\right]=1$ or $E \leqslant J_{L}(V)$. In the latter case E is a component of $J_{L}(V)$, and A.41.C shows that $E \in \mathcal{J}_{L}(V)$.

Assume that E is not a component of $J_{H}(V)$. Then by A.41 C) E is solvable, and by A.41 d)

$$
\begin{equation*}
E \cong C_{3} \text { and } p=2 \quad \text { or } \quad E \cong Q_{8} \text { and } p=3 \tag{*}
\end{equation*}
$$

In particular, E is a p^{\prime}-group. Since $J_{L}(V)$ is generated by best offenders, $J_{L}(V)=O^{p^{\prime}}\left(J_{L}(V)\right)$, and since E and $J_{L}(V)$ are both subnormal in H, we conclude that $J_{L}(V)=O^{p^{\prime}}\left(J_{L}(V) E\right)$ and E normalizes $J_{L}(V)$, see 1.23 . Thus $\left[E, J_{L}(V)\right] \leqslant E \cap J_{L}(V)$.

By $(*) E \cong C_{3}$ or Q_{8}, and coprime action implies that either $\left[E, J_{L}(V)\right]=1$ or $E=\left[E, J_{L}(V)\right] \leqslant$ $J_{L}(V)$. In the latter case E is minimal in $J_{L}(V)$ with $1 \neq E=\left[E, J_{L}(V)\right]$, and so $E \in \mathcal{J}_{L}(V)$. Hence (10 also holds in this case.
2°. Suppose that $\left[V, E, J_{L}(V)\right] \neq 0$, then $\left[E, J_{L}(V)\right] \neq 1$.
Since $\left[V, E, J_{L}(V)\right] \neq 0$, there exists a best offender B on V in $J_{L}(V)$ such that $[V, E, B] \neq 0$. By A.41 E, $[V, E]=[V, E, E]$ and so $[V, E]$ is a perfect E-submodule of V. Hence by [MS5, 2.7] $[E, B] \neq 1$ and so $\left[E, J_{L}(V)\right] \neq 1$.

We are now able to prove the assertion. From 1° we get that

$$
\left\{E \in \mathcal{J}_{H}(V) \mid\left[E, J_{L}(V)\right] \neq 1\right\} \subseteq \mathcal{J}_{L}(V)
$$

Now let $K \in \mathcal{J}_{L}(V)$. It remains to show that $K \in \mathcal{J}_{H}(V)$ and $\left[K, J_{L}(V)\right] \neq 1$. Put $R:=$ $\left\langle\mathcal{J}_{H}(V)\right\rangle$ and $J:=J_{H}(V)$. Since R is normal in H and V is faithful p-reduced H-module, $[V, R]$ is a faithful R-module, see A.9 d). Hence $C_{R}([V, R])=1$.

Suppose for a contradiction that $[V, R, K]=0$. Then $[R, K] \leqslant C_{R}([V, R])=1$. Note that $K \leqslant J_{L}(V) \leqslant J_{H}(V)=J$ and by A.41 g) $C_{J}(R) \leqslant Z(J) R$. Hence $K \leqslant Z(J) R$. By the definition of a $J_{L}(V)$-component we have $\left[K, J_{L}(V)\right]=K \neq 1$ and so $K \leqslant[K, J] \leqslant[Z(J) R, J] \leqslant R$. But then $K \leqslant C_{R}([V, R])=1$, a contradiction.

We have proved that $[V, R, K] \neq 1$ and so there exists $E \in \mathcal{J}_{H}(V)$ such that $[V, E, K] \neq 0$. Then also $\left[V, E, J_{L}(V)\right] \neq 0$, and 2° shows that $\left[E, J_{L}(V)\right] \neq 1$. Thus 1° implies $E \in \mathcal{J}_{L}(V)$. Hence E and K are $J_{L}(V)$-components with $[V, E, K] \neq 0$. Now A.41,f) gives $K=E$ and so $K \in \mathcal{J}_{H}(V)$.

Lemma A. 43 (MS5, 2.4]). Let $K \in \mathcal{J}_{H}(V)$ and let A be a subgroup of M such that $[V, A, A]=0$ and $[K, A] \neq 1$. Suppose that X is a perfect K-submodule of V and \bar{X} is a non-zero K-factor module of X. Then

$$
C_{A}(X)=C_{A}(K)=C_{A}(\bar{X})
$$

Lemma A. 44 ([MS5, 2.8]). Suppose that V is a faithful p-reduced $\mathbb{F}_{p} H$-module. Let $K \in \mathcal{J}_{H}(V)$ and X be a perfect K-submodule of V. Then $J_{H}(V)$ normalizes X.

Lemma A. 45 ([MS6 2.12]). Let $R:=\left[O_{p}(H), O^{p}(H)\right]$ and $T \in \operatorname{Syl}_{p}(H)$, and let Y be a T-submodule of V with $V=\left\langle Y^{H}\right\rangle \neq Y$. Then one of the following holds:
(1) $[V, R]=0$ and $C_{O_{p}(H)}(Y) \vDash H$.
(2) R is a non-trivial strong dual offender on Y.
(3) There exist $O_{p}(H) O^{p}(H)$-submodules $Z_{1} \leqslant X_{1} \leqslant Z_{2} \leqslant X_{2}$ such that for $i=1,2, X_{i} / Z_{i}$ is a non-central simple $O^{p}(H)$-module and $X_{i} \cap Y \nleftarrow Z_{i}$.

A.6. Nearly Quadratic Modules

In this section A is a group, \mathbb{F} is a field and V is an $\mathbb{F} A$-module. Since quadratic action is a special case of nearly quadratic action, the results in this section also apply to quadratically acting groups. Recall the definition of a system of imprimitivity on V from Definition A. 19 .

Definition A.46. Let \mathbb{K} be a field extension of \mathbb{F} such that V is also a \mathbb{K}-vector space.
(a) Let $a \in A$ and $\sigma \in A u t(\mathbb{K})$. Then a acts σ-semilinearly on V if $(k v)^{a}=k^{\sigma} v^{a}$ for all $k \in \mathbb{K}$ and $v \in V$.
(b) Let $\sigma: A \rightarrow A u t(\mathbb{K}), a \mapsto \sigma_{a}$, be a homomorphism. Then V is a σ-semilinear $\mathbb{K} A$-module provided that each $a \in A$ acts σ_{a}-semilinearly on V. Set $A_{\mathbb{K}}:=\operatorname{ker} \sigma$ and $\mathbb{K}_{A}:=C_{\mathbb{K}}(\operatorname{Im} \sigma)$.

Lemma A. 47 (MS3, 2.4]). Let V be a nearly quadratic $\mathbb{F} A$-module and W be an $\mathbb{F} A$-submodule of V. Then W and V / W are nearly quadratic $\mathbb{F} A$-modules.

Lemma A. 48 ([MS3, 2.13]). Let V be a nearly quadratic $\mathbb{F} A$-module, and let Δ be a system of imprimitivity of \mathbb{F}-subspaces for A in V. Then one of the following holds:
(1) A acts trivially on Δ and there exists at most one $W \in \Delta$ with $[W, A] \neq 0$.
(2) A acts trivially on Δ and quadratically on V.
(3) A acts quadratically on V, char $\mathbb{F}=2$, and $\left|A / C_{A}(W)\right| \leqslant 2$ for every $W \in \Delta \backslash C_{\Delta}(A)$.
(4) A does not act quadratically on $V, A / C_{A}(V)$ is elementary abelian and there exists a unique A-orbit $W^{A} \subseteq \Delta$ with $[W, A] \neq 0$. Moreover, $B:=N_{A}(W)$ acts quadratically on $V, B=C_{A}(\Delta)$ and one of the following holds:
(1) $\operatorname{char} \mathbb{F}=2,\left|W^{A}\right|=4, \operatorname{dim}_{\mathbb{F}} W=1, B=C_{A}(V)$, and $A / C_{A}(V) \cong C_{2} \times C_{2}$.
(2) $\operatorname{char} \mathbb{F}=3,\left|W^{A}\right|=3, \operatorname{dim}_{\mathbb{F}} W=1, B=C_{A}(V)$, and $A / C_{A}(V) \cong C_{3}$.
(3) char $\mathbb{F}=2,\left|W^{A}\right|=2$, and $C_{A}(W)=C_{A}(V)$. Moreover, $\operatorname{dim}_{\mathbb{F}} W / C_{W}(B)=1$ and $C_{W}(B)=[W, B]$.
Lemma A. 49 (MS3, 6.3]). Suppose that V is a semilinear but not linear $\mathbb{K} A$-module for some field extension \mathbb{K} of \mathbb{F} and that V is a nearly quadratic $\mathbb{F} A$-module. Then $A / C_{A}(V)$ is elementary abelian and one of the following holds:
(1) $[V, A, A]=0,\left[V, A_{\mathbb{K}}\right]=0$, and char $\mathbb{K}=2=\left|A / A_{\mathbb{K}}\right|$.
(2) $[V, A, A] \neq 0,\left[V, A_{\mathbb{K}}\right]=C_{V}\left(A_{\mathbb{K}}\right), \operatorname{dim}_{\mathbb{K}} V / C_{V}\left(A_{\mathbb{K}}\right)=1, \mathbb{F}=\mathbb{K}_{A}$, and char $\mathbb{K}=2=$ $\left|A / A_{\mathbb{K}}\right|=\operatorname{dim}_{\mathbb{F}} \mathbb{K}$.
(3) $[V, A, A] \neq 0,\left[V, A_{\mathbb{K}}\right]=0, \mathbb{F}=\mathbb{K}_{A}, \operatorname{dim}_{\mathbb{K}} V=1$, and char $\mathbb{F}=3=\left|A / A_{\mathbb{K}}\right|=\operatorname{dim}_{\mathbb{F}} \mathbb{K}$.
(4) $[V, A, A] \neq 0,\left[V, A_{\mathbb{K}}\right]=0, \mathbb{F}=\mathbb{K}_{A}, \operatorname{dim}_{\mathbb{K}} V=1$, char $\mathbb{F}=2, A / A_{\mathbb{K}} \cong C_{2} \times C_{2}, \operatorname{dim}_{\mathbb{F}} \mathbb{K}=4$, and \mathbb{F} is infinite.

A.7. Q !-Modules

In this section H is a finite group, Q is a p-subgroup of H, and V is a finite Q !-module for $\mathbb{F}_{p} H$ with respect to Q. By A.50 below Q is a weakly closed subgroup of H. Hence, the results in Section 1.5 apply to Q and H. In particular, we will use the ${ }^{\circ}$-notion introduced there, so for $L \leqslant H$,

$$
L^{\circ}=\left\langle P \in Q^{H} \mid P \leqslant L\right\rangle \quad \text { and } \quad L_{\circ}=O^{p}\left(L^{\circ}\right)
$$

Lemma A.50. Let V be a non-zero Q !-module for H with respect to Q.
(a) $N_{H}(T) \leqslant N_{H}(Q)$ for every p-subgroup T of H with $Q \leqslant T$.
(b) Q is a weakly closed subgroup of H.
(c) $C_{V}(Q) \cap C_{V}\left(Q^{g}\right)=0$ for all $g \in H \backslash N_{H}(Q)$; in particular $N_{H}(Q)=N_{H}\left(C_{V}(Q)\right)$.
(d) Let K be a subgroup of H acting transitively on V. Then $H^{\circ}=\left\langle Q^{K}\right\rangle$.

Proof. (a): Let $Q \leqslant T, T$ a p-subgroup of H. Then $0 \neq C_{V}(T) \leqslant C_{V}(Q)$ and Q ! implies

$$
N_{H}(T) \leqslant N_{H}\left(C_{V}(T)\right) \leqslant N_{H}(Q)
$$

(b): By 1.45 the condition in (a) is equivalent to Q being a weakly closed subgroup of H.
(c) Let $g \in H$ with $C_{V}(Q) \cap C_{V}(Q)^{g} \neq 0$. By Q !, Q and Q^{g} are normal in $N_{H}\left(C_{V}(Q) \cap C_{V}\left(Q^{g}\right)\right)$. Since Q is a weakly closed subgroup of H, this gives $Q=Q^{g}$ and thus $g \in N_{H}(Q)$.
(d) Let $0 \neq v \in C_{V}(Q)$. By a Frattini argument, $H=C_{H}(v) K$ and by $Q!, C_{H}(v) \leqslant N_{H}(Q)$. Thus $Q^{H}=Q^{K}$ and so $H^{\circ}=\left\langle Q^{H}\right\rangle=\left\langle Q^{K}\right\rangle$.

Lemma A.51. Let V be a non-zero Q !-module for H with respect to Q. Then V is a $Q!$-module for $H / C_{H}(V)$ with respect to $Q C_{H}(V) / C_{H}(V)$.

Proof. Put $\bar{H}=H / C_{H}(V)$. Since $N_{H}(A) \leqslant N_{H}(Q)$ for all $1 \neq A \leqslant C_{V}(Q), N_{\bar{H}}(A) \leqslant N_{\bar{H}}(\bar{Q})$ for all $1 \neq A \leqslant C_{V}(\bar{Q})$. Since $V \neq 0$ also $C_{V}(\bar{Q}) \neq 0$. Thus

$$
N_{H}(\bar{Q}) \leqslant N_{H}\left(C_{V}(\bar{Q})\right) \leqslant N_{H}(Q)
$$

Since $Q \nleftarrow H$ this implies $\bar{Q} \not \approx \bar{H}$, and the lemma is proved.
Lemma A. 52 ([MS6, 4.2]). Let V be a faithful Q !-module for H with respect to Q.
(a) $H^{\circ}=\left\langle Q^{h} \mid h \in H^{\circ}\right\rangle$.
(b) $C_{H}\left(H^{\circ} / Z\left(H^{\circ}\right)\right)=C_{H}\left(H^{\circ}\right)$.
(c) Let $H^{\circ} \leqslant L \leqslant H$ and W be a non-zero L-submodule of V. Then $C_{L}(W) \leqslant C_{L}\left(H^{\circ}\right)$. In particular $C_{H^{\circ}}(W)$ is a p^{\prime}-group.
(d) $C_{V}\left(H^{\circ}\right)=0$.
(e) Let $Q \leqslant L \leqslant H$ with $Q \nleftarrow L$. Then V is Q !-module for $\mathbb{F}_{p} L$ with respect to Q.
(f) Let $L \geqq ⺀ H$ with $[L, Q] \neq 1$. Then $C_{V}\left(\left\langle L^{Q}\right\rangle\right)=0$.

Lemma A.53. Let V be a Q !-module for H with respect to Q, and let N be a Q-invariant subgroup of H with $N \leqslant N_{H}(Q)$. Then $C_{H}(W) \leqslant N_{H}(Q)$ for every non-trivial $N Q$-submodule W of V. In particular $C_{V}(N)=0$ and $C_{H}([V, N]) \leqslant N_{H}(Q)$.

Proof. Let $W \neq 0$ be an $N Q$-submodule of V. Then $C_{W}(Q) \neq 0$, and the $Q!$-property of V implies

$$
C_{H}(W) \leqslant C_{H}\left(C_{W}(Q)\right) \leqslant N_{H}(Q)
$$

In particular, we get that $C_{V}(N)=0$ since $N \not N_{H}(Q)$. Then $[V, N]$ is a non-trivial $N Q$-submodule of V, and the last claim also follows.

Lemma A.54. Let V be a faithful p-reduced Q !-module for H with respect to Q and let $K \geqq \forall H$.
(a) $V \neq 0$.
(b) If $K \leqslant N_{H}(Q)$, then $[K, Q]=1$.
(c) If $C_{V}(K) \cap C_{V}(Q) \neq 0$, then $[K, Q]=1$.
(d) If $K \neq 1$, then $[V, K, Q] \neq 1$.
(e) If $K \leqslant N_{H}(Q)$, then K acts faithfully on each of $[V, Q], C_{V}(Q)$ and $C_{V}(Q) \cap[V, Q]$.
(f) $C_{H}\left(\left[V, H_{\circ}\right]\right)=1$.
(g) Let $E \leqslant H_{\circ}$. Then $C_{H}([V, E]) \cap C_{H}(V /[V, E])=1$.

Proof. Note first that $O_{p}(H)=1$ since V is faithful and p-reduced.
(a): If $V=0$ then $Q=1$ since V is faithful. But then $Q \lessgtr H$, a contradiction to the definition of a Q !-module.
(b): Suppose that $K \leqslant N_{H}(Q)$ and put $L:=\left\langle K^{Q}\right\rangle$. Then L is subnormal in H and so $O_{p}(L) \leqslant O_{p}(H)=1$. Also $L \leqslant N_{H}(Q)$ and so $L \cap Q$ is a normal p-subgroup of L. Thus $[L, Q] \leqslant$ $L \cap Q \leqslant O_{p}(L)=1$.
(c): If $C_{V}(K) \cap C_{V}(Q) \neq 0$, then Q ! implies $K \leqslant N_{H}\left(C_{V}(K) \cap C_{V}(Q)\right) \leqslant N_{H}(Q)$ and (b) gives $[K, Q]=1$.
(d): Suppose that $K \neq 1$ but $[V, K, Q]=1$. Replacing K by $\left\langle K^{N_{H}(Q)}\right\rangle$ we may assume that $N_{H}(\bar{Q}) \leqslant N_{H}(K)$. Since V is faithful, $1 \neq[V, K] \leqslant C_{V}(Q)$ and Q ! implies $N_{H}(K) \leqslant N_{H}([V, K]) \leqslant$ $N_{H}(Q)$. Hence $N_{H}(K)=N_{H}(Q)$. Let L be the largest subnormal subgroup of H contained in $N_{H}(Q)$. Then $K \leqslant L$ and b gives $[L, Q]=1$. Let M be the largest subnormal subgroup of H contained in $N_{H}(L)$. Since Q centralizes L, Q normalizes M and $\left\langle Q^{M}\right\rangle \leqslant C_{H}(L) \leqslant C_{H}(K)$. Note that $[M, Q] \vDash M \lessgtr \leftrightarrow H$ and so $[M, Q]$ is a subnormal subgroup of H contained in $C_{H}(K)$. In particular, $[M, Q] \leqslant N_{H}(K)=N_{G}(Q)$ and the maximal choice of L gives $[M, Q] \leqslant L$. Thus $[M, Q, Q] \leqslant[L, Q]=1$ and since $O_{p}(M) \leqslant O_{p}(H)=1,1.9$ gives $[M, Q]=1$. Hence $M \leqslant N_{H}(Q)$ and so $M=L$ by maximality of L. Since $L \preccurlyeq \forall H$ this implies $H=L \leqslant N_{H}(Q)$, a contradiction since $Q \notin H$ by definition of a $Q!$-module.
(e): By (b), $[K, Q]=1$. Put $K_{0}:=C_{K}([V, Q])$. Then $\left[V, Q, K_{0}\right]=1$ and the Three Subgroups Lemma gives $\left[V, K_{0}, Q\right]=1$. Hence (d) implies $K_{0}=1$ and so K acts faithfully on [$\left.V, Q\right]$. Since $[K, Q]=1$ the $P \times Q$ - Lemma shows

$$
O^{p}\left(C_{K}\left([V, Q] \cap C_{V}(Q)\right)\right) \leqslant C_{K}([V, Q])=K_{0}=1
$$

and so $C_{K}\left([V, Q] \cap C_{V}(Q)\right) \leqslant O_{p}(K)=1$.
(f): By A.52 d), $C_{V}\left(H^{\circ}\right)=0$ and so also $C_{V}\left(H_{\circ}\right)=0$ and $\left[V, H_{\circ}\right] \neq 0$. Hence by A. 52 c) $E:=C_{H}\left(\left[V, H_{\circ}\right]\right) \leqslant C_{H}\left(H^{\circ}\right)$. Thus $\left[E, H_{\circ}\right]=1$ and $\left[V, H_{\circ}, E\right]=1$. The Three Subgroups Lemma implies $\left[V, E, H_{\circ}\right]=1$. Since $C_{V}\left(H_{\circ}\right)=0$ this gives $[V, E]=0$, and as V is faithful, $E=1$.
(g): Put $C:=C_{H}([V, E]) \cap C_{H}(V /[V, E])$. Then C acts nilpotently on V and H_{\circ} normalizes C. Hence $\left[C, H_{\circ}\right] \leqslant C \cap H_{\circ} \leqslant H_{\circ}$, so $C \cap H_{\circ}$ is subnormal in H. Since V is p-reduced and faithful, $C \cap H_{\circ}=1$, and thus $\left[C, H_{\circ}\right]=1$. Since $E \leqslant H_{\circ}, C_{H}\left(H_{\circ}\right)$ normalizes E and C. It follows that $C \vDash C_{H}\left(H_{\circ}\right) \preccurlyeq H$, and again since V is p-reduced and faithful, $C=1$.

Lemma A.55. Let V be a faithful p-reduced $Q!$-module for H with respect to Q. Put $N:=$ $\bigcap_{g \in H} N_{H}\left(Q^{g}\right)$.
(a) $\left[N, H^{\circ}\right]=1$ and $C_{V}(Q)$ is a faithful p-reduced N-module.
(b) Let $1 \neq t \in H$ with $|[V, t]|<\left|C_{V}(Q)\right|$. Then $t \in N$ and $\left[C_{V}(Q), t\right] \neq 1$.
(c) $\left|C_{V}(Q)\right| \leqslant|[V, t]|$ for all $1 \neq t \in H$ with $\left[C_{V}(Q), t\right]=1$.
(d) $C_{V}(Q)=[V, t]$ for all $1 \neq t \in H$ with $[V, t] \leqslant C_{V}(Q)$.

Proof. (a): Note that $N \leqslant H$ and $N \leqslant N_{H}(Q)$. Hence by A.54 b, (e) [$\left.N, Q\right]=1$ and $C_{V}(Q)$ is a faithful N-module. As $H^{\circ}=\left\langle Q^{H}\right\rangle$, this gives $\left[N, H^{\circ}\right]=1$. Since $N \vDash H$ and V is faithful and p-reduced for $H, O_{p}(N) \leqslant O_{p}(H)=1$. Hence, since $C_{V}(Q)$ is a faithful N-module, $C_{V}(Q)$ is p-reduced for N.
(b): Let $t \in H$ with $\left|C_{V}(Q)\right|>|[V, t]|$, and let $g \in H$. Note that

$$
\left|V / C_{V}(t)\right|=|[V, t]|<\left|C_{V}(Q)\right|=\left|C_{V}\left(Q^{g}\right)\right|
$$

Thus $A:=C_{V}\left(Q^{g}\right) \cap C_{V}(t) \neq 0$ and $t \in C_{H}(A) \leqslant N_{H}\left(Q^{g}\right)$. Hence $t \in N$. By (a), $C_{V}(Q)$ is a faithful N-module and so $\left[C_{V}(Q), t\right] \neq 1$.
(c) follows immediately from (b).
(d): Suppose that $[V, t] \leqslant C_{V}(Q)$ but $[V, t] \neq C_{V}(Q)$. Let $g \in H$. Then $|[V, t]|<\left|C_{V}(Q)\right|=$ $\left|C_{V}\left(\widehat{Q}^{g}\right)\right|$ and so by (b), $t \in N$ and

$$
1 \neq\left[C_{V}\left(Q^{g}\right), t\right] \leqslant C_{V}\left(Q^{g}\right) \cap[V, t] \leqslant C_{V}\left(Q^{g}\right) \cap C_{V}(Q)
$$

Thus $Q=Q^{g}$ and $Q \lessgtr H$, contrary to the definition of a Q !-module.

Lemma A.56. Let V be a faithful p-reduced Q !-module for H with respect to Q, and let \mathcal{K} be a non-empty H-invariant set of non-trivial subgroups of H. Put $R:=\langle\mathcal{K}\rangle$. Suppose that $[V, R]$ is a wreath product module for H with respect to \mathcal{K} such that one of the following holds:
(1) $[V, K]$ is a simple K-module for all $K \in \mathcal{K}$, or
(2) $\left[R, H^{\circ}\right] \neq 1$.

Then
(a) Q is transitive on \mathcal{K} and $C_{V}(R)=0$.
(b) Suppose that $|\mathcal{K}|>1$. Let $K \in \mathcal{K}$ and put $T:=N_{Q}(K)$. Then $C_{K}(z)$ is a p-group for all $0 \neq z \in C_{[V, K]}(T)$.
Proof. Put $W:=[V, R]$. Since V is p-reduced and faithful, A.9 shows that $W=[V, R]$ is a faithful p-reduced R-module. Since W is faithful wreath product module, A. 17 shows that

$$
\begin{equation*}
R=\underset{K \in \mathcal{K}}{X} K \quad \text { and } \quad W=\bigoplus_{K \in \mathcal{K}}[W, K] \tag{*}
\end{equation*}
$$

(a): Let \mathcal{K}_{0} be an orbit of Q on \mathcal{K} and put $R_{0}:=\left\langle\mathcal{K}_{0}\right\rangle$. Since \mathcal{K} is H-invariant, $R \lessgtr H$, and since \mathcal{K} is a non-empty set of non-trivial subgroups, $R \neq 1$. As V is p-reduced, $O_{p}(R)=1$. If $K \in \mathcal{K} \backslash \mathcal{K}_{0}$ then $(*)$ shows that $[W, K] \leqslant C_{[W, R]}\left(R_{0}\right)$. Thus either $\mathcal{K}_{0}=\mathcal{K}$ or $C_{[W, R]}\left(R_{0}\right) \neq 0$.

Assume that $C_{V}\left(R_{0}\right) \neq 0$. Then also $C_{V}\left(R_{0}\right) \cap C_{V}(Q) \neq 0$ and so by A.54 c$)\left[R_{0}, Q\right]=1$. Since either Q acts transitively on \mathcal{K} or $C_{V}\left(\left\langle K^{Q}\right\rangle\right) \neq 0$ for all $K \in \mathcal{K}$, we get $[R, Q]=1$ and so $\left[R, H^{\circ}\right]=1$. Hence $[V, K]$ is a simple K-module for all $K \in \mathcal{K}$. Since Q centralizes $K,[V, K, Q]=0$, and since $K \neq 1$, this contradicts A.54 d.

Thus $C_{V}\left(R_{0}\right)=0$. It follows that Q acts transitively on \mathcal{K} and $C_{V}(R)=0$.
(b): Let $0 \neq z \in C_{[V, K]}(T)$. By A. $18[V, K]=[W, K]$. Thus $z \in[W, K]$ and since $\left[z, N_{Q}(K)\right]=$ $[z, T]=0$, the conjugates z^{Q} are in distinct submodules $[W, F], F \in \mathcal{K}$. Hence $z_{0}:=\sum_{z_{1} \in z^{Q}} z_{1} \neq 0$, $\left[z_{0}, Q\right]=1$ and $C_{K}(z)=C_{K}\left(z_{0}\right)$. By $Q!C_{K}\left(z_{0}\right) \leqslant N_{H}(Q)$ and so

$$
\left[C_{K}\left(z_{0}\right), Q\right] \leqslant Q \cap C_{R}\left(z_{0}\right) \leqslant O_{p}\left(C_{R}\left(z_{0}\right)\right)
$$

By $(*) K \boxtimes R$ and so $C_{K}\left(z_{0}\right) \boxtimes C_{R}\left(z_{0}\right)$. Hence $O^{p}\left(C_{K}\left(z_{0}\right)\right)=O^{p}\left(C_{K}\left(z_{0}\right) O_{p}\left(C_{R}\left(z_{0}\right)\right)\right)$, so $O^{p}\left(C_{K}\left(z_{0}\right)\right)$ is Q-invariant. Thus $(*)$ shows that either $O^{p}\left(C_{K}\left(z_{0}\right)\right)=1$ or K is Q-invariant. In the
first case $C_{K}\left(z_{0}\right)=C_{K}(z)$ is a p-group. In the second case the transitivity of Q on \mathcal{K} shows $|\mathcal{K}|=1$.

Lemma A.57. Suppose that $O_{p}(H)=1$. Let V be a faithful Q !-module for H with respect to Q, and let Y be a p-subgroup of H with $C_{Y}([V, Y]) \neq 1$ and $\left[H^{\circ}, Y\right] \neq 1$. Then $C_{Y}\left(H^{\circ}\right)=1$.

Proof. See MS6, 4.4].

A.8. Genuine Groups of Lie Type

Definition A.58. (a) A genuine group of Lie-type in characteristic p is a group isomorphic to $O^{p^{\prime}}\left(C_{\bar{K}}(\sigma)\right)$, where \bar{K} is a semisimple $\overline{\mathbb{F}_{p}}$-algebraic group, $\overline{\mathbb{F}_{p}}$ is the algebraic closure of \mathbb{F}_{p}, and σ is a Steinberg endomorphism of \bar{K}, see GLS3 Definition 2.2.2] for details.
(b) Let K be a genuine group of Lie-type. Let Σ be the root system, d the order of the graph automorphism and q the order of the fixed field of the field automorphism used to define K. Then we say that K is a version of ${ }^{d} \Sigma(q)$, see GLS3, Definition 2.2.4] for the details.

Note that a given symbol ${ }^{d} \Sigma(q)$ can have many non-isomorphic versions. Nevertheless, we will write $K={ }^{d} \Sigma(q)$ to indicated that K is a version of ${ }^{d} \Sigma(q)$. We will use $\Sigma(q)$ for ${ }^{1} \Sigma(q)$.

Lemma A. 59 (GLS3, 2.2.6]). (a) For each symbol ${ }^{d} \Sigma(q)$, there is up to isomorphism a unique largest version K_{u} (called the universal version) and a unique smallest version K_{a} (called the adjoint version).
(b) For any version K of a symbol as in (a), there are surjective homomorphisms $K_{u} \rightarrow K \rightarrow$ K_{a}, whose kernels are central. In particular, if K is simple, then $K \cong K_{a}$.
(c) $Z\left(K_{a}\right)=1$, and $K / Z(K) \cong K_{u} / Z\left(K_{u}\right) \cong K_{a}$.
(d) The versions of a given symbol, up to isomorphism, are the groups K_{u} / Z as Z ranges over all subgroups of $Z\left(K_{u}\right)$.
Lemma A.60. Let $K={ }^{d} \Sigma(q)$ be an adjoint group or universal group of Lie-type with Dynkin diagram Δ. Then there exist subgroups Diag and Φ and a subset Γ of $\operatorname{Out}(K)$ such that
(a) $\Phi \Gamma$ is a subgroup of $\operatorname{Out}(K), \Phi \preccurlyeq \Phi \Gamma, \operatorname{Out}(K)=\operatorname{Diag} \Phi \Gamma, \operatorname{Diag} \vDash \operatorname{Out}(K)$, and Diag \cap $\Phi \Gamma=1$.
(b) Diag has order dividing $q-1, q+1$ or $\operatorname{gcd}(q-1,2)^{2}$. In particular, Diag is a p^{\prime}-group.
(c) $\Phi \cong A u t\left(\mathbb{F}_{q^{d}}\right)$. In particular, Φ is cyclic.
(d) $C_{\operatorname{Diag} \Phi \Gamma}(\Delta)=\operatorname{Diag} \Phi$.
(e) One of the following holds:
(1) $d=1, \Delta$ has only single bonds, Γ is a subgroup of $\Phi \Gamma, \Phi \Gamma=\Phi \times \Gamma$, and Γ is the group of symmetries of Δ.
(2) $d=1, \Delta$ has double or triple bonds, and
(i) if $p=2$ and Δ is of type B_{2} or F_{4}, or $p=3$ and Δ is of type G_{2}, then $\Gamma=\{1, \psi\}$, ψ acts non-trivially on Δ and $\Phi=\left\langle\psi^{2}\right\rangle$,
(ii) otherwise $\Gamma=1$.

In particular, $\Phi \Gamma$ is cyclic.
(3) $d \neq 1$ and $\Gamma=1$. In particular, $\Phi \Gamma=\Phi$ is cyclic.

Proof. See GLS3, section 2.5]; in particular Theorem 2.5.12.
Corollary A.61. Let $K={ }^{d} \Sigma(q)$ be an adjoint group or universal group of Lie-type with Dynkin diagram Δ, and let Γ and Diag be as in A.60. Suppose that Diag Γ is not abelian. Then $K=D_{4}(q)$, $\Gamma \cong \operatorname{Sym}(3)$ and $(\Gamma \text { Diag })^{\prime}=\Gamma^{\prime} \cong C_{3}$.

Proof. Since Γ Diag is not abelian, Γ Diag is not cyclic. This rules out the last two cases in A.60 e). Hence A.60 e:1 holds and so $d=1, \Delta$ has only single bonds, Γ is the group of symmetries on Δ, and $\Phi \Gamma=\Phi \times \bar{\Gamma}$. By A.60 b, Φ is cyclic. $\mathrm{So}(\Phi \Gamma)^{\prime}=\Gamma^{\prime}$ and Γ is not abelian. Thus $\Sigma=D_{4}$, $\Gamma \cong \operatorname{Sym}(3)$ and $\Gamma^{\prime} \cong C_{3}$.

Lemma A. 62 (Steinberg's Lemma, MS5, 4.1]). Let M be a genuine group of Lie-type defined over a finite field of characteristic p. Let V be a simple $\mathbb{F}_{p} M$-module, $S \in \operatorname{Syl}_{p}(M)$, and $B:=$ $N_{M}(S)$. Put $\mathbb{K}:=E n d_{M}(V)$. Then $C_{V}(S)$ is 1-dimensional over \mathbb{K}, \mathbb{K} is isomorphic to the subring of $E n d_{\mathbb{F}_{p}}\left(C_{V}(S)\right)$ generated by the image of B, and $C_{V}(S)$ is a simple $\mathbb{F}_{p} B$-module.

Theorem A. 63 (Smith's Lemma, MS5, 4.2]). Let M be a genuine group of Lie-type defined over a finite field of characteristic p. Let V be a simple $\mathbb{F}_{p} M$-module, $\mathbb{K}:=E n d_{M}(V)$, E a parabolic subgroup of $M, L:=O^{p^{\prime}}(E)$ and $P=N_{M}(L)$. Then $L=O^{p^{\prime}}(P), O_{p}(E)=O_{p}(P)=O_{p}(L)$ and P is a Lie-parabolic subgroup of M. Moreover, $C_{V}\left(O_{p}(P)\right)$ is a simple $\mathbb{F}_{p} P$-module, an absolutely simple $\mathbb{K} L$-module, and an absolutely simple $\mathbb{K} E$-module

Let \mathbb{F} be a finite field of characteristic p, M a finite group, V a simple $\mathbb{F} M$-module and W a simple $\mathbb{F}_{p} M$-submodule. Recall that the field $\mathbb{K}:=\operatorname{End}_{M}(W)$ is called the field of definition of the $\mathbb{F} M$-module W.

Theorem A. 64 (Ronan-Smith's Lemma, MS5, 4.3]). Let M be a universal group of Lietype defined over a finite field of characteristic p, S a Sylow p-subgroup of $M, P_{1}, P_{2}, \ldots, P_{n}$ the minimal Lie-parabolic subgroups of M containing S, and $L_{i}=O^{p^{\prime}}\left(P_{i}\right)$. Let \mathcal{V} be the class of all tuples $\left(\mathbb{K}, V_{1}, V_{2}, \ldots, V_{n}\right)$ such that
(i) \mathbb{K} is a finite field of characteristic p.
(ii) Each V_{i} is an absolutely simple $\mathbb{K} L_{i}$-module.
(iii) $\mathbb{K}=\left\langle\mathbb{K}_{i} \mid 1 \leqslant i \leqslant n\right\rangle$, where \mathbb{K}_{i} is the field of definition of the $\mathbb{K} L_{i}$-module V_{i}.

Define two elements $\left(\mathbb{K}, V_{1}, V_{2}, \ldots, V_{n}\right)$ and $\left(\widetilde{\mathbb{K}}, \widetilde{V}_{1}, \widetilde{V}_{2}, \ldots, \widetilde{V}_{n}\right)$ of \mathcal{V} to be isomorphic if there exists a field isomorphism $\sigma: \widetilde{\mathbb{K}} \rightarrow \mathbb{K}$ such that $V_{i} \cong \widetilde{V}_{i}^{\sigma}$ as an $\mathbb{K} L_{i}$-module for all $1 \leqslant i \leqslant n$. Then the map

$$
V \rightarrow\left(\operatorname{End}_{M}(V), C_{V}\left(O_{p}\left(L_{i}\right)\right), \ldots C_{V}\left(O_{p}\left(L_{n}\right)\right)\right) \quad\left(V \text { a simple } \mathbb{F}_{p} M \text {-module }\right)
$$

induces a bijection between the isomorphism classes of simple $\mathbb{F}_{p} M$-modules and the isomorphism classes of \mathcal{V}.

Lemma A.65. Let $K={ }^{d} \Sigma(q)$ be a universal group of Lie-type with Dynkin diagram Δ. Define $\tau \in \square^{4}$ as follows:
(1) If $K=A_{n}(q), n \geqslant 2, K=D_{2 n+1}(q), n \geqslant 2{ }^{5}$ or $E_{6}(q)$, then τ induces the unique non-trivial graph automorphism on Δ;
(2) otherwise $\tau=1$.

Then $\tau^{2}=1$ and $V^{*} \cong V^{\tau}$ for all simple $\mathbb{F}_{p} K$-modules V.
Proof. See [St, Lemma 73].

Lemma A.66. Let M be a genuine group of Lie-type defined over a finite field of characteristic p, S a Sylow p-subgroup of $M, P_{1}, P_{2}, \ldots, P_{n}$ the minimal Lie-parabolic subgroups of M containing S, $L_{i}=O^{p^{\prime}}\left(P_{i}\right)$ and $B=N_{M}(S)$. Suppose that V is a simple $\mathbb{F}_{p} M$-module such that $\left[C_{V}(S), B\right]=0$ and $\left[C_{V}(S), L_{i}\right] \neq 0$ for all $1 \leqslant i \leqslant n$. Then V is the Steinberg module for M over \mathbb{F}_{p} of $\mathbb{F}_{p^{-}}$ dimension $|S|$. Moreover, as an $\mathbb{F}_{p} S$-module V is isomorphic to the regular permutation module $\mathbb{F}_{p}[S]$.

Proof. We may assume without loss that M is universal. Let \mathbb{F} be the algebraic closure of \mathbb{F}_{p} and $S t$ the Steinberg module for M over \mathbb{F}. Then by [GLS3, 2.8.7] $S t$ is a simple $\mathbb{F} M$ module of dimension $|S|$. It is well-known and also follows from the weight of $S t$ as given in [GLS3, 2.8.7(b)] that $\left[C_{S t}(S), B\right]=0$ and $\left[C_{V}(S), L_{i}\right] \neq 0$ for all $1 \leqslant i \leqslant n$.

Put $\mathbb{K}=\operatorname{End}_{M}(V)$ and let \mathbb{F} be the algebraic closure of \mathbb{K}. By As, 25.8] V is an absolutely simple $\mathbb{K} M$-module and so $\bar{V}:=\mathbb{F} \otimes_{\mathbb{K}} V$ is a simple $\mathbb{F} M$-module. By A. $62 \mathbb{K}$ is isomorphic to the subring of $E n d_{\mathbb{F}_{p}}\left(C_{V}(S)\right)$ generated by the image of B. Since $\left[C_{V}(S), B\right]=0$ this gives $\mathbb{K}=\mathbb{F}_{p}$. We will now show that \bar{V} is uniquely determined and so $\bar{V} \cong S t$.

[^17]Suppose first that $n=1$. By $\mathbf{S t}$, Theorem 46] a simple $\mathbb{F} M$-module W is uniquely determined by the action of B on $C_{W}(S)$ and a parameter $\mu \in\{0,-1\}$. In particular, there are (up to isomorphism) at most two simple $\mathbb{F} M$-modules W with $\left[C_{W}(S), B\right]=0$. Hence $S t$ is the unique non-central $\mathbb{F} M$ module with $\left[C_{S t}(S), B\right]=0$.

In the general case, put $U_{i}=C_{\bar{V}}\left(O_{p}\left(P_{i}\right)\right)$. By Smith's Lemma A. $63 U_{i}$ is a simple L_{i}-module and the $n=1$ case applied to $L_{i} / O_{p}\left(P_{i}\right)$ shows that U_{i} is the Steinberg-module for $L_{i} / O_{p}\left(P_{i}\right)$ over \mathbb{F}. This uniquely determines the parameters $\mu_{i}, 1 \leqslant i \leqslant n$ in $[\mathbf{S t}$, Theorem 46] and so \bar{V} is uniquely determined.

Thus \bar{V} is the Steinberg-module $S t$. In particular, $\operatorname{dim}_{\mathbb{F}_{p}} V=\operatorname{dim}_{\mathbb{K}} V=\operatorname{dim}_{\mathbb{F}} \bar{V}=|S|$. By St, Theorem 46] the conjugates of $C_{\bar{V}}(S)$ under the opposite Sylow p-subgroup S^{-}span \bar{V}. Let $0 \neq v \in C_{V}(S)$. Then $\left\langle v^{S^{-}}\right\rangle=V$ and since $\left|S^{-}\right|=|S|$ we conclude that $v^{S^{-}}$is an \mathbb{F}_{p}-basis of V regularly permuted by S^{-}. Hence $V \cong \mathbb{F}_{p}[S]$ as an $\mathbb{F}_{p} S$-module.

APPENDIX B

Classical Spaces and Classical Groups

In this appendix \mathbb{K} is a finite field, $p:=\operatorname{char} \mathbb{K}, V$ is a finite dimensional dimensional vector space over $\mathbb{K}, \alpha \in \operatorname{Aut}(\mathbb{K})$ with $\alpha^{2}=i d_{\mathbb{K}}$ and \mathbb{F} is the fixed field of α.

Definition B.1. Let $f: V \times V \rightarrow \mathbb{K}$ and $h: V \rightarrow \mathbb{F}$ be functions.
(i) (V, f, h) is a linear space if $\alpha=i d_{\mathbb{K}}, f=0$ and $h=0$.
(ii) (V, f, h) is a symplectic space if $\alpha=i d_{\mathbb{K}}, f$ is \mathbb{K}-bilinear and for all $v \in V$,

$$
h(v)=f(v, v)=0
$$

(iii) (V, f, h) is a unitary space if $\alpha \neq i d_{\mathbb{K}}, f$ is \mathbb{K}-linear in the first component and for all $v, w \in V$,

$$
f(v, w)=f(w, v)^{\alpha} \quad \text { and } \quad h(v)=f(v, v)
$$

(iv) (V, f, h) is an orthogonal space, if $\alpha=i d_{\mathbb{K}}, f$ is \mathbb{K}-bilinear, and for all $v, w \in V$ and $k \in \mathbb{K}$

$$
h(k v)=k^{2} h(v) \quad \text { and } \quad h(v+w)=h(v)+f(v, w)+h(w)
$$

(v) (V, f, h) is a classical space (of linear, symplectic, unitary or orthogonal type), if it is a linear, symplectic, unitary or orthogonal space.

Let (V, f, h) be a classical space. Abusing notion we will often just say that V is a classical space.

Assume that V is an orthogonal space. Then $f(v, w)=h(v+w)-h(v)-h(w)$ and so f is symmetric, that is $f(v, w)=f(w, v)$. Also

$$
4 h(v)=h(2 v)=h(v+v)=h(v)+f(v, v)+h(v)
$$

and so $f(v, v)=2 h(v)$. In particular, f is a symplectic form if $p=2$.
Definition B.2. Let V be a classical space, and $v, w \in V$, and let U and W be \mathbb{K}-subspaces of V.
(a) v and w are isometric if $h(v)=h(w){ }^{\top}$
(b) v and w are perpendicular, and we write $v \perp w$, if $f(v, w)=0$. We write $U \perp W$ if $u \perp w$ for all $u \in U, w \in W$. We write $V=U \oplus W$ if $V=U \oplus W$ and $U \perp W$.
(c) v is isotropic if $f(v, v)=0$; and U is isotropic if $\left.f\right|_{U \times U}=0$.
(d) v is singular if $h(v)=0$; and U is singular if U is isotropic and all its elements are singular.
(e) $U^{\perp}=\{v \in V \mid f(v, u)=0$ for all $u \in U\}$.
(f) $\operatorname{rad}(U)=\left\{u \in U \cap U^{\perp} \mid h(u)=0\right\}$.
(g) U is non-degenerate if $\operatorname{rad}(U)=0$.
(h) $\mathcal{S}(U)$ is the set of 1-dimensional singular subspaces of U.
(i) The Witt index of V is the maximum of the dimensions of the singular subspaces of V.

Definition B.3. Let (V, f, h) and $\left(V^{\prime}, f^{\prime}, h^{\prime}\right)$ be classical spaces over \mathbb{K} and $\phi: V \rightarrow V^{\prime}$ a bijection.
(a) ϕ is an isometry if ϕ is \mathbb{K}-linear and for all $v, w \in V$,

$$
h\left(v^{\phi}\right)=h(v) \quad \text { and } \quad f\left(v^{\phi}, w^{\phi}\right)=f(v, w)
$$

We also will say that h and f are ϕ-invariant if these equations hold.

[^18](b) ϕ is a similarity if ϕ is \mathbb{K}-linear and there exists $k \in \mathbb{F}^{\sharp}$ such that for all $v, w \in V$,
$$
h\left(v^{\phi}\right)=k h(v) \quad \text { and } \quad f\left(v^{\phi}, w^{\phi}\right)=k f(v, w)
$$
(c) ϕ is a semisimilarity if there exist $\sigma \in \operatorname{Aut}(\mathbb{K})$ and $k \in \mathbb{F}^{\sharp}$ such that ϕ is σ-semilinear \square^{2} and for all $v, w \in V$,
$$
h\left(v^{\phi}\right)=k h(v)^{\sigma} \quad \text { and } \quad f\left(v^{\phi}, w^{\phi}\right)=k f(v, w)^{\sigma} .
$$

We denote the group of isometries of V by $C l_{\mathbb{K}}(V, f, h)$, by $C l_{\mathbb{K}}(V)$ or by $C l(V)$. We will also use the notation $G L(V), S p(V), G U(V)$ and $O(V)$ for $C l(V)$, if V is a linear, symplectic, unitary and orthogonal space, respectively.

For the remainder of this appendix (V, f, h) is a non-degenerate or linear classical space and $H=C l(V)$. If V is linear we define $R(V):=0$, otherwise $R(V):=V^{\perp}$. So $R(V)=0$ unless V is an orthogonal space, $p=2$ and $\operatorname{dim}_{\mathbb{K}} V$ is odd.

Note that (by B. 18 below) V is uniquely determined, up to similarity, by its type and dimension, except in the case of an orthogonal space of even dimension. We sometimes use the notation $C l_{m}(\mathbb{F})$ or $C l_{m}(q)$, where $m:=\operatorname{dim}_{\mathbb{K}} V$ and $q:=|\mathbb{F}|$.

For an orthogonal space V of dimension $2 n$ we write $O^{+}(V)$ or $O_{2 n}^{+}(\mathbb{K})$ if V has Witt index n, and $O^{-}(V)$ or $O_{2 n}^{-}(\mathbb{K})$ if V has Witt index $n-1$.

Notation B.4. For $Z \in \mathcal{S}(V)$ define

$$
Q_{Z}:=C_{H}(Z) \cap C_{H}\left(Z^{\perp} / Z\right), C l^{\diamond}(V):=H^{\diamond}:=\left\langle Q_{Z} \mid Z \in \mathcal{S}(V)\right\rangle \text { and } D_{Z}:=C_{H}\left(Z^{\perp}\right) \cap C_{H}(V / Z)
$$

We remark that Q_{Z} is a weakly closed subgroup of H, so the notation H^{\diamond} is analogue to the o-notation 1.44 for weakly closed subgroup.

Note that we have one of the following cases:

$C l^{\curvearrowright}(V)$	Type of V	V^{\perp}	$R(V)$	Remark
$S L(V)$	linear	V	0	-
$S p(V)$	symplectic	0	0	-
$S U(V)$	unitary	0	0	-
1	orthogonal	0	0	$\operatorname{dim} V \leqslant 2, \operatorname{dim} V$ even or p odd
$\Omega(V)$	orthogonal	0	0	$\operatorname{dim} V \geqslant 3, \operatorname{dim} V$ even or p odd
$O(V)=\Omega(V)$	orthogonal	$1-\operatorname{dim}$	V^{\perp}	$\operatorname{dim} V$ odd and $p=2$

B.1. Elementary Properties

Lemma B. 5 ([MS5, 3.1]). Let U be an isotropic but not singular \mathbb{K}-subspace of V. Let U_{0} be the set of singular vectors in U. Then V is orthogonal, $p=2, U_{0}$ is a \mathbb{K}-subspace of U, and $\operatorname{dim}_{\mathbb{K}} U / U_{0}=1$. In particular, $\operatorname{dim}_{\mathbb{K}} V^{\perp} \leqslant 1$.

Lemma B. 6 (MS5, 3.2]). Let U be $a \mathbb{K}$-subspace of V, and let A be a subgroup of H. Suppose that V is not a linear space.
(a) V / U^{\perp} and $\left(U / U \cap V^{\perp}\right)^{*}$ are isomorphic $\mathbb{F} N_{H}(U)$-modules. In particular, if $V^{\perp}=0$, then V and V^{*} are isomorphic $\mathbb{F} H$-modules.
(b) $C_{V / V^{\perp}}(A)=C_{V}(A) / V^{\perp}$.
(c) $C_{V}(A)=[V, A]^{\perp}$.
(d) $C_{H}(V / U) \leqslant C_{H}\left(U^{\perp}\right)$; in particular $C_{H}(V / U) \leqslant C_{H}(U)$ if U is isotropic.
(e) If A acts quadratically on V / V^{\perp}, then A acts quadratically on V and $[V, A]$ is an isotropic subspace of V.

This is MS5, 3.2], except we corrected a misprint in statement (a).

[^19]Lemma B. 7 (MS5, 1.9]). Let L be a finite group and $N \leqslant L$, and let \mathbb{F} be a finite field of characteristic p and V a finite dimensional $\mathbb{F} L$-module. Put $\mathbb{K}:=E n d_{\mathbb{F} N}(V)$ and suppose that V is a selfdual simple $\mathbb{F} N$-module. Then the following hold:
(a) There exists an N-invariant non-degenerate symmetric, symplectic or unitary \mathbb{K}-form s on V.
(b) There exists a homomorphism $\rho: L \rightarrow A u t_{\mathbb{F}}(\mathbb{K}), h \mapsto \rho_{h}$, such that L acts ρ-semilinearly on V.
(c) There exists a map $\lambda: L \rightarrow \mathbb{K}^{\sharp}, h \mapsto \lambda_{h}$, such that the map $L \rightarrow \mathbb{K}^{\sharp} \rtimes A u t_{\mathbb{F}}(K), h \mapsto$ $\left(\lambda_{h}, \rho_{h}\right)$, is a homomorphism and

$$
s\left(v^{h}, w^{h}\right)=\lambda_{h} s(v, w)^{\rho_{h}}
$$

for all $v, w \in V, h \in H$.
(d) Let U be a \mathbb{K}-subspace of V and put $U^{\perp}=\{v \in V \mid s(u, v)=0$ for all $u \in U\}$. Then U^{\perp} is $N_{L}(U)$-invariant.
(e) Let U be a non-zero \mathbb{K}-subspace of V such that $C_{L}(U)$ acts simply on V / U^{\perp}. Then U is 1 -dimensional over \mathbb{K}.
(f) Put $L_{0}=\operatorname{ker} \rho$. Then s is $O^{p^{\prime}}\left(L_{0}\right) N$-invariant.

Lemma B.8. Let $H=G L(V), V^{*}$ the dual of V and $D, E \leqslant H$. Then $[V, E, D]=0$ if and only if $\left[V^{*}, D, E\right]=0$.

Proof. For $\alpha \in \operatorname{End}(V)$ let $\alpha^{*} \in \operatorname{End}\left(V^{*}\right)$ be the dual homomorphism. Note that $\operatorname{End}(V) \rightarrow$ $\operatorname{End}\left(V^{*}\right), \alpha \mapsto \alpha^{*}$, is an anti-isomorphism of rings. Hence $[V, E, D]=0$ iff $(e-1)(d-1)=0$ for all $d \in D, e \in E$, iff $\left(d^{*}-1\right)\left(e^{*}-1\right)=0$ for all $d \in D, e \in E$, iff $\left[V^{*}, D, E\right]=0$.

Lemma B.9. (a) Suppose that V is an orthogonal space. Let $v \in V$ and $a \in H$. Then $h([v, a])=-f(v,[v, a])$. In particular, $[v, a]$ is singular if and only if $v \perp[v, a]$.
(b) Suppose that V is an orthogonal space. Let $a \in H$ such that $[V, a]$ is 1-dimensional, and let $0 \neq w \in[V, a]$. Then $h(w) \neq 0$, and a is the reflection associated to w, that is,

$$
v^{a}=v-h(w)^{-1} f(v, w) w \quad \text { for all } v \in V
$$

In particular, $C_{H}(V /[V, a])=\{1, a\},|a|=2$ and $[V, a]$ is not singular.
(c) Suppose that V is an orthogonal space. Let $X \leqslant H$ such that $[V, X, X]=0$ and $[V, X]$ is 1-dimensional. Then $p=2,|X|=2, X$ is generated by a reflection, and $[V, X]$ is isotropic and not singular.
(d) Let $A \leqslant H$ and suppose that U is an A-invariant subspace of V with $[U, A] \leqslant U^{\perp}$. Then $[U, A]$ is singular.
(e) Let $A \leqslant H$ and suppose that A acts cubically on V. Then $[V, A, A]$ is singular.

Proof. (a): We have $h\left(v^{a}\right)=h(v+[v, a])=h(v)+f(v,[v, a])+h([v, a])$. Since $h\left(v^{a}\right)=h(v)$, this gives $h([v, a])=-f(v,[v, a])$.
(b): Let r be any element of H with $[V, r]=[V, a]$. Define $\alpha: V \rightarrow \mathbb{K}$ by $[v, r]=\alpha(v) w$ for $v \in \vec{V}$. By B.6.c., $C_{V}(r)=[V, r]^{\perp}=w^{\perp}$. Thus $\operatorname{ker} \alpha=w^{\perp}$ and so there exists $0 \neq k \in \mathbb{K}$ with $\alpha(v)=k f(v, w)$ for all $v \in V$.

$$
\begin{equation*}
[v, r]=k f(v, w) w \quad \text { and } \quad v^{r}=v+k f(v, w) w \tag{*}
\end{equation*}
$$

for all $v \in V$. Since $w^{\perp}=C_{V}(r) \neq V$ we can choose $u \in V$ with $f(u, w)=1$. Then $[u, r]=$ $k f(u, w) w=k w$. Thus

$$
h([u, r])=h(k w)=k^{2} h(w) \quad \text { and } \quad f(u,[u, r])=f(u, k w)=k f(u, w)=k
$$

By (a) $h([u, r])=-f(u,[u, r])$ and so $k^{2} h(w)=-k$. Recall that $k \neq 0$. So $h(w)=-k^{-1} \neq 0 e$. Together with the second equation in $(*)$ this shows that

$$
\begin{equation*}
v^{r}=v-h(w)^{-1} f(v, w) w \quad \text { for all } v \in V \tag{**}
\end{equation*}
$$

Obviously, the action of r is uniquely determined by ($* *$), and the right hand side of the equation is independent of r. Since also a satisfies ($* *$) in place of r, we get $r=a$, and the equation in (b)
holds. Moreover, $C_{H}(V /[V, a])=\{1, a\}$ and $|a|=2$. As $h(w) \neq 0,[V, a]$ is not singular. Hence b holds.
(c) Let $1 \neq a \in X$. Then $X \subseteq C_{H}(V /[V, X])=C_{H}(V /[V, a])$. Thus by (b), $X \subseteq\{1, a\}$ and $[V, X]=[V, a]$ is not singular. In particular, $|X|=2$. Since X acts quadratically on V, B.6 e shows that $[V, X]$ is isotropic. As $[V, X]$ is not singular, B. 5 implies that $p=2$.
(d): Since U is A-invariant, $[U, A] \leqslant U$ and since $[U, A] \leqslant U^{\perp}$ we conclude that $[U, A]$ is isotropic. Let $u \in U$ and $a \in A$. Then $[u, a] \in[U, A] \leqslant U^{\perp} \leqslant u^{\perp}$ and so by (a) $[u, a]$ is singular. Since $[U, A]$ is isotropic, the singular vectors in $[U, A]$ form a subspace of $[U, A]$ (se\& B.5). Since [U, A] is generated by the singular vectors $[u, a], u \in U, a \in A$, we conclude that $[U, A]$ is singular.
(e): Since A acts cubically on $V,[V, A, A] \leqslant C_{V}(A)$ and so by B.6.c), $[V, A, A] \leqslant[V, A]^{\perp}$. Thus (e) follows from (d) applied with $U=[V, A]$.

Lemma B.10. Let V_{1} and V_{2} be \mathbb{K}-subspaces of V with $V=V_{1}+V_{2}$. Let $a \in G L_{\mathbb{K}}(V)$ and define $a_{i}: V_{i} \rightarrow V_{i}^{a}, v \mapsto v^{a}$. Then a is an isometry on V if and only if a_{1} and a_{2} are isometries and $f\left(v_{1}^{a}, v_{2}^{a}\right)=f\left(v_{1}, v_{2}\right)$ for all $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$.

Proof. The forward direction is obvious. So suppose that a_{1} and a_{2} are isometries and $f\left(v_{1}^{a}, v_{2}^{a}\right)=f\left(v_{1}, v_{2}\right)$ for all $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$. Since f is \mathbb{F}-bilinear we conclude that f is a invariant. Since $h\left(v_{1}+v_{2}\right)=h\left(v_{1}\right)+f\left(v_{1}, v_{2}\right)+h\left(v_{2}\right)$, in the case of an orthogonal space, also h is a-invariant.

Lemma B.11. Suppose that V is not a linear space. Let $Z \in \mathcal{S}(V)$ and $v \in V \backslash Z^{\perp}$. Let i_{v} be the number of elements $w \in v+Z$ isometric to v, and for $\lambda \in \mathbb{F}$ let s_{λ} be the number of elements $w \in v+Z$ with $h(w)=\lambda$.
(a) If V is a symplectic space then $i_{v}=s_{0}=|v+Z|=|\mathbb{K}|$.
(b) If V is a unitary space then $i_{v}=s_{\lambda}=|\mathbb{F}|$ for all $\lambda \in \mathbb{F}$.
(c) If V is an orthogonal space then $i_{v}=s_{\lambda}=1$ for all $\lambda \in \mathbb{K}$.

Proof. Choose $z \in Z$ with $f(z, v)=-1$ and let $k \in \mathbb{K}$.
(a): In a symplectic space all elements are singular. Hence (a) holds.
(b): Suppose that f is unitary, so $h(x)=f(x, x)$ for $x \in V$. Then

$$
h(v+k z)=f(v+k z, v+k z)=f(v, v)+k f(z, v)+k^{\alpha} f(z, v)+k k^{\alpha} f(z, z)=h(v)-\left(k+k^{\alpha}\right)
$$

Thus $h(v+k z)=\lambda$ if and only if $k+k^{a}=h(v)-\lambda$. Since the function $\mathbb{K} \rightarrow \mathbb{F}, k \mapsto k+k^{\alpha}$, is \mathbb{F}-linear and surjective, we conclude that for a given $\lambda \in \mathbb{F}$ there are exactly $|\mathbb{F}|$ elements $k \in \mathbb{K}$ with $k+k^{\alpha}=h(v)-\lambda$. So (b) holds.
(c): Suppose $H=O(V)$. Then

$$
h(v+k z)=h(v)+f(v, k z)+k^{2} h(z)=h(v)-k .
$$

Hence $h(v+k z)=\lambda$ if and only if $k=h(v)-\lambda$. This gives (c).

Corollary B.12. Suppose that $\mathcal{S}(V) \neq \varnothing$ and that V is not a 2-dimensional orthogonal space.
(a) The number of singular 1-spaces in V is congruent to 1 modulo p.
(b) Then number of non-zero singular vectors in V is congruent to $\left|\mathbb{K}^{\sharp}\right|$ modulo p.
(c) Any p-group of semilinear similarities of V fixes a singular vector and a singular 1-space in V.

Proof. (a): Let $Z \in \mathcal{S}(V)$. Put $m:=\operatorname{dim}_{\mathbb{K}} V$. If V is a linear, symplectic or unitary space put $t=|\mathbb{F}|$. If V is an orthogonal space put $t=1$. Let E be a 2 -dimensional subspace of V with $Z \leqslant E$

Suppose that $E \leqslant Z^{\perp}$. Note that one of the following holds:

- E is singular, $E / Z \in \mathcal{S}\left(Z^{\perp} / Z\right)$, and all $|\mathbb{K}|$ 1-spaces of E distinct from Z are in $\mathcal{S}(V)$.
- E is not singular, $E / Z \notin \mathcal{S}\left(Z^{\perp} / Z\right)$, and Z is the only singular 1-space of E.

It follows that

$$
\left|S\left(Z^{\perp}\right) \backslash\{Z\}\right|=|\mathbb{K}|\left|\mathcal{S}\left(Z^{\perp} / Z\right)\right|
$$

Suppose next that $E \not Z^{\perp}$. Then B.11 shows that E contains exactly t elements of $\mathcal{S}(V)$ distinct from Z. Note also that there are $|\mathbb{K}|^{m-2} 2$-dimensional subspaces E of V with $Z \leqslant E \leqslant Z^{\perp}$. Thus

$$
\left|\mathcal{S}(V) \backslash \mathcal{S}\left(Z^{\perp}\right)\right|=|\mathbb{K}|^{m-2} t
$$

Hence

$$
|\mathcal{S}(V)|=1+|\mathbb{K}|\left|\mathcal{S}\left(Z^{\perp} / Z\right)\right|+|\mathbb{K}|^{m-2} t
$$

Since $p||\mathbb{K}|$, we conclude that either $| \mathcal{S}(V) \mid \equiv 1(\bmod p)$ or $m=2$ and $p \nmid t$. In the latter case, since $p||\mathbb{F}|$ we get $t=1$ and V is an orthogonal space. Since 2 -dimensional orthogonal spaces are excluded by the hypothesis of the corollary, (a) is proved.
(b): Note that every singular 1 -space contains exactly $\left|\mathbb{K}^{\sharp}\right|$ non-zero singular vectors. So (b) follows from (a).
(c): By (a) and (b), neither the number of singular 1-spaces nor the number of non-zero singular vectors in V is divisible by p. This gives (c).

Lemma B.13. Let U be a \mathbb{K}-subspace of V and put $W=\langle\mathcal{S}(U)\rangle$. Then $W=U$ or $W=\operatorname{rad}(U)$. In particular, $V=\langle\mathcal{S}(V)\rangle$ or $\mathcal{S}(V)=\varnothing$.

Proof. Let Y be a 1-dimensional subspace of U. If $Y \not W^{\perp}$, then there exists $Z \in \mathcal{S}(V)$ with $Y \nleftarrow Z^{\perp}$. By B. $11 Z+Y$ contains a singular 1-space $X \neq Z$. Thus $Y \leqslant Z+Y=Z+X \leqslant W$.

We have proved that $U \subseteq W \cup W^{\perp}$, and so $U \leqslant W^{\perp}$ or $U \leqslant W$. In the second case $U=W$ and we are done. So suppose $U \leqslant W^{\perp}$. Then $W \leqslant U \cap U^{\perp}, W$ is singular and $W \leqslant \operatorname{rad}(U)$. Clearly $\operatorname{rad}(U) \leqslant W$ and so $W=\operatorname{rad}(U)$.

Either V is linear or $\operatorname{rad}(V)=0$. In the first case $\langle\mathcal{S}(V)\rangle=V$ is obvious, in the second case either $\langle\mathcal{S}(V)\rangle=V$ or $\langle\mathcal{S}(V)\rangle=\operatorname{rad}(V)=0$ and $\mathcal{S}(V)=\varnothing$.

Lemma B.14. Suppose that V is a symplectic space and $p=2$. Let $V^{\prime}:=V \times \mathbb{K}$ as a set. Define an addition and scalar multiplication on V^{\prime} by

$$
(v, k)+(w, l):=(v+w, k+l+f(v, w)) \quad \text { and } \quad l(v, k):=\left(l v, l^{2} k\right)
$$

for all $v, w \in V, k, l \in \mathbb{K}$. Define

$$
h^{\prime}: V^{\prime} \rightarrow \mathbb{K},(v, k) \mapsto k, \quad \text { and } \quad f^{\prime}: V^{\prime} \times V^{\prime} \rightarrow \mathbb{K},((v, k),(w, l)) \mapsto f(v, w)
$$

(a) $\left(V^{\prime}, f^{\prime}, h^{\prime}\right)$ is a non-degenerate orthogonal space with $V^{\prime \perp}=\{(0, k) \mid k \in \mathbb{K}\}$.
(b) The function $V \rightarrow V^{\prime} / V^{\prime \perp}, v \mapsto(v, 0)+V^{\perp}$ an isometry of symplectic spaces.
(c) Let $a \in S p(V)$ and define

$$
a^{\prime}: \quad V^{\prime} \rightarrow V^{\prime}, \quad(v, k) \mapsto\left(v^{a}, k\right)
$$

Then $a^{\prime} \in O\left(V^{\prime}\right)$.
(d) The function

$$
S p(V) \rightarrow O\left(V^{\prime}\right), \quad a \mapsto a^{\prime}
$$

is an isomorphism.
(e) Suppose in addition that $V=V_{1} / V_{1}^{\perp}$ where $\left(V_{1}, f_{1}, h_{1}\right)$ is a non-degenerate orthogonal space with $V_{1}^{\perp} \neq 0$. Then the function

$$
V_{1} \rightarrow V^{\prime}, w \rightarrow\left(w+V_{1}^{\perp}, h_{1}(w)\right)
$$

is an isometry.

Proof. (a): Let $u, v, w \in V$ and $j, k, l \in \mathbb{K}$. The addition is clearly commutative, $(0,0)$ is an additive identity and (v, k) is its own inverse. Also

$$
(u, j)+((v, k)+(w, l))=(u+v+w, j+k+l+f(u, v)+f(u, w)+f(v, w))=((u, j)+(v, k))+(w, l)
$$

and so V^{\prime} is an abelian group. Note that

$$
\begin{gathered}
j((v, k)+(w, l))=\left(j v+j w, j^{2} k+j^{2} l+j^{2} f(v, w)\right)=j(v, k)+j(w, l) \\
(j+k)(w, l)=\left(j w+k w, j^{2} l+k^{2} l\right)=j(w, l)+k(w, l) \text { and }(j k)(w, l)=\left(j k w, j^{2} k^{2} l\right)=j(k(w, l))
\end{gathered}
$$

Thus V^{\prime} is a vector space over \mathbb{K}. Since f is a symmetric form, so is f^{\prime}. Moreover,

$$
h^{\prime}(k(w, l))=h^{\prime}\left(k w, k^{2} l\right)=k^{2} l=k^{2} h^{\prime}(w, l)
$$

and

$$
\left.h^{\prime}((v, k)+(w, l))=h^{\prime}(v+w, k+l+f(v, w))=k+l+f(v, w)=h^{\prime}(v, k)+f^{\prime}(v, w)+h^{\prime}(w, l)\right)
$$

and so $\left(V^{\prime}, f^{\prime}, h^{\prime}\right)$ is an orthogonal space. Note that $(v, k) \in V^{\prime \perp}$ if and only if $v \in V^{\perp}=0$. Also $h^{\prime}(v, k)=0$ if and only if $k=0$. Thus $\operatorname{rad}\left(V^{\prime}\right)=0$ and V^{\prime} is non-degenerate.
(b) and (c) should be obvious.
(d): Let $b \in O(V)$. Then b induces an isometry on the symplectic space $V^{\prime} / V^{\prime \perp}$. Together with (b) we conclude that there exists a unique $a \in S p(V)$ such that $(v, k)^{b}+V^{\prime \perp}=\left(v^{a}, 0\right)+V^{\prime \perp}$ for all $v \in V, k \in \mathbb{K}$. Since b is an isometry, $h^{\prime}\left((v, k)^{b}\right)=h^{\prime}(v, k)=k$ and we conclude that $(v, k)^{b}=\left(v^{a}, k\right)$. Thus $b=a^{\prime}$ and (d) holds.
(e) is readily verified.

Lemma B. 15 (Witt's Lemma). Let U and W be \mathbb{K}-subspaces of V suppose that $\beta: U \rightarrow W$ is an isometry with $(U \cap R(V))^{\beta}=W \cap R(V)$. Then β extends to an isometry of V.

Proof. If V is a linear space, this is obvious. So suppose V is a symplectic, orthogonal or unitary space. If $V^{\perp}=0$, this is Witt's Lemma on page 81 of [As, 20].

It remains to treat the case where V is an orthogonal space with $V^{\perp} \neq 0$. Then $R(V)=V^{\perp}$. Since $(U \cap R(V))^{\beta}=W \cap R(V)$ we conclude that β induces an isometry of symplectic spaces

$$
b: U+V^{\perp} / V^{\perp} \rightarrow W+V^{\perp} / V^{\perp}
$$

According to the already treated symplectic case, b extends to an isometry a of the symplectic space V / V^{\perp}. By B.14 C), there exists an isometry a^{\prime} of V with $v^{a^{\prime}}+V^{\perp}=\left(v+V^{\perp}\right)^{a}$ for all $v \in V$. Let $u \in U$. Then $u^{\beta}+V^{\perp}=u^{a^{\prime}}+V^{\perp}$ and since both β and a^{\prime} are isometries, $h\left(u^{\beta}\right)=h\left(u^{a^{\prime}}\right)$. It follows that $u^{\beta}=u^{a^{\prime}}$, and so the lemma also holds for an orthogonal space with $V^{\perp} \neq 0$.

Lemma B.16. Let v and w be isometric elements in $V \backslash R(V)$. Then there exists $a \in H$ with $w^{a}=v$. In particular, H acts transitively on the set of non-zero singular vectors.

Proof. Since v and w are isometric, the function $\beta: \mathbb{K} v \rightarrow \mathbb{K} w, k v \mapsto k w$ is an isometry. Also $\mathbb{K} v \cap R(V)=0=\mathbb{K} w \cap R(V)$, and so by Witt's Lemma β extends to an isometry a of V. Then $v^{a}=v^{\beta}=w$.

B.2. The Classification of Classical Spaces

Definition B.17. Let $\left(v_{i}\right)_{i=1}^{n}$ be a family of vectors in V.
(a) $\left(v_{i}\right)_{i=1}^{n}$ is orthogonal if $f\left(v_{i}, v_{j}\right)=0$ for all $1 \leqslant i, j \leqslant n$ with $i \neq j$.
(b) $\left(v_{i}\right)_{i=1}^{n}$ is orthonormal if it is orthogonal and $h\left(v_{i}\right)=1$ for all $1 \leqslant i \leqslant n$.
(c) $\left(v_{i}\right)_{i=1}^{n}$ is hyperbolic if $n=2 l$ is even, $h\left(v_{i}\right)=0$ for all $1 \leqslant i \leqslant n$, and $f\left(v_{i}, v_{n+1-i}\right)=1$ for all $1 \leqslant i \leqslant l$, and $f\left(v_{i}, v_{j}\right)=0$ for all $1 \leqslant i, j \leqslant n$ with $i+j \neq n+1$.
(d) V is hyperbolic if V has a hyperbolic basis.
(e) V is definite, if V has no non-zero singular vectors.

Lemma B.18. Let $\operatorname{dim} V=: m=: 2 n+\epsilon, \epsilon \in\{0,1\}$.
(a) Suppose V is a symplectic space.
(a) V has a hyperbolic basis. In particular, m is even.
(b) V has Witt index n.
(c) Up to isometry, V is uniquely determined by m.
(b) Suppose V is a unitary space.
(a) V has an orthonormal basis.
(b) V has a basis $\left(v_{i}\right)_{i=1}^{m}$ such that $\left(v_{i}\right)_{i=1}^{2 n}$ is hyperbolic, and if m is odd, $f\left(v_{i}, v_{m}\right)=0$ for all $1 \leqslant i \leqslant 2 n$ and $h\left(v_{m}\right)=1$.
(c) V has Witt index n.
(d) Up to isometry, V is uniquely determined by m.
(c) Suppose V is an orthogonal space and p is odd. Then V has an orthogonal basis $\left(v_{i}\right)_{i=1}^{m}$ such that $h\left(v_{i}\right)=1$ for $1 \leqslant i \leqslant m-1$.
(d) Suppose V is an orthogonal space and m is odd.
(a) V has a basis $\left(u_{i}\right)_{i=1}^{m}$ such that $\left(u_{i}\right)_{i=1}^{2 n}$ is hyperbolic, $f\left(u_{i}, u_{m}\right)=0$ for all $1 \leqslant i \leqslant$ $m-1$, and $h\left(u_{m}\right) \neq 0$.
(b) V has Witt index n.
(c) Up to similarity, V is uniquely determined by m.
(d) If $p=2$ then V is uniquely determined up to isometry by m.
(e) If p is odd then V is uniquely determined up to isometry by m and the coset $h\left(u_{m}\right) \mathbb{K}^{\sharp 2}$.
(e) Suppose V is an orthogonal space and m is even.
(a) Either V has Witt index n and a hyperbolic basis, or V has Witt index $n-1$ and a basis $\left(v_{i}\right)_{i=1}^{m}$ such that $\left(v_{i}\right)_{i=3}^{m}$ is hyperbolic, $f\left(v_{i}, v_{j}\right)=0$ for $1 \leqslant i \leqslant 2$ and $3 \leqslant j \leqslant m$, $h\left(v_{1}\right)=h\left(v_{2}\right)=1$ and the polynomial $x^{2}-f\left(v_{1}, v_{2}\right) x+1$ has no roots in \mathbb{K}.
(b) Up to isometry, V is uniquely determined by m and its Witt index.

Proof. Suppose that V is a symplectic, unitary or orthogonal space. Let U be a singular subspace of V, so $U \leqslant U^{\perp}$. Then $U \cap V^{\perp}=0$ and so $\operatorname{dim}_{\mathbb{K}} V / U^{\perp}=\operatorname{dim}_{\mathbb{K}} U$. In particular, $2 \operatorname{dim}_{\mathbb{K}} U \leqslant \operatorname{dim}_{\mathbb{K}} V$ and thus V has Witt index at most n.
(a): By [Hu, II.9.6(b)] V has a hyperbolic basis, $\operatorname{dim} V$ is even and, up to isometry, V is uniquely determined by its dimension. Let $\left(v_{i}\right)_{i=1}^{2 n}$ be a hyperbolic basis. Then $\mathbb{K}\left\langle v_{1}, \ldots, v_{n}\right\rangle$ is a singular subspace of dimension n. Thus V has Witt index at least n, and (a) holds.
(b): By [Hu, II.10.4a] V has an orthonormal basis $\left(v_{i}\right)_{i=1}^{m}$ and up to isometry is uniquely determined by its dimension. Put $W=\mathbb{K}\left\langle v_{1}, \ldots, v_{2 d}\right\rangle$. Then by [Hu, I0.4b] W has a hyperbolic basis $\left(u_{i}\right)_{i=1}^{2 n}$. Then W^{\perp} is 1 -dimensional with orthonormal basis say u_{m}. Also $\mathbb{K}\left\langle u_{1}, \ldots, u_{n}\right\rangle$ is a singular subspace of dimension n, and so (b) holds.
(c): [Hu, II.10.9b].
(d): Suppose first that p is odd. Then by [As, 21.3] V has a hyperbolic hyperplane W. Note that W has Witt index n and so also V has Witt index n. As in As choose $0 \neq x \in W^{\perp}$ and a generator c of \mathbb{K}^{\sharp}, and define $\operatorname{sgn}(V)=+1$ if $h(x)$ is a square in \mathbb{K} and $\operatorname{sgn}(V)=-1$ if not. By As, 21.4], up to isometry, there are exactly two m-dimensional orthogonal spaces, namely (V, f, h) and $(V, c f, c h)$. Moreover, (V, f, h) and $(V, c f, c h)$ are similar, and one has $s g n$ equal to +1 and the other equal to -1 . So (d) holds if p is odd.

If $p=2$ then $V^{\perp} \neq 0$ and by $\sqrt{\text { a }}$, the symplectic space V / V^{\perp} has a hyperbolic basis $\left(v_{i}+V^{\perp}\right)_{i=1}^{2 n}$. Since $h\left(V^{\perp}\right)=\mathbb{K}, v_{i}+V^{\perp}$ contains a singular vector and we may choose v_{i} to be singular. Then $\mathbb{K}\left\langle\left(v_{i}\right)_{i=1}^{n}\right\rangle$ is an n-dimensional singular subspace of V and so V has Witt index n. Since $\mathbb{K}^{2}=\mathbb{K}$ we can choose $v_{m} \in V^{\perp}$ with $h\left(v_{m}\right)=1$. In particular, up to isometry, V is uniquely determined by its dimension, and so (d) also holds if $p=2$.
(e): By As, 21.6] V is isometric to D^{n} or $D^{n-1} Q$, where D and Q are 2-dimensional orthogonal spaces with D hyperbolic and Q definite. Moreover, D^{n} has Witt index n, while $D^{n-1} Q$ has Witt index $n-1$. Let \mathbb{E} be an extension field of \mathbb{K} with $\operatorname{dim}_{\mathbb{K}} \mathbb{E}=2$ and let $i d_{\mathbb{K}} \neq \sigma \in A u t_{\mathbb{K}}(\mathbb{E})$. Define

$$
T_{\sigma}: \mathbb{E} \times \mathbb{E} \rightarrow \mathbb{K},(a, b) \mapsto a^{\sigma} b+b^{\sigma} a, \quad \text { and } \quad N_{\sigma}: \mathbb{E} \rightarrow \mathbb{K}, a \mapsto a^{\sigma} a
$$

Then by $\mathbf{A s}, 21.9]\left(\mathbb{E}, T_{\sigma}, N_{\sigma}\right)$ is a definite orthogonal space and isometric to Q. Let λ be any element of \mathbb{K} such that $x^{2}-\lambda x+1$ has no root in \mathbb{K}. Then $x^{2}-\lambda x+1$ has a root $\xi \in \mathbb{E}$. It follows that $\xi+\xi^{\sigma}=\lambda$ and $\xi^{\sigma} \xi=1$. Since $\xi \notin \mathbb{K},(1, \xi)$ is \mathbb{K}-basis for \mathbb{E} and

$$
N_{\sigma}(1)=1^{\sigma} 1=1, \quad T_{\sigma}(1, \xi)=1^{\sigma} \xi+\xi^{\sigma} 1=\lambda, \quad N_{\sigma}(\xi)=\xi^{\sigma} \xi=1
$$

Thus (e) holds.

Lemma B.19. Suppose that $f \neq 0$ and let d be the Witt index of V.
(a) H acts transitively on the maximal singular subspace of V. In particular, all maximal singular subspace of V have dimension d.
(b) Let W be a maximal hyperbolic subspace of V. Then $V=W \oplus W^{\perp}$ and W^{\perp} is definite.
(c) If V is definite, then $\operatorname{dim}_{\mathbb{K}} V \leqslant 1$ or $H=O^{-}(V)$ and $\operatorname{dim}_{\mathbb{K}} V=2$.

Proof. (a): See [As, 20.8].
(b): See [As, 19.5].
(c) follows from B.18.

B.3. The Clifford Algebra

In this section (V, f, h) is an orthogonal space. We will define a normal subgroup $\Omega(V)$ of $O(V)$ via the Spinor norm and Dickson invariant. In our definition the Spinor norm S is defined for all $a \in O(V)$ and not only for products of reflections. This allows to define $\Omega(V)$ also in the case of a four dimensional orthogonal space of Witt index two over \mathbb{F}_{2}.

We remark that $\Omega(V)$ is often defined to be $O(V)^{\prime}$. With our definition $\Omega(V)=O(V)^{\prime}$ with two exceptions: $\Omega_{4}^{+}(2) \cong S L_{2}(2) \times S L_{2}(2)$, while $O_{4}^{+}(2)^{\prime} \sim 3^{2} .2$ and $\Omega_{5}(2)=O_{5}(2) \cong S y m(6)$, while $O_{5}(2)^{\prime} \cong \operatorname{Alt}(6)$.

We will also prove that $C_{\Omega(V)}\left(W^{\perp}\right) \cong \Omega(W)$ if $V^{\perp}=0$ and W is a \mathbb{K}-subspace of V with $W \cap W^{\perp}=0$. This of course is well-known, but the case, where W is a four dimensional orthogonal space of Witt index two over \mathbb{F}_{2}, is often ignored.

As a byproduct we obtain that the elements of $Q_{Z}, Z \in \mathcal{S}(V)$, naturally correspond to elements of the Clifford algebra of V, see the elements $\omega_{1+b c}$ below.

Let $C:=C(V, f, h)$ be the Clifford algebra of the orthogonal space (V, f, h). So C is an associative \mathbb{K}-algebra with identity generated by the \mathbb{K}-space V subject to the relations $v^{2}=h(v)$ for $v \in V$.

Let $v, w \in V$. Then

$$
h(v)+f(v, w)+h(w)=h(v+w)=(v+w)^{2}=v^{2}+v w+w v+w^{2}=h(v)+v w+w v+h(w)
$$

and so

$$
v w+w v=f(v, w) \in \mathbb{K} \quad \text { and } \quad v w=-w v+f(v, w)
$$

Note that the opposite algebra fulfills the same relations and so there exists a unique antiautomorphism of \mathbb{K}-algebras

$$
\theta: \quad C \rightarrow C \quad \text { with } \quad v^{\theta}=v \quad \text { for } v \in V
$$

Then for $x, y \in V, h(x)=x^{2}=x^{\theta} x$ and $f(x, y)=x y+y x=x^{\theta} y+y x^{\theta}$. We extend h and f as follows:

$$
h: \quad C \rightarrow C, x \mapsto x^{\theta} x \quad \text { and } \quad f: \quad C \times C \rightarrow C,(x, y) \mapsto x^{\theta} y+y^{\theta} x
$$

Note that f is \mathbb{K}-bilinear and for all $x, y \in C$:
$h(x+y)=(x+y)^{\theta}(x+y)=\left(x^{\theta}+y^{\theta}\right)(x+y)=x^{\theta} x+x^{\theta} y+y^{\theta} x+y^{\theta} y=h(x)+f(x, y)+h(y)$.
Put $E:=\{1,-1\} \subseteq \mathbb{Z}$ (so $|E|=2$ even if $p=2$). For $i \in E$ define

$$
C_{i}:=C_{i}(V, f, h):=\mathbb{K}\left\langle v_{1} \cdots v_{n} \mid n \in \mathbb{N}, v_{1}, \ldots, v_{n} \in V,(-1)^{n}=i\right\rangle
$$

where $v_{1} \cdots v_{n}=1$ if $n=0$.
Then $\left(C_{1}, C_{-1}\right)$ is an E-grading of C, that is $C=C_{1} \oplus C_{-1}$ and $C_{i} C_{j} \subseteq C_{i j}$ for all $i, j \in E$. Define

$$
\operatorname{Cliff}(V):=\left\{x \in C_{1} \cup C_{-1} \mid 0 \neq h(x) \in \mathbb{K}, x V=V x\right\}
$$

Let $x \in \operatorname{Cliff}(V)$ and $y \in C$. Then $0 \neq x^{\theta} x=h(x) \in \mathbb{K}$ and so x is invertible with inverse $h(x)^{-1} x^{\theta}$. We compute

$$
h(x y)=(x y)^{\theta} x y=y^{\theta} x^{\theta} x y=y^{\theta} h(x) y=h(x) y^{\theta} y=h(x) h(y) .
$$

For $y=x^{-1}$ this shows that $h\left(x^{-1}\right)=h(x)^{-1} \in \mathbb{K}^{\sharp}$. For $y \in \operatorname{Cliff}(V)$ we get $0 \neq h(x y) \in \mathbb{K}$. It follows that $\operatorname{Cliff}(V)$ is a multiplicative subgroup of C and the restriction of h to $\operatorname{Cliff}(V)$ is a multiplicative homomorphism from $\operatorname{Cliff} f(V)$ to \mathbb{K}^{\sharp}.

For $x \in \operatorname{Cliff}(V)$ and $y \in C$ define $y^{x}:=x^{-1} y x$. Then, since $h(x) \in \mathbb{K} \subseteq Z(C)$,

$$
h\left(y^{x}\right)=h\left(x^{-1} y x\right)=h\left(x^{-1}\right)(h(y) h(x))=h(x)^{-1} h(y) h(x)=h(y)
$$

So h and thus also f is invariant under conjugation by $x \in \operatorname{Cliff} f(V)$.
Let $d(x)$ be the unique element of E with $x \in C_{d(x)}$. Then

$$
d: \quad \operatorname{Cliff}(V) \rightarrow E, \quad x \mapsto d(x)
$$

is a group homomorphism.
Since x is invertible the condition $x V=V x$ is equivalent to $V^{x}=V\left(\right.$ where $\left.V^{x}:=x^{-1} V x\right)$. Define

$$
\omega_{x}: \quad V \rightarrow V, \quad v \mapsto d(x) v^{x}
$$

Since $d(x)= \pm 1, h$ and f are invariant under multiplication by $d(x)$, and, as seen above, also under conjugation by x. Hence $\omega_{x} \in O(V)$ and

$$
\omega: \quad \operatorname{Cliff}(V) \rightarrow O(V), \quad x \mapsto \omega_{x}
$$

is a homomorphism.
Let $a \in V$ with $h(a) \neq 0$, so a is invertible with inverse $h(a)^{-1} a$. Let $v \in V$. Observe that $d(a)=-1, v a=-a v+f(v, a)$ and $a^{-1}=h(a)^{-1} a$. Thus

$$
d(a) a^{-1} v a=-\left(a^{-1}(-a v+f(v, a))\right)=v-f(v, a) a^{-1}=v-h(a)^{-1} f(v, a) a
$$

In particular, $a \in \operatorname{Cliff}(V)$, and ω_{a} is the reflection associated to a.
Next let $b, c \in V$ such that b is singular and $c \perp b$. Note that $b^{2}=h(b)=0$ and $b c=$ $-c b+f(b, c)=-c b$. Hence

$$
\begin{equation*}
b c b=-b b c=h(b) c=0, \quad \text { and } \quad(b c)^{2}=b c b c=0 \tag{*}
\end{equation*}
$$

Put $x:=1+b c$. Then $x^{\theta}=1+c b=1-b c$ and

$$
h(x)=h(1+b c)=\theta(1+b c)(1+b c)=(1-b c)(1+b c)=1-b c+b c-(b c)^{2}=1
$$

In particular, $x=1+b c$ is invertible with inverse $1-b c$. Recall that $1 \in C_{1}$ and so also $x \in C_{1}$ and $d(x)=1$. Thus ω_{x} is conjugation by x.

We compute:
$(* *) v b c=(-b v+f(v, b)) c=-b v c+f(v, b) c=-b(-c v+f(v, c))+f(v, b) c=b c v-f(v, c) b+f(v, b) c$
and

$$
\begin{aligned}
x^{-1} v x & =(1-b c) v(1+b c)=(1-b c)(v+v b c)=(1-b c) v+(1-b c) v b c \\
& \stackrel{(* *)}{=} v-b c v+(1-b c)(b c v-f(v, c) b+f(v, b) c) \\
& =v-b c v+b c v-f(v, c) b+f(v, b) c-b c b c v+f(v, c) b c b-f(v, b) b c c \\
& \stackrel{(*)}{=} v-f(v, c) b+f(v, b) c-f(v, b) b h(c) \\
& =v-f(v, c) b+f(v, b)(c-h(c) b) .
\end{aligned}
$$

In particular, $x^{-1} V x=V$. Hence $x=1+b c \in \operatorname{Cliff}(V)$ and

$$
\omega_{1+b c}: \quad V \rightarrow V, \quad v \mapsto v-f(v, c) b+f(v, b)(c-h(c) b)
$$

is an isometry of V.
We claim that

$$
\begin{equation*}
O(V)=\left\langle\omega_{a}, \omega_{1+b c} \mid a, b, c \in V, h(a) \neq 0, h(b)=0, f(b, c)=0\right\rangle . \tag{I}
\end{equation*}
$$

Indeed, by [As, 22.7] $O(V)$ is generated by the reflections ω_{a}, unless $O(V)=O_{4}^{+}(2)$. In the latter case the group generated by reflections has index two and does not contain $\omega_{1+b c}$ for $b, c \in V^{\sharp}$ with $h(b)=h(c)=0, f(b, c)=0$ and $b \neq c$. So $\overline{\mathbb{Z}}$ holds.

In particular, ω defined above is surjective. Put $Z:=\operatorname{ker} \omega$. So $\operatorname{Cliff}(V) / Z \cong O(V)$, and h and d induce well-defined homomorphisms

$$
S: O(V) \rightarrow \mathbb{K}^{\sharp} / h(Z), \quad \omega_{x} \mapsto h(x) h(Z) \quad \text { and } \quad D: \quad O(V) \rightarrow E / d(Z), \omega_{x} \mapsto d(x) d(Z),
$$

where x runs through the elements of $\operatorname{Cliff}(V) . S(x)$ is called the Spinor norm of x, and $D(x)$ is called the Dickson invariant of x. We define

$$
\Omega(V):=\operatorname{ker} S \cap \operatorname{ker} D=\{z \in O(V) \mid S(x)=1 \text { and } D(x)=1\} .
$$

Since $h(1+b c)=1$ and $d(1+b c)=1$ we have $S\left(\omega_{1+b c}\right)=1$ and $D\left(\omega_{1+b c}\right)=1$. So

$$
O^{\diamond}(V):=\left\langle\omega_{1+b c} \mid b, c \in V, h(b)=0, f(b, c)=0\right\rangle \leqslant \Omega(V) .
$$

We will determine now $O(V) / \Omega(V)$. By (I) $O(V)=O^{\diamond}(V)\left\langle\omega_{a} \mid a \in V, h(a) \neq 0\right\rangle$, and since $O^{\diamond}(V) \leqslant \Omega(V)$, we conclude that

$$
O(V) / \Omega(V) \cong\left\langle\left(S\left(\omega_{a}\right), D\left(\omega_{a}\right)\right) \mid a \in V, h(a) \neq 0\right\rangle .
$$

Put $m:=\operatorname{dim} \mathbb{K}$ and note that

$$
Z(C)= \begin{cases}\mathbb{K} & \text { if } m \text { is even, } \\ \mathbb{K}+\mathbb{K}\left(v_{1} \cdots v_{m}\right) & \text { if } m \text { is odd, } p \text { is odd and }\left(v_{i}\right)_{i=1}^{m} \text { is an orthogonal basis for } V, \\ \mathbb{K}+V^{\perp} & \text { if } m \text { is odd and } p=2 .\end{cases}
$$

In particular, $Z(C) \cap C_{1}=\mathbb{K}$. We claim that

$$
\begin{equation*}
Z=\mathbb{K}^{\sharp} \cup V^{\perp \sharp} . \tag{II}
\end{equation*}
$$

Let $x \in \operatorname{Cliff}(V)$. Then $x \in Z$ if and only $v^{x}=d(x) v$ for all $v \in V$. If $p=2$ this just means $x \in Z(C)$, and so $x \in C_{1} \cap Z(C)=\mathbb{K}^{\sharp}$ or $x \in C_{-1} \cap Z(C)=V^{\perp \sharp}$, where m is odd in the latter case. So (II) holds for $p=2$.

So suppose p is odd. Assume $x \in C_{-1}$. Then $d(x)=-1$ and so $v^{x}=-v$ for all $v \in V$. It follows that $w^{x}=-w$ for all $w \in C_{-1}$ and so also $x^{x}=-x$, a contradiction since $x^{x}=x, p$ is odd and $x \neq 0$. Hence $x \in C_{1}, d(x)=1$ and $x \in Z(C) \cap C_{1}=\mathbb{K}$. So $x \in \mathbb{K}^{\sharp}$. Since p is odd, $V^{\perp}=0$, and so (III) also holds for odd p.

If $V^{\perp} \neq 0$, then $p=2, \mathbb{K}^{\sharp 2}=\mathbb{K}^{\sharp}$, and so $h(Z)=\mathbb{K}^{\sharp}$ and $d(Z)=E$. It follows that $O(V)=$ ker $D=\operatorname{ker} S=\Omega(V)$ in this case.

So suppose $V^{\perp}=0$. Then (II) shows that $h(Z)=\mathbb{K}^{\sharp 2}$ and $d(Z)=1$. Hence S and D are given by

$$
S: O(V) \rightarrow \mathbb{K}^{\sharp} / \mathbb{K}^{\sharp 2}, \omega_{x} \mapsto h(x) \mathbb{K}^{\sharp 2}, \quad \text { and } \quad D: O(V) \rightarrow E, \omega_{x} \mapsto d(x) .
$$

Hence $S\left(\omega_{a}\right)=1$ if and only if a is a square in \mathbb{K}^{2}. Moreover, $D\left(\omega_{a}\right)=-1$.

Suppose that $p=2$. Then $\mathbb{K}^{\sharp}=\mathbb{K}^{\sharp 2}$, and so $S\left(\omega_{a}\right)=1$ for all $a \in V$ with $h(a) \neq 0$. Thus ker $S=O(V), \Omega(V)=\operatorname{ker} D$ and $O(V) / \Omega(V) \cong C_{2}$.

Suppose now that p is odd and $\operatorname{dim} V \geqslant 2$. Then $\mathbb{K}^{\sharp} / \mathbb{K}^{\sharp 2} \cong C_{2}$, and for each $k \in \mathbb{K}^{\sharp}$ there exists $a \in V$ with $h(a)=k$. If k is a square $S\left(\omega_{a}\right)=1$ and $D\left(\omega_{a}\right)=-1$, and if k is not a square, $S\left(\omega_{a}\right) \neq 1$ and $D\left(\omega_{a}\right)=-1$. Thus $O(V) / \Omega(V) \cong C_{2} \times C_{2}$.

Suppose that p is odd and $\operatorname{dim} V=1$. Then (for example by B.9b) $O(V)=\left\{1, \omega_{a}\right\}$, where $a \in V^{\sharp}$. Thus $\Omega(V)=1$ and $O(V) / \Omega(V) \cong C_{2}$.

Suppose p is odd. Then we can identify $e \in E$ with $e 1_{\mathbb{K}}$ in \mathbb{K}. It follows that $D\left(\omega_{a}\right)=-1=$ $\operatorname{det}\left(\omega_{a}\right)$ and $D\left(\omega_{1+b c}\right)=1=\operatorname{det}\left(\omega_{1+b c}\right)$. By (II) the elements ω_{a} and $\omega_{1+b c}$ generate $O(V)$. Thus $D(z)=\operatorname{det}(z)$ for all $z \in O(V)$. In particular, $\Omega(V)=\{z \in S O(V) \mid S(z)=1\}$.

The following table summarize the preceding results:

$\operatorname{dim} V$	p	$O(V) / \Omega(V)$	$\Omega(V)$
odd	2	1	$O(V)$
even	2	C_{2}	$\{z \in O(V) \mid D(z)=1\}$
$\geqslant 2$	odd	$C_{2} \times C_{2}$	$\{z \in S O(V) \mid S(z)=1\}$
1	odd	C_{2}	1

We define

$$
\operatorname{Spin}(V):=\langle 1+b c \mid b, c \in V, h(b)=0, f(b, c)=0\rangle \leqslant \operatorname{Cliff}(V) \cap C_{1} .
$$

Note that $\omega(\operatorname{Spin}(V))=\Omega(V)$ if $\operatorname{dim}_{\mathbb{K}} V \geqslant 3$.
Lemma B.20. Suppose that V is an orthogonal space with $V^{\perp}=0$ and let W be $a \mathbb{K}$-space of V with $W \cap W^{\perp}=0$.
(a) The restriction function $\tau: C_{O(V)}\left(W^{\perp}\right) \rightarrow O(W),\left.t \mapsto t\right|_{W}$, is an isomorphism.
(b) Let S^{W} and D^{W} be the Spinor norm and Dickson invariant for the orthogonal space W. Then $S(t)=S^{W}\left(\left.t\right|_{W}\right)$ and $D(t)=D^{W}\left(\left.t\right|_{W}\right)$ for all $t \in C_{O(V)}\left(W^{\perp}\right)$.
(c) τ induces an isomorphism from $C_{\Omega(V)}\left(W^{\perp}\right)$ to $\Omega(W)$.

Proof. a): Since $V^{\perp}=0$ and $W \cap W^{\perp}=0, V=W \oplus W^{\perp}$. Hence (a) follows from B. 10 .
(b): Let $t \in C_{O(V)}\left(W^{\perp}\right)$. Then $\left.t\right|_{W}$ is a product of elements of the form $\omega_{a}^{W}, \omega_{1+b c}^{W}, a, b, c \in W$, $h(a) \neq 0, h(b)=0, f(b, c)=0$. Since $W^{\perp} \subseteq a^{\perp} \cap b^{\perp} \cap c^{\perp}, \omega_{a}$ and $\omega_{1+b c}$ centralize W^{\perp}, we get

$$
\left.\omega_{a}\right|_{W}=\omega_{a}^{W} \quad \text { and }\left.\quad \omega_{1+b c}\right|_{W}=\omega_{1+b c}^{W}
$$

Thus t is the corresponding product of the elements of the form $\omega_{a}, \omega_{1+b c}$. Also

$$
\begin{array}{lll}
S\left(\omega_{a}\right)=h(a) \mathbb{K}^{\sharp 2}=S^{W}\left(\omega_{1+b c}^{W}\right), & & D\left(\omega_{a}\right)=-1=D^{W}\left(\omega_{a}^{W}\right), \\
S\left(\omega_{1+b c}\right)=1=S^{W}\left(\omega_{1+b c}^{W}\right), & & D\left(\omega_{1+b c}\right)=1=D^{W}\left(\omega_{1+b c}^{W}\right) .
\end{array}
$$

So indeed $S(t)=S^{W}\left(\left.t\right|_{W}\right)$ and $D(t)=D^{W}\left(\left.t\right|_{W}\right)$.
(c): Let $t \in C_{O(V)}\left(W^{\perp}\right)$. Then $t \in \Omega(V)$ if and only if $S(t)=D(t)=1$ and so by if and only if $S^{W}\left(\left.t\right|_{W}\right)=D^{W}\left(\left.t\right|_{W}\right)=1$ and thus if and only if $\left.t\right|_{W} \in \Omega(W)$. Hence (c) follows from (a).

B.4. Normalizers of Singular Subspaces

Lemma B.21. Let U be an k-dimensional isotropic subspace of V and $E:=C_{H}(U) \cap C_{H}(V / U)$.
(a) Suppose V is not a linear space. Then $E=C_{H}(V / U)$.
(b) Suppose $V^{\perp}=0$. Then $E=C_{H}(V / U)=C_{H}\left(U^{\perp}\right)$.
(c) Suppose that V is a linear space. Then $E \cong U \otimes_{\mathbb{K}}(V / U)^{*},|E|=|\mathbb{K}|^{k(n-k)}$ and $\left|V / C_{V}(E)\right|=$ $|\mathbb{K}|^{n-k}$.
(d) Suppose that V is a symplectic space. Then $E \cong S^{2}(U),|E|=|\mathbb{K}|^{\frac{k(k+1)}{2}}$ and $\left|V / C_{V}(E)\right|=$ $|\mathbb{K}|^{k}$.
(e) Suppose that V is a unitary space. Then $E \cong U^{2}(U),|E|=|\mathbb{F}|^{k^{2}}$ and $\left|V / C_{V}(E)\right|=|\mathbb{F}|^{2 k}$.
(f) Suppose that V is an orthogonal space and U is singular. Then $E \cong \Lambda^{2}(U),|E|=|\mathbb{K}|^{\frac{k(k-1)}{2}}$, $\left|V / C_{V}(E)\right|=|\mathbb{K}|^{k}$,
(g) Suppose that V is an orthogonal space and U is not singular. Put $U_{0}:=\{u \in U \mid h(u)=0\}$, $E_{0}:=C_{E}\left(V / U_{0}\right)$, and $E_{1}:=E \cap \Omega(V)$. Then $p=2, E_{0} \leqslant E_{1} \leqslant E, E_{1} / E_{0} \cong U_{0}$, $E_{0} \cong \Lambda^{2}\left(U_{0}\right)$, and $\left|E_{1}\right|=|\mathbb{K}|^{\frac{k(k-1)}{2}}$. If $V^{\perp} \cap U \neq 0$ then $\left|V / C_{V}(E)\right|=|\mathbb{K}|^{k-1}$ and $E=E_{1}$. If $V^{\perp} \cap U=0$ then $\left|V / C_{V}(E)\right|=|\mathbb{K}|^{k}$ and $\left|E / E_{1}\right|=2$.
Here all the isomorphisms are $\mathbb{Z} N_{H}(U)$-module isomorphisms.
Proof. (a): By B.6dd) $C_{H}(V / U) \leqslant C_{H}(U)$ and so $C_{H}(V / U)=C_{H}(V / U) \cap C_{H}(U)=E$.
(b): By B.6 a $V / U^{\perp \perp}$ is dual to $U^{\perp} / U^{\perp} \cap V^{\perp}$ as an $\mathbb{F} N_{H}(U)$ module. Since $V^{\perp}=0$ we have $U^{\perp \perp}=U$ and so V / U is dual to U^{\perp}. Hence $C_{H}(V / U)=C_{H}(U)$. By (c) $C_{H}(V / U)=E$ and so b) is proved.

The remaining statements are [MS5, 3.4].

Lemma B. 22 ([MS5, 3.5]). Let U be a k-dimensional isotropic subspace of V. Let U_{0} be the subspace of all singular elements of U and put $k:=\operatorname{dim}_{\mathbb{K}} U_{0}$. Suppose that $k \geqslant 2$. Put $E:=$ $C_{H}(U) \cap C_{H}(V / U)$, and $P:=O^{p^{\prime}}\left(N_{H^{\prime}}(U)\right)$.
(a) If V is a linear or unitary space, then E is a simple $\mathbb{F}_{p} P$-module.
(b) If V is a symplectic space and p is odd, then E is a simple $\mathbb{F}_{p} P$ module.
(c) If V is an orthogonal space and U is singular, then one of the following holds:
(1) $k \geqslant 3$ and E is a simple $\mathbb{F}_{p} P$-module.
(2) $k=2, P$ centralizes E and E is a simple $\mathbb{F}_{p} N_{H^{\prime}}(U)$-module.
(d) Suppose that V is a symplectic space and $p=2$ or an orthogonal space and U is not singular. Then $p=2$. Let E_{0} be the sum of the simple $\mathbb{F}_{2} P$-submodules of E. Then one of the following holds:
(1) $k \geqslant 3, E_{0}$ is a simple $\mathbb{F}_{2} P$-module, and $E_{0} \cong \bigwedge_{2} U_{0}^{*}$.
(2) $k=2,|\mathbb{K}|>2$ or $V^{\perp} \leqslant U, E_{0}=C_{E}(P) .\left|E_{0}\right|=|\mathbb{K}|$ and $N_{H^{\prime}}(U)$ acts simply on E_{0}.
(3) $k=2$, $|\mathbb{K}|=2, V$ is symplectic or $V^{\perp} \leqslant U$, and E is the direct sum of simple $\mathbb{F}_{2} P$-modules of order 2 and 4.

B.5. Point-Stabilizers

Lemma B.23. Suppose that V is not a linear space. Let $Z \in \mathcal{S}(V), 0 \neq z \in Z$ and $v \in V$ with $f(z, v)=-1$. Let \mathcal{T} be the set of all a in Z^{\perp} such that v and $v+a$ are isometric. For $a \in \mathcal{T}$ let γ_{a} be the unique element of $G L_{\mathbb{K}}(V)$ with

$$
v^{\gamma_{a}}=v+a \quad \text { and } \quad u^{\gamma_{a}}=u+f(u, a) z \quad \text { for all } u \in Z^{\perp}
$$

(a) $\gamma_{a} \in Q_{Z}$ for all $a \in \mathcal{T},[v, q] \in \mathcal{T}$ for all $q \in Q_{z}$, and the function $\mathcal{T} \rightarrow Q_{z}, a \rightarrow \gamma_{a}$ is a bijection with inverse $Q_{z} \rightarrow \mathcal{T}, q \rightarrow[v, q]$.
(b) Let $a \in \mathcal{T}$. Then $\gamma_{a} \in D_{Z}$ if and only if $a \in Z$.
(c) For each $w \in V \backslash Z^{\perp}, Q_{Z}$ acts regularly on the set of elements in $w+Z^{\perp}$ isometric to w.
(d) For each $w \in V \backslash Z^{\perp}, D_{Z}$ acts regularly on the set of elements in $w+Z$ isometric to w.
(e) Let $a, b \in \mathcal{T}$. Then

$$
\gamma_{a} \gamma_{b}=\gamma_{a+b+f(a, b) z}, \quad\left[\gamma_{a}, \gamma_{b}\right]=\gamma_{(f(b, a)-f(a, b)) z}, \quad \text { and } \quad \gamma_{a}^{p}=\gamma_{-f(a, a) z}
$$

(f) The function $Q_{Z} / D_{Z} \rightarrow Z^{\perp} / Z, q D_{Z} \mapsto[v, q]+Z$, is an $\mathbb{F}_{p} C_{H}(Z)$-isomorphism.
(g) If $Q_{Z} \neq 1$, then $C_{V}\left(Q_{Z}\right)=V^{\perp}+Z$.

Proof. a): Let $a \in Z^{\perp}$ and $\tau \in \operatorname{Hom}_{\mathbb{K}}\left(Z^{\perp}, \mathbb{K}\right)$ with $Z \tau=0$. Define $\gamma_{a, \tau} \in G L_{\mathbb{K}}(V)$ by

$$
v^{\gamma_{a, \tau}}=v+a \quad \text { and } \quad u^{\gamma_{a, \tau}}=u+(u \tau) z \text { for } u \in Z^{\perp}
$$

Then $\gamma_{\alpha, \tau}$ centralizes $Z, Z^{\perp} / Z$ and V / Z^{\perp}.
Now let $\gamma \in G L_{\mathbb{K}}(V)$ such that γ centralizes Z, Z^{\perp}, and V / Z^{\perp}. Then there exists a unique $a \in Z^{\perp}$ and $\tau \in \operatorname{Hom}_{\mathbb{K}}\left(Z^{\perp}, \mathbb{K}\right)$ with $Z \tau=0$ such that $\gamma=\gamma_{a, \tau}$, namely $a=[v, \gamma]$ and τ is defined by $[u, \gamma]=(u \tau) z$ for $u \in Z^{\perp}$.

Observe that $\left.\gamma\right|_{Z^{\perp}}$ is an isometry of Z^{\perp} and that $\left.\gamma\right|_{\mathbb{K} v}: \mathbb{K} v \rightarrow \mathbb{K}(v+a)$ is an isometry if and only if $v+a$ is isometric to v, that is, if and only if $a \in \mathcal{T}$.

For $u \in Z^{\perp}$ we have
$f\left(u^{\gamma}, v^{\gamma}\right)=f(u+(u \tau) z, v+a)=f(u, v)+f(u, a)+(u \tau) f(z, v)+(u \tau) f(z, a)=f(u, v)+f(u, a)-u \tau$.
Hence B. 10 shows that γ is an isometry if and only if $a \in \mathcal{T}$ and $u \tau=f(u, a)$ for all $u \in Z^{\perp}$, and so if and only if $a \in \mathcal{T}$ and $\gamma=\gamma_{a}$.
(b): If $a \in \mathcal{T} \cap Z$, then $f(u, a)=0$ for all $u \in Z^{\perp}$. Thus γ_{a} centralizes Z^{\perp} and V / Z and so $\gamma_{a} \in \stackrel{D}{D}_{Z}$. Conversely, if $\gamma_{a} \in D_{Z}$, then $a=\left[v, \gamma_{a}\right] \in Z$.
(c) and (d): Without loss $w=v$. Let $v^{\prime} \in v+Z^{\perp}$ be isometric to v and put $a:=v^{\prime}-v$. Then $a \in \mathcal{T}$ and by (a) γ_{a} is the unique element of Q_{Z} with $\left[v, \gamma_{a}\right]=a$ and so also the unique element of Q_{Z} with $v^{\gamma_{a}}=v^{\prime}$. Thus (c) holds. Note that $v^{\prime} \in v+Z$ if and only if $a \in Z$ and so by (b) if and only if $\gamma_{a} \in D_{Z}$. Hence also (d) holds.
(e): Let $a, b \in \mathcal{T}$. Then $\gamma_{a} \gamma_{b}$ is an isometry on V, so $v^{\gamma_{a} \gamma_{b}}=v+\left[v, \gamma_{a} \gamma_{b}\right]$ is isometric to v and $\left[v, \gamma_{a} \gamma_{b}\right] \in \mathcal{T}$. Since

$$
v^{\gamma_{a} \gamma_{b}}=(v+a)^{\gamma_{b}}=v+b+a+f(a, b) z
$$

we conclude that $\left[v, \gamma_{a} \gamma_{b}\right]=b+a+f(a, b) z \in \mathcal{T}$ and

$$
\gamma_{a} \gamma_{b}=\gamma_{a+b+f(a, b) z}
$$

It follows that

$$
\gamma_{a} \gamma_{b}=\gamma_{b} \gamma_{a} \gamma_{(f(b, a)-f(a, b)) z}, \quad\left[\gamma_{a}, \gamma_{b}\right]=\gamma_{(f(b, a)-f(a, b)) z} \quad \text { and } \quad \gamma_{a}^{p}=\gamma_{p a+(p-1) f(a, a) z}=\gamma_{-f(a, a) z}
$$

(f): Define $\Phi: Q_{Z} \rightarrow Z^{\perp} / Z, q \mapsto[v, q]+Z$. Since Q_{Z} centralizes Z^{\perp} / Z, Φ is a homomorphism. Let $q \in Q_{Z}$. Note that $q \in D_{Z}$ if and only if $[v, q] \in Z$ and so $\operatorname{ker} \Phi=D_{Z}$. Let $u \in Z^{\perp}$. By B. 11 there exists $v^{\prime} \in v+u+Z$ with $h\left(v^{\prime}\right)=h(v)$. Hence by (b), $v^{q}=v^{\prime}$ for some $q \in Q_{Z}$ and so $[v, q]=v^{\prime}-v \in u+Z$, So Φ is surjective, and ((f) is proved.
(g): By (f) $\left[V, Q_{Z}\right]+Z=Z^{\perp}$ and so B.6 (c) gives

$$
C_{V}\left(Q_{Z}\right) \cap Z^{\perp}=\left[V, Q_{Z}\right]^{\perp} \cap Z^{\perp}=\left(\left[V, Q_{Z}\right]+Z\right)^{\perp}=Z^{\perp \perp}=Z+V^{\perp}
$$

By (c) all orbits of Q_{Z} on $V \backslash Z$ are regular. So if $Q_{Z} \neq 1, C_{V}\left(Q_{Z}\right) \leqslant Z^{\perp}$, and (g) holds.
Lemma B.24. Let $Z \in \mathcal{S}(V)$.
(a) Let $\tau \in \operatorname{Hom}_{\mathbb{K}}\left(Z^{\perp}, Z\right)$ with $Z+R(V) \leqslant \operatorname{ker} \tau$. Then there exists $q \in Q_{Z}$ with $u^{q}=u+u \tau$ for all $u \in Z^{\perp}$.
(b) Let $z \in Z$ and $w \in Z^{\perp}$ with $w \notin Z+R(V)$. Then there exists $q \in Q_{Z}$ with $w^{q}=w+z$.

Proof. (a): Suppose that V is a linear space. Then $Z^{\perp}=V$. Define $q: V \rightarrow V, u \rightarrow u+u \tau$. Then $q \in Q_{Z}$ and (a) holds.

So suppose that V is not a linear space. Pick $0 \neq z \in Z$ and $v \in V$ such that $f(z, v)=-1$. Since $Z+V^{\perp}=Z+R(V) \leqslant \operatorname{ker} \tau$, there exists $a \in z^{\perp}$ with $u \tau=f(u, a) z$ for all $u \in U^{\perp}$. By B. 11 $v+a+Z$ contains an element isometric to v and so we may assume that $v+a$ is isometric to v. Let γ_{a} be the element of Q_{Z} defined in B.23. Then for all $u \in Z^{\perp}$

$$
u^{\gamma_{a}}=u+f(u, a) z=u+u \tau
$$

(b): Since $w \notin Z+R(V)$, there exists $\tau \in \operatorname{Hom}\left(Z^{\perp}, Z\right)$ with $Z+R(V) \leqslant \operatorname{ker} \tau$ and $w^{\tau}=z$. Now (b) follows from (a).

Lemma B.25. Suppose that V is not a linear space. Let $Y, Z \in \mathcal{S}(V)$ with $Y \$ Z^{\perp}$. Put

$$
K:=C_{H}(Z) \cap C_{H}(Y), \quad K^{*}:=N_{H}(Z) \cap N_{H}(Y) \quad \text { and } \quad C:=C_{K^{*}}\left(Z^{\perp} \cap Y^{\perp}\right)
$$

(a) $V=Z+\left\langle Y^{Q_{Z}}\right\rangle$.
(b) Q_{Z} acts regularly on $\mathcal{S}(V) \backslash \mathcal{S}\left(Z^{\perp}\right)$.
(c) $C_{H}(Z)=Q_{Z} K, Q_{Z} \cap K=1, K \cong C l\left(Z^{\perp} / Z\right)$, and Q_{Z} / D_{Z} is a natural $C l\left(Z^{\perp} / Z\right)$-module for $C_{H}(Z)$ and for K.
(d) $N_{H}(Z)=Q_{Z} K^{*}, Q_{Z} \cap K^{*}=1, N_{H}(Z)$ acts transitively on Z and on $V / Z^{\perp}, K^{*}=C \times K$ and $Q_{Z} / D_{Z} \cong V / Z^{\perp} \otimes_{\mathbb{K}} Z / Z^{\perp}$ as an $\mathbb{F}_{p}(C \times K)$-module and as an $\mathbb{F}_{p} N_{H}(Z)$-module.
Proof. Let $0 \neq y \in Y$ and choose $z \in Z$ with $f(z, y)=-1$.
(a): By B.23 fif the function $Q_{Z} / D_{Z} \rightarrow Z^{\perp} / Z, q D_{Z} \mapsto[y, q]+Z$, is an isomorphism. Thus

$$
V=Y+Z^{\perp}=Y+\left[y, Q_{Z}\right]+Z \leqslant\left\langle Y^{Q_{Z}}\right\rangle+Z .
$$

(b): Let $X \in \mathcal{S}(V)$ with $X \not \approx Z^{\perp}$. Then $V=X+Z^{\perp}$ and we can choose $x \in X$ with $f(z, x)=-1$. Hence $x \in y+Z^{\perp}$. Note that x and y are both singular and so isometric. By B.23(c), Q_{Z} acts regularly on the elements in $y+Z^{\perp}$ isometric to y and so $x \in y^{Q_{z}}$. Hence also $X \in Y^{Q_{Z}^{Z}}$.
(c) and (d): Since Q_{Z} acts regularly on the elements in $y+Z^{\perp}$ isometric to y, a Frattini argument shows that $C_{H}(Z)=Q_{Z}\left(C_{H}(Z) \cap K\right)$ and $Q_{Z} \cap K=1$. Similarly, as Q_{Z} acts regularly on $\mathcal{S}(V) \backslash \mathcal{S}\left(Z^{\perp}\right)$ we have $N_{H}(Z)=Q_{Z} K^{*}$ and $Q_{Z} \cap K^{*}=1$. Put $W:=Z^{\perp} \cap Y^{\perp}$. Then, as a module for K^{*},

$$
V=(Z \oplus Y) \oplus W
$$

Let $k, l \in \mathbb{K}^{\sharp}$ and $b \in G L_{\mathbb{K}}(W)$. Define $a \in G L_{\mathbb{K}}(V)$ by $z^{a}=k z, y^{a}=l y$ and $w^{a}=w^{b}$ for all $w \in W$. By B.10 a is an isometry if and only if $\left.a\right|_{Z+Y}$ and b are isometries. Since Y and Z are singular, $\left.a\right|_{Y}$ and $\left.a\right|_{Z}$ are isometries, and another application of B.10 shows that $\left.a\right|_{Z+Y}$ is an isometry if and only if $f\left(z^{a}, y^{a}\right)=-1$. This holds if and only if $k l^{\alpha}=1$, that is if and only if $k=l^{-\alpha}$. Thus $C \cong \mathbb{K}^{\sharp}$ is cyclic and acts transitively on Z and V / Z^{\perp}. Also $K=K^{*} \cap C_{K}(Z) \cong C l(W) \cong C l\left(Z^{\perp} / Z\right)$. Since the function

$$
\tau: Q_{Z} / D_{Z} \rightarrow Z^{\perp} / Z, q D_{Z} \mapsto[y, q]+Z
$$

is a $C_{H}(Z)$-isomorphism, we conclude that Q_{Z} / D_{Z} is a natural $C l\left(Z^{\perp} / Z\right)$-module for $C_{H}(Z)$ and for K. Let $q \in Q_{Z}$ and $c \in C$ with $y^{c}=l y$. Then $\tau\left(q^{c}\right)=\left[y^{c}, q\right]+Z=l \tau(q)$. Hence $Q_{Z} / D_{Z} \cong$ $V / Z^{\perp} \otimes_{\mathbb{K}} Z / Z^{\perp}$ as an $\mathbb{F}_{p}(C \times K)$-module and so also as an $\mathbb{F}_{p} N_{H}(Z)$-module.

Lemma B.26. Suppose that V symplectic space with $\operatorname{dim}_{\mathbb{K}} V \geqslant 2$, a unitary space with $\operatorname{dim}_{\mathbb{K}} V \geqslant$ 2 , or an V is an orthogonal space with $\operatorname{dim}_{\mathbb{K}} V \geqslant 3$. Let $Y, Z \in \mathcal{S}(V)$ with $Y \$ Z^{\perp}$.
(a) $\left\langle Q_{Y}, Q_{Z}\right\rangle=H^{\ominus}$.
(b) H^{\triangleright} acts transitively on $\mathcal{S}(V)$.

Proof. Put $L=\left\langle Q_{Y}, Q_{Z}\right\rangle$. We claim that L acts transitively on $\mathcal{S}(V)$. Let $X \in \mathcal{S}(V)$. By B.25 b Q_{Z} acts transitively on $\mathcal{S}(V) \backslash \mathcal{S}\left(Z^{\perp}\right)$. If $X \$ Z^{\perp}$ this gives $X \in Y^{Q_{Z}} \subseteq Y^{L}$.

Suppose next that $X \leqslant Z^{\perp}$. Note that $X \neq V^{\perp}$ and, by B.25(a), $V=Z+\left\langle Y^{Q_{Z}}\right\rangle$. Thus there exists $a \in Q_{Z}$ with $X \not \approx Y^{a \perp}$. Note that also $Z \$ Y^{a \perp}$ and so B.25 b) applied with Y^{a} in place of Z shows that $X \in Z^{Q_{Y} a} \subseteq Z^{L}$. We proved that $\mathcal{S}(V) \backslash \mathcal{S}\left(Z^{\perp}\right) \subseteq Y^{L}$ and $\mathcal{S}\left(Z^{\perp}\right) \subseteq Z^{L}$.

Suppose for a contradiction that L does not acts transitively on $\mathcal{S}(V)$. Then L has two orbits on $\mathcal{S}(V)$, namely $Z^{L}=\mathcal{S}\left(Z^{\perp}\right)$ and $Y^{L}=\mathcal{S}(V) \backslash \mathcal{S}\left(Z^{\perp}\right)$. By symmetry, $Y^{L}=\mathcal{S}\left(Y^{\perp}\right)$. Hence $U:=\left\langle Y^{L}\right\rangle \leqslant Y^{\perp}$ and so also $U \leqslant U^{\perp}$ and U is singular. Note that

$$
\mathcal{S}\left(U \cap Z^{\perp}\right) \subseteq \mathcal{S}\left(Y^{\perp}\right) \cap \mathcal{S}\left(Z^{\perp}\right)=Y^{L} \cap Z^{L}=\varnothing
$$

Since $U \cap Z^{\perp}$ is singular, this gives $U \cap Z^{\perp}=0$ and $U=Y+\left(U \cap Z^{\perp}\right)=Y$. Thus $Y^{L}=\{Y\}$ and by symmetry $Z^{L}=\{Z\}$. It follows that $\mathcal{S}(V)=\{X, Y\}$. By B. $13 V=\langle\mathcal{S}(V)\rangle$ and so $V=X+Y$. On the other hand, by B.11 $|\mathcal{S}(X+Y) \backslash\{Y\}|=|\mathbb{K}|,|\mathbb{F}|$ or 2 if V is a symplectic, unitary or orthogonal space, respectively. Thus V is an orthogonal space. Since $\operatorname{dim}_{\mathbb{K}} V=2$ this contradicts the hypothesis of the Lemma.

Hence L acts transitively on $\mathcal{S}(V)$. In particular, H^{\curvearrowright} acts transitively on $\mathcal{S}(V)$ and

$$
H^{\diamond}=\left\langle Q_{X} \mid X \in \mathcal{S}(V)\right\rangle=\left\langle Q_{Z}^{L}\right\rangle \leqslant L
$$

Lemma B.27. Suppose that V contains a 2-dimensional singular subspace. Let v and w be isometric elements in $V \backslash R(V)$. Then there exists $a \in H^{\triangleright}$ with $w^{a}=v$. In particular, H^{\triangleright} acts transitively on the set of non-zero singular vectors.

Proof. If V is a linear space $H^{\diamond}=S L_{\mathbb{K}}(V)$ acts transitively on V and the lemma holds. So suppose that V is not a linear space.

Let E be a 2-dimensional singular subspace of V and $Z \in \mathcal{S}(E)$. By B.26b H^{\triangleright} acts transitively on $\mathcal{S}(V)$ and by B.13, $V=\langle\mathcal{S}(V)\rangle$. Thus $V=\left\langle Z^{H^{\diamond}}\right\rangle$ and so $Z^{b} * v^{\perp}$ for some $b \in H^{\triangleright}$. Replacing v by $v^{b^{-1}}$ we may assume that $v \notin Z^{\perp}$. Similarly we may assume that $w \notin Z^{\perp}$. Choose $z \in Z$ with $f(z, v)=-1$. Note that $X:=E \cap w^{\perp} \in \mathcal{S}\left(w^{\perp}\right)$. Also $V=Z+w^{\perp}$ and since $Z \leqslant X^{\perp} \neq V$, we get $V=X^{\perp}+w^{\perp}$ and $w^{\perp} \leqslant X^{\perp}$. Thus $X \not w^{\perp \perp}$ and so $X \operatorname{rad}\left(w^{\perp}\right)$. In particular, $\left\langle\mathcal{S}\left(w^{\perp}\right)\right\rangle \neq \operatorname{rad}\left(w^{\perp}\right)$, and B.13 shows that $\left\langle\mathcal{S}\left(w^{\perp}\right)\right\rangle=w^{\perp}$. As $Z \leqslant Z^{\perp} \neq V$ and $V=Z+w^{\perp}$, we have $w^{\perp} \not Z^{\perp}$ and so there exists $U \in \mathcal{S}\left(w^{\perp}\right)$ with $U \not Z^{\perp}$.

We claim that there exists $Y \in \mathcal{S}\left(w^{\perp}\right)$ with $Y \not Z^{\perp}$ and $Y \not \mathbb{K} w+V^{\perp}$. If $U \not \mathbb{K} w+V^{\perp}$ we can choose $Y=U$. So suppose $U \leqslant \mathbb{K} w+V^{\perp}$. Since $w \perp X$ this gives $U \perp X$. Thus $U+X$ is singular. Since $X \leqslant Z^{\perp}$ and $U \nleftarrow Z^{\perp}$, we have $U \neq X$ and $(U+X) \cap Z^{\perp}=X$. Let Y be any 1-dimensional subspace $U+X$ with $Y \neq X$ and $Y \neq U$. Then $Y \nless Z^{\perp}$ and $Y \in \mathcal{S}\left(w^{\perp}\right)$. If $Y \leqslant \mathbb{K} w+V^{\perp}$, then $U+Y \leqslant \mathbb{K} w+V^{\perp}$ and so $0 \neq V^{\perp} \leqslant U+Y$, a contradiction, since V^{\perp} contains no non-zero singular vectors. Thus the claim is proved.

Choose Y as in the claim. From $Y \not \mathbb{K} w+V^{\perp}$ and $w \notin V^{\perp}$ get $w \notin Y+V^{\perp}$. Note that $Y+Z^{\perp}=V$, so we can choose $y \in Y$ with $f(z, w+y)=-1$. In particular $f(z, v)=f(z, w+y)$ and $w+y \in v+Z^{\perp}$. Recall that $Y \in \mathcal{S}\left(w^{\perp}\right), w \notin Y+V^{\perp}$ and $V^{\perp}=R(V)$. Thus $w \in Y^{\perp} \backslash(Y+R(V))$, and B.24 bhows that there exists $c \in Q_{Y}$ with $w^{c}=w+y$. In particular, $w+y, w, v$ are all isometric. As $w+y \in v+Z^{\perp}$, we conclude from B.23 dhat there exists $d \in Q_{Z}$ with $(w+y)^{d}=v$. So $w^{c d}=v$, and the lemma is proved.

Lemma B.28. Let $Z \in \mathcal{S}(V)$. Suppose that $\operatorname{dim}_{\mathbb{K}} V \geqslant 3$. Put $P:=C_{H^{\circ}}(Z)$.
(a) Suppose that V is a linear space.
(a) $D_{Z}=1$ and Q_{Z} is elementary abelian.
(b) $P / Q_{Z} \cong S L(V / Z)$ and Q_{Z} is the corresponding natural module for P dual to V / Z.
(b) Suppose that V is a symplectic space.
(a) $\left|D_{Z}\right|=|\mathbb{K}|, D_{Z}=Q_{Z}^{\prime}=\Phi\left(Q_{Z}\right)=Z\left(Q_{Z}\right)$ if p is odd, and Q_{Z} is elementary abelian if $p=2$.
(b) $P / Q_{Z} \cong S p\left(Z^{\perp} / Z\right)$ and Q_{Z} / D_{Z} is the corresponding natural module for P.
(c) Suppose that V is a unitary space.
(a) $\left|D_{Z}\right|=|\mathbb{F}|$ and $D_{Z}=Q_{Z}^{\prime}=\Phi\left(Q_{Z}\right)=Z\left(Q_{Z}\right)$.
(b) $P / Q_{Z} \cong S U\left(Z^{\perp} / Z\right)$ and Q_{Z} / D_{Z} is the corresponding natural module for P.
(d) Suppose that V is an orthogonal space.
(a) $D_{Z}=1$ and Q_{Z} is elementary abelian.
(b) $P / Q_{Z} \cong \Omega\left(Z^{\perp} / Z\right)$ and Q_{Z} is the corresponding natural module for P.

Proof. Suppose first that $f=0$, that is $H=G L(V)$. Then $V^{\perp}=V$ and so $D_{Z}=0$. By B.21.c) $Q_{Z} \cong Z \otimes_{\mathbb{K}}(V / Z)^{*}$ as an $\mathbb{F}_{p} P$-module. Since P centralizes Z and is 1-dimensional over \mathbb{K} this shows $Z \otimes_{\mathbb{K}}(V / Z)^{*} \cong(V / Z)^{*}$. Note that P induces $S L(V / Z)$ on V / Z and so also on $(V / Z)^{*}$. Hence (a) holds.

Suppose now that $f \neq 0$. We will use the description of Q_{Z} given in B.23. So let v, z, \mathcal{T}, and $\gamma_{a}, a \in \mathcal{T}$, be as there. By B.23 d), D_{Z} acts regularly on the set of elements in $v+Z$ isometric to v. By B.11 the number of such elements is $|\mathbb{K}|$ if $H=S p(V),|\mathbb{F}|$ if $H=G U(V)$, and 1 if $H=O(V)$. So also $\left|D_{Z}\right|=|\mathbb{K}|,|\mathbb{F}|$ and 1 , respectively.

Let $a, b \in \mathcal{T}$. Then by B.23 e):

$$
\left[\gamma_{a}, \gamma_{b}\right]=\gamma_{(f(b, a)-f(a, b)) z} \quad \text { and } \quad \gamma_{a}^{p}=\gamma_{-f(a, a) z}
$$

If either $H=S p(V)$ and $p=2$ or $H=O(V)$, we conclude that Q_{Z} is elementary abelian. If either $H=S p(V)$ and p is odd or $H=G U(V)$, we conclude that $\Phi\left(Q_{Z}\right)=D_{Z}=Q_{Z}^{\prime}=Z\left(Q_{Z}\right)$.

Put $P^{*}=C_{H}(Z), K^{*}=C_{P *}(v)$ and $K=C_{P}(v)$. Note that Q_{Z} act regularly on $v+\mathcal{T}$. Since $v+\mathcal{T}$ is the set of singular vectors in $v+Z^{\perp}, v+\mathcal{T}$ is P^{*} invariant and a Frattini argument gives $P^{*}=K^{*} Q_{Z}$ and $P=K Q_{Z}$. Put $W=Z^{\perp} \cap v^{\perp}$ and note that $V=W \oplus(\mathbb{K} v+Z)$. Since K^{*}
centralizes $\mathbb{K} v+Z$, we conclude from B.10 that K^{*} is (isomorphic to) the group of isometries of W. Note that $K=K^{*} \cap H^{\diamond}$. If $H=S p(V)$ then $H=H^{\diamond}$ and $K=K^{*}=S p(W)$. If $H=G U(V)$, then $H^{\diamond}=S U(V)$ and so $K=S U(W)$. If $H=O(V)$ and $V^{\perp}=0$, then $H^{\diamond}=\Omega(V)$. Thus $K=C_{\Omega(V)}\left(W^{\perp}\right)$, and B.20 shows that $K=\Omega(W)$. If $H=O(V)$ and $V^{\perp} \neq 0$, then $H=H^{\diamond}$ and $K=K^{*}=O(W)=\Omega(W)$.

Since $P / Q_{Z}=K Q_{Z} / Q_{Z} \cong K$ and $Z^{\perp} / Z \cong W$ this shows that $P / Q_{Z} \cong S p\left(Z^{\perp} / Z\right), S U\left(Z^{\perp} / Z\right)$ and $\Omega\left(Z^{\perp} / Z\right)$, respectively. By B.23 f $Q_{Z} / D_{Z} \cong Z^{\perp} / Z$ as an $\mathbb{F}_{p} P$-module and so all parts of the lemma are proved.

B.6. Simplicity of the Natural Module

Lemma B.29. Suppose that $\operatorname{dim}_{\mathbb{K}} V \geqslant 3$ if V is an orthogonal space, and $\operatorname{dim}_{\mathbb{K}} V \geqslant 2$ otherwise. Suppose that there exists a proper $\mathbb{F}_{p} H^{\diamond}$-submodule W of V with $W \nleftarrow R(V)$. Then one of the following holds:
(a) V is a unitary space, $\operatorname{dim}_{\mathbb{K}} V=2, H^{\triangleright} \cong S L_{2}(\mathbb{F}), W$ is an \mathbb{F}-subspace of V, W is a natural $S L_{2}(\mathbb{F})$-module for H^{\diamond}, V is the direct sum of two natural $S L_{2}(\mathbb{F})$-module for H^{\diamond}, and H acts transitively on the $|\mathbb{F}|+1$ simple H^{\diamond}-submodules of V. In particular, V is a simple H-module and a simple $\mathbb{K} H^{\diamond}$-module.
(b) V is an orthogonal space, $\operatorname{dim}_{\mathbb{K}} V=3,|\mathbb{K}|=2, H=H^{\diamond} \cong S L_{2}(2)$, $W=[V, H]$ is a natural $S L_{2}(2)$-module for H and $V=V^{\perp} \oplus W$.
Proof. If V is linear, then $H^{\diamond}=S L_{\mathbb{K}}(V)$ and H^{\diamond} acts transitively on V. Thus V is a simple H-module, and no proper H^{\diamond}-submodule of V exists.

Hence V is not linear and so $R(V)=V^{\perp}$. Note that the hypothesis on $\operatorname{dim}_{\mathbb{K}} V$ ensure that there exists $Z \in \mathcal{S}(V)$ (see B.19(C). By B.13, $V=\langle\mathcal{S}(V)\rangle$. Since $W \not V^{\perp}$ we conclude that $W \not Z^{\perp}$ for some $Z \in \mathcal{S}(V)$. Let $w \in W \backslash Z^{\perp}$. By.23 e the function $Q_{Z} / D_{Z} \rightarrow Z^{\perp} / Z, q D_{Z} \rightarrow[w, q]+Z$ is an isomorphism. Thus $Z^{\perp} \leqslant\left[W, Q_{Z}\right]+Z$ and so $\left[Z^{\perp}, Q_{Z}\right]=\left[W, Q_{Z}, Q_{Z}\right] \leqslant W$.

Suppose that $Z^{\perp} \neq Z+V^{\perp}$ or $H=S p(V)$. In the first case B.24 blat shows that $Z=\left[Z^{\perp}, Q_{Z}\right] \leqslant$ W, and in the second case B.28 b:a shows that $D_{Z} \neq 1$ and so $\left[W, D_{Z}\right]=Z \leqslant W$. Thus $Z^{\perp}=$ $\left[W, Q_{Z}\right]+Z \leqslant W,\langle\mathbb{K} W\rangle=V, W^{\perp}=V^{\perp}$ and $Z_{1} \in W$ for all $Z_{1} \in \mathcal{S}(V)$, a contradiction since $W \neq V$ and $V=\langle\mathcal{S}(V)\rangle$.

It follows that $Z^{\perp}=Z+V^{\perp}$ and $H \neq S p(V)$. Hence $\operatorname{dim} V / V^{\perp}=2$ and either $H=G U(V)$, $V^{\perp}=0$ and $\operatorname{dim} V=2$, or $p=2, H=O(V), \operatorname{dim} V^{\perp}=1$.

Suppose that $H=G U(V)$. For $i=1,2$ let $U_{i} \in \mathcal{S}(V)$ with $U_{1} \neq U_{2}$. Then $V=U_{1}+U_{2}$. We can choose the following further notation:

$$
0 \neq t \in \mathbb{K} \text { with } t+t^{\alpha}=0, \quad 0 \neq u_{1} \in U_{1}, \quad u_{2} \in U_{2} \text { with } f\left(u_{1}, u_{2}\right)=t
$$

Let X be the \mathbb{F}-subspace of V spanned by u_{1} and u_{2}, and let $\lambda_{i} \in \mathbb{F}$. Then

$$
h\left(\lambda_{1} u_{1}+\lambda_{2} u_{2}\right)=\lambda_{1} \lambda_{2}^{\alpha} t+\lambda_{1}^{\alpha} \lambda_{2} t=\lambda_{1} \lambda_{2}\left(t+t^{\alpha}\right)=0
$$

Thus all elements in X are singular. Let $0 \neq x \in X$ and choose $y \in X$ with $f(x, y) \neq 0$. By B.11 b $\mathbb{K} x+y$ contains exactly $|\mathbb{F}|$ singular vectors. It follows that $\mathbb{F} x+y$ is the set of singular vectors in $\mathbb{K} x+y$ and so $Q_{\mathbb{K} x}$ normalizes $\mathbb{F} x+y$. Hence $Q_{\mathbb{K} x}$ normalizes X. As $\mathcal{S}(V)=|\mathbb{F}|+1$ and X has $|\mathbb{F}|+1$ 1-dimensional subspaces each $U \in \mathcal{S}(V)$ intersects X in 1-dimensional \mathbb{F}-space and so Q_{U} normalizes X. Hence X is an $\mathbb{F} H^{\diamond}$ submodule of V. Observe that X is natural $S L_{2}(\mathbb{F})$-module for H^{\diamond}. Since u_{1} was an arbitrary non-zero element on U_{1}, each of the $|\mathbb{F}|+1$ 1-dimensional \mathbb{F}-subspaces of U_{1} lies in a 2 -dimensional $\mathbb{F} H^{\diamond}$-submodule of V. It follows that V is a direct sum of two natural $S L_{2}(\mathbb{F})$-modules for H^{\diamond}. In particular, there exists exactly $|\mathbb{F}|+1$ non-zero proper $\mathbb{F}_{p} H^{\diamond}$ submodules of V. As $N_{H^{\circ}}\left(U_{1}\right)$ acts transitively on U_{1}, we conclude that $N_{H^{\circ}}\left(U_{1}\right)$ also acts transitively on the set of non-zero proper $F_{p} H^{\diamond}$-submodules of V. Thus (a) holds.

So suppose that $H=O(V)$. Then H^{\diamond} induces $S p\left(V / V^{\perp}\right)=S p_{2}(\mathbb{K})=S L_{2}(\mathbb{K})$ on V / V^{\perp} and so $V=W+V^{\perp}$; in particular $\left[V, H^{\diamond}\right] \leqslant W$. Thus $\left[V, Q_{Z}\right]$ is 1-dimensional and so (for example by B.11) $Z_{0}+\left[V, Q_{Z}\right]$ contains exactly two singular 1-spaces. Since $\left\langle Z_{0}^{Q_{z}}\right\rangle \leqslant Z_{0}+\left[V, Q_{Z}\right]$ this shows that $|\mathbb{K}|=\left|Q_{Z}\right|=\left|Z_{0}^{Q_{Z}}\right|=2$, and $\sqrt{\mathrm{b}}$ holds.

Lemma B.30. Let $Z \in \mathcal{S}(V)$, and put $P:=C_{H^{\diamond}}(Z)$. Suppose that there exists a proper P invariant subgroup T of Q_{Z} with $T \$ D_{Z}$.
(a) Suppose that V is a linear space and $\operatorname{dim}_{\mathbb{K}} V \geqslant 2$. Then $\operatorname{dim}_{\mathbb{K}} V=2$.
(b) Suppose that V is a symplectic space and $\operatorname{dim}_{\mathbb{K}} V \geqslant 2$. Then $|\mathbb{K}|=2, \operatorname{dim}_{\mathbb{K}} V=4$, $T=\left[Q_{Z}, P\right]=H^{\prime} \cap Q_{Z}$, and T has order 4 .
(c) Suppose that V is a unitary space and $\operatorname{dim}_{\mathbb{K}} V \geqslant 4$. Then $\operatorname{dim}_{\mathbb{K}} V=4, D_{Z} \leqslant T, T / D_{Z}$ is a natural $S L_{2}(\mathbb{F})$-module for P, and T is not invariant under $C_{H^{\diamond}}\left(D_{Z}\right)$. In particular, $N_{H \curvearrowright}(Z)$ acts simply on Q_{Z} / D_{Z}.
(d) Suppose that V is an orthogonal space and $V^{\perp}=0 \square^{3}$ Then $\operatorname{dim}_{\mathbb{K}} V \leqslant 4$.

Proof. (a): By B.28,a) Q_{Z} is a natural $S L(V / Z)$-module for P and so, if $\operatorname{dim} V / Z \geqslant 2$, a simple P-module. This gives (a).
(b): Note first that $T \not D_{Z}$ gives $Q_{Z} \neq D_{Z}$, and so $\operatorname{dim}_{\mathbb{K}} V \geqslant 4$. By B.28 b:b Q_{Z} / D_{Z} is a natural $S p\left(Z^{\perp} / Z\right)$-module for P and so simple. Thus $T D_{Z}=Q_{Z}$. If p is odd, then B.28 b:a implies $D_{Z}=\Phi\left(Q_{Z}\right)$ and so $T=Q_{Z}$.

Hence $p=2$. By B. $14 V W / W^{\perp}$ and $H \cong O(W)$ for some non-degenerate orthogonal space W. Without loss $V=W / W^{\perp}$. Then the inverse image of Z in W contains a unique 1-dimensional singular subspace $Z_{0}, Q_{Z}=Q_{Z_{0}}$ and $P=C_{H}\left(Z_{0}\right)$. Now B.28d:b) shows that Q_{Z} is a natural $\Omega\left(Z_{0}^{\perp} / Z_{0}\right)$-module for P. Thus by B.29, $|\mathbb{K}|=2$, $\operatorname{dim} Z_{0}^{\perp} / Z_{0}=3$ and $T=\left[Q_{Z}, P\right]$ has order 4. Hence (b) holds.
(c): By B.28(c) Q_{Z} / D_{Z} is a natural $S U\left(Z^{\perp} / Z\right)$-module for P and $D_{Z}=\Phi\left(Q_{Z}\right)$. It follows that $Q_{Z} \neq T D_{Z}$. We now apply B.29 a) to Z^{\perp} / Z and $G U\left(Z^{\perp} / Z\right)$. Then $\operatorname{dim} Z^{\perp} / Z=2$, and $T D_{Z} / D_{Z}$ is a natural $S L_{2}(\mathbb{F})$-module for P.

Let $\lambda \in \mathbb{K}$ be of multiplicative order $|\mathbb{F}|+1$. Then $\lambda \lambda^{\alpha}=1$. By B.18 b:a V has a hyperbolic basis $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$. Then $f\left(v_{1}, v_{4}\right)=f\left(v_{2}, v_{3}\right)=1$ and $f\left(v_{i}, v_{j}\right)=0$ for all other $1 \leqslant i \leqslant j \leqslant 4$. Since H acts transitive on $\mathcal{S}(V)$, we may assume that $v_{1} \in Z$. Define $\phi \in G L_{\mathbb{K}}(V)$ by $v_{i} \phi=\lambda v_{i}$ for $i=1,4$ and $v_{i} \phi=\lambda^{-1} v_{i}$ for $i=2,3$. Observe that $\phi \in S U(V)=H^{\diamond}$ and that ϕ normalizes Z. Since ϕ acts as scalar multiplication by λ on V / Z^{\perp} and Z, ϕ centralizes D_{Z}. As ϕ acts as scalar multiplication by λ^{-1} on $Z^{\perp} / Z, \phi$ centralizes P / Q_{Z}. It follows that ϕ does not normalizes $T D_{Z} / D_{Z}$ and so $Q_{Z}=T T^{\phi} D_{Z}$. Since T is P invariant, $\left[T, Q_{Z}\right] \leqslant T \cap D_{Z}$, and since ϕ centralizes D_{Z} this gives $\left[T^{\phi}, Q_{Z}\right] \leqslant T^{\phi} \cap D_{Z}=T \cap D_{Z}$. Thus $D_{Z}=Q_{Z}^{\prime}=\left[T T^{\phi} D_{Z}, Q_{Z}\right] \leqslant T \cap D_{Z} \leqslant T$ and (c) holds.
(d): By B.28 d:bl Q_{Z} is a natural $\Omega\left(Z^{\perp} / Z\right)$-module for P. If $V^{\perp}=0$ and $\operatorname{dim}_{\mathbb{K}}\left(Z^{\perp} / Z\right) \geqslant 3$, we conclude from B.29 b that Q_{Z} is a simple P-module. Thus (d) holds.

B.7. Normalizers of Classical Groups

In this section we view \mathbb{K} as a subring of $E n d_{\mathbb{F}_{p} H}(V)$.
Lemma B.31. Suppose that $\operatorname{dim}_{\mathbb{K}} V \geqslant 3$ if V is an orthogonal space, and $\operatorname{dim}_{\mathbb{K}} V \geqslant 2$ otherwise. Then $\operatorname{End}_{\mathbb{F}_{p} H^{\circ}}(V)=\mathbb{K}$, unless $H=O(V)=O_{3}(2)$ or $H=G U(V)=G U_{2}(\mathbb{F})$.

Proof. Suppose first that $V^{\perp}=0$ and $H \neq G U_{2}(\mathbb{K})$. Then by B.29, V is a simple $\mathbb{F}_{p} H^{\triangleright}$ module and so $E n d_{\mathbb{F}_{p} H^{\diamond}}(V)$ is a division ring. Let $Z \in \mathcal{S}(V)$. By B.23 g), $C_{V}\left(Q_{Z}\right)=V^{\perp}+Z=Z$ and so $C_{V}\left(Q_{Z}\right)$ is 1-dimensional over \mathbb{K}. This gives $\operatorname{End}_{\mathbb{F}_{p} H^{\diamond}}(V)=\mathbb{K}$.

Suppose next that $V^{\perp} \neq 0$ and $H \neq O_{3}(2)$. Then B. 29 shows that $V=\left[V, H^{\diamond}\right]$. Let $\beta \in$ $\operatorname{End}_{\mathbb{F}_{p} H^{\diamond}}(V)$ with $V \beta \leqslant V^{\perp}$. Then $\left[V \beta, H^{\diamond}\right]=0$ and so also $\left[V, H^{\diamond}\right] \beta=0$. As $V=\left[V, H^{\diamond}\right]$ we get that $\beta=0$, and $E n d_{\mathbb{F}_{p} H^{\diamond}}(V)$ acts faithfully on V / V^{\perp}. Since H^{\diamond} induces $S p\left(V / V^{\perp}\right)$ on V we conclude from the previous case that $E n d_{\mathbb{F}_{p} H^{\circ}}(V)=\mathbb{K}$.

Lemma B.32. Suppose that V is a linear space and put $H^{*}=N_{G L_{\mathbb{F}_{p}}(V)}\left(H^{\diamond}\right)$. Suppose that $\operatorname{dim}_{\mathbb{K}} V \geqslant 2$.

[^20](a) $H^{*}=\Gamma G L_{\mathbb{K}}(V)$, that is, $g \in G L_{\mathbb{F}_{p}}(V)$ normalizes H^{\diamond} if and only if there exists $\sigma \in$ Aut (\mathbb{K}) such that g acts σ-semilinearly on $V{ }^{4}$
(b) There exists a homomorphism $\rho: H^{*} \rightarrow \operatorname{Aut}(\mathbb{K}), g \mapsto \rho_{g}$, such that each $g \in H^{*}$ acts ρ_{g}-semilinearly on \mathbb{K}.
(c) $\operatorname{ker} \rho=H$ and ρ is surjective. In particular, $H^{*} / H \cong A u t(\mathbb{K})$.
(d) Let T be p-subgroup of H^{*} acting \mathbb{K}-linearly on V. Then $T \leqslant H^{\diamond}$.

Proof. (a) and (b): Let $b, c \in G L_{\mathbb{F}_{p}}(V)$ acting β - and γ-semilinearly on \mathbb{K}, respectively. Then $b c$ acts $\beta \gamma$ semilinearly on V and b^{-1} acts β^{-1}-semilinearly on V. In particular, if c acts \mathbb{K}-linearly, so does c^{b}. Hence b normalizes H and thus also H^{\diamond}.

By B.31 $\mathbb{K}=\operatorname{End}_{\mathbb{F}_{p} H^{\diamond}}(V)$. Hence H^{*} acts on \mathbb{K} by conjugation and we obtain a homomorphism $\rho: H^{*} \rightarrow A u t(\mathbb{K}), g \mapsto \rho_{g}$, such that $g^{-1} k g=k^{\rho_{g}}$. It follows that $g \in H^{*}$ acts ρ_{g}-semilinearly on V.
(c): Clearly ker $\rho=H$. To show that ρ is surjective let $\left(v_{i}\right)_{i=1}^{n}$ be a \mathbb{K}-basis and $\sigma \in A u t(\mathbb{K})$. Define $g \in G L_{\mathbb{F}_{p}}(V)$ by $\left(k v_{i}\right)^{g}=k^{\sigma} v_{i}$. Then g acts σ-linearly on V, and by (a) $g \in H^{*}$. Hence $\rho(g)=\sigma$.
(d): Since T acts \mathbb{K}-linearly on $V, T \leqslant H$ and since $H / H^{\diamond}=G L_{\mathbb{K}}(V) / S L_{\mathbb{K}}(V)$ is a p^{\prime} group, $T \leqslant H^{\diamond}$.

Lemma B.33. Let $k \in \mathbb{F}^{\sharp}$ and $\sigma \in \operatorname{Aut}(\mathbb{K})$. Define

$$
\tilde{f}:=f_{k, \sigma}: V \times V \rightarrow \mathbb{K},(v, w) \mapsto k f(v, w)^{\sigma}, \quad \widetilde{h}:=h_{k, \sigma}: V \rightarrow \mathbb{F}, v \mapsto k h(v)^{\sigma}
$$

Let V_{σ} be the \mathbb{K}-space with $V_{\sigma}=V$ as abelian group and scalar multiplication

$$
\cdot_{\sigma}: \mathbb{K} \times V \rightarrow V,(l, v) \mapsto l^{\sigma^{-1}} v
$$

Then
(a) $\left(V^{\sigma}, \tilde{f}, \tilde{h}\right)$ is a classical space of the same type as (V, f, h).
(b) The \mathbb{K}-subspaces of V are the same as the \mathbb{K}-subspaces of V_{σ}.
(c) $A \mathbb{K}$-subspace of V is singular with respect to (f, h) if and only if it is singular with respect to (\tilde{f}, \tilde{h}).
(d) H is the isometry group of $(V, \tilde{f}, \widetilde{h})$.
(e) $\left(V^{\sigma}, \tilde{f}, \widetilde{h}\right)$ is not isometric to (V, f, h) if and only if $H=O(V), p$ is odd, $\operatorname{dim}_{\mathbb{K}} V$ is odd, and k is not a square in \mathbb{K}.

Proof. (a) is readily verified, and (b) should be obvious.
(C): Just observe that $k f(v, w)^{\sigma}$ and $k h(v)^{\sigma}$ are 0 if and only if $f(v, w)$ and $h(v)$ are 0
(d): Let $g \in G L_{\mathbb{K}}(V)$. Then (f, h) is g-invariant if and only if (\tilde{f}, \tilde{h}) is.
(e): By B. 18 any two linear spaces, any two symplectic spaces, and any two unitary spaces of the same dimension are isometric.

Note that U is a singular subspace of V if and only if U_{σ} is a singular subspace of V_{σ}. Hence V and V_{σ} have the same Witt index. Any two orthogonal spaces of the same even dimension are isometric if and only if they have the same Witt index. Also if $p=2$ then any two orthogonal spaces of the same odd dimension are isometric.

So it remains to consider the case $H=O(V), \operatorname{dim}_{\mathbb{K}} V$ odd and p odd. Let Y be a maximal hyperbolic subspace of V and put $X=Y^{\perp}$. Then by B.19 $V=X \oplus Y$ and $\operatorname{dim}_{\mathbb{K}} X=1$. Let $0 \neq x \in X$ and observe that, by the even dimensional orthogonal case, Y_{σ} is hyperbolic. Also $V_{\sigma}=X_{\sigma} \oplus Y_{\sigma}$ and $X_{\sigma} \perp Y_{\sigma}$. Hence by B.18 d:e (V, f, h) and $\left(V_{\sigma}, f, h\right)$ are isometric if and only if $\widetilde{h}(x) h(x)^{-1}$ is a square in \mathbb{K}. Note that $\breve{h}(x) h(x)^{-1}=k h(x)^{\sigma} h(x)^{-1}$ and that $h(x)^{\sigma} h(x)^{-1}$ is a square in \mathbb{K}. Thus (V, f, h) and $\left(V^{\sigma}, \tilde{f}, \widetilde{h}\right)$ are isometric if and only if k is a square.
${ }^{4}$ For the definition of σ-semilinear see A.46

Lemma B.34. Let $g \in G L_{\mathbb{F}_{p}}(V)$. Define

$$
f_{g}: V \times V \rightarrow \mathbb{K},(v, w) \mapsto f\left(v^{g}, w^{g}\right), \quad \text { and } \quad h_{g}: V \rightarrow \mathbb{F}, v \mapsto h\left(v^{g}\right)
$$

Let V_{g} be the \mathbb{K}-space with $V_{g}=V$ as abelian group and scalar multiplication

$$
\cdot_{g}: \mathbb{K} \times V \rightarrow V,(k, v) \mapsto\left(k v^{g}\right)^{g^{-1}}
$$

Then
(a) g is an isometry from $\left(V_{g}, f_{g}, h_{g}\right)$ to (V, f, h).
(b) $\left(V_{g}, f_{g}, h_{g}\right)$ is a classical space of the same type as (V, f, h).
(c) $H^{g^{-1}}$ is the isometry group of $\left(V_{g}, f_{g}, h_{g}\right)$.

Proof. (a): Let $k \in \mathbb{K}$ and $v \in V$. Then

$$
(k \cdot g v)^{g}=\left(\left(k v^{g}\right)^{g^{-1}}\right)^{g}=k v^{g}
$$

so $g: V_{g} \rightarrow V$ is an isomorphism of \mathbb{K} spaces.
By the definition of f_{g} and h_{g}

$$
f_{g}(v, w)=f\left(v^{g}, w^{g}\right) \quad \text { and } \quad h_{g}(v)=h\left(v^{g}\right)
$$

for all $v, w \in V_{g}$, and so (a) holds.
(b) and (c) both follow from (a).

Lemma B.35. Suppose that V is not a linear space and $\operatorname{dim}_{\mathbb{K}} V \geqslant 3$. Put $H^{*}:=N_{G L_{\mathbb{F}_{p}}(V)}\left(H^{\diamond}\right)$.
(a) Let $g \in G L_{\mathbb{K}}(V)$ Then $g \in H^{*}$ if and only there exist $k \in \mathbb{F}^{\sharp}$ and $\sigma \in A u t(\mathbb{K})$ such that g is $a(k, \sigma)$-semisimilarity of V.
(b) Let $g \in H^{*}$. Then the elements $k \in \mathbb{F}^{\sharp}$ and $\sigma \in A u t(\mathbb{K})$ in (a) are uniquely determined. Moreover, if we denote k by λ_{g} and σ by ρ_{g}, then the function

$$
(\lambda, \rho): \quad H^{*} \rightarrow \mathbb{F}^{\sharp} \rtimes \operatorname{Aut}(\mathbb{K}), \quad g \mapsto\left(\lambda_{g}, \rho_{g}\right),
$$

is a homomorphism.
(c) Put $S:=\left\{k^{2} \mid k \in \mathbb{K}^{\sharp}\right\}$ if V is an orthogonal space with $\operatorname{dim}_{\mathbb{K}} V$ odd and p odd; put $S:=\mathbb{F}^{\sharp}$ otherwise. Then $\operatorname{ker}(\lambda, \rho)=H$ and $\operatorname{Im}(\lambda, \rho)=S \rtimes$ Aut (\mathbb{K}). In particular, $H^{*} / H \cong S \rtimes \operatorname{Aut}(\mathbb{K})$.
(d) Let T be a p-subgroup of H^{*} acting \mathbb{K}-linearly on V. Then $T \leqslant H$. Moreover, $T \leqslant H^{\diamond}$, unless $p=2, V$ is an orthogonal space and $V^{\perp}=0$.
Proof. Suppose first that $H=O(V)=O_{3}(2)$. Then $H=H^{\triangleright}, V=V^{\perp} \oplus[V, H]$ and H induces $G L_{2}(2)$ on $[V, H]$. It follows that $H^{*}=H$. Also $\mathbb{K}^{\sharp}=\{1\}$ and $A u t(\mathbb{K})=1$, and so the lemma holds in this case. So we may assume from now on that $H \neq O_{3}(2)$.
(a) and (b): Suppose first that there exists $k \in \mathbb{F}^{\sharp}$ and $\sigma \in A u t(\mathbb{K})$ such that g is a (k, σ) semisimilarity of V. Then

$$
f\left(v^{g}, w^{g}\right)=k f(v, w)^{\sigma} \text { and } h\left(v^{g}\right)=k h(v)^{\sigma}
$$

for all $v, w \in V$. In the notation of B.33 and B.34 this just says that $f_{g}=f_{k, \sigma}$ and $h_{\sigma}=h_{k, \sigma}$. Since g is σ-semilinear, $\left(l v^{g}\right)^{g^{-1}}=l^{\sigma^{-1}} v$ and so $V_{g}=V_{\sigma}$. The isometry group of $\left(V_{g}, f_{g}, h_{g}\right)$ is $H^{g^{-1}}$ and the isometry group of $\left(V_{\sigma}, f_{\sigma, k}, h_{\sigma, k}\right)$ is H. So $H^{g}=H$ and thus also $\left(H^{\diamond}\right)^{g}=H^{\diamond}$. Therefore, $g \in H^{*}$.

Since $\operatorname{dim}_{\mathbb{K}} V \geqslant 3$ and we exclude the $O_{3}(2)$-case, B.31 shows that $\mathbb{K}=\operatorname{End}_{\mathbb{F}_{p} H^{\diamond}}(V)$. Hence H^{*} acts on \mathbb{K} by conjugation and we obtain a homomorphism $\rho: H^{*} \rightarrow A u t(\mathbb{K}), g \mapsto \rho_{g}$, such $g^{-1} k g=k^{\rho_{g}}$. It follows that $g \in H^{*}$ acts $g_{\rho^{\prime}}$-semilinearly on V. By B.29 V / V^{\perp} is a simple H^{\diamond} module and by B.31, $\operatorname{End}_{\mathbb{F}_{p} H^{\diamond}}\left(V / V^{\perp}\right)=\mathbb{K}$. Since f induces a non-degenerate \mathbb{K}-sesquilinear form \bar{f} on $V / V^{\perp}, V / V^{\perp}$ is selfdual as an $\mathbb{F}_{p} H^{\diamond}$-module. So we can apply B.7 and conclude that there exists a function $\lambda: H^{*} \rightarrow \mathbb{K}^{\sharp}, g \mapsto \lambda_{g}$, such that the function

$$
H^{*} \rightarrow \mathbb{K}^{\sharp} \rtimes \operatorname{Aut}(\mathbb{K}), g \mapsto\left(\lambda_{g}, \rho_{g}\right)
$$

is a homomorphism and

$$
\bar{f}\left(\bar{v}^{g}, \bar{w}^{g}\right)=\lambda_{g} \bar{f}(\bar{v}, \bar{w})^{\rho_{g}}
$$

for all $\bar{v}, \bar{w} \in V / V^{\perp}$. Hence also

$$
\begin{equation*}
f\left(v^{g}, w^{g}\right)=\lambda_{g} f(v, w)^{\rho_{g}} \tag{*}
\end{equation*}
$$

for all $v, w \in V$.
We claim that $\lambda_{g} \in \mathbb{F}$. If $\mathbb{F}=\mathbb{K}$ there is nothing to prove. So suppose $H=G U(V)$ and choose $v, w \in V$ with $f(v, w)=1$. Then also $f(w, v)=1^{\alpha}=1$ and

$$
\lambda_{g}=\lambda_{g} f(v, w)^{\sigma_{g}}=f\left(v^{g}, w^{g}\right)=f\left(w^{g}, v^{g}\right)^{\alpha}=\left(\lambda_{g} f(w, v)^{\sigma_{g}}\right)^{\alpha}=\lambda_{g}^{\alpha}
$$

and so indeed $\lambda_{g} \in \mathbb{F}$.
It remains to show that $h\left(v^{g}\right)=\lambda_{g} h(v)^{\rho_{g}}$ for all $v \in V$. If $H=S p(V)$ or $G U(V)$, then $h(v)=f(v, v)$ and this follows from $(*)$. So assume $H=O(V)$.

Fix $g \in H^{*}$. Put

$$
k:=\lambda_{g}, \quad \sigma:=\rho_{g}, \quad \tilde{f}:=f_{k, \sigma}, \quad \tilde{h}:=h_{k, \sigma}
$$

Then $(*)$ says that $f_{g}=\tilde{f}$ and we need to show that $h_{g}=\widetilde{h}$. Since g is σ-semilinear, $V_{g}=V_{\sigma}$. Note that both $\left(V_{g}, f_{g}, h_{g}\right)$ and $\left(V_{\sigma}, \tilde{f}, \widetilde{g}\right)$ are orthogonal spaces. Also H^{\diamond} is contained in their isometry group since g normalizes H^{\diamond}. In particular,

$$
h_{g}(v+w)=h_{g}(v)+f_{g}(v, w)+h_{g}(w) \quad \text { and } \quad \widetilde{h}(v+w)=\widetilde{h}(v)+\widetilde{f}(v, w)+\widetilde{h}(w)
$$

for all $v, w \in V$. Since $f_{g}=\tilde{f}$ we conclude that the function $r: V \rightarrow \mathbb{K}, v \mapsto h_{g}(v)-\widetilde{h}(v)$, is \mathbb{F}_{p}-linear.

Since both h_{g} and \widetilde{h} are H^{\diamond}-invariant, so is r. Thus ker r is an \mathbb{F}_{p}-submodule of V. As $|I m r| \leqslant$ $|\mathbb{K}|$ and $|V| \geqslant|\mathbb{K}|^{3}$ we have $|\operatorname{ker} r| \geqslant|\mathbb{K}|^{2}>|\mathbb{K}| \geqslant\left|V^{\perp}\right|$ and so $\operatorname{ker} r \not V^{\perp}$. Recall that we excluded the $O_{3}(2)$-case and so B.29 shows that $\operatorname{ker} r=V$. Thus $r=0, h=\widetilde{h}$, and (a) and b) are proved.
(c): Let $g \in H^{*}$. Then $g \in H$ if and only if f and h are g-invariant and if and only if $\lambda_{g}=1$ and $\rho_{g}=1$. So $\operatorname{ker}(\lambda, \rho)=H^{*}$ 。

To compute the image of (λ, ρ), let $k \in \mathbb{F}^{\sharp}$ and $\sigma \in A u t(\mathbb{K})$ and put $\tilde{f}=f_{k, \sigma}$ and $\tilde{h}=h_{k, \sigma}$. Note that (k, σ) is in the image of (λ, ρ) if and only if $\tilde{f}=f_{g}$ and $\tilde{h}=h_{g}$ for some $g \in G L_{\mathbb{F}_{p}}(V)$. This in turn holds if and only if $\left(V_{\sigma}, \widetilde{f}, \tilde{h}\right)$ is isometric to (V, f, h). By B.33 (e) $\left(V_{\sigma}, \tilde{f}, \tilde{h}\right)$ is not isometric to (V, f, h) if and only if $\mathbb{K}=O(V), \operatorname{dim}_{\mathbb{K}} V$ is odd, p is odd, and k is not a square in \mathbb{K}. Hence $(k, \sigma) \in \operatorname{Im}(\lambda, \rho)$ if and only if $k \in S$. This gives (c).
(d): Since T acts \mathbb{K}-linearly on $V, \rho(T)=1$. Since $S \leqslant \mathbb{K}^{\sharp}$ is a p^{\prime}-group we conclude that $T \leqslant \operatorname{ker}(\lambda, \rho)$ and so $T \leqslant H$. Since $G L_{\mathbb{K}}(V) / S L_{\mathbb{K}}(V)$ is a p^{\prime}-group, $T \leqslant S L_{\mathbb{K}}(V) \cap H$. Note that either $S L_{\mathbb{K}}(V) \cap H=H^{\diamond}$, or $H=O(V)$ and $\operatorname{dim}_{\mathbb{K}} V$ is even if $p=2$. In the later case H^{\diamond} has index two in $S L_{\mathbb{K}}(V) \cap H$. So either $T \leqslant H^{\diamond}$ or $H=O(V), p=2$, and $\operatorname{dim}_{\mathbb{K}} V$ is even.

B.8. Q-Uniqueness in Classical Groups

Lemma B.36. Let $H^{\diamond} \vDash L \leqslant G L_{\mathbb{F}_{p}}(V)$ and let Q be a p-subgroup of L. Suppose that V is a $Q!$-module for L with respect to Q and that V contains a 2-dimensional singular subspace. Then $\left\langle Q^{L}\right\rangle=\left\langle Q^{H^{\diamond}}\right\rangle$. In particular, $H^{\diamond} Q \vDash L$ and $O^{p}\left(\left\langle Q^{L}\right\rangle\right) \leqslant H^{\diamond}$.

Proof. By B.35 a L is contained in the group of semisimilarities of V and so acts on the set of non-zero singular vectors.

By B.27 H^{\diamond} acts transitively on this set. By B.12 C) there exists a non-zero singular vector centralized by Q. By a Frattini argument $L=C_{L}(v) H^{\diamond}$ and by $Q!, C_{L}(v) \leqslant N_{L}(Q)$. Thus $\left\langle Q^{L}\right\rangle=\left\langle Q^{H^{\diamond}}\right\rangle$.

Lemma B.37. Suppose that $\operatorname{dim}_{\mathbb{K}} V \geqslant 3$ if V is a linear space, and $\operatorname{dim}_{\mathbb{K}} V \geqslant 4$ otherwise. Let Q be a p-subgroup of $G L_{\mathbb{F}_{p}}(V)$ normalizing H^{\diamond} and suppose that V is a Q !-module for $H^{\diamond} Q$ with respect to Q. Put $X:=C_{V}(Q)$. Then $C_{V}\left(H^{\diamond}\right)=0$; in particular, the case V orthogonal, $p=2$ and $\operatorname{dim}_{\mathbb{K}} V$ odd does not occur. Moreover, one of the following holds:
(1) $X \in \mathcal{S}(V), Q=Q_{X}$ and $\left\langle Q^{H^{\diamond}}\right\rangle=H^{\diamond}$.
(2) $H=H^{\diamond}=\operatorname{Sp}(V)=S p_{4}(2), X \in \mathcal{S}(V), Q=Q_{X} \cap H^{\prime}$ and $\left\langle Q^{H^{\diamond}}\right\rangle=H^{\prime}=S p_{4}(2)^{\prime}$.
(3) $H=G U(V)=G U_{4}(\mathbb{F}), p=2,|X|=|\mathbb{F}|, \widehat{X}:=\langle\mathbb{K} X\rangle \in \mathcal{S}(V), H^{\diamond} Q=\left\langle Q^{H^{\diamond}}\right\rangle \cong O_{6}^{-}(\mathbb{F})$, $\left|Q / Q \cap Q_{\widehat{X}}\right|=2$ and either $Q_{\widehat{X}} \leqslant Q$ or $D_{\widehat{X}} \leqslant Q$ and $Q \cap Q_{\widehat{X}} / D_{\widehat{X}}$ is a natural $S L_{2}(\mathbb{F})-$ module for $C_{H^{\circ}}(\widehat{X})$.
(4) $H=O(V)=O_{4}^{+}(\mathbb{K}), X$ is a 2-dimensional singular subspace of $V, Q=C_{H^{\diamond}}(X)$ and $\left\langle Q^{H^{\circ}}\right\rangle \cong S L_{2}(\mathbb{K})$.
(5) $H=H^{\diamond} Q=O(V)=O_{4}^{+}(2), X \in \mathcal{S}(V)$ and either $Q \cong D_{8}$ and $\left\langle Q^{H^{\diamond}}\right\rangle=H$ or $Q \cong C_{4}$ and $\left\langle Q^{H^{\circ}}\right\rangle \sim 3^{2} C_{4}$.
(6) $H=O(V)=O_{4}^{+}(4), H^{\diamond} Q=\left\langle Q^{H^{\diamond}}\right\rangle \cong O_{4}^{+}(4),|X|=2, \widehat{X}:=\langle\mathbb{K} X\rangle \in \mathcal{S}(V),\left|Q / Q \cap Q_{\widehat{X}}\right|=$ $2, Q Q_{\widehat{X}} \in S y l_{2}\left(H^{\diamond} Q\right)$ and either $Q_{\widehat{X}} \leqslant Q$ or Q is the unique maximal elementary abelian subgroup of order 8 in $Q_{\widehat{X}} Q$.

Proof. Since V is a Q !-module, $C_{V}\left(H^{\diamond} Q\right)=0$ (see A.53) and so also $C_{V}\left(H^{\diamond}\right)=0$. So the first statement holds. Moreover, by B.12C C there exists a Q-invariant $Z \in \mathcal{S}(V)$. Put $P^{*}:=N_{H^{\circ}}(Z)$ and $P:=C_{H^{\diamond}}(Z)$.

Note that $C_{Q}(\mathbb{K})$ is a p-group acting \mathbb{K}-linearly on V and normalizing H^{\diamond}. Thus B.32d (if V is linear) and B.35 (if V is not linear) show that $C_{Q}(\mathbb{K}) \leqslant H$. Put $Q^{*}:=C_{Q}\left(Z^{\perp} / Z\right)$. Then Q^{*} acts \mathbb{K}-linearly on V and so $Q^{*} \leqslant C_{Q}(\mathbb{K}) \leqslant H$. Since Z is 1-dimensional, Q^{*} centralizes V / Z^{\perp}, Z^{\perp} / Z and Z. Thus $Q^{*} \leqslant Q_{Z}$.

Suppose first that Q centralizes Z^{\perp} / Z. Then $Q=Q^{*} \leqslant Q_{Z}$. Since Q centralizes Z, Q ! implies that $Q \lessgtr P^{*}$.

Assume for a contradiction that $Q \leqslant D_{Z}$. Then $D_{Z} \neq 1$ and so by B.28 $H=S p(V)$ or $S U(V)$. Since Z^{\perp} / Z is at least 2-dimensional, it has a 1-dimensional singular subspace (see B.19 (c)). Hence there exists $Y \in \mathcal{S}\left(Z^{\perp}\right)$ with $Y \neq Z$. Since $Q \leqslant D_{Z}$ we get $[Y, Q]=0$, and Q !-shows that $N_{H^{\circ}}(Y)$ normalizes Q and so also $[V, Q]=Z$. Thus $\left[Z, Q_{Y}\right]=0$, a contradiction as $C_{V}\left(Q_{Y}\right)=Y+V^{\perp}=Y$ by B.23 (g).

Thus $Q \not D_{Z}$. If $Q=Q_{Z}$, then $C_{V}(Q)=C_{V}\left(Q_{Z}\right)=Z$. Hence (1) holds in this case.
So suppose that $Q \neq Q_{Z}$. Since Q is P^{*}-invariant, B.30 implies that either $H=S p(V),|\mathbb{K}|=2$, $\operatorname{dim}_{\mathbb{K}} V=4$ and $Q=Q_{Z} \cap H^{\prime}$ or $H=O(V)$ and $\operatorname{dim} V=4$. In the first case 2 holds.

So suppose $H=O(V)$. If the quadratic form h is of --type, then $H^{\diamond} \cong L_{2}\left(|\mathbb{K}|^{2}\right)$ and so P^{*} acts simply on Q_{Z}. Thus h is of +-type and $H^{\triangleright}=H_{1} H_{2}$ with $H_{i} \cong S L_{2}(\mathbb{K})$ and $\left[H_{1}, H_{2}\right]=1$. Note that $P^{*} \cap H_{i}$ acts simply on $Q_{Z} \cap H_{i}$. If $|\mathbb{K}|>3$, then $\left[Q_{Z}, P^{*} \cap H_{i}\right]=Q_{Z} \cap H_{i}$ and we conclude that $Q=H_{i} \cap Q_{Z}$ for some $i \in\{1,2\}$. Thus (4) holds in this case. If $|\mathbb{K}| \leqslant 3$, then $\left|Q_{Z}\right|=p^{2}$, $|Q|=p$ and and since $\left[Z^{\perp}, Q\right] \leqslant Z, X$ is 2-dimensional over \mathbb{K}. If $Q=Q_{Z} \cap H_{i}$ for some $1 \leqslant i \leqslant 2$, then again (4) holds. Otherwise X is non-singular and contains a non-singular 1-space Y. By Q !, $Q \preccurlyeq C_{H^{\diamond}}(Y)$, a contradiction since $C_{H^{\diamond}}(Y) \cong \Omega_{3}(\mathbb{K}) \cong L_{2}(\mathbb{K})$ and so does not have any non-trivial normal p-subgroups. This completes the case where Q centralizes Z^{\perp} / Z.

Suppose now that Q does not centralizes Z^{\perp} / Z. Since $C_{Z}(Q) \neq 0, Q$! implies that P normalizes Q. In particular, $[Q, P] \leqslant Q \cap P \leqslant Q_{Z}$ and P does not act simply on Z^{\perp} / Z. By B.28 P induces $S L(V / Z), S p\left(Z^{\perp} / Z\right), S U\left(Z^{\perp} / Z\right)$ and $\Omega\left(Z^{\perp} / Z\right)$, respectively, on Z^{\perp} / Z. Moreover, B. 29 shows that $\operatorname{dim}_{\mathbb{K}} V=4$ and $H=G U(V)$ or $H=O(V)$. In either case since $Z^{\perp} / Z \cong Q_{Z} / D_{Z}$ as an P-module, $\left[Q, Q_{Z}\right] \neq D_{Z}$. Note also that $\left[Q, Q_{Z}\right] \neq Q_{Z}$.

Suppose $H=G U(V)$. Then B.30 (with $T:=\left[Q, Q_{Z}\right]$) shows that $D_{Z} \leqslant\left[Q, Q_{Z}\right],\left[Q, Q_{Z}\right] / D_{Z}$ is a natural $S L_{2}(\mathbb{F})$-module for P and either $Q \cap Q_{Z}=\left[Q, Q_{Z}\right]$ or $Q \cap Q_{Z}=Q_{Z}$. By B.29 a) all P-submodules of Z^{\perp} / Z are \mathbb{F}-subspaces. It follows that $\left[Z^{\perp} / Z, Q\right]$ is a non-trivial \mathbb{F}-subspace centralized by Q, and so Q acts \mathbb{F}-linearly on \mathbb{K}. Hence $\left|Q / C_{Q}(\mathbb{K})\right| \leqslant 2$. By B.29 a) Z^{\perp} / Z is a simple $\mathbb{K} P$-module. Thus $C_{Q}(\mathbb{K})$ centralizes Z^{\perp} / Z. As seen above $Q^{*} \leqslant Q_{Z}$, and we conclude that $C_{Q}(\mathbb{K})=Q \cap Q_{Z}$. Together with $Q \not Q_{Z}$ this gives $\left|Q / Q \cap Q_{Z}\right|=2$ and so $p=2$ and
$H^{\diamond} Q \cong O_{6}^{-}(\mathbb{F})$. Since $C_{V}\left(Q \cap Q_{Z}\right)$ is an \mathbb{K}-subspace normalized by P and Z^{\perp} / Z is a simple $\mathbb{K} P$-module, $C_{V}\left(Q \cap Q_{Z}\right)=Z$. Thus $Z=\left\langle\mathbb{K} C_{V}(Q)\right\rangle$ and (3) holds.

Suppose $H=O(V)$. If h is of --type then $\Omega\left(Z^{\perp} / Z\right)$ has order $|\mathbb{K}|+1$ or $(|\mathbb{K}|+1) / 2$ depending on $p=2$ or p odd. It follows that Z^{\perp} / Z is a simple P-module unless $|\mathbb{K}|=3$. In the latter case Q acts \mathbb{K}-linearly on V. Hence $Q \leqslant H$. As $Q_{Z} \in \operatorname{Syl}_{p}(H)$ this gives $Q \leqslant Q_{Z}$, a contradiction.

Thus h is of +-type and $H^{\diamond}=H_{1} H_{2}$ with $H_{i} \cong S L_{2}(\mathbb{K})$ and $\left[H_{1}, H_{2}\right]=1$.
For $i \in\{1,2\}$ define $Z_{i}:=C_{V}\left(Q_{Z} \cap H_{i}\right)$. Let $z_{k}, 0 \leqslant k \leqslant 3$, be non-zero singular vectors in V such that $z_{0} \in Z, z_{1} \in Z_{1} \backslash Z, z_{2} \in Z_{2} \backslash Z, f\left(z_{0}, z_{3}\right)=f\left(z_{1}, z_{2}\right)=1$ and $f\left(z_{k}, z_{l}\right)=0$ for all other $0 \leqslant k \leqslant l \leqslant 3$. For $\lambda \in \mathbb{K}^{\sharp}$ define $a_{\lambda} \in G L_{\mathbb{K}}(V)$ by

$$
z_{0}^{a_{\lambda}}=z_{0}, \quad z_{1}^{a_{\lambda}}=\lambda z_{1}, \quad z_{2}^{a_{\lambda}}=\lambda^{-1} z_{2}, \quad z_{3}^{a_{\lambda}}=z_{3}
$$

Observe that a_{λ} is an isometry, and since H / H^{\diamond} is elementary abelian, $a_{\lambda}^{2} \in H^{\diamond}$ and $a_{\lambda}^{2} \in P$. It follows that Z_{i} / Z is a simple $\mathbb{F}_{p} P$-module. Since P normalizes $N_{Q}\left(H_{i}\right)$, we conclude that $N_{Q}\left(H_{i}\right)$ centralizes Z_{i} / Z. Together with $N_{Q}\left(H_{1}\right)=N_{Q}\left(H_{2}\right)$ this shows that $N_{Q}\left(H_{1}\right)$ centralizes Z^{\perp} / Z and so $N_{Q}\left(H_{i}\right) \leqslant Q^{*} \leqslant Q_{Z}$. Thus $N_{Q}\left(H_{i}\right)=Q \cap Q_{z},\left|Q / Q_{\cap} Q_{Z}\right|=2$ and $p=2$.

Suppose that $|\mathbb{K}|=2$. Then $H^{\diamond} Q=H$. Since $1 \neq\left[Q_{Z}, Q\right] \leqslant Q_{Z} \cap Q$ we have $|Q| \geqslant 4$. Let y be a non-singular vector of V. Then $C_{H}(y) \cong C_{2} \times S L_{2}(2)$. Thus $O_{2}\left(C_{H}(y) \mid=2\right.$ and $Q \notin C_{H}(y)$. Hence Q ! implies $y \notin C_{V}(Q)$, and so $C_{V}(Q)$ is singular. It follows $C_{V}(Q)=Z$ and $Q \cong C_{4}$ or D_{8}, and (5) holds.

Suppose that $|\mathbb{K}| \geqslant 4$. Then a_{λ} has odd order and so $a_{\lambda} \in P$ for all $\lambda \in \mathbb{K}^{\sharp}$. Note that a_{λ} acts as a scalar multiplication by λ and λ^{-1} on Z_{1} / Z and Z_{2} / Z, respectively. Since $|\mathbb{K}| \geqslant 4$ there exists $\lambda \in \mathbb{K}$ with $\lambda \neq \lambda^{-1}$. Thus Z_{1} / Z and Z_{2} / Z are non-isomorphic as $\mathbb{K} P / Q_{Z}$-module. Since $Q \neq Q \cap Q_{Z}=N_{Q}\left(H_{1}\right)$ we have $Z_{1}^{Q}=\left\{Z_{1}, Z_{2}\right\}$. We conclude that Z^{\perp} / Z is a simple $\mathbb{K} P Q$-module. It follows that $C_{Q}(\mathbb{K}) \leqslant Q^{*} \leqslant Q_{Z}$ and so Q does not act \mathbb{K}-linearly on V. Moreover, as Z^{\perp} / Z is not a simple $\mathbb{F}_{2} P Q$-module, we infer that Z_{1} / Z and Z_{2} / Z are isomorphic as $\mathbb{F}_{2} P$-modules, and so there exists an $\mathbb{F}_{2} P$-isomorphism ϕ from Z_{1} / Z to Z_{2} / Z. The action of a_{λ} on Z_{1} / Z and Z_{2} / Z shows that $\mathbb{K}=E n d_{\mathbb{F}_{2} P}\left(Z_{i} / Z\right)$, and ϕ induces a field automorphism σ on \mathbb{K} with $\lambda^{\sigma}=\lambda^{-1}$ for all λ in \mathbb{K}^{\sharp}. It follows that $\sigma^{2}=1, C_{\mathbb{K}}(\sigma)=\mathbb{F}_{2}$ and $\mathbb{K}=\mathbb{F}_{4}$.

Let $\lambda \in \mathbb{K} \backslash \mathbb{F}_{2}$ and put $d:=a_{\lambda}$. Then d is an element of order three in P, and d acts fixed-point freely on Q_{Z} and so also on $Q_{Z} \cap Q$. Since $\left|Q_{Z} / Q_{Z} \cap Q\right|=2$ we conclude that there exists $t \in Q$ with $Q=\left(Q_{Z} \cap Q\right)\langle t\rangle,[t, d]=1$ and $|t|=2$. Now $Q \cap Q_{Z}=N_{Q}\left(H_{1}\right)$ implies $H_{1}^{t}=H_{2}$. Hence $H^{\diamond} Q=H^{\diamond}\langle t\rangle \cong S L_{2}(4) \imath C_{2} \cong H$. As Q does not act \mathbb{K}-linearly $H^{\diamond} Q \neq H$. Note that $\left[Q_{Z}, t\right] \leqslant Q$ and so by the action of d either $Q=Q_{Z}\langle t\rangle$ or $Q=\left[Q_{Z}, t\right]\langle t\rangle=C_{Q_{Z}}(t)\langle t\rangle$. In either case, Q ! or equally well the action of $C_{H^{\diamond}}(t)$ on V show that $C_{V}(Q)=C_{Z}(Q)$ has order 2 , and so (6) holds.

Lemma B.38. Let Q be a p-subgroup of $G L_{\mathbb{F}_{p}}(V)$ normalizing H^{\diamond} and U a \mathbb{K}-subspace of V. Put
$E_{U}:=\left\langle Q^{g} \mid g \in H^{\diamond}, C_{U}\left(Q^{g}\right) \neq 0\right\rangle, \quad F_{U}:=\left\langle\left(Q \cap H^{\diamond}\right)^{g} \mid g \in H^{\diamond}, C_{U}\left(Q^{g}\right) \neq 0\right\rangle$ and $W:=\langle\mathcal{S}(U)\rangle$.

Suppose that

(i) $\operatorname{dim}_{\mathbb{K}} V \geqslant 3$ if V is a linear space, $\operatorname{dim}_{\mathbb{K}} V \geqslant 4$ if V is a symplectic or unitary space, and $\operatorname{dim}_{\mathbb{K}} V \geqslant 5$ if V is an orthogonal space.
(ii) V is a Q !-module for $H^{\diamond} Q$ with respect to Q.

If W is not singular, then $E_{U}=\left\langle Q^{H^{\circ}}\right\rangle$ and $V=\left\langle U^{E_{U}}\right\rangle$. If W is singular, then each of the following hold:
(a) $W \leqslant U \leqslant W^{\perp}$ and F_{U} normalizes U and W.
(b) F_{U} centralizes W^{\perp} / W.
(c) W is a natural $S L_{\mathbb{K}}(W)$-module for F_{U}.
(d) Let T be a proper, non-zero \mathbb{K}-subspace of V. Then F_{U} normalizes T if and only if $W \leqslant$ $T \leqslant W^{\perp}$
(e) If $E_{U} \neq F_{U}$, then $H^{\triangleright}=S U_{4}(\mathbb{F}), E_{U}$ normalizes W, and either $\operatorname{dim}_{\mathbb{K}} W=1, F_{U}=$ $Q_{W}=C_{E_{U}}(W)$ and $E_{U} / F_{U} \cong O_{2}^{-}(\mathbb{F})$, or $\operatorname{dim}_{\mathbb{K}} W=2, U=W,\left|E_{U} / F_{U}\right|=2$ and $E_{U} / C_{E_{U}}(W) \cong O_{4}^{-}(\mathbb{F})$.

Proof. Put $X:=\left\langle\mathbb{K} C_{V}(Q)\right\rangle$. Note that we can apply B.37 in particular, $V^{\perp}=0$ if V is an orthogonal space. In the last three cases of B.37 V is a 4-dimensional orthogonal space, a contradiction to Hypothesis (i). In the other cases $X \in \mathcal{S}(V)$, and one of the following holds:
(A) $Q=Q_{X}$.
(B) $H=H^{\diamond}=S p_{4}(2)$ and $Q=Q_{X} \cap H^{\prime}$.
(C) $H^{\diamond}=S U_{4}(\mathbb{F}), H^{\diamond} Q \cong O_{6}^{-}(\mathbb{F}),\left|Q / Q \cap Q_{X}\right|=2$ and $D_{X}<Q \cap Q_{X}$.

If V is a linear space then $X=C_{V}\left(Q_{X}\right)$, and if V is not a linear space then by B.23g) $C_{V}\left(Q_{X}\right)=$ $X+V^{\perp}$ and again $C_{V}\left(Q_{X}\right)=X$ since $V^{\perp}=0$.

Note that $Q \leqslant E_{X}, Q \cap Q_{X} \leqslant F_{X}$ and $N_{H^{\diamond}}(X)$ normalizes F_{X}. Let $g \in H^{\diamond}$. If $C_{X}\left(Q^{g}\right) \neq 0$, then $X=\left\langle\mathbb{K} C_{V}\left(Q^{g}\right)\right\rangle$ and so Q^{g} normalizes X. If Q^{g} normalizes X, the $C_{X}\left(Q^{g}\right) \neq 0$. This shows that

$$
E_{X}=\left\langle Q^{g} \mid g \in H^{\diamond}, Q^{g} \leqslant N_{H}(X)\right\rangle \quad \text { and } \quad F_{X}=\left\langle Q^{g} \cap H^{\diamond} \mid g \in H^{\diamond}, Q^{g} \leqslant N_{H^{\diamond}}(X)\right\rangle
$$

In case (A), $Q=Q_{X} \leqslant H^{\triangleright}$ and so $E_{X}=F_{X}=Q_{X}$. In particular, $C_{V}\left(F_{X}\right)=C_{V}\left(Q_{X}\right)=X$ and $\left\langle Q^{H^{\circ}}\right\rangle=H^{\diamond}$.

In case (B), $Q=Q_{X} \cap H^{\prime} \leqslant H^{\diamond}$ and so $E_{X}=F_{X}=Q_{X} \cap H^{\prime}$. Observe that $D_{X} \leqslant H^{\prime}$, so $Q_{X}=F_{X} D_{X}$. Since Q_{X} acts regularly on $V \backslash Z^{\perp}, C_{V}\left(F_{X}\right) \leqslant Z^{\perp}=C_{V}\left(D_{X}\right)$. Thus $C_{V}\left(F_{X}\right)=$ $C_{V}\left(F_{X} D_{X}\right)=C_{V}\left(Q_{X}\right)=X$. Since $S p_{4}(2)^{\prime}$ is simple, $\left\langle Q^{H^{\circ}}\right\rangle=H^{\prime}$ and so $D_{X}\left\langle Q^{H^{\circ}}\right\rangle=D_{X} H^{\prime}=$ $H=H^{\diamond}$.

In case (C) $Q \leqslant H^{\diamond}$ and $\left|Q / Q \cap Q_{X}\right|=2$. Thus $Q \cap H^{\diamond}=Q \cap Q_{X}$. By B.30 c) Q_{X} / D_{X} is a simple $N_{H^{\diamond}}(X)$-module. As $D_{X}<Q \cap H^{\diamond} \leqslant Q_{X}$ and $N_{H^{\diamond}}(X)$ normalizes F_{X}, this gives $F_{X}=Q_{X}$. Thus $C_{V}\left(F_{X}\right)=C_{V}\left(Q_{X}\right)=X, H^{\diamond}=\left\langle F_{X}^{H^{\diamond}}\right\rangle$ and $H^{\diamond} Q=\left\langle Q^{H^{\diamond}}\right\rangle$.

In each case we have proved:

$$
\begin{equation*}
H^{\diamond} Q=D_{X}\left\langle Q^{H^{\diamond}}\right\rangle, \quad Q_{X}=D_{X} F_{X} \quad \text { and } \quad C_{V}\left(F_{X}\right)=X \tag{*}
\end{equation*}
$$

Let $Z \in \mathcal{S}(V)$. By B.26 H^{\diamond} acts transitively on $\mathcal{S}(V)$. Thus (*) holds for Z in place of X.
Let $g \in H^{\diamond}$. Since U is an \mathbb{K}-subspace and $\left\langle\mathbb{K} C_{V}\left(Q^{g}\right)\right\rangle=X^{g}$ is a 1-dimensional singular subspace of V, we see that $C_{U}\left(Q^{g}\right) \neq 0$ if and only if $X^{g} \leqslant U$ and if and only if $C_{Z}\left(Q^{g}\right) \neq 0$ for some $Z \in \mathcal{S}(U)$. It follows that

$$
E_{U}=\left\langle E_{Z} \mid Z \in \mathcal{S}(U)\right\rangle \quad \text { and } \quad F_{U}=\left\langle F_{Z} \mid Z \in \mathcal{S}(U)\right\rangle
$$

Observe that $\mathcal{S}(U)=\mathcal{S}(W)$. Thus
(**)

$$
E_{U}=\left\langle E_{Z} \mid Z \in \mathcal{S}(W)\right\rangle=E_{W} \quad \text { and } \quad F_{U}=\left\langle F_{Z} \mid Z \in \mathcal{S}(W)\right\rangle=F_{W}
$$

If $W=0$ then $E_{U}=E_{W}=1$ and $F_{U}=F_{W}=1$, and the lemma holds in this case. So suppose that $W \neq 0$ and without loss that $X \leqslant W$.

Suppose first that W is not singular and choose $Y, Z \in \mathcal{S}(U)$ with $Z \not Y^{\perp}$. Then by B. 26 $\left\langle Q_{Y}, Q_{Z}\right\rangle=H^{\diamond}$. Since $\left[V, D_{Y}\right] \leqslant Y, D_{Y}$ normalizes $Y+Z$ and so also E_{Y+Z}. Since $F_{Y} \leqslant E_{Y+Z}$ and $Q_{Y}=D_{Y} F_{Y}$, we conclude that Q_{Y} normalizes E_{Y+Z}. By symmetry Q_{Z} normalizes E_{Y+Z}. Pick $g \in H^{\diamond}$ with $X^{g}=Z$. Then $Q^{g} \leqslant E_{Y+Z}$, and we get

$$
E_{Y+Z} \leqslant\left\langle Q_{Y}, Q_{Z}\right\rangle Q^{g}=H^{\diamond} Q^{g}=H^{\diamond} Q
$$

Thus $\left\langle Q^{H^{\diamond}}\right\rangle=E_{X+Y}=E_{U}$. By (*) $H^{\diamond} Q=D_{X}\left\langle Q^{H^{\diamond}}\right\rangle=D_{X} E_{U}$, so

$$
V=\langle\mathcal{S}(V)\rangle=\left\langle X^{H^{\diamond}}\right\rangle \leqslant\left\langle X^{D_{X} E(U)}\right\rangle=\left\langle X^{E_{U}}\right\rangle \leqslant\left\langle U^{E_{U}}\right\rangle
$$

Hence $V=\left\langle U^{E_{U}}\right\rangle$, and the lemma holds in this case.
Suppose now that W is singular.
(a) and (b): By B.13 $W=U$ or $W=\operatorname{rad}(U)$. In either case $W \leqslant U \leqslant W^{\perp}$. Let $Z \in \mathcal{S}(W)$. Then $Z \leqslant W \leqslant W^{\perp} \leqslant Z^{\perp}$. Since $F_{Z} \leqslant Q_{Z}$ and Q_{Z} centralizes Z^{\perp} / Z we conclude that F_{Z} normalizes W and centralizes W^{\perp} / W. By $(* *), F_{U}=\left\langle F_{Z} \mid Z \in \mathcal{S}(W)\right\rangle$. Hence also F_{U} normalize W and centralizes W^{\perp} / W. Thus a and bold.
(c): Let $Z \in \mathcal{S}(W)$. Then $W \leqslant Z^{\perp} \leqslant C_{V}\left(D_{Z}\right)$. As by $(*) Q_{Z}=D_{Z} F_{Z}$, this gives $Q_{Z}=$ $C_{Q_{Z}}(W) F_{Z}$. Let $\beta \in \operatorname{Hom}_{\mathbb{K}}(W, Z)$ with $Z \leqslant \operatorname{ker} \beta$. Since $W \leqslant Z^{\perp}$ and $W \cap R(V)=0$ we can choose $\tau \in \operatorname{Hom}_{\mathbb{K}}\left(Z^{\perp}, Z\right)$ with $Z+R(V) \leqslant \operatorname{ker} \tau$ and $\left.\tau\right|_{W}=\beta$. By B.24 there exists $q \in Q_{Z}$ with
$u^{q}=u+u \tau$ for all $u \in Z^{\perp}$ and so $w^{q}=w+w \beta$ for all $w \in W$. Hence Q_{Z} induces all possible transvections with center Z on W. Note that this also holds for F_{Z} in place of Q_{Z}, since, as seen above, $Q_{Z}=F_{Z} C_{Q_{Z}}(W)$.

Since $Z \in \mathcal{S}(W)$ was arbitrary and $S L_{\mathbb{K}}(W)$ is generated by its transvections, we conclude that F_{U} induces $S L_{\mathbb{K}}(W)$ on W. Thus (\mathbb{C}) is proved.
(d): Let T be any proper non-zero \mathbb{K}-subspace of V and $Z \in \mathcal{S}(W)$. If $W \leqslant T \leqslant W^{\perp}$ then F_{U} normalizes T since by (b) F_{U} centralizes W^{\perp} / W. Conversely, suppose F_{U} normalizes T. Then $C_{T}\left(F_{Z}\right) \neq 0$. By (*) $C_{V}\left(F_{Z}\right)=Z$. Since Z is 1-dimensional we conclude that $Z \leqslant T$. As $Z \in \mathcal{S}(W)$ was arbitrary, we conclude that $W \leqslant T$. It remains to show that $T \leqslant W^{\perp}$. This is obvious if $W^{\perp}=V$. Thus, we may assume that V is not a linear space. Then also T^{\perp} is a proper, non-zero F_{U}-invariant \mathbb{K}-subspace of V and thus $W \leqslant T^{\perp}$. Hence $T \leqslant W^{\perp}$.
(e): Since $E_{U} \neq F_{U}$ we have $Q \neq H^{\diamond}$. Thus (C) holds. In particular, $\operatorname{dim}_{\mathbb{K}} V=4$ and so $\operatorname{dim}_{\mathbb{K}} W \leqslant 2$. Let L be the largest subgroup of $\overparen{H^{\diamond} Q}$ normalizing X and acting trivially on $\mathcal{S}\left(X^{\perp} / X\right)$. We claim that $Q \leqslant L$. Since $X=\left\langle\mathbb{K} C_{V}(Q)\right\rangle, Q$ normalizes X. By B.12 (c) applied to $X^{\perp} / X, Q$ fixes at least one element of $\mathcal{S}\left(X^{\perp} / X\right)$. Also $C_{H^{\circ}}(X)$ induces $S U\left(X^{\perp} / X\right)$ on X^{\perp} / X and so acts transitively on $\mathcal{S}\left(X^{\perp} / X\right)$. By $Q!, C_{H^{\circ}}(X)$ normalizes Q. Thus Q acts trivially on $\mathcal{S}\left(X^{\perp} / X\right)$ and so $Q \leqslant L$. It follows that $E_{X} \approx L$.

Suppose that $\operatorname{dim}_{\mathbb{K}} W=1$. Then $W=X$ (but not necessarily $W=U$). Let $l \in L \cap H^{\diamond}$. Then l acts \mathbb{K}-linearly on X^{\perp} / X and fixes the $|\mathbb{F}|+1$ elements of $\mathcal{S}\left(X^{\perp} / X\right)$. It follows that there exists $\lambda \in \mathbb{K}^{\sharp}$ such that l acts as scalar multiplication by λ on X^{\perp} / X. Let $\mu \in \mathbb{K}^{\sharp}$ such that l acts as scalar multiplication by μ on X. Since f is l-invariant, $\lambda^{\alpha} \lambda=1$ and l acts as scalar multiplication by $\mu^{-\alpha}$ on V / X^{\perp}. Since $l \in H^{\diamond}=S U_{\mathbb{K}}(V)$, $\operatorname{det} l=1$ and so $\lambda^{2}=\mu^{-1} \mu^{\alpha}$. Conversely, since $p=2$, for any $\mu \in \mathbb{K}^{\sharp}$ there exists a unique $\lambda \in \mathbb{K}^{\sharp}$ with $\lambda^{2}=\mu^{-1} \mu^{\alpha}$, and then, since $\alpha^{2}=1$,

$$
\left(\lambda^{\alpha} \lambda\right)^{2}=\left(\mu^{-1} \mu^{\alpha}\right)^{\alpha}\left(\mu^{-1} \mu^{\alpha}\right)=1 \quad \text { and } \quad \lambda^{\alpha} \lambda=1 .
$$

In particular, if $\mu=1$ then $\lambda=1$. Hence $C_{L}(X)=C_{L}(X) \cap C_{L}\left(X^{\perp} / X\right)=Q_{X}$ and

$$
\left(L \cap H^{\diamond}\right) / Q_{X} \cong \mathbb{K}^{\sharp} \cong C_{q^{2}-1} \cong C_{q-1} \times C_{q+1} .
$$

Note that the elements in $L \backslash H^{\triangleright}$ act α-semilinear on V and so centralize the first factor and invert the second one of the above decomposition of $\left(L \cap H^{\diamond}\right) / Q_{X}$. Recall that $F_{X}=Q_{X}$ in case \mathbb{C}. So $F_{U}=F_{W}=F_{X}=Q_{X}$ and $E_{U}=E_{W}=E_{X} \approx L$. From $Q \leqslant L \leqslant H^{\diamond} Q$ we get $L=\left(L \cap H^{\diamond}\right) Q$. Since $Q / Q \cap Q_{X}$ has order 2 we conclude that $L / Q_{X} \cong C_{q-1} \times \operatorname{Dih}_{q+1}$. Moreover, E_{U} / Q_{X} is a normal subgroup of L / Q_{X} generated by involutions. Thus $E_{U} / Q_{X} \cong \operatorname{Dih}_{2(q+1)} \cong O_{2}^{-}(\mathbb{F})$, and (e) holds in this case.

Suppose next that $\operatorname{dim}_{\mathbb{K}} W=2$. Then $W=W^{\perp}$. By (a) $W \leqslant U \leqslant W^{\perp}$ and so $W=U$. Note that $W / X \in \mathcal{S}\left(X^{\perp} / X\right)$. Since $Q \leqslant L$, we conclude that Q normalizes W. Thus E_{U} normalizes W. By (C), W is a natural $S L_{2}(\mathbb{K})$-module for F_{U}. So F_{U} acts transitively on W, and Q ! implies $E_{U}=\left\langle Q^{F_{U}}\right\rangle=Q F_{U}$, see A.50 d. Thus $\left|E_{U} / F_{U}\right|=\left|Q / Q \cap F_{U}\right|=\left|Q / Q \cap Q_{X}\right|=2$. As the elements of $Q \backslash Q_{X}$ act α-semilinearly on W, we conclude that $E_{U} / C_{E_{U}}(W) \cong O_{4}^{-}(\mathbb{F})$ and so (e) also holds in this case.

APPENDIX C

FF-Module Theorems and Related Results

C.1. FF-Module Theorems

Definition C.1. A finite group M is $\mathcal{C K}$-group if each composition factor of M is one of the known finite simple groups.

Theorem C. 2 (General FF-Module Theorem, MS5). Let M be a finite $\mathcal{C K}$-group with $O_{p}(M)=1$ and V be a faithful finite dimensional $\mathbb{F}_{p} M$-module. Suppose that $J:=J_{M}(V) \neq 1$. Then for $\mathcal{J}:=\mathcal{J}_{M}(V)$, $W:=[V, \mathcal{J}]+C_{V}(\mathcal{J}) / C_{V}(\mathcal{J}), K \in \mathcal{J}$ and $\bar{J}:=J / C_{J}([W, K])$ the following hold:
(a) K is either quasisimple, or $p=2$ or 3 and $K \cong S L_{2}(p)^{\prime}$.
(b) $[V, K, L]=0$ for all $K \neq L \in \mathcal{J}$, and $W=\oplus_{K \in \mathcal{J}}[W, K]$.
(c) $J^{p} J^{\prime}=O^{p}(J)=F^{*}(J)=\times_{K \in \mathcal{K}} K$.
(d) W is a faithful semisimple $\mathbb{F}_{p} J$-module.
(e) If $A \leqslant M$ is a best offender on V, then A is a best offender on W.
(f) $\bar{K}=\overline{F^{*}(J)}=O^{p}(\bar{J})$ and $C_{J}([W, K])=C_{J}([V, K])$.
(g) Either $[W, K]$ is a simple $\mathbb{F}_{p} K$-module, or one of the following holds, where q is a power of p :
(1) $\bar{J} \cong S L_{n}(q), n \geqslant 3$, and $[W, K] \cong N^{r} \oplus N^{* s}$, where N is a natural $S L_{n}(q)$-module, H its dual, and r, s are integers with $0 \leqslant r, s<n$ and $\sqrt{r}+\sqrt{s} \leqslant \sqrt{n}$.
(2) $\bar{J} \cong S p_{2 m}(q)$, $m \geqslant 3$, and $[W, K] \cong N^{r}$, where N is a natural $S p_{2 m}(q)$-module and r is a positive integer with $2 r \leqslant m+1$.
(3) $\bar{J} \cong S U_{n}(q)$, $n \geqslant 8$, and $[W, K] \cong N^{r}$, where N is a natural $S U_{n}(q)$-module and r is a positive integer with $4 r \leqslant n$.
(4) $\bar{J} \cong \Omega_{n}^{\epsilon}(q)$ with p odd if n is odd, or $\bar{J} \cong O_{n}^{\epsilon}(q)$ with $p=2$ and n even.1 Moreover, $n \geqslant 10$ and $[W, K] \cong N^{r}$, where N is a natural $\Omega_{n}^{\epsilon}(q)$-module and r is a positive integer with $4 r \leqslant n-2$.
(h) If $[W, K]$ is not a homogeneous $\mathbb{F}_{p} K$ module, then g:1) holds with $r \neq 0 \neq s$ and $n \geqslant 4$.

Theorem C. 3 (FF-Module Theorem, MS5]). Let $M \neq 1$ be a finite $\mathcal{C K}$-group and V be a faithful $\mathbb{F}_{p} M$-module. Put
$\mathcal{D}:=\{A \leqslant M \mid \text { there exists } 1 \neq B \leqslant A \text { such that }[V, B, A]=0 \text { and } A \text { and } B \text { are offenders on } V\}_{\square}^{2}$
Suppose that V is a simple $\mathbb{F}_{p} J_{M}(V)$-module and $M=\langle\mathcal{D}\rangle$. Then one of the following holds, where q is a power of p :
(1) $M \cong S L_{n}(q), n \geqslant 2$, and V is a natural $S L_{n}(q)$-module.
(2) $M \cong S p_{2 n}(q), n \geqslant 1$, and V is a natural $S p_{2 n}(q)$-module.
(3) $M \cong S U_{n}(q), n \geqslant 4$, and V is a natural $S U_{n}(q)$-module.
(4) $M \cong \Omega_{2 n}^{+}(q)$ for $2 n \geqslant 6, M \cong \Omega_{2 n}^{-}(q)$ for $p=2$ and $2 n \geqslant 6, M \cong \Omega_{2 n}^{-}(q)$ for p odd and $2 n \geqslant 8, M \cong \Omega_{2 n+1}(q)$ for p odd and $2 n+1 \geqslant 7, M \cong O_{4}^{-}(2)$, or $M \cong O_{2 n}^{\epsilon}(q)$ for $p=2$ and $2 n \geqslant 6$, and V is a corresponding natural module.
(5) $M \cong G_{2}(q), p=2$, and V is a natural $G_{2}(q)$-module (of order q^{6}).
(6) $M \cong S L_{n}(q) /\left\langle-i d^{n-1}\right\rangle, n \geqslant 5$, and V is the exterior square of a natural $S L_{n}(q)$-module.
(7) $M \cong \operatorname{Spin}_{7}(q)$, and V is a spin module of order q^{8}.

[^21](8) $M \cong \operatorname{Spin}_{10}^{+}(q)$, and V is a half-spin module of order q^{16}.
(9) $M \cong 3 \cdot \operatorname{Alt}(6), p=2$ and $|V|=2^{6}$.
(10) $M \cong \operatorname{Alt}(7), p=2$, and $|V|=2^{4}$.
(11) $M \cong \operatorname{Sym}(n), p=2$, n odd, $n \geqslant 3$, and V is a natural $\operatorname{Sym}(n)$-module.
(12) $M \cong \operatorname{Alt}(n)$ or $\operatorname{Sym}(n), p=2$, n is even, $n \geqslant 6$, and V is a corresponding natural module.

Theorem C. 4 (Best Offender Theorem, MS5). Let $M \neq 1$ be a finite group, $T \in \operatorname{Syl}_{p}(M)$, and V be a faithful $\mathbb{F}_{p} M$-module, and let $A \leqslant T$ be a non-trivial offender on V.
(a) Suppose that $M \cong G_{2}(q), p=2$, and V is a natural $G_{2}(q)$-module. Then $N_{M}(A)$ is a maximal Lie-parabolic subgroup, $|A|=\left|V / C_{V}(A)\right|=q^{3},[V, A]=C_{V}(A)$, and $C_{T}(A)=A$.
(b) Suppose that $M \cong S L_{n}(q) /\left\langle-i d^{n-1}\right\rangle, n \geqslant 5$, and V is the exterior square of a natural $S L_{n}(q)$-module W. Let U be the (unique) T-invariant \mathbb{F}_{q}-hyperplane of W. Then $A=$ $C_{M}(U)$. In particular, A is uniquely determined in $T, C_{T}(A)=A,[V, A]=C_{V}(A)$ and $\left|V / C_{V}(A)\right|=|A|=q^{n-1}$.
(c) Suppose that $M \cong \operatorname{Spin}_{7}(q)$, and V is a spin module of order q^{8}. Then $C_{V}(A)=$ $[V, A],\left|V / C_{V}(A)\right|=q^{4} \leqslant|A| \leqslant q^{5}$, and if A is maximal, then $|A|=q^{5}, C_{T}(A)=A$, $O^{p^{\prime}}\left(N_{M}(A)\right) / A \cong S p_{4}(q)$, and A is uniquely determined in T.
(d) Suppose that $M \cong \operatorname{Spin}_{10}^{+}(q)$, and V is a half-spin module of order q^{16}. Then $[V, A]=$ $C_{V}(A), q^{8}=|A|=\left|V / C_{V}(A)\right|, O^{p^{\prime}}\left(N_{M}(A) / A\right) \cong \operatorname{Spin}_{8}^{+}(q)$, and A is uniquely determined in T.
(e) Suppose that $M \cong 3 \cdot \operatorname{Alt}(6), p=2$ and $|V|=2^{6}$. Then $[V, A]=C_{V}(A),|[V, A]|=$ $\left|C_{V}(A)\right|=16,\left|V / C_{V}(A)\right|=|A|=4$, and A is uniquely determined in T.
(f) Suppose that $M \cong \operatorname{Alt}(7)$, $p=2$ and $|V|=2^{4}$. Then $[V, A]=C_{V}(A),|[V, A]|=\left|C_{V}(A)\right|=$ $4,\left|V / C_{V}(A)\right|=|A|=4$, and A is uniquely determined in T.
(g) Suppose that $M \cong \operatorname{Sym}(n), p=2$, n odd, and V is a natural $\operatorname{Sym}(n)$-module. Then every offender on V is a quadratic best offender, A is generated by commuting transpositions and $\left|V / C_{V}(A)\right|=|[V, A]|=|A|$.
(h) Suppose that $M \cong \operatorname{Alt}(n)$ or $\operatorname{Sym}(n), p=2$, n is even, $n \geqslant 6$, and V is a corresponding natural module. Then every offender on V is a best offender, and there exists a set of pairwise commuting transpositions t_{1}, \ldots, t_{k} such that one of the following holds:
(1) $A=\left\langle t_{1}, \ldots, t_{k}\right\rangle$, and either $n \neq 2 k,[V, A] \leqslant C_{V}(A)$ and $|[V, A]|=\left|V / C_{V}(A)\right|=|A|$ or $n=2 k,[V, A]=C_{V}(A)$ and $2\left|V / C_{V}(A)\right|=|A|$.
(2) $n=2 k$ and $A=\left\langle t_{1} t_{2}, t_{2} t_{3} \ldots, t_{l-1} t_{l}, t_{l+1}, t_{l+2}, \ldots, t_{k}\right\rangle$ for some $2 \leqslant l \leqslant k$, [V, $\left.A\right]=$ $C_{V}(A)$ and $\left|V / C_{V}(A)\right|=|A|$.
(3) $n=2 k$ and $A=\left\langle t_{1} t_{2}, s_{1} s_{2}, t_{3}, t_{4} \ldots, t_{k}\right\rangle$, where s_{1}, s_{2} are transpositions distinct from t_{1} and t_{2} and $s_{1} s_{2}$ moves the same four symbols as $t_{1} t_{2}, A$ is not quadratic and $|[V, A]|=\left|V / C_{V}(A)\right|=|A|$.
(4) $n=8=|A|, A$ acts regularly on $\{1,2, \ldots, 8\},[V, A]=C_{V}(A)$ and $\left|V / C_{V}(A)\right|=|A|$.

In particular, if $A \leqslant \operatorname{Alt}(n)$ and $n \neq 8$, then $n=2 k$ and $A=\left\langle t_{1} t_{2}, t_{2} t_{3}, \ldots, t_{k-1} t_{k}\right\rangle$.
The next result essentially is MS6, 3.1]. We just use a slightly different hypothesis.
Theorem C. 5 (Strong Dual FF-Module Theorem, [MS6, 3.1]). Let M be a finite $\mathcal{C K}$ group, and let V be a faithful $\mathbb{F}_{p} M$-module. Let \mathcal{A} be the set of strong dual offenders in M on V. Suppose that $M=\langle\mathcal{A}\rangle$ and that
(i) V is a simple M-module, or
(ii) $C_{V}(M)=0, V=[V, M]$, and there exists $B \in \mathcal{A}$ with $M=\left\langle B^{M}\right\rangle$.

Then V is a simple M-module, and one of the following holds, where q is a power of p.
(1) $M \cong S L_{n}(q), n \geqslant 2$, or $S p_{2 n}(q), n \geqslant 2$, and V is a corresponding natural module.
(2) $p=2, M \cong \operatorname{Alt}(6)$ or $\operatorname{Alt}(7), V$ is a spin-module of order 2^{4}, and $A \cong\langle(12)(34),(13)(24)\rangle$ for all $\left.A \in \mathcal{A}\right|^{3}$
(3) $p=2, M \cong O_{2 n}^{\epsilon}(2), n \geqslant 3$, or $\operatorname{Sym}(n)$, $n=5$ or $n \geqslant 7$, V is a corresponding natural module, and $|A|=2$ for all $A \in \mathcal{A}$.

[^22]Proof. By A.32 c) strong dual offenders are best offender. Thus
1°. $\quad A$ is a best offender for every $A \in \mathcal{A}$.
It follows that $\langle\mathcal{A}\rangle \leqslant J_{M}(V)$, and $M=\langle\mathcal{A}\rangle$ gives
$2^{\circ} . \quad M=J_{M}(V)$.
Now let W be a non-zero M-submodule of V. If (i) holds, V is a simple M-module and so $W=V$. Assume that (ii) holds. Then there exists $B \in \mathcal{A}$ such that $M=\left\langle B^{M}\right\rangle$. Hence $C_{V}(M)=0$ implies $[W, B] \neq 0$. Since B is a strong dual offender, this gives $[V, B]=[W, B] \leqslant W$, and so $\left[V,\left\langle B^{M}\right\rangle\right]=[V, M] \leqslant W$. Now $[V, M]=V$ yields $V=W$. We have shown that always $W=V$ and so
$3^{\circ} . \quad V$ is a simple M-module.
Observe that 2° now shows that V is a simple $J_{M}(V)$-module. Hence we can apply C. 3 and get
$4^{\circ} . \quad$ Either $F^{*}(M)$ is quasisimple and $\left|M / F^{*}(M)\right| \leqslant 2$, or $M \cong S L_{2}(q), q=2$ or 3 , and V is a natural $S L_{2}(q)$-module for M.

In the second case of $4^{\circ},(1)$ holds. Thus we may assume the first case in 4°. Since $M=\langle\mathcal{A}\rangle$ there exists $B \in \mathcal{A}$ such that $M=F^{*}(M) B$. Then, for any such $B, M=\left\langle B^{M}\right\rangle$ and the hypothesis of [MS6, 3.1] is fulfilled for M and B. Thus one of the following holds:
(A) $M \cong S L_{n}(q), n \geqslant 2$, or $S p_{2 n}(q), n \geqslant 2$, and V is a corresponding natural module.
(B) $p=2, M \cong \operatorname{Alt}(6)$ or $\operatorname{Alt}(7), V$ is a spin-module of order 2^{4}, and $B \cong\langle(12)(34),(13)(24)\rangle$.
(C) $p=2, M \cong O_{2 n}^{\epsilon}(2), n \geqslant 3$, or $\operatorname{Sym}(n), n=5$ or $n \geqslant 7, V$ is a corresponding natural module, and $|B|=2$.
In case (A), (1) holds. In case (B), M is simple and so $M=F^{*}(M) A$ for all $A \in \mathcal{A}$ and so (2) holds.

So suppose $\left(\mathrm{C}\right.$ holds and let $A \in \mathcal{A}$. If $A \leqslant F^{*}(M)$, then $F^{*}(M)=\left\langle A^{F^{*}(M)}\right\rangle$ and we can apply [MS6, 3.1] to $F^{*}(M)$ and V and so one of A C) holds for $F^{*}(M)$ in place of M. But since (C) holds for $M, F^{*}(M) \cong \Omega_{2 n}^{\epsilon}(2), n \geqslant 3$, or $\operatorname{Alt}(n), n=5$ or $n \geqslant 7$, and V is a corresponding natural module, a contradiction. Thus $A \nleftarrow F^{*}(M), F^{*}(M) A=M$, and (3) holds.

Theorem C. 6 (Strong FF-Module Theorem, MS6, 3.2]). Let M be a finite $\mathcal{C K}$-group such that $K:=F^{*}(M)$ is quasisimple, and let V be a faithful simple $\mathbb{F}_{p} K$-module. Suppose that $A \leqslant M$ is a strong offender on V and $M=\left\langle A^{M}\right\rangle$. Then one of the following holds, where q is a power of p :
(1) $M \cong S L_{n}(q)$ or $S p_{2 n}(q)$ and V is a corresponding natural module.
(2) $p=2, M \cong \operatorname{Alt}(6), 3 \cdot \operatorname{Alt}(6)$ or $\operatorname{Alt}(7),|V|=2^{4}, 2^{6}$ or 2^{4}, respectively, and $|A|=4$.
(3) $p=2, M \cong O_{2 n}^{\epsilon}(2)$ or $\operatorname{Sym}(n), V$ is a corresponding natural module, and $|A|=2$.

Definition C.7. Let M be a finite group and V a faithful M-module. Recall the definition of a point-stabilizer of M on V from A.3. By $\mathcal{A} P_{M}(V)$ we denote the set of non-trivial best offenders A of M on V such that $A \leqslant O_{p}(P)$ for some point-stabilizer P of M on V.

Theorem C. 8 (Point-Stabilizer Theorem, [MS6, 3.5]). Let M be a finite $\mathcal{C K}$-group with $O_{p}(M)=1$ and let V be a faithful $\mathbb{F}_{p} M$-module. Suppose that $M=\left\langle\mathcal{A} P_{M}(V)\right\rangle$ and that there exists a $J_{M}(V)$-component K with $V=[V, K]$ and $C_{V}(K)=0$. Let $A \in \mathcal{A} P_{M}(V)$ and let P be a point-stabilizer for M on V with $A \leqslant O_{p}(P)$. Then the following hold:
(a) $M \cong S L_{n}(q), S p_{2 n}(q), G_{2}(q)$ or $\operatorname{Sym}(n), q$ a power of p, where $p=2$ in the last two cases, and $n \equiv 2,3(\bmod 4)$ in the last case.
(b) V is a corresponding natural module.
(c) Put $\mathbb{F}:=\operatorname{End}_{M}(V), q:=|\mathbb{F}|$ and $Z:=C_{V}(P)$. Then Z is 1 -dimensional over \mathbb{F}, and one of the following holds:
(1) $M \cong S L_{n}(q),[V, A]=Z$, and $A=C_{M}\left(C_{V}(A)\right) \cap C_{M}(V / Z)$.
(2) $M \cong S p_{2 n}(q), Z \leqslant[V, A] \leqslant Z^{\perp}$, and $A=C_{M}\left(C_{V}(A)\right) \cap C_{M}\left(Z^{\perp} / Z\right)$.
(3) $M \cong G_{2}(q),[V, A]=C_{V}(A),\left|V / C_{V}(A)\right|=|A|=q^{3}$, and $A \preccurlyeq P$.
(4) $M \cong \operatorname{Sym}(n), n \equiv 2,3(\bmod 4), n>6,|A|=2$, and $A \preccurlyeq P$.
(d) $\left|V / C_{V}(A)\right|=|A|$, and V is a simple $\mathbb{F}_{p} K$-module.

Theorem C. 9 (General Point-Stabilizer Theorem, MS6, 3.6]). Let M be a finite $\mathcal{C K}$ group with $O_{p}(M)=1$ and let V be a faithful $\mathbb{F}_{p} M$-module. Put $\mathcal{A} P:=\mathcal{A} P_{M}(V)$ and suppose that $\mathcal{A} P \neq \varnothing$. Then there exists an M-invariant set \mathcal{N} of subnormal subgroups of M such that the following hold:
(a) $\langle\mathcal{A} P\rangle=\times_{N \in \mathcal{N}} N$, and $N=\langle A \in \mathcal{A} P \mid A \leqslant N\rangle$ for all $N \in \mathcal{N}$.
(b) For all $N_{1} \neq N_{2} \in \mathcal{N},\left[V, N_{1}, N_{2}\right]=0$.
(c) Put $\left.\bar{V}=V / C_{V}(\mathcal{N})\right)$. Then $[\bar{V}, \mathcal{N}]=\oplus_{N \in \mathcal{N}}[\bar{V}, N]$.
(d) Let $N \in \mathcal{N}$. Then $(N,[\bar{V}, N])$ satisfies the hypothesis of $C .8$ in place of (M, V).
(e) For all $N \in \mathcal{N}, C_{V}(N)=C_{V}\left(O^{p}(N)\right)$ and $\left[V, O^{p}(N)\right]=[V, N]$.
(f) Let $A \in \mathcal{A} P$. Then
(a) $\left|V / C_{V}(A)\right|=|A|$,
(b) $A=X_{N \in \mathcal{N}} A \cap N$,
(c) $A \cap N \in \mathcal{A P}$ for all $N \in \mathcal{N}$ with $A \cap N \neq 1$.

Lemma C.10. Let L be a finite $\mathcal{C} \mathcal{K}$-group of characteristic p. Suppose that
(i) $C_{L}\left(Z_{L}\right)$ is p-closed,
(ii) P is a point-stabilizer of L on $Z_{L}{ }^{4}$
(iii) $O_{p}(L) \leqslant R \leqslant O_{p}(P)$,
(iv) A and Y are elementary abelian subgroup of R, and
(v) A normalizes $Y, Z_{L} \leqslant Y$, and $A \cap O_{p}(L)$ centralizes Y.

Then the following hold:
(a) $C_{A}(Y)=A \cap O_{p}(L)=C_{A}\left(Z_{L}\right)$. In particular, if $A \not O_{p}(L)$ then $[Y, A] \neq 1$.
(b) Suppose that A is a best offender on Y. Then
(a) $\left|A / A \cap O_{p}(L)\right|=\left|Z_{L} / C_{Z_{L}}(A)\right|=\left|Y / C_{Y}(A)\right|$,
(b) $Y=C_{Y}(A) Z_{L}$.
(c) Suppose that $A \in \mathcal{A}_{R}$. Then
(a) A is a best offender on Y and on Z_{L},
(b) $Z_{L}\left(A \cap O_{p}(L)\right) \in \mathcal{A}_{R} \cap \mathcal{A}_{O_{p}(L)}$,
(c) $Y=(A \cap Y) Z_{L}$.
(d) $\mathcal{A}_{O_{p}(L)} \subseteq \mathcal{A}_{R}$. In particular, $J\left(O_{p}(L)\right) \leqslant J(R)$.
(e) $\Omega_{1} Z(J(R)) \leqslant \Omega_{1} Z\left(J\left(O_{p}(L)\right)\right)$.
(f) $\left[\Omega_{1} Z(J(R)),\left\langle J(R)^{L}\right\rangle\right] \leqslant\left[\Omega_{1} Z\left(J\left(O_{p}(L)\right)\right),\left\langle J(R)^{L}\right\rangle\right] \leqslant Z_{L}$.

Proof. (a): Note that $O_{p}(L)$ centralizes Z_{L}. As $C_{L}\left(Z_{L}\right)$ is p-closed we get that $O^{p^{\prime}}\left(C_{L}\left(Z_{L}\right)\right)=$ $O_{p}(L)$. Thus $C_{A}\left(Z_{L}\right)=A \cap O_{p}(L)$. Now $Z_{L} \leqslant Y$ and $\left[Y, A \cap O_{p}(L)\right]=1$ give $A \cap O_{p}(L) \leqslant C_{A}(Y) \leqslant$ $C_{A}\left(Z_{L}\right)=A \cap O_{p}(L)$, and so (a) holds.
(b): Since A is a best offender on Y, A.31 shows that A is a best offender on Z_{L}. By 1.24 i), Z_{L} is p-reduced for L and thus $O_{p}\left(L / C_{L}\left(Z_{L}\right)\right)=1$. Also $A \leqslant R \leqslant O_{p}(P)$, and so C. 9 shows that $\left|Z_{L} / C_{Z_{L}}(A)\right|=\left|A / C_{A}\left(Z_{L}\right)\right|$. Thus using (a) and that A is an offender on Z_{L} :

$$
\begin{aligned}
\left|A / A \cap O_{p}(L)\right| & =\left|A / C_{A}\left(Z_{L}\right)\right|=\left|Z_{L} / C_{Z_{L}}(A)\right|=\left|Z_{L} / Z_{L} \cap C_{Y}(A)\right|=\left|Z_{L} C_{Y}(A) / C_{Y}(A)\right| \\
& \leqslant\left|Y / C_{Y}(A)\right| \leqslant\left|A / C_{A}(Y)\right| \quad=\left|A / A \cap O_{p}(L)\right|,
\end{aligned}
$$

and so bolds.
(c:a) follows from A. 40
(c:b): Note that $Z_{L}\left(A \cap O_{p}(L)\right)$ is an elementary abelian subgroup of R. Since A is a maximal elementary abelian subgroup of $R, C_{Z_{L}}(A)=Z_{L} \cap A$. Using (b)

$$
\left|Z_{L}\left(A \cap O_{p}(L)\right)\right|=\left|Z_{L} / A \cap Z_{L}\right|\left|A \cap O_{p}(L)\right|=\left|A / A \cap O_{p}(L)\right|\left|A \cap O_{p}(L)\right|=|A|
$$

${ }^{4}$ See 1.1 C for the definition of Z_{L}

Thus $Z_{L}\left(A \cap O_{p}(L)\right) \in \mathcal{A}_{R}$ and so also $Z_{L}\left(A \cap O_{p}(L)\right) \in \mathcal{A}_{O_{p}(L)}$.
(c:c): Since A is a maximal elementary abelian subgroup of $R, C_{Y}(A)=Y \cap A$. By (c:a) A is a best offender on Y. Hence we can apply b:b), and so $Y=C_{Y}(A) Z_{L}=(Y \cap A) Z_{L}$. Thus (c:c) is proved.

Let $D \in \mathcal{A}_{O_{p}(L)}$ and $A \in \mathcal{A}_{R}$.
(d): By c:b) $|D|=\left|Z_{L}\left(A \cap O_{p}(L)\right)\right|=|A|$ and so $D \in \mathcal{A}_{R}$.
(e): By (d) $J\left(O_{p}(L)\right) \leqslant J(R)$ and so both D and $J\left(O_{p}(L)\right)$ centralize $\Omega_{1} Z(J(R))$. Also by (d) $D \in \mathcal{A}_{R}$ and so the maximality of D gives $\Omega_{1} Z(J(R)) \leqslant D \leqslant J\left(O_{p}(L)\right)$. Hence

$$
\Omega_{1} Z(J(R)) \leqslant C_{R}\left(J\left(O_{p}(L)\right)\right) \cap J\left(O_{p}(L)\right)=Z\left(J\left(O_{p}(L)\right)\right)
$$

and (e) follows.
(f): Put $Y:=\Omega_{1} Z\left(J\left(O_{p}(L)\right)\right)$. By c:b $Z_{L}\left(A \cap O_{p}(L)\right) \in \mathcal{A}_{O_{p}(L)}$ and so $\left[Y, A \cap O_{p}(L)\right]=1$. Thus by (c:c), $Y=(Y \cap A) Z_{L}$ and so $[Y, A] \leqslant Z_{L}$. Hence $\left[\Omega_{1} Z\left(J\left(O_{p}(L)\right)\right), J(R)\right] \leqslant Z_{L}$. Since $\Omega_{1} Z\left(J\left(O_{p}(L)\right)\right.$ and Z_{L} are normal in L, the second inclusion in (£) holds. The first inclusion follows from (e).

Theorem C. 11 (Gl1, Theorem 2]). Let L be a finite group, A a non-trivial abelian p-subgroup of L and V a faithful p-reduced $\mathbb{F}_{p} L$-module. Suppose that A is a quadratic offender on V, L is A minimal and $C_{V}(L)=0$. Then $L \cong S L_{2}(q)$, V is a natural $S L_{2}(q)$-module for L and $A \in S y l_{p}(L)$; in particular $q=|A|$.

Proof. This is [Gl1, Theorem 2] just that the hypothesis and conclusion are stated differently:
Since V is a vector space over \mathbb{F}_{p}, V is an abelian p-group, and since V is a faithful L-module, we may view L as a subgroup of $A u t(V)$. Since L is A-minimal, A is contained in a unique maximal subgroup M of L. Let $S \in S y l_{p}(M)$ with $A \leqslant S$. Since V is faithful and p-reduced, $O_{p}(L)=1$. As A is quadratic on $V,[V, A, A]=0$. The uniqueness of M shows that $\langle A, g\rangle=L$ for all $g \in L \backslash M$. So Hypothesis I in Gl1 holds.

By assumption $C_{V}(L)=0$, and since A is an offender on $V,\left|V / C_{V}(A)\right| \leqslant|A|$. Hence the Hypothesis of Theorem 2 in G11 holds. Thus, there exists a field \mathbb{K} of endomorphisms of V such that $|\mathbb{K}|=|A|, \operatorname{dim}_{\mathbb{K}} V=2$ and $L=S L_{\mathbb{K}}(V)$. In particular, the Sylow p-subgroups of L have order $|\mathbb{K}|=|A|$, and $A \in \operatorname{Syl}_{p}(L)$.

Lemma C.12. Let p be prime, M be a finite group, V a faithful $\mathbb{F}_{p} M$ module and \mathcal{D} a non-empty M-invariant set of subgroups of M. Suppose that
(i) Each $A \in \mathcal{D}$ is a non-trivial root offender on V.
(ii) $C_{V}(A) \cap[V, B]=0$ for all $A, B \in \mathcal{D}$ with $[V, A] \neq[V, B]$.
(iii) $M=\langle\mathcal{D}\rangle$ and $V=[V, M]$.

Then $M \cong S L_{2}(q)$ and V is a natural $S L_{2}(q)$-module for M, where $q=|A|$. In particular, $A \in$ $S_{y l} l_{p}(M)$.

Proof. For $X \leqslant V$ put

$$
\mathcal{T}_{X}:=\{[V, D] \mid D \in \mathcal{D},[V, D] \leqslant X\} .
$$

1°. Let $D, E \in \mathcal{D}$. Then $[V, D] \leqslant C_{V}(D)$, and either $[V, D]=[V, E]$ or $[V, D] \cap[V, E]=$ $C_{V}(D) \cap[V, E]=0$.

By A.37 C D acts quadratically on V, so $[V, D] \leqslant C_{V}(D)$. By (iii) $[V, D]=[V, E]$ or $C_{V}(D) \cap$ $[V, E]=0$. In the latter case also $[V, D] \cap[V, E]=0$ since $[V, D] \leqslant C_{V}(D)$.
2°. Let $D \in \mathcal{D}$. Then $|D|=\left|V / C_{V}(D)\right|=|[V, D]|,[v, D]=[V, D]$, and $v^{D}=v+[V, D]$ for every $v \in V \backslash C_{V}(D)$.

As D is a root offender on V, A.37, a) gives $\left|D / C_{D}(V)\right|=\left|V / C_{V}(A)\right|=|[V, A]|=q$, and $C_{D}(V)=1$ since V is faithful. Moreover, A.37b shows that D is a strong dual offender on V and so $[v, D]=[V, D]$ for $v \in V \backslash C_{V}(D)$. Thus also $v^{D}=v+[V, D]$, and 2° holds.

Since $\mathcal{D} \neq \varnothing$ and $M=\langle\mathcal{D}\rangle, M \neq 1$, and since $V=[V, M], M$ does not act nilpotently on V. Hence, there exist $A, B \in \mathcal{D}$ with $[V, A] \neq[V, B]$. Let

$$
Y:=[V, A], \quad Z:=[V, B], \quad X:=Y+Z, \quad L:=\langle A, B\rangle
$$

3°. $X=Y \oplus Z, C_{X}(A)=Y, \mathcal{T}_{X}$ is a partition of $X, \mathcal{T}_{X}=\{Y\} \cup Z^{A}$, and L acts doubly transitively on \mathcal{T}_{X}.

Note that $\langle A, B\rangle$ normalizes X. Since $[V, A] \neq[V, B], 1^{\circ}$ shows that $C_{V}(A) \cap[V, B]=Y \cap Z=$ 0 . Hence $X=Y \oplus Z$, and since by $1{ }^{\circ} Y \leqslant C_{V}(A), C_{X}(A)=Y$.

Pick $0 \neq z \in Z$. Then $z \notin Y=C_{X}(A)$ and by $22^{\circ} z+Y=z^{A} \subseteq \bigcup Z^{A}$. Since $X=Y+Z$ this shows that $X=Y+\bigcup Z^{A}$. Now 1° implies that $\{Y\} \cup Z^{A}$ forms a partition of X and $\mathcal{T}_{X}=\{Y\} \cup Z^{A}$. By symmetry also $\mathcal{T}_{X}=\{Z\} \cup Y^{B}$, and $L=\langle A, B\rangle$ acts doubly transitively on \mathcal{T}_{X}.
4. $\quad M$ is transitive on \mathcal{T}_{V} and $V=X$.

Let $D \in \mathcal{D}$. If $[V, D] \neq[V, A]$ then $\left(3^{\circ}\right)$ (with D in place of B) shows $[V, A]$ and $[V, D]$ are conjugate under $\langle A, D\rangle$. Hence M is transitive on \mathcal{T}_{V}. In particular, there exists q such that $|[V, D]|=q$ for every $D \in \mathcal{D}$.

By $22^{\circ}\left|V / C_{V}(D)\right|=|[V, D]|=q$ while by $3^{\circ}|X|=q^{2}$. Hence $C_{V}(D) \cap X \neq 0$. Let $0 \neq w \in C_{X}(D)$. By $3 \mathcal{T}_{X}$ is a partition of X and so there exists $E \in \mathcal{D}$ with $w \in[V, E] \leqslant X$. Then $[V, E] \cap C_{V}(D) \neq 0$. Now (iii) yields $[V, D]=[V, E] \leqslant X$.

We have shown that $\mathcal{T}_{V}=\mathcal{T}_{X}$. Hence by (iii) $V=[V, M]=[V,\langle\mathcal{D}\rangle] \leqslant X$ and $X=V$.
5°. $\quad M$ acts transitively on V. In particular, V is a simple M-module.
Let $0 \neq y \in Y$ and $0 \neq z \in Z$. Since by $2^{\circ} z^{A}=z+Y, z+y \in z^{M}$. By symmetry, $(z+y)^{B}=y+Z$ and so $y+Z \subseteq z^{M}$. As $V=X=Y+Z$ by 4, this gives $V \backslash Z \subseteq z^{M}$. In particular, $y \in Y^{\sharp} \subseteq z^{M}$. By symmetry also $Z^{\sharp} \subseteq y^{M} \subseteq z^{M}$, and so $z^{M}=V^{\sharp}$.
$6^{\circ} . \quad A=C_{M}(Y) \cap C_{M}(V / Y), N_{M}(A)=N_{M}(Y)$, and $\mathcal{D}=\{A\} \cup B^{A}$. In particular $M=L$.
Let $E:=C_{M}(Y) \cap C_{M}(V / Y)$. Clearly $N_{M}(A) \leqslant N_{M}(Y) \leqslant N_{M}(E)$. Moreover, by the quadratic action of A on $V,\left\langle A^{N_{M}(Y)}\right\rangle \leqslant E$. Thus, if $A=E$, then also $N_{M}(A)=N_{M}(Y)=N_{M}(E)$.

Note that by $44^{\circ} V=X$ and so by $3^{\circ} V=Y \oplus Z$ and $\mathcal{T}_{V}=\{Y\} \cup Z^{A}$. Hence E acts on Z^{A}. A Frattini argument gives $E=A N_{E}(Z)$. Thus $\left[Z, N_{E}(Z)\right] \leqslant Y \cap Z=0$. By the definition of E, $N_{E}(Z)$ also centralizes Y. Since $V=Y+Z, N_{E}(Z)$ centralizes V, and since V is faithful, we get $N_{E}(Z)=1$ and $E=A N_{E}(Z)=A$. Thus $A=E$ and $N_{M}(A)=N_{M}(Y)$.

We have shown that $C_{M}([V, D]) \cap C_{M}(V /[V, D]) \mapsto[V, D]$ induces a bijection from \mathcal{D} to $\mathcal{P}_{V}=$ $\{Y\} \cup Z^{A}$. It follows that $\mathcal{D}=\{A\} \cap B^{A}$. In particular $\langle\mathcal{D}\rangle=M \leqslant L$.
$7^{\circ} . \quad M=\left\langle A, A^{g}\right\rangle$ for all $g \in M$ with $A \neq A^{g}$. In particular, $N_{M}(A)$ is the unique maximal subgroup of M containing A, and M is A-minimal.

Pick $g \in M \backslash N_{M}(A)$. By (6° there exists $a \in A$ such that $A^{g}=B^{a}$. Hence $\left\langle A, A^{g}\right\rangle=\left\langle A, B^{a}\right\rangle=$ L, and again by $\left(6^{\circ}\left\langle A, A^{g}\right\rangle=M\right.$. Hence $N_{M}(A)$ is the unique maximal subgroup of M containing A, and M is A-minimal.

We are now able to prove the lemma. By $55^{\circ}, V$ is a simple M-module. In particular, V is p-reduced and $C_{V}(M)=0$. By assumption A is a non-trivial root offender and so a non-trivial quadratic offender. By $7^{\circ}, M$ is A-minimal. Hence C. 11 shows that $M \cong S L_{2}(q), V$ is a natural $S L_{2}(q)$-module, and $A \in \operatorname{Syl}_{p}(M)$.

Theorem C. 13 (MS5, 8.1]). Let p be a prime, M be a finite p-minimal group, V a faithful p-reduced $\mathbb{F}_{p} M$-module and $T \in \operatorname{Syl}_{p}(M)$. Set $J:=J_{M}(V)$ and $\mathcal{J}:=\mathcal{J}_{M}(V)$. Then there exist subgroups E_{1}, \ldots, E_{r} such that the following hold:
(a) $J=E_{1} \times \cdots \times E_{r}$ and $\mathcal{J}=\left\{E_{1}^{\prime}, \ldots, E_{r}^{\prime}\right\}$.
(b) $V=C_{V}(J)+\sum_{i=1}^{r}\left[V, E_{i}\right]$ and $\left[V, E_{i}, E_{j}\right]=0$ for $i \neq j$.
(c) $\left[C_{V}(T), O^{p}(M)\right] \neq 0$.
(d) T is transitive on E_{1}, \ldots, E_{r}.
(e) There are no over-offenders on V in M.
(f) $E_{i} \cong S L_{2}(q), q=p^{n}$, and $\left[V, E_{i}\right] / C_{\left[V, E_{i}\right]}\left(E_{i}\right)$ is a natural $S L_{2}(q)$-module for E_{i}, or $p=2$, $E_{i} \cong \operatorname{Sym}\left(2^{n}+1\right)$, and $\left[V, E_{i}\right]$ is a natural $\operatorname{Sym}\left(2^{n}+1\right)$-module for E_{i}.
(g) If $A \leqslant M$ is an offender on V, then $A=\left(A \cap E_{1}\right) \times \ldots \times\left(A \cap E_{r}\right)$, and each $A \cap E_{i}$ is an offender on V.
The following lemma is an easy consequence of the Quadratic L-lemma [MS6, Lemma 2.9], in fact its proof is hidden in the proof of the Quadratic L-Lemma [MS6, Lemma 2.9]. But since the Quadratic L-Lemma was proved under a $\mathcal{C} \mathcal{K}$-group assumption we prefer to reproduced the proof.

Lemma C.14. Let L be a p-minimal finite group, and for $i=1,2$ let V_{i} be a natural $S L_{2}\left(q_{i}\right)$ module for L, where q_{i} be a power of p. Then $q_{1}=q_{2}, L / C_{L}\left(V_{1} \oplus V_{2}\right) \cong S L_{2}\left(q_{i}\right)$ and V_{1} and V_{2} are isomorphic L-modules.

Proof. Put $V:=V_{1} \oplus V_{2}$. Replacing L by $L / C_{M}(V)$ we may assume that V is faithful L module. In particular, $O_{p}(L)=1$. Let $A \in S y l_{p}(L)$ and let L_{0} be the unique maximal subgroup of L containing A. For $i=1,2$ put $C_{i}:=C_{L}\left(V_{i}\right)$. Then $C_{1} \cap C_{2}=C_{L}(V)=1$. If $C_{1}=C_{2}$, then $C_{1}=C_{2}=1, L \cong S L_{2}\left(q_{1}\right) \cong S L_{2}\left(q_{2}\right)$ and $q_{1}=q_{2}$. Since $S L_{2}\left(q_{1}\right)$ has a unique natural $S L_{2}\left(q_{i}\right)$-module, the lemma holds in this case.

So we may assume for a contradiction that $C_{1} \not \approx C_{2}$. Note that $A C_{1} \neq L$ and so $A C_{1} \leqslant L_{0}$ and $C_{1} \leqslant \bigcap L_{0}^{L}$. Since $O_{p}(L)=1,1.42 \mathrm{~d}$ shows that $\bigcap L_{0}^{L}=\Phi(L)$. Thus $C_{1} \leqslant \Phi(L)$ and so

$$
1 \neq C_{1} \cong C_{1} C_{2} / C_{2} \leqslant \Phi\left(L / C_{2}\right)
$$

Note that $\Phi\left(S L_{2}\left(q_{2}\right)\right)=Z\left(S L_{2}\left(q_{2}\right)\right)$. It follows that p is odd and $\left|C_{1}\right|=2$. In particular, $C_{1} \leqslant Z(L)$. Since L is p-minimal, $L=\left\langle A^{L}\right\rangle=L^{\prime} A$. So L / L^{\prime} is a p-group and $C_{1} \leqslant L^{\prime}$. Thus the 2-part of the Schur-multiplier of L is non-trivial.

Suppose that $q_{1}>3$. Then $L / C_{1} \cong S L_{2}\left(q_{1}\right)$ is quasisimple. By [Hu, V.25.7] the 2-part of Schur multiplier of $S L_{2}\left(q_{1}\right)$ is trivial, a contradiction. Thus $q_{1}=3$ and $L^{\prime} / C_{1} \cong Q_{8}$ By [$\left.\mathbf{H u}, ~ V .25 .3\right]$ the Schur multiplier of Q_{8} is trivial, so $C_{1} \not L^{\prime \prime}$. Note that $L^{\prime} / L^{\prime \prime}$ is a 2-group and coprime action shows that $C_{1} \nless\left[L^{\prime}, A\right]$. But then also

$$
C_{1} \nless\left[L^{\prime}, A\right] A=\left\langle A^{L^{\prime}}\right\rangle=\left\langle A^{L^{\prime} A}\right\rangle=\left\langle A^{L}\right\rangle=L,
$$

a contradiction.

Theorem C. 15 ([MS6, 2.10]). Let $L \cong S L_{2}(q)$ or $S z(q), q=p^{k}$, where $p=2$ in the latter case, and let V be a non-central simple $\mathbb{F}_{p} L$-module. Suppose that L is A-minimal for some $A \leqslant L$ with $[V, A, A]=0$. Then V is a corresponding natural module.

Lemma C.16. Let M be a finite group, $K \leqslant H, A \leqslant K$ and V a faithful $\mathbb{F}_{2} H$-module. Suppose that $K \cong 3 \cdot \operatorname{Alt}(6)$, A is a non-trivial offender on V and $|V|=2^{6}$. Put $K_{2}:=C_{M}\left(V / C_{V}(A)\right)$ and let \mathcal{V} be the set of 3-dimensional $\mathbb{F}_{2} K_{2}$-submodules of V. Then
(a) Either $H=K \cong 3 \cdot \operatorname{Alt}(6)$ or $|H / K|=2$ and $H \cong 3 \cdot \operatorname{Sym}(6)$.
(b) $|A|=4=\left|V / C_{V}(A)\right|$ and $[V, A]=C_{V}(A)$.
(c) $N_{M}(A)=N_{M}\left(C_{V}(A)\right)$ is a maximal 2-parabolic subgroup of M, and $N_{K}(A) \cong C_{3} \times$ Sym (4).
(d) $K_{2}=O^{2^{\prime}}\left(N_{K}(A)\right) \cong \operatorname{Sym}(4)$.
(e) $\mathcal{V}=\left\{V_{1}, V_{2}, V_{3}\right\}$ has size three, and both, $N_{M}(A)$ and $Z(K)$, act transitively on \mathcal{V}.
(f) $V=V_{i} \oplus V_{j}$ for all $1 \leqslant i<j \leqslant 3$.
(g) $C_{V_{i}}(A)$ is a natural $S L_{2}(2)$-module for K_{2}.

Proof. Let $\mathbb{K}:=\operatorname{End}_{K}(V)$. Since \mathbb{K} contains the image of $Z(K)$ in $E n d_{\mathbb{F}_{2}}(V), \mathbb{K}$ is a field of order 4. Put $M_{2}:=N_{M}\left(C_{V}(A)\right)$.
(a): Note that K has orbits of length 15 and 6 on the 1 -dimensional \mathbb{K}-subspaces of V. Since $K \lessgtr M, M$ acts on the orbit of length 6 . The kernel of this action centralizes K and, since $\left|\mathbb{K}^{\sharp}\right|=3$, is equal to $Z(K)$. Thus $M / Z(K)$ is isomorphic to a subgroup of Sym (6) containing $\operatorname{Alt}(6)(\cong K / Z(K))$. So (a) holds.
(b) follows from Part (e) of the Offender Theorem C.4.
(c): Observe that $N_{M}(A)=N_{M}(A Z(K))$. Since A is an elementary abelian subgroup of order 4 with $A \leqslant K$ we conclude that $N_{M}(A) / Z(K) \cong \operatorname{Sym}(4)$ if $M / Z(K) \cong \operatorname{Alt}(6)$ and $N_{M}(A) / Z(K) \cong$ $C_{2} \times \operatorname{Sym}(4)$ if $M / Z(K) \cong \operatorname{Sym}(6)$. Thus $N_{M}(A)$ a maximal 2-parabolic subgroup of M and $N_{K}(A) \cong C_{3} \times \operatorname{Sym}(4)$. As $N_{M}(A)$ is a maximal subgroup of M and $N_{M}(A) \leqslant N_{M}\left(C_{V}(A)\right)$ we have $N_{M}(A)=N_{M}\left(C_{V}(A)\right)=M_{2}$.
(d): Since K_{2} centralizes the \mathbb{K}-space $V / C_{V}(A), K_{2}$ acts \mathbb{K}-linearly on V and so $K_{2} \leqslant K$. By (c), $M_{2} \cap K=N_{M}(A) \cap K=N_{K}(A)$ and $N_{K}(A) \cong C_{3} \times \operatorname{Sym}(4)$. As $Z(K)$ acts transitively on $V / C_{V}(A)$, we get $M_{2} \cap K=Z(K) \times K_{2}$. Thus $K_{2}=O^{2^{\prime}}\left(M_{2} \cap K\right) \cong \operatorname{Sym}(4)$.
(e)-(g): Let $D_{2} \in \operatorname{Syl}_{3}\left(K_{2}\right)$ and $D_{2}^{*}:=N_{K_{2}}\left(D_{2}\right)$, so $D_{2} \cong C_{3}, K_{2}^{*} \cong \operatorname{Sym}(3)$ and $K_{2}=A K_{2}^{*}$. Then D_{2} acts fixed-point freely on $C_{V}(A)$ and centralizes $V / C_{V}(A)$. It follows that $V=C_{V}\left(D_{2}\right) \oplus$ $C_{V}(A)$ and $C_{V}\left(D_{2}\right)=C_{V}\left(D_{2}^{*}\right)$.

Let v_{1}, v_{2}, v_{3} be the three nontrivial elements of $C_{V}\left(D_{2}^{*}\right)$ and define $V_{i}:=\left\langle v_{i}^{K_{2}}\right\rangle$. Since $K_{2}=$ $A D_{2}^{*}$, we get $V_{i}=\left\langle v_{i}^{A}\right\rangle=\left\langle v_{i}\right\rangle\left[v_{i}, A\right]$. Note that $C_{V}(A)=C_{V}(a)$ for all $1 \neq a \in A$. Thus $C_{A}\left(v_{i}\right)=1$ and $\left|v_{i}^{A}\right|=4$. Since A act quadratically on V, this gives $\left|\left[v_{i}, A\right]\right|=4$, and so V_{i} is an K_{2}-submodule of order 8 .

Let $1 \leqslant i<j \leqslant 3$. Then $\left\langle v_{i}, v_{j}\right\rangle C_{V}(A)=V$ and so $\left[v_{i}, A\right]+\left[v_{j}, A\right]=[V, A]=C_{V}(A)$. Hence $V=V_{i}+V_{j}=V_{i} \oplus V_{j}$ and $C_{V_{i}}(A)=\left[v_{i}, A\right]$ as order 4. As D_{2} acts fixed-point freely on $C_{V}(A)$, this shows that $C_{V_{i}}(A)$ is a natural $S L_{2}(2)$-module for K_{2}.

Let U be any K_{2}-submodule of V of order 8 . Then $C_{U}\left(D_{2}\right) \neq 0$. Thus $v_{i} \in U$ for some $1 \leqslant i \leqslant 3$ and so $V_{i}=\left\langle v_{i}^{K_{2}}\right\rangle \leqslant U$ and $U=V_{i}$. It follows that $\mathcal{V}=\left\{V_{1}, V_{2}, V_{3}\right\}$. Observe that $N_{M}(A)$ normalizes K_{2} and so acts on \mathcal{V}. In particular, $Z(K)$ acts on \mathcal{V} since $Z(K) \leqslant N_{M}(A)$. As $Z(K)$ does not normalize any of the V_{i} and $|\mathcal{V}|=3$, we conclude that that $Z(K)$ acts transitively on \mathcal{V}.

C.2. H^{1} - and H^{2}-Results

Lemma C. 17 (Gaschütz). Let $T \in \operatorname{Syl}_{p}(H)$, let V be an $\mathbb{F}_{p} H$ module, and let W an $\mathbb{F}_{p} H$ submodule of V with $\left[V, O^{p}(H)\right] \leqslant W$. Then $C_{V}(T)+W=C_{V}(H)+W$. In particular, if $C_{V}(H)=0$, then $C_{V}(T) \leqslant W$.

Proof. Note that $H=O^{p}(H) T$. Since $\left[V, O^{p}(H)\right] \leqslant W$, we conclude that $\left[C_{V}(T), H\right] \leqslant W$. Thus, $Y:=C_{V}(T)+W$ is an H-submodule of V and $[Y, H] \leqslant W$.

Let $X:=Y \rtimes H$ be the semidirect product of Y with H and let Y_{0} be a complement to $C_{W}(T)$ in $C_{V}(T)$. Then $Y_{0} T$ is a complement to W in $Y T$. Note that $Y T$ is a Sylow p-subgroup of X and so Gaschütz' Theorem [KS, 3.3.2] gives a complement X_{0} to W in X. Then $X=X_{0} W$ and since $W \leqslant Y, Y=\left(Y \cap X_{0}\right) W$. Hence $Y \cap X_{0}$ is an H-invariant complement to W in Y. Since $[Y, H] \leqslant W$ we get $\left[Y \cap X_{0}, H\right] \leqslant\left(Y \cap X_{0}\right) \cap W=0$ and so $Y \cap X_{0} \leqslant C_{Y}(H)$. Hence $Y=\left(Y \cap X_{0}\right)+W \leqslant C_{Y}(H)+W$. As $C_{V}(H) \leqslant C_{V}(T) \leqslant Y$ this gives $Y=C_{V}(H)+W$.

Theorem C. 18 ([MS5, 6.1]). Let H be a finite group, V an $\mathbb{F}_{p} H$-module, and $\mathbb{K}:=\operatorname{End}_{H}(V)$. Table 1 lists the dimension $d:=\operatorname{dim}_{\mathbb{K}}\left(H^{1}(H, V)\right)$ for various pairs (H, V).

Lemma C.19. Let V be an $\mathbb{F}_{p} H$-module, and let K_{1} and K_{2} be subgroups of H. Suppose that
(i) $\left[K_{1}, K_{2}\right]=1$,
(ii) K_{2} has no central composition factor on $\left[V, K_{1}\right]$,
(iii) $C_{V}\left(K_{1}\right)=0$.

TABLE 1. H1 for common modules

H	p	V	Conditions	d
$\Omega_{n}^{\epsilon}\left(p^{k}\right), n \geqslant 3$	p	$V_{n a t}^{*}$	$n=3, p^{k}=2$	1
	p	na	$n=3, p^{k}=5$	1
"	"	"	$n=4, \epsilon=-, p^{k}=3$	2
"	"	"	$n=5, p^{k}=3$	1
"	"	"	$n=6, \epsilon=+, p^{k}=2$	1
"	"	"	all others	0
$S p_{2 n}\left(p^{k}\right)$	p	$V_{\text {nat }}$	$p=2,\left(2 n, p^{k}\right) \neq(2,2)$	1
"	"	"	all others	0
$S L_{n}\left(p^{k}\right)$	p	$V_{\text {nat }}$	$n=2, p=2, k>1$	1
"	"	"	$n=3, p=2, k=1$	1
"	"	"	all others	0
$S U_{n}\left(p^{k}\right), n \geqslant 3$	p	$V_{\text {nat }}$	$n=4, p^{k}=2$	1
	"	"	all others	0
$G_{2}\left(2^{k}\right)^{\prime}$	2	\mathbb{K}^{6}	-	1
$G_{2}\left(p^{k}\right)^{\prime}$	$p \neq 2$	\mathbb{K}^{7}	-	0
${ }^{3} D_{4}\left(p^{k}\right)$	p	\mathbb{K}^{8}	-	0
$\operatorname{Spin}_{n}^{\epsilon}\left(p^{k}\right)$	p	(Half)-Spin	$n \geqslant 7$	0
$3 \cdot \operatorname{Alt}(6)$	2	\mathbb{K}^{3}	-	0
Alt (n), $n \geqslant 5$	2	$V_{\text {nat }}$	n even	1
"	"	"	n odd	0
$S L_{n}\left(p^{k}\right), n \geqslant 5$	p	$\Lambda^{2}\left(V_{n a t}\right)$	-	0
$S L_{n}\left(p^{k}\right), n \geqslant 3$	odd	$\operatorname{Sym}^{2}\left(V_{n a t}\right)$	-	0
$S L_{n}\left(p_{\text {, }}^{2 k}\right), n \geqslant 3$	"	$V_{n a t} \otimes V_{n a t}^{p^{k}}$	$\begin{gathered} n=3, p^{2 k}=4 \\ \text { all others } \end{gathered}$	2 0
$E_{6}\left(p^{k}\right)$	p	\mathbb{K}^{27}	-	0
Mat ${ }_{n}, 22 \leqslant n \leqslant 24$	2	Todd	$n=24$	1
"	"	"	$n=22,23$	0
Mat $_{n}, 22 \leqslant n \leqslant 24$	2	Golay	$n=22$	1
Mat ${ }_{n}, 22 \leqslant n \leqslant 24$	2	Golay	$n=23,24$	0
$3 . M a t_{22}$	2	\mathbb{F}_{4}^{6}	-	0
Mat ${ }_{11}$	3	Todd	-	0
Mat ${ }_{11}$	3	Golay	-	1
2.Mat ${ }_{12}$	3	Todd	-	0
2. Mat_{12}	3	Golay	-	0

Then K_{2} has no central composition factor on V. In particular, $V=\left[V, K_{2}\right]$ and $C_{V}\left(K_{2}\right)=1$.
Proof. Let $g \in K_{1}$. Since K_{2} centralizes $g, V / C_{V}(g) \cong[V, g]$ as an K_{2}-module. Since $[V, g] \leqslant$ [V, K_{1}], (iii) implies that K_{2} has no central composition factor on $V / C_{V}(g)$. As $0=C_{V}\left(K_{1}\right)=$ $\bigcap_{g \in K_{1}} C_{V}(g)$, we conclude that K_{2} has no central composition factor on V.

Lemma C.20. Let V be an $\mathbb{F}_{p} H$-module. Suppose that $I:=\left[V, O^{p}(H)\right]$ is a natural $S p_{2 m}(q)$ - or $S p_{2 m}(q)^{\prime}$-module for H with $m \geqslant 1$ and q a power of p. If $C_{V}\left(O^{p}(H)\right)=1$ and $C_{H}(V)=C_{H}(I)$, then $[V, D]=[I, D]$ for all $D \leqslant H$.

Proof. We may assume that V is a faithful H-module and $V \neq I$. Then C. 18 shows that $p=2$ and V is as an $O^{2}(H)$-module isomorphic to a submodule of the dual of a natural $\Omega_{2 m+1}(q)^{\prime}$-module for $O^{2}(H)$. In particular, $H^{1}\left(O^{2}(H), I\right)$ is 1-dimensional over \mathbb{F}_{q} and since H acts \mathbb{F}_{q}-linearly on $I,[V, H] \leqslant I$. So we can choose a natural $\Omega_{2 m+1}(q)$ or $\Omega_{2 m+1}(q)^{\prime}$-module U for H with $V \leqslant U^{*}$, where U^{*} is the \mathbb{F}_{q}-dual of U. Since $\left[U^{*}, H\right]=\left[U^{*}, H, H\right], I=[V, H]=\left[U^{*}, H\right]$.

By B.6 b $C_{U / U^{\perp}}(D)=C_{U}(D) / U^{\perp}$ for all $D \leqslant H$. In particular, $U^{\perp}=C_{U}(H)$. So if $0 \leqslant U_{1} \leqslant$ $U_{2} \leqslant U$ such that H centralizes U_{1} and D centralizes U_{2} / U_{1}, then D centralizes U_{2}. For U^{*} this means if $U^{*} \geqslant W_{1} \geqslant W_{2} \geqslant 0$ such that H centralizes U^{*} / W_{1} and D centralizes W_{1} / W_{2}, then D centralizes U^{*} / W_{2}. Hence $\left[U^{*}, H, D\right]=\left[U^{*}, D\right]$. Thus

$$
[I, D] \leqslant[V, D] \leqslant\left[U^{*}, D\right]=\left[U^{*}, H, D\right]=[I, D]
$$

and $[V, D]=[I, D]$.

Lemma C.21. Let H be a finite group and V a natural $S L_{n}(q)$-module for H, q a power of p and $n \geqslant 2$, and let V_{1} be an \mathbb{F}_{q}-hyperplane of V. Suppose that $C_{H}(V) \leqslant Z(H)$ and that there exists a $N_{H}\left(V_{1}\right) \cap C_{H}\left(V / V_{1}\right)$-invariant complement to $C_{H}(V)$ in $C_{H}\left(V_{1}\right)$. Then there exists a complement K to $C_{H}(V)$ in H. In particular, if $C_{H}(V) \leqslant H^{\prime}$, then $C_{H}(V)=1$.

Proof. Put $Z:=C_{H}(V), Z_{0}:=O_{p^{\prime}}(Z)$ and $H_{1}:=N_{H}\left(V_{1}\right) \cap C_{H}\left(V / V_{1}\right)$, and let B be an H_{1}-invariant complement to $C_{H}(V)$ in $C_{H}\left(V_{1}\right)$. Then $H / Z \cong S L_{n}(q)$ and $Z \leqslant Z(H)$. By [Gr1] the Schur Multiplier of $S L_{n}(q)$ is a p-group, so $H^{\prime} \cap Z$ is a p-group and $H^{\prime} \cap Z_{0}=1$.

Suppose that $n=2$. Then $B Z / Z \in \operatorname{Syl}_{p}(H / Z)$, and by Gaschütz' Theorem [KS, 3.3.2] there exists a complement L / Z_{0} to Z / Z_{0} in H / Z_{0}. It follows that $H=L Z, H^{\prime}=L^{\prime}$ and $H^{\prime} \cap Z \leqslant Z_{0}$, so $H^{\prime} \cap Z=1$. If $q \geqslant 4$, then H / Z is perfect and we can choose $K=H^{\prime}$. If $q \leqslant 3$, then H^{\prime} is a p^{\prime}-group, $|B|=p$ and we can choose $K=H^{\prime} B$.

Suppose now that $n \geqslant 3$. Then $H=H^{\prime} Z$ and H^{\prime} is perfect. Note that V_{1} is a natural $S L_{n-1}(q)$-module for $H_{1}, C_{H_{1}}\left(V_{1}\right)=C_{H}\left(V_{1}\right)=Z \times B$, and $B \cong C_{H}\left(V_{1}\right) / Z$ is isomorphic to V_{1} as an $\mathbb{F}_{p} H_{1}$-module. In particular, $B=\left[B, H_{1}\right] \leqslant H^{\prime}$ and replacing H be H^{\prime} we may assume that H is perfect. Thus Z is a p-group.

Let X be a 1-subspace of V_{1} and \hat{V} a hyperplane of V with $V=X \oplus \hat{V}$. Define
$\widehat{H}:=C_{H}(X) \cap N_{H}(\widehat{V}), \quad \widehat{V}_{1}:=V_{1} \cap \widehat{V}, \quad \hat{H}_{1}:=N_{\widehat{H}}\left(\widehat{V}_{1}\right) \cap C_{\widehat{H}}\left(\widehat{V} / \widehat{V}_{1}\right), \quad \widehat{B}:=B \cap C_{\widehat{H}}\left(\widehat{V}_{1}\right)$.
Then \hat{V} is a natural $S L_{n-1}(q)$-module for \hat{H}, \hat{V}_{1} is a hyperplane of \hat{V} and $V_{1}=X \oplus \hat{V}_{1}$. Thus $\widehat{H}_{1} \leqslant N_{H}\left(V_{1}\right) \cap C_{H}\left(V / V_{1}\right)=H_{1}$.

Since $C_{H}(V) \leqslant \widehat{H}$ and $C_{\widehat{H}}(\hat{V}) \leqslant C_{H}(X \oplus \hat{V})=C_{H}(V)$ we have $C_{H}(V)=C_{\widehat{H}}(\hat{V})$. Also $C_{\widehat{H}}\left(\widehat{V}_{1}\right) \leqslant C_{H}\left(X \oplus \widehat{V}_{1}\right)=C_{H}\left(V_{1}\right)$ and so

$$
C_{H}(V)=C_{\widehat{H}}(\widehat{V}) \leqslant C_{\widehat{H}}\left(\widehat{V}_{1}\right) \leqslant C_{H}\left(V_{1}\right)=C_{H}(V) \times B
$$

Thus $\widehat{B}=B \cap C_{\widehat{H}}\left(\widehat{V}_{1}\right)$ is a complement to $C_{H}(V)=C_{\widehat{H}}(\widehat{V})$ in $C_{\widehat{H}}\left(\widehat{V}_{1}\right)$. Since $\hat{H}_{1} \leqslant H_{1} \cap \hat{H}$, \hat{H}_{1} normalizes \widehat{B}. Recall that $2 \leqslant n-1$, so by induction there exists a complement \widehat{K} to $C_{\widehat{H}}(\hat{V})$ in \hat{H}. Then $\hat{K} \cong S L_{n-1}(q)$ acts faithfully on \hat{V}.

Pick $g \in H$ with $\hat{V}^{g}=V_{1}$. Then $V=X^{g} \oplus V_{1}, \widehat{K}^{g}$ normalizes V_{1}, and \widehat{K}^{g} centralizes X^{g} and V / V_{1}. So $\widehat{K}^{g} \leqslant H_{1}, H_{1}=C_{H}\left(V_{1}\right) \widehat{K}^{g}$ and $\widehat{K}^{g} \cap C_{H}\left(V_{1}\right)=1$. Since B is a complement to $C_{H}(V)$ in $C_{H}\left(V_{1}\right)$, and \hat{K}^{g} normalizes B we conclude that $B K^{g}$ is a complement to $C_{H}(V)$ in H_{1}.

Since $C_{H}(V)$ is an abelian p-group and H_{1} contains a Sylow p-subgroup of H, Gaschütz' Theorem shows that there exists a complement K to $C_{H}(V)$ in H.

If K is any complement to Z in H, then $H=K Z$ and $K^{\prime}=H^{\prime}$, so $H^{\prime} \cap Z=1$. In particular $Z=1$ if $Z \leqslant H^{\prime}$.

Theorem C. 22 ([MS5, 8.4]). Let M be a finite $\mathcal{C} \mathcal{K}$-group with $O_{p}(M)=1$ and V a faithful $\mathbb{F}_{p} M$-module. Suppose that
(i) $M=J_{M}(V)$ and there exists a unique $J_{M}(V)$-component K,
(ii) $C_{V}(K) \leqslant[V, K]$ and either $C_{V}(K) \neq 0$ or $V \neq[V, K]$.

Let $A \leqslant M$ be a best offender on V and put $W:=[V, K]$ and $\bar{V}:=V / C_{V}(K)$. Then $p=2$, and one of the following holds:
(a) $M=K \cong S L_{3}(2), V=W,\left|C_{V}(K)\right|=2, \bar{V}$ is a natural $S L_{3}(2)$-module, $|A|=4$, $[\bar{V}, A] \mid=2$ and $C_{V}(A)=[V, A]$ has order 4 .
(b) $M=K \cong S L_{3}(2),|V / W|=2, C_{V}(K)=0$, W is a natural $S L_{3}(2)$-module, $|A|=4=$ $\left|C_{W}(A)\right|$ and $C_{V}(A)=[V, A]=C_{W}(A)$.
(c) $M=K \cong S U_{4}(2), V=W, 2 \leqslant\left|C_{V}(K)\right| \leqslant 4, \bar{V}$ is a natural $S U_{4}(2)$-module, A is the centralizer of a singular 2-subspace of \bar{V}, and $C_{V}(A)=[V, A]$.
(d) $M \cong G_{2}(q), q=2^{k}, V=W, 2 \leqslant\left|C_{V}(K)\right| \leqslant q, \bar{V}$ is a natural $G_{2}(q)$-module, $|A|=q^{3}$, and $C_{V}(A)=[V, A]$.
(e) $K \cong \operatorname{Alt}(2 m)$ and $M \cong \operatorname{Sym}(2 m)$ or $\operatorname{Alt}(2 m)$. For $\Omega=\{1,2, \ldots, 2 m\}$ let $N=\left\{n_{\Sigma} \mid \Sigma \subseteq\right.$ $\Omega\}$ be the $2 m$-dimensional natural permutation module and \tilde{N} be the $\mathbb{F}_{2} M$-module defined by $\tilde{N}=N$ as an \mathbb{F}_{2}-space and
$n_{\Sigma}^{g}=n_{\Sigma^{g}}$ if $|\Sigma|$ is even or $g \in \operatorname{Alt}(\Omega)$, and $n_{\Sigma}^{g}=n_{\Sigma^{g}}+n_{\Omega}$ if $|\Sigma|$ is odd and $g \notin \operatorname{Alt}(\Omega)$.
Then one of the following holds, where $t_{1}, t_{2}, \ldots, t_{m}$ is a maximal set of commuting transpositions:
(1) $M=\operatorname{Sym}(n), V$ is isomorphic to N or $N / C_{N}(K)$, and $A=\left\langle t_{1}, t_{2}, \ldots, t_{k}\right\rangle$ for some $1 \leqslant k \leqslant m$.
(2) $M=\operatorname{Sym}(n), V \cong \tilde{N}$ and $A=\left\langle t_{1}, t_{2}, \ldots, t_{m}\right\rangle$.
(3) $V \cong[N, K]$ and A fulfills one of the cases (h:1) - (h:3) of Theorem C.4.
(f) $M=K \cong S p_{2 m}(q), m \geqslant 1, q=2^{k},(m, q) \neq(1,2),(2,2)$, and \bar{W} is the direct sum of r natural $S p_{2 n}(q)$-modules $\left[_{-}^{6}\right.$ Moreover, the following hold:
(a) $2 r \leqslant m+1$, and if $V \neq W$ then $m>1$ and $2 r<m+1$.
(b) Let X be the $2 m+2$-dimensional $\mathbb{F}_{q} M$-module obtained from the embedding $S p_{2 m}(q) \cong$ $\Omega_{2 m+1}(q) \leqslant \Omega_{2 m+2}^{ \pm}(q)$. Then V is isomorphic to an $\mathbb{F}_{p} M$-section of X^{r}.

C.3. Q !-Module Theorems

In this section H is a finite group, Q is a p-subgroup of H, and V is a finite Q !-module for $\mathbb{F}_{p} H$ with respect to Q. We again use the ${ }^{\circ}$-notion, so for $L \leqslant H$,

$$
L^{\circ}=\left\langle P \in Q^{H} \mid P \leqslant L\right\rangle \quad \text { and } \quad L_{\circ}=O^{p}\left(L^{\circ}\right)
$$

Theorem C. 23 (【MS6, 4.5]). Let $O_{p}(H)=1$ and V be a faithful Q !-module for H with respect to Q. Suppose that one the following holds.
(i) $F^{*}(H) \cong \operatorname{Alt}(n)$, $n \geqslant 5$, and $[V, H]$ is a natural $\mathbb{F}_{p} A l t(n)$-module for $F^{*}(H)$, or
(ii) $H \cong \operatorname{Alt}(7)$ and $|[V, H]|=2^{4}$.

Then (i) holds, and either $n=p$ or (n, p) is one of $(5,2),(6,2),(8,2),(6,3)$.
Theorem C. 24 (Q!FF-Module Theorem, MS6, 4.6]). Let H be a finite group with $O_{p}(H)=$ 1 and Q be a p-subgroup of H, and let V be a faithful Q !-module for H. Put $H^{\circ}:=\left\langle Q^{H}\right\rangle$ and $J:=J_{H}(V)$. Suppose that there exists an offender Y in H such that $\left[H^{\circ}, Y\right] \neq 1$ and that one of the following holds:
(i) Y is quadratic on V.
(ii) Y is a best offender on V.
(iii) $C_{Y}([V, Y]) \neq 1$.
(iv) $C_{Y}\left(H^{\circ}\right)=1$.

Then one of the following holds:
(1) There exists an H-invariant set \mathcal{K} of subgroups of H such that:
(a) For all $K \in \mathcal{K}, K \cong S L_{2}(q)$ and $[V, K]$ is a natural module for K,
(b) $J=\chi_{K \in \mathcal{K}} K$ and $V=\oplus_{K \in \mathcal{K}}[V, K]$,
(c) Q acts transitively on \mathcal{K},
(d) $H^{\circ}=O^{p}(J) Q$.
(2) Put $R:=F^{*}(J)$. Then
(a) R is quasisimple, $R \leqslant H^{\circ}$, and either $J=R$ or $p=2$ and $J \cong O_{2 n}^{ \pm}(q), S p_{4}(2)$ or $G_{2}(2)$.

[^23](b) $C_{V}(R)=0,[V, R]$ is a semisimple J-module, and H acts faithfully on $[V, R]$.
(c) Put $J^{0}:=J \cap H^{\circ}$. Then one of the following holds:
(1) (a) $R=J^{0} \cong S L_{n}(q), n \geqslant 3, S p_{2 n}(q), n \geqslant 3, S U_{n}(q), n \geqslant 8$, or $\Omega_{n}^{ \pm}(q)$, $n \geqslant 10$.
(b) $[V, R]$ is the direct sum of at least two isomorphic natural modules for R.
(c) $H^{\circ}=R C_{H^{\circ}}(R)$.
(d) If $V \neq[V, R]$ then $R \cong S p_{2 n}(q), p=2$, and $n \geqslant 4$.
(2) (a) $[V, R]$ is a simple R-module.
(b) Either $H^{\circ}=R=J^{0}$ or $H^{\circ} \cong S p_{4}(2), 3 \cdot \operatorname{Sym}(6), S U_{4}(q) \cdot 2\left(\cong O_{6}^{-}(q)\right.$ and $[V, R]$ the natural $S U_{4}(q)$-module), or $G_{2}(2)$.
(c) One of the cases C.3 (1) - (9), (12) applies to ($J,[V, R]$), with $n \geqslant 3$ in case (1), $n \geqslant 2$ in case (2), and $n=6$ in case (12).
(3) $p=2, J=R \cong S L_{4}(q), H^{\circ} / R$ has order two and induces a graph automorphism on R, and V is the direct sum of two non-isomorphic natural modules.

Proof. This is MS6, 4.6], except that in 2:c:2:c we added the assumption $n \geqslant 3$ to case (1) and the assumption $n \geqslant 2$ to case (2) of C.3. Note here if $n=2$ in case (1) or $n=1$ in case (2) then $[V, R]$ is a natural $S L_{2}(q)$-module for J, and so by C.22, $V=[V, R]$. Hence, these cases are already covered by (1).7

Theorem C.25. Let H be a finite group with $O_{p}(H)=1$, and let V be a faithful Q !-module for H with respect to Q. Suppose that there exists $1 \neq W \leqslant H$ such that
(i) W is a strong offender on V; and
(ii) $[X, W]=[V, W]$ for all $X \leqslant V$ with $\left|X / C_{X}(W)\right|>2$.

Put $H^{\circ}:=\left\langle Q^{H}\right\rangle, K^{*}:=\left\langle W^{H}\right\rangle, K:=\left\langle W^{K^{*}}\right\rangle$ and $\mathcal{K}:=K^{H}$. Then
$K^{*}=\underset{R \in \mathcal{K}}{X} R, \quad\left[V, K^{*}\right]=\bigoplus_{R \in \mathcal{K}}[V, R]$, and $K=\left\langle W^{K}\right\rangle$ is the subnormal closure of W in H.
Moreover, one of the following holds:
(a) $K \preccurlyeq H, K^{\prime}$ is quasisimple, $H^{\circ}=K^{\prime} Q$ and $C_{V}(K)=0$.
(b) One of the following holds:
(1) $K=K^{\prime}=H^{\circ} \cong S L_{n}(q), n \geqslant 3$.
(2) $K=K^{\prime}=H^{\circ} \cong S p_{2 n}(q), n \geqslant 2,(n, q) \neq(2,2)$.
(3) $p=2, K \leqslant H^{\circ}$ or $H^{\circ} \leqslant K, K \cong S p_{4}(2)^{\prime}$ or $S p_{4}(2)$, and $H^{\circ} \cong S p_{4}(2)^{\prime}$ or $S p_{4}(2)$.
(4) $p=2, K=K^{\prime} \leqslant H^{\circ}, K \cong 3 \cdot \operatorname{Alt}(6)$ and $H^{\circ} \cong 3 \cdot \operatorname{Alt}(6)$ or $3 \cdot \operatorname{Sym}(6)$.
(5) $p=2, K \cong O_{2 n}^{\epsilon}(2), H^{\circ}=K^{\prime} \cong \Omega_{2 n}^{\epsilon}(2), n \geqslant 2$ and $(n, \epsilon) \neq(2,+)$, and $|W|=\left|V / C_{V}(W)\right|=2$.
(c) $[V, K]$ is a corresponding natural module.
(2) (a) Q acts transitively on $\mathcal{K}, H^{\circ}=O^{p}\left(K^{*}\right) Q$, and $V=\left[V, K^{*}\right]$.
(b) $K \cong S L_{2}(q)$, and $[V, K]$ is the corresponding natural module.
(3) (a) $p=2, K \cong S L_{n}(2), n \geqslant 3, V=[V, K]$ is the direct sum of two isomorphic natural modules for K, and $\left|V / C_{V}(W)\right|=4$.
(b) $K \leqslant H, K \leqslant H^{\circ}$, and $H^{\circ} \cong S L_{n}(2)$ or $S L_{n}(2) \times S L_{2}(2)$.
(4) (a) $p=2, K \cong S L_{n}(2), n \geqslant 3, V=C_{V}\left(K^{*}\right) \oplus\left[V, K^{*}\right],[V, K]$ is the direct sum of two isomorphic natural modules for K, and $\left|V / C_{V}(W)\right|=4$.
(b) $K^{*} \preccurlyeq H,\left[K^{*}, H^{\circ}\right]=1$ and $H^{\circ} \cong S L_{2}(2)$.

Proof. This is MS6, 4.7] with a couple of additions.

- In case 1:b:5 with $K \cong O_{2 n}^{\epsilon}(2)$: We may assume $n \geqslant 2$ and $(n, \epsilon) \neq(2,+)$. Indeed $\left|O_{2}^{+}(2)\right|=2$, so since $O_{p}(H)=1$, this case does not occur; and $O_{2}^{-}(2) \cong S L_{2}(2)$, so this

[^24]case is already covered by case (2) (with $q=2$ and $|\mathcal{K}|=1$). The $O_{4}^{+}(2)$-case does not occur since $K=\left\langle W^{K^{*}}\right\rangle$, but $O_{4}^{+}(2)$ is not generated by transvections.

- From the structure of K as given in 11- 4\}, $K=\left\langle W^{K}\right\rangle$ and so since $K=\left\langle W^{\left\langle W^{H}\right\rangle}\right\rangle, K$ is the subnormal closure of W in H.

Corollary C.26. Let H be a finite group with $O_{p}(H)=1$, and let V be a faithful Q !-module for H with respect to Q. Suppose that there exists $1 \neq W \vDash Q$ such that
(i) W is a strong offender on V; and
(ii) $[X, W]=[V, W]$ for all $X \leqslant V$ with $\left|X / C_{X}(W)\right|>2$.

Put $H^{\circ}:=\left\langle Q^{H}\right\rangle$ and $K:=\left\langle W^{\left\langle W^{H}\right\rangle}\right\rangle$. Then
(a) $K=\left\langle W^{H}\right\rangle=\left\langle W^{K}\right\rangle$ is the subnormal closure of W in H and $C_{V}(K)=0$.
(b) $K \cong S L_{n}(q)$ or $S p_{2 n}(q), n \geqslant 2, q$ a power of p, and $[V, K]$ is a corresponding natural module.
(c) Either $H^{\circ}=K$ or $K \cong S L_{2}(q), q \neq p, H_{\circ}=K$ and $[V, W, Q] \neq 1$.
(d) Either $V=[V, K]$ or $K \cong S p_{2 n}(2), n \geqslant 2$ and $|V /[V, K]|=2$.

Proof. Note first that we can apply C.25
Let $S \in \operatorname{Syl}_{p}(H)$ with $Q \leqslant S$. Then by Q !, $N_{H}\left(C_{V}(S)\right) \leqslant N_{H}(Q)$. It follows that $W \leqslant Q \leqslant$ $O_{p}\left(N_{H}\left(C_{V}(S)\right)\right)$ and so we can apply the Point-Stabilizer Theorems C. 8 and C.9. In particular, [$V, K] C_{V}(K) / C_{V}(K)$ is a simple K-module, and so cases C.25 3) and (4) do not occur.

Suppose that C.25 holds. Then $K \cong S L_{2}(q), Q$ acts transitively on $\mathcal{K}:=\bar{K}^{M},[V, K]$ is a natural $S L_{2}(q)$-module and $V=\left[V,\left\langle W^{H}\right\rangle\right]$. Since Q normalizes W, Q normalizes $K=\left\langle W^{\left\langle W^{K}\right\rangle}\right\rangle$. Hence $\mathcal{K}=\{K\}$ and $V=[V, K]$. Suppose Q acts \mathbb{F}_{q}-linearly on V. Then $Q \leqslant K, K=\left\langle Q^{K}\right\rangle=H^{\circ}$ and the corollary holds.

So suppose that Q does not act \mathbb{F}_{q}-linearly on V. Then $q \neq p$, so K is quasisimple and $K=[K, Q] \leqslant H^{\circ}$. Also $[V, W]$ is a non-trivial \mathbb{F}_{q} subspace of V and hence $[V, W, Q] \neq 1$. As K acts transitively on V, Q ! gives $H^{\circ}=\left\langle Q^{K}\right\rangle=K Q$ (see A.50 d) and so $H_{\circ}=O^{p}(K Q)=K$. So again the corollary holds.

Suppose that C.25(1) holds. Since none of $S p_{4}(2)^{\prime}, O_{2 m}^{\epsilon}(2)$ and $3 \cdot \operatorname{Alt}(6)$ appear as a possibility for K in the Point-Stabilizer Theorem C.8, we conclude that $K \cong S L_{n}(q), n \geqslant 3$, or $S p_{2 n}(q), n \geqslant 2$, and $[V, K]$ is a corresponding natural module. Moreover, $H^{\circ} \leqslant K$ and so $K=H^{\circ}$. It remains to verify (d).

Put $U:=[V, K]$. By $Q!, Q \vDash C_{H}\left(C_{U}(S)\right)$. Thus $W \leqslant O_{p}\left(N_{H}\left(C_{U}(S)\right)\right.$, and we can apply the Point-Stabilizer Theorem C.8 d) also to W and U. Hence $\left|U / C_{U}(W)\right| \geqslant|W|$ and so $V=C_{V}(W)+U$.

Suppose that $V \neq U$. Then by C.22 either $K \cong S L_{3}(2)$ and $C_{V}(W) \leqslant U$ or $K \cong S p_{2 n}(q)$, $n \geqslant 2, p=2$, and V is isomorphic to a submodule of the dual of a natural $\Omega_{2 n+1}(q)$-module. The first case contradicts $V=C_{V}(W)+U$. In the second case, let $v \in C_{V}(W) \backslash U$. Then $C_{K}(v) \cong O_{2 n}^{\epsilon}(q)$. Since $W \leqslant C_{K}(v)$ and W is a strong offender on U, the Strong Offender Theorem C. 6 shows that $|W|=2=q$. So (d) holds.

Theorem C.27. Let H be a finite group and let V be a faithful p-reduced Q !-module for H with respect to Q. Let $1 \neq A \leqslant H$ be a strong dual offender on V. Then one of the following holds:
(1) (a) $H^{\circ} \cong S L_{n}(q), n \geqslant 3$, and $\left[V, H^{\circ}\right]$ is a corresponding natural module for H°.
(b) If $V \neq\left[V, H^{\circ}\right]$ then $H^{\circ} \cong S L_{3}(2)$ and $\left|V /\left[V, H^{\circ}\right]\right|=2$.
(c) $\left\langle A^{H}\right\rangle=H^{\circ}$.
(2) (a) $H^{\circ} \cong S p_{2 n}(q)$, $n \geqslant 2$, or $S p_{4}(q)^{\prime}$ (and $q=2$), and $\left[Y, H^{\circ}\right]$ is the corresponding natural module for H°.
(b) If $V \neq\left[V, H^{\circ}\right]$, then $p=2$ and $\left|H /\left[Y, H^{\circ}\right]\right| \leqslant q$.
(c) One of the following holds:
(1) $H^{\circ}=\left\langle A^{H}\right\rangle$.
(2) $\left\langle A^{H}\right\rangle \leqslant H^{\circ},\left\langle A^{H}\right\rangle \cong S p_{4}(2)^{\prime}$ and $H^{\circ} \cong S p_{4}(2)$.
(3) $H^{\circ} \leqslant\left\langle A^{H}\right\rangle,\left\langle A^{H}\right\rangle \cong S p_{4}(2)$ and $H^{\circ} \cong S p_{4}(2)^{\prime}$.
(3) (a) There exists a unique H-invariant set \mathcal{K} of subgroups of \bar{M} such that V is a natural $S L_{2}(q)$-wreath product module for H with respect to \mathcal{K}.
(b) $H^{\circ}=O^{p}(\langle\mathcal{K}\rangle) Q$ and Q acts transitively on \mathcal{K}.
(c) $A \leqslant K$ for some $K \in \mathcal{K}$.
(4) (a) $H \cong O_{2 n}^{\epsilon}(2), H^{\circ} \cong \Omega_{2 n}^{\epsilon}(2), 2 n \geqslant 4$ and $(2 n, \epsilon) \neq(4,+)$ and $[V, H]$ is a corresponding natural module.
(b) If $V \neq[V, H]$, then $H \cong O_{6}^{+}(2)$ and $|V /[V, H]|=2$.
(c) $|A|=2$ and $H=\left\langle A^{H}\right\rangle$.

Proof. Put $K^{*}:=\left\langle A^{H}\right\rangle, K:=\left\langle A^{K^{*}}\right\rangle$ and $\mathcal{K}:=K^{H}$. Since H is faithful and p-reduced, $O_{p}(H)=1$. Thus we can apply [MS6, 4.8] and conclude that one of the following holds:
(A) (a) $K \preccurlyeq H, H^{\circ}=\left\langle Q^{K}\right\rangle$ and $C_{V}(K)=0$.
(b) $K \cong S L_{n}(q), n \geqslant 3, S p_{2 n}(q)$, $\operatorname{Alt}(6)$, or $O_{2 n}^{\epsilon}(2), q$ a power of $p, p=2$ in the last two cases; and $[V, K]$ is a corresponding natural module.
(c) Either $H^{\circ} \leqslant K$ or $K \cong S p_{4}(2)^{\prime}$ and $H^{\circ} \cong S p_{4}(2)$.
(d) If $K \cong O_{2 n}^{\epsilon}(2)$, then $|W|=2$.
(B) (a) Q acts transitively on \mathcal{K} and $H^{\circ} \leqslant\langle\mathcal{K}\rangle Q$
(b) $V=\oplus_{R \in \mathcal{K}}[V, R], K \cong S L_{2}(q)$, and $[V, K]$ is a natural $S L_{2}(q)$-module for K.

Suppose first that $(\overline{\mathrm{B}})$ holds. Then V is a natural $S L_{2}(q)$-wreath product module for H with respect \mathcal{K}. By A.27, \mathcal{K} is uniquely determined by this property.

Since Q acts transitively on \mathcal{K} and $K \cong S L_{2}(q)$, we get $O^{p}(\langle\mathcal{K}\rangle) \leqslant\left\langle Q^{H}\right\rangle$. As $H^{\circ} \leqslant\langle\mathcal{K}\rangle Q$, this gives $O^{p}\left(H^{\circ}\right)=O^{p}(\langle\mathcal{K}\rangle)$. By A.52 a we have $H^{\circ}=\left\langle Q^{H^{\circ}}\right\rangle$ and we conclude that $H^{\circ}=O^{p}\left(H^{\circ} Q\right)=$ $O^{p}(\langle\mathcal{K}\rangle) Q$. Thus (3) holds.

Suppose next that A holds.
Assume that $K \cong S L_{n}(q), n \geqslant 3$, and $[V, K]$ is a corresponding natural module. Then $H^{\circ} \leqslant K$ and since $S L_{n}(q)$ is quasisimple (or by B.37), $H=K$. By C.22 either $V=[V, K]$ or $K \cong S L_{3}(2)$ and $|V /[V, K]|=2$. Thus (1) holds.

Assume that $K \cong S p_{2 n}(q)$ and $[V, K]$ is a corresponding natural module. Suppose that $n=1$. Then by C.22, $V=[V, K]$ and the already treated case (B) shows that (3) holds. So suppose that $n \geqslant 2$. Then by C. 22 either $V=[V, K]$ or $p=2$ and $|V /[V, K]| \leqslant q$. Also B. 37 shows that either $H^{\circ}=K$ or $K \cong S p_{4}(2)^{\prime}$ and $H^{\circ} \cong S p_{4}(2)$. Thus (2) holds.

Assume that $K \cong \operatorname{Alt}(6)$ and $[V, K]$ is a corresponding natural module, that is $K \cong S p_{4}(2)^{\prime}$ and $[V, K]$ is a corresponding natural module. By A:b $H^{\circ} \leqslant K$ or $H^{\circ} \cong S p_{4}(2)$, and since K is simple, we get $H^{\circ} \cong S p_{4}(2)^{\prime}$ or $S p_{4}(2)$. By C.22, $|V /[V, K]| \leqslant 2$ and again (2) holds.

Assume that $K \cong O_{2 n}^{-}(2)$. Since $O_{2}(H)=1, K \nsupseteq O_{2}^{+}(2)$. If $K \cong O_{2}^{-}(2) \cong S p_{2}(2)$, then $[V, K]$ is a natural $S p_{2}(2)$-module, a case we already have treated. So suppose that $n \geqslant 2$. Then C. 22 shows that either $V=[V, K]$ or $K \cong O_{6}^{+}(2)$ and $|V /[V, K]|=2$.

If $K \cong O_{4}^{+}(2) \cong S L_{2}(2)$ 乙 C_{2}, the already treated case (B) shows that (3) holds. So we may assume that $(2 n, \epsilon) \neq(4,+)$. Then B.37 implies that $H^{\circ} \cong \Omega_{2 n}^{\epsilon}(2)$ and thus (4) holds.

C.4. The Asymmetric Module Theorems

For the definition of a minimal asymmetric module see A.4.
Theorem C. 28 ([MS6, 5.4]). Let H be a finite group and V be a faithful simple minimal asymmetric $\mathbb{F}_{p} H$-module with respect to $A \leqslant B$. Put $L:=\left\langle A^{H}\right\rangle$ and $K:=F^{*}(H)$. Then $H=K B$, $K=[K, A] \leqslant L, L=K A$, and one of the following holds:
(1) $|B|=2$ and $H=L \cong D_{2 r}, r$ an odd prime.
(2) $|A|=2, L \cong S U_{3}(2)^{\prime}, B \cong C_{4}$ or Q_{8}, and V is a natural $S U_{3}(2)^{\prime}$-module for L.
(3) $|B|=3, H=L \cong S L_{2}(3)$, and V is a natural $S L_{2}(3)$-module for L.
(4) K is quasisimple and not a p^{\prime}-group, $H=K B$, V is a simple $\mathbb{F}_{p} K$-module, and H acts \mathbb{K}-linearly on V, where $\mathbb{K}=\operatorname{End}_{K}(V)$.

Theorem C. 29 (Minimal Asymmetric Module Theorem, MS6, 5.5]). Let H be a $\mathcal{C K}$ group, $A \leqslant B \leqslant H$ and V be a faithful simple $\mathbb{F}_{p} H$-module. Suppose that V is a minimal asymmetric $\mathbb{F}_{p} M$-module with respect to A and B and that $F^{*}(H)$ is quasisimple with $p\left|\left|F^{*}(H)\right|\right.$. Then one of the following holds for $L:=\left\langle A^{H}\right\rangle$:
(1) $L \cong S L_{n}(q), S p_{2 n}(q), S U_{n}(q),{ }^{3} D_{4}(q), \operatorname{Spin}_{7}(q), \operatorname{Spin}_{8}^{-}(q), G_{2}(q)^{\prime}$ or $S z(q)$, where q is a power of p, V is a corresponding natural or spin module for L, and A is a long root subgroup of L.
(2) $L \cong \operatorname{Sym}\left(2^{k}+2\right), k \geqslant 3,|A|=2, A$ is generated by a transposition, and V is the corresponding natural module.
(3) $L \cong 3 \cdot \operatorname{Alt}(6),|A|=2$ and $|V|=2^{6}$.

APPENDIX D

The Fitting Submodule

Let H be a finite group and V be a finite $\mathbb{F}_{p} H$-module. In MS2 an H-submodule of V was introduced which in some respect is the analogue of the generalized Fitting subgroup of a finite group. In this appendix we will give its definition and derive some properties that have been used in this paper.

Lemma D.1. The following hold:
(a) Suppose that $H / C_{H}(V)$ is a p-group. Then V is not perfect.
(b) Suppose that V is a perfect H-module. Then $V=\left[V, O^{p}(H)\right]$.
(c) Suppose that V is a quasisimple H-module. Then $C_{V}\left(O^{p}(H)\right)=\operatorname{rad}_{V}(H)$.

Proof. (a): This is an elementary fact about the action of p-groups on p-groups.
(b): Put $\bar{V}:=V /\left[V, O^{p}(H)\right]$ and $\bar{H}:=H / O^{p}(H)$. Then (a) shows that \bar{V} is not perfect. Since $[\bar{V}, \bar{H}]=\bar{V}$, we conclude that $\bar{V}=0$.
(c): Let U be a maximal H-submodule of V. Then either $V=U+C_{V}\left(O^{p}(H)\right)$ or $C_{V}\left(O^{p}(H)\right) \leqslant$ U. The first case is impossible, since by b) $V=\left[V, O^{p}(H)\right]$. Hence $C_{V}\left(O^{p}(H)\right) \leqslant \operatorname{rad}_{V}(H)$. Since $V / C_{V}\left(O^{p}(H)\right)$ is simple, also $\operatorname{rad}_{V}(H) \leqslant C_{V}\left(O^{p}(H)\right)$.

D.1. The Definition of the Fitting Submodule and Results from MS2

Definition D.2. Let $S_{V}(H)$ be the sum of all simple H-submodules of V and

$$
E_{H}(V):=C_{F *(H)}\left(S_{V}(H)\right)
$$

Let $L \leqslant H$. Then V is L-quasisimple for H if V is p-reduced for $H, V / \operatorname{rad}_{V}(H)$ is a simple H-module, V is a perfect L-module, and L acts nilpotenly on $\operatorname{rad}_{V}(H)$.

An H-submodule U of V is a component of V (or H-component of V), if either U is simple and $\left[U, F^{*}(H)\right] \neq 0$, or U is $E_{H}(V)$-quasisimple. The sum of all components of V is the Fitting submodule $F_{V}(H)$ of V. Put

$$
R_{V}(H):=\sum \operatorname{rad}_{W}(H)
$$

where the sum runs over all components W of V.
Lemma D.3. The following hold:
(a) Suppose that V is faithful and p-reduced. Then $E_{H}(V)$ is the (possibly empty) direct product of perfect simple groups. In particular, $F\left(E_{H}(V)\right)=1$ and $E_{H}(V) \leqslant E(H)$.
(b) If $E_{H}(V)=1$, then $F_{V}(H)$ is a semisimple H-module.
(c) $E_{H}(V)$ centralizes $R_{V}(H)$.

Proof. (a): This is MS2, 2.5d].
(b): Suppose that $E_{H}(V)=1$. Then there does not exist any non-trivial H-module U with $U=\left[U, E_{H}(V)\right]$. It follows that all H-components of V are simple H-modules and so $F_{V}(H)$ is a semisimple H-module.
(c): By MS2, 2.5a] $C_{F_{V}(H)}\left(E_{H}(V)\right)=\left[S_{V}(H), F^{*}(H)\right]+R_{V}(H)$, and so (c) holds.

Lemma D.4. Let $N \leqslant ⺀ H$. Then the following hold:
(a) $S_{V}(H) \leqslant S_{V}(N)$.
(b) $E_{H}(V) \cap N=E_{N}(V)$.
(c) $F_{V}(H) \leqslant S_{V}(N)+F_{V}(N)$.

Proof. See [MS2, 3.1] and [MS2, 3.2].

The following theorems are the main results of [MS2]:
Theorem D.5. $F_{V}(H)$ is a p-reduced H-module, and $R_{V}(H)$ is a semisimple $F^{*}(H)$-module. Moreover $R_{V}(H)=\operatorname{rad}_{F_{V}(H)}(H)$, in particular $F_{V}(H) / R_{V}(H)$ is a semisimple H-module.

Theorem D.6. Suppose that V is a faithful and p-reduced H-module. Then also $F_{V}(H)$ and $F_{V}(H) / R_{V}(H)$ are faithful and p-reduced.

Lemma D.7. Suppose that V is a faithful and p-reduced H-module. Let $N \unlhd 』 H$. Then the following statements are equivalent:
(a) $F_{V}(H)$ is a semisimple N-module.
(b) $E_{N}(V)=1$.
(c) $N \cap E_{H}(V)=1$.
(d) $\left[N, E_{H}(V)\right]=1$.
(e) $\left[F^{*}(N), E_{H}(V)\right]=1$.
(f) $\left[N, E_{N}(V)\right]=1$.

Proof. Suppose that $F_{V}(H)$ is a semisimple N-module. Then $F_{V}(H) \leqslant S_{V}(N)$, and so $E_{N}(V) \leqslant C_{N}\left(S_{V}(N)\right) \leqslant C_{H}\left(F_{V}(H)\right)$. Since V is faithful and p-reduced, D.6 shows that $F_{V}(H)$ is a faithful H-module, that is, $C_{H}\left(F_{V}(H)\right)=1$. Hence $E_{N}(V)=1$.

Suppose that $E_{N}(V)=1$. Then by D.3 applied to N in place of $H, F_{V}(N)$ is a semisimple N-module. By D.4 CD,$F_{V}(H) \leqslant S_{V}(N)+F_{V}(N)$. Since submodules of semisimple modules are semisimple we conclude that $F_{V}(H)$ is a semisimple N-module.

We have proved that (a) and (b) are equivalent. By D.4 b), $E_{N}(V)=N \cap E_{H}(V)$ and so (b) and (c) are equivalent. By D.3 a) $E_{H}(V)$ is a direct product of perfect simple groups. Thus 1.16 shows that (c), (d), (e) are equivalent.

In particular, $E_{N}(V)=1$ if and only if $\left[N, E_{H}(V)\right]=1$. This applied with $H=N$ shows that $E_{N}(V)=1$ if and only if $\left[N, E_{N}(V)\right]=1$. So (f) is equivalent to (C).

D.2. The Fitting Submodule and Large Subgroups

Lemma D.8. Suppose that V is a faithful p-reduced $Q!$-module for H. Then $\left[H^{\circ}, E_{H}(V)\right]=1=$ $H^{\circ} \cap E_{H}(V)$, and $F_{V}(H)$ is a semisimple H°-module.

Proof. Put $S:=S_{V}(H)$ and $E:=E_{H}(V)$. Then $E=C_{F *(H)}(S)$. Since S is a non-zero H-submodule of V, A.52 (c) gives $C_{H^{\circ}}(S) \leqslant C_{H^{\circ}}\left(H^{\circ}\right)=Z\left(H^{\circ}\right)$. Thus $\left[E, H^{\circ}\right] \leqslant E \cap H^{\circ} \leqslant Z\left(H^{\circ}\right)$. By A.52 b) $C_{H}\left(H^{\circ} / Z\left(H^{\circ}\right)\right)=C_{H}\left(H^{\circ}\right)$ and so $\left[H^{\circ}, E\right]=1$. Hence D.7 shows that $H^{\circ} \cap E_{H}(V)=1$ and that $F_{V}(H)$ is a semisimple H°-module.

Lemma D.9. Suppose that V is a faithful p-reduced Q !-module for H. Let $N \star ⺀ H$ and suppose that $F^{*}(N) \leqslant F(N) F^{*}\left(H^{\circ}\right)$. Then $F_{V}(H)$ is a semisimple N-module.

Proof. Put $E:=E_{H}(V)$. By D. $8\left[H^{\circ}, E\right]=1$ and by D.3na), $E \leqslant E(H)$. Since $F(N) \leqslant F(H)$ and $[F(H), E(H)]=1$, we conclude that $[F(N), E]=1$. Since $F^{*}(N) \leqslant F(N) H^{\circ}$ this gives $\left[F^{*}(N), E\right]=1$. Thus D.7 shows that $F_{V}(H)$ is a semisimple N-module.

Lemma D.10. Suppose that V is a faithful p-reduced Q !-module for H with respect to Q. Then also $F_{V}(H)$ and $F_{V}(H) / R_{V}(H)$ are faithful p-reduced $Q!$-modules for H with respect to Q.

Proof. By D.6 $F_{V}(H)$ and $F_{V}(H) / R_{V}(H)$ are faithful p-reduced H-modules. Put $I:=F_{V}(H)$ and $R:=R_{V}(H)$. The definition of a $Q!$-modules implies that any submodule of a $Q!$-module is a $Q!$-module, so I is a $Q!$-module for H with respect to Q.

Let $1 \neq B \leqslant C_{I / R}(Q)$. By D.9 I is a semisimple H°-module and so there exists an H°-submodule I_{0} of I such that $I=I_{0} \oplus R$. Hence, there exists a unique $B_{0} \leqslant I_{0}$ with $B=\left(B_{0}+R\right) / R$. This shows that $N_{H^{\circ}}(B)=N_{H^{\circ}}\left(B_{0}\right)$ and $\left[B_{0}, Q\right] \leqslant I_{0} \cap R=0$. Now Q ! gives

$$
Q \gtrless N_{H^{\circ}}\left(B_{0}\right)=N_{H^{\circ}}(B) \gtrless N_{H}(B) .
$$

Thus $Q \leqslant O_{p}\left(N_{H}(B)\right)$. Hence $1 \neq C_{V}\left(O_{p}\left(N_{H}(B)\right)\right) \leqslant C_{V}(Q)$, and Q ! implies

$$
N_{H}(B) \leqslant N_{H}\left(C_{V}\left(O_{p}(H)\right)\right) \leqslant N_{H}(Q)
$$

This shows that also I / R is a $Q!$-module for H with respect to Q.

D.3. The Nearly Quadratic Q ! -Module Theorem

Theorem D. 11 (Nearly Quadratic $Q!$-Module Theorem). Suppose that Y is a faithful p-reduced $\mathbb{F}_{p} Q!$-module for M with respect to Q. Put $I:=F_{Y}(M)$ and suppose that there exists an elementary abelian p-subgroup A of M such that
(i) A acts nearly quadratically but not quadratically on I,
(ii) A normalizes Q, and Q normalizes A,
(iii) $[Y, A] \leqslant I$.

Then one of the following holds:
(1) $K:=\left[F^{*}(M), A\right]$ is the unique component of $M, K \leqslant M^{\circ}$, I is a simple K-module, $I=[Y, K A]$, and A acts \mathbb{K}-linearly on I, where $\mathbb{K}:=\operatorname{End}_{K}(I)$.
(2) $M^{\circ} \cong \Omega_{3}(3)$, and Y is the corresponding natural module for M°.
(3) $Y=I$, and there exists an M-invariant set $\left\{K_{1}, K_{2}\right\}$ of subnormal subgroups of M such that $K_{i} \cong S L_{m_{i}}(q), m_{i} \geqslant 2$, q a power of $p,\left[K_{1}, K_{2}\right]=1$, and as a $K_{1} K_{2}$-module $Y \cong Y_{1} \otimes_{\mathbb{F}_{q}} Y_{2}$ where Y_{i} is a natural $S L_{m_{i}}(q)$-module for K_{i}. Moreover, $\mathbb{K}:=\operatorname{End}_{K_{1} K_{2}}(I) \cong \mathbb{F}_{q}$ and one of the following holds:
(1) M° is one of K_{1}, K_{2} or $K_{1} K_{2}$,
(2) $m_{1}=m_{2}=q=2, M \cong S L_{2}(2) \imath C_{2}, M^{\circ}=O_{3}(M) Q$ and $Q \cong C_{4}$ or D_{8}.
(3) $m_{1}=m_{2}=p=2, q=4, M^{\circ}=K_{1} K_{2} Q \cong S L_{2}(4) \imath C_{2}$, A acts \mathbb{K}-linearly on I but M° does not.
(4) $p=2, M \cong \Gamma S L_{2}(4), M^{\circ} \cong S L_{2}(4)$ or $\Gamma S L_{2}(4), I$ is the corresponding natural module, and $|Y / I| \leqslant 2$,
(5) $p=2, M \cong \Gamma G L_{2}(4), M^{\circ} \cong S L_{2}(4), I$ is the corresponding natural module, and $Y=I$,
(6) $p=2, M \cong 3 \cdot \operatorname{Sym}(6), M^{\circ} \cong 3 \cdot \operatorname{Alt}(6)$ or $3 \cdot \operatorname{Sym}(6)$, and $Y=I$ is simple of order 2^{6}.
(7) $p=3, M \cong \operatorname{Frob}(39)$ or $C_{2} \times \operatorname{Frob}(39), M^{\circ} \cong \operatorname{Frob}(39)$, and $Y=I$ is simple of order 3^{3}.

Proof. Put $L:=G L_{\mathbb{F}_{p}}(I)$. By D.6 I is a faithful M-module, so we may and do view M as a subgroup of L. Let H be the subnormal closure of A in M.
$1^{\circ} . \quad O_{p}(M)=O_{p}(H)=1$.
Since M is a faithful p-reduced M-module, $O_{p}(M)=1$ and since $H \lessgtr \& M$ also $O_{p}(H)=1$.
2°. $\quad H=\left\langle A^{H}\right\rangle$ and $[Y, H] \leqslant I$.
Since H is the subnormal closure of $A, 1.13$ gives $H=\left\langle A^{H}\right\rangle$, and by Hypothesis (iii) $[Y, A] \leqslant I$. Hence also $[Y, H] \leqslant I$.
3°. I is a semisimple M°-module. In particular, I is a semisimple module for any subnormal subgroup of M°.

Since Y is a faithful p-reduced Q !-module for M with respect to $Q, \mathrm{D} .8$ shows that I is a semisimple M°-module.
4°. Let R be a subnormal subgroup of M with $R \leqslant N_{M}(Q)$. Then $[R, Q]=1$.

This holds by A.54 b.
5°. Let R be a subnormal subgroup of M and let U be a non-trivial Q - and R-invariant subspace of Y. Then $\left[C_{R}(U), Q\right]=1$.

Note that $C_{R}(U)$ is normal in R and so subnormal in M. Also since $U \neq 0, C_{U}(Q) \neq 0$, and so Q !-gives $C_{R}(U) \leqslant N_{M}\left(C_{U}(Q)\right) \leqslant N_{M}(Q)$. Thus $4{ }^{\circ}$ implies $\left[C_{R}(U), Q\right]=1$.
$6^{\circ} . \quad\left[F^{*}(M), Q, A\right] \neq 1$.
If $A \cap Q \neq 1$, then 1.15 bhows that $\left[F^{*}(M), A \cap Q\right] \neq 1$ and so by 1.8 b,

$$
1 \neq\left[F^{*}(M), A \cap Q, A \cap Q\right] \leqslant\left[F^{*}(M), Q, A\right]
$$

So we may assume that $A \cap Q=1$. Put $R:=\left[F^{*}(M), Q\right]$ and suppose for a contradiction that $[R, A]=1$. By 1.15 b), $R \neq 1$, and by 1.8 b), $R=[R, Q]$. Since $A \cap Q=1$ and A and Q normalizes each other we have $[A, Q]=1$ and so $[R Q, A]=1$. Observe that $R \diamond \vDash M^{\circ}$. Thus, 3° shows that I is a semisimple R-module. Hence I is the direct sum of the Wedderburn components of R on I. Since A centralizes R, each of the Wedderburn components of R is invariant under A. By Hypothesis (i), A is nearly quadratic but not quadratic on I, so A. 48 shows that there exists a unique Wedderburn component W of R on I with $[W, A] \neq 0$. Let W_{*} be the sum of the remaining Wedderburn components of R. Then $I=W \oplus W_{*}$. Since Q normalizes R and A, Q also normalizes W and W_{*}.

Let W_{1} be a simple $\mathbb{F}_{p} R$-submodule of W and put $\mathbb{L}=: E n d_{R}\left(W_{1}\right)$. Since W is R-homogeneous and $[R, A]=1, \underline{M S 3}, 5.2]$ shows that there exists an $\mathbb{L} A$-module W_{2} such that $W \cong W_{1} \otimes_{\mathbb{L}} W_{2}$ as an $\mathbb{F}_{p} R A$-module. Let $m_{i}=\operatorname{dim}_{\mathbb{L}} W_{i}$. Then as an $\mathbb{F}_{p} A$-module, W is the direct sum of m_{1} copies of W_{2}. Applying A.48 a second times, A centralizes all but one of these m_{1} summands. Since the summands are isomorphic this gives $m_{1}=1$. In particular, \mathbb{L} is generated by the image of R in $E n d_{\mathbb{F}_{p}}\left(W_{1}\right)$. As an R-module, W is a direct sum of copies of W_{1}, and we conclude that the subring \mathbb{D} of $E n d_{\mathbb{F}_{p}}(W)$ generated by the image of R is a field isomorphic to \mathbb{L}. Then Q acts \mathbb{D}-semilinearly on W and $Q_{0}:=C_{Q}\left(R / C_{R}(W)\right)=C_{Q}(\mathbb{D})$. By $55^{\circ},\left[C_{R}(W), Q\right]=1$ and so $\left[R, Q_{0}, Q\right] \leqslant\left[C_{R}(W), Q\right]=1$. Thus $\left[F^{*}(M), Q_{0}, Q_{0}, Q_{0}\right] \leqslant\left[F^{*}(M), Q, Q_{0}, Q\right]=1$, and by 1.8 b $\left[F^{*}(M), Q_{0}\right]=1$, so 1.15 b gives $Q_{0}=1$. Hence Q acts faithfully on $R / C_{R}(W)$ and thus also on \mathbb{D}. Put $\mathbb{D}_{0}=C_{\mathbb{D}}(Q)$. By Galois Theory $\operatorname{dim}_{\mathbb{D}_{0}} \mathbb{D}=|Q|$ and there exists a \mathbb{D}_{0}-basis of \mathbb{D} regularly permuted by Q. Also there exists a Q-invariant chain $0=U_{0}<U_{1}<\ldots<U_{m_{2}-1}<U_{m_{2}}=W$ of \mathbb{D}-subspaces of W with each factor isomorphic to \mathbb{D} as a Q-module. Thus $C_{U_{i}}(Q) \nleftarrow U_{i-1}$ and so $\left\langle C_{W}(Q)^{R}\right\rangle=\left\langle\mathbb{D} C_{W}(Q)\right\rangle=W$. By $Q!, C_{W}(Q) \cap C_{W}(Q)^{r}=0$ for all $r \in R \backslash N_{R}(Q)$, see A. 50 (c). Since $C_{W}(Q)$ and $C_{W}(Q)^{r}$ are isomorphic A-modules, A.48 shows that A acts quadratically on $C_{W}(Q)$ and so also on $W=\left\langle C_{W}(Q)^{R}\right\rangle$ and $I=W \oplus W_{*}=W+C_{I}(A)$, a contradiction.
7°. There exists a $Q A$-invariant non-trivial subnormal subgroup X of $F^{*}(M)$ such that

$$
X=[X, A], \quad X=[X, Q] \quad \text { and if } A \cap Q \neq 1, X=[X, A \cap Q]
$$

If $A \cap Q \neq 1,1.15$ b shows that $\left[F^{*}(M), A \cap Q\right] \neq 1$ and 1.8 b gives

$$
\left[F^{*}(M), A \cap Q\right]=\left[F^{*}(M), A \cap Q, A \cap Q\right]
$$

So we can choose $X=\left[F^{*}(M), A \cap Q\right]$ in this case.
Suppose next that $A \cap Q=1$. By $66^{\circ}\left[F^{*}(M), Q, A\right] \neq 1$ and so we can choose a $Q A$-invariant subnormal subgroup X of $F^{*}(M)$ minimal with $[X, Q, A] \neq 1$. Then 1.10 shows $X=[X, A]$ and $X=[X, Q]$.
8°. $\quad X \leqslant F^{*}\left(M^{\circ}\right) \cap F^{*}(H)$ and $X \not N_{M}(Q)$. In particular, $H \nless N_{M}(Q)$.
Since $X=[X, A]$ and $A \leqslant H \lessgtr M^{\circ}, 1.11$ shows that $X \leqslant H$. Also $X=[X, Q]$ implies $X \leqslant M^{\circ}$. Hence $X \leqslant F^{*}(M) \cap M^{\circ}=F^{*}\left(M^{\circ}\right)$ and similarly $X \leqslant F^{*}(H)$. If $X \leqslant N_{M}(Q)$, 4 implies $[X, Q]=1$, a contradiction to $1 \neq X=[X, Q]$.
9°. $\quad I$ is a semisimple X-module and $C_{Y}(X)=1$. In particular, $I=[I, X]$ and X has no central chief factor on I.

By 8°, $X \leqslant M^{\circ}$ and so X is a subnormal subgroup of M°. Hence 3° shows that I is a semisimple X-module. By $88^{\circ} X \not N_{M}(Q)$. Since X is Q-invariant and Y is a Q !-module for M with respect to Q, this gives $C_{Y}(X)=1$ (see A.53).
10. Put $F:=F^{*}(H)$. Then $C_{Y}(F)=1,[Y, H]=[Y, F]=I$, and if H is solvable, then $Y=I$.

By $\left.8^{\circ}\right) X \leqslant F$ and by $9^{\circ}, C_{Y}(X)=1$ and $I=[I, X]$. So $C_{Y}(F)=1$ and $I=[I, F]$. By (2$),[Y, H] \leqslant I$ and so $[Y, H]=[Y, F]=I$.

Suppose now that H is solvable. Then $F=F^{*}(H)=F(H)$ is nilpotent. Since $O_{p}(H)=1$, this implies that F is a p^{\prime}-group. Coprime action now shows that $Y=C_{Y}(F) \oplus[Y, F]=I$.
11. Let \mathcal{W} be a system of imprimitivity for H on I with $|\mathcal{W}| \geqslant 2$ such that X acts trivially on \mathcal{W}. Then Case (2) or Case (3) of the Theorem holds.

Let $W \in \mathcal{W}$. Then X normalizes W, and by $9^{\circ} X$ has no central chief factor on I, so $W=[W, X]$ and $C_{W}(X)=0$. In particular, $|W|>2$, and since $X=[X, A]$ we get $[W, A] \neq 0$.

We now apply A.48. Since $[W, A] \neq 0$ for all $W \in \mathcal{W}$, A.48, 1] does not occur, and since A does not act quadratically on I, also A.48 2) and (3) do not occur. So A.48 4) holds. Hence A has a unique orbit W^{A} on \mathcal{W} with $[W, A] \neq 0$. It follows that $\mathcal{W}=A^{W}$, and one of the following holds.

- $p=2,\left|W^{A}\right|=4$ and $\operatorname{dim}_{\mathbb{F}_{2}} W=1$.
- $p=3,\left|W^{A}\right|=3$ and $\operatorname{dim}_{\mathbb{F}_{3}} W=1$.
- $p=2,\left|W^{A}\right|=2$ and $C_{A}(W)=C_{A}(V)$. Moreover, $\operatorname{dim}_{\mathbb{F}_{2}} W / C_{W}(B)=1$ and $C_{W}(B)=$ $[W, B]$, where $B:=N_{A}(W)$.
Since $|W|>2$ the first of these cases does not occur. Consider the second case. Recall that we view M as a subgroup of $L=G L_{\mathbb{F}_{p}}(I)$. Note that $N_{L}(\mathcal{W}) \cong C_{2}$ 2 Sym (3) and so $O^{2}\left(N_{L}(\mathcal{W})\right) \cong$ Alt $(4) \cong \Omega_{3}(3)$. Since $H=\left\langle A^{H}\right\rangle=O^{2}(H)$ and $1 \neq X \leqslant H \cap C_{L}(\mathcal{W})$ we get $H=O^{2}\left(N_{L}(\mathcal{W})\right)$. It follows that \mathcal{W} is the set of Wedderburn components of $O_{2}(H)$ on I and hence

$$
N_{L}\left(O^{2}(H)\right)=N_{L}(H) \leqslant N_{L}\left(O_{2}(H)\right) \leqslant N_{L}(\mathcal{W}) \text { and } O^{2}\left(N_{L}(\mathcal{W})\right)=H=O^{2}(H)
$$

Thus 1.12 applied with $\mathcal{G}=O^{2}$ shows that $H=O^{2}(H)=O^{2}(M)$. In particular, $M^{\circ} \leqslant H$ and so $H=M^{\circ}$. Hence H is solvable, and 10° shows that $Y=I$. So Case 2 of the Theorem holds.

Consider the third case. Put $H_{0}:=N_{H}(W)$. Then $\left|H / H_{0}\right|=2, H=A H_{0}$ and $H_{0} \& H$. Let $w \in W \backslash C_{W}(B)$. Then $[w, B]=[W, B]=C_{W}(B)$ and so B acts transitively on $W \backslash C_{W}(B)$. In particular, B induces the full centralizer of $C_{W}(B)$ in $G L_{\mathbb{F}_{2}}(W)$ on W.

Let U be a proper H_{0}-submodule of W. Since $B \leqslant H_{0}, U$ is B-invariant, and the transitive action of B on $W \backslash C_{W}(B)$ shows that $U \leqslant C_{W}(B)$. Put $D:=C_{B}(W / U)$. The transitive action of B shows that $[W, D]=U$. Note that D centralizes W / U and U. Let $a \in A \backslash B$. Since A is abelian, $D \preccurlyeq A$ and so D centralizes W^{a} / U^{a} and U^{a}. Since $I=W+W^{a}$, it follows that $D \leqslant O_{p}\left(H_{0}\right)$. Hence $U=[W, D]=1$ and so W is a simple H_{0}-module.

Now MS3, 7.3] shows that $\left\langle B^{H_{0}}\right\rangle$ induces $S L_{\mathbb{F}_{2}}(W)=A u t(W)$ on W. Suppose that H_{0} acts faithfully on W. Then $H_{0} \cong S L_{\mathbb{F}_{2}}(W)$. Thus H_{0} has no outer automorphism, so $H=C_{H}\left(H_{0}\right) H_{0}$. But then $\left|C_{H}\left(H_{0}\right)\right|=2$, a contradiction to $O_{2}(H)=1$.

Put $\left\{W_{1}, W_{2}\right\}:=\mathcal{W},\{i, j\}:=\{1,2\}$ and $K_{j}:=C_{H_{0}}\left(W_{i}\right)$. Then K_{i} acts faithfully on W_{i}. As H_{0} does not act faithfully on $W_{j}, K_{i} \neq 1$. Thus $W_{i}=\left[W_{i}, K_{i}\right]$, and since $I=W_{i} \oplus W_{j}$, we get $W_{i}=\left[I, K_{i}\right]$ and $I=\left[I, K_{1}\right] \oplus\left[I, K_{2}\right]$. Put $m:=\operatorname{dim}_{\mathbb{F}_{2}}(W)$. Then W_{i} is natural $S L_{m}(2)$-module for $H_{0}, H_{0} / K_{j}=H_{0} / C_{H_{0}}\left(W_{i}\right) \cong S L_{m}(2)$ and

$$
\begin{equation*}
1 \neq K_{i} \cong K_{i} K_{j} / K_{j} \preccurlyeq H_{0} / K_{j} \cong S L_{m}(2) \tag{*}
\end{equation*}
$$

Suppose that $m \geqslant 3$. Then $S L_{m}(2)$ is simple, and (*)implies that that $H_{0}=K_{i} K_{j}$. Hence $H_{0}=K_{1} \times K_{2}$ and W_{i} is natural $S L_{m}(2)$-module for K_{i}. As seen above $I=\left[I, K_{1}\right] \oplus\left[I, K_{2}\right]$. Thus I is a wreath product module for H with respect to $\left\{K_{1}, K_{2}\right\}$, and A.56 b shows that $C_{K_{i}}\left(w_{i}\right)$ is a 2-group for $0 \neq w_{i} \in C_{W_{i}}\left(N_{Q}\left(K_{i}\right)\right)$. But this contradicts the action of K_{i} on the natural $S L_{m}(2)$-module W_{i}.

Thus $m=2$. Now (*) implies that $K_{i} \cong S L_{2}(2)$ or $S L_{2}(2)^{\prime} \cong C_{3}$. Put $F_{i}:=O_{3}\left(K_{i}\right)$. Then $F_{1} F_{2}=O_{3}(H)=F^{*}(H)=F=O^{2}(H)$. In particular, H is solvable and $I=Y$ by 10°. Since
$C_{B}\left(W_{i}\right)=C_{B}(I)=1,|B|=2$ and so $A \cong C_{2} \times C_{2}$. Since H is the subnormal closure of $A, 1.13$ gives $H=O^{2}(H) A=F A$. So $H=F A=H_{1} \times H_{2}$ with $H_{i} \cong S L_{2}(2)$, and as an H-module $I=V_{1} \otimes V_{2}$ where V_{i} is a natural $S L_{2}(2)$-module for H_{i}.

Note that $N_{L}(\mathcal{W}) \cong S L_{2}(2)$ 乙 C_{2} so $F=O^{2}(H)=O^{2}\left(N_{L}(\mathcal{W})\right)$. Also \mathcal{W} is the of set of Wedderburn components of $O^{2}(H)$ on I, and so $N_{L}\left(O^{2}(H)\right) \leqslant N_{L}(\mathcal{W})$. Hence 1.12 applied with $\mathcal{G}=O^{2}$ shows that $O^{2}(M)=O^{2}(H)=F \approx M$. Thus either $H=M \cong S L_{2}(2) \times S L_{2}(2)$ or $H \approx M=N_{L}(F) \cong S L_{2}(2)$ < C_{2}. So to show that Case (3) of the Theorem holds it remains to determine M°.

Observe that $H=H_{1} \times H_{2} \cong \Omega_{4}^{+}(2), I$ is a natural $\Omega_{4}^{+}(2)$-module for H and $H \lessgtr M$. Since Q is weakly closed and $O^{2}(M) \leqslant H$, we have $M^{\circ}=\left\langle Q^{O^{2}(M)}\right\rangle=\left\langle Q^{H}\right\rangle$, see 1.46 d). Now B. 37 shows that either M° is one H_{1}, H_{2} and H, or Q is isomorphic to C_{4} or D_{8}. Thus indeed Case (3) of the Theorem holds.

In view of 11°) we may assume from now on that:
12°. Let \mathcal{W} be a system of imprimitivity for H on I with X acting trivially on \mathcal{W}. Then $|\mathcal{W}|=1$.

Next we show:
13°. Suppose that I is not a simple M°-module. Then Case (3:1) of the Theorem holds.
By $\left(3^{\circ}\right) I$ is a semisimple M°-module and so the Wedderburn components of M° form a system of imprimitivity for H. Hence 12° shows that I is a homogeneous M°-module. Let I_{1} be a simple M°-submodule of I and $\mathbb{L}=\operatorname{End}_{M^{\circ}}\left(I_{1}\right)$. Since M° is generated by p-elements, $\operatorname{dim}_{\mathbb{L}} I_{1} \geqslant 2$. By MS3, 5.5] there exists an \mathbb{L}-vector space I_{0} and a regular tensor decomposition $I_{0} \otimes_{\mathbb{L}} I_{1}$ of I for M, which is strict for $Q A$ and such that M° centralizes I_{0}. Since I is not simple for $M^{\circ}, I \neq I_{1}$ and so $\operatorname{dim}_{\mathbb{L}} I_{2} \geqslant 2$. Hence $I_{0} \otimes_{\mathbb{L}} I_{1}$ is a proper tensor decomposition and we can apply [MS3, 6.5]. We discuss the cases given there.

The first two cases do not occur since A does not act quadratically. Case (3.2) does not occur for regular tensor decompositions. Thus Case (3.1) holds. Hence A acts \mathbb{L}-linearly on I_{j} for $j=0,1$, $U_{j}:=\left[I_{j}, A\right]=C_{I_{j}}(A)$ is an \mathbb{L}-hyperplane of I_{j}, and $\left[\mathbb{F}_{p} v_{i}, A\right]=U_{j}$ for all $v_{j} \in I_{j} \backslash U_{j}$. In particular, A acts quadratically on I_{j} and so $\left\{\left[v_{j}, a\right] \mid a \in A\right\}=\left[v_{j}, A\right]=\left[\mathbb{F}_{p} v_{i}, A\right]=U_{j}$. Thus A acts transitively on $v_{j}+U_{j}$. Put $L_{j}:=G L_{\mathbb{L}}\left(I_{j}\right), H_{j}:=C_{L_{j}}\left(U_{j}\right) \cap C_{L_{j}}\left(I_{j} / U_{j}\right)$ and for $P \subseteq C_{M}(\mathbb{L})$ let P_{j} be the image of P in L_{j}. Note that $A_{j} \leqslant H_{j}$ and a Frattini argument gives $H_{j}=A_{j} C_{H_{j}}\left(v_{j}\right)$. Since $C_{H_{j}}\left(v_{j}\right)$ centralizes $\mathbb{L} v_{k}+U_{j}=I_{j}$ we conclude that $A_{j}=H_{j}$.

Since I_{1} is a simple M°-module, I_{1} is also a simple $M^{\circ} A$-module and so p-reduced for $M^{\circ} A$. Now MS3, 7.2] shows $\left\langle A^{M^{\circ}}\right\rangle_{1}=S L_{\mathbb{L}}\left(I_{1}\right)$. Since M° is generated by p-elements and $G L_{\mathbb{L}}\left(I_{1}\right) / S L_{\mathbb{L}}\left(I_{1}\right)$ is a p^{\prime}-group, we get $\left(M^{\circ}\right)_{1} \leqslant S L_{\mathbb{L}}\left(I_{1}\right)$. As M_{1}° acts faithfully on I_{1},

$$
1 \neq M^{\circ} \cong\left(M^{\circ}\right)_{1} \triangleq\left\langle A^{M^{\circ}}\right\rangle_{1}=S L_{\mathbb{L}}\left(I_{1}\right) .
$$

Note that $S L_{\mathbb{L}}\left(I_{1}\right)$ is either quasisimple or $|\mathbb{L}|=p \leqslant 3, \operatorname{dim}_{\mathbb{L}} I_{1}=2$ and $S L_{\mathbb{L}}\left(I_{1}\right)^{\prime}$ is a p^{\prime}-group. We conclude that $\left(M^{\circ}\right)_{1}=L_{1}$ and $M^{\circ} \cong S L_{\mathbb{K}}\left(I_{1}\right)$.

Let $K:=O^{p^{\prime}}\left(C_{C_{M}(\mathbb{L})}\left(M^{\circ}\right)\right)$. As $C_{G L_{\mathrm{F}_{p}}\left(I_{1}\right)}\left(M^{\circ}\right)$ is a p^{\prime}-group, K centralizes I_{1} and so also \mathbb{L}. In particular, K acts faithfully on I_{0} and $K \cong K_{0}$. As $\left\langle A^{M^{0}}\right\rangle_{1}=S L_{\mathbb{L}}\left(I_{1}\right), A$ induces inner automorphisms on M° and so $A \leqslant M^{\circ} K$. Suppose that U is a proper $\mathbb{L} K$-submodule of I_{0}. Since A acts transitively on $v_{0}+U_{0}$, it also acts transitively on the 1-dimensional \mathbb{L}-subspaces not in U_{0}. Thus $U \leqslant U_{0}$. Put $B:=C_{A}\left(I_{0} / U\right)$. Since $A_{0}=H_{0},\left[I_{0}, B\right]=U$. Note that B centralizes I_{0} / U and U and so the same holds for $K \cap B M^{\circ}$. But K acts faithfully on I_{0} and since $K \unlhd s, ~ O_{p}(K)=1$. Thus $K \cap B M^{\circ}=1$. As $B \leqslant A \leqslant M^{\circ} K$ we get

$$
B \leqslant M^{\circ} B \cap M^{\circ} K=M^{\circ}\left(K \cap B M^{\circ}\right)=M^{\circ} .
$$

Thus $U=\left[I_{0}, B\right] \leqslant\left[I_{0}, M_{\circ}\right]=0$, and I_{0} is a simple $\mathbb{L} K$-module. It follows that $\left\langle A^{K}\right\rangle_{0}=L_{0}$, and arguing as above, $L_{0} \cong S L_{\mathbb{L}}\left(I_{0}\right), K_{0}=L_{0}$ and $K \cong S L_{\mathbb{L}}\left(I_{0}\right)$. Thus Case 3:1] of the Theorem holds.

In view of $\left(2^{\circ}\right)$ we may assume from now on that
14°. I is a simple M°-module.
Next we prove:
15°. I is a simple H-module.
Since I is a simple M°-module, I is a simple M-module. Since $H \preccurlyeq \unlhd M$ this implies that I is a semisimple H-module. So I is the direct sum of a set \mathcal{W} of simple H-submodules. Note that \mathcal{W} is a system of imprimitivity for H on I with H and so also X acting trivially on \mathcal{W}. Thus 12° shows that $|\mathcal{W}|=1$. Hence I is a simple H-module.

Recall that $F=F^{*}(H)$.
16°. Let W be a Wedderburn component for F on I and put $\mathbb{K}:=Z\left(\operatorname{End}_{F}(W)\right)$. Then $W=I$ and $\mathbb{K}=Z\left(\operatorname{End}_{F}(I)\right)$.

By $88^{\circ} X \leqslant F^{*}(H)=F$. Hence the Wedderburn components for F on I form a system of imprimitivity for H on I on which X acts trivially. Thus 12° shows that $I=W$.

We now apply MS3, Theorem 2] and discuss the different cases given there. Define $\mathbb{E}:=$ $\operatorname{End}_{H}(I)$.

Case 1. Suppose that $F=K Z(H)$, where K is a component of $H, I=W$ is a simple $\mathbb{F}_{p} K$-module, and $\mathbb{K}=\mathbb{E}$. Then Case (1) of the Theorem holds.

Put $\mathbb{D}=\operatorname{End}_{K}(I)$. Since I is a finite simple K-module, \mathbb{D} is a finite division ring and so a field. In particular, the multiplicative group \mathbb{D}^{*} of \mathbb{D} is a cyclic p^{\prime}-group. Note that $C_{M}(K) \leqslant \mathbb{D}^{*}$ and so also $C_{M}(K)$ is cyclic p^{\prime}-group. Thus K is the unique component of M and $K \preccurlyeq M$. Moreover, if P is a non-trivial p-subgroup of M, then $[K, P] \neq 1$ and so $K=[K, P]$. Thus $K=[K, Q] \leqslant M^{\circ}$ and $K=[K, A]$.

Since \mathbb{D} is commutative and $Z(H) \leqslant C_{M}(K) \leqslant \mathbb{D}^{*}$ we have $\mathbb{D} \subseteq \operatorname{End}_{Z(H)}(I)$. Thus

$$
\mathbb{D} \subseteq \operatorname{End}_{Z(H) K}(I)=\operatorname{End}_{F}(I) \subseteq \operatorname{End}_{K}(I)=\mathbb{D}
$$

and so $\mathbb{D}=\operatorname{End}_{F}(I)=\operatorname{End}_{K}(I)$. Since $I=W, \mathbb{K}=Z\left(E n d_{F}(I)\right)=Z\left(E n d_{K}(I)\right)=Z(\mathbb{D})$, and since \mathbb{D} is commutative, this gives $\mathbb{K}=\mathbb{D}$.

As $K A \leqslant H, 22^{\circ}$ shows $[Y, K A]=I$. Note that $F(M) \leqslant C_{M}(K) \subseteq \mathbb{D}=\mathbb{K}$. Since by Hypothesis of Case $1 \mathbb{K}=\mathbb{E}=\operatorname{End}_{H}(I)$, this gives $[F(M), A]=1$ and $\left[F^{*}(M), A\right]=[F(M) K, A]=$ $[K, A]=K$. Thus all the statements in Case (1) of the Theorem hold.

We now discuss the remaining cases given in Theorem 2 of MS3. For the convenience of the reader we reproduce the table given there. We also have omitted case (13) of the table since in that case H would not be generated by abelian nearly quadratic subgroups.

	H	I	W	\mathbb{K}	$H / C_{H}(\mathbb{K})$	conditions
1.	$\left(C_{2} \backslash \operatorname{Sym}(\mathrm{~m})\right)^{\prime}$	$\left(\mathbb{F}_{3}\right)^{m}$	\mathbb{F}_{3}	F_{3}	-	$m \geqslant 3, m \neq 4$
2.	$S L_{n}\left(\mathbb{F}_{2}\right)$ \Sym (m)	$\left(\mathbb{F}_{2}^{n}\right)^{m}$	\mathbb{F}_{2}^{n}	\mathbb{F}_{2}	-	$m \geqslant 2, n \geqslant 3$
3.	$W r\left(S L_{2}\left(\mathbb{F}_{2}\right), m\right)$	$\left(\mathbb{F}_{2}^{2}\right)^{m}$	\mathbb{F}_{2}^{2}	\mathbb{F}_{4}	-	$m \geqslant 2$
4.	Frob_{39}	\mathbb{F}_{27}	I	F_{27}	C_{3}	
5.	$\Gamma G L_{n}\left(\mathbb{F}_{4}\right)$	\mathbb{F}_{4}^{n}	I	\mathbb{F}_{4}	C_{2}	$n \geqslant 2$
6.	$\Gamma S L_{n}\left(\mathbb{F}_{4}\right)$	\mathbb{F}_{4}^{n}	I	\mathbb{F}_{4}	C_{2}	$n \geqslant 2$
7.	$S L_{2}\left(\mathbb{F}_{2}\right) \times S L_{n}\left(\mathbb{F}_{2}\right)$	$\mathbb{F}_{2}^{2} \otimes \mathbb{F}_{2}^{n}$	I	\mathbb{F}_{4}	C_{2}	$n \geqslant 3$
8.	3. Sym (6)	\mathbb{F}_{4}^{3}	I	\mathbb{F}_{4}	C_{2}	
9.	$S L_{n}(\mathbb{K}) \circ S L_{m}(\mathbb{K})$	$\mathbb{K}^{n} \otimes \mathbb{K}^{m}$	I	any	1	$n, m \geqslant 3$
10.	$S L_{2}(\mathbb{K}) \circ S L_{m}(\mathbb{K})$	$\mathbb{K}^{2} \otimes \mathbb{K}^{m}$	I	$\mathbb{K} \neq \mathbb{F}_{2}$	1	$m \geqslant 2$
11.	$S L_{n}\left(\mathbb{F}_{2}\right)$ 乙 C_{2}	$\mathbb{F}_{2}^{n} \otimes \mathbb{F}_{2}^{n}$	I	\mathbb{F}_{2}	1	$n \geqslant 3$
12.	$\left(C_{2}\right.$ 乙Sym(4)) ${ }^{\prime}$	$\left(\mathbb{F}_{3}\right)^{4}$	I	\mathbb{F}_{3}	1	

Case 2. Cases 1., 2., and 3. of the table do not occur.
In these cases $W \neq I$ contrary to 16°.
Case 3. In cases 5., 6. and 8. of the table, case (4), (5) and (6), respectively, of the Theorem holds.

Note that in each of these cases H has a unique component K_{1} and I is a simple K_{1}-module. In particular, $C_{L}\left(K_{1}\right)$, and so also $C_{M}\left(K_{1}\right)$, is a cyclic p^{\prime}-group. Thus $\left[K_{1}, Q\right] \neq 1$ and $K_{1}=$ $\left[K_{1}, Q\right] \leqslant M^{\circ}$. Moreover, since $C_{M}\left(K_{1}\right)$ is cyclic and distinct components centralize each other, K_{1} is the unique component of M and so $K_{1} \& M$. Note also that in each case $\mathbb{K}=\mathbb{F}_{4}$ and H does not act \mathbb{K}-linearly on I. As $H=\left\langle A^{H}\right\rangle$ also A does not act \mathbb{K}-linearly on I.

Assume case 5 . or 6 . of the table. Then $K_{1} \cong S L_{n}(4)$ and I is a natural $S L_{n}(4)$-module for K_{1}.

Suppose that $n>2$. Then by B. $37 K_{1}=M^{\circ}$ and $Q=C_{L}(I / U) \cap C_{L}(U)$ for some 1-dimensional \mathbb{K}-subspace U of I. Let $A_{\mathbb{K}}$ be the largest subgroup of A acting \mathbb{K}-linearly on I. Since A does not act \mathbb{K}-linearly on I, MS3, 6.3] shows that $\left[I, A_{\mathbb{K}}\right]=C_{I}\left(A_{\mathbb{K}}\right)$ is a \mathbb{K}-hyperplane of I. Recall from Hypothesis (iil) of the Theorem that Q and A normalizes each other. Thus $[Q, A] \leqslant Q \cap A$ and $U \leqslant C_{I}([Q, A])$. We claim that $C_{I}([Q, A])=U$. Otherwise choose $U<U_{1} \leqslant C_{I}([Q, A])$ with $\left[U_{1}, A\right] \leqslant U$. Then $\left[Q, A, U_{1}\right]=0$ and $\left[U_{1}, A, Q\right] \leqslant[U, Q]=0$. Hence the Three Subgroups Lemma shows that $\left[U_{1}, Q, A\right]=0$. As $Q=C_{L}(I / U) \cap C_{L}(U)$ and $U_{1} \leqslant U$, this implies that $\left[U_{1}, Q\right]=U$. So A centralizes the non-trivial \mathbb{K}-subspace U of I, a contradiction, since A does not act \mathbb{K}-linearly on U. Thus $C_{I}([Q, A])=U$. As Q acts \mathbb{K}-linearly on I, we have $[Q, A] \leqslant Q \cap A \leqslant A_{\mathbb{K}}$ and $C_{I}\left(A_{\mathbb{K}}\right) \leqslant C_{I}([Q, A]) \leqslant U$. Since $C_{I}\left(A_{\mathbb{K}}\right)$ is a \mathbb{K}-hyperplane of I and $\operatorname{dim}_{\mathbb{K}} U=1$, this shows that $n=2$.

Note that $M \leqslant N_{L}\left(K_{1}\right)$. By B.32b), $N_{L}\left(K_{1}\right) \cong \Gamma G L_{2}(4)$ and so $N_{L}\left(K_{1}\right) / K_{1} \cong \operatorname{Sym}(3)$. Since $A \not K_{1}$, this implies either $M=N_{L}\left(K_{1}\right) \cong \Gamma G L_{2}(4)$ or $M=K_{1} A \cong \Gamma S L_{2}(4)$. In both cases $M=H$. Since K_{1} acts transitively on I, Q ! shows that $M^{\circ}=\left\langle Q^{K_{1}}\right\rangle=K_{1} Q \lessgtr M$. Thus either $M^{\circ}=K_{1}$ or $M^{\circ}=M \cong \Gamma S L_{2}(4)$.

By $\left(2^{\circ}\right),[Y, H] \leqslant I$ and so $\left[Y, K_{1}\right]=I$. Observe that $\left[K_{1}, Q\right] \neq 1$ and by $Q!, C_{Y}\left(K_{1}\right)=1$. Thus Y / I embeds into $H^{1}\left(K_{1}, I\right)$. By C. $18 H^{1}\left(K_{1}, I\right)$ has order four. As $C_{L}\left(K_{1}\right)$ acts fixed-point freely on I, it also acts fixed-point freely on $H^{1}\left(K_{1}, I\right)$. Thus $N_{L}\left(K_{1}\right)$ induces $\operatorname{Sym}(3)$ on $H^{1}\left(K_{1}, I\right)$ with kernel K_{1}. Since $M=H,[Y, M] \leqslant I$. Hence either $Y=I$ or $M \cong \Gamma S L_{2}(4)$ and $|Y / I| \leqslant 2$, or $M \cong \Gamma G L_{2}(4)$ and $Y=I$. In the first case (4) of the Theorem holds, in the second case (5) of the Theorem holds.

Assume case 8. of the table. Since $\operatorname{End}_{K_{1}}(I)=\mathbb{F}_{4}$ and $\left|Z\left(K_{1}\right)\right|=3=\left|\mathbb{F}_{4}^{\sharp}\right|=\left|\mathbb{K}^{\sharp}\right|, C_{M}\left(K_{1}\right) \leqslant$ K_{1}. Note that K_{1} has a unique conjugacy class of subgroups A_{1} with $A_{1} \cong \operatorname{Alt}(5)$ and $C_{I}\left(A_{1}\right) \neq 1$. It follows that M acts on this conjugacy class. Thus $M / C_{M}\left(K_{1}\right) \cong \operatorname{Sym}(6)$ and so $M \cong 3 \cdot \operatorname{Sym}(6)$. Since $K_{1} \leqslant M^{\circ}$ we get $M^{\circ}=K_{1} \cong 3 \cdot \operatorname{Alt}(6)$ or $M^{\circ}=M \cong 3 \cdot \operatorname{Sym}(6)$. Thus case (6) of the Theorem holds.

Case 4. Suppose that either Case 12. or Case 10. with $m=2$ and $\mathbb{K}=\mathbb{F}_{3}$ of the table holds. Then Case 3:1) of the Theorem holds.

Since H is solvable in these cases 10° shows that $Y=I$. Note that in both cases $F=$ $O_{2}(H) \cong Q_{8} \circ Q_{8}$, and I is the unique simple F-module of order 3^{4}. Moreover, $F=O^{3}\left(O^{2}(H)\right)$ and $N_{L}(F) / F \cong O_{4}^{+}(2)$. It follows that $F=O^{3}\left(O^{2}\left(N_{L}(F)\right)\right)$ and 1.12 applied with $\mathcal{G}=O^{3} O^{2}$ shows that $F=O^{3}\left(O^{2}(M)\right) \preccurlyeq M$. Note that $Q \leqslant O^{2}(M)$ since $p=3$, and so $M_{\circ}=O^{3}\left(M^{\circ}\right) \leqslant F$. By $1.13 M^{\circ}=\left\langle Q^{M_{\circ}}\right\rangle$ and thus $M^{\circ}=\left\langle Q^{F}\right\rangle$.

Suppose for a contradiction that Q normalizes an elementary abelian subgroup B of order eight in F. Since $B / Z(F)$ and F / B are dual to each other as Q-modules, we conclude that Q acts fixed-point freely on $F / Z(F)$. In particular, $[B, Q]$ is a complement to $Z(F)$ in B. Let

$$
\mathcal{D}:=\left\{D \leqslant B| | B / D \mid=2, C_{I}(B) \neq 0\right\} .
$$

Since I is a simple faithful F-module, $C_{I}(Z(F))=0$. Thus $Z(F) \cap D=1$ for all $D \in \mathcal{D}$. By coprime action

$$
I=\bigoplus_{D \in \mathcal{D}} C_{I}(D)
$$

Note that F acts transitively on the four complements to $Z(F)$ in B. We conclude that \mathcal{D} consists of the complements to $Z(F)$ in B and $\left|C_{I}(D)\right|=3$ for all $D \in \mathcal{D}$. In particular, $\left|C_{I}([B, Q])\right|=3$ and $\left[C_{I}([B, Q]), Q\right]=0$. Thus Q ! gives $[B, Q] \leqslant N_{M}(Q)$ and so $[B, Q]=[B, Q, Q] \leqslant B \cap Q=1$, which contradicts the fixed-point free action of Q on F.

Thus Q does not normalize any elementary abelian subgroup of order 8 in F. It follows that either $|Q|=9$ and $M^{\circ}=F Q \cong S L_{2}(3) \circ S L_{2}(3)$ or $|Q|=3,[F, Q] \cong Q_{8}$ and $M^{\circ} \cong S L_{2}(3)$. If the former holds, Case (3:1) of the Theorem holds. If the latter holds, M° does not act simply on I, a contradiction to 14°.

Case 5. Suppose that Case 7., 9., 10. or 11. of the table holds. Then Case (3) of the Theorem holds.

In view of Case 4 we assume that $\mathbb{K} \neq \mathbb{F}_{3}$ if $m=2$ in Case 10 . Note that $\mathbb{E}=\mathbb{F}_{2}$ and $\mathbb{K}=\mathbb{F}_{4}$ in case $7 ., \mathbb{E}=\mathbb{K}=\mathbb{F}_{4}$ in in the cases $9 ., 10$., and $\mathbb{E}=\mathbb{K}=F_{2}$ in case 11 . In each of the four cases H has subgroups K_{1}, K_{2} such that $K_{i} \cong S L_{n_{i}}(\mathbb{E}), n_{i} \geqslant 2,\left[K_{1}, K_{2}\right]=1, K_{1} K_{2} \boxtimes H, H=K_{1} K_{2} A$, and there exist natural $S L_{n_{i}}(\mathbb{E})$-modules I_{i} for K_{i} such that as an $K_{1} K_{2}$-module, $I \cong I_{1} \otimes_{\mathbb{E}} I_{2}$. In particular, $X=O^{p}(X) \leqslant K_{1} K_{2}$ and so $C_{Y}\left(K_{1} K_{2}\right) \leqslant C_{Y}(X)=1$. Since $\left[Y, K_{1} K_{2}\right] \leqslant[Y, H] \leqslant I$ and K_{i} has no central chief factor on I, we conclude from C. 19 that $Y=I$.

Choose notation such that $n_{1} \geqslant n_{2}$. In case 7. 9. and 11., $n_{1} \geqslant 3$, and in case 10. either $n_{1} \geqslant 3$ or $n_{1}=m=2$ and (according to our additional assumption) $|\mathbb{E}|>3$. Thus K_{1} is quasisimple and so a component of M.

Let R be a component of M with $R \neq K_{1}$. Then $\left[R, K_{1}\right]=1$. Note that $C_{L}\left(K_{1}\right) \cong G L_{n_{2}}(\mathbb{E})$. As $K_{2} \cong S L_{n_{2}}(\mathbb{E})$, this gives $K_{2}=O^{p^{\prime}}\left(C_{M}\left(K_{1}\right)\right)$ and $C_{M}\left(K_{1}\right)^{\infty} \leqslant K_{2}$. It follows that either K_{1} is the only component of M, or K_{2} is a component of M and $\left\{K_{1}, K_{2}\right\}$ is the set of components of M. In either case $K_{1} K_{2} \triangleleft M$.

It follows that H acts on the set $\mathcal{S}=\left\{v_{1} \otimes v_{2} \mid 0 \neq v_{i} \in V_{i}\right\}$ and this set is of size not divisible by p. So we can choose $0 \neq v_{i} \in V_{i}$ such that Q centralizes $v_{1} \otimes v_{2}$; i.e., $C_{M}\left(v_{1} \otimes v_{2}\right) \leqslant N_{M}(Q)$. Note that $K_{1} K_{2}$ acts transitively on \mathcal{S} and so $M=H C_{M}\left(v_{1} \otimes v_{2}\right)=H N_{M}(Q)$. Thus $M^{\circ}=\left(K_{1} K_{2} Q\right)^{\circ}$. Put $R_{1}:=C_{K_{1}}\left(v_{1}\right)$. Then $R=C_{K_{1}}\left(v_{1} \otimes v_{2}\right)$, so $R_{1} \leqslant N_{M}(Q)$ and $\left[R_{1}, Q\right]$ is a p-group. Note that $R_{1} / O_{p}\left(R_{1}\right) \cong S L_{n_{1}-1}(\mathbb{E})$.

Suppose that $n_{1} \geqslant 3$. Then $R_{1} / Z\left(K_{1}\right)$ is not a p-group. It follows that Q normalizes K_{1} and centralizes $R_{1} / O_{p}\left(R_{1}\right)$. Hence Q induces inner automorphisms on K_{1}. Therefore Q acts \mathbb{E}-linearly on I. Since Q normalizes K_{2}, this implies that Q induces inner automorphisms on K_{2} (see B.32dd). Thus $Q \leqslant K_{1} K_{2}$ and $M_{1}^{\circ} \leqslant K_{1} K_{2}$. The only normal subgroups of $K_{1} K_{2}$ generated by p-elements are K_{1}, K_{2} and $K_{1} K_{2}$, so M° is one of K_{1}, K_{2} and $K_{1} K_{2}$ and so Case (3) of the Theorem holds.

Suppose next that $n_{1}=2$. Since $n_{2} \leqslant n_{1}$ this gives $n_{2}=2$, and case 10 . of the table holds with $m=2$ with $|\mathbb{E}|=|\mathbb{K}|>3$. Note that $K_{1} K_{2} \cong \Omega_{4}^{+}(q)$ and I is a natural $\Omega_{4}^{+}(q)$-module for $K_{1} K_{2}$. Now B.37 shows that either $M^{\circ}=\left\langle Q^{K_{1} K_{2}}\right\rangle$ is one of K_{1}, K_{2} and $K_{1} K_{2}$, or $q=4$, $M^{\circ} \cong O_{4}^{+}(2) \cong S L_{2}(4)$ 乙 C_{2} and Q does not act \mathbb{K}-linearly. Thus Case 3 of the Theorem holds.

Case 6. Suppose that Case 4. of the table holds. Then Case (7) of the Theorem holds.
Since $H \cong \operatorname{Frob}(39), H$ is solvable and so by $10^{\circ} Y=I$. From $|I|=3^{3}$ we get $N_{L^{\prime}}(H)=H$. Since $H \geqq M \cap L^{\prime}$ this gives $M \cap L^{\prime}=H$. So either $M=H \cong \operatorname{Frob}(39)$ or $M=Z(L) \times H \cong$ $C_{2} \times \operatorname{Frob}(39)$. In either case H is the only non-trivial subgroup generated by p-elements and so $M^{\circ}=H$, and Case (7) of the Theorem holds.

APPENDIX E

The Amalgam Method

The amalgam method is a convenient way to keep track of conjugation in (finite) groups and to combine conjugation of abelian subgroups with quadratic action.

The starting point is a prime p and a group G together with a collection of two or more finite subgroups $H_{i}, i \in I$, whose p-local structures should be investigated. Usually one requires that these subgroups are of characteristic p and have a Sylow p-subgroup in common, together with other properties that restrict the number (and often also the structure) of the non-abelian chief factors, like being p-irreducible.

It is rather astonishing that in such an apparently general situation most of the normal p subgroups of these subgroups H_{i} are already contained in normal p-subgroups of G. Or from a different point of view, modulo the largest normal p-subgroup of G contained in $B:=\bigcap_{i \in I} H_{i}$, the number and module structure of the p-chief factors of the subgroups H_{i} are very limited.

The name amalgam method comes from the fact that this method does not really depend on G, but only on the embedding of B into the subgroups H_{i}, so it can as well be performed in the amalgamated product of these (sub)groups over B.

E.1. The Coset Graph

Let H be any group and let $\left(H_{i}\right)_{i \in I}$ be a family of distinct subgroups of H. We define the coset graph of H with respect to $H_{i}, i \in I$, as follows:

The cosets $H_{i} g, i \in I$ and $g \in H$, are the vertices of Γ, and the unordered pairs

$$
\left\{H_{i} g, H_{j} g\right\} \quad \text { with } i \neq j \text { and } g \in H
$$

are the edges of Γ. A vertex $H_{i} g$ we will call of color i. Note that a given vertex has a unique color. Indeed if $H_{i} g=H_{j} h$, then $H_{j}=H_{i} g h^{-1}$ is a coset of H_{i} containing 1 and so $H_{j}=H_{i}$ and $i=j$.

Apart from the elementary graph theoretic terminology, like neighbor, adjacent, path, and distance, we use the following notation for vertices γ and δ of $\Gamma, i \in I, K \subseteq I, \Delta$ a set of vertices of Γ, and $L \leqslant H$.

- $\Gamma_{i}:=H / H_{i}$ is the set of vertices of color $i ; \Gamma_{K}:=\bigcup_{k \in K} \Gamma_{k}$ is the set vertices of color contained in $K . \Delta(\gamma)$ is the set of vertices in Δ adjacent or equal to γ.
- L_{δ} is the stabilizer of δ in $L, L_{\Delta}=\bigcap_{\delta \in \Delta} L_{\delta}$ is the element-wise stabilizer of Δ.
$-d(\gamma, \delta)$ is the distance between γ and δ.
- A chamber of Γ is a set of vertices of the form $\left\{H_{i} g \mid i \in I\right\}$ for some $g \in H$.

E.2. Elementary Properties

We begin with some elementary facts about Γ (see also [KS]).

Lemma E.1. The following hold:
(a) Γ is an $|I|$-partite graph whose partition classes are the sets $H / H_{i}, i \in I$.
(b) $\left\{H_{i} g, H_{j} h\right\}$ is an edge of Γ if and only if $i \neq j$ and $H_{i} g \cap H_{j} h \neq \varnothing$.
(c) For any distinct i, j in I, H acts transitively on the set of edges whose vertices have colors i and j. In particular, every edge is contained in a chamber.
(d) H acts transitively on the set of chambers.

Proof. (a): As remarked above each vertex has a unique color, so $\Gamma_{i}, i \in I$, is a partition of Γ. By the definition of an edge, a vertex is only adjacent to vertices of distinct color.
(b): Note that

$$
H_{i} g \cap H_{j} h \neq \varnothing \Longleftrightarrow \exists a \in H_{i} g \cap H_{j} h \Longleftrightarrow \exists a \in H:\left\{H_{i} g, H_{j} h\right\}=\left\{H_{i} a, H_{j} a\right\}
$$

(c) and (d): This follows immediately from the definition of an edge and a chamber, respectively.

Lemma E.2. Let $\alpha:=H_{i} g$ be a vertex and $e:=\left\{H_{i} g, H_{j} g\right\}$ be an edge of Γ. Then the following hold:
(a) $H_{\alpha}=H_{i}^{g}$.
(b) $H_{e}=\left(H_{i} \cap H_{j}\right)^{g}$.

Proof. Observe that for $h \in H$

$$
H_{i} g h=H_{i} g \Longleftrightarrow g h \in H_{i} g \Longleftrightarrow h \in g^{-1} H_{i} g \Longleftrightarrow h \in H_{i}^{g}
$$

This gives (a) and b).

Lemma E.3. H acts on Γ by right multiplication as a group of automorphisms, and

$$
H_{\Gamma}=\bigcap_{i \in I, g \in H} H_{i}^{g}
$$

is the kernel of this action. Moreover, for every vertex α of Γ, H_{α} is transitive on the chambers containing α and on the neighbors of color j of α, for every $j \in I$.

Proof. Right multiplication r_{g} by an element $g \in H$ sends vertices to vertices and edges to edges. It is now easy to see that

$$
r: H \rightarrow A u t(\Gamma) \text { with } g \mapsto r_{g}
$$

is a homomorphism. By E. 2

$$
H_{\Gamma}=\bigcap_{i \in I, g \in G} H_{i}^{g}=\bigcap_{\delta \in \Gamma} H_{\delta}=\operatorname{ker} r
$$

Let $\alpha \in \Gamma$ be a vertex of color i and let $j \in I$. By E.1 d H acts transitively on the set of chambers. As each chamber contains a unique vertex of color i we conclude that H_{α} acts transitively on the chambers containing α. If $j=i$, the set of neighbors of color j of α is empty. So suppose $i \neq j$. Then by E.1 C) H acts transitively of the edges with vertices of color i and j. It follows that H_{α} acts transitively on the set of vertices of color j adjacent to α.

In the following we will write this action of H exponentially: $\alpha \mapsto \alpha^{g}$ rather than αg.

Lemma E.4. Suppose that Γ is connected, and let C be a chamber of Γ.
(a) Let $K \leqslant H$. Suppose that for each $\gamma \in C$ and $i \in I, K_{\gamma}$ acts transitive on $\Gamma_{i}(\gamma)$. Then for each $i \in I, K$ acts transitively on Γ_{i}.
(b) Let $R \leqslant H_{C}$ and suppose that for each $\gamma \in C$ and $i \in I, N_{H_{\gamma}}(R)$ acts transitively on $\Gamma_{i}(\gamma)$. Then $R \leqslant H_{\Gamma}$.

Proof. (a): Let $\delta \in \Gamma$. We will show by induction on $d:=d(C, \delta)$ that δ is K-conjugate to an element of C. If $d(C, \delta)=0, \delta \in C$. So suppose that $d(C, \delta)>0$ and let $\left(\alpha_{0}, \ldots, \alpha_{d}\right)$ be a path in Γ with $d=d(C, \delta), \alpha_{0} \in C$ and $\alpha_{d}=\delta$. Put $\gamma:=\alpha_{0}$ and let $\alpha \in C$ be of the same color i as α_{1}. Since K_{γ} acts transitively on $\Gamma_{i}(\gamma)$, we have $\alpha_{1}^{k}=\alpha$ for some $k \in K_{\gamma}$. Then

$$
d\left(C, \delta^{k}\right) \leqslant d\left(\alpha, \delta^{k}\right)=d\left(\alpha_{1}^{k}, \delta^{k}\right)=d\left(\alpha_{1}, \gamma\right)=d-1
$$

and by induction δ^{k} is K-conjugate to an element of C. Hence the same holds for δ.
(b): Put $K:=N_{H}(R)$. Let $i \in I$ and $\gamma \in C$. Then $K_{\delta}=N_{H_{\delta}}(R)$ acts transitively on $\Gamma_{i}(\gamma)$. So by (a) K acts transitively on H / H_{i}. Since $R \leqslant H_{C}, R$ fixes a vertex of color i. As $R \geqq K$ and K acts transitively on $H / H_{i}, R$ fixes all vertices of color i. Thus (b) holds.

Lemma E.5. Γ is connected if and only if $H=\left\langle H_{i} \mid i \in I\right\rangle$.
Proof. Put $H_{0}:=\left\langle H_{i}, i \in I\right\rangle$ and let Γ_{0} be the connected component of Γ that contains the chamber $C:=\left\{H_{i} \mid i \in I\right\}$. Since each H_{i} leaves invariant Γ_{0}, also H_{0} does. Thus if $H=H_{0}, \Gamma_{0}$ contains all vertices of Γ, so $\Gamma_{0}=\Gamma$.

Assume that Γ is connected. Let $i \in I$ and $\delta \in C$. Then $H_{0 \delta}=H_{\delta}$ and so by E. $3 H_{0 \delta}$ acts transitively on $\Gamma_{i}(\delta)$. Thus by E.4 a H_{0} acts transitively on H / H_{i}, and a Frattini argument gives $H=H_{0} H_{i}=H_{0}$.

E.3. Critical Pairs

In this section we assume the following hypothesis.
Hypothesis E.6. Let H be a group, $\left(H_{i}\right)_{i \in I}$ a family of distinct subgroups of $H, J \subseteq I, p$ a prime, and Γ the coset graph of H with respect to $\left(H_{i}\right)_{i \in I}$. Put $B:=\bigcap_{i \in I} H_{i}$, and suppose that the following hold:
(i) For each $i \in I, H_{i}$ is finite and $O_{p}\left(H_{i}\right) \leqslant B$.
(ii) $J \neq \varnothing$, and for $j \in J, Z_{j}$ is a p-reduced elementary abelian normal p-subgroup of H_{j} with $Z_{j} \leqslant H_{\Gamma}$.
(iii) $H=\left\langle H_{i} \mid i \in I\right\rangle$.

Recall from E. 5 that Γ is connected. For $j \in J, h \in H, \lambda:=H_{j} h \in \Gamma_{J}$ and $\delta \in \Gamma$ we define:

$$
Z_{\lambda}:=Z_{j}^{h}, \quad Q_{\delta}:=O_{p}\left(H_{\delta}\right), \quad \text { and } \quad V_{\delta}:=\left\langle Z_{\lambda} \mid \lambda \in \Gamma_{J}(\delta)\right\rangle
$$

Lemma E.7. The following holds.
(a) $Z_{\delta} \leqslant \Omega_{1} Z\left(Q_{\delta}\right)$ for all $\delta \in \Gamma_{J}$.
(b) $Q_{\delta} \leqslant H_{\lambda}$ for all edges $\{\delta, \lambda\}$.

Proof. (a): Let $j \in J$. By E.6 iii) Z_{j} is a p-reduced elementary abelian normal subgroup of H_{j}, and so $Z_{j} \leqslant \Omega_{1} Z\left(O_{p}\left(H_{j}\right)\right)$. This gives $Z_{\delta} \leqslant \Omega_{1} Z\left(Q_{\delta}\right)$ for $\delta \in \Gamma_{j}$, and (a) holds.
(b): By Hypothesis E.6 (i) $O_{p}\left(H_{i}\right) \leqslant B \leqslant H_{k}$ for all $i, k \in I$. By E.1 C) any edge with vertices of colors i and k is conjugate to $\left\{H_{i}, H_{k}\right\}$, and so holds.

Lemma E.8. There exists a pair of vertices (δ, λ) such $\delta \in \Gamma_{J}$ and $Z_{\delta} \not Q_{\lambda}$.
Proof. By Hypothesis E.6 iii $J \neq \varnothing$, and for $j \in J, Z_{j} \leqslant H_{\Gamma}$. Hence there exists vertex λ such that $Z_{j} \leqslant H_{\lambda}$; in particular $Z_{j} \leqslant Q_{\lambda}$. Put $\delta:=H_{j}$. Then $Z_{\delta}=Z_{j}$, and the claim holds for (δ, λ).

Since Γ is connected we can choose a pair $\left(\alpha, \alpha^{\prime}\right)$ of vertices of minimal distance among all pairs (δ, λ) with $\delta \in \Gamma_{J}$ and $Z_{\delta} \$ Q_{\lambda}$. Any such pair of minimal distance is called a critical pair (with respect to $J)$. Moreover, we put $b:=d\left(\alpha, \alpha^{\prime}\right)$. Note that b does not depend on the choice of the critical pair.

In the following $\left(\alpha, \alpha^{\prime}\right)$ is always a critical pair, and γ is a path of length b from α to α^{\prime}. We often denote γ by

$$
\gamma=(\alpha, \ldots, \alpha+i, \ldots, \alpha+b)=\left(\alpha^{\prime}-b, \ldots, \alpha^{\prime}-i, \ldots, \alpha^{\prime}\right)
$$

so

$$
\alpha=\alpha^{\prime}-b, \alpha^{\prime}=\alpha+b, \text { and } \alpha+i=\alpha^{\prime}-(b-i)
$$

Lemma E.9. The following hold:
(a) $b \geqslant 1$.
(b) Let $\lambda \in \Gamma_{J}$ and $\delta \in \Gamma$. If $d(\lambda, \delta) \leqslant b$ then $Z_{\lambda} \leqslant H_{\delta}$, and if $d(\lambda, \delta)<b$ then $Z_{\lambda} \leqslant Q_{\delta}$.
(c) Let $0 \leqslant i<b$. Then $Z_{\alpha} \leqslant Q_{\alpha+i}$ and if $\alpha^{\prime} \in \Gamma_{J}, Z_{\alpha^{\prime}} \leqslant Q_{\alpha^{\prime}-i}$.
(d) $Z_{\alpha} \leqslant H_{\alpha^{\prime}}$ and if $\alpha^{\prime} \in \Gamma_{J}, Z_{\alpha^{\prime}} \leqslant H_{\alpha}$.
(e) If $b>1$, then $V_{\alpha} \leqslant Q_{\alpha+i}$ and $V_{\alpha^{\prime}} \leqslant Q_{\alpha^{\prime}-i+1}$ for $0 \leqslant i<b-1$. In particular $V_{\alpha} \leqslant H_{\alpha^{\prime}-1}$ and $V_{\alpha^{\prime}} \leqslant H_{\alpha+1}$.
(f) There exists $h \in H_{\alpha^{\prime}}$ with $Z_{\alpha} \leqslant H_{\alpha^{\prime}-1}^{h}$. In particular, $Z_{\alpha} \leqslant H_{\Gamma\left(\alpha^{\prime}\right)}$.
(g) If $\alpha^{\prime} \in \Gamma_{J}$ and $\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right] \neq 1$, then also $\left(\alpha^{\prime}, \alpha\right)$ is a critical pair.
(h) If $b \geqslant 3$ and $\delta \in \Gamma$, then V_{δ} is an elementary abelian normal p-subgroup of H_{δ} in Q_{δ}.

Proof. (a): By definition of a critical pair, $Z_{\alpha} \leqslant Q_{\alpha^{\prime}}$, and by E.7, a, $Z_{\alpha} \leqslant Q_{\alpha}$. Thus $\alpha \neq \alpha^{\prime}$ and so $b \neq 0$.
(b): If $d(\lambda, \delta)<b$ then the definition of b gives $Z_{\lambda} \leqslant Q_{\delta}$. Suppose that $d(\lambda, \delta)=b$. Then there exists $\mu \in \Gamma(\delta)$ such that $d(\lambda, \mu)=b-1$, so $Z_{\lambda} \leqslant Q_{\mu}$, and by E.7 b, $Z_{\lambda} \leqslant Q_{\mu} \leqslant H_{\delta}$.
(c): Since $\alpha \in \Gamma_{J}$ and $d\left(\alpha, \alpha_{\alpha+i}\right)<b$, (b) applies. Similarly, if $\alpha \in \Gamma_{J}$, again (b) applies since also $d(\alpha, \alpha-i)<b$.
(d): This is again an application of (b) since $d\left(\alpha, \alpha^{\prime}\right)=b$.
(e): Let $\lambda \in \Gamma_{J}(\alpha)$ and $\delta \in \Gamma$ such that $d(\alpha, \delta)<b-1$. Then $d(\lambda, \delta)<b$ and so by (b), $Z_{\lambda} \leqslant Q_{\delta}$. Thus, also $V_{\alpha}=\left\langle Z_{\lambda} \mid \lambda \in \Gamma_{J}(\alpha)\right\rangle \leqslant Q_{\delta}$. In particular for $\delta=\alpha^{\prime}-2, V_{\alpha} \leqslant Q_{\alpha^{\prime}-2}$, and by E.7 b $V_{\alpha} \leqslant Q_{\alpha^{\prime}-2} \leqslant H_{\alpha^{\prime}-1}$.

Similarly for $\rho \in \Gamma_{J}\left(\alpha^{\prime}\right), d(\rho, \alpha+2)<b$ and by b) $Z_{\rho} \leqslant Q_{\alpha+2}$. Hence $V_{\alpha^{\prime}} \leqslant Q_{\alpha+2} \leqslant H_{\alpha^{\prime}+1}$.
(f): Put $X:=\bigcap_{h \in H_{\alpha^{\prime}}}\left(H_{\alpha^{\prime}} \cap H_{\alpha^{\prime}-1}\right)^{h}$. Then X normalizes $Q_{\alpha^{\prime}-1}$ and so $Q_{\alpha^{\prime}-1} \cap X \leqslant O_{p}(X) \leqslant$ $O_{p}\left(H_{\alpha^{\prime}}\right)=Q_{\alpha^{\prime}}$. Since $Z_{\alpha} \leqslant Q_{\alpha^{\prime}-1}$ and $Z_{\alpha} \leqslant Q_{\alpha^{\prime}}$ this shows $Z_{\alpha^{\prime}} \leqslant X$ and thus (\mathbb{f}) holds.
(g): Assume that $\alpha^{\prime} \in \Gamma_{J}$ and $\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right] \neq 1$. Then clearly $Z_{\alpha^{\prime}} \neq Q_{\alpha}$ since $Z_{\alpha} \leqslant Z\left(Q_{\alpha}\right)$. Hence, (g) follows.
(h): Assume that $b \geqslant 3$ and let $\delta \in \Gamma$ and $\mu, \lambda \in \Gamma_{J}(\delta)$. Then $d(\mu, \lambda) \leqslant 2<b$ and so $Z_{\mu} \leqslant Q_{\lambda}$. Since $Z_{\lambda} \leqslant Z\left(Q_{\lambda}\right)$ this gives $\left[Z_{\lambda}, Z_{\mu}\right]=1$. Also $Z_{\lambda} \leqslant Q_{\delta}$ and Z_{λ} is elementary abelian. It follows that V_{δ} is elementary abelian and contained in Q_{δ}. This is (h).

E.4. The Case $|I|=2$

In this section we assume
Hypothesis E.10. Let H be a group, p a prime, H_{1} and H_{2} distinct subgroups of H and Γ the coset graph of H with respect to $\left(H_{1}, H_{2}\right)$.
(i) H_{1} and H_{2} are finite of characteristic p.
(ii) For $i \in\{1,2\}, Z_{i}$ is a p-reduced elementary abelian normal p-subgroup H_{i} with $\left.Z_{H_{i}} \leqslant Z,\right\}^{1}$
(iii) $H=\left\langle H_{1}, H_{2}\right\rangle$.
(iv) $H_{1} \cap H_{2}$ is a parabolic subgroup of H_{1} and H_{2}.
(v) No nontrivial p-subgroup of $H_{1} \cap H_{2}$ is normal in H_{1} and H_{2}.

Note here that since H_{i} is finite of characteristic p for $i=1,2$, then $Z_{H_{i}} \leqslant Y_{H_{i}}$ by 1.24 g and both $Z_{i}=Z_{H_{i}}$ and $Z_{i}=Y_{H_{i}}$ fulfill (iii).

Lemma E.11. (a) $H_{\Gamma}=1$.
(b) Hypothesis E. 6 holds with $I=J=\{1,2\}$.

Proof. (a): Then $H_{\Gamma} \leqslant H_{1} \cap H_{2}$ and so $O_{p}\left(H_{\Gamma}\right)$ is p-subgroup of $H_{1} \cap H_{2}$ normal in H_{1} and H_{2}. Thus Hypothesis E.10 v) gives $O_{p}\left(H_{\Gamma}\right)=1$. Since $H_{\Gamma} \& H_{1}$ and H_{1} is of characteristic p, also H_{Γ} is of characteristic p (see 1.2 a).) Thus $H_{\Gamma}=1$.
(b): Let $i \in I$. By Hypothesis E.10,i) H_{i} is finite of characteristic p. By Hypothesis E.10 iv $B:=H_{1} \cap H_{2}$ is a parabolic subgroup group of H_{i} and so $O_{p}\left(H_{i}\right) \leqslant B$. By Hypothesis E.10.iv) Z_{i}

[^25]is an elementary abelian p-reduced normal subgroup of H_{i} with $Z_{H_{i}} \leqslant Z_{i}$. The latter fact implies $Z_{i} \neq 1$ and since $H_{\Gamma}=1$ we get $Z_{i} \leqslant H_{\Gamma}$. By Hypothesis E.10 $H=\left\langle H_{1}, H_{2}\right\rangle$ and so Hypothesis E. 6 holds.

Lemma E.12. The following hold:
(a) H acts edge-transitively on Γ.
(b) Two vertices δ and λ are of the same color if and only if $d(\delta, \lambda)$ is even.
(c) Let $\{\lambda, \mu\}$ be an edge. Then $H_{\lambda} \cap H_{\mu}$ is a parabolic subgroup of H_{λ} and H_{μ}.
(d) For every vertex δ, H_{δ} is finite of characteristic p, Z_{δ} is a p-reduced elementary abelian normal subgroup of H_{δ} and $Z_{H_{\delta}} \leqslant Z_{\delta} \leqslant Y_{H_{\delta}} \leqslant \Omega_{1} Z\left(Q_{\delta}\right)$.
(e) Let $\{\lambda, \mu\}$ be an edge. Then $C_{Z_{\lambda}}\left(H_{\lambda}\right) \leqslant Z_{H_{\lambda} \cap H_{\mu}} \leqslant Z_{\lambda} \cap Z_{\mu}$.
(f) Let $\{\lambda, \mu\}$ be an edge. Then no non-trivial p-subgroup of $H_{\lambda} \cap H_{\mu}$ is normal in H_{λ} and H_{μ}.
Proof. (a): Since $|I|=2$, (a) follows from E.1 (c).
(b): By E.1 a) Γ is a bipartite graph with partition classes H / H_{1} and H / H_{2}. This gives (b).
(c): By Hypothesis E.10 $H_{1} \cap H_{2}$ is a parabolic subgroup of H_{1} and H_{2}. Since H acts edge transitively, this gives (C).
(d): Let $i \in\{1,2\}$. By E.10,i) H_{i} is finite. By E.10 iii), $Z_{H_{i}} \leqslant Z_{i}$ and Z_{i} is a p-reduced elementary abelian normal subgroup of H_{i}. Hence $Z_{i} \leqslant Y_{H_{i}} \leqslant \Omega_{1} Z\left(O_{p}\left(H_{i}\right)\right)$. By E.2 a H_{δ} is conjugate to H_{1} or H_{2} and so (d) holds.
(e): Let $T \in \operatorname{Syl}_{p}\left(H_{\lambda} \cap H_{\mu}\right)$. Since $H_{\lambda} \cap H_{\mu}$ is a parabolic subgroup of H_{λ} and H_{μ}, T is a Sylow p-subgroup of H_{λ} and H_{μ}. Thus

$$
C_{Z_{\lambda}}\left(H_{\lambda}\right) \leqslant \Omega_{1} Z(T) \leqslant Z_{H_{\lambda} \cap H_{\mu}} \leqslant Z_{H_{\lambda}} \cap Z_{H_{\mu}} \leqslant Z_{\lambda} \cap Z_{\mu}
$$

and (e) is proved.
(f): By E.10 v) no non-trivial p-subgroup of $H_{1} \cap H_{2}$ is normal in H_{1} and H_{2}. Since H is edge-transitive, (£) holds.

Lemma E.13. Suppose that H_{j} is p-irreducible for some $j \in I$. Let $\{\lambda, \mu\}$ be an edge of Γ such that λ is of color j. Then the following hold:
(a) $C_{H_{\lambda}}\left(Z_{\lambda}\right)$ is p-closed or $Z_{\lambda}=C_{Z_{\lambda}}\left(H_{\lambda}\right) \leqslant Z_{\mu}$.
(b) $C_{H_{\lambda}}\left(V_{\lambda}\right)$ is p-closed.

Proof. By E.2 a H_{λ} is an H-conjugate of H_{j} and so p-irreducible. Hence either $C_{H_{\lambda}}\left(Z_{\lambda}\right)$ is p-closed or $O^{p}\left(H_{\lambda}\right) \leqslant C_{H_{\lambda}}\left(Z_{\lambda}\right)$. In the second case, $H_{\lambda} / C_{H_{\lambda}}\left(Z_{\lambda}\right)$ is a p-group and since Z_{λ} is p-reduced we get $C_{H_{\lambda}}\left(Z_{\lambda}\right)=H_{\lambda}$. Thus $Z_{\lambda} \leqslant C_{Z_{\lambda}}\left(H_{\lambda}\right)$. By E.12 e) $C_{Z_{\lambda}}\left(H_{\lambda}\right) \leqslant Z_{\lambda} \cap Z_{\mu}$ and so (a) is proved.

Similarly, either $C_{H_{\lambda}}\left(V_{\lambda}\right)$ is p-closed or $O^{p}\left(H_{\lambda}\right) \leqslant C_{H_{\lambda}}\left(V_{\lambda}\right)$. In the second case, since $H_{\lambda} \cap H_{\mu}$ is a parabolic subgroup of H_{λ},

$$
H_{\lambda}=C_{H_{\lambda}}\left(V_{\lambda}\right)\left(H_{\lambda} \cap H_{\mu}\right)=C_{H_{\lambda}}\left(Z_{\mu}\right)\left(H_{\lambda} \cap H_{\mu}\right)
$$

Hence Z_{μ} is normal in H_{λ} and H_{μ}. Since $Z_{\mu} \neq 1$ this contradicts to E.12 f).

Lemma E.14. Let $\left(\alpha, \alpha^{\prime}\right)$ be a critical pair (for some $\varnothing \neq J \subseteq I$) such that H_{α} is p-irreducible. Then $C_{H_{\alpha}}\left(Z_{\alpha}\right)$ is p-closed. If in addition b is even, then $\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right] \neq 1$, and $\left(\alpha^{\prime}, \alpha\right)$ is also a critical pair.

Proof. By definition of $b, Z_{\alpha+1} \leqslant Q_{\alpha^{\prime}}$. Since $Z_{\alpha} \not \leqslant Q_{\alpha^{\prime}}$, this gives $Z_{\alpha} \leqslant Z_{\alpha+1}$, and so E.13 a) shows that $C_{H_{\alpha}}\left(Z_{\alpha}\right)$ is p-closed.

Assume now that b is even. Then E.12 bhows that α and α^{\prime} are of the same color. Thus, also $C_{H_{\alpha^{\prime}}}\left(Z_{\alpha^{\prime}}\right)$ is p-closed, and so $Q_{\alpha^{\prime}} \in S y l_{p}\left(C_{H_{\alpha^{\prime}}}\left(Z_{\alpha^{\prime}}\right)\right)$. Since $Z_{\alpha} \neq Q_{\alpha^{\prime}}$ we conclude that $\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right] \neq 1$, and by E.9 g) also $\left(\alpha^{\prime}, \alpha\right)$ is a critical pair.

E.5. An Application of the Amalgam Method

Lemma E.15. Let H be a group, and let H_{1} and H_{2} be subgroups of H and $A_{1} \& H_{1}$. Put $A_{2}:=\left\langle A_{1}^{H_{2}}\right\rangle$ and, for $\{i, j\}=\{1,2\}$,

$$
D_{i}:=\bigcap_{k \in H_{i}}\left(H_{i} \cap H_{j}\right)^{k} \quad \text { and } \quad E_{i}=\left\langle A_{i}^{h} \mid h \in H, A_{i}^{h} \leqslant C_{H_{1} \cap H_{2}}\left(A_{i}\right)\right\rangle .
$$

Suppose that
(i) $H=\left\langle H_{1}, H_{2}\right\rangle$ and $A_{2} \leqslant H_{1} \cap H_{2}$,
(ii) $E_{i} \leqslant D_{i}$ for each $i \in\{1,2\}$.

Then one of the following holds:
(1) $\left\langle A_{1}^{H}\right\rangle$ is abelian and contained in $H_{1} \cap H_{2}$.
(2) There exists $h \in H$ with $1 \neq\left[A_{1}, A_{1}^{h}\right] \leqslant A_{1} \cap A_{1}^{h}$ and $A_{1} A_{1}^{h} \leqslant H_{1} \cap H_{1}^{h}$.
(3) $E_{1} \nleftarrow D_{2}$ and there exists $g \in H$ with $1 \neq\left[A_{2}, A_{2}^{g}\right] \leqslant A_{2} \cap A_{2}^{g}$ and $A_{2} A_{2}^{g} \leqslant H_{2} \cap H_{2}^{g}$.

Proof. Let Γ be the coset graph of H with respect to H_{1} and H_{2}. For $\alpha=H_{i} h \in \Gamma$ define $A_{\alpha}=A_{i}^{h}$ and $D_{\alpha}=D_{i}^{h}$. Note that this is well defined since H_{i} normalizes A_{i} and D_{i}. Also $D_{\alpha}=H_{\Gamma(\alpha)}$.

Suppose first that A_{1} acts trivially on Γ. Then $\left\langle A_{1}^{H}\right\rangle \leqslant H_{1} \cap H_{2} \leqslant H_{1}^{h}$ for all $k \in H$. If $\left\langle A_{1}^{H}\right\rangle$ is abelian, (1) holds. If $\left\langle A_{1}^{H}\right\rangle$ is not abelian then $\left[A_{1}, A_{1}^{h}\right] \neq 1$ for some $h \in H$ and $A_{1} A_{1}^{h} \leqslant H_{1} \cap H_{1}^{h} \leqslant$ $N_{H}\left(A_{1}\right) \cap N_{H}\left(A_{1}^{h}\right)$. Thus $\left[A_{1}, A_{1}^{h}\right] \leqslant A_{1} \cap A_{1}^{h}$ and 2) holds.

Suppose next that A_{1} does not act trivially on Γ. Then we can choose vertices $\alpha, \epsilon \in \Gamma$ of minimal distance d such that α is of color 1 and A_{α} does not fix ϵ. Since $A_{1} \leqslant A_{2} \leqslant H_{1} \cap H_{2}$ and H acts edge transitively, $d \geqslant 2$. Since $A_{2} \leqslant H_{2}$ and $A_{2} \leqslant H_{1}$ we have $A_{2} \leqslant D_{2}$. Thus $A_{1} \leqslant D_{2}$ and so $d \geqslant 3$.

Let $\left(\alpha, \beta, \ldots, \beta^{\prime}, \alpha^{\prime}, \epsilon\right)$ be a path of minimal length from α to ϵ. Then $A_{\alpha} \leqslant H_{\Gamma\left(\alpha^{\prime}\right)}=D_{\alpha^{\prime}}$. Since $A_{2}=\left\langle A_{1}^{H_{2}}\right\rangle$ and H_{β} is an H-conjugate of $H_{2}, A_{\beta}=\left\langle A_{\alpha}^{H_{\beta}}\right\rangle=\left\langle A_{\delta} \mid \delta \in \Gamma_{1}(\beta)\right\rangle$. The minimality of d implies that A_{β} fixes β^{\prime} and α^{\prime}. So $A_{\alpha} \leqslant A_{\beta} \leqslant H_{\beta^{\prime}} \cap H_{\alpha^{\prime}}$ and neither A_{α} nor A_{β} are contained in $D_{\alpha^{\prime}}$ 。

Since H acts edge transitively we may assume that $\alpha^{\prime}=H_{i}$ and $\beta^{\prime}=H_{j}$ for some $\{i, j\}=\{1,2\}$. In particular, $A_{\alpha} \leqslant A_{\beta} \leqslant H_{i} \cap H_{j}=H_{1} \cap H_{2}$. Note that $A_{\alpha}=A_{1}^{h}$ for some $h \in H$ and $A_{\beta}=A_{2}^{g}$ for some $g \in H$.

Assume that $\left[A_{1}^{h}, A_{1}\right] \neq 1$. Since $A_{1}=A_{\alpha^{\prime}}$ or $A_{\beta^{\prime}}$ the minimality of d gives $A_{1} \leqslant A_{\alpha^{\prime}} A_{\beta^{\prime}} \leqslant$ $H_{\alpha}=H_{1}^{h}$ and $A_{1}^{h}=A_{\alpha} \leqslant H_{1}$. Thus (2) holds in this case.

Assume next that $\left[A_{1}^{h}, A_{1}\right]=1$. Then $A_{\alpha}=A_{1}^{h} \leqslant E_{1} \leqslant D_{1}$. Since $A_{\alpha} \leqslant D_{\alpha^{\prime}}$ this gives $\alpha^{\prime}=H_{2}, A_{\alpha^{\prime}}=A_{2}$ and $E_{1} \leqslant D_{2}$. If $\left[A_{\beta}, A_{\alpha^{\prime}}\right]=1$ we get $A_{\beta} \leqslant E_{2} \leqslant D_{2}=D_{\alpha^{\prime}}$, a contradiction. Thus $\left[A_{2}^{h}, A_{2}\right]=\left[A_{\beta}, A_{\alpha^{\prime}}\right] \neq 1$. By minimality of $d, A_{2}=A_{\alpha^{\prime}}=\left\langle A_{\epsilon}^{H_{\alpha^{\prime}}}\right\rangle \leqslant H_{\beta}=H_{2}^{g}$. Also $A_{2}^{g}=A_{\beta} \leqslant H_{\alpha^{\prime}}=H_{2}$. Thus (3) holds in this final case.

Corollary E.16. Let H be a group, let A_{1}, H_{1} and H_{2} be finite subgroups of H, and let p be a prime. Suppose that
(i) A_{1} is a nontrivial normal p-subgroup of H_{1} and $C_{H_{1}}\left(A_{1}\right)$ is p-closed.
(ii) No non-trivial p-subgroup of $H_{1} \cap H_{2}$ is normal in H_{1} and H_{2}.

Then the following hold:
(a) Suppose that $O_{p}\left(H_{1}\right) \leqslant B \leqslant H_{2}$ for some $B \leqslant H_{1} \cap H_{2}$. Then there exists $h \in H$ such that $1 \neq\left[A_{1}, A_{1}^{h}\right] \leqslant A_{1} \cap A_{1}^{h}$ and $A_{1} A_{1}^{h} \leqslant H_{1} \cap H_{1}^{h}$.
(b) Suppose that H_{2} is p-irreducible, that $A_{1} \leqslant O_{p}\left(H_{2}\right)$ and that $H_{1} \cap H_{2}$ is a parabolic subgroup of H_{1} and H_{2}. Put $A_{2}:=\left\langle A_{1}^{H_{2}}\right\rangle$. Then there exists $i \in\{1,2\}$ and $h \in H$ such that $1 \neq\left[A_{i}, A_{i}^{h}\right] \leqslant A_{i} \cap A_{i}^{h}$ and $A_{i} A_{i}^{h} \leqslant H_{i} \cap H_{i}^{h}$.
Proof. Replacing H by $\left\langle H_{1}, H_{2}\right\rangle$ we may assume that $H=\left\langle H_{1}, H_{2}\right\rangle$. Put $A_{2}:=\left\langle A_{1}^{H_{2}}\right\rangle$ and for $\{i, j\}=\{1,2\}$,

$$
D_{i}:=\bigcap_{k \in H_{i}}\left(H_{i} \cap H_{j}\right)^{k} \quad \text { and } \quad E_{i}=\left\langle A_{i}^{h} \mid h \in H, A_{i}^{h} \leqslant C_{H_{1} \cap H_{2}}\left(A_{i}\right)\right\rangle .
$$

Note that $O_{p}\left(H_{1}\right) \leqslant H_{2}$ (in case (a) by hypothesis and in case since $H_{1} \cap H_{2}$ is a parabolic subgroup of $\left.H_{1}\right)$. Since $O_{p}\left(H_{1}\right) \leqslant H_{1}$ this gives $O_{p}\left(H_{1}\right) \leqslant D_{1}$. Since $C_{H_{1}}\left(A_{1}\right)$ is p-closed, we conclude that

$$
\begin{equation*}
E_{1} \leqslant O^{p^{\prime}}\left(C_{H_{1}}\left(A_{1}\right)\right) \leqslant O_{p}\left(H_{1}\right) \leqslant D_{1} \tag{*}
\end{equation*}
$$

As no non-trivial p-subgroup of $H_{1} \cap H_{2}$ is normal in H_{1} and in H_{2},

$$
\left\langle A_{1}^{H}\right\rangle \text { is not an abelian subgroup of } H_{1} \cap H_{2} \text {. }
$$

(a): From $B \leqslant H_{1} \cap H_{2}$ and $B \leqslant H_{2}$ we get $B \leqslant D_{2}$. Since $A_{1} \leqslant O_{p}\left(H_{1}\right) \leqslant B$ we have $A_{2} \leqslant B \leqslant D \leqslant H_{1} \cap H_{2}$. By definition of $A_{2}, A_{1} \leqslant A_{2}$ and A_{2} is generated by H-conjugates of A_{1}. The first property shows that $E_{2} \leqslant C_{H_{1} \cap H_{2}}\left(A_{2}\right) \leqslant C_{H_{1} \cap H_{2}}\left(A_{1}\right)$ and the second that $E_{2} \leqslant E_{1}$. This give

$$
E_{2} \leqslant E_{1} \leqslant O^{p^{\prime}}\left(C_{H_{1}}\left(A_{1}\right)\right) \leqslant O_{p}\left(H_{1}\right) \leqslant B \leqslant D_{2}
$$

Since $E_{1} \leqslant D_{1}$ by $(*)$, the assumptions of E.15 are fulfilled. As $\left\langle A_{1}^{H}\right\rangle$ is not an abelian subgroup of $H_{1} \cap H_{2}$, E.15(1) does not hold. Since $E_{1} \leqslant D_{2}$, also E.15(3) does not. Thus E.15(2) holds. We conclude that there exists $h \in H$ with $1 \neq\left[A_{1}, A_{1}^{h}\right] \leqslant A_{1} \cap A_{1}^{h}$ and $A_{1} A_{1}^{h} \leqslant H_{1} \cap H_{1}^{h}$.
(b): Suppose that $H_{2}=\left(H_{1} \cap H_{2}\right) C_{H_{2}}\left(A_{2}\right)$. Since $A_{1} \leqslant A_{2}$ we conclude that $A_{1} \vDash H_{2}$, which contradicts (iii). As $H_{1} \cap H_{2}$ contains a Sylow p-subgroup of H_{2} we get $O^{p}\left(H_{2}\right) \not C_{H_{2}}\left(A_{2}\right)$, and as H_{2} is p-irreducible, $C_{H_{2}}\left(A_{2}\right)$ is p-closed. Since $H_{1} \cap H_{2}$ contains a Sylow p-subgroup of H_{2}, we also know that $O_{p}\left(H_{2}\right) \leqslant H_{1} \cap H_{2}$. Together with $O_{p}\left(H_{2}\right) \leqslant H_{2}$ we infer $O_{p}\left(H_{2}\right) \leqslant D_{2}$. As above this gives

$$
E_{2} \leqslant O^{p^{\prime}}\left(C_{H_{2}}\left(A_{2}\right)\right) \leqslant O_{p}\left(H_{2}\right) \leqslant D_{2}
$$

As $A_{1} \leqslant O_{p}\left(H_{2}\right)$ and $A_{2}=\left\langle A_{1}^{H_{2}}\right\rangle$, also $A_{2} \leqslant O_{p}\left(H_{2}\right) \leqslant D_{2} \leqslant H_{1} \cap H_{2}$. By $(*)$ we have $E_{1} \leqslant D_{1}$, and so the assumptions of E. 15 are fulfilled. Since $\left\langle A_{1}^{H}\right\rangle$ is not an abelian subgroup of $H_{1} \cap H_{2}$, we conclude that there exist $i \in\{1,2\}$ and $h \in H$ with $1 \neq\left[A_{i}, A_{i}^{h}\right] \leqslant A_{i} \cap A_{i}^{h}$ and $A_{i} A_{i}^{h} \leqslant H_{i} \cap H_{i}^{h}$.

Bibliography

Introduction

[As1] M. Aschbacher, On finite groups of component type, Ill. J. Math. 19 (1975), 78 - 115.
[As2] M. Aschbacher, A characterization of Chevalley groups over fields of odd order, Ann Math. 106 (1977), 353 - 398, 399-468.
[As3] M. Aschbacher, The uniqueness case for finite groups I,II, Ann. Math. 117 (1983), 383-454, $455-551$.
[AS] M. Aschbacher, S. Smith, The classification of quasithin groups, I,II, Mathematical Surveys and Monographs 111, 112, AMS (2004).
[FT] W. Feit, J.G. Thompson, Solvability of groups of odd order, Pac.J.Math. 13 (1963), $775-1029$.
[GL] D. Gorenstein, R. Lyons, The local structure of finite groups of characteristic 2 type, Memoirs AMS, No. 276 (1983).
[GLM] R.M. Guralnick, R. Lawther, G. Malle, $2 F$-modules for nearly simple groups, J. Algebra 307 (2007), no. 2, 643-676.
[MMPS] M. Mainardis, U. Meierfrankenfeld, G. Parmeggiani, B. Stellmacher, The $\widetilde{P}!$-theorem. J. Algebra 292 (2005), no. 2, 363-392.
[MeiStr3] U. Meierfrankenfeld, G. Stroth, A characterization of $\operatorname{Aut}\left(G_{2}(3)\right)$. J. Group Theory 11 (2008), no. 4, 479-494.
[MSW] U. Meierfrankenfeld, G. Stroth, R.M. Weiss, Local identification of spherical buildings and finite simple groups of Lie type. Math. Proc. Cambridge Philos. Soc. 154 (2013), no. 3, 527-547.
[PS1] Ch. Parker, G. Stroth, Strongly p-embedded subgroups, Pure and applied Math. Quaterly 7, (2011),797-858.
[PS2] Ch. Parker, G. Stroth, On strongly p-embedded subgroups of Lie rank 2, Arch. Math. 93 (2009), $405-413$.
[SaS] M. Salarian, G. Stroth, Existence of strongly p-embedded subgroups, Comm. in Algebra, to appear.
[Ti] F. Timmesfeld, Finite simple groups in which the generalized Fitting subgroup of the centralizer of some involution is extraspecial, Ann. Math. 107 (1978), 297 - 369.
[T] J. Tits, Buildings of spherical type and finite BN-pairs, LN Math 386, Springer (1974).

Sections 1-10 and Appendices

[As] M. Aschbacher, Finite Group Theory Cambridge studies in advanced mathematics 10, Cambridge University Press, (2000) New York.
[Be] H. Bender, Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festläßt. J. Algebra 17 (1971) 527-554.
[BHS] D. Bundy, N. Hebbinghaus, B. Stellmacher, The local $C(G, T)$ theorem. J. Algebra 300 (2006), no. 2, 741-789.
[Ca] R.W. Carter, Simple groups of Lie type, Pure and applied Mathematics, Vol.XXVIII, Jon Wiley \& Sons (1972) London.
[CD] A. Chermak, A. Delgado, A measuring argument, Proc. Amer. Math. Soc. 107 (1989), no. 4, 907-914.
[Gl1] G. Glauberman, Weakly closed elements of Sylow subgroups. Math. Z. 107 (1968) 1-20.
[G12] G. Glauberman, Failure of factorization in p-solvable groups. Quart. J. Math. Oxford Ser. (2) 24 (1973), 71-77.
[Gor] D. Gorenstein, Finite Groups, Chelsea (1980) New York.
[GM1] R.M. Guralnick, G. Malle, Classification of 2F-Modules, I, J. Algebra 257, 2002, 348-372.
[GM2] R.M. Guralnick, G. Malle, Classification of $2 F$-modules. II. Finite groups 2003, 117-183, Walter de Gruyter GmbH \& Co. KG, Berlin, 2004.
[GLS3] D. Gorenstein, R. Lyons, R. Solomon, The Classification of the Finite Simple Groups, Number 3, Mathematical Surveys and Monographs, Volume 40, Number 3, AMS (1998).
[Gr1] R.L. Griess, Schur multipliers of the known finite simple groups. II. The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), pp. 279-282, Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, R.I., (1980).
[Gr2] R.L. Griess, A remark about representations of .1, Comm. Alg. 13 (1985) no.4, 835-844.
[Hu] B. Huppert, Endliche Gruppen I, Springer (1967).
[JLPW] C. Jansen, K. Lux, R. Parker, R. Wilson, An atlas of Brauer characters, Clarendon Press, Oxford (1995)
[KS] H. Kurzweil, B. Stellmacher, The Theory of Finite Groups. An Introduction. Springer-Verlag New York Berlin Heidelberg (2004).
[MS1] U. Meierfrankenfeld, B. Stellmacher, The other PGV Theorem, Rend. Sem. Mat. Univ. Padova 115 (2006), 41-50.
[MS2] U. Meierfrankenfeld, B. Stellmacher, The Fitting submodule, Arch. Math 87 (2006) 193-205.
[MS3] U. Meierfrankenfeld, B. Stellmacher, Nearly quadratic modules, J. Algebra 319 (2008), 4798-4843.
[MS4] U. Meierfrankenfeld, B. Stellmacher, F-stability in finite groups, Trans. Amer. Math. Soc. 361 (2009), no. 5, 2509-2525.
[MS5] U. Meierfrankenfeld, B. Stellmacher, The general FF-module theorem. J. Algebra 351 (2012), 1-63.
[MS6] U. Meierfrankenfeld, B. Stellmacher, Applications of the FF-Module Theorem and related results, J. Algebra 351 (2012), 64-106.
[MSS] U. Meierfrankenfeld, B. Stellmacher, G. Stroth, Groups of local characteristic p An overview, in Proceedings of the 2001 Durham Conference on Groups and Geometry (2003).
[MSt] U. Meierfrankenfeld, G. Stroth, Quadratic $G F(2)$ - modules for sporadic groups and alternating groups, Comm. in Algebra 18, (1990), 2099-2140.
[P1] G. Parmeggiani, Pushing up point stabilizers, I, J. Algebra 319 (2008), 3854-3884.
[P2] G. Parmeggiani, Pushing up point stabilizers, II, J. Alg. 322 (2009), $2272-2285$.
[PPS] C. Parker, G. Parmeggiani, B. Stellmacher, The P!-Theorem, J. Algebra 263 (2003), no. 1, 17-58.
[RS] M.A. Ronan, G. Stroth, Minimal parabolic geometries for the sporadic groups. European J. Combin. 5 (1984), no. 1, 59-91.
[SW] I. A. I. Suleiman, R. A. Wilson, The 2-modular characters of Conways group $C o_{2}$, Math. Proc. Camb. Phil. Soc. 116 (1994) 275283
[St] R. Steinberg, Lectures on Chevalley Groups, Notes by J. Faulker and R. Wilson, Mimeographed notes, Yale University Mathematics Department (1968).

List of Symbols

$\left(\alpha, \alpha^{\prime}\right), 257$
$\mathcal{A}_{H}, 1$
$\mathcal{A P}_{M}(V), 231$
$B(P), 1$
$C l(V), 206$
$C l i f f(V), 213$
$C_{H}^{*}(V), 188$
$D_{Z}, 206$
$E_{V}(H), 245$
$G L(V), 206$
$\mathfrak{H}_{K}\left(O_{p}(M)\right), 27$
$H^{\ominus}, 206$
$J^{*}(H), 1$
$J_{H}(V), 186$
$J_{H}^{*}(V), 186$
$\mathcal{J}_{H}(V), 186$
$\mathfrak{L}_{K}\left(Y_{M}\right), 27$
$\mathcal{L}_{H}, \mathrm{x}$
$L^{\circ}, 17$
$L_{\circ}, 17$
$\mathfrak{M}_{H}, \mathrm{x}$
$\mathcal{M}_{H}, \mathrm{x}$
M°, x
$M^{\circ}, 20$
$M_{\circ}, 20$
M^{\dagger}, x
$O(V), 206$
$O^{+}(V), 206$
$\left.O^{-} V\right), 206$
$\Omega(V), 214$
$\mathcal{P}_{H}, \mathrm{x}$
$P_{H}(S, V), 185$
$Q_{Z}, 206$
$Q^{\bullet}, \mathrm{x}, 20$
$Q!, \operatorname{viii}, 20$
$R(V), 206$
$R_{V}(H), 245$
$\mathcal{S}(V), 205$
$S p(V), 206$
$S_{V}(H), 245$
$U(V), 206$
Y_{H}, x
$Y_{V}(H), 188$
$Z_{H}, 1$
$b, 257$
$\perp, 205$
$r a d(V), 205$
$r a d_{V}(H), 185$

List of Definitions

\mathcal{N}-short, 27
\mathcal{N}-tall, 27
Q-short, 27
Q-tall, 27
Y-indicator, 37
action
semilinear, 198
action on V
cubic, 185
nearly quadratic, 185
nilpotent, 185
quadratic, 185
asymmetric, ix, 27
chamber (of a coset graph), 255
char p-tall, ix
characteristic p (for finite groups), ix
classical space
definite, 211
hyperbolic, 211
Clifford algebra, 212
component
of a module, 245
coset graph, 255
critical pair, 257
Dickson invariant, 214
family of vectors
hyperbolic, 211
orthogonal, 211
orthonormal, 211

group

A-minimal, ix, 12
$\mathcal{K}_{p^{-}}$, ix
of characteristic p, ix
of local characteristic p, viii
of parabolic characteristic p, ix
p-irreducible, 1
p-minimal, ix, 12
strongly p-irreducible, 1
group of Lie type
adjoint, 202
genuine, 202
universal, 202
isometric, 205
isometry, 206
isotropic, 205
local characteristic p, viii
module

Golay Code, 187
L-quasisimple, 245
Q!-, 185
Todd, 187
central, 185
cubic, 185
even permutation, 186
exterior square of a natural, 186
half-spin, 187
minimal asymmetric, 185
natural $\left.{ }^{3} D_{4}\left(p^{k}\right)\right)$-, 187
natural $\operatorname{Alt}(I)-, 186$
natural $E_{6}\left(p^{k}\right)-, 187$
natural $S L_{2}(q)$-wreath product, x
natural $\operatorname{Sym}(I)-, 186$
natural $S z\left(2^{k}\right)-, 186$
nearly quadratic, 185
p-reduced, 185
perfect, 185
permutation, 186
quadratic, 185
simple, 185
spin, 187
symmetric square of a natural, 186
nitary square of a natural, 186
non-degenerate, 205
offender
best, 186
over-, 186
root, 186
strong dual, 186
strong, 186
parabolic characteristic, ix
perpendicular, 205
point-stabilizer
on a module, 185
short, 27
similarity, 206
semi-, 206
singular, 205
space
linear, 205
orthogonal, 205
symplectic, 205
unitary, 205

Spinor norm, 214
subgroup
Baumann, 1
\mathcal{N}-short, 27
\mathcal{N}-tall, 27
Q-short, 27
Q-tall, 27
Thompson, 1
asymmetric, ix, 27
char p-short, 27
char p-tall, ix, 27
large, viii, 20
parabolic, ix
short, 27
symmetric, ix, 27
tall, ix, 27
weakly closed, 1
submodule
Fitting-, 245
subnormal closure, 1
symmetric, ix, 27
symmetric pair, 37
tall, ix, 27
vertex
type of, 255
Witt index, 205

[^0]: Author address:
 Department of Mathematics, Michigan State University, East Lansing MI 48824
 E-mail address: meier@math.msu.edu
 Gneisenaustrasse 6, D24105 Kiel
 E-mail address: stellmacher@math.uni-kiel.de
 Martin-Luther-Universität Halle-Wittenberg, Institut für Mathematik, D06099
 E-mail address: gernot.stroth@mathematik.uni-halle.de

[^1]: ${ }^{1} \mathrm{~A} p$-local subgroup is the normalizer of a non-trivial p-subgroup; $O_{p}(M)$ is the largest normal p-subgroup of M.

[^2]: $1_{\text {for the the definition of nearly }}$ A. 4 ,
 ${ }^{2}$ for the definition of a strong offender see A.7 A^{4}

[^3]: ${ }^{2}$ This is the unique place in the proof of this lemma where shortness is needed and not only char p-shortness

[^4]: ${ }^{1}$ For the definition of $B(T)$ see 1.1

[^5]: ${ }^{2}$ For the definition of a point-stabilizer on a module see A. 3

[^6]: ${ }^{1} O_{4}^{+}(2)$ appears as $S L_{2}(2)$ 亿 C_{2} in Case 3)

[^7]: ${ }^{1} O_{4}^{+}(2)$ appears as $S L_{2}(2)$ 乙 C_{2} in Case 3

[^8]: ${ }^{2}$ Observe that condition holds for any non-central chief-factor of L_{i} on V_{i}
 ${ }^{3}$ Apart from the existence of symmetric pairs, this is the only place in this chapter where one needs shortness and not only char p-shortness

[^9]: ${ }^{1}$ Note that by 2.6 this is equivalent to $Y_{M} \leqslant O_{p}\left(N_{G}(Q)\right)$.

[^10]: ${ }^{2}$ For the definitions of a root offender and a strong dual offender see A.7.5, (6)

[^11]: ${ }^{1}$ Note that this is well-defined since $U \leqslant \Omega_{1} Z(B)$.

[^12]: ${ }^{2}$ This also follows from the fact that Y is asymmetric in G

[^13]: ${ }^{1}$ For the definition see A.58

[^14]: ${ }^{2}$ This is the only place in the proof of Corollary 9.2 where $\left(\operatorname{char} Y_{M}\right)$ is used.

[^15]: ${ }^{1}$ Note here that K is assumed to be subgroup of $G L_{\mathbb{F}_{n}}(W)$, not only isomorphic to a subgroup.
 ${ }^{2}$ Classical spaces and $C l(W)$ as defined in Appendix B

[^16]: ${ }^{3}$ For the Clifford algebra see also Appendix B

[^17]: ${ }^{4}$ see A. 60 for the definition of Γ
 ${ }^{5}$ Note here that $A_{3}=D_{3}$

[^18]: ${ }^{1}$ Note that this implies $f(v, v)=f(w, w)$.

[^19]: 2 for the definition see A. 46

[^20]: ${ }^{3}$ If $V^{\perp} \neq 0$, then $p=2, V / V^{\perp}$ is a non-degenerate symplectic space, $H \cong S p\left(V / V^{\perp}\right)$, and bb applies

[^21]: ${ }^{1}$ The odd-dimensional orthogonal groups in characteristic 2 are covered in case $g: 2$.
 2 Note here that \mathcal{D} contains all quadratic offenders and by the Timmesfeld Replacement Theorem [KS 9.2.3], also all best offenders in M on V.

[^22]: ${ }^{3}$ Note that in the $A l t(6)$-case, V might also be viewed as a natural Alt (6)-module with $\left.A \cong\langle(12)(34),(34)(56)\rangle\right)$.

[^23]: ${ }^{5}$ The case $K \cong S p_{4}(2)^{\prime} \cong \operatorname{Alt}(6)$ is covered in ep, while the case $M=S p_{2}(2)$ does not occur
 ${ }^{6}$ Observe that for $m=1, S p_{2}(q) \cong S L_{2}(q)$ and a natural $S p_{2}(q)$-module is also a natural $S L_{2}(q)$-module.

[^24]: ${ }^{7}$ We made these changes for easier reference and to point out more clearly that H° does not have to be contained in J in the $S L_{2}(q)$-case.

[^25]: ${ }^{1}$ See 1.1 c for the definition of $Z_{H_{i}}$.

