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Abstract

Let p be a prime, G a finite Kp-group S a Sylow p-subgroup of G and Q a large subgroup of G
in S (i.e., CGpQq ď Q and NGpUq ď NGpQq for 1 ‰ U ď CGpQq). Let L be any subgroup of G with
S ď L, OppLq ‰ 1 and Q đ L. In this paper we determine the action of L on the largest elementary
abelian normal p-reduced p-subgroup YL of L.
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Introduction

Historical Background. One of the great achievements of 20th century mathematics is the
classification of the finite simple groups. At least from hindsight, the quest for this classification
began with a talk of R. Brauer at the ICM in Amsterdam 1952, where he demonstrated a method,
the centralizer method, that makes it possible to characterize finite simple groups by means of the
centralizer of an involution, and of course with the celebrated Odd Order Theorem of Feit-Thompson
1963, [FT], which shows that every finite (non-abelian) simple group possesses involutions. It was
quite natural from these beginnings that the prime 2 played an overwhelmingly important role in
the classification.

On the other hand, apart from the alternating groups, the classes Lieppq of finite simple groups
of Lie type in characteristic p, p a prime, provide the generic examples for finite simple groups. So
for these examples there exists a distinguished prime p associated to these groups. Moreover, in
1974 J. Tits, [T], presented the theory of buildings of spherical type, which makes it possible to
understand and characterize the groups in Lieppq by means of a geometry that reflects properties of
their parabolic subgroups and focuses on that distinguished prime p. So one might wonder if there
is also a way to classify the finite simple groups more prominently based on this geometric approach.

Both of theses approaches, Brauer’s centralizer approach based on the prime 2 and used in the
classification and Tits’ geometric approach, can only be applied successfully to a general finite simple
group, if one is able to set the stage properly. More precisely, one has to get a satisfactory answer
to the following fundamental questions:

‚ In case of the centralizer approach: What does the centralizer of a (properly chosen) involution
look like in a general simple group G?

‚ In case of the geometric approach: How can one detect a distinguished prime p (if there is any)
in a general simple group G? And how does this then lead to a geometry that characterizes G?

The answer of the first question can be read from the classification. The Standard Component
Theorem of Aschbacher 1975, [As1], shows that either

pchar 2q CGpO2pMqq ď O2pMq for all 2-local subgroups M of G,1

or that there exists an involution t whose centralizer CGptq is classical or of standard form. The
latter case can be treated nicely using Brauer’s centralizer method; either by the Classical Involution
Theorem of Aschbacher 1977, [As2], or by solving various standard form problems.

The first case causes many more problems. It is not accidental that the examples from Liep2q
have property pchar 2q. As there, in groups satisfying (char 2) the centralizers of involutions have
non-central normal 2-subgroups which in most cases are an obstruction to applying the centralizer
method effectively. In this case the classification shifts from 2 to a properly chosen odd prime r. In
fact, for groups in Liep2q defined over not too small fields, r divides the order of a maximal torus.
Then the proof proceeds as before using a standard component theorem for the prime r rather than
2. Unfortunately, this switch of primes cannot be executed in all cases. So one ends up with some
unpleasant cases that have to be treated separately; for example in the Quasithin Group Theorem
by Aschbacher-Smith 2004, [AS], and the Uniqueness Theorem by Aschbacher 1983, [As3].

1A p-local subgroup is the normalizer of a non-trivial p-subgroup; OppMq is the largest normal p-subgroup of M .

vii
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The other two questions are more difficult to answer since there is as yet no classification using
the geometric approach that would justify such an answer. But – similar to Aschbacher’s Standard
Component Theorem – one would expect an answer that gives a few cases that then can be treated
independently. In addition, any of these cases should be inspired by properties of the generic
examples involving the distinguished prime p.

Property pchar 2q is a good example for this. It reflects an important property that the groups
in Liep2q have in common without using the terminology and conceptual background of groups of
Lie type, so it also applies to finite groups in general, and it easily generalizes to arbitrary primes p.

We turn this into a definition. A finite group G is of local characteristic p if G satisfies

pchar pq CGpOppMqq ď OppMq for all p-local subgroups of M of G.

In particular, the finite simple groups of local characteristic 2 are exactly the exceptions in the
Standard Component Theorem that force the switch of primes. So even in this case alone, successfully
carrying out a geometric approach for groups of local characteristic 2 would give an alternative proof
for that part of the classification, avoiding not only the switch of primes but also the above mentioned
cases where this switch fails.

There is another property which nearly all the generic examples share and which the authors
believe is important for a classification following the geometric approach: the existence of a large
subgroup. For any finite group G a non-trivial p-subgroup Q is large if

(i) CGpQq ď Q, and
(ii) NGpUq ď NGpQq for all 1 ‰ U ď CGpQq.

Note that the first property is equivalent to CGpQq “ ZpQq. We will refer to the second property
as the Q!-property, or just as Q!.

If G P Lieppq and S P SylppGq, then OppNGpΩ1ZpSqqq is a large subgroup if and only if Ω1ZpSq
is a root subgroup of G. Thus, every simple group of Lie type possesses such a large subgroup,
except Sp2np2

mq, n ě 2, F4p2
mq and G2p3

mq.
From a group theoretic point of view, the concept of groups with large subgroups also generalizes

the concept of groups of GF p2q-type introduced in [GL]. In particular, Timmesfeld’s result, [Ti], on
centralizers of involutions whose generalized Fitting subgroup is extraspecial, is an important part
of the classification of the finite simple groups. But he has concentrated on the structure of the
centralizer of a 2-central involution (which in our case is NGpQq), so at least in a formal sense he
follows Brauer’s centralizer approach. In contrast to this we will investigate every p-local subgroup
not in NGpQq, where Q is a large subgroup.

For several years the authors and various other collaborators have worked on a classification
project for finite groups of local characteristic p that uses the geometric approach; and the classifi-
cation of the finite groups of local characteristic p possessing a large subgroup is a major part of this
project. An outline of this project can be found in [MSS]. There it is also demonstrated in which
context large subgroups arise and what role the Local Structure Theorem plays in this classification.

Up to now several contributions to this project have been published or submitted for publication.

For example, the local CpG,T q-Theorem [BHS], the P !-Theorem [PPS], the rP !-Uniqueness Theo-
rem [MMPS], plus [MeiStr3], [P1] and [P2], and results about strongly p-embedded subgroups,
[PS1] and [PS2], and as relevant background material about modules the Nearly Quadratic Module
Theorem [MS3], the General FF-module Theorem [MS5] and its applications [MS6].

Some of these results rest upon properties or hypotheses derived from or justified by the Local
Structure Theorem which is presented in this paper. In this sense the Local Structure Theorem is
the cornerstone for the investigation of finite groups G of local characteristic p possessing a large
subgroup Q. In fact, local characteristic p is not really required in full strength for the proof of the
Local Structure Theorem, but we will ignore this for the moment.

The Local Structure Theorem determines the action of M on Ω1ZpOppMqq for every p-local
subgroup M which contains a Sylow p-subgroup of NGpQq and is not contained in NGpQq. Speaking
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in the geometric language of the generic examples, this information allows to determine the residues
of the maximal parabolic subgroups different from the normalizer of a long root subgroup.

In a forthcoming paper the Local Structure Theorem will be used to prove the H-Structure
Theorem, where under an additional assumption the structure of NGpQq{Q is determined. Speaking
again in the geometric language of the generic examples, the Local Structure Theorem and H-
Structure Theorem combined give all the possibilities for the residues of maximal local parabolic
subgroups of G. This then allows to determine up to isomorphism a parabolic subgroup H of G with
OppHq “ 1. If the residues resemble the residues of a group of Lie-type of rank at least three, this
can be achieved via Tits’ theory of buildings, see [MSW, Theorem 6.9]. Otherwise by a case-by-case
discussion based on the detailed description of the maximal local parabolic subgroups of G provided
by the Local Structure Theorem and the H-Structure Theorem.

Having determined H one proceeds by computing the group G0 generated by all the p-local
subgroups containing a given Sylow p-subgroup of G. Then one still has to show that G “ G0. But
this part of the project has already been treated. A result of M. Salarian and G. Stroth [SaS], shows
that G0 is strongly p-embedded in G if G ‰ G0, and results of Ch. Parker and G. Stroth, [PS1]
and [PS2], show that this is impossible, so G “ G0.

Notation used in the Local Structure Theorem. We will now give the notation that
is needed to state the Local Structure Theorem below. Some of this notation will be repeated and
refined in the definitions given in later chapters.

In contrast to the Brauer method, where the centralizers of p-subgroups are of prime interest,
in this paper we investigate the non-trivial action of p-local subgroups M on suitable elementary
abelian normal p-subgroups V Ĳ M . The basic idea is to identify the group M{CM pV q and the
FpM -module V at the same time. This requires an inductive hypothesis that is called the Kp-group
Hypothesis.

A finite groupG is a Kp-group if the simple sections of any p-local subgroup ofG are known simple
groups (i.e., these sections are isomorphic to groups of prime order, groups of Lie type, alternating
groups or one of the 26 sporadic groups). This hypothesis is related to (and compatible with) the
proper K-group Hypothesis used in the first and second generation proofs of the classification of the
finite simple groups, which reflects the only inductive property needed in a minimal counterexample
to the Classification Theorem.

This Kp-group Hypothesis allows us to use module-theoretic results provided in [MS3], [MS5],
[MS6], [GM1] and [GM2] for the identification of M{CM pV q and V .

Let H be an arbitrary finite group. Then H has characteristic p if CHpOppHqq ď OppHq.
Any subgroup of H containing a Sylow p-subgroup of H is a parabolic subgroup of H; and H has
parabolic characteristic p if every p-local parabolic subgroup of H has characteristic p. So the notion
of parabolic characteristic generalizes the notion of local characteristic introduced earlier.

For A ď H we say that H is A-minimal if H “ xAHy, and A is contained in a unique maximal
subgroup of H; and H is p-minimal if H is A-minimal for A P SylppHq.

Let A be an elementary abelian p-subgroup of H. We say that A is symmetric in H if there
exists g P H such that

rA,Ags ‰ 1 and rA,Ags ď AXAg;

otherwise A is called asymmetric in H.
Let T P SylppCHpAqq. We say that A is tall in H if there exists T ď L ď H such that OppLq ‰ 1

and A ę OppLq; and A is char p-tall in H if there exists T ď L ď H such that A ę OppLq and L has
characteristic p. Note here that these definitions are independent of the choice of T P SylppCHpAqq.

Of prime interest in this paper will be the set

L1H :“ tL ď H | CHpOppLqq ď OppLq and OppLq ‰ 1u.
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By MH we denote the set of maximal elements of LH with respect to inclusion, and by PH the
set of p-minimal elements of LH . Moreover, for K ď H

LHpKq :“ tL P LH | K ď Lu;

similarly we define MHpKq and PHpKq.

By YH we denote the largest p-reduced normal subgroup of H, i.e., the largest elementary
abelian normal p-subgroup of H satisfying OppH{CHpYHqq “ 1. (For the existence and elementary
properties see [MS4, 2.2] and 1.24).

Let MH be the set of all M P LH such that

(i) MHpMq “ tM
:u and YM “ YM: , where M : :“MCHpYM q.

(ii) CM pYM q is p-closed and CM pYM q{OppMq ď ΦpM{OppMqq.

As above, for K ď H let MHpKq “ tM PMH | K ďMu. In the following, if M PMH , we will
refer to (i) and (ii) as the basic property of M .

If A,B and C are groups, then A „ B.C means that A has a normal subgroup B1 such that
B1 – B and A{B1 – C. A „ B.C means that, in addition, there does not exists a complement to
B1 in A. If such an A is unique up to isomorphism, we may also write A – B.C.

Suppose that V is a faithful H-module and K is a non-empty H-invariant set of subgroups of
H. Then we say that V is a natural SL2pqq-wreath product module for H with respect to K if

V “
à

KPK
rV,Ks and xKy “

ą

KPK
K,

and for each K P K, K – SL2pqq and rV,Ks is a natural SL2pqq-module for K.
Note here that a natural SL2pqq-module is a natural SL2pqq-wreath product module with |K| “

1.

If V is a vector space over the finite field K, then Λ2pV q, S2pV q and U2pV q, denote the exterior,
symmetric and unitary square of V , that is, the set of symplectic, symmetric and unitary forms on
the dual of V , respectively. For further details for our naming of modules see A.2.

The Local Structure Theorem. Suppose now that G is a finite group and Q is a (fixed)
large subgroup of G. For M ď G we set

M˝ :“ xQg | g P G, Qg ďMy,

and

Q‚ :“ OppNGpQqq.

Let Q ď S P SylppGq. Clearly, either S is contained in a unique maximal p-local subgroup M
of G, or there exists a p-local subgroup M of G with S ďM and Q đM . For the generic examples
from Lieppq, the first case corresponds to groups of Lie rank 1, the second to those of Lie rank larger
than 1.

In general, in the first case M contains the normalizer of every non-trivial characteristic subgroup
of S. Then, at least if G has local characteristic p, either M is a strongly p-embedded subgroup
of G or the p-local structure of G is well-understood and was investigated in [BHS]. Finally, if G
possesses a strongly p-embedded subgroup, the p-local analysis is no longer of any help. Fortunately,
at least for p “ 2, a Theorem of Bender, 1971 [Be], gives a complete classification, for odd primes
such a theorem is not known.

In this paper we consider the second case, where S is contained in more than one maximal
p-local subgroup of G, and we investigate the action of L on YL for all p-local subgroups L of G
with Q not normal in L. We will prove:
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Theorem A (Local Structure Theorem). Let G be a finite Kp-group and S P SylppGq.
Suppose that S is contained in at least two maximal p-local subgroups and that Q is a large subgroup
of G in S. Let L ď G with S ď L, OppLq ‰ 1 and Q đ L.

Then there exist M PMGpSq and L˚ ďM with

S ď L˚, YL “ YL˚ , LCGpYLq “ L˚CGpYLq, and L˝ “ pL˚q˝.

Moreover, for any such L and M one of the following holds, where rL :“ L{CLpYLq and q is a power
of p.

(1) The linear case.

(a) ĂL˝ – SLnpqq, n ě 3, and rYL, L
˝s is a corresponding natural module for ĂL˝.

(b) If YL ‰ rYL, L
˝s then ĂL˝ – SL3p2q, |YL{rY,L

˝s| “ 2, rYL, L
˝s ď Q ď Q‚, YM “ YL

and M˝ “ L˝.
(2) The symplectic case.

(a) ĂL˝ – Sp2npqq, n ě 2, or Sp4pqq
1 (and q “ 2), and rYL, L

˝s is the corresponding natural

module for ĂL˝

(b) If YL ‰ rYL, L
˝s, then p “ 2 and |YL{rYL, L

˝s| ď q.
(c) If YL ę Q‚, then p “ 2 and rYL, L

˝s ę Q‚.
(d) Either L˝ “M˝ and YL “ YM , or one of following holds:

(1) p “ 2, ĂL˝ – Sp4p2q
1, YL “ rYL, L

˝s, YL ę Q‚, M˝{CM˝pYM q –Mat24, and YM
is the simple Golay code module of F2-dimension 11 for M˝.

(2) p “ 2, ĂL˝ – Sp4p2q, |YL{rYL, L
˝s| “ 2, rYL, L

˝s ę Q‚, M˝{CM˝pYM q –
AutpMat22q, and YM is the simple Todd module of F2-dimension 10 for M˝.

(3) The Wreath Product Case.

(a) There exists a unique rL-invariant set K of subgroups of rL such that rYL, L
˝s is a natural

SL2pqq-wreath product module for rL with respect to K. Moreover, ĂL˝ “ OppxKyq rQ and
Q acts transitively on K.

(b) If YL ‰ rYL, L
˝s, then p “ 2, rL – ΓSL2p4q, ĂL˝ – SL2p4q or ΓSL2p4q, |YL{rYL, L

˝s| “

2, rYL, L
˝s ę Q‚, YM “ YL and MCGpYLq “ LCGpYLq.

(c) Either YM “ YL and M˝ “ L˝ or ĂL˝ – SL2pqq.

(4) The Weak Wreath Product Case. OppĂL˝q is abelian and YL “ rYL, L
˝s. Let

U1, U2, . . . , Us be the Wedderburn components of OppL˝q on YL. Then the following hold:
(a) YL “ U1 ‘ . . .‘ Us, O

ppL˝q{COppL˝qpUiq is cyclic of order dividing q ´ 1, and q ą 2.
(b) Q permutes the subgroups Ui in (4:a) transitively.
(c) YM is a natural SL2pqq-wreath product module for M{CM pYM q with respect to some K,

M˝{CM˝pYM q fl SL2pqq, and for the inverse image P˚ of xKy in M , P˚ X S Ĳ L˝S,
YL ď CYM pP

˚XSq, and there exists an L-invariant partition K1,K2, . . . ,Ks of K with
Ui “ YL X rYM , xKiys for all 1 ď i ď s.

(5) The orthogonal case. YL ę Q‚, ĂL˝ – Ωεnpqq, n ě 5, where q is odd if n is odd, and YL
is a corresponding natural module for ĂL˝. Moreover, either YM “ YL and L˝ “M˝ or one
of the following holds:

(1) ĂL˝ – Ω`6 pqq, and YM is the exterior square of a natural SLmpqq-module for M˝.

(2) p “ 2, ĂL˝ – Ω`6 p2q and M˝{CM˝pYM q – Mat24, and YM is the simple Todd- module
of F2-dimension 11 for M˝.

(3) ĂL˝ – Ω`8 pqq and M˝{CM˝pYM q – Spin`10pqq, and YM is the half-spin module for M˝.

(4) ĂL˝ – Ω`10pqq and M˝{CM˝pYM q – E6pqq, and YM is simple module of Fq-dimension
27 for M˝.

(6) The tensor product case. YL ę Q‚, and there exist subgroups rL1, rL2 of rL such that

(a) rLi – SLtipqq, ti ě 2, rrL1, rL2s “ 1, and rL1
rL2 Ĳ rL,

(b) YL – Y1 bFq Y2, where Yi is a corresponding natural module for rLi (and Fq is a field
of order q),

(c) rL “ ĂL˝ – SL2p2q o C2 and p “ 2, or ĂL˝ is one of rL1, rL2, or rL1
rL2,



xii INTRODUCTION

(d) Moreover, either M fulfills the tensor product case, or p “ 2, rL “ rL1
rL2 – SL2p2q ˆ

SL2p2q, M{CM pYM q – 3.Symp6q, and YM is the simple module of F2-dimension 6
for M .

(7) The non-natural SLnpqq-case. rYL, L
˝s ę Q‚, and one of the following holds:

(1) ĂL˝ – SLnpqq{xp´idq
n´1y, n ě 5, YL is the exterior square of a natural SLnpqq-module

for L˝, and YM is the exterior square of a natural SLmpqq-module for M˝.

(2) p is odd, ĂL˝ – SLnpqq{xp´idq
n´1y, n ě 2, and YL is the symmetric square of a natural

SLnpqq for L˝, and YM is the symmetric square of a natural SLmpqq-module for M˝.

(3) ĂL˝ – SLnpqq{xλid | λ P Fq, λn “ λq0`1 “ 1y, n ě 2, q “ q2
0, and rYL, L

˝s is the
unitary square of a natural SLnpqq-module for L˝. Moreover, one of the following
holds:

(1) YL “ rYL, L
˝s, and YM is the unitary square of a natural SLmpqq-module for

M˝.
(2) p “ 3, |YL{rYL, L

˝s| “ 3, ĂL˝ – L2p9q, M
˝{CM˝pYM q – Mat11, YL “ YM , and

YM is the simple Golay-code module of F3-dimension 5 for M˝.

(3) p “ 2, YL “ rYL, L
˝s, ĂL˝ – SL2p4q, M

˝{CM˝pYM q – Mat22, and YM is the
simple Golay-code module of F2-dimension 10 for M˝.

(4) p “ 3, YL “ rYL, L
˝s, rL˝ – L2p3q, YL ę Q‚, M˝{CM˝pYM q – 2.Mat12, YM is

the simple Golay-code module of F3-dimension 6, and YL ę Q‚.
(8) The exceptional case. YL ę Q‚, YM “ YL, M˝ “ L˝, and one of the following holds:

(1) ĂL˝ – Spin`10pqq, and YL is a half-spin module.

(2) ĂL˝ – E6pqq, and YL is one of the (up to isomorphism) two simple FpL˝-modules of
order q27.

(9) The sporadic case. YL ę Q‚, YL “ YM , L˝ “M˝, and one of the following holds:

(1) p “ 2, rL „ 3.Symp6q, ĂL˝ „ 3.Altp6q or 3.Symp6q, and YL is a simple module of
F2-dimension 6.

(2) p “ 2, ĂL˝ –Mat22, and YL is the simple Golay-code module of F2-dimension 10.

(3) p “ 2, ĂL˝ –Mat24, and YL is the simple Todd or Golay-code module of F2-dimension
11.

(4) p “ 3, ĂL˝ –Mat11, and YL is the simple Golay-code module of F3-dimension 5.
(10) The non-characteristic p case. There exists 1 ‰ y P YL such that CGpyq is not of

characteristic p, and one of the following holds:
(1) YL is tall and asymmetric in G, but YL is not char p-tall in G.

(2) p “ 2, ĂL˝ – AutpMat22q, YL is the simple Todd module of F2-dimension 10, and
YL ę Q‚

(3) p “ 3, ĂL˝ – 2.Mat12, YL is the simple Golay-code module of F3-dimension 6, and
YL ę Q‚.

(4) p “ 2, rL – Oε2np2q,
ĂL˝ – Ωε2np2q, 2n ě 4, p2n, εq ‰ p4,`q, YL is a corresponding

natural module and YL ď Q‚.

(5) p “ 3, ĂL˝ – Ω´4 p3q, rYL, L
˝s is the corresponding natural module, |YL{rYL, L

˝s| “

3, YL is isomorphic to the 5-dimensional quotient of a six dimensional permutation

module for ĂL˝ – Altp6q, and rYL, L
˝s ę Q‚.

(6) p “ 3, ĂL˝ – Ω5p3q, rYL, L
˝s is the corresponding natural module, |YL{rYL, L

˝s| “ 3,
and rYL, L

˝s ę Q‚.

(7) p “ 2, ĂL˝ – Ω`6 p2q, rYL, L
˝s is the corresponding natural module, and |YL{rY,L

˝s| “ 2.

(8) p “ 2, ĂL˝ –Mat24, rYL, L
˝s is the simple Todd-module of F2-dimension 11,

|YL{rYL, L
˝s| “ 2, and rYL, L

˝s ę Q‚.

Moreover, either YL “ YM and L˝ “M˝, or ĂL˝ – Ω`6 p2q, rYL, L
˝s ę Q‚, M˝{CM˝pYM q –

Mat24, rYM ,M
˝s is the simple Todd-module of F2-dimension 11 and |YM{rYM ,M

˝s| “ 2.

Note that there is some overlap between the last case of the Local Structure Theorem and the
previous cases: If rYL, L

˝s is a natural Ω5p3q, Ω´4 p3q or Ω`6 p2q-module or the Todd module for Mat24
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Table 1. Examples for the Local Structure Theorem. Cases (1)–(9)

Case rYM ,M
˝s for M˝ c Remarks examples for G

1 nat SLnpqq 1 - Ln`1pqq
1 nat SLnpqq 1 n “ 7, 8 Enpqq
1 nat SL3p2q 1 - Altp9q, G2p3q, HS(.2), Ru, HN

1 nat SL3p3q 1 - Fi122,23,24, F4p2q,
2E6p2q, BM

1 nat SL3p5q 1 - Ly, BM, M
1 nat SL4p2q 1 NGpQq ďM Mat24

1 nat SL5p2q 1 - Th, BM
* 1:b nat SL3p2q 2 G ‰ G˝ AutpG2p3qq

2 nat Sp4p2q 1 - Mat22.2,PSO´6 p3q, PΩ´6 p3qxωy
2 nat Sp4p2q

1 1 - Mat22, PΩ´6 p3q, Suz
* 2:b nat Sp4p2q

1 or Sp4p2q 2 - PΩ´6 p3qxωy or PO´6 p3q
* 2 nat Sp8p2q 2 - BM
** 2 nat Sp2npqq ď q pn, qq ‰ p4, 2q, p8, 2q -

3 nat SL2pqq 1 - L3pqq, G2pqq p ‰ 3,3D4pqq
2F4pqq p “ 2, D4pqqΦ3 p “ 3

3 nat SL2p2q 1 - Sp4p2q
1, G2p2q

1, 2F4p2q
1,

Mat12p.2q, J2, J3,
PΩ´6 p3q.X, PΩ`8 p3q.X

3 nat SL2p3q 1 - Mat12, 2F4p2q
1, Th

3 nat SL2p4q 1 - Mat22, Mat23

3 nat SL2p5q 1 - Ru, HN, Th
3 nat SL2p7q 1 - O’N, M
3 nat SL2p13q 1 - M
3 nat ΓSL2p4q 1 - ΓL3p4q, Mat22

* 3 nat SL2p4qr.2s 2 M – ΓSL2p4q AutpMat22q

* 3 nat SL2pqq wreath 1 |K| ą 1 pΓqL3pqq o 2-group, q “ 2, 4.
5 nat Ωεnpqq 1 - PΩεn`2pqq
5 nat Ω7pqq 1 - F4pqq, p odd
5 nat Ω´6 pqq 1 - 2E6pqq
5 nat Ω`8 pqq 1 - E6pqqΦ2

5 nat Ω`14pqq 1 - E8pqq
6 nat SLt1pqqrbSLt2pqqs 1 - Lt1`t2pqq, L2t1`1pqqΦ2 t1 “ t2
6 nat SL2p2qqrbSL3p2qs 1 - Mat24

1, 5, 7:1 Λ2(nat)SLnpq
2q 1 n ě 3 PΩ`2npqq, Ω2n`1pqq podd,

PΩ´2n`2pqq, O
`
2npqq p “ 2

7:2 S2(nat)SLnpqq 1 - PSp2npqq
7:3 U2(nat)SLnpq

2
0q 1 - U2npq0q, U2n`1pq0q

7:3 U2(nat)SL2p9q 1 - McL
8:1 half-spin Spin`10pqq 1 - E6pqq
8:2 q27 for E6pqq 1 - E7pqq
9:1 26 for 3.Altp6qr.2s 1 M „ 3.Symp6q Mat24

9:2 Golay 210 for Mat22 1 - Co2

9:3 Golay 211 for Mat24 1 - Co1

9:3 Todd 211 for Mat24 1 - J4

9:4 Golay 35 for Mat11 1 - Co3

one might have YL “ rYL, L
˝s or YL ‰ rYL, L

˝s. Similarly, if rYL, Ls is a natural Ωε2np2q-module one
might have YL ę Q‚ or YL ď Q‚. But each time the second possibility can only occur if there exists
1 ‰ y P YL such that CGpyq is not of characteristic p.
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Table 2. Examples for the Local Structure Theorem where pchar YM q fails

Case rYM ,M
˝s for M˝ c Remarks examples for G

1:b nat SL3p2q 2 G ‰ G˝ AutpG2p3qq
2 nat Sp4p2q

1 or Sp4p2q 2 - PΩ´6 p3qxωy or PO´6 p3q
2 nat Sp8p2q 2 - BM
3 nat SL2pqq wreath 1 |K| ą 1 pΓqL3pqq o 2-group, q “ 2, 4

3:b nat SL2p4qr.2s 2 M – ΓSL2p4q AutpMat22q

3,6 nat SL2p2q b SL2p2q 1 - Symp9q, Altp10q
6 nat SL2p2qqrbSL2p2qs 1 - Altp9q
6 nat SL2p3q b SL2p3q 1 - HN

7:2 nat Ω3p3q 1 - Sp6p2q,Ω
´
8 p2q

7:2 nat Ω3p5q 1 - Co1

7:3 nat Ω´4 p2q 1 - L4p3q, Altp10q
7:3, 10:5 nat Ω´4 p3q ď 3 - U6p2q.cp.2q

5 nat Ω5p3q 1 - Fi22p.2q
5,10:6 nat Ω5p3q ď 3 - 2E6p2q.cp.2q

5 nat Ω`6 p2q 1 - PΩ`8 p3qp.3qp.2q
10:7 nat Ω`6 p2q 2 - PΩ`8 p3q.2.p2q, PΩ`8 p3q.Symp3q

5 nat Ω7p3q 1 - Fi124p.2q
5 nat Ω`10p2q 1 - M

** 10:4 nat Ωε2np2q, p2n, εq ‰ p4,`q ď 2 YM ď Q‚ -
9:1 26 for 3.Symp6q 1 M „ 3.Symp6q He

9:3, 10:8 Todd 211 for Mat24 ď 2 - Fi124.c
10:2 Todd 210 for AutpMat22q 1 - AutpFi22q

10:3 Golay 36 for 2.Mat12 1 - Co1

** 10:1 ? ? tall, asymmetric, -
not char p-tall

Note also that last case is not the only case of the Local Structure Theorem, where CGpyq may
not be of characteristic p for some 1 ‰ y P YL. For example both J4 and Fi124 contain a parabolic
subgroup M „ 211Mat24, with YM the Todd module. In J4, CGpyq is of characteristic 2 for all
1 ‰ y P YM , but this does not hold in Fi124. On the other hand, M „ 211`1Mat24 only occurs in
Fi24, matching the fact that the 211`1 only appears in last case of the Local Structure Theorem.

The cases of the Local Structure Theorem are disjoint with one exception: The case p “ 2,

O2prLq – C3ˆC3 and |YL| “ 16 appears in the wreath product and tensor product case. Combining
the two cases we get the following possibilities:

– rL – SL2p2q o C2, YL is a natural O`4 p2q-module for rL, rQ – C4 or D8, YM “ YL and
M˝ “ L˝. Both YL ď Q‚ and YL ę Q‚ are possible.

– rL – SL2p2q o C2, ĂL˝ – SL2p2q ˆ SL2p2q, and YL is a natural Ω`4 p2q-module for rL. Both
YL ď Q‚ and YL ę Q‚ are possible. Either YL “ YM and L˝ “ M˝, or YL ę Q‚ and
M fulfills the tensor product case with M{CM pYM q – SLtp2q o C2, and M˝{CM˝pYM q –
SLtp2q ˆ SLtp2q.

– rL “ ĂL˝ – SL2p2q ˆ SL2p2q, YL is a natural Ω`4 p2q-module for rL, and YL ę Q‚. Ei-
ther YL “ YM and L˝ “ M˝, or M fulfills the tensor product case with M{CM pYM q –
M˝{CM˝pYM q – SLt1p2q ˆ SLt2p2q, or M{CM pYM q – M˝{CM˝pYM q – 3.Symp6q and
|YM | “ 26.

– rL – SL2p2q ˆ SL2p2q, YL is a natural Ω`4 p2q-module for rL, ĂL˝ – SL2p2q, YL is the direct

sum of two natural SL2p2q-modules for ĂL˝, and YL ę Q‚. Either YL “ YM and L˝ “M˝,
or M fulfills the tensor product case with M˝{CM˝pYM q – SLt1p2q, or M{CM pYM q –
3.Symp6q, M˝{CM˝pYM q – 3.Altp6q and |YM | “ 26.
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Most of the cases listed in the Local Structure Theorem occur in interesting finite groups, see
tables 1 and 2.

Consider the property

pchar YM q CGpyq is of characteristic p for all y P Y 7M .

In those cases of the first table marked with ’˚’ property pchar YM q fails in the listed example, but
we currently do not have a proof that pchar YM q has to fail other than using the classification of
finite simple groups to determine all the possible examples. For the case marked with ’˚˚’ we do
not know any example (with or without pchar YM q). Showing that pchar YM q fails in the ’˚’ cases
and that the ’˚˚’ cases do not occur seems to require the determination of the whole structure of
M (and not only the action on YM ) and sometimes even the structure of G, and will be done in
separate papers. For example, case 1:b of Theorem A has already been treated in [MeiStr3] and
case 3 (for r ą 1 and YM ď Q‚) in [PPS].

In the table c :“ |YM{rYM ,M
˝s| and Φi is a group of graph automorphism of order i. In the

example G “ K.X with K “ PΩ´6 p3q or PΩ`8 p3q, X ď OutpKq such that X acts transitively on the
four elements of PNKpQqpK XSq. In the examples G “ PΩ´6 p3qxωy, ω is a reflection in PO´6 p3q. An
entry of the form ArBs in the rYM ,M

˝s column indicates that there exists more than one choice for
Q in the example G. Depending on this choice the structure of rYM ,M

˝s as an M˝-module is either
described by A or AB.

The strategy for the proof of the Local Structure Theorem. Suppose that G is
a finite group possessing a large subgroup Q with Q ď S P SylppGq. In 1.55 it is shown that G
has parabolic characteristic p, and in 1.56 that for every L P LGpSq there exist M P MGpSq and
L˚ ďM satisfying:

‚ LCGpYLq “ L˚CGpYL˚q, L
˝ “ pL˚q˝ and YL “ YL˚ ď YM .

‚ If Q đ L then also Q đ L˚ and Q đM .

In other words, the action of L on YL can be investigated via the action of the subgroup L˚ of
M on the submodule YL of YM since L{CLpYLq – L˚{CL˚pYLq. Hence, the structure of YM and
M{CM pYM q will also determine the possibilities for YL and L{CLpYLq. For this reason nearly the
entire paper, Chapters 3 – 9, is devoted to the analysis of the action of M{CM pYM q on YM .

The global strategy. The basic idea is to find subgroups in M{CM pYM q that act in a
“nice way” on YM and then to identify M{CM pYM q and the M -module YM via the action of these
subgroups.

Of course, the crucial point is to find out what “nice way” should mean. On one side, it should
be a property that arises naturally in the local analysis, and on the other side, it should be a property
strong enough to allow to identify the action of M on YM .

It turns out that in most cases being some kind of (non-trivial) offender, like quadratic offender,
strong offender, etc., is the right property, and this then leads to one of the FF-Module Theorems
from Appendix C. In other cases, when no non-trivial offenders are at hand, acting nearly quadrat-
ically or as a 2F -offender is the property we work with, and again results are available that can
be used; in particular, the classification of simple 2F -modules for almost quasisimple groups by
Guralnick and Malle, [GM1] and [GM2].

The list of possibilities for groups and modules in these results is usually much longer than the
list we actually get as the final result of our analysis, so a major part of our proof is devoted to
exclude groups and modules from such lists. Usually this is not done by beginning a case by case
discussion right away, but by finding some general arguments first that allow to treat (some of) the
cases in a uniform way. For example, the cases where YM carries an M -invariant form usually can
be treated uniformly using some general arguments from linear algebra.

The local strategy. It is obvious that one cannot get any information about M and its
action on YM without discussing in one way or another the embedding of M into G. But a priori, it
is not clear at all what type of embedding properties one should study and how they would help to
get this information. In the following we will describe in general terms the strategy we follow and
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which allows to subdivide the proof into a few cases which to a large extend are independent from
each other.

Using the above definition of symmetry, it is clear that YM is either symmetric or asymmetric
in G, and this is the first major subdivision of the proof.

In Chapter 4 we treat the symmetric case, that is, YM is symmetric in G, so there exists a
conjugate Y gM such that

1 ‰ rYM , Y
g
M s ď YM X Y gM .

Then YM and Y gM act quadratically and non-trivially on each other, and it is easy to see that YM
is a non-trivial quadratic offender on Y gM , or vice versa. In any case we can apply the General
FF-Module Theorem C.2 to both, M and Mg. The trick is now to use the Q!-property to show that
M XMg contains a conjugate of the large subgroup Q. Now the action of such a “common” large
subgroup allows to pin down the structure of M{CM pYM q and its action of YM .

The asymmetric case is much harder to handle. But here a fundamental property holds: OppMq
is a weakly closed subgroup of G (see 2.6). As a consequence we get that M : X H is a parabolic
subgroup of H for all subgroups H containing OppMq. Since by the basic property of M , OppMq P
SylppCGpYM qq, the properties “tall”, “char p-tall” and “short” (here “short” means “not tall”), are
tailored to further subdivide the asymmetric case.

In Chapter 5 we treat the short asymmetric case. Here YM ď OppP q for all P ď G with
OppMq ď P and OppP q ‰ 1. Asymmetry then implies that the closure V :“ xY PM y is abelian. This
property is used to show the existence of a symmetric pair pY1, Y2q of conjugates of YM (see 2.19 and
2.23). In this pair no longer Y1 and Y2 act non-trivially on each other, as in the symmetric case, but
abelian subgroups V1 and V2, where Vi is the normal closure of Yi in a particularly chosen subgroup
Li.

The arguments used in the short asymmetric case are related to those used in the qrc-Lemma
from [MS4].

The remaining case, the tall asymmetric case, is by far the hardest one. Here YM is asymmetric,
and there exists P ď G with OppMq ď P , OppP q ‰ 1 and YM ę OppP q. First of all, it may be that
all such subgroups P are not of characteristic p, in our notation, that YM is tall but not char p-tall.
The short Chapter 6 partially handles this case by showing that this cannot happen if CGpxq has
characteristic p for all 1 ‰ x P YM .

Suppose that YM is char p-tall. Then the Asymmetric L-Lemma 2.16 can be applied and provides
us with a subgroup L of characteristic p such that YM ď L and L{OppLq – SL2pqq, Szpqq, or D2r,
where p “ 2 in the last two case and r is an odd prime, and q “ |YM{YM XOppLq|.

It turns out that Ω1ZpOppLqq is a non-trivial strong offender on YM or L normalizes a conjugate
of Q. In the first case we can use the FF-Module Theorems from Appendix C; in the second case we
show that OppLq acts as a (non-trivial) nearly quadratic 2F -offender on YM , and then [MS2] and
the 2F-Module Theorems of Guralnick and Malle are the main tools in the investigation.

For more details see the introductions to Chapters 4 – 9.

In earlier publications the Local Structure Theorem is quoted under the name “Structure The-
orem”. In [PPS] the following earlier (weaker) version of the Local Structure Theorem was used,
except that we correct a misprint , it should read F˚pM0q rather than F˚pMq, and we added
property (1:i) for better understanding.

Corollary B. Let G be a finite Kp-group of local characteristic p and S P SylppGq. Suppose

that there exist M, rC PMGpSq such that the following hold for Q :“ Opp rCq:

(i) NGpΩ1ZpSqq ď rC.

(ii) CGpxq ď rC for every 1 ‰ x P ZpQq.

(iii) M ‰ rC, and M “ L for every L PMGpSq with M “ pM X LqCM pYM q.
(iv) YM ď Q.

Then for M0 :“ xQM yCSpYM q and M :“M{CM pYM q one of the following holds:
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(1) F˚pM0q “ M0
1
, M0 – SLnpp

mq, n ě 2, Sp2npp
mq, n ě 2, or Sp4p2q

1 (and p “ 2), and
rYM ,M0s is a corresponding natural module for M0. Moreover,

(i) YM “ rYM ,M0s or p “ 2 and M0 – Sp2npqq, n ě 2, and
(ii) either CM0

pYM q “ OppM0q, or p “ 2 and M0{OppM0q – 3.Sp4p2q
1.

(2) P1 :“ M0S P PGpSq, YM “ YP1
, and there exists a normal subgroup P˚1 ď P1 containing

CP1pYP1q but not Q such that

(i) P˚1 “ K1 ˆ ¨ ¨ ¨ ˆKr, Ki – SL2pp
mq, YM “ V1 ˆ ¨ ¨ ¨ ˆ Vr, where Vi :“ rYM ,Kis is a

natural Ki-module,
(ii) Q permutes the components Ki of (i) transitively,

(iii) OppP˚1 q “ OppM0q, and P˚1 CM pYM q is normal in M ,
(iv) CP1

pYP1
q “ OppP1q, or r ą 1, Ki – SL2p2q (and p “ 2) and CP1

pYP1
q{O2pP1q is a

3-group.

The proof of this Corollary to the Local Structure Theorem is contained in Chapter 10.

We assume the reader to be familiar with the basic concepts of finite group theory, for example
coprime action, components and the generalized Fitting subgroup. In addition, in Chapters 9 and
10 we assume basic knowledge of the parabolic subgroups of groups of Lie type and the sporadic
simple groups and their action on some low dimensional modules. Most of this information can be
found in [Ca], [RS] and [MSt]. Note also that the action of Ω`10pqq on the half spin modules and
the action of E6pqq on the 27-dimensional modules can be seen inside the groups E6pqq and E7pqq,
respectively.

Acknowledgement: We would like to thank the referee for pointing out numerous inconve-
niences in the original manuscript which encouraged us to add more details and information for the
reader.





CHAPTER 1

Definitions and Preliminary Results

In this chapter we provide elementary group theoretic results needed in this paper. Some of
them already indicate the kind of technical tools used throughout this paper.

In Section 1.2 some properties of p-reduced normal p-subgroups are given, since p-reduced sub-
groups are the typical modules for parabolic subgroups investigated in this paper. In Sections 1.3
and 1.4 we discuss p-irreducible and Y -minimal groups. They naturally occur as subgroups of p-local
subgroups and belong to our most important tools.

In Section 1.6 we have a first look at large p-subgroups. In particular, we show that such
subgroups are weakly-closed. Consequently, in Section 1.5 weakly closed subgroup are investigated.

Throughout this chapter H always denotes a finite group and p is a prime.

1.1. Elementary Properties of Finite Groups

Definition 1.1. (a) H is p-irreducible if H is not p-closed and OppHq ď N for any normal
subgroup N of H which is not p-closed.

(b) H is strongly p-irreducible if H is not p-closed and OppHq ď N for every normal subgroup
N of H with rN,Hs ę OppHq.

(c) ZH :“ xΩ1ZpT q | T P SylppHqy.
(d) AH is the set of elementary abelian p-subgroups of H of maximal order, JpHq :“ xAHy is

the Thompson subgroup of H and

BpHq :“

#

CHpΩ1ZpJpHqqq if H is a p-group

xBpT q | T P SylppHqy in general

is the Baumann subgroup of H.
(e) Let R ď T ď H. Then R is weakly closed in T with respect to H if R is the only H-

conjugate of R contained in T ; and a p-subgroup R is a weakly closed subgroup of H if R
is weakly closed with respect to H in some Sylow p-subgroup of H.

(f) Let A ď H. The subnormal closure of A in H is the intersection of all subnormal subgroups
of H containing A.

Lemma 1.2. Let H be a finite group of characteristic p and T P SylppHq. Then the following
hold:

(a) Every subnormal subgroup of H has characteristic p.
(b) Every subgroup containing T has characteristic p.
(c) H has local characteristic p.

Proof. [MS6, 1.2]. l

Lemma 1.3. Let R be a p-subgroup of H with CHpRq ď R. Let L ď NGpRq and suppose that L
acts nilpotenly on R. Then L is a p-group.

Proof. Since L act nilpotenly in the p-group R, coprime actions shows that OppLq centralizes
R. By hypothesis, CHpRq ď OppRq. So OppLq ď R and OppLq is p-group. Thus OppLq “ 1, and L
is a p-group. l

1
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Lemma 1.4. Let L ď H. Suppose that H has characteristic p.

(a) Suppose that L acts nilpotently on OppHq. Then L is a p-group.
(b) Suppose that L ĲĲ H and L acts nilpotently on OppHq. Then L ď OppHq.
(c) Suppose that L centralizes the factors of an H-invariant series

1 “ A0 ď A1 ď . . . ď An´1 ď An “ OppHq.

Then L ď OppHq.

Proof. (a): Since H has characteristic p, CHpOppHqq ď OppHqq. Thus 1.3 applied with
R “ OppHq shows that L is a p-group.

(b): By (a) L is a p-group and since L ĲĲ H, this gives L ď OppHq.

(c): Since L centralizes Ai{Ai´1 and H acts on Ai{Ai´1 also xLHy centralizes Ai{Ai´1. Thus
xLHy acts nilpotently on OppHq, and (b) implies that xLHy ď OppHq. l

Lemma 1.5. Suppose that CHpY q has characteristic p for some Y ď OppHq. Then H is of
characteristic p.

Proof. Put D :“ CHpOppHqq. Note that D Ĳ H and since Y ď OppHq, D ď CHpY q. Thus

rOppCHpY qq, Ds ď D XOppCHpY qq ď OppDq ď OppHq ď CHpDq.

In particular, rOppCHpY qq, D,Ds “ 1 and D acts nilpotently on OppCHpY qq. By hypothesis CHpY q
has characteristic p, and since D ď CHpY q, 1.4 shows that D is a p-group. Since D Ĳ H this gives
D ď OppHq, and so H has characteristic p. l

Lemma 1.6. Let M P LH and K ďM with OppMq ď K. Then

LM pKq “ tL | K ď L ďMu “ tL P LHpKq | L ďMu.

Proof. Let L ď H.
Suppose that L P LM pKq. Then K ď L ďM by the definition of LM pKq.
Suppose that K ď L ď M . Then OppMq ď K ď L and since L ď M , OppMq ď OppLq. Thus

CHpOppLqq ď CHpOppMqq. Since M P LH , CHpOppMqq ď OppMq and so CHpOppLqq ď OppMq ď
OppLq. Hence L P LHpKq and L ďM .

Suppose that L P LHpKq and L ď M . Then CM pOppLqq ď CHpOppLqq ď OppLq and so
L P LM pKq. l

Lemma 1.7. (a) Suppose that OppHq “ 1. Then ΦpHq “ ΦpOppHqq.

(b) Suppose that H “ Op
1

pHq and OppHq “ 1. Then ZpHq ď ΦpHq.

Proof. (a): This the case π “ tpu of [MS6, 1.9].

(b): Since OppHq “ 1, ZpHq is a p1-group. Let M ď H such that H “ MZpHq. Then M Ĳ H

and H{M is a p1-group. As H “ Op
1

pHq we get H “ M . This shows that ZpHq is contained in
every maximal subgroup of H and so ZpHq ď ΦpHq. l

Lemma 1.8. Let Y be a finite p-group acting on H and L a Y -invariant subnormal subgroup of
F˚pHq. Suppose that OppHq “ 1.

(a) L “ rL, Y sCLpY q,
(b) rL, Y s “ rL, Y, Y s.
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Proof. It is evident that (a) implies (b). Thus, it suffices to show (a).
Set L0 :“ rL, Y sCLpY q. Note that L ĲĲ H and so by [KS, 6.5.7b], F˚pLq “ F˚pHq X L “ L

and so L “ F pLqEpLq, where EpLq is the subgroup generated by the components of L. OppF pLqq ď
OppHq “ 1 and F pLq is nilpotent, F pLq is a p1-group. Hence, the properties of coprime action show
that F pLq ď L0.

Let K be a component of L. Then rY,Ks Ĳ xKY y ĲĲ L, so by a fundamental property of
components either K ď rY,Ks or rY,K,Ks “ 1 (see for example 6.5.2 in [KS]). In the first case
K ď L0, in the second case with the Three Subgroup Lemma rY,Ks “ 1 since K is perfect. Thus,
also in this case K ď H0, and (a) follows. l

Lemma 1.9. Let K be subgroup of H with OppKq “ 1 and Y be a p-subgroup of NHpKq with
rK,Y, Y s “ 1. Then rK,Y s “ 1.

Proof. Since rK,Y, Y s “ 1,

Y Ĳ Y rK,Y s “ xY Ky “ xY Y Ky Ĳ KY

and so Y ď OppKY q. Thus

rK,Y s ď OppKY q XK ď OppKq “ 1.

l

Lemma 1.10. Let Y be a finite p-group acting on H, and let A and B be normal subgroups of
Y . Suppose that OppHq “ 1 and rF˚pHq, A,Bs ‰ 1. Let X be a Y -invariant subnormal subgroup of
F˚pHq minimal with respect to rX,A,Bs ‰ 1. Then

X “ rX,As and X “ rX,Bs.

Proof. By 1.8(b) applied to pX,Aq in place of pL, Y q we have rX,A,As “ rX,As. Hence
rX,A,A,Bs “ rX,A,Bs ‰ 1. So the minimal choice of X gives X “ rX,As.

Suppose that rX,AXBs ‰ 1. Then 1.8(b) applied with Y “ AXB shows

1 ‰ rX,AXBs “ rX,AXB,AXBs “ rX,AXB,AXB,AXBs ď rX,AXB,A,Bs.

Thus the minimal choice of X implies that X “ rX,AXBs and so also X “ rX,Bs.
Suppose next that rX,A X Bs “ 1. Since rA,Bs ď A X B this gives rA,B,Xs “ 1. Since

rX,A,Bs ‰ 1, the Three Subgroups Lemma shows that rX,B,As ‰ 1. As above, 1.8(b) gives
rX,B,Bs “ rX,Bs and so rX,B,B,As “ rX,B,As ‰ 1. Since rA,B, rX,Bss ď rrA,Bs, Xs “ 1
another application of the Three Subgroups Lemma yields rX,B,A,Bs ‰ 1 and the minimal choice
of X implies X “ rX,Bs. l

Lemma 1.11. Let A,B,K ď H with A “ rA,Bs and B ď K ĲĲ H. Then A ď K.

Proof. If K “ H the claim is obvious. In the other case there exists L Ĳ H such that
K ď L ‰ H since K ĲĲ H. Hence A “ rA,Bs ď rA,Ls ď L. Since also K ď L, we conclude that
A ď K by induction on |H|. l

Lemma 1.12. Let H be a group and G a function which assigns to each subgroup X of H a
NHpXq-invariant subgroup GpXq of H such that GpXq ď GpY q whenever X ď Y ď H.

Let A ĲĲ B ď H and suppose that GpAq “ GpCq for some C ď H with NHpGpAqq ď C. Then
GpAq “ GpBq.

Proof. By induction on the subnormal length of A in B we may assume that A Ĳ B. Then

B ď NHpAq ď NHpGpAqq ď C.

Thus A ď B ď C and
GpAq ď GpBq ď GpCq “ GpAq.

l
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Lemma 1.13. Let A ď H and K be the subnormal closure of A in H.

(a) K “ xAKy and NHpAq ď NHpKq.
(b) K “ AOppKq “ xAO

p
pKqy.

(c) If A is a p-group, then OppKq “ rOppKq, As.

Proof. (a): Note that A ď xAKy Ĳ K ĲĲ H and so K “ xAKy by the minimality of K. The
second statement should be evident.

(b): Note that K{OppKq is a p-group, and so AOppKq{OppKq is subnormal in K{OppKq. Hence
A ď AOppKq ĲĲ K ĲĲ H and K “ AOppKq by minimality of K. Thus using (a)

K “ xAKy “ xAAO
p
pKqy “ xAO

p
pKqy.

(c): By (c), K “ xAO
p
pKqy “ rOppKq, AsA. If A is a p-group, then OppKq ď rOppKq, As, and

(c) holds. l

Lemma 1.14. Put K :“ OppHq. Suppose that OppHq “ 1 and K is quasisimple. Then

(a) K “ F˚pHq.
(b) K “ rK,Y s ď xY Ky for all non-trivial p-subgroups Y of H.
(c) If C Ĳ H with K ę C, then C is a p1-group. In particular, H is p-irreducible.

Proof. (a): Note that K is a component of H and so K ď F˚pHq. Since OppHq “ 1, F pHq is
a p1-group. Thus F˚pHq “ F pHqEpHq ď OppHq “ K and so K “ F˚pHq.

(b): In particular, CHpKq ď ZpKq and so CHpKq is a p1-group. Thus rY,Ks ‰ 1, and since K
is perfect, rY,K,Ks ‰ 1. Hence rY,Ks ę ZpKq, and since K is quasisimple, K “ rY,Ks ď xY Ky.

(c) follows immediately from (b). l

Lemma 1.15. Suppose that OppHq “ 1, and let Y be a p-subgroup of H. Then

(a) rF˚pHq, Y s “ rF˚pKq, Y s “ rF˚pKq, Y, Y s for every K ĲĲ H with Y ď K,
(b) If rF˚pHq, Y s “ 1 then Y “ 1,
(c) If Y0 ď Y with rF˚pHq, Y, Y0s “ 1 then Y0 “ 1.

Proof. (a): Since OppHq “ 1, 1.8(b) gives rF˚pHq, Y s “ rF˚pHq, Y, Y s. Hence 1.11 implies
rF˚pHq, Y s ď K and so rF˚pHq, Y s ď F˚pHq XK. By [KS, 6.5.7b], F˚pHq XK “ F˚pKq. Thus

rF˚pHq, Y s “ rF˚pHq, Y, Y s ď rF˚pKq, Y s ď rF˚pHq, Y s,

and (a) holds.

(b): Since CHpF
˚pHqq ď F˚pHq, rF˚pHq, Y s “ 1 implies Y ď OppZpF

˚pHqqq ď OppHq “ 1.

(c): Note that rF˚pHq, Y0, Y0s ď rF
˚pHq, Y, Y0s “ 1. On the other hand, by 1.8, rF˚pHq, Y0s “

rF˚pHq, Y0, Y0s, so rF˚pHq, Y0s “ 1, and (b) gives Y0 “ 1. l

Lemma 1.16. Let N and E be subnormal subgroups of H. Suppose that E is a direct product of
perfect simple groups. Then

rN,Es “ 1 ðñ rF˚pNq, Es “ 1 ðñ N X E “ 1.

Proof. Note that F pEq “ 1 and E is generated by its components. If rN,Es “ 1, then also
rF˚pNq, Es “ 1.

Suppose that rF˚pNq, Es “ 1. Since F˚pN XEq ď F˚pEq XN we conclude that F˚pN XEq is
abelian. Hence F˚pN X Eq “ F pN X Eq ď F pEq “ 1 and so also N X E “ 1.

Suppose that N X E “ 1, and let K be a component of E. Then N XK “ 1 and so by [KS,
6.5.2], rN,Ks “ 1. Since E is generated by its components, this gives rN,Es “ 1. l

Lemma 1.17. Suppose that OppHq “ 1. Let Q be a p-subgroup of H, put L :“ rF˚pHq, Qs, and
let F be the largest normal subgroup of F˚pHq centralized by Q. Then the following hold:
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(a) F “ CF˚pHqpLQq.
(b) L “ rL,Qs.
(c) LX F ď ΦpLq.
(d) If B ď NHpQq is a p-subgroup with rL,Bs ď F , then rL,Bs “ 1.
(e) CHpFLq is a p1-group.

Proof. (a): Note that LQ “ rF˚pHq, QsQ “ xQF
˚
pHqy. Since F Ĳ F˚pHq and rF,Qs “ 1 we

conclude that F ď CF˚pHqpLQq. On the other hand CF˚pHqpLQq is a normal subgroup of F˚pHq
centralized by Q and so CF˚pHqpLQq ď F .

(b): Since OppHq “ 1 we can apply 1.8(b) and conclude that rF˚pHq, Qs “ rF˚pHq, Q,Qs.
Thus (b) holds

(c): Let N be a subgroup of L with L “ NpL X F q. It suffices to show that N “ L. By (a)
L “ NZpLq and thus L1 “ N 1. As L Ĳ F˚pHq and OppHq “ 1, OppLq “ L and L{L1 is a p1-group.
By (b) rL{L1, Qs “ L{L1 and since L{L1 is a p1-group we get CL{L1pQq “ 1. So F XL ď L1 ď N and
N “ L.

(d): By hypothesis, B ď NHpQq and rL,Bs ď F . Hence B normalizes rF˚pHq, Qs “ L and
rL,Bs ď LXF . By (c) LXF ď ΦpLq. Since L Ĳ F˚pHq we get from 1.8(a) that L “ rL,BsCLpBq.
Thus L “ ΦpLqCLpBq and so L “ CLpBq.

(e): Observe that

rF˚pHq, CHpFLqs ď F˚pHq X CHpFLq “: F0

Since FL Ĳ F˚pHq also F0 Ĳ F˚pHq. Hence 1.8(a) gives F0 “ rF0, QsCF0
pQq. Note that rF0, Qs ď

rF˚pHqQs ď L and CF0
pQq “ CF0

pLQq. By (a), CF0
pLQq ď F , so F0 ď LF . It follows that

rF˚pHq, CHpFLq, CHpFLqs “ 1. Let Y be a p-subgroup of CHpFLq. Then rF˚pHq, Y, Y s “ 1. Now
1.15(c) gives Y “ 1 since OppHq “ 1. Hence CHpFLq is a p1-group. l

Lemma 1.18. Suppose that H acts on the finite p-group P and rP,Hs ď Ω1ZpP q. Then
rΦpP q, Hs “ 1.

Proof. Since rP,H, P s “ 1, the Three Subgroups Lemma shows that rP 1, Hs “ 1, and since
rP,Hs is elementary abelian and central in P ,

papqh “ pahqp “ para, hsqp “ apra, hsp “ ap for all a P P and h P H,

and rP p, Hs “ 1. By [KS, 5.2.8], ΦpP q is the smallest normal subgroup of P that has elementary
abelian factor group, so ΦpP q “ P 1P p, and the lemma follows. l

Lemma 1.19. Suppose that H acts on a finite p-group P . Let Y ď CHpP
1q such that rP, Y s is

elementary abelian. Then OppxY Hyq centralizes ΦpP q.

Proof. Put P “ P {P 1 and L “ xY Hy. Since P is abelian and rP, Y s is elementary abelian we
have rP ,Ls “ xrP , Y sHy ď Ω1ZpP q. Thus by 1.18, rΦpP q, Ls “ 1. Note that L centralizes P 1 since
Y does. Since ΦpP q “ ΦpP q{P 1 we conclude that rΦpP q, L, Ls “ 1 and thus rΦpP q, OppLqs “ 1. l

Lemma 1.20. Let A and B be subgroups of H. Then CApbq “ CApBq for all b P BzCBpAq if
and only if CBpaq “ CBpAq for all a P AzCApBq.

Proof. Both statements just say that ra, bs ‰ 1 for all a P AzCApBq and b P BzCBpAq. l

For the next lemma recall from A.7(5) that W is a root offender on V if W is an offender on V
and

CV pW q “ CV pwq and rV,ws “ rV,W s for every w PW zCW pV q.

Lemma 1.21. Let V and W be elementary abelian p-subgroups of H with rV,W s ď V XW . Then
V is a root offender on W if and only if W is a root offender on V .
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Proof. We may assume that W is a root offender on V . Then by A.37(a) |V {CV pW q| “
|W {CV pW q|, and so V is an offender on W . By A.37(b) W is a strong dual offender on V . Hence
rv,W s “ rV,W s for all v P V zCV pW q. Moreover, by definition of a root offender CV pW q “ CV pwq
for all w P W zV , and so by 1.20 also CW pV q “ CW pvq for all v P V zCV pW q. Thus V is a root
offender on W . l

Lemma 1.22. Let V1 and V2 be elementary abelian p-subgroups of H with rV1, V2s ď V1 X V2,
and let Ki is a subfield of EndFppViq with |Ki| ą p, i “ 1, 2. Suppose that

(i) Vj acts Ki-semilinearly on Vi for all ti, ju “ t1, 2u.
(ii) V2 does not act K1-linearly on V1.

Then p “ 2 and, for or all ti, ju “ t1, 2u, |Ki| “ |Vi| “ 4, dimKi Vi “ 1, |Vi{CVipVjq| “ 2, and Vj
does not act Ki-linearly on Vi.

Proof. Let ti, ju “ t1, 2u and put Wj :“ CVj pKjq, so Wj is the largest subgroup of Vj acting
Ki-linearly on Vi and Vj{Wj is isomorphic to subgroup of AutpKiq. Since AutpKiq is cyclic and Vj is
elementary abelian, we conclude that |Vj{Wj | ď p. By hypothesis, V2 does not act K1-linearly in V1,
so |V1{W1| “ p. Note that rV1,W2s ď rV1, V2s ď V1XV2 ď CV1

pV2q. Since W2 acts K1-linearly on V1,
rV1,W2s is a K1-subspace of V1 centralized by V2. Since V2 does not act K1-linearly on V1, this shows
that rV1,W2s “ 1. Observe that CV2pV1q ďW2, so W2 “ CV1pV2q. Thus |V2{CV2pV1q| “ |V2{W2| “ p.

Let Ei :“ CKipVjq, so Ei is the largest subfield of Ki such that Vj acts Ei-linearly on Vi. Then
CV2

pV1q is an E2-subspace of V2, so V2{CV2
pV1q is an E2-space. As |V2{CV2

pV1q| “ p, this shows that
|E2| “ p. Since |K2| ą p, we infer E2 ‰ K2. So also V1 does not act K2-linearly on V2, and the setup
is symmetric in 1 and 2. In particular, also p “ |V1{W1| ď |AutpK2q|.

Note that any E2-hyperplane of V2 contains a K2-hyperplane of V2. In particular, CV2pV1q

contains a K2-hyperplane H2. As V1 centralizes H2 and does not act K2-linearly, we conclude
that H2 “ 1. So dimK2

V2 “ 1. In particular, the action of V1 on V2 is isomorphic to the action
on V2 on K2. It follows that |CV2

pV1q| “ |CK2
pV1q| “ |E2| “ p. As |V2{CV2

pV1q| “ p this gives
|K2| “ |V2| “ p2, so |AutpK2q| “ 2 and p “ 2. By symmetry, |K1| “ |V1| “ p2 “ 4, and the lemma
is proved. l

Lemma 1.23. Let π be a set of primes, and let A and B be subnormal subgroups of H. Suppose
that A is a π-group and B “ OπpBq. Then A normalizes B and B “ OπpABq.

Proof. If B “ H then the claim is obvious. Assume that B ‰ H. Then there exists N Ĳ H
such that B ď N and N ‰ H. As A ĲĲ H, we have A ď OπpHq Ĳ H and so rA,Bs is a π-group.
Since rA,Bs Ĳ xA,By ĲĲ H and rA,Bs ď N , we get that rA,Bs, B and N satisfy the hypothesis
in place of A, B and H. Hence by induction on |H|, B “ OπprA,BsBq. Since rA,BsB “ xBAy is
normalized by A, we conclude that A normalizes B. Thus AB{B is a π-group and so

OπpBq ď OπpABq ď B “ OπpBq.

l

1.2. The Largest p-Reduced Elementary Abelian Normal Subgroup

Lemma 1.24. Let T P SylppHq and L,M ď H with T ď LXM . Suppose that L and M are of
characteristic p and put T0 :“ CT pYLq and L0 :“ NLpT0q.

(a) T0 P SylppCHpYLqq.
(b) Suppose that LCHpYM q “MCHpYM q. Then YM ď YL.
(c) If L ďM and Y is a p-reduced elementary abelian normal subgroup of L, then xYM y is a

p-reduced elementary abelian normal p-subgroup of M .
(d) ZL is a p-reduced elementary abelian normal p-subgroup of L.
(e) ZL “ Ω1ZpLqrZL, O

ppLqs and rZL, Ls “ rZL, O
ppLqs.

(f) If L ďM , then YL ď YM .
(g) OppLq ď T0 ď CLpYLq and Ω1ZpT q ď ZL ď YL ď Ω1ZpOppLqq.
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(h) Suppose that L ď M and M Ď LCHpY q for some Y ď H with YM ď Y . Then YL “ YM
and LCHpYLq “MCHpYLq.

(i) L “ L0CLpYLq, T0 “ OppL0q, CT pT0q ď T0, and YL “ Ω1ZpT0q “ YL0 .
(j) Suppose that MCHpYLq “ LCHpYLq and put L˚ “ NM pT0q. Then YL˚ “ YL and

LCHpYLq “ L˚CHpYLq.
(k) If CLpYLq is p-closed, then YL “ Ω1ZpOppLqq and OppLq “ T0 P SylppCHpYLqq.

Proof. Note first that YM ď OppMq ď T ď L. For the definition of a p-reduced module and
nilpotent action see Definition A.4.

(a): Since T P SylppHq and T ď L ď NHpYLq, T P SylppNHpYLqq, and since CHpYLq Ĳ NHpYLq
we conclude that T0 “ CT pYLq “ T X CHpYLq P SylppCHpYLqq.

(b): Observe that L normalizes YM and since YM ď L, YM ď OppLq. We have

OppL{CLpYM qq – OppLCHpYM q{CHpYM qq “ OppMCHpYM q{CHpYM qq – OppM{CM pYM qq “ 1,

and so YM is p-reduced for L. Thus YM ď YL.

(c): This is [MS4, (2.2)(b].

(d): Note that Ω1ZpT q is p-reduced for T , T ď L and ZL “ xΩ1ZpT q
Ly. So (d) follows from (c).

(e): Note that L normalizes Ω1ZpT qrZL, Ls. Since ZL “ xΩ1ZpT q
Ly we get ZL “ Ω1ZpT qrZL, Ls.

Hence Gaschütz’s Theorem gives ZL “ CZLpLqrZL, Ls “ Ω1ZpLqrZ,Ls, see C.17. This implies
rZL, Ls “ rZL, L, Ls and so rZL, Ls “ rZL, O

ppLqs, and (e) is proved.

(f): This is [MS4, (2.2)(c)].

(g): By the definition of ZL we have Ω1ZpT q ď ZL. By (d), ZL is p-reduced for L and so
ZL ď YL. Since YL is a normal p-subgroup of L, YL ď OppLq. As OppL{CLpYLqq “ 1 we have
OppLq ď CLpYLq. Thus YL ď Ω1ZpOppLqq and OppLq ď CT pYLq “ T0.

(h): By (f), YL ď YM . By hypothesis YM ď Y and M Ď LCHpY q. Thus CHpY q ď CHpYM q and
so M Ď LCHpYM q. As L ď M this implies LCHpYM q “ MCHpYM q. So (b) gives YM ď YL. Hence
YL “ YM and (h) holds.

(i): Recall that T0 ď L. By (a) T0 P SylppCHpYLqq and so also T0 P SylppCLpYLqq. A Frattini
argument gives L “ L0CLpYLq, and T ď L0 since T0 Ĳ T . Since L is of characteristic p and
OppLq ď T0 ď OppL0q, also L0 is of characteristic p. So (h) (applied with L “ L0, M “ L and
Y “ YL) implies that YL0

“ YL. By (g) YL0
ď Ω1ZpOppL0qq. We record

YL “ YL0
ď Ω1ZpOppL0qq.

Let U be the largest normal subgroup of L0 acting nilpotently on Ω1ZpOppL0qq. Then U acts
nilpotently on YL0

. As YL0
is p-reduced for L0, A.10 implies that U ď CL0

pYL0
q. So

OppL0q ď U X T ď CT pYL0
q “ CT pYLq “ T0 ď OppL0q.

Therefore, OppL0q “ T0. Note that OppL0q ď CL0
pΩ1ZpOppL0qqq and thus

U “ pU X T qCL0
pΩ1ZpOppL0qqq “ CL0

pΩ1ZpOppL0qqq.

Now A.10 shows that Ω1ZpOppL0qq is p-reduced for L0 and thus

YL ď Ω1ZpT0q “ Ω1ZpOppL0qq ď YL0
“ YL.

Since L0 is of characteristic p and T0 “ OppL0q, CL0
pT0q ď T0 and (i) is proved.

(j): By hypothesis MCHpYLq “ LCHpYLq and so M normalizes YL. Hence T0 is a Sylow p-
subgroup of CM pYLq and CM pYLq is a normal subgroup of M . So by a Frattini argument M “

NM pT0qCM pYLq “ L˚CM pYLq. Thus LCHpYLq “ MCHpYLq “ L˚CHpYLq. By (i), YL “ Ω1ZpT0q

and CT pT0q ď T0. Since T0 ď OppL
˚q we conclude YL˚ ď Ω1ZpT0q “ YL. By (b), YL ď YL˚ and so

YL “ YL˚ .

(k): By (g) OppLq ď T0. Since CLpYLq is p-closed and T0 P SylppCLpYLqq, we have

T0 “ OppCLpYLqq ď OppLq ď T0.
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So T0 “ OppLq, and (i) shows that YL “ Ω1ZpT0q “ Ω1ZpOppLqq. By (a), T0 P SylppCHpYLqq and
so (k) is proved. l

Lemma 1.25. Suppose that H is of parabolic characteristic p. Let T P SylppHq and L P LHpT q.
Then there exist M P MHpT q and L˚ P LHpT q such that L˚ ď M , YL “ YL˚ , YL ď YM and
LCHpYLq “ L˚CHpYLq.

Proof. Put T0 :“ CT pYLq and L1 :“ LCHpYLq. Then YL Ĳ L1 and CHpOppL1qq ď CHpYLq ď
L1. Since H is of parabolic characteristic p we conclude that CHpOppL1qq “ CL1

pOppL1qq ď OppL1q,
so L1 P LHpT q. Note that LCHpYLq “ L1 “ L1CHpYLq and so by 1.24(b), YL ď YL1

. Thus
CHpYL1q ď CHpYLq.

Suppose that there exist M PMHpT q and L˚1 P LHpT q such that L˚1 ďM , YL1 “ YL˚1
ď YM and

L1CHpYL1
q “ L˚1CHpYL1

q. As CHpYL1
q ď CHpYLq this gives L1CHpYLq “ L˚1CHpYLq. Together

with L1 “ LCHpYLq we get

LCHpYLq “ L1 “ L1CHpYLq “ L˚1CHpYLq.

Put L˚ “ NL˚1
pT0q. Since T ď LXL˚1 we can apply 1.24(j) with pL˚1 , Lq in place of pM,Lq and

conclude that YL “ YL˚ and LCLpYLq “ L˚CL˚pYLq. Also T ď L˚ ď L˚1 ď M , and thus 1.24(f)
with pL˚,Mq in place of pL,Mq yields YL˚ ď YM . So the lemma holds in this case.

Hence it suffices to prove the lemma for L1 in place of L. Since CHpYL1
q ď CHpYLq ď L1 we

therefore may assume that CHpYLq ď L. By [MS4, Theorem 1.3] there exists a set F of parabolic
subgroups of H containing T such that the following hold:

(i) For every L P LHpT q there exists F P F such that L Ď CHpYLqF and YL ď YF .
(ii) If L P LHpT q and F P F with F Ď CHpYF qL and YF ď YL, then YL “ YF and L ď F .

According to (i) there exists F P F with L Ď CHpYLqF and YL ď YF . Since CHpYLq ď L, we
get L ď CLpYLqF and so L “ CLpYLqpLX F q “ pLX F qCLpYLq. In particular, by 1.24(h) (applied
with pL,LX F, YLq in place of pM,L, Y q) YL “ YLXF .

Let M ď F be minimal with T ď M and F “ MCF pYF q. By 1.24(f), YLXF ď YF and so
YL “ YLXF ď YF . Then CF pYF q ď CHpYLq ď L, F “MCFXLpYF q and LXF “ pLXMqCLXF pYLq.
Thus L “ pLXF qCHpYLq “ pLXMqCHpYLq. Since LXM ď L, 1.24(h) gives YL “ YLXM and since
L XM ď M , 1.24(f) gives YLXM ď YM . Thus if M P MHpT q then L˚ :“ L XM has the required
properties. It remains to show that M PMHpT q.

By [MS4, 3.5] F is the unique maximal p-local subgroup containing M . Since H is of parabolic
characteristic p, both F and M are of characteristic p. Since M ď F and F “MCF pYF q we conclude
from 1.24(h) that YM “ YF . Thus F “ MCF pYM q and MpMq “ tF u. This shows condition (i) of
the basic property for M .

Put M0 :“ NM pCT pYM qq. Since OppMq ď OppM0q and

CHpOppM0qq ď CHpOppMqq ď OppMq ď OppM0q,

M0 P LHpT q. Moreover, the minimality of M and a Frattini argument show that M “ M0. Thus
CM pYM q is p-closed. In particular, by 1.24(k), OppMq P SylppCM pYM qq.

Let X be a maximal subgroup of M containing OppMq. Assume that XCM pYM q “ M . Since
F “ MCM pYF q and YF “ YM we get F “ XCF pYF q. In addition, X contains a Sylow p-subgroup
of M since OppMq P SylppCM pYM qq. Hence without loss T ď X, which contradicts the minimal
choice of M . Thus XCM pYM q ‰M , i.e. CM pYM q ď X, and so CM pYM q{OppMq ď ΦpM{CM pYM qq.
So also condition (ii) of the basic property holds for M . l

Lemma 1.26. Let L ĲĲ H. Then

(a) YH X L “ YH X YL is p-reduced for L.
(b) CLpYLq “ CLpYHq “ CLpYH X Lq. In particular rYL, Ls “ 1 if and only if rYH , Ls “ 1.
(c) Suppose that OppHq ď L. Then rYL, Ls “ 1 if and only if rYH , Hs “ 1.
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Proof. Let R be the inverse image of OppL{CLpYH X Lqq in L, so R Ĳ L ĲĲ H. Then OppRq
centralizes YH X L. Note that OppRq “ OppRYHq Ĳ RYH since R ĲĲ H, and so rOppRq, YH s ď
OppRq X YH ď YH X L. Hence

rYH , O
ppRqs “ rYH , O

ppRq, OppRqs ď rYH X L,O
ppRqs “ 1.

Thus R acts nilpotently on YH . Since R ĲĲ H and YH is a p-reduced H-module, A.10 now implies
that R centralizes YH . Hence

CLpYH X Lq ď R ď CLpYHq ď CLpYH X Lq,

and thus

p˚q CLpYH X Lq “ R “ CLpYHq.

In particular, YH XL is p-reduced for L. Hence YH XL ď YL and YH XL “ YH X YL. Thus (a)
holds.

(b): By induction we may assume that L Ĳ H. Then H acts on YL and by A.15(b) (applied
with V “ YL) CLpYYLpLqq “ CLpYYLpHqq, where YYLpHq is the largest p-reduced H-submodule of
YL. Since YL is p-reduced for L, YYLpLq “ YL, and since YYLpHq is p-reduced for H, YYLpHq ď YH .
So

CLpYHq ď CLpYYLpHqq “ CLpYYLpLqq “ CLpYLq ď CLpYH X YLq “ CLpYHq,

where the last equality follows from (˚). Hence (b) holds.

(c): By (b), rYL, Ls “ 1 if and only if rYH , Ls “ 1. If rYH , Ls “ 1 then rYH , O
ppHqs “ 1 and

since YH is p-reduced, also rYH , Hs “ 1. Hence rYH , Ls “ 1 if and only if rYH , Hs “ 1. l

Lemma 1.27. Suppose that H has characteristic p. Let T P SylppHq.

(a) (Kieler Lemma) Let E be a subnormal subgroup of H. Then

CEpΩ1ZpT qq “ CEpΩ1ZpT XNqq.

(b) Let V be an elementary abelian normal p-subgroup of H containing Ω1ZpT q. Then

CHpΩ1ZpT qq “ CH
`

rV,OppHqs X Ω1ZpT q
˘

.

Proof. (a): If E “ 1 this if obvious. So suppose that E ‰ 1. By 1.2(a), E has characteristic
p and so OppEq ‰ 1. In particular, p divides |E|. Since H has characteristic p, H also has local
characteristic p, see 1.2(c). Now (a) follows from [MS6, 1.5].

(b): By [MS6, 1,6] CEpCV pT qq “ CEpCrV,EspT XEqq for any subnormal subgroup E of H. For
E “ H this gives

p˚q CHpCV pT qq “ CHpCrV,HspT qq.

Put rV,H, 1s “ rV,Hs and rV,H, ns “ rrV,H, n´1s, Hs for n ě 2. Now an elementary induction
on n using (˚) gives

CHpCV pT qq “ CHpCrV,H,nspT qq.

For n large enough, rV,H, ns “ rV,OppHqs since H acts nilpotently on V {rV,OppHqs. Thus

CHpCV pT qq “ CHpCrV,OppHqspT qq.

Since Ω1ZpT q ď V and V is elementary abelian,

Ω1ZpT q “ CV pT q and CrV,OppHqspT q “ rV,O
ppHqs X Ω1ZpT q.

So (b) holds. l

Lemma 1.28. Suppose that H is of characteristic p and N ĲĲ H.

(a) CN pZHq “ CN pZN q.
(b) The following are equivalent:

(1) rΩ1ZpT q, N s “ 1 for some T P SylppHq.
(2) rΩ1ZpRq, N s “ 1 for some R P SylppNq.
(3) rZN , N s “ 1.
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(4) rZH , N s “ 1.

Proof. Let T P SylppHq. By the Kieler Lemma 1.27

p˚q CN pΩ1ZpT qq “ CN pΩ1ZpT XNqq.

(a): Note that SylppNq “ tT XN | T P SylppHqu. So (a) follows from p˚q and the definition of
ZH and ZN .

(b): Since T XN P SylppNq for T P SylppHq, p˚q shows that (b:1) implies (b:2). Since N acts
transitively on SylppNq, (b:2) implies (b:3). By (a), (b:3) implies (b:4). Clearly (b:4) implies (b:1).

l

1.3. p-Irreducible Groups

Lemma 1.29. Suppose that H is p-irreducible. Let T P SylppHq.

(a) H “ xTHy “ H 1T .
(b) OppHq ď H 1.
(c) OppHq “ rOppHq, Y s ď xY O

p
pHqy “ xY Hy for every Y Ĳ T with Y ę OppHq.

Proof. (a): Since H is not p-closed, T is not normal in H. Hence xTHy is not p-closed. By
definition of p-irreducible this gives OppHq ď xTHy, and so H “ OppHqT “ xTHy. Since H 1T Ĳ H,
we have H “ xTHy ď H 1T , and thus H “ H 1T .

(b): This is an immediate consequence of H “ H 1T .

(c): Since Y ę OppHq, and xY Hy Ĳ H, we get that Y ę OppxY
Hyq. Hence xY Hy is not p-closed,

and since H is p-irreducible, OppHq ď xY Hy. Since T normalizes Y and H “ OppHqT , we have
xY Hy “ xY O

p
pHqy and so

OppHq ď xY O
p
pHqy “ rOppHq, Y sY.

Hence OppHq ď rOppHq, Y s, and (c) is proved. l

Lemma 1.30. (a) Let D be a normal p-subgroup of H. Then H is (strongly) p-irreducible
if and only if H{D is (strongly) p-irreducible.

(b) Let K ď H and D a K-invariant p-subgroup of H. Then K is (strongly) p-irreducible,
if and only if KD is (strongly) p-irreducible and if and only if KD{D is (strongly) p-
irreducible.

Proof. (a): Let N Ĳ H and put H :“ H{D. Since D is a p-group

N p-closed ðñ ND p-closed ðñ N p-closed.

Moreover, since for every X ď H, OppXq does not have any non-trivial p-factor groups, one

easily gets OppNq “ OppNDq and OppHq “ OppHq. This gives

OppHq ď N ðñ OppHq ď ND ðñ OppHq ď N,

and
rN,Hs ď OppHq ðñ rND,Hs ď OppHq ðñ rN,Hs ď OppHq.

Now (a) follows from the definition of (strongly) p-irreducible.

(b): Since K XD is a normal p-subgroup of K, (a) shows that K is (strongly) p-irreducible if
and only if K{K XD is (strongly) p-irreducible. Also D is a normal p-subgroup of KD and so KD
is (strongly) p-irreducible if and only KD{D is (strongly) p-irreducible. Since K{K XD – KD{D,
this gives (b). l

Lemma 1.31. Every strongly p-irreducible finite group is p-irreducible.

Proof. Suppose H is strongly p-irreducible. Then H is not p-closed. Let N Ĳ H. If rN,Hs ď
OppHq, then N{N XOppHq is abelian and N is p-closed. If rN,Hs ę OppHq, then the definition of
strongly p-irreducible gives OppHq ď N . Thus H is p-irreducible. l
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Lemma 1.32. Suppose that there exists a non-empty H-invariant set of subgroups K of H such
that for R :“ xKy and E P K:

(i) H acts transitively on K.
(ii) OppHq ď R.
(iii) EOppHq Ĳ ROppHq.
(iv) E is strongly p-irreducible.

Then the following hold:

(a) For E,K P K either Op
`

EOppHq
˘

“ Op
`

KOppHq
˘

or rE,Ks ď OppHq.
(b) H is p-irreducible.

Proof. Put H :“ H{OppHq. Then H and K satisfy (i)–(iii). By (iv) E is strongly p-irreducible

and so by 1.30(b) also E “ EOppHq{OppHq is strongly p-irreducible. Thus (iv) holds for E. Hence

H and K satisfy (i) –(iv).
Moreover, if the claims (a) and (b) hold for H and K, then they also hold for H and K, again

with the help of 1.30 in the case of (b). Thus, we may assume that OppHq “ 1. Then E Ĳ R. As
H acts transitively on K, R “ xEHy. Since E is strongly p-irreducible, E is p-irreducible by 1.31.
Hence 1.29(b) gives OppEq ď E1 and so

p˚q OppRq “ xOppEqHy ď xE1Hy ď R1.

(a): Let E,K P K. Since E and K normalize each other, D :“ rK,Es ď KXE, and D is normal
in E and K. Since E is strongly p-irreducible, either D ď ZpEq or OppEq ď D and by symmetry
also D ď ZpKq or OppKq ď D.

If OppEq ď D and OppKq ď D, then OppKq “ OppDq “ OppEq, and (a) holds. Thus, we
may assume without loss that D ď ZpEq. Pick TE P SylppEq. Since OppEq ď OppHq “ 1, both
ZpEq and D are p1-groups. Note that TE centralizes D. We conclude that DTE “ D ˆ TE and
TE “ OppDTEq. Since K normalizes DTE , it also normalizes TE , and rTE ,Ks ď TE XD “ 1. We
conclude that K centralizes every Sylow p-subgroup of E. Since E is p-irreducible, 1.29(a) gives
E “ xTEE y. Hence rE,Ks “ 1, and (a) is proved.

(b): Let N be a normal subgroup of H. We need to show that OppHq ď N or N is p-closed.
Suppose first that OppEq ď N . Then by p˚q OppRq “ xOppEqHy ď N . By (ii) OppHq ď R and so
OppHq ď OppRq ď N .

Suppose next that OppEq ę N for all E P K. Since E is strongly p-irreducible by (iv), this gives
rE XN,Es ď OppEq “ 1. Since E Ĳ R, rR XN,Es ď E XN . So rR XN,E,Es “ 1 and with the
Three Subgroups Lemma rR X N,E1s “ 1. Since R X N Ĳ H we get rR X N, xE1Hys “ 1. By p˚q,
OppRq ď xE1Hy, and thus rRXN,OppRqs “ 1. In particular, rRXN,OppRXNqs “ 1, so RXN is
p-closed. As OppHq “ 1 this shows that R XN is a p1-group. Since rR XN,OppRqs “ 1, R and so
also E acts a p-group on N XR. Thus coprime action gives rRXN,Es “ rRXN,E,Es “ 1. Since
this holds for all E P K and since R “ xKy this gives rR XN,Rs “ 1. Hence rN,R,Rs “ 1 and by
the Three Subgroups Lemma, rR1, N s “ 1. By p˚q OppRq ď R1 and thus rOppRq, N s “ 1. By (ii)
OppHq ď OppRq. It follows that rOppHq, N s “ 1, so rOppNq, N s “ 1, and N is p-closed. l

Lemma 1.33. Suppose that H is p-irreducible. Let V be an FpH-module with rV,OppHqs ‰ 0.

(a) CHpV q is p-closed.
(b) CT pV q ď OppHq for all p-subgroups T of H.

Proof. Note that OppHq ę CHpV q. Hence (a) follows from the definition of p-irreducible, and
(b) follows from (a). l

Lemma 1.34. Suppose that H is p-irreducible. Let V be an FpH-module with rV,OppHqs ‰ 1
and rV,OppHqs “ 1.

(a) CT pV q “ T XOppHq for all p-subgroups T of H.
(b) V is p-reduced for H.
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(c) Let U be an H-submodule of V minimal with rU,OppHqs ‰ 0. Then U is a quasisimple
H-module.

Proof. (a): By 1.33(a), CT pV q ď OppHq. Since rV,OppHqs “ 0, this gives (a).

(b): Let R{CHpV q “ OppH{CHpV qq. Then OppRq ď CHpV q. Since OppOppHqq “ OppHq ę
CHpV q this gives OppHq ę R. The definition of p-irreducible now shows that R is p-closed. Since
OppRq ď OppHq ď CHpV q we conclude that R{CRpV q is a p1-group. Thus R “ CHpV q and V is
p-reduced.

(c): Recall from the definitions, see A.2, that U is a perfect H-module if 0 ‰ U “ rU,Hs and
that U is a quasisimple H-module if U is perfect and p-reduced for H and U{CU pO

ppHqq is a simple
H-module.

Since rU,OppHqs ‰ 0 we have rU,OppHqs ę CU pO
ppHqq. By minimality of U , CU pO

ppHqq is
the unique maximal H-submodule of U and so U “ rU,OppHqs and U{CU pO

ppHqq is simple. In
particular, U “ rU,Hs and thus U is a perfect H-module. By (b) applied to U , U is p-reduced for
H. Thus U is H-quasisimple. l

Lemma 1.35. Suppose that H is p-irreducible and of characteristic p. Then either

YH “ Ω1ZpOppHqq and rYH , O
ppHqqs ‰ 1,

or
rYH , Hs “ 1 and rΩ1ZpOppHqq, O

ppHqs “ 1.

Proof. Put V :“ Ω1ZpOppHqq. Recall from 1.24(g) that YH ď V .
Assume first that rV,OppHqs ‰ 1. Then 1.34(b) shows that V is p-reduced for H. Hence

V ď YH . Since YH ď V this gives V “ YH .
Assume next that rV,OppHqs “ 1. Then rYH , O

ppHqs “ 1 since YH ď V , and H{CHpYHq is a
p-group. Since YH is p-reduced this gives rYH , Hs “ 1. l

1.4. Y -Minimal Groups

Recall from the introduction:

Definition 1.36. H is Y -minimal for Y ď H, if H “ xY Hy and Y -is contained in unique
maximal subgroup of H; and H is p-minimal if H is T -minimal for T P SylppHq.

Lemma 1.37. Suppose that H is p-minimal. Then H is p-irreducible.

Proof. Let T P SylppHq. By the definition of p-minimality, H “ xTHy and T is contained in

a unique maximal subgroup M of H. Hence T ď M ă H, xTHy ę M and T đ H. So H is not
p-closed.

Let N Ĳ H. Then either NT “ H or N ďM . In the first case OppHq ď N . In the second case
by a Frattini argument H “ NNHpN X T q, so T ď NHpN X T q ę M and thus NHpT X Nq “ H.
Hence T XN ď OppHq, and N is p-closed. l

Lemma 1.38. Suppose that H is p-minimal and N Ĳ H. Then either H{N is a p-group or H{N
is p-minimal.

Proof. Let T P SylppHq. Since H is p-minimal, H “ xTHy and T is contained in a unique

maximal subgroup M of H. If N ď M , then H{N “ xpTN{NqH{N y and M{N is the unique
maximal subgroups of H{N containing TN{N , and so H{N is p-minimal. So suppose N ę M .
Since T ď NT and NT ęM , NT is not contained in any maximal subgroup of H. Thus NT “ H
and H{N is a p-group. l

Lemma 1.39. Suppose that there exists a non-empty H-invariant set of subgroups K of H such
that for R :“ xKy and E P K:

(i) H acts transitively on K.
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(ii) OppHq ď R.
(iii) EOppHq Ĳ ROppHq.
(iv) E is p-minimal .

Then H is p-minimal.

Proof. Put H :“ H{OppHq. Clearly, E is p-minimal since E is. Hence H and K satisfy (i) –

(iv). Moreover, H is p-minimal if and only if H is p-minimal. Thus, we may assume that OppHq “ 1.
In particular, by (iii), E Ĳ R for E P K.

Since OppHq ď R, H “ RT . Since E Ĳ R we know that R acts trivially on K, while by (i)
H “ RT acts transitively on K. Hence T acts transitively on K.

Let E P K. Then E Ĳ R Ĳ H and so T X E P SylppEq. Since E is p-minimal, T X E is

contained in a unique maximal subgroup ET of E and E “ xpT X EqEy ď xTHy. Thus R ď xTHy
and H “ RT “ xTHy. Put D :“

Ş

EPKNRpET q. Suppose that H “ DT . Then OppHq ď D and so
also OppEq ď D. Hence

E “ OppEqpE X T q “ OppEqET ď DET ď NRpET q.

But then xpE X T qEy ď ET , a contradiction since E is p-minimal. Thus H ‰ DT .
We will show that DT is the unique maximal subgroup of H containing T . For this let M ď H

with T ďM . Suppose first that M XE ę ET for some E P K. Since T XE ďM XE and ET is the
unique maximal subgroup of E containing T X E, this gives E “ M X E ď M . The transitivity of
T on K now shows that R “ xKy “ xET y ďM and H “ RT “M .

Suppose next that M X E ď ET for all E P K. Since T X E ď M X E, ET is the unique
maximal subgroup of E containing M X E. Note that M X R normalizes E and M X E and so
M X R normalizes ET . Since this holds for all E P K, M X R ď D. From T ď M ď H “ RT we
have M “ pM XRqT and so M ď DT .

We have proved that DT is the unique maximal subgroup of H containing T and that H “ xTHy.
Thus H is p-minimal. l

Lemma 1.40. Let L be a group acting on a group V . Suppose that X ď L and g P L such that
rV,X,Xs “ 1 and L “ xX,Xgy. Then for W :“ rV,Ls

W “ rV,XsrV,Xgs, CW pXq “ rV,Xs and CW pLq “ rV,Xs X rV,X
gs.

Proof. Clearly
W “ rV,Ls “ rV, xX,Xgys “ rV,XsrV,Xgs

and
CW pLq “ CW pxX,X

gyq “ CW pXq X CW pX
gq.

Thus, it remains to show that CW pXq “ rV,Xs.
Since rV,X,Xs “ 1, rV,Xs ď CW pXq. As W “ rV,XsrV,Xgs, this implies

CW pXq “ rV,XsprV,X
gs X CW pXqq.

Moreover,

rV,Xgs X CW pXq “ rV,X
gs X CW pXq X CW pX

gq “ rV,Xgs X CW pLq ď rV,X
gs X CW pgq ď rV,Xs.

This shows that CW pXq “ rV,Xs. l

Lemma 1.41 (L-Lemma). Suppose that H is p-minimal. Let T P SylppHq, and A ď T such that
A ę OppHq. Also let M be the unique maximal subgroup of H containing T . Then there exists a
subgroup L ď H with AOppHq ď L satisfying:

(a) AOppLq is contained in a unique maximal subgroup L0 of L, and L0 “ L XMg for some
g P H.

(b) L “ xA,AxyOppLq for every x P LzL0.

Proof. This is the L-Lemma on page 34 of [PPS]. Note that although formally the L-Lemma
was proved under Hypothesis 1 of Section 3 in [PPS], this hypothesis was never used in the proof.l
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Lemma 1.42. Let L be a finite group and L0 a maximal subgroup of L, and let Y ď T P SylppL0q.
Suppose that L is Y -minimal. Then the following hold:

(a) Y ę OppLq.
(b) NLpT q ď L0 and OppLq ď L0. In particular, T P SylppLq.
(c) NLpL0q “ L0.
(d)

Ş

LL0 {OppLq “ ΦpL{OppLqq. In particular,
Ş

LL0 is p-closed.
(e) Let N Ĳ L with N ď L0. Then N{OppNq is a nilpotent p1-group. In particular, N is

p-closed.
(f) L “ xY, Y gy for each g P LzL0.
(g) Y X Y g “ CY pLq if Y is abelian and g P LzL0.

Proof. (a): By [MS6, Lemma 2.5(b)] Y is not subnormal in L and so Y ę OppLq.

(b): By [MS6, Lemma 2.5(h)], L0 contains the normalizer of a Sylow p-subgroup of L. Hence
NLpT q ď L0 and OppLq ď L0.

(c): See [MS6, Lemma 2.5(b)].

(d): Put D :“
Ş

LL0 . By [MS6, Lemma 2.7(c)] applied to L{OppLq, D{OppLq is a p1-group and
D{OppLq “ ΦpL{OppLqq. In particular, D is p-closed and so (d) holds.

(e): Since N ď
Ş

LL0 , this follows from (d).

(f): See [MS6, Lemma 2.5(c)].

(g): Let Y be abelian and g P LzL0. By (f) L “ xY, Y gy. Thus Y X Y g ď CY pLq, and clearly
CY pLq ď Y X Y g. l

Lemma 1.43. Let L be a finite group and L0 a maximal subgroup of L, and let Y be an elementary
abelian p-subgroup of L0. Suppose that

(i) L is Y -minimal and of characteristic p, and
(ii) OppLq ď NLpY q.

Put
A :“ xpOppLq X Y q

Ly and L :“ L{CY pLq,

and let B be an L-invariant subgroup of A. Then the following hold for every g P LzL0:

(a) ΦpAq “ A1 “ rAX Y,As “ rAX Y,AX Y gs ď CY pLq.
(b) Y X Y g “ pAX Y q X pAX Y gq “ CY pLq “ CApLq.
(c) CLpaq ď L0 for every 1 ‰ a P AX Y .
(d) B X Y “ CBpY q “ CBpyq “ rB, ys for every y P Y zOppLq.

(e) B “ B X Y ˆB X Y g, B “ pB X Y qpB X Y gq and |B{B X Y | “ |B X Y {CBXY pLq|.
(f) If B ‰ 1 and b P BzY , then CY pbq “ CY pBq “ AX Y and CY pBq ď CY pbq ď AX Y .
(g) B X Y “ CBpY q “ CBpyq “ rB, Y sCBXY pLq “ rB, ysCBXY pLq for every y P Y zOppLq.
(h) CBpLq “ 1 and CBpO

ppLqq “ CBpLq “ B X CY pLq “ B X Y X Y g.
(i) ra, Y s X CY pLq “ 1 for all a P ZpAq.
(j) A ‰ 1, CApAX Y q “ ZpAqpAX Y q and CY pAq “ ZpAq X Y .
(k) Lg0 X Y “ AX Y .

(l) |Y {CY pBq| “ |Y {AX Y ||AX Y {CY pBq| ď |B{CBpY q||AX Y {CY pBq| if B ‰ 1.
(m) A{CApY q is elementary abelian, rY,As ‰ 1 and A acts nearly quadratically 1 on Y .
(n) |Y {CY pAq| ď |A{CApY q|

2.
(o) If B ď ZpAq, then B is a strong offender2on Y .
(p) L has no central chief factor on A.
(q) ZpAq “ Ω1ZpAq.

Proof.

1˝. L “ xY, Y gy.

1for the definition of nearly quadratic see A.1(4)
2for the definition of a strong offender see A.7(4)
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This holds by 1.42(f).

2˝. CY pLq “ Y X Y g “ pAX Y q X pAX Y gq.

By 1.42(g) Y X Y g “ CY pLq. Also CY pLq ď Y XOppLq ď A and so (2˝) follows.

3˝. A “ pAX Y qpAX Y gq.

Since A ď OppLq ď NLpY q X NLpY
gq, we get rA, Y s ď A X Y and rA, Y gs ď A X Y g. As

L “ xY, Y gy, we have rA,Ls “ rA, Y srA, Y gs. Thus

A “ xpOppLq X Y q
Ly “ xpAX Y qLy “ pAX Y qrA,Ls “ pAX Y qrA, Y srA, Y gs “ pAX Y qpAX Y gq,

and (3˝) is proved.

4˝. ΦpAq “ rAX Y,AX Y gs ď Y X Y g “ CY pLq. In particular, A is elementary abelian.

Since A X Y and A X Y g are elementary abelian, the first equality follows from (3˝). The
inequality holds since A normalizes Y and Y g, and the last equality follows from (2˝).

5˝. A “ AX Y ˆAX Y g. In particular, |A| “ |AX Y |2.

Since A is abelian, this follows from (2˝) and (3˝).

6˝. |B{CBpyq| “ |rB, ys| ď |CBpyq| for y P Y . In particular, |B| “ |rB, ys||CBpyq|.

Since B ď OppLq ď NLpY q we get rB, Y, Y s ď rY, Y s “ 1, and Y acts quadratically on the

abelian group B. Thus
φ : B Ñ CBpyq defined by b ÞÑ rb, ys

is a homomorphism with kerφ “ CBpyq and so (6˝) holds.

7˝. rA, ys “ rA, Y s “ CApyq “ AX Y “ CApY q for each y P Y zOppLq.

By 1.42(d),
Ş

LL0 is p-closed. Since y R OppLq, this implies y R
Ş

LL0 , and there exists h P L
such that y R Lh0 . Hence by 1.42(f) L “ xY h, Y hyy and thus also L “ xy, Y hy. In particular, h R L0,
and (5˝) applied to h in place of g gives

A “ AX Y ˆAX Y h.

Since Y h is abelian, AX Y h ď CApY
hq. Thus

CApyq XAX Y
h ď CApxy, Y

hyq “ C
AXY h

pLq ď AX Y XAX Y h “ 1,

and using that AX Y ď CApyq,

CApyq “ CApyq X pAX Y ˆAX Y
hq “ AX Y

`

CApyq XAX Y
h
˘

“ AX Y .

By (5˝) we get |A| “ |AX Y |2 “ |CApyq|
2 and by (6˝) applied to A in place of B, |A| “

|rA, ys||CApyq|. Thus |rA, ys| “ |CApyq|.

Moreover, the quadratic action of Y on A gives

rA, ys ď rA, Y s ď CApY q ď CApyq “ AX Y .

As |rA, ys| “ |CApyq|, equality holds everywhere and (7˝) is proved.

(a): This is (4˝).

(b): Note that CApLq ď CApY q. By (7˝) CApY q “ AX Y and so CApLq ď AXY XY g. By (2˝)
AX Y X Y g “ Y X Y g “ CY pLq ď CApLq. Hence CApLq “ AX Y X Y g, and (b) holds.

(c): Pick 1 ‰ a P AX Y . Then Y ď CLpaq and so either CLpaq ď L0 or CLpaq “ L. In the
second case a P AX Y g, and (5˝) yields a “ 1, a contradiction.

(d) and (e): By (7˝), rA, ys “ rA, Y s “ CApyq “ AX Y , and intersecting with B gives

rB, ys ď rB, Y s ď CBpyq “ B X Y ,

By (5˝) A “ AX Y ˆAX Y g and so B X Y XB X Y g “ 1. Thus

|B X Y |2 “ |B X Y B X Y g| ď |B|.
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In addition, by (6˝)

|rB, ys||CBpyq| “ |B|.

Combining the last three displayed equations we get

|B| “ |rB, ys||CBpyq| ď |B X Y |
2 “ |B X Y B X Y g| ď |B|,

and so (d) and (e) follow.

(f): Let b P BzY and y P Y zA. By (d) CBpyq “ B X Y , so y R CY pbq and CY pbq ď A X Y . By

(a) rA,AX Y s ď CY pLq and so AX Y ď CY pbq. Hence CY pbq “ AX Y , and (f) holds.

(g): This follows from (d) by taking preimages in B.

(h): We have

CBpLq ď CBpY q X CBpY
gq

(d)
“ B X Y XB X Y g

(e)
“ 1.

Hence also CBpO
ppLqq “ 1 and

CBpO
ppLqq ď CY pLq XB ď CBpLq ď CBpO

ppLqq.

(i): Let y P Y and a P ZpAq with ra, ys P CY pLq. If y P OppLq, then y P A and ra, ys “ 1. If

y R OppLq, then (e) gives a P CApyq “ AX Y . So a P Y and again ra, ys “ 1. As Y is abelian,
ra, Y s “ tra, ys | y P Y u, and we conclude that ra, Y s X CY pLq “ 1. Hence (i) holds.

(j): By (3˝) A “ pAX Y qpAX Y gq and so

CApAX Y q “ pAX Y qCAXY g pAX Y q “ pAX Y qZpAq.

Since rOppLq, Y s ď OppLq X Y ď A, we get that CY pAq centralizes the factors of the normal L-
series 1 ď CY pLq ď A ď OppLq. Since by Hypothesis (i) L has characteristic p, 1.4(c) shows that

CY pAq ď OppLq. As Y ę OppLq we conclude that A ‰ 1. Moreover, since CY pAq ď CY pAq ď OppLq

CY pAq “ AX CY pAq “ ZpAq X Y.

(k): Choose T0 P SylppL
g
0q with Lg0 X Y ď T0. Then choose x P Lg0 with Y gx ď T0. Note that

Lgx0 “ Lg0 and gx R L0. So replacing g by gx we may assume that Y g ď T0. If Lg0XY ď OppLq, then
Lg0XY “ OppLqXY “ AXY and (k) holds. Assume that L0XY ę OppLq. Since xLg0XY, Y

gy ď T0

CApT0q ď CApL
g
0 X Y q X CApY

gq
(7˝)
“ AX Y XAX Y g

(5˝)
“ 1,

which is impossible since T0 and A are p-groups and A ‰ 1 by (j).

(l): Suppose that B ‰ 1. Then

CY pLq ď CY pBq
(f)
ď AX Y and |B{CBpY q|

(e)
“ |B X Y {CBXY pLq| “ |B X Y |.

Since B ‰ 1 we can pick b P BzY . Then

|Y {AX Y |
(f)
“ |Y {CY pbq|

(6˝)
“ |rb, Y s| ď |B X Y | “ |B{CBpY q|.

Thus

|Y {CY pBq| “ |Y {AX Y ||AX Y {CY pBq| ď |B{CBpY q||AX Y {CY pBq|.

(m): By (a) A1 “ ΦpAq ď CY pLq ď CApY q, and so A{CApY q is elementary abelian. By (j),
A ‰ 1 and so rA,Ls ‰ 1. Since L “ xALy this gives rA, Y s ‰ 1. Note that rY,As ď A and, as seen
above, rA,As “ A1 ď CY pLq ď CY pAq. Thus A acts cubically on Y . By (g) AXY “ rY,AsCY pLq ď
rY,AsCY pAq and by (f) CY pAq ď AX Y . So

rY,AsCY pAq “ AX Y.

Let y P Y zrY,AsCY pAq. We conclude that y P Y zA “ Y zOppLq, and (g) gives rA, ysCY pLq “
AX Y . Since rY,AsCY pAq “ AX Y this implies

rA, ysCY pAq “ rY,AsCY pAq.

Hence A acts nearly quadratically on Y .
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(n): By bb CApY q “ AX Y and so CY pLq ď CApY q “ AX Y . We get

|AX Y {CApY q| ď |AX Y {CY pLq|
(e)
“ |A{AX Y |,

and so

|Y {CY pAq|
(l)
ď |A{AX Y ||AX Y {CY pAq| ď |A{AX Y ||AX Y {CY pLq| “ |A{AX Y |

2 “ |A{CApY q|
2.

(o): Suppose that B ď ZpAq. If B “ 1, then rB, Y s “ 1 and (o) holds. So suppose that B ‰ 1.
Then by (f) CY pBq ď AX Y . Since B ď ZpAq this gives CY pBq “ AX Y . Thus

|Y {CY pBq|
(l)
ď |B{CBpY q||AX Y {CY pBq| “ |B{CBpY q|,

so B is an offender on Y . Let b P BzCBpY q. Then b R Y . Thus

CY pBq ď CY pbq
(f)
ď AX Y “ CY pBq,

so B is a strong offender on Y .

(p): Suppose that L has a central chief factor on A. Then there exists an L-invariant subgroup
B of A with CY pLq ď B and rB,Ls ă B. But by (d), Y XB “ rB, ys ď rB,Ls and so by (e)
B “ B X Y ˆB X Y g ď rB,Ls, a contradiction.

(q): By (e) ZpAq “ pZpAqXY qpZpAqXY gq. Since ZpAq is abelian and Y is elementary abelian
we conclude that ZpAq is elementary abelian. l

1.5. Weakly Closed Subgroups

In this section Q is a fixed non-trivial p-subgroup of H. Recall that Q is a weakly closed subgroup
of H if every Sylow p-subgroup of H contains exactly one H-conjugate of Q.

Notation 1.44. For L ď H

L˝ :“ xP P QG | P ď Ly and L˝ “ OppL˝q.

(So L˝ is the weak closure of Q in L with respect to H.)

Lemma 1.45. The following statements are equivalent:

(a) Q is a weakly closed subgroup of H.
(b) Q “ P for all P P QG with rQ,P s ď QX P .
(c) Q Ĳ NHpRq for all p subgroups R of H with Q ď R.

Proof. (a) ùñ (b): Let P P QH with rQ,P s ď QX P . Then QP is a p-group, and since Q
is weakly closed in H, PQ contains only one conjugate of Q in H. Thus P “ Q, and (b) holds.

(b) ùñ (c): Let R be p-subgroup with Q ď R, and let r P NHpNRpQqq. Then both Q and
Qr are normal in NRpQq and so (b) shows Q “ Qr. Thus NHpNRpQqq ď NHpQq. In particular,
NRpNRpQqq “ NRpQq. Hence NRpQq “ R and NHpRq ď NHpQq.

(c) ùñ (a): Let Q ď T P SylppHq and P P QH with P ď T . By (c) both P and Q are
normal in NHpT q. In particular, Q and P are normal in T and so by Burnside’s Lemma [KS, 7.1.5],
P “ Qh for some h P NHpT q. Thus P “ Qh “ Q and Q is a weakly closed subgroup of H. l

Lemma 1.46. Let Q be a weakly closed p-subgroup of H, Q ď K ď H and N Ĳ H. Then the
following hold:

(a) Q is a weakly closed subgroup of K.
(b) Let g P H with Qg ď K, then Qg “ Qk for some k P K.

(c) QK “ QK
˝

and K˝ “ xQKy “ xQK
˝

y.
(d) K˝ is the subnormal closure of Q in K. In particular, K˝ “ K˝Q “ xQ

OppKqy “ xQK˝y.
(e) K˝ “ rK˝, Qs.
(f) K˝ ĲĲ H iff K˝ “ H˝ iff QH “ QK iff H “ KNHpQq.
(g) NKpQq is a parabolic subgroup of K, in particular N “ NN pQqO

ppNq.



18 1. DEFINITIONS AND PRELIMINARY RESULTS

(h) N “ NN pQqrN,Qs.
(i) rN,Qs “ pQX rN,QsqrN,Q,Qs.
(j) QN{N is a weakly closed subgroup of H{N .

Proof. (a): This is an immediate consequence of the definition of a weakly closed subgroup.

(b): Let Q ď T P SylppKq and choose k P H with Qg ď T k. Since Q is weakly closed in T with

respect to H, Qg “ Qk.

(c): Let Q “ tQg | g P H,Qg ď Ku. By (b), Q “ QK and by (b) applied to K˝ in place of K,

Q “ QK
˝

. Hence QK “ QK
˝

and K˝ “ xQy “ xQKy “ xQK˝y.

(d): Since K˝ “ xQKy “ xQK
˝

y, K˝ is the subnormal closure of Q in K. Now 1.13 shows that

K˝ “ OppK˝qQ “ K˝Q and K˝ “ xQO
p
pK˝qy “ xQK˝y. Note that K˝ ď OppKq ď K and so

K˝ “ xQK˝y ď xQO
p
pKqy ď xQKy “ K˝.

Thus K˝ “ xQO
p
pKqy, and (d) is proved.

(e): By (d) K˝ “ xQK˝y “ rK˝, QsQ and so K˝ “ OppK˝q ď rK˝, Qs. Hence K˝ “ rK˝, Qs.

(f): Suppose that K˝ ĲĲ H. By (d) K˝ is the subnormal closure of Q in K, and since K˝ ĲĲ H,
K˝ is also the subnormal closure of Q in H. Thus K˝ “ H˝.

If K˝ “ H˝, then by (b) applied to K and H, QK “ QK
˝

“ QH
˝

“ QH .
If QH “ QK then (c) gives H˝ “ xQHy “ xQKy “ xKQy “ K˝ and so K˝ Ĳ H and K˝ ĲĲ H.

So the first three statements in (f) are equivalent. By a Frattini argument, H “ NHpQqK if and
only if QH “ QK . Hence (f) holds.

(g): Let Q ď T P SylppKq. Then T ď NKpQq and so NKpQq is a parabolic subgroup of K.

(h): Note that QrN,Qs Ĳ NQ. So

QrN,Qs “ QQrN,Qs
(f)
“ QQN “ QN ,

and thus (h) follows from a Frattini argument.

(i): By (h),

rN,Qs “ rNN pQqrN,Qs, Qs “ rNN pQq, QsrN,Q,Qs ď pQX rN,QsqrN,Q,Qs.

(j): Put H :“ H{N and let S P SylppHq with Q ď S and h P H with Q
h
ď S. Pick R P SylppHq

with Q ď R and R “ S. Then Q Ĳ R and Qh ď RN . Hence by (b) Qh P QRN “ QN and so

Q
h
“ Q. l

Lemma 1.47. Let Q be a weakly closed subgroup of H. Suppose that H1 and H2 are normal
subgroups of H˝ such that

(i) H˝ “ H1H2, and
(ii) rH1, H2s ď NHpQq.

Let i P t1, 2u and set Ki :“ pHiQq˝. Then

(a) Ki “ rKi, Qs “ rKi, His ď H 1i and Ki Ĳ H˝,
(b) H˝ “ K1K2 and rK1,K2s ď rK1, H2srH2,K1srH1 XH2, H

˝s ď OppH
˝q.

(c) Let N Ĳ H. Then F˚pH{Nq normalizes KiN{N .

Proof. Let ti, ju “ t1, 2u. By hypothesis Hi Ĳ H˝ and so

Ki “ pHiQq˝ “ OpppHiQq
˝q ď OppHiQq ď OppHiq;

in particular, Ki Ĳ Hi. Put Z :“ rH1, H2s. We first show:

1˝. OppZq Ĳ H˝, KiZ Ĳ H˝ and rZ,H˝s ď OppZq.
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By (i) H˝ “ H1H2, so Z Ĳ H1H2 “ H˝ and thus also OppZq Ĳ H˝, and by (ii) Z ď NHpQq.
Thus

rKi, H
˝s “ rKi, HiHjs ď rKi, HisrKi, Hjs ď KiZ and rZ,Qs ď Z XQ ď OppZq.

Since Z Ĳ H˝ the first chain of inequalities gives KiZ Ĳ H˝, and since by 1.46(c), H˝ “ xQH
˝

y, the
second one gives rZ,H˝s ď OppZq.

2˝. Ri :“ rKi, HisOppZq Ĳ H˝.

By (1˝) KiZ and OppZq are normal in H˝. Since also Hi Ĳ H˝, we get rKiZ,HisOppZq Ĳ H˝.
Again by (1˝) rZ,His ď rZ,H

˝s ď OppZq and so

rKiZ,HisOppZq “ rKi, HisrZ,HisOppZq “ rKi, HisOppZq “ Ri.

Thus (2˝) holds.

3˝. Ki ď Ri.

By 1.46(e), Ki “ rKi, Qs and so

Ki “ rKi, Qs ď rKi, H
˝s “ rKi, H1H2s “ rKi, HisrKi, Hjs ď rKi, HisZ ď RiZ.

Thus
Ki “ rKi, Qs ď rRiZ,Qs “ rRi, QsrZ,Qs ď RiOppZq “ Ri.

(a): Recall that Ki Ĳ Hi, so rKi, His ď Ki X H 1i. Hence Ri ď KiOppZq, and by (3˝), Ri “
KiOppZq.

Since Z ď H1 XH2 ď Hi, OppZq normalizes Ki and rKi, His. Thus

OpprKi, Hisq “ Op
`

rKi, HisOppZq
˘

“ OppRiq “ OppKiOppZqq “ OppKiq “ Ki.

Since by (2˝) Ri Ĳ H˝, this shows that Ki Ĳ H˝ and Ki ď rKi, His. As rKi, His ď Ki we get
Ki “ rKi, His ď H 1i, and (a) is proved.

(b): Again by 1.46(e) H˝ “ rH˝, Qs. Since H˝ “ H1H2 we have H˝ “ OppH1qO
ppH2q. By

1.46(d), pHiQq
˝ “ pHiQq˝Q “ KiQ and so rOppHiq, Qs ď pHiQq

˝ ď KiQ. Hence

H˝ “ rH˝, Qs “ rO
ppH1qO

ppH2q, Qs “ rO
ppH1q, QsrO

ppH2q, Qs ď K1QK2Q “ K1K2Q,

and as K1K2 ď H˝ “ OppH˝q and by (a) K1K2 Ĳ H˝, H˝ “ OppK1K2Qq “ K1K2.
Note that by (1˝), rHj , Hi, His “ rZ,His ď OppZq. Hence, the Three Subgroups Lemma shows

that rHi, Hi, Hjs “ rH
1
i, Hjs ď OppZq. Since by (a) Ki ď H 1i, we get

rKi,Kjs ď rKi, Hjs ď rH
1
i, Hjs ď OppZq ď OppH

˝q.

As H˝ “ K1K2, we also get rH1 X H2, H˝s “ rH1 X H2,K1srH1 X H2,K2s ď OppH
˝q, and (b) is

proved.

(c): Put H “ H{N . By 1.46(j) Q is a weakly closed subgroup of H. Hence H,H1, H2, Q fulfill
the hypothesis of the lemma and Ki “ pH1Qq˝. So replacing H by H{N we may assume that

N “ 1. Put Li :“ Op
1

pHiq. We first show:

4˝. Ki “ pLiQq˝.

Note that H˝ “ Op
1

pH˝q. Since H˝ “ H1H2 we get H˝ “ L1L2. As Li ď Hi we conclude
that Hi “ LipH1 XH2q. By (b), rH1 XH2, Qs ď rH1 XH2, H

˝s ď OppH
˝q. So H1 XH2 normalizes

OppH
˝qQ. Since Q is weakly closed, this shows that H1 XH2 ď NHpQq and Hi “ LipH1 XH2q “

LiNHipQq. Hence 1.46(f) gives pHiQq
˝ “ pLiQq

˝. Thus also Ki “ pLiQq˝.

Observe that F˚pHq “ EpHqOppHqD, where EpHq is the product of the components of H and
D :“ Op1pF pHqq. Thus, to prove (c) it suffices to show that each of the factors EpHq, OppHq and
D normalizes K1.

Note that K1 is a subnormal subgroup of H. Thus, by [KS, 5.5.7(c)] EpHq “ EpK1qCEpHqpK1q

and so EpHq ď NHpK1q. Moreover, since K1 “ OppK1q, 1.23 (with π “ tpu) shows that also
OppHq ď NHpK1q.
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The coprime action of Q on D gives D “ CDpQqrD,Qs, and by (a) rD,Qs ď H˝ ď NHpK1q.

Since L1 ĲĲ H and L1 “ Op
1

pL1q, D normalizes L1 by 1.23. It follows that CDpQq normalizes
L1, Q and pL1Qq˝. By (4˝) K1 “ pL1Qq˝ and so CDpQq ď NHpK1q. This shows that also D “

CDpQqrD,Qs normalizes K1, and (c) is proved. l

Lemma 1.48. Suppose that Q is a weakly closed subgroup of H.

(a) Let X Ď ZpQq and h P H with Xh Ď ZpQq. Then there exists g P NHpQq with xg “ xh

for all x P X.
(b) xH X ZpQq “ xNHpQq for every x P ZpQq.

Proof. (a): Note that xQ,Qhy ď CHpX
hq and so by 1.46(b) there exists c P CHpX

hq such that
Qhc “ Q. Hence hc P NHpQq and xhc “ xh for all x P X. Thus (a) holds.

(b) follows from (a) applied with X “ txu. l

Lemma 1.49. Let Q be a weakly closed p-subgroup of H, and let Q ď L ď H. Suppose that
CHpQq ď Q and H is of characteristic p. Then rQ,CHpOppLqqs ď Q X OppLq, CHpOppLqq is a
p-group, and L is of characteristic p.

Proof. Put D :“ CHpOppLqq. Since Q is weakly closed, OppHq normalizes Q. Thus

rOppHq, Qs ď OppHq XQ ď OppHq X L ď OppHq XOppLq.

Hence Q centralizes OppHq{OppHq XOppLq. Since D centralizes OppHq XOppLq, we conclude that
rQ,Ds centralizes the factors of the series

1 ď OppHq ď OppLq ď OppHq.

Since H is of characteristic p, 1.4 shows that rQ,Ds is a p-group It follows that QrQ,Ds is a
p-group normalized by D and since Q is weakly closed this implies that D normalizes Q. Thus

rQ,Ds ď QXD ď QXOppDq ď QX LXOppDq ď QXOppLq ď OppLq ď CHpDq.

Hence rQ,D,Ds “ 1, and 1.3 shows that D is a p-group. Hence also CLpOppLqq is a p-group, so
CLpOppLqq ď OppLq and L is of characteristic p. l

Corollary 1.50. Let Q be a weakly closed p-subgroup of H, and let Q ď L ď H. Sup-
pose that CHpQq ď Q and that CHpyq is of characteristic p for some 1 ‰ y P COppLqpQq. Then
rQ,CHpOppLqqs ď QXOppLq, CHpOppLqq is a p-group, and L has characteristic p.

Proof. Put K :“ NHpOppLqq and note that Q ď CKpyq ď CHpyq. By hypothesis, CHpyq is of
characteristic p. Since Q is also a weakly closed subgroup of CHpyq, we can apply 1.49 with CHpyq
and CKpyq in place of H and L. Then CKpyq is of characteristic p. Note that y P OppLq ď OppKq
and so 1.5 shows that K has characteristic p. Now 1.49 (with K in place of H) shows that

rQ,CKpOppLqqs ď Q X OppLq, CKpOppLqq is a p-group, and L is of characteristic p. As
CHpOppLqq ď K we have CHpOppLqq “ CKpOppLqq and so the corollary is proved. l

1.6. Large Subgroups

In this section Q is a fixed non-trivial p-subgroup of H.

Definition 1.51. Recall from the introduction: Q is large (in H) if CHpQq ď Q and

pQ!q NHpUq ď NHpQq for every 1 ‰ U ď CHpQq.

We will refer to this property as the Q!-property, or shorter just Q!.
Moreover

Q‚ :“ OppNGpQqq, M˝ :“ xQg | g P G,Qg ďMy, M˝ :“ OppM˝q.

Note that according to 1.52(b) below Q is a weakly closed subgroup of G, so the notions M˝ and
M˝ correspond to those introduced in 1.44 for weakly closed subgroups.
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Lemma 1.52. Let Q be large in H and Q ď L ď H and let Y be a non-trivial p-subgroup of H
normalized by L. Then the following hold:

(a) NHpT q ď NHpQq for every p-subgroup T of H with Q ď T .
(b) Q is a weakly closed subgroup of H.
(c) L˝ “ pLCHpY qq

˝ and rL˝, CHpY qs ď OppL
˝q. In particular, CHpY q normalizes L˝.

(d) Let rL :“ L{OppLq. Suppose that OppLq ď L˝ and L “ Op
1

pLq. Then ČCLpY q ď ZpĂL˝q ď

ΦprLq “ ΦpĂL˝q.
(e) CHpQqXCHpQ

gq “ CHpQ
‚qXCHpQ

‚gq “ ZpQqXZpQgq “ ZpQ‚qXZpQ‚gq “ 1 for every
g P HzNHpQq; in particular, NHpQq “ NHpQ

‚q, and Q‚ is a large subgroup of H.

Proof. (a): Let Q ď T , T a p-subgroup of H. Then NHpT q ď NHpZpT qq ď NHpQq since
ZpT q ď CHpQq.

(b): By 1.45 the condition in (a) is equivalent to Q being a weakly closed subgroup of H.

(c): We may assume that H “ LCHpY q. Note that CY pQq ‰ 1 since Y ‰ 1, and so by Q!,
CHpY q ď NHpCY pQqq ď NHpQq. Thus H “ LNHpQq. Since Q is a weakly closed subgroup of H,
1.46(f) gives L˝ “ H˝ “ pLCHpY qq

˝.
In addition

rCHpY q, Qs ď QX CHpY q Ĳ CL˝pY q Ĳ L˝,

so rCHpY q, Qs ď OppL
˝q. Since Q is a weakly closed subgroup of H, 1.46(c) implies L˝ “ xQL

˝

y

and so conjugation with L˝ gives rCHpY q, L
˝s ď OppL

˝q.

(d): Since OppLq ď L˝, OppLq “ OppL˝q “ L˝ and thus also OpprLq “ ĂL˝. Put D :“ CLpY q.

By (c) rL˝, Ds “ rL˝, CLpY qs ď OppL
˝q ď OppLq and so rĂL˝, rDs “ 1. Since OppDq ď L˝, this shows

Opp rDq ď Zp rDq, therefore rD is nilpotent. As Opp rDq ď OpprLq “ 1, we conclude that rD is a p1-group

and thus rD ď OpprLq “ ĂL˝ ď ĂL˝. Hence ČCLpY q “ rD ď ZpĂL˝q. Since L˝ is generated by p-elements,
ĂL˝ “ Op

1

pĂL˝q. Thus 1.7(b) applied to ĂL˝ gives ZpĂL˝q ď ΦpĂL˝q. By 1.7(a) ΦpĂL˝q “ ΦpĂL˝q, and so
(d) holds.

(e): By definition of a large subgroup, Q contains its centralizer in H. Hence CHpQ
‚q ď

CHpQq ď Q ď Q‚ and ZpQ‚q ď ZpQq since Q ď Q‚. Moreover, CHpQq “ ZpQq and CHpQ
‚q “

ZpQ‚q.
Let g P H with ZpQq X ZpQqg ‰ 1. By Q!, Q and Qg are normal in NHpZpQq X ZpQq

gq. Since
Q is a weakly closed subgroup of H, this gives Q “ Qg and thus g P NHpQq. Hence ZpQ‚q X
ZpQ‚qg ď ZpQq X ZpQqg “ 1 for all g P HzNHpQq and NHpQ

‚q ď NHpZpQ
‚qq ď NHpQq. Clearly

NHpQq ď NHpQ
‚q and so NHpQ

‚q “ NHpQq.
Let 1 ‰ X ď CHpQ

‚q, Then X ď CHpQq and by Q!, NHpXq ď NHpQq “ NHpQ
‚q. Moreover,

as seen above, CHpQ
‚q ď Q‚, and so Q‚ is a large subgroup of H. l

Lemma 1.53. Let Q be large in H and H “ H˝S for Q ď S P SylppHq. Suppose that there
exists R Ĳ H such that R ď NHpQq and H{R is p-minimal. Then H is p-minimal.

Proof. Since H{R is p-minimal, there exists a unique maximal subgroup H0 of H containing
SR. Let H1 be any maximal subgroup of H containing S. Assume H1 ‰ H0. Then R ę H1 and so
H “ H1R. Since R ď NHpQq, H “ H1NHpQq. Since Q is a weakly closed subgroup of H, 1.46(f)
gives H˝1 “ H˝, and so H “ H˝S ď H1, which contradicts H1 ‰ H. l

Lemma 1.54. Suppose that Q is a large p-subgroup of H. Let U be a non-trivial elementary
abelian p-subgroup of H and Q ď E ď NHpUq. Suppose that Q đ E, OppE{CEpUqq “ 1 and
OppEqCEpUq{CEpUq is quasisimple. Then the following hold:

(a) OppEqCEpUq “ E˝CEpUq and E˝ “ E1˝ “ OppE˝q.
(b) E˝{CE˝pUq, E˝{OppE˝q and E˝{rOppE˝q, E˝s all are quasisimple.
(c) E˝ “ rE˝, Y s ď xY

E˝y for all p-subgroups Y of E with rU, Y s ‰ 1.
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Proof. Put E “ E{CEpUq. Then OppEq “ 1 and OppEq is quasisimple.

(a): Since Q đ E, Q! shows that rU,Qs ‰ 1. So Q ‰ 1 and, as OppEq is quasisimple and

OppEq “ 1, 1.14(b) gives OppEq ď xQ
OppEq

y ď E˝. Also E˝ “ OppE˝q “ OppE˝q. Thus OppEq “

E˝, and the first statement in (a) holds. In particular, E˝ is quasisimple and so perfect. By 1.46(d)
E˝ “ E˝Q. Since E˝ is perfect, E˝ “ E1˝CE˝pUq and so E˝ “ E1˝QCE˝pUq. By 1.52(c),

E˝ “
`

E1˝QCE˝pUq
˘˝
“ pE1˝Qq

˝ ď E1˝Q,

and so E˝ ď E1˝. Thus E˝ is perfect, and (a) is proved.

(b): As seen above, E˝{CE˝pUq – E˝ “ OppEq is quasisimple. By 1.52(c), rE˝, CEpUqs ď OppEq
and so rE˝, CE˝pUqs ď OppE˝q. Let L be the inverse image of ZpE˝{CE˝pUqq in L. Then rL,E˝s ď
CE˝pUq and rCE˝pUq, E˝s ď OppE˝q. Since E˝ is perfect the Three Subgroups Lemma gives rL,E˝s ď
rE˝, OppE˝qs. Thus L{OppE˝q “ Z

`

E˝{OppE˝q
˘

and L{rOppE˝q, E˝s “ Z
`

E˝{rE˝, OppE˝qs
˘

. Since
E˝{L is simple and E˝ is perfect, this shows that E˝{OppE˝q and E˝{rOppE˝q, E˝s are quasisimple.
So (b) holds.

(c): By 1.14(b) E˝ “ rE˝, Y s. Since E˝{OppE˝q is quasisimple this gives E˝ “ rE˝, Y sOppE˝q.
As E˝ “ OppE˝q, we conclude that E˝ “ rE˝, Y s ď xY

E˝y. l

Lemma 1.55. Let Q be large in H and L ď H with Q ď L and OppLq ‰ 1. Then

(a) CHpOppLqq is a p-group; in particular, L has characteristic p.
(b) Let R be a parabolic subgroup of H with OppRq ‰ 1. Then CHpOppRqq ď OppRq.
(c) H has parabolic characteristic p.
(d) Either L˝ “ Q or CHpL

˝q “ 1.

Proof. (a): To show that CHpOppLqq is a p-group, it suffices to verify the hypothesis of 1.50.
Note that CHpQq ď Q since Q is large and that Q is a weakly closed subgroup by 1.52(b). Since
OppLq ‰ 1 and Q normalizes OppLq, there exists 1 ‰ y P COppLqpQq. So it remains to show that
CHpyq has characteristic p.

Put Y :“ xyy. Then by Q!, NHpY q ď NHpQq and so NHpY q is a local subgroup of NHpQq.
Since CHpQq ď Q, NHpQq has characteristic p and so by 1.2(c) NHpQq has local characteristic p.
Thus NHpY q has characteristic p. Since CHpyq “ CHpY q Ĳ NHpY q, also CHpyq has characteristic p
(see 1.2(a)).

(b): Since R is parabolic subgroup of H, R contains a Sylow p-subgroup T of H and so also a
conjugate of Q. So by (a) CHpOppRqq is a p-group. Observe that T normalizes CHpOppRqq and so
CHpOppRqq ď T ď R. As R normalizes CHpOppRqq this gives CHpOppRqq ď OppRqq.

(c) follows from (b).

(d): If CHpL
˝q ‰ 1, then Q! implies that Q Ĳ NHpCHpL

˝qq and so Q Ĳ L. As L˝ “ xQLy by
1.46(c), this gives L˝ “ Q. l

Lemma 1.56. Let Q be large in H and Q ď S P SylppHq, and let L P LHpSq.
(a) There exist M P MHpSq and L˚ P LHpSq such that L˚ ď M , LCHpYLq “ L˚CHpYLq,

L˝ “ pL˚q˝ ďM˝ and YL “ YL˚ ď YM .
(b) Suppose that Q đ L, and let M and L˚ be as in (a). Then Q đ L˚ and Q đM .
(c) Either MHpSq “ tNHpQqu or there exists M PMHpSq with Q đM .

Proof. (a): By 1.55 H has parabolic characteristic p. Hence 1.25 shows that there exists
M P MHpSq and L˚ P LHpSq with L˚ ď M , LCHpYLq “ L˚CHpYLq and YL “ YL˚ ď YM . Thus
1.52(c) gives

L˝ “
`

LCHpYLq
˘˝
“
`

L˚CHpYLq
˘˝
“ pL˚q˝,

and (a) holds.

(b): Q! shows that CHpYLq ď CHpCYLpQqq ď NHpQq. Since Q đ L and LCHpYLq “ L˚CHpYLq
we conclude that Q đ L˚ and so also Q đM .



1.6. LARGE SUBGROUPS 23

(c): Suppose that MHpSq ‰ tNHpQqu. Then there exists L P LHpSq with Q đ L and so by (b)
there exists M PMHpSq with Q đM . l

Lemma 1.57. Let Q be large in H. Suppose that M ď H with Q ď M and V is a non-trivial
elementary abelian M -invariant p-subgroup of H. Then the following hold:

(a) NM pAq ď NM pQq for every 1 ‰ A ď CV pQq.
(b) Suppose that M ę NHpQq. Then V is a faithful Q!-module 3 for M{CM pV q with respect

to QCM pV q{CM pV q.
(c) Let U ďM be transitive on V . Then M˝ “ xQU y.

Proof. (a): This is a direct consequence of the Q!-property.

(b): Since M ę NHpQq, Q đ H. Together with (a) this shows that V is a Q!-module for H
with respect to Q. Now (b) follows from A.51.

(c): Let 1 ‰ v P CV pQq. By a Frattini argument M “ UCM pvq, and Q! implies CM pvq ď
NM pQq. So M “ UNM pQq, and 1.46(f) gives M˝ “ xQU y. l

Lemma 1.58. Let Q be large in H, let S P SylppHq with Q ď S, and let L P LHpSq. Put

P :“ L˝S and rL :“ L{CLpYLq. Let K be a non-empty P -invariant set of subgroups of rP and

suppose that YL is a natural SL2pqq-wreath product module for rP with respect to K. Then K is
uniquely determined by that property. Moreover, the following hold, where P˚ is the inverse image
of xKy in P .

(a) Q acts transitively on K.
(b) YL “ YP , YP is a simple P -module, and OppP q “ CSpYLq.

(c) OppP q “ OppP˚q “ L˝, and ĂP˚ is normal in rL.

(d) P1 “ P˚ for all P1 Ĳ P with OppP q ď P1 and ĂP1 “ xKy.
(e) P P PHpSq.
(f) One of the following holds:

(1) CP pYP q “ OppP q.

(2) p “ 2 “ |K|, rQ – C4, and, for any T P Syl3pL
˝q, T is extraspecial of order 33,

rZpT q, L˝s ď O2pP q. and L˝ “ TO2pL˝q.

Proof. Since YL is a faithful natural SL2pqq-wreath product module for rP with respect to K,
A.25 gives

1˝. YL “
Ś

KPKrYL,Ks and ĂP˚ “
Ś

KPKK, and for K P K, K – SL2pqq and rYL,Ks is a
natural SL2pqq-module for K.

In particular, OppĂP˚q ‰ 1 and thus also L˝ ‰ Q. Hence by 1.55(d) CYLpxK
Qyq “ 1, and so

2˝. K “ KQ for K P K, and (a) holds.

Thus rP and YL satisfy the hypothesis of A.28 in place of H and V , and A.28(b) gives:

3˝. rP is p-minimal.

By 1.52(c)

4˝. rCLpYLq, L
˝s ď OppL

˝q ď OppLq ď OppP q.

Since Q is weakly closed, 1.46(e) gives

5˝. L˝ “ rL˝, Qs.

By 1.24(f) YP ď YL. Since rYL,Ks is a simple K-module for K P K and Q acts transitively

on K, YL is a simple P -module, so YP “ YL and Opp rP q “ 1. Hence OppP q ď CSpYLq, and by
(4˝) rCSpYLq, L

˝s ď OppP q ď CSpYLq. Since P “ L˝S we conclude that CSpYLq Ĳ P . Hence
CSpYP q “ OppP q. We have proved:

3See A.5 for the definition of a Q!-module
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6˝. YP “ YL, YL is a simple P -module and CSpYP q “ OppP q. In particular, (b) holds.

Let P1 Ĳ P with OppP q ď P1 and ĂP1 “ xKy. The p-minimality of rP implies that either
rS XĂP1 ď Opp rP q or rP “ ĂP1

rS. The first case is clearly impossible since Opp rP q “ 1 and xKy is not a

p1-group. Hence rP “ ĂP1
rS. As P “ L˝S we have OppP q “ OppL˝q “ L˝, and we conclude that

OppĂP1q “ Opp rP q “ ĂL˝.

In particular, OppP1q ď L˝CP pYLq. Since OppP1q ď OppP q “ L˝ this gives

L˝ “ OppP1q
`

L˝ X CP pYLq
˘

.

So

L˝
(5˝)
“ rL˝, Qs “ rO

ppP1qpL
˝ X CP pYLqq, Qs ď rO

ppP1q, QsrCP pYLq, L
˝s

(4˝)
ď OppP1qOppP q.

Hence L˝ “ OppL˝q “ OppP1q. Note that OppP q ď P˚ and ĂP˚ “ xKy. So P˚ fulfills the assumptions
on P1, and we conclude

7˝. OppP q “ L˝ “ OppP1q “ OppP˚q; in particular P “ OppP1qS.

Thus OppxKyq “ OppĂP˚q “ ĂL˝ Ĳ rL. Hence by A.27 any subgroup E of rL such that rYL, Es is a
faithful natural SL2pqq-module for E is contained in K. It follows that

8˝. K is uniquely determined and ĂP˚ “ xKy Ĳ rL. In particular, (c) holds.

Put T :“ S X P˚. Then rT P SylppĂP
˚q “ SylppĂP1q, and since CT pYLq ď CSpYLq “ OppP q ď P1,

T P SylppP1q. By (7˝), OppP1q “ L˝ and so P1 “ OppP1qT “ L˝T . This result also applies to P˚.
Thus

9˝. P1 “ L˝T “ P˚. In particular, (d) holds.

Set
Q˚ :“ QX P˚, pP :“ P {OppP q, r :“ |K|, and tK1, . . . ,Kru :“ K,

and let 1 ď i ď r. Then Ki – SL2pqq and rS XKi ‰ 1.

We claim that ĂQ˚ ‰ 1. Since Q Ĳ S, rrS XKi, rQs ď ĂQ˚. If r ą 1, the transitive action of Q on

K shows that rrSXKi, rQs ‰ 1 and so ĂQ˚ ‰ 1. If r “ 1 and rQ ę K1, then rQ induces some non-trivial

field automorphism on K1 and hence rrS X K1, rQs ‰ 1 and ĂQ˚ ‰ 1. If r “ 1 and rQ ď K1, then
ĂQ˚ “ rQ ‰ 1. So indeed ĂQ˚ ‰ 1.

Recall that rP is p-minimal and thus also p-irreducible. Hence 1.29(c) shows that Opp rP q “

rOpp rP q, ĂQ˚s. Also

p˚q Opp rP q “ OppĂP˚q “ Op
`

r
ą

i“1

Ki

˘

“

r
ą

i“1

OppKiq.

As Opp rP q “ rOpp rP q, ĂQ˚s and ĂQ˚ normalizes each OppKiq, this gives rOppKiq, ĂQ˚s “ OppKiq.

Let K˚i ď P˚ be minimal with ĄK˚i “ OppKiq and rK˚i , Q
˚s ď K˚i . Observe that

ČrK˚i , Q
˚
i s “ r

ĄK˚i ,
ĂQ˚i s “ rO

ppKiq, ĂQ
˚
i s “ OppKiq,

and the minimality of K˚i gives K˚i “ rK
˚
i , Q

˚
i s and K˚i “ OppK˚i q. By (c) OppP˚q “ L˝ and so

K˚i ď L˝. Thus by (4˝) rCP pYLq, Q
˚K˚i s ď rCLpYLq, L

˝s ď OppP q. WithR :“yK˚i andD :“ CRpYLq

this gives D ď ZpRxQ˚q. Observe that R{R1 is an abelian p1-group. Since rR{R1, Q˚s “ R{R1,
coprime actions shows CR{R1pQ

˚q “ 1 and since Q˚ centralizes D, we get D ď R1. Hence R is a

non-split central extension of R{D – rR – OppSL2pqqq “ SL2pqq
1 by the p1-group D.

If q ď 3 then R{D – C3 or Q8. By [Hu, V.25.3] the Schur multiplier of cyclic and quaternion
groups is trivial and so D “ 1. If q ą 3 then R{D – SL2pqq

1 “ SL2pqq. As the Schur multiplier of
SL2pqq is a p1 -group (cf. [Hu, V.25.7]) we again have D “ 1. We have proved:

10˝. OppK˚i q “ K˚i , yK˚i – OppKiq and CK˚i
pYLq ď OppP q.
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Next we show:

11˝. Put K˚ :“ xK˚i | 1 ď i ď ry. Then Opp pP q “yK˚, P “ K˚S and rxKi, xKjs ď C
yK˚
pYLq ď

Z
`

yK˚xQ˚
˘

for all 1 ‰ i ă j ď r.

Note that OppxP˚q “ C
yP˚
pYLqyK˚. As Q˚ centralizes C

yP˚
pYLq and rK˚i , Q

˚s “ K˚i we conclude
yK˚ “ rxP˚, Q˚s and K˚ ď L˝. In particular, S normalizes yK˚. Hence S normalizes K˚OppP q,
and (7˝), applied to P1 “ K˚pS X P˚q, gives L˝ “ Op

`

K˚pS X P˚q
˘

ď OppP qK
˚ and P “ L˝S “

Op
`

pK˚pSXP˚q
˘

S “ K˚S. By (10˝), OppK˚i q “ K˚i and so also OppK˚q “ K˚. Since S normalizes
yK˚ and P “ K˚S we conclude thatOpp pP q “yK˚. By (1˝) rKi,Kjs “ 1 and so rK˚i ,K

˚
j s ď CK˚pYLq.

As K˚Q˚ ď L˝ and by (4˝) rCLpYLq, L
˝s ď OppP q we have C

yK˚
pYLq ď Z

`

yK˚xQ˚
˘

.

12˝. Suppose that ryK˚i ,
yK˚j s “ 1 for all 1 ď i ă j ď r. Then CP pYP q “ OppP q and P is

p-minimal. In particular, (e) and (f) hold.

Since ryK˚i ,
yK˚j s “ 1 we have |yK˚| ď

ˇ

ˇ

śr
i“1

yK˚i
ˇ

ˇ ď |yK˚i |
r. Moreover, by (10˝) |yK˚i | “ |O

ppKiq|

and by (11˝) yK˚ “ Opp pP q. Now p˚q implies |ĄK˚| “ |Opp pP q| “ |OppKiq|
r and so |yK˚| ď |ĄK˚|. Since

ĄK˚ is a factor group of yK˚, we get that |ĄK˚| “ |yK˚| and C
yK˚
pYLq “ 1. As Opp pP q “yK˚, it follows

that {CP pYP q is a p-group and so CP pYP q “ OppP q. Hence P {OppP q “ rP . By (3˝) rP is p-minimal
and so also P is p-minimal. Therefore (e) and (f) hold.

We now distinguish the cases r “ 1, r “ 2 and r ě 3. If r “ 1, we are done by (12˝). Assume
next that r “ 2. Since Q acts transitively on K by (a), we have p “ 2. Suppose that q ą 2. Then

q ě 4, Ki is perfect, and yK˚i is a component of pP . Thus rxK1, xK2s “ 1 and we are done by (12˝).

Suppose that q “ 2. Then |yK˚i | “ 3 and by (12˝) we may assume that ryK˚1 ,
yK˚2 s ‰ 1. By (11˝)

ryK˚1 ,
yK˚2 s ď ZpyK˚q. Since r “ 2, yK˚ “

@

yK˚1 ,
yK˚2

D

, and we conclude that that yK˚ is extra special of

order 33. By (11˝) yK˚ “ Opp pP q, and so (f) holds. As pP {ΦpyK˚q – rP is p-minimal, so are pP and P .

Since yK˚ is extra special of order 33, any involution in AutpyK˚q which centralizes ΦpyK˚q inverts
yK˚{ΦpyK˚q. By (f) pQ centralizes ΦpyK˚q, and so pQ contains only one involution. As ĂQ˚ is non-trivial

and elementary abelian and has index 2 in rQ we conclude that rQ – C4. Thus (e) holds.
Assume finally that r ě 3. Let i, j, k be three different elements in t1, . . . , ru. Pick z P S X

KizOppP q. Since Q acts transitively on K we can choose y P Q with Ky
i “ Kk. Put x :“ ry, zs “

z´1yz. Then x P Q˚, rx P KiKk and rx P rzKk. Since Ki – SL2pqq, we have Ki “ xrzKiy. Now
rKi,Kks “ 1 implies

rOppKiq, xs “ rO
ppKiq, zs “ OppKiq,

and since rKiKk,Kjs “ 1 and rx P KiKk, we also have rKj , xs “ 1. Recall that Q˚ normalizes xKi,
ĄK˚i “ OppKiq and C

xKi
pYLq “ 1. Thus

rxKi, pxs “ xKi and rxKj , pxs “ 1.

In particular,

rxKj , px,xKis “ 1.

By (11˝) rxKi, xKjs ď Zp pK pQ˚q and so

rxKi, xKj , pxs “ 1.

With the Three Subgroups Lemma rpx,xKi, xKjs “ 1, and since rpx,xKis “ xKi,

rxKi, xKjs “ 1.

Another reference to (12˝) completes the proof of the lemma. l





CHAPTER 2

The Case Subdivision and Preliminary Results

In this chapter we give the relevant definitions that allow to subdivide the proof of our main
result stated in the introduction. This partition of the proof enables us to treat the different parts
independently and sometimes under a slightly more general hypothesis.

We believe that concepts like symmetry, asymmetry, shortness and tallness can also be useful in
other situations. In a certain sense they reflect the general behavior of conjugates of (abelian) sub-
groups in finite groups. In the amalgam method these concepts have already proved their relevance
(without getting particular names). For example, symmetry is closely related (and generalizes) the
”b even”-case of the amalgam method, while tallness corresponds to the ”b “ 1”-case.

In Section 2.2 general properties of asymmetry are investigated. Most of these properties are
elementary, the exception being 2.15 where the Quadratic L-Lemma of [MS6] is used and so also a
Kp-group Hypothesis is needed.

Finally in Section 2.3 symmetric pairs are introduced. It is probably our most complicated and
technical definition. Also the existence of symmetric pairs requires a rather long and sophisticated
argument, see 2.22 and 2.23.

In this chapter G is a finite group, S P SylppGq, and Q is a large p-subgroup of G contained in

S. Moreover, M P MGpSq and M : “ MCGpYM q. So M fulfills the basic property defined in the
Introduction.

2.1. Notation and Elementary Properties

Notation 2.1. Recall from the introduction that Q‚ “ OppNGpQqq and that L is YM -minimal
if L “ xY LM y and YM is contained in a unique maximal subgroup of L.

Let A be an abelian p-subgroup of G. Then

‚ A is symmetric in G if there exist A1, A2 P A
G such that 1 ‰ rA1, A2s ď A1 XA2,

‚ A is asymmetric in G if A is not symmetric in G.

Let N be a set of subgroups of G. Then

‚ A is N -tall if there exist T P SylppCGpAqq and L P N such that T ď L and A ę OppLq,
‚ A is N -short if A ď OppLq for all T P SylppCGpAqq and L P N with T ď L. (So A is
N -short if and only if A is not N -tall.)

‚ A is tall (short) if A is N -tall (N -short), where N is the set of all subgroups L of G with
OppLq ‰ 1,

‚ A is char p-tall (char p-short) if A is N -tall (N -short), where N is the set of all subgroups
of characteristic p of G,

‚ A is Q-tall (Q-short) if A is N -tall (N -short), where N “ NGpQq
G.

For K ď G with OppMq ď K let HKpOppMqq be the set of subgroups H of K such that

(i) H is of characteristic p,
(ii) OppMq ď H and YM ę OppHq, and
(iii) YM ď OppP q whenever P is proper subgroup of H containing OppMq.

For K ď G with YM ď K let LKpYM q be the set of subgroups L of K such that

(i) YM ď L and OppLq “ xpYM XOppLqq
Ly ď NLpYM q,

(ii) L is YM -minimal and of characteristic p,

27
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(iii) NLpYM q is the unique maximal subgroup of L containing YM , and
(iv) L{OppLq – SL2pqq, Szpqq, q :“ |YM{YM X OppLq| or L{OppLq – D2r, where p “ 2 in the

last two cases and r is an odd.

Note that, since YM “ Ω1ZpOppMqq, HKpOppMqq only depends on K and OppMq.

We use the following subdivision:

The Symmetric Case. YM is symmetric in G.
The Short Asymmetric Case. YM is short and asymmetric in G.
The Tall char p-Short Asymmetric Case. YM is tall, char p-short and asymmetric in
G.
The char p-Tall Q-short Asymmetric Case. YM is char p-tall, Q-short and asymmetric
in G.
The Q-Tall Asymmetric Case. YM is Q-tall and asymmetric in G.

Lemma 2.2. (a) CGpOppMqq ď OppMq.
(b) Q is a weakly closed subgroup of G.
(c) NGpKq ďM : for all 1 ‰ K ĲM , in particular, NGpOppMqq ďM :.
(d) M : “ NGpYM q “MCGpYM q.
(e) YM “ Ω1ZpOppMqq.
(f) OppMq P SylppCGpYM qq; in particular, CSpYM q “ OppMq.

(g) Q ĲM if and only if Q ĲM :.
(h) M˝ “ pM :q˝.

Proof. (a): We have M PMGpSq ĎMG Ď LG and so CGpOppMqq ď OppMq by definition of
LG.

(b): Since Q is a large subgroup of G, 1.52(b) shows that Q is a weakly closed subgroup of G.

(c) Put R :“ NGpKq. Since M has characteristic p and K Ĳ M , also K has characteristic p,
see 1.2(a). In particular, OppKq ‰ 1 and so also OppRq ‰ 1. Note that S ď M ď R and so R is a
parabolic subgroup of G. Thus 1.55(a) implies that CGpOppRqq ď OppRq and so R P LG. Let R˚

be maximal in LG with R ď R˚. Since M ď R ď R˚, R˚ P MGpMq. By the basic property of
M PMG, we have MGpMq “ tM

:u and so R˚ “M : and R ďM :.

(d): By (b), NGpYM q ďM :, and by the basic property of M , M : “MCGpYM q and YM “ YM: .
So M : ď NGpYM q and (d) holds.

(e),(f): By the basic property of M , CM pYM q is p-closed. Thus 1.24(k) gives YM “ Ω1ZpOppMqq
and OppMq P SylppCGpYM qq.

(g), (h): By Q!, CGpYM q ď NGpQq and so M : “MCGpYM q “MNM:pQq. Thus Q ĲM if and

only if Q ĲM :. Moreover, by 1.52(c) M˝ “
`

MCGpYM q
˘˝
“ pM :q˝. l

Lemma 2.3. Let A ď ZpQq. Then the following hold:

(a) Let g P G and rA ď ZpQgq such that rA, rAs ď AX rA. Then rA, rAs “ 1.
(b) A is asymmetric in G.
(c) Suppose that B ď G is a Q-short abelian p-subgroup, A ď ZpQ‚q and A X B ‰ 1. Then

rA,Bs “ 1.

Proof. (a): If g P NGpQq, then A rA ď ZpQq and rA, rAs “ 1. If g R NGpQq, then 1.52(e) gives
ZpQq X ZpQgq “ 1. Thus

rA, rAs ď AX rA ď ZpQq X ZpQgq “ 1.

(b): This is a direct consequence of (a) and the definition of asymmetric.

(c): Assume that R :“ A X B ‰ 1. Then R ď A ď CGpQq and Q! implies NGpRq ď NGpQq.
Since B is abelian, B ď CGpBq ď NGpRq ď NGpQq. In particular, NGpQq contains a Sylow p-
subgroup of CGpBq, and as B is Q-short, we conclude that B ď OppNGpQqq “ Q‚. So rB,As “ 1.
l
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Lemma 2.4. (a) OppMq is a weakly closed subgroup of M :.
(b) Let B be a p-subgroup of M : with OppMq ď B. If NGpBq ęM :, then YM is symmetric in

G.

Proof. (a): By the basic property of M , YM “ YM: is normal in M :. Hence CGpYM q “
CM:pYM q Ĳ M :. By 2.2(f) OppMq P SylppCGpYM qq. Sylow subgroups of normal subgroups are
clearly weakly closed (even strongly closed) subgroups of the whole group.

(b): Since S is a Sylow p-subgroup of M :, there exists g P M : with Bg ď S. Then OppMq
g ď

Bg ď S, and since OppMq is a weakly closed subgroup of M :, OppMq “ OppMq
g. So replacing B

by Bg we may assume that B ď S ď M . We will now verify that the assumptions of E.16(a) are
fulfilled. Note that OppMq ď B Ĳ NGpBq and YM is a non-trivial normal p-subgroup of M . By
2.2(f), OppMq P SylppCGpYM qq and so CM pYM q is p-closed. By assumption, NGpBq ę M :. By

2.2(c), NGpKq ďM : for all 1 ‰ K ĲM , and so no non-trivial p-subgroup of M XNGpBq is normal
in M and NGpBq.

Thus indeed all assumptions of E.16(a) are fulfilled for H1 :“M , H2 :“ NGpBq, A1 :“ YM and
H :“ G. Hence there exists h P H “ G with 1 ‰ rA1, A

h
1 s ď A1XA

h
1 , and so A1 “ YM is symmetric

in G. l

2.2. Asymmetry

Lemma 2.5. Suppose that YM is asymmetric in G. Let YM ď R ď M :. Then xY
NGpRq
M y is

elementary abelian.

Proof. Recall from the basic property that YM “ YM: , so YM Ĳ R since R ď M :. Thus Y xM
is normal in R for every x P NGpRq. Hence, the claim is an immediate consequence of the definition
of asymmetry. l

Lemma 2.6. Suppose that YM is asymmetric in G. Then the following hold:

(a) Let L be a p-subgroup of G with OppMq ď L. Then NGpLq ď NGpOppMqq ďM :.
(b) OppMq is a weakly closed subgroup of G.
(c) Let OppMq ď L ď G. Then LXM : is a parabolic subgroup of L.
(d) xG X YM “ xM for every x P YM .
(e) YM is Q-tall if and only if YM ę OppNGpQqq.

Proof. (a): Put B :“M :XL. Since YM is asymmetric, 2.4(b) implies that NGpBq ďM :. In
particular, NLpBq ďM : X L “ B and so L “ B since L is a p-group. By 2.4(a) OppMq is a weakly
closed subgroup of M :. Thus

NGpLq “ NGpBq “ NM:pBq ď NM:pOppMqq ď NGpOppMqq
2.2(c)
ď M :,

and (a) is proved.

(b): By (a) OppMq Ĳ NGpLq for all p-subgroups L of G containing OppMq. Thus 1.45 shows
that OppMq is a weakly closed subgroup of G.

(c): Since OppMq is a weakly closed subgroup of G, 1.46(g) shows that NLpOppMqq is a parabolic
subgroup of L, and since NLpOppMqq ď LXM :, also LXM : is a parabolic subgroup of L.

(d): Since OppMq is a weakly closed subgroup of G and YM ď ZpOppMqq, 1.48(b) shows that

xG X YM “ xNGpOppMqq. By 2.2(c) NGpOppMqq ďM : “ CGpYM qM , and so (d) holds.

(e): Recall from 2.2(f) that OppMq P SylppCGpYM qq.
Suppose that YM ę OppNGpQqq. Since OppMq ď NGpQq, we conclude that YM is Q-tall.
Suppose that YM is Q-tall. Then there exists g P G such that OppMq ď NGpQ

gq and YM ę

OppNGpQ
gqq. Since OppMq is a weakly closed subgroup of G by (b), Qg ď NGpOppMqq and since Q

is a weakly closed subgroup of G by 1.52(b), Qgh “ Q for some h P NGpOppMqq ď NGpYM q. Thus
YM ę OppNGpQqq. l
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Lemma 2.7. Suppose that YM is asymmetric in G.

(a) Let g P G with CYM pQ
gq ‰ 1. Then Qg ďM˝.

(b) Let 1 ‰ U0 ď U ď YM . Put EU :“ xQg | g P G,CU pQ
gq ‰ 1y. Then NGpU0q

˝ ď EU ďM˝.

Proof. (a): Let g P G with CYM pQ
gq ‰ 1. Since 1 ‰ CYM pQ

gq ď YM ď CGpOppMqq, Q! implies
OppMq ď NGpQ

gq. By 2.6(b) OppMq is a weakly closed subgroup of G and so Qg ď NGpOppMqq.
By 2.2(c) NGpOppMqq ďM :. By 2.2(h), pM :q˝ “M˝ and so Qg ďM˝.

(b): Let h P G with Qh ď NGpU0q. Then CU0pQ
hq ‰ 1, so CU pQ

hq ‰ 1 and Qh ď EU . Thus
NGpU0q

˝ ď EU . By (a) EU ďM˝, and so (b) holds. l

Lemma 2.8. Let F be the inverse image of F˚pM :{CM:pYM qq in M :. Suppose that YM is
asymmetric in G, F ď H ď G and H is of characteristic p. Then YM ď YH .

Proof. Since YM is asymmetric in G and OppMq ď F ď H, 2.6(c) implies that H X M :

contains a Sylow p-subgroup of H. Thus by 1.24(f), YM:XH ď YH .

Now let M : :“ M :{CM:pYM q. Then OppF q ď OppM :q “ 1 and C
M:XH

pF q ď F . Note that

F ĲM : XH and so rOppM : XHq, F s ď OppF q “ 1. It follows that OppM : XHq “ 1. Thus YM is
p-reduced for M : XH and so YM ď YM:XH ď YH . l

Lemma 2.9. Suppose that YM is asymmetric in G and that there exists a subgroup H˚ of
characteristic p such that OppMq ď H˚ and YM ę OppH

˚q. Let H ď H˚ be minimal with OppMq ď
H and YM ę OppHq. Then H P HGpOppMqq.

Proof. By 2.2(a) CGpOppMqq ď OppMq. Since YM is asymmetric in G, 2.6(b) shows that
OppMq is a weakly closed subgroup of G. Thus the hypothesis of 1.49 are fulfilled and we conclude
that H is of characteristic p. Let OppMq ď P ă H. Then the minimal choice of H implies that
YM ď OppP q and so H P HGpOppMqq. l

Lemma 2.10. Suppose that YM is char p-tall and asymmetric in G. Then HGpOppMqq ‰ H.

Proof. Since YM is char p-tall there exists H˚ ď G such that H˚ is of characteristic p, YM ę

OppH
˚q, and H˚ contains a Sylow p-subgroup of CGpYM q. By 2.2(e), OppMq P SylppCGpYM qq and

after conjugation in CGpYM q we may assume that OppMq ď H˚. Then by 2.9 HGpOppMqq ‰ H. l

Lemma 2.11. Suppose that YM is char p-tall and asymmetric in G. Let H P HGpOppMqq and

put H :“ H{OppHq. Then the following hold:

(a) Let TH P SylppH XM
:q. Then TH P SylppHq. In particular, H “ OppHqTH .

(b) OppHq normalizes OppMq and YM .
(c) OppHq “ rOppHq, YM s and H “ OppHqOppMq.

(d) OppHqYM “ xY
OppHq
M y “ xY HM y Ĳ H and H “ xOppMq

Hy.

(e) Let N Ĳ H. Then either OppHq ď N , or N is p-closed and rN,YMOppHqs “ 1. In
particular, H is p-irreducible.

(f) ZpOppHqYM q is a normal p1-subgroup of H.

(g) ΦpHq “ ΦpOppHqq “ ZpOppHqYM q, and OppHq{ΦpHq is a minimal normal subgroup of
H{ΦpHq.

(h) Either OppHq is a q-group for some prime q ‰ p, or OppHq is a product of components,

which are permuted transitively by OppMq.
(i) If YM ď L ď H and L “ xY LM y, then rOppHq, Ls ď OppLq, and L is of characteristic p.
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Proof. Put H0 :“ OppHq, and let TH P SylppHq with OppMq ď TH .

(a): By 2.6(c) H XM : is a parabolic subgroup of H and so (a) holds.

(b): Since OppMqOppHq is p-group containing OppMq, 2.6(a) shows that

OppMqOppHq ď NGpOppMqq ďM : “ NGpYM q.

(c): By (a) H “ H0TH , so rH0, YM sYM is normal in H. Hence OpprH0, YM sYM q ď OppHq
and thus YM ę OpprH0, YM sYM q since YM ę OppHq. Now the definition of HGpOppMqq implies
rH0, YM sOppMq “ H, so H0 “ OppHq ď rH0, YM s ď H0, and (c) follows.

(d): By (c) H “ H0OppMq. Thus H0YM is normal in H and so xY HM y ď H0YM . Also by (c)
H0 “ rH0, YM s. We get

H0YM “ rH0, YM sYM “ xY H0

M y ď xY HM y ď H0YM .

Hence equality holds everywhere and the first statement in (d) is proved. Similarly,

H “ H0OppMq “ rH0, YM sOppMq ď rH,OppMqsOppMq ď xOppMq
Hy ď H,

and so H “ xOppMq
Hy.

(e): By the definition of HGpOppMqq, H “ NTH or YM ď OppNTHq. In the first case H0 ď N .
In the second case

rN,YM s ď N XOppNTHq ď OppNq ď OppHq,

so rN,YM s “ 1. Since by (d) H0YM “ xYM
H0
y, we conclude that rN,H0YM s “ 1; in particular, H0

centralizes TH XN . By (a) H “ H0TH . Thus TH XN is normal in H and N is p-closed. So (e) is
proved.

(f): Put D :“ ZpH0YM q. By (a) H “ H0TH , so D Ĳ H, and since D is abelian and OppHq “ 1,

D is a p1-group.

(g): Since OppHq “ 1, 1.7(a) shows that ΦpH0q “ Φ
`

OppHq
˘

“ ΦpHq. In particular, H0 ę

ΦpHq. Hence (e) shows that ΦpHq ď ZpH0YM q “: D.
Suppose that D ę ΦpHq. Then there exists a maximal subgroup K of H with D ę K. By (f) D

is a normal p1-subgroup of H, so H “ DK and K contains a Sylow p-subgroup of H. Thus we may
choose K such that OppMq ď K. Hence the definition of HGpOppMqq gives YM ď OppKq. Since

rD,YM s “ 1 this shows that xYM
H
y “ xYM

DK
y “ xYM

K
y is p-group, a contradiction to OppHq “ 1.

Thus D “ ΦpHq, and the first part of (g) is proved.
By (e) every normal subgroup of H properly contained in H0 is contained in D. Hence H0{D

is a minimal normal subgroup of H and (g) is proved.

(h): By (g) H0{ΦpHq is a minimal normal subgroup of H. So either H0{ΦpHq is a q-group for

some prime q or H0{ΦpHq is the direct product of non-abelian simple groups transitively permuted
by H. By (g) ΦpH0q “ ΦpHq ď ZpH0q. So in the first case, H0 is nilpotent and

H0 “ ΦpHqOqpH0q “ ΦpH0qOqpH0q,

so H0 “ OqpH0q is a q-group.

In the second case, H0 “ ΦpH0qH0
1
, H0 “ H0

1
and H0 is the product of components transitively

permuted by H. In particular, each component of H0 is normal in H0, and since H “ H0OppMq,

already OppMq permutes the components transitively.

(i): By (b) OppHq normalizes YM and so rOppHq, YM s ď YM ď L. Since L “ xY LM y this gives

rOppHq, Ls “ rOppHq, xY
L
M ys ď OppHq X L ď OppHq XOppLq.

It follows that CLpOppLqq acts quadratically on OppHq. By the definition of HGpOppMqq, H is of
characteristic p, and so 1.4(a) shows that CLpOppLqq is a p-group. Hence L is of characteristic p. l

Lemma 2.12. Let H P HGpOppMqq. Suppose that YM is asymmetric in G and that there exists
g P G such that H ď NGpQ

gq. Then the following hold:
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(a) YM is Q-tall.
(b) Qg ď OppHQ

gq ď NGpOppMqq ď NGpYM q “M :.
(c) H Ĳ HQg; in particular OppHq “ OppHQgq.
(d) HQg is p-irreducible.

Proof. (a): By the definition of HGpOppMqq, YM ę OppHq and OppMq ď H. Since H ď

NGpQ
gq this gives YM ę OppNGpQ

gqq and OppMq ď NGpQ
gq. By 2.2(f), OppMq P SylppCGpYM qq

and so YM is Q-tall.

(b): Clearly Qg ď OppHQ
gq and OppMqOppHQ

gq is a p-group. By 2.6(b) OppMq is a weakly
closed subgroup of G, and we conclude that Qg ď OppHQ

gq ď NGpOppMqq. By 2.2(c),(d),
NGpOppMqq ďM : “ NGpYM q, and so (b) is proved.

(c): By (b), Qg normalizes OppMq and thus also every NGpQ
gq-conjugate of OppMq. Since by

2.11(d) H “ xOppMq
Hy and H ď NGpQ

gq, Qg normalizes H and H Ĳ HQg.

(d): By 2.11(e) H is p-irreducible. Since H normalizes Qg, 1.30(b) shows that HQg is p-
irreducible. l

Recall the definition of a minimal asymmetric module from Definition A.4 for the next lemma.

Lemma 2.13. Suppose that YM is char p-tall and asymmetric in G. Let H P HGpOppMqq and

let V be a non-central H-chief factor of OppHq. Put rH :“ H{CHpV q, A :“ ĄYM and B :“ ČOppMq.

Then V is a faithful simple minimal asymmetric Fp rH-module with respect to A and B.

Proof. We have to verify A.4 (i) – (iv). By 2.6(b) OppMq is a weakly closed subgroup of G

and so by 1.46(j) B “ ČOppMq is a weakly closed subgroup of rH. Hence A.4(i) holds.
By 2.11(b), OppHq normalizes YM and OppMq. Therefore,

rOppHq, YM s ď YM ď CGpOppMqq and rOppHq, OppMqs ď OppMq ď CGpYM q.

Thus
rOppHq, YM , OppMqs “ 1 and rOppHq, OppMq, YM s “ 1,

and Property A.4(ii) holds.
Assume for a contradiction that xY HM y acts nilpotently on V . Since V is a chief factor and so a

simple H-module, rV, xY HM ys “ 1. By 2.11(c), OppHq ď xY HM y and thus rV,OppHqs “ 1. But then
V is a central H-chief factor, a contradiction. So xY HM y does not act nilpotently on V , and A.4(iii)
holds.

Finally let CHpV q ď P ď H such that B ď rP ă rH. Then P is a proper subgroup of H
containing OppMq, so by the definition of HGpOppMqq, YM ď OppP q. By 2.6(a) OppP q ď M : and
thus by 2.5 xY PM y is elementary abelian. Let W be the inverse image of V in H. Then

rW, xY PM ys ďW X xY PM y and rW, xY PM y, xY
P
M ys “ 1.

This gives A.4(iv). l

Lemma 2.14. Let L P LGpYM q and put A :“ OppLq. Then YMA{A is the unique non-trivial
elementary abelian normal p-subgroup of NLpYM q{A.

Proof. Let T P SylppNLpY qq. By definition of LGpYM q,

L{A – SL2pqq, Szpqq, or Dih2r,

where p “ 2 in the last two cases, r is an odd prime, and NLpYM q is the unique maximal subgroup
L containing YM . If L{A – SL2pqq or Szpqq, then NLpY q{A is a Borel subgroup of L{A and
T {A “ OppNLpY q{Aq.

In the SL2pqq-case T {A is elementary abelian and NLpY q acts simply on T {A. Thus Y A{A “
T {A and the lemma holds.

In the Szpqq-case all involutions of T {A are contained in ZpT {Aq, and NLpY q acts simply on
ZpT {Aq. Thus Y A{A “ ZpT {Aq, and the lemma holds.

In the Dih2r-case, NLpY q “ T and |T {A| “ 2, and the lemma holds. l
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For the next lemma recall the definition of LKpYM q from 2.1 and the definition of a CK-group
from C.1.

Lemma 2.15. Let YM ď L ď G and suppose that L is a CK-group of characteristic p. Then
L P LGpYM q if and only if L is YM -minimal and NLpYM q is a maximal subgroup of L.

Proof. If L P LGpYM q, then by definition, L is YM -minimal andNLpYM q is a maximal subgroup
of L.

Suppose now that L is YM -minimal and NLpYM q is a maximal subgroup of L. Let T P

SylppNLpYM qq with YM ď T . By 1.42(b), NLpT q ď NLpYM q and OppLq ď T P SylppLq. In
particular, OppLq ď NLpYM q.

Let V be the direct sum of the L-chief factors on OppLq (in a given chief series). Since L is
of characteristic p, 1.4(c) shows that CLpV q ď OppLq, and since OppLq ď CLpV q, we get CLpV q “
OppLq. Hence V is a faithful FpL{OppLq-module.

As OppLq normalizes YM , we have rOppLq, YM s ď YM and rOppLq, YM , YM s “ 1. It follows
that YM acts quadratically on V , and we can apply the Quadratic L-Lemma [MS6, Lemma 2.9] to
L{OppLq and V . This gives

L{OppLq – SL2pqq, Szpqq or Dih2rk ,

where q is a power of p, r is an odd prime, and p “ 2 in the last two cases.

Set X :“ xpYM XOppLqq
Ly and pL :“ L{X. Suppose that |yYM | “ 2. Then pL is a dihedral group,

but not a 2-group. So there exists yYM ď pD ď pL with pD – Dih2r, r an odd prime. Then pYM đ pD
and so D ę LXM :. Since L is YM -minimal with LXM : being the maximal subgroup containing

YM , we conclude that pD “ pL and X “ O2pLq.

Hence we may assume that |yYM | ą 2. In particular, L{OppLq – SL2pqq or Szpqq. As seen above,
NLpT q ď NLpYM q and T P SylppLq. It follows that NLpYM q{{OppLq is a Borel subgroup of L{OppLq
and normalizes the elementary abelian group YMOppLq{OppLq. Thus the structure of SL2pqq and

Szpqq shows that q “ |YMOppLq{OppLq| “ |yYM |. It remains to show that OppLq “ X.

Suppose for a contradiction that OppLq ‰ X. Since rOppLq, YM s ď YM X OppLq ď X, pL is a
non-trivial central extension of L{OppLq by a p-group. Hence [Gr1] shows that either q “ 9 and
pL „ 3.SL2p9q or q “ 8 and pL „ 2a.Szp8q, 1 ď a ď 2. In both cases, since pT is a Sylow p-subgroup

of rL, OpppLq “ Zp pT q. In particular yYM X Zp pT q “ 1, a contradiction as pT normalizes yYM . l

Lemma 2.16 (Asymmetric L-Lemma). Suppose that YM is char p-tall and asymmetric in G. Let
H P HGpOppMqq and L be minimal among all subgroups L ď H satisfying YM ď L and YM ę OppLq.
Then the following hold:

(a) H “ xL,OppMqy “ xY
h
M , OppMqy for all h P LzNLpYM q.

(b) L is YM -minimal and of characteristic p, and NLpYM q is the unique maximal subgroup of
L containing YM .

(c) rV,OppLqs ‰ 1 for all non-central chief factors V of H on OppHq.
(d) xpOppLq X YM q

Ly ď OppHq.
(e) Suppose that L is a CK-group. Then L P LHpYM q and OppLq ď OppHq.

Proof. Define

H˚ :“ xY HM y, B :“ rOppHq, H
˚s “ xrOppHq, YM s

Hy, and P :“ NLprOppHq, YM sq XNLpCBpYM qq

1˝. L “ xYM , Y
g
M y for some g P L. In particular, L “ xY LM y.

Suppose that xYM , Y
g
M y is a p-group for all g P L. Then Baer’s Theorem [KS, 6.7.6] shows that

YM ď OppLq, a contradiction to the choice of L. Thus there exists g P L such that xYM , Y
g
M y is not

p-group. Then YM ę OppxYM , Y
g
M yq and the minimal choice of L gives xYM , Y

g
M y “ L.

In the following we fix g P L such hat L “ xYM , Y
g
M y.

2˝. H “ xL,OppMqy “ xY
g
M , OppMqy.
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Note that OppMq ď xL,OppMqy and YM ę OppxL,OppMqy. So the definition of HGpOppMqq
gives H “ xL,OppMqy “ xY

g
M , OppMqy.

3˝. rOppHq, YM s ď YM X B ď CBpOppMqq ď CBpYM q and rB,OppMqs ď B X OppMq ď
CBpYM q.

By 2.11(b) OppHq normalizes YM and OppMq. By definition of B, rOppMq, YM s ď B ď OppHq
and so (3˝) holds.

4˝. L has characteristic p.

By (1˝), L “ xY LM y, and so (4˝) follows from 2.11(i).

5˝. B “ rOppHq, Y
g
M sCBpYM q.

Since rB, Y gM s ď rOppHq, Y
g
M s and by (3˝), rB,OppMqs ď CBpYM q, both Y gM and OppMq

normalize rOppHq, Y
g
M sCBpYM q. As H “ xY gM , OppMqy and B “ xrOppHq, Y

g
M s

Hy, this gives
B “ rOppHq, Y

g
M sCBpYM q.

6˝. CBpYM q “ rOppHq, YM sCBpLq.

Since rOppHq, Y
g
M s ď CBpY

g
M q and L “ xYM , Y

g
M y, (5˝) implies

CBpY
g
M q “ rOppHq, Y

g
M s

`

CBpYM q X CBpY
g
M q

˘

“ rOppHq, Y
g
M sCBpLq.

7˝. P “ NLpYM q “ NLpOppMqq.

By 2.2(e), YM “ Ω1ZpOppMqq and so NLpOppMqq ď NLpYM q. Clearly NLpYM q normalizes
rOppHq, YM s and CBpYM q. Thus NLpYM q ď P . So it remains to show that P ď NLpOppMqq.

Both, P and OppMq normalize the series

1 ď rOppHq, YM s ď CBpYM q ď B ď OppHq.

By (3˝) rB,OppMqs ď CBpYM q and rOppHq, YM s ď YM , so OppMq centralizes rOppHq, YM s and
B{CBpYM q. As L “ xYM , Y

g
M y ď H˚, we know that L centralizes OppHq{B. By (6˝) CBpYM q “

rOppHq, YM sCBpLq. Since P ď L and P normalizes rOppHq, YM s, we conclude that P centralizes
CBpYM q{rOppHq, YM s. It follows that rP,OppMqs centralizes all factors of the above series and so
acts nilpotently on OppHq. As H is of characteristic p, 1.4(a) implies that that rP,OppMqs is a
p-group. So rP,OppMqsOppMq is a p-group normalized by P and since OppMq is a weakly closed
subgroup of G, P ď NLpOppMqq.

8˝. YM is a weakly closed subgroup of L.

Let r P L with rYM , Y
r
M s ď YM X Y rM . By 1.45(b) it suffices to show that YM “ Y rM .

As YM is asymmetric in G, rYM , Y
r
M s ď YM XY

r
M implies rYM , Y

r
M s “ 1. By (3˝) rOppHq, YM s ď

YM and so rOppHq, YM s ď CBpY
r
M q. Now (6˝) gives CBpYM q ď CBpY

r
M q and so CBpYM q “

CBpYM q
r. So r normalizes CBpYM q. Put W :“ rOppHq, Ls. Since L “ xYM , Y

g
M y, 1.40 shows

that rOppHq, YM s “ CW pYM q. Note that W ď B, and so W XCBpYM q “ CW pYM q “ rOppHq, YM s.
Thus r also normalizes rOppHq, YM s and so r P P . By (7˝) P “ NLpYM q. Hence Y rM “ YM , and
(8˝) is proved.

9˝. L is YM -minimal, and NLpYM q is the unique maximal subgroup of L containing YM .

Let YM ď U ă L. By the minimal choice of L, YM ď OppUq. By (8˝) YM is a weakly closed
subgroup of L and so YM Ĳ U . Thus NLpYM q is the unique maximal subgroup of L containing YM .
By (1˝) L “ xY LM y and thus L is YM -minimal.

10˝. OppLq X YM ď OppHq.

By (9˝) OppLq ď NLpYM q and so also OppLq ď NLpY
g
M q. By (3˝), rOppHq, Y

g
M s ď Y gM and thus

“

rOppHq, Y
g
M s, OppLq X YM

‰

ď YM X Y gM XB ď CBpxY
g
M , OppMqyq “ CBpHq.

By (5˝) B “ rOppHq, Y
g
M sCBpYM q and so rB,OppLqXYM s ď CBpHq. Hence OppLqXYM centralizes

all factor of the H-invariant series

1 ď CBpHq ď B ď OppHq.
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Since H is of characteristic p, 1.4(c) shows that OppLq X YM ď OppHq. So (10˝) holds.

(a), (b), (d): This follows from (2˝), (4˝) and (9˝), and (10˝), respectively.

(c): Let V be a non-central H-chief factor on OppHq and assume that OppLq ď CHpV q. By (1˝)
L “ xY LM y, so L “ OppLqYM . Thus (2˝) implies

H “ xL,OppMqy “ xO
ppLqYM , OppMqy ď CHpV qOppMq,

and rV,OppHqs “ 1. But then V is a central H-factor, a contradiction.

(e): By (9˝) L is YM -minimal and NLpYM q is a maximal subgroup of L. Thus 2.15 shows that
L P LGpYM q. In particular, OppLq “ xpOppLq X YM q

Ly. By (10˝) OppLq X YM ď OppHq and so
OppLq ď OppHq. l

For the next lemma recall the definition of a quasisimple module from A.2.

Lemma 2.17. Suppose that G is a Kp-group, YM is char p-tall and asymmetric in G and there
exists H P HGpOppMqq with rΩ1ZpOppHqq, O

ppHqs ‰ 1. Then there exist L P LHpYM q and a
quasisimple H-submodule V of YH . Moreover, the following holds for any such L and V and W :“
rV,Ls:

(a) H “ xOppMq, Ly.
(b) W ď ZpOppLqq and rOppHq, Ls ď OppLq ď OppHq ď NHpYM q.
(c) 1 ‰ W “ rW,Ls “ rW,OppLqs “ rV,OppLqs, V “ WCV pYM q “ WCV pLq, and W is a

non-trivial strong offender on YM .
(d) CV pO

ppLqq “ CV pLq, and CV pO
ppHqq “ CV pxY

H
M yq.

(e) W X CYM pLq “ CW pO
ppLqq “ CW pO

ppHqq “ CW pHq.
(f) rW,YM s “ rW,Xs for every X ď YM with |X{CXpW q| ą 2.

Proof. Let V0 be minimal in Ω1ZpOppHqq with rV0, O
ppHqs ‰ 1. By 2.11(g), H is p-irreducible

and so by 1.34(c), V0 is quasisimple. In particular, V0 is p-reduced for H and so V0 ď YH by definition
of YH . By definition of HGpOppMqq, YM ę OppHq and so we can choose L0 ď H minimal with
respect to YM ď L0 and YM ę OppL0q. By 2.16(e) L0 P LHpYM q. This shows the existence of L
and V .

Now let V be any quasisimple H-submodule of YH and L P LHpYM q. Then V {CV pO
ppHqq

is a non-central chief factor for H on OppHq. Let YM ď R ă L. By definition of LGpYM q, L is
Y -minimal and NLpYM q is the unique maximal subgroup of L containing YM . Thus R ď NLpYM q
and so YM Ĳ R and YM ď OppRq. So L satisfies the assumptions of 2.16. We conclude that
H “ xL,OppMqy, OppLq ď OppHq and rV,OppLqs ‰ 1. In particular, (a) holds and W :“ rV,Ls ‰ 1.

(b): Since W ď V ď YH ď ZpOppHqq and OppLq ď OppHq we have W ď ZpOppLqq. By 2.11(i),
rOppHq, Ls ď OppLq, and by 2.11(b), OppHq normalizes YM . Thus

W ď rOppHq, Ls ď OppLq ď OppHq ď NHpYM q,

and (b) holds.

(c): By 1.43(o) W is a strong offender on YM . Let h P LzNLpYM q. By 1.42(f), L “ xYM , Y
h
M y,

and by 2.16(a), H “ xY hL , OppMqy. As V is a perfect 1 H-module, V “ rV,Hs “ rV, Y hM srV,OppMqs.
By 2.11(b), OppHq normalizes OppMq, so rV,OppMqs ď V X OppMq ď CV pYM q, and we conclude
that

V “ rV, Y hM sCV pYM q.

In particular, V “ WCY pYM q. Moreover, rV, YM s ď V X YM ď CV pYM q, and since also h´1 P

LzNLpYM q, V “ rV, YM sCV pY
h
M q, so

CV pYM q “ rV, YM s
`

CV pYM q X CV pY
h
M q

˘

“ rV, YM sCV pLq.

1for the definition of a perfect module see A.2
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Hence V “ rV, Y hM srV, YM sCV pLq “ WCV pLq. It follows that W “ rV,Ls “ rW,Ls, W “

rW,OppLqs “ rV,L,OppLqs “ rV,OppLqs and rW,YM s “ rV, YM s. Since V is quasisimple, we have
rV,OppHqs ‰ 1. As OppHq ď xY HM y by 2.11(d), this gives rW,YM s “ rV, YM s ‰ 1. So (c) holds.

(d): Since V “ WCV pLq, CV pO
ppLqq “ CW pO

ppLqqCV pLq. By 1.43(h), CW pO
ppLqq “ CW pLq

and so CV pO
ppLqq “ CV pLq. Since OppHq ď xY HM y we have CV pxY

H
M yq ď CV pO

ppHqq. Also

CV pO
ppHqq ď CV pO

ppLqq “ CV pLq ď CV pYM q,

and so xY HM y centralizes CV pO
ppHqq.

(e): By 1.43(h) CW pO
ppLqq “W X CYM pLq, and so

CW pHq ď CW pO
ppHqq ď CW pO

ppLqq “W X CYM pLq ď CW pxL,OppMqyq
(a)
“ CW pHq.

Hence (e) holds.

(f): If |YM{YM X OppLq| “ p, there is nothing to prove. Thus, we may assume that q :“
|YM{YM X OppLq| ą p. Since L P LHpYM q, we get L{OppLq – SL2pqq or Szpqq; in particular,
L{OppLq is quasisimple.

Assume that q is odd. Then L{OppLq – SL2pqq and V “ rV,ZpL{OppLqqs ˆ CV pZpL{OppLqqq.
Put V1 :“ CV pZpL{OppLqqq. Then L{CLpV1q has dihedral Sylow 2-subgroups. As rV1, YM , YM s ď
rYM , YM s “ 1, [Gor, Theorem 8.1.2] shows that YM ď CLpV1q and V1 “ CV pLq. Hence W “

rV,Ls “ rV,ZpL{OppLqqs and CW pLq “ 1. On the other hand 1.43(d) shows that rW {CW pLq, xs “
rW {CW pLq, YM s for all x P YMzCYM pXq, and so (f) holds.

Assume now that q is even. Let X ď YM such that |X{X X O2pLq| ě 4. Then there exists
y P YM and g P L such that

L “ xX, ygyO2pLq “ xX,X
gyO2pLq “ xYM , Y

g
M yO2pLq.

Put L :“ L{CLpW q. Since by (b) OppLq ď CLpW q, we get L “ xX,X
g
y and so are allowed

to apply 1.40 with L, W and X in place of L, V and X. This gives CrW,LspXq “ rW,Xs. As
rW,Xs ď rW,YM s ď CrW,LspXq we conclude rW,YM s “ rW,Xs, and (f) is proved. l

Lemma 2.18. Let L P LGpYM q and put A :“ OppLq, Y :“ YM and q̃ :“ |Y {Y XA|.

(a) Let h P L. If h is not a p-element then h acts fixed-point freely on A{CY pLq.
(b) Let U be any chief factor for NLpY q on AY {CY pLq. Then |U | “ rq, and if rq ą 2, then

U “ rU,NLpY qs.
(c) Let U be any NLpY q-invariant section of AY {CY pLq. Then |U | is a power of rq.

Proof. (a): Recall form the definition of LGpYM q that L{A – Dih2r, r an odd prime, SL2prqq
or Szprqq. Moreover, by 1.43(p) L has no central chief factors in A{CY pLq. Thus, the claim is obvious
if L{A – Dih2r.

So suppose that L{A – SL2prqq or Szprqq. Then by C.15 every chief factor is a natural module
for L{A. As the non-trivial p1-elements of L{A act fixed-point freely on these modules, they also act
fixed-point freely on A{CY pLq.

(b): Now let U be a chief factor for NLpY q on A{CY pLq. Then the p1-elements of NLpY q acts
fixed-point freely on U , so U is a faithful simple module for NLpY q{OppNLpY qq over Fp. Since
NLpY q{OppNLpY qq is cyclic of order rq ´ 1, we get that |U | “ rq, and if rq ą 2, U “ rU,NLpY qs.

Since Y A{A is a simple NLpY q-module of order rq we conclude that (b) holds.

(c) follows immediately from (b). l
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2.3. Symmetric Pairs

In this section we study how YM is embedded in parabolic subgroups of G if YM is short and
asymmetric in G.

Definition 2.19. Let Y be a conjugate of YM in G. A subgroup L ď G is a Y -indicator if
either

(1) L is p-group and Y Ĳ L, or
(2) L is p-minimal, Y ď OppLq, NLpY q is a maximal and parabolic subgroup of L (so Y đ L),

and one of the following holds:
(i) There exists Q0 P Q

G with Q‚0 ď NGpY q and L ď NGpQ0q.
(ii) There exists T P SylppNGpY qq such that T XL P SylppNLpY qq, rΩ1ZpT q, O

ppLqs ‰ 1,
and rY,OppLqs ę rΩ1ZpT q, O

ppLqs.

A pair pY1, Y2q of conjugates of YM is a symmetric pair if there exist Yi-indicators Li, i “ 1, 2, such

that for Vi :“ xY Lii y

V1V2 ď L1 X L2 and rV1, V2s ‰ 1.

Lemma 2.20. Suppose that YM is asymmetric in G. Let Y be a conjugate of YM and L be a
Y -indicator. Then xY Ly is elementary abelian.

Proof. Without loss of generality we may assume that Y “ YM . We discuss the cases given in
2.19. Observe that in every case YM ď OppLq. In case 2.19(1) YM Ĳ L, so the lemma holds in this
case.

In case 2.19(2) NLpYM q is a parabolic subgroup of L, so OppLq ď NLpYM q ď M :. Now 2.5
yields the assertion. l

Lemma 2.21. Suppose that YM is PGpSq-short and asymmetric in G and that MGpSq ‰ tM
:u.

Then there exists rP P PGpSq such that rP XM : is a maximal subgroup of rP . Moreover, for any such
rP :

(a) OppxM, rP yq “ 1.

(b) YM ď OppP̃ q ď S ďM :.

(c) xY
rP
M y is an elementary abelian p-group.

Proof. Since MGpSq ‰ tM
:u there exists rP P LGpSq with rP ę M :. We choose rP minimal

with this property. Since Opp rP q ď S ď rP XM :, 1.6 shows that tU | rP XM : ď U ď rP u Ď LGpSq.
Thus, the minimal choice of rP implies that rP XM : is a maximal subgroup of rP .

Since YM is asymmetric in G, 2.6(a) implies that NGpSq ďM :, so S đ rP . Now the minimality

of rP shows that rP P PGpSq. This shows the existence of rP .

Now suppose that rP P PGpSq such that rP XM : is a maximal subgroup of rP . Then rP ę M :,
and since MGpMq “ tM

:u, (a) holds.

Note that OppMq ď S ď rP , OppMq P SylppCGpMqq and YM is PGpSq-short. Thus YM ď

Opp rP q ď S ďM :, and (b) is proved.

As YM is asymmetric, 2.5 now shows that xY
rP
M y is an elementary abelian p-group. l

Lemma 2.22. Let L P PGpSq such that L X M : is a maximal subgroup of L. Suppose that
Q đM : and that YM is short and asymmetric in G. Then L is a YM -indicator.

Proof. Since L P PGpSq Ď LG, L is of characteristic p. Thus 1.24(g) gives

1˝. Ω1ZpSq ď YL ď Ω1ZpOppLqq.

By 2.21(b), YM ď OppLq ď S ď M :. Suppose that Q ď OppLq. Then L ď NGpQq by 1.52(a).
As Q‚ ď S ď NGpYM q we conclude that L satisfies 2.19(2:i) with Y “ YM and Q0 “ Q, so L
is a YM -indicator in this case. Thus we may assume that Q ę OppLq. If rΩ1ZpSq, Ls “ 1, then
L ď NGpQq by Q! and Q ď OppLq. Hence
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2˝. rΩ1ZpSq, O
ppLqs ‰ 1.

So if rYM , O
ppLqs ę rΩ1ZpSq, O

ppLqs, then L satisfies 2.19(2:ii), with Y “ YM and T “ S and
L is a YM -indicator. Hence we may assume for the rest of the proof that

3˝. Q ę OppLq and rYM , O
ppLqs ď rΩ1ZpSq, O

ppLqs ď YL.

In particular,

4˝. YMYL Ĳ L.

By 2.21(a),

5˝. OppxM,Lyq “ 1.

If OppMq ď OppLq, then 2.6(a) gives L ď NGpOppLqq ďM :, a contradiction. Thus

6˝. OppMq ę OppLq.

Next we show:

7˝. YM ď Ω1ZpOppLqq.

Assume that R :“ rYM , OppLqs ‰ 1. By (4˝) YMYL Ĳ L and so R Ĳ L and CLpRq Ĳ L. Since
rR,OppMqs “ 1 and OppMq ę OppLq, CLpRq is not p-closed. Hence 1.37 implies that OppLq ď
CLpRq. Thus L “ OppLqS ď NGpCRpQqq, and since CRpQq ‰ 1, Q! shows that L ď NGpQq and
Q ď OppLq, a contradiction to (3˝).

Let V :“ Ω1ZpOppLqq, J :“ JLpV q (for the definition see A.7), and L :“ L{CLpV q.

8˝. CSpV q “ OppLq, and V is a p-reduced L-module.

Put N :“ OppLqq and let N be the inverse image of N in L. By (1˝) Ω1ZpSq ď V and by (2˝)
rΩ1ZpSq, O

ppLqs ‰ 1, so rV,OppLqs ‰ 1. Hence OppLq ę N and 1.37 gives that N is p-closed. Thus
N X S “ OppLqq, CSpV q “ OppLq, N “ 1 and V is a p-reduced L-module.

By A.40 each A P AOppMq induces a best offender on V . In particular JOppMqpV q ‰ 1 if
JpOppMqq ę CLpV q.

9˝. OppLq ď OppMq and JpOppLqq ę CLpV q; in particular, JOppMqpV q ‰ 1.

By (7˝) OppLq ď CSpYM q “ OppMq, and by (5˝) OppxM,Lyq “ 1. Hence no non-trivial
characteristic subgroup of OppMq is normal in L. In particular JpOppMqq đ L. Since OppLq ď

OppMq this gives JpOppMqq ę OppLq. By (8˝) OppLq “ CSpV q and so JOppMqpV q ‰ 1.

10˝. There exists subgroups E1, . . . , Ek in L such that for i “ 1, . . . , k and Ui :“ EiCLpV q X
M ::

(a) J “ E1 ˆ ¨ ¨ ¨ ˆ Ek, L “ JS, V “ rV,E1s ˆ ¨ ¨ ¨ ˆ rV,Eks, and E1
1
, . . . , Ek

1
are the JLpV q-

components of L.
(b) Ei – SL2pqq, q “ pn, or p “ 2 and Ei – Symp5q, and rV,Eis is the corresponding natural

module for Ei.
(c) Q is transitive on tE1, . . . , Eku.
(d) Ei – SL2pqq and Ui “ NEipS X Eiq, or Ei – Symp5q and Ui – Symp4q.

Since V is a Q!-module for L, (a), (b) and (c) are a straightforward application of C.13 and
C.24. Note here that the case Ei – Symp2n`1q in C.13 only appears for n “ 2 via Symp5q – O´4 p2q
in C.24. Moreover, (d) follows from the structure of the groups given in (b) and the fact that L is
p-minimal with LXM : being the unique maximal subgroup containing S.

In the following we use the notation of (10˝) and put

Wi :“ rV,Eis, J0 :“ JpOppMqq, Ri :“ rWi, J0s.

11˝. Ei – SL2pqq, OppUiq “ J0 X Ei, V ď J0, and |Ri| “ q, i “ 1, . . . , k. Moreover,
YM XWi “ Ri if q ą 2.
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By (9˝) J0 ę CLpV q. Let A P AJ0 such that A ę CLpV q and |A{CApV q| is minimal with this
property. By C.13

A “ AX E1 ˆ ¨ ¨ ¨ ˆAX Er and |Wi{CWipAX Eiq| “ |AX Ei|.

Hence |A| “ |Ai| “ |V CApV q|, where Ai :“ pAX UiqCV pAX Uiq. Since by (9˝) V ď OppMq, we get
V CApV q P AOppMq and Ai P AOppMq. In particular, V ď J0. Moreover, the minimality of A implies

that A “ Al for some l P t1, . . . , ku, so A ď El and A ď OppUlq. Suppose that El – Symp5q. Since

A is an offender on Wl, C.4(g) shows that A is generated by transpositions, a contradiction since
Ul – Symp4q and so OppUlq contains no transpositions.

Thus Ei – SL2pqq and by (10˝) Ui “ NEipS X Eiq. From the structure of SL2pqq we get that

Ui “ pS X EiqKi, Ki – Cq´1. Since A is an offender on Wl we have |Wl{CWl
pAq| “ |A| “ q, and

A P SylppElq. In particular, A “ OppUlq “ J0 X El and J0 “ A ˆ CJ0pWlq, and Rl “ rWl, J0s “

CWl
pAq is a 1-dimensional Fq-subspace of Wl. Since S normalizes OppMq and acts transitively on

tE1, . . . Eku we conclude that the first sentence in (11˝) holds.
Assume now that in addition q ą 2, so Kl ‰ 1. Since Ul ď M : and YM ď CV pAq, rYM , Uls ď

YM XCWl
pAq, and either rYM , Uls “ 1 or rYM , Uls “ CWl

pAq “ Rl. In the latter case the last part of
(11˝) holds. In the first case rYM ,Kls “ 1, and the action of Kl on Wl shows that CV pKlq “ CV pElq.
But then YM ď CV pElq and El ď CGpYM q ďM :. Hence El “ Ul, a contradiction.

12˝. OppLq “ V “ CLpV q.

By (11˝) Ei – SL2pqq and OppUiq “ J0 X Ei and by (10˝)(d) Ui “ NEipS X Eiq. So J0 X Ei P

SylppEiq and thus J0 P SylppJq. According to (9˝) OppLq ď OppMq and so OppMq P SylppOppMqJq.
By (10˝)(a) L “ JS and so xM,Ly “ xM,Jy. Thus by (5˝) OppxM,Jyq “ 1 and so no non-trivial
characteristic subgroup of OppMq is normal in OppMqJ . Moreover, by (10˝)(a) ZpOppMqJq “ 1.
Hence, the CpG,T q-Theorem [BHS], applied to OppMqJ , shows that rOppLq, O

ppJqs ď V and
rΦpOppLqq, O

ppJqs “ 1. As OppJq “ OppLq and ZpOppMqJq “ 1, we get ΦpOppLqq “ 1 and so
V “ OppLq. Since L is of characteristic p, also V “ CLpV q.

13˝. q ą p and k “ 1.

Let Ω :“ tRi | i “ 1, . . . , ku. By (11˝) |Ri| “ q, and by (10˝)(c) Q is transitive on Ω. We will
show that M acts on Ω. For this let x PM and i P t1, . . . , ku. Note that W x

i ď V x ď Jx0 “ J0 ď L,
and so rW x

i , J0s “ Rxi .
Suppose that rW x

i , V s “ 1. By (12˝) CLpV q “ V and so W x
i ď V “ W1 ˆ . . . ˆWr. Since

rW x
i , J0s ‰ 1 we can choose j P t1, . . . , ru such that the projection of W x

i to Wj is not centralized

by J0. Then
Rj “ rW

x
i , J0 X Ejs ď rW

x
i , J0s “ Rxi .

Hence Rj “ Rxi P Ω.
Suppose that rW x

i , V s ‰ 1. Then there exists j P t1, . . . , ku such that rW x
i ,Wjs ‰ 1. Hence

Rj “ rW
x
i ,Wjs ď rW

x
i , J0s “ Rxi , so again Rj “ Rxi P Ω.

We have shown that M acts on Ω. Let Λ Ď Ω be an orbit of OppMq and R0 :“
ś

R`PΛ
R`.

Observe that OppMq ď NGpR0q and OppMq P SylppCGpYM qq. Hence Ω1ZpSq ď YM ď OppNGpR0qq

since YM is short2.
Assume that Λ ‰ Ω. Then there exists i P t1, . . . , ku such that Ri ę R0. Note that

p˚q rRl, Ejs “ 1 for all 1 ď l, j ď k with l ‰ j.

Hence rR0, Eis “ 1, so Ei ď NGpR0q and Wi “ rΩ1ZpSq, Eis ď OppNGpR0qq. On the other hand,
by (5˝) OppxM,Lyq “ 1. So V đ M , and there exists y P M such that V y ‰ V . Then V y ď J0.
Moreover, by (10˝)(c) Q is transitive on Ω, so y can be chosen such that rWi, V

ys “ Ri. Since M

acts on Ω, Ry
´1

i P Ω and so there exists j P t1, . . . , ku such that rWi, V
ys “ Ri “ Ryj . Conjugating

p˚q by y gives
rRyl , E

y
j s “ 1 for all 1 ď l, j ď k with l ‰ j.

2This is the unique place in the proof of this lemma where shortness is needed and not only char p-shortness
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Since Ryj “ Ri and y acts in Ω this shows rRl, E
y
j s “ 1 for all 1 ď l ď k with l ‰ i. Then also

rR0, E
y
j s “ 1, so Eyj ď NGpR0q. Since Wi ď OppNGpR0qq this shows that rWi, E

y
j s is a p-group. But

Wi ď J0 “ Jy0 ď Jy and rV y,Wis “ Ryj . So the action of Jy on V y implies that rEyj ,Wis is not a
p-group, a contradiction.

We have shown that Λ “ Ω. Hence OppMq is transitive on Ω and thus also on the groups

E1, . . . , Ek. Suppose that q “ p, then the transitivity ofOppMq shows that |YM | “ |CV pOppMqq| “ p.
Thus YM ď CGpQq and Q! gives M : ď NGpYM q ď NGpQq, a contradiction since Q đ M : by

assumption. Therefore q ą p. Now (11˝) shows that WiXYM ‰ 1 and thus OppMq ď CLpWiXYM q ď

NLpEiq. Hence, the transitivity of OppMq gives k “ 1.

14˝. J{V – SL2pqq, q ą p, and V is a natural SL2pqq-module for J .

By (12˝) V “ CLpV q, and by (11˝) and (13˝) J{V – SL2pqq, q ą p. Moreover, by (10˝)(b)
V “W1 is a natural SL2pqq-module.

15˝. J0 P SylppJq, and there exists x PMzL with J0 “ V V x.

By (5˝) OppxM,Lyq “ 1 and so M ę NGpV q. Pick x P MzNGpV q. Then V ‰ V x and so by
(12˝), V x ę CLpV q. Since M normalizes J0, V x ď J0 ď J . By (14˝) V is a natural SL2pqqq-module
for J , and we conclude that |CV pV

xq| “ q. So |V XV x| ď q, |V xV {V | ě q and V V x “ J0 P SylppJq.

16˝. OppMq “ J0, YM “ CV pOppMqq, |YM | “ q, and M X J acts transitively on YM .

By (7˝) YM ď V , so YM ď CV pJ0q. By (14˝) V is a natural SL2pqq-module for J , and so Ui
acts transitively on CV pJ0q. As Ui ďM :, Ui normalizes YM and hence YM “ CV pJ0q.

It remains to be shown that OppMq “ J0. Since OppMq centralizes the Fq-subspace YM “

CV pJ0q of V , OppMq acts Fq-linearly on V . As GL2pqq{SL2pqq is a p1-group, this gives OppMq ď J
and so OppMq ď J . Since J0 ď OppMq and J0 P SylppJq, this shows that OppMq “ J0.

17˝. p is odd.

Assume that p “ 2. By (15˝) and (16˝) O2pMq “ J0 “ V V x. As V is a natural SL2pqq-module
for J , this implies that V and V x are the only maximal elementary abelian subgroups of O2pMq, so
|M{NM pV q| “ 2. But this contradicts the fact that V is normalized by the Sylow 2-subgroup S of
M .

18˝. Q ę J .

Assume that Q ď J . By (15˝) and (16˝) OppMq “ J0 P SylppJq and so Q ď OppMq. Thus

by 1.52(a), NGpOppMqq ď NGpQq. Hence Q Ĳ M and by 2.2(g), Q Ĳ M :, a contradiction to the
assumption.

19˝. M˝ ďM X J , and NGpV q
˝ “ pQJq˝.

By (16˝) M X J acts transitively on YM and so by 1.57(c), M˝ “ xQMXJy ď QpM X Jq.
Thus M˝ “ OppM˝q ď M X J . Since J acts transitively on V another application of 1.57(c) gives
NGpV q

˝ “ xQJy “ pQJq˝.

Put B :“M : X J and qB :“ B{CBpYM q.

20˝. B “ NJpOppMqq, CBpYM q “ OppMq “ OppBq, qB is cyclic of order q ´ 1 and acts

regularly on Y 7M . In particular, |M˝ acts fixed-point freely on YM .

By (15˝), J0 P SylppJq, and by (16˝), OppMq “ J0 and YM “ CV pOppM0qq. In particular,
OppMq P SylppJq. By (14˝) J{V – SL2pqq and V is a natural SL2pqq-module. It follows that

B “ NJpOppMqq, CBpYM q “ OppMq “ OppBq and qB is cyclic of order q ´ 1. By (19˝), M˝ ď B
and so also the last statement holds.

21˝.
?
q ` 1 ă ||M˝|.
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The elements of QzJ induce field automorphisms on J{V , and by (18˝) Q ę J . This shows that
|C

qBpQq| “ q0 ´ 1, where q0 is a power of p with qp0 ď q. By 2.2(c) B ď NGpOppMqq ď M : and by

2.2(h) M˝ “ pM :q˝. So rB,Qs ďM˝. Since r qB,Qs is a p1-group and M˝{M˝ is a p-group, this gives

r qB,Qs ď |M˝. Hence |r qB,Qs| ď ||M˝| and qB “ r qB,Qs ˆ C
qBpQq, so

q ´ 1 “ | qB| “ |r qB,Qs||C
qBpQq| ď |

|M˝|pq0 ´ 1q.

As qp0 ď q and p ą 2, we have q0 ă
?
q and we conclude

|}M˝| ě
q ´ 1

q0 ´ 1
ą

q ´ 1
?
q ´ 1

“
?
q ` 1.

22˝. YM is a simple |M˝-module.

By (20˝) |M˝ acts fixed-point freely on YM and by (21˝) ||M˝| ą
?
q ` 1. Thus any non-trivial

M˝-invariant section of YM has order larger than
?
q ` 1. As |YM | “ q by (16˝) we conclude that a

composition series for M˝ on YM has at most one factor and so (22˝) holds.

We now derive a final contradiction. Put F :“ EndM˝pYM q, K :“ EndJpV q and rK :“
EndJxpV

xq, where x is as in (15˝). By (22˝) F is a finite field, and by (14˝) V is the natural SL2pqq-
module for J , so K is a finite field of order q. By (19˝) M˝ ď J , and since YM “ CV pOppMqq,
M˝ acts K-linearly on YM . Thus F contains a field isomorphic to K. Since |YM | “ q “ |K| and
|F| ď |YM | this show that F is a field isomorphic to K, indeed F is the restriction of K to YM . Note

that F is invariant under x and so also rK is a isomorphic to F, and F is the restriction of rK to YM .

Moreover, since |M˝ is abelian, |M˝ embeds into F via its action on YM .
Pick y P V xzV , v P V zYM , and d P M˝. Then there exists µ P F such that d acts on YM as

multiplication by µ. Let λ P K and rλ P rK such that

λ|YM “ µ “ rλ|YM .

Then
vd P vλ´1 ` YM and yd P yrλ´1 ` YM

since the action of d on V and V x has determinant 1. The mappings

V {YM Ñ YM with w ` YM ÞÑ rw, ys, and
V x{YM Ñ YM with w ` YM ÞÑ rv, ws.

are K- and rK-linear, respectively. It follows that

rv, ysµ “ rv, ysd “ rvd, yds “ rvλ´1, yrλ´1s “ rv, ysλ´1|YM
rλ´1|YM “ rv, ysµ

´2.

This shows that µ “ µ´2 and µ3 “ 1. Since the multiplicative group of F is cyclic, we get that

||M˝| ď 3. Hence (21˝) implies that
?
q` 1 ă 3, so q ă 4. On the other hand, by (13˝) p ă q and by

(17˝) p is odd, a contradiction. l

Lemma 2.23. Suppose that YM is short and asymmetric in G, that MGpSq ‰ tM
:u and that

Q đM :. Then G possesses a symmetric pair.

Proof. Note that the assumptions of 2.21 are fulfilled and so we can choose rP P PGpSq as

there. Since Q đ M :, rP satisfies the hypothesis of 2.22 in place of L. Hence rP is a YM -indicator.

We will now verify the assumptions of E.16(b) for pG, YM ,M, rP q in place of pH,A1, H1, H2q.
Observe that YM is a non-trivial normal p-subgroup of M and by 2.2(f) CM pYM q is p-closed.

By 2.21(a), OppxM, rP yq “ 1 and so no nontrivial normal p-subgroup of M X rP is normal in M and

in rP . Since S ď M X rP , M X rP is parabolic subgroup of M and rP . By 2.21(b) YM ď Opp rP q, and

as rP P PGpSq, rP is p-minimal and so by 1.37 p-irreducible.

We have shown that pG, YM ,M, rP q satisfy the hypothesis of E.16(b) in place of pH,A1, H1, H2q.
Hence there exist i P t1, 2u and h P G with 1 ‰ rAi, A

h
i s ‰ Ai X Ahi and AiA

h
i ď Hi X Hg

i , where

A2 :“ xAH2
1 y “ xY

rP
M y. Since YM is asymmetric in G, we conclude that i ‰ 1. So i “ 2. As already

observed, rP is a YM -indicator and thus pYM , Y
h
M q is a symmetric pair with indicators rP and rPh. l
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2.4. Tall Natural Symplectic Modules

Lemma 2.24. Let I be a non-trivial normal p-subgroup of M and Y ď OppM
:q. Let L ď G and

let A be a normal p-subgroup of L. Suppose that I ď A ď M and Y ď L. If rY,As ď rI, As, then
Y ď OppLq.

Proof. Let H be the subnormal closure of Y in L. Put W :“ xrI, AsHy. Since rY,As ď rI, As
and H “ xY Hy (see 1.13), we get rH,As ď W , and H acts trivially on A{W . Since I ď A we
conclude that H normalizes IW and so

W “ xrI, AsHy “ rxIHy, As ď rIW,As ď IrW,As.

Since A ď M , A acts in IW {I, and we conclude that IW {I “ rIW {I, As. so IW “ I, and
H normalizes I. As I Ĳ M , 2.2(c) gives NGpIq ď M :. Thus H ď M :. In particular, since
Y ĲĲ OppM

:q ĲM :, Y ĲĲ H. Hence Y “ H and Y ĲĲ L, so Y ď OppLq. l

Lemma 2.25. Suppose that p “ 2 and Y is an M -submodule of YM such that I :“ rY,M˝s is
natural Sp2mp2

kq1-module for M˝, m ě 1.

(a) Let L ď G and A a normal p-subgroup of L. Suppose that I ď A ď M and Y ď L. Then
Y ď OppLq.

(b) If I ď Q‚, then Y ď Q‚.

Proof. (a): Put q “ 2k. By 1.55(d), CGpM
˝q “ 1. In particular, CY pM

˝q “ 1 and so also
CY pM˝q “ 1.

We claim that CM pY q “ CM pIq. Indeed by 1.52(c), rM˝, CM pIqs ď OppMq ď CM pY q. Thus
rM˝, CM pIq, Y s “ 1. Also rY,M˝, CM pIqs “ rI, CM pIqs “ 1, and so the Three Subgroups Lemma
implies rY,CM pIq,M˝s “ 1. Since CY pM˝q “ 1, this gives rY,CM pIqs “ 1 and CM pY q “ CM pIq.

Suppose that M˝ fl Sp2p2q
1 and put K :“ EndM˝pIq. Then K is a finite field of order q and

dimK I ě 2. Put D :“ xILy. Then D ď A ď M ď NGpIq, and so rD, Is ď I. Suppose that Ix does
not act K-linearly on I. Then |K| ą 2, and 1.22 shows that dimK I “ 1, a contradiction. Hence Ix

and so also D acts K-linearly in I. Note that the set of M˝-invariant symplectic forms on I form a
1-dimensional K-space, on which D acts K-linearly and so trivially. We conclude that D leaves all
these forms invariant. Thus I is a natural Sp2mpqq- or Sp2mpqq

1-module for M˝D. Note that the
same statement holds if M˝ – Sp2p2q

1.
Now C.20 shows that rI,Ds “ rY,Ds, and so 2.24, applied with D in place of A, gives Y ď OppLq.

(b): Just apply (a) with L “ NGpQq and A “ Q‚. l

Lemma 2.26. Suppose that X is an M -submodule of YM and a natural Sp2mpp
kq-module for

M˝, 2m ě 4 and p odd. Then X ď Q‚.

Proof. Note that X is an FqM˝-module equipped with a non-degenerate M˝-invariant sym-

plectic form, where q :“ pk. Put ĂM “ M{CM pXq, X0 :“ CXpQq and X1 :“ rX,Qs. Note that
X1 “ XK0 in the symplectic space X. By B.37 X0 is 1-dimensional over Fq and

rQ “ C
ĄM˝pX1{X0q X C

ĄM˝pX0q.

In particular, rX1, Qs “ X0. Moreover, by B.28(b:a)

p˚q Zp rQq “ C
rQpX1q.

Put
H :“ NGpQq and W :“ xXH

1 y.

Suppose first thatW is non-abelian. Then rX1,W s ‰ 1 and we can choose g P H with rX1, X
g
1 s ‰

1. From X1 ď Q we conclude Xg
1 ď Q. As rX1, Qs “ X0 and X0 is 1-dimensional we get rX1, X

g
1 s “

X0. This gives
rX1, Qs “ rX1, X

g
1 s “ X0 “ Xg

0 “ rX
g
1 , Qs.

Thus rXg
1 , Qs ď X0 ď CM pXq and ĂX1

g
ď Zp rQq. As Zp rQq “ C

rQpX1q by p˚q this gives ĂXg
1 ď

C
rQpX1q and so rXg

1 , X1s “ 1, a contradiction to the choice of g.
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Suppose now that W is abelian. Then W ď CQpX1q and so ĂW ď C
rQpX1q “ Zp rQq. Thus

rW,Qs ď CM pXq and rW,Q,Xs “ 1. As X1 ď CXpW q we have rW,Xs ď XK1 “ X0 “ rX1, Qs ď
rW,Qs. Also rQ,Xs “ X1 ďW and so X centralizes all factors of the series

1 ď rW,Qs ďW ď Q.

This series is H-invariant and so also xXHy centralizes these factors. Hence xXHy acts nilpotently on
Q. Since CGpQq ď Q this implies that xXHy is a p-group, see 1.3, and so X ď xXHy ď OppHq “ Q‚.
l





CHAPTER 3

The Orthogonal Groups

In this chapter we treat a particular situation, which arises in Chapter 4 and in Chapter 5. In
this situation, rYM , O

2pMqs is a natural Oε2np2q-module some M P MG. Natural Oε2np2q-modules
for p “ 2 are the only examples of simple Q!-modules V with a non-trivial offender A such that
rV,As does not contain non-trivial 2-central elements of M . This forces us to look at centralizers of
non-2-central involutions and requires a line of arguments quite different from those of later chapters.

Theorem C. Let G be a finite K2-group and S P Syl2pGq, and let Q ď S be a large 2-subgroup
of G. Let M PMGpSq and suppose that the following hold:

(i) M{CM pYM q – Oε2np2q, n ě 2.
(ii) rYM , O

2pMqs is a natural Oε2np2q-module for M{CM pYM q.
(iii) CGpyq ęM : for all non-singular elements y P rYM , O

2pMqs.
(iv) Q đM .

Then CGpyq is not of characteristic 2 for all non-singular elements y P rYM , O
2pMqs.

Here an element of a natural Oε2np2q-module V is singular if hpvq “ 0, where h is the M -invariant
quadratic form on V . For the definition of M˝ see 1.51. Recall from 1.52(b) that Q is a weakly
closed subgroup of G. In particular, by 1.46(c) M˝ “ xQM y.

3.1. Notation and Elementary Properties

In this section we assume the hypothesis of Theorem C apart from C(iii). The first lemma
collects elementary facts about a natural Oε2np2q-module V with quadratic form h and associate
symplectic bilinear form f .

Lemma 3.1. Let V be a natural Oε2np2q-module for X “ Oε2np2q, n ě 2.

(a) X is transitive on the non-singular elements of V and on the non-trivial singular elements
of V .

(b) Let 0 ‰ z P V be singular. Then CXpzq “ AK, where
(a) K – Oε2n´2p2q and A is a natural Oε2n´2p2q-module for K.

(b) rzK, As “ xzy, CXpz
Kq “ 1 and A induces HompzK{xzy, xzyq on zK.

(c) CXpzq is a parabolic subgroup of X.
(d) If p2n, εq ‰ p4,`q, then O2pCXpzqq “ A ď Ωε2np2q.

(c) Let y P V be non-singular. Then CXpyq “ T ˆ E, where
(a) T – C2, E – Sp2n´2p2q, y

K is a natural O2n´1p2q-module for E, and yK{xyy is a
natural Sp2n´2p2q-module for E.

(b) T “ CXpy
Kq, rX,T s “ xyy, yK “ CXpT q, and T ę Ωε2np2q.

(c) Let Z be the set of non-trivial singular elements of yK. Then yK “ xZy, and E acts
transitively on Z.

(d) Let 0 ‰ v P V . If X “ O`4 p2q suppose that v is singular. Then CXpvq is a maximal
subgroup of X.

Proof. (a): Note that hpvq “ 1 “ hpwq for any two non-singular vectors. It follows that any
two non-singular and any two singular vectors are isometric. Thus (a) follows from B.16.

45
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(b): Put Z :“ xzy and A :“ CXpZq XCXpZ
K{Zq. Let v P V zZK and put K :“ CXpzq XCXpvq.

Then B.25(c) shows that (b:a) holds. It follows from B.24(a), that A induces HompZK{Zq on ZK,
via the commutator map. So (b:b) holds. By B.12(c) any 2-subgroup of X centralizes a non-trivial
singular vector and so CXpzq is a parabolic subgroups of X.

Suppose that n ě 4 or ε “ ´. Then O2pKq “ 1 and so O2pCXpzqq “ A ď Ωε2np2q.

(c): Since yKK “ xyy and y is non-singular, yK is a non-degenerate orthogonal space. By Witt’s
Lemma B.15 CXpyq induces OpyKq “ O2n´1p2q on yK, and by B.14 O2n´1p2q – Sp2np2q. Put
T :“ CXpy

Kq. Then T “ xωyy where ωy is the reflection associated to y. In particular, |T | “ 2,
rX,T s “ xyy, CXpT q “ yK, and T ę Ωε2mp2q.

Put E :“ CXpyq X Ωε2np2q. Since Ωε2np2q has index 2 in X, CXpyq “ T ˆ E. In particular, E
acts faithfully on yK, yK is natural O2n´1p2q-module for E and E – Sp2n´2p2q.

Now B.16 shows that CXpyq acts transitively on Z. By B.13 yK “ xZy. Thus (c) is proved.

(d): By Witt’s Lemma B.15 CXpvq has at most three orbits on vX , namely

tvu,

T0pvq :“ tw P V 7 | hpwq “ hpvq, fpv, wq “ 0, v ‰ wu, and

T1pvq :“ tw P V 7 | hpwq “ hpvq, fpv, wq “ 1u.

Suppose that CXpvq ă H ă X. Then tvu ‰ vH ‰ vX , so both T0pvq and T1pvq are non-empty,
and ∆ :“ vH “ tvu Y Tipvq for some i P t0, 1u. In particular, H acts 2-transitively on ∆, and
∆ “ tuu Y Tipuq for all u P ∆. Let t1, 2u “: ti, ju. Since H is transitive on ∆ and leaves invariant
Tjpvq, we have Tjpvq “ Tjpuq for all u P ∆. Put W :“ x∆y “ xvy`Wi and, for k “ 0, 1, Wk :“ xTkpvqy
and W :“ x∆y “ xvy `Wi.

We claim that vK “ xvy ` W0. Clearly xvy ` W0 ď vK. Suppose first that v is singular.
Then tvu Y T0pvq is the set of singular vectors of vK. On the other hand, since T0pvq ‰ H, there
exist singular vectors in vKzxvy. Thus, by B.13 vK is generated by its singular vectors, and so
vK “ xvy `W0. Suppose next that v is non-singular. Then tvu Y T0pvq is the set of non-singular
vectors of vK. Let w P vK be non-zero and singular. Then hpvq “ hpv ` wq and v ` w P T0pvq, so
w “ pv`wq´ v P xvy`W0. Thus xvy`W0 contains all singular and non-singular vectors of vK and
again vK “ xvy `W0

Assume that i “ 0. Then W “ xvy `W0 “ vK and so xvy “ WK. Since H normalizes W this
gives H ď CXpvq, a contradiction.

Hence i “ 1 and so j “ 0. Thus, as seen above, T0pvq “ T0puq for u P ∆ and so W0 “ xT0pvqy “
xT0puqy ď uK. Thus W0 ď WK. Therefore, W ď WK

0 and so W X vK ď pxvy `W0q
K “ vKK “ xvy.

Thus |W | ď 4. Let u P T1pvq. Then W “ xu, vy has order 4 and since u R vK, W XWK “ 0.
Let d PWK be singular. Then hpd`uq “ hpuq and so d`u P T1pvq ĎW . Thus d PWXWK “ 0.

Hence WK does not contain any non-zero singular vectors. Since T0pvq ĎW0 ďWK this shows that v
is not singular. Also B.19(c) shows that dimF2 W

K ď 2. Since dimF2 W `dimF2 W
K “ dimF2 V ě 4,

this gives dimF2 W
K “ 2 and dimF2 V “ 4. Let v1 and u1 be distinct non-zero elements in WK. Then

xv` v1, u`u1y is a singular subspace of dimension 2, and so V has Witt index 2. Hence X “ O`4 p2q,
and (d) is proved. l

Notation 3.2. Let M : :“M :{CM:pYM q and recall from 1.1 that

ZM “ xΩ1ZpXq | X P Syl2pMqy.

By our hypothesis rYM , O
2pMqs is a natural Oε2np2q-module for M , and we will use the corresponding

orthogonal structure for the following notation.
We choose y, z P rYM , O

2pMqs7 such that

z is singular, y is non-singular, and y K z.

Recall from 3.1 that z is 2-central in M . Thus we can fix our notation such that z P Ω1ZpSq and
CSpyq P Syl2pCM pyqq.
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Since z P CGpQq, Q! implies CGpzq ď NGpQq. Hence, we can define

Qzg :“ Qg for g P G.

We further put

F0 :“ CM pyq, T˚ :“ CSpyq, Y :“ yK pin rYM , O
2pMqsq, F :“ xpQz X F0q

F0y, T :“ CSpY q.

Note that T˚ P Syl2pF0q.

Lemma 3.3. (a) CGpM
˝q “ 1 and ZpMq=1.

(b) rYM , O
2pMqs “ ZM . In particular, ZM is a natural Oε2np2q-module for M .

(c) Either Qz “ O2pCM pzqq, or p2n, εq “ p4,`q, and Qz – C4, D8 or C2 ˆ C2, with Qz ď

Ω`4 p2q in the last case. In all cases CZM pQzq is a 1-dimensional singular subspace and
|ZM{rYM , O

2pMq, Qzs| “ 2.
(d) M˝ „ Ωε2np2q, 32C4 or 32D8.
(e) Suppose that p2n, εq “ p4,`q. Then TQz “ S.
(f) Either YM “ ZM , or p2n, εq “ p6,`q and YM is the factor module of order 27 of the natural

permutation module for Symp8q – O`6 p2q.
(g) rYM , T s “ xyy.
(h) M{O2pMq – Oε2np2q; or M{O2pMq „ 3.O`4 p2q, O3pM{O2pMqq is extra-special of order 33

and exponent 3 and Q – C4.
(i) M “M˝S.

Proof. (a): By Hypothesis C(iv) Q đ M . So M˝ ‰ Q, and 1.55(d) shows that CGpM
˝q “ 1.

In particular, ZpMq “ 1.

(b): Since rYM , O
2pMqs is a simple M -module, we have rYM , O

2pMqs ď ZM . By 1.24(e) ZM “

Ω1ZpMqrZM , O
2pMqs. Also ZpMq “ 1 by (a), and so (b) holds.

(c) and (d) : By Hypothesis C(iv) Q đ M and since Q is large, 1.57(b) shows that ZM is a
Q!-module for M˝ with respect to Q. Thus we can apply B.37. Since O`4 p2q does not have a normal
subgroup isomorphic to SL2p2q, Case B.37(4) does not occur. Hence (c) and (d) follow from B.37.

(e): Note that |S| “ 8 and T ę Ω`4 p2q. Now (c) implies |Qz| “ 8 or |Qz| “ 4 and T ę Qz. Thus
S “ TQz. As CSpYM q ď CSpY q “ T this gives S “ TQz.

(f): By C.18 , H1
`

O2pMq, ZM
˘

“ 1, unless p2n, εq “ p6,`q, in which case it has order 2. Since

ZM “ rYM , O
2pMqs and CYM pO

2pMqq “ 1, this implies (f).

(g): Note that by 3.1(c:b), rZM , T s “ xyy. So if YM “ ZM , (g) holds. Otherwise, (f) shows that
YM is quotient of the natural Symp8q-permutation module. As rZM , T s “ xyy, T is generated by a
transposition and so again rYM , T s “ xyy.

Put |M :“M{O2pMq and D :“ CM pYM q.

(h): By the basic property of M , qD ď Φp|Mq. From ΦpOε2np2qq “ 1, we conclude that Φp|Mq “ qD.

By 1.7(a) Φp|Mq “ ΦpO2p|Mqq and thus qD “ Φp}M˝q. By 2.2(f) O2pMq P Syl2pCM pYM qq and so qD
has odd order.

Moreover, by 1.52(d) rM˝, CM pYM qs ď O2pM
˝q ď O2pMq. Thus M˝ centralizes qD, and |M˝ is a

non-split central extension of |M˝{ qD by a group of odd order. If p2n, εq ‰ p4,`q, then |M˝{ qD – Ωε2np2q
is simple. Also the odd part of the Schur multiplier of Ωε2np2q is trivial in this case (see [Gr1]), and
(h) follows.

Assume now that p2n, εq “ p4,`q. By (f) YM “ ZM . It follows that YM is a natural SL2p2q-
wreath product module for M . So we can apply 1.58(f) and conclude that (h) also holds in the
O`4 p2q-case.

(i): Note that (d) implies that O2pMq ď M˝ and so M “ M˝S. By the basic property of M ,
qD ď Φp|Mq and so |M “ ~M˝S. As OppMq ď S this gives M “M˝S. l

Lemma 3.4. The following hold:
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(a) |Qz{CQz pyq| “ 2, ry,Qzs “ xzy and yQz “ ty, yzu.

(b) TM˝ “ M and F0 “ FT . Moreover, either CM pYM q “ O2pMq and F0 “ FT , or
M{O2pMq „ 3.O`4 p2q and |F0{FT | “ 3.

(c) CF pYM q ď O2pMq, F {F X T – Sp2n´2p2q, Y is a natural O2n´1p2q-module for FT {T ,
Y {xyy is a natural Sp2n´2p2q-module for FT {T , and rYM , T s “ xyy. In particular, T “
O2pFT q, |T {O2pMq| “ 2, and T˚ P Syl2pFT q.

(d) Suppose that n ě 6. Then Qz X F is a natural O2n´3p2q-module for CF pzq. In particular,
Qz X F is elementary abelian of order 22n´3 and rQz X F,CF pzqs ę T .

(e) NM:pT q ď CM:pyq and O2pNM:pT qq “ T .
(f) xy, zy “ Ω1ZpT

˚q “ CYM pT
˚q “ CYM pQz X T

˚q.
(g) Ω1ZpSq “ xzy.
(h) There exists M1 ďM such that

(a) T P Syl2pM1q and M1{O2pMq – Symp3q;
(b) if 2n “ 4, then T˚ normalizes M1 and xM1, Sy “ xM1, NM pT

˚qy “M ; and
(c) if p2n, εq ‰ p4,`q, then xM1, NM pT qy “M .

(i) xQz, F y “M˝ and, if p2n, εq ‰ p4,`q, F0 is a maximal subgroup of M .
(j) Suppose that p2n, εq ‰ p4,`q and A ď O2pCM pzqq is an offender on YM . Then A ď O2pMq.
(k) F Ĳ CM:pyq “ FTCM:pYM q and F “ xpQz X F q

F y.

Proof. (a): Suppose first that p2n, εq ‰ p4,`q. Then by 3.3(c) Qz “ O2pCM pzqq and so by

3.1(b:b) Qz induces HompzK{xzy, xzyq on ZM . This gives (a). Suppose next that p2n, εq “ p4,`q.
Then y and yz are the only non-singular vectors in zK. By 3.1(c:a), CM pyq – Sp2p2q ˆ C2. As

T ď CM pyq and T ę Ω`4 p2q, we conclude that T˚ – C2 ˆ C2 and T˚ ę Ω`4 p2q. Hence by 3.3(h)

Q ę T˚ and so Q does not centralize y. Since Qz acts on the non-singular vectors of zK, (a) follows.

(b) – (d): By 3.1(c), F0 “ CM pyq – C2 ˆ Sp2n´2p2q, |CM pY q| “ 2 and Y is natural O2n´1p2q-

module for F0. In particular, T “ CSpY q “ CM pY q “ O2pF0q, rYM , T s “ rZM , T s “ xyy, F0{T –

Sp2n´2p2q, Y {xyy is a natural Sp2n´2p2q-module for F0 and T M˝ “M .
Suppose now that p2n, εq ‰ p4,`q. Then 3.3(h) givesM{O2pMq – Oε2np2q, so CM pYM q “ O2pMq

and T “ CM pY q. By 3.3(c) Qz “ O2pCM pzqq and so by 3.1(a) Qz is a natural Oε2n´2p2q-module

for CM pzq. Observe that Qz X F is the hyperplane corresponding to a non-singular vector of Qz.

Thus by 3.1(c:a) applied to CM pzq{Qz and Qz in place of X and V , we have CF0
pzq{Qz X F –

C2 ˆ Sp2n´4p2q, and Qz X F is a natural O2n´3p2q-module for CF0
pzq. Note also that T ę Qz and

T “ CM pY q “ CF0
pY q. Thus Qz X F acts faithfully on Y and CF0

pzq{pQzXF qCF0
pY q – Sp2n´4p2q.

It follows that
pQz X F qCF0

pY q{CF0
pY q “ O2

`

CF0
pzq{CF0

pY q
˘

.

As F0{CF0pY q – Sp2n´2p2q, we have F0{CF0pY q “ xO2

`

CF0pzq{CF0pY q
˘F0
y. Since F “ xpQz X

F qF0y, this gives F0 “ FCF0pY q “ FT . Hence (b) – (d) hold for p2n, εq ‰ p4,`q.
Suppose next that p2n, εq “ p4,`q. By 3.3(e), S “ TQz. Thus T˚ “ T pQz X T˚q and so

Qz X F 0 ę T . Since F0{T – F0{CF0
pY q – Sp2p2q, this gives F0 “ FT . If CM pYM q “ O2pMq we

conclude that (b) and (c) hold. Assume that CM pYM q ‰ O2pMq. Then by 3.3(h) M{O2pMq „
3.O`4 p2q, O3pM{O2pMqq is extra-special of order 33 and Q – C4. In particular, CM pYM q{O2pMq ď
M˝O2pMq and so M “M˝T .

Also F0{O2pMq „ 3.pC2 ˆ Symp3qq. Since T neither centralizes nor inverts O3pM{O2pMqq, T
inverts CM pYM q{O2pMq. As CM pY q “ TCM pYM q, this gives CM pY q{O2pMq – Symp3q. By 1.52(c),
rCM pY q,M

˝s ď O2pM
˝q ď O2pMq, and so Qz X F0 centralizes CM pYM q{O2pMq. It follows that

F {O2pMq – Symp3q, F0{O2pMq – Symp3q ˆ Symp3q, FT {O2pMq – C2 ˆ Symp3q, |F0{FT | “ 3
and O2pFT q “ T . Also T pQz X F0q P Syl2pF0q and so T˚ “ T pQz X F0q P Syl2pF q. Thus again (b)
and (c) hold.

(e): Note that CSpYM q is a Sylow 2-subgroup of CM:pYM q and CSpYM q ď CSpY q “ T . Hence
T is Sylow 2-subgroup of CM:pYM qT . Also

FT ď NM:pT q ď NM:prYM , T sq “ CM:pyq “ CM:pYM qFT,

and so O2pNM:pT qq ď O2pFT q “ T . Thus O2pNM:pT qq “ T .
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(f): By 2.2(e) Ω1ZpO2pMqq “ YM . Since O2pMq ď T˚ and Ω1ZpT
˚q ď CGpO2pMqq ď O2pMq,

we conclude that Ω1ZpT
˚q ď YM .

Assume first that Ω1ZpT
˚q ď ZM . Suppose that pn, εq “ p4,`q. Then |ZM | “ 24 and S – D8,

so U :“ ZpSq has order 2. Hence U ď Qz since Qz Ĳ S, and U “ S1 ď Ω`4 p2q. In particular, U does

not act as a transvection group on ZM and thus |CZM pUq| ď 4. Since y and yz are the only non-
singular vectors in zK, S acts on ty, yzu and since U ď S1, U centralizes y. Hence CZM pUq “ xy, zy.
Since U ď Qz it follows that

xy, zy ď CZM pT
˚q ď CZM pT

˚ XQzq ď CZM pUq “ xy, zy,

and (f) holds on this case.
Suppose that pn, εq ‰ p4,`q. Put A :“ O2pCM pzqq and Au :“ CApuq for u P zK. Then by

3.1(c:a) A “ Qz, and by 3.1(b:b) A induces HompzK{xzy, xzyq on yK. Hence

Ay “ Aw ðñ w P y ` xzy.

Thus CZM pAyq “ xy, zy “ CZM pT
˚q, and again (f) follows.

Assume now that Ω1ZpT
˚q ę ZM and pick v P Ω1ZpT

˚qzZM . By 3.3(f) YM is the 7-dimensional
quotient of the natural permutation module for M – O`6 p2q – Symp8q. Hence CM pvq – Symp7q

or Symp3q ˆ Symp5q. By 3.3(d) M˝ “ Ω`6 p2q – Altp8q and so the Sylow 2-subgroups of CM˝pvq

are dihedral of order 8. On the other hand Qz X F ď Qz X T˚ ď CM˝pvq and by (d), Qz X F is
elementary abelian of order 26´3 “ 8, a contradiction.

(g): Note that Ω1ZpSq ď Ω1ZpT
˚q. By (f) Ω1ZpT

˚q “ xz, yy and by (a) ry,Qzs ‰ 1. Thus
Ω1ZpSq “ xzy.

(h): Let q P Qz with yq “ yz. Then Y ‰ Y q and so there exists y1 P Y
qzY . Replacing y1 by

y1pyzq if necessary, we may assume that y1 is non-singular. Thus y1 “ yu for some u P M . Note
that xy, yuy ď Y q “ CZM pT

qq and so T q centralizes Tu. As Tu P Syl2pT
uCM pYM qq we can choose

u such that T q normalizes Tu.
Put M1 :“ xT, Tuy and W :“ xy, yuy. Since T “ CSpy

Kq we have rZM , T s “ xyy, and so
rZM ,M1s “ W . As ZM “ W ‘WK, we conclude that M1 centralizes WK and M1{CM1pZM q –
SL2p2q – Symp3q. Together with CM pYM q “ CM pZM q this gives M1 – Symp3q. If CM pYM q “
O2pMq, then obviously M1{O2pMq – Symp3q. If CM pYM q ‰ O2pMq, then by 3.3(h), O2pM{O2pMqq
is extra-special of exponent 3. Since M1{O2pMq is a dihedral group, we conclude again that
M1{O2pMq – Symp3q. Thus (h:a) holds.

Suppose that 2n “ 4. Then T Ĳ T˚ “ TT q Ĳ S. As T q normalizes Tu we conclude that T˚

normalizes M1 “ xT, Tuy. Note that M is 2-minimal and so M “ xM1, Sy. As O2pMq ď S and
CM pYM q{O2pMq ď ΦpM{O2pMqq, we get M “ xM1, Sy “ xM1, NM pT

˚qy. So (h:b) is proved.
Suppose that p2n, εq ‰ p4,`q. Then by 3.3(h) CM pYM q “ O2pMq and so T “ CM pY q Ĳ F0.

Also by 3.1(d) F0 is maximal subgroup of M . Thus M “ xM1, F0y “ xM1,MM pT qy, and (h:c) holds.

(i): Put L “ xF,Qzy. Note that L ď M˝ and T normalizes L. If p2n, εq “ p4,`q, then by
3.3(h), S “ QzT and S is a maximal subgroup of M , so LS “ M . As above, O2pMq ď S and
CM pYM q{O2pMq ď ΦpM{O2pMqq give M “ LS, and so M “ LQzT “ LT . Hence L Ĳ M and
M˝ “ xQMz y ď L ďM˝. So (i) holds in this case.

Suppose that p2n, εq ‰ p4,`q. Then by (b) CM pYM q “ O2pMq and F0 “ FT . By 3.1(d), F0 is a
maximal subgroup of M . Thus FT is maximal subgroup of M and again LT “M , and (i) holds.

(j): This follows for example from C.8.

(k): By 1.52(c), rCGpY q,M
˝s ď O2pM

˝q ď O2pM
˝q. Since F ď M˝, we get rF,CM:pYM qs ď

O2pMq ď F . As M : “ CM:pYM qM , we have CM:pyq “ CM:pYM qCM pyq “ CM:pYM qF0. By (b)
F0 “ TF , and we conclude that

CM:pyq “ CM:pYM qTF “ CM:pxy, zyqF “ CM:pxy, zyqF0.

Note that CQz pyq “ Qz X F0 “ Qz X F and so CM:pxy, zyq normalizes Qz X F0. Hence

F “ xpQz X F0q
F0y “ xpQz X F0q

C
M:
pyqy “ xpQz X F0q

F y “ xpQz X F q
F y.

Thus (k) holds. l
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3.2. The Proof of Theorem C

In this section we will prove Theorem C. For this we assume that pG,Mq is a counterexample
to Theorem C. Thus CGpxq is of characteristic 2 for some non-singular x P ZM . We continue to use
the notation introduced in section 3.1. By 3.1(a) M acts transitively on the non-singular elements
of ZM and so CGpyq is of characteristic 2. We will derive a contradiction in a sequence of lemmas.

Lemma 3.5. Suppose that rO2pMq, O
2pMqs ď YM . Then YM “ O2pMq “ CGpYM q and M : “

M .

Proof. Since rO2pMq, O
2pMqs ď YM ď Ω1ZpO2pMqq, 1.18 implies that rΦpO2pMqq, O

2pMqs “
1. As ZpMq “ 1 by 3.3(a), we conclude that ΦpO2pMqq “ 1 and O2pMq “ YM “ O2pM

:q. In
particular CGpYM q “ YM since M : is of characteristic 2. Thus M : “MCGpYM q “M . l

Lemma 3.6. (a) If 2n “ 4, then NGpT
˚q ďM : and T˚ P Syl2pCGpyqq. In particular, y is

not 2-central.
(b) If p2n, εq ‰ p4,`q, then NGpT q ď NGpBpT qq ďM : and T “ O2pNM:pT qq.1

Proof. (a): Let M1 be as in 3.4(h). Since 2n “ 4, T˚ normalizes M1. Put M˚ “ T˚M1. Note
that T˚ P Syl2pM

˚q and M˚{O2pM
˚q – Symp3q.

We claim that NGpT
˚q ďM :. For this, suppose first that no non-trivial characteristic subgroup

of BpT˚q is normal in BpM˚q. By the Baumann argument (see for example [PPS, 2.8 and 2.9(a)])
BpT˚q P Syl2pBpM

˚qq. Note that BpM˚q{O2pBpM
˚qq – Symp3q, and so the pushing up result for

Symp3q, see [Gl2], shows that BpM˚q has a unique non-central chief factor in O2pBpM
˚qq. Since

O2pM˚q ď BpM˚q, the same holds for M˚, and since rYM , O
2pM˚qs ‰ 1 we conclude that

rO2pMq, O
2pM˚qs ď rO2pM

˚q, O2pM˚qs ď YM .

Hence also rO2pMq, O
2pMqs ď YM and by 3.5 YM “ O2pMq.

A straightforward computation shows that AT˚ “ tYM , A,A1, A2u, where |AiYM{YM | “ 2 “
|YM{YM XAi|, and |AYM{YM | “ 4 “ |YM{YM XA|. So tA1, A2u and tYM , Au are the only pairs of
elements of AT˚ which intersect in a group of order 4. Hence NGpT

˚q{CGpAT˚q is a 2-group. Since
NGpT

˚q XM : contains the Sylow 2-subgroup S of G and CGpAT˚q ď NGpYM q “M :, we conclude
that NGpT

˚q ďM :, and the claim holds in this case.
Suppose next that K is non-trivial characteristic subgroup of BpT˚q which is normal in M˚.

By 3.4(h:b) M “ xM1, NM pT
˚qy “ xM˚, NM pT

˚qy and so K Ĳ M . Thus by 2.2(c), NGpKq ď M :.
Since K is a characteristic subgroup of T˚ this implies NGpT

˚q ďM :.
We have shown that NGpT

˚q ď M :. Note that CSpYM q P Syl2pCGpYM qq. Since M : “

CGpYM qM and CSpYM q ď CSpyq “ T˚ P Syl2pCM pyqq we have T˚ P Syl2pCM:pyqq. Let T1 P

Syl2pCGpyqq with T˚ ď T1. Then NT1
pT˚q ď NC

M:
pyqpT

˚q and so T˚ “ NT1
pT˚q and T1 “ T˚.

Thus (a) holds.

(b): Suppose now that p2n, εq ‰ p4,`q and that L :“ NGpBpT qq ęM :. We derive a contradic-
tion using a similar pushing up argument as in the proof of (a). Let K be non-trivial characteristic
subgroup of BpT q normal in M1. By 3.4(h) M “ xM1, NM pT qy and so K Ĳ M . Thus by 2.2(c),
NGpKq ďM :, contrary to L ęM :. Hence no non-trivial characteristic subgroup of BpT q is normal
in BpM1q.

The same pushing up argument as in (a) shows that rO2pMq, O
2pMqs ď YM . So by 3.5 YM “

O2pMq “ CM pYM q and M “M :. Let t P LzM :. Then YM ‰ Y tM and so YMY
t
M “ T “ BpT q. Note

that all involutions in T are contained in YM Y Y tM and thus AT “ tYM , Y
t
Mu. Since NLpYM q “

L XM : “ L XM “ NM pT q “ FT we conclude that |L{FT | “ 2 and FT Ĳ L. Let T1 P Syl2pLq
with T˚ ď T1. Then L “ pFT qT1 “ FT1 and so T1 ę M . By 3.4(i) xFT,Qzy “ M˝T “ M . Since
NGpMq ďM : “M we conclude that T1 ę NGpQzq and so rz, T1s ‰ 1.

Put H :“ NGpT
˚q. Since T˚ “ CSpyq “ CSpxz, yyq and yQz “ ty, yzu we have Qz ď H.

Also T1 ď H. By 3.4(f), Ω1ZpT
˚q “ xz, yy. Since Ω1ZpT

˚q Ĳ H, the action of Qz and T1 on

1For the definition of BpT q see 1.1.
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Ω1ZpT
˚q shows that H{CHpΩ1ZpT

˚qq – Symp3q, and H acts transitively on Ω1ZpT
˚q. So there

exists h P H with zh “ y. Thus y P zG. Since z is 2-central, (a) gives 2n ě 6. Also Qhz “ Qy and
|Qy{Qy X T

˚| “ |Qz{Qz X T
˚| “ 2. Since

Qy X T
˚ ď Qy XM ď O2pCM pyqq “ O2pF0q “ O2pFT q “ T,

we have |Qy{Qy X T | ď 2. As |T {YM | “ |T {O2pMq| “ 2 this gives |Qy{Qy X YM | ď 4 and so

|Qy| ď 4|Qy X YM | ď 4|YM |.

Since 2n ě 6, 3.3(c) implies |QzYM{YM | “ |QzO2pMq{O2pMq| “ |O2pCM pzqq| “ 22n´2. By
3.3(c) |ZM{ZM XQz| ď |ZM{rZM , Qzs| “ 2 and by 3.3(f) |YM{ZM | ď 2. Therefore

|Qz| “ 22n´2|YM XQz| ě 22n´2|ZM XQz| ě 22n´4|YM | ě 4|YM |.

Since |Qy| “ |Qz| equality must hold in each of the last two displayed inequalities. Thus

YM X Qy “ YM and YM X Qz “ rZM , Qzs. Hence YM ď Qy and YM ę Qz. Therefore Y h
´1

M is an

elementary abelian normal subgroup of order |YM | in Qz and YM ‰ Y h
´1

M . Since YM “ CM pYM q we
conclude from A.40 that QzYM contains a non-trivial offender on YM , a contradiction to 3.4(j).

We have shown that NGpBpT qq ďM :. Since NGpT q ď NGpBpT qq this gives NGpT q “ NM:pT q.
By 3.4(e), O2pNM:pT qq “ T , and so (b) holds. l

Lemma 3.7. zG X YM “ zM “ zG X ZM .

Proof. Suppose that there exists u P zG X YM with u R zM . Assume first that u P ZM . By

3.1(a) M has two orbits on Z7M , and since u R Zm, we have u “ ym for some m P M , so y P zG.
If 2n “ 4 then 3.6(a) shows that y is not 2-central, a contradiction. Thus 2n ‰ 4. By Q! we have
Qy Ĳ CGpyq. By 3.6(b) and 3.4(e) NGpT q “ NM:pT q ď CM:pyq ď CGpyq and so NGpT q normalizes
Qy. Thus NQy pT q ď O2pNGpT qq. By 3.6(b) O2pNGpT qq “ T and so NQy pT q ď T . It follows that
Qy ď T ď S. By 2.2(b), Q is weakly closed in S with respect to G, so Qz “ Qy. In particular
rQz, ys “ 1, which contradicts 3.4(a).

Assume now that u P YMzZM . By 3.3(f), p2n, εq “ p6,`q and YM is the 7-dimensional quotient
of the natural permutation module for M – O`6 p2q – Symp8q. Hence CM pvq – Symp7q or Symp3qˆ
Symp5q. In both cases O2pCM:puqq ď CM:pYM q and thus

O2pCM:puqq “ O2pCM:pYM qq “ O2pM
:q ď O2pMq.

Since NGpO2pMqq ďM : by 2.2(c) and Qu ď O2pCGpuqq, we conclude that

NQupO2pMqq ď O2pCM:puqq ď O2pMq,

and so Qu ď O2pMq. Since Q is a weakly closed subgroup of G, this implies Qu “ Qg for all g PM
and so Q ĲM , a contradiction to Hypothesis C(iv). l

Lemma 3.8. The following hold:

(a) Ω1ZpT q “ CYM pT q and Y “ CZM pT q “ Ω1ZpT q X ZM .
(b) Let Z “ tu P Y | 1 ‰ u is singular in ZMu. Then NGpT q ď NGpΩ1ZpT qq “ NGpZq “

NGpY q “ FTCM:pYM q ďM :.
(c) O2pNGpT qq “ T and CGpY q “ TCM:pYM q.

Proof. (a): By 2.2(e), Ω1ZpO2pMqq “ YM . Since O2pMq ď T we get Ω1ZpT q “ CYM pT q. Thus
CZM pT q “ Ω1ZpT q X ZM . By 3.1(c:b) CZM pT q “ yK “ Y , and so (a) is proved.

(b): Observe that z P Z and so

Qz ď L :“ xQu | u P Zy ďM˝.

By 3.1(c:c)

xZy “ Y ;
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in particular, NGpZq ď NGpY q. Since M acts transitively on the non-trivial singular vectors in ZM ,
Z “ Y X zM . By (a) Y “ Ω1ZpT q X ZM and since zM Ď ZM we get Z “ Ω1ZpT q X zM . By 3.7
zM “ zG X YM , and since Ω1ZpT q Ď YM , we conclude that Z “ Ω1ZpT q X z

G “ Y X zG. Hence

NGpT q ď NGpΩ1ZpT qq ď NGpZq ď NGpY q ď NGpZq ď NGpLq.

In particular, NGpZq “ NGpY q.
Since F0 ď NM pY q, we get F “ xpQz X F0q

F0y ď L and so by 3.4(i), M˝ “ xQz, F y ď L ďM˝.
Hence L “M˝ and NGpZq ď NGpM

˝q “M :. Thus NGpY q “ NGpZq “ NM:pZq “ NM:pY q. Since
Y “ yK, NM:pY q “ CM:pyq. By 3.4(k) we have CM:pyq “ CM:pYM qFT , and (b) is proved.

(c): By (b) NGpT q “ NM:pT q and CGpY q “ CM:pY q. Hence 3.4(e) gives the first part of (c),
and 3.1(c:b) the second part. l

Notation 3.9. By Hypothesis C(iii) CGpyq ę M :, and so there exists a subgroup L ď CGpyq
with FT ď L and L ęM :. Among all such subgroups we choose L such that |L| is minimal.

Observe that the minimality of L implies that L XM : is the unique maximal subgroup of L
containing FT . By 3.4(c), T˚ P Syl2pFT q and we can pick T0 P Syl2pLq such that T˚ ď T0. We set

D :“ LXM :, ZL :“ xΩ1ZpT0q
Ly, P :“ CLpzq, and P˚ :“ O21pP q.

Lemma 3.10. The following hold:

(a) O2pxQz, Lyq “ 1.
(b) rQz, P s ď Qz X P “ Qz X L “ Qz X F ď O2pP q.
(c) O2pxL,L

tyq “ 1 for t P QzzL.
(d) ZLZ

t
L đ L and ZLZ

t
L đ Lt for t P QzzL.

(e) O2pCGpyqq ď O2pLq ď T .
(f) Ω1ZpT0q “ Ω1ZpT

˚q “ xy, zy.
(g) P “ CLpΩ1ZpT0qq, so P˚ is a point-stabilizer for L on YL and on ZL.2

(h) ZL “ xY
Ly and Y ď CZLpT q ď CYM pT q.

(i) D “ FTCDpYM q “ FCDpY q. In particular, Y is a natural O2n´1p2q-module and Y {xyy
is a natural Sp2n´2p2q-module for D.

(j) F is normal in D.
(k) If 2n “ 4, then T˚ “ T0 P Syl2pLq.

Proof. (a): By 3.4(b) and (i), M “ M˝T “ xQz, TF y ď xQz, Ly. Since L ę M :, MGpMq “
tM :u implies O2pxQz, Lyq “ 1.

(b): Note that CQz pyq “ Qz X F “ Qz X L “ Qz X P and that by 3.4(a) |Qz{CQz pyq| “ 2. By
Q!, P normalizes Qz and so also Qz X P , and (b) follows.

(c): Since |Qz{Qz X L| “ 2 we conclude that xL, ty “ xL,Qzy, t
2 P Qz X L and t normalizes

xL,Lty. So (c) follows from (a).

(d): Note that t normalizes ZLZ
t
L. Thus (d) follows from (c).

(e): Put U :“ O2pLqO2pCGpyqq. Then FT normalizes U . By 3.8(b) NGpT q ď CM:pYM qFT and

by 3.4(c) O2pFT q “ T , so NU pT q ď O2pFT q “ T . Hence NU pT q ď CM:pYM qT . Since T is a Sylow
2-subgroup of CM:pYM qT and T normalizes NU pT q we get NU pT q ď T . It follows that U ď T ď L.
Since L normalizes O2pCGpyqq, this gives O2pCGpyqq ď O2pLq ď T .

(f): Choose g P G with T0 ď Sg. Since G is a counterexample to Theorem C CGpyq is of
characteristic 2 and so

CGpO2pCGpyqqq ď O2pCGpyqq.

By (e)
O2pCGpyqqq ď T ď T˚ ď T0 ď Sg.

Thus
Ω1ZpS

gqΩ1ZpT0q ď CGpO2pCGpyqqq ď T ď T˚ ď T0,

2 For the definition of a point-stabilizer on a module see A.3
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and so
Ω1ZpS

gq ď Ω1ZpT0q ď Ω1ZpT
˚q.

By 3.4(e) Ω1ZpT
˚q “ xy, zy, and by 3.4(g) Ω1ZpSq “ xzy. Hence Ω1ZpS

gq “ xzgy and

xy, zgy ď Ω1ZpT0q ď xy, zy.

By 3.7 YM X zG “ zM . Thus y R zG, zg ‰ y and Ω1ZpT0q “ xy, zy.

(g): By (f), Ω1ZpT0q “ xy, zy. Since L ď CGpyq we have CLpΩ1ZpT0qq “ CLpzq “ P .

(h): Let Z be the set of non-trivial singular vectors in Y . By3.1(c:c) Y “ xZy and CM pyq acts

transitively on Z. By 3.4(b) CM pyq “ F0 “ FT , and we conclude that Y “ xzF y “ xΩ1ZpT0q
F y.

Therefore ZL “ xY
Ly. Moreover, by (e) ZL ď T and so

Y ď CZLpT q ď Ω1ZpT q.

By 3.8(a) Ω1ZpT q “ CYM pT q, and so (h) holds.

(i): By 3.4(k), CM:pyq “ FTCM:pYM q. Since FT ď D “ M : X L ď CM:pyq, this gives
D “ FT pD X CM:pYM qq “ FTCDpYM q. Since T centralizes Y we get D “ FCDpY q. By 3.4(c),
Y is a natural O2n´1p2q-module and Y {xyy is a natural Sp2np2q-module for FT and so also for D.
Thus (i) holds.

(j): By 3.4(k). F Ĳ CM:pyq and since D “M : X L ď CM:pyq we get F Ĳ D.

(k): Suppose that 2n “ 4. Then by 3.6(b), T˚ P Syl2pCGpyqq. Since T˚ ď T0 P Syl2pLq and
L ď CGpyq this gives T˚ “ T0. l

Lemma 3.11. L is of characteristic 2, CLpZLq “ O2pLq “ CLpYLq and YL “ Ω1ZpO2pLqq.

Proof. Since G is a counterexample to Theorem C, CGpyq is of characteristic 2. Moreover, by
3.10(e) O2pCGpyqq ď O2pLq and so L is of characteristic 2.

By 3.10(h) Y ď ZL, and 3.8(c) implies CLpZLq ď CLpY q ď TCM:pYM q, so O2pCLpZLqq ď
CM:pYM q. On the other hand, by 1.52(c) rM˝, CM:pYM qs ď O2pM

˝q ď O2pM
:q, and thus Qz

normalizes O2pCLpZLqqO2pM
:q. But O2pCLpZLqq “ O2pCLpZLqO2pM

:qq since O2pM
:q ď T ď

L. Hence O2pCLpZLqq is normalized by Qz and L. As O2pxQz, Lyq “ 1 by 3.10(a), we get
O2pO

2pCLpZLqqq “ 1. This yields O2pCLpZLqq “ 1 since L is of characteristic 2. Hence CLpZLq “
O2pLq.

Put U :“ Ω1ZpO2pLqq. Since ZL ď YL ď U this implies

O2pLq ď CLpUq ď CLpYLq ď CLpZLq “ O2pLq.

Hence O2pLq “ CLpUq and O2pL{CLpUqq “ 1. Thus U is 2-reduced for L, so U ď YL and YL “ U .
l

Lemma 3.12. Let N0 be a subnormal subgroup of D.

(a) Suppose that O2pF q ę N0. Then O21pO2pN0qq ď TCM:pYM q and if in addition N0 Ĳ D,
then N0 ď TCM:pYM q and O2pN0q ď CM:pYM q.

(b) If N0 is subnormal in L, then either O2pF q “ O2pN0q or N0 ď O2pLq.

Proof. From 3.4(k) we get that F Ĳ CM:pyq and from 3.4(c) that

(I) D “ FT – C2 ˆ Sp2n´2p2q

and

(II) F {O2pF q – Sp2n´2p2q.

(a): By (II) either O2pF q ď X or rO2pF q, Xs ď O2pF q for every subnormal subgroup X of D.
By the hypothesis of (a), O2pF q ę N0, and hence rO2pF q, N0s ď O2pF q. By (I) N0 ď T , or 2n “ 4
and O2pN0q “ O2pF q – C3. The first case gives N0 ď TCM:pYM q, while the second case gives

O21pO2pN0qq ď TCM:pYM q.
Moreover, if N0 is normal in D, then rF,N0s ď F X N0. Since O2pF q ę N0, we conclude that

rF,N0s ď O2pF q. But then also in this case N0 ď T .
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(b): Assume now that N0 is subnormal in L. Note that if (b) holds for xND
0 y in place of N0,

then (II) shows that (b) also holds for N0. So we may assume that N0 Ĳ D. We first treat the case

p˚q O2pF q ę N0.

By 3.10(f) Ω1ZpT0q “ xy, zy ď ZM and by (a) O2pN0q ď CN0pYM q. Since T0 XN0 P Syl2pN0q,
this gives

N0 “ pN0 X T0qO
2pN0q “ pN0 X T0qCN0

pYM q ď CGpΩ1ZpT0qq.

Thus by 1.28(b), rZL, N0s “ 1, and 3.11 implies N0 ď CLpZLq ď O2pLq.

Assume next that O2pF q ď N0. By (I), D “ FT and so O2pN0q ď O2pF qCM:pYM q. As
O2pF q ď N0, we get

(III) O2pN0q “ O2pF q
`

O2pN0q X CM:pYM q
˘

.

Note that O2pN0q X CM:pYM q is subnormal in L, normal in D and satisfies (˚) in place of N0. As
we have seen already, O2pN0q X CM:pYM q ď O2pLq, and so by (III) O2pN0q ď O2pF qO2pLq. Thus
O2pN0q ď O2pF q. By (III) O2pF q ď O2pN0q and so O2pN0q “ O2pF q. l

Lemma 3.13. Let N0 be a normal subgroup of L. Then O2pF q ď N0 or T0 XN0 “ T XN0.

Proof. By 3.4(c), FT {T – Sp2np2q. Since FT XN0 Ĳ FT we conclude that either O2pFT q ď
FT X N0 or FT X N0 ď T . In the first case we are done. So we may assume that FT X N0 ď T .
Since T˚ ď FT also

p˚q T˚ XN0 ď T,

in particular, rNT0XN0pT
˚q, T˚s ď T˚ X N0 ď T . It follows that NT0XN0pT

˚q ď NT0XN0pT q. By
3.8(b) NGpT q ď M : and thus NT0XN0pT

˚q ď T0 XM : ď T˚. This shows that T0 XN0 ď T˚ XN0

and by (˚) T0 XN0 “ T XN0. l

Lemma 3.14. Let t P QzzL.

(a) JpO2pLqO2pL
tqq ę O2pLq.

(b) If p2n, εq ‰ p4,`q then JpT q ę O2pLq.
(c) O2pLqO2pL

tq Ĳ P and O2pLqO2pL
tq ď O2pP q “ O2pP

˚q.
(d) There exists A ď O2pP

˚q such that A is a minimal non-trivial quadratic best offender on
YL.

Proof. (a): Assume that JpO2pLqO2pL
tqq ď O2pLq. Then JpO2pLqO2pL

tqq “ JpO2pLqq “
JpO2pL

tqq, and so t normalizes JpO2pLqq. A contradiction, since O2pxL,L
tyq “ 1 by 3.10(c). Hence

(a) holds.

(b): Assume now that JpT q ď O2pLq and p2n, εq ‰ p4,`q. By 3.10(e) O2pLq ď T and so
JpT q “ JpO2pLqq. Since ZL ď ZpJpO2pLqq we conclude that ZL ď ZpJpT qq. As CLpZLq “ O2pLq
by 3.11, this gives BpT q ď CLpZLq “ O2pLq. Thus BpT q “ BpO2pLqq and BpT q is normal in L, a
contradiction, since by 3.6(b) NGpBpT qq ďM :.

(c): By 3.10(b) Qz and so also t normalizes P . Since O2pLq Ĳ P we get O2pL
tq Ĳ P . Since

O2pLqO2pL
tq is a 2-group, this gives O2pLqO2pL

tq ď O2pP q. Recall that P˚ “ O21pP q, so O2pP
˚q “

O2pP q.

(d): By (a) we can choose B P AJpO2pLqO2pLtq such that B ę O2pLq. By (c), B ď O2pP
˚q. Since

by 3.11 CLpYLq “ O2pLq, rYL, Bs ‰ 1. Thus by A.40, CBprYL, Bsq is a non-trivial quadratic best
offender on YL. Hence there also exists such a minimal offender A in CBprYL, Bsq and (d) holds. l

Notation 3.15. Recall from 3.11 that CLpZLq “ O2pLq. So rL :“ L{O2pLq is faithful on ZL.
According to 3.14(d) we can choose A ď O2pP

˚q such that

rA is a minimal non-trivial quadratic offender on YL.

Put H :“ xALyO2pLq and Y `L :“ YL{CYLpHq. For X Ď YL, let X` :“ XCYLpHq{CYLpHq, the
image of X in Y `L .
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Lemma 3.16. There exist subgroups Hi, i “ 1, . . . ,m, of H such that for Vi :“ rZL, His:

(a) O2pHq ď Hi Ĳ H.

(b) rH “ ĂH1 ˆ ĂH2 ˆ . . .ˆĄHm.
(c) Z`L “ V `1 ˆ V `2 ˆ . . . V `m .

(d) ĂHi – SLlp2
kq, l ě 2, Sp2lp2

kq, l ě 2, G2p2
kq or Symplq, l ą 6, l ” 2, 3 pmod 4q. Moreover

V `i is a corresponding natural module.
(e) L acts transitively on tH1, H2, . . . ,Hmu.

Proof. Let H1 be the smallest subnormal subgroup of L containing AO2pLq and put

HL
1 “: tH1, . . . ,Hmu.

By Gaschütz’ Theorem CZLpT0 XHq ď CZLpHqrZL, Hs, see C.17. Since Ω1ZpT0q ď CZLpT0 XHq
and ZL “ xΩ1ZpT0q

Ly, this gives ZL “ CZLpHqrZL, Hs and so Z`L “ rZ`L , Hs. The lemma now
follows from C.9. l

Notation 3.17. In the following we will use the notation introduced in 3.16.

Lemma 3.18. H ę D, L “ HFT and T0 “ pH X T0qT
˚.

Proof. Suppose that H ď D. Then we can apply 3.12(b) with N0 “ H. Since H ę O2pLq we
conclude O2pHq “ O2pF q and so O2pHq{O2pO

2pHqq – Sp2n´2p2q
1. Now 3.16 shows that m “ 1 and

rZL, O
2pHqsCZLpHq{CZLpHq

is a simple O2pHq-module. From 3.10(h) we get Y ď ZL. Since rY,O2pF qs ‰ 1 this gives
rZL, O

2pHqs “ rY,O2pF qs. Hence Y “ xyyrY,O2pF qs is normal in L, a contradiction since NGpY q ď
M : by 3.8(b).

Thus H ę D and the minimal choice of L implies L “ HFT . Since T˚ P Syl2pFT q and T˚ ď T0

we conclude that T0 ď HT˚ and so T0 “ pH X T0qT
˚. l

Lemma 3.19. ĂHi fl SL2p2
kq.

Proof. Suppose for a contradiction that ĂHi – SL2p2
kq. We will first show

1˝. Y ` ‰ 1.

Otherwise H ď CGpY q. By 3.8(b) CGpY q ď M : and so H ď L XM : “ D, a contradiction to
3.18.

2˝. O2pF q ď H.

Assume that O2pF q ę H. Then by 3.13, HXT0 “ HXT and by 3.18 T0 “ pHXT0qT
˚ “ T˚. In

particular, H XT0 Ĳ FT . Since D is the unique maximal subgroup of L containing FT we conclude
that NLpHXT0q ď D. On the other hand by 3.12(a), applied with N0 “ DXH, O2pDXHq ď CLpY q,
so O2pNHpH X T0qq centralizes Y . For k ‰ 1 this yields a contradiction since by (1˝) Y ` ‰ 1 while
O2pNHpH X T0qq acts fixed-point freely on the direct sum Z`L of natural SL2p2

kq-modules.

Thus k “ 1. Then O2p rHq is an abelian 3-group, D X H “ H X T0, rZL, Hs X Ω1ZpHq “ 1
and, for 1 ď i ď m, Vi is a natural SL2p2q-module for Hi. In particular, |CVipT0 X Hq| “ 2. Let
1 ‰ vi P CVipT0XHq, and put v “

śm
i“1 vi. Then D “ NHpT0XHq centralizes v and 1 ‰ v P rZL, Hs.

Since FT ď D, v P Ω1ZpFT q. By 3.4(f) Ω1ZpT
˚q “ xy, zy. Hence Ω1ZpFT q ď Ω1ZpT

˚q “ xy, zy and
since rz, F s ‰ 1, Ω1ZpFT q “ xyy ď Ω1ZpHq. This shows that v “ y and so v P rZL, HsXΩ1ZpHq “ 1,
a contradiction.

3˝. L “ HT˚, 2n “ 4, T˚ “ T0, D “ NLpT0 XHq and k ą 1.

By 3.18, L “ HFT , and by (2˝), O2pF q ď H. As F “ O2pF qT˚, we get L “ HT˚. Since
rHi – SL2p2

kq, rH does not have any section isomorphic to Sp2tp2q for any 2t ě 4. Since by 3.4(c),
FT {T – Sp2n´2p2q and by (2˝) O2pF q ď H, we conclude that 2n´ 2 “ 2 and 2n “ 4. Now 3.10(k)

gives T˚ “ T0. Since L “ HT˚, the structure of rL shows that NLpT0 XHq is the unique maximal
subgroup of L containing T˚. Thus FT ď NLpT0 XHq and D “ NLpT0 XHq. If k “ 1, this implies
that D “ T˚, a contradiction to F ď D.
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4˝. k “ 2,m “ 1, rL – Symp5q, D “ FT and O2pDq “ T .

By 3.16(e), L acts transitively on tH1, . . . ,Hmu and by (3˝) L “ HT˚. Hence T˚ acts transi-
tively on tH1, . . . ,Hmu.

Recall from 3.10(i) that D “ FTCDpYM q, so D normalizes Y . From (3˝) we get D “ NLpT0XHq
and k ą 1, so O2pD X H1q ‰ 1. Since V `1 is a natural SL2pqq-module for H1, we conclude that
CV `1

pO2pD XH1qq “ 1. As Z`L “ V `1 ˆ . . .ˆ V `m , this gives CZ`L
pO2pD XHqq “ 1.

Put X` :“ rY `, O2pD X H1qs that X` “ 1. Then Y ` ď CZ`L
pO2pD X H1qq and so Y ` ď

CZ`L
pO2pDXHqq “ 1, since T˚ normalizes Y ` and acts transitively on tH1, . . . ,Hmu. But Y ` ‰ 1

by (1˝), a contradiction.
Thus X` ‰ 1, and as X` “ rX`, O2pDXH1qs, |X

`| ě 4. Since Z`L “ V `1 ˆ . . .ˆ V `m , we have
X` ď rZ`L , H1s “ V `1 , and since D normalizes Y , X` ď Y `. Thus X` ď V `1 XY

`. By (3˝) 2n “ 4
and so |Y `| ď |Y {xyy| “ 4 ď |X`|. Hence Y ` “ X` ď V `1 . Since Y ` is T˚-invariant, we conclude
that T˚ normalizes V `1 and so m “ 1. Moreover, Y ` is D-invariant and by (3˝) D “ NLpH X T0q.
Since Z`L “ V `1 is a natural SL2p2

kq-module for H, any non-trivial NHpH X T0q-submodule of Z`L
has order 2k or 22k. As |Y `| “ 4 and k ą 1. we get k “ 2. In particular, ČH XD – Altp4q. By

(3˝) T˚ “ T0 and L “ HT˚. Hence O2p rDq ď ČH XD, and F ď D implies O2pF q “ O2pDq. Since
T0 “ T˚ and T˚ P Syl2pFT q this gives D “ O2pDqT0 “ O2pF qT˚ “ FT . By 3.4(c), T “ O2pFT q

and FT {T – Symp3q. Thus ĂT˚ ę rH, rL – Symp5q and all parts of (4˝) are proved.

By (3˝) T0 “ T˚ and by 3.10(b) rQz, P s ď QzXP ď T0. Hence Qz ď NGpT0q. Let t P QzzL. By
3.10(c) , O2pxL,L

tyq “ 1. In particular, since t normalizes T0, no non-trivial characteristic subgroup
of T0 is normal in L. Since LXM : is the unique maximal subgroup of L containing T0, we conclude
that NLpXq ď L XM : for every non-trivial characteristic subgroup X of T0. The main result of
[BHS] now shows that rO2pLq, O

2pLqs “ rZL, Hs. By 3.10(d), ZLZ
t
L is not normal in L. Thus

ZtL ę O2pLq and so rZL, Z
t
Ls ‰ 1. Observe that no element in T0 acts as a transvection on ZL or ZtL.

Thus |ĂZtL| “ |Z
t
L{CZtLpZLq| ě 4. Since ZtL Ĳ T0, ZtL acts quadratically on ZL. Note that ČH X T0 is

the unique subgroup of order at least four in ĂT0 acting quadratically on ZL, so

H X T0 “ CT0
prZL, Z

t
Lsq “ ZtLO2pLq “ ZLO2pL

tq.

Hence O2pLq “ ZLpO2pLq X O2pLq
tq and ΦpO2pLqq “ ΦpO2pLq X O2pL

tqq. Since rO2pLq, O
2pLqs ď

ZL ď Ω1ZpO2pLqq, 1.18 shows that O2pLq centralizes ΦpO2pLqq and so ΦpO2pLqXO2pL
tqq is normal-

ized by O2pLq, T0 and t. This forces ΦpO2pLq X O2pL
tqq “ 1, whence O2pLq is elementary abelian.

By (3˝) T0 “ T˚ ď D and by (4˝) rL – Symp5q. Since rD is maximal subgroup of rL, this gives
D{O2pLq – Symp4q and so D has no central composition factor on O2pDq{O2pLq. But |ZM{Y | “ 2
and Y ď O2pLq, so ZM ď O2pLq and rZM , O2pLqs “ 1. Since T “ O2pDq by (4˝) and |T {O2pMq| “ 2
by 3.1(c), a similar argument yields T ď O2pLqO2pMq. But then T centralizes ZM , a contradiction.

l

Lemma 3.20. C
rLp

rHq “ 1.

Proof. Put N :“ CLp rHq. Note that ZpĂHiq “ 1 for all the groups listed in 3.16(d). Also
rH “ ĂH1 ˆ . . .ˆĄHm. Thus Zp rHq “ 1 and so N XH “ O2pLq.

Suppose for a contradiction that O2pF q ď N . We claim that D XHT˚ is the unique maximal
subgroup of HT˚ containing T˚. So let T˚ ď U ď HT˚ and put E :“ O2pUqO2pLq. Then U “ ET˚

and E ď H. Thus O2pF q ď N ď CLp rEq and so FT “ O2pF qT˚ normalizes E. Hence EFT is a
subgroup of L containing FT . Note that ETF “ ET˚F “ UF . By the minimal choice of L
either UF ď D or L “ UF . In the first case U ď D X HT˚. In the second case L “ ET˚F and
ET˚ ď HT˚, so

HT˚ “ ET˚pHT˚ X F q “ ET˚pO2pHT˚ X F qq “ UO2pHT˚ X F q.

Since O2pHT˚XF q ď O2pHT˚qXO2pF q ď HXN “ O2pLq ď T˚ ď U we conclude that HT˚ “ U .

This completes the proof of the claim. It follows that ĆHT˚ is 2-minimal. Hence C.13 shows that
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rHi – SL2p2
kq or Symprq, r “ 2s ` 1, s ě 2. The first case contradicts 3.19. In the second case

r ” 1 pmod 4q, a contradiction to 3.16(d).
Thus O2pF q ę N . Now 3.13 gives N XT0 “ N XT ď T ď TH. Since N XH “ O2pLq, N XTH

is 2-group. By 3.18 L “ HFT . Since F normalizes T , this gives TH Ĳ L. So N X T0 ď N X TH ď

O2pNq ď O2pLq. Thus rN is a 21-group. Assume for a contradiction rN ‰ 1. Since N XTH “ O2pLq,

rN – NTH{TH Ĳ L{TH “ FTH{TH.

On the other hand, as FT {T – Sp2n´2p2q and rN is a non-trivial 21-group, we conclude that
2n´ 2 “ 2. Hence F and N are solvable.

Suppose that N ę D. Then the minimality of L implies L “ NFT , and so L is solvable. The

only solvable group listed in 3.16(d) is ĂHi – SL2p2q, a contradiction to 3.19. Hence N ď D. Since
O2pF q ę N , 3.12(b) implies that N ď O2pLq. l

Lemma 3.21. m “ 1, F ď H1 “ H, L “ HT and P XH “ CHpz
`q.

Proof. Note that CHpz
`q centralizes xz`y and CYLpHq. Thus CHpz

`q{CHpzq is a 2-group.
Since T0 X H centralizes z and is a Sylow 2-subgroup of H we conclude that P X H “ CHpzq “
CHpz

`q.
Recall from 3.16 that

rH “ ĂH1 ˆ . . .ĄHm and Z`L “ V `1 ˆ . . . V `m ,

where V `i “ rZ`L ,
ĂHis. Let z`i be the projection of z` onto V `i and put Pi :“ CHipz

`
i q. Then

P XH “ xPi | i “ 1, . . . ,my. By 3.19 ĂHi fl SL2p2
kq and so by 3.16(d)

p˚q ĂHi – SLlp2
kq, l ě 3, Sp2lp2

kq, l ě 2, G2p2
kq or Symplq, l ą 6, k ” 2, 3 pmod 4q.

Moreover, V `i is a corresponding natural module. In each of these cases we conclude that rPi “
C

ĂHi
pz`i q is not a 2-group. On the other hand, rPi, O2pP qs is a p-group, and so O2pP q normalizes

Hi. Since Qz X L ď O2pP q by Q!, we get that

Qz X L ď O2pP q ď NLpHiq, i “ 1, . . . ,m.

By 3.4(k) F “ xpQz X F q
F y and we conclude that F ď NLpHiq, i “ 1, . . . ,m. The structure of the

groups in p˚q shows that no element of O2pP q induces an outer automorphism on ĂHi. So Qz X F

and thus also F induces inner automorphisms on rH. Hence F ď CLp rHqH, and 3.20 yields F ď H.
In particular, L “ HFT “ HT , and by 3.16(e) L and so also T acts transitively on tH1, . . . ,Hmu.

Let O2pLq ď Fi ď Hi such that rFi is the projection of rF in ĂHi, and put N0 :“ F1 ¨ ¨ ¨Fm. Then
F ď N0 and the minimality of L shows that either N0 ď D or N0T “ L.

Assume first that N0 ď D. By 3.10(j) F Ĳ D and so F Ĳ N0. Since F 1 is not a 2-group, also
rF1, F s is not a 2-group. As F {O2pF q – Sp2n´2p2q and rF1, F s Ĳ F , we conclude that O2pF q ď
rF1, F s ď F1 X F . Hence T normalizes H1 and the transitivity of T gives m “ 1. So the lemma
holds in this case.

Assume now that N0T “ L. Then O2pHq ď N0. Note that none of the groups in p˚q is solvable.
Hence also H, N0 and F are not solvable and thus 2n ě 6. By 3.4(d) rQz X F, F X P s ę T . Hence
also rQz X P, P s ę T and by the transitivity of T , rQz X P, P1s ę T . Since by 3.4(a) Qz ę L and
|Qz{QzXF | “ 2, we have QzXH ď F . Thus rQzXP, P1s ď QzXH1 ď FXH1 and QzXFXH1 ę T .
Since F XH1 is normal in F and FT {T – Sp2n´2p2q we get that O2pF q ď H1, so T normalizes H1

and m “ 1. l

Lemma 3.22. rH fl Symplq, l ą 6.

Proof. By 3.16(d) l ” 2, 3 pmod 4q, and Z`L is the corresponding natural module. Since

OutpSymplqq “ 1, for l ą 6, L induces inner automorphism on rH. By 3.20 C
rLp

rHq “ 1 and so
L “ H.
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By 3.10(f) Z0 :“ CZLpT0q “ xy, zy has order 4. Since ry, Ls “ 1 and rz,Hs ‰ 1, this gives
CZLpHq “ Ω1ZpLq “ xyy. Thus either ZL “ Ω1ZpLq ˆ rZL, Ls or rZL, Ls is the even Symplq-

permutation module of order 2l´1 for rH. As |CZLpT0q| “ 4, the action of T0 on ZL implies that

l “ 2 ` 2k; in particular, l ” 2 pmod 4q. Since l ą 6, we have k ě 3. Then rP “ C
rLpz

`q –

C2 ˆ Sympl ´ 2q, rA “ O2p rP q is generated by a transposition and rZ`L , As “ xz`y. In particular
rA “ ČQz X L.

Since by 3.4(k) F “ xpQz X F qF y, rF is generated by a conjugacy class of transpositions. Thus
rF is a naturally embedded symmetric subgroup of rH – Symplq. As F {O2pF q – Sp2n´2p2q, we get
rF – Sympsq with s “ 3, 4 or 6, and since s ă l, xz`F y is the natural even permutation module of
order 2s´1.

Suppose that s is even. Then, as an F -module, xz`F y is a non-split central extension of a simple
module. On the other hand Y ` – Y {xyy is simple for F and by 3.1(c:c) Y “ xzF y, so xz`F y is
simple F -module, a contradiction.

Thus s “ 3, rF – Symp3q and 2n “ 4. By 3.10(k), T0 “ T˚, and so T0 normalizes F . Hence T0

has an orbit of length 1 on t1, . . . , lu. But then l ı 2 mod 4, a contradiction. l

Lemma 3.23. The following hold:

(a) L “ H, rL – SL3p2q, Sp4p2q or G2p2q, Z
`
L is a corresponding natural module, 2n “ 4, and

rF {O2p rF q – SL2p2q.
(b) M – Oε4p2q, YM is a corresponding natural module, T0 “ T˚ and D “ FT .
(c) D and P are the two maximal subgroups of L containing T0. Moreover, CZ`L

pT0q “

CZ`L
pO2pP qq “ Ω1ZpT0q

` “ xz`y and P “ CLpz
`q, and CZ`L

pO2pDqq “ Y ` is natural

SL2p2q-module for D.
(d) CYLpHq “ CYLpO

2pLqq “ xyy “ CYLpO
2pF qq.

(e) Either ZL “ YL or rL – Sp4p2q and |YL{ZL| “ 2.

Proof. (a) and (b): By 3.21 L “ HT , F ď H and m “ 1. By 3.19 rL fl SL2p2
kq and by 3.22

rL fl Symplq, l ą 6. Thus, 3.16 shows that

p˚q rH – SLlp2
kq, l ě 3, Sp2lp2

kq, l ě 2, or G2p2
kq,

and Z`L is a corresponding natural module. This implies that ĆJpT q ď rH and that no element of rL

induces a graph automorphism on rH. Moreover, by 3.14(b) either ĆJpT q ‰ 1 or p2n, εq “ p4,`q.

Suppose that ĆJpT q ‰ 1, and choose a 2-subgroup E of H maximal with FT ď NLpEq and
JpT q ď E. Then E “ O2pNHpEqq and so by [GLS3, 3.1.5] (a corollary of the Borel-Tits Theorem)
ĂD0 :“ N

ĂH
p rEq is a proper Lie-parabolic subgroup of rH normalized by FT . Observe that F ď

FT XH ď NHpEq, so rF ď ČFT XH ď ĂD0.

Suppose that p2n, εq “ p4,`q, then by 3.10(k), T˚ P Syl2pLq and so ĂD0 :“ N
ĂH
p ČFT XHq is a

proper Lie-parabolic subgroup of rH normalized by FT . Moreover, rF ď ČFT XH ď ĂD0.

We have shown that in both cases ĂD0 is a proper FT -invariant Lie-parabolic subgroup of H

with rF ď ĂD0. Let rT2 P Syl2p rTĂD0q with rT ď rT2. Then rT2X rH is a Sylow 2-subgroup of rH. Let ∆ be

the set of Lie-parabolic subgroups of rH containing rT2X rH. Then T acts on ∆ and since no element

of L induces a graph automorphism on rH, T acts trivially on ∆. We conclude that FT normalizes

all Lie-parabolic subgroups of rH containing ĂD0. Thus, by the minimal choice of L, ĂD0 is a maximal

Lie-parabolic subgroup of rH and ĂD0 “ rH X rD. In particular, O2pĂD0q ‰ 1 and by Smith’s Lemma

A.63 CZ`L
pO2pĂD0qq is a simple ĂD0-module.

Since T ď D ď L “ HT we have rD “ p rH X rDq rT “ ĂD0
rT “ ĂD0C rDpY q. By 3.10(i) Y {xyy is

natural Sp2n´2p2q-module for D. Hence xyy “ CY pDq “ CY pĂD0q “ CY pHq and Y ` is a natural

Sp2n´2p2q-module for ĂD0. In particular, 1 ‰ Y ` ď CZ`L
pO2pĂD0qq. The simplicity of CZ`L

pO2pĂD0qq

as a ĂD0-module now shows that Y ` “ CZ`L
pO2pĂD0q. Thus ĂD0 is a maximal Lie-parabolic subgroup
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in rH such that

p˚˚q Y ` “ CZ`L
pO2pĂD0qq is a natural Sp2n´2p2q-module for ĂD0.

From the possible isomorphism types for rH and Z`L listed in p˚q we conclude that Z`L is a natural

Sp2p2q-module for ĂD0. Thus 2n´ 2 “ 2, |Y `| “ 4 and k “ 1. Recall that C
rLp

rHq “ 1. Since k “ 1

and no element of L induces a graph automorphism on rH we get L “ H.
Since 2n´ 2 “ 2 we have 2n “ 4. So M – Oε4p2q. From 3.3(f) we conclude that YM “ ZM and

thus YM is natural Oε4p2q-module for M . Also 3.10(k) shows that T˚ “ T0. So T0 “ T˚ ď FT and

FT is parabolic subgroup of H. Since k “ 1 this implies that ĄFT is a Lie-parabolic subgroup of rH.

As ĄFT {O2pĄFT q – FT {T – Sp2n´2p2q – SL2p2q, ĄFT has Lie rank 1. Since FT is contained in a

unique maximal subgroup of L, we conclude that rL has Lie-rank two. Thus rL – SL3p2q, Sp4p2q or
G2p2q and FT is maximal subgroup of H. Thus D “ FT and all parts of (a) and (b) are proved.

(c): By the choice of L, D is a maximal subgroup of L. By (b) T0 “ T˚ ď FT ď D. By

(a) 2n “ 4 and H “ L. So rD “ ĂD0, and p˚˚q shows that CZL`pO2pDqq “ Y ` is a natural
SL2p2q-module for D and T0 ď D. Hence, D satisfies the statements of (c).

By 3.21 PXH “ CHpz
`q and since H “ L, P “ CHpz

`q. By Smith’s Lemma A.63, CZ`L
pO2p rP qq

is a simple P -module and so CZ`l
pO2p rP qq “ xz

`y. Since O2p rP q ď ĂT0 ď rP , this gives CZ`L
pT0q “

xz`y. By 3.10(d), Ω1ZpT0q “ xy, zy and so Ω1ZpT0q
` “ xz`y. Since Z`L is a natural SL3p2q-, Sp4p2q-

or G2p2q-module for L and P “ CLpz
`q, we conclude that P is a maximal subgroup of L. As L is a

group of Lie-type of rank 2, T0 is contained in exactly two maximal subgroups of L, namely P and
D. So (c) is proved.

(d): From (a) we get H “ L, CZLpHq “ CZLpLq ď Ω1ZpF q “ xyy. We now use A ď O2pP q

as chosen in 3.15. By C.9(e), rCYLpO
2pLqq, As “ 1. For rL – Sp4p2q or G2p2q, C.8(c), shows that

A ę O2pLqO2pLq. Thus L “ AO2pLqO
2pLq and CYLpO

2pLqq “ CYLpLq “ xyy.
For the equality CYLpO

2pF qq “ xyy it suffices to show that CY `L
pFT q “ 1. By C.10(b:b)

YL “ ZLCYLpAq. We conclude that rYL, O
2pLqs ď ZL, and by (b) T0 “ T˚ ď FT . Now Gaschütz’s

Theorem shows that CY `L
pFT q ď CY `L

pT0q ď CY `L
pLqZ`L , see C.17. But CYLpO

2pLqq “ xyy ď ZL,

and so CY `L
pFT q ď Z`L . As seen above CZ`L

pO2pĂD0qq is a natural Sp2p2q-module for ĂD0. Since

ĄFT “ rD “ ĂD0 we conclude that CZ`L
pFT q “ 1.

(e): Suppose that YL ‰ ZL. By (d) CYLpO
2pLqq “ xyy ď ZL and thus YL does not split over

ZL as an L-module. Since A is an offender on YL, (a) and C.22 give |YL{ZL| “ 2 and rL – SL3p2q
or Sp4p2q. Moreover, in the SL3p2q case, |rZ`L , As| “ 4, which is a contradiction since A ď O2pP q
and rZ`L , O2pP qs| “ 2. l

Notation 3.24. We fix t P QzzF and set G0 :“ xL,Lty.

Lemma 3.25. The following hold:

(a) Qz “ xtypQz X F q and t2 P F .
(b) YM ď O2pLq.
(c) O2pG0q “ 1, and LX Lt “ P “ P t.
(d) Y ę YL X Y

t
L.

Proof. (a): By 3.4(a) |Qz{CQz pyq| “ 2 and by 3.10(b) CQz pyq “ Qz X F . Hence Qz “
xtypQz X F q and t2 P Qz X F ď F .

(b): By 3.10(e), O2pLq ď T and thus YL ď T , and by 3.3(g) we have rYM , T s “ xyy. Thus
rYM , YLs ď xyy. Since L centralizes y, this gives rxY LM y, YLs ď xyy, and as YL is p-reduced,
rxY LM y, YLs “ 1. By 3.11 CLpYLq “ OppLq and so YM ď O2pLq. Hence (b) holds.

(c): By 3.10(c) O2pG0q “ 1 ‰ O2pLq. So G0 ‰ L and L ‰ Lt. By 3.10(b) we have rQz, P s ď
OppP q, and since t P Qz we get P “ P t ď LXLt ă L. As P is a maximal subgroup of L by 3.23(c),
this gives P “ LX Lt and (c) is proved.



60 3. THE ORTHOGONAL GROUPS

(d): Note that by 3.23(b) M – Oε4p2q and YM is a natural Oε4p2q-module. Also by 3.4(c)
FT – C2ˆSp2p2q. It follows that O2pF q – Sp2p2q

1 – C3 and CYM pO
2pF qq has order 4. By 3.23(d)

CYLpO
2pF qq “ xyy has order 2. Hence YM ę YL. Since YM “ Y Y t we get Y t ę YL and Y ę Y tL. l

Lemma 3.26. (a) O2pLqO2pL
tq “ O2pP q.

(b) ZL X Y
t
L “ xy, zy “ ZpT0q.

(c) YLYM is not normal in L.
(d) rO2pLq, O

2pLqs ę YL.
(e) YL “ ZL.

Proof. Put R :“ O2pLqO2pL
tq. By 3.14(c) R Ĳ P and R ď O2pP q, and by 3.14(a) JpRq ę

O2pLq. Thus, we can choose B P AR with B ę O2pLq. By 3.11 CLpZLq “ O2pLq and so rZL, Bs ‰ 1.
By A.40 B is an offender on ZL and therefore , since CLpZLq “ CLpZ

`
L q, B is also an offender on

Z`L .

Suppose for the moment that rL – Sp4p2q – Symp6q. Them Z`L is a natural Symp6q-module

for rL, and since P “ CLpz
`q, rP “ CLpt0q, where t0 is the transposition in rL with rZ`L , t0s “ xz

`y.

Note also that t0 is the only transposition in O2p rP q. Part (h) of the Best Offender Theorem C.4
now shows that

p˚q rB “ xt0y, rB “ xt1t2, t0y or rB “ xt1t2, s1s2, t0y

where t0, t1, t2 are pairwise commuting transpositions and s1 and s2 are transpositions distinct from
t1 and t2 and moving the same four symbols as t1t2.

(a): By 3.25(b),(d), YM ď O2pLq and Y ę Y tL, so YM ę YL. By 3.11 YL “ Ω1ZpO2pLqq
and hence rYM , O2pLqs ‰ 1. Since O2pLq ď T this gives rYM , O2pLqs “ rYM , T s “ xyy. Thus
rYM , Rs “ xy, y

ty “ xy, zy and so R ę T . Since by 3.4(c) T “ O2pFT q and by 3.23(b) FT “ D, this
gives R ę O2pDq.

As CLpZLq “ O2pLq ď R, we get rR ę O2p rDq, and to prove (a) it suffices to show O2p rP q “ rR.

We do this by discussing the cases for rL given in 3.23. By 3.23(c) rP and rD are the two maximal

parabolic subgroups of rL containing ĂT0 and, as seen above, rR Ĳ rP and rR ę O2p rDq.

Suppose first that rL – SL3p2q. Then O2p rP q is the unique non-trivial normal subgroup of rP .

Since 1 ‰ rB ď rR Ĳ rP , we get R “ O2pP q.

Suppose next that rL – G2pqq. Then by C.8, rB Ĳ rP and | rB| “ 8. It follows that P acts

simply on O2p rP q{ rB. Note that rB ď O2p rDq. Since rR ę O2p rDq and rB ď rR Ĳ rP , we conclude that
rR “ O2p rP q.

Suppose now that rL – Sp4p2q. Choose notation as in p˚q. Then t0 P rB ď rR, t0 P O2p rDq and P

acts simply on O2p rP q{xt0y. As rR ę O2p rDq, we again get that rR “ O2p rP q. Thus (a) is proved.

(b): By 3.23(c) CZ`L
pRq “ CZ`L

pO2pP qq “ xz
`y and so CZLpRq “ xy, zy. Since R “ O2pLqO2pL

tq

this gives ZL X Y
t
L “ xy, zy, and (b) is proved.

(c): Assume for a contradiction that YLYM is normal in L. By 3.10(h) Y ď YM XZL ď YM XYL
and so |YM{YM X YL| ď 2. Hence rYM , P s ď YL. On the other hand, t normalizes YM and P , so
rYM , P s ď YL X Y

t
L. Since Y ď ZL, this gives

rY, P s ď ZL X Y
t
L

(b)
“ xy, zy ď Y.

Thus P normalizes Y and so by 3.8(b) P ď NGpY q ďM :, a contradiction.

(d): Suppose that rO2pLq, O
2pLqs ď YL. Since YM ď O2pLq we get rYM , O

2pLqs ď YL and
YMYL Ĳ O2pLqFT “ L, which contradicts (c).

(e): According to 3.23 we may assume that rL – Sp4p2q and Z`L is a natural Sp4p2q-module for
rL. As we have seen already above rP is a point stabilizer of rL on Z`L .
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Suppose for a contradiction that ĆJpRq “ xt0y, t0 as in p˚˚q. Then ČJpRqq “ rB, and it follows

that Z0 :“ CZLpJpRqq “ CZLpBq. As | rB| “ 2 and B is an offender on ZL, we have |ZL{Z0| “ 2.
Recall that ZpT0q “ ZpT˚q “ xy, zy. By the action of P on ZL

|Z0{Ω1ZpT0q| “ 4 and rZ0, O
2pP qsΩ1ZpT0q “ Z0.

By C.10(f) rΩ1ZpJpRqq, xJpRq
Lys ď ZL and so rΩ1ZpJpRqq, O

2pLqs ď ZL. Since Zt0 ď Ω1ZpJpRqq

Zt0 “ rZ
t
0, O

2pP qsΩ1ZpT0q ď ZL.

Thus Zt0 ď Y t X ZL “ xy, zy “ ZpT0q. Hence Z0 ď ZpT0q a contradiction.

Thus ĆJpRq ‰ xt0y. Suppose that Y `L ‰ Z`L . Then Case (e:1) or (e:2) in C.22 holds, and so rB is

generated by transpositions in rL – Symp6q. But then p˚˚q shows that rB “ xt0y, so also ĆJpRq “ xt0y,
a contradiction. Hence (e) is proved. l

Lemma 3.27. Y tL ď O2pLq.

Proof. Assume for a contradiction that Y tL ę O2pLq. Since t2 P F ď LX Lt we have Lt
2

“ L
and the situation is symmetric in L and Lt. By 3.11, CLpYLq “ O2pLq and so rY tL, YLs ‰ 1. Since
ĂY tL ď O2p rP q, C.9(f) shows that ĂY tL is not an over-offender 3 on YL, so |YL{CYLpY

t
Lq| ě |Y

t
L{CY tLpYLq.

Since the situation is symmetric in L and Lt equality holds in the preceding equation. Hence ĂY tL is

an offender on YL contained in O2p rP q. By 3.11 CLpYLq “ CLpZLq, and as rY tL, YLs ‰ 1, we conclude
that rZtL, YLs ‰ 1.

1˝. O2pLq ď xY tLL y.

Observe that O2prLq is the unique minimal normal subgroup of rL and so O2prLq ď xĄY tLL y. Hence
O2pLq ď xY tLL yO2pLq and (1˝) follows.

2˝. O2pL
tq ę Y tLO2pLq and ĂY tL ‰ O2p rP q.

Assume that O2pL
tq ď Y tLO2pLq. Then rYL, O2pL

tqs ď rYL, Y
t
Ls ď Y tL and after conjugation with

t, rO2pLq, Y
t
Ls ď YL. Since O2pLq ď xY tLL y by (1˝), we conclude that rO2pLq, O

2pLqs ď YL, which
contradicts 3.26(c). Hence O2pL

tq ę Y tLO2pLq. Since O2pL
tq ď O2pP q this gives Y tLO2pLq ‰ O2pP q

and so ĂY tL ‰ O2p rP q.

3˝. rL – Sp4p2q and |ĂY tL| “ |
ĂZtL| “ 2.

Recall that ĂY tL is a non-trivial offender on YL in O2p rP q and that P normalizes ĂY tL since P “ P t.
Also by 3.23(c), P “ CLpz

`q.
By 3.23(a) Z`L is natural SL3p2q, Sp4p2q or G2p2q-module for L. We treat these three cases one

by one.

Suppose that Z`L is a natural SL3p2q-module for L. Since P “ CLpz
`q we conclude that rP acts

simply on O2p rP q (see for example B.30). But then ĂY tL “ O2p rP q, contrary to (2˝).
Suppose that Z`L is a natural Sp4p2q-module of L. Observe that O2pL

tq centralizes rZ`L , Y
t
Ls.

By 3.26(a) we have O2pP q “ O2pLqO2pL
tq, and by 3.23(d), CZ`L

pO2pP qq “ xz`y. It follows that

rZ`L , Y
t
Ls “ xz

`y and so |ĂY tL| “ 2 “ |ĄZtL|.
Suppose that Z`L is a natural G2p2q-module of L. Note that O2pL

tq centralizes ZtL. By the Best

Offender Theorem C.4(a), C
ĂT0
pĂZtLq “

ĂZtL and so O2pL
tq ď Y tLO2pLq, a contradiction to (2˝).

4˝. ΦpO2pLqq X ΦpO2pL
tqq “ 1.

By (3˝) rL – Sp4p2q and so O2p rP q is elementary abelian. Thus ΦpO2pL
tqq ď O2pLq and

rΦpO2pL
tqq, YLs “ 1. By (1˝) we have O2pLty ď xY L

t

L y, so rΦpO2pL
tqq, O2pLtqs “ 1. This shows

that ΦpO2pLqqXΦpO2pL
tqq is centralized by O2pLtq and normalized by t and P . Since L “ O2pLqP

3for the definition of over-offender see A.7
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we conclude that ΦpO2pLqq X ΦpO2pL
tqq is normalized by xL,Lty. By 3.10(c) O2pxL,L

tyq “ 1 and,
(4˝) holds.

Put U :“ ZtL XO2pLq and X :“ CO2pLqpUq.

5˝. |O2pLq{X| “ 4, and X is elementary abelian.

By (3˝) U is a hyperplane of ZtL centralized by YL. The action of Lt on ZtL shows that
O2pP q{CO2pP qpUq and CO2pP qpUq{O2pL

tq have order 4 and 2, respectively. By 3.26(a) O2pP q “

O2pLqO2pL
tq and so

X “ YLpX XO2pL
tqq and |O2pLq{X| “ 4.

Moreover,

ΦpXq “ ΦpX XO2pL
tqq ď ΦpO2pLqq X ΦpO2pL

tqq.

Now (4˝) yields ΦpXq “ 1.

6˝. |O2pLq{YL| “ 24 and rO2pLq, O
2pLqsYL “ O2pLq.

Observe that the smallest F2-module V for Sp4p2q with rV, Sp4p2q
1s ‰ 1 has order 24, while by

(5˝) |O2pLq{X| “ 4. By 3.26(c) rO2pLq, O
2pLqs ę YL and so |rO2pLq, O

2pLqsYL{YL| ě 24. Also by
3.11, YL “ Ω1ZpO2pLqq. Hence it suffices to show that |O2pLq{Ω1ZpO2pLqq| ď 24.

Let d P L and put B :“ XXd. Note that by (5˝) X is elementary abelian. Thus X X Xd ď

Ω1ZpBq. So

p˚q |B{Ω1ZpBq| ď |B{X XX
d| “ |X{X XXd||Xd{X XXd| “ |X{X XXd|2.

Suppose that 4 ď |B{X|. By (5˝) |O2pLq{X| “ 4 and so |B{X| “ 4 and B “ O2pLq. Since
|B{X| “ |B{Xd| “ |XXd{Xd| “ |X{X XXd|, also |X{X XXd| “ 4, and

|O2pLq{Ω1ZpO2pLqq| “ |B{Ω1ZpBq|
p˚q

ď |X{X XXd|2 “ 42.

Thus we may assume that |B{X| “ |X{X XXd| ď 2 (for all d P L). In particular, |B{Ω1ZpBq| ď 4
by p˚q. Suppose that B Ĳ L. Since |O2pLq{B| ď |O2pLq{X| ď 4 and |B{Ω1ZpBq| ď 4, it follows that
rO2pLq, O

2pLqs ď Ω1ZpBq. From U ď X ď B, we conclude that rO2pLq, O
2pP qs ď CP pUq. This

contradicts O2pLqO2pL
tq “ O2pP q and rO2pP q, O

2pP qs ę CP pUq.
Thus XXd đ L for all d P L. In particular, X đ L and XXd ‰ O2pLq. Moreover, we can

choose d, h P L such that X ‰ XXd ‰ XXdXh. By (5˝) |O2pLq{X| “ 4, so O2pLq “ XXdXh,
X XXd XXh ď Ω1ZpO2pLqq and |X{Ω1ZpO2pLqq| ď 4. Thus |O2pLq{Ω1ZpO2pLqq| ď 24 and (6˝) is
proved.

We now are now able to derive a contradiction. By (6˝) |O2pLq{YL| ď 24 “ 1 ` 15. Since
the maximal parabolic subgroups of Sp4p2q have index 15, we conclude that L is transitive on the
non-trivial elements of O2pLq{YL. Since X is elementary abelian, O2pLqzYL Hence all cosets of YL in
O2pLq contain involutions. As YL ď Ω1ZpO2pLqq this implies that all non-trivial elements in O2pLq
are involutions, so O2pLq “ Ω1ZpO2pLqq “ YL. But this contradicts |O2pLq{YL| “ 24. l

3.28. Proof of Theorem C:

Put R :“ O2pLqO2pL
tq, and let G˚ be the free amalgamated product of L and Lt over R. Let

L1 and L2 be the image of L and Lt in G˚, respectively, and identify R with its image in G˚. An
elementary property of free amalgamated products shows that L1 X L2 “ R. We will now verify
that Hypothesis 1 in [P2] is satisfied for G˚, L1, L2, R and p “ 2.

Hypothesis 3.29 (Hypothesis 1 [P2]). Let p be a prime and G˚ be a group generated by two
finite subgroups L1 and L2 . For every i P t1, 2u put

R :“ L1 X L2, Zi :“ Ω1ZpOppLiqq, Z`i :“ Zi{CZipLiq,
rLi :“ Li{OppLiq

and suppose that the following hold:

(1) R is a p-group with CLipZiq ď R.
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(2) rLi – SLnipqiq, Sp2nipqiq or G2pqiq, where qi is a power of p and p “ 2 in the last case; and

Z`i is a corresponding natural module for rLi.

(3) There exists Si P SylppLiq such that R Ĳ PLipSiq and either R “ OppPLipSiqq or rLi –

G2pqiq and rR is elementary abelian of order q3
i . (Here PLipSiq :“ Op

1

pCLppΩ1ZpSiqqq)
(4) Z1Z2 ď OppLiq, and Z1Z2 is not normal in Li.
(5) No subgroup U ‰ 1 of R is normal in G˚.

(1): By 3.14(c) R “ OppLqOppLq
tq Ĳ P . In particular, R is a p-group. By 3.11 YL “ Ω1ZpOppLqq

and by 3.26 YL “ ZL, so ZL “ Ω1ZpOppLqq. By 3.11CLpZLq “ OppLq ď R and thus CLipZiq ď R
and (1) holds.

(2): By 3.23(a) rL – SL3p2q, Sp4p2q or G2p2q, and Z`L is a corresponding natural module. Thus
(2) holds.

(3): Recall that R Ĳ P . By 3.10(g) P “ CLpΩ1ZpT0qq and so also R Ĳ P˚ “ O21pCLpΩ1ZpT0qq.
By 3.26 OppLqOppL

tq “ OppP q and so also R “ OppP
˚q. Thus (3) holds.

(4): By 3.27 ZtL ď OppLq and so also ZLZ
t
L ď OppLq. By 3.10(d) ZLZ

t
L đ L, and so (4) is

proved.

(5) Let U ď R such that U Ĳ G˚. Then U is normal in L1 and L2 and so U ď O2pxL,L
tyq.

Since O2pxL,L
tyq “ 1 by 3.10(c), this gives U “ 1 and (5) holds.

So indeed Hypothesis 1 holds. According to the Main Theorem in [P2] this implies that rLi –

SLnipqiq and either p “ 3 and ni “ 2 or qi “ 2 and ni “ 4. Since in our case p “ 2 and rLi is one of
SL3p2q, Sp4p2q and G2p2q, we finally have reached a contradiction.





CHAPTER 4

The Symmetric Case

Recall from Section 2.1 that an abelian subgroup Y of G is called symmetric in G if

p˚q 1 ‰ rY, Y gs ď Y X Y g for some g P G.

In this chapter we investigate the action of M on Y when M P MGpSq, Y is a p-reduced
elementary abelian normal p-subgroup of M , and Y is symmetric in G. Note that for Y “ YM this
is the symmetric case as defined in Section 2.1. Allowing Y to be proper subgroup of YM will turn
out to be useful in Chapter 8.

It is immediate from p˚q that Y is a quadratic offender on Y g, or vice versa. So we are able to
apply the General FF-module Theorem C.2 from Appendix C. But it is still a fairly general situation;
for example, the General FF-module Theorem puts no restriction on number of components of
M{CM pYM q. This is one of the points where the existence of a large subgroup comes in handy, it
allows us to apply the more restrictive Q!FF-Module Theorem C.24.

There is another point in the proof where large subgroups are essential. Assuming for a moment
that F˚pM{CM pY qq is a classical group and Y a corresponding natural module. Then again p˚q
shows that Y XY g is non-trivial and contains the commutator of a quadratic offender (either on Y or
Y g). The structure of the natural module in question shows that, with very few exceptions, rY, Y gs
contains non-trivial elements that are centralized by conjugates of Q in NGpY q and in NGpY

gq.
Then Q! shows that NGpY q X NGpY

gq contains these conjugates of Q and so acts non-trivially on
Y and Y g.

On the other hand
Y {CY pY

gq – Y CGpY
gq{CGpY

gq,

and NGpY q XNGpY
gq acts on the the left hand side as a subgroup of NGpY q and on the right hand

side as a subgroup of NGpY
gq. So these two actions must be isomorphic. But typically Y {CY pY

gq

is a “natural” module for NGpY q X NGpY
gq, while Y CGpY

gq{CGpY
gq is the “square” of a natural

module (cf. B.21). This simple observation poses a further restriction on the possible action of M
on Y .

We now state the main result of this chapter.

Theorem D. Let G be finite Kp-group, S P SylppGq, and let Q ď S be a large subgroup of G.
Suppose that M PMGpSq and Y is an elementary abelian normal p-subgroup of M such that

(i) OppM{CM pY qq “ 1, and
(ii) Y is symmetric in G.

Then one of the following holds, where q is some power of p and M :“M{CM pY q:

(1) M˝ – SLnpqq, n ě 3, and Y is a corresponding natural module.
(2) (a) M˝ – Sp2npqq, n ě 2, or Sp4pqq

1 (and q “ 2), and rY,M˝s is a corresponding natural
module.

(b) If Y ‰ rY,M˝s, then p “ 2 and |Y {rY,M˝s| ď q.
(c) If Y ę Q‚, then p “ 2 and rY,M˝s ę Q‚.

(3) There exists a unique M -invariant set K of subgroups of M such that YM is a natural
SL2pqq-wreath product module for M with respect to K. Moreover,
(a) M˝ “ OppxKyqQ,
(b) Q acts transitively on K,
(c) If Y “ YM , then YM “ YM˝S.

65
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(4) Y ę Q‚ and one of the following holds:
(1) M˝ – Ω`2npqq for 2n ě 6, Ω´2npqq for p “ 2 and 2n ě 6, Ω´2npqq for p odd and 2n ě 8,

or Ω2n`1pqq for p odd and 2n` 1 ě 7, and Y is a corresponding natural-module.
(2) M˝ – SLnpqq{xp´idq

n´1y, n ě 5, and Y is the exterior square of a corresponding
natural module.

(3) M˝ – Spin`10pqq, and Y is a corresponding half-spin module.

(4) M˝ – SLnpqq ˝ SLmpqq, n,m ě 2, n `m ě 5, p is odd, and Y is the tensor product
of corresponding natural modules.

(5) (a) M – Oε2np2q, M
˝ – Ωε2np2q, 2n ě 4 and p2n, εq ‰ p4,`q1 and rY,M s is a correspond-

ing natural module.
(b) If Y ‰ rY,M s, then M – O`6 p2q and |Y {rY,M s| “ 2.
(c) CGpyq ęM : for every non-singular element y P rY,M s.
(d) If Y “ YM , then CGpyq is not of characteristic 2 for every non-singular element

y P rY,M s.

Table 1 lists examples for Y,M and G fulfilling the hypothesis of Theorem D.

Table 1. Examples for Theorem D

Case rY,M˝s for M˝ c Remarks examples
1 nat SLnpqq 1 p odd Ln`1pqqΦ2

1 nat SLnpqq 1 n “ 7, 8 Enpqq
1 nat SL3p2q 1 - G2p3q, HS(.2), Ru, HN
1 nat SL3p3q 1 - Fi122,23,24, F4p2q,

2E6p2q, BM
1 nat SL3p5q 1 - Ly, BM, M
1 nat SL5p2q 1 - Th, BM

* 2 nat Sp8p2q ď 2 - BM
3 nat SL2pqq 1 - L3pqq, G2pqq p ‰ 3, D4pqqΦ3 p “ 3, 3D4pqq

3 nat SL2p2q 1 - G2p2q
1, J2, J3, Ω´6 p3q.X, Ω`8 p3q.X

3 nat SL2p3q 1 - Mat12.2, 2F4p2q
1,

3 nat SL2p5q 1 - Ru, HN, Th
3 nat SL2p7q 1 - O’N, M
3 nat SL2p13q 1 - M
4:1 nat Ω7pqq 1 p odd F4pqq
4:1 nat Ω´6 pqq 1 - 2E6pqq
4:1 nat Ω`8 pqq 1 - E6pqqΦ2

4:1 nat Ω`14pqq 1 - E8pqq
* 4:1 nat Ω`6 p2q 1 - PΩ`8 p3q.3p.2q
* 4:1 nat Ω`10p2q 1 - M

1,4:1, 4:2 Λ2(nat) SLnpqq, n ě 3 1 p “ 2 O`2n`2pqq
4:3 half-spin Spin`10pqq 1 p odd E6pqqΦ2

4:4 nat SLt1pqq b SLt2pqq 1 p odd Lt1`t2pqqΦ2,t1 ‰ t2

Here c :“ |YM{rYM ,M
˝s| and Φi denotes a group of graph automorphisms of order i. In the

example G “ K.X with K “ Ω´6 p3q or PΩ`8 p3q, X is a subgroup of OutpKq such that X acts
transitively on PNKpQqpK X Sq. Moreover, ˚ indicates that pchar YM q fails in G.

4.1. The Proof of Theorem D

In this section we assume the hypothesis of Theorem D and use the notation given there. We
will prove this theorem in a sequence of lemmas.

1 O`4 p2q appears as SL2p2q o C2 in Case (3)
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Lemma 4.1. Y ď YM and NGpY q “M :.

Proof. By hypothesis, OppM{CM pY qq “ 1 and so Y is p-reduced for M . Hence Y ď YM and
so M : “MCGpYM q ď NGpY q. As Y ĲM , 2.2(c) gives NGpY q ďM :, and 4.1 is proved. l

Lemma 4.2. There exists u P G such that Y Y u ď S X Su and rY, Y us ‰ 1.

Proof. As Y is symmetric in G, there exists u1 P G such that 1 ‰ rY u
1

, Y s ď Y u
1

X Y , so

Y u
1

ď NGpY q “M : and Y ď NGpY
u1q ďM :u1 .

Since S is a Sylow p-subgroup of M : and Su
1

is a Sylow p-subgroup of M :u1 , we can choose
m PM : and m1 PM :u1 such that

Y u
1

ď Sm and Y ď Su
1m1 .

Set u :“ u1m1m´1. Then Y m
´1

“ Y , Y u
1m1 “ Y u

1

, Y u “ Y u
1m1m´1

“ Y u
1m´1

, and so

rY, Y us “ rY m
´1

, Y u
1m´1

s “ rY, Y u
1

sm
´1

‰ 1

and

Y u “ Y u
1m´1

ď pSmqm
´1

“ S and Y “ Y m
´1

ď pSu
1m1qm

´1

“ Su.

Also Y ď S and Y u ď Su and so Y Y u ď S X Su. l

Notation 4.3. We fix u as in 4.2. Let

M1 :“M, S1 :“ S, Q1 :“ Q, Q‚1 :“ Q‚, Y1 :“ Y

and

M2 :“Mu, S2 :“ Su, Q2 :“ Qu, Q‚2 :“ pQ‚qu, Y2 :“ Y u.

Note that Y1Y2 ď S1 X S2 ďM1 XM2 and rY1, Y2s ‰ 1.
For i P t1, 2u we further set Mi :“ Mi{CMipYiq, Ai :“ CYipQiq and Li :“ rF˚pMiq, Qis. Let Fi

be the largest normal subgroup of F˚pMiq centralized by Qi. Fi and Li are the inverse images of
Li and Fi in Mi. If Ui is a subgroup of Mi, then Ui :“ UiCMi

pYiq{CMi
pYiq. (So whether Ui denotes

the image of Ui in M1 or in M2 is determined by the subscript used to denoted Ui).

Lemma 4.4. Y1 acts quadratically on Y2 and vice versa.

Proof. Since Y1 and Y2 normalize each other, rY1, Y2s ď Y1XY2. Hence rY2, Y1, Yis ď rYi, Yis “
1 for i “ 1, 2. l

Lemma 4.5. (a) Fi ď NGpQiq.
(b) Li and Fi are normal in F˚pMiqSi. In particular, Li and Fi are normal in LiFiSi.
(c) Fi “ CF˚pMiq

pLiQiq. In particular, rLi, Fis “ 1.

(d) Li “ rLi, Qis.
(e) CMi

pLiFiq is a p1-group.

(f) If B is a p-subgroup of NMi
pQiq with rLi, Bs ď Fi, then rLi, Bs “ 1.

(g) Li X Fi ď ΦpLiq.

Proof. (a): Note that Qi ď OppQiCMipYiqq since by Q!, CMipYiq ď NGpQiq. Since Q is
weakly closed (or by 1.52(a)), NGpOppQiCMipYiqqq ď NGpQiq. As Fi normalizes OppQiCMipYiqq,
we conclude that Fi ď NGpQiq.

(b): Since Li “ rF
˚pMiq, Qis, Li Ĳ F˚pMiq. By definition, Fi Ĳ F˚pMiq. As Si normalizes Qi,

it also normalizes Li and Fi.

The remaining claims follow from 1.17 applied to Mi. l

Lemma 4.6. Either Y2 centralizes L1 or CY2
pL1q “ CY2

pY1q.
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Proof. Recall from Hypothesis (i) of Theorem D that OppM1q “ 1. As L1F1 is subnormal in

M1, this gives OppL1F1q “ 1. Put H1 :“ L1F1Q1Y2 and X :“ CY2
pL1q. By 4.5(b) both F1 and L1

are normal in H1. Since Q1 is weakly closed, 1.46(c) gives H˝1 “ xQ
H1
1 y. By 4.5(a) Fi ď NGpQ1q, so

F1Q1Y2 normalizes Q1. As L1 “ rL1, Q1s by 4.5(d), we get

H˝1 “ xQ1
L1F1Q1Y2

y “ xQ1
L1
y “ rL1, Q1sQ1 “ L1Q1.

Also rOppH1q, L1F1s ď OppL1F1q “ 1. Since X centralizes L1 and Q1 centralizes F1 we have

rX,Q1s ď CQ1
pL1F1q. By 4.5(e) CM1

pL1F1q is a p1-group, whence rX,Q1s “ 1 and OppH1q “ 1.
The first property shows that

p˚q X “ CY2
pL1Q1q “ CY2

pH˝1 q.

We may assume that Y2 does not centralize L1. Abusing our general convention, let Y2 :“
Y2CM1

pY1q{CM1
pY1q. Then Y2 ‰ 1, L1 ‰ 1 and Q1 ‰ 1. We will now show that the hypothesis of

A.57, with pY1, Q1, H1, Y2q in place of pV,Q,H, Y q, is fulfilled.
We already have proved that OppH1q “ 1. As Q1 ‰ 1, this gives that Q1 đ H1. Hence by

1.57(b) Y1 is a faithful Q!-module for H1 with respect to Q1. By 4.4 Y2 acts quadratically on Y1

and so CY2
prY1, Y2sq “ Y2 ‰ 1. Since Y2 does not centralize L1 and L1 ď H˝1 , we get rH˝1 , Y2s ‰ 1.

We have verified the hypothesis of A.57, and this result gives CY2
pH˝1 q “ 1. Thus CY2

pH˝1 q “

CY2
pY1q and so by (˚) CY2

pY1q “ X “ CY2
pL1q. l

Lemma 4.7. Let U ď Si with rLi, U s “ 1 and rYi, U s ‰ 1. Then rAi, U s ‰ 1.

Proof. Put U :“ UCMi
pYiq{CMi

pYiq. Since U ď Si and rYi, U s ‰ 1, U is a non-trivial p-
subgroup of Mi. By 4.5(e) CMi

pLiFiq is a p1-group. Thus Ri :“ rFi, U s ‰ 1 and so rYi, Ris ‰ 1. By

4.5(b) Si and so also U normalizes Fi. So Ri ď Fi, and we get rRi, Qis “ 1. Since Ri ĲĲ F˚pMiq

and OppMiq “ 1, we have Ri “ OppRiq. Hence the P ˆQ-Lemma gives rAi, Ris “ rCYipQiq, Ris ‰ 1.

Since Fi Ĳ F˚pMiq we conclude that pMi, Fi, Uq satisfy the hypothesis on pH,L, Y q in 1.8. By
1.8(b), rFi, U s “ rFi, U, U s. Thus Ri “ rRi, U s. Together with rAi, Ris ‰ 1 this implies rAi, U s ‰ 1.
l

Lemma 4.8. rL1, Y2s ‰ 1 and rL2, Y1s ‰ 1.

Proof. By symmetry it suffices to show the claim for rL1, Y2s. Therefore, we assume by way
of contradiction:

1˝. rL1, Y2s “ 1.

By the choice of u, rY1, Y2s ‰ 1 (see 4.3). So we can apply 4.7 with U “ Y2 and i “ 1, and
conclude that rA1, Y2s ‰ 1. Assume that also rL2, Y1s “ 1. Since A1 ď Y1, also rL2, A1s “ 1. Thus
4.7 applied with U “ A1 and i “ 2 gives rA2, A1s ‰ 1. As Ai ď ZpQiq, this is a contradiction to
2.3(a). Thus

2˝. rL2, Y1s ‰ 1.

Then 4.6 gives

3˝. CY1
pL2q “ CY1

pY2q.

We now use the Fitting submodule FY1
pM1q defined in Appendix D. By D.6 FY1

pM1q is faithful
for M , and by D.8 FY1

pM1q is semisimple for M˝
1 . Since L1 ĲĲM˝

1 , FY1
pM1q is also semisimple for

L1, and since FY1
pM1q is faithful, rFY1

pM1q, Y2s ‰ 1. Hence there exists a simple L1-submodule I1
of FY1pM1q such that rI1, Y2s ‰ 1; in particular, by (3˝)

4˝. rL2, I1s ‰ 1.

Next we prove:
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5˝. Put I2 :“ Iu1 . Then there exists J2 P I
F˚pM2qQ2

2 with rJ2, rL2, I1ss ‰ 1; in particular
rJ2, I1s ‰ 1.

Put U :“ xI
F˚pM2qQ2

2 y and F :“ CF˚pM2q
pUq, and let F be the inverse image of F in M2. Note

that CU pQ2q ‰ 1 and so by Q!, F ď NGpCU pQ2qq ď NGpQ2q. Also F is normal in F˚pM2q. Hence

rF ,Q2s ď Q2 X F ď OppF q ď OppM2q “ 1,

and thus F ď F2.
Suppose that rL2, I1s ď F . Then rL2, I1s ď F2 and 4.5(f) implies rL2, I1s “ 1, a contradiction

to (4˝). Hence rL2, I1s ę F , that is, rU, rL2, I1ss ‰ 1, and (5˝) holds.

Let J2 be as in (5˝). Observe that |I1| “ |I2| “ |J2|. Let x P J2 with rI1, xs ‰ 1. Thus, CI1pxq
is a proper subgroup of I1. By (1˝) rL1, xs ď rL1, Y2s “ 1. Hence CI1pxq is a proper L1-submodule
of I1. Since I1 is a simple L1-module we conclude:

6˝. CI1pxq “ 1. In particular, |I1| “ |rI1, xs|.

Suppose that CJ2pI1q ‰ 1. Let y P I1. Then 1 ‰ CJ2pI1q ď J2 X Jy2 . Since J2 is a simple
L2-module and y normalizes L2, Jy2 and Jy2 are simple L2-modules and J2 X J

y
2 is a non-trivial L2-

submodule of J2 and Jy2 . Thus J2 “ J2 X J
y
2 “ Jy2 , and so I1 normalizes J2. But then rI1, J2s ă J2

and so |rI1, xs| ă |J2| “ |I1|, a contradiction to (6˝). We have proved:

7˝. CJ2pI1q “ 1.

By (5˝) rJ2, rL2, I1ss ‰ 1, and so there exists y P I1 such that rJ2, rL2, yss ‰ 1. Put W :“ J2J
y
2 .

By 4.4, Y1 acts quadratically on Y2. So rJ2, ys ď CW pI1q and rW, I1s ď CY2pI1q. By (7˝) CJ2pI1q “ 1,
and we conclude that

8˝. rJ2, ys ď CW pI1q, J2 X rJ2, ys “ 1 and J2 X rW, I1s “ 1.

In particular, rJ2, NI1pJ2qs ď J2 X rW, I1s “ 1 and so NI1pJ2q “ CI1pJ2q ď CI1pxq. By (6˝)
CI1pxq “ 1 and thus

9˝. NI1pJ2q “ 1.

In particular, J2 ‰ Jy2 . Since J2 and Jy2 are simple L2-modules, we conclude that J2 X J
y
2 “ 1.

By (8˝), J2 X rJ2, ys “ 1 and so W “ J2J
y
2 “ J2rJ2, ys “ J2 ˆ rJ2, ys. This gives

10˝. W “ J2 ˆ rJ2, ys “ Jy2 ˆ rJ2, ys “ J2 ˆ J
y
2 .

Suppose for a contradiction that rJ2, ys is L2-invariant. Then (10˝) shows that J2 and rJ2, ys are
both isomorphic to W {Jy2 as L2-modules. Moreover, y centralizes rJ2, ys and so rL2, ys centralizes
rJ2, ys. Hence rL2, ys also centralizes J2, which contradicts the choice of y. Therefore,

11˝. rJ2, ys is not L2-invariant.

By (8˝) rJ2, ys ď CW pI1q ď W X W y1 for every y1 P I1. On the other hand, J2 is a simple

L2-module and W XW y1 is an L2-submodule. By (10˝) W “ J2 ˆ Jy2 . Hence every non-trivial

L2-submodule of W has order |J2|. Since |W X W y1 | ě |rJ2, ys| “ |J2|, we conclude that either

W “WXW y1 “W y1 or WXW y1 “ rJ2, ys. In the latter case, rJ2, ys is L2-invariant, a contradiction

to (11˝). Thus W “W y1 .
We have shown that I1 normalizes W . By (9˝) NI1pJ2q “ 1, and so there are |I1| I1-conjugates

of J2. Since J2 X rJ2, ys “ 1 and I1 centralizes rJ2, ys, each of these conjugates intersects rJ2, ys
trivially and is L2-invariant. Since J2 is a simple L2-module, the conjugates have pairwise trivial
intersection. Note also that |I1| “ |J2| and by (10˝) |W | “ |J2||J

y
2 | “ |J2|

2 and |rJ2, ys “ |J2|. We
conclude that these conjugates together with rJ2, ys form a partition of W . Thus, L2 also leaves
invariant rJ2, ys, a contradiction to (11˝). l

Lemma 4.9. (a) rM˝
1 , Y2s ‰ 1 and rM˝

1 , Y
u´1

1 s ‰ 1, in particular M˝ ‰ 1.

(b) Yi is a faithful Q!-module for Mi with respect to Qi.
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(c) Y2 or Y u
´1

1 is a non-trivial quadratic offender on Y1.
(d) The hypothesis of the Q!FF-Module Theorem C.24 is fulfilled for pMi, Yi, Qiq in place of

pH,V,Qq.

Proof. (a): Recall from 4.3 that Li “ rF
˚pMiq, Qis and so Li ďM˝

i . By 4.8 rL1, Y2s ‰ 1 and

rL2, Y1s ‰ 1 and so also rM˝
2 , Y1s ‰ 1 and rM˝

1 , Y2s ‰ 1. Conjugating the last equation by u´1 gives

rM˝
1 , Y

u´1

1 s ‰ 1, and so (a) holds.

(b): Since M˝
i ‰ 1 we also have Qi ‰ 1. As OppMiq “ 1 this implies Qi đMi. Hence by 1.57(b)

Yi is a faithful Q!-module for M i with respect to Qi.

(c): By 4.4 Y1 acts quadratically on Y2 and vice versa. If Y2 is not an offender on Y1, then
|Y2{CY2

pY1q| ď |Y1{CY1
pY2q|, and since Y2 “ Y u1 , conjugation with u´1 gives

|Y1{CY1
pY u

´1

1 q| ď |Y u
´1

1 {C
Y u

´1
1

pY1q|.

Hence Y u
´1

1 is an offender on Y1.

(d): According to (c) we can choose Y3 P tY2, Y
u´1

1 u such that Y3 is a non-trivial quadratic
offender on Y1. By (a) rM˝

1 , Y3s ‰ 1. Thus Y3 fulfills the condition for Y in the Q!FF-Module

Theorem. By (b) Y1 is a faithful Q!-module for M1 with respect to Q1. Also OppM1q “ 1 and so
the Hypothesis of the Q!FF-Module Theorem is fulfilled. l

Lemma 4.10. Suppose that the following hold:

(i) M˝{CM˝pY q – Ωε2np2q, 2n ě 4, and M ęM˝CM pY q.
(ii) rY,M˝s is a natural Ωε2np2q-module for M˝.
(iii) rY1, Y2s contains a non-singular vector of rY1,M

˝
1 s or rY2,M

˝
2 s.

Then Theorem D(5) holds if p2n, εq ‰ p4,`q, and Theorem D(3) holds if p2n, εq “ p4,`q.

Proof. By B.35(d), NAutprY,M˝sqpM˝q – Oε2np2q. Since Ωε2np2q has index 2 in Oε2np2q and

M ‰M˝, we conclude that M – Oε2np2q and rY,M˝s is a corresponding natural module.
If Y ‰ rY,M˝s then C.22 shows that M – O`6 p2q and |Y {rY,M˝s| “ 2. In particular, rY,M˝s “

rY,M s.
By (iii) and since the setup is symmetric in M1 and M2, we may assume that rY1, Y2s contains

a non-singular vector t of rY1,M1s. As M :
1 “ M1CGpY1q fixes the M1-invariant quadratic from

on rY1,M1s, we know that the non-singular elements of rY1.M1s are precisely those elements that

are not centralized by a Sylow p-subgroup of M :
1 . In particular, CM:

1
ptq does not contain a Sylow

p-subgroup of M :
1 . We claim that CGptq ęM :

1 .
For this suppose first that t is singular in rY2,M2s. Then CM2

ptq contains a Sylow p-subgroup

of M2 and so also of G. As CM:
1
ptq does not contain a Sylow p-subgroup of M :

1 , we conclude that

CM2
ptq ę CM:

1
ptq and so CGptq ęM :

1 .

Suppose next that t is non-singular in rY2,M2s. Recall that M2 “ Mu
1 , so as t is non-singular

in rY1,M1s, t
u is non-singular in rY2,M2s “ rY1,M1s

u. Since M2 is transitive on the non-singular
vectors of rY2,M2s, there exists m P M2 such that tum “ t. Since Y um1 “ Y m2 “ Y2 ‰ Y1 we have

um RM :
1 and so again CGptq ęM :.

We proved that CGptq ę M :
1 . Since M1 “ M and M acts transitively on the non-singular

vectors of rY,M s, we conclude that CGpyq ęM : for all non-singular y P rY,M s.
Suppose that M – O`4 p2q. Then M – SL2p2q o C2 and Theorem D(3) holds.

Suppose next that M fl O`4 p2q. By hypothesis M˝ – Ωε2np2q. Assume in addition that Y “

YM . Then Theorem C shows that CGpyq is not of characteristic 2 for every non-singular element
y P rY,M s. Thus Theorem D(5) holds in this case. l

By 4.9(d) the Hypothesis of the Q!FF-Module Theorem C.24 is fulfilled for pMi, Yi, Qiq. In the
following we will discuss the various outcomes of the Q!FF-Module Theorem.
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Notation 4.11. Let ti, ju :“ t1, 2u. Put

Ji :“ JMi
pYiq and Ri :“ F˚pJiq.

Let Ri be the inverse image of Ri in Mi. Put

Wi :“ rYi, Ris and Ti :“ YjRi.

Lemma 4.12. Suppose that C.24(1) holds. Then Theorem D(3) holds.

Proof. By C.24(1) there exists an M1-invariant set K of subgroups of M1 such that Y1 is a
natural SL2pqq-wreath product module for M1 with respect to K, M˝

1 “ OppxKyqQ1 and Q1 acts
transitively on K. By A.27 this set is unique. By 1.24(f), YM˝S ď YM and since YM is a simple
M˝S-module, YM “ YM˝S . So Theorem D(3) holds. l

Lemma 4.13. Suppose that C.24(2) holds and W1 is not a simple R1-module. Then Theorem
D(4:4) holds.

Proof. Note that by 4.9(c) Y2p“ Y u1 q or Y u
´1

1 is an offender on Y1. Also u´1 in place of u
fulfills the conclusion of 4.2. So possibly after replacing u by u´1 we may assume that Y2 is a offender
on Y1. Also rY1, Y2s ‰ 1, and so we can choose a minimal non-trivial offender A on Y1 with A ď Y2.
By A.39 A is a quadratic best offender on Y1, so A ď J1.

Recall that ti, ju “ t1, 2u. For now let Ii be any simple Ri-submodules of Wi. From C.24(2:a),
(2:b) we conclude that

1˝.

(a) Ri is quasisimple and Ri ďM˝
i .

(b) CYipRiq “ 1, Wi is a semisimple Ji-module, and Mi acts faithfully on Wi.

Next we prove:

2˝. Let x PMj with CIj pxq ‰ 1. Then x normalizes Ij.

Note that 1 ‰ CIj pxq ď Ij X Ixj . Since Rj Ĳ Mj , Ij and Ixj are simple Rj-modules, and so
Ij “ Ij X I

x
j “ Ixj .

3˝. Let Xi ď Yi. Suppose that rXi, Yjs ‰ 1 and Xi normalizes all the simple Rj-submodules

of Wj. Then rRj , Xis “ Rj ‰ 1, rIj , Xis ‰ 1 ‰ rIj , Yis, and Yi normalizes all simple Rj-submodules
of Wj.

Suppose for a contradiction that rRj , Xis “ 1. Since Xi is a p-group and normalizes the simple
Rj-submodule Ij , we conclude that Xi centralizes Ij . By (1˝)(b) Wj is a semisimple Jj-module.
Since Rj Ĳ Jj , Wj is also a semisimple Rj-module. It follows that Xi centralizes Wj . As by (1˝)(b)

Wj is a faithful Mj-module, we conclude that rXi, Yjs “ 1, a contradiction to the hypothesis of (3˝).

Thus rRj , Xis ‰ 1. By (1˝)(a) Rj is quasisimple, and we conclude that rRj , Xis “ Rj . By

(1˝)(b) CYj pRjq “ 1 and so rIj , Rjs ‰ 1. Together with rRj , Xis “ Rj this gives rIj , Xis ‰ 1. Since
Yi acts quadratically on Yj , we conclude that 1 ‰ rIj , Xis ď CIj pYiq and so (2˝) shows that Yj
normalizes Ij , and (3˝) is proved.

Recall from 4.11 that Ti “ YjRi.

4˝. Ti normalizes all simple Ri-submodules of Wi. In particular, Wi is a faithful semisimple
Ti-module and OppTiq “ 1.

We apply (1˝). Since R1 is quasisimple, R1 is a JM1
pY1q-component of M1, and since CY1pR1q “

1 and I1 is simple, I1 is a perfect R1-submodule of Y1. Hence by A.44 J1 and so also A normalizes
I1. Since I1 is any simple R1-submodule of W1, A normalizes every simple R1-submodule of W1.
Thus, we can apply (3˝) with X2 “ A and conclude that also Y2 normalizes I1 and that rI1, Y2s ‰ 1.
Therefore T2 “ Y2R1 normalizes I1.

In particular, |rI1, Y2s| ă |I1| “ |I2|. This implies that CI2pyq ‰ 1 for all y P I1, and (2˝) shows
that I1 normalizes I2. Hence, I1 normalizes all simple R2-submodules of W2. As rY2, I1s ‰ 1 we can
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apply (3˝) with X1 “ I1 and conclude that also Y1 normalizes all simple R2-submodules of Y2. So
the same holds for T2 “ Y1R2.

5˝. CY1
pI2q “ CY1

pY2q and CY2
pI1q “ CY2

pY1q; in particular rI1, I2s ‰ 1.

By (4˝) Xi :“ CYipIjq normalizes all simple Rj-submodules of Wj . If rXi, Yjs ‰ 1, then (3˝)
shows that rIj , Xis ‰ 1, a contradiction. Thus rXi, Yjs “ 1 and CYipIjq “ Xi ď CYipYjq. The other
inclusion is obvious.

6˝. Wi is not selfdual as a Ti-module.

Suppose that Wi is a selfdual Ti-module. Since Wi ď Yi, (5˝) shows that CWipIjq “ CWipYjq. As
Wi is selfdual, this gives rWi, Ijs “ rWi, Yjs (cf. B.6(c)). By (4˝) Wi normalizes Ij , thus rWi, Yjs “

rWi, Ijs ď Ij . As rYj ,Wis ‰ 1, (3˝) gives Rj “ rRj ,Wis, and we conclude that Wj “ rYj , Rjs ď Ij ,
so Wj “ Ij is a simple Rj-module, a contradiction.

Put Ki :“ EndRipIiq.

7˝. Ti acts Ki-linearly on Ii.

In this paragraph choose Ij “ Iui if i “ 1 and Ij “ Iu
´1

i if i “ 2. So |Kj | “ |Ki|. By (4˝)
and (5˝) Ij normalizes and acts non-trivially on each of the simple Ri-submodules of Wi. Suppose
that Ij does not act Ki-linearly on Ii. Then p ă |Ki| “ |Kj |, and 1.22 implies that dimKi Ii “ 1,
a contradiction, since Ri is quasisimple (and so perfect) and Ii is non-central KiRi-module. Thus
Ij acts Ki-linearly on Ii. As Yj acts quadratically on Ii, Yj centralizes the non-trivial Ki-subspace
rIi, Ijs of Ii, and so Yj acts Ki-linearly on Ii. Since Ti “ RiYj , (7˝) follows.

8˝. One of the following holds.

(1) (a) Ri “ Ji XM˝
i – SLnpqq, n ě 3, Sp2npqq, n ě 3, SUnpqq, n ě 8, or Ω˘n pqq, n ě 10.

(b) Wi is the direct sum of at least two isomorphic natural modules for R1.
(c) M˝

i “ RiCM˝
i
pRiq.

(d) If Yi ‰Wi, then Ri – Sp2npqq, p “ 2, and n ě 4.
(2) p “ 2, Ji “ Ri – SL4pqq, and Yi is the direct sum of two non-isomorphic natural modules

for Ri.

We consider the three cases of C.24(2:c).
In Case (1), (8˝)(1) holds.
In Case (2), W1 “ rY1, R1s is a simple R1-module, contrary to the hypothesis of this lemma.
In Case (3), (8˝)(2) holds.

9˝. Ti acts faithfully on Ii.

By (4˝) OppTiq “ 1, and by (8˝) Ri acts faithfully on Ii. As Ti{Ri is a p-group, we conclude

CTipIiq ď OppTiq “ 1.

10˝. Ri “ Ji, Ji – SLnpqq, n ě 3, Wi “ Yi, M˝ “ JiCM˝pJiq, and Yi is the direct sum of m

isomorphic natural modules for Ji, m ě 2.

Suppose first that (8˝)(1) holds and Ri – SLnpqq, n ě 3. Then C.24(2:a) shows that Ji “ Ri,
so also Ri “ Ji. The remaining assertion in (10˝) now follows from (8˝)(1).

Suppose next that (8˝)(1) holds and Ri fl SLnpqq, n ě 3. Then Ri – Sp2npqq, n ě 3, SUnpqq,

n ě 8, or Ω˘n pqq, n ě 10, and Ii is a corresponding natural module. Note that Ti “ YjRi “ Op
1

pTiqRi.
Also Ii is a selfdual as an FpRi-module and Ti acts Ki-linearly on Ii. Thus, B.7(f) shows that there
exists a Ti-invariant non-degenerate symmetric, symplectic or unitary Ki-form on Ii. Hence Ii is
selfdual as an FpTi-module. Since this holds for any simple Ri-submodule Ii of Wi and Wi is a
semisimple Ri-module, this shows that Wi is a selfdual Ti-module, a contradiction to (6˝).

Suppose now that (8˝)(2) holds. Then Wi “ Ii‘I
‹
i , where Ii and I‹i are non-isomorphic natural

SL4pqq-modules for Ri. It follows that I‹i is dual to Ii as an FpRi-module, and so Wi is a selfdual

Ri-module. By (7˝) and (9˝), Ti acts faithfully and Ki-linearly on Ii. As Ti{Ri is a p-group and
GL4pqq{SL4pqq is p1-group we conclude that Ti “ Ri and so again Wi is a selfdual Ti-module, a
contradiction.
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11˝. Yj ď Ji.

Just as in the previous paragraph, Ii acts Ki-linearly on Ii, GLnpqq{SLnpqq is a p1-group and
Ti{Ri is a p-group. As there we conclude that Ti “ Ri “ Ji, and (11˝) is established.

Since Yi is a direct sum of m isomorphic simple Ji-modules, [MS3, 5.2(d)] implies that there
exists an Si-invariant simple Ji-submodule in Yi. From now on I1 and I2 denote such Si-invariant
submodules with Iu1 “ I2.

Let Ci be the inverse image of CM˝
i
pJiq in M˝

i . By (5˝), rI1, I2s ‰ 1. Pick 1 ‰ x P rI1, I2s and

put Xi :“ Kix
We use the following simple facts about the action of Ji on the natural SLnpqq-module Ii and

the structure of Ji – SLnpqq and JiCi{Ci – PSLnpqq.

(i) Ji is transitive on Ii.

(ii) Op
1

pNJipXiqq “ CJipxq.

(iii) OppCJipxqq induces HomKipIi{Xi, Xiq on Ii. In particular, Xi “ CIipOppCJipxqqq and

Xi “ rIi, OppCJipxqqs.

(iv) Op
`

CJipxqCi{Ci
˘

is a natural SLn´1pqq-module for CJipxq. In particular, since n´ 1 ě 2,

Op
`

CJipxqCi{Ci
˘

is a non-central simple CJipxq-module.

(v) Let W be an Ki-subspace of Ii. Then Op
1`

NJipW q{CJipW q
˘

– SLKipW q and NJipW q acts
transitively on W .

Note that CIipQiq ‰ 1. So by (i) there exists yi P Ji with x P CIipQiq
yi ď ZpQyii q. By 1.52(e)

ZpQq is a TI-set, so Qy11 “ Qy22 “: Q0. By (10˝), M˝
i “ JiCi and thus Q0 ď JiCi and Q0 ę Ci.

By Q!, CJipxq normalizes Q0. Observe that CJipxqCi contains a Sylow p-subgroup of JiCi and so
Q0 ď CJipxqCi and Q0Ci{Ci is a non-trivial normal p-subgroup of CJipxqCi{Ci. Now (iv) implies
that

Op
`

CJipxqCi{Ci
˘

“ Q0Ci{Ci “ rQ0, CJipxqsCi{Ci ď pQ0 X JiqCi{Ci ď Op
`

CJipxqCi{Ci
˘

.

Thus

12˝. Op
`

CJipxqCi{Ci
˘

“ Q0Ci{Ci “ pQ0 X JiqCi{Ci.

In particular, Q0Ci “ pQ0 X JiqCi and so Q0 “ pQ0 X JiqpQ0 X Ciq. From Q0 “ Qyii ď JiQi
we get that Q0 normalizes Ii. Since Ji centralizes the p-group Q0 X Ci and acts simply on Ii we
conclude that Q0 X Ci centralizes Ii. Thus

13˝. Q0 “ pQ0 X JiqpQ0 X Ciq “ pQ0 X JiqCQ0
pIiq ď NMi

pIiq.

As Ji X Ci is a central p1-subgroup of Ji, (12˝) implies

14˝. OppCJipxqq “ Q0 X Ji.

Hence using (iii), we get Xi “ CIipOppCJipxqqq “ CIipQ0 X Jiq and Xi “ rIi, OppCJipxqqs “

rIi, Q0 X Jis. As by (13˝) Q0 “ pQ0 X JiqCQ0
pIiq, this gives Xi “ CIipQ0q and Xi “ rIi, Q0s.

Observe that rI1, I2s is a Ki-subspace of Ii. As x P rI1, I2s this gives Xi ď rI1, I2s and so
rIi, Q0s ď rI1, I2s. In particular, Q0 normalizes rI1, I2s. Put H :“ NGprI1, I2sq. Then Hi :“

NJiprI1, I2sqqQ0 ď H. Since Q0 is weakly closed, 1.46(c) gives H˝i “ xQ
H˝i
0 y, and since rIi, Q0s ď

rI1, I2s and Hi normalizes both, Ii and rI1, I2s, we conclude that rIi, H
˝
i s ď rI1, I2s.

By (v) Hi acts transitively and so simply on rI1, I2s. Thus rIi, H
˝
i s “ rI1, I2s. Moreover, the

transitive action and 1.57(c) imply H˝ “ H˝i . In particular, rIi, H
˝s “ rI1, I2s and rIi, H

˝, Ijs “ 1.
This holds for any ti, ju “ t1, 2u. So rI1, H

˝, I2s “ 1 and rI2, H
˝, I1s “ 1. The Three Subgroups

Lemma now gives rI1, I2, H
˝s “ 1. As Q0 ď H˝ and, as seen above, CIipQ0q “ Xi, this gives

rI1, I2s “ X1 “ X2. We have shown:

15˝. Xi “ rI1, I2s “ rIi, Q0s “ CIipQ0q. In particular, rI1, I2s is a 1-dimensional Ki-subspace
of Ii and |rI1, I2s| “ q.

Put Zj :“ rIi, Yjs and Kj :“ NGpZjq. We calculate the size of Zj by comparing the action of
Yj on Ii with the action of Ii on Yj . By (11˝) Yi ď Jj and Yj ď Ji. Since Yi is a direct sum of m



74 4. THE SYMMETRIC CASE

copies of Ij , (15˝) shows that |rYj , Iis| “ |rI1, I2s|
m “ qm. Since Yj acts Ki-linearly on Ii, it follows

that Zj is an m-dimensional Ki-subspace of Ii. We have proved:

16˝. Zj is an m-dimensional Ki-subspace of Ii.

Assume that Yi ď Q‚i . Since Q is weakly closed, Q‚i and Q‚0 are conjugate in Mi, and as Yi ĲMi,
we get Yi ď Q‚0. Thus Yi ď Jj X Q‚0 ď Op

`

CJj pxq
˘

. Hence (iii) shows that rIj , Yis ď Xj . Thus
Zi ď Xj , a contradiction since |Zi| “ qm ą q “ |Xj |. We have proved:

17˝. Yi ę Q‚i .

By (13˝) Q0 normalizes Ii. As Q0 ďMj , Q0 normalizes Yj and so also normalizes Zi “ rIi, Yjs.
Thus Q0 ď Kj .

By (11˝) Ii ď Yi ď Jj ď CMj
pCjq. So Cj normalizes Zj “ rIi, Yjs and Cj ď Kj . Since Ij is

a simple Jj-module, xrIi, Ijs
Jj y “ Ij . As Yj is a direct sum of simple Jj-modules isomorphic to Ij

we conclude that xrIi, Yjs
Jj y “ Yj . Thus xZ

Jj
j y “ Yj , and since Jj centralizes Cj , we conclude that

CCj pZjq centralizes Yj . We record:

18˝. Q0Cj ď Kj and Cj acts faithfully on Zj.

By (13˝) Q0 “ pQ0 X JiqCQ0
pIiq. Since Q0 ď Kj and Zj ď Ii, this gives

Q0 “ pQ0 X JiqCQ0
pZjq and Q0 “ pQ0 X pJi XKjqqCQ0

pZjq ď pJi XKjqCMi
pZjq.

By (16˝) Zj is an Ki-subspace of Ii and so (v) shows Ji X Kj acts transitively on Zj . Hence
three applications of 1.57(c) give

19˝.
@

Q
JiXKj
0

D

“ K˝j “
`

pJi XKjqQ0

˘˝
“
`

pJi XKjqCMi
pZjq

˘˝
.

Put ĂKj :“ Kj{CKj pZjq. By (v), Zj is a natural SLmpqq-module for Op
1

pJi X Kjq. By (19˝),

K˝j “
`

pJi X KjqCMi
pZjq

˘˝
and so ĂK˝j ď Op

1

p ČJi XKjq – SLmpqq. As SLmpqq has no non-trivial

proper normal subgroup generated by p-elements, we conclude that ĂK˝j “ Op
1

p ČJi XKjq. Thus

20˝. Zj is a natural SLmpqq-module for K˝j , and K˝j acts Ki-linearly on Zj.

By (15˝) Q0 centralizes rI1, I2s “ rIi, Ijs. Since Zj “ rIi, Yjs and Yj is, as an Jj-module, the
direct sum of copies of Ij , we conclude that Q0XJj centralizes Zj . By (13˝), Q0 “ pQ0XJjqpQ0XCjq
and thus Q0 “ pQ0 X CjqCQ0

pZjq.

By (14˝) Q0 X Ji “ OppCJipxqq. Hence, by (iii), Q0 X Ji induces HomKipIi{Xi, Xiq on Ii. As

by (15˝) Xi “ rI1, I2s ď Zj and by (16˝) Zj is a Ki-subspace of Ii, we conclude that Q0XJi induces
HomKipZj{Xi, Xiq on Zj . Since

pQ0 X JiqCQ0
pZjq “ Q0 “ pQ0 X CjqCQ0

pZjq

we infer:

21˝. Q0 X Cj induces HomKipZj{Xi, Xiq on Zj.

In this paragraph, X :“ XCMj pYjq{CMj pYjq for all X ďMj . Define

J‹j :“ xpQ0 X Jjq
Jj y and C‹j :“ xpQ0 X Cjq

Cj y.

Recall from (10˝) that Ri “ Ji and Jj – SLnpqq, n ě 3, and that by (14˝) Q0 X Jj “ OppCJj pxqq.

Thus, we have J‹j “ Jj , and by (8˝)(1:c), M˝
j “ JjCj . Also rJj , Cjs “ 1, and by (13˝) Q0 “

pQ0 X JjqpQ0 X Cjq. It follows that

M˝
j “ xQ0

M˝
j y “ J‹j C

‹
j “ Jj C‹j and rJj , C‹j s “ 1.

In addition, OppC‹j q ď OppCjq ď OppMjq “ 1, and by (18˝) Cj is faithful on Zj .

Recall that Cj ď Kj and ĂKj “ Kj{CKj pZjq. Hence C‹j ď K˝j , C‹j –
ĂC‹j and OppĂC‹j q “ 1. By

(20˝) Zj is a natural SLmpqq-module for ĂKj and by (21˝) Q0 X Cj induces HomKipZj{Xi, Xiq on
Zj . Now [MS3, 7.2] implies that
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22˝. ĂC‹j “
ĂK˝j – SLmpqq. In particular, Zj a natural SLmpqq-module for ĂC‹j .

Since Yj is, as a Jj-module, the direct sum of natural SLnpqq-modules isomorphic to Ij and since

rJj , C‹j s “ 1, Yj is, as a module for M˝
j “ Jj C‹j , isomorphic to Ij bKj Uj for some KjC‹j -module Uj

(see for example [MS3, Lemma 5.2]).
Since Ii ď Jj by (11˝) and rI1, I2s is 1-dimensional in Ij by (15˝),

Uj – rI1, I2s b Uj “ rIj b Uj , Iis – rYj , Iis “ Zj

as a C‹j -module. Thus Uj is a natural SLmpqq-module for C‹j . Hence in order to establish Theorem
D(4:4) it remains to prove that p is odd.

By (22˝) we have ĂC‹j “
ĂK˝j . Since C‹jQ0 ď K˝j we get ČC‹jQ0 “ ĂK˝j . Hence 1.52(c) gives

23˝. K˝j “ pC
‹
jQ0q

˝.

By (16˝) Z2 “ rI1, Y2s is an m-dimensional K1-subspace of I1, so Zu2 is an m-dimensional
K2-subspace of Iu1 “ I2 with rI1, I2s

u ď Zu2 . Also rI1, I2s
u and rI1, I2s are 1-dimensional K2-

subspaces of I2 by (15˝), and again by (16˝) Z1 “ rI2, Y1s is an m-dimensional K2-subspace of
I2 with rI1, I2s ď Z2. As I2 is a natural SLmpqq-module for J2, J2 is transitive on the pairs of
incident 1- and m-dimensional K2-subspaces of I2. Hence, there exists v P J2 with Zuv2 “ Z1 and
rI1, I2s

uv “ rI1, I2s. Put g :“ uv. Then

rI1, I2s
g “ rI1, I2s, Ig1 “ Iv2 “ I2, Y g1 “ Y v2 “ Y2, Zg2 “ Z1

and

Zg1 “ rI
g
2 , Y

g
1 s “ rI

g
2 , Y2s, rIg2 , I2s “ rI

g
2 , I

g
1 s “ rI1, I2s

g “ rI1, I2s.

Since I2 ď Y2 ď J1, Ig2 ď Jg1 “ J2. Also I1 ď J2, and since Y2 is the direct sum of copies of the
J2-module I2, we conclude from rIg2 , I2s “ rI1, I2s that rIg2 , Y2s “ rI1, Y2s “ Z2. Thus Zg1 “ Z2 and
so g acts non-trivially on the sets tZ1, Z2u. Thus g also acts non-trivially on tK1,K2u and tK˝1 ,K

˝
2u.

By (23˝) K˝1 “ pC
‹
1Q0q

˝ and by (19˝) K˝2 “
`

pJ1 XK2qQ0

˘˝
. Thus

!

K˝1 ,K
˝
2

)

“

!

`

C‹1Q0

˘˝
,
`

pJ1 XK2qQ0

˘˝
)

.

Recall that S1 normalizes I1 and 1 ‰ x P rI1, I2s. Note that the number of pairs px0, Z0q, where
Z0 is an m-dimensional K1-subspaces of I1 and 1 ‰ x0 P Z0, is not divisible by p and that J1 acts
transitively on such pairs. Hence every such pair is normalized by a Sylow p-subgroup of M1. Since
Z2 is an m-dimensional subspace of I1 and x P Z2, we conclude that NM1pZ2q XCM1pxq contains a
Sylow p-subgroup S0 of M1. Then S0 ď M1 XK2 and by Q!, S0 normalizes Q0. It follows that S0

acts trivially on
!

`

C‹1Q0

˘˝
,
`

pJ1 XK2qQ0

˘˝
)

, that is on tK˝1 ,K
˝
2u. Since S0 is a Sylow p-subgroup

of G and g acts non-trivially on tK˝1 ,K
˝
2u, this shows p ‰ 2. l

Lemma 4.14. Suppose that C.24(2) holds and W1 is a simple R1-module. Then Theorem D
holds.

Proof. Since C.24(2) holds and W1 is a simple R1-module we are in case (2:c:2) of C.24. Thus

1˝.

(a) Ri is quasisimple, Ri ď M˝
i , and either Ji “ Ri or p “ 2 and Ji – O˘2npqq, Sp4p2q or

G2p2q.
(b) CYipRiq “ 1 and Mi acts faithfully on Wi. In particular, CMi

pWiq “ CMi
pYiq.

(c) Either M˝
i “ Ri “M˝

i X Ji or M˝
i – Sp4p2q, 3.Symp6q, SU4pqq.2 p– O´6 pqq and Wi is the

natural SU4pqq-moduleq, or G2p2q.
(d) One of the cases C.3 (1) - (9), (12) applies to pJi,Wiq, with n ě 3 in case (1), n ě 2 in

case (2), and n “ 6 in case (12).

Recall that Mi˝ “ OppM˝
i q. Next we show:

2˝. Ri “ F˚pM˝
i q “Mi˝. In particular, Wi “ rYi,Mi˝s.
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Suppose first that Ri “M˝
i . As by (1˝)(a) Ri is quasisimple, we conclude that (2˝) holds.

Suppose next that Ri ‰ M˝
i . Then by (1˝)(c), M˝

i – Sp4p2q, 3.Symp6q, SU4pqq.2 or G2p2q.

In each case F˚pM˝
i q is quasisimple and has index 2 in M˝

i . Thus F˚pM˝
i q “ O2pM˝

i q “ Mi˝. As

Ri ďM˝
i and Ri is a quasisimple normal subgroup of Mi we conclude that Ri “ F˚pM˝

i q and again
(2˝) holds. Hence (2˝) is proved.

Note that

|W1{CW1pW2q| ď |W2{CW2pW1q| or |W2{CW2pW1q| ď |W1{CW1pW2q|.

In the second case, conjugation by u´1 shows that |W1{CW1pW
u´1

1 q| ď ||Wu´1

1 {C
Wu´1

1
pW1q|. Also

u´1 in place of u fulfills the conclusion of 4.2. So possibly after replacing u by u´1, we may assume
W2 is an offender in W1.

Put Z :“ rW1,W2s. Abusing our general convention, define

Wi :“WiCMj pYjq{CMj pYjq p and not Wi “WiCMipWiq{CMipWiq q.

By (1˝)(b) CMi
pYjq “ CMj

pWjq and so Wi – CWi
{CWi

pWjq as an M1 XM2-module.

3˝. W2 is a non-trivial quadratic offender on W1; in particular Z ‰ 1.

Recall from 4.4 that Y2 acts quadratically on Y1 and from 4.3 that rY1, Y2s ‰ 1. In particular
W2 is a quadratic offender on W1. It remains to prove that W1 acts non-trivially on W2.

By (1˝)(b) CMipYiq “ CMipWiq. For i “ 1 this shows that rY1, Y2s ‰ 1 implies rW1, Y2s ‰ 1,
and then for i “ 2 that rW1, Y2s ‰ 1 implies rW1,W2s ‰ 1.

Let v P G7 and suppose that v is centralized by a conjugate Qg of Q in G. Since CGpQq ď Q
we get v P ZpQgq. By 1.52(e) ZpQq is a TI-set. Thus Qg is unique determined by v and we define
Qv :“ Qg.

Let V be the set of all 1 ‰ v P Z such that for each i P t1, 2u there exists Qv,i P Q
G with

Qv,i ďMi and rv,Qv,is “ 1. Note that Qv “ Qv,1 “ Qv,2 ďM1 XM2.
Let L :“ xQv | v P Vy. Then L ďM1 XM2.

4˝.

(a) M1 XM2 normalizes W1,W2 and Z; in particular L ď NMi
pZq.

(b) L “ pM1 XM2q
˝ ď NM1

pZq˝ XNM2
pZq˝.

(c) Suppose V “ Z7. Then L “ NM1pZq
˝ “ NM2pZq

˝.

(a): M1 XM2 normalizes W1 and W2, so also Z “ rW1,W2s. Since L ďM1 XM2, (a) follows.

(b): As L ďM1 XM2 and L is generated by conjugates of Q, L ď pM1 XM2q
˝. Let g P G with

Qg ď M1 XM2. Then Qg normalizes Z, and since Z ‰ 1 by (3˝), there exists 1 ‰ v P CZpQ
gq.

Thus Qv “ Qg ď M1 X M2. Hence v P V and Qg “ Qv ď L. Thus pM1 X M2q
˝ ď L and so

pM1 XM2q
˝ “ L. As M1 XM2 ď NMi

pZq, we have L “ pM1 XM2q
˝ ďMMi

pZq˝.

(c): Suppose that V “ Z7 and let g P G with Qg ď NMi
pZq. Again there exists 1 ‰ z P CZpQ

gq

and so z P V and Qg “ Qv ď L. Hence NMi
pZq˝ ď L and so NMi

pZq˝ “ L.

5˝. Suppose Mi acts transitively on Wi. Then V “ Z7.

Since Mi acts transitively on Wi and CWi
pQiq ‰ 1 each elements of Wi (and so also of Z) is

centralized by a conjugate of Qi in Mi. Thus Z7 “ V.

6˝. Suppose 1 ‰ z P CZpLq and Ki ď Mi acts transitively on Wi. Then L “ Qz and

Z7 Ď zNKi pLq.

Let v P Z7. By (5˝), V “ Z7 and so Qv ď L and rz,Qvs “ 1. Thus Qv “ Qz, and we conclude
that L “ Qz. Since Ki acts transitively on Wi, there exists k P Ki with zk “ v. Then Qkz “ Qv “ Qz
and k P NKipLq. Hence, (6˝) holds.

Let ti, ju :“ t1, 2u and put Ki :“ EndRipWiq.

7˝. Tj acts Kj-linearly on Wj. In particular, Z is a Kj-subspace of Wj.
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Suppose for a contradiction, that Wi does not act Kj-linearly on Wj . Then p ă |Kj | “ |Ki|,
and 1.22 shows that dimKiWi “ 1, a contradiction. Hence Wi acts Kj-linearly on Wj . Recall that
Yi acts quadratically on Vj , so Yi centralizes the non-trivial Ki-subspace rWj ,Wis of Wj . Thus Yi
and so also Tj “ YiRj acts Kj-linearly on Wj .

We now discuss the cases of C.3 listed in (1˝)(d). Observe that a natural Symp6q- or Altp6q-
module (Case 12) of C.3 for n “ 6), is also a natural Sp4p2q- or Sp4p2q

1-module, respectively. We
will treat this case together with the symplectic groups in (Case 2).

Case 1. Case (1) of C.3 holds with n ě 3, that is, J1 – SLnpqq and W1 is a corresponding
natural module.

By (1˝)(a),(c) J1 “ R1 “M˝
1 . Also C.22 shows that either Y1 “ rY1, R1s “ W1 or J1 – SL3p2q

and |Y1| “ 24. In the first case Theorem D (1) holds. So we need to rule out the second case.
Assume that J1 – SL3p2q and |Y1| “ 24, so Ji “ Mi. Put Z0 :“ rY1, Y2s and note that

Z0 ď W1 X W2 ď CYipYjq. Since Ji acts transitively on Wi each v P Z70 is centralized by some

Qvi P Q
Mi
i . Thus Qv “ Qv1 “ Qv2 ď M1 XM2 and L0 :“ xQv | v P Z

7
0y ď M1 XM2. Choose

ti, ju such that Yj is an offender on Yi. Then Yj contains a non-trivial best offender A on Yi.
From C.22 we conclude that CYipAq “ rYi, As has order 4. Since Yj acts quadratically on Yi,
this implies that CYipYjq “ CYipAq “ rYi, As “ rYi, Yjs “ Z0. Thus Z0 has order 4. Note that
L0 “ xQ

g
i | g P Ji, CWi

pQgi q ‰ 1y, and so B.38(c) shows that Z0 is natural SL2p2q-module for L0.
As Z0 ď Yj this implies that O2pL0q ę CMj pYjq. Since |Yi{Wi| “ 2 “ |Wi{Z0|, O

2pL0q centralizes

Yi{Z0 and so rYi, O
2pL0qs ď Z0. As Z0 ď Yj ď CMj pYjq, we conclude that rYi, O

2pL0qs ď CMj pYjq.

On the other hand, L0 ď M1 XM2 and Mj{CMj
pYjq “ Jj – SL3p2q. Hence, the centralizer of an

involution in Mj{CMj
pYjq is a 2-group, so O2pL0q ď CMi

pYiq, a contradiction.

Case 2. Case (2) of C.3 holds with n ě 2 or Case(12) holds with n “ 6, that is, J1 – Sp2npqq,
n ě 2, or Sp4pqq

1 (and q “ 2), and W1 is a corresponding natural module.

Suppose that p is odd. Then by (1˝)(a),(c) J1 “ R1 “M˝
1 and so by 2.26 W1 ď Q‚. Since p is

odd, |ZpJ1q| “ 2, and coprime action gives

Y1 “ rY1, ZpJ1qs ˆ CY1

`

ZpJ1q
˘

“W1 ˆ CY1
pJ1q.

Moreover, by (1˝)(b), CY1
pJ1q “ 1 and so Y1 “W1. Thus Theorem D(2) holds.

Suppose that p “ 2. Then (1˝)(a),(c) show that also M˝
1 – Sp2npqq, n ě 2, or Sp4pqq

1 (note that

J1 and M˝
1 do not need to be equal if one of them is isomorphic to Sp4pqq

1). Since CY1
pJ1q “ 1, C.22

shows W1 “ rY1, R1s “ rY1, J1s and |Y1{W1| ď q. Since either M˝
1 “ R1 or q “ 2 and |M˝

1 {R1| “ 2,
this gives W1 “ rY1,M

˝
1 s. If W1 ď Q‚, then 2.25(b) shows that Y1 ď Q‚. So again Theorem D(2)

holds.

Case 3. Case (3) of C.3 holds, that is, J1 – SUnpqq, n ě 4, and W1 is a corresponding
natural module.

Note that Kj – Fq2 . By (7˝) Wi is p-group acting Kj-linearly on Wj . As Wi normalizes Jj ,
we conclude from B.35(d) that Wi ď Ji. Since Wi acts quadratically on Wj , Z is an isotropic
and so also a singular subspace of Wj , see B.6(b) and B.5. It follows that each element of Z is
p-central in Mi and so centralized by a conjugate of Qi. Thus Z7 “ V. Put m :“ dimFq2 Z and

E :“ CJ1pCW1pW2qq. Note that 1 ‰ W2{CW2pW1q – W2 ď E. Let H1 be an K1-hyperplane of W1

with CW1pW2q ď H1. Then |CJ1
pH1q| “ q and so

|CW2pH1q{CW2pW1q| “ |W2 X CJ1
pH1q| ď q.

As W1 acts K2-linearly on W2 this gives CW2
pH1q “ CW2

pW1q. In particular, H1 ‰ CW2
pW1q and

so m ě 2. Moreover, W2 X CJ1
pH1q “ 1, and as 1 ‰ CJ1

pH1q ď E, we get

1 ăW2 ă E.

Since L normalizes this series, E is not a simple L-module. As Z7 “ V, (4˝)(c) shows that
L “ NM1pZq

˝. Now B.38(c) implies that there exists a subgroup F ď LXJ1 such that Z is a natural
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SLmpq
2q-module for F . Since GLmpq

2q{SLmpq
2q is a p1-group this implies that Op

1

pNJ1pZqq ď
FCJ1pZq. Note that CJ1pZq centralizes W1{Z

K and so (for example by the Three Subgroups Lemma)

also E. By B.21(b) E “ CJ1pW1{ZqXCJ1pZq. Hence, by B.22(a) E is a simple Op
1

pNJ1pZqq-module
and we infer that E is a simple F - and a simple L-module, a contradiction.

Case 4. Case (4) of C.3 holds, that is, J1 – Ω`2npqq for 2n ě 6, Ω´2npqq for p “ 2 and 2n ě 6,
Ω´2npqq for p odd and 2n ě 8, Ω2n`1pqq for p odd and 2n ` 1 ě 7, O´4 p2q, or Oε2npqq for p “ 2 and
2n ě 6, and W1 is a corresponding natural module.

Note that in all these cases Ri “ F˚pJiq – Ωεmpqq for appropriate ε and m. Moreover, by (1˝)(c)
M˝
i “ Ri and so Wi “ rYi,M

˝
i s.

Recall that Tj “ YiRj . Since Yi is p-subgroup acting Kj-linearly on Wj and since Yi normalizes

R1, we conclude from B.35(d) that either Tj “ Rj – Ωεmpqq or p “ 2 and Tj – Oεmpqq. Moreover,
Wj is the corresponding natural module.

Assume first that |Z| ď q. Then by B.9(c) p “ 2 and Z is not singular in W1, and |W2| “ 2.
Since W2 is an offender on W1, we get q “ 2 and T1 – Oε2np2q. Hence 4.10 shows that Theorem
D(5) holds.

Assume next that Y1 ‰ W1. Then C.22 shows that J1 – O`6 p2q – Symp8q. Hence by C.4(h)

every offender in Ti on Yi is a best offender. Choose i and j such that Yi is an offender (and so a best
offender) on Yj . Then C.22 shows that image of Yi in Mj is generated by transpositions and thus
rYi, Yjs contains a non-singular vector of Yj . So using 4.10 a second time, this shows that Theorem
D(5) holds.

Assume finally that Y1 “ W1 and |Z| ą q. Suppose that J1 – O´4 p2q – Symp5q. Then

T1 – Altp5q or Symp5q. Since W2 is an offender on W1, C.4(g) shows that W2 is generated by
transpositions in T1. Thus Z contains a non-singular element of W1, and so using 4.10 a third time,
this shows that Theorem D (5) holds. If J1 fl O´4 p2q, then 2n ě 6, and Theorem D (4:1) holds,
except that we still need to show that Y ę Q‚.

Suppose that Y ď Q‚, so Yi ď Q‚i , i “ 1, 2. Since W1 acts quadratically on W2, an isotropic
subspace of W2, see B.6(b). By B.5 the singular vectors of W2 contained in Z form a K2-subspace of
Z of codimension at most 1. Thus, as |Z| ą q, there exists 1 ‰ v P Z such that v is singular in W2.
Hence there exists x P M2 such that rv,Qx2 s “ 1. By Q!, CGpvq ď NGpQ

x
2q, and since Y2 ď pQ

‚
2q
x,

we get Y2 ď OppCGpvqq. In particular, W2 ď OppCM1
pvqq.

Suppose that v is singular in W1. Then v is centralized by a Sylow p-subgroup of M1, and since
W2 is a non-trivial offender on W1, we obtain a contradiction to the Point-Stabilizer Theorem C.8.
Thus v is non-singular. It follows that |OppCM1

pvqq| “ 1 if p is odd and |OppCM1
pvqq| ď 2 if p “ 2.

Hence |W2{CW2
pW1q| ď 2 and then |Z| “ |CW2

pW1q
K| “ 2 ď q, a contradiction.

Case 5. Case (5) of C.3 holds, that is, p “ 2, J1 – G2pqq, and W1 is a corresponding natural
module.

Put Li :“ NJipWjCMipWiqq, so Li “ NJipWiq. Since W2 is a non-trivial offender on W1, we

conclude from the Best Offender Theorem C.4(a) that Z “ CW1
pW2q, |Z| “ |W1{Z| “ |W2| “ q3,

and L1 is a maximal parabolic subgroup of J1. Note also that L1 normalizes Z and by the action of
J1 on the natural G2pqq-module W1, L1 “ NJ1pZ1q for some 1-dimensional K1-subspace Z1 of W1.

Observe that rZ1, O
p1pL1qs “ 1.

By (1˝)(c) M˝
1 “ R1 or M˝

1 “ J1. Thus M˝
1 ď J1. In particular, M˝

1 ď J1, M˝
1 acts K1-linearly

on W1 and L ď NM˝
1
pZq ď L1. Since Op

1

pL1q centralizes Z1 and L is generated by p-elements, we

get that L ď CJ1pZ1q. Note that J1 acts transitively on W1. Thus by (5˝) V “ Z7 and by (6˝),
Z7 Ď zNJ1 pLq, where 1 ‰ z P Z1. As V “ Z7, L1 normalizes L and so, since L1 is maximal subgroup
of J1, we get NJ1pLq “ L1. But then Z7 Ď zL1 Ď Z1, a contradiction.

Case 6. Case (6) of C.3 holds, that is, J1 – SLnpqq{xp´idq
n´1y, n ě 5, and W1 is the

corresponding exterior square of a natural module.

Then Y1 “ W1 by C.22. Since Wi is the exterior square of a natural SLnpqq-module, there

exists a central p1-extension xLi of Li and a natural SLnpqq-module Ni for xLi such that Yi – Λ2Ni
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as xLi-module. By C.4 W2 is not an over-offender on W1 and so W1 is an offender on W2. This also

shows that Wi is a best offender on Wj and so Wi ď Jj . Let xWi be the unique Sylow p-subgroup

of the inverse image of WjCJipYiq{CJipYiq in pJi. By C.4 there exists a Ki-hyperplane Hi of Ni with
xWj “ C

xJi
pHiq. Put Li :“ C

xJi
pNi{Hiq. The action of pJi on Ni shows that xWj “ CLipHiq “ OppLiq

is a natural SLn´1pqq-module for Li isomorphic to Hi, Z “ CWi
pWjq, Wi{Z – Hi and Z – Λ2Hi

as Li-modules. Let X ďW1 such that Z ď X and |X{Z| “ p.
Consider the action of L2 onN2 andW2. Note that |X{CXpW2q| “ p and soX acts as a subgroup

of the transvection group with axis H2 and center say P2 on N2. It follows that rW2, Xs – P2 ^H2

and so rW2, Xs is a natural SLn´2pqq-module isomorphic to H2{P2 for CL2pP2q. Thus each element
of rW2, Xs is centralized by a Sylow p-subgroup of CL2

pP2q and so also by a Sylow p-subgroup of

J2, since CL2
pP2q is a parabolic subgroup of L2 and xJ2.

Next consider the action of L1 on N1 and W1. Identify W1 with Λ2N1. Then X “ xn ^ xyZ,
where n P N1zH1 and 1 ‰ x P H1. If T is the transvection group with axis H1 and center say
P1, then rX,T s “ P1 ^ x and so rX,W2s “ rX,CL1

pH1qs “ P1 ^H1. So as above each element of
rX,W2s is centralized by a Sylow p-subgroups of J1.

Let 1 ‰ v P rX,W2s. We have proved that v is centralized by a Sylow p-subgroup S˚i of Ji. By
(1˝)(c), M˝

i ď Ji so S˚i contains a Ji- conjugate of Qi and thus v P V. Since v P CW2
pS˚2 q, CJ2pvq

contains the point-stabilizer of J2 on W2 with respect to S2. Since the exterior square of a natural
module does not appear in the conclusion of the Point-Stabilizer Theorem C.8 and since W1 is an
quadratic offender on W2, we conclude that W1 ę OppCJ2pvqq and so also Y1 “ W1 ę Q‚v. Hence
Theorem D (4:2) holds.

Case 7. Case (7) of C.3 holds, that is, J1 – Spin7pqq and W1 is the corresponding spinmodule.

Observe that Ji is quasisimple and so (1˝)(c) gives M˝
i “ Ri “ Ji. Hence M˝

i ď Ri “ Ji. Put

Li :“ Op
1

pNM˝
i
pZqq.

Note that Wi is a selfdual Ji-module (see for example A.65). Since by (7˝) Ti acts Ki-linearly
on Wi and Ti{Ji is p-group we conclude from B.7(f) that Wi is also a self-dual Ti-module. Hence
CWi

pWjq “ ZK (in Wiq and so |W1{CW1
pW2q| “ |Z| “ |W2{CW2

pW1|. Thus Wj is non-trivial
quadratic offender on Wi and we can apply C.4(c).

Let Ai be maximal offender in Ji on Wi with Wj ď Ai. We conclude from C.4(c) that Z “

CWipWjq, |Z| “ q4 “ |Wi{Z|, |rWi, Ais| “ q4 and Op
1

pNJipAiq{Aiq – Sp4pqq. It follows that

Z “ rWi, Ais, NJipAiq ď NJipZq, and NJipAiq is maximal parabolic subgroup of Ji. Therefore

Li “ Op
1

pNJipAiqq, and Z is natural Sp4pqq-module for Li. Hence Li is transitive on Z. In
particular, each element of Z is p-central in Li and so also in Ji. As M˝

i ď Ji, this shows that each
element of Z is centralized by a conjugate of Qi in Ji, and so Z7 “ V. Thus (4˝)(c) shows that
L “ L˝i Ĳ Li.

Let g P Ji with Qgi ď Li. Suppose for a contradiction that rZ,Qgi s “ 1, and let Zi be a 1-
dimensional Ki subspace of Z. Then Q! implies that Qgi Ĳ Li and Qgi Ĳ NJipZiq; in particular
xLi, NJipZiqy ď NJipQ

g
i q. On the other hand, by the action of Ji on the spin module Wi, NJ1pZiq is

a maximal parabolic of Ji. We conclude that NJipQ
gq “ NJipZiq and Li ď NJipZiq, a contradiction

since Li is transitive on Z. Thus rZ,Ls ‰ 1. As Sp4pqq is quasisimple, except for q “ 2, we
conclude that L{CLpZq – Sp4pqq or Sp4p2q

1. Put E :“ CJ1pZq. In J1 we see that E is natural

Ω5pqq- respectively Ω5p2q
1-module for L and so by B.29 E has no L- submodule of order q4, Put

E :“ CJ1pZq. On the other hand, W2 ď E and |W2| “ |W2{Z| “ q4, so W2 is an L-submodule of E

order q4, a contradiction.

Case 8. Case (8) of C.3 holds, that is, J1 – Spin`10pqq, and W1 is the corresponding half-
spinmodule.

Just as in the previous case, the fact that Ji is quasisimple implies that M˝
i “ Ri “ Ji, and

M˝
i ď Ri “ Ji. Put Li :“ Op

1

pNM˝
i
pZqq.

Since W2 is a non-trivial offender on W1, C.4(d) shows that |W2| “ q8 “ |W1{CW1
pW2q|. Hence

also W1 is a non-trivial offender on W2, so Wi is a best offender on Wj , Wi ď Jj , and we can apply
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C.4(d) to J1 and J2. It follows that Z “ CWi
pWjq, |Z| “ q8, and Op

1

pNJipWjqq{Wj – Spin`8 pqq.

In particular, NJipWjq contains a Sylow p-subgroup of Ji and OppNJipWiqq “ Wi. The structure

of Ji now implies that NJipWjq is maximal parabolic subgroup of Ji. As NJipWjq normalizes

Z “ rWi,Wjs, we conclude that Li “ Op
1

pNJipWjqq, and Z is a natural Ω`8 pqq-module for Li (note
here that a half-spin Spin`8 pqq-module is also a natural Ω`8 pqq-module). Thus Li preserves a non-
degenerate quadratic form qi of `-type on Z. Note that the qi-singular elements in Z are p-central
in Li and so also in Ji. Hence each of these singular elements is centralized by a Ji-conjugate of
Qi. Observe that more than half of the non-trivial elements in Z are qi-singular and so there exists
1 ‰ v P Z such that z is singular with respect to q1 and q2. Thus, v P V and Qv ďM1XM2. Let Z1

be the 1-dimensional K1-subspace of Z with v P Z1. From Qv ďM˝
1 ď J1 we conclude that Qv acts

K1-linearly on W1, and so rZ1, Qvs “ 1. Thus by Q!, NJ1pZ1q ď NGpQvq. By the action of J1 on the
half-spin module W1, NJ1pZ1q is a maximal parabolic subgroups of J1 distinct from the maximal
parabolic subgroup NJ1pZq. Hence OppNJ1pZqq ę OppNJ1pZ1qq. As seen above W2 “ OppNJ1pZqq

and so W2 ę OppNJ1pZ1qq and Y2 ę OppNGpQvqq. Thus Y2 ę Q‚2 and Y ę Q‚. Moreover C.22
shows that Y1 “W1. Therefore Theorem D (4:3) holds.

Case 9. Case (9) of C.3 holds, that is, J1 – 3.Altp6q and |W1| “ 26.

As in the Sp2npqq-case for odd q, the action of ZpJ1q on Y1 and CY1pJ1q “ 1 give W1 “ Y1

and thus also W2 “ Y2. This action also shows that K1 – F4. Since Wi “ Yi, Y2 is an non-
trivial offender on Y1. Hence C.4(e) shows that |Y2{CY2

pY1q| “ 4 “ |Y1{CY1
pY2q|. In particular,

Y1 is a non-trivial offender on Y2. Now C.4(e) shows that the non-trivial offenders in Ji on Wi are
conjugate in Ji, |Z| “ 24, and Z “ CYipYjq. Since also Y u2 is an offender on Y u1 “ Y2 we see in

M2 that Y uh2 “ Y1 for some h P M2. Put g :“ uh. Then Y g1 “ Y h2 “ Y2, Y g2 “ Y1 (in M2) and
Zg “ rY g1 , Y

g
2 s “ rY2, Y

g
2 s “ rY2, Y1s “ Z. Define

∆ :“ try1, y2s | y1 P Y1zZ, y2 P Y2zZu.

For yj P YjzZ, rYi, yjs is a 1-dimensional Ki-subspace of Yi. It follows that

∆i :“
 

rYi, yjs
7 | yj P YjzZ

(

is a partition of ∆ into three subsets of size three. From pY1, Y2q
g “ pY2, Y

g
2 q and Y g2 “ Y1 (in M2)

we conclude that ∆g “ ∆, ∆g
1 “ ∆2 and ∆g

2 “ ∆1. Thus g P NGpt∆1,∆2uq. On the other hand,

in M1, Y2 is normalized by a Sylow 2-subgroup of M1. It follows that CGpt∆1,∆2uq contains a
Sylow 2-subgroup of G. Thus NGpt∆1,∆2uq “ CGpt∆1,∆2uq and ∆1 “ ∆2, and so ry1, Y2s

7 P ∆1

for y1 P Y1zZ. But ry1, Y2s
7 has an element in common with each rY1, y2s, y2 P Y2zZ of ∆1 (namely

ry1, y2s), a contradiction since ∆1 is a partition of ∆. l

4.15. Proof of Theorem D:

By 4.9(d) the hypothesis of the Q!FF-Module Theorem C.24 is fulfilled for pMi, Yi, Qiq in place
of pH,V,Qq. Hence Theorem D follows from 4.12 if C.24(1) holds, from 4.13 if C.24(2) holds and
W1 is not a simple R1-module, and from 4.14 if C.24(2) holds and W1 is a simple R1-module.



CHAPTER 5

The Short Asymmetric Case

In this chapter we begin to investigate the action of M PMGpSq on YM , when YM is asymmetric.
This investigation will occupy the next five chapters. In this chapter we treat the short asymmetric
case, that is, in addition,

YM ď OppLq for all L ď G with OppMq ď L and OppLq ‰ 1.

For all such L asymmetry shows that LXM : is a parabolic subgroup of L and then shortness that
xY LM y is an elementary abelian normal subgroup of L (see 2.6).

The proof of Theorem E is carried out using particular choices for L, namely the Yi-indicators
Li of a symmetric pair pV1, V2q. It is here where for the first time p-minimal subgroups enter the

stage. Apart from technical details, Yi is a conjugate of YM , Vi “ xY
Li
i y is elementary abelian, and

V1V2 ď L1 X L2 and 1 ‰ rV1, V2s ď V1 X V2.

From a formal point of view the last property is very similar to the one discussed at the beginning of
the previous chapter. But in contrast to the situation there neither is Vi a p-reduced normal subgroup
of Li nor are we really interested in the structure of Li but in the structure of NGpYiq{CGpYiq. So
we use the action of Li on non-central Li-chief factors of Vi to get information about the action of
NGpYiq on Yi. This is carried out be a rather technical argument. A maybe easier way to understand
how the action of Li on Vi influences the action of NGpYiq on Yi is by studying the more transparent
situation of the qrc-Lemma in [MS4], from where some of our arguments are borrowed.

Here is the main result of this chapter.

Theorem E. Let G be finite Kp-group, S P SylppGq, and let Q ď S be a large subgroup of G.
Suppose that M PMGpSq such that

(i) Q đM and MGpSq ‰ tM
:u, and

(ii) YM is short and asymmetric in G.

Then one of the following holds, where q is a power of p and M :“M{CM pYM q:

(1) (a) M˝ – SLnpqq, n ě 3, and rY,M˝s is a corresponding natural module for M˝.
(b) If Y ‰ rY,M˝s then M˝ – SL3p2q and |Y {rY,M˝s| “ 2.

(2) (a) M˝ – Sp2npqq, n ě 2, or Sp4pqq
1 (and q “ 2), and rY,M˝s is the corresponding

natural module for M˝.
(b) If Y ‰ rY,M˝s, then p “ 2 and |Y {rY,M˝s| ď q.

(3) There exists a unique M -invariant set K of subgroups of M such that YM is a natural
SL2pqq-wreath product module for M with respect to K. Moreover, M˝ “ OppxKyqQ and
Q acts transitively on K.

(4) (a) M – Oε2np2q, M
˝ – Ωε2np2q, 2n ě 4 and p2n, εq ‰ p4,`q,1 and rY,M s is a corre-

sponding natural module.
(b) If YM ‰ rYM ,M s, then M – O`6 p2q and |YM{rYM ,M s| “ 2.
(c) CGpyq ę M : and CGpyq is not of characteristic 2 for every non-singular element

y P rY,M s.

1 O`4 p2q appears as SL2p2q o C2 in Case (3)

81
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Table 1 lists examples for YM ,M and G fulfilling the hypothesis of Theorem E.

Table 1. Examples for Theorem E

Case rYM ,M
˝s for M˝ c examples for G

3 nat SL2pqq 1 2F4pqq
3 nat SL2p2q 1 Mat12p.2q,

2F4p2q
1p.2q

3 nat SL2p3q 1 Th
Here c “ |YM{rYM ,M

˝s|.

We fix the following hypothesis and notation for the remainder of this chapter. For the definition
of a symmetric pair and a Y -indicator see Definition 2.19.

Hypothesis and Notation 5.1. The groups G, S, Q, M :, and M have the properties given in
the hypothesis of Theorem E. In particular Q đM :, MGpMq “ tM

:u, and YM “ YM: is asymmetric
and short in G

By 2.23 there exist conjugates Y1 and Y2 of YM such that pY1, Y2q is a symmetric pair; i.e., there

exist Yi-indicators Li for i “ 1, 2 such that for Vi :“ xY Lii y

V1V2 ď L1 X L2 and rV1, V2s ‰ 1.

Recall from 2.20 that V1 and V2 are elementary abelian p-subgroups. We choose such Y1, Y2, L1 and
L2 with the additional property that |L1||L2| is minimal. We further fix:

(a) ti, ju “ t1, 2u.
(b) (1) If case 2.19(2:i) holds for pYi, Liq then Qi P Q

G such that Q‚i ď NGpYiq and Li ď
NGpQiq.

(2) If case 2.19(2:ii) holds for pYi, Liq then Si P SylppNGpYiqq such that Si X Li P
SylppNLipYiqq, and rYi, O

ppLiqs ę rΩ1ZpSiq, O
ppLiqqs ‰ 1.

(c) Ri :“ OppLiq.
(d) gi P G such that Y giM “ Yi and Mgi X Li is a parabolic subgroup of Li. Note that that

such a gi exists since NLipYiq is a parabolic subgroup of Li and M a parabolic subgroup
of M : “ NGpYM q.

(e) Mi :“Mgi and M :

i :“M :gi . In particular, M :

i “MiCGpYiq “ NGpYiq, see 2.2(d).

Lemma 5.2. (a) Vi ď Ri ď NLipYiq ďM :

i . In particular, rY ti , Vis ď Y ti XVi and rY ti , Ris ď
Y ti XRi for all t P Li.

(b) Suppose 2.19(2) holds for pLi, Yiq. Then OppLiq ęM :

i and rYi, O
ppLiqs ‰ 1.

Proof. Since by definition Vi is normal p-subgroup of Li, Vi ď Ri. Also NLipYiq ď NGpYiq “

M :

i .
Suppose that Case 2.19(1) holds. Then Yi Ĳ Li and (a) holds.
Suppose that 2.19(2) holds. Then NLipYiq is a maximal and parabolic subgroup of Li. In

particular, NLipYiq ‰ Li and NLipYiq contains a Sylow p-subgroup Ti of Li. Hence Ri “ OppLiq ď
Ti ď NLipYiq, Li “ TiO

ppLiq “ NLipYiqO
ppLiq and OppLiq ę NLipYiq; in particular, OppLiq ę

CLipYiq.
Thus (a) and (b) hold. l

Lemma 5.3. Suppose that one of the following holds:

(i) There exists Y P Y Lii with 1 ‰ rY, Vjs ď Y , or
(ii) Vj ď Ri.

Then

(a) Case 1 of 2.19 holds for pLi, Yiq.
(b) Li “ YiVj “ Ri. In particular, Vj ď Ri and Li is a p-group.
(c) Yi Ĳ Li. In particular, Vi “ Yi.
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Proof. Suppose first that (i) holds. Then Y Vj is a p-group with Y Ĳ Y Vj . Thus Y Vj fulfills
Case 1 in the Definition 2.19 of Y -indicator, so Y Vj is a Y -indicator. Moreover

Y Vj ď ViVj ď Lj and 1 ‰ rY, Vjs.

Hence pY, Yjq is a symmetric pair and |Y Vj ||Lj | ď |Li||Lj | “ |L1||L2|. The minimal choice of |L1||L2|

now implies Li “ Y Vj . Then Y Ĳ Li and so Y “ Vi “ Yi. If Case 2 of 2.19 holds for pLi, Yiq then
Yi đ Li, which is not the case. So Case 1 holds for pLi, Yiq, and the Lemma is proved in this case.

Suppose next that (ii) holds. Since Vi “ xY
Li
i y and rVi, Vjs ‰ 1, we can choose Y P Y Lii with

rY, Vjs ‰ 1. By 5.2(a) rY,Ris ď Y and by assumption Vj ď Ri. Hence 1 ‰ rY, Vjs ď Y . Thus (i)
holds, and we are done by the previous case. l

Lemma 5.4. Suppose that Vj ę Ri.

(a) Case 2 of 2.19 holds for pLi, Yiq. In particular, Yi đ Li and Li ęM :

i .
(b) CVj pViq ď Ri.
(c) Li is ViVj-minimal.

(d) There exists Xi P Y
Li
i such that rVj , Xis “ 1 and NLipXiq is the unique maximal sub-

group of Li containing ViVj. In particular, Yi đ Li and Li “ xVj , V
x
j yVi for every

x P LizNLipXiq.

Proof. Since Vj ę Ri we know that Li is a not a p-group, so Case 2 of 2.19 holds for pLi, Yiq.
Then NLipYiq is a maximal and parabolic subgroup of Li. In particular Yi đ Li, and as Vj is a p-

subgroup of Li, V
g
j ď NLipYiq for some g P Li. By 5.2(a) also V gi “ Vi ď NLipYiq. Put Xi :“ Y g

´1

i .

Then ViVj ď NLipXiq and Vi “ xX
Li
i y.

1˝. There exist L˚i ď Li and h P Li such that for Y ˚i :“ Xh
i :

(a) L˚i is ViVj-minimal and NL˚i
pY ˚i q is the unique maximal subgroup of L˚i containing ViVj.

In particular, Vj ę OppL
˚
i q.

(b) xV
L˚i
j yVi “ L˚i and xVj , V

x
j yVi “ L˚i for all x P L˚i zNL˚i

pY ˚i q.

Observe that the L-Lemma 1.41 applies with pLi, Vj , NLipXiqq in place of pH,A,Mq. Hence,
there exist L ď Li and h P Li such that for Y ˚i :“ Xh

i

p˚q L “ xVj , V
x
j yOppLq for all x P LzNLpY

˚
i q,

and NLpY
˚
i q is the unique maximal subgroup of L containing VjOppLq.

Pick t P LzNLpY
˚
i q such that L˚i :“ xVj , V

t
j yVi is minimal. Let x P L˚i zNL˚i

pY ˚i q. Then

xVj , V
x
j yVi ď L˚i , and the minimal choice of L˚i shows xVj , V

x
j yVi “ L˚i . By p˚q, L “ L˚i OppLq.

Since VjOppLq ď NLpY
˚
i q ă L we conclude that ViVj ď NL˚i

pY ˚i q ă L˚i . In particular, NL˚i
pY ˚i q is

the unique maximal subgroup of L˚i containing ViVj . Thus, there exists x P L˚i zNL˚i
pY ˚i q, and so

L˚i “ xVj , V
x
j yVi “ xV

L˚i
j y. Hence (1˝) holds.

We fix the groups L˚i and Y ˚i given in (1˝); in particular, Y ˚i “ Xh
i “ Y g

´1h
i for certain

g, h P Li. Furthermore we set V ˚i :“ xY
˚L˚i
i y. Note that Vi ď CL˚i

pV ˚i q ď NL˚i
pY ˚i q. Since NL˚i

pY ˚i q

is the unique maximal subgroup of L˚i containing ViVj , the assumptions of 1.42(e) are fulfilled with
`

CL˚i
pV ˚i q, NL˚i

pY ˚i q
˘

in place of pN,L0q. Thus CL˚i
pV ˚i q is p-closed. Also by (1˝)(a) Vj ę OppL

˚
i q,

and it follows that

2˝. CVj pV
˚
i q ď OppL

˚
i q and rVj , V

˚
i s ‰ 1.

Next we show:

3˝. L˚i is an Y ˚i -indicator.
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By (1˝)(a) L˚i is ViVj-minimal and so also p-minimal. Moreover, NL˚i
pY ˚i q is a maximal and

parabolic subgroup of L˚i . Recall that pVi, Vjq is a symmetric pair with Vj ę Ri. Thus, Li is not a
p-group and one of of the cases 2.19(2:i) or (2:ii) holds for Li and Yi.

Suppose that 2.19(2:i) holds for Li and Yi. Then L˚i ď Li ď NGpQiq ď NGpQ
‚
i q and Q‚i ď

NGpYiq. Since Y ˚i “ Xh
i “ Y g

´1h
i and g´1h P Li ď NGpQ

‚
i q, this implies Q‚i ď NGpY

˚
i q and so L˚i

is an Y ˚i -indicator.
Suppose next that 2.19(2:ii) holds for Li and Yi. Let T˚i P SylppNL˚i

pY ˚i qq with ViVj ď T˚i

and let Ti P SylppNLipY
˚
i qq with T˚i ď Ti. Since Si X Li P SylppNLipYiqq and Y ˚i P Y Lii , there

exists t P Li with Y ti “ Y ˚i and Ti “ Sti X Li. Put S˚i :“ Sti . Then Ti “ S˚i X Li, in particular
T˚i ď S˚i X L˚i . Since Si P SylppNGpYiqq we have S˚i P SylppNGpY

˚
i qq. As NL˚i

pYiq is a parabolic

subgroup of L˚i , T˚i P SylppL
˚
i q, and T˚i ď S˚i X L

˚
i gives T˚i “ S˚i X L

˚
i . We collect:

S˚i P SylppNGpY
˚
i qq, ViVj ď T˚i “ S˚i X L

˚
i P SylppNL˚i

pY ˚i qq and S˚i X Li “ Ti P SylppNLipY
˚
i qq.

Also rΩ1ZpSiq, O
ppLiqs ‰ 1 implies rΩ1ZpS

˚
i q, O

ppLiqs ‰ 1.
Note that Li is p-minimal, NLipY

˚
i q is the unique maximal subgroup of Li containing S˚i X Li,

L˚i ę NLipY
˚
i q and L˚i “ OppLiqpS

˚
i X L

˚
i q. Hence

Li “ xS
˚
i X Li, L

˚
i y “ xS

˚
i X Li, O

ppL˚i qy.

Thus rΩ1ZpS
˚
i q, O

ppL˚i qs ‰ 1. Moreover,

Li “ xO
ppL˚i q

S˚i XLiypS˚i X Liq and OppLiq “ xO
ppL˚i q

S˚i XLiy.

Suppose that rY ˚i , O
ppL˚i qs ď rΩ1ZpS

˚
i q, O

ppL˚i qs. Then

rY ˚i , O
ppLiqs “ rY ˚i , xO

ppL˚i q
S˚i XLiys “

@

rY ˚i , O
ppL˚i qs

S˚i XLi
D

ď
@

rΩ1ZpS
˚
i q, O

ppL˚i qs
S˚i XLi

D

“ rΩ1ZpS
˚
i q,

@

OppL˚i q
S˚i XLi

D

s “ rΩ1ZpS
˚
i q, O

ppLiqs.

Conjugation by t´1 shows rYi, O
ppLiqs ď rΩ1ZpSiq, O

ppLiqs, a contradiction to 2.19(2:ii) .
Hence rY ˚i , O

ppL˚i qs ę rΩ1ZpS
˚
i q, O

ppL˚i qs and so also in this case L˚i is a Y ˚i indicator.

By (2˝) and (3˝) we know that rV ˚i , Vjs “‰ 1 and that L˚i is a Y ˚i -indicator. So pY ˚i , Yjq is
a symmetric pair, and the minimality of |Li||Lj | yields Li “ L˚i . Hence V ˚i “ Vi, and (2˝) gives
CVj pViq ď OppL

˚
i q “ Ri. Since Vj normalizes Y ˚i we have rVj , Y

˚
i s ď Y ˚i . If rVj , Y

˚
i s ‰ 1 then

hypothesis 5.3(i) is satisfied, and 5.3(b) shows that Li “ Ri. But then Vj ď Ri, contrary to the
hypothesis of the lemma. If rVj , Y

˚
i s “ 1 then (1˝) shows that (b) holds with Y ˚i in place of Xi. l

Recall from Definition A.7 that a strong dual offender A on a module V satisfies rV,As “ rv,As
for every v P V zCV pAq.

Lemma 5.5. Suppose that there exists A ďM such that the following hold:

(i) A is a non-trivial strong dual offender on YM .
(ii) If |A{CApYM q| “ 2, then CGprYM , Asq ęM :.

Then Theorem E holds.

Proof. By 1.57(b) YM is a faithful p-reduced Q!-module for M with respect to Q. Since A is
a non-trivial strong dual offender on YM , we can apply C.27. This shows that Theorem E holds,
except that, in Case C.27(4) (rYM ,M s a natural Oε2np2q-module for M), we still have to verify that
CGpyq is not of characteristic 2 for every non-singular element y P rYM ,M s.

By C.27(4:c) |A| “ 2. Since A is a strong dual offender, this gives |YM{CY pAq| “ 2 and
|rYM , As| “ 2. Let 1 ‰ y P rYM , As. Then, for example by B.9(c), y is non-singular, and by 3.1(a)
every non-singular element of rYM ,M s is conjugate to y. By Hypothesis (ii) CGprYM , Asq ęM : and
so also CGpyq ęM :. Hence the hypothesis of Theorem C is fulfilled, and we conclude that CGpyq is
not of characteristic 2. l

Lemma 5.6. Suppose that Vj ę Ri and let D ď Vj.
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(a) rYi, O
ppLiqs ‰ 1. In particular, rVi, O

ppLiqs ‰ 1 and there exists non-central chief factor
for Li on Vi.

(b) Li is p-irreducible.
(c) Let X be any Li-section of Vj with rX,OppLiqs ‰ 1. Then CDpXq ď DXRj. In particular,

if D ę Rj then rX,Ds ‰ 1.
(d) Let X be any Li-section of Vj with rX,OppLiqs ‰ 1 and rX,OppLiqs “ 12. Then CDpXq “

D XR and

|X{CXpDq| ě |D{CDpXq| “ |D{D XRi| “ |DRi{Ri|

Proof. Note first that by 5.4(a) Case 2 of 2.19 holds for pLi, Yiq. In particular, Li is p-minimal.

(a): This holds by 5.2(b).

(b): Since Li is p-minimal, Li is also p-irreducible, see 1.37.

(c): As Vi is an elementary abelian p-group, X is an FpLi-module. Since Li is p-irreducible and
D is p-subgroup of Li, 1.33(b) shows that CDpXq ď OppLiq “ Ri. Thus (c) holds.

(d): By (c) CDpXq ď DXRi, and since by hypothesis Ri centralizes X, we get CDpXq “ DXRi.
Since Li is p-minimal, C.13(e) shows that no subgroup of Li is an over-offender on X. As D ď Vi, D
is an elementary abelian p-group, and we conclude that |X{CXpDq| ě |D{CDpXq|. Together with
CDpXq “ D XX this gives (d). l

Lemma 5.7. Suppose that Yj ę Ri.

(a) rVi, Vj XRis ď Yi X ZpLiq.
(b) Yj X ZpLiq “ 1.
(c) rVi XRj , Vjs X ZpLiq “ 1.
(d) rVi XRj , Vj XRis “ 1.
(e) CVipVjq “ rVi, VjsCVipLiq “ rVi, vsCVipLiq “ CVipvq “ CVipYjq for every v P VjzRi.

Proof. Since Vj ę Ri we can apply 5.4. By 5.4(d) there exists Xi P Y
Li
i with rXi, Vjs “ 1 and

p`q Li “ xVj , V
x
j yVi for every x P LizNLipXiq.

Recall from 2.20 that Vi and Vj are elementary abelian p-groups.

(a): Let t P Li. Since rXi, Vjs “ 1 we have rXt
i , V

t
j s “ 1. By 5.2(a) rXt

i , Ris ď Xt
i X Ri. As Vj

is abelian, it follows that

rXt
i , Vj XRis ď Xt

i X Vj ď CXti pxVj , V
t
j yViq.

If t P NLipXiq then rXt
i , Vjs “ 1, and if t R NLipXiq then by p`q and the previous line rXt

i , VjXRis ď
Xt
i X ZpLiq. Since Xt

i X ZpLiq “ Yi X ZpLiq for every t P Li, (a) holds.

(b): Suppose that Yj XZpLiq ‰ 1. Then N :“ NGpYj XZpLiqq is a p-local subgroup of G. Also
OppMjq ď N since Yj ď ZpOppMjqq. Hence Yj ď OppNq since Yj is short.3 But this contradicts
Li ď N and Yj ę Ri.

(c): According to (b) it suffices to show that

p˚q rVj , Vi XRjs ď Yj .

If Vi ď Rj , then 5.3 gives Vj “ Yj and so p˚q holds. If Vi ę Rj , then the hypothesis of this lemma
is satisfied with i and j interchanged, and (a) yields (˚).

(d): By (a) and (c), rVi XRj , Vj XRis ď ZpLiq X rVi XRj , Vjs “ 1.

(e): Let v P VjzRi. By 5.4(c),(d) Li is ViVj-minimal and NLipXiq is a maximal subgroup of Li
containing ViVj . So by 1.42(d)

Ş

NLipXiq
Li is p-closed. Hence there exists t P Li with v R NLipX

t
i q.

Thus by (+)
Li “ xV

t
j , V

tv
j yVi “ xv, V

t
j yVi.

2Observe that condition holds for any non-central chief-factor of Li on Vi
3Apart from the existence of symmetric pairs, this is the only place in this chapter where one needs shortness

and not only char p-shortness
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Since Vi normalizes Vj and Vj is abelian, rVi, Vjs ď Vi X Vj ď CVipVjq. As rXt
i , V

t
j s “ 1, we get

CVipvq X rVi, V
t
j sX

t
i ď CVipvq X CVipV

t
j q “ CVipxv, V

t
j yViq “ CVipLiq

and
Vi “ xY

Li
i y “ xXtLi

i y “ rVi, LisX
t
i “ rVi, vsrVi, V

t
j sX

t
i .

Therefore,

CVipvq “ rVi, vspCVipvq X rVi, V
t
j sX

t
i q “ rVi, vsCVipLiq ď rVi, VjsCVipLjq ď CVipVjq ď CVipvq,

so equality holds everywhere in the preceding chain of inclusions; in particular CVipVjq “ CVipvq.
Since Yj ę Ri we can choose v P YjzRi. Then v P Yj ď Vj , and we conclude that also CVipYjq “
CVipVjq. Thus (e) holds. l

Lemma 5.8. Suppose that Yj ę Ri and Li has a unique non-central chief factor on Vi. Then
Theorem E holds.

Proof. As Yj ę Ri, 5.4(a) shows that we are in case 2.19(2). Suppose that 2.19(2:ii) holds
for the Yi-indicator Li. Then rΩ1ZpSiq, O

ppLiqs ‰ 1, and rYi, O
ppLiqs ę rΩ1ZpSiq, O

ppLiqs (see
5.1(b)). Hence Li has a non-trivial chief factor on both, rΩ1ZpSiq, O

ppLiqs and Vi{rΩ1ZpSiq, O
ppLiqs,

a contradiction.
Thus 2.19(2:i) holds for Li, so Li ď NGpQiq ď NGpQ

‚
i q and Q‚i ď NGpYiq. Since Vi “ xY

Li
i y,

we conclude that Q‚i ď NGpViq. Hence LiQ
‚
i acts on Vi, Q

‚
i ď OppLiQ

‚
i q and Q‚i centralizes any

chief factor of LiQ
‚
i on Vi. It follows that LiQ

‚
i has a unique non-central chief factor on Vi. Set

Ai :“ rOppLiQ
‚
i q, OppLiQ

‚
i qs.

1˝. Suppose that rCVipAiq, O
ppLiqs “ 1. Then Theorem E holds.

Note that we can apply A.45 with pLiQ
‚
i , Yi, Ai, Si, Viq in place of pH,Y,R, T, V q. We conclude

that one of the following holds:

(A) rVi, Ais “ 1,
(B) Ai is a non-trivial strong dual offender on Yi,
(C) There exist AiO

ppLiQ
‚
i q-invariant subgroups Z1 ď X1 ď Z2 ď X2 of Vi such that for

l “ 1, 2, Xl{Zl is a non-central simple OppLiQ
‚
i q-module and Xl X Yi ę Zl.

Suppose that (A) holds. Then CVipAiq “ Vi, a contradiction since rCVipAiq, O
ppLiqs “ 1 in the

current case while Li has a non-central chief factor on Vi.
Suppose that (B) holds. By A.32(a) any strong dual offender is quadratic and so rYi, Ais ď

CVipAiq ď CVipO
ppLiqq. Since OppLiq ę M :

i by 5.2(b), this gives CGprYi, Aisq ę M :

i . Thus the
hypothesis of 5.5 is fulfilled, and we conclude that Theorem E holds.

Suppose that (C) holds. Let l P t1, 2u and put X˚l :“ xpXl X Yiq
OppLiqy. Then X˚1 ď X1 ď Z2

and X˚1 ď X˚2 . Since Xl{Zl is a non-central simple OppLiq-module and Xl X Yi ę Zl, we have
rX˚l , O

ppLiqs ę Zl. Thus rX˚1 , O
ppLiqs ‰ 1, and since X˚1 ď Z2, rX˚2 , O

ppLiqs ę X˚1 . By 5.4(d) Vj
centralizes an Li-conjugate of Yi. Thus there exists t P Li with rYi, V

t
j s “ 1. Also by 5.4(c), Li is

ViVj minimal and so Li “ OppLiqViVj “ OppLiqViV
t
j . As ViV

t
j centralizes Yi and so also Xl X Yi,

this implies that X˚l “ xpXl X Yiq
Liy. Hence X˚l is Li-invariant for l “ 1, 2, and Li has at least two

non-central chief factors on Vi, a contradiction.

2˝. Suppose that rCVipAiq, O
ppLiqs ‰ 1. Then Theorem E holds.

Put Di :“ CVipOppLiQ
‚
i qq. Since Qi is large, CGpQiq ď Qi ď Q‚i , so Di ď ZpQ‚i q ď ZpQiq. Also

as Q‚i ď OppLiQ
‚
i q, we have Di ď CVipAiq and

rOppLiQ
‚
i q, O

ppLiqs ď Ai ď CLiQ‚i pCVipAiqq,

so the P ˆQ-Lemma implies

p˚q rDi, O
ppLiqs ‰ 1.

Since Vj ę Ri, 5.6(c) applied with pVj , Diq in place of pD,Xq gives rVj , Dis ‰ 1. Moreover, as
rDi, Ris “ 1 we can also apply 5.6(d) and conclude that

p˚˚q |Vj{Vj XRi| “ |Vj{CVj pDiq| ď |Di{CDipVjq|.
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Suppose for a contradiction that rVj , DiXRjs ‰ 1 and choose Y ˚j P Y
Lj
j with rY ˚j , DiXRjs ‰ 1.

By 5.2(a) rY ˚j , Rjs ď Y ˚j and so rY ˚j , Di X Rjs ď Di X Y ˚j . Thus Di X Y ˚j ‰ 1. Since Di ď ZpQ‚i q

and Y ˚j is short and so also Q-short, we conclude from 2.3(c) that rY ˚j , Dis “ 1, a contradiction.

We have shown that rVj , Dis ‰ 1 and rVj , Di X Rjs “ 1. Hence Di ę Rj and so also Vi ę Rj .
Thus we can apply 5.6 with the roles of i and j interchanged. In particular, there exists a non-central
chief factor W for Lj on Vj . Moreover, 5.6(d) shows that CDipW q “ Di XRj “ CDipVjq and

|Vj{CVj pDiq| ě |W {CW pDiq| ě |Di{CDipW q| “ |Di{CDipVjq|.

Combined with (˚˚) this gives

|W {CW pDiq| “ |Vj{CVj pDiq| “ |Di{CDipVjq|.

In particular, there exists a unique non-central chief factor of Lj in Vj , so also Lj satisfies the
hypothesis of this lemma (for some Li-conjugate of Yi). Put Aj :“ rOppLjQ

‚
j q, OppLjQ

‚
j qs and

Dj :“ CVj pOppLjQ
‚
j qq.

If rCVj pAjq, O
ppLjqs “ 1, then (1˝), with j in place of i, shows that we are done. Otherwise

(˚), again with j in place of i, gives rDj , O
ppLjqs ‰ 1. Since Di ę Rj , we conclude from 5.6(c) that

1 ‰ rDi, Djs ď Di XDj . As Di ď ZpQiq, this contradicts 2.3(a). l

Lemma 5.9. Suppose that Vj ď Ri. Then Theorem E holds.

Proof. By 5.3 Yi “ Vi. Assume that also Vi ď Rj . Then Vi “ Yi and Vj “ Yj and so
1 ‰ rYi, Yjs ď Vi X Vj “ Yi X Yj . Hence YM is not asymmetric in G, a contradiction.

Thus Yi “ Vi ę Rj , and we can apply 5.7 with the roles of i and j interchanged. By 5.7(d)

rVj , Vi XRjs “ rVj XRi, Vi XRjs “ 1.

Since Yi “ Vj and by 5.4(b), again with i and j interchanged, CVipVjq ď Rj , this gives

Yi XRj “ Vi XRj “ CVipVjq “ CYipVjq.

By 5.7(b) ViXZpLjq “ YiXZpLjq “ 1, in particular rYi, VjsXCVj pLjq “ 1. Let v P YizCYipVjq.
Then v P VizRi, and 5.7(e) shows

rYi, Vjs ď CVj pViq “ rv, VjsCVj pLjq.

Thus rYi, Vjs “ rv, Vjs
`

rYi, VjsXCVj pLjq
˘

“ rv, Vjs. We conclude that Vj is a non-trivial strong dual
offender on Yi.

If |Vj{CVj pYiq| ą 2, we are done by 5.5. If |Vj{CVj pYiq| “ 2, then Lj has a unique non-central
chief factor on Vj since Yi ę Rj and Lj is 2-minimal. So we are done by 5.8. l

Lemma 5.10. Let q be a power of p, H – SL2pqq, W a natural SL2pqq-module for H and
V an FpH-module isomorphic to Wn, n ě 1, the direct sum of n copies of W . Let B1, B2 ď H
with B1B2 P SylppHq and B1 ‰ 1 ‰ B2. Suppose that there exists A ď V with CV pB1B2q ď A,
rA,B1s X rA,B2s “ 0 and |V {A| ď |A{CV pB1B2q|. Then

(a) There exist a subfield F of K :“ EndHpW q with dimF K “ 2, a 3-dimensional F-subspace
D of W with CW pB1B2q ď D and FpH-monomorphisms αi : W Ñ V , 1 ď i ď n, such
that

V “
n
à

i“1

Vi and A “
n
à

i“1

Ai, where Vi :“ αipW q and Ai :“ αipDq.

(b) |V {A| “ |A{CV pB1B2q| and |B1| “ |B2|.
(c) There exists h P H with rA,B1s ď Ah and rA,B2s XA

h “ 0.

Proof. Let I be the set of simple FpH-submodules of V and put Z :“ CV pB1B2q. Since W
is a natural SL2pqq-module for H, CW pB1B2q “ CW pBiq is a one dimensional Fq-submodule of W .
So Z “ CV pBiq, i “ 1, 2, since V – Wn. Observe that V “

Ť

IPIpI ` Zq and so, since Z ď A,

A “
Ť

IPI
`

pAX Iq ` Z
˘

. Put

J :“ tI P I | AX I ę Zu and X :“
ÿ

J .
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Then A “ pXXAq`Z and CXpB1B2q “ XXZ ď XXA. By assumption |V {A| ď |A{CV pB1B2q| “

|A{Z|. Thus

p˚q
|X XA{X X Z| “ |X XA{pX XAq X Z| “ |pX XAq ` Z{Z| “ |A{Z|

ě |V {A| ě |X `A{A| “ |X{X XA|.

So pX,X X Aq in place of pV,Aq fulfills the assumption of the lemma. Suppose that X ‰ V .
Then induction on |V | gives |X X A{X X Z| “ |X{X X A|. Thus equality holds in (˚) and so
V “ X `A “ X ` pAXXq ` Z “ X ` Z. But then rV,B1B2s ď X, a contradiction.

Thus X “ V and so there exist V1, . . . , Vn P J with V “
Àn

i“1 Vi. Pick a P W zCW pB1B2q and
choose an FpH-isomorphism αi : W Ñ Vi for each 1 ď i ď n. By definition of J , Vi X Z ă Vi X A.
Also W “ CW pB1B2q ` Ka and so there exists ki P K with αipkiaq P Vi X AzVi X Z. Replacing αi
by αi ˝ ki we may assume that ai :“ αipaq P Vi X AzVi X Z. View V as a K-module such that each
αi is a KH-isomorphism.

If d P A then d ` Z “ p
řn
i“1 fipdqaiq ` Z for some fipdq P K. Put Fi :“ tfipdq | d P Au. Then

Fi is an additive subgroup of K and A ď Z `
řn
i“1 Fiai.

For l “ 1, 2 fix 1 ‰ bl P Bl and put xl :“ ra, bls and xil :“ αipxlq. Define Kl Ď K by
ra,Bls “ Klxl. Since ra, bls “ 1xl, 1 P Kl. Also Kl is an additive subgroup of K and |Kl| “
|Bl|. Thus Zl :“

řn
i“1 Klxil has order |Bl|

n. Since rai, Bls “ Klxil we have Zl ď rA,Bls. From
rA,B1s X rA,B2s “ 0 we get Z1 X Z2 “ 0 and B1 XB2 “ 1. We conclude that

|Z1 ` Z2| “ |Z1||Z2| “ |B1|
n|B2|

n “ |B1B2|
n “ qn “ |Z|.

Thus Z “ Z1 ‘ Z2 and rA,Bls “ Zl.
Fix m and l with 1 ď m ď n and l P t1, 2u. Let gm P Fm and kl P Kl. Then there exists

d P A with gm “ fmpdq and e P Bl with klxl “ ra, es. Since αi is an H-monomorphism we get
klxil “ rai, es for all 1 ď i ď n. Thus

rd, es “ r
n
ÿ

i“1

fipdqai, es “
n
ÿ

i“1

fipdqrai, es “
n
ÿ

i“1

fipdqklxil.

As rd, es P rA,Bls “ Zl we get that fipdqklxil P Klxil and so fipdqkl P Kl for all 1 ď i ď n. For
i “ m we infer gmkl P Kl and so

p˚˚q FmKl Ď Kl.
Since 1 P Kl, we conclude Fm ď Kl and so |Fm| ď minp|K1|, |K2|q. From |K1||K2| “ |B1||B2| “ q

we get |Fm| ď
?
q for all 1 ď m ď n. Recall that A ď Z `

řn
i“1 Fiai, so |A{Z| ď

śn
i“1 |Fi| ď

?
qn.

As |V {Z| “ qn and |V {A| ď |A{Z|, this gives |V {A| “ |A{Z|, and equality holds in all of the
preceding inequalities. So |Fm| “ |Kl| “

?
q, Fm “ Kl, and A “ Z `

řn
i“1 Fiai. In particular,

|Bl| “ |Kl| “
?
q and |B1| “ |B2|.

Hence F :“ Fm “ Kl for all 1 ď m ď n and 1 ď l ď 2, and A “ Z `
řn
i“1 Fai. By (**) FF Ď F

and so F is a subring of K. Thus F is a finite integral domain and so a field. Since |K| “ q “ |F|2,
dimF K “ 2. Put E :“ CW pB1B2q and D :“ E`Fa. Then A “ Z `

řn
i“1 Fai “

řn
i“1 αipDq. So (a)

and (b) hold.

Let h P HzNHpEq. Note that W “ E ‘ Eh. So Dh “ pDh X Eq ‘ Eh and thus Dh X E is
a 1-dimensional F-subspace of E. Since NHpEq acts transitively on E, we can choose h such that
x1 P D

h X E. Then Dh X E “ Fx1. Applying the αi’s gives Ahi X Z “ Fxi1. As A “
Àm

i“1Ai and
Z “

Àm
i“1 Vi XZ, this yields Ah XZ “

řn
i“1 Fxi1 “ rA,B1s. In particular, rA,B1s ď Ah and, since

rA,B2s ď Z,

rA,B2s XA
h “ rA,B2s X pA

h X Zq ď rA,B2s X rA,B1s “ 0.

So (c) is proved. l

Lemma 5.11. Suppose that Y1 ę R2 and Y2 ę R1. Then Theorem E holds.

Proof. Since Y1 ę R2 and Y2 ę R2, we can apply 5.4 with pi, jq “ p1, 2q and pi, jq “ p2, 1q. As
the hypothesis is symmetric in i and j we choose our notation such that

1˝. |V1R2{R2| ě |V2R1{R1|.
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By 5.7(e) CVipVjq “ CVipYjq. Also 5.4(b) (applied to pj, iq in place of pi, jq) gives CVipVjq ď Rj .
Thus

2˝. CVipYjq “ CVipVjq ď Vi XRj.

Let ri be the number of non-central chief factors for Li on Vi. By 5.6 we have rVi, O
ppLiqs ‰ 1.

So ri ě 1. If ri “ 1 then 5.8 shows that Theorem E holds. So we may assume that ri ě 2 for
i “ 1, 2. By 5.6(d) we have

|X{CXpVjq| ě |Vj{CVj pXq| “ |VjRi{Ri|

for any non-central chief factor X of Li on Vi. Thus

3˝. |Vi{CVipVjq| ě |VjRi{Ri|
ri ě |VjRi{Ri|

2. Moreover, if |Vi{CVipVjq| “ |VjRi{Ri|
2, then

ri “ 2 and Vj is a non-trivial offender on each non-central chief factor of Li on Vi.

As CVipYjq “ CVipVjq by (2˝), this gives

4˝. |Vi{CVipYjq| ě |VjRi{Ri|
2.

Hence

5˝. |V2{CV2
pY1q|

(4˝)
ě |V1R2{R2|

2
(1˝)
ě |V2R1{R1||V1R2{R2| “ |V2{V2 XR1||V1R2{R2|.

Since V1 ę R2, this gives |V2{CV2
pY1q| ą |V2{V2 XR1|, so

6˝. rY1, V2 XR1s ‰ 1.

By 5.7(d) rY1 X R2, V2 X R1s “ 1. Let x P V2 X R1zCV2pV1q and y P Y1zR2. By 5.7(e)
CV2pV1q “ CV2pyq. Thus rx, ys ‰ 1, so CY1pxq ď Y1 XR2, and

CY1
pxq ď Y1 XR2 ď CY1

pV2 XR1q ď CY1
pxq.

Hence

7˝. CY1
pxq “ Y1 XR2 “ CY1

pV2 XR1q for x P V2 XR1zCV2
pY1q.

Recall from (2˝) that CV2pY1q ď V2 XR1. So CV2pY1q “ CV2XR1pY1q and

|V2{CV2pY1q| “ |V2{V2 XR1||V2 XR1{CV2XR1pY1q|.

By (5˝)

|V2{CV2pY1q| ě |V2{V2 XR1||V1R2{R2|.

Comparing the last two displayed statements gives

8˝. |V2 XR1{CV2XR1
pY1q| ě |V1R2{R2| ě |Y1R2{R2| “ |Y1{Y1 XR2|,

and so, since Y1 XR2 “ CY1pV2 XR1q by (7˝),

9˝. |V2 XR1{CV2XR1pY1q| ě |Y1{CY1pV2 XR1q|.

Combining (6˝), (7˝) and (9˝) we get:

10˝. A :“ V2 XR1 is a non-trivial strong offender on Y1.

By A.34 all strong offenders are best offenders, so

11˝. A is a non-trivial best offender on Y1.

By 5.7(a), rV1, V2 XR1s ď ZpL1q, so L1 ď CGprY1, Asq. By 5.4(a) L1 ęM :
1 . We record:

12˝. L1 ęM :
1 and L1 ď CGprY1, Asq ęM :

1 .

Next we prove:

13˝. Let N ď M1 with N “ N˝ and 1 ‰ OppNq Ĳ M1, then N does not normalize any
non-trivial subgroup of rY1, As.
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Suppose that there exists 1 ‰ U ď rY1, As with N ď NGpUq. Pick Q0 P Q
G with Q0 ď N . Then

CU pQ0q ‰ 1 and thus by Q!, CGpUq ď NGpQ0q. Now 1.52 gives pNCGpUqq
˝ “ N˝ “ N , so N is

normalized by CGpUq. Hence

CGprY1, Asq ď CGpUq ď NGpNq ď NGpO
ppNqq.

By hypothesis, 1 ‰ OppNq Ĳ M1, and so 2.2(c) gives NGpO
ppNqq ď M :

1 . Thus CGprY1, Asq ď M :
1 ,

a contradiction to (12˝).

14˝. rM˝
1 , As ę CM1

pY1q.

Otherwise, M˝
1 normalizes rY1, As, a contradiction to (13˝) applied to N “M˝

1 .

Define

M1 :“M1{CM1pY1q, J :“ JM1pY1q, J :“ J{CM1pY1q K :“ F˚pJq.

Since Q1 is large and Q1 đ M1, 1.57(b) shows that Y1 is a Q!-module for M1 with respect to
Q1. Since Y1 is p-reduced for M1, OppM1q “ 1. By (11˝) A is a best offender on Y1. By (14˝),

rM˝
1 , As ‰ 1. Thus the assumption of the Q!FF-Module Theorem C.24 are fulfilled for pM1, Q1, A, Y1q

in place of pH,Q, Y, V q.
Suppose that C.24(1) holds. Then there exists an M1-invariant set K of subgroups of M1 such

that Y1 is a natural SL2pqq-wreath product module for M1 with respect to K, M˝
1 “ OppxKyqQ1

and Q1 acts transitively on K. By A.27(c) K is unique. So Case (3) of Theorem E holds.

Thus, we may assume from now:

15˝. C.24(2) holds for M1 and Y1.

In particular, by C.24(2:a) and (2:b)

16˝.

(a) K is quasisimple.
(b) CY1

pKq “ 0 and rY1,Ks is a semisimple J-module.

Note that by (16˝) all non-trivial J-submodules of rY1,Ks are perfect. Thus A.44 shows that
all K-submodules of rY1,Ks are J-invariant. In particular, the simple K-submodules of rY1,Ks are
exactly the simple J-submodules of rY1,Ks.

By (11˝) A is a best offender on Y1. Thus A ď J . Put T :“ KA and let I be a simple
T -submodule of rY1,Ks.

Suppose that there exists a simple T -submodule I0 in Y1 such that I˚ – I0 as a T -module,
where I˚ is the dual of the FpJ-module I. (Note that we can choose I “ I0 if I – I˚). By (10˝)
A is a strong offender on Y1, so A is also a strong offender on the submodules I and I0. It follows
that A is strong offender on I˚, and so by A.35 A is a root offender on I. Hence A.37 shows
that |I{CIpAq| “ |A{CApIq| and A is strong dual offender on I. As A is strong offender on Y1,
CApY1q “ CApIq. Thus

|A{CApY1q| “ |A{CApIq| “ |I{CIpAq| “ |ICY1
pAq{CY1

pAq| ď |Y1{CY1
pAq| ď |A{CApY1q|.

Hence equality holds everywhere, Y1 “ ICY1
pAq, and A is a strong dual offender on Y1. By (12˝),

CGprY1, Asq ę M :
1 and so M1 and A satisfy the hypothesis of 5.5, and Theorem E follows. So we

may assume from now on:

17˝. I˚ is not isomorphic to any T -submodule of YM ; in particular I is not selfdual as an
FpT -module.

Since K “ F˚pJq is quasisimple and A ď J , we get T “ AK “ xA
T
y and K “ F˚pT q. As seen

above, A is a strong offender on I, so we can apply the Strong Offender Theorem C.6 to pT ,K, I,Aq
in place of pM,K, V,Aq. Hence one of the following holds:

(A) T – SLnpq̃q or Sp2npq̃q and I is a corresponding natural module.
(B) p “ 2, T – Altp6q, 3.Altp6q or Altp7q, |V | “ 24, 26 or 24, respectively, and |A| “ 4.
(C) p “ 2, T – Oε2np2q or Sympnq, V is a corresponding natural module, and |A| “ 2.
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Note that the natural SL2pq̃q-, Sp2npq̃q, Altp6q-, O
ε
2np2q- and Sympnq-modules all are selfdual and

so are ruled out by (17˝). Moreover, the module of order 24 for Altp7q is rule out since it does not
appear as a conclusion of the Q!FF-module Theorem (in fact this module is not a Q!-module).

We have proved:

18˝. T – SLnpq̃q, n ě 3, or 3.Altp6q, and I is a corresponding natural module for T .

Next we prove

19˝. J “ T “ K ďM˝ and one of the following holds:

(1) K – SLnpq̃q, n ě 3, M˝ “ KCM˝pKq, and Y1 “
Àk

l“1 Y1l, where k ě 2 and the modules

Y1l are isomorphic natural SLnpq̃q-modules for K.
(2) K – 3.Altp6q, M˝ – 3.Altp6q or 3.Symp6q and Y1 “ rY1,Ks has order 26.

(3) K – SLnpq̃q, n ě 3, M˝ “ K, and rY1,Ks is natural SLnpq̃q-modules for K. Moreover,
either Y1 “ rY1,Ks or K – SL3p2q and |Y1{rY1,Ks| “ 2.

Since T – SLnpq̃q, n ě 3, or 3.Altp6q, we have K “ F˚pT q “ T . Recall that C.24(2) holds. By
C.24(2:a) K ď M˝

1 and either J “ K or J – Oε2np2q, Sp4p2q or G2p2q. As K – SLnpq̃q, n ě 3, or

3.Altp6q, we get J “ K or K – SL4p2q and J – O`6 p2q. In the later case, recall that I is J-invariant,

which contradicts the fact that J – O`6 p2q induces graph automorphisms on K – SL4p2q and so

does not act on that natural SL4p2q-module I. Thus J “ K and the initial statement in (19˝) is
proved. We now consider the three cases of C.24(2:c).

Suppose that C.24(2:c:1) holds. Since 3.Altp6q does not appear in C.24(2:c:1:a) we conclude
that K – SLnpq̃q. Moreover, rY1,Ks is a direct sum of at least two isomorphic natural modules
and M˝ “ KCM˝pKq. Since SLnpq̃q does not appear in C.24(2:c:1:d), we have Y1 “ rY1,Ks and so
(19˝)(1) holds.

Suppose that C.24(2:c:2) holds. Then rY1,Ks is a simple K-module and either M˝ “ K or
M˝ – Sp4p2q, 3.Symp6q, SU4pqq.2 or G2p2q. Thus I “ rY1,Ks.

Assume that I is natural SLnpq̃q-module for K. Then M˝ “ K. Moreover, by (16˝)(b)
CY1pKq “ 1, and C.22 shows that either Y1 “ rY1,Ks or K – SL3p2q and |Y1{rY1,Ks| “ 2.
Thus (19˝)(3) holds.

Assume that I is a natural 3.Altp6q-module forK. ThenM˝ “ K – 3.Altp6q orM˝ – 3.Symp6q.
As CY1pKq “ 1, the fixed-point free action of ZpKq on I shows that I “ Y1. Thus (19˝)(2) holds.

Suppose that C.24(2:c:3) holds. Then Y1 is the direct sum of two non-isomorphic natural
SL4pq̃q-modules for K. Since non-isomorphic natural SL4pq̃q-modules are dual to each other, this
contradicts (17˝). This completes the proof of (19˝).

Observe that

20˝. If (19˝)(3) holds, then Case 1 of Theorem E holds.

So we may assume from now on that (19˝)(1) or (2) holds. The next statement will allow us to
derive a contradiction in these two cases, simultaneously.

21˝.

(a) NM1
prY1, Asq is a parabolic subgroup of M1. In particular, there exists an M1-conjugate

Q3 of Q1 with Q2 ď NM1
prY1, Asq.

(b) Put E1 :“ Op
1

pNJprY1, Asqq. There exist isomorphic E1-submodules Y1l, 1 ď l ď k, with

Y1 “
Àk

l“1 Y1l and k ě 2.

Suppose first that (19˝)(1) holds. Then Y1 “
Àk

l“1 Y1l as an FpJ-module and so also as an E1-
module. Since rI, As is an Fq̃-subspace of I and I is natural SLnpq̃q-module, NJprI, Asq is a parabolic
subgroup of J and rI, As “ rI,OppNJprI, Asqqs. Since each Y1l is isomorphic to I, this implies that

E1 “ Op
1

pNJprI, Asqq, E1 is parabolic subgroup of J and rY1, As “ rY1, OppE1qs. Since I˚ is not
isomorphic to any J-submodule of Y1, no element of M1 induces a non-trivial graph automorphism
on J – SLnpq̃q. It follows that

M1 “ NM1
pE1qJ “ NM1

pOppE1qqJ “ NM1
prY1, AsqJ “ NM1

prY1, AsqJ.
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As E1 ď NM1
prY1, Asq and E1 is parabolic subgroup of J , this shows that NM1

prY1, Asq is parabolic
subgroup of M1.

Suppose next that (19˝)(2) holds. By C.16(b), CY1pAq “ rY1, As, so by C.16(c), NM1prY1, Asq
is parabolic subgroup of M1. Put K2 :“ CM1

pY1{CY1pAqq and let V be the set of 3-dimensional

K2-submodules of Y1. Then by C.16(e) V “ tY11, Y12, Y13u and ZpKq acts transitively on V. By
C.16(d), K2 “ E1, and we conclude that Y11 and Y12 are isomorphic E1-submodules of Y1. By
C.16(f), Y “ Y11 ˆ Y12, and so (21˝)(b) holds with k “ 2.

22˝. M˝
1 “ J and CrY1l,AspQ3q ‰ 1 for all 1 ď l ď k.

Put F :“ CM˝
1
pJq and F0 :“ OpppFQ3q

˝q. Note that F0 is normalized by FNM1
pQ3q. We claim

that F0 is normal in M1.
Define J0 :“ pJXM˝

1 q
8, so J0 is the largest perfect subgroup of JXM˝

1 . By (19˝) J “ K ďM˝
1

and so J “ pJ X M˝
1 qCM1pY1q. As J is perfect, we conclude that J “ J0CM1pY1q. By 1.52(c)

rCM1pY1q,M
˝
1 s ď OppM

˝
1 q. Since rF, J0s ď CM1pY1q and J0 ď M˝

1 , this gives rF, J0, J0s ď OppM
˝
1 q.

As J0 is perfect, the Three Subgroups Lemma implies rF, J0s ď OppM
˝
1 q. In particular, J0 normalizes

F0OppM
˝
1 q. Since OppM

˝
1 q ď F , OppM

˝
1 q normalizes F0. Hence OppF0OppM

˝
1 qq “ OppF0q “ F0, and

F0 is normalized by J0. As seen above, also FNM1
pQ3q normalizes F0. Since CM1

pY1q ď NM1
pQ3q

by Q! and J “ J0CM1pY1q, this shows that F0 Ĳ JFNM1pQ3q.
By (19˝) either J – SLnpqq and M˝

1 “ FJ or J „ 3.Altp6q and |M˝{J | ď 2, thus in any case

M˝
1 “ FJQ3. Moreover, since Q3 is a weakly closed subgroup of G, a Frattini argument shows

M1 “ FJNM1
pQ3q. As proved above F0 Ĳ JFNM1

pQ3q and thus F0 ĲM1, as claimed.
Suppose that F0 ‰ 1. Then we can apply (13˝) with N “ pFQ3q

˝ and conclude that pFQ3q
˝

does not normalizes any non-trivial subgroup of rY1, As. But A ď J , so rA,F s “ 1, and F normalizes
rY1, As. By the choice of Q3, also Q3 normalizes rY1, As, a contradiction.

Thus F0 “ 1, pFQ3q
˝ is a p-group and pFQ3q

˝ “ Q3. Hence

rF ,Q3s ď F XQ3 ď OppF q ď OppM1q “ 1.

If J „ 3.Altp6q we get rZpJq, Q3s “ 1 and so M˝
1  3.Symp6q and J “M˝

1 .

Suppose now that J – SLnpqq. We have

M˝
1 “ xQ

M1
3 y “ xQ

FJNM1
pQ3q

3 y “ xQJ3 y ď Q3J,

and so M˝
1 “ Q3J . Hence FJ{J is a p-group. Since F X J ď ZpF q this implies that F is nilpotent.

As OppF q “ 1 we conclude that F is a p1-group. Since FJ{J is a p-group, we get F “ F X J ď J

and again M˝
1 “ J . So the first statement in (22˝) holds. In particular, Q3 ď Op

1

pNJprY1, Asqq and
Q3 normalizes each Y1l. Hence also the second statement holds.

Recall that A “ V2 XR1.

23˝. Put q :“ |V1R2{R2| and xV2 :“ V2{V2 X ZpL2q. Then the following hold:

(a) q “ |V1R2{R2| “ |V2R1{R1| “ |V2{A|.
(b) k “ 2 “ r2.

(c) |xV2| “ q4, and every composition factor for L2 on xV2 is a natural SL2pqq-module for L2.

In particular, every non-trivial proper L2-submodule of xV2 is a natural SL2pqq-module for
L2.

By (2˝) CV2
pV1q “ CV2

pY1q. Since A “ V2 XR1, also CApV1q “ CApY1q and

(I) |A{CApV1q| “ |A{CApY1q|
(8˝)
ě |V1R2{R2|

(1˝)
ě |V2R1{R1| “ |V2{V2 XR1| “ |V2{A|.

From 5.4(d) we get L2 “ xV1, V
x
1 yV2 for a suitable x P L2, and rX2, V1s “ 1 for suitable X2 P Y

L2
2 .

Note that rV2, V1s ď V1 X V2 ď CV2
pV1q and so X2rV2, V1s ď CV2

pV1q and recall that V2 is abelian.
It follows that

V2 “ xY
L2
2 y “ xXL2

2 y “ X2rV2, L2s “ X2rV2, xV1, V
x
1 yV2s “ X2rV2, V1srV2, V

x
1 s “ CV2

pV1qCV2
pV x1 q

and
CV2pV1q X CV2pV

x
1 q “ CV2pxV1, V

x
1 yV2q “ CV2pL2q “ V2 X ZpL2q.



5. THE SHORT ASYMMETRIC CASE 93

Thus

(II) xV2 “
{CV2pV1q ˆ

{CV2pV
x
1 q.

and so

(III) | {CV2pV1q| “ |xV2{
{CV2pV

x
1 q| “ |V2{CV2pV

x
1 q| “ |V2{CV2pV1q| “ |V2{A||A{CApV1q|.

As by (I) |V2{A| ď |A{CApV1q|, this gives

(IV) | {CV2
pV1q| “ |V2{A||A{CApV1q ď |A{CApV1q|

2.

By 5.7(c) rV1, As X ZpL2q “ 1 and so

(V) |rV1, As| “ |{rV1, As| ď | {CV2pV1q| ď |A{CApV1q|
2.

Let y P Y1lzCY1
pAq and a P AzCApY1q. Since by (10˝) A is a strong offender on Y1, CY1

pAq “ CY1
paq

and so ry, as ‰ 1. Thus CApyq “ CApY1q. Hence

|rY1l, As| ě |ry,As| ě |A{CApyq| “ |A{CApY1q|.

Since this holds for all 1 ď l ď k,

|rY1, As| ě |A{CApY1q|
k.

Now (V) implies

|A{CA{V1q|
2 ě |rV1, As| ě |rY1, As| ě |A{CApY1q|

k ě |A{CApV1q|
k.

Hence k “ 2 since k ą 1, and |rV1, As| “ |A{CApV1q|
2. From this we conclude that equality holds in

(V), so

(VI) | {CV2
pV1q| “ |A{CApV1q|

2.

As a consequence equality holds in (IV) so |V2{A| “ |A{CApV1q|, and then equality holds in (I), so

(VII) q “ |V1R2{R2| “ |V2R1{R1| “ |A{CApV1q| “ |V2{A|.

In particular, (23˝)(a) is proved. Moreover,

(VIII) | {CV2
pV1q|

(VI)
“ |A{CApV1q|

2 (VII)
“ q2 and |V2{CV2

pV1q|
(III)
“ | {CV2

pV1q| “ q2.

Hence

|xV2|
(II)
“ | {CV2

pV1q ˆ
{CV2
pV x1 q| “ |

{CV2
pV1q||

{CV2
pV x1 q| “ |

{CV2
pV1q|

2 “ pq2q2 “ q4.

Also |V2{CV2pV1q| “ q2 “ |V1R2{R2|
2, and so (3˝) shows that r2 “ 2 and V1 is a non-trivial offender

on each non-central chief factor X of L2 on V2. Since L2 is V1V2-minimal we can apply C.11 and

conclude that X is natural SL2pqq-module for L2. In particular, |X| “ q2. Since r2 “ 2 and |xV2| “ q4

this show that all composition factors of L2 on xV2 are non-central. Thus (23˝)(c) holds.
As proved above k “ 2 and r2 “ 2. So also (23˝)(b) holds, and (23˝) is proved.

Define J2 :“ JM2pY2q. By (23˝)(a) |V1R2{R2| “ |V2R1{R1|, so our initial choice of notation
given in (1˝) holds with 1 and 2 interchanged. Hence also all the results proven are also valid with 1

and 2 interchanged. In particular, (21˝) shows that there exist isomorphic Op
1

pNJ2prY2, V1 XR2sqq-
submodules Y2l, 1 ď l ď 2, such that Y2 “ Y21 ˆ Y22.

Put V2l :“ xY L2

2l y and E :“ xpV1 X R2q
L2y. By 5.7(a), rV2, V1 X R2s ď Y2 X ZpL2q, and so

conjugation in L2 gives rV2, Es ď Y2 X ZpL2q. Note that Y2l ď V2. So rY2l, Es ď Y2 X ZpL2q and
again by conjugation in L2, rY2l, Es “ rV2l, Es. Hence

rV2l, Es “ rY2l, Es ď Y2 X ZpL2q.

Moreover, since rY2, V1 XR2s ď Y2 X ZpL2q and E ď L2, E centralizes rY2, V1 XR2s.
We first show that E ď J2. Let x P L2. Note that pY2, Y

x
1 q is a symmetric pair with indicators

L2 and Lx1 . Moreover, Y x1 ę R2.
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Suppose that Y2 ę Rx1 . Then pY2, Y
x
1 q fulfills the hypothesis of the lemma and so by (11˝),

applied to the symmetric pair pY x1 , Y2q in place of pY2, Y1q, V
x
1 XR2 is a best offender on Y2. Thus

V x1 XR2 ď J2. Suppose that Y2 ď Rx1 . By 5.7(d) applied with pY x1 , Y2q in place of pYj , Yiq we have
rV2 XR

x
1 , V

x
1 XR2s “ 1. In particular, rY2, V

x
1 XR2s “ 1 since Y2 ď Rx1 . So again V x1 XR2 ď J2.

We have shown that all L2-conjugates of V1 X R2 are in J2, and so E “ xpV2 X R1y
L2y ď J2.

Therefore, E ď Op
1

pCJ2prY2, V1 X R2sqq. Thus Y21 and Y22 are isomorphic E-submodules of Y2.
Hence

(IX) rV2l, Es “ rY2l, Es ď Y2l X ZpL2q.

Note that rY2, V1 X R2s ‰ 1, Y2 “ Y21 ˆ Y22 and Y21 and Y22 are isomorphic V1 X R2-modules.

Thus rY21, V1 XR2s ‰ 1. Suppose that xV21 ď xV22. Then

1 ‰ rY21, V1 XR2s ď rV22, V1 XR2s ď rV22, Es
(IX)
ď Y22 X ZpL2q,

which contradicts rY21, V1 XR2s ď Y21 and Y21 X Y22 “ 1.

Thus xV21 ę xV22 and by symmetry xV22 ę xV21. By (23˝)(c) every non-trivial proper L2-submodule

of xV2 is natural SL2pqq-module. It follows that xV2 “ xV21 ˆ xV22, and xV2l is a natural SL2pqq-module
for L2.

Put ĂL2 :“ L2{CL2p
xV2q. By C.14 xV21 and xV22 are isomorphic L2-modules and ĂL2 – SL2pqq.

Since by (23˝)(a) |V1R2{R2| “ q, this gives ĂV1 P SylppĂL2q. By 5.4(d) there exists X2 P Y
L2
2 with

rX2, V1s “ 1. Since NL2
pX2q is a maximal parabolic subgroup of L2 containing V1, we conclude

that N
ĂL2
pX2q “ N

ĂL2
pĂV1q. As xV2 is the direct sum of isomorphic natural SL2pqq-modules, C

xV2
pV1q

is a direct sum of simple NL2
pX2q submodules (of order q), and any simple NL2

pX2q-submodule of

C
xV2
pV1q is contained in a simple L2-submodule of xV2. Since rxX2, V1s “ 1 and xV2 “ xxY2

L2

y “ xxX2

L2

y,

this implies that xX2 “ C
xV2
pV1q. In particular, either xX2 “xY2 or xV2 “ xX2

xY2.

By (VIII) | {CV2pV1q| “ q2. Since also |C
xV2
pV1q| “ q2, we conclude that {CV2pV1q “ C

xV2
pV1q.

Together with rY2, V1s ‰ 1 this gives xY2 ę C
xV2
pV1q. Thus xV2 “ xX2

xY2 and V2 “ CV2
pV1qY2. In

particular, since by (2˝) CV2pV1q ď V2 X R1 “ A, Y2R1 “ V2R1. By symmetry, also Y1R2 “ V1R2

and so
ĂY11

ĂY12 “ĂY1 “ĂV1 P SylppĂL2q.

By (23˝)(a), |xV2{ pA| “ |V2{A| “ q. Also |C
xV2
pY1q “ |C

xV2
pV1q| “ q2 and therefore | pA{C

xV2
pY1q| “ q “

|xV2{ pA|.
By (IX) rY2l, Es ď Y2l, so rY2l, V1XR2s ď Y2l. By symmetry also rY1l, V2XR1s “ rY1l, As ď Y1l.

Since Y11 X Y12 “ 1, we get rY11, As X rY12, As “ 1. By 5.7(c) rV2, V2 X R1s X ZpL2q “ 1, and since

A “ V2 XR1, we conclude that r pA, Y11s X r pA, Y12s “ 1.

Thus we can apply 5.10 with pĂL2, ĂY11, ĂY12,xV2, pAq in place of pH,B1, B2, V, Aq. Hence, there exists

h P L2 with rY11, pAs ď pAh and rY12, pAs X pAh “ 1, so rY11, As ď Ah and rY12, As XA
h ď Y1 XZpL2q.

By 5.7(b), Y1 X ZpL2q “ 1. Thus

rY12, As XA
h ď Y1 X ZpL2q “ 1.

On the other hand, (22˝) gives Cl :“ CrY1l,AspQ3q ‰ 1. We conclude that 1 ‰ C1 ď Ah, C2XA
h “ 1

and C2 ę Ah.
Put U :“ pY1 XR2q

h. Recall that V2 “ CV2
pV1qY2, so

A “ V2 XR1 “ CV2
pV1qpY2 XR1q.

Since rY1, As ‰ 1, this gives rY1, Y2XR1s ‰ 1. By symmetry rY2, Y1XR2s ‰ 1. By (7˝) applied with
1 and 2 interchanged, CY2pxq “ Y2XR1 for all x P V1XR2zCV1pY2q and so CY2pY1XR2q “ Y2XR1.
Thus

CV2
pY1 XR2q “ CCV2 pV1qY2

pY1 XR2q “ CV2
pV1qCY2

pY1 XR2q “ CV2
pV1qpY2 XR1q “ A.

Conjugation by h gives CV2
pUq “ Ah. As C1 ď Ah and C2 ę Ah, this shows that rC1, U s “ 1 while

rC2, U s ‰ 1.
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By 5.7(a), rV2, V1 X R2s ď ZpL2q. Since C2 ď V2 and U ď V1 X R2, we get rC2, U s ď ZpL2q.
Since C1 ď CGpQ3q, Q! implies U ď CGpC1q ď NGpQ3q, and since C2 ď CGpQ3q, also 1 ‰ rC2, U s ď
CGpQ3q. We conclude, again by Q!, that NGprC2, U sq ď NGpQ3q. As seen above, rC2, U s ď ZpL2q,
so

Y1 ď L2 ď NGprC2, U sq ď NGpQ3q.

Since Y1 ę R2 “ OppL2q this gives Y2 ę OppNGpQ3qq, a contradiction since Y1 is short and so also
Q-short.

This contradiction completes the proof of 5.11. l

5.12. Proof of Theorem E:

If V1 ď R2 or V2 ď R1, then Theorem E follows from 5.9.
Suppose that V1 ę R2 and V2 ę R1. Since Vi “ xY

Li
i y there exist hi P Li with Y h1

1 ę R2 and

Y h2
2 ę R1. As also pY h1

1 , Y h2
2 q is a symmetric pair for every h1 P L1, h2 P L2, we may assume that

Y1 ę R2 and Y2 ę R1. Now Theorem E follows from 5.11.





CHAPTER 6

The Tall char p-Short Asymmetric Case

In this short chapter we will show that YM is char p-tall in G provided that YM is tall and
asymmetric in G and the centralizers of the non-trivial elements of YM are of characteristic p. In
other words we show that the tall char p-short asymmetric case does not occur if the centralizers of
the non-trivial elements of YM are of characteristic p.

Theorem F. Let G be finite Kp-group, S P SylppGq, and let Q ď S be a large subgroup of G.
Suppose that M PMGpSq such that

(i) YM is tall and asymmetric in G.
(ii) CGpyq is of characteristic p for all 1 ‰ y P YM .

Then YM is char p-tall.

Proof. By 2.2(f) OppMq P SylppCGpYM qq. Since YM is tall we conclude that there exits a
subgroup L of G with OppMq ď L, OppLq ‰ 1 and YM ę OppLq. By 2.2(a) CGpOppMqq ď OppMq.
Since YM is asymmetric in G, 2.6(b) shows that OppMq is a weakly closed subgroup of G. By
2.2(e) YM “ Ω1ZpOppMqq and so by Hypothesis (ii) of Theorem F CGpyq is of characteristic p for
all 1 ‰ y P Ω1ZpOppMqq. Thus the hypothesis of 1.50 is fulfilled and we conclude that L is of
characteristic p. Hence YM is char p-tall. l

We remark that G “ Symp9q and M “ Symp3qoSymp3q provides an example for p “ 3 where YM
is tall and asymmetric in G, but not char p-tall. Similar examples occur in Altp9q, Altp10q, Symp10q
and Altp11q.
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CHAPTER 7

The char p-Tall Q-Short Asymmetric Case

In this chapter we treat the char p-tall Q-short asymmetric case. That is, M P MGpSq, YM is
asymmetric in G, and there exists a subgroup L such that

p˚q L has characteristic p, OppMq ď L and YM ę OppLq,

but YM ď OppNGpQqq. Here and in the next two chapters the subgroups in HGpOppMqq introduced
in Chapter 2 play a prominent role. These subgroups can be seen as being minimal satisfying p˚q. But
the crucial trick is to choose even smaller subgroups by looking at subgroups L ď H P HGpOppMqq
such that L is minimal satisfying YM ď L and YM ę OppLq. According to the Asymmetric L-Lemma
these subgroups L are in LGpYM q, see 2.16, so they have a very transparent structure. For example,
OppLq “ xpYM XOppLqq

Ly and

L{OppLq – SL2pqq, Szpqq, q :“ |YMOppLq{OppLq|, or D2r.

Since YM is Q-short we have rΩ1ZpOppHqq, Hs ‰ 1, see 7.1(e), and one can investigate the action
of L on quasisimple H-submodules U of Ω1ZpOppHqq. By 2.17, W :“ rU,Ls is a strong offender
on YM , so the action of xWM y on YM can be investigated via some of the FF-module results from
Appendix C.

Here is the main result of this chapter.

Theorem G. Let p be a prime, G be finite Kp-group, S P SylppGq, and let Q ď S be a large
p-subgroup of G. Suppose that M PMGpSq such that

(i) YM is Q-short 1 and Q đM ,
(ii) YM is char p-tall and asymmetric in G.

Then one of the following holds, where q is some power of p and M : :“M :{CM:pYM q:

(1) M˝ – SLnpqq, n ě 3, and YM is a corresponding natural module.
(2) p “ 2, M – O´4 p2q, Sp4p2q

1 or Sp4p2q, YM is a corresponding natural module, YM “

O2pMq, and NGpQq ď M :. Moreover, (in the O´4 p2q-case) for all non-singular x P YM ,
CGpxq is not of characteristic 2.

(3) There exists a unique M -invariant set K of subgroups of M such that YM is a natural
SL2pqq-wreath product module for M with respect to K. Moreover,
(a) YM “ OppMq.
(b) NGpQq ďM :.
(c) M˝ “ OppxKyqQ.
(d) Q acts transitively on K.
(e) If |K| ě 2 then q “ 2 or 4 and, for all K P K, CGpxrV,As | A P KztKuyq is not of

characteristic 2.

Table 1 lists examples for YM ,M and G fulfilling the hypothesis of Theorem G.

1Note that by 2.6(e) this is equivalent to YM ď OppNGpQqq.
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Table 1. Examples for Theorem G

Case rYM ,M
˝s for M˝ c Remarks examples for G

1 nat SLnpqq 1 NGpQq ďM Ln`1pqq
1 nat SL3p2q 1 NGpQq ďM Altp9q

1 nat SL4p2q 1 NGpQq ďM Mat24

* 2 nat Ω´4 p2q 1 M – O´4 p2q Altp10q
2 nat Sp4p2q

1 1 - Mat22p.2q
2 nat Sp4p2q 1 - Mat22.2
3 nat SL2pqq 1 - L3pqq
3 nat SL2p2q 1 - Sp4p2q

1

3 nat SL2p3q 1 - Mat12

3 nat ΓSL2p4q 1 - ΓL3p4q
* 3 nat SL2pqq wreath 1 |K| ą 1 pΓqL3pqq o 2-group, q “ 2, 4

Here c “ |YM{rYM ,M
˝s, and ˚ indicates that pchar YM q fails in G.

7.1. The Proof of Theorem G

Throughout this section we assume the hypothesis of Theorem G and use the notation introduced
there. Note that by 2.10 HGpOppMqq ‰ H (for the definition of HGpOppMqq see 2.1).

Choose H P HGpOppMqq. By definition of HGpOppMqq, OppMq ď H and so we can choose
T P SylppH XM :q with OppMq ď T . By 2.6(b) OppMq is a weakly closed subgroup of G, and so
T ď NGpOppMqq ď NGpYM q. Thus there exists g P NGpOppMqq with T g ď S. Since g normalizes
OppMq and YM , Hg P HGpOppMqq, and replacing H by Hg we may assume that T ď S.

Lemma 7.1. (a) T P SylppHq and OppHq ď T ď S ďM .
(b) YM ď OppMq ď T and YH ę OppHq.
(c) Ω1ZpSq ď Ω1ZpT q ď YM X YH .
(d) rΩ1ZpSq, Hs ‰ 1, rYH , Hs ‰ 1, rΩ1ZpOppHqq, O

ppHqs ‰ 1 and YH “ Ω1ZpOppHqq.
(e) YM ď OppCHpCYH pT qqq.
(f) YM X YH “ CYH pOppMqq “ CYM pOppHqq.

Proof. (a): By 2.6(c) HXM : is a parabolic subgroup of H and so T P SylppHq. In particular,
OppHq ď T . By the above choice T ď S ďM and so (a) holds.

(b): The first statement is true by choice of T and the second by definition of HGpOppMqq.

(c): By 2.2(a) and (e), CGpOppMqq ď OppMq and Ω1ZpOppMqq “ YM . Since OppMq ď T ď S
this gives Ω1ZpT qΩ1ZpSq ď YM and

Ω1ZpSq “ CYM pSq ď CYM pT q “ Ω1ZpT q.

Thus Ω1ZpSq ď Ω1ZpT q ď YM , and by 1.24(g), Ω1ZpT q ď YH , and (c) holds.

(d): Suppose that rΩ1ZpSq, Hs “ 1. Then Q! shows that H ď CGpΩ1ZpSqq ď NGpQq. But then
by 2.12(a) YM is Q-tall, a contradiction.

Hence rΩ1ZpSq, Hs ‰ 1. By (c), Ω1ZpSq ď YH and so rYH , Hs ‰ 1. Since by 2.11(e) H is
p-irreducible, 1.35 implies rΩ1ZpOppHqq, O

ppHqs ‰ 1 and YH “ Ω1ZpOppHqq. Hence (d) holds.

(e): By (c) Ω1ZpSq ď YH and so Ω1ZpSq ď CYH pT q. Put C :“ CHpCYH pT qq. Then

YM ď OppMq ď C ď CGpΩ1ZpSqq.

By Q!, CGpΩ1ZpSqq ď NGpQq, and by Hypothesis (i) of Theorem G (and its footnote) YM ď

OppNGpQqq. Hence YM ď C XOppNGpQqq ď OppCq, and so (e) holds.

(f): Both groups, H and M , are of characteristic p, and by (d) and 2.2(e), respectively, YH “
Ω1ZpOppHqq and YM “ Ω1ZpOppMqq. Hence CHpOppHqq ď OppHq and so

YM X YH ď CYM pOppHqq ď Ω1ZpOppHqq “ YH ,
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and with a symmetric argument YM X YH ď CYH pOppMqq ď YM . Now (f) follows. l

According to 7.1(d) rΩ1ZpOppHqq, O
ppHqs ‰ 1. Hence H satisfies the hypothesis of 2.17. In

particular, LHpYM q ‰ H and there exists a quasisimple H-submodule of YM . We fix the following
notation:

Notation 7.2. (a) U is a quasisimple H-submodule of YH , pU “ U{CU pO
ppHqq, rH “

H{CHpUq and rq “ |ĄYM |.
(b) L P LHpYM q, W :“ rU,Ls, R :“ CYM pLq, A “ OppLq and l P LzNLpYM q.
(c) K is the subnormal closure of W in M , K˚ :“ xWM y “ xKM y and Y :“ rYM ,Ks.

Remark 7.3. Note that we can apply 2.17 with pH,L,U,W q in place of pH,L, V,W q. In par-
ticular, W is a strong offender on YM .

By definition of LGpYM q, L is YM -minimal with L XM : the unique maximal subgroup of L
containing YM . In particular, OppLqYM ď L XM :. So OppLq normalizes YM , and we can apply
1.43 with YM in place of Y .

We will use these two results, 2.17 and 1.43, frequently.

Lemma 7.4. (a) If rOppHq, YM s ď rW,YM s then rOppHq, O
ppHqYM s “ rOppHq, O

ppHqs “
U .

(b) K “ xWKy “ OppKqW .
(c) W ď ZpAq ď A ď OppHq.
(d) A “ LXOppHq and YM XA “ YM XOppHq.
(e) CYM pAq ď CYM pW q “ CApYM q “ YM XA “ ry,AsR “ CApyq for every y P YMzA.
(f) OppHq normalizes K, Q and any perfect K-submodule of YM .

Proof. (a): Suppose that rOppHq, YM s ď rW,YM s. As W ď U Ĳ H this gives rOppHq, YM s ď
U . By 2.11(d) xY HM y “ OppHqYM , and since U is H-quasisimple, U “ rU,Hs “ rU,OppHqs. So

U “ rU,OppHqs ď rOppHq, O
ppHqYM s “ rOppHq, xY

H
M ys ď U,

and (a) holds.

(b): Since K is the subnormal closure of W , this follows from 1.13.

(c): By 2.17(b) W ď ZpAq and A ď OppHq.

(d): Note that A ď LXOppHq ď OppLq “ A and so LXOppHq “ A. Since YM ď L we also get
YM XA “ YM XOppHq.

(e): By 1.43(g) applied with Y “ YM and B “ A,

YM XA “ CApYM q “ CApyq “ rA, ysCYM pLq “ rA, ysR

for y P YMzA. Since L is p-minimal, L is p-irreducible. Also rW,OppLqs “W ‰ 1, and 1.34(a) gives
CYM pW q “ YM XOppLq “ YM XA. Since by (c) W ď A, CYM pAq ď CYM pW q.

(f): Since W ď U ď YH , OppHq centralizes W . As OppHq ď T ď S ď M , we get OppHq ď
NM pW q. Hence OppHq normalizes the subnormal closure K of W in M . Since OppHq ď S, OppHq
also normalizes Q.

Let X be a perfect K-submodule of YM , and let h P OppHq. Since X ď L, X normalizes W
and since W ď K, W normalizes X. So rX,W s ď X XW ď CXphq ď Xh. Since h normalizes K,
K normalizes Xh. Also K “ xWKy and thus X “ rX,Ks “ rX, xWKys ď Xh and so X “ Xh. l

Lemma 7.5. (a) R “ CYH pHq. In particular, RX U “ CU pHq.
(b) U X YM “ rW,YM spU XRq “ rU, YM spU XRq.
(c) W X YM “ rW,YM s and W XR “ rW,YM s XR.
(d) CU pYM q “ U XOppMq and CU pOppMqq “ U X YM .
(e) CRpQ

gq “ 1 for all g P G.
(f) CGpM

˝q “ 1. In particular, CYM pM
˝q “ 1.

(g) CT pUq “ CT ppUq “ OppHq.
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Proof. (a): By 7.1(f), CYH pOppMqq “ YM X YH “ CYM pOppHqq. Since OppMqOppHq ď H
this gives CYH pHq “ CYHXYM pHq “ CYM pHq.

By 2.17(a), H “ xOppMq, Ly. Recall that R “ CYM pLq and both OppMq and L centralize R.
Thus R “ CYM pHq, and (a) holds.

(b): Since B :“ U XA is an L-invariant subgroup of A, 1.43(g) gives

B X YM “ rB, YM sCBXYM pLq “ rB, YM spB XRq.

Note that U X YM ď OppHq X YM and by 7.4(d), OppHq X YM “ A X YM . So U X YM “

U X pA X YM q “ B X YM . By 2.17(c) U “ WCU pYM q. Since W ď U X A “ B ď U this gives
rW,YM s “ rB, YM s “ rU, YM s, and so (b) holds.

(c): Recall from Notation 7.2(b) that l P LzNLpYM q and so by 1.42(f) L “ xYM , Y
l
M y. Since

W “ rU,Ls, 1.40 shows CW pYM q “ rW,YM s. Thus W XR “ CW pLq ď CW pYM q “ rW,YM s and so
W XR “ rW,YM s XR.

(d): Note that U ď OppHq ď S and by 2.2(f) CSpYM q “ OppMq. Thus CU pYM q “ U XOppMq.
Also U ď YH , and by 7.1(f), CYH pOppMqq “ YH X YM . So CU pOppMqq “ U X YM , and (d) holds.

(e): Assume that there exists g P G such that CRpQ
gq ‰ 1. By (a) H centralizes R and so

also CRpQ
gq. Thus by Q!, H ď NGpQ

gq, and by 2.12(a) YM is Q-tall, a contradiction, since YM is
Q-short by Hypothesis (i) of Theorem G.

(f): By Hypothesis (i) of Theorem G Q đM . Thus M˝ ‰ Q and 1.55(d) implies CGpM
˝q “ 1.

(g): Since U is quasisimple, pU is a non-central simple H-module. Thus rpU,OppHqs ‰ 1. By
2.11(e) H is p-irreducible, and so 1.34(a) gives (g). l

Lemma 7.6. Put H0 :“ xY HM y.

(a) pU is a non-central simple H0-module, and U is a quasisimple H0-module.

(b) Put K :“ EndH0
ppUq. Then K is a finite field and OppMq and H act K-linearly on pU .

(c) CHpUq “ CHppUq.

(d) Suppose that ČOppMq ď ĂH0. Then H “ H0CHppUq “ H0CHpUq “ H0OppHq and U X R “
CU pO

ppHqq.

(e) C
ĂH
pĂH0q ď ĂH0.

Proof. By 2.11(c),(d), H “ OppHqOppMq and YMO
ppHq “ xY

OppHq
M y “ xY HM y “ H0. So

H0 “ xY
H0

M y, and since pU is a non-central simple H-module, C
pU pH0q “ 1.

Note also that rU, YM , OppMqs ď rYM , OppMqs “ 1 and so rpU, YM s ď C
pU pOppMqq.

(a) : Let pI be a simple H0-submodule of pU . Since pU is a simple H-module with rpU,Hs ‰ 1

and H0 Ĳ H, also rpI,H0s ‰ 1, and since H0 “ xY
H0

M y, rpI, YM s ‰ 1. Hence also C
pIpOppMqq ‰ 1,

and since distinct simple H0-submodules have trivial intersection, OppMq normalizes pI. Thus pI is

invariant under H0OppMq “ H, and since pU is a simple H-module, pI “ pU . Since U is a perfect
H-module and OppHq ď H0, U is a perfect H0-module. As H0 Ĳ H and U is a p-reduced H-module,
U is a p-reduced H0-module. Hence U is a quasisimple H0-module, and (a) holds.

(b): Since by (a) pU is a simple H0-module, Schur’s Lemma shows that K is a finite division ring

and so by Wedderburn’s Theorem a field. Since H normalizes H0, H acts K-semilinearly on pU . Note

that rpU, YM s is a non-trivial K-subspace of pU centralized by OppMq. Thus OppMq acts K-linearly

on pU , and since H “ H0OppMq, also H acts K-linearly on pU .

(c): By 7.5(g) CT ppUq “ OppHq ď CHpUq. Also rU,CHppUqs ď CU pO
ppHqq and therefore

rU,OppCHppUqqs “ 1. Thus CHppUq “ OppCHppUqqCT ppUq ď CHpUq ď CHppUq.

(d): Suppose that OppMq ď H0CHppUq. Then H “ H0OppMq “ H0CHppUq, and by (c) also

H “ H0CHpUq. Hence OppMq ď T ď pT X H0qCT ppUq. By 7.5(g) CT ppUq “ OppHq and so
OppMq ď pT XH0qOppHq. This shows that H “ H0OppMq “ H0OppHq, and the first part of (d) is
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proved. By 2.17(d), CU pO
ppHqq “ CU pH0q. Since H “ H0CHpUq, CU pHq “ CU pH0q and by 7.5(a),

CU pHq “ U XR. Thus CHpO
ppHqq “ U XR.

(e): By (c) rH “ H{CHppUq. Since pU is a simple H0-module we conclude that C
ĂH
pĂH0q is p1-group.

As H “ H0OppMq, H{H0 is a p-group and so C
ĂH
pĂH0q ď ĂH0. l

Lemma 7.7. (a) CYM pKq X CYM pQq “ 1.
(b) COppMqpxK

Qyq “ 1.

Proof. (a): Suppose for a contradiction that CYM pKq X CYM pQq ‰ 1. Then by A.54(c) K ď

NM pQq, and by A.54(e) K acts faithfully on X :“ CYM pQq. In particular, rX,Ks ‰ 1 and since
K “ xWKy, also rX,W s ‰ 1.

Suppose first that |X{CXpW q| ą 2. Then 2.17(f) shows that rW,YM s “ rW,Xs ď X. Using
K “ xWKy this gives rK,YM s ď X “ CYM pQq and rYM ,K,Qs “ 1. Since K ‰ 1, this contradicts
A.54(d).

Hence |X{CXpW q| “ 2. By 7.4(c), (f) A ď OppHq, and OppHq normalizes Q and K. In
particular, A normalizes Q and K, and so

(I) rK,As ď K and rX,As ď X.

Choose y P XzCXpW q. By 7.4(c), W ď ZpAq. So y R A, and 7.4(e) gives YM XA “ CYM pW q “
ry,AsR. Also by 7.5(e), RXX ď CRpQq “ 1. Note that CXpKq “ CYM pKq X CYM pQq ‰ 1, and by
(I) ry,As ď rX,As ď X, so

1 ‰ CXpKq ď CYM pW q XX ď ry,AsRXX “ ry,AspRXXq “ ry,As.

By 1.43(a)

A1 “ rYM XA,As ď CYM pLq “ R.

On the other hand rYM XA,As ď rXR,As “ rX,As ď X and so A1 “ rYM XA,As ď RXX “ 1.
Thus A is abelian and so ry,As “ try, as | a P Au. As 1 ‰ CXpKq ď ry,As we can choose
a P A with 1 ‰ ry, as P CXpKq. From CXpW q ď CYM pW q “ YM X A we also get rCXpW q, As “
1. Since |X{CXpW q| “ 2, X “ xyyCXpW q, and it follows that rX, as “ xry, asy ď CXpKq and
CXpaq “ CXpW q. By (I) rK,As ď K, and so rK, as centralizes the factors of the K-invariant series
1 ď CXpKq ď X. As X is a faithful K-module we get rK, as ď OppKq ď OppMq “ 1. The
Three Subgroups Lemma now shows that rX,K, as “ 1 and rX,Ks ď CXpaq “ CXpW q. But then
rX,K,W s “ 1, and since K “ xWKy, rX,K,Ks “ 1, a contradiction since K is not a p-group and
acts faithfully on X. This completes the proof of (a).

(b): Put K0 :“ OppxKQyq and C :“ COppMqpK0q. Since K is subnormal in M , OppMq nor-
malizes OppKq and thus also K0 and C; in particular C Ĳ OppMq. Assume that C ‰ 1. Then
CXZpOppMqq ‰ 1, and since Ω1ZpOppMqq “ YM , also CXYM ‰ 1. On the other hand, xQ,Ky{K0

is a p-group, and so C X YM ‰ 1 implies CCXYM pxQ,Kyq ‰ 1. This contradicts (a). Hence C “ 1,
and (b) holds. l

Lemma 7.8. Let 1 ‰ X ď R and suppose that

OppCM pXqq “ 1 or rCYM pOppCM pXqqq,W s ‰ 1.

Then CGpXq is not of characteristic p.

Proof. Note that OppCM pXqq “ 1 implies YM “ CYM pOppCM pXqqq. Thus, also in this case

p˚q rCYM pOppCM pXqqq,W s ‰ 1.

Put P :“ OppCGpXqq. Since R ď YM , X ď YM and OppMq ď CGpXq. Hence 2.6(c) shows that

M : X CGpXq is a parabolic subgroup of CGpXq, and so P ď M :. Thus P ď OppCM:pXqq. As

M : “ MCGpYM q, M “ M : and so P ď OppCM pXqq. Hence CYM pOppCM pXqqq ď CYM pP q. Now
p˚q implies rCYM pP q,W s ‰ 1. By 7.4(e) CYM pW q “ YM XA, and so CYM pP q ę A “ OppLq.
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As X ď R “ CYM pLq, L ď CGpXq, and since CYM pP q ę OppLq, CYM pP q ę OppCGpXqq “ P .
Thus CGpXq is not of characteristic p. l

Lemma 7.9. Suppose that NGpQq ď NGpYM q. Then there exists t P AzCApYM q such that
rCDptq, Ls ď A for all p-subgroups D of M with rYM , Ds ď A.

Proof. By 7.5(e), Ω1ZpSq ď YM X YH ď YM XOppHq, and by 7.4(d), YM XOppHq “ YM XA,
so Ω1ZpSq ď CYMXApQq ‰ 1. Let l P LzNLpYM q and choose 1 ‰ t P CYMXApQq

l. By 7.5(e)
CRpQ

lq “ 1, so t R R. Since L “ xY lM , YM y, this gives rt, YM s ‰ 1. By Q!, CGptq ď NGpQ
lq, and

as NGpQ
lq ď NGpY

l
M q, CGptq normalizes Y lM . Since D normalizes YM , CDptq ď NGpxYM , Y

l
M yq “

NGpLq. In particular, CDptq acts on Y lMA{A, and since CDptq is a p-group, we can choose h P Y lMzA
with rh,CDptqs ď A. By 1.43(k) NLpYM q X Y lM ď A. So h R NLpYM q and L “ xh, YM y. Since
rYM , CDptqs ď YM XA ď A and rh,CDptqs ď A this gives rL,CDptqs ď A. l

Lemma 7.10. Suppose that YM is an offender on W . Then ĄYM P SylpprLq, and both, W {W XR

and xW , are natural SL2prqq-modules for rL.

Proof. By 1.43(h) CW {WXRpLq “ 1. Also W “ rW,OppLqs ę W X R and rW,OppLqs “ 1.
Hence 1.34(b) shows that W and W {W XR are p-reduced for L and CYM pW {W XRq “ YM XA “
CYM pW q. So YM is an offender on W {W XR. Since L is YM -minimal, C.13 shows that W {W XR
is a natural SL2prqq-module for L{A and YMA{A P SylppL{Aq. By 7.4(d) A “ L X OppHq, so
rL “ LOppHq{OppHq – L{A and ĄYM P SylpprLq.

By 2.17(e) W X R “ W X CYM pLq “ CW pO
ppHqq. Hence xW – W {W X R and so also xW is a

natural SL2prqq-module for rL, and the lemma is proved. l

Lemma 7.11. Suppose that YM is an offender on W . Then one of the following holds:

(1) pU is natural SL2prqq-module for H, YM “ OppMq “ CGpYM q, M “ M :, NGpQq ď M ,
H “ L and U “W .

(2) U is a natural SLmprqq-module for H, m ě 3, U XR “ 1 and ĄYM “ Zp rT q is a transvection
group on U .

Proof. Since YM is an offender on W , 7.10 shows ĄYM P SylpprLq and xW is a natural SL2prqq-

module for rL. It follows that

C
xW
pyq “ C

xW
pYM q and rxW, ys “ rxW,YM s

for all y P YMzCYM pW q. Also |ĄYM | “ |rq| “ |xW {C
xW
pYM q| and so YM is a root offender2 on xW . By

2.17(c), U “ WCU pYM q. Hence pU “ xWC
pU pYM q. It follows that YM is a root offender on pU . By

A.37(b) any root offender is a strong dual offender. Thus

1˝. YM is a strong dual offender and a root offender on pU .

Put H0 :“ xY HM y and K :“ EndH0
ppUq. By 7.6(a) pU is a non-central simple H0-module. Hence

we can apply the Strong Dual FF-Module Theorem C.5, and get:

2˝. One of the following cases holds:

(A) ĂH0 – Altp7q, p “ 2, and pU is a spin module of order 24 for ĂH0.

(B) ĂH0 – Oε2mp2q, m ě 2 and p “ 2, |ĄYM | “ 2, and pU is a natural Oε2mp2q-module for ĂH0.

(C) ĂH0 – SLmpq1q, m ě 3, and pU is a natural SLmpq1q-module for ĂH0.

(D) ĂH0 – Sp2mpq1q, m ě 1, or Sp4p2q
1 (and p “ 2), and pU is a corresponding natural module

for ĂH0.

(E) ĂH0 – Sympmq, m ě 5, m ‰ 6 and p “ 2, and pU is a natural Sympmq-module for ĂH0.

2For the definitions of a root offender and a strong dual offender see A.7(5),(6)
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Note here that Altp6q – Sp4p2q
1 and a natural Altp6q-module is also a natural Sp4p2q

1-module.
Similarly, SL2pq1q – Sp2pq1q, and a natural SL2pq1q-module is also a natural Sp2pq1q-module. So
these two cases are included in Case (D).

Suppose that Case (A) holds. Then ĂH0 – Altp7q and |pU | “ 24. Since Altp7q is a maximal

subgroup of Altp8q – GL4p2q and H0 Ĳ H, we conclude that rH “ ĂH0 – Altp7q. It follows that

there exists a proper subgroup P of H with O2pMq ď P and rP – Altp6q. Note that O2p rP q “ 1 and

so ĄYM ę O2p rP q. Hence also YM ę O2pP q. Since H P HGpO2pMqq this contradicts the definition of
HGpO2pMqq.

Suppose that Case (B) holds. Then rU is a natural Oε2mp2q-module for H0 and |ĄYM | “ 2. Since

YM Ĳ T and rpU, YM s “ 2 we conclude that rpU, YM s ď C
pU pT q, a contradiction since rpU, YM s is

non-singular and C
pU pT q is singular by B.9(c) and B.23(g) respectively.

Suppose that Case (C) holds. Then rU is a natural SLmpq1q-module for H0, m ě 3. Recall that

K “ EndH0p
pUq. Hence K is a finite field of order q1, and by 7.6(b), OppMq acts K-linearly on pU .

Since GLmpq1q{SLmpq1q is a p1-group this gives ČOppMq ď ĂH0. So 7.6(d) implies

H “ H0CHppUq “ H0CHpUq “ H0OppHq.

Since YM Ĳ T we can choose y P YMzCYM pUq with ry P Zp rT q. Note that Zp rT q is a transvection

group. So rpU, ys and pU{C
pU pyq are 1-dimensional over K and

Zp rT q “ C
xH
prrU, ysq X C

ĂH
pC

pU pyqq.

By (1˝) YM is a root offender on pU . Thus rpU, YM s “ rpU, ys and C
pU pYM q “ C

pU pyq. It follows

that ĄYM ď Zp rT q, and since YM is an offender on pU , ĄYM “ Zp rT q, ĄYM is a transvection group, and

q1 “ |Zp rT q| “ |ĄYM | “ rq.
Suppose that CU pHq ‰ 1. Since U “ rU,Hs and YM is a offender on W and so on U , C.22

shows that pU is a natural SL3p2q-module for H and |ĄYM | “ 4, a contradiction to 2 “ q1 “ rq “ |ĄYM |.
Thus CU pHq “ 1, U is a natural SLnprqq-module and U XR “ 1. So (2) holds in this case.

For the remainder of the proof we can assume now that Case (D) or (E) holds. We show next:

3˝. H “ H0OppHq “ HCHppUq “ HCHpUq, and one of the following holds:

(i) pU is a natural Sp2mprqq-module for H, m ě 1, and ĄYM acts as a transvection group on pU .

(ii) p “ 2, pU is a natural Sympmq module for H, m ě 5 and m ‰ 6, and ĄYM is generated by

a transposition of rH.

Suppose that Case (D) holds, so pU is a natural Sp2mpq1q-module, m ě 1, or Sp4p2q
1-module for

H0. By 7.6(b), H acts K-linearly on pU . Note hat K is a field of order q1 and the set of H0-invariant

symplectic forms on pU form 1-dimensional K-space. Since OppMq acts K-linearly on pU and is a p-
group, we conclude that OppMq acts trivially on this K-space. So any H0-invariant non-degenerate

symplectic form on pU is also OppMq-invariant.

Let X “ C
pU pT q and P “ CHpXq. Note that X is a 1-dimensional singular K-subspace of pU and

rXK, OppP qs ď X, cf. B.23(g) and B.28(b:b). Since OppMq ď T ď P ă H and H P HGpOppMqq we

have YM ď OppP q. Suppose that rXK, YM s ‰ 1. By (1˝) YM is a strong dual offender on pU and so

rpU, YM s “ rX
K, YM s “ X. But then C

pU pYM q “ r
pU, YM s

K “ XK contrary to rXK, YM s ‰ 1. Thus

rXK, YM s “ 1. Hence

q1 “ |pU{X
K| “ |U{CU pYM q| ď |ĄYM | ď |C

ĄH0
pXKq| ď q1.

Thus ĄYM is a transvection group on pU , and q1 “ |ĄYM | “ rq. Moreover, since Sp4p2q
1 does not

contain a transvection, ĂH0 – Sp2nprqq. As OppMq fixes the ĂH0-invariant symplectic forms we get
ČOppMqq ď ĂH0. Now 7.6(d) shows that the first statement of (3˝) holds. In particular, rH “ ĂH0 and

(3˝)(i) holds.
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Suppose that Case (E) holds, so pU is a natural Sympmq module for H0, m ě 5 and m ‰ 6,

and |ĄYM | “ 2. Since |ĄYM | “ 2 and YM is an offender, ĄYM is generated by a transposition. Note

that OutpSympmqq “ 1 since m ‰ 6. Hence OppMq induces inner automorphisms of ĂH0. By 7.6(e),

C
ĂH
pĂH0q ď ĂH0 and thus ČOppMq ď ĂH0. Now 7.6(d) shows that the first statement of (3˝) holds.

Thus rH “ ĂH0, and (3˝)(ii) follows. This completes the proof of (3˝).

4˝. U XR “ CU pO
ppHqq. In particular, pU “ U{U XR.

By 7.5(a) U X R “ CU pHq, by (3˝) H “ H0CHpUq, and by 2.17(d) CU pH0q “ CHpO
ppHqq.

Hence U XR “ CU pH0q “ CU pO
ppHqq.

Let Z2 be maximal in U XOppMq with rZ2, OppMqs ď U X YM and put E :“ rZ2, OppMqs.

5˝. xZ2 and pE are K-subspaces of pU , pE ď rpU, YM s, rpU, YM s is 1-dimensional, and pE is at
most 1-dimensional over K.

By 7.5(b), U X YM “ rU, YM spU X Rq. Since by (4˝) pU “ U{U X R, it follows that {U X YM “

rpU, YM s is a K-subspace of pU , and as U X R ď U X YM , xZ2 is maximal in pU with rxZ2, OppMqs ď
{U X YM . By 7.6(b), OppMq acts K-linearly on pU and so xZ2 is a K-subspace of pU . Hence also
pE “ rxZ2, OppMqs is a K-subspace of pU . By definition of E and Z2, pE “ rxZ2, OppMqs ď {U X YM “

rpU, YM s.

Since by (3˝) ĄYM is a transvection group (in the Sp2nprqq-case) or generated by a transposition

(in the Sympmq-case), rpU, YM s is 1-dimensional over K.

6˝. E XR “ 1.

If U X R “ 1 then also E X R “ 1. So we may assume that U X R ‰ 1. Suppose first that

Case (3˝)(i) holds, that is, pU is a natural Sp2mprqq-module. Note that CU pHq “ U X R ‰ 1 and
U “ rU,Hs. Thus C.22 shows that p “ 2, and U is a central quotient of a natural Ω2m`1prqq-module
qU for H. For X Ď U , let qX be the inverse image of X in qU . Since Z2 ď U XO2pMq “ CU pYM q,

xZ2 ď
{U XO2pMq ď C

pU pYM q “ r
pU, YM s

K.

As rxZ2, O2pMqs ď rpU, YM s this gives r|Z2, O2pMqs ď |Z2

K

. Hence by B.9(d) r|Z2, O2pMqs is a singular

subspace in qU . Since all the non-trivial vectors in qUK are non-singular, this gives r|Z2, OppMqsX qUK “
1. Taking images in U gives E XR “ E X pU XRq “ 1.

Suppose next that Case (3˝)(ii) holds, that is, pU is a natural Sympmq-module. Since UXR ‰ 1,

C.22 shows that m is even and U is the even permutation module for Sympmq. Let qU be the

permutation module for H with H-invariant basis v1, . . . , vm. Identify U with rqU,Hs “ xvi ` vj |

1 ď i ă j ď my such that ĄYM acts as xp1, 2qy. Put P :“ NHpĄYM q. Then rP – C2 ˆ Sympm´ 2q,

U XO2pMq “ CU pYM q “ xv1 ` v2, vi ` vj | 3 ď i ă j ď my

and

rU XO2pMq, P s ď xvi ` vj | 3 ď i ă j ď my.

Thus rUXO2pMq, P sXR “ 1. Since Z2 ď UXO2pMq and O2pMq ď P we have E “ rZ2, O2pMqs ď
rU XO2pMq, P s and so E XR “ 1. Thus (6˝) is proved.

7˝. E “ 1.

Suppose that E ‰ 1. Note that E ď YM , W ď U , K˚ “ xW
M
y “ xKM y, and by 7.7(b)

COppMqpxK
Qyq “ 1. Hence CYM pK

˚q “ 1. It follows that rE,Ugs ‰ 1 for some g PM . By definition
of Z2 and E, rZ2, U

g X OppMqs ď rZ2, OppMqs “ E. On the other hand Z2 ď U X OppMq ď
OppMq “ OppMq

g ď Hg and so Z2 normalizes Ug. Since Ug is abelian we have

rUg XOppMq, Z2s ď Ug X E ď CEpU
gq ă E.
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As by (6˝) RX E “ 1, this gives

rUg XOppMq,xZ2s ă pE.

Since Ug XOppMq acts K-linearly on pU and xZ2 is a K-subspace of pU , also rUg XOppMq,xZ2s is

a K-subspace of pU . As by (5˝) pE is at most 1-dimensional over K, this gives rUg XOppMq,xZ2s “ 1
and rUg XOppMq, Z2s ď RX E “ 1.

We now shift attention to Hg and the Hg-modules Ug and xUg :“ Ug{CUg pO
ppHgqq. Ob-

serve that OppMq ď Hg since g P M . From rUg, OppMqs ď Ug X OppMq we conclude that

rUg, OppMq, Z2s “ 1 and so also rxUg, OppMq, Z2s “ 1. Since xUg is selfdual as an Hg module, B.8

shows rxUg, Z2, OppMqs “ 1, and the Three Subgroup Lemma gives rE, xUgs “ rZ2, OppMq, xUgs “ 1.

By 7.5(g) CT pUq “ CT ppUq, and thus also CT g pU
gq “ CT g pxUgq, so rE,Ugs “ 1. This contradicts the

choice of g. Hence (7˝) holds.

8˝. U XOppMq “ U X YM .

By (7˝), rZ2, OppMqs “ E “ 1. By the definition of Z2 this means

CUXOppMq{UXYM pOppMqq “ Z2{U X YM “ 1,

and so U XOppMq “ U X YM .

We are now able to prove the Lemma. From (8˝) we have, rU,OppMqs ď UXYM ď YM , and since
W ď U and K “ xWKy, rK,OppMqs ď YM “ Ω1ZpOppMqq. Thus, 1.18 gives rΦpOppMqq,Ks “ 1
and so also rΦpOppMqq, xK

Qys “ 1. By 7.7(b), COppMqpxK
Qyq “ 1 and so ΦpOppHqq “ 1. It follows

that OppMq is elementary abelian. Hence OppMq “ Ω1ZpOppMqq “ YM . Since M P LGpSq we have
YM ď CGpOppMqq ď OppMq, and so CGpYM q “ YM and M : “ MCGpYM q “ MYM “ M . Since
YM is Q-short, OppMq “ YM ď Q, and since by 2.6(b) OppMq is a weakly closed subgroup of G,
NGpQq ď NGpOppMqqq ďM : “M .

Also by 2.17(a) H “ xL,OppMqy “ xL, YM y “ L and so U “ W . By 7.10 xW is a natural
SL2prqq-module for L, and so Case (1) of the lemma holds. l

Lemma 7.12. Suppose that there exists a non-degenerate K˚S-invariant symplectic form on
V :“ rYM ,K˚s. Put H0 :“ xY HM y.

(a) YM “ V CYM pW q and CYM pW q “ YM XA; in particular rV,W s “ rYM ,W s and CW pV q “
CW pYM q.

(b) W is a root offender on V and YM .
(c) V and YM are root offenders on W .
(d) |W | “ | W {CW pV q| “ |rV,W s| “ |V {CV pW q|.
(e) A “W ˆR, CYM pW q “ rV,W sˆR, rYM , OppHqs “ rV,W s, rOppHq, O

ppHqs “ U , and W

is a natural SL2prqq-module for rL.
(f) CV pW q “ rV,W s

K “ rV,W s ˆ pV XRq, and rV,W s is a singular subspace of V .
(g) |V | “ |W |2|V XR|.
(h) CGpYM q “ OppMq “ YM “ V R, M “M : and NGpQq ďM .
(i) H “ L and OppHq “ YH “ A “W ˆR “ CLpW q.

Proof. Since V carries a K˚S-invariant non-degenerate symplectic form, V is selfdual as an
FpK˚S-module. By 2.17(c), W is a strong offender on YM and so W is also a strong offender on the
submodule V of YM . Since V is selfdual, A.38 shows that W is a root offender on V . In particular,
by A.37,

(I) |rW,V s| “ |V {CV pW q| “ |W {CW pV q|.

(a): Since W is an offender on YM , |YM{CYM pW q| ď |W |, and (I) yields

|YM{CYM pW q| ď |W | “ |W {CW pV q| “ |V {CV pW q| “ |V CYM pW q{CYM pW q| ď |YM{CYM pW q|.

Thus YM “ V CYM pW q, and 7.4(e) gives CYM pW q “ YM XA.
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(b): We already know that W is a root offender on V . Since YM “ V CYM pW q by (a), W is also
a root offender on YM .

(c): Since W is a root offender on V , 1.21 shows that V is a root offender on W . Since
YM “ V CYM pW q, also YM is a root offender on W .

(d): By (a) CW pV q “ CW pYM q, and so |W {CW pV q| “ |W |. Now (d) follows from (I).

(e) and (f): By (a) rYM ,W s “ rV,W s. Let w PW zCW pV q. Then by 1.43(i), rw, YM sXCYM pLq “
1. By (c) V is a root offender on W and so by A.37(b), V is a strong dual offender on W . Thus
rw, V s “ rW,V s, and we conclude that rW,V s X R “ 1. By 7.5(c), W X R “ rYM ,W s X R. Since
rYM ,W s “ rV,W s, this gives W X R “ rV,W s X R “ 1. By (c) YM is an offender on W , so 7.10
shows that W –W {W XR is a natural SL2prqq-module for L.

By (a) CYM pW q “ YM XA, and we conclude that

V XA “ CV pW q “ rV,W s
K.

As rV,W s ď V XA, this implies that rV,W s is singular.
By 1.43(a), A1 ď CYM pLq “ R and so

rA, V XAs X rW,V s ď RX rW,V s “ 1.

Hence there exists a subgroup V0 of V X A with rA, V X As ď V0 and V X A “ rV,W s ˆ V0. Note
that A normalizes V0 and so also V K0 . From V0 X rV,W s “ 1 we get V “ V K0 rV,W s

K. Since
V XA “ rV,W sK this gives V “ V K0 pV XAq. Also

rA, V K0 s ď V K0 X rA, V s ď V K0 X pV XAq “ V K0 X rV,W sK “ pV0 ` rV,W sq
K

“ pV XAqK “ rV,W sKK “ rV,W s ďW.

Since V “ V K0 pV XAq and YM “ V CYM pW q “ V pYM XAq we have YM ď V A ď V K0 A, and so

rA, YM s ď rA, V
K
0 As “ rA, V

K
0 srA,As ďWA1 ďWR.

From L “ xY LM y we conclude rA,Ls ď WR. By 1.43(p) L has no central chief factors on A{R and
so A “WR, and since W XR “ 1, A “W ˆR. In particular, A is abelian.

Note that rW,V s ď W X V ď W X YM ď CW pV q. Since W is a natural SL2pq̃q module for L
we have rW,V s “ CW pV q and so rW,V s “ W X V “ W X YM . Recall that CYM pAq “ YM X A,
A “W ˆR and R ď YM XA. Hence

CYM pW q “ YM XA “ pYM XW qR “ rV,W s ˆR and CV pW q “ rV,W s X pRXW q.

Since A ďWR ď UR we have rA,OppHqs “ 1. In particular, V XA ď CV pOppHqq and so

rV,OppHqs “ CV pOppHqq
K ď pV XAqK “ rV,W s.

Since by (a) YM “ V pYM X Aq we get that rYM , OppHqs “ rV,W s “ rYM ,W s. Hence, (e) and (f)
are proved.

(g): By (f) CV pW q “ rV,W s ˆ pV X Rq and by (d) |W | “ |rV,W s| “ |V {CV pW q|. Thus
|V | “ |V {CV pW q||CV pW q| “ |W |

2|V XR|.

(h) and (i): Since YM is an offender on W , we can apply 7.11. We now treat the two cases
arising there separately.

Case 1. Suppose that 7.11(1) holds (pU is a natural SL2prqq-module for H).

According to 7.11(1) we have

YM “ OppMq “ CGpYM q, M “M :, NGpQq ďM, H “ L, U “W.

Then OppHq “ OppLq “ A, and by (e) A X YM “ rW,YM sR and A “ W ˆ R ď YH , so A “ YH
follows. By (e) CYM pW q “ rV,W sR, so (a) implies

YM “ V CYM pW q “ V rV,W sR “ V R.
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Since H is of characteristic p and A “ OppHq, CHpAq ď A. As A is abelian, CHpAq “ A. By 7.5(a),
R “ CYH pRq and so H centralizes R. Thus

CLpW q “ CHpW q “ CHpWRq “ CHpAq “ A “WR.

Hence (h) and (i) hold in this case.

Case 2. Suppose that 7.11(2) holds.

According to 7.11(2) U is a natural SLmprqq-module for H, m ě 3, and ĄYM is a transvection
group on U . Our goal is to derive a contradiction in this situation.

Put H1 :“ OppCHpYM XAqq and B :“ xV H1y. We show:

1˝. CYMXApQq ‰ 1. In particular, H1 ď NHpQq.

By (a) YM XA “ CYM pW q. Note that W ď S and Q ď S. Thus 1 ‰ CYM pSq ď YM XA and so
CYMXApQq ‰ 1. Then Q! implies H1 ď CGpCYMXApQqq ď NGpQq.

2˝. B{B XOppHq is a non-central simple H1-module and B XOppHq “ CBpH1q.

By (e) YM X A “ rW,YM s ˆ R “ rU, YM s ˆ R and by 7.5(a) rR,Hs “ 1. Hence H1 “

OppCHprU, YM sqq. Since ĄYM acts as a transvection group on U , rW,YM s “ rU, YM s is a 1-dimensional
K-space, where K :“ EndHpUq. Note that U{rU, YM s and C

ĂH
pU{rU, YM sq are natural SLm´1pqq

1-
modules for H1 dual to each other. In particular, H1 acts simply on C

ĂH
prU, YM sq and C

ĂH
prU, YM sq “

Opp rH1q. As

1 ‰ĄYM “ rV ď C
ĂH
prU, YM sq “ OppĂH1q,

the simple action of H1 gives rB “ OppĂH1q. Since B{B X OppHq – rB the first statement in (2˝)
holds.

As H1 acts simply on U{rU, YM s and centralizes rU, YM s, we have

CU pBq “ rU, YM s “ CU pH1q.

Since YM is Q-short, YM ď OppNGpQqq. Also S ď SylppNGpQqq and so OppNGpQqq ď S

and YM Ĳ OppNGpQqq. Now 2.5 shows that xY
NGpOppQqq
M y is abelian. Since V ď YM and by

(1˝) H1 ď NGpQq, we conclude that B is abelian. Moreover, by (a) YM “ V pYM X Aq and so
rU, YM s “ rU, V s. Hence

rU, YM s “ rU, V s ď U XB ď CU pBq “ rU, YM s “ CU pH1q

and so U XB “ CU pH1q.
By (e) rOppHq, O

ppHqs “ U . Since H1 ď OppHq this gives rOppHq, H1s ď U . Thus

rB XOppHq, H1s ď U XB ď CU pH1q,

and since H1 “ OppH1q, B X OppHq ď CBpH1q. Since B{B X OppHq is a non-central simple H1

module, CBpH1q ď B XOppHq and so (2˝) holds.

3˝. rV,W,Qs “ 1. Moreover, Q “ Qg for all g PM with CYMXApQ
gq ‰ 1.

Let g P M with CYMXApQ
gq ‰ 1. Suppose for contradiction that rV,W,Qgs ‰ 1. Then B.8

gives rV ˚, Qg,W s ‰ 1, where V ˚ is the Fp-dual of V . Note that V is a selfdual K˚Q-module and

so also a selfdual K˚Qg-module. Since WQg ď K˚Qg we conclude that rV,Qg,W s ‰ 1. Hence
rV,Qgs ę OppHq and so also rB,Qgs ‰ OppHq.

Note that rH1, CYMXApQ
gqs “ 1 and Q! show that H1 normalizes Qg. Since Qg normalizes

V , we conclude that Qg normalizes V h for any h P H1. It follows that Qg normalizes B, and H1

normalizes rB,Qgs. By (2˝) H1 acts simply on B{B X OppHq and CBpH1q “ B X OppHq. As
rB,Qgs ę B X OppHq this gives B “ rB,QgsCBpH1q. Hence rB,H1s ď rB,Q

gs and H1 normalizes
rB,QgsV . Thus

B “ xV H1y “ rV,H1sV ď rB,Q
gs

and B{V “ rB{V,Qgs, so B “ V . But since m ě 3, rV ď ĄYM ‰ OppĂH1q “ rB and so B ‰ V , a
contradiction.

We have proved that rV,W,Qgs “ 1. But then also rV,W,Qs “ 1, since by (1˝) CYMXApQq ‰ 1,
and so 1 ‰ rV,W s ď CGpQq X CGpQ

gq. Hence 1.52(e) gives Q “ Qg and (3˝) is proved.
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4˝. Put q :“ |W |. Then q “ rq, W “ Q “ U , K “ K˚ “ M˝ – SL2pqq, and V is a natural
SL2pqq-module for K.

Let g P M with Q ‰ Qg. Then (3˝) shows that CYMXApQ
gq “ 1 and rV,W,Qs “ 1. So also

rV,W g, Qgs “ 1. Since rV,W s ď CV pW q “ V XA, this gives

(II) CV pW q X rV,W s
g ď CV pW q X CV pQ

gq “ V XAX CV pQ
gq “ 1 for all g PMzNM pQq.

In particular, |CV pQ
gq| ď |V {CV pW q|. By (d), |V {CV pW q| “ |rV,W s|, and so |CV pQ

gq| ď |rV,W s|.
Since by (3˝) rV,W s ď CV pQq. we conclude that |rV,W s| ď |CV pQq| “ |CV pQ

gq| and so rV,W s “
CV pQq. Now Q! shows that NM prV,W sq “ NM pQq. Hence (II) gives CV pW q X rV,W s

g “ 1 for all
g PMzNM prV,W sq.

Since rYM ,W s “ rV,W s we have V “ rV,K˚s. Moreover, by (b) W is a root offender on V .

Hence M , D :“W
M

and V satisfy the hypothesis of C.12. We conclude that V is a natural SL2pqq-
module for K˚. Moreover, |W | “ q “ |rW,V s| “ rq. As rV,W,Qs “ 1 and NM prV,W sq normalizes
Q, Q “W . Hence

M˝ “ xQ
K˚
y “ xW

K˚
y “ K˚ “ K.

By 2.17(c) U “WCU pYM q. Hence U “W , and (4˝) holds.

5˝. OppHq “ YH “ U , CHpUq “ U and H{U – SLmpqq.

As R ď CYM pW q and by (4˝) W “ Q, rR,Qs “ 1. By 7.5(e), CRpQq “ 1, and so R “ 1.
Hence by 7.5(a) CYH pHq “ R “ 1. Since YH “ Ω1ZpOppHqq by 7.1(d), this gives COppHqpHq “
COppHqpO

ppHqq “ 1. By (h),

rOppHq, O
ppHqs “ U ď YH “ Ω1ZpOppHqq,

and 1.18 yields rΦpOppHqq, O
ppHqs “ 1. Hence ΦpOppHqq “ 1 and OppHq “ Ω1ZpOppHqq “ YH .

By (4˝) V is a natural SL2pqq-module for K˚ and q “ |W |. Since YH centralizes the Fq-
subspace rV,W s of YH we conclude that YH acts Fq-linearly on V . Hence YH ď K˚, YH “ W “ U
and YH ď UCM pV q. Thus YH “ CYH pV qU and V is an offender on YH . Hence C.22 shows that
YH “ UCU pHq “ U . Thus OppHq “ U , and since H is of characteristic p, CHpUq “ U and
H{U – SLmpqq, and (5˝) is proved.

We are now able to show that (Case 2) leads to a contradiction. By (4˝), M˝ – SL2pqq and Q “
U . So we can choose M1 minimal in M˝U with U ďM1 and rV,U s đM1. It follows M1 “M˝ and
CSpYM qU “ OppMqU “ OppMqQ. Thus U ď M˝OppMq and M1 ď M˝U ď M˝OppMq. Also M1

acts transitively on V , and so by 1.57(c), M˝ “ xQM1y ďM1OppMq. Thus M1OppMq “M˝OppMq.
The minimal choice of M1 shows that M1 “ xUM1y. Thus, since OppMq normalizes U , it also
normalizes M1. Therefore

OppM1q “ OppM1OppMqq “ OppM˝OppMqq “ OppM˝q “M˝.

Since by 1.55(d) COppMqpM
˝q “ 1, this gives COppMqpM1q “ 1 and thus CU pM1q “ 1. Note that

U đ M1 and NM1
prV,U sq is the unique maximal subgroup of M1 containing U . Hence M1 is

U -minimal, and we can apply 1.43.
Put D :“ xU X OppM1q

M1y and let m P M1zNM1prV,U sq. Then by 1.43(e), D “ pU X Dq ˆ
pUm X Dq, by 1.43(a), ΦpDq ď CU pM1q “ 1, and by 1.43(p) M1 has no central chief factor on
D{CDpM1q – D. Hence D “ rD,M1s. Note that

rU,OppMqs ď U XOppMq ď U XOppM1q ď CU pV q ď U XOppMq,

and so

rU,OppMqs ď U XOppMq “ CU pV q “ U XOppM1q “ U XD.

Hence D “ rOppMq, O
ppM1qs “ rOppMq,M˝s ĲM .

Recall that U is a natural SLmprqq module and ĄYM is a transvection group on U . By (4˝) q “ rq,

and by (a) rV “ ĄYM . Hence U X D “ CU pV q is an Fq-hyperplane of U . In particular, U X D has

order qm´1. As D “ pU XDq ˆ pUm XDq, D has order q2pm´1q and UD has order q2m´1.
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Put H2 :“ NHpCU pV qq “ NHpU XDq. By (5˝) CHpUq “ U and thus |CHpUq| “ qm. Since U

is a natural SLmpqq-module for U , CHpCU pV qq{CHpUq is a natural SLm´1pqq-module for Op
1

pH2q

(isomorphic to CU pV q), and so has order qm´1. Thus, |CHpCU pV qq| “ qmqm´1 “ q2m´1 “ |UD|.
Note that D and V are abelian. Hence UD ď CHpU XDq “ CHpUV q and UD “ CHpCU pV qq Ĳ H2.

As U X D is an Fq-hyperplane of U and the elements of D act Fq-linearly on U , for every
d P DzCDpUq

CDU pdq “ DCU pdq “ DpU XDq “ D.

In particular, for every elementary abelian subgroup E ď DU either E ď D or EXD “ EXCDpUq.
In the latter case |E{E X CDpUq| ď q since |DU{D| “ q, while |D{CDpUq| “ qm´1. As m ě 3 we
conclude that D is the only maximal elementary abelian subgroup of order q2pm´1q in DU . Since
UD Ĳ H2 we get H2 ď NGpDq.

As we have seen above, D Ĳ M and so M ď NGpDq. The basic property of M gives H2 ď

NGpDq ďM : and YM Ĳ H2. But ĄYM is a transvection group on U and since m ě 3 we get ĄYM đ ĂH2,
a contradiction. l

Lemma 7.13. Put K :“ K
M

. Then

p˚q K˚ “
ą

FPK
F and rYM ,K˚s “

ą

FPK
rV, F s.

Moreover, one of the following holds, where q is a power of p:

(A) K ĲM , K “M˝ – SLnpqq, n ě 3, and Y is a natural SLnpqq-module for K.
(B) M˝ “ OppK˚qQ and there exists a non-degenerate K˚ S-invariant symplectic form on

rYM ,K˚s. In addition, one of the following holds:
(1) K Ĳ M , K – Sp2npqq, n ě 1, or Sp4p2q

1 (and p “ 2), and Y is a corresponding
natural module for K,

(2) K Ĳ M , p “ 2, K – Oε2np2q, n ě 2 and pn, εq ‰ p2,`q, and Y is a corresponding

natural module for K. Moreover, M˝ “ K
1
– Ωε2np2q and |W | “ |YM{CYM pW q| “ 2.

(3) K đM , YM is a natural SL2pqq-wreath product module for M with respect to K, and
Q acts transitively on K.

(C) (a) K ĲM , Y “ YM and |Y {CY pW q| “ 4.
(b) Put M2 :“ NM pCY pW qq and K2 :“ CM2

`

Y {CY pW q
˘

. Then K2 ď K, and there exists
an M2-invariant set tV1, V2, V3u of K2-submodules of Y such that Y “ Vi ˆ Vj for all
1 ď i ă j ď 3.

(c) For all 1 ď i ď 3 and 1 ‰ x P CVipW q there exists g PM with rx,Qgs “ 1.
(d) One of the following holds:

(1) p “ 2, K “ K
1
– SLnp2q, n ě 3, tV1, V2, V3u is the set of proper K-submodules

of YM , and the Vi’s are isomorphic natural SLnp2q-modules for K. Moreover,
M˝ – SLnp2q, SLnp2qˆSL2p2q or SL2p2q, with K ďM˝ in the first two cases
and rK,M˝s “ 1 in the last case.

(2) p “ 2, K “ K
1
ďM˝, K – 3.Altp6q and M˝ – 3.Altp6q or 3.Symp6q, and YM

is corresponding natural module for K.

Proof. Recall that YM is a p-reduced Q!-module for M . By 2.17(c), W is a non-trivial strong
offender on YM , and by 2.17(a), rW,YM s “ rW,Xs for all X ď YM with |X{CXpW q| ą 2. Thus we
can apply C.25. Hence (˚) holds. Also most of the other statements follow directly from C.25, but
we still need to show:

(Task 1) In cases C.25(1:b:2), (1:b:3),(1:b:5),(2) (Y is a natural Sp2npqq-, Sp4p2q-, Sp4p2q
1-, Oε2np2q-

or SL2pqq-module for K) show that there exists an K˚ S-invariant non-degenerate sym-
plectic form on rYM ,K˚s over Fp (to prove (B)).

(Task 2) In case C.25(1:b:4) (Y is natural 3.Altp6q-module for K) show that YM “ Y , |Y {CY pW q| “
4, K2 ď K, and prove the existence of tV1, V2, V3u fulfilling (C:b) and (C:c).

(Task 3) In case C.25(4) (Y is a direct sum of two isomorphic natural SLnpqq-module and rK,M˝s “

1) show that K ĲM and Y “ YM (to prove (C)).
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(Task 4) In cases C.25(3) and (4) (Y is a direct sum of two isomorphic natural SLnpqq-modules)
prove K2 ď K and the existence of tV1, V2, V3u fulfilling (C:b), (C:c) and (C:d:1).

(Task 1): Put K :“ EndKpY q. Then K is a finite field (of order q or 2 depending on the case).
Also in each case there exists a K-invariant non-degenerate symplectic form s on Y over K. Note
here that SL2pqq – Sp2pqq and a natural SL2pqq-module is also a natural Sp2pqq-module. Moreover,
s is unique up to multiplication by a non-zero k P K. Since |K| ´ 1 is not divisible by p, we can
choose s to be NSpKq-invariant. If K ĲM we are done.

Assume that K đM . Then we are in Case (2) of Theorem C.25, so K – SL2pqq, Y is a natural
SL2pqq-module for K, and Q and so also S acts transitively on K.

Let F P K with F ‰ K. Then p˚q shows that rF,Ks “ 1 and rYM ,Ks X rYM , F s “ 1. So
F ď CK˚pY q and

K˚ “ KCK˚pY q.

For any F P K choose g P K˚ S with F “ K
g
. Define a symplectic form sF on rYM , F s “ Y g via

sF pv
g, wgq :“ spv, wq for all v, w P Y . If also F “ K

h
for some h P K˚S, then

h´1g P NK˚SpKq “ NSpKqK
˚ “ NSpKqKCK˚pY q,

and we conclude that the definition of sF is independent of the choice of g.
By p˚q, YM “

Ś

FPKrYM , F s, and so there exists a unique symplectic form t on YM such that
the restriction of t to rYM , F s is sF for all F P K, and rYM , F s K rYM , F

˚s for distinct F, F˚ P K.
Then t is K˚S-invariant, and (Task 1) is accomplished

(Task 2): By coprime action YM “ CYM pZpKqq ˆ rYM , ZpKqs, and since ZpKq acts fixed-point
freely on Y “ rYM ,Ks, YM “ CYM pKqˆY . Since M˝ ď K and by 1.55(d) CYM pM

˝q “ 1, this gives
YM “ Y .

As W is a nontrivial (strong) offender on YM , the Offender Theorem C.4(e) gives

|Y {CY pW q| “ 4 “ |W | and CY pW q “ rW,Y s.

Let V be the set of 3-dimensional K2-submodules of Y . By C.16 M2 is a parabolic subgroup of
M , M2 “ NM pW q, K2 “ O21pNKpW qq, V “ tV1, V2, V3u, ZpKq acts transitively on V, Y “ Vi ˆ Vj
for all 1 ď i ă j ď 3, and CVipW q is a natural SL2p2q-module for K2. In particular, K2 ď K. Let
1 ‰ x P CVipW q. Since ZpKq ď M2, M2 acts transitively on the three elements of V and, since
K2 ď NM2pViq, NM2pV1q acts transitively the three elements of CVipW q

7. Thus CM2pxq has index
9 in M2, so CM pxq contains a Sylow 2-subgroup of M2 and of M . Hence CM pxq also contains a
conjugate of Q in M .

(Task 3): Since rK,M˝s “ 1, xK
Q
y “ K. Thus 7.7 shows that

CYM pKq “ CYM pxK
Qyq ď COppMqqxK

Qyq “ 1.

Hence p˚q implies YM “ rYM ,Ks ˆ CYM pKq “ rYM ,Ks “ Y and K “ K. Thus K Ĳ M and (Task
3) is accomplished.

(Task 4): Since Y is the direct sum of two isomorphic natural SLnp2q-modules for K, there exist
exactly three simple K-submodules V1, V2 and V3 in Y . Moreover, Y “ ViˆVj for any 1 ď i ă j ď 3.

Since K induces AutpViq on Vi and K Ĳ M , M “ K ˆ CM pKq. Also CM pKq is isomorphic to a

subgroup of SL2p2q and O2pMq “ 1. Thus CM pKq is isomorphic to one of 1, C3 or SL2p2q. So M acts
either trivially or transitively on tV1, V2, V3u. In either case Vi is normalized by a Sylow 2-subgroup
of M , and since K acts transitively on Vi each 1 ‰ x P Vi is centralized by a Sylow 2 subgroup
of V . So again CM pxq contains a conjugate of Q in M . Note that CY pW q “ CY1

pW q ˆ CY2
pW q

and CM pKq normalizes CY pW q. It follows that M2 “ pM2 XKqCM pKq, CM pKq acts faithfully on

Y {CY pW q, and M2XK centralizes Y {CY pW q. Thus K2 “M2XK ď K, and all assertions in (Task
4) hold. l

Lemma 7.14. Suppose that Case 7.13(A) holds. Then YM “ Y and Theorem G(1) holds.
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Proof. In this case Y is a natural SLnpqq-module for K “ M˝ with n ě 3, and by 7.5(f),
CYM pM

˝q “ 1. If YM “ Y we conclude that Theorem G(1) holds.
Suppose that YM ‰ Y . Then YM is a non-trivial non-split central extension of Y . Since, by

2.17(c), W is a (strong) offender on YM , C.22 shows that p “ 2, and

K – SL3p2q, |YM | “ 24, CYM pW q “ CY pW q and rq “ |YM{CYM pW q| “ |W | “ 4.

In particular, rYM ,M
:s “ rY,M s “ Y , and YM is an offender on W . Now 7.10 implies rL – SL2p4q

and ĄYM P Syl2prLq. By definition of LHpYM q, NLpYM qp“ LXM :q is unique maximal subgroup of L

containing YM , and the structure of SL2p4q shows that rĄYM , LXM
:s “ĄYM . It follows that

YM “ rYM , LXM
:sCYM pUq “ Y CYM pW q “ Y CY pW q “ Y,

which contradicts YM ‰ Y . l

Lemma 7.15. Suppose that Case 7.13(B) holds. Then Theorem G(2) or Theorem G(3) holds.

Proof. Put H0 :“ xY HM y. Note that in Case 7.13(B) there exists a K˚ S-invariant non-

degenerate symplectic form on V :“ rYM ,K˚s. Thus we can apply 7.12. We will now treat each of
the three subcases of 7.13(B) separately.

Case 1. Suppose that 7.13(B:1) holds, that is, K ĲM and Y “ V is a natural Sp2npqq-module
( n ě 1) or a natural Sp4p2q

1-module pp “ 2q for K.

Put n :“ 2 and q :“ 2 in the Sp4p2q
1-case. Note that K 1 acts transitively on the natural

Sp2npqq
1-module V , and so each non-trivial element of V is centralized by a conjugate Qg of Q

under K. Since by 7.5(e) CRpQ
gq “ 1 for all such Qg, this gives V XR “ 1.

Suppose for a contradiction that Y ‰ YM . By 7.7(a) CYM pKq X CYM pQq “ 1. Since K Ĳ M ,
this gives CYM pKq “ 1. Hence, YM is a non-split central extension of Y . Also by 2.17(c) W is a
strong offender on YM . Since strong offenders are best offenders, C.22 shows that YM is a submodule
of the dual of a natural O2n`1pqq-module, n ě 2, or a natural O5p2q

1-module for K.
By 7.12(h) YM “ V R, and so there exists y P RzV . Since YM is a submodule of the dual of the

orthogonal module for K, CKpyq – Oε2npqq or Ωε4p2q. Since by 7.12(b), W is a root offender on V ,

and since W ď CKpyq, C.6 shows that |W | “ 2 Hence by 7.12(g), |V | “ |W |2|V XR| “ 22 ¨ 1 “ 4, a
contradiction since |V | “ q2n and n ě 2.

We have shown that

Y “ YM “ V and R “ RX V “ 1.

By 7.12(h) OppMq “ CGpYM q “ YM “ V and NGpQq ď M . So if K – Sp4p2q
1, then Theorem

G(2) holds. We therefore may assume that K – Sp2npqq.
Since R “ 1, 7.12(e) gives A “ W ˆ R “ W , and A is a natural SL2prqq module. Put D :“

CKpV {rV,W q X CKprV,W sq. Then D acts nilpotenly on V and so D{CDpV q is a p-group. As
CGpV q “ CGpV q “ YM , D is a p-group. Since V “ YM we have rYM , Ds “ rV,Ds ď rV,W s ď A.
Also by 7.12(h) NGpQq ď M . Thus, by 7.9 there exists t P A with rt, YM s ‰ 1 and rCDptq, Ls ď
A “W . Put B :“ CDptqW . Then B and W are normal in LB, and since W is a simple L-module,
rB,W s “ 1. Hence ΦpBq “ ΦpCDptqq is centralized by L “ xY LM y. From CGpYM q “ YM we get
CGpLq ď CYM pLq “ R “ 1. In particular, ΦpBq “ 1, and B is elementary abelian with CBpLq “ 1.

It follows that B is isomorphic to a submodule of the dual of the natural Ω3prqq-module for rL. Let
d P CDptq ď B. Then C

rLpdq is isomorphic to F
rq or O˘2 pqq,

(I) |YM{CYM pdq| P t1,
rq

2
, rqu.

Since t P A “ W and W is the natural SL2prqq-module, trt, ys | y P YMu “ rt, YM s “ rW,YM s.
Let d P D. Using the definition of D we have rt, ds P rD,V s ď rW,V s “ rW,YM s. Thus rt, ds “ rt, ys
for some y P YM . Hence td “ ty, dy´1 P CDptq and D “ CDptqYM . By 7.12(f), rV,W s is singular
subspace of V and rV,W sK “ rV,W s ˆ pV X Rq “ rV,W s. Hence rV,W s is a maximal singular
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subspace of V and |V | “ qn. The action of D on the natural Sp2npqq-module YM now shows
t|YM{CYM pdq| | d P Du “ tq

i | 0 ď i ď nu, and so also

(II) t|YM{CYM pdq| | d P CDptqu “ tq
i | 0 ď i ď nu.

A comparison of (I) and (II) shows that either n “ 1 and rq “ q or n “ 2, rq “ 4 and q “ 2. We
already know that YM “ OppMq and NGpQq ď M . If n “ 1 and q “ rq, then YM is a natural

SL2pqq-module for K, and Theorem G(3) holds with r “ 1. If n “ 2 and q “ 2, then YM is a natural
Sp4p2q-module, and Theorem G(2) holds.

Case 2. Suppose that 7.13(B:2) holds,that is, K Ĳ M , p “ 2, K – Oε2np2q, n ě 2 and

pn, εq ‰ p2,`q, Y is a corresponding natural module for K, M˝ “ K
1
– Ωε2np2q, and |W | “

|YM{CYM pW q| “ 2.

Since K Ĳ M , K˚ “ K and so Y “ rYM ,Ks “ rYM ,K
˚s “ V . Moreover, M fixes the unique

K- invariant quadratic form h on Y and so M “ K. Note also that the K-invariant symplectic form
on V given by 7.13(B) is exactly the symmetric form associated with h.

Note that each singular vector in V is centralized by a Sylow 2-subgroup of M and so also by a
conjugate of Q. By 7.5(e) CRpQ

gq “ 1 for all g P R, so this implies that R contains no non-trivial
singular vectors. Thus R X V has dimension at most 2 and so |R X V | ď 22. Hence, by 7.12(g),
|V | “ |W |2|V XR| ď 22 ¨ 22 “ 24. Thus n “ 4. Since p2n, εq ‰ p4,`q, V is a natural O´4 p2q-module

for M .
As above, since K Ĳ M , 7.7(a) shows that CYM pKq “ 1. Thus C.18 implies that YM “ V .

Hence R “ RX V , R has order 4, and all non-trivial elements in R are non-singular vectors of V .
Pick 1 ‰ x P R and put B :“ O2pCM pxqq. Then CM pxq – C2ˆSp2p2q and rYM , Bs “ xxy. Since

rYM ,W s ę R this means rCYM pBq,W s ‰ 1. Thus by 7.8 CGpxq is not of characteristic 2. Since by
7.12(h) O2pMq “ YM “ V and NGpQq ď YM , and since M “ K – O´4 p2q, Theorem G(2) holds.

Case 3. Suppose that 7.13(B:3) holds, that is, K đM , YM is a natural SL2pqq-wreath product

module for M with respect to K :“ K
M

, M˝ “ OppK˚qQ, and Q acts transitively on K.

Put K “: tK1, . . . ,Kru and Vi :“ rY,Kis with K “ K1, so Y “ V1. Since YM is a natural
SL2pqq-wreath product module, Y is a natural SL2pqq-module for K, and

YM “ V “ V1 ˆ V2 ˆ . . .ˆ Vr.

Since K đM , r ě 2. Put

S :“ tv P V | rv, F s ‰ 1 for all F P Ku.
In the following we apply A.28 to K˚S in place of H. Since Q acts transitively on K, A.28(e) shows
that K˚ acts transitively on S and CV pQq

7 Ď S. Thus CSpQq ‰ H, and every element of S is
centralized by a conjugate of Q. As by 7.5(e) CRpQ

gq “ 1, we get

RX S “ H.
Since W ď K “ K1 we get

CV pW q “ CV1pW q ˆ V2 ˆ . . .ˆ Vr.

Since Vi is 2-dimensional over Fq, rV,W s “ rV1,W s “ CV1pW qq. Thus by 7.12(e)

CV pW q “ rV,W s ˆR “ CV1pW q ˆR.

As |CV1pW q| “ q this gives |CV pW q{R| “ q. Let 2 ď i ď r. Then Vi ď CV pW q, and since |Vi| “ q2

and |CV pW q{R| “ q, we get |Vi XR| ě q. In particular, there exists 1 ‰ ti P Vi XR.
Suppose that Vj ę R for some 2 ď j ď r. Say j “ 2. Since V2 ď CV pAq “ CV1

pW q ˆ R there
exist 1 ‰ s2 P V2 and 1 ‰ s1 P CV1

pW q with s1s2 P R. Put t “ s1s2t3 . . . tr. Then t P RX S “ H, a
contradiction. Thus Vj ď R and so V2 . . . Vr ď R. Together with

CV1pW q ˆ V2 ˆ ¨ ¨ ¨ ˆ Vr “ CV pW q “ CV1pW q ˆR

this gives R “ V2 ˆ ¨ ¨ ¨ ˆ Vr. In particular, K1 ď CM pRq and so rV1, OppCM pRqqs “ 1. Since
rV1,W s ‰ 1, 7.8 shows that CGpRq is not of characteristic p.
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We will now show that q P t2, 4u. For this put M1 :“ CM pRq X NM prV,W sq and let 1 ‰ x P
CV pxW

Qyq X CV pQq and x1 be the projection of x onto V1. As already seen above, A.28(e) gives
CV pQq

7 Ď S. Thus x P S and so x1 ‰ 1. Moreover, x P x1V2 ¨ ¨ ¨Vr “ x1R, and so Q! implies
CM1px1q ď CGpxq ď NGpQq. Thus rQ,CM1px1qs ď Q.

Let m P CM1
px1q and q P Q with V1 “ V q2 . Since m centralizes V2, mq centralizes V1. Hence

m “ mqrq´1,ms P mqQ Ď CM pV1qQ,

and so m acts a p-element on V1. It follows that CM1
px1q{CM1

pV1q is a p-group. Since CM1
pV1q “

CM pV1Rq “ CM pV q “ CM pYM q and by 7.12(h) CGpYM q “ YM , CM1
px1q is a p-group.

Put B1 :“M1XKV . Then B1 ĲM1, VW P SylppB1q, B1{VW – Cq´1, and B1 acts transitively
on rV,W s. It follows that M1 “ CM1

px1qB1 and M1{B1 is a p-group. Thus OppM1q ď B1. Since
rR,Ls “ 1 and rV,W s Ĳ NLpV q, NLpV q ď M1, and since L{A “ L{WR – SL2pqq and VW P

SylppLq, NLpV q{VW is cyclic of order q ´ 1. Let H1 be a complement to VW in NLpV q. Then
H1 ď OppM1q ď B1. As B1{VW has order q ´ 1, we get B1 “ H1VW “ NLpV q.

Suppose that p is odd and let i be the involution in H1. In L we see that rVW, is “ W and in
M we see that rVW, is “ V1, a contradiction.

Thus p “ 2. In L we see that the F2H1-module W {CW pV q is isomorphic to the dual of rV,W s
and in M that the F2H1-module V {CV pW q is isomorphic to the dual of rV,W s. It follows that
W {CW pV q and V {CV pW q are isomorphic F2H1-module. Let H1 “: xh1y. In L we see that there
exists ξ P Fq and FqH1-module structures on rV,W s, W {CW pV q and V {CV pW q such that h1 acts
as multiplication by ξ, ξ´1 and ξ2, respectively. It follows that there exists σ P AutpFqq with
pξ2qσ “ ξ´1. Since |ξ| “ |h1| “ q ´ 1 “ |F7q| and also squaring is an field automorphism of Fq, we

conclude that µ : Fq ÞÑ Fq, λ Ñ pλ2qσ, is a field automorphism and λµ “ λ´1 for all λ P F7q. It
follows that F2 is the fixed field of µ, and µ as order 1 or 2; so Fq “ F2 or Fq “ F4.

Thus indeed q P t2, 4u. We already know that CGpRq “ CGpV2 . . . Vrq is not of characteristic 2.

By 7.12(h) we have NGpQq ď M and O2pMq “ YM . Hence, Theorem G(3) holds with K :“ K
M

,
where the uniqueness of K follows from A.27(c). l

Lemma 7.16. Case 7.13(C) does not hold.

Proof. Let ti, j, ku “ t1, 2, 3u. Recall from 7.13(C) that p “ 2, Y “ YM , M2 “ NM pCY pW qq,
K2 “ CM2pY {CY pMqq, K2 ď K and that there exists an M2-invariant set tV1, V2, V3u of K2-
submodules of Y with Y “ Vi ˆ Vj . Note that the projection of Vk onto Vi and Vj shows that Vk is

isomorphic to Vi and Vj as an K2-module. In particular, K2 acts faithfully on Vi.
Define n by 2n :“ |Vi|. Then by 7.13(C) either n “ 3 and Y is a natural 3.Altp6q-module for K,

or n ě 3 and each Vi is a natural SLnp2q-module for K.

1˝. Vi XR “ 1.

Since rR,W s “ 1, Vi X R “ CVipW q X R. Let 1 ‰ x P CVipW q. According to 7.13(C:c) for all
1 ‰ x P CVipW q there exists g P M with rx,Qgs “ 1. By 7.5(g) CRpQ

gq “ 1 for all g P G and so
x R R. Hence Vi XR “ 1.

2˝. AX Y “ CY pW q and A ď K2. In particular, W and A normalize Vi.

By 7.4(e) AX YM “ CYM pW q. Since Y “ YM this gives AX Y “ CY pW q. As rA, Y s ď AX Y ,
we conclude that A normalizes CY pW q and centralizes Y {CY pW q, so A ď K2. As W ď A and K2

normalizes Vi, (2˝) holds.

3˝. AX Y “ pAX Viq ˆ pAX Vjq.

By (2˝) AX Y “ CY pW q, and W normalizes Vi. As Y “ Vi ˆ Vj , this implies

AX Y “ CY pW q “ CVipW q ˆ CVj pW q “ pAX Viq ˆ pAX Vjq,

and (3˝) is proved.

4˝. A is elementary abelian.
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By (2˝) A normalizes Vi, and by 1.43(a),

ΦpAq “ rAX Y,As ď CY pLq “ R,

so

rAX Vi, As ď Vi XR
(1˝)
“ 1.

By (3˝) A X Y “ pA X Viq ˆ pA X Vjq and so rA X Y,As “ 1. It follows that ΦpAq “ 1 and A is
elementary abelian.

5˝.

(a) |A| “ 23pn´1q and |A| “ |A{AX Y | “ |R| “ 2n´1.
(b) AX Vi is a hyperplane of Vi and A “ CK2

pAX Viq.

(c) Let B be any L-invariant subgroup of A. Then |Y XB{RXB| ď |RXB|.

By 7.13(C:a) |Y {CY pW q| “ 4. Since Y “ Vi ˆ Vj , this gives |Vi{CVipW q| “ 2, and since by (2˝)
CY pW q “ Y XW , Vi X A “ CVipW q. Hence Vi X A is a hyperplane of Vi. As by (4˝) A is abelian,
A centralizes Vi XA and so Vi XA “ CVipAq.

Let B be any L-invariant subgroup of A. Pick vi P VizA. By 1.43(g), Y X B “ rvi, BspR X Bq,
and so Y XB “ rvi, BspRXBq. Since by (1˝) ViXR “ 1, we have rvi, Bs X pRXBq “ 1. This gives

p˚q |Y XB| “ |rvi, Bs||RXB|.

Also |Y XB| ě |rY,Bs| “ |rvi, Bs ˆ rvj , Bs| “ |rvi, Bs|
2, and we conclude with p˚q that

|RXB| ě |rvi, Bs| “ |Y XB{RXB|.

Thus (c) holds.
Using A “ B in (˚), |Y X A| “ |rvi, As|R| and so |R| “ |Y X A||rvi, As|

´1. On the other hand,
by (1˝) Vi XAXR “ 1 and so

|R| “ |RpVi XAq{Vi XA| ď |Y XA{Vi XA|.

Since rvi, As ď Vi XA, we get

|Y XA{Vi XA| ď |Y XA{rvi, As| “ |R| ď |Y XA{Vi XA|.

It follows that equality holds in the preceding inequalities. In particular, rvi, As “ Vi XA and so

|rvi, As| “ |Vi XA| “ 2n´1.

Thus
A “ |A{CApViq| “ |A{CApviq| “ |rvi, As| “ 2n´1.

Since A ď CK2
pAXViq and |CK2

pAXViq| ď |AXVi| “ 2n´1 this gives A “ CK2
pAXViq. So all

parts of (5˝) are proved.

6˝.

(a) Y “ YM “ O2pMq, M “M : and NGpQq ďM .

(b) H “ L, U “ W , pU is natural SL2p4q-module for H, and U is a natural Ω3p4q-module for
H.

Recall that L P LGpYM q and so L{A – SL2prqq, Szprqq or Dih2r. In the Szpq̃q-case q̃ is an odd
power of 2 and in the Dih2r- case rq “ 2. Since rq “ |YM{CYM pW q| “ |YM{YM X A| “ 4 we get
rL – SL2p4q.

By 2.13 pU is a faithful simple minimal asymmetric F2
rH-module, so we can apply the Minimal

Asymmetric Modules Theorems C.28 and C.29. Put H0 :“ xY HM y. Since rL – SL2p4q, ĂH0 is not

solvable. Thus we are in Case (1) of C.29. In particular, ĂH0 is a group of Lie-type defined over F4

and ĄYM is a long root subgroup of ĂH0. Note that U X Y “ pU XAq X Y and U XR “ pU XAq XR.
Thus by (5˝)(c) applied to B “ U XA

p˚˚q |U X Y {U XR| ď |U XR|.

In particular, U X R ‰ 1. So by 7.5(a) CU pHq “ U X R ‰ 1 and CU pH0q ‰ 1. By 7.6(a) U
is a quasisimple H0-module. A comparison of C.29(1) with C.18 shows that p “ 2 and either
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ĂH0 – Sp2mp4q and U is a quotient of the natural Ω2m`1p4q-module for ĂH0, or ĂH0 – G2p4q and pU is

the corresponding natural module of order 46. In the first case |rpU, YM s| “ 4 and in the second case

|rpU, YM s| “ 16, and in both cases |U XR| ď |CU pH0q| ď 4.
By 2.17(e)

W XR “ CW pO
2pHqq “W X CU pO

2pHqq.

It follows that

{W X Y “ pWXY qCU pO
2pHqq{CU pO

2pHqq –WXY {WXR – pWXY qpUXRq{UXR ď UXY {UXR.

Hence

| {W X Y | ď |U X Y {U XR|
p˚˚q

ď |U XR| ď |CU pH0q| ď 4.

On the other hand, by 2.17(c) U “ WCU pYM q. Thus rpU, Y s “ rxW,Y s ď {W X Y and so

|rpU, Y s| ď 4. This excludes the G2pqq-case and shows that |CU pH0q| “ 4, so U is a natural Ω2m`1p4q

for ĂH0 and | {W X Y | “ 4. Moreover, by 1.43(e) |W {CW pY q| “ |W X Y {CWXY pLq| “ | {W X Y | “ 4.
Hence YM is an offender on W , and so also an offender on U since U “ WCU pY q. Thus we can

apply 7.11. In the second case of 7.11 U XR “ 1, a contradiction. So the first case holds. Hence pU
is natural SL2prqq-module for H and

YM “ O2pMq, M “M :, NGpQq ďM, H “ L and U “W.

Since rq “ 4 and U is a natural Ω2m`1p4q-module, this gives (6˝).

7˝. CM pY q “ Y , M “ NGpY q, AY “ CK2
pY XAq and A ĲM2.

By (6˝)(a) Y “ O2pMq and NGpY q “ M : “ M . By (5˝)(b) A “ CK2
pY X Aq and so AY “

ACM pY q “ CK2pY XAq. In particular, AY ĲM2.
Let v P Y zY X A. Then v P VipY X Aq for some i. Since Vi is a faithful K2-module and

|Vi{Vi X A| “ 2 we get CApvq “ CApViq “ 1 and so CApvq “ A X Y . It follows that rv, as ‰ 1 for
all v P Y zA and a P AzY . Hence va is not an involution and so Y and A are the only maximal
elementary abelian subgroups of AY . Since M2 normalizes AY and Y , M2 normalizes A.

8˝. n “ 3 and O2pMq{Y – C3 ˆ SL3p2q or 3.Altp6q.

By (7˝) Y “ CM pY q. Thus if Y is a natural 3.Altp6q-module, then (8˝) holds. So suppose that
Y is the direct sum of two SLnp2q-modules, n ě 3. In particular, M{Y “ M “ K ˆ C where C is
isomorphic to a subgroup of SL2p2q with O2pCq “ 1. Thus C – 1, C3 or SL2p2q. Note that M2XK
centralizes Y {Y X A and that NLpY q ď NM pA X Y q “ M2. Since by (6˝)(b) L{A – SL2p4q, we
infer that NLpY q{CNLpY qpY {Y X Aq – C3. Thus 3 divides |M{K|. Hence C – C3 or SL2p2q and

O2pMq{Y – C3 ˆ SLnp2q. It remains to show that n “ 3.
If n “ 4, then by (5˝) |A| “ 23pn´1q “ 29 and |R| “ 2n´1 “ 23, and so |A{R| “ 26. Since

L{A – SL2p4q all non-central simple L-modules have order 24, and we conclude that L has a central
composition factor on A{R, a contradiction to 1.43(p).

Suppose that n ě 5. Let X ď M such that X – C3 and XY Ĳ M . Since rK2, Xs ď Y and X
acts fix-point freely on Y , K2 “ CK2pXqY . For i “ 1, 2 put Ai :“ AX Vi. Then AX Y “ A1 ˆA2.
Put A3 :“ CApXq. Since X ď M2, X normalizes A and so A “ pA X Y q ˆ A3 “ A1 ˆ A2 ˆ A3.
Let v P V1zA1 and put K1 :“ CK2

pvq X CK2
pXq. Note that K1 is a complement to A3 in CK2

pXq,
K1 – SLn´1p2q and the Ai, 1 ď i ď 3, are isomorphic natural SLn´1p2q-modules for K1.

According to 7.9 there exists t P AzCApY q such that rCDptq, Ls ď A for all 2-subgroups D of M
with rY,Ds ď A. Since t P A, t “ t1t2t3 with ti P Ai. Since n ´ 1 ą 3, there exists a transvection
d P K1 with rti, ds “ 1 for all 1 ď i ď 3. Then

|rA, ds| “ |rA1, ds|
3 “ 8.

Since d P K1 ď K2, rY, ds ď Y X A ď A. Also rd, ts “ 1, and the choice of t implies rd, Ls ď
A ď CGpAq. Thus L normalizes rA, ds. Since L{A – SL2p4q and |rA, ds| “ 8 we conclude that
rA, d, Ls “ 1 and rA, ds ď CApLq “ R ď Y , a contradiction since 1 ‰ rA3, ts ď A3 and A3 X Y “ 1.
Thus (8˝) is proved.
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We are now able to derive a final contradiction. Since n “ 3, (5˝)(a) shows that |A| “ 23p3´1q “

26 “ |Y |. By (6˝)(b) U is the natural Ω3p4q-module for L and U “W . Hence |U | “ 26 and A “W .

In particular, A{R “ pU is a natural SL2p4q-module of L,
Note that either K{Y – SL3p2q and Y “ V1 ‘ V2, or K{Y – 3.Altp6q. Since |W | “ 4 and

|Vi| “ 8, it is straight forward to verify that K2{Y – Symp4q and Vi X A is a natural SL2p2q-
module for K2. In particular, Y X A is a direct sum of two natural SL2p2q-modules for K2, and
Vi XA, 1 ď i ď 3, are simple K2-submodules in Y XA.

Put F :“ NGpAq. Then L ď F and by (7˝) A Ĳ M2 and so M2 ď F . Also F X M ď

NM pCY pAqq “M2 and so F XM “M2.
In particular, L2 :“ L X M “ L X M2. Since L{A – SL2p4q, L2{AY – C3 and L2 acts

transitively on AY {Y – Y {Y XA “ Y {CY pW q. Hence L2 also acts transitively on tV1, V2, V3u. Since
ViXA, 1 ď i ď 3, are the simple K2-submodules of Y XA we conclude that Y XA is a simple module

for L2K2{AY – C3 ˆ SL2p2q. Also L2K2 acts transitively on the nine elements in V 71 Y V 72 Y V 73 .
Let 1 ‰ r P R. Note that O2pK2q normalizes L2 and so also CYXApL2q. Moreover, O2pK2q acts
fixed-point freely on Y X A, R ď CYXApL2q and |R| “ 4. We conclude that R “ CYXApL2q and
O2pK2q acts transitively on R. Since K2L2 acts simply on Y XA and |L2K2{L2O

2pK2q| “ 2 we get
|RL2K2 | “ 2 and |rL2K2 | “ 6.

Let 1 ‰ z P Ω1ZpSq. By 7.1(c), Ω1ZpSq ď YH X YM “ A X Y and by 7.5(g), CRpQ
gq “ 1

for all g P G. Since rz,Qs “ 1 we conclude that z and r are not conjugate in G. It follows that
zM2 “ zK2L2 has size nine and rM2 “ rK2L2 has size six.

Put F1 :“ NF pRq and note that L ď F1 and L2O
2pK2q ď F1. In particular, zM2XF1 “ zM2 . We

now calculate the size of zF , zF1 and rF . Note that each of these sets is an L-invariant subset of A.
Since A{R is the natural SL2p4q-module for L, A{R is partitioned by the five L-conjugates of

A X Y {R. Also zM2 X R “ H and |rM2 X R| “ 3. Hence |zF | ě |zF1 | ě 5 ¨ 9 and |rF | ě 3 ` 5 ¨ 3.
Now |A7| “ 26 ´ 1 “ 45` 18 gives |zF | “ |zF1 | “ 45 and |rF | “ 18.

By (6˝) NGpQq ď M . Since rz,Qs “ 1, Q! implies CGpzq ď M . In particular, CF pzq ď
M X F “ M2. Note that K2 Ĳ M2 and R7 is one of the two orbits of K2 on rM2 . Thus |M2{M2 X

F1| “ |M2{NM2
pR7q| “ 2. Since CF pzq ď M2 this gives |CF pzq{CF1

pzq| ď 2. Together with
|F | “ 45|CF pzq| and |F1| “ 45|CF1

pzq| we conclude that |F {F1| ď 2. Thus |RF | ď 2 and |rF | ď
|R7||RF | “ 3 ¨ 2 “ 6, a contradiction to |rF | “ 18. l

Note that the three cases in 7.13 have been treated in 7.14, 7.15 and 7.16. Thus, the proof of
Theorem G is complete.



CHAPTER 8

The Q-Tall Asymmetric Case I

In this chapter we begin the investigation of the Q-tall asymmetric case. That is, M PMGpSq,
YM is asymmetric in G, and YM ę OppNGpQqq. The main result of this chapter reduces the problem
to what might be called the generic case, namely, where rYM ,M

˝s ę Q, M{CM pYM q possesses a
unique component K, and rYM ,Ks is a simple K-module, see Case (1) of Theorem H for more
details. This is achieved by studying the action of M on the Fitting submodule I of YM , introduced
in Appendix D, rather than on YM itself. The Fitting submodule is close to being semisimple and
so much easier to work with. And, since I is faithful for M{CM pYM q, it still allows to identify
M{CM pYM q.

As in the previous chapter a member H of HGpOppMqq is used to obtain a subgroup L of H
with L P LGpYM q. But in this chapter internal properties of L, like

A :“ OppLq “ xpYM XOppLqq
Ly and CYM pLq “ YM X Y gM for g P LzLXM :,

are in the center of our attention. Due to Q-tallness, H and thus also L can be chosen in NGpQq. It
is then easy to see that Q, L and A normalize each other. We subdivide the proof into three cases,
treated in separate sections:

p1q I ď A p2q I ę A and rΩ1ZpAq, Ls ‰ 1, p3q I ę A and rΩ1ZpAq, Ls “ 1.

In the first case it is easy to see that I is symmetric in G (see 8.13(b)). So the main result of
Chapter 4 can be applied to I, and the different outcomes of this result are then discussed.

In the second case the non-trivial action of L on Ω1ZpAq shows that also H acts non-trivially
on Ω1ZpOppHqq, and similar to the previous chapter we get a strong offender that allows to apply
the FF-module theorems from Appendix C.

In the third case we prove that A acts nearly quadratically on I. We then apply the Nearly
Quadratic Q!-Theorem proved in Appendix D, and treat each of its cases.

Here is the main result of this chapter.

Theorem H. Let G be a finite Kp-group, S P SylppGq, and let Q ď S be a large subgroup of G.
Suppose that M PMGpSq such that YM is asymmetric in G and Q-tall.

Then HNGpQqpOppMqq ‰ H and for every H P HNGpQqpOppMqq also LHpYM q ‰ H. More-

over, one of the following holds, where Y :“ YM , M : :“ M :{CM:pY q, I :“ FY pMq is the Fitting
submodule of Y , and q is some power of p:

(1) For every H P HNGpQqpOppMqq and every L P LHpYM q and A :“ OppLq:
(a) Q normalizes L and A,
(b) A is a non-trivial elementary abelian subgroup of M ,
(c) Y “ ICY pAq, I ę Q‚ and CY pAq “ ZpAq “ CY pLq,
(d) K :“ rF˚pMq, As is the unique component of M , K ď M˝, and I is a simple K-

module,
(e) A acts nearly quadratically on Y and not quadratically on I, and rY,KAs “ I,
(f) |Y {CY pAq| ď |A|

2,
(g) AQ acts K-linearly on I, where K :“ EndKpIq,
(h) If g PM and CY pQ

gqXCY pAq ‰ 1, then rQg, As ď QgXA and rY,Qgs ď rY,AsCY pAq.
(2) p “ 2, M˝ – L3p2q, I is a corresponding natural module, |Y {I| “ 2, I is symmetric in G,

and I ď Q.

119



120 8. THE Q-TALL ASYMMETRIC CASE I

(3) p “ 2, M˝ – Ω`6 p2q, I is a corresponding natural module, |Y {I| “ 2, I is symmetric in G,
I ę Q‚, Y “ O2pMq, M “ M :, and CGptq is not of characteristic 2 for any non-singular
t P I.

(4) p “ 2, M˝ – Sp2np2q, n ě 2, I is a corresponding natural module, I ę Q‚ and |Y {I| “ 2.
(5) M˝ – SLnpqq, n ě 2, and Y is a corresponding natural module.
(6) p “ 2, M˝ – Sp2npqq, n ě 2, and Y is a corresponding natural module.
(7) p “ 3, M˝ – Ω3p3q, and Y is a corresponding natural module for M˝.
(8) p “ 2, M – ΓSL2p4q, M˝ – SL2p4q or ΓSL2p4q, I is a corresponding natural module,

I ę Q‚ and |Y {I| ď 2.
(9) p “ 2, M – 3.Symp6q, M˝ – 3.Altp6q or 3.Symp6q, and Y is a simple M -module of order

26,
(10) There exists an M -invariant set tK1,K2u of subgroups of M such that Ki – SLmipqq,

rK1,K2s “ 1, K1K2 Ĳ M , and Y “ I is the tensor product over Fq of corresponding

natural modules for K1 and K2. Moreover, either M “ M˝ – SL2p2q o C2, or M˝ is one
of K1,K2 or K1K2.

In particular, I “ rYM ,M
˝s, and (2) is the only case where I ď Q‚.

Table 1 lists examples for YM , M and G fulfilling the hypothesis of Theorem H and one of the
cases (2) – (10).

Table 1. Examples for Cases 2–10 of Theorem H

Case rYM ,M
˝s for M˝ c Remarks examples for G

* 2 nat SL3p2q 2 G ‰ G˝ AutpG2p3qq
* 3 nat Ω`6 p2q 2 - Ω`8 p3q.Symp3q
* 4 nat Sp4p2q

1 or Sp4p2q 2 - PΩ´6 p3qxωy or PO´6 p3q
5 nat SLnpqq 1 - Ln`1pqq
5 nat SL2p2q 1 - Sp4p2q

1

5 nat SL2p3q 1 - Mat12

5 nat SL2p4q 1 - Mat22, Mat23

5 nat SL3p2q 1 - Altp9q
6 nat Sp4p2q 1 - PSO´6 p3q, PΩ´6 p3qxωy
6 nat Sp4p2q

1 1 - Ω´6 p3q, Suz
7 nat Ω3p3q 1 - Ω5p3q

* 7 nat Ω3p3q 1 - Sp6p2q,Ω
´
8 p2q

8 nat ΓSL2p4q 1 - ΓL3p4q, Mat22

* 8 nat SL2p4qr.2s 2 M – ΓSL2p4q AutpMat22q

9 26 for 3.Altp6qr.2s 1 M „ 3.Symp6q Mat24

* 9 26 for 3.Symp6q 1 M „ 3.Symp6q He
10 nat SLt1pqqrbSLt2pqqs 1 - Lt1`t2pqq, L2t1`1pqqΦ2 t1 “ t2
10 nat SL2p2qqrbSL3p2qs 1 - Mat24

* 10 nat SL2p2qqrbSL2p2qs 1 - Altp9q
* 10 nat SL2p2q b SL2p2q 1 - Symp9q, Altp10q
* 7 nat SL2p3q b SL2p3q 1 - HN

In the table c :“ |YM{rYM ,M
˝s| and Φ2 is a group of graph automorphisms of order 2. In

the examples with G “ PΩ´6 p3qxωy, ω is a reflection in PO´6 p3q. An entry of the form ArBs in
the rYM ,M

˝s column indicates that there exists more than one choice for Q in the example G.
Depending on this choice the structure of rYM ,M

˝s as an M˝-module is either described by A or
AB.

˚ indicates that pchar YM q fails in G.
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8.1. Notation and Preliminary Results

In this section we assume the hypothesis and notation of Theorem H; in particular Y “ YM and
I “ FY pMq.

Lemma 8.1. YM ę OppNGpQqq.

Proof. By Hypothesis, YM is Q-tall and so by 2.6(e) YM ę OppNGpQqq. l

Lemma 8.2. HNGpQqpOppMqq ‰ H, and for H P HNGpQqpOppMqq, LHpYM q ‰ H.

Proof. By 1.55(a) NGpQq has characteristic p, and by 8.1 YM ę OppNGpQqq. Hence 2.9 implies
that HNGpQqpOppMqq ‰ H.

Pick H P HNGpQqpOppMqq, and let L be minimal among all subgroups of H satisfying Y ď L
and Y ę OppLq. Then the Asymmetric L-Lemma 2.16(e) shows that L P LHpYM q. l

Notation 8.3. According to 8.2 we are allowed to fix H P HNGpQqpOppMqq and L P LHpYM q.
Recall from the definition of LGpYM q:

(i) L is Y -minimal of characteristic p, and NLpY q is the unique maximal subgroup of L
containing Y .

(ii) L{A – SL2prqq, Szprqq or Dih2r and |Y {Y X A| “ rq, where p “ 2 in the last two cases, r is
an odd prime, and rq “ 2 in the last case.

(iii) A “ xpY XAqLy.

Also observe that L satisfies the hypothesis of 1.43, since by 1.42(b) OppLq ď NLpY q.

Lemma 8.4. (a) CM pIq “ CM pY q “ CM pI{radIpMqq.
(b) NGpIq “M : “ NGpY q “MCGpY q “MCGpIq.
(c) CGpIq “ CGpY q “ CM:pY q “ CM:pI{radIpMqq.
(d) M ę NGpQq.
(e) Y , I and I{radIpMq are Q!-modules for M with respect to Q.
(f) I is a semisimple M˝-module, CY pM

˝q “ CY pM˝q “ 1 and I “ rI,M˝s “ rI,M˝s.

Proof. (a): By D.6, I and I{radIpMq are faithful M -modules, so CM pIq “ CM pI{radIpMqq “
CM pY q. This is (a).

(b): By the basic property of M , M : “MCGpY q. Since I ď Y , this gives M : “MCM:pIq. In
particular, M : ď NGpIq and M : ď NGpY q. Again by the basic property of M , M : is a maximal
p-local subgroup of G, and so M : “ NGpIq “ NGpY q. Hence CM:pIq “ CGpIq, and (b) is proved.

(c): By (b) NGpIq “M : “MCGpY q, and CGpY q centralizes I and I{radIpMq. Hence

CGpIq “ CM pIqCGpY q and CM:pI{radIpMqq “ CM pI{radIpMqqCGpY q.

Thus (c) follows from (a).

(d): Otherwise 1.24(f) implies YM ď YNGpQq ď OppNGpQqq, contrary to 8.1.

(e): By (d) M ę NGpQq and by (c) CGpY q “ CGpIq. Since Q is a large subgroup of G, 1.57(b)
shows that Y and I are faithful Q!-modules for M with respect to Q. So we can apply D.10 with
V “ Y and H “M and conclude that also I{radIpMq is a Q!-module for M with respect to Q.

(f): By (e), Y is a faithful, p-reduced Q!-module for M with respect to Q. Thus by D.8, I is
a semisimple M˝-module and so also a semisimple M˝-module. Since by (d) M ę NGpQq, we get
Q ‰ M˝, and so by 1.55(d) CIpM

˝q ď CGpM
˝q “ 1. As I is a semisimple M˝-module, this gives

I “ rI,M˝s “ rI,M˝s. l

Lemma 8.5. (a) Let g P G with Qg ď M : and L ď NGpQ
gq. Then Qg normalizes L and

A.
(b) L and A normalize Q, and Q normalizes L and A.



122 8. THE Q-TALL ASYMMETRIC CASE I

Proof. (a): Since Qg ďM :, Qg normalizes Y . Since L normalizes Qg, Qg also normalizes Y l

for all l P L, and we conclude that Qg normalizes xY Ly. As L is Y -minimal, L “ xY Ly and so Qg

normalizes L and OppLq. Since A “ OppLq this gives (a).

(b): Since L P LHpYM q and H P HNGpQqpOppMqq, L ď H ď NGpQq. So (b) follows from (a). l

Lemma 8.6. Suppose that rΩ1ZpAq, Ls ‰ 1. Then I ę A and rYHQ, HQs ‰ 1.

Proof. By 8.4(c) CGpIq “ CGpY q and thus also CΩ1ZpAqpY q “ CΩ1ZpAqpIq. Since L “ xY Ly,
rΩ1ZpAq, Ls ‰ 1 implies rΩ1ZpAq, Y s ‰ 1. Hence also rΩ1ZpAq, Is ‰ 1 and I ę A. It remains to
prove rYHQ, HQs ‰ 1.

Since L P LGpYM q, 1.43 applies to L. So 1.43(h) gives CApLq “ CApO
ppLqq. As rΩ1ZpAq, Ls ‰ 1

this implies rΩ1ZpAq, O
ppLqs ‰ 1. By 2.17(b) rL,OppHqs ď OppLq “ A ď OppHq. So OppHq

normalizes L and A, and rL,OppHqs centralizes Ω1ZpAq.
Now the P ˆ Q-Lemma gives rCΩ1ZpAqpOppHqq, O

ppLqs ‰ 1. Since A ď OppHq, we have
CΩ1ZpAqpOppHqq ď Ω1ZpOppHqq. Thus rΩ1ZpOppHqq, O

ppLqs ‰ 1 and so rΩ1ZpOppHqq, O
ppHqs ‰ 1.

Since by 2.11(e) H is p-irreducible, 1.35 gives rYH , Hs ‰ 1. As OppHQq ď H, 1.26(c) shows that
rYHQ, HQs ‰ 1. l

Lemma 8.7. Let U ď Y be A-invariant and U ę A. Suppose that U is NLpY q-invariant or
Y ď UA.

(a) Y A “ UA and Y XA “ rU,AsCY pLq “ pU XAqCY pLq.
(b) rA, Y s “ rA, usCrA,UspLq “ rA,U s for every u P UzA.

Proof. By assumption, U is NLpY q-invariant or Y ď UA. We will first show that in either
case Y A “ UA.

Suppose that U is NLpY q-invariant. Since L P LGpYM q, 2.14 shows that NLpY q{A has a unique
non-trivial elementary abelian normal p-subgroup. Thus Y A{A “ UA{A and so Y A “ UA. Suppose
that Y ď UA. Since U ď Y , this gives Y A “ UA.

Since Y A “ UA we get Y “ UpY XAq. Let u P UzA. Then 1.43(g) shows that

p˚q Y XA “ rA, usCY pLq.

In particular,

Y XA “ rA,U sCY pLq “ pU XAqCY pLq and Y “ UpY XAq “ UCY pLq.

This gives rA, Y s “ rA,U s ď U . Intersecting both sides of the equation in (˚) with rA,U s gives

rA,U s “ rA, usprA,U s X CY pLq “ rA, usCrA,UspLq.

So all parts of the lemma are proved. l

Lemma 8.8. Put U :“ CIpLq and E :“ xQg | g P G, CU pQ
gq ‰ 1y. Suppose that U ‰ 1. Then

(a) Q ď E ďM˝ and rE,Ls ď A. In particular, E normalizes L.
(b) rE, Y s ď Y XA.
(c) E “ NM pUq

˝ “ NGpUq
˝.

(d) Let x P LzNLpY q. If I ď A, then I{U – Ix as an FpE-module.

Proof. (a): By 2.7(b) E ďM˝, and by 8.5(a) Q normalizes L and so also U . Hence CU pQq ‰ 1
and Q ď E.

Let g P G with CU pQ
gq ‰ 1. Then L ď CGpUq ď CGpCU pQ

gqq, and Q! implies L ď NGpQ
gq.

Also Qg ď E ďM˝ ďM :, and 8.5(a) shows that Qg normalizes L and A. In particular,

rL,Qgs ď LXQg ď OppLq “ A,

and (a) follows.

(b): Since Y ď L (a) gives rE, Y s ď A. By (a) E ďM˝ ďM and so also rE, Y s ď Y .
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(c): By (a) E normalizes L. Since L centralizes U , we conclude that L centralizes xUEy. By
(a), E ď M˝ ď M . So E normalizes I and since U ď I, xUEy ď I. Thus U ď xUEy ď CIpLq “ U ,
and E normalizes U . Hence E ď NM pUq. Since E is generated by conjugates of Q this gives

E ď NM pUq
˝.

Clearly,

NM pUq
˝ ď NGpUq

˝,

and by 2.7(b)

NGpUq
˝ ď E,

so (c) holds.

(d): Let x P LzNLpY q. By 1.43(a), A1 ď CY pLq and so, since I ď A and I is A-invariant,
rI, As ď I X A1 ď CIpLq “ U . Since by (a) rE, xs ď A, we conclude that rE, xs centralizes IU{U
and so IU{U Ñ IxU{U, yU ÞÑ yxU , is an E-isomorphism. Note the IU{U – I{I X U . Also by
1.42(f), L “ xY, Y xy and so since Y is abelian, CIxpY q “ CIxpxY, Y

xyq “ CIxpLq “ CIpLq “ U .
Hence CIxpY q “ Ix X U and

IxU{U – Ix{Ix X U “ Ix{CIxpY q – Ix.

Thus (d) holds. l

Lemma 8.9. Let K ď M with 1 ‰ K Ĳ F˚pMq and K “ rK,Qs. Suppose that I ď A and

rF˚pM˝q, Qs ď NM
`

rK,QsOppM˝q
˘

. Then CApKq “ 1.

Proof. Let F be the inverse image of F˚pMq in M : and R :“ KCM:pY q X M˝. Since
F normalizes K, F normalizes KCM:pY q and R. Note that K “ rK,Qs implies K ď M˝, so
KCM:pY q ďM˝CM:pY q and

KCM:pY q “ KCM:pY q X M˝CM:pY q “
`

KCM:pY q XM˝
˘

CM:pY q “ RCM:pY q.

Hence K “ R. By 1.52(c) (applied with L :“M),

rCM:pY q, QRs ď rCGpY q,M
˝s ď OppM

˝q.

In particular rCM:pY q, Qs ď OppM
˝q. Using KCM:pY q “ RCM:pY q we get

(I) rK,QsOppM
˝q “ rR,QsOppM

˝q and rCRpY q, RQs ď OppM
˝q.

Put E :“ OpprR,Qsq and N :“ NGpEq. Since 1 ‰ K ď F˚pMq and OppMq “ 1 we have

1 ‰ K “ OppKq. As K “ rK,Qs “ rR,Qs this gives E “ K ‰ 1. Since F normalizes R,
NF pQq ď N . In particular, by Q!,

(II) OppM
˝q ď CM:pY q ď NF pQq ď N.

Thus OppM
˝q normalizes rR,Qs and so

E “ OpprR,Qsq “ OpprR,QsOppM
˝qq

(I)
“ OpprK,QsOppM

˝qq.

It follows that NM
`

rK,QsOppM
˝q
˘

ď N XM . By assumption, rF˚pM˝q, Qs ď NM
`

rK,QsOppM˝q
˘

and so

(III) rF˚pM˝q, Qs ď N XM.

By 1.8 F “ rF ,QsCF pQq and rF ,Qs “ rF ,Q,Qs. As rF ,Qs ď F˚pM˝q ď F this gives

(IV) F “ rF˚pM˝q, QsCF pQq.

Since by 1.52(b) Q is a weakly closed subgroup of G, a Frattini argument gives

(V) CF pQq ď NF pQq “ NF pQq ď N XM :.

Combining (III), (IV) and (V) we get F ď N XM :, and since by (II) CM:pY q ď N , F ď N .
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Note that E is subnormal in M and so, since M is of characteristic p, by 1.2(a) also E is of
characteristic p. As E ‰ 1 we get 1 ‰ OppEq Ĳ N and OppNq ‰ 1. Clearly Q ď N , and 1.55 shows
that N has characteristic p. Since F ď N 2.8 implies Y “ YM ď YN , so

(VI) Y ď OppNq.

By 1.43(a) A1 ď CY pLq. By the assumption of this lemma I ď A. Put B :“ CApKq. Then

(VII) rI,Bs ď rA,As ď CY pLq.

Suppose for a contradiction that CApKq ‰ 1, so B ‰ 1 and rY,Bs ‰ 1. By 8.4(c) CGpY q “ CGpIq

and so rI,Bs ‰ 1. By 8.5(b) Q normalizes A. Since Q also normalizes K, Q normalizes B. As seen
above R “ K and so B “ CApRq. Hence R normalizes B. We conclude that RQ normalizes B. As
rI,Bs “ rI,Bs this shows that RQ also normalizes rI,Bs. Hence, by 1.52(c) CGprI,Bsq normalizes
pRQq˝. By (VII) L centralizes rI,Bs, and so L normalizes pRQq˝. Since Q is weakly closed 1.46(c)
gives pRQq˝ “ xQRy “ rQ,RsQ and so OpppRQq˝q “ OpprQ,Rsq “ E. Thus L normalizes E and
L ď N . Since Y ę OppLq we get Y ę OppNq, a contradiction to (VI). l

Lemma 8.10. Suppose that Q is homocyclic abelian. Then Q is elementary abelian.

Proof. Put N :“ NGpQq and F :“ xY N y. Note that Q1 ď CM pY q and so Y ď CM pQ
1q. Also

rQ,Y s ď Y is elementary abelian and 1.19 now shows that OppF q centralizes ΦpQq.
Suppose for a contradiction that Q is not elementary abelian. Since Q is homocyclic this gives

Ω1pQq ď ΦpQqOppMq. Then rQ,Y s ď QX Y ď Ω1pQq and rΩ1pQq, Y s ď rΦpQqOppMq, Y s ď ΦpQq.
Since Ω1pQq and ΦpQq are N -invariant, we get that rQ,F s ď Ω1pQq and rΩ1pQq, F s ď ΦpQq. Hence
OppF q centralizes each factor of the series 1 ď ΦpQq ď Ω1pQqΦpQq ď Q. Coprime action shows that
OppF q centralizes Q. Since CGpQq ď Q, we conclude that OppF q “ 1. Hence F is a p-group and
Y ď F ď OppNq “ OppNGpQqq. This contradicts 8.1. l

8.2. The Case I ď A

In this section we continue to assume the hypothesis and notation of Theorem H. Furthermore,
we assume I ď A. We start with a summary of the notation used in this section:

Notation 8.11. – x P L with 1 ‰ rI, Ixs ď I X Ix, see 8.12.
– D :“ xILy, U :“ CIpLq and W :“ CIpQq.

– Ỹ :“ Y {I.
– E :“ xQg | g P G | CU pQ

gq ‰ 1y, as in 8.8.
– K :“ EndM˝pIq, as in 8.18.

If I is a natural Ω`6 p2q-module for M˝:

– I0 is natural SL4p2q-module for M˝.
– W0 :“ CI0pQq and U0 :“ CI0pAq, with I0 chosen such that U0 is a hyperplane of I0, see

the discussion before 8.23.
– N :“ NGpUq, C :“ CGpUq, B :“ xIN y, pB :“ B{U , and N0 :“ CN p pBq.

– X :“ xpB XO2pMqq
M˝

y.

– K :“ HomEpU0, pBq, and s is a C-invariant symplectic form on K, see 8.28.

– C0 :“ CCpK
Kq. For F ď C, qF is the image of F in SppK{KKq.

Lemma 8.12. Suppose that I ď A. Then there exists x P L such that 1 ‰ rI, Ixs ď I X Ix.
Moreover, Ix and A are non-trivial quadratic offenders on I, and Q normalizes Ix.

Proof. Since Y ę OppLq, xY
Ly is not abelian. Thus there exists x P L with rY, Y xs ‰ 1. By

8.4(b),(c),

p˚q NGpY q “ NGpIq and CGpY q “ CGpIq.

As rY,Xxs ‰ 1 this implies rI, Y xs ‰ 1, and since also CGpY
xq “ CGpI

xq, rI, Ixs ‰ 1.
Since A normalizes Y and Ix ď A we conclude that Ix ď NGpY q, so by p˚q Ix ď NGpIq. By

symmetry also I ď NGpI
xq and thus rI, Ixs ď I X Ix. Since I is abelian, this shows that I acts
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quadratically on Ix. Possibly after replacing x by x´1, we also have |I{CIpI
xq| ě |Ix{CIxpIq|, so Ix

is a quadratic offender on I.
Again by p˚q CApIq “ CApY q, and 1.43(g), CApY q “ Y X A. Hence CApIq “ Y X A. Put

pA :“ A{CY pLq. By 1.43(e) pA “ {AX Y ˆ {AX Y l for l P LzNLpY q. Thus

|A{CApIq| “ |A{AX Y | “ | pA{{AX Y | “ | {AX Y l| “ |{AX Y | ě |pI| “ |I{CIpLq| ě |I{CIpAq|.

Also by 1.43(a) rI, As ď A1 ď CY pLq and so rI, A,As “ 1. Thus also A is a quadratic offender on I.
Finally, by 8.5(b) L normalizes Q, and Q ď NGpIq. Hence Q ď NGpI

xq. l

Put D :“ xILy, U :“ CIpLq and W :“ CIpQq, and (if I ď A) let x P L be as in 8.12.

Lemma 8.13. Suppose that I ď A.

(a) D ď A and D is not abelian.
(b) I is symmetric in G.
(c) L “ xY, Y xy. In particular, L “ xY Ly.
(d) CLpDq “ ZpLq and CY pI

xq “ CY pLq.
(e) CIpI

xq “ CIpAq “ CIpDq “ CIpLq “ U.
(f) D is a non-trivial quadratic offender on I.
(g) rY,As ď Y XA.
(h) rD,As ď CIpLq “ U .

Proof. (a) and (b): By hypothesis I ď A and so D “ xILy ď A. Let x be as in 8.12 Then
1 ‰ rI, Ixs ď I X Ix, so D is not abelian and I is symmetric in G.

(c): Since I is abelian, I ‰ Ix. By 8.4(b), NGpIq “ NGpY q and thus x R NLpY q. Since
L P LGpYM q, NLpY q is the unique maximal subgroup of L containing Y , and so L “ xY, Y xy by
1.42(f).

(d): By 8.4(c) CGpIq “ CGpY q. Thus by (c)

CLpDq “ CLpxI
Lyq “ CLpxY

Lyq “ CLpLq “ ZpLq.

Since Y is abelian,

CY pI
xq “ CY pxI, I

xyq “ CY pxY, Y
xyq “ CY pLq.

(e): Note that Ix ď D ď A ď L and by (d) CIpI
xq “ CIpLq. Hence (e) follows.

(f): By 8.12 A is quadratic on I. Since D ď A, also D acts quadratically on I. By 8.12 Ix is a
non-trivial offender on I, and by (e) CIpDq “ CIpI

xq. Since Ix ď D we get

|I{CIpDq| “ |I{CIpI
xq| ď |Ix{CIxpIq| ď |D{CDpIq|.

So D is a non-trivial offender on I.

(g) and (h): By definition of LGpYM q, NLpY q is a maximal subgroup of L and A ď NLpY q. This
gives (g) and rI, As ď I. By 1.43(a), A1 ď CY pLq, and since I ď A, rI, As ď I X CY pLq “ CIpLq.
Conjugation with L gives rD,As ď CIpLq “ U . l

Lemma 8.14. Suppose that I ď A and |D{CDpY q| ă |Y {Y XA|
2. Then rY,Ds ď I.

Proof. By 1.43(h), (e), (g) applied with B “ D,

(I) CDpLq “ D X CY pLq “ CDXY pLq, |D{D X Y | “ |D X Y {CDXY pLq| and CDpY q “ D X Y,

and so

(II) |D{CDpLq| “ |D{CDXY pLq| “ |D{D X Y ||D X Y {CDXY pLq| “ |D{D X Y |
2 “ |D{CDpY q|

2.

Put rq :“ |Y {Y XA|. By assumption |D{CDpY q| ă |Y {Y XA|
2 “ rq2. Thus (II) gives

(III) |D{CDpLq| ă rq4.
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Recall from 8.3 that

L{A – SL2prqq, Szprqq or Dih2r and |Y {Y XA| “ rq,

where p “ 2 in the last two cases, r is an odd prime, and rq “ 2 in the last case.
Suppose that p “ 2 and L{O2pLq – Dih2r. Then rq “ 2 and by (III) |D{CDpLq| ă 16.

Since GL3p2q has order 23 ¨ 3 ¨ 7 and contains no dihedral group of order 14. We conclude that
L{O2pLq – Dih6 – SL2p2q.

So we may assume that L{A – SL2prqq or Szprqq. Since rD,Y, Y s ď rY, Y s “ 1, Y acts quadrati-
cally on D{CDpLq. Thus C.15 shows that all non-central chief factors of L on D{CDpLq are natural
SL2prqq- and Szprqq-modules, respectively. The natural Szprqq- module has order rq4, a contradiction
to (III). Hence L{A – SL2prqq.

The natural SL2prqq-module has order rq2, and so (III) shows that L has a unique non-central
chief factor on D{CDpLq. By 1.43(p) L has no central chief factors on D{CDpLq. Thus D{CDpLq is
a natural SL2pqq-module. In particular, L acts transitively on D{CDpLq.

By (I) CDpLq ď Y , so ICDpLq ď Y , and ICDpLq is elementary abelian. The transitivity of
L on D{CDpLq now implies that D has exponent p. As D is not abelian by 8.13(a), this shows
that p is odd. Since L{A – SL2prqq and D{CDpLq is a natural SL2prqq-module we conclude that
there exists an involution t P L with rt, Ls ď A, and t inverts D{CDpLq. Thus CDptq “ CDpLq and
CIptq “ CIpLq. Since t P NLpY q “ NLpIq, coprime action shows

I “ rI, tsCIptq “ rI, tsCIpLq ď rD, tsCIpLq.

By 8.13(h) rD,As ď CIpLq. Thus rD, xtyAsCIpLq “ rD, tsCIpLq is L-invariant and contains I. Since
D “ xILy, this gives D “ rD, tsCIpLq. As D1 ď rD,As ď CIpLq, D{CIpLq is abelian. Coprime
action now shows

D{CIpLq “ rD, tsCIpLq{CIpLq ˆ CDptq{CIpLq.

Since D “ rD, tsCIpLq, this gives CDptq “ CIptq and so CDpLq “ CIpLq. Thus D{CIpLq is a natural
SL2prqq-module. It follows that NLpY q acts simple on CD{CIpLqpY q. Note that

1 ‰ I{CIpLq ď pY XDq{CIpLq ď CD{CIpLqpY q

and that NLpY q normalizes this series. Thus I{CIpLq “ Y X D{CIpLq and I “ Y X D. Hence
rY,Ds ď Y XD ď I, and 8.14 is proved. l

Put rY :“ Y {I, and recall from 8.3 and 8.4(b) that D ď NGpY q “ NGpIq, so D acts on Y and
rY .

Lemma 8.15. Suppose that I ď A.

(a) rY,D,Ds ď CIpLq and rrY ,D,Ds “ 1.

(b) Either rrY ,Ds “ 1 or |rY {C
rY pDq|

2 ď |Y {Y XA|2 ď |D{CDpY q|.

(c) If Ix “ A, then Y XA “ ICY pI
xq “ ICY pLq and A “ IIxCY pLq.

Proof. (a): By 8.13(h) rA,Ds ď CIpLq. Since rY,Ds ď D ď A, this gives rY,D,Ds ď rA,Ds ď

CIpLq ď I. Hence rrY ,D,Ds “ 1 and (a) holds.

(b): Suppose that |Y {Y XA|2 ą |D{CDpY q|. Then 8.14 shows that rY,Ds ď I and so rrY ,Ds “ 1.
Suppose that |Y {Y X A|2 ď |D{CDpY q|. Since rY X A,Ds ď rA,Ds ď CIpLq ď I we have

ČY XA ď C
rY pDq and so |rY {C

rY pDq|
2 ď |Y {Y XA|2 ď |D{CDpY q|.

(c): Assume that Ix “ A, so A “ IxCApY q. By 1.43(g) CApY q “ AXY , so A “ IxpAXY q and
A X Y x “ IxpA X Y x X Y q. By 1.43(h) A X Y X Y x “ CY pLq and so A X Y x “ IxCY pLq. Hence
also A X Y “ ICIpLq, and 1.43(e) gives A “ pA X Y qpA X Y xq “ IIxCY pLq. Finally, by 8.13(d)
CY pI

xq “ CY pLq, and (c) is proved. l

According to 8.13(b) I is symmetric in G. Thus, we can apply Theorem D with I in place of
Y . We will do this considering the various outcomes of Theorem D separately, and we will use the
notation of Theorem D.
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Lemma 8.16. Suppose that I ď A. Then Case (3) of Theorem D does not hold for I in place of
Y .

Proof. Assume that Case (3) of Theorem D holds. Then I is a natural SL2pqq-wreath product
module for M with respect to some K, M˝ “ OppxKyqQ, and Q acts transitively on K.

Put P :“M˝S and let P˚ be the inverse image of xKy in M . Then I is also a natural SL2pqq-
wreath product module for P and OppP q “M˝ “ OppxKyq. Hence A.28(b) shows

1˝. P is p-minimal.

Moreover, by A.28(c), OppP {CP pIqq “ 1 and by 8.4(c) CP pIq “ CP pY q. Thus

2˝. OppP q “ 1.

We now investigate the action of P on rY . Note that CP pY q ď CP prY q, so P {CP prY q – P {CP p
rY q.

Since P is p-minimal and so p-irreducible, we either have

3˝. CSp
rY q ď OppP q or OppP q ď CP p

rY q.

We now discuss these two cases separately and show that both of them lead to a contradiction.

4˝. CSp
rY q ď OppP q does not hold.

Suppose that CSp
rY q ď OppP q. By (2˝) OppP q “ 1 and so CSp

rY q “ 1. In particular CDpY q “

CDprY q, and rrY ,Ds ‰ 1 since D ę CM pY q. This gives

|rY {C
rY pDq| ă |

rY {C
rY pDq|

2
8.15(b)
ď |D{CDpY q| “ |D{CDprY q|.

So D is an over-offender on rY . On the other hand, since CSp
rY q, rY is p-reduced for P . Moreover, since

P is p-minimal, 1.38 shows that also P {CP p
rY q is p-minimal. Hence C.13(e) yields a contradiction.

5˝. OppP q ď CP p
rY q does not hold.

Suppose that OppP q ď CP p
rY q. Then rY,M˝s “ rY,O

ppP qs ď I, and by 8.4(f) CY pM˝q “ 1.

Since I is a natural SL2pqq-wreath product module for M with respect to K,

P˚ “ xKy “
ą

KPK
K, and I “

ą

KPK
rI,Ks,

and for K P K, K – SL2pqq and rI,Ks is a natural SL2pqq-module for K.
Assume first first that p is odd or q “ 2. Put Z :“ Op1pP˚q. Then Z is a normal p1-subgroup

of P and I “ rI, Zs. Coprime action shows Y “ CY pZq ˆ I. Since M˝ normalizes CY pZq and
rY,M˝s ď I, CY pZq ď CY pM˝q “ 1. But then Y “ I, which is impossible since I ď A and Y ę A.

Assume now that p “ 2 and q ‰ 2. Then q ě 4 and K – SL2pqq is simple. Since rY,OppP qs ď I,
CP pIq is a p-group, and since OppP q “ 1, we conclude that I is faithful P -module.

Let K P K. Observe that K X S is an offender on I. Since K is simple, K is JKpV q-component
of K, and since K ĲĲ P , we conclude from A.42 that K is a JP pIq component of P . By C.13 there

exists subgroups E1, . . . , Er of P such that

JP pIq “ E1 ˆ ¨ ¨ ¨ ˆ Er, JP pIq “ tE
1
1, . . . , E

1
r, u

Q acts transitively on tE1, . . . , Eru, and either Ei – SL2pq
˚q and rrI, Eis{CrI, EispEiq is a natural

SL2pq
˚q-module for Ei or Ei – Symp2n ` 1q and rI, Eis is natural Symp2n ` 1q-module for Ei.

As we have seen, K P JP pIq and so K “ E1i for some 1 ď i ď r. Since rI,Ks is natural
SL2pqq-module for q ě 4, rI, Eis cannot be a natural Symp2n ` 1q-module. It follows that K “ Ei.
Now the transitive action of Q on K and tE1, . . . , Eru gives K “ tE1, . . . , Eru and JP pV q “ xKy “
OppxKyq “M˝.

By 8.12 A is an offender on I and so by C.13(g)

A “ pAX E1q ˆ ¨ ˆ pAX Enq ď xKy “M˝.

Since rY,M˝s ď I this implies rY,As ď I.
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By 8.5(b) Q normalizes A. Thus there exists d P A with 1 ‰ d P CApQq. Since rI, xKys “ I we

have rI,K, ds ‰ 1 for some K P K and since Q centralizes d and acts transitively K, rI,K, ds ‰ 1 for
all K P K. Since rI,Ks is a natural SL2pqq-module for M˝ and d is a 2-element, rI,K, ds “ CrI,Kspdq.

As I “
Ś

KPKrI,Ks we get rI, ds “ CIpdq. On the other hand, A is elementary abelian and so

|d| “ p “ 2. Hence d acts quadratically on Y and

rY, ds ď rY,As X CY pdq ď I X CY pdq “ CIpdq “ rI, ds.

Hence rY, ds “ rI, ds and Y “ CY pdqI. Note that d P AzY , and so by 1.43(f) CY pdq ď A. Now
Y “ CY pdqI ď A, a contradiction. l

Recall that M˝ “ OppM˝q. For the definition of JM pIq and a JM pIq-component of M see A.7.

Lemma 8.17. Suppose that I ď A. Then Case (4:4) of Theorem D does not hold for Y in place
of I.

Proof. Assume case (4:4) of Theorem D. Then p is odd, M˝ “ L1L2 with rL1, L2s “ 1,
Li – SLnipqq, ni ě 2 and n1`n2 ě 5, and I – V1bFq V2, where Vi is a natural SLnipqq-module for

Li. Note that for n ě 2 and odd q:

1˝. OppSLnpqqq “ SLnpqq
1, and SLnpqq

1 is either quasisimple or isomorphic to Q8 (and
n “ 2 and q “ 3).

Let ti, ju “ t1, 2u, and let Li be the inverse image of Li in M˝, and put Ki :“ pLiQq˝. Note
that M˝ “ L1L2 and rL1, L2s ď CM pY q ď NM pQq. Also Q is a weakly closed subgroup of M , and
so we can apply 1.47. It follows that

2˝. Ki ĲM˝, M˝ “ K1K2, Ki “ rKi, Qs and F˚pMq ď NM pKiq.

In particular, Ki “ OppKiq ď OppLiq ď M˝ “ KiKj and so OppLiq “ KipO
ppLiq X Ljq. Since

Li – SLnipqq and Li X Lj ď ZpLiq we conclude from conclude from (1˝) that

3˝. Ki “ Li
1
“ OppLiq – SLnipqq

1.

We will now verify the hypothesis of 8.9 with Ki in place of K. By (2˝), Ki Ĳ M˝ and
Ki “ rKi, Qs. Hence rM,Qs ďM˝ ď NM prKi, Qsq and thus

rF˚pM˝q, Qs ď rM,Qs ď NM prKi, Qsq ď NM
`

rKi, QsOppM˝q
˘

.

Moreover, by (3˝) Ki ‰ 1 and Ki “ F˚pKiq. Since Ki Ĳ M˝, Ki is subnormal in M . Hence
Ki “ F˚pKiq ď F˚pMq. Now (2˝) shows that Ki Ĳ F˚pMq. Thus, indeed M and Ki satisfies the
hypothesis of 8.9. Hence

4˝. CApKiq “ 1.

By 8.12 A is a non-trivial quadratic offender on I. Thus, there exists a best offender B ď A on
I with rI,Bs ‰ 1. Then B ‰ 1 and so by (4˝) rKi, Bs ‰ 1. On the other hand, since Li – SLnipqq,

rL1, L2s “ 1 and M˝ “ L1L2 we conclude that L1
1

and L2
1

are the only minimal non-central normal

subgroups of M˝. Thus tL1
1
, L2

1
u is M -invariant. In particular O2pMq ď NM pLi

1
q. Since p is odd,

we get that B ď JM pIq ď NM pLi
1
q. But then by (3˝) rKi, Bs “ Ki Ĳ JM pIq, and Ki is minimal with

that property. Hence K1 and K2 are JM pIq-components of M . Now The Other P pG,V q-Theorem

[MS1] (or A.41(f)) implies rI,K1,K2s “ 1, a contradiction to the fact that I – V1 bFq V2 as an
M˝-module. l

Lemma 8.18. Suppose that I ď A. Then M˝ is quasisimple, I is a simple M˝-module, and A
acts K-linearly on I, where K :“ EndM˝pIq.
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Proof. Note that we have excluded cases (3) and (4:4) of Theorem D, see 8.16 and 8.17. In
all the remaining cases of Theorem D M˝ is quasisimple and rI,M˝s is a simple M˝-module. By
8.4(f) I “ rI,M˝s “ rI,M˝s, and so I is a simple M˝-module. In particular, K is a field, and since
A normalizes M˝, A acts K-semilinearly on I. By 8.12 A is an offender on I and so by [MS5, 2.5]
either A acts K-linearly on I or |I| “ 4. The latter case is impossible as M˝ is quasisimple. l

For the next step recall that U “ CIpLq, W “ CIpQq and D “ xILy. As in 8.8 define

E :“ xQg | g P G | CU pQ
gq ‰ 1y.

Moreover K “ EndM˝pIq as in 8.18.

Lemma 8.19. Suppose that I ď A. Then

(a) L normalizes E.
(b) U is a non-trivial K-subspace of I.
(c) E “ NGpUq

˝ “ NM pUq
˝. In particular, E ďM .

(d) I{U – Ih as an FpE-module for all h P LzNLpY q.

Proof. Since L centralizes and so normalizes U , L normalizes E. By 8.18 A acts K-linearly
on I and by 8.13(e), U “ CIpLq “ CIpAq. So U is a non-trivial K-subspace of I. By 8.8(c)

E “ NGpUq
˝ “ NM pUq

˝; in particular, E ď M . Since I ď A, 8.8(d) shows that I{U – Ih as an
FpE-module. l

Lemma 8.20. Suppose that I ď A. Then rY,M˝s ď I.

Proof. We first show :

1˝. E normalizes D and rrY ,E,Ds “ 1.

By 8.19(c) E ď M and so E normalizes I. By 8.19(a), L normalizes E, whence E normalizes
D “ xILy. By 8.8(b), rY,Es ď Y X A and by 8.13(h) rA,Ds ď CIpLq ď I. Thus rY,E,Ds ď

rA,Ds ď I and rrY ,E,Ds “ 1.

For the next steps recall that M˝ “ OppM˝q and W “ CIpQq.

2˝. Suppose that rI, E,Ds “ 1. Then rY,M˝s ď I.

By 8.13(e) CIpDq “ U and so, since rI, E,Ds “ 1, rI, Es ď CIpDq “ U , and E centralizes I{U .

By 8.19(d) the FpE-modules I{U and Ih are isomorphic for all h P LzNLpY q. This gives rIh, Es “ 1

for all such h, and so also rD,Es “ 1 and rD,E, Is “ 1. The Three Subgroups Lemma now implies
that rI,D,Es “ 1. In particular, rI,Ds ď CIpQ

gq for all g P G with Qg ď E. By 8.13(a) rI,Ds ‰ 1,
and so for all such Qg, 1 ‰ rI,Ds ď CGpQq X CGpQ

gq, and 1.52(e) gives Q “ Qg. Hence

(I) E “ Q and rI,D,Qs “ 1.

Put
T :“ ts PM | rI, ss ďW and rI, s, ss “ 1u.

Let t P T with rI, ts ‰ 1. Since W “ CIpQq, A.55(d) (with V “ I) shows that W “ rI, ts. From
rI, t, ts “ 1 we get rW, ts “ 1. In particular

(II) rI, ts “W for all t P T zCT pIq and T “ CM pW q X CM pI{W q.

By (I) rI,D,Qs “ 1 and so rI,Ds ď CIpQq “ W , and by 8.13(f) D is a non-trivial quadratic
offender on I. This shows that D ď T , so rI, T s ‰ 1 and CIpT q ď CIpDq. By 8.13(e) CIpDq “ U
and so CIpT q ď U . Since rI, T s ‰ 1, (II) gives rI, T s “ W . Moreover, since NM pQq normalizes
CIpQq “W , (II) shows that NM pQq normalizes T , and Q! shows that T ď NM pQq. We record:

(III) D ď T Ĳ NM pQq, CIpT q ď U and rI, T s “W.
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Next we prove:

(IV) T is a weakly closed subgroup of M.

Otherwise, 1.45 shows that there exists g P M such that T g ‰ T and rT g, T s ď T g X T . In
particular T g ď NM pT q. Then T g normalizes rI, T s and so rI, T, T gs ď rI, T s. Thus rI, T, T gs ď
rI, T s X rI, T gs. By (III) rI, T s “W and so

rI, T, T gs ďW XW g.

By (III) NM pQq normalizes T . Thus T g ‰ T implies that g R NM pQq, so Q ‰ Qg, and 1.52(e)
gives CGpQq X CGpQ

gq “ 1. Then also W XW g “ 1 and rI, T, T gs “ 1. By (III) rI, T s “ W and
CIpT q ď U . Hence W ď CIpT

gq ď Ug. Thus CUg pQq ‰ 1 and Q ď Eg. By (I), E “ Q and so
Q ď Eg “ Qg and Q “ Qg, a contradiction. Hence (IV) is proved.

Note that by (III), D ď T Ĳ NM pQq, and by Q!, NM pCIpSqq ď NM pQq, and so

D ď T ď OppNM pCIpSqqq.

By 8.13(f) D is a non-trivial quadratic offender on I, and by [MS6, Corollary 3.7] every offender
contained in OppNM pCIpSqqq is a best offender. Thus D is a best offender on I. Since by 8.18 M˝

is quasisimple and I is a simple M˝-module, we are allowed to apply the Point-Stabilizer Theorem
C.8 to M˝D0.

Now C.8 shows that M˝D – SLnpqq, n ě 2, Sp2npqq,n ě 2, G2pqq or Sympnq, n ą 6, and I is a
corresponding natural module for M˝D. The last two cases are impossible since they do not appear
in Theorem D.

Suppose that I is a natural Sp2npqq module with n ě 2. By B.37, W is 1-dimensional. Hence
by (III) rI, T s “ W is 1-dimensional, and T acts as a transvection group on I. But then T is not
a weakly closed subgroup of M since n ě 2. Therefore M˝D – SLnpqq. Note that the natural
SL2pqq-module also is a natural SL2pqq-wreath product module and so has been ruled out by 8.16.
Thus n ě 3 and M˝D is perfect. Hence D ďM˝ and

(V) M˝ – SLnpqq, n ě 3, and I is a corresponding natural module for M˝.

Again by B.37, W is 1-dimensional. Let 1 ‰ u P U . Since M acts transitively on I, ru,Qgs “ 1
for some g PM . Thus CU pQ

gq ‰ 1 and Qg ď E. Since E “ Q by (I), this gives Qg “ Q and u PW .
So U “W , and by 8.13(e)

W “ U “ CIpI
xq “ CIpDq “ CIpAq,

and since by 8.12 A acts quadratically on I,

rI, Ixs ď rI,Ds ď rI, As ď CIpAq “ U “W.

By B.37(1) Q “ CM˝pW q X CM˝pI{W q, and so |Q| “ |qn´1| “ |I{U | and Ix ď D ď A ď Q. Since

by 8.19(d) I{U – Ix, |Ix| “ |I{U | “ |Q| and

(VI) A “ D “ Ix “ Q.

As Ix “ A, 8.15(c) shows that Y X A “ ICY pI
xq, and since Q “ Ix, Y X A “ ICY pQq. Put

a :“ |Y {Y X A| and b :“ |W |. (Actually b “ q, but this will not be important.) Let s P Q with
s ‰ 1. Then rY XA, ss “ rICY pQq, ss “ rI, ss ďW and so |rY XA, ss| ď b. Hence

|Y {CY psq| ď |Y {Y XA||Y XA{CYXApsq|| ď a|rY XA, ss| ď ab.

Since s P Q, rCY pQq, ss “ 1. Now A.55(c) gives

|CY pQq| ď |rY, ss| “ |Y {CY psq| ď ab.

As CY pQq X I “W has order b, |CY pQqI{I| ď
ab
b “ a. Using Y XA “ ICY pQq we get

|Y {I| “ |Y {Y XA||Y XA{I| “ |Y {Y XA||CY pQqI{I| ď aa “ a2.

We are now in the position to prove (2˝).
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Assume that that |D{CDpY q| ă |Y {Y X A|2. Then 8.14 implies rY,Ds ď I. Since D “ Q and
M˝ ďM˝ “ xQM y, this gives rY,M˝s ď I, and (2˝) holds.

Assume that |D{CDpY q| ě |Y {Y XA|
2. Then

|Y {I| ď a2 “ |Y {Y XA|2 ď |D{CDpY q| “ |D| “ qn´1.

Since SLnpqq has no non-central simple (FF-)modules of order at most qn´1, we get rY {I,M˝s “ 1.
So again rY,M˝s ď I, and (2˝) is proved.

Suppose now for a contradiction that rY,M˝s ę I and choose an M˝D-submodule X of Y
minimal with respect to rX,M˝s ę I. Put

X1{I :“ CX{IpM˝q, V :“ X{X1, zM˝D :“M˝D{CM˝DpV q, .

Next we show:

3˝. V is a simple M˝D-module, F˚pzM˝Dq “ xM˝, zM˝D “ x pD
{M˝Dy, and

(VII) |V {CV pDq| ď
a

|D{CDpV q| ă |D{CDpV q|.

Note that rM˝, CM˝DpV qs “ 1 since M0 is quasisimple and M˝ ę CM˝DpV q,. Since also I is

a simple M0-module and OppMq “ 1, 1.14(c) shows that CM˝DpV q, is a p1-group and so CDpV q “

CDpY q. In particular, pD ‰ 1.
By the choice of X, V is a simple M˝D-module with rV,M˝s ‰ 1. Since CM˝pY q ď CM˝pV q,

xM˝ is a non-trivial quotient of the quasisimple group M˝, and so also xM˝ is quasisimple. As V is a

simple M˝D-module, OppzM˝Dq “ 1. Thus 1.14(a) implies that F˚pzM˝Dq “ xM˝ is quasisimple, and

rxM˝, pDs “ xM˝. Hence zM˝D “ x pD
{M˝Dy.

Moreover,

|V {CV pDq|
2 ď |rY {C

rY pDq|
2

8.15(b)
ď |D{CDpY q| “ |D{CDpV q|,

and so
|V {CV pDq| ď

a

|D{CDpV q| ă |D{CDpV q|.

Hence (3˝) is proved.

4˝. rI, E,Ds ‰ 1, and V is not selfdual as an FpM˝D-module.

Since rY,M˝s ę I, (2˝) shows

(VIII) rI, E,Ds ‰ 1.

By 8.13(e) CIpDq “ U , and so rI, Es ę U . Since by 8.19(d) Ix – I{U as an E-module, also
rE, Ixs ‰ 1 and thus rE,Ds ‰ 1. Hence rE,Ds ę CDpY q “ CDpV q and rE,D, V s ‰ 1. By (1˝)

rrY ,E,Ds “ 1 and hence also rV,E,Ds “ 1. Since rE,D, V s ‰ 1, the Three Subgroups Lemma
implies that rV,D,Es ‰ 1.

Let V ˚ be the Fp-dual of the FpM˝D-module V . Since rV,E,Ds “ 1, B.8 gives rV ˚, D,Es “ 1.
Hence rV,D,Es ‰ 1 implies that V is not isomorphic to V ˚ as an FpM˝D-module. Thus (4˝) has
been established.

By 8.15(a), D acts quadratically on rY and so also on V . Hence, according to (VII), pD is a
quadratic (over-) offender on V . Now (3˝) shows that we can apply the FF-Module Theorem C.3 to
zM˝D. We will discuss the various outcomes of this theorem.

In cases C.3(2)-(4) V is a natural Sp2npqq-, SUnpqq-, Ωnpqq-module,respectively. But then V is
selfdual over Fp, which contradicts (4˝).

In cases C.3(5)-(12), the Best Offender Theorem C.4 shows that either

|V {CV pDq| “ |D{CDpV q|,

or
|V {CV pDq| “ q4 ď |D{CDpV q| ď q5 (in the Spin7pqq-case),

or
2|V {CV pDq| “ |D{CDpV q|, |D{CDpV q| “ 2k and n “ 2k ě 6 (in the Sympnq-cases).
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In either of these cases |V {CV pDq| ą
a

|D{CDpV q|, which contradicts (VII).

Thus C.3(1) holds. So V is a natural SLmpp
lq-module, m ě 2. If m “ 2 we get (for example by

C.13(g)) |V {CV pDq| “ |D{CDpV q|, which again contradicts (VII). Thus zM˝D – SLmpp
lq, m ě 3.

In particular zM˝D “ xM˝, so pD ď xM˝. Since CM˝DpV q is a p1-group, this gives D ďM˝. Moreover,

comparing xM˝ with M˝ in Theorem D, we get:

5˝. D ďM˝ “M˝, and one of the following holds:

(A) I is a natural SLnpqq-module for M˝, n “ m ě 3, q “ pl.
(B) I is a natural Ω`6 pqq module for M˝, m “ 4 and q “ pl.

(C) I is the exterior square of an natural SLnpqq-module for M˝, n “ m ě 5, q “ pl.

We now derive a contradiction to our assumption rY,M˝s ę I by showing that none of the above

three cases holds. And we do this by comparing the action of xM˝ on V with that of M˝ on I.

Suppose that Case (A) holds, so I is a natural SLnpqq-module for M˝. Then by B.38(b) rI, Es ď
U , a contradiction to (VIII).

Thus (A) does not hold and so m ě 4. Hence C.18 shows that H1pM˝, V
˚q “ 0. Thus

X{I “ rX{I,M˝s ˆX1{I and the minimality of X shows X1 “ I and V “ X{I. So

6˝. X{I is an natural SLmpqq-module for M˝, where m ě 4.

Suppose next that Case (B) holds, so I is a natural Ω`6 pqq module for M˝ and m “ 4. In
particular V has Fq-dimension 4, where Fq :“ End

yM˝
pV q is a field of order q. By B.37, W is 1-

dimensional and Q “ CM˝pW
K{W q X CM˝pW q. It follows that |Q| “ q4, and CV pQq “ rV,Qs is a

2-dimensional subspace of V . Since by (1˝) rV,E,Ds “ 1, rV,Qs ď rV,Es ď CV pDq.
If CV pDq “ rV,Qs, the quadratic action of D shows rV,Ds ď rV,Qs and so

pD ď C
yM˝
prV,Qsq X C

yM˝
pV {rV,Qsq “ pQ.

Thus D ď Q, a contradiction, since, for example by the Point-Stabilizer Theorem C.8, no subgroup
of Q is a non-trivial offender on I, while by 8.13(f) D is a non-trivial offender on I.

We have shown that rV,Qs ă CV pDq ă V . Since dimFq rV,Qs “ 2 and dimFq V “ m “ 4, we get
that CV pDq is an Fq-hyperplane of V .

Put T :“ CM˝pCV pDqq X CM˝pV {CV pDqq, so D ď T and pT is the unipotent radical of the

normalizer of a hyperplane in xM˝. Note that T centralizes a 3-dimensional singular subspace W0 of
I. Since D ď T , W0 ď CIpDq “ U , and so by 2.7(b) NM pW0q

˝ ď E. By 8.19(c) E normalizes U , so
also NM pW0q

˝ normalizes U . Now B.38(a) shows that W0 ď U ďWK
0 , so U “W0 since W0 “WK

0 .
Thus |Ix| “ |I{U | “ q3 “ |T |, and Ix ď D ď T gives Ix “ T .

By 8.13(h) rA,Ds ď CIpLq ď CM pY q and since Ix ď D, A centralizes Ix “ T . Since T is a
Sylow p-subgroup of CM pT q, we conclude that A ď T , and

|T | “ |Ix| ď |A| “ |T |,

so A “ Ix and by 8.15(c) Y XA “ ICY pLq. Hence also X XA “ ICXpLq “ ICXpAq. In particular,
CXpAq ę I. Since a natural Ω`6 pqq-module is isomorphic to the exterior square of the natural

SL4pqq-module and since A “ T , we can apply [MS5, 6.3]. We conclude that X is not a Q!-module
for M˝ with respect to any p-group, a contradiction to Q!. This shows that also Case (B) does not
hold.

Suppose that Case (C) holds. Then I is the exterior square of a natural SLnpqq-module V0 with
n ě 5. By 8.12 and 8.13(f) Ix, D and A are non-trivial offenders on I. Hence C.4 shows that there
exist a Fq-hyperplane V1 of V0 such that

D “ Ix “ A “ CM˝pV1q and |D| “ qn´1.

If V0 is dual to V as an FpM˝-module we get |CV pDq| “ q and so |V {CV pDq| “ qn´1 “ |D|. But

this contradicts (VII). Thus, V0 is isomorphic to V as an FpM˝-module. As above, using Ix “ A
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and 8.15(c), we conclude that X XA “ ICXpAq. Since rX,As ď X XA, we have X XA ę I and so
also CXpAq ę I. Applying [MS5, 6.3] shows that X is not a Q!-module, a contradiction.

We have seen that each of the three cases in (5˝) lead to a contradiction, and so 8.20 is proved.
l

Lemma 8.21. Suppose that I ď A. Then one of the following holds:

(a) p “ 2, M˝ – SL3p2q, I is a corresponding natural module, |Y {I| “ 2, and Case (2) of
Theorem H holds.

(b) p “ 2, M˝ – Ω`6 p2q – Altp8q, I is the corresponding natural module, |Y {I| “ 2, and Y is
the central quotient of the permutation module on a set Λ of eight objects.

Proof. According to 8.20 rY,M˝s ď I. By 8.4(f), CY pMq “ 1 and so Y does not split over I.
Moreover, by 8.18 M˝ is quasisimple. Comparing Theorem D (for quasisimple M˝) with C.18 yields
p “ 2 and one of the following three cases:

(A) I is a natural SL3p2q-module for M˝, and |Y {I| “ 2.
(B) I is natural Sp2npqq- or Sp4p2q

1-module for M˝.
(C) M˝ – Ω`6 p2q – Altp8q, I is the corresponding natural module, |Y {I| “ 2, and Y is the

central quotient of the permutation module on a set Λ of eight objects.

Suppose that (A) holds. By B.37 |W | “ 2 and Q “ CM pI{W q has order 4. Suppose that

|rY,Qs| “ 2. Then |Y {CY paq| “ 2 for any 1 ‰ a P Q. Since Q is generated by two such elements,
|Y {CY pQq| ď 4 and Q is an offender on Y . But this contradicts C.22. Hence W ă rY,Qs ď I, and
since NM pW q acts simply on I{W , I “ rY,Qs ď Q. Thus, case (2) of Theorem H holds, and (a) is
verified.

Suppose that (B) holds. Note that I ď A Ĳ L and A ď M . So 2.25 shows that Y ď OppLq, a
contradiction to L P LHpYM q.

Finally in Case (C), (b) holds, and so the lemma is proved. l

By the preceding lemma, I is either a natural SL3p2q-module or a natural Ω`6 p2q-module for M˝.
Moreover, if I is natural SL3p2q-module then Theorem H holds. So we assume for the remainder of
this subsection that I is a natural Ω`6 p2q-module for M˝. In particular, Case (b) of 8.21 holds and
so Y is the central quotient of the permutation module on a set Λ of eight objects.

We will make use of the fact that Ω`6 p2q – SL4p2q – AltpΛq – Altp8q. Let I0 be a natural

SL4p2q-module for M˝ and W0 :“ CI0pQq.

Lemma 8.22. Suppose that I ď A and I is the natural Ω`6 p2q-module for M˝.

(a) M – Ω`6 p2q – Altp8q or M – O`6 p2q – Symp8q. In particular, M “M˝ S.
(b) Y XA “ I and A “ D.
(c) W is a singular 1-space in I, Q “ Q‚ “ CM˝pWK{W q X CM˝pW q “ O2pNM pW qq, and Q

is a natural Ω`4 p2q-module for MM˝pW q.

(d) |Q| “ 16, Q has two orbits of length 4 on Λ, W0 is a 2-subspace of I0, Q “ CM˝pW0q X

CM˝pI0{W0q “ O2

`

NM˝pW0q
˘

.

(e) Ix “ A is elementary abelian of order 8, A acts regularly on Λ, A ďM˝, and I “ rY,As.
(f) I ę Q‚.

Proof. (a): Since I is natural Ω`6 p2q-module for M˝ and since M normalizes M˝, M fixes
the unique M˝-invariant non-degenerate quadratic form on I. Now |O`6 p2q{Ω

`
6 p2q| “ 2 implies

M – Ω`6 p2q or M – O`6 p2q.

(b): We have I ď Y XA ă Y and |Y {I| “ 2, thus Y XA “ I. Since L P LGpYM q, A “ xpY XAq
Ly

and so A “ xILy “ D.

(c): Since both Q and Q‚ are large subgroups of G, B.37 shows that W is a singular 1-space
in I and Q “ Q‚ “ CM˝pWK{W q X CM˝pW q. Now B.28 implies that Q “ O2pNM pW qq and Q is a

natural Ω`4 p2q-module for MM˝pW q.
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(d): Since Q is a natural Ω`4 p2q-module, |Q| “ 16. Up to conjugacy

xp12qp34q, p13qp24qy ˆ xp56qp78q, p57qp68qy

is the only (elementary) abelian subgroup of order 16 in Altp8q, and so Q has two orbits of length
4 on Λ. If W1 is 2-subspace of I0, then O2pNM˝pW1qq is elementary abelian of order 16, and so (d)
holds.

(e): For λ P Λ let yλ be the unique non-trivial element in Y fixed by CM pλq. Then yλ R I and
since by (b) Y X A “ I, yλ R A. Hence 1.43(g) gives Y X A “ ryλ, AsCY pAq. Since rY X A,As “
rI, As ‰ 1, we get ryλ, A,As ‰ 1. Thus |λA| ě 4. So either A acts regularly on Λ or has two orbits
of length 4. On the other hand by 8.12, A is an offender on I. The Offender Theorem C.4(h) now
shows that A acts regularly on Λ. In particular, all orbits of Ix on Λ have the same length. Again
by 8.12, Ix is an offender on I, and C.4(h) shows that also Ix acts regularly in Λ. Hence A “ Ix.
The regularity of A also gives

Y “ xyAλ y “ xyλyrY,As ď xyλyI “ Y,

so I “ rY,As. Moreover, every element of A is an even permutation, so A ďM˝. Thus (e) holds.

(f): Suppose that I ď Q‚. Since L ď NGpQq ď NGpQ
‚q this gives Ix ď Q‚. By (c) Q “ Q‚, so

Ix ď Q, and by (d) Q has an orbit of length 4 on Λ. Hence Ix is not regular on Λ, which contradicts
(e). l

Put U0 :“ CI0pAq. Note that M˝ has two classes of regular elementary abelian subgroups,
interchanged by the outer automorphism. By (a) M – Altp8q or M – Symp8q, and we conclude
that NM pAq ď M˝. Moreover, each member of one of these classes centralizes a hyperplane in I0,
each member of the other a 1-subspace. So replacing I0 but its dual, if necessary, we may assume
that A centralizes a hyperplane in I0, so U0 is a hyperplane of I0.

Lemma 8.23. Suppose that I ď A and I is the natural Ω`6 p2q-module for M˝. Then

(a) U0 is hyperplane in I0, Ix “ A “ CM˝pU0q, NM pAq “ NM˝pU0q, NM pAq{A – SL3p2q, and

A is a natural SL3p2q-module for NM pAq isomorphic to U0.

(b) U is a singular 3-space in I, NM pUq “ NM pAq “ MM˝pU0q, U is natural SL3p2q-module

for NM pUq dual to U0, I{U and A are natural SL3p2q-module for MM pUq isomorphic to

U0, and Ix “ A “ CM pUq “ CM pI{Uq “ CM˝pU0q.

Proof. (a): By the choice of I0, U0 is a hyperplane of I0, and by 8.22(e) A “ Ix has order
eight. This gives A “ CM pU0q, and (a) follows.

(b): Observe that I – I0 ^ I0 as an M˝-module and recall from 8.13(e) that U “ CIpAq. Thus
(b) follows from (a). l

Lemma 8.24. Suppose that I ď A and I is the natural Ω`6 p2q-module for M˝.

(a) E “ NM pUq “ NM pAq “ NM˝pU0q.

(b) E{A – SL3p2q, U is a natural SL3p2q-module for E dual to U0, and I{U and A are natural
SL3p2q-modules for E isomorphic to U0.

(c) A Ĳ E and A “ O2pEq “ O2pEq.
(d) I “ rI, Es “ rY,As “ rY,O2pEqs.
(e) U “ rI, As “ rI,O2pEqs.

Proof. (a) and (b): Recall from 8.19(c) that E “ NM pUq
˝. By B.38(c) U is a natural SL3p2q-

module for E and so NM pUq “ ECM pUq. By 8.23(b) CM pUq “ A is a natural SL3p2q-module

and thus non-central simple module for NM pUq. Since E Ĳ NM pUq we conclude that A ď E and

E “ NM pUq. Now (a) and (b) follow from 8.23(b).

(c): From (b) we get I “ rI, Es. Since I normalizes U and so E, we have rI, Es ď E and thus
I ď E. As L normalizes U and thus E, we conclude that E normalizes xILy ď E. By 8.22(b)
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A “ D “ xILy and so A Ĳ E, in particular A ď O2pEq. By (b) E{A – SL3p2q and thus O2pEq “ A.

Hence A ď O2pEq ď O2pEq “ A, and (c) follows.

(d) and (e): As we have already seen above, (b) gives I “ rI, Es, and by 8.22(e) I “ rY,As.

Moreover, since by (b) both, U and I{U , are simple E-modules, rI, As “ U . Since by (c) A “ O2pEq,
(d) and (e) follow. l

Put
N :“ NGpUq, C :“ CGpUq, B :“ xIN y, pB :“ B{U, N0 :“ CN p pBq.

Lemma 8.25. Suppose that I ď A and I is the natural Ω`6 p2q-module for M˝.

(a) E Ĳ N , and L ď C.
(b) A ď B ď O2pEq ď O2pNq and A “ B “ O2pEq “ CM pUq “ CM˝pU0q.
(c) rB,O2pEqs “ B1 “ ΦpBq “ U ď Ω1ZpBq.
(d) O2pEq ď N0 ď C XM :.
(e) rB, Y s “ I.
(f) N “ EC, NN pY q “ ECGpY q and rE,Cs ď O2pEq ď N0.

Proof. (a): By 8.19(c) E “ NGpUq
˝, so E Ĳ N , and by definition, U “ CIpLq and so L ď C.

(b): By 8.22(b) xILy “ A “ D ď B, and by 8.24(c), A Ĳ E, so I ď A ď O2pEq. Since by
(a) E Ĳ N also O2pEq Ĳ N , whence B “ xIN y ď O2pEq ď O2pNq. By 8.24(c) A “ O2pEq and by
8.23(b) A “ CM pUq “ CM˝pU0q. So also the second part of (b) holds.

(c): Recall from (a) that O2pEq Ĳ N and from (b) that A ď B ď O2pEq. By 8.24(e), U “

rI,As “ rI,O2pEqs. Since U and O2pEq are N -invariant and B “ xIN y, this gives rB,O2pEqs “ U
and

U “ rI, As ď rI,Bs ď rI,O2pEqs “ rB,O2pEqs “ U.

Since rB,Bs ď rB,O2pEqs we conclude that U “ B1 “ rB,O2pEqs. Moreover, as I{U is elementary
abelian and rU, Is “ 1, also U “ ΦpBq and U ď Ω1ZpBq.

(d): By (c) rB,O2pEqs “ U and so O2pEq ď CN pB{Uq “ N0. Since I ď B, we get rI,N0s ď

rB,N0s ď U ď I and so N0 ď NGpIq “ NGpY q “M :. Since rB,N0s ď U ď Ω1ZpBq, N0 centralizes
ΦpBq “ U , see 1.18. Thus N0 ď C.

(e): By (b) A ď B ď O2pEq and by 8.24(d) rY,As “ rY,O2pEqs “ I. Hence rY,Bs “ I, and (e)
holds.

(f): By 8.24(b) U is a natural SL3p2q-module for E and thus E induces AutpUq on U , so
N “ EC. By 8.24(a) E “ NM pUq, and we conclude that NN pY q “ NNGpY qpUq “ ECGpY q. From
1.52(c) we get rNGpUq

˝, CGpUqs ď O2pNGpUq
˝q. As E “ NGpUq

˝, this gives rE,Cs ď O2pEq. Also
by (d) O2pEq ď N0. l

Lemma 8.26. Suppose that I ď A and I is the natural Ω`6 p2q-module for M˝.

(a) NN pY q is a parabolic subgroup of N , and NN pY N0q “ NN pY q.

(b) pB is the direct sum of m natural SL3p2q-modules isomorphic to I{U (and U0) for E, for
some m ě 2.

(c) rB,CEpY qs ď U ď I and CEpUq “ E X C ď N0.
(d) F “ rF,Es “ rF,E˝s for any E-invariant subgroup of F of B. In particular, B “ rB,E˝s ď

E˝ ďM˝.
(e) pB is a 2-reduced N -module.

Proof. (a): Since O2pMq ď N and Y is asymmetric, NN pY q is a parabolic subgroup of N (see
2.6(c)). By definition of N0, rB,N0s ď U ď I, and by 8.25(e), rB, Y s “ I, so

NN pY q ď NN pY N0q ď NN pr pB, Y N0sq “ NN pr pB, Y sq “ NN ppIq “ NN pIq “ NN pY q.

(b): By 8.25(f) rE,Cs ď N0 and N “ EC. Hence pIc – pI as an E-module for every c P C, and
pB “ xpIN y “ xpICy. Since by 8.24(b) pI “ I{U – U0 as an E-module, (b) follows.
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(c): Since CEpY q centralizes I{U , (b) gives CEpY q ď CEp pBq ď N0. Hence rB,CEpY qs ď U ď I
and CEpY q ď C XN0.

(d): This is a direct consequence of (b).

(e): By 8.25(f) NN pY q “ ECGpY q. As pI “ I{U is a natural SL3p2q-module for E, we conclude

that pI is 2-reduced for NN pY q. Since pB “ xpIN y and by (a) NN pY q is a parabolic subgroup of N ,

A.12 shows that pB is a 2-reduced N -module. l

Put X :“ xpB XO2pMqq
M˝

y. Moreover the integer m is chosen as in 8.26(b).

Lemma 8.27. Suppose that I ď A and I is the natural Ω`6 p2q-module for M˝.

(a) X “ O2pM˝q “ rX,M˝s “ rO2pMq,M˝s and M˝{X – SL4p2q. In particular, CM˝pY q “
X.

(b) X 1 ď ΦpXq ď I.
(c) rX,E˝s “ X XB.
(d) X{I is the direct sum of m ´ 2 natural SL4p2q modules for M˝ isomorphic to I0. In

particular, |X{I| “ 24pm´2q and |X XB{I| “ 23pm´2q.
(e) Y XX “ I, |X{X XB| “ 2m´2 and |Y X{X XB| “ 2m´1.

Proof. (a): Note that rB,O2pMqs ď B XO2pMq “ B XX and X “ xpB XXqM
˝

y. Since M˝

is simple, 1.54(c) shows that M˝ ď xB
M˝

y. Thus

(I) rO2pMq,M˝s ď rO2pMq, xB
M˝

ys “ xrO2pMq, Bs
M˝

y ď X.

Since B XO2pMq is E-invariant, 8.26(d) gives B XO2pMq “ rB XO2pMq, E˝s, and since E˝ ďM˝,
we get B XO2pMq ď rX,M˝s, so

X “ xpB XO2pMqq
M˝

y ď rX,M˝s ď X.

It follows that X “ rX,M˝s “ rX,M˝s ď O2pM˝q; in particular X ď O2pM˝q ď O2pM
˝q ď O2pMq.

By (I) rO2pMq,M˝s ď X and thus

X “ rX,M˝s “ rO2pM˝q,M˝s “ rO2pMq,M˝s.

As M˝ is normal in M :, also rO2pM˝q,M˝s is normal in M :, so X ĲM :.
Since M˝ is simple, 1.54(b) shows that M˝{rO2pM˝q,M˝s is quasisimple, that is, M˝{X is

quasisimple. Note that

CBXpY q “ BX XO2pMq “ pB XO2pMqqX “ X.

By 8.25(b) B “ CM˝pU0q and by 8.26(d) B ďM˝. Together with M˝ “M˝ we get BCM˝pY q “
CM˝pU0q. Since by 8.24(a) NM˝pU0q “ NM˝pUq “M˝XN , NM˝pU0q normalizes B. Hence BX{X is
a NM˝pU0q-invariant complement to CM˝pY q{X in CM˝pU0q{X. Now C.21 shows that CM˝pY q{X “

1 and so M˝{X – SL4p2q. So (a) holds.

Before proving (b) – (e) we have a closer look at the structure of E.

1˝. E “ E˝CEpY q, M˝ XN “ E˝X and O2pM˝ XNq “ BX “ CM˝pUq “ CM˝pU0q.

By 8.24(a) M XN “ NM pUq “ E and so MXN “ ECM pY q, and by 8.24(b) E{A – SL3p2q and
A is a natural SL3p2q-module for E. ThusO2pEq “ E and so E “ E˝CEpY q andMXN “ E˝CM pY q.
Since E˝ ď M˝, this gives M˝ X N “ E˝CM˝pY q. Moreover, (a) shows that X “ CM˝pY q and so
M˝ XN “ E˝X.

By 8.26(d), B ď E˝ and so BX ď O2pM
˝ X Nq. Since B “ O2pEq “ O2pM˝ XNq, we get

BX “ O2pM˝ XNq. By 8.25(b), B “ CM pUq “ CM˝pU0q and hence CM˝pUq “ BCM˝pY q “ BX “

CM˝pU0q.

2˝. rX,E,Bs ď I and rX XB,Bs ď rX XB,O2pEqs ď I.

Note that rX,Es ď X X E ď O2pEq, B ď O2pEq and by 8.25(c) rO2pEq, Bs “ U ď I. Thus

rX,E,Bs ď rO2pEq, Bs ď I and rX XB,Bs ď rX XB,O2pEqs ď rB,O2pEqs ď I.
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3˝. rX,E˝s ď X XB and X 1 ď ΦpXq ď I.

Let g PM˝zN . SinceM˝ is doubly transitive on the hyperplanes of I0 andNM˝pU0q “ NM˝pUq “
M˝ XN ď NM˝pB XXq,

pB XXqM˝ “ pB XXqM˝XN
g

Y tBg XXu.

Also by (1˝) M˝ XN “ E˝X, and X normalizes B XX. Thus pB XXqM˝XN
g

“ pB XXqE
g
˝ and

(II)
X “ xpB XXqM˝y “ pBg XXqxpB XXqM˝XN

g

y

“ pBg XXqxpB XXqE
g
˝ y “ pBg XXqpB XXqrX,Eg˝ s.

By (2˝) rBg X X,Bgs ď I and rX,Eg, Bgs ď I. Also Bg X N normalizes B X X. Hence (II)
yields

rX,Bg XN s “ rpBg XXqpB XXqrX,Egs, Bg XN s ď rB XX,Bg XN sI ď pB XXqI “ B XX.

By 8.25(b) B “ CM˝pU0q. It follows that Bg XN “ CM˝pU
g
0 q X CM˝pI0{U0 X Ug0 q has index 2 in

Bg and acts faithfully on U0. Thus rU0, B
g X N s ‰ 1 and so also rU,Bg X N s ‰ 1. Note that

E{CEpUq – SL3p2q is simple and E “ NGpUq
˝ “ E˝. Hence U and NGpUq satisfy the hypothesis of

1.54, and 1.54(c) shows that E˝ ď xpB
gXNqE˝y. As rX,BgXN s ď BXX and BXX is E-invariant,

this implies rX,E˝s ď B XX, and the first statement in (3˝) is proved.
Then also rX,Eg˝ s ď Bg XX, and (II) gives

X “ pB XXqpBg XXq.

Again using that rBg X X,Bgs ď I we have rBg X X,Bg X N s ď I ď B X Bg X X and since
B X X and Bg X N normalize each other, rB X X,Bg X N s ď B X Bg X X. We conclude that
rX,Bg XN s ď B XBg XX. Since by 8.25(c) ΦpBq “ B1 ď U ,

rX,Bg XN,Xs “ rB XBg XX,Xs “ rB XBg XX, pB XXqpBg XXqs ď B1B1g “ UUg ď I.

As before, 1.54 gives M˝ “ xpB
g X NqM˝y, and as X is M˝-invariant, rX,M˝, Xs ď I follows. By

(a) X “ rX,M˝s and so rX,Xs ď I, and by 8.25(c) ΦpBq “ B1 ď U ď I. Since ΦpX X Bq ď ΦpBq

and X “ xpX XBqM
˝

y, X{I is elementary abelian. Thus, (3˝) is proved.

4˝. rX,E˝s “ rX,M˝ XN s “ X XB and rX XB,O2pM˝ XNqs ď I.

By 8.26(d), XXB “ rXXB,E˝s and by (3˝) rX,E˝s ď XXB. Hence rX,E˝s “ XXB. Since by
(1˝)M˝XN “ E˝X and again by (3˝)X 1 ď I ď XXB, we also get rX,M˝XN s “ rX,E˝Xs “ XXB.

By 8.25(c) rX XB,Bs ď B1 ď I and by (1˝) O2pM˝ XNq “ BX. Hence

rX XB,O2pM˝ XNqs “ rX XB,BXs “ rX XB,BsX
1 ď I.

After this preparation we are now able to prove (b) – (e).

(b) and (c): This follows from (3˝) and (4˝), respectively.

(d): By (3˝) ΦpX{Iq “ 1, so X centralizes X{I, and X{I is an M˝{X-module. Moreover, by
(a) M˝{X – SL4p2q. By (1˝) E˝X “M˝XN “ NM˝pUq “ NM˝pU0q, and so E˝X is the normalizer
of the hyperplane U0 of the natural SL4p2q-module I0 for M˝. Also by (1˝) BX “ O2pE˝Xq “
CM˝pU0q.

Let R0 be a 1-dimensional subspace of U0. Put P :“ CM˝pR0q and note that

R0 “ rI0, O2pP qs “ rU0, O2pP qs ď U0.

Hence O2pP q ď NM˝pU0q “M˝ XN . Thus using both statements in (4˝):

rX,O2pP qs ď rX,M˝ XN s “ X XB and rX,O2pP q, O2pM˝ XNqs ď rX XB,O2pM˝ XNqs ď I.

Note that P {X „ 23SL3p2q and X ď O2pM˝ XNq ę O2pP q. Thus P “ xO2pM˝ XNq
P y, and since

X and O2pP q are P -invariant, rX,O2pP q, P s ď I.
Let U1 be an E˝-submodule of BXX{I isomorphic to U0. Since X centralizes X{I we conclude

that E˝X normalizes U1. Thus U1 – U0 as an EX-module and so R1 :“ rU1, O2pP qs is an 1-
dimensional subspace of U1. As rX,O2pP q, P s ď I we get rR1, P s “ 1. Let 1 ‰ r P R1 and h P
E˝XzP . Since E˝ acts transitively on U1, rrh P rE˝ Ď rM˝ . Since M˝ acts doubly transitive on the
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1-spaces in I0 and since CM˝prq “ P “ CM˝pR0q, M˝ also acts doubly transitive on rM˝ . It follows
that rM˝Yt1u is closed under multiplication and so I1 :“ xrM˝y has order |M˝{P |`1 “ 15`1 “ 24.

Note that U1 ď I1. So I1 “ xU
M˝
1 y, and I1 is a natural SL4p2q-module for M˝ isomorphic to

I0. As B{B X X and I{U are natural SL3p2q-modules for E˝ and as by 8.26(a) X{I is the direct
sum of m natural SL3p2q-modules for E˝ isomorphic to U0, B X X{I is the direct sum of m ´ 2
E˝-submodules isomorphic to U0. Since X{I “ xpB XX{IqM˝y, we conclude that X{I is the direct
sum of m´ 2 natural SL4p2q-modules for M˝ isomorphic to I0. So (d) is proved.

(e): Recall from 8.21 that |Y {I| “ 2 and so rY,M˝s ď I, and by (d) M˝ has no central chief
factors on X{I. Thus Y XX ď I ď Y XX, so Y XX “ I and |Y X{X| “ 2. By (d) |X{I| “ 24pm´2q

and |XXB{I| “ 23pm´2q, so |X{XXB| “ 2m´2 and |Y X{XXB| “ |Y X{X||X{XXB| “ 2 ¨2m´2 “

2m´1. Hence (e) holds. l

Recall that pB “ B{U and N0 “ CN p pBq. We now investigate pB as an N{N0-module.

Lemma 8.28. Suppose that I ď A and I is the natural Ω`6 p2q-module for M˝.

(a) N{N0 “ C{N0 ˆ EN0{N0.

(b) Put K :“ HomEpU0, pBq. View K as an F2N -module with E ď CN pKq and U0 as a
natural SL3p2q-module for N with C acting trivially. Then |K| “ 2m and there exists an
F2N isomorphism

K bF2 U0 Ñ pB with αb v ÞÑ αv.

(c) For a, b P B define rpa,pbs “ ra, bs and pa2 “ a2. 1 Put F :“ HomEpU0 ^ U0, Uq. Then
|F| “ 2 and there exists a C-invariant symplectic form

s : K ˆK ÞÑ F, pα, βq ÞÑ spα, βq

on K such that
spα, βqpv ^ wq “ rαv, βws

for all v, w P U0 and α, β P K.

Proof. (a): By 8.25(d) N0 ď C, by 8.25(f) N “ EC and rE,Cs ď N0, and by 8.26(c)
E X C ď N0. Thus, C X EN0 “ N0 and

N{N0 “ C{N0 ˆ EN0{N0

(b): By 8.26(b) pB is the sum of m natural SL3p2q-modules isomorphic to U0 for E. Since
EndEpU0q “ F2 this gives (b).

(c): Let 1 ‰ v P U0. By 8.24(b) U is dual to U0 as an E-module. So CEpvq is the normalizer in
E of a hyperplane of U and so CU pCEpvqq “ 1. Let α, β P K. Since α and β are E- homomorphisms

from U0 to pB, CEpvq centralizes αv, βv and so also pαvq2 and rαv, βvs. As CU pCEpvqq “ 1 this
gives pαvq2 “ 1 and rαv, βvs “ 1. Thus the inverse image of αpU0q in B is elementary abelian, and
for given α, β P K we obtain a well defined E-linear function

spα, βq : U0 ^ U0 Ñ U, v ^ w ÞÑ rαv, βws.

Thus spα, βq P F “ HomEpU0 ^ U0, Uq. Note that U0 ^ U0 is a natural SL3p2q-module for E
dual to U0 and so isomorphic to U . Thus |F| “ 2 and so

s : K ˆK ÞÑ F, pα, βq ÞÑ spα, βq,

is a well-defined C-invariant bilinear form on K.
Since the inverse image of αpU0q is abelian, it follows that spα, αq “ 0 and s is a (possible

degenerate) symplectic form on K. l

Note that s induces a non-degenerate symplectic form on K{KK. Put C0 :“ CCpK
Kq. For

F ď C let qF be the image of F in SppK{KKq.

1Note that this is well-defined since U ď Ω1ZpBq.
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Lemma 8.29. Suppose that I ď A and I is the natural Ω`6 p2q-module for M˝.

(a) K is a faithful 2-reduced C{N0-module, and K{KK is faithful 2-reduced C0{N0-module.
(b) CY XpK{K

Kq “ Y X XN0 “ CY XpKq “ X XB.
(c) KK “ 1 and C “ C0.

(d) C{N0 – qC “ SppKq.
(e) NCpY q is the normalizer in C of a 1-subspace of K.
(f) m “ 2 or 4.
(g) O2pNCpY q{N0q “ Y XN0{N0 and NCpY q{Y XN0 – Spm´2p2q.

Proof. (a): By 8.26(e) pB is a 2-reduced N -module, and since C Ĳ N , also a 2-reduced C-

module. Since by 8.28(b) pB – K b U0 as an N -module, pB is as an C-module the direct sum of

(three) copies of K. Hence CCpKq “ CCp pBq “ N0, and K is a faithful 2-reduced C{N0-module.
Since C0 Ĳ C we conclude that K is a 2-reduced C0-module. Note that CC0

pK{KKq acts
nilpotently on K and so centralizes K. It follows that K{KK is a faithful 2-reduced C0{N0-module
and (a) holds.

(b): Put

K1 :“ HomEpU0, pIq and K2 :“ HomEpU0, {B XXq.

By 8.25(e), rB, Y s “ I and so r pB, Y s “ pI is isomorphic to U0. Hence K1 is 1-subspace of K.

Since Y ď C and pB – K b U0 we have r pB, Y s – rK,Y s b U0 and so

K1 “ rK,Y s.

As B{B XX – B – U0, K2 is hyperplane of K. From rB XX,Y s “ 1 we get r{B XX,Y s “ 1
and rK2, Y s “ 1. Thus

K2 ď CK2pY q ď rK,Y s
K “ KK1 .

Suppose that KK1 “ K. Then spα, βq “ 0 for all α P K1, β P K and

1 “ spα, βqpv ^ wq “ rαpvq, βpwqs for all v, w P U0.

But this implies rI,Bs “ 1, a contradiction.
Hence KK1 ‰ K, and since KK1 contains the hyperplane K2, we get K2 “ KK1 . Moreover, since

K2 ď CKpY q,

K1 “ rK,Y s and K2 “ CKpY q “ KK1 .

Since rB XX,Y Xs ď I and rI, Y Xs “ 1, Y X centralizes K2{K1 “ KK1 {K1 and K1. Note that
KK ď KK1 “ K2, rK2, Y Xs ď K1 and K1 X KK “ 1. Thus rKK, Y Xs “ 1 and Y X ď C0. Put
Z1 :“ K1K

K{KK. Then Z1 is a 1-space in K{KK, ZK1 “ KK1 {K
K and

(I) qY qX ď C
|C0
pZK1 {Z1q.

Observe that CI0pBq “ U0 “ rI0, E˝s, and by 8.27(d) X{I is a direct sum of copies of I0, so
CX{IpBq “ rX{I, E˝s. By 8.27(c), rX,E˝s “ X XB and thus

CX{IpBq “ pX XBq{I.

Regarding the action of X on B{I, this means CXpB{Iq “ X XB and so

CY XpK{K1q “ CY XpB{Iq “ Y CXpB{Iq “ Y pX XBq.

Note that |Y {I| “ 2 and I but not Y centralizes B{U . So CY pB{Uq “ I and

CY XpKq “ pX XBqCY pB{Uq “ pX XBqI “ X XB.

By 8.29(a) both K and K{KK are faithful C0{N0-modules. So

CY XpK{K
Kq “ Y X XN0 “ CY XpKq “ X XB,

and (b) holds.

(c): By 8.27(e) |Y X{X XB| “ 2m´1, and we get

(II) |qY qX| “ 2m´1.
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Put c :“ dimF2
pK{KKq. Then c ď dimF2

K “ m and

|CSppK{KKqpZ
K
1 {Z1q| “ 2c´1.

Since qY qX has order 2m´1 and by (I) is contained in CSppK{KKqpZ
K
1 {Z1q, we conclude that

2m´1 ď 2c´1. Now c ď m gives c “ m,

KK “ 1, C0 “ C and qY qX “ CSppK{KKqpZ
K
1 {Z1q “ CSppKqpK

K
1 {K1q;

in particular (c) holds.

(d): Since rI, Ixs ‰ 1 we have K1 M Kx
1 . By B.26(a)

x CSppKqpK
K
1 {K1q, CSppKqpK

xK
1 {Kx

1 q y “ SppKq,

and so xY X, pY Xqxy induces SppKq on K. Thus qC “ SppKq, and (d) holds.

(e): Since rK,Y s “ K1, qY is a transvection group on K. It follows that

qY “ C
qCpK

K
1 q and N

qCp
qY q “ N

qCpK1q,

and (e) holds.

(f): Since CCpKq “ N0, NCpqY q “ NCpY N0q. By 8.26(a) NN pY N0q “ NN pY q and so

NCpK1q “ NCpY q ď M :. Since M : normalizes Y and X we conclude that qX is an N
qCpK1q-

invariant complement to qY in qY qX. In particular, qY is not the only NSppKqpK1q-invariant subgroup

of CSppKqpK
K
1 {K1q. Hence B.30 shows that m ď 4, and (f) holds.

(g): Note that O2pNSppKqpK1qq “ CSppKqpK
K
1 {K1q “ qY qX and that KK1 {K1 is a natural

Spm´2p2q-module for NSppKqpK1qq “
NCpY q, so also (g) holds. l

Lemma 8.30. Suppose that I ď A and I is the natural Ω`6 p2q-module for M˝. Then M˝ “M˝,
N0 “ B, and one of the following holds:

(1) m “ 2, O2pMq “ Y , M : “M , M : – Ω`6 p2q or O`6 p2q and

M : „ 26`1Ω`6 p2q or 26`1O`6 p2q and N „ 23`3¨2SL3p2q ˆ SL2p2q,

(2) m “ 4, rM˝, CGpY qs “ X, M : “M˝CGpY q,

M :{Y X “M˝{Y X ˆ CGpY q{Y X – SL2p2q ˆ SL4p2q,

X{I – Y X{Y is a tensor product over F2 of corresponding natural modules and

M : „ 26`1`4¨2SL4p2q ˆ SL2p2q and N „ 23`3¨4SL3p2q ˆ Sp4p2q.

Proof. We first show:

1˝. N{N0 – Spmp2qˆSL3p2q, m “ 2 or 4, and pB is a tensor product over F2 of corresponding
natural modules.

By 8.28(a) N{N0 “ C{N0 ˆEN0{N0, and by 8.28(b) pB – K bF2
U0, where K “ EndEpU0, pBq.

By 8.29(d) C{N0 – SppKq and so K is a natural Spmp2q-module for C, and by 8.29(f) m “ 2 or 4.
Also U0 is a natural SL3p2q-module for E, and so (1˝) holds.

2˝. CM:pX{Iq X CM:pIq “ Y X and N0 “ B.

Put

X1 :“ CO2pMqpX{Iq and X2{I :“ CX1{IpM˝q.

Then rX1, Xs ď I and so M˝{X acts on X1{I. By 8.27(b) X 1 ď I and thus X ď X1, and by 8.27(a),
rO2pMq,M

˝s “ X and so rX1,M˝s “ X. Since I0 is a natural SL4p2q-module for M˝{X – SL4p2q,
C.18 shows that H1pM˝{X, I0q “ 1. By 8.27(d) X{I is a direct sum of copies of I0. Hence also
H1pM˝{X,X{Iq “ 1 and so X1 “ X2X.
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Pick t P X2. Then rt,M˝s ď I ď ZpXq, so rt,Xs and CXptq are M˝-invariant. Hence rt,M˝s and
X{CXptq are isomorphic M˝-modules. But I is the natural Ω`6 p2q-module for M˝ and by 8.27(d) each
M˝-chief factor of X{I is a natural SL4p2q-module. It follows that rX, ts “ 1 and so rX2, Xs “ 1.

Since rO2pMq,M˝s “ X and rM˝, X2s ď I we get rO2pMq,M˝, X2s “ 1 and rM˝, X2, O2pMqs “
1. The Three Subgroup Lemma now implies rX2, O2pMq,M

˝s “ 1. By 1.55(d) CGpM
˝q “ 1, so

rX2, O2pMqs “ 1 and X2 ď ZpO2pMqq. Since rX2,M˝s ď I ď Ω1ZpX2q, 1.18 gives rΦpX2q,M˝s “

1. As CGpM
˝q “ 1, X2 is elementary abelian. Therefore X2 ď Ω1ZpO2pMqq, and by 2.2(e),

Ω1ZpO2pMqq “ Y . Hence X2 “ Y and so

X1 “ X2X “ Y X.

Let X3 :“ CM:pX{Iq X CM:pIq. Then

rO2pM
:q, X3s ď rO2pMq, X3s ď O2pMq XX3 “ X1 “ Y X,

rY X,X3s “ rY,X3srX,X3s ď I and rI,X3s “ 1. Hence X3 acts nilpotently on O2pM
:q, and since

M : is of characteristic 2, we conclude that X3 is a 2-group. So X3 ď O2pM
:q ď O2pMq and

X3 ď X1 “ Y X ď X3. Thus

X3 “ Y X.

This is the first part of (2˝).
By 8.25(d) N0 ď M :. Put N2 :“ CN0

pY q. By 1.52(c) rM˝, CM:pY qs ď O2pM
˝q and so

rM˝, N2s ď O2pM
˝q XM˝ “ O2pM˝q. By 8.27(a) O2pM˝q “ X and so M˝ normalizes N2X. Since

rB,N0s ď U ď I and by 8.27(b) rX,Xs ď I, we get rX XB,N2Xs ď I. As M˝ normalizes N2X, we
conclude that

rX,N2Xs “ rxpX XBq
M˝y, N2Xs ď I.

Thus N2 centralizes X{I and I and so N2 ď X3 “ Y X. Hence

N2 “ Y X XN2 “ Y X X CN0
pY q “ Y X XN0.

By 8.29(b) Y X X N0 “ X X B and so N2 “ X X B. Since N0 ď CM pUq “ B, this gives N0 “

BN2 “ BpX XBq “ B, and (2˝) is proved.

3˝. E “ E˝ and M˝ “M˝.

By 8.26(c) CEpUq ď N0, by (2˝) N0 “ B, and by 8.26(d) B ď E˝. Thus E “ E˝CEpUq “
E˝B “ E˝. Since E˝ ďM˝, this gives Q ď E ďM˝ and so M˝ “ xQM y ďM˝.

4˝. O2pM
:q “ Y X and CGpY q{Y X – Spm´2p2q.

By 8.29(g), O2pNCpY q{N0q “ Y XN0{N0 and by (2˝) B “ N0. It follows that

O2pNCpY qq ď Y XN0 “ Y XB ď O2pNCpY qq

and so

(I) O2pNCpY qq “ Y XB.

Thus

Y X ď O2pM
:q ď O2pNCpY qq “ Y XB “ Y XN0

and

O2pM
:q “ Y XpO2pM

: XBqq.

Also O2pM
:q XB ď O2pMq XB ď X and so O2pM

:q “ Y X.

Note that M : “ M and by 8.25(b) CM pUq “ B. As NCpY q “ CM:pUq this gives NCpY q “
CGpY qB “ CGpY qY XB. Hence

NCpY q{Y XN0
(I)
“ NCpY q{Y XB “ CGpY qY XB{Y XB
– CGpY q{Y XB X CGpY q “ CGpY q{Y XCBpY q.

Since CBpY q “ CM pY q X B “ B X O2pMq ď X, we get that NCpY q{Y XN0 – CGpY q{Y X. By
8.29(g), NCpY q{Y XN0 – Spm´2p2q and so CGpY q{Y X – Spm´2p2q, and (4˝) is proved.
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We are now able to prove the lemma. By 8.22(a) M – Ω`6 p2q or M – O`6 p2q, and M “ M˝ S,

and by 8.29(f) m “ 2 or 4. Moreover, (1˝) shows that N{N0 – Spmp2q ˆ SL3p2q and pB “ B{U is
a tensor product over F2 of corresponding natural modules. By (2˝) N0 “ B. Also U is the natural
SL3p2q-modules for E dual to U0, and so the structure of N is as described in (1) (for m “ 2) and
in(2) (for m “ 4).

By 8.27(d) X{I is a direct sum of m´ 2 natural SL4p2q-modules for M˝ isomorphic to I0, and
by (4˝) CGpY q{Y X – Spm´2p2q.

Suppose first that m “ 2. Then m ´ 2 “ 0 and so X “ I, Y X “ I and CGpY q “ Y . Thus
M : “MCGpY q “M and since Y ď O2pMq ď CGpY q, Y “ O2pMq. Thus (1) holds if m “ 2.

Suppose next that m “ 4. Then X{I is a direct sum of two natural SL4p2q-modules for M˝

and CGpY q{XY – SL2p2q. By (2˝) CM:pX{Iq X CM:pIq “ Y X and so CGpY q{XY acts faithfully
on X{I. By 1.52(c) rM˝, CGpY qs ď O2pM

˝q and so rM˝, CGpY qs ď X. Thus CGpY qM˝{Y X –

SL2p2q ˆ SL4p2q, and X{I is a tensor product over F2 of corresponding natural modules.
Note that S normalizes at least one of the three simple M˝-submodules of X{I. Let R be

such a simple M˝-module. Since M˝ induces SL4p2q – AutpRq on R we conclude that S induces

inner automorphism on M˝{CM˝pRq “ M˝{X. Since M “ M˝ S this gives M : “ M “ M˝ and
M : “M˝CGpY q. Thus (2) holds. l

Lemma 8.31. Suppose that I ď A and I is the natural Ω`6 p2q-module for M˝. Then m “ 2. In
particular, 8.30(1) holds.

Proof. Suppose not. Then 8.30(2) holds. In particular, m “ 4, M : “M˝CGpY q and N0 “ B.
Since M – SL4p2q – Ω`6 p2q and I is a natural Ω`6 p2q-module for M , NM pUq is a parabolic subgroup
of M . So we may choose notation such that S normalizes U . Then S ď N . Recall from 8.29(d) that
K is a natural Sp4p2q-module for C{N0 “ C{B.

Let K1 be as in the proof of 8.29, that is, K1 “ rK,Y s and K1 is 1-space in K. In particular,
S normalizes K1. Let K3 be the 2-subspace of K such that K1 ă K3 ă KK1 and S normalize K3.
Then K2 is a singular 2-subspace of K. Put

C3 :“ NCpK3q, Y3 :“ xY C3y, I3 :“ xIC3y.

Note that K3 is the natural SL2p2q-module for C3. Thus K3 “ xK
C3
1 y and so

I3{U – K3 b U0 and I3{U “ xαpvq | α P K3, v P U0y.

Since K3 is a 2-space, we get |I3{U | “ 26 and |I3| “ 29, and since K3 is singular, I3 is abelian.
As CGpIq “ CGpY q, we conclude that Y3 is abelian.2

Since C3 acts transitively on the 1-spaces in K3, C3 also acts transitively on the corresponding
transvections. It follows that Y3B “ CCpK3q and |Y3B{B| “ 23. Hence CKpY3q “ K3, and since
pB – K b U0, we infer C

pBpY3q – K3 b U0 and C
pBpY3q “ I3{U .

Since Y3 is abelian we get Y3 X B{U ď CB{U pY3q “ I3{U and so Y3 X B “ I3. Hence Y3 has

order 212. As Y3 is abelian and generated by involutions, Y3 is elementary abelian.
Since Y3 is abelian, Y3 ď CGpY q. Note that Y B{B is the only transvection group contained in

O2pNCpK1q{Bq. As NCpK1q “ NCpY q we get Y3 ę O2pCGpY qq “ XY . Since CGpY q{XY – SL2p2q
and Y X{Y is the tensor product of natural modules for

M :{XY “M˝Y {X ˆ CGpY q{XY – SL2p2q ˆ SL4p2q,

we get

|Y3X{Y X| “ 2 and |CY X{Y pY3q| “ 24.

Since Y3 has order 212 and Y has order 27, we conclude that Y3XY X has order 211, |Y3XY X{Y | “ 24

and

CY X{Y pY3q “ Y3 XXY {Y.

It follows that Y3X{Y has exactly two maximal elementary abelian subgroups, namely Y X{Y and
Y3{Y .

2 This also follows from the fact that Y is asymmetric in G
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Since rM˝, CGpY qs “ X, M˝ normalizes Y3X. As M˝ normalizes Y X{Y , it also normalizes the
unique other maximal elementary abelian subgroup of Y3{Y . Hence M˝ normalizes Y3. Since S
normalizes K3, S normalizes Y3 and so M “M˝S ď NGpY3q. The basic property of M now implies
NGpY3q ďM : “ NGpY q, a contradiction since C3 ď NGpY3q and Y đ C3.

This completes our proof-by-contradiction, and the lemma holds. l

It remains to analyze Case 8.30(1).

Lemma 8.32. Suppose that I ď A and I is the natural Ω`6 p2q-module for M˝. Let t be a
non-singular vector in I. Then CGptq ęM .

Proof. Recall that U “ CY pLq and so L ď C. Since C{N0 “ C{B – SL2p2q we infer
NCpY q “ Y B and |C{NCpY q| “ 3. So |IC | “ 3. Let IC “: tI1, I2, I3u with I “ I1. Let V0 be a
2-subspace of U . Note that for i P t1, 2, 3u, U is singular 3-subspace of Ii and so V0 is a singular
2-space in Ii. Hence V0 is contained in a unique singular 3-space Vi of Ii different from U . Note also
that V K0 “ UVi in Ii. Define

Mi :“ NGpIiq, Yi :“ CGpIiq, Ei :“ NGpViq
˝, Bi :“ O2pEiq.

So M1 “ M and Y1 “ Y . Note that by 8.30, M˝ “ M˝. Since O2pM˝q “ X “ I we have
M˝
i {Ii – Ω`6 p2q. By 2.7(b) Ei ďM˝

i , and B.38(c) shows that Vi is a natural SL3p2q-module for Ei.
Note that Ei Ĳ NM˝

i
pViq and both Ii{Vi and CM˝

i
pViq{Ii are natural SL3p2q-modules (dual to Vi).

Hence CM˝
i
pViq “ rCM˝

i
pViq, Eis ď Ei. Ei “ NM˝

i
pViq, Bi “ CM˝

i
pViq, and Bi has order 29.

Put
E0 :“ NGpV0q

˝ and B0 :“ O2pE0q.

Since V0 ď Vi ď Ii, 2.7(b) shows that E0 ď Ei ďM˝
i . By B.38(c) V0 is natural SL2p2q-module

for E0. Also Ii “ rIi, E0s ď E0, CM˝
i
pV0q{Ii is extra special of order 25 with center CM˝

i
pUViq{Ii,

and CM˝
i
pV0q{CM˝

i
pUViq is the direct sum of two natural SL2p2q-modules for E0. Hence CM˝

i
pV0q “

rCM˝
i
pV0q, E0s ď E0. E0 “ NM˝

i
pV0q, B0 “ CM˝

i
pV0q and B0 has order 26`5 “ 211. Note also that

E “ NM˝
i
pUq and so Ei XE “ E0. Since C centralizes U , C centralizes V0 and so C normalizes E0.

Moreover, since C acts as Symp3q on tI1, I2, I3u it also act as Symp3q on tV1, V3, V3u with B the
kernel of the action.

Let ti, j, ku “ t1, 2, 3u. Note that Yi fixes Ii, Yi ď C and Yi ę B, so Yi acts non-trivially on
tIj , Iku and tVj , Vku.

Put
Vij :“ xV Eij y.

1˝. Vij is the unique elementary abelian subgroup of 26 in B0 containing ViVj. In particular,
Vij “ Vji.

Put Z{V0 “ ZpE0{V0q. Note that rU,E0s ď V0 and rVi, E0s ď V0. So UVi ď Z X Ii. Since
Ii{UVi “ Ii{V

K
0 is a natural SL2p2q module for E0 we conclude that Z X Ii “ UVi. Also ZIi{Ii ď

ZpE0{Iiq “ CE0
pUViq{Ii. The latter group has order 2. As E normalizes Ii and Ij , Ii X Ij “ U and

so Vj ę Ii. Since Vj ď Z we conclude that |ZIi{Ii| “ 2 and Z “ UViVj is elementary abelian of
order 25. In particular,

ZIi{Ii “ CE0
pUViq{Ii and CIipZq “ UVi.

Since Bi “ CM˝
i
pViq ď E0, we have Bi “ CE0

pViq and so

(I) Bi X Ij “ CIj pViq “ CIj pZq “ UVj .

Thus |IjBi{Bi| “ |Ij{UVj | “ 4 “ |B0{Bi| and so B0 “ IjBi. Since rZ,Bis ď rZ,B0s ď V0 ď Vi,
Z{Vi ď Ω1ZpBi{Viq. Also ZX Ii{Vi ‰ 1 and ZIi{Ii ‰ 1. Since Ii{Vi and Bi{Ii are simple Ei-module
we conclude that Bi “ xZ

Eiy and thus Bi{Vi is elementary abelian. Since rBi, Ijs “ rBiIj , Ijs “
rB0, Ijs “ VjU , we get

rBi{Vi, B0s “ rBi{Vi, IjBis “ rBi, IjsVi{Vi “ ViVjU{Ii “ Z{Ii.
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Note that CEipBi{Iiq “ Bi and so |B0{CB0
pBi{Iiq| “ |B0{Bi| “ 4 and

|rBi{Vi, B0s| “ |Z{Ii| “ 4 “ |B0{CB0pBi{Iiq|.

Hence B0 is an offender on the dual of Bi{Vi. The General FF-Module Theorem C.2(d) now
implies that Bi{Vi is the direct sum of natural SL3p2q-modules for Ei. Since Bi{Ii and Ii{Vi are both
dual to Vi, the summands are isomorphic. It follows that there exists three simple Ei-submodules
in Bi{Vi. As rBi{Vi, B0s “ Z{Vi has order four, each of the simple submodules intersects Z{Vi in a
subgroups of order 2. Hence each subgroup of order 2 of Z{Vi lies is a simple Ei submodule. Recall

that Vij “ xV
Ei
j y and note that ViVj ď Vij . Since ViVj ď Z and VjVi{Vi has order 2 we conclude

that Vij{Vi is a simple Ei-submodule of Bi{Vi. So Vij{Vi is a natural SL3p2q-module for Ei. Note
that IiIj is elementary abelian and Ei acts transitively on Vij{Vi. Thus all non-trivial elements in
Vij have order 2 and so Vij is elementary abelian of order 26. Since both Ii{Vi and Vij{Vi are simple
Ei-submodules of Bi{Vi, Bi “ IiVij and so

Bi XBj “ CBipVjq “ CIipVjqVij
(I)
“ UViVij “ UViVjVij “ ZVij .

Note that CB0
pZq ď CB0

pUViq “ IiZ and CIipZq “ UVi ď Z. So CB0
pZq “ Z. Also Z X Vij “

ViVj has index 2 in Z. It follows that Z and Vij are the only maximal elementary abelian subgroups
of ZVij “ Bi XBj . Since Z has order 25, Vij is the only elementary abelian subgroup of order 26 in
Bi X Bj . As Bi X Bj “ CB0pViVjq this shows that Vij is the only elementary abelian subgroups in
B0 of order 26 containing ViVj . Thus (1˝) holds.

Recall that that M˝ – Altp8q acts on a set Λ of 8 objects and Y is the central quotient of the
permutation module on Λ. Let 1 ‰ yλ P Y with CM˝pyλq – Altp7q. Note Z is 2-central in M˝ and so

we may assume that Z corresponds to xp12qp34qp56qp78qy in Altp8q. Then rY,Zs “ xy12, y34, y56, y78y.
It follows that rY, Zs is a non-singular isotropic 3-space of I. Hence the elements of rY,ZszV0 are
non-singular. Since C{B – SL2p2q and Y B P Syl2pCq we conclude that rC,Zs{V0 has order four
and the elements in rC,ZszV0 are not 2-central in G. Recall here that since O2pMq is weakly
closed, elements of Y are conjugate in G if and only if they are conjugate in M , see 2.6(d). Also
Z{V0 “ U{V0ˆrC,Zs{V0 as an C-module. Since Vi ‰ U and Vi is a singular 3-space we conclude that
xVi, Vj , Vky “ Z and ViVj X Ik “ rYk, Zs is a non-singular isotropic 3-space in Ik. It follows that E0

has two orbits on IiIjzIi, namely the four 2-central involutions in IjzV0 and the four non-2-central
involutions in rYk, ZszV0.

Put Mij :“ NGpVijq. Then by (1˝) Vij “ Vji and so xEi, Ejy ď Mij . Let v P IiIjzIi. Then
CEipvIi{Iiq “ E0 and |Ei{E0| “ 7. We conclude that Ei has two orbits on VijzIi, namely the twenty-
eight 2-central involutions and the twenty-eight non-2-central involutions. Also Ei acts transitively
on the seven 2-central involutions in Ii. Note that the same holds with i and j interchanged. Since
Ii ‰ Ij we conclude that Mij acts transitively on thirty-five 2-central involutions and transitively
on the twenty-eight non-2-central involutions in Vij . It follows that 35 and so also 5 divides |Mij |.

Let tk P rYK , ZszU0. Then |t
Mij

k | “ 28 and we conclude that 5 divides |CMij
ptq|. Since Mij X

Mk ď NMk
pVij X Ikq “ NMk

prYk, Zsq, 5 does not divide Mij XMk and so CMij ptkq ęMk. Since tk
is non-singular in Ik this gives CGptq ęM , and the lemma is proved. l

Lemma 8.33. Suppose that I ď A and I is the natural Ω`6 p2q-module for M˝. Then Case (3)
of Theorem H holds.

Proof. Recall that case 8.30(1) holds, in particular p “ 2, |Y {I| “ 2, M˝ – Ω`6 p2q, and I is a
natural Ω`6 p2q-module for M˝. Let t be a non-singular vector of I. If CGptq is not of characteristic
2, then Case (3) of Theorem H holds.

So suppose for a contradiction that CGptq is of characteristic 2. Since Y “ O2pMq ď CGptq,
2.6(c) shows M : X CGptq is a parabolic subgroup of CGptq. Since M : “ M , this gives P :“
O2pCGptqq ď O2pCM ptqq. Since t is non-singular in I and M – Ω`6 p2q or O`6 p2q, we have CM ptq –

Sp4p2q or C2 ˆ Sp4p2q. Hence either P “ 1, or |P | “ 2 and rY, P s “ xty. In either case rY, P s ď xty
and so also rxY CGptqy, P s ď xty. As CGptq is of characteristic 2, this implies Y ď P Ĳ CGptq. Since
Y “ O2pMq is weakly closed, we conclude that CGptq ď NGpY q “ M : “ M . But this contradicts
8.32. l
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Proposition 8.34. Suppose that I ď A. Then Case (2) or Case (3) of Theorem H holds.

Proof. By 8.21 either I is a natural SL3p2q-module for M˝ and Theorem H(2) holds, or I is
a natural Ω`6 p2q-module for M˝. In the latter case 8.33 shows that Theorem H(3) holds. l

8.3. The Case I ę A and Ω1ZpAq ę ZpLq

In this short section we continue to assume the hypothesis and notation of Theorem H. Further-
more, we assume that I ę A and Ω1ZpAq ę ZpLq.

Proposition 8.35. Suppose that I ę A and Ω1ZpAq ę ZpLq. Then Theorem H(4), (5) or (6)
holds.

Proof. Then rΩ1ZpAq, Ls ‰ 1 and so by 8.6 rYHQ, HQs ‰ 1. Note that Q ď OppHQq and so
rYHQ, Qs “ 1, HQ “ HCN pYHQq and rYHQ, Hs ‰ 1. Let V be an H-submodule of YHQ minimal
with rV,OppHqs ‰ 1. Since H P HGpOppMqq, 2.11(e) shows that H is p-irreducible and so by 1.34(c),
V is H-quasisimple. Note that V “ rV,Hs ď H and since V is p-reduced for H, V ď YH . Hence,
according to 2.17 there exists a non-trivial strong offender W on Y such that W ď V ď YHQ and

rX,W s “ rY,W s for all X ď Y with |X{CXpW q| ą 2.

Since rYHQ, Qs “ 1, YHQ ď CGpQq “ ZpQq and rY,W s ď W ď ZpQq; in particular, W Ĳ Q

and rY,W,Qs “ 1. So we can apply C.26. Since rV,W,Qs “ 1 we get that M˝ – SLnpqq or
Sp2npqq, n ě 2, and rY,M˝s is a corresponding natural module. Moreover, either Y “ rY,M˝s

or M˝ – Sp2np2q, n ě 2, and |Y {rY,M˝s| “ 2. By the definition of the Fitting submodule,
I “ rYM ,M

˝s since rY,M˝s is the unique M -component of Y .

If M˝ – SLnpqq, then Theorem H(5) holds.

If M˝ – Sp2npqq and I “ Y , then I ę Q‚ and so by 2.26 p is even. Thus Theorem H(6) holds.

If I ‰ Y , then Theorem H(4) holds. l

8.4. The Case I ę A and Ω1ZpAq ď ZpLq

In this section we continue to assume the hypothesis and notation of Theorem H. Furthermore,
we assume that I ę A and Ω1ZpAq ď ZpLq.

Lemma 8.36. Suppose that I ę A and Ω1ZpAq ď ZpLq. Then

(a) ZpAq “ CY pLq “ CY pAq ď Y XA.
(b) Y A “ IA and rY,As “ rI, As ď I XA.
(c) CApI X Aq “ Y X A “ rI,AsCY pLq “ pI X AqCY pLq; in particular CApY q “ CApIq “

CApI XAq.
(d) |I{CIpAq| ď |A{CApIq|

2,
(e) A acts nearly quadratically but not quadratically on I.

Proof. (a): By 1.43(q) Ω1ZpAq “ ZpAq. As Ω1ZpAq ď ZpLq this gives ZpAq “ AX ZpLq. By
1.43(b) AX ZpLq “ CY pLq, and by 1.43(j)

CY pAq “ Y X ZpAq ď CY pLq ď CY pAq,

so CY pAq “ CY pLq.

(b) and (c): Since I is NLpY q-invariant, 8.7 implies that Y A “ IA, rY,As “ rI, As ď I XA and
Y XA “ rI, AsCY pLq. By 8.4(c), CGpY q “ CGpIq and so also CApY q “ CApIq. Moreover, by 1.43(g)
CApY q “ Y X A and by 1.43(j) CApY X Aq “ ZpAqpY X Aq. As ZpAq ď Y X A by (a), this gives
CApY X Aq “ Y X A, and since Y X A “ rI, AsCY pLq “ pI X AqCY pLq, CApY X Aq “ CApI X Aq
follows.

(d) and (e): By (b) A “ xpY X AqLy “ xprI,AsCY pLqq
Ly. Since by (a) rA,As ‰ 1, this gives

rI, A,As ‰ 1, i.e. A does not act quadratically on I. Moreover, by 1.43(n) |Y {CY pAq| ď |A{CApY q|
2.

Since |I{CIpAq| ď |Y {CY pAq| and by (c) CApY q “ CApIq, this gives |I{CIpAq| ď |A{CApIq|
2.
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By 1.43(m) A acts nearly quadratically on Y and so also on I. l

Lemma 8.37. Suppose that I ę A and Ω1ZpAq ď ZpLq. Then

(a) Y “ ICY pAq.
(b) A is a non-trivial offender on I XA.
(c) Suppose that no subgroup of A is a non-trivial offender on I. Then A is a non-trivial best

offender on I XA.

Proof. Recall that rq “ |Y {Y XA|. By 8.36(b) IA “ Y A, and so

(I) |I{I XA| “ |Y {Y XA| “ rq,

and by 8.36(c)

(II) Y XA “ CY pI XAq.

Moreover, by 1.43(e) |A X Y {CAXY pLq| “ |A{A X Y |. Since by 8.36(a) CY pAq “ ZpAq “
CAXY pLq, we get

(III) |AX Y {CY pAq| “ |A{AX Y |.

(a): By 8.36(b) Y A “ IA and so Y “ IpY XAq. Now (a) follows from 8.36(c).

(b): By 8.36(e) A does not acts quadratically on I. So rI, A,As ‰ 1 and rI XA,As ‰ 1. Also

|A{CApI XAq|
(II)
“ |A{Y XA|

(III)
“ |Y XA{CY pAq|

(II)
“ |pI XAqCY pAq{CY pAq| “ |I XA{CIXApAq|

and thus A is a non-trivial offender on I XA.

(c): Observe that by 1.43(a) ΦpAq ď CY pLq and so A{CApI X Aq is elementary abelian. Since
I X A and A are NLpY q-invariant and A is a non-trivial offender on I X A, A.29(b) shows that
there exists a non-trivial NLpY q-invariant best offender D on I XA with CApI XAq ď D ď A such
that |B||CIXApBq| ď |D||CIXApDq| for all B ď A. Since rI X A,Ds ‰ 1 and Y is abelian, we have
D ę Y XA. Thus by 1.43(f), CY pDq ď A and we conclude that

(IV) CIpDq “ CIXApDq.

Note that by the choice of D, CApI X Aq ď D and so CApI X Aq “ CDpI X Aq. By 8.36(c),
CApIq “ CApI XAq “ Y XA, and we conclude that

(V) CApIq “ CDpIq “ CDpI XAq “ CApI XAq “ Y XA.

By 8.36(a) CY pLq ď Y X A. Thus CY pLq ď CDpIq ď D ď A and so D{CDpIq is an NLpY q-
invariant section of A{CY pLq. Since

I XA{CIXApLq “ I XA{pI XAq X CY pLq – pI XAqCY pLq{CY pLq

as NLpY q-modules and CIXApLq ď CIXApDq, also IXA{CIXApDq is (as an NLpY q-module) isomor-
phic to a section of A{CY pLq.

By 2.18 any chief factor for NLpY q on A{CY pLq has order rq and so |D{CDpIq| and |I X
A{CIXApDq| both are powers of rq. As

(VI) q̃|I XA{CIXApDq|
(I)
“ |I{I XA||I XA{CIXApDq|

(IV)
“ |I{I XA||I XA{CIpDq| “ |I{CIpDq|,

we get that |I{CIpDq| is a power of rq.
On the other hand, by the assumption of (c), D is not an offender on I. Thus |D{CDpIq| ă

|I{CIpDq| and so, since both sides are powers of rq,

(VII) rq|D{CDpIq| ď |I{CIpDq|
(VI)
“ rq|I XA{CIXApDq|

(b)
ď rq|D{CDpI XAq|.
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By (V) CDpIq “ CDpI XAq and so |D{CDpIq| “ |D{CDpI XAq|. Thus equality must hold in (VII).
Hence

|I XA{CIXApDq| “ |D{CDpI XAq|

and so
|D||CIXApDq| “ |I XA||CDpI XAq| ď |I XA||CApI XAq|.

Since A is an offender on I XA, |I XA||CApI XAq|| ď |A||CIXApAq|. So

|D||CIXApDq| ď |A||CIXApAq|,

and the maximality of |D||CIXApDq| shows that A is a best offender on I XA. l

Proposition 8.38. Suppose that I ę A and Ω1ZpAq ď ZpLq. Then Case (1), (5) (for n “ 2
and q “ 4), (7),(8), (9) or (10) of Theorem H holds.

Proof. We will first show:

1˝. Let g PM such that CY pQ
gq X CY pAq ‰ 1. Then

rQg, As ď Qg XA and rY,Qgs ď rA, IsCY pAq.

By 8.36(a) CY pLq “ CY pAq and so rCY pQ
gqXCY pAq, Ls “ 1. Now Q! implies L ď NGpQ

gq and
thus by 8.5(a) Qg normalizes A. So

rA,Qgs ď AXQg and rY,Qgs ď Y XQg ď Y XOppLq “ Y XA.

By 8.36(c) Y XA “ rI, AsCY pAq and so (1˝) holds.

2˝. Suppose that I is a vector space over the field K, Q acts K-semilinearly on I and A acts
K-linearly on I. Then Q acts K-linearly on I.

As A acts non-trivially and K-linearly on I, rI,AsCIpAq is a proper K-subspace of I. Since Q
normalizes A, CY pQq X CY pAq ‰ 1 and

rI,Qs ď I X rY,Qs
(1˝)
ď I X rA, IsCY pAq “ rA, IsCIpAq.

Thus Q centralizes the non-trivial K-space I{rI, AsCIpAq. Hence Q acts K-linearly on I.

Note that Y is a p-reduced faithful Q!-module for M with respect to Q. By 8.36 we have that
rY,As ď I, and A acts nearly quadratically but not quadratically on I. By 8.5(b) Q normalizes A,
and A normalizes Q. Thus the assumptions of the Nearly Quadratic Q!-Theorem D.11 are fulfilled
for M , Q and A. We will now discuss the seven cases of that Theorem.

Case 1. K :“ rF˚pMq, As is the unique component of M , K ďM˝, I is a simple K-module,
I “ rY,KAs and A acts K-linearly on I, where K :“ EndKpIq.

By 8.5(b)Q normalizes L and A, by 1.43(m), A – A{CApY q is elementary abelian and rY,As ‰ 1,
and by 8.37(a), Y “ ICY pAq. Moreover, by 8.36(a), ZpAq “ CY pLq “ CY pAq, and by 8.36(d)
|I{CIpAq| ď |A{CApIq|

2. Since A acts K-linearly on I, by (2˝) also Q acts K-linearly on I. As seen
above, A acts nearly quadratically but not quadratically on I. Together with (1˝) this shows that
Case (1) of Theorem H holds.

Case 2. M˝ – Ω3p3q, and Y is the corresponding natural module for M˝.

Then Case (7) of Theorem H holds.

Case 3. Y “ I, and there exists an M -invariant set tK1,K2u of subnormal subgroups of M
such that Ki – SLmipqq, mi ď 2, q a power of p, rK1,K2s “ 1 and as a K1K2-module Y – Y1bFq Y2

where Yi is a natural SLmipqq-module for Ki. Moreover, K :“ EndK1K2pIq – Fq, and one of the
following holds:

(1) M˝ is one of K1,K2 or K1K2,
(2) m1 “ m2 “ q “ 2, M – SL2p2q o C2, M˝ “ O3pMqQ and Q – C4 or D8.
(3) m1 “ m2 “ p “ 2, q “ 4, M˝ “ K1K2Q – SL2p4q o C2, A acts K-linearly on I and M˝

does not.
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If Q is homocyclic, then 8.10 shows that Q is elementary abelian. This rules out the case Q – C4

in (2). So Q – D8 and M˝ “ K1K2Q “M – SL2p2q oC2 in (2). In (3), since K1K2 ĲM , M˝ acts
K-semilinearly on I, but not K-linear. Hence also Q acts K-semilinearly but not K-linearly on I.
Since A acts K-linearly on I this contradicts (2˝).

Now (1) and (2) show that Case (10) of Theorem H holds.

Case 4. M – ΓSL2p4q, M˝ – SL2p4q or ΓSL2p4q, I is the corresponding natural module,
and |Y {I| ď 2.

Then Case (8) of Theorem H holds.

Case 5. M – ΓGL2p4q, M˝ – SL2p4q, I is the corresponding natural module, and Y “ I.

Then Case (5) of Theorem H holds with n “ 2 and q “ 4.

Case 6. M – 3.Symp6q, M˝ – 3.Altp6q or 3.Symp6q, and Y “ I is simple of order 26.

Then Case (9) of Theorem H holds.

Case 7. M – Frobp39q or C2 ˆ Frobp39q, M˝ – Frobp39q and Y “ I is simple of order 33.

Note that |A| “ 3, |rY,As| “ 32, |CY pAq| “ 3 and CY pAq ď rY,As. By 8.36(a), CY pAq “ CY pLq,
and by 8.36(c), Y X A “ rY,AsCY pLq “ rY,As. Hence |Y X A{CY pLq| “ 3 and |A{CY pLq| “
|A{Y X A||Y X A{CY pLq| “ 9. It follows that L{O3pLq – SL2p3q and A{CY pLq is the natural
SL2p3q-module for L. In particular, there exists an involution t P LXM : that inverts A{CY pLq and
so also A. Thus t R ZpMq, a contradiction since M{ZpMq has odd order. l

8.5. The Proof of Theorem H

Clearly, one of the cases I ď A, I ę A and Ω1ZpAq ę ZpLq, and I ę A and Ω1ZpAq ď ZpLq
holds. Hence Theorem H follows from 8.34, 8.35, and 8.38, respectively.



CHAPTER 9

The Q-tall Asymmetric Case II

In this chapter we continue the discussion of the Q-tall asymmetric case. More precisely, we
discuss Case (1) of Theorem H proved in Chapter 8. As there we use a subgroup L P LGpYM q with
L ď NGpQq and investigate the action of A (“ OppLq) on YM .

At this point in the proof of the Local Structure Theorem we have already left behind all cases
where one might have detected a non-trivial offender on YM or its Fitting submodule I by using
properties of conjugates of YM or the subgroups of HGpOppMqq and LGpYM q. Also the theorems

on nearly quadratic action have already been exploited by showing that M “ MCGpYM q{CGpYM q
has a unique component K, that I is a simple K-module and that AQ acts K-linearly on I, where
K “ EndKpIq.

So in this chapter we need to apply the Theorems of Guralnick and Malle [GM1] and [GM2]
on simple modules V for almost quasisimple groups that allow a non-trivial 2F -offender. In our
case, A is such a 2F -offender on I. That is,

rI, As ‰ 0 and |I{CIpAq| ď |A{CApIq|
2.

But not all the pairs pK, Iq which we obtain by applying the Guralnick-Malle Theorems appear
in the conclusion of the main theorem of this chapter. In section 9.1 we therefore provide some
generic arguments which help to trim down the Guralnick-Malle list: If K is a genuine group of Lie
type in characteristic p we show that A ď K by using information about the outer automorphism
group of K; and if I is a selfdual K-module we obtain a wealth of additional information and are
able to give a fairly precise description of the action of A on I.

Here is the main result of this chapter.

Theorem I. Let G be a finite Kp-group, S P SylppGq, and let Q ď S be a large subgroup of G.
Suppose that M PMGpSq such that YM is asymmetric in G and Q-tall and that Case 1 of Theorem

H holds. Then one of the following holds, where Y :“ YM , M : :“M :{CM:pY q, I :“ FY pMq, and q
is some power of p:

(1) M˝ – SLnpqq, n ě 3, and I is a corresponding natural module.
(2) p “ 2, M˝ – Sp2npqq, n ě 2, or Sp4p2q

1, and I is a corresponding natural module.
(3) M˝ – Ωεnpqq, n ě 3, pn, qq ‰ p3, 3q, p is odd if n is odd, and I is a corresponding natural

module.
(4) M˝ – SLnpqq{xp´idq

n´1y, n ě 5, and I is the exterior square of a corresponding natural
module.

(5) p is odd, M˝ – SLnpqq{xp´idq
n´1y, n ě 3, and I is the symmetric square of a correspond-

ing natural module.
(6) M˝ – SLnpqq{xλid | λ P Fq, λn “ λq0`1 “ 1y, n ě 3, q “ q2

0, and I is the unitary square
of a corresponding natural module.

(7) M˝ – Spin`10pqq, and I is a corresponding half-spin module.

(8) M˝ – E6pqq, and I is one of the (up to isomorphism) two simple FpM˝-modules of Fq-
dimension 27.

(9) p “ 2, M “M˝ “Mat24, and I is the simple Todd or Golay-code module of F2-dimension
11.

(10) p “ 2, M˝ –Mat22, and I is the simple Golay-code module of F2-dimension 10.
(11) p “ 2, M “M˝ – AutpMat22q, and I is the simple Todd module of F2-dimension 10.
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(12) p “ 3, M˝ –Mat11, and I is the simple Golay-code module of F3-dimension 5.
(13) p “ 3, M˝ – 2.Mat12, and I is the simple Golay-code module of F3-dimension 6.

Corollary 9.1. Assume the hypothesis and notation of Theorem I. Suppose in addition that
Y ‰ I. Then one of the following holds:

(1) M˝ – Sp2npqq or Sp4p2q
1, p “ 2, I is the corresponding natural module and |Y {I| ď q.

(2) M˝ – Ω´4 p3q, I is the corresponding natural module, |Y {I| “ 3, and Y is isomorphic to

the 5-dimensional quotient of a six dimensional permutation module for M˝ – Altp6q.
(3) M˝ – Ω5p3q, I is the corresponding natural module, and |Y {I| “ 3.
(4) M˝ – Ω`6 p2q, I is the corresponding natural module, and |Y {I| “ 2.

(5) p “ 2, M “M˝ –Mat24, I is the simple Todd-module of F2-dimension 11, and |Y {I| “ 2.

Corollary 9.2. Assume the hypothesis and notation of Theorem I. Suppose in addition that
CGpyq is of characteristic p for all 1 ‰ y P YM . Then Y “ I. Moreover, the cases (11) (Todd-module
for AutpMat22q) and and (13) (Golay-module for 2.Mat12) of Theorem I do not occur.

Table 1 lists examples for YM , M and G fulfilling the hypothesis of Theorem I.

Table 1. Examples for Theorem I

Case rYM ,M
˝s for M˝ c Remarks examples for G

3 nat Ωεnpqq 1 - PΩεn`2pqq
* 3 nat Ω3p5qq 1 - Co1

* 3 nat Ω´4 p2q 1 - L4p3q
* 3 nat Ω´4 p3q ď 3 - U6p2q.cp.2q

3 nat Ω´4 p3q 1 - McL
* 3 nat Ω5p3q 1 - Fi22p.2q
* 3 nat Ω5p3q ď 3 - 2E6p2q.cp.2q
* 3 nat Ω`6 p2q ď 2 - PΩ`8 p3q.cp.2q
* 3 nat Ω`7 p3q 1 - Fi124p.2q
* 3 nat Ω`10p2q 1 - M

3, 4 Λ2(nat)SLnpqq 1 n ě 4 PΩ`2npqq, Ω2n`1pqq p odd
PΩ´2n`2pqq, O

`
2npqq p “ 2

5 S2(nat)SLnpqq 1 - PSp2npqq
6 U2(nat)SLnpq

2
0q 1 - U2npq0q, U2n`1pq0q

7 half-spin Spin`10pqq 1 - E6pqq
8 q27 for E6pqq 1 - E7pqq
9 Golay 211 for Mat24 1 - Co1

9 Todd 211 for Mat24 1 - J4

* 9 Todd 211 for Mat24 ď 2 - Fi124.c
10 Golay 210 for Mat22 1 - Co2

* 11 Todd 210 for AutpMat22q 1 - AutpFi22q

12 Golay 35 for Mat11 1 - Co3

* 12 Golay 36 for 2.Mat12 1 - Co1

Here c :“ |YM{rYM ,M
˝s|, and ˚ indicates that pchar YM q fails in G.

9.1. Notation and Preliminary Results

Notation 9.3. We will use the notation introduced in Theorem I and in 8.3. In particular,
since L P LGpYM q,

L{A – SL2prqq, Szprqq, or D2r and rq “ |Y {Y XA|.

Moreover, by our hypothesis we are in case (1) of Theorem H. Summing up we have:
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(a) A is Q-invariant, A is elementary abelian, and A acts nearly quadratically on Y , but not
quadratically on I.

(b) K :“ rF˚pMq, As is the unique component of M , K ďM˝, and I is a simple K-module.
(c) |Y {CY pAq| ď |A|

2 and rY,KAs “ I.
(d) AQ acts K-linearly on I, where K :“ EndKpIq.
(e) If g PM with CY pQ

gq X CY pAq ‰ 1, then rQg, As ď Qg XA and rY,Qgs ď rY,AsCY pAq.
(f) Y “ IZpAq “ ICY pAq and CY pAq “ ZpAq “ CY pLq. In particular, I ę A and rZpAq, Is “

1.

For any group H and finite dimensional FpH-module V we denote by YV pHq the largest p-
reduced submodule of V , i.e., the largest submodule U satisfying OppH{CHpUqq “ 1.

Lemma 9.4. Let X be a non-trivial p-subgroup of M . Then CXpKq “ CXpK{ZpKqq “
CXpM˝q “ 1, X X CM pK{ZpKqqK ď K and K “ rK,Xs.

Proof. From 9.3(b) we get that K is the unique component of M , K ďM˝ and I is a simple
K-module. The last fact implies that CM pKq is a p1-group. Thus CXpKq “ 1 and so CXpM˝q “ 1

since K ďM˝.
As K is quasisimple, CM pK{ZpKqq “ CM pKq and XXCM pK{ZpKqqK “ XXCM pKqK. Since

CM pKq is a p1-group, we conclude that Op
1

pCM pKqKq ď K and so X X CM pKqK ď K.

Note that K is quasisimple, K ĲM and rK,Xs ‰ 1. Thus K “ rK,Xs, and 9.4 is proved. l

Lemma 9.5. (a) A1 “ ΦpAq ď CY pLq. In particular, A acts quadratically on I XA.
(b) I XA “ rI, AsCIpAq. In particular, I XA is a K-subspace of I.
(c) CApI XAq “ Y XA “ pI XAqCY pAq.
(d) A is a non-trivial offender on I XA.
(e) Suppose that no subgroup of A is a non-trivial offender on I. Then A is a non-trivial best

offender on I XA.

Proof. By 9.3(f) I ę A and ZpAq “ CY pLq. Thus also Ω1ZpAq ď ZpLq and we can apply 8.36
and 8.37.

(a): By 1.43(a) A1 “ ΦpAq ď CY pLq and so (a) holds.

(b): By 8.36(b) rI, As ď IXA and by 8.36(d) Y XA “ rI, AsCY pLq. Hence IXA “ rI, AsCIpLq.

(c), (d) and (e): These claims follow from 8.36(c), 8.37(b) and 8.37(c), respectively. l

Lemma 9.6. Let P ď M with AQ ď P and A ď OppP q. Then P ˝ normalizes A and rI, P ˝s ď
I XA.

Proof. Since A ď OppP q, CY pOppP qq ď CY pAq. Thus, for g P P ,

1 ‰ CY pOppP qq X CY pQ
gq ď CY pAq X CY pQ

gq,

and so 9.3(e) gives

rQg, As ď AXQ
g

and rY,Qgs ď rY,AsCY pAq.

Hence Qg normalizes A and since rY,AsCY pAq ď Y X A, rI,Qgs ď I X A. Thus P ˝ normalizes A
and rI, P ˝s ď I XA. l

Lemma 9.7. Suppose that I is selfdual as an FpK-module. Put D :“ rI, As X CIpAq. Then
there there exists a non-degenerate K-invariant symplectic, symmetric or unitary K-form s on I.
Moreover, for any such form s the following hold:

(a) M˝xAM y acts K-linearly on I, and s is M˝xAM y-invariant.
(b) |K| “ rq.
(c) D is 1-dimensional over K and I XA “ rI, AsCIpAq “ DK.
(d) dimKrI, as ď 2 for all a P A.
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(e) D ď CIpQq.
(f) A centralizes DK{D and A ď OppNM pDqq.
(g) Let X be a K-subspace of CIpAq with CIpAq “ D ˆX. Put

T :“ tg P GLKpX
Kq | spu, vq “ spug, vgq for all u, v P XKu,

and let qA be the image of A in T . Then X XXK “ 1 and

qACT pX
K XDKq “ CT pDq X CT pX

K{Dq.

(h) s is symmetric.
(i) |ZpKq| ď 2.
(j) Let R1 ď M with QA ď R1, Q đ R1 and OppR1q ‰ 1, and let I1 :“ YIpR1q be the largest

p-reduced R1-submodule of I. Then I1 is a natural SLnprqq-module for R˝1 and for xAR1y.
Moreover, D “ rI1, As “ CI1pQq.

Proof. By 9.3(b), I is a simple K-module and by assumption I is a selfdual FpK-module. So
we can apply B.7 with pM,K, I,Fpq in place of pH,N, V,Fq. In particular, the existence of s follows
from B.7(a).

For U Ď I put
UK :“ tv P I | spu, vq “ 0 for all u P Uu.

Recall from basic linear algebra :

1˝. Let U and V be K-subspaces of I. Then

(a) UKK “ U .
(b) UK X V K “ pUV qK.
(c) pU X V qK “ UKV K

(d) dim I “ dimU ` dimUK.

and

2˝. Let N be a group acting K-linearly on I and suppose that s is N -invariant. Then

(a) CIpNq
K “ rI,N s.

(b) rI,N sK “ CIpNq.
(c) Let U be an N -submodule of I. Then CN pUq “ CN pI{U

Kq.

Next we prove:

3˝. (a) holds.

By B.7(c) M acts K-semilinearly on I. Let M1 consists of those elements in M that act K-

linearly on I. Then by B.7(f), s is Op
1

pM1q-invariant. By 9.3(d) QA is K-linear on I and so is

contained in Op
1

pM1q. It follows that M˝xAM y “ xpQAqM y ď Op
1

pM1q and (a) holds.

4˝. (b) and (c) hold.

By 9.5(b) I XA “ rI, AsCIpAq, and so (using (1˝) and (2˝))

pI XAqK “ rI, AsK X CIpAq
K “ CIpAq X rI, As “ D

and
I XA “ pI XAqKK “ DK.

Thus the the second part of (c) holds.
Since

dimK I “ dimKD ` dimKD
K “ dimKD ` dimK I XA,

we have |D| “ |I{I X A|. By 2.14 Y A{A is the unique non-trivial elementary abelian normal
p-subgroup of NLpY q{A. It follows that Y A “ IA, and NLpY q acts simply on

Y {Y XA – Y A{A “ IA{A – I{I XA “ I{DK.

In particular, |D| “ |I{I X A| “ |Y {Y X A| “ rq. In addition, by 9.3(f), CY pAq “ CY pLq. Since
D ď CIpAq ď CY pAq we conclude that NLpY q centralizes D and so CM pDq acts simply on I{DK.
Now B.7(e) shows that D is 1-dimensional over K. Thus |K| “ |D| “ rq, and (b) and (c) are proved.
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5˝. rDK, As “ rI XA,As “ rI, A,As “ D.

From (c),
rDK, As “ rI XA,As “ rrI,AsCIpAq, As “ rI, A,As.

By 9.3(a), A is nearly quadratic but not quadratic on I. So A is cubic on I and

1 ‰ rI, A,As ď CIpAq X rI, As “ D.

By (c), D is 1-dimensional over K, and we get rI, A,As “ D. Thus (5˝) is proved.

6˝. (d) and (e) hold.

Let a P A. Since a acts K-linearly on I and dimKD “ 1, (5˝) gives dimKrI X A, as ď 1. As by
(c) also dimK I{I XA “ dimK I{D

K “ 1, we get that dimKrI, as ď 2. So (d) holds.
By 9.3(a) A and so alsoD isQ-invariant, and by (c)Q acts K-linearly on I. AsD is 1-dimensional

over K, this gives D ď CIpQq. Hence (e) is proved.

7˝. (f) holds.

By (5˝) rDK, As “ D, by definition D ď CIpAq, and by (c), rI, AsCIpAq “ DK. Hence A
centralizes I{DK, DK{D and D. Moreover, by B.7(d), NM pDq normalizes the chain D ď DK ď I.
Thus xANM pDqy centralizes all factors of this series and so acts as a p-group on I. By 8.4(a)
CM pY q “ CM pIq and so A ď OppNM pDqq.

8˝. (g) holds.

Note that X ď CIpAq “ rI, As
K and

rI, As “ CIpAq
K “ pD ˆXqK

(1˝)(a)
“ DK XXK and DKXK

(1˝)(c)
“ pD XXqK “ I.

In particular, XK ę DK and by (c) X ď CIpAq ď DK, so X “ X X DK and X “ X X CIpAq. It
follows that

X XXK “ X XDK XXK “ X X rI, As “ X X CIpAq X rI, As “ X XD “ 1.

Hence X is a non-degenerate subspace of I, and I “ XKˆX. Let i P XKzDK. As DK “ rI, AsCIpAq
and A acts nearly quadratically on I, we have ri, AsCIpAq “ rI, AsCIpAq “ DK. Intersecting with
rI, As gives rI, As “ ri, AspCIpAq X rI,Asq “ ri, AsD. As rI, As “ XK XDK we conclude that

p˚q ri, AsD “ XK XDK.

Put T1 :“ CT pDq XCT pX
K XDK{Dq and T2 “ CT pX

K XDKq. Recall from (5˝) that rDK, As “ D,

so qA ď T1. Since by (c) D is 1-dimensional, DK is a K-hyperplane of I, and since XK ę DK,
XK{XK X DK is 1-dimensional. Hence by the choice of i P XK, XK “ pKiqpXK X DKq. Since T1

centralizes XK XDK{D, this gives CT1
piD{Dq “ CT1

pXK{Dq.
Observe that T “ ClpXKq (in the notation of Appendix B). Hence by B.6(a) XK{XKXDK – D˚

as KT1-modules and CT1pX
K{Dq “ CT1pX

K X DKq, and so T2 “ CT1piD{Dq. By (˚) A acts

transitively on ipXK XDKq{D and so a Frattini argument implies that T1 “ qAT2 and (g) holds.

9˝. (h) holds.

Let X, T and qA be as in (g), and let T1 and T2 be as in the proof of (g). Suppose that s is
not symmetric. Then s is a unitary or symplectic form, where in the latter case p is odd since s is
not symmetric. Hence B.28(c:a) and B.28(b:a) show that ΦpT1q “ T2. On the other hand, by (g)

T1 “ qAT2. This gives T1 “ qA, and T1 is abelian, since qA is abelian by 9.3(a). This contradiction
shows that s is symmetric and so (h) holds.

10˝. (i) holds.

Let k P ZpKq. By 9.3(b) I is a simple K-module, and by 9.3(d) K “ EndKpIq, so k acts as
scalar λ P K on I. By (h), s is K-bilinear and so for any v, w P I:

spv, wq “ spvk, wkq “ spλv, λwq “ λ2spv, wq.

Since s is non-zero we conclude that λ2 “ 1, and (i) holds.

We now begin with the proof of (j). Put R :“ xAR1y.
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11˝. RR˝1 acts K-linearly on I, and s is RR˝1-invariant.

Note that RR˝1 ďM˝xAM y. Hence (a) implies (11˝).

12˝. CIpR
˝
1q “ 1 and I “ rI,R˝1s.

Since Q đ R1, Q! implies CIpR
˝
1q “ 1. By (11˝) R˝1 acts K-linearly on I and s is R˝1-invariant.

Hence

rI,R˝1s “ CIpR
˝
1q
K “ I,

and (12˝) follows.

13˝. CIpRq “ 1, and rW,As ‰ 1 and W ‰ I for every non-trivial p-reduced R1-submodule of
I. In particular rI1, As ‰ 1 and I1 ‰ I.

Set I0 :“ CIpRq and suppose that I0 ‰ 1. Let l P R1. Since A ď R Ĳ R1 and Q ď R1, I0 is R1

invariant and 1 ‰ CI0pQ
lq ď CY pQ

lq X CY pAq. Now 9.3(e) shows that rY,Qls ď rY,AsCY pAq. By
9.3(f), Y “ IZpAq. So rY,As “ rI, As and thus

rI,Qls ď I X rY,AsCY pAq “ rI, AsCIpAq.

By (c) rI, AsCIpAq “ I X A. Hence rI,Qls ď I X A and so rI,R˝1s ď I X A. But by (12˝),
I “ rI,R˝1s and by 9.3(f) I ę A, a contradiction. Hence CIpRq “ 1.

Let W be a non-trivial p-reduced R1-submodule of I. Then CW pRq “ 1, and since W ‰ 1 and
R “ xAR1y, rW,As ‰ 1. Moreover, since OppR1q ‰ 1, I is not p-reduced for R1, and W ‰ I.

14˝. I “ rI,Rs.

By (11˝) R acts K-linearly on I and s is R-invariant, and by (13˝), CIpRq “ 1. Hence rI,Rs “
CIpRq

K “ I.

15˝. A is a best offender and a strong dual offender on every A-submodule of I XA.

By 9.5(d), A is a non-trivial offender on I X A. By (5˝) rI X A,As “ D and so rI X A,As
is 1-dimensional over K by (c). Hence A.33(c) shows that A is a best offender and a strong dual
offender on every A-submodule of I XA. So (15˝) holds.

16˝. D “ rI1 XA,As ď I1.

Since I1 is A-invariant, rI1 X A,As ď rI1, As ď I1. Recall from (5˝) that D “ rI X A,As. By
(15˝) A is a strong dual offender on I XA, so either D “ rI1 XA,As ď I1 or rI1 XA,As “ 1. In the
former case we are done. So suppose the latter. Then I1 ę A since by (13˝) rI1, As ‰ 1. Then

rI1, AsCIpAq “ rI, AsCIpAq,

since A is nearly quadratic on I. By (c) I XA “ rI, AsCIpAq, and so I XArI1, AsCIpAq. Thus

D “ rI XA,As “ rrI1, AsCIpAq, As “ rI1, A,As ď rI1 XA,As ď rI XA,As.

So again D “ rI1 XA,As, and (16˝) is proved.

17˝. I1 is a K-subspace of I. In particular, I1 is a KRQ-submodule of I.

Put R0 :“ CR1pI1q. By (16˝) D ď I1, and since D is a non-trivial K-subspace of I and M
acts K-semilinearly on I, we conclude that R0 acts K-linearly on I. Thus R0 centralizes KI1 and so
CR1

pI1q “ R0 “ CR1
pKI1q. Since I1 is p-reduced for R1 we get

Op
`

R1{CR1
pKI1q

˘

“ Op
`

R1{CR1
pI1q

˘

“ 1,

and KI1 is p-reduced. Thus I1 “ KI1, and I1 is K-subspace of I.

Clearly I1 is R1-invariant and so also RQ-invariant, and by (11˝) RQ acts K-linearly on I. Thus
I1 is a KRQ-submodule of I.

18˝. D “ rI1, As ď I1 ď A.
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If I1 ď A, then D “ rI1 X A,As “ rI1, As by (16˝). So we may assume for a contradiction that
I1 ę A. Then

rI1, AsCIpAq “ rI, AsCIpAq “ I XA

since A is nearly quadratic on I.
By (c) I XA “ DK is a K-hyperplane in I, and by (17˝) I1 is a K-space. Hence

I “ I1pI XAq “ I1rI1, AsCIpAq “ I1CIpAq,

and so rI, As ď rI1, As ď I1. Thus rI,Rs ď I1. But rI1, Rs “ I by (14˝) and I ‰ I1 by (13˝), a
contradiction.

19˝. U :“ rI1, Rs is a simple FpR-submodule of I1, rU,As “ D, and A is a non-trivial strong
dual offender on U . In particular, R is generated by strong dual offenders on U .

Let U1 be a simple FpR-submodule of I1. Since CIpRq “ 1 by (13˝), we have rU1, As ‰ 1, and
since A is a strong dual offender on I1 by (15˝), rI1, As “ rU1, As ď U1 and so U “ rI1, Rs ď U1.
The simplicity of U1 implies U1 “ U , so U is a simple FpR-submodule of I1.

By (17˝) I1 and thus also U “ rI1, Rs are KR-modules. Since by (c) D is a 1-dimensional
K-space, 1 ‰ rU,As shows that rU,As “ D.

By (18˝) I1 ď A and so U ď I X A. Thus (15˝) shows that A is a strong dual offender on U .
Since R “ xAR1y we conclude that R is generated strong dual offenders on U and so (19˝) holds.

Observe that Q normalizes I1 and R, so U is an RQ-module. Put H :“ RQ, rH :“ H{CHpUq
and F :“ EndRpUq.

20˝. U is a simple Q!-module for rH with respect to rQ.

By (19˝) U is a simple R-module. Since U “ rI1, Rs and R Ĳ R1, U is also an H-module.
Suppose that Q Ĳ H. Since U is a simple R-module, we conclude that rU,Qs “ 1. But then also
rU,R˝1s “ 1, a contradiction since CIpR

˝
1q “ 1 by (12˝). Hence Q đ H, and 1.57(b) shows that U is

a Q!-module for rH with respect to rQ.

21˝. |F| “ |K| “ rq, Q acts F-linearly on U , and dimFD “ 1.

Let KU be the image of K in EndpUq. By (17˝) H acts K-linearly on I1, so KU ď F. As
A ď R, rU,As is F-invariant. By (19˝) rU,As “ D and so rU,As is 1-dimensional over K. Hence
dF Ď D “ dKU for 1 ‰ d P D. By Schur’s Lemma F is a division ring and we conclude that
F “ KU . Since Q acts K-linearly on I we conclude that Q acts F-linearly on U . Moreover, (d) gives
|F| “ |KU | “ |K| “ rq.

22˝. (j) holds.

By (19˝) U is a simple rR-module and rR is generated by strong dual offender on U . So we can
apply C.5. We conclude that one of the following holds:

(1) rR – SLnpqq, n ě 2, or Sp2npqq, n ě 2, and U is a corresponding natural module.

(2) p “ 2, rR – Altp6q or Altp7q, U is a spin-module of order 24 and rA – xp12qp34q, p13qp24qy

(3) p “ 2, rR – Oε2np2q, n ě 3, or Sympnq, n “ 5 or n ě 7, U is a corresponding natural

module, and | rA| “ 2.

Recall from 9.3(a) that A is Q-invariant. Hence rQ normalizes rA, rU,As and CU pAq. Moreover,
by (e) D ď CIpQq and by (19˝) D “ rU,As, so Q! shows that Q Ĳ NHprU,Asq. In particular

p˚q Q Ĳ NHprU,Asq and rQ ď OppN
ĂH
prU,Asqq.

Suppose that (2) holds. Then |F| “ 2 and |rU,As| “ 4. But this is a contradiction since |K| “ |F|
by (21˝) and |rU,As| “ |D| “ |K| by (19˝).

Suppose that (3) holds. Then p “ 2, and N
rRprU,Asq – C2ˆ rE, rE – Sp2np2q or Sympn´2q, and

CU pAq{rU,As is a simple N
rRprU,Asq-module. By (˚) r rQ,N

rRprU,Asqs ď
rA ď C

rRpCU pAqq, and by the
simplicity of CU pAq{rU,As, rCU pAq, Q,N rRprU,Asqs “ 1. Hence the Three Subgroups Lemma gives

rN
ĂH
prU,Asq, CU pAq, rQs “ 1, and so, since CU pAq “ rN

ĂH
prU,Asq, CU pAqsrU,As, CU pAq ď CHpQq.

But this contradicts Q! since CU pAq is a hyperplane in U .
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Suppose that (1) holds. Then |F| “ q, and by (21˝) D is a 1-dimensional F-space and Q acts

F-linearly on U . If rR – SLnpqq then, since GLnpqq{SLnpqq is a p1-group, rQ ď rR and so rH “ rR. If
rR – Sp2npqq, then the R-invariant symplectic forms on U form a 1-dimensional F-space. Since Q is

a p-group acting F-linearly, Q centralizes this 1-space. Thus again rQ ď rH and rH “ rR.

We have shown that rH “ rR. Suppose that rR – Sp2npqq, n ě 2. Since U is a Q!-module,
B.37 yields D “ CU pQq. Note that dimF U “ 2n ě 4, dimFrU,As “ dimFD “ 1 and dimFrU,As `
dimF CV pAq “ dimF U . Thus dimF CU pAq ě 3, and we can choose a Q-invariant 2-dimensional
F-subspace I2 of CU pAq. Put R2 :“ NR1

pI2q. Then R2 induces a group on I2 that contains SL2pqq.
Hence, I2 is a simple and thus p-reduced R2-module. Moreover, since rI2, Qs ‰ 1, Q is not normal
in R2, and since OppR1q ď OppR2q we have OppR2q ‰ 1. So (13˝) applied to pR2, I2q in place of
pR1,W q gives rI2, As ‰ 1, a contradiction to I2 ď CU pAq.

Hence rR – SLnpqq, n ě 2. Suppose for a contradiction that U ‰ I1. Since CI1pRq “ 1 and
rI1, Rs “ U , C.22 shows that R{CRpI1q – SL3p2q and the commutator rU,As is 2-dimensional, a
contradiction since by (19˝) rU,As “ D, and by (21˝) D has dimension 1. Thus U “ I1.

Finally if n ě 3 or n “ 2 and |F| ą 3 then rH is quasisimple and so rH “ ĂR˝1. In the exceptional

case rH – SL2pqq, q ď 3, the equality rH “ ĂR˝1 is easy to check. By (21˝), |F| “ q “ rq, so (j) holds.
l

9.2. The Proof of Theorem I

We will use the notation given in 9.3 and Theorem I.

Lemma 9.8. Suppose that one of the following holds, where q is a power of p.

(a) K – SUnpqq or Ωεnpqq, n ě 3, and I is the corresponding natural module.
(b) K – G2pqq

1, and I has Fq-dimension 6 or 7, depending on q being even or odd.

(c) I is an FF -module for M .

Then Theorem I holds.

Proof. Suppose first that (a) holds. If I is a natural SUnpqq-module for K, then K “ Fq2
and there exists a K-invariant non-degenerate unitary K-form s on I. So we can apply 9.7(h) and
conclude that s is symmetric, a contradiction.

Thus I is a natural Ωεnpqq-module for K, n ě 3. As K is quasisimple, pn, qq ‰ p3, 3q. Since
I is a simple K-module, p is odd if n is odd. By 9.3(d), Q acts K-linearly on I and thus B.35(d)
shows that either Q ď K or p “ 2 and K – Ωεnpqq. Suppose the latter, then n ě 4, and since K is
quasisimple, K fl Ω`4 pqq. Thus B.37 shows that Q ď K also in this case. As K is quasisimple we

conclude that K “M˝. Thus Theorem I(3) holds.

Suppose next that (b) holds, that is, K – G2pqq
1 and I has dimension 6 or 7. Then K “ Fq and

I is selfdual. In particular, we again can apply 9.7. Then for D :“ rI, As X CIpAq

q “ rq and dimKD “ 1.

Since A acts K-linearly on I, A does not induce any non-trivial field automorphisms on K. It
follows that either A ď K or q “ 2 and KA – G2p2q. Thus either KA – G2pqq or q “ 2 and
KA “ K – G2p2q

1. Put R :“ CKApDq. Since D is a singular 1-subspace of I and K acts transitively

on the singular 1-spaces, D is centralized by a Sylow p-subgroup of KA. Thus R „ q2`1`2SL2pqq
(if KA – G2pqq) or 22`2SL2p2q (if q “ 2 and KA – G2p2q

1). In either case, CRpD
K{Dq is the

unique elementary abelian normal subgroup of order q2 in R and acts quadratically on I. This is a
contradiction, since A does not act quadratically on I by 9.3(a) and A ď CRpD

K{Dq by 9.7(f)

Suppose now that (c) holds and letX be a non-trivial best offender inM on I. By 9.4K “ rK,Xs
and CXpM˝q “ 1. In particular, C.24 applies to M and I. Put J “ JM pIq. Then K “ rK,Xs ď J .

Assume that C.24(1) holds. Then J – SL2pqq
n and I is a direct sum of natural SL2pqq-modules

for J . Since I is a simple K-module and K ď J we conclude that J – SL2pqq and I is a natural
SL2pqq-module. It follows that K “ Fq and dimK I “ 2. Since A acts K-linearly on I this implies
that A acts quadratically on I, a contradiction.
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Thus C.24(2) holds. Then F˚pJq is quasisimple and so K “ F˚pJq. In the cases C.24(2:c:1)
and (2:c:3) I is a direct sum of at least two non-trivial F˚pJq-submodules, a contradiction since I
is a simple K-module.

Hence C.24(2:c:2) holds. So by C.24(2:c:2:b)

p˚q either M˝ “ K or M˝ – Sp4p2q, 3.Symp6q, SU4pqq.2, or G2p2q,

where I is the natural SU4pqq-module for K in the SU4pqq.2-case. Moreover, by C.24(2:c:2:c) one of
the cases C.3 (1) - (9), (12) applies to pJ, Iq, with n ě 3 in case (1), n ě 2 in case (2), and n “ 6 in
case (12). We will now treat these cases of C.3 one by one.

Suppose that C.3 (1) holds with n ě 3. Then I is a natural SLnpqq-module for J . Thus
K “ F˚pJq “ J and by p˚q, K “M˝. So I is a natural SLnpqq for M˝, and Theorem I(1) holds.

Suppose that C.3 (2) holds with n ě 2. Then I is a natural Sp2npqq-module for J . Moreover,
K “ F˚pJq – Sp2npqq

1, K “ Fq, and there exists a K-invariant non-degenerate symplectic K-form on

I. By 9.7(h) this form is symmetric, and we conclude that p “ 2. By p˚q either M˝ “ K – Sp2npqq
1

or M˝ – Sp4p2q. Thus Theorem I(2) holds.
Suppose that C.3 (3) holds. Then I is natural SU4pqq-module for J . Hence I is also a natural

SU4pqq-module for K “ F˚pJq “ J , a case we have already treaded assuming (a).
Suppose that C.3 (4) holds. Then I is a natural Ωεnpqq- or Oεnpqq-module for J for various pn, q, εq

with n ě 4. Since K “ F˚pJq is quasisimple we conclude that K – Ωεnpqq, a case we have already
treaded assuming (a).

Suppose that C.3 (5) holds. Then J – G2pqq, p “ 2 and I is the natural G2pqq-module of order
q6. Then K “ F˚pJq “ J 1 – G2pqq

1, a case we have already treaded assuming (b).
Suppose that C.3 (6) holds. Then J – SLnpqq{x´id

n´1
y, n ě 5, and V is the exterior square of

a natural SLnpqq-module. Thus K “ F˚pJq “ J and by p˚q M˝ “ K. Hence Theorem I(4) holds.
Suppose that C.3 (7) holds. Then J – Spin7pqq and I is the spin module of order q8. Thus

K “ F˚pJq “ J – Spin7pqq. Let R be the centralizer in K of a QA-invariant 1-dimensional singular
subspace of the natural Ω7pqq-module. Put R1 “ RQA and I1 “ CIpOppRqq. Then I1 is a natural
Sp4pqq-module for R. In particular, I1 is a simple R1 module and so I1 “ YIpR1q. Then Q! implies
that rI1, Qs ‰ 1 and so Q đ R1. Thus 9.7(j) shows that I1 is a natural SLnprqq-module for R˝1. Since
both R and R˝1 are normal in R1, this is a contradiction.

Suppose that C.3(8) holds. Then J – Spin`10pqq and I is the half-spin module. Thus K “

F˚pJq “ J and by p˚q, M˝ “ K. Hence Theorem I(7) holds.
Suppose that C.3(9) holds. Then J – 3.Altp6q and |V | “ 26; in particular, K “ F˚pJq “ J

and K “ F4. Since A acts K-linearly on I and any elementary abelian 2-subgroup of GL3p4q acts
quadratically, we conclude that A acts quadratically on I, a contradiction.

Suppose finally that C.3(12) holds with n “ 6. Then J – Altp6q or Symp6q and I is a corre-
sponding natural module; in particular, K “ F˚pJq “ Altp6q “ Sp4p2q

1. By p˚q, M˝ “ K – Sp4p2q
1

or M˝ – Sp4p2q and Theorem I(2) holds. l

Lemma 9.9. Suppose that K is a quasisimple genuine group of Lie-type1 defined over a field of
characteristic p and I is not an FF -module for M . Then A ď K.

Proof. Let K “ dΣpqq (see A.58(b) for the definition). So q is a power of p and d P t1, 2, 3u.
By way of contradiction we assume A ę K. Since K ĲM by 9.3(b), the action of M on K induces
a chain of homomorphisms

M : “M Ñ AutpK{ZpKqq Ñ OutpK{ZpKqq :“ AutpK{ZpKqq{InnpK{ZpKqq.

Let φ be the resulting homomorphism from M to OutpK{ZpKqq, and for X ď M : let pX :“ Xφ.
Note that CM pK{ZpKqqK is the kernel of φ in M .

1˝. Let X ď S. Then pX – X{X XK. In particular, pA is a non-trivial elementary abelian
p-subgroup of OutpK{ZpKqq of order |A{AXK|.

1For the definition see A.58.
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This holds since by 9.4, X X kerφ “ X X CM pK{ZpKqqK “ X XK.

We fix the following notation:

Let ∆ be the Dynkin diagram ofK. We often identify ∆ with its set of vertices. For a subdiagram
Λ Ď ∆, let PΛ be the corresponding Lie-Parabolic subgroup of K with S XK ď PΛ. In case of a
minimal Lie-parabolic subgroup; i.e., if Λ “ tλu, we also write Pλ rather than PΛ.

Put KΛ :“ Op
1

pPΛq and ZΛ :“ CKpK{OppKqq. If Λ is connected then KΛ{OppKΛq and KΛ{ZΛ

are genuine groups of Lie-type with Dynkin diagram Λ and defined over Fqd or Fq. If Λ1, . . .Λl are
the connected components of Λ then KΛ{OppKΛq is isomorphic to a central product of the groups

KΛi{OppKΛiq, 1 ď i ď l. Note that Λ “ H iff PΛ is p-closed and iff KΛ “ S XK. Also Λ “ ∆ iff
KΛ “ K and iff OppKΛq “ 1.

If Λ is QA-invariant put RΛ :“ KΛQA; in particular R∆ “ KQA. Observe that K X QA ď

K X S ď PΛ and so

RΛ XK “ KΛpK XQAq ď Op
1

pPΛq.

It follows that RΛXK “ KΛ and that RΛ is a parabolic subgroup of R∆ with SXR∆ “ pSXKqQA ď
RΛ.

Conversely, let R be a parabolic subgroup of R∆ with S X R∆ ď R and Op
1

pR XKq “ R XK.
Then by A.63 NKpRXKq is a Lie-parabolic subgroups of K and so R “ RΛ for a unique QA-invariant
Λ Ď ∆. We denote this Λ by ∆pRXKq.

Finally, let I˚ :“ HomFppI,Fpq be the dual module of the Fp-module I.

In the following we fix a proper (possible empty) QA-invariant subdiagram Λ Ď ∆. Put R :“ RΛ,
and let IR :“ YIpRq be the largest p-reduced R-submodule of I. If QA acts transitively on ∆, observe
that Λ “ H and R “ S XKQA.

From A.60 applied to the adjoint version K{ZpKq:

2˝. There exist subgroups Diag and Φ and a subset Γ of OutpK{ZpKqq such that

(a) ΦΓ is a subgroup of OutpK{ZpKqq, Φ Ĳ ΦΓ, OutpK{ZpKqq “ DiagΦΓ, Diag X ΦΓ “ 1
and Diag Ĳ OutpK{ZpKqq, and

(b) Diag is a p1-group.
(c) Φ – AutpFqdq. In particular, Φ is cyclic.
(d) CDiagΦΓp∆q “ DiagΦ.

Observe that ΦΓ contains a Sylow p-subgroup of OutpK{ZpKqq, since OutpK{ZpKqq “ DiagΦΓ
and Diag is p1-group. Thus, replacing ΦΓ by a suitable conjugate under Diag, we may assume that

3˝. pS ď ΦΓ. In particular, pS XDiag “ 1.

By A.65

4˝. There exists τ P Γ such that τ2 “ 1 and I˚ – Iτ as an FpK-module. Moreover,

(1) If K “ Anpqq, n ‰ 2, D2n`1pqq, n ě 2, or E6pqq, then Γ “ xτy and τ induces the unique
non-trivial graph automorphism on ∆,

(2) otherwise τ “ 1.

Next we show:

5˝. Let s P S. Suppose that s acts trivially on ∆ and induces an inner automorphism on
Kδ{Zδ for each δ P ∆. Then s P K.

By (1˝) it suffices to show that ps “ 1. Since s acts trivially on ∆, (2˝)(d) shows that ps P DiagΦ.
By (3˝), ps P ΦΓ and so ps P Φ. Choose δ P ∆ such that Kδ{Zδ is defined over Fqd . Then s induces the
same field automorphism on Kδ{Zδ as on K (see the description of field automorphism in [GLS3,
2.5].) As s induces inner automorphism on Kδ{Zδ we conclude that ps “ 1.

6˝. There exists ε P ∆ such that either A does not fix ε or A fixes ε and induces some
non-trivial outer automorphism group on Kε{Zε. In particular, rKε, As is not a p-group.
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We first show the existence of an ε P ∆ with the required property. For this we may assume that
A acts trivially on ∆. Since A ę K, (5˝) shows that A induces a non-trivial outer automorphism
group on Kε{Zε for every ε P ∆. This establishes the existence of ε.

Assume that rKε, As is p-group. Then rKε, AspS XKq is p-subgroup of K. Hence

rKε, As ď S XK ď Kε and rKε, As ď OppKεq ď Zε.

It follows that A normalizes Kε, so A fixes ε and centralizes Kε{Zε. In particular, A does not induce
a non-trivial outer automorphism group on Kε{Zε, a contradiction.

In the following let ε be any element of ∆ such that either A does not fix ε or A fixes ε and
induces some non-trivial outer automorphism group on Kε{Zε.

7˝. rq “ p ď 3; and if rq “ 3 then K “ D4pqq, pA “ Γ1 – C3, and pA acts non-trivially on ∆.

Suppose that rq ą 2. Then by 2.18 A “ rA,NLpY qs and any composition factor of NLpY q on A

has order rq. Thus pA “ r pA, {NLpY qs ď OutpK{ZpKqq1, and rq divides | pA| since by (1˝) |A{AXK| “ | pA|.

By (2˝) OutpK{ZpKqq is a semidirect product of Diag by ΦΓ, and by (3˝) pA ď pS ď ΦΓ. It follows

that pA ď pΦΓq1. Thus ΦΓ is not abelian, and we can apply A.61. So ∆ is of type D4, Γ – Symp3q

and pΦΓq1 – C3. Thus pA – C3. Since rq divides | pA|, we conclude that rq “ 3, and so (7˝) holds.

8˝. K “ Fp, IR “ CIpOppR X Kqq is a simple R X K-module, and CIpSq “ CIRpSq “

CIRpS XKq “ CIpS XKq has order p.

By (7˝) rq “ p and so |I{I X A| “ rq “ p. Since by 9.5(b) I X A is K-subspace of I we conclude
that |K| “ p and the first statement in (8˝) holds.

Clearly 1 ‰ IR ď CIpOppR X Kqq. Recall from 9.3(b) that I is a simple K-module. By
Smith’s Lemma A.63 CIpOppRXKqq is a simple KpRXKq-module. Since K “ Fp we conclude that
CIpOppR X Kqq is a simple R X K-module. So IR “ CIpOppR X Kqq, and the second statement
holds.

Steinberg’s Lemma A.62 shows that CIpS X Kq is 1-dimensional over K and so has order p.
Since CIRpS XKq ‰ 1 and CIpSq ď CIpS XKq also the last statement holds.

9˝. QA does not act transitively on ∆.

Suppose that QA acts transitively on ∆. Then every vertex of ∆ has the same valency, and
since ∆ has vertices of valency 1, we get |∆| “ 1 or |∆| “ 2. This rules out the case p “ 3 in
(7˝) and so p “ rq “ 2. By (8˝) K “ Fp “ F2 and CIpSq “ CIpS X Kq has order 2. Hence

rCIpSXKq, NKpSXKqs “ 1. Let P1 be a minimal Lie-parabolic subgroup of K containing SXK and

putR1 :“ O21pP1q. The transitive action ofQA on ∆ impliesK “ xRQA1 y. Since CIpR1q ď CIpSXKq

and QA centralizes CIpS XKq, this gives CIpR1q “ CIpKq “ 1 and so

rCIpSq, R1s “ rCIpS XKq, R1s ‰ 1.

Hence A.66 shows that

p˚q I is the Steinberg module of F2-dimension |S XK|,

and I is, as an SXK module, isomorphic to the regular permutation module F2rSXKs. The latter
fact shows that

|I| “ |rI, ts|2 for every involution t P K.

Note that I is selfdual (for example I˚ – Iτ by (4˝) and Iτ is the Steinberg module by A.66).
Let 1 ‰ a P A. Then 9.7(d) gives dimKrI, as ď 2 and so

p˚˚q |rI, as| ď 4 for all 1 ‰ a P A.

Suppose that there exists 1 ‰ a P A X K. Then |I| “ |rI, as|2 ď 42 “ 24. By (˚) I has
F2-dimension |S X K| and we conclude |S X K| ď 4. Hence K – SL2p4q and I is the natural
Symp5q-module for KA. But Symp5q has two classes of maximal elementary abelian 2-subgroups,
one acts quadratically on the natural Symp5q-module, and the other is contained in Altp5q. Since
A ę K we conclude that A acts quadratically on I, which contradicts 9.3(a).
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Hence AXK “ 1 and (1˝) gives | pA| “ |A{AXK| “ |A|. Since A does not act quadratically on I,

we have |A| ě 4 and so | pA| ě 4. Note that pA is elementary abelian, pA ď ΓΦ (by (3˝)), Φ is cyclic (by

(2˝)) and |Γ| ď |∆| ď 2. We conclude that |∆| “ |Γ| “ 2, Γ ď pA, | pA| “ 4 and Φ ‰ 1. In particular,
A acts transitively on ∆. As seen above rCIpSq, R1s ‰ 1 and so rCIpOppR1qq, O

ppR1qs ‰ 1. Let
a P AzCAp∆q. Since Φ ‰ 1 and A acts transitively on ∆, R1{OppR1q is a group of Lie-type defined
over a field of order larger than 2. Hence |CIpOppR1qq| ě 24. Observe that

|CIpOppR1qq X CIpOppR1qq
a| ď |CIpOppR1qOppR1q

aq| “ |CIpS XKq| “ 2,

and so |rCIpOppR1qq, as| ě
24

2 “ 8 ą 4, a contradiction to p˚˚q. Thus (9˝) is proved.

10˝. Suppose that OppRq ‰ 1. Then rI,OppRqs ę IR.

Suppose for a contradiction that rI,OppRqs ď IR. Since K is a group of Lie-type defined over a
field of characteristic p, K has parabolic characteristic p. So OppRq ‰ 1 gives E :“ OppO

ppRqq ‰ 1.
In particular, rI, Es ‰ 1. Moreover, by (8˝) IR is a simple R-module and thus rIR, Es “ 1. As

rI, Es ď rI,OppRqs ď IR ď CIpEq,

we have CI{CIpEqpRq ‰ 1. Hence there exists i P I such that ri, Rs ď CIpEq and ri, Es ‰ 1.
Since E and iCIpEq are R-invariant, also ri, Es is R-invariant. As IR is a simple R-module and
ri, Es ď rI, Es ď IR this gives ri, Es “ IR. Thus

|E| ě |E{CEpiq| “ |ri, Es| “ |IR| “ |rI, Es|,

so E is an offender on I˚. Since rI, Es ď CIpEq, E acts quadratically on I and so E is elementary

abelian. By (4˝) I˚ – Iτ as an FpK-module and therefore Eτ
´1

is an elementary abelian offender
on I, contrary to the assumption that I is not an FF -module.

11˝. Suppose that OppRq ď xA
R
y. Then IR ď I X A, and A is a quadratic best offender on

IR.

We first apply 9.5. By 9.5(a) A acts quadratically on I XA and so also on IR. Since I is not an
FF-module for M , 9.5(e) shows that A is a best offender on I X A. Thus, by A.31 A is also a best
offender on every A-submodule of I XA. Hence, it suffices to prove IR ď I XA.

So suppose for a contradiction that IR ę A. Since rq “ p by (7˝) we have Y ď Y A “ IRA.
Hence 8.7 applied with U “ IR gives rY,As ď rIR, As and thus rI, As ď IR. By assumption

OppRq ď xA
R
y, and we conclude that rI,OppRqs ď IR. If OppRq “ 1, then R is a p-group and

IR ď CIpRq ď CIpAq, a contradiction as CIpAq ď IXA by 9.5(b). Thus OppRq ‰ 1. But then (10˝)
shows that rI,OppRqs ę IR, again a contradiction.

12˝. Suppose that ∆pR X Kq ‰ H and QA acts transitively on ∆pR X Kq. Then R is
p-minimal.

Since ∆ has no closed circuits, ∆pR XKq contains a vertex of valency 1. Now the transitivity
of QA shows that the connected components of ∆pRXKq have size 1.

Note that OppRq ď RXK and since RXK “ Op
1

pRXKq,

RXK{OppRXKq “ E1 ˝ E2 ˝ . . . ˝ En,

where n is the number of connected components of ∆pRXKq, and Ei is a rank 1 group of Lie-type.
The latter fact shows that Ei is also p-minimal. Hence the hypothesis of 1.39 is satisfied, and we
conclude that R is p-minimal.

Case 1. I is selfdual as an FpK-module.

We now refine the choice of R from the beginning of the proof. By (9˝) QA is not transitive on
∆. Thus, every QA-orbit of ∆ is a proper subset of ∆. Choose R in addition such that

(i) ∆pRXKq is a QA-orbit on ∆;
(ii) if CKpCIpSqq is not p-closed then RXK ď CKpCIpSqq; and
(iii) if CKpCIpSqq is p-closed and NKpQq is not p-closed then RXK ď NKpQq.



9.2. THE PROOF OF THEOREM I 161

Put R1 :“ R∆z∆pRXKq and I1 :“ YIpR1q. Observe that also ∆z∆pR X Kq is a proper QA-
invariant subset of ∆.

If R XK ď CKpCIpSqq then Q! gives R XK ď NRXKpQq. So the choice of R implies Q Ĳ R
unless NKpQq is p-closed, and if NKpQq is p-closed then R1 ę NM pQq. Therefore, since Q is not

normalized by K, Q đ R1.
Put D :“ rI, As X CIpAq. Since I is selfdual we can apply 9.7 and get:

13˝.

(a) D is 1-dimensional over K, |K| “ rq, and DK “ rI, AsCIpAq “ I X A. In particular, by
(7˝), |D| “ rq “ p.

(b) A centralizes DK{D and A ď OppNM pDqq.

(c) I1 is a natural SLmprqq-module for R˝1 and xA
R1
y.

(d) D “ rI1, As “ CI1pQq.

Next we show:

14˝. D “ CIpSq ď I1 and Kε ę NKpDq. In particular, rCIpSq,Kεs ‰ 1.

Note that S X K normalizes CI1pQq. By (13˝)(a),(d) |D| “ p and CI1pQq “ D, and by (8˝)
CIpS XKq “ CIpSq and |CIpSq| “ p, so D “ CIpSq ď I1.

By (6˝) rKε, As is not a p-group and by (13˝)(b), A ď OppNM pDqq. Thus Kε ę NKpDq.

15˝. For X Ď R1 let X4 be the image of X in AutpI1q. Then pR1 XKq
4 “ R4

1 and I1 is a
natural SLmppq-module for R1 XK.

Since rq “ p, (13˝)(c) shows that R˝41 – SLmppq and |I1| “ pm. So AutpI1q – GLmppq. As R1 “

pR1XKqQA “ Op
1

pR1q and GLmppq{SLmppq is a p1-group, we conclude that R4
1 “ R˝41 – SLmppq.

Note that, for m ě 3 or p ą 3, SLmppq “ OppSLmppqq; and for m “ 2 and p ď 3, OppSLmppqq is a

p1-group and |SLmppq{O
ppSLmppqq| “ p. Since OppR1q ď R1 XK and R1 XK “ Op

1

pR1 XKq we

conclude that pR1 XKq
4 “ R4

1 .

16˝. ε P ∆pRXKq and Kε ď RXK.

Clearly, ε P ∆pR XKq implies Kε ď R XK. Assume that ε R ∆pR XKq. Then ε P ∆pR1 XKq
and Kε ď R1 X K. By (14˝) Kε R NKpDq and since D ď I1 we get rI1, O

ppKεqs ‰ 1. Thus

CKεpI1q ď Zε. By (15˝), pR1 XKq4 “ R4
1 and so A4 ď pS XKq4. Hence A normalizes K4

ε and
induces inner automorphisms on K4

ε . It follows that A fixes ε and induces inner automorphism on
Kε{Zε, contrary to the choice of ε.

17˝. NKpDq is p-closed.

By (16˝) Kε ď RXK and by (14˝) rCIpSq,Kεs ‰ 1. Thus RXK ę CKpCIpSqq and choice of R
implies that CKpCIpSqq is p-closed. Since S XK P SylppKq, also NKpCIpSqq is p-closed. By (14˝)
CIpSq “ D and so (17˝) holds.

18˝. R is p-minimal, OppRq ď xA
R
y, rIR, O

ppRqs ‰ 1 and rIR, As “ D.

By (16˝) Kε ď R. Moreover, by (14˝) rCIpSq,Kεs ‰ 1, and by A.12 CIpSq ď CIpS X Rq ď IR.
Hence rIR,Kεs ‰ 1 and thus also rIR, O

ppRqs ‰ 1.
By (15˝) I1 is a natural SLmppq-module for R1 XK, by (13˝)(a) |D| “ p and by (14˝) D ď I1.

Hence CR1XKpDq
∆ is the stabilizer of a point of I1. On the other hand, by (17˝) NKpDq is p-closed

and thus also CR1XKpDq is p-closed. This shows that m “ 2 and ∆pR1 XKq “ tδu for some δ P ∆.
Note that ∆ is connected, QA normalizes δ, and QA acts transitively ∆pR XKq “ ∆ztδu. Hence
(12˝) shows that R is p-minimal. In particular, R is p-irreducible by 1.37.

By the choice of Kε, rKε, As is not a p-group. Since Kε ď R, we conclude that A ę OppRq, and

so, since R is p-irreducible, OppRq ď xA
R
y. As rIR, O

ppRqs ‰ 1 this gives rIR, As ‰ 1, and by (11˝)
A acts quadratically on IR. So 1 ‰ rIR, As ď rI, As X CIpAq “ D. Since |D| “ p, we conclude that
rIR, As “ D, and (18˝) is proved.
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We are now able to derive a contradiction which shows that (Case 1) does not occur. By (18˝)

R is p-minimal, OppRq ď xA
R
y, and by (13˝)u10a |D| “ p. Hence (11˝) shows that A is a non-

trivial quadratic best offender on IR, and we are allowed to apply C.13 with rR :“ R{CRpIRqq and
J :“ J

rRpIRq. Hence

J “ E1 ˆ ¨ ¨ ¨ ˆ Er, IR “ CIRpJq
r
ź

i“1

rIR, Eis, and rIR, Ei, Ejs “ 1 for i ‰ j,

where for i “ 1, . . . , r, Ei – SL2pp
kq or Symp2k ` 1q (and p “ 2), and rIR, Eis{CrIR,EispEiq is a

corresponding natural module for Ei, and S X R acts transitively on tE1, . . . , Eru. In particular,
CrIR,EispEiq ď CIRpJq. By (8˝), IR is a simple R-module, so CIRpJq “ 1. Thus rIR, Eis is natural

SL2pp
kq- or Symp2k`q-module for Ei and

IR “ rIR, E1s ˆ ¨ ¨ ¨ ˆ rIR, Ers.

As A ď J and rIR, As “ D has order p, there exists a unique Ej such that D ď rIR, Ejs. Since

by (14˝) D “ CSpIq we conclude that S X R normalizes rIR, Ejs and so Ej . Hence the transitivity

of S XR on tE1, . . . , Eru gives J “ E1.
If J – Symp2k ` 1q then rIR, As is not centralized by a Sylow 2-subgroup of J , a contradiction

since rIR, As “ D “ CIpSq. Thus J – SL2pp
kq. As rIR, As “ D has order p we get k “ 1. It follows

that J “ ČRXK – SL2ppq. Thus ∆pR XKq “ tεu and R XK “ Kε. In particular, Kε{OppKεq –

SL2ppq and CKεpIRq ď Zε. Now A ď KεCRpIRq shows that A induces inner automorphisms on
KεCRpIRq{CRpIRq – Kε{CKεpIRq and thus on Kε{Zε, a contradiction to the choice of ε.

Case 2. I is not selfdual as an FpK-module.

19˝.

(a) K “ Anpt
2q, n ě 2, D2n`1pt

2q, n ě 2, or E6pt
2q; in particular, ∆ has only single bonds.

(b) p “ rq “ 2, S acts trivially on ∆, and pS ď Φ – AutpFt2q.
(c) pA is the unique subgroup of order 2 in Φ.

By (4˝) I˚ – Iτ with τ2 “ 1, and since I is not selfdual, we have τ ‰ 1. Thus (4˝) implies

K “ Anpqq, n ě 2, D2n`1pqq, n ě 2, or E6pqq,

and τ induces the unique non-trivial graph automorphism of ∆, so Γ “ xτy has order 2. In particular,
(a) holds, except that we still need to show that q is a square. Also K ‰ D4pqq, and (7˝) shows that
p “ rq “ 2.

Let s P S. Recall from (3˝) that pS ď ΓΦ. If ps R Φ, we conclude that τ P psΦ since Γ has order
2. But I – Ix as an F2K-module for all x P Φ and so I˚ – Iτ – Ips “ I as an F2K-module; a

contradiction since I is not selfdual. Thus pS ď Φ, and by (4˝) S acts trivially on ∆. So (b) is
proved.

Recall that pA is non-trivial and elementary abelian, pA ď pS ď Φ and Φ is cyclic. Thus (c) follows.
Note that d “ 1 for the groups in (19˝)(a) (see A.60), and so by (2˝)(c) Φ – AutpFqq. We

conclude that Fq has an automorphism of order 2 and so q “ t2 for some power t of p, which
completes the proof of (a).

By (19˝)(c) QA acts trivially on ∆, so all subdiagrams of ∆ are QA-invariant. Hence we can
choose R such Q đ R, ∆pR XKq is connected and either |∆| ě 3 and |∆pR XKq| “ 2, or |∆| “ 2
and |∆pRXKq| “ 1. Put

m :“ |∆pRXKq|, rR :“ R{CRpIRq, P :“ ApRXKq,

and let rA be the image of A in rR. Recall from (19˝)(b) that p “ 2.

20˝. ČRXK “ Ampt
2q, m ď 2, | rP {ČRXK| “ 2, each a P rAzČRXK acts as a field automor-

phism of order 2 on ČRXK, F˚p rP q “ ČRXK is quasisimple, x rA
rP y “ rP and O2pRq ď xARy.
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Since ∆ has only single bonds and ∆pR XKq is connected of size m ď 2, ∆pR XKq is of type
Am. As by (19˝) K is defined over Ft2 we conclude that RXK{O2pRXKq “ Ampt

2q. In particular,
RXK{O2pRXKq is quasisimple. Since Q đ R and R “ pRXKqQA, Q! shows that rIR, RXKs ‰ 1.

It follows that CRXKpIRq ď Z∆pRXKq. Hence, also ČRXK is a version of Ampt
2q and so quasisimple.

Let a P AzK. Note that |A{AXK| “ | pA| “ 2 and a acts as a field automorphism of order 2 on K.

Hence a also acts as a field automorphism of order 2 on ČRXK, and rP “ ČRXKxray. In particular,
ČRXK “ rČRXK, as and so

rP “ ČRXK rA “ rČRXK, rAs rA “ x rA
rP y.

Since RXK{O2pRXKq is quasisimple, this implies O2pRq “ O2pRXKq ď xA
R
y, and (20˝) is

proved.

21˝. P {O2pP q – Symp5q, and IR is the corresponding natural module. In particular, m “ 1,
t2 “ 4, and K{ZpKq – L3p4q.

By (20˝) O2pRq ď xA
R
y, and so (11˝) shows that IR ď I XA and A is a quadratic best offender

on IR. Moreover, since by (20˝) rIR, O
2pRqs ‰ 1, A is a non-trivial best offender on IR.

By (20˝) rP “ x rA
rP y and so J

rP pIRq “
rP . As IR is a simple RXK-module by (8˝), IR is simple

a rP -module. Thus we can apply the FF-Module Theorem C.3. Since by (20˝) | rP {ČRXK| “ 2,

m ď 2, and ČRXK “ Ampt
2q is a central quotient of SLm`1pt

2q p2 ď m` 1 ď 3q, we conclude that

m ` 1 “ 2, t2 “ 4, rP – Symp5q, and IR is the corresponding natural module. (Note here that the
natural Symp5q-module also appears as the natural O´4 p2q-module in the FF-Module Theorem.)

Since |∆pR X Kq| “ m “ 1, the choice of R shows that |∆| “ 2. The only rank 2 group of
Lie-type listed in (19˝)(a) is L3pt

2q “ A2pt
2q, and so (21˝) is proved.

22˝. There exists an involution t in RXK with t R O2pRXKq and |I{CIptq| ď 23.

Recall that |I{I XA| “ rq “ 2 and that by (11˝) A is best offender on I XA. Thus

p˚ ˚ ˚q |I{CIpAq| “ |I{I XA||I XA{CIXApAq| ď 2|A{CApIq| “ 2|A|.

Put B :“ O2pRXKq. Suppose first that AXB “ 1. Since P {B – Symp5q and A is elementary
abelian we conclude that |A| ď 4. As A does not act quadratically on I, |A| ě 4 and so AXK ‰ 1.
Let 1 ‰ t P AXK. Then p˚ ˚ ˚q gives |I{CIptq| ď 2|A| “ 8, and (22˝) holds.

Suppose next that A X B ‰ 1. Since K{ZpKq – L3p4q, B is a natural ΓSL2p4q-module for
P and so |CBpAq| ď 4. In particular, |A X B| ď 4. Note that A X B “ CApIRq and A is not an

over-offender on IR. Thus |IR{CIRpAq| ě |A|{|AXB|, and so using p˚ ˚ ˚q

|I{CIpAXBq| ď |I{CIpAqIR| “
|I{CIpAq|

|IR{CIRpAq|
ď

2|A|

|A|{|AXB|
“ 2|AXB| ď 23.

Since AXB ‰ 1 and all involutions in L3p4q are conjugate, and since there exist involutions in
RXKzB, we again conclude that (22˝) holds.

We are now able to derive a final contradiction. Choose t as in (22˝). Note that, for example
since t inverts an elements of order five in R XK{B – Altp5q, |W {CW ptq| ě 4 for any non-central
simple F2pRXKq-module. On the other hand |I{CIptq| ď 23, and so I has at most one non-central
RXK-composition factor. Thus rI,O2pRqs “ rI,O2pRXKqs ď IR, a contradiction to (10˝). l

In the following we will use a result of Guralnick-Malle on simple 2F -modules for quasisimple
groups H, [GM1] and [GM2]. Here an FpH-module V is a 2F -module for H if there exists an
elementary abelian p-subgroup A ď H such that

|V {CV pAq| ď |A{CApV q|
2 and rV,As ‰ 0.

According to 9.3(b) I is a simple module for K. By 9.3(c) A satisfies the above inequality with
respect to Y . Clearly |I{CIpAq| ď |Y {CY pAq| and by 8.4(c) CApIq “ CApY q. Hence A satisfies
the above inequality also with respect to I. Moreover, the case where I is an FF -module has been
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treated already in 9.8. In the remaining case, if K is the genuine group of Lie-type, A ď K by 9.9,
and the pair pK, Iq satisfies the hypothesis of [GM1] or [GM2].

We will distinguish the cases, where K is a genuine group of Lie type, a non-genuine group of
Lie type, an alternating group, and a sporadic group, respectively. For this purpose we break up
the result of Guralnick-Malle into four parts which we will quote separately.

Theorem 9.10 (Guralnick-Malle). Let H be a genuine quasisimple group of Lie-type defined
over a field of characteristic p and V a faithful simple 2F -module for FpH. Put F :“ EndHpV q and
d :“ dimF V . Let δx|y “ 1, if x divides y, and δx|y “ 0, otherwise. Then H, V , d and F are given
in the following table:

H d V |F| conditions
SLnpp

aq n Vnat pa

SLnpp
aq

`

n
2

˘

Λ2Vnat pa n ě 3

SLnpp
aq

`

n`1
2

˘

Sym2Vnat pa p odd, n ě 3

SLnpp
2aq n2 Fpa

Fp2a
Vnat b V

pa

nat pa

SL6pp
aq 20

Ź3
Vnat pa

SUnpp
aq n Vnat p2a

Sp2npp
aq 2n Vnat pa

Sp2npp
aq

`

n
2

˘

´ 1´ δp|n
Ă

Ź
2
Vnat pa n “ 2, 3

or p “ 2, n “ 4

Sp4pp
2aq 16

Fpa
Fp2a

Vnat b V
pa

nat pa

Ω˘n pp
aq n Vnat pa

Spin2n`1pp
aq 2n Spin pa n “ 3, 4, 5

Spin`2npp
aq 2n´1 Half ´ Spin pa n “ 4, 5, 6

Spin´2npp
aq 2n´1 Spin p2a n “ 4, 5

Szp22a`1q 4 Mpλ1q 22a`1

G2pp
aq 7´ δ2|n Mpλ2q pa

F4p2
aq 26 Mpλ1q,Mpλ4q 2a

E6pp
aq 27 Mpλ1q,Mpλ6q pa

F4pp
aq 26´ δ3|p Mpλ4q pa p odd

2E6pp
aq 27 Mpλ1q p2a

E7pp
aq 56 Mpλ7q pa

We remark that it has been shown in [GLM] that the last three cases of the table do not occur.
But since they only add two lines of arguments to our proof, we prefer to work with the original list.

Lemma 9.11. Suppose that K is a quasisimple genuine group of Lie-type defined over a field of
characteristic p. Then Theorem I holds.

Proof. By 9.8 we may assume that

1˝. I is not an FF -module for KQA.

Thus by 9.9 A ď K. So we can apply 9.10 with pK, I,Kq in place of pH,V,Fq. Removing all the
FF -modules and all the modules which have been treated in 9.8 we are left with the following list:
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2˝.

K d I |K| conditions

SLnpp
aq

`

n`1
2

˘

Sym2Vnat pa odd, n ě 3

SLnpp
2aq n2 Fpa

Fp2a
Vnat b V

pa

nat p2a n ě 3

SL6pp
aq 20

Ź3
Vnat pa

Sp2npp
aq

`

n
2

˘

´ 1´ δp|n
Ă

Ź
2
Vnat pa n “ 2, 3

or p “ 2, n “ 4

Sp4pp
2aq 16

Fpa
Fp2a

Vnat b V
pa

nat pa

Spin2n`1pp
aq 2n Spin pa n “ 3, 4, 5

Spin`2npp
aq 2n´1 Half ´ Spin pa n “ 6

Spin´2npp
aq 2n´1 Spin p2a n “ 4, 5

Szp22a`1q 4 Mpλ1q p2a`1

F4p2
kq 26 Mpλ1q,Mpλ4q pa

F4pp
aq 26´ δ3|p Mpλ4q pa p odd

2E6pp
aq 27 Mpλ1q p2a

E7pp
aq 56 Mpλ7q pa

If K has rank 1 we see that K – Szp22a`1q and dimK I “ 4. But then every elementary abelian
2-subgroup of K acts quadratically on I, which contradicts 9.3(a) since A ď K. Thus we may
assume:

3˝. K has Lie rank at least two.

Put U :“ CIpK X Sq and R :“ NKQpUq. By Smith’s Lemma A.63, U is 1-dimensional over K.

Since Q acts K-linear and U is 1-dimensional, Q centralizes U and Q! implies Q Ĳ R.
Let ∆ be the Dynkin diagram of K. Observe that in all cases there exists i P ∆ such that

either I –Mpλiq or I is a simple KK-submodule of Mpλiq bF Mpλiq
σ, where F is the field used to

define K and σ is an automorphism of F with CFpσq “ K. Thus R XK is the maximal parabolic
corresponding to ∆ztiu. In particular, R is a maximal subgroup of KQ and so R “ NKQpQq. Let

P be the p-minimal subgroup of KQ corresponding to the node i and containing pS XKqQ. Then
P ę R and so Q đ P . Since Q is weakly closed in S, Q ę OppP q.

Suppose that one of the first two cases of (2˝) holds. As rpR X Kq{OppR X Kq, Qs “ 1 we

conclude that Q induces inner automorphisms on K. Thus M˝ “ K and Theorem I(5) or (6) holds.
So assume for a contradiction that one of the remaining cases of (2˝) holds. We prove next:

4˝. I is selfdual as FpK-module.

In the third case of (2˝) I is that the exterior cube of a natural SL6pqq-module, and so selfdual.
In all other cases A.65 shows that I is selfdual.

As Q fixes i we can choose a proper Q-invariant connected subdiagram Λ of ∆ with i P Λ, which
is maximal with respect to these properties. Let R1 be the corresponding parabolic subgroup of M˝

with pS XKqQ ď R1 and note that P ď R1. Put R˝1 :“ xQ
R1
y. Since I is a selfdual FpK-module,

we can apply 9.7(j) and conclude that IR1
is a natural SLmpqq-module for R˝1. As Λ is connected,

Λ is an Am´1-diagram.
We will now derive a contradiction by showing that in all (remaining) cases R1 can be chosen

such that either Λ is not of type Am´1 or IR1 is not a natural SLmpqq-module for R˝1 or I is an
FF -module for K.

If K – SL6pqq and I is the exterior cube of a natural SL6pqq-module, then IR1
is the exterior

square of a natural SL5pqq-module, a contradiction.
If K – Sp2npqq, n ě 3, and I is a section of the exterior square of the natural module, we can

choose Λ to be a Bn´1-diagram, a contradiction since n ě 3.
If K – Sp4pq

2q and I appears in Vnat b V qnat, then P XK{OppP XKq – SL2pq
2q and R1 is a

natural Ω´4 pqq-module, a contradiction.
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If K – Spinεnpqq, n ě 7, we can choose R1 such that IR1
is a natural Spinεn´2pqq-module. Since

IR1
is also a natural SLmpqq-module, we get n “ 8 and ε “ `. Thus I is an FF-module, contrary

to (1˝).
Suppose that K – F4pqq,

2E6pqq or E7pqq. Then we can choose Λ to be a B3- or C3´diagram
(in the first two cases) or a D6-diagram (in the last case), a contradiction. This completes the proof
of the lemma. l

Theorem 9.12 (Guralnick-Malle). Let H be a finite group and V a faithful simple 2F -module
for FpH. Suppose that F˚pHq is a perfect central extension of an alternating group, but F˚pHq is
not a genuine group of Lie-type over a field of characteristic p. Put F :“ EndF˚pHqpV q, d :“ dimF V ,
δp|n “ 1, if p | n and δp|n “ 0 otherwise. Then one of the following holds:

H d V |F|
Altpnq, Sympnq n´ 1´ δ2|n natural 2

3.Altp6q, 3.Symp6q 3 ovoid 4
Altp7q 4 half-spin 2
Symp7q 8 spin 2
Altp9q 8 spin 2

Altpnq, Sympnq n´ 1´ δ3|n natural 3
2.Altp5q, 2.Symp5q 2 spin 9
2.Altp9q, 2.Symp9q 8 spin 3

Lemma 9.13. Suppose that K{ZpKq is an alternating group. Then Theorem I holds.

Proof. Since K is quasisimple, we have K{ZpKq – Altpnq with n ě 5. By 9.11 we may assume
that K{ZpKq is not a genuine group of Lie-Type defined over a field of characteristic p, and we may
also assume that we are not in one of the cases treated in 9.8. We use 9.12 with pAQK, I,Kq in
place of pH,V,Fq. In particular, we have p “ 2 or 3.

Case 1. The case p “ 2.

Assume that I is a natural Altpnq-module. Since I is also a Q!-module, C.23 shows that n “ 5, 6
or 8 and K – SL2p4q, Sp4p2q

1, and SL4p2q, respectively. In the first and third case K{ZpKq is
a genuine group of Lie type in characteristic 2 contradicting our assumption. In the second case
|I| “ 24, and I is an FF -module for K, a case which has been treated in 9.8.

If K „ 3.Altp6q and |I| “ 26, or K – Altp7q and |I| “ 24, then I is an FF -module for K.
Hence, also these cases have been treated in in 9.8.

Observe that the fourth case of 9.12 is excluded by the fact that I is a simple K-module.
Assume that K – Altp9q and I is the spin-module of order 28. Then rq “ 2 and I is selfdual.

Note that all involutions in M invert a 3-cycle in K. As the 3-cycles in K act fix-point freely on I
we conclude |rI, as| ě 24 for all a P AzCApIq. But by 9.7(d), |rI, as| ď rq2 “ 22, a contradiction.

Case 2. The case p “ 3.

If I is the a natural Altpnq-module for K, then again C.23 shows that n “ 6. But then K – L2p9q
is a genuine group of Lie-type, contrary to the assumptions.

If K „ 2.Altp5q and dimK I “ 2 then A acts quadratically on I, a contradiction.
Suppose that K „ 2.Altp9q. Then I is selfdual and K “ F3. Now 9.7 shows that rq “ 3 and

|rI, as| ď 9 for all a P A, a contradiction since |rI, ks| ě 34 for all k P K with |k| “ 3. (Indeed, there
exists E ď K with E – Q8, ZpEq “ ZpKq and E “ rE, ks. Hence ZpKq ď xk, key for some e P E
and so 38 “ |I| “ |rI, ZpKqs| ď |rI, ks|2. Thus |rI, ks| ě 34.) l

Theorem 9.14 (Guralnick-Malle). Let H be a finite group and V a faithful simple 2F-module
for FpH. Suppose that F˚pHq{ZpF˚pHqq is neither an alternating group nor a genuine group of Lie-
type over a field of characteristic p, but F˚pHq is a perfect central extension of a group of Lie-type.



9.2. THE PROOF OF THEOREM I 167

Put F :“ EndF˚pHqpV q and d :“ dimF V . Then one of the following holds:

F˚pHq d |F|
U3p3q 6 2

3.U4p3q 6 4
2.L3p4q 6 3
Sp6p2q 7 3

2.Sp6p2q 8 3
2.Ω`8 p2q 8 3

Lemma 9.15. Suppose that K{ZpKq is a group of Lie-type. Then K{ZpKq is a genuine group
of Lie type, and Theorem I holds.

Proof. If K{ZpKq is a genuine group of Lie typ, then 9.11 shows that Theorem I holds. So
assume for a contradiction that K{ZpKq is not a genuine group of Lie-type defined over a field of
characteristic p. Thus 9.14 can be applied with pQAK, I,Kq in place of pH,V,Fq. In particular,
p “ 2 or 3.

Case 1. The case p “ 2.

The case K – U3p3q – G2p2q
1 has been ruled out in (the proof of) 9.8.

Suppose K – 3.U4p3q. Then dimK I| “ 6, and by [JLPW] I is selfdual as an F2K-module.
Since |ZpKq| “ 3 this contradicts 9.7(i).

Case 2. Suppose that p “ 3.

In all cases we have that |K| “ 3, and by [JLPW] I is selfdual. So 9.7 applies. In particular,
rq “ |K| “ 3 and |rI, as| ď 9 for all a P A. Let a P A with rI, as ‰ 1.

Suppose that K – 2.L3p4q and |I| “ 36. Since the diagonal automorphism of order 3 of K{ZpKq
does not normalize ZpKq, A ď K. Hence there exists T ď K with |T | “ 7 and T “ rT, as. Since I
is selfdual, I “ rI, T s and so |rI, as| ě 33, a contradiction.

Suppose that K – Sp6p2q and |I| “ 37. By [JLPW], I is the unique simple 7-dimensional
F3K-module, and so I is the module arising from the isomorphism C2 ˆ Sp6p2q – WeylpE7q, the
Weyl-group of type E7. Choose T ď K with T – O´6 p2q –WeylpE6q. Then T normalizes a 1-space

in I. Since T contains a Sylow 3-subgroup of K we may assume that Q ď T . But then Q! implies
Q Ĳ T , a contradiction to O3pT q “ 1.

Suppose that K – 2.Sp6p2q and |I| “ 38. Then we can choose T ď K with a P T , T „

2.pSp2p2qˆSp4p2qq and a R O3pT q. It follows that there exists E ď T8 „ 2.Altp6q with E “ rE, as,
E – Q8 and ZpEq “ ZpKq. Thus r|I, as| ě 34, a contradiction.

Suppose that K – 2.Ω`8 p2q. Then |I| “ 38. By [JLPW], I is the unique simple 8-dimensional
F3K-module, and so I is the module arising from the isomorphism 2.Ω`8 p2q –WeylpE8q

1. Since the

graph automorphism of order three does not centralize ZpKq, Q ď K and there exists Q ď D ď K
with D – C3 ˆ Ω´6 p2q –WeylpA2 ˆE6q

1. Since p “ 3, we see that D normalizes a 1-space in I. So

by Q!, Q “ OppDq, a contradiction since Q is weakly closed in K and OppDq is not. l

Theorem 9.16 (Guralnick-Malle). Let H be a finite group and V a faithful simple 2F-module
for FpH. Suppose that F˚pHq is a perfect central extension of a sporadic simple group. Put F :“
EndF˚pHqpV q and d :“ dimK V . Then one of the following holds:

F˚pHq d |F|
Mat12,Mat22 10 2
Mat23,Mat24 11 2

3.Mat22 6 4
Co2 22 2
Co1 24 2
Mat11 5 3

2.Mat12 6 3
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The cases Co2 and Co1 have been ruled out in [GLM], but again we decided to only refer to
the original list.

Lemma 9.17. Suppose that K{ZpKq is a sporadic simple group. Then Theorem I holds.

Proof. We can apply 9.16 with pAQK, I,Kq in place of pH,V,Fq. In particular, p “ 2 or 3.

Case 1. The case p “ 3.

By [JLPW], Mat11 has two simple 5-dimensional modules over F3. Also 2.Mat12 has two
simple 6-dimensional modules over F3 interchanged by the outer automorphism of 2.Mat12. Thus
either K – Mat11 and I is the simple Todd or Golay code module, or K – 2.Mat12 and I is the
simple Golay code module. Note that K has no outer automorphism of order 3, and so M˝ “ K.
We need to rule out the case where K – Mat11 and I is Todd-module. Then Mat11 has an orbit
of length 11 on the 1-spaces in I. Hence Mat10 normalizes a 1-space in I, but this contradicts Q!,
since O3pMat10q “ 1 and Mat10 contains a Sylow 3-subgroup of Mat11.

Case 2. The case p “ 2.

Let Z :“ CIpSq and R :“ CM pZq. Then by Q!, Q ď OppRq.
Suppose first that K – Mat24. By [JLPW], Mat24 has two simple 11-dimensional modules

over F2. Thus, I is the simple Todd or Golay code module. Since OutpMat24q “ 1, we get that
M “M˝ “ K, and Theorem I(9) holds.

Suppose next that K –Mat22. By [JLPW], Mat22 has two simple 10-dimensional modules over
F2. Thus, I is the simple Todd or Golay code module. Also M˝ “ K or M “ M˝ – AutpMat22q.
Assume that I is the Golay-code module. Then R „ 24Altp6q or 24Symp6q with O2pRq ď K, so
Q ď K. Hence M˝ “ K –Mat22 and Theorem I(10) holds.

Assume that I is the Todd module. If M˝ – AutpMat22q, then Theorem I(11) holds. So suppose
that M˝ “ K. Then R „ 24Symp5q and there exists F ď M˝ with F – L3p4q, O2pRq ď F and
CIpF q ‰ 1. Since Q ď O2pRq ď F and O2pF q “ 1, we get a contradiction to Q!.

It remains to rule out the cases K –Mat12, 3.Mat22, Mat23, Co2 and Co1 in 9.16.
Suppose that K – Mat12. By [JLPW], Mat12 has a unique simple 10-dimensional modules

over F2. Hence, I is the non-central simple section of a natural permutation module on 12 letters. In
particular, I is selfdual and |K| “ 2. Thus by 9.7(j), |rV, as| ď 4, a contradiction, since no involution
fixes more than 4 of the 12 letters.

Suppose that K – 3.Mat22. By [JLPW], any 6-dimensional simple 3.Mat22 module over F4 is
selfdual as an F2K-module. As |ZpKq| “ 3, this contradicts 9.7(i).

Suppose that K –Mat23. By [JLPW], Mat23 has two simple 11-dimensional modules over F2.
Thus, I is the simple Todd or Golay code module of F2-dimension 11. Since OutpKq “ 1 we have
M “ K. If I is the Todd-module, then there exists Q ď E ď K with E –Mat22 and CIpEq ‰ 1, a
contradiction to Q!. Thus I is the Golay code module and so R „ 24Altp7q, Q “ O2pRq is elementary
abelian of order 24, and |CIpQq| “ 2. Suppose that A ď Q. Since A is an 2F -offender and R acts
simply on O2pRq, A.29(a) implies that Q is a 2F -offender. But |I{CIpQq| “ 210 ą p24q2 “ |Q|2, a
contradiction.

Hence A ę Q. Let Ω be a set of size 23 with M – Mat23 acting faithfully on Ω. Then
R “ NM pΘq for some Θ Ď Ω with |Θ| “ 7. Let Λ Ď Θ with |Λ| “ 3 and put R1 “ NM pΛq. Then
R1{CR1

pΛq – Symp3q and CR1
pΛq –Mat20 „ 24SL2p4q, where O2pR1q is a natural SL2p4q-module

for CR1
pΛq{O2pR1q. Also Q “ CM pΘq ď CR1

pΛq and so R˝1 “ CR1
pΛq.

Since R induces Altp7q on Θ, R1 X R{CR1XRpΛq – Symp3q and CR1XRpΛq{Q – Altp4q. Thus
|R1 X R| “ 2732, |R{R X R1| “ 5 “ |R˝1{R

˝
1 X R| and O2pR1 X Rq P Syl2pR

˝
1q. Note also that

O2pR1XR2q{Q corresponds to xp12qp34q, p14qp23qy in Altp7q and so by [MS5, 7.5] is, up to conjugacy,
the unique maximal quadratically acting subgroup of R{Q on Q.

Since Q normalizes A by 8.5(b) and A is elementary abelian, we conclude that A acts quadrat-
ically on Q. Hence A is contained in an R-conjugate of O2pRXR1q. So we may choose Λ such that
A ď O2pR X R1q. As seen above, O2pR X R1q P Syl2pR

˝
1q and O2pR1q is a natural SL2p4q-module

for R˝1. Hence O2pRXR1q “ QO2pR1q, and Q and O2pR1q are the only maximal elementary abelian
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subgroups of O2pR XR1q, so A ď O2pR1q since A ę Q. Thus 9.6 implies that R˝1 ď NR1
pAq. Since

R˝1 acts simply on O2pR1q this gives A “ O2pR1q,
Put U :“ xZR1y. Since R centralizes Z and |R{R X R1| “ 5, U is a quotient of the Symp5q-

permutation module for R1. Note that CU pR1q “ 1 by Q! and that the permutation module is the
direct sum of simple submodules of order 2 and 24. Thus |U | “ 24.

Since A is not an offender on I, |I{CIpAq| ą |A| “ 24 and so |CIpAq| ď
211

25 “ 26. Note

that U ď CIpAq since A “ O2pR1q. Thus |CIpAq{U | ď
26

24 “ 22. Since R˝1 is perfect, this gives

rCIpAq, R
˝
1s “ U . Observe that H1pU,R˝1{Aq “ 1 (for example by C.18) and since CIpR

˝
1q “ 0 we

get U “ CIpAq, so |CIpAq| “ 24.
Since I is not an FF -module, 9.5(a) shows that A is an offender on I X A and therefore |I X

A{CIpAq| ď |A| “ 24. Thus |I X A| ď 28 and rq “ |I{I X A| ě 23. Note that A “ A{CApY q and
I{CIpAq both are NLpY q-invariant sections of AY {CY pLq. Thus by 2.18(c), both, |A| “ 24 and
|I{CIpAq| “ 27, are powers of rq. But then rq “ 2, a contradiction to rq ě 8.

Suppose that K – Co2 or Co1. By [SW], Co2 has a unique simple 22-dimensional module over
F2, and by [Gr2], Co1 has a unique simple 24-dimensional module over F2. Hence I is selfdual
and isomorphic to the non-central simple section of the Leech-lattice modulo 2. Also rq “ |K| “ 2.
Thus by 9.7(j), |rI, as| ď 4 for all a P A. But the commutator space of any involution in Co1

on the Leech-lattice modulo 2 is at least 8-dimensional, and since 224{|I| ď 22, we conclude that
|rI, as| ě 28{22 “ 26, a contradiction. l

9.3. The Proof of Corollary 9.1

In this section we will proof Corollary 9.1. So we continue to assume the hypothesis of Theorem
I and use the notation introduced in 9.3.

Lemma 9.18. Suppose that Y “ ICY pS X Kq. Then Y “ I. In particular, Y “ I if A P

SylppKAq.

Proof. By 9.3(c) rY,Ks ď I and, by Q!, CY pKq “ 1. As SXK P SylppKq, Gaschütz’ Theorem

gives Y “ ICY pS XKq “ CY pKqI “ I, see C.17.
Note that by 9.3(f) Y “ ICY pAq. Thus if A P SylppKAq then A X K “ S X K and Y “

ICY pS XKq, and so Y “ I. l

9.19. Proof of Corollary 9.1:

Suppose that Y ‰ I. By Q!, CY pKq “ 1, and by 9.3(b),(c) rY,Ks “ I, so |Y {I| ď |H1pK, Iq|.
Comparing Theorem I with C.18 we obtain one of the following cases:

(A) M – L3p2q, |Y | “ 24 and I is a natural SL3p2q-module for M .
(B) M˝ – Sp2npqq or Sp4p2q

1, p “ 2, I is the corresponding natural module and |Y {I| ď q.
(C) M˝ – Ω3p5q,Ω

´
4 p3q,Ω5p3q or Ω`6 p2q, I is the corresponding natural module, and |Y {I| ď

5, 9, 3 and 2 respectively.
(D) M˝ – L3p4q, I is the unitary square of corresponding natural module and |Y {I| ď 4.
(E) p “ 2, M˝ –Mat24, I is the simple Todd-module of F2-dimension 11 and |Y {I| “ 2.
(F) p “ 2, M˝ –Mat22, I is the simple Golay code module of F2-dimension 10 and |Y {I| “ 2.
(G) p “ 3, M˝ –Mat11, I is the simple of Golay code module of F3-dimension 5 and |Y {I| “ 3.

It remains to treat each of these seven cases. Recall first that by 9.3(f) Y “ ICY pAq and so we
can pick t P Y zCY pAq.

In Case (A) I is a natural SL3p2q-module for M and so CM ptq – Frobp21q has odd order, a

contradiction since A ď CM ptq.

In Case (B), I is a natural Sp2np2q- or Sp4p2q
1-module for M˝ and so Corollary 9.1(1) holds.

Suppose that Case (C) holds with M˝ – Ω3p5q. By B.35(d) we conclude that A ď M˝. Thus
A P Syl3pM

˝q and 9.18 gives Y “ I, contradiction.
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Suppose that Case (C) holds with M˝ – Ω´4 p3q – Altp6q. Again B.35(d) gives A ďM˝. Let W

be an F3M˝-module with Y ďW , CW pM˝q “ 1 and |W {I| “ 32. Let X1 and X2 be non-conjugate
subgroups of M˝ with Xi – Altp5q. Choose notation such that A1 :“ A X X1 ‰ 1. For i “ 1, 2,
put Wi :“ CW pXiqI and note that Wi is a M˝-module isomorphic to the 5-dimensional quotient of

permutation module FM
˝{Xi

3 . Then W1 “ ICW1
pA1q and, since A1 acts fixed-point freely on M˝{X2,

CW2
pA1qq ď I. It follows that ICW pA1q “ W1. As Y “ ICY pAq ď ICW pA1q this gives Y “ W1.

Thus 9.1(2) holds in this case.

Suppose that Case (C) holds with M˝ – Ω5p3q or Ω`6 p2q. Then I is the corresponding natural
module, |Y {I| ď 3 and 2, respectively, and 9.1(3) or 4 holds.

Suppose that Case (D) holds. Then I is the unitary square of a natural SL3p4q-module for
K – L3p4q. Since I is not an FF-module, we can apply 9.9 and conclude that A ď K. Let P1

and P2 be the two maximal subgroups of K containing S XK such that CIpK X Sq Ĳ P1, and let
Qi :“ OppPiq. Then CIpQ1q “ CIpK X Sq has order 2, and so |I{CIpQ1qq| “ 28 “ |Q1|

2. By Q!,

Q Ĳ P1 and the simple action of P1 on Q1 implies Q “ Q1.
Suppose that A ď Q1. Since |Y {CY pAq| ď |A|

2, A.29 shows that |Y {CY pBq| ď |B|
2 for some

non-trivial P1-invariant subgroup B of Q1. As P1 acts simply on Q1 we get B “ Q1 and

|Y {CY pQ1q| ď |Q1|
2 “ |I{CIpQ1q|.

Hence Y “ CY pQ1qI. Since P1 is perfect and rCY pQ1q, P1, P1s ď rCIpQ1q, P1s “ 1, we get CY pQ1q ď

CY pP1q and Y “ ICY pP1q. Since S XK ď P1, 9.18 gives I “ Y , a contradiction.
Suppose now that A ę Q1. Since Q1 and Q2 are the only maximal elementary abelian subgroups

of K X S, A ď Q2. Thus 9.6 shows that P ˝2 p:“ xQ
P2
yq normalizes A. As Q ę Q2, P2 “ P ˝2Q2, and

as Q2 is a simple P2-module, A “ Q2 and so Y “ CY pQ2qI. Since CIpQ2q is a natural Altp5q-module
for P2, H1pCIpP2q, P2{Q2q “ 1 (seeC.18) and so CY pQ2q “ CIpQ2qCY pP2q and Y “ ICY pP2q, again
a contradiction to 9.18 since S XK ď P2.

Suppose that Case (E) holds. Then M˝ –Mat24, I is the simple Todd-module, and |Y {I| ď 2.
So 9.1(5) holds.

Suppose that Case (F) holds. Then M –Mat22 or AutpMat22q, and I is the simple Golay code
module. Hence Y is isomorphic to the restriction of the 11 dimensional simple Golay-code module
for Mat24 to M . Let pΩ,Bq be a Steiner system of type p24, 8, 5q, H :“ AutpΩ,Bq “Mat24, T Ď Ω
with |T | “ 2. Then NHpT q – AutpMat22q. Let V be the simple Golay code module for H. Then
H has two orbits on V 7, one orbit corresponding to the octads in Ω and the other to the partitions
of Ω into two dodecads. Also rV,NHpT qs

7 consists of all elements in V ’perpendicular’ to T , that
is, the elements corresponding to octads and pairs of dodecads, each intersecting T in a subset of
even size. So V zrV,NHpT qs consists of all octads and pairs of dodecads intersecting T in exactly
one element.

Let B be an octad with |B X T | “ 1. Then NHpBq „ 24Altp8q induces Altp8q on B while
CHpBq acts regularly on ΩzB. Thus NHpBq X NHpT q – Altp7q. Let tC,Du be a partition of Ω
into two dodecads with |C X T | “ |D X T | “ 1. Then NHpCq – Mat12 acts transitively on C,
and NHpCq X NHpC X T q – Mat11 acts transitively on D with point-stabilizer L2p11q. Hence
NHpT q XNHptC,Duq – AutpL2p11qq.

It follows that CM ptq is isomorphic to a subgroup of index at most two of Altp7q or AutpL2p11qq.

In particular, CM ptq has dihedral Sylow 2 subgroups. Since A is elementary abelian, we conclude

that |A| ď 4. Thus |I{CIpAq| ď |A|
2 ď 24. Since A does not act quadratically, CIpAq ‰ CIpaq for

some 1 ‰ a P A and so |I{CIpaq| ď 23. But this is a contradiction, for example, since each involution
in CM ptq inverts an elements of order 5, and all elements of order five in M˝ have an 8-dimensional
commutator on I.

Suppose that Case (G) holds. Then M˝ –Mat11 and I is the simple Golay code module. Since

OutpMat11q “ 1 and CM pIq “ CM pY q, we get O31pMq “ K. By 9.18 A is not a Sylow 3-subgroup
of K. Thus |A| “ 3 and so |I{CIpAq| ď |A|2 “ 9. Let R ď K with R – Mat10 „ Altp6q.2 and

A ď R, and let g P RzR1. Then A and A
g

are not conjugate in R1 and we choose g such that A and
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A
g

correspond to xp123qy and xp124qp356qy in Altp6q. Then R1 “ xA,A
g
y. Thus |I{CIpR

1q| ď 34 and
so |CIpR

1q| “ 3, a contradiction since I is the Golay-code module (or to Q!).

9.4. The Proof of Corollary 9.2

In this section we will proof Corollary 9.2. For this we continue to assume the hypothesis of
Theorem I and use the notation introduced in 9.3. In addition, we assume

pchar YM q CGpyq is of characteristic p for all y P Y 7.

The following lemma is crucial for the proof of the corollary. Exactly here property pchar YM q
is used.

Lemma 9.20. Suppose that property pchar YM q holds. Then OppNM pBqq ‰ 1 for all 1 ‰ B ď

CY pAq.

Proof. Suppose that OppNM pBqq “ 1 for some 1 ‰ B ď CY pAq. Note that OppMq normalizes
OppNGpBqq and that by 2.6(b) OppMq is weakly closed in G. Hence OppNGpBqq ď NGpOppMqq ď

M : and so OppNGpBqq ď OppNM pBqq “ 1. Thus rYM , OppNGpBqqs “ 1.
By pchar YM q CGpbq is of characteristic p for 1 ‰ b P B 2 and so by 1.2(c) CGpbq is of local

characteristic p. It follows that CGpBq has characteristic p. In particular,

YM ď CGpOppNGpBqqq ď CGpOppCGpBqqq ď OppCGpBqq ď OppNGpBqq.

On the other hand, by 9.3(f) B ď ZpAq ď ZpLq and so L ď NGpBq. This contradicts YM ę OppLq.
l

Lemma 9.21. Suppose that property pchar YM q holds. Then Case (11) of Theorem I does not
occur.

Proof. Suppose that Case (11) of Theorem I holds. Then p “ 2, M : “ M “ M˝ –

AutpMat22q, and I is the Todd module of order 210. Choose a set Ω of size 22 with M acting
faithfully and 4-transitively on Ω. Let α, β P Ω with α ‰ β. Since M acts 4-transitively in Ω,
F :“ CM pαq and P :“ NM pta, βuq are maximal subgroups of M . Since I is the Todd-module there
exists 1 ‰ x P CIpF q. Define tx, yu :“ xP and z :“ xy. By the maximality of F and P , F “ CM pxq,
x ‰ y, and P “ CM pzq.

Note that

F XK –Mat21 – L3p4q, P „ 24`1ΓSL2p4q, P
1 “ P XK X F –Mat20 „ 24SL2p4q.

Moreover, O2pP
1q is a natural SL2p4q-module for P 1, and ZpF q “ ZpP q “ 1. Since |F {F XK| “ 2

we conclude that O2pF q “ 1. Also |M{P | “
`

22
2

˘

“ 21 ¨ 11, and so P is a parabolic subgroup of M .

Thus we may assume that S ď P . Then z ď CIpSq ď CIpAq and so by 9.3(f), z P CIpLq.
If x P CIpAq then by 9.20 O2pCM pxqq ‰ 1, which contradicts O2pF q “ 1. Thus

1˝. x R CIpAq and A ę F .

Since z P CIpLq, we have NLpY q ď CM pzq “ P . It follows that xx, yy{xzy is a composition factor
for NLpY q on AY {CY pLq of order 2. On the other hand by 2.18(b) any such composition factor has
order rq. Hence rq “ 2 and so |I{I XA| “ 2. Since by 9.5(b), I XA “ rI, AsCIpAq, this shows that

2˝. |I{rI, AsCIpAq| “ 2.

As Q centralizes z, Q! implies that Q Ĳ P . Since M˝ ‰ K we have Q ę K. Also P acts simply
on R :“ O2pP

1q, |O2pP q{R| “ 2 and ZpP q “ 1. Thus Q “ O2pP q. It follows that (see for example
[MSt, Theorem 3])

3˝.

(a) CIpQq “ rI,Q,Qs “ xzy,
(b) rI,Qs{xx, yy is a natural SL2p4q-module for P 1,

2This is the only place in the proof of Corollary 9.2 where pchar YM q is used.
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(c) rI :“ I{rI,Qs is a natural Symp5q-module for P . In particular, rI is a selfdual P -module.

We claim that AX R ‰ 1. If A ę Q, then 1 ‰ rQ,As ď AX R. So suppose that A ď Q. Since
A does not act quadratically on I, |A| ě 4. As |Q{R| “ 2 this gives AXR ‰ 1.

So we can choose a P A with 1 ‰ a ď R ď K. Since all involutions in K are conjugate,
ag P P 1zO2pP q for some g P K. By (3˝) P 1 has two non-central composition factors on I and
so |I{CIpaq| ě 24 and |CIpaq| ď 26. Since a P R ď Q, (3˝)(a) gives rrI,Qs, as ď xzy and thus

|CIpaq X rI,Qs| ě 25. Hence |CIpaqrI,Qs{rI,Qs| ď 2 and so |ČCIpaq| ď 2.

By (2˝) rrI, AsČCIpAq has index at most 2 in rI. Suppose that A acts quadratically on rI. Then
ČCIpAqrrI, As ď C

rIpAq and so |rI{C
rIpAq| ď 2. As by (3˝)(c) rI is selfdual this gives |rrI, As| ď 2 and so

ČCIpAqrrI, As has order at most 4, a contradiction. Hence A does not act quadratically on rI. Note
that the only elementary abelian subgroups of Symp5q, which do not act quadratically on the natural
Symp5q-module, are the Sylow 2-subgroups of Altp5q. Thus T :“ AO2pP q P Syl2pP

1O2pP qq.
As ZpP q “ 1, Gaschütz’ Theorem gives CO2pP qqpT q ď R, see C.17. Since R is a natural SL2p4q-

module for P 1, TXP 1 has exactly two maximal elementary abelian subgroups, namely R and say R˚.
Moreover, RR˚ “ TXP 1 and so CO2pP qpR

˚q ď R. Since |AO2pP q{O2pP q| “ 4 and |P 1O2pP q{P
1| “ 2

we can choose b P A X P 1zO2pP q. Then b P R˚. Also rO2pP q, bs ď CRpbq “ rR, bs “ R X R˚ has
order 4 and so B :“ CO2pP qpbq ę R. In particular, since CO2pP qpR

˚q ď R, rB,R˚s ‰ 1. It follows
that CT pbq “ BR˚ and CT pbq has exactly two maximal elementary abelian subgroups, namely Bxby
and R˚. As A ď CT pbq and AO2pP q “ T this gives A ď R˚ ď P 1. Since P 1 “ P XK X F , we have
A ď F , a contradiction to (1˝). l

Lemma 9.22. Suppose that property pchar YM q holds. Then (13) of Theorem I does not occur.

Proof. Suppose that p “ 3, M˝ „ 2.Mat12 and I is the simple Golay code module of order 36.
Observe that there exists a subgroup P of M˝ with A ď P such that P „ 32SL2p3q, CIpO3pP qq is a
natural Ω3p3q-module, and rI,O3pP qs{CIpO3pP qq is a natural SL2p3q-module for P . If A ď O3pP q,
then we can choose 1 ‰ x P CIpO3pP qq ď CIpAq with CM pxq –Mat11, a contradiction to 9.20. Thus

A ę O3pP q. Let 1 ‰ e P A. Then eg P P zO3pP q for some g PM . In particular, eg acts non-trivially
on CIpO3pP qq and rI,Qs{CIpO3pP qq. Hence |rI, es| ě 33 and |CIpeq| ď 33. Since |I{CIpAq| ď |A|

2

by 9.3(c), this gives A ‰ xey. Hence, as A is abelian, |A| “ 32 and |AXO3pP q| “ 3. Since

33 “ |CIpO3pP qq| ď |CIpAXO3pP qq| ď |CIpeq| ď 33,

CIpAXO3pP qq “ CIpO3pP qq and so |CIpAq| “ |CIpO3pP qAq| “ 3. But this contradicts |I{CIpAq| ď
|A|2 “ 34. l

9.23. Proof of Corollary 9.2:

In view of 9.21 and 9.22 it remains to show that Y “ I. Hence, we assume property pchar YM q
and Y ‰ I and discuss the five cases of Corollary 9.1. By 9.3(f) Y “ ICY pAq, so we can pick
t P CY pAqzI.

Suppose that case 9.1(1) holds. Then p “ 2 and I is a natural Sp2npqq- or Sp4p2q
1-module for

M˝. In the first case CM˝ptq – Oε2npqq and the second case CM˝ptq „ 32.C4 or Ω´4 p2q. In either case
we conclude that CM˝ptq and so also CM ptq acts simply on I. Thus O2pCM ptqq centralizes I, and
since CM pY q “ CM pIq, we get O2pCM ptqq “ 1, a contradiction to 9.20.

Suppose that case 9.1(2) or (3) holds. Then I is a natural Ω´4 p3q- or Ω5p3q-module for K.

Thus B.35(d) shows that S ď K. Let x be a non-singular vector in I. Then O3pCM pxqq ď K and
CKpxq – Ωεn´1p3q, where n “ dimF3pIq. Thus O3pCM pxqq “ 1, and 9.20 shows that x R CIpAq.
Hence CIpAq does not contain any non-singular vectors. Since 3 is odd we conclude that CIpAq is
singular.

Put D :“ rI, As X CIpAq. Observe that K :“ EndKpIq – F3, and let X be a K-subspace of
CIpAq with CIpAq “ D ˆX. Since CIpAq is singular, X ď XK. On the other hand, I is a selfdual
K-module, and so 9.7(g) gives X X XK “ 1. Thus X “ 1 and D “ CIpAq. By 9.7(c), |D| “ 3.
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Hence CKpD
Kq “ 1, and by 9.7(g), A “ ACKpD

Kq “ CKpD
K{Dq X CKpDq. If K – Ω´4 p3q this

gives A P Syl3pKq, a contradiction to 9.18.
Thus K – Ω5p3q. Let E be 2-dimensional subspace of I with D ď E and E ę DK. Then

CKpEq – Ω3p3q is a complement to A in CKpDq. Let g P K with Dg ď EK and put B :“ CKpEq X

CKpD
gq X CKpE

K{Dgq . Then B is a Sylow 3-subgroup of CKpEq, B ď A
g

and AB P Syl3pKq.

Also rI,Bs ď EK and rI,Bs XD “ 1. Since Y “ CY pAqI “ CY pA
g
qI we have rY,As “ rI, As and

rY,Bs “ rI,Bs. Thus

rCY pAq, ABs ď rY,Bs X CIpAq “ rI,Bs XD “ 1,

and so Y “ ICY pABq. Since AB P Syl3pKq, 9.18 shows that Y “ I, a contradiction.

Suppose that case 9.1(4) holds. Then I is a natural Ω`6 p2q-module for K – Ω`6 p2q – Altp8q.
Hence Y is the central quotient of the permutation module on eight objects, and so CM ptq is
isomorphic to a subgroup of index at most two of Symp7q or Symp3q ˆ Symp5q. It follows that
O2pCM ptqq “ 1, a contradiction to 9.20.

Suppose that case 9.1(5) holds. Then M˝ –Mat24 and I is the simple Todd-module. It follows
that M “ K and Y is the quotient of the 24-dimensional permutation module by the Golay-code
module. Hence CKptq is isomorphic to Mat23 or L3p4q.Symp3q. So O2pCM ptqq “ 1, a contradiction
to 9.20.





CHAPTER 10

Proof of the Local Structure Theorem

In this chapter we prove the Local Structure Theorem and its corollary stated in the introduction.
But before doing this we prove the Structure Theorem for Maximal Local Parabolic Subgroups, which
combines the theorems proved in Chapters 4 – 9 into one.

Theorem J (Structure Theorem for Maximal Local Parabolic Subgroups). Let G be a finite
Kp-group and S P SylppGq. Suppose that |MGpSq| ą 1 and there exists a large subgroup Q of G
in S. Then there exists M P MGpSq with Q đ M . Moreover, for every M P MGpSq with Q đ M
one of the following cases holds, where Y :“ YM , M :“M{CM pYM q, Q

‚ :“ OppNGpQqq, and q is a
power of p:

(1) The linear case.
(a) M˝ – SLnpqq, n ě 3, and rY,M˝s is a corresponding natural module for M˝.
(b) If Y ‰ rY,M˝s then M˝ – SL3p2q, |Y {rY,M

˝s| “ 2 and rYM ,M
˝s ď Q ď Q‚.

(2) The symplectic case.
(a) M˝ – Sp2npqq, n ě 2, or Sp4pqq

1 (and q “ 2), and rY,M˝s is the corresponding
natural module for M˝

(b) If Y ‰ rY,M˝s, then p “ 2 and |Y {rY,M˝s| ď q.
(c) If Y ę Q‚, then p “ 2 and rY,M˝s ę Q‚.

(3) The wreath product case.
(a) There exists a unique M -invariant set K of subgroups of M such that rY,M˝s is a

natural SL2pqq-wreath product module for M with respect to K. Moreover, M˝ “

OppxKyqQ and Q acts transitively on K.
(b) If Y ‰ rY,M˝s, then p “ 2, M – ΓSL2p4q, M˝ – SL2p4q or ΓSL2p4q, |Y {rY,M

˝s| “

2 and rY,M˝s ę Q‚.
(4) The orthogonal case. Y ę Q‚, M˝ – Ωεnpqq, n ě 5, where q is odd if n is odd, and Y

is a corresponding natural module for M˝.
(5) The tensor product case. Y ę Q‚, and there exist subgroups K1,K2 of M such that

(a) Ki – SLmipqq, mi ě 2, rK1,K2s “ 1, and K1K2 ĲM ,
(b) Y is the tensor product over Fq of corresponding natural modules for K1 and K2,

(c) M˝ is one of K1,K2, or K1K2.
(6) The non-natural SLnpqq-case. Y ę Q‚ and one of the following holds:

(1) M˝ – SLnpqq{xp´idq
n´1y, n ě 5, and Y is the exterior square of a natural SLnpqq-

module.
(2) p is odd, M˝ – SLnpqq{xp´idq

n´1y, n ě 2, and Y is the symmetric square of a natural
module.

(3) M˝ – SLnpqq{xλid | λ P Fq, λn “ λq0`1 “ 1y, n ě 2, q “ q2
0, and Y is the unitary

square of a natural module.
(7) The exceptional case. Y ę Q‚ and one of the following holds:

(1) M˝ – Spin`10pqq, and Y is a half-spin module.

(2) M˝ – E6pqq, and Y is one of the (up to isomorphism) two simple FpM˝-modules of
order q27.

(8) The sporadic case. Y ę Q‚ and one of the following holds:
(1) M „ 3.Symp6q, M˝ „ 3.Altp6q or 3.Symp6q, and Y is simple of order 26.
(2) p “ 2, M˝ –Mat22, and Y is the simple Golay-code module of F2-dimension 10.
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(3) p “ 2, M˝ –Mat24, and Y is the simple Todd or Golay-code module of F2-dimension
11.

(4) p “ 3, M˝ –Mat11, and Y is the simple Golay-code module of F3-dimension 5.
(9) The non-characteristic p case. There exists 1 ‰ y P Y such that CGpyq is not of

characteristic p and one of the following holds:
(1) Y is tall and asymmetric in G, but Y is not char p-tall in G.
(2) p “ 2, M˝ – AutpMat22q, Y is the simple Todd module of F2-dimension 10, and

Y ę Q‚.
(3) p “ 3, M˝ – 2.Mat12, Y is the simple Golay-code module of F3-dimension 6, and

Y ę Q‚.
(4) p “ 2, M – Oε2np2q, M

˝ – Ωε2np2q, 2n ě 4, p2n, εq ‰ p4,`q, Y is a corresponding
natural module and Y ď Q‚.

(5) p “ 3, M˝ – Ω´4 p3q, rY,M
˝s is the corresponding natural module, |Y {rY,M˝s| “ 3, Y

is isomorphic to the 5-dimensional quotient of a six dimensional permutation module
for M˝ – Altp6q, and rY,M˝s ę Q‚.

(6) p “ 3, M˝ – Ω5p3q, rY,M
˝s is the corresponding natural module, |Y {rY,M˝s| “ 3

and rY,M˝s ę Q‚.
(7) p “ 2, M˝ – Ω`6 p2q, rY,M

˝s is the corresponding natural module, and |Y {rY,M˝s| “

2.
(8) p “ 2, M˝ –Mat24, rY,M˝s is the simple Todd-module of F2-dimension 11,

|Y {rY,M˝s| “ 2 and rY,M˝s ę Q‚.

We remark that there is some overlap between the different cases and that the last case is not
the only case, where CGpyq may not be of characteristic p for some 1 ‰ y P Y . See the comment
after the Local Structure Theorem (Theorem A) in the introduction for more details.

10.1. Proof of Theorem J

In this section we prove Theorem J, so we assume the hypothesis and notation given there.
The existence of M follows from 1.56(c). Now let M PMGpSq with Q đM .
Suppose first that Y is symmetric in G. Then we can apply Theorem D. Assume that Case 5

of Theorem D holds. Then M – Oε2np2q, M
˝ – Ωε2np2q, p2n, εq ‰ p4,`q, rY,M s is a corresponding

natural module, CGpyq is not of characteristic 2 for every non-singular y P rY,M s, and either
Y “ rY,M s or M “ O`6 p2q and |Y {rY,M s| “ 2. If Y ‰ rY,M˝s, we conclude that J(9:7) holds. If
Y “ rY,M s and Y ę Q‚ either J(4) (for 2n ě 6) or J(6:3) (for p2n, εq “ p4,´q) holds. If Y “ rY,M s
and Y ď Q‚, then J(9:4) holds. All other case of Theorem D also appear in Theorem J.

Suppose next that Y is asymmetric in G and short. Then Theorem E implies Theorem J, where
the Oε2np2q-Case of Theorem E is treated as in the previous paragraph.

Suppose that Y is asymmetric in G and tall. Assume that Y is not char p-tall in G. Then
Theorem F shows that CGpyq is not of characteristic p for some 1 ‰ y P Y and thus J(9:1) holds.
So we may assume that Y is char p-tall. If, in addition, Y is Q-short we can apply Theorem G and
conclude that Theorem J holds.

Suppose finally that Y is asymmetric in G and Q-tall. Then we can apply Theorems H and I.
Put I “ FY pMq. Then by Theorem H I “ rY,M˝s and I ę Q‚ except in Case H(2), where I is a
natural SL3p2q-module for M˝, I ď Q and |Y {I| “ 2.

Assume that one of the cases of Theorem I holds and Y ‰ I. Then Corollary 9.2 shows CGpxq is
not of characteristic p for some 1 ‰ x P Y . Now Corollary 9.1 implies that Case 2 or one of the Cases
9:5 – 9:8 of Theorem J holds. Also by Corollary 9.2 the Cases 11 (Todd-module for AutpMat22q)
and 13 (Golay code module for 2 ¨Mat12q of Theorem 9.2 only occur if CGpxq is not of characteristic
p for some 1 ‰ x P Y , and so Cases 9:2 and 9:3 of Theorem J hold, respectively.

In all remaining cases of Theorems H and I a careful comparison shows that Theorem J holds,
see Tables 1 and 2.
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Table 1. The Cases of Theorem H and Theorem J

Th H I |Y {I| Remark Th J
(1) — — leads to Theorem I —
(2) nat SL3p2q 2 I ď Q, Y ę Q‚ ( 1:b)
(3) nat Ω`6 p2q 2 CGpxq not of characteristic p (9:7)
(4) nat Sp2np2q 2 Y ą I ę Q‚ (2)
(5) nat SLnpqq, n ě 3 1 p “ 2, Y “ I ę Q‚ (1)
(5) nat SL2pqq 1 I “ Y ę Q‚ (3)
(6) nat Sp2npqq 1 Y “ I ę Q‚ (2)
(7) nat Ω3p3q – S2pnatqSL2p3q 1 Y “ I ę Q‚ (6:2)
(8) nat pΓqSL2p4q 2 Y ą I ę Q‚ (3:b)
(9) 26 for 3.Altp6q, 3.Symp6q 1 I “ Y ę Q‚ (8:1)
(10) nat SLm1pqq b SLm2pqq) 1 I “ Y ę Q‚ (5)
(10) 24 for SL2p2q o C2 1 I “ Y ę Q‚ (3)

Table 2. The Cases Y “ I of Theorem I and Theorem J

Th I I Remark Th J
(1) nat SLmpqq Y “ I ę Q‚ (1)
(2) nat Sp2npqq, Sp4p2q

1, p “ 2 Y “ I ę Q‚ (2)
(3) nat Ωεnpqq, n ě 5 Y “ I ę Q‚ (4)
(3) nat Ω3pqq – S2pnatqSL2pqq Y “ I ę Q‚ (6:2)
(3) nat Ω`4 pqq – natSL2pqq b natSL2pqq Y “ I ę Q‚ (5)
(3) nat Ω´4 pqq – U2pnatqSL2pqq Y “ I ę Q‚ (6:3)
(4) Λ2(nat) SLmpqq Y “ I ę Q‚ (6:1)
(5) S2(nat) SLmpqq Y “ I ę Q‚ (6:2)
(6) U2(nat) SLmpqq Y “ I ę Q‚ (6:3)
(7) half spin Spin`10pqq Y “ I ę Q‚ (7:1)
(8) q27 for E6pqq Y “ I ę Q‚ (7:2)
(9) Todd or Golay for Mat24 Y “ I ę Q‚ (8:3)
(10) Golay for Mat22 Y “ I ę Q‚ (8:2)
(11) Todd for AutpMat22q not pchar Y q by Cor. 9.2 (9:2)
(12) Golay for Mat11 Y “ I ę Q‚ (8:4)
(13) Golay for 2.Mat12 not pchar Y q by Cor. 9.2 (9:3)

10.2. Proof of the Local Structure Theorem

This section is devoted to the proof of the Local Structure Theorem (Theorem A).
Let p be a prime, G a finite Kp-group, S P SylppGq and Q ď S. Suppose that Q is a large

subgroup of G and |MGpSq| ą 1. Recall that Q is a weakly closed subgroup of G by 1.52(b).
Let L ď G with S ď L, OppLq ‰ 1 and Q đ L. Since L is a parabolic subgroup of H with

OppLq ‰ 1, 1.55(b) shows that CGpOppLqq ď OppLq. Hence L P LGpSq.
By 1.56(a), (b) there exists M PMGpSq and L˚ P LGpSq such that L˚ ďM and

YL “ YL˚ ď YM , LCGpYLq “ L˚CGpYLq, L
˝ “ pL˚q˝, Q đ L˚, and Q đM.

Since L˝ “ pL˚q˝ ďM and L{CLpYLq – L˚{CL˚pYLq we are allowed to replace L be L˚, so we may

assume that L ď M . Put M :“ M{CM pYM q and rL :“ L{CLpYLq. Then S ď L ď M . Hence by
1.24(f) YL ď YM and so YL “ YYM pLq (the largest p-reduced L-submodule of YM ).

Put

Y :“ YM , V :“ rY,M˝s, U :“ CV pOppLXM
˝qq, K :“ EndM˝pV q, Z :“ CV pS XM

˝q, k :“ dimK U.

Then YL ď CY pOppLqq ď CY pOppL XM˝qq ď CY pOppL
˝qq and YL X V ď U . Moreover, if U is a

simple FpL-module, then YL X V “ U .
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1˝.

(a) CY pL
˝q “ 1.

(b) rQ ‰ 1 and Q ę OppL˝q.

(c) LXM˝ is not p-closed.

(d) V X YL is a faithful ĂL˝-module. In particular, rV X YL, Qs ‰ 1.

(a): Since Q đ L, 1.55(d) gives CGpL
˝q “ 1; in particular CY pL

˝q “ 1.

(b): If rQ “ 1, then 1 ‰ YL ď CGpQq and so Q! gives L ď NGpQq, a contradiction. Thus rQ ‰ 1.

Since YL is p-reduced, OppĂL˝q ď OpprLq “ 1. Hence rQ ę OppĂL˝q and so also Q ę OppL˝q.

(c): If LXM˝ is p-closed then Q ď OppLXM˝q. Since Q ď L˝ ď L XM˝, this gives Q ď

OppL˝q, which contradicts (b).

(d) : Since YL is faithful p-reduced rL-module, A.9(d) shows that rYL, L
˝s is faithful ĂL˝-module.

As rYL, L
˝s ď rY,M˝s X YL “ V X YL, also V X YL is a faithful ĂL˝-module.

Note that we can apply Theorem J to M . Our strategy is to discuss each of the cases of Theorem
J, where we first determine all the subgroups L of M with S ď L and Q đ L and then the module
structure of YL “ YY pLq.

Moreover, in some of the cases we will use the following observation to prove that YL ę Q‚:

2˝. Suppose that V ę Q‚ and NM pQq acts simply on V {rV,Qs.

(a) V XQ‚ “ rV,Qs.
(b) If rV,Q,Qs “ 1, then V X YL ę Q‚.
(c) If rV,Q,Q,Qs “ 1 and rV X YL, Q,Qs ‰ 1, then V X YL ę Q‚.

Indeed, we have rV,Qs ď V XQ‚ ă V , and so the simple action of NM pQq on V {rV,Qs implies
(2˝)(a).

Suppose that rV,Q,Qs “ 1. By (2˝)(a) V X Q‚ “ rV,Qs and so rV X Q‚, Qs “ 1. Since by
(1˝)(d) rV X YL, Qs ‰ 1, this gives V X YL ę Q‚, and (2˝)(b) holds.

Suppose next that rV,Q,Q,Qs “ 1 and rV X YL, Q,Qs ‰ 1. By (2˝)(a) V X Q‚ “ rV,Qs and
so rV X Q‚, Q,Qs “ rV,Q,Q,Qs “ 1. By hypothesis, rV X YL, Q,Qs ‰ 1, and we conclude that
V X YL ę Q‚. Hence, (2˝)(c) holds.

Case 1. Suppose that the wreath product case of Theorem J holds for M .

Then Y is a natural SL2pqq-wreath product module for M with respect to some M -invariant
set of subgroups K of M . Moreover, Q acts transitively on K. Put r “ |K|, tK1, . . . ,Kru :“ K and
Vi :“ rY,Kis. Then

Y “ V1 ˆ . . .ˆ Vr, K :“ xKy “ K1 ˆ . . .ˆKr

with Ki – SL2pqq, and Vi is a natural SL2pqq-module for Ki.
Assume that M˝ ď L. Then M˝ “ L˝. Now 1.58 shows that YL “ Y and that Theorem

A(3) holds. So assume that M˝ ę L. By A.28 NKSpS X Kq is the unique maximal subgroup

of KS containing S. It follows that OppL XKq “ S XK. In particular, YL ď CY pS XKq. Since

Ki – SL2pqq, NKipSXKiq{SXKi – Cq´1 and so NKpSXKq{SXK – Crq´1. As L˝ ď OppM˝q ď K,

we conclude that ĂL˝ is abelian and every cyclic quotient of ĂL˝ has order dividing q´1. In particular,
q ą 2.

Let U1, U2, . . . , Us be the Wedderburn components of L˝ on YL. Since ĂL˝ is an abelian p1-group,
YL “ U1‘U2‘ . . .‘Us and L˝{CL˝pUiq is cyclic. Let Wi :“ CVipSXKq. Then YL ďW1‘ . . .‘Wr,
and each Wj is a homogeneous NKpSXKq-module. Hence Wi is also a homogeneous L˝-module. For
1 ď i ď s, let Ri consists of all 1 ď j ď r such that the projection of Ui onto Wj is non-trivial. Put

WRi :“
À

jPRi
Wj . Then WRi is an homogeneous L˝-submodule of CV pS XKq and Ri X Rk “ H

for 1 ď i ă k ď r. Note that Q normalizes L˝ and so also
Ťs
i“1Ri. Since Q acts transitively

on the subgroups Wi, we conclude that, R1, R2, . . . , Rs is a Q-invariant partition of t1, . . . , ru and
that Q acts transitively on R1, . . . , Rs. It follows that Q acts transitively on U1, U2 . . . , Us. Since
S XK ď OppLq, Q ę K. In particular, M˝ fl SL2pqq, and Theorem A(4) holds.
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Case 2. Suppose that the tensor product case of Theorem J holds for M .

If M˝ “ M – SL2p2q o C2, then S is a maximal subgroup of M and M “ L. Thus, Theorem
A(6) holds. So assume that M˝ is one of K1, K2 or K1K2. Let Ki be the inverse image of Ki in
M , and let Vi be a natural SLmipqq-module for Ki such that Y – V1 bFq V2 as a K1K2-module.

Note that either Ki Ĳ M or p “ 2 and K1
x
“ K2 for some x P S. In particular NLpK1q “

NLpK2q. Put

L0 :“ NLpK1q “ NLpK2q, Li :“ xpS XKiq
L0y, Ui :“ CVipOppLiqq.

Then L1L2 Ĳ L, rL1, L2s “ 1 and Q ď L1L2. Since Li is a parabolic subgroup of Ki generated by
p-elements and Ki – SLmipqq, we get that Ui is a natural SLtipqq-module for Li, where 1 ď ti ď mi.
Moreover, YL ď CY pOppL1L2qq – U1 bFq U2 as an L1L2-module. Since Q đ L, ti ě 2 for some
i P t1, 2u. It follows that U1 bFq U2 is a simple FpL1L2-module and so YL – U1 bFq U2 as an
L1L2-module. Let ti, ju :“ t1, 2u.

Assume that tj “ 1. Then YL is a natural SLtipqq-module for Li and S XKj Ĳ L; in particular

YL “ rYL, L
˝s. Since Q đ L we conclude that ĂL˝ “ ĂLi. Hence Theorem A(1) holds, if ti ě 3, and

A(3) holds if ti “ 2.

Assume next that tj ě 2 and M˝ “ Kr for some r P t1, 2u. Then ĂL˝ “ ĂLr. Let tr, su :“ t1, 2u.

Then Ks normalizes Q‚ and NKr
pZq „ qmr´1SLmr´1pqq, where OppNKr pZqq is a natural module

for SLmr´1pqq. Thus, NKr pZq acts simply on OppNKr pZqq, and Q “ OppNKr pZqq. It follows that

NM pQq acts simply on CV pQq and V {CV pQq. In particular, CV pQq “ rV,Qs and rV,Q,Qs “ 1, and
so by (2˝), YL ę Q‚. Thus Theorem A(6) holds.

Assume now that tj ě 2 and M˝ “ K1K2. Then ĂL˝ “ ĂL1
ĂL2 and, for r P t1, 2u, NKr pZq „

qmr´1SLmr´1pqq. Hence as above, the simple action of NKr
pZq on OppNKr pZqq shows that Q “

OppNK1
pZqqOppNK2

pZqq. Moreover, V {rV,Qs is a simple NM pQq-module, rV,Q,Qs “ Z, and Q

does not act quadratically on YL. Thus by (2˝) YL ę Q‚, and again Theorem A(6) holds. This
finishes (Case 2).

In all the remaining cases of Theorem J V is a simple M˝-module. Suppose that M˝ ď L. Then
V is a simple L-module and so rY,M˝, OppLqs “ rV,OppLqs “ 1. Also rOppLq,M˝s ď OppM˝q “ 1,

and the Three Subgroups Lemma implies rY,OppLq,M
˝s “ 1. Since CY pM

˝q “ 1 by Q!, we have

rY,OppLqs “ 1 and so OppLq “ 1. Thus Y “ YL. Moreover L˝ “M˝ and so by 1.52(c),

L˝ “ pL˝CM pY qq
˝ “ pM˝CM pY qq

˝ “M˝.

We conclude that one of the cases of Theorem J holds for L in place of M , which gives the corre-
sponding case for L in Theorem A . Thus we may assume

3˝. M˝ ę L. In particular, LXM˝ is a proper parabolic subgroup of M˝.

We first consider the case where M˝ is a genuine group of Lie-Type in characteristic p. Then
by (3˝) OppL XM˝q ‰ 1. Let ∆ be the corresponding Dynkin diagram for M˝. For any Ψ Ď ∆

let MΨ be the Lie-parabolic subgroup of M˝ with S XM˝ ď MΨ and Dynkin diagram Ψ. Put
RΨ :“ Op

1

pMΨq, and let RΨ be the inverse image of RΨ in M˝.
By A.63 there exists a unique Λ Ĺ ∆ with

RΛ “ Op
1

pLXM˝q ď LXM˝ ďMΛ.

Recall that K “ EndM˝pV q. Observe also that in all cases of Theorem J where M˝ is a genuine group
of Lie-type there exists a unique δ P ∆ with rZ,Rδs ‰ 1. Moreover, Uδ :“ CV pOppRδqq is a natural
SL2pKq-module or the symmetric or unitary square of a natural SL2pKq-module, i.e Uδ is a natural
SL2pKq-, Ω3pKq- or Ω´4 pqq-module for Rδ. By Q!, Q Ĳ Rρ for all δ ‰ ρ P ∆. Since Q đ L XM˝

we have δ P Λ. Let Ξ be the connected component of Λ containing δ. Then RΛzΞ normalizes Q.

We conclude that L˝pS XM˝q “ RΞ. Smith’s Lemma A.63, applied to MΛ and V , shows that U
is a simple KRΛ-module. Hence RΛzΞ centralizes U , and U is a semisimple FpRΞ-module. Since
Uδ is a simple FpRδ-module we conclude that U is a simple FpRΞ-module. Hence U is a simple
FpL˝pS XM˝q-module, and U “ V X YL by an earlier remark. Since each Rρ, ρ P Ξztδu, centralizes
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Z, the Ronan-Smith’s Lemma A.64 implies that the isomorphism type of U as an RΞ-module (and
so as an L˝pS XM˝q-module) is uniquely determined by δ and the isomorphism type of Uδ as an
Rδ-module. We have proved:

4˝. Suppose that M˝ is a genuine group of Lie type. Then

(a) L˝pS XM˝q “ RΞ.
(b) U is the simple FpRΞ-module uniquely determined by δ, rZ,Rρs “ 1 for ρ P Ξztδu, and

the isomorphism type of Uδ as an Rδ-module.

Next we show:

5˝. Suppose that M˝ is a genuine group of Lie type, V ę Q‚, NM˝pZq acts simply on
OppNM˝pZqq, rV,Q,Qs ď Z, and rYL, Q,Qs ‰ 1. Then YL ę Q‚.

Since NM˝pZq acts simply on OppNM˝pZqq we have Q “ OppNM˝pZqq. Hence Smith’s Lemma
A.63 applied to the dual of V shows that NM pQq acts simply on V {rV,Qs. From rV,Q,Qs ď Z we
get rV,Q,Q,Qs “ 1. Thus (2˝) implies that YL ę Q‚.

6˝. Suppose that M˝ is a genuine group of Lie type. Then YL “ U ; in particular, YL is the
simple FpRΞ-module uniquely determined by δ, rZ,Rρs “ 1 for ρ P Ξztδu, and the isomorphism

type of Uδ as an Rδ-module.

Otherwise, YL ę V and V ‰ Y . Then Theorem J shows that one of the following holds

(A) p “ 2. |Y {V | “ 2 and V is a natural SL3p2q-module,
(B) p “ 2, M˝ – Sp2npqq, n ě 2 and |Y {V | ď q.
(C) p “ 3, M˝ – Ω´4 p3q, V is the corresponding natural module, |Y {V | “ 3, Y is isomorphic to

the 5-dimensional quotient of a 6-dimensional permutation module for M˝ – Altp6q, and
V ę Q‚.

(D) p “ 3, M˝ – Ω5p3q, V is the corresponding natural module, |Y {V | “ 3 and V ę Q‚.
(E) p “ 2, M˝ – Ω`6 p2q, V is the corresponding natural module, and |Y {V | “ 2.

Let x P YLzU . We discuss the cases (A) – (E) one by one.
Suppose that M˝ – SL3p2q. Then CSpxq “ 1, a contradiction to 1 ‰ O2pLqq ď CSpxq.

Suppose that M˝ – Sp2npqq. Let s be an M˝-invariant non-degenerate symplectic form on
V . Then CM˝pxq – Oε2npqq, and there exists a non-degenerate CM˝pxq-invariant quadratic form
t on V with s being the associate symmetric form. With respect to the symplectic form s on V ,
the Lie-parabolic subgroups of M˝ normalize a unique s-singular K-subspace of V . Since U is a
simple RΞ-module, we conclude that U is the s-singular K-subspace of V corresponding to MΞ, and
dimK U ě 2 since δ P Ξ. In particular, rU,RΞs ‰ 1. Note that radical of t on U has codimension at
most 1 in U (see B.5), and so there exists u P U 7 with tpuq “ 0.

Choose g PM˝ with rV, gs “ Ku. Then g centralizes the hyperplane uK in the symplectic space
V , and since U is singular with respect to s, U ď CV pgq. Thus g centralizes U , V {U and Y {V . It
follows that g P S and g P O2pM˝XLq ď O2pLq. Hence YL ď CY pO2pLqq ď CY pxq and g P CM˝pxq.
Thus g leaves invariant the quadratic form t, a contradiction to tpuq “ 0 (see B.9(c)).

Suppose that M˝ – Ω´4 p3q. Then |∆| “ 1 a contradiction to H ‰ Λ Ĺ ∆.

Suppose that M˝ – Ω5p3q. Then U is natural SL2p3q-module for ĂL˝. Since rYL, L
˝s ď U and

CYLpL
˝q “ 1 this gives U “ YL.

Suppose that M˝ – Ω`6 p2q. Then Y is isomorphic to the 7-dimensional quotient of the 8-

dimensional permutation module for M˝ – Altp8q. Moreover, since L˝ ę NM pZq, there exists
R ďM˝ with R „ 23L3p2q and LXM˝ ď R. Moreover, O2pRq acts regularly on the eight objects,
so CY pO2pRqq ď V . Then O2pRq ď O2pLXM

˝q ď O2pLq and YL ď CY pO2pLqq ď CY pO2pRqq ď V .
So YL “ YL X V “ U .

We have shown that U “ YL in all cases, and (6˝) is proved.

Case 3. Suppose that V is a natural SLnpqq, Sp2npqq or Ωεnpqq-module for M˝ (with p odd if
n is odd in the Ωεnpqq-module case).
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Then δ is an end-node of ∆, with δ being short in the Sp2npqq-case and long in the Ωεnpqq-case.
Since Ξ is a proper connected subdiagram of ∆ containing δ, Ξ is a Dynkin diagram of type Am´1.
Also Uδ is a natural SL2pqq-module for Rδ and so by (6˝) YL is a natural SLmpqq-module for L˝.
Thus Theorem A(3) holds if m “ 2, and Theorem A(1) holds if m ě 3.

Case 4. Suppose that V is the exterior square of a natural SLnpqq-module for M˝, where
n ě 5.

In this case δ is adjacent to an end-node of ∆ and Uδ is the natural SL2pqq-module for Rδ.
Hence by (6˝) YL is a natural SLmpqq- or the exterior square of a natural SLmpqq-module (with
m ě 4 in the second case). In the first case Theorem A(1) holds if m ě 3, and Theorem A(3)
holds if m “ 2. So suppose that YL is the exterior square of a natural SLmpqq-module with m ě 4.

Note that Op
1

pCM˝pZqq „ q2pn´2qpSL2pqq ˆ SLn´2pqqq and so Q “ OppCM˝pZqq. In particular,
rV,Q,Qs “ Z and Q does not act quadratically on YL. Thus by (5˝). we see that YL ę Q‚. If
m “ 4, then the exterior square of a natural SLmpqq-module is the natural Ω`6 pqq-module and so
Theorem A(5) holds. If m ě 5, then Theorem A(7:1) holds.

Case 5. Suppose that V is the symmetric or unitary square of a natural SLnpqq-module for
M˝.

In this case δ is an end-note, and Uδ is the symmetric or unitary square of a natural SL2pqq-
module. Hence by (6˝) YL is the symmetric or unitary square of a natural SLmpqq-module for

L˝. Also Op
1

pCM˝pZqq „ qn´1SLn´1pqq, Q “ OppCM˝pZqqq, rV,Q,Qs ď Z, and Q does not act
quadratically on YL. Thus (5˝) gives YL ę Q‚ and Theorem A(7:2) or A(7:3) holds.

Case 6. Suppose that M˝ – Spin`10pqq and V is the half-spin module.

In this case δ is one of the end notes of ∆ corresponding to an SL5pqq-parabolic and so Ξ is of
type Am´1, 2 ď m ď 5, or D4. Moreover, Uδ is a natural SL2pqq-module for Rδ. Thus by (6˝) YL
is a natural SLmpqq-module, 2 ď m ď 5, or a natural Ω`8 pqq-module for L˝. In the SLmpqq-case,
Theorem A(1) holds if m ě 3, and Theorem A(3) holds if m “ 2. So suppose that YL is a natural

Ω`8 pqq-module. We have Op
1

pCM˝pZqq „ q10SL5pqq and so Q “ OppCM˝pZqq. Thus rV,Q,Qs “ Z,
and Q does not act quadratically on YL. Hence by (2˝) YL ę Q‚, and Theorem A(5) holds.

Case 7. Suppose that M˝ – E6pqq and |V | “ q27.

In this case δ is one of the end nodes of ∆ corresponding to an Ω`10pqq-parabolic and so Ξ is
of type Am´1, 2 ď m ď 6, or D5. Moreover, Uδ is a natural SL2pqq-module for Rδ. Hence by
(6˝) YL is a natural SLmpqq-module (2 ď m ď 6), or the natural Ω`10pqq-module for L˝. In the
SLmpqq-case, Theorem A(1) holds if m ě 3, and Theorem A(3) holds if m “ 2. So suppose that

YL is the natural Ω`10pqq-module. We have Op
1

pCM˝pZqq „ q16Spin`10pqq and so Q “ OppCM˝pZqq.
Hence rV,Q,Qs “ Z, and Q does not act quadratically on YL. Thus by (2˝) YL ę Q‚, and Theorem
A(5) holds.

This concludes the discussion of the cases where M˝ is a genuine group of Lie-type.

Case 8. Suppose that M˝ – Sp4p2q
1 and |V | “ 24.

Then L XM˝ – Symp4q, U is a natural SL2p2q-module for L˝, CY pO2pL XMqq ď V , and so
YL “ YL X V “ U . Thus by 1.58 Theorem A(3) holds.

Case 9. Suppose that M „ 3.Symp6q and |Y | “ 26.

Then L – C2 ˆ Symp4q, Symp3q ˆDih8 or Symp3q ˆ Symp4q. In the first two cases YL is the
natural SL2p2q-module for L. Thus Theorem A(3) holds.

So suppose that L – Symp3q ˆ Symp4q. Then YL has order 24 and is the tensor product of

two natural SL2p2q-modules. Since xY
CM1 pZq
L y “ Y and Y ę Q‚, we have YL ę Q‚. If M˝ „

3.Altp6q, then L˝ – Symp4q and so ĂL˝ – SL2p2q; and if M˝ „ 3.Symp6q, then L “ L˝ and
ĂL˝ – SL2p2q ˆ SL2p2q. Thus Theorem A(6) holds.
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Case 10. Suppose that p “ 2, M˝ – Mat22, and Y is the simple Golay-code module of
F2-dimension 10.

Then Y “ V and CM˝pZq „ 24Altp6q. For a description of the action of the maximal parabolic

subgroups of M˝ on (the dual of) V see [MSt, 3.3]. It follows that L XM˝ „ 24ΓSL2p4q and so
L˝ „ 24SL2p4q. Moreover, YL “ CV pO2pL

˝qq is a natural Ω´4 p2q-module for L˝, and so also the
unitary square of natural SL2p4q-module. Also rV,Q,Q,Qs “ 1 an rYL, Q,Qs ‰ 1 and so (2˝)(c)
shows that YL ę Q‚. Thus Theorem A(7:3:3) holds.

Case 11. Suppose that p “ 2, M˝ –Mat24, and Y is the 11-dimensional simple Golay code
module.

Then M “M˝ and Y “ V . For a description of the action of the maximal parabolic subgroups
of M on (the dual of) V see [MSt, 3.5]. In particular, CM pZq „ 24SL4p2q.

Assume that L is a maximal subgroup of M . Then L „ 26.3.Symp6q or 26.pSL2p2q ˆ SL3p2qq,
and U is a natural Sp4p2q- or SL2p2q-module, respectively. Thus YL “ U . In the first case, since
rCLpYLq, Qs ď OppLq and 3.Symp6q acts non-trivially on Zp3.Altp6qq, YL is a natural Sp4p2q

1-module
for L˝. Moreover, as rV,Q,Q,Qs “ 1 and rYL, Q,Qs ‰ 1, (2˝)(c) gives YL ę Q‚, and so Theorem
A(2) holds. In the second case Theorem A(3) holds.

If L is not a maximal subgroup, then L is contained in a maximal subgroup P „ 26pSL2p2q ˆ

SL3p2qq, rL – SL2p2q, and U is a natural SL2p2q-module for L. Hence Theorem A(3) holds.

Case 12. Suppose that p “ 2, M˝ –Mat24, and V is the 11 dimensional simple Todd-module.

Then M “ M˝ and |Y {V | ď 2. For a description of the action of the maximal parabolic
subgroups of M on V see [MSt, 3.5]. In particular, CM pZq „ 26.3.Symp6q and rV,Q,Q,Qs “ 1.

Assume that L is a maximal subgroup of M . Then L „ 24.L4p2q or 26.pSL2p2q ˆ SL3p2qq, and
U is a natural Ω`6 p2q- or SL3p2q-module, respectively. Thus YL X V “ U .

Suppose that U is a natural Ω`6 p2q-module. Then Q does not act quadratically on U . So by
(2˝)(c) U ę Q‚. If Y “ V then Theorem A(5) holds. Suppose Y ‰ V and let x P Y zV . Then
CM pxq – Mat23 or L3p4q.Symp3q and so CM pxq contains a conjugate of O2pLq. Thus |YL{U | “ 2
and Theorem A(10:5) holds,

Suppose that U is a natural SL3p2q-module. Since for x P Y zV , CM pxq does not contain an

elementary abelian subgroup of order 26, we get CY pO2pLqq ď V . Hence YL “ U and Theorem A(1)
holds.

Assume that L is not a maximal subgroup of M , then L is contained in one of the above maximal
subgroups. Thus U “ YL and YL is a natural SL2p2q or SL3p2q-module for L˝. Hence Theorem
A(3) or Theorem A(1) holds.

Case 13. Suppose that p “ 3, M˝ – Mat11 and Y is the 5-dimensional simple Golay-code
module.

Then Y “ V and CM˝pZq „ 32SDih16. It follows that L˝ – Altp6q, YL “ V and rYL, L
˝s is

the natural Ω´4 p3q-module. Since Y “ xrY,L˝sCM˝ pZqy and Y ę Q‚, we have rYL, L
˝s ę Q‚, and

Theorem A(7:3:2) holds.

Case 14. Suppose that p “ 2, M˝ – AutpMat22q, and Y is the 10-dimensional simple Todd-
module.

Then Y “ V and M “M˝. For a description of the action of the maximal parabolic subgroups of
M˝ on V see [MSt, 3.3]. In particular, CM pZq „ 24`1.Symp5q, and Q “ O2pCM pZqq, rV,Q,Q,Qs “
1.

Suppose first that L˝ is a maximal subgroup of M . Then L˝ „ 24.Sp4p2q, rU,L
˝s is a natural

Sp4p2q-module for L˝, |U{rU,L˝s| “ 2 and rrU,L˝s, Q,Qs ‰ 1. It follows that U “ YL and by (2˝)(c)
rYL, L

˝s ę Q, and Theorem A(2:d:2) holds.
Suppose next that L˝ is not maximal subgroup of M . Then L˝ is contained in the above maximal

subgroup of shape 24.Sp4p2q and we conclude that YL is a natural SL2p2q-module for L˝. Hence
Theorem A(3) holds.
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Case 15. Suppose that p “ 3, M˝ – 2.Mat12, and Y is the 6-dimensional simple Golay-code
module.

Then Y “ V , CM˝pZq „ 32.GL2p3q and rV,Q,Q,Qs “ 1. It follows that L˝ „ 32SL2p3q, U
is symmetric square of a natural SL2p3q for L˝, and rU,Q,Qs ‰ 1. Hence U “ YL and by (2˝)(c)
YL ę Q. Thus Theorem A(7:3:4) holds.

10.3. Proof of the Corollary to the Local Structure Theorem

In this section we prove Corollary B. So as there let G be a finite Kp-group of local characteristic

p, let S P SylppGq and suppose that there exist M, rC P MGpSq such that the following hold for

Q :“ Opp rCq:

(i) NGpΩ1ZpSqq ď rC.

(ii) CGpxq ď rC for every 1 ‰ x P ZpQq.

(iii) M ‰ rC, and M “ L for every L PMGpSq with M “ pM X LqCM pYM q.
(iv) YM ď Q.

It follows easily from (i) and (ii) that Q is a weakly closed subgroup of G, see [MSS, 2.4.2(a)]

for a proof. Since rC PMGpSq and Q Ĳ rC we have NGpQq “ rC. Hence, by a Frattini argument and
again (ii),

NGpAq “ CGpAqpNGpAq XNGpQqq ď rC

for every 1 ‰ A ď ZpQq. Since G is of local characteristic p, rC is of characteristic p. So CGpQq ď Q,

and we get that Q is a large subgroup of G. Note here that Q “ Opp rCq “ OppNGpQqq, so Q “ Q‚

in the notation of Theorem J.
By (iii) M ‰ rC, and since M P MGpSq, we conclude that G ‰ rC “ NGpQq. So Q đ M . By

1.56(a), applied with the roles of M and L reversed, there exist L PMGpSq and M˚ ď L with

S ďM˚, YM “ YM˚ , MCGpYM q “M˚CGpYM q,M
˝ “ pM˚q˝. and Q đ L.

Recall from the definition of MGpSq that MGpLq “ tL
:u and YL “ YL: . Also 2.2(b) gives CSpYLq “

OppLq. Since M P MGpSq and YM “ YM˚ , we have M˚ ď NGpYM˚q “ NGpYM q “ M . From
MCGpYM q “M˚CGpYM q we get

M “ pM X LqCGpYM q “ pM X L:qCGpYM q.

As L: P MGpSq, (iii) shows that M “ L: “ LCGpYLq and YM “ YL: “ YL. In particular,
M˝ “ pL:q˝ “ L˝.

Since G is of local characteristic p, CGpxq is of characteristic p for all non-trivial p-elements x
of G, and in particular, for all 1 ‰ x P YL. Thus Theorem J, the Structure Theorem for Maximal
Local Parabolic Subgroups, applies to L. By (iv) YM “ YL ď Q “ Q‚, and so only the first three
cases, namely the linear , symplectic and wreath product case, of Theorem J are relevant. Moreover,
as YL ď Q‚ we have YL “ rYL, L

˝s in the wreath product case. Hence one of the following holds,

where L: :“ L:{CL:pYLq.

(I) L˝ – SLnpqq, n ě 3, Sp2npqq, n ě 2, or Sp4p2q
1 (and p “ 2) and rYL, L

˝s is a corresponding
natural module for L˝. Moreover, YL “ rYL, L

˝s or p “ 2 and L˝ – Sp2npqq, n ě 2.
(II) There exists a unique L-invariant set K of subgroups of L such that YL is a natural SL2pqq-

wreath product module for L with respect to K. Moreover, L˝ “ OppxKyqQ, and Q acts
transitively on K.

Put M1 :“ xQM yCSpYM q and P1 :“ M1S. Note that M1 “ M˝CSpYLq “ L˝OppLq and so
OppM1q “ OppP1q “M˝. In particular P1S “ L˝S.

Assume Case (II). Let P˚1 be the inverse image of xKy in P1. We apply 1.58. By 1.58(c)

OppP1q “ OppP˚1 q and P˚1 Ĳ L; in particular P˚1 Ĳ M . Since OppP1q “ OppM1q, we conclude that
Corollary B(2:i) – (2:iii) hold. Moreover, 1.58(f) implies Corollary B(2:iv).

If |K| “ 1 then Corollary B(1) holds with n “ 2 and YM “ rYM ,M
˝s. If |K| ą 1 then Q ę P˚,

and Corollary B(2) holds.
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Assume that Case (I) holds. Note that SLnpqq, n ě 3, Sp2npqq,n ě 2 and Sp4p2q
1 all are

quasisimple, except for Sp4p2q. As M1 – L˝ we conclude that F˚pM1q “ M1
1

and rY,M1s is a
natural SLnpqq, Sp2npqq or Sp4p2q

1-module for M1. To show that Corollary B(1) holds, it remains
to determine CM1

pYM q.
Since M1 “ L˝OppLq “ M˝OppM1q, we have CM1pYM q “ CM˝pYM qOppM1q. Also 1.52(c)

gives rM˝, CM pYM qs ď OppM
˝q ď OppM1q. Thus M1{OppM1q is a central extension of M1 “

L˝ by the p1-group CM1
pYM q{OppM1q. Since M1 is generated by p-elements we conclude that

CM1
pYM q{OppM1q ď ΦpM1{OppM1qq and therefore CM1

pYM q{OppM1q embeds into the Schur mul-

tiplier of M1. By [Gr1] the p1-part of the Schur multiplier of SLnpqq and Sp2npqq is trivial, while
the 21-part of the Schur multiplier of Sp4p2q

1 has order 3. (Note here that Sp4p2q inverts the Schur
multiplier of Sp4p2q

1). It follows that either CM1pYM q “ OppMq or M1{OppM1q – 3.Sp4p2q
1. Thus

Corollary B(1) holds.



APPENDIX A

Module theoretic Definitions and Results

In this chapter we present the module-theoretic definitions used throughout this paper. Results
based on these definitions can be found in [MS1], [MS2], [MS3], [MS4], [MS5], and [MS6]. Some
of these results are used so often in various different places that we state them either in this or in
one of the later appendices.

Throughout this appendix H is always a finite group and all modules considered are finite
dimensional.

A.1. Module-theoretic Definitions

Definition A.1. Let V be an FpH-module and A ď H. Then A acts

(1) quadratically on V if rV,A,As “ 0,
(2) cubically on V if rV,A,A,As “ 0,
(3) nilpotently on V if rU,As ă U for every non-zero A-submodule U ď V ,
(4) nearly quadratically on V if A acts cubically on V and

rv,As ` CV pAq “ rV,As ` CV pAq for every v P V zrV,As ` CV pAq.

Moreover, V is a quadratic, cubic or nearly quadratic module for H, if there exists a subgroup
A ď H with rV,As ‰ 0 that acts quadratically, cubically and nearly quadratically on V , respectively.

Definition A.2. An FpH-module V is

(1) simple if V ‰ 0, and 0 and V are the only H-submodules of V ,
(2) central if rV,Hs “ 0,
(3) p-reduced if OppH{CHpV qq “ 1,
(4) perfect if V ‰ 0 and rV,Hs “ V ,
(5) quasisimple if V is perfect and p-reduced, and V {CV pO

ppHqq is a simple FpH-module.

Definition A.3. Let V an be FpH-module and S P SylppHq.

(a) radV pHq is the intersection of all maximal H-submodules of V .

(b) PHpS, V q :“ Op
1

pCHpCV pSqqq is the point-stabilizer of H on V with respect to S.

Definition A.4. Let V be an FpH-module and let A and B be p-subgroups of H with A ď B.
Then V is a minimal asymmetric FpH-module with respect to A ď B provided that

(i) A Ĳ NHpBq, and B is a weakly closed subgroup of H,
(ii) rV,A,Bs “ rV,B,As “ 0,

(iii) xAHy does not act nilpotently on V ,
(iv) xAF y acts quadratically on V for every proper subgroup F of H with B ď F .

Definition A.5. Let V be an FpH-module and Q a p-subgroup of H. Then V is a Q!-module
for H with respect to Q if

(i) Q is not normal in H, and
(ii) NHpAq ď NHpQq for every 0 ‰ A ď CV pQq.

Definition A.6. Let K be a non-empty H-invariant set of subgroups of H. Then V is a wreath
product module for H (with respect to K) if

V “
à

KPK
rV,Ks and CV pxKyq “ 0.

185
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Definition A.7. Let V be an FpH-module, and let A be a subgroup of H such that A{CApV q
is an elementary abelian p-group. Then

(1) A is an offender on V if |V {CV pAq| ď |A{CApV q|,
(2) A is an over-offender if |V {CV pAq| ă |A{CApV q|,
(3) A is a best offender on V if

|B||CV pBq| ď |A||CV pAq| for every B ď A,

(4) A is a strong offender on V if A is an offender on V and

CV pAq “ CV paq for every a P AzCApV q,

(5) A is a root offender on V if A is an offender on V and

CV pAq “ CV paq and rV,As “ rV, as for every a P AzCApV q,

(6) A is a strong dual offender on V if A acts nilpotently on V and

rV,As “ rv,As for every v P V zCV pAq.

By JHpV q we denote the normal subgroup of H generated by the best offenders of H on V . A
non-trivial subgroup K ď JHpV q with K ę CHpV q that is minimal with respect to K “ rK,JHpV qs
is a JHpV q-component of H. By JHpV q we denote the set of JHpV q-components of H and by J˚HpV q
the normal subgroup generated by JHpV q.

A.2. Naming Modules

In this section we assign names to certain modules.
Let K be a finite field of characteristic p and let V be a vector space of finite dimension m

over K. Let Λ2pV q, S2pV q and U2pV q be the set of symplectic, symmetric, and unitary forms on
V , where in the last case we assume that K is a quadratic extension of a subfield F and so has a
unique automorphism of order 2. Let V ˚ :“ HomKpV,Kq be the dual of V . Then Λ2pV q :“ Λ2pV

˚q

is the exterior (or symplectic) square of V , S2pV q :“ S2pV
˚q is the symmetric square of V , and

U2pV q :“ U2pV
˚q is the unitary square of V . Note that Λ2pV q and S2pV q are vector spaces of

dimension
`

m
2

˘

and
`

m`1
2

˘

, respectively, over K, and U2pV q is a vector space of dimension m2 over

F. Also Λ2pV q, S2pV q and U2pV q are FpSLKpV q-modules.

Suppose now that V is an FpH-module. Let K be a group and W an FpK-module. Suppose
that there exists a surjective homomorphism

τ : H Ñ K{CKpW q, h ÞÑ τh,

and an Fp-isomorphism φ : V ÑW, v ÞÑ φpvq, such that

p˚q φpvhq “ φpvqτh for all v P V and h P H.

– If K ď GLFppW q, then V is a natural K-module for H1. In particular, if pW, f, hq is a

non-degenerate classical space over the field K and K “ ClKpW q,
2 then V is a natural

ClKpW q-module for V .
– If W0 is vector space over K, K “ SLKpW0q, and W is Λ2pW0q, S

2pW0q or U2pW0q, then W
is the exterior, symmetric or unitary (respectively) square of a natural SLKpW0q-module
for H.

– Let I be a finite set and K ď SympIq. View FIp as an K-module via pwiq
π
iPI “ pwiπ´1qiPI .

- If W “ FIp then V is an FpK-permutation module for H.

- If p “ 2 and W “ tpwiqiPI P FIp |
ř

iPI wi “ 0u then V is an even FpK-permutation
module for H.

- If K “ AltpIq or SympIq and W is the non-central simple section of K on FIp, then
V is a natural FpK-module for H.

– If K “ Szp2kq and W is the simple F2Szp2
kq-module of F2k -dimension 4, then V is a

natural Szp2kq-module.

1Note here that K is assumed to be subgroup of GLFp pW q, not only isomorphic to a subgroup.
2Classical spaces and ClpW q as defined in Appendix B
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– If K “ G2p2
kq and W is the simple F2G2p2

kq-module of F2k -dimension 6, then V is a
natural G2p2

kq-module.
– If K “ 3D4pp

kq and W is the simple Fp3D4pp
kq-module of Fp3k -dimension 8, then V is a

natural 3D4pp
kq-module.

– If K “ E6pp
kq and W is a simple FpE6pp

kq-module of Fpk -dimension 27, then V is a natural

E6pp
kq-module.

– Suppose that pU, f, hq is a non-degenerate orthogonal space with Clifford algebra C with
grading C “ C1 ‘ C´1.3 Suppose also that K “ SpinpUq and note that C is a K-module
by right multiplication. If W is a minimal right ideal of C, then V is a spin K-module for
H. If W is a minimal right ideal of C1, then V is a half-spin K-module for H.

– Let U ď F24
2 be the binary Golay-code of length 24, dimension 12 and minimum distance

8. Note that M :“ AutpUq “ Mat24 and let K be one of M “ Mat24, CM p24q “ Mat23,
CM pt23, 24uq “ Mat22 or NM pt23, 24uq “ AutpMat22q. If W is the non-central simple
section of K on U , then V is a Golay code K-module for H. If W is the non-central simple
section of K on F24

2 {U , then V is a Todd K-module.
– Let U ď F12

3 be the ternary Golay code of length 12, dimension 6 and minimal distance
6. Let M “ AutpUq „ 2.Mat12 and let K be one of M or CM p12q1 “ Mat11. If W is the
non-central simple section of K in U , then V is a Golay code K-module for H. If W is the
non-central simple section of K on F12

3 {U , then V is a Todd K-module.

Note that the Todd K-module and Golay-code K-module are simple and dual to each other.
The following table lists the order of some of the modules defined above.

V |V |
natural ClKpW q |W |

exterior square of natural SLnpqq qp
n
2q

symmetric square of natural SLnpqq qp
n`1
2 q

unitary square of natural SLnpq
2
0q qn

2

0

half-spin Spin`2npqq q2n´1

half-spin Spin´2npqq q2n

half-spin Spin2n`1pqq q2n

natural FpSympnq, natural FpAltpnq pn´1 if p ffl n, pn´2 if p � n
natural Szp2kq 24k

natural G2p2
kq 26k

natural 3D4pp
kq p24k

natural E6pp
kq p27k

Todd Mat22p.2q, Golay-code Mat22p.2q 210

Todd Mat23, Golay-code Mat23 211

Todd Mat24, Golay-code Mat24 211

Todd Mat11, Golay-code Mat11 35

Todd 2.Mat12, Golay-code 2.Mat12 36

We remark that, for given H, K and W , the FpH-module V fulfilling p˚q might not be unique
up to isomorphism. For example, if H has two different normal subgroups H1 and H2 with H{Hi –

K{CKpW q then there exist FpH-modules V1 and V2 fulfilling p˚q with CHpViq “ Hi, and so V1

and V2 are not isomorphic. Also if K{CKpW q has outer automorphisms which are not induced
by elements of GLFppW q there will exist non-isomorphic V ’s with the same CHpV q. We list some
examples which occur in this paper:

– SLKpV q, dimK V ě 3, has two natural SLKpV q-modules, namely V and its dual V ˚.
– SLKpV q, dimK V ě 5, has two exterior squares of natural SLKpV q-modules, namely Λ2pV q

and Λ2pV q˚.
– SLKpV q, dimK V ě 3, charK odd, has two symmetric squares of natural SLKpV q-modules,

namely S2pV q and S2pV q˚.

3For the Clifford algebra see also Appendix B
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– SLKpV q, dimK V ě 3, dimFp K even, has two unitary squares of natural SLKpV q-modules,

namely U2pV q and U2pV q˚.
– O`4 p2q has two natural O`4 p2q-modules.
– Sp4pqq, q even, has two natural Sp4pqq-modules. For q “ 2, these are also natural Symp6q-

modules.
– Sp4p2q

1 has two natural Sp4p2q
1-modules, which are also natural Altp6q-modules.

– Spin`8 pqq has three natural Ω`8 pqq-modules, all of which are also half-spin Spin`8 pqq -
modules. For q odd, these are distinguished by the kernel of the action.

– Spin`10pqq has two half-spin Spin`10pqq-modules dual to each other.
– E6pqq has two natural E6pqq-modules, dual to each other.

We also remark that a group H can have the exterior, symmetric or unitary square of a natural
SLKpV q-module without having a natural SLKpV q-module. For example, if p is odd and dimK V “ 2,
then S2pV q, viewed as a module for PSLKpV q, is the symmetric square of a natural SLKpV q-module,
but PSLKpV q does not have a natural SLKpV q-module.

A.3. p-Reduced Modules

In this section H is a finite group, p is a prime and V is an FpH-module.

Definition A.8. (a) C˚HpV q is inverse image OppH{CHpV qq in H.
(b) YV pHq is the H-submodule of V generated by all the p-reduced H-submodules of V .

Lemma A.9. Let L ĲĲ H. Then

(a) L acts nilpotently on V if and only if L ď C˚HpV q.
(b) C˚LpV q “ C˚LprV,Lsq “ C˚LprV,O

ppLqsq ď C˚HpV q.
(c) If V is p-reduced for H then rV,Ls and rV,OppLqs are p-reduced for L.
(d) If V is p-reduced and faithful for H, then each of V , rV,Ls and rV,OppLqs is p-reduced and

faithful for L.

Proof. (a): Without loss V is a faithful H-module. Then C˚HpV q “ OppHq. Note that L acts
nilpotently on V if and only if L is a p-group and so if and only if L ď OppHq.

(b): Put X :“ C˚LprV,O
ppLqsq. Observe that X, C˚LpV q and C˚LprV,Lsq are normal in L and

thus subnormal in H. By (a) C˚LpV q and C˚LprV,Lsq act nilpotently on rV,Ls and rV,OppLqs, so
again by (a),

p˚q C˚LpV q ď C˚LprV,Lsq ď X.

Note that X acts as a p-group on V {rV,OppLqs. Since V is an Fp-module, X acts nilpotently on
V {rV,OppLqs and thus also nilpotently on V . Hence X ď C˚LpV q and X “ C˚LpV q, and equality
holds in p˚q. Since X ĲĲ H, (a) shows that X ď C˚HpV q.

(c) and (d): These are direct consequences of (b). l

Lemma A.10. The following are equivalent:

(a) V is p-reduced for H.
(b) C˚HpV q “ CHpV q.
(c) Any normal subgroup of H which acts nilpotently on V centralizes V .
(d) Any subnormal subgroup of H which acts nilpotently on V centralizes V .

Proof. By definition V is p-reduced for H if and only if OppH{CHpV qq “ 1, that is, if and
only if C˚HpV q{CHpV q “ 1, that is, if and only if C˚HpV q “ CHpV q. Also by A.9(a) a subnormal
subgroup of H acts nilpotently on V if and only if it is contained in C˚HpV q. It follows that both (c)
and (d) are equivalent to (a). l

Lemma A.11. (a) Let W be a set of p-reduced H-submodule of V . Then xWy is a p-reduced
H-module.

(b) YV pHq is the unique maximal p-reduced H-submodule of V .
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Proof. (a): Let K be a normal subgroup of H acting nilpotently on xWy. Then K acts
nilpotently on each W PW and so centralizes W and xWy. Thus A.10 shows that xWy is p-reduced.

(b): By definition, YV pHq is the submodule of V generated by all the p-reduced H-submodules
of V , and by (a) YV pHq is p-reduced. Hence (b) holds. l

Lemma A.12. Let L be a parabolic subgroup of H and U a p-reduced L-submodule of V . Then
xUHy is p-reduced for H. In particular, YV pLq ď YV pHq.

Proof. Let M be a normal subgroup of H acting nilpotently on W :“ xUHy. Then M X L
is a normal subgroup of L acting nilpotently on U . Thus M X L ď CM pUq. Since M{CM pW q is a
p-group and normal in H{CHpW q and L is a parabolic subgroup of H, M “ pM XLqCM pW q. Thus
rM,U s “ 1 and since M Ĳ H, also rM, xUHys “ 1. Hence by A.10, xUHy is p-reduced for H. l

Lemma A.13. Let P,Q ď H and suppose that P {CP pV q is a p-group and rP,Qs ď CHpV q.
Then

(a) If Q{CQpV q is a p1-group, CQpCV pP qq “ CQpV q.
(b) C˚QpCV pP qq “ C˚QpV q.

(c) If V is p-reduced for Q, then C˚QpCV pP qq “ CQpCV pP qq “ CQpV q.

(d) Suppose that V is a faithful Q-module and OppQq “ 1, then CV pP q is a faithful Q-module.

Proof. We may assume that V is a faithful H-module, so rP,Qs “ 1 and P is a p-group.
(a): This follows from the P ˆQ-Lemma.

(b): Let x be a p1- element in C˚QpCV pP qq. Then x centralizes CV pP q, and so by (a) applied

with Q “ xxy, x centralizes V . Thus x “ 1 and C˚QpCV pP qq is a p-group. Hence C˚QpCV pP qq is a

normal p-subgroup of Q and so C˚QpCV pP qq ď C˚QpV q. The other inclusion is obvious.

(c): Since V is p-reduced for Q, CQpV q “ C˚QpV q. Thus using (b),

CQpCV pP qq ď C˚QpCV pP qq “ C˚QpV q “ CQpV q ď CQpCV pP qq,

and so (c) holds.

(d): Since OppQq “ 1 and V is a faithful Q-module, V is a p-reduced Q-module. Thus (c) gives
CQpCV pP qq “ CQpV q “ 1. l

Lemma A.14. Let U and W be H-submodules of V with CHpW q “ CHpUq. Then C˚HpUq “
C˚HpW q. In particular, U is p-reduced for H if and only if W is p-reduced for H.

Proof. Just recall that, by definition, C˚HpUq and C˚HpW q are the preimages of OppH{CHpUqq
and of OppH{CHpW qq, respectively, in H. l

Lemma A.15. Let L ĲĲ H.

(a) If V is p-reduced for H, V is p-reduced for L.
(b) YV pHq ď YV pLq and CLpYV pHqq “ CLpYV pLqq.

Proof. (a): By A.10 V is p-reduced if and only if any subnormal subgroup of H which acts
nilpotently on V centralizes V . As any subnormal subgroup of L is subnormal in H, this gives (a).

(b): By (a) YV pHq is p-reduced for L and so YV pHq ď YV pLq and CLpYV pLqq ď CLpYV pHqq.
It remains to show that CLpYV pHqq ď CLpYV pLqq. By induction on H{L we may assume that
L Ĳ H. Hence YV pLq is an H-submodule of V . To simplify notation we replace V by YV pLq and so
V is p-reduced for L. Let W be an H-submodule of V minimal with CLpW q “ CLpV q. Since V is
p-reduced for L, A.14 shows that W is also p-reduced for L. Let P :“ C˚HpW q. Then P {CP pW q is a
p-group and rP,Ls ď C˚LpW q “ CLpW q. Thus A.13(c) shows that CLpCW pP qq “ CLpW q “ CLpV q.
The minimal choice of W implies that W “ CW pP q. Thus P “ CHpW q and W is p-reduced for H.
Hence W ď YV pHq and so

CLpYV pHqq ď CLpW q “ CLpV q.
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l

A.4. Wreath Product Modules

In this section H is a finite group and V a finite FpH-module.

Lemma A.16. Let K be an H-invariant set of subgroups of H and suppose that V is a wreath
product module for H with respect to K. Then for each A P K:

(a) If rV,As ‰ 0. then NHprV,Asq “ NHpAq.
(b) rV,Bs ď CV pAq for all B P KztAu; in particular

V “ rV,As ‘ CV pAq, CV pAq “
“

V,
@

KztAu
D‰

, and rV,As “ CV
`@

KztAu
D˘

.

(c) rV,As “ rV,A,As and CAprV,Asq “ CApV q.
(d) rA,Bs ď CxKypV q for all B P KztAu.

Proof. By the definition of a wreath product module

p˚q V “
à

KPK
rV,Ks and CV pxKyq “ 0.

(a): Clearly NHpAq ď NHprV,Asq. Let h P H and assume that rV,As ‰ 0. Since K is H-
invariant, Ah P K. Hence p˚q shows that either A “ Ah or rV,As X rV,Ahs “ 0. In the second case
rV,As ‰ rV,Ash since rV,As ‰ 0. Thus also NHprV,Asq ď NHpAq.

(b): Put KA :“ KztAu and W :“
ř

BPKArV,Bs. Note that V “ rV,As ‘W by p˚q. Since KA
is A-invariant, also W is A-invariant, and so rW,As ď rV,As XW “ 0. Hence W ď CV pAq and
V “ rV,As ` CV pAq.

Since this is true for all A P K, rV,As is centralized by each B P KA. Hence CrV,AspAq ď
CV pxKyq “ 0 and V “ rV,As ‘ CV pAq.

(c): By (b), V “ rV,As ` CV pAq, and (c) follows.

(d): Let B P KA. By (b) rV,A,Bs “ rV,B,As “ 0, and the Three Subgroups Lemma gives
rA,B, V s “ 0. Thus rA,Bs ď CxKypV q. l

Lemma A.17. Let K be an H-invariant set of subgroups of H. Suppose that V is a faithful
xKy-module and a wreath product module for H with respect to K. Then for all A P K:

(a) rV,As is a faithful A-module.
(b) xKy “

Ś

KPKK.

Proof. (a): Since xKy acts faithfully on V , CApV q “ 1. By A.16(c) CAprV,Asq “ CApV q and
so (a) holds.

(b): Put LA :“ xKztAuy. By A.16(b) LA centralizes rV,As and so by (a) LA X A “ 1. By
A.16(d) rA,Bs ď CxKypV q. The faithful action of xKy implies that rA,Bs “ 1 and thus A Ĳ xKy.

We have proved that A Ĳ xKy and AX LA “ 1 for all A P K. Hence xKy “
Ś

KPKK. l

Lemma A.18. Let K be an H-invariant set of subgroups of H. Suppose that V is a faithful
p-reduced xKy-module and rV, xKys is a wreath product module for H with respect to K. Then
rV,Ks “ rV, xKy,Ks for each K P K.

Proof. Put R :“ xKy and W :“ rV,Rs. Since V is a faithful and p-reduced R-module, A.9(d)
shows that W is a faithful R-module. Thus by A.17 R “

Ś

KPKK.
Let K P K and put L :“ xKztKuy. Note that rL,Ks “ 1 and rV,L,Ks ď rW,Ks. The Three

Subgroups Lemma gives rV,K,Ls ď rW,Ks. On the other hand by A.16(b) W “ rW,Ks ‘ CV pKq,
rW,Ks “ CW pLq and CW pKq “ rW,Ls. Hence CrW,LspLq “ 0 and rW,Ls and W {rW,Ks are
isomorphic L-modules. It follows that CW {rW,KspLq “ 0, and since rV,K,Ls ď rW,Ks we get
rV,Ks ď rW,Ks. Thus rV,Ks “ rW,Ks. l
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Definition A.19. Let ∆ be a set of non-zero subspaces of V . Then ∆ is a system of imprimi-
tivity for H on V if

∆ is H-invariant, |∆| ą 1, and V “
à

WP∆

W.

Lemma A.20. Let ∆ be a system of imprimitivity for H on V . Suppose that E is a subgroup of
H that acts non-trivially on ∆ and that |rV,Es| ď |W | for some W P ∆zC∆pEq. Then

(a) |W | “ |rV,Es|, W X rV,Es “ 0 and NEpW q “ CEpV q “ CEp∆q for all W P ∆zC∆pEq,
(b) |E{CEpV q| “ 2 “ |∆zC∆pEq|, and
(c) rX,Es “ 0 for all X P C∆pEq.

Proof. Pick e P E with W e ‰ W and put Λ :“ twe ´ w | w P W u. Since W X W e “ 0
we get Λ XW “ 0 and |Λ| “ |W |. Now |rV,Es| ď |W | and Λ Ď rV,Es imply rV,Es “ Λ, and so
rV,Es “ Λ ď W `W e. It follows that xWEy “ W ` rW,Es ď W `W e. Since V “

À

DP∆D
this gives WE “ tW,W eu. Put Y “ x∆zWEy. Then Y is E-invariant and so rY,Es ď Y X
rV,Es ď Y X pW `W eq “ 0. In particular, ∆zC∆pEq “ tW,W

eu and |E{CEp∆q| “ 2. Moreover,
rW,CEp∆qs ď W X rV,Es “ W X Λ “ 0 and since CEp∆q Ĳ E also rW e, CEp∆qs “ 0. Thus
CEp∆q “ CEpV q and the lemma is proved. l

Lemma A.21. Let K be a non-empty H-invariant set of subgroups of H. Suppose that

(i) rV,A,As “ rV,As and rV,As X CV pAq “ 0 for all A P K, and
(ii) rA,Bs ď A and rV,As X rV,Bs “ 0 for all distinct A,B P K.

Then rV, xKys is a wreath product module for H with respect to K.

Proof. Observe that (ii) shows that any two subgroups in K normalize each other. Let A P K
and put W “

ř

A‰BPKrV,Bs. Since A normalizes B, rV,B,As ď rV,Bs X rV,As “ 0 and so
rW,As “ 0 and rV,As XW ď rV,As X CV pAq “ 0.

Also rV, xKys “
ř

APKrV,As and so rV, xKys “
À

APKrV,As by the definition of an internal direct
sum. From W ď CV pAq and rV,As X CV pAq “ 0 we conclude that CrV,xKyspAq “ W . As this holds
for all A P K we get CrV,xKyspxKyq “ 0.

Since rV,As “ rV,A,As we have rrV, xKys, As “ rV,As, and so rV, xKys is a wreath product
module for H with respect to K. l

Lemma A.22. Let K be a non-empty H-invariant set of subnormal subgroups of H. Suppose
that

(i) |K{CKprV,Ksq| ą 2 for all K P K,
(ii) rV,Ks X CV pKq “ 0 and rV,K,Ks “ rV,Ks for all K P K,
(iii) rV,As X rV,Bs “ 0 for all distinct A,B in K with rA,Bs ď AXB, and
(iv) rV,Bs ę rV,As for all distinct A,B in K.

Then rV, xKys is a wreath product module for H with respect to K.

Proof. If h P NHprV,Ksq, then rV,Ks “ rV,Khs and by (iv) K “ Kh. We have shown:

p˚q NHprV,Ksq ď NHpKq for every K P K.
Let A,B be distinct elements of K. In view of A.21, (ii) and (iii) it suffices to show that A and

B normalizes each other. Put R :“ xA,By. If R “ A, then rV,Bs ď rV,Rs “ rV,As a contradiction
to (iv). Thus A ‰ R and so A is a proper subnormal subgroup of R. Hence xARy ‰ R and by
induction on |xKy|, rV, xARys is a wreath product module for R with respect to AR. By symmetry,
also B ‰ R, and rV, xBRys is a wreath product module for R with respect to BR.

We now assume without loss that |rV,Bs| ď |rV,As|. Suppose for a contradiction that B does
not normalize A. Then by p˚q B does not normalize rV,As. Put ∆ :“ rV,AsR. Since U :“ rV, xARys
is a wreath product module for R with respect to AR, ∆ is a system of imprimitivity for R on U .
Since |rV,Bs| ď |rV,As|, we can apply A.20 and conclude that |B{CBpUq| “ 2 and |rU,Bs| “ |rV,As|.
Since |rV,Bs| ď |rV,As| this gives |rV,Bs| “ |rU,Bs| “ |rV,As| and rV,Bs “ rU,Bs ď U . But then
CBpUq ď CBprV,Bsq and |B{CBprV,Bsq| ď |B{CBpUq| ď 2, contrary to (i).
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Thus B normalize A; in particular AB is a subgroup of H. Suppose for a contradiction that A
does not normalizes B and pick a P A with Ba ‰ B. Since V is a wreath product module for R
with respect to BR, A.16(c) shows that rV,B,Bas “ 0. Note that B ď BA “ BaA. Also by (ii),
rV,Bs “ rV,B,Bs and so

rV,Bs “ rV,B,Bs ď rV,B,BaAs “ rV,B,As ď rV,As,

a contradiction to (iv)
Hence A and B normalize each other, and the lemma is proved. l

Lemma A.23. Let K be a non-empty H-invariant set of subnormal subgroups of H and suppose
that

(i) |A{CKprV,Asq| ą 2 for all A P K.
(ii) rV,As is a simple K-module for all A P K.
(iii) rV,Bs ę rV,As for all distinct A and B in K.

Then rV, xKys is a wreath product module for H with respect to K.

Proof. We will verify that the hypothesis of A.22 holds. Let K P K. Since |K{CKprV,Ksq| ą 2,
K does not centralize rV,Ks, and since rV,Ks is a simple K-module, we conclude that rV,Ks “
rV,K,Ks and rV,Ks X CV pKq “ 0. So A.22(i) and (ii) hold.

Now let A,B be distinct elements of K with rA,Bs ď A X B. Then B normalizes A and
rV,As X rV,Bs is an B-submodule of rV,Bs. Since rV,Bs ę rV,As, it is a proper B-submodule, and
since rV,Bs is simple, we conclude that rV,As X rV,Bs “ 0. Hence also A.22(iii) holds. Also, (iii) is
the same as A.22(iv).

Thus, we can apply A.22, and rV, xKys is a wreath product module for H with respect to K. l

Definition A.24. Let H be a finite group, K a non-empty H-invariant set of subgroups of H
and Ξ a class of modules. Then V is a Ξ-wreath product module for H with respect to K provided
that V is wreath product module for H with respect to K and for each K P K, rV,Ks is a Ξ-module
for K.

Most important for our paper are faithful natural SL2pqq-wreath product modules, that is,
where Ξ consists only of the natural FpSL2pqq- modules and the action of H is faithful. The next
remark gives an explicit description of natural SLnpqq-wreath product modules.

Remark A.25. Suppose that V is a faithful H-module and K is non-empty H-invariant set of
subgroups of H. Then V is a natural SLnpqq-wreath product module for H with respect to K if and
only if

V “
à

KPK
rV,Ks and xKy “

ą

KPK
K,

and for each K P K, K – SLnpqq and rV,Ks is a natural SLnpqq-module for K.

Proof. Suppose that V is a natural SLnpqq-wreath product-module for H with respect to V .
Then by definition, V “

À

KPKrV,Ks and for each K P K, rV,Ks is a natural SLnpqq-module for K.
Since V is faithful, A.17 shows that rV,Ks is a faithful K-module and xKy “

Ś

KPKK. So rV,Ks is
a faithful natural SLnpqq-module for K and thus K – SLnpqq.

The converse should be obvious. l

Lemma A.26. Let K be a non-empty H-invariant set of subnormal subgroups of H.

(a) Suppose that for all K P K, K is quasisimple and rV,Ks is a simple K-module. Then
rV, xKys is a wreath product module for H with respect to K.

(b) Let q be a power of p and n ě 2. Suppose that V is a faithful H-module and
(i) for all K P K, K – SLnpqq and rV,Ks is a natural SLnpqq-module for K, or
(ii) for all K P K, K – SL2pqq

1 and rV,Ks is a natural SL2pqq
1-module for K.

Then rV, xKys is a natural SLnpqq- or natural SL2pqq
1-wreath product module for H with

respect to xKy.
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Proof. We will prove (a) and (b) simultaneously by verifying the hypothesis of A.23. Let K P

K. Observe that in both cases rV,Ks is a non-central simple K-module. Also |K{CKprV,Ksq| ą 2
since in (a) K is quasisimple and in (b) |K{CKprV,Ksq| ě |SL2pqq

1| ě 3. Hence A.23(i) and (ii)
hold and it remains to verify that K “ E for all E,K P K with rV,Es ď rV,Ks.

Put W :“ rV,Ks, so rV,Es ďW . Since W is a simple K-module, EndFpHpW q is a finite division
ring by Schur’s Lemma, and so is commutative by Wedderburn’s theorem. We get

p˚q rW, rE,Kss ‰ 0 or E{CEpW q is abelian.

Suppose first that K and E are quasisimple. Then K and E are components of H, so K “ E or
rK,Es “ 1. By p˚q either rW, rE,Kss ‰ 0 or E{CEpW q is abelian. In the first case rE,Ks ‰ 1 and
so E “ K. In the second case E “ CEpW q since E is quasisimple. But then rV,Es “ rV,E,Es ď
rW,Es “ 0, and rV,Es is central E-module, a contradiction.

Suppose next that one of K and E is not quasisimple. Then we are in case (b) and K – E –
SL2ppq or SL2ppq

1 with p “ 2 or 3. In particular, Op1pKq ‰ 1 and W “ rV,Es “ rW,Op1pKqs. Put
F :“ xE,Ky and R :“ Op1pF q. Since K is subnormal in F , 1 ‰ Op1pKq ď R. Hence rV,Rs “ W “

rV, F s, and coprime action shows that V “ W ‘ CV pRq. Since F normalizes R, we conclude that
rCV pRq, F s ď CV pRq XW “ 0. Thus V “ W ‘ CV pF q. Since V is a faithful H-module, F acts
faithfully on W . Note that |W | “ p2 and AutpW q “ GL2ppq has a unique subgroup isomorphic to
K. So E and K have the same image in AutpW q and since CF pW q “ 1, E “ K. l

Lemma A.27. Let P ď H and let K be a non-empty P -invariant set of subgroups of P . Suppose
that

(i) OppxKyq Ĳ H,
(ii) V is natural SL2pqq-wreath product module for P with respect to K, q “ pn,

(iii) V is a faithful H-module.

Then

(a) If E ď H such that rV,Es is a faithful natural SL2pqq-module for E, then E P K.
(b) V is a natural SL2pqq-wreath product module for H with respect to K.
(c) K is the unique H-invariant set of subgroups of H such that V is a natural SL2pqq-wreath

product module for H with respect to K.

Proof. (a): Put R :“ OppxKyq. Since V is a natural SL2pqq-wreath product module for P
with respect to K and by (iii) V is a faithful P -module, the definition of a wreath product module
and A.17(b) give

V “
à

KPK
rV,Ks and xKy “

ą

KPK
K,

and rV,Ks is a natural SL2pqqmodules for each K P K. By A.17(a) rV,Ks is a faithful K-module and
soK – SL2pqq. In particular, rV,Ks is a natural SL2pqq

1 module for OppKq and for R. It follows that
rV,Ks, K P K, are pairwise non-isomorphic simple R-submodules of V and so ∆ :“ trV,Ks | K P Ku
is the set of Wedderburn components for R on V . Since R Ĳ H we conclude that H acts on ∆.

Note that |rV,Ks| “ q2 “ |rV,Es|. Suppose that E acts non-trivially on ∆. Then |∆| ě 2
and ∆ is a system on imprimitivity for H on V . Hence A.20(b) implies that |E{CEpV q| “ 2, a
contradiction. Thus E acts trivially on ∆. In particular, rV,Es “

À

WP∆rW,Es, and since rV,Es is
a simple E module, there exists a unique W P ∆ with rW,Es ‰ 0. Let K be the unique element of
K with W “ rV,Ks.

Put F :“ xK,Ey and U :“
ř

XP∆ztW uX. Then V “ W ‘ U and F centralizes U . So F acts

faithfully on W . Moreover, since R Ĳ H, F normalizes CRpUq “ OppKq. Put F :“ EndKpW q and
observe that F – Fq.

We claim that F acts F-linearly on W . If p “ q, then F “ Fq and this is obvious. If q ą p,
then K “ OppKq and F normalizes K. Since F “ EK is perfect and AutpFq is abelian, we again
conclude that F acts F-linearly.

Note that GLFpW q{SLFpW q is a p1-group and SL2pqq is generated by p-elements, so SLFpW q –
SL2pqq is the unique subgroup of GLFpW q isomorphic to SL2pqq. Since F acts faithfully on W and
both E and K are isomorphic to SL2pqq, this gives E “ F “ K. So E P K.
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(b): From (a) we conclude that K is H-invariant and so (b) holds.

(c) follows immediately from (a). l

Lemma A.28. Let K ď H and S P SylppHq, and suppose that V is a faithful H-module. Put

K :“ KH and R :“ xKy. Suppose that OppHq ď R and V is a natural SL2pqq-wreath product module
for H with respect to K, q “ pn. Then the following hold:

(a) H “ RS, and S is transitive on K.
(b) H is p-minimal, and NHpRX Sq is the unique maximal subgroup of H containing S.
(c) V is a simple H-module. In particular, V is a p-reduced H-module and OppHq “ 1.
(d) Up to conjugation in H, K is the unique subgroup of H such that K – SL2pqq and rV,Ks

is a natural SL2pqq-module for K.
(e) Let S :“ tv P V | rv, F s ‰ 0 for all F P Ku. Then R is transitive on S, and CV pT q

7 Ď S
for every T ď H that is transitive on K.

Proof. (a): Since OppHq ď R, H “ RS, and since R normalizes K, KH “ KRS “ KS .

(b): Let L be a maximal subgroup of H containing S. Since K – SL2pqq, and NKpKXSq is the
only maximal subgroup of K containing KXS, it follows that K ď L or KXL ď NKpKXSq. In the
first case R ď L since S is transitive on K, and so L “ H, a contradiction. Hence KXL ď NKpKXSq;
in particular K X S “ OppK X Lq. Since K X L Ĳ R X L, we conclude that R X L Ĳ NRpK X Sq.
Now again the transitivity of S on K gives R X S “ xpK X SqSy and R X L ď NRpR X Sq and so
L ď NHpRX Sq. Since NHpRX Sq is a proper subgroup of H, L “ NHpRX Sq follows.

(c): Let W be a non-zero H-submodule of V . By definition of a wreath product module,
CV pxKyq “ 0 and so rW,As ‰ 0 for some A P K. Thus W X rV,As ‰ 0. Since rV,As is a natural
SL2pqq-module for A, rV,As is simple A-module and so rV,As ď W . As H acts transitively on K,
this gives rV,As ďW for all A P K. By definition of wreath product module, V “

À

APKrV,As and
so V “W .

(d): By A.27, applied with pH,H,Kq in place of pP,H,Kq, any E ď H such that rV,Es is a
faithful natural SL2pqq-module for E is contained in K and so is conjugate to K.

(e): Let v P CV pT qzS. Then rv, F s “ 0 for some F P K. Since T acts transitively on K, this
gives v P CV pxKyq “ 0. Thus CV pT q

7 Ď S. Since K is transitive on rV,Ks, R is transitive on S. l

A.5. Offenders

In this section p is a prime, H is a finite group, V is an FpH-module and V ˚ :“ HomFppV,Fpq
is the dual of V .

Lemma A.29 (Chermak-Delgado Measuring Argument). Let α be a positive real number and
X ď H.

(a) Suppose that |V {CV pBq| ď |B{CBpV q|
α for some B ď X with rV,Bs ‰ 1. Then there exists

a NHpXq-invariant subgroup D of X such that rV,Ds ‰ 1, |V {CV pDq| ď |D{CDpV q|
α and

|A|α|CV pAq| ď |D|
α|CV pDq| for all A ď X.

(b) Suppose that X{CXpV q is elementary abelian and X contains a non-trivial offender on V .
Then X contains an NHpXq-invariant non-trivial best offender D on V with |A||CV pAq| ď
|D||CV pDq| for all A ď X.

Proof. Replacing H be H{CHpV q we may assume that V is a faithful H-module.
(a): Since B ‰ 1 also X ‰ 1 and we can define

mα “ max
 

|A|α|CV pAq|
ˇ

ˇ 1 ‰ A ď X
(

and
αM “

 

1 ‰ A ď X
ˇ

ˇ |A|α|CV pAq| “ mα

(

.

Observe that αM ‰ H. Since |V {CV pBq| ď |B{CBpV q|
α “ |B|α, we have

mα ě |B|
α|CV pBq| ě |V |.
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Thus [CD, 1.2] shows that αM has a unique maximal element D. Since D is unique, D is NHpXq-
invariant. Also

|D|α|CV pDq| “ mα ě |V |,

and so |V {CV pDq| ď |D|
α “ |D{CDpV q|

α.
By the definition of αM, D ‰ 1 and so rV,Ds ‰ 1, and by the definition of mα,

|A|α|CV pAq| ď mα “ |D|
α|CDpV q|

for all 1 ‰ A ď X. Since mα ě |V |, this also holds for A “ 1.

(b): Let D be as in (a) for α “ 1. Since X{CXpV q is elementary abelian, also D{CDpV q is
elementary abelian. Thus (a) shows that (b) holds. l

Lemma A.30. Suppose that H does not contain any over-offenders on V . Then every offender
in H on V is a best offender.

Proof. Let A ď H be an offender on V and let B ď A. Since A is an offender, |V {CV pAq| ď
|A{CApV q| and so |V ||CApV q| ď |A||CV pAq|. By hypothesis, B is not an over-offender and so
|V {CV pBq| ě |B{CBpV q|. Thus

|B||CV pBq| ď |V ||CBpV q| ď |V ||CApV q| ď |A||CV pAq|

and A is a best offender on V . l

Lemma A.31 ([MS5, 1.2]). Let A ď H. Then A is a best offender on V if and only if A is an
offender on every A-submodule of V .

Lemma A.32 ([MS5, 1.5]). Let A be a strong dual offender on V . Then the following hold:

(a) A is quadratic on V .
(b) A is a strong dual offender on every A-submodule of V and V ˚.
(c) A is best offender on V and on V ˚.
(d) If |rV,As| “ |A{CApV q|, then A is a strong offender on V .

Lemma A.33. Let A ď H, F a finite field and V an FA-module. Suppose that A is an offender
on V and rV,As is 1-dimensional over F. Then

(a) |V {CV pAq| “ |A{CApV q|.
(b) The canonical commutator map A{CApV q Ñ HomF

`

V {CV pAq, rV,As
˘

is an isomorphism.
(c) A is a strong dual offender and a best offender on every A-submodule of V .

Proof. For (a) and (b) see [MS6, 3.4]. Note that (b) implies rv,As “ rV,As for all v P
V zCV pAq. Thus A is a strong dual offender on V and on every A-submodule of V . Hence by
A.32(c) A is also a best offender on every A-submodule of V . l

Lemma A.34 ([MS5, 1.6]). Let A be a strong offender on V . Then A is a quadratic best offender
on V .

Lemma A.35. Let A ď H be a strong offender on V . Then the following statements are equiv-
alent:

(a) A is a root offender on V .
(b) |rV,As| “ |V {CV pAq|.
(c) rV,As “ rV, as for some a P A.
(d) rV,As “ rV, as for some 1 ‰ a P A.
(e) CV ˚pAq “ CV ˚paq for some a P A.
(f) CV ˚pAq “ CV ˚paq for all 1 ‰ a P A
(g) A is a strong offender on V ˚.
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Proof. Without loss V is a faithful A-module. If A “ 1, the statements of the lemma are
obvious. So suppose that A ‰ 1.

(a)ðñ (b)ðñ (c)ðñ(d): Let 1 ‰ a P A. Since A is a strong offender, CV paq “ CV pAq.
Thus

|V {CV pAq| “ |V {CV paq| “ |rV, as| ď |rV,As|.

Hence
|V {CV pAq| “ |rV,As| ðñ |rV, as| “ |rV,As| ðñ rV, as “ rV,As.

It follows that |V {CV pAq| “ |rV,As| iff rV, as “ rV,As for some a P A iff rV, as “ rV,As for all
1 ‰ a P A. Since A is a strong offender, the latter condition holds if and only if A is a root offender
on V . Thus (a), (b) , (d) and (c) are equivalent.

(c) ðñ (e) and (d)ðñ(f): Since CV ˚pAq “ rV,AsK and CV ˚paq “ rV, asK, (c) and (e) are
equivalent, and also (d) and (f) are equivalent

(f) ùñ (g): Suppose that (f) holds. Then also (a) holds. Since A is an offender we get
|rV,As| “ |V {CV pAq| ď |A|. As |V ˚{CV ˚pAq| “ |V

˚{rV,AsK| “ |rV,As| we conclude that A is an
offender on V ˚. Together with (f) this shows that A is a strong offender on V ˚.

(g) ùñ (f): If A is a strong offender on V ˚, then by definition CV ˚pAq “ CV ˚paq for all
1 ‰ a P A. So (e) holds. l

Lemma A.36. Let A ď H. Then the following are equivalent

(a) A is a root offender on V .
(b) A is a strong offender on V and a strong offender on V ˚.
(c) A is a root offender on V ˚.

Proof. Note that any root offender is a strong offender. By A.35 a strong offender is a root
offender on V if and only if it is a strong offender on V ˚. So (a) and (b) are equivalent. This
equivalence applied to V ˚ in place of V shows that (b) and (c) are equivalent. l

Lemma A.37. Let A ď H be a root offender on V . Then

(a) |V {CV pAq| “ |rV,As| “ |A{CApV q|.
(b) A is strong dual offender on V .
(c) A is quadratic on V .

Proof. (a) and (b): Let v P V zCV pAq. By definition of a root offender, CV paq “ CV pAq for
all 1 ‰ a P A. So rv, as ‰ 1 for all such a, and CApvq “ CApV q. Thus

|A{CApV q| “ |A{CApvq| ď |rv,As| ď |rV,As|.

By definition any root offender is a strong offender. So we can apply A.35 and conclude that
|rV,As| “ |V {CV pAq|, and since A is an offender, |rV,As| ď |A{CApV q|. Hence equality holds in all
these inequalities. In particular, (a) holds and rv,As “ rV,As. So A is strong dual offender, and (b)
holds.

(c): By A.32(a) all strong dual offenders are quadratic, and so (c) follows from (b). l

Lemma A.38. Let A be a subgroup of H. Suppose that V is selfdual as an FpA-module. Then
the following statements are equivalent:

(a) A is a root offender on V .
(b) A is a strong offender on V .
(c) |V {CV pAq| “ |A| and A is a strong dual offender.

Proof. (a) ðñ (b) : Since V is selfdual, A is a strong offender on V if and only if A is a
strong offender on V and V ˚. By A.36 this is the case if and only if A is a root offender on V .

(b) ðñ (c) : This is [MS5, 1.7]. l
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Lemma A.39 ([MS5, 1.3]). Suppose that B is a minimal offender on V and W is a B-submodule
of V . Then B is a quadratic best offender on W . In particular, every non-trivial offender on V
contains a non-trivial quadratic best offender on V .

Lemma A.40. Let Y be an elementary abelian normal subgroup of H and A an elementary
abelian p-subgroup of maximal order in H. Suppose that rY,As ‰ 1. Then A acts as a non-trivial
best offender on Y . Moreover, CAprY,Asq is a non-trivial quadratic best offender on Y .

Proof. Pick B ď A. By the maximality of |A|,

|B||CY pBq||B X Y |
´1 “ |BCY pBq| ď |A|.

Hence
|B||CY pBq| ď |A||B X Y | ď |A||AX Y | ď |A||CY pAq|.

This shows that A acts as a best offender on Y . The second statement now follows from Timmesfeld’s
replacement theorem [KS, 9.2.3]. l

Lemma A.41 ([MS5, 2.2]). Suppose that V is a faithful p-reduced FpH-module and J :“
JHpV q ‰ 1. Put J :“ JHpV q. Let K be the set of non-solvable members of J and put

I :“ J zK, E :“ xKy, I :“ xIy.
Then the following hold:

(a) CHpJ{ZpJqq “ CHpJq.
(b) Let N be a J-invariant subgroup of H with rN, Js ‰ 1. Then there exists K P J with

K ď N .
(c) J ‰ H, J “ I YK, and K is the set of components of J .
(d) Let K P I. Then either p “ 2, K – C3 – SL2p2q

1, and rV,Ks – F2
2, or p “ 3, K – Q8 –

SL2p3q
1, and rV,Ks – F2

3.
(e) rW,Ks “ rW,K,Ks for every K P J and every K-submodule W of V .
(f) rK,F s “ 1 and rV,K, F s “ 0 for every K,F P J with K ‰ F .
(g) CJpIEq “ ZpJq, or p “ 2 and CJpIEq “ ZpJqI. So in both cases CJpIEq is an abelian

p1-group.
(h) Let U ď H and K P J . Then either rK,U s “ 1 or rW,Ks ď rW, rK,U ss for every

K-submodule W ď V .

Lemma A.42. Suppose V is faithful and p-reduced for H, and let L ĲĲ H. Then JLpV q “ tE P
JHpV q | rE, JLpV qs ‰ 1u. In particular, JLpV q Ď JHpV q.

Proof. Since V is faithful p-reduced H-module and L ĲĲ H, V is also a faithful p-reduced
L-module, seeA.9(d). In particular, we can apply A.41 to H and to L.

Let E P JHpV q. Observe that both, JLpV q and E, are subnormal in H. Also observe that
JLpV q ď JHpV q, so JLpV q ĲĲ JHpV q. By definition of a JHpV q-component, E “ rE, JHpV qs and
so JLpV q normalizes E.

1˝. Either E P JLpV q or rE, JLpV qs “ 1.

Assume that E is a component of JHpV q. Since JLpV q ĲĲ JHpV q, [KS, 6.5.2] implies that
rE, JLpV qs “ 1 or E ď JLpV q. In the latter case E is a component of JLpV q, and A.41(c) shows
that E P JLpV q.

Assume that E is not a component of JHpV q. Then by A.41(c) E is solvable, and by A.41(d)

p˚q E – C3 and p “ 2 or E – Q8 and p “ 3.

In particular, E is a p1-group. Since JLpV q is generated by best offenders, JLpV q “ Op
1

pJLpV qq,

and since E and JLpV q are both subnormal in H, we conclude that JLpV q “ Op
1

pJLpV qEq and E
normalizes JLpV q, see 1.23. Thus rE, JLpV qs ď E X JLpV q.

By p˚q E – C3 orQ8, and coprime action implies that either rE, JLpV qs “ 1 or E “ rE, JLpV qs ď
JLpV q. In the latter case E is minimal in JLpV q with 1 ‰ E “ rE, JLpV qs, and so E P JLpV q.
Hence (1˝) also holds in this case.
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2˝. Suppose that rV,E, JLpV qs ‰ 0, then rE, JLpV qs ‰ 1.

Since rV,E, JLpV qs ‰ 0, there exists a best offender B on V in JLpV q such that rV,E,Bs ‰ 0.
By A.41(e), rV,Es “ rV,E,Es and so rV,Es is a perfect E-submodule of V . Hence by [MS5, 2.7]
rE,Bs ‰ 1 and so rE, JLpV qs ‰ 1.

We are now able to prove the assertion. From (1˝) we get that

tE P JHpV q | rE, JLpV qs ‰ 1u Ď JLpV q.

Now let K P JLpV q. It remains to show that K P JHpV q and rK,JLpV qs ‰ 1. Put R :“
xJHpV qy and J :“ JHpV q. Since R is normal in H and V is faithful p-reduced H-module, rV,Rs is
a faithful R-module, see A.9(d). Hence CRprV,Rsq “ 1.

Suppose for a contradiction that rV,R,Ks “ 0. Then rR,Ks ď CRprV,Rsq “ 1. Note that
K ď JLpV q ď JHpV q “ J and by A.41(g) CJpRq ď ZpJqR. Hence K ď ZpJqR. By the definition
of a JLpV q-component we have rK,JLpV qs “ K ‰ 1 and so K ď rK,Js ď rZpJqR, Js ď R. But
then K ď CRprV,Rsq “ 1, a contradiction.

We have proved that rV,R,Ks ‰ 1 and so there exists E P JHpV q such that rV,E,Ks ‰ 0. Then
also rV,E, JLpV qs ‰ 0, and (2˝) shows that rE, JLpV qs ‰ 1. Thus (1˝) implies E P JLpV q. Hence E
and K are JLpV q-components with rV,E,Ks ‰ 0. Now A.41(f) gives K “ E and so K P JHpV q. l

Lemma A.43 ([MS5, 2.4]). Let K P JHpV q and let A be a subgroup of M such that rV,A,As “ 0
and rK,As ‰ 1. Suppose that X is a perfect K-submodule of V and X is a non-zero K-factor module
of X. Then

CApXq “ CApKq “ CApXq.

Lemma A.44 ([MS5, 2.8]). Suppose that V is a faithful p-reduced FpH-module. Let K P JHpV q
and X be a perfect K-submodule of V . Then JHpV q normalizes X.

Lemma A.45 ([MS6, 2.12]). Let R :“ rOppHq, O
ppHqs and T P SylppHq, and let Y be a

T -submodule of V with V “ xY Hy ‰ Y . Then one of the following holds:

(1) rV,Rs “ 0 and COppHqpY q Ĳ H.
(2) R is a non-trivial strong dual offender on Y .
(3) There exist OppHqO

ppHq-submodules Z1 ď X1 ď Z2 ď X2 such that for i “ 1, 2, Xi{Zi is
a non-central simple OppHq-module and Xi X Y ę Zi.

A.6. Nearly Quadratic Modules

In this section A is a group, F is a field and V is an FA-module. Since quadratic action is a
special case of nearly quadratic action, the results in this section also apply to quadratically acting
groups. Recall the definition of a system of imprimitivity on V from Definition A.19.

Definition A.46. Let K be a field extension of F such that V is also a K-vector space.

(a) Let a P A and σ P AutpKq. Then a acts σ-semilinearly on V if pkvqa “ kσva for all k P K
and v P V .

(b) Let σ : AÑ AutpKq, a ÞÑ σa, be a homomorphism. Then V is a σ-semilinear KA-module
provided that each a P A acts σa-semilinearly on V . Set AK :“ kerσ and KA :“ CKpImσq.

Lemma A.47 ([MS3, 2.4]). Let V be a nearly quadratic FA-module and W be an FA-submodule
of V . Then W and V {W are nearly quadratic FA-modules.

Lemma A.48 ([MS3, 2.13]). Let V be a nearly quadratic FA-module, and let ∆ be a system of
imprimitivity of F-subspaces for A in V . Then one of the following holds:

(1) A acts trivially on ∆ and there exists at most one W P ∆ with rW,As ‰ 0.
(2) A acts trivially on ∆ and quadratically on V .
(3) A acts quadratically on V , charF “ 2, and |A{CApW q| ď 2 for every W P ∆zC∆pAq.
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(4) A does not act quadratically on V , A{CApV q is elementary abelian and there exists a
unique A-orbit WA Ď ∆ with rW,As ‰ 0. Moreover, B :“ NApW q acts quadratically on
V , B “ CAp∆q and one of the following holds:
(1) charF “ 2, |WA| “ 4, dimFW “ 1, B “ CApV q, and A{CApV q – C2 ˆ C2.
(2) charF “ 3, |WA| “ 3, dimFW “ 1, B “ CApV q, and A{CApV q – C3.
(3) charF “ 2, |WA| “ 2, and CApW q “ CApV q. Moreover, dimFW {CW pBq “ 1 and

CW pBq “ rW,Bs.

Lemma A.49 ([MS3, 6.3]). Suppose that V is a semilinear but not linear KA-module for some
field extension K of F and that V is a nearly quadratic FA-module. Then A{CApV q is elementary
abelian and one of the following holds:

(1) rV,A,As “ 0, rV,AKs “ 0, and charK “ 2 “ |A{AK|.
(2) rV,A,As ‰ 0, rV,AKs “ CV pAKq, dimK V {CV pAKq “ 1, F “ KA, and charK “ 2 “

|A{AK| “ dimF K.
(3) rV,A,As ‰ 0, rV,AKs “ 0, F “ KA, dimK V “ 1, and charF “ 3 “ |A{AK| “ dimF K.
(4) rV,A,As ‰ 0, rV,AKs “ 0, F “ KA, dimK V “ 1, charF “ 2, A{AK – C2ˆC2, dimF K “ 4,

and F is infinite.

A.7. Q!-Modules

In this section H is a finite group, Q is a p-subgroup of H, and V is a finite Q!-module for
FpH with respect to Q. By A.50(b) below Q is a weakly closed subgroup of H. Hence, the results
in Section 1.5 apply to Q and H. In particular, we will use the ˝-notion introduced there, so for
L ď H,

L˝ “ xP P QH | P ď Ly and L˝ “ OppL˝q.

Lemma A.50. Let V be a non-zero Q!-module for H with respect to Q.

(a) NHpT q ď NHpQq for every p-subgroup T of H with Q ď T .
(b) Q is a weakly closed subgroup of H.
(c) CV pQq X CV pQ

gq “ 0 for all g P HzNHpQq; in particular NHpQq “ NHpCV pQqq.
(d) Let K be a subgroup of H acting transitively on V . Then H˝ “ xQKy.

Proof. (a): Let Q ď T , T a p-subgroup of H. Then 0 ‰ CV pT q ď CV pQq and Q! implies

NHpT q ď NHpCV pT qq ď NHpQq.

(b): By 1.45 the condition in (a) is equivalent to Q being a weakly closed subgroup of H.

(c) Let g P H with CV pQqXCV pQq
g ‰ 0. By Q!, Q and Qg are normal in NHpCV pQqXCV pQ

gqq.
Since Q is a weakly closed subgroup of H, this gives Q “ Qg and thus g P NHpQq.

(d) Let 0 ‰ v P CV pQq. By a Frattini argument, H “ CHpvqK and by Q!, CHpvq ď NHpQq.
Thus QH “ QK and so H˝ “ xQHy “ xQKy. l

Lemma A.51. Let V be a non-zero Q!-module for H with respect to Q. Then V is a Q!-module
for H{CHpV q with respect to QCHpV q{CHpV q.

Proof. Put H “ H{CHpV q. Since NHpAq ď NHpQq for all 1 ‰ A ď CV pQq, NHpAq ď NHpQq

for all 1 ‰ A ď CV pQq. Since V ‰ 0 also CV pQq ‰ 0. Thus

NHpQq ď NHpCV pQqq ď NHpQq.

Since Q đ H this implies Q đ H, and the lemma is proved. l

Lemma A.52 ([MS6, 4.2]). Let V be a faithful Q!-module for H with respect to Q.

(a) H˝ “ xQh | h P H˝y.
(b) CHpH

˝{ZpH˝qq “ CHpH
˝q.

(c) Let H˝ ď L ď H and W be a non-zero L-submodule of V . Then CLpW q ď CLpH
˝q. In

particular CH˝pW q is a p1-group.
(d) CV pH

˝q “ 0.
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(e) Let Q ď L ď H with Q đ L. Then V is Q!-module for FpL with respect to Q.
(f) Let L ĲĲ H with rL,Qs ‰ 1. Then CV pxL

Qyq “ 0.

Lemma A.53. Let V be a Q!-module for H with respect to Q, and let N be a Q-invariant
subgroup of H with N ę NHpQq. Then CHpW q ď NHpQq for every non-trivial NQ-submodule W
of V . In particular CV pNq “ 0 and CHprV,N sq ď NHpQq.

Proof. Let W ‰ 0 be an NQ-submodule of V . Then CW pQq ‰ 0, and the Q!-property of V
implies

CHpW q ď CHpCW pQqq ď NHpQq.

In particular, we get that CV pNq “ 0 since N ę NHpQq. Then rV,N s is a non-trivial NQ-submodule
of V , and the last claim also follows. l

Lemma A.54. Let V be a faithful p-reduced Q!-module for H with respect to Q and let K ĲĲ H.

(a) V ‰ 0.
(b) If K ď NHpQq, then rK,Qs “ 1.
(c) If CV pKq X CV pQq ‰ 0, then rK,Qs “ 1.
(d) If K ‰ 1, then rV,K,Qs ‰ 1.
(e) If K ď NHpQq, then K acts faithfully on each of rV,Qs, CV pQq and CV pQq X rV,Qs.
(f) CHprV,H˝sq “ 1.
(g) Let E Ĳ H˝. Then CHprV,Esq X CHpV {rV,Esq “ 1.

Proof. Note first that OppHq “ 1 since V is faithful and p-reduced.
(a): If V “ 0 then Q “ 1 since V is faithful. But then Q Ĳ H, a contradiction to the definition

of a Q!-module.

(b): Suppose that K ď NHpQq and put L :“ xKQy. Then L is subnormal in H and so
OppLq ď OppHq “ 1. Also L ď NHpQq and so L X Q is a normal p-subgroup of L. Thus rL,Qs ď
LXQ ď OppLq “ 1.

(c): If CV pKqXCV pQq ‰ 0, then Q! implies K ď NHpCV pKqXCV pQqq ď NHpQq and (b) gives
rK,Qs “ 1.

(d): Suppose that K ‰ 1 but rV,K,Qs “ 1. Replacing K by xKNHpQqy we may assume that
NHpQq ď NHpKq. Since V is faithful, 1 ‰ rV,Ks ď CV pQq and Q! implies NHpKq ď NHprV,Ksq ď
NHpQq. Hence NHpKq “ NHpQq. Let L be the largest subnormal subgroup of H contained in
NHpQq. Then K ď L and (b) gives rL,Qs “ 1. Let M be the largest subnormal subgroup of
H contained in NHpLq. Since Q centralizes L, Q normalizes M and xQM y ď CHpLq ď CHpKq.
Note that rM,Qs Ĳ M ĲĲ H and so rM,Qs is a subnormal subgroup of H contained in CHpKq.
In particular, rM,Qs ď NHpKq “ NGpQq and the maximal choice of L gives rM,Qs ď L. Thus
rM,Q,Qs ď rL,Qs “ 1 and since OppMq ď OppHq “ 1, 1.9 gives rM,Qs “ 1. Hence M ď NHpQq
and so M “ L by maximality of L. Since L ĲĲ H this implies H “ L ď NHpQq, a contradiction
since Q đ H by definition of a Q!-module.

(e): By (b), rK,Qs “ 1. Put K0 :“ CKprV,Qsq. Then rV,Q,K0s “ 1 and the Three Subgroups
Lemma gives rV,K0, Qs “ 1. Hence (d) implies K0 “ 1 and so K acts faithfully on rV,Qs. Since
rK,Qs “ 1 the P ˆQ- Lemma shows

OppCKprV,Qs X CV pQqqq ď CKprV,Qsq “ K0 “ 1,

and so CKprV,Qs X CV pQqq ď OppKq “ 1.

(f): By A.52(d), CV pH
˝q “ 0 and so also CV pH˝q “ 0 and rV,H˝s ‰ 0. Hence by A.52(c)

E :“ CHprV,H˝sq ď CHpH
˝q. Thus rE,H˝s “ 1 and rV,H˝, Es “ 1. The Three Subgroups Lemma

implies rV,E,H˝s “ 1. Since CV pH˝q “ 0 this gives rV,Es “ 0, and as V is faithful, E “ 1.

(g): Put C :“ CHprV,Esq X CHpV {rV,Esq. Then C acts nilpotently on V and H˝ normalizes
C. Hence rC,H˝s ď C XH˝ Ĳ H˝, so C XH˝ is subnormal in H. Since V is p-reduced and faithful,
C X H˝ “ 1, and thus rC,H˝s “ 1. Since E ď H˝, CHpH˝q normalizes E and C. It follows that
C Ĳ CHpH˝q Ĳ H, and again since V is p-reduced and faithful, C “ 1. l
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Lemma A.55. Let V be a faithful p-reduced Q!-module for H with respect to Q. Put N :“
Ş

gPH NHpQ
gq.

(a) rN,H˝s “ 1 and CV pQq is a faithful p-reduced N -module.
(b) Let 1 ‰ t P H with |rV, ts| ă |CV pQq|. Then t P N and rCV pQq, ts ‰ 1.
(c) |CV pQq| ď |rV, ts| for all 1 ‰ t P H with rCV pQq, ts “ 1.
(d) CV pQq “ rV, ts for all 1 ‰ t P H with rV, ts ď CV pQq.

Proof. (a): Note that N Ĳ H and N ď NHpQq. Hence by A.54(b),(e) rN,Qs “ 1 and CV pQq
is a faithful N -module. As H˝ “ xQHy, this gives rN,H˝s “ 1. Since N Ĳ H and V is faithful
and p-reduced for H, OppNq ď OppHq “ 1. Hence, since CV pQq is a faithful N -module, CV pQq is
p-reduced for N .

(b): Let t P H with |CV pQq| ą |rV, ts|, and let g P H. Note that

|V {CV ptq| “ |rV, ts| ă |CV pQq| “ |CV pQ
gq|.

Thus A :“ CV pQ
gq X CV ptq ‰ 0 and t P CHpAq ď NHpQ

gq. Hence t P N . By (a), CV pQq is a
faithful N -module and so rCV pQq, ts ‰ 1.

(c) follows immediately from (b).

(d): Suppose that rV, ts ď CV pQq but rV, ts ‰ CV pQq. Let g P H. Then |rV, ts| ă |CV pQq| “
|CV pQ

gq| and so by (b), t P N and

1 ‰ rCV pQ
gq, ts ď CV pQ

gq X rV, ts ď CV pQ
gq X CV pQq.

Thus Q “ Qg and Q Ĳ H, contrary to the definition of a Q!-module. l

Lemma A.56. Let V be a faithful p-reduced Q!-module for H with respect to Q, and let K be a
non-empty H-invariant set of non-trivial subgroups of H. Put R :“ xKy. Suppose that rV,Rs is a
wreath product module for H with respect to K such that one of the following holds:

(1) rV,Ks is a simple K-module for all K P K, or
(2) rR,H˝s ‰ 1.

Then

(a) Q is transitive on K and CV pRq “ 0.
(b) Suppose that |K| ą 1. Let K P K and put T :“ NQpKq. Then CKpzq is a p-group for all

0 ‰ z P CrV,KspT q.

Proof. Put W :“ rV,Rs. Since V is p-reduced and faithful, A.9 shows that W “ rV,Rs is a
faithful p-reduced R-module. Since W is faithful wreath product module, A.17 shows that

p˚q R “
ą

KPK
K and W “

à

KPK
rW,Ks.

(a): Let K0 be an orbit of Q on K and put R0 :“ xK0y. Since K is H-invariant, R Ĳ H, and
since K is a non-empty set of non-trivial subgroups, R ‰ 1. As V is p-reduced, OppRq “ 1. If
K P KzK0 then p˚q shows that rW,Ks ď CrW,RspR0q. Thus either K0 “ K or CrW,RspR0q ‰ 0.

Assume that CV pR0q ‰ 0. Then also CV pR0q X CV pQq ‰ 0 and so by A.54(c) rR0, Qs “ 1.
Since either Q acts transitively on K or CV pxK

Qyq ‰ 0 for all K P K, we get rR,Qs “ 1 and so
rR,H˝s “ 1. Hence rV,Ks is a simple K-module for all K P K. Since Q centralizes K, rV,K,Qs “ 0,
and since K ‰ 1, this contradicts A.54(d).

Thus CV pR0q “ 0. It follows that Q acts transitively on K and CV pRq “ 0.

(b): Let 0 ‰ z P CrV,KspT q. By A.18 rV,Ks “ rW,Ks. Thus z P rW,Ks and since rz,NQpKqs “

rz, T s “ 0, the conjugates zQ are in distinct submodules rW,F s, F P K. Hence z0 :“
ř

z1PzQ
z1 ‰ 0,

rz0, Qs “ 1 and CKpzq “ CKpz0q. By Q! CKpz0q ď NHpQq and so

rCKpz0q, Qs ď QX CRpz0q ď OppCRpz0qq.

By p˚q K Ĳ R and so CKpz0q Ĳ CRpz0q. Hence OppCKpz0qq “ Op
`

CKpz0qOppCRpz0qq
˘

, so
OppCKpz0qq is Q-invariant. Thus p˚q shows that either OppCKpz0qq “ 1 or K is Q-invariant. In the
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first case CKpz0q “ CKpzq is a p-group. In the second case the transitivity of Q on K shows |K| “ 1.
l

Lemma A.57. Suppose that OppHq “ 1. Let V be a faithful Q!-module for H with respect to Q,
and let Y be a p-subgroup of H with CY prV, Y sq ‰ 1 and rH˝, Y s ‰ 1. Then CY pH

˝q “ 1.

Proof. See [MS6, 4.4]. l

A.8. Genuine Groups of Lie Type

Definition A.58. (a) A genuine group of Lie-type in characteristic p is a group isomorphic

to Op
1

pCKpσqq, where K is a semisimple Fp-algebraic group, Fp is the algebraic closure of

Fp, and σ is a Steinberg endomorphism of K, see [GLS3, Definition 2.2.2] for details.
(b) Let K be a genuine group of Lie-type. Let Σ be the root system, d the order of the graph

automorphism and q the order of the fixed field of the field automorphism used to define
K. Then we say that K is a version of dΣpqq, see [GLS3, Definition 2.2.4] for the details.

Note that a given symbol dΣpqq can have many non-isomorphic versions. Nevertheless, we will
write K “ dΣpqq to indicated that K is a version of dΣpqq. We will use Σpqq for 1Σpqq.

Lemma A.59 ([GLS3, 2.2.6]). (a) For each symbol dΣpqq, there is up to isomorphism a
unique largest version Ku (called the universal version) and a unique smallest version Ka

(called the adjoint version).
(b) For any version K of a symbol as in (a), there are surjective homomorphisms Ku Ñ K Ñ

Ka, whose kernels are central. In particular, if K is simple, then K – Ka.
(c) ZpKaq “ 1, and K{ZpKq – Ku{ZpKuq – Ka.
(d) The versions of a given symbol, up to isomorphism, are the groups Ku{Z as Z ranges over

all subgroups of ZpKuq.

Lemma A.60. Let K “ dΣpqq be an adjoint group or universal group of Lie-type with Dynkin
diagram ∆. Then there exist subgroups Diag and Φ and a subset Γ of OutpKq such that

(a) ΦΓ is a subgroup of OutpKq, Φ Ĳ ΦΓ, OutpKq “ DiagΦΓ, Diag Ĳ OutpKq, and Diag X
ΦΓ “ 1.

(b) Diag has order dividing q ´ 1, q ` 1 or gcdpq ´ 1, 2q2. In particular, Diag is a p1-group.
(c) Φ – AutpFqdq. In particular, Φ is cyclic.
(d) CDiagΦΓp∆q “ DiagΦ.
(e) One of the following holds:

(1) d “ 1, ∆ has only single bonds, Γ is a subgroup of ΦΓ, ΦΓ “ Φ ˆ Γ, and Γ is the
group of symmetries of ∆.

(2) d “ 1, ∆ has double or triple bonds, and
(i) if p “ 2 and ∆ is of type B2 or F4, or p “ 3 and ∆ is of type G2, then Γ “ t1, ψu,

ψ acts non-trivially on ∆ and Φ “ xψ2y,
(ii) otherwise Γ “ 1.

In particular, ΦΓ is cyclic.
(3) d ‰ 1 and Γ “ 1. In particular, ΦΓ “ Φ is cyclic.

Proof. See [GLS3, section 2.5]; in particular Theorem 2.5.12. l

Corollary A.61. Let K “ dΣpqq be an adjoint group or universal group of Lie-type with Dynkin
diagram ∆, and let Γ and Diag be as in A.60. Suppose that DiagΓ is not abelian. Then K “ D4pqq,
Γ – Symp3q and pΓDiagq1 “ Γ1 – C3.

Proof. Since ΓDiag is not abelian, ΓDiag is not cyclic. This rules out the last two cases in
A.60(e). Hence A.60(e:1) holds and so d “ 1, ∆ has only single bonds, Γ is the group of symmetries
on ∆, and ΦΓ “ Φˆ Γ. By A.60(b), Φ is cyclic. So pΦΓq1 “ Γ1 and Γ is not abelian. Thus Σ “ D4,
Γ – Symp3q and Γ1 – C3. l
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Lemma A.62 (Steinberg’s Lemma, [MS5, 4.1]). Let M be a genuine group of Lie-type defined
over a finite field of characteristic p. Let V be a simple FpM -module, S P SylppMq, and B :“
NM pSq. Put K :“ EndM pV q. Then CV pSq is 1-dimensional over K, K is isomorphic to the subring
of EndFppCV pSqq generated by the image of B, and CV pSq is a simple FpB-module.

Theorem A.63 (Smith’s Lemma, [MS5, 4.2]). Let M be a genuine group of Lie-type defined
over a finite field of characteristic p. Let V be a simple FpM -module, K :“ EndM pV q, E a parabolic

subgroup of M , L :“ Op
1

pEq and P “ NM pLq. Then L “ Op
1

pP q, OppEq “ OppP q “ OppLq and
P is a Lie-parabolic subgroup of M . Moreover, CV pOppP qq is a simple FpP -module, an absolutely
simple KL-module, and an absolutely simple KE-module

Let F be a finite field of characteristic p, M a finite group, V a simple FM -module and W a
simple FpM -submodule. Recall that the field K :“ EndM pW q is called the field of definition of the
FM -module W .

Theorem A.64 (Ronan-Smith’s Lemma, [MS5, 4.3]). Let M be a universal group of Lie-
type defined over a finite field of characteristic p, S a Sylow p-subgroup of M , P1, P2, . . . , Pn the
minimal Lie-parabolic subgroups of M containing S, and Li “ Op

1

pPiq. Let V be the class of all
tuples pK, V1, V2, . . . , Vnq such that

(i) K is a finite field of characteristic p.
(ii) Each Vi is an absolutely simple KLi-module.

(iii) K “ xKi | 1 ď i ď ny, where Ki is the field of definition of the KLi-module Vi.

Define two elements pK, V1, V2, . . . , Vnq and prK, rV1, rV2, . . . , rVnq of V to be isomorphic if there exists

a field isomorphism σ : rK Ñ K such that Vi – rV σi as an KLi-module for all 1 ď i ď n. Then the
map

V Ñ
`

EndM pV q, CV pOppLiqq, . . . CV pOppLnqq
˘

pV a simple FpM -moduleq

induces a bijection between the isomorphism classes of simple FpM -modules and the isomorphism
classes of V.

Lemma A.65. Let K “ dΣpqq be a universal group of Lie-type with Dynkin diagram ∆. Define
τ P Γ4 as follows:

(1) If K “ Anpqq, n ě 2, K “ D2n`1pqq, n ě 2,5 or E6pqq, then τ induces the unique
non-trivial graph automorphism on ∆;

(2) otherwise τ “ 1.

Then τ2 “ 1 and V ˚ – V τ for all simple FpK-modules V .

Proof. See [St, Lemma 73]. l

Lemma A.66. Let M be a genuine group of Lie-type defined over a finite field of characteristic p,
S a Sylow p-subgroup of M , P1, P2, . . . , Pn the minimal Lie-parabolic subgroups of M containing S,
Li “ Op

1

pPiq and B “ NM pSq. Suppose that V is a simple FpM -module such that rCV pSq, Bs “ 0
and rCV pSq, Lis ‰ 0 for all 1 ď i ď n. Then V is the Steinberg module for M over Fp of Fp-
dimension |S|. Moreover, as an FpS-module V is isomorphic to the regular permutation module
FprSs.

Proof. We may assume without loss that M is universal. Let F be the algebraic closure of Fp
and St the Steinberg module for M over F. Then by [GLS3, 2.8.7] St is a simple FM module of
dimension |S|. It is well-known and also follows from the weight of St as given in [GLS3, 2.8.7(b)]
that rCStpSq, Bs “ 0 and rCV pSq, Lis ‰ 0 for all 1 ď i ď n.

Put K “ EndM pV q and let F be the algebraic closure of K. By [As, 25.8] V is an absolutely
simple KM -module and so V :“ F bK V is a simple FM -module. By A.62 K is isomorphic to the
subring of EndFppCV pSqq generated by the image of B. Since rCV pSq, Bs “ 0 this gives K “ Fp.
We will now show that V is uniquely determined and so V – St.

4see A.60 for the definition of Γ
5Note here that A3 “ D3
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Suppose first that n “ 1. By [St, Theorem 46] a simple FM -module W is uniquely determined by
the action of B on CW pSq and a parameter µ P t0,´1u. In particular, there are (up to isomorphism)
at most two simple FM -modules W with rCW pSq, Bs “ 0. Hence St is the unique non-central FM -
module with rCStpSq, Bs “ 0.

In the general case, put Ui “ CV pOppPiqq. By Smith’s Lemma A.63 Ui is a simple Li-module
and the n “ 1 case applied to Li{OppPiq shows that Ui is the Steinberg-module for Li{OppPiq over

F. This uniquely determines the parameters µi, 1 ď i ď n in [St, Theorem 46] and so V is uniquely
determined.

Thus V is the Steinberg-module St. In particular, dimFp V “ dimK V “ dimF V “ |S|. By

[St, Theorem 46] the conjugates of CV pSq under the opposite Sylow p-subgroup S´ span V . Let

0 ‰ v P CV pSq. Then xvS
´

y “ V and since |S´| “ |S| we conclude that vS
´

is an Fp-basis of V
regularly permuted by S´. Hence V – FprSs as an FpS-module. l



APPENDIX B

Classical Spaces and Classical Groups

In this appendix K is a finite field, p :“ charK, V is a finite dimensional dimensional vector
space over K, α P AutpKq with α2 “ idK and F is the fixed field of α.

Definition B.1. Let f : V ˆ V Ñ K and h : V Ñ F be functions.

(i) pV, f, hq is a linear space if α “ idK, f “ 0 and h “ 0.
(ii) pV, f, hq is a symplectic space if α “ idK, f is K-bilinear and for all v P V ,

hpvq “ fpv, vq “ 0.

(iii) pV, f, hq is a unitary space if α ‰ idK, f is K-linear in the first component and for all
v, w P V ,

fpv, wq “ fpw, vqα and hpvq “ fpv, vq.

(iv) pV, f, hq is an orthogonal space, if α “ idK, f is K-bilinear, and for all v, w P V and k P K

hpkvq “ k2hpvq and hpv ` wq “ hpvq ` fpv, wq ` hpwq.

(v) pV, f, hq is a classical space (of linear, symplectic, unitary or orthogonal type), if it is a
linear, symplectic, unitary or orthogonal space.

Let pV, f, hq be a classical space. Abusing notion we will often just say that V is a classical
space.

Assume that V is an orthogonal space. Then fpv, wq “ hpv ` wq ´ hpvq ´ hpwq and so f is
symmetric, that is fpv, wq “ fpw, vq. Also

4hpvq “ hp2vq “ hpv ` vq “ hpvq ` fpv, vq ` hpvq,

and so fpv, vq “ 2hpvq. In particular, f is a symplectic form if p “ 2.

Definition B.2. Let V be a classical space, and v, w P V , and let U and W be K-subspaces of
V .

(a) v and w are isometric if hpvq “ hpwq.1

(b) v and w are perpendicular, and we write v K w, if fpv, wq “ 0. We write U K W if u K w
for all u P U , w PW . We write V “ U kW if V “ U ‘W and U KW .

(c) v is isotropic if fpv, vq “ 0; and U is isotropic if f |UˆU“ 0.
(d) v is singular if hpvq “ 0; and U is singular if U is isotropic and all its elements are singular.
(e) UK “ tv P V | fpv, uq “ 0 for all u P Uu.
(f) radpUq “ tu P U X UK | hpuq “ 0u.
(g) U is non-degenerate if radpUq “ 0.
(h) SpUq is the set of 1-dimensional singular subspaces of U .
(i) The Witt index of V is the maximum of the dimensions of the singular subspaces of V .

Definition B.3. Let pV, f, hq and pV 1, f 1, h1q be classical spaces over K and φ : V Ñ V 1 a
bijection.

(a) φ is an isometry if φ is K-linear and for all v, w P V ,

hpvφq “ hpvq and fpvφ, wφq “ fpv, wq.

We also will say that h and f are φ-invariant if these equations hold.

1Note that this implies fpv, vq “ fpw,wq.

205



206 B. CLASSICAL SPACES AND CLASSICAL GROUPS

(b) φ is a similarity if φ is K-linear and there exists k P F7 such that for all v, w P V ,

hpvφq “ khpvq and fpvφ, wφq “ kfpv, wq.

(c) φ is a semisimilarity if there exist σ P AutpKq and k P F7 such that φ is σ-semilinear2 and
for all v, w P V ,

hpvφq “ khpvqσ and fpvφ, wφq “ kfpv, wqσ.

We denote the group of isometries of V by ClKpV, f, hq, by ClKpV q or by ClpV q. We will also
use the notation GLpV q, SppV q, GUpV q and OpV q for ClpV q, if V is a linear, symplectic, unitary
and orthogonal space, respectively.

For the remainder of this appendix pV, f, hq is a non-degenerate or linear classical space and
H “ ClpV q. If V is linear we define RpV q :“ 0, otherwise RpV q :“ V K. So RpV q “ 0 unless V is an
orthogonal space, p “ 2 and dimK V is odd.

Note that (by B.18 below) V is uniquely determined, up to similarity, by its type and dimension,
except in the case of an orthogonal space of even dimension. We sometimes use the notation ClmpFq
or Clmpqq, where m :“ dimK V and q :“ |F|.

For an orthogonal space V of dimension 2n we write O`pV q or O`2npKq if V has Witt index n,
and O´pV q or O´2npKq if V has Witt index n´ 1.

Notation B.4. For Z P SpV q define

QZ :“ CHpZq X CHpZ
K{Zq, Cl˛pV q :“ H˛ :“ xQZ | Z P SpV qy and DZ :“ CHpZ

Kq X CHpV {Zq.

We remark that QZ is a weakly closed subgroup of H, so the notation H˛ is analogue to the
˝-notation 1.44 for weakly closed subgroup.

Note that we have one of the following cases:

Cl˛pV q Type of V V K RpV q Remark
SLpV q linear V 0 —
SppV q symplectic 0 0 —
SUpV q unitary 0 0 —

1 orthogonal 0 0 dimV ď 2, dimV even or p odd
ΩpV q orthogonal 0 0 dimV ě 3, dimV even or p odd

OpV q “ ΩpV q orthogonal 1-dim V K dimV odd and p=2

B.1. Elementary Properties

Lemma B.5 ([MS5, 3.1]). Let U be an isotropic but not singular K-subspace of V . Let U0

be the set of singular vectors in U . Then V is orthogonal, p “ 2, U0 is a K-subspace of U , and
dimK U{U0 “ 1. In particular, dimK V

K ď 1.

Lemma B.6 ([MS5, 3.2]). Let U be a K-subspace of V , and let A be a subgroup of H. Suppose
that V is not a linear space.

(a) V {UK and pU{U X V Kq˚ are isomorphic FNHpUq-modules. In particular, if V K “ 0, then
V and V ˚ are isomorphic FH-modules.

(b) CV {V KpAq “ CV pAq{V
K.

(c) CV pAq “ rV,As
K.

(d) CHpV {Uq ď CHpU
Kq; in particular CHpV {Uq ď CHpUq if U is isotropic.

(e) If A acts quadratically on V {V K, then A acts quadratically on V and rV,As is an isotropic
subspace of V .

This is [MS5, 3.2], except we corrected a misprint in statement (a).

2 for the definition see A.46
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Lemma B.7 ([MS5, 1.9]). Let L be a finite group and N Ĳ L, and let F be a finite field of
characteristic p and V a finite dimensional FL-module. Put K :“ EndFN pV q and suppose that V is
a selfdual simple FN -module. Then the following hold:

(a) There exists an N -invariant non-degenerate symmetric, symplectic or unitary K-form s on
V .

(b) There exists a homomorphism ρ : LÑ AutFpKq, h ÞÑ ρh, such that L acts ρ-semilinearly
on V .

(c) There exists a map λ : L Ñ K7, h ÞÑ λh, such that the map L Ñ K7 ¸ AutFpKq, h ÞÑ
pλh, ρhq, is a homomorphism and

spvh, whq “ λhspv, wq
ρh

for all v, w P V , h P H.
(d) Let U be a K-subspace of V and put UK “ tv P V | spu, vq “ 0 for all u P Uu. Then UK is

NLpUq-invariant.
(e) Let U be a non-zero K-subspace of V such that CLpUq acts simply on V {UK. Then U is

1-dimensional over K.
(f) Put L0 “ ker ρ. Then s is Op

1

pL0qN -invariant.

Lemma B.8. Let H “ GLpV q, V ˚ the dual of V and D,E ď H. Then rV,E,Ds “ 0 if and only
if rV ˚, D,Es “ 0.

Proof. For α P EndpV q let α˚ P EndpV ˚q be the dual homomorphism. Note that EndpV q Ñ
EndpV ˚q, α ÞÑ α˚, is an anti-isomorphism of rings. Hence rV,E,Ds “ 0 iff pe´ 1qpd´ 1q “ 0 for all
d P D, e P E, iff pd˚ ´ 1qpe˚ ´ 1q “ 0 for all d P D, e P E, iff rV ˚, D,Es “ 0. l

Lemma B.9. (a) Suppose that V is an orthogonal space. Let v P V and a P H. Then
hprv, asq “ ´fpv, rv, asq. In particular, rv, as is singular if and only if v K rv, as.

(b) Suppose that V is an orthogonal space. Let a P H such that rV, as is 1-dimensional, and
let 0 ‰ w P rV, as. Then hpwq ‰ 0, and a is the reflection associated to w, that is,

va “ v ´ hpwq´1fpv, wqw for all v P V.

In particular, CHpV {rV, asq “ t1, au, |a| “ 2 and rV, as is not singular.
(c) Suppose that V is an orthogonal space. Let X ď H such that rV,X,Xs “ 0 and rV,Xs is

1-dimensional. Then p “ 2, |X| “ 2, X is generated by a reflection, and rV,Xs is isotropic
and not singular.

(d) Let A ď H and suppose that U is an A-invariant subspace of V with rU,As ď UK. Then
rU,As is singular.

(e) Let A ď H and suppose that A acts cubically on V . Then rV,A,As is singular.

Proof. (a): We have hpvaq “ hpv` rv, asq “ hpvq ` fpv, rv, asq ` hprv, asq. Since hpvaq “ hpvq,
this gives hprv, asq “ ´fpv, rv, asq.

(b): Let r be any element of H with rV, rs “ rV, as. Define α : V Ñ K by rv, rs “ αpvqw for
v P V . By B.6(c), CV prq “ rV, rs

K “ wK. Thus kerα “ wK and so there exists 0 ‰ k P K with
αpvq “ kfpv, wq for all v P V .

p˚q rv, rs “ kfpv, wqw and vr “ v ` kfpv, wqw

for all v P V . Since wK “ CV prq ‰ V we can choose u P V with fpu,wq “ 1. Then ru, rs “
kfpu,wqw “ kw. Thus

hpru, rsq “ hpkwq “ k2hpwq and fpu, ru, rsq “ fpu, kwq “ kfpu,wq “ k.

By (a) hpru, rsq “ ´fpu, ru, rsq and so k2hpwq “ ´k. Recall that k ‰ 0. So hpwq “ ´k´1 ‰ 0e.
Together with the second equation in p˚q this shows that

p˚˚q vr “ v ´ hpwq´1fpv, wqw for all v P V.

Obviously, the action of r is uniquely determined by p˚˚q, and the right hand side of the equation
is independent of r. Since also a satisfies p˚˚q in place of r, we get r “ a, and the equation in (b)
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holds. Moreover, CHpV {rV, asq “ t1, au and |a| “ 2. As hpwq ‰ 0, rV, as is not singular. Hence (b)
holds.

(c) Let 1 ‰ a P X. Then X Ď CHpV {rV,Xsq “ CHpV {rV, asq. Thus by (b), X Ď t1, au and
rV,Xs “ rV, as is not singular. In particular, |X| “ 2. Since X acts quadratically on V , B.6(e)
shows that rV,Xs is isotropic. As rV,Xs is not singular, B.5 implies that p “ 2.

(d): Since U is A-invariant, rU,As ď U and since rU,As ď UK we conclude that rU,As is
isotropic. Let u P U and a P A. Then ru, as P rU,As ď UK ď uK and so by (a) ru, as is singular.
Since rU,As is isotropic, the singular vectors in rU,As form a subspace of rU,As (seeB.5). Since
rU,As is generated by the singular vectors ru, as, u P U, a P A, we conclude that rU,As is singular.

(e): Since A acts cubically on V , rV,A,As ď CV pAq and so by B.6(c), rV,A,As ď rV,AsK. Thus
(e) follows from (d) applied with U “ rV,As. l

Lemma B.10. Let V1 and V2 be K-subspaces of V with V “ V1`V2. Let a P GLKpV q and define
ai : Vi Ñ V ai , v ÞÑ va. Then a is an isometry on V if and only if a1 and a2 are isometries and
fpva1 , v

a
2 q “ fpv1, v2q for all v1 P V1 and v2 P V2.

Proof. The forward direction is obvious. So suppose that a1 and a2 are isometries and
fpva1 , v

a
2 q “ fpv1, v2q for all v1 P V1 and v2 P V2. Since f is F-bilinear we conclude that f is a-

invariant. Since hpv1 ` v2q “ hpv1q ` fpv1, v2q ` hpv2q, in the case of an orthogonal space, also h is
a-invariant. l

Lemma B.11. Suppose that V is not a linear space. Let Z P SpV q and v P V zZK. Let iv be
the number of elements w P v ` Z isometric to v, and for λ P F let sλ be the number of elements
w P v ` Z with hpwq “ λ.

(a) If V is a symplectic space then iv “ s0 “ |v ` Z| “ |K|.
(b) If V is a unitary space then iv “ sλ “ |F| for all λ P F.
(c) If V is an orthogonal space then iv “ sλ “ 1 for all λ P K.

Proof. Choose z P Z with fpz, vq “ ´1 and let k P K.
(a): In a symplectic space all elements are singular. Hence (a) holds.

(b): Suppose that f is unitary, so hpxq “ fpx, xq for x P V . Then

hpv ` kzq “ fpv ` kz, v ` kzq “ fpv, vq ` kfpz, vq ` kαfpz, vq ` kkαfpz, zq “ hpvq ´ pk ` kαq.

Thus hpv ` kzq “ λ if and only if k ` ka “ hpvq ´ λ. Since the function K Ñ F, k ÞÑ k ` kα, is
F-linear and surjective, we conclude that for a given λ P F there are exactly |F| elements k P K with
k ` kα “ hpvq ´ λ. So (b) holds.

(c): Suppose H “ OpV q. Then

hpv ` kzq “ hpvq ` fpv, kzq ` k2hpzq “ hpvq ´ k.

Hence hpv ` kzq “ λ if and only if k “ hpvq ´ λ. This gives (c). l

Corollary B.12. Suppose that SpV q ‰ H and that V is not a 2-dimensional orthogonal space.

(a) The number of singular 1-spaces in V is congruent to 1 modulo p.
(b) Then number of non-zero singular vectors in V is congruent to |K7| modulo p.
(c) Any p-group of semilinear similarities of V fixes a singular vector and a singular 1-space

in V .

Proof. (a): Let Z P SpV q. Put m :“ dimK V . If V is a linear, symplectic or unitary space put
t “ |F|. If V is an orthogonal space put t “ 1. Let E be a 2-dimensional subspace of V with Z ď E

Suppose that E ď ZK. Note that one of the following holds:

– E is singular, E{Z P SpZK{Zq, and all |K| 1-spaces of E distinct from Z are in SpV q.
– E is not singular, E{Z R SpZK{Zq, and Z is the only singular 1-space of E.
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It follows that

|SpZKqztZu| “ |K||SpZK{Zq|.

Suppose next that E ę ZK. Then B.11 shows that E contains exactly t elements of SpV q distinct
from Z. Note also that there are |K|m´2 2-dimensional subspaces E of V with Z ď E ę ZK. Thus

|SpV qzSpZKq| “ |K|m´2t.

Hence

|SpV q| “ 1` |K||SpZK{Zq| ` |K|m´2t.

Since p | |K|, we conclude that either |SpV q| ” 1 pmod pq or m “ 2 and p - t. In the latter case,
since p | |F| we get t “ 1 and V is an orthogonal space. Since 2-dimensional orthogonal spaces are
excluded by the hypothesis of the corollary, (a) is proved.

(b): Note that every singular 1-space contains exactly |K7| non-zero singular vectors. So (b)
follows from (a).

(c): By (a) and (b), neither the number of singular 1-spaces nor the number of non-zero singular
vectors in V is divisible by p. This gives (c). l

Lemma B.13. Let U be a K-subspace of V and put W “ xSpUqy. Then W “ U or W “ radpUq.
In particular, V “ xSpV qy or SpV q “ H.

Proof. Let Y be a 1-dimensional subspace of U . If Y ęWK, then there exists Z P SpV q with
Y ę ZK. By B.11 Z ` Y contains a singular 1-space X ‰ Z. Thus Y ď Z ` Y “ Z `X ďW .

We have proved that U ĎW YWK, and so U ďWK or U ďW . In the second case U “W and
we are done. So suppose U ď WK. Then W ď U X UK, W is singular and W ď radpUq. Clearly
radpUq ďW and so W “ radpUq.

Either V is linear or radpV q “ 0. In the first case xSpV qy “ V is obvious, in the second case
either xSpV qy “ V or xSpV qy “ radpV q “ 0 and SpV q “ H. l

Lemma B.14. Suppose that V is a symplectic space and p “ 2. Let V 1 :“ V ˆK as a set. Define
an addition and scalar multiplication on V 1 by

pv, kq ` pw, lq :“ pv ` w, k ` l ` fpv, wqq and lpv, kq :“ plv, l2kq

for all v, w P V , k, l P K. Define

h1 : V 1 Ñ K, pv, kq ÞÑ k, and f 1 : V 1 ˆ V 1 Ñ K,
`

pv, kq, pw, lq
˘

ÞÑ fpv, wq.

(a) pV 1, f 1, h1q is a non-degenerate orthogonal space with V 1K “ tp0, kq | k P Ku.
(b) The function V Ñ V 1{V 1K, v ÞÑ pv, 0q ` V 1K an isometry of symplectic spaces.
(c) Let a P SppV q and define

a1 : V 1 Ñ V 1, pv, kq ÞÑ pva, kq.

Then a1 P OpV 1q.
(d) The function

SppV q Ñ OpV 1q, a ÞÑ a1,

is an isomorphism.
(e) Suppose in addition that V “ V1{V

K
1 where pV1, f1, h1q is a non-degenerate orthogonal space

with V K1 ‰ 0. Then the function

V1 Ñ V 1, w Ñ
`

w ` V K1 , h1pwq
˘

is an isometry.
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Proof. (a): Let u, v, w P V and j, k, l P K. The addition is clearly commutative, p0, 0q is an
additive identity and pv, kq is its own inverse. Also

pu, jq`
`

pv, kq`pw, lq
˘

“
`

u`v`w, j`k` l`fpu, vq`fpu,wq`fpv, wq
˘

“
`

pu, jq`pv, kq
˘

`pw, lq

and so V 1 is an abelian group. Note that

j
`

pv, kq ` pw, lq
˘

“ pjv ` jw, j2k ` j2l ` j2fpv, wqq “ jpv, kq ` jpw, lq,

pj ` kqpw, lq “ pjw ` kw, j2l ` k2lq “ jpw, lq ` kpw, lq and pjkqpw, lq “ pjkw, j2k2lq “ jpkpw, lqq.

Thus V 1 is a vector space over K. Since f is a symmetric form, so is f 1. Moreover,

h1
`

kpw, lq
˘

“ h1pkw, k2lq “ k2l “ k2h1pw, lq

and

h1
`

pv, kq ` pw, lq
˘

“ h1
`

v ` w, k ` l ` fpv, wq
˘

“ k ` l ` fpv, wq “ h1pv, kq ` f 1pv, wq ` h1pw, lqq

and so pV 1, f 1, h1q is an orthogonal space. Note that pv, kq P V 1K if and only if v P V K “ 0. Also
h1pv, kq “ 0 if and only if k “ 0. Thus radpV 1q “ 0 and V 1 is non-degenerate.

(b) and (c) should be obvious.

(d): Let b P OpV q. Then b induces an isometry on the symplectic space V 1{V 1K. Together with
(b) we conclude that there exists a unique a P SppV q such that pv, kqb ` V 1K “ pva, 0q ` V 1K for all
v P V , k P K. Since b is an isometry, h1

`

pv, kqb
˘

“ h1pv, kq “ k and we conclude that pv, kqb “ pva, kq.
Thus b “ a1 and (d) holds.

(e) is readily verified. l

Lemma B.15 (Witt’s Lemma). Let U and W be K-subspaces of V suppose that β : U Ñ W is
an isometry with pU XRpV qqβ “W XRpV q. Then β extends to an isometry of V .

Proof. If V is a linear space, this is obvious. So suppose V is a symplectic, orthogonal or
unitary space. If V K “ 0, this is Witt’s Lemma on page 81 of [As, 20].

It remains to treat the case where V is an orthogonal space with V K ‰ 0. Then RpV q “ V K.
Since pU XRpV qqβ “W XRpV q we conclude that β induces an isometry of symplectic spaces

b : U ` V K{V K ÑW ` V K{V K.

According to the already treated symplectic case, b extends to an isometry a of the symplectic space
V {V K. By B.14(c), there exists an isometry a1 of V with va

1

` V K “ pv ` V Kqa for all v P V . Let

u P U . Then uβ ` V K “ ua
1

` V K and since both β and a1 are isometries, hpuβq “ hpua
1

q. It follows

that uβ “ ua
1

, and so the lemma also holds for an orthogonal space with V K ‰ 0. l

Lemma B.16. Let v and w be isometric elements in V zRpV q. Then there exists a P H with
wa “ v. In particular, H acts transitively on the set of non-zero singular vectors.

Proof. Since v and w are isometric, the function β : Kv Ñ Kw, kv ÞÑ kw is an isometry. Also
Kv X RpV q “ 0 “ Kw X RpV q, and so by Witt’s Lemma β extends to an isometry a of V . Then
va “ vβ “ w. l
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B.2. The Classification of Classical Spaces

Definition B.17. Let pviq
n
i“1 be a family of vectors in V .

(a) pviq
n
i“1 is orthogonal if fpvi, vjq “ 0 for all 1 ď i, j ď n with i ‰ j.

(b) pviq
n
i“1 is orthonormal if it is orthogonal and hpviq “ 1 for all 1 ď i ď n.

(c) pviq
n
i“1 is hyperbolic if n “ 2l is even, hpviq “ 0 for all 1 ď i ď n, and fpvi, vn`1´iq “ 1 for

all 1 ď i ď l, and fpvi, vjq “ 0 for all 1 ď i, j ď n with i` j ‰ n` 1.
(d) V is hyperbolic if V has a hyperbolic basis.
(e) V is definite, if V has no non-zero singular vectors.

Lemma B.18. Let dimV “: m “: 2n` ε, ε P t0, 1u.

(a) Suppose V is a symplectic space.
(a) V has a hyperbolic basis. In particular, m is even.
(b) V has Witt index n.
(c) Up to isometry, V is uniquely determined by m.

(b) Suppose V is a unitary space.
(a) V has an orthonormal basis.
(b) V has a basis pviq

m
i“1 such that pviq

2n
i“1 is hyperbolic, and if m is odd, fpvi, vmq “ 0

for all 1 ď i ď 2n and hpvmq “ 1.
(c) V has Witt index n.
(d) Up to isometry, V is uniquely determined by m.

(c) Suppose V is an orthogonal space and p is odd. Then V has an orthogonal basis pviq
m
i“1

such that hpviq “ 1 for 1 ď i ď m´ 1.
(d) Suppose V is an orthogonal space and m is odd.

(a) V has a basis puiq
m
i“1 such that puiq

2n
i“1 is hyperbolic, fpui, umq “ 0 for all 1 ď i ď

m´ 1, and hpumq ‰ 0.
(b) V has Witt index n.
(c) Up to similarity, V is uniquely determined by m.
(d) If p “ 2 then V is uniquely determined up to isometry by m.
(e) If p is odd then V is uniquely determined up to isometry by m and the coset hpumqK72.

(e) Suppose V is an orthogonal space and m is even.
(a) Either V has Witt index n and a hyperbolic basis, or V has Witt index n ´ 1 and a

basis pviq
m
i“1 such that pviq

m
i“3 is hyperbolic, fpvi, vjq “ 0 for 1 ď i ď 2 and 3 ď j ď m,

hpv1q “ hpv2q “ 1 and the polynomial x2 ´ fpv1, v2qx` 1 has no roots in K.
(b) Up to isometry, V is uniquely determined by m and its Witt index.

Proof. Suppose that V is a symplectic, unitary or orthogonal space. Let U be a singular
subspace of V , so U ď UK. Then U X V K “ 0 and so dimK V {U

K “ dimK U . In particular,
2 dimK U ď dimK V and thus V has Witt index at most n.

(a): By [Hu, II.9.6(b)] V has a hyperbolic basis, dimV is even and, up to isometry, V is uniquely
determined by its dimension. Let pviq

2n
i“1 be a hyperbolic basis. Then Kxv1, . . . , vny is a singular

subspace of dimension n. Thus V has Witt index at least n, and (a) holds.

(b): By [Hu, II.10.4a ] V has an orthonormal basis pviq
m
i“1 and up to isometry is uniquely

determined by its dimension. Put W “ Kxv1, . . . , v2dy. Then by [Hu, I0.4b] W has a hyperbolic
basis puiq

2n
i“1. Then WK is 1-dimensional with orthonormal basis say um. Also Kxu1, . . . , uny is a

singular subspace of dimension n, and so (b) holds.

(c): [Hu, II.10.9b].

(d): Suppose first that p is odd. Then by [As, 21.3] V has a hyperbolic hyperplane W . Note
that W has Witt index n and so also V has Witt index n. As in [As] choose 0 ‰ x P WK and a
generator c of K7, and define sgnpV q “ `1 if hpxq is a square in K and sgnpV q “ ´1 if not. By
[As, 21.4], up to isometry, there are exactly two m-dimensional orthogonal spaces, namely pV, f, hq
and pV, cf, chq. Moreover, pV, f, hq and pV, cf, chq are similar, and one has sgn equal to `1 and the
other equal to ´1. So (d) holds if p is odd.
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If p “ 2 then V K ‰ 0 and by (a), the symplectic space V {V K has a hyperbolic basis pvi`V
Kq2ni“1.

Since hpV Kq “ K, vi ` V K contains a singular vector and we may choose vi to be singular. Then
Kxpviqni“1y is an n-dimensional singular subspace of V and so V has Witt index n. Since K2 “ K
we can choose vm P V

K with hpvmq “ 1. In particular, up to isometry, V is uniquely determined by
its dimension, and so (d) also holds if p “ 2.

(e): By [As, 21.6] V is isometric to Dn or Dn´1Q, where D and Q are 2-dimensional orthogonal
spaces with D hyperbolic and Q definite. Moreover, Dn has Witt index n, while Dn´1Q has Witt
index n´ 1. Let E be an extension field of K with dimK E “ 2 and let idK ‰ σ P AutKpEq. Define

Tσ : Eˆ EÑ K, pa, bq ÞÑ aσb` bσa, and Nσ : EÑ K, a ÞÑ aσa.

Then by [As, 21.9] pE, Tσ, Nσq is a definite orthogonal space and isometric to Q. Let λ be any
element of K such that x2 ´ λx` 1 has no root in K. Then x2 ´ λx` 1 has a root ξ P E. It follows
that ξ ` ξσ “ λ and ξσξ “ 1. Since ξ R K, p1, ξq is K-basis for E and

Nσp1q “ 1σ1 “ 1, Tσp1, ξq “ 1σξ ` ξσ1 “ λ, Nσpξq “ ξσξ “ 1.

Thus (e) holds. l

Lemma B.19. Suppose that f ‰ 0 and let d be the Witt index of V .

(a) H acts transitively on the maximal singular subspace of V . In particular, all maximal
singular subspace of V have dimension d.

(b) Let W be a maximal hyperbolic subspace of V . Then V “W kWK and WK is definite.
(c) If V is definite, then dimK V ď 1 or H “ O´pV q and dimK V “ 2.

Proof. (a): See [As, 20.8].

(b): See [As, 19.5].

(c) follows from B.18. l

B.3. The Clifford Algebra

In this section pV, f, hq is an orthogonal space. We will define a normal subgroup ΩpV q of OpV q
via the Spinor norm and Dickson invariant. In our definition the Spinor norm S is defined for all
a P OpV q and not only for products of reflections. This allows to define ΩpV q also in the case of a
four dimensional orthogonal space of Witt index two over F2.

We remark that ΩpV q is often defined to be OpV q1. With our definition ΩpV q “ OpV q1 with two
exceptions: Ω`4 p2q – SL2p2q ˆ SL2p2q, while O`4 p2q

1 „ 32.2 and Ω5p2q “ O5p2q – Symp6q, while
O5p2q

1 – Altp6q.
We will also prove that CΩpV qpW

Kq – ΩpW q if V K “ 0 and W is a K-subspace of V with

W XWK “ 0. This of course is well-known, but the case, where W is a four dimensional orthogonal
space of Witt index two over F2, is often ignored.

As a byproduct we obtain that the elements of QZ , Z P SpV q, naturally correspond to elements
of the Clifford algebra of V , see the elements ω1`bc below.

Let C :“ CpV, f, hq be the Clifford algebra of the orthogonal space pV, f, hq. So C is an associative
K-algebra with identity generated by the K-space V subject to the relations v2 “ hpvq for v P V .

Let v, w P V . Then

hpvq ` fpv, wq ` hpwq “ hpv ` wq “ pv ` wq2 “ v2 ` vw ` wv ` w2 “ hpvq ` vw ` wv ` hpwq,

and so

vw ` wv “ fpv, wq P K and vw “ ´wv ` fpv, wq.

Note that the opposite algebra fulfills the same relations and so there exists a unique anti-
automorphism of K-algebras

θ : C Ñ C with vθ “ v for v P V.
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Then for x, y P V , hpxq “ x2 “ xθx and fpx, yq “ xy ` yx “ xθy ` yxθ. We extend h and f as
follows:

h : C Ñ C, x ÞÑ xθx and f : C ˆ C Ñ C, px, yq ÞÑ xθy ` yθx

Note that f is K-bilinear and for all x, y P C :

hpx` yq “ px` yqθpx` yq “ pxθ ` yθqpx` yq “ xθx` xθy ` yθx` yθy “ hpxq ` fpx, yq ` hpyq.

Put E :“ t1,´1u Ď Z (so |E| “ 2 even if p “ 2). For i P E define

Ci :“ CipV, f, hq :“ Kxv1 ¨ ¨ ¨ vn | n P N, v1, . . . , vn P V, p´1qn “ iy,

where v1 ¨ ¨ ¨ vn “ 1 if n “ 0.
Then pC1, C´1q is an E-grading of C, that is C “ C1 ‘ C´1 and CiCj Ď Cij for all i, j P E.

Define

CliffpV q :“ tx P C1 Y C´1 | 0 ‰ hpxq P K, xV “ V xu.

Let x P CliffpV q and y P C. Then 0 ‰ xθx “ hpxq P K and so x is invertible with inverse hpxq´1xθ.
We compute

hpxyq “ pxyqθxy “ yθxθxy “ yθhpxqy “ hpxqyθy “ hpxqhpyq.

For y “ x´1 this shows that hpx´1q “ hpxq´1 P K7. For y P CliffpV q we get 0 ‰ hpxyq P K. It
follows that CliffpV q is a multiplicative subgroup of C and the restriction of h to CliffpV q is a
multiplicative homomorphism from CliffpV q to K7.

For x P CliffpV q and y P C define yx :“ x´1yx. Then, since hpxq P K Ď ZpCq,

hpyxq “ hpx´1yxq “ hpx´1qphpyqhpxqq “ hpxq´1hpyqhpxq “ hpyq.

So h and thus also f is invariant under conjugation by x P CliffpV q.
Let dpxq be the unique element of E with x P Cdpxq. Then

d : CliffpV q Ñ E, x ÞÑ dpxq,

is a group homomorphism.
Since x is invertible the condition xV “ V x is equivalent to V x “ V (where V x :“ x´1V x).

Define

ωx : V Ñ V, v ÞÑ dpxqvx.

Since dpxq “ ˘1, h and f are invariant under multiplication by dpxq, and, as seen above, also under
conjugation by x. Hence ωx P OpV q and

ω : CliffpV q Ñ OpV q, x ÞÑ ωx,

is a homomorphism.
Let a P V with hpaq ‰ 0, so a is invertible with inverse hpaq´1a. Let v P V . Observe that

dpaq “ ´1, va “ ´av ` fpv, aq and a´1 “ hpaq´1a. Thus

dpaqa´1va “ ´
`

a´1p´av ` fpv, aqq
˘

“ v ´ fpv, aqa´1 “ v ´ hpaq´1fpv, aqa.

In particular, a P CliffpV q, and ωa is the reflection associated to a.
Next let b, c P V such that b is singular and c K b. Note that b2 “ hpbq “ 0 and bc “

´cb` fpb, cq “ ´cb. Hence

p˚q bcb “ ´bbc “ hpbqc “ 0, and pbcq2 “ bcbc “ 0

Put x :“ 1` bc. Then xθ “ 1` cb “ 1´ bc and

hpxq “ hp1` bcq “ θp1` bcqp1` bcq “ p1´ bcqp1` bcq “ 1´ bc` bc´ pbcq2 “ 1.

In particular, x “ 1` bc is invertible with inverse 1´ bc. Recall that 1 P C1 and so also x P C1 and
dpxq “ 1. Thus ωx is conjugation by x.

We compute:

p˚˚q vbc “ p´bv`fpv, bqqc “ ´bvc`fpv, bqc “ ´bp´cv`fpv, cqq`fpv, bqc “ bcv´fpv, cqb`fpv, bqc
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and

x´1vx “ p1´ bcqvp1` bcq “ p1´ bcqpv ` vbcq “ p1´ bcqv ` p1´ bcqvbc

(˚˚)
“ v ´ bcv ` p1´ bcq

`

bcv ´ fpv, cqb` fpv, bqc
˘

“ v ´ bcv ` bcv ´ fpv, cqb` fpv, bqc´ bcbcv ` fpv, cqbcb´ fpv, bqbcc

(˚)
“ v ´ fpv, cqb` fpv, bqc´ fpv, bqbhpcq

“ v ´ fpv, cqb` fpv, bq
`

c´ hpcqb
˘

.

In particular, x´1V x “ V . Hence x “ 1` bc P CliffpV q and

ω1`bc : V Ñ V, v ÞÑ v ´ fpv, cqb` fpv, bq
`

c´ hpcqb
˘

is an isometry of V .
We claim that

(I) OpV q “ xωa, ω1`bc | a, b, c P V, hpaq ‰ 0, hpbq “ 0, fpb, cq “ 0y.

Indeed, by [As, 22.7] OpV q is generated by the reflections ωa, unless OpV q “ O`4 p2q. In the latter
case the group generated by reflections has index two and does not contain ω1`bc for b, c P V 7 with
hpbq “ hpcq “ 0, fpb, cq “ 0 and b ‰ c. So (I) holds.

In particular, ω defined above is surjective. Put Z :“ kerω. So CliffpV q{Z – OpV q, and h
and d induce well-defined homomorphisms

S : OpV q Ñ K7{hpZq, ωx ÞÑ hpxqhpZq and D : OpV q Ñ E{dpZq, ωx ÞÑ dpxqdpZq,

where x runs through the elements of CliffpV q. Spxq is called the Spinor norm of x, and Dpxq is
called the Dickson invariant of x. We define

ΩpV q :“ kerS X kerD “ tz P OpV q | Spxq “ 1 and Dpxq “ 1u.

Since hp1` bcq “ 1 and dp1` bcq “ 1 we have Spω1`bcq “ 1 and Dpω1`bcq “ 1. So

O˛pV q :“ xω1`bc | b, c P V, hpbq “ 0, fpb, cq “ 0y ď ΩpV q.

We will determine now OpV q{ΩpV q. By (I), OpV q “ O˛pV qxωa | a P V, hpaq ‰ 0y, and since
O˛pV q ď ΩpV q, we conclude that

OpV q{ΩpV q –
@`

Spωaq, Dpωaq
˘

| a P V, hpaq ‰ 0
D

.

Put m :“ dimK and note that

ZpCq “

$

’

&

’

%

K if m is even,

K`Kpv1 ¨ ¨ ¨ vmq if m is odd, p is odd and pviq
m
i“1 is an orthogonal basis for V,

K` V K if m is odd and p “ 2.

In particular, ZpCq X C1 “ K. We claim that

(II) Z “ K7 Y V K7.
Let x P CliffpV q. Then x P Z if and only vx “ dpxqv for all v P V . If p “ 2 this just means

x P ZpCq, and so x P C1 XZpCq “ K7 or x P C´1 XZpCq “ V K7, where m is odd in the latter case.
So (II) holds for p “ 2.

So suppose p is odd. Assume x P C´1. Then dpxq “ ´1 and so vx “ ´v for all v P V . It follows
that wx “ ´w for all w P C´1 and so also xx “ ´x, a contradiction since xx “ x, p is odd and
x ‰ 0. Hence x P C1, dpxq “ 1 and x P ZpCq X C1 “ K. So x P K7. Since p is odd, V K “ 0, and so
(II) also holds for odd p.

If V K ‰ 0, then p “ 2, K72 “ K7, and so hpZq “ K7 and dpZq “ E. It follows that OpV q “
kerD “ kerS “ ΩpV q in this case.

So suppose V K “ 0. Then (II) shows that hpZq “ K72 and dpZq “ 1. Hence S and D are given
by

S : OpV q Ñ K7{K72, ωx ÞÑ hpxqK72, and D : OpV q Ñ E, ωx ÞÑ dpxq.

Hence Spωaq “ 1 if and only if a is a square in K2. Moreover, Dpωaq “ ´1.
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Suppose that p “ 2. Then K7 “ K72, and so Spωaq “ 1 for all a P V with hpaq ‰ 0. Thus
kerS “ OpV q, ΩpV q “ kerD and OpV q{ΩpV q – C2.

Suppose now that p is odd and dimV ě 2. Then K7{K72 – C2, and for each k P K7 there exists
a P V with hpaq “ k. If k is a square Spωaq “ 1 and Dpωaq “ ´1, and if k is not a square, Spωaq ‰ 1
and Dpωaq “ ´1. Thus OpV q{ΩpV q – C2 ˆ C2.

Suppose that p is odd and dimV “ 1. Then (for example by B.9(b)) OpV q “ t1, ωau, where
a P V 7. Thus ΩpV q “ 1 and OpV q{ΩpV q – C2.

Suppose p is odd. Then we can identify e P E with e1K in K. It follows that Dpωaq “ ´1 “
detpωaq and Dpω1`bcq “ 1 “ detpω1`bcq. By (I) the elements ωa and ω1`bc generate OpV q. Thus
Dpzq “ detpzq for all z P OpV q. In particular, ΩpV q “ tz P SOpV q | Spzq “ 1u.

The following table summarize the preceding results:

dimV p OpV q{ΩpV q ΩpV q
odd 2 1 OpV q
even 2 C2 tz P OpV q | Dpzq “ 1u
ě 2 odd C2 ˆ C2 tz P SOpV q | Spzq “ 1u
1 odd C2 1

We define

SpinpV q :“ x1` bc | b, c P V, hpbq “ 0, fpb, cq “ 0y ď CliffpV q X C1.

Note that ωpSpinpV qq “ ΩpV q if dimK V ě 3.

Lemma B.20. Suppose that V is an orthogonal space with V K “ 0 and let W be a K-space of V
with W XWK “ 0.

(a) The restriction function τ : COpV qpW
Kq Ñ OpW q, t ÞÑ t|W , is an isomorphism.

(b) Let SW and DW be the Spinor norm and Dickson invariant for the orthogonal space W .
Then Sptq “ SW pt|W q and Dptq “ DW pt|W q for all t P COpV qpW

Kq.

(c) τ induces an isomorphism from CΩpV qpW
Kq to ΩpW q.

Proof. (a): Since V K “ 0 and W XWK “ 0, V “W kWK. Hence (a) follows from B.10.

(b): Let t P COpV qpW
Kq. Then t|W is a product of elements of the form ωWa , ωW1`bc, a, b, c PW ,

hpaq ‰ 0, hpbq “ 0, fpb, cq “ 0. Since WK Ď aK X bK X cK , ωa and ω1`bc centralize WK, we get

ωa|W “ ωWa and ω1`bc|W “ ωW1`bc.

Thus t is the corresponding product of the elements of the form ωa, ω1`bc. Also

Spωaq “ hpaqK72“ SW pωW1`bcq, Dpωaq “ ´1 “ DW pωWa q,

Spω1`bcq “ 1 “ SW pωW1`bcq, Dpω1`bcq “ 1 “ DW pωW1`bcq.

So indeed Sptq “ SW pt|W q and Dptq “ DW pt|W q.

(c): Let t P COpV qpW
Kq. Then t P ΩpV q if and only if Sptq “ Dptq “ 1 and so by (b) if and only

if SW pt|W q “ DW pt|W q “ 1 and thus if and only if t|W P ΩpW q. Hence (c) follows from (a). l

B.4. Normalizers of Singular Subspaces

Lemma B.21. Let U be an k-dimensional isotropic subspace of V and E :“ CHpUqXCHpV {Uq.

(a) Suppose V is not a linear space. Then E “ CHpV {Uq.
(b) Suppose V K “ 0. Then E “ CHpV {Uq “ CHpU

Kq.
(c) Suppose that V is a linear space. Then E – UbKpV {Uq

˚, |E| “ |K|kpn´kq and |V {CV pEq|“
|K|n´k.

(d) Suppose that V is a symplectic space. Then E – S2pUq, |E| “ |K|
kpk`1q

2 and |V {CV pEq| “
|K|k.

(e) Suppose that V is a unitary space. Then E – U2pUq, |E| “ |F|k2 and |V {CV pEq| “ |F|2k.
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(f) Suppose that V is an orthogonal space and U is singular. Then E – Λ2pUq, |E| “ |K|
kpk´1q

2 ,
|V {CV pEq| “ |K|k,

(g) Suppose that V is an orthogonal space and U is not singular. Put U0 :“ tu P U | hpuq “ 0u,
E0 :“ CEpV {U0q, and E1 :“ E X ΩpV q. Then p “ 2, E0 ď E1 ď E, E1{E0 – U0,

E0 – Λ2pU0q, and |E1| “ |K|
kpk´1q

2 . If V KXU ‰ 0 then |V {CV pEq| “ |K|k´1 and E “ E1.
If V K X U “ 0 then |V {CV pEq| “ |K|k and |E{E1| “ 2.

Here all the isomorphisms are ZNHpUq-module isomorphisms.

Proof. (a): By B.6(d) CHpV {Uq ď CHpUq and so CHpV {Uq “ CHpV {Uq X CHpUq “ E.

(b): By B.6(a) V {UKK is dual to UK{UK X V K as an FNHpUq module. Since V K “ 0 we have
UKK “ U and so V {U is dual to UK. Hence CHpV {Uq “ CHpUq. By (c) CHpV {Uq “ E and so (b)
is proved.

The remaining statements are [MS5, 3.4]. l

Lemma B.22 ([MS5, 3.5]). Let U be a k-dimensional isotropic subspace of V . Let U0 be the
subspace of all singular elements of U and put k :“ dimK U0. Suppose that k ě 2. Put E :“
CHpUq X CHpV {Uq, and P :“ Op

1

pNH1pUqq.

(a) If V is a linear or unitary space, then E is a simple FpP -module.
(b) If V is a symplectic space and p is odd, then E is a simple FpP module.
(c) If V is an orthogonal space and U is singular, then one of the following holds:

(1) k ě 3 and E is a simple FpP -module.
(2) k “ 2, P centralizes E and E is a simple FpNH1pUq-module.

(d) Suppose that V is a symplectic space and p “ 2 or an orthogonal space and U is not
singular. Then p “ 2. Let E0 be the sum of the simple F2P -submodules of E. Then one of
the following holds:
(1) k ě 3, E0 is a simple F2P -module, and E0 –

Ź

2 U
˚
0 .

(2) k “ 2, |K| ą 2 or V K ę U , E0 “ CEpP q. |E0| “ |K| and NH1pUq acts simply on E0.
(3) k “ 2, |K| “ 2, V is symplectic or V K ď U , and E is the direct sum of simple

F2P -modules of order 2 and 4.

B.5. Point-Stabilizers

Lemma B.23. Suppose that V is not a linear space. Let Z P SpV q, 0 ‰ z P Z and v P V with
fpz, vq “ ´1. Let T be the set of all a in ZK such that v and v ` a are isometric. For a P T let γa
be the unique element of GLKpV q with

vγa “ v ` a and uγa “ u` fpu, aqz for all u P ZK.

(a) γa P QZ for all a P T , rv, qs P T for all q P Qz, and the function T Ñ Qz, a Ñ γa is a
bijection with inverse Qz Ñ T , q Ñ rv, qs.

(b) Let a P T . Then γa P DZ if and only if a P Z.
(c) For each w P V zZK, QZ acts regularly on the set of elements in w ` ZK isometric to w.
(d) For each w P V zZK, DZ acts regularly on the set of elements in w ` Z isometric to w.
(e) Let a, b P T . Then

γaγb “ γa`b`fpa,bqz, rγa, γbs “ γpfpb,aq´fpa,bqqz, and γpa “ γ´fpa,aqz.

(f) The function QZ{DZ Ñ ZK{Z, qDZ ÞÑ rv, qs ` Z, is an FpCHpZq-isomorphism.
(g) If QZ ‰ 1, then CV pQZq “ V K ` Z.

Proof. (a): Let a P ZK and τ P HomKpZ
K,Kq with Zτ “ 0. Define γa,τ P GLKpV q by

vγa,τ “ v ` a and uγa,τ “ u` puτqz for u P ZK.

Then γα,τ centralizes Z, ZK{Z and V {ZK.
Now let γ P GLKpV q such that γ centralizes Z, ZK, and V {ZK. Then there exists a unique

a P ZK and τ P HomKpZ
K,Kq with Zτ “ 0 such that γ “ γa,τ , namely a “ rv, γs and τ is defined

by ru, γs “ puτqz for u P ZK.
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Observe that γ|ZK is an isometry of ZK and that γ|Kv : Kv Ñ Kpv ` aq is an isometry if and
only if v ` a is isometric to v, that is, if and only if a P T .

For u P ZK we have

fpuγ , vγq “ fpu`puτqz, v`aq “ fpu, vq`fpu, aq`puτqfpz, vq`puτqfpz, aq “ fpu, vq`fpu, aq´uτ.

Hence B.10 shows that γ is an isometry if and only if a P T and uτ “ fpu, aq for all u P ZK, and so
if and only if a P T and γ “ γa.

(b): If a P T X Z, then fpu, aq “ 0 for all u P ZK. Thus γa centralizes ZK and V {Z and so
γa P DZ . Conversely, if γa P DZ , then a “ rv, γas P Z.

(c) and (d): Without loss w “ v. Let v1 P v ` ZK be isometric to v and put a :“ v1 ´ v. Then
a P T and by (a) γa is the unique element of QZ with rv, γas “ a and so also the unique element of
QZ with vγa “ v1. Thus (c) holds. Note that v1 P v ` Z if and only if a P Z and so by (b) if and
only if γa P DZ . Hence also (d) holds.

(e): Let a, b P T . Then γaγb is an isometry on V , so vγaγb “ v ` rv, γaγbs is isometric to v and
rv, γaγbs P T . Since

vγaγb “ pv ` aqγb “ v ` b` a` fpa, bqz

we conclude that rv, γaγbs “ b` a` fpa, bqz P T and

γaγb “ γa`b`fpa,bqz.

It follows that

γaγb “ γbγaγpfpb,aq´fpa,bqqz, rγa, γbs “ γpfpb,aq´fpa,bqqz and γpa “ γpa`pp´1qfpa,aqz “ γ´fpa,aqz.

(f): Define Φ : QZ Ñ ZK{Z, q ÞÑ rv, qs `Z. Since QZ centralizes ZK{Z, Φ is a homomorphism.
Let q P QZ . Note that q P DZ if and only if rv, qs P Z and so ker Φ “ DZ . Let u P ZK. By
B.11 there exists v1 P v ` u ` Z with hpv1q “ hpvq. Hence by (b), vq “ v1 for some q P QZ and so
rv, qs “ v1 ´ v P u` Z, So Φ is surjective, and (f) is proved.

(g): By (f) rV,QZs ` Z “ ZK and so B.6(c) gives

CV pQZq X Z
K “ rV,QZs

K X ZK “ prV,QZs ` Zq
K “ ZKK “ Z ` V K.

By (c) all orbits of QZ on V zZ are regular. So if QZ ‰ 1, CV pQZq ď ZK, and (g) holds. l

Lemma B.24. Let Z P SpV q.
(a) Let τ P HomKpZ

K, Zq with Z `RpV q ď ker τ . Then there exists q P QZ with uq “ u` uτ
for all u P ZK.

(b) Let z P Z and w P ZK with w R Z `RpV q. Then there exists q P QZ with wq “ w ` z.

Proof. (a): Suppose that V is a linear space. Then ZK “ V . Define q : V Ñ V, u Ñ u ` uτ .
Then q P QZ and (a) holds.

So suppose that V is not a linear space. Pick 0 ‰ z P Z and v P V such that fpz, vq “ ´1.
Since Z ` V K “ Z ` RpV q ď ker τ , there exists a P zK with uτ “ fpu, aqz for all u P UK. By B.11
v` a`Z contains an element isometric to v and so we may assume that v` a is isometric to v. Let
γa be the element of QZ defined in B.23. Then for all u P ZK

uγa “ u` fpu, aqz “ u` uτ.

(b): Since w R Z ` RpV q, there exists τ P HompZK, Zq with Z ` RpV q ď ker τ and wτ “ z.
Now (b) follows from (a). l

Lemma B.25. Suppose that V is not a linear space. Let Y, Z P SpV q with Y ę ZK. Put

K :“ CHpZq X CHpY q, K˚ :“ NHpZq XNHpY q and C :“ CK˚pZ
K X Y Kq.

(a) V “ Z ` xY QZ y.
(b) QZ acts regularly on SpV qzSpZKq.
(c) CHpZq “ QZK, QZ XK “ 1, K – ClpZK{Zq, and QZ{DZ is a natural ClpZK{Zq-module

for CHpZq and for K.



218 B. CLASSICAL SPACES AND CLASSICAL GROUPS

(d) NHpZq “ QZK
˚, QZXK

˚ “ 1, NHpZq acts transitively on Z and on V {ZK, K˚ “ CˆK
and QZ{DZ – V {ZK bK Z{Z

K as an FppC ˆKq-module and as an FpNHpZq-module.

Proof. Let 0 ‰ y P Y and choose z P Z with fpz, yq “ ´1.
(a): By B.23(f) the function QZ{DZ Ñ ZK{Z, qDZ ÞÑ ry, qs ` Z, is an isomorphism. Thus

V “ Y ` ZK “ Y ` ry,QZs ` Z ď xY
QZ y ` Z.

(b): Let X P SpV q with X ę ZK. Then V “ X`ZK and we can choose x P X with fpz, xq “ ´1.
Hence x P y ` ZK. Note that x and y are both singular and so isometric. By B.23(c), QZ acts
regularly on the elements in y ` ZK isometric to y and so x P yQZ . Hence also X P Y QZ .

(c) and (d): Since QZ acts regularly on the elements in y ` ZK isometric to y, a Frattini
argument shows that CHpZq “ QZpCHpZq XKq and QZ XK “ 1. Similarly, as QZ acts regularly
on SpV qzSpZKq we have NHpZq “ QZK

˚ and QZ X K˚ “ 1. Put W :“ ZK X Y K. Then, as a
module for K˚,

V “ pZ ‘ Y q kW.

Let k, l P K7 and b P GLKpW q. Define a P GLKpV q by za “ kz, ya “ ly and wa “ wb for all
w PW . By B.10 a is an isometry if and only if a|Z`Y and b are isometries. Since Y and Z are singular,
a|Y and a|Z are isometries, and another application of B.10 shows that a|Z`Y is an isometry if and
only if fpza, yaq “ ´1. This holds if and only if klα “ 1 , that is if and only if k “ l´α. Thus C – K7
is cyclic and acts transitively on Z and V {ZK. Also K “ K˚XCKpZq – ClpW q – ClpZK{Zq. Since
the function

τ : QZ{DZ Ñ ZK{Z, qDZ ÞÑ ry, qs ` Z

is a CHpZq-isomorphism, we conclude that QZ{DZ is a natural ClpZK{Zq-module for CHpZq and
for K. Let q P QZ and c P C with yc “ ly. Then τpqcq “ ryc, qs ` Z “ lτpqq. Hence QZ{DZ –

V {ZK bK Z{Z
K as an FppC ˆKq-module and so also as an FpNHpZq-module. l

Lemma B.26. Suppose that V symplectic space with dimK V ě 2, a unitary space with dimK V ě
2, or an V is an orthogonal space with dimK V ě 3. Let Y, Z P SpV q with Y ę ZK.

(a) xQY , QZy “ H˛.
(b) H˛ acts transitively on SpV q.

Proof. Put L “ xQY , QZy. We claim that L acts transitively on SpV q. Let X P SpV q. By
B.25(b) QZ acts transitively on SpV qzSpZKq. If X ę ZK this gives X P Y QZ Ď Y L.

Suppose next that X ď ZK. Note that X ę V K and, by B.25(a), V “ Z ` xY QZ y. Thus there
exists a P QZ with X ę Y aK. Note that also Z ę Y aK and so B.25(b) applied with Y a in place of
Z shows that X P ZQY a Ď ZL. We proved that SpV qzSpZKq Ď Y L and SpZKq Ď ZL.

Suppose for a contradiction that L does not acts transitively on SpV q. Then L has two orbits
on SpV q, namely ZL “ SpZKq and Y L “ SpV qzSpZKq. By symmetry, Y L “ SpY Kq. Hence
U :“ xY Ly ď Y K and so also U ď UK and U is singular. Note that

SpU X ZKq Ď SpY Kq X SpZKq “ Y L X ZL “ H.

Since UXZK is singular, this gives UXZK “ 0 and U “ Y `pUXZKq “ Y . Thus Y L “ tY u and by
symmetry ZL “ tZu. It follows that SpV q “ tX,Y u. By B.13 V “ xSpV qy and so V “ X ` Y . On
the other hand, by B.11 |SpX ` Y qztY u| “ |K|, |F| or 2 if V is a symplectic, unitary or orthogonal
space, respectively. Thus V is an orthogonal space. Since dimK V “ 2 this contradicts the hypothesis
of the Lemma.

Hence L acts transitively on SpV q. In particular, H˛ acts transitively on SpV q and

H˛ “ xQX | X P SpV qy “ xQLZy ď L.

l

Lemma B.27. Suppose that V contains a 2-dimensional singular subspace. Let v and w be
isometric elements in V zRpV q. Then there exists a P H˛ with wa “ v. In particular, H˛ acts
transitively on the set of non-zero singular vectors.
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Proof. If V is a linear space H˛ “ SLKpV q acts transitively on V and the lemma holds. So
suppose that V is not a linear space.

Let E be a 2-dimensional singular subspace of V and Z P SpEq. By B.26(b) H˛ acts transitively

on SpV q and by B.13, V “ xSpV qy. Thus V “ xZH
˛

y and so Zb ę vK for some b P H˛. Replacing

v by vb
´1

we may assume that v R ZK. Similarly we may assume that w R ZK. Choose z P Z
with fpz, vq “ ´1. Note that X :“ E X wK P SpwKq. Also V “ Z ` wK and since Z ď XK ‰ V ,
we get V “ XK ` wK and wK ę XK. Thus X ę wKK and so X ę radpwKq. In particular,
xSpwKqy ‰ radpwKq, and B.13 shows that xSpwKqy “ wK. As Z ď ZK ‰ V and V “ Z ` wK, we
have wK ę ZK and so there exists U P SpwKq with U ę ZK.

We claim that there exists Y P SpwKq with Y ę ZK and Y ę Kw`V K. If U ę Kw`V K we can
choose Y “ U . So suppose U ď Kw` V K. Since w K X this gives U K X. Thus U `X is singular.
Since X ď ZK and U ę ZK, we have U ‰ X and pU `Xq X ZK “ X. Let Y be any 1-dimensional
subspace U `X with Y ‰ X and Y ‰ U . Then Y ę ZK and Y P SpwKq. If Y ď Kw ` V K, then
U `Y ď Kw`V K and so 0 ‰ V K ď U `Y , a contradiction, since V K contains no non-zero singular
vectors. Thus the claim is proved.

Choose Y as in the claim. From Y ę Kw ` V K and w R V K get w R Y ` V K. Note that
Y `ZK “ V , so we can choose y P Y with fpz, w` yq “ ´1. In particular fpz, vq “ fpz, w` yq and
w ` y P v ` ZK. Recall that Y P SpwKq, w R Y ` V K and V K “ RpV q. Thus w P Y KzpY ` RpV qq,
and B.24(b) shows that there exists c P QY with wc “ w ` y. In particular, w ` y, w, v are all
isometric. As w` y P v`ZK, we conclude from B.23(d) that there exists d P QZ with pw` yqd “ v.
So wcd “ v, and the lemma is proved. l

Lemma B.28. Let Z P SpV q. Suppose that dimK V ě 3. Put P :“ CH˛pZq.

(a) Suppose that V is a linear space.
(a) DZ “ 1 and QZ is elementary abelian.
(b) P {QZ – SLpV {Zq and QZ is the corresponding natural module for P dual to V {Z.

(b) Suppose that V is a symplectic space.
(a) |DZ | “ |K|, DZ “ Q1Z “ ΦpQZq “ ZpQZq if p is odd, and QZ is elementary abelian

if p “ 2.
(b) P {QZ – SppZK{Zq and QZ{DZ is the corresponding natural module for P .

(c) Suppose that V is a unitary space.
(a) |DZ | “ |F| and DZ “ Q1Z “ ΦpQZq “ ZpQZq.
(b) P {QZ – SUpZK{Zq and QZ{DZ is the corresponding natural module for P .

(d) Suppose that V is an orthogonal space.
(a) DZ “ 1 and QZ is elementary abelian.
(b) P {QZ – ΩpZK{Zq and QZ is the corresponding natural module for P .

Proof. Suppose first that f “ 0, that is H “ GLpV q. Then V K “ V and so DZ “ 0. By
B.21(c) QZ – Z bK pV {Zq

˚ as an FpP -module. Since P centralizes Z and is 1-dimensional over K
this shows Z bK pV {Zq

˚ – pV {Zq˚. Note that P induces SLpV {Zq on V {Z and so also on pV {Zq˚.
Hence (a) holds.

Suppose now that f ‰ 0. We will use the description of QZ given in B.23. So let v, z, T , and
γa, a P T , be as there. By B.23(d), DZ acts regularly on the set of elements in v`Z isometric to v.
By B.11 the number of such elements is |K| if H “ SppV q, |F| if H “ GUpV q, and 1 if H “ OpV q.
So also |DZ | “ |K|, |F| and 1, respectively.

Let a, b P T . Then by B.23(e):

rγa, γbs “ γpfpb,aq´fpa,bqqz and γpa “ γ´fpa,aqz.

If either H “ SppV q and p “ 2 or H “ OpV q, we conclude that QZ is elementary abelian. If
either H “ SppV q and p is odd or H “ GUpV q, we conclude that ΦpQZq “ DZ “ Q1Z “ ZpQZq.

Put P˚ “ CHpZq, K
˚ “ CP˚pvq and K “ CP pvq. Note that QZ act regularly on v ` T . Since

v ` T is the set of singular vectors in v ` ZK, v ` T is P˚ invariant and a Frattini argument gives
P˚ “ K˚QZ and P “ KQZ . Put W “ ZK X vK and note that V “ W k pKv ` Zq. Since K˚
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centralizes Kv`Z, we conclude from B.10 that K˚ is (isomorphic to) the group of isometries of W .
Note that K “ K˚ X H˛. If H “ SppV q then H “ H˛ and K “ K˚ “ SppW q. If H “ GUpV q,
then H˛ “ SUpV q and so K “ SUpW q. If H “ OpV q and V K “ 0, then H˛ “ ΩpV q. Thus
K “ CΩpV qpW

Kq, and B.20 shows that K “ ΩpW q. If H “ OpV q and V K ‰ 0, then H “ H˛ and
K “ K˚ “ OpW q “ ΩpW q.

Since P {QZ “ KQZ{QZ – K and ZK{Z –W this shows that P {QZ – SppZK{Zq, SUpZK{Zq
and ΩpZK{Zq, respectively. By B.23(f) QZ{DZ – ZK{Z as an FpP -module and so all parts of the
lemma are proved. l

B.6. Simplicity of the Natural Module

Lemma B.29. Suppose that dimK V ě 3 if V is an orthogonal space, and dimK V ě 2 otherwise.
Suppose that there exists a proper FpH˛-submodule W of V with W ę RpV q. Then one of the
following holds:

(a) V is a unitary space, dimK V “ 2, H˛ – SL2pFq, W is an F-subspace of V , W is a natural
SL2pFq-module for H˛, V is the direct sum of two natural SL2pFq-module for H˛, and H
acts transitively on the |F| ` 1 simple H˛-submodules of V . In particular, V is a simple
H-module and a simple KH˛-module.

(b) V is an orthogonal space, dimK V “ 3, |K| “ 2, H “ H˛ – SL2p2q, W “ rV,Hs is a
natural SL2p2q-module for H and V “ V K kW .

Proof. If V is linear, then H˛ “ SLKpV q and H˛ acts transitively on V . Thus V is a simple
H-module, and no proper H˛-submodule of V exists.

Hence V is not linear and so RpV q “ V K. Note that the hypothesis on dimK V ensure that there
exists Z P SpV q (see B.19(c)). By B.13, V “ xSpV qy. Since W ę V K we conclude that W ę ZK for
some Z P SpV q. Let w PW zZK. By B.23(e) the function QZ{DZ Ñ ZK{Z, qDZ Ñ rw, qs ` Z is an
isomorphism. Thus ZK ď rW,QZs ` Z and so rZK, QZs “ rW,QZ , QZs ďW .

Suppose that ZK ‰ Z`V K or H “ SppV q. In the first case B.24(b) shows that Z “ rZK, QZs ď
W , and in the second case B.28(b:a) shows that DZ ‰ 1 and so rW,DZs “ Z ď W . Thus ZK “
rW,QZs ` Z ď W , xKW y “ V , WK “ V K and Z1 P W for all Z1 P SpV q, a contradiction since
W ‰ V and V “ xSpV qy.

It follows that ZK “ Z ` V K and H ‰ SppV q. Hence dimV {V K “ 2 and either H “ GUpV q,
V K “ 0 and dimV “ 2, or p “ 2, H “ OpV q, dimV K “ 1.

Suppose that H “ GUpV q. For i “ 1, 2 let Ui P SpV q with U1 ‰ U2. Then V “ U1 ` U2. We
can choose the following further notation:

0 ‰ t P K with t` tα “ 0, 0 ‰ u1 P U1, u2 P U2 with fpu1, u2q “ t.

Let X be the F-subspace of V spanned by u1 and u2, and let λi P F. Then

hpλ1u1 ` λ2u2q “ λ1λ
α
2 t` λ

α
1λ2t “ λ1λ2pt` t

αq “ 0.

Thus all elements in X are singular. Let 0 ‰ x P X and choose y P X with fpx, yq ‰ 0. By B.11(b)
Kx` y contains exactly |F| singular vectors. It follows that Fx` y is the set of singular vectors in
Kx ` y and so QKx normalizes Fx ` y. Hence QKx normalizes X. As SpV q “ |F| ` 1 and X has
|F| ` 1 1-dimensional subspaces each U P SpV q intersects X in 1-dimensional F-space and so QU
normalizes X. Hence X is an FH˛ submodule of V . Observe that X is natural SL2pFq-module for
H˛. Since u1 was an arbitrary non-zero element on U1, each of the |F|`1 1-dimensional F-subspaces
of U1 lies in a 2-dimensional FH˛-submodule of V . It follows that V is a direct sum of two natural
SL2pFq-modules for H˛. In particular, there exists exactly |F|`1 non-zero proper FpH˛ submodules
of V . As NH˛pU1q acts transitively on U1, we conclude that NH˛pU1q also acts transitively on the
set of non-zero proper FpH

˛-submodules of V . Thus (a) holds.
So suppose that H “ OpV q. Then H˛ induces SppV {V Kq “ Sp2pKq “ SL2pKq on V {V K and

so V “ W ` V K; in particular rV,H˛s ď W . Thus rV,QZs is 1-dimensional and so (for example by

B.11) Z0 ` rV,QZs contains exactly two singular 1-spaces. Since xZQZ0 y ď Z0 ` rV,QZs this shows

that |K| “ |QZ | “ |ZQZ0 | “ 2, and (b) holds. l
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Lemma B.30. Let Z P SpV q, and put P :“ CH˛pZq. Suppose that there exists a proper P -
invariant subgroup T of QZ with T ę DZ .

(a) Suppose that V is a linear space and dimK V ě 2. Then dimK V “ 2.
(b) Suppose that V is a symplectic space and dimK V ě 2. Then |K| “ 2, dimK V “ 4,

T “ rQZ , P s “ H 1 XQZ , and T has order 4.
(c) Suppose that V is a unitary space and dimK V ě 4. Then dimK V “ 4, DZ ď T , T {DZ

is a natural SL2pFq-module for P , and T is not invariant under CH˛pDZq. In particular,
NH˛pZq acts simply on QZ{DZ .

(d) Suppose that V is an orthogonal space and V K “ 0.3 Then dimK V ď 4.

Proof. (a): By B.28(a) QZ is a natural SLpV {Zq-module for P and so, if dimV {Z ě 2, a
simple P -module. This gives (a).

(b): Note first that T ę DZ gives QZ ‰ DZ , and so dimK V ě 4. By B.28(b:b) QZ{DZ is
a natural SppZK{Zq-module for P and so simple. Thus TDZ “ QZ . If p is odd, then B.28(b:a)
implies DZ “ ΦpQZq and so T “ QZ .

Hence p “ 2. By B.14 V – W {WK and H – OpW q for some non-degenerate orthogonal space
W . Without loss V “ W {WK. Then the inverse image of Z in W contains a unique 1-dimensional
singular subspace Z0, QZ “ QZ0 and P “ CHpZ0q. Now B.28(d:b) shows that QZ is a natural
ΩpZK0 {Z0q-module for P . Thus by B.29, |K| “ 2, dimZK0 {Z0 “ 3 and T “ rQZ , P s has order 4.
Hence (b) holds.

(c): By B.28(c) QZ{DZ is a natural SUpZK{Zq-module for P and DZ “ ΦpQZq. It follows that
QZ ‰ TDZ . We now apply B.29(a) to ZK{Z and GUpZK{Zq. Then dimZK{Z “ 2, and TDZ{DZ

is a natural SL2pFq-module for P .
Let λ P K be of multiplicative order |F| ` 1. Then λλα “ 1. By B.18(b:a) V has a hyperbolic

basis pv1, v2, v3, v4q. Then fpv1, v4q “ fpv2, v3q “ 1 and fpvi, vjq “ 0 for all other 1 ď i ď j ď 4.
Since H acts transitive on SpV q, we may assume that v1 P Z. Define φ P GLKpV q by viφ “ λvi
for i “ 1, 4 and viφ “ λ´1vi for i “ 2, 3. Observe that φ P SUpV q “ H˛ and that φ normalizes Z.
Since φ acts as scalar multiplication by λ on V {ZK and Z, φ centralizes DZ . As φ acts as scalar
multiplication by λ´1 on ZK{Z, φ centralizes P {QZ . It follows that φ does not normalizes TDZ{DZ

and so QZ “ TTφDZ . Since T is P invariant, rT,QZs ď T XDZ , and since φ centralizes DZ this
gives rTφ, QZs ď Tφ X DZ “ T X DZ . Thus DZ “ Q1Z “ rTT

φDZ , QZs ď T X DZ ď T and (c)
holds.

(d): By B.28(d:b) QZ is a natural ΩpZK{Zq-module for P . If V K “ 0 and dimKpZ
K{Zq ě 3, we

conclude from B.29(b) that QZ is a simple P -module. Thus (d) holds. l

B.7. Normalizers of Classical Groups

In this section we view K as a subring of EndFpHpV q.

Lemma B.31. Suppose that dimK V ě 3 if V is an orthogonal space, and dimK V ě 2 otherwise.
Then EndFpH˛pV q “ K, unless H “ OpV q “ O3p2q or H “ GUpV q “ GU2pFq.

Proof. Suppose first that V K “ 0 and H ‰ GU2pKq. Then by B.29, V is a simple FpH˛-
module and so EndFpH˛pV q is a division ring. Let Z P SpV q. By B.23(g), CV pQZq “ V K ` Z “ Z
and so CV pQZq is 1-dimensional over K. This gives EndFpH˛pV q “ K.

Suppose next that V K ‰ 0 and H ‰ O3p2q. Then B.29 shows that V “ rV,H˛s. Let β P
EndFpH˛pV q with V β ď V K. Then rV β,H˛s “ 0 and so also rV,H˛sβ “ 0. As V “ rV,H˛s we

get that β “ 0, and EndFpH˛pV q acts faithfully on V {V K. Since H˛ induces SppV {V Kq on V we
conclude from the previous case that EndFpH˛pV q “ K. l

Lemma B.32. Suppose that V is a linear space and put H˚ “ NGLFp pV q
pH˛q. Suppose that

dimK V ě 2.

3If V K ‰ 0, then p “ 2, V {V K is a non-degenerate symplectic space, H – SppV {V Kq, and (b) applies
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(a) H˚ “ ΓGLKpV q, that is, g P GLFppV q normalizes H˛ if and only if there exists σ P AutpKq
such that g acts σ-semilinearly on V .4

(b) There exists a homomorphism ρ : H˚ Ñ AutpKq, g ÞÑ ρg, such that each g P H˚ acts
ρg-semilinearly on K.

(c) ker ρ “ H and ρ is surjective. In particular, H˚{H – AutpKq.
(d) Let T be p-subgroup of H˚ acting K-linearly on V . Then T ď H˛.

Proof. (a) and (b): Let b, c P GLFppV q acting β- and γ-semilinearly on K, respectively. Then

bc acts βγ semilinearly on V and b´1 acts β´1-semilinearly on V . In particular, if c acts K-linearly,
so does cb. Hence b normalizes H and thus also H˛.

By B.31 K “ EndFpH˛pV q. Hence H˚ acts on K by conjugation and we obtain a homomorphism

ρ : H˚ Ñ AutpKq, g ÞÑ ρg, such that g´1kg “ kρg . It follows that g P H˚ acts ρg-semilinearly on V .

(c): Clearly ker ρ “ H. To show that ρ is surjective let pviq
n
i“1 be a K-basis and σ P AutpKq.

Define g P GLFppV q by pkviq
g “ kσvi. Then g acts σ-linearly on V , and by (a) g P H˚. Hence

ρpgq “ σ.

(d): Since T acts K-linearly on V , T ď H and since H{H˛ “ GLKpV q{SLKpV q is a p1 group,
T ď H˛. l

Lemma B.33. Let k P F7 and σ P AutpKq. Define

rf :“ fk,σ : V ˆ V Ñ K, pv, wq ÞÑ kfpv, wqσ, rh :“ hk,σ : V Ñ F, v ÞÑ khpvqσ.

Let Vσ be the K-space with Vσ “ V as abelian group and scalar multiplication

¨σ : Kˆ V Ñ V, pl, vq ÞÑ lσ
´1

v.

Then

(a) pV σ, rf,rhq is a classical space of the same type as pV, f, hq.
(b) The K-subspaces of V are the same as the K-subspaces of Vσ.
(c) A K-subspace of V is singular with respect to pf, hq if and only if it is singular with respect

to p rf,rhq.

(d) H is the isometry group of pV, rf,rhq.

(e) pV σ, rf,rhq is not isometric to pV, f, hq if and only if H “ OpV q, p is odd, dimK V is odd,
and k is not a square in K.

Proof. (a) is readily verified, and (b) should be obvious.

(c): Just observe that kfpv, wqσ and khpvqσ are 0 if and only if fpv, wq and hpvq are 0.

(d): Let g P GLKpV q. Then pf, hq is g-invariant if and only if p rf,rhq is.

(e): By B.18 any two linear spaces, any two symplectic spaces, and any two unitary spaces of
the same dimension are isometric.

Note that U is a singular subspace of V if and only if Uσ is a singular subspace of Vσ. Hence
V and Vσ have the same Witt index. Any two orthogonal spaces of the same even dimension are
isometric if and only if they have the same Witt index. Also if p “ 2 then any two orthogonal spaces
of the same odd dimension are isometric.

So it remains to consider the case H “ OpV q, dimK V odd and p odd. Let Y be a maximal
hyperbolic subspace of V and put X “ Y K. Then by B.19 V “ X k Y and dimKX “ 1. Let
0 ‰ x P X and observe that, by the even dimensional orthogonal case, Yσ is hyperbolic. Also
Vσ “ Xσ k Yσ and Xσ K Yσ. Hence by B.18(d:e) pV, f, hq and pVσ, f, hq are isometric if and only

if rhpxqhpxq´1 is a square in K. Note that rhpxqhpxq´1 “ khpxqσhpxq´1 and that hpxqσhpxq´1 is a

square in K. Thus pV, f, hq and pV σ, rf,rhq are isometric if and only if k is a square. l

4For the definition of σ-semilinear see A.46
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Lemma B.34. Let g P GLFppV q. Define

fg : V ˆ V Ñ K, pv, wq ÞÑ fpvg, wgq, and hg : V Ñ F, v ÞÑ hpvgq.

Let Vg be the K-space with Vg “ V as abelian group and scalar multiplication

¨g : Kˆ V Ñ V, pk, vq ÞÑ
`

kvg
˘g´1

.

Then

(a) g is an isometry from pVg, fg, hgq to pV, f, hq.
(b) pVg, fg, hgq is a classical space of the same type as pV, f, hq.

(c) Hg´1

is the isometry group of pVg, fg, hgq.

Proof. (a): Let k P K and v P V . Then

pk ¨g vq
g “

´

`

kvg
˘g´1¯g

“ kvg,

so g : Vg Ñ V is an isomorphism of K spaces.
By the definition of fg and hg

fgpv, wq “ fpvg, wgq and hgpvq “ hpvgq

for all v, w P Vg, and so (a) holds.

(b) and (c) both follow from (a). l

Lemma B.35. Suppose that V is not a linear space and dimK V ě 3. Put H˚ :“ NGLFp pV q
pH˛q.

(a) Let g P GLKpV q Then g P H˚ if and only there exist k P F7 and σ P AutpKq such that g is
a pk, σq-semisimilarity of V .

(b) Let g P H˚. Then the elements k P F7 and σ P AutpKq in (a) are uniquely determined.
Moreover, if we denote k by λg and σ by ρg, then the function

pλ, ρq : H˚ Ñ F7 ¸AutpKq, g ÞÑ pλg, ρgq,

is a homomorphism.
(c) Put S :“ tk2 | k P K7u if V is an orthogonal space with dimK V odd and p odd; put

S :“ F7 otherwise. Then kerpλ, ρq “ H and Impλ, ρq “ S ¸ AutpKq. In particular,
H˚{H – S ¸AutpKq.

(d) Let T be a p-subgroup of H˚ acting K-linearly on V . Then T ď H. Moreover, T ď H˛,
unless p “ 2, V is an orthogonal space and V K “ 0.

Proof. Suppose first that H “ OpV q “ O3p2q. Then H “ H˛, V “ V KkrV,Hs and H induces
GL2p2q on rV,Hs. It follows that H˚ “ H. Also K7 “ t1u and AutpKq “ 1, and so the lemma holds
in this case. So we may assume from now on that H ‰ O3p2q.

(a) and (b): Suppose first that there exists k P F7 and σ P AutpKq such that g is a pk, σq-
semisimilarity of V . Then

fpvg, wgq “ kfpv, wqσ and hpvgq “ khpvqσ

for all v, w P V . In the notation of B.33 and B.34 this just says that fg “ fk,σ and hσ “ hk,σ.

Since g is σ-semilinear, plvgqg
´1

“ lσ
´1

v and so Vg “ Vσ. The isometry group of pVg, fg, hgq is Hg´1

and the isometry group of pVσ, fσ,k, hσ,kq is H. So Hg “ H and thus also pH˛qg “ H˛. Therefore,
g P H˚.

Since dimK V ě 3 and we exclude the O3p2q-case, B.31 shows that K “ EndFpH˛pV q. Hence
H˚ acts on K by conjugation and we obtain a homomorphism ρ : H˚ Ñ AutpKq, g ÞÑ ρg, such
g´1kg “ kρg . It follows that g P H˚ acts gρ-semilinearly on V . By B.29 V {V K is a simple H˛-
module and by B.31, EndFpH˛pV {V

Kq “ K. Since f induces a non-degenerate K-sesquilinear form

f on V {V K, V {V K is selfdual as an FpH˛-module. So we can apply B.7 and conclude that there
exists a function λ : H˚ Ñ K7, g ÞÑ λg, such that the function

H˚ Ñ K7 ¸AutpKq, g ÞÑ pλg, ρgq
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is a homomorphism and

fpvg, wgq “ λgfpv, wq
ρg

for all v, w P V {V K. Hence also

p˚q fpvg, wgq “ λgfpv, wq
ρg

for all v, w P V .
We claim that λg P F. If F “ K there is nothing to prove. So suppose H “ GUpV q and choose

v, w P V with fpv, wq “ 1. Then also fpw, vq “ 1α “ 1 and

λg “ λgfpv, wq
σg “ fpvg, wgq “ fpwg, vgqα “

`

λgfpw, vq
σg
˘α
“ λαg ,

and so indeed λg P F.
It remains to show that hpvgq “ λghpvq

ρg for all v P V . If H “ SppV q or GUpV q, then
hpvq “ fpv, vq and this follows from p˚q. So assume H “ OpV q.

Fix g P H˚. Put

k :“ λg, σ :“ ρg, rf :“ fk,σ, rh :“ hk,σ.

Then p˚q says that fg “ rf and we need to show that hg “ rh. Since g is σ-semilinear, Vg “ Vσ. Note

that both pVg, fg, hgq and pVσ, rf, rgq are orthogonal spaces. Also H˛ is contained in their isometry
group since g normalizes H˛. In particular,

hgpv ` wq “ hgpvq ` fgpv, wq ` hgpwq and rhpv ` wq “ rhpvq ` rfpv, wq ` rhpwq

for all v, w P V . Since fg “ rf we conclude that the function r : V Ñ K, v ÞÑ hgpvq ´ rhpvq, is
Fp-linear.

Since both hg and rh are H˛-invariant, so is r. Thus ker r is an Fp-submodule of V . As |Imr| ď
|K| and |V | ě |K|3 we have | ker r| ě |K|2 ą |K| ě |V K| and so ker r ę V K. Recall that we excluded

the O3p2q-case and so B.29 shows that ker r “ V . Thus r “ 0, h “ rh, and (a) and (b) are proved.

(c): Let g P H˚. Then g P H if and only if f and h are g-invariant and if and only if λg “ 1 and
ρg “ 1. So kerpλ, ρq “ H˚.

To compute the image of pλ, ρq, let k P F7 and σ P AutpKq and put rf “ fk,σ and rh “ hk,σ. Note

that pk, σq is in the image of pλ, ρq if and only if rf “ fg and rh “ hg for some g P GLFppV q. This

in turn holds if and only if pVσ, rf,rhq is isometric to pV, f, hq. By B.33(e) pVσ, rf,rhq is not isometric
to pV, f, hq if and only if K “ OpV q, dimK V is odd, p is odd, and k is not a square in K. Hence
pk, σq P Impλ, ρq if and only if k P S. This gives (c).

(d): Since T acts K-linearly on V , ρpT q “ 1. Since S ď K7 is a p1-group we conclude that
T ď kerpλ, ρq and so T ď H. Since GLKpV q{SLKpV q is a p1-group, T ď SLKpV q X H. Note that
either SLKpV qXH “ H˛, or H “ OpV q and dimK V is even if p “ 2. In the later case H˛ has index
two in SLKpV q XH. So either T ď H˛ or H “ OpV q, p “ 2, and dimK V is even. l

B.8. Q-Uniqueness in Classical Groups

Lemma B.36. Let H˛ Ĳ L ď GLFppV q and let Q be a p-subgroup of L. Suppose that V is a
Q!-module for L with respect to Q and that V contains a 2-dimensional singular subspace. Then
xQLy “ xQH

˛

y. In particular, H˛Q Ĳ L and OppxQLyq ď H˛.

Proof. By B.35(a) L is contained in the group of semisimilarities of V and so acts on the set
of non-zero singular vectors.

By B.27 H˛ acts transitively on this set. By B.12(c) there exists a non-zero singular vector
centralized by Q. By a Frattini argument L “ CLpvqH

˛ and by Q!, CLpvq ď NLpQq. Thus

xQLy “ xQH
˛

y. l
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Lemma B.37. Suppose that dimK V ě 3 if V is a linear space, and dimK V ě 4 otherwise. Let
Q be a p-subgroup of GLFppV q normalizing H˛ and suppose that V is a Q!-module for H˛Q with
respect to Q. Put X :“ CV pQq. Then CV pH

˛q “ 0; in particular, the case V orthogonal, p “ 2 and
dimK V odd does not occur. Moreover, one of the following holds:

(1) X P SpV q, Q “ QX and xQH
˛

y “ H˛.

(2) H “ H˛ “ SppV q “ Sp4p2q, X P SpV q, Q “ QX XH
1 and xQH

˛

y “ H 1 “ Sp4p2q
1.

(3) H “ GUpV q “ GU4pFq, p “ 2, |X| “ |F|, pX :“ xKXy P SpV q, H˛Q “ xQH˛y – O´6 pFq,
|Q{Q X Q

xX
| “ 2 and either Q

xX
ď Q or D

xX
ď Q and Q X Q

xX
{D

xX
is a natural SL2pFq-

module for CH˛p pXq.
(4) H “ OpV q “ O`4 pKq, X is a 2-dimensional singular subspace of V , Q “ CH˛pXq and

xQH
˛

y – SL2pKq.
(5) H “ H˛Q “ OpV q “ O`4 p2q, X P SpV q and either Q – D8 and xQH

˛

y “ H or Q – C4

and xQH
˛

y „ 32C4.

(6) H “ OpV q “ O`4 p4q, H
˛Q “ xQH

˛

y – O`4 p4q, |X| “ 2, pX :“ xKXy P SpV q, |Q{QXQ
xX
| “

2, QQ
xX
P Syl2pH

˛Qq and either Q
xX
ď Q or Q is the unique maximal elementary abelian

subgroup of order 8 in Q
xX
Q.

Proof. Since V is a Q!-module, CV pH
˛Qq “ 0 (see A.53) and so also CV pH

˛q “ 0. So the first
statement holds. Moreover, by B.12(c) there exists a Q-invariant Z P SpV q. Put P˚ :“ NH˛pZq
and P :“ CH˛pZq.

Note that CQpKq is a p-group acting K-linearly on V and normalizing H˛. Thus B.32(d) (if V
is linear) and B.35(d) (if V is not linear) show that CQpKq ď H. Put Q˚ :“ CQpZ

K{Zq. Then Q˚

acts K-linearly on V and so Q˚ ď CQpKq ď H. Since Z is 1-dimensional, Q˚ centralizes V {ZK,
ZK{Z and Z. Thus Q˚ ď QZ .

Suppose first that Q centralizes ZK{Z. Then Q “ Q˚ ď QZ . Since Q centralizes Z, Q! implies
that Q Ĳ P˚.

Assume for a contradiction that Q ď DZ . Then DZ ‰ 1 and so by B.28 H “ SppV q or SUpV q.
Since ZK{Z is at least 2-dimensional, it has a 1-dimensional singular subspace (see B.19(c)). Hence
there exists Y P SpZKq with Y ‰ Z. Since Q ď DZ we get rY,Qs “ 0, and Q!-shows that NH˛pY q
normalizes Q and so also rV,Qs “ Z. Thus rZ,QY s “ 0, a contradiction as CV pQY q “ Y ` V K “ Y
by B.23(g).

Thus Q ę DZ . If Q “ QZ , then CV pQq “ CV pQZq “ Z. Hence (1) holds in this case.
So suppose that Q ‰ QZ . Since Q is P˚-invariant, B.30 implies that either H “ SppV q, |K| “ 2,

dimK V “ 4 and Q “ QZ XH
1 or H “ OpV q and dimV “ 4. In the first case (2) holds.

So suppose H “ OpV q. If the quadratic form h is of ´-type, then H˛ – L2p|K|2q and so P˚ acts
simply on QZ . Thus h is of `-type and H˛ “ H1H2 with Hi – SL2pKq and rH1, H2s “ 1. Note
that P˚ XHi acts simply on QZ XHi. If |K| ą 3, then rQZ , P

˚ XHis “ QZ XHi and we conclude
that Q “ Hi X QZ for some i P t1, 2u. Thus (4) holds in this case. If |K| ď 3, then |QZ | “ p2,
|Q| “ p and and since rZK, Qs ď Z, X is 2-dimensional over K. If Q “ QZ XHi for some 1 ď i ď 2,
then again (4) holds. Otherwise X is non-singular and contains a non-singular 1-space Y . By Q!,
Q Ĳ CH˛pY q, a contradiction since CH˛pY q – Ω3pKq – L2pKq and so does not have any non-trivial
normal p-subgroups. This completes the case where Q centralizes ZK{Z.

Suppose now that Q does not centralizes ZK{Z. Since CZpQq ‰ 0, Q! implies that P normalizes
Q. In particular, rQ,P s ď Q X P ď QZ and P does not act simply on ZK{Z. By B.28 P induces
SLpV {Zq, SppZK{Zq, SUpZK{Zq and ΩpZK{Zq, respectively, on ZK{Z. Moreover, B.29 shows that
dimK V “ 4 and H “ GUpV q or H “ OpV q. In either case since ZK{Z – QZ{DZ as an P -module,
rQ,QZs ę DZ . Note also that rQ,QZs ‰ QZ .

Suppose H “ GUpV q. Then B.30 (with T :“ rQ,QZs) shows that DZ ď rQ,QZs, rQ,QZs{DZ

is a natural SL2pFq-module for P and either Q X QZ “ rQ,QZs or Q X QZ “ QZ . By B.29(a)
all P -submodules of ZK{Z are F-subspaces. It follows that rZK{Z,Qs is a non-trivial F-subspace
centralized by Q, and so Q acts F-linearly on K. Hence |Q{CQpKq| ď 2. By B.29(a) ZK{Z is a
simple KP -module. Thus CQpKq centralizes ZK{Z. As seen above Q˚ ď QZ , and we conclude
that CQpKq “ Q X QZ . Together with Q ę QZ this gives |Q{Q X QZ | “ 2 and so p “ 2 and
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H˛Q – O´6 pFq. Since CV pQ X QZq is an K-subspace normalized by P and ZK{Z is a simple
KP -module, CV pQXQZq “ Z. Thus Z “ xKCV pQqy and (3) holds.

Suppose H “ OpV q. If h is of ´-type then ΩpZK{Zq has order |K| ` 1 or p|K| ` 1q{2 depending
on p “ 2 or p odd. It follows that ZK{Z is a simple P -module unless |K| “ 3. In the latter case Q
acts K-linearly on V . Hence Q ď H. As QZ P SylppHq this gives Q ď QZ , a contradiction.

Thus h is of `-type and H˛ “ H1H2 with Hi – SL2pKq and rH1, H2s “ 1.
For i P t1, 2u define Zi :“ CV pQZ X Hiq. Let zk, 0 ď k ď 3, be non-zero singular vectors in

V such that z0 P Z, z1 P Z1zZ, z2 P Z2zZ, fpz0, z3q “ fpz1, z2q “ 1 and fpzk, zlq “ 0 for all other
0 ď k ď l ď 3. For λ P K7 define aλ P GLKpV q by

zaλ0 “ z0, zaλ1 “ λz1, zaλ2 “ λ´1z2, zaλ3 “ z3.

Observe that aλ is an isometry, and since H{H˛ is elementary abelian, a2
λ P H

˛ and a2
λ P P . It

follows that Zi{Z is a simple FpP -module. Since P normalizes NQpHiq, we conclude that NQpHiq

centralizes Zi{Z. Together with NQpH1q “ NQpH2q this shows that NQpH1q centralizes ZK{Z and
so NQpHiq ď Q˚ ď QZ . Thus NQpHiq “ QXQz, |Q{QXQZ | “ 2 and p “ 2.

Suppose that |K| “ 2. Then H˛Q “ H. Since 1 ‰ rQZ , Qs ď QZ X Q we have |Q| ě 4. Let y
be a non-singular vector of V . Then CHpyq – C2 ˆ SL2p2q. Thus O2pCHpyq| “ 2 and Q đ CHpyq.
Hence Q! implies y R CV pQq, and so CV pQq is singular. It follows CV pQq “ Z and Q – C4 or D8,
and (5) holds.

Suppose that |K| ě 4. Then aλ has odd order and so aλ P P for all λ P K7. Note that aλ
acts as a scalar multiplication by λ and λ´1 on Z1{Z and Z2{Z, respectively. Since |K| ě 4 there
exists λ P K with λ ‰ λ´1. Thus Z1{Z and Z2{Z are non-isomorphic as KP {QZ-module. Since

Q ‰ QXQZ “ NQpH1q we have ZQ1 “ tZ1, Z2u. We conclude that ZK{Z is a simple KPQ-module.
It follows that CQpKq ď Q˚ ď QZ and so Q does not act K-linearly on V . Moreover, as ZK{Z is
not a simple F2PQ-module, we infer that Z1{Z and Z2{Z are isomorphic as F2P -modules, and so
there exists an F2P -isomorphism φ from Z1{Z to Z2{Z. The action of aλ on Z1{Z and Z2{Z shows
that K “ EndF2P pZi{Zq, and φ induces a field automorphism σ on K with λσ “ λ´1 for all λ in K7.
It follows that σ2 “ 1, CKpσq “ F2 and K “ F4.

Let λ P KzF2 and put d :“ aλ. Then d is an element of order three in P , and d acts fixed-point
freely on QZ and so also on QZ X Q. Since |QZ{QZ X Q| “ 2 we conclude that there exists t P Q
with Q “ pQZ X Qqxty, rt, ds “ 1 and |t| “ 2. Now Q X QZ “ NQpH1q implies Ht

1 “ H2. Hence
H˛Q “ H˛xty – SL2p4q o C2 – H. As Q does not act K-linearly H˛Q ‰ H. Note that rQZ , ts ď Q
and so by the action of d either Q “ QZxty or Q “ rQZ , tsxty “ CQZ ptqxty. In either case, Q! or
equally well the action of CH˛ptq on V show that CV pQq “ CZpQq has order 2, and so (6) holds. l

Lemma B.38. Let Q be a p-subgroup of GLFppV q normalizing H˛ and U a K-subspace of V .
Put

EU :“ xQg | g P H˛, CU pQ
gq ‰ 0y, FU :“ xpQXH˛qg | g P H˛, CU pQ

gq ‰ 0y and W :“ xSpUqy.

Suppose that

(i) dimK V ě 3 if V is a linear space, dimKV ě 4 if V is a symplectic or unitary space, and
dimK V ě 5 if V is an orthogonal space.

(ii) V is a Q!-module for H˛Q with respect to Q.

If W is not singular, then EU “ xQ
H˛y and V “ xUEU y. If W is singular, then each of the following

hold:

(a) W ď U ďWK and FU normalizes U and W .
(b) FU centralizes WK{W .
(c) W is a natural SLKpW q-module for FU .
(d) Let T be a proper, non-zero K-subspace of V . Then FU normalizes T if and only if W ď

T ďWK.
(e) If EU ‰ FU , then H˛ “ SU4pFq, EU normalizes W , and either dimKW “ 1, FU “

QW “ CEU pW q and EU{FU – O´2 pFq, or dimKW “ 2, U “ W , |EU{FU | “ 2 and
EU{CEU pW q – O´4 pFq.
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Proof. Put X :“ xKCV pQqy. Note that we can apply B.37; in particular, V K “ 0 if V
is an orthogonal space. In the last three cases of B.37 V is a 4-dimensional orthogonal space, a
contradiction to Hypothesis (i). In the other cases X P SpV q, and one of the following holds:

(A) Q “ QX .
(B) H “ H˛ “ Sp4p2q and Q “ QX XH

1.
(C) H˛ “ SU4pFq, H˛Q – O´6 pFq, |Q{QXQX | “ 2 and DX ă QXQX .

If V is a linear space then X “ CV pQXq, and if V is not a linear space then by B.23(g) CV pQXq “
X ` V K and again CV pQXq “ X since V K “ 0.

Note that Q ď EX , Q X QX ď FX and NH˛pXq normalizes FX . Let g P H˛. If CXpQ
gq ‰ 0,

then X “ xKCV pQgqy and so Qg normalizes X. If Qg normalizes X, the CXpQ
gq ‰ 0. This shows

that

EX “ xQ
g | g P H˛, Qg ď NHpXqy and FX “ xQ

g XH˛ | g P H˛, Qg ď NH˛pXqy.

In case (A), Q “ QX ď H˛ and so EX “ FX “ QX . In particular, CV pFXq “ CV pQXq “ X

and xQH
˛

y “ H˛.
In case (B), Q “ QX X H 1 ď H˛ and so EX “ FX “ QX X H 1. Observe that DX ę H 1, so

QX “ FXDX . Since QX acts regularly on V zZK, CV pFXq ď ZK “ CV pDXq. Thus CV pFXq “

CV pFXDXq “ CV pQXq “ X. Since Sp4p2q
1 is simple, xQH

˛

y “ H 1 and so DXxQ
H˛y “ DXH

1 “

H “ H˛.
In case (C) Q ę H˛ and |Q{Q XQX | “ 2. Thus Q XH˛ “ Q XQX . By B.30(c) QX{DX is a

simple NH˛pXq-module. As DX ă QXH˛ ď QX and NH˛pXq normalizes FX , this gives FX “ QX .

Thus CV pFXq “ CV pQXq “ X, H˛ “ xFH
˛

X y and H˛Q “ xQH
˛

y.
In each case we have proved:

p˚q H˛Q “ DXxQ
H˛y, QX “ DXFX and CV pFXq “ X.

Let Z P SpV q. By B.26(b) H˛ acts transitively on SpV q. Thus p˚q holds for Z in place of X.
Let g P H˛. Since U is an K-subspace and xKCV pQgqy “ Xg is a 1-dimensional singular

subspace of V , we see that CU pQ
gq ‰ 0 if and only if Xg ď U and if and only if CZpQ

gq ‰ 0 for
some Z P SpUq. It follows that

EU “ xEZ | Z P SpUqy and FU “ xFZ | Z P SpUqy.
Observe that SpUq “ SpW q. Thus

p˚˚q EU “ xEZ | Z P SpW qy “ EW and FU “ xFZ | Z P SpW qy “ FW

If W “ 0 then EU “ EW “ 1 and FU “ FW “ 1, and the lemma holds in this case. So suppose that
W ‰ 0 and without loss that X ďW .

Suppose first that W is not singular and choose Y,Z P SpUq with Z ę Y K. Then by B.26
xQY , QZy “ H˛. Since rV,DY s ď Y , DY normalizes Y ` Z and so also EY`Z . Since FY ď EY`Z
and QY “ DY FY , we conclude that QY normalizes EY`Z . By symmetry QZ normalizes EY`Z .
Pick g P H˛ with Xg “ Z. Then Qg ď EY`Z , and we get

EY`Z Ĳ xQY , QZyQ
g “ H˛Qg “ H˛Q.

Thus xQH
˛

y “ EX`Y “ EU . By p˚q H˛Q “ DXxQ
H˛y “ DXEU , so

V “ xSpV qy “ xXH˛y ď xXDXEpUqy “ xXEU y ď xUEU y.

Hence V “ xUEU y, and the lemma holds in this case.

Suppose now that W is singular.

(a) and (b): By B.13 W “ U or W “ radpUq. In either case W ď U ď WK. Let Z P SpW q.
Then Z ď W ď WK ď ZK. Since FZ ď QZ and QZ centralizes ZK{Z we conclude that FZ
normalizes W and centralizes WK{W . By p˚˚q, FU “ xFZ | Z P SpW qy. Hence also FU normalize
W and centralizes WK{W . Thus (a) and (b) hold.

(c): Let Z P SpW q. Then W ď ZK ď CV pDZq. As by p˚q QZ “ DZFZ , this gives QZ “
CQZ pW qFZ . Let β P HomKpW,Zq with Z ď kerβ. Since W ď ZK and W X RpV q “ 0 we can
choose τ P HomKpZ

K, Zq with Z ` RpV q ď ker τ and τ |W“ β. By B.24 there exists q P QZ with
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uq “ u ` uτ for all u P ZK and so wq “ w ` wβ for all w P W . Hence QZ induces all possible
transvections with center Z on W . Note that this also holds for FZ in place of QZ , since, as seen
above, QZ “ FZCQZ pW q.

Since Z P SpW q was arbitrary and SLKpW q is generated by its transvections, we conclude that
FU induces SLKpW q on W . Thus (c) is proved.

(d): Let T be any proper non-zero K-subspace of V and Z P SpW q. If W ď T ď WK then
FU normalizes T since by (b) FU centralizes WK{W . Conversely, suppose FU normalizes T . Then
CT pFZq ‰ 0. By p˚q CV pFZq “ Z. Since Z is 1-dimensional we conclude that Z ď T . As Z P SpW q
was arbitrary, we conclude that W ď T . It remains to show that T ď WK. This is obvious if
WK “ V . Thus, we may assume that V is not a linear space. Then also TK is a proper, non-zero
FU -invariant K-subspace of V and thus W ď TK. Hence T ďWK.

(e): Since EU ‰ FU we have Q ę H˛. Thus (C) holds. In particular, dimK V “ 4 and
so dimKW ď 2. Let L be the largest subgroup of H˛Q normalizing X and acting trivially on
SpXK{Xq. We claim that Q ď L. Since X “ xKCV pQqy, Q normalizes X. By B.12(c) applied to
XK{X, Q fixes at least one element of SpXK{Xq. Also CH˛pXq induces SUpXK{Xq on XK{X and
so acts transitively on SpXK{Xq. By Q!, CH˛pXq normalizes Q. Thus Q acts trivially on SpXK{Xq
and so Q ď L. It follows that EX Ĳ L.

Suppose that dimKW “ 1. Then W “ X (but not necessarily W “ U). Let l P LXH˛. Then
l acts K-linearly on XK{X and fixes the |F| ` 1 elements of SpXK{Xq. It follows that there exists
λ P K7 such that l acts as scalar multiplication by λ on XK{X. Let µ P K7 such that l acts as scalar
multiplication by µ on X. Since f is l-invariant, λαλ “ 1 and l acts as scalar multiplication by µ´α

on V {XK. Since l P H˛ “ SUKpV q, det l “ 1 and so λ2 “ µ´1µα. Conversely, since p “ 2, for any
µ P K7 there exists a unique λ P K7 with λ2 “ µ´1µα, and then, since α2 “ 1,

pλαλq2 “ pµ´1µαqαpµ´1µαq “ 1 and λαλ “ 1.

In particular, if µ “ 1 then λ “ 1. Hence CLpXq “ CLpXq X CLpX
K{Xq “ QX and

pLXH˛q{QX – K7 – Cq2´1 – Cq´1 ˆ Cq`1.

Note that the elements in LzH˛ act α-semilinear on V and so centralize the first factor and invert
the second one of the above decomposition of pLXH˛q{QX . Recall that FX “ QX in case (C). So
FU “ FW “ FX “ QX and EU “ EW “ EX Ĳ L. From Q ď L ď H˛Q we get L “ pL X H˛qQ.
Since Q{Q X QX has order 2 we conclude that L{QX – Cq´1 ˆ Dihq`1. Moreover, EU{QX is a
normal subgroup of L{QX generated by involutions. Thus EU{QX – Dih2pq`1q – O´2 pFq, and (e)
holds in this case.

Suppose next that dimKW “ 2. Then W “ WK. By (a) W ď U ď WK and so W “ U . Note
that W {X P SpXK{Xq. Since Q ď L, we conclude that Q normalizes W . Thus EU normalizes
W . By (c), W is a natural SL2pKq-module for FU . So FU acts transitively on W , and Q! implies
EU “ xQ

FU y “ QFU , see A.50(d). Thus |EU{FU | “ |Q{QXFU | “ |Q{QXQX | “ 2. As the elements
of QzQX act α-semilinearly on W , we conclude that EU{CEU pW q – O´4 pFq and so (e) also holds in
this case. l



APPENDIX C

FF-Module Theorems and Related Results

C.1. FF-Module Theorems

Definition C.1. A finite group M is CK-group if each composition factor of M is one of the
known finite simple groups.

Theorem C.2 (General FF-Module Theorem, [MS5]). Let M be a finite CK-group with
OppMq “ 1 and V be a faithful finite dimensional FpM -module. Suppose that J :“ JM pV q ‰ 1.

Then for J :“ JM pV q, W :“ rV,J s`CV pJ q{CV pJ q, K P J and J :“ J{CJprW,Ksq the following
hold:

(a) K is either quasisimple, or p “ 2 or 3 and K – SL2ppq
1.

(b) rV,K,Ls “ 0 for all K ‰ L P J , and W “
À

KPJ rW,Ks.
(c) JpJ 1 “ OppJq “ F˚pJq “

Ś

KPKK.
(d) W is a faithful semisimple FpJ-module.
(e) If A ďM is a best offender on V , then A is a best offender on W .

(f) K “ F˚pJq “ OppJq and CJprW,Ksq “ CJprV,Ksq.
(g) Either rW,Ks is a simple FpK-module, or one of the following holds, where q is a power

of p:
(1) J – SLnpqq, n ě 3, and rW,Ks – Nr ‘ N˚s, where N is a natural SLnpqq-module,

H its dual, and r, s are integers with 0 ď r, s ă n and
?
r `

?
s ď

?
n.

(2) J – Sp2mpqq, m ě 3, and rW,Ks – Nr, where N is a natural Sp2mpqq-module and r
is a positive integer with 2r ď m` 1.

(3) J – SUnpqq, n ě 8, and rW,Ks – Nr, where N is a natural SUnpqq-module and r is
a positive integer with 4r ď n.

(4) J – Ωεnpqq with p odd if n is odd, or J – Oεnpqq with p “ 2 and n even.1 Moreover,
n ě 10 and rW,Ks – Nr, where N is a natural Ωεnpqq-module and r is a positive
integer with 4r ď n´ 2.

(h) If rW,Ks is not a homogeneous FpK module, then (g:1) holds with r ‰ 0 ‰ s and n ě 4.

Theorem C.3 (FF-Module Theorem, [MS5]). Let M ‰ 1 be a finite CK-group and V be a
faithful FpM -module. Put

D :“ tA ďM | there exists 1 ‰ B ď A such that rV,B,As “ 0 and A and B are offenders on V u.2

Suppose that V is a simple FpJM pV q-module and M “ xDy. Then one of the following holds, where
q is a power of p:

(1) M – SLnpqq, n ě 2, and V is a natural SLnpqq-module.
(2) M – Sp2npqq, n ě 1, and V is a natural Sp2npqq-module.
(3) M – SUnpqq, n ě 4, and V is a natural SUnpqq-module.
(4) M – Ω`2npqq for 2n ě 6, M – Ω´2npqq for p “ 2 and 2n ě 6, M – Ω´2npqq for p odd and

2n ě 8, M – Ω2n`1pqq for p odd and 2n ` 1 ě 7, M – O´4 p2q, or M – Oε2npqq for p “ 2
and 2n ě 6, and V is a corresponding natural module.

(5) M – G2pqq, p “ 2, and V is a natural G2pqq-module (of order q6).
(6) M – SLnpqq{x´id

n´1
y, n ě 5, and V is the exterior square of a natural SLnpqq-module.

(7) M – Spin7pqq, and V is a spin module of order q8.

1The odd-dimensional orthogonal groups in characteristic 2 are covered in case (g:2).
2 Note here that D contains all quadratic offenders and by the Timmesfeld Replacement Theorem [KS, 9.2.3],

also all best offenders in M on V .
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(8) M – Spin`10pqq, and V is a half-spin module of order q16.
(9) M – 3.Altp6q, p “ 2 and |V | “ 26.

(10) M – Altp7q, p “ 2, and |V | “ 24.
(11) M – Sympnq, p “ 2, n odd, n ě 3, and V is a natural Sympnq-module.
(12) M – Altpnq or Sympnq, p “ 2, n is even, n ě 6, and V is a corresponding natural module.

Theorem C.4 (Best Offender Theorem, [MS5]). Let M ‰ 1 be a finite group, T P SylppMq,
and V be a faithful FpM -module, and let A ď T be a non-trivial offender on V .

(a) Suppose that M – G2pqq, p “ 2, and V is a natural G2pqq-module. Then NM pAq is a
maximal Lie-parabolic subgroup, |A| “ |V {CV pAq| “ q3, rV,As “ CV pAq, and CT pAq “ A.

(b) Suppose that M – SLnpqq{x´id
n´1

y, n ě 5, and V is the exterior square of a natural
SLnpqq-module W . Let U be the (unique) T -invariant Fq-hyperplane of W . Then A “

CM pUq. In particular, A is uniquely determined in T , CT pAq “ A, rV,As “ CV pAq and
|V {CV pAq| “ |A| “ qn´1.

(c) Suppose that M – Spin7pqq, and V is a spin module of order q8. Then CV pAq “
rV,As, |V {CV pAq| “ q4 ď |A| ď q5, and if A is maximal, then |A| “ q5, CT pAq “ A,

Op
1

pNM pAqq{A – Sp4pqq, and A is uniquely determined in T .
(d) Suppose that M – Spin`10pqq, and V is a half-spin module of order q16. Then rV,As “

CV pAq, q
8 “ |A| “ |V {CV pAq|, O

p1pNM pAq{Aq – Spin`8 pqq, and A is uniquely determined
in T .

(e) Suppose that M – 3.Altp6q, p “ 2 and |V | “ 26. Then rV,As “ CV pAq, |rV,As| “
|CV pAq| “ 16, |V {CV pAq| “ |A| “ 4, and A is uniquely determined in T .

(f) Suppose that M – Altp7q, p “ 2 and |V | “ 24. Then rV,As “ CV pAq, |rV,As| “ |CV pAq| “
4, |V {CV pAq| “ |A| “ 4, and A is uniquely determined in T .

(g) Suppose that M – Sympnq, p “ 2, n odd, and V is a natural Sympnq-module. Then every
offender on V is a quadratic best offender, A is generated by commuting transpositions and
|V {CV pAq| “ |rV,As| “ |A|.

(h) Suppose that M – Altpnq or Sympnq, p “ 2, n is even, n ě 6, and V is a corresponding
natural module. Then every offender on V is a best offender, and there exists a set of
pairwise commuting transpositions t1, . . . , tk such that one of the following holds:
(1) A “ xt1, . . . , tky, and either n ‰ 2k, rV,As ď CV pAq and |rV,As| “ |V {CV pAq| “ |A|

or n “ 2k, rV,As “ CV pAq and 2|V {CV pAq| “ |A|.
(2) n “ 2k and A “ xt1t2, t2t3 . . . , tl´1tl, tl`1, tl`2, . . . , tky for some 2 ď l ď k, rV,As “

CV pAq and |V {CV pAq| “ |A|.
(3) n “ 2k and A “ xt1t2, s1s2, t3, t4 . . . , tky, where s1, s2 are transpositions distinct from

t1 and t2 and s1s2 moves the same four symbols as t1t2, A is not quadratic and
|rV,As| “ |V {CV pAq| “ |A|.

(4) n “ 8 “ |A|, A acts regularly on t1, 2, . . . , 8u, rV,As “ CV pAq and |V {CV pAq| “ |A|.

In particular, if A ď Altpnq and n ‰ 8, then n “ 2k and A “ xt1t2, t2t3, . . . , tk´1tky.

The next result essentially is [MS6, 3.1]. We just use a slightly different hypothesis.

Theorem C.5 (Strong Dual FF-Module Theorem, [MS6, 3.1]). Let M be a finite CK-
group, and let V be a faithful FpM -module. Let A be the set of strong dual offenders in M on V .
Suppose that M “ xAy and that

(i) V is a simple M -module, or
(ii) CV pMq “ 0, V “ rV,M s, and there exists B P A with M “ xBM y.

Then V is a simple M -module, and one of the following holds, where q is a power of p.

(1) M – SLnpqq, n ě 2, or Sp2npqq, n ě 2, and V is a corresponding natural module.
(2) p “ 2, M – Altp6q or Altp7q, V is a spin-module of order 24, and A – xp12qp34q, p13qp24qy

for all A P A.3

(3) p “ 2, M – Oε2np2q, n ě 3, or Sympnq, n “ 5 or n ě 7, V is a corresponding natural
module, and |A| “ 2 for all A P A.

3Note that in the Altp6q-case, V might also be viewed as a natural Altp6q-module with A – xp12qp34q, p34qp56qyq.
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Proof. By A.32(c) strong dual offenders are best offender. Thus

1˝. A is a best offender for every A P A.

It follows that xAy ď JM pV q, and M “ xAy gives

2˝. M “ JM pV q.

Now let W be a non-zero M -submodule of V . If (i) holds, V is a simple M -module and so
W “ V . Assume that (ii) holds. Then there exists B P A such that M “ xBM y. Hence CV pMq “ 0
implies rW,Bs ‰ 0. Since B is a strong dual offender, this gives rV,Bs “ rW,Bs ď W , and so
rV, xBM ys “ rV,M s ďW . Now rV,M s “ V yields V “W . We have shown that always W “ V and
so

3˝. V is a simple M -module.

Observe that (2˝) now shows that V is a simple JM pV q-module. Hence we can apply C.3 and
get

4˝. Either F˚pMq is quasisimple and |M{F˚pMq| ď 2, or M – SL2pqq, q “ 2 or 3, and V
is a natural SL2pqq-module for M .

In the second case of (4˝), (1) holds. Thus we may assume the first case in (4˝). Since M “ xAy
there exists B P A such that M “ F˚pMqB. Then, for any such B, M “ xBM y and the hypothesis
of [MS6, 3.1] is fulfilled for M and B. Thus one of the following holds:

(A) M – SLnpqq, n ě 2, or Sp2npqq, n ě 2, and V is a corresponding natural module.
(B) p “ 2, M – Altp6q or Altp7q, V is a spin-module of order 24, and B – xp12qp34q, p13qp24qy.
(C) p “ 2, M – Oε2np2q, n ě 3, or Sympnq, n “ 5 or n ě 7, V is a corresponding natural

module, and |B| “ 2.

In case (A), (1) holds. In case (B), M is simple and so M “ F˚pMqA for all A P A and so (2)
holds.

So suppose (C) holds and let A P A. If A ď F˚pMq, then F˚pMq “ xAF
˚
pMqy and we can apply

[MS6, 3.1] to F˚pMq and V and so one of (A)–(C) holds for F˚pMq in place of M . But since (C)
holds for M , F˚pMq – Ωε2np2q, n ě 3, or Altpnq, n “ 5 or n ě 7, and V is a corresponding natural
module, a contradiction. Thus A ę F˚pMq, F˚pMqA “M , and (3) holds. l

Theorem C.6 (Strong FF-Module Theorem, [MS6, 3.2]). Let M be a finite CK-group such
that K :“ F˚pMq is quasisimple, and let V be a faithful simple FpK-module. Suppose that A ď M
is a strong offender on V and M “ xAM y. Then one of the following holds, where q is a power of p:

(1) M – SLnpqq or Sp2npqq and V is a corresponding natural module.
(2) p “ 2, M – Altp6q, 3.Altp6q or Altp7q, |V | “ 24, 26 or 24, respectively, and |A| “ 4.
(3) p “ 2, M – Oε2np2q or Sympnq, V is a corresponding natural module, and |A| “ 2.

Definition C.7. Let M be a finite group and V a faithful M -module. Recall the definition of
a point-stabilizer of M on V from A.3. By APM pV q we denote the set of non-trivial best offenders
A of M on V such that A ď OppP q for some point-stabilizer P of M on V .

Theorem C.8 (Point-Stabilizer Theorem, [MS6, 3.5]). Let M be a finite CK-group with
OppMq “ 1 and let V be a faithful FpM -module. Suppose that M “ xAPM pV qy and that there
exists a JM pV q-component K with V “ rV,Ks and CV pKq “ 0. Let A P APM pV q and let P be a
point-stabilizer for M on V with A ď OppP q. Then the following hold:

(a) M – SLnpqq, Sp2npqq, G2pqq or Sympnq, q a power of p, where p “ 2 in the last two cases,
and n ” 2, 3 pmod 4q in the last case.

(b) V is a corresponding natural module.
(c) Put F :“ EndM pV q, q :“ |F| and Z :“ CV pP q. Then Z is 1-dimensional over F, and one

of the following holds:
(1) M – SLnpqq, rV,As “ Z, and A “ CM pCV pAqq X CM pV {Zq.
(2) M – Sp2npqq, Z ď rV,As ď ZK, and A “ CM pCV pAqq X CM pZ

K{Zq.
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(3) M – G2pqq, rV,As “ CV pAq, |V {CV pAq| “ |A| “ q3, and A Ĳ P .
(4) M – Sympnq, n ” 2, 3 pmod 4q, n ą 6, |A| “ 2, and A Ĳ P .

(d) |V {CV pAq| “ |A|, and V is a simple FpK-module.

Theorem C.9 (General Point-Stabilizer Theorem, [MS6, 3.6]). Let M be a finite CK-
group with OppMq “ 1 and let V be a faithful FpM -module. Put AP :“ APM pV q and suppose
that AP ‰ H. Then there exists an M -invariant set N of subnormal subgroups of M such that the
following hold:

(a) xAP y “
Ś

NPN N , and N “ xA P AP | A ď Ny for all N P N .
(b) For all N1 ‰ N2 P N , rV,N1, N2s “ 0.
(c) Put V “ V {CV pN qq. Then rV ,N s “

À

NPN rV ,N s.

(d) Let N P N . Then pN, rV ,N sq satisfies the hypothesis of C.8 in place of pM,V q.
(e) For all N P N , CV pNq “ CV pO

ppNqq and rV,OppNqs “ rV,N s.
(f) Let A P AP . Then

(a) |V {CV pAq| “ |A|,
(b) A “

Ś

NPN AXN ,
(c) AXN P AP for all N P N with AXN ‰ 1.

Lemma C.10. Let L be a finite CK-group of characteristic p. Suppose that

(i) CLpZLq is p-closed,
(ii) P is a point-stabilizer of L on ZL,4

(iii) OppLq ď R ď OppP q,
(iv) A and Y are elementary abelian subgroup of R, and
(v) A normalizes Y , ZL ď Y , and AXOppLq centralizes Y .

Then the following hold:

(a) CApY q “ AXOppLq “ CApZLq. In particular, if A ę OppLq then rY,As ‰ 1.
(b) Suppose that A is a best offender on Y . Then

(a) |A{AXOppLq| “ |ZL{CZLpAq| “ |Y {CY pAq|,
(b) Y “ CY pAqZL.

(c) Suppose that A P AR. Then
(a) A is a best offender on Y and on ZL,
(b) ZLpAXOppLqq P AR XAOppLq,
(c) Y “ pAX Y qZL.

(d) AOppLq Ď AR. In particular, JpOppLqq ď JpRq.
(e) Ω1ZpJpRqq ď Ω1ZpJpOppLqqq.
(f) rΩ1ZpJpRqq, xJpRq

Lys ď rΩ1ZpJpOppLqqq, xJpRq
Lys ď ZL.

Proof. (a): Note that OppLq centralizes ZL. As CLpZLq is p-closed we get that Op
1

pCLpZLqq “
OppLq. Thus CApZLq “ AXOppLq. Now ZL ď Y and rY,AXOppLqs “ 1 give AXOppLq ď CApY q ď
CApZLq “ AXOppLq, and so (a) holds.

(b): Since A is a best offender on Y , A.31 shows that A is a best offender on ZL. By 1.24(i),
ZL is p-reduced for L and thus OppL{CLpZLqq “ 1. Also A ď R ď OppP q, and so C.9 shows that
|ZL{CZLpAq| “ |A{CApZLq|. Thus using (a) and that A is an offender on ZL:

|A{AXOppLq| “ |A{CApZLq| “ |ZL{CZLpAq| “ |ZL{ZL X CY pAq| “ |ZLCY pAq{CY pAq|

ď |Y {CY pAq| ď |A{CApY q| “ |A{AXOppLq|,

and so (b) holds.

(c:a) follows from A.40.

(c:b): Note that ZLpAXOppLqq is an elementary abelian subgroup of R. Since A is a maximal
elementary abelian subgroup of R, CZLpAq “ ZL XA. Using (b)

|ZLpAXOppLqq| “ |ZL{AX ZL||AXOppLq| “ |A{AXOppLq||AXOppLq| “ |A|.

4See 1.1(c) for the definition of ZL
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Thus ZLpAXOppLqq P AR and so also ZLpAXOppLqq P AOppLq.

(c:c): Since A is a maximal elementary abelian subgroup of R, CY pAq “ Y X A. By (c:a) A is
a best offender on Y . Hence we can apply (b:b), and so Y “ CY pAqZL “ pY XAqZL. Thus (c:c) is
proved.

Let D P AOppLq and A P AR.

(d): By (c:b) |D| “ |ZLpAXOppLqq| “ |A| and so D P AR.

(e): By (d) JpOppLqq ď JpRq and so both D and JpOppLqq centralize Ω1ZpJpRqq. Also by (d)
D P AR and so the maximality of D gives Ω1ZpJpRqq ď D ď JpOppLqq. Hence

Ω1ZpJpRqq ď CRpJpOppLqqq X JpOppLqq “ ZpJpOppLqqq,

and (e) follows.

(f): Put Y :“ Ω1ZpJpOppLqqq. By (c:b) ZLpA X OppLqq P AOppLq and so rY,A X OppLqs “ 1.
Thus by (c:c), Y “ pY X AqZL and so rY,As ď ZL. Hence rΩ1ZpJpOppLqqq, JpRqs ď ZL. Since
Ω1ZpJpOppLqqq and ZL are normal in L, the second inclusion in (f) holds. The first inclusion follows
from (e). l

Theorem C.11 ([Gl1, Theorem 2]). Let L be a finite group, A a non-trivial abelian p-subgroup
of L and V a faithful p-reduced FpL-module. Suppose that A is a quadratic offender on V , L is A-
minimal and CV pLq “ 0. Then L – SL2pqq, V is a natural SL2pqq-module for L and A P SylppLq;
in particular q “ |A|.

Proof. This is [Gl1, Theorem 2] just that the hypothesis and conclusion are stated differently:
Since V is a vector space over Fp, V is an abelian p-group, and since V is a faithful L-module,

we may view L as a subgroup of AutpV q. Since L is A-minimal, A is contained in a unique maximal
subgroup M of L. Let S P SylppMq with A ď S. Since V is faithful and p-reduced, OppLq “ 1. As
A is quadratic on V , rV,A,As “ 0. The uniqueness of M shows that xA, gy “ L for all g P LzM . So
Hypothesis I in [Gl1] holds.

By assumption CV pLq “ 0, and since A is an offender on V , |V {CV pAq| ď |A|. Hence the
Hypothesis of Theorem 2 in [Gl1] holds. Thus, there exists a field K of endomorphisms of V such
that |K| “ |A|, dimK V “ 2 and L “ SLKpV q. In particular, the Sylow p-subgroups of L have order
|K| “ |A|, and A P SylppLq. l

Lemma C.12. Let p be prime, M be a finite group, V a faithful FpM module and D a non-empty
M -invariant set of subgroups of M . Suppose that

(i) Each A P D is a non-trivial root offender on V .
(ii) CV pAq X rV,Bs “ 0 for all A,B P D with rV,As ‰ rV,Bs.

(iii) M “ xDy and V “ rV,M s.

Then M – SL2pqq and V is a natural SL2pqq-module for M , where q “ |A|. In particular, A P

SylppMq.

Proof. For X ď V put

TX :“ trV,Ds | D P D, rV,Ds ď Xu.

1˝. Let D,E P D. Then rV,Ds ď CV pDq, and either rV,Ds “ rV,Es or rV,Ds X rV,Es “
CV pDq X rV,Es “ 0.

By A.37(c) D acts quadratically on V , so rV,Ds ď CV pDq. By (ii) rV,Ds “ rV,Es or CV pDq X
rV,Es “ 0. In the latter case also rV,Ds X rV,Es “ 0 since rV,Ds ď CV pDq.

2˝. Let D P D. Then |D| “ |V {CV pDq| “ |rV,Ds|, rv,Ds “ rV,Ds, and vD “ v ` rV,Ds for
every v P V zCV pDq.
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As D is a root offender on V , A.37(a) gives |D{CDpV q| “ |V {CV pAq| “ |rV,As| “ q, and
CDpV q “ 1 since V is faithful. Moreover, A.37(b) shows that D is a strong dual offender on V and
so rv,Ds “ rV,Ds for v P V zCV pDq. Thus also vD “ v ` rV,Ds, and (2˝) holds.

Since D ‰ H and M “ xDy, M ‰ 1, and since V “ rV,M s, M does not act nilpotently on V .
Hence, there exist A,B P D with rV,As ‰ rV,Bs. Let

Y :“ rV,As, Z :“ rV,Bs, X :“ Y ` Z, L :“ xA,By.

3˝. X “ Y ‘ Z, CXpAq “ Y , TX is a partition of X, TX “ tY u Y ZA, and L acts doubly
transitively on TX .

Note that xA,By normalizes X. Since rV,As ‰ rV,Bs, (1˝) shows that CV pAqXrV,Bs “ Y XZ “
0. Hence X “ Y ‘ Z, and since by (1˝) Y ď CV pAq, CXpAq “ Y .

Pick 0 ‰ z P Z. Then z R Y “ CXpAq and by (2˝) z ` Y “ zA Ď
Ť

ZA. Since X “ Y ` Z
this shows that X “ Y `

Ť

ZA. Now (1˝) implies that tY u Y ZA forms a partition of X and
TX “ tY u Y ZA. By symmetry also TX “ tZu Y Y B , and L “ xA,By acts doubly transitively on
TX .

4˝. M is transitive on TV and V “ X.

Let D P D. If rV,Ds ‰ rV,As then (3˝) (with D in place of B) shows rV,As and rV,Ds are
conjugate under xA,Dy. Hence M is transitive on TV . In particular, there exists q such that
|rV,Ds| “ q for every D P D.

By (2˝) |V {CV pDq| “ |rV,Ds| “ q while by (3˝) |X| “ q2. Hence CV pDq X X ‰ 0. Let
0 ‰ w P CXpDq. By (3˝) TX is a partition of X and so there exists E P D with w P rV,Es ď X.
Then rV,Es X CV pDq ‰ 0. Now (ii) yields rV,Ds “ rV,Es ď X.

We have shown that TV “ TX . Hence by (iii) V “ rV,M s “ rV, xDys ď X and X “ V .

5˝. M acts transitively on V . In particular, V is a simple M -module.

Let 0 ‰ y P Y and 0 ‰ z P Z. Since by (2˝) zA “ z ` Y , z ` y P zM . By symmetry,
pz ` yqB “ y ` Z and so y ` Z Ď zM . As V “ X “ Y ` Z by (4˝), this gives V zZ Ď zM . In
particular, y P Y 7 Ď zM . By symmetry also Z7 Ď yM Ď zM , and so zM “ V 7.

6˝. A “ CM pY q XCM pV {Y q, NM pAq “ NM pY q, and D “ tAu YBA. In particular M “ L.

Let E :“ CM pY qXCM pV {Y q. Clearly NM pAq ď NM pY q ď NM pEq. Moreover, by the quadratic
action of A on V , xANM pY qy ď E. Thus, if A “ E, then also NM pAq “ NM pY q “ NM pEq.

Note that by (4˝) V “ X and so by (3˝) V “ Y ‘Z and TV “ tY uYZA. Hence E acts on ZA.
A Frattini argument gives E “ ANEpZq. Thus rZ,NEpZqs ď Y X Z “ 0. By the definition of E,
NEpZq also centralizes Y . Since V “ Y ` Z, NEpZq centralizes V , and since V is faithful, we get
NEpZq “ 1 and E “ ANEpZq “ A. Thus A “ E and NM pAq “ NM pY q.

We have shown that CM prV,Dsq XCM pV {rV,Dsq ÞÑ rV,Ds induces a bijection from D to PV “
tY u Y ZA. It follows that D “ tAu XBA. In particular xDy “M ď L.

7˝. M “ xA,Agy for all g P M with A ‰ Ag. In particular, NM pAq is the unique maximal
subgroup of M containing A, and M is A-minimal.

Pick g PMzNM pAq. By (6˝) there exists a P A such that Ag “ Ba. Hence xA,Agy “ xA,Bay “
L, and again by (6˝) xA,Agy “M . Hence NM pAq is the unique maximal subgroup of M containing
A, and M is A-minimal.

We are now able to prove the lemma. By (5˝), V is a simple M -module. In particular, V is
p-reduced and CV pMq “ 0. By assumption A is a non-trivial root offender and so a non-trivial
quadratic offender. By (7˝), M is A-minimal. Hence C.11 shows that M – SL2pqq, V is a natural
SL2pqq-module, and A P SylppMq. l
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Theorem C.13 ([MS5, 8.1]). Let p be a prime, M be a finite p-minimal group, V a faithful
p-reduced FpM -module and T P SylppMq. Set J :“ JM pV q and J :“ JM pV q. Then there exist
subgroups E1, . . . , Er such that the following hold:

(a) J “ E1 ˆ ¨ ¨ ¨ ˆ Er and J “ tE11, . . . , E
1
ru.

(b) V “ CV pJq `
řr
i“1rV,Eis and rV,Ei, Ejs “ 0 for i ‰ j.

(c) rCV pT q, O
ppMqs ‰ 0.

(d) T is transitive on E1, . . . , Er.
(e) There are no over-offenders on V in M .
(f) Ei – SL2pqq, q “ pn, and rV,Eis{CrV,EispEiq is a natural SL2pqq-module for Ei, or p “ 2,

Ei – Symp2n ` 1q, and rV,Eis is a natural Symp2n ` 1q-module for Ei.
(g) If A ď M is an offender on V , then A “ pA X E1q ˆ . . . ˆ pA X Erq, and each A X Ei is

an offender on V .

The following lemma is an easy consequence of the Quadratic L-lemma [MS6, Lemma 2.9], in
fact its proof is hidden in the proof of the Quadratic L-Lemma [MS6, Lemma 2.9]. But since the
Quadratic L-Lemma was proved under a CK-group assumption we prefer to reproduced the proof.

Lemma C.14. Let L be a p-minimal finite group, and for i “ 1, 2 let Vi be a natural SL2pqiq-
module for L, where qi be a power of p. Then q1 “ q2, L{CLpV1 ‘ V2q – SL2pqiq and V1 and V2 are
isomorphic L-modules.

Proof. Put V :“ V1 ‘ V2. Replacing L by L{CM pV q we may assume that V is faithful L-
module. In particular, OppLq “ 1. Let A P SylppLq and let L0 be the unique maximal subgroup
of L containing A. For i “ 1, 2 put Ci :“ CLpViq. Then C1 X C2 “ CLpV q “ 1. If C1 “ C2,
then C1 “ C2 “ 1, L – SL2pq1q – SL2pq2q and q1 “ q2. Since SL2pq1q has a unique natural
SL2pqiq-module, the lemma holds in this case.

So we may assume for a contradiction that C1 ę C2. Note that AC1 ‰ L and so AC1 ď L0 and
C1 ď

Ş

LL0 . Since OppLq “ 1, 1.42(d) shows that
Ş

LL0 “ ΦpLq. Thus C1 ď ΦpLq and so

1 ‰ C1 – C1C2{C2 ď ΦpL{C2q.

Note that ΦpSL2pq2qq “ ZpSL2pq2qq. It follows that p is odd and |C1| “ 2. In particular, C1 ď ZpLq.
Since L is p-minimal, L “ xALy “ L1A. So L{L1 is a p-group and C1 ď L1. Thus the 2-part of the
Schur–multiplier of L is non-trivial.

Suppose that q1 ą 3. Then L{C1 – SL2pq1q is quasisimple. By [Hu, V.25.7] the 2-part of Schur
multiplier of SL2pq1q is trivial, a contradiction. Thus q1 “ 3 and L1{C1 – Q8 By [Hu, V.25.3] the
Schur multiplier of Q8 is trivial, so C1 ę L2. Note that L1{L2 is a 2-group and coprime action shows
that C1 ę rL

1, As. But then also

C1 ę rL
1, AsA “ xAL

1

y “ xAL
1Ay “ xALy “ L,

a contradiction. l

Theorem C.15 ([MS6, 2.10]). Let L – SL2pqq or Szpqq, q “ pk, where p “ 2 in the latter
case, and let V be a non-central simple FpL-module. Suppose that L is A-minimal for some A ď L
with rV,A,As “ 0. Then V is a corresponding natural module.

Lemma C.16. Let M be a finite group, K Ĳ H, A ď K and V a faithful F2H-module. Suppose
that K – 3.Altp6q, A is a non-trivial offender on V and |V | “ 26. Put K2 :“ CM pV {CV pAqq and
let V be the set of 3-dimensional F2K2-submodules of V . Then

(a) Either H “ K – 3.Altp6q or |H{K| “ 2 and H – 3.Symp6q.
(b) |A| “ 4 “ |V {CV pAq| and rV,As “ CV pAq.
(c) NM pAq “ NM pCV pAqq is a maximal 2-parabolic subgroup of M , and NKpAq – C3 ˆ

Symp4q.

(d) K2 “ O21pNKpAqq – Symp4q.
(e) V “ tV1, V2, V3u has size three, and both, NM pAq and ZpKq, act transitively on V.
(f) V “ Vi ‘ Vj for all 1 ď i ă j ď 3.
(g) CVipAq is a natural SL2p2q-module for K2.
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Proof. Let K :“ EndKpV q. Since K contains the image of ZpKq in EndF2
pV q, K is a field of

order 4. Put M2 :“ NM pCV pAqq.

(a): Note that K has orbits of length 15 and 6 on the 1-dimensional K-subspaces of V . Since
K Ĳ M , M acts on the orbit of length 6. The kernel of this action centralizes K and, since
|K7| “ 3, is equal to ZpKq. Thus M{ZpKq is isomorphic to a subgroup of Symp6q containing
Altp6qp– K{ZpKq). So (a) holds.

(b) follows from Part (e) of the Offender Theorem C.4.

(c): Observe that NM pAq “ NM pAZpKqq. Since A is an elementary abelian subgroup of order
4 with A ď K we conclude that NM pAq{ZpKq – Symp4q if M{ZpKq – Altp6q and NM pAq{ZpKq –
C2 ˆ Symp4q if M{ZpKq – Symp6q. Thus NM pAq a maximal 2-parabolic subgroup of M and
NKpAq – C3 ˆ Symp4q. As NM pAq is a maximal subgroup of M and NM pAq ď NM pCV pAqq we
have NM pAq “ NM pCV pAqq “M2.

(d): Since K2 centralizes the K-space V {CV pAq, K2 acts K-linearly on V and so K2 ď K. By
(c), M2 XK “ NM pAq XK “ NKpAq and NKpAq – C3 ˆ Symp4q. As ZpKq acts transitively on

V {CV pAq, we get M2 XK “ ZpKq ˆK2. Thus K2 “ O21pM2 XKq – Symp4q.

(e)-(g): Let D2 P Syl3pK2q and D˚2 :“ NK2pD2q, so D2 – C3, K˚2 – Symp3q and K2 “ AK˚2 .
Then D2 acts fixed-point freely on CV pAq and centralizes V {CV pAq. It follows that V “ CV pD2q ‘

CV pAq and CV pD2q “ CV pD
˚
2 q.

Let v1, v2, v3 be the three nontrivial elements of CV pD
˚
2 q and define Vi :“ xvK2

i y. Since K2 “

AD˚2 , we get Vi “ xv
A
i y “ xviyrvi, As. Note that CV pAq “ CV paq for all 1 ‰ a P A. Thus CApviq “ 1

and |vAi | “ 4. Since A act quadratically on V , this gives |rvi, As| “ 4, and so Vi is an K2-submodule
of order 8.

Let 1 ď i ă j ď 3. Then xvi, vjyCV pAq “ V and so rvi, As ` rvj , As “ rV,As “ CV pAq. Hence
V “ Vi`Vj “ Vi‘Vj and CVipAq “ rvi, As as order 4. As D2 acts fixed-point freely on CV pAq, this
shows that CVipAq is a natural SL2p2q-module for K2.

Let U be any K2-submodule of V of order 8. Then CU pD2q ‰ 0. Thus vi P U for some 1 ď i ď 3

and so Vi “ xvK2
i y ď U and U “ Vi. It follows that V “ tV1, V2, V3u. Observe that NM pAq

normalizes K2 and so acts on V. In particular, ZpKq acts on V since ZpKq ď NM pAq. As ZpKq
does not normalize any of the Vi and |V| “ 3, we conclude that that ZpKq acts transitively on V. l

C.2. H1- and H2-Results

Lemma C.17 (Gaschütz). Let T P SylppHq, let V be an FpH module, and let W an FpH-
submodule of V with rV,OppHqs ďW . Then CV pT q`W “ CV pHq`W . In particular, if CV pHq “ 0,
then CV pT q ďW .

Proof. Note that H “ OppHqT . Since rV,OppHqs ď W , we conclude that rCV pT q, Hs ď W .
Thus, Y :“ CV pT q `W is an H-submodule of V and rY,Hs ďW .

Let X :“ Y ¸H be the semidirect product of Y with H and let Y0 be a complement to CW pT q
in CV pT q. Then Y0T is a complement to W in Y T . Note that Y T is a Sylow p-subgroup of
X and so Gaschütz’ Theorem [KS, 3.3.2] gives a complement X0 to W in X. Then X “ X0W
and since W ď Y , Y “ pY X X0qW . Hence Y X X0 is an H-invariant complement to W in Y .
Since rY,Hs ď W we get rY X X0, Hs ď pY X X0q X W “ 0 and so Y X X0 ď CY pHq. Hence
Y “ pY XX0q `W ď CY pHq `W . As CV pHq ď CV pT q ď Y this gives Y “ CV pHq `W . l

Theorem C.18 ([MS5, 6.1]). Let H be a finite group, V an FpH-module, and K :“ EndHpV q.
Table 1 lists the dimension d :“ dimKpH

1pH,V qq for various pairs pH,V q.

Lemma C.19. Let V be an FpH-module, and let K1 and K2 be subgroups of H. Suppose that

(i) rK1,K2s “ 1,
(ii) K2 has no central composition factor on rV,K1s,
(iii) CV pK1q “ 0.
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Table 1. H1 for common modules

H p V Conditions d
Ωεnpp

kq, n ě 3 p V ˚nat n “ 3, pk “ 2 1
” ” ” n “ 3, pk “ 5 1
” ” ” n “ 4, ε “ ´, pk “ 3 2
” ” ” n “ 5, pk “ 3 1
” ” ” n “ 6, ε “ `, pk “ 2 1
” ” ” all others 0

Sp2npp
kq p Vnat p “ 2, p2n, pkq ‰ p2, 2q 1

” ” ” all others 0
SLnpp

kq p Vnat n “ 2, p “ 2, k ą 1 1
” ” ” n “ 3, p “ 2, k “ 1 1
” ” ” all others 0

SUnpp
kq, n ě 3 p Vnat n “ 4, pk “ 2 1
” ” ” all others 0

G2p2
kq1 2 K6 ´ 1

G2pp
kq1 p ‰ 2 K7 ´ 0

3D4pp
kq p K8 ´ 0

Spinεnpp
kq p (Half)-Spin n ě 7 0

3.Altp6q 2 K3 ´ 0
Altpnq, n ě 5 2 Vnat n even 1

” ” ” n odd 0
SLnpp

kq, n ě 5 p Λ2pVnatq ´ 0
SLnpp

kq, n ě 3 odd Sym2
pVnatq ´ 0

SLnpp
2kq, n ě 3 p Vnat b V

pk

nat n “ 3, p2k “ 4 2
” ” ” all others 0

E6pp
kq p K27 ´ 0

Matn, 22 ď n ď 24 2 Todd n “ 24 1
” ” ” n “ 22, 23 0

Matn, 22 ď n ď 24 2 Golay n “ 22 1
Matn, 22 ď n ď 24 2 Golay n “ 23, 24 0

3.Mat22 2 F6
4 ´ 0

Mat11 3 Todd ´ 0
Mat11 3 Golay ´ 1

2.Mat12 3 Todd ´ 0
2.Mat12 3 Golay ´ 0

Then K2 has no central composition factor on V . In particular, V “ rV,K2s and CV pK2q “ 1.

Proof. Let g P K1. Since K2 centralizes g, V {CV pgq – rV, gs as an K2-module. Since rV, gs ď
rV,K1s, (ii) implies that K2 has no central composition factor on V {CV pgq. As 0 “ CV pK1q “
Ş

gPK1
CV pgq, we conclude that K2 has no central composition factor on V . l

Lemma C.20. Let V be an FpH-module. Suppose that I :“ rV,OppHqs is a natural Sp2mpqq- or
Sp2mpqq

1-module for H with m ě 1 and q a power of p. If CV pO
ppHqq “ 1 and CHpV q “ CHpIq,

then rV,Ds “ rI,Ds for all D ď H.

Proof. We may assume that V is a faithful H-module and V ‰ I. Then C.18 shows that p “ 2
and V is as an O2pHq-module isomorphic to a submodule of the dual of a natural Ω2m`1pqq

1-module
for O2pHq. In particular, H1pO2pHq, Iq is 1-dimensional over Fq and since H acts Fq-linearly on
I, rV,Hs ď I. So we can choose a natural Ω2m`1pqq or Ω2m`1pqq

1-module U for H with V ď U˚,
where U˚ is the Fq-dual of U . Since rU˚, Hs “ rU˚, H,Hs, I “ rV,Hs “ rU˚, Hs.
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By B.6(b) CU{UKpDq “ CU pDq{U
K for all D ď H. In particular, UK “ CU pHq. So if 0 ď U1 ď

U2 ď U such that H centralizes U1 and D centralizes U2{U1, then D centralizes U2. For U˚ this
means if U˚ ě W1 ě W2 ě 0 such that H centralizes U˚{W1 and D centralizes W1{W2, then D
centralizes U˚{W2. Hence rU˚, H,Ds “ rU˚, Ds. Thus

rI,Ds ď rV,Ds ď rU˚, Ds “ rU˚, H,Ds “ rI,Ds,

and rV,Ds “ rI,Ds. l

Lemma C.21. Let H be a finite group and V a natural SLnpqq-module for H, q a power of p
and n ě 2, and let V1 be an Fq-hyperplane of V . Suppose that CHpV q ď ZpHq and that there exists
a NHpV1qXCHpV {V1q-invariant complement to CHpV q in CHpV1q. Then there exists a complement
K to CHpV q in H. In particular, if CHpV q ď H 1, then CHpV q “ 1.

Proof. Put Z :“ CHpV q, Z0 :“ Op1pZq and H1 :“ NHpV1q X CHpV {V1q, and let B be an
H1-invariant complement to CHpV q in CHpV1q . Then H{Z – SLnpqq and Z ď ZpHq. By [Gr1]
the Schur Multiplier of SLnpqq is a p-group, so H 1 X Z is a p-group and H 1 X Z0 “ 1.

Suppose that n “ 2. Then BZ{Z P SylppH{Zq, and by Gaschütz’ Theorem [KS, 3.3.2] there
exists a complement L{Z0 to Z{Z0 in H{Z0. It follows that H “ LZ, H 1 “ L1 and H 1 X Z ď Z0,
so H 1 X Z “ 1. If q ě 4, then H{Z is perfect and we can choose K “ H 1. If q ď 3, then H 1 is a
p1-group, |B| “ p and we can choose K “ H 1B.

Suppose now that n ě 3. Then H “ H 1Z and H 1 is perfect. Note that V1 is a natural
SLn´1pqq-module for H1, CH1

pV1q “ CHpV1q “ Z ˆ B, and B – CHpV1q{Z is isomorphic to V1 as
an FpH1-module. In particular, B “ rB,H1s ď H 1 and replacing H be H 1 we may assume that H
is perfect. Thus Z is a p-group.

Let X be a 1-subspace of V1 and pV a hyperplane of V with V “ X ‘ pV . Define

pH :“ CHpXq XNHppV q, pV1 :“ V1 X pV , pH1 :“ N
xH
ppV1q X C

xH
ppV {pV1q, pB :“ B X C

xH
ppV1q.

Then pV is a natural SLn´1pqq-module for pH, pV1 is a hyperplane of pV and V1 “ X ‘ pV1. Thus
pH1 ď NHpV1q X CHpV {V1q “ H1.

Since CHpV q ď pH and C
xH
ppV q ď CHpX ‘ pV q “ CHpV q we have CHpV q “ C

xH
ppV q. Also

C
xH
ppV1q ď CHpX ‘ pV1q “ CHpV1q and so

CHpV q “ C
xH
ppV q ď C

xH
ppV1q ď CHpV1q “ CHpV q ˆB.

Thus pB “ B X C
xH
ppV1q is a complement to CHpV q “ C

xH
ppV q in C

xH
ppV1q. Since pH1 ď H1 X pH,

pH1 normalizes pB. Recall that 2 ď n´ 1, so by induction there exists a complement pK to C
xH
ppV q in

pH. Then pK – SLn´1pqq acts faithfully on pV .

Pick g P H with pV g “ V1. Then V “ Xg ‘ V1, pKg normalizes V1, and pKg centralizes Xg and

V {V1. So pKg ď H1, H1 “ CHpV1q pK
g and pKg XCHpV1q “ 1. Since B is a complement to CHpV q in

CHpV1q, and pKg normalizes B we conclude that BKg is a complement to CHpV q in H1.
Since CHpV q is an abelian p-group andH1 contains a Sylow p-subgroup ofH, Gaschütz’ Theorem

shows that there exists a complement K to CHpV q in H.
If K is any complement to Z in H, then H “ KZ and K 1 “ H 1, so H 1 X Z “ 1. In particular

Z “ 1 if Z ď H 1. l

Theorem C.22 ([MS5, 8.4]). Let M be a finite CK-group with OppMq “ 1 and V a faithful
FpM -module. Suppose that

(i) M “ JM pV q and there exists a unique JM pV q-component K,
(ii) CV pKq ď rV,Ks and either CV pKq ‰ 0 or V ‰ rV,Ks.

Let A ďM be a best offender on V and put W :“ rV,Ks and V :“ V {CV pKq. Then p “ 2, and one
of the following holds:

(a) M “ K – SL3p2q, V “ W , |CV pKq| “ 2, V is a natural SL3p2q-module, |A| “ 4,
rV ,As| “ 2 and CV pAq “ rV,As has order 4.
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(b) M “ K – SL3p2q, |V {W | “ 2, CV pKq “ 0, W is a natural SL3p2q-module, |A| “ 4 “
|CW pAq| and CV pAq “ rV,As “ CW pAq.

(c) M “ K – SU4p2q, V “ W , 2 ď |CV pKq| ď 4, V is a natural SU4p2q-module, A is the
centralizer of a singular 2-subspace of V , and CV pAq “ rV,As.

(d) M – G2pqq, q “ 2k, V “ W , 2 ď |CV pKq| ď q, V is a natural G2pqq-module, |A| “ q3,
and CV pAq “ rV,As.

(e) K – Altp2mq and M – Symp2mq or Altp2mq. For Ω “ t1, 2, . . . , 2mu let N “ tnΣ | Σ Ď

Ωu be the 2m-dimensional natural permutation module and rN be the F2M -module defined

by rN “ N as an F2-space and

ngΣ “ nΣg if |Σ| is even or g P AltpΩq, and ngΣ “ nΣg ` nΩ if |Σ| is odd and g R AltpΩq.

Then one of the following holds, where t1, t2, . . . , tm is a maximal set of commuting trans-
positions:
(1) M “ Sympnq, V is isomorphic to N or N{CN pKq, and A “ xt1, t2, . . . , tky for some

1 ď k ď m.
(2) M “ Sympnq, V – rN and A “ xt1, t2, . . . , tmy.
(3) V – rN,Ks and A fulfills one of the cases (h:1) – (h:3) of Theorem C.4.

(f) M “ K – Sp2mpqq, m ě 1, q “ 2k, pm, qq ‰ p1, 2q, p2, 2q5, and W is the direct sum of r
natural Sp2npqq-modules.6 Moreover, the following hold:
(a) 2r ď m` 1, and if V ‰W then m ą 1 and 2r ă m` 1.
(b) Let X be the 2m`2-dimensional FqM -module obtained from the embedding Sp2mpqq –

Ω2m`1pqq ď Ω˘2m`2pqq. Then V is isomorphic to an FpM -section of Xr.

C.3. Q!-Module Theorems

In this section H is a finite group, Q is a p-subgroup of H, and V is a finite Q!-module for FpH
with respect to Q. We again use the ˝-notion, so for L ď H,

L˝ “ xP P QH | P ď Ly and L˝ “ OppL˝q.

Theorem C.23 ([MS6, 4.5]). Let OppHq “ 1 and V be a faithful Q!-module for H with respect
to Q. Suppose that one the following holds.

(i) F˚pHq – Altpnq, n ě 5, and rV,Hs is a natural FpAltpnq-module for F˚pHq, or
(ii) H – Altp7q and |rV,Hs| “ 24.

Then (i) holds, and either n “ p or pn, pq is one of p5, 2q, p6, 2q, p8, 2q, p6, 3q.

Theorem C.24 (Q!FF-Module Theorem, [MS6, 4.6]). Let H be a finite group with OppHq “
1 and Q be a p-subgroup of H, and let V be a faithful Q!-module for H. Put H˝ :“ xQHy and
J :“ JHpV q. Suppose that there exists an offender Y in H such that rH˝, Y s ‰ 1 and that one of
the following holds:

(i) Y is quadratic on V .
(ii) Y is a best offender on V .

(iii) CY prV, Y sq ‰ 1.
(iv) CY pH

˝q “ 1.

Then one of the following holds:

(1) There exists an H-invariant set K of subgroups of H such that:
(a) For all K P K, K – SL2pqq and rV,Ks is a natural module for K,
(b) J “

Ś

KPKK and V “
À

KPKrV,Ks,
(c) Q acts transitively on K,
(d) H˝ “ OppJqQ.

(2) Put R :“ F˚pJq. Then
(a) R is quasisimple, R ď H˝, and either J “ R or p “ 2 and J – O˘2npqq, Sp4p2q or

G2p2q.

5The case K – Sp4p2q
1 – Altp6q is covered in (e), while the case M “ Sp2p2q does not occur

6Observe that for m “ 1, Sp2pqq – SL2pqq and a natural Sp2pqq-module is also a natural SL2pqq-module.
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(b) CV pRq “ 0, rV,Rs is a semisimple J-module, and H acts faithfully on rV,Rs.
(c) Put J0 :“ J XH˝. Then one of the following holds:

(1) (a) R “ J0 – SLnpqq, n ě 3, Sp2npqq, n ě 3, SUnpqq, n ě 8, or Ω˘n pqq,
n ě 10.

(b) rV,Rs is the direct sum of at least two isomorphic natural modules for R.
(c) H˝ “ RCH˝pRq.
(d) If V ‰ rV,Rs then R – Sp2npqq, p “ 2, and n ě 4.

(2) (a) rV,Rs is a simple R-module.
(b) Either H˝ “ R “ J0 or H˝ – Sp4p2q, 3.Symp6q, SU4pqq.2 p– O´6 pqq and

rV,Rs the natural SU4pqq-moduleq, or G2p2q.
(c) One of the cases C.3 (1) - (9), (12) applies to pJ, rV,Rsq, with n ě 3 in

case (1), n ě 2 in case (2), and n “ 6 in case (12).
(3) p “ 2, J “ R – SL4pqq, H

˝{R has order two and induces a graph automorphism
on R, and V is the direct sum of two non-isomorphic natural modules.

Proof. This is [MS6, 4.6], except that in (2:c:2:c) we added the assumption n ě 3 to case (1)
and the assumption n ě 2 to case (2) of C.3. Note here if n “ 2 in case (1) or n “ 1 in case (2) then
rV,Rs is a natural SL2pqq-module for J , and so by C.22, V “ rV,Rs. Hence, these cases are already
covered by (1).7 l

Theorem C.25. Let H be a finite group with OppHq “ 1, and let V be a faithful Q!-module for
H with respect to Q. Suppose that there exists 1 ‰W ď H such that

(i) W is a strong offender on V ; and
(ii) rX,W s “ rV,W s for all X ď V with |X{CXpW q| ą 2.

Put H˝ :“ xQHy, K˚ :“ xWHy, K :“ xWK˚y and K :“ KH . Then

K˚ “
ą

RPK
R, rV,K˚s “

à

RPK
rV,Rs, and K “ xWKy is the subnormal closure of W in H.

Moreover, one of the following holds:

(1) (a) K Ĳ H, K 1 is quasisimple, H˝ “ K 1Q and CV pKq “ 0.
(b) One of the following holds:

(1) K “ K 1 “ H˝ – SLnpqq, n ě 3.
(2) K “ K 1 “ H˝ – Sp2npqq, n ě 2, pn, qq ‰ p2, 2q.
(3) p “ 2, K ď H˝ or H˝ ď K, K – Sp4p2q

1 or Sp4p2q, and H˝ – Sp4p2q
1 or

Sp4p2q.
(4) p “ 2, K “ K 1 ď H˝, K – 3.Altp6q and H˝ – 3.Altp6q or 3.Symp6q.
(5) p “ 2, K – Oε2np2q, H

˝ “ K 1 – Ωε2np2q, n ě 2 and pn, εq ‰ p2,`q, and
|W | “ |V {CV pW q| “ 2.

(c) rV,Ks is a corresponding natural module.
(2) (a) Q acts transitively on K, H˝ “ OppK˚qQ, and V “ rV,K˚s.

(b) K – SL2pqq, and rV,Ks is the corresponding natural module.
(3) (a) p “ 2, K – SLnp2q, n ě 3, V “ rV,Ks is the direct sum of two isomorphic natural

modules for K, and |V {CV pW q| “ 4.
(b) K Ĳ H, K ď H˝, and H˝ – SLnp2q or SLnp2q ˆ SL2p2q.

(4) (a) p “ 2, K – SLnp2q, n ě 3, V “ CV pK
˚q ‘ rV,K˚s, rV,Ks is the direct sum of two

isomorphic natural modules for K, and |V {CV pW q| “ 4.
(b) K˚ Ĳ H, rK˚, H˝s “ 1 and H˝ – SL2p2q.

Proof. This is [MS6, 4.7] with a couple of additions.

‚ In case (1:b:5) with K – Oε2np2q: We may assume n ě 2 and pn, εq ‰ p2,`q. Indeed
|O`2 p2q| “ 2, so since OppHq “ 1, this case does not occur; and O´2 p2q – SL2p2q, so this

7We made these changes for easier reference and to point out more clearly that H˝ does not have to be contained

in J in the SL2pqq-case.
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case is already covered by case (2) (with q “ 2 and |K| “ 1). The O`4 p2q-case does not

occur since K “ xWK˚y, but O`4 p2q is not generated by transvections.

‚ From the structure of K as given in (1)–(4) , K “ xWKy and so since K “ xW xWH
yy, K

is the subnormal closure of W in H.

l

Corollary C.26. Let H be a finite group with OppHq “ 1, and let V be a faithful Q!-module
for H with respect to Q. Suppose that there exists 1 ‰W Ĳ Q such that

(i) W is a strong offender on V ; and
(ii) rX,W s “ rV,W s for all X ď V with |X{CXpW q| ą 2.

Put H˝ :“ xQHy and K :“ xW xWH
yy. Then

(a) K “ xWHy “ xWKy is the subnormal closure of W in H and CV pKq “ 0.
(b) K – SLnpqq or Sp2npqq, n ě 2, q a power of p, and rV,Ks is a corresponding natural

module.
(c) Either H˝ “ K or K – SL2pqq, q ‰ p, H˝ “ K and rV,W,Qs ‰ 1.
(d) Either V “ rV,Ks or K – Sp2np2q, n ě 2 and |V {rV,Ks| “ 2.

Proof. Note first that we can apply C.25.
Let S P SylppHq with Q ď S. Then by Q!, NHpCV pSqq ď NHpQq. It follows that W ď Q ď

OppNHpCV pSqqq and so we can apply the Point-Stabilizer Theorems C.8 and C.9. In particular,
rV,KsCV pKq{CV pKq is a simple K-module, and so cases C.25(3) and (4) do not occur.

Suppose that C.25(2) holds. Then K – SL2pqq, Q acts transitively on K :“ K
M

, rV,Ks is a

natural SL2pqq-module and V “ rV, xWHys. Since Q normalizes W , Q normalizes K “ xW xWK
yy.

Hence K “ tKu and V “ rV,Ks. Suppose Q acts Fq-linearly on V . Then Q ď K, K “ xQKy “ H˝

and the corollary holds.
So suppose that Q does not act Fq-linearly on V . Then q ‰ p, so K is quasisimple and

K “ rK,Qs ď H˝. Also rV,W s is a non-trivial Fq subspace of V and hence rV,W,Qs ‰ 1. As K
acts transitively on V , Q! gives H˝ “ xQKy “ KQ (see A.50(d) )and so H˝ “ OppKQq “ K. So
again the corollary holds.

Suppose that C.25(1) holds. Since none of Sp4p2q
1, Oε2mp2q and 3.Altp6q appear as a possibility

for K in the Point-Stabilizer Theorem C.8, we conclude that K – SLnpqq, n ě 3, or Sp2npqq, n ě 2,
and rV,Ks is a corresponding natural module. Moreover, H˝ ď K and so K “ H˝. It remains to
verify (d).

Put U :“ rV,Ks. By Q!, Q Ĳ CHpCU pSqq. Thus W ď OppNHpCU pSqq, and we can apply the
Point-Stabilizer Theorem C.8(d) also to W and U . Hence |U{CU pW q| ě |W | and so V “ CV pW q`U .

Suppose that V ‰ U . Then by C.22 either K – SL3p2q and CV pW q ď U or K – Sp2npqq,
n ě 2, p “ 2, and V is isomorphic to a submodule of the dual of a natural Ω2n`1pqq-module. The
first case contradicts V “ CV pW q`U . In the second case, let v P CV pW qzU . Then CKpvq – Oε2npqq.
Since W ď CKpvq and W is a strong offender on U , the Strong Offender Theorem C.6 shows that
|W | “ 2 “ q. So (d) holds. l

Theorem C.27. Let H be a finite group and let V be a faithful p-reduced Q!-module for H with
respect to Q. Let 1 ‰ A ď H be a strong dual offender on V . Then one of the following holds:

(1) (a) H˝ – SLnpqq, n ě 3, and rV,H˝s is a corresponding natural module for H˝.
(b) If V ‰ rV,H˝s then H˝ – SL3p2q and |V {rV,H˝s| “ 2.
(c) xAHy “ H˝.

(2) (a) H˝ – Sp2npqq, n ě 2, or Sp4pqq
1 (and q “ 2), and rY,H˝s is the corresponding natural

module for H˝.
(b) If V ‰ rV,H˝s, then p “ 2 and |H{rY,H˝s| ď q.
(c) One of the following holds:

(1) H˝ “ xAHy.
(2) xAHy ď H˝, xAHy – Sp4p2q

1 and H˝ – Sp4p2q.
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(3) H˝ ď xAHy, xAHy – Sp4p2q and H˝ – Sp4p2q
1.

(3) (a) There exists a unique H-invariant set K of subgroups of M such that V is a natural
SL2pqq-wreath product module for H with respect to K.

(b) H˝ “ OppxKyqQ and Q acts transitively on K.
(c) A ď K for some K P K.

(4) (a) H – Oε2np2q, H
˝ – Ωε2np2q, 2n ě 4 and p2n, εq ‰ p4,`q and rV,Hs is a corresponding

natural module.
(b) If V ‰ rV,Hs, then H – O`6 p2q and |V {rV,Hs| “ 2.
(c) |A| “ 2 and H “ xAHy.

Proof. Put K˚ :“ xAHy, K :“ xAK
˚

y and K :“ KH . Since H is faithful and p-reduced,
OppHq “ 1. Thus we can apply [MS6, 4.8] and conclude that one of the following holds:

(A) (a) K Ĳ H, H˝ “ xQKy and CV pKq “ 0.
(b) K – SLnpqq, n ě 3, Sp2npqq, Altp6q, or Oε2np2q, q a power of p , p “ 2 in the last two

cases; and rV,Ks is a corresponding natural module.
(c) Either H˝ ď K or K – Sp4p2q

1 and H˝ – Sp4p2q.
(d) If K – Oε2np2q, then |W | “ 2.

(B) (a) Q acts transitively on K and H˝ ď xKyQ
(b) V “

À

RPKrV,Rs, K – SL2pqq, and rV,Ks is a natural SL2pqq-module for K.

Suppose first that (B) holds. Then V is a natural SL2pqq-wreath product module for H with
respect K. By A.27(c) K is uniquely determined by this property.

Since Q acts transitively on K and K – SL2pqq, we get OppxKyq ď xQHy. As H˝ ď xKyQ, this

gives OppH˝q “ OppxKyq. By A.52(a) we have H˝ “ xQH
˝

y and we conclude that H˝ “ OppH˝Qq “
OppxKyqQ. Thus (3) holds.

Suppose next that (A) holds.
Assume that K – SLnpqq, n ě 3, and rV,Ks is a corresponding natural module. Then H˝ ď K

and since SLnpqq is quasisimple (or by B.37), H “ K. By C.22 either V “ rV,Ks or K – SL3p2q
and |V {rV,Ks| “ 2. Thus (1) holds.

Assume that K – Sp2npqq and rV,Ks is a corresponding natural module. Suppose that n “ 1.
Then by C.22, V “ rV,Ks and the already treated case (B) shows that (3) holds. So suppose that
n ě 2. Then by C.22 either V “ rV,Ks or p “ 2 and |V {rV,Ks| ď q. Also B.37 shows that either
H˝ “ K or K – Sp4p2q

1 and H˝ – Sp4p2q. Thus (2) holds.
Assume that K – Altp6q and rV,Ks is a corresponding natural module, that is K – Sp4p2q

1

and rV,Ks is a corresponding natural module. By (A:b) H˝ ď K or H˝ – Sp4p2q, and since K is
simple, we get H˝ – Sp4p2q

1 or Sp4p2q. By C.22, |V {rV,Ks| ď 2 and again (2) holds.
Assume that K – O´2np2q. Since O2pHq “ 1, K fl O`2 p2q. If K – O´2 p2q – Sp2p2q, then rV,Ks

is a natural Sp2p2q-module, a case we already have treated. So suppose that n ě 2. Then C.22
shows that either V “ rV,Ks or K – O`6 p2q and |V {rV,Ks| “ 2.

If K – O`4 p2q – SL2p2q o C2, the already treated case (B) shows that (3) holds. So we may
assume that p2n, εq ‰ p4,`q. Then B.37 implies that H˝ – Ωε2np2q and thus (4) holds. l

C.4. The Asymmetric Module Theorems

For the definition of a minimal asymmetric module see A.4.

Theorem C.28 ([MS6, 5.4]). Let H be a finite group and V be a faithful simple minimal
asymmetric FpH-module with respect to A ď B. Put L :“ xAHy and K :“ F˚pHq. Then H “ KB,
K “ rK,As ď L, L “ KA, and one of the following holds:

(1) |B| “ 2 and H “ L – D2r, r an odd prime.
(2) |A| “ 2, L – SU3p2q

1, B – C4 or Q8, and V is a natural SU3p2q
1-module for L.

(3) |B| “ 3, H “ L – SL2p3q, and V is a natural SL2p3q-module for L.
(4) K is quasisimple and not a p1-group, H “ KB, V is a simple FpK-module, and H acts

K-linearly on V , where K “ EndKpV q.



C.4. THE ASYMMETRIC MODULE THEOREMS 243

Theorem C.29 (Minimal Asymmetric Module Theorem, [MS6, 5.5]). Let H be a CK-
group, A ď B ď H and V be a faithful simple FpH-module. Suppose that V is a minimal asymmetric
FpM -module with respect to A and B and that F˚pHq is quasisimple with p

ˇ

ˇ|F˚pHq|. Then one of

the following holds for L :“ xAHy:

(1) L – SLnpqq, Sp2npqq, SUnpqq,
3D4pqq, Spin7pqq, Spin

´
8 pqq, G2pqq

1 or Szpqq, where q is a
power of p, V is a corresponding natural or spin module for L, and A is a long root subgroup
of L.

(2) L – Symp2k ` 2q, k ě 3, |A| “ 2, A is generated by a transposition, and V is the
corresponding natural module.

(3) L – 3.Altp6q, |A| “ 2 and |V | “ 26.





APPENDIX D

The Fitting Submodule

Let H be a finite group and V be a finite FpH-module. In [MS2] an H-submodule of V was
introduced which in some respect is the analogue of the generalized Fitting subgroup of a finite
group. In this appendix we will give its definition and derive some properties that have been used
in this paper.

Lemma D.1. The following hold:

(a) Suppose that H{CHpV q is a p-group. Then V is not perfect.
(b) Suppose that V is a perfect H-module. Then V “ rV,OppHqs.
(c) Suppose that V is a quasisimple H-module. Then CV pO

ppHqq “ radV pHq.

Proof. (a): This is an elementary fact about the action of p-groups on p-groups.

(b): Put V :“ V {rV,OppHqs and H :“ H{OppHq. Then (a) shows that V is not perfect. Since
rV ,Hs “ V , we conclude that V “ 0.

(c): Let U be a maximal H-submodule of V . Then either V “ U`CV pO
ppHqq or CV pO

ppHqq ď
U . The first case is impossible, since by (b) V “ rV,OppHqs. Hence CV pO

ppHqq ď radV pHq. Since
V {CV pO

ppHqq is simple, also radV pHq ď CV pO
ppHqq. l

D.1. The Definition of the Fitting Submodule and Results from [MS2]

Definition D.2. Let SV pHq be the sum of all simple H-submodules of V and

EHpV q :“ CF˚pHqpSV pHqq.

Let L Ĳ H. Then V is L-quasisimple for H if V is p-reduced for H, V {radV pHq is a simple
H-module, V is a perfect L-module, and L acts nilpotenly on radV pHq.

An H-submodule U of V is a component of V (or H-component of V ), if either U is simple
and rU,F˚pHqs ‰ 0, or U is EHpV q-quasisimple. The sum of all components of V is the Fitting
submodule FV pHq of V . Put

RV pHq :“
ÿ

radW pHq,

where the sum runs over all components W of V .

Lemma D.3. The following hold:

(a) Suppose that V is faithful and p-reduced. Then EHpV q is the (possibly empty) direct product
of perfect simple groups. In particular, F pEHpV qq “ 1 and EHpV q ď EpHq.

(b) If EHpV q “ 1, then FV pHq is a semisimple H-module.
(c) EHpV q centralizes RV pHq.

Proof. (a): This is [MS2, 2.5d].
(b): Suppose that EHpV q “ 1. Then there does not exist any non-trivial H-module U with

U “ rU,EHpV qs. It follows that all H-components of V are simple H-modules and so FV pHq is a
semisimple H-module.

(c): By [MS2, 2.5a] CFV pHqpEHpV qq “ rSV pHq, F
˚pHqs `RV pHq, and so (c) holds. l

Lemma D.4. Let N ĲĲ H. Then the following hold:

(a) SV pHq ď SV pNq.
(b) EHpV q XN “ EN pV q.

245
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(c) FV pHq ď SV pNq ` FV pNq.

Proof. See [MS2, 3.1] and [MS2, 3.2]. l

The following theorems are the main results of [MS2]:

Theorem D.5. FV pHq is a p-reduced H-module, and RV pHq is a semisimple F˚pHq-module.
Moreover RV pHq “ radFV pHqpHq, in particular FV pHq{RV pHq is a semisimple H-module.

Theorem D.6. Suppose that V is a faithful and p-reduced H-module. Then also FV pHq and
FV pHq{RV pHq are faithful and p-reduced.

Lemma D.7. Suppose that V is a faithful and p-reduced H-module. Let N ĲĲ H. Then the
following statements are equivalent:

(a) FV pHq is a semisimple N -module.
(b) EN pV q “ 1.
(c) N X EHpV q “ 1.
(d) rN,EHpV qs “ 1.
(e) rF˚pNq, EHpV qs “ 1.
(f) rN,EN pV qs “ 1.

Proof. Suppose that FV pHq is a semisimple N -module. Then FV pHq ď SV pNq, and so
EN pV q ď CN pSV pNqq ď CHpFV pHqq. Since V is faithful and p-reduced, D.6 shows that FV pHq is
a faithful H-module, that is, CHpFV pHqq “ 1. Hence EN pV q “ 1.

Suppose that EN pV q “ 1. Then by D.3(b) applied to N in place of H, FV pNq is a semisimple
N -module. By D.4(c), FV pHq ď SV pNq ` FV pNq. Since submodules of semisimple modules are
semisimple we conclude that FV pHq is a semisimple N -module.

We have proved that (a) and (b) are equivalent. By D.4(b), EN pV q “ N X EHpV q and so (b)
and (c) are equivalent. By D.3(a) EHpV q is a direct product of perfect simple groups. Thus 1.16
shows that (c),(d), (e) are equivalent.

In particular, EN pV q “ 1 if and only if rN,EHpV qs “ 1. This applied with H “ N shows that
EN pV q “ 1 if and only if rN,EN pV qs “ 1. So (f) is equivalent to (c). l

D.2. The Fitting Submodule and Large Subgroups

Lemma D.8. Suppose that V is a faithful p-reduced Q!-module for H. Then rH˝, EHpV qs “ 1 “
H˝ X EHpV q, and FV pHq is a semisimple H˝-module.

Proof. Put S :“ SV pHq and E :“ EHpV q. Then E “ CF˚pHqpSq. Since S is a non-zero
H-submodule of V , A.52(c) gives CH˝pSq ď CH˝pH

˝q “ ZpH˝q. Thus rE,H˝s ď E XH˝ ď ZpH˝q.
By A.52(b), CHpH

˝{ZpH˝qq “ CHpH
˝q and so rH˝, Es “ 1. Hence D.7 shows that H˝XEHpV q “ 1

and that FV pHq is a semisimple H˝-module. l

Lemma D.9. Suppose that V is a faithful p-reduced Q!-module for H. Let N ĲĲ H and suppose
that F˚pNq ď F pNqF˚pH˝q. Then FV pHq is a semisimple N -module.

Proof. Put E :“ EHpV q. By D.8 rH˝, Es “ 1 and by D.3(a), E ď EpHq. Since F pNq ď F pHq
and rF pHq, EpHqs “ 1, we conclude that rF pNq, Es “ 1. Since F˚pNq ď F pNqH˝ this gives
rF˚pNq, Es “ 1. Thus D.7 shows that FV pHq is a semisimple N -module. l

Lemma D.10. Suppose that V is a faithful p-reduced Q!-module for H with respect to Q. Then
also FV pHq and FV pHq{RV pHq are faithful p-reduced Q!-modules for H with respect to Q.
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Proof. By D.6 FV pHq and FV pHq{RV pHq are faithful p-reduced H-modules. Put I :“ FV pHq
and R :“ RV pHq. The definition of a Q!-modules implies that any submodule of a Q!-module is a
Q!-module, so I is a Q!-module for H with respect to Q.

Let 1 ‰ B ď CI{RpQq. By D.9 I is a semisimple H˝-module and so there exists an H˝-submodule
I0 of I such that I “ I0 ‘ R. Hence, there exists a unique B0 ď I0 with B “ pB0 ` Rq{R. This
shows that NH˝pBq “ NH˝pB0q and rB0, Qs ď I0 XR “ 0. Now Q! gives

Q Ĳ NH˝pB0q “ NH˝pBq Ĳ NHpBq.

Thus Q ď OppNHpBqq. Hence 1 ‰ CV pOppNHpBqqq ď CV pQq, and Q! implies

NHpBq ď NHpCV pOppHqqq ď NHpQq.

This shows that also I{R is a Q!-module for H with respect to Q. l

D.3. The Nearly Quadratic Q! -Module Theorem

Theorem D.11 (Nearly Quadratic Q!-Module Theorem). Suppose that Y is a faithful p-reduced
FpQ!-module for M with respect to Q. Put I :“ FY pMq and suppose that there exists an elementary
abelian p-subgroup A of M such that

(i) A acts nearly quadratically but not quadratically on I,
(ii) A normalizes Q, and Q normalizes A,
(iii) rY,As ď I.

Then one of the following holds:

(1) K :“ rF˚pMq, As is the unique component of M , K ď M˝, I is a simple K-module,
I “ rY,KAs, and A acts K-linearly on I, where K :“ EndKpIq.

(2) M˝ – Ω3p3q, and Y is the corresponding natural module for M˝.
(3) Y “ I, and there exists an M -invariant set tK1,K2u of subnormal subgroups of M such that

Ki – SLmipqq, mi ě 2, q a power of p, rK1,K2s “ 1, and as a K1K2-module Y – Y1bFq Y2

where Yi is a natural SLmipqq -module for Ki. Moreover, K :“ EndK1K2pIq – Fq and one
of the following holds:
(1) M˝ is one of K1,K2 or K1K2,
(2) m1 “ m2 “ q “ 2, M – SL2p2q o C2, M˝ “ O3pMqQ and Q – C4 or D8.
(3) m1 “ m2 “ p “ 2, q “ 4, M˝ “ K1K2Q – SL2p4q o C2, A acts K-linearly on I but

M˝ does not.
(4) p “ 2, M – ΓSL2p4q, M

˝ – SL2p4q or ΓSL2p4q, I is the corresponding natural module,
and |Y {I| ď 2,

(5) p “ 2, M – ΓGL2p4q, M
˝ – SL2p4q, I is the corresponding natural module, and Y “ I,

(6) p “ 2, M – 3.Symp6q, M˝ – 3.Altp6q or 3.Symp6q, and Y “ I is simple of order 26.
(7) p “ 3, M – Frobp39q or C2ˆFrobp39q, M˝ – Frobp39q, and Y “ I is simple of order 33.

Proof. Put L :“ GLFppIq. By D.6 I is a faithful M -module, so we may and do view M as a
subgroup of L. Let H be the subnormal closure of A in M .

1˝. OppMq “ OppHq “ 1.

Since M is a faithful p-reduced M -module, OppMq “ 1 and since H ĲĲM also OppHq “ 1.

2˝. H “ xAHy and rY,Hs ď I.

Since H is the subnormal closure of A, 1.13 gives H “ xAHy, and by Hypothesis (iii) rY,As ď I.
Hence also rY,Hs ď I.

3˝. I is a semisimple M˝-module. In particular, I is a semisimple module for any subnormal
subgroup of M˝.

Since Y is a faithful p-reduced Q!-module for M with respect to Q, D.8 shows that I is a
semisimple M˝-module.

4˝. Let R be a subnormal subgroup of M with R ď NM pQq. Then rR,Qs “ 1.
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This holds by A.54(b).

5˝. Let R be a subnormal subgroup of M and let U be a non-trivial Q- and R-invariant
subspace of Y . Then rCRpUq, Qs “ 1.

Note that CRpUq is normal in R and so subnormal in M . Also since U ‰ 0, CU pQq ‰ 0, and so
Q!-gives CRpUq ď NM pCU pQqq ď NM pQq. Thus (4˝) implies rCRpUq, Qs “ 1.

6˝. rF˚pMq, Q,As ‰ 1.

If AXQ ‰ 1, then 1.15(b) shows that rF˚pMq, AXQs ‰ 1 and so by 1.8(b),

1 ‰ rF˚pMq, AXQ,AXQs ď rF˚pMq, Q,As.

So we may assume that A X Q “ 1. Put R :“ rF˚pMq, Qs and suppose for a contradiction
that rR,As “ 1. By 1.15(b), R ‰ 1, and by 1.8(b), R “ rR,Qs. Since A X Q “ 1 and A and Q
normalizes each other we have rA,Qs “ 1 and so rRQ,As “ 1. Observe that R ĲĲM˝. Thus, (3˝)
shows that I is a semisimple R-module. Hence I is the direct sum of the Wedderburn components
of R on I. Since A centralizes R, each of the Wedderburn components of R is invariant under A.
By Hypothesis (i), A is nearly quadratic but not quadratic on I, so A.48 shows that there exists a
unique Wedderburn component W of R on I with rW,As ‰ 0. Let W˚ be the sum of the remaining
Wedderburn components of R. Then I “W ‘W˚. Since Q normalizes R and A, Q also normalizes
W and W˚.

Let W1 be a simple FpR-submodule of W and put L “: EndRpW1q. Since W is R-homogeneous
and rR,As “ 1, [MS3, 5.2] shows that there exists an LA-module W2 such that W – W1 bL W2

as an FpRA-module. Let mi “ dimLWi. Then as an FpA-module, W is the direct sum of m1

copies of W2. Applying A.48 a second times, A centralizes all but one of these m1 summands.
Since the summands are isomorphic this gives m1 “ 1. In particular, L is generated by the image
of R in EndFppW1q. As an R-module, W is a direct sum of copies of W1, and we conclude that
the subring D of EndFppW q generated by the image of R is a field isomorphic to L. Then Q
acts D-semilinearly on W and Q0 :“ CQpR{CRpW qq “ CQpDq. By (5˝), rCRpW q, Qs “ 1 and so
rR,Q0, Qs ď rCRpW q, Qs “ 1. Thus rF˚pMq, Q0, Q0, Q0s ď rF

˚pMq, Q,Q0, Qs “ 1, and by 1.8(b)
rF˚pMq, Q0s “ 1, so 1.15(b) gives Q0 “ 1. Hence Q acts faithfully on R{CRpW q and thus also on
D. Put D0 “ CDpQq. By Galois Theory dimD0

D “ |Q| and there exists a D0-basis of D regularly
permuted by Q. Also there exists a Q-invariant chain 0 “ U0 ă U1 ă . . . ă Um2´1 ă Um2 “ W of
D-subspaces of W with each factor isomorphic to D as a Q-module. Thus CUipQq ę Ui´1 and so
xCW pQq

Ry “ xDCW pQqy “ W . By Q!, CW pQq X CW pQq
r “ 0 for all r P RzNRpQq, see A.50(c).

Since CW pQq and CW pQq
r are isomorphic A-modules, A.48 shows that A acts quadratically on

CW pQq and so also on W “ xCW pQq
Ry and I “W ‘W˚ “W ` CIpAq, a contradiction.

7˝. There exists a QA-invariant non-trivial subnormal subgroup X of F˚pMq such that

X “ rX,As, X “ rX,Qs and if AXQ ‰ 1, X “ rX,AXQs.

If AXQ ‰ 1, 1.15(b) shows that rF˚pMq, AXQs ‰ 1 and 1.8(b) gives

rF˚pMq, AXQs “ rF˚pMq, AXQ,AXQs.

So we can choose X “ rF˚pMq, AXQs in this case.
Suppose next that AXQ “ 1. By (6˝) rF˚pMq, Q,As ‰ 1 and so we can choose a QA-invariant

subnormal subgroup X of F˚pMq minimal with rX,Q,As ‰ 1. Then 1.10 shows X “ rX,As and
X “ rX,Qs.

8˝. X ď F˚pM˝q X F˚pHq and X ę NM pQq. In particular, H ę NM pQq.

Since X “ rX,As and A ď H ĲĲ M˝, 1.11 shows that X ď H. Also X “ rX,Qs implies
X ď M˝. Hence X ď F˚pMq XM˝ “ F˚pM˝q and similarly X ď F˚pHq. If X ď NM pQq, (4˝)
implies rX,Qs “ 1, a contradiction to 1 ‰ X “ rX,Qs.

9˝. I is a semisimple X-module and CY pXq “ 1. In particular, I “ rI,Xs and X has no
central chief factor on I.
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By (8˝), X ď M˝ and so X is a subnormal subgroup of M˝. Hence (3˝) shows that I is a
semisimple X-module. By (8˝) X ę NM pQq. Since X is Q-invariant and Y is a Q!-module for M
with respect to Q, this gives CY pXq “ 1 (see A.53).

10˝. Put F :“ F˚pHq. Then CY pF q “ 1, rY,Hs “ rY, F s “ I, and if H is solvable, then
Y “ I.

By (8˝) X ď F and by (9˝), CY pXq “ 1 and I “ rI,Xs. So CY pF q “ 1 and I “ rI, F s. By
(2˝), rY,Hs ď I and so rY,Hs “ rY, F s “ I.

Suppose now that H is solvable. Then F “ F˚pHq “ F pHq is nilpotent. Since OppHq “ 1, this
implies that F is a p1-group. Coprime action now shows that Y “ CY pF q ‘ rY, F s “ I.

11˝. Let W be a system of imprimitivity for H on I with |W| ě 2 such that X acts trivially
on W. Then Case (2) or Case (3) of the Theorem holds.

Let W P W. Then X normalizes W , and by (9˝) X has no central chief factor on I, so
W “ rW,Xs and CW pXq “ 0. In particular, |W | ą 2, and since X “ rX,As we get rW,As ‰ 0.

We now apply A.48. Since rW,As ‰ 0 for all W PW, A.48(1) does not occur, and since A does
not act quadratically on I, also A.48(2) and (3) do not occur. So A.48(4) holds. Hence A has a
unique orbit WA on W with rW,As ‰ 0. It follows that W “ AW , and one of the following holds.

‚ p “ 2, |WA| “ 4 and dimF2
W “ 1.

‚ p “ 3, |WA| “ 3 and dimF3 W “ 1.
‚ p “ 2, |WA| “ 2 and CApW q “ CApV q. Moreover, dimF2 W {CW pBq “ 1 and CW pBq “
rW,Bs, where B :“ NApW q.

Since |W | ą 2 the first of these cases does not occur. Consider the second case. Recall that we
view M as a subgroup of L “ GLFppIq. Note that NLpWq – C2 o Symp3q and so O2pNLpWqq –
Altp4q – Ω3p3q. Since H “ xAHy “ O2pHq and 1 ‰ X ď H X CLpWq we get H “ O2pNLpWqq. It
follows that W is the set of Wedderburn components of O2pHq on I and hence

NLpO
2pHqq “ NLpHq ď NLpO2pHqq ď NLpWq and O2pNLpWqq “ H “ O2pHq.

Thus 1.12 applied with G “ O2 shows that H “ O2pHq “ O2pMq. In particular, M˝ ď H and
so H “M˝. Hence H is solvable, and (10˝) shows that Y “ I. So Case (2) of the Theorem holds.

Consider the third case. Put H0 :“ NHpW q. Then |H{H0| “ 2, H “ AH0 and H0 Ĳ H. Let
w P W zCW pBq. Then rw,Bs “ rW,Bs “ CW pBq and so B acts transitively on W zCW pBq. In
particular, B induces the full centralizer of CW pBq in GLF2

pW q on W .
Let U be a proper H0-submodule of W . Since B ď H0, U is B-invariant, and the transitive

action of B on W zCW pBq shows that U ď CW pBq. Put D :“ CBpW {Uq. The transitive action of
B shows that rW,Ds “ U . Note that D centralizes W {U and U . Let a P AzB. Since A is abelian,
D Ĳ A and so D centralizes W a{Ua and Ua. Since I “ W `W a, it follows that D ď OppH0q.
Hence U “ rW,Ds “ 1 and so W is a simple H0-module.

Now [MS3, 7.3] shows that xBH0y induces SLF2
pW q “ AutpW q on W . Suppose that H0 acts

faithfully on W . Then H0 – SLF2pW q. Thus H0 has no outer automorphism, so H “ CHpH0qH0.
But then |CHpH0q| “ 2, a contradiction to O2pHq “ 1.

Put tW1,W2u :“ W, ti, ju :“ t1, 2u and Kj :“ CH0
pWiq. Then Ki acts faithfully on Wi. As

H0 does not act faithfully on Wj , Ki ‰ 1. Thus Wi “ rWi,Kis, and since I “ Wi ‘Wj , we get
Wi “ rI,Kis and I “ rI,K1s ‘ rI,K2s. Put m :“ dimF2

pW q. Then Wi is natural SLmp2q-module
for H0, H0{Kj “ H0{CH0pWiq – SLmp2q and

p˚q 1 ‰ Ki – KiKj{Kj Ĳ H0{Kj – SLmp2q.

Suppose that m ě 3. Then SLmp2q is simple, and p˚q implies that that H0 “ KiKj . Hence
H0 “ K1ˆK2 and Wi is natural SLmp2q-module for Ki. As seen above I “ rI,K1s‘ rI,K2s. Thus
I is a wreath product module for H with respect to tK1,K2u, and A.56(b) shows that CKipwiq
is a 2-group for 0 ‰ wi P CWipNQpKiqq. But this contradicts the action of Ki on the natural
SLmp2q-module Wi.

Thus m “ 2. Now p˚q implies that Ki – SL2p2q or SL2p2q
1 – C3. Put Fi :“ O3pKiq. Then

F1F2 “ O3pHq “ F˚pHq “ F “ O2pHq. In particular, H is solvable and I “ Y by (10˝). Since
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CBpWiq “ CBpIq “ 1, |B| “ 2 and so A – C2ˆC2. Since H is the subnormal closure of A, 1.13 gives
H “ O2pHqA “ FA. So H “ FA “ H1 ˆH2 with Hi – SL2p2q, and as an H-module I “ V1 b V2

where Vi is a natural SL2p2q-module for Hi.
Note that NLpWq – SL2p2q o C2 so F “ O2pHq “ O2pNLpWqq. Also W is the of set of

Wedderburn components of O2pHq on I, and so NLpO
2pHqq ď NLpWq. Hence 1.12 applied with

G “ O2 shows that O2pMq “ O2pHq “ F Ĳ M . Thus either H “ M – SL2p2q ˆ SL2p2q or
H Ĳ M “ NLpF q – SL2p2q o C2. So to show that Case (3) of the Theorem holds it remains to
determine M˝.

Observe that H “ H1 ˆH2 – Ω`4 p2q, I is a natural Ω`4 p2q-module for H and H ĲM . Since Q

is weakly closed and O2pMq ď H, we have M˝ “ xQO
2
pMqy “ xQHy, see 1.46(d). Now B.37 shows

that either M˝ is one H1, H2 and H, or Q is isomorphic to C4 or D8. Thus indeed Case (3) of the
Theorem holds.

In view of (11˝) we may assume from now on that:

12˝. Let W be a system of imprimitivity for H on I with X acting trivially on W. Then
|W| “ 1.

Next we show:

13˝. Suppose that I is not a simple M˝-module. Then Case (3:1) of the Theorem holds.

By (3˝) I is a semisimple M˝-module and so the Wedderburn components of M˝ form a system
of imprimitivity for H. Hence (12˝) shows that I is a homogeneous M˝-module. Let I1 be a simple
M˝-submodule of I and L “ EndM˝pI1q. Since M˝ is generated by p-elements, dimL I1 ě 2. By
[MS3, 5.5] there exists an L-vector space I0 and a regular tensor decomposition I0 bL I1 of I for
M , which is strict for QA and such that M˝ centralizes I0. Since I is not simple for M˝, I ‰ I1 and
so dimL I2 ě 2. Hence I0 bL I1 is a proper tensor decomposition and we can apply [MS3, 6.5]. We
discuss the cases given there.

The first two cases do not occur since A does not act quadratically. Case (3.2) does not occur
for regular tensor decompositions. Thus Case (3.1) holds. Hence A acts L-linearly on Ij for j “ 0, 1,
Uj :“ rIj , As “ CIj pAq is an L-hyperplane of Ij , and rFpvi, As “ Uj for all vj P IjzUj . In particular,
A acts quadratically on Ij and so trvj , as | a P Au “ rvj , As “ rFpvi, As “ Uj . Thus A acts
transitively on vj `Uj . Put Lj :“ GLLpIjq, Hj :“ CLj pUjqXCLj pIj{Ujq and for P Ď CM pLq let Pj
be the image of P in Lj . Note that Aj ď Hj and a Frattini argument gives Hj “ AjCHj pvjq. Since
CHj pvjq centralizes Lvk ` Uj “ Ij we conclude that Aj “ Hj .

Since I1 is a simple M˝-module, I1 is also a simple M˝A-module and so p-reduced for M˝A. Now
[MS3, 7.2] shows xAM

˝

y1 “ SLLpI1q. Since M˝ is generated by p-elements and GLLpI1q{SLLpI1q
is a p1-group, we get pM˝q1 ď SLLpI1q. As M˝

1 acts faithfully on I1,

1 ‰M˝ – pM˝q1 Ĳ xA
M˝

y1 “ SLLpI1q.

Note that SLLpI1q is either quasisimple or |L| “ p ď 3, dimL I1 “ 2 and SLLpI1q
1 is a p1-group. We

conclude that pM˝q1 “ L1 and M˝ – SLLpI1q.

Let K :“ Op
1

pCCM pLqpM
˝qq. As CGLFp pI1q

pM˝q is a p1-group, K centralizes I1 and so also

L. In particular, K acts faithfully on I0 and K – K0. As xAM
˝

y1 “ SLLpI1q, A induces inner
automorphisms on M˝ and so A ď M˝K. Suppose that U is a proper LK-submodule of I0. Since
A acts transitively on v0 ` U0, it also acts transitively on the 1-dimensional L-subspaces not in U0.
Thus U ď U0. Put B :“ CApI0{Uq. Since A0 “ H0, rI0, Bs “ U . Note that B centralizes I0{U and
U and so the same holds for KXBM˝. But K acts faithfully on I0 and since K ĲĲM , OppKq “ 1.
Thus K XBM˝ “ 1. As B ď A ďM˝K we get

B ďM˝B XM˝K “M˝pK XBM˝q “M˝.

Thus U “ rI0, Bs ď rI0,M˝s “ 0, and I0 is a simple LK-module. It follows that xAKy0 “ L0, and
arguing as above, L0 – SLLpI0q, K0 “ L0 and K – SLLpI0q. Thus Case (3:1) of the Theorem holds.

In view of (2˝) we may assume from now on that
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14˝. I is a simple M˝-module.

Next we prove:

15˝. I is a simple H-module.

Since I is a simple M˝-module, I is a simple M -module. Since H ĲĲ M this implies that I is
a semisimple H-module. So I is the direct sum of a set W of simple H-submodules. Note that W is
a system of imprimitivity for H on I with H and so also X acting trivially on W. Thus (12˝) shows
that |W| “ 1. Hence I is a simple H-module.

Recall that F “ F˚pHq.

16˝. Let W be a Wedderburn component for F on I and put K :“ ZpEndF pW qq. Then
W “ I and K “ ZpEndF pIqq.

By (8˝) X ď F˚pHq “ F . Hence the Wedderburn components for F on I form a system of
imprimitivity for H on I on which X acts trivially. Thus (12˝) shows that I “W .

We now apply [MS3, Theorem 2] and discuss the different cases given there. Define E :“
EndHpIq.

Case 1. Suppose that F “ KZpHq, where K is a component of H, I “ W is a simple
FpK-module, and K “ E. Then Case (1) of the Theorem holds.

Put D “ EndKpIq. Since I is a finite simple K-module, D is a finite division ring and so a field.
In particular, the multiplicative group D˚ of D is a cyclic p1-group. Note that CM pKq ď D˚ and so
also CM pKq is cyclic p1-group. Thus K is the unique component of M and K ĲM . Moreover, if P
is a non-trivial p-subgroup of M , then rK,P s ‰ 1 and so K “ rK,P s. Thus K “ rK,Qs ďM˝ and
K “ rK,As.

Since D is commutative and ZpHq ď CM pKq ď D˚ we have D Ď EndZpHqpIq. Thus

D Ď EndZpHqKpIq “ EndF pIq Ď EndKpIq “ D

and so D “ EndF pIq “ EndKpIq. Since I “ W , K “ ZpEndF pIqq “ ZpEndKpIqq “ ZpDq, and
since D is commutative, this gives K “ D.

As KA ď H, (2˝) shows rY,KAs “ I. Note that F pMq ď CM pKq Ď D “ K. Since by Hy-
pothesis of (Case 1) K “ E “ EndHpIq, this gives rF pMq, As “ 1 and rF˚pMq, As “ rF pMqK,As “
rK,As “ K. Thus all the statements in Case (1) of the Theorem hold.

We now discuss the remaining cases given in Theorem 2 of [MS3]. For the convenience of the
reader we reproduce the table given there. We also have omitted case (13) of the table since in that
case H would not be generated by abelian nearly quadratic subgroups.

H I W K H{CHpKq conditions
1. pC2 o Sympmqq1 pF3q

m F3 F3 ´ m ě 3,m ‰ 4
2. SLnpF2q o Sympmq pFn2 qm Fn2 F2 ´ m ě 2, n ě 3
3. WrpSL2pF2q,mq pF2

2q
m F2

2 F4 ´ m ě 2
4. F rob39 F27 I F27 C3

5. ΓGLnpF4q Fn4 I F4 C2 n ě 2
6. ΓSLnpF4q Fn4 I F4 C2 n ě 2
7. SL2pF2q ˆ SLnpF2q F2

2 b Fn2 I F4 C2 n ě 3
8. 3.Symp6q F3

4 I F4 C2

9. SLnpKq ˝ SLmpKq Kn bKm I any 1 n,m ě 3
10. SL2pKq ˝ SLmpKq K2 bKm I K ‰ F2 1 m ě 2
11. SLnpF2q o C2 Fn2 b Fn2 I F2 1 n ě 3
12. pC2 o Symp4qq1 pF3q

4 I F3 1
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Case 2. Cases 1., 2., and 3. of the table do not occur.

In these cases W ‰ I contrary to (16˝).

Case 3. In cases 5., 6. and 8. of the table, case (4), (5) and (6), respectively, of the Theorem
holds.

Note that in each of these cases H has a unique component K1 and I is a simple K1-module.
In particular, CLpK1q, and so also CM pK1q, is a cyclic p1-group. Thus rK1, Qs ‰ 1 and K1 “

rK1, Qs ďM˝. Moreover, since CM pK1q is cyclic and distinct components centralize each other, K1

is the unique component of M and so K1 ĲM . Note also that in each case K “ F4 and H does not
act K-linearly on I. As H “ xAHy also A does not act K-linearly on I.

Assume case 5. or 6. of the table. Then K1 – SLnp4q and I is a natural SLnp4q-module for
K1.

Suppose that n ą 2. Then by B.37 K1 “M˝ and Q “ CLpI{UqXCLpUq for some 1-dimensional
K-subspace U of I. Let AK be the largest subgroup of A acting K-linearly on I. Since A does not
act K-linearly on I, [MS3, 6.3] shows that rI, AKs “ CIpAKq is a K-hyperplane of I. Recall from
Hypothesis (ii) of the Theorem that Q and A normalizes each other. Thus rQ,As ď Q X A and
U ď CIprQ,Asq. We claim that CIprQ,Asq “ U . Otherwise choose U ă U1 ď CIprQ,Asq with
rU1, As ď U . Then rQ,A,U1s “ 0 and rU1, A,Qs ď rU,Qs “ 0. Hence the Three Subgroups Lemma
shows that rU1, Q,As “ 0. As Q “ CLpI{Uq X CLpUq and U1 ę U , this implies that rU1, Qs “ U .
So A centralizes the non-trivial K-subspace U of I, a contradiction, since A does not act K-linearly
on U . Thus CIprQ,Asq “ U . As Q acts K-linearly on I, we have rQ,As ď Q X A ď AK and
CIpAKq ď CIprQ,Asq ď U . Since CIpAKq is a K-hyperplane of I and dimK U “ 1, this shows that
n “ 2.

Note that M ď NLpK1q. By B.32(b), NLpK1q – ΓGL2p4q and so NLpK1q{K1 – Symp3q. Since
A ę K1, this implies either M “ NLpK1q – ΓGL2p4q or M “ K1A – ΓSL2p4q. In both cases
M “ H. Since K1 acts transitively on I, Q! shows that M˝ “ xQK1y “ K1Q Ĳ M . Thus either
M˝ “ K1 or M˝ “M – ΓSL2p4q.

By (2˝), rY,Hs ď I and so rY,K1s “ I. Observe that rK1, Qs ‰ 1 and by Q!, CY pK1q “ 1.
Thus Y {I embeds into H1pK1, Iq. By C.18 H1pK1, Iq has order four. As CLpK1q acts fixed-point
freely on I, it also acts fixed-point freely on H1pK1, Iq. Thus NLpK1q induces Symp3q on H1pK1, Iq
with kernel K1. Since M “ H, rY,M s ď I. Hence either Y “ I or M – ΓSL2p4q and |Y {I| ď 2 , or
M – ΓGL2p4q and Y “ I. In the first case (4) of the Theorem holds, in the second case (5) of the
Theorem holds.

Assume case 8. of the table. Since EndK1pIq “ F4 and |ZpK1q| “ 3 “ |F74| “ |K7|, CM pK1q ď

K1. Note that K1 has a unique conjugacy class of subgroups A1 with A1 – Altp5q and CIpA1q ‰ 1.
It follows that M acts on this conjugacy class. Thus M{CM pK1q – Symp6q and so M – 3.Symp6q.
Since K1 ďM˝ we get M˝ “ K1 – 3.Altp6q or M˝ “M – 3.Symp6q. Thus case (6) of the Theorem
holds.

Case 4. Suppose that either Case 12. or Case 10. with m “ 2 and K “ F3 of the table holds.
Then Case (3:1) of the Theorem holds.

Since H is solvable in these cases (10˝) shows that Y “ I. Note that in both cases F “

O2pHq – Q8 ˝Q8, and I is the unique simple F -module of order 34. Moreover, F “ O3pO2pHqq and
NLpF q{F – O`4 p2q. It follows that F “ O3pO2pNLpF qqq and 1.12 applied with G “ O3O2 shows
that F “ O3pO2pMqq Ĳ M . Note that Q ď O2pMq since p “ 3, and so M˝ “ O3pM˝q ď F . By
1.13 M˝ “ xQM˝y and thus M˝ “ xQF y.

Suppose for a contradiction that Q normalizes an elementary abelian subgroup B of order eight
in F . Since B{ZpF q and F {B are dual to each other as Q-modules, we conclude that Q acts
fixed-point freely on F {ZpF q. In particular, rB,Qs is a complement to ZpF q in B. Let

D :“ tD ď B | |B{D| “ 2, CIpBq ‰ 0u.

Since I is a simple faithful F -module, CIpZpF qq “ 0. Thus ZpF q X D “ 1 for all D P D. By
coprime action

I “
à

DPD
CIpDq.
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Note that F acts transitively on the four complements to ZpF q in B. We conclude that D consists
of the complements to ZpF q in B and |CIpDq| “ 3 for all D P D. In particular, |CIprB,Qsq| “ 3
and rCIprB,Qsq, Qs “ 0. Thus Q! gives rB,Qs ď NM pQq and so rB,Qs “ rB,Q,Qs ď B X Q “ 1,
which contradicts the fixed-point free action of Q on F .

Thus Q does not normalize any elementary abelian subgroup of order 8 in F . It follows that
either |Q| “ 9 and M˝ “ FQ – SL2p3q ˝ SL2p3q or |Q| “ 3, rF,Qs – Q8 and M˝ – SL2p3q. If the
former holds, Case (3:1) of the Theorem holds. If the latter holds, M˝ does not act simply on I, a
contradiction to (14˝).

Case 5. Suppose that Case 7., 9., 10. or 11. of the table holds. Then Case (3) of the Theorem
holds.

In view of (Case 4) we assume that K ‰ F3 if m “ 2 in Case 10. Note that E “ F2 and K “ F4

in case 7., E “ K “ F4 in in the cases 9., 10., and E “ K “ F2 in case 11. In each of the four cases
H has subgroups K1,K2 such that Ki – SLnipEq, ni ě 2, rK1,K2s “ 1, K1K2 Ĳ H, H “ K1K2A,
and there exist natural SLnipEq-modules Ii for Ki such that as an K1K2-module, I – I1 bE I2. In
particular, X “ OppXq ď K1K2 and so CY pK1K2q ď CY pXq “ 1. Since rY,K1K2s ď rY,Hs ď I
and Ki has no central chief factor on I, we conclude from C.19 that Y “ I.

Choose notation such that n1 ě n2. In case 7. 9. and 11., n1 ě 3, and in case 10. either n1 ě 3
or n1 “ m “ 2 and (according to our additional assumption) |E| ą 3. Thus K1 is quasisimple and
so a component of M .

Let R be a component of M with R ‰ K1. Then rR,K1s “ 1. Note that CLpK1q – GLn2pEq.
As K2 – SLn2

pEq, this gives K2 “ Op
1

pCM pK1qq and CM pK1q
8 ď K2. It follows that either K1 is

the only component of M , or K2 is a component of M and tK1,K2u is the set of components of M .
In either case K1K2 ĲM .

It follows that H acts on the set S “ tv1bv2 | 0 ‰ vi P Viu and this set is of size not divisible by
p. So we can choose 0 ‰ vi P Vi such that Q centralizes v1 b v2; i.e., CM pv1 b v2q ď NM pQq. Note
that K1K2 acts transitively on S and so M “ HCM pv1 b v2q “ HNM pQq. Thus M˝ “ pK1K2Qq

˝.
Put R1 :“ CK1

pv1q. Then R “ CK1
pv1 b v2q, so R1 ď NM pQq and rR1, Qs is a p-group. Note that

R1{OppR1q – SLn1´1pEq.
Suppose that n1 ě 3. Then R1{ZpK1q is not a p-group. It follows that Q normalizes K1 and

centralizes R1{OppR1q. Hence Q induces inner automorphisms on K1. Therefore Q acts E-linearly
on I. Since Q normalizes K2, this implies that Q induces inner automorphisms on K2 (see B.32(d)).
Thus Q ď K1K2 and M˝

1 ď K1K2. The only normal subgroups of K1K2 generated by p-elements
are K1, K2 and K1K2, so M˝ is one of K1,K2 and K1K2 and so Case (3) of the Theorem holds.

Suppose next that n1 “ 2. Since n2 ď n1 this gives n2 “ 2, and case 10. of the table holds
with m “ 2 with |E| “ |K| ą 3. Note that K1K2 – Ω`4 pqq and I is a natural Ω`4 pqq-module
for K1K2. Now B.37 shows that either M˝ “ xQK1K2y is one of K1,K2 and K1K2, or q “ 4,
M˝ – O`4 p2q – SL2p4q o C2 and Q does not act K-linearly. Thus Case (3) of the Theorem holds.

Case 6. Suppose that Case 4. of the table holds. Then Case (7) of the Theorem holds.

Since H – Frobp39q, H is solvable and so by (10˝) Y “ I. From |I| “ 33 we get NL1pHq “ H.
Since H ĲĲ M X L1 this gives M X L1 “ H. So either M “ H – Frobp39q or M “ ZpLq ˆH –

C2 ˆ Frobp39q. In either case H is the only non-trivial subgroup generated by p-elements and so
M˝ “ H, and Case (7) of the Theorem holds. l





APPENDIX E

The Amalgam Method

The amalgam method is a convenient way to keep track of conjugation in (finite) groups and to
combine conjugation of abelian subgroups with quadratic action.

The starting point is a prime p and a group G together with a collection of two or more finite
subgroups Hi, i P I, whose p-local structures should be investigated. Usually one requires that these
subgroups are of characteristic p and have a Sylow p-subgroup in common, together with other
properties that restrict the number (and often also the structure) of the non-abelian chief factors,
like being p-irreducible.

It is rather astonishing that in such an apparently general situation most of the normal p-
subgroups of these subgroups Hi are already contained in normal p-subgroups of G. Or from a
different point of view, modulo the largest normal p-subgroup of G contained in B :“

Ş

iPI Hi, the
number and module structure of the p-chief factors of the subgroups Hi are very limited.

The name amalgam method comes from the fact that this method does not really depend on
G, but only on the embedding of B into the subgroups Hi, so it can as well be performed in the
amalgamated product of these (sub)groups over B.

E.1. The Coset Graph

Let H be any group and let pHiqiPI be a family of distinct subgroups of H. We define the coset
graph of H with respect to Hi, i P I, as follows:

The cosets Hig, i P I and g P H, are the vertices of Γ, and the unordered pairs

tHig,Hjgu with i ‰ j and g P H

are the edges of Γ. A vertex Hig we will call of color i. Note that a given vertex has a unique color.
Indeed if Hig “ Hjh, then Hj “ High

´1 is a coset of Hi containing 1 and so Hj “ Hi and i “ j.
Apart from the elementary graph theoretic terminology, like neighbor, adjacent, path, and

distance, we use the following notation for vertices γ and δ of Γ, i P I, K Ď I, ∆ a set of vertices of
Γ, and L ď H.

– Γi :“ H{Hi is the set of vertices of color i; ΓK :“
Ť

kPK Γk is the set vertices of color
contained in K. ∆pγq is the set of vertices in ∆ adjacent or equal to γ.

– Lδ is the stabilizer of δ in L, L∆ “
Ş

δP∆ Lδ is the element-wise stabilizer of ∆.
– dpγ, δq is the distance between γ and δ.
– A chamber of Γ is a set of vertices of the form tHig | i P Iu for some g P H.

E.2. Elementary Properties

We begin with some elementary facts about Γ (see also [KS]).

Lemma E.1. The following hold:

(a) Γ is an |I|-partite graph whose partition classes are the sets H{Hi, i P I.
(b) tHig,Hjhu is an edge of Γ if and only if i ‰ j and Hig XHjh ‰ H.
(c) For any distinct i, j in I, H acts transitively on the set of edges whose vertices have colors

i and j. In particular, every edge is contained in a chamber.
(d) H acts transitively on the set of chambers.

255
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Proof. (a): As remarked above each vertex has a unique color, so Γi, i P I, is a partition of Γ.
By the definition of an edge, a vertex is only adjacent to vertices of distinct color.

(b): Note that

Hig XHjh ‰ H ðñ Da P Hig XHjh ðñ Da P H : tHig,Hjhu “ tHia,Hjau.

(c) and (d): This follows immediately from the definition of an edge and a chamber, respectively.
l

Lemma E.2. Let α :“ Hig be a vertex and e :“ tHig,Hjgu be an edge of Γ. Then the following
hold:

(a) Hα “ Hg
i .

(b) He “ pHi XHjq
g.

Proof. Observe that for h P H

High “ Hig ðñ gh P Hig ðñ h P g´1Hig ðñ h P Hg
i .

This gives (a) and (b). l

Lemma E.3. H acts on Γ by right multiplication as a group of automorphisms, and

HΓ “
č

iPI,gPH

Hg
i

is the kernel of this action. Moreover, for every vertex α of Γ, Hα is transitive on the chambers
containing α and on the neighbors of color j of α, for every j P I.

Proof. Right multiplication rg by an element g P H sends vertices to vertices and edges to
edges. It is now easy to see that

r : H Ñ AutpΓq with g ÞÑ rg

is a homomorphism. By E.2

HΓ “
č

iPI,gPG

Hg
i “

č

δPΓ

Hδ “ ker r.

Let α P Γ be a vertex of color i and let j P I. By E.1(d)H acts transitively on the set of chambers.
As each chamber contains a unique vertex of color i we conclude that Hα acts transitively on the
chambers containing α. If j “ i, the set of neighbors of color j of α is empty. So suppose i ‰ j.
Then by E.1(c) H acts transitively of the edges with vertices of color i and j. It follows that Hα

acts transitively on the set of vertices of color j adjacent to α. l

In the following we will write this action of H exponentially: α ÞÑ αg rather than αg.

Lemma E.4. Suppose that Γ is connected, and let C be a chamber of Γ.

(a) Let K ď H. Suppose that for each γ P C and i P I, Kγ acts transitive on Γipγq. Then for
each i P I, K acts transitively on Γi.

(b) Let R ď HC and suppose that for each γ P C and i P I, NHγ pRq acts transitively on Γipγq.
Then R ď HΓ.

Proof. (a): Let δ P Γ. We will show by induction on d :“ dpC, δq that δ is K-conjugate to an
element of C. If dpC, δq “ 0, δ P C. So suppose that dpC, δq ą 0 and let pα0, . . . , αdq be a path in Γ
with d “ dpC, δq, α0 P C and αd “ δ. Put γ :“ α0 and let α P C be of the same color i as α1. Since
Kγ acts transitively on Γipγq, we have αk1 “ α for some k P Kγ . Then

dpC, δkq ď dpα, δkq “ dpαk1 , δ
kq “ dpα1, γq “ d´ 1,

and by induction δk is K-conjugate to an element of C. Hence the same holds for δ.
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(b): Put K :“ NHpRq. Let i P I and γ P C. Then Kδ “ NHδpRq acts transitively on Γipγq. So
by (a) K acts transitively on H{Hi. Since R ď HC , R fixes a vertex of color i. As R Ĳ K and K
acts transitively on H{Hi, R fixes all vertices of color i. Thus (b) holds. l

Lemma E.5. Γ is connected if and only if H “ xHi | i P Iy.

Proof. Put H0 :“ xHi, i P Iy and let Γ0 be the connected component of Γ that contains the
chamber C :“ tHi | i P Iu. Since each Hi leaves invariant Γ0, also H0 does. Thus if H “ H0, Γ0

contains all vertices of Γ, so Γ0 “ Γ.
Assume that Γ is connected. Let i P I and δ P C. Then H0δ “ Hδ and so by E.3 H0δ acts

transitively on Γipδq. Thus by E.4(a) H0 acts transitively on H{Hi, and a Frattini argument gives
H “ H0Hi “ H0. l

E.3. Critical Pairs

In this section we assume the following hypothesis.

Hypothesis E.6. Let H be a group, pHiqiPI a family of distinct subgroups of H, J Ď I, p a
prime, and Γ the coset graph of H with respect to pHiqiPI . Put B :“

Ş

iPI Hi, and suppose that the
following hold:

(i) For each i P I, Hi is finite and OppHiq ď B.
(ii) J ‰ H, and for j P J , Zj is a p-reduced elementary abelian normal p-subgroup of Hj with

Zj ę HΓ.
(iii) H “ xHi | i P Iy.

Recall from E.5 that Γ is connected. For j P J , h P H, λ :“ Hjh P ΓJ and δ P Γ we define:

Zλ :“ Zhj , Qδ :“ OppHδq, and Vδ :“ xZλ | λ P ΓJpδqy.

Lemma E.7. The following holds.

(a) Zδ ď Ω1ZpQδq for all δ P ΓJ .
(b) Qδ ď Hλ for all edges tδ, λu.

Proof. (a): Let j P J . By E.6(ii) Zj is a p-reduced elementary abelian normal subgroup of
Hj , and so Zj ď Ω1ZpOppHjqq. This gives Zδ ď Ω1ZpQδq for δ P Γj , and (a) holds.

(b): By Hypothesis E.6(i) OppHiq ď B ď Hk for all i, k P I. By E.1(c) any edge with vertices
of colors i and k is conjugate to tHi, Hku, and so (b) holds. l

Lemma E.8. There exists a pair of vertices pδ, λq such δ P ΓJ and Zδ ę Qλ.

Proof. By Hypothesis E.6(ii) J ‰ H, and for j P J , Zj ę HΓ. Hence there exists vertex λ
such that Zj ę Hλ; in particular Zj ę Qλ. Put δ :“ Hj . Then Zδ “ Zj , and the claim holds for
pδ, λq. l

Since Γ is connected we can choose a pair pα, α1q of vertices of minimal distance among all pairs
pδ, λq with δ P ΓJ and Zδ ę Qλ. Any such pair of minimal distance is called a critical pair (with
respect to J). Moreover, we put b :“ dpα, α1q. Note that b does not depend on the choice of the
critical pair.

In the following pα, α1q is always a critical pair, and γ is a path of length b from α to α1. We
often denote γ by

γ “ pα, . . . , α` i, . . . , α` bq “ pα1 ´ b, . . . , α1 ´ i, . . . , α1q,

so
α “ α1 ´ b, α1 “ α` b, and α` i “ α1 ´ pb´ iq.

Lemma E.9. The following hold:
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(a) b ě 1.
(b) Let λ P ΓJ and δ P Γ. If dpλ, δq ď b then Zλ ď Hδ, and if dpλ, δq ă b then Zλ ď Qδ.
(c) Let 0 ď i ă b. Then Zα ď Qα`i and if α1 P ΓJ , Zα1 ď Qα1´i.
(d) Zα ď Hα1 and if α1 P ΓJ , Zα1 ď Hα.
(e) If b ą 1, then Vα ď Qα`i and Vα1 ď Qα1´i`1 for 0 ď i ă b´ 1. In particular Vα ď Hα1´1

and Vα1 ď Hα`1.
(f) There exists h P Hα1 with Zα ę Hh

α1´1. In particular, Zα ę HΓpα1q.
(g) If α1 P ΓJ and rZα, Zα1s ‰ 1, then also pα1, αq is a critical pair.
(h) If b ě 3 and δ P Γ, then Vδ is an elementary abelian normal p-subgroup of Hδ in Qδ.

Proof. (a): By definition of a critical pair, Zα ę Qα1 , and by E.7(a), Zα ď Qα. Thus α ‰ α1

and so b ‰ 0.

(b): If dpλ, δq ă b then the definition of b gives Zλ ď Qδ. Suppose that dpλ, δq “ b. Then there
exists µ P Γpδq such that dpλ, µq “ b´ 1, so Zλ ď Qµ, and by E.7(b), Zλ ď Qµ ď Hδ.

(c): Since α P ΓJ and dpα, αα`iq ă b, (b) applies. Similarly, if α P ΓJ , again (b) applies since
also dpα, α´ iq ă b.

(d): This is again an application of (b) since dpα, α1q “ b.

(e): Let λ P ΓJpαq and δ P Γ such that dpα, δq ă b´1. Then dpλ, δq ă b and so by (b), Zλ ď Qδ.
Thus, also Vα “ xZλ | λ P ΓJpαqy ď Qδ. In particular for δ “ α1 ´ 2, Vα ď Qα1´2, and by E.7(b)
Vα ď Qα1´2 ď Hα1´1.

Similarly for ρ P ΓJpα
1q, dpρ, α` 2q ă b and by (b) Zρ ď Qα`2. Hence Vα1 ď Qα`2 ď Hα1`1.

(f): Put X :“
Ş

hPHα1
pHα1 XHα1´1q

h. Then X normalizes Qα1´1 and so Qα1´1XX ď OppXq ď

OppHα1q “ Qα1 . Since Zα ď Qα1´1 and Zα ę Qα1 this shows Zα1 ę X and thus (f) holds.

(g): Assume that α1 P ΓJ and rZα, Zα1s ‰ 1. Then clearly Zα1 ę Qα since Zα ď ZpQαq. Hence,
(g) follows.

(h): Assume that b ě 3 and let δ P Γ and µ, λ P ΓJpδq. Then dpµ, λq ď 2 ă b and so Zµ ď Qλ.
Since Zλ ď ZpQλq this gives rZλ, Zµs “ 1. Also Zλ ď Qδ and Zλ is elementary abelian. It follows
that Vδ is elementary abelian and contained in Qδ. This is (h). l

E.4. The Case |I| “ 2

In this section we assume

Hypothesis E.10. Let H be a group, p a prime, H1 and H2 distinct subgroups of H and Γ the
coset graph of H with respect to pH1, H2q.

(i) H1 and H2 are finite of characteristic p.
(ii) For i P t1, 2u, Zi is a p-reduced elementary abelian normal p-subgroup Hi with ZHi ď Zi

1.
(iii) H “ xH1, H2y.
(iv) H1 XH2 is a parabolic subgroup of H1 and H2.
(v) No nontrivial p-subgroup of H1 XH2 is normal in H1 and H2.

Note here that since Hi is finite of characteristic p for i “ 1, 2, then ZHi ď YHi by 1.24(g) and
both Zi “ ZHi and Zi “ YHi fulfill (ii).

Lemma E.11. (a) HΓ “ 1.
(b) Hypothesis E.6 holds with I “ J “ t1, 2u.

Proof. (a): Then HΓ ď H1 XH2 and so OppHΓq is p-subgroup of H1 XH2 normal in H1 and
H2. Thus Hypothesis E.10(v) gives OppHΓq “ 1. Since HΓ Ĳ H1 and H1 is of characteristic p, also
HΓ is of characteristic p (see 1.2(a).) Thus HΓ “ 1.

(b): Let i P I. By Hypothesis E.10(i) Hi is finite of characteristic p. By Hypothesis E.10(iv)
B :“ H1 XH2 is a parabolic subgroup group of Hi and so OppHiq ď B. By Hypothesis E.10(iv) Zi

1See 1.1(c) for the definition of ZHi .
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is an elementary abelian p-reduced normal subgroup of Hi with ZHi ď Zi. The latter fact implies
Zi ‰ 1 and since HΓ “ 1 we get Zi ę HΓ. By Hypothesis E.10(iv) H “ xH1, H2y and so Hypothesis
E.6 holds. l

Lemma E.12. The following hold:

(a) H acts edge-transitively on Γ.
(b) Two vertices δ and λ are of the same color if and only if dpδ, λq is even.
(c) Let tλ, µu be an edge. Then Hλ XHµ is a parabolic subgroup of Hλ and Hµ.
(d) For every vertex δ, Hδ is finite of characteristic p, Zδ is a p-reduced elementary abelian

normal subgroup of Hδ and ZHδ ď Zδ ď YHδ ď Ω1ZpQδq.
(e) Let tλ, µu be an edge. Then CZλpHλq ď ZHλXHµ ď Zλ X Zµ.
(f) Let tλ, µu be an edge. Then no non-trivial p-subgroup of Hλ X Hµ is normal in Hλ and

Hµ.

Proof. (a): Since |I| “ 2, (a) follows from E.1(c).

(b): By E.1(a) Γ is a bipartite graph with partition classes H{H1 and H{H2. This gives (b).

(c): By Hypothesis E.10(iv) H1 XH2 is a parabolic subgroup of H1 and H2. Since H acts edge
transitively, this gives (c).

(d): Let i P t1, 2u. By E.10(i) Hi is finite. By E.10(ii), ZHi ď Zi and Zi is a p-reduced
elementary abelian normal subgroup of Hi. Hence Zi ď YHi ď Ω1ZpOppHiqq. By E.2(a) Hδ is
conjugate to H1 or H2 and so (d) holds.

(e): Let T P SylppHλXHµq. Since HλXHµ is a parabolic subgroup of Hλ and Hµ, T is a Sylow
p-subgroup of Hλ and Hµ. Thus

CZλpHλq ď Ω1ZpT q ď ZHλXHµ ď ZHλ X ZHµ ď Zλ X Zµ,

and (e) is proved.

(f): By E.10(v) no non-trivial p-subgroup of H1 X H2 is normal in H1 and H2. Since H is
edge-transitive, (f) holds. l

Lemma E.13. Suppose that Hj is p-irreducible for some j P I. Let tλ, µu be an edge of Γ such
that λ is of color j. Then the following hold:

(a) CHλpZλq is p-closed or Zλ “ CZλpHλq ď Zµ.
(b) CHλpVλq is p-closed.

Proof. By E.2(a) Hλ is an H-conjugate of Hj and so p-irreducible. Hence either CHλpZλq
is p-closed or OppHλq ď CHλpZλq. In the second case, Hλ{CHλpZλq is a p-group and since Zλ is
p-reduced we get CHλpZλq “ Hλ. Thus Zλ ď CZλpHλq. By E.12(e) CZλpHλq ď Zλ X Zµ and so (a)
is proved.

Similarly, either CHλpVλq is p-closed or OppHλq ď CHλpVλq. In the second case, since Hλ XHµ

is a parabolic subgroup of Hλ,

Hλ “ CHλpVλqpHλ XHµq “ CHλpZµqpHλ XHµq.

Hence Zµ is normal in Hλ and Hµ. Since Zµ ‰ 1 this contradicts to E.12(f). l

Lemma E.14. Let pα, α1q be a critical pair (for some H ‰ J Ď I) such that Hα is p-irreducible.
Then CHαpZαq is p-closed. If in addition b is even, then rZα, Zα1s ‰ 1, and pα1, αq is also a critical
pair.

Proof. By definition of b, Zα`1 ď Qα1 . Since Zα ę Qα1 , this gives Zα ę Zα`1, and so E.13(a)
shows that CHαpZαq is p-closed.

Assume now that b is even. Then E.12(b) shows that α and α1 are of the same color. Thus,
also CHα1 pZα1q is p-closed, and so Qα1 P SylppCHα1 pZα1qq. Since Zα ę Qα1 we conclude that
rZα, Zα1s ‰ 1, and by E.9(g) also pα1, αq is a critical pair. l
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E.5. An Application of the Amalgam Method

Lemma E.15. Let H be a group, and let H1 and H2 be subgroups of H and A1 Ĳ H1. Put
A2 :“ xAH2

1 y and, for ti, ju “ t1, 2u,

Di :“
č

kPHi

pHi XHjq
k and Ei “ xA

h
i | h P H,A

h
i ď CH1XH2pAiqy.

Suppose that

(i) H “ xH1, H2y and A2 ď H1 XH2,
(ii) Ei ď Di for each i P t1, 2u.

Then one of the following holds:

(1) xAH1 y is abelian and contained in H1 XH2.
(2) There exists h P H with 1 ‰ rA1, A

h
1 s ď A1 XA

h
1 and A1A

h
1 ď H1 XH

h
1 .

(3) E1 ę D2 and there exists g P H with 1 ‰ rA2, A
g
2s ď A2 XA

g
2 and A2A

g
2 ď H2 XH

g
2 .

Proof. Let Γ be the coset graph of H with respect to H1 and H2. For α “ Hih P Γ define
Aα “ Ahi and Dα “ Dh

i . Note that this is well defined since Hi normalizes Ai and Di. Also
Dα “ HΓpαq.

Suppose first that A1 acts trivially on Γ. Then xAH1 y ď H1XH2 ď Hh
1 for all k P H. If xAH1 y is

abelian, (1) holds. If xAH1 y is not abelian then rA1, A
h
1 s ‰ 1 for some h P H and A1A

h
1 ď H1XH

h
1 ď

NHpA1q XNHpA
h
1 q. Thus rA1, A

h
1 s ď A1 XA

h
1 and (2) holds.

Suppose next that A1 does not act trivially on Γ. Then we can choose vertices α, ε P Γ of
minimal distance d such that α is of color 1 and Aα does not fix ε. Since A1 ď A2 ď H1 XH2 and
H acts edge transitively, d ě 2. Since A2 Ĳ H2 and A2 ď H1 we have A2 ď D2. Thus A1 ď D2 and
so d ě 3.

Let pα, β, . . . , β1, α1, εq be a path of minimal length from α to ε. Then Aα ę HΓpα1q “ Dα1 . Since

A2 “ xA
H2
1 y and Hβ is an H-conjugate of H2, Aβ “ xA

Hβ
α y “ xAδ | δ P Γ1pβqy. The minimality of d

implies that Aβ fixes β1 and α1. So Aα ď Aβ ď Hβ1 XHα1 and neither Aα nor Aβ are contained in
Dα1 .

Since H acts edge transitively we may assume that α1 “ Hi and β1 “ Hj for some ti, ju “ t1, 2u.
In particular, Aα ď Aβ ď Hi XHj “ H1 XH2. Note that Aα “ Ah1 for some h P H and Aβ “ Ag2
for some g P H.

Assume that rAh1 , A1s ‰ 1. Since A1 “ Aα1 or Aβ1 the minimality of d gives A1 ď Aα1Aβ1 ď
Hα “ Hh

1 and Ah1 “ Aα ď H1. Thus (2) holds in this case.
Assume next that rAh1 , A1s “ 1. Then Aα “ Ah1 ď E1 ď D1. Since Aα ę Dα1 this gives

α1 “ H2, Aα1 “ A2 and E1 ę D2. If rAβ , Aα1s “ 1 we get Aβ ď E2 ď D2 “ Dα1 , a contradiction.

Thus rAh2 , A2s “ rAβ , Aα1s ‰ 1. By minimality of d, A2 “ Aα1 “ xA
Hα1
ε y ď Hβ “ Hg

2 . Also
Ag2 “ Aβ ď Hα1 “ H2. Thus (3) holds in this final case. l

Corollary E.16. Let H be a group, let A1, H1 and H2 be finite subgroups of H, and let p be
a prime. Suppose that

(i) A1 is a nontrivial normal p-subgroup of H1 and CH1
pA1q is p-closed.

(ii) No non-trivial p-subgroup of H1 XH2 is normal in H1 and H2.

Then the following hold:

(a) Suppose that OppH1q ď B Ĳ H2 for some B ď H1XH2. Then there exists h P H such that
1 ‰ rA1, A

h
1 s ď A1 XA

h
1 and A1A

h
1 ď H1 XH

h
1 .

(b) Suppose that H2 is p-irreducible, that A1 ď OppH2q and that H1 X H2 is a parabolic

subgroup of H1 and H2. Put A2 :“ xAH2
1 y. Then there exists i P t1, 2u and h P H such

that 1 ‰ rAi, A
h
i s ď Ai XA

h
i and AiA

h
i ď Hi XH

h
i .

Proof. Replacing H by xH1, H2y we may assume that H “ xH1, H2y. Put A2 :“ xAH2
1 y and

for ti, ju “ t1, 2u,

Di :“
č

kPHi

pHi XHjq
k and Ei “ xA

h
i | h P H,A

h
i ď CH1XH2pAiqy.
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Note that OppH1q ď H2 (in case (a) by hypothesis and in case (b) since H1 XH2 is a parabolic
subgroup of H1). Since OppH1q Ĳ H1 this gives OppH1q ď D1. Since CH1

pA1q is p-closed, we
conclude that

p˚q E1 ď Op
1

pCH1
pA1qq ď OppH1q ď D1.

As no non-trivial p-subgroup of H1 XH2 is normal in H1 and in H2,

xAH1 y is not an abelian subgroup of H1 XH2.

(a): From B ď H1 X H2 and B Ĳ H2 we get B ď D2. Since A1 ď OppH1q ď B we have
A2 ď B ď D ď H1 X H2. By definition of A2, A1 ď A2 and A2 is generated by H-conjugates of
A1. The first property shows that E2 ď CH1XH2pA2q ď CH1XH2pA1q and the second that E2 ď E1.
This give

E2 ď E1 ď Op
1

pCH1
pA1qq ď OppH1q ď B ď D2.

Since E1 ď D1 by p˚q, the assumptions of E.15 are fulfilled. As xAH1 y is not an abelian subgroup of
H1 X H2, E.15(1) does not hold. Since E1 ď D2, also E.15(3) does not. Thus E.15(2) holds. We
conclude that there exists h P H with 1 ‰ rA1, A

h
1 s ď A1 XA

h
1 and A1A

h
1 ď H1 XH

h
1 .

(b): Suppose that H2 “ pH1 XH2qCH2pA2q. Since A1 ď A2 we conclude that A1 Ĳ H2, which
contradicts (ii). As H1 XH2 contains a Sylow p-subgroup of H2 we get OppH2q ę CH2pA2q, and as
H2 is p-irreducible, CH2

pA2q is p-closed. Since H1 XH2 contains a Sylow p-subgroup of H2, we also
know that OppH2q ď H1 XH2. Together with OppH2q Ĳ H2 we infer OppH2q ď D2. As above this
gives

E2 ď Op
1

pCH2pA2qq ď OppH2q ď D2.

As A1 ď OppH2q and A2 “ xA
H2
1 y, also A2 ď OppH2q ď D2 ď H1 XH2. By p˚q we have E1 ď D1,

and so the assumptions of E.15 are fulfilled. Since xAH1 y is not an abelian subgroup of H1 XH2, we
conclude that there exist i P t1, 2u and h P H with 1 ‰ rAi, A

h
i s ď AiXA

h
i and AiA

h
i ď HiXH

h
i . l
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