The Local Structure Theorem For Finite Groups With A Large *p*-Subgroup

U. Meierfrankenfeld

B. Stellmacher

G. Stroth

Author address:

Department of Mathematics, Michigan State University, East Lansing MI 48824 $E\text{-}mail\ address: \texttt{meier@math.msu.edu}$

GNEISENAUSTRASSE 6, D24105 KIEL *E-mail address*: stellmacher@math.uni-kiel.de

MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG, INSTITUT FÜR MATHEMATIK, D06099 HALLE

E-mail address: gernot.stroth@mathematik.uni-halle.de

Contents

Contents	i
Introduction	vii
 Chapter 1. Definitions and Preliminary Results 1.1. Elementary Properties of Finite Groups 1.2. The Largest <i>p</i>-Reduced Elementary Abelian Normal Subgroup 1.3. <i>p</i>-Irreducible Groups 1.4. <i>Y</i>-Minimal Groups 1.5. Weakly Closed Subgroups 1.6. Large Subgroups 	$ \begin{array}{c} 1\\ 1\\ 6\\ 10\\ 12\\ 17\\ 20\\ \end{array} $
 Chapter 2. The Case Subdivision and Preliminary Results 2.1. Notation and Elementary Properties 2.2. Asymmetry 2.3. Symmetric Pairs 2.4. Tall Natural Symplectic Modules 	27 27 29 37 42
Chapter 3. The Orthogonal Groups3.1. Notation and Elementary Properties3.2. The Proof of Theorem C	$45 \\ 45 \\ 50$
Chapter 4. The Symmetric Case 4.1. The Proof of Theorem D	$\begin{array}{c} 65\\ 66\end{array}$
Chapter 5. The Short Asymmetric Case	81
Chapter 6. The Tall <i>char p</i> -Short Asymmetric Case	97
Chapter 7. The <i>char p</i> -Tall <i>Q</i> -Short Asymmetric Case 7.1. The Proof of Theorem G	99 100
Chapter 8. The Q -Tall Asymmetric Case I 8.1. Notation and Preliminary Results 8.2. The Case $I \leq A$ 8.3. The Case $I \leq A$ and $\Omega_1 Z(A) \leq Z(L)$ 8.4. The Case $I \leq A$ and $\Omega_1 Z(A) \leq Z(L)$ 8.5. The Proof of Theorem H	$ 119 \\ 121 \\ 124 \\ 145 \\ 145 \\ 148 \\ 148 $
 Chapter 9. The <i>Q</i>-tall Asymmetric Case II 9.1. Notation and Preliminary Results 9.2. The Proof of Theorem I 9.3. The Proof of Corollary 9.1 9.4. The Proof of Corollary 9.2 	$149 \\ 150 \\ 156 \\ 169 \\ 171$
 Chapter 10. Proof of the Local Structure Theorem 10.1. Proof of Theorem J 10.2. Proof of the Local Structure Theorem 	$175 \\ 176 \\ 177$

Contents	
----------	--

10.3. Proof of the Corollary to the Local Structure T	'heorem 183
·	
Appendix A. Module theoretic Definitions and Results	185
A.1. Module-theoretic Definitions	185
A.2. Naming Modules	186
A.3. p-Reduced Modules	188
A.4. Wreath Product Modules	190
A.5. Offenders	194
A.6. Nearly Quadratic Modules	198
A.7. Q !-Modules	199
A.8. Genuine Groups of Lie Type	202
Appendix B. Classical Spaces and Classical Groups	205
B.1. Elementary Properties	206
B.2. The Classification of Classical Spaces	211
B.3. The Clifford Algebra	212
B.4. Normalizers of Singular Subspaces	215
B.5. Point-Stabilizers	216
B.6. Simplicity of the Natural Module	220
B.7. Normalizers of Classical Groups	221
B.8. Q -Uniqueness in Classical Groups	224
Appendix C. FF-Module Theorems and Related Result	ts 229
C.1. FF-Module Theorems	229
C.2. H^1 - and H^2 -Results	236
C.3. $Q!$ -Module Theorems	239
C.4. The Asymmetric Module Theorems	242
*	2.15
Appendix D. The Fitting Submodule	245
D.1. The Definition of the Fitting Submodule and Re	
D.2. The Fitting Submodule and Large Subgroups D.3. The Nearly Quadratic <i>Q</i> ! -Module Theorem	246
D.3. The Nearly Quadratic $Q!$ -Module Theorem	247
Appendix E. The Amalgam Method	255
E.1. The Coset Graph	255
E.2. Elementary Properties	255
E.3. Critical Pairs	257
E.4. The Case $ I = 2$	258
E.5. An Application of the Amalgam Method	260
Appendix. Bibliography	263
Appendix. List of Symbols	265
Appendix. List of Definitions	267

iv

Abstract

Let p be a prime, G a finite \mathcal{K}_p -group S a Sylow p-subgroup of G and Q a large subgroup of G in S (i.e., $C_G(Q) \leq Q$ and $N_G(U) \leq N_G(Q)$ for $1 \neq U \leq C_G(Q)$). Let L be any subgroup of G with $S \leq L$, $O_p(L) \neq 1$ and $Q \leq L$. In this paper we determine the action of L on the largest elementary abelian normal p-reduced p-subgroup Y_L of L.

²⁰¹⁰ Mathematics Subject Classification. Primary 20D05.

Key words and phrases. local characteristic p, large subgroup, finite simple groups. partially supported by Humboldt foundation.

partially supported by DFG.

Introduction

HISTORICAL BACKGROUND. One of the great achievements of 20th century mathematics is the classification of the finite simple groups. At least from hindsight, the quest for this classification began with a talk of R. Brauer at the ICM in Amsterdam 1952, where he demonstrated a method, the *centralizer method*, that makes it possible to characterize finite simple groups by means of the centralizer of an involution, and of course with the celebrated Odd Order Theorem of Feit-Thompson 1963, **[FT]**, which shows that every finite (non-abelian) simple group possesses involutions. It was quite natural from these beginnings that the prime 2 played an overwhelmingly important role in the classification.

On the other hand, apart from the alternating groups, the classes Lie(p) of finite simple groups of Lie type in characteristic p, p a prime, provide the generic examples for finite simple groups. So for these examples there exists a *distinguished* prime p associated to these groups. Moreover, in 1974 J. Tits, [**T**], presented the theory of buildings of spherical type, which makes it possible to understand and characterize the groups in Lie(p) by means of a geometry that reflects properties of their parabolic subgroups and focuses on that *distinguished* prime p. So one might wonder if there is also a way to classify the finite simple groups more prominently based on this geometric approach.

Both of theses approaches, Brauer's *centralizer approach* based on the prime 2 and used in the classification and Tits' *geometric approach*, can only be applied successfully to a general finite simple group, if one is able to set the stage properly. More precisely, one has to get a satisfactory answer to the following fundamental questions:

• In case of the centralizer approach: What does the centralizer of a (properly chosen) involution look like in a general simple group G?

• In case of the geometric approach: How can one detect a *distinguished* prime p (if there is any) in a general simple group G? And how does this then lead to a geometry that characterizes G?

The answer of the first question can be read from the classification. The Standard Component Theorem of Aschbacher 1975, [As1], shows that either

(char 2) $C_G(O_2(M)) \leq O_2(M)$ for all 2-local subgroups M of $G^{(1)}$,

or that there exists an involution t whose centralizer $C_G(t)$ is classical or of standard form. The latter case can be treated nicely using Brauer's centralizer method; either by the Classical Involution Theorem of Aschbacher 1977, [As2], or by solving various standard form problems.

The first case causes many more problems. It is not accidental that the examples from Lie(2) have property (*char* 2). As there, in groups satisfying (*char* 2) the centralizers of involutions have non-central normal 2-subgroups which in most cases are an obstruction to applying the centralizer method effectively. In this case the classification shifts from 2 to a properly chosen odd prime r. In fact, for groups in Lie(2) defined over not too small fields, r divides the order of a maximal torus. Then the proof proceeds as before using a standard component theorem for the prime r rather than 2. Unfortunately, this switch of primes cannot be executed in all cases. So one ends up with some unpleasant cases that have to be treated separately; for example in the Quasithin Group Theorem by Aschbacher-Smith 2004, [AS], and the Uniqueness Theorem by Aschbacher 1983, [As3].

¹A *p*-local subgroup is the normalizer of a non-trivial *p*-subgroup; $O_p(M)$ is the largest normal *p*-subgroup of *M*.

The other two questions are more difficult to answer since there is as yet no classification using the geometric approach that would justify such an answer. But – similar to Aschbacher's Standard Component Theorem – one would expect an answer that gives a few cases that then can be treated independently. In addition, any of these cases should be inspired by properties of the generic examples involving the distinguished prime p.

Property (char 2) is a good example for this. It reflects an important property that the groups in Lie(2) have in common without using the terminology and conceptual background of groups of Lie type, so it also applies to finite groups in general, and it easily generalizes to arbitrary primes p.

We turn this into a definition. A finite group G is of *local characteristic* p if G satisfies

$$(char p)$$
 $C_G(O_p(M)) \leq O_p(M)$ for all p-local subgroups of M of G

In particular, the finite simple groups of local characteristic 2 are exactly the exceptions in the Standard Component Theorem that force the switch of primes. So even in this case alone, successfully carrying out a geometric approach for groups of local characteristic 2 would give an alternative proof for that part of the classification, avoiding not only the switch of primes but also the above mentioned cases where this switch fails.

There is another property which nearly all the generic examples share and which the authors believe is important for a classification following the geometric approach: the existence of a *large subgroup*. For any finite group G a non-trivial *p*-subgroup Q is *large* if

- (i) $C_G(Q) \leq Q$, and
- (ii) $N_G(U) \leq N_G(Q)$ for all $1 \neq U \leq C_G(Q)$.

Note that the first property is equivalent to $C_G(Q) = Z(Q)$. We will refer to the second property as the Q!-property, or just as Q!.

If $G \in Lie(p)$ and $S \in Syl_p(G)$, then $O_p(N_G(\Omega_1Z(S)))$ is a large subgroup if and only if $\Omega_1Z(S)$ is a root subgroup of G. Thus, every simple group of Lie type possesses such a large subgroup, except $Sp_{2n}(2^m)$, $n \ge 2$, $F_4(2^m)$ and $G_2(3^m)$.

From a group theoretic point of view, the concept of groups with large subgroups also generalizes the concept of groups of GF(2)-type introduced in [**GL**]. In particular, Timmesfeld's result, [**Ti**], on centralizers of involutions whose generalized Fitting subgroup is extraspecial, is an important part of the classification of the finite simple groups. But he has concentrated on the structure of the centralizer of a 2-central involution (which in our case is $N_G(Q)$), so at least in a formal sense he follows Brauer's centralizer approach. In contrast to this we will investigate every p-local subgroup not in $N_G(Q)$, where Q is a large subgroup.

For several years the authors and various other collaborators have worked on a classification project for finite groups of local characteristic p that uses the geometric approach; and the classification of the finite groups of local characteristic p possessing a large subgroup is a major part of this project. An outline of this project can be found in [**MSS**]. There it is also demonstrated in which context large subgroups arise and what role the Local Structure Theorem plays in this classification.

Up to now several contributions to this project have been published or submitted for publication. For example, the local C(G, T)-Theorem [**BHS**], the P!-Theorem [**PPS**], the \tilde{P} !-Uniqueness Theorem [**MMPS**], plus [**MeiStr3**], [**P1**] and [**P2**], and results about strongly *p*-embedded subgroups, [**PS1**] and [**PS2**], and as relevant background material about modules the Nearly Quadratic Module Theorem [**MS3**], the General FF-module Theorem [**MS5**] and its applications [**MS6**].

Some of these results rest upon properties or hypotheses derived from or justified by the Local Structure Theorem which is presented in this paper. In this sense the Local Structure Theorem is the cornerstone for the investigation of finite groups G of local characteristic p possessing a large subgroup Q. In fact, local characteristic p is not really required in full strength for the proof of the Local Structure Theorem, but we will ignore this for the moment.

The Local Structure Theorem determines the action of M on $\Omega_1 Z(O_p(M))$ for every p-local subgroup M which contains a Sylow p-subgroup of $N_G(Q)$ and is not contained in $N_G(Q)$. Speaking

INTRODUCTION

in the geometric language of the generic examples, this information allows to determine the residues of the maximal parabolic subgroups different from the normalizer of a long root subgroup.

In a forthcoming paper the Local Structure Theorem will be used to prove the *H*-Structure Theorem, where under an additional assumption the structure of $N_G(Q)/Q$ is determined. Speaking again in the geometric language of the generic examples, the Local Structure Theorem and *H*-Structure Theorem combined give all the possibilities for the residues of maximal local parabolic subgroups of *G*. This then allows to determine up to isomorphism a parabolic subgroup *H* of *G* with $O_p(H) = 1$. If the residues resemble the residues of a group of Lie-type of rank at least three, this can be achieved via Tits' theory of buildings, see [**MSW**, Theorem 6.9]. Otherwise by a case-by-case discussion based on the detailed description of the maximal local parabolic subgroups of *G* provided by the Local Structure Theorem and the *H*-Structure Theorem.

Having determined H one proceeds by computing the group G_0 generated by all the *p*-local subgroups containing a given Sylow *p*-subgroup of G. Then one still has to show that $G = G_0$. But this part of the project has already been treated. A result of M. Salarian and G. Stroth [**SaS**], shows that G_0 is strongly *p*-embedded in G if $G \neq G_0$, and results of Ch. Parker and G. Stroth, [**PS1**] and [**PS2**], show that this is impossible, so $G = G_0$.

NOTATION USED IN THE LOCAL STRUCTURE THEOREM. We will now give the notation that is needed to state the Local Structure Theorem below. Some of this notation will be repeated and refined in the definitions given in later chapters.

In contrast to the Brauer method, where the centralizers of *p*-subgroups are of prime interest, in this paper we investigate the *non-trivial* action of *p*-local subgroups M on suitable elementary abelian normal *p*-subgroups $V \leq M$. The basic idea is to identify the group $M/C_M(V)$ and the $\mathbb{F}_p M$ -module V at the same time. This requires an inductive hypothesis that is called the \mathcal{K}_p -group Hypothesis.

A finite group G is a \mathcal{K}_p -group if the simple sections of any p-local subgroup of G are known simple groups (i.e., these sections are isomorphic to groups of prime order, groups of Lie type, alternating groups or one of the 26 sporadic groups). This hypothesis is related to (and compatible with) the proper \mathcal{K} -group Hypothesis used in the first and second generation proofs of the classification of the finite simple groups, which reflects the only inductive property needed in a minimal counterexample to the Classification Theorem.

This \mathcal{K}_p -group Hypothesis allows us to use module-theoretic results provided in [MS3], [MS5], [MS6], [GM1] and [GM2] for the identification of $M/C_M(V)$ and V.

Let *H* be an arbitrary finite group. Then *H* has characteristic *p* if $C_H(O_p(H)) \leq O_p(H)$. Any subgroup of *H* containing a Sylow *p*-subgroup of *H* is a parabolic subgroup of *H*; and *H* has parabolic characteristic *p* if every *p*-local parabolic subgroup of *H* has characteristic *p*. So the notion of parabolic characteristic generalizes the notion of local characteristic introduced earlier.

For $A \leq H$ we say that H is A-minimal if $H = \langle A^H \rangle$, and A is contained in a unique maximal subgroup of H; and H is p-minimal if H is A-minimal for $A \in Syl_n(H)$.

Let A be an elementary abelian p-subgroup of H. We say that A is symmetric in H if there exists $g \in H$ such that

$$[A, A^g] \neq 1$$
 and $[A, A^g] \leqslant A \cap A^g;$

otherwise A is called *asymmetric* in H.

Let $T \in Syl_p(C_H(A))$. We say that A is *tall* in H if there exists $T \leq L \leq H$ such that $O_p(L) \neq 1$ and $A \leq O_p(L)$; and A is *char p-tall* in H if there exists $T \leq L \leq H$ such that $A \leq O_p(L)$ and L has characteristic p. Note here that these definitions are independent of the choice of $T \in Syl_p(C_H(A))$.

Of prime interest in this paper will be the set

$$\mathcal{L}1_H := \{ L \leqslant H \mid C_H(O_p(L)) \leqslant O_p(L) \text{ and } O_p(L) \neq 1 \}.$$

By \mathcal{M}_H we denote the set of maximal elements of \mathcal{L}_H with respect to inclusion, and by \mathcal{P}_H the set of *p*-minimal elements of \mathcal{L}_H . Moreover, for $K \leq H$

$$\mathcal{L}_H(K) := \{ L \in \mathcal{L}_H \mid K \leq L \};$$

similarly we define $\mathcal{M}_H(K)$ and $\mathcal{P}_H(K)$.

By Y_H we denote the largest *p*-reduced normal subgroup of *H*, i.e., the largest elementary abelian normal *p*-subgroup of *H* satisfying $O_p(H/C_H(Y_H)) = 1$. (For the existence and elementary properties see [**MS4**, 2.2] and 1.24).

Let \mathfrak{M}_H be the set of all $M \in \mathcal{L}_H$ such that

- (i) $\mathcal{M}_H(M) = \{M^{\dagger}\}$ and $Y_M = Y_{M^{\dagger}}$, where $M^{\dagger} := MC_H(Y_M)$.
- (ii) $C_M(Y_M)$ is p-closed and $C_M(Y_M)/O_p(M) \leq \Phi(M/O_p(M))$.

As above, for $K \leq H$ let $\mathfrak{M}_H(K) = \{M \in \mathfrak{M}_H \mid K \leq M\}$. In the following, if $M \in \mathfrak{M}_H$, we will refer to (i) and (ii) as the *basic property* of M.

If A, B and C are groups, then $A \sim B.C$ means that A has a normal subgroup B_1 such that $B_1 \cong B$ and $A/B_1 \cong C$. $A \sim B \cdot C$ means that, in addition, there does not exists a complement to B_1 in A. If such an A is unique up to isomorphism, we may also write $A \cong B \cdot C$.

Suppose that V is a faithful H-module and \mathcal{K} is a non-empty H-invariant set of subgroups of H. Then we say that V is a natural $SL_2(q)$ -wreath product module for H with respect to \mathcal{K} if

$$V = \bigoplus_{K \in \mathcal{K}} [V, K] \quad \text{and} \quad \langle \mathcal{K} \rangle = \bigotimes_{K \in \mathcal{K}} K,$$

and for each $K \in \mathcal{K}$, $K \cong SL_2(q)$ and [V, K] is a natural $SL_2(q)$ -module for K.

Note here that a natural $SL_2(q)$ -module is a natural $SL_2(q)$ -wreath product module with $|\mathcal{K}| = 1$.

If V is a vector space over the finite field \mathbb{K} , then $\Lambda^2(V)$, $S^2(V)$ and $U^2(V)$, denote the exterior, symmetric and unitary square of V, that is, the set of symplectic, symmetric and unitary forms on the dual of V, respectively. For further details for our naming of modules see A.2.

THE LOCAL STRUCTURE THEOREM. Suppose now that G is a finite group and Q is a (fixed) large subgroup of G. For $M \leq G$ we set

$$M^{\circ} := \langle Q^g \mid g \in G, \, Q^g \leqslant M \rangle,$$

and

$$Q^{\bullet} := O_p(N_G(Q)).$$

Let $Q \leq S \in Syl_p(G)$. Clearly, either S is contained in a unique maximal p-local subgroup M of G, or there exists a p-local subgroup M of G with $S \leq M$ and $Q \neq M$. For the generic examples from Lie(p), the first case corresponds to groups of Lie rank 1, the second to those of Lie rank larger than 1.

In general, in the first case M contains the normalizer of every non-trivial characteristic subgroup of S. Then, at least if G has local characteristic p, either M is a strongly p-embedded subgroup of G or the p-local structure of G is well-understood and was investigated in [**BHS**]. Finally, if Gpossesses a strongly p-embedded subgroup, the p-local analysis is no longer of any help. Fortunately, at least for p = 2, a Theorem of Bender, 1971 [**Be**], gives a complete classification, for odd primes such a theorem is not known.

In this paper we consider the second case, where S is contained in more than one maximal p-local subgroup of G, and we investigate the action of L on Y_L for all p-local subgroups L of G with Q not normal in L. We will prove:

INTRODUCTION

THEOREM A (Local Structure Theorem). Let G be a finite \mathcal{K}_p -group and $S \in Syl_p(G)$. Suppose that S is contained in at least two maximal p-local subgroups and that Q is a large subgroup of G in S. Let $L \leq G$ with $S \leq L$, $O_p(L) \neq 1$ and $Q \notin L$.

Then there exist $M \in \mathfrak{M}_G(S)$ and $L^* \leq M$ with

$$S \leq L^*, Y_L = Y_{L^*}, LC_G(Y_L) = L^*C_G(Y_L), \text{ and } L^\circ = (L^*)^\circ.$$

Moreover, for any such L and M one of the following holds, where $\tilde{L} := L/C_L(Y_L)$ and q is a power of p.

- (1) The linear case.
 - (a) $\widetilde{L^{\circ}} \cong SL_n(q), n \ge 3$, and $[Y_L, L^{\circ}]$ is a corresponding natural module for $\widetilde{L^{\circ}}$.
 - (b) If $Y_L \neq [Y_L, L^\circ]$ then $\widetilde{L^\circ} \cong SL_3(2)$, $|Y_L/[Y, L^\circ]| = 2$, $[Y_L, L^\circ] \leqslant Q \leqslant Q^\bullet$, $Y_M = Y_L$ and $M^\circ = L^\circ$.
- (2) The symplectic case.
 - (a) $L^{\circ} \cong Sp_{2n}(q), n \ge 2$, or $Sp_4(q)'$ (and q = 2), and $[Y_L, L^{\circ}]$ is the corresponding natural module for $\widetilde{L^{\circ}}$
 - (b) If $Y_L \neq [Y_L, L^\circ]$, then p = 2 and $|Y_L/[Y_L, L^\circ]| \leq q$.
 - (c) If $Y_L \leq Q^{\bullet}$, then p = 2 and $[Y_L, L^{\circ}] \leq Q^{\bullet}$.
 - (d) Either $L^{\circ} = M^{\circ}$ and $Y_L = Y_M$, or one of following holds:
 - (1) p = 2, $\widetilde{L^{\circ}} \cong Sp_4(2)'$, $Y_L = [Y_L, L^{\circ}]$, $Y_L \notin Q^{\bullet}$, $M^{\circ}/C_{M^{\circ}}(Y_M) \cong Mat_{24}$, and Y_M is the simple Golay code module of \mathbb{F}_2 -dimension 11 for M° .
 - (2) p = 2, $\widetilde{L^{\circ}} \cong Sp_4(2)$, $|Y_L/[Y_L, L^{\circ}]| = 2$, $[Y_L, L^{\circ}] \leqslant Q^{\bullet}$, $M^{\circ}/C_{M^{\circ}}(Y_M) \cong Aut(Mat_{22})$, and Y_M is the simple Todd module of \mathbb{F}_2 -dimension 10 for M° .
- (3) The Wreath Product Case.
 - (a) There exists a unique L-invariant set K of subgroups of L such that [Y_L, L[°]] is a natural SL₂(q)-wreath product module for L with respect to K. Moreover, L[°] = O^p(⟨K⟩)Q̃ and Q acts transitively on K.
 - (b) If $Y_L \neq [Y_L, L^\circ]$, then p = 2, $\widetilde{L} \cong \Gamma SL_2(4)$, $\widetilde{L^\circ} \cong SL_2(4)$ or $\Gamma SL_2(4)$, $|Y_L/[Y_L, L^\circ]| = 2$, $[Y_L, L^\circ] \notin Q^\bullet$, $Y_M = Y_L$ and $MC_G(Y_L) = LC_G(Y_L)$.
 - (c) Either $Y_M = Y_L$ and $M^\circ = L^\circ$ or $\widetilde{L^\circ} \cong SL_2(q)$.
- (4) The Weak Wreath Product Case. $O^p(\widetilde{L^{\circ}})$ is abelian and $Y_L = [Y_L, L^{\circ}]$. Let
 - U_1, U_2, \ldots, U_s be the Wedderburn components of $O^p(L^\circ)$ on Y_L . Then the following hold:
 - (a) $Y_L = U_1 \oplus \ldots \oplus U_s$, $O^p(L^\circ)/C_{O^p(L^\circ)}(U_i)$ is cyclic of order dividing q-1, and q>2.
 - (b) Q permutes the subgroups U_i in (4:a) transitively.
 - (c) Y_M is a natural $SL_2(q)$ -wreath product module for $M/C_M(Y_M)$ with respect to some \mathcal{K} , $M^{\circ}/C_{M^{\circ}}(Y_M) \not\cong SL_2(q)$, and for the inverse image P^* of $\langle \mathcal{K} \rangle$ in M, $P^* \cap S \preccurlyeq L^{\circ}S$, $Y_L \leqslant C_{Y_M}(P^* \cap S)$, and there exists an L-invariant partition $\mathcal{K}_1, \mathcal{K}_2, \ldots, \mathcal{K}_s$ of \mathcal{K} with $U_i = Y_L \cap [Y_M, \langle \mathcal{K}_i \rangle]$ for all $1 \leqslant i \leqslant s$.
- (5) The orthogonal case. $Y_L \leq Q^{\bullet}$, $\widetilde{L^{\circ}} \cong \Omega_n^{\epsilon}(q)$, $n \geq 5$, where q is odd if n is odd, and Y_L is a corresponding natural module for $\widetilde{L^{\circ}}$. Moreover, either $Y_M = Y_L$ and $L^{\circ} = M^{\circ}$ or one of the following holds:
 - (1) $\widetilde{L^{\circ}} \cong \Omega_6^+(q)$, and Y_M is the exterior square of a natural $SL_m(q)$ -module for M° .
 - (2) p = 2, $\widetilde{L^{\circ}} \cong \Omega_6^+(2)$ and $M^{\circ}/C_{M^{\circ}}(Y_M) \cong Mat_{24}$, and Y_M is the simple Todd- module of \mathbb{F}_2 -dimension 11 for M° .
 - (3) $\widetilde{L^{\circ}} \cong \Omega_8^+(q)$ and $M^{\circ}/C_{M^{\circ}}(Y_M) \cong Spin_{10}^+(q)$, and Y_M is the half-spin module for M° .
 - (4) $\widetilde{L^{\circ}} \cong \Omega_{10}^+(q)$ and $M^{\circ}/C_{M^{\circ}}(Y_M) \cong E_6(q)$, and Y_M is simple module of \mathbb{F}_q -dimension 27 for M° .
- (6) The tensor product case. $Y_L \notin Q^{\bullet}$, and there exist subgroups $\widetilde{L}_1, \widetilde{L}_2$ of \widetilde{L} such that
 - (a) $\widetilde{L}_i \cong SL_{t_i}(q), t_i \ge 2, [\widetilde{L}_1, \widetilde{L}_2] = 1, and \widetilde{L}_1 \widetilde{L}_2 \triangleleft \widetilde{L},$
 - (b) $Y_L \cong Y_1 \otimes_{\mathbb{F}_q} Y_2$, where Y_i is a corresponding natural module for \tilde{L}_i (and \mathbb{F}_q is a field of order q),
 - (c) $\widetilde{L} = \widetilde{L^{\circ}} \cong SL_2(2) \wr C_2$ and p = 2, or $\widetilde{L^{\circ}}$ is one of $\widetilde{L}_1, \widetilde{L}_2$, or $\widetilde{L}_1 \widetilde{L}_2$,

INTRODUCTION

- (d) Moreover, either M fulfills the tensor product case, or p = 2, L = L₁L₂ ≅ SL₂(2) × SL₂(2), M/C_M(Y_M) ≅ 3 · Sym(6), and Y_M is the simple module of F₂-dimension 6 for M.
- (7) The non-natural $SL_n(q)$ -case. $[Y_L, L^\circ] \leq Q^{\bullet}$, and one of the following holds:
 - (1) $\widetilde{L^{\circ}} \cong SL_n(q)/\langle (-id)^{n-1} \rangle$, $n \ge 5$, Y_L is the exterior square of a natural $SL_n(q)$ -module for L° , and Y_M is the exterior square of a natural $SL_m(q)$ -module for M° .
 - (2) p is odd, L° ≃ SL_n(q)/⟨(-id)ⁿ⁻¹⟩, n ≥ 2, and Y_L is the symmetric square of a natural SL_n(q) for L°, and Y_M is the symmetric square of a natural SL_m(q)-module for M°.
 - (3) $\widetilde{L^{\circ}} \cong SL_n(q)/\langle \lambda id \mid \lambda \in \mathbb{F}_q, \lambda^n = \lambda^{q_0+1} = 1 \rangle$, $n \ge 2$, $q = q_0^2$, and $[Y_L, L^{\circ}]$ is the unitary square of a natural $SL_n(q)$ -module for L° . Moreover, one of the following holds:
 - (1) $Y_L = [Y_L, L^\circ]$, and Y_M is the unitary square of a natural $SL_m(q)$ -module for M° .
 - (2) p = 3, $|Y_L/[Y_L, L^\circ]| = 3$, $\widetilde{L^\circ} \simeq L_2(9)$, $M^\circ/C_{M^\circ}(Y_M) \simeq Mat_{11}$, $Y_L = Y_M$, and Y_M is the simple Golay-code module of \mathbb{F}_3 -dimension 5 for M° .
 - (3) p = 2, $Y_L = [Y_L, L^\circ]$, $\widetilde{L^\circ} \cong SL_2(4)$, $M^\circ/C_{M^\circ}(Y_M) \cong Mat_{22}$, and Y_M is the simple Golay-code module of \mathbb{F}_2 -dimension 10 for M° .
 - (4) $p = 3, Y_L = [Y_L, L^\circ], \tilde{L}^\circ \cong L_2(3), Y_L \notin Q^\bullet, M^\circ/C_{M^\circ}(Y_M) \cong 2^\circ Mat_{12}, Y_M \text{ is the simple Golay-code module of } \mathbb{F}_3\text{-dimension } 6, \text{ and } Y_L \notin Q^\bullet.$
- (8) The exceptional case. $Y_L \notin Q^{\bullet}$, $Y_M = Y_L$, $M^{\circ} = L^{\circ}$, and one of the following holds:
 - (1) $\widetilde{L^{\circ}} \cong Spin_{10}^+(q)$, and Y_L is a half-spin module.
 - (2) $\widetilde{L^{\circ}} \cong E_6(q)$, and Y_L is one of the (up to isomorphism) two simple $\mathbb{F}_p L^{\circ}$ -modules of order q^{27} .
- (9) The sporadic case. $Y_L \leq Q^{\bullet}$, $Y_L = Y_M$, $L^{\circ} = M^{\circ}$, and one of the following holds:
 - (1) p = 2, $\tilde{L} \sim 3$ ·Sym(6), $\tilde{L^{\circ}} \sim 3$ ·Alt(6) or 3·Sym(6), and Y_L is a simple module of \mathbb{F}_2 -dimension 6.
 - (2) p = 2, $\widetilde{L^{\circ}} \cong Mat_{22}$, and Y_L is the simple Golay-code module of \mathbb{F}_2 -dimension 10.
 - (3) p = 2, $\widetilde{L^{\circ}} \cong Mat_{24}$, and Y_L is the simple Todd or Golay-code module of \mathbb{F}_2 -dimension 11.
 - (4) p = 3, $\widetilde{L^{\circ}} \cong Mat_{11}$, and Y_L is the simple Golay-code module of \mathbb{F}_3 -dimension 5.
- (10) The non-characteristic p case. There exists $1 \neq y \in Y_L$ such that $C_G(y)$ is not of characteristic p, and one of the following holds:
 - (1) Y_L is tall and asymmetric in G, but Y_L is not char p-tall in G.
 - (2) p = 2, $\widetilde{L^{\circ}} \cong Aut(Mat_{22})$, Y_L is the simple Todd module of \mathbb{F}_2 -dimension 10, and $Y_L \notin Q^{\bullet}$
 - (3) p = 3, $\widetilde{L^{\circ}} \cong 2 \cdot Mat_{12}$, Y_L is the simple Golay-code module of \mathbb{F}_3 -dimension 6, and $Y_L \notin Q^{\bullet}$.
 - (4) p = 2, $\widetilde{L} \simeq O_{2n}^{\epsilon}(2)$, $\widetilde{L^{\circ}} \simeq \Omega_{2n}^{\epsilon}(2)$, $2n \ge 4$, $(2n, \epsilon) \ne (4, +)$, Y_L is a corresponding natural module and $Y_L \le Q^{\bullet}$.
 - (5) p = 3, $\widetilde{L^{\circ}} \cong \Omega_4^-(3)$, $[Y_L, L^{\circ}]$ is the corresponding natural module, $|Y_L/[Y_L, L^{\circ}]| = 3$, Y_L is isomorphic to the 5-dimensional quotient of a six dimensional permutation module for $\widetilde{L^{\circ}} \cong Alt(6)$, and $[Y_L, L^{\circ}] \notin Q^{\bullet}$.
 - (6) p = 3, $\widetilde{L^{\circ}} \cong \Omega_5(3)$, $[Y_L, L^{\circ}]$ is the corresponding natural module, $|Y_L/[Y_L, L^{\circ}]| = 3$, and $[Y_L, L^{\circ}] \leqslant Q^{\bullet}$.
 - (7) $p = 2, \widetilde{L^{\circ}} \cong \Omega_6^+(2), [Y_L, L^{\circ}]$ is the corresponding natural module, and $|Y_L/[Y, L^{\circ}]| = 2$.
 - (8) $p = 2, \widetilde{L^{\circ}} \cong Mat_{24}, [Y_L, L^{\circ}]$ is the simple Todd-module of \mathbb{F}_2 -dimension 11, $|Y_L/[Y_L, L^{\circ}]| = 2, and [Y_L, L^{\circ}] \leq Q^{\bullet}.$

Moreover, either $Y_L = Y_M$ and $L^{\circ} = M^{\circ}$, or $\widetilde{L^{\circ}} \cong \Omega_6^+(2)$, $[Y_L, L^{\circ}] \leqslant Q^{\bullet}$, $M^{\circ}/C_{M^{\circ}}(Y_M) \cong Mat_{24}$, $[Y_M, M^{\circ}]$ is the simple Todd-module of \mathbb{F}_2 -dimension 11 and $|Y_M/[Y_M, M^{\circ}]| = 2$.

Note that there is some overlap between the last case of the Local Structure Theorem and the previous cases: If $[Y_L, L^\circ]$ is a natural $\Omega_5(3)$, $\Omega_4^-(3)$ or $\Omega_6^+(2)$ -module or the Todd module for Mat_{24}

TABLE 1. Examples for the Local Structure Theorem. Cases (1)-(9)

	Case	$[Y_M, M^\circ]$ for M°	с	Remarks	examples for G
	1	nat $SL_n(q)$	1	-	$L_{n+1}(q)$
	1	nat $SL_n(q)$	1	n = 7, 8	$E_n(q)$
	1	nat $SL_3(2)$	1	-	$Alt(9), G_2(3), HS(.2), Ru, HN$
	1	nat $SL_3(3)$	1	-	$Fi'_{22,23,24}, F_4(2), {}^2\!E_6(2), BM$
	1	nat $SL_3(5)$	1	-	Ly, BM, M
	1	nat $SL_4(2)$	1	$N_G(Q) \leqslant M$	Mat_{24}
	1	nat $SL_5(2)$	1	-	Th, BM
*	1:b	nat $SL_3(2)$	2	$G \neq G^{\circ}$	$Aut(G_2(3))$
	2	nat $Sp_4(2)$	1	-	$Mat_{22}.2, PSO_6^-(3), P\Omega_6^-(3)\langle\omega\rangle$
	2	nat $Sp_4(2)'$	1	-	$Mat_{22}, P\Omega_6^-(3), Suz$
*	2:b	nat $Sp_4(2)'$ or $Sp_4(2)$	2	-	$P\Omega_6^{-}(3)\langle\omega\rangle$ or $PO_6^{-}(3)$
*	2	nat $Sp_8(2)$	2	-	BM
**	2	nat $Sp_{2n}(q)$	$\leq q$	$(n,q) \neq (4,2), (8,2)$	-
	3	nat $SL_2(q)$	1	-	$L_3(q), G_2(q) \ p \neq 3, {}^{3}D_4(q)$
		- (1)			${}^{2}F_{4}(q) p = 2, D_{4}(q)\Phi_{3} p = 3$
	3	nat $SL_2(2)$	1	-	$Sp_4(2)', G_2(2)', {}^2F_4(2)',$
		~ ()			$Mat_{12}(.2), J_2, J_3,$
					$P\Omega_{6}^{-}(3).X, P\Omega_{8}^{+}(3).X$
	3	nat $SL_2(3)$	1	-	Mat_{12} , ${}^{2}F_{4}(2)'$, Th
	3	nat $SL_2(4)$	1	-	Mat_{22}, Mat_{23}
	3	nat $SL_2(5)$	1	-	Ru, HN, Th
	3	nat $SL_2(7)$	1	-	O'N, M
	3	nat $SL_2(13)$	1	-	M
	3	nat $\Gamma SL_2(4)$	1	-	$\Gamma L_{3}(4), Mat_{22}$
*	3	nat $SL_2(4)[.2]$	2	$\overline{M} \cong \Gamma SL_2(4)$	$Aut(Mat_{22})$
*	3	nat $SL_2(q)$ wreath	1	$ \mathcal{K} > 1$	$(\Gamma) L_3(q) \wr 2$ -group, $q = 2, 4.$
	5	nat $\Omega_n^{\epsilon}(q)$	1	-	$P\Omega_{n+2}^{\epsilon}(q)$
	5	nat $\Omega_7(q)$	1	-	$F_4(q), p \text{ odd}$
	5	nat $\Omega_6^-(q)$	1	-	${}^{2}E_{6}(q)$
	5	nat $\Omega_8^+(q)$	1	-	$E_6(q)\Phi_2$
	5	nat $\Omega_{14}^{\diamond}(q)$	1	-	$E_8(q)$
	6	nat $SL_{t_1}(q) [\otimes SL_{t_2}(q)]$	1	-	$L_{t_1+t_2}^{(q)}(q), L_{2t_1+1}(q)\Phi_2 t_1 = t_2$
	6	nat $SL_2(2))[\otimes SL_3(2)]$	1	-	Mat_{24}
	1, 5,		1	$n \ge 3$	$P\Omega_{2n}^+(q), \Omega_{2n+1}(q) \text{ podd},$
	. ,	· / ··································			$P\Omega_{2n+2}^{-}(q), O_{2n}^{+}(q) p = 2$
	7:2	$S^2(\text{nat})SL_n(q)$	1	-	$PSp_{2n}(q) $
	7:3	$U^2(\text{nat})SL_n(q_0^2)$	1	-	$U_{2n}(q_0), U_{2n+1}(q_0)$
	7:3	$U^{2}(nat)SL_{2}(9)$	1	-	McL
	8:1	half-spin $Spin^+_{10}(q)$	1	-	$E_6(q)$
	8:2	q^{27} for $E_6(q)$	1	-	$E_7(q)$
	9:1	2^{6} for $3 \cdot Alt(6)[.2]$	1	$\overline{M} \sim 3 \cdot Sym(6)$	Mat_{24}
	9:2	Golay 2^{10} for Mat_{22}	1	-	Co ₂
	9:3	Golay 2^{11} for Mat_{24}	1	-	Co ₁
	9:3	Todd 2^{11} for Mat_{24}	1	-	J_4
	9:4	Golay 3^5 for Mat_{11}	1	-	Co_3
L		11			v

one might have $Y_L = [Y_L, L^\circ]$ or $Y_L \neq [Y_L, L^\circ]$. Similarly, if $[Y_L, L]$ is a natural $\Omega_{2n}^{\epsilon}(2)$ -module one might have $Y_L \leq Q^{\bullet}$ or $Y_L \leq Q^{\bullet}$. But each time the second possibility can only occur if there exists $1 \neq y \in Y_L$ such that $C_G(y)$ is not of characteristic p.

Case	$[Y_M, M^\circ]$ for M°	с	Remarks	examples for G
1:b	nat $SL_3(2)$	2	$G \neq G^{\circ}$	$Aut(G_2(3))$
2	nat $Sp_4(2)'$ or $Sp_4(2)$	2	-	$P\Omega_6^{-}(3)\langle\omega\rangle$ or $PO_6^{-}(3)$
2	nat $Sp_8(2)$	2	-	BM
3	nat $SL_2(q)$ wreath	1	$ \mathcal{K} > 1$	$(\Gamma)L_3(q) \wr 2$ -group, $q = 2, 4$
3:b	nat $SL_2(4)[.2]$	2	$\overline{M} \cong \Gamma SL_2(4)$	$Aut(Mat_{22})$
$3,\!6$	nat $SL_2(2) \otimes SL_2(2)$	1	-	Sym(9), Alt(10)
6	nat $SL_2(2)$ [$\otimes SL_2(2)$]	1	-	Alt(9)
6	nat $SL_2(3) \otimes SL_2(3)$	1	-	HN
7:2	nat $\Omega_3(3)$	1	-	$Sp_{6}(2), \Omega_{8}^{-}(2)$
7:2	nat $\Omega_3(5)$	1	-	Co_1
7:3	nat $\Omega_4^-(2)$	1	-	$L_4(3), Alt(10)$
7:3, 10:5	nat $\Omega_4^-(3)$	$\leqslant 3$	-	$U_6(2).c(.2)$
5	nat $\Omega_5(3)$	1	-	$Fi_{22}(.2)$
5,10:6	nat $\Omega_5(3)$	$\leqslant 3$	-	${}^{2}\!E_{6}(2).c(.2)$
5	nat $\Omega_6^+(2)$	1	-	$P\Omega_8^+(3)(.3)(.2)$
10:7	nat $\Omega_6^+(2)$	2	-	$P\Omega_8^+(3).2.(2), P\Omega_8^+(3).Sym(3)$
5	nat $\Omega_7(3)$	1	-	$Fi'_{24}(.2)$
5	nat $\Omega_{10}^+(2)$	1	-	М
** 10:4	nat $\Omega_{2n}^{\epsilon}(2), (2n, \epsilon) \neq (4, +)$	$\leqslant 2$	$Y_M \leqslant Q^{\bullet}$	-
9:1	2^{6} for $3.Sym(6)$	1	$\overline{M} \sim 3 \cdot Sym(6)$	He
9:3, 10:8	Todd 2^{11} for Mat_{24}	$\leqslant 2$	-	$Fi'_{24}.c$
10:2	Todd 2^{10} for $Aut(Mat_{22})$	1	-	$Aut(Fi_{22})$
10:3	Golay 3^6 for $2 \cdot Mat_{12}$	1	-	Co_1
** 10:1	?	?	tall, asymmetric,	-
			not $char p$ -tall	

TABLE 2. Examples for the Local Structure Theorem where $(char Y_M)$ fails

Note also that last case is not the only case of the Local Structure Theorem, where $C_G(y)$ may not be of characteristic p for some $1 \neq y \in Y_L$. For example both J_4 and Fi'_{24} contain a parabolic subgroup $M \sim 2^{11}Mat_{24}$, with Y_M the Todd module. In J_4 , $C_G(y)$ is of characteristic 2 for all $1 \neq y \in Y_M$, but this does not hold in Fi'_{24} . On the other hand, $M \sim 2^{11+1}Mat_{24}$ only occurs in Fi_{24} , matching the fact that the 2^{11+1} only appears in last case of the Local Structure Theorem.

The cases of the Local Structure Theorem are disjoint with one exception: The case p = 2, $O^2(\tilde{L}) \cong C_3 \times C_3$ and $|Y_L| = 16$ appears in the wreath product and tensor product case. Combining the two cases we get the following possibilities:

- $\widetilde{L} \cong SL_2(2) \wr C_2, Y_L$ is a natural $O_4^+(2)$ -module for $\widetilde{L}, \widetilde{Q} \cong C_4$ or $D_8, Y_M = Y_L$ and $M^\circ = L^\circ$. Both $Y_L \leq Q^\bullet$ and $Y_L \leq Q^\bullet$ are possible.
- $\widetilde{L} \cong SL_2(2) \wr C_2, \ \widetilde{L^{\circ}} \cong SL_2(2) \times SL_2(2), \ \text{and} \ Y_L \ \text{is a natural } \Omega_4^+(2) \text{-module for } \widetilde{L}. \ \text{Both} Y_L \leqslant Q^{\bullet} \ \text{and} \ Y_L \leqslant Q^{\bullet} \ \text{are possible. Either } Y_L = Y_M \ \text{and} \ L^{\circ} = M^{\circ}, \ \text{or} \ Y_L \leqslant Q^{\bullet} \ \text{and} \ M \ \text{fulfills the tensor product case with} \ M/C_M(Y_M) \cong SL_t(2) \wr C_2, \ \text{and} \ M^{\circ}/C_{M^{\circ}}(Y_M) \cong SL_t(2) \times SL_t(2).$
- $\widetilde{L} = \widetilde{L^{\circ}} \cong SL_2(2) \times SL_2(2), Y_L$ is a natural $\Omega_4^+(2)$ -module for \widetilde{L} , and $Y_L \notin Q^{\bullet}$. Either $Y_L = Y_M$ and $L^{\circ} = M^{\circ}$, or M fulfills the tensor product case with $M/C_M(Y_M) \cong M^{\circ}/C_{M^{\circ}}(Y_M) \cong SL_{t_1}(2) \times SL_{t_2}(2)$, or $M/C_M(Y_M) \cong M^{\circ}/C_{M^{\circ}}(Y_M) \cong 3 \cdot Sym(6)$ and $|Y_M| = 2^6$.
- $\widetilde{L} \cong SL_2(2) \times SL_2(2)$, Y_L is a natural $\Omega_4^+(2)$ -module for \widetilde{L} , $\widetilde{L^{\circ}} \cong SL_2(2)$, Y_L is the direct sum of two natural $SL_2(2)$ -modules for $\widetilde{L^{\circ}}$, and $Y_L \notin Q^{\bullet}$. Either $Y_L = Y_M$ and $L^{\circ} = M^{\circ}$, or M fulfills the tensor product case with $M^{\circ}/C_{\overline{M}^{\circ}}(Y_M) \cong SL_{t_1}(2)$, or $M/C_M(Y_M) \cong$ $3 \cdot Sym(6)$, $M^{\circ}/C_{M^{\circ}}(Y_M) \cong 3 \cdot Alt(6)$ and $|Y_M| = 2^6$.

INTRODUCTION

Most of the cases listed in the Local Structure Theorem occur in interesting finite groups, see tables 1 and 2.

Consider the property

(char
$$Y_M$$
) $C_G(y)$ is of characteristic p for all $y \in Y_M^{\sharp}$

In those cases of the first table marked with '*' property (char Y_M) fails in the listed example, but we currently do not have a proof that $(char Y_M)$ has to fail other than using the classification of finite simple groups to determine all the possible examples. For the case marked with '**' we do not know any example (with or without $(char Y_M)$). Showing that $(char Y_M)$ fails in the '*' cases and that the '**' cases do not occur seems to require the determination of the whole structure of M (and not only the action on Y_M) and sometimes even the structure of G, and will be done in separate papers. For example, case 1:b of Theorem A has already been treated in [MeiStr3] and case 3 (for r > 1 and $Y_M \leq Q^{\bullet}$) in [**PPS**].

In the table $c := |Y_M/[Y_M, M^\circ]|$ and Φ_i is a group of graph automorphism of order *i*. In the example G = K X with $K = P\Omega_6^-(3)$ or $P\Omega_8^+(3), X \leq Out(K)$ such that X acts transitively on the four elements of $\mathcal{P}_{N_K(Q)}(K \cap S)$. In the examples $G = P\Omega_6^-(3)\langle \omega \rangle$, ω is a reflection in $PO_6^-(3)$. An entry of the form A[B] in the $[Y_M, M^\circ]$ column indicates that there exists more than one choice for Q in the example G. Depending on this choice the structure of $[Y_M, M^\circ]$ as an M° -module is either described by A or AB.

The strategy for the proof of the Local Structure Theorem. Suppose that G is a finite group possessing a large subgroup Q with $Q \leq S \in Syl_p(G)$. In 1.55 it is shown that G has parabolic characteristic p, and in 1.56 that for every $L \in \mathcal{L}_G(S)$ there exist $M \in \mathfrak{M}_G(S)$ and $L^* \leq M$ satisfying:

- $LC_G(Y_L) = L^*C_G(Y_{L^*}), L^\circ = (L^*)^\circ$ and $Y_L = Y_{L^*} \leq Y_M$. If $Q \not \equiv L$ then also $Q \not \equiv L^*$ and $Q \not \equiv M$.

In other words, the action of L on Y_L can be investigated via the action of the subgroup L^* of M on the submodule Y_L of Y_M since $L/C_L(Y_L) \cong L^*/C_{L^*}(Y_L)$. Hence, the structure of Y_M and $M/C_M(Y_M)$ will also determine the possibilities for Y_L and $L/C_L(Y_L)$. For this reason nearly the entire paper, Chapters 3 – 9, is devoted to the analysis of the action of $M/C_M(Y_M)$ on Y_M .

THE GLOBAL STRATEGY. The basic idea is to find subgroups in $M/C_M(Y_M)$ that act in a "nice way" on Y_M and then to identify $M/C_M(Y_M)$ and the M-module Y_M via the action of these subgroups.

Of course, the crucial point is to find out what "nice way" should mean. On one side, it should be a property that arises naturally in the local analysis, and on the other side, it should be a property strong enough to allow to identify the action of M on Y_M .

It turns out that in most cases being some kind of (non-trivial) offender, like quadratic offender, strong offender, etc., is the right property, and this then leads to one of the FF-Module Theorems from Appendix C. In other cases, when no non-trivial offenders are at hand, acting nearly quadratically or as a 2F-offender is the property we work with, and again results are available that can be used; in particular, the classification of simple 2F-modules for almost quasisimple groups by Guralnick and Malle, [GM1] and [GM2].

The list of possibilities for groups and modules in these results is usually much longer than the list we actually get as the final result of our analysis, so a major part of our proof is devoted to exclude groups and modules from such lists. Usually this is not done by beginning a case by case discussion right away, but by finding some general arguments first that allow to treat (some of) the cases in a uniform way. For example, the cases where Y_M carries an M-invariant form usually can be treated uniformly using some general arguments from linear algebra.

THE LOCAL STRATEGY. It is obvious that one cannot get any information about M and its action on Y_M without discussing in one way or another the embedding of M into G. But a priori, it is not clear at all what type of embedding properties one should study and how they would help to get this information. In the following we will describe in general terms the strategy we follow and

which allows to subdivide the proof into a few cases which to a large extend are independent from each other.

Using the above definition of symmetry, it is clear that Y_M is either symmetric or asymmetric in G, and this is the first major subdivision of the proof.

In Chapter 4 we treat the symmetric case, that is, Y_M is symmetric in G, so there exists a conjugate Y_M^g such that

$$1 \neq [Y_M, Y_M^g] \leqslant Y_M \cap Y_M^g.$$

Then Y_M and Y_M^g act quadratically and non-trivially on each other, and it is easy to see that Y_M is a non-trivial quadratic offender on Y_M^g , or vice versa. In any case we can apply the General FF-Module Theorem C.2 to both, M and M^g . The trick is now to use the Q!-property to show that $M \cap M^g$ contains a conjugate of the large subgroup Q. Now the action of such a "common" large subgroup allows to pin down the structure of $M/C_M(Y_M)$ and its action of Y_M .

The asymmetric case is much harder to handle. But here a fundamental property holds: $O_p(M)$ is a weakly closed subgroup of G (see 2.6). As a consequence we get that $M^{\dagger} \cap H$ is a parabolic subgroup of H for all subgroups H containing $O_p(M)$. Since by the basic property of M, $O_p(M) \in Syl_p(C_G(Y_M))$, the properties "tall", "char p-tall" and "short" (here "short" means "not tall"), are tailored to further subdivide the asymmetric case.

In Chapter 5 we treat the short asymmetric case. Here $Y_M \leq O_p(P)$ for all $P \leq G$ with $O_p(M) \leq P$ and $O_p(P) \neq 1$. Asymmetry then implies that the closure $V := \langle Y_M^P \rangle$ is abelian. This property is used to show the existence of a symmetric pair (Y_1, Y_2) of conjugates of Y_M (see 2.19 and 2.23). In this pair no longer Y_1 and Y_2 act non-trivially on each other, as in the symmetric case, but abelian subgroups V_1 and V_2 , where V_i is the normal closure of Y_i in a particularly chosen subgroup L_i .

The arguments used in the short asymmetric case are related to those used in the qrc-Lemma from [MS4].

The remaining case, the tall asymmetric case, is by far the hardest one. Here Y_M is asymmetric, and there exists $P \leq G$ with $O_p(M) \leq P$, $O_p(P) \neq 1$ and $Y_M \leq O_p(P)$. First of all, it may be that all such subgroups P are not of characteristic p, in our notation, that Y_M is tall but not *char* p-tall. The short Chapter 6 partially handles this case by showing that this cannot happen if $C_G(x)$ has characteristic p for all $1 \neq x \in Y_M$.

Suppose that Y_M is *char p*-tall. Then the Asymmetric L-Lemma 2.16 can be applied and provides us with a subgroup *L* of characteristic *p* such that $Y_M \leq L$ and $L/O_p(L) \cong SL_2(q)$, Sz(q), or D_{2r} , where p = 2 in the last two case and *r* is an odd prime, and $q = |Y_M/Y_M \cap O_p(L)|$.

It turns out that $\Omega_1 Z(O_p(L))$ is a non-trivial strong offender on Y_M or L normalizes a conjugate of Q. In the first case we can use the FF-Module Theorems from Appendix C; in the second case we show that $O_p(L)$ acts as a (non-trivial) nearly quadratic 2*F*-offender on Y_M , and then [**MS2**] and the 2F-Module Theorems of Guralnick and Malle are the main tools in the investigation.

For more details see the introductions to Chapters 4 - 9.

In earlier publications the Local Structure Theorem is quoted under the name "Structure Theorem". In **[PPS]** the following earlier (weaker) version of the Local Structure Theorem was used, except that we correct a misprint, it should read $F^*(\overline{M}_0)$ rather than $F^*(\overline{M})$, and we added property (1:i) for better understanding.

COROLLARY B. Let G be a finite \mathcal{K}_p -group of local characteristic p and $S \in Syl_p(G)$. Suppose that there exist $M, \widetilde{C} \in \mathcal{M}_G(S)$ such that the following hold for $Q := O_p(\widetilde{C})$:

- (i) $N_G(\Omega_1 Z(S)) \leq \widetilde{C}$.
- (ii) $C_G(x) \leq \widetilde{C}$ for every $1 \neq x \in Z(Q)$.
- (iii) $M \neq \widetilde{C}$, and M = L for every $L \in \mathcal{M}_G(S)$ with $M = (M \cap L)C_M(Y_M)$.
- (iv) $Y_M \leq Q$.

Then for $M_0 := \langle Q^M \rangle C_S(Y_M)$ and $\overline{M} := M/C_M(Y_M)$ one of the following holds:

INTRODUCTION

- (1) $F^*(\overline{M_0}) = \overline{M_0}', \ \overline{M_0} \cong SL_n(p^m), \ n \ge 2, \ Sp_{2n}(p^m), \ n \ge 2, \ or \ Sp_4(2)' \ (and \ p = 2), \ and \ [Y_M, M_0] \ is a corresponding natural module for \ \overline{M_0}.$ Moreover, (i) $Y_M = [Y_M, M_0] \ or \ p = 2 \ and \ \overline{M_0} \cong Sp_{2n}(q), \ n \ge 2, \ and \ (ii) \ either \ C_{M_0}(Y_M) = O_p(M_0), \ or \ p = 2 \ and \ M_0/O_p(M_0) \cong 3 \cdot Sp_4(2)'.$
- (a) containing $P_1 := M_0 S \in \mathcal{P}_G(S), Y_M = Y_{P_1}$, and there exists a normal subgroup $P_1^* \leq P_1$ containing $C_{P_1}(Y_{P_1})$ but not Q such that
 - (i) $\overline{P_1^*} = K_1 \times \cdots \times K_r, \ K_i \cong SL_2(p^m), \ Y_M = V_1 \times \cdots \times V_r, \ where \ V_i := [Y_M, K_i] \ is a natural K_i-module.$
 - (ii) Q permutes the components K_i of (i) transitively,
 - (iii) $O^p(P_1^*) = O^p(M_0)$, and $P_1^*C_M(Y_M)$ is normal in M,
 - (iv) $C_{P_1}(Y_{P_1}) = O_p(P_1)$, or r > 1, $K_i \cong SL_2(2)$ (and p = 2) and $C_{P_1}(Y_{P_1})/O_2(P_1)$ is a 3-group.

The proof of this Corollary to the Local Structure Theorem is contained in Chapter 10.

We assume the reader to be familiar with the basic concepts of finite group theory, for example coprime action, components and the generalized Fitting subgroup. In addition, in Chapters 9 and 10 we assume basic knowledge of the parabolic subgroups of groups of Lie type and the sporadic simple groups and their action on some low dimensional modules. Most of this information can be found in [Ca], [RS] and [MSt]. Note also that the action of $\Omega_{10}^+(q)$ on the half spin modules and the action of $E_6(q)$ on the 27-dimensional modules can be seen inside the groups $E_6(q)$ and $E_7(q)$, respectively.

Acknowledgement: We would like to thank the referee for pointing out numerous inconveniences in the original manuscript which encouraged us to add more details and information for the reader.

CHAPTER 1

Definitions and Preliminary Results

In this chapter we provide elementary group theoretic results needed in this paper. Some of them already indicate the kind of technical tools used throughout this paper.

In Section 1.2 some properties of p-reduced normal p-subgroups are given, since p-reduced subgroups are the typical modules for parabolic subgroups investigated in this paper. In Sections 1.3 and 1.4 we discuss p-irreducible and Y-minimal groups. They naturally occur as subgroups of p-local subgroups and belong to our most important tools.

In Section 1.6 we have a first look at large p-subgroups. In particular, we show that such subgroups are weakly-closed. Consequently, in Section 1.5 weakly closed subgroup are investigated.

Throughout this chapter H always denotes a finite group and p is a prime.

1.1. Elementary Properties of Finite Groups

- DEFINITION 1.1. (a) *H* is *p*-irreducible if *H* is not *p*-closed and $O^p(H) \leq N$ for any normal subgroup *N* of *H* which is not *p*-closed.
- (b) *H* is strongly *p*-irreducible if *H* is not *p*-closed and $O^p(H) \leq N$ for every normal subgroup N of *H* with $[N, H] \leq O_p(H)$.
- (c) $Z_H := \langle \Omega_1 Z(T) \mid T \in Syl_p(H) \rangle.$
- (d) \mathcal{A}_H is the set of elementary abelian *p*-subgroups of *H* of maximal order, $J(H) := \langle \mathcal{A}_H \rangle$ is the *Thompson subgroup* of *H* and

$$B(H) := \begin{cases} C_H(\Omega_1 Z(J(H))) & \text{if } H \text{ is a } p \text{-group} \\ \langle B(T) \mid T \in Syl_p(H) \rangle & \text{in general} \end{cases}$$

is the Baumann subgroup of H.

- (e) Let $R \leq T \leq H$. Then R is *weakly closed* in T with respect to H if R is the only H-conjugate of R contained in T; and a p-subgroup R is a *weakly closed subgroup* of H if R is weakly closed with respect to H in some Sylow p-subgroup of H.
- (f) Let $A \leq H$. The subnormal closure of A in H is the intersection of all subnormal subgroups of H containing A.

LEMMA 1.2. Let H be a finite group of characteristic p and $T \in Syl_p(H)$. Then the following hold:

- (a) Every subnormal subgroup of H has characteristic p.
- (b) Every subgroup containing T has characteristic p.
- (c) H has local characteristic p.

Proof. [MS6, 1.2].

LEMMA 1.3. Let R be a p-subgroup of H with $C_H(R) \leq R$. Let $L \leq N_G(R)$ and suppose that L acts nilpotenly on R. Then L is a p-group.

PROOF. Since L act nilpotenly in the p-group R, coprime actions shows that $O^p(L)$ centralizes R. By hypothesis, $C_H(R) \leq O_p(R)$. So $O^p(L) \leq R$ and $O^p(L)$ is p-group. Thus $O^p(L) = 1$, and L is a p-group.

LEMMA 1.4. Let $L \leq H$. Suppose that H has characteristic p.

- (a) Suppose that L acts nilpotently on $O_p(H)$. Then L is a p-group.
- (b) Suppose that $L \leq H$ and L acts nilpotently on $O_p(H)$. Then $L \leq O_p(H)$.
- (c) Suppose that L centralizes the factors of an H-invariant series

$$1 = A_0 \leqslant A_1 \leqslant \ldots \leqslant A_{n-1} \leqslant A_n = O_p(H).$$

Then $L \leq O_n(H)$.

PROOF. (a): Since H has characteristic p, $C_H(O_p(H)) \leq O_p(H)$). Thus 1.3 applied with $R = O_p(H)$ shows that L is a p-group.

(b): By (a) L is a p-group and since $L \leq H$, this gives $L \leq O_p(H)$.

(c): Since L centralizes A_i/A_{i-1} and H acts on A_i/A_{i-1} also $\langle L^H \rangle$ centralizes A_i/A_{i-1} . Thus $\langle L^H \rangle$ acts nilpotently on $O_p(H)$, and (b) implies that $\langle L^H \rangle \leq O_p(H)$.

LEMMA 1.5. Suppose that $C_H(Y)$ has characteristic p for some $Y \leq O_p(H)$. Then H is of characteristic p.

PROOF. Put $D := C_H(O_p(H))$. Note that $D \leq H$ and since $Y \leq O_p(H)$, $D \leq C_H(Y)$. Thus

$$[O_p(C_H(Y)), D] \leq D \cap O_p(C_H(Y)) \leq O_p(D) \leq O_p(H) \leq C_H(D).$$

In particular, $[O_p(C_H(Y)), D, D] = 1$ and D acts nilpotently on $O_p(C_H(Y))$. By hypothesis $C_H(Y)$ has characteristic p, and since $D \leq C_H(Y)$, 1.4 shows that D is a p-group. Since $D \leq H$ this gives $D \leq O_p(H)$, and so H has characteristic p.

LEMMA 1.6. Let $M \in \mathcal{L}_H$ and $K \leq M$ with $O_p(M) \leq K$. Then

$$\mathcal{L}_M(K) = \{L \mid K \leq L \leq M\} = \{L \in \mathcal{L}_H(K) \mid L \leq M\}.$$

PROOF. Let $L \leq H$.

Suppose that $L \in \mathcal{L}_M(K)$. Then $K \leq L \leq M$ by the definition of $\mathcal{L}_M(K)$.

Suppose that $K \leq L \leq M$. Then $O_p(M) \leq K \leq L$ and since $L \leq M$, $O_p(M) \leq O_p(L)$. Thus $C_H(O_p(L)) \leq C_H(O_p(M))$. Since $M \in \mathcal{L}_H$, $C_H(O_p(M)) \leq O_p(M)$ and so $C_H(O_p(L)) \leq O_p(M) \leq O_p(L)$. Hence $L \in \mathcal{L}_H(K)$ and $L \leq M$.

Suppose that $L \in \mathcal{L}_H(K)$ and $L \leq M$. Then $C_M(O_p(L)) \leq C_H(O_p(L)) \leq O_p(L)$ and so $L \in \mathcal{L}_M(K)$.

LEMMA 1.7. (a) Suppose that $O_p(H) = 1$. Then $\Phi(H) = \Phi(O^p(H))$. (b) Suppose that $H = O^{p'}(H)$ and $O_p(H) = 1$. Then $Z(H) \leq \Phi(H)$.

PROOF. (a): This the case $\pi = \{p\}$ of [MS6, 1.9].

(b): Since $O_p(H) = 1$, Z(H) is a p'-group. Let $M \leq H$ such that H = MZ(H). Then $M \leq H$ and H/M is a p'-group. As $H = O^{p'}(H)$ we get H = M. This shows that Z(H) is contained in every maximal subgroup of H and so $Z(H) \leq \Phi(H)$.

LEMMA 1.8. Let Y be a finite p-group acting on H and L a Y-invariant subnormal subgroup of $F^*(H)$. Suppose that $O_p(H) = 1$.

(a) $L = [L, Y]C_L(Y),$ (b) [L, Y] = [L, Y, Y]. PROOF. It is evident that (a) implies (b). Thus, it suffices to show (a).

Set $L_0 := [L, Y]C_L(Y)$. Note that $L \leq H$ and so by [KS, 6.5.7b], $F^*(L) = F^*(H) \cap L = L$ and so L = F(L)E(L), where E(L) is the subgroup generated by the components of L. $O_p(F(L)) \leq O_p(H) = 1$ and F(L) is nilpotent, F(L) is a p'-group. Hence, the properties of coprime action show that $F(L) \leq L_0$.

Let K be a component of L. Then $[Y, K] \leq \langle K^Y \rangle \leq I$, so by a fundamental property of components either $K \leq [Y, K]$ or [Y, K, K] = 1 (see for example 6.5.2 in $[\mathbf{KS}]$). In the first case $K \leq L_0$, in the second case with the Three Subgroup Lemma [Y, K] = 1 since K is perfect. Thus, also in this case $K \leq H_0$, and (a) follows.

LEMMA 1.9. Let K be subgroup of H with $O_p(K) = 1$ and Y be a p-subgroup of $N_H(K)$ with [K, Y, Y] = 1. Then [K, Y] = 1.

PROOF. Since [K, Y, Y] = 1,

$$Y \mathrel{\triangleleft} Y[K,Y] = \left< Y^K \right> = \left< Y^{YK} \right> \mathrel{\triangleleft} KY$$

and so $Y \leq O_p(KY)$. Thus

$$[K,Y] \leqslant O_p(KY) \cap K \leqslant O_p(K) = 1.$$

LEMMA 1.10. Let Y be a finite p-group acting on H, and let A and B be normal subgroups of Y. Suppose that $O_p(H) = 1$ and $[F^*(H), A, B] \neq 1$. Let X be a Y-invariant subnormal subgroup of $F^*(H)$ minimal with respect to $[X, A, B] \neq 1$. Then

$$X = [X, A] \quad and \quad X = [X, B].$$

PROOF. By 1.8(b) applied to (X, A) in place of (L, Y) we have [X, A, A] = [X, A]. Hence $[X, A, A, B] = [X, A, B] \neq 1$. So the minimal choice of X gives X = [X, A].

Suppose that $[X, A \cap B] \neq 1$. Then 1.8(b) applied with $Y = A \cap B$ shows

$$1 \neq [X, A \cap B] = [X, A \cap B, A \cap B] = [X, A \cap B, A \cap B, A \cap B] \leqslant [X, A \cap B, A, B].$$

Thus the minimal choice of X implies that $X = [X, A \cap B]$ and so also X = [X, B].

Suppose next that $[X, A \cap B] = 1$. Since $[A, B] \leq A \cap B$ this gives [A, B, X] = 1. Since $[X, A, B] \neq 1$, the Three Subgroups Lemma shows that $[X, B, A] \neq 1$. As above, 1.8(b) gives [X, B, B] = [X, B] and so $[X, B, B, A] = [X, B, A] \neq 1$. Since $[A, B, [X, B]] \leq [[A, B], X] = 1$ another application of the Three Subgroups Lemma yields $[X, B, A, B] \neq 1$ and the minimal choice of X implies X = [X, B].

LEMMA 1.11. Let $A, B, K \leq H$ with A = [A, B] and $B \leq K \leq H$. Then $A \leq K$.

PROOF. If K = H the claim is obvious. In the other case there exists $L \leq H$ such that $K \leq L \neq H$ since $K \leq A = [A, B] \leq [A, L] \leq L$. Since also $K \leq L$, we conclude that $A \leq K$ by induction on |H|.

LEMMA 1.12. Let H be a group and \mathcal{G} a function which assigns to each subgroup X of H a $N_H(X)$ -invariant subgroup $\mathcal{G}(X)$ of H such that $\mathcal{G}(X) \leq \mathcal{G}(Y)$ whenever $X \leq Y \leq H$.

Let $A \leq B \leq H$ and suppose that $\mathcal{G}(A) = \mathcal{G}(C)$ for some $C \leq H$ with $N_H(\mathcal{G}(A)) \leq C$. Then $\mathcal{G}(A) = \mathcal{G}(B)$.

PROOF. By induction on the subnormal length of A in B we may assume that $A \triangleleft B$. Then

$$B \leq N_H(A) \leq N_H(\mathcal{G}(A)) \leq C.$$

Thus $A \leq B \leq C$ and

$$\mathcal{G}(A) \leq \mathcal{G}(B) \leq \mathcal{G}(C) = \mathcal{G}(A).$$

LEMMA 1.13. Let $A \leq H$ and K be the subnormal closure of A in H.

- (a) $K = \langle A^K \rangle$ and $N_H(A) \leq N_H(K)$.
- (b) $K = AO^p(K) = \langle A^{O^p(K)} \rangle.$
- (c) If A is a p-group, then $O^p(K) = [O^p(K), A]$.

PROOF. (a): Note that $A \leq \langle A^K \rangle \leq K \leq H$ and so $K = \langle A^K \rangle$ by the minimality of K. The second statement should be evident.

(b): Note that $K/O^p(K)$ is a *p*-group, and so $AO^p(K)/O^p(K)$ is subnormal in $K/O^p(K)$. Hence $A \leq AO^p(K) \leq K \leq H$ and $K = AO^p(K)$ by minimality of K. Thus using (a)

 $K = \langle A^K \rangle = \langle A^{AO^p(K)} \rangle = \langle A^{O^p(K)} \rangle.$

(c): By (c), $K = \langle A^{O^p(K)} \rangle = [O^p(K), A]A$. If A is a p-group, then $O^p(K) \leq [O^p(K), A]$, and (c) holds.

LEMMA 1.14. Put $K := O^p(H)$. Suppose that $O_p(H) = 1$ and K is quasisimple. Then (a) $K = F^*(H)$.

(b) $K = [K, Y] \leq \langle Y^K \rangle$ for all non-trivial p-subgroups Y of H.

(c) If $C \leq H$ with $K \leq C$, then C is a p'-group. In particular, H is p-irreducible.

PROOF. (a): Note that K is a component of H and so $K \leq F^*(H)$. Since $O_p(H) = 1$, F(H) is a p'-group. Thus $F^*(H) = F(H)E(H) \leq O^p(H) = K$ and so $K = F^*(H)$.

(b): In particular, $C_H(K) \leq Z(K)$ and so $C_H(K)$ is a p'-group. Thus $[Y, K] \neq 1$, and since K is perfect, $[Y, K, K] \neq 1$. Hence $[Y, K] \leq Z(K)$, and since K is quasisimple, $K = [Y, K] \leq \langle Y^K \rangle$.

(c) follows immediately from (b).

LEMMA 1.15. Suppose that $O_p(H) = 1$, and let Y be a p-subgroup of H. Then

- (a) $[F^*(H), Y] = [F^*(K), Y] = [F^*(K), Y, Y]$ for every $K \leq H$ with $Y \leq K$,
- (b) If $[F^*(H), Y] = 1$ then Y = 1,
- (c) If $Y_0 \leq Y$ with $[F^*(H), Y, Y_0] = 1$ then $Y_0 = 1$.

PROOF. (a): Since $O_p(H) = 1$, 1.8(b) gives $[F^*(H), Y] = [F^*(H), Y, Y]$. Hence 1.11 implies $[F^*(H), Y] \leq K$ and so $[F^*(H), Y] \leq F^*(H) \cap K$. By $[\mathbf{KS}, 6.5.7b], F^*(H) \cap K = F^*(K)$. Thus

$$[F^*(H), Y] = [F^*(H), Y, Y] \le [F^*(K), Y] \le [F^*(H), Y],$$

and (a) holds.

(b): Since $C_H(F^*(H)) \leq F^*(H)$, $[F^*(H), Y] = 1$ implies $Y \leq O_p(Z(F^*(H))) \leq O_p(H) = 1$.

(c): Note that $[F^*(H), Y_0, Y_0] \leq [F^*(H), Y, Y_0] = 1$. On the other hand, by 1.8, $[F^*(H), Y_0] = [F^*(H), Y_0, Y_0]$, so $[F^*(H), Y_0] = 1$, and (b) gives $Y_0 = 1$.

LEMMA 1.16. Let N and E be subnormal subgroups of H. Suppose that E is a direct product of perfect simple groups. Then

$$[N, E] = 1 \quad \Longleftrightarrow \quad [F^*(N), E] = 1 \quad \Longleftrightarrow \quad N \cap E = 1.$$

PROOF. Note that F(E) = 1 and E is generated by its components. If [N, E] = 1, then also $[F^*(N), E] = 1$.

Suppose that $[F^*(N), E] = 1$. Since $F^*(N \cap E) \leq F^*(E) \cap N$ we conclude that $F^*(N \cap E)$ is abelian. Hence $F^*(N \cap E) = F(N \cap E) \leq F(E) = 1$ and so also $N \cap E = 1$.

Suppose that $N \cap E = 1$, and let K be a component of E. Then $N \cap K = 1$ and so by [KS, 6.5.2], [N, K] = 1. Since E is generated by its components, this gives [N, E] = 1.

LEMMA 1.17. Suppose that $O_p(H) = 1$. Let Q be a p-subgroup of H, put $L := [F^*(H), Q]$, and let F be the largest normal subgroup of $F^*(H)$ centralized by Q. Then the following hold:

- (a) $F = C_{F^*(H)}(LQ).$ (b) L = [L, Q].(c) $L \cap F \leq \Phi(L).$
- (d) If $B \leq N_H(Q)$ is a p-subgroup with $[L, B] \leq F$, then [L, B] = 1.
- (e) $C_H(FL)$ is a p'-group.

PROOF. (a): Note that $LQ = [F^*(H), Q]Q = \langle Q^{F^*(H)} \rangle$. Since $F \leq F^*(H)$ and [F, Q] = 1 we conclude that $F \leq C_{F^*(H)}(LQ)$. On the other hand $C_{F^*(H)}(LQ)$ is a normal subgroup of $F^*(H)$ centralized by Q and so $C_{F^*(H)}(LQ) \leq F$.

(b): Since $O_p(H) = 1$ we can apply 1.8(b) and conclude that $[F^*(H), Q] = [F^*(H), Q, Q]$. Thus (b) holds

(c): Let N be a subgroup of L with $L = N(L \cap F)$. It suffices to show that N = L. By (a) L = NZ(L) and thus L' = N'. As $L \leq F^*(H)$ and $O_p(H) = 1$, $O^p(L) = L$ and L/L' is a p'-group. By (b) [L/L', Q] = L/L' and since L/L' is a p'-group we get $C_{L/L'}(Q) = 1$. So $F \cap L \leq L' \leq N$ and N = L.

(d): By hypothesis, $B \leq N_H(Q)$ and $[L, B] \leq F$. Hence B normalizes $[F^*(H), Q] = L$ and $[L, B] \leq L \cap F$. By (c) $L \cap F \leq \Phi(L)$. Since $L \leq F^*(H)$ we get from 1.8(a) that $L = [L, B]C_L(B)$. Thus $L = \Phi(L)C_L(B)$ and so $L = C_L(B)$.

(e): Observe that

$$[F^*(H), C_H(FL)] \leq F^*(H) \cap C_H(FL) =: F_0$$

Since $FL \leq F^*(H)$ also $F_0 \leq F^*(H)$. Hence 1.8(a) gives $F_0 = [F_0, Q]C_{F_0}(Q)$. Note that $[F_0, Q] \leq [F^*(H)Q] \leq L$ and $C_{F_0}(Q) = C_{F_0}(LQ)$. By (a), $C_{F_0}(LQ) \leq F$, so $F_0 \leq LF$. It follows that $[F^*(H), C_H(FL), C_H(FL)] = 1$. Let Y be a p-subgroup of $C_H(FL)$. Then $[F^*(H), Y, Y] = 1$. Now 1.15(c) gives Y = 1 since $O_p(H) = 1$. Hence $C_H(FL)$ is a p'-group.

LEMMA 1.18. Suppose that H acts on the finite p-group P and $[P,H] \leq \Omega_1 Z(P)$. Then $[\Phi(P),H] = 1$.

PROOF. Since [P, H, P] = 1, the Three Subgroups Lemma shows that [P', H] = 1, and since [P, H] is elementary abelian and central in P,

$$(a^{p})^{h} = (a^{h})^{p} = (a[a,h])^{p} = a^{p}[a,h]^{p} = a^{p}$$
 for all $a \in P$ and $h \in H$,

and $[P^p, H] = 1$. By $[\mathbf{KS}, 5.2.8], \Phi(P)$ is the smallest normal subgroup of P that has elementary abelian factor group, so $\Phi(P) = P'P^p$, and the lemma follows.

LEMMA 1.19. Suppose that H acts on a finite p-group P. Let $Y \leq C_H(P')$ such that [P, Y] is elementary abelian. Then $O^p(\langle Y^H \rangle)$ centralizes $\Phi(P)$.

PROOF. Put $\overline{P} = P/P'$ and $L = \langle Y^H \rangle$. Since \overline{P} is abelian and [P, Y] is elementary abelian we have $[\overline{P}, L] = \langle [\overline{P}, Y]^H \rangle \leq \Omega_1 Z(\overline{P})$. Thus by 1.18, $[\Phi(\overline{P}), L] = 1$. Note that L centralizes P' since Y does. Since $\Phi(\overline{P}) = \Phi(P)/P'$ we conclude that $[\Phi(P), L, L] = 1$ and thus $[\Phi(P), O^p(L)] = 1$. \Box

LEMMA 1.20. Let A and B be subgroups of H. Then $C_A(b) = C_A(B)$ for all $b \in B \setminus C_B(A)$ if and only if $C_B(a) = C_B(A)$ for all $a \in A \setminus C_A(B)$.

PROOF. Both statements just say that $[a, b] \neq 1$ for all $a \in A \setminus C_A(B)$ and $b \in B \setminus C_B(A)$.

For the next lemma recall from A.7(5) that W is a root offender on V if W is an offender on V and

$$C_V(W) = C_V(w)$$
 and $[V, w] = [V, W]$ for every $w \in W \setminus C_W(V)$.

LEMMA 1.21. Let V and W be elementary abelian p-subgroups of H with $[V, W] \leq V \cap W$. Then V is a root offender on W if and only if W is a root offender on V.

PROOF. We may assume that W is a root offender on V. Then by A.37(a) $|V/C_V(W)| = |W/C_V(W)|$, and so V is an offender on W. By A.37(b) W is a strong dual offender on V. Hence [v, W] = [V, W] for all $v \in V \setminus C_V(W)$. Moreover, by definition of a root offender $C_V(W) = C_V(w)$ for all $w \in W \setminus V$, and so by 1.20 also $C_W(V) = C_W(v)$ for all $v \in V \setminus C_V(W)$. Thus V is a root offender on W.

LEMMA 1.22. Let V_1 and V_2 be elementary abelian p-subgroups of H with $[V_1, V_2] \leq V_1 \cap V_2$, and let \mathbb{K}_i is a subfield of $End_{\mathbb{F}_p}(V_i)$ with $|\mathbb{K}_i| > p$, i = 1, 2. Suppose that

- (i) V_j acts \mathbb{K}_i -semilinearly on V_i for all $\{i, j\} = \{1, 2\}$.
- (ii) V_2 does not act \mathbb{K}_1 -linearly on V_1 .

Then p = 2 and, for or all $\{i, j\} = \{1, 2\}, |\mathbb{K}_i| = |V_i| = 4, \dim_{\mathbb{K}_i} V_i = 1, |V_i/C_{V_i}(V_j)| = 2, and V_j$ does not act \mathbb{K}_i -linearly on V_i .

PROOF. Let $\{i, j\} = \{1, 2\}$ and put $W_j := C_{V_j}(\mathbb{K}_j)$, so W_j is the largest subgroup of V_j acting \mathbb{K}_i -linearly on V_i and V_j/W_j is isomorphic to subgroup of $Aut(\mathbb{K}_i)$. Since $Aut(\mathbb{K}_i)$ is cyclic and V_j is elementary abelian, we conclude that $|V_j/W_j| \leq p$. By hypothesis, V_2 does not act \mathbb{K}_1 -linearly in V_1 , so $|V_1/W_1| = p$. Note that $[V_1, W_2] \leq [V_1, V_2] \leq V_1 \cap V_2 \leq C_{V_1}(V_2)$. Since W_2 acts \mathbb{K}_1 -linearly on V_1 , $[V_1, W_2]$ is a \mathbb{K}_1 -subspace of V_1 centralized by V_2 . Since V_2 does not act K_1 -linearly on V_1 , this shows that $[V_1, W_2] = 1$. Observe that $C_{V_2}(V_1) \leq W_2$, so $W_2 = C_{V_1}(V_2)$. Thus $|V_2/C_{V_2}(V_1)| = |V_2/W_2| = p$.

Let $\mathbb{E}_i := C_{\mathbb{K}_i}(V_j)$, so \mathbb{E}_i is the largest subfield of \mathbb{K}_i such that V_j acts \mathbb{E}_i -linearly on V_i . Then $C_{V_2}(V_1)$ is an \mathbb{E}_2 -subspace of V_2 , so $V_2/C_{V_2}(V_1)$ is an \mathbb{E}_2 -space. As $|V_2/C_{V_2}(V_1)| = p$, this shows that $|\mathbb{E}_2| = p$. Since $|\mathbb{K}_2| > p$, we infer $\mathbb{E}_2 \neq \mathbb{K}_2$. So also V_1 does not act \mathbb{K}_2 -linearly on V_2 , and the setup is symmetric in 1 and 2. In particular, also $p = |V_1/W_1| \leq |Aut(\mathbb{K}_2)|$.

Note that any \mathbb{E}_2 -hyperplane of V_2 contains a \mathbb{K}_2 -hyperplane of V_2 . In particular, $C_{V_2}(V_1)$ contains a \mathbb{K}_2 -hyperplane H_2 . As V_1 centralizes H_2 and does not act \mathbb{K}_2 -linearly, we conclude that $H_2 = 1$. So $\dim_{\mathbb{K}_2} V_2 = 1$. In particular, the action of V_1 on V_2 is isomorphic to the action on V_2 on \mathbb{K}_2 . It follows that $|C_{V_2}(V_1)| = |C_{\mathbb{K}_2}(V_1)| = |\mathbb{E}_2| = p$. As $|V_2/C_{V_2}(V_1)| = p$ this gives $|\mathbb{K}_2| = |V_2| = p^2$, so $|Aut(\mathbb{K}_2)| = 2$ and p = 2. By symmetry, $|\mathbb{K}_1| = |V_1| = p^2 = 4$, and the lemma is proved.

LEMMA 1.23. Let π be a set of primes, and let A and B be subnormal subgroups of H. Suppose that A is a π -group and $B = O^{\pi}(B)$. Then A normalizes B and $B = O^{\pi}(AB)$.

PROOF. If B = H then the claim is obvious. Assume that $B \neq H$. Then there exists $N \leq H$ such that $B \leq N$ and $N \neq H$. As $A \leq A \neq H$, we have $A \leq O_{\pi}(H) \leq H$ and so [A, B] is a π -group. Since $[A, B] \leq \langle A, B \rangle \leq H$ and $[A, B] \leq N$, we get that [A, B], B and N satisfy the hypothesis in place of A, B and H. Hence by induction on |H|, $B = O^{\pi}([A, B]B)$. Since $[A, B]B = \langle B^A \rangle$ is normalized by A, we conclude that A normalizes B. Thus AB/B is a π -group and so

$$O^{\pi}(B) \leqslant O^{\pi}(AB) \leqslant B = O^{\pi}(B).$$

1.2. The Largest *p*-Reduced Elementary Abelian Normal Subgroup

LEMMA 1.24. Let $T \in Syl_p(H)$ and $L, M \leq H$ with $T \leq L \cap M$. Suppose that L and M are of characteristic p and put $T_0 := C_T(Y_L)$ and $L_0 := N_L(T_0)$.

- (a) $T_0 \in Syl_p(C_H(Y_L)).$
- (b) Suppose that $LC_H(Y_M) = MC_H(Y_M)$. Then $Y_M \leq Y_L$.
- (c) If $L \leq M$ and Y is a p-reduced elementary abelian normal subgroup of L, then $\langle Y^M \rangle$ is a p-reduced elementary abelian normal p-subgroup of M.
- (d) Z_L is a p-reduced elementary abelian normal p-subgroup of L.
- (e) $Z_L = \Omega_1 Z(L)[Z_L, O^p(L)]$ and $[Z_L, L] = [Z_L, O^p(L)].$
- (f) If $L \leq M$, then $Y_L \leq Y_M$.
- (g) $O_p(L) \leq T_0 \leq C_L(Y_L)$ and $\Omega_1 Z(T) \leq Z_L \leq Y_L \leq \Omega_1 Z(O_p(L)).$

- (h) Suppose that $L \leq M$ and $M \subseteq LC_H(Y)$ for some $Y \leq H$ with $Y_M \leq Y$. Then $Y_L = Y_M$ and $LC_H(Y_L) = MC_H(Y_L)$.
- (i) $L = L_0 C_L(Y_L), T_0 = O_p(L_0), C_T(T_0) \leq T_0, and Y_L = \Omega_1 Z(T_0) = Y_{L_0}.$
- (j) Suppose that $MC_H(Y_L) = LC_H(Y_L)$ and put $L^* = N_M(T_0)$. Then $Y_{L^*} = Y_L$ and $LC_H(Y_L) = L^*C_H(Y_L)$.
- (k) If $C_L(Y_L)$ is p-closed, then $Y_L = \Omega_1 Z(O_p(L))$ and $O_p(L) = T_0 \in Syl_p(C_H(Y_L))$.

PROOF. Note first that $Y_M \leq O_p(M) \leq T \leq L$. For the definition of a *p*-reduced module and nilpotent action see Definition A.4.

(a): Since $T \in Syl_p(H)$ and $T \leq L \leq N_H(Y_L)$, $T \in Syl_p(N_H(Y_L))$, and since $C_H(Y_L) \leq N_H(Y_L)$ we conclude that $T_0 = C_T(Y_L) = T \cap C_H(Y_L) \in Syl_p(C_H(Y_L))$.

(b): Observe that L normalizes Y_M and since $Y_M \leq L$, $Y_M \leq O_p(L)$. We have

 $O_p(L/C_L(Y_M)) \cong O_p(LC_H(Y_M)/C_H(Y_M)) = O_p(MC_H(Y_M)/C_H(Y_M)) \cong O_p(M/C_M(Y_M)) = 1,$

and so Y_M is p-reduced for L. Thus $Y_M \leq Y_L$.

(c): This is [MS4, (2.2)(b]].

(d): Note that $\Omega_1 Z(T)$ is *p*-reduced for $T, T \leq L$ and $Z_L = \langle \Omega_1 Z(T)^L \rangle$. So (d) follows from (c).

(e): Note that L normalizes $\Omega_1 Z(T)[Z_L, L]$. Since $Z_L = \langle \Omega_1 Z(T)^L \rangle$ we get $Z_L = \Omega_1 Z(T)[Z_L, L]$. Hence Gaschütz's Theorem gives $Z_L = C_{Z_L}(L)[Z_L, L] = \Omega_1 Z(L)[Z, L]$, see C.17. This implies $[Z_L, L] = [Z_L, L, L]$ and so $[Z_L, L] = [Z_L, O^p(L)]$, and (e) is proved.

(f): This is [MS4, (2.2)(c)].

(g): By the definition of Z_L we have $\Omega_1 Z(T) \leq Z_L$. By (d), Z_L is *p*-reduced for L and so $Z_L \leq Y_L$. Since Y_L is a normal *p*-subgroup of L, $Y_L \leq O_p(L)$. As $O_p(L/C_L(Y_L)) = 1$ we have $O_p(L) \leq C_L(Y_L)$. Thus $Y_L \leq \Omega_1 Z(O_p(L))$ and $O_p(L) \leq C_T(Y_L) = T_0$.

(h): By (f), $Y_L \leq Y_M$. By hypothesis $Y_M \leq Y$ and $M \subseteq LC_H(Y)$. Thus $C_H(Y) \leq C_H(Y_M)$ and so $M \subseteq LC_H(Y_M)$. As $L \leq M$ this implies $LC_H(Y_M) = MC_H(Y_M)$. So (b) gives $Y_M \leq Y_L$. Hence $Y_L = Y_M$ and (h) holds.

(i): Recall that $T_0 \leq L$. By (a) $T_0 \in Syl_p(C_H(Y_L))$ and so also $T_0 \in Syl_p(C_L(Y_L))$. A Frattini argument gives $L = L_0C_L(Y_L)$, and $T \leq L_0$ since $T_0 \leq T$. Since L is of characteristic p and $O_p(L) \leq T_0 \leq O_p(L_0)$, also L_0 is of characteristic p. So (h) (applied with $L = L_0$, M = L and $Y = Y_L$) implies that $Y_{L_0} = Y_L$. By (g) $Y_{L_0} \leq \Omega_1 Z(O_p(L_0))$. We record

$$Y_L = Y_{L_0} \leqslant \Omega_1 Z(O_p(L_0)).$$

Let U be the largest normal subgroup of L_0 acting nilpotently on $\Omega_1 Z(O_p(L_0))$. Then U acts nilpotently on Y_{L_0} . As Y_{L_0} is p-reduced for L_0 , A.10 implies that $U \leq C_{L_0}(Y_{L_0})$. So

$$O_p(L_0) \leqslant U \cap T \leqslant C_T(Y_{L_0}) = C_T(Y_L) = T_0 \leqslant O_p(L_0).$$

Therefore, $O_p(L_0) = T_0$. Note that $O^p(L_0) \leq C_{L_0}(\Omega_1 Z(O_p(L_0)))$ and thus

$$U = (U \cap T)C_{L_0}(\Omega_1 Z(O_p(L_0))) = C_{L_0}(\Omega_1 Z(O_p(L_0))).$$

Now A.10 shows that $\Omega_1 Z(O_p(L_0))$ is p-reduced for L_0 and thus

$$Y_L \leqslant \Omega_1 Z(T_0) = \Omega_1 Z(O_p(L_0)) \leqslant Y_{L_0} = Y_L.$$

Since L_0 is of characteristic p and $T_0 = O_p(L_0), C_{L_0}(T_0) \leq T_0$ and (i) is proved.

(j): By hypothesis $MC_H(Y_L) = LC_H(Y_L)$ and so M normalizes Y_L . Hence T_0 is a Sylow p-subgroup of $C_M(Y_L)$ and $C_M(Y_L)$ is a normal subgroup of M. So by a Frattini argument $M = N_M(T_0)C_M(Y_L) = L^*C_M(Y_L)$. Thus $LC_H(Y_L) = MC_H(Y_L) = L^*C_H(Y_L)$. By (i), $Y_L = \Omega_1 Z(T_0)$ and $C_T(T_0) \leq T_0$. Since $T_0 \leq O_p(L^*)$ we conclude $Y_{L^*} \leq \Omega_1 Z(T_0) = Y_L$. By (b), $Y_L \leq Y_{L^*}$ and so $Y_L = Y_{L^*}$.

(k): By (g) $O_p(L) \leq T_0$. Since $C_L(Y_L)$ is p-closed and $T_0 \in Syl_p(C_L(Y_L))$, we have

$$T_0 = O_p(C_L(Y_L)) \leqslant O_p(L) \leqslant T_0.$$

So $T_0 = O_p(L)$, and (i) shows that $Y_L = \Omega_1 Z(T_0) = \Omega_1 Z(O_p(L))$. By (a), $T_0 \in Syl_p(C_H(Y_L))$ and so (k) is proved.

LEMMA 1.25. Suppose that H is of parabolic characteristic p. Let $T \in Syl_p(H)$ and $L \in \mathcal{L}_H(T)$. Then there exist $M \in \mathfrak{M}_H(T)$ and $L^* \in \mathcal{L}_H(T)$ such that $L^* \leq M$, $Y_L = Y_{L^*}$, $Y_L \leq Y_M$ and $LC_H(Y_L) = L^*C_H(Y_L)$.

PROOF. Put $T_0 := C_T(Y_L)$ and $L_1 := LC_H(Y_L)$. Then $Y_L \leq L_1$ and $C_H(O_p(L_1)) \leq C_H(Y_L) \leq L_1$. Since H is of parabolic characteristic p we conclude that $C_H(O_p(L_1)) = C_{L_1}(O_p(L_1)) \leq O_p(L_1)$, so $L_1 \in \mathcal{L}_H(T)$. Note that $LC_H(Y_L) = L_1 = L_1C_H(Y_L)$ and so by 1.24(b), $Y_L \leq Y_{L_1}$. Thus $C_H(Y_{L_1}) \leq C_H(Y_L)$.

Suppose that there exist $M \in \mathfrak{M}_H(T)$ and $L_1^* \in \mathcal{L}_H(T)$ such that $L_1^* \leq M$, $Y_{L_1} = Y_{L_1^*} \leq Y_M$ and $L_1C_H(Y_{L_1}) = L_1^*C_H(Y_{L_1})$. As $C_H(Y_{L_1}) \leq C_H(Y_L)$ this gives $L_1C_H(Y_L) = L_1^*C_H(Y_L)$. Together with $L_1 = LC_H(Y_L)$ we get

$$LC_H(Y_L) = L_1 = L_1C_H(Y_L) = L_1^*C_H(Y_L).$$

Put $L^* = N_{L_1^*}(T_0)$. Since $T \leq L \cap L_1^*$ we can apply 1.24(j) with (L_1^*, L) in place of (M, L) and conclude that $Y_L = Y_{L^*}$ and $LC_L(Y_L) = L^*C_{L^*}(Y_L)$. Also $T \leq L^* \leq L_1^* \leq M$, and thus 1.24(f) with (L^*, M) in place of (L, M) yields $Y_{L^*} \leq Y_M$. So the lemma holds in this case.

Hence it suffices to prove the lemma for L_1 in place of L. Since $C_H(Y_{L_1}) \leq C_H(Y_L) \leq L_1$ we therefore may assume that $C_H(Y_L) \leq L$. By [**MS4**, Theorem 1.3] there exists a set \mathcal{F} of parabolic subgroups of H containing T such that the following hold:

- (i) For every $L \in \mathcal{L}_H(T)$ there exists $F \in \mathcal{F}$ such that $L \subseteq C_H(Y_L)F$ and $Y_L \leq Y_F$.
- (ii) If $L \in \mathcal{L}_H(T)$ and $F \in \mathcal{F}$ with $F \subseteq C_H(Y_F)L$ and $Y_F \leq Y_L$, then $Y_L = Y_F$ and $L \leq F$.

According to (i) there exists $F \in \mathcal{F}$ with $L \subseteq C_H(Y_L)F$ and $Y_L \leq Y_F$. Since $C_H(Y_L) \leq L$, we get $L \leq C_L(Y_L)F$ and so $L = C_L(Y_L)(L \cap F) = (L \cap F)C_L(Y_L)$. In particular, by 1.24(h) (applied with $(L, L \cap F, Y_L)$ in place of (M, L, Y)) $Y_L = Y_{L \cap F}$.

Let $M \leq F$ be minimal with $T \leq M$ and $F = MC_F(Y_F)$. By 1.24(f), $Y_{L \cap F} \leq Y_F$ and so $Y_L = Y_{L \cap F} \leq Y_F$. Then $C_F(Y_F) \leq C_H(Y_L) \leq L$, $F = MC_{F \cap L}(Y_F)$ and $L \cap F = (L \cap M)C_{L \cap F}(Y_L)$. Thus $L = (L \cap F)C_H(Y_L) = (L \cap M)C_H(Y_L)$. Since $L \cap M \leq L$, 1.24(h) gives $Y_L = Y_{L \cap M}$ and since $L \cap M \leq M$, 1.24(f) gives $Y_{L \cap M} \leq Y_M$. Thus if $M \in \mathfrak{M}_H(T)$ then $L^* := L \cap M$ has the required properties. It remains to show that $M \in \mathfrak{M}_H(T)$.

By [**MS4**, 3.5] F is the unique maximal p-local subgroup containing M. Since H is of parabolic characteristic p, both F and M are of characteristic p. Since $M \leq F$ and $F = MC_F(Y_F)$ we conclude from 1.24(h) that $Y_M = Y_F$. Thus $F = MC_F(Y_M)$ and $\mathcal{M}(M) = \{F\}$. This shows condition (i) of the basic property for M.

Put $M_0 := N_M(C_T(Y_M))$. Since $O_p(M) \leq O_p(M_0)$ and

$$C_H(O_p(M_0)) \leqslant C_H(O_p(M)) \leqslant O_p(M) \leqslant O_p(M_0),$$

 $M_0 \in \mathcal{L}_H(T)$. Moreover, the minimality of M and a Frattini argument show that $M = M_0$. Thus $C_M(Y_M)$ is *p*-closed. In particular, by 1.24(k), $O_p(M) \in Syl_p(C_M(Y_M))$.

Let X be a maximal subgroup of M containing $O_p(M)$. Assume that $XC_M(Y_M) = M$. Since $F = MC_M(Y_F)$ and $Y_F = Y_M$ we get $F = XC_F(Y_F)$. In addition, X contains a Sylow p-subgroup of M since $O_p(M) \in Syl_p(C_M(Y_M))$. Hence without loss $T \leq X$, which contradicts the minimal choice of M. Thus $XC_M(Y_M) \neq M$, i.e. $C_M(Y_M) \leq X$, and so $C_M(Y_M)/O_p(M) \leq \Phi(M/C_M(Y_M))$. So also condition (ii) of the basic property holds for M.

LEMMA 1.26. Let $L \triangleleft \triangleleft H$. Then

- (a) $Y_H \cap L = Y_H \cap Y_L$ is p-reduced for L.
- (b) $C_L(Y_L) = C_L(Y_H) = C_L(Y_H \cap L)$. In particular $[Y_L, L] = 1$ if and only if $[Y_H, L] = 1$.
- (c) Suppose that $O^p(H) \leq L$. Then $[Y_L, L] = 1$ if and only if $[Y_H, H] = 1$.

PROOF. Let R be the inverse image of $O_p(L/C_L(Y_H \cap L))$ in L, so $R \leq L \leq H$. Then $O^p(R)$ centralizes $Y_H \cap L$. Note that $O^p(R) = O^p(RY_H) \leq RY_H$ since $R \leq H$, and so $[O^p(R), Y_H] \leq O^p(R) \cap Y_H \leq Y_H \cap L$. Hence

$$[Y_H, O^p(R)] = [Y_H, O^p(R), O^p(R)] \leq [Y_H \cap L, O^p(R)] = 1.$$

Thus R acts nilpotently on Y_H . Since $R \leq H$ and Y_H is a p-reduced H-module, A.10 now implies that R centralizes Y_H . Hence

$$C_L(Y_H \cap L) \leqslant R \leqslant C_L(Y_H) \leqslant C_L(Y_H \cap L),$$

and thus

(*)

$$C_L(Y_H \cap L) = R = C_L(Y_H).$$

In particular, $Y_H \cap L$ is *p*-reduced for *L*. Hence $Y_H \cap L \leq Y_L$ and $Y_H \cap L = Y_H \cap Y_L$. Thus (a) holds.

(b): By induction we may assume that $L \leq H$. Then H acts on Y_L and by A.15(b) (applied with $V = Y_L$) $C_L(Y_{Y_L}(L)) = C_L(Y_{Y_L}(H))$, where $Y_{Y_L}(H)$ is the largest *p*-reduced *H*-submodule of Y_L . Since Y_L is *p*-reduced for L, $Y_{Y_L}(L) = Y_L$, and since $Y_{Y_L}(H)$ is *p*-reduced for H, $Y_{Y_L}(H) \leq Y_H$. So

$$C_L(Y_H) \leq C_L(Y_{Y_L}(H)) = C_L(Y_{Y_L}(L)) = C_L(Y_L) \leq C_L(Y_H \cap Y_L) = C_L(Y_H),$$

where the last equality follows from (*). Hence (b) holds.

(c): By (b), $[Y_L, L] = 1$ if and only if $[Y_H, L] = 1$. If $[Y_H, L] = 1$ then $[Y_H, O^p(H)] = 1$ and since Y_H is *p*-reduced, also $[Y_H, H] = 1$. Hence $[Y_H, L] = 1$ if and only if $[Y_H, H] = 1$.

LEMMA 1.27. Suppose that H has characteristic p. Let $T \in Syl_p(H)$.

(a) (Kieler Lemma) Let E be a subnormal subgroup of H. Then

 $C_E(\Omega_1 Z(T)) = C_E(\Omega_1 Z(T \cap N)).$

(b) Let V be an elementary abelian normal p-subgroup of H containing $\Omega_1 Z(T)$. Then

 $C_H(\Omega_1 Z(T)) = C_H([V, O^p(H)] \cap \Omega_1 Z(T)).$

PROOF. (a): If E = 1 this if obvious. So suppose that $E \neq 1$. By 1.2(a), E has characteristic p and so $O_p(E) \neq 1$. In particular, p divides |E|. Since H has characteristic p, H also has local characteristic p, see 1.2(c). Now (a) follows from [**MS6**, 1.5].

(b): By $[\mathbf{MS6}, 1, 6] C_E(C_V(T)) = C_E(C_{[V,E]}(T \cap E))$ for any subnormal subgroup E of H. For E = H this gives

(*)
$$C_H(C_V(T)) = C_H(C_{[V,H]}(T))$$

Put [V, H, 1] = [V, H] and [V, H, n] = [[V, H, n-1], H] for $n \ge 2$. Now an elementary induction on n using (*) gives

$$C_H(C_V(T)) = C_H(C_{[V,H,n]}(T))$$

For n large enough, $[V, H, n] = [V, O^p(H)]$ since H acts nilpotently on $V/[V, O^p(H)]$. Thus

$$C_H(C_V(T)) = C_H(C_{[V,O^p(H)]}(T)).$$

Since $\Omega_1 Z(T) \leq V$ and V is elementary abelian,

 $\Omega_1 Z(T) = C_V(T) \quad \text{and} \quad C_{[V,O^p(H)]}(T) = [V,O^p(H)] \cap \Omega_1 Z(T).$

So (b) holds.

LEMMA 1.28. Suppose that H is of characteristic p and $N \triangleleft \triangleleft H$.

- (a) C_N(Z_H) = C_N(Z_N).
 (b) The following are equivalent:

 (1) [Ω₁Z(T), N] = 1 for some T ∈ Syl_n(H).
 - (1) $[\Omega_1 Z(R), N] = 1$ for some $R \in Syl_p(N)$. (2) $[\Omega_1 Z(R), N] = 1$ for some $R \in Syl_p(N)$.
 - (3) $[Z_N, N] = 1.$

9

(4) $[Z_H, N] = 1.$

PROOF. Let $T \in Syl_n(H)$. By the Kieler Lemma 1.27

(*)

$$C_N(\Omega_1 Z(T)) = C_N(\Omega_1 Z(T \cap N)).$$

(a): Note that $Syl_p(N) = \{T \cap N \mid T \in Syl_p(H)\}$. So (a) follows from (*) and the definition of Z_H and Z_N .

(b): Since $T \cap N \in Syl_p(N)$ for $T \in Syl_p(H)$, (*) shows that (b:1) implies (b:2). Since N acts transitively on $Syl_p(N)$, (b:2) implies (b:3). By (a), (b:3) implies (b:4). Clearly (b:4) implies (b:1).

1.3. *p*-Irreducible Groups

LEMMA 1.29. Suppose that H is p-irreducible. Let $T \in Syl_p(H)$.

- (a) $H = \langle T^H \rangle = H'T$.
- (b) $O^p(H) \leq H'$.
- (c) $O^p(H) = [O^p(H), Y] \leq \langle Y^{O^p(H)} \rangle = \langle Y^H \rangle$ for every $Y \leq T$ with $Y \leq O_p(H)$.

PROOF. (a): Since H is not p-closed, T is not normal in H. Hence $\langle T^H \rangle$ is not p-closed. By definition of p-irreducible this gives $O^p(H) \leq \langle T^H \rangle$, and so $H = O^p(H)T = \langle T^H \rangle$. Since $H'T \leq H$, we have $H = \langle T^H \rangle \leq H'T$, and thus H = H'T.

(b): This is an immediate consequence of H = H'T.

(c): Since $Y \leq O_p(H)$, and $\langle Y^H \rangle \leq H$, we get that $Y \leq O_p(\langle Y^H \rangle)$. Hence $\langle Y^H \rangle$ is not *p*-closed, and since *H* is *p*-irreducible, $O^p(H) \leq \langle Y^H \rangle$. Since *T* normalizes *Y* and $H = O^p(H)T$, we have $\langle Y^H \rangle = \langle Y^{O^p(H)} \rangle$ and so

$$O^{p}(H) \leq \langle Y^{O^{p}(H)} \rangle = [O^{p}(H), Y]Y$$

Hence $O^p(H) \leq [O^p(H), Y]$, and (c) is proved.

LEMMA 1.30. (a) Let D be a normal p-subgroup of H. Then H is (strongly) p-irreducible if and only if H/D is (strongly) p-irreducible.

(b) Let $K \leq H$ and D a K-invariant p-subgroup of H. Then K is (strongly) p-irreducible, if and only if KD is (strongly) p-irreducible and if and only if KD/D is (strongly) p-irreducible.

PROOF. (a): Let $N \leq H$ and put $\overline{H} := H/D$. Since D is a p-group

N p-closed $\iff ND p$ -closed $\iff \overline{N} p$ -closed.

Moreover, since for every $X \leq H$, $O^p(X)$ does not have any non-trivial *p*-factor groups, one easily gets $O^p(N) = O^p(ND)$ and $O^p(\overline{H}) = \overline{O^p(H)}$. This gives

$$O^p(H) \leqslant N \quad \Longleftrightarrow \quad O^p(H) \leqslant ND \quad \Longleftrightarrow \quad O^p(\overline{H}) \leqslant \overline{N},$$

and

 $[N,H] \leqslant O_p(H) \quad \Longleftrightarrow \ [ND,H] \leqslant O_p(H) \quad \Longleftrightarrow \ [\overline{N},\overline{H}] \leqslant O_p(\overline{H}).$

Now (a) follows from the definition of (strongly) *p*-irreducible.

(b): Since $K \cap D$ is a normal *p*-subgroup of K, (a) shows that K is (strongly) *p*-irreducible if and only if $K/K \cap D$ is (strongly) *p*-irreducible. Also D is a normal *p*-subgroup of KD and so KD is (strongly) *p*-irreducible if and only KD/D is (strongly) *p*-irreducible. Since $K/K \cap D \cong KD/D$, this gives (b).

LEMMA 1.31. Every strongly p-irreducible finite group is p-irreducible.

PROOF. Suppose H is strongly p-irreducible. Then H is not p-closed. Let $N \leq H$. If $[N, H] \leq O_p(H)$, then $N/N \cap O_p(H)$ is abelian and N is p-closed. If $[N, H] \leq O_p(H)$, then the definition of strongly p-irreducible gives $O^p(H) \leq N$. Thus H is p-irreducible.

LEMMA 1.32. Suppose that there exists a non-empty H-invariant set of subgroups \mathcal{K} of H such that for $R := \langle \mathcal{K} \rangle$ and $E \in \mathcal{K}$:

- (i) H acts transitively on \mathcal{K} .
- (ii) $O^p(H) \leq R$.
- (iii) $EO_p(H) \triangleleft RO_p(H)$.
- (iv) E is strongly p-irreducible.

Then the following hold:

- (a) For $E, K \in \mathcal{K}$ either $O^p(EO_p(H)) = O^p(KO_p(H))$ or $[E, K] \leq O_p(H)$.
- (b) *H* is *p*-irreducible.

PROOF. Put $\overline{H} := H/O_p(H)$. Then \overline{H} and $\overline{\mathcal{K}}$ satisfy (i)–(iii). By (iv) E is strongly p-irreducible and so by 1.30(b) also $\overline{E} = EO_p(H)/O_p(H)$ is strongly p-irreducible. Thus (iv) holds for \overline{E} . Hence \overline{H} and $\overline{\mathcal{K}}$ satisfy (i) –(iv).

Moreover, if the claims (a) and (b) hold for \overline{H} and $\overline{\mathcal{K}}$, then they also hold for H and \mathcal{K} , again with the help of 1.30 in the case of (b). Thus, we may assume that $O_p(H) = 1$. Then $E \leq R$. As H acts transitively on \mathcal{K} , $R = \langle E^H \rangle$. Since E is strongly p-irreducible, E is p-irreducible by 1.31. Hence 1.29(b) gives $O^p(E) \leq E'$ and so

$$(*) Op(R) = \langle Op(E)H \rangle \leqslant \langle E'H \rangle \leqslant R'.$$

(a): Let $E, K \in \mathcal{K}$. Since E and K normalize each other, $D := [K, E] \leq K \cap E$, and D is normal in E and K. Since E is strongly p-irreducible, either $D \leq Z(E)$ or $O^p(E) \leq D$ and by symmetry also $D \leq Z(K)$ or $O^p(K) \leq D$.

If $O^p(E) \leq D$ and $O^p(K) \leq D$, then $O^p(K) = O^p(D) = O^p(E)$, and (a) holds. Thus, we may assume without loss that $D \leq Z(E)$. Pick $T_E \in Syl_p(E)$. Since $O_p(E) \leq O_p(H) = 1$, both Z(E) and D are p'-groups. Note that T_E centralizes D. We conclude that $DT_E = D \times T_E$ and $T_E = O_p(DT_E)$. Since K normalizes DT_E , it also normalizes T_E , and $[T_E, K] \leq T_E \cap D = 1$. We conclude that K centralizes every Sylow p-subgroup of E. Since E is p-irreducible, 1.29(a) gives $E = \langle T_E^E \rangle$. Hence [E, K] = 1, and (a) is proved.

(b): Let N be a normal subgroup of H. We need to show that $O^p(H) \leq N$ or N is p-closed. Suppose first that $O^p(E) \leq N$. Then by $(*) O^p(R) = \langle O^p(E)^H \rangle \leq N$. By (ii) $O^p(H) \leq R$ and so $O^p(H) \leq O^p(R) \leq N$.

Suppose next that $O^p(E) \leq N$ for all $E \in \mathcal{K}$. Since E is strongly p-irreducible by (iv), this gives $[E \cap N, E] \leq O_p(E) = 1$. Since $E \leq R$, $[R \cap N, E] \leq E \cap N$. So $[R \cap N, E, E] = 1$ and with the Three Subgroups Lemma $[R \cap N, E'] = 1$. Since $R \cap N \leq H$ we get $[R \cap N, \langle E'^H \rangle] = 1$. By (*), $O^p(R) \leq \langle E'^H \rangle$, and thus $[R \cap N, O^p(R)] = 1$. In particular, $[R \cap N, O^p(R \cap N)] = 1$, so $R \cap N$ is p-closed. As $O_p(H) = 1$ this shows that $R \cap N$ is a p'-group. Since $[R \cap N, O^p(R)] = 1$, R and so also E acts a p-group on $N \cap R$. Thus coprime action gives $[R \cap N, E] = [R \cap N, E, E] = 1$. Since this holds for all $E \in \mathcal{K}$ and since $R = \langle \mathcal{K} \rangle$ this gives $[R \cap N, R] = 1$. Hence [N, R, R] = 1 and by the Three Subgroups Lemma, [R', N] = 1. By (*) $O^p(R) \leq R'$ and thus $[O^p(R), N] = 1$. By (ii) $O^p(H) \leq O^p(R)$. It follows that $[O^p(H), N] = 1$, so $[O^p(N), N] = 1$, and N is p-closed. \Box

LEMMA 1.33. Suppose that H is p-irreducible. Let V be an \mathbb{F}_pH -module with $[V, O^p(H)] \neq 0$.

- (a) $C_H(V)$ is p-closed.
- (b) $C_T(V) \leq O_p(H)$ for all p-subgroups T of H.

PROOF. Note that $O^p(H) \leq C_H(V)$. Hence (a) follows from the definition of *p*-irreducible, and (b) follows from (a).

LEMMA 1.34. Suppose that H is p-irreducible. Let V be an \mathbb{F}_pH -module with $[V, O^p(H)] \neq 1$ and $[V, O_p(H)] = 1$.

- (a) $C_T(V) = T \cap O_p(H)$ for all p-subgroups T of H.
- (b) V is p-reduced for H.

(c) Let U be an H-submodule of V minimal with $[U, O^p(H)] \neq 0$. Then U is a quasisimple H-module.

PROOF. (a): By 1.33(a), $C_T(V) \leq O_p(H)$. Since $[V, O_p(H)] = 0$, this gives (a).

(b): Let $R/C_H(V) = O_p(H/C_H(V))$. Then $O^p(R) \leq C_H(V)$. Since $O^p(O^p(H)) = O^p(H) \leq C_H(V)$ this gives $O^p(H) \leq R$. The definition of *p*-irreducible now shows that *R* is *p*-closed. Since $O_p(R) \leq O_p(H) \leq C_H(V)$ we conclude that $R/C_R(V)$ is a *p*'-group. Thus $R = C_H(V)$ and *V* is *p*-reduced.

(c): Recall from the definitions, see A.2, that U is a perfect H-module if $0 \neq U = [U, H]$ and that U is a quasisimple H-module if U is perfect and p-reduced for H and $U/C_U(O^p(H))$ is a simple H-module.

Since $[U, O^p(H)] \neq 0$ we have $[U, O^p(H)] \leq C_U(O^p(H))$. By minimality of $U, C_U(O^p(H))$ is the unique maximal *H*-submodule of *U* and so $U = [U, O^p(H)]$ and $U/C_U(O^p(H))$ is simple. In particular, U = [U, H] and thus *U* is a perfect *H*-module. By (b) applied to *U*, *U* is *p*-reduced for *H*. Thus *U* is *H*-quasisimple.

LEMMA 1.35. Suppose that H is p-irreducible and of characteristic p. Then either

 $Y_H = \Omega_1 Z(O_p(H))$ and $[Y_H, O^p(H))] \neq 1$,

or

$$[Y_H, H] = 1$$
 and $[\Omega_1 Z(O_p(H)), O^p(H)] = 1.$

PROOF. Put $V := \Omega_1 Z(O_p(H))$. Recall from 1.24(g) that $Y_H \leq V$.

Assume first that $[V, O^p(H)] \neq 1$. Then 1.34(b) shows that V is p-reduced for H. Hence $V \leq Y_H$. Since $Y_H \leq V$ this gives $V = Y_H$.

Assume next that $[V, O^p(H)] = 1$. Then $[Y_H, O^p(H)] = 1$ since $Y_H \leq V$, and $H/C_H(Y_H)$ is a *p*-group. Since Y_H is *p*-reduced this gives $[Y_H, H] = 1$.

1.4. Y-Minimal Groups

Recall from the introduction:

DEFINITION 1.36. *H* is *Y*-minimal for $Y \leq H$, if $H = \langle Y^H \rangle$ and *Y*-is contained in unique maximal subgroup of *H*; and *H* is *p*-minimal if *H* is *T*-minimal for $T \in Syl_n(H)$.

LEMMA 1.37. Suppose that H is p-minimal. Then H is p-irreducible.

PROOF. Let $T \in Syl_p(H)$. By the definition of *p*-minimality, $H = \langle T^H \rangle$ and *T* is contained in a unique maximal subgroup *M* of *H*. Hence $T \leq M < H$, $\langle T^H \rangle \leq M$ and $T \leq H$. So *H* is not *p*-closed.

Let $N \leq H$. Then either NT = H or $N \leq M$. In the first case $O^p(H) \leq N$. In the second case by a Frattini argument $H = NN_H(N \cap T)$, so $T \leq N_H(N \cap T) \leq M$ and thus $N_H(T \cap N) = H$. Hence $T \cap N \leq O_p(H)$, and N is p-closed.

LEMMA 1.38. Suppose that H is p-minimal and $N \leq H$. Then either H/N is a p-group or H/N is p-minimal.

PROOF. Let $T \in Syl_p(H)$. Since H is p-minimal, $H = \langle T^H \rangle$ and T is contained in a unique maximal subgroup M of H. If $N \leq M$, then $H/N = \langle (TN/N)^{H/N} \rangle$ and M/N is the unique maximal subgroups of H/N containing TN/N, and so H/N is p-minimal. So suppose $N \leq M$. Since $T \leq NT$ and $NT \leq M$, NT is not contained in any maximal subgroup of H. Thus NT = H and H/N is a p-group.

LEMMA 1.39. Suppose that there exists a non-empty H-invariant set of subgroups \mathcal{K} of H such that for $R := \langle \mathcal{K} \rangle$ and $E \in \mathcal{K}$:

(i) H acts transitively on \mathcal{K} .

(ii) $O^p(H) \leq R.$ (iii) $EO_p(H) \leq RO_p(H).$

(iv) E is p-minimal.

Then H is p-minimal.

PROOF. Put $\overline{H} := H/O_p(H)$. Clearly, \overline{E} is *p*-minimal since *E* is. Hence \overline{H} and $\overline{\mathcal{K}}$ satisfy (i) – (iv). Moreover, \overline{H} is *p*-minimal if and only if *H* is *p*-minimal. Thus, we may assume that $O_p(H) = 1$. In particular, by (iii), $E \leq R$ for $E \in \mathcal{K}$.

Since $O^p(H) \leq R$, H = RT. Since $E \leq R$ we know that R acts trivially on \mathcal{K} , while by (i) H = RT acts transitively on \mathcal{K} . Hence T acts transitively on \mathcal{K} .

Let $E \in \mathcal{K}$. Then $E \leq R \leq H$ and so $T \cap E \in Syl_p(E)$. Since E is p-minimal, $T \cap E$ is contained in a unique maximal subgroup E_T of E and $E = \langle (T \cap E)^E \rangle \leq \langle T^H \rangle$. Thus $R \leq \langle T^H \rangle$ and $H = RT = \langle T^H \rangle$. Put $D := \bigcap_{E \in \mathcal{K}} N_R(E_T)$. Suppose that H = DT. Then $O^p(H) \leq D$ and so also $O^p(E) \leq D$. Hence

$$E = O^{p}(E)(E \cap T) = O^{p}(E)E_{T} \leq DE_{T} \leq N_{R}(E_{T}).$$

But then $\langle (E \cap T)^E \rangle \leq E_T$, a contradiction since E is p-minimal. Thus $H \neq DT$.

We will show that DT is the unique maximal subgroup of H containing T. For this let $M \leq H$ with $T \leq M$. Suppose first that $M \cap E \leq E_T$ for some $E \in \mathcal{K}$. Since $T \cap E \leq M \cap E$ and E_T is the unique maximal subgroup of E containing $T \cap E$, this gives $E = M \cap E \leq M$. The transitivity of T on \mathcal{K} now shows that $R = \langle \mathcal{K} \rangle = \langle E^T \rangle \leq M$ and H = RT = M.

Suppose next that $M \cap E \leq E_T$ for all $E \in \mathcal{K}$. Since $T \cap E \leq M \cap E$, E_T is the unique maximal subgroup of E containing $M \cap E$. Note that $M \cap R$ normalizes E and $M \cap E$ and so $M \cap R$ normalizes E_T . Since this holds for all $E \in \mathcal{K}$, $M \cap R \leq D$. From $T \leq M \leq H = RT$ we have $M = (M \cap R)T$ and so $M \leq DT$.

We have proved that DT is the unique maximal subgroup of H containing T and that $H = \langle T^H \rangle$. Thus H is p-minimal.

LEMMA 1.40. Let L be a group acting on a group V. Suppose that $X \leq L$ and $g \in L$ such that [V, X, X] = 1 and $L = \langle X, X^g \rangle$. Then for W := [V, L]

$$W = [V, X][V, X^g], C_W(X) = [V, X] and C_W(L) = [V, X] \cap [V, X^g]$$

PROOF. Clearly

$$W = \begin{bmatrix} V, L \end{bmatrix} = \begin{bmatrix} V, \left\langle X, X^g \right\rangle \end{bmatrix} = \begin{bmatrix} V, X \end{bmatrix} \begin{bmatrix} V, X^g \end{bmatrix}$$

and

$$C_W(L) = C_W(\langle X, X^g \rangle) = C_W(X) \cap C_W(X^g).$$

Thus, it remains to show that $C_W(X) = [V, X]$.

Since [V, X, X] = 1, $[V, X] \leq C_W(X)$. As $W = [V, X][V, X^g]$, this implies

$$C_W(X) = [V, X]([V, X^g] \cap C_W(X)).$$

Moreover,

 $[V, X^g] \cap C_W(X) = [V, X^g] \cap C_W(X) \cap C_W(X^g) = [V, X^g] \cap C_W(L) \leq [V, X^g] \cap C_W(g) \leq [V, X].$ This shows that $C_W(X) = [V, X].$

LEMMA 1.41 (L-Lemma). Suppose that H is p-minimal. Let $T \in Syl_p(H)$, and $A \leq T$ such that $A \leq O_p(H)$. Also let M be the unique maximal subgroup of H containing T. Then there exists a subgroup $L \leq H$ with $AO_p(H) \leq L$ satisfying:

- (a) $AO_p(L)$ is contained in a unique maximal subgroup L_0 of L, and $L_0 = L \cap M^g$ for some $g \in H$.
- (b) $L = \langle A, A^x \rangle O_p(L)$ for every $x \in L \setminus L_0$.

PROOF. This is the *L*-Lemma on page 34 of [**PPS**]. Note that although formally the L-Lemma was proved under Hypothesis 1 of Section 3 in [**PPS**], this hypothesis was never used in the proof. \Box

LEMMA 1.42. Let L be a finite group and L_0 a maximal subgroup of L, and let $Y \leq T \in Syl_p(L_0)$. Suppose that L is Y-minimal. Then the following hold:

- (a) $Y \leq O_p(L)$.
- (b) $N_L(T) \leq L_0$ and $O_p(L) \leq L_0$. In particular, $T \in Syl_p(L)$.
- (c) $N_L(L_0) = L_0$.
- (d) $\bigcap L_0^L / O_p(L) = \Phi(L/O_p(L))$. In particular, $\bigcap L_0^L$ is p-closed.
- (e) Let $N \leq L$ with $N \leq L_0$. Then $N/O_p(N)$ is a nilpotent p'-group. In particular, N is p-closed.
- (f) $L = \langle Y, Y^g \rangle$ for each $g \in L \setminus L_0$.
- (g) $Y \cap Y^g = C_Y(L)$ if Y is abelian and $g \in L \setminus L_0$.

PROOF. (a): By [MS6, Lemma 2.5(b)] Y is not subnormal in L and so $Y \leq O_p(L)$.

(b): By [MS6, Lemma 2.5(h)], L_0 contains the normalizer of a Sylow *p*-subgroup of *L*. Hence $N_L(T) \leq L_0$ and $O_p(L) \leq L_0$.

(c): See [**MS6**, Lemma 2.5(b)].

(d): Put $D := \bigcap L_0^L$. By [**MS6**, Lemma 2.7(c)] applied to $L/O_p(L)$, $D/O_p(L)$ is a p'-group and $D/O_p(L) = \Phi(L/O_p(L))$. In particular, D is p-closed and so (d) holds.

- (e): Since $N \leq \bigcap L_0^L$, this follows from (d).
- (f): See [**MS6**, Lemma 2.5(c)].

(g): Let Y be abelian and $g \in L \setminus L_0$. By (f) $L = \langle Y, Y^g \rangle$. Thus $Y \cap Y^g \leq C_Y(L)$, and clearly $C_Y(L) \leq Y \cap Y^g$.

LEMMA 1.43. Let L be a finite group and L_0 a maximal subgroup of L, and let Y be an elementary abelian p-subgroup of L_0 . Suppose that

- (i) L is Y-minimal and of characteristic p, and
- (ii) $O_p(L) \leq N_L(Y)$.

Put

$$A := \langle (O_p(L) \cap Y)^L \rangle \text{ and } \overline{L} := L/C_Y(L),$$

and let B be an L-invariant subgroup of A. Then the following hold for every $g \in L \setminus L_0$:

- (a) $\Phi(A) = A' = [A \cap Y, A] = [A \cap Y, A \cap Y^g] \leq C_Y(L).$
- (b) $Y \cap Y^g = (A \cap Y) \cap (A \cap Y^g) = C_Y(L) = C_A(L).$
- (c) $C_L(\overline{a}) \leq L_0$ for every $1 \neq \overline{a} \in \overline{A \cap Y}$.
- (d) $\overline{B \cap Y} = C_{\overline{B}}(Y) = C_{\overline{B}}(y) = [\overline{B}, y]$ for every $y \in Y \setminus O_p(L)$.
- (e) $\overline{B} = \overline{B \cap Y} \times \overline{B \cap Y^g}$, $B = (B \cap Y)(B \cap Y^g)$ and $|B/B \cap Y| = |B \cap Y/C_{B \cap Y}(L)|$.
- (f) If $\overline{B} \neq 1$ and $b \in B \setminus Y$, then $C_Y(\overline{b}) = C_Y(\overline{B}) = A \cap Y$ and $C_Y(B) \leq C_Y(b) \leq A \cap Y$.
- (g) $B \cap Y = C_B(Y) = C_B(y) = [B, Y]C_{B \cap Y}(L) = [B, y]C_{B \cap Y}(L)$ for every $y \in Y \setminus O_p(L)$.
- (h) $C_{\overline{B}}(L) = 1$ and $C_B(O^p(L)) = C_B(L) = B \cap C_Y(L) = B \cap Y \cap Y^g$.
- (i) $[a, Y] \cap C_Y(L) = 1$ for all $a \in Z(A)$.
- (j) $\overline{A} \neq 1$, $C_A(A \cap Y) = Z(A)(A \cap Y)$ and $C_Y(A) = Z(A) \cap Y$.
- (k) $L_0^g \cap Y = A \cap Y$.
- (1) $|Y/C_Y(B)| = |Y/A \cap Y||A \cap Y/C_Y(B)| \leq |B/C_B(Y)||A \cap Y/C_Y(B)|$ if $\overline{B} \neq 1$.
- (m) $A/C_A(Y)$ is elementary abelian, $[Y, A] \neq 1$ and A acts nearly quadratically ¹ on Y.
- (n) $|Y/C_Y(A)| \leq |A/C_A(Y)|^2$.
- (o) If $B \leq Z(A)$, then B is a strong offender² on Y.
- (p) L has no central chief factor on \overline{A} .
- (q) $Z(A) = \Omega_1 Z(A).$

Proof.

 1° . $L = \langle Y, Y^g \rangle$.

¹for the definition of nearly quadratic see A.1(4)

² for the definition of a strong offender see A.7(4)

This holds by 1.42(f).

2°.
$$C_Y(L) = Y \cap Y^g = (A \cap Y) \cap (A \cap Y^g).$$

By 1.42(g) $Y \cap Y^g = C_Y(L)$. Also $C_Y(L) \leq Y \cap O_p(L) \leq A$ and so (2°) follows.

$$3^{\circ}. \qquad A = (A \cap Y)(A \cap Y^g).$$

Since $A \leq O_p(L) \leq N_L(Y) \cap N_L(Y^g)$, we get $[A, Y] \leq A \cap Y$ and $[A, Y^g] \leq A \cap Y^g$. As $L = \langle Y, Y^g \rangle$, we have $[A, L] = [A, Y][A, Y^g]$. Thus

 $A = \langle (O_p(L) \cap Y)^L \rangle = \langle (A \cap Y)^L \rangle = (A \cap Y)[A, L] = (A \cap Y)[A, Y][A, Y][A, Y^g] = (A \cap Y)(A \cap Y^g),$ and (3°) is proved.

4°.
$$\Phi(A) = [A \cap Y, A \cap Y^g] \leq Y \cap Y^g = C_Y(L)$$
. In particular, \overline{A} is elementary abelian

Since $A \cap Y$ and $A \cap Y^g$ are elementary abelian, the first equality follows from (3°). The inequality holds since A normalizes Y and Y^g , and the last equality follows from (2°).

$$5^{\circ}. \qquad \overline{A} = \overline{A \cap Y} \times \overline{A \cap Y^g}. \text{ In particular, } |\overline{A}| = |\overline{A \cap Y}|^2.$$

Since \overline{A} is abelian, this follows from (2°) and (3°) .

$$6^{\circ}. \qquad |\overline{B}/C_{\overline{B}}(y)| = |[\overline{B}, y]| \leq |C_{\overline{B}}(y)| \text{ for } y \in Y. \text{ In particular, } |\overline{B}| = |[\overline{B}, y]||C_{\overline{B}}(y)|.$$

Since $B \leq O_p(L) \leq N_L(Y)$ we get $[B, Y, Y] \leq [Y, Y] = 1$, and Y acts quadratically on the abelian group \overline{B} . Thus

$$\phi: \overline{B} \to C_{\overline{B}}(y)$$
 defined by $\overline{b} \mapsto [\overline{b}, y]$

is a homomorphism with ker $\phi = C_{\overline{B}}(y)$ and so (6°) holds.

$$7^{\circ}. \qquad [\overline{A}, y] = [\overline{A}, Y] = C_{\overline{A}}(y) = \overline{A \cap Y} = C_{\overline{A}}(Y) \text{ for each } y \in Y \setminus O_p(L).$$

By 1.42(d), $\bigcap L_0^L$ is *p*-closed. Since $y \notin O_p(L)$, this implies $y \notin \bigcap L_0^L$, and there exists $h \in L$ such that $y \notin L_0^h$. Hence by 1.42(f) $L = \langle Y^h, Y^{hy} \rangle$ and thus also $L = \langle y, Y^h \rangle$. In particular, $h \notin L_0$, and (5°) applied to h in place of g gives

$$\overline{A} = \overline{A \cap Y} \times \overline{A \cap Y^h}$$

Since Y^h is abelian, $\overline{A \cap Y^h} \leq C_{\overline{A}}(Y^h)$. Thus

$$C_{\overline{A}}(y) \cap \overline{A \cap Y^h} \leqslant C_{\overline{A}}(\langle y, Y^h \rangle) = C_{\overline{A \cap Y^h}}(L) \leqslant \overline{A \cap Y} \cap \overline{A \cap Y^h} = 1,$$

and using that $\overline{A \cap Y} \leq C_{\overline{A}}(y)$,

$$C_{\overline{A}}(y) = C_{\overline{A}}(y) \cap \left(\overline{A \cap Y} \times \overline{A \cap Y^h}\right) = \overline{A \cap Y} \left(C_{\overline{A}}(y) \cap \overline{A \cap Y^h}\right) = \overline{A \cap Y}.$$

By (5°) we get $|\overline{A}| = |\overline{A \cap Y}|^2 = |C_{\overline{A}}(y)|^2$ and by (6°) applied to A in place of B, $|\overline{A}| = |[\overline{A}, y]||C_{\overline{A}}(y)|$. Thus $|[\overline{A}, y]| = |C_{\overline{A}}(y)|$.

Moreover, the quadratic action of Y on \overline{A} gives

$$\overline{A}, y] \leqslant [\overline{A}, Y] \leqslant C_{\overline{A}}(Y) \leqslant C_{\overline{A}}(y) = \overline{A \cap Y}.$$

As $|[\overline{A}, y]| = |C_{\overline{A}}(y)|$, equality holds everywhere and (7°) is proved.

(a): This is (4°) .

(b): Note that $\overline{C_A(L)} \leq \overline{C_A(Y)}$. By $(7^\circ) C_{\overline{A}}(Y) = \overline{A \cap Y}$ and so $C_A(L) \leq A \cap Y \cap Y^g$. By $(2^\circ) A \cap Y \cap Y^g = Y \cap Y^g = C_Y(L) \leq C_A(L)$. Hence $C_A(L) = A \cap Y \cap Y^g$, and (b) holds.

(c): Pick $1 \neq \overline{a} \in \overline{A \cap Y}$. Then $Y \leq C_L(\overline{a})$ and so either $C_L(\overline{a}) \leq L_0$ or $C_L(\overline{a}) = L$. In the second case $\overline{a} \in \overline{A \cap Y^g}$, and (5°) yields $\overline{a} = 1$, a contradiction.

(d) and (e): By
$$(7^{\circ})$$
, $[\overline{A}, y] = [\overline{A}, Y] = C_{\overline{A}}(y) = \overline{A \cap Y}$, and intersecting with B gives
 $[\overline{B}, y] \leq [\overline{B}, Y] \leq C_{\overline{B}}(y) = \overline{B \cap Y}$,
By $(5^{\circ}) \overline{A} = \overline{A \cap Y} \times \overline{A \cap Y^g}$ and so $\overline{B \cap Y} \cap \overline{B \cap Y^g} = 1$. Thus

$$|\overline{B \cap Y}|^2 = |\overline{B \cap Y} \overline{B \cap Y^g}| \le |\overline{B}|.$$

In addition, by (6°)

$$|[\overline{B}, y]||C_{\overline{B}}(y)| = |\overline{B}|.$$

Combining the last three displayed equations we get

$$\overline{B}| = |[\overline{B}, y]| |C_{\overline{B}}(y)| \leq |\overline{B \cap Y}|^2 = |\overline{B \cap Y} \overline{B \cap Y^g}| \leq |\overline{B}|,$$

and so (d) and (e) follow.

(f): Let $b \in B \setminus Y$ and $y \in Y \setminus A$. By (d) $C_{\overline{B}}(y) = \overline{B \cap Y}$, so $y \notin C_Y(\overline{b})$ and $C_Y(\overline{b}) \leqslant A \cap Y$. By (a) $[A, A \cap Y] \leqslant C_Y(L)$ and so $A \cap Y \leqslant C_Y(\overline{b})$. Hence $C_Y(\overline{b}) = A \cap Y$, and (f) holds.

(g): This follows from (d) by taking preimages in B.

(h): We have

$$C_{\overline{B}}(L) \leqslant C_{\overline{B}}(Y) \cap C_{\overline{B}}(Y^g) \stackrel{\text{(d)}}{=} \overline{B \cap Y} \cap \overline{B \cap Y^g} \stackrel{\text{(e)}}{=} 1.$$

Hence also $C_{\overline{B}}(O^p(L)) = 1$ and

$$C_B(O^p(L)) \leq C_Y(L) \cap B \leq C_B(L) \leq C_B(O^p(L)).$$

(i): Let $y \in Y$ and $a \in Z(A)$ with $[a, y] \in C_Y(L)$. If $y \in O_p(L)$, then $y \in A$ and [a, y] = 1. If $y \notin O_p(L)$, then (e) gives $\overline{a} \in C_{\overline{A}}(y) = \overline{A \cap Y}$. So $a \in Y$ and again [a, y] = 1. As Y is abelian, $[a, Y] = \{[a, y] \mid y \in Y\}$, and we conclude that $[a, Y] \cap C_Y(L) = 1$. Hence (i) holds.

(j): By $(3^{\circ}) A = (A \cap Y)(A \cap Y^g)$ and so

$$C_A(A \cap Y) = (A \cap Y)C_{A \cap Y^g}(A \cap Y) = (A \cap Y)Z(A)$$

Since $[O_p(L), Y] \leq O_p(L) \cap Y \leq A$, we get that $C_Y(\overline{A})$ centralizes the factors of the normal *L*-series $1 \leq C_Y(L) \leq A \leq O_p(L)$. Since by Hypothesis (i) *L* has characteristic *p*, 1.4(c) shows that $C_Y(\overline{A}) \leq O_p(L)$. As $Y \leq O_p(L)$ we conclude that $\overline{A} \neq 1$. Moreover, since $C_Y(A) \leq C_Y(\overline{A}) \leq O_p(L)$

$$C_Y(A) = A \cap C_Y(A) = Z(A) \cap Y.$$

(k): Choose $T_0 \in Syl_p(L_0^g)$ with $L_0^g \cap Y \leq T_0$. Then choose $x \in L_0^g$ with $Y^{gx} \leq T_0$. Note that $L_0^{gx} = L_0^g$ and $gx \notin L_0$. So replacing g by gx we may assume that $Y^g \leq T_0$. If $L_0^g \cap Y \leq O_p(L)$, then $L_0^g \cap Y = O_p(L) \cap Y = A \cap Y$ and (k) holds. Assume that $L_0 \cap Y \notin O_p(L)$. Since $\langle L_0^g \cap Y, Y^g \rangle \leq T_0$

$$C_{\overline{A}}(T_0) \leqslant C_{\overline{A}}(L_0^g \cap Y) \cap C_{\overline{A}}(Y^g) \stackrel{(7^\circ)}{=} \overline{A \cap Y} \cap \overline{A \cap Y^g} \stackrel{(5^\circ)}{=} 1,$$

which is impossible since T_0 and \overline{A} are p-groups and $\overline{A} \neq 1$ by (j).

(1): Suppose that $\overline{B} \neq 1$. Then

$$C_Y(L) \leq C_Y(B) \stackrel{\text{(f)}}{\leq} A \cap Y \text{ and } |B/C_B(Y)| \stackrel{\text{(e)}}{=} |B \cap Y/C_{B \cap Y}(L)| = |\overline{B \cap Y}|.$$

Since $\overline{B} \neq 1$ we can pick $b \in B \setminus Y$. Then

$$|Y/A \cap Y| \stackrel{\text{(f)}}{=} |Y/C_Y(\overline{b})| \stackrel{\text{(6^{\circ})}}{=} |[\overline{b}, Y]| \leq |\overline{B \cap Y}| = |B/C_B(Y)|.$$

Thus

$$|Y/C_Y(B)| = |Y/A \cap Y||A \cap Y/C_Y(B)| \le |B/C_B(Y)||A \cap Y/C_Y(B)|.$$

(m): By (a) $A' = \Phi(A) \leq C_Y(L) \leq C_A(Y)$, and so $A/C_A(Y)$ is elementary abelian. By (j), $\overline{A} \neq 1$ and so $[A, L] \neq 1$. Since $L = \langle A^L \rangle$ this gives $[A, Y] \neq 1$. Note that $[Y, A] \leq A$ and, as seen above, $[A, A] = A' \leq C_Y(L) \leq C_Y(A)$. Thus A acts cubically on Y. By (g) $A \cap Y = [Y, A]C_Y(L) \leq [Y, A]C_Y(A)$ and by (f) $C_Y(A) \leq A \cap Y$. So

$$[Y,A]C_Y(A) = A \cap Y.$$

Let $y \in Y \setminus [Y, A]C_Y(A)$. We conclude that $y \in Y \setminus A = Y \setminus O_p(L)$, and (g) gives $[A, y]C_Y(L) = A \cap Y$. Since $[Y, A]C_Y(A) = A \cap Y$ this implies

$$[A, y]C_Y(A) = [Y, A]C_Y(A).$$

Hence A acts nearly quadratically on Y.

(n): By bb
$$C_A(Y) = A \cap Y$$
 and so $C_Y(L) \leq C_A(Y) = A \cap Y$. We get

$$|A \cap Y/C_A(Y)| \leq |A \cap Y/C_Y(L)| \stackrel{\text{(e)}}{=} |A/A \cap Y|,$$

and so

$$|Y/C_Y(A)| \stackrel{(1)}{\leqslant} |A/A \cap Y| |A \cap Y/C_Y(A)| \leqslant |A/A \cap Y| |A \cap Y/C_Y(L)| = |A/A \cap Y|^2 = |A/C_A(Y)|^2.$$

(o): Suppose that $B \leq Z(A)$. If B = 1, then [B, Y] = 1 and (o) holds. So suppose that $B \neq 1$. Then by (f) $C_Y(B) \leq A \cap Y$. Since $B \leq Z(A)$ this gives $C_Y(B) = A \cap Y$. Thus

$$|Y/C_Y(B)| \stackrel{(1)}{\leqslant} |B/C_B(Y)||A \cap Y/C_Y(B)| = |B/C_B(Y)|,$$

so B is an offender on Y. Let $b \in B \setminus C_B(Y)$. Then $b \notin Y$. Thus

(1)

$$C_Y(B) \leq C_Y(b) \stackrel{(\mathrm{f})}{\leq} A \cap Y = C_Y(B)$$

so B is a strong offender on Y.

(p): Suppose that L has a central chief factor on \overline{A} . Then there exists an L-invariant subgroup B of A with $C_Y(L) \leq B$ and $[\overline{B}, L] < \overline{B}$. But by (d), $\overline{Y \cap B} = [\overline{B}, y] \leq [\overline{B}, L]$ and so by (e) $\overline{B} = \overline{B \cap Y} \times \overline{B \cap Y^g} \leq [\overline{B}, L]$, a contradiction.

(q): By (e) $Z(A) = (Z(A) \cap Y)(Z(A) \cap Y^g)$. Since Z(A) is abelian and Y is elementary abelian we conclude that Z(A) is elementary abelian.

1.5. Weakly Closed Subgroups

In this section Q is a fixed non-trivial p-subgroup of H. Recall that Q is a weakly closed subgroup of H if every Sylow p-subgroup of H contains exactly one H-conjugate of Q.

NOTATION 1.44. For $L \leq H$

$$L^{\circ} := \langle P \in Q^G \mid P \leq L \rangle \text{ and } L_{\circ} = O^p(L^{\circ}).$$

(So L° is the weak closure of Q in L with respect to H.)

LEMMA 1.45. The following statements are equivalent:

- (a) Q is a weakly closed subgroup of H.
- (b) Q = P for all $P \in Q^G$ with $[Q, P] \leq Q \cap P$.
- (c) $Q \leq N_H(R)$ for all p subgroups R of H with $Q \leq R$.

PROOF. (a) \implies (b): Let $P \in Q^H$ with $[Q, P] \leq Q \cap P$. Then QP is a *p*-group, and since Q is weakly closed in H, PQ contains only one conjugate of Q in H. Thus P = Q, and (b) holds.

(b) \implies (c): Let R be p-subgroup with $Q \leq R$, and let $r \in N_H(N_R(Q))$. Then both Q and Q^r are normal in $N_R(Q)$ and so (b) shows $Q = Q^r$. Thus $N_H(N_R(Q)) \leq N_H(Q)$. In particular, $N_R(N_R(Q)) = N_R(Q)$. Hence $N_R(Q) = R$ and $N_H(R) \leq N_H(Q)$.

(c) \implies (a): Let $Q \leq T \in Syl_p(H)$ and $P \in Q^H$ with $P \leq T$. By (c) both P and Q are normal in $N_H(T)$. In particular, Q and P are normal in T and so by Burnside's Lemma [KS, 7.1.5], $P = Q^h$ for some $h \in N_H(T)$. Thus $P = Q^h = Q$ and Q is a weakly closed subgroup of H.

LEMMA 1.46. Let Q be a weakly closed p-subgroup of H, $Q \leq K \leq H$ and $N \leq H$. Then the following hold:

- (a) Q is a weakly closed subgroup of K.
- (b) Let $g \in H$ with $Q^g \leq K$, then $Q^g = Q^k$ for some $k \in K$.
- (c) $Q^K = Q^{K^\circ}$ and $K^\circ = \langle Q^K \rangle = \langle Q^{K^\circ} \rangle$.
- (d) K° is the subnormal closure of Q in K. In particular, $K^{\circ} = K_{\circ}Q = \langle Q^{O^{p}(K)} \rangle = \langle Q^{K_{\circ}} \rangle$.
- (e) $K_{\circ} = [K_{\circ}, Q].$
- (f) $K^{\circ} \triangleleft \triangleleft H$ iff $K^{\circ} = H^{\circ}$ iff $Q^{H} = Q^{K}$ iff $H = KN_{H}(Q)$.
- (g) $N_K(Q)$ is a parabolic subgroup of K, in particular $N = N_N(Q)O^p(N)$.

(h) $N = N_N(Q)[N,Q].$

- (i) $[N,Q] = (Q \cap [N,Q])[N,Q,Q].$
- (j) QN/N is a weakly closed subgroup of H/N.

PROOF. (a): This is an immediate consequence of the definition of a weakly closed subgroup.

(b): Let $Q \leq T \in Syl_p(K)$ and choose $k \in H$ with $Q^g \leq T^k$. Since Q is weakly closed in T with respect to H, $Q^g = Q^k$.

(c): Let $\mathcal{Q} = \{Q^g \mid g \in H, Q^g \leq K\}$. By (b), $\mathcal{Q} = Q^K$ and by (b) applied to K° in place of K, $\mathcal{Q} = Q^{K^{\circ}}$. Hence $Q^K = Q^{K^{\circ}}$ and $K^{\circ} = \langle Q \rangle = \langle Q^K \rangle = \langle Q^{K^{\circ}} \rangle$.

(d): Since $K^{\circ} = \langle Q^K \rangle = \langle Q^{K^{\circ}} \rangle$, K° is the subnormal closure of Q in K. Now 1.13 shows that $K^{\circ} = O^p(K^{\circ})Q = K_{\circ}Q$ and $K^{\circ} = \langle Q^{O^p(K^{\circ})} \rangle = \langle Q^{K_{\circ}} \rangle$. Note that $K_{\circ} \leq O^p(K) \leq K$ and so

$$K^{\circ} = \langle Q^{K_{\circ}} \rangle \leqslant \langle Q^{O^{p}(K)} \rangle \leqslant \langle Q^{K} \rangle = K^{\circ}.$$

Thus $K^{\circ} = \langle Q^{O^{p}(K)} \rangle$, and (d) is proved.

(e): By (d) $K^{\circ} = \langle Q^{K_{\circ}} \rangle = [K_{\circ}, Q]Q$ and so $K_{\circ} = O^{p}(K^{\circ}) \leq [K_{\circ}, Q]$. Hence $K_{\circ} = [K_{\circ}, Q]$.

(f): Suppose that $K^{\circ} \leq H$. By (d) K° is the subnormal closure of Q in K, and since $K^{\circ} \leq H$, K° is also the subnormal closure of Q in H. Thus $K^{\circ} = H^{\circ}$.

If $K^{\circ} = H^{\circ}$, then by (b) applied to K and H, $Q^{K} = Q^{K^{\circ}} = Q^{H^{\circ}} = Q^{H}$. If $Q^{H} = Q^{K}$ then (c) gives $H^{\circ} = \langle Q^{H} \rangle = \langle Q^{K} \rangle = \langle K^{Q} \rangle = K^{\circ}$ and so $K^{\circ} \leq H$ and $K^{\circ} \leq H$.

So the first three statements in (f) are equivalent. By a Frattini argument, $H = N_H(Q)K$ if and only if $Q^H = Q^K$. Hence (f) holds.

(g): Let $Q \leq T \in Syl_p(K)$. Then $T \leq N_K(Q)$ and so $N_K(Q)$ is a parabolic subgroup of K.

(h): Note that $Q[N,Q] \leq NQ$. So

$$Q^{[N,Q]} = Q^{Q[N,Q]} \stackrel{\text{(f)}}{=} Q^{QN} = Q^N,$$

and thus (h) follows from a Frattini argument.

(i): By (h),

$$[N,Q] = [N_N(Q)[N,Q],Q] = [N_N(Q),Q][N,Q,Q] \le (Q \cap [N,Q])[N,Q,Q].$$

(j): Put $\overline{H} := H/N$ and let $\overline{S} \in Syl_p(\overline{H})$ with $\overline{Q} \leq \overline{S}$ and $h \in H$ with $\overline{Q}^{\overline{h}} \leq \overline{S}$. Pick $R \in Syl_p(H)$ with $Q \leq R$ and $\overline{R} = \overline{S}$. Then $Q \leq R$ and $Q^h \leq RN$. Hence by (b) $Q^h \in Q^{RN} = Q^N$ and so $\overline{Q}^{\overline{h}} = \overline{Q}$.

LEMMA 1.47. Let Q be a weakly closed subgroup of H. Suppose that H_1 and H_2 are normal subgroups of H° such that

(i) H° = H₁H₂, and
(ii) [H₁, H₂] ≤ N_H(Q).
Let i ∈ {1,2} and set K_i := (H_iQ)_◦. Then
(a) K_i = [K_i, Q] = [K_i, H_i] ≤ H'_i and K_i ≤ H°,
(b) H_◦ = K₁K₂ and [K₁, K₂] ≤ [K₁, H₂][H₂, K₁][H₁ ∩ H₂, H°] ≤ O_p(H°).
(c) Let N ≤ H. Then F*(H/N) normalizes K_iN/N.

PROOF. Let $\{i, j\} = \{1, 2\}$. By hypothesis $H_i \leq H^{\circ}$ and so

$$K_i = (H_i Q)_\circ = O^p((H_i Q)^\circ) \leqslant O^p(H_i Q) \leqslant O^p(H_i);$$

in particular, $K_i \leq H_i$. Put $Z := [H_1, H_2]$. We first show:

 $1^{\circ}. \qquad O_p(Z) \trianglelefteq H^{\circ}, \ K_iZ \trianglelefteq H^{\circ} \ and \ [Z,H^{\circ}] \leqslant O_p(Z).$

By (i) $H^{\circ} = H_1H_2$, so $Z \leq H_1H_2 = H^{\circ}$ and thus also $O_p(Z) \leq H^{\circ}$, and by (ii) $Z \leq N_H(Q)$. Thus

 $[K_i, H^\circ] = [K_i, H_i H_j] \leq [K_i, H_i] [K_i, H_j] \leq K_i Z \quad \text{and} \quad [Z, Q] \leq Z \cap Q \leq O_p(Z).$

Since $Z \leq H^{\circ}$ the first chain of inequalities gives $K_i Z \leq H^{\circ}$, and since by 1.46(c), $H^{\circ} = \langle Q^{H^{\circ}} \rangle$, the second one gives $[Z, H^{\circ}] \leq O_p(Z)$.

 $2^{\circ}. \qquad R_i := [K_i, H_i] O_p(Z) \triangleleft H^{\circ}.$

By (1°) $K_i Z$ and $O_p(Z)$ are normal in H° . Since also $H_i \triangleleft H^\circ$, we get $[K_i Z, H_i] O_p(Z) \triangleleft H^\circ$. Again by (1°) $[Z, H_i] \leq [Z, H^\circ] \leq O_p(Z)$ and so

$$[K_iZ, H_i]O_p(Z) = [K_i, H_i][Z, H_i]O_p(Z) = [K_i, H_i]O_p(Z) = R_i.$$

Thus (2°) holds.

 3° . $K_i \leq R_i$.

By 1.46(e), $K_i = [K_i, Q]$ and so

$$K_{i} = [K_{i}, Q] \leq [K_{i}, H^{\circ}] = [K_{i}, H_{1}H_{2}] = [K_{i}, H_{i}][K_{i}, H_{j}] \leq [K_{i}, H_{i}]Z \leq R_{i}Z.$$

Thus

$$K_i = [K_i, Q] \leq [R_i Z, Q] = [R_i, Q][Z, Q] \leq R_i O_p(Z) = R_i.$$

(a): Recall that $K_i \leq H_i$, so $[K_i, H_i] \leq K_i \cap H'_i$. Hence $R_i \leq K_i O_p(Z)$, and by (3°), $R_i = K_i O_p(Z)$.

Since $Z \leq H_1 \cap H_2 \leq H_i$, $O_p(Z)$ normalizes K_i and $[K_i, H_i]$. Thus

$$O^{p}([K_{i}, H_{i}]) = O^{p}([K_{i}, H_{i}]O_{p}(Z)) = O^{p}(R_{i}) = O^{p}(K_{i}O_{p}(Z)) = O^{p}(K_{i}) = K_{i}.$$

Since by (2°) $R_i \leq H^{\circ}$, this shows that $K_i \leq H^{\circ}$ and $K_i \leq [K_i, H_i]$. As $[K_i, H_i] \leq K_i$ we get $K_i = [K_i, H_i] \leq H'_i$, and (a) is proved.

(b): Again by 1.46(e) $H_{\circ} = [H_{\circ}, Q]$. Since $H^{\circ} = H_1H_2$ we have $H_{\circ} = O^p(H_1)O^p(H_2)$. By 1.46(d), $(H_iQ)^{\circ} = (H_iQ)_{\circ}Q = K_iQ$ and so $[O^p(H_i), Q] \leq (H_iQ)^{\circ} \leq K_iQ$. Hence

$$H_{\circ} = [H_{\circ}, Q] = [O^{p}(H_{1})O^{p}(H_{2}), Q] = [O^{p}(H_{1}), Q][O^{p}(H_{2}), Q] \leq K_{1}QK_{2}Q = K_{1}K_{2}Q,$$

and as $K_1K_2 \leq H_\circ = O^p(H_\circ)$ and by (a) $K_1K_2 \leq H^\circ$, $H_\circ = O^p(K_1K_2Q) = K_1K_2$.

Note that by (1°) , $[H_j, H_i, H_i] = [Z, H_i] \leq O_p(Z)$. Hence, the Three Subgroups Lemma shows that $[H_i, H_i, H_j] = [H'_i, H_j] \leq O_p(Z)$. Since by (a) $K_i \leq H'_i$, we get

 $[K_i, K_j] \leq [K_i, H_j] \leq [H'_i, H_j] \leq O_p(Z) \leq O_p(H^\circ).$

As $H_{\circ} = K_1 K_2$, we also get $[H_1 \cap H_2, H_{\circ}] = [H_1 \cap H_2, K_1][H_1 \cap H_2, K_2] \leq O_p(H^{\circ})$, and (b) is proved.

(c): Put $\overline{H} = H/N$. By 1.46(j) \overline{Q} is a weakly closed subgroup of \overline{H} . Hence $\overline{H}, \overline{H_1}, \overline{H_2}, \overline{Q}$ fulfill the hypothesis of the lemma and $\overline{K_i} = (\overline{H_1} \overline{Q})_{\circ}$. So replacing H by H/N we may assume that N = 1. Put $L_i := O^{p'}(H_i)$. We first show:

 $4^{\circ}. \qquad K_i = (L_i Q)_{\circ}.$

Note that $H^{\circ} = O^{p'}(H^{\circ})$. Since $H^{\circ} = H_1H_2$ we get $H^{\circ} = L_1L_2$. As $L_i \leq H_i$ we conclude that $H_i = L_i(H_1 \cap H_2)$. By (b), $[H_1 \cap H_2, Q] \leq [H_1 \cap H_2, H^{\circ}] \leq O_p(H^{\circ})$. So $H_1 \cap H_2$ normalizes $O_p(H^{\circ})Q$. Since Q is weakly closed, this shows that $H_1 \cap H_2 \leq N_H(Q)$ and $H_i = L_i(H_1 \cap H_2) = L_iN_{H_i}(Q)$. Hence 1.46(f) gives $(H_iQ)^{\circ} = (L_iQ)^{\circ}$. Thus also $K_i = (L_iQ)_{\circ}$.

Observe that $F^*(H) = E(H)O_p(H)D$, where E(H) is the product of the components of H and $D := O_{p'}(F(H))$. Thus, to prove (c) it suffices to show that each of the factors E(H), $O_p(H)$ and D normalizes K_1 .

Note that K_1 is a subnormal subgroup of H. Thus, by $[\mathbf{KS}, 5.5.7(c)] E(H) = E(K_1)C_{E(H)}(K_1)$ and so $E(H) \leq N_H(K_1)$. Moreover, since $K_1 = O^p(K_1)$, 1.23 (with $\pi = \{p\}$) shows that also $O_p(H) \leq N_H(K_1)$. The coprime action of Q on D gives $D = C_D(Q)[D,Q]$, and by (a) $[D,Q] \leq H^\circ \leq N_H(K_1)$. Since $L_1 \leq A$ and $L_1 = O^{p'}(L_1)$, D normalizes L_1 by 1.23. It follows that $C_D(Q)$ normalizes L_1 , Q and $(L_1Q)_\circ$. By (4°) $K_1 = (L_1Q)_\circ$ and so $C_D(Q) \leq N_H(K_1)$. This shows that also $D = C_D(Q)[D,Q]$ normalizes K_1 , and (c) is proved.

LEMMA 1.48. Suppose that Q is a weakly closed subgroup of H.

- (a) Let X ⊆ Z(Q) and h ∈ H with X^h ⊆ Z(Q). Then there exists g ∈ N_H(Q) with x^g = x^h for all x ∈ X.
 (b) x^H ∩ Z(Q) = x^{N_H(Q)} for every x ∈ Z(Q).
- (b) $x^{\mu} \cap Z(Q) = x^{\mu}(Q)$ for every $x \in Z(Q)$.

PROOF. (a): Note that $\langle Q, Q^h \rangle \leq C_H(X^h)$ and so by 1.46(b) there exists $c \in C_H(X^h)$ such that $Q^{hc} = Q$. Hence $hc \in N_H(Q)$ and $x^{hc} = x^h$ for all $x \in X$. Thus (a) holds.

(b) follows from (a) applied with $X = \{x\}$.

LEMMA 1.49. Let Q be a weakly closed p-subgroup of H, and let $Q \leq L \leq H$. Suppose that $C_H(Q) \leq Q$ and H is of characteristic p. Then $[Q, C_H(O_p(L))] \leq Q \cap O_p(L), C_H(O_p(L))$ is a p-group, and L is of characteristic p.

PROOF. Put $D := C_H(O_p(L))$. Since Q is weakly closed, $O_p(H)$ normalizes Q. Thus

$$[O_p(H), Q] \leq O_p(H) \cap Q \leq O_p(H) \cap L \leq O_p(H) \cap O_p(L)$$

Hence Q centralizes $O_p(H)/O_p(H) \cap O_p(L)$. Since D centralizes $O_p(H) \cap O_p(L)$, we conclude that [Q, D] centralizes the factors of the series

$$1 \leqslant O_p(H) \leqslant O_p(L) \leqslant O_p(H)$$

Since H is of characteristic p, 1.4 shows that [Q, D] is a p-group It follows that Q[Q, D] is a p-group normalized by D and since Q is weakly closed this implies that D normalizes Q. Thus

$$[Q,D] \leqslant Q \cap D \leqslant Q \cap O_p(D) \leqslant Q \cap L \cap O_p(D) \leqslant Q \cap O_p(L) \leqslant O_p(L) \leqslant C_H(D).$$

Hence [Q, D, D] = 1, and 1.3 shows that D is a p-group. Hence also $C_L(O_p(L))$ is a p-group, so $C_L(O_p(L)) \leq O_p(L)$ and L is of characteristic p.

COROLLARY 1.50. Let Q be a weakly closed p-subgroup of H, and let $Q \leq L \leq H$. Suppose that $C_H(Q) \leq Q$ and that $C_H(y)$ is of characteristic p for some $1 \neq y \in C_{O_p(L)}(Q)$. Then $[Q, C_H(O_p(L))] \leq Q \cap O_p(L), C_H(O_p(L))$ is a p-group, and L has characteristic p.

PROOF. Put $K := N_H(O_p(L))$ and note that $Q \leq C_K(y) \leq C_H(y)$. By hypothesis, $C_H(y)$ is of characteristic p. Since Q is also a weakly closed subgroup of $C_H(y)$, we can apply 1.49 with $C_H(y)$ and $C_K(y)$ in place of H and L. Then $C_K(y)$ is of characteristic p. Note that $y \in O_p(L) \leq O_p(K)$ and so 1.5 shows that K has characteristic p. Now 1.49 (with K in place of H) shows that

 $[Q, C_K(O_p(L))] \leq Q \cap O_p(L), C_K(O_p(L))$ is a *p*-group, and *L* is of characteristic *p*. As $C_H(O_p(L)) \leq K$ we have $C_H(O_p(L)) = C_K(O_p(L))$ and so the corollary is proved.

1.6. Large Subgroups

In this section Q is a fixed non-trivial *p*-subgroup of H.

DEFINITION 1.51. Recall from the introduction: Q is large (in H) if $C_H(Q) \leq Q$ and

(Q!) $N_H(U) \leq N_H(Q)$ for every $1 \neq U \leq C_H(Q)$.

We will refer to this property as the Q!-property, or shorter just Q!.

Moreover

$$Q^{\bullet} := O_p(N_G(Q)), \quad M^{\circ} := \langle Q^g \mid g \in G, Q^g \leqslant M \rangle, \quad M_{\circ} := O^p(M^{\circ}).$$

Note that according to 1.52(b) below Q is a weakly closed subgroup of G, so the notions M° and M_{\circ} correspond to those introduced in 1.44 for weakly closed subgroups.

$$\square$$

LEMMA 1.52. Let Q be large in H and $Q \leq L \leq H$ and let Y be a non-trivial p-subgroup of H normalized by L. Then the following hold:

- (a) $N_H(T) \leq N_H(Q)$ for every p-subgroup T of H with $Q \leq T$.
- (b) Q is a weakly closed subgroup of H.
- (c) $L^{\circ} = (LC_H(Y))^{\circ}$ and $[L^{\circ}, C_H(Y)] \leq O_p(L^{\circ})$. In particular, $C_H(Y)$ normalizes L° .
- (d) Let $\widetilde{L} := L/O_p(L)$. Suppose that $O^p(L) \leq L^\circ$ and $L = O^{p'}(L)$. Then $C_L(\widetilde{Y}) \leq Z(\widetilde{L^\circ}) \leq \Phi(\widetilde{L}) = \Phi(\widetilde{L_\circ})$.
- (e) $C_H(Q) \cap C_H(Q^g) = C_H(Q^{\bullet}) \cap C_H(Q^{\bullet g}) = Z(Q) \cap Z(Q^g) = Z(Q^{\bullet}) \cap Z(Q^{\bullet g}) = 1$ for every $g \in H \setminus N_H(Q)$; in particular, $N_H(Q) = N_H(Q^{\bullet})$, and Q^{\bullet} is a large subgroup of H.

PROOF. (a): Let $Q \leq T$, T a p-subgroup of H. Then $N_H(T) \leq N_H(Z(T)) \leq N_H(Q)$ since $Z(T) \leq C_H(Q)$.

(b): By 1.45 the condition in (a) is equivalent to Q being a weakly closed subgroup of H.

(c): We may assume that $H = LC_H(Y)$. Note that $C_Y(Q) \neq 1$ since $Y \neq 1$, and so by Q!, $C_H(Y) \leq N_H(C_Y(Q)) \leq N_H(Q)$. Thus $H = LN_H(Q)$. Since Q is a weakly closed subgroup of H, 1.46(f) gives $L^\circ = H^\circ = (LC_H(Y))^\circ$.

In addition

$$[C_H(Y), Q] \leqslant Q \cap C_H(Y) \leqslant C_{L^\circ}(Y) \leqslant L^\circ,$$

so $[C_H(Y), Q] \leq O_p(L^\circ)$. Since Q is a weakly closed subgroup of H, 1.46(c) implies $L^\circ = \langle Q^{L^\circ} \rangle$ and so conjugation with L° gives $[C_H(Y), L^\circ] \leq O_p(L^\circ)$.

(d): Since $O^p(L) \leq L^\circ$, $O^p(L) = O^p(L^\circ) = L_\circ$ and thus also $O^p(\widetilde{L}) = \widetilde{L_\circ}$. Put $D := C_L(Y)$. By (c) $[L^\circ, D] = [L^\circ, C_L(Y)] \leq O_p(L^\circ) \leq O_p(L)$ and so $[\widetilde{L^\circ}, \widetilde{D}] = 1$. Since $O^p(D) \leq L^\circ$, this shows $O^p(\widetilde{D}) \leq Z(\widetilde{D})$, therefore \widetilde{D} is nilpotent. As $O_p(\widetilde{D}) \leq O_p(\widetilde{L}) = 1$, we conclude that \widetilde{D} is a p'-group and thus $\widetilde{D} \leq O^p(\widetilde{L}) = \widetilde{L_\circ} \leq \widetilde{L^\circ}$. Hence $\widetilde{C_L(Y)} = \widetilde{D} \leq Z(\widetilde{L^\circ})$. Since L° is generated by p-elements, $\widetilde{L^\circ} = O^{p'}(\widetilde{L^\circ})$. Thus 1.7(b) applied to $\widetilde{L^\circ}$ gives $Z(\widetilde{L^\circ}) \leq \Phi(\widetilde{L^\circ})$. By 1.7(a) $\Phi(\widetilde{L^\circ}) = \Phi(\widetilde{L_\circ})$, and so (d) holds.

(e): By definition of a large subgroup, Q contains its centralizer in H. Hence $C_H(Q^{\bullet}) \leq C_H(Q) \leq Q \leq Q^{\bullet}$ and $Z(Q^{\bullet}) \leq Z(Q)$ since $Q \leq Q^{\bullet}$. Moreover, $C_H(Q) = Z(Q)$ and $C_H(Q^{\bullet}) = Z(Q^{\bullet})$.

Let $g \in H$ with $Z(Q) \cap Z(Q)^g \neq 1$. By Q!, Q and Q^g are normal in $N_H(Z(Q) \cap Z(Q)^g)$. Since Q is a weakly closed subgroup of H, this gives $Q = Q^g$ and thus $g \in N_H(Q)$. Hence $Z(Q^{\bullet}) \cap Z(Q^{\bullet})^g \leq Z(Q) \cap Z(Q)^g = 1$ for all $g \in H \setminus N_H(Q)$ and $N_H(Q^{\bullet}) \leq N_H(Z(Q^{\bullet})) \leq N_H(Q)$. Clearly $N_H(Q) \leq N_H(Q^{\bullet})$ and so $N_H(Q^{\bullet}) = N_H(Q)$.

Let $1 \neq X \leq C_H(Q^{\bullet})$, Then $X \leq C_H(Q)$ and by Q!, $N_H(X) \leq N_H(Q) = N_H(Q^{\bullet})$. Moreover, as seen above, $C_H(Q^{\bullet}) \leq Q^{\bullet}$, and so Q^{\bullet} is a large subgroup of H.

LEMMA 1.53. Let Q be large in H and $H = H^{\circ}S$ for $Q \leq S \in Syl_p(H)$. Suppose that there exists $R \leq H$ such that $R \leq N_H(Q)$ and H/R is p-minimal. Then H is p-minimal.

PROOF. Since H/R is *p*-minimal, there exists a unique maximal subgroup H_0 of H containing SR. Let H_1 be any maximal subgroup of H containing S. Assume $H_1 \neq H_0$. Then $R \leq H_1$ and so $H = H_1R$. Since $R \leq N_H(Q)$, $H = H_1N_H(Q)$. Since Q is a weakly closed subgroup of H, 1.46(f) gives $H_1^\circ = H^\circ$, and so $H = H^\circ S \leq H_1$, which contradicts $H_1 \neq H$.

LEMMA 1.54. Suppose that Q is a large p-subgroup of H. Let U be a non-trivial elementary abelian p-subgroup of H and $Q \leq E \leq N_H(U)$. Suppose that $Q \leq E$, $O_p(E/C_E(U)) = 1$ and $O^p(E)C_E(U)/C_E(U)$ is quasisimple. Then the following hold:

- (a) $O^{p}(E)C_{E}(U) = E_{\circ}C_{E}(U)$ and $E_{\circ} = E'_{\circ} = O^{p}(E_{\circ}).$
- (b) $E_{\circ}/C_{E_{\circ}}(U)$, $E_{\circ}/O_{p}(E_{\circ})$ and $E_{\circ}/[O_{p}(E_{\circ}), E_{\circ}]$ all are quasisimple.
- (c) $E_{\circ} = [E_{\circ}, Y] \leq \langle Y^{E_{\circ}} \rangle$ for all p-subgroups Y of E with $[U, Y] \neq 1$.

PROOF. Put $\overline{E} = E/C_E(U)$. Then $O_p(\overline{E}) = 1$ and $\overline{O^p(E)}$ is quasisimple.

(a): Since $Q \leq E$, Q! shows that $[U,Q] \neq 1$. So $\overline{Q} \neq 1$ and, as $\overline{O^p(E)}$ is quasisimple and $O_p(\overline{E}) = 1, 1.14$ (b) gives $O^p(\overline{E}) \leq \langle \overline{Q}^{O^p(\overline{E})} \rangle \leq \overline{E^{\circ}}$. Also $E^{\circ} = O^p(E^{\circ}) = O^p(E_{\circ})$. Thus $O^p(\overline{E}) = \overline{E_{\circ}}$, and the first statement in (a) holds. In particular, $\overline{E_{\circ}}$ is quasisimple and so perfect. By 1.46(d) $E^{\circ} = E_{\circ}Q$. Since $\overline{E_{\circ}}$ is perfect, $E_{\circ} = E'_{\circ}C_{E_{\circ}}(U)$ and so $E^{\circ} = E'_{\circ}QC_{E^{\circ}}(U)$. By 1.52(c),

$$E^{\circ} = \left(E_{\circ}'QC_{E\circ}(U) \right)^{\circ} = \left(E_{\circ}'Q \right)^{\circ} \leqslant E_{\circ}'Q,$$

and so $E_{\circ} \leq E'_{\circ}$. Thus E_{\circ} is perfect, and (a) is proved.

(b): As seen above, $E^{\circ}/C_{E^{\circ}}(U) \cong \overline{E_{\circ}} = O^{p}(\overline{E})$ is quasisimple. By 1.52(c), $[E^{\circ}, C_{E}(U)] \leq O_{p}(E)$ and so $[E_{\circ}, C_{E_{\circ}}(U)] \leq O_{p}(E_{\circ})$. Let L be the inverse image of $Z(E_{\circ}/C_{E_{\circ}}(U))$ in L. Then $[L, E_{\circ}] \leq C_{E_{\circ}}(U)$ and $[C_{E_{\circ}}(U), E_{\circ}] \leq O_{p}(E_{\circ})$. Since E_{\circ} is perfect the Three Subgroups Lemma gives $[L, E_{\circ}] \leq [E_{\circ}, O_{p}(E_{\circ})]$. Thus $L/O_{p}(E_{\circ}) = Z(E_{\circ}/O_{p}(E_{\circ}))$ and $L/[O_{p}(E_{\circ}), E_{\circ}] = Z(E_{\circ}/[E_{\circ}, O_{p}(E_{\circ})])$. Since E_{\circ}/L is simple and E_{\circ} is perfect, this shows that $E_{\circ}/O_{p}(E_{\circ})$ and $E_{\circ}/[O_{p}(E_{\circ}), E_{\circ}]$ are quasisimple. So (b) holds.

(c): By 1.14(b) $\overline{E_{\circ}} = [\overline{E_{\circ}}, \overline{Y}]$. Since $E_{\circ}/O_p(E_{\circ})$ is quasisimple this gives $E_{\circ} = [E_{\circ}, Y]O_p(E_{\circ})$. As $E_{\circ} = O^p(E_{\circ})$, we conclude that $E_{\circ} = [E_{\circ}, Y] \leq \langle Y^{E_{\circ}} \rangle$.

LEMMA 1.55. Let Q be large in H and $L \leq H$ with $Q \leq L$ and $O_p(L) \neq 1$. Then

- (a) $C_H(O_p(L))$ is a p-group; in particular, L has characteristic p.
- (b) Let R be a parabolic subgroup of H with $O_p(R) \neq 1$. Then $C_H(O_p(R)) \leq O_p(R)$.
- (c) *H* has parabolic characteristic *p*.
- (d) Either $L^{\circ} = Q$ or $C_H(L^{\circ}) = 1$.

PROOF. (a): To show that $C_H(O_p(L))$ is a *p*-group, it suffices to verify the hypothesis of 1.50. Note that $C_H(Q) \leq Q$ since Q is large and that Q is a weakly closed subgroup by 1.52(b). Since $O_p(L) \neq 1$ and Q normalizes $O_p(L)$, there exists $1 \neq y \in C_{O_p(L)}(Q)$. So it remains to show that $C_H(y)$ has characteristic p.

Put $Y := \langle y \rangle$. Then by Q!, $N_H(Y) \leq N_H(Q)$ and so $N_H(Y)$ is a local subgroup of $N_H(Q)$. Since $C_H(Q) \leq Q$, $N_H(Q)$ has characteristic p and so by 1.2(c) $N_H(Q)$ has local characteristic p. Thus $N_H(Y)$ has characteristic p. Since $C_H(y) = C_H(Y) \leq N_H(Y)$, also $C_H(y)$ has characteristic p(see 1.2(a)).

(b): Since R is parabolic subgroup of H, R contains a Sylow p-subgroup T of H and so also a conjugate of Q. So by (a) $C_H(O_p(R))$ is a p-group. Observe that T normalizes $C_H(O_p(R))$ and so $C_H(O_p(R)) \leq T \leq R$. As R normalizes $C_H(O_p(R))$ this gives $C_H(O_p(R)) \leq O_p(R)$.

(c) follows from (b).

(d): If $C_H(L^\circ) \neq 1$, then Q! implies that $Q \leq N_H(C_H(L^\circ))$ and so $Q \leq L$. As $L^\circ = \langle Q^L \rangle$ by 1.46(c), this gives $L^\circ = Q$.

LEMMA 1.56. Let Q be large in H and $Q \leq S \in Syl_p(H)$, and let $L \in \mathcal{L}_H(S)$.

- (a) There exist $M \in \mathfrak{M}_H(S)$ and $L^* \in \mathcal{L}_H(S)$ such that $L^* \leq M$, $LC_H(Y_L) = L^*C_H(Y_L)$, $L^\circ = (L^*)^\circ \leq M^\circ$ and $Y_L = Y_{L^*} \leq Y_M$.
- (b) Suppose that $Q \not \equiv L$, and let M and L^* be as in (a). Then $Q \not \equiv L^*$ and $Q \not \equiv M$.
- (c) Either $\mathcal{M}_H(S) = \{N_H(Q)\}$ or there exists $M \in \mathfrak{M}_H(S)$ with $Q \notin M$.

PROOF. (a): By 1.55 *H* has parabolic characteristic *p*. Hence 1.25 shows that there exists $M \in \mathfrak{M}_H(S)$ and $L^* \in \mathcal{L}_H(S)$ with $L^* \leq M$, $LC_H(Y_L) = L^*C_H(Y_L)$ and $Y_L = Y_{L^*} \leq Y_M$. Thus 1.52(c) gives

$$L^{\circ} = \left(LC_H(Y_L) \right)^{\circ} = \left(L^*C_H(Y_L) \right)^{\circ} = (L^*)^{\circ},$$

and (a) holds.

(b): Q! shows that $C_H(Y_L) \leq C_H(C_{Y_L}(Q)) \leq N_H(Q)$. Since $Q \leq L$ and $LC_H(Y_L) = L^*C_H(Y_L)$ we conclude that $Q \leq L^*$ and so also $Q \leq M$.

(c): Suppose that $\mathcal{M}_H(S) \neq \{N_H(Q)\}$. Then there exists $L \in \mathcal{L}_H(S)$ with $Q \not \equiv L$ and so by (b) there exists $M \in \mathfrak{M}_H(S)$ with $Q \not \equiv M$.

LEMMA 1.57. Let Q be large in H. Suppose that $M \leq H$ with $Q \leq M$ and V is a non-trivial elementary abelian M-invariant p-subgroup of H. Then the following hold:

- (a) $N_M(A) \leq N_M(Q)$ for every $1 \neq A \leq C_V(Q)$.
- (b) Suppose that $M \leq N_H(Q)$. Then V is a faithful Q!-module ³ for $M/C_M(V)$ with respect to $QC_M(V)/C_M(V)$.
- (c) Let $U \leq M$ be transitive on V. Then $M^{\circ} = \langle Q^U \rangle$.

PROOF. (a): This is a direct consequence of the Q!-property.

(b): Since $M \leq N_H(Q)$, $Q \leq H$. Together with (a) this shows that V is a Q!-module for H with respect to Q. Now (b) follows from A.51.

(c): Let $1 \neq v \in C_V(Q)$. By a Frattini argument $M = UC_M(v)$, and Q! implies $C_M(v) \leq N_M(Q)$. So $M = UN_M(Q)$, and 1.46(f) gives $M^\circ = \langle Q^U \rangle$.

LEMMA 1.58. Let Q be large in H, let $S \in Syl_p(H)$ with $Q \leq S$, and let $L \in \mathcal{L}_H(S)$. Put $P := L^{\circ}S$ and $\widetilde{L} := L/C_L(Y_L)$. Let \mathcal{K} be a non-empty P-invariant set of subgroups of \widetilde{P} and suppose that Y_L is a natural $SL_2(q)$ -wreath product module for \widetilde{P} with respect to \mathcal{K} . Then \mathcal{K} is uniquely determined by that property. Moreover, the following hold, where P^* is the inverse image of $\langle \mathcal{K} \rangle$ in P.

- (a) Q acts transitively on \mathcal{K} .
- (b) $Y_L = Y_P$, Y_P is a simple *P*-module, and $O_p(P) = C_S(Y_L)$.
- (c) $O^p(P) = O^p(P^*) = L_\circ$, and $\widetilde{P^*}$ is normal in \widetilde{L} .
- (d) $P_1 = P^*$ for all $P_1 \leq P$ with $O_p(P) \leq P_1$ and $\widetilde{P_1} = \langle \mathcal{K} \rangle$.
- (e) $P \in \mathcal{P}_H(S)$.
- (f) One of the following holds:
 - (1) $C_P(Y_P) = O_p(P).$
 - (2) $p = 2 = |\mathcal{K}|, \ \widetilde{Q} \cong C_4$, and, for any $T \in Syl_3(L^\circ)$, T is extraspecial of order 3^3 , $[Z(T), L^\circ] \leq O_2(P)$. and $L_\circ = TO_2(L_\circ)$.

PROOF. Since Y_L is a faithful natural $SL_2(q)$ -wreath product module for \widetilde{P} with respect to \mathcal{K} , A.25 gives

1°. $Y_L = \bigotimes_{K \in K} [Y_L, K]$ and $\widetilde{P^*} = \bigotimes_{K \in \mathcal{K}} K$, and for $K \in \mathcal{K}$, $K \cong SL_2(q)$ and $[Y_L, K]$ is a natural $SL_2(q)$ -module for K.

In particular, $O^p(\widetilde{P^*}) \neq 1$ and thus also $L^{\circ} \neq Q$. Hence by 1.55(d) $C_{Y_L}(\langle K^Q \rangle) = 1$, and so 2° . $\mathcal{K} = K^Q$ for $K \in \mathcal{K}$, and (a) holds.

Thus \tilde{P} and Y_L satisfy the hypothesis of A.28 in place of H and V, and A.28(b) gives:

 3° . \widetilde{P} is p-minimal.

By 1.52(c)

$$4^{\circ}. \qquad [C_L(Y_L), L^{\circ}] \leqslant O_p(L^{\circ}) \leqslant O_p(L) \leqslant O_p(P).$$

Since Q is weakly closed, 1.46(e) gives

 5° . $L_{\circ} = [L_{\circ}, Q]$.

By 1.24(f) $Y_P \leq Y_L$. Since $[Y_L, K]$ is a simple K-module for $K \in \mathcal{K}$ and Q acts transitively on \mathcal{K} , Y_L is a simple P-module, so $Y_P = Y_L$ and $O_p(\tilde{P}) = 1$. Hence $O_p(P) \leq C_S(Y_L)$, and by $(4^\circ) [C_S(Y_L), L^\circ] \leq O_p(P) \leq C_S(Y_L)$. Since $P = L^\circ S$ we conclude that $C_S(Y_L) \leq P$. Hence $C_S(Y_P) = O_p(P)$. We have proved:

³See A.5 for the definition of a Q!-module

 6° . $Y_P = Y_L, Y_L$ is a simple P-module and $C_S(Y_P) = O_p(P)$. In particular, (b) holds.

Let $P_1 \leq P$ with $O_p(P) \leq P_1$ and $\widetilde{P_1} = \langle \mathcal{K} \rangle$. The *p*-minimality of \widetilde{P} implies that either $\widetilde{S} \cap \widetilde{P_1} \leq O_p(\widetilde{P})$ or $\widetilde{P} = \widetilde{P_1}\widetilde{S}$. The first case is clearly impossible since $O_p(\widetilde{P}) = 1$ and $\langle \mathcal{K} \rangle$ is not a p'-group. Hence $\widetilde{P} = \widetilde{P_1}\widetilde{S}$. As $P = L_{\circ}S$ we have $O^p(P) = O^p(L_{\circ}) = L_{\circ}$, and we conclude that

$$O^p(\widetilde{P_1}) = O^p(\widetilde{P}) = \widetilde{L_0}$$

In particular, $O^p(P_1) \leq L_{\circ}C_P(Y_L)$. Since $O^p(P_1) \leq O^p(P) = L_{\circ}$ this gives

$$L_{\circ} = O^{p}(P_{1}) \left(L^{\circ} \cap C_{P}(Y_{L}) \right)$$

 So

$$L_{\circ} \stackrel{(5^{\circ})}{=} [L_{\circ}, Q] = [O^{p}(P_{1})(L^{\circ} \cap C_{P}(Y_{L})), Q] \leq [O^{p}(P_{1}), Q][C_{P}(Y_{L}), L^{\circ}] \stackrel{(4^{\circ})}{\leq} O^{p}(P_{1})O_{p}(P)$$

Hence $L_{\circ} = O^p(L_{\circ}) = O^p(P_1)$. Note that $O_p(P) \leq P^*$ and $\widetilde{P^*} = \langle \mathcal{K} \rangle$. So P^* fulfills the assumptions on P_1 , and we conclude

$$O^{\circ}$$
. $O^{p}(P) = L_{\circ} = O^{p}(P_{1}) = O^{p}(P^{*}); in particular P = O^{p}(P_{1})S.$

Thus $O^p(\langle \mathcal{K} \rangle) = O^p(\widetilde{P^*}) = \widetilde{L_o} \leq \widetilde{L}$. Hence by A.27 any subgroup E of \widetilde{L} such that $[Y_L, E]$ is a faithful natural $SL_2(q)$ -module for E is contained in \mathcal{K} . It follows that

8°. \mathcal{K} is uniquely determined and $\widetilde{P^*} = \langle \mathcal{K} \rangle \leq \widetilde{L}$. In particular, (c) holds.

Put $T := S \cap P^*$. Then $\widetilde{T} \in Syl_p(\widetilde{P^*}) = Syl_p(\widetilde{P_1})$, and since $C_T(Y_L) \leq C_S(Y_L) = O_p(P) \leq P_1$, $T \in Syl_p(P_1)$. By (7°) , $O^p(P_1) = L_\circ$ and so $P_1 = O^p(P_1)T = L_\circ T$. This result also applies to P^* . Thus

9°. $P_1 = L_{\circ}T = P^*$. In particular, (d) holds.

Set

$$Q^* := Q \cap P^*, \quad \widehat{P} := P/O_p(P), \quad r := |\mathcal{K}|, \quad \text{and} \quad \{K_1, \dots, K_r\} := \mathcal{K},$$

and let $1 \leq i \leq r$. Then $K_i \cong SL_2(q)$ and $S \cap K_i \neq 1$.

We claim that $\widetilde{Q^*} \neq 1$. Since $Q \leq S$, $[\widetilde{S} \cap K_i, \widetilde{Q}] \leq \widetilde{Q^*}$. If r > 1, the transitive action of Q on \mathcal{K} shows that $[\widetilde{S} \cap K_i, \widetilde{Q}] \neq 1$ and so $\widetilde{Q^*} \neq 1$. If r = 1 and $\widetilde{Q} \leq K_1$, then \widetilde{Q} induces some non-trivial field automorphism on K_1 and hence $[\widetilde{S} \cap K_1, \widetilde{Q}] \neq 1$ and $\widetilde{Q^*} \neq 1$. If r = 1 and $\widetilde{Q} \leq K_1$, then $\widetilde{Q^*} = \widetilde{Q} \neq 1$. So indeed $\widetilde{Q^*} \neq 1$.

Recall that \tilde{P} is *p*-minimal and thus also *p*-irreducible. Hence 1.29(c) shows that $O^p(\tilde{P}) = [O^p(\tilde{P}), \tilde{Q^*}]$. Also

(*)
$$O^{p}(\widetilde{P}) = O^{p}(\widetilde{P^{*}}) = O^{p}\left(\underset{i=1}{\overset{r}{\times}} K_{i}\right) = \underset{i=1}{\overset{r}{\times}} O^{p}(K_{i})$$

As $O^p(\widetilde{P}) = [O^p(\widetilde{P}), \widetilde{Q^*}]$ and $\widetilde{Q^*}$ normalizes each $O^p(K_i)$, this gives $[O^p(K_i), \widetilde{Q^*}] = O^p(K_i)$. Let $K_i^* \leq P^*$ be minimal with $\widetilde{K_i^*} = O^p(K_i)$ and $[K_i^*, Q^*] \leq K_i^*$. Observe that

$$[\widetilde{K_i^*}, \widetilde{Q_i^*}] = [\widetilde{K_i^*}, \widetilde{Q_i^*}] = [O^p(K_i), \widetilde{Q_i^*}] = O^p(K_i),$$

and the minimality of K_i^* gives $K_i^* = [K_i^*, Q_i^*]$ and $K_i^* = O^p(K_i^*)$. By (c) $O^p(P^*) = L_\circ$ and so $K_i^* \leq L_\circ$. Thus by (4°) $[C_P(Y_L), Q^*K_i^*] \leq [C_L(Y_L), L^\circ] \leq O_p(P)$. With $R := \widehat{K_i^*}$ and $D := C_R(Y_L)$ this gives $D \leq Z(R\widehat{Q^*})$. Observe that R/R' is an abelian p'-group. Since $[R/R', Q^*] = R/R'$, coprime actions shows $C_{R/R'}(Q^*) = 1$ and since Q^* centralizes D, we get $D \leq R'$. Hence R is a non-split central extension of $R/D \cong \widetilde{R} \cong O^p(SL_2(q)) = SL_2(q)'$ by the p'-group D.

If $q \leq 3$ then $R/D \cong C_3$ or Q_8 . By [**Hu**, V.25.3] the Schur multiplier of cyclic and quaternion groups is trivial and so D = 1. If q > 3 then $R/D \cong SL_2(q)' = SL_2(q)$. As the Schur multiplier of $SL_2(q)$ is a p'-group (cf. [**Hu**, V.25.7]) we again have D = 1. We have proved:

10°.
$$O^p(K_i^*) = K_i^*, \ \tilde{K}_i^* \cong O^p(K_i) \ and \ C_{K_i^*}(Y_L) \leqslant O_p(P).$$

Next we show:

11°. Put $K^* := \langle K_i^* | 1 \leq i \leq r \rangle$. Then $O^p(\widehat{P}) = \widehat{K^*}$, $P = K^*S$ and $[\widehat{K}_i, \widehat{K}_j] \leq C_{\widehat{K^*}}(Y_L) \leq Z(\widehat{K^*}\widehat{Q^*})$ for all $1 \neq i < j \leq r$.

Note that $O^p(\widehat{P^*}) = C_{\widehat{P^*}}(Y_L)\widehat{K^*}$. As Q^* centralizes $C_{\widehat{P^*}}(Y_L)$ and $[K_i^*, Q^*] = K_i^*$ we conclude $\widehat{K^*} = [\widehat{P^*}, Q^*]$ and $K^* \leq L^\circ$. In particular, S normalizes $\widehat{K^*}$. Hence S normalizes $K^*O_p(P)$, and (7°) , applied to $P_1 = K^*(S \cap P^*)$, gives $L_\circ = O^p(K^*(S \cap P^*)) \leq O_p(P)K^*$ and $P = L_\circ S = O^p((K^*(S \cap P^*))S = K^*S$. By (1°) , $O^p(K_i^*) = K_i^*$ and so also $O^p(K^*) = K^*$. Since S normalizes $\widehat{K^*}$ and $P = K^*S$ we conclude that $O^p(\widehat{P}) = \widehat{K^*}$. By $(1^\circ)[K_i, K_j] = 1$ and so $[K_i^*, K_j^*] \leq C_{K^*}(Y_L)$. As $K^*Q^* \leq L^\circ$ and by $(4^\circ)[C_L(Y_L), L^\circ] \leq O_p(P)$ we have $C_{\widehat{K^*}}(Y_L) \leq Z(\widehat{K^*}\widehat{Q^*})$.

12°. Suppose that $[\widehat{K_i^*}, \widehat{K_j^*}] = 1$ for all $1 \leq i < j \leq r$. Then $C_P(Y_P) = O_p(P)$ and P is *p*-minimal. In particular, (e) and (f) hold.

Since $[\widehat{K_i^*}, \widehat{K_j^*}] = 1$ we have $|\widehat{K^*}| \leq |\prod_{i=1}^r \widehat{K_i^*}| \leq |\widehat{K_i^*}|^r$. Moreover, by $(10^\circ) |\widehat{K_i^*}| = |O^p(K_i)|$ and by $(11^\circ) \widehat{K^*} = O^p(\widehat{P})$. Now (*) implies $|\widetilde{K^*}| = |O^p(\widehat{P})| = |O^p(K_i)|^r$ and so $|\widehat{K^*}| \leq |\widetilde{K^*}|$. Since $\widetilde{K^*}$ is a factor group of $\widehat{K^*}$, we get that $|\widetilde{K^*}| = |\widehat{K^*}|$ and $C_{\widehat{K^*}}(Y_L) = 1$. As $O^p(\widehat{P}) = \widehat{K^*}$, it follows that $\widehat{C_P(Y_P)}$ is a *p*-group and so $C_P(Y_P) = O_p(P)$. Hence $P/O_p(P) = \widetilde{P}$. By (3°) \widetilde{P} is *p*-minimal and so also *P* is *p*-minimal. Therefore (e) and (f) hold.

We now distinguish the cases r = 1, r = 2 and $r \ge 3$. If r = 1, we are done by (12°) . Assume next that r = 2. Since Q acts transitively on \mathcal{K} by (a), we have p = 2. Suppose that q > 2. Then $q \ge 4$, K_i is perfect, and $\widehat{K_i^*}$ is a component of \widehat{P} . Thus $[\widehat{K_1}, \widehat{K_2}] = 1$ and we are done by (12°) .

Suppose that q = 2. Then $|\widehat{K_i^*}| = 3$ and by (12°) we may assume that $[\widehat{K_1^*}, \widehat{K_2^*}] \neq 1$. By (11°) $[\widehat{K_1^*}, \widehat{K_2^*}] \leq Z(\widehat{K^*})$. Since r = 2, $\widehat{K^*} = \langle \widehat{K_1^*}, \widehat{K_2^*} \rangle$, and we conclude that that $\widehat{K^*}$ is extra special of order 3^3 . By (11°) $\widehat{K^*} = O^p(\widehat{P})$, and so (f) holds. As $\widehat{P}/\Phi(\widehat{K^*}) \cong \widetilde{P}$ is *p*-minimal, so are \widehat{P} and *P*.

Since $\widehat{K^*}$ is extra special of order 3³, any involution in $Aut(\widehat{K^*})$ which centralizes $\Phi(\widehat{K^*})$ inverts $\widehat{K^*}/\Phi(\widehat{K^*})$. By (f) \widehat{Q} centralizes $\Phi(\widehat{K^*})$, and so \widehat{Q} contains only one involution. As $\widetilde{Q^*}$ is non-trivial and elementary abelian and has index 2 in \widetilde{Q} we conclude that $\widetilde{Q} \cong C_4$. Thus (e) holds.

Assume finally that $r \ge 3$. Let i, j, k be three different elements in $\{1, \ldots, r\}$. Pick $z \in S \cap K_i \setminus O_p(P)$. Since Q acts transitively on \mathcal{K} we can choose $y \in Q$ with $K_i^y = K_k$. Put $x := [y, z] = z^{-1y}z$. Then $x \in Q^*$, $\tilde{x} \in K_i K_k$ and $\tilde{x} \in \tilde{z} K_k$. Since $K_i \cong SL_2(q)$, we have $K_i = \langle \tilde{z}^{K_i} \rangle$. Now $[K_i, K_k] = 1$ implies

$$[O^p(K_i), x] = [O^p(K_i), z] = O^p(K_i),$$

and since $[K_iK_k, K_j] = 1$ and $\widetilde{x} \in K_iK_k$, we also have $[K_j, x] = 1$. Recall that Q^* normalizes $\widehat{K_i}$, $\widetilde{K_i^*} = O^p(K_i)$ and $C_{\widehat{K_i}}(Y_L) = 1$. Thus

$$[\widehat{K}_i, \widehat{x}] = \widehat{K}_i$$
 and $[\widehat{K}_j, \widehat{x}] = 1.$

In particular,

$$[\widehat{K_j}, \widehat{x}, \widehat{K_i}] = 1.$$

By (11°) $[\widehat{K}_i, \widehat{K}_j] \leq Z(\widehat{K}\widehat{Q}^*)$ and so

 $[\widehat{K}_i, \widehat{K}_j, \widehat{x}] = 1.$ With the Three Subgroups Lemma $[\widehat{x}, \widehat{K}_i, \widehat{K}_j] = 1$, and since $[\widehat{x}, \widehat{K}_i] = \widehat{K}_i$, $[\widehat{K}_i, \widehat{K}_j] = 1.$

Another reference to (12°) completes the proof of the lemma.

CHAPTER 2

The Case Subdivision and Preliminary Results

In this chapter we give the relevant definitions that allow to subdivide the proof of our main result stated in the introduction. This partition of the proof enables us to treat the different parts independently and sometimes under a slightly more general hypothesis.

We believe that concepts like symmetry, asymmetry, shortness and tallness can also be useful in other situations. In a certain sense they reflect the general behavior of conjugates of (abelian) subgroups in finite groups. In the amalgam method these concepts have already proved their relevance (without getting particular names). For example, symmetry is closely related (and generalizes) the "b even"-case of the amalgam method, while tallness corresponds to the "b = 1"-case.

In Section 2.2 general properties of asymmetry are investigated. Most of these properties are elementary, the exception being 2.15 where the Quadratic L-Lemma of [MS6] is used and so also a \mathcal{K}_{p} -group Hypothesis is needed.

Finally in Section 2.3 symmetric pairs are introduced. It is probably our most complicated and technical definition. Also the existence of symmetric pairs requires a rather long and sophisticated argument, see 2.22 and 2.23.

In this chapter G is a finite group, $S \in Syl_p(G)$, and Q is a large p-subgroup of G contained in S. Moreover, $M \in \mathfrak{M}_G(S)$ and $M^{\dagger} = MC_G(Y_M)$. So M fulfills the basic property defined in the Introduction.

2.1. Notation and Elementary Properties

NOTATION 2.1. Recall from the introduction that $Q^{\bullet} = O_p(N_G(Q))$ and that L is Y_M -minimal if $L = \langle Y_M^L \rangle$ and Y_M is contained in a unique maximal subgroup of L.

Let A be an abelian p-subgroup of G. Then

- A is symmetric in G if there exist $A_1, A_2 \in A^G$ such that $1 \neq [A_1, A_2] \leq A_1 \cap A_2$,
- A is asymmetric in G if A is not symmetric in G.

Let \mathcal{N} be a set of subgroups of G. Then

- A is \mathcal{N} -tall if there exist $T \in Syl_p(C_G(A))$ and $L \in \mathcal{N}$ such that $T \leq L$ and $A \leq O_p(L)$,
- A is \mathcal{N} -short if $A \leq O_p(L)$ for all $T \in Syl_p(C_G(A))$ and $L \in \mathcal{N}$ with $T \leq L$. (So A is \mathcal{N} -short if and only if A is not \mathcal{N} -tall.)
- A is tall (short) if A is \mathcal{N} -tall (\mathcal{N} -short), where \mathcal{N} is the set of all subgroups L of G with $O_p(L) \neq 1$,
- A is char p-tall (char p-short) if A is \mathcal{N} -tall (\mathcal{N} -short), where \mathcal{N} is the set of all subgroups of characteristic p of G,
- A is Q-tall (Q-short) if A is \mathcal{N} -tall (\mathcal{N} -short), where $\mathcal{N} = N_G(Q)^G$.
- For $K \leq G$ with $O_p(M) \leq K$ let $\mathfrak{H}_K(O_p(M))$ be the set of subgroups H of K such that
- (i) H is of characteristic p,
- (ii) $O_p(M) \leq H$ and $Y_M \leq O_p(H)$, and
- (iii) $Y_M \leq O_p(P)$ whenever P is proper subgroup of H containing $O_p(M)$.
- For $K \leq G$ with $Y_M \leq K$ let $\mathfrak{L}_K(Y_M)$ be the set of subgroups L of K such that
- (i) $Y_M \leq L$ and $O_p(L) = \langle (Y_M \cap O_p(L))^L \rangle \leq N_L(Y_M),$
- (ii) L is Y_M -minimal and of characteristic p,

- (iii) $N_L(Y_M)$ is the unique maximal subgroup of L containing Y_M , and
- (iv) $L/O_p(L) \cong SL_2(q), Sz(q), q := |Y_M/Y_M \cap O_p(L)|$ or $L/O_p(L) \cong D_{2r}$, where p = 2 in the last two cases and r is an odd.

Note that, since $Y_M = \Omega_1 Z(O_p(M))$, $\mathfrak{H}_K(O_p(M))$ only depends on K and $O_p(M)$.

We use the following subdivision:

The Symmetric Case.	Y_M is symmetric in G .
The Short Asymmetric Case.	Y_M is short and asymmetric in G .
The Tall char p-Short Asymmetric Case.	Y_M is tall, <i>char p</i> -short and asymmetric in
<i>G</i> .	
The char p-Tall Q-short Asymmetric Case.	Y_M is <i>char p</i> -tall, <i>Q</i> -short and asymmetric
in G .	
The Q-Tall Asymmetric Case.	Y_M is Q-tall and asymmetric in G.
IMA 2.2. (a) $C_C(O_n(M)) \le O_n(M)$.	

LEMMA 2.2. (a) $C_G(O_p(M)) \leq O_p(M)$.

- (b) Q is a weakly closed subgroup of G.
- (c) $N_G(K) \leq M^{\dagger}$ for all $1 \neq K \leq M$, in particular, $N_G(O_p(M)) \leq M^{\dagger}$.
- (d) $M^{\dagger} = N_G(Y_M) = MC_G(Y_M).$
- (e) $Y_M = \Omega_1 Z(O_p(M)).$
- (f) $O_p(M) \in Syl_p(C_G(Y_M))$; in particular, $C_S(Y_M) = O_p(M)$.
- (g) $Q \leq M$ if and only if $Q \leq M^{\dagger}$.
- (h) $M^{\circ} = (M^{\dagger})^{\circ}$.

PROOF. (a): We have $M \in \mathfrak{M}_G(S) \subseteq \mathfrak{M}_G \subseteq \mathcal{L}_G$ and so $C_G(O_p(M)) \leq O_p(M)$ by definition of \mathcal{L}_G .

(b): Since Q is a large subgroup of G, 1.52(b) shows that Q is a weakly closed subgroup of G.

(c) Put $R := N_G(K)$. Since M has characteristic p and $K \leq M$, also K has characteristic p, see 1.2(a). In particular, $O_p(K) \neq 1$ and so also $O_p(R) \neq 1$. Note that $S \leq M \leq R$ and so R is a parabolic subgroup of G. Thus 1.55(a) implies that $C_G(O_p(R)) \leq O_p(R)$ and so $R \in \mathcal{L}_G$. Let R^* be maximal in \mathcal{L}_G with $R \leq R^*$. Since $M \leq R \leq R^*$, $R^* \in \mathcal{M}_G(M)$. By the basic property of $M \in \mathfrak{M}_G$, we have $\mathcal{M}_G(M) = \{M^{\dagger}\}$ and so $R^* = M^{\dagger}$ and $R \leq M^{\dagger}$.

(d): By (b), $N_G(Y_M) \leq M^{\dagger}$, and by the basic property of M, $M^{\dagger} = MC_G(Y_M)$ and $Y_M = Y_{M^{\dagger}}$. So $M^{\dagger} \leq N_G(Y_M)$ and (d) holds.

(e),(f): By the basic property of M, $C_M(Y_M)$ is *p*-closed. Thus 1.24(k) gives $Y_M = \Omega_1 Z(O_p(M))$ and $O_p(M) \in Syl_p(C_G(Y_M))$.

(g), (h): By Q!, $C_G(Y_M) \leq N_G(Q)$ and so $M^{\dagger} = MC_G(Y_M) = MN_{M^{\dagger}}(Q)$. Thus $Q \leq M$ if and only if $Q \leq M^{\dagger}$. Moreover, by 1.52(c) $M^{\circ} = (MC_G(Y_M))^{\circ} = (M^{\dagger})^{\circ}$.

LEMMA 2.3. Let $A \leq Z(Q)$. Then the following hold:

- (a) Let $g \in G$ and $\widetilde{A} \leq Z(Q^g)$ such that $[A, \widetilde{A}] \leq A \cap \widetilde{A}$. Then $[A, \widetilde{A}] = 1$.
- (b) A is asymmetric in G.
- (c) Suppose that $B \leq G$ is a Q-short abelian p-subgroup, $A \leq Z(Q^{\bullet})$ and $A \cap B \neq 1$. Then [A, B] = 1.

PROOF. (a): If $g \in N_G(Q)$, then $A\widetilde{A} \leq Z(Q)$ and $[A, \widetilde{A}] = 1$. If $g \notin N_G(Q)$, then 1.52(e) gives $Z(Q) \cap Z(Q^g) = 1$. Thus

 $[A, \widetilde{A}] \leqslant A \cap \widetilde{A} \leqslant Z(Q) \cap Z(Q^g) = 1.$

(b): This is a direct consequence of (a) and the definition of asymmetric.

(c): Assume that $R := A \cap B \neq 1$. Then $R \leq A \leq C_G(Q)$ and Q! implies $N_G(R) \leq N_G(Q)$. Since B is abelian, $B \leq C_G(B) \leq N_G(R) \leq N_G(Q)$. In particular, $N_G(Q)$ contains a Sylow p-subgroup of $C_G(B)$, and as B is Q-short, we conclude that $B \leq O_p(N_G(Q)) = Q^{\bullet}$. So [B, A] = 1. LEMMA 2.4. (a) $O_p(M)$ is a weakly closed subgroup of M^{\dagger} . (b) Let B be a p-subgroup of M^{\dagger} with $O_p(M) \leq B$. If $N_G(B) \leq M^{\dagger}$, then Y_M is symmetric in G.

PROOF. (a): By the basic property of M, $Y_M = Y_{M^{\dagger}}$ is normal in M^{\dagger} . Hence $C_G(Y_M) = C_{M^{\dagger}}(Y_M) \leq M^{\dagger}$. By 2.2(f) $O_p(M) \in Syl_p(C_G(Y_M))$. Sylow subgroups of normal subgroups are clearly weakly closed (even strongly closed) subgroups of the whole group.

(b): Since S is a Sylow p-subgroup of M^{\dagger} , there exists $g \in M^{\dagger}$ with $B^{g} \leq S$. Then $O_{p}(M)^{g} \leq B^{g} \leq S$, and since $O_{p}(M)$ is a weakly closed subgroup of M^{\dagger} , $O_{p}(M) = O_{p}(M)^{g}$. So replacing B by B^{g} we may assume that $B \leq S \leq M$. We will now verify that the assumptions of E.16(a) are fulfilled. Note that $O_{p}(M) \leq B \leq N_{G}(B)$ and Y_{M} is a non-trivial normal p-subgroup of M. By 2.2(f), $O_{p}(M) \in Syl_{p}(C_{G}(Y_{M}))$ and so $C_{M}(Y_{M})$ is p-closed. By assumption, $N_{G}(B) \leq M^{\dagger}$. By 2.2(c), $N_{G}(K) \leq M^{\dagger}$ for all $1 \neq K \leq M$, and so no non-trivial p-subgroup of $M \cap N_{G}(B)$ is normal in M and $N_{G}(B)$.

Thus indeed all assumptions of E.16(a) are fulfilled for $H_1 := M$, $H_2 := N_G(B)$, $A_1 := Y_M$ and H := G. Hence there exists $h \in H = G$ with $1 \neq [A_1, A_1^h] \leq A_1 \cap A_1^h$, and so $A_1 = Y_M$ is symmetric in G.

2.2. Asymmetry

LEMMA 2.5. Suppose that Y_M is asymmetric in G. Let $Y_M \leq R \leq M^{\dagger}$. Then $\langle Y_M^{N_G(R)} \rangle$ is elementary abelian.

PROOF. Recall from the basic property that $Y_M = Y_{M^{\dagger}}$, so $Y_M \leq R$ since $R \leq M^{\dagger}$. Thus Y_M^x is normal in R for every $x \in N_G(R)$. Hence, the claim is an immediate consequence of the definition of asymmetry.

LEMMA 2.6. Suppose that Y_M is asymmetric in G. Then the following hold:

- (a) Let L be a p-subgroup of G with $O_p(M) \leq L$. Then $N_G(L) \leq N_G(O_p(M)) \leq M^{\dagger}$.
- (b) $O_p(M)$ is a weakly closed subgroup of G.
- (c) Let $O_p(M) \leq L \leq G$. Then $L \cap M^{\dagger}$ is a parabolic subgroup of L.
- (d) $x^G \cap Y_M = x^M$ for every $x \in Y_M$.
- (e) Y_M is Q-tall if and only if $Y_M \leq O_p(N_G(Q))$.

PROOF. (a): Put $B := M^{\dagger} \cap L$. Since Y_M is asymmetric, 2.4(b) implies that $N_G(B) \leq M^{\dagger}$. In particular, $N_L(B) \leq M^{\dagger} \cap L = B$ and so L = B since L is a p-group. By 2.4(a) $O_p(M)$ is a weakly closed subgroup of M^{\dagger} . Thus

$$N_G(L) = N_G(B) = N_{M^{\dagger}}(B) \leqslant N_{M^{\dagger}}(O_p(M)) \leqslant N_G(O_p(M)) \stackrel{2.2(c)}{\leqslant} M^{\dagger},$$

and (a) is proved.

(b): By (a) $O_p(M) \leq N_G(L)$ for all *p*-subgroups *L* of *G* containing $O_p(M)$. Thus 1.45 shows that $O_p(M)$ is a weakly closed subgroup of *G*.

(c): Since $O_p(M)$ is a weakly closed subgroup of G, 1.46(g) shows that $N_L(O_p(M))$ is a parabolic subgroup of L, and since $N_L(O_p(M)) \leq L \cap M^{\dagger}$, also $L \cap M^{\dagger}$ is a parabolic subgroup of L.

(d): Since $O_p(M)$ is a weakly closed subgroup of G and $Y_M \leq Z(O_p(M))$, 1.48(b) shows that $x^G \cap Y_M = x^{N_G(O_p(M))}$. By 2.2(c) $N_G(O_p(M)) \leq M^{\dagger} = C_G(Y_M)M$, and so (d) holds.

(e): Recall from 2.2(f) that $O_p(M) \in Syl_p(C_G(Y_M))$.

Suppose that $Y_M \leq O_p(N_G(Q))$. Since $O_p(M) \leq N_G(Q)$, we conclude that Y_M is Q-tall.

Suppose that Y_M is Q-tall. Then there exists $g \in G$ such that $O_p(M) \leq N_G(Q^g)$ and $Y_M \leq O_p(N_G(Q^g))$. Since $O_p(M)$ is a weakly closed subgroup of G by (b), $Q^g \leq N_G(O_p(M))$ and since Q is a weakly closed subgroup of G by 1.52(b), $Q^{gh} = Q$ for some $h \in N_G(O_p(M)) \leq N_G(Y_M)$. Thus $Y_M \leq O_p(N_G(Q))$.

LEMMA 2.7. Suppose that Y_M is asymmetric in G.

- (a) Let $g \in G$ with $C_{Y_M}(Q^g) \neq 1$. Then $Q^g \leq M^\circ$.
- (b) Let $1 \neq U_0 \leq U \leq Y_M$. Put $E_U := \langle Q^g \mid g \in G, C_U(Q^g) \neq 1 \rangle$. Then $N_G(U_0)^\circ \leq E_U \leq M^\circ$.

PROOF. (a): Let $g \in G$ with $C_{Y_M}(Q^g) \neq 1$. Since $1 \neq C_{Y_M}(Q^g) \leq Y_M \leq C_G(O_p(M)), Q!$ implies $O_p(M) \leq N_G(Q^g)$. By 2.6(b) $O_p(M)$ is a weakly closed subgroup of G and so $Q^g \leq N_G(O_p(M))$. By 2.2(c) $N_G(O_p(M)) \leq M^{\dagger}$. By 2.2(h), $(M^{\dagger})^{\circ} = M^{\circ}$ and so $Q^g \leq M^{\circ}$.

(b): Let $h \in G$ with $Q^h \leq N_G(U_0)$. Then $C_{U_0}(Q^h) \neq 1$, so $C_U(Q^h) \neq 1$ and $Q^h \leq E_U$. Thus $N_G(U_0)^\circ \leq E_U$. By (a) $E_U \leq M^\circ$, and so (b) holds.

LEMMA 2.8. Let F be the inverse image of $F^*(M^{\dagger}/C_{M^{\dagger}}(Y_M))$ in M^{\dagger} . Suppose that Y_M is asymmetric in G, $F \leq H \leq G$ and H is of characteristic p. Then $Y_M \leq Y_H$.

PROOF. Since Y_M is asymmetric in G and $O_p(M) \leq F \leq H$, 2.6(c) implies that $H \cap M^{\dagger}$ contains a Sylow *p*-subgroup of *H*. Thus by 1.24(f), $Y_{M^{\dagger} \cap H} \leq Y_{H}$.

Now let $\overline{M^{\dagger}} := M^{\dagger}/C_{M^{\dagger}}(Y_M)$. Then $O_p(\overline{F}) \leq O_p(\overline{M^{\dagger}}) = 1$ and $C_{\overline{M^{\dagger}} \cap \overline{H}}(\overline{F}) \leq \overline{F}$. Note that $\overline{F} \leq \overline{M^{\dagger} \cap H}$ and so $[O_p(\overline{M^{\dagger} \cap H}), \overline{F}] \leq O_p(\overline{F}) = 1$. It follows that $O_p(\overline{M^{\dagger} \cap H}) = 1$. Thus Y_M is *p*-reduced for $M^{\dagger} \cap H$ and so $Y_M \leq Y_{M^{\dagger} \cap H} \leq Y_H$.

LEMMA 2.9. Suppose that Y_M is asymmetric in G and that there exists a subgroup H^* of characteristic p such that $O_p(M) \leq H^*$ and $Y_M \leq O_p(H^*)$. Let $H \leq H^*$ be minimal with $O_p(M) \leq H^*$ $H \text{ and } Y_M \leq O_p(H).$ Then $H \in \mathfrak{H}_G(O_p(M)).$

PROOF. By 2.2(a) $C_G(O_p(M)) \leq O_p(M)$. Since Y_M is asymmetric in G, 2.6(b) shows that $O_p(M)$ is a weakly closed subgroup of G. Thus the hypothesis of 1.49 are fulfilled and we conclude that H is of characteristic p. Let $O_p(M) \leq P < H$. Then the minimal choice of H implies that $Y_M \leq O_p(P)$ and so $H \in \mathfrak{H}_G(O_p(M))$.

LEMMA 2.10. Suppose that Y_M is char p-tall and asymmetric in G. Then $\mathfrak{H}_G(O_p(M)) \neq \emptyset$.

PROOF. Since Y_M is char p-tall there exists $H^* \leq G$ such that H^* is of characteristic $p, Y_M \leq Q$ $O_p(H^*)$, and H^* contains a Sylow *p*-subgroup of $C_G(Y_M)$. By 2.2(e), $O_p(M) \in Syl_p(C_G(Y_M))$ and after conjugation in $C_G(Y_M)$ we may assume that $O_p(M) \leq H^*$. Then by 2.9 $\mathfrak{H}_G(O_p(M)) \neq \emptyset$.

LEMMA 2.11. Suppose that Y_M is char p-tall and asymmetric in G. Let $H \in \mathfrak{H}_G(O_p(M))$ and put $H := H/O_p(H)$. Then the following hold:

- (a) Let $T_H \in Syl_p(H \cap M^{\dagger})$. Then $T_H \in Syl_p(H)$. In particular, $H = O^p(H)T_H$.
- (b) $O_p(H)$ normalizes $O_p(M)$ and Y_M .
- $\begin{array}{l} \overbrace{(c)}^{r} O^{p}(H) = [O^{p}(H), Y_{M}^{r}] \quad and \quad H = O^{p}(H)O_{p}(M). \\ (d) \quad O^{p}(H)Y_{M} = \langle Y_{M}^{O^{p}(H)} \rangle = \langle Y_{M}^{H} \rangle \preccurlyeq H \quad and \quad H = \langle O_{p}(M)^{H} \rangle. \end{array}$
- (e) Let $N \leq H$. Then either $O^p(H) \leq N$, or N is p-closed and $[\overline{N}, \overline{Y}_M \overline{O^p(H)}] = 1$. In particular, H is p-irreducible.
- (f) $Z(O^p(H)Y_M)$ is a normal p'-subgroup of \overline{H} .
- (g) $\Phi(\overline{H}) = \Phi(\overline{O^p(H)}) = Z(\overline{O^p(H)Y_M})$, and $\overline{O^p(H)}/\Phi(\overline{H})$ is a minimal normal subgroup of $\overline{H}/\Phi(\overline{H}).$
- (h) Either $\overline{O^p(H)}$ is a q-group for some prime $q \neq p$, or $\overline{O^p(H)}$ is a product of components, which are permuted transitively by $O_p(M)$.
- (i) If $Y_M \leq L \leq H$ and $L = \langle Y_M^L \rangle$, then $[O_p(H), L] \leq O_p(L)$, and L is of characteristic p.

PROOF. Put $H_0 := O^p(H)$, and let $T_H \in Syl_p(H)$ with $O_p(M) \leq T_H$.

(a): By 2.6(c) $H \cap M^{\dagger}$ is a parabolic subgroup of H and so (a) holds.

(b): Since $O_p(M)O_p(H)$ is p-group containing $O_p(M)$, 2.6(a) shows that

$$O_p(M)O_p(H) \leq N_G(O_p(M)) \leq M^{\dagger} = N_G(Y_M).$$

(c): By (a) $H = H_0T_H$, so $[H_0, Y_M]Y_M$ is normal in H. Hence $O_p([H_0, Y_M]Y_M) \leq O_p(H)$ and thus $Y_M \leq O_p([H_0, Y_M]Y_M)$ since $Y_M \leq O_p(H)$. Now the definition of $\mathfrak{H}_G(O_p(M))$ implies $[H_0, Y_M]O_p(M) = H$, so $H_0 = O^p(H) \leq [H_0, Y_M] \leq H_0$, and (c) follows.

(d): By (c) $H = H_0 O_p(M)$. Thus $H_0 Y_M$ is normal in H and so $\langle Y_M^H \rangle \leq H_0 Y_M$. Also by (c) $H_0 = [H_0, Y_M]$. We get

$$H_0Y_M = [H_0, Y_M]Y_M = \langle Y_M^{H_0} \rangle \leqslant \langle Y_M^H \rangle \leqslant H_0Y_M.$$

Hence equality holds everywhere and the first statement in (d) is proved. Similarly,

$$H = H_0 O_p(M) = [H_0, Y_M] O_p(M) \leq [H, O_p(M)] O_p(M) \leq \langle O_p(M)^H \rangle \leq H_0 O_p(M) \leq \langle O_p(M)^H \rangle$$

and so $H = \langle O_p(M)^H \rangle$.

(e): By the definition of $\mathfrak{H}_G(O_p(M))$, $H = NT_H$ or $Y_M \leq O_p(NT_H)$. In the first case $H_0 \leq N$. In the second case

$$[N, Y_M] \leqslant N \cap O_p(NT_H) \leqslant O_p(N) \leqslant O_p(H),$$

so $[\overline{N}, \overline{Y_M}] = 1$. Since by (d) $\overline{H_0 Y_M} = \langle \overline{Y_M}^{\overline{H_0}} \rangle$, we conclude that $[\overline{N}, \overline{H_0 Y_M}] = 1$; in particular, H_0 centralizes $T_H \cap N$. By (a) $H = H_0 T_H$. Thus $T_H \cap N$ is normal in H and N is *p*-closed. So (e) is proved.

(f): Put $\overline{D} := Z(\overline{H_0Y_M})$. By (a) $H = H_0T_H$, so $\overline{D} \leq \overline{H}$, and since \overline{D} is abelian and $O_p(\overline{H}) = 1$, \overline{D} is a p'-group.

(g): Since $O_p(\overline{H}) = 1$, 1.7(a) shows that $\Phi(\overline{H_0}) = \Phi(\overline{O^p(H)}) = \Phi(\overline{H})$. In particular, $\overline{H_0} \leq \Phi(\overline{H})$. Hence (e) shows that $\Phi(\overline{H}) \leq Z(\overline{H_0Y_M}) =: \overline{D}$.

Suppose that $\overline{D} \notin \Phi(\overline{H})$. Then there exists a maximal subgroup \overline{K} of \overline{H} with $\overline{D} \notin \overline{K}$. By (f) \overline{D} is a normal p'-subgroup of \overline{H} , so $\overline{H} = \overline{DK}$ and \overline{K} contains a Sylow p-subgroup of \overline{H} . Thus we may choose \overline{K} such that $\overline{O_p(M)} \notin \overline{K}$. Hence the definition of $\mathfrak{H}_G(O_p(M))$ gives $\overline{Y_M} \notin O_p(\overline{K})$. Since $[\overline{D}, \overline{Y_M}] = 1$ this shows that $\langle \overline{Y_M}^{\overline{H}} \rangle = \langle \overline{Y_M}^{\overline{DK}} \rangle = \langle \overline{Y_M}^{\overline{K}} \rangle$ is p-group, a contradiction to $O_p(\overline{H}) = 1$. Thus $\overline{D} = \Phi(\overline{H})$, and the first part of (g) is proved.

By (e) every normal subgroup of \overline{H} properly contained in $\overline{H_0}$ is contained in \overline{D} . Hence $\overline{H_0}/\overline{D}$ is a minimal normal subgroup of \overline{H} and (g) is proved.

(h): By (g) $\overline{H_0}/\overline{\Phi(H)}$ is a minimal normal subgroup of \overline{H} . So either $\overline{H_0}/\overline{\Phi(H)}$ is a q-group for some prime q or $\overline{H_0}/\overline{\Phi(H)}$ is the direct product of non-abelian simple groups transitively permuted by \overline{H} . By (g) $\Phi(\overline{H_0}) = \Phi(\overline{H}) \leq Z(\overline{H_0})$. So in the first case, $\overline{H_0}$ is nilpotent and

$$\overline{H_0} = \Phi(\overline{H})O_q(\overline{H_0}) = \Phi(\overline{H_0})O_q(\overline{H_0}),$$

so $\overline{H_0} = O_q(\overline{H_0})$ is a q-group.

In the second case, $\overline{H_0} = \Phi(\overline{H_0})\overline{H_0}'$, $\overline{H_0} = \overline{H_0}'$ and $\overline{H_0}$ is the product of components transitively permuted by \overline{H} . In particular, each component of $\overline{H_0}$ is normal in $\overline{H_0}$, and since $\overline{H} = \overline{H_0}\overline{O_p(M)}$, already $\overline{O_p(M)}$ permutes the components transitively.

(i): By (b) $O_p(H)$ normalizes Y_M and so $[O_p(H), Y_M] \leq Y_M \leq L$. Since $L = \langle Y_M^L \rangle$ this gives $[O_p(H), L] = [O_p(H), \langle Y_M^L \rangle] \leq O_p(H) \cap L \leq O_p(H) \cap O_p(L).$

It follows that $C_L(O_p(L))$ acts quadratically on $O_p(H)$. By the definition of $\mathfrak{H}_G(O_p(M))$, H is of characteristic p, and so 1.4(a) shows that $C_L(O_p(L))$ is a p-group. Hence L is of characteristic p. \Box

LEMMA 2.12. Let $H \in \mathfrak{H}_G(O_p(M))$. Suppose that Y_M is asymmetric in G and that there exists $g \in G$ such that $H \leq N_G(Q^g)$. Then the following hold:

- (a) Y_M is Q-tall.
- (b) $Q^g \leq O_p(HQ^g) \leq N_G(O_p(M)) \leq N_G(Y_M) = M^{\dagger}$.
- (c) $H \leq HQ^g$; in particular $O^p(H) = O^p(HQ^g)$.
- (d) HQ^g is p-irreducible.

PROOF. (a): By the definition of $\mathfrak{H}_G(O_p(M))$, $Y_M \leq O_p(H)$ and $O_p(M) \leq H$. Since $H \leq N_G(Q^g)$ this gives $Y_M \leq O_p(N_G(Q^g))$ and $O_p(M) \leq N_G(Q^g)$. By 2.2(f), $O_p(M) \in Syl_p(C_G(Y_M))$ and so Y_M is Q-tall.

(b): Clearly $Q^g \leq O_p(HQ^g)$ and $O_p(M)O_p(HQ^g)$ is a p-group. By 2.6(b) $O_p(M)$ is a weakly closed subgroup of G, and we conclude that $Q^g \leq O_p(HQ^g) \leq N_G(O_p(M))$. By 2.2(c),(d), $N_G(O_p(M)) \leq M^{\dagger} = N_G(Y_M)$, and so (b) is proved.

(c): By (b), Q^g normalizes $O_p(M)$ and thus also every $N_G(Q^g)$ -conjugate of $O_p(M)$. Since by 2.11(d) $H = \langle O_p(M)^H \rangle$ and $H \leq N_G(Q^g)$, Q^g normalizes H and $H \leq HQ^g$.

(d): By 2.11(e) H is p-irreducible. Since H normalizes Q^g , 1.30(b) shows that HQ^g is p-irreducible.

Recall the definition of a minimal asymmetric module from Definition A.4 for the next lemma.

LEMMA 2.13. Suppose that Y_M is char p-tall and asymmetric in G. Let $H \in \mathfrak{H}_G(O_p(M))$ and let V be a non-central H-chief factor of $O_p(H)$. Put $\widetilde{H} := H/C_H(V)$, $A := \widetilde{Y_M}$ and $B := \widetilde{O_p(M)}$. Then V is a faithful simple minimal asymmetric $\mathbb{F}_p \widetilde{H}$ -module with respect to A and B.

PROOF. We have to verify A.4 (i) – (iv). By 2.6(b) $O_p(M)$ is a weakly closed subgroup of G and so by 1.46(j) $B = O_p(M)$ is a weakly closed subgroup of \tilde{H} . Hence A.4(i) holds.

By 2.11(b), $O_p(H)$ normalizes Y_M and $O_p(M)$. Therefore,

$$[O_p(H), Y_M] \leq Y_M \leq C_G(O_p(M))$$
 and $[O_p(H), O_p(M)] \leq O_p(M) \leq C_G(Y_M)$

Thus

$$[O_p(H), Y_M, O_p(M)] = 1$$
 and $[O_p(H), O_p(M), Y_M] = 1$,

and Property A.4(ii) holds.

Assume for a contradiction that $\langle Y_M^H \rangle$ acts nilpotently on V. Since V is a chief factor and so a simple H-module, $[V, \langle Y_M^H \rangle] = 1$. By 2.11(c), $O^p(H) \leq \langle Y_M^H \rangle$ and thus $[V, O^p(H)] = 1$. But then V is a central H-chief factor, a contradiction. So $\langle Y_M^H \rangle$ does not act nilpotently on V, and A.4(iii) holds.

Finally let $C_H(V) \leq P \leq H$ such that $B \leq \tilde{P} < \tilde{H}$. Then P is a proper subgroup of H containing $O_p(M)$, so by the definition of $\mathfrak{H}_G(O_p(M))$, $Y_M \leq O_p(P)$. By 2.6(a) $O_p(P) \leq M^{\dagger}$ and thus by 2.5 $\langle Y_M^P \rangle$ is elementary abelian. Let W be the inverse image of V in H. Then

$$[W, \langle Y_M^P \rangle] \leq W \cap \langle Y_M^P \rangle$$
 and $[W, \langle Y_M^P \rangle, \langle Y_M^P \rangle] = 1.$

This gives A.4(iv).

LEMMA 2.14. Let $L \in \mathfrak{L}_G(Y_M)$ and put $A := O_p(L)$. Then $Y_M A/A$ is the unique non-trivial elementary abelian normal p-subgroup of $N_L(Y_M)/A$.

PROOF. Let $T \in Syl_p(N_L(Y))$. By definition of $\mathfrak{L}_G(Y_M)$,

$$L/A \cong SL_2(q), Sz(q), \text{ or } Dih_{2r},$$

where p = 2 in the last two cases, r is an odd prime, and $N_L(Y_M)$ is the unique maximal subgroup L containing Y_M . If $L/A \cong SL_2(q)$ or Sz(q), then $N_L(Y)/A$ is a Borel subgroup of L/A and $T/A = O_p(N_L(Y)/A)$.

In the $SL_2(q)$ -case T/A is elementary abelian and $N_L(Y)$ acts simply on T/A. Thus YA/A = T/A and the lemma holds.

In the Sz(q)-case all involutions of T/A are contained in Z(T/A), and $N_L(Y)$ acts simply on Z(T/A). Thus YA/A = Z(T/A), and the lemma holds.

In the Dih_{2r} -case, $N_L(Y) = T$ and |T/A| = 2, and the lemma holds.

For the next lemma recall the definition of $\mathfrak{L}_{K}(Y_{M})$ from 2.1 and the definition of a \mathcal{CK} -group from C.1.

LEMMA 2.15. Let $Y_M \leq L \leq G$ and suppose that L is a $C\mathcal{K}$ -group of characteristic p. Then $L \in \mathfrak{L}_G(Y_M)$ if and only if L is Y_M -minimal and $N_L(Y_M)$ is a maximal subgroup of L.

PROOF. If $L \in \mathfrak{L}_G(Y_M)$, then by definition, L is Y_M -minimal and $N_L(Y_M)$ is a maximal subgroup of L.

Suppose now that L is Y_M -minimal and $N_L(Y_M)$ is a maximal subgroup of L. Let $T \in Syl_p(N_L(Y_M))$ with $Y_M \leq T$. By 1.42(b), $N_L(T) \leq N_L(Y_M)$ and $O_p(L) \leq T \in Syl_p(L)$. In particular, $O_p(L) \leq N_L(Y_M)$.

Let V be the direct sum of the L-chief factors on $O_p(L)$ (in a given chief series). Since L is of characteristic p, 1.4(c) shows that $C_L(V) \leq O_p(L)$, and since $O_p(L) \leq C_L(V)$, we get $C_L(V) = O_p(L)$. Hence V is a faithful $\mathbb{F}_p L/O_p(L)$ -module.

As $O_p(L)$ normalizes Y_M , we have $[O_p(L), Y_M] \leq Y_M$ and $[O_p(L), Y_M, Y_M] = 1$. It follows that Y_M acts quadratically on V, and we can apply the Quadratic *L*-Lemma [**MS6**, Lemma 2.9] to $L/O_p(L)$ and V. This gives

$$L/O_p(L) \cong SL_2(q), Sz(q) \text{ or } Dih_{2r^k},$$

where q is a power of p, r is an odd prime, and p = 2 in the last two cases.

Set $X := \langle (Y_M \cap O_p(L))^L \rangle$ and $\hat{L} := L/X$. Suppose that $|\widehat{Y_M}| = 2$. Then \hat{L} is a dihedral group, but not a 2-group. So there exists $\widehat{Y_M} \leq \hat{D} \leq \hat{L}$ with $\hat{D} \cong Dih_{2r}$, r an odd prime. Then $\hat{Y}_M \not\equiv \hat{D}$ and so $D \leq L \cap M^{\dagger}$. Since L is Y_M -minimal with $L \cap M^{\dagger}$ being the maximal subgroup containing Y_M , we conclude that $\hat{D} = \hat{L}$ and $X = O_2(L)$.

Hence we may assume that $|\widehat{Y_M}| > 2$. In particular, $L/O_p(L) \cong SL_2(q)$ or Sz(q). As seen above, $N_L(T) \leq N_L(Y_M)$ and $T \in Syl_p(L)$. It follows that $N_L(Y_M)/O_p(L)$ is a Borel subgroup of $L/O_p(L)$ and normalizes the elementary abelian group $Y_MO_p(L)/O_p(L)$. Thus the structure of $SL_2(q)$ and Sz(q) shows that $q = |Y_MO_p(L)/O_p(L)| = |\widehat{Y_M}|$. It remains to show that $O_p(L) = X$.

Suppose for a contradiction that $O_p(L) \neq X$. Since $[O_p(L), Y_M] \leq Y_M \cap O_p(L) \leq X$, \hat{L} is a non-trivial central extension of $L/O_p(L)$ by a *p*-group. Hence [**Gr1**] shows that either q = 9 and $\hat{L} \sim 3 \cdot SL_2(9)$ or q = 8 and $\hat{L} \sim 2^a \cdot Sz(8)$, $1 \leq a \leq 2$. In both cases, since \hat{T} is a Sylow *p*-subgroup of \tilde{L} , $O_p(\hat{L}) = Z(\hat{T})$. In particular $\widehat{Y_M} \cap Z(\hat{T}) = 1$, a contradiction as \hat{T} normalizes $\widehat{Y_M}$.

LEMMA 2.16 (Asymmetric L-Lemma). Suppose that Y_M is char p-tall and asymmetric in G. Let $H \in \mathfrak{H}_G(O_p(M))$ and L be minimal among all subgroups $L \leq H$ satisfying $Y_M \leq L$ and $Y_M \leq O_p(L)$. Then the following hold:

- (a) $H = \langle L, O_p(M) \rangle = \langle Y_M^h, O_p(M) \rangle$ for all $h \in L \setminus N_L(Y_M)$.
- (b) L is Y_M -minimal and of characteristic p, and $N_L(Y_M)$ is the unique maximal subgroup of L containing Y_M .
- (c) $[V, O^p(L)] \neq 1$ for all non-central chief factors V of H on $O_p(H)$.
- (d) $\langle (O_p(L) \cap Y_M)^L \rangle \leq O_p(H).$
- (e) Suppose that L is a CK-group. Then $L \in \mathfrak{L}_H(Y_M)$ and $O_p(L) \leq O_p(H)$.

PROOF. Define

$$\begin{split} H^* &:= \langle Y_M^H \rangle, \ B := [O_p(H), H^*] = \langle [O_p(H), Y_M]^H \rangle, \ \text{ and } \ P := N_L([O_p(H), Y_M]) \cap N_L(C_B(Y_M)) \\ 1^\circ. \qquad L = \langle Y_M, Y_M^g \rangle \ for \ some \ g \in L. \ In \ particular, \ L = \langle Y_M^L \rangle. \end{split}$$

Suppose that $\langle Y_M, Y_M^g \rangle$ is a *p*-group for all $g \in L$. Then Baer's Theorem [**KS**, 6.7.6] shows that $Y_M \leq O_p(L)$, a contradiction to the choice of L. Thus there exists $g \in L$ such that $\langle Y_M, Y_M^g \rangle$ is not *p*-group. Then $Y_M \leq O_p(\langle Y_M, Y_M^g \rangle)$ and the minimal choice of L gives $\langle Y_M, Y_M^g \rangle = L$.

In the following we fix $g \in L$ such hat $L = \langle Y_M, Y_M^g \rangle$.

 $2^{\circ}. \qquad H = \langle L, O_p(M) \rangle = \langle Y_M^g, O_p(M) \rangle.$

Note that $O_p(M) \leq \langle L, O_p(M) \rangle$ and $Y_M \leq O_p(\langle L, O_p(M) \rangle$. So the definition of $\mathfrak{H}_G(O_p(M))$ gives $H = \langle L, O_p(M) \rangle = \langle Y_M^g, O_p(M) \rangle$.

3°. $[O_p(H), Y_M] ≤ Y_M ∩ B ≤ C_B(O_p(M)) ≤ C_B(Y_M) and [B, O_p(M)] ≤ B ∩ O_p(M) ≤ C_B(Y_M).$

By 2.11(b) $O_p(H)$ normalizes Y_M and $O_p(M)$. By definition of B, $[O_p(M), Y_M] \leq B \leq O_p(H)$ and so (3°) holds.

 4° . L has characteristic p.

By (1°) , $L = \langle Y_M^L \rangle$, and so (4°) follows from 2.11(i).

5°.
$$B = [O_p(H), Y_M^g]C_B(Y_M).$$

Since $[B, Y_M^g] \leq [O_p(H), Y_M^g]$ and by (3°), $[B, O_p(M)] \leq C_B(Y_M)$, both Y_M^g and $O_p(M)$ normalize $[O_p(H), Y_M^g]C_B(Y_M)$. As $H = \langle Y_M^g, O_p(M) \rangle$ and $B = \langle [O_p(H), Y_M^g]^H \rangle$, this gives $B = [O_p(H), Y_M^g]C_B(Y_M)$.

$$6^{\circ}$$
. $C_B(Y_M) = [O_p(H), Y_M]C_B(L)$.

Since $[O_p(H), Y_M^g] \leq C_B(Y_M^g)$ and $L = \langle Y_M, Y_M^g \rangle$, (5°) implies

$$C_B(Y_M^g) = [O_p(H), Y_M^g] (C_B(Y_M) \cap C_B(Y_M^g)) = [O_p(H), Y_M^g] C_B(L).$$

$$7^{\circ}$$
. $P = N_L(Y_M) = N_L(O_p(M)).$

By 2.2(e), $Y_M = \Omega_1 Z(O_p(M))$ and so $N_L(O_p(M)) \leq N_L(Y_M)$. Clearly $N_L(Y_M)$ normalizes $[O_p(H), Y_M]$ and $C_B(Y_M)$. Thus $N_L(Y_M) \leq P$. So it remains to show that $P \leq N_L(O_p(M))$.

Both, P and $O_p(M)$ normalize the series

$$1 \leq [O_p(H), Y_M] \leq C_B(Y_M) \leq B \leq O_p(H).$$

By (3°) $[B, O_p(M)] \leq C_B(Y_M)$ and $[O_p(H), Y_M] \leq Y_M$, so $O_p(M)$ centralizes $[O_p(H), Y_M]$ and $B/C_B(Y_M)$. As $L = \langle Y_M, Y_M^g \rangle \leq H^*$, we know that L centralizes $O_p(H)/B$. By (6°) $C_B(Y_M) = [O_p(H), Y_M]C_B(L)$. Since $P \leq L$ and P normalizes $[O_p(H), Y_M]$, we conclude that P centralizes $C_B(Y_M)/[O_p(H), Y_M]$. It follows that $[P, O_p(M)]$ centralizes all factors of the above series and so acts nilpotently on $O_p(H)$. As H is of characteristic p, 1.4(a) implies that that $[P, O_p(M)]$ is a p-group. So $[P, O_p(M)]O_p(M)$ is a p-group normalized by P and since $O_p(M)$ is a weakly closed subgroup of $G, P \leq N_L(O_p(M))$.

 8° . Y_M is a weakly closed subgroup of L.

Let $r \in L$ with $[Y_M, Y_M^r] \leq Y_M \cap Y_M^r$. By 1.45(b) it suffices to show that $Y_M = Y_M^r$.

As Y_M is asymmetric in G, $[Y_M, Y_M^r] \leq Y_M \cap Y_M^r$ implies $[Y_M, Y_M^r] = 1$. By (3°) $[O_p(H), Y_M] \leq Y_M$ and so $[O_p(H), Y_M] \leq C_B(Y_M^r)$. Now (6°) gives $C_B(Y_M) \leq C_B(Y_M^r)$ and so $C_B(Y_M) = C_B(Y_M)^r$. So r normalizes $C_B(Y_M)$. Put $W := [O_p(H), L]$. Since $L = \langle Y_M, Y_M^g \rangle$, 1.40 shows that $[O_p(H), Y_M] = C_W(Y_M)$. Note that $W \leq B$, and so $W \cap C_B(Y_M) = C_W(Y_M) = [O_p(H), Y_M]$. Thus r also normalizes $[O_p(H), Y_M]$ and so $r \in P$. By (7°) $P = N_L(Y_M)$. Hence $Y_M^r = Y_M$, and (8°) is proved.

 9° . L is Y_M -minimal, and $N_L(Y_M)$ is the unique maximal subgroup of L containing Y_M .

Let $Y_M \leq U < L$. By the minimal choice of L, $Y_M \leq O_p(U)$. By (8°) Y_M is a weakly closed subgroup of L and so $Y_M \leq U$. Thus $N_L(Y_M)$ is the unique maximal subgroup of L containing Y_M . By (1°) $L = \langle Y_M^L \rangle$ and thus L is Y_M -minimal.

 10° . $O_p(L) \cap Y_M \leq O_p(H)$.

By (9°)
$$O_p(L) \leq N_L(Y_M)$$
 and so also $O_p(L) \leq N_L(Y_M^g)$. By (3°), $[O_p(H), Y_M^g] \leq Y_M^g$ and thus $[[O_p(H), Y_M^g], O_p(L) \cap Y_M] \leq Y_M \cap Y_M^g \cap B \leq C_B(\langle Y_M^g, O_p(M) \rangle) = C_B(H).$

By (5°) $B = [O_p(H), Y_M^g]C_B(Y_M)$ and so $[B, O_p(L) \cap Y_M] \leq C_B(H)$. Hence $O_p(L) \cap Y_M$ centralizes all factor of the *H*-invariant series

$$1 \leqslant C_B(H) \leqslant B \leqslant O_p(H).$$

Since H is of characteristic p, 1.4(c) shows that $O_p(L) \cap Y_M \leq O_p(H)$. So (10°) holds.

(a), (b), (d): This follows from (2°) , (4°) and (9°) , and (10°) , respectively.

(c): Let V be a non-central H-chief factor on $O_p(H)$ and assume that $O^p(L) \leq C_H(V)$. By (1°) $L = \langle Y_M^L \rangle$, so $L = O^p(L)Y_M$. Thus (2°) implies

$$H = \langle L, O_p(M) \rangle = \langle O^p(L)Y_M, O_p(M) \rangle \leqslant C_H(V)O_p(M),$$

and $[V, O^p(H)] = 1$. But then V is a central H-factor, a contradiction.

(e): By (9°) L is Y_M -minimal and $N_L(Y_M)$ is a maximal subgroup of L. Thus 2.15 shows that $L \in \mathfrak{L}_G(Y_M)$. In particular, $O_p(L) = \langle (O_p(L) \cap Y_M)^L \rangle$. By (10°) $O_p(L) \cap Y_M \leq O_p(H)$ and so $O_p(L) \leq O_p(H)$.

For the next lemma recall the definition of a quasisimple module from A.2.

LEMMA 2.17. Suppose that G is a \mathcal{K}_p -group, Y_M is char p-tall and asymmetric in G and there exists $H \in \mathfrak{H}_G(O_p(M))$ with $[\Omega_1 Z(O_p(H)), O^p(H)] \neq 1$. Then there exist $L \in \mathfrak{L}_H(Y_M)$ and a quasisimple H-submodule V of Y_H . Moreover, the following holds for any such L and V and W := [V, L]:

- (a) $H = \langle O_p(M), L \rangle$.
- (b) $W \leq Z(O_p(L))$ and $[O_p(H), L] \leq O_p(L) \leq O_p(H) \leq N_H(Y_M)$.
- (c) $1 \neq W = [W, L] = [W, O^p(L)] = [V, O^p(L)], V = WC_V(Y_M) = WC_V(L), and W is a non-trivial strong offender on Y_M.$
- (d) $C_V(O^p(L)) = C_V(L)$, and $C_V(O^p(H)) = C_V(\langle Y_M^H \rangle)$.
- (e) $W \cap C_{Y_M}(L) = C_W(O^p(L)) = C_W(O^p(H)) = C_W(H).$
- (f) $[W, Y_M] = [W, X]$ for every $X \leq Y_M$ with $|X/C_X(W)| > 2$.

PROOF. Let V_0 be minimal in $\Omega_1 Z(O_p(H))$ with $[V_0, O^p(H)] \neq 1$. By 2.11(g), H is *p*-irreducible and so by 1.34(c), V_0 is quasisimple. In particular, V_0 is *p*-reduced for H and so $V_0 \leq Y_H$ by definition of Y_H . By definition of $\mathfrak{H}_G(O_p(M))$, $Y_M \leq O_p(H)$ and so we can choose $L_0 \leq H$ minimal with respect to $Y_M \leq L_0$ and $Y_M \leq O_p(L_0)$. By 2.16(e) $L_0 \in \mathfrak{L}_H(Y_M)$. This shows the existence of Land V.

Now let V be any quasisimple H-submodule of Y_H and $L \in \mathfrak{L}_H(Y_M)$. Then $V/C_V(O^p(H))$ is a non-central chief factor for H on $O_p(H)$. Let $Y_M \leq R < L$. By definition of $\mathfrak{L}_G(Y_M)$, L is Y-minimal and $N_L(Y_M)$ is the unique maximal subgroup of L containing Y_M . Thus $R \leq N_L(Y_M)$ and so $Y_M \leq R$ and $Y_M \leq O_p(R)$. So L satisfies the assumptions of 2.16. We conclude that $H = \langle L, O_p(M) \rangle, O_p(L) \leq O_p(H)$ and $[V, O^p(L)] \neq 1$. In particular, (a) holds and $W := [V, L] \neq 1$.

(b): Since $W \leq V \leq Y_H \leq Z(O_p(H))$ and $O_p(L) \leq O_p(H)$ we have $W \leq Z(O_p(L))$. By 2.11(i), $[O_p(H), L] \leq O_p(L)$, and by 2.11(b), $O_p(H)$ normalizes Y_M . Thus

$$W \leq [O_p(H), L] \leq O_p(L) \leq O_p(H) \leq N_H(Y_M),$$

and (b) holds.

(c): By 1.43(o) W is a strong offender on Y_M . Let $h \in L \setminus N_L(Y_M)$. By 1.42(f), $L = \langle Y_M, Y_M^h \rangle$, and by 2.16(a), $H = \langle Y_L^h, O_p(M) \rangle$. As V is a perfect ¹ H-module, $V = [V, H] = [V, Y_M^h][V, O_p(M)]$. By 2.11(b), $O_p(H)$ normalizes $O_p(M)$, so $[V, O_p(M)] \leq V \cap O_p(M) \leq C_V(Y_M)$, and we conclude that

$$V = [V, Y_M^h] C_V(Y_M).$$

In particular, $V = WC_Y(Y_M)$. Moreover, $[V, Y_M] \leq V \cap Y_M \leq C_V(Y_M)$, and since also $h^{-1} \in L \setminus N_L(Y_M)$, $V = [V, Y_M]C_V(Y_M^h)$, so

$$C_V(Y_M) = [V, Y_M] (C_V(Y_M) \cap C_V(Y_M^h)) = [V, Y_M] C_V(L).$$

¹for the definition of a perfect module see A.2

Hence $V = [V, Y_M^h][V, Y_M]C_V(L) = WC_V(L)$. It follows that W = [V, L] = [W, L], $W = [W, O^p(L)] = [V, L, O^p(L)] = [V, O^p(L)]$ and $[W, Y_M] = [V, Y_M]$. Since V is quasisimple, we have $[V, O^p(H)] \neq 1$. As $O^p(H) \leq \langle Y_M^H \rangle$ by 2.11(d), this gives $[W, Y_M] = [V, Y_M] \neq 1$. So (c) holds.

(d): Since $V = WC_V(L)$, $C_V(O^p(L)) = C_W(O^p(L))C_V(L)$. By 1.43(h), $C_W(O^p(L)) = C_W(L)$ and so $C_V(O^p(L)) = C_V(L)$. Since $O^p(H) \leq \langle Y_M^H \rangle$ we have $C_V(\langle Y_M^H \rangle) \leq C_V(O^p(H))$. Also

$$C_V(O^p(H)) \leqslant C_V(O^p(L)) = C_V(L) \leqslant C_V(Y_M),$$

and so $\langle Y_M^H \rangle$ centralizes $C_V(O^p(H))$.

(e): By 1.43(h) $C_W(O^p(L)) = W \cap C_{Y_M}(L)$, and so

$$C_W(H) \leqslant C_W(O^p(H)) \leqslant C_W(O^p(L)) = W \cap C_{Y_M}(L) \leqslant C_W(\langle L, O_p(M) \rangle) \stackrel{\text{(a)}}{=} C_W(H).$$

(a)

Hence (e) holds.

(f): If $|Y_M/Y_M \cap O_p(L)| = p$, there is nothing to prove. Thus, we may assume that $q := |Y_M/Y_M \cap O_p(L)| > p$. Since $L \in \mathfrak{L}_H(Y_M)$, we get $L/O_p(L) \cong SL_2(q)$ or Sz(q); in particular, $L/O_p(L)$ is quasisimple.

Assume that q is odd. Then $L/O_p(L) \cong SL_2(q)$ and $V = [V, Z(L/O_p(L))] \times C_V(Z(L/O_p(L)))$. Put $V_1 := C_V(Z(L/O_p(L)))$. Then $L/C_L(V_1)$ has dihedral Sylow 2-subgroups. As $[V_1, Y_M, Y_M] \leq [Y_M, Y_M] = 1$, [**Gor**, Theorem 8.1.2] shows that $Y_M \leq C_L(V_1)$ and $V_1 = C_V(L)$. Hence $W = [V, L] = [V, Z(L/O_p(L))]$ and $C_W(L) = 1$. On the other hand 1.43(d) shows that $[W/C_W(L), x] = [W/C_W(L), Y_M]$ for all $x \in Y_M \setminus C_{Y_M}(X)$, and so (f) holds.

Assume now that q is even. Let $X \leq Y_M$ such that $|X/X \cap O_2(L)| \geq 4$. Then there exists $y \in Y_M$ and $g \in L$ such that

$$L = \langle X, y^g \rangle O_2(L) = \langle X, X^g \rangle O_2(L) = \langle Y_M, Y_M^g \rangle O_2(L).$$

Put $\overline{L} := L/C_L(W)$. Since by (b) $O_p(L) \leq C_L(W)$, we get $\overline{L} = \langle \overline{X}, \overline{X}^{\overline{g}} \rangle$ and so are allowed to apply 1.40 with \overline{L} , W and \overline{X} in place of L, V and X. This gives $C_{[W,L]}(X) = [W,X]$. As $[W,X] \leq [W,Y_M] \leq C_{[W,L]}(X)$ we conclude $[W,Y_M] = [W,X]$, and (f) is proved.

LEMMA 2.18. Let $L \in \mathfrak{L}_G(Y_M)$ and put $A := O_p(L)$, $Y := Y_M$ and $\tilde{q} := |Y/Y \cap A|$.

- (a) Let $h \in L$. If h is not a p-element then h acts fixed-point freely on $A/C_Y(L)$.
- (b) Let U be any chief factor for $N_L(Y)$ on $AY/C_Y(L)$. Then $|U| = \tilde{q}$, and if $\tilde{q} > 2$, then $U = [U, N_L(Y)]$.
- (c) Let U be any $N_L(Y)$ -invariant section of $AY/C_Y(L)$. Then |U| is a power of \tilde{q} .

PROOF. (a): Recall form the definition of $\mathfrak{L}_G(Y_M)$ that $L/A \cong Dih_{2r}$, r an odd prime, $SL_2(\tilde{q})$ or $Sz(\tilde{q})$. Moreover, by 1.43(p) L has no central chief factors in $A/C_Y(L)$. Thus, the claim is obvious if $L/A \cong Dih_{2r}$.

So suppose that $L/A \cong SL_2(\tilde{q})$ or $Sz(\tilde{q})$. Then by C.15 every chief factor is a natural module for L/A. As the non-trivial p'-elements of L/A act fixed-point freely on these modules, they also act fixed-point freely on $A/C_Y(L)$.

(b): Now let U be a chief factor for $N_L(Y)$ on $A/C_Y(L)$. Then the p'-elements of $N_L(Y)$ acts fixed-point freely on U, so U is a faithful simple module for $N_L(Y)/O_p(N_L(Y))$ over \mathbb{F}_p . Since $N_L(Y)/O_p(N_L(Y))$ is cyclic of order $\tilde{q} - 1$, we get that $|U| = \tilde{q}$, and if $\tilde{q} > 2$, $U = [U, N_L(Y)]$. Since YA/A is a simple $N_L(Y)$ -module of order \tilde{q} we conclude that (b) holds.

(c) follows immediately from (b).

36

2.3. Symmetric Pairs

In this section we study how Y_M is embedded in parabolic subgroups of G if Y_M is short and asymmetric in G.

DEFINITION 2.19. Let Y be a conjugate of Y_M in G. A subgroup $L \leq G$ is a Y-indicator if either

- (1) L is p-group and $Y \leq L$, or
- (2) L is p-minimal, $Y \leq O_p(L)$, $N_L(Y)$ is a maximal and parabolic subgroup of L (so $Y \leq L$), and one of the following holds:
 - (i) There exists $Q_0 \in Q^G$ with $Q_0^{\bullet} \leq N_G(Y)$ and $L \leq N_G(Q_0)$.
 - (ii) There exists $T \in Syl_p(N_G(Y))$ such that $T \cap L \in Syl_p(N_L(Y)), [\Omega_1Z(T), O^p(L)] \neq 1$, and $[Y, O^p(L)] \leq [\Omega_1Z(T), O^p(L)].$

A pair (Y_1, Y_2) of conjugates of Y_M is a symmetric pair if there exist Y_i -indicators L_i , i = 1, 2, such that for $V_i := \langle Y_i^{L_i} \rangle$

$$V_1V_2 \leq L_1 \cap L_2$$
 and $[V_1, V_2] \neq 1$.

LEMMA 2.20. Suppose that Y_M is asymmetric in G. Let Y be a conjugate of Y_M and L be a Y-indicator. Then $\langle Y^L \rangle$ is elementary abelian.

PROOF. Without loss of generality we may assume that $Y = Y_M$. We discuss the cases given in 2.19. Observe that in every case $Y_M \leq O_p(L)$. In case 2.19(1) $Y_M \leq L$, so the lemma holds in this case.

In case 2.19(2) $N_L(Y_M)$ is a parabolic subgroup of L, so $O_p(L) \leq N_L(Y_M) \leq M^{\dagger}$. Now 2.5 yields the assertion.

LEMMA 2.21. Suppose that Y_M is $\mathcal{P}_G(S)$ -short and asymmetric in G and that $\mathcal{M}_G(S) \neq \{M^{\dagger}\}$. Then there exists $\tilde{P} \in \mathcal{P}_G(S)$ such that $\tilde{P} \cap M^{\dagger}$ is a maximal subgroup of \tilde{P} . Moreover, for any such \tilde{P} :

- (a) $O_p(\langle M, \widetilde{P} \rangle) = 1.$
- (b) $Y_M \leq O_p(\tilde{P}) \leq S \leq M^{\dagger}$.
- (c) $\langle Y_M^{\tilde{P}} \rangle$ is an elementary abelian p-group.

PROOF. Since $\mathcal{M}_G(S) \neq \{M^{\dagger}\}$ there exists $\widetilde{P} \in \mathcal{L}_G(S)$ with $\widetilde{P} \notin M^{\dagger}$. We choose \widetilde{P} minimal with this property. Since $O_p(\widetilde{P}) \leq S \leq \widetilde{P} \cap M^{\dagger}$, 1.6 shows that $\{U \mid \widetilde{P} \cap M^{\dagger} \leq U \leq \widetilde{P}\} \subseteq \mathcal{L}_G(S)$. Thus, the minimal choice of \widetilde{P} implies that $\widetilde{P} \cap M^{\dagger}$ is a maximal subgroup of \widetilde{P} .

Since Y_M is asymmetric in G, 2.6(a) implies that $N_G(S) \leq M^{\dagger}$, so $S \not\equiv \widetilde{P}$. Now the minimality of \widetilde{P} shows that $\widetilde{P} \in \mathcal{P}_G(S)$. This shows the existence of \widetilde{P} .

Now suppose that $\widetilde{P} \in \mathcal{P}_G(S)$ such that $\widetilde{P} \cap M^{\dagger}$ is a maximal subgroup of \widetilde{P} . Then $\widetilde{P} \notin M^{\dagger}$, and since $\mathcal{M}_G(M) = \{M^{\dagger}\}$, (a) holds.

Note that $O_p(M) \leq S \leq \tilde{P}$, $O_p(M) \in Syl_p(C_G(M))$ and Y_M is $\mathcal{P}_G(S)$ -short. Thus $Y_M \leq O_p(\tilde{P}) \leq S \leq M^{\dagger}$, and (b) is proved.

As Y_M is asymmetric, 2.5 now shows that $\langle Y_M^P \rangle$ is an elementary abelian *p*-group.

LEMMA 2.22. Let $L \in \mathcal{P}_G(S)$ such that $L \cap M^{\dagger}$ is a maximal subgroup of L. Suppose that $Q \not \equiv M^{\dagger}$ and that Y_M is short and asymmetric in G. Then L is a Y_M -indicator.

PROOF. Since $L \in \mathcal{P}_G(S) \subseteq \mathcal{L}_G$, L is of characteristic p. Thus 1.24(g) gives

 $1^{\circ}. \qquad \Omega_1 Z(S) \leqslant Y_L \leqslant \Omega_1 Z(O_p(L)).$

By 2.21(b), $Y_M \leq O_p(L) \leq S \leq M^{\dagger}$. Suppose that $Q \leq O_p(L)$. Then $L \leq N_G(Q)$ by 1.52(a). As $Q^{\bullet} \leq S \leq N_G(Y_M)$ we conclude that L satisfies 2.19(2:i) with $Y = Y_M$ and $Q_0 = Q$, so L is a Y_M -indicator in this case. Thus we may assume that $Q \leq O_p(L)$. If $[\Omega_1 Z(S), L] = 1$, then $L \leq N_G(Q)$ by Q! and $Q \leq O_p(L)$. Hence 2° . $[\Omega_1 Z(S), O^p(L)] \neq 1$.

So if $[Y_M, O^p(L)] \leq [\Omega_1 Z(S), O^p(L)]$, then L satisfies 2.19(2:ii), with $Y = Y_M$ and T = S and L is a Y_M -indicator. Hence we may assume for the rest of the proof that

 3° . $Q \leq O_p(L)$ and $[Y_M, O^p(L)] \leq [\Omega_1 Z(S), O^p(L)] \leq Y_L$.

In particular,

 4° . $Y_M Y_L \leq L$.

By 2.21(a),

 5° . $O_p(\langle M, L \rangle) = 1$.

If $O_p(M) \leq O_p(L)$, then 2.6(a) gives $L \leq N_G(O_p(L)) \leq M^{\dagger}$, a contradiction. Thus

 6° . $O_p(M) \leq O_p(L)$.

Next we show:

 7° . $Y_M \leq \Omega_1 Z(O_p(L))$.

Assume that $R := [Y_M, O_p(L)] \neq 1$. By $(4^\circ) Y_M Y_L \leq L$ and so $R \leq L$ and $C_L(R) \leq L$. Since $[R, O_p(M)] = 1$ and $O_p(M) \leq O_p(L)$, $C_L(R)$ is not p-closed. Hence 1.37 implies that $O^p(L) \leq C_L(R)$. Thus $L = O^p(L)S \leq N_G(C_R(Q))$, and since $C_R(Q) \neq 1$, Q! shows that $L \leq N_G(Q)$ and $Q \leq O_p(L)$, a contradiction to (3°) .

Let $V := \Omega_1 Z(O_p(L)), J := J_L(V)$ (for the definition see A.7), and $\overline{L} := L/C_L(V)$.

$$8^{\circ}$$
. $C_S(V) = O_p(L)$, and V is a p-reduced L-module.

Put $\overline{N} := O_p(\overline{L})$ and let N be the inverse image of \overline{N} in L. By (1°) $\Omega_1 Z(S) \leq V$ and by (2°) $[\Omega_1 Z(S), O^p(L)] \neq 1$, so $[V, O^p(L)] \neq 1$. Hence $O^p(L) \leq N$ and 1.37 gives that N is p-closed. Thus $N \cap S = O_p(L), C_S(V) = O_p(L), \overline{N} = 1$ and V is a p-reduced L-module.

By A.40 each $A \in \mathcal{A}_{O_p(M)}$ induces a best offender on V. In particular $J_{O_p(M)}(V) \neq 1$ if $J(O_p(M)) \leq C_L(V)$.

$$9^{\circ}$$
. $O_p(L) \leq O_p(M)$ and $J(O_p(L)) \leq C_L(V)$; in particular, $\overline{J_{O_p(M)}(V)} \neq 1$.

By (7°) $O_p(L) \leq C_S(Y_M) = O_p(M)$, and by (5°) $O_p(\langle M, L \rangle) = 1$. Hence no non-trivial characteristic subgroup of $O_p(M)$ is normal in L. In particular $J(O_p(M)) \notin L$. Since $O_p(L) \leq O_p(M)$ this gives $J(O_p(M)) \notin O_p(L)$. By (8°) $O_p(L) = C_S(V)$ and so $\overline{J_{O_p(M)}(V)} \neq 1$.

10°. There exists subgroups E_1, \ldots, E_k in L such that for $i = 1, \ldots, k$ and $U_i := E_i C_L(V) \cap M^{\dagger}$:

- (a) $\overline{J} = \overline{E_1} \times \cdots \times \overline{E_k}$, L = JS, $V = [V, E_1] \times \cdots \times [V, E_k]$, and $\overline{E_1}', \ldots, \overline{E_k}'$ are the $J_{\overline{L}}(V)$ components of \overline{L} .
- (b) $\overline{E_i} \cong SL_2(q), q = p^n$, or p = 2 and $\overline{E_i} \cong Sym(5)$, and $[V, E_i]$ is the corresponding natural module for $\overline{E_i}$.
- (c) \overline{Q} is transitive on $\{\overline{E_1}, \ldots, \overline{E_k}\}$.
- (d) $\overline{E_i} \cong SL_2(q)$ and $\overline{U_i} = N_{\overline{E_i}}(\overline{S} \cap \overline{E_i})$, or $\overline{E_i} \cong Sym(5)$ and $\overline{U_i} \cong Sym(4)$.

Since V is a Q!-module for L, (a), (b) and (c) are a straightforward application of C.13 and C.24. Note here that the case $\overline{E_i} \cong Sym(2^n+1)$ in C.13 only appears for n = 2 via $Sym(5) \cong O_4^-(2)$ in C.24. Moreover, (d) follows from the structure of the groups given in (b) and the fact that L is p-minimal with $L \cap M^{\dagger}$ being the unique maximal subgroup containing S.

In the following we use the notation of (10°) and put

$$W_i := [V, E_i], \quad J_0 := J(O_p(M)), \quad R_i := [W_i, J_0].$$

11°. $\overline{E_i} \cong SL_2(q), \ \overline{O_p(U_i)} = \overline{J_0} \cap \overline{E_i}, \ V \leq J_0, \ and \ |R_i| = q, \ i = 1, \dots, k.$ Moreover, $Y_M \cap W_i = R_i \ if \ q > 2.$

By (9°) $J_0 \notin C_L(V)$. Let $A \in \mathcal{A}_{J_0}$ such that $A \notin C_L(V)$ and $|A/C_A(V)|$ is minimal with this property. By C.13

$$\overline{A} = \overline{A} \cap \overline{E_1} \times \cdots \times \overline{A} \cap \overline{E_r}$$
 and $|W_i/C_{W_i}(\overline{A} \cap \overline{E_i})| = |\overline{A} \cap \overline{E_i}|.$

Hence $|A| = |A_i| = |VC_A(V)|$, where $A_i := (A \cap U_i)C_V(A \cap U_i)$. Since by $(9^\circ) V \leq O_p(M)$, we get $VC_A(V) \in \mathcal{A}_{O_p(M)}$ and $A_i \in \mathcal{A}_{O_p(M)}$. In particular, $V \leq J_0$. Moreover, the minimality of A implies that $A = A_l$ for some $l \in \{1, \ldots, k\}$, so $\overline{A} \leq \overline{E_l}$ and $\overline{A} \leq O_p(\overline{U_l})$. Suppose that $\overline{E_l} \cong Sym(5)$. Since \overline{A} is an offender on W_l , C.4(g) shows that \overline{A} is generated by transpositions, a contradiction since $\overline{U_l} \cong Sym(4)$ and so $O_p(\overline{U_l})$ contains no transpositions.

Thus $\overline{E_i} \cong SL_2(q)$ and by (10°) $\overline{U_i} = N_{\overline{E_i}}(\overline{S} \cap \overline{E_i})$. From the structure of $SL_2(q)$ we get that $\overline{U_i} = (\overline{S} \cap \overline{E_i})\overline{K_i}, \overline{K_i} \cong C_{q-1}$. Since A is an offender on W_l we have $|W_l/C_{W_l}(A)| = |\overline{A}| = q$, and $\overline{A} \in Syl_p(\overline{E_l})$. In particular, $\overline{A} = O_p(\overline{U_l}) = \overline{J_0} \cap \overline{E_l}$ and $\overline{J_0} = \overline{A} \times C_{\overline{J_0}}(W_l)$, and $R_l = [W_l, J_0] = C_{W_l}(A)$ is a 1-dimensional \mathbb{F}_q -subspace of W_l . Since S normalizes $O_p(M)$ and acts transitively on $\{\overline{E_1}, \ldots, \overline{E_k}\}$ we conclude that the first sentence in (11°) holds.

Assume now that in addition q > 2, so $\overline{K_l} \neq 1$. Since $U_l \leq M^{\dagger}$ and $Y_M \leq C_V(A)$, $[Y_M, U_l] \leq Y_M \cap C_{W_l}(A)$, and either $[Y_M, U_l] = 1$ or $[Y_M, U_l] = C_{W_l}(A) = R_l$. In the latter case the last part of (11°) holds. In the first case $[Y_M, \overline{K_l}] = 1$, and the action of $\overline{K_l}$ on W_l shows that $C_V(\overline{K_l}) = C_V(\overline{E_l})$. But then $Y_M \leq C_V(E_l)$ and $E_l \leq C_G(Y_M) \leq M^{\dagger}$. Hence $\overline{E_l} = \overline{U_l}$, a contradiction.

$$12^{\circ}. \qquad O_p(L) = V = C_L(V).$$

By (11°) $\overline{E_i} \cong SL_2(q)$ and $\overline{O_p(U_i)} = \overline{J_0} \cap \overline{E_i}$ and by (10°)(d) $\overline{U_i} = N_{\overline{E_i}}(\overline{S} \cap \overline{E_i})$. So $\overline{J_0} \cap \overline{E_i} \in Syl_p(\overline{E_i})$ and thus $\overline{J_0} \in Syl_p(\overline{J})$. According to (9°) $O_p(L) \leq O_p(M)$ and so $O_p(M) \in Syl_p(O_p(M)J)$. By (10°)(a) L = JS and so $\langle M, L \rangle = \langle M, J \rangle$. Thus by (5°) $O_p(\langle M, J \rangle) = 1$ and so no non-trivial characteristic subgroup of $O_p(M)$ is normal in $O_p(M)J$. Moreover, by (10°)(a) $Z(O_p(M)J) = 1$. Hence, the C(G, T)-Theorem [**BHS**], applied to $O_p(M)J$, shows that $[O_p(L), O^p(J)] \leq V$ and $[\Phi(O_p(L)), O^p(J)] = 1$. As $O^p(J) = O^p(L)$ and $Z(O_p(M)J) = 1$, we get $\Phi(O_p(L)) = 1$ and so $V = O_p(L)$. Since L is of characteristic p, also $V = C_L(V)$.

 13° . q > p and k = 1.

Let $\Omega := \{R_i \mid i = 1, ..., k\}$. By $(11^\circ) \mid R_i \mid = q$, and by $(10^\circ)(c) Q$ is transitive on Ω . We will show that M acts on Ω . For this let $x \in M$ and $i \in \{1, ..., k\}$. Note that $W_i^x \leq V^x \leq J_0^x = J_0 \leq L$, and so $[W_i^x, J_0] = R_i^x$.

Suppose that $[W_i^x, V] = 1$. By $(12^\circ) C_L(V) = V$ and so $W_i^x \leq V = W_1 \times \ldots \times W_r$. Since $[W_i^x, J_0] \neq 1$ we can choose $j \in \{1, \ldots, r\}$ such that the projection of W_i^x to W_j is not centralized by $\overline{J_0}$. Then

$$R_j = [W_i^x, \overline{J_0} \cap \overline{E_j}] \leqslant [W_i^x, J_0] = R_i^x.$$

Hence $R_i = R_i^x \in \Omega$.

Suppose that $[W_i^x, V] \neq 1$. Then there exists $j \in \{1, \ldots, k\}$ such that $[W_i^x, W_j] \neq 1$. Hence $R_j = [W_i^x, W_j] \leq [W_i^x, J_0] = R_i^x$, so again $R_j = R_i^x \in \Omega$.

We have shown that M acts on Ω . Let $\Lambda \subseteq \Omega$ be an orbit of $O_p(M)$ and $R_0 := \prod_{R_\ell \in \Lambda} R_\ell$. Observe that $O_p(M) \leq N_G(R_0)$ and $O_p(M) \in Syl_p(C_G(Y_M))$. Hence $\Omega_1 Z(S) \leq Y_M \leq O_p(N_G(R_0))$ since Y_M is short².

Assume that $\Lambda \neq \Omega$. Then there exists $i \in \{1, \ldots, k\}$ such that $R_i \leq R_0$. Note that

(*)
$$[R_l, E_j] = 1 \text{ for all } 1 \leq l, j \leq k \text{ with } l \neq j.$$

Hence $[R_0, E_i] = 1$, so $E_i \leq N_G(R_0)$ and $W_i = [\Omega_1 Z(S), E_i] \leq O_p(N_G(R_0))$. On the other hand, by (5°) $O_p(\langle M, L \rangle) = 1$. So $V \not \equiv M$, and there exists $y \in M$ such that $V^y \neq V$. Then $V^y \leq J_0$. Moreover, by (10°)(c) Q is transitive on Ω , so y can be chosen such that $[W_i, V^y] = R_i$. Since Macts on Ω , $R_i^{y^{-1}} \in \Omega$ and so there exists $j \in \{1, \ldots, k\}$ such that $[W_i, V^y] = R_i = R_j^y$. Conjugating (*) by y gives

$$[R_l^y, E_j^y] = 1$$
 for all $1 \le l, j \le k$ with $l \ne j$

 $^{^{2}}$ This is the unique place in the proof of this lemma where shortness is needed and not only char p-shortness

Since $R_j^y = R_i$ and y acts in Ω this shows $[R_l, E_j^y] = 1$ for all $1 \leq l \leq k$ with $l \neq i$. Then also $[R_0, E_j^y] = 1$, so $E_j^y \leq N_G(R_0)$. Since $W_i \leq O_p(N_G(R_0))$ this shows that $[W_i, E_j^y]$ is a p-group. But $W_i \leq J_0 = J_0^y \leq J^y$ and $[V^y, W_i] = R_j^y$. So the action of J^y on V^y implies that $[E_j^y, W_i]$ is not a p-group, a contradiction.

We have shown that $\Lambda = \Omega$. Hence $O_p(M)$ is transitive on Ω and thus also on the groups $\overline{E_1}, \ldots, \overline{E_k}$. Suppose that q = p, then the transitivity of $O_p(M)$ shows that $|Y_M| = |C_V(O_p(M))| = p$. Thus $Y_M \leq C_G(Q)$ and Q! gives $M^{\dagger} \leq N_G(Y_M) \leq N_G(Q)$, a contradiction since $Q \leq M^{\dagger}$ by assumption. Therefore q > p. Now (11°) shows that $W_i \cap Y_M \neq 1$ and thus $\overline{O_p(M)} \leq C_{\overline{L}}(W_i \cap Y_M) \leq N_{\overline{L}}(\overline{E_i})$. Hence, the transitivity of $O_p(M)$ gives k = 1.

14°. $J/V \cong SL_2(q), q > p, and V is a natural SL_2(q)$ -module for J.

By (12°) $V = C_L(V)$, and by (11°) and (13°) $J/V \cong SL_2(q)$, q > p. Moreover, by (10°)(b) $V = W_1$ is a natural $SL_2(q)$ -module.

15°. $J_0 \in Syl_p(J)$, and there exists $x \in M \setminus L$ with $J_0 = VV^x$.

By (5°) $O_p(\langle M, L \rangle) = 1$ and so $M \leq N_G(V)$. Pick $x \in M \setminus N_G(V)$. Then $V \neq V^x$ and so by $(12^{\circ}), V^x \leq C_L(V)$. Since M normalizes $J_0, V^x \leq J_0 \leq J$. By $(14^{\circ}) V$ is a natural $SL_2(q)$)-module for J, and we conclude that $|C_V(V^x)| = q$. So $|V \cap V^x| \leq q, |V^x V/V| \geq q$ and $VV^x = J_0 \in Syl_p(J)$.

16°. $O_p(M) = J_0, Y_M = C_V(O_p(M)), |Y_M| = q, and M \cap J$ acts transitively on Y_M .

By (7°) $Y_M \leq V$, so $Y_M \leq C_V(J_0)$. By (14°) V is a natural $SL_2(q)$ -module for J, and so U_i acts transitively on $C_V(J_0)$. As $U_i \leq M^{\dagger}$, U_i normalizes Y_M and hence $Y_M = C_V(J_0)$.

It remains to be shown that $O_p(M) = J_0$. Since $O_p(M)$ centralizes the \mathbb{F}_q -subspace $Y_M = C_V(J_0)$ of V, $O_p(M)$ acts \mathbb{F}_q -linearly on V. As $GL_2(q)/SL_2(q)$ is a p'-group, this gives $\overline{O_p(M)} \leq \overline{J}$ and so $O_p(M) \leq J$. Since $J_0 \leq O_p(M)$ and $J_0 \in Syl_p(J)$, this shows that $O_p(M) = J_0$.

 17° . *p* is odd.

Assume that p = 2. By (15°) and (16°) $O_2(M) = J_0 = VV^x$. As V is a natural $SL_2(q)$ -module for J, this implies that V and V^x are the only maximal elementary abelian subgroups of $O_2(M)$, so $|M/N_M(V)| = 2$. But this contradicts the fact that V is normalized by the Sylow 2-subgroup S of M.

 $18^{\circ}. \qquad Q \leqslant J.$

Assume that $Q \leq J$. By (15°) and (16°) $O_p(M) = J_0 \in Syl_p(J)$ and so $Q \leq O_p(M)$. Thus by 1.52(a), $N_G(O_p(M)) \leq N_G(Q)$. Hence $Q \leq M$ and by 2.2(g), $Q \leq M^{\dagger}$, a contradiction to the assumption.

19°. $M_{\circ} \leq M \cap J$, and $N_G(V)^{\circ} = (QJ)^{\circ}$.

By (16°) $M \cap J$ acts transitively on Y_M and so by 1.57(c), $M^\circ = \langle Q^{M \cap J} \rangle \leq Q(M \cap J)$. Thus $M_\circ = O^p(M^\circ) \leq M \cap J$. Since J acts transitively on V another application of 1.57(c) gives $N_G(V)^\circ = \langle Q^J \rangle = (QJ)^\circ$.

Put $B := M^{\dagger} \cap J$ and $\check{B} := B/C_B(Y_M)$.

20°. $B = N_J(O_p(M)), C_B(Y_M) = O_p(M) = O_p(B), \check{B} \text{ is cyclic of order } q-1 \text{ and acts}$ regularly on Y_M^{\sharp} . In particular, \check{M}_{\circ} acts fixed-point freely on Y_M .

By (15°) , $J_0 \in Syl_p(J)$, and by (16°) , $O_p(M) = J_0$ and $Y_M = C_V(O_p(M_0))$. In particular, $O_p(M) \in Syl_p(J)$. By $(14^{\circ}) J/V \cong SL_2(q)$ and V is a natural $SL_2(q)$ -module. It follows that $B = N_J(O_p(M))$, $C_B(Y_M) = O_p(M) = O_p(B)$ and \check{B} is cyclic of order q - 1. By (19°) , $M_{\circ} \leq B$ and so also the last statement holds.

$$21^{\circ}. \qquad \sqrt{q} + 1 < |\dot{M_{\circ}}|.$$

The elements of $Q \setminus J$ induce field automorphisms on J/V, and by $(18^{\circ}) Q \leq J$. This shows that $|C_{\breve{B}}(Q)| = q_0 - 1$, where q_0 is a power of p with $q_0^p \leq q$. By 2.2(c) $B \leq N_G(O_p(M)) \leq M^{\dagger}$ and by 2.2(h) $M^{\circ} = (M^{\dagger})^{\circ}$. So $[B,Q] \leq M^{\circ}$. Since $[\breve{B},Q]$ is a p'-group and M°/M_{\circ} is a p-group, this gives $[\breve{B},Q] \leq \breve{M}_{\circ}$. Hence $|[\breve{B},Q]| \leq |\breve{M}_{\circ}|$ and $\breve{B} = [\breve{B},Q] \times C_{\breve{B}}(Q)$, so

$$q-1 = |\check{B}| = |[\check{B}, Q]| |C_{\check{B}}(Q)| \leq |\check{M}_{\circ}|(q_0 - 1).$$

As $q_0^p \leq q$ and p > 2, we have $q_0 < \sqrt{q}$ and we conclude

$$|\widetilde{M^{\circ}}| \geqslant \frac{q-1}{q_0-1} > \frac{q-1}{\sqrt{q}-1} = \sqrt{q}+1.$$

22°. Y_M is a simple M_{\circ} -module.

By (20°) M_{\circ} acts fixed-point freely on Y_M and by (21°) $|M_{\circ}| > \sqrt{q} + 1$. Thus any non-trivial M° -invariant section of Y_M has order larger than $\sqrt{q} + 1$. As $|Y_M| = q$ by (16°) we conclude that a composition series for M° on Y_M has at most one factor and so (22°) holds.

We now derive a final contradiction. Put $\mathbb{F} := End_{M_{\circ}}(Y_M)$, $\mathbb{K} := End_J(V)$ and $\mathbb{K} := End_{J^x}(V^x)$, where x is as in (15°). By (22°) \mathbb{F} is a finite field, and by (14°) V is the natural $SL_2(q)$ -module for J, so \mathbb{K} is a finite field of order q. By (19°) $M_{\circ} \leq J$, and since $Y_M = C_V(O_p(M))$, M_{\circ} acts \mathbb{K} -linearly on Y_M . Thus \mathbb{F} contains a field isomorphic to \mathbb{K} . Since $|Y_M| = q = |\mathbb{K}|$ and $|\mathbb{F}| \leq |Y_M|$ this show that \mathbb{F} is a field isomorphic to \mathbb{K} , indeed \mathbb{F} is the restriction of \mathbb{K} to Y_M . Note that \mathbb{F} is invariant under x and so also \mathbb{K} is a isomorphic to \mathbb{F} , and \mathbb{F} is the restriction of \mathbb{K} to Y_M . Moreover, since M_{\circ} is abelian, M_{\circ} embeds into \mathbb{F} via its action on Y_M .

Pick $y \in V^x \setminus V$, $v \in V \setminus Y_M$, and $d \in M_\circ$. Then there exists $\mu \in \mathbb{F}$ such that d acts on Y_M as multiplication by μ . Let $\lambda \in \mathbb{K}$ and $\tilde{\lambda} \in \widetilde{\mathbb{K}}$ such that

$$\lambda|_{Y_M} = \mu = \tilde{\lambda}|_{Y_M}$$

Then

$$v^d \in v\lambda^{-1} + Y_M$$
 and $y^d \in y\widetilde{\lambda}^{-1} + Y_M$

since the action of d on V and V^x has determinant 1. The mappings

$$\begin{array}{lll} V/Y_M & \to & Y_M & \text{with} & w+Y_M \mapsto [w,y], & \text{and} \\ V^x/Y_M & \to & Y_M & \text{with} & w+Y_M \mapsto [v,w]. \end{array}$$

are K- and K-linear, respectively. It follows that

$$[v, y]\mu = [v, y]^d = [v^d, y^d] = [v\lambda^{-1}, y\tilde{\lambda}^{-1}] = [v, y]\lambda^{-1}|_{Y_M}\tilde{\lambda}^{-1}|_{Y_M} = [v, y]\mu^{-2}.$$

This shows that $\mu = \mu^{-2}$ and $\mu^3 = 1$. Since the multiplicative group of \mathbb{F} is cyclic, we get that $|\widetilde{M}_{\circ}| \leq 3$. Hence (21°) implies that $\sqrt{q} + 1 < 3$, so q < 4. On the other hand, by (13°) p < q and by (17°) p is odd, a contradiction.

LEMMA 2.23. Suppose that Y_M is short and asymmetric in G, that $\mathcal{M}_G(S) \neq \{M^{\dagger}\}$ and that $Q \notin M^{\dagger}$. Then G possesses a symmetric pair.

PROOF. Note that the assumptions of 2.21 are fulfilled and so we can choose $\tilde{P} \in \mathcal{P}_G(S)$ as there. Since $Q \not \equiv M^{\dagger}$, \tilde{P} satisfies the hypothesis of 2.22 in place of L. Hence \tilde{P} is a Y_M -indicator. We will now verify the assumptions of E.16(b) for (G, Y_M, M, \tilde{P}) in place of (H, A_1, H_1, H_2) .

Observe that Y_M is a non-trivial normal *p*-subgroup of M and by 2.2(f) $C_M(Y_M)$ is *p*-closed. By 2.21(a), $O_p(\langle M, \tilde{P} \rangle) = 1$ and so no nontrivial normal *p*-subgroup of $M \cap \tilde{P}$ is normal in M and in \tilde{P} . Since $S \leq M \cap \tilde{P}$, $M \cap \tilde{P}$ is parabolic subgroup of M and \tilde{P} . By 2.21(b) $Y_M \leq O_p(\tilde{P})$, and as $\tilde{P} \in \mathcal{P}_G(S)$, \tilde{P} is *p*-minimal and so by 1.37 *p*-irreducible.

We have shown that (G, Y_M, M, \tilde{P}) satisfy the hypothesis of E.16(b) in place of (H, A_1, H_1, H_2) . Hence there exist $i \in \{1, 2\}$ and $h \in G$ with $1 \neq [A_i, A_i^h] \neq A_i \cap A_i^h$ and $A_i A_i^h \leq H_i \cap H_i^g$, where $A_2 := \langle A_1^{H_2} \rangle = \langle Y_M^{\tilde{P}} \rangle$. Since Y_M is asymmetric in G, we conclude that $i \neq 1$. So i = 2. As already observed, \tilde{P} is a Y_M -indicator and thus (Y_M, Y_M^h) is a symmetric pair with indicators \tilde{P} and \tilde{P}^h . \Box

2.4. Tall Natural Symplectic Modules

LEMMA 2.24. Let I be a non-trivial normal p-subgroup of M and $Y \leq O_p(M^{\dagger})$. Let $L \leq G$ and let A be a normal p-subgroup of L. Suppose that $I \leq A \leq M$ and $Y \leq L$. If $[Y, A] \leq [I, A]$, then $Y \leq O_p(L)$.

PROOF. Let *H* be the subnormal closure of *Y* in *L*. Put $W := \langle [I, A]^H \rangle$. Since $[Y, A] \leq [I, A]$ and $H = \langle Y^H \rangle$ (see 1.13), we get $[H, A] \leq W$, and *H* acts trivially on A/W. Since $I \leq A$ we conclude that *H* normalizes *IW* and so

$$W = \langle [I, A]^H \rangle = [\langle I^H \rangle, A] \leq [IW, A] \leq I[W, A].$$

Since $A \leq M$, A acts in IW/I, and we conclude that IW/I = [IW/I, A]. so IW = I, and H normalizes I. As $I \leq M$, 2.2(c) gives $N_G(I) \leq M^{\dagger}$. Thus $H \leq M^{\dagger}$. In particular, since $Y \leq O_p(M^{\dagger}) \leq M^{\dagger}$, $Y \leq H$. Hence Y = H and $Y \leq I$, so $Y \leq O_p(L)$.

LEMMA 2.25. Suppose that p = 2 and Y is an M-submodule of Y_M such that $I := [Y, M_\circ]$ is natural $Sp_{2m}(2^k)'$ -module for M_\circ , $m \ge 1$.

- (a) Let $L \leq G$ and A a normal p-subgroup of L. Suppose that $I \leq A \leq M$ and $Y \leq L$. Then $Y \leq O_p(L)$.
- (b) If $I \leq Q^{\bullet}$, then $Y \leq Q^{\bullet}$.

PROOF. (a): Put $q = 2^k$. By 1.55(d), $C_G(M^\circ) = 1$. In particular, $C_Y(M^\circ) = 1$ and so also $C_Y(M_\circ) = 1$.

We claim that $C_M(Y) = C_M(I)$. Indeed by 1.52(c), $[M^\circ, C_M(I)] \leq O_p(M) \leq C_M(Y)$. Thus $[M_\circ, C_M(I), Y] = 1$. Also $[Y, M_\circ, C_M(I)] = [I, C_M(I)] = 1$, and so the Three Subgroups Lemma implies $[Y, C_M(I), M_\circ] = 1$. Since $C_Y(M_\circ) = 1$, this gives $[Y, C_M(I)] = 1$ and $C_M(Y) = C_M(I)$.

Suppose that $\overline{M^{\circ}} \not\cong Sp_2(2)'$ and put $\mathbb{K} := End_{M_{\circ}}(I)$. Then \mathbb{K} is a finite field of order q and $\dim_{\mathbb{K}} I \ge 2$. Put $D := \langle I^L \rangle$. Then $D \le A \le M \le N_G(I)$, and so $[D, I] \le I$. Suppose that I^x does not act \mathbb{K} -linearly on I. Then $|\mathbb{K}| > 2$, and 1.22 shows that $\dim_{\mathbb{K}} I = 1$, a contradiction. Hence I^x and so also D acts \mathbb{K} -linearly in I. Note that the set of M_{\circ} -invariant symplectic forms on I form a 1-dimensional \mathbb{K} -space, on which D acts \mathbb{K} -linearly and so trivially. We conclude that D leaves all these forms invariant. Thus I is a natural $Sp_{2m}(q)$ - or $Sp_{2m}(q)'$ -module for $M_{\circ}D$. Note that the same statement holds if $\overline{M^{\circ}} \cong Sp_2(2)'$.

Now C.20 shows that [I, D] = [Y, D], and so 2.24, applied with D in place of A, gives $Y \leq O_p(L)$. (b): Just apply (a) with $L = N_G(Q)$ and $A = Q^{\bullet}$.

LEMMA 2.26. Suppose that X is an M-submodule of Y_M and a natural $Sp_{2m}(p^k)$ -module for M° , $2m \ge 4$ and p odd. Then $X \le Q^{\bullet}$.

PROOF. Note that X is an $\mathbb{F}_q M^{\circ}$ -module equipped with a non-degenerate M° -invariant symplectic form, where $q := p^k$. Put $\widetilde{M} = M/C_M(X)$, $X_0 := C_X(Q)$ and $X_1 := [X, Q]$. Note that $X_1 = X_0^{\perp}$ in the symplectic space X. By B.37 X_0 is 1-dimensional over \mathbb{F}_q and

$$\overline{Q} = C_{\widetilde{M^{\circ}}}(X_1/X_0) \cap C_{\widetilde{M^{\circ}}}(X_0)$$

In particular, $[X_1, Q] = X_0$. Moreover, by B.28(b:a)

Put

 $H := N_G(Q)$ and $W := \langle X_1^H \rangle$.

Suppose first that W is non-abelian. Then $[X_1, W] \neq 1$ and we can choose $g \in H$ with $[X_1, X_1^g] \neq 1$. 1. From $X_1 \leq Q$ we conclude $X_1^g \leq Q$. As $[X_1, Q] = X_0$ and X_0 is 1-dimensional we get $[X_1, X_1^g] = X_0$. This gives

$$[X_1, Q] = [X_1, X_1^g] = X_0 = X_0^g = [X_1^g, Q].$$

Thus $[X_1^g, Q] \leq X_0 \leq C_M(X)$ and $\widetilde{X_1}^g \leq Z(\widetilde{Q})$. As $Z(\widetilde{Q}) = C_{\widetilde{Q}}(X_1)$ by (*) this gives $\widetilde{X_1}^g \leq C_{\widetilde{Q}}(X_1)$ and so $[X_1^g, X_1] = 1$, a contradiction to the choice of g.

Suppose now that W is abelian. Then $W \leq C_Q(X_1)$ and so $\widetilde{W} \leq C_{\widetilde{Q}}(X_1) = Z(\widetilde{Q})$. Thus $[W,Q] \leq C_M(X)$ and [W,Q,X] = 1. As $X_1 \leq C_X(W)$ we have $[W,X] \leq X_1^{\perp} = X_0 = [X_1,Q] \leq [W,Q]$. Also $[Q,X] = X_1 \leq W$ and so X centralizes all factors of the series

$$1 \leqslant [W,Q] \leqslant W \leqslant Q.$$

This series is *H*-invariant and so also $\langle X^H \rangle$ centralizes these factors. Hence $\langle X^H \rangle$ acts nilpotently on Q. Since $C_G(Q) \leq Q$ this implies that $\langle X^H \rangle$ is a *p*-group, see 1.3, and so $X \leq \langle X^H \rangle \leq O_p(H) = Q^{\bullet}$. \Box

CHAPTER 3

The Orthogonal Groups

In this chapter we treat a particular situation, which arises in Chapter 4 and in Chapter 5. In this situation, $[Y_M, O^2(M)]$ is a natural $O_{2n}^{\epsilon}(2)$ -module some $M \in \mathfrak{M}_G$. Natural $O_{2n}^{\epsilon}(2)$ -modules for p = 2 are the only examples of simple Q!-modules V with a non-trivial offender A such that [V, A] does not contain non-trivial 2-central elements of M. This forces us to look at centralizers of non-2-central involutions and requires a line of arguments quite different from those of later chapters.

THEOREM C. Let G be a finite \mathcal{K}_2 -group and $S \in Syl_2(G)$, and let $Q \leq S$ be a large 2-subgroup of G. Let $M \in \mathfrak{M}_G(S)$ and suppose that the following hold:

- (i) $M/C_M(Y_M) \cong O_{2n}^{\epsilon}(2), n \ge 2.$
- (ii) $[Y_M, O^2(M)]$ is a natural $O_{2n}^{\epsilon}(2)$ -module for $M/C_M(Y_M)$. (iii) $C_G(y) \leq M^{\dagger}$ for all non-singular elements $y \in [Y_M, O^2(M)]$.
- (iv) $Q \not \equiv M$.

Then $C_G(y)$ is not of characteristic 2 for all non-singular elements $y \in [Y_M, O^2(M)]$.

Here an element of a natural $O_{2n}^{\epsilon}(2)$ -module V is singular if h(v) = 0, where h is the M-invariant quadratic form on V. For the definition of M° see 1.51. Recall from 1.52(b) that Q is a weakly closed subgroup of G. In particular, by 1.46(c) $M^{\circ} = \langle Q^M \rangle$.

3.1. Notation and Elementary Properties

In this section we assume the hypothesis of Theorem C apart from C(iii). The first lemma collects elementary facts about a natural $O_{2n}^{\epsilon}(2)$ -module V with quadratic form h and associate symplectic bilinear form f.

LEMMA 3.1. Let V be a natural $O_{2n}^{\epsilon}(2)$ -module for $X = O_{2n}^{\epsilon}(2), n \ge 2$.

- (a) X is transitive on the non-singular elements of V and on the non-trivial singular elements of V.
- (b) Let $0 \neq z \in V$ be singular. Then $C_X(z) = AK$, where
 - (a) $K \cong O_{2n-2}^{\epsilon}(2)$ and A is a natural $O_{2n-2}^{\epsilon}(2)$ -module for K.
 - (b) $[z^{\perp}, A] = \langle z \rangle, C_X(z^{\perp}) = 1$ and A induces $Hom(z^{\perp}/\langle z \rangle, \langle z \rangle)$ on z^{\perp} .
 - (c) $C_X(z)$ is a parabolic subgroup of X.
 - (d) If $(2n, \epsilon) \neq (4, +)$, then $O_2(C_X(z)) = A \leq \Omega_{2n}^{\epsilon}(2)$.
- (c) Let $y \in V$ be non-singular. Then $C_X(y) = T \times E$, where (a) $T \cong C_2$, $E \cong Sp_{2n-2}(2)$, y^{\perp} is a natural $O_{2n-1}(2)$ -module for E, and $y^{\perp}/\langle y \rangle$ is a natural $Sp_{2n-2}(2)$ -module for E.
 - (b) $T = C_X(y^{\perp}), [X,T] = \langle y \rangle, y^{\perp} = C_X(T), and T \leq \Omega_{2n}^{\epsilon}(2).$
 - (c) Let \mathcal{Z} be the set of non-trivial singular elements of y^{\perp} . Then $y^{\perp} = \langle \mathcal{Z} \rangle$, and E acts transitively on \mathcal{Z} .
- (d) Let $0 \neq v \in V$. If $X = O_4^+(2)$ suppose that v is singular. Then $C_X(v)$ is a maximal subgroup of X.

PROOF. (a): Note that h(v) = 1 = h(w) for any two non-singular vectors. It follows that any two non-singular and any two singular vectors are isometric. Thus (a) follows from B.16.

(b): Put $Z := \langle z \rangle$ and $A := C_X(Z) \cap C_X(Z^{\perp}/Z)$. Let $v \in V \setminus Z^{\perp}$ and put $K := C_X(z) \cap C_X(v)$. Then B.25(c) shows that (b:a) holds. It follows from B.24(a), that A induces $Hom(Z^{\perp}/Z)$ on Z^{\perp} , via the commutator map. So (b:b) holds. By B.12(c) any 2-subgroup of X centralizes a non-trivial singular vector and so $C_X(z)$ is a parabolic subgroups of X.

Suppose that $n \ge 4$ or $\epsilon = -$. Then $O_2(K) = 1$ and so $O_2(C_X(z)) = A \le \Omega_{2n}^{\epsilon}(2)$.

(c): Since $y^{\perp \perp} = \langle y \rangle$ and y is non-singular, y^{\perp} is a non-degenerate orthogonal space. By Witt's Lemma B.15 $C_X(y)$ induces $O(y^{\perp}) = O_{2n-1}(2)$ on y^{\perp} , and by B.14 $O_{2n-1}(2) \cong Sp_{2n}(2)$. Put $T := C_X(y^{\perp})$. Then $T = \langle \omega_y \rangle$ where ω_y is the reflection associated to y. In particular, |T| = 2, $[X,T] = \langle y \rangle$, $C_X(T) = y^{\perp}$, and $T \leq \Omega_{2m}^e(2)$.

Put $E := C_X(y) \cap \Omega_{2n}^{\epsilon}(2)$. Since $\overline{\Omega_{2n}^{\epsilon}(2)}$ has index 2 in X, $C_X(y) = T \times E$. In particular, E acts faithfully on y^{\perp} , y^{\perp} is natural $O_{2n-1}(2)$ -module for E and $E \cong Sp_{2n-2}(2)$.

Now B.16 shows that $C_X(y)$ acts transitively on \mathcal{Z} . By B.13 $y^{\perp} = \langle \mathcal{Z} \rangle$. Thus (c) is proved.

(d): By Witt's Lemma B.15 $C_X(v)$ has at most three orbits on v^X , namely

(...)

$$\{v\}, \mathcal{T}_0(v) := \{ w \in V^{\sharp} \mid h(w) = h(v), f(v, w) = 0, v \neq w \}, \text{ and} T_1(v) := \{ w \in V^{\sharp} \mid h(w) = h(v), f(v, w) = 1 \}.$$

Suppose that $C_X(v) < H < X$. Then $\{v\} \neq v^H \neq v^X$, so both $\mathcal{T}_0(v)$ and $\mathcal{T}_1(v)$ are non-empty, and $\Delta := v^H = \{v\} \cup \mathcal{T}_i(v)$ for some $i \in \{0, 1\}$. In particular, H acts 2-transitively on Δ , and $\Delta = \{u\} \cup \mathcal{T}_i(u)$ for all $u \in \Delta$. Let $\{1, 2\} =: \{i, j\}$. Since H is transitive on Δ and leaves invariant $\mathcal{T}_j(v)$, we have $\mathcal{T}_j(v) = \mathcal{T}_j(u)$ for all $u \in \Delta$. Put $W := \langle \Delta \rangle = \langle v \rangle + W_i$ and, for $k = 0, 1, W_k := \langle \mathcal{T}_k(v) \rangle$ and $W := \langle \Delta \rangle = \langle v \rangle + W_i$.

We claim that $v^{\perp} = \langle v \rangle + W_0$. Clearly $\langle v \rangle + W_0 \leq v^{\perp}$. Suppose first that v is singular. Then $\{v\} \cup \mathcal{T}_0(v)$ is the set of singular vectors of v^{\perp} . On the other hand, since $\mathcal{T}_0(v) \neq \emptyset$, there exist singular vectors in $v^{\perp} \setminus \langle v \rangle$. Thus, by B.13 v^{\perp} is generated by its singular vectors, and so $v^{\perp} = \langle v \rangle + W_0$. Suppose next that v is non-singular. Then $\{v\} \cup \mathcal{T}_0(v)$ is the set of non-singular vectors of v^{\perp} . Let $w \in v^{\perp}$ be non-zero and singular. Then h(v) = h(v + w) and $v + w \in \mathcal{T}_0(v)$, so $w = (v + w) - v \in \langle v \rangle + W_0$. Thus $\langle v \rangle + W_0$ contains all singular and non-singular vectors of v^{\perp} and again $v^{\perp} = \langle v \rangle + W_0$

Assume that i = 0. Then $W = \langle v \rangle + W_0 = v^{\perp}$ and so $\langle v \rangle = W^{\perp}$. Since *H* normalizes *W* this gives $H \leq C_X(v)$, a contradiction.

Hence i = 1 and so j = 0. Thus, as seen above, $\mathcal{T}_0(v) = \mathcal{T}_0(u)$ for $u \in \Delta$ and so $W_0 = \langle \mathcal{T}_0(v) \rangle = \langle \mathcal{T}_0(u) \rangle \leqslant u^{\perp}$. Thus $W_0 \leqslant W^{\perp}$. Therefore, $W \leqslant W_0^{\perp}$ and so $W \cap v^{\perp} \leqslant (\langle v \rangle + W_0)^{\perp} = v^{\perp \perp} = \langle v \rangle$. Thus $|W| \leqslant 4$. Let $u \in \mathcal{T}_1(v)$. Then $W = \langle u, v \rangle$ has order 4 and since $u \notin v^{\perp}$, $W \cap W^{\perp} = 0$.

Let $d \in W^{\perp}$ be singular. Then h(d+u) = h(u) and so $d+u \in \mathcal{T}_1(v) \subseteq W$. Thus $d \in W \cap W^{\perp} = 0$. Hence W^{\perp} does not contain any non-zero singular vectors. Since $\mathcal{T}_0(v) \subseteq W_0 \leq W^{\perp}$ this shows that v is not singular. Also B.19(c) shows that $\dim_{\mathbb{F}_2} W^{\perp} \leq 2$. Since $\dim_{\mathbb{F}_2} W + \dim_{\mathbb{F}_2} W^{\perp} = \dim_{\mathbb{F}_2} V \geq 4$, this gives $\dim_{\mathbb{F}_2} W^{\perp} = 2$ and $\dim_{\mathbb{F}_2} V = 4$. Let v' and u' be distinct non-zero elements in W^{\perp} . Then $\langle v + v', u + u' \rangle$ is a singular subspace of dimension 2, and so V has Witt index 2. Hence $X = O_4^+(2)$, and (d) is proved.

NOTATION 3.2. Let $M^{\dagger} := M^{\dagger}/C_{M^{\dagger}}(Y_M)$ and recall from 1.1 that

$$Z_M = \langle \Omega_1 Z(X) \mid X \in Syl_2(M) \rangle.$$

By our hypothesis $[Y_M, O^2(M)]$ is a natural $O_{2n}^{\epsilon}(2)$ -module for M, and we will use the corresponding orthogonal structure for the following notation.

We choose $y, z \in [Y_M, O^2(M)]^{\sharp}$ such that

z is singular, y is non-singular, and $y \perp z$.

Recall from 3.1 that z is 2-central in M. Thus we can fix our notation such that $z \in \Omega_1 Z(S)$ and $C_S(y) \in Syl_2(C_M(y))$.

Since $z \in C_G(Q)$, Q! implies $C_G(z) \leq N_G(Q)$. Hence, we can define

$$Q_{zg} := Q^g$$
 for $q \in G$.

We further put

 $F_0 := C_M(y), \ T^* := C_S(y), \ Y := y^{\perp} \text{ (in } [Y_M, O^2(M)]), \ F := \langle (Q_z \cap F_0)^{F_0} \rangle, \ T := C_S(Y).$ Note that $T^* \in Syl_2(F_0)$.

LEMMA 3.3. (a) $C_G(M^\circ) = 1$ and Z(M) = 1.

- (b) $[Y_M, O^2(M)] = Z_M$. In particular, Z_M is a natural $O_{2n}^{\epsilon}(2)$ -module for \overline{M} .
- (c) Either $\overline{Q_z} = O_2(C_{\overline{M}}(z))$, or $(2n, \epsilon) = (4, +)$, and $\overline{Q_z} \cong C_4, D_8$ or $C_2 \times C_2$, with $\overline{Q_z} \leq \Omega_4^+(2)$ in the last case. In all cases $C_{Z_M}(Q_z)$ is a 1-dimensional singular subspace and $|Z_M/[Y_M, O^2(M), Q_z]| = 2$.
- (d) $\overline{M^{\circ}} \sim \Omega_{2n}^{\epsilon}(2), \ 3^2 C_4 \ or \ 3^2 D_8.$
- (e) Suppose that $(2n, \epsilon) = (4, +)$. Then $TQ_z = S$.
- (f) Either $Y_M = Z_M$, or $(2n, \epsilon) = (6, +)$ and Y_M is the factor module of order 2^7 of the natural permutation module for $Sym(8) \cong O_6^+(2)$.
- (g) $[Y_M, T] = \langle y \rangle$.
- (h) $M/O_2(M) \cong O_{2n}^{\epsilon}(2)$; or $M/O_2(M) \sim 3 \cdot O_4^+(2)$, $O_3(M/O_2(M))$ is extra-special of order 3^3 and exponent 3 and $\overline{Q} \cong C_4$.
- (i) $M = M^{\circ}S$.

PROOF. (a): By Hypothesis C(iv) $Q \notin M$. So $M^{\circ} \neq Q$, and 1.55(d) shows that $C_G(M^{\circ}) = 1$. In particular, Z(M) = 1.

(b): Since $[Y_M, O^2(M)]$ is a simple *M*-module, we have $[Y_M, O^2(M)] \leq Z_M$. By 1.24(e) $Z_M = \Omega_1 Z(M)[Z_M, O^2(M)]$. Also Z(M) = 1 by (a), and so (b) holds.

(c) and (d) : By Hypothesis C(iv) $Q \not \leq M$ and since Q is large, 1.57(b) shows that Z_M is a Q!-module for $\overline{M^{\circ}}$ with respect to \overline{Q} . Thus we can apply B.37. Since $O_4^+(2)$ does not have a normal subgroup isomorphic to $SL_2(2)$, Case B.37(4) does not occur. Hence (c) and (d) follow from B.37.

(e): Note that $|\overline{S}| = 8$ and $\overline{T} \leq \Omega_4^+(2)$. Now (c) implies $|\overline{Q_z}| = 8$ or $|\overline{Q_z}| = 4$ and $\overline{T} \leq \overline{Q_z}$. Thus $\overline{S} = \overline{TQ_z}$. As $C_S(Y_M) \leq C_S(Y) = T$ this gives $S = TQ_z$.

(f): By C.18, $H^1(\overline{O^2(M)}, Z_M) = 1$, unless $(2n, \epsilon) = (6, +)$, in which case it has order 2. Since $Z_M = [Y_M, O^2(M)]$ and $C_{Y_M}(O^2(M)) = 1$, this implies (f).

(g): Note that by 3.1(c:b), $[Z_M, T] = \langle y \rangle$. So if $Y_M = Z_M$, (g) holds. Otherwise, (f) shows that Y_M is quotient of the natural Sym(8)-permutation module. As $[Z_M, T] = \langle y \rangle$, \overline{T} is generated by a transposition and so again $[Y_M, T] = \langle y \rangle$.

Put $\widetilde{M} := M/O_2(M)$ and $D := C_M(Y_M)$.

(h): By the basic property of $M, \check{D} \leq \Phi(\widetilde{M})$. From $\Phi(O_{2n}^{\epsilon}(2)) = 1$, we conclude that $\Phi(\widetilde{M}) = \check{D}$. By 1.7(a) $\Phi(\widetilde{M}) = \Phi(O^2(\widetilde{M}))$ and thus $\check{D} = \Phi(\widetilde{M^{\circ}})$. By 2.2(f) $O_2(M) \in Syl_2(C_M(Y_M))$ and so \check{D} has odd order.

Moreover, by 1.52(d) $[M^{\circ}, C_M(Y_M)] \leq O_2(M^{\circ}) \leq O_2(M)$. Thus M° centralizes \check{D} , and $\check{M_{\circ}}$ is a non-split central extension of $\check{M_{\circ}}/\check{D}$ by a group of odd order. If $(2n, \epsilon) \neq (4, +)$, then $\check{M_{\circ}}/\check{D} \cong \Omega_{2n}^{\epsilon}(2)$ is simple. Also the odd part of the Schur multiplier of $\Omega_{2n}^{\epsilon}(2)$ is trivial in this case (see [**Gr1**]), and (h) follows.

Assume now that $(2n, \epsilon) = (4, +)$. By (f) $Y_M = Z_M$. It follows that Y_M is a natural $SL_2(2)$ -wreath product module for M. So we can apply 1.58(f) and conclude that (h) also holds in the $O_4^+(2)$ -case.

(i): Note that (d) implies that $O^2(\overline{M}) \leq \overline{M^{\circ}}$ and so $\overline{M} = \overline{M^{\circ}S}$. By the basic property of M, $\widecheck{D} \leq \Phi(\widetilde{M})$ and so $\widetilde{M} = \widetilde{M^{\circ}S}$. As $O_p(M) \leq S$ this gives $M = M^{\circ}S$.

LEMMA 3.4. The following hold:

- (a) $|Q_z/C_{Q_z}(y)| = 2$, $[y, Q_z] = \langle z \rangle$ and $y^{Q_z} = \{y, yz\}$.
- (b) $TM^{\circ} = M$ and $\overline{F_0} = \overline{FT}$. Moreover, either $C_M(Y_M) = O_2(M)$ and $F_0 = FT$, or $M/O_2(M) \sim 3 \cdot O_4^+(2)$ and $|F_0/FT| = 3$.
- (c) $C_F(Y_M) \leq O_2(M)$, $F/F \cap T \cong Sp_{2n-2}(2)$, Y is a natural $O_{2n-1}(2)$ -module for FT/T, $Y/\langle y \rangle$ is a natural $Sp_{2n-2}(2)$ -module for FT/T, and $[Y_M, T] = \langle y \rangle$. In particular, $T = O_2(FT)$, $|T/O_2(M)| = 2$, and $T^* \in Syl_2(FT)$.
- (d) Suppose that $n \ge 6$. Then $\overline{Q_z \cap F}$ is a natural $O_{2n-3}(2)$ -module for $C_F(z)$. In particular, $\overline{Q_z \cap F}$ is elementary abelian of order 2^{2n-3} and $[Q_z \cap F, C_F(z)] \le T$.
- (e) $N_{M^{\dagger}}(T) \leq C_{M^{\dagger}}(y)$ and $O_2(N_{M^{\dagger}}(T)) = T$.
- (f) $\langle y, z \rangle = \Omega_1 Z(T^*) = C_{Y_M}(T^*) = C_{Y_M}(Q_z \cap T^*).$
- (g) $\Omega_1 Z(S) = \langle z \rangle.$
- (h) There exists $M_1 \leq M$ such that
 - (a) $T \in Syl_2(M_1)$ and $M_1/O_2(M) \cong Sym(3)$;
 - (b) if 2n = 4, then T^* normalizes M_1 and $\langle M_1, S \rangle = \langle M_1, N_M(T^*) \rangle = M$; and
 - (c) if $(2n, \epsilon) \neq (4, +)$, then $\langle M_1, N_M(T) \rangle = M$.
- (i) $\langle Q_z, F \rangle = M^\circ$ and, if $(2n, \epsilon) \neq (4, +)$, F_0 is a maximal subgroup of M.
- (j) Suppose that $(2n, \epsilon) \neq (4, +)$ and $A \leq O_2(C_M(z))$ is an offender on Y_M . Then $A \leq O_2(M)$.
- (k) $F \leq C_{M^{\dagger}}(y) = FTC_{M^{\dagger}}(Y_M)$ and $F = \langle (Q_z \cap F)^F \rangle$.

PROOF. (a): Suppose first that $(2n, \epsilon) \neq (4, +)$. Then by $3.3(c) \ \overline{Q}_z = O_2(C_{\overline{M}}(z))$ and so by $3.1(\text{b:b}) \ Q_z$ induces $Hom(z^{\perp}/\langle z \rangle, \langle z \rangle)$ on Z_M . This gives (a). Suppose next that $(2n, \epsilon) = (4, +)$. Then y and yz are the only non-singular vectors in z^{\perp} . By $3.1(\text{c:a}), \ C_{\overline{M}}(y) \cong Sp_2(2) \times C_2$. As $T \leq C_M(y)$ and $\overline{T} \leq \Omega_4^+(2)$, we conclude that $\overline{T^*} \cong C_2 \times C_2$ and $\overline{T^*} \leq \Omega_4^+(2)$. Hence by 3.3(h) $\overline{Q} \leq \overline{T^*}$ and so Q does not centralize y. Since Q_z acts on the non-singular vectors of z^{\perp} , (a) follows.

(b) – (d): By 3.1(c), $\overline{F_0} = C_{\overline{M}}(y) \cong C_2 \times Sp_{2n-2}(2)$, $|C_{\overline{M}}(Y)| = 2$ and Y is natural $O_{2n-1}(2)$ -module for F_0 . In particular, $\overline{T} = C_{\overline{S}}(Y) = C_{\overline{M}}(Y) = O_2(\overline{F_0})$, $[Y_M, T] = [Z_M, T] = \langle y \rangle$, $\overline{F_0}/\overline{T} \cong Sp_{2n-2}(2)$, $Y/\langle y \rangle$ is a natural $Sp_{2n-2}(2)$ -module for F_0 and $\overline{T} \overline{M^\circ} = \overline{M}$.

Suppose now that $(2n, \epsilon) \neq (4, +)$. Then 3.3(h) gives $M/O_2(M) \cong O_{2n}^{\epsilon}(2)$, so $C_M(Y_M) = O_2(M)$ and $T = C_M(Y)$. By 3.3(c) $\overline{Q_z} = O_2(C_{\overline{M}}(z))$ and so by 3.1(a) $\overline{Q_z}$ is a natural $O_{2n-2}^{\epsilon}(2)$ -module for $C_{\overline{M}}(z)$. Observe that $\overline{Q_z \cap F}$ is the hyperplane corresponding to a non-singular vector of $\overline{Q_z}$. Thus by 3.1(c:a) applied to $C_{\overline{M}}(z)/\overline{Q_z}$ and $\overline{Q_z}$ in place of X and V, we have $C_{\overline{F_0}}(z)/\overline{Q_z \cap F} \cong$ $C_2 \times Sp_{2n-4}(2)$, and $\overline{Q_z \cap F}$ is a natural $O_{2n-3}(2)$ -module for $C_{F_0}(z)$. Note also that $\overline{T} \notin \overline{Q_z}$ and $T = C_M(Y) = C_{F_0}(Y)$. Thus $\overline{Q_z \cap F}$ acts faithfully on Y and $C_{F_0}(z)/(Q_z \cap F)C_{F_0}(Y) \cong Sp_{2n-4}(2)$. It follows that

$$(Q_z \cap F)C_{F_0}(Y)/C_{F_0}(Y) = O_2(C_{F_0}(z)/C_{F_0}(Y))$$

As $F_0/C_{F_0}(Y) \cong Sp_{2n-2}(2)$, we have $F_0/C_{F_0}(Y) = \langle O_2(C_{F_0}(z)/C_{F_0}(Y))^{F_0} \rangle$. Since $F = \langle (Q_z \cap F)^{F_0} \rangle$, this gives $F_0 = FC_{F_0}(Y) = FT$. Hence (b) – (d) hold for $(2n, \epsilon) \neq (4, +)$.

Suppose next that $(2n, \epsilon) = (4, +)$. By 3.3(e), $\overline{S} = \overline{TQ_z}$. Thus $\overline{T^*} = \overline{T}(\overline{Q_z} \cap \overline{T^*})$ and so $\overline{Q_z} \cap \overline{F_0} \leqslant \overline{T}$. Since $\overline{F_0}/\overline{T} \cong F_0/C_{F_0}(Y) \cong Sp_2(2)$, this gives $\overline{F_0} = \overline{FT}$. If $C_M(Y_M) = O_2(M)$ we conclude that (b) and (c) hold. Assume that $C_M(Y_M) \neq O_2(M)$. Then by 3.3(h) $M/O_2(M) \sim 3 \cdot O_4^+(2), O_3(M/O_2(M))$ is extra-special of order 3^3 and $\overline{Q} \cong C_4$. In particular, $C_M(Y_M)/O_2(M) \leqslant M^\circ O_2(M)$ and so $M = M^\circ T$.

Also $F_0/O_2(M) \sim 3.(C_2 \times Sym(3))$. Since T neither centralizes nor inverts $O_3(M/O_2(M))$, T inverts $C_M(Y_M)/O_2(M)$. As $C_M(Y) = TC_M(Y_M)$, this gives $C_M(Y)/O_2(M) \cong Sym(3)$. By 1.52(c), $[C_M(Y), M^\circ] \leq O_2(M^\circ) \leq O_2(M)$, and so $Q_z \cap F_0$ centralizes $C_M(Y_M)/O_2(M)$. It follows that $F/O_2(M) \cong Sym(3)$, $F_0/O_2(M) \cong Sym(3) \times Sym(3)$, $FT/O_2(M) \cong C_2 \times Sym(3)$, $|F_0/FT| = 3$ and $O_2(FT) = T$. Also $T(Q_z \cap F_0) \in Syl_2(F_0)$ and so $T^* = T(Q_z \cap F_0) \in Syl_2(F)$. Thus again (b) and (c) hold.

(e): Note that $C_S(Y_M)$ is a Sylow 2-subgroup of $C_{M^{\dagger}}(Y_M)$ and $C_S(Y_M) \leq C_S(Y) = T$. Hence T is Sylow 2-subgroup of $C_{M^{\dagger}}(Y_M)T$. Also

$$FT \leqslant N_{M^{\dagger}}(T) \leqslant N_{M^{\dagger}}([Y_M, T]) = C_{M^{\dagger}}(y) = C_{M^{\dagger}}(Y_M)FT,$$

and so $O_2(\overline{N_{M^{\dagger}}(T)}) \leqslant O_2(\overline{FT}) = \overline{T}$. Thus $O_2(N_{M^{\dagger}}(T)) = T$.

(f): By 2.2(e) $\Omega_1 Z(O_2(M)) = Y_M$. Since $O_2(M) \leq T^*$ and $\Omega_1 Z(T^*) \leq C_G(O_2(M)) \leq O_2(M)$, we conclude that $\Omega_1 Z(T^*) \leq Y_M$.

Assume first that $\Omega_1 Z(T^*) \leq Z_M$. Suppose that $(n, \epsilon) = (4, +)$. Then $|Z_M| = 2^4$ and $\overline{S} \cong D_8$, so $\overline{U} := Z(\overline{S})$ has order 2. Hence $\overline{U} \leq \overline{Q_z}$ since $\overline{Q_z} \leq \overline{S}$, and $\overline{U} = \overline{S'} \leq \Omega_4^+(2)$. In particular, \overline{U} does not act as a transvection group on Z_M and thus $|C_{Z_M}(\overline{U})| \leq 4$. Since y and yz are the only nonsingular vectors in z^{\perp} , S acts on $\{y, yz\}$ and since $\overline{U} \leq \overline{S'}$, \overline{U} centralizes y. Hence $C_{Z_M}(\overline{U}) = \langle y, z \rangle$. Since $\overline{U} \leq \overline{Q_z}$ it follows that

$$\langle y, z \rangle \leq C_{Z_M}(T^*) \leq C_{Z_M}(T^* \cap Q_z) \leq C_{Z_M}(\overline{U}) = \langle y, z \rangle$$

and (f) holds on this case.

Suppose that $(n, \epsilon) \neq (4, +)$. Put $\overline{A} := O_2(C_{\overline{M}}(z))$ and $\overline{A_u} := C_{\overline{A}}(u)$ for $u \in z^{\perp}$. Then by 3.1(c:a) $\overline{A} = \overline{Q}_z$, and by 3.1(b:b) \overline{A} induces $Hom(z^{\perp}/\langle z \rangle, \langle z \rangle)$ on y^{\perp} . Hence

$$\overline{A_y} = \overline{A}_w \iff w \in y + \langle z \rangle.$$

Thus $C_{Z_M}(\overline{A_y}) = \langle y, z \rangle = C_{Z_M}(T^*)$, and again (f) follows.

Assume now that $\Omega_1 Z(T^*) \leq Z_M$ and pick $v \in \Omega_1 Z(T^*) \setminus Z_M$. By 3.3(f) Y_M is the 7-dimensional quotient of the natural permutation module for $\overline{M} \cong O_6^+(2) \cong Sym(8)$. Hence $C_{\overline{M}}(v) \cong Sym(7)$ or $Sym(3) \times Sym(5)$. By 3.3(d) $\overline{M^\circ} = \Omega_6^+(2) \cong Alt(8)$ and so the Sylow 2-subgroups of $C_{\overline{M^\circ}}(v)$ are dihedral of order 8. On the other hand $Q_z \cap F \leq Q_z \cap T^* \leq C_{M^\circ}(v)$ and by (d), $\overline{Q_z \cap F}$ is elementary abelian of order $2^{6-3} = 8$, a contradiction.

(g): Note that $\Omega_1 Z(S) \leq \Omega_1 Z(T^*)$. By (f) $\Omega_1 Z(T^*) = \langle z, y \rangle$ and by (a) $[y, Q_z] \neq 1$. Thus $\Omega_1 Z(S) = \langle z \rangle$.

(h): Let $q \in Q_z$ with $y^q = yz$. Then $Y \neq Y^q$ and so there exists $y_1 \in Y^q \setminus Y$. Replacing y_1 by $y_1(yz)$ if necessary, we may assume that y_1 is non-singular. Thus $y_1 = y^u$ for some $u \in M$. Note that $\langle y, y^u \rangle \leq Y^q = C_{Z_M}(T^q)$ and so T^q centralizes $\overline{T^u}$. As $T^u \in Syl_2(T^uC_M(Y_M))$ we can choose u such that T^q normalizes T^u .

Put $M_1 := \langle T, T^u \rangle$ and $W := \langle y, y^u \rangle$. Since $T = C_S(y^\perp)$ we have $[Z_M, T] = \langle y \rangle$, and so $[Z_M, M_1] = W$. As $Z_M = W \oplus W^\perp$, we conclude that M_1 centralizes W^\perp and $M_1/C_{M_1}(Z_M) \cong SL_2(2) \cong Sym(3)$. Together with $C_M(Y_M) = C_M(Z_M)$ this gives $\overline{M_1} \cong Sym(3)$. If $C_M(Y_M) = O_2(M)$, then obviously $M_1/O_2(M) \cong Sym(3)$. If $C_M(Y_M) \neq O_2(M)$, then by 3.3(h), $O^2(M/O_2(M))$ is extra-special of exponent 3. Since $M_1/O_2(M)$ is a dihedral group, we conclude again that $M_1/O_2(M) \cong Sym(3)$. Thus (h:a) holds.

Suppose that 2n = 4. Then $T \leq T^* = TT^q \leq S$. As T^q normalizes T^u we conclude that T^* normalizes $M_1 = \langle T, T^u \rangle$. Note that \overline{M} is 2-minimal and so $\overline{M} = \langle \overline{M_1}, \overline{S} \rangle$. As $O_2(M) \leq S$ and $C_M(Y_M)/O_2(M) \leq \Phi(M/O_2(M))$, we get $M = \langle M_1, S \rangle = \langle M_1, N_M(T^*) \rangle$. So (h:b) is proved.

Suppose that $(2n, \epsilon) \neq (4, +)$. Then by 3.3(h) $C_M(Y_M) = O_2(M)$ and so $T = C_M(Y) \leq F_0$. Also by 3.1(d) F_0 is maximal subgroup of M. Thus $M = \langle M_1, F_0 \rangle = \langle M_1, M_M(T) \rangle$, and (h:c) holds.

(i): Put $L = \langle F, Q_z \rangle$. Note that $L \leq M^{\circ}$ and T normalizes L. If $(2n, \epsilon) = (4, +)$, then by 3.3(h), $S = Q_z T$ and \overline{S} is a maximal subgroup of \overline{M} , so $\overline{LS} = \overline{M}$. As above, $O_2(M) \leq S$ and $C_M(Y_M)/O_2(M) \leq \Phi(M/O_2(M))$ give M = LS, and so $M = LQ_z T = LT$. Hence $L \leq M$ and $M^{\circ} = \langle Q_z^M \rangle \leq L \leq M^{\circ}$. So (i) holds in this case.

Suppose that $(2n, \epsilon) \neq (4, +)$. Then by (b) $C_M(Y_M) = O_2(M)$ and $F_0 = FT$. By 3.1(d), $\overline{F_0}$ is a maximal subgroup of \overline{M} . Thus FT is maximal subgroup of M and again LT = M, and (i) holds.

(j): This follows for example from C.8.

(k): By 1.52(c), $[C_G(Y), M^\circ] \leq O_2(M^\circ) \leq O_2(M^\circ)$. Since $F \leq M^\circ$, we get $[F, C_{M^\dagger}(Y_M)] \leq O_2(M) \leq F$. As $M^\dagger = C_{M^\dagger}(Y_M)M$, we have $C_{M^\dagger}(y) = C_{M^\dagger}(Y_M)C_M(y) = C_{M^\dagger}(Y_M)F_0$. By (b) $\overline{F_0} = \overline{TF}$, and we conclude that

$$C_{M^{\dagger}}(y) = C_{M^{\dagger}}(Y_M)TF = C_{M^{\dagger}}(\langle y, z \rangle)F = C_{M^{\dagger}}(\langle y, z \rangle)F_0.$$

Note that $C_{Q_z}(y) = Q_z \cap F_0 = Q_z \cap F$ and so $C_{M^{\dagger}}(\langle y, z \rangle)$ normalizes $Q_z \cap F_0$. Hence

$$F = \langle (Q_z \cap F_0)^{F_0} \rangle = \langle (Q_z \cap F_0)^{C_M \dagger} {}^{(y)} \rangle = \langle (Q_z \cap F_0)^F \rangle = \langle (Q_z \cap F)^F \rangle$$

Thus (k) holds.

3.2. The Proof of Theorem C

In this section we will prove Theorem C. For this we assume that (G, M) is a counterexample to Theorem C. Thus $C_G(x)$ is of characteristic 2 for some non-singular $x \in Z_M$. We continue to use the notation introduced in section 3.1. By 3.1(a) M acts transitively on the non-singular elements of Z_M and so $C_G(y)$ is of characteristic 2. We will derive a contradiction in a sequence of lemmas.

LEMMA 3.5. Suppose that $[O_2(M), O^2(M)] \leq Y_M$. Then $Y_M = O_2(M) = C_G(Y_M)$ and $M^{\dagger} = M$.

PROOF. Since $[O_2(M), O^2(M)] \leq Y_M \leq \Omega_1 Z(O_2(M)), 1.18$ implies that $[\Phi(O_2(M)), O^2(M)] = 1$. As Z(M) = 1 by 3.3(a), we conclude that $\Phi(O_2(M)) = 1$ and $O_2(M) = Y_M = O_2(M^{\dagger})$. In particular $C_G(Y_M) = Y_M$ since M^{\dagger} is of characteristic 2. Thus $M^{\dagger} = MC_G(Y_M) = M$.

LEMMA 3.6. (a) If 2n = 4, then $N_G(T^*) \leq M^{\dagger}$ and $T^* \in Syl_2(C_G(y))$. In particular, y is not 2-central.

(b) If $(2n, \epsilon) \neq (4, +)$, then $N_G(T) \leq N_G(B(T)) \leq M^{\dagger}$ and $T = O_2(N_{M^{\dagger}}(T))$.¹

PROOF. (a): Let M_1 be as in 3.4(h). Since 2n = 4, T^* normalizes M_1 . Put $M^* = T^*M_1$. Note that $T^* \in Syl_2(M^*)$ and $M^*/O_2(M^*) \cong Sym(3)$.

We claim that $N_G(T^*) \leq M^{\dagger}$. For this, suppose first that no non-trivial characteristic subgroup of $B(T^*)$ is normal in $B(M^*)$. By the Baumann argument (see for example [**PPS**, 2.8 and 2.9(a)]) $B(T^*) \in Syl_2(B(M^*))$. Note that $B(M^*)/O_2(B(M^*)) \cong Sym(3)$, and so the pushing up result for Sym(3), see [**G12**], shows that $B(M^*)$ has a unique non-central chief factor in $O_2(B(M^*))$. Since $O^2(M^*) \leq B(M^*)$, the same holds for M^* , and since $[Y_M, O^2(M^*)] \neq 1$ we conclude that

$$[O_2(M), O^2(M^*)] \leq [O_2(M^*), O^2(M^*)] \leq Y_M.$$

Hence also $[O_2(M), O^2(M)] \leq Y_M$ and by 3.5 $Y_M = O_2(M)$.

A straightforward computation shows that $\mathcal{A}_{T^*} = \{Y_M, A, A_1, A_2\}$, where $|A_iY_M/Y_M| = 2 = |Y_M/Y_M \cap A_i|$, and $|AY_M/Y_M| = 4 = |Y_M/Y_M \cap A|$. So $\{A_1, A_2\}$ and $\{Y_M, A\}$ are the only pairs of elements of \mathcal{A}_{T^*} which intersect in a group of order 4. Hence $N_G(T^*)/C_G(\mathcal{A}_{T^*})$ is a 2-group. Since $N_G(T^*) \cap M^{\dagger}$ contains the Sylow 2-subgroup S of G and $C_G(\mathcal{A}_{T^*}) \leq N_G(Y_M) = M^{\dagger}$, we conclude that $N_G(T^*) \leq M^{\dagger}$, and the claim holds in this case.

Suppose next that K is non-trivial characteristic subgroup of $B(T^*)$ which is normal in M^* . By 3.4(h:b) $M = \langle M_1, N_M(T^*) \rangle = \langle M^*, N_M(T^*) \rangle$ and so $K \leq M$. Thus by 2.2(c), $N_G(K) \leq M^{\dagger}$. Since K is a characteristic subgroup of T^* this implies $N_G(T^*) \leq M^{\dagger}$.

We have shown that $N_G(T^*) \leq M^{\dagger}$. Note that $C_S(Y_M) \in Syl_2(C_G(Y_M))$. Since $M^{\dagger} = C_G(Y_M)M$ and $C_S(Y_M) \leq C_S(y) = T^* \in Syl_2(C_M(y))$ we have $T^* \in Syl_2(C_{M^{\dagger}}(y))$. Let $T_1 \in Syl_2(C_G(y))$ with $T^* \leq T_1$. Then $N_{T_1}(T^*) \leq N_{C_{M^{\dagger}}(y)}(T^*)$ and so $T^* = N_{T_1}(T^*)$ and $T_1 = T^*$. Thus (a) holds.

(b): Suppose now that $(2n, \epsilon) \neq (4, +)$ and that $L := N_G(B(T)) \leq M^{\dagger}$. We derive a contradiction using a similar pushing up argument as in the proof of (a). Let K be non-trivial characteristic subgroup of B(T) normal in M_1 . By 3.4(h) $M = \langle M_1, N_M(T) \rangle$ and so $K \leq M$. Thus by 2.2(c), $N_G(K) \leq M^{\dagger}$, contrary to $L \leq M^{\dagger}$. Hence no non-trivial characteristic subgroup of B(T) is normal in $B(M_1)$.

The same pushing up argument as in (a) shows that $[O_2(M), O^2(M)] \leq Y_M$. So by 3.5 $Y_M = O_2(M) = C_M(Y_M)$ and $M = M^{\dagger}$. Let $t \in L \setminus M^{\dagger}$. Then $Y_M \neq Y_M^t$ and so $Y_M Y_M^t = T = B(T)$. Note that all involutions in T are contained in $Y_M \cup Y_M^t$ and thus $\mathcal{A}_T = \{Y_M, Y_M^t\}$. Since $N_L(Y_M) = L \cap M^{\dagger} = L \cap M = N_M(T) = FT$ we conclude that |L/FT| = 2 and $FT \leq L$. Let $T_1 \in Syl_2(L)$ with $T^* \leq T_1$. Then $L = (FT)T_1 = FT_1$ and so $T_1 \leq M$. By 3.4(i) $\langle FT, Q_z \rangle = M^{\circ}T = M$. Since $N_G(M) \leq M^{\dagger} = M$ we conclude that $T_1 \leq N_G(Q_z)$ and so $[z, T_1] \neq 1$.

Put $H := N_G(T^*)$. Since $T^* = C_S(y) = C_S(\langle z, y \rangle)$ and $y^{Q_z} = \{y, yz\}$ we have $Q_z \leq H$. Also $T_1 \leq H$. By 3.4(f), $\Omega_1 Z(T^*) = \langle z, y \rangle$. Since $\Omega_1 Z(T^*) \leq H$, the action of Q_z and T_1 on

¹For the definition of B(T) see 1.1.

 $\Omega_1 Z(T^*)$ shows that $H/C_H(\Omega_1 Z(T^*)) \cong Sym(3)$, and H acts transitively on $\Omega_1 Z(T^*)$. So there exists $h \in H$ with $z^h = y$. Thus $y \in z^G$. Since z is 2-central, (a) gives $2n \ge 6$. Also $Q_z^h = Q_y$ and $|Q_y/Q_y \cap T^*| = |Q_z/Q_z \cap T^*| = 2$. Since

$$Q_y \cap T^* \leqslant Q_y \cap M \leqslant O_2(C_M(y)) = O_2(F_0) = O_2(FT) = T$$

we have $|Q_y/Q_y \cap T| \leq 2$. As $|T/Y_M| = |T/O_2(M)| = 2$ this gives $|Q_y/Q_y \cap Y_M| \leq 4$ and so

$$|Q_y| \leq 4|Q_y \cap Y_M| \leq 4|Y_M|.$$

Since $2n \ge 6$, 3.3(c) implies $|Q_z Y_M/Y_M| = |Q_z O_2(M)/O_2(M)| = |O_2(C_{\overline{M}}(z))| = 2^{2n-2}$. By $3.3(c) |Z_M/Z_M \cap Q_z| \le |Z_M/[Z_M, Q_z]| = 2$ and by $3.3(f) |Y_M/Z_M| \le 2$. Therefore

$$|Q_z| = 2^{2n-2} |Y_M \cap Q_z| \ge 2^{2n-2} |Z_M \cap Q_z| \ge 2^{2n-4} |Y_M| \ge 4 |Y_M|.$$

Since $|Q_y| = |Q_z|$ equality must hold in each of the last two displayed inequalities. Thus $Y_M \cap Q_y = Y_M$ and $Y_M \cap Q_z = [Z_M, Q_z]$. Hence $Y_M \leq Q_y$ and $Y_M \leq Q_z$. Therefore $Y_M^{h^{-1}}$ is an elementary abelian normal subgroup of order $|Y_M|$ in Q_z and $Y_M \neq Y_M^{h^{-1}}$. Since $Y_M = C_M(Y_M)$ we conclude from A.40 that $Q_z Y_M$ contains a non-trivial offender on Y_M , a contradiction to 3.4(j).

We have shown that $N_G(B(T)) \leq M^{\dagger}$. Since $N_G(T) \leq N_G(B(T))$ this gives $N_G(T) = N_{M^{\dagger}}(T)$. By 3.4(e), $O_2(N_{M^{\dagger}}(T)) = T$, and so (b) holds.

LEMMA 3.7. $z^G \cap Y_M = z^M = z^G \cap Z_M$.

PROOF. Suppose that there exists $u \in z^G \cap Y_M$ with $u \notin z^M$. Assume first that $u \in Z_M$. By 3.1(a) M has two orbits on Z_M^{\sharp} , and since $u \notin Z^m$, we have $u = y^m$ for some $m \in M$, so $y \in z^G$. If 2n = 4 then 3.6(a) shows that y is not 2-central, a contradiction. Thus $2n \neq 4$. By Q! we have $Q_y \leq C_G(y)$. By 3.6(b) and 3.4(e) $N_G(T) = N_{M^{\dagger}}(T) \leq C_{M^{\dagger}}(y) \leq C_G(y)$ and so $N_G(T)$ normalizes Q_y . Thus $N_{Q_y}(T) \leq O_2(N_G(T))$. By 3.6(b) $O_2(N_G(T)) = T$ and so $N_{Q_y}(T) \leq T$. It follows that $Q_y \leq T \leq S$. By 2.2(b), Q is weakly closed in S with respect to G, so $Q_z = Q_y$. In particular $[Q_z, y] = 1$, which contradicts 3.4(a).

Assume now that $u \in Y_M \setminus Z_M$. By 3.3(f), $(2n, \epsilon) = (6, +)$ and Y_M is the 7-dimensional quotient of the natural permutation module for $\overline{M} \cong O_6^+(2) \cong Sym(8)$. Hence $C_{\overline{M}}(v) \cong Sym(7)$ or $Sym(3) \times Sym(5)$. In both cases $O_2(C_{M^{\dagger}}(u)) \leq C_{M^{\dagger}}(Y_M)$ and thus

$$O_2(C_{M^{\dagger}}(u)) = O_2(C_{M^{\dagger}}(Y_M)) = O_2(M^{\dagger}) \leq O_2(M).$$

Since $N_G(O_2(M)) \leq M^{\dagger}$ by 2.2(c) and $Q_u \leq O_2(C_G(u))$, we conclude that

$$N_{Q_u}(O_2(M)) \leqslant O_2(C_{M^{\dagger}}(u)) \leqslant O_2(M),$$

and so $Q_u \leq O_2(M)$. Since Q is a weakly closed subgroup of G, this implies $Q_u = Q^g$ for all $g \in M$ and so $Q \leq M$, a contradiction to Hypothesis C(iv).

LEMMA 3.8. The following hold:

- (a) $\Omega_1 Z(T) = C_{Y_M}(T)$ and $Y = C_{Z_M}(T) = \Omega_1 Z(T) \cap Z_M$.
- (b) Let $\mathcal{Z} = \{u \in Y \mid 1 \neq u \text{ is singular in } Z_M\}$. Then $N_G(T) \leq N_G(\Omega_1 Z(T)) = N_G(\mathcal{Z}) = N_G(Y) = FTC_{M^{\dagger}}(Y_M) \leq M^{\dagger}$.
- (c) $O_2(N_G(T)) = T$ and $C_G(Y) = TC_{M^{\dagger}}(Y_M)$.

PROOF. (a): By 2.2(e), $\Omega_1 Z(O_2(M)) = Y_M$. Since $O_2(M) \leq T$ we get $\Omega_1 Z(T) = C_{Y_M}(T)$. Thus $C_{Z_M}(T) = \Omega_1 Z(T) \cap Z_M$. By 3.1(c:b) $C_{Z_M}(T) = y^{\perp} = Y$, and so (a) is proved.

(b): Observe that $z \in \mathcal{Z}$ and so

$$Q_z \leqslant L := \langle Q_u \mid u \in \mathcal{Z} \rangle \leqslant M^{\circ}.$$

By 3.1(c:c)

$$\langle \mathcal{Z} \rangle = Y;$$

in particular, $N_G(\mathcal{Z}) \leq N_G(Y)$. Since M acts transitively on the non-trivial singular vectors in Z_M , $\mathcal{Z} = Y \cap z^M$. By (a) $Y = \Omega_1 Z(T) \cap Z_M$ and since $z^M \subseteq Z_M$ we get $\mathcal{Z} = \Omega_1 Z(T) \cap z^M$. By 3.7 $z^M = z^G \cap Y_M$, and since $\Omega_1 Z(T) \subseteq Y_M$, we conclude that $\mathcal{Z} = \Omega_1 Z(T) \cap z^G = Y \cap z^G$. Hence

$$N_G(T) \leq N_G(\Omega_1 Z(T)) \leq N_G(\mathcal{Z}) \leq N_G(Y) \leq N_G(\mathcal{Z}) \leq N_G(L).$$

In particular, $N_G(\mathcal{Z}) = N_G(Y)$.

Since $F_0 \leq N_M(Y)$, we get $F = \langle (Q_z \cap F_0)^{F_0} \rangle \leq L$ and so by 3.4(i), $M^\circ = \langle Q_z, F \rangle \leq L \leq M^\circ$. Hence $L = M^\circ$ and $N_G(\mathcal{Z}) \leq N_G(M^\circ) = M^\dagger$. Thus $N_G(Y) = N_G(\mathcal{Z}) = N_{M^\dagger}(\mathcal{Z}) = N_{M^\dagger}(Y)$. Since $Y = y^\perp$, $N_{M^\dagger}(Y) = C_{M^\dagger}(y)$. By 3.4(k) we have $C_{M^\dagger}(y) = C_{M^\dagger}(Y_M)FT$, and (b) is proved.

(c): By (b) $N_G(T) = N_{M^{\dagger}}(T)$ and $C_G(Y) = C_{M^{\dagger}}(Y)$. Hence 3.4(e) gives the first part of (c), and 3.1(c:b) the second part.

NOTATION 3.9. By Hypothesis C(iii) $C_G(y) \leq M^{\dagger}$, and so there exists a subgroup $L \leq C_G(y)$ with $FT \leq L$ and $L \leq M^{\dagger}$. Among all such subgroups we choose L such that |L| is minimal.

Observe that the minimality of L implies that $L \cap M^{\dagger}$ is the unique maximal subgroup of L containing FT. By 3.4(c), $T^* \in Syl_2(FT)$ and we can pick $T_0 \in Syl_2(L)$ such that $T^* \leq T_0$. We set

$$D := L \cap M^{\dagger}, \quad Z_L := \langle \Omega_1 Z(T_0)^L \rangle, \quad P := C_L(z), \quad \text{and} \quad P^* := O^{2'}(P).$$

LEMMA 3.10. The following hold:

- (a) $O_2(\langle Q_z, L \rangle) = 1.$
- (b) $[Q_z, P] \leq Q_z \cap P = Q_z \cap L = Q_z \cap F \leq O_2(P).$
- (c) $O_2(\langle L, L^t \rangle) = 1$ for $t \in Q_z \backslash L$.
- (d) $Z_L Z_L^t \notin L$ and $Z_L Z_L^t \notin L^t$ for $t \in Q_z \setminus L$.
- (e) $O_2(C_G(y)) \leq O_2(L) \leq T$.
- (f) $\Omega_1 Z(T_0) = \Omega_1 Z(T^*) = \langle y, z \rangle.$
- (g) $P = C_L(\Omega_1 Z(T_0))$, so P^* is a point-stabilizer for L on Y_L and on Z_L .²
- (h) $Z_L = \langle Y^L \rangle$ and $Y \leq C_{Z_L}(T) \leq C_{Y_M}(T)$.
- (i) $D = FTC_D(Y_M) = FC_D(Y)$. In particular, Y is a natural $O_{2n-1}(2)$ -module and $Y/\langle y \rangle$ is a natural $Sp_{2n-2}(2)$ -module for D.
- (j) F is normal in D.
- (k) If 2n = 4, then $T^* = T_0 \in Syl_2(L)$.

PROOF. (a): By 3.4(b) and (i), $M = M^{\circ}T = \langle Q_z, TF \rangle \leq \langle Q_z, L \rangle$. Since $L \leq M^{\dagger}$, $\mathcal{M}_G(M) = \{M^{\dagger}\}$ implies $O_2(\langle Q_z, L \rangle) = 1$.

(b): Note that $C_{Q_z}(y) = Q_z \cap F = Q_z \cap L = Q_z \cap P$ and that by 3.4(a) $|Q_z/C_{Q_z}(y)| = 2$. By Q!, P normalizes Q_z and so also $Q_z \cap P$, and (b) follows.

(c): Since $|Q_z/Q_z \cap L| = 2$ we conclude that $\langle L, t \rangle = \langle L, Q_z \rangle$, $t^2 \in Q_z \cap L$ and t normalizes $\langle L, L^t \rangle$. So (c) follows from (a).

(d): Note that t normalizes $Z_L Z_L^t$. Thus (d) follows from (c).

(e): Put $U := O_2(L)O_2(C_G(y))$. Then FT normalizes U. By 3.8(b) $N_G(T) \leq C_{M^{\dagger}}(Y_M)FT$ and by 3.4(c) $O_2(\overline{FT}) = \overline{T}$, so $\overline{N_U(T)} \leq O_2(\overline{FT}) = \overline{T}$. Hence $N_U(T) \leq C_{M^{\dagger}}(Y_M)T$. Since T is a Sylow 2-subgroup of $C_{M^{\dagger}}(Y_M)T$ and T normalizes $N_U(T)$ we get $N_U(T) \leq T$. It follows that $U \leq T \leq L$. Since L normalizes $O_2(C_G(y))$, this gives $O_2(C_G(y)) \leq O_2(L) \leq T$.

(f): Choose $g \in G$ with $T_0 \leq S^g$. Since G is a counterexample to Theorem C $C_G(y)$ is of characteristic 2 and so

$$C_G(O_2(C_G(y))) \leq O_2(C_G(y)).$$

By (e)

$$O_2(C_G(y))) \leq T \leq T^* \leq T_0 \leq S^g.$$

Thus

$$\Omega_1 Z(S^g) \Omega_1 Z(T_0) \leqslant C_G(O_2(C_G(y))) \leqslant T \leqslant T^* \leqslant T_0,$$

 $^{^{2}}$ For the definition of a point-stabilizer on a module see A.3

and so

$$\Omega_1 Z(S^g) \leqslant \Omega_1 Z(T_0) \leqslant \Omega_1 Z(T^*).$$

By 3.4(e) $\Omega_1 Z(T^*) = \langle y, z \rangle$, and by 3.4(g) $\Omega_1 Z(S) = \langle z \rangle$. Hence $\Omega_1 Z(S^g) = \langle z^g \rangle$ and $\langle y, z^g \rangle \leq \Omega_1 Z(T_0) \leq \langle y, z \rangle$.

By 3.7 $Y_M \cap z^G = z^M$. Thus $y \notin z^G$, $z^g \neq y$ and $\Omega_1 Z(T_0) = \langle y, z \rangle$.

(g): By (f), $\Omega_1 Z(T_0) = \langle y, z \rangle$. Since $L \leq C_G(y)$ we have $C_L(\Omega_1 Z(T_0)) = C_L(z) = P$.

(h): Let \mathcal{Z} be the set of non-trivial singular vectors in Y. By3.1(c:c) $Y = \langle \mathcal{Z} \rangle$ and $C_{\overline{M}}(y)$ acts transitively on \mathcal{Z} . By 3.4(b) $C_{\overline{M}}(y) = \overline{F_0} = \overline{FT}$, and we conclude that $Y = \langle z^F \rangle = \langle \Omega_1 Z(T_0)^F \rangle$. Therefore $Z_L = \langle Y^L \rangle$. Moreover, by (e) $Z_L \leq T$ and so

$$Y \leqslant C_{Z_L}(T) \leqslant \Omega_1 Z(T).$$

By 3.8(a) $\Omega_1 Z(T) = C_{Y_M}(T)$, and so (h) holds.

(i): By 3.4(k), $C_{M^{\dagger}}(y) = FTC_{M^{\dagger}}(Y_M)$. Since $FT \leq D = M^{\dagger} \cap L \leq C_{M^{\dagger}}(y)$, this gives $D = FT(D \cap C_{M^{\dagger}}(Y_M)) = FTC_D(Y_M)$. Since T centralizes Y we get $D = FC_D(Y)$. By 3.4(c), Y is a natural $O_{2n-1}(2)$ -module and $Y/\langle y \rangle$ is a natural $Sp_{2n}(2)$ -module for FT and so also for D. Thus (i) holds.

(j): By 3.4(k). $F \leq C_{M^{\dagger}}(y)$ and since $D = M^{\dagger} \cap L \leq C_{M^{\dagger}}(y)$ we get $F \leq D$.

(k): Suppose that 2n = 4. Then by 3.6(b), $T^* \in Syl_2(C_G(y))$. Since $T^* \leq T_0 \in Syl_2(L)$ and $L \leq C_G(y)$ this gives $T^* = T_0$.

LEMMA 3.11. L is of characteristic 2, $C_L(Z_L) = O_2(L) = C_L(Y_L)$ and $Y_L = \Omega_1 Z(O_2(L))$.

PROOF. Since G is a counterexample to Theorem C, $C_G(y)$ is of characteristic 2. Moreover, by 3.10(e) $O_2(C_G(y)) \leq O_2(L)$ and so L is of characteristic 2.

By 3.10(h) $Y \leq Z_L$, and 3.8(c) implies $C_L(Z_L) \leq C_L(Y) \leq TC_{M^{\dagger}}(Y_M)$, so $O^2(C_L(Z_L)) \leq C_{M^{\dagger}}(Y_M)$. On the other hand, by 1.52(c) $[M^{\circ}, C_{M^{\dagger}}(Y_M)] \leq O_2(M^{\circ}) \leq O_2(M^{\dagger})$, and thus Q_z normalizes $O^2(C_L(Z_L))O_2(M^{\dagger})$. But $O^2(C_L(Z_L)) = O^2(C_L(Z_L)O_2(M^{\dagger}))$ since $O_2(M^{\dagger}) \leq T \leq L$. Hence $O^2(C_L(Z_L))$ is normalized by Q_z and L. As $O_2(\langle Q_z, L \rangle) = 1$ by 3.10(a), we get $O_2(O^2(C_L(Z_L))) = 1$. This yields $O^2(C_L(Z_L)) = 1$ since L is of characteristic 2. Hence $C_L(Z_L) = O_2(L)$.

Put $U := \Omega_1 Z(O_2(L))$. Since $Z_L \leq Y_L \leq U$ this implies

$$O_2(L) \leqslant C_L(U) \leqslant C_L(Y_L) \leqslant C_L(Z_L) = O_2(L).$$

Hence $O_2(L) = C_L(U)$ and $O_2(L/C_L(U)) = 1$. Thus U is 2-reduced for L, so $U \leq Y_L$ and $Y_L = U$.

LEMMA 3.12. Let N_0 be a subnormal subgroup of D.

- (a) Suppose that $O^2(F) \leq N_0$. Then $O^{2'}(O^2(N_0)) \leq TC_{M^{\dagger}}(Y_M)$ and if in addition $N_0 \leq D$, then $N_0 \leq TC_{M^{\dagger}}(Y_M)$ and $O^2(N_0) \leq C_{M^{\dagger}}(Y_M)$.
- (b) If N_0 is subnormal in L, then either $O^2(F) = O^2(N_0)$ or $N_0 \leq O_2(L)$.

PROOF. From 3.4(k) we get that $F \leq C_{M^{\dagger}}(y)$ and from 3.4(c) that

(I)
$$\overline{D} = \overline{FT} \cong C_2 \times Sp_{2n-2}(2)$$

and

(II)
$$F/O_2(F) \cong Sp_{2n-2}(2).$$

(a): By (II) either $O^2(F) \leq X$ or $[O^2(F), X] \leq O_2(F)$ for every subnormal subgroup X of D. By the hypothesis of (a), $O^2(F) \leq N_0$, and hence $[O^2(F), N_0] \leq O_2(F)$. By (I) $\overline{N_0} \leq \overline{T}$, or 2n = 4 and $O^2(\overline{N_0}) = O^2(\overline{F}) \cong C_3$. The first case gives $N_0 \leq TC_{M^{\dagger}}(Y_M)$, while the second case gives $O^{2'}(O^2(N_0)) \leq TC_{M^{\dagger}}(Y_M)$.

Moreover, if N_0 is normal in D, then $[F, N_0] \leq F \cap N_0$. Since $O^2(F) \leq N_0$, we conclude that $[F, N_0] \leq O_2(F)$. But then also in this case $\overline{N_0} \leq \overline{T}$.

(b): Assume now that N_0 is subnormal in L. Note that if (b) holds for $\langle N_0^D \rangle$ in place of N_0 , then (II) shows that (b) also holds for N_0 . So we may assume that $N_0 \leq D$. We first treat the case (*) $O^2(F) \leq N_0$.

By 3.10(f)
$$\Omega_1 Z(T_0) = \langle y, z \rangle \leq Z_M$$
 and by (a) $O^2(N_0) \leq C_{N_0}(Y_M)$. Since $T_0 \cap N_0 \in Syl_2(N_0)$, this gives

$$N_0 = (N_0 \cap T_0)O^2(N_0) = (N_0 \cap T_0)C_{N_0}(Y_M) \leq C_G(\Omega_1 Z(T_0)).$$

Thus by 1.28(b), $[Z_L, N_0] = 1$, and 3.11 implies $N_0 \leq C_L(Z_L) \leq O_2(L)$.

Assume next that $O^2(F) \leq N_0$. By (I), $\overline{D} = \overline{FT}$ and so $O^2(N_0) \leq O^2(F)C_{M^{\dagger}}(Y_M)$. As $O^2(F) \leq N_0$, we get

(III)
$$O^{2}(N_{0}) = O^{2}(F) (O^{2}(N_{0}) \cap C_{M^{\dagger}}(Y_{M})).$$

Note that $O^2(N_0) \cap C_{M^{\dagger}}(Y_M)$ is subnormal in L, normal in D and satisfies (*) in place of N_0 . As we have seen already, $O^2(N_0) \cap C_{M^{\dagger}}(Y_M) \leq O_2(L)$, and so by (III) $O^2(N_0) \leq O^2(F)O_2(L)$. Thus $O^2(N_0) \leq O^2(F)$. By (III) $O^2(F) \leq O_2(N_0)$ and so $O^2(N_0) = O^2(F)$.

LEMMA 3.13. Let N_0 be a normal subgroup of L. Then $O^2(F) \leq N_0$ or $T_0 \cap N_0 = T \cap N_0$.

PROOF. By 3.4(c), $FT/T \cong Sp_{2n}(2)$. Since $FT \cap N_0 \leq FT$ we conclude that either $O^2(FT) \leq FT \cap N_0$ or $FT \cap N_0 \leq T$. In the first case we are done. So we may assume that $FT \cap N_0 \leq T$. Since $T^* \leq FT$ also

$$T^* \cap N_0 \leqslant T,$$

in particular, $[N_{T_0 \cap N_0}(T^*), T^*] \leq T^* \cap N_0 \leq T$. It follows that $N_{T_0 \cap N_0}(T^*) \leq N_{T_0 \cap N_0}(T)$. By 3.8(b) $N_G(T) \leq M^{\dagger}$ and thus $N_{T_0 \cap N_0}(T^*) \leq T_0 \cap M^{\dagger} \leq T^*$. This shows that $T_0 \cap N_0 \leq T^* \cap N_0$ and by (*) $T_0 \cap N_0 = T \cap N_0$.

LEMMA 3.14. Let $t \in Q_z \setminus L$.

- (a) $J(O_2(L)O_2(L^t)) \leq O_2(L)$.
- (b) If $(2n, \epsilon) \neq (4, +)$ then $J(T) \leq O_2(L)$.
- (c) $O_2(L)O_2(L^t) \leq P$ and $O_2(L)O_2(L^t) \leq O_2(P) = O_2(P^*)$.
- (d) There exists $A \leq O_2(P^*)$ such that A is a minimal non-trivial quadratic best offender on Y_L .

PROOF. (a): Assume that $J(O_2(L)O_2(L^t)) \leq O_2(L)$. Then $J(O_2(L)O_2(L^t)) = J(O_2(L)) = J(O_2(L^t))$, and so t normalizes $J(O_2(L))$. A contradiction, since $O_2(\langle L, L^t \rangle) = 1$ by 3.10(c). Hence (a) holds.

(b): Assume now that $J(T) \leq O_2(L)$ and $(2n, \epsilon) \neq (4, +)$. By 3.10(e) $O_2(L) \leq T$ and so $J(T) = J(O_2(L))$. Since $Z_L \leq Z(J(O_2(L)))$ we conclude that $Z_L \leq Z(J(T))$. As $C_L(Z_L) = O_2(L)$ by 3.11, this gives $B(T) \leq C_L(Z_L) = O_2(L)$. Thus $B(T) = B(O_2(L))$ and B(T) is normal in L, a contradiction, since by 3.6(b) $N_G(B(T)) \leq M^{\dagger}$.

(c): By 3.10(b) Q_z and so also t normalizes P. Since $O_2(L) \leq P$ we get $O_2(L^t) \leq P$. Since $O_2(L)O_2(L^t)$ is a 2-group, this gives $O_2(L)O_2(L^t) \leq O_2(P)$. Recall that $P^* = O^{2'}(P)$, so $O_2(P^*) = O_2(P)$.

(d): By (a) we can choose $B \in \mathcal{A}_{J(O_2(L)O_2(L^t)}$ such that $B \leq O_2(L)$. By (c), $B \leq O_2(P^*)$. Since by 3.11 $C_L(Y_L) = O_2(L)$, $[Y_L, B] \neq 1$. Thus by A.40, $C_B([Y_L, B])$ is a non-trivial quadratic best offender on Y_L . Hence there also exists such a minimal offender A in $C_B([Y_L, B])$ and (d) holds. \Box

NOTATION 3.15. Recall from 3.11 that $C_L(Z_L) = O_2(L)$. So $\tilde{L} := L/O_2(L)$ is faithful on Z_L . According to 3.14(d) we can choose $A \leq O_2(P^*)$ such that

A is a minimal non-trivial quadratic offender on Y_L .

Put $H := \langle A^L \rangle O_2(L)$ and $Y_L^+ := Y_L/C_{Y_L}(H)$. For $X \subseteq Y_L$, let $X^+ := XC_{Y_L}(H)/C_{Y_L}(H)$, the image of X in Y_L^+ .

(*)

LEMMA 3.16. There exist subgroups H_i , i = 1, ..., m, of H such that for $V_i := [Z_L, H_i]$:

- (a) $O_2(H) \leq H_i \leq H$.
- (b) $\widetilde{H} = \widetilde{H_1} \times \widetilde{H_2} \times \ldots \times \widetilde{H_m}$.
- (c) $Z_L^+ = V_1^+ \times V_2^+ \times \dots V_m^+.$
- (d) $\widetilde{H}_i \cong SL_l(2^k), l \ge 2, Sp_{2l}(2^k), l \ge 2, G_2(2^k) \text{ or } Sym(l), l > 6, l \equiv 2, 3 \pmod{4}$. Moreover V_i^+ is a corresponding natural module.
- (e) L acts transitively on $\{H_1, H_2, \ldots, H_m\}$.

PROOF. Let H_1 be the smallest subnormal subgroup of L containing $AO_2(L)$ and put

$$H_1^L =: \{H_1, \ldots, H_m\}.$$

By Gaschütz' Theorem $C_{Z_L}(T_0 \cap H) \leq C_{Z_L}(H)[Z_L, H]$, see C.17. Since $\Omega_1 Z(T_0) \leq C_{Z_L}(T_0 \cap H)$ and $Z_L = \langle \Omega_1 Z(T_0)^L \rangle$, this gives $Z_L = C_{Z_L}(H)[Z_L, H]$ and so $Z_L^+ = [Z_L^+, H]$. The lemma now follows from C.9.

NOTATION 3.17. In the following we will use the notation introduced in 3.16.

LEMMA 3.18. $H \leq D$, L = HFT and $T_0 = (H \cap T_0)T^*$.

PROOF. Suppose that $H \leq D$. Then we can apply 3.12(b) with $N_0 = H$. Since $H \leq O_2(L)$ we conclude $O^2(H) = O^2(F)$ and so $O^2(H)/O_2(O^2(H)) \cong Sp_{2n-2}(2)'$. Now 3.16 shows that m = 1 and

$$[Z_L, O^2(H)]C_{Z_L}(H)/C_{Z_L}(H)$$

is a simple $O^2(H)$ -module. From 3.10(h) we get $Y \leq Z_L$. Since $[Y, O^2(F)] \neq 1$ this gives $[Z_L, O^2(H)] = [Y, O^2(F)]$. Hence $Y = \langle y \rangle [Y, O^2(F)]$ is normal in L, a contradiction since $N_G(Y) \leq M^{\dagger}$ by 3.8(b).

Thus $H \leq D$ and the minimal choice of L implies L = HFT. Since $T^* \in Syl_2(FT)$ and $T^* \leq T_0$ we conclude that $T_0 \leq HT^*$ and so $T_0 = (H \cap T_0)T^*$.

LEMMA 3.19. $\widetilde{H}_i \not\cong SL_2(2^k)$.

PROOF. Suppose for a contradiction that $\widetilde{H}_i \cong SL_2(2^k)$. We will first show

 1° . $Y^+ \neq 1$.

Otherwise $H \leq C_G(Y)$. By 3.8(b) $C_G(Y) \leq M^{\dagger}$ and so $H \leq L \cap M^{\dagger} = D$, a contradiction to 3.18.

 2° . $O^2(F) \leq H$.

Assume that $O^2(F) \leq H$. Then by 3.13, $H \cap T_0 = H \cap T$ and by 3.18 $T_0 = (H \cap T_0)T^* = T^*$. In particular, $H \cap T_0 \leq FT$. Since D is the unique maximal subgroup of L containing FT we conclude that $N_L(H \cap T_0) \leq D$. On the other hand by 3.12(a), applied with $N_0 = D \cap H$, $O^2(D \cap H) \leq C_L(Y)$, so $O^2(N_H(H \cap T_0))$ centralizes Y. For $k \neq 1$ this yields a contradiction since by $(1^\circ) Y^+ \neq 1$ while $O^2(N_H(H \cap T_0))$ acts fixed-point freely on the direct sum Z_L^+ of natural $SL_2(2^k)$ -modules.

Thus k = 1. Then $O^2(\tilde{H})$ is an abelian 3-group, $D \cap H = H \cap T_0$, $[Z_L, H] \cap \Omega_1 Z(H) = 1$ and, for $1 \leq i \leq m$, V_i is a natural $SL_2(2)$ -module for H_i . In particular, $|C_{V_i}(T_0 \cap H)| = 2$. Let $1 \neq v_i \in C_{V_i}(T_0 \cap H)$, and put $v = \prod_{i=1}^m v_i$. Then $D = N_H(T_0 \cap H)$ centralizes v and $1 \neq v \in [Z_L, H]$. Since $FT \leq D$, $v \in \Omega_1 Z(FT)$. By 3.4(f) $\Omega_1 Z(T^*) = \langle y, z \rangle$. Hence $\Omega_1 Z(FT) \leq \Omega_1 Z(T^*) = \langle y, z \rangle$ and since $[z, F] \neq 1$, $\Omega_1 Z(FT) = \langle y \rangle \leq \Omega_1 Z(H)$. This shows that v = y and so $v \in [Z_L, H] \cap \Omega_1 Z(H) = 1$, a contradiction.

 3° . $L = HT^*, 2n = 4, T^* = T_0, D = N_L(T_0 \cap H) \text{ and } k > 1.$

By 3.18, L = HFT, and by (2°) , $O^2(F) \leq H$. As $F = O^2(F)T^*$, we get $L = HT^*$. Since $\tilde{H}_i \cong SL_2(2^k)$, \tilde{H} does not have any section isomorphic to $Sp_{2t}(2)$ for any $2t \geq 4$. Since by 3.4(c), $FT/T \cong Sp_{2n-2}(2)$ and by $(2^{\circ}) O^2(F) \leq H$, we conclude that 2n - 2 = 2 and 2n = 4. Now 3.10(k) gives $T^* = T_0$. Since $L = HT^*$, the structure of \tilde{L} shows that $N_L(T_0 \cap H)$ is the unique maximal subgroup of L containing T^* . Thus $FT \leq N_L(T_0 \cap H)$ and $D = N_L(T_0 \cap H)$. If k = 1, this implies that $D = T^*$, a contradiction to $F \leq D$.

$$1^{\circ}$$
. $k = 2, m = 1, L \cong Sym(5), D = FT and O_2(D) = T$.

By 3.16(e), L acts transitively on $\{H_1, \ldots, H_m\}$ and by (3°) $L = HT^*$. Hence T^* acts transitively on $\{H_1, \ldots, H_m\}$.

Recall from 3.10(i) that $D = FTC_D(Y_M)$, so D normalizes Y. From (3°) we get $D = N_L(T_0 \cap H)$ and k > 1, so $O^2(D \cap H_1) \neq 1$. Since V_1^+ is a natural $SL_2(q)$ -module for H_1 , we conclude that $C_{V_1^+}(O^2(D \cap H_1)) = 1$. As $Z_L^+ = V_1^+ \times \ldots \times V_m^+$, this gives $C_{Z_L^+}(O^2(D \cap H)) = 1$.

Put $X^+ := [Y^+, O^2(D \cap H_1)]$ that $X^+ = 1$. Then $Y^+ \leq C_{Z_L^+}(O^2(D \cap H_1))$ and so $Y^+ \leq C_{Z_L^+}(O^2(D \cap H)) = 1$, since T^* normalizes Y^+ and acts transitively on $\{H_1, \ldots, H_m\}$. But $Y^+ \neq 1$ by (1°), a contradiction.

Thus $X^+ \neq 1$, and as $X^+ = [X^+, O^2(D \cap H_1)]$, $|X^+| \ge 4$. Since $Z_L^+ = V_1^+ \times \ldots \times V_m^+$, we have $X^+ \le [Z_L^+, H_1] = V_1^+$, and since D normalizes $Y, X^+ \le Y^+$. Thus $X^+ \le V_1^+ \cap Y^+$. By (3°) 2n = 4 and so $|Y^+| \le |Y/\langle y \rangle| = 4 \le |X^+|$. Hence $Y^+ = X^+ \le V_1^+$. Since Y^+ is T^* -invariant, we conclude that T^* normalizes V_1^+ and so m = 1. Moreover, Y^+ is D-invariant and by (3°) $D = N_L(H \cap T_0)$. Since $Z_L^+ = V_1^+$ is a natural $SL_2(2^k)$ -module for H, any non-trivial $N_H(H \cap T_0)$ -submodule of Z_L^+ has order 2^k or 2^{2k} . As $|Y^+| = 4$ and k > 1. we get k = 2. In particular, $H \cap D \cong Alt(4)$. By (3°) $T^* = T_0$ and $L = HT^*$. Hence $O^2(\tilde{D}) \le H \cap D$, and $F \le D$ implies $O^2(F) = O^2(D)$. Since $T_0 = T^*$ and $T^* \in Syl_2(FT)$ this gives $D = O^2(D)T_0 = O^2(F)T^* = FT$. By 3.4(c), $T = O_2(FT)$ and $FT/T \cong Sym(3)$. Thus $\tilde{T^*} \leqslant \tilde{H}, \tilde{L} \cong Sym(5)$ and all parts of (4°) are proved.

By (3°) $T_0 = T^*$ and by 3.10(b) $[Q_z, P] \leq Q_z \cap P \leq T_0$. Hence $Q_z \leq N_G(T_0)$. Let $t \in Q_z \setminus L$. By 3.10(c), $O_2(\langle L, L^t \rangle) = 1$. In particular, since t normalizes T_0 , no non-trivial characteristic subgroup of T_0 is normal in L. Since $L \cap M^{\dagger}$ is the unique maximal subgroup of L containing T_0 , we conclude that $N_L(X) \leq L \cap M^{\dagger}$ for every non-trivial characteristic subgroup X of T_0 . The main result of [**BHS**] now shows that $[O_2(L), O^2(L)] = [Z_L, H]$. By 3.10(d), $Z_L Z_L^t$ is not normal in L. Thus $Z_L^t \leq O_2(L)$ and so $[Z_L, Z_L^t] \neq 1$. Observe that no element in T_0 acts as a transvection on Z_L or Z_L^t . Thus $|\widetilde{Z}_L^t| = |Z_L^t/C_{Z_L^t}(Z_L)| \geq 4$. Since $Z_L^t \leq T_0$, Z_L^t acts quadratically on Z_L . Note that $\widetilde{H \cap T_0}$ is the unique subgroup of order at least four in $\widetilde{T_0}$ acting quadratically on Z_L , so

$$H \cap T_0 = C_{T_0}([Z_L, Z_L^t]) = Z_L^t O_2(L) = Z_L O_2(L^t).$$

Hence $O_2(L) = Z_L(O_2(L) \cap O_2(L)^t)$ and $\Phi(O_2(L)) = \Phi(O_2(L) \cap O_2(L^t))$. Since $[O_2(L), O^2(L)] \leq Z_L \leq \Omega_1 Z(O_2(L))$, 1.18 shows that $O^2(L)$ centralizes $\Phi(O_2(L))$ and so $\Phi(O_2(L) \cap O_2(L^t))$ is normalized by $O^2(L), T_0$ and t. This forces $\Phi(O_2(L) \cap O_2(L^t)) = 1$, whence $O_2(L)$ is elementary abelian. By (3°) $T_0 = T^* \leq D$ and by (4°) $\tilde{L} \cong Sym(5)$. Since \tilde{D} is maximal subgroup of \tilde{L} , this gives $D/O_2(L) \cong Sym(4)$ and so D has no central composition factor on $O_2(D)/O_2(L)$. But $|Z_M/Y| = 2$ and $Y \leq O_2(L)$, so $Z_M \leq O_2(L)$ and $[Z_M, O_2(L)] = 1$. Since $T = O_2(D)$ by (4°) and $|T/O_2(M)| = 2$ by 3.1(c), a similar argument yields $T \leq O_2(L)O_2(M)$. But then T centralizes Z_M , a contradiction.

LEMMA 3.20. $C_{\widetilde{L}}(\widetilde{H}) = 1.$

PROOF. Put $N := C_L(\widetilde{H})$. Note that $Z(\widetilde{H}_i) = 1$ for all the groups listed in 3.16(d). Also $\widetilde{H} = \widetilde{H}_1 \times \ldots \times \widetilde{H}_m$. Thus $Z(\widetilde{H}) = 1$ and so $N \cap H = O_2(L)$.

Suppose for a contradiction that $O^2(F) \leq N$. We claim that $D \cap HT^*$ is the unique maximal subgroup of HT^* containing T^* . So let $T^* \leq U \leq HT^*$ and put $E := O^2(U)O_2(L)$. Then $U = ET^*$ and $E \leq H$. Thus $O^2(F) \leq N \leq C_L(\tilde{E})$ and so $FT = O^2(F)T^*$ normalizes E. Hence EFT is a subgroup of L containing FT. Note that $ETF = ET^*F = UF$. By the minimal choice of Leither $UF \leq D$ or L = UF. In the first case $U \leq D \cap HT^*$. In the second case $L = ET^*F$ and $ET^* \leq HT^*$, so

$$HT^* = ET^*(HT^* \cap F) = ET^*(O^2(HT^* \cap F)) = UO^2(HT^* \cap F).$$

Since $O^2(HT^* \cap F) \leq O^2(HT^*) \cap O^2(F) \leq H \cap N = O_2(L) \leq T^* \leq U$ we conclude that $HT^* = U$. This completes the proof of the claim. It follows that HT^* is 2-minimal. Hence C.13 shows that $\widetilde{H}_i \cong SL_2(2^k)$ or Sym(r), $r = 2^s + 1$, $s \ge 2$. The first case contradicts 3.19. In the second case $r \equiv 1 \pmod{4}$, a contradiction to 3.16(d).

Thus $O^2(F) \leq N$. Now 3.13 gives $N \cap T_0 = N \cap T \leq T \leq TH$. Since $N \cap H = O_2(L)$, $N \cap TH$ is 2-group. By 3.18 L = HFT. Since F normalizes T, this gives $TH \leq L$. So $N \cap T_0 \leq N \cap TH \leq O_2(N) \leq O_2(L)$. Thus \widetilde{N} is a 2'-group. Assume for a contradiction $\widetilde{N} \neq 1$. Since $N \cap TH = O_2(L)$,

$$\tilde{N} \cong NTH/TH \triangleleft L/TH = FTH/TH.$$

On the other hand, as $FT/T \cong Sp_{2n-2}(2)$ and \tilde{N} is a non-trivial 2'-group, we conclude that 2n-2=2. Hence F and N are solvable.

Suppose that $N \leq D$. Then the minimality of L implies L = NFT, and so L is solvable. The only solvable group listed in 3.16(d) is $\widetilde{H}_i \cong SL_2(2)$, a contradiction to 3.19. Hence $N \leq D$. Since $O^2(F) \leq N$, 3.12(b) implies that $N \leq O_2(L)$.

LEMMA 3.21. $m = 1, F \leq H_1 = H, L = HT$ and $P \cap H = C_H(z^+)$.

PROOF. Note that $C_H(z^+)$ centralizes $\langle z^+ \rangle$ and $C_{Y_L}(H)$. Thus $C_H(z^+)/C_H(z)$ is a 2-group. Since $T_0 \cap H$ centralizes z and is a Sylow 2-subgroup of H we conclude that $P \cap H = C_H(z) = C_H(z^+)$.

Recall from 3.16 that

$$\widetilde{H} = \widetilde{H}_1 \times \dots \widetilde{H}_m$$
 and $Z_L^+ = V_1^+ \times \dots V_m^+$,

where $V_i^+ = [Z_L^+, \widetilde{H}_i]$. Let z_i^+ be the projection of z^+ onto V_i^+ and put $P_i := C_{H_i}(z_i^+)$. Then $P \cap H = \langle P_i \mid i = 1, \dots, m \rangle$. By 3.19 $\widetilde{H}_i \not\cong SL_2(2^k)$ and so by 3.16(d)

(*)
$$\widetilde{H}_i \cong SL_l(2^k), l \ge 3, Sp_{2l}(2^k), l \ge 2, G_2(2^k) \text{ or } Sym(l), l > 6, k \equiv 2, 3 \pmod{4}.$$

Moreover, V_i^+ is a corresponding natural module. In each of these cases we conclude that $\widetilde{P}_i = C_{\widetilde{H}_i}(z_i^+)$ is not a 2-group. On the other hand, $[P_i, O_2(P)]$ is a *p*-group, and so $O_2(P)$ normalizes H_i . Since $Q_z \cap L \leq O_2(P)$ by Q!, we get that

$$Q_z \cap L \leq O_2(P) \leq N_L(H_i), \ i = 1, \dots, m.$$

By 3.4(k) $F = \langle (Q_z \cap F)^F \rangle$ and we conclude that $F \leq N_L(H_i)$, $i = 1, \ldots, m$. The structure of the groups in (*) shows that no element of $O_2(P)$ induces an outer automorphism on \widetilde{H}_i . So $Q_z \cap F$ and thus also F induces inner automorphisms on \widetilde{H} . Hence $F \leq C_L(\widetilde{H})H$, and 3.20 yields $F \leq H$. In particular, L = HFT = HT, and by 3.16(e) L and so also T acts transitively on $\{H_1, \ldots, H_m\}$.

Let $O_2(L) \leq F_i \leq H_i$ such that \widetilde{F}_i is the projection of \widetilde{F} in \widetilde{H}_i , and put $N_0 := F_1 \cdots F_m$. Then $F \leq N_0$ and the minimality of L shows that either $N_0 \leq D$ or $N_0T = L$.

Assume first that $N_0 \leq D$. By 3.10(j) $F \leq D$ and so $F \leq N_0$. Since F' is not a 2-group, also $[F_1, F]$ is not a 2-group. As $F/O_2(F) \cong Sp_{2n-2}(2)$ and $[F_1, F] \leq F$, we conclude that $O^2(F) \leq [F_1, F] \leq F_1 \cap F$. Hence T normalizes H_1 and the transitivity of T gives m = 1. So the lemma holds in this case.

Assume now that $N_0T = L$. Then $O^2(H) \leq N_0$. Note that none of the groups in (*) is solvable. Hence also H, N_0 and F are not solvable and thus $2n \geq 6$. By 3.4(d) $[Q_z \cap F, F \cap P] \leq T$. Hence also $[Q_z \cap P, P] \leq T$ and by the transitivity of T, $[Q_z \cap P, P_1] \leq T$. Since by 3.4(a) $Q_z \leq L$ and $|Q_z/Q_z \cap F| = 2$, we have $Q_z \cap H \leq F$. Thus $[Q_z \cap P, P_1] \leq Q_z \cap H_1 \leq F \cap H_1$ and $Q_z \cap F \cap H_1 \leq T$. Since $F \cap H_1$ is normal in F and $FT/T \cong Sp_{2n-2}(2)$ we get that $O^2(F) \leq H_1$, so T normalizes H_1 and m = 1.

LEMMA 3.22. $\widetilde{H} \not\cong Sym(l), l > 6.$

PROOF. By 3.16(d) $l \equiv 2,3 \pmod{4}$, and Z_L^+ is the corresponding natural module. Since Out(Sym(l)) = 1, for l > 6, L induces inner automorphism on \tilde{H} . By 3.20 $C_{\tilde{L}}(\tilde{H}) = 1$ and so L = H.

By 3.10(f) $Z_0 := C_{Z_L}(T_0) = \langle y, z \rangle$ has order 4. Since [y, L] = 1 and $[z, H] \neq 1$, this gives $C_{Z_L}(H) = \Omega_1 Z(L) = \langle y \rangle$. Thus either $Z_L = \Omega_1 Z(L) \times [Z_L, L]$ or $[Z_L, L]$ is the even Sym(l)-permutation module of order 2^{l-1} for \tilde{H} . As $|C_{Z_L}(T_0)| = 4$, the action of T_0 on Z_L implies that $l = 2 + 2^k$; in particular, $l \equiv 2 \pmod{4}$. Since l > 6, we have $k \geq 3$. Then $\tilde{P} = C_{\tilde{L}}(z^+) \cong C_2 \times Sym(l-2), \ \tilde{A} = O_2(\tilde{P})$ is generated by a transposition and $[Z_L^+, A] = \langle z^+ \rangle$. In particular $\tilde{A} = Q_z \cap L$.

Since by 3.4(k) $F = \langle (Q_z \cap F)^F \rangle$, \tilde{F} is generated by a conjugacy class of transpositions. Thus \tilde{F} is a naturally embedded symmetric subgroup of $\tilde{H} \cong Sym(l)$. As $F/O_2(F) \cong Sp_{2n-2}(2)$, we get $\tilde{F} \cong Sym(s)$ with s = 3, 4 or 6, and since $s < l, \langle z^{+F} \rangle$ is the natural even permutation module of order 2^{s-1} .

Suppose that s is even. Then, as an F-module, $\langle z^{+F} \rangle$ is a non-split central extension of a simple module. On the other hand $Y^+ \cong Y/\langle y \rangle$ is simple for F and by 3.1(c:c) $Y = \langle z^F \rangle$, so $\langle z^{+F} \rangle$ is simple F-module, a contradiction.

Thus s = 3, $\widetilde{F} \cong Sym(3)$ and 2n = 4. By 3.10(k), $T_0 = T^*$, and so T_0 normalizes F. Hence T_0 has an orbit of length 1 on $\{1, \ldots, l\}$. But then $l \not\equiv 2 \mod 4$, a contradiction.

LEMMA 3.23. The following hold:

- (a) L = H, $\tilde{L} \cong SL_3(2)$, $Sp_4(2)$ or $G_2(2)$, Z_L^+ is a corresponding natural module, 2n = 4, and $\tilde{F}/O_2(\tilde{F}) \cong SL_2(2)$.
- (b) $\overline{M} \simeq O_4^{\epsilon}(2)$, Y_M is a corresponding natural module, $T_0 = T^*$ and D = FT.
- (c) D and P are the two maximal subgroups of L containing T_0 . Moreover, $C_{Z_L^+}(T_0) = C_{Z_L^+}(O_2(P)) = \Omega_1 Z(T_0)^+ = \langle z^+ \rangle$ and $P = C_L(z^+)$, and $C_{Z_L^+}(O_2(D)) = Y^+$ is natural $SL_2(2)$ -module for D.
- (d) $C_{Y_L}(H) = C_{Y_L}(O^2(L)) = \langle y \rangle = C_{Y_L}(O^2(F)).$
- (e) Either $Z_L = Y_L$ or $\widetilde{L} \cong Sp_4(2)$ and $|Y_L/Z_L| = 2$.

PROOF. (a) and (b): By 3.21 L = HT, $F \leq H$ and m = 1. By 3.19 $\widetilde{L} \not\cong SL_2(2^k)$ and by 3.22 $\widetilde{L} \not\cong Sym(l), l > 6$. Thus, 3.16 shows that

(*)
$$\widetilde{H} \cong SL_l(2^k), l \ge 3, \quad Sp_{2l}(2^k), l \ge 2, \quad \text{or} \quad G_2(2^k),$$

and Z_L^+ is a corresponding natural module. This implies that $\widetilde{J(T)} \leq \widetilde{H}$ and that no element of \widetilde{L} induces a graph automorphism on \widetilde{H} . Moreover, by 3.14(b) either $\widetilde{J(T)} \neq 1$ or $(2n, \epsilon) = (4, +)$.

Suppose that $J(T) \neq 1$, and choose a 2-subgroup E of H maximal with $FT \leq N_L(E)$ and $J(T) \leq E$. Then $E = O_2(N_H(E))$ and so by [**GLS3**, 3.1.5] (a corollary of the Borel-Tits Theorem) $\widetilde{D}_0 := N_{\widetilde{H}}(\widetilde{E})$ is a proper Lie-parabolic subgroup of \widetilde{H} normalized by FT. Observe that $F \leq FT \cap H \leq N_H(E)$, so $\widetilde{F} \leq \widetilde{FT} \cap H \leq \widetilde{D}_0$.

Suppose that $(2n, \epsilon) = (4, +)$, then by 3.10(k), $T^* \in Syl_2(L)$ and so $\widetilde{D_0} := N_{\widetilde{H}}(\widetilde{FT \cap H})$ is a proper Lie-parabolic subgroup of \widetilde{H} normalized by FT. Moreover, $\widetilde{F} \leq \widetilde{FT \cap H} \leq \widetilde{D_0}$.

We have shown that in both cases $\widetilde{D_0}$ is a proper FT-invariant Lie-parabolic subgroup of H with $\widetilde{F} \leq \widetilde{D_0}$. Let $\widetilde{T}_2 \in Syl_2(\widetilde{T}\widetilde{D_0})$ with $\widetilde{T} \leq \widetilde{T}_2$. Then $\widetilde{T}_2 \cap \widetilde{H}$ is a Sylow 2-subgroup of \widetilde{H} . Let Δ be the set of Lie-parabolic subgroups of \widetilde{H} containing $\widetilde{T}_2 \cap \widetilde{H}$. Then T acts on Δ and since no element of L induces a graph automorphism on \widetilde{H} , T acts trivially on Δ . We conclude that FT normalizes all Lie-parabolic subgroups of \widetilde{H} containing $\widetilde{D_0}$. Thus, by the minimal choice of L, $\widetilde{D_0}$ is a maximal Lie-parabolic subgroup of \widetilde{H} and $\widetilde{D_0} = \widetilde{H} \cap \widetilde{D}$. In particular, $O_2(\widetilde{D_0}) \neq 1$ and by Smith's Lemma A.63 $C_{Z_L^+}(O_2(\widetilde{D_0}))$ is a simple $\widetilde{D_0}$ -module.

Since $T \leq D \leq L = HT$ we have $\widetilde{D} = (\widetilde{H} \cap \widetilde{D})\widetilde{T} = \widetilde{D_0}\widetilde{T} = \widetilde{D_0}C_{\widetilde{D}}(Y)$. By 3.10(i) $Y/\langle y \rangle$ is natural $Sp_{2n-2}(2)$ -module for D. Hence $\langle y \rangle = C_Y(D) = C_Y(\widetilde{D_0}) = C_Y(H)$ and Y^+ is a natural $Sp_{2n-2}(2)$ -module for $\widetilde{D_0}$. In particular, $1 \neq Y^+ \leq C_{Z_L^+}(O_2(\widetilde{D_0}))$. The simplicity of $C_{Z_L^+}(O_2(\widetilde{D_0}))$ as a $\widetilde{D_0}$ -module now shows that $Y^+ = C_{Z_T^+}(O_2(\widetilde{D_0}))$. Thus $\widetilde{D_0}$ is a maximal Lie-parabolic subgroup in \tilde{H} such that

(**)
$$Y^+ = C_{Z_L^+}(O_2(\widetilde{D_0})) \text{ is a natural } Sp_{2n-2}(2) \text{-module for } \widetilde{D_0}.$$

From the possible isomorphism types for \widetilde{H} and Z_L^+ listed in (*) we conclude that Z_L^+ is a natural $Sp_2(2)$ -module for \widetilde{D}_0 . Thus 2n-2=2, $|Y^+|=4$ and k=1. Recall that $C_{\widetilde{L}}(\widetilde{H})=1$. Since k=1 and no element of L induces a graph automorphism on \widetilde{H} we get L=H.

Since 2n - 2 = 2 we have 2n = 4. So $\overline{M} \cong O_4^{\epsilon}(2)$. From 3.3(f) we conclude that $Y_M = Z_M$ and thus Y_M is natural $O_4^{\epsilon}(2)$ -module for M. Also 3.10(k) shows that $T^* = T_0$. So $T_0 = T^* \leq FT$ and FT is parabolic subgroup of H. Since k = 1 this implies that \widetilde{FT} is a Lie-parabolic subgroup of \widetilde{H} . As $\widetilde{FT}/O_2(\widetilde{FT}) \cong FT/T \cong Sp_{2n-2}(2) \cong SL_2(2)$, \widetilde{FT} has Lie rank 1. Since FT is contained in a unique maximal subgroup of L, we conclude that \widetilde{L} has Lie-rank two. Thus $\widetilde{L} \cong SL_3(2)$, $Sp_4(2)$ or $G_2(2)$ and FT is maximal subgroup of H. Thus D = FT and all parts of (a) and (b) are proved.

(c): By the choice of L, D is a maximal subgroup of L. By (b) $T_0 = T^* \leq FT \leq D$. By (a) 2n = 4 and H = L. So $\widetilde{D} = \widetilde{D_0}$, and (**) shows that $C_{Z_L+}(O_2(D)) = Y^+$ is a natural $SL_2(2)$ -module for D and $T_0 \leq D$. Hence, D satisfies the statements of (c).

By 3.21 $P \cap H = C_H(z^+)$ and since H = L, $P = C_H(z^+)$. By Smith's Lemma A.63, $C_{Z_L^+}(O_2(\tilde{P}))$ is a simple *P*-module and so $C_{Z_l^+}(O_2(\tilde{P})) = \langle z^+ \rangle$. Since $O_2(\tilde{P}) \leq \widetilde{T_0} \leq \tilde{P}$, this gives $C_{Z_L^+}(T_0) = \langle z^+ \rangle$. By 3.10(d), $\Omega_1 Z(T_0) = \langle y, z \rangle$ and so $\Omega_1 Z(T_0)^+ = \langle z^+ \rangle$. Since Z_L^+ is a natural $SL_3(2)$ -, $Sp_4(2)$ -or $G_2(2)$ -module for L and $P = C_L(z^+)$, we conclude that P is a maximal subgroup of L. As L is a group of Lie-type of rank 2, T_0 is contained in exactly two maximal subgroups of L, namely P and D. So (c) is proved.

(d): From (a) we get H = L, $C_{Z_L}(H) = C_{Z_L}(L) \leq \Omega_1 Z(F) = \langle y \rangle$. We now use $A \leq O_2(P)$ as chosen in 3.15. By C.9(e), $[C_{Y_L}(O^2(L)), A] = 1$. For $\tilde{L} \cong Sp_4(2)$ or $G_2(2)$, C.8(c), shows that $A \leq O^2(L)O_2(L)$. Thus $L = AO_2(L)O^2(L)$ and $C_{Y_L}(O^2(L)) = C_{Y_L}(L) = \langle y \rangle$.

For the equality $C_{Y_L}(O^2(F)) = \langle y \rangle$ it suffices to show that $C_{Y_L^+}(FT) = 1$. By C.10(b:b) $Y_L = Z_L C_{Y_L}(A)$. We conclude that $[Y_L, O^2(L)] \leq Z_L$, and by (b) $T_0 = T^* \leq FT$. Now Gaschütz's Theorem shows that $C_{Y_L^+}(FT) \leq C_{Y_L^+}(T_0) \leq C_{Y_L^+}(L)Z_L^+$, see C.17. But $C_{Y_L}(O^2(L)) = \langle y \rangle \leq Z_L$, and so $C_{Y_L^+}(FT) \leq Z_L^+$. As seen above $C_{Z_L^+}(O_2(\widetilde{D_0}))$ is a natural $Sp_2(2)$ -module for $\widetilde{D_0}$. Since $\widetilde{FT} = \widetilde{D} = \widetilde{D_0}$ we conclude that $C_{Z_L^+}(FT) = 1$.

(e): Suppose that $Y_L \neq Z_L$. By (d) $C_{Y_L}(O^2(L)) = \langle y \rangle \leq Z_L$ and thus Y_L does not split over Z_L as an *L*-module. Since *A* is an offender on Y_L , (a) and C.22 give $|Y_L/Z_L| = 2$ and $\widetilde{L} \cong SL_3(2)$ or $Sp_4(2)$. Moreover, in the $SL_3(2)$ case, $|[Z_L^+, A]| = 4$, which is a contradiction since $A \leq O_2(P)$ and $[Z_L^+, O_2(P)]| = 2$.

NOTATION 3.24. We fix $t \in Q_z \setminus F$ and set $G_0 := \langle L, L^t \rangle$.

LEMMA 3.25. The following hold:

- (a) $Q_z = \langle t \rangle (Q_z \cap F)$ and $t^2 \in F$.
- (b) $Y_M \leq O_2(L)$.
- (c) $O_2(G_0) = 1$, and $L \cap L^t = P = P^t$.
- (d) $Y \leq Y_L \cap Y_L^t$.

PROOF. (a): By 3.4(a) $|Q_z/C_{Q_z}(y)| = 2$ and by 3.10(b) $C_{Q_z}(y) = Q_z \cap F$. Hence $Q_z = \langle t \rangle (Q_z \cap F)$ and $t^2 \in Q_z \cap F \leq F$.

(b): By 3.10(e), $O_2(L) \leq T$ and thus $Y_L \leq T$, and by 3.3(g) we have $[Y_M, T] = \langle y \rangle$. Thus $[Y_M, Y_L] \leq \langle y \rangle$. Since L centralizes y, this gives $[\langle Y_M^L \rangle, Y_L] \leq \langle y \rangle$, and as Y_L is p-reduced, $[\langle Y_M^L \rangle, Y_L] = 1$. By 3.11 $C_L(Y_L) = O_p(L)$ and so $Y_M \leq O_2(L)$. Hence (b) holds.

(c): By 3.10(c) $O_2(G_0) = 1 \neq O_2(L)$. So $G_0 \neq L$ and $L \neq L^t$. By 3.10(b) we have $[Q_z, P] \leq O_p(P)$, and since $t \in Q_z$ we get $P = P^t \leq L \cap L^t < L$. As P is a maximal subgroup of L by 3.23(c), this gives $P = L \cap L^t$ and (c) is proved.

(d): Note that by 3.23(b) $\overline{M} \cong O_4^{\epsilon}(2)$ and Y_M is a natural $O_4^{\epsilon}(2)$ -module. Also by 3.4(c) $\overline{FT} \cong C_2 \times Sp_2(2)$. It follows that $O^2(\overline{F}) \cong Sp_2(2)' \cong C_3$ and $C_{Y_M}(O^2(F))$ has order 4. By 3.23(d) $C_{Y_L}(O^2(F)) = \langle y \rangle$ has order 2. Hence $Y_M \notin Y_L$. Since $Y_M = YY^t$ we get $Y^t \notin Y_L$ and $Y \notin Y_L^t$. \Box

LEMMA 3.26. (a) $O_2(L)O_2(L^t) = O_2(P)$. (b) $Z_L \cap Y_L^t = \langle y, z \rangle = Z(T_0)$. (c) $Y_L Y_M$ is not normal in L. (d) $[O_2(L), O^2(L)] \notin Y_L$. (e) $Y_L = Z_L$.

PROOF. Put $R := O_2(L)O_2(L^t)$. By 3.14(c) $R \leq P$ and $R \leq O_2(P)$, and by 3.14(a) $J(R) \leq O_2(L)$. Thus, we can choose $B \in \mathcal{A}_R$ with $B \leq O_2(L)$. By 3.11 $C_L(Z_L) = O_2(L)$ and so $[Z_L, B] \neq 1$. By A.40 B is an offender on Z_L and therefore, since $C_L(Z_L) = C_L(Z_L^+)$, B is also an offender on Z_L^+ .

Suppose for the moment that $\widetilde{L} \cong Sp_4(2) \cong Sym(6)$. Them Z_L^+ is a natural Sym(6)-module for \widetilde{L} , and since $P = C_L(z^+)$, $\widetilde{P} = C_L(t_0)$, where t_0 is the transposition in \widetilde{L} with $[Z_L^+, t_0] = \langle z^+ \rangle$. Note also that t_0 is the only transposition in $O_2(\widetilde{P})$. Part (h) of the Best Offender Theorem C.4 now shows that

(*)
$$\widetilde{B} = \langle t_0 \rangle, \quad \widetilde{B} = \langle t_1 t_2, t_0 \rangle \quad \text{or} \quad \widetilde{B} = \langle t_1 t_2, s_1 s_2, t_0 \rangle$$

where t_0, t_1, t_2 are pairwise commuting transpositions and s_1 and s_2 are transpositions distinct from t_1 and t_2 and moving the same four symbols as t_1t_2 .

(a): By 3.25(b),(d), $Y_M \leq O_2(L)$ and $Y \leq Y_L^t$, so $Y_M \leq Y_L$. By 3.11 $Y_L = \Omega_1 Z(O_2(L))$ and hence $[Y_M, O_2(L)] \neq 1$. Since $O_2(L) \leq T$ this gives $[Y_M, O_2(L)] = [Y_M, T] = \langle y \rangle$. Thus $[Y_M, R] = \langle y, y^t \rangle = \langle y, z \rangle$ and so $R \leq T$. Since by 3.4(c) $T = O_2(FT)$ and by 3.23(b) FT = D, this gives $R \leq O_2(D)$.

As $C_L(Z_L) = O_2(L) \leq \mathbb{R}$, we get $\tilde{\mathbb{R}} \leq O_2(\tilde{D})$, and to prove (a) it suffices to show $O_2(\tilde{P}) = \tilde{\mathbb{R}}$. We do this by discussing the cases for \tilde{L} given in 3.23. By 3.23(c) \tilde{P} and \tilde{D} are the two maximal parabolic subgroups of \tilde{L} containing \tilde{T}_0 and, as seen above, $\tilde{\mathbb{R}} \leq \tilde{P}$ and $\tilde{\mathbb{R}} \leq O_2(\tilde{D})$.

Suppose first that $\widetilde{L} \cong SL_3(2)$. Then $O_2(\widetilde{P})$ is the unique non-trivial normal subgroup of \widetilde{P} . Since $1 \neq \widetilde{B} \leq \widetilde{R} \leq \widetilde{P}$, we get $R = O_2(P)$.

Suppose next that $\widetilde{L} \cong G_2(q)$. Then by C.8, $\widetilde{B} \triangleleft \widetilde{P}$ and $|\widetilde{B}| = 8$. It follows that P acts simply on $O_2(\widetilde{P})/\widetilde{B}$. Note that $\widetilde{B} \leq O_2(\widetilde{D})$. Since $\widetilde{R} \leq O_2(\widetilde{D})$ and $\widetilde{B} \leq \widetilde{R} \triangleleft \widetilde{P}$, we conclude that $\widetilde{R} = O_2(\widetilde{P})$.

Suppose now that $\widetilde{L} \cong Sp_4(2)$. Choose notation as in (*). Then $t_0 \in \widetilde{B} \leq \widetilde{R}$, $t_0 \in O_2(\widetilde{D})$ and P acts simply on $O_2(\widetilde{P})/\langle t_0 \rangle$. As $\widetilde{R} \leq O_2(\widetilde{D})$, we again get that $\widetilde{R} = O_2(\widetilde{P})$. Thus (a) is proved.

(b): By 3.23(c) $C_{Z_L^+}(R) = C_{Z_L^+}(O_2(P)) = \langle z^+ \rangle$ and so $C_{Z_L}(R) = \langle y, z \rangle$. Since $R = O_2(L)O_2(L^t)$ this gives $Z_L \cap Y_L^t = \langle y, z \rangle$, and (b) is proved.

(c): Assume for a contradiction that $Y_L Y_M$ is normal in L. By 3.10(h) $Y \leq Y_M \cap Z_L \leq Y_M \cap Y_L$ and so $|Y_M/Y_M \cap Y_L| \leq 2$. Hence $[Y_M, P] \leq Y_L$. On the other hand, t normalizes Y_M and P, so $[Y_M, P] \leq Y_L \cap Y_L^t$. Since $Y \leq Z_L$, this gives

$$[Y, P] \leq Z_L \cap Y_L^t \stackrel{\text{(b)}}{=} \langle y, z \rangle \leq Y.$$

Thus P normalizes Y and so by 3.8(b) $P \leq N_G(Y) \leq M^{\dagger}$, a contradiction.

(d): Suppose that $[O_2(L), O^2(L)] \leq Y_L$. Since $Y_M \leq O_2(L)$ we get $[Y_M, O^2(L)] \leq Y_L$ and $Y_M Y_L \leq O^2(L) FT = L$, which contradicts (c).

(e): According to 3.23 we may assume that $\widetilde{L} \cong Sp_4(2)$ and Z_L^+ is a natural $Sp_4(2)$ -module for \widetilde{L} . As we have seen already above \widetilde{P} is a point stabilizer of \widetilde{L} on Z_L^+ .

Suppose for a contradiction that $J(\overline{R}) = \langle t_0 \rangle$, t_0 as in (**). Then $J(\overline{R}) = \widetilde{B}$, and it follows that $Z_0 := C_{Z_L}(J(R)) = C_{Z_L}(B)$. As $|\widetilde{B}| = 2$ and B is an offender on Z_L , we have $|Z_L/Z_0| = 2$. Recall that $Z(T_0) = Z(T^*) = \langle y, z \rangle$. By the action of P on Z_L

$$|Z_0/\Omega_1 Z(T_0)| = 4 \text{ and } [Z_0, O^2(P)]\Omega_1 Z(T_0) = Z_0.$$

By C.10(f) $[\Omega_1 Z(J(R)), \langle J(R)^L \rangle] \leq Z_L$ and so $[\Omega_1 Z(J(R)), O^2(L)] \leq Z_L.$ Since $Z_0^t \leq \Omega_1 Z(J(R))$
 $Z_0^t = [Z_0^t, O^2(P)]\Omega_1 Z(T_0) \leq Z_L.$

Thus $Z_0^t \leq Y^t \cap Z_L = \langle y, z \rangle = Z(T_0)$. Hence $Z_0 \leq Z(T_0)$ a contradiction.

Thus $\widetilde{J(R)} \neq \langle t_0 \rangle$. Suppose that $Y_L^+ \neq Z_L^+$. Then Case (e:1) or (e:2) in C.22 holds, and so \widetilde{B} is generated by transpositions in $\widetilde{L} \cong Sym(6)$. But then (**) shows that $\widetilde{B} = \langle t_0 \rangle$, so also $\widetilde{J(R)} = \langle t_0 \rangle$, a contradiction. Hence (e) is proved.

LEMMA 3.27. $Y_L^t \leq O_2(L)$.

PROOF. Assume for a contradiction that $Y_L^t \leq O_2(L)$. Since $t^2 \in F \leq L \cap L^t$ we have $L^{t^2} = L$ and the situation is symmetric in L and L^t . By 3.11, $C_L(Y_L) = O_2(L)$ and so $[Y_L^t, Y_L] \neq 1$. Since $\widetilde{Y_L^t} \leq O_2(\widetilde{P})$, C.9(f) shows that $\widetilde{Y_L^t}$ is not an over-offender ³ on Y_L , so $|Y_L/C_{Y_L}(Y_L^t)| \geq |Y_L^t/C_{Y_L^t}(Y_L)$. Since the situation is symmetric in L and L^t equality holds in the preceding equation. Hence $\widetilde{Y_L^t}$ is an offender on Y_L contained in $O_2(\widetilde{P})$. By 3.11 $C_L(Y_L) = C_L(Z_L)$, and as $[Y_L^t, Y_L] \neq 1$, we conclude that $[Z_L^t, Y_L] \neq 1$.

1°. $O^2(L) \leq \langle Y_L^{tL} \rangle.$

Observe that $O^2(\widetilde{L})$ is the unique minimal normal subgroup of \widetilde{L} and so $O^2(\widetilde{L}) \leq \langle Y_L^{tL} \rangle$. Hence $O^2(L) \leq \langle Y_L^{tL} \rangle O_2(L)$ and (1°) follows.

 2° . $O_2(L^t) \leq Y_L^t O_2(L) \text{ and } \widetilde{Y_L^t} \neq O_2(\widetilde{P}).$

Assume that $O_2(L^t) \leq Y_L^t O_2(L)$. Then $[Y_L, O_2(L^t)] \leq [Y_L, Y_L^t] \leq Y_L^t$ and after conjugation with $t, [O_2(L), Y_L^t] \leq Y_L$. Since $O^2(L) \leq \langle Y_L^{tL} \rangle$ by (1°), we conclude that $[O_2(L), O^2(L)] \leq Y_L$, which contradicts 3.26(c). Hence $O_2(L^t) \leq Y_L^t O_2(L)$. Since $O_2(L^t) \leq O_2(P)$ this gives $Y_L^t O_2(L) \neq O_2(P)$ and so $\widetilde{Y_L^t} \neq O_2(\widetilde{P})$.

$$3^{\circ}$$
. $\widetilde{L} \cong Sp_4(2)$ and $|\widetilde{Y}_L^t| = |\widetilde{Z}_L^t| = 2$.

Recall that \widetilde{Y}_L^t is a non-trivial offender on Y_L in $O_2(\widetilde{P})$ and that P normalizes \widetilde{Y}_L^t since $P = P^t$. Also by 3.23(c), $P = C_L(z^+)$.

By 3.23(a) Z_L^+ is natural $SL_3(2)$, $Sp_4(2)$ or $G_2(2)$ -module for L. We treat these three cases one by one.

Suppose that Z_L^+ is a natural $SL_3(2)$ -module for L. Since $P = C_L(z^+)$ we conclude that \widetilde{P} acts simply on $O_2(\widetilde{P})$ (see for example B.30). But then $\widetilde{Y}_L^t = O_2(\widetilde{P})$, contrary to (2°) .

simply on $O_2(\widetilde{P})$ (see for example B.30). But then $\widetilde{Y_L^t} = O_2(\widetilde{P})$, contrary to (2°) . Suppose that Z_L^+ is a natural $Sp_4(2)$ -module of L. Observe that $O_2(L^t)$ centralizes $[Z_L^+, Y_L^t]$. By 3.26(a) we have $O_2(P) = O_2(L)O_2(L^t)$, and by 3.23(d), $C_{Z_L^+}(O_2(P)) = \langle z^+ \rangle$. It follows that $[Z_L^+, Y_L^t] = \langle z^+ \rangle$ and so $|\widetilde{Y_L^t}| = 2 = |\widetilde{Z_L^t}|$.

Suppose that Z_L^+ is a natural $G_2(2)$ -module of L. Note that $O_2(L^t)$ centralizes Z_L^t . By the Best Offender Theorem C.4(a), $C_{\widetilde{T}_0}(\widetilde{Z}_L^t) = \widetilde{Z}_L^t$ and so $O_2(L^t) \leq Y_L^t O_2(L)$, a contradiction to (2°) .

$$4^{\circ}. \qquad \Phi(O_2(L)) \cap \Phi(O_2(L^t)) = 1.$$

By (3°) $\widetilde{L} \cong Sp_4(2)$ and so $O_2(\widetilde{P})$ is elementary abelian. Thus $\Phi(O_2(L^t)) \leq O_2(L)$ and $[\Phi(O_2(L^t)), Y_L] = 1$. By (1°) we have $O^2(L^t) \leq \langle Y_L^{L^t} \rangle$, so $[\Phi(O_2(L^t)), O^2(L^t)] = 1$. This shows that $\Phi(O_2(L)) \cap \Phi(O_2(L^t))$ is centralized by $O^2(L^t)$ and normalized by t and P. Since $L = O^2(L)P$

 $^{^{3}}$ for the definition of over-offender see A.7

we conclude that $\Phi(O_2(L)) \cap \Phi(O_2(L^t))$ is normalized by $\langle L, L^t \rangle$. By 3.10(c) $O_2(\langle L, L^t \rangle) = 1$ and, (4°) holds.

Put
$$U := Z_L^t \cap O_2(L)$$
 and $X := C_{O_2(L)}(U)$.

5°.
$$|O_2(L)/X| = 4$$
, and X is elementary abelian.

By (3°) U is a hyperplane of Z_L^t centralized by Y_L . The action of L^t on Z_L^t shows that $O_2(P)/C_{O_2(P)}(U)$ and $C_{O_2(P)}(U)/O_2(L^t)$ have order 4 and 2, respectively. By 3.26(a) $O_2(P) = O_2(L)O_2(L^t)$ and so

$$X = Y_L(X \cap O_2(L^t))$$
 and $|O_2(L)/X| = 4$.

Moreover,

$$\Phi(X) = \Phi(X \cap O_2(L^t)) \leq \Phi(O_2(L)) \cap \Phi(O_2(L^t)).$$

Now (4°) yields $\Phi(X) = 1$.

6°.
$$|O_2(L)/Y_L| = 2^4$$
 and $[O_2(L), O^2(L)]Y_L = O_2(L)$.

Observe that the smallest \mathbb{F}_2 -module V for $Sp_4(2)$ with $[V, Sp_4(2)'] \neq 1$ has order 2^4 , while by $(5^\circ) |O_2(L)/X| = 4$. By 3.26(c) $[O_2(L), O^2(L)] \leqslant Y_L$ and so $|[O_2(L), O^2(L)]Y_L/Y_L| \ge 2^4$. Also by 3.11, $Y_L = \Omega_1 Z(O_2(L))$. Hence it suffices to show that $|O_2(L)/\Omega_1 Z(O_2(L))| \le 2^4$.

Let $d \in L$ and put $B := XX^d$. Note that by (5°) X is elementary abelian. Thus $X \cap X^d \leq \Omega_1 Z(B)$. So

$$(*) |B/\Omega_1 Z(B)| \le |B/X \cap X^d| = |X/X \cap X^d| |X^d/X \cap X^d| = |X/X \cap X^d|^2.$$

Suppose that $4 \leq |B/X|$. By (5°) $|O_2(L)/X| = 4$ and so |B/X| = 4 and $B = O_2(L)$. Since $|B/X| = |B/X^d| = |XX^d/X^d| = |X/X \cap X^d|$, also $|X/X \cap X^d| = 4$, and

$$|O_2(L)/\Omega_1 Z(O_2(L))| = |B/\Omega_1 Z(B)| \stackrel{(*)}{\leq} |X/X \cap X^d|^2 = 4^2.$$

Thus we may assume that $|B/X| = |X/X \cap X^d| \leq 2$ (for all $d \in L$). In particular, $|B/\Omega_1 Z(B)| \leq 4$ by (*). Suppose that $B \leq L$. Since $|O_2(L)/B| \leq |O_2(L)/X| \leq 4$ and $|B/\Omega_1 Z(B)| \leq 4$, it follows that $[O_2(L), O^2(L)] \leq \Omega_1 Z(B)$. From $U \leq X \leq B$, we conclude that $[O_2(L), O^2(P)] \leq C_P(U)$. This contradicts $O_2(L)O_2(L^t) = O_2(P)$ and $[O_2(P), O^2(P)] \leq C_P(U)$.

Thus $XX^d \notin L$ for all $d \in L$. In particular, $X \notin L$ and $XX^d \neq O_2(L)$. Moreover, we can choose $d, h \in L$ such that $X \neq XX^d \neq XX^dX^h$. By (5°) $|O_2(L)/X| = 4$, so $O_2(L) = XX^dX^h$, $X \cap X^d \cap X^h \leq \Omega_1 Z(O_2(L))$ and $|X/\Omega_1 Z(O_2(L))| \leq 4$. Thus $|O_2(L)/\Omega_1 Z(O_2(L))| \leq 2^4$ and (6°) is proved.

We now are now able to derive a contradiction. By $(6^{\circ}) |O_2(L)/Y_L| \leq 2^4 = 1 + 15$. Since the maximal parabolic subgroups of $Sp_4(2)$ have index 15, we conclude that L is transitive on the non-trivial elements of $O_2(L)/Y_L$. Since X is elementary abelian, $O_2(L) \setminus Y_L$ Hence all cosets of Y_L in $O_2(L)$ contain involutions. As $Y_L \leq \Omega_1 Z(O_2(L))$ this implies that all non-trivial elements in $O_2(L)$ are involutions, so $O_2(L) = \Omega_1 Z(O_2(L)) = Y_L$. But this contradicts $|O_2(L)/Y_L| = 2^4$.

3.28. Proof of Theorem C:

Put $R := O_2(L)O_2(L^t)$, and let G^* be the free amalgamated product of L and L^t over R. Let L_1 and L_2 be the image of L and L^t in G^* , respectively, and identify R with its image in G^* . An elementary property of free amalgamated products shows that $L_1 \cap L_2 = R$. We will now verify that Hypothesis 1 in [**P2**] is satisfied for G^* , L_1 , L_2 , R and p = 2.

HYPOTHESIS 3.29 (Hypothesis 1 [P2]). Let p be a prime and G^* be a group generated by two finite subgroups L_1 and L_2 . For every $i \in \{1, 2\}$ put

$$R := L_1 \cap L_2, \qquad Z_i := \Omega_1 Z(O_p(L_i)), \qquad Z_i^+ := Z_i/C_{Z_i}(L_i), \qquad \widetilde{L}_i := L_i/O_p(L_i)$$

and suppose that the following hold:

(1) R is a p-group with $C_{L_i}(Z_i) \leq R$.

- (2) $\widetilde{L}_i \cong SL_{n_i}(q_i), Sp_{2n_i}(q_i)$ or $G_2(q_i)$, where q_i is a power of p and p = 2 in the last case; and Z_i^+ is a corresponding natural module for \widetilde{L}_i .
- (3) There exists $S_i \in Syl_p(L_i)$ such that $R \leq P_{L_i}(S_i)$ and either $R = O_p(P_{L_i}(S_i))$ or $\widetilde{L}_i \cong G_2(q_i)$ and \widetilde{R} is elementary abelian of order q_i^3 . (Here $P_{L_i}(S_i) := O^{p'}(C_L((\Omega_1 Z(S_i))))$
- (4) $Z_1Z_2 \leq O_p(L_i)$, and Z_1Z_2 is not normal in L_i .
- (5) No subgroup $U \neq 1$ of R is normal in G^* .

(1): By 3.14(c) $R = O_p(L)O_p(L)^t | \leq P$. In particular, R is a p-group. By 3.11 $Y_L = \Omega_1 Z(O_p(L))$ and by 3.26 $Y_L = Z_L$, so $Z_L = \Omega_1 Z(O_p(L))$. By $3.11C_L(Z_L) = O_p(L) \leq R$ and thus $C_{L_i}(Z_i) \leq R$ and (1) holds.

(2): By 3.23(a) $\tilde{L} \cong SL_3(2)$, $Sp_4(2)$ or $G_2(2)$, and Z_L^+ is a corresponding natural module. Thus (2) holds.

(3): Recall that $R \leq P$. By 3.10(g) $P = C_L(\Omega_1 Z(T_0))$ and so also $R \leq P^* = O^{2'}(C_L(\Omega_1 Z(T_0)))$. By 3.26 $O_p(L)O_p(L^t) = O_p(P)$ and so also $R = O_p(P^*)$. Thus (3) holds.

(4): By 3.27 $Z_L^t \leq O_p(L)$ and so also $Z_L Z_L^t \leq O_p(L)$. By 3.10(d) $Z_L Z_L^t \leq L$, and so (4) is proved.

(5) Let $U \leq R$ such that $U \leq G^*$. Then U is normal in L_1 and L_2 and so $U \leq O_2(\langle L, L^t \rangle)$. Since $O_2(\langle L, L^t \rangle) = 1$ by 3.10(c), this gives U = 1 and (5) holds.

So indeed Hypothesis 1 holds. According to the Main Theorem in [**P2**] this implies that $\widetilde{L}_i \cong SL_{n_i}(q_i)$ and either p = 3 and $n_i = 2$ or $q_i = 2$ and $n_i = 4$. Since in our case p = 2 and \widetilde{L}_i is one of $SL_3(2), Sp_4(2)$ and $G_2(2)$, we finally have reached a contradiction.

CHAPTER 4

The Symmetric Case

Recall from Section 2.1 that an abelian subgroup Y of G is called symmetric in G if

(*)
$$1 \neq [Y, Y^g] \leq Y \cap Y^g$$
 for some $g \in G$.

In this chapter we investigate the action of M on Y when $M \in \mathfrak{M}_G(S)$, Y is a *p*-reduced elementary abelian normal *p*-subgroup of M, and Y is symmetric in G. Note that for $Y = Y_M$ this is the symmetric case as defined in Section 2.1. Allowing Y to be proper subgroup of Y_M will turn out to be useful in Chapter 8.

It is immediate from (*) that Y is a quadratic offender on Y^g , or vice versa. So we are able to apply the General FF-module Theorem C.2 from Appendix C. But it is still a fairly general situation; for example, the General FF-module Theorem puts no restriction on number of components of $M/C_M(Y_M)$. This is one of the points where the existence of a large subgroup comes in handy, it allows us to apply the more restrictive Q!FF-Module Theorem C.24.

There is another point in the proof where large subgroups are essential. Assuming for a moment that $F^*(M/C_M(Y))$ is a classical group and Y a corresponding natural module. Then again (*) shows that $Y \cap Y^g$ is non-trivial and contains the commutator of a quadratic offender (either on Y or Y^g). The structure of the natural module in question shows that, with very few exceptions, $[Y, Y^g]$ contains non-trivial elements that are centralized by conjugates of Q in $N_G(Y)$ and in $N_G(Y^g)$. Then Q! shows that $N_G(Y) \cap N_G(Y^g)$ contains these conjugates of Q and so acts non-trivially on Y and Y^g .

On the other hand

$$Y/C_Y(Y^g) \cong YC_G(Y^g)/C_G(Y^g),$$

and $N_G(Y) \cap N_G(Y^g)$ acts on the the left hand side as a subgroup of $N_G(Y)$ and on the right hand side as a subgroup of $N_G(Y^g)$. So these two actions must be isomorphic. But typically $Y/C_Y(Y^g)$ is a "natural" module for $N_G(Y) \cap N_G(Y^g)$, while $YC_G(Y^g)/C_G(Y^g)$ is the "square" of a natural module (cf. B.21). This simple observation poses a further restriction on the possible action of Mon Y.

We now state the main result of this chapter.

THEOREM D. Let G be finite \mathcal{K}_p -group, $S \in Syl_p(G)$, and let $Q \leq S$ be a large subgroup of G. Suppose that $M \in \mathfrak{M}_G(S)$ and Y is an elementary abelian normal p-subgroup of M such that

- (i) $O_p(M/C_M(Y)) = 1$, and
- (ii) Y is symmetric in G.

Then one of the following holds, where q is some power of p and $\overline{M} := M/C_M(Y)$:

- (1) $\overline{M^{\circ}} \cong SL_n(q), n \ge 3$, and Y is a corresponding natural module.
- (2) (a) $\overline{M^{\circ}} \cong Sp_{2n}(q), n \ge 2$, or $Sp_4(q)'$ (and q = 2), and $[Y, M^{\circ}]$ is a corresponding natural module.
 - (b) If $Y \neq [Y, M^{\circ}]$, then p = 2 and $|Y/[Y, M^{\circ}]| \leq q$.
 - (c) If $Y \leq Q^{\bullet}$, then p = 2 and $[Y, M^{\circ}] \leq Q^{\bullet}$.
- (3) There exists a unique M̄-invariant set K of subgroups of M̄ such that Y_M is a natural SL₂(q)-wreath product module for M̄ with respect to K. Moreover,
 (a) M̄° = O^p(⟨K⟩)Q̄,
 - (b) Q acts transitively on \mathcal{K} ,
 - (c) If $Y = Y_M$, then $Y_M = Y_{M^{\circ}S}$.

- (4) $Y \leq Q^{\bullet}$ and one of the following holds:
 - (1) $\overline{M^{\circ}} \cong \Omega_{2n}^{+}(q) \text{ for } 2n \ge 6, \ \Omega_{2n}^{-}(q) \text{ for } p = 2 \text{ and } 2n \ge 6, \ \Omega_{2n}^{-}(q) \text{ for } p \text{ odd and } 2n \ge 8, \text{ or } \Omega_{2n+1}(q) \text{ for } p \text{ odd and } 2n+1 \ge 7, \text{ and } Y \text{ is a corresponding natural-module.}$
 - (2) $\overline{M^{\circ}} \cong SL_n(q)/\langle (-id)^{n-1} \rangle$, $n \ge 5$, and Y is the exterior square of a corresponding natural module.
 - (3) $\overline{M^{\circ}} \cong Spin_{10}^+(q)$, and Y is a corresponding half-spin module.
 - (4) $\overline{M^{\circ}} \cong SL_n(q) \circ SL_m(q), n, m \ge 2, n + m \ge 5, p \text{ is odd, and } Y \text{ is the tensor product of corresponding natural modules.}$
- (5) (a) $\overline{M} \cong O_{2n}^{\epsilon}(2), \overline{M^{\circ}} \cong \Omega_{2n}^{\epsilon}(2), 2n \ge 4 \text{ and } (2n, \epsilon) \neq (4, +)^{1} \text{ and } [Y, M] \text{ is a correspond-ing natural module.}$
 - (b) If $Y \neq [Y, M]$, then $\overline{M} \cong O_6^+(2)$ and |Y/[Y, M]| = 2.
 - (c) $C_G(y) \leq M^{\dagger}$ for every non-singular element $y \in [Y, M]$.
 - (d) If $Y = Y_M$, then $C_G(y)$ is not of characteristic 2 for every non-singular element $y \in [Y, M]$.

Table 1 lists examples for Y, M and G fulfilling the hypothesis of Theorem D.

	Case	$[Y, M^{\circ}]$ for M°	с	Remarks	examples
	1	nat $SL_n(q)$	1	p odd	$L_{n+1}(q)\Phi_2$
	1	nat $SL_n(q)$	1	n = 7, 8	$E_n(q)$
	1	nat $SL_3(2)$	1	-	$G_2(3), \text{HS}(.2), \text{Ru}, \text{HN}$
	1	nat $SL_3(3)$	1	-	$Fi'_{22,23,24}, F_4(2), {}^2\!E_6(2), BM$
	1	nat $SL_3(5)$	1	-	Ly, BM, M
	1	nat $SL_5(2)$	1	-	Th, BM
*	2	nat $Sp_8(2)$		-	BM
	3	nat $SL_2(q)$	1	-	$L_3(q), G_2(q) \ p \neq 3, \ D_4(q)\Phi_3 \ p = 3, \ {}^{3}D_4(q)$
	3	nat $SL_2(2)$	1		$G_2(2)', J_2, J_3, \Omega_6^-(3).X, \Omega_8^+(3).X$
	3	nat $SL_2(3)$	1	-	$Mat_{12}.2, {}^{2}F_{4}(2)',$
	3	nat $SL_2(5)$	1	-	Ru, HN, Th
	3	nat $SL_2(7)$	1	-	O'N, M
	3	nat $SL_2(13)$	1	-	М
	4:1	nat $\Omega_7(q)$	1	p odd	$F_4(q)$
	4:1	nat $\Omega_6^-(q)$	1	-	${}^{2}\!E_{6}(q)$
	4:1	nat $\Omega_8^+(q)$	1	-	$E_6(q)\Phi_2$
	4:1	nat $\Omega_{14}^+(q)$	1	-	$E_8(q)$
*	4:1	nat $\Omega_6^+(2)$	1	-	$P\Omega_8^+(3).3(.2)$
*	4:1	10()	1	-	Μ
		$\Lambda^2(\text{nat}) SL_n(q), n \ge 3$			
	4:3	half-spin $Spin_{10}^+(q)$	1	p odd	$E_6(q)\Phi_2$
	4:4	nat $SL_{t_1}(q) \otimes SL_{t_2}(q)$	1	p odd	$L_{t_1+t_2}(q)\Phi_2, t_1 \neq t_2$

TABLE 1. Examples for Theorem D

Here $c := |Y_M/[Y_M, M^\circ]|$ and Φ_i denotes a group of graph automorphisms of order *i*. In the example G = K.X with $K = \Omega_6^-(3)$ or $P\Omega_8^+(3)$, X is a subgroup of Out(K) such that X acts transitively on $\mathcal{P}_{N_K(Q)}(K \cap S)$. Moreover, * indicates that $(char Y_M)$ fails in G.

4.1. The Proof of Theorem D

In this section we assume the hypothesis of Theorem D and use the notation given there. We will prove this theorem in a sequence of lemmas.

¹ $O_4^+(2)$ appears as $SL_2(2) \wr C_2$ in Case (3)

LEMMA 4.1. $Y \leq Y_M$ and $N_G(Y) = M^{\dagger}$.

PROOF. By hypothesis, $O_p(M/C_M(Y)) = 1$ and so Y is p-reduced for M. Hence $Y \leq Y_M$ and so $M^{\dagger} = MC_G(Y_M) \leq N_G(Y)$. As $Y \leq M$, 2.2(c) gives $N_G(Y) \leq M^{\dagger}$, and 4.1 is proved.

LEMMA 4.2. There exists $u \in G$ such that $YY^u \leq S \cap S^u$ and $[Y, Y^u] \neq 1$.

PROOF. As Y is symmetric in G, there exists $u' \in G$ such that $1 \neq [Y^{u'}, Y] \leq Y^{u'} \cap Y$, so $Y^{u'} \leq N_G(Y) = M^{\dagger}$ and $Y \leq N_G(Y^{u'}) \leq M^{\dagger u'}$.

Since S is a Sylow p-subgroup of M^{\dagger} and $S^{u'}$ is a Sylow p-subgroup of $M^{\dagger u'}$, we can choose $m \in M^{\dagger}$ and $m' \in M^{\dagger u'}$ such that

 $Y^{u'} \leqslant S^m$ and $Y \leqslant S^{u'm'}$.

Set $u := u'm'm^{-1}$. Then $Y^{m^{-1}} = Y$, $Y^{u'm'} = Y^{u'}$, $Y^u = Y^{u'm'^{-1}} = Y^{u'm^{-1}}$, and so

$$[Y, Y^u] = [Y^{m^{-1}}, Y^{u'm^{-1}}] = [Y, Y^{u'}]^{m^{-1}} \neq 1$$

and

 $Y^{u} = Y^{u'm^{-1}} \leq (S^{m})^{m^{-1}} = S$ and $Y = Y^{m^{-1}} \leq (S^{u'm'})^{m^{-1}} = S^{u}$.

Also $Y \leq S$ and $Y^u \leq S^u$ and so $YY^u \leq S \cap S^u$.

NOTATION 4.3. We fix u as in 4.2. Let

$$M_1 := M, \quad S_1 := S, \quad Q_1 := Q, \quad Q_1^{\bullet} := Q^{\bullet}, \quad Y_1 := Y$$

and

$$M_2 := M^u, \quad S_2 := S^u, \quad Q_2 := Q^u, \quad Q_2^{\bullet} := (Q^{\bullet})^u, \quad Y_2 := Y^u.$$

Note that $Y_1Y_2 \leq S_1 \cap S_2 \leq M_1 \cap M_2$ and $[Y_1, Y_2] \neq 1$.

For $i \in \{1, 2\}$ we further set $\overline{M_i} := M_i/C_{M_i}(Y_i)$, $A_i := C_{Y_i}(Q_i)$ and $\overline{L}_i := [F^*(\overline{M_i}), Q_i]$. Let $\overline{F_i}$ be the largest normal subgroup of $F^*(\overline{M_i})$ centralized by Q_i . F_i and L_i are the inverse images of $\overline{L_i}$ and $\overline{F_i}$ in M_i . If U_i is a subgroup of M_i , then $\overline{U_i} := U_i C_{M_i}(Y_i)/C_{M_i}(Y_i)$. (So whether $\overline{U_i}$ denotes the image of U_i in $\overline{M_1}$ or in $\overline{M_2}$ is determined by the subscript used to denoted U_i).

LEMMA 4.4. Y_1 acts quadratically on Y_2 and vice versa.

PROOF. Since Y_1 and Y_2 normalize each other, $[Y_1, Y_2] \leq Y_1 \cap Y_2$. Hence $[Y_2, Y_1, Y_i] \leq [Y_i, Y_i] = 1$ for i = 1, 2.

LEMMA 4.5. (a) $F_i \leq N_G(Q_i)$. (b) $\overline{L_i}$ and $\overline{F_i}$ are normal in $F^*(\overline{M_i})\overline{S_i}$. In particular, L_i and F_i are normal in $L_iF_iS_i$. (c) $\overline{F_i} = C_{F^*(\overline{M_i})}(L_iQ_i)$. In particular, $[\overline{L_i}, \overline{F_i}] = 1$. (d) $\overline{L_i} = [\overline{L_i}, Q_i]$. (e) $C_{\overline{M_i}}(\overline{L_iF_i})$ is a p'-group. (f) If B is a p-subgroup of $N_{M_i}(Q_i)$ with $[\overline{L_i}, B] \leq \overline{F_i}$, then $[\overline{L_i}, B] = 1$. (g) $\overline{L_i} \cap \overline{F_i} \leq \Phi(\overline{L_i})$.

PROOF. (a): Note that $Q_i \leq O_p(Q_i C_{M_i}(Y_i))$ since by Q!, $C_{M_i}(Y_i) \leq N_G(Q_i)$. Since Q is weakly closed (or by 1.52(a)), $N_G(O_p(Q_i C_{M_i}(Y_i))) \leq N_G(Q_i)$. As F_i normalizes $O_p(Q_i C_{M_i}(Y_i))$, we conclude that $F_i \leq N_G(Q_i)$.

(b): Since $\overline{L_i} = [F^*(\overline{M_i}), Q_i], \overline{L_i} \leq \overline{F^*(M_i)}$. By definition, $\overline{F_i} \leq \overline{F^*(M_i)}$. As S_i normalizes Q_i , it also normalizes $\overline{L_i}$ and $\overline{F_i}$.

The remaining claims follow from 1.17 applied to $\overline{M_i}$.

LEMMA 4.6. Either Y_2 centralizes $\overline{L_1}$ or $C_{Y_2}(\overline{L_1}) = C_{Y_2}(Y_1)$.

PROOF. Recall from Hypothesis (i) of Theorem D that $O_p(\overline{M_1}) = 1$. As $\overline{L_1F_1}$ is subnormal in $\overline{M_1}$, this gives $O_p(\overline{L_1F_1}) = 1$. Put $H_1 := L_1F_1Q_1Y_2$ and $X := C_{Y_2}(\overline{L_1})$. By 4.5(b) both F_1 and L_1 are normal in H_1 . Since Q_1 is weakly closed, 1.46(c) gives $H_1^{\circ} = \langle Q_1^{H_1} \rangle$. By 4.5(a) $F_i \leq N_G(Q_1)$, so $F_1Q_1Y_2$ normalizes $\overline{Q_1}$. As $\overline{L_1} = [\overline{L_1}, \overline{Q_1}]$ by 4.5(d), we get

$$\overline{H_1^{\circ}} = \left\langle \overline{Q_1}^{\overline{L_1 F_1 Q_1 Y_2}} \right\rangle = \left\langle \overline{Q_1}^{\overline{L_1}} \right\rangle = \left[\overline{L_1}, \overline{Q_1} \right] \overline{Q_1} = \overline{L_1 Q_1}.$$

Also $[O_p(\overline{H_1}), \overline{L_1F_1}] \leq O_p(\overline{L_1F_1}) = 1$. Since X centralizes $\overline{L_1}$ and Q_1 centralizes $\overline{F_1}$ we have $[X, \overline{Q_1}] \leq C_{\overline{Q_1}}(\overline{L_1F_1})$. By 4.5(e) $C_{\overline{M_1}}(\overline{L_1F_1})$ is a p'-group, whence $[X, \overline{Q_1}] = 1$ and $O_p(\overline{H_1}) = 1$. The first property shows that

(*)
$$X = C_{Y_2}(\overline{L_1Q_1}) = C_{Y_2}(\overline{H_1^\circ}).$$

We may assume that Y_2 does not centralize $\overline{L_1}$. Abusing our general convention, let $\overline{Y_2} := Y_2 C_{M_1}(Y_1)/C_{M_1}(Y_1)$. Then $\overline{Y_2} \neq 1$, $\overline{L_1} \neq 1$ and $\overline{Q_1} \neq 1$. We will now show that the hypothesis of A.57, with $(Y_1, \overline{Q_1}, \overline{H_1}, \overline{Y_2})$ in place of (V, Q, H, Y), is fulfilled.

We already have proved that $O_p(\overline{H_1}) = 1$. As $\overline{Q_1} \neq 1$, this gives that $\overline{Q_1} \notin \overline{H_1}$. Hence by 1.57(b) Y_1 is a faithful Q!-module for $\overline{H_1}$ with respect to $\overline{Q_1}$. By 4.4 Y_2 acts quadratically on Y_1 and so $C_{\overline{Y_2}}([Y_1, \overline{Y_2}]) = \overline{Y_2} \neq 1$. Since Y_2 does not centralize $\overline{L_1}$ and $\overline{L_1} \leqslant \overline{H_1^\circ}$, we get $[\overline{H_1^\circ}, \overline{Y_2}] \neq 1$.

We have verified the hypothesis of A.57, and this result gives $C_{\overline{Y_2}}(\overline{H_1^\circ}) = 1$. Thus $C_{Y_2}(\overline{H_1^\circ}) = C_{Y_2}(Y_1)$ and so by $(*) C_{Y_2}(Y_1) = X = C_{Y_2}(\overline{L_1})$.

LEMMA 4.7. Let $U \leq S_i$ with $[\overline{L_i}, U] = 1$ and $[Y_i, U] \neq 1$. Then $[A_i, U] \neq 1$.

PROOF. Put $\overline{U} := UC_{M_i}(Y_i)/C_{M_i}(Y_i)$. Since $U \leq S_i$ and $[Y_i, U] \neq 1$, \overline{U} is a non-trivial *p*-subgroup of $\overline{M_i}$. By 4.5(e) $C_{\overline{M_i}}(\overline{L_iF_i})$ is a *p'*-group. Thus $\overline{R_i} := [\overline{F_i}, \overline{U}] \neq 1$ and so $[Y_i, \overline{R_i}] \neq 1$. By 4.5(b) S_i and so also *U* normalizes F_i . So $\overline{R_i} \leq \overline{F_i}$, and we get $[\overline{R_i}, Q_i] = 1$. Since $\overline{R_i} \leq \varphi f^*(\overline{M_i})$ and $O_p(\overline{M_i}) = 1$, we have $\overline{R_i} = O^p(\overline{R_i})$. Hence the $P \times Q$ -Lemma gives $[A_i, \overline{R_i}] = [C_{Y_i}(Q_i), \overline{R_i}] \neq 1$. Since $\overline{F_i} \leq F^*(\overline{M_i})$ we conclude that $(\overline{M_i}, \overline{F_i}, \overline{U})$ satisfy the hypothesis on (H, L, Y) in 1.8. By 1.8(b), $[\overline{F_i}, \overline{U}] = [\overline{F_i}, \overline{U}, \overline{U}]$. Thus $\overline{R_i} = [\overline{R_i}, \overline{U}]$. Together with $[A_i, \overline{R_i}] \neq 1$ this implies $[A_i, U] \neq 1$.

LEMMA 4.8. $[\overline{L_1}, Y_2] \neq 1$ and $[\overline{L_2}, Y_1] \neq 1$.

PROOF. By symmetry it suffices to show the claim for $[\overline{L_1}, Y_2]$. Therefore, we assume by way of contradiction:

 1° . $[\overline{L_1}, Y_2] = 1$.

By the choice of u, $[Y_1, Y_2] \neq 1$ (see 4.3). So we can apply 4.7 with $U = Y_2$ and i = 1, and conclude that $[A_1, Y_2] \neq 1$. Assume that also $[\overline{L_2}, Y_1] = 1$. Since $A_1 \leq Y_1$, also $[\overline{L_2}, A_1] = 1$. Thus 4.7 applied with $U = A_1$ and i = 2 gives $[A_2, A_1] \neq 1$. As $A_i \leq Z(Q_i)$, this is a contradiction to 2.3(a). Thus

 2° . $[\overline{L_2}, Y_1] \neq 1$.

Then 4.6 gives

$$3^{\circ}$$
. $C_{Y_1}(\overline{L_2}) = C_{Y_1}(Y_2)$.

We now use the Fitting submodule $F_{Y_1}(\overline{M_1})$ defined in Appendix D. By D.6 $F_{Y_1}(\overline{M_1})$ is faithful for \overline{M} , and by D.8 $F_{Y_1}(\overline{M_1})$ is semisimple for M_1° . Since $\overline{L_1} \triangleleft \triangleleft \overline{M_1^{\circ}}$, $F_{Y_1}(\overline{M_1})$ is also semisimple for $\overline{L_1}$, and since $F_{Y_1}(\overline{M_1})$ is faithful, $[F_{Y_1}(\overline{M_1}), Y_2] \neq 1$. Hence there exists a simple L_1 -submodule I_1 of $F_{Y_1}(\overline{M_1})$ such that $[I_1, Y_2] \neq 1$; in particular, by (3°)

 4° . $[\overline{L_2}, I_1] \neq 1$.

Next we prove:

5°. Put $I_2 := I_1^u$. Then there exists $J_2 \in I_2^{F^*(\overline{M_2})\overline{Q_2}}$ with $[J_2, [L_2, I_1]] \neq 1$; in particular $[J_2, I_1] \neq 1$.

Put $U := \langle I_2^{F^*(\overline{M_2})\overline{Q_2}} \rangle$ and $\overline{F} := C_{F^*(\overline{M_2})}(U)$, and let F be the inverse image of \overline{F} in M_2 . Note that $C_U(Q_2) \neq 1$ and so by $Q!, F \leq N_G(C_U(Q_2)) \leq N_G(Q_2)$. Also \overline{F} is normal in $F^*(\overline{M_2})$. Hence $[\overline{F}, \overline{Q_2}] \leq \overline{Q_2} \cap \overline{F} \leq O_p(\overline{F}) \leq O_p(\overline{M_2}) = 1$,

and thus $\overline{F} \leq \overline{F_2}$.

Suppose that $[\overline{L_2}, I_1] \leq \overline{F}$. Then $[\overline{L_2}, I_1] \leq \overline{F_2}$ and 4.5(f) implies $[\overline{L_2}, I_1] = 1$, a contradiction to (4°). Hence $[\overline{L_2}, I_1] \leq \overline{F}$, that is, $[U, [\overline{L_2}, I_1]] \neq 1$, and (5°) holds.

Let J_2 be as in (5°). Observe that $|I_1| = |I_2| = |J_2|$. Let $x \in J_2$ with $[I_1, x] \neq 1$. Thus, $C_{I_1}(x)$ is a proper subgroup of I_1 . By (1°) $[\overline{L}_1, x] \leq [\overline{L}_1, Y_2] = 1$. Hence $C_{I_1}(x)$ is a proper L_1 -submodule of I_1 . Since I_1 is a simple L_1 -module we conclude:

6°. $C_{I_1}(x) = 1$. In particular, $|I_1| = |[I_1, x]|$.

Suppose that $C_{J_2}(I_1) \neq 1$. Let $y \in I_1$. Then $1 \neq C_{J_2}(I_1) \leq J_2 \cap J_2^y$. Since J_2 is a simple L_2 -module and y normalizes L_2 , J_2^y and J_2^y are simple L_2 -modules and $J_2 \cap J_2^y$ is a non-trivial L_2 -submodule of J_2 and J_2^y . Thus $J_2 = J_2 \cap J_2^y = J_2^y$, and so I_1 normalizes J_2 . But then $[I_1, J_2] < J_2$ and so $|[I_1, x]| < |J_2| = |I_1|$, a contradiction to (6°). We have proved:

 7° . $C_{J_2}(I_1) = 1$.

By (5°) $[J_2, [L_2, I_1]] \neq 1$, and so there exists $y \in I_1$ such that $[J_2, [L_2, y]] \neq 1$. Put $W := J_2 J_2^y$. By 4.4, Y_1 acts quadratically on Y_2 . So $[J_2, y] \leq C_W(I_1)$ and $[W, I_1] \leq C_{Y_2}(I_1)$. By $(7^\circ) C_{J_2}(I_1) = 1$, and we conclude that

8°. $[J_2, y] \leq C_W(I_1), J_2 \cap [J_2, y] = 1 \text{ and } J_2 \cap [W, I_1] = 1.$

In particular, $[J_2, N_{I_1}(J_2)] \leq J_2 \cap [W, I_1] = 1$ and so $N_{I_1}(J_2) = C_{I_1}(J_2) \leq C_{I_1}(x)$. By (6°) $C_{I_1}(x) = 1$ and thus

 9° . $N_{I_1}(J_2) = 1$.

In particular, $J_2 \neq J_2^y$. Since J_2 and J_2^y are simple L_2 -modules, we conclude that $J_2 \cap J_2^y = 1$. By (8°), $J_2 \cap [J_2, y] = 1$ and so $W = J_2 J_2^y = J_2[J_2, y] = J_2 \times [J_2, y]$. This gives

10°.
$$W = J_2 \times [J_2, y] = J_2^y \times [J_2, y] = J_2 \times J_2^y$$

Suppose for a contradiction that $[J_2, y]$ is L_2 -invariant. Then (10°) shows that J_2 and $[J_2, y]$ are both isomorphic to W/J_2^y as L_2 -modules. Moreover, y centralizes $[J_2, y]$ and so $[L_2, y]$ centralizes $[J_2, y]$. Hence $[L_2, y]$ also centralizes J_2 , which contradicts the choice of y. Therefore,

 11° . $[J_2, y]$ is not L_2 -invariant.

By (8°) $[J_2, y] \leq C_W(I_1) \leq W \cap W^{y'}$ for every $y' \in I_1$. On the other hand, J_2 is a simple L_2 -module and $W \cap W^{y'}$ is an L_2 -submodule. By (10°) $W = J_2 \times J_2^y$. Hence every non-trivial L_2 -submodule of W has order $|J_2|$. Since $|W \cap W^{y'}| \geq |[J_2, y]| = |J_2|$, we conclude that either $W = W \cap W^{y'} = W^{y'}$ or $W \cap W^{y'} = [J_2, y]$. In the latter case, $[J_2, y]$ is L_2 -invariant, a contradiction to (11°). Thus $W = W^{y'}$.

We have shown that I_1 normalizes W. By $(9^{\circ}) N_{I_1}(J_2) = 1$, and so there are $|I_1| I_1$ -conjugates of J_2 . Since $J_2 \cap [J_2, y] = 1$ and I_1 centralizes $[J_2, y]$, each of these conjugates intersects $[J_2, y]$ trivially and is L_2 -invariant. Since J_2 is a simple L_2 -module, the conjugates have pairwise trivial intersection. Note also that $|I_1| = |J_2|$ and by $(10^{\circ}) |W| = |J_2||J_2^{\circ}| = |J_2|^2$ and $|[J_2, y] = |J_2|$. We conclude that these conjugates together with $[J_2, y]$ form a partition of W. Thus, L_2 also leaves invariant $[J_2, y]$, a contradiction to (11°) .

LEMMA 4.9. (a) $[\overline{M_1^{\circ}}, Y_2] \neq 1$ and $[\overline{M_1^{\circ}}, Y_1^{u^{-1}}] \neq 1$, in particular $\overline{M^{\circ}} \neq 1$. (b) Y_i is a faithful Q!-module for $\overline{M_i}$ with respect to $\overline{Q_i}$.

- (c) Y_2 or $Y_1^{u^{-1}}$ is a non-trivial quadratic offender on Y_1 .
- (d) The hypothesis of the Q!FF-Module Theorem C.24 is fulfilled for $(\overline{M_i}, Y_i, \overline{Q_i})$ in place of (H, V, Q).

PROOF. (a): Recall from 4.3 that $\overline{L_i} = [F^*(\overline{M_i}), Q_i]$ and so $\overline{L_i} \leq \overline{M_i^{\circ}}$. By 4.8 $[\overline{L_1}, Y_2] \neq 1$ and $[\overline{L_2}, Y_1] \neq 1$ and so also $[\overline{M_2^{\circ}}, Y_1] \neq 1$ and $[\overline{M_1^{\circ}}, Y_2] \neq 1$. Conjugating the last equation by u^{-1} gives $[\overline{M_1^{\circ}}, Y_1^{u^{-1}}] \neq 1$, and so (a) holds.

(b): Since $\overline{M_i^{\circ}} \neq 1$ we also have $\overline{Q_i} \neq 1$. As $O_p(\overline{M_i}) = 1$ this implies $Q_i \notin M_i$. Hence by 1.57(b) Y_i is a faithful Q!-module for $\overline{M_i}$ with respect to $\overline{Q_i}$.

(c): By 4.4 Y_1 acts quadratically on Y_2 and vice versa. If Y_2 is not an offender on Y_1 , then $|Y_2/C_{Y_2}(Y_1)| \leq |Y_1/C_{Y_1}(Y_2)|$, and since $Y_2 = Y_1^u$, conjugation with u^{-1} gives

$$|Y_1/C_{Y_1}(Y_1^{u^{-1}})| \leq |Y_1^{u^{-1}}/C_{Y_1^{u^{-1}}}(Y_1)|.$$

Hence $Y_1^{u^{-1}}$ is an offender on Y_1 .

(d): According to (c) we can choose $Y_3 \in \{Y_2, Y_1^{u^{-1}}\}$ such that Y_3 is a non-trivial quadratic offender on Y_1 . By (a) $[\overline{M_1^{\circ}}, Y_3] \neq 1$. Thus Y_3 fulfills the condition for Y in the Q!FF-Module Theorem. By (b) Y_1 is a faithful Q!-module for $\overline{M_1}$ with respect to $\overline{Q_1}$. Also $O_p(\overline{M_1}) = 1$ and so the Hypothesis of the Q!FF-Module Theorem is fulfilled.

LEMMA 4.10. Suppose that the following hold:

- (i) $M^{\circ}/C_{M^{\circ}}(Y) \cong \Omega_{2n}^{\epsilon}(2), 2n \ge 4, and M \leqslant M^{\circ}C_{M}(Y).$
- (ii) $[Y, M^{\circ}]$ is a natural $\Omega_{2n}^{\epsilon}(2)$ -module for M° .
- (iii) $[Y_1, Y_2]$ contains a non-singular vector of $[Y_1, M_1^\circ]$ or $[Y_2, M_2^\circ]$.

Then Theorem D(5) holds if $(2n, \epsilon) \neq (4, +)$, and Theorem D(3) holds if $(2n, \epsilon) = (4, +)$.

PROOF. By B.35(d), $N_{Aut([Y,M^{\circ}])}(\overline{M^{\circ}}) \cong O_{2n}^{\epsilon}(2)$. Since $\Omega_{2n}^{\epsilon}(2)$ has index 2 in $O_{2n}^{\epsilon}(2)$ and $\overline{M} \neq \overline{M^{\circ}}$, we conclude that $\overline{M} \cong O_{2n}^{\epsilon}(2)$ and $[Y, M^{\circ}]$ is a corresponding natural module.

If $Y \neq [Y, M^{\circ}]$ then C.22 shows that $\overline{M} \cong O_6^+(2)$ and $|Y/[Y, M^{\circ}]| = 2$. In particular, $[Y, M^{\circ}] = [Y, M]$.

By (iii) and since the setup is symmetric in M_1 and M_2 , we may assume that $[Y_1, Y_2]$ contains a non-singular vector t of $[Y_1, M_1]$. As $M_1^{\dagger} = M_1 C_G(Y_1)$ fixes the M_1 -invariant quadratic from on $[Y_1, M_1]$, we know that the non-singular elements of $[Y_1.M_1]$ are precisely those elements that are not centralized by a Sylow *p*-subgroup of M_1^{\dagger} . In particular, $C_{M_1^{\dagger}}(t)$ does not contain a Sylow *p*-subgroup of M_1^{\dagger} . We claim that $C_G(t) \leq M_1^{\dagger}$.

For this suppose first that t is singular in $[Y_2, M_2]$. Then $C_{M_2}(t)$ contains a Sylow p-subgroup of M_2 and so also of G. As $C_{M_1^{\dagger}}(t)$ does not contain a Sylow p-subgroup of M_1^{\dagger} , we conclude that $C_{M_2}(t) \leq C_{M_1^{\dagger}}(t)$ and so $C_G(t) \leq M_1^{\dagger}$.

Suppose next that t is non-singular in $[Y_2, M_2]$. Recall that $M_2 = M_1^u$, so as t is non-singular in $[Y_1, M_1]$, t^u is non-singular in $[Y_2, M_2] = [Y_1, M_1]^u$. Since M_2 is transitive on the non-singular vectors of $[Y_2, M_2]$, there exists $m \in M_2$ such that $t^{um} = t$. Since $Y_1^{um} = Y_2^m = Y_2 \neq Y_1$ we have $um \notin M_1^{\dagger}$ and so again $C_G(t) \notin M^{\dagger}$.

We proved that $C_G(t) \leq M_1^{\dagger}$. Since $M_1 = M$ and M acts transitively on the non-singular vectors of [Y, M], we conclude that $C_G(y) \leq M^{\dagger}$ for all non-singular $y \in [Y, M]$.

Suppose that $\overline{M} \cong O_4^+(2)$. Then $\overline{M} \cong SL_2(2) \wr C_2$ and Theorem D(3) holds.

Suppose next that $\overline{M} \not\cong O_4^+(2)$. By hypothesis $\overline{M^\circ} \cong \Omega_{2n}^\epsilon(2)$. Assume in addition that $Y = Y_M$. Then Theorem C shows that $C_G(y)$ is not of characteristic 2 for every non-singular element $y \in [Y, M]$. Thus Theorem D(5) holds in this case.

By 4.9(d) the Hypothesis of the Q!FF-Module Theorem C.24 is fulfilled for $(\overline{M_i}, Y_i, \overline{Q_i})$. In the following we will discuss the various outcomes of the Q!FF-Module Theorem.

NOTATION 4.11. Let $\{i, j\} := \{1, 2\}$. Put

$$J_i := J_{M_i}(Y_i)$$
 and $\overline{R_i} := F^*(\overline{J_i}).$

Let R_i be the inverse image of $\overline{R_i}$ in M_i . Put

 $W_i := [Y_i, R_i]$ and $T_i := Y_i R_i$.

LEMMA 4.12. Suppose that C.24(1) holds. Then Theorem D(3) holds.

PROOF. By C.24(1) there exists an $\overline{M_1}$ -invariant set \mathcal{K} of subgroups of $\overline{M_1}$ such that Y_1 is a natural $SL_2(q)$ -wreath product module for $\overline{M_1}$ with respect to \mathcal{K} , $\overline{M_1^\circ} = O^p(\langle \mathcal{K} \rangle)\overline{Q_1}$ and Q_1 acts transitively on \mathcal{K} . By A.27 this set is unique. By 1.24(f), $Y_{M^\circ S} \leq Y_M$ and since Y_M is a simple $M^\circ S$ -module, $Y_M = Y_{M^\circ S}$. So Theorem D(3) holds.

LEMMA 4.13. Suppose that C.24(2) holds and W_1 is not a simple R_1 -module. Then Theorem D(4:4) holds.

PROOF. Note that by 4.9(c) $Y_2(=Y_1^u)$ or $Y_1^{u^{-1}}$ is an offender on Y_1 . Also u^{-1} in place of u fulfills the conclusion of 4.2. So possibly after replacing u by u^{-1} we may assume that Y_2 is a offender on Y_1 . Also $[Y_1, Y_2] \neq 1$, and so we can choose a minimal non-trivial offender A on Y_1 with $A \leq Y_2$. By A.39 A is a quadratic best offender on Y_1 , so $A \leq J_1$.

Recall that $\{i, j\} = \{1, 2\}$. For now let I_i be any simple R_i -submodules of W_i . From C.24(2:a), (2:b) we conclude that

 $1^{\circ}.$

(a) $\overline{R_i}$ is quasisimple and $\overline{R_i} \leq \overline{M_i^{\circ}}$.

(b) $C_{Y_i}(R_i) = 1$, W_i is a semisimple J_i -module, and $\overline{M_i}$ acts faithfully on W_i .

Next we prove:

 2° . Let $x \in M_j$ with $C_{I_j}(x) \neq 1$. Then x normalizes I_j .

Note that $1 \neq C_{I_j}(x) \leq I_j \cap I_j^x$. Since $R_j \leq M_j$, I_j and I_j^x are simple R_j -modules, and so $I_j = I_j \cap I_j^x = I_j^x$.

3°. Let $X_i \leq Y_i$. Suppose that $[X_i, Y_j] \neq 1$ and X_i normalizes all the simple R_j -submodules of W_j . Then $[\overline{R_j}, X_i] = \overline{R_j} \neq 1$, $[I_j, X_i] \neq 1 \neq [I_j, Y_i]$, and Y_i normalizes all simple R_j -submodules of W_j .

Suppose for a contradiction that $[\overline{R_j}, X_i] = 1$. Since X_i is a *p*-group and normalizes the simple R_j -submodule I_j , we conclude that X_i centralizes I_j . By $(1^\circ)(b) W_j$ is a semisimple J_j -module. Since $R_j \leq J_j$, W_j is also a semisimple R_j -module. It follows that X_i centralizes W_j . As by $(1^\circ)(b) W_j$ is a faithful $\overline{M_j}$ -module, we conclude that $[X_i, Y_j] = 1$, a contradiction to the hypothesis of (3°) .

Thus $[\overline{R_j}, X_i] \neq 1$. By (1°)(a) $\overline{R_j}$ is quasisimple, and we conclude that $[\overline{R_j}, X_i] = \overline{R_j}$. By (1°)(b) $C_{Y_j}(R_j) = 1$ and so $[I_j, R_j] \neq 1$. Together with $[\overline{R_j}, X_i] = \overline{R_j}$ this gives $[I_j, X_i] \neq 1$. Since Y_i acts quadratically on Y_j , we conclude that $1 \neq [I_j, X_i] \leq C_{I_j}(Y_i)$ and so (2°) shows that Y_j normalizes I_j , and (3°) is proved.

Recall from 4.11 that $T_i = Y_j R_i$.

4°. T_i normalizes all simple R_i -submodules of W_i . In particular, W_i is a faithful semisimple $\overline{T_i}$ -module and $O_p(\overline{T_i}) = 1$.

We apply (1°) . Since $\overline{R_1}$ is quasisimple, $\overline{R_1}$ is a $J_{\overline{M_1}}(Y_1)$ -component of $\overline{M_1}$, and since $C_{Y_1}(R_1) = 1$ and I_1 is simple, I_1 is a perfect R_1 -submodule of Y_1 . Hence by A.44 J_1 and so also A normalizes I_1 . Since I_1 is any simple R_1 -submodule of W_1 , A normalizes every simple R_1 -submodule of W_1 . Thus, we can apply (3°) with $X_2 = A$ and conclude that also Y_2 normalizes I_1 and that $[I_1, Y_2] \neq 1$. Therefore $T_2 = Y_2 R_1$ normalizes I_1 .

In particular, $|[I_1, Y_2]| < |I_1| = |I_2|$. This implies that $C_{I_2}(y) \neq 1$ for all $y \in I_1$, and (2°) shows that I_1 normalizes I_2 . Hence, I_1 normalizes all simple R_2 -submodules of W_2 . As $[Y_2, I_1] \neq 1$ we can

apply (3°) with $X_1 = I_1$ and conclude that also Y_1 normalizes all simple R_2 -submodules of Y_2 . So the same holds for $T_2 = Y_1 R_2$.

5°. $C_{Y_1}(I_2) = C_{Y_1}(Y_2)$ and $C_{Y_2}(I_1) = C_{Y_2}(Y_1)$; in particular $[I_1, I_2] \neq 1$.

By (4°) $X_i := C_{Y_i}(I_j)$ normalizes all simple R_j -submodules of W_j . If $[X_i, Y_j] \neq 1$, then (3°) shows that $[I_j, X_i] \neq 1$, a contradiction. Thus $[X_i, Y_j] = 1$ and $C_{Y_i}(I_j) = X_i \leq C_{Y_i}(Y_j)$. The other inclusion is obvious.

 6° . W_i is not selfdual as a T_i -module.

Suppose that W_i is a selfdual T_i -module. Since $W_i \leq Y_i$, (5°) shows that $C_{W_i}(I_j) = C_{W_i}(Y_j)$. As W_i is selfdual, this gives $[W_i, I_j] = [W_i, Y_j]$ (cf. B.6(c)). By (4°) W_i normalizes I_j , thus $[W_i, Y_j] = [W_i, I_j] \leq I_j$. As $[Y_j, W_i] \neq 1$, (3°) gives $\overline{R_j} = [\overline{R_j}, W_i]$, and we conclude that $W_j = [Y_j, R_j] \leq I_j$, so $W_j = I_j$ is a simple R_j -module, a contradiction.

Put $\mathbb{K}_i := End_{R_i}(I_i).$

7°. T_i acts \mathbb{K}_i -linearly on I_i .

In this paragraph choose $I_j = I_i^u$ if i = 1 and $I_j = I_i^{u^{-1}}$ if i = 2. So $|\mathbb{K}_j| = |\mathbb{K}_i|$. By (4°) and (5°) I_j normalizes and acts non-trivially on each of the simple R_i -submodules of W_i . Suppose that I_j does not act \mathbb{K}_i -linearly on I_i . Then $p < |\mathbb{K}_i| = |\mathbb{K}_j|$, and 1.22 implies that $\dim_{\mathbb{K}_i} I_i = 1$, a contradiction, since R_i is quasisimple (and so perfect) and I_i is non-central $\mathbb{K}_i R_i$ -module. Thus I_j acts \mathbb{K}_i -linearly on I_i . As Y_j acts quadratically on I_i , Y_j centralizes the non-trivial \mathbb{K}_i -subspace $[I_i, I_j]$ of I_i , and so Y_j acts \mathbb{K}_i -linearly on I_i . Since $T_i = R_i Y_j$, (7°) follows.

- 8° . One of the following holds.
- (1) (a) R_i = J_i ∩ M_i[◦] ≅ SL_n(q), n ≥ 3, Sp_{2n}(q), n ≥ 3, SU_n(q), n ≥ 8, or Ω[±]_n(q), n ≥ 10.
 (b) W_i is the direct sum of at least two isomorphic natural modules for R₁.
 (c) M_i[◦] = R_iC_{M[◦]}(R_i).
 - (d) If $Y_i \neq W_i$, then $\overline{R_i} \cong Sp_{2n}(q)$, p = 2, and $n \ge 4$.
- (2) $p = 2, \overline{J_i} = \overline{R_i} \cong SL_4(q)$, and Y_i is the direct sum of two non-isomorphic natural modules for $\overline{R_i}$.

We consider the three cases of C.24(2:c).

In Case (1), $(8^\circ)(1)$ holds.

In Case (2), $W_1 = [Y_1, R_1]$ is a simple R_1 -module, contrary to the hypothesis of this lemma. In Case (3), (8°)(2) holds.

9°. $\overline{T_i}$ acts faithfully on I_i .

By $(4^{\circ}) O_p(\overline{T_i}) = 1$, and by $(8^{\circ}) \overline{R_i}$ acts faithfully on I_i . As $\overline{T_i}/\overline{R_i}$ is a *p*-group, we conclude $C_{\overline{T_i}}(I_i) \leq O_p(\overline{T_i}) = 1$.

10°. $R_i = J_i, \ \overline{J_i} \cong SL_n(q), \ n \ge 3, \ W_i = Y_i, \ \overline{M^\circ} = \overline{J_i}C_{\overline{M^\circ}}(\overline{J_i}), \ and \ Y_i \ is \ the \ direct \ sum \ of \ m$ isomorphic natural modules for $\overline{J_i}, \ m \ge 2$.

Suppose first that $(8^{\circ})(1)$ holds and $\overline{R_i} \cong SL_n(q)$, $n \ge 3$. Then C.24(2:a) shows that $\overline{J_i} = \overline{R_i}$, so also $R_i = J_i$. The remaining assertion in (10°) now follows from $(8^{\circ})(1)$.

Suppose next that $(8^{\circ})(1)$ holds and $\overline{R_i} \not\cong SL_n(q)$, $n \ge 3$. Then $\overline{R_i} \cong Sp_{2n}(q)$, $n \ge 3$, $SU_n(q)$, $n \ge 8$, or $\Omega_n^{\pm}(q)$, $n \ge 10$, and I_i is a corresponding natural module. Note that $T_i = Y_j R_i = O^{p'}(T_i)R_i$. Also I_i is a selfdual as an $\mathbb{F}_p R_i$ -module and T_i acts \mathbb{K}_i -linearly on I_i . Thus, B.7(f) shows that there exists a T_i -invariant non-degenerate symmetric, symplectic or unitary \mathbb{K}_i -form on I_i . Hence I_i is selfdual as an $\mathbb{F}_p T_i$ -module. Since this holds for any simple R_i -submodule I_i of W_i and W_i is a semisimple R_i -module, this shows that W_i is a selfdual T_i -module, a contradiction to (6°) .

Suppose now that $(8^{\circ})(2)$ holds. Then $W_i = I_i \oplus I_i^{\star}$, where I_i and I_i^{\star} are non-isomorphic natural $SL_4(q)$ -modules for $\overline{R_i}$. It follows that I_i^{\star} is dual to I_i as an $\mathbb{F}_p R_i$ -module, and so W_i is a selfdual R_i -module. By (7°) and (9°) , $\overline{T_i}$ acts faithfully and \mathbb{K}_i -linearly on I_i . As $\overline{T_i}/\overline{R_i}$ is a *p*-group and $GL_4(q)/SL_4(q)$ is p'-group we conclude that $\overline{T_i} = \overline{R_i}$ and so again W_i is a selfdual T_i -module, a contradiction.

11°. $Y_j \leq J_i$.

Just as in the previous paragraph, I_i acts \mathbb{K}_i -linearly on I_i , $GL_n(q)/SL_n(q)$ is a p'-group and $\overline{T_i}/\overline{R_i}$ is a p-group. As there we conclude that $\overline{T_i} = \overline{R_i} = \overline{J_i}$, and (11°) is established.

Since Y_i is a direct sum of *m* isomorphic simple J_i -modules, [**MS3**, 5.2(d)] implies that there exists an S_i -invariant simple J_i -submodule in Y_i . From now on I_1 and I_2 denote such S_i -invariant submodules with $I_1^u = I_2$.

Let C_i be the inverse image of $C_{\overline{M_i^\circ}}(\overline{J_i})$ in M_i° . By (5°) , $[I_1, I_2] \neq 1$. Pick $1 \neq x \in [I_1, I_2]$ and put $X_i := \mathbb{K}_i x$

We use the following simple facts about the action of $\overline{J_i}$ on the natural $SL_n(q)$ -module I_i and the structure of $\overline{J_i} \cong SL_n(q)$ and $J_iC_i/C_i \cong PSL_n(q)$.

- (i) $\overline{J_i}$ is transitive on I_i .
- (ii) $O^{p'}(N_{\overline{J_i}}(X_i)) = C_{\overline{J_i}}(x).$
- (iii) $O_p(C_{\overline{J_i}}(x))$ induces $Hom_{\mathbb{K}_i}(I_i/X_i, X_i)$ on I_i . In particular, $X_i = C_{I_i}(O_p(C_{\overline{J_i}}(x)))$ and $X_i = [I_i, O_p(C_{\overline{J_i}}(x))].$
- (iv) $O_p(C_{J_i}(x)C_i/C_i)$ is a natural $SL_{n-1}(q)$ -module for $C_{J_i}(x)$. In particular, since $n-1 \ge 2$, $O_p(C_{J_i}(x)C_i/C_i)$ is a non-central simple $C_{J_i}(x)$ -module.
- (v) Let W be an \mathbb{K}_i -subspace of I_i . Then $O^{p'}(N_{\overline{J}_i}(W)/C_{\overline{J_i}}(W)) \cong SL_{\mathbb{K}_i}(W)$ and $N_{\overline{J_i}}(W)$ acts transitively on W.

Note that $C_{I_i}(Q_i) \neq 1$. So by (i) there exists $y_i \in J_i$ with $x \in C_{I_i}(Q_i)^{y_i} \leq Z(Q_i^{y_i})$. By 1.52(e) Z(Q) is a TI-set, so $Q_1^{y_1} = Q_2^{y_2} =: Q_0$. By (10°) , $\overline{M_i^\circ} = \overline{J_iC_i}$ and thus $Q_0 \leq J_iC_i$ and $Q_0 \leq C_i$. By Q!, $C_{J_i}(x)$ normalizes Q_0 . Observe that $C_{J_i}(x)C_i$ contains a Sylow *p*-subgroup of J_iC_i and so $Q_0 \leq C_{J_i}(x)C_i$ and Q_0C_i/C_i is a non-trivial normal *p*-subgroup of $C_{J_i}(x)C_i/C_i$. Now (iv) implies that

$$O_p(C_{J_i}(x)C_i/C_i) = Q_0C_i/C_i = [Q_0, C_{J_i}(x)]C_i/C_i \le (Q_0 \cap J_i)C_i/C_i \le O_p(C_{J_i}(x)C_i/C_i)$$

Thus

12°.
$$O_p(C_{J_i}(x)C_i/C_i) = Q_0C_i/C_i = (Q_0 \cap J_i)C_i/C_i.$$

In particular, $Q_0C_i = (Q_0 \cap J_i)C_i$ and so $Q_0 = (Q_0 \cap J_i)(Q_0 \cap C_i)$. From $Q_0 = Q_i^{y_i} \leq J_iQ_i$ we get that Q_0 normalizes I_i . Since J_i centralizes the *p*-group $\overline{Q_0 \cap C_i}$ and acts simply on I_i we conclude that $Q_0 \cap C_i$ centralizes I_i . Thus

13°.
$$Q_0 = (Q_0 \cap J_i)(Q_0 \cap C_i) = (Q_0 \cap J_i)C_{Q_0}(I_i) \leq N_{M_i}(I_i).$$

As $\overline{J_i} \cap \overline{C_i}$ is a central p'-subgroup of $\overline{J_i}$, (12°) implies

14°.
$$O_p(C_{\overline{J}_i}(x)) = \overline{Q_0 \cap J_i}$$

Hence using (iii), we get $X_i = C_{I_i}(O_p(C_{\overline{J}_i}(x))) = C_{I_i}(Q_0 \cap J_i)$ and $X_i = [I_i, O_p(C_{\overline{J}_i}(x))] = [I_i, Q_0 \cap J_i]$. As by (13°) $Q_0 = (Q_0 \cap J_i)C_{Q_0}(I_i)$, this gives $X_i = C_{I_i}(Q_0)$ and $X_i = [I_i, Q_0]$.

Observe that $[I_1, I_2]$ is a \mathbb{K}_i -subspace of I_i . As $x \in [I_1, I_2]$ this gives $X_i \leq [I_1, I_2]$ and so $[I_i, Q_0] \leq [I_1, I_2]$. In particular, Q_0 normalizes $[I_1, I_2]$. Put $H := N_G([I_1, I_2])$. Then $H_i := N_{J_i}([I_1, I_2]))Q_0 \leq H$. Since Q_0 is weakly closed, 1.46(c) gives $H_i^\circ = \langle Q_0^{H_i^\circ} \rangle$, and since $[I_i, Q_0] \leq [I_1, I_2]$ and H_i normalizes both, I_i and $[I_1, I_2]$, we conclude that $[I_i, H_i^\circ] \leq [I_1, I_2]$.

By (v) H_i acts transitively and so simply on $[I_1, I_2]$. Thus $[I_i, H_i^\circ] = [I_1, I_2]$. Moreover, the transitive action and 1.57(c) imply $H^\circ = H_i^\circ$. In particular, $[I_i, H^\circ] = [I_1, I_2]$ and $[I_i, H^\circ, I_j] = 1$. This holds for any $\{i, j\} = \{1, 2\}$. So $[I_1, H^\circ, I_2] = 1$ and $[I_2, H^\circ, I_1] = 1$. The Three Subgroups Lemma now gives $[I_1, I_2, H^\circ] = 1$. As $Q_0 \leq H^\circ$ and, as seen above, $C_{I_i}(Q_0) = X_i$, this gives $[I_1, I_2] = X_1 = X_2$. We have shown:

15°. $X_i = [I_1, I_2] = [I_i, Q_0] = C_{I_i}(Q_0)$. In particular, $[I_1, I_2]$ is a 1-dimensional \mathbb{K}_i -subspace of I_i and $|[I_1, I_2]| = q$.

Put $Z_j := [I_i, Y_j]$ and $K_j := N_G(Z_j)$. We calculate the size of Z_j by comparing the action of Y_j on I_i with the action of I_i on Y_j . By (11°) $Y_i \leq J_j$ and $Y_j \leq J_i$. Since Y_i is a direct sum of m

copies of I_j , (15°) shows that $|[Y_j, I_i]| = |[I_1, I_2]|^m = q^m$. Since Y_j acts \mathbb{K}_i -linearly on I_i , it follows that Z_j is an *m*-dimensional \mathbb{K}_i -subspace of I_i . We have proved:

16°. Z_j is an m-dimensional \mathbb{K}_i -subspace of I_i .

Assume that $Y_i \leq Q_i^{\bullet}$. Since Q is weakly closed, Q_i^{\bullet} and Q_0^{\bullet} are conjugate in M_i , and as $Y_i \leq M_i$, we get $Y_i \leq Q_0^{\bullet}$. Thus $Y_i \leq J_j \cap Q_0^{\bullet} \leq O_p(C_{J_j}(x))$. Hence (iii) shows that $[I_j, Y_i] \leq X_j$. Thus $Z_i \leq X_j$, a contradiction since $|Z_i| = q^m > q = |X_j|$. We have proved:

17°. $Y_i \leqslant Q_i^{\bullet}$.

By (13°) Q_0 normalizes I_i . As $Q_0 \leq M_j$, Q_0 normalizes Y_j and so also normalizes $Z_i = [I_i, Y_j]$. Thus $Q_0 \leq K_j$.

By (11°) $I_i \leq Y_i \leq J_j \leq C_{M_j}(\overline{C_j})$. So C_j normalizes $Z_j = [I_i, Y_j]$ and $C_j \leq K_j$. Since I_j is a simple J_j -module, $\langle [I_i, I_j]^{J_j} \rangle = I_j$. As Y_j is a direct sum of simple J_j -modules isomorphic to I_j we conclude that $\langle [I_i, Y_j]^{J_j} \rangle = Y_j$. Thus $\langle Z_j^{J_j} \rangle = Y_j$, and since J_j centralizes $\overline{C_j}$, we conclude that $C_{\overline{C}_i}(Z_j)$ centralizes Y_j . We record:

18°. $Q_0C_j \leq K_j \text{ and } \overline{C_j} \text{ acts faithfully on } Z_j.$

By (13°) $Q_0 = (Q_0 \cap J_i)C_{Q_0}(I_i)$. Since $Q_0 \leq K_j$ and $Z_j \leq I_i$, this gives

$$Q_0 = (Q_0 \cap J_i)C_{Q_0}(Z_j)$$
 and $Q_0 = (Q_0 \cap (J_i \cap K_j))C_{Q_0}(Z_j) \leq (J_i \cap K_j)C_{M_i}(Z_j)$

By (16°) Z_j is an \mathbb{K}_i -subspace of I_i and so (v) shows $J_i \cap K_j$ acts transitively on Z_j . Hence three applications of 1.57(c) give

19°.
$$\langle Q_0^{J_i \cap K_j} \rangle = K_j^\circ = \left((J_i \cap K_j) Q_0 \right)^\circ = \left((J_i \cap K_j) C_{M_i}(Z_j) \right)^\circ.$$

Put $\widetilde{K_j} := K_j/C_{K_j}(Z_j)$. By (v), Z_j is a natural $SL_m(q)$ -module for $O^{p'}(J_i \cap K_j)$. By (19°), $K_j^{\circ} = ((J_i \cap K_j)C_{M_i}(Z_j))^{\circ}$ and so $\widetilde{K_j^{\circ}} \leq O^{p'}(\widetilde{J_i \cap K_j}) \cong SL_m(q)$. As $SL_m(q)$ has no non-trivial proper normal subgroup generated by *p*-elements, we conclude that $\widetilde{K_j^{\circ}} = O^{p'}(\widetilde{J_i \cap K_j})$. Thus

20°. Z_j is a natural $SL_m(q)$ -module for K_j° , and K_j° acts \mathbb{K}_i -linearly on Z_j .

By (15°) Q_0 centralizes $[I_1, I_2] = [I_i, I_j]$. Since $Z_j = [I_i, Y_j]$ and Y_j is, as an J_j -module, the direct sum of copies of I_j , we conclude that $Q_0 \cap J_j$ centralizes Z_j . By (13°) , $Q_0 = (Q_0 \cap J_j)(Q_0 \cap C_j)$ and thus $Q_0 = (Q_0 \cap C_j)C_{Q_0}(Z_j)$.

By (14°) $\overline{Q_0 \cap J_i} = O_p(C_{\overline{J_i}}(x))$. Hence, by (iii), $Q_0 \cap J_i$ induces $Hom_{\mathbb{K}_i}(I_i/X_i, X_i)$ on I_i . As by (15°) $X_i = [I_1, I_2] \leq Z_j$ and by (16°) Z_j is a \mathbb{K}_i -subspace of I_i , we conclude that $Q_0 \cap J_i$ induces $Hom_{\mathbb{K}_i}(Z_j/X_i, X_i)$ on Z_j . Since

$$(Q_0 \cap J_i)C_{Q_0}(Z_j) = Q_0 = (Q_0 \cap C_j)C_{Q_0}(Z_j)$$

we infer:

21°.
$$Q_0 \cap C_j \text{ induces } Hom_{\mathbb{K}_i}(Z_j/X_i, X_i) \text{ on } Z_j.$$

In this paragraph, $\overline{X} := XC_{M_j}(Y_j)/C_{M_j}(Y_j)$ for all $X \leq M_j$. Define

$$J_j^{\star} := \langle (Q_0 \cap J_j)^{J_j} \rangle$$
 and $C_j^{\star} := \langle (Q_0 \cap C_j)^{C_j} \rangle$

Recall from (10°) that $R_i = J_i$ and $\overline{J_j} \cong SL_n(q)$, $n \ge 3$, and that by (14°) $\overline{Q_0 \cap J_j} = O_p(C_{\overline{J_j}}(x))$. Thus, we have $\overline{J_j^{\star}} = \overline{J_j}$, and by (8°)(1:c), $\overline{M_j^{\circ}} = \overline{J_jC_j}$. Also $[\overline{J_j}, \overline{C_j}] = 1$, and by (13°) $\overline{Q_0} = (\overline{Q_0 \cap J_j})(\overline{Q_0 \cap C_j})$. It follows that

$$\overline{M_j^{\circ}} = \langle \overline{Q_0}^{M_j^{\circ}} \rangle = \overline{J_j^{\star}} \, \overline{C_j^{\star}} = \overline{J_j} \, \overline{C_j^{\star}} \quad \text{and} \quad [\overline{J_j}, \overline{C_j^{\star}}] = 1.$$

In addition, $O_p(\overline{C_j^{\star}}) \leq O_p(\overline{C_j}) \leq O_p(\overline{M_j}) = 1$, and by (18°) $\overline{C_j}$ is faithful on Z_j .

Recall that $C_j \leq K_j$ and $\widetilde{K}_j = K_j/C_{K_j}(Z_j)$. Hence $C_j^* \leq K_j^\circ$, $\overline{C_j^*} \cong \widetilde{C}_j^*$ and $O_p(\widetilde{C}_j^*) = 1$. By (20°) Z_j is a natural $SL_m(q)$ -module for \widetilde{K}_j and by (21°) $Q_0 \cap C_j$ induces $Hom_{\mathbb{K}_i}(Z_j/X_i, X_i)$ on Z_j . Now [**MS3**, 7.2] implies that

22°.
$$\widetilde{C}_j^{\star} = \widetilde{K}_j^{\circ} \cong SL_m(q)$$
. In particular, Z_j a natural $SL_m(q)$ -module for \widetilde{C}_j^{\star} .

Since Y_j is, as a J_j -module, the direct sum of natural $SL_n(q)$ -modules isomorphic to I_j and since $[\overline{J_j}, \overline{C_j^{\star}}] = 1$, Y_j is, as a module for $\overline{M_j^{\circ}} = \overline{J_j} \overline{C_j^{\star}}$, isomorphic to $I_j \otimes_{\mathbb{K}_j} U_j$ for some $\mathbb{K}_j C_j^{\star}$ -module U_j (see for example [**MS3**, Lemma 5.2]).

Since $I_i \leq J_j$ by (11°) and $[I_1, I_2]$ is 1-dimensional in I_j by (15°),

$$U_j \cong [I_1, I_2] \otimes U_j = [I_j \otimes U_j, I_i] \cong [Y_j, I_i] = Z_j$$

as a C_j^{\star} -module. Thus U_j is a natural $SL_m(q)$ -module for C_j^{\star} . Hence in order to establish Theorem D(4:4) it remains to prove that p is odd.

By (22°) we have $\widetilde{C}_j^{\star} = \widetilde{K}_j^{\circ}$. Since $C_j^{\star}Q_0 \leq K_j^{\circ}$ we get $\widetilde{C_j^{\star}Q_0} = \widetilde{K}_j^{\circ}$. Hence 1.52(c) gives

 $23^{\circ}. \qquad K_j^{\circ} = (C_j^{\star}Q_0)^{\circ}.$

By (16°) $Z_2 = [I_1, Y_2]$ is an *m*-dimensional \mathbb{K}_1 -subspace of I_1 , so Z_2^u is an *m*-dimensional \mathbb{K}_2 -subspace of $I_1^u = I_2$ with $[I_1, I_2]^u \leq Z_2^u$. Also $[I_1, I_2]^u$ and $[I_1, I_2]$ are 1-dimensional \mathbb{K}_2 -subspaces of I_2 by (15°) , and again by (16°) $Z_1 = [I_2, Y_1]$ is an *m*-dimensional \mathbb{K}_2 -subspace of I_2 with $[I_1, I_2] \leq Z_2$. As I_2 is a natural $SL_m(q)$ -module for J_2 , J_2 is transitive on the pairs of incident 1- and *m*-dimensional \mathbb{K}_2 -subspaces of I_2 . Hence, there exists $v \in J_2$ with $Z_2^{uv} = Z_1$ and $[I_1, I_2]^{uv} = [I_1, I_2]$. Put g := uv. Then

$$[I_1, I_2]^g = [I_1, I_2], \quad I_1^g = I_2^v = I_2, \quad Y_1^g = Y_2^v = Y_2, \quad Z_2^g = Z_1$$

and

$$Z_1^g = [I_2^g, Y_1^g] = [I_2^g, Y_2], \quad [I_2^g, I_2] = [I_2^g, I_1^g] = [I_1, I_2]^g = [I_1, I_2].$$

Since $I_2 \leq Y_2 \leq J_1$, $I_2^g \leq J_1^g = J_2$. Also $I_1 \leq J_2$, and since Y_2 is the direct sum of copies of the J_2 -module I_2 , we conclude from $[I_2^g, I_2] = [I_1, I_2]$ that $[I_2^g, Y_2] = [I_1, Y_2] = Z_2$. Thus $Z_1^g = Z_2$ and so g acts non-trivially on the sets $\{Z_1, Z_2\}$. Thus g also acts non-trivially on $\{K_1, K_2\}$ and $\{K_1^\circ, K_2^\circ\}$. By (23°) $K_1^\circ = (C_1^*Q_0)^\circ$ and by (19°) $K_2^\circ = ((J_1 \cap K_2)Q_0)^\circ$. Thus

$$\left\{K_1^{\circ}, K_2^{\circ}\right\} = \left\{\left(C_1^{\star}Q_0\right)^{\circ}, \left((J_1 \cap K_2)Q_0\right)^{\circ}\right\}.$$

Recall that S_1 normalizes I_1 and $1 \neq x \in [I_1, I_2]$. Note that the number of pairs (x_0, Z_0) , where Z_0 is an *m*-dimensional \mathbb{K}_1 -subspaces of I_1 and $1 \neq x_0 \in Z_0$, is not divisible by p and that J_1 acts transitively on such pairs. Hence every such pair is normalized by a Sylow p-subgroup of M_1 . Since Z_2 is an *m*-dimensional subspace of I_1 and $x \in Z_2$, we conclude that $N_{M_1}(Z_2) \cap C_{M_1}(x)$ contains a Sylow p-subgroup S_0 of M_1 . Then $S_0 \leq M_1 \cap K_2$ and by Q!, S_0 normalizes Q_0 . It follows that S_0 acts trivially on $\left\{ (C_1^*Q_0)^\circ, ((J_1 \cap K_2)Q_0)^\circ \right\}$, that is on $\{K_1^\circ, K_2^\circ\}$. Since S_0 is a Sylow p-subgroup of G and g acts non-trivially on $\{K_1^\circ, K_2^\circ\}$, this shows $p \neq 2$.

LEMMA 4.14. Suppose that C.24(2) holds and W_1 is a simple R_1 -module. Then Theorem D holds.

PROOF. Since C.24(2) holds and W_1 is a simple R_1 -module we are in case (2:c:2) of C.24. Thus

- $1^{\circ}.$
- (a) $\overline{R_i}$ is quasisimple, $\overline{R_i} \leq \overline{M_i^{\circ}}$, and either $\overline{J_i} = \overline{R_i}$ or p = 2 and $\overline{J_i} \cong O_{2n}^{\pm}(q)$, $Sp_4(2)$ or $G_2(2)$.
- (b) $C_{Y_i}(R_i) = 1$ and $\overline{M_i}$ acts faithfully on W_i . In particular, $C_{M_i}(W_i) = C_{M_i}(Y_i)$.
- (c) Either $\overline{M_i^{\circ}} = \overline{R_i} = \overline{M_i^{\circ}} \cap \overline{J_i}$ or $\overline{M_i^{\circ}} \cong Sp_4(2)$, $3 \cdot Sym(6)$, $SU_4(q).2 \ (\cong O_6^-(q) \ and \ W_i \ is the natural SU_4(q)-module)$, or $G_2(2)$.
- (d) One of the cases C.3 (1) (9), (12) applies to $(\overline{J_i}, W_i)$, with $n \ge 3$ in case (1), $n \ge 2$ in case (2), and n = 6 in case (12).

Recall that $M_{i\circ} = O^p(M_i^\circ)$. Next we show:

$$2^{\circ}. \qquad \overline{R_i} = F^*(\overline{M_i^{\circ}}) = \overline{M_{i\circ}}. \text{ In particular, } W_i = [Y_i, M_{i\circ}].$$

Suppose first that $\overline{R_i} = \overline{M_i^{\circ}}$. As by (1°)(a) $\overline{R_i}$ is quasisimple, we conclude that (2°) holds.

Suppose next that $\overline{R_i} \neq \overline{M_i^{\circ}}$. Then by $(1^{\circ})(c)$, $\overline{M_i^{\circ}} \cong Sp_4(2)$, $3 \cdot Sym(6)$, $SU_4(q).2$ or $G_2(2)$. In each case $F^*(\overline{M_i^{\circ}})$ is quasisimple and has index 2 in $\overline{M_i^{\circ}}$. Thus $F^*(\overline{M_i^{\circ}}) = O^2(\overline{M_i^{\circ}}) = \overline{M_{i\circ}}$. As $\overline{R_i} \leq \overline{M_i^{\circ}}$ and $\overline{R_i}$ is a quasisimple normal subgroup of $\overline{M_i}$ we conclude that $\overline{R_i} = F^*(\overline{M_i^{\circ}})$ and again (2°) holds. Hence (2°) is proved.

Note that

$$|W_1/C_{W_1}(W_2)| \leq |W_2/C_{W_2}(W_1)|$$
 or $|W_2/C_{W_2}(W_1)| \leq |W_1/C_{W_1}(W_2)|.$

In the second case, conjugation by u^{-1} shows that $|W_1/C_{W_1}(W_1^{u^{-1}})| \leq ||W_1^{u^{-1}}/C_{W_1^{u^{-1}}}(W_1)|$. Also u^{-1} in place of u fulfills the conclusion of 4.2. So possibly after replacing u by u^{-1} , we may assume W_2 is an offender in W_1 .

Put $Z := [W_1, W_2]$. Abusing our general convention, define

$$\overline{W_i} := W_i C_{M_j}(Y_j) / C_{M_j}(Y_j) \qquad (\text{ and not } \overline{W_i} = W_i C_{M_i}(W_i) / C_{M_i}(W_i)).$$

By $(1^{\circ})(b)$ $C_{M_i}(Y_j) = C_{M_j}(W_j)$ and so $\overline{W_i} \cong C_{W_i}/C_{W_i}(W_j)$ as an $M_1 \cap M_2$ -module.

 3° . W_2 is a non-trivial quadratic offender on W_1 ; in particular $Z \neq 1$.

Recall from 4.4 that Y_2 acts quadratically on Y_1 and from 4.3 that $[Y_1, Y_2] \neq 1$. In particular W_2 is a quadratic offender on W_1 . It remains to prove that W_1 acts non-trivially on W_2 .

By $(1^{\circ})(b) C_{M_i}(Y_i) = C_{M_i}(W_i)$. For i = 1 this shows that $[Y_1, Y_2] \neq 1$ implies $[W_1, Y_2] \neq 1$, and then for i = 2 that $[W_1, Y_2] \neq 1$ implies $[W_1, W_2] \neq 1$.

Let $v \in G^{\sharp}$ and suppose that v is centralized by a conjugate Q^g of Q in G. Since $C_G(Q) \leq Q$ we get $v \in Z(Q^g)$. By 1.52(e) Z(Q) is a TI-set. Thus Q^g is unique determined by v and we define $Q_v := Q^g$.

Let \mathcal{V} be the set of all $1 \neq v \in Z$ such that for each $i \in \{1, 2\}$ there exists $Q_{v,i} \in Q^G$ with $Q_{v,i} \leq M_i$ and $[v, Q_{v,i}] = 1$. Note that $Q_v = Q_{v,1} = Q_{v,2} \leq M_1 \cap M_2$. Let $L := \langle Q_v \mid v \in \mathcal{V} \rangle$. Then $L \leq M_1 \cap M_2$.

$$4^{\circ}$$
.

(a) $M_1 \cap M_2$ normalizes W_1, W_2 and Z; in particular $L \leq N_{M_i}(Z)$.

- (b) $L = (M_1 \cap M_2)^{\circ} \leq N_{M_1}(Z)^{\circ} \cap N_{M_2}(Z)^{\circ}.$
- (c) Suppose $\mathcal{V} = Z^{\sharp}$. Then $L = N_{M_1}(Z)^{\circ} = N_{M_2}(Z)^{\circ}$.

(a): $M_1 \cap M_2$ normalizes W_1 and W_2 , so also $Z = [W_1, W_2]$. Since $L \leq M_1 \cap M_2$, (a) follows.

(b): As $L \leq M_1 \cap M_2$ and L is generated by conjugates of $Q, L \leq (M_1 \cap M_2)^\circ$. Let $g \in G$ with $Q^g \leq M_1 \cap M_2$. Then Q^g normalizes Z, and since $Z \neq 1$ by (3°), there exists $1 \neq v \in C_Z(Q^g)$. Thus $Q_v = Q^g \leq M_1 \cap M_2$. Hence $v \in \mathcal{V}$ and $Q^g = Q_v \leq L$. Thus $(M_1 \cap M_2)^\circ \leq L$ and so $(M_1 \cap M_2)^\circ = L$. As $M_1 \cap M_2 \leq N_{M_i}(Z)$, we have $L = (M_1 \cap M_2)^\circ \leq M_{M_i}(Z)^\circ$.

(c): Suppose that $\mathcal{V} = Z^{\sharp}$ and let $g \in G$ with $Q^g \leq N_{M_i}(Z)$. Again there exists $1 \neq z \in C_Z(Q^g)$ and so $z \in \mathcal{V}$ and $Q^g = Q_v \leq L$. Hence $N_{M_i}(Z)^{\circ} \leq L$ and so $N_{M_i}(Z)^{\circ} = L$.

5°. Suppose M_i acts transitively on W_i . Then $\mathcal{V} = Z^{\sharp}$.

Since M_i acts transitively on W_i and $C_{W_i}(Q_i) \neq 1$ each elements of W_i (and so also of Z) is centralized by a conjugate of Q_i in M_i . Thus $Z^{\sharp} = \mathcal{V}$.

6°. Suppose $1 \neq z \in C_Z(L)$ and $K_i \leq M_i$ acts transitively on W_i . Then $L = Q_z$ and $Z^{\sharp} \subseteq z^{N_{K_i}(L)}$.

Let $v \in Z^{\sharp}$. By (5°) , $\mathcal{V} = Z^{\sharp}$ and so $Q_v \leq L$ and $[z, Q_v] = 1$. Thus $Q_v = Q_z$, and we conclude that $L = Q_z$. Since K_i acts transitively on W_i , there exists $k \in K_i$ with $z^k = v$. Then $Q_z^k = Q_v = Q_z$ and $k \in N_{K_i}(L)$. Hence, (6°) holds.

Let $\{i, j\} := \{1, 2\}$ and put $\mathbb{K}_i := End_{R_i}(W_i)$.

7°. T_i acts \mathbb{K}_i -linearly on W_i . In particular, Z is a \mathbb{K}_i -subspace of W_i .

Suppose for a contradiction, that W_i does not act \mathbb{K}_j -linearly on W_j . Then $p < |\mathbb{K}_j| = |\mathbb{K}_i|$, and 1.22 shows that $\dim_{\mathbb{K}_i} W_i = 1$, a contradiction. Hence W_i acts \mathbb{K}_j -linearly on W_j . Recall that Y_i acts quadratically on V_j , so Y_i centralizes the non-trivial \mathbb{K}_i -subspace $[W_j, W_i]$ of W_j . Thus Y_i and so also $T_j = Y_i R_j$ acts \mathbb{K}_j -linearly on W_j .

We now discuss the cases of C.3 listed in $(1^{\circ})(d)$. Observe that a natural Sym(6)- or Alt(6)module (Case 12) of C.3 for n = 6), is also a natural $Sp_4(2)$ - or $Sp_4(2)$ '-module, respectively. We will treat this case together with the symplectic groups in (Case 2).

Case 1. Case (1) of C.3 holds with $n \ge 3$, that is, $\overline{J_1} \cong SL_n(q)$ and W_1 is a corresponding natural module.

By $(1^{\circ})(a),(c)$ $\overline{J_1} = \overline{R_1} = \overline{M_1^{\circ}}$. Also C.22 shows that either $Y_1 = [Y_1, R_1] = W_1$ or $\overline{J_1} \cong SL_3(2)$ and $|Y_1| = 2^4$. In the first case Theorem D (1) holds. So we need to rule out the second case.

Assume that $\overline{J_1} \cong SL_3(2)$ and $|Y_1| = 2^4$, so $\overline{J_i} = \overline{M_i}$. Put $Z_0 := [Y_1, Y_2]$ and note that $Z_0 \leqslant W_1 \cap W_2 \leqslant C_{Y_i}(Y_j)$. Since J_i acts transitively on W_i each $v \in Z_0^{\sharp}$ is centralized by some $Q_{vi} \in Q_i^{M_i}$. Thus $Q_v = Q_{v1} = Q_{v2} \leqslant M_1 \cap M_2$ and $L_0 := \langle Q_v \mid v \in Z_0^{\sharp} \rangle \leqslant M_1 \cap M_2$. Choose $\{i, j\}$ such that Y_j is an offender on Y_i . Then Y_j contains a non-trivial best offender A on Y_i . From C.22 we conclude that $C_{Y_i}(A) = [Y_i, A]$ has order 4. Since Y_j acts quadratically on Y_i , this implies that $C_{Y_i}(Y_j) = C_{Y_i}(A) = [Y_i, A] = [Y_i, Y_j] = Z_0$. Thus Z_0 has order 4. Note that $L_0 = \langle Q_i^g \mid g \in J_i, C_{W_i}(Q_i^g) \neq 1 \rangle$, and so B.38(c) shows that Z_0 is natural $SL_2(2)$ -module for L_0 . As $Z_0 \leqslant Y_j$ this implies that $O^2(L_0) \leqslant C_{M_j}(Y_j)$. Since $|Y_i/W_i| = 2 = |W_i/Z_0|, O^2(L_0)$ centralizes Y_i/Z_0 and so $[Y_i, O^2(L_0)] \leqslant Z_0$. As $Z_0 \leqslant Y_j \leqslant C_{M_j}(Y_j)$, we conclude that $[Y_i, O^2(L_0)] \leqslant C_{M_j}(Y_j)$. On the other hand, $L_0 \leqslant M_1 \cap M_2$ and $M_j/C_{M_j}(Y_j) = \overline{J_j} \cong SL_3(2)$. Hence, the centralizer of an involution in $M_j/C_{M_j}(Y_j)$ is a 2-group, so $O^2(L_0) \leqslant C_{M_i}(Y_i)$, a contradiction.

Case 2. Case (2) of C.3 holds with $n \ge 2$ or Case(12) holds with n = 6, that is, $\overline{J_1} \cong Sp_{2n}(q)$, $n \ge 2$, or $Sp_4(q)'$ (and q = 2), and W_1 is a corresponding natural module.

Suppose that p is odd. Then by $(1^{\circ})(a), (c) \overline{J_1} = \overline{R_1} = \overline{M_1^{\circ}}$ and so by 2.26 $W_1 \leq Q^{\bullet}$. Since p is odd, $|Z(\overline{J_1})| = 2$, and coprime action gives

$$Y_1 = [Y_1, Z(\overline{J_1})] \times C_{Y_1}(Z(\overline{J_1})) = W_1 \times C_{Y_1}(J_1).$$

Moreover, by $(1^{\circ})(b)$, $C_{Y_1}(J_1) = 1$ and so $Y_1 = W_1$. Thus Theorem D(2) holds.

Suppose that p = 2. Then $(1^{\circ})(a),(c)$ show that also $\overline{M_1^{\circ}} \cong Sp_{2n}(q), n \ge 2$, or $Sp_4(q)'$ (note that $\overline{J_1}$ and $\overline{M_1^{\circ}}$ do not need to be equal if one of them is isomorphic to $Sp_4(q)'$). Since $C_{Y_1}(J_1) = 1$, C.22 shows $W_1 = [Y_1, R_1] = [Y_1, J_1]$ and $|Y_1/W_1| \le q$. Since either $\overline{M_1^{\circ}} = \overline{R_1}$ or q = 2 and $|\overline{M_1^{\circ}}/\overline{R_1}| = 2$, this gives $W_1 = [Y_1, M_1^{\circ}]$. If $W_1 \le Q^{\bullet}$, then 2.25(b) shows that $Y_1 \le Q^{\bullet}$. So again Theorem D(2) holds.

Case 3. Case (3) of C.3 holds, that is, $\overline{J_1} \cong SU_n(q)$, $n \ge 4$, and W_1 is a corresponding natural module.

Note that $\mathbb{K}_j \cong \mathbb{F}_{q^2}$. By (7°) W_i is *p*-group acting \mathbb{K}_j -linearly on W_j . As W_i normalizes $\overline{J_j}$, we conclude from B.35(d) that $W_i \leq J_i$. Since W_i acts quadratically on W_j , Z is an isotropic and so also a singular subspace of W_j , see B.6(b) and B.5. It follows that each element of Z is *p*-central in M_i and so centralized by a conjugate of Q_i . Thus $Z^{\sharp} = \mathcal{V}$. Put $m := \dim_{\mathbb{F}_{q^2}} Z$ and $E := C_{\overline{J_1}}(C_{W_1}(W_2))$. Note that $1 \neq W_2/C_{W_2}(W_1) \cong \overline{W_2} \leq E$. Let H_1 be an \mathbb{K}_1 -hyperplane of W_1 with $C_{W_1}(W_2) \leq H_1$. Then $|C_{\overline{J_1}}(H_1)| = q$ and so

$$|C_{W_2}(H_1)/C_{W_2}(W_1)| = |\overline{W_2} \cap C_{\overline{J}_1}(H_1)| \le q.$$

As W_1 acts \mathbb{K}_2 -linearly on W_2 this gives $C_{W_2}(H_1) = C_{W_2}(W_1)$. In particular, $H_1 \neq C_{W_2}(W_1)$ and so $m \ge 2$. Moreover, $\overline{W_2} \cap C_{\overline{J}_1}(H_1) = 1$, and as $1 \neq C_{\overline{J}_1}(H_1) \le E$, we get

$$1 < \overline{W_2} < E.$$

Since L normalizes this series, E is not a simple L-module. As $Z^{\sharp} = \mathcal{V}$, $(4^{\circ})(c)$ shows that $L = N_{M_1}(Z)^{\circ}$. Now B.38(c) implies that there exists a subgroup $F \leq L \cap J_1$ such that Z is a natural

 $SL_m(q^2)$ -module for F. Since $GL_m(q^2)/SL_m(q^2)$ is a p'-group this implies that $O^{p'}(N_{J_1}(Z)) \leq FC_{J_1}(Z)$. Note that $C_{J_1}(Z)$ centralizes W_1/Z^{\perp} and so (for example by the Three Subgroups Lemma) also E. By B.21(b) $E = C_{\overline{J_1}}(W_1/Z) \cap C_{\overline{J_1}}(Z)$. Hence, by B.22(a) E is a simple $O^{p'}(N_{J_1}(Z))$ -module and we infer that E is a simple F- and a simple L-module, a contradiction.

Case 4. Case (4) of C.3 holds, that is, $\overline{J_1} \cong \Omega_{2n}^+(q)$ for $2n \ge 6$, $\Omega_{2n}^-(q)$ for p = 2 and $2n \ge 6$, $\Omega_{2n}^-(q)$ for p odd and $2n \ge 8$, $\Omega_{2n+1}(q)$ for p odd and $2n + 1 \ge 7$, $O_4^-(2)$, or $O_{2n}^{\epsilon}(q)$ for p = 2 and $2n \ge 6$, and W_1 is a corresponding natural module.

Note that in all these cases $\overline{R_i} = F^*(\overline{J_i}) \cong \Omega_m^{\epsilon}(q)$ for appropriate ϵ and m. Moreover, by $(1^{\circ})(c)$ $\overline{M_i^{\circ}} = \overline{R_i}$ and so $W_i = [Y_i, M_i^{\circ}]$.

Recall that $T_j = Y_i R_j$. Since Y_i is *p*-subgroup acting \mathbb{K}_j -linearly on W_j and since Y_i normalizes $\overline{R_1}$, we conclude from B.35(d) that either $\overline{T_j} = \overline{R_j} \cong \Omega_m^{\epsilon}(q)$ or p = 2 and $\overline{T_j} \cong O_m^{\epsilon}(q)$. Moreover, W_j is the corresponding natural module.

Assume first that $|Z| \leq q$. Then by B.9(c) p = 2 and Z is not singular in W_1 , and $|\overline{W_2}| = 2$. Since W_2 is an offender on W_1 , we get q = 2 and $\overline{T_1} \cong O_{2n}^{\epsilon}(2)$. Hence 4.10 shows that Theorem D(5) holds.

Assume next that $Y_1 \neq W_1$. Then C.22 shows that $\overline{J_1} \cong O_6^+(2) \cong Sym(8)$. Hence by C.4(h) every offender in $\overline{T_i}$ on Y_i is a best offender. Choose *i* and *j* such that Y_i is an offender (and so a best offender) on Y_j . Then C.22 shows that image of Y_i in $\overline{M_j}$ is generated by transpositions and thus $[Y_i, Y_j]$ contains a non-singular vector of Y_j . So using 4.10 a second time, this shows that Theorem D(5) holds.

Assume finally that $Y_1 = W_1$ and |Z| > q. Suppose that $\overline{J_1} \cong O_4^-(2) \cong Sym(5)$. Then $\overline{T_1} \cong Alt(5)$ or Sym(5). Since W_2 is an offender on W_1 , C.4(g) shows that $\overline{W_2}$ is generated by transpositions in $\overline{T_1}$. Thus Z contains a non-singular element of W_1 , and so using 4.10 a third time, this shows that Theorem D (5) holds. If $\overline{J_1} \not\cong O_4^-(2)$, then $2n \ge 6$, and Theorem D (4:1) holds, except that we still need to show that $Y \leq Q^{\bullet}$.

Suppose that $Y \leq Q^{\bullet}$, so $Y_i \leq Q_i^{\bullet}$, i = 1, 2. Since W_1 acts quadratically on W_2 , an isotropic subspace of W_2 , see B.6(b). By B.5 the singular vectors of W_2 contained in Z form a \mathbb{K}_2 -subspace of Z of codimension at most 1. Thus, as |Z| > q, there exists $1 \neq v \in Z$ such that v is singular in W_2 . Hence there exists $x \in M_2$ such that $[v, Q_2^x] = 1$. By Q!, $C_G(v) \leq N_G(Q_2^x)$, and since $Y_2 \leq (Q_2^{\bullet})^x$, we get $Y_2 \leq O_p(C_G(v))$. In particular, $W_2 \leq O_p(C_{M_1}(v))$.

Suppose that v is singular in W_1 . Then v is centralized by a Sylow p-subgroup of M_1 , and since W_2 is a non-trivial offender on W_1 , we obtain a contradiction to the Point-Stabilizer Theorem C.8. Thus v is non-singular. It follows that $|O_p(C_{\overline{M_1}}(v))| = 1$ if p is odd and $|O_p(C_{\overline{M_1}}(v))| \leq 2$ if p = 2. Hence $|W_2/C_{W_2}(W_1)| \leq 2$ and then $|Z| = |C_{W_2}(W_1)^{\perp}| = 2 \leq q$, a contradiction.

Case 5. Case (5) of C.3 holds, that is, p = 2, $\overline{J_1} \cong G_2(q)$, and W_1 is a corresponding natural module.

Put $L_i := N_{J_i}(W_j C_{M_i}(W_i))$, so $\overline{L_i} = N_{\overline{J_i}}(\overline{W_i})$. Since W_2 is a non-trivial offender on W_1 , we conclude from the Best Offender Theorem C.4(a) that $Z = C_{W_1}(W_2)$, $|Z| = |W_1/Z| = |\overline{W_2}| = q^3$, and L_1 is a maximal parabolic subgroup of J_1 . Note also that L_1 normalizes Z and by the action of J_1 on the natural $G_2(q)$ -module W_1 , $L_1 = N_{J_1}(Z_1)$ for some 1-dimensional \mathbb{K}_1 -subspace Z_1 of W_1 . Observe that $[Z_1, O^{p'}(L_1)] = 1$.

By (1°)(c) $\overline{M_1^{\circ}} = \overline{R_1}$ or $\overline{M_1^{\circ}} = \overline{J_1}$. Thus $\overline{M_1^{\circ}} \leqslant \overline{J_1}$. In particular, $M_1^{\circ} \leqslant J_1$, M_1° acts \mathbb{K}_1 -linearly on W_1 and $L \leqslant N_{M_1^{\circ}}(Z) \leqslant L_1$. Since $O^{p'}(L_1)$ centralizes Z_1 and L is generated by p-elements, we get that $L \leqslant C_{J_1}(Z_1)$. Note that J_1 acts transitively on W_1 . Thus by (5°) $\mathcal{V} = Z^{\sharp}$ and by (6°), $Z^{\sharp} \subseteq Z^{N_{J_1}(L)}$, where $1 \neq z \in Z_1$. As $\mathcal{V} = Z^{\sharp}$, L_1 normalizes L and so, since L_1 is maximal subgroup of J_1 , we get $N_{J_1}(L) = L_1$. But then $Z^{\sharp} \subseteq Z^{L_1} \subseteq Z_1$, a contradiction.

Case 6. Case (6) of C.3 holds, that is, $\overline{J_1} \cong SL_n(q)/\langle (-id)^{n-1} \rangle$, $n \ge 5$, and W_1 is the corresponding exterior square of a natural module.

Then $Y_1 = W_1$ by C.22. Since W_i is the exterior square of a natural $SL_n(q)$ -module, there exists a central p'-extension $\widehat{L_i}$ of $\overline{L_i}$ and a natural $SL_n(q)$ -module N_i for $\widehat{L_i}$ such that $Y_i \cong \Lambda^2 N_i$

as $\widehat{L_i}$ -module. By C.4 W_2 is not an over-offender on W_1 and so W_1 is an offender on W_2 . This also shows that W_i is a best offender on W_j and so $W_i \leq J_j$. Let $\widehat{W_i}$ be the unique Sylow *p*-subgroup of the inverse image of $W_j C_{J_i}(Y_i)/C_{J_i}(Y_i)$ in $\widehat{J_i}$. By C.4 there exists a \mathbb{K}_i -hyperplane H_i of N_i with $\widehat{W_j} = C_{\widehat{J_i}}(H_i)$. Put $L_i := C_{\widehat{J_i}}(N_i/H_i)$. The action of $\widehat{J_i}$ on N_i shows that $\widehat{W_j} = C_{L_i}(H_i) = O_p(L_i)$ is a natural $SL_{n-1}(q)$ -module for L_i isomorphic to H_i , $Z = C_{W_i}(W_j)$, $W_i/Z \cong H_i$ and $Z \cong \Lambda^2 H_i$ as L_i -modules. Let $X \leq W_1$ such that $Z \leq X$ and |X/Z| = p.

Consider the action of L_2 on N_2 and W_2 . Note that $|X/C_X(W_2)| = p$ and so X acts as a subgroup of the transvection group with axis H_2 and center say P_2 on N_2 . It follows that $[W_2, X] \cong P_2 \wedge H_2$ and so $[W_2, X]$ is a natural $SL_{n-2}(q)$ -module isomorphic to H_2/P_2 for $C_{L_2}(P_2)$. Thus each element of $[W_2, X]$ is centralized by a Sylow *p*-subgroup of $C_{L_2}(P_2)$ and so also by a Sylow *p*-subgroup of J_2 , since $C_{L_2}(P_2)$ is a parabolic subgroup of L_2 and \hat{J}_2 .

Next consider the action of L_1 on N_1 and W_1 . Identify W_1 with $\Lambda^2 N_1$. Then $X = \langle n \wedge x \rangle Z$, where $n \in N_1 \setminus H_1$ and $1 \neq x \in H_1$. If T is the transvection group with axis H_1 and center say P_1 , then $[X,T] = P_1 \wedge x$ and so $[X, W_2] = [X, C_{L_1}(H_1)] = P_1 \wedge H_1$. So as above each element of $[X, W_2]$ is centralized by a Sylow p-subgroups of J_1 .

Let $1 \neq v \in [X, W_2]$. We have proved that v is centralized by a Sylow p-subgroup S_i^* of J_i . By $(1^\circ)(c)$, $M_i^\circ \leq J_i$ so S_i^* contains a J_i - conjugate of Q_i and thus $v \in \mathcal{V}$. Since $v \in C_{W_2}(S_2^*)$, $C_{J_2}(v)$ contains the point-stabilizer of J_2 on W_2 with respect to S_2 . Since the exterior square of a natural module does not appear in the conclusion of the Point-Stabilizer Theorem C.8 and since W_1 is an quadratic offender on W_2 , we conclude that $W_1 \leq O_p(C_{J_2}(v))$ and so also $Y_1 = W_1 \leq Q_v^{\bullet}$. Hence Theorem D (4:2) holds.

Case 7. Case (7) of C.3 holds, that is, $\overline{J_1} \cong Spin_7(q)$ and W_1 is the corresponding spinmodule.

Observe that $\overline{J_i}$ is quasisimple and so $(1^\circ)(c)$ gives $\overline{M_i^\circ} = \overline{R_i} = \overline{J_i}$. Hence $M_i^\circ \leq R_i = J_i$. Put $L_i := O^{p'}(N_{M_i^\circ}(Z))$.

Note that W_i is a selfdual J_i -module (see for example A.65). Since by (7°) T_i acts \mathbb{K}_i -linearly on W_i and T_i/J_i is *p*-group we conclude from B.7(f) that W_i is also a self-dual T_i -module. Hence $C_{W_i}(W_j) = Z^{\perp}$ (in W_i) and so $|W_1/C_{W_1}(W_2)| = |Z| = |W_2/C_{W_2}(W_1)|$. Thus W_j is non-trivial quadratic offender on W_i and we can apply C.4(c).

Let A_i be maximal offender in $\overline{J_i}$ on W_i with $\overline{W_j} \leq A_i$. We conclude from C.4(c) that $Z = C_{W_i}(W_j)$, $|Z| = q^4 = |W_i/Z|$, $|[W_i, A_i]| = q^4$ and $O^{p'}(N_{\overline{J_i}}(A_i)/A_i) \cong Sp_4(q)$. It follows that $Z = [W_i, A_i]$, $N_{\overline{J_i}}(A_i) \leq N_{J_i}(Z)$, and $N_{\overline{J_i}}(A_i)$ is maximal parabolic subgroup of $\overline{J_i}$. Therefore $\overline{L_i} = O^{p'}(N_{\overline{J_i}}(A_i))$, and Z is natural $Sp_4(q)$ -module for L_i . Hence L_i is transitive on Z. In particular, each element of Z is p-central in L_i and so also in J_i . As $M_i^{\circ} \leq J_i$, this shows that each element of Z is centralized by a conjugate of Q_i in J_i , and so $Z^{\sharp} = \mathcal{V}$. Thus $(4^{\circ})(c)$ shows that $L = L_i^{\circ} \leq L_i$.

Let $g \in J_i$ with $Q_i^g \leq L_i$. Suppose for a contradiction that $[Z, Q_i^g] = 1$, and let Z_i be a 1dimensional \mathbb{K}_i subspace of Z. Then Q! implies that $Q_i^g \leq L_i$ and $Q_i^g \leq N_{J_i}(Z_i)$; in particular $\langle L_i, N_{J_i}(Z_i) \rangle \leq N_{J_i}(Q_i^g)$. On the other hand, by the action of J_i on the spin module $W_i, N_{J_1}(Z_i)$ is a maximal parabolic of J_i . We conclude that $N_{J_i}(Q^g) = N_{J_i}(Z_i)$ and $L_i \leq N_{J_i}(Z_i)$, a contradiction since L_i is transitive on Z. Thus $[Z, L] \neq 1$. As $Sp_4(q)$ is quasisimple, except for q = 2, we conclude that $L/C_L(Z) \cong Sp_4(q)$ or $Sp_4(2)'$. Put $E := C_{\overline{J_1}}(Z)$. In $\overline{J_1}$ we see that E is natural $\Omega_5(q)$ - respectively $\Omega_5(2)'$ -module for L and so by B.29 E has no L- submodule of order q^4 , Put $E := C_{\overline{J_1}}(Z)$. On the other hand, $\overline{W_2} \leq E$ and $|\overline{W_2}| = |W_2/Z| = q^4$, so $\overline{W_2}$ is an L-submodule of E order q^4 , a contradiction.

Case 8. Case (8) of C.3 holds, that is, $\overline{J_1} \cong Spin_{10}^+(q)$, and W_1 is the corresponding half-spinmodule.

Just as in the previous case, the fact that $\overline{J_i}$ is quasisimple implies that $\overline{M_i^{\circ}} = \overline{R_i} = \overline{J_i}$, and $M_i^{\circ} \leq R_i = J_i$. Put $L_i := O^{p'}(N_{M_i^{\circ}}(Z))$.

Since W_2 is a non-trivial offender on W_1 , C.4(d) shows that $|\overline{W_2}| = q^8 = |W_1/C_{W_1}(W_2)|$. Hence also W_1 is a non-trivial offender on W_2 , so W_i is a best offender on W_j , $W_i \leq J_j$, and we can apply C.4(d) to J_1 and J_2 . It follows that $Z = C_{W_i}(W_j)$, $|Z| = q^8$, and $O_p'(N_{\overline{J_i}}(\overline{W_j}))/\overline{W_j} \cong Spin_8^+(q)$. In particular, $N_{J_i}(\overline{W_j})$ contains a Sylow *p*-subgroup of $\overline{J_i}$ and $O_p(N_{\overline{J_i}}(\overline{W_i})) = \overline{W_i}$. The structure of $\overline{J_i}$ now implies that $N_{\overline{J_i}}(\overline{W_j})$ is maximal parabolic subgroup of $\overline{J_i}$. As $N_{J_i}(\overline{W_j})$ normalizes $Z = [W_i, W_j]$, we conclude that $\overline{L_i} = O^{p'}(N_{J_i}(\overline{W_j}))$, and Z is a natural $\Omega_8^+(q)$ -module for L_i (note here that a half-spin $Spin_8^+(q)$ -module is also a natural $\Omega_8^+(q)$ -module). Thus L_i preserves a non-degenerate quadratic form q_i of +-type on Z. Note that the q_i -singular elements in Z are p-central in L_i and so also in J_i . Hence each of these singular elements is centralized by a J_i -conjugate of Q_i . Observe that more than half of the non-trivial elements in Z are q_i -singular and so there exists $1 \neq v \in Z$ such that z is singular with respect to q_1 and q_2 . Thus, $v \in V$ and $Q_v \leq M_1 \cap M_2$. Let Z_1 be the 1-dimensional \mathbb{K}_1 -subspace of Z with $v \in Z_1$. From $Q_v \leq M_1^\circ \leq J_1$ we conclude that Q_v acts \mathbb{K}_1 -linearly on W_1 , and so $[Z_1, Q_v] = 1$. Thus by $Q!, N_{J_1}(Z_1) \leq N_G(Q_v)$. By the action of J_1 on the half-spin module $W_1, N_{J_1}(Z_1)$ is a maximal parabolic subgroups of J_1 distinct from the maximal parabolic subgroup $N_{J_1}(Z)$. Hence $O_p(N_{\overline{J_1}}(Z)) \leqslant O_p(N_{\overline{J_1}}(Z_1))$. As seen above $\overline{W_2} = O_p(N_{\overline{J_1}}(Z))$ and so $W_2 \leqslant O_p(N_{J_1}(Z_1))$ and $Y_2 \leqslant O_p(N_G(Q_v))$. Thus $Y_2 \leqslant Q_2^\bullet$ and $Y \leqslant Q^\bullet$. Moreover C.22 shows that $Y_1 = W_1$. Therefore Theorem D (4:3) holds.

Case 9. Case (9) of C.3 holds, that is, $\overline{J_1} \cong 3$ ·Alt(6) and $|W_1| = 2^6$.

As in the $Sp_{2n}(q)$ -case for odd q, the action of $Z(\overline{J_1})$ on Y_1 and $C_{Y_1}(J_1) = 1$ give $W_1 = Y_1$ and thus also $W_2 = Y_2$. This action also shows that $\mathbb{K}_1 \cong \mathbb{F}_4$. Since $W_i = Y_i$, Y_2 is an nontrivial offender on Y_1 . Hence C.4(e) shows that $|Y_2/C_{Y_2}(Y_1)| = 4 = |Y_1/C_{Y_1}(Y_2)|$. In particular, Y_1 is a non-trivial offender on Y_2 . Now C.4(e) shows that the non-trivial offenders in $\overline{J_i}$ on W_i are conjugate in $\overline{J_i}$, $|Z| = 2^4$, and $Z = C_{Y_i}(Y_j)$. Since also Y_2^u is an offender on $Y_1^u = Y_2$ we see in $\overline{M_2}$ that $\overline{Y_2^{uh}} = \overline{Y_1}$ for some $h \in M_2$. Put g := uh. Then $Y_1^g = Y_2^h = Y_2$, $\overline{Y_2^g} = \overline{Y_1}$ (in $\overline{M_2}$) and $Z^g = [Y_1^g, Y_2^g] = [Y_2, Y_2^g] = [Y_2, Y_1] = Z$. Define

$$\Delta := \{ [y_1, y_2] \mid y_1 \in Y_1 \setminus Z, y_2 \in Y_2 \setminus Z \}.$$

For $y_j \in Y_j \setminus Z$, $[Y_i, y_j]$ is a 1-dimensional \mathbb{K}_i -subspace of Y_i . It follows that

$$\Delta_i := \left\{ \left[Y_i, y_j \right]^{\sharp} \mid y_j \in Y_j \backslash Z \right\}$$

is a partition of Δ into three subsets of size three. From $(Y_1, Y_2)^g = (Y_2, Y_2^g)$ and $\overline{Y_2^g} = \overline{Y_1}$ (in $\overline{M_2}$) we conclude that $\Delta^g = \Delta$, $\Delta_1^g = \Delta_2$ and $\Delta_2^g = \Delta_1$. Thus $g \in N_G(\{\Delta_1, \Delta_2\})$. On the other hand, in $\overline{M_1}$, $\overline{Y_2}$ is normalized by a Sylow 2-subgroup of $\overline{M_1}$. It follows that $C_G(\{\Delta_1, \Delta_2\})$ contains a Sylow 2-subgroup of G. Thus $N_G(\{\Delta_1, \Delta_2\}) = C_G(\{\Delta_1, \Delta_2\})$ and $\Delta_1 = \Delta_2$, and so $[y_1, Y_2]^{\sharp} \in \Delta_1$ for $y_1 \in Y_1 \setminus Z$. But $[y_1, Y_2]^{\sharp}$ has an element in common with each $[Y_1, y_2]$, $y_2 \in Y_2 \setminus Z$ of Δ_1 (namely $[y_1, y_2]$), a contradiction since Δ_1 is a partition of Δ .

4.15. Proof of Theorem D:

By 4.9(d) the hypothesis of the Q!FF-Module Theorem C.24 is fulfilled for $(\overline{M_i}, Y_i, \overline{Q_i})$ in place of (H, V, Q). Hence Theorem D follows from 4.12 if C.24(1) holds, from 4.13 if C.24(2) holds and W_1 is not a simple R_1 -module, and from 4.14 if C.24(2) holds and W_1 is a simple R_1 -module.

CHAPTER 5

The Short Asymmetric Case

In this chapter we begin to investigate the action of $M \in \mathfrak{M}_G(S)$ on Y_M , when Y_M is asymmetric. This investigation will occupy the next five chapters. In this chapter we treat the short asymmetric case, that is, in addition,

 $Y_M \leq O_p(L)$ for all $L \leq G$ with $O_p(M) \leq L$ and $O_p(L) \neq 1$.

For all such L asymmetry shows that $L \cap M^{\dagger}$ is a parabolic subgroup of L and then shortness that $\langle Y_M^L \rangle$ is an elementary abelian normal subgroup of L (see 2.6).

The proof of Theorem E is carried out using particular choices for L, namely the Y_i -indicators L_i of a symmetric pair (V_1, V_2) . It is here where for the first time *p*-minimal subgroups enter the stage. Apart from technical details, Y_i is a conjugate of Y_M , $V_i = \langle Y_i^{L_i} \rangle$ is elementary abelian, and

$$V_1V_2 \leq L_1 \cap L_2 \text{ and } 1 \neq [V_1, V_2] \leq V_1 \cap V_2.$$

From a formal point of view the last property is very similar to the one discussed at the beginning of the previous chapter. But in contrast to the situation there neither is V_i a *p*-reduced normal subgroup of L_i nor are we really interested in the structure of L_i but in the structure of $N_G(Y_i)/C_G(Y_i)$. So we use the action of L_i on non-central L_i -chief factors of V_i to get information about the action of $N_G(Y_i)$ on Y_i . This is carried out be a rather technical argument. A maybe easier way to understand how the action of L_i on V_i influences the action of $N_G(Y_i)$ on Y_i is by studying the more transparent situation of the *qrc*-Lemma in [**MS4**], from where some of our arguments are borrowed.

Here is the main result of this chapter.

THEOREM E. Let G be finite \mathcal{K}_p -group, $S \in Syl_p(G)$, and let $Q \leq S$ be a large subgroup of G. Suppose that $M \in \mathfrak{M}_G(S)$ such that

- (i) $Q \not \equiv M$ and $\mathcal{M}_G(S) \neq \{M^{\dagger}\}, and$
- (ii) Y_M is short and asymmetric in G.

Then one of the following holds, where q is a power of p and $\overline{M} := M/C_M(Y_M)$:

- (1) (a) $\overline{M^{\circ}} \cong SL_n(q), n \ge 3$, and $[Y, M^{\circ}]$ is a corresponding natural module for $\overline{M^{\circ}}$.
 - (b) If $Y \neq [Y, M^{\circ}]$ then $\overline{M^{\circ}} \cong SL_3(2)$ and $|Y/[Y, M^{\circ}]| = 2$.
- (2) (a) $\overline{M^{\circ}} \cong Sp_{2n}(q), n \ge 2$, or $Sp_4(q)'$ (and q = 2), and $[Y, M^{\circ}]$ is the corresponding natural module for $\overline{M^{\circ}}$.

(b) If $Y \neq [Y, M^{\circ}]$, then p = 2 and $|Y/[Y, M^{\circ}]| \leq q$.

- (3) There exists a unique \overline{M} -invariant set \mathcal{K} of subgroups of \overline{M} such that Y_M is a natural $SL_2(q)$ -wreath product module for \overline{M} with respect to \mathcal{K} . Moreover, $\overline{M^{\circ}} = O^p(\langle \mathcal{K} \rangle)\overline{Q}$ and Q acts transitively on \mathcal{K} .
- (4) (a) $\overline{M} \cong O_{2n}^{\epsilon}(2), \ \overline{M^{\circ}} \cong \Omega_{2n}^{\epsilon}(2), \ 2n \ge 4 \ and \ (2n,\epsilon) \ne (4,+)^{1} \ and \ [Y,M] \ is \ a \ corresponding natural module.$
 - (b) If $Y_M \neq [Y_M, M]$, then $\overline{M} \cong O_6^+(2)$ and $|Y_M/[Y_M, M]| = 2$.
 - (c) $C_G(y) \leq M^{\dagger}$ and $C_G(y)$ is not of characteristic 2 for every non-singular element $y \in [Y, M]$.

¹ $O_4^+(2)$ appears as $SL_2(2) \wr C_2$ in Case (3)

Table 1 lists examples for Y_M, M and G fulfilling the hypothesis of Theorem E.

TABLE 1. Examples for Theorem E

Case	$[Y_M, M^\circ]$ for M°	\mathbf{c}	examples for G			
3	nat $SL_2(q)$		${}^{2}F_{4}(q)$			
3	nat $SL_2(2)$	1	$Mat_{12}(.2), {}^{2}F_{4}(2)'(.2)$			
3	nat $SL_2(3)$	1	Th			
Here $c = Y_M/[Y_M, M^\circ] .$						

We fix the following hypothesis and notation for the remainder of this chapter. For the definition of a symmetric pair and a Y-indicator see Definition 2.19.

HYPOTHESIS AND NOTATION 5.1. The groups G, S, Q, M^{\dagger} , and M have the properties given in the hypothesis of Theorem E. In particular $Q \notin M^{\dagger}$, $\mathcal{M}_G(M) = \{M^{\dagger}\}$, and $Y_M = Y_{M^{\dagger}}$ is asymmetric and short in G

By 2.23 there exist conjugates Y_1 and Y_2 of Y_M such that (Y_1, Y_2) is a symmetric pair; i.e., there exist Y_i -indicators L_i for i = 1, 2 such that for $V_i := \langle Y_i^{L_i} \rangle$

$$V_1V_2 \leq L_1 \cap L_2$$
 and $[V_1, V_2] \neq 1$.

Recall from 2.20 that V_1 and V_2 are elementary abelian p-subgroups. We choose such Y_1, Y_2, L_1 and L_2 with the additional property that $|L_1||L_2|$ is minimal. We further fix:

- (a) $\{i, j\} = \{1, 2\}.$
- (b) (1) If case 2.19(2:i) holds for (Y_i, L_i) then $Q_i \in Q^G$ such that $Q_i^{\bullet} \leq N_G(Y_i)$ and $L_i \leq$ $N_G(Q_i).$
 - (2) If case 2.19(2:ii) holds for (Y_i, L_i) then $S_i \in Syl_p(N_G(Y_i))$ such that $S_i \cap L_i \in$ $Syl_{p}(N_{L_{i}}(Y_{i})), \text{ and } [Y_{i}, O^{p}(L_{i})] \leq [\Omega_{1}Z(S_{i}), O^{p}(L_{i}))] \neq 1.$
- (c) $R_i := O_p(L_i).$
- (d) $g_i \in G$ such that $Y_M^{g_i} = Y_i$ and $M^{g_i} \cap L_i$ is a parabolic subgroup of L_i . Note that that such a g_i exists since $N_{L_i}(Y_i)$ is a parabolic subgroup of L_i and M a parabolic subgroup of $M^{\dagger} = N_G(Y_M)$.
- (e) $M_i := M^{g_i}$ and $M_i^{\dagger} := M^{\dagger g_i}$. In particular, $M_i^{\dagger} = M_i C_G(Y_i) = N_G(Y_i)$, see 2.2(d).

(a) $V_i \leq R_i \leq N_{L_i}(Y_i) \leq M_i^{\dagger}$. In particular, $[Y_i^t, V_i] \leq Y_i^t \cap V_i$ and $[Y_i^t, R_i] \leq$ Lemma 5.2. $Y_i^t \cap R_i \text{ for all } t \in L_i.$

(b) Suppose 2.19(2) holds for (L_i, Y_i) . Then $O^p(L_i) \leq M_i^{\dagger}$ and $[Y_i, O^p(L_i)] \neq 1$.

PROOF. Since by definition V_i is normal *p*-subgroup of L_i , $V_i \leq R_i$. Also $N_{L_i}(Y_i) \leq N_G(Y_i) =$ M_i^{\dagger} .

Suppose that Case 2.19(1) holds. Then $Y_i \leq L_i$ and (a) holds.

Suppose that 2.19(2) holds. Then $N_{L_i}(Y_i)$ is a maximal and parabolic subgroup of L_i . In particular, $N_{L_i}(Y_i) \neq L_i$ and $N_{L_i}(Y_i)$ contains a Sylow *p*-subgroup T_i of L_i . Hence $R_i = O_p(L_i) \leq$ $T_i \leq N_{L_i}(Y_i), L_i = T_i O^p(L_i) = N_{L_i}(Y_i) O^p(L_i)$ and $O^p(L_i) \leq N_{L_i}(Y_i)$; in particular, $O^p(L_i) \leq N_{L_i}(Y_i)$ $C_{L_i}(Y_i).$

Thus (a) and (b) hold.

LEMMA 5.3. Suppose that one of the following holds:

- (i) There exists $Y \in Y_i^{L_i}$ with $1 \neq [Y, V_j] \leq Y$, or
- (ii) $V_i \leq R_i$.

Then

- (a) Case 1 of 2.19 holds for (L_i, Y_i) .
- (b) $L_i = Y_i V_i = R_i$. In particular, $V_i \leq R_i$ and L_i is a p-group.
- (c) $Y_i \triangleleft L_i$. In particular, $V_i = Y_i$.

PROOF. Suppose first that (i) holds. Then YV_j is a *p*-group with $Y \leq YV_j$. Thus YV_j fulfills Case 1 in the Definition 2.19 of Y-indicator, so YV_j is a Y-indicator. Moreover

$$YV_j \leq V_iV_j \leq L_j$$
 and $1 \neq [Y, V_j].$

Hence (Y, Y_j) is a symmetric pair and $|YV_j||L_j| \leq |L_i||L_j| = |L_1||L_2|$. The minimal choice of $|L_1||L_2|$ now implies $L_i = YV_j$. Then $Y \leq L_i$ and so $Y = V_i = Y_i$. If Case 2 of 2.19 holds for (L_i, Y_i) then $Y_i \leq L_i$, which is not the case. So Case 1 holds for (L_i, Y_i) , and the Lemma is proved in this case.

Suppose next that (ii) holds. Since $V_i = \langle Y_i^{L_i} \rangle$ and $[V_i, V_j] \neq 1$, we can choose $Y \in Y_i^{L_i}$ with $[Y, V_j] \neq 1$. By 5.2(a) $[Y, R_i] \leq Y$ and by assumption $V_j \leq R_i$. Hence $1 \neq [Y, V_j] \leq Y$. Thus (i) holds, and we are done by the previous case.

LEMMA 5.4. Suppose that $V_j \leq R_i$.

- (a) Case 2 of 2.19 holds for (L_i, Y_i) . In particular, $Y_i \not \equiv L_i$ and $L_i \not \leq M_i^{\dagger}$.
- (b) $C_{V_i}(V_i) \leq R_i$.
- (c) L_i is V_iV_j -minimal.
- (d) There exists $X_i \in Y_i^{L_i}$ such that $[V_j, X_i] = 1$ and $N_{L_i}(X_i)$ is the unique maximal subgroup of L_i containing $V_i V_j$. In particular, $Y_i \not \equiv L_i$ and $L_i = \langle V_j, V_j^x \rangle V_i$ for every $x \in L_i \setminus N_{L_i}(X_i)$.

PROOF. Since $V_j \leq R_i$ we know that L_i is a not a *p*-group, so Case 2 of 2.19 holds for (L_i, Y_i) . Then $N_{L_i}(Y_i)$ is a maximal and parabolic subgroup of L_i . In particular $Y_i \leq L_i$, and as V_j is a *p*-subgroup of L_i , $V_j^g \leq N_{L_i}(Y_i)$ for some $g \in L_i$. By 5.2(a) also $V_i^g = V_i \leq N_{L_i}(Y_i)$. Put $X_i := Y_i^{g^{-1}}$. Then $V_i V_j \leq N_{L_i}(X_i)$ and $V_i = \langle X_i^{L_i} \rangle$.

- 1°. There exist $L_i^* \leq L_i$ and $h \in L_i$ such that for $Y_i^* := X_i^h$:
- (a) L_i^* is $V_i V_j$ -minimal and $N_{L_i^*}(Y_i^*)$ is the unique maximal subgroup of L_i^* containing $V_i V_j$. In particular, $V_j \leq O_p(L_i^*)$.
- (b) $\langle V_j^{L_i^*} \rangle V_i = L_i^*$ and $\langle V_j, V_j^x \rangle V_i = L_i^*$ for all $x \in L_i^* \backslash N_{L_i^*}(Y_i^*)$.

Observe that the *L*-Lemma 1.41 applies with $(L_i, V_j, N_{L_i}(X_i))$ in place of (H, A, M). Hence, there exist $L \leq L_i$ and $h \in L_i$ such that for $Y_i^* := X_i^h$

(*)
$$L = \langle V_j, V_j^x \rangle O_p(L) \quad \text{for all } x \in L \setminus N_L(Y_i^*),$$

and $N_L(Y_i^*)$ is the unique maximal subgroup of L containing $V_j O_p(L)$.

Pick $t \in L \setminus N_L(Y_i^*)$ such that $L_i^* := \langle V_j, V_j^t \rangle V_i$ is minimal. Let $x \in L_i^* \setminus N_{L_i^*}(Y_i^*)$. Then $\langle V_j, V_j^x \rangle V_i \leq L_i^*$, and the minimal choice of L_i^* shows $\langle V_j, V_j^x \rangle V_i = L_i^*$. By (*), $L = L_i^* O_p(L)$. Since $V_j O_p(L) \leq N_L(Y_i^*) < L$ we conclude that $V_i V_j \leq N_{L_i^*}(Y_i^*) < L_i^*$. In particular, $N_{L_i^*}(Y_i^*)$ is the unique maximal subgroup of L_i^* containing $V_i V_j$. Thus, there exists $x \in L_i^* \setminus N_{L_i^*}(Y_i^*)$, and so $L_i^* = \langle V_j, V_j^x \rangle V_i = \langle V_j^{L_i^*} \rangle$. Hence (1°) holds.

We fix the groups L_i^* and Y_i^* given in (1°) ; in particular, $Y_i^* = X_i^h = Y_i^{g^{-1}h}$ for certain $g, h \in L_i$. Furthermore we set $V_i^* := \langle Y_i^{*L_i^*} \rangle$. Note that $V_i \leq C_{L_i^*}(V_i^*) \leq N_{L_i^*}(Y_i^*)$. Since $N_{L_i^*}(Y_i^*)$ is the unique maximal subgroup of L_i^* containing $V_i V_j$, the assumptions of 1.42(e) are fulfilled with $(C_{L_i^*}(V_i^*), N_{L_i^*}(Y_i^*))$ in place of (N, L_0) . Thus $C_{L_i^*}(V_i^*)$ is *p*-closed. Also by $(1^\circ)(a) V_j \leq O_p(L_i^*)$, and it follows that

2°.
$$C_{V_i}(V_i^*) \leq O_p(L_i^*) \text{ and } [V_j, V_i^*] \neq 1.$$

Next we show:

$$3^{\circ}$$
. L_i^* is an Y_i^* -indicator.

By (1°)(a) L_i^* is $V_i V_j$ -minimal and so also *p*-minimal. Moreover, $N_{L_i^*}(Y_i^*)$ is a maximal and parabolic subgroup of L_i^* . Recall that (V_i, V_j) is a symmetric pair with $V_j \leq R_i$. Thus, L_i is not a *p*-group and one of the cases 2.19(2:i) or (2:ii) holds for L_i and Y_i .

Suppose that 2.19(2:i) holds for L_i and Y_i . Then $L_i^* \leq L_i \leq N_G(Q_i) \leq N_G(Q_i^{\bullet})$ and $Q_i^{\bullet} \leq N_G(Y_i)$. Since $Y_i^* = X_i^h = Y_i^{g^{-1}h}$ and $g^{-1}h \in L_i \leq N_G(Q_i^{\bullet})$, this implies $Q_i^{\bullet} \leq N_G(Y_i^*)$ and so L_i^* is an Y_i^* -indicator.

Suppose next that 2.19(2:ii) holds for L_i and Y_i . Let $T_i^* \in Syl_p(N_{L_i^*}(Y_i^*))$ with $V_iV_j \in T_i^*$ and let $T_i \in Syl_p(N_{L_i}(Y_i^*))$ with $T_i^* \in T_i$. Since $S_i \cap L_i \in Syl_p(N_{L_i}(Y_i))$ and $Y_i^* \in Y_i^{L_i}$, there exists $t \in L_i$ with $Y_i^t = Y_i^*$ and $T_i = S_i^t \cap L_i$. Put $S_i^* := S_i^t$. Then $T_i = S_i^* \cap L_i$, in particular $T_i^* \leq S_i^* \cap L_i^*$. Since $S_i \in Syl_p(N_G(Y_i))$ we have $S_i^* \in Syl_p(N_G(Y_i^*))$. As $N_{L_i^*}(Y_i)$ is a parabolic subgroup of L_i^* , $T_i^* \in Syl_p(L_i^*)$, and $T_i^* \leq S_i^* \cap L_i^*$ gives $T_i^* = S_i^* \cap L_i^*$. We collect:

$$S_i^* \in Syl_p(N_G(Y_i^*)), \ V_iV_j \leqslant T_i^* = S_i^* \cap L_i^* \in Syl_p(N_{L_i^*}(Y_i^*)) \text{ and } S_i^* \cap L_i = T_i \in Syl_p(N_{L_i}(Y_i^*)).$$

Also $[\Omega_1 Z(S_i), O^p(L_i)] \neq 1$ implies $[\Omega_1 Z(S_i^*), O^p(L_i)] \neq 1$.

Note that L_i is *p*-minimal, $N_{L_i}(Y_i^*)$ is the unique maximal subgroup of L_i containing $S_i^* \cap L_i$, $L_i^* \leq N_{L_i}(Y_i^*)$ and $L_i^* = O^p(L_i)(S_i^* \cap L_i^*)$. Hence

$$L_i = \langle S_i^* \cap L_i, L_i^* \rangle = \langle S_i^* \cap L_i, O^p(L_i^*) \rangle$$

Thus $[\Omega_1 Z(S_i^*), O^p(L_i^*)] \neq 1$. Moreover,

$$L_i = \langle O^p(L_i^*)^{S_i^* \cap L_i} \rangle (S_i^* \cap L_i) \quad \text{and} \quad O^p(L_i) = \langle O^p(L_i^*)^{S_i^* \cap L_i} \rangle$$

Suppose that $[Y_i^*, O^p(L_i^*)] \leq [\Omega_1 Z(S_i^*), O^p(L_i^*)]$. Then

$$[Y_i^*, O^p(L_i)] = [Y_i^*, \langle O^p(L_i^*)^{S_i^* \cap L_i} \rangle] = \langle [Y_i^*, O^p(L_i^*)]^{S_i^* \cap L_i} \rangle \leq \langle [\Omega_1 Z(S_i^*), O^p(L_i^*)]^{S_i^* \cap L_i} \rangle$$
$$= [\Omega_1 Z(S_i^*), \langle O^p(L_i^*)^{S_i^* \cap L_i} \rangle] = [\Omega_1 Z(S_i^*), O^p(L_i)].$$

Conjugation by t^{-1} shows $[Y_i, O^p(L_i)] \leq [\Omega_1 Z(S_i), O^p(L_i)]$, a contradiction to 2.19(2:ii).

Hence $[Y_i^*, O^p(L_i^*)] \leq [\Omega_1 Z(S_i^*), O^p(L_i^*)]$ and so also in this case L_i^* is a Y_i^* indicator.

By (2°) and (3°) we know that $[V_i^*, V_j] \neq 1$ and that L_i^* is a Y_i^* -indicator. So (Y_i^*, Y_j) is a symmetric pair, and the minimality of $|L_i||L_j|$ yields $L_i = L_i^*$. Hence $V_i^* = V_i$, and (2°) gives $C_{V_j}(V_i) \leq O_p(L_i^*) = R_i$. Since V_j normalizes Y_i^* we have $[V_j, Y_i^*] \leq Y_i^*$. If $[V_j, Y_i^*] \neq 1$ then hypothesis 5.3(i) is satisfied, and 5.3(b) shows that $L_i = R_i$. But then $V_j \leq R_i$, contrary to the hypothesis of the lemma. If $[V_j, Y_i^*] = 1$ then (1°) shows that (b) holds with Y_i^* in place of X_i . \Box

Recall from Definition A.7 that a strong dual offender A on a module V satisfies [V, A] = [v, A] for every $v \in V \setminus C_V(A)$.

LEMMA 5.5. Suppose that there exists $A \leq M$ such that the following hold:

- (i) A is a non-trivial strong dual offender on Y_M .
- (ii) If $|A/C_A(Y_M)| = 2$, then $C_G([Y_M, A]) \leq M^{\dagger}$.

Then Theorem E holds.

PROOF. By 1.57(b) Y_M is a faithful *p*-reduced *Q*!-module for \overline{M} with respect to \overline{Q} . Since \overline{A} is a non-trivial strong dual offender on Y_M , we can apply C.27. This shows that Theorem E holds, except that, in Case C.27(4) ($[Y_M, M]$ a natural $O_{2n}^{\epsilon}(2)$ -module for M), we still have to verify that $C_G(y)$ is not of characteristic 2 for every non-singular element $y \in [Y_M, M]$.

By C.27(4:c) $|\overline{A}| = 2$. Since \overline{A} is a strong dual offender, this gives $|Y_M/C_Y(A)| = 2$ and $|[Y_M, A]| = 2$. Let $1 \neq y \in [Y_M, A]$. Then, for example by B.9(c), y is non-singular, and by 3.1(a) every non-singular element of $[Y_M, M]$ is conjugate to y. By Hypothesis (ii) $C_G([Y_M, A]) \leq M^{\dagger}$ and so also $C_G(y) \leq M^{\dagger}$. Hence the hypothesis of Theorem C is fulfilled, and we conclude that $C_G(y)$ is not of characteristic 2.

LEMMA 5.6. Suppose that $V_i \leq R_i$ and let $D \leq V_i$.

- (a) $[Y_i, O^p(L_i)] \neq 1$. In particular, $[V_i, O^p(L_i)] \neq 1$ and there exists non-central chief factor for L_i on V_i .
- (b) L_i is *p*-irreducible.
- (c) Let X be any L_i -section of V_j with $[X, O^p(L_i)] \neq 1$. Then $C_D(X) \leq D \cap R_j$. In particular, if $D \leq R_j$ then $[X, D] \neq 1$.
- (d) Let X be any L_i -section of V_j with $[X, O^p(L_i)] \neq 1$ and $[X, O_p(L_i)] = 1^2$. Then $C_D(X) = D \cap R$ and

 $|X/C_X(D)| \ge |D/C_D(X)| = |D/D \cap R_i| = |DR_i/R_i|$

PROOF. Note first that by 5.4(a) Case 2 of 2.19 holds for (L_i, Y_i) . In particular, L_i is p-minimal.

- (a): This holds by 5.2(b).
- (b): Since L_i is *p*-minimal, L_i is also *p*-irreducible, see 1.37.

(c): As V_i is an elementary abelian *p*-group, X is an $\mathbb{F}_p L_i$ -module. Since L_i is *p*-irreducible and D is *p*-subgroup of L_i , 1.33(b) shows that $C_D(X) \leq O_p(L_i) = R_i$. Thus (c) holds.

(d): By (c) $C_D(X) \leq D \cap R_i$, and since by hypothesis R_i centralizes X, we get $C_D(X) = D \cap R_i$. Since L_i is *p*-minimal, C.13(e) shows that no subgroup of L_i is an over-offender on X. As $D \leq V_i$, D is an elementary abelian *p*-group, and we conclude that $|X/C_X(D)| \geq |D/C_D(X)|$. Together with $C_D(X) = D \cap X$ this gives (d).

LEMMA 5.7. Suppose that $Y_j \leq R_i$.

- (a) $[V_i, V_j \cap R_i] \leq Y_i \cap Z(L_i).$
- (b) $Y_j \cap Z(L_i) = 1.$

(*)

- (c) $[V_i \cap R_j, V_j] \cap Z(L_i) = 1.$
- (d) $[V_i \cap R_i, V_j \cap R_i] = 1.$
- (e) $C_{V_i}(V_j) = [V_i, V_j] C_{V_i}(L_i) = [V_i, v] C_{V_i}(L_i) = C_{V_i}(v) = C_{V_i}(Y_j)$ for every $v \in V_j \setminus R_i$.

PROOF. Since $V_j \leq R_i$ we can apply 5.4. By 5.4(d) there exists $X_i \in Y_i^{L_i}$ with $[X_i, V_j] = 1$ and

(+)
$$L_i = \langle V_j, V_j^x \rangle V_i \quad \text{for every } x \in L_i \backslash N_{L_i}(X_i).$$

Recall from 2.20 that V_i and V_j are elementary abelian *p*-groups.

(a): Let $t \in L_i$. Since $[X_i, V_j] = 1$ we have $[X_i^t, V_j^t] = 1$. By 5.2(a) $[X_i^t, R_i] \leq X_i^t \cap R_i$. As V_j is abelian, it follows that

$$[X_i^t, V_j \cap R_i] \leq X_i^t \cap V_j \leq C_{X_i^t}(\langle V_j, V_j^t \rangle V_i).$$

If $t \in N_{L_i}(X_i)$ then $[X_i^t, V_j] = 1$, and if $t \notin N_{L_i}(X_i)$ then by (+) and the previous line $[X_i^t, V_j \cap R_i] \leq X_i^t \cap Z(L_i)$. Since $X_i^t \cap Z(L_i) = Y_i \cap Z(L_i)$ for every $t \in L_i$, (a) holds.

(b): Suppose that $Y_j \cap Z(L_i) \neq 1$. Then $N := N_G(Y_j \cap Z(L_i))$ is a *p*-local subgroup of *G*. Also $O_p(M_j) \leq N$ since $Y_j \leq Z(O_p(M_j))$. Hence $Y_j \leq O_p(N)$ since Y_j is short.³ But this contradicts $L_i \leq N$ and $Y_j \leq R_i$.

(c): According to (b) it suffices to show that

$$[V_j, V_i \cap R_j] \leqslant Y_j.$$

If $V_i \leq R_j$, then 5.3 gives $V_j = Y_j$ and so (*) holds. If $V_i \leq R_j$, then the hypothesis of this lemma is satisfied with *i* and *j* interchanged, and (a) yields (*).

(d): By (a) and (c), $[V_i \cap R_j, V_j \cap R_i] \leq Z(L_i) \cap [V_i \cap R_j, V_j] = 1.$

(e): Let $v \in V_j \setminus R_i$. By 5.4(c),(d) L_i is $V_i V_j$ -minimal and $N_{L_i}(X_i)$ is a maximal subgroup of L_i containing $V_i V_j$. So by 1.42(d) $\bigcap N_{L_i}(X_i)^{L_i}$ is *p*-closed. Hence there exists $t \in L_i$ with $v \notin N_{L_i}(X_i^t)$. Thus by (+)

$$L_i = \langle V_j^t, V_j^{tv} \rangle V_i = \langle v, V_j^t \rangle V_i.$$

²Observe that condition holds for any non-central chief-factor of L_i on V_i

 $^{^{3}}$ Apart from the existence of symmetric pairs, this is the only place in this chapter where one needs shortness and not only *char p*-shortness

Since V_i normalizes V_j and V_j is abelian, $[V_i, V_j] \leq V_i \cap V_j \leq C_{V_i}(V_j)$. As $[X_i^t, V_j^t] = 1$, we get

$$C_{V_i}(v) \cap [V_i, V_i^t] X_i^t \leq C_{V_i}(v) \cap C_{V_i}(V_i^t) = C_{V_i}(\langle v, V_i^t \rangle V_i) = C_{V_i}(L_i)$$

and

$$V_i = \langle Y_i^{L_i} \rangle = \langle X_i^{tL_i} \rangle = [V_i, L_i] X_i^t = [V_i, v] [V_i, V_j^t] X_i^t$$

Therefore,

$$C_{V_i}(v) = [V_i, v](C_{V_i}(v) \cap [V_i, V_j^t]X_i^t) = [V_i, v]C_{V_i}(L_i) \leq [V_i, V_j]C_{V_i}(L_j) \leq C_{V_i}(V_j) \leq C_{V_i}(v),$$

so equality holds everywhere in the preceding chain of inclusions; in particular $C_{V_i}(V_j) = C_{V_i}(v)$. Since $Y_j \leq R_i$ we can choose $v \in Y_j \setminus R_i$. Then $v \in Y_j \leq V_j$, and we conclude that also $C_{V_i}(Y_j) = C_{V_i}(V_j)$. Thus (e) holds.

LEMMA 5.8. Suppose that $Y_j \leq R_i$ and L_i has a unique non-central chief factor on V_i . Then Theorem E holds.

PROOF. As $Y_j \leq R_i$, 5.4(a) shows that we are in case 2.19(2). Suppose that 2.19(2:ii) holds for the Y_i -indicator L_i . Then $[\Omega_1 Z(S_i), O^p(L_i)] \neq 1$, and $[Y_i, O^p(L_i)] \leq [\Omega_1 Z(S_i), O^p(L_i)]$ (see 5.1(b)). Hence L_i has a non-trivial chief factor on both, $[\Omega_1 Z(S_i), O^p(L_i)]$ and $V_i/[\Omega_1 Z(S_i), O^p(L_i)]$, a contradiction.

Thus 2.19(2:i) holds for L_i , so $L_i \leq N_G(Q_i) \leq N_G(Q_i^{\bullet})$ and $Q_i^{\bullet} \leq N_G(Y_i)$. Since $V_i = \langle Y_i^{L_i} \rangle$, we conclude that $Q_i^{\bullet} \leq N_G(V_i)$. Hence $L_i Q_i^{\bullet}$ acts on V_i , $Q_i^{\bullet} \leq O_p(L_i Q_i^{\bullet})$ and Q_i^{\bullet} centralizes any chief factor of $L_i Q_i^{\bullet}$ on V_i . It follows that $L_i Q_i^{\bullet}$ has a unique non-central chief factor on V_i . Set $A_i := [O^p(L_i Q_i^{\bullet}), O_p(L_i Q_i^{\bullet})].$

1°. Suppose that $[C_{V_i}(A_i), O^p(L_i)] = 1$. Then Theorem E holds.

Note that we can apply A.45 with $(L_i Q_i^{\bullet}, Y_i, A_i, S_i, V_i)$ in place of (H, Y, R, T, V). We conclude that one of the following holds:

- (A) $[V_i, A_i] = 1$,
- (B) A_i is a non-trivial strong dual offender on Y_i ,
- (C) There exist $A_i O^p(L_i Q_i^{\bullet})$ -invariant subgroups $Z_1 \leq X_1 \leq Z_2 \leq X_2$ of V_i such that for $l = 1, 2, X_l/Z_l$ is a non-central simple $O^p(L_i Q_i^{\bullet})$ -module and $X_l \cap Y_i \leq Z_l$.

Suppose that (A) holds. Then $C_{V_i}(A_i) = V_i$, a contradiction since $[C_{V_i}(A_i), O^p(L_i)] = 1$ in the current case while L_i has a non-central chief factor on V_i .

Suppose that (B) holds. By A.32(a) any strong dual offender is quadratic and so $[Y_i, A_i] \leq C_{V_i}(A_i) \leq C_{V_i}(O^p(L_i))$. Since $O^p(L_i) \leq M_i^{\dagger}$ by 5.2(b), this gives $C_G([Y_i, A_i]) \leq M_i^{\dagger}$. Thus the hypothesis of 5.5 is fulfilled, and we conclude that Theorem E holds.

Suppose that (C) holds. Let $l \in \{1, 2\}$ and put $X_l^* := \langle (X_l \cap Y_i)^{O^p(L_i)} \rangle$. Then $X_1^* \leq X_1 \leq Z_2$ and $X_1^* \leq X_2^*$. Since X_l/Z_l is a non-central simple $O^p(L_i)$ -module and $X_l \cap Y_i \leq Z_l$, we have $[X_l^*, O^p(L_i)] \leq Z_l$. Thus $[X_1^*, O^p(L_i)] \neq 1$, and since $X_1^* \leq Z_2$, $[X_2^*, O^p(L_i)] \leq X_1^*$. By 5.4(d) V_j centralizes an L_i -conjugate of Y_i . Thus there exists $t \in L_i$ with $[Y_i, V_j^t] = 1$. Also by 5.4(c), L_i is V_iV_j minimal and so $L_i = O^p(L_i)V_iV_j = O^p(L_i)V_iV_j^t$. As $V_iV_j^t$ centralizes Y_i and so also $X_l \cap Y_i$, this implies that $X_l^* = \langle (X_l \cap Y_i)^{L_i} \rangle$. Hence X_l^* is L_i -invariant for l = 1, 2, and L_i has at least two non-central chief factors on V_i , a contradiction.

 2° . Suppose that $[C_{V_i}(A_i), O^p(L_i)] \neq 1$. Then Theorem E holds.

Put $D_i := C_{V_i}(O_p(L_iQ_i^{\bullet}))$. Since Q_i is large, $C_G(Q_i) \leq Q_i \leq Q_i^{\bullet}$, so $D_i \leq Z(Q_i^{\bullet}) \leq Z(Q_i)$. Also as $Q_i^{\bullet} \leq O_p(L_iQ_i^{\bullet})$, we have $D_i \leq C_{V_i}(A_i)$ and

$$[O_p(L_iQ_i^{\bullet}), O^p(L_i)] \leq A_i \leq C_{L_iQ_i^{\bullet}}(C_{V_i}(A_i)),$$

so the $P \times Q\text{-Lemma implies}$

 $(*) \qquad \qquad \left[D_i, O^p(L_i)\right] \neq 1.$

Since $V_j \leq R_i$, 5.6(c) applied with (V_j, D_i) in place of (D, X) gives $[V_j, D_i] \neq 1$. Moreover, as $[D_i, R_i] = 1$ we can also apply 5.6(d) and conclude that

$$(**) |V_j/V_j \cap R_i| = |V_j/C_{V_i}(D_i)| \le |D_i/C_{D_i}(V_j)|.$$

Suppose for a contradiction that $[V_j, D_i \cap R_j] \neq 1$ and choose $Y_j^* \in Y_j^{L_j}$ with $[Y_j^*, D_i \cap R_j] \neq 1$. By 5.2(a) $[Y_j^*, R_j] \leq Y_j^*$ and so $[Y_j^*, D_i \cap R_j] \leq D_i \cap Y_j^*$. Thus $D_i \cap Y_j^* \neq 1$. Since $D_i \leq Z(Q_i^{\bullet})$ and Y_j^* is short and so also Q-short, we conclude from 2.3(c) that $[Y_j^*, D_i] = 1$, a contradiction.

We have shown that $[V_j, D_i] \neq 1$ and $[V_j, D_i \cap R_j] = 1$. Hence $D_i \leq R_j$ and so also $V_i \leq R_j$. Thus we can apply 5.6 with the roles of *i* and *j* interchanged. In particular, there exists a non-central chief factor *W* for L_j on V_j . Moreover, 5.6(d) shows that $C_{D_i}(W) = D_i \cap R_j = C_{D_i}(V_j)$ and

$$|V_j/C_{V_i}(D_i)| \ge |W/C_W(D_i)| \ge |D_i/C_{D_i}(W)| = |D_i/C_{D_i}(V_j)|.$$

Combined with (**) this gives

$$|W/C_W(D_i)| = |V_j/C_{V_i}(D_i)| = |D_i/C_{D_i}(V_j)|.$$

In particular, there exists a unique non-central chief factor of L_j in V_j , so also L_j satisfies the hypothesis of this lemma (for some L_i -conjugate of Y_i). Put $A_j := [O^p(L_jQ_j^{\bullet}), O_p(L_jQ_j^{\bullet})]$ and $D_j := C_{V_j}(O_p(L_jQ_j^{\bullet})).$

If $[C_{V_j}(A_j), O^p(L_j)] = 1$, then (1°) , with j in place of i, shows that we are done. Otherwise (*), again with j in place of i, gives $[D_j, O^p(L_j)] \neq 1$. Since $D_i \leq R_j$, we conclude from 5.6(c) that $1 \neq [D_i, D_j] \leq D_i \cap D_j$. As $D_i \leq Z(Q_i)$, this contradicts 2.3(a).

LEMMA 5.9. Suppose that $V_i \leq R_i$. Then Theorem E holds.

PROOF. By 5.3 $Y_i = V_i$. Assume that also $V_i \leq R_j$. Then $V_i = Y_i$ and $V_j = Y_j$ and so $1 \neq [Y_i, Y_j] \leq V_i \cap V_j = Y_i \cap Y_j$. Hence Y_M is not asymmetric in G, a contradiction.

Thus $Y_i = V_i \leqslant R_j$, and we can apply 5.7 with the roles of *i* and *j* interchanged. By 5.7(d)

 $[V_j, V_i \cap R_j] = [V_j \cap R_i, V_i \cap R_j] = 1.$

Since $Y_i = V_j$ and by 5.4(b), again with *i* and *j* interchanged, $C_{V_i}(V_j) \leq R_j$, this gives

$$Y_i \cap R_j = V_i \cap R_j = C_{V_i}(V_j) = C_{Y_i}(V_j).$$

By 5.7(b) $V_i \cap Z(L_j) = Y_i \cap Z(L_j) = 1$, in particular $[Y_i, V_j] \cap C_{V_j}(L_j) = 1$. Let $v \in Y_i \setminus C_{Y_i}(V_j)$. Then $v \in V_i \setminus R_i$, and 5.7(e) shows

$$[Y_i, V_j] \leqslant C_{V_i}(V_i) = [v, V_j]C_{V_j}(L_j)$$

Thus $[Y_i, V_j] = [v, V_j]([Y_i, V_j] \cap C_{V_j}(L_j)) = [v, V_j]$. We conclude that V_j is a non-trivial strong dual offender on Y_i .

If $|V_j/C_{V_j}(Y_i)| > 2$, we are done by 5.5. If $|V_j/C_{V_j}(Y_i)| = 2$, then L_j has a unique non-central chief factor on V_j since $Y_i \leq R_j$ and L_j is 2-minimal. So we are done by 5.8.

LEMMA 5.10. Let q be a power of p, $H \cong SL_2(q)$, W a natural $SL_2(q)$ -module for H and V an \mathbb{F}_pH -module isomorphic to W^n , $n \ge 1$, the direct sum of n copies of W. Let $B_1, B_2 \le H$ with $B_1B_2 \in Syl_p(H)$ and $B_1 \ne 1 \ne B_2$. Suppose that there exists $A \le V$ with $C_V(B_1B_2) \le A$, $[A, B_1] \cap [A, B_2] = 0$ and $|V/A| \le |A/C_V(B_1B_2)|$. Then

(a) There exist a subfield \mathbb{F} of $\mathbb{K} := End_H(W)$ with $\dim_{\mathbb{F}} \mathbb{K} = 2$, a 3-dimensional \mathbb{F} -subspace D of W with $C_W(B_1B_2) \leq D$ and \mathbb{F}_pH -monomorphisms $\alpha_i : W \to V$, $1 \leq i \leq n$, such that

$$V = \bigoplus_{i=1}^{n} V_i \quad and \quad A = \bigoplus_{i=1}^{n} A_i, \quad where \ V_i := \alpha_i(W) \ and \ A_i := \alpha_i(D).$$

(b)
$$|V/A| = |A/C_V(B_1B_2)|$$
 and $|B_1| = |B_2|$.

(c) There exists $h \in H$ with $[A, B_1] \leq A^h$ and $[A, B_2] \cap A^h = 0$.

PROOF. Let \mathcal{I} be the set of simple $\mathbb{F}_p H$ -submodules of V and put $Z := C_V(B_1B_2)$. Since W is a natural $SL_2(q)$ -module for H, $C_W(B_1B_2) = C_W(B_i)$ is a one dimensional \mathbb{F}_q -submodule of W. So $Z = C_V(B_i)$, i = 1, 2, since $V \cong W^n$. Observe that $V = \bigcup_{I \in \mathcal{I}} (I + Z)$ and so, since $Z \leq A$, $A = \bigcup_{I \in \mathcal{I}} ((A \cap I) + Z)$. Put

$$\mathcal{J} := \{ I \in \mathcal{I} \mid A \cap I \leqslant Z \} \quad \text{and} \quad X := \sum \mathcal{J}.$$

Then $A = (X \cap A) + Z$ and $C_X(B_1B_2) = X \cap Z \leq X \cap A$. By assumption $|V/A| \leq |A/C_V(B_1B_2)| = |A/Z|$. Thus

$$(*) \qquad \begin{array}{cccc} |X \cap A/X \cap Z| &=& |X \cap A/(X \cap A) \cap Z| &=& |(X \cap A) + Z/Z| &=& |A/Z| \\ &\geqslant & |V/A| &\geqslant & |X + A/A| &=& |X/X \cap A|. \end{array}$$

So $(X, X \cap A)$ in place of (V, A) fulfills the assumption of the lemma. Suppose that $X \neq V$. Then induction on |V| gives $|X \cap A/X \cap Z| = |X/X \cap A|$. Thus equality holds in (*) and so $V = X + A = X + (A \cap X) + Z = X + Z$. But then $[V, B_1B_2] \leq X$, a contradiction.

Thus X = V and so there exist $V_1, \ldots, V_n \in \mathcal{J}$ with $V = \bigoplus_{i=1}^n V_i$. Pick $a \in W \setminus C_W(B_1B_2)$ and choose an $\mathbb{F}_p H$ -isomorphism $\alpha_i : W \to V_i$ for each $1 \leq i \leq n$. By definition of $\mathcal{J}, V_i \cap Z < V_i \cap A$. Also $W = C_W(B_1B_2) + \mathbb{K}a$ and so there exists $k_i \in \mathbb{K}$ with $\alpha_i(k_ia) \in V_i \cap A \setminus V_i \cap Z$. Replacing α_i by $\alpha_i \circ k_i$ we may assume that $a_i := \alpha_i(a) \in V_i \cap A \setminus V_i \cap Z$. View V as a \mathbb{K} -module such that each α_i is a $\mathbb{K}H$ -isomorphism.

If $d \in A$ then $d + Z = (\sum_{i=1}^{n} f_i(d)a_i) + Z$ for some $f_i(d) \in \mathbb{K}$. Put $\mathbb{F}_i := \{f_i(d) \mid d \in A\}$. Then \mathbb{F}_i is an additive subgroup of \mathbb{K} and $A \leq Z + \sum_{i=1}^{n} \mathbb{F}_i a_i$.

For l = 1, 2 fix $1 \neq b_l \in B_l$ and put $x_l := [a, b_l]$ and $x_{il} := \alpha_i(x_l)$. Define $\mathbb{K}_l \subseteq \mathbb{K}$ by $[a, B_l] = \mathbb{K}_l x_l$. Since $[a, b_l] = 1x_l, 1 \in \mathbb{K}_l$. Also \mathbb{K}_l is an additive subgroup of \mathbb{K} and $|\mathbb{K}_l| = |B_l|$. Thus $Z_l := \sum_{i=1}^n \mathbb{K}_l x_{il}$ has order $|B_l|^n$. Since $[a_i, B_l] = \mathbb{K}_l x_{il}$ we have $Z_l \leq [A, B_l]$. From $[A, B_1] \cap [A, B_2] = 0$ we get $Z_1 \cap Z_2 = 0$ and $B_1 \cap B_2 = 1$. We conclude that

$$|Z_1 + Z_2| = |Z_1||Z_2| = |B_1|^n |B_2|^n = |B_1B_2|^n = q^n = |Z|.$$

Thus $Z = Z_1 \oplus Z_2$ and $[A, B_l] = Z_l$.

Fix m and l with $1 \leq m \leq n$ and $l \in \{1, 2\}$. Let $g_m \in \mathbb{F}_m$ and $k_l \in \mathbb{K}_l$. Then there exists $d \in A$ with $g_m = f_m(d)$ and $e \in B_l$ with $k_l x_l = [a, e]$. Since α_i is an H-monomorphism we get $k_l x_{il} = [a_i, e]$ for all $1 \leq i \leq n$. Thus

$$[d,e] = \left[\sum_{i=1}^{n} f_i(d)a_i, e\right] = \sum_{i=1}^{n} f_i(d)[a_i,e] = \sum_{i=1}^{n} f_i(d)k_l x_{il}.$$

As $[d, e] \in [A, B_l] = Z_l$ we get that $f_i(d)k_lx_{il} \in \mathbb{K}_lx_{il}$ and so $f_i(d)k_l \in \mathbb{K}_l$ for all $1 \leq i \leq n$. For i = m we infer $g_m k_l \in \mathbb{K}_l$ and so

$$(**) \mathbb{F}_m \mathbb{K}_l \subseteq \mathbb{K}_l$$

Since $1 \in \mathbb{K}_l$, we conclude $\mathbb{F}_m \leq \mathbb{K}_l$ and so $|\mathbb{F}_m| \leq \min(|\mathbb{K}_1|, |\mathbb{K}_2|)$. From $|\mathbb{K}_1| |\mathbb{K}_2| = |B_1| |B_2| = q$ we get $|\mathbb{F}_m| \leq \sqrt{q}$ for all $1 \leq m \leq n$. Recall that $A \leq Z + \sum_{i=1}^n \mathbb{F}_i a_i$, so $|A/Z| \leq \prod_{i=1}^n |\mathbb{F}_i| \leq \sqrt{q^n}$. As $|V/Z| = q^n$ and $|V/A| \leq |A/Z|$, this gives |V/A| = |A/Z|, and equality holds in all of the preceding inequalities. So $|\mathbb{F}_m| = |\mathbb{K}_l| = \sqrt{q}$, $\mathbb{F}_m = \mathbb{K}_l$, and $A = Z + \sum_{i=1}^n \mathbb{F}_i a_i$. In particular, $|B_l| = |\mathbb{K}_l| = \sqrt{q}$ and $|B_1| = |B_2|$.

Hence $\mathbb{F} := \mathbb{F}_m = \mathbb{K}_l$ for all $1 \leq m \leq n$ and $1 \leq l \leq 2$, and $A = Z + \sum_{i=1}^n \mathbb{F}a_i$. By (**) $\mathbb{FF} \subseteq \mathbb{F}$ and so \mathbb{F} is a subring of \mathbb{K} . Thus \mathbb{F} is a finite integral domain and so a field. Since $|\mathbb{K}| = q = |\mathbb{F}|^2$, $\dim_{\mathbb{F}} \mathbb{K} = 2$. Put $E := C_W(B_1B_2)$ and $D := E + \mathbb{F}a$. Then $A = Z + \sum_{i=1}^n \mathbb{F}a_i = \sum_{i=1}^n \alpha_i(D)$. So (a) and (b) hold.

Let $h \in H \setminus N_H(E)$. Note that $W = E \oplus E^h$. So $D^h = (D^h \cap E) \oplus E^h$ and thus $D^h \cap E$ is a 1-dimensional \mathbb{F} -subspace of E. Since $N_H(E)$ acts transitively on E, we can choose h such that $x_1 \in D^h \cap E$. Then $D^h \cap E = \mathbb{F}x_1$. Applying the α_i 's gives $A_i^h \cap Z = \mathbb{F}x_{i1}$. As $A = \bigoplus_{i=1}^m A_i$ and $Z = \bigoplus_{i=1}^m V_i \cap Z$, this yields $A^h \cap Z = \sum_{i=1}^n \mathbb{F}x_{i1} = [A, B_1]$. In particular, $[A, B_1] \leq A^h$ and, since $[A, B_2] \leq Z$,

$$[A, B_2] \cap A^h = [A, B_2] \cap (A^h \cap Z) \leq [A, B_2] \cap [A, B_1] = 0.$$

So (c) is proved.

LEMMA 5.11. Suppose that $Y_1 \leq R_2$ and $Y_2 \leq R_1$. Then Theorem E holds.

PROOF. Since $Y_1 \leq R_2$ and $Y_2 \leq R_2$, we can apply 5.4 with (i, j) = (1, 2) and (i, j) = (2, 1). As the hypothesis is symmetric in *i* and *j* we choose our notation such that

$$1^{\circ}$$
. $|V_1R_2/R_2| \ge |V_2R_1/R_1|$.

By 5.7(e) $C_{V_i}(V_j) = C_{V_i}(Y_j)$. Also 5.4(b) (applied to (j, i) in place of (i, j)) gives $C_{V_i}(V_j) \leq R_j$. Thus

$$2^{\circ}$$
. $C_{V_i}(Y_j) = C_{V_i}(V_j) \leq V_i \cap R_j$.

Let r_i be the number of non-central chief factors for L_i on V_i . By 5.6 we have $[V_i, O^p(L_i)] \neq 1$. So $r_i \geq 1$. If $r_i = 1$ then 5.8 shows that Theorem E holds. So we may assume that $r_i \geq 2$ for i = 1, 2. By 5.6(d) we have

$$|X/C_X(V_j)| \ge |V_j/C_{V_j}(X)| = |V_jR_i/R_i|$$

for any non-central chief factor X of L_i on V_i . Thus

3°. $|V_i/C_{V_i}(V_j)| \ge |V_jR_i/R_i|^{r_i} \ge |V_jR_i/R_i|^2$. Moreover, if $|V_i/C_{V_i}(V_j)| = |V_jR_i/R_i|^2$, then $r_i = 2$ and V_j is a non-trivial offender on each non-central chief factor of L_i on V_i .

As $C_{V_i}(Y_j) = C_{V_i}(V_j)$ by (2°) , this gives

4°.
$$|V_i/C_{V_i}(Y_j)| \ge |V_j R_i/R_i|^2$$
.

Hence

5°.
$$|V_2/C_{V_2}(Y_1)| \stackrel{(4^\circ)}{\geq} |V_1R_2/R_2|^2 \stackrel{(1^\circ)}{\geq} |V_2R_1/R_1| |V_1R_2/R_2| = |V_2/V_2 \cap R_1| |V_1R_2/R_2|$$

Since $V_1 \leq R_2$, this gives $|V_2/C_{V_2}(Y_1)| > |V_2/V_2 \cap R_1|$, so

 6° . $[Y_1, V_2 \cap R_1] \neq 1$.

By 5.7(d) $[Y_1 \cap R_2, V_2 \cap R_1] = 1$. Let $x \in V_2 \cap R_1 \setminus C_{V_2}(V_1)$ and $y \in Y_1 \setminus R_2$. By 5.7(e) $C_{V_2}(V_1) = C_{V_2}(y)$. Thus $[x, y] \neq 1$, so $C_{Y_1}(x) \leq Y_1 \cap R_2$, and

$$C_{Y_1}(x) \leq Y_1 \cap R_2 \leq C_{Y_1}(V_2 \cap R_1) \leq C_{Y_1}(x).$$

Hence

7°.
$$C_{Y_1}(x) = Y_1 \cap R_2 = C_{Y_1}(V_2 \cap R_1) \text{ for } x \in V_2 \cap R_1 \setminus C_{V_2}(Y_1).$$

Recall from (2°) that $C_{V_2}(Y_1) \leq V_2 \cap R_1$. So $C_{V_2}(Y_1) = C_{V_2 \cap R_1}(Y_1)$ and
 $|V_2/C_{V_2}(Y_1)| = |V_2/V_2 \cap R_1||V_2 \cap R_1/C_{V_2 \cap R_1}(Y_1)|.$

By (5°)

$$|V_2/C_{V_2}(Y_1)| \ge |V_2/V_2 \cap R_1| |V_1R_2/R_2|.$$

Comparing the last two displayed statements gives

8°.
$$|V_2 \cap R_1/C_{V_2 \cap R_1}(Y_1)| \ge |V_1R_2/R_2| \ge |Y_1R_2/R_2| = |Y_1/Y_1 \cap R_2|,$$

and so, since $Y_1 \cap R_2 = C_{Y_1}(V_2 \cap R_1)$ by (7°) ,

9°.
$$|V_2 \cap R_1/C_{V_2 \cap R_1}(Y_1)| \ge |Y_1/C_{Y_1}(V_2 \cap R_1)|.$$

Combining (6°) , (7°) and (9°) we get:

10°. $A := V_2 \cap R_1$ is a non-trivial strong offender on Y_1 .

By A.34 all strong offenders are best offenders, so

11°. A is a non-trivial best offender on Y_1 .

By 5.7(a),
$$[V_1, V_2 \cap R_1] \leq Z(L_1)$$
, so $L_1 \leq C_G([Y_1, A])$. By 5.4(a) $L_1 \leq M_1^{\dagger}$. We record:

12°.
$$L_1 \leqslant M_1^{\dagger}$$
 and $L_1 \leqslant C_G([Y_1, A]) \leqslant M_1^{\dagger}$.

Next we prove:

13°. Let $N \leq M_1$ with $N = N^{\circ}$ and $1 \neq O^p(N) \leq M_1$, then N does not normalize any non-trivial subgroup of $[Y_1, A]$.

Suppose that there exists $1 \neq U \leq [Y_1, A]$ with $N \leq N_G(U)$. Pick $Q_0 \in Q^G$ with $Q_0 \leq N$. Then $C_U(Q_0) \neq 1$ and thus by $Q!, C_G(U) \leq N_G(Q_0)$. Now 1.52 gives $(NC_G(U))^\circ = N^\circ = N$, so N is normalized by $C_G(U)$. Hence

$$C_G([Y_1, A]) \leq C_G(U) \leq N_G(N) \leq N_G(O^p(N)).$$

By hypothesis, $1 \neq O^p(N) \leq M_1$, and so 2.2(c) gives $N_G(O^p(N)) \leq M_1^{\dagger}$. Thus $C_G([Y_1, A]) \leq M_1^{\dagger}$, a contradiction to (12°).

 14° . $[M_1^{\circ}, A] \leqslant C_{M_1}(Y_1).$

Otherwise, M_1° normalizes $[Y_1, A]$, a contradiction to (13°) applied to $N = M_1^{\circ}$. Define

$$\overline{M_1} := M_1/C_{M_1}(Y_1), \qquad J := J_{M_1}(Y_1), \qquad \overline{J} := J/C_{M_1}(Y_1) \qquad \overline{K} := F^*(\overline{J}).$$

Since Q_1 is large and $Q_1 \notin M_1$, 1.57(b) shows that Y_1 is a Q!-module for \overline{M}_1 with respect to $\overline{Q_1}$. Since Y_1 is *p*-reduced for M_1 , $O_p(\overline{M_1}) = 1$. By (11°) A is a best offender on Y_1 . By (14°), $[\overline{M_1^{\circ}}, A] \neq 1$. Thus the assumption of the Q!FF-Module Theorem C.24 are fulfilled for $(\overline{M_1}, \overline{Q_1}, \overline{A}, Y_1)$ in place of (H, Q, Y, V).

Suppose that C.24(1) holds. Then there exists an $\overline{M_1}$ -invariant set \mathcal{K} of subgroups of $\overline{M_1}$ such that Y_1 is a natural $SL_2(q)$ -wreath product module for $\overline{M_1}$ with respect to \mathcal{K} , $\overline{M_1^\circ} = O^p(\langle \mathcal{K} \rangle)\overline{Q_1}$ and $\overline{Q_1}$ acts transitively on \mathcal{K} . By A.27(c) \mathcal{K} is unique. So Case (3) of Theorem E holds.

Thus, we may assume from now:

15°. C.24(2) holds for $\overline{M_1}$ and Y_1 .

In particular, by C.24(2:a) and (2:b)

 16° .

(a) \overline{K} is quasisimple.

(b) $C_{Y_1}(\overline{K}) = 0$ and $[Y_1, \overline{K}]$ is a semisimple \overline{J} -module.

Note that by (16°) all non-trivial \overline{J} -submodules of $[Y_1, \overline{K}]$ are perfect. Thus A.44 shows that all \overline{K} -submodules of $[Y_1, \overline{K}]$ are \overline{J} -invariant. In particular, the simple \overline{K} -submodules of $[Y_1, \overline{K}]$ are exactly the simple \overline{J} -submodules of $[Y_1, \overline{K}]$.

By (11°) A is a best offender on Y_1 . Thus $\overline{A} \leq \overline{J}$. Put T := KA and let I be a simple T-submodule of $[Y_1, \overline{K}]$.

Suppose that there exists a simple *T*-submodule I_0 in Y_1 such that $I^* \cong I_0$ as a *T*-module, where I^* is the dual of the $\mathbb{F}_p \overline{J}$ -module *I*. (Note that we can choose $I = I_0$ if $I \cong I^*$). By (10°) *A* is a strong offender on Y_1 , so *A* is also a strong offender on the submodules *I* and I_0 . It follows that *A* is strong offender on I^* , and so by A.35 *A* is a root offender on *I*. Hence A.37 shows that $|I/C_I(A)| = |A/C_A(I)|$ and *A* is strong dual offender on *I*. As *A* is strong offender on Y_1 , $C_A(Y_1) = C_A(I)$. Thus

$$|A/C_A(Y_1)| = |A/C_A(I)| = |I/C_I(A)| = |IC_{Y_1}(A)/C_{Y_1}(A)| \le |Y_1/C_{Y_1}(A)| \le |A/C_A(Y_1)|.$$

Hence equality holds everywhere, $Y_1 = IC_{Y_1}(A)$, and A is a strong dual offender on Y_1 . By (12°) , $C_G([Y_1, A]) \leq M_1^{\dagger}$ and so M_1 and A satisfy the hypothesis of 5.5, and Theorem E follows. So we may assume from now on:

17°. I^* is not isomorphic to any T-submodule of Y_M ; in particular I is not selfdual as an \mathbb{F}_pT -module.

Since $\overline{K} = F^*(\overline{J})$ is quasisimple and $\overline{A} \leq \overline{J}$, we get $\overline{T} = \overline{AK} = \langle \overline{A}^T \rangle$ and $\overline{K} = F^*(\overline{T})$. As seen above, \overline{A} is a strong offender on I, so we can apply the Strong Offender Theorem C.6 to $(\overline{T}, \overline{K}, I, \overline{A})$ in place of (M, K, V, A). Hence one of the following holds:

- (A) $\overline{T} \cong SL_n(\tilde{q})$ or $Sp_{2n}(\tilde{q})$ and I is a corresponding natural module.
- (B) $p = 2, \overline{T} \cong Alt(6), 3 \cdot Alt(6)$ or $Alt(7), |V| = 2^4, 2^6$ or 2^4 , respectively, and $|\overline{A}| = 4$.
- (C) $p = 2, \overline{T} \cong O_{2n}^{\epsilon}(2)$ or Sym(n), V is a corresponding natural module, and $|\overline{A}| = 2$.

Note that the natural $SL_2(\tilde{q})$ -, $Sp_{2n}(\tilde{q})$, Alt(6)-, $O_{2n}^{\epsilon}(2)$ - and Sym(n)-modules all are selfdual and so are ruled out by (17°) . Moreover, the module of order 2^4 for Alt(7) is rule out since it does not appear as a conclusion of the Q!FF-module Theorem (in fact this module is not a Q!-module). We have proved:

18°.
$$T \cong SL_n(\tilde{q}), n \ge 3, \text{ or } 3 \text{ Alt}(6), \text{ and } I \text{ is a corresponding natural module for } T.$$

Next we prove

- $\overline{J} = \overline{T} = \overline{K} \leqslant \overline{M^{\circ}}$ and one of the following holds: 19° .
- (1) $\overline{K} \cong SL_n(\tilde{q}), n \ge 3, \ \overline{M^{\circ}} = \overline{K}C_{\overline{M}^{\circ}}(\overline{K}), \ and \ Y_1 = \bigoplus_{l=1}^k Y_{1l}, \ where \ k \ge 2 \ and \ the \ modules$ Y_{1l} are isomorphic natural $SL_n(\tilde{q})$ -modules for \overline{K} .
- (2) $\overline{K} \cong 3 \cdot Alt(6), \ \overline{M^{\circ}} \cong 3 \cdot Alt(6) \ or \ 3 \cdot Sym(6) \ and \ Y_1 = [Y_1, \overline{K}] \ has \ order \ 2^6.$
- (3) $\overline{K} \cong SL_n(\tilde{q}), n \ge 3, \overline{M^{\circ}} = \overline{K}, and [Y_1, K]$ is natural $SL_n(\tilde{q})$ -modules for \overline{K} . Moreover, either $Y_1 = [Y_1, \overline{K}]$ or $\overline{K} \cong SL_3(2)$ and $|Y_1/[Y_1, K]| = 2$.

Since $\overline{T} \cong SL_n(\tilde{q}), n \ge 3$, or $3 \cdot Alt(6)$, we have $\overline{K} = F^*(\overline{T}) = \overline{T}$. Recall that C.24(2) holds. By C.24(2:a) $\overline{K} \leq \overline{M_1^{\circ}}$ and either $\overline{J} = \overline{K}$ or $\overline{J} \simeq O_{2n}^{\epsilon}(2), Sp_4(2)$ or $G_2(2)$. As $\overline{K} \simeq SL_n(\tilde{q}), n \geq 3$, or 3. Alt(6), we get $\overline{J} = \overline{K}$ or $\overline{K} \cong SL_4(2)$ and $\overline{J} \cong O_6^+(2)$. In the later case, recall that I is J-invariant, which contradicts the fact that $\overline{J} \simeq O_6^+(2)$ induces graph automorphisms on $\overline{K} \simeq SL_4(2)$ and so does not act on that natural $SL_4(2)$ -module I. Thus $\overline{J} = \overline{K}$ and the initial statement in (19°) is proved. We now consider the three cases of C.24(2:c).

Suppose that C.24(2:c:1) holds. Since $3 \cdot Alt(6)$ does not appear in C.24(2:c:1:a) we conclude that $\overline{K} \cong SL_n(\tilde{q})$. Moreover, $[Y_1, \overline{K}]$ is a direct sum of at least two isomorphic natural modules and $\overline{M^{\circ}} = \overline{K}C_{\overline{M}^{\circ}}(\overline{K})$. Since $SL_n(\tilde{q})$ does not appear in C.24(2:c:1:d), we have $Y_1 = [Y_1, \overline{K}]$ and so $(19^{\circ})(1)$ holds.

Suppose that C.24(2:c:2) holds. Then $[Y_1, \overline{K}]$ is a simple \overline{K} -module and either $\overline{M^{\circ}} = \overline{K}$ or $\overline{M^{\circ}} \cong Sp_4(2), 3$: $Sym(6), SU_4(q).2$ or $G_2(2)$. Thus $I = [Y_1, \overline{K}]$.

Assume that I is natural $SL_n(\tilde{q})$ -module for \overline{K} . Then $\overline{M^\circ} = \overline{K}$. Moreover, by (16°)(b) $C_{Y_1}(\overline{K}) = 1$, and C.22 shows that either $Y_1 = [Y_1, \overline{K}]$ or $\overline{K} \cong SL_3(2)$ and $|Y_1/[Y_1, \overline{K}]| = 2$. Thus $(19^{\circ})(3)$ holds.

Assume that I is a natural 3 Alt(6)-module for \overline{K} . Then $\overline{M^{\circ}} = \overline{K} \cong 3 Alt(6)$ or $\overline{M^{\circ}} \cong 3 Sym(6)$. As $C_{Y_1}(\overline{K}) = 1$, the fixed-point free action of $Z(\overline{K})$ on I shows that $I = Y_1$. Thus $(19^\circ)(2)$ holds.

Suppose that C.24(2:c:3) holds. Then Y_1 is the direct sum of two non-isomorphic natural $SL_4(\tilde{q})$ -modules for \overline{K} . Since non-isomorphic natural $SL_4(\tilde{q})$ -modules are dual to each other, this contradicts (17°) . This completes the proof of (19°) .

Observe that

 20° . If $(19^{\circ})(3)$ holds, then Case 1 of Theorem E holds.

So we may assume from now on that $(19^{\circ})(1)$ or (2) holds. The next statement will allow us to derive a contradiction in these two cases, simultaneously.

 21° .

- (a) $N_{M_1}([Y_1, A])$ is a parabolic subgroup of M_1 . In particular, there exists an M_1 -conjugate $Q_3 \text{ of } Q_1 \text{ with } Q_2 \leq N_{M_1}([Y_1, A]).$
- (b) Put $E_1 := O^{p'}(N_J([Y_1, A]))$. There exist isomorphic E_1 -submodules $Y_{1l}, 1 \leq l \leq k$, with $Y_1 = \bigoplus_{l=1}^k Y_{1l} \text{ and } k \ge 2.$

Suppose first that $(19^{\circ})(1)$ holds. Then $Y_1 = \bigoplus_{l=1}^k Y_{1l}$ as an $\mathbb{F}_p J$ -module and so also as an E_1 module. Since [I, A] is an $\mathbb{F}_{\tilde{q}}$ -subspace of I and I is natural $SL_n(\tilde{q})$ -module, $N_J([I, A])$ is a parabolic subgroup of J and $[I, A] = [I, O_p(N_{\overline{J}}([I, A]))]$. Since each Y_{1l} is isomorphic to I, this implies that $E_1 = O^{p'}(N_J([I,A])), E_1$ is parabolic subgroup of J and $[Y_1,A] = [Y_1,O_p(\overline{E_1})]$. Since I^* is not isomorphic to any J-submodule of Y_1 , no element of M_1 induces a non-trivial graph automorphism on $\overline{J} \cong SL_n(\tilde{q})$. It follows that

$$\overline{M_1} = N_{\overline{M_1}}(\overline{E_1})\overline{J} = N_{\overline{M_1}}(O_p(\overline{E_1}))\overline{J} = N_{\overline{M_1}}([Y_1, A])\overline{J} = \overline{N_{M_1}}([Y_1, A])\overline{J}$$

As $E_1 \leq N_{M_1}([Y_1, A])$ and E_1 is parabolic subgroup of J, this shows that $N_{M_1}([Y_1, A])$ is parabolic subgroup of M_1 .

Suppose next that $(19^{\circ})(2)$ holds. By C.16(b), $C_{Y_1}(A) = [Y_1, A]$, so by C.16(c), $N_{M_1}([Y_1, A])$ is parabolic subgroup of M_1 . Put $\overline{K_2} := C_{\overline{M_1}}(Y_1/C_{Y_1}(A))$ and let \mathcal{V} be the set of 3-dimensional $\overline{K_2}$ -submodules of Y_1 . Then by C.16(e) $\mathcal{V} = \{Y_{11}, Y_{12}, Y_{13}\}$ and $Z(\overline{K})$ acts transitively on \mathcal{V} . By C.16(d), $\overline{K_2} = \overline{E_1}$, and we conclude that Y_{11} and Y_{12} are isomorphic E_1 -submodules of Y_1 . By C.16(f), $Y = Y_{11} \times Y_{12}$, and so $(21^{\circ})(b)$ holds with k = 2.

22°.
$$\overline{M_1^{\circ}} = \overline{J} \text{ and } C_{[Y_{1l},A]}(Q_3) \neq 1 \text{ for all } 1 \leq l \leq k.$$

Put $F := C_{M_1^\circ}(\overline{J})$ and $F_0 := O^p((FQ_3)^\circ)$. Note that F_0 is normalized by $FN_{M_1}(Q_3)$. We claim that F_0 is normal in M_1 .

Define $J_0 := (J \cap M_1^\circ)^\infty$, so J_0 is the largest perfect subgroup of $J \cap M_1^\circ$. By $(19^\circ) \overline{J} = \overline{K} \leq \overline{M_1^\circ}$ and so $J = (J \cap M_1^\circ)C_{M_1}(Y_1)$. As \overline{J} is perfect, we conclude that $J = J_0C_{M_1}(Y_1)$. By 1.52(c) $[C_{M_1}(Y_1), M_1^\circ] \leq O_p(M_1^\circ)$. Since $[F, J_0] \leq C_{M_1}(Y_1)$ and $J_0 \leq M_1^\circ$, this gives $[F, J_0, J_0] \leq O_p(M_1^\circ)$. As J_0 is perfect, the Three Subgroups Lemma implies $[F, J_0] \leq O_p(M_1^\circ)$. In particular, J_0 normalizes $F_0O_p(M_1^\circ)$. Since $O_p(M_1^\circ) \leq F$, $O_p(M_1^\circ)$ normalizes F_0 . Hence $O^p(F_0O_p(M_1^\circ)) = O^p(F_0) = F_0$, and F_0 is normalized by J_0 . As seen above, also $FN_{M_1}(Q_3)$ normalizes F_0 . Since $C_{M_1}(Y_1) \leq N_{M_1}(Q_3)$ by Q! and $J = J_0C_{M_1}(Y_1)$, this shows that $F_0 \leq JFN_{M_1}(Q_3)$.

By (19°) either $\overline{J} \cong SL_n(q)$ and $\overline{M_1^\circ} = \overline{FJ}$ or $\overline{J} \sim 3$ ·Alt(6) and $|\overline{M^\circ}/\overline{J}| \leq 2$, thus in any case $\overline{M_1^\circ} = \overline{FJQ_3}$. Moreover, since Q_3 is a weakly closed subgroup of G, a Frattini argument shows $M_1 = FJN_{M_1}(Q_3)$. As proved above $F_0 \leq JFN_{M_1}(Q_3)$ and thus $F_0 \leq M_1$, as claimed.

Suppose that $F_0 \neq 1$. Then we can apply (13°) with $N = (FQ_3)^{\circ}$ and conclude that $(FQ_3)^{\circ}$ does not normalizes any non-trivial subgroup of $[Y_1, A]$. But $\overline{A} \leq \overline{J}$, so $[\overline{A}, F] = 1$, and F normalizes $[Y_1, A]$. By the choice of Q_3 , also Q_3 normalizes $[Y_1, A]$, a contradiction.

Thus $F_0 = 1$, $(FQ_3)^\circ$ is a *p*-group and $(FQ_3)^\circ = Q_3$. Hence

$$[\overline{F}, \overline{Q_3}] \leqslant \overline{F} \cap \overline{Q_3} \leqslant O_p(\overline{F}) \leqslant O_p(\overline{M_1}) = 1.$$

If $\overline{J} \sim 3^{\circ}Alt(6)$ we get $[Z(\overline{J}), Q_3] = 1$ and so $\overline{M_1^{\circ}} \not\sim 3^{\circ}Sym(6)$ and $\overline{J} = \overline{M_1^{\circ}}$. Suppose now that $\overline{J} \cong SL_n(q)$. We have

$$M_1^{\circ} = \langle Q_3^{M_1} \rangle = \langle Q_3^{FJN_{M_1}(Q_3)} \rangle = \langle Q_3^J \rangle \leqslant Q_3 J,$$

and so $\overline{M_1^{\circ}} = \overline{Q_3 J}$. Hence $\overline{FJ}/\overline{J}$ is a *p*-group. Since $\overline{F} \cap \overline{J} \leq Z(\overline{F})$ this implies that \overline{F} is nilpotent. As $O_p(\overline{F}) = 1$ we conclude that \overline{F} is a *p*'-group. Since $\overline{FJ}/\overline{J}$ is a *p*-group, we get $\overline{F} = \overline{F} \cap \overline{J} \leq \overline{J}$ and again $\overline{M_1^{\circ}} = \overline{J}$. So the first statement in (22°) holds. In particular, $Q_3 \leq O^{p'}(N_J([Y_1, A]))$ and Q_3 normalizes each Y_{1l} . Hence also the second statement holds.

Recall that $A = V_2 \cap R_1$.

23°. Put
$$q := |V_1 R_2 / R_2|$$
 and $V_2 := V_2 / V_2 \cap Z(L_2)$. Then the following hold:

- (a) $q = |V_1 R_2 / R_2| = |V_2 R_1 / R_1| = |V_2 / A|$.
- (b) $k = 2 = r_2$.
- (c) $|\widehat{V_2}| = q^4$, and every composition factor for L_2 on $\widehat{V_2}$ is a natural $SL_2(q)$ -module for L_2 . In particular, every non-trivial proper L_2 -submodule of $\widehat{V_2}$ is a natural $SL_2(q)$ -module for L_2 .

By
$$(2^{\circ})$$
 $C_{V_2}(V_1) = C_{V_2}(Y_1)$. Since $A = V_2 \cap R_1$, also $C_A(V_1) = C_A(Y_1)$ and

(I)
$$|A/C_A(V_1)| = |A/C_A(Y_1)| \stackrel{(8^\circ)}{\geq} |V_1R_2/R_2| \stackrel{(1^\circ)}{\geq} |V_2R_1/R_1| = |V_2/V_2 \cap R_1| = |V_2/A|.$$

From 5.4(d) we get $L_2 = \langle V_1, V_1^x \rangle V_2$ for a suitable $x \in L_2$, and $[X_2, V_1] = 1$ for suitable $X_2 \in Y_2^{L_2}$. Note that $[V_2, V_1] \leq V_1 \cap V_2 \leq C_{V_2}(V_1)$ and so $X_2[V_2, V_1] \leq C_{V_2}(V_1)$ and recall that V_2 is abelian. It follows that

$$V_2 = \langle Y_2^{L_2} \rangle = \langle X_2^{L_2} \rangle = X_2[V_2, L_2] = X_2[V_2, \langle V_1, V_1^x \rangle V_2] = X_2[V_2, V_1][V_2, V_1^x] = C_{V_2}(V_1)C_{V_2}(V_1^x)$$
 and

$$C_{V_2}(V_1) \cap C_{V_2}(V_1^x) = C_{V_2}(\langle V_1, V_1^x \rangle V_2) = C_{V_2}(L_2) = V_2 \cap Z(L_2).$$

Thus (II)

$$\widehat{V_2} = \widehat{C_{V_2}(V_1)} \times \widehat{C_{V_2}(V_1^x)}$$

and so

(III) $\widehat{|C_{V_2}(V_1)|} = |\widehat{V_2}/\widehat{C_{V_2}(V_1^x)}| = |V_2/C_{V_2}(V_1^x)| = |V_2/C_{V_2}(V_1)| = |V_2/A||A/C_A(V_1)|.$ As by (I) $|V_2/A| \leq |A/C_A(V_1)|$, this gives

(IV)
$$|\widehat{C_{V_2}(V_1)}| = |V_2/A||A/C_A(V_1) \le |A/C_A(V_1)|^2.$$

By 5.7(c) $[V_1, A] \cap Z(L_2) = 1$ and so

(V)
$$|[V_1, A]| = |\widehat{[V_1, A]}| \le |\widehat{C_{V_2}(V_1)}| \le |A/C_A(V_1)|^2$$

Let $y \in Y_{1l} \setminus C_{Y_1}(A)$ and $a \in A \setminus C_A(Y_1)$. Since by (10°) A is a strong offender on Y_1 , $C_{Y_1}(A) = C_{Y_1}(a)$ and so $[y, a] \neq 1$. Thus $C_A(y) = C_A(Y_1)$. Hence

$$|[Y_{1l}, A]| \ge |[y, A]| \ge |A/C_A(y)| = |A/C_A(Y_1)|.$$

Since this holds for all $1 \leq l \leq k$,

$$|[Y_1, A]| \ge |A/C_A(Y_1)|^k.$$

Now (V) implies

$$|A/C_A/V_1)|^2 \ge |[V_1, A]| \ge |[Y_1, A]| \ge |A/C_A(Y_1)|^k \ge |A/C_A(V_1)|^k$$

Hence k = 2 since k > 1, and $|[V_1, A]| = |A/C_A(V_1)|^2$. From this we conclude that equality holds in (V), so

(VI)
$$|\widehat{C_{V_2}(V_1)}| = |A/C_A(V_1)|^2.$$

As a consequence equality holds in (IV) so $|V_2/A| = |A/C_A(V_1)|$, and then equality holds in (I), so

(VII)
$$q = |V_1 R_2 / R_2| = |V_2 R_1 / R_1| = |A / C_A (V_1)| = |V_2 / A|$$

In particular, $(23^{\circ})(a)$ is proved. Moreover,

(VIII)
$$|\widehat{C_{V_2}(V_1)}| \stackrel{\text{(VI)}}{=} |A/C_A(V_1)|^2 \stackrel{\text{(VII)}}{=} q^2 \text{ and } |V_2/C_{V_2}(V_1)| \stackrel{\text{(III)}}{=} |\widehat{C_{V_2}(V_1)}| = q^2.$$

Hence

$$|\widehat{V_2}| \stackrel{\text{(II)}}{=} |\widehat{C_{V_2}(V_1)} \times \widehat{C_{V_2}(V_1^x)}| = |\widehat{C_{V_2}(V_1)}| |\widehat{C_{V_2}(V_1^x)}| = |\widehat{C_{V_2}(V_1)}|^2 = (q^2)^2 = q^4.$$

Also $|V_2/C_{V_2}(V_1)| = q^2 = |V_1R_2/R_2|^2$, and so (3°) shows that $r_2 = 2$ and V_1 is a non-trivial offender on each non-central chief factor X of L_2 on V_2 . Since L_2 is V_1V_2 -minimal we can apply C.11 and conclude that X is natural $SL_2(q)$ -module for L_2 . In particular, $|X| = q^2$. Since $r_2 = 2$ and $|\widehat{V}_2| = q^4$ this show that all composition factors of L_2 on \widehat{V}_2 are non-central. Thus $(23^\circ)(c)$ holds.

As proved above k = 2 and $r_2 = 2$. So also $(23^{\circ})(b)$ holds, and (23°) is proved.

Define $J_2 := J_{M_2}(Y_2)$. By (23°)(a) $|V_1R_2/R_2| = |V_2R_1/R_1|$, so our initial choice of notation given in (1°) holds with 1 and 2 interchanged. Hence also all the results proven are also valid with 1 and 2 interchanged. In particular, (21°) shows that there exist isomorphic $O^{p'}(N_{J_2}([Y_2, V_1 \cap R_2]))$ submodules $Y_{2l}, 1 \leq l \leq 2$, such that $Y_2 = Y_{21} \times Y_{22}$.

submodules $Y_{2l}, 1 \leq l \leq 2$, such that $Y_2 = Y_{21} \times Y_{22}$. Put $V_{2l} := \langle Y_{2l}^{L_2} \rangle$ and $E := \langle (V_1 \cap R_2)^{L_2} \rangle$. By 5.7(a), $[V_2, V_1 \cap R_2] \leq Y_2 \cap Z(L_2)$, and so conjugation in L_2 gives $[V_2, E] \leq Y_2 \cap Z(L_2)$. Note that $Y_{2l} \leq V_2$. So $[Y_{2l}, E] \leq Y_2 \cap Z(L_2)$ and again by conjugation in L_2 , $[Y_{2l}, E] = [V_{2l}, E]$. Hence

$$[V_{2l}, E] = [Y_{2l}, E] \leqslant Y_2 \cap Z(L_2).$$

Moreover, since $[Y_2, V_1 \cap R_2] \leq Y_2 \cap Z(L_2)$ and $E \leq L_2$, E centralizes $[Y_2, V_1 \cap R_2]$.

We first show that $E \leq J_2$. Let $x \in L_2$. Note that (Y_2, Y_1^x) is a symmetric pair with indicators L_2 and L_1^x . Moreover, $Y_1^x \leq R_2$.

Suppose that $Y_2 \notin R_1^x$. Then (Y_2, Y_1^x) fulfills the hypothesis of the lemma and so by (11°) , applied to the symmetric pair (Y_1^x, Y_2) in place of (Y_2, Y_1) , $V_1^x \cap R_2$ is a best offender on Y_2 . Thus $V_1^x \cap R_2 \leqslant J_2$. Suppose that $Y_2 \leqslant R_1^x$. By 5.7(d) applied with (Y_1^x, Y_2) in place of (Y_j, Y_i) we have $[V_2 \cap R_1^x, V_1^x \cap R_2] = 1$. In particular, $[Y_2, V_1^x \cap R_2] = 1$ since $Y_2 \leqslant R_1^x$. So again $V_1^x \cap R_2 \leqslant J_2$.

We have shown that all L_2 -conjugates of $V_1 \cap R_2$ are in J_2 , and so $E = \langle (V_2 \cap R_1 \rangle^{L_2} \rangle \leq J_2$. Therefore, $E \leq O^{p'}(C_{J_2}([Y_2, V_1 \cap R_2]))$. Thus Y_{21} and Y_{22} are isomorphic *E*-submodules of Y_2 . Hence

(IX)
$$[V_{2l}, E] = [Y_{2l}, E] \leq Y_{2l} \cap Z(L_2)$$

Note that $[Y_2, V_1 \cap R_2] \neq 1$, $Y_2 = Y_{21} \times Y_{22}$ and Y_{21} and Y_{22} are isomorphic $V_1 \cap R_2$ -modules. Thus $[Y_{21}, V_1 \cap R_2] \neq 1$. Suppose that $\widehat{V_{21}} \leq \widehat{V_{22}}$. Then

$$1 \neq [Y_{21}, V_1 \cap R_2] \leqslant [V_{22}, V_1 \cap R_2] \leqslant [V_{22}, E] \stackrel{(1X)}{\leqslant} Y_{22} \cap Z(L_2),$$

which contradicts $[Y_{21}, V_1 \cap R_2] \leq Y_{21}$ and $Y_{21} \cap Y_{22} = 1$.

Thus $\widehat{V_{21}} \notin \widehat{V_{22}}$ and by symmetry $\widehat{V_{22}} \notin \widehat{V_{21}}$. By $(23^{\circ})(c)$ every non-trivial proper L_2 -submodule of $\widehat{V_2}$ is natural $SL_2(q)$ -module. It follows that $\widehat{V_2} = \widehat{V_{21}} \times \widehat{V_{22}}$, and $\widehat{V_{2l}}$ is a natural $SL_2(q)$ -module for L_2 .

Put $\widetilde{L}_2 := L_2/C_{L_2}(\widehat{V}_2)$. By C.14 \widehat{V}_{21} and \widehat{V}_{22} are isomorphic L_2 -modules and $\widetilde{L}_2 \cong SL_2(q)$. Since by (23°)(a) $|V_1R_2/R_2| = q$, this gives $\widetilde{V}_1 \in Syl_p(\widetilde{L}_2)$. By 5.4(d) there exists $X_2 \in Y_2^{L_2}$ with $[X_2, V_1] = 1$. Since $N_{L_2}(X_2)$ is a maximal parabolic subgroup of L_2 containing V_1 , we conclude that $N_{\widetilde{L}_2}(X_2) = N_{\widetilde{L}_2}(\widetilde{V}_1)$. As \widehat{V}_2 is the direct sum of isomorphic natural $SL_2(q)$ -modules, $C_{\widetilde{V}_2}(V_1)$ is a direct sum of simple $N_{L_2}(X_2)$ submodules (of order q), and any simple $N_{L_2}(X_2)$ -submodule of $C_{\widehat{V}_2}(V_1)$ is contained in a simple L_2 -submodule of \widehat{V}_2 . Since $[\widehat{X}_2, V_1] = 1$ and $\widehat{V}_2 = \langle \widehat{Y}_2^{L_2} \rangle = \langle \widehat{X}_2^{L_2} \rangle$, this implies that $\widehat{X}_2 = C_{\widehat{V}_2}(V_1)$. In particular, either $\widehat{X}_2 = \widehat{Y}_2$ or $\widehat{V}_2 = \widehat{X}_2\widehat{Y}_2$.

By (VIII) $|\widehat{C_{V_2}(V_1)}| = q^2$. Since also $|C_{\widehat{V_2}}(V_1)| = q^2$, we conclude that $\widehat{C_{V_2}(V_1)} = C_{\widehat{V_2}}(V_1)$. Together with $[Y_2, V_1] \neq 1$ this gives $\widehat{Y_2} \leq C_{\widehat{V_2}}(V_1)$. Thus $\widehat{V_2} = \widehat{X_2}\widehat{Y_2}$ and $V_2 = C_{V_2}(V_1)Y_2$. In particular, since by $(2^\circ) C_{V_2}(V_1) \leq V_2 \cap R_1 = A$, $Y_2R_1 = V_2R_1$. By symmetry, also $Y_1R_2 = V_1R_2$ and so

$$\widetilde{Y_{11}}\widetilde{Y_{12}} = \widetilde{Y_1} = \widetilde{V_1} \in Syl_p(\widetilde{L_2}).$$

By (23°)(a), $|\widehat{V_2}/\widehat{A}| = |V_2/A| = q$. Also $|C_{\widehat{V_2}}(Y_1) = |C_{\widehat{V_2}}(V_1)| = q^2$ and therefore $|\widehat{A}/C_{\widehat{V_2}}(Y_1)| = q = |\widehat{V_2}/\widehat{A}|$.

By (IX) $[Y_{2l}, E] \leq Y_{2l}$, so $[Y_{2l}, V_1 \cap R_2] \leq Y_{2l}$. By symmetry also $[Y_{1l}, V_2 \cap R_1] = [Y_{1l}, A] \leq Y_{1l}$. Since $Y_{11} \cap Y_{12} = 1$, we get $[Y_{11}, A] \cap [Y_{12}, A] = 1$. By 5.7(c) $[V_2, V_2 \cap R_1] \cap Z(L_2) = 1$, and since $A = V_2 \cap R_1$, we conclude that $[\hat{A}, Y_{12}] \cap [\hat{A}, Y_{12}] = 1$.

Thus we can apply 5.10 with $(\widetilde{L_2}, \widetilde{Y_{11}}, \widetilde{Y_{12}}, \widehat{V_2}, \widehat{A})$ in place of (H, B_1, B_2, V, A) . Hence, there exists $h \in L_2$ with $[Y_{11}, \widehat{A}] \leq \widehat{A}^h$ and $[Y_{12}, \widehat{A}] \cap \widehat{A}^h = 1$, so $[Y_{11}, A] \leq A^h$ and $[Y_{12}, A] \cap A^h \leq Y_1 \cap Z(L_2)$. By 5.7(b), $Y_1 \cap Z(L_2) = 1$. Thus

$$[Y_{12}, A] \cap A^h \leqslant Y_1 \cap Z(L_2) = 1.$$

On the other hand, (22°) gives $C_l := C_{[Y_{1l},A]}(Q_3) \neq 1$. We conclude that $1 \neq C_1 \leq A^h$, $C_2 \cap A^h = 1$ and $C_2 \leq A^h$.

Put $U := (Y_1 \cap R_2)^h$. Recall that $V_2 = C_{V_2}(V_1)Y_2$, so

$$A = V_2 \cap R_1 = C_{V_2}(V_1)(Y_2 \cap R_1).$$

Since $[Y_1, A] \neq 1$, this gives $[Y_1, Y_2 \cap R_1] \neq 1$. By symmetry $[Y_2, Y_1 \cap R_2] \neq 1$. By (7°) applied with 1 and 2 interchanged, $C_{Y_2}(x) = Y_2 \cap R_1$ for all $x \in V_1 \cap R_2 \setminus C_{V_1}(Y_2)$ and so $C_{Y_2}(Y_1 \cap R_2) = Y_2 \cap R_1$. Thus

$$C_{V_2}(Y_1 \cap R_2) = C_{C_{V_2}(V_1)Y_2}(Y_1 \cap R_2) = C_{V_2}(V_1)C_{Y_2}(Y_1 \cap R_2) = C_{V_2}(V_1)(Y_2 \cap R_1) = A.$$

Conjugation by h gives $C_{V_2}(U) = A^h$. As $C_1 \leq A^h$ and $C_2 \leq A^h$, this shows that $[C_1, U] = 1$ while $[C_2, U] \neq 1$.

By 5.7(a), $[V_2, V_1 \cap R_2] \leq Z(L_2)$. Since $C_2 \leq V_2$ and $U \leq V_1 \cap R_2$, we get $[C_2, U] \leq Z(L_2)$. Since $C_1 \leq C_G(Q_3)$, Q! implies $U \leq C_G(C_1) \leq N_G(Q_3)$, and since $C_2 \leq C_G(Q_3)$, also $1 \neq [C_2, U] \leq C_G(Q_3)$. We conclude, again by Q!, that $N_G([C_2, U]) \leq N_G(Q_3)$. As seen above, $[C_2, U] \leq Z(L_2)$, so

$$Y_1 \leq L_2 \leq N_G([C_2, U]) \leq N_G(Q_3).$$

Since $Y_1 \leq R_2 = O_p(L_2)$ this gives $Y_2 \leq O_p(N_G(Q_3))$, a contradiction since Y_1 is short and so also Q-short.

This contradiction completes the proof of 5.11.

5.12. Proof of Theorem E:

If $V_1 \leq R_2$ or $V_2 \leq R_1$, then Theorem E follows from 5.9.

Suppose that $V_1 \notin R_2$ and $V_2 \notin R_1$. Since $V_i = \langle Y_i^{L_i} \rangle$ there exist $h_i \in L_i$ with $Y_1^{h_1} \notin R_2$ and $Y_2^{h_2} \notin R_1$. As also $(Y_1^{h_1}, Y_2^{h_2})$ is a symmetric pair for every $h_1 \in L_1, h_2 \in L_2$, we may assume that $Y_1 \notin R_2$ and $Y_2 \notin R_1$. Now Theorem E follows from 5.11.

CHAPTER 6

The Tall *char p*-Short Asymmetric Case

In this short chapter we will show that Y_M is char *p*-tall in *G* provided that Y_M is tall and asymmetric in *G* and the centralizers of the non-trivial elements of Y_M are of characteristic *p*. In other words we show that the tall char *p*-short asymmetric case does not occur if the centralizers of the non-trivial elements of Y_M are of characteristic *p*.

THEOREM F. Let G be finite \mathcal{K}_p -group, $S \in Syl_p(G)$, and let $Q \leq S$ be a large subgroup of G. Suppose that $M \in \mathfrak{M}_G(S)$ such that

- (i) Y_M is tall and asymmetric in G.
- (ii) $C_G(y)$ is of characteristic p for all $1 \neq y \in Y_M$.

Then Y_M is char p-tall.

PROOF. By 2.2(f) $O_p(M) \in Syl_p(C_G(Y_M))$. Since Y_M is tall we conclude that there exits a subgroup L of G with $O_p(M) \leq L$, $O_p(L) \neq 1$ and $Y_M \leq O_p(L)$. By 2.2(a) $C_G(O_p(M)) \leq O_p(M)$. Since Y_M is asymmetric in G, 2.6(b) shows that $O_p(M)$ is a weakly closed subgroup of G. By 2.2(e) $Y_M = \Omega_1 Z(O_p(M))$ and so by Hypothesis (ii) of Theorem F $C_G(y)$ is of characteristic p for all $1 \neq y \in \Omega_1 Z(O_p(M))$. Thus the hypothesis of 1.50 is fulfilled and we conclude that L is of characteristic p. Hence Y_M is char p-tall.

We remark that G = Sym(9) and $M = Sym(3) \wr Sym(3)$ provides an example for p = 3 where Y_M is tall and asymmetric in G, but not *char* p-tall. Similar examples occur in Alt(9), Alt(10), Sym(10) and Alt(11).

CHAPTER 7

The char p-Tall Q-Short Asymmetric Case

In this chapter we treat the char p-tall Q-short asymmetric case. That is, $M \in \mathfrak{M}_G(S)$, Y_M is asymmetric in G, and there exists a subgroup L such that

L has characteristic p, $O_p(M) \leq L$ and $Y_M \leq O_p(L)$, (*)

but $Y_M \leq O_p(N_G(Q))$. Here and in the next two chapters the subgroups in $\mathfrak{H}_G(O_p(M))$ introduced in Chapter 2 play a prominent role. These subgroups can be seen as being minimal satisfying (*). But the crucial trick is to choose even smaller subgroups by looking at subgroups $L \leq H \in \mathfrak{H}_G(O_p(M))$ such that L is minimal satisfying $Y_M \leq L$ and $Y_M \leq O_p(L)$. According to the Asymmetric L-Lemma these subgroups L are in $\mathfrak{L}_G(Y_M)$, see 2.16, so they have a very transparent structure. For example, $O_p(L) = \langle (Y_M \cap O_p(L))^L \rangle$ and

$$L/O_p(L) \cong SL_2(q), Sz(q), q := |Y_M O_p(L)/O_p(L)|, \text{ or } D_{2r}.$$

Since Y_M is Q-short we have $[\Omega_1 Z(O_p(H)), H] \neq 1$, see 7.1(e), and one can investigate the action of L on quasisimple H-submodules U of $\Omega_1 Z(O_p(H))$. By 2.17, W := [U, L] is a strong offender on Y_M , so the action of $\langle W^M \rangle$ on Y_M can be investigated via some of the FF-module results from Appendix C.

Here is the main result of this chapter.

THEOREM G. Let p be a prime, G be finite \mathcal{K}_p -group, $S \in Syl_p(G)$, and let $Q \leq S$ be a large p-subgroup of G. Suppose that $M \in \mathfrak{M}_G(S)$ such that

- (i) Y_M is Q-short ¹ and Q ∉ M,
 (ii) Y_M is char p-tall and asymmetric in G.

Then one of the following holds, where q is some power of p and $\overline{M^{\dagger}} := M^{\dagger}/C_{M^{\dagger}}(Y_M)$:

- (1) $\overline{M^{\circ}} \cong SL_n(q), n \ge 3$, and Y_M is a corresponding natural module.
- (2) p = 2, $\overline{M} \cong O_4^-(2)$, $Sp_4(2)'$ or $Sp_4(2)$, Y_M is a corresponding natural module, $Y_M =$ $O_2(M)$, and $N_G(Q) \leq M^{\dagger}$. Moreover, (in the $O_4^-(2)$ -case) for all non-singular $x \in Y_M$, $C_G(x)$ is not of characteristic 2.
- (3) There exists a unique \overline{M} -invariant set \mathcal{K} of subgroups of \overline{M} such that Y_M is a natural $SL_2(q)$ -wreath product module for \overline{M} with respect to \mathcal{K} . Moreover,
 - (a) $Y_M = O_p(M)$.
 - (b) $N_G(Q) \leq M^{\dagger}$.
 - (c) $\overline{M^{\circ}} = O^p(\langle \mathcal{K} \rangle)\overline{Q}.$
 - (d) Q acts transitively on \mathcal{K} .
 - (e) If $|\mathcal{K}| \ge 2$ then q = 2 or 4 and, for all $K \in \mathcal{K}$, $C_G(\langle [V, A] | A \in \mathcal{K} \setminus \{K\} \rangle)$ is not of characteristic 2.

Table 1 lists examples for Y_M, M and G fulfilling the hypothesis of Theorem G.

¹Note that by 2.6(e) this is equivalent to $Y_M \leq O_p(N_G(Q))$.

	Case	$[Y_M, M^\circ]$ for M°	с	Remarks	examples for G
	1	nat $SL_n(q)$	1	$N_G(Q) \leqslant M$	$L_{n+1}(q)$
	1	nat $SL_3(2)$	1	$N_G(Q) \leq M$	Alt(9)
	1	nat $SL_4(2)$	1	$N_G(Q) \leq M$	Mat_{24}
*	2	nat $\Omega_4^-(2)$	1	$\overline{M} \cong O_4^-(2)$	Alt(10)
	2	nat $Sp_4(2)'$	1	-	$Mat_{22}(.2)$
	2	nat $Sp_4(2)$	1	-	$Mat_{22}.2$
	3	nat $SL_2(q)$	1	-	$L_3(q)$
	3	nat $SL_2(2)$	1	-	$Sp_{4}(2)'$
	3	nat $SL_2(3)$	1	-	Mat_{12}
	3	nat $\Gamma SL_2(4)$	1	-	$\Gamma L_3(4)$
*	3	nat $SL_2(q)$ wreath	1	$ \mathcal{K} > 1$	$(\Gamma)L_3(q) \wr 2$ -group, $q = 2, 4$

TABLE 1. Examples for Theorem G

Here $c = |Y_M/[Y_M, M^\circ]$, and * indicates that (*char* Y_M) fails in G.

7.1. The Proof of Theorem G

Throughout this section we assume the hypothesis of Theorem G and use the notation introduced there. Note that by 2.10 $\mathfrak{H}_{G}(O_{p}(M)) \neq \emptyset$ (for the definition of $\mathfrak{H}_{G}(O_{p}(M))$ see 2.1).

Choose $H \in \mathfrak{H}_G(O_p(M))$. By definition of $\mathfrak{H}_G(O_p(M)), O_p(M) \leq H$ and so we can choose $T \in Syl_p(H \cap M^{\dagger})$ with $O_p(M) \leq T$. By 2.6(b) $O_p(M)$ is a weakly closed subgroup of G, and so $T \leq N_G(O_p(M)) \leq N_G(Y_M)$. Thus there exists $g \in N_G(O_p(M))$ with $T^g \leq S$. Since g normalizes $O_p(M)$ and Y_M , $H^g \in \mathfrak{H}_G(O_p(M))$, and replacing H by H^g we may assume that $T \leq S$.

(a) $T \in Syl_p(H)$ and $O_p(H) \leq T \leq S \leq M$. Lemma 7.1.

- (b) $Y_M \leq O_p(M) \leq T$ and $Y_H \leq O_p(H)$.
- (c) $\Omega_1 Z(S) \leq \Omega_1 Z(T) \leq Y_M \cap Y_H$.
- (d) $[\Omega_1 Z(S), H] \neq 1, [Y_H, H] \neq 1, [\Omega_1 Z(O_p(H)), O^p(H)] \neq 1 \text{ and } Y_H = \Omega_1 Z(O_p(H)).$
- (e) $Y_M \leq O_p(C_H(C_{Y_H}(T))).$ (f) $Y_M \cap Y_H = C_{Y_H}(O_p(M)) = C_{Y_M}(O_p(H)).$

PROOF. (a): By 2.6(c) $H \cap M^{\dagger}$ is a parabolic subgroup of H and so $T \in Syl_{n}(H)$. In particular, $O_p(H) \leq T$. By the above choice $T \leq S \leq M$ and so (a) holds.

(b): The first statement is true by choice of T and the second by definition of $\mathfrak{H}_G(O_p(M))$.

(c): By 2.2(a) and (e), $C_G(O_p(M)) \leq O_p(M)$ and $\Omega_1 Z(O_p(M)) = Y_M$. Since $O_p(M) \leq T \leq S$ this gives $\Omega_1 Z(T) \Omega_1 Z(S) \leq Y_M$ and

$$\Omega_1 Z(S) = C_{Y_M}(S) \leqslant C_{Y_M}(T) = \Omega_1 Z(T)$$

Thus $\Omega_1 Z(S) \leq \Omega_1 Z(T) \leq Y_M$, and by 1.24(g), $\Omega_1 Z(T) \leq Y_H$, and (c) holds.

(d): Suppose that $[\Omega_1 Z(S), H] = 1$. Then Q! shows that $H \leq C_G(\Omega_1 Z(S)) \leq N_G(Q)$. But then by 2.12(a) Y_M is Q-tall, a contradiction.

Hence $[\Omega_1 Z(S), H] \neq 1$. By (c), $\Omega_1 Z(S) \leq Y_H$ and so $[Y_H, H] \neq 1$. Since by 2.11(e) H is *p*-irreducible, 1.35 implies $[\Omega_1 Z(O_p(H)), O^p(H)] \neq 1$ and $Y_H = \Omega_1 Z(O_p(H))$. Hence (d) holds.

(e): By (c) $\Omega_1 Z(S) \leq Y_H$ and so $\Omega_1 Z(S) \leq C_{Y_H}(T)$. Put $C := C_H(C_{Y_H}(T))$. Then

$$Y_M \leq O_p(M) \leq C \leq C_G(\Omega_1 Z(S)).$$

By Q!, $C_G(\Omega_1 Z(S)) \leq N_G(Q)$, and by Hypothesis (i) of Theorem G (and its footnote) $Y_M \leq$ $O_p(N_G(Q))$. Hence $Y_M \leq C \cap O_p(N_G(Q)) \leq O_p(C)$, and so (e) holds.

(f): Both groups, H and M, are of characteristic p, and by (d) and 2.2(e), respectively, $Y_H =$ $\Omega_1 Z(O_p(H))$ and $Y_M = \Omega_1 Z(O_p(M))$. Hence $C_H(O_p(H)) \leq O_p(H)$ and so

$$Y_M \cap Y_H \leqslant C_{Y_M}(O_p(H)) \leqslant \Omega_1 Z(O_p(H)) = Y_H,$$

and with a symmetric argument $Y_M \cap Y_H \leq C_{Y_H}(O_p(M)) \leq Y_M$. Now (f) follows.

According to 7.1(d) $[\Omega_1 Z(O_p(H)), O^p(H)] \neq 1$. Hence *H* satisfies the hypothesis of 2.17. In particular, $\mathfrak{L}_H(Y_M) \neq \emptyset$ and there exists a quasisimple *H*-submodule of Y_M . We fix the following notation:

NOTATION 7.2. (a) U is a quasisimple H-submodule of Y_H , $\hat{U} = U/C_U(O^p(H))$, $\tilde{H} = H/C_H(U)$ and $\tilde{q} = |\widetilde{Y_M}|$.

- (b) $L \in \mathfrak{L}_H(Y_M)$, W := [U, L], $R := C_{Y_M}(L)$, $A = O_p(L)$ and $l \in L \setminus N_L(Y_M)$.
- (c) K is the subnormal closure of W in M, $K^* := \langle W^M \rangle = \langle K^M \rangle$ and $Y := [Y_M, K]$.

REMARK 7.3. Note that we can apply 2.17 with (H, L, U, W) in place of (H, L, V, W). In particular, W is a strong offender on Y_M .

By definition of $\mathfrak{L}_G(Y_M)$, L is Y_M -minimal with $L \cap M^{\dagger}$ the unique maximal subgroup of L containing Y_M . In particular, $O_p(L)Y_M \leq L \cap M^{\dagger}$. So $O_p(L)$ normalizes Y_M , and we can apply 1.43 with Y_M in place of Y.

We will use these two results, 2.17 and 1.43, frequently.

LEMMA 7.4. (a) If $[O_p(H), Y_M] \leq [W, Y_M]$ then $[O_p(H), O^p(H)Y_M] = [O_p(H), O^p(H)] = U$.

- (b) $K = \langle W^K \rangle = O^p(K)W.$ (c) $W \leq Z(A) \leq A \leq O_p(H).$
- (d) $A = L \cap O_p(H)$ and $Y_M \cap A = Y_M \cap O_p(H)$.
- (e) $C_{Y_M}(A) \leq C_{Y_M}(W) = C_A(Y_M) = Y_M \cap A = [y, A]R = C_A(y)$ for every $y \in Y_M \setminus A$.
- (f) $O_p(H)$ normalizes K, Q and any perfect K-submodule of Y_M .

PROOF. (a): Suppose that $[O_p(H), Y_M] \leq [W, Y_M]$. As $W \leq U \leq H$ this gives $[O_p(H), Y_M] \leq U$. By 2.11(d) $\langle Y_M^H \rangle = O^p(H)Y_M$, and since U is H-quasisimple, $U = [U, H] = [U, O^p(H)]$. So

$$U = [U, O^p(H)] \leq [O_p(H), O^p(H)Y_M] = [O_p(H), \langle Y_M^H \rangle] \leq U,$$

and (a) holds.

- (b): Since K is the subnormal closure of W, this follows from 1.13.
- (c): By 2.17(b) $W \leq Z(A)$ and $A \leq O_p(H)$.

(d): Note that $A \leq L \cap O_p(H) \leq O_p(L) = A$ and so $L \cap O_p(H) = A$. Since $Y_M \leq L$ we also get $Y_M \cap A = Y_M \cap O_p(H)$.

(e): By 1.43(g) applied with $Y = Y_M$ and B = A,

$$V_M \cap A = C_A(Y_M) = C_A(y) = [A, y]C_{Y_M}(L) = [A, y]R$$

for $y \in Y_M \setminus A$. Since L is p-minimal, L is p-irreducible. Also $[W, O^p(L)] = W \neq 1$, and 1.34(a) gives $C_{Y_M}(W) = Y_M \cap O_p(L) = Y_M \cap A$. Since by (c) $W \leq A$, $C_{Y_M}(A) \leq C_{Y_M}(W)$.

(f): Since $W \leq U \leq Y_H$, $O_p(H)$ centralizes W. As $O_p(H) \leq T \leq S \leq M$, we get $O_p(H) \leq N_M(W)$. Hence $O_p(H)$ normalizes the subnormal closure K of W in M. Since $O_p(H) \leq S$, $O_p(H)$ also normalizes Q.

Let X be a perfect K-submodule of Y_M , and let $h \in O_p(H)$. Since $X \leq L$, X normalizes W and since $W \leq K$, W normalizes X. So $[X, W] \leq X \cap W \leq C_X(h) \leq X^h$. Since h normalizes K, K normalizes X^h . Also $K = \langle W^K \rangle$ and thus $X = [X, K] = [X, \langle W^K \rangle] \leq X^h$ and so $X = X^h$. \square

LEMMA 7.5. (a) $R = C_{Y_H}(H)$. In particular, $R \cap U = C_U(H)$. (b) $U \cap Y_M = [W, Y_M](U \cap R) = [U, Y_M](U \cap R)$. (c) $W \cap Y_M = [W, Y_M]$ and $W \cap R = [W, Y_M] \cap R$. (d) $C_U(Y_M) = U \cap O_p(M)$ and $C_U(O_p(M)) = U \cap Y_M$. (e) $C_R(Q^g) = 1$ for all $g \in G$. (f) $C_G(M^\circ) = 1$. In particular, $C_{Y_M}(M^\circ) = 1$. (g) $C_T(U) = C_T(\hat{U}) = O_p(H)$.

PROOF. (a): By 7.1(f), $C_{Y_H}(O_p(M)) = Y_M \cap Y_H = C_{Y_M}(O_p(H))$. Since $O_p(M)O_p(H) \leq H$ this gives $C_{Y_H}(H) = C_{Y_H \cap Y_M}(H) = C_{Y_M}(H)$.

By 2.17(a), $H = \langle O_p(M), L \rangle$. Recall that $R = C_{Y_M}(L)$ and both $O_p(M)$ and L centralize R. Thus $R = C_{Y_M}(H)$, and (a) holds.

(b): Since $B := U \cap A$ is an L-invariant subgroup of A, 1.43(g) gives

$$B \cap Y_M = [B, Y_M]C_{B \cap Y_M}(L) = [B, Y_M](B \cap R)$$

Note that $U \cap Y_M \leq O_p(H) \cap Y_M$ and by 7.4(d), $O_p(H) \cap Y_M = A \cap Y_M$. So $U \cap Y_M = U \cap (A \cap Y_M) = B \cap Y_M$. By 2.17(c) $U = WC_U(Y_M)$. Since $W \leq U \cap A = B \leq U$ this gives $[W, Y_M] = [B, Y_M] = [U, Y_M]$, and so (b) holds.

(c): Recall from Notation 7.2(b) that $l \in L \setminus N_L(Y_M)$ and so by 1.42(f) $L = \langle Y_M, Y_M^l \rangle$. Since W = [U, L], 1.40 shows $C_W(Y_M) = [W, Y_M]$. Thus $W \cap R = C_W(L) \leq C_W(Y_M) = [W, Y_M]$ and so $W \cap R = [W, Y_M] \cap R$.

(d): Note that $U \leq O_p(H) \leq S$ and by 2.2(f) $C_S(Y_M) = O_p(M)$. Thus $C_U(Y_M) = U \cap O_p(M)$. Also $U \leq Y_H$, and by 7.1(f), $C_{Y_H}(O_p(M)) = Y_H \cap Y_M$. So $C_U(O_p(M)) = U \cap Y_M$, and (d) holds.

(e): Assume that there exists $g \in G$ such that $C_R(Q^g) \neq 1$. By (a) H centralizes R and so also $C_R(Q^g)$. Thus by Q!, $H \leq N_G(Q^g)$, and by 2.12(a) Y_M is Q-tall, a contradiction, since Y_M is Q-short by Hypothesis (i) of Theorem G.

(f): By Hypothesis (i) of Theorem G $Q \not \equiv M$. Thus $M^{\circ} \neq Q$ and 1.55(d) implies $C_G(M^{\circ}) = 1$.

(g): Since U is quasisimple, \hat{U} is a non-central simple H-module. Thus $[\hat{U}, O^p(H)] \neq 1$. By 2.11(e) H is p-irreducible, and so 1.34(a) gives (g).

LEMMA 7.6. Put $H_0 := \langle Y_M^H \rangle$.

- (a) \hat{U} is a non-central simple H_0 -module, and U is a quasisimple H_0 -module.
- (b) Put $\mathbb{K} := End_{H_0}(\hat{U})$. Then \mathbb{K} is a finite field and $O_p(M)$ and H act \mathbb{K} -linearly on \hat{U} .
- (c) $C_H(U) = C_H(\widehat{U}).$
- (d) Suppose that $\widetilde{O_p(M)} \leq \widetilde{H_0}$. Then $H = H_0C_H(\widehat{U}) = H_0C_H(U) = H_0O_p(H)$ and $U \cap R = C_U(O^p(H))$.
- (e) $C_{\widetilde{H}}(H_0) \leq H_0.$

PROOF. By 2.11(c),(d), $H = O^p(H)O_p(M)$ and $Y_MO^p(H) = \langle Y_M^{O^p(H)} \rangle = \langle Y_M^H \rangle = H_0$. So $H_0 = \langle Y_M^{H_0} \rangle$, and since \hat{U} is a non-central simple *H*-module, $C_{\hat{U}}(H_0) = 1$.

Note also that $[U, Y_M, O_p(M)] \leq [Y_M, O_p(M)] = 1$ and so $[\widehat{U}, Y_M] \leq C_{\widehat{U}}(O_p(M))$.

(a) : Let \hat{I} be a simple H_0 -submodule of \hat{U} . Since \hat{U} is a simple H-module with $[\hat{U}, H] \neq 1$ and $H_0 \leq H$, also $[\hat{I}, H_0] \neq 1$, and since $H_0 = \langle Y_M^{H_0} \rangle$, $[\hat{I}, Y_M] \neq 1$. Hence also $C_{\hat{I}}(O_p(M)) \neq 1$, and since distinct simple H_0 -submodules have trivial intersection, $O_p(M)$ normalizes \hat{I} . Thus \hat{I} is invariant under $H_0O_p(M) = H$, and since \hat{U} is a simple H-module, $\hat{I} = \hat{U}$. Since U is a perfect H-module and $O^p(H) \leq H_0$, U is a perfect H_0 -module. As $H_0 \leq H$ and U is a p-reduced H-module, U is a p-reduced H_0 -module. Hence U is a quasisimple H_0 -module, and (a) holds.

(b): Since by (a) \hat{U} is a simple H_0 -module, Schur's Lemma shows that \mathbb{K} is a finite division ring and so by Wedderburn's Theorem a field. Since H normalizes H_0 , H acts \mathbb{K} -semilinearly on \hat{U} . Note that $[\hat{U}, Y_M]$ is a non-trivial \mathbb{K} -subspace of \hat{U} centralized by $O_p(M)$. Thus $O_p(M)$ acts \mathbb{K} -linearly on \hat{U} , and since $H = H_0 O_p(M)$, also H acts \mathbb{K} -linearly on \hat{U} .

(c): By 7.5(g) $C_T(\hat{U}) = O_p(H) \leq C_H(U)$. Also $[U, C_H(\hat{U})] \leq C_U(O^p(H))$ and therefore $[U, O^p(C_H(\hat{U}))] = 1$. Thus $C_H(\hat{U}) = O^p(C_H(\hat{U}))C_T(\hat{U}) \leq C_H(U) \leq C_H(\hat{U})$.

(d): Suppose that $O_p(M) \leq H_0 C_H(\hat{U})$. Then $H = H_0 O_p(M) = H_0 C_H(\hat{U})$, and by (c) also $H = H_0 C_H(U)$. Hence $O_p(M) \leq T \leq (T \cap H_0) C_T(\hat{U})$. By 7.5(g) $C_T(\hat{U}) = O_p(H)$ and so $O_p(M) \leq (T \cap H_0) O_p(H)$. This shows that $H = H_0 O_p(M) = H_0 O_p(H)$, and the first part of (d) is

proved. By 2.17(d), $C_U(O^p(H)) = C_U(H_0)$. Since $H = H_0C_H(U)$, $C_U(H) = C_U(H_0)$ and by 7.5(a), $C_U(H) = U \cap R$. Thus $C_H(O^p(H)) = U \cap R$.

(e): By (c) $\widetilde{H} = H/C_H(\widehat{U})$. Since \widehat{U} is a simple H_0 -module we conclude that $C_{\widetilde{H}}(\widetilde{H}_0)$ is p'-group. As $H = H_0O_p(M)$, H/H_0 is a p-group and so $C_{\widetilde{H}}(\widetilde{H}_0) \leq \widetilde{H}_0$.

LEMMA 7.7. (a) $C_{Y_M}(K) \cap C_{Y_M}(Q) = 1.$ (b) $C_{O_p(M)}(\langle K^Q \rangle) = 1.$

PROOF. (a): Suppose for a contradiction that $C_{Y_M}(K) \cap C_{Y_M}(Q) \neq 1$. Then by A.54(c) $\overline{K} \leq N_{\overline{M}}(\overline{Q})$, and by A.54(e) \overline{K} acts faithfully on $X := C_{Y_M}(Q)$. In particular, $[X, K] \neq 1$ and since $K = \langle W^K \rangle$, also $[X, W] \neq 1$.

Suppose first that $|X/C_X(W)| > 2$. Then 2.17(f) shows that $[W, Y_M] = [W, X] \leq X$. Using $K = \langle W^K \rangle$ this gives $[K, Y_M] \leq X = C_{Y_M}(Q)$ and $[Y_M, K, Q] = 1$. Since $\overline{K} \neq 1$, this contradicts A.54(d).

Hence $|X/C_X(W)| = 2$. By 7.4(c), (f) $A \leq O_p(H)$, and $O_p(H)$ normalizes Q and K. In particular, A normalizes Q and K, and so

$$[K, A] \leq K$$
 and $[X, A] \leq X$.

Choose $y \in X \setminus C_X(W)$. By 7.4(c), $W \leq Z(A)$. So $y \notin A$, and 7.4(e) gives $Y_M \cap A = C_{Y_M}(W) = [y, A]R$. Also by 7.5(e), $R \cap X \leq C_R(Q) = 1$. Note that $C_X(K) = C_{Y_M}(K) \cap C_{Y_M}(Q) \neq 1$, and by (I) $[y, A] \leq [X, A] \leq X$, so

$$1 \neq C_X(K) \leqslant C_{Y_M}(W) \cap X \leqslant [y, A]R \cap X = [y, A](R \cap X) = [y, A]$$

By 1.43(a)

(I)

$$A' = [Y_M \cap A, A] \leqslant C_{Y_M}(L) = R.$$

On the other hand $[Y_M \cap A, A] \leq [XR, A] = [X, A] \leq X$ and so $A' = [Y_M \cap A, A] \leq R \cap X = 1$. Thus A is abelian and so $[y, A] = \{[y, a] \mid a \in A\}$. As $1 \neq C_X(K) \leq [y, A]$ we can choose $a \in A$ with $1 \neq [y, a] \in C_X(K)$. From $C_X(W) \leq C_{Y_M}(W) = Y_M \cap A$ we also get $[C_X(W), A] = 1$. Since $|X/C_X(W)| = 2$, $X = \langle y \rangle C_X(W)$, and it follows that $[X, a] = \langle [y, a] \rangle \leq C_X(K)$ and $C_X(a) = C_X(W)$. By (I) $[K, A] \leq K$, and so [K, a] centralizes the factors of the K-invariant series $1 \leq C_X(K) \leq X$. As X is a faithful \overline{K} -module we get $[\overline{K}, \overline{a}] \leq O_p(\overline{K}) \leq O_p(\overline{M}) = 1$. The Three Subgroups Lemma now shows that [X, K, a] = 1 and $[X, K] \leq C_X(a) = C_X(W)$. But then [X, K, W] = 1, and since $K = \langle W^K \rangle$, [X, K, K] = 1, a contradiction since \overline{K} is not a p-group and acts faithfully on X. This completes the proof of (a).

(b): Put $K_0 := O^p(\langle K^Q \rangle)$ and $C := C_{O_p(M)}(K_0)$. Since K is subnormal in M, $O_p(M)$ normalizes $O^p(K)$ and thus also K_0 and C; in particular $C \leq O_p(M)$. Assume that $C \neq 1$. Then $C \cap Z(O_p(M)) \neq 1$, and since $\Omega_1 Z(O_p(M)) = Y_M$, also $C \cap Y_M \neq 1$. On the other hand, $\langle Q, K \rangle / K_0$ is a p-group, and so $C \cap Y_M \neq 1$ implies $C_{C \cap Y_M}(\langle Q, K \rangle) \neq 1$. This contradicts (a). Hence C = 1, and (b) holds.

LEMMA 7.8. Let $1 \neq X \leq R$ and suppose that

$$O_p(C_{\overline{M}}(X)) = 1$$
 or $[C_{Y_M}(O_p(C_{\overline{M}}(X))), W] \neq 1.$

Then $C_G(X)$ is not of characteristic p.

PROOF. Note that $O_p(C_{\overline{M}}(X)) = 1$ implies $Y_M = C_{Y_M}(O_p(C_{\overline{M}}(X)))$. Thus, also in this case (*) $[C_{Y_M}(O_p(C_{\overline{M}}(X))), W] \neq 1.$

Put $P := O_p(C_G(X))$. Since $R \leq Y_M$, $X \leq Y_M$ and $O_p(M) \leq C_G(X)$. Hence 2.6(c) shows that $M^{\dagger} \cap C_G(X)$ is a parabolic subgroup of $C_G(X)$, and so $P \leq M^{\dagger}$. Thus $\overline{P} \leq O_p(C_{\overline{M^{\dagger}}}(X))$. As $M^{\dagger} = MC_G(Y_M)$, $\overline{M} = \overline{M^{\dagger}}$ and so $\overline{P} \leq O_p(C_{\overline{M}}(X))$. Hence $C_{Y_M}(O_p(C_{\overline{M}}(X))) \leq C_{Y_M}(P)$. Now (*) implies $[C_{Y_M}(P), W] \neq 1$. By 7.4(e) $C_{Y_M}(W) = Y_M \cap A$, and so $C_{Y_M}(P) \leq A = O_p(L)$.

As $X \leq R = C_{Y_M}(L)$, $L \leq C_G(X)$, and since $C_{Y_M}(P) \leq O_p(L)$, $C_{Y_M}(P) \leq O_p(C_G(X)) = P$. Thus $C_G(X)$ is not of characteristic p.

LEMMA 7.9. Suppose that $N_G(Q) \leq N_G(Y_M)$. Then there exists $t \in A \setminus C_A(Y_M)$ such that $[C_D(t), L] \leq A$ for all p-subgroups D of M with $[Y_M, D] \leq A$.

PROOF. By 7.5(e), $\Omega_1 Z(S) \leq Y_M \cap Y_H \leq Y_M \cap O_p(H)$, and by 7.4(d), $Y_M \cap O_p(H) = Y_M \cap A$, so $\Omega_1 Z(S) \leq C_{Y_M \cap A}(Q) \neq 1$. Let $l \in L \setminus N_L(Y_M)$ and choose $1 \neq t \in C_{Y_M \cap A}(Q)^l$. By 7.5(e) $C_R(Q^l) = 1$, so $t \notin R$. Since $L = \langle Y_M^l, Y_M \rangle$, this gives $[t, Y_M] \neq 1$. By $Q!, C_G(t) \leq N_G(Q^l)$, and as $N_G(Q^l) \leq N_G(Y_M^l), C_G(t)$ normalizes Y_M^l . Since D normalizes $Y_M, C_D(t) \leq N_G(\langle Y_M, Y_M^l \rangle) =$ $N_G(L)$. In particular, $C_D(t)$ acts on $Y_M^l A/A$, and since $C_D(t)$ is a p-group, we can choose $h \in Y_M^l \setminus A$ with $[h, C_D(t)] \leq A$. By 1.43(k) $N_L(Y_M) \cap Y_M^l \leq A$. So $h \notin N_L(Y_M)$ and $L = \langle h, Y_M \rangle$. Since $[Y_M, C_D(t)] \leq Y_M \cap A \leq A$ and $[h, C_D(t)] \leq A$ this gives $[L, C_D(t)] \leq A$.

LEMMA 7.10. Suppose that Y_M is an offender on W. Then $\widetilde{Y_M} \in Syl_p(\widetilde{L})$, and both, $W/W \cap R$ and \widehat{W} , are natural $SL_2(\widetilde{q})$ -modules for \widetilde{L} .

PROOF. By 1.43(h) $C_{W/W \cap R}(L) = 1$. Also $W = [W, O^p(L)] \leq W \cap R$ and $[W, O_p(L)] = 1$. Hence 1.34(b) shows that W and $W/W \cap R$ are *p*-reduced for L and $C_{Y_M}(W/W \cap R) = Y_M \cap A = C_{Y_M}(W)$. So Y_M is an offender on $W/W \cap R$. Since L is Y_M -minimal, C.13 shows that $W/W \cap R$ is a natural $SL_2(\tilde{q})$ -module for L/A and $Y_M A/A \in Syl_p(L/A)$. By 7.4(d) $A = L \cap O_p(H)$, so $\tilde{L} = LO_p(H)/O_p(H) \cong L/A$ and $\tilde{Y}_M \in Syl_p(\tilde{L})$.

By 2.17(e) $W \cap R = W \cap C_{Y_M}(L) = C_W(O^p(H))$. Hence $\widehat{W} \cong W/W \cap R$ and so also \widehat{W} is a natural $SL_2(\widehat{q})$ -module for \widetilde{L} , and the lemma is proved.

LEMMA 7.11. Suppose that Y_M is an offender on W. Then one of the following holds:

- (1) \hat{U} is natural $SL_2(\hat{q})$ -module for H, $Y_M = O_p(M) = C_G(Y_M)$, $M = M^{\dagger}$, $N_G(Q) \leq M$, H = L and U = W.
- (2) U is a natural $SL_m(\tilde{q})$ -module for $H, m \ge 3, U \cap R = 1$ and $\widetilde{Y_M} = Z(\tilde{T})$ is a transvection group on U.

PROOF. Since Y_M is an offender on W, 7.10 shows $\widetilde{Y_M} \in Syl_p(\widetilde{L})$ and \widehat{W} is a natural $SL_2(\widetilde{q})$ -module for \widetilde{L} . It follows that

$$C_{\widehat{W}}(y) = C_{\widehat{W}}(Y_M)$$
 and $[\widehat{W}, y] = [\widehat{W}, Y_M]$

for all $y \in Y_M \setminus C_{Y_M}(W)$. Also $|\widetilde{Y_M}| = |\widetilde{q}| = |\widehat{W}/C_{\widehat{W}}(Y_M)|$ and so Y_M is a root offender² on \widehat{W} . By 2.17(c), $U = WC_U(Y_M)$. Hence $\widehat{U} = \widehat{W}C_{\widehat{U}}(Y_M)$. It follows that Y_M is a root offender on \widehat{U} . By A.37(b) any root offender is a strong dual offender. Thus

1°. Y_M is a strong dual offender and a root offender on \hat{U} .

Put $H_0 := \langle Y_M^H \rangle$ and $\mathbb{K} := End_{H_0}(\hat{U})$. By 7.6(a) \hat{U} is a non-central simple H_0 -module. Hence we can apply the Strong Dual FF-Module Theorem C.5, and get:

- 2° . One of the following cases holds:
- (A) $\widetilde{H}_0 \cong Alt(7), p = 2, and \widehat{U}$ is a spin module of order 2^4 for \widetilde{H}_0 .
- (B) $\widetilde{H}_0 \cong O_{2m}^{\epsilon}(2), \ m \ge 2 \ and \ p = 2, \ |\widetilde{Y}_M| = 2, \ and \ \widehat{U} \ is \ a \ natural \ O_{2m}^{\epsilon}(2) module \ for \ \widetilde{H}_0.$
- (C) $\widetilde{H}_0 \cong SL_m(q_1), m \ge 3$, and \widehat{U} is a natural $SL_m(q_1)$ -module for \widetilde{H}_0 .
- (D) $\widetilde{H_0} \cong Sp_{2m}(q_1), m \ge 1$, or $Sp_4(2)'$ (and p = 2), and \widehat{U} is a corresponding natural module for $\widetilde{H_0}$.
- (E) $\widetilde{H_0} \cong Sym(m), m \ge 5, m \ne 6 \text{ and } p = 2, \text{ and } \widehat{U} \text{ is a natural } Sym(m) \text{-module for } \widetilde{H_0}.$

²For the definitions of a root offender and a strong dual offender see A.7(5),(6)

Note here that $Alt(6) \cong Sp_4(2)'$ and a natural Alt(6)-module is also a natural $Sp_4(2)'$ -module. Similarly, $SL_2(q_1) \cong Sp_2(q_1)$, and a natural $SL_2(q_1)$ -module is also a natural $Sp_2(q_1)$ -module. So these two cases are included in Case (D).

Suppose that Case (A) holds. Then $\widetilde{H_0} \cong Alt(7)$ and $|\widehat{U}| = 2^4$. Since Alt(7) is a maximal subgroup of $Alt(8) \cong GL_4(2)$ and $H_0 \leq H$, we conclude that $\widetilde{H} = \widetilde{H_0} \cong Alt(7)$. It follows that there exists a proper subgroup P of H with $O_2(M) \leq P$ and $\widetilde{P} \cong Alt(6)$. Note that $O_2(\widetilde{P}) = 1$ and so $\widetilde{Y_M} \leq O_2(\widetilde{P})$. Hence also $Y_M \leq O_2(P)$. Since $H \in \mathfrak{H}_G(O_2(M))$ this contradicts the definition of $\mathfrak{H}_G(O_2(M))$.

Suppose that Case (B) holds. Then \widetilde{U} is a natural $O_{2m}^{\epsilon}(2)$ -module for H_0 and $|\widetilde{Y_M}| = 2$. Since $Y_M \leq T$ and $[\widehat{U}, Y_M] = 2$ we conclude that $[\widehat{U}, Y_M] \leq C_{\widehat{U}}(T)$, a contradiction since $[\widehat{U}, Y_M]$ is non-singular and $C_{\widehat{U}}(T)$ is singular by B.9(c) and B.23(g) respectively.

Suppose that Case (C) holds. Then \widetilde{U} is a natural $SL_m(q_1)$ -module for $H_0, m \ge 3$. Recall that $\mathbb{K} = End_{H_0}(\widehat{U})$. Hence \mathbb{K} is a finite field of order q_1 , and by 7.6(b), $O_p(M)$ acts \mathbb{K} -linearly on \widehat{U} . Since $GL_m(q_1)/SL_m(q_1)$ is a p'-group this gives $O_p(M) \le \widetilde{H}_0$. So 7.6(d) implies

$$H = H_0 C_H(U) = H_0 C_H(U) = H_0 O_p(H).$$

Since $Y_M \leq T$ we can choose $y \in Y_M \setminus C_{Y_M}(U)$ with $\tilde{y} \in Z(\tilde{T})$. Note that $Z(\tilde{T})$ is a transvection group. So $[\hat{U}, y]$ and $\hat{U}/C_{\hat{U}}(y)$ are 1-dimensional over \mathbb{K} and

$$Z(\widetilde{T}) = C_{\widehat{H}}([\widetilde{U}, y]) \cap C_{\widetilde{H}}(C_{\widehat{U}}(y)).$$

By (1°) Y_M is a root offender on \hat{U} . Thus $[\hat{U}, Y_M] = [\hat{U}, y]$ and $C_{\hat{U}}(Y_M) = C_{\hat{U}}(y)$. It follows that $\widetilde{Y_M} \leq Z(\widetilde{T})$, and since Y_M is an offender on $\hat{U}, \widetilde{Y_M} = Z(\widetilde{T}), \widetilde{Y_M}$ is a transvection group, and $q_1 = |Z(\widetilde{T})| = |\widetilde{Y_M}| = \widetilde{q}$.

Suppose that $C_U(H) \neq 1$. Since U = [U, H] and Y_M is a offender on W and so on U, C.22 shows that \widehat{U} is a natural $SL_3(2)$ -module for H and $|\widetilde{Y_M}| = 4$, a contradiction to $2 = q_1 = \widetilde{q} = |\widetilde{Y_M}|$. Thus $C_U(H) = 1$, U is a natural $SL_n(\widetilde{q})$ -module and $U \cap R = 1$. So (2) holds in this case.

For the remainder of the proof we can assume now that Case (D) or (E) holds. We show next:

- 3° . $H = H_0 O_p(H) = H C_H(\widehat{U}) = H C_H(U)$, and one of the following holds:
- (i) \hat{U} is a natural $Sp_{2m}(\tilde{q})$ -module for $H, m \ge 1$, and $\widetilde{Y_M}$ acts as a transvection group on \hat{U} .
- (ii) p = 2, \widehat{U} is a natural Sym(m) module for H, $m \ge 5$ and $m \ne 6$, and $\widetilde{Y_M}$ is generated by a transposition of \widetilde{H} .

Suppose that Case (D) holds, so \hat{U} is a natural $Sp_{2m}(q_1)$ -module, $m \ge 1$, or $Sp_4(2)'$ -module for H_0 . By 7.6(b), H acts K-linearly on \hat{U} . Note hat K is a field of order q_1 and the set of H_0 -invariant symplectic forms on \hat{U} form 1-dimensional K-space. Since $O_p(M)$ acts K-linearly on \hat{U} and is a p-group, we conclude that $O_p(M)$ acts trivially on this K-space. So any H_0 -invariant non-degenerate symplectic form on \hat{U} is also $O_p(M)$ -invariant.

Let $X = C_{\widehat{U}}(T)$ and $P = C_H(X)$. Note that X is a 1-dimensional singular K-subspace of \widehat{U} and $[X^{\perp}, O_p(P)] \leq X$, cf. B.23(g) and B.28(b:b). Since $O_p(M) \leq T \leq P < H$ and $H \in \mathfrak{H}_G(O_p(M))$ we have $Y_M \leq O_p(P)$. Suppose that $[X^{\perp}, Y_M] \neq 1$. By (1°) Y_M is a strong dual offender on \widehat{U} and so $[\widehat{U}, Y_M] = [X^{\perp}, Y_M] = X$. But then $C_{\widehat{U}}(Y_M) = [\widehat{U}, Y_M]^{\perp} = X^{\perp}$ contrary to $[X^{\perp}, Y_M] \neq 1$. Thus $[X^{\perp}, Y_M] = 1$. Hence

$$q_1 = |\widehat{U}/X^{\perp}| = |U/C_U(Y_M)| \leq |\widetilde{Y_M}| \leq |C_{\widetilde{H}_0}(X^{\perp})| \leq q_1.$$

Thus $\widetilde{Y_M}$ is a transvection group on \widehat{U} , and $q_1 = |\widetilde{Y_M}| = \widetilde{q}$. Moreover, since $Sp_4(2)'$ does not contain a transvection, $\widetilde{H_0} \cong Sp_{2n}(\widetilde{q})$. As $O_p(M)$ fixes the $\widetilde{H_0}$ -invariant symplectic forms we get $\widetilde{O_p(M)}) \leq \widetilde{H_0}$. Now 7.6(d) shows that the first statement of (3°) holds. In particular, $\widetilde{H} = \widetilde{H_0}$ and (3°)(i) holds.

Suppose that Case (E) holds, so \widehat{U} is a natural Sym(m) module for $H_0, m \ge 5$ and $m \ne 6$, and $|\widetilde{Y}_M| = 2$. Since $|\widetilde{Y}_M| = 2$ and Y_M is an offender, \widetilde{Y}_M is generated by a transposition. Note that Out(Sym(m)) = 1 since $m \ne 6$. Hence $O_p(M)$ induces inner automorphisms of \widetilde{H}_0 . By 7.6(e), $C_{\widetilde{H}}(\widetilde{H}_0) \le \widetilde{H}_0$ and thus $\widetilde{O_p(M)} \le \widetilde{H}_0$. Now 7.6(d) shows that the first statement of (3°) holds. Thus $\widetilde{H} = \widetilde{H}_0$, and (3°)(ii) follows. This completes the proof of (3°).

4°. $U \cap R = C_U(O^p(H))$. In particular, $\hat{U} = U/U \cap R$.

By 7.5(a) $U \cap R = C_U(H)$, by (3°) $H = H_0C_H(U)$, and by 2.17(d) $C_U(H_0) = C_H(O^p(H))$. Hence $U \cap R = C_U(H_0) = C_U(O^p(H))$.

Let Z_2 be maximal in $U \cap O_p(M)$ with $[Z_2, O_p(M)] \leq U \cap Y_M$ and put $E := [Z_2, O_p(M)]$.

5°. \widehat{Z}_2 and \widehat{E} are \mathbb{K} -subspaces of \widehat{U} , $\widehat{E} \leq [\widehat{U}, Y_M]$, $[\widehat{U}, Y_M]$ is 1-dimensional, and \widehat{E} is at most 1-dimensional over \mathbb{K} .

By 7.5(b), $U \cap Y_M = [U, Y_M](U \cap R)$. Since by (4°) $\hat{U} = U/U \cap R$, it follows that $\widehat{U \cap Y_M} = [\hat{U}, Y_M]$ is a K-subspace of \hat{U} , and as $U \cap R \leq U \cap Y_M$, $\widehat{Z_2}$ is maximal in \hat{U} with $[\widehat{Z_2}, O_p(M)] \leq \widehat{U \cap Y_M}$. By 7.6(b), $O_p(M)$ acts K-linearly on \hat{U} and so $\widehat{Z_2}$ is a K-subspace of \hat{U} . Hence also $\hat{E} = [\widehat{Z_2}, O_p(M)]$ is a K-subspace of \hat{U} . By definition of E and Z_2 , $\hat{E} = [\widehat{Z_2}, O_p(M)] \leq \widehat{U \cap Y_M} = [\hat{U}, Y_M]$.

Since by (3°) \widetilde{Y}_M is a transvection group (in the $Sp_{2n}(\widetilde{q})$ -case) or generated by a transposition (in the Sym(m)-case), $[\widehat{U}, Y_M]$ is 1-dimensional over \mathbb{K} .

 6° . $E \cap R = 1$.

If $U \cap R = 1$ then also $E \cap R = 1$. So we may assume that $U \cap R \neq 1$. Suppose first that Case (3°)(i) holds, that is, \hat{U} is a natural $Sp_{2m}(\hat{q})$ -module. Note that $C_U(H) = U \cap R \neq 1$ and U = [U, H]. Thus C.22 shows that p = 2, and U is a central quotient of a natural $\Omega_{2m+1}(\hat{q})$ -module \check{U} for H. For $X \subseteq U$, let \check{X} be the inverse image of X in \check{U} . Since $Z_2 \leq U \cap O_2(M) = C_U(Y_M)$,

 $\widehat{Z_2} \leqslant U \cap \widehat{O_2(M)} \leqslant C_{\widehat{U}}(Y_M) = [\widehat{U}, Y_M]^{\perp}.$

As $[\widehat{Z}_2, O_2(M)] \leq [\widehat{U}, Y_M]$ this gives $[\widecheck{Z}_2, O_2(M)] \leq \widecheck{Z}_2^{\perp}$. Hence by B.9(d) $[\widecheck{Z}_2, O_2(M)]$ is a singular subspace in \widecheck{U} . Since all the non-trivial vectors in \widecheck{U}^{\perp} are non-singular, this gives $[\widecheck{Z}_2, O_p(M)] \cap \widecheck{U}^{\perp} = 1$. Taking images in U gives $E \cap R = E \cap (U \cap R) = 1$.

Suppose next that Case $(3^{\circ})(ii)$ holds, that is, \widehat{U} is a natural Sym(m)-module. Since $U \cap R \neq 1$, C.22 shows that m is even and U is the even permutation module for Sym(m). Let \check{U} be the permutation module for H with H-invariant basis v_1, \ldots, v_m . Identify U with $[\check{U}, H] = \langle v_i + v_j |$ $1 \leq i < j \leq m \rangle$ such that \widetilde{Y}_M acts as $\langle (1, 2) \rangle$. Put $P := N_H(\widetilde{Y}_M)$. Then $\widetilde{P} \cong C_2 \times Sym(m-2)$,

$$U \cap O_2(M) = C_U(Y_M) = \langle v_1 + v_2, v_i + v_j \mid 3 \leq i < j \leq m \rangle$$

and

$$[U \cap O_2(M), P] \leq \langle v_i + v_j \mid 3 \leq i < j \leq m \rangle.$$

Thus $[U \cap O_2(M), P] \cap R = 1$. Since $Z_2 \leq U \cap O_2(M)$ and $O_2(M) \leq P$ we have $E = [Z_2, O_2(M)] \leq [U \cap O_2(M), P]$ and so $E \cap R = 1$. Thus (6°) is proved.

 7° . E = 1.

Suppose that $E \neq 1$. Note that $E \leq Y_M$, $W \leq U$, $\overline{K^*} = \langle \overline{W}^M \rangle = \langle K^M \rangle$, and by 7.7(b) $C_{O_p(M)}(\langle K^Q \rangle) = 1$. Hence $C_{Y_M}(\overline{K^*}) = 1$. It follows that $[E, U^g] \neq 1$ for some $g \in M$. By definition of Z_2 and E, $[Z_2, U^g \cap O_p(M)] \leq [Z_2, O_p(M)] = E$. On the other hand $Z_2 \leq U \cap O_p(M) \leq O_p(M) = O_p(M)^g \leq H^g$ and so Z_2 normalizes U^g . Since U^g is abelian we have

$$[U^g \cap O_p(M), Z_2] \leq U^g \cap E \leq C_E(U^g) < E.$$

As by (6°) $R \cap E = 1$, this gives

$$[U^g \cap O_p(M), \widehat{Z_2}] < \widehat{E}.$$

Since $U^g \cap O_p(M)$ acts K-linearly on \widehat{U} and \widehat{Z}_2 is a K-subspace of \widehat{U} , also $[U^g \cap O_p(M), \widehat{Z}_2]$ is a K-subspace of \widehat{U} . As by (5°) \widehat{E} is at most 1-dimensional over K, this gives $[U^g \cap O_p(M), \widehat{Z}_2] = 1$ and $[U^g \cap O_p(M), Z_2] \leq R \cap E = 1$.

We now shift attention to H^g and the H^g -modules U^g and $\widehat{U^g} := U^g/C_{U^g}(O^p(H^g))$. Observe that $O_p(M) \leq H^g$ since $g \in M$. From $[U^g, O_p(M)] \leq U^g \cap O_p(M)$ we conclude that $[U^g, O_p(M), Z_2] = 1$ and so also $[\widehat{U^g}, O_p(M), Z_2] = 1$. Since $\widehat{U^g}$ is selfdual as an H^g module, B.8 shows $[\widehat{U^g}, Z_2, O_p(M)] = 1$, and the Three Subgroup Lemma gives $[E, \widehat{U^g}] = [Z_2, O_p(M), \widehat{U^g}] = 1$. By 7.5(g) $C_T(U) = C_T(\widehat{U})$, and thus also $C_{T^g}(U^g) = C_{T^g}(\widehat{U^g})$, so $[E, U^g] = 1$. This contradicts the choice of g. Hence (7°) holds.

 8° . $U \cap O_p(M) = U \cap Y_M$.

By (7°) , $[Z_2, O_p(M)] = E = 1$. By the definition of Z_2 this means

$$C_{U \cap O_p(M)/U \cap Y_M}(O_p(M)) = Z_2/U \cap Y_M = 1,$$

and so $U \cap O_p(M) = U \cap Y_M$.

We are now able to prove the Lemma. From (8°) we have, $[U, O_p(M)] \leq U \cap Y_M \leq Y_M$, and since $W \leq U$ and $K = \langle W^K \rangle$, $[K, O_p(M)] \leq Y_M = \Omega_1 Z(O_p(M))$. Thus, 1.18 gives $[\Phi(O_p(M)), K] = 1$ and so also $[\Phi(O_p(M)), \langle K^Q \rangle] = 1$. By 7.7(b), $C_{O_p(M)}(\langle K^Q \rangle) = 1$ and so $\Phi(O_p(H)) = 1$. It follows that $O_p(M)$ is elementary abelian. Hence $O_p(M) = \Omega_1 Z(O_p(M)) = Y_M$. Since $M \in \mathcal{L}_G(S)$ we have $Y_M \leq C_G(O_p(M)) \leq O_p(M)$, and so $C_G(Y_M) = Y_M$ and $M^{\dagger} = MC_G(Y_M) = MY_M = M$. Since Y_M is Q-short, $O_p(M) = Y_M \leq Q$, and since by 2.6(b) $O_p(M)$ is a weakly closed subgroup of G, $N_G(Q) \leq N_G(O_p(M)) \leq M^{\dagger} = M$.

Also by 2.17(a) $H = \langle L, O_p(M) \rangle = \langle L, Y_M \rangle = L$ and so U = W. By 7.10 \widehat{W} is a natural $SL_2(\widetilde{q})$ -module for L, and so Case (1) of the lemma holds.

LEMMA 7.12. Suppose that there exists a non-degenerate $\overline{K^*S}$ -invariant symplectic form on $V := [Y_M, \overline{K^*}]$. Put $H_0 := \langle Y_M^H \rangle$.

- (a) $Y_M = VC_{Y_M}(W)$ and $C_{Y_M}(W) = Y_M \cap A$; in particular $[V, W] = [Y_M, W]$ and $C_W(V) = C_W(Y_M)$.
- (b) W is a root offender on V and Y_M .
- (c) V and Y_M are root offenders on W.
- (d) $|\overline{W}| = |W/C_W(V)| = |[V,W]| = |V/C_V(W)|.$
- (e) $A = W \times R$, $C_{Y_M}(W) = [V, W] \times R$, $[Y_M, O_p(H)] = [V, W]$, $[O_p(H), O^p(H)] = U$, and W is a natural $SL_2(\tilde{q})$ -module for \tilde{L} .
- (f) $C_V(W) = [V,W]^{\perp} = [V,W] \times (V \cap R)$, and [V,W] is a singular subspace of V.
- (g) $|V| = |\overline{W}|^2 |V \cap R|$.
- (h) $C_G(Y_M) = O_p(M) = Y_M = VR, M = M^{\dagger} and N_G(Q) \leq M.$
- (i) H = L and $O_p(H) = Y_H = A = W \times R = C_L(W)$.

PROOF. Since V carries a $\overline{K^*S}$ -invariant non-degenerate symplectic form, V is selfdual as an $\mathbb{F}_p \overline{K^*S}$ -module. By 2.17(c), W is a strong offender on Y_M and so W is also a strong offender on the submodule V of Y_M . Since V is selfdual, A.38 shows that W is a root offender on V. In particular, by A.37,

(I)
$$|[W,V]| = |V/C_V(W)| = |W/C_W(V)|.$$

(a): Since W is an offender on Y_M , $|Y_M/C_{Y_M}(W)| \leq |\overline{W}|$, and (I) yields

$$|Y_M/C_{Y_M}(W)| \leq |\overline{W}| = |W/C_W(V)| = |V/C_V(W)| = |VC_{Y_M}(W)/C_{Y_M}(W)| \leq |Y_M/C_{Y_M}(W)|.$$

Thus $Y_M = VC_{Y_M}(W)$, and 7.4(e) gives $C_{Y_M}(W) = Y_M \cap A$.

(b): We already know that W is a root offender on V. Since $Y_M = VC_{Y_M}(W)$ by (a), W is also a root offender on Y_M .

(c): Since W is a root offender on V, 1.21 shows that V is a root offender on W. Since $Y_M = VC_{Y_M}(W)$, also Y_M is a root offender on W.

(d): By (a) $C_W(V) = C_W(Y_M)$, and so $|W/C_W(V)| = |\overline{W}|$. Now (d) follows from (I).

(e) and (f): By (a) $[Y_M, W] = [V, W]$. Let $w \in W \setminus C_W(V)$. Then by 1.43(i), $[w, Y_M] \cap C_{Y_M}(L) =$ 1. By (c) V is a root offender on W and so by A.37(b), V is a strong dual offender on W. Thus [w, V] = [W, V], and we conclude that $[W, V] \cap R = 1$. By 7.5(c), $W \cap R = [Y_M, W] \cap R$. Since $[Y_M, W] = [V, W]$, this gives $W \cap R = [V, W] \cap R = 1$. By (c) Y_M is an offender on W, so 7.10 shows that $W \cong W/W \cap R$ is a natural $SL_2(\tilde{q})$ -module for L.

By (a) $C_{Y_M}(W) = Y_M \cap A$, and we conclude that

$$V \cap A = C_V(W) = [V, W]^{\perp}.$$

As $[V, W] \leq V \cap A$, this implies that [V, W] is singular.

By 1.43(a), $A' \leq C_{Y_M}(L) = R$ and so

$$[A, V \cap A] \cap [W, V] \leq R \cap [W, V] = 1.$$

Hence there exists a subgroup V_0 of $V \cap A$ with $[A, V \cap A] \leq V_0$ and $V \cap A = [V, W] \times V_0$. Note that A normalizes V_0 and so also V_0^{\perp} . From $V_0 \cap [V, W] = 1$ we get $V = V_0^{\perp} [V, W]^{\perp}$. Since $V \cap A = [V, W]^{\perp}$ this gives $V = V_0^{\perp} (V \cap A)$. Also

$$[A, V_0^{\perp}] \leq V_0^{\perp} \cap [A, V] \leq V_0^{\perp} \cap (V \cap A) = V_0^{\perp} \cap [V, W]^{\perp} = (V_0 + [V, W])^{\perp}$$

= $(V \cap A)^{\perp} = [V, W]^{\perp \perp} = [V, W] \leq W.$

Since $V = V_0^{\perp}(V \cap A)$ and $Y_M = VC_{Y_M}(W) = V(Y_M \cap A)$ we have $Y_M \leq VA \leq V_0^{\perp}A$, and so $[A, Y_M] \leq [A, V_0^{\perp}A] = [A, V_0^{\perp}][A, A] \leq WA' \leq WR.$

From $L = \langle Y_M^L \rangle$ we conclude $[A, L] \leq WR$. By 1.43(p) L has no central chief factors on A/R and so A = WR, and since $W \cap R = 1$, $A = W \times R$. In particular, A is abelian.

Note that $[W,V] \leq W \cap V \leq W \cap Y_M \leq C_W(V)$. Since W is a natural $SL_2(\tilde{q})$ module for L we have $[W,V] = C_W(V)$ and so $[W,V] = W \cap V = W \cap Y_M$. Recall that $C_{Y_M}(A) = Y_M \cap A$, $A = W \times R$ and $R \leq Y_M \cap A$. Hence

$$C_{Y_M}(W) = Y_M \cap A = (Y_M \cap W)R = [V, W] \times R \text{ and } C_V(W) = [V, W] \cap (R \cap W).$$

Since $A \leq WR \leq UR$ we have $[A, O_p(H)] = 1$. In particular, $V \cap A \leq C_V(O_p(H))$ and so

$$[V, O_p(H)] = C_V(O_p(H))^{\perp} \leq (V \cap A)^{\perp} = [V, W].$$

Since by (a) $Y_M = V(Y_M \cap A)$ we get that $[Y_M, O_p(H)] = [V, W] = [Y_M, W]$. Hence, (e) and (f) are proved.

(g): By (f) $C_V(W) = [V, W] \times (V \cap R)$ and by (d) $|\overline{W}| = |[V, W]| = |V/C_V(W)|$. Thus $|V| = |V/C_V(W)||C_V(W)| = |\overline{W}|^2 |V \cap R|$.

(h) and (i): Since Y_M is an offender on W, we can apply 7.11. We now treat the two cases arising there separately.

Case 1. Suppose that 7.11(1) holds (\hat{U} is a natural $SL_2(\tilde{q})$ -module for H).

According to 7.11(1) we have

$$Y_M = O_p(M) = C_G(Y_M), \quad M = M^{\dagger}, \quad N_G(Q) \leq M, \quad H = L, \quad U = W_M$$

Then $O_p(H) = O_p(L) = A$, and by (e) $A \cap Y_M = [W, Y_M]R$ and $A = W \times R \leq Y_H$, so $A = Y_H$ follows. By (e) $C_{Y_M}(W) = [V, W]R$, so (a) implies

$$Y_M = VC_{Y_M}(W) = V[V, W]R = VR.$$

Since H is of characteristic p and $A = O_p(H)$, $C_H(A) \leq A$. As A is abelian, $C_H(A) = A$. By 7.5(a), $R = C_{Y_H}(R)$ and so H centralizes R. Thus

$$C_L(W) = C_H(W) = C_H(WR) = C_H(A) = A = WR.$$

Hence (h) and (i) hold in this case.

Case 2. Suppose that 7.11(2) holds.

According to 7.11(2) U is a natural $SL_m(\widetilde{q})$ -module for $H, m \ge 3$, and $\widetilde{Y_M}$ is a transvection group on U. Our goal is to derive a contradiction in this situation. Put $H_1 := O^p(C_H(Y_M \cap A))$ and $B := \langle V^{H_1} \rangle$. We show:

1°. $C_{Y_M \cap A}(Q) \neq 1$. In particular, $H_1 \leq N_H(Q)$.

By (a) $Y_M \cap A = C_{Y_M}(W)$. Note that $W \leq S$ and $Q \leq S$. Thus $1 \neq C_{Y_M}(S) \leq Y_M \cap A$ and so $C_{Y_M \cap A}(Q) \neq 1$. Then Q! implies $H_1 \leq C_G(C_{Y_M \cap A}(Q)) \leq N_G(Q)$.

2°. $B/B \cap O_p(H)$ is a non-central simple H_1 -module and $B \cap O_p(H) = C_B(H_1)$.

By (e) $Y_M \cap A = [W, Y_M] \times R = [U, Y_M] \times R$ and by 7.5(a) [R, H] = 1. Hence $H_1 = O^p(C_H([U, Y_M]))$. Since \widetilde{Y}_M acts as a transvection group on U, $[W, Y_M] = [U, Y_M]$ is a 1-dimensional \mathbb{K} -space, where $\mathbb{K} := End_H(U)$. Note that $U/[U, Y_M]$ and $C_{\widetilde{H}}(U/[U, Y_M])$ are natural $SL_{m-1}(q)'$ -modules for H_1 dual to each other. In particular, H_1 acts simply on $C_{\widetilde{H}}([U, Y_M])$ and $C_{\widetilde{H}}([U, Y_M]) = O_p(\widetilde{H}_1)$. As

$$1 \neq \widetilde{Y_M} = \widetilde{V} \leqslant C_{\widetilde{H}}([U, Y_M]) = O_p(\widetilde{H_1}),$$

the simple action of H_1 gives $\widetilde{B} = O_p(\widetilde{H_1})$. Since $B/B \cap O_p(H) \cong \widetilde{B}$ the first statement in (2°) holds.

As H_1 acts simply on $U/[U, Y_M]$ and centralizes $[U, Y_M]$, we have

$$C_U(B) = [U, Y_M] = C_U(H_1).$$

Since Y_M is Q-short, $Y_M \leq O_p(N_G(Q))$. Also $S \leq Syl_p(N_G(Q))$ and so $O_p(N_G(Q)) \leq S$ and $Y_M \leq O_p(N_G(Q))$. Now 2.5 shows that $\langle Y_M^{N_G(O_p(Q))} \rangle$ is abelian. Since $V \leq Y_M$ and by $(1^\circ) H_1 \leq N_G(Q)$, we conclude that B is abelian. Moreover, by (a) $Y_M = V(Y_M \cap A)$ and so $[U, Y_M] = [U, V]$. Hence

$$[U, Y_M] = [U, V] \leq U \cap B \leq C_U(B) = [U, Y_M] = C_U(H_1)$$

and so $U \cap B = C_U(H_1)$.

By (e)
$$[O_p(H), O^p(H)] = U$$
. Since $H_1 \leq O^p(H)$ this gives $[O_p(H), H_1] \leq U$. Thus

 $[B \cap O_p(H), H_1] \leq U \cap B \leq C_U(H_1),$

and since $H_1 = O^p(H_1)$, $B \cap O_p(H) \leq C_B(H_1)$. Since $B/B \cap O_p(H)$ is a non-central simple H_1 module, $C_B(H_1) \leq B \cap O_p(H)$ and so (2°) holds.

 3° . [V, W, Q] = 1. Moreover, $Q = Q^g$ for all $g \in M$ with $C_{Y_M \cap A}(Q^g) \neq 1$.

Let $g \in M$ with $C_{Y_M \cap A}(Q^g) \neq 1$. Suppose for contradiction that $[V, W, Q^g] \neq 1$. Then B.8 gives $[V^*, Q^g, W] \neq 1$, where V^* is the \mathbb{F}_p -dual of V. Note that V is a selfdual $\overline{K^*Q}$ -module and so also a selfdual $\overline{K^*Q^g}$ -module. Since $\overline{WQ^g} \leq \overline{K^*Q^g}$ we conclude that $[V, Q^g, W] \neq 1$. Hence $[V, Q^g] \notin O_p(H)$ and so also $[B, Q^g] \neq O_p(H)$.

Note that $[H_1, C_{Y_M \cap A}(Q^g)] = 1$ and Q! show that H_1 normalizes Q^g . Since Q^g normalizes V, we conclude that Q^g normalizes V^h for any $h \in H_1$. It follows that Q^g normalizes B, and H_1 normalizes $[B, Q^g]$. By (2°) H_1 acts simply on $B/B \cap O_p(H)$ and $C_B(H_1) = B \cap O_p(H)$. As $[B, Q^g] \leq B \cap O_p(H)$ this gives $B = [B, Q^g]C_B(H_1)$. Hence $[B, H_1] \leq [B, Q^g]$ and H_1 normalizes $[B, Q^g]V$. Thus

$$B = \langle V^{H_1} \rangle = [V, H_1] V \leqslant [B, Q^g]$$

and $B/V = [B/V, Q^g]$, so B = V. But since $m \ge 3$, $\widetilde{V} \le \widetilde{Y_M} \ne O_p(\widetilde{H_1}) = \widetilde{B}$ and so $B \ne V$, a contradiction.

We have proved that $[V, W, Q^g] = 1$. But then also [V, W, Q] = 1, since by $(1^\circ) C_{Y_M \cap A}(Q) \neq 1$, and so $1 \neq [V, W] \leq C_G(Q) \cap C_G(Q^g)$. Hence 1.52(e) gives $Q = Q^g$ and (3°) is proved. 4°. Put $q := |\overline{W}|$. Then $q = \widetilde{q}$, $\overline{W} = \overline{Q} = \overline{U}$, $\overline{K} = \overline{K^*} = \overline{M^\circ} \cong SL_2(q)$, and V is a natural $SL_2(q)$ -module for \overline{K} .

Let $g \in M$ with $Q \neq Q^g$. Then (3°) shows that $C_{Y_M \cap A}(Q^g) = 1$ and [V, W, Q] = 1. So also $[V, W^g, Q^g] = 1$. Since $[V, W] \leq C_V(W) = V \cap A$, this gives

(II)
$$C_V(W) \cap [V,W]^g \leq C_V(W) \cap C_V(Q^g) = V \cap A \cap C_V(Q^g) = 1$$
 for all $g \in M \setminus N_M(Q)$.

In particular, $|C_V(Q^g)| \leq |V/C_V(W)|$. By (d), $|V/C_V(W)| = |[V,W]|$, and so $|C_V(Q^g)| \leq |[V,W]|$. Since by (3°) $[V,W] \leq C_V(Q)$. we conclude that $|[V,W]| \leq |C_V(Q)| = |C_V(Q^g)|$ and so $[V,W] = C_V(Q)$. Now Q! shows that $N_M([V,W]) = N_M(Q)$. Hence (II) gives $C_V(W) \cap [V,W]^g = 1$ for all $g \in M \setminus N_M([V,W])$.

Since $[Y_M, W] = [V, W]$ we have $V = [V, K^*]$. Moreover, by (b) W is a root offender on V. Hence $\overline{M}, \mathcal{D} := \overline{W}^{\overline{M}}$ and V satisfy the hypothesis of C.12. We conclude that V is a natural $SL_2(q)$ -module for K^* . Moreover, $|\overline{W}| = q = |[W, V]| = \tilde{q}$. As [V, W, Q] = 1 and $N_M([V, W])$ normalizes $\overline{Q}, \overline{Q} = \overline{W}$. Hence

$$\overline{M^{\circ}} = \big\langle \overline{Q}^{\overline{K^*}} \big\rangle = \big\langle \overline{W}^{\overline{K^*}} \big\rangle = \overline{K^*} = \overline{K}.$$

By 2.17(c) $U = WC_U(Y_M)$. Hence $\overline{U} = \overline{W}$, and (4°) holds.

 $5^{\circ}. \qquad O_p(H)=Y_H=U, \ C_H(U)=U \ and \ H/U\cong SL_m(q).$

As $R \leq C_{Y_M}(W)$ and by $(4^\circ) \overline{W} = \overline{Q}$, [R,Q] = 1. By 7.5(e), $C_R(Q) = 1$, and so R = 1. Hence by 7.5(a) $C_{Y_H}(H) = R = 1$. Since $Y_H = \Omega_1 Z(O_p(H))$ by 7.1(d), this gives $C_{O_p(H)}(H) = C_{O_p(H)}(O^p(H)) = 1$. By (h),

$$[O_p(H), O^p(H)] = U \leqslant Y_H = \Omega_1 Z(O_p(H)),$$

and 1.18 yields $[\Phi(O_p(H)), O^p(H)] = 1$. Hence $\Phi(O_p(H)) = 1$ and $O_p(H) = \Omega_1 Z(O_p(H)) = Y_H$.

By (4°) V is a natural $SL_2(q)$ -module for $\overline{K^*}$ and $q = |\overline{W}|$. Since Y_H centralizes the \mathbb{F}_q subspace [V,W] of Y_H we conclude that Y_H acts \mathbb{F}_q -linearly on V. Hence $\overline{Y_H} \leq \overline{K^*}$, $\overline{Y_H} = \overline{W} = \overline{U}$ and $Y_H \leq UC_M(V)$. Thus $Y_H = C_{Y_H}(V)U$ and V is an offender on Y_H . Hence C.22 shows that $Y_H = UC_U(H) = U$. Thus $O_p(H) = U$, and since H is of characteristic p, $C_H(U) = U$ and $H/U \cong SL_m(q)$, and (5°) is proved.

We are now able to show that (Case 2) leads to a contradiction. By (4°) , $\overline{M^{\circ}} \cong SL_2(q)$ and $\overline{Q} = \overline{U}$. So we can choose M_1 minimal in $M^{\circ}U$ with $U \leq M_1$ and $[V, U] \not\equiv M_1$. It follows $\overline{M_1} = \overline{M^{\circ}}$ and $C_S(Y_M)U = O_p(M)U = O_p(M)Q$. Thus $U \leq M^{\circ}O_p(M)$ and $M_1 \leq M^{\circ}U \leq M^{\circ}O_p(M)$. Also M_1 acts transitively on V, and so by 1.57(c), $M^{\circ} = \langle Q^{M_1} \rangle \leq M_1O_p(M)$. Thus $M_1O_p(M) = M^{\circ}O_p(M)$. The minimal choice of M_1 shows that $M_1 = \langle U^{M_1} \rangle$. Thus, since $O_p(M)$ normalizes U, it also normalizes M_1 . Therefore

$$O^{p}(M_{1}) = O^{p}(M_{1}O_{p}(M)) = O^{p}(M^{\circ}O_{p}(M)) = O^{p}(M^{\circ}) = M_{\circ}.$$

Since by 1.55(d) $C_{O_p(M)}(M^\circ) = 1$, this gives $C_{O_p(M)}(M_1) = 1$ and thus $C_U(M_1) = 1$. Note that $U \notin M_1$ and $N_{M_1}([V, U])$ is the unique maximal subgroup of M_1 containing U. Hence M_1 is U-minimal, and we can apply 1.43.

Put $D := \langle U \cap O_p(M_1)^{M_1} \rangle$ and let $m \in M_1 \setminus N_{M_1}([V, U])$. Then by 1.43(e), $D = (U \cap D) \times (U^m \cap D)$, by 1.43(a), $\Phi(D) \leq C_U(M_1) = 1$, and by 1.43(p) M_1 has no central chief factor on $D/C_D(M_1) \cong D$. Hence $D = [D, M_1]$. Note that

$$[U, O_p(M)] \leq U \cap O_p(M) \leq U \cap O_p(M_1) \leq C_U(V) \leq U \cap O_p(M),$$

and so

$$[U, O_p(M)] \leq U \cap O_p(M) = C_U(V) = U \cap O_p(M_1) = U \cap D.$$

Hence $D = [O_p(M), O^p(M_1)] = [O_p(M), M_\circ] \leq M$. Becall that U is a natural SL (\widetilde{a}) module and $\widetilde{Y}_{\mathcal{M}}$ is a trans

Recall that U is a natural $SL_m(\tilde{q})$ module and $\widetilde{Y_M}$ is a transvection group on U. By $(4^\circ) q = \tilde{q}$, and by (a) $\widetilde{V} = \widetilde{Y_M}$. Hence $U \cap D = C_U(V)$ is an \mathbb{F}_q -hyperplane of U. In particular, $U \cap D$ has order q^{m-1} . As $D = (U \cap D) \times (U^m \cap D)$, D has order $q^{2(m-1)}$ and UD has order q^{2m-1} . Put $H_2 := N_H(C_U(V)) = N_H(U \cap D)$. By (5°) $C_H(U) = U$ and thus $|C_H(U)| = q^m$. Since U is a natural $SL_m(q)$ -module for U, $C_H(C_U(V))/C_H(U)$ is a natural $SL_{m-1}(q)$ -module for $O^{p'}(H_2)$ (isomorphic to $C_U(V)$), and so has order q^{m-1} . Thus, $|C_H(C_U(V))| = q^m q^{m-1} = q^{2m-1} = |UD|$. Note that D and V are abelian. Hence $UD \leq C_H(U \cap D) = C_H(UV)$ and $UD = C_H(C_U(V)) \leq H_2$.

As $U \cap D$ is an \mathbb{F}_q -hyperplane of U and the elements of D act \mathbb{F}_q -linearly on U, for every $d \in D \setminus C_D(U)$

$$C_{DU}(d) = DC_U(d) = D(U \cap D) = D.$$

In particular, for every elementary abelian subgroup $E \leq DU$ either $E \leq D$ or $E \cap D = E \cap C_D(U)$. In the latter case $|E/E \cap C_D(U)| \leq q$ since |DU/D| = q, while $|D/C_D(U)| = q^{m-1}$. As $m \geq 3$ we conclude that D is the only maximal elementary abelian subgroup of order $q^{2(m-1)}$ in DU. Since $UD \leq H_2$ we get $H_2 \leq N_G(D)$.

As we have seen above, $D \leq M$ and so $M \leq N_G(D)$. The basic property of M gives $H_2 \leq N_G(D) \leq M^{\dagger}$ and $Y_M \leq H_2$. But $\widetilde{Y_M}$ is a transvection group on U and since $m \geq 3$ we get $\widetilde{Y_M} \leq \widetilde{H_2}$, a contradiction.

LEMMA 7.13. Put
$$\mathcal{K} := \overline{K}^{\overline{M}}$$
. Then
(*) $\overline{K^*} = \bigotimes_{F \in \mathcal{K}} F$ and $[Y_M, \overline{K^*}] = \bigotimes_{F \in \mathcal{K}} [V, F]$.

Moreover, one of the following holds, where q is a power of p:

- (A) $\overline{K} \leq \overline{M}, \overline{K} = \overline{M^{\circ}} \cong SL_n(q), n \geq 3$, and Y is a natural $SL_n(q)$ -module for K.
- (B) $\overline{M^{\circ}} = O^{p}(\overline{K^{*}})\overline{Q}$ and there exists a non-degenerate $\overline{K^{*}}\overline{S}$ -invariant symplectic form on $[Y_{M}, \overline{K^{*}}]$. In addition, one of the following holds:
 - (1) $\overline{K} \leq \overline{M}, \ \overline{K} \simeq Sp_{2n}(q), \ n \geq 1$, or $Sp_4(2)'$ (and p = 2), and Y is a corresponding natural module for \overline{K} ,
 - (2) $\overline{K} \leq \overline{M}$, p = 2, $\overline{K} \simeq O_{2n}^{\epsilon}(2)$, $n \ge 2$ and $(n, \epsilon) \ne (2, +)$, and Y is a corresponding natural module for \overline{K} . Moreover, $\overline{M^{\circ}} = \overline{K}' \simeq \Omega_{2n}^{\epsilon}(2)$ and $|\overline{W}| = |Y_M/C_{Y_M}(W)| = 2$.
 - (3) $\overline{K} \not\equiv \overline{M}$, Y_M is a natural $SL_2(q)$ -wreath product module for \overline{M} with respect to \mathcal{K} , and \overline{Q} acts transitively on \mathcal{K} .
- (C) (a) $\overline{K} \leq M$, $Y = Y_M$ and $|Y/C_Y(W)| = 4$.
 - (b) Put $M_2 := N_M(C_Y(W))$ and $K_2 := C_{M_2}(Y/C_Y(W))$. Then $\overline{K_2} \leq \overline{K}$, and there exists an M_2 -invariant set $\{V_1, V_2, V_3\}$ of K_2 -submodules of Y such that $Y = V_i \times V_j$ for all $1 \leq i < j \leq 3$.
 - (c) For all $1 \leq i \leq 3$ and $1 \neq x \in C_{V_i}(W)$ there exists $g \in M$ with $[x, Q^g] = 1$.
 - (d) One of the following holds:
 - (1) p = 2, $\overline{K} = \overline{K}' \cong SL_n(2)$, $n \ge 3$, $\{V_1, V_2, V_3\}$ is the set of proper K-submodules of Y_M , and the V_i 's are isomorphic natural $SL_n(2)$ -modules for K. Moreover, $\overline{M^{\circ}} \cong SL_n(2)$, $SL_n(2) \times SL_2(2)$ or $SL_2(2)$, with $\overline{K} \le \overline{M^{\circ}}$ in the first two cases and $[\overline{K}, \overline{M^{\circ}}] = 1$ in the last case.
 - (2) p = 2, $\overline{K} = \overline{K}' \leq \overline{M^{\circ}}$, $\overline{K} \cong 3$ ·Alt(6) and $\overline{M^{\circ}} \cong 3$ ·Alt(6) or 3·Sym(6), and Y_M is corresponding natural module for K.

PROOF. Recall that Y_M is a *p*-reduced Q!-module for \overline{M} . By 2.17(c), W is a non-trivial strong offender on Y_M , and by 2.17(a), $[W, Y_M] = [W, X]$ for all $X \leq Y_M$ with $|X/C_X(W)| > 2$. Thus we can apply C.25. Hence (*) holds. Also most of the other statements follow directly from C.25, but we still need to show:

- (Task 1) In cases C.25(1:b:2), (1:b:3),(1:b:5),(2) (Y is a natural $Sp_{2n}(q)$ -, $Sp_4(2)$ -, $Sp_4(2)$ -, $O_{2n}^{\epsilon}(2)$ or $SL_2(q)$ -module for K) show that there exists an $\overline{K^* S}$ -invariant non-degenerate symplectic form on $[Y_M, \overline{K^*}]$ over \mathbb{F}_p (to prove (B)).
- (Task 2) In case C.25(1:b:4) (Y is natural 3: Alt(6)-module for K) show that $Y_M = Y$, $|Y/C_Y(W)| = 4$, $\overline{K_2} \leq \overline{K}$, and prove the existence of $\{V_1, V_2, V_3\}$ fulfilling (C:b) and (C:c).
- (Task 3) In case C.25(4) (Y is a direct sum of two isomorphic natural $SL_n(q)$ -module and $[\overline{K}, \overline{M^\circ}] = 1$) show that $\overline{K} \leq \overline{M}$ and $Y = Y_M$ (to prove (C)).

(Task 4) In cases C.25(3) and (4) (Y is a direct sum of two isomorphic natural $SL_n(q)$ -modules) prove $\overline{K_2} \leq \overline{K}$ and the existence of $\{V_1, V_2, V_3\}$ fulfilling (C:b), (C:c) and (C:d:1).

(Task 1): Put $\mathbb{K} := End_K(Y)$. Then \mathbb{K} is a finite field (of order q or 2 depending on the case). Also in each case there exists a K-invariant non-degenerate symplectic form s on Y over \mathbb{K} . Note here that $SL_2(q) \cong Sp_2(q)$ and a natural $SL_2(q)$ -module is also a natural $Sp_2(q)$ -module. Moreover, s is unique up to multiplication by a non-zero $k \in \mathbb{K}$. Since $|\mathbb{K}| - 1$ is not divisible by p, we can choose s to be $N_{\overline{S}}(\overline{K})$ -invariant. If $\overline{K} \leq \overline{M}$ we are done.

Assume that $\overline{K} \not \equiv \overline{M}$. Then we are in Case (2) of Theorem C.25, so $\overline{K} \cong SL_2(q)$, Y is a natural $SL_2(q)$ -module for \overline{K} , and Q and so also S acts transitively on \mathcal{K} .

Let $F \in \mathcal{K}$ with $F \neq \overline{K}$. Then (*) shows that $[F, \overline{K}] = 1$ and $[Y_M, K] \cap [Y_M, F] = 1$. So $F \leq C_{\overline{K^*}}(Y)$ and

$$\overline{K^*} = KC_{\overline{K^*}}(Y).$$

For any $F \in \mathcal{K}$ choose $g \in \overline{K^* S}$ with $F = \overline{K}^g$. Define a symplectic form s_F on $[Y_M, F] = Y^g$ via $s_F(v^g, w^g) := s(v, w)$ for all $v, w \in Y$. If also $F = \overline{K}^h$ for some $h \in \overline{K^*S}$, then

$$h^{-1}g \in N_{\overline{K^*\overline{S}}}(K) = N_{\overline{S}}(\overline{K})\overline{K^*} = N_{\overline{S}}(\overline{K})\overline{K}C_{\overline{K^*}}(Y),$$

and we conclude that the definition of s_F is independent of the choice of g.

By (*), $Y_M = \times_{F \in \mathcal{K}} [Y_M, F]$, and so there exists a unique symplectic form t on Y_M such that the restriction of t to $[Y_M, F]$ is s_F for all $F \in \mathcal{K}$, and $[Y_M, F] \perp [Y_M, F^*]$ for distinct $F, F^* \in \mathcal{K}$. Then t is $\overline{K^*S}$ -invariant, and (Task 1) is accomplished

(Task 2): By coprime action $Y_M = C_{Y_M}(Z(\overline{K})) \times [Y_M, Z(\overline{K})]$, and since $Z(\overline{K})$ acts fixed-point freely on $Y = [Y_M, K]$, $Y_M = C_{Y_M}(K) \times Y$. Since $\overline{M_\circ} \leq \overline{K}$ and by 1.55(d) $C_{Y_M}(M^\circ) = 1$, this gives $Y_M = Y$.

As W is a nontrivial (strong) offender on Y_M , the Offender Theorem C.4(e) gives

$$|Y/C_Y(W)| = 4 = |\overline{W}|$$
 and $C_Y(W) = [W, Y]$

Let \mathcal{V} be the set of 3-dimensional K_2 -submodules of Y. By C.16 M_2 is a parabolic subgroup of $M, M_2 = N_M(\overline{W}), \overline{K_2} = O^{2'}(N_{\overline{K}}(\overline{W})), \mathcal{V} = \{V_1, V_2, V_3\}, Z(\overline{K})$ acts transitively on $\mathcal{V}, Y = V_i \times V_j$ for all $1 \leq i < j \leq 3$, and $C_{V_i}(W)$ is a natural $SL_2(2)$ -module for K_2 . In particular, $\overline{K_2} \leq \overline{K}$. Let $1 \neq x \in C_{V_i}(W)$. Since $Z(\overline{K}) \leq \overline{M_2}, M_2$ acts transitively on the three elements of \mathcal{V} and, since $K_2 \leq N_{M_2}(V_i), N_{M_2}(V_1)$ acts transitively the three elements of $C_{V_i}(W)^{\sharp}$. Thus $C_{M_2}(x)$ has index 9 in M_2 , so $C_M(x)$ contains a Sylow 2-subgroup of M_2 and of M. Hence $C_M(x)$ also contains a conjugate of Q in M.

(Task 3): Since
$$[\overline{K}, \overline{M^{\circ}}] = 1, \langle \overline{K}^Q \rangle = \overline{K}$$
. Thus 7.7 shows that
 $C_{Y_M}(K) = C_{Y_M}(\langle K^Q \rangle) \leq C_{O_p(M)})\langle K^Q \rangle) = 1.$

Hence (*) implies $Y_M = [Y_M, K] \times C_{Y_M}(K) = [Y_M, K] = Y$ and $\mathcal{K} = \overline{K}$. Thus $\overline{K} \leq \overline{M}$ and (Task 3) is accomplished.

(Task 4): Since Y is the direct sum of two isomorphic natural $SL_n(2)$ -modules for K, there exist exactly three simple K-submodules V_1, V_2 and V_3 in Y. Moreover, $Y = V_i \times V_j$ for any $1 \le i < j \le 3$. Since K induces $Aut(V_i)$ on V_i and $\overline{K} \le \overline{M}$, $\overline{M} = \overline{K} \times C_{\overline{M}}(\overline{K})$. Also $C_{\overline{M}}(K)$ is isomorphic to a subgroup of $SL_2(2)$ and $O_2(\overline{M}) = 1$. Thus $C_{\overline{M}}(K)$ is isomorphic to one of 1, C_3 or $SL_2(2)$. So M acts either trivially or transitively on $\{V_1, V_2, V_3\}$. In either case V_i is normalized by a Sylow 2-subgroup of M, and since K acts transitively on V_i each $1 \ne x \in V_i$ is centralized by a Sylow 2-subgroup of V. So again $C_M(x)$ contains a conjugate of Q in M. Note that $C_Y(W) = C_{Y_1}(W) \times C_{Y_2}(W)$ and $C_{\overline{M}}(K)$ normalizes $C_Y(W)$. It follows that $\overline{M_2} = (\overline{M_2} \cap \overline{K})C_{\overline{M}}(K)$, $C_{\overline{M}}(K)$ acts faithfully on $Y/C_Y(W)$, and $\overline{M_2} \cap \overline{K}$ centralizes $Y/C_Y(W)$. Thus $\overline{K_2} = \overline{M_2} \cap \overline{K} \le \overline{K}$, and all assertions in (Task 4) hold.

LEMMA 7.14. Suppose that Case 7.13(A) holds. Then $Y_M = Y$ and Theorem G(1) holds.

PROOF. In this case Y is a natural $SL_n(q)$ -module for $\overline{K} = \overline{M^{\circ}}$ with $n \ge 3$, and by 7.5(f), $C_{Y_M}(M^{\circ}) = 1$. If $Y_M = Y$ we conclude that Theorem G(1) holds.

Suppose that $Y_M \neq Y$. Then Y_M is a non-trivial non-split central extension of Y. Since, by 2.17(c), W is a (strong) offender on Y_M , C.22 shows that p = 2, and

$$\overline{K} \cong SL_3(2), |Y_M| = 2^4, C_{Y_M}(W) = C_Y(W) \text{ and } \widetilde{q} = |Y_M/C_{Y_M}(W)| = |\overline{W}| = 4.$$

In particular, $[Y_M, M^{\dagger}] = [Y, M] = Y$, and Y_M is an offender on W. Now 7.10 implies $\widetilde{L} \cong SL_2(4)$ and $\widetilde{Y_M} \in Syl_2(\widetilde{L})$. By definition of $\mathfrak{L}_H(Y_M)$, $N_L(Y_M)(=L \cap M^{\dagger})$ is unique maximal subgroup of Lcontaining Y_M , and the structure of $SL_2(4)$ shows that $[\widetilde{Y_M}, L \cap M^{\dagger}] = \widetilde{Y_M}$. It follows that

$$Y_M = [Y_M, L \cap M^{\dagger}]C_{Y_M}(U) = YC_{Y_M}(W) = YC_Y(W) = Y_{\mathcal{T}}(W)$$

which contradicts $Y_M \neq Y$.

LEMMA 7.15. Suppose that Case 7.13(B) holds. Then Theorem G(2) or Theorem G(3) holds.

PROOF. Put $H_0 := \langle Y_M^H \rangle$. Note that in Case 7.13(B) there exists a $\overline{K^*} \overline{S}$ -invariant nondegenerate symplectic form on $V := [Y_M, \overline{K^*}]$. Thus we can apply 7.12. We will now treat each of the three subcases of 7.13(B) separately.

Case 1. Suppose that 7.13(B:1) holds, that is, $\overline{K} \leq \overline{M}$ and Y = V is a natural $Sp_{2n}(q)$ -module $(n \geq 1)$ or a natural $Sp_4(2)'$ -module (p = 2) for K.

Put n := 2 and q := 2 in the $Sp_4(2)'$ -case. Note that K' acts transitively on the natural $Sp_{2n}(q)'$ -module V, and so each non-trivial element of V is centralized by a conjugate Q^g of Q under K. Since by 7.5(e) $C_R(Q^g) = 1$ for all such Q^g , this gives $V \cap R = 1$.

Suppose for a contradiction that $Y \neq Y_M$. By 7.7(a) $C_{Y_M}(K) \cap C_{Y_M}(Q) = 1$. Since $\overline{K} \leq \overline{M}$, this gives $C_{Y_M}(K) = 1$. Hence, Y_M is a non-split central extension of Y. Also by 2.17(c) W is a strong offender on Y_M . Since strong offenders are best offenders, C.22 shows that Y_M is a submodule of the dual of a natural $O_{2n+1}(q)$ -module, $n \geq 2$, or a natural $O_5(2)'$ -module for \overline{K} .

By 7.12(h) $Y_M = VR$, and so there exists $y \in R \setminus V$. Since Y_M is a submodule of the dual of the orthogonal module for \overline{K} , $C_{\overline{K}}(y) \cong O_{2n}^{\epsilon}(q)$ or $\Omega_4^{\epsilon}(2)$. Since by 7.12(b), W is a root offender on V, and since $\overline{W} \leq C_{\overline{K}}(y)$, C.6 shows that $|\overline{W}| = 2$ Hence by 7.12(g), $|V| = |\overline{W}|^2 |V \cap R| = 2^2 \cdot 1 = 4$, a contradiction since $|V| = q^{2n}$ and $n \geq 2$.

We have shown that

$$Y = Y_M = V$$
 and $R = R \cap V = 1$.

By 7.12(h) $O_p(M) = C_G(Y_M) = Y_M = V$ and $N_G(Q) \leq M$. So if $\overline{K} \cong Sp_4(2)'$, then Theorem G(2) holds. We therefore may assume that $\overline{K} \cong Sp_{2n}(q)$.

Since R = 1, 7.12(e) gives $A = W \times R = W$, and A is a natural $SL_2(\tilde{q})$ module. Put $D := C_K(V/[V,W) \cap C_K([V,W])$. Then D acts nilpotenly on V and so $D/C_D(V)$ is a p-group. As $C_G(V) = C_G(V) = Y_M$, D is a p-group. Since $V = Y_M$ we have $[Y_M, D] = [V,D] \leq [V,W] \leq A$. Also by 7.12(h) $N_G(Q) \leq M$. Thus, by 7.9 there exists $t \in A$ with $[t, Y_M] \neq 1$ and $[C_D(t), L] \leq A = W$. Put $B := C_D(t)W$. Then B and W are normal in LB, and since W is a simple L-module, [B,W] = 1. Hence $\Phi(B) = \Phi(C_D(t))$ is centralized by $L = \langle Y_M^L \rangle$. From $C_G(Y_M) = Y_M$ we get $C_G(L) \leq C_{Y_M}(L) = R = 1$. In particular, $\Phi(B) = 1$, and B is elementary abelian with $C_B(L) = 1$. It follows that B is isomorphic to a submodule of the dual of the natural $\Omega_3(\tilde{q})$ -module for \tilde{L} . Let $d \in C_D(t) \leq B$. Then $C_{\tilde{L}}(d)$ is isomorphic to $\mathbb{F}_{\tilde{q}}$ or $O_2^{\pm}(q)$,

(I)
$$|Y_M/C_{Y_M}(d)| \in \{1, \frac{\widetilde{q}}{2}, \widetilde{q}\}.$$

Since $t \in A = W$ and W is the natural $SL_2(\tilde{q})$ -module, $\{[t, y] \mid y \in Y_M\} = [t, Y_M] = [W, Y_M]$. Let $d \in D$. Using the definition of D we have $[t, d] \in [D, V] \leq [W, V] = [W, Y_M]$. Thus [t, d] = [t, y] for some $y \in Y_M$. Hence $t^d = t^y$, $dy^{-1} \in C_D(t)$ and $D = C_D(t)Y_M$. By 7.12(f), [V, W] is singular subspace of V and $[V, W]^{\perp} = [V, W] \times (V \cap R) = [V, W]$. Hence [V, W] is a maximal singular

subspace of V and $|V| = q^n$. The action of D on the natural $Sp_{2n}(q)$ -module Y_M now shows $\{|Y_M/C_{Y_M}(d)| \mid d \in D\} = \{q^i \mid 0 \le i \le n\}$, and so also

(II)
$$\{|Y_M/C_{Y_M}(d)| \mid d \in C_D(t)\} = \{q^i \mid 0 \le i \le n\}.$$

A comparison of (I) and (II) shows that either n = 1 and $\tilde{q} = q$ or n = 2, $\tilde{q} = 4$ and q = 2. We already know that $Y_M = O_p(M)$ and $N_G(Q) \leq M$. If n = 1 and $q = \tilde{q}$, then Y_M is a natural $SL_2(q)$ -module for \overline{K} , and Theorem G(3) holds with r = 1. If n = 2 and q = 2, then Y_M is a natural $Sp_4(2)$ -module, and Theorem G(2) holds.

Case 2. Suppose that 7.13(B:2) holds, that is, $\overline{K} \leq \overline{M}$, p = 2, $\overline{K} \simeq O_{2n}^{\epsilon}(2)$, $n \geq 2$ and $(n,\epsilon) \neq (2,+)$, Y is a corresponding natural module for \overline{K} , $\overline{M^{\circ}} = \overline{K}' \simeq \Omega_{2n}^{\epsilon}(2)$, and $|\overline{W}| = |Y_M/C_{Y_M}(W)| = 2$.

Since $\overline{K} \leq \overline{M}$, $\overline{K^*} = \overline{K}$ and so $Y = [Y_M, K] = [Y_M, K^*] = V$. Moreover, \overline{M} fixes the unique \overline{K} - invariant quadratic form h on Y and so $\overline{M} = \overline{K}$. Note also that the \overline{K} -invariant symplectic form on V given by 7.13(B) is exactly the symmetric form associated with h.

Note that each singular vector in V is centralized by a Sylow 2-subgroup of M and so also by a conjugate of Q. By 7.5(e) $C_R(Q^g) = 1$ for all $g \in R$, so this implies that R contains no non-trivial singular vectors. Thus $R \cap V$ has dimension at most 2 and so $|R \cap V| \leq 2^2$. Hence, by 7.12(g), $|V| = |\overline{W}|^2 |V \cap R| \leq 2^2 \cdot 2^2 = 2^4$. Thus n = 4. Since $(2n, \epsilon) \neq (4, +)$, V is a natural $O_4^-(2)$ -module for \overline{M} .

As above, since $\overline{K} \leq \overline{M}$, 7.7(a) shows that $C_{Y_M}(K) = 1$. Thus C.18 implies that $Y_M = V$. Hence $R = R \cap V$, R has order 4, and all non-trivial elements in R are non-singular vectors of V.

Pick $1 \neq x \in R$ and put $\overline{B} := O_2(C_{\overline{M}}(x))$. Then $C_{\overline{M}}(x) \cong C_2 \times Sp_2(2)$ and $[Y_M, \overline{B}] = \langle x \rangle$. Since $[Y_M, W] \notin R$ this means $[C_{Y_M}(\overline{B}), W] \neq 1$. Thus by 7.8 $C_G(x)$ is not of characteristic 2. Since by 7.12(h) $O_2(M) = Y_M = V$ and $N_G(Q) \leqslant Y_M$, and since $\overline{M} = \overline{K} \cong O_4^-(2)$, Theorem G(2) holds.

Case 3. Suppose that 7.13(B:3) holds, that is, $\overline{K} \notin \overline{M}$, Y_M is a natural $SL_2(q)$ -wreath product module for \overline{M} with respect to $\mathcal{K} := \overline{K}^{\overline{M}}$, $\overline{M^{\circ}} = O^p(\overline{K^*})\overline{Q}$, and \overline{Q} acts transitively on \mathcal{K} .

Put $\mathcal{K} =: \{\overline{K_1}, \ldots, \overline{K_r}\}$ and $V_i := [Y, \overline{K_i}]$ with $\overline{K} = \overline{K_1}$, so $Y = V_1$. Since Y_M is a natural $SL_2(q)$ -wreath product module, Y is a natural $SL_2(q)$ -module for K, and

$$Y_M = V = V_1 \times V_2 \times \ldots \times V_r.$$

Since $\overline{K} \not \equiv \overline{M}, r \ge 2$. Put

$$\mathcal{S} := \{ v \in V \mid [v, F] \neq 1 \text{ for all } F \in \mathcal{K} \}.$$

In the following we apply A.28 to $\overline{K^*S}$ in place of H. Since \overline{Q} acts transitively on \mathcal{K} , A.28(e) shows that $\overline{K^*}$ acts transitively on \mathcal{S} and $C_V(Q)^{\sharp} \subseteq \mathcal{S}$. Thus $C_{\mathcal{S}}(Q) \neq \emptyset$, and every element of \mathcal{S} is centralized by a conjugate of Q. As by 7.5(e) $C_R(Q^g) = 1$, we get

$$R \cap \mathcal{S} = \emptyset.$$

Since $\overline{W} \leq \overline{K} = \overline{K_1}$ we get

$$C_V(W) = C_{V_1}(W) \times V_2 \times \ldots \times V_r$$

Since V_i is 2-dimensional over \mathbb{F}_q , $[V, W] = [V_1, W] = C_{V_1}(W)$. Thus by 7.12(e)

$$C_V(W) = [V, W] \times R = C_{V_1}(W) \times R.$$

As $|C_{V_1}(W)| = q$ this gives $|C_V(W)/R| = q$. Let $2 \le i \le r$. Then $V_i \le C_V(W)$, and since $|V_i| = q^2$ and $|C_V(W)/R| = q$, we get $|V_i \cap R| \ge q$. In particular, there exists $1 \ne t_i \in V_i \cap R$.

Suppose that $V_j \leq R$ for some $2 \leq j \leq r$. Say j = 2. Since $V_2 \leq C_V(A) = C_{V_1}(W) \times R$ there exist $1 \neq s_2 \in V_2$ and $1 \neq s_1 \in C_{V_1}(W)$ with $s_1s_2 \in R$. Put $t = s_1s_2t_3 \dots t_r$. Then $t \in R \cap S = \emptyset$, a contradiction. Thus $V_j \leq R$ and so $V_2 \dots V_r \leq R$. Together with

$$C_{V_1}(W) \times V_2 \times \cdots \times V_r = C_V(W) = C_{V_1}(W) \times R$$

this gives $R = V_2 \times \cdots \times V_r$. In particular, $\overline{K_1} \leq C_{\overline{M}}(R)$ and so $[V_1, O_p(C_{\overline{M}}(R))] = 1$. Since $[V_1, W] \neq 1$, 7.8 shows that $C_G(R)$ is not of characteristic p.

We will now show that $q \in \{2, 4\}$. For this put $M_1 := C_M(R) \cap N_M([V, W])$ and let $1 \neq x \in C_V(\langle W^Q \rangle) \cap C_V(Q)$ and x_1 be the projection of x onto V_1 . As already seen above, A.28(e) gives $C_V(Q)^{\sharp} \subseteq S$. Thus $x \in S$ and so $x_1 \neq 1$. Moreover, $x \in x_1 V_2 \cdots V_r = x_1 R$, and so Q! implies $C_{M_1}(x_1) \leq C_G(x) \leq N_G(Q)$. Thus $[Q, C_{M_1}(x_1)] \leq Q$.

Let $m \in C_{M_1}(x_1)$ and $q \in Q$ with $V_1 = V_2^q$. Since m centralizes V_2 , m^q centralizes V_1 . Hence

$$m = m^q [q^{-1}, m] \in m^q Q \subseteq C_M(V_1)Q,$$

and so *m* acts a *p*-element on V_1 . It follows that $C_{M_1}(x_1)/C_{M_1}(V_1)$ is a *p*-group. Since $C_{M_1}(V_1) = C_M(V_1R) = C_M(V) = C_M(Y_M)$ and by 7.12(h) $C_G(Y_M) = Y_M$, $C_{M_1}(x_1)$ is a *p*-group.

Put $B_1 := M_1 \cap KV$. Then $B_1 \leq M_1$, $VW \in Syl_p(B_1)$, $B_1/VW \cong C_{q-1}$, and B_1 acts transitively on [V,W]. It follows that $M_1 = C_{M_1}(x_1)B_1$ and M_1/B_1 is a p-group. Thus $O^p(M_1) \leq B_1$. Since [R,L] = 1 and $[V,W] \leq N_L(V)$, $N_L(V) \leq M_1$, and since $L/A = L/WR \cong SL_2(q)$ and $VW \in Syl_p(L)$, $N_L(V)/VW$ is cyclic of order q-1. Let H_1 be a complement to VW in $N_L(V)$. Then $H_1 \leq O^p(M_1) \leq B_1$. As B_1/VW has order q-1, we get $B_1 = H_1VW = N_L(V)$.

Suppose that p is odd and let i be the involution in H_1 . In L we see that [VW, i] = W and in M we see that $[VW, i] = V_1$, a contradiction.

Thus p = 2. In L we see that the \mathbb{F}_2H_1 -module $W/C_W(V)$ is isomorphic to the dual of [V, W]and in M that the \mathbb{F}_2H_1 -module $V/C_V(W)$ is isomorphic to the dual of [V, W]. It follows that $W/C_W(V)$ and $V/C_V(W)$ are isomorphic \mathbb{F}_2H_1 -module. Let $H_1 =: \langle h_1 \rangle$. In L we see that there exists $\xi \in \mathbb{F}_q$ and \mathbb{F}_qH_1 -module structures on [V, W], $W/C_W(V)$ and $V/C_V(W)$ such that h_1 acts as multiplication by ξ, ξ^{-1} and ξ^2 , respectively. It follows that there exists $\sigma \in Aut(\mathbb{F}_q)$ with $(\xi^2)^{\sigma} = \xi^{-1}$. Since $|\xi| = |h_1| = q - 1 = |\mathbb{F}_q^{\sharp}|$ and also squaring is an field automorphism of \mathbb{F}_q , we conclude that $\mu : \mathbb{F}_q \mapsto \mathbb{F}_q, \lambda \to (\lambda^2)^{\sigma}$, is a field automorphism and $\lambda^{\mu} = \lambda^{-1}$ for all $\lambda \in \mathbb{F}_q^{\sharp}$. It follows that \mathbb{F}_2 is the fixed field of μ , and μ as order 1 or 2; so $\mathbb{F}_q = \mathbb{F}_2$ or $\mathbb{F}_q = \mathbb{F}_4$.

Thus indeed $q \in \{2, 4\}$. We already know that $C_G(R) = C_G(V_2 \dots V_r)$ is not of characteristic 2. By 7.12(h) we have $N_G(Q) \leq M$ and $O_2(M) = Y_M$. Hence, Theorem G(3) holds with $\mathcal{K} := \overline{K}^{\overline{M}}$, where the uniqueness of \mathcal{K} follows from A.27(c).

LEMMA 7.16. Case 7.13(C) does not hold.

PROOF. Let $\{i, j, k\} = \{1, 2, 3\}$. Recall from 7.13(C) that $p = 2, Y = Y_M, M_2 = N_M(C_Y(W)), K_2 = C_{M_2}(Y/C_Y(M)), \overline{K_2} \leq \overline{K}$ and that there exists an M_2 -invariant set $\{V_1, V_2, V_3\}$ of K_2 -submodules of Y with $Y = V_i \times V_j$. Note that the projection of V_k onto V_i and V_j shows that V_k is isomorphic to V_i and V_j as an K_2 -module. In particular, $\overline{K_2}$ acts faithfully on V_i .

Define n by $2^n := |V_i|$. Then by 7.13(C) either n = 3 and Y is a natural 3 Alt(6)-module for K, or $n \ge 3$ and each V_i is a natural $SL_n(2)$ -module for K.

 1° . $V_i \cap R = 1$.

Since [R, W] = 1, $V_i \cap R = C_{V_i}(W) \cap R$. Let $1 \neq x \in C_{V_i}(W)$. According to 7.13(C:c) for all $1 \neq x \in C_{V_i}(W)$ there exists $g \in M$ with $[x, Q^g] = 1$. By 7.5(g) $C_R(Q^g) = 1$ for all $g \in G$ and so $x \notin R$. Hence $V_i \cap R = 1$.

 2° . $A \cap Y = C_Y(W)$ and $A \leq K_2$. In particular, W and A normalize V_i .

By 7.4(e) $A \cap Y_M = C_{Y_M}(W)$. Since $Y = Y_M$ this gives $A \cap Y = C_Y(W)$. As $[A, Y] \leq A \cap Y$, we conclude that A normalizes $C_Y(W)$ and centralizes $Y/C_Y(W)$, so $A \leq K_2$. As $W \leq A$ and K_2 normalizes V_i , (2°) holds.

$$3^{\circ}$$
. $A \cap Y = (A \cap V_i) \times (A \cap V_i)$.

By (2°) $A \cap Y = C_Y(W)$, and W normalizes V_i . As $Y = V_i \times V_j$, this implies

$$A \cap Y = C_Y(W) = C_{V_i}(W) \times C_{V_j}(W) = (A \cap V_i) \times (A \cap V_j),$$

and (3°) is proved.

 4° . A is elementary abelian.

By (2°) A normalizes V_i , and by 1.43(a),

$$\Phi(A) = [A \cap Y, A] \leqslant C_Y(L) = R,$$

 \mathbf{SO}

$$[A \cap V_i, A] \leq V_i \cap R \stackrel{(1^{\circ})}{=} 1.$$

By (3°) $A \cap Y = (A \cap V_i) \times (A \cap V_j)$ and so $[A \cap Y, A] = 1$. It follows that $\Phi(A) = 1$ and A is elementary abelian.

 5° .

- (a) $|A| = 2^{3(n-1)}$ and $|\overline{A}| = |A/A \cap Y| = |R| = 2^{n-1}$.
- (b) $A \cap V_i$ is a hyperplane of V_i and $\overline{A} = C_{\overline{K_2}}(A \cap V_i)$.
- (c) Let B be any L-invariant subgroup of A. Then $|Y \cap B/R \cap B| \leq |R \cap B|$.

By 7.13(C:a) $|Y/C_Y(W)| = 4$. Since $Y = V_i \times V_j$, this gives $|V_i/C_{V_i}(W)| = 2$, and since by (2°) $C_Y(W) = Y \cap W$, $V_i \cap A = C_{V_i}(W)$. Hence $V_i \cap A$ is a hyperplane of V_i . As by (4°) A is abelian, A centralizes $V_i \cap A$ and so $V_i \cap A = C_{V_i}(A)$.

Let B be any L-invariant subgroup of A. Pick $v_i \in V_i \setminus A$. By 1.43(g), $Y \cap B = [v_i, B](R \cap B)$, and so $Y \cap B = [v_i, B](R \cap B)$. Since by $(1^\circ) V_i \cap R = 1$, we have $[v_i, B] \cap (R \cap B) = 1$. This gives

$$(*) \qquad \qquad |Y \cap B| = |[v_i, B]||R \cap B|$$

Also $|Y \cap B| \ge |[Y, B]| = |[v_i, B] \times [v_j, B]| = |[v_i, B]|^2$, and we conclude with (*) that $|R \cap B| \ge |[v_i, B]| = |Y \cap B/R \cap B|.$

Thus (c) holds.

Using A = B in (*), $|Y \cap A| = |[v_i, A]|R|$ and so $|R| = |Y \cap A||[v_i, A]|^{-1}$. On the other hand, by (1°) $V_i \cap A \cap R = 1$ and so

$$|R| = |R(V_i \cap A)/V_i \cap A| \leq |Y \cap A/V_i \cap A|.$$

Since $[v_i, A] \leq V_i \cap A$, we get

$$|Y \cap A/V_i \cap A| \leq |Y \cap A/[v_i, A]| = |R| \leq |Y \cap A/V_i \cap A$$

It follows that equality holds in the preceding inequalities. In particular, $[v_i, A] = V_i \cap A$ and so

$$|[v_i, A]| = |V_i \cap A| = 2^{n-1}$$

Thus

$$\overline{A} = |A/C_A(V_i)| = |A/C_A(v_i)| = |[v_i, A]| = 2^{n-1}.$$

Since $\overline{A} \leq C_{\overline{K_2}}(A \cap V_i)$ and $|C_{\overline{K_2}}(A \cap V_i)| \leq |A \cap V_i| = 2^{n-1}$ this gives $\overline{A} = C_{\overline{K_2}}(A \cap V_i)$. So all parts of (5°) are proved.

 6° .

- (a) $Y = Y_M = O_2(M), M = M^{\dagger} \text{ and } N_G(Q) \leq M.$
- (b) $H = L, U = W, \hat{U}$ is natural $SL_2(4)$ -module for H, and U is a natural $\Omega_3(4)$ -module for H.

Recall that $L \in \mathfrak{L}_G(Y_M)$ and so $L/A \cong SL_2(\tilde{q})$, $Sz(\tilde{q})$ or Dih_{2r} . In the $Sz(\tilde{q})$ -case \tilde{q} is an odd power of 2 and in the Dih_{2r} - case $\tilde{q} = 2$. Since $\tilde{q} = |Y_M/C_{Y_M}(W)| = |Y_M/Y_M \cap A| = 4$ we get $\tilde{L} \cong SL_2(4)$.

By 2.13 \widehat{U} is a faithful simple minimal asymmetric $\mathbb{F}_2 \widetilde{H}$ -module, so we can apply the Minimal Asymmetric Modules Theorems C.28 and C.29. Put $H_0 := \langle Y_M^H \rangle$. Since $\widetilde{L} \cong SL_2(4)$, \widetilde{H}_0 is not solvable. Thus we are in Case (1) of C.29. In particular, \widetilde{H}_0 is a group of Lie-type defined over \mathbb{F}_4 and $\widetilde{Y_M}$ is a long root subgroup of \widetilde{H}_0 . Note that $U \cap Y = (U \cap A) \cap Y$ and $U \cap R = (U \cap A) \cap R$. Thus by $(5^\circ)(c)$ applied to $B = U \cap A$

$$(**) \qquad \qquad |U \cap Y/U \cap R| \leq |U \cap R|.$$

In particular, $U \cap R \neq 1$. So by 7.5(a) $C_U(H) = U \cap R \neq 1$ and $C_U(H_0) \neq 1$. By 7.6(a) U is a quasisimple H_0 -module. A comparison of C.29(1) with C.18 shows that p = 2 and either

 $\widetilde{H_0} \cong Sp_{2m}(4)$ and U is a quotient of the natural $\Omega_{2m+1}(4)$ -module for $\widetilde{H_0}$, or $\widetilde{H_0} \cong G_2(4)$ and \widehat{U} is the corresponding natural module of order 4⁶. In the first case $|[\hat{U}, Y_M]| = 4$ and in the second case $|[\hat{U}, Y_M]| = 16$, and in both cases $|U \cap R| \leq |C_U(H_0)| \leq 4$.

By 2.17(e)

$$W \cap R = C_W(O^2(H)) = W \cap C_U(O^2(H))$$

It follows that

$$\widehat{W \cap Y} = (W \cap Y)C_U(O^2(H))/C_U(O^2(H)) \cong W \cap Y/W \cap R \cong (W \cap Y)(U \cap R)/U \cap R \leqslant U \cap Y/U \cap R$$

Hence

$$|\widehat{W \cap Y}| \leq |U \cap Y/U \cap R| \stackrel{(**)}{\leq} |U \cap R| \leq |C_U(H_0)| \leq 4.$$

On the other hand, by 2.17(c) $U = WC_U(Y_M)$. Thus $[\hat{U}, Y] = [\widehat{W}, Y] \leq \widehat{W \cap Y}$ and so $|[\hat{U},Y]| \leq 4$. This excludes the $G_2(q)$ -case and shows that $|C_U(H_0)| = 4$, so U is a natural $\Omega_{2m+1}(4)$ for H_0 and $|\widehat{W} \cap \widehat{Y}| = 4$. Moreover, by 1.43(e) $|W/C_W(Y)| = |W \cap Y/C_{W \cap Y}(L)| = |\widehat{W} \cap \widehat{Y}| = 4$. Hence Y_M is an offender on W, and so also an offender on U since $U = WC_U(Y)$. Thus we can apply 7.11. In the second case of 7.11 $U \cap R = 1$, a contradiction. So the first case holds. Hence Uis natural $SL_2(\tilde{q})$ -module for H and

$$Y_M = O_2(M), M = M^{\dagger}, N_G(Q) \leq M, H = L \text{ and } U = W.$$

Since $\tilde{q} = 4$ and U is a natural $\Omega_{2m+1}(4)$ -module, this gives (6°) .

$$7^{\circ}$$
. $C_M(Y) = Y$, $M = N_G(Y)$, $AY = C_{K_2}(Y \cap A)$ and $A \leq M_2$.

By $(6^{\circ})(a) Y = O_2(M)$ and $N_G(Y) = M^{\dagger} = M$. By $(5^{\circ})(b) \overline{A} = C_{\overline{K_2}}(Y \cap A)$ and so AY = $AC_M(Y) = C_{K_2}(Y \cap A)$. In particular, $AY \leq M_2$.

Let $v \in Y \setminus Y \cap A$. Then $v \in V_i(Y \cap A)$ for some *i*. Since V_i is a faithful K_2 -module and $|V_i/V_i \cap A| = 2$ we get $C_{\overline{A}}(v) = C_{\overline{A}}(V_i) = 1$ and so $C_A(v) = A \cap Y$. It follows that $[v, a] \neq 1$ for all $v \in Y \setminus A$ and $a \in A \setminus Y$. Hence va is not an involution and so Y and A are the only maximal elementary abelian subgroups of AY. Since M_2 normalizes AY and Y, M_2 normalizes A.

8°.
$$n = 3 \text{ and } O^2(M)/Y \cong C_3 \times SL_3(2) \text{ or } 3 \cdot Alt(6).$$

By $(7^{\circ}) Y = C_M(Y)$. Thus if Y is a natural 3 Alt(6)-module, then (8°) holds. So suppose that Y is the direct sum of two $SL_n(2)$ -modules, $n \ge 3$. In particular, $M/Y = \overline{M} = \overline{K} \times \overline{C}$ where \overline{C} is isomorphic to a subgroup of $SL_2(2)$ with $O_2(\overline{C}) = 1$. Thus $\overline{C} \cong 1, C_3$ or $SL_2(2)$. Note that $M_2 \cap K$ centralizes $Y/Y \cap A$ and that $N_L(Y) \leq N_M(A \cap Y) = M_2$. Since by $(6^\circ)(b) L/A \cong SL_2(4)$, we infer that $N_L(Y)/C_{N_L(Y)}(Y/Y \cap A) \cong C_3$. Thus 3 divides |M/K|. Hence $\overline{C} \cong C_3$ or $SL_2(2)$ and $O^2(M)/Y \cong C_3 \times SL_n(2)$. It remains to show that n = 3.

If n = 4, then by $(5^{\circ}) |A| = 2^{3(n-1)} = 2^9$ and $|R| = 2^{n-1} = 2^3$, and so $|A/R| = 2^6$. Since $L/A \cong SL_2(4)$ all non-central simple L-modules have order 2^4 , and we conclude that L has a central composition factor on A/R, a contradiction to 1.43(p).

Suppose that $n \ge 5$. Let $X \le M$ such that $X \cong C_3$ and $XY \le M$. Since $[K_2, X] \le Y$ and X acts fix-point freely on Y, $K_2 = C_{K_2}(X)Y$. For i = 1, 2 put $A_i := A \cap V_i$. Then $A \cap Y = A_1 \times A_2$. Put $A_3 := C_A(X)$. Since $X \leq M_2$, X normalizes A and so $A = (A \cap Y) \times A_3 = A_1 \times A_2 \times A_3$. Let $v \in V_1 \setminus A_1$ and put $K_1 := C_{K_2}(v) \cap C_{K_2}(X)$. Note that K_1 is a complement to A_3 in $C_{K_2}(X)$, $K_1 \cong SL_{n-1}(2)$ and the $A_i, 1 \leq i \leq 3$, are isomorphic natural $SL_{n-1}(2)$ -modules for K_1 .

According to 7.9 there exists $t \in A \setminus C_A(Y)$ such that $[C_D(t), L] \leq A$ for all 2-subgroups D of M with $[Y,D] \leq A$. Since $t \in A$, $t = t_1 t_2 t_3$ with $t_i \in A_i$. Since n-1 > 3, there exists a transvection $d \in K_1$ with $[t_i, d] = 1$ for all $1 \leq i \leq 3$. Then

$$|[A,d]| = |[A_1,d]|^3 = 8.$$

Since $d \in K_1 \leq K_2$, $[Y, d] \leq Y \cap A \leq A$. Also [d, t] = 1, and the choice of t implies $[d, L] \leq d$ $A \leq C_G(A)$. Thus L normalizes [A,d]. Since $L/A \cong SL_2(4)$ and |[A,d]| = 8 we conclude that [A, d, L] = 1 and $[A, d] \leq C_A(L) = R \leq Y$, a contradiction since $1 \neq [A_3, t] \leq A_3$ and $A_3 \cap Y = 1$. Thus (8°) is proved.

We are now able to derive a final contradiction. Since n = 3, $(5^{\circ})(a)$ shows that $|A| = 2^{3(3-1)} = 2^6 = |Y|$. By $(6^{\circ})(b) U$ is the natural $\Omega_3(4)$ -module for L and U = W. Hence $|U| = 2^6$ and A = W. In particular, $A/R = \hat{U}$ is a natural $SL_2(4)$ -module of L,

Note that either $K/Y \cong SL_3(2)$ and $Y = V_1 \oplus V_2$, or $K/Y \cong 3 \cdot Alt(6)$. Since $|\overline{W}| = 4$ and $|V_i| = 8$, it is straight forward to verify that $K_2/Y \cong Sym(4)$ and $V_i \cap A$ is a natural $SL_2(2)$ -module for K_2 . In particular, $Y \cap A$ is a direct sum of two natural $SL_2(2)$ -modules for K_2 , and $V_i \cap A, 1 \leq i \leq 3$, are simple K_2 -submodules in $Y \cap A$.

Put $F := N_G(A)$. Then $L \leq F$ and by (7°) $A \leq M_2$ and so $M_2 \leq F$. Also $F \cap M \leq N_M(C_Y(A)) = M_2$ and so $F \cap M = M_2$.

In particular, $L_2 := L \cap M = L \cap M_2$. Since $L/A \cong SL_2(4)$, $L_2/AY \cong C_3$ and L_2 acts transitively on $AY/Y \cong Y/Y \cap A = Y/C_Y(W)$. Hence L_2 also acts transitively on $\{V_1, V_2, V_3\}$. Since $V_i \cap A, 1 \leq i \leq 3$, are the simple K_2 -submodules of $Y \cap A$ we conclude that $Y \cap A$ is a simple module for $L_2K_2/AY \cong C_3 \times SL_2(2)$. Also L_2K_2 acts transitively on the nine elements in $V_1^{\sharp} \cup V_2^{\sharp} \cup V_3^{\sharp}$. Let $1 \neq r \in R$. Note that $O^2(K_2)$ normalizes L_2 and so also $C_{Y \cap A}(L_2)$. Moreover, $O^2(K_2)$ acts fixed-point freely on $Y \cap A$, $R \leq C_{Y \cap A}(L_2)$ and |R| = 4. We conclude that $R = C_{Y \cap A}(L_2)$ and $O^2(K_2)$ acts transitively on R. Since K_2L_2 acts simply on $Y \cap A$ and $|L_2K_2/L_2O^2(K_2)| = 2$ we get $|R^{L_2K_2}| = 2$ and $|r^{L_2K_2}| = 6$.

Let $1 \neq z \in \Omega_1 Z(S)$. By 7.1(c), $\Omega_1 Z(S) \leq Y_H \cap Y_M = A \cap Y$ and by 7.5(g), $C_R(Q^g) = 1$ for all $g \in G$. Since [z, Q] = 1 we conclude that z and r are not conjugate in G. It follows that $z^{M_2} = z^{K_2 L_2}$ has size nine and $r^{M_2} = r^{K_2 L_2}$ has size six.

Put $F_1 := N_F(R)$ and note that $L \leq F_1$ and $L_2O^2(K_2) \leq F_1$. In particular, $z^{M_2 \cap F_1} = z^{M_2}$. We now calculate the size of z^F , z^{F_1} and r^F . Note that each of these sets is an *L*-invariant subset of *A*.

Since A/R is the natural $SL_2(4)$ -module for L, A/R is partitioned by the five L-conjugates of $A \cap Y/R$. Also $z^{M_2} \cap R = \emptyset$ and $|r^{M_2} \cap R| = 3$. Hence $|z^F| \ge |z^{F_1}| \ge 5 \cdot 9$ and $|r^F| \ge 3 + 5 \cdot 3$. Now $|A^{\sharp}| = 2^6 - 1 = 45 + 18$ gives $|z^F| = |z^{F_1}| = 45$ and $|r^F| = 18$.

By (6°) $N_G(Q) \leq M$. Since [z,Q] = 1, Q! implies $C_G(z) \leq M$. In particular, $C_F(z) \leq M \cap F = M_2$. Note that $K_2 \leq M_2$ and R^{\sharp} is one of the two orbits of K_2 on r^{M_2} . Thus $|M_2/M_2 \cap F_1| = |M_2/N_{M_2}(R^{\sharp})| = 2$. Since $C_F(z) \leq M_2$ this gives $|C_F(z)/C_{F_1}(z)| \leq 2$. Together with $|F| = 45|C_F(z)|$ and $|F_1| = 45|C_{F_1}(z)|$ we conclude that $|F/F_1| \leq 2$. Thus $|R^F| \leq 2$ and $|r^F| \leq |R^{\sharp}||R^F| = 3 \cdot 2 = 6$, a contradiction to $|r^F| = 18$.

Note that the three cases in 7.13 have been treated in 7.14, 7.15 and 7.16. Thus, the proof of Theorem G is complete.

CHAPTER 8

The Q-Tall Asymmetric Case I

In this chapter we begin the investigation of the Q-tall asymmetric case. That is, $M \in \mathfrak{M}_G(S)$, Y_M is asymmetric in G, and $Y_M \notin O_p(N_G(Q))$. The main result of this chapter reduces the problem to what might be called the generic case, namely, where $[Y_M, M^\circ] \notin Q$, $M/C_M(Y_M)$ possesses a unique component K, and $[Y_M, K]$ is a simple K-module, see Case (1) of Theorem H for more details. This is achieved by studying the action of M on the Fitting submodule I of Y_M , introduced in Appendix D, rather than on Y_M itself. The Fitting submodule is close to being semisimple and so much easier to work with. And, since I is faithful for $M/C_M(Y_M)$, it still allows to identify $M/C_M(Y_M)$.

As in the previous chapter a member H of $\mathfrak{H}_G(O_p(M))$ is used to obtain a subgroup L of H with $L \in \mathfrak{L}_G(Y_M)$. But in this chapter internal properties of L, like

$$A := O_p(L) = \langle (Y_M \cap O_p(L))^L \rangle \quad \text{and} \quad C_{Y_M}(L) = Y_M \cap Y_M^g \quad \text{for} \ g \in L \setminus L \cap M^{\dagger},$$

are in the center of our attention. Due to Q-tallness, H and thus also L can be chosen in $N_G(Q)$. It is then easy to see that Q, L and A normalize each other. We subdivide the proof into three cases, treated in separate sections:

(1) $I \leq A$ (2) $I \leq A$ and $[\Omega_1 Z(A), L] \neq 1$, (3) $I \leq A$ and $[\Omega_1 Z(A), L] = 1$.

In the first case it is easy to see that I is symmetric in G (see 8.13(b)). So the main result of Chapter 4 can be applied to I, and the different outcomes of this result are then discussed.

In the second case the non-trivial action of L on $\Omega_1 Z(A)$ shows that also H acts non-trivially on $\Omega_1 Z(O_p(H))$, and similar to the previous chapter we get a strong offender that allows to apply the FF-module theorems from Appendix C.

In the third case we prove that A acts nearly quadratically on I. We then apply the Nearly Quadratic Q!-Theorem proved in Appendix D, and treat each of its cases.

Here is the main result of this chapter.

THEOREM H. Let G be a finite \mathcal{K}_p -group, $S \in Syl_p(G)$, and let $Q \leq S$ be a large subgroup of G. Suppose that $M \in \mathfrak{M}_G(S)$ such that Y_M is asymmetric in G and Q-tall.

Then $\mathfrak{H}_{N_G(Q)}(O_p(M)) \neq \emptyset$ and for every $H \in \mathfrak{H}_{N_G(Q)}(O_p(M))$ also $\mathfrak{L}_H(Y_M) \neq \emptyset$. Moreover, one of the following holds, where $Y := Y_M$, $\overline{M^{\dagger}} := M^{\dagger}/C_{M^{\dagger}}(Y)$, $I := F_Y(\overline{M})$ is the Fitting submodule of Y, and q is some power of p:

- (1) For every $H \in \mathfrak{H}_{N_G(Q)}(O_p(M))$ and every $L \in \mathfrak{L}_H(Y_M)$ and $A := O_p(L)$:
 - (a) Q normalizes L and A,
 - (b) \overline{A} is a non-trivial elementary abelian subgroup of \overline{M} ,
 - (c) $Y = IC_Y(A), I \leq Q^{\bullet}$ and $C_Y(A) = Z(A) = C_Y(L),$
 - (d) $K := [F^*(\overline{M}), A]$ is the unique component of \overline{M} , $K \leq \overline{M^{\circ}}$, and I is a simple K-module,
 - (e) A acts nearly quadratically on Y and not quadratically on I, and $[Y, K\overline{A}] = I$,
 - (f) $|Y/C_Y(A)| \leq |\overline{A}|^2$,
 - (g) AQ acts \mathbb{K} -linearly on I, where $\mathbb{K} := End_K(I)$,
 - (h) If $g \in M$ and $C_Y(Q^g) \cap C_Y(A) \neq 1$, then $[\overline{Q^g}, \overline{A}] \leq \overline{Q^g} \cap \overline{A}$ and $[Y, Q^g] \leq [Y, A]C_Y(A)$.
- (2) p = 2, $\overline{M^{\circ}} \cong L_3(2)$, I is a corresponding natural module, |Y/I| = 2, I is symmetric in G, and $I \leq Q$.

- (3) p = 2, $\overline{M^{\circ}} \cong \Omega_{6}^{+}(2)$, I is a corresponding natural module, |Y/I| = 2, I is symmetric in G, $I \leq Q^{\bullet}$, $Y = O_{2}(M)$, $M = M^{\dagger}$, and $C_{G}(t)$ is not of characteristic 2 for any non-singular $t \in I$.
- (4) $\underline{p} = 2$, $\overline{M^{\circ}} \cong Sp_{2n}(2)$, $n \ge 2$, I is a corresponding natural module, $I \leqslant Q^{\bullet}$ and |Y/I| = 2.
- (5) $\overline{M^{\circ}} \cong SL_n(q), n \ge 2$, and Y is a corresponding natural module.
- (6) p = 2, $\overline{M^{\circ}} \cong Sp_{2n}(q)$, $n \ge 2$, and Y is a corresponding natural module.
- (7) p = 3, $\overline{M^{\circ}} \cong \Omega_3(3)$, and Y is a corresponding natural module for $\overline{M^{\circ}}$.
- (8) p = 2, $\overline{M} \cong \Gamma SL_2(4)$, $\overline{M^{\circ}} \cong SL_2(4)$ or $\Gamma SL_2(4)$, I is a corresponding natural module, $I \notin Q^{\bullet}$ and $|Y/I| \leqslant 2$.
- (9) $p = 2, \overline{M} \cong 3 \cdot Sym(6), \overline{M^{\circ}} \cong 3 \cdot Alt(6) \text{ or } 3 \cdot Sym(6), \text{ and } Y \text{ is a simple } \overline{M} \text{-module of order}$ 2^{6} .
- (10) There exists an \overline{M} -invariant set $\{\overline{K_1}, \overline{K_2}\}$ of subgroups of \overline{M} such that $\overline{K_i} \cong SL_{m_i}(q)$, $[\overline{K_1}, \overline{K_2}] = 1$, $\overline{K_1K_2} \triangleleft \overline{M}$, and Y = I is the tensor product over \mathbb{F}_q of corresponding natural modules for K_1 and K_2 . Moreover, either $\overline{M} = \overline{M^\circ} \cong SL_2(2) \wr C_2$, or $\overline{M^\circ}$ is one of $\overline{K_1}, \overline{K_2}$ or $\overline{K_1K_2}$.

In particular, $I = [Y_M, M^\circ]$, and (2) is the only case where $I \leq Q^{\bullet}$.

Table 1 lists examples for Y_M , M and G fulfilling the hypothesis of Theorem H and one of the cases (2) – (10).

	Case	$[Y_M, M^\circ]$ for M°	с	Remarks	examples for G
*	2	nat $SL_3(2)$	2	$G \neq G^{\circ}$	$Aut(G_2(3))$
*	3	nat $\Omega_6^+(2)$	2	-	$\Omega_8^+(3).Sym(3)$
*	4	nat $Sp_4(2)'$ or $Sp_4(2)$	2	-	$P\Omega_6^-(3)\langle\omega\rangle$ or $PO_6^-(3)$
	5	nat $SL_n(q)$	1	-	$L_{n+1}(q)$
	5	nat $SL_2(2)$	1	-	$Sp_4(2)'$
	5	nat $SL_2(3)$	1	-	Mat_{12}
	5	nat $SL_2(4)$	1	-	Mat_{22}, Mat_{23}
	5	nat $SL_3(2)$	1	-	Alt(9)
	6	nat $Sp_4(2)$	1	-	$PSO_6^-(3), P\Omega_6^-(3)\langle\omega\rangle$
	6	nat $Sp_4(2)'$	1	-	$\Omega_{6}^{-}(3)$, Suz
	7	nat $\Omega_3(3)$	1	-	$\Omega_5(3)$
*	7	nat $\Omega_3(3)$	1	-	$Sp_6(2), \Omega_8^-(2)$
	8	nat $\Gamma SL_2(4)$	1	-	$\Gamma L_3(4), Mat_{22}$
*	8	nat $SL_2(4)[.2]$	2	$\overline{M} \cong \Gamma SL_2(4)$	$Aut(Mat_{22})$
	9	2^6 for $3 \cdot Alt(6)[.2]$	1	$\overline{M} \sim 3.Sym(6)$	Mat_{24}
*	9	2^{6} for $3 \cdot Sym(6)$	1	$\overline{M} \sim 3.Sym(6)$	He
	10	nat $SL_{t_1}(q)[\otimes SL_{t_2}(q)]$	1	-	$L_{t_1+t_2}(q), L_{2t_1+1}(q)\Phi_2 t_1 = t_2$
	10	nat $SL_2(2))[\otimes SL_3(2)]$	1	-	Mat_{24}
*	10	nat $SL_2(2))[\otimes SL_2(2)]$	1	-	Alt(9)
*	10	nat $SL_2(2) \otimes SL_2(2)$	1	-	Sym(9), Alt(10)
*	7	nat $SL_2(3) \otimes SL_2(3)$	1	-	HN

TABLE 1. Examples for Cases 2–10 of Theorem H

In the table $c := |Y_M/[Y_M, M^\circ]|$ and Φ_2 is a group of graph automorphisms of order 2. In the examples with $G = P\Omega_6^-(3)\langle\omega\rangle$, ω is a reflection in $PO_6^-(3)$. An entry of the form A[B] in the $[Y_M, M^\circ]$ column indicates that there exists more than one choice for Q in the example G. Depending on this choice the structure of $[Y_M, M^\circ]$ as an M° -module is either described by A or AB.

* indicates that $(char Y_M)$ fails in G.

8.1. Notation and Preliminary Results

In this section we assume the hypothesis and notation of Theorem II; in particular $Y = Y_M$ and $I = F_Y(M)$.

LEMMA 8.1. $Y_M \leq O_p(N_G(Q))$.

PROOF. By Hypothesis, Y_M is Q-tall and so by 2.6(e) $Y_M \leq O_p(N_G(Q))$.

LEMMA 8.2. $\mathfrak{H}_{N_G(Q)}(O_p(M)) \neq \emptyset$, and for $H \in \mathfrak{H}_{N_G(Q)}(O_p(M))$, $\mathfrak{L}_H(Y_M) \neq \emptyset$.

PROOF. By 1.55(a) $N_G(Q)$ has characteristic p, and by 8.1 $Y_M \notin O_p(N_G(Q))$. Hence 2.9 implies that $\mathfrak{H}_{N_G(Q)}(O_p(M)) \neq \emptyset$.

Pick $H \in \mathfrak{H}_{N_G(Q)}(O_p(M))$, and let L be minimal among all subgroups of H satisfying $Y \leq L$ and $Y \leq O_p(L)$. Then the Asymmetric L-Lemma 2.16(e) shows that $L \in \mathfrak{L}_H(Y_M)$.

NOTATION 8.3. According to 8.2 we are allowed to fix $H \in \mathfrak{H}_{N_G(Q)}(O_p(M))$ and $L \in \mathfrak{L}_H(Y_M)$. Recall from the definition of $\mathfrak{L}_G(Y_M)$:

- (i) L is Y-minimal of characteristic p, and $N_L(Y)$ is the unique maximal subgroup of L containing Y.
- (ii) $L/A \cong SL_2(\tilde{q}), Sz(\tilde{q})$ or Dih_{2r} and $|Y/Y \cap A| = \tilde{q}$, where p = 2 in the last two cases, r is an odd prime, and $\tilde{q} = 2$ in the last case.
- (iii) $A = \langle (Y \cap A)^L \rangle.$

Also observe that L satisfies the hypothesis of 1.43, since by 1.42(b) $O_p(L) \leq N_L(Y)$.

- LEMMA 8.4. (a) $C_M(I) = C_M(Y) = C_M(I/rad_I(M)).$
- (b) $N_G(I) = M^{\dagger} = N_G(Y) = MC_G(Y) = MC_G(I).$
- (c) $C_G(I) = C_G(Y) = C_{M^{\dagger}}(Y) = C_{M^{\dagger}}(I/rad_I(M)).$
- (d) $M \leq N_G(Q)$.
- (e) Y, I and $I/rad_I(M)$ are Q!-modules for \overline{M} with respect to \overline{Q} .
- (f) I is a semisimple M° -module, $C_Y(M^{\circ}) = C_Y(M_{\circ}) = 1$ and $I = [I, M^{\circ}] = [I, M_{\circ}]$.

PROOF. (a): By D.6, I and $I/rad_I(M)$ are faithful \overline{M} -modules, so $C_M(I) = C_M(I/rad_I(M)) = C_M(Y)$. This is (a).

(b): By the basic property of M, $M^{\dagger} = MC_G(Y)$. Since $I \leq Y$, this gives $M^{\dagger} = MC_{M^{\dagger}}(I)$. In particular, $M^{\dagger} \leq N_G(I)$ and $M^{\dagger} \leq N_G(Y)$. Again by the basic property of M, M^{\dagger} is a maximal *p*-local subgroup of G, and so $M^{\dagger} = N_G(I) = N_G(Y)$. Hence $C_{M^{\dagger}}(I) = C_G(I)$, and (b) is proved.

(c): By (b) $N_G(I) = M^{\dagger} = MC_G(Y)$, and $C_G(Y)$ centralizes I and $I/rad_I(M)$. Hence

$$C_G(I) = C_M(I)C_G(Y)$$
 and $C_{M^{\dagger}}(I/rad_I(M)) = C_M(I/rad_I(M))C_G(Y).$

Thus (c) follows from (a).

(d): Otherwise 1.24(f) implies $Y_M \leq Y_{N_G(Q)} \leq O_p(N_G(Q))$, contrary to 8.1.

(e): By (d) $M \leq N_G(Q)$ and by (c) $C_G(Y) = C_G(I)$. Since Q is a large subgroup of G, 1.57(b) shows that Y and I are faithful Q!-modules for \overline{M} with respect to \overline{Q} . So we can apply D.10 with V = Y and $H = \overline{M}$ and conclude that also $I/rad_I(M)$ is a Q!-module for \overline{M} with respect to \overline{Q} .

(f): By (e), Y is a faithful, p-reduced Q!-module for \overline{M} with respect to \overline{Q} . Thus by D.8, I is a semisimple $\overline{M^{\circ}}$ -module and so also a semisimple M° -module. Since by (d) $M \leq N_G(Q)$, we get $Q \neq M^{\circ}$, and so by 1.55(d) $C_I(M^{\circ}) \leq C_G(M^{\circ}) = 1$. As I is a semisimple M° -module, this gives $I = [I, M^{\circ}] = [I, M_{\circ}]$.

- LEMMA 8.5. (a) Let $g \in G$ with $Q^g \leq M^{\dagger}$ and $L \leq N_G(Q^g)$. Then Q^g normalizes L and A.
- (b) L and A normalize Q, and Q normalizes L and A.

PROOF. (a): Since $Q^g \leq M^{\dagger}$, Q^g normalizes Y. Since L normalizes Q^g , Q^g also normalizes Y^l for all $l \in L$, and we conclude that Q^g normalizes $\langle Y^L \rangle$. As L is Y-minimal, $L = \langle Y^L \rangle$ and so Q^g normalizes L and $O_p(L)$. Since $A = O_p(L)$ this gives (a).

(b): Since $L \in \mathfrak{L}_H(Y_M)$ and $H \in \mathfrak{H}_{N_G(Q)}(O_p(M)), L \leq H \leq N_G(Q)$. So (b) follows from (a). \square

LEMMA 8.6. Suppose that $[\Omega_1 Z(A), L] \neq 1$. Then $I \leq A$ and $[Y_{HQ}, HQ] \neq 1$.

PROOF. By 8.4(c) $C_G(I) = C_G(Y)$ and thus also $C_{\Omega_1 Z(A)}(Y) = C_{\Omega_1 Z(A)}(I)$. Since $L = \langle Y^L \rangle$, $[\Omega_1 Z(A), L] \neq 1$ implies $[\Omega_1 Z(A), Y] \neq 1$. Hence also $[\Omega_1 Z(A), I] \neq 1$ and $I \leq A$. It remains to prove $[Y_{HQ}, HQ] \neq 1$.

Since $L \in \mathfrak{L}_G(Y_M)$, 1.43 applies to L. So 1.43(h) gives $C_A(L) = C_A(O^p(L))$. As $[\Omega_1 Z(A), L] \neq 1$ this implies $[\Omega_1 Z(A), O^p(L)] \neq 1$. By 2.17(b) $[L, O_p(H)] \leq O_p(L) = A \leq O_p(H)$. So $O_p(H)$ normalizes L and A, and $[L, O_p(H)]$ centralizes $\Omega_1 Z(A)$.

Now the $P \times Q$ -Lemma gives $[C_{\Omega_1Z(A)}(O_p(H)), O^p(L)] \neq 1$. Since $A \leq O_p(H)$, we have $C_{\Omega_1Z(A)}(O_p(H)) \leq \Omega_1Z(O_p(H))$. Thus $[\Omega_1Z(O_p(H)), O^p(L)] \neq 1$ and so $[\Omega_1Z(O_p(H)), O^p(H)] \neq 1$. Since by 2.11(e) H is p-irreducible, 1.35 gives $[Y_H, H] \neq 1$. As $O^p(HQ) \leq H$, 1.26(c) shows that $[Y_{HQ}, HQ] \neq 1$.

LEMMA 8.7. Let $U \leq Y$ be A-invariant and $U \leq A$. Suppose that U is $N_L(Y)$ -invariant or $Y \leq UA$.

(a) YA = UA and $Y \cap A = [U, A]C_Y(L) = (U \cap A)C_Y(L)$.

(b) $[A,Y] = [A,u]C_{[A,U]}(L) = [A,U]$ for every $u \in U \setminus A$.

PROOF. By assumption, U is $N_L(Y)$ -invariant or $Y \leq UA$. We will first show that in either case YA = UA.

Suppose that U is $N_L(Y)$ -invariant. Since $L \in \mathfrak{L}_G(Y_M)$, 2.14 shows that $N_L(Y)/A$ has a unique non-trivial elementary abelian normal p-subgroup. Thus YA/A = UA/A and so YA = UA. Suppose that $Y \leq UA$. Since $U \leq Y$, this gives YA = UA.

Since YA = UA we get $Y = U(Y \cap A)$. Let $u \in U \setminus A$. Then 1.43(g) shows that

(*)
$$Y \cap A = [A, u]C_Y(L).$$

In particular,

$$Y \cap A = [A, U]C_Y(L) = (U \cap A)C_Y(L) \quad \text{and} \quad Y = U(Y \cap A) = UC_Y(L).$$

This gives $[A, Y] = [A, U] \leq U$. Intersecting both sides of the equation in (*) with [A, U] gives

 $[A, U] = [A, u]([A, U] \cap C_Y(L)) = [A, u]C_{[A, U]}(L).$

So all parts of the lemma are proved.

LEMMA 8.8. Put $U := C_I(L)$ and $E := \langle Q^g | g \in G, C_U(Q^g) \neq 1 \rangle$. Suppose that $U \neq 1$. Then (a) $Q \leq E \leq M^\circ$ and $[E, L] \leq A$. In particular, E normalizes L.

- (b) $[E, Y] \leq Y \cap A.$
- (c) $E = N_M(U)^\circ = N_G(U)^\circ$.

(d) Let $x \in L \setminus N_L(Y)$. If $I \leq A$, then $I/U \cong \overline{I^x}$ as an $\mathbb{F}_p E$ -module.

PROOF. (a): By 2.7(b) $E \leq M^{\circ}$, and by 8.5(a) Q normalizes L and so also U. Hence $C_U(Q) \neq 1$ and $Q \leq E$.

Let $g \in G$ with $C_U(Q^g) \neq 1$. Then $L \leq C_G(U) \leq C_G(C_U(Q^g))$, and Q! implies $L \leq N_G(Q^g)$. Also $Q^g \leq E \leq M^{\circ} \leq M^{\dagger}$, and 8.5(a) shows that Q^g normalizes L and A. In particular,

$$[L, Q^g] \leq L \cap Q^g \leq O_p(L) = A,$$

and (a) follows.

(b): Since $Y \leq L$ (a) gives $[E, Y] \leq A$. By (a) $E \leq M^{\circ} \leq M$ and so also $[E, Y] \leq Y$.

(c): By (a) E normalizes L. Since L centralizes U, we conclude that L centralizes $\langle U^E \rangle$. By (a), $E \leq M^{\circ} \leq M$. So E normalizes I and since $U \leq I$, $\langle U^E \rangle \leq I$. Thus $U \leq \langle U^E \rangle \leq C_I(L) = U$, and E normalizes U. Hence $E \leq N_M(U)$. Since E is generated by conjugates of Q this gives

 $E \leq N_M(U)^\circ$.

Clearly,

$$N_M(U)^\circ \leq N_G(U)^\circ,$$

 $N_G(U)^\circ \leq E,$

so (c) holds.

and by 2.7(b)

(d): Let $x \in L \setminus N_L(Y)$. By 1.43(a), $A' \leq C_Y(L)$ and so, since $I \leq A$ and I is A-invariant, $[I, A] \leq I \cap A' \leq C_I(L) = U$. Since by (a) $[E, x] \leq A$, we conclude that [E, x] centralizes IU/Uand so $IU/U \to I^x U/U$, $yU \mapsto y^x U$, is an E-isomorphism. Note the $IU/U \cong I/I \cap U$. Also by 1.42(f), $L = \langle Y, Y^x \rangle$ and so since Y is abelian, $C_{I^x}(Y) = C_{I^x}(\langle Y, Y^x \rangle) = C_{I^x}(L) = C_I(L) = U$. Hence $C_{I^x}(Y) = I^x \cap U$ and

$$I^{x}U/U \cong I^{x}/I^{x} \cap U = I^{x}/C_{I^{x}}(Y) \cong \overline{I^{x}}$$

Thus (d) holds.

LEMMA 8.9. Let $K \leq M$ with $1 \neq \overline{K} \leq F^*(\overline{M})$ and $\overline{K} = [\overline{K}, \overline{Q}]$. Suppose that $I \leq A$ and $[F^*(\overline{M^\circ}), \overline{Q}] \leq \overline{N_M([K, Q]O_p(M^\circ))}$. Then $C_{\overline{A}}(\overline{K}) = 1$.

PROOF. Let F be the inverse image of $F^*(\overline{M})$ in M^{\dagger} and $R := KC_{M^{\dagger}}(Y) \cap M^{\circ}$. Since \overline{F} normalizes \overline{K} , F normalizes $KC_{M^{\dagger}}(Y)$ and R. Note that $\overline{K} = [\overline{K}, Q]$ implies $\overline{K} \leq \overline{M^{\circ}}$, so $KC_{M^{\dagger}}(Y) \leq M^{\circ}C_{M^{\dagger}}(Y)$ and

$$KC_{M^{\dagger}}(Y) = KC_{M^{\dagger}}(Y) \cap M^{\circ}C_{M^{\dagger}}(Y) = \left(KC_{M^{\dagger}}(Y) \cap M^{\circ}\right)C_{M^{\dagger}}(Y) = RC_{M^{\dagger}}(Y).$$

Hence $\overline{K} = \overline{R}$. By 1.52(c) (applied with L := M),

$$[C_{M^{\dagger}}(Y), QR] \leqslant [C_G(Y), M^{\circ}] \leqslant O_p(M^{\circ}).$$

In particular $[C_{M^{\dagger}}(Y), Q] \leq O_p(M^{\circ})$. Using $KC_{M^{\dagger}}(Y) = RC_{M^{\dagger}}(Y)$ we get

$$(\mathbf{I}) \qquad \qquad [K,Q]O_p(M^\circ) = [R,Q]O_p(M^\circ) \quad \text{ and } \quad [C_R(Y),RQ] \leqslant O_p(M^\circ).$$

Put $E := O^p([R,Q])$ and $N := N_G(E)$. Since $1 \neq K \leq F^*(\overline{M})$ and $O_p(\overline{M}) = 1$ we have $1 \neq \overline{K} = O^p(\overline{K})$. As $\overline{K} = [\overline{K},Q] = [\overline{R},Q]$ this gives $\overline{E} = \overline{K} \neq 1$. Since F normalizes R, $N_F(Q) \leq N$. In particular, by Q!,

(II)
$$O_p(M^\circ) \leq C_{M^\dagger}(Y) \leq N_F(Q) \leq N.$$

Thus $O_p(M^\circ)$ normalizes [R, Q] and so

$$E = O^{p}([R,Q]) = O^{p}([R,Q]O_{p}(M^{\circ})) \stackrel{(1)}{=} O^{p}([K,Q]O_{p}(M^{\circ})).$$

It follows that $N_M([K,Q]O_p(M^\circ)) \leq N \cap M$. By assumption, $[F^*(\overline{M^\circ}), \overline{Q}] \leq \overline{N_M([K,Q]O_p(M^\circ))}$ and so

(III)
$$[F^*(\overline{M^\circ}), \overline{Q}] \leq \overline{N \cap M}.$$

By 1.8
$$\overline{F} = [\overline{F}, \overline{Q}]C_{\overline{F}}(\overline{Q})$$
 and $[\overline{F}, \overline{Q}] = [\overline{F}, \overline{Q}, \overline{Q}]$. As $[\overline{F}, Q] \leq F^*(\overline{M^{\circ}}) \leq \overline{F}$ this gives

(IV)
$$\overline{F} = [F^*(\overline{M^\circ}), \overline{Q}]C_{\overline{F}}(\overline{Q}).$$

Since by 1.52(b) Q is a weakly closed subgroup of G, a Frattini argument gives

(V)
$$C_{\overline{F}}(\overline{Q}) \leq N_{\overline{F}}(\overline{Q}) = \overline{N_F(Q)} \leq \overline{N \cap M^{\dagger}}.$$

Combining (III), (IV) and (V) we get $\overline{F} \leq \overline{N \cap M^{\dagger}}$, and since by (II) $C_{M^{\dagger}}(Y) \leq N, F \leq N$.

Note that E is subnormal in M and so, since M is of characteristic p, by 1.2(a) also E is of characteristic p. As $E \neq 1$ we get $1 \neq O_p(E) \leq N$ and $O_p(N) \neq 1$. Clearly $Q \leq N$, and 1.55 shows that N has characteristic p. Since $F \leq N$ 2.8 implies $Y = Y_M \leq Y_N$, so

(VI)
$$Y \leq O_p(N)$$

By 1.43(a) $A' \leq C_Y(L)$. By the assumption of this lemma $I \leq A$. Put $B := C_A(\overline{K})$. Then

(VII)
$$[I,B] \leq [A,A] \leq C_Y(L).$$

Suppose for a contradiction that $C_{\overline{A}}(\overline{K}) \neq 1$, so $\overline{B} \neq 1$ and $[Y, B] \neq 1$. By 8.4(c) $C_G(Y) = C_G(I)$ and so $[I, B] \neq 1$. By 8.5(b) Q normalizes A. Since Q also normalizes \overline{K} , Q normalizes B. As seen above $\overline{R} = \overline{K}$ and so $B = C_A(\overline{R})$. Hence R normalizes \overline{B} . We conclude that RQ normalizes \overline{B} . As $[I, \overline{B}] = [I, B]$ this shows that RQ also normalizes [I, B]. Hence, by 1.52(c) $C_G([I, B])$ normalizes $(RQ)^{\circ}$. By (VII) L centralizes [I, B], and so L normalizes $(RQ)^{\circ}$. Since Q is weakly closed 1.46(c) gives $(RQ)^{\circ} = \langle Q^R \rangle = [Q, R]Q$ and so $O^p((RQ)^{\circ}) = O^p([Q, R]) = E$. Thus L normalizes E and $L \leq N$. Since $Y \leq O_p(L)$ we get $Y \leq O_p(N)$, a contradiction to (VI).

LEMMA 8.10. Suppose that \overline{Q} is homocyclic abelian. Then \overline{Q} is elementary abelian.

PROOF. Put $N := N_G(Q)$ and $F := \langle Y^N \rangle$. Note that $Q' \leq C_M(Y)$ and so $Y \leq C_M(Q')$. Also $[Q, Y] \leq Y$ is elementary abelian and 1.19 now shows that $O^p(F)$ centralizes $\Phi(Q)$.

Suppose for a contradiction that \overline{Q} is not elementary abelian. Since \overline{Q} is homocyclic this gives $\Omega_1(Q) \leq \Phi(Q)O_p(M)$. Then $[Q, Y] \leq Q \cap Y \leq \Omega_1(Q)$ and $[\Omega_1(Q), Y] \leq [\Phi(Q)O_p(M), Y] \leq \Phi(Q)$. Since $\Omega_1(Q)$ and $\Phi(Q)$ are *N*-invariant, we get that $[Q, F] \leq \Omega_1(Q)$ and $[\Omega_1(Q), F] \leq \Phi(Q)$. Hence $O^p(F)$ centralizes each factor of the series $1 \leq \Phi(Q) \leq \Omega_1(Q)\Phi(Q) \leq Q$. Coprime action shows that $O^p(F)$ centralizes Q. Since $C_G(Q) \leq Q$, we conclude that $O^p(F) = 1$. Hence F is a p-group and $Y \leq F \leq O_p(N) = O_p(N_G(Q))$. This contradicts 8.1.

8.2. The Case $I \leq A$

In this section we continue to assume the hypothesis and notation of Theorem H. Furthermore, we assume $I \leq A$. We start with a summary of the notation used in this section:

NOTATION 8.11. $-x \in L$ with $1 \neq [I, I^x] \leq I \cap I^x$, see 8.12. $-D := \langle I^L \rangle, U := C_I(L) \text{ and } W := C_I(Q).$ $-\tilde{Y} := Y/I.$ $-E := \langle Q^g \mid g \in G \mid C_U(Q^g) \neq 1 \rangle$, as in 8.8. $-\mathbb{K} := End_{M_0}(I)$, as in 8.18.

If I is a natural $\Omega_6^+(2)$ -module for $\overline{M^{\circ}}$:

- I_0 is natural $SL_4(2)$ -module for $\overline{M^{\circ}}$.
- $-W_0 := C_{I_0}(Q)$ and $U_0 := C_{I_0}(A)$, with I_0 chosen such that U_0 is a hyperplane of I_0 , see the discussion before 8.23.
- $-N := N_G(U), C := C_G(U), B := \langle I^N \rangle, \hat{B} := B/U, \text{ and } N_0 := C_N(\hat{B}).$
- $-X := \langle (B \cap O_2(M))^{M^{\circ}} \rangle.$

(*)

- $-K := Hom_E(U_0, \hat{B})$, and s is a C-invariant symplectic form on K, see 8.28.
- $-C_0 := C_C(K^{\perp})$. For $F \leq C$, \check{F} is the image of F in $Sp(K/K^{\perp})$.

LEMMA 8.12. Suppose that $I \leq A$. Then there exists $x \in L$ such that $1 \neq [I, I^x] \leq I \cap I^x$. Moreover, I^x and A are non-trivial quadratic offenders on I, and Q normalizes I^x .

PROOF. Since $Y \leq O_p(L)$, $\langle Y^L \rangle$ is not abelian. Thus there exists $x \in L$ with $[Y, Y^x] \neq 1$. By 8.4(b),(c),

 $N_G(Y) = N_G(I)$ and $C_G(Y) = C_G(I)$.

As $[Y, X^x] \neq 1$ this implies $[I, Y^x] \neq 1$, and since also $C_G(Y^x) = C_G(I^x), [I, I^x] \neq 1$.

Since A normalizes Y and $I^x \leq A$ we conclude that $I^x \leq N_G(Y)$, so by $(*) I^x \leq N_G(I)$. By symmetry also $I \leq N_G(I^x)$ and thus $[I, I^x] \leq I \cap I^x$. Since I is abelian, this shows that I acts quadratically on I^x . Possibly after replacing x by x^{-1} , we also have $|I/C_I(I^x)| \ge |I^x/C_{I^x}(I)|$, so I^x is a quadratic offender on I.

Again by (*) $C_A(I) = C_A(Y)$, and 1.43(g), $C_A(Y) = Y \cap A$. Hence $C_A(I) = Y \cap A$. Put $\widehat{A} := A/C_Y(L)$. By 1.43(e) $\widehat{A} = \widehat{A \cap Y} \times \widehat{A \cap Y^l}$ for $l \in L \setminus N_L(Y)$. Thus

$$|A/C_A(I)| = |A/A \cap Y| = |\widehat{A/A \cap Y}| = |\widehat{A \cap Y}| = |\widehat{A \cap Y}| \ge |\widehat{I}| = |I/C_I(L)| \ge |I/C_I(A)|.$$

Also by 1.43(a) $[I, A] \leq A' \leq C_Y(L)$ and so [I, A, A] = 1. Thus also A is a quadratic offender on I. Finally, by 8.5(b) L normalizes Q, and $Q \leq N_G(I)$. Hence $Q \leq N_G(I^x)$.

Put $D := \langle I^L \rangle$, $U := C_I(L)$ and $W := C_I(Q)$, and (if $I \leq A$) let $x \in L$ be as in 8.12.

LEMMA 8.13. Suppose that $I \leq A$.

- (a) $D \leq A$ and D is not abelian.
- (b) I is symmetric in G.
- (c) $L = \langle Y, Y^x \rangle$. In particular, $L = \langle Y^L \rangle$.
- (d) $C_L(D) = Z(L)$ and $C_Y(I^x) = C_Y(L)$.
- (e) $C_I(I^x) = C_I(A) = C_I(D) = C_I(L) = U.$
- (f) D is a non-trivial quadratic offender on I.
- (g) $[Y, A] \leq Y \cap A$.
- (h) $[D, A] \leq C_I(L) = U.$

PROOF. (a) and (b): By hypothesis $I \leq A$ and so $D = \langle I^L \rangle \leq A$. Let x be as in 8.12 Then $1 \neq [I, I^x] \leq I \cap I^x$, so D is not abelian and I is symmetric in G.

(c): Since I is abelian, $I \neq I^x$. By 8.4(b), $N_G(I) = N_G(Y)$ and thus $x \notin N_L(Y)$. Since $L \in \mathfrak{L}_G(Y_M)$, $N_L(Y)$ is the unique maximal subgroup of L containing Y, and so $L = \langle Y, Y^x \rangle$ by 1.42(f).

(d): By 8.4(c)
$$C_G(I) = C_G(Y)$$
. Thus by (c)
 $C_L(D) = C_L(\langle I^L \rangle) = C_L(\langle Y^L \rangle) = C_L(L) = Z(L)$

Since Y is abelian,

$$C_Y(I^x) = C_Y(\langle I, I^x \rangle) = C_Y(\langle Y, Y^x \rangle) = C_Y(L).$$

(e): Note that $I^x \leq D \leq A \leq L$ and by (d) $C_I(I^x) = C_I(L)$. Hence (e) follows.

(f): By 8.12 A is quadratic on I. Since $D \leq A$, also D acts quadratically on I. By 8.12 I^x is a non-trivial offender on I, and by (e) $C_I(D) = C_I(I^x)$. Since $I^x \leq D$ we get

$$|I/C_I(D)| = |I/C_I(I^x)| \le |I^x/C_{I^x}(I)| \le |D/C_D(I)|.$$

So D is a non-trivial offender on I.

(g) and (h): By definition of $\mathfrak{L}_G(Y_M)$, $N_L(Y)$ is a maximal subgroup of L and $A \leq N_L(Y)$. This gives (g) and $[I, A] \leq I$. By 1.43(a), $A' \leq C_Y(L)$, and since $I \leq A$, $[I, A] \leq I \cap C_Y(L) = C_I(L)$. Conjugation with L gives $[D, A] \leq C_I(L) = U$.

LEMMA 8.14. Suppose that $I \leq A$ and $|D/C_D(Y)| < |Y/Y \cap A|^2$. Then $[Y, D] \leq I$.

PROOF. By 1.43(h), (e), (g) applied with B = D,

(I) $C_D(L) = D \cap C_Y(L) = C_{D \cap Y}(L), \ |D/D \cap Y| = |D \cap Y/C_{D \cap Y}(L)| \text{ and } C_D(Y) = D \cap Y,$ and so

(II)
$$|D/C_D(L)| = |D/C_{D \cap Y}(L)| = |D/D \cap Y||D \cap Y/C_{D \cap Y}(L)| = |D/D \cap Y|^2 = |D/C_D(Y)|^2.$$

Put $\tilde{q} := |Y/Y \cap A|$. By assumption $|D/C_D(Y)| < |Y/Y \cap A|^2 = \tilde{q}^2.$ Thus (II) gives

(III)
$$|D/C_D(L)| < \tilde{q}^4.$$

Recall from 8.3 that

$$L/A \cong SL_2(\widetilde{q}), Sz(\widetilde{q}) \text{ or } Dih_{2r} \text{ and } |Y/Y \cap A| = \widetilde{q},$$

where p = 2 in the last two cases, r is an odd prime, and $\tilde{q} = 2$ in the last case.

Suppose that p = 2 and $L/O_2(L) \cong Dih_{2r}$. Then $\tilde{q} = 2$ and by (III) $|D/C_D(L)| < 16$. Since $GL_3(2)$ has order $2^3 \cdot 3 \cdot 7$ and contains no dihedral group of order 14. We conclude that $L/O_2(L) \cong Dih_6 \cong SL_2(2)$.

So we may assume that $L/A \cong SL_2(\tilde{q})$ or $Sz(\tilde{q})$. Since $[D, Y, Y] \leq [Y, Y] = 1$, Y acts quadratically on $D/C_D(L)$. Thus C.15 shows that all non-central chief factors of L on $D/C_D(L)$ are natural $SL_2(\tilde{q})$ - and $Sz(\tilde{q})$ -modules, respectively. The natural $Sz(\tilde{q})$ - module has order \tilde{q}^4 , a contradiction to (III). Hence $L/A \cong SL_2(\tilde{q})$.

The natural $SL_2(\tilde{q})$ -module has order \tilde{q}^2 , and so (III) shows that L has a unique non-central chief factor on $D/C_D(L)$. By 1.43(p) L has no central chief factors on $D/C_D(L)$. Thus $D/C_D(L)$ is a natural $SL_2(q)$ -module. In particular, L acts transitively on $D/C_D(L)$.

By (I) $C_D(L) \leq Y$, so $IC_D(L) \leq Y$, and $IC_D(L)$ is elementary abelian. The transitivity of L on $D/C_D(L)$ now implies that D has exponent p. As D is not abelian by 8.13(a), this shows that p is odd. Since $L/A \cong SL_2(\tilde{q})$ and $D/C_D(L)$ is a natural $SL_2(\tilde{q})$ -module we conclude that there exists an involution $t \in L$ with $[t, L] \leq A$, and t inverts $D/C_D(L)$. Thus $C_D(t) = C_D(L)$ and $C_I(t) = C_I(L)$. Since $t \in N_L(Y) = N_L(I)$, coprime action shows

$$I = [I, t]C_I(t) = [I, t]C_I(L) \le [D, t]C_I(L).$$

By 8.13(h) $[D, A] \leq C_I(L)$. Thus $[D, \langle t \rangle A]C_I(L) = [D, t]C_I(L)$ is *L*-invariant and contains *I*. Since $D = \langle I^L \rangle$, this gives $D = [D, t]C_I(L)$. As $D' \leq [D, A] \leq C_I(L)$, $D/C_I(L)$ is abelian. Coprime action now shows

$$D/C_I(L) = [D, t]C_I(L)/C_I(L) \times C_D(t)/C_I(L).$$

Since $D = [D, t]C_I(L)$, this gives $C_D(t) = C_I(t)$ and so $C_D(L) = C_I(L)$. Thus $D/C_I(L)$ is a natural $SL_2(\tilde{q})$ -module. It follows that $N_L(Y)$ acts simple on $C_{D/C_I(L)}(Y)$. Note that

$$1 \neq I/C_I(L) \leqslant (Y \cap D)/C_I(L) \leqslant C_{D/C_I(L)}(Y)$$

and that $N_L(Y)$ normalizes this series. Thus $I/C_I(L) = Y \cap D/C_I(L)$ and $I = Y \cap D$. Hence $[Y, D] \leq Y \cap D \leq I$, and 8.14 is proved.

Put $\tilde{Y} := Y/I$, and recall from 8.3 and 8.4(b) that $D \leq N_G(Y) = N_G(I)$, so D acts on Y and \tilde{Y} .

LEMMA 8.15. Suppose that $I \leq A$.

(a) $[Y, D, D] \leq C_I(L)$ and $[\widetilde{Y}, D, D] = 1$.

(b) Either $[\widetilde{Y}, D] = 1$ or $|\widetilde{Y}/C_{\widetilde{v}}(D)|^2 \leq |Y/Y \cap A|^2 \leq |D/C_D(Y)|$.

(c) If $\overline{I^x} = \overline{A}$, then $Y \cap A = IC_Y(I^x) = IC_Y(L)$ and $A = II^xC_Y(L)$.

PROOF. (a): By 8.13(h) $[A, D] \leq C_I(L)$. Since $[Y, D] \leq D \leq A$, this gives $[Y, D, D] \leq [A, D] \leq C_I(L) \leq I$. Hence $[\tilde{Y}, D, D] = 1$ and (a) holds.

(b): Suppose that $|Y/Y \cap A|^2 > |D/C_D(Y)|$. Then 8.14 shows that $[Y,D] \leq I$ and so $[\tilde{Y},D] = 1$. Suppose that $|Y/Y \cap A|^2 \leq |D/C_D(Y)|$. Since $[Y \cap A,D] \leq [A,D] \leq C_I(L) \leq I$ we have $\tilde{Y \cap A} \leq C_{\tilde{Y}}(D)$ and so $|\tilde{Y}/C_{\tilde{Y}}(D)|^2 \leq |Y/Y \cap A|^2 \leq |D/C_D(Y)|$.

(c): Assume that $\overline{I^x} = \overline{A}$, so $A = I^x C_A(Y)$. By 1.43(g) $C_A(Y) = A \cap Y$, so $A = I^x(A \cap Y)$ and $A \cap Y^x = I^x(A \cap Y^x \cap Y)$. By 1.43(h) $A \cap Y \cap Y^x = C_Y(L)$ and so $A \cap Y^x = I^x C_Y(L)$. Hence also $A \cap Y = IC_I(L)$, and 1.43(e) gives $A = (A \cap Y)(A \cap Y^x) = II^x C_Y(L)$. Finally, by 8.13(d) $C_Y(I^x) = C_Y(L)$, and (c) is proved.

According to 8.13(b) I is symmetric in G. Thus, we can apply Theorem D with I in place of Y. We will do this considering the various outcomes of Theorem D separately, and we will use the notation of Theorem D.

LEMMA 8.16. Suppose that $I \leq A$. Then Case (3) of Theorem D does not hold for I in place of Y.

PROOF. Assume that Case (3) of Theorem D holds. Then I is a natural $SL_2(q)$ -wreath product module for \overline{M} with respect to some $\mathcal{K}, \overline{M_{\circ}} = O^p(\langle \mathcal{K} \rangle)\overline{Q}$, and Q acts transitively on \mathcal{K} .

Put $P := M^{\circ}S$ and let P^* be the inverse image of $\langle \mathcal{K} \rangle$ in M. Then I is also a natural $SL_2(q)$ wreath product module for \overline{P} and $O^p(\overline{P}) = \overline{M_{\circ}} = O^p(\langle \mathcal{K} \rangle)$. Hence A.28(b) shows

 1° . \overline{P} is p-minimal.

Moreover, by A.28(c), $O_p(P/C_P(I)) = 1$ and by 8.4(c) $C_P(I) = C_P(Y)$. Thus

 2° . $O_p(\overline{P}) = 1$.

We now investigate the action of P on \widetilde{Y} . Note that $C_P(Y) \leq C_P(\widetilde{Y})$, so $P/C_P(\widetilde{Y}) \cong \overline{P}/C_{\overline{P}}(\widetilde{Y})$. Since \overline{P} is *p*-minimal and so *p*-irreducible, we either have

 $3^{\circ}. \qquad C_{\overline{S}}(\widetilde{Y}) \leqslant O_p(\overline{P}) \ or \ O^p(\overline{P}) \leqslant C_{\overline{P}}(\widetilde{Y}).$

We now discuss these two cases separately and show that both of them lead to a contradiction.

4°. $C_{\overline{S}}(\widetilde{Y}) \leq O_p(\overline{P})$ does not hold.

Suppose that $C_{\overline{S}}(\widetilde{Y}) \leq O_p(\overline{P})$. By $(2^\circ) O_p(\overline{P}) = 1$ and so $C_{\overline{S}}(\widetilde{Y}) = 1$. In particular $C_D(Y) = C_D(\widetilde{Y})$, and $[\widetilde{Y}, D] \neq 1$ since $D \leq C_M(Y)$. This gives

$$|\widetilde{Y}/C_{\widetilde{Y}}(D)| < |\widetilde{Y}/C_{\widetilde{Y}}(D)|^2 \stackrel{8.15(\mathrm{b})}{\leqslant} |D/C_D(Y)| = |D/C_D(\widetilde{Y})|.$$

So D is an over-offender on \widetilde{Y} . On the other hand, since $C_{\overline{S}}(\widetilde{Y})$, \widetilde{Y} is *p*-reduced for P. Moreover, since \overline{P} is *p*-minimal, 1.38 shows that also $\overline{P}/C_{\overline{P}}(\widetilde{Y})$ is *p*-minimal. Hence C.13(e) yields a contradiction.

5°. $O^p(\overline{P}) \leqslant C_{\overline{P}}(\widetilde{Y})$ does not hold.

Suppose that $O^p(\overline{P}) \leq C_{\overline{P}}(\tilde{Y})$. Then $[Y, M_\circ] = [Y, O^p(P)] \leq I$, and by 8.4(f) $C_Y(M_\circ) = 1$. Since I is a natural $SL_2(q)$ -wreath product module for \overline{M} with respect to \mathcal{K} ,

$$\overline{P^*} = \langle \mathcal{K} \rangle = \bigotimes_{K \in \mathcal{K}} K$$
, and $I = \bigotimes_{K \in \mathcal{K}} [I, K]$,

and for $K \in \mathcal{K}$, $K \cong SL_2(q)$ and [I, K] is a natural $SL_2(q)$ -module for K.

Assume first first that p is odd or q = 2. Put $\overline{Z} := O_{p'}(\overline{P^*})$. Then \overline{Z} is a normal p'-subgroup of \overline{P} and $I = [I, \overline{Z}]$. Coprime action shows $Y = C_Y(\overline{Z}) \times I$. Since M_\circ normalizes $C_Y(\overline{Z})$ and $[Y, M_\circ] \leq I, C_Y(\overline{Z}) \leq C_Y(M_\circ) = 1$. But then Y = I, which is impossible since $I \leq A$ and $Y \leq A$. Assume now that p = 2 and $q \neq 2$. Then $q \geq 4$ and $K \cong SL_2(q)$ is simple. Since $[Y, O^p(P)] \leq I$,

 $C_{\overline{P}}(I)$ is a *p*-group, and since $O_p(\overline{P}) = 1$, we conclude that I is faithful \overline{P} -module.

Let $K \in \mathcal{K}$. Observe that $K \cap \overline{S}$ is an offender on I. Since K is simple, K is $J_K(V)$ -component of K, and since $K \leq \overline{P}$, we conclude from A.42 that K is a $J_{\overline{P}}(I)$ component of \overline{P} . By C.13 there exists subgroups E_1, \ldots, E_r of \overline{P} such that

$$J_{\overline{P}}(I) = E_1 \times \cdots \times E_r, \qquad \mathcal{J}_{\overline{P}}(I) = \{E'_1, \dots, E'_r, \}$$

Q acts transitively on $\{E_1, \ldots, E_r\}$, and either $E_i \cong SL_2(q^*)$ and $[[I, E_i]/C[I, E_i](E_i)$ is a natural $SL_2(q^*)$ -module for E_i or $E_i \cong Sym(2^n + 1)$ and $[I, E_i]$ is natural $Sym(2^n + 1)$ -module for E_i .

As we have seen, $K \in \mathcal{J}_{\overline{P}}(I)$ and so $K = E'_i$ for some $1 \leq i \leq r$. Since [I, K] is natural $SL_2(q)$ -module for $q \geq 4$, $[I, E_i]$ cannot be a natural $Sym(2^n + 1)$ -module. It follows that $K = E_i$. Now the transitive action of Q on \mathcal{K} and $\{E_1, \ldots, E_r\}$ gives $\mathcal{K} = \{E_1, \ldots, E_r\}$ and $\mathcal{J}_{\overline{P}}(V) = \langle \mathcal{K} \rangle = O^p(\langle \mathcal{K} \rangle) = \overline{M_o}$.

By 8.12 A is an offender on I and so by C.13(g)

$$\overline{A} = (\overline{A} \cap E_1) \times \cdot \times (\overline{A} \cap E_n) \leq \langle \mathcal{K} \rangle = \overline{M_{\circ}}.$$

Since $[Y, M_{\circ}] \leq I$ this implies $[Y, A] \leq I$.

By 8.5(b) Q normalizes A. Thus there exists $d \in A$ with $1 \neq \overline{d} \in C_{\overline{A}}(Q)$. Since $[I, \langle K \rangle] = I$ we have $[I, K, d] \neq 1$ for some $K \in \mathcal{K}$ and since Q centralizes \overline{d} and acts transitively $\mathcal{K}, [I, K, d] \neq 1$ for all $K \in \mathcal{K}$. Since [I, K] is a natural $SL_2(q)$ -module for $\overline{M_o}$ and d is a 2-element, $[I, K, d] = C_{[I,K]}(d)$. As $I = \bigotimes_{K \in \mathcal{K}} [I, K]$ we get $[I, d] = C_I(d)$. On the other hand, \overline{A} is elementary abelian and so $|\overline{d}| = p = 2$. Hence d acts quadratically on Y and

$$[Y,d] \leq [Y,A] \cap C_Y(d) \leq I \cap C_Y(d) = C_I(d) = [I,d].$$

Hence [Y,d] = [I,d] and $Y = C_Y(d)I$. Note that $d \in A \setminus Y$, and so by 1.43(f) $C_Y(d) \leq A$. Now $Y = C_Y(d)I \leq A$, a contradiction.

Recall that $M_{\circ} = O^p(M^{\circ})$. For the definition of $J_{\overline{M}}(I)$ and a $J_{\overline{M}}(I)$ -component of \overline{M} see A.7.

LEMMA 8.17. Suppose that $I \leq A$. Then Case (4:4) of Theorem D does not hold for Y in place of I.

PROOF. Assume case (4:4) of Theorem D. Then p is odd, $\overline{M^{\circ}} = \overline{L_1 L_2}$ with $[\overline{L_1}, \overline{L_2}] = 1$, $\overline{L_i} \cong SL_{n_i}(q), n_i \ge 2$ and $n_1 + n_2 \ge 5$, and $I \cong V_1 \otimes_{\mathbb{F}_q} V_2$, where V_i is a natural $SL_{n_i}(q)$ -module for $\overline{L_i}$. Note that for $n \ge 2$ and odd q:

1°. $O^p(SL_n(q)) = SL_n(q)'$, and $SL_n(q)'$ is either quasisimple or isomorphic to Q_8 (and n = 2 and q = 3).

Let $\{i, j\} = \{1, 2\}$, and let L_i be the inverse image of $\overline{L_i}$ in M° , and put $K_i := (L_i Q)_\circ$. Note that $M^\circ = L_1 L_2$ and $[L_1, L_2] \leq C_M(Y) \leq N_M(Q)$. Also Q is a weakly closed subgroup of M, and so we can apply 1.47. It follows that

$$2^{\circ}. \qquad K_i \leq M^{\circ}, \ M_{\circ} = K_1 K_2, \ K_i = [K_i, Q] \ and \ F^*(\overline{M}) \leq N_{\overline{M}}(\overline{K_i}).$$

In particular, $K_i = O^p(K_i) \leq O^p(L_i) \leq M_\circ = K_i K_j$ and so $O^p(L_i) = K_i (O^p(L_i) \cap L_j)$. Since $\overline{L_i} \cong SL_{n_i}(q)$ and $\overline{L_i} \cap \overline{L_j} \leq Z(\overline{L_i})$ we conclude from conclude from (1°) that

$$3^{\circ}$$
. $\overline{K_i} = \overline{L_i}' = O^p(\overline{L_i}) \cong SL_{n_i}(q)'$

We will now verify the hypothesis of 8.9 with K_i in place of K. By (2°) , $K_i \leq M^\circ$ and $K_i = [K_i, Q]$. Hence $[M, Q] \leq M^\circ \leq N_M([K_i, Q])$ and thus

$$[F^*(\overline{M^\circ}), Q] \leqslant [\overline{M}, Q] \leqslant \overline{N_M([K_i, Q])} \leqslant \overline{N_M([K_i, Q]O_p(M^\circ))},$$

Moreover, by (3°) $\overline{K_i} \neq 1$ and $\overline{K_i} = F^*(\overline{K_i})$. Since $\overline{K_i} \leq \overline{M^\circ}$, $\overline{K_i}$ is subnormal in \overline{M} . Hence $\overline{K_i} = F^*(\overline{K_i}) \leq F^*(\overline{M})$. Now (2°) shows that $\overline{K_i} \leq F^*(\overline{M})$. Thus, indeed M and K_i satisfies the hypothesis of 8.9. Hence

 4° . $C_{\overline{A}}(\overline{K_i}) = 1$.

By 8.12 *A* is a non-trivial quadratic offender on *I*. Thus, there exists a best offender $B \leq A$ on *I* with $[I, B] \neq 1$. Then $\overline{B} \neq 1$ and so by $(4^{\circ}) [\overline{K_i}, \overline{B}] \neq 1$. On the other hand, since $\overline{L_i} \cong SL_{n_i}(q)$, $[\overline{L_1}, \overline{L_2}] = 1$ and $\overline{M^{\circ}} = \overline{L_1}\overline{L_2}$ we conclude that $\overline{L_1}'$ and $\overline{L_2}'$ are the only minimal non-central normal subgroups of $\overline{M_{\circ}}$. Thus $\{\overline{L_1}', \overline{L_2}'\}$ is \overline{M} -invariant. In particular $O^2(\overline{M}) \leq N_{\overline{M}}(\overline{L_i}')$. Since *p* is odd, we get that $\overline{B} \leq J_{\overline{M}}(I) \leq N_{\overline{M}}(\overline{L_i}')$. But then by $(3^{\circ}) [\overline{K_i}, \overline{B}] = \overline{K_i} \leq J_{\overline{M}}(I)$, and $\overline{K_i}$ is minimal with that property. Hence $\overline{K_1}$ and $\overline{K_2}$ are $J_{\overline{M}}(I)$ -components of \overline{M} . Now The Other P(G, V)-Theorem [**MS1**] (or A.41(f)) implies $[I, \overline{K_1}, \overline{K_2}] = 1$, a contradiction to the fact that $I \cong V_1 \otimes_{\mathbb{F}_q} V_2$ as an M° -module.

LEMMA 8.18. Suppose that $I \leq A$. Then $\overline{M_{\circ}}$ is quasisimple, I is a simple M_{\circ} -module, and A acts \mathbb{K} -linearly on I, where $\mathbb{K} := End_{M_{\circ}}(I)$.

PROOF. Note that we have excluded cases (3) and (4:4) of Theorem D, see 8.16 and 8.17. In all the remaining cases of Theorem D $\overline{M_{\circ}}$ is quasisimple and $[I, M^{\circ}]$ is a simple M_{\circ} -module. By 8.4(f) $I = [I, M^{\circ}] = [I, M_{\circ}]$, and so I is a simple M_{\circ} -module. In particular, \mathbb{K} is a field, and since A normalizes M_{\circ} , A acts \mathbb{K} -semilinearly on I. By 8.12 A is an offender on I and so by [**MS5**, 2.5] either A acts \mathbb{K} -linearly on I or |I| = 4. The latter case is impossible as $\overline{M_{\circ}}$ is quasisimple.

For the next step recall that $U = C_I(L)$, $W = C_I(Q)$ and $D = \langle I^L \rangle$. As in 8.8 define $E := \langle Q^g \mid g \in G \mid C_U(Q^g) \neq 1 \rangle$.

Moreover $\mathbb{K} = End_{M_{\circ}}(I)$ as in 8.18.

LEMMA 8.19. Suppose that $I \leq A$. Then

(a) L normalizes E.

(b) U is a non-trivial \mathbb{K} -subspace of I.

(c) $E = N_G(U)^\circ = N_M(U)^\circ$. In particular, $E \leq M$.

(d) $I/U \cong \overline{I^h}$ as an $\mathbb{F}_p E$ -module for all $h \in L \setminus N_L(Y)$.

PROOF. Since L centralizes and so normalizes U, L normalizes E. By 8.18 A acts K-linearly on I and by 8.13(e), $U = C_I(L) = C_I(A)$. So U is a non-trivial K-subspace of I. By 8.8(c) $E = N_G(U)^\circ = N_M(U)^\circ$; in particular, $E \leq M$. Since $I \leq A$, 8.8(d) shows that $I/U \cong \overline{I^h}$ as an $\mathbb{F}_p E$ -module.

LEMMA 8.20. Suppose that $I \leq A$. Then $[Y, M_{\circ}] \leq I$.

PROOF. We first show :

1°. E normalizes D and $[\widetilde{Y}, E, D] = 1$.

By 8.19(c) $E \leq M$ and so E normalizes I. By 8.19(a), L normalizes E, whence E normalizes $D = \langle I^L \rangle$. By 8.8(b), $[Y, E] \leq Y \cap A$ and by 8.13(h) $[A, D] \leq C_I(L) \leq I$. Thus $[Y, E, D] \leq [A, D] \leq I$ and $[\tilde{Y}, E, D] = 1$.

For the next steps recall that $M_{\circ} = O^p(M^{\circ})$ and $W = C_I(Q)$.

 2° . Suppose that [I, E, D] = 1. Then $[Y, M_{\circ}] \leq I$.

By 8.13(e) $C_I(D) = U$ and so, since [I, E, D] = 1, $[I, E] \leq C_I(D) = U$, and E centralizes I/U. By 8.19(d) the $\mathbb{F}_p E$ -modules I/U and $\overline{I^h}$ are isomorphic for all $h \in L \setminus N_L(Y)$. This gives $[\overline{I^h}, E] = 1$ for all such h, and so also $[\overline{D}, \overline{E}] = 1$ and [D, E, I] = 1. The Three Subgroups Lemma now implies that [I, D, E] = 1. In particular, $[I, D] \leq C_I(Q^g)$ for all $g \in G$ with $Q^g \leq E$. By 8.13(a) $[I, D] \neq 1$, and so for all such Q^g , $1 \neq [I, D] \leq C_G(Q) \cap C_G(Q^g)$, and 1.52(e) gives $Q = Q^g$. Hence

(I)
$$E = Q$$
 and $[I, D, Q] = 1$.

Put

 $T := \{s \in M \mid [I, s] \leq W \text{ and } [I, s, s] = 1\}.$

Let $t \in T$ with $[I, t] \neq 1$. Since $W = C_I(Q)$, A.55(d) (with V = I) shows that W = [I, t]. From [I, t, t] = 1 we get [W, t] = 1. In particular

(II)
$$[I,t] = W \text{ for all } t \in T \setminus C_T(I) \text{ and } T = C_M(W) \cap C_M(I/W).$$

By (I) [I, D, Q] = 1 and so $[I, D] \leq C_I(Q) = W$, and by 8.13(f) \overline{D} is a non-trivial quadratic offender on I. This shows that $D \leq T$, so $[I, T] \neq 1$ and $C_I(T) \leq C_I(D)$. By 8.13(e) $C_I(D) = U$ and so $C_I(T) \leq U$. Since $[I, T] \neq 1$, (II) gives [I, T] = W. Moreover, since $N_M(Q)$ normalizes $C_I(Q) = W$, (II) shows that $N_M(Q)$ normalizes T, and Q! shows that $T \leq N_M(Q)$. We record:

(III)
$$D \leq T \leq N_M(Q), \quad C_I(T) \leq U \quad \text{and} \quad [I,T] = W.$$

Next we prove:

\overline{T} is a weakly closed subgroup of \overline{M} .

Otherwise, 1.45 shows that there exists $g \in M$ such that $\overline{T^g} \neq \overline{T}$ and $[\overline{T^g}, \overline{T}] \leqslant \overline{T^g} \cap \overline{T}$. In particular $\overline{T^g} \leqslant N_{\overline{M}}(\overline{T})$. Then T^g normalizes [I, T] and so $[I, T, T^g] \leqslant [I, T]$. Thus $[I, T, T^g] \leqslant [I, T] \cap [I, T^g]$. By (III) [I, T] = W and so

$$[I, T, T^g] \leqslant W \cap W^g$$
.

By (III) $N_M(Q)$ normalizes T. Thus $\overline{T^g} \neq \overline{T}$ implies that $g \notin N_M(Q)$, so $Q \neq Q^g$, and 1.52(e) gives $C_G(Q) \cap C_G(Q^g) = 1$. Then also $W \cap W^g = 1$ and $[I, T, T^g] = 1$. By (III) [I, T] = W and $C_I(T) \leq U$. Hence $W \leq C_I(T^g) \leq U^g$. Thus $C_{U^g}(Q) \neq 1$ and $Q \leq E^g$. By (I), E = Q and so $Q \leq E^g = Q^g$ and $Q = Q^g$, a contradiction. Hence (IV) is proved.

Note that by (III),
$$\overline{D} \leq \overline{T} \leq \overline{N_M(Q)}$$
, and by $Q!$, $N_{\overline{M}}(C_I(S)) \leq \overline{N_M(Q)}$, and so

$$\overline{D} \leqslant \overline{T} \leqslant O_p(N_{\overline{M}}(C_I(S))).$$

By 8.13(f) \overline{D} is a non-trivial quadratic offender on I, and by [**MS6**, Corollary 3.7] every offender contained in $O_p(N_{\overline{M}}(C_I(S)))$ is a best offender. Thus D is a best offender on I. Since by 8.18 $\overline{M_{\circ}}$ is quasisimple and I is a simple $\overline{M_{\circ}}$ -module, we are allowed to apply the Point-Stabilizer Theorem C.8 to $\overline{M_{\circ}D_0}$.

Now C.8 shows that $\overline{M_{\circ}D} \cong SL_n(q)$, $n \ge 2$, $Sp_{2n}(q)$, $n \ge 2$, $G_2(q)$ or Sym(n), n > 6, and I is a corresponding natural module for $\overline{M_{\circ}D}$. The last two cases are impossible since they do not appear in Theorem D.

Suppose that I is a natural $Sp_{2n}(q)$ module with $n \ge 2$. By B.37, W is 1-dimensional. Hence by (III) [I,T] = W is 1-dimensional, and \overline{T} acts as a transvection group on I. But then \overline{T} is not a weakly closed subgroup of \overline{M} since $n \ge 2$. Therefore $\overline{M_{\circ}D} \cong SL_n(q)$. Note that the natural $SL_2(q)$ -module also is a natural $SL_2(q)$ -wreath product module and so has been ruled out by 8.16. Thus $n \ge 3$ and $\overline{M_{\circ}D}$ is perfect. Hence $\overline{D} \le \overline{M_{\circ}}$ and

(V) $\overline{M_{\circ}} \cong SL_n(q), n \ge 3$, and I is a corresponding natural module for $\overline{M_{\circ}}$.

Again by B.37, W is 1-dimensional. Let $1 \neq u \in U$. Since M acts transitively on I, $[u, Q^g] = 1$ for some $g \in M$. Thus $C_U(Q^g) \neq 1$ and $Q^g \leq E$. Since E = Q by (I), this gives $Q^g = Q$ and $u \in W$. So U = W, and by 8.13(e)

$$W = U = C_I(I^x) = C_I(D) = C_I(A),$$

and since by 8.12 A acts quadratically on I,

$$[I, I^x] \leq [I, D] \leq [I, A] \leq C_I(A) = U = W$$

By B.37(1) $\overline{Q} = C_{\overline{M^{\circ}}}(W) \cap C_{\overline{M^{\circ}}}(I/W)$, and so $|\overline{Q}| = |q^{n-1}| = |I/U|$ and $\overline{I^x} \leq \overline{D} \leq \overline{A} \leq \overline{Q}$. Since by 8.19(d) $I/U \cong \overline{I^x}$, $|\overline{I^x}| = |I/U| = |\overline{Q}|$ and

(VI)
$$\overline{A} = \overline{D} = \overline{I^x} = \overline{Q}.$$

As $\overline{I^x} = \overline{A}$, 8.15(c) shows that $Y \cap A = IC_Y(I^x)$, and since $\overline{Q} = \overline{I^x}$, $Y \cap A = IC_Y(Q)$. Put $a := |Y/Y \cap A|$ and b := |W|. (Actually b = q, but this will not be important.) Let $s \in Q$ with $\overline{s} \neq 1$. Then $[Y \cap A, s] = [IC_Y(Q), s] = [I, s] \leq W$ and so $|[Y \cap A, s]| \leq b$. Hence

$$|Y/C_Y(s)| \leq |Y/Y \cap A| |Y \cap A/C_{Y \cap A}(s)|| \leq a |[Y \cap A, s]| \leq ab.$$

Since $s \in Q$, $[C_Y(Q), s] = 1$. Now A.55(c) gives

$$|C_Y(Q)| \leq |[Y,s]| = |Y/C_Y(s)| \leq ab.$$

As $C_Y(Q) \cap I = W$ has order $b, |C_Y(Q)I/I| \leq \frac{ab}{b} = a$. Using $Y \cap A = IC_Y(Q)$ we get

$$|Y/I| = |Y/Y \cap A||Y \cap A/I| = |Y/Y \cap A||C_Y(Q)I/I| \le aa = a^2$$

We are now in the position to prove (2°) .

Assume that that $|D/C_D(Y)| < |Y/Y \cap A|^2$. Then 8.14 implies $[Y, D] \leq I$. Since $\overline{D} = \overline{Q}$ and $M_{\circ} \leq M^{\circ} = \langle Q^M \rangle$, this gives $[Y, M_{\circ}] \leq I$, and (2°) holds.

Assume that $|D/C_D(Y)| \ge |Y/Y \cap A|^2$. Then

$$|Y/I| \leq a^2 = |Y/Y \cap A|^2 \leq |D/C_D(Y)| = |\overline{D}| = q^{n-1}.$$

Since $SL_n(q)$ has no non-central simple (FF-)modules of order at most q^{n-1} , we get $[Y/I, M_\circ] = 1$. So again $[Y, M_\circ] \leq I$, and (2°) is proved.

Suppose now for a contradiction that $[Y, M_{\circ}] \notin I$ and choose an $M_{\circ}D$ -submodule X of Y minimal with respect to $[X, M_{\circ}] \notin I$. Put

$$X_1/I := C_{X/I}(M_\circ), \qquad V := X/X_1, \qquad \widehat{M_\circ D} := M_\circ D/C_{M_\circ D}(V),.$$

Next we show:

3°. V is a simple
$$M_{\circ}D$$
-module, $F^*(\widehat{M_{\circ}D}) = \widehat{M_{\circ}}, \ \widehat{M_{\circ}D} = \langle \widehat{D}^{\widehat{M_{\circ}D}} \rangle$, and
(VII) $|V/C_V(D)| \leq \sqrt{|D/C_D(V)|} < |D/C_D(V)|.$

Note that
$$[\overline{M_{\circ}}, \overline{C_{M_{\circ}D}(V)}] = 1$$
 since $\overline{M_{0}}$ is quasisimple and $\overline{M_{\circ}} \notin \overline{C_{M_{\circ}D}(V)}$, Since also a simple $\overline{M_{0}}$ -module and $O_{p}(\overline{M}) = 1$, 1.14(c) shows that $\overline{C_{M_{\circ}D}(V)}$, is a p'-group and so $C_{D}(V)$

a simple $\overline{M_0}$ -module and $O_p(\overline{M}) = 1$, 1.14(c) shows that $\overline{C_{M_\circ D}(V)}$, is a p'-group and so $C_D(V) = C_D(Y)$. In particular, $\hat{D} \neq 1$. By the choice of X, V is a simple $M_\circ D$ -module with $[V, M_\circ] \neq 1$. Since $C_{M_\circ}(Y) \leq C_{M_\circ}(V)$,

By the choice of X, V is a simple $M_{\circ}D$ -module with $[V, M_{\circ}] \neq 1$. Since $C_{M_{\circ}}(Y) \leq C_{M_{\circ}}(V)$, \widehat{M}_{\circ} is a non-trivial quotient of the quasisimple group \overline{M}_{\circ} , and so also \widehat{M}_{\circ} is quasisimple. As V is a simple $M_{\circ}D$ -module, $O_p(\widehat{M}_{\circ}D) = 1$. Thus 1.14(a) implies that $F^*(\widehat{M}_{\circ}D) = \widehat{M}_{\circ}$ is quasisimple, and $[\widehat{M}_{\circ}, \widehat{D}] = \widehat{M}_{\circ}$. Hence $\widehat{M}_{\circ}D = \langle \widehat{D}^{\widehat{M}_{\circ}D} \rangle$.

Moreover,

$$|V/C_V(D)|^2 \leq |\tilde{Y}/C_{\tilde{Y}}(D)|^2 \stackrel{8.15(b)}{\leq} |D/C_D(Y)| = |D/C_D(V)|$$

and so

$$|V/C_V(D)| \leq \sqrt{|D/C_D(V)|} < |D/C_D(V)|.$$

Hence (3°) is proved.

 4° . $[I, E, D] \neq 1$, and V is not selfdual as an $\mathbb{F}_p M_{\circ} D$ -module.

Since $[Y, M_{\circ}] \leq I$, (2°) shows

(VIII)
$$[I, E, D] \neq 1.$$

By 8.13(e) $C_I(D) = U$, and so $[I, E] \leq U$. Since by 8.19(d) $\overline{I^x} \cong I/U$ as an *E*-module, also $[\overline{E}, \overline{I^x}] \neq 1$ and thus $[\overline{E}, \overline{D}] \neq 1$. Hence $[E, D] \leq C_D(Y) = C_D(V)$ and $[E, D, V] \neq 1$. By (1°) $[\widetilde{Y}, E, D] = 1$ and hence also [V, E, D] = 1. Since $[E, D, V] \neq 1$, the Three Subgroups Lemma implies that $[V, D, E] \neq 1$.

Let V^* be the \mathbb{F}_p -dual of the $\mathbb{F}_p M_{\circ} D$ -module V. Since [V, E, D] = 1, B.8 gives $[V^*, D, E] = 1$. Hence $[V, D, E] \neq 1$ implies that V is not isomorphic to V^* as an $\mathbb{F}_p M_{\circ} D$ -module. Thus (4°) has been established.

By 8.15(a), D acts quadratically on \tilde{Y} and so also on V. Hence, according to (VII), \hat{D} is a quadratic (over-) offender on V. Now (3°) shows that we can apply the FF-Module Theorem C.3 to $\widehat{M_{\circ}D}$. We will discuss the various outcomes of this theorem.

In cases C.3(2)-(4) V is a natural $Sp_{2n}(q)$ -, $SU_n(q)$ -, $\Omega_n(q)$ -module, respectively. But then V is selfdual over \mathbb{F}_p , which contradicts (4°).

In cases C.3(5)-(12), the Best Offender Theorem C.4 shows that either

$$|V/C_V(D)| = |D/C_D(V)|,$$

or

$$|V/C_V(D)| = q^4 \leq |D/C_D(V)| \leq q^5$$
 (in the $Spin_7(q)$ -case)

or

$$2|V/C_V(D)| = |D/C_D(V)|, |D/C_D(V)| = 2^k \text{ and } n = 2k \ge 6 \text{ (in the } Sym(n)\text{-cases)}.$$

I is

In either of these cases $|V/C_V(D)| > \sqrt{|D/C_D(V)|}$, which contradicts (VII).

Thus C.3(1) holds. So V is a natural $SL_m(p^l)$ -module, $m \ge 2$. If m = 2 we get (for example by C.13(g)) $|V/C_V(D)| = |D/C_D(V)|$, which again contradicts (VII). Thus $\widehat{M_{\circ}D} \cong SL_m(p^l)$, $m \ge 3$. In particular $\widehat{M_{\circ}D} = \widehat{M_{\circ}}$, so $\widehat{D} \le \widehat{M_{\circ}}$. Since $\overline{C_{M_{\circ}D}(V)}$ is a p'-group, this gives $\overline{D} \le \overline{M_{\circ}}$. Moreover, comparing $\widehat{M_{\circ}}$ with $\overline{M_{\circ}}$ in Theorem D, we get:

- 5°. $\overline{D} \leq \overline{M^{\circ}} = \overline{M_{\circ}}$, and one of the following holds:
- (A) I is a natural $SL_n(q)$ -module for $\overline{M_o}$, $n = m \ge 3$, $q = p^l$.
- (B) I is a natural $\Omega_6^+(q)$ module for $\overline{M_{\circ}}$, m = 4 and $q = p^l$.
- (C) I is the exterior square of an natural $SL_n(q)$ -module for $\overline{M_o}$, $n = m \ge 5$, $q = p^l$.

We now derive a contradiction to our assumption $[Y, M^{\circ}] \leq I$ by showing that none of the above three cases holds. And we do this by comparing the action of \widehat{M}_{\circ} on V with that of \overline{M}_{\circ} on I.

Suppose that Case (A) holds, so I is a natural $SL_n(q)$ -module for $\overline{M_o}$. Then by B.38(b) $[I, E] \leq U$, a contradiction to (VIII).

Thus (A) does not hold and so $m \ge 4$. Hence C.18 shows that $H^1(\overline{M_o}, V^*) = 0$. Thus $X/I = [X/I, M_o] \times X_1/I$ and the minimality of X shows $X_1 = I$ and V = X/I. So

6°. X/I is an natural $SL_m(q)$ -module for $\overline{M_o}$, where $m \ge 4$.

Suppose next that Case (B) holds, so I is a natural $\Omega_6^+(q)$ module for $\overline{M_\circ}$ and m = 4. In particular V has \mathbb{F}_q -dimension 4, where $\mathbb{F}_q := End_{\widehat{M_\circ}}(V)$ is a field of order q. By B.37, W is 1-dimensional and $\overline{Q} = C_{\overline{M_\circ}}(W^{\perp}/W) \cap C_{\overline{M_\circ}}(W)$. It follows that $|\overline{Q}| = q^4$, and $C_V(Q) = [V,Q]$ is a 2-dimensional subspace of V. Since by $(1^\circ)[V, E, D] = 1$, $[V,Q] \leq [V,E] \leq C_V(D)$.

If $C_V(D) = [V,Q]$, the quadratic action of D shows $[V,D] \leq [V,Q]$ and so

$$\widehat{D} \leq C_{\widehat{M_{\circ}}}([V,Q]) \cap C_{\widehat{M_{\circ}}}(V/[V,Q]) = \widehat{Q}.$$

Thus $\overline{D} \leq \overline{Q}$, a contradiction, since, for example by the Point-Stabilizer Theorem C.8, no subgroup of \overline{Q} is a non-trivial offender on I, while by 8.13(f) \overline{D} is a non-trivial offender on I.

We have shown that $[V,Q] < C_V(D) < V$. Since $\dim_{\mathbb{F}_q}[V,Q] = 2$ and $\dim_{\mathbb{F}_q} V = m = 4$, we get that $C_V(D)$ is an \mathbb{F}_q -hyperplane of V.

Put $T := C_{M_0}(C_V(D)) \cap C_{M_0}(V/C_V(D))$, so $D \leq T$ and \widehat{T} is the unipotent radical of the normalizer of a hyperplane in $\widehat{M_0}$. Note that T centralizes a 3-dimensional singular subspace W_0 of I. Since $D \leq T$, $W_0 \leq C_I(D) = U$, and so by 2.7(b) $N_M(W_0)^\circ \leq E$. By 8.19(c) E normalizes U, so also $N_M(W_0)^\circ$ normalizes U. Now B.38(a) shows that $W_0 \leq U \leq W_0^{\perp}$, so $U = W_0$ since $W_0 = W_0^{\perp}$. Thus $|\overline{I^x}| = |I/U| = q^3 = |\overline{T}|$, and $I^x \leq D \leq T$ gives $\overline{I^x} = \overline{T}$.

By 8.13(h) $[A, D] \leq C_I(L) \leq C_M(Y)$ and since $I^x \leq D$, A centralizes $\overline{I^x} = \overline{T}$. Since \overline{T} is a Sylow *p*-subgroup of $C_{\overline{M}}(\overline{T})$, we conclude that $A \leq T$, and

$$|\overline{T}| = |\overline{I^x}| \leqslant |\overline{A}| = |\overline{T}|,$$

so $\overline{A} = \overline{I^x}$ and by 8.15(c) $Y \cap A = IC_Y(L)$. Hence also $X \cap A = IC_X(L) = IC_X(A)$. In particular, $C_X(A) \leq I$. Since a natural $\Omega_6^+(q)$ -module is isomorphic to the exterior square of the natural $SL_4(q)$ -module and since $\overline{A} = \overline{T}$, we can apply [**MS5**, 6.3]. We conclude that X is not a Q!-module for M° with respect to any p-group, a contradiction to Q!. This shows that also Case (B) does not hold.

Suppose that Case (C) holds. Then I is the exterior square of a natural $SL_n(q)$ -module V_0 with $n \ge 5$. By 8.12 and 8.13(f) I^x , D and A are non-trivial offenders on I. Hence C.4 shows that there exist a \mathbb{F}_q -hyperplane V_1 of V_0 such that

$$\overline{D} = \overline{I^x} = \overline{A} = C_{\overline{M_n}}(V_1) \text{ and } |\overline{D}| = q^{n-1}.$$

If V_0 is dual to V as an $\mathbb{F}_p M_{\circ}$ -module we get $|C_V(D)| = q$ and so $|V/C_V(D)| = q^{n-1} = |\overline{D}|$. But this contradicts (VII). Thus, V_0 is isomorphic to V as an $\mathbb{F}_p M_{\circ}$ -module. As above, using $\overline{I^x} = \overline{A}$

and 8.15(c), we conclude that $X \cap A = IC_X(A)$. Since $[X, A] \leq X \cap A$, we have $X \cap A \leq I$ and so also $C_X(A) \leq I$. Applying [**MS5**, 6.3] shows that X is not a Q!-module, a contradiction.

We have seen that each of the three cases in (5°) lead to a contradiction, and so 8.20 is proved.

LEMMA 8.21. Suppose that $I \leq A$. Then one of the following holds:

- (a) p = 2, $\overline{M^{\circ}} \cong SL_3(2)$, I is a corresponding natural module, |Y/I| = 2, and Case (2) of Theorem H holds.
- (b) p = 2, $\overline{M^{\circ}} \cong \Omega_6^+(2) \cong Alt(8)$, I is the corresponding natural module, |Y/I| = 2, and Y is the central quotient of the permutation module on a set Λ of eight objects.

PROOF. According to 8.20 $[Y, M_{\circ}] \leq I$. By 8.4(f), $C_Y(M) = 1$ and so Y does not split over I. Moreover, by 8.18 $\overline{M_{\circ}}$ is quasisimple. Comparing Theorem D (for quasisimple $\overline{M_{\circ}}$) with C.18 yields p = 2 and one of the following three cases:

- (A) I is a natural $SL_3(2)$ -module for M° , and |Y/I| = 2.
- (B) I is natural $Sp_{2n}(q)$ or $Sp_4(2)'$ -module for M° .
- (C) $\overline{M^{\circ}} \cong \Omega_6^+(2) \cong Alt(8)$, *I* is the corresponding natural module, |Y/I| = 2, and *Y* is the central quotient of the permutation module on a set Λ of eight objects.

Suppose that (A) holds. By B.37 |W| = 2 and $\overline{Q} = C_{\overline{M}}(I/W)$ has order 4. Suppose that |[Y,Q]| = 2. Then $|Y/C_Y(a)| = 2$ for any $1 \neq a \in \overline{Q}$. Since \overline{Q} is generated by two such elements, $|Y/C_Y(Q)| \leq 4$ and Q is an offender on Y. But this contradicts C.22. Hence $W < [Y,Q] \leq I$, and since $N_M(W)$ acts simply on I/W, $I = [Y,Q] \leq Q$. Thus, case (2) of Theorem H holds, and (a) is verified.

Suppose that (B) holds. Note that $I \leq A \leq L$ and $A \leq M$. So 2.25 shows that $Y \leq O_p(L)$, a contradiction to $L \in \mathfrak{L}_H(Y_M)$.

Finally in Case (C), (b) holds, and so the lemma is proved.

By the preceding lemma, I is either a natural $SL_3(2)$ -module or a natural $\Omega_6^+(2)$ -module for M° . Moreover, if I is natural $SL_3(2)$ -module then Theorem H holds. So we assume for the remainder of this subsection that I is a natural $\Omega_6^+(2)$ -module for M° . In particular, Case (b) of 8.21 holds and so Y is the central quotient of the permutation module on a set Λ of eight objects.

We will make use of the fact that $\Omega_6^+(2) \cong SL_4(2) \cong Alt(\Lambda) \cong Alt(8)$. Let I_0 be a natural $SL_4(2)$ -module for $\overline{M^\circ}$ and $W_0 := C_{I_0}(\overline{Q})$.

LEMMA 8.22. Suppose that $I \leq A$ and I is the natural $\Omega_6^+(2)$ -module for M° .

- (a) $\overline{M} \cong \Omega_6^+(2) \cong Alt(8) \text{ or } \overline{M} \cong O_6^+(2) \cong Sym(8).$ In particular, $\overline{M} = \overline{M_\circ} \overline{S}.$
- (b) $Y \cap A = I$ and A = D.
- (c) W is a singular 1-space in I, $\overline{Q} = \overline{Q^{\bullet}} = C_{\overline{M^{\circ}}}(W^{\perp}/W) \cap C_{\overline{M^{\circ}}}(W) = O_2(N_{\overline{M}}(W))$, and \overline{Q} is a natural $\Omega_4^+(2)$ -module for $M_{\overline{M^{\circ}}}(W)$.
- (d) $|\overline{Q}| = 16$, \overline{Q} has two orbits of length 4 on Λ , W_0 is a 2-subspace of I_0 , $\overline{Q} = C_{\overline{M^{\circ}}}(W_0) \cap C_{\overline{M^{\circ}}}(I_0/W_0) = O_2(N_{\overline{M^{\circ}}}(W_0)).$
- (e) $\overline{I^x} = \overline{A}$ is elementary abelian of order 8, \overline{A} acts regularly on Λ , $\overline{A} \leq \overline{M^{\circ}}$, and I = [Y, A]. (f) $I \leq Q^{\bullet}$.

PROOF. (a): Since I is natural $\Omega_6^+(2)$ -module for M_\circ and since M normalizes M_\circ , M fixes the unique M_\circ -invariant non-degenerate quadratic form on I. Now $|O_6^+(2)/\Omega_6^+(2)| = 2$ implies $\overline{M} \cong \Omega_6^+(2)$ or $\overline{M} \cong O_6^+(2)$.

(b): We have $I \leq Y \cap A < Y$ and |Y/I| = 2, thus $Y \cap A = I$. Since $L \in \mathfrak{L}_G(Y_M)$, $A = \langle (Y \cap A)^L \rangle$ and so $A = \langle I^L \rangle = D$.

(c): Since both Q and Q^{\bullet} are large subgroups of G, B.37 shows that W is a singular 1-space in I and $\overline{Q} = \overline{Q^{\bullet}} = C_{\overline{M^{\circ}}}(W^{\perp}/W) \cap C_{\overline{M^{\circ}}}(W)$. Now B.28 implies that $\overline{Q} = O_2(N_{\overline{M}}(W))$ and \overline{Q} is a natural $\Omega_4^+(2)$ -module for $M_{\overline{M^{\circ}}}(W)$.

(d): Since \overline{Q} is a natural $\Omega_4^+(2)$ -module, $|\overline{Q}| = 16$. Up to conjugacy

$$\langle (12)(34), (13)(24) \rangle \times \langle (56)(78), (57)(68) \rangle$$

is the only (elementary) abelian subgroup of order 16 in Alt(8), and so \overline{Q} has two orbits of length 4 on Λ . If W_1 is 2-subspace of I_0 , then $O_2(N_{\overline{M^{\circ}}}(W_1))$ is elementary abelian of order 16, and so (d) holds.

(e): For $\lambda \in \Lambda$ let y_{λ} be the unique non-trivial element in Y fixed by $C_M(\lambda)$. Then $y_{\lambda} \notin I$ and since by (b) $Y \cap A = I$, $y_{\lambda} \notin A$. Hence 1.43(g) gives $Y \cap A = [y_{\lambda}, A]C_Y(A)$. Since $[Y \cap A, A] = [I, A] \neq 1$, we get $[y_{\lambda}, A, A] \neq 1$. Thus $|\lambda^A| \geq 4$. So either \overline{A} acts regularly on Λ or has two orbits of length 4. On the other hand by 8.12, A is an offender on I. The Offender Theorem C.4(h) now shows that A acts regularly on Λ . In particular, all orbits of I^x on Λ have the same length. Again by 8.12, I^x is an offender on I, and C.4(h) shows that also I^x acts regularly in Λ . Hence $\overline{A} = \overline{I^x}$. The regularity of \overline{A} also gives

$$Y = \langle y_{\lambda}^{A} \rangle = \langle y_{\lambda} \rangle [Y, A] \leqslant \langle y_{\lambda} \rangle I = Y,$$

so I = [Y, A]. Moreover, every element of \overline{A} is an even permutation, so $\overline{A} \leq \overline{M^{\circ}}$. Thus (e) holds.

(f): Suppose that $I \leq Q^{\bullet}$. Since $L \leq N_G(Q) \leq N_G(Q^{\bullet})$ this gives $I^x \leq Q^{\bullet}$. By (c) $\overline{Q} = \overline{Q^{\bullet}}$, so $\overline{I^x} \leq \overline{Q}$, and by (d) \overline{Q} has an orbit of length 4 on Λ . Hence $\overline{I^x}$ is not regular on Λ , which contradicts (e).

Put $U_0 := C_{I_0}(\overline{A})$. Note that $\overline{M^{\circ}}$ has two classes of regular elementary abelian subgroups, interchanged by the outer automorphism. By (a) $\overline{M} \cong Alt(8)$ or $\overline{M} \cong Sym(8)$, and we conclude that $N_{\overline{M}}(\overline{A}) \leq \overline{M^{\circ}}$. Moreover, each member of one of these classes centralizes a hyperplane in I_0 , each member of the other a 1-subspace. So replacing I_0 but its dual, if necessary, we may assume that \overline{A} centralizes a hyperplane in I_0 , so U_0 is a hyperplane of I_0 .

LEMMA 8.23. Suppose that $I \leq A$ and I is the natural $\Omega_6^+(2)$ -module for M° . Then

- (a) U_0 is hyperplane in I_0 , $\overline{I^x} = \overline{A} = C_{\overline{M^\circ}}(U_0)$, $N_{\overline{M}}(\overline{A}) = N_{\overline{M^\circ}}(U_0)$, $N_{\overline{M}}(\overline{A})/\overline{A} \cong SL_3(2)$, and \overline{A} is a natural $SL_3(2)$ -module for $N_{\overline{M}}(\overline{A})$ isomorphic to U_0 .
- (b) U is a singular 3-space in I, $N_{\overline{M}}(U) = N_{\overline{M}}(\overline{A}) = M_{\overline{M^{\circ}}}(U_0)$, U is natural $SL_3(2)$ -module for $N_{\overline{M}}(U)$ dual to U_0 , I/U and \overline{A} are natural $SL_3(2)$ -module for $M_{\overline{M}}(U)$ isomorphic to U_0 , and $\overline{I^x} = \overline{A} = C_{\overline{M}}(U) = C_{\overline{M}}(I/U) = C_{\overline{M^{\circ}}}(U_0)$.

PROOF. (a): By the choice of I_0 , U_0 is a hyperplane of I_0 , and by 8.22(e) $\overline{A} = \overline{I^x}$ has order eight. This gives $\overline{A} = C_{\overline{M}}(U_0)$, and (a) follows.

(b): Observe that $I \cong I_0 \wedge I_0$ as an M_{\circ} -module and recall from 8.13(e) that $U = C_I(A)$. Thus (b) follows from (a).

LEMMA 8.24. Suppose that $I \leq A$ and I is the natural $\Omega_6^+(2)$ -module for M° .

- (a) $\overline{E} = N_{\overline{M}}(U) = N_{\overline{M}}(\overline{A}) = N_{\overline{M^{\circ}}}(U_0).$
- (b) E/A ≈ SL₃(2), U is a natural SL₃(2)-module for E dual to U₀, and I/U and A are natural SL₃(2)-modules for E isomorphic to U₀.
- (c) $A \leq E$ and $\overline{A} = O_2(\overline{E}) = \overline{O_2(E)}$
- (d) $I = [I, E] = [Y, A] = [Y, O_2(E)].$
- (e) $U = [I, A] = [I, O_2(E)].$

PROOF. (a) and (b): Recall from 8.19(c) that $E = N_M(U)^\circ$. By B.38(c) U is a natural $SL_3(2)$ module for E and so $N_{\overline{M}}(U) = \overline{E}C_{\overline{M}}(U)$. By 8.23(b) $C_{\overline{M}}(U) = \overline{A}$ is a natural $SL_3(2)$ -module and thus non-central simple module for $N_{\overline{M}}(U)$. Since $E \leq N_M(U)$ we conclude that $\overline{A} \leq \overline{E}$ and $\overline{E} = N_{\overline{M}}(U)$. Now (a) and (b) follow from 8.23(b).

(c): From (b) we get I = [I, E]. Since I normalizes U and so E, we have $[I, E] \leq E$ and thus $I \leq E$. As L normalizes U and thus E, we conclude that E normalizes $\langle I^L \rangle \leq E$. By 8.22(b)

 $A = D = \langle I^L \rangle$ and so $A \leq E$, in particular $A \leq O_2(E)$. By (b) $\overline{E}/\overline{A} \cong SL_3(2)$ and thus $O_2(\overline{E}) = \overline{A}$. Hence $\overline{A} \leq \overline{O_2(E)} \leq O_2(\overline{E}) = \overline{A}$, and (c) follows.

(d) and (e): As we have already seen above, (b) gives I = [I, E], and by 8.22(e) I = [Y, A]. Moreover, since by (b) both, U and I/U, are simple \overline{E} -modules, [I, A] = U. Since by (c) $\overline{A} = \overline{O_2(E)}$, (d) and (e) follow.

Put

$$N := N_G(U), \quad C := C_G(U), \quad B := \langle I^N \rangle, \quad \hat{B} := B/U, \quad N_0 := C_N(\hat{B}).$$

LEMMA 8.25. Suppose that $I \leq A$ and I is the natural $\Omega_6^+(2)$ -module for M° .

- (a) $E \triangleleft N$, and $L \leq C$.
- (b) $A \leq B \leq O_2(E) \leq O_2(N)$ and $\overline{A} = \overline{B} = O_2(\overline{E}) = C_{\overline{M}}(U) = C_{\overline{M}^\circ}(U_0)$.
- (c) $[B, O_2(E)] = B' = \Phi(B) = U \leq \Omega_1 Z(B).$
- (d) $O_2(E) \leq N_0 \leq C \cap M^{\dagger}$.
- (e) [B, Y] = I.
- (f) N = EC, $N_N(Y) = EC_G(Y)$ and $[E, C] \leq O_2(E) \leq N_0$.

PROOF. (a): By 8.19(c) $E = N_G(U)^\circ$, so $E \leq N$, and by definition, $U = C_I(L)$ and so $L \leq C$.

(b): By 8.22(b) $\langle I^L \rangle = A = D \leq B$, and by 8.24(c), $A \leq E$, so $I \leq A \leq O_2(E)$. Since by (a) $E \leq N$ also $O_2(E) \leq N$, whence $B = \langle I^N \rangle \leq O_2(E) \leq O_2(N)$. By 8.24(c) $\overline{A} = O_2(\overline{E})$ and by 8.23(b) $\overline{A} = C_{\overline{M}}(U) = C_{\overline{M}^\circ}(U_0)$. So also the second part of (b) holds.

(c): Recall from (a) that $O_2(E) \leq N$ and from (b) that $A \leq B \leq O_2(E)$. By 8.24(e), $U = [I, A] = [I, O_2(E)]$. Since U and $O_2(E)$ are N-invariant and $B = \langle I^N \rangle$, this gives $[B, O_2(E)] = U$ and

$$U = [I, A] \leq [I, B] \leq [I, O_2(E)] = [B, O_2(E)] = U.$$

Since $[B, B] \leq [B, O_2(E)]$ we conclude that $U = B' = [B, O_2(E)]$. Moreover, as I/U is elementary abelian and [U, I] = 1, also $U = \Phi(B)$ and $U \leq \Omega_1 Z(B)$.

(d): By (c) $[B, O_2(E)] = U$ and so $O_2(E) \leq C_N(B/U) = N_0$. Since $I \leq B$, we get $[I, N_0] \leq [B, N_0] \leq U \leq I$ and so $N_0 \leq N_G(I) = N_G(Y) = M^{\dagger}$. Since $[B, N_0] \leq U \leq \Omega_1 Z(B)$, N_0 centralizes $\Phi(B) = U$, see 1.18. Thus $N_0 \leq C$.

(e): By (b) $A \leq B \leq O_2(E)$ and by 8.24(d) $[Y, A] = [Y, O_2(E)] = I$. Hence [Y, B] = I, and (e) holds.

(f): By 8.24(b) U is a natural $SL_3(2)$ -module for E and thus E induces Aut(U) on U, so N = EC. By 8.24(a) $\overline{E} = N_{\overline{M}}(U)$, and we conclude that $N_N(Y) = N_{N_G(Y)}(U) = EC_G(Y)$. From 1.52(c) we get $[N_G(U)^\circ, C_G(U)] \leq O_2(N_G(U)^\circ)$. As $E = N_G(U)^\circ$, this gives $[E, C] \leq O_2(E)$. Also by (d) $O_2(E) \leq N_0$.

LEMMA 8.26. Suppose that $I \leq A$ and I is the natural $\Omega_6^+(2)$ -module for M° .

- (a) $N_N(Y)$ is a parabolic subgroup of N, and $N_N(YN_0) = N_N(Y)$.
- (b) B is the direct sum of m natural SL₃(2)-modules isomorphic to I/U (and U₀) for E, for some m ≥ 2.
- (c) $[B, C_E(Y)] \leq U \leq I$ and $C_E(U) = E \cap C \leq N_0$.
- (d) $F = [F, E] = [F, E_{\circ}]$ for any *E*-invariant subgroup of *F* of *B*. In particular, $B = [B, E_{\circ}] \leq E_{\circ} \leq M_{\circ}$.
- (e) \hat{B} is a 2-reduced N-module.

PROOF. (a): Since $O_2(M) \leq N$ and Y is asymmetric, $N_N(Y)$ is a parabolic subgroup of N (see 2.6(c)). By definition of N_0 , $[B, N_0] \leq U \leq I$, and by 8.25(e), [B, Y] = I, so

$$N_N(Y) \leqslant N_N(YN_0) \leqslant N_N([B, YN_0]) = N_N([B, Y]) = N_N(I) = N_N(I) = N_N(Y).$$

(b): By 8.25(f) $[E, C] \leq N_0$ and N = EC. Hence $\hat{I}^c \cong \hat{I}$ as an *E*-module for every $c \in C$, and $\hat{B} = \langle \hat{I}^N \rangle = \langle \hat{I}^C \rangle$. Since by 8.24(b) $\hat{I} = I/U \cong U_0$ as an *E*-module, (b) follows.

(c): Since $C_E(Y)$ centralizes I/U, (b) gives $C_E(Y) \leq C_E(\hat{B}) \leq N_0$. Hence $[B, C_E(Y)] \leq U \leq I$ and $C_E(Y) \leq C \cap N_0$.

(d): This is a direct consequence of (b).

(e): By 8.25(f) $N_N(Y) = EC_G(Y)$. As $\hat{I} = I/U$ is a natural $SL_3(2)$ -module for E, we conclude that \hat{I} is 2-reduced for $N_N(Y)$. Since $\hat{B} = \langle \hat{I}^N \rangle$ and by (a) $N_N(Y)$ is a parabolic subgroup of N, A.12 shows that \hat{B} is a 2-reduced N-module.

Put $X := \langle (B \cap O_2(M))^{M^{\circ}} \rangle$. Moreover the integer *m* is chosen as in 8.26(b).

LEMMA 8.27. Suppose that $I \leq A$ and I is the natural $\Omega_6^+(2)$ -module for M° .

- (a) $X = O_2(M_{\circ}) = [X, M_{\circ}] = [O_2(M), M_{\circ}]$ and $M_{\circ}/X \cong SL_4(2)$. In particular, $C_{M_{\circ}}(Y) = X$.
- (b) $X' \leq \Phi(X) \leq I$.
- (c) $[X, E_\circ] = X \cap B$.
- (d) X/I is the direct sum of m-2 natural $SL_4(2)$ modules for M_{\circ} isomorphic to I_0 . In particular, $|X/I| = 2^{4(m-2)}$ and $|X \cap B/I| = 2^{3(m-2)}$.
- (e) $Y \cap X = I$, $|X/X \cap B| = 2^{m-2}$ and $|YX/X \cap B| = 2^{m-1}$.

PROOF. (a): Note that $[B, O_2(M)] \leq B \cap O_2(M) = B \cap X$ and $X = \langle (B \cap X)^{M^{\circ}} \rangle$. Since $\overline{M^{\circ}}$ is simple, 1.54(c) shows that $M_{\circ} \leq \langle B^{M^{\circ}} \rangle$. Thus

(I)
$$[O_2(M), M_\circ] \leq [O_2(M), \langle B^{M^\circ} \rangle] = \langle [O_2(M), B]^{M^\circ} \rangle \leq X.$$

Since $B \cap O_2(M)$ is *E*-invariant, 8.26(d) gives $B \cap O_2(M) = [B \cap O_2(M), E_\circ]$, and since $E_\circ \leq M_\circ$, we get $B \cap O_2(M) \leq [X, M_\circ]$, so

$$X = \langle (B \cap O_2(M))^{M^{\circ}} \rangle \leq [X, M_{\circ}] \leq X.$$

It follows that $X = [X, M^{\circ}] = [X, M_{\circ}] \leq O_2(M_{\circ})$; in particular $X \leq O_2(M_{\circ}) \leq O_2(M^{\circ}) \leq O_2(M)$. By (I) $[O_2(M), M_{\circ}] \leq X$ and thus

$$X = [X, M_{\circ}] = [O_2(M_{\circ}), M_{\circ}] = [O_2(M), M_{\circ}].$$

As M° is normal in M^{\dagger} , also $[O_2(M_{\circ}), M_{\circ}]$ is normal in M^{\dagger} , so $X \leq M^{\dagger}$.

Since $\overline{M^{\circ}}$ is simple, 1.54(b) shows that $M_{\circ}/[O_2(M_{\circ}), M_{\circ}]$ is quasisimple, that is, M_{\circ}/X is quasisimple. Note that

$$C_{BX}(Y) = BX \cap O_2(M) = (B \cap O_2(M))X = X.$$

By 8.25(b) $\overline{B} = C_{\overline{M^{\circ}}}(U_0)$ and by 8.26(d) $B \leq M_{\circ}$. Together with $\overline{M_{\circ}} = \overline{M^{\circ}}$ we get $BC_{M_{\circ}}(Y) = C_{M_{\circ}}(U_0)$. Since by 8.24(a) $N_{M^{\circ}}(U_0) = N_{M^{\circ}}(U) = M_{\circ} \cap N$, $N_{M_{\circ}}(U_0)$ normalizes B. Hence BX/X is a $N_{M_{\circ}}(U_0)$ -invariant complement to $C_{M_{\circ}}(Y)/X$ in $C_{M^{\circ}}(U_0)/X$. Now C.21 shows that $C_{M_{\circ}}(Y)/X = 1$ and so $M_{\circ}/X \cong SL_4(2)$. So (a) holds.

Before proving (b) – (e) we have a closer look at the structure of E.

1°.
$$E = E_{\circ}C_{E}(Y), M_{\circ} \cap N = E_{\circ}X \text{ and } O_{2}(M_{\circ} \cap N) = BX = C_{M_{\circ}}(U) = C_{M_{\circ}}(U_{0})$$

By 8.24(a) $\overline{M \cap N} = \overline{N_M(U)} = \overline{E}$ and so $M \cap N = EC_M(Y)$, and by 8.24(b) $\overline{E/A} \cong SL_3(2)$ and \overline{A} is a natural $SL_3(2)$ -module for E. Thus $O^2(\overline{E}) = \overline{E}$ and so $E = E_{\circ}C_E(Y)$ and $M \cap N = E_{\circ}C_M(Y)$. Since $E_{\circ} \leq M_{\circ}$, this gives $M_{\circ} \cap N = E_{\circ}C_{M_{\circ}}(Y)$. Moreover, (a) shows that $X = C_{M_{\circ}}(Y)$ and so $M_{\circ} \cap N = E_{\circ}X$.

By 8.26(d), $B \leq E_{\circ}$ and so $BX \leq O_2(M^{\circ} \cap N)$. Since $\overline{B} = O_2(\overline{E}) = O_2(\overline{M_{\circ} \cap N})$, we get $BX = O_2(M_{\circ} \cap N)$. By 8.25(b), $\overline{B} = C_{\overline{M}}(U) = C_{\overline{M^{\circ}}}(U_0)$ and hence $C_{M_{\circ}}(U) = BC_{M_{\circ}}(Y) = BX = C_{M_{\circ}}(U_0)$.

 2° . $[X, E, B] \leq I$ and $[X \cap B, B] \leq [X \cap B, O_2(E)] \leq I$.

Note that $[X, E] \leq X \cap E \leq O_2(E), B \leq O_2(E)$ and by 8.25(c) $[O_2(E), B] = U \leq I$. Thus $[X, E, B] \leq [O_2(E), B] \leq I$ and $[X \cap B, B] \leq [X \cap B, O_2(E)] \leq [B, O_2(E)] \leq I$.

 3° . $[X, E_{\circ}] \leq X \cap B \text{ and } X' \leq \Phi(X) \leq I$.

Let $g \in M_{\circ} \setminus N$. Since M_{\circ} is doubly transitive on the hyperplanes of I_0 and $N_{M_{\circ}}(U_0) = N_{M_{\circ}}(U) = M_{\circ} \cap N \leq N_{M_{\circ}}(B \cap X)$,

$$(B \cap X)^{M_{\circ}} = (B \cap X)^{M_{\circ} \cap N^g} \cup \{B^g \cap X\}.$$

Also by (1°) $M_{\circ} \cap N = E_{\circ}X$, and X normalizes $B \cap X$. Thus $(B \cap X)^{M_{\circ} \cap N^{g}} = (B \cap X)^{E_{\circ}^{g}}$ and

(II)
$$X = \langle (B \cap X)^{M_{\circ}} \rangle = (B^{g} \cap X) \langle (B \cap X)^{M_{\circ} \cap N^{g}} \rangle$$
$$= (B^{g} \cap X) \langle (B \cap X)^{E_{\circ}^{g}} \rangle = (B^{g} \cap X) (B \cap X) [X, E_{\circ}^{g}].$$

By (2°) $[B^g \cap X, B^g] \leq I$ and $[X, E^g, B^g] \leq I$. Also $B^g \cap N$ normalizes $B \cap X$. Hence (II) yields

$$[X, B^g \cap N] = [(B^g \cap X)(B \cap X)[X, E^g], B^g \cap N] \leq [B \cap X, B^g \cap N]I \leq (B \cap X)I = B \cap X.$$

By 8.25(b) $\overline{B} = C_{\overline{M^{\circ}}}(U_0)$. It follows that $\overline{B^g \cap N} = C_{\overline{M^{\circ}}}(U_0^g) \cap C_{\overline{M^{\circ}}}(I_0/U_0 \cap U_0^g)$ has index 2 in $\overline{B^g}$ and acts faithfully on U_0 . Thus $[U_0, B^g \cap N] \neq 1$ and so also $[U, B^g \cap N] \neq 1$. Note that $E/C_E(U) \cong SL_3(2)$ is simple and $E = N_G(U)^{\circ} = E^{\circ}$. Hence U and $N_G(U)$ satisfy the hypothesis of 1.54, and 1.54(c) shows that $E_{\circ} \leq \langle (B^g \cap N)^{E_{\circ}} \rangle$. As $[X, B^g \cap N] \leq B \cap X$ and $B \cap X$ is E-invariant, this implies $[X, E_{\circ}] \leq B \cap X$, and the first statement in (3°) is proved.

Then also $[X, E^g_{\circ}] \leq B^g \cap X$, and (II) gives

$$X = (B \cap X)(B^g \cap X)$$

Again using that $[B^g \cap X, B^g] \leq I$ we have $[B^g \cap X, B^g \cap N] \leq I \leq B \cap B^g \cap X$ and since $B \cap X$ and $B^g \cap N$ normalize each other, $[B \cap X, B^g \cap N] \leq B \cap B^g \cap X$. We conclude that $[X, B^g \cap N] \leq B \cap B^g \cap X$. Since by 8.25(c) $\Phi(B) = B' \leq U$,

$$[X, B^g \cap N, X] = [B \cap B^g \cap X, X] = [B \cap B^g \cap X, (B \cap X)(B^g \cap X)] \leqslant B'B'^g = UU^g \leqslant I.$$

As before, 1.54 gives $M_{\circ} = \langle (B^g \cap N)^{M_{\circ}} \rangle$, and as X is M_{\circ} -invariant, $[X, M_{\circ}, X] \leq I$ follows. By (a) $X = [X, M_{\circ}]$ and so $[X, X] \leq I$, and by 8.25(c) $\Phi(B) = B' \leq U \leq I$. Since $\Phi(X \cap B) \leq \Phi(B)$ and $X = \langle (X \cap B)^{M^{\circ}} \rangle$, X/I is elementary abelian. Thus, (3°) is proved.

$$4^{\circ}. \qquad [X, E_{\circ}] = [X, M_{\circ} \cap N] = X \cap B \text{ and } [X \cap B, O_2(M_{\circ} \cap N)] \leq I.$$

By 8.26(d), $X \cap B = [X \cap B, E_{\circ}]$ and by (3°) $[X, E_{\circ}] \leq X \cap B$. Hence $[X, E_{\circ}] = X \cap B$. Since by (1°) $M_{\circ} \cap N = E_{\circ}X$ and again by (3°) $X' \leq I \leq X \cap B$, we also get $[X, M_{\circ} \cap N] = [X, E_{\circ}X] = X \cap B$. By 8.25(c) $[X \cap B, B] \leq B' \leq I$ and by (1°) $O_2(M_{\circ} \cap N) = BX$. Hence

$$[X \cap B, O_2(M_\circ \cap N)] = [X \cap B, BX] = [X \cap B, B]X' \leq I.$$

After this preparation we are now able to prove (b) - (e).

(b) and (c): This follows from (3°) and (4°) , respectively.

(d): By (3°) $\Phi(X/I) = 1$, so X centralizes X/I, and X/I is an M_{\circ}/X -module. Moreover, by (a) $M_{\circ}/X \cong SL_4(2)$. By (1°) $E_{\circ}X = M_{\circ} \cap N = N_{M_{\circ}}(U) = N_{M_{\circ}}(U_0)$, and so $E_{\circ}X$ is the normalizer of the hyperplane U_0 of the natural $SL_4(2)$ -module I_0 for M_{\circ} . Also by (1°) $BX = O_2(E_{\circ}X) = C_{M_{\circ}}(U_0)$.

Let R_0 be a 1-dimensional subspace of U_0 . Put $P := C_{M_0}(R_0)$ and note that

$$R_0 = [I_0, O_2(P)] = [U_0, O_2(P)] \le U_0.$$

Hence $O_2(P) \leq N_{M_{\circ}}(U_0) = M_{\circ} \cap N$. Thus using both statements in (4°) :

 $[X, O_2(P)] \leq [X, M_\circ \cap N] = X \cap B \text{ and } [X, O_2(P), O_2(M_\circ \cap N)] \leq [X \cap B, O_2(M_\circ \cap N)] \leq I.$

Note that $P/X \sim 2^3 SL_3(2)$ and $X \leq O_2(M_\circ \cap N) \leq O_2(P)$. Thus $P = \langle O_2(M_\circ \cap N)^P \rangle$, and since X and $O_2(P)$ are P-invariant, $[X, O_2(P), P] \leq I$.

Let U_1 be an E_{\circ} -submodule of $B \cap X/I$ isomorphic to U_0 . Since X centralizes X/I we conclude that $E_{\circ}X$ normalizes U_1 . Thus $U_1 \cong U_0$ as an EX-module and so $R_1 := [U_1, O_2(P)]$ is an 1dimensional subspace of U_1 . As $[X, O_2(P), P] \leq I$ we get $[R_1, P] = 1$. Let $1 \neq r \in R_1$ and $h \in E_{\circ}X \setminus P$. Since E_{\circ} acts transitively on U_1 , $rr^h \in r^{E_{\circ}} \subseteq r^{M_{\circ}}$. Since M_{\circ} acts doubly transitive on the 1-spaces in I_0 and since $C_{M_o}(r) = P = C_{M_o}(R_0)$, M_o also acts doubly transitive on r^{M_o} . It follows that $r^{M_o} \cup \{1\}$ is closed under multiplication and so $I_1 := \langle r^{M_o} \rangle$ has order $|M_o/P| + 1 = 15 + 1 = 2^4$.

Note that $U_1 \leq I_1$. So $I_1 = \langle U_1^{M_\circ} \rangle$, and I_1 is a natural $SL_4(2)$ -module for M_\circ isomorphic to I_0 . As $B/B \cap X$ and I/U are natural $SL_3(2)$ -modules for E_\circ and as by 8.26(a) X/I is the direct sum of m natural $SL_3(2)$ -modules for E_\circ isomorphic to U_0 , $B \cap X/I$ is the direct sum of m-2 E_\circ -submodules isomorphic to U_0 . Since $X/I = \langle (B \cap X/I)^{M_\circ} \rangle$, we conclude that X/I is the direct sum of m-2 natural $SL_4(2)$ -modules for M_\circ isomorphic to I_0 . So (d) is proved.

(e): Recall from 8.21 that |Y/I| = 2 and so $[Y, M_{\circ}] \leq I$, and by (d) M_{\circ} has no central chief factors on X/I. Thus $Y \cap X \leq I \leq Y \cap X$, so $Y \cap X = I$ and |YX/X| = 2. By (d) $|X/I| = 2^{4(m-2)}$ and $|X \cap B/I| = 2^{3(m-2)}$, so $|X/X \cap B| = 2^{m-2}$ and $|YX/X \cap B| = |YX/X||X/X \cap B| = 2 \cdot 2^{m-2} = 2^{m-1}$. Hence (e) holds.

Recall that $\hat{B} = B/U$ and $N_0 = C_N(\hat{B})$. We now investigate \hat{B} as an N/N_0 -module.

LEMMA 8.28. Suppose that $I \leq A$ and I is the natural $\Omega_6^+(2)$ -module for M° .

- (a) $N/N_0 = C/N_0 \times EN_0/N_0$.
- (b) Put $K := Hom_E(U_0, \hat{B})$. View K as an \mathbb{F}_2N -module with $E \leq C_N(K)$ and U_0 as a natural $SL_3(2)$ -module for N with C acting trivially. Then $|K| = 2^m$ and there exists an \mathbb{F}_2N isomorphism

$$K \otimes_{\mathbb{F}_2} U_0 \to \widehat{B} \quad with \quad \alpha \otimes v \mapsto \alpha v.$$

(c) For $a, b \in B$ define $[\hat{a}, \hat{b}] = [a, b]$ and $\hat{a}^2 = a^2$. ¹ Put $\mathbb{F} := Hom_E(U_0 \wedge U_0, U)$. Then $|\mathbb{F}| = 2$ and there exists a C-invariant symplectic form

$$s: K \times K \mapsto \mathbb{F}, (\alpha, \beta) \mapsto s(\alpha, \beta)$$

on K such that

$$s(\alpha,\beta)(v \wedge w) = [\alpha v, \beta w]$$

for all $v, w \in U_0$ and $\alpha, \beta \in K$.

PROOF. (a): By 8.25(d) $N_0 \leq C$, by 8.25(f) N = EC and $[E, C] \leq N_0$, and by 8.26(c) $E \cap C \leq N_0$. Thus, $C \cap EN_0 = N_0$ and

$$N/N_0 = C/N_0 \times EN_0/N_0$$

(b): By 8.26(b) \hat{B} is the sum of *m* natural $SL_3(2)$ -modules isomorphic to U_0 for *E*. Since $End_E(U_0) = \mathbb{F}_2$ this gives (b).

(c): Let $1 \neq v \in U_0$. By 8.24(b) U is dual to U_0 as an E-module. So $C_E(v)$ is the normalizer in E of a hyperplane of U and so $C_U(C_E(v)) = 1$. Let $\alpha, \beta \in K$. Since α and β are E-homomorphisms from U_0 to \hat{B} , $C_E(v)$ centralizes αv , βv and so also $(\alpha v)^2$ and $[\alpha v, \beta v]$. As $C_U(C_E(v)) = 1$ this gives $(\alpha v)^2 = 1$ and $[\alpha v, \beta v] = 1$. Thus the inverse image of $\alpha(U_0)$ in B is elementary abelian, and for given $\alpha, \beta \in K$ we obtain a well defined E-linear function

$$s(\alpha,\beta): U_0 \wedge U_0 \to U, \quad v \wedge w \mapsto [\alpha v, \beta w].$$

Thus $s(\alpha, \beta) \in \mathbb{F} = Hom_E(U_0 \wedge U_0, U)$. Note that $U_0 \wedge U_0$ is a natural $SL_3(2)$ -module for E dual to U_0 and so isomorphic to U. Thus $|\mathbb{F}| = 2$ and so

$$s: K \times K \mapsto \mathbb{F}, \quad (\alpha, \beta) \mapsto s(\alpha, \beta),$$

is a well-defined C-invariant bilinear form on K.

Since the inverse image of $\alpha(U_0)$ is abelian, it follows that $s(\alpha, \alpha) = 0$ and s is a (possible degenerate) symplectic form on K.

Note that s induces a non-degenerate symplectic form on K/K^{\perp} . Put $C_0 := C_C(K^{\perp})$. For $F \leq C$ let \check{F} be the image of F in $Sp(K/K^{\perp})$.

¹Note that this is well-defined since $U \leq \Omega_1 Z(B)$.

LEMMA 8.29. Suppose that $I \leq A$ and I is the natural $\Omega_6^+(2)$ -module for M° .

- (a) K is a faithful 2-reduced C/N_0 -module, and K/K^{\perp} is faithful 2-reduced C_0/N_0 -module.
- (b) $C_{YX}(K/K^{\perp}) = YX \cap N_0 = C_{YX}(K) = X \cap B.$
- (c) $K^{\perp} = 1$ and $C = C_0$.
- (d) $C/N_0 \cong \check{C} = Sp(K).$
- (e) $N_C(Y)$ is the normalizer in C of a 1-subspace of K.
- (f) m = 2 or 4.
- (g) $O_2(N_C(Y)/N_0) = YXN_0/N_0$ and $N_C(Y)/YXN_0 \cong Sp_{m-2}(2)$.

PROOF. (a): By 8.26(e) \hat{B} is a 2-reduced N-module, and since $C \leq N$, also a 2-reduced C-module. Since by 8.28(b) $\hat{B} \cong K \otimes U_0$ as an N-module, \hat{B} is as an C-module the direct sum of (three) copies of K. Hence $C_C(K) = C_C(\hat{B}) = N_0$, and K is a faithful 2-reduced C/N_0 -module.

Since $C_0 \leq C$ we conclude that K is a 2-reduced C_0 -module. Note that $C_{C_0}(K/K^{\perp})$ acts nilpotently on K and so centralizes K. It follows that K/K^{\perp} is a faithful 2-reduced C_0/N_0 -module and (a) holds.

(b): Put

$$K_1 := Hom_E(U_0, \widehat{I})$$
 and $K_2 := Hom_E(U_0, \widehat{B \cap X})$.

By 8.25(e), [B, Y] = I and so $[\hat{B}, Y] = \hat{I}$ is isomorphic to U_0 . Hence K_1 is 1-subspace of K. Since $Y \leq C$ and $\hat{B} \cong K \otimes U_0$ we have $[\hat{B}, Y] \cong [K, Y] \otimes U_0$ and so

$$K_1 = [K, Y].$$

As $B/B \cap X \cong \overline{B} \cong U_0$, K_2 is hyperplane of K. From $[B \cap X, Y] = 1$ we get $[B \cap \overline{X}, Y] = 1$ and $[K_2, Y] = 1$. Thus

$$K_2 \leqslant C_{K_2}(Y) \leqslant [K,Y]^{\perp} = K_1^{\perp}$$

Suppose that $K_1^{\perp} = K$. Then $s(\alpha, \beta) = 0$ for all $\alpha \in K_1, \beta \in K$ and

$$1 = s(\alpha, \beta)(v \land w) = [\alpha(v), \beta(w)] \text{ for all } v, w \in U_0.$$

But this implies [I, B] = 1, a contradiction.

Hence $K_1^{\perp} \neq K$, and since K_1^{\perp} contains the hyperplane K_2 , we get $K_2 = K_1^{\perp}$. Moreover, since $K_2 \leq C_K(Y)$,

$$K_1 = [K, Y]$$
 and $K_2 = C_K(Y) = K_1^{\perp}$.

Since $[B \cap X, YX] \leq I$ and [I, YX] = 1, YX centralizes $K_2/K_1 = K_1^{\perp}/K_1$ and K_1 . Note that $K^{\perp} \leq K_1^{\perp} = K_2$, $[K_2, YX] \leq K_1$ and $K_1 \cap K^{\perp} = 1$. Thus $[K^{\perp}, YX] = 1$ and $YX \leq C_0$. Put $Z_1 := K_1 K^{\perp}/K^{\perp}$. Then Z_1 is a 1-space in K/K^{\perp} , $Z_1^{\perp} = K_1^{\perp}/K^{\perp}$ and

(I)
$$\check{Y}\check{X} \leq C_{\check{C}_0}(Z_1^{\perp}/Z_1).$$

Observe that $C_{I_0}(B) = U_0 = [I_0, E_\circ]$, and by 8.27(d) X/I is a direct sum of copies of I_0 , so $C_{X/I}(B) = [X/I, E_\circ]$. By 8.27(c), $[X, E_\circ] = X \cap B$ and thus

$$C_{X/I}(B) = (X \cap B)/I.$$

Regarding the action of X on B/I, this means $C_X(B/I) = X \cap B$ and so

$$C_{YX}(K/K_1) = C_{YX}(B/I) = YC_X(B/I) = Y(X \cap B).$$

Note that |Y/I| = 2 and I but not Y centralizes B/U. So $C_Y(B/U) = I$ and

$$C_{YX}(K) = (X \cap B)C_Y(B/U) = (X \cap B)I = X \cap B.$$

By 8.29(a) both K and K/K^{\perp} are faithful C_0/N_0 -modules. So

$$C_{YX}(K/K^{\perp}) = YX \cap N_0 = C_{YX}(K) = X \cap B,$$

and (b) holds.

(c): By 8.27(e) $|YX/X \cap B| = 2^{m-1}$, and we get

(II)
$$|\check{Y}\check{X}| = 2^{m-1}$$

Put $c := \dim_{\mathbb{F}_2}(K/K^{\perp})$. Then $c \leq \dim_{\mathbb{F}_2} K = m$ and

$$|C_{Sp(K/K^{\perp})}(Z_1^{\perp}/Z_1)| = 2^{c-1}.$$

Since $\check{Y}\check{X}$ has order 2^{m-1} and by (I) is contained in $C_{Sp(K/K^{\perp})}(Z_1^{\perp}/Z_1)$, we conclude that $2^{m-1} \leq 2^{c-1}$. Now $c \leq m$ gives c = m,

$$K^{\perp} = 1, \ C_0 = C \ \text{and} \ \check{Y}\check{X} = C_{Sp(K/K^{\perp})}(Z_1^{\perp}/Z_1) = C_{Sp(K)}(K_1^{\perp}/K_1);$$

in particular (c) holds.

(d): Since $[I, I^x] \neq 1$ we have $K_1 \not \perp K_1^x$. By B.26(a)

 $\langle C_{Sp(K)}(K_1^{\perp}/K_1), C_{Sp(K)}(K_1^{\perp}/K_1^x) \rangle = Sp(K),$

and so $\langle YX, (YX)^x \rangle$ induces Sp(K) on K. Thus $\check{C} = Sp(K)$, and (d) holds.

(e): Since $[K, Y] = K_1$, \check{Y} is a transvection group on K. It follows that

$$\check{Y} = C_{\check{C}}(K_1^{\perp})$$
 and $N_{\check{C}}(\check{Y}) = N_{\check{C}}(K_1),$

and (e) holds.

(f): Since $C_C(K) = N_0$, $N_C(\check{Y}) = N_C(YN_0)$. By 8.26(a) $N_N(YN_0) = N_N(Y)$ and so $N_C(K_1) = N_C(Y) \leq M^{\dagger}$. Since M^{\dagger} normalizes Y and X we conclude that \check{X} is an $N_{\check{C}}(K_1)$ -invariant complement to \check{Y} in $\check{Y}\check{X}$. In particular, \check{Y} is not the only $N_{Sp(K)}(K_1)$ -invariant subgroup of $C_{Sp(K)}(K_1^{\perp}/K_1)$. Hence B.30 shows that $m \leq 4$, and (f) holds.

(g): Note that $O_2(N_{Sp(K)}(K_1)) = C_{Sp(K)}(K_1^{\perp}/K_1) = \check{Y}\check{X}$ and that K_1^{\perp}/K_1 is a natural $Sp_{m-2}(2)$ -module for $N_{Sp(K)}(K_1) = N_C(\check{Y})$, so also (g) holds.

LEMMA 8.30. Suppose that $I \leq A$ and I is the natural $\Omega_6^+(2)$ -module for M° . Then $M^\circ = M_\circ$, $N_0 = B$, and one of the following holds:

(1) $m = 2, O_2(M) = Y, M^{\dagger} = M, \overline{M^{\dagger}} \cong \Omega_6^+(2) \text{ or } O_6^+(2) \text{ and}$ $M^{\dagger} \sim 2^{6+1}\Omega_6^+(2) \text{ or } 2^{6+1}O_6^+(2) \text{ and } N \sim 2^{3+\overline{3}\cdot 2}SL_3(2) \times SL_2(2),$ (2) $m = 4, [M^{\circ}, C_G(Y)] = X, M^{\dagger} = M_{\circ}C_G(Y),$ $M^{\dagger}/YX = M_{\circ}/YX \times C_G(Y)/YX \cong SL_2(2) \times SL_4(2),$ $X/I \cong YX/Y \text{ is a tensor product over } \mathbb{F}_2 \text{ of corresponding natural modules and}$

$$M^{\dagger} \sim 2^{6+1+4\cdot 2} SL_4(2) \times SL_2(2)$$
 and $N \sim 2^{3+3\cdot 4} SL_3(2) \times Sp_4(2)$.

PROOF. We first show:

1°. $N/N_0 \cong Sp_m(2) \times SL_3(2), m = 2 \text{ or } 4, \text{ and } \widehat{B} \text{ is a tensor product over } \mathbb{F}_2 \text{ of corresponding natural modules.}$

By 8.28(a) $N/N_0 = C/N_0 \times EN_0/N_0$, and by 8.28(b) $\hat{B} \cong K \otimes_{\mathbb{F}_2} U_0$, where $K = End_E(U_0, \hat{B})$. By 8.29(d) $C/N_0 \cong Sp(K)$ and so K is a natural $Sp_m(2)$ -module for C, and by 8.29(f) m = 2 or 4. Also U_0 is a natural $SL_3(2)$ -module for E, and so (1°) holds.

 2° . $C_{M^{\dagger}}(X/I) \cap C_{M^{\dagger}}(I) = YX \text{ and } N_0 = B.$

Put

$$X_1 := C_{O_2(M)}(X/I)$$
 and $X_2/I := C_{X_1/I}(M_{\circ})$

Then $[X_1, X] \leq I$ and so M_{\circ}/X acts on X_1/I . By 8.27(b) $X' \leq I$ and thus $X \leq X_1$, and by 8.27(a), $[O_2(M), M^{\circ}] = X$ and so $[X_1, M_{\circ}] = X$. Since I_0 is a natural $SL_4(2)$ -module for $M_{\circ}/X \cong SL_4(2)$, C.18 shows that $H^1(M_{\circ}/X, I_0) = 1$. By 8.27(d) X/I is a direct sum of copies of I_0 . Hence also $H^1(M_{\circ}/X, X/I) = 1$ and so $X_1 = X_2 X$.

8.2. THE CASE $I \leq A$

Pick $t \in X_2$. Then $[t, M_\circ] \leq I \leq Z(X)$, so [t, X] and $C_X(t)$ are M_\circ -invariant. Hence $[t, M_\circ]$ and $X/C_X(t)$ are isomorphic M_\circ -modules. But I is the natural $\Omega_6^+(2)$ -module for M_\circ and by 8.27(d) each M_\circ -chief factor of X/I is a natural $SL_4(2)$ -module. It follows that [X, t] = 1 and so $[X_2, X] = 1$.

Since $[O_2(M), M_\circ] = X$ and $[M_\circ, X_2] \leq I$ we get $[O_2(M), M_\circ, X_2] = 1$ and $[M^\circ, X_2, O_2(M)] = 1$. 1. The Three Subgroup Lemma now implies $[X_2, O_2(M), M^\circ] = 1$. By 1.55(d) $C_G(M^\circ) = 1$, so $[X_2, O_2(M)] = 1$ and $X_2 \leq Z(O_2(M))$. Since $[X_2, M_\circ] \leq I \leq \Omega_1 Z(X_2)$, 1.18 gives $[\Phi(X_2), M_\circ] = 1$. 1. As $C_G(M^\circ) = 1$, X_2 is elementary abelian. Therefore $X_2 \leq \Omega_1 Z(O_2(M))$, and by 2.2(e), $\Omega_1 Z(O_2(M)) = Y$. Hence $X_2 = Y$ and so

$$X_1 = X_2 X = Y X.$$

Let
$$X_3 := C_{M^{\dagger}}(X/I) \cap C_{M^{\dagger}}(I)$$
. Then

$$[O_2(M^{\dagger}), X_3] \leq [O_2(M), X_3] \leq O_2(M) \cap X_3 = X_1 = YX,$$

 $[YX, X_3] = [Y, X_3][X, X_3] \leq I$ and $[I, X_3] = 1$. Hence X_3 acts nilpotently on $O_2(M^{\dagger})$, and since M^{\dagger} is of characteristic 2, we conclude that X_3 is a 2-group. So $X_3 \leq O_2(M^{\dagger}) \leq O_2(M)$ and $X_3 \leq X_1 = YX \leq X_3$. Thus

$$X_3 = YX_1$$

This is the first part of (2°) .

By 8.25(d) $N_0 \leq M^{\dagger}$. Put $N_2 := C_{N_0}(Y)$. By 1.52(c) $[M^{\circ}, C_{M^{\dagger}}(Y)] \leq O_2(M^{\circ})$ and so $[M_{\circ}, N_2] \leq O_2(M^{\circ}) \cap M_{\circ} = O_2(M_{\circ})$. By 8.27(a) $O_2(M_{\circ}) = X$ and so M_{\circ} normalizes N_2X . Since $[B, N_0] \leq U \leq I$ and by 8.27(b) $[X, X] \leq I$, we get $[X \cap B, N_2X] \leq I$. As M_{\circ} normalizes N_2X , we conclude that

$$[X, N_2 X] = [\langle (X \cap B)^{M_\circ} \rangle, N_2 X] \leqslant I.$$

Thus N_2 centralizes X/I and I and so $N_2 \leq X_3 = YX$. Hence

$$N_2 = YX \cap N_2 = YX \cap C_{N_0}(Y) = YX \cap N_0.$$

By 8.29(b) $YX \cap N_0 = X \cap B$ and so $N_2 = X \cap B$. Since $\overline{N_0} \leq C_{\overline{M}}(U) = \overline{B}$, this gives $N_0 = BN_2 = B(X \cap B) = B$, and (2°) is proved.

 3° . $E = E_{\circ}$ and $M^{\circ} = M_{\circ}$.

By 8.26(c) $C_E(U) \leq N_0$, by (2°) $N_0 = B$, and by 8.26(d) $B \leq E_\circ$. Thus $E = E_\circ C_E(U) = E_\circ B = E_\circ$. Since $E_\circ \leq M_\circ$, this gives $Q \leq E \leq M_\circ$ and so $M^\circ = \langle Q^M \rangle \leq M_\circ$.

 4° . $O_2(M^{\dagger}) = YX$ and $C_G(Y)/YX \cong Sp_{m-2}(2)$.

By 8.29(g), $O_2(N_C(Y)/N_0) = YXN_0/N_0$ and by (2°) $B = N_0$. It follows that

$$O_2(N_C(Y)) \leqslant YXN_0 = YXB \leqslant O_2(N_C(Y))$$

and so

(I)
$$O_2(N_C(Y)) = YXB.$$

Thus

$$YX \leq O_2(M^{\dagger}) \leq O_2(N_C(Y)) = YXB = YXN_0$$

and

$$O_2(M^{\dagger}) = YX(O_2(M^{\dagger} \cap B)).$$

Also $O_2(M^{\dagger}) \cap B \leq O_2(M) \cap B \leq X$ and so $O_2(M^{\dagger}) = YX$.

Note that $\overline{M^{\dagger}} = \overline{M}$ and by 8.25(b) $C_{\overline{M}}(U) = \overline{B}$. As $N_C(Y) = C_{M^{\dagger}}(U)$ this gives $N_C(Y) = C_G(Y)B = C_G(Y)YXB$. Hence

$$N_C(Y)/YXN_0 \stackrel{(I)}{=} N_C(Y)/YXB = C_G(Y)YXB/YXB$$
$$\cong C_G(Y)/YXB \cap C_G(Y) = C_G(Y)/YXC_B(Y)$$

Since $C_B(Y) = C_M(Y) \cap B = B \cap O_2(M) \leq X$, we get that $N_C(Y)/YXN_0 \cong C_G(Y)/YX$. By 8.29(g), $N_C(Y)/YXN_0 \cong Sp_{m-2}(2)$ and so $C_G(Y)/YX \cong Sp_{m-2}(2)$, and (4°) is proved.

We are now able to prove the lemma. By 8.22(a) $\overline{M} \cong \Omega_6^+(2)$ or $\overline{M} \cong O_6^+(2)$, and $\overline{M} = \overline{M_\circ} \overline{S}$, and by 8.29(f) m = 2 or 4. Moreover, (1°) shows that $N/N_0 \cong Sp_m(2) \times SL_3(2)$ and $\hat{B} = B/U$ is a tensor product over \mathbb{F}_2 of corresponding natural modules. By (2°) $N_0 = B$. Also U is the natural $SL_3(2)$ -modules for E dual to U_0 , and so the structure of N is as described in (1) (for m = 2) and in(2) (for m = 4).

By 8.27(d) X/I is a direct sum of m-2 natural $SL_4(2)$ -modules for M_{\circ} isomorphic to I_0 , and by $(4^{\circ}) C_G(Y)/YX \cong Sp_{m-2}(2)$.

Suppose first that m = 2. Then m - 2 = 0 and so X = I, YX = I and $C_G(Y) = Y$. Thus $M^{\dagger} = MC_G(Y) = M$ and since $Y \leq O_2(M) \leq C_G(Y)$, $Y = O_2(M)$. Thus (1) holds if m = 2.

Suppose next that m = 4. Then X/I is a direct sum of two natural $SL_4(2)$ -modules for M_{\circ} and $C_G(Y)/XY \cong SL_2(2)$. By (2°) $C_{M^{\dagger}}(X/I) \cap C_{M^{\dagger}}(I) = YX$ and so $C_G(Y)/XY$ acts faithfully on X/I. By 1.52(c) $[M^{\circ}, C_G(Y)] \leq O_2(M^{\circ})$ and so $[M_{\circ}, C_G(Y)] \leq X$. Thus $C_G(Y)M_{\circ}/YX \cong$ $SL_2(2) \times SL_4(2)$, and X/I is a tensor product over F_2 of corresponding natural modules.

Note that S normalizes at least one of the three simple M_{\circ} -submodules of X/I. Let R be such a simple M_{\circ} -module. Since M_{\circ} induces $SL_4(2) \cong Aut(R)$ on R we conclude that S induces inner automorphism on $M_{\circ}/C_{M_{\circ}}(R) = M_{\circ}/X$. Since $\overline{M} = \overline{M_{\circ}}\overline{S}$ this gives $\overline{M^{\dagger}} = \overline{M} = \overline{M_{\circ}}$ and $M^{\dagger} = M_{\circ}C_G(Y)$. Thus (2) holds.

LEMMA 8.31. Suppose that $I \leq A$ and I is the natural $\Omega_6^+(2)$ -module for M° . Then m = 2. In particular, 8.30(1) holds.

PROOF. Suppose not. Then 8.30(2) holds. In particular, m = 4, $M^{\dagger} = M_{\circ}C_G(Y)$ and $N_0 = B$. Since $\overline{M} \cong SL_4(2) \cong \Omega_6^+(2)$ and I is a natural $\Omega_6^+(2)$ -module for M, $N_M(U)$ is a parabolic subgroup of M. So we may choose notation such that S normalizes U. Then $S \leq N$. Recall from 8.29(d) that K is a natural $Sp_4(2)$ -module for $C/N_0 = C/B$.

Let K_1 be as in the proof of 8.29, that is, $K_1 = [K, Y]$ and K_1 is 1-space in K. In particular, S normalizes K_1 . Let K_3 be the 2-subspace of K such that $K_1 < K_3 < K_1^{\perp}$ and S normalize K_3 . Then K_2 is a singular 2-subspace of K. Put

$$C_3 := N_C(K_3), \quad Y_3 := \langle Y^{C_3} \rangle, \quad I_3 := \langle I^{C_3} \rangle.$$

Note that K_3 is the natural $SL_2(2)$ -module for C_3 . Thus $K_3 = \langle K_1^{C_3} \rangle$ and so

$$I_3/U \cong K_3 \otimes U_0$$
 and $I_3/U = \langle \alpha(v) \mid \alpha \in K_3, v \in U_0 \rangle$.

Since K_3 is a 2-space, we get $|I_3/U| = 2^6$ and $|I_3| = 2^9$, and since K_3 is singular, I_3 is abelian. As $C_G(I) = C_G(Y)$, we conclude that Y_3 is abelian.²

Since C_3 acts transitively on the 1-spaces in K_3 , C_3 also acts transitively on the corresponding transvections. It follows that $Y_3B = C_C(K_3)$ and $|Y_3B/B| = 2^3$. Hence $C_K(Y_3) = K_3$, and since $\hat{B} \cong K \otimes U_0$, we infer $C_{\hat{R}}(Y_3) \cong K_3 \otimes U_0$ and $C_{\hat{R}}(Y_3) = I_3/U$.

Since Y_3 is abelian we get $Y_3 \cap B/U \leq C_{B/U}(Y_3) = I_3/U$ and so $Y_3 \cap B = I_3$. Hence Y_3 has order 2^{12} . As Y_3 is abelian and generated by involutions, Y_3 is elementary abelian.

Since Y_3 is abelian, $Y_3 \leq C_G(Y)$. Note that YB/B is the only transvection group contained in $O_2(N_C(K_1)/B)$. As $N_C(K_1) = N_C(Y)$ we get $Y_3 \leq O_2(C_G(Y)) = XY$. Since $C_G(Y)/XY \cong SL_2(2)$ and YX/Y is the tensor product of natural modules for

$$M^{\dagger}/XY = M_{\circ}Y/X \times C_G(Y)/XY \cong SL_2(2) \times SL_4(2),$$

we get

$$|Y_3X/YX| = 2$$
 and $|C_{YX/Y}(Y_3)| = 2^4$.

Since Y_3 has order 2^{12} and Y has order 2^7 , we conclude that $Y_3 \cap YX$ has order 2^{11} , $|Y_3 \cap YX/Y| = 2^4$ and

$$C_{YX/Y}(Y_3) = Y_3 \cap XY/Y.$$

It follows that Y_3X/Y has exactly two maximal elementary abelian subgroups, namely YX/Y and Y_3/Y .

² This also follows from the fact that Y is asymmetric in G

Since $[M_{\circ}, C_G(Y)] = X$, M_{\circ} normalizes Y_3X . As M_{\circ} normalizes YX/Y, it also normalizes the unique other maximal elementary abelian subgroup of Y_3/Y . Hence M_{\circ} normalizes Y_3 . Since S normalizes K_3 , S normalizes Y_3 and so $M = M_{\circ}S \leq N_G(Y_3)$. The basic property of M now implies $N_G(Y_3) \leq M^{\dagger} = N_G(Y)$, a contradiction since $C_3 \leq N_G(Y_3)$ and $Y \notin C_3$.

This completes our proof-by-contradiction, and the lemma holds.

It remains to analyze Case 8.30(1).

LEMMA 8.32. Suppose that $I \leq A$ and I is the natural $\Omega_6^+(2)$ -module for M° . Let t be a non-singular vector in I. Then $C_G(t) \leq M$.

PROOF. Recall that $U = C_Y(L)$ and so $L \leq C$. Since $C/N_0 = C/B \cong SL_2(2)$ we infer $N_C(Y) = YB$ and $|C/N_C(Y)| = 3$. So $|I^C| = 3$. Let $I^C =: \{I_1, I_2, I_3\}$ with $I = I_1$. Let V_0 be a 2-subspace of U. Note that for $i \in \{1, 2, 3\}$, U is singular 3-subspace of I_i and so V_0 is a singular 2-space in I_i . Hence V_0 is contained in a unique singular 3-space V_i of I_i different from U. Note also that $V_0^{\perp} = UV_i$ in I_i . Define

$$M_i := N_G(I_i), \quad Y_i := C_G(I_i), \quad E_i := N_G(V_i)^\circ, \quad B_i := O_2(E_i).$$

So $M_1 = M$ and $Y_1 = Y$. Note that by 8.30, $M^{\circ} = M_{\circ}$. Since $O_2(M_{\circ}) = X = I$ we have $M_i^{\circ}/I_i \cong \Omega_6^+(2)$. By 2.7(b) $E_i \leqslant M_i^{\circ}$, and B.38(c) shows that V_i is a natural $SL_3(2)$ -module for E_i . Note that $E_i \leqslant N_{M_i^{\circ}}(V_i)$ and both I_i/V_i and $C_{M_i^{\circ}}(V_i)/I_i$ are natural $SL_3(2)$ -modules (dual to V_i). Hence $C_{M_i^{\circ}}(V_i) = [C_{M_i^{\circ}}(V_i), E_i] \leqslant E_i$. $E_i = N_{M_i^{\circ}}(V_i)$, $B_i = C_{M_i^{\circ}}(V_i)$, and B_i has order 2⁹. Put

$$E_0 := N_G(V_0)^\circ$$
 and $B_0 := O_2(E_0).$

Since $V_0 \leq V_i \leq I_i$, 2.7(b) shows that $E_0 \leq E_i \leq M_i^{\circ}$. By B.38(c) V_0 is natural $SL_2(2)$ -module for E_0 . Also $I_i = [I_i, E_0] \leq E_0$, $C_{M_i^{\circ}}(V_0)/I_i$ is extra special of order 2^5 with center $C_{M_i^{\circ}}(UV_i)/I_i$, and $C_{M_i^{\circ}}(V_0)/C_{M_i^{\circ}}(UV_i)$ is the direct sum of two natural $SL_2(2)$ -modules for E_0 . Hence $C_{M_i^{\circ}}(V_0) = [C_{M_i^{\circ}}(V_0), E_0] \leq E_0$. $E_0 = N_{M_i^{\circ}}(V_0)$, $B_0 = C_{M_i^{\circ}}(V_0)$ and B_0 has order $2^{6+5} = 2^{11}$. Note also that $E = N_{M_i^{\circ}}(U)$ and so $E_i \cap E = E_0$. Since C centralizes U, C centralizes V_0 and so C normalizes E_0 . Moreover, since C acts as Sym(3) on $\{I_1, I_2, I_3\}$ it also act as Sym(3) on $\{V_1, V_3, V_3\}$ with B the kernel of the action.

Let $\{i, j, k\} = \{1, 2, 3\}$. Note that Y_i fixes I_i , $Y_i \leq C$ and $Y_i \leq B$, so Y_i acts non-trivially on $\{I_j, I_k\}$ and $\{V_j, V_k\}$.

Put

$$V_{ij} := \langle V_i^{E_i} \rangle.$$

1°. V_{ij} is the unique elementary abelian subgroup of 2⁶ in B_0 containing $V_i V_j$. In particular, $V_{ij} = V_{ji}$.

Put $Z/V_0 = Z(E_0/V_0)$. Note that $[U, E_0] \leq V_0$ and $[V_i, E_0] \leq V_0$. So $UV_i \leq Z \cap I_i$. Since $I_i/UV_i = I_i/V_0^{\perp}$ is a natural $SL_2(2)$ module for E_0 we conclude that $Z \cap I_i = UV_i$. Also $ZI_i/I_i \leq Z(E_0/I_i) = C_{E_0}(UV_i)/I_i$. The latter group has order 2. As E normalizes I_i and I_j , $I_i \cap I_j = U$ and so $V_j \leq I_i$. Since $V_j \leq Z$ we conclude that $|ZI_i/I_i| = 2$ and $Z = UV_iV_j$ is elementary abelian of order 2^5 . In particular,

 $ZI_i/I_i = C_{E_0}(UV_i)/I_i$ and $C_{I_i}(Z) = UV_i$.

Since $B_i = C_{M_i^{\circ}}(V_i) \leq E_0$, we have $B_i = C_{E_0}(V_i)$ and so

(I)
$$B_i \cap I_j = C_{I_i}(V_i) = C_{I_i}(Z) = UV_j.$$

Thus $|I_jB_i/B_i| = |I_j/UV_j| = 4 = |B_0/B_i|$ and so $B_0 = I_jB_i$. Since $[Z, B_i] \leq [Z, B_0] \leq V_0 \leq V_i$, $Z/V_i \leq \Omega_1 Z(B_i/V_i)$. Also $Z \cap I_i/V_i \neq 1$ and $ZI_i/I_i \neq 1$. Since I_i/V_i and B_i/I_i are simple E_i -module we conclude that $B_i = \langle Z^{E_i} \rangle$ and thus B_i/V_i is elementary abelian. Since $[B_i, I_j] = [B_iI_j, I_j] = [B_0, I_j] = V_j U$, we get

$$[B_i/V_i, B_0] = [B_i/V_i, I_jB_i] = [B_i, I_j]V_i/V_i = V_iV_jU/I_i = Z/I_i.$$

Note that $C_{E_i}(B_i/I_i) = B_i$ and so $|B_0/C_{B_0}(B_i/I_i)| = |B_0/B_i| = 4$ and $|[B_i/V_i, B_0]| = |Z/I_i| = 4 = |B_0/C_{B_0}(B_i/I_i)|.$

Hence B_0 is an offender on the dual of B_i/V_i . The General FF-Module Theorem C.2(d) now implies that B_i/V_i is the direct sum of natural $SL_3(2)$ -modules for E_i . Since B_i/I_i and I_i/V_i are both dual to V_i , the summands are isomorphic. It follows that there exists three simple E_i -submodules in B_i/V_i . As $[B_i/V_i, B_0] = Z/V_i$ has order four, each of the simple submodules intersects Z/V_i in a subgroups of order 2. Hence each subgroup of order 2 of Z/V_i lies is a simple E_i submodule. Recall that $V_{ij} = \langle V_j^{E_i} \rangle$ and note that $V_i V_j \leq V_{ij}$. Since $V_i V_j \leq Z$ and $V_j V_i/V_i$ has order 2 we conclude that V_{ij}/V_i is a simple E_i -submodule of B_i/V_i . So V_{ij}/V_i is a natural $SL_3(2)$ -module for E_i . Note that $I_i I_j$ is elementary abelian and E_i acts transitively on V_{ij}/V_i . Thus all non-trivial elements in V_{ij} have order 2 and so V_{ij} is elementary abelian of order 2⁶. Since both I_i/V_i and V_{ij}/V_i are simple E_i -submodules of B_i/V_i , $B_i = I_i V_{ij}$ and so

$$B_i \cap B_j = C_{B_i}(V_j) = C_{I_i}(V_j)V_{ij} \stackrel{(1)}{=} UV_iV_{ij} = UV_iV_jV_{ij} = ZV_{ij}.$$

Note that $C_{B_0}(Z) \leq C_{B_0}(UV_i) = I_i Z$ and $C_{I_i}(Z) = UV_i \leq Z$. So $C_{B_0}(Z) = Z$. Also $Z \cap V_{ij} = V_i V_j$ has index 2 in Z. It follows that Z and V_{ij} are the only maximal elementary abelian subgroups of $ZV_{ij} = B_i \cap B_j$. Since Z has order 2^5 , V_{ij} is the only elementary abelian subgroup of order 2^6 in $B_i \cap B_j$. As $B_i \cap B_j = C_{B_0}(V_iV_j)$ this shows that V_{ij} is the only elementary abelian subgroups in B_0 of order 2^6 containing V_iV_j . Thus (1°) holds.

Recall that that $\overline{M^{\circ}} \cong Alt(8)$ acts on a set Λ of 8 objects and Y is the central quotient of the permutation module on Λ . Let $1 \neq y_{\lambda} \in Y$ with $C_{\overline{M^{\circ}}}(y_{\lambda}) \cong Alt(7)$. Note \overline{Z} is 2-central in $\overline{M^{\circ}}$ and so we may assume that \overline{Z} corresponds to $\langle (12)(34)(56)(78) \rangle$ in Alt(8). Then $[Y, Z] = \langle y_{12}, y_{34}, y_{56}, y_{78} \rangle$. It follows that [Y, Z] is a non-singular isotropic 3-space of I. Hence the elements of $[Y, Z] \setminus V_0$ are non-singular. Since $C/B \cong SL_2(2)$ and $YB \in Syl_2(C)$ we conclude that $[C, Z]/V_0$ has order four and the elements in $[C, Z] \setminus V_0$ are not 2-central in G. Recall here that since $O_2(M)$ is weakly closed, elements of Y are conjugate in G if and only if they are conjugate in M, see 2.6(d). Also $Z/V_0 = U/V_0 \times [C, Z]/V_0$ as an C-module. Since $V_i \neq U$ and V_i is a singular 3-space we conclude that $\langle V_i, V_j, V_k \rangle = Z$ and $V_i V_j \cap I_k = [Y_k, Z]$ is a non-singular isotropic 3-space in I_k . It follows that E_0 has two orbits on $I_i I_j \setminus I_i$, namely the four 2-central involutions in $I_j \setminus V_0$ and the four non-2-central involutions in $[Y_k, Z] \setminus V_0$.

Put $M_{ij} := N_G(V_{ij})$. Then by (1°) $V_{ij} = V_{ji}$ and so $\langle E_i, E_j \rangle \leq M_{ij}$. Let $v \in I_i I_j \backslash I_i$. Then $C_{E_i}(vI_i/I_i) = E_0$ and $|E_i/E_0| = 7$. We conclude that E_i has two orbits on $V_{ij} \backslash I_i$, namely the twentyeight 2-central involutions and the twenty-eight non-2-central involutions. Also E_i acts transitively on the seven 2-central involutions in I_i . Note that the same holds with i and j interchanged. Since $I_i \neq I_j$ we conclude that M_{ij} acts transitively on thirty-five 2-central involutions and transitively on the twenty-eight non-2-central involutions in V_{ij} . It follows that 35 and so also 5 divides $|M_{ij}|$.

Let $t_k \in [Y_K, Z] \setminus U_0$. Then $|t_k^{M_{ij}}| = 28$ and we conclude that 5 divides $|C_{M_{ij}}(t)|$. Since $M_{ij} \cap M_k \leqslant N_{M_k}(V_{ij} \cap I_k) = N_{M_k}([Y_k, Z])$, 5 does not divide $M_{ij} \cap M_k$ and so $C_{M_{ij}}(t_k) \notin M_k$. Since t_k is non-singular in I_k this gives $C_G(t) \notin M$, and the lemma is proved.

LEMMA 8.33. Suppose that $I \leq A$ and I is the natural $\Omega_6^+(2)$ -module for M° . Then Case (3) of Theorem H holds.

PROOF. Recall that case 8.30(1) holds, in particular p = 2, |Y/I| = 2, $\overline{M^{\circ}} \cong \Omega_{6}^{+}(2)$, and I is a natural $\Omega_{6}^{+}(2)$ -module for M° . Let t be a non-singular vector of I. If $C_{G}(t)$ is not of characteristic 2, then Case (3) of Theorem H holds.

So suppose for a contradiction that $C_G(t)$ is of characteristic 2. Since $Y = O_2(M) \leq C_G(t)$, 2.6(c) shows $M^{\dagger} \cap C_G(t)$ is a parabolic subgroup of $C_G(t)$. Since $M^{\dagger} = M$, this gives $P := O_2(C_G(t)) \leq O_2(C_M(t))$. Since t is non-singular in I and $\overline{M} \cong \Omega_6^+(2)$ or $O_6^+(2)$, we have $C_{\overline{M}}(t) \cong Sp_4(2)$ or $C_2 \times Sp_4(2)$. Hence either $\overline{P} = 1$, or $|\overline{P}| = 2$ and $[Y, \overline{P}] = \langle t \rangle$. In either case $[Y, P] \leq \langle t \rangle$ and so also $[\langle Y^{C_G(t)} \rangle, P] \leq \langle t \rangle$. As $C_G(t)$ is of characteristic 2, this implies $Y \leq P \leq C_G(t)$. Since $Y = O_2(M)$ is weakly closed, we conclude that $C_G(t) \leq N_G(Y) = M^{\dagger} = M$. But this contradicts 8.32. **PROPOSITION 8.34.** Suppose that $I \leq A$. Then Case (2) or Case (3) of Theorem H holds.

PROOF. By 8.21 either I is a natural $SL_3(2)$ -module for M° and Theorem H(2) holds, or I is a natural $\Omega_6^+(2)$ -module for M° . In the latter case 8.33 shows that Theorem H(3) holds.

8.3. The Case $I \leq A$ and $\Omega_1 Z(A) \leq Z(L)$

In this short section we continue to assume the hypothesis and notation of Theorem H. Furthermore, we assume that $I \leq A$ and $\Omega_1 Z(A) \leq Z(L)$.

PROPOSITION 8.35. Suppose that $I \leq A$ and $\Omega_1 Z(A) \leq Z(L)$. Then Theorem H(4), (5) or (6) holds.

PROOF. Then $[\Omega_1 Z(A), L] \neq 1$ and so by 8.6 $[Y_{HQ}, HQ] \neq 1$. Note that $Q \leq O_p(HQ)$ and so $[Y_{HQ}, Q] = 1, HQ = HC_N(Y_{HQ})$ and $[Y_{HQ}, H] \neq 1$. Let V be an H-submodule of Y_{HQ} minimal with $[V, O^p(H)] \neq 1$. Since $H \in \mathfrak{H}_G(O_p(M))$, 2.11(e) shows that H is p-irreducible and so by 1.34(c), V is H-quasisimple. Note that $V = [V, H] \leq H$ and since V is p-reduced for $H, V \leq Y_H$. Hence, according to 2.17 there exists a non-trivial strong offender W on Y such that $W \leq V \leq Y_{HQ}$ and

[X, W] = [Y, W] for all $X \leq Y$ with $|X/C_X(W)| > 2$.

Since $[Y_{HQ}, Q] = 1$, $Y_{HQ} \leq C_G(Q) = Z(Q)$ and $[Y, W] \leq W \leq Z(Q)$; in particular, $W \leq Q$ and [Y, W, Q] = 1. So we can apply C.26. Since [V, W, Q] = 1 we get that $\overline{M^{\circ}} \cong SL_n(q)$ or $Sp_{2n}(q), n \ge 2$, and $[Y, M^{\circ}]$ is a corresponding natural module. Moreover, either $Y = [Y, M^{\circ}]$ or $\overline{M^{\circ}} \cong Sp_{2n}(2), n \ge 2$, and $|Y/[Y, M^{\circ}]| = 2$. By the definition of the Fitting submodule, $I = [Y_M, M^\circ]$ since $[Y, M^\circ]$ is the unique *M*-component of *Y*.

If $\overline{M^{\circ}} \cong SL_n(q)$, then Theorem H(5) holds.

If $\overline{M^{\circ}} \cong Sp_{2n}(q)$ and I = Y, then $I \leq Q^{\bullet}$ and so by 2.26 p is even. Thus Theorem H(6) holds. If $I \neq Y$, then Theorem H(4) holds.

8.4. The Case $I \leq A$ and $\Omega_1 Z(A) \leq Z(L)$

In this section we continue to assume the hypothesis and notation of Theorem H. Furthermore, we assume that $I \leq A$ and $\Omega_1 Z(A) \leq Z(L)$.

LEMMA 8.36. Suppose that $I \leq A$ and $\Omega_1 Z(A) \leq Z(L)$. Then

- (a) $Z(A) = C_Y(L) = C_Y(A) \leq Y \cap A$.
- (b) YA = IA and $[Y, A] = [I, A] \leq I \cap A$.
- (c) $C_A(I \cap A) = Y \cap A = [I, A]C_Y(L) = (I \cap A)C_Y(L)$; in particular $C_A(Y) = C_A(I) =$ $C_A(I \cap A).$
- (d) $|I/C_I(A)| \leq |A/C_A(I)|^2$,
- (e) A acts nearly quadratically but not quadratically on I.

PROOF. (a): By 1.43(q) $\Omega_1 Z(A) = Z(A)$. As $\Omega_1 Z(A) \leq Z(L)$ this gives $Z(A) = A \cap Z(L)$. By 1.43(b) $A \cap Z(L) = C_Y(L)$, and by 1.43(j)

$$C_Y(A) = Y \cap Z(A) \leqslant C_Y(L) \leqslant C_Y(A),$$

so $C_Y(A) = C_Y(L)$.

(b) and (c): Since I is $N_L(Y)$ -invariant, 8.7 implies that YA = IA, $[Y, A] = [I, A] \leq I \cap A$ and $Y \cap A = [I, A]C_Y(L)$. By 8.4(c), $C_G(Y) = C_G(I)$ and so also $C_A(Y) = C_A(I)$. Moreover, by 1.43(g) $C_A(Y) = Y \cap A$ and by 1.43(j) $C_A(Y \cap A) = Z(A)(Y \cap A)$. As $Z(A) \leq Y \cap A$ by (a), this gives $C_A(Y \cap A) = Y \cap A$, and since $Y \cap A = [I, A]C_Y(L) = (I \cap A)C_Y(L), C_A(Y \cap A) = C_A(I \cap A)$ follows.

(d) and (e): By (b) $A = \langle (Y \cap A)^L \rangle = \langle ([I, A]C_Y(L))^L \rangle$. Since by (a) $[A, A] \neq 1$, this gives $[I, A, A] \neq 1$, i.e. A does not act quadratically on I. Moreover, by $1.43(n) |Y/C_Y(A)| \leq |A/C_A(Y)|^2$. Since $|I/C_I(A)| \leq |Y/C_Y(A)|$ and by (c) $C_A(Y) = C_A(I)$, this gives $|I/C_I(A)| \leq |A/C_A(I)|^2$.

By 1.43(m) A acts nearly quadratically on Y and so also on I.

LEMMA 8.37. Suppose that $I \leq A$ and $\Omega_1 Z(A) \leq Z(L)$. Then

- (a) $Y = IC_Y(A)$.
- (b) A is a non-trivial offender on $I \cap A$.
- (c) Suppose that no subgroup of A is a non-trivial offender on I. Then A is a non-trivial best offender on $I \cap A$.

PROOF. Recall that $\tilde{q} = |Y/Y \cap A|$. By 8.36(b) IA = YA, and so

$$|I/I \cap A| = |Y/Y \cap A| = \widetilde{q},$$

(I) and by 8.36(c)

(II)

$$Y \cap A = C_Y(I \cap A).$$

Moreover, by 1.43(e) $|A \cap Y/C_{A \cap Y}(L)| = |A/A \cap Y|$. Since by 8.36(a) $C_Y(A) = Z(A) = C_{A \cap Y}(L)$, we get

(III)

 $|A \cap Y/C_Y(A)| = |A/A \cap Y|.$

(a): By 8.36(b) YA = IA and so $Y = I(Y \cap A)$. Now (a) follows from 8.36(c).

(b): By 8.36(e) A does not acts quadratically on I. So $[I, A, A] \neq 1$ and $[I \cap A, A] \neq 1$. Also

$$|A/C_A(I \cap A)| \stackrel{(\mathrm{III})}{=} |A/Y \cap A| \qquad \stackrel{(\mathrm{III})}{=} |Y \cap A/C_Y(A)|$$
$$\stackrel{(\mathrm{III})}{=} |(I \cap A)C_Y(A)/C_Y(A)| = |I \cap A/C_{I \cap A}(A)|$$

and thus A is a non-trivial offender on $I \cap A$.

(c): Observe that by 1.43(a) $\Phi(A) \leq C_Y(L)$ and so $A/C_A(I \cap A)$ is elementary abelian. Since $I \cap A$ and A are $N_L(Y)$ -invariant and A is a non-trivial offender on $I \cap A$, A.29(b) shows that there exists a non-trivial $N_L(Y)$ -invariant best offender D on $I \cap A$ with $C_A(I \cap A) \leq D \leq A$ such that $|B||C_{I\cap A}(B)| \leq |D||C_{I\cap A}(D)|$ for all $B \leq A$. Since $[I \cap A, D] \neq 1$ and Y is abelian, we have $D \leq Y \cap A$. Thus by 1.43(f), $C_Y(D) \leq A$ and we conclude that

(IV)
$$C_I(D) = C_{I \cap A}(D).$$

Note that by the choice of D, $C_A(I \cap A) \leq D$ and so $C_A(I \cap A) = C_D(I \cap A)$. By 8.36(c), $C_A(I) = C_A(I \cap A) = Y \cap A$, and we conclude that

(V)
$$C_A(I) = C_D(I) = C_D(I \cap A) = C_A(I \cap A) = Y \cap A.$$

By 8.36(a) $C_Y(L) \leq Y \cap A$. Thus $C_Y(L) \leq C_D(I) \leq D \leq A$ and so $D/C_D(I)$ is an $N_L(Y)$ -invariant section of $A/C_Y(L)$. Since

$$I \cap A/C_{I \cap A}(L) = I \cap A/(I \cap A) \cap C_Y(L) \cong (I \cap A)C_Y(L)/C_Y(L)$$

as $N_L(Y)$ -modules and $C_{I \cap A}(L) \leq C_{I \cap A}(D)$, also $I \cap A/C_{I \cap A}(D)$ is (as an $N_L(Y)$ -module) isomorphic to a section of $A/C_Y(L)$.

By 2.18 any chief factor for $N_L(Y)$ on $A/C_Y(L)$ has order \tilde{q} and so $|D/C_D(I)|$ and $|I \cap A/C_{I\cap A}(D)|$ both are powers of \tilde{q} . As

(VI)
$$\tilde{q}|I \cap A/C_{I \cap A}(D)| \stackrel{(I)}{=} |I/I \cap A||I \cap A/C_{I \cap A}(D)| \stackrel{(IV)}{=} |I/I \cap A||I \cap A/C_I(D)| = |I/C_I(D)|,$$

we get that $|I/C_I(D)|$ is a power of \tilde{q} .

On the other hand, by the assumption of (c), D is not an offender on I. Thus $|D/C_D(I)| < |I/C_I(D)|$ and so, since both sides are powers of \tilde{q} ,

(VII)
$$\widetilde{q}|D/C_D(I)| \leq |I/C_I(D)| \stackrel{\text{(VI)}}{=} \widetilde{q}|I \cap A/C_{I \cap A}(D)| \stackrel{\text{(b)}}{\leq} \widetilde{q}|D/C_D(I \cap A)|.$$

By (V) $C_D(I) = C_D(I \cap A)$ and so $|D/C_D(I)| = |D/C_D(I \cap A)|$. Thus equality must hold in (VII). Hence

$$|I \cap A/C_{I \cap A}(D)| = |D/C_D(I \cap A)|$$

and so

 $|D||C_{I\cap A}(D)| = |I\cap A||C_D(I\cap A)| \leq |I\cap A||C_A(I\cap A)|.$

Since A is an offender on $I \cap A$, $|I \cap A||C_A(I \cap A)|| \leq |A||C_{I \cap A}(A)|$. So

$$|D||C_{I\cap A}(D)| \leq |A||C_{I\cap A}(A)|,$$

and the maximality of $|D||C_{I \cap A}(D)|$ shows that A is a best offender on $I \cap A$.

PROPOSITION 8.38. Suppose that $I \leq A$ and $\Omega_1 Z(A) \leq Z(L)$. Then Case (1), (5) (for n = 2 and q = 4), (7),(8), (9) or (10) of Theorem H holds.

PROOF. We will first show:

1°. Let $g \in M$ such that $C_Y(Q^g) \cap C_Y(A) \neq 1$. Then $[\overline{Q^g}, \overline{A}] \leq \overline{Q^g} \cap \overline{A} \text{ and } [Y, Q^g] \leq [A, I]C_Y(A).$

By 8.36(a) $C_Y(L) = C_Y(A)$ and so $[C_Y(Q^g) \cap C_Y(A), L] = 1$. Now Q! implies $L \leq N_G(Q^g)$ and thus by 8.5(a) Q^g normalizes A. So

$$[A, Q^g] \leq A \cap Q^g$$
 and $[Y, Q^g] \leq Y \cap Q^g \leq Y \cap O_p(L) = Y \cap A$.

By 8.36(c) $Y \cap A = [I, A]C_Y(A)$ and so (1°) holds.

 2° . Suppose that I is a vector space over the field K, Q acts K-semilinearly on I and A acts K-linearly on I. Then Q acts K-linearly on I.

As A acts non-trivially and K-linearly on I, $[I, A]C_I(A)$ is a proper K-subspace of I. Since Q normalizes A, $C_Y(Q) \cap C_Y(A) \neq 1$ and

$$[I,Q] \leq I \cap [Y,Q] \stackrel{(1^{-})}{\leq} I \cap [A,I]C_Y(A) = [A,I]C_I(A).$$

Thus Q centralizes the non-trivial K-space $I/[I, A]C_I(A)$. Hence Q acts K-linearly on I.

Note that Y is a p-reduced faithful Q!-module for \overline{M} with respect to \overline{Q} . By 8.36 we have that $[Y, A] \leq I$, and A acts nearly quadratically but not quadratically on I. By 8.5(b) Q normalizes A, and A normalizes Q. Thus the assumptions of the Nearly Quadratic Q!-Theorem D.11 are fulfilled for $\overline{M}, \overline{Q}$ and \overline{A} . We will now discuss the seven cases of that Theorem.

Case 1. $K := [F^*(\overline{M}), A]$ is the unique component of \overline{M} , $K \leq \overline{M^\circ}$, I is a simple K-module, $I = [Y, K\overline{A}]$ and A acts K-linearly on I, where $\mathbb{K} := End_K(I)$.

By 8.5(b) Q normalizes L and A, by 1.43(m), $\overline{A} \cong A/C_A(Y)$ is elementary abelian and $[Y, A] \neq 1$, and by 8.37(a), $Y = IC_Y(A)$. Moreover, by 8.36(a), $Z(A) = C_Y(L) = C_Y(A)$, and by 8.36(d) $|I/C_I(A)| \leq |A/C_A(I)|^2$. Since A acts \mathbb{K} -linearly on I, by (2°) also Q acts \mathbb{K} -linearly on I. As seen above, A acts nearly quadratically but not quadratically on I. Together with (1°) this shows that Case (1) of Theorem H holds.

Case 2. $M^{\circ} \cong \Omega_3(3)$, and Y is the corresponding natural module for M° .

Then Case (7) of Theorem H holds.

Case 3. Y = I, and there exists an \overline{M} -invariant set $\{K_1, K_2\}$ of subnormal subgroups of \overline{M} such that $K_i \cong SL_{m_i}(q)$, $m_i \leq 2$, q a power of p, $[K_1, K_2] = 1$ and as a K_1K_2 -module $Y \cong Y_1 \otimes_{\mathbb{F}_q} Y_2$ where Y_i is a natural $SL_{m_i}(q)$ -module for K_i . Moreover, $\mathbb{K} := End_{K_1K_2}(I) \cong \mathbb{F}_q$, and one of the following holds:

- (1) $\overline{M^{\circ}}$ is one of K_1, K_2 or K_1K_2 ,
- (2) $m_1 = m_2 = q = 2$, $\overline{M} \cong SL_2(2) \wr C_2$, $\overline{M^{\circ}} = O_3(\overline{M})\overline{Q}$ and $\overline{Q} \cong C_4$ or D_8 .
- (3) $m_1 = m_2 = p = 2, q = 4, \overline{M^\circ} = K_1 K_2 \overline{Q} \cong SL_2(4) \wr C_2, A acts \mathbb{K}$ -linearly on I and M° does not.

 \square

If \overline{Q} is homocyclic, then 8.10 shows that \overline{Q} is elementary abelian. This rules out the case $\overline{Q} \cong C_4$ in (2). So $\overline{Q} \cong D_8$ and $\overline{M^{\circ}} = K_1 K_2 \overline{Q} = \overline{M} \cong SL_2(2) \wr C_2$ in (2). In (3), since $K_1 K_2 \triangleleft \overline{M}$, M° acts \mathbb{K} -semilinearly on I, but not \mathbb{K} -linear. Hence also Q acts \mathbb{K} -semilinearly but not \mathbb{K} -linearly on I. Since A acts \mathbb{K} -linearly on I this contradicts (2°).

Now (1) and (2) show that Case (10) of Theorem H holds.

Case 4. $\overline{M} \cong \Gamma SL_2(4), \ \overline{M^{\circ}} \cong SL_2(4) \ or \ \Gamma SL_2(4), \ I \ is the corresponding natural module, and <math>|Y/I| \leq 2$.

Then Case (8) of Theorem H holds.

Case 5. $\overline{M} \cong \Gamma GL_2(4), \overline{M^{\circ}} \cong SL_2(4), I$ is the corresponding natural module, and Y = I.

Then Case (5) of Theorem H holds with n = 2 and q = 4.

Case 6. $\overline{M} \cong 3^{\circ}Sym(6), \ \overline{M^{\circ}} \cong 3^{\circ}Alt(6) \ or \ 3^{\circ}Sym(6), \ and \ Y = I \ is \ simple \ of \ order \ 2^{6}.$

Then Case (9) of Theorem H holds.

Case 7. $M \cong Frob(39)$ or $C_2 \times Frob(39)$, $\overline{M^{\circ}} \cong Frob(39)$ and Y = I is simple of order 3^3 .

Note that $|\overline{A}| = 3$, $|[Y, A]| = 3^2$, $|C_Y(A)| = 3$ and $C_Y(A) \leq [Y, A]$. By 8.36(a), $C_Y(A) = C_Y(L)$, and by 8.36(c), $Y \cap A = [Y, A]C_Y(L) = [Y, A]$. Hence $|Y \cap A/C_Y(L)| = 3$ and $|A/C_Y(L)| = |A/Y \cap A||Y \cap A/C_Y(L)| = 9$. It follows that $L/O_3(L) \cong SL_2(3)$ and $A/C_Y(L)$ is the natural $SL_2(3)$ -module for L. In particular, there exists an involution $t \in L \cap M^{\dagger}$ that inverts $A/C_Y(L)$ and so also \overline{A} . Thus $\overline{t} \notin Z(\overline{M})$, a contradiction since $\overline{M}/Z(\overline{M})$ has odd order.

8.5. The Proof of Theorem H

Clearly, one of the cases $I \leq A$, $I \leq A$ and $\Omega_1 Z(A) \leq Z(L)$, and $I \leq A$ and $\Omega_1 Z(A) \leq Z(L)$ holds. Hence Theorem H follows from 8.34, 8.35, and 8.38, respectively.

CHAPTER 9

The *Q*-tall Asymmetric Case II

In this chapter we continue the discussion of the Q-tall asymmetric case. More precisely, we discuss Case (1) of Theorem H proved in Chapter 8. As there we use a subgroup $L \in \mathfrak{L}_G(Y_M)$ with $L \leq N_G(Q)$ and investigate the action of $A (= O_p(L))$ on Y_M .

At this point in the proof of the Local Structure Theorem we have already left behind all cases where one might have detected a non-trivial offender on Y_M or its Fitting submodule I by using properties of conjugates of Y_M or the subgroups of $\mathfrak{H}_G(O_p(M))$ and $\mathfrak{L}_G(Y_M)$. Also the theorems on nearly quadratic action have already been exploited by showing that $\overline{M} = MC_G(Y_M)/C_G(Y_M)$ has a unique component K, that I is a simple K-module and that AQ acts \mathbb{K} -linearly on I, where $\mathbb{K} = End_K(I)$.

So in this chapter we need to apply the Theorems of Guralnick and Malle $[\mathbf{GM1}]$ and $[\mathbf{GM2}]$ on simple modules V for almost quasisimple groups that allow a non-trivial 2F-offender. In our case, A is such a 2F-offender on I. That is,

$$[I, A] \neq 0$$
 and $|I/C_I(A)| \leq |A/C_A(I)|^2$.

But not all the pairs (K, I) which we obtain by applying the Guralnick-Malle Theorems appear in the conclusion of the main theorem of this chapter. In section 9.1 we therefore provide some generic arguments which help to trim down the Guralnick-Malle list: If K is a genuine group of Lie type in characteristic p we show that $\overline{A} \leq K$ by using information about the outer automorphism group of K; and if I is a selfdual K-module we obtain a wealth of additional information and are able to give a fairly precise description of the action of A on I.

Here is the main result of this chapter.

THEOREM I. Let G be a finite \mathcal{K}_p -group, $S \in Syl_p(G)$, and let $Q \leq S$ be a large subgroup of G. Suppose that $M \in \mathfrak{M}_G(S)$ such that Y_M is asymmetric in G and Q-tall and that Case 1 of Theorem H holds. Then one of the following holds, where $Y := Y_M$, $\overline{M^{\dagger}} := M^{\dagger}/C_{M^{\dagger}}(Y)$, $I := F_Y(\overline{M})$, and q is some power of p:

- (1) $\overline{M^{\circ}} \cong SL_n(q), n \ge 3$, and I is a corresponding natural module.
- (2) p = 2, $\overline{M^{\circ}} \cong Sp_{2n}(q)$, $n \ge 2$, or $Sp_4(2)'$, and I is a corresponding natural module.
- (3) $\overline{M^{\circ}} \cong \Omega_n^{\epsilon}(q), n \ge 3, (n,q) \ne (3,3), p \text{ is odd if } n \text{ is odd, and } I \text{ is a corresponding natural module.}$
- (4) $\overline{M^{\circ}} \cong SL_n(q)/\langle (-id)^{n-1} \rangle$, $n \ge 5$, and I is the exterior square of a corresponding natural module.
- (5) $p \text{ is odd}, \overline{M^{\circ}} \cong SL_n(q)/\langle (-id)^{n-1} \rangle, n \ge 3, \text{ and } I \text{ is the symmetric square of a correspond-ing natural module.}$
- (6) $\overline{M^{\circ}} \cong SL_n(q)/\langle \lambda id \mid \lambda \in \mathbb{F}_q, \lambda^n = \lambda^{q_0+1} = 1 \rangle, n \ge 3, q = q_0^2, and I is the unitary square of a corresponding natural module.$
- (7) $\overline{M^{\circ}} \cong Spin_{10}^+(q)$, and I is a corresponding half-spin module.
- (8) $\overline{M^{\circ}} \cong E_6(q)$, and I is one of the (up to isomorphism) two simple $\mathbb{F}_p M^{\circ}$ -modules of \mathbb{F}_q -dimension 27.
- (9) p = 2, $\overline{M} = \overline{M^{\circ}} = Mat_{24}$, and I is the simple Todd or Golay-code module of \mathbb{F}_2 -dimension 11.
- (10) p = 2, $\overline{M^{\circ}} \cong Mat_{22}$, and I is the simple Golay-code module of \mathbb{F}_2 -dimension 10.
- (11) p = 2, $\overline{M} = \overline{M^{\circ}} \cong Aut(Mat_{22})$, and I is the simple Todd module of \mathbb{F}_2 -dimension 10.

- (12) p = 3, $\overline{M^{\circ}} \cong Mat_{11}$, and I is the simple Golay-code module of \mathbb{F}_3 -dimension 5.
- (13) p = 3, $\overline{M^{\circ}} \cong 2$ ·Mat₁₂, and I is the simple Golay-code module of \mathbb{F}_3 -dimension 6.

COROLLARY 9.1. Assume the hypothesis and notation of Theorem I. Suppose in addition that $Y \neq I$. Then one of the following holds:

- (1) $\overline{M^{\circ}} \cong Sp_{2n}(q)$ or $Sp_4(2)'$, p = 2, I is the corresponding natural module and $|Y/I| \leqslant q$.
- (2) $\overline{M^{\circ}} \cong \Omega_4^-(3)$, I is the corresponding natural module, |Y/I| = 3, and Y is isomorphic to the 5-dimensional quotient of a six dimensional permutation module for $\overline{M^{\circ}} \cong Alt(6)$.
- (3) $\overline{M^{\circ}} \cong \Omega_5(3)$, I is the corresponding natural module, and |Y/I| = 3.
- (4) $\overline{M^{\circ}} \cong \Omega_6^+(2)$, I is the corresponding natural module, and |Y/I| = 2.
- (5) p = 2, $\overline{M} = \overline{M^{\circ}} \cong Mat_{24}$, I is the simple Todd-module of \mathbb{F}_2 -dimension 11, and |Y/I| = 2.

COROLLARY 9.2. Assume the hypothesis and notation of Theorem I. Suppose in addition that $C_G(y)$ is of characteristic p for all $1 \neq y \in Y_M$. Then Y = I. Moreover, the cases (11) (Todd-module for $Aut(Mat_{22})$) and and (13) (Golay-module for $2 \cdot Mat_{12}$) of Theorem I do not occur.

Table 1 lists examples for Y_M , M and G fulfilling the hypothesis of Theorem I.

	Case	$[Y_M, M^\circ]$ for M°	с	Remarks	examples for G
	3	nat $\Omega_n^{\epsilon}(q)$	1	-	$P\Omega_{n+2}^{\epsilon}(q)$
*	3	nat $\Omega_3(5)$)	1	-	Co_1
*	3	nat $\Omega_4^-(2)$	1	-	$L_4(3)$
*	3	nat $\Omega_4^-(3)$	$\leqslant 3$	-	$U_6(2).c(.2)$
	3	nat $\Omega_4^-(3)$	1	-	McL
*	3	nat $\Omega_5(3)$	1	-	$Fi_{22}(.2)$
*	3	nat $\Omega_5(3)$	$\leqslant 3$	-	${}^{2}E_{6}(2).c(.2)$
*	3	nat $\Omega_6^+(2)$	$\leqslant 2$	-	$P\Omega_8^+(3).c(.2)$
*	3	nat $\Omega_7^+(3)$	1	-	$Fi'_{24}(.2)$
*	3	nat $\Omega_{10}^{+}(2)$	1	-	Μ
	3, 4	$\Lambda^2(\mathrm{nat})SL_n(q)$	1	$n \ge 4$	$P\Omega_{2n}^+(q), \Omega_{2n+1}(q) p \text{ odd}$
					$P\Omega_{2n+2}^{-}(q), O_{2n}^{+}(q) p = 2$
	5	$S^2(\text{nat})SL_n(q)$	1	-	$PSp_{2n}(q)$
	6	$U^2(\mathrm{nat})SL_n(q_0^2)$	1	-	$U_{2n}(q_0), U_{2n+1}(q_0)$
	7	half-spin $Spin_{10}^+(q)$	1	-	$E_6(q)$
	8	q^{27} for $E_6(q)$	1	-	$E_7(q)$
	9	Golay 2^{11} for Mat_{24}		-	Co_1
	9	Todd 2^{11} for Mat_{24}		-	J_4
*	9	Todd 2^{11} for Mat_{24}	$\leqslant 2$	-	$Fi'_{24}.c$
	10	Golay 2^{10} for Mat_{22}	1	-	Co_2
*	11	Todd 2^{10} for $Aut(Mat_{22})$		-	$Aut(Fi_{22})$
	12	Golay 3^5 for Mat_{11}	1	-	Co_3
*	12	Golay 3^6 for $2 \cdot Mat_{12}$	1	-	Co_1

TABLE 1. Examples for Theorem I

Here $c := |Y_M/[Y_M, M^\circ]|$, and * indicates that (*char* Y_M) fails in G.

9.1. Notation and Preliminary Results

NOTATION 9.3. We will use the notation introduced in Theorem I and in 8.3. In particular, since $L \in \mathfrak{L}_G(Y_M)$,

$$L/A \cong SL_2(\widetilde{q}), Sz(\widetilde{q}), \text{ or } D_{2r} \text{ and } \widetilde{q} = |Y/Y \cap A|.$$

Moreover, by our hypothesis we are in case (1) of Theorem H. Summing up we have:

- (a) A is Q-invariant, \overline{A} is elementary abelian, and A acts nearly quadratically on Y, but not quadratically on I.
- (b) $K := [F^*(\overline{M}), \overline{A}]$ is the unique component of $\overline{M}, K \leq \overline{M^\circ}$, and I is a simple K-module.
- (c) $|Y/C_Y(A)| \leq |\overline{A}|^2$ and $[Y, K\overline{A}] = I$.
- (d) AQ acts K-linearly on I, where $K := End_K(I)$.
- (e) If $g \in M$ with $C_Y(Q^g) \cap C_Y(A) \neq 1$, then $[\overline{Q^g}, \overline{A}] \leq \overline{Q^g} \cap \overline{A}$ and $[Y, Q^g] \leq [Y, A]C_Y(A)$.
- (f) $Y = IZ(A) = IC_Y(A)$ and $C_Y(A) = Z(A) = C_Y(L)$. In particular, $I \leq A$ and [Z(A), I] = 1.

For any group H and finite dimensional $\mathbb{F}_p H$ -module V we denote by $Y_V(H)$ the largest p-reduced submodule of V, i.e., the largest submodule U satisfying $O_p(H/C_H(U)) = 1$.

LEMMA 9.4. Let X be a non-trivial p-subgroup of \overline{M} . Then $C_X(K) = C_X(K/Z(K)) = C_X(\overline{M^\circ}) = 1, X \cap C_{\overline{M}}(K/Z(K))K \leq K$ and K = [K, X].

PROOF. From 9.3(b) we get that K is the unique component of \overline{M} , $K \leq \overline{M^{\circ}}$ and I is a simple K-module. The last fact implies that $C_{\overline{M}}(K)$ is a p'-group. Thus $C_X(K) = 1$ and so $C_X(\overline{M^{\circ}}) = 1$ since $K \leq \overline{M^{\circ}}$.

As K is quasisimple, $C_{\overline{M}}(K/Z(K)) = C_{\overline{M}}(K)$ and $X \cap C_{\overline{M}}(K/Z(K))K = X \cap C_{\overline{M}}(K)K$. Since $C_{\overline{M}}(K)$ is a p'-group, we conclude that $O^{p'}(C_{\overline{M}}(K)K) \leq K$ and so $X \cap C_{\overline{M}}(K)K \leq K$.

Note that K is quasisimple, $K \leq \overline{M}$ and $[K, X] \neq 1$. Thus K = [K, X], and 9.4 is proved.

LEMMA 9.5. (a) $A' = \Phi(A) \leq C_Y(L)$. In particular, A acts quadratically on $I \cap A$.

- (b) $I \cap A = [I, A]C_I(A)$. In particular, $I \cap A$ is a K-subspace of I.
- (c) $C_A(I \cap A) = Y \cap A = (I \cap A)C_Y(A).$
- (d) A is a non-trivial offender on $I \cap A$.
- (e) Suppose that no subgroup of A is a non-trivial offender on I. Then A is a non-trivial best offender on $I \cap A$.

PROOF. By 9.3(f) $I \leq A$ and $Z(A) = C_Y(L)$. Thus also $\Omega_1 Z(A) \leq Z(L)$ and we can apply 8.36 and 8.37.

- (a): By 1.43(a) $A' = \Phi(A) \leq C_Y(L)$ and so (a) holds.
- (b): By 8.36(b) $[I, A] \leq I \cap A$ and by 8.36(d) $Y \cap A = [I, A]C_Y(L)$. Hence $I \cap A = [I, A]C_I(L)$.

(c), (d) and (e): These claims follow from 8.36(c), 8.37(b) and 8.37(c), respectively.

LEMMA 9.6. Let $P \leq M$ with $AQ \leq P$ and $\overline{A} \leq O_p(\overline{P})$. Then P° normalizes \overline{A} and $[I, P^\circ] \leq I \cap A$.

PROOF. Since $\overline{A} \leq O_p(\overline{P}), C_Y(O_p(\overline{P})) \leq C_Y(A)$. Thus, for $g \in P$,

$$1 \neq C_Y(O_p(\overline{P})) \cap C_Y(Q^g) \leqslant C_Y(A) \cap C_Y(Q^g),$$

and so 9.3(e) gives

$$[\overline{Q^g}, \overline{A}] \leq \overline{A} \cap \overline{Q}^g$$
 and $[Y, Q^g] \leq [Y, A]C_Y(A)$.

Hence Q^g normalizes \overline{A} and since $[Y, A]C_Y(A) \leq Y \cap A$, $[I, Q^g] \leq I \cap A$. Thus P° normalizes \overline{A} and $[I, P^\circ] \leq I \cap A$.

LEMMA 9.7. Suppose that I is selfdual as an $\mathbb{F}_p K$ -module. Put $D := [I, A] \cap C_I(A)$. Then there there exists a non-degenerate K-invariant symplectic, symmetric or unitary K-form s on I. Moreover, for any such form s the following hold:

- (a) $M^{\circ}\langle A^M \rangle$ acts \mathbb{K} -linearly on I, and s is $M^{\circ}\langle A^M \rangle$ -invariant.
- (b) $|\mathbb{K}| = \widetilde{q}$.
- (c) D is 1-dimensional over \mathbb{K} and $I \cap A = [I, A]C_I(A) = D^{\perp}$.
- (d) $\dim_{\mathbb{K}}[I, a] \leq 2$ for all $a \in A$.

(e) $D \leq C_I(Q)$.

- (f) A centralizes D^{\perp}/D and $\overline{A} \leq O_p(N_{\overline{M}}(D))$.
- (g) Let X be a K-subspace of $C_I(A)$ with $C_I(A) = D \times X$. Put

$$T := \{g \in GL_{\mathbb{K}}(X^{\perp}) \mid s(u,v) = s(u^g, v^g) \text{ for all } u, v \in X^{\perp}\},\$$

and let \check{A} be the image of A in T. Then $X \cap X^{\perp} = 1$ and

$$\check{A}C_T(X^{\perp} \cap D^{\perp}) = C_T(D) \cap C_T(X^{\perp}/D)$$

- (h) s is symmetric.
- (i) $|Z(K)| \leq 2$.
- (j) Let $R_1 \leq M$ with $QA \leq R_1$, $Q \leq R_1$ and $O_p(\overline{R_1}) \neq 1$, and let $I_1 := Y_I(R_1)$ be the largest p-reduced R_1 -submodule of I. Then I_1 is a natural $SL_n(\tilde{q})$ -module for R_1° and for $\langle A^{R_1} \rangle$. Moreover, $D = [I_1, A] = C_{I_1}(Q)$.

PROOF. By 9.3(b), I is a simple K-module and by assumption I is a selfdual $\mathbb{F}_p K$ -module. So we can apply B.7 with (M, K, I, \mathbb{F}_p) in place of (H, N, V, \mathbb{F}) . In particular, the existence of s follows from B.7(a).

For $U \subseteq I$ put

$$U^{\perp} := \{ v \in I \mid s(u, v) = 0 \text{ for all } u \in U \}.$$

Recall from basic linear algebra :

1°. Let U and V be K-subspaces of I. Then (a) $U^{\perp\perp} = U$. (b) $U^{\perp} \cap V^{\perp} = (UV)^{\perp}$. (c) $(U \cap V)^{\perp} = U^{\perp}V^{\perp}$ (d) dim $I = \dim U + \dim U^{\perp}$. and

 2° . Let N be a group acting K-linearly on I and suppose that s is N-invariant. Then

- (a) $C_I(N)^{\perp} = [I, N].$
- (b) $[I, N]^{\perp} = C_I(N).$
- (c) Let U be an N-submodule of I. Then $C_N(U) = C_N(I/U^{\perp})$.

Next we prove:

 3° . (a) holds.

By B.7(c) M acts \mathbb{K} -semilinearly on I. Let M_1 consists of those elements in M that act \mathbb{K} linearly on I. Then by B.7(f), s is $O^{p'}(M_1)$ -invariant. By 9.3(d) QA is \mathbb{K} -linear on I and so is contained in $O^{p'}(M_1)$. It follows that $M^{\circ}\langle A^M \rangle = \langle (QA)^M \rangle \leq O^{p'}(M_1)$ and (a) holds.

 4° . (b) and (c) hold.

By 9.5(b)
$$I \cap A = [I, A]C_I(A)$$
, and so (using (1°) and (2°))
 $(I \cap A)^{\perp} = [I, A]^{\perp} \cap C_I(A)^{\perp} = C_I(A) \cap [I, A] = D$

and

$$I \cap A = (I \cap A)^{\perp \perp} = D^{\perp}.$$

Thus the the second part of (c) holds.

Since

 $\dim_{\mathbb{K}} I = \dim_{\mathbb{K}} D + \dim_{\mathbb{K}} D^{\perp} = \dim_{\mathbb{K}} D + \dim_{\mathbb{K}} I \cap A,$

we have $|D| = |I/I \cap A|$. By 2.14 YA/A is the unique non-trivial elementary abelian normal *p*-subgroup of $N_L(Y)/A$. It follows that YA = IA, and $N_L(Y)$ acts simply on

$$Y/Y \cap A \cong YA/A = IA/A \cong I/I \cap A = I/D^{\perp}.$$

In particular, $|D| = |I/I \cap A| = |Y/Y \cap A| = \tilde{q}$. In addition, by 9.3(f), $C_Y(A) = C_Y(L)$. Since $D \leq C_I(A) \leq C_Y(A)$ we conclude that $N_L(Y)$ centralizes D and so $C_M(D)$ acts simply on I/D^{\perp} . Now B.7(e) shows that D is 1-dimensional over \mathbb{K} . Thus $|\mathbb{K}| = |D| = \tilde{q}$, and (b) and (c) are proved. 5°. $[D^{\perp}, A] = [I \cap A, A] = [I, A, A] = D.$ From (c),

$$[D^{\perp}, A] = [I \cap A, A] = [[I, A]C_I(A), A] = [I, A, A].$$

By 9.3(a), A is nearly quadratic but not quadratic on I. So A is cubic on I and

$$1 \neq [I, A, A] \leq C_I(A) \cap [I, A] = D.$$

By (c), D is 1-dimensional over K, and we get [I, A, A] = D. Thus (5°) is proved.

 6° . (d) and (e) hold.

Let $a \in A$. Since a acts \mathbb{K} -linearly on I and $\dim_{\mathbb{K}} D = 1$, (5°) gives $\dim_{\mathbb{K}} [I \cap A, a] \leq 1$. As by (c) also $\dim_{\mathbb{K}} I/I \cap A = \dim_{\mathbb{K}} I/D^{\perp} = 1$, we get that $\dim_{\mathbb{K}} [I, a] \leq 2$. So (d) holds.

By 9.3(a) A and so also D is Q-invariant, and by (c) Q acts K-linearly on I. As D is 1-dimensional over K, this gives $D \leq C_I(Q)$. Hence (e) is proved.

 7° . (f) holds.

By (5°) $[D^{\perp}, A] = D$, by definition $D \leq C_I(A)$, and by (c), $[I, A]C_I(A) = D^{\perp}$. Hence A centralizes I/D^{\perp} , D^{\perp}/D and D. Moreover, by B.7(d), $N_M(D)$ normalizes the chain $D \leq D^{\perp} \leq I$. Thus $\langle A^{N_M(D)} \rangle$ centralizes all factors of this series and so acts as a *p*-group on I. By 8.4(a) $C_M(Y) = C_M(I)$ and so $\overline{A} \leq O_p(N_{\overline{M}}(D))$.

 8° . (g) holds.

Note that $X \leq C_I(A) = [I, A]^{\perp}$ and

$$[I, A] = C_I(A)^{\perp} = (D \times X)^{\perp} \stackrel{(1^{\circ})(a)}{=} D^{\perp} \cap X^{\perp} \text{ and } D^{\perp} X^{\perp} \stackrel{(1^{\circ})(c)}{=} (D \cap X)^{\perp} = I.$$

In particular, $X^{\perp} \leq D^{\perp}$ and by (c) $X \leq C_I(A) \leq D^{\perp}$, so $X = X \cap D^{\perp}$ and $X = X \cap C_I(A)$. It follows that

$$X \cap X^{\perp} = X \cap D^{\perp} \cap X^{\perp} = X \cap [I, A] = X \cap C_I(A) \cap [I, A] = X \cap D = 1.$$

Hence X is a non-degenerate subspace of I, and $I = X^{\perp} \times X$. Let $i \in X^{\perp} \setminus D^{\perp}$. As $D^{\perp} = [I, A]C_I(A)$ and A acts nearly quadratically on I, we have $[i, A]C_I(A) = [I, A]C_I(A) = D^{\perp}$. Intersecting with [I, A] gives $[I, A] = [i, A](C_I(A) \cap [I, A]) = [i, A]D$. As $[I, A] = X^{\perp} \cap D^{\perp}$ we conclude that (*) $[i, A]D = X^{\perp} \cap D^{\perp}$.

Put $T_1 := C_T(D) \cap C_T(X^{\perp} \cap D^{\perp}/D)$ and $T_2 = C_T(X^{\perp} \cap D^{\perp})$. Recall from (5°) that $[D^{\perp}, A] = D$, so $\check{A} \leq T_1$. Since by (c) D is 1-dimensional, D^{\perp} is a K-hyperplane of I, and since $X^{\perp} \leq D^{\perp}$, $X^{\perp}/X^{\perp} \cap D^{\perp}$ is 1-dimensional. Hence by the choice of $i \in X^{\perp}$, $X^{\perp} = (Ki)(X^{\perp} \cap D^{\perp})$. Since T_1 centralizes $X^{\perp} \cap D^{\perp}/D$, this gives $C_{T_1}(iD/D) = C_{T_1}(X^{\perp}/D)$.

Observe that $T = Cl(X^{\perp})$ (in the notation of Appendix B). Hence by B.6(a) $X^{\perp}/X^{\perp} \cap D^{\perp} \cong D^*$ as $\mathbb{K}T_1$ -modules and $C_{T_1}(X^{\perp}/D) = C_{T_1}(X^{\perp} \cap D^{\perp})$, and so $T_2 = C_{T_1}(iD/D)$. By (*) A acts transitively on $i(X^{\perp} \cap D^{\perp})/D$ and so a Frattini argument implies that $T_1 = \tilde{A}T_2$ and (g) holds.

9° . (h) holds.

Let X, T and \check{A} be as in (g), and let T_1 and T_2 be as in the proof of (g). Suppose that s is not symmetric. Then s is a unitary or symplectic form, where in the latter case p is odd since s is not symmetric. Hence B.28(c:a) and B.28(b:a) show that $\Phi(T_1) = T_2$. On the other hand, by (g) $T_1 = \check{A}T_2$. This gives $T_1 = \check{A}$, and T_1 is abelian, since \check{A} is abelian by 9.3(a). This contradiction shows that s is symmetric and so (h) holds.

 10° . (i) holds.

Let $k \in Z(K)$. By 9.3(b) I is a simple K-module, and by 9.3(d) $\mathbb{K} = End_K(I)$, so k acts as scalar $\lambda \in \mathbb{K}$ on I. By (h), s is \mathbb{K} -bilinear and so for any $v, w \in I$:

$$s(v,w) = s(v^k, w^k) = s(\lambda v, \lambda w) = \lambda^2 s(v, w).$$

Since s is non-zero we conclude that $\lambda^2 = 1$, and (i) holds.

We now begin with the proof of (j). Put $R := \langle A^{R_1} \rangle$.

11°. RR_1° acts K-linearly on I, and s is RR_1° -invariant.

Note that $RR_1^{\circ} \leq M^{\circ} \langle A^M \rangle$. Hence (a) implies (11°).

12°. $C_I(R_1^\circ) = 1 \text{ and } I = [I, R_1^\circ].$

Since $Q \notin R_1$, Q! implies $C_I(R_1^\circ) = 1$. By (11°) R_1° acts K-linearly on I and s is R_1° -invariant. Hence

$$[I, R_1^\circ] = C_I (R_1^\circ)^\perp = I,$$

and (12°) follows.

13°. $C_I(R) = 1$, and $[W, A] \neq 1$ and $W \neq I$ for every non-trivial p-reduced R_1 -submodule of I. In particular $[I_1, A] \neq 1$ and $I_1 \neq I$.

Set $I_0 := C_I(R)$ and suppose that $I_0 \neq 1$. Let $l \in R_1$. Since $A \leq R \leq R_1$ and $Q \leq R_1$, I_0 is R_1 invariant and $1 \neq C_{I_0}(Q^l) \leq C_Y(Q^l) \cap C_Y(A)$. Now 9.3(e) shows that $[Y, Q^l] \leq [Y, A]C_Y(A)$. By 9.3(f), Y = IZ(A). So [Y, A] = [I, A] and thus

$$[I,Q^{l}] \leq I \cap [Y,A]C_{Y}(A) = [I,A]C_{I}(A).$$

By (c) $[I, A]C_I(A) = I \cap A$. Hence $[I, Q^l] \leq I \cap A$ and so $[I, R_1^\circ] \leq I \cap A$. But by (12°), $I = [I, R_1^\circ]$ and by 9.3(f) $I \leq A$, a contradiction. Hence $C_I(R) = 1$.

Let W be a non-trivial p-reduced R_1 -submodule of I. Then $C_W(R) = 1$, and since $W \neq 1$ and $R = \langle A^{R_1} \rangle$, $[W, A] \neq 1$. Moreover, since $O_p(\overline{R_1}) \neq 1$, I is not p-reduced for R_1 , and $W \neq I$.

 $14^{\circ}. \qquad I = [I, R].$

By (11°) R acts K-linearly on I and s is R-invariant, and by (13°), $C_I(R) = 1$. Hence $[I, R] = C_I(R)^{\perp} = I$.

15°. A is a best offender and a strong dual offender on every A-submodule of $I \cap A$.

By 9.5(d), A is a non-trivial offender on $I \cap A$. By (5°) $[I \cap A, A] = D$ and so $[I \cap A, A]$ is 1-dimensional over K by (c). Hence A.33(c) shows that A is a best offender and a strong dual offender on every A-submodule of $I \cap A$. So (15°) holds.

16°. $D = [I_1 \cap A, A] \leq I_1.$

Since I_1 is A-invariant, $[I_1 \cap A, A] \leq [I_1, A] \leq I_1$. Recall from (5°) that $D = [I \cap A, A]$. By (15°) A is a strong dual offender on $I \cap A$, so either $D = [I_1 \cap A, A] \leq I_1$ or $[I_1 \cap A, A] = 1$. In the former case we are done. So suppose the latter. Then $I_1 \leq A$ since by (13°) $[I_1, A] \neq 1$. Then

$$[I_1, A]C_I(A) = [I, A]C_I(A),$$

since A is nearly quadratic on I. By (c) $I \cap A = [I, A]C_I(A)$, and so $I \cap A[I_1, A]C_I(A)$. Thus

$$D = [I \cap A, A] = [[I_1, A]C_I(A), A] = [I_1, A, A] \leq [I_1 \cap A, A] \leq [I \cap A, A].$$

So again $D = [I_1 \cap A, A]$, and (16°) is proved.

17°. I_1 is a K-subspace of I. In particular, I_1 is a KRQ-submodule of I.

Put $R_0 := C_{R_1}(I_1)$. By (16°) $D \leq I_1$, and since D is a non-trivial K-subspace of I and M acts K-semilinearly on I, we conclude that R_0 acts K-linearly on I. Thus R_0 centralizes KI_1 and so $C_{R_1}(I_1) = R_0 = C_{R_1}(KI_1)$. Since I_1 is *p*-reduced for R_1 we get

$$O_p(R_1/C_{R_1}(\mathbb{K}I_1)) = O_p(R_1/C_{R_1}(I_1)) = 1,$$

and $\mathbb{K}I_1$ is *p*-reduced. Thus $I_1 = \mathbb{K}I_1$, and I_1 is \mathbb{K} -subspace of *I*.

Clearly I_1 is R_1 -invariant and so also RQ-invariant, and by (11°) RQ acts K-linearly on I. Thus I_1 is a $\mathbb{K}RQ$ -submodule of I.

 $18^{\circ}. \qquad D = [I_1, A] \leq I_1 \leq A.$

If $I_1 \leq A$, then $D = [I_1 \cap A, A] = [I_1, A]$ by (16°). So we may assume for a contradiction that $I_1 \leq A$. Then

$$[I_1, A]C_I(A) = [I, A]C_I(A) = I \cap A$$

since A is nearly quadratic on I.

By (c) $I \cap A = D^{\perp}$ is a K-hyperplane in I, and by (17°) I_1 is a K-space. Hence

$$I = I_1(I \cap A) = I_1[I_1, A]C_I(A) = I_1C_I(A),$$

and so $[I, A] \leq [I_1, A] \leq I_1$. Thus $[I, R] \leq I_1$. But $[I_1, R] = I$ by (14°) and $I \neq I_1$ by (13°) , a contradiction.

19°. $U := [I_1, R]$ is a simple $\mathbb{F}_p R$ -submodule of I_1 , [U, A] = D, and A is a non-trivial strong dual offender on U. In particular, R is generated by strong dual offenders on U.

Let U_1 be a simple $\mathbb{F}_p R$ -submodule of I_1 . Since $C_I(R) = 1$ by (13°) , we have $[U_1, A] \neq 1$, and since A is a strong dual offender on I_1 by (15°) , $[I_1, A] = [U_1, A] \leq U_1$ and so $U = [I_1, R] \leq U_1$. The simplicity of U_1 implies $U_1 = U$, so U is a simple $\mathbb{F}_p R$ -submodule of I_1 .

By (17°) I_1 and thus also $U = [I_1, R]$ are $\mathbb{K}R$ -modules. Since by (c) D is a 1-dimensional \mathbb{K} -space, $1 \neq [U, A]$ shows that [U, A] = D.

By (18°) $I_1 \leq A$ and so $U \leq I \cap A$. Thus (15°) shows that A is a strong dual offender on U. Since $R = \langle A^{R_1} \rangle$ we conclude that R is generated strong dual offenders on U and so (19°) holds.

Observe that Q normalizes I_1 and R, so U is an RQ-module. Put H := RQ, $\tilde{H} := H/C_H(U)$ and $\mathbb{F} := End_R(U)$.

20°. U is a simple Q!-module for \widetilde{H} with respect to \widetilde{Q} .

By (19°) U is a simple R-module. Since $U = [I_1, R]$ and $R \leq R_1$, U is also an H-module. Suppose that $Q \leq H$. Since U is a simple R-module, we conclude that [U,Q] = 1. But then also $[U, R_1^{\circ}] = 1$, a contradiction since $C_I(R_1^{\circ}) = 1$ by (12°) . Hence $Q \leq H$, and 1.57(b) shows that U is a Q!-module for \tilde{H} with respect to \tilde{Q} .

21°. $|\mathbb{F}| = |\mathbb{K}| = \tilde{q}, Q \text{ acts } \mathbb{F}\text{-linearly on } U, \text{ and } \dim_{\mathbb{F}} D = 1.$

Let \mathbb{K}_U be the image of \mathbb{K} in End(U). By (17°) H acts \mathbb{K} -linearly on I_1 , so $\mathbb{K}_U \leq \mathbb{F}$. As $A \leq R$, [U, A] is \mathbb{F} -invariant. By (19°) [U, A] = D and so [U, A] is 1-dimensional over \mathbb{K} . Hence $d\mathbb{F} \subseteq D = d\mathbb{K}_U$ for $1 \neq d \in D$. By Schur's Lemma \mathbb{F} is a division ring and we conclude that $\mathbb{F} = \mathbb{K}_U$. Since Q acts \mathbb{K} -linearly on I we conclude that Q acts \mathbb{F} -linearly on U. Moreover, (d) gives $|\mathbb{F}| = |\mathbb{K}_U| = |\mathbb{K}| = \tilde{q}$.

 22° . (j) holds.

By (19°) U is a simple \tilde{R} -module and \tilde{R} is generated by strong dual offender on U. So we can apply C.5. We conclude that one of the following holds:

- (1) $R \cong SL_n(q), n \ge 2$, or $Sp_{2n}(q), n \ge 2$, and U is a corresponding natural module.
- (2) $p = 2, \widetilde{R} \cong Alt(6)$ or Alt(7), U is a spin-module of order 2^4 and $\widetilde{A} \cong \langle (12)(34), (13)(24) \rangle$
- (3) p = 2, $\widetilde{R} \simeq O_{2n}^{\epsilon}(2)$, $n \ge 3$, or Sym(n), n = 5 or $n \ge 7$, U is a corresponding natural module, and $|\widetilde{A}| = 2$.

Recall from 9.3(a) that A is Q-invariant. Hence \widetilde{Q} normalizes \widetilde{A} , [U, A] and $C_U(A)$. Moreover, by (e) $D \leq C_I(Q)$ and by (19°) D = [U, A], so Q! shows that $Q \leq N_H([U, A])$. In particular

(*)
$$Q \leq N_H([U, A])$$
 and $\tilde{Q} \leq O_p(N_{\widetilde{H}}([U, A])).$

Suppose that (2) holds. Then $|\mathbb{F}| = 2$ and |[U, A]| = 4. But this is a contradiction since $|\mathbb{K}| = |\mathbb{F}|$ by (21°) and $|[U, A]| = |D| = |\mathbb{K}|$ by (19°) .

Suppose that (3) holds. Then p = 2, and $N_{\widetilde{R}}([U, A]) \cong C_2 \times \widetilde{E}$, $\widetilde{E} \cong Sp_{2n}(2)$ or Sym(n-2), and $C_U(A)/[U, A]$ is a simple $N_{\widetilde{R}}([U, A])$ -module. By (*) $[\widetilde{Q}, N_{\widetilde{R}}([U, A])] \leq \widetilde{A} \leq C_{\widetilde{R}}(C_U(A))$, and by the simplicity of $C_U(A)/[U, A]$, $[C_U(A), Q, N_{\widetilde{R}}([U, A])] = 1$. Hence the Three Subgroups Lemma gives $[N_{\widetilde{H}}([U, A]), C_U(A), \widetilde{Q}] = 1$, and so, since $C_U(A) = [N_{\widetilde{H}}([U, A]), C_U(A)][U, A], C_U(A) \leq C_H(Q)$. But this contradicts Q! since $C_U(A)$ is a hyperplane in U.

Suppose that (1) holds. Then $|\mathbb{F}| = q$, and by (21°) D is a 1-dimensional \mathbb{F} -space and Q acts \mathbb{F} -linearly on U. If $\widetilde{R} \cong SL_n(q)$ then, since $GL_n(q)/SL_n(q)$ is a p'-group, $\widetilde{Q} \leq \widetilde{R}$ and so $\widetilde{H} = \widetilde{R}$. If $\widetilde{R} \cong Sp_{2n}(q)$, then the R-invariant symplectic forms on U form a 1-dimensional \mathbb{F} -space. Since Q is a p-group acting \mathbb{F} -linearly, Q centralizes this 1-space. Thus again $\widetilde{Q} \leq \widetilde{H}$ and $\widetilde{H} = \widetilde{R}$.

We have shown that $\tilde{H} = \tilde{R}$. Suppose that $\tilde{R} \cong Sp_{2n}(q)$, $n \ge 2$. Since U is a Q!-module, B.37 yields $D = C_U(Q)$. Note that $\dim_{\mathbb{F}} U = 2n \ge 4$, $\dim_{\mathbb{F}} [U, A] = \dim_{\mathbb{F}} D = 1$ and $\dim_{\mathbb{F}} [U, A] + \dim_{\mathbb{F}} C_V(A) = \dim_{\mathbb{F}} U$. Thus $\dim_{\mathbb{F}} C_U(A) \ge 3$, and we can choose a Q-invariant 2-dimensional \mathbb{F} -subspace I_2 of $C_U(A)$. Put $R_2 := N_{R_1}(I_2)$. Then R_2 induces a group on I_2 that contains $SL_2(q)$. Hence, I_2 is a simple and thus *p*-reduced R_2 -module. Moreover, since $[I_2, Q] \ne 1$, Q is not normal in R_2 , and since $O_p(\overline{R_1}) \le O_p(\overline{R_2})$ we have $O_p(\overline{R_2}) \ne 1$. So (13°) applied to (R_2, I_2) in place of (R_1, W) gives $[I_2, A] \ne 1$, a contradiction to $I_2 \le C_U(A)$.

Hence $\tilde{R} \cong SL_n(q)$, $n \ge 2$. Suppose for a contradiction that $U \ne I_1$. Since $C_{I_1}(R) = 1$ and $[I_1, R] = U$, C.22 shows that $R/C_R(I_1) \cong SL_3(2)$ and the commutator [U, A] is 2-dimensional, a contradiction since by (19°) [U, A] = D, and by (21°) D has dimension 1. Thus $U = I_1$.

Finally if $n \ge 3$ or n = 2 and $|\mathbb{F}| > 3$ then \widetilde{H} is quasisimple and so $\widetilde{H} = \widetilde{R_1^{\circ}}$. In the exceptional case $\widetilde{H} \cong SL_2(q), q \le 3$, the equality $\widetilde{H} = \widetilde{R_1^{\circ}}$ is easy to check. By (21°), $|\mathbb{F}| = q = \widetilde{q}$, so (j) holds.

9.2. The Proof of Theorem I

We will use the notation given in 9.3 and Theorem I.

LEMMA 9.8. Suppose that one of the following holds, where q is a power of p.

(a) $K \cong SU_n(q)$ or $\Omega_n^{\epsilon}(q)$, $n \ge 3$, and I is the corresponding natural module.

(b) $K \cong G_2(q)'$, and I has \mathbb{F}_q -dimension 6 or 7, depending on q being even or odd.

(c) I is an FF-module for \overline{M} .

Then Theorem I holds.

PROOF. Suppose first that (a) holds. If I is a natural $SU_n(q)$ -module for K, then $\mathbb{K} = \mathbb{F}_{q^2}$ and there exists a K-invariant non-degenerate unitary K-form s on I. So we can apply 9.7(h) and conclude that s is symmetric, a contradiction.

Thus I is a natural $\Omega_n^{\epsilon}(q)$ -module for $K, n \ge 3$. As K is quasisimple, $(n,q) \ne (3,3)$. Since I is a simple K-module, p is odd if n is odd. By 9.3(d), Q acts K-linearly on I and thus B.35(d) shows that either $\overline{Q} \le K$ or p = 2 and $K \cong \Omega_n^{\epsilon}(q)$. Suppose the latter, then $n \ge 4$, and since K is quasisimple, $K \not\cong \Omega_4^+(q)$. Thus B.37 shows that $\overline{Q} \le K$ also in this case. As K is quasisimple we conclude that $K = \overline{M^{\circ}}$. Thus Theorem I(3) holds.

Suppose next that (b) holds, that is, $K \cong G_2(q)'$ and I has dimension 6 or 7. Then $\mathbb{K} = \mathbb{F}_q$ and I is selfdual. In particular, we again can apply 9.7. Then for $D := [I, A] \cap C_I(A)$

$$q = \widetilde{q}$$
 and $\dim_{\mathbb{K}} D = 1$.

Since A acts K-linearly on I, A does not induce any non-trivial field automorphisms on K. It follows that either $\overline{A} \leq K$ or q = 2 and $K\overline{A} \cong G_2(2)$. Thus either $K\overline{A} \cong G_2(q)$ or q = 2 and $K\overline{A} = K \cong G_2(2)'$. Put $R := C_{K\overline{A}}(D)$. Since D is a singular 1-subspace of I and K acts transitively on the singular 1-spaces, D is centralized by a Sylow p-subgroup of $K\overline{A}$. Thus $R \sim q^{2+1+2}SL_2(q)$ (if $K\overline{A} \cong G_2(q)$) or $2^{2+2}SL_2(2)$ (if q = 2 and $K\overline{A} \cong G_2(2)'$). In either case, $C_R(D^{\perp}/D)$ is the unique elementary abelian normal subgroup of order q^2 in R and acts quadratically on I. This is a contradiction, since A does not act quadratically on I by 9.3(a) and $A \leq C_R(D^{\perp}/D)$ by 9.7(f)

Suppose now that (c) holds and let X be a non-trivial best offender in \overline{M} on I. By 9.4 K = [K, X] and $C_X(\overline{M^\circ}) = 1$. In particular, C.24 applies to \overline{M} and I. Put $J = J_{\overline{M}}(I)$. Then $K = [K, X] \leq J$.

Assume that C.24(1) holds. Then $J \cong SL_2(q)^n$ and I is a direct sum of natural $SL_2(q)$ -modules for J. Since I is a simple K-module and $K \leq J$ we conclude that $J \cong SL_2(q)$ and I is a natural $SL_2(q)$ -module. It follows that $\mathbb{K} = \mathbb{F}_q$ and $\dim_{\mathbb{K}} I = 2$. Since A acts \mathbb{K} -linearly on I this implies that A acts quadratically on I, a contradiction. Thus C.24(2) holds. Then $F^*(J)$ is quasisimple and so $K = F^*(J)$. In the cases C.24(2:c:1) and (2:c:3) I is a direct sum of at least two non-trivial $F^*(J)$ -submodules, a contradiction since I is a simple K-module.

Hence C.24(2:c:2) holds. So by C.24(2:c:2:b)

(*) either
$$\overline{M^{\circ}} = K$$
 or $\overline{M^{\circ}} \cong Sp_4(2), \ 3 \cdot Sym(6), \ SU_4(q).2, \ \text{or} \ G_2(2),$

where I is the natural $SU_4(q)$ -module for K in the $SU_4(q)$.2-case. Moreover, by C.24(2:c:2:c) one of the cases C.3 (1) - (9), (12) applies to (J, I), with $n \ge 3$ in case (1), $n \ge 2$ in case (2), and n = 6 in case (12). We will now treat these cases of C.3 one by one.

Suppose that C.3 (1) holds with $n \ge 3$. Then I is a natural $SL_n(q)$ -module for J. Thus $K = F^*(J) = J$ and by (*), $K = \overline{M^{\circ}}$. So I is a natural $SL_n(q)$ for $\overline{M^{\circ}}$, and Theorem I(1) holds.

Suppose that C.3 (2) holds with $n \ge 2$. Then *I* is a natural $Sp_{2n}(q)$ -module for *J*. Moreover, $K = F^*(J) \cong Sp_{2n}(q)', \mathbb{K} = \mathbb{F}_q$, and there exists a *K*-invariant non-degenerate symplectic \mathbb{K} -form on *I*. By 9.7(h) this form is symmetric, and we conclude that p = 2. By (*) either $\overline{M^\circ} = K \cong Sp_{2n}(q)'$ or $\overline{M^\circ} \cong Sp_4(2)$. Thus Theorem I(2) holds.

Suppose that C.3 (3) holds. Then I is natural $SU_4(q)$ -module for J. Hence I is also a natural $SU_4(q)$ -module for $K = F^*(J) = J$, a case we have already treaded assuming (a).

Suppose that C.3 (4) holds. Then I is a natural $\Omega_n^{\epsilon}(q)$ - or $O_n^{\epsilon}(q)$ -module for J for various (n, q, ϵ) with $n \ge 4$. Since $K = F^*(J)$ is quasisimple we conclude that $K \cong \Omega_n^{\epsilon}(q)$, a case we have already treaded assuming (a).

Suppose that C.3 (5) holds. Then $J \cong G_2(q)$, p = 2 and I is the natural $G_2(q)$ -module of order q^6 . Then $K = F^*(J) = J' \cong G_2(q)'$, a case we have already treaded assuming (b).

Suppose that C.3 (6) holds. Then $J \cong SL_n(q)/\langle -id^{n-1} \rangle$, $n \ge 5$, and V is the exterior square of a natural $SL_n(q)$ -module. Thus $K = F^*(J) = J$ and by (*) $\overline{M^\circ} = K$. Hence Theorem I(4) holds.

Suppose that C.3 (7) holds. Then $J \cong Spin_7(q)$ and I is the spin module of order q^8 . Thus $K = F^*(J) = J \cong Spin_7(q)$. Let R be the centralizer in K of a QA-invariant 1-dimensional singular subspace of the natural $\Omega_7(q)$ -module. Put $R_1 = R\overline{QA}$ and $I_1 = C_I(O_p(R))$. Then I_1 is a natural $Sp_4(q)$ -module for R. In particular, I_1 is a simple R_1 module and so $I_1 = Y_I(R_1)$. Then Q! implies that $[I_1, Q] \neq 1$ and so $\overline{Q} \notin R_1$. Thus 9.7(j) shows that I_1 is a natural $SL_n(\widetilde{q})$ -module for R_1° . Since both R and R_1° are normal in R_1 , this is a contradiction.

Suppose that C.3(8) holds. Then $J \cong Spin_{10}^+(q)$ and I is the half-spin module. Thus $K = F^*(J) = J$ and by $(*), \overline{M^\circ} = K$. Hence Theorem I(7) holds.

Suppose that C.3(9) holds. Then $J \cong 3$ ·Alt(6) and $|V| = 2^6$; in particular, $K = F^*(J) = J$ and $\mathbb{K} = \mathbb{F}_4$. Since A acts \mathbb{K} -linearly on I and any elementary abelian 2-subgroup of $GL_3(4)$ acts quadratically, we conclude that A acts quadratically on I, a contradiction.

Suppose finally that C.3(12) holds with n = 6. Then $J \cong Alt(6)$ or Sym(6) and I is a corresponding natural module; in particular, $K = F^*(J) = Alt(6) = Sp_4(2)'$. By $(*), \overline{M^\circ} = K \cong Sp_4(2)'$ or $\overline{M^\circ} \cong Sp_4(2)$ and Theorem I(2) holds.

LEMMA 9.9. Suppose that K is a quasisimple genuine group of Lie-type¹ defined over a field of characteristic p and I is not an FF-module for \overline{M} . Then $\overline{A} \leq K$.

PROOF. Let $K = {}^{d}\Sigma(q)$ (see A.58(b) for the definition). So q is a power of p and $d \in \{1, 2, 3\}$. By way of contradiction we assume $\overline{A} \leq K$. Since $K \leq \overline{M}$ by 9.3(b), the action of \overline{M} on K induces a chain of homomorphisms

$$M^{\dagger} = \overline{M} \rightarrow Aut(K/Z(K)) \rightarrow Out(K/Z(K)) := Aut(K/Z(K))/Inn(K/Z(K)).$$

Let ϕ be the resulting homomorphism from \overline{M} to Out(K/Z(K)), and for $X \leq \overline{M^{\dagger}}$ let $\hat{X} := \overline{X}\phi$. Note that $C_{\overline{M}}(K/Z(K))K$ is the kernel of ϕ in \overline{M} .

1°. Let $X \leq S$. Then $\widehat{X} \cong \overline{X}/\overline{X} \cap K$. In particular, \widehat{A} is a non-trivial elementary abelian *p*-subgroup of Out(K/Z(K)) of order $|\overline{A}/\overline{A} \cap K|$.

¹For the definition see A.58.

This holds since by 9.4, $\overline{X} \cap \ker \phi = \overline{X} \cap C_{\overline{M}}(K/Z(K))K = \overline{X} \cap K$.

We fix the following notation:

Let Δ be the Dynkin diagram of K. We often identify Δ with its set of vertices. For a subdiagram $\Lambda \subseteq \Delta$, let P_{Λ} be the corresponding Lie-Parabolic subgroup of K with $\overline{S} \cap K \leq P_{\Lambda}$. In case of a minimal Lie-parabolic subgroup; i.e., if $\Lambda = \{\lambda\}$, we also write P_{λ} rather than P_{Λ} .

Put $K_{\Lambda} := O^{p'}(P_{\Lambda})$ and $Z_{\Lambda} := C_K(K/O_p(K))$. If Λ is connected then $K_{\Lambda}/O_p(K_{\Lambda})$ and K_{Λ}/Z_{Λ} are genuine groups of Lie-type with Dynkin diagram Λ and defined over \mathbb{F}_{q^d} or \mathbb{F}_q . If $\Lambda_1, \ldots \Lambda_l$ are the connected components of Λ then $K_{\Lambda}/O_p(K_{\Lambda})$ is isomorphic to a central product of the groups $K_{\Lambda_i}/O_p(K_{\Lambda_i}), 1 \leq i \leq l$. Note that $\Lambda = \emptyset$ iff P_{Λ} is *p*-closed and iff $K_{\Lambda} = \overline{S} \cap K$. Also $\Lambda = \Delta$ iff $K_{\Lambda} = K$ and iff $O_p(K_{\Lambda}) = 1$.

If Λ is QA-invariant put $R_{\Lambda} := K_{\Lambda}\overline{QA}$; in particular $R_{\Delta} = K\overline{QA}$. Observe that $K \cap \overline{QA} \leq K \cap \overline{S} \leq P_{\Lambda}$ and so

$$R_{\Lambda} \cap K = K_{\Lambda}(K \cap \overline{QA}) \leq O^{p'}(P_{\Lambda}).$$

It follows that $R_{\Lambda} \cap K = K_{\Lambda}$ and that R_{Λ} is a parabolic subgroup of R_{Δ} with $\overline{S} \cap R_{\Delta} = (\overline{S} \cap K)\overline{QA} \leqslant R_{\Lambda}$.

Conversely, let R be a parabolic subgroup of R_{Δ} with $\overline{S} \cap R_{\Delta} \leq R$ and $O^{p'}(R \cap K) = R \cap K$. Then by A.63 $N_K(R \cap K)$ is a Lie-parabolic subgroups of K and so $R = R_{\Lambda}$ for a unique QA-invariant $\Lambda \subseteq \Delta$. We denote this Λ by $\Delta(R \cap K)$.

Finally, let $I^* := Hom_{\mathbb{F}_p}(I, \mathbb{F}_p)$ be the dual module of the \mathbb{F}_p -module I.

In the following we fix a proper (possible empty) QA-invariant subdiagram $\Lambda \subseteq \Delta$. Put $R := R_{\Lambda}$, and let $I_R := Y_I(R)$ be the largest *p*-reduced *R*-submodule of *I*. If QA acts transitively on Δ , observe that $\Lambda = \emptyset$ and $R = \overline{S} \cap K \overline{QA}$.

From A.60 applied to the adjoint version K/Z(K):

- 2° . There exist subgroups Diag and Φ and a subset Γ of Out(K/Z(K)) such that
- (a) $\Phi\Gamma$ is a subgroup of Out(K/Z(K)), $\Phi \leq \Phi\Gamma$, $Out(K/Z(K)) = Diag\Phi\Gamma$, $Diag \cap \Phi\Gamma = 1$ and $Diag \leq Out(K/Z(K))$, and
- (b) Diag is a p'-group.
- (c) $\Phi \cong Aut(\mathbb{F}_{q^d})$. In particular, Φ is cyclic.
- (d) $C_{Diag\Phi\Gamma}(\Delta) = Diag\Phi$.

Observe that $\Phi\Gamma$ contains a Sylow *p*-subgroup of Out(K/Z(K)), since $Out(K/Z(K)) = Diag\Phi\Gamma$ and Diag is *p'*-group. Thus, replacing $\Phi\Gamma$ by a suitable conjugate under Diag, we may assume that

3°. $\hat{S} \leq \Phi \Gamma$. In particular, $\hat{S} \cap Diag = 1$.

By A.65

- 4°. There exists $\tau \in \Gamma$ such that $\tau^2 = 1$ and $I^* \cong I^{\tau}$ as an $\mathbb{F}_p K$ -module. Moreover,
- (1) If $K = A_n(q), n \neq 2$, $D_{2n+1}(q), n \geq 2$, or $E_6(q)$, then $\Gamma = \langle \tau \rangle$ and τ induces the unique non-trivial graph automorphism on Δ ,
- (2) otherwise $\tau = 1$.

Next we show:

5°. Let $s \in S$. Suppose that s acts trivially on Δ and induces an inner automorphism on K_{δ}/Z_{δ} for each $\delta \in \Delta$. Then $\overline{s} \in K$.

By (1°) it suffices to show that $\hat{s} = 1$. Since *s* acts trivially on Δ , (2°)(d) shows that $\hat{s} \in Diag\Phi$. By (3°), $\hat{s} \in \Phi\Gamma$ and so $\hat{s} \in \Phi$. Choose $\delta \in \Delta$ such that K_{δ}/Z_{δ} is defined over \mathbb{F}_{q^d} . Then *s* induces the same field automorphism on K_{δ}/Z_{δ} as on *K* (see the description of field automorphism in [**GLS3**, 2.5].) As *s* induces inner automorphism on K_{δ}/Z_{δ} we conclude that $\hat{s} = 1$.

6°. There exists $\epsilon \in \Delta$ such that either A does not fix ϵ or A fixes ϵ and induces some non-trivial outer automorphism group on $K_{\epsilon}/Z_{\epsilon}$. In particular, $[K_{\epsilon}, A]$ is not a p-group.

We first show the existence of an $\epsilon \in \Delta$ with the required property. For this we may assume that A acts trivially on Δ . Since $\overline{A} \leq \overline{K}$, (5°) shows that A induces a non-trivial outer automorphism group on $K_{\epsilon}/Z_{\epsilon}$ for every $\epsilon \in \Delta$. This establishes the existence of ϵ .

Assume that $[K_{\epsilon}, A]$ is p-group. Then $[K_{\epsilon}, A](\overline{S} \cap K)$ is p-subgroup of K. Hence

$$[K_{\epsilon}, A] \leq \overline{S} \cap K \leq K_{\epsilon}$$
 and $[K_{\epsilon}, A] \leq O_p(K_{\epsilon}) \leq Z_{\epsilon}$.

It follows that A normalizes K_{ϵ} , so A fixes ϵ and centralizes $K_{\epsilon}/Z_{\epsilon}$. In particular, A does not induce a non-trivial outer automorphism group on $K_{\epsilon}/Z_{\epsilon}$, a contradiction.

In the following let ϵ be any element of Δ such that either A does not fix ϵ or A fixes ϵ and induces some non-trivial outer automorphism group on $K_{\epsilon}/Z_{\epsilon}$.

7°.
$$\widetilde{q} = p \leq 3$$
; and if $\widetilde{q} = 3$ then $K = D_4(q)$, $\widehat{A} = \Gamma' \cong C_3$, and \widehat{A} acts non-trivially on Δ .

Suppose that $\tilde{q} > 2$. Then by 2.18 $\overline{A} = [\overline{A}, N_L(Y)]$ and any composition factor of $N_L(Y)$ on \overline{A} has order \tilde{q} . Thus $\hat{A} = [\hat{A}, \widehat{N_L(Y)}] \leq Out(K/Z(K))'$, and \tilde{q} divides $|\hat{A}|$ since by $(1^\circ) |\overline{A}/\overline{A} \cap K| = |\hat{A}|$. By $(2^\circ) Out(K/Z(K))$ is a semidirect product of *Diag* by $\Phi\Gamma$, and by $(3^\circ) \hat{A} \leq \hat{S} \leq \Phi\Gamma$. It follows that $\hat{A} \leq (\Phi\Gamma)'$. Thus $\Phi\Gamma$ is not abelian, and we can apply A.61. So Δ is of type D_4 , $\Gamma \cong Sym(3)$ and $(\Phi\Gamma)' \cong C_3$. Thus $\hat{A} \cong C_3$. Since \tilde{q} divides $|\hat{A}|$, we conclude that $\tilde{q} = 3$, and so (7°) holds.

8°. $\mathbb{K} = \mathbb{F}_p$, $I_R = C_I(O_p(R \cap K))$ is a simple $R \cap K$ -module, and $C_I(S) = C_{I_R}(S) = C_{I_R}(\overline{S} \cap K) = C_I(\overline{S} \cap K)$ has order p.

By $(7^{\circ}) \tilde{q} = p$ and so $|I/I \cap A| = \tilde{q} = p$. Since by 9.5(b) $I \cap A$ is K-subspace of I we conclude that |K| = p and the first statement in (8°) holds.

Clearly $1 \neq I_R \leq C_I(O_p(R \cap K))$. Recall from 9.3(b) that I is a simple K-module. By Smith's Lemma A.63 $C_I(O_p(R \cap K))$ is a simple $\mathbb{K}(R \cap K)$ -module. Since $\mathbb{K} = \mathbb{F}_p$ we conclude that $C_I(O_p(R \cap K))$ is a simple $R \cap K$ -module. So $I_R = C_I(O_p(R \cap K))$, and the second statement holds.

Steinberg's Lemma A.62 shows that $C_I(\overline{S} \cap K)$ is 1-dimensional over \mathbb{K} and so has order p. Since $C_{I_R}(\overline{S} \cap K) \neq 1$ and $C_I(S) \leq C_I(\overline{S} \cap K)$ also the last statement holds.

9°. QA does not act transitively on Δ .

Suppose that QA acts transitively on Δ . Then every vertex of Δ has the same valency, and since Δ has vertices of valency 1, we get $|\Delta| = 1$ or $|\Delta| = 2$. This rules out the case p = 3 in (7°) and so $p = \tilde{q} = 2$. By $(8^{\circ}) \mathbb{K} = \mathbb{F}_p = \mathbb{F}_2$ and $C_I(S) = C_I(\overline{S} \cap K)$ has order 2. Hence $[C_I(\overline{S} \cap K), N_K(\overline{S} \cap K)] = 1$. Let P_1 be a minimal Lie-parabolic subgroup of K containing $\overline{S} \cap K$ and put $R_1 := O^{2'}(P_1)$. The transitive action of QA on Δ implies $K = \langle R_1^{QA} \rangle$. Since $C_I(R_1) \leq C_I(\overline{S} \cap K)$ and QA centralizes $C_I(\overline{S} \cap K)$, this gives $C_I(R_1) = C_I(K) = 1$ and so

$$[C_I(S), R_1] = [C_I(\overline{S} \cap K), R_1] \neq 1.$$

Hence A.66 shows that

(*) I is the Steinberg module of
$$\mathbb{F}_2$$
-dimension $|\overline{S} \cap K|$.

and I is, as an $\overline{S} \cap K$ module, isomorphic to the regular permutation module $\mathbb{F}_2[\overline{S} \cap K]$. The latter fact shows that

 $|I| = |[I, t]|^2$ for every involution $t \in K$.

Note that I is selfdual (for example $I^* \cong I^{\tau}$ by (4°) and I^{τ} is the Steinberg module by A.66). Let $1 \neq a \in A$. Then 9.7(d) gives $\dim_{\mathbb{K}}[I, a] \leq 2$ and so

$$(**) \qquad |[I,a]| \leq 4 \quad \text{for all } 1 \neq a \in \overline{A}.$$

Suppose that there exists $1 \neq a \in \overline{A} \cap K$. Then $|I| = |[I,a]|^2 \leq 4^2 = 2^4$. By (*) I has \mathbb{F}_2 -dimension $|\overline{S} \cap K|$ and we conclude $|\overline{S} \cap K| \leq 4$. Hence $K \cong SL_2(4)$ and I is the natural Sym(5)-module for $K\overline{A}$. But Sym(5) has two classes of maximal elementary abelian 2-subgroups, one acts quadratically on the natural Sym(5)-module, and the other is contained in Alt(5). Since $\overline{A} \leq K$ we conclude that A acts quadratically on I, which contradicts 9.3(a).

Hence $\overline{A} \cap K = 1$ and (1°) gives $|\hat{A}| = |\overline{A}/\overline{A} \cap K| = |\overline{A}|$. Since A does not act quadratically on I, we have $|\overline{A}| \ge 4$ and so $|\hat{A}| \ge 4$. Note that \hat{A} is elementary abelian, $\hat{A} \le \Gamma \Phi$ (by (3°)), Φ is cyclic (by (2°)) and $|\Gamma| \le |\Delta| \le 2$. We conclude that $|\Delta| = |\Gamma| = 2$, $\Gamma \le \hat{A}$, $|\hat{A}| = 4$ and $\Phi \ne 1$. In particular, A acts transitively on Δ . As seen above $[C_I(S), R_1] \ne 1$ and so $[C_I(O_p(R_1)), O^p(R_1)] \ne 1$. Let $a \in A \setminus C_A(\Delta)$. Since $\Phi \ne 1$ and A acts transitively on Δ , $R_1/O_p(R_1)$ is a group of Lie-type defined over a field of order larger than 2. Hence $|C_I(O_p(R_1))| \ge 2^4$. Observe that

$$|C_I(O_p(R_1)) \cap C_I(O_p(R_1))^a| \leq |C_I(O_p(R_1)O_p(R_1)^a)| = |C_I(\overline{S} \cap K)| = 2,$$

and so $|[C_I(O_p(R_1)), a]| \ge \frac{2^4}{2} = 8 > 4$, a contradiction to (**). Thus (9°) is proved.

10°. Suppose that $O^p(R) \neq 1$. Then $[I, O^p(R)] \leq I_R$.

Suppose for a contradiction that $[I, O^p(R)] \leq I_R$. Since K is a group of Lie-type defined over a field of characteristic p, K has parabolic characteristic p. So $O^p(R) \neq 1$ gives $E := O_p(O^p(R)) \neq 1$. In particular, $[I, E] \neq 1$. Moreover, by (8°) I_R is a simple R-module and thus $[I_R, E] = 1$. As

$$[I, E] \leq [I, O^p(R)] \leq I_R \leq C_I(E),$$

we have $C_{I/C_I(E)}(R) \neq 1$. Hence there exists $i \in I$ such that $[i, R] \leq C_I(E)$ and $[i, E] \neq 1$. Since E and $iC_I(E)$ are R-invariant, also [i, E] is R-invariant. As I_R is a simple R-module and $[i, E] \leq [I, E] \leq I_R$ this gives $[i, E] = I_R$. Thus

$$|E| \ge |E/C_E(i)| = |[i, E]| = |I_R| = |[I, E]|,$$

so E is an offender on I^* . Since $[I, E] \leq C_I(E)$, E acts quadratically on I and so E is elementary abelian. By (4°) $I^* \cong I^{\tau}$ as an $\mathbb{F}_p K$ -module and therefore $E^{\tau^{-1}}$ is an elementary abelian offender on I, contrary to the assumption that I is not an FF-module.

11°. Suppose that $O^p(R) \leq \langle \overline{A}^R \rangle$. Then $I_R \leq I \cap A$, and A is a quadratic best offender on I_R .

We first apply 9.5. By 9.5(a) A acts quadratically on $I \cap A$ and so also on I_R . Since I is not an FF-module for \overline{M} , 9.5(e) shows that A is a best offender on $I \cap A$. Thus, by A.31 A is also a best offender on every A-submodule of $I \cap A$. Hence, it suffices to prove $I_R \leq I \cap A$.

So suppose for a contradiction that $I_R \leq A$. Since $\tilde{q} = p$ by (7°) we have $Y \leq YA = I_RA$. Hence 8.7 applied with $U = I_R$ gives $[Y, A] \leq [I_R, A]$ and thus $[I, A] \leq I_R$. By assumption $O^p(R) \leq \langle \overline{A}^R \rangle$, and we conclude that $[I, O^p(R)] \leq I_R$. If $O^p(R) = 1$, then R is a p-group and $I_R \leq C_I(R) \leq C_I(A)$, a contradiction as $C_I(A) \leq I \cap A$ by 9.5(b). Thus $O^p(R) \neq 1$. But then (10°) shows that $[I, O^p(R)] \leq I_R$, again a contradiction.

12°. Suppose that $\Delta(R \cap K) \neq \emptyset$ and \overline{QA} acts transitively on $\Delta(R \cap K)$. Then R is *p*-minimal.

Since Δ has no closed circuits, $\Delta(R \cap K)$ contains a vertex of valency 1. Now the transitivity of \overline{QA} shows that the connected components of $\Delta(R \cap K)$ have size 1.

Note that $O^p(R) \leq R \cap K$ and since $R \cap K = O^{p'}(R \cap K)$,

$$R \cap K/O_p(R \cap K) = E_1 \circ E_2 \circ \ldots \circ E_n,$$

where n is the number of connected components of $\Delta(R \cap K)$, and E_i is a rank 1 group of Lie-type. The latter fact shows that E_i is also p-minimal. Hence the hypothesis of 1.39 is satisfied, and we conclude that R is p-minimal.

Case 1. I is selfdual as an $\mathbb{F}_p K$ -module.

We now refine the choice of R from the beginning of the proof. By $(9^\circ) QA$ is not transitive on Δ . Thus, every QA-orbit of Δ is a proper subset of Δ . Choose R in addition such that

- (i) $\Delta(R \cap K)$ is a QA-orbit on Δ ;
- (ii) if $C_K(C_I(S))$ is not p-closed then $R \cap K \leq C_K(C_I(S))$; and
- (iii) if $C_K(C_I(S))$ is p-closed and $N_K(\overline{Q})$ is not p-closed then $R \cap K \leq N_K(\overline{Q})$.

Put $R_1 := R_{\Delta \setminus \Delta(R \cap K)}$ and $I_1 := Y_I(R_1)$. Observe that also $\Delta \setminus \Delta(R \cap K)$ is a proper QA-invariant subset of Δ .

If $R \cap K \leq C_K(C_I(S))$ then Q! gives $R \cap K \leq N_{R \cap K}(Q)$. So the choice of R implies $\overline{Q} \leq R$ unless $N_K(\overline{Q})$ is *p*-closed, and if $N_K(\overline{Q})$ is *p*-closed then $R_1 \leq N_{\overline{M}}(\overline{Q})$. Therefore, since \overline{Q} is not normalized by $K, \overline{Q} \leq R_1$.

Put $D := [I, A] \cap C_I(A)$. Since I is selfdual we can apply 9.7 and get:

 13° .

- (a) D is 1-dimensional over \mathbb{K} , $|\mathbb{K}| = \tilde{q}$, and $D^{\perp} = [I, A]C_I(A) = I \cap A$. In particular, by $(\tilde{\gamma}), |D| = \tilde{q} = p$.
- (b) A centralizes D^{\perp}/D and $\overline{A} \leq O_p(N_{\overline{M}}(D))$.
- (c) I_1 is a natural $SL_m(\tilde{q})$ -module for R_1° and $\langle \overline{A}^{R_1} \rangle$.
- (d) $D = [I_1, A] = C_{I_1}(Q).$

Next we show:

14°. $D = C_I(S) \leq I_1 \text{ and } K_{\epsilon} \leq N_K(D).$ In particular, $[C_I(S), K_{\epsilon}] \neq 1.$

Note that $\overline{S} \cap K$ normalizes $C_{I_1}(Q)$. By $(13^\circ)(a), (d) |D| = p$ and $C_{I_1}(Q) = D$, and by (8°) $C_I(\overline{S} \cap K) = C_I(S)$ and $|C_I(S)| = p$, so $D = C_I(S) \leq I_1$.

By (6°) $[K_{\epsilon}, A]$ is not a *p*-group and by (13°)(b), $\overline{A} \leq O_p(N_{\overline{M}}(D))$. Thus $K_{\epsilon} \leq N_K(D)$.

15°. For $X \subseteq R_1$ let X^{\triangle} be the image of X in $Aut(I_1)$. Then $(R_1 \cap K)^{\triangle} = R_1^{\triangle}$ and I_1 is a natural $SL_m(p)$ -module for $R_1 \cap K$.

Since $\tilde{q} = p$, $(13^{\circ})(c)$ shows that $R_1^{\circ \bigtriangleup} \cong SL_m(p)$ and $|I_1| = p^m$. So $Aut(I_1) \cong GL_m(p)$. As $R_1 = (R_1 \cap K)\overline{QA} = O^{p'}(R_1)$ and $GL_m(p)/SL_m(p)$ is a p'-group, we conclude that $R_1^{\bigtriangleup} = R_1^{\circ \bigtriangleup} \cong SL_m(p)$. Note that, for $m \ge 3$ or p > 3, $SL_m(p) = O^p(SL_m(p))$; and for m = 2 and $p \le 3$, $O^p(SL_m(p))$ is a p'-group and $|SL_m(p)/O^p(SL_m(p))| = p$. Since $O^p(R_1) \le R_1 \cap K$ and $R_1 \cap K = O^{p'}(R_1 \cap K)$ we conclude that $(R_1 \cap K)^{\bigtriangleup} = R_1^{\bigtriangleup}$.

16°. $\epsilon \in \Delta(R \cap K)$ and $K_{\epsilon} \leq R \cap K$.

Clearly, $\epsilon \in \Delta(R \cap K)$ implies $K_{\epsilon} \leq R \cap K$. Assume that $\epsilon \notin \Delta(R \cap K)$. Then $\epsilon \in \Delta(R_1 \cap K)$ and $K_{\epsilon} \leq R_1 \cap K$. By (14°) $K_{\epsilon} \notin N_K(D)$ and since $D \leq I_1$ we get $[I_1, O^p(K_{\epsilon})] \neq 1$. Thus $C_{K_{\epsilon}}(I_1) \leq Z_{\epsilon}$. By (15°), $(R_1 \cap K)^{\Delta} = R_1^{\Delta}$ and so $A^{\Delta} \leq (\overline{S} \cap K)^{\Delta}$. Hence A normalizes K_{ϵ}^{Δ} and induces inner automorphisms on K_{ϵ}^{Δ} . It follows that A fixes ϵ and induces inner automorphism on $K_{\epsilon}/Z_{\epsilon}$, contrary to the choice of ϵ .

 17° . $N_K(D)$ is p-closed.

By (16°) $K_{\epsilon} \leq R \cap K$ and by (14°) $[C_I(S), K_{\epsilon}] \neq 1$. Thus $R \cap K \leq C_K(C_I(S))$ and choice of R implies that $C_K(C_I(S))$ is p-closed. Since $\overline{S} \cap K \in Syl_p(K)$, also $N_K(C_I(S))$ is p-closed. By (14°) $C_I(S) = D$ and so (17°) holds.

18°.
$$R \text{ is } p\text{-minimal, } O^p(R) \leq \langle \overline{A}^R \rangle, \ [I_R, O^p(R)] \neq 1 \text{ and } [I_R, A] = D.$$

By (16°) $K_{\epsilon} \leq R$. Moreover, by (14°) $[C_I(S), K_{\epsilon}] \neq 1$, and by A.12 $C_I(S) \leq C_I(\overline{S} \cap R) \leq I_R$. Hence $[I_R, K_{\epsilon}] \neq 1$ and thus also $[I_R, O^p(R)] \neq 1$.

By (15°) I_1 is a natural $SL_m(p)$ -module for $R_1 \cap K$, by (13°)(a) |D| = p and by (14°) $D \leq I_1$. Hence $C_{R_1 \cap K}(D)^{\Delta}$ is the stabilizer of a point of I_1 . On the other hand, by (17°) $N_K(D)$ is *p*-closed and thus also $C_{R_1 \cap K}(D)$ is *p*-closed. This shows that m = 2 and $\Delta(R_1 \cap K) = \{\delta\}$ for some $\delta \in \Delta$. Note that Δ is connected, QA normalizes δ , and QA acts transitively $\Delta(R \cap K) = \Delta \setminus \{\delta\}$. Hence (12°) shows that R is *p*-minimal. In particular, R is *p*-irreducible by 1.37.

By the choice of K_{ϵ} , $[K_{\epsilon}, A]$ is not a *p*-group. Since $K_{\epsilon} \leq R$, we conclude that $\overline{A} \leq O_p(R)$, and so, since *R* is *p*-irreducible, $O^p(R) \leq \langle \overline{A}^R \rangle$. As $[I_R, O^p(R)] \neq 1$ this gives $[I_R, A] \neq 1$, and by (11°) *A* acts quadratically on I_R . So $1 \neq [I_R, A] \leq [I, A] \cap C_I(A) = D$. Since |D| = p, we conclude that $[I_R, A] = D$, and (18°) is proved. We are now able to derive a contradiction which shows that (Case 1) does not occur. By (18°) R is p-minimal, $O^p(R) \leq \langle \overline{A}^R \rangle$, and by (13°)u10a |D| = p. Hence (11°) shows that A is a non-trivial quadratic best offender on I_R , and we are allowed to apply C.13 with $\widetilde{R} := R/C_R(I_R)$) and $J := J_{\widetilde{R}}(I_R)$. Hence

$$J = E_1 \times \dots \times E_r$$
, $I_R = C_{I_R}(J) \prod_{i=1}^r [I_R, E_i]$, and $[I_R, E_i, E_j] = 1$ for $i \neq j$,

where for $i = 1, \ldots, r$, $E_i \cong SL_2(p^k)$ or $Sym(2^k + 1)$ (and p = 2), and $[I_R, E_i]/C_{[I_R, E_i]}(E_i)$ is a corresponding natural module for E_i , and $\overline{S} \cap R$ acts transitively on $\{E_1, \ldots, E_r\}$. In particular, $C_{[I_R, E_i]}(E_i) \leq C_{I_R}(J)$. By (8°), I_R is a simple *R*-module, so $C_{I_R}(J) = 1$. Thus $[I_R, E_i]$ is natural $SL_2(p^k)$ - or $Sym(2^k+)$ -module for E_i and

$$I_R = [I_R, E_1] \times \cdots \times [I_R, E_r].$$

As $\overline{A} \leq J$ and $[I_R, A] = D$ has order p, there exists a unique E_j such that $D \leq [I_R, E_j]$. Since by (14°) $D = C_S(I)$ we conclude that $\overline{S} \cap R$ normalizes $[I_R, E_j]$ and so E_j . Hence the transitivity of $\overline{S} \cap R$ on $\{E_1, \ldots, E_r\}$ gives $J = E_1$.

If $J \cong Sym(2^k + 1)$ then $[I_R, A]$ is not centralized by a Sylow 2-subgroup of J, a contradiction since $[I_R, A] = D = C_I(S)$. Thus $J \cong SL_2(p^k)$. As $[I_R, A] = D$ has order p we get k = 1. It follows that $J = \widetilde{R \cap K} \cong SL_2(p)$. Thus $\Delta(R \cap K) = \{\epsilon\}$ and $R \cap K = K_{\epsilon}$. In particular, $K_{\epsilon}/O_p(K_{\epsilon}) \cong$ $SL_2(p)$ and $C_{K_{\epsilon}}(I_R) \leq Z_{\epsilon}$. Now $\overline{A} \leq K_{\epsilon}C_R(I_R)$ shows that \overline{A} induces inner automorphisms on $K_{\epsilon}C_R(I_R)/C_R(I_R) \cong K_{\epsilon}/C_{K_{\epsilon}}(I_R)$ and thus on $K_{\epsilon}/Z_{\epsilon}$, a contradiction to the choice of ϵ .

Case 2. I is not selfdual as an $\mathbb{F}_p K$ -module.

 19° .

(a)
$$K = A_n(t^2), n \ge 2, D_{2n+1}(t^2), n \ge 2, \text{ or } E_6(t^2);$$
 in particular, Δ has only single bonds.

(b) $p = \tilde{q} = 2$, S acts trivially on Δ , and $\hat{S} \leq \Phi \cong Aut(\mathbb{F}_{t^2})$.

(c) \widehat{A} is the unique subgroup of order 2 in Φ .

By (4°) $I^* \cong I^{\tau}$ with $\tau^2 = 1$, and since I is not selfdual, we have $\tau \neq 1$. Thus (4°) implies

 $K = A_n(q), n \ge 2, D_{2n+1}(q), n \ge 2, \text{ or } E_6(q),$

and τ induces the unique non-trivial graph automorphism of Δ , so $\Gamma = \langle \tau \rangle$ has order 2. In particular, (a) holds, except that we still need to show that q is a square. Also $K \neq D_4(q)$, and (7°) shows that $p = \tilde{q} = 2$.

Let $s \in S$. Recall from (3°) that $\hat{S} \leq \Gamma \Phi$. If $\hat{s} \notin \Phi$, we conclude that $\tau \in \hat{s}\Phi$ since Γ has order 2. But $I \cong I^x$ as an $\mathbb{F}_2 K$ -module for all $x \in \Phi$ and so $I^* \cong I^\tau \cong I^{\hat{s}} = I$ as an $\mathbb{F}_2 K$ -module; a contradiction since I is not selfdual. Thus $\hat{S} \leq \Phi$, and by $(4^\circ) S$ acts trivially on Δ . So (b) is proved.

Recall that \hat{A} is non-trivial and elementary abelian, $\hat{A} \leq \hat{S} \leq \Phi$ and Φ is cyclic. Thus (c) follows.

Note that d = 1 for the groups in $(19^{\circ})(a)$ (see A.60), and so by $(2^{\circ})(c) \Phi \cong Aut(\mathbb{F}_q)$. We conclude that \mathbb{F}_q has an automorphism of order 2 and so $q = t^2$ for some power t of p, which completes the proof of (a).

By $(19^{\circ})(c)$ QA acts trivially on Δ , so all subdiagrams of Δ are QA-invariant. Hence we can choose R such $\overline{Q} \notin R$, $\Delta(R \cap K)$ is connected and either $|\Delta| \ge 3$ and $|\Delta(R \cap K)| = 2$, or $|\Delta| = 2$ and $|\Delta(R \cap K)| = 1$. Put

 $m := |\Delta(R \cap K)|, \qquad \widetilde{R} := R/C_R(I_R), \qquad P := \overline{A}(R \cap K),$

and let \widetilde{A} be the image of \overline{A} in \widetilde{R} . Recall from $(19^{\circ})(b)$ that p = 2.

 $20^{\circ}. \qquad \widetilde{R \cap K} = A_m(t^2), \ m \leq 2, \ |\widetilde{P}/\widetilde{R \cap K}| = 2, \ each \ a \in \widetilde{A} \setminus \widetilde{R \cap K} \ acts \ as \ a \ field \ automorphism \ of \ order \ 2 \ on \ \widetilde{R \cap K}, \ F^*(\widetilde{P}) = \widetilde{R \cap K} \ is \ quasisimple, \ \langle \widetilde{A}^{\widetilde{P}} \rangle = \widetilde{P} \ and \ O^2(R) \leq \langle A^R \rangle.$

Since Δ has only single bonds and $\Delta(R \cap K)$ is connected of size $m \leq 2$, $\Delta(R \cap K)$ is of type A_m . As by (19°) K is defined over \mathbb{F}_{t^2} we conclude that $R \cap K/O_2(R \cap K) = A_m(t^2)$. In particular, $R \cap K/O_2(R \cap K)$ is quasisimple. Since $\overline{Q} \notin R$ and $R = (R \cap K)\overline{QA}$, Q! shows that $[I_R, R \cap K] \neq 1$. It follows that $C_{R \cap K}(I_R) \leq Z_{\Delta(R \cap K)}$. Hence, also $\overline{R \cap K}$ is a version of $A_m(t^2)$ and so quasisimple. Let $a \in \overline{A} \setminus K$. Note that $|\overline{A}/\overline{A} \cap K| = |\widehat{A}| = 2$ and a acts as a field automorphism of order 2 on K. Hence a also acts as a field automorphism of order 2 on $\overline{R \cap K}$, and $\widetilde{P} = \overline{R \cap K} \langle \widetilde{a} \rangle$. In particular, $\overline{R \cap K} = [\overline{R \cap K}, a]$ and so

$$\widetilde{P} = \widetilde{R \cap K} \widetilde{A} = [\widetilde{R \cap K}, \widetilde{A}] \widetilde{A} = \langle \widetilde{A}^{\widetilde{P}} \rangle.$$

Since $R \cap K/O_2(R \cap K)$ is quasisimple, this implies $O^2(R) = O^2(R \cap K) \leq \langle \overline{A}^R \rangle$, and (20°) is proved.

21°. $P/O_2(P) \cong Sym(5)$, and I_R is the corresponding natural module. In particular, m = 1, $t^2 = 4$, and $K/Z(K) \cong L_3(4)$.

By $(20^{\circ}) O^2(R) \leq \langle \overline{A}^R \rangle$, and so (11°) shows that $I_R \leq I \cap A$ and A is a quadratic best offender on I_R . Moreover, since by $(20^{\circ}) [I_R, O^2(R)] \neq 1$, A is a non-trivial best offender on I_R .

By $(20^{\circ}) \ \widetilde{P} = \langle \widetilde{A}^{\widetilde{P}} \rangle$ and so $J_{\widetilde{P}}(I_R) = \widetilde{P}$. As I_R is a simple $R \cap K$ -module by (8°) , I_R is simple a \widetilde{P} -module. Thus we can apply the FF-Module Theorem C.3. Since by $(20^{\circ}) |\widetilde{P}/\widetilde{R} \cap K| = 2$, $m \leq 2$, and $\widetilde{R \cap K} = A_m(t^2)$ is a central quotient of $SL_{m+1}(t^2)$ $(2 \leq m+1 \leq 3)$, we conclude that $m+1=2, t^2=4, \ \widetilde{P} \cong Sym(5)$, and I_R is the corresponding natural module. (Note here that the natural Sym(5)-module also appears as the natural $O_4^-(2)$ -module in the FF-Module Theorem.)

Since $|\Delta(R \cap K)| = m = 1$, the choice of R shows that $|\Delta| = 2$. The only rank 2 group of Lie-type listed in $(19^{\circ})(a)$ is $L_3(t^2) = A_2(t^2)$, and so (21°) is proved.

22°. There exists an involution t in $R \cap K$ with $t \notin O_2(R \cap K)$ and $|I/C_I(t)| \leq 2^3$.

Recall that $|I/I \cap A| = \tilde{q} = 2$ and that by (11°) A is best offender on $I \cap A$. Thus

$$(***) |I/C_I(A)| = |I/I \cap A| |I \cap A/C_{I \cap A}(A)| \le 2|A/C_A(I)| = 2|\overline{A}|.$$

Put $B := O_2(R \cap K)$. Suppose first that $\overline{A} \cap B = 1$. Since $P/B \cong Sym(5)$ and \overline{A} is elementary abelian we conclude that $|\overline{A}| \leq 4$. As A does not act quadratically on I, $|\overline{A}| \geq 4$ and so $\overline{A} \cap K \neq 1$. Let $1 \neq t \in \overline{A} \cap K$. Then (***) gives $|I/C_I(t)| \leq 2|\overline{A}| = 8$, and (22°) holds.

Suppose next that $\overline{A} \cap B \neq 1$. Since $K/Z(K) \cong L_3(4)$, B is a natural $\Gamma SL_2(4)$ -module for P and so $|C_B(A)| \leq 4$. In particular, $|\overline{A} \cap B| \leq 4$. Note that $\overline{A} \cap B = C_{\overline{A}}(I_R)$ and \overline{A} is not an over-offender on I_R . Thus $|I_R/C_{I_R}(\overline{A})| \geq |\overline{A}|/|\overline{A} \cap B|$, and so using (***)

$$|I/C_I(\overline{A} \cap B)| \leq |I/C_I(\overline{A})I_R| = \frac{|I/C_I(A)|}{|I_R/C_{I_R}(\overline{A})|} \leq \frac{2|A|}{|\overline{A}|/|\overline{A} \cap B|} = 2|\overline{A} \cap B| \leq 2^3.$$

Since $\overline{A} \cap B \neq 1$ and all involutions in $L_3(4)$ are conjugate, and since there exist involutions in $R \cap K \setminus B$, we again conclude that (22°) holds.

We are now able to derive a final contradiction. Choose t as in (22°) . Note that, for example since t inverts an elements of order five in $R \cap K/B \cong Alt(5)$, $|W/C_W(t)| \ge 4$ for any non-central simple $\mathbb{F}_2(R \cap K)$ -module. On the other hand $|I/C_I(t)| \le 2^3$, and so I has at most one non-central $R \cap K$ -composition factor. Thus $[I, O^2(R)] = [I, O^2(R \cap K)] \le I_R$, a contradiction to (10°) .

In the following we will use a result of Guralnick-Malle on simple 2*F*-modules for quasisimple groups *H*, **[GM1]** and **[GM2]**. Here an $\mathbb{F}_p H$ -module *V* is a 2*F*-module for *H* if there exists an elementary abelian *p*-subgroup $A \leq H$ such that

$$|V/C_V(A)| \le |A/C_A(V)|^2$$
 and $[V, A] \ne 0$.

According to 9.3(b) I is a simple module for K. By 9.3(c) \overline{A} satisfies the above inequality with respect to Y. Clearly $|I/C_I(A)| \leq |Y/C_Y(A)|$ and by 8.4(c) $C_A(I) = C_A(Y)$. Hence \overline{A} satisfies the above inequality also with respect to I. Moreover, the case where I is an FF-module has been treated already in 9.8. In the remaining case, if K is the genuine group of Lie-type, $\overline{A} \leq K$ by 9.9, and the pair (K, I) satisfies the hypothesis of [**GM1**] or [**GM2**].

We will distinguish the cases, where K is a genuine group of Lie type, a non-genuine group of Lie type, an alternating group, and a sporadic group, respectively. For this purpose we break up the result of Guralnick-Malle into four parts which we will quote separately.

THEOREM 9.10 (**Guralnick-Malle**). Let H be a genuine quasisimple group of Lie-type defined over a field of characteristic p and V a faithful simple 2F-module for \mathbb{F}_pH . Put $\mathbb{F} := End_H(V)$ and $d := \dim_{\mathbb{F}} V$. Let $\delta_{x|y} = 1$, if x divides y, and $\delta_{x|y} = 0$, otherwise. Then H, V, d and \mathbb{F} are given in the following table:

Н	d	V	$ \mathbb{F} $	conditions
$SL_n(p^a)$	n	V_{nat}	p^a	
$SL_n(p^a)$	$\binom{n}{2}$	$\Lambda^2 V_{nat}$	p^a	$n \ge 3$
$SL_n(p^a)$	$\binom{n+1}{2}$	Sym^2V_{nat}	p^a	$p \text{ odd}, n \ge 3$
$SL_n(p^{2a})$	n^2	$\frac{\mathbb{F}_{p^{a}}}{\mathbb{F}_{p^{2a}}}V_{nat}\otimes V_{nat}^{p^{a}}$	p^a	
$SL_6(p^a)$	20	$\bigwedge^{3} V_{nat}$	p^a	
$SU_n(p^a)$	n	V_{nat}	p^{2a}	
$Sp_{2n}(p^a)$	2n	V_{nat}	p^a	
$Sp_{2n}(p^a)$	$\binom{n}{2} - 1 - \delta_{p n}$	$\widetilde{\bigwedge}^2 V_{nat}$	p^a	n = 2, 3
				or $p = 2, n = 4$
$Sp_4(p^{2a})$	16	$\frac{\mathbb{F}_{p^{a}}}{\mathbb{F}_{p^{2a}}}V_{nat}\otimes V_{nat}^{p^{a}}$	p^a	
$\Omega_n^{\pm}(p^a)$	n	V_{nat}	p^a	
$Spin_{2n+1}(p^a)$	2^n	Spin	p^a	n = 3, 4, 5
$Spin_{2n}^+(p^a)$	2^{n-1}	Half-Spin	p^a	n = 4, 5, 6
$Spin_{2n}^{-}(p^a)$	2^{n-1}	Spin	p^{2a}	n = 4, 5
$Sz(2^{2a+1})$	4	$M(\lambda_1)$	2^{2a+1}	
$G_2(p^a)$	$7 - \delta_{2 n}$	$M(\lambda_2)$	p^a	
$F_4(2^a)$	26	$M(\lambda_1), M(\lambda_4)$	2^a	
$E_6(p^a)$	27	$M(\lambda_1), M(\lambda_6)$	p^a	
$F_4(p^a)$	$26 - \delta_{3 p}$	$M(\lambda_4)$	p^a	p odd
${}^{2}E_{6}(p^{a})$	27	$M(\lambda_1)$	p^{2a}	
$E_7(p^a)$	56	$M(\lambda_7)$	p^a	

We remark that it has been shown in [**GLM**] that the last three cases of the table do not occur. But since they only add two lines of arguments to our proof, we prefer to work with the original list.

LEMMA 9.11. Suppose that K is a quasisimple genuine group of Lie-type defined over a field of characteristic p. Then Theorem I holds.

PROOF. By 9.8 we may assume that

1°. I is not an FF-module for $K\overline{QA}$.

Thus by 9.9 $\overline{A} \leq K$. So we can apply 9.10 with (K, I, \mathbb{K}) in place of (H, V, \mathbb{F}) . Removing all the *FF*-modules and all the modules which have been treated in 9.8 we are left with the following list:

K	d	Ι	$ \mathbb{K} $	conditions
$SL_n(p^a)$	$\binom{n+1}{2}$	Sym^2V_{nat}	p^a	$odd, n \ge 3$
$SL_n(p^{2a})$	n^2	$\frac{\mathbb{F}_{p^a}}{\mathbb{F}_{p^{2a}}} V_{nat} \otimes V_{nat}^{p^a}$	p^{2a}	$n \ge 3$
$SL_6(p^a)$	20	$\wedge^{3} V_{nat}$	p^a	
$Sp_{2n}(p^a)$	$\binom{n}{2} - 1 - \delta_{p n}$	$\widetilde{\bigwedge}^2 V_{nat}$	p^a	n = 2, 3
		_		or $p = 2, n = 4$
$Sp_4(p^{2a})$	16	$\frac{\mathbb{F}_{p^a}}{\mathbb{F}_{p^{2a}}} V_{nat} \otimes V_{nat}^{p^a}$	p^a	
$Spin_{2n+1}(p^a)$	2^n	r $Spin$	p^a	n = 3, 4, 5
$Spin_{2n}^+(p^a)$	2^{n-1}	Half-Spin	p^a	n = 6
$Spin_{2n}^{-}(p^a)$	2^{n-1}	Spin	p^{2a}	n = 4, 5
$Sz(2^{2a+1})$	4	$M(\lambda_1)$	p^{2a+1}	
$F_4(2^k)$	26	$M(\lambda_1), M(\lambda_4)$	p^a	
$F_4(p^a)$	$26 - \delta_{3 p}$	$M(\lambda_4)$	p^a	p odd
${}^{2}E_{6}(p^{a})$	27	$M(\lambda_1)$	p^{2a}	
$E_7(p^a)$	56	$M(\lambda_7)$	p^a	

If K has rank 1 we see that $K \cong Sz(2^{2a+1})$ and $\dim_{\mathbb{K}} I = 4$. But then every elementary abelian 2-subgroup of K acts quadratically on I, which contradicts 9.3(a) since $\overline{A} \leq K$. Thus we may assume:

3° . K has Lie rank at least two.

Put $U := C_I(K \cap \overline{S})$ and $R := N_{K\overline{Q}}(U)$. By Smith's Lemma A.63, U is 1-dimensional over K. Since Q acts K-linear and U is 1-dimensional, Q centralizes U and Q! implies $\overline{Q} \leq R$.

Let Δ be the Dynkin diagram of K. Observe that in all cases there exists $i \in \Delta$ such that either $I \cong M(\lambda_i)$ or I is a simple $\mathbb{K}K$ -submodule of $M(\lambda_i) \otimes_{\mathbb{F}} M(\lambda_i)^{\sigma}$, where \mathbb{F} is the field used to define K and σ is an automorphism of \mathbb{F} with $C_{\mathbb{F}}(\sigma) = \mathbb{K}$. Thus $R \cap K$ is the maximal parabolic corresponding to $\Delta \setminus \{i\}$. In particular, R is a maximal subgroup of $K\overline{Q}$ and so $R = N_{K\overline{Q}}(\overline{Q})$. Let P be the p-minimal subgroup of $K\overline{Q}$ corresponding to the node i and containing $(\overline{S} \cap K)\overline{Q}$. Then $P \notin R$ and so $\overline{Q} \notin P$. Since Q is weakly closed in $S, \overline{Q} \notin O_p(P)$.

Suppose that one of the first two cases of (2°) holds. As $[(R \cap K)/O_p(R \cap K), Q] = 1$ we conclude that Q induces inner automorphisms on K. Thus $\overline{M^{\circ}} = K$ and Theorem I(5) or (6) holds.

So assume for a contradiction that one of the remaining cases of (2°) holds. We prove next:

4°. I is selfdual as $\mathbb{F}_p K$ -module.

In the third case of (2°) *I* is that the exterior cube of a natural $SL_6(q)$ -module, and so selfdual. In all other cases A.65 shows that *I* is selfdual.

As Q fixes i we can choose a proper Q-invariant connected subdiagram Λ of Δ with $i \in \Lambda$, which is maximal with respect to these properties. Let R_1 be the corresponding parabolic subgroup of $\overline{M^{\circ}}$ with $(\overline{S} \cap K)\overline{Q} \leq R_1$ and note that $P \leq R_1$. Put $R_1^{\circ} := \langle \overline{Q}^{R_1} \rangle$. Since I is a selfdual $\mathbb{F}_p K$ -module, we can apply 9.7(j) and conclude that I_{R_1} is a natural $SL_m(q)$ -module for R_1° . As Λ is connected, Λ is an A_{m-1} -diagram.

We will now derive a contradiction by showing that in all (remaining) cases R_1 can be chosen such that either Λ is not of type A_{m-1} or I_{R_1} is not a natural $SL_m(q)$ -module for R_1° or I is an *FF*-module for K.

If $K \cong SL_6(q)$ and I is the exterior cube of a natural $SL_6(q)$ -module, then I_{R_1} is the exterior square of a natural $SL_5(q)$ -module, a contradiction.

If $\mathbb{K} \cong Sp_{2n}(q)$, $n \ge 3$, and I is a section of the exterior square of the natural module, we can choose Λ to be a B_{n-1} -diagram, a contradiction since $n \ge 3$.

If $K \cong Sp_4(q^2)$ and I appears in $V_{nat} \otimes V_{nat}^q$, then $P \cap K/O_p(P \cap K) \cong SL_2(q^2)$ and R_1 is a natural $\Omega_4^-(q)$ -module, a contradiction.

If $K \cong Spin_n^{\epsilon}(q)$, $n \ge 7$, we can choose R_1 such that I_{R_1} is a natural $Spin_{n-2}^{\epsilon}(q)$ -module. Since I_{R_1} is also a natural $SL_m(q)$ -module, we get n = 8 and $\epsilon = +$. Thus I is an FF-module, contrary to (1°) .

Suppose that $\overline{K} \cong F_4(q)$, ${}^2E_6(q)$ or $E_7(q)$. Then we can choose Λ to be a B_3 - or C_3 -diagram (in the first two cases) or a D_6 -diagram (in the last case), a contradiction. This completes the proof of the lemma.

THEOREM 9.12 (**Guralnick-Malle**). Let H be a finite group and V a faithful simple 2F-module for $\mathbb{F}_p H$. Suppose that $F^*(H)$ is a perfect central extension of an alternating group, but $F^*(H)$ is not a genuine group of Lie-type over a field of characteristic p. Put $\mathbb{F} := End_{\mathbb{F}^*(H)}(V)$, $d := \dim_{\mathbb{F}} V$, $\delta_{p|n} = 1$, if $p \mid n$ and $\delta_{p|n} = 0$ otherwise. Then one of the following holds:

Н	d	V	$ \mathbb{F} $
Alt(n), Sym(n)	$n-1-\delta_{2 n}$	natural	2
$3 \cdot Alt(6), 3 \cdot Sym(6)$	3	ovoid	4
Alt(7)	4	half-spin	2
Sym(7)	8	spin	2
Alt(9)	8	spin	2
Alt(n), Sym(n)	$n-1-\delta_{3 n}$	natural	3
2· $Alt(5), 2$ · $Sym(5)$	2	spin	9
$2 \cdot Alt(9), 2 \cdot Sym(9)$	8	spin	3

LEMMA 9.13. Suppose that K/Z(K) is an alternating group. Then Theorem I holds.

PROOF. Since K is quasisimple, we have $K/Z(K) \cong Alt(n)$ with $n \ge 5$. By 9.11 we may assume that K/Z(K) is not a genuine group of Lie-Type defined over a field of characteristic p, and we may also assume that we are not in one of the cases treated in 9.8. We use 9.12 with $(\overline{AQK}, I, \mathbb{K})$ in place of (H, V, \mathbb{F}) . In particular, we have p = 2 or 3.

Case 1. The case p = 2.

Assume that I is a natural Alt(n)-module. Since I is also a Q!-module, C.23 shows that n = 5, 6 or 8 and $K \cong SL_2(4)$, $Sp_4(2)'$, and $SL_4(2)$, respectively. In the first and third case K/Z(K) is a genuine group of Lie type in characteristic 2 contradicting our assumption. In the second case $|I| = 2^4$, and I is an FF-module for K, a case which has been treated in 9.8.

If $K \sim 3$ ·Alt(6) and $|I| = 2^6$, or $K \cong Alt(7)$ and $|I| = 2^4$, then I is an FF-module for K. Hence, also these cases have been treated in in 9.8.

Observe that the fourth case of 9.12 is excluded by the fact that I is a simple K-module.

Assume that $K \cong Alt(9)$ and I is the spin-module of order 2^8 . Then $\tilde{q} = 2$ and I is selfdual. Note that all involutions in \overline{M} invert a 3-cycle in K. As the 3-cycles in K act fix-point freely on Iwe conclude $|[I, a]| \ge 2^4$ for all $a \in A \setminus C_A(I)$. But by 9.7(d), $|[I, a]| \le \tilde{q}^2 = 2^2$, a contradiction.

Case 2. The case p = 3.

If I is the a natural Alt(n)-module for K, then again C.23 shows that n = 6. But then $K \cong L_2(9)$ is a genuine group of Lie-type, contrary to the assumptions.

If $K \sim 2 Alt(5)$ and $\dim_{\mathbb{K}} I = 2$ then A acts quadratically on I, a contradiction.

Suppose that $K \sim 2 \cdot Alt(9)$. Then I is selfdual and $\mathbb{K} = \mathbb{F}_3$. Now 9.7 shows that $\tilde{q} = 3$ and $|[I, a]| \leq 9$ for all $a \in A$, a contradiction since $|[I, k]| \geq 3^4$ for all $k \in K$ with |k| = 3. (Indeed, there exists $E \leq K$ with $E \cong Q_8$, Z(E) = Z(K) and E = [E, k]. Hence $Z(K) \leq \langle k, k^e \rangle$ for some $e \in E$ and so $3^8 = |I| = |[I, Z(K)]| \leq |[I, k]|^2$. Thus $|[I, k]| \geq 3^4$.)

THEOREM 9.14 (**Guralnick-Malle**). Let H be a finite group and V a faithful simple 2F-module for $\mathbb{F}_p H$. Suppose that $F^*(H)/Z(F^*(H))$ is neither an alternating group nor a genuine group of Lietype over a field of characteristic p, but $F^*(H)$ is a perfect central extension of a group of Lie-type.

Put $\mathbb{F} := End_{\mathbb{F}^*(H)}(V)$ and $d := \dim_{\mathbb{F}} V$. Then one of the following holds:

$F^*(H)$	d	$ \mathbb{F} $
$U_3(3)$	6	2
$3 \cdot U_4(3)$	6	4
$2 \cdot L_3(4)$	6	3
$Sp_{6}(2)$	7	3
$2 \cdot Sp_6(2)$	8	3
$2 \cdot \Omega_8^+(2)$	8	3

LEMMA 9.15. Suppose that K/Z(K) is a group of Lie-type. Then K/Z(K) is a genuine group of Lie type, and Theorem I holds.

PROOF. If K/Z(K) is a genuine group of Lie typ, then 9.11 shows that Theorem I holds. So assume for a contradiction that K/Z(K) is not a genuine group of Lie-type defined over a field of characteristic p. Thus 9.14 can be applied with $(\overline{QAK}, I, \mathbb{K})$ in place of (H, V, \mathbb{F}) . In particular, p = 2 or 3.

Case 1. The case p = 2.

The case $K \cong U_3(3) \cong G_2(2)'$ has been ruled out in (the proof of) 9.8.

Suppose $K \cong 3 U_4(3)$. Then $\dim_{\mathbb{K}} I = 6$, and by [**JLPW**] I is selfdual as an $\mathbb{F}_2 K$ -module. Since |Z(K)| = 3 this contradicts 9.7(i).

Case 2. Suppose that p = 3.

In all cases we have that $|\mathbb{K}| = 3$, and by $[\mathbf{JLPW}] I$ is selfdual. So 9.7 applies. In particular, $\tilde{q} = |\mathbb{K}| = 3$ and $|[I, a]| \leq 9$ for all $a \in A$. Let $a \in A$ with $[I, a] \neq 1$.

Suppose that $K \cong 2 \cdot L_3(4)$ and $|I| = 3^6$. Since the diagonal automorphism of order 3 of K/Z(K) does not normalize Z(K), $\overline{A} \leq K$. Hence there exists $T \leq K$ with |T| = 7 and T = [T, a]. Since I is selfdual, I = [I, T] and so $|[I, a]| \geq 3^3$, a contradiction.

Suppose that $K \cong Sp_6(2)$ and $|I| = 3^7$. By [**JLPW**], I is the unique simple 7-dimensional F_3K -module, and so I is the module arising from the isomorphism $C_2 \times Sp_6(2) \cong Weyl(E_7)$, the Weyl-group of type E_7 . Choose $T \leq K$ with $T \cong O_6^-(2) \cong Weyl(E_6)$. Then T normalizes a 1-space in I. Since T contains a Sylow 3-subgroup of K we may assume that $\overline{Q} \leq T$. But then Q! implies $\overline{Q} \leq T$, a contradiction to $O_3(T) = 1$.

Suppose that $K \cong 2 \cdot Sp_6(2)$ and $|I| = 3^8$. Then we can choose $T \leq K$ with $\overline{a} \in T$, $T \sim 2 \cdot (Sp_2(2) \times Sp_4(2))$ and $\overline{a} \notin O_3(T)$. It follows that there exists $E \leq T^{\infty} \sim 2 \cdot Alt(6)$ with E = [E, a], $E \cong Q_8$ and Z(E) = Z(K). Thus $[|I, a]| \geq 3^4$, a contradiction.

Suppose that $K \cong 2 \cdot \Omega_8^+(2)$. Then $|I| = 3^8$. By [**JLPW**], I is the unique simple 8-dimensional F_3K -module, and so I is the module arising from the isomorphism $2 \cdot \Omega_8^+(2) \cong Weyl(E_8)'$. Since the graph automorphism of order three does not centralize Z(K), $\overline{Q} \leq K$ and there exists $\overline{Q} \leq D \leq K$ with $D \cong C_3 \times \Omega_6^-(2) \cong Weyl(A_2 \times E_6)'$. Since p = 3, we see that D normalizes a 1-space in I. So by $Q!, \overline{Q} = O_p(D)$, a contradiction since \overline{Q} is weakly closed in K and $O_p(D)$ is not.

THEOREM 9.16 (**Guralnick-Malle**). Let H be a finite group and V a faithful simple 2F-module for $\mathbb{F}_p H$. Suppose that $F^*(H)$ is a perfect central extension of a sporadic simple group. Put $\mathbb{F} :=$ $End_{\mathbb{F}^*(H)}(V)$ and $d := \dim_{\mathbb{K}} V$. Then one of the following holds:

$F^*(H)$	d	$ \mathbb{F} $
Mat_{12}, Mat_{22}	10	2
Mat_{23}, Mat_{24}	11	2
$3 \cdot Mat_{22}$	6	4
Co_2	22	2
Co_1	24	2
Mat_{11}	5	3
$2 \cdot Mat_{12}$	6	3

The cases Co_2 and Co_1 have been ruled out in [**GLM**], but again we decided to only refer to the original list.

LEMMA 9.17. Suppose that K/Z(K) is a sporadic simple group. Then Theorem I holds.

PROOF. We can apply 9.16 with $(\overline{AQ}K, I, \mathbb{K})$ in place of (H, V, \mathbb{F}) . In particular, p = 2 or 3.

Case 1. The case p = 3.

By [JLPW], Mat_{11} has two simple 5-dimensional modules over \mathbb{F}_3 . Also $2 \cdot Mat_{12}$ has two simple 6-dimensional modules over \mathbb{F}_3 interchanged by the outer automorphism of $2 \cdot Mat_{12}$. Thus either $K \cong Mat_{11}$ and I is the simple Todd or Golay code module, or $K \cong 2 \cdot Mat_{12}$ and I is the simple Golay code module. Note that K has no outer automorphism of order 3, and so $\overline{M^{\circ}} = K$. We need to rule out the case where $K \cong Mat_{11}$ and I is Todd-module. Then Mat_{11} has an orbit of length 11 on the 1-spaces in I. Hence Mat_{10} normalizes a 1-space in I, but this contradicts Q!, since $O_3(Mat_{10}) = 1$ and Mat_{10} contains a Sylow 3-subgroup of Mat_{11} .

Case 2. The case p = 2.

Let $Z := C_I(S)$ and $R := C_{\overline{M}}(Z)$. Then by $Q!, \overline{Q} \leq O_p(R)$.

Suppose first that $K \cong Mat_{24}$. By [**JLPW**], Mat_{24} has two simple 11-dimensional modules over \mathbb{F}_2 . Thus, I is the simple Todd or Golay code module. Since $Out(Mat_{24}) = 1$, we get that $\overline{M} = \overline{M^{\circ}} = K$, and Theorem I(9) holds.

Suppose next that $K \cong Mat_{22}$. By [**JLPW**], Mat_{22} has two simple 10-dimensional modules over \mathbb{F}_2 . Thus, I is the simple Todd or Golay code module. Also $\overline{M^{\circ}} = K$ or $\overline{M} = \overline{M^{\circ}} \cong Aut(Mat_{22})$. Assume that I is the Golay-code module. Then $R \sim 2^4 Alt(6)$ or $2^4 Sym(6)$ with $O_2(R) \leq K$, so $\overline{Q} \leq K$. Hence $\overline{M^{\circ}} = K \cong Mat_{22}$ and Theorem I(10) holds.

Assume that I is the Todd module. If $\overline{M^{\circ}} \cong Aut(Mat_{22})$, then Theorem I(11) holds. So suppose that $\overline{M^{\circ}} = K$. Then $R \sim 2^4 Sym(5)$ and there exists $F \leq \overline{M^{\circ}}$ with $F \cong L_3(4)$, $O_2(R) \leq F$ and $C_I(F) \neq 1$. Since $Q \leq O_2(R) \leq F$ and $O_2(F) = 1$, we get a contradiction to Q!.

It remains to rule out the cases $K \cong Mat_{12}$, $3 \cdot Mat_{22}$, Mat_{23} , Co_2 and Co_1 in 9.16.

Suppose that $K \cong Mat_{12}$. By [**JLPW**], Mat_{12} has a unique simple 10-dimensional modules over \mathbb{F}_2 . Hence, I is the non-central simple section of a natural permutation module on 12 letters. In particular, I is selfdual and $|\mathbb{K}| = 2$. Thus by 9.7(j), $|[V, a]| \leq 4$, a contradiction, since no involution fixes more than 4 of the 12 letters.

Suppose that $K \cong 3 \cdot Mat_{22}$. By [**JLPW**], any 6-dimensional simple $3 \cdot Mat_{22}$ module over \mathbb{F}_4 is selfdual as an $\mathbb{F}_2 K$ -module. As |Z(K)| = 3, this contradicts 9.7(i).

Suppose that $K \cong Mat_{23}$. By [**JLPW**], Mat_{23} has two simple 11-dimensional modules over \mathbb{F}_2 . Thus, I is the simple Todd or Golay code module of \mathbb{F}_2 -dimension 11. Since Out(K) = 1 we have $\overline{M} = K$. If I is the Todd-module, then there exists $\overline{Q} \leq E \leq K$ with $E \cong Mat_{22}$ and $C_I(E) \neq 1$, a contradiction to Q!. Thus I is the Golay code module and so $R \sim 2^4 Alt(7)$, $\overline{Q} = O_2(R)$ is elementary abelian of order 2^4 , and $|C_I(Q)| = 2$. Suppose that $\overline{A} \leq \overline{Q}$. Since A is an 2F-offender and R acts simply on $O_2(R)$, A.29(a) implies that \overline{Q} is a 2F-offender. But $|I/C_I(Q)| = 2^{10} > (2^4)^2 = |\overline{Q}|^2$, a contradiction.

Hence $\overline{A} \leq \overline{Q}$. Let Ω be a set of size 23 with $\overline{M} \cong Mat_{23}$ acting faithfully on Ω . Then $R = N_{\overline{M}}(\Theta)$ for some $\Theta \subseteq \Omega$ with $|\Theta| = 7$. Let $\Lambda \subseteq \Theta$ with $|\Lambda| = 3$ and put $R_1 = N_{\overline{M}}(\Lambda)$. Then $R_1/C_{R_1}(\Lambda) \cong Sym(3)$ and $C_{R_1}(\Lambda) \cong Mat_{20} \sim 2^4SL_2(4)$, where $O_2(R_1)$ is a natural $SL_2(4)$ -module for $C_{R_1}(\Lambda)/O_2(R_1)$. Also $\overline{Q} = C_{\overline{M}}(\Theta) \leq C_{R_1}(\Lambda)$ and so $R_1^\circ = C_{R_1}(\Lambda)$.

Since R induces Alt(7) on Θ , $R_1 \cap R/C_{R_1 \cap R}(\Lambda) \cong Sym(3)$ and $C_{R_1 \cap R}(\Lambda)/\overline{Q} \cong Alt(4)$. Thus $|R_1 \cap R| = 2^7 3^2$, $|R/R \cap R_1| = 5 = |R_1^\circ/R_1^\circ \cap R|$ and $O_2(R_1 \cap R) \in Syl_2(R_1^\circ)$. Note also that $O_2(R_1 \cap R_2)/\overline{Q}$ corresponds to $\langle (12)(34), (14)(23) \rangle$ in Alt(7) and so by [**MS5**, 7.5] is, up to conjugacy, the unique maximal quadratically acting subgroup of R/\overline{Q} on \overline{Q} .

Since \overline{Q} normalizes \overline{A} by 8.5(b) and \overline{A} is elementary abelian, we conclude that \overline{A} acts quadratically on \overline{Q} . Hence \overline{A} is contained in an R-conjugate of $O_2(R \cap R_1)$. So we may choose Λ such that $\overline{A} \leq O_2(R \cap R_1)$. As seen above, $O_2(R \cap R_1) \in Syl_2(R_1^\circ)$ and $O_2(R_1)$ is a natural $SL_2(4)$ -module for R_1° . Hence $O_2(R \cap R_1) = \overline{Q}O_2(R_1)$, and \overline{Q} and $O_2(R_1)$ are the only maximal elementary abelian

subgroups of $O_2(R \cap R_1)$, so $\overline{A} \leq O_2(R_1)$ since $\overline{A} \leq \overline{Q}$. Thus 9.6 implies that $R_1^{\circ} \leq N_{R_1}(\overline{A})$. Since R_1° acts simply on $O_2(R_1)$ this gives $\overline{A} = O_2(R_1)$,

Put $U := \langle Z^{R_1} \rangle$. Since R centralizes Z and $|R/R \cap R_1| = 5$, U is a quotient of the Sym(5)permutation module for R_1 . Note that $C_U(R_1) = 1$ by Q! and that the permutation module is the
direct sum of simple submodules of order 2 and 2^4 . Thus $|U| = 2^4$.

Since A is not an offender on I, $|I/C_I(A)| > |\overline{A}| = 2^4$ and so $|C_I(A)| \leq \frac{2^{11}}{2^5} = 2^6$. Note that $U \leq C_I(A)$ since $\overline{A} = O_2(R_1)$. Thus $|C_I(A)/U| \leq \frac{2^6}{2^4} = 2^2$. Since R_1° is perfect, this gives $[C_I(A), R_1^\circ] = U$. Observe that $H^1(U, R_1^\circ/A) = 1$ (for example by C.18) and since $C_I(R_1^\circ) = 0$ we get $U = C_I(A)$, so $|C_I(A)| = 2^4$.

Since I is not an FF-module, 9.5(a) shows that A is an offender on $I \cap A$ and therefore $|I \cap A/C_I(A)| \leq |\overline{A}| = 2^4$. Thus $|I \cap A| \leq 2^8$ and $\tilde{q} = |I/I \cap A| \geq 2^3$. Note that $\overline{A} = A/C_A(Y)$ and $I/C_I(A)$ both are $N_L(Y)$ -invariant sections of $AY/C_Y(L)$. Thus by 2.18(c), both, $|\overline{A}| = 2^4$ and $|I/C_I(A)| = 2^7$, are powers of \tilde{q} . But then $\tilde{q} = 2$, a contradiction to $\tilde{q} \geq 8$.

Suppose that $\overline{K} \cong Co_2$ or Co_1 . By [SW], Co_2 has a unique simple 22-dimensional module over \mathbb{F}_2 , and by [Gr2], Co_1 has a unique simple 24-dimensional module over \mathbb{F}_2 . Hence I is selfdual and isomorphic to the non-central simple section of the Leech-lattice modulo 2. Also $\tilde{q} = |\mathbb{K}| = 2$. Thus by 9.7(j), $|[I, a]| \leq 4$ for all $a \in A$. But the commutator space of any involution in Co_1 on the Leech-lattice modulo 2 is at least 8-dimensional, and since $2^{24}/|I| \leq 2^2$, we conclude that $|[I, a]| \geq 2^8/2^2 = 2^6$, a contradiction.

9.3. The Proof of Corollary 9.1

In this section we will proof Corollary 9.1. So we continue to assume the hypothesis of Theorem I and use the notation introduced in 9.3.

LEMMA 9.18. Suppose that $Y = IC_Y(\overline{S} \cap K)$. Then Y = I. In particular, Y = I if $\overline{A} \in Syl_p(K\overline{A})$.

PROOF. By 9.3(c) $[Y, K] \leq I$ and, by $Q!, C_Y(K) = 1$. As $\overline{S} \cap K \in Syl_p(K)$, Gaschütz' Theorem gives $Y = IC_Y(\overline{S} \cap K) = C_Y(K)I = I$, see C.17.

Note that by 9.3(f) $Y = IC_Y(\overline{A})$. Thus if $\overline{A} \in Syl_p(K\overline{A})$ then $\overline{A} \cap K = \overline{S} \cap K$ and $Y = IC_Y(\overline{S} \cap K)$, and so Y = I.

9.19. Proof of Corollary 9.1:

Suppose that $Y \neq I$. By Q!, $C_Y(K) = 1$, and by 9.3(b),(c) [Y, K] = I, so $|Y/I| \leq |H^1(K, I)|$. Comparing Theorem I with C.18 we obtain one of the following cases:

- (A) $\overline{M} \cong L_3(2), |Y| = 2^4$ and I is a natural $SL_3(2)$ -module for \overline{M} .
- (B) $\overline{M^{\circ}} \cong Sp_{2n}(q)$ or $Sp_4(2)'$, p = 2, I is the corresponding natural module and $|Y/I| \leq q$.
- (C) $\overline{M^{\circ}} \cong \Omega_3(5), \Omega_4^-(3), \Omega_5(3)$ or $\Omega_6^+(2), I$ is the corresponding natural module, and $|Y/I| \leq 5, 9, 3$ and 2 respectively.
- (D) $\overline{M^{\circ}} \cong L_3(4)$, I is the unitary square of corresponding natural module and $|Y/I| \leq 4$.
- (E) p = 2, $\overline{M^{\circ}} \cong Mat_{24}$, I is the simple Todd-module of \mathbb{F}_2 -dimension 11 and |Y/I| = 2.
- (F) $p = 2, \overline{M^{\circ}} \cong Mat_{22}, I$ is the simple Golay code module of \mathbb{F}_2 -dimension 10 and |Y/I| = 2.
- (G) p = 3, $\overline{M^{\circ}} \cong Mat_{11}$, I is the simple of Golay code module of \mathbb{F}_3 -dimension 5 and |Y/I| = 3.

It remains to treat each of these seven cases. Recall first that by 9.3(f) $Y = IC_Y(A)$ and so we can pick $t \in Y \setminus C_Y(A)$.

In Case (A) I is a natural $SL_3(2)$ -module for \overline{M} and so $C_{\overline{M}}(t) \cong Frob(21)$ has odd order, a contradiction since $\overline{A} \leq C_{\overline{M}}(t)$.

In Case (B), I is a natural $Sp_{2n}(2)$ - or $Sp_4(2)'$ -module for $\overline{M^{\circ}}$ and so Corollary 9.1(1) holds.

Suppose that Case (C) holds with $\overline{M^{\circ}} \cong \Omega_3(5)$. By B.35(d) we conclude that $\overline{A} \leq \overline{M^{\circ}}$. Thus $\overline{A} \in Syl_3(\overline{M^{\circ}})$ and 9.18 gives Y = I, contradiction.

Suppose that Case (C) holds with $\overline{M^{\circ}} \cong \Omega_{4}^{-}(3) \cong Alt(6)$. Again B.35(d) gives $\overline{A} \leq \overline{M^{\circ}}$. Let W be an $\mathbb{F}_{3}\overline{M^{\circ}}$ -module with $Y \leq W$, $C_{W}(\overline{M^{\circ}}) = 1$ and $|W/I| = 3^{2}$. Let X_{1} and X_{2} be non-conjugate subgroups of $\overline{M^{\circ}}$ with $X_{i} \cong Alt(5)$. Choose notation such that $\overline{A_{1}} := \overline{A} \cap X_{1} \neq 1$. For i = 1, 2, put $W_{i} := C_{W}(X_{i})I$ and note that W_{i} is a $\overline{M^{\circ}}$ -module isomorphic to the 5-dimensional quotient of permutation module $\mathbb{F}_{3}^{\overline{M^{\circ}}/X_{i}}$. Then $W_{1} = IC_{W_{1}}(\overline{A_{1}})$ and, since $\overline{A_{1}}$ acts fixed-point freely on $\overline{M^{\circ}}/X_{2}$, $C_{W_{2}}(\overline{A_{1}})) \leq I$. It follows that $IC_{W}(\overline{A_{1}}) = W_{1}$. As $Y = IC_{Y}(A) \leq IC_{W}(\overline{A_{1}})$ this gives $Y = W_{1}$. Thus 9.1(2) holds in this case.

Suppose that Case (C) holds with $\overline{M^{\circ}} \cong \Omega_5(3)$ or $\Omega_6^+(2)$. Then *I* is the corresponding natural module, $|Y/I| \leq 3$ and 2, respectively, and 9.1(3) or 4 holds.

Suppose that Case (D) holds. Then I is the unitary square of a natural $SL_3(4)$ -module for $K \cong L_3(4)$. Since I is not an FF-module, we can apply 9.9 and conclude that $\overline{A} \leq K$. Let P_1 and P_2 be the two maximal subgroups of K containing $\overline{S} \cap K$ such that $C_I(K \cap \overline{S}) \leq P_1$, and let $Q_i := O_p(P_i)$. Then $C_I(Q_1) = C_I(K \cap \overline{S})$ has order 2, and so $|I/C_I(Q_1)| = 2^8 = |Q_1|^2$. By Q!, $\overline{Q} \leq P_1$ and the simple action of P_1 on Q_1 implies $\overline{Q} = Q_1$.

Suppose that $\overline{A} \leq Q_1$. Since $|Y/C_Y(A)| \leq |\overline{A}|^2$, A.29 shows that $|Y/C_Y(B)| \leq |B|^2$ for some non-trivial P_1 -invariant subgroup B of Q_1 . As P_1 acts simply on Q_1 we get $B = Q_1$ and

$$|Y/C_Y(Q_1)| \leq |Q_1|^2 = |I/C_I(Q_1)|.$$

Hence $Y = C_Y(Q_1)I$. Since P_1 is perfect and $[C_Y(Q_1), P_1, P_1] \leq [C_I(Q_1), P_1] = 1$, we get $C_Y(Q_1) \leq C_Y(P_1)$ and $Y = IC_Y(P_1)$. Since $\overline{S} \cap K \leq P_1$, 9.18 gives I = Y, a contradiction.

Suppose now that $\overline{A} \leq Q_1$. Since Q_1 and Q_2 are the only maximal elementary abelian subgroups of $\overline{K} \cap S$, $\overline{A} \leq Q_2$. Thus 9.6 shows that P_2° (:= $\langle \overline{Q}^{P_2} \rangle$) normalizes \overline{A} . As $\overline{Q} \leq Q_2$, $P_2 = P_2^{\circ}Q_2$, and as Q_2 is a simple P_2 -module, $\overline{A} = Q_2$ and so $Y = C_Y(Q_2)I$. Since $C_I(Q_2)$ is a natural Alt(5)-module for P_2 , $H^1(C_I(P_2), P_2/Q_2) = 1$ (seeC.18) and so $C_Y(Q_2) = C_I(Q_2)C_Y(P_2)$ and $Y = IC_Y(P_2)$, again a contradiction to 9.18 since $\overline{S} \cap K \leq P_2$.

Suppose that Case (E) holds. Then $\overline{M^{\circ}} \cong Mat_{24}$, I is the simple Todd-module, and $|Y/I| \leq 2$. So 9.1(5) holds.

Suppose that Case (F) holds. Then $\overline{M} \cong Mat_{22}$ or $Aut(Mat_{22})$, and I is the simple Golay code module. Hence Y is isomorphic to the restriction of the 11 dimensional simple Golay-code module for Mat_{24} to \overline{M} . Let (Ω, \mathcal{B}) be a Steiner system of type (24, 8, 5), $H := Aut(\Omega, \mathcal{B}) = Mat_{24}$, $T \subseteq \Omega$ with |T| = 2. Then $N_H(T) \cong Aut(Mat_{22})$. Let V be the simple Golay code module for H. Then H has two orbits on V^{\sharp} , one orbit corresponding to the octads in Ω and the other to the partitions of Ω into two dodecads. Also $[V, N_H(T)]^{\sharp}$ consists of all elements in V 'perpendicular' to T, that is, the elements corresponding to octads and pairs of dodecads, each intersecting T in a subset of even size. So $V \setminus [V, N_H(T)]$ consists of all octads and pairs of dodecads intersecting T in exactly one element.

Let B be an octad with $|B \cap T| = 1$. Then $N_H(B) \sim 2^4 Alt(8)$ induces Alt(8) on B while $C_H(B)$ acts regularly on $\Omega \setminus B$. Thus $N_H(B) \cap N_H(T) \cong Alt(7)$. Let $\{C, D\}$ be a partition of Ω into two dodecads with $|C \cap T| = |D \cap T| = 1$. Then $N_H(C) \cong Mat_{12}$ acts transitively on C, and $N_H(C) \cap N_H(C \cap T) \cong Mat_{11}$ acts transitively on D with point-stabilizer $L_2(11)$. Hence $N_H(T) \cap N_H(\{C, D\}) \cong Aut(L_2(11))$.

It follows that $C_{\overline{M}}(t)$ is isomorphic to a subgroup of index at most two of Alt(7) or $Aut(L_2(11))$. In particular, $C_{\overline{M}}(t)$ has dihedral Sylow 2 subgroups. Since \overline{A} is elementary abelian, we conclude that $|\overline{A}| \leq 4$. Thus $|I/C_I(A)| \leq |\overline{A}|^2 \leq 2^4$. Since A does not act quadratically, $C_I(A) \neq C_I(a)$ for some $1 \neq a \in \overline{A}$ and so $|I/C_I(a)| \leq 2^3$. But this is a contradiction, for example, since each involution in $C_{\overline{M}}(t)$ inverts an elements of order 5, and all elements of order five in $\overline{M^{\circ}}$ have an 8-dimensional commutator on I.

Suppose that Case (G) holds. Then $\overline{M^{\circ}} \cong Mat_{11}$ and I is the simple Golay code module. Since $Out(Mat_{11}) = 1$ and $C_M(I) = C_M(Y)$, we get $O^{3'}(\overline{M}) = K$. By 9.18 \overline{A} is not a Sylow 3-subgroup of K. Thus $|\overline{A}| = 3$ and so $|I/C_I(A)| \leq |\overline{A}|^2 = 9$. Let $R \leq K$ with $R \cong Mat_{10} \sim Alt(6).2$ and $\overline{A} \leq R$, and let $g \in R \setminus R'$. Then \overline{A} and \overline{A}^g are not conjugate in R' and we choose g such that \overline{A} and

 \overline{A}^{g} correspond to $\langle (123) \rangle$ and $\langle (124)(356) \rangle$ in Alt(6). Then $R' = \langle \overline{A}, \overline{A}^{g} \rangle$. Thus $|I/C_{I}(R')| \leq 3^{4}$ and so $|C_I(R')| = 3$, a contradiction since I is the Golay-code module (or to Q!).

9.4. The Proof of Corollary 9.2

In this section we will proof Corollary 9.2. For this we continue to assume the hypothesis of Theorem I and use the notation introduced in 9.3. In addition, we assume

 $C_G(y)$ is of characteristic p for all $y \in Y^{\sharp}$. $(char Y_M)$

The following lemma is crucial for the proof of the corollary. Exactly here property (char Y_M) is used.

LEMMA 9.20. Suppose that property (char Y_M) holds. Then $O_p(N_{\overline{M}}(B)) \neq 1$ for all $1 \neq B \leq$ $C_Y(A)$.

PROOF. Suppose that $O_p(N_{\overline{M}}(B)) = 1$ for some $1 \neq B \leq C_Y(A)$. Note that $O_p(M)$ normalizes $O_p(N_G(B))$ and that by 2.6(b) $O_p(M)$ is weakly closed in G. Hence $O_p(N_G(B)) \leq N_G(O_p(M)) \leq$ M^{\dagger} and so $\overline{O_p(N_G(B))} \leq O_p(N_{\overline{M}}(B)) = 1$. Thus $[Y_M, O_p(N_G(B))] = 1$.

By (char Y_M) $C_G(b)$ is of characteristic p for $1 \neq b \in B^{-2}$ and so by 1.2(c) $C_G(b)$ is of local characteristic p. It follows that $C_G(B)$ has characteristic p. In particular,

$$Y_M \leqslant C_G(O_p(N_G(B))) \leqslant C_G(O_p(C_G(B))) \leqslant O_p(C_G(B)) \leqslant O_p(N_G(B)).$$

On the other hand, by 9.3(f) $B \leq Z(A) \leq Z(L)$ and so $L \leq N_G(B)$. This contradicts $Y_M \leq O_p(L)$. \square

LEMMA 9.21. Suppose that property (char Y_M) holds. Then Case (11) of Theorem I does not occur.

PROOF. Suppose that Case (11) of Theorem I holds. Then p = 2, $\overline{M^{\dagger}} = \overline{M} = \overline{M^{\circ}} \cong$ $Aut(Mat_{22})$, and I is the Todd module of order 2^{10} . Choose a set Ω of size 22 with \overline{M} acting faithfully and 4-transitively on Ω . Let $\alpha, \beta \in \Omega$ with $\alpha \neq \beta$. Since \overline{M} acts 4-transitively in Ω , $F := C_{\overline{M}}(\alpha)$ and $P := N_{\overline{M}}(\{a, \beta\})$ are maximal subgroups of \overline{M} . Since I is the Todd-module there exists $1 \neq x \in C_I(F)$. Define $\{x, y\} := x^P$ and z := xy. By the maximality of F and P, $F = C_{\overline{M}}(x)$, $x \neq y$, and $P = C_M(z)$.

Note that

$$F \cap K \cong Mat_{21} \cong L_3(4), P \sim 2^{4+1} \Gamma SL_2(4), P' = P \cap K \cap F \cong Mat_{20} \sim 2^4 SL_2(4).$$

Moreover, $O_2(P')$ is a natural $SL_2(4)$ -module for P', and Z(F) = Z(P) = 1. Since $|F/F \cap K| = 2$ we conclude that $O_2(F) = 1$. Also $|\overline{M}/P| = {\binom{22}{2}} = 21 \cdot 11$, and so P is a parabolic subgroup of \overline{M} . Thus we may assume that $\overline{S} \leq P$. Then $z \leq C_I(\overline{S}) \leq C_I(A)$ and so by 9.3(f), $z \in C_I(L)$.

If $x \in C_I(A)$ then by 9.20 $O_2(C_{\overline{M}}(x)) \neq 1$, which contradicts $O_2(F) = 1$. Thus

 $x \notin C_I(A)$ and $\overline{A} \notin F$. $1^{\circ}.$

Since $z \in C_I(L)$, we have $\overline{N_L(Y)} \leq C_{\overline{M}}(z) = P$. It follows that $\langle x, y \rangle / \langle z \rangle$ is a composition factor for $N_L(Y)$ on $AY/C_Y(L)$ of order 2. On the other hand by 2.18(b) any such composition factor has order \tilde{q} . Hence $\tilde{q} = 2$ and so $|I/I \cap A| = 2$. Since by 9.5(b), $I \cap A = [I, A]C_I(A)$, this shows that

 2° . $|I/[I, A]C_I(A)| = 2.$

As Q centralizes z, Q! implies that $\overline{Q} \leq P$. Since $\overline{M^{\circ}} \neq K$ we have $\overline{Q} \leq K$. Also P acts simply on $R := O_2(P'), |O_2(P)/R| = 2$ and Z(P) = 1. Thus $\overline{Q} = O_2(P)$. It follows that (see for example [MSt, Theorem 3])

 3° .

- (a) C_I(Q) = [I, Q, Q] = ⟨z⟩,
 (b) [I, Q]/⟨x, y⟩ is a natural SL₂(4)-module for P',

²This is the only place in the proof of Corollary 9.2 where (*char* Y_M) is used.

(c) $\tilde{I} := I/[I,Q]$ is a natural Sym(5)-module for P. In particular, \tilde{I} is a selfdual P-module.

We claim that $\overline{A} \cap R \neq 1$. If $\overline{A} \leq \overline{Q}$, then $1 \neq [\overline{Q}, \overline{A}] \leq \overline{A} \cap R$. So suppose that $\overline{A} \leq \overline{Q}$. Since A does not act quadratically on I, $|\overline{A}| \geq 4$. As $|\overline{Q}/R| = 2$ this gives $\overline{A} \cap R \neq 1$.

So we can choose $a \in A$ with $1 \neq \overline{a} \leq R \leq K$. Since all involutions in K are conjugate, $\overline{a}^g \in P' \setminus O_2(P)$ for some $g \in K$. By (3°) P' has two non-central composition factors on I and so $|I/C_I(a)| \geq 2^4$ and $|C_I(a)| \leq 2^6$. Since $\overline{a} \in R \leq \overline{Q}$, (3°)(a) gives $[[I,Q],a] \leq \langle z \rangle$ and thus $|C_I(a) \cap [I,Q]| \geq 2^5$. Hence $|C_I(a)[I,Q]/[I,Q]| \leq 2$ and so $|C_I(a)| \leq 2$.

By (2°) $[\tilde{I}, A]C_{I}(A)$ has index at most 2 in \tilde{I} . Suppose that A acts quadratically on \tilde{I} . Then $\widetilde{C_{I}(A)}[\tilde{I}, A] \leq C_{\tilde{I}}(A)$ and so $|\tilde{I}/C_{\tilde{I}}(A)| \leq 2$. As by $(3^{\circ})(c)$ \tilde{I} is selfdual this gives $|[\tilde{I}, A]| \leq 2$ and so $\widetilde{C_{I}(A)}[\tilde{I}, A]$ has order at most 4, a contradiction. Hence A does not act quadratically on \tilde{I} . Note that the only elementary abelian subgroups of Sym(5), which do not act quadratically on the natural Sym(5)-module, are the Sylow 2-subgroups of Alt(5). Thus $T := \overline{A}O_2(P) \in Syl_2(P'O_2(P))$.

As Z(P) = 1, Gaschütz' Theorem gives $C_{O_2(P)}(T) \leq R$, see C.17. Since R is a natural $SL_2(4)$ module for $P', T \cap P'$ has exactly two maximal elementary abelian subgroups, namely R and say R^* . Moreover, $RR^* = T \cap P'$ and so $C_{O_2(P)}(R^*) \leq R$. Since $|\overline{A}O_2(P)/O_2(P)| = 4$ and $|P'O_2(P)/P'| = 2$ we can choose $b \in \overline{A} \cap P' \setminus O_2(P)$. Then $b \in R^*$. Also $[O_2(P), b] \leq C_R(b) = [R, b] = R \cap R^*$ has order 4 and so $B := C_{O_2(P)}(b) \leq R$. In particular, since $C_{O_2(P)}(R^*) \leq R$, $[B, R^*] \neq 1$. It follows that $C_T(b) = BR^*$ and $C_T(b)$ has exactly two maximal elementary abelian subgroups, namely $B\langle b \rangle$ and R^* . As $\overline{A} \leq C_T(b)$ and $\overline{A}O_2(P) = T$ this gives $A \leq R^* \leq P'$. Since $P' = P \cap K \cap F$, we have $\overline{A} \leq F$, a contradiction to (1°) .

LEMMA 9.22. Suppose that property (char Y_M) holds. Then (13) of Theorem I does not occur.

PROOF. Suppose that p = 3, $\overline{M^{\circ}} \sim 2 \cdot Mat_{12}$ and I is the simple Golay code module of order 3^6 . Observe that there exists a subgroup P of $\overline{M^{\circ}}$ with $\overline{A} \leq P$ such that $P \sim 3^2 SL_2(3)$, $C_I(O_3(P))$ is a natural $\Omega_3(3)$ -module, and $[I, O_3(P)]/C_I(O_3(P))$ is a natural $SL_2(3)$ -module for P. If $\overline{A} \leq O_3(P)$, then we can choose $1 \neq x \in C_I(O_3(P)) \leq C_I(A)$ with $C_{\overline{M}}(x) \cong Mat_{11}$, a contradiction to 9.20. Thus $\overline{A} \leq O_3(P)$. Let $1 \neq e \in \overline{A}$. Then $e^g \in P \setminus O_3(P)$ for some $g \in \overline{M}$. In particular, e^g acts non-trivially on $C_I(O_3(P))$ and $[I, Q]/C_I(O_3(P))$. Hence $|[I, e]| \geq 3^3$ and $|C_I(e)| \leq 3^3$. Since $|I/C_I(A)| \leq |\overline{A}|^2$ by 9.3(c), this gives $\overline{A} \neq \langle e \rangle$. Hence, as \overline{A} is abelian, $|\overline{A}| = 3^2$ and $|\overline{A} \cap O_3(P)| = 3$. Since

$$3^3 = |C_I(O_3(P))| \leq |C_I(\overline{A} \cap O_3(P))| \leq |C_I(e)| \leq 3^3,$$

 $C_I(\overline{A} \cap O_3(P)) = C_I(O_3(P))$ and so $|C_I(A)| = |C_I(O_3(P)A)| = 3$. But this contradicts $|I/C_I(A)| \leq |\overline{A}|^2 = 3^4$.

9.23. Proof of Corollary 9.2:

In view of 9.21 and 9.22 it remains to show that Y = I. Hence, we assume property (*char* Y_M) and $Y \neq I$ and discuss the five cases of Corollary 9.1. By 9.3(f) $Y = IC_Y(A)$, so we can pick $t \in C_Y(A) \setminus I$.

Suppose that case 9.1(1) holds. Then p = 2 and I is a natural $Sp_{2n}(q)$ - or $Sp_4(2)'$ -module for $\overline{M^{\circ}}$. In the first case $C_{\overline{M^{\circ}}}(t) \cong O_{2n}^{\epsilon}(q)$ and the second case $C_{\overline{M^{\circ}}}(t) \sim 3^2 \cdot C_4$ or $\Omega_4^-(2)$. In either case we conclude that $C_{\overline{M^{\circ}}}(t)$ and so also $C_{\overline{M}}(t)$ acts simply on I. Thus $O_2(C_{\overline{M}}(t))$ centralizes I, and since $C_M(Y) = C_M(I)$, we get $O_2(C_{\overline{M}}(t)) = 1$, a contradiction to 9.20.

Suppose that case 9.1(2) or (3) holds. Then I is a natural $\Omega_4^-(3)$ - or $\Omega_5(3)$ -module for K. Thus B.35(d) shows that $\overline{S} \leq K$. Let x be a non-singular vector in I. Then $O_3(C_{\overline{M}}(x)) \leq K$ and $C_K(x) \cong \Omega_{n-1}^{\epsilon}(3)$, where $n = \dim_{\mathbb{F}_3}(I)$. Thus $O_3(C_{\overline{M}}(x)) = 1$, and 9.20 shows that $x \notin C_I(A)$. Hence $C_I(A)$ does not contain any non-singular vectors. Since 3 is odd we conclude that $C_I(A)$ is singular.

Put $D := [I, A] \cap C_I(A)$. Observe that $\mathbb{K} := End_K(I) \cong \mathbb{F}_3$, and let X be a \mathbb{K} -subspace of $C_I(A)$ with $C_I(A) = D \times X$. Since $C_I(A)$ is singular, $X \leq X^{\perp}$. On the other hand, I is a selfdual K-module, and so 9.7(g) gives $X \cap X^{\perp} = 1$. Thus X = 1 and $D = C_I(A)$. By 9.7(c), |D| = 3.

Hence $C_K(D^{\perp}) = 1$, and by 9.7(g), $\overline{A} = \overline{A}C_K(D^{\perp}) = C_K(D^{\perp}/D) \cap C_K(D)$. If $K \cong \Omega_4^-(3)$ this gives $\overline{A} \in Syl_3(K)$, a contradiction to 9.18.

Thus $K \cong \Omega_5(3)$. Let E be 2-dimensional subspace of I with $D \leqslant E$ and $E \leqslant D^{\perp}$. Then $C_K(E) \cong \Omega_3(3)$ is a complement to \overline{A} in $C_K(D)$. Let $g \in K$ with $D^g \leqslant E^{\perp}$ and put $B := C_K(E) \cap C_K(D^g) \cap C_K(E^{\perp}/D^g)$. Then B is a Sylow 3-subgroup of $C_K(E)$, $B \leqslant \overline{A}^g$ and $\overline{A}B \in Syl_3(K)$. Also $[I, B] \leqslant E^{\perp}$ and $[I, B] \cap D = 1$. Since $Y = C_Y(A)I = C_Y(\overline{A}^g)I$ we have [Y, A] = [I, A] and [Y, B] = [I, B]. Thus

$$[C_Y(A), \overline{A}B] \leq [Y, B] \cap C_I(A) = [I, B] \cap D = 1,$$

and so $Y = IC_Y(\overline{AB})$. Since $\overline{AB} \in Syl_3(K)$, 9.18 shows that Y = I, a contradiction.

Suppose that case 9.1(4) holds. Then I is a natural $\Omega_6^+(2)$ -module for $K \cong \Omega_6^+(2) \cong Alt(8)$. Hence Y is the central quotient of the permutation module on eight objects, and so $C_{\overline{M}}(t)$ is isomorphic to a subgroup of index at most two of Sym(7) or $Sym(3) \times Sym(5)$. It follows that $O_2(C_{\overline{M}}(t)) = 1$, a contradiction to 9.20.

Suppose that case 9.1(5) holds. Then $\overline{M^{\circ}} \cong Mat_{24}$ and I is the simple Todd-module. It follows that $\overline{M} = K$ and Y is the quotient of the 24-dimensional permutation module by the Golay-code module. Hence $C_K(t)$ is isomorphic to Mat_{23} or $L_3(4).Sym(3)$. So $O_2(C_{\overline{M}}(t)) = 1$, a contradiction to 9.20.

CHAPTER 10

Proof of the Local Structure Theorem

In this chapter we prove the Local Structure Theorem and its corollary stated in the introduction. But before doing this we prove the Structure Theorem for Maximal Local Parabolic Subgroups, which combines the theorems proved in Chapters 4 - 9 into one.

THEOREM J (Structure Theorem for Maximal Local Parabolic Subgroups). Let G be a finite \mathcal{K}_p -group and $S \in Syl_p(G)$. Suppose that $|\mathcal{M}_G(S)| > 1$ and there exists a large subgroup Q of G in S. Then there exists $M \in \mathfrak{M}_G(S)$ with $Q \notin M$. Moreover, for every $M \in \mathfrak{M}_G(S)$ with $Q \notin M$ one of the following cases holds, where $Y := Y_M$, $\overline{M} := M/C_M(Y_M)$, $Q^{\bullet} := O_p(N_G(Q))$, and q is a power of p:

- (1) The linear case.
 - (a) $\overline{M^{\circ}} \cong SL_n(q), n \ge 3$, and $[Y, M^{\circ}]$ is a corresponding natural module for $\overline{M^{\circ}}$.
 - (b) If $Y \neq [Y, M^{\circ}]$ then $\overline{M^{\circ}} \cong SL_3(2)$, $|Y/[Y, M^{\circ}]| = 2$ and $[Y_M, M^{\circ}] \leqslant Q \leqslant Q^{\bullet}$.
- (2) The symplectic case.
 - (a) $\overline{M^{\circ}} \cong Sp_{2n}(q), n \ge 2$, or $Sp_4(q)'$ (and q = 2), and $[Y, M^{\circ}]$ is the corresponding natural module for $\overline{M^{\circ}}$
 - (b) If $Y \neq [Y, M^{\circ}]$, then p = 2 and $|Y/[Y, M^{\circ}]| \leq q$.
 - (c) If $Y \leq Q^{\bullet}$, then p = 2 and $[Y, M^{\circ}] \leq Q^{\bullet}$.
- (3) The wreath product case.
 - (a) There exists a unique \overline{M} -invariant set \mathcal{K} of subgroups of \overline{M} such that $[Y, M^{\circ}]$ is a natural $SL_2(q)$ -wreath product module for \overline{M} with respect to \mathcal{K} . Moreover, $\overline{M^{\circ}} = O^p(\langle \mathcal{K} \rangle)\overline{Q}$ and Q acts transitively on \mathcal{K} .
 - (b) If $Y \neq [Y, M^{\circ}]$, then p = 2, $\overline{M} \cong \Gamma SL_2(4)$, $\overline{M^{\circ}} \cong SL_2(4)$ or $\Gamma SL_2(4)$, $|Y/[Y, M^{\circ}]| = 2$ and $[Y, M^{\circ}] \leqslant Q^{\bullet}$.
- (4) The orthogonal case. $Y \leq Q^{\bullet}$, $\overline{M^{\circ}} \cong \Omega_n^{\epsilon}(q)$, $n \geq 5$, where q is odd if n is odd, and Y is a corresponding natural module for $\overline{M^{\circ}}$.
- (5) The tensor product case. $Y \leq Q^{\bullet}$, and there exist subgroups $\overline{K_1}, \overline{K_2}$ of \overline{M} such that (a) $\overline{K_i} \cong SL_{m_i}(q), m_i \ge 2, [\overline{K_1}, \overline{K_2}] = 1, and \overline{K_1K_2} \le \overline{M},$
 - (b) Y is the tensor product over \mathbb{F}_q of corresponding natural modules for $\overline{K_1}$ and $\overline{K_2}$,
 - (c) $\overline{M^{\circ}}$ is one of $\overline{K_1}, \overline{K_2}$, or $\overline{K_1K_2}$.
- (6) The non-natural $SL_n(q)$ -case. $Y \leq Q^{\bullet}$ and one of the following holds:
 - (1) $\overline{M^{\circ}} \cong SL_n(q)/\langle (-id)^{n-1} \rangle$, $n \ge 5$, and Y is the exterior square of a natural $SL_n(q)$ -module.
 - (2) $p \text{ is odd}, \overline{M^{\circ}} \cong SL_n(q)/\langle (-id)^{n-1} \rangle, n \ge 2, \text{ and } Y \text{ is the symmetric square of a natural module.}$
 - (3) $\overline{M^{\circ}} \cong SL_n(q)/\langle \lambda id \mid \lambda \in \mathbb{F}_q, \lambda^n = \lambda^{q_0+1} = 1 \rangle, n \ge 2, q = q_0^2, and Y is the unitary square of a natural module.$
- (7) The exceptional case. $Y \leq Q^{\bullet}$ and one of the following holds:
 - (1) $\overline{M^{\circ}} \cong Spin_{10}^+(q)$, and Y is a half-spin module.
 - (2) $\overline{M^{\circ}} \cong E_6(q)$, and Y is one of the (up to isomorphism) two simple $\mathbb{F}_p M^{\circ}$ -modules of order q^{27} .
- (8) The sporadic case. $Y \leq Q^{\bullet}$ and one of the following holds:
 - (1) $\overline{M} \sim 3$ ·Sym(6), $\overline{M^{\circ}} \sim 3$ ·Alt(6) or 3·Sym(6), and Y is simple of order 2⁶.
 - (2) p = 2, $\overline{M^{\circ}} \cong Mat_{22}$, and Y is the simple Golay-code module of \mathbb{F}_2 -dimension 10.

- (3) p = 2, $\overline{M^{\circ}} \cong Mat_{24}$, and Y is the simple Todd or Golay-code module of \mathbb{F}_2 -dimension 11.
- (4) p = 3, $\overline{M^{\circ}} \cong Mat_{11}$, and Y is the simple Golay-code module of \mathbb{F}_3 -dimension 5.
- (9) The non-characteristic p case. There exists $1 \neq y \in Y$ such that $C_G(y)$ is not of characteristic p and one of the following holds:
 - (1) Y is tall and asymmetric in G, but Y is not char p-tall in G.
 - (2) p = 2, $\overline{M^{\circ}} \cong Aut(Mat_{22})$, Y is the simple Todd module of \mathbb{F}_2 -dimension 10, and $Y \notin Q^{\bullet}$.
 - (3) p = 3, $\overline{M^{\circ}} \cong 2 \cdot Mat_{12}$, Y is the simple Golay-code module of \mathbb{F}_3 -dimension 6, and $Y \notin Q^{\bullet}$.
 - (4) $p = 2, \ \overline{M} \cong O_{2n}^{\epsilon}(2), \ \overline{M^{\circ}} \cong \Omega_{2n}^{\epsilon}(2), \ 2n \ge 4, \ (2n,\epsilon) \ne (4,+), \ Y \ is \ a \ corresponding natural module and <math>Y \le Q^{\bullet}$.
 - (5) p = 3, M[◦] ≃ Ω⁻₄(3), [Y, M[◦]] is the corresponding natural module, |Y/[Y, M[◦]]| = 3, Y is isomorphic to the 5-dimensional quotient of a six dimensional permutation module for M[◦] ≃ Alt(6), and [Y, M[◦]] ≤ Q[•].
 - (6) p = 3, $\overline{M^{\circ}} \cong \Omega_5(3)$, $[Y, M^{\circ}]$ is the corresponding natural module, $|Y/[Y, M^{\circ}]| = 3$ and $[Y, M^{\circ}] \leqslant Q^{\bullet}$.
 - (7) $p = 2, \overline{M^{\circ}} \cong \Omega_6^+(2), [Y, M^{\circ}]$ is the corresponding natural module, and $|Y/[Y, M^{\circ}]| = 2.$
 - (8) p = 2, $\overline{M^{\circ}} \cong Mat_{24}$, $[Y, M^{\circ}]$ is the simple Todd-module of \mathbb{F}_2 -dimension 11, $|Y/[Y, M^{\circ}]| = 2$ and $[Y, M^{\circ}] \leqslant Q^{\bullet}$.

We remark that there is some overlap between the different cases and that the last case is not the only case, where $C_G(y)$ may not be of characteristic p for some $1 \neq y \in Y$. See the comment after the Local Structure Theorem (Theorem A) in the introduction for more details.

10.1. Proof of Theorem J

In this section we prove Theorem J, so we assume the hypothesis and notation given there.

The existence of M follows from 1.56(c). Now let $M \in \mathfrak{M}_G(S)$ with $Q \not \equiv M$.

Suppose first that Y is symmetric in G. Then we can apply Theorem D. Assume that Case 5 of Theorem D holds. Then $\overline{M} \cong O_{2n}^{\epsilon}(2)$, $\overline{M^{\circ}} \cong \Omega_{2n}^{\epsilon}(2)$, $(2n, \epsilon) \neq (4, +)$, [Y, M] is a corresponding natural module, $C_G(y)$ is not of characteristic 2 for every non-singular $y \in [Y, M]$, and either Y = [Y, M] or $\overline{M} = O_6^+(2)$ and |Y/[Y, M]| = 2. If $Y \neq [Y, M^{\circ}]$, we conclude that J(9:7) holds. If Y = [Y, M] and $Y \notin Q^{\bullet}$ either J(4) (for $2n \ge 6$) or J(6:3) (for $(2n, \epsilon) = (4, -)$) holds. If Y = [Y, M] and $Y \leqslant Q^{\bullet}$, then J(9:4) holds. All other case of Theorem D also appear in Theorem J.

Suppose next that Y is asymmetric in G and short. Then Theorem E implies Theorem J, where the $O_{2n}^{\epsilon}(2)$ -Case of Theorem E is treated as in the previous paragraph.

Suppose that Y is asymmetric in G and tall. Assume that Y is not char p-tall in G. Then Theorem F shows that $C_G(y)$ is not of characteristic p for some $1 \neq y \in Y$ and thus J(9:1) holds. So we may assume that Y is char p-tall. If, in addition, Y is Q-short we can apply Theorem G and conclude that Theorem J holds.

Suppose finally that Y is asymmetric in G and Q-tall. Then we can apply Theorems H and I. Put $I = F_Y(\overline{M})$. Then by Theorem H $I = [Y, M^\circ]$ and $I \leq Q^\bullet$ except in Case H(2), where I is a natural $SL_3(2)$ -module for M° , $I \leq \overline{Q}$ and |Y/I| = 2.

Assume that one of the cases of Theorem I holds and $Y \neq I$. Then Corollary 9.2 shows $C_G(x)$ is not of characteristic p for some $1 \neq x \in Y$. Now Corollary 9.1 implies that Case 2 or one of the Cases 9:5 – 9:8 of Theorem J holds. Also by Corollary 9.2 the Cases 11 (Todd-module for $Aut(Mat_{22})$) and 13 (Golay code module for $2 \cdot Mat_{12}$) of Theorem 9.2 only occur if $C_G(x)$ is not of characteristic p for some $1 \neq x \in Y$, and so Cases 9:2 and 9:3 of Theorem J hold, respectively.

In all remaining cases of Theorems H and I a careful comparison shows that Theorem J holds, see Tables 1 and 2.

Th H	Ι	Y/I	Remark	Th J
(1)			leads to Theorem I	
(2)	nat $SL_3(2)$	2	$I \leqslant Q, Y \leqslant Q^{\bullet}$	(1:b)
(3)	nat $\Omega_6^+(2)$	2	$C_G(x)$ not of characteristic p	(9:7)
(4)	nat $Sp_{2n}(2)$	2	$Y > I \leqslant Q^{\bullet}$	(2)
(5)	nat $SL_n(q), n \ge 3$	1	$p=2, Y=I \leqslant Q^{\bullet}$	(1)
(5)	nat $SL_2(q)$	1	$I = Y \leqslant Q^{\bullet}$	(3)
(6)	nat $Sp_{2n}(q)$	1	$Y = I \leqslant Q^{\bullet}$	(2)
(7)	nat $\Omega_3(3) \cong S^2(\text{nat}) SL_2(3)$	1	$Y = I \leqslant Q^{\bullet}$	(6:2)
(8)	nat $(\Gamma)SL_2(4)$	2	$Y > I \leqslant Q^{\bullet}$	(3:b)
(9)	2^{6} for $3 \cdot Alt(6), 3 \cdot Sym(6)$	1	$I = Y \leqslant Q^{\bullet}$	(8:1)
(10)	nat $SL_{m_1}(q) \otimes SL_{m_2}(q)$)	1	$I = Y \leqslant Q^{\bullet}$	(5)
(10)	2^4 for $SL_2(2) \wr C_2$	1	$I = Y \leqslant Q^{\bullet}$	(3)

TABLE 1. The Cases of Theorem H and Theorem J

TABLE 2. The Cases Y = I of Theorem I and Theorem J

Th I	Ι	Remark	Th J
(1)	nat $SL_m(q)$	$Y = I \leqslant Q^{\bullet}$	(1)
(2)	nat $Sp_{2n}(q), Sp_4(2)', p = 2$	$Y = I \leqslant Q^{\bullet}$	(2)
(3)	nat $\Omega_n^{\epsilon}(q), n \ge 5$	$Y = I \leqslant Q^{\bullet}$	(4)
(3)	nat $\Omega_3(q) \cong S^2(\operatorname{nat}) SL_2(q)$	$Y = I \leqslant Q^{\bullet}$	(6:2)
(3)	nat $\Omega_4^+(q) \cong \operatorname{nat} SL_2(q) \otimes \operatorname{nat} SL_2(q)$	$Y = I \leqslant Q^{\bullet}$	(5)
(3)	nat $\Omega_4^-(q) \cong U^2(\text{nat}) SL_2(q)$	$Y = I \leqslant Q^{\bullet}$	(6:3)
(4)	$\Lambda^2(\text{nat}) \ SL_m(q)$	$Y = I \leqslant Q^{\bullet}$	(6:1)
(5)	$S^2(\text{nat}) SL_m(q)$	$Y = I \leqslant Q^{\bullet}$	(6:2)
(6)	$U^2(\text{nat}) \ SL_m(q)$	$Y = I \leqslant Q^{\bullet}$	(6:3)
(7)	half spin $Spin_{10}^+(q)$	$Y = I \leqslant Q^{\bullet}$	(7:1)
(8)	q^{27} for $E_6(q)$	$Y = I \leqslant Q^{\bullet}$	(7:2)
(9)	Todd or Golay for Mat_{24}	$Y = I \leqslant Q^{\bullet}$	(8:3)
(10)	Golay for Mat_{22}	$Y = I \leqslant Q^{\bullet}$	(8:2)
(11)	Todd for $Aut(Mat_{22})$	not $(char Y)$ by Cor. 9.2	(9:2)
(12)	Golay for Mat_{11}	$Y = I \leqslant Q^{\bullet}$	(8:4)
(13)	Golay for $2 \cdot Mat_{12}$	not $(char Y)$ by Cor. 9.2	(9:3)

10.2. Proof of the Local Structure Theorem

This section is devoted to the proof of the Local Structure Theorem (Theorem A). Let p be a prime, G a finite \mathcal{K}_p -group, $S \in Syl_p(G)$ and $Q \leq S$. Suppose that Q is a large subgroup of G and $|\mathcal{M}_G(S)| > 1$. Recall that Q is a weakly closed subgroup of G by 1.52(b).

Let $L \leq G$ with $S \leq L$, $O_p(L) \neq 1$ and $Q \leq L$. Since L is a parabolic subgroup of H with $O_p(L) \neq 1$, 1.55(b) shows that $C_G(O_p(L)) \leq O_p(L)$. Hence $L \in \mathcal{L}_G(S)$.

By 1.56(a), (b) there exists $M \in \mathfrak{M}_G(S)$ and $L^* \in \mathcal{L}_G(S)$ such that $L^* \leq M$ and

$$Y_L = Y_{L*} \leqslant Y_M, \ LC_G(Y_L) = L^*C_G(Y_L), \ L^\circ = (L^*)^\circ, \ Q \not \leqslant L^*, \ \text{and} \ Q \not \leqslant M.$$

Since $L^{\circ} = (L^{*})^{\circ} \leq M$ and $L/C_{L}(Y_{L}) \cong L^{*}/C_{L^{*}}(Y_{L})$ we are allowed to replace L be L^{*} , so we may assume that $L \leq M$. Put $\overline{M} := M/C_{M}(Y_{M})$ and $\widetilde{L} := L/C_{L}(Y_{L})$. Then $\overline{S} \leq \overline{L} \leq \overline{M}$. Hence by 1.24(f) $Y_{L} \leq Y_{M}$ and so $Y_{L} = Y_{Y_{M}}(\overline{L})$ (the largest *p*-reduced \overline{L} -submodule of Y_{M}). Put

 $Y := Y_M, V := [Y, M^\circ], U := C_V(O_p(L \cap M^\circ)), \mathbb{K} := End_{M^\circ}(V), Z := C_V(S \cap M^\circ), k := \dim_{\mathbb{K}} U.$ Then $Y_L \leq C_Y(O_p(L)) \leq C_Y(O_p(L \cap M^\circ)) \leq C_Y(O_p(L^\circ))$ and $Y_L \cap V \leq U$. Moreover, if U is a simple $\mathbb{F}_p L$ -module, then $Y_L \cap V = U$. 1°.

- (a) $C_Y(L^\circ) = 1.$
- (b) $\widetilde{Q} \neq 1$ and $\overline{Q} \leqslant O_p(\overline{L^\circ})$.
- (c) $\overline{L \cap M^{\circ}}$ is not p-closed.
- (d) $V \cap Y_L$ is a faithful L° -module. In particular, $[V \cap Y_L, Q] \neq 1$.
- (a): Since $Q \not \equiv L$, 1.55(d) gives $C_G(L^\circ) = 1$; in particular $C_Y(L^\circ) = 1$.

(b): If $\tilde{Q} = 1$, then $1 \neq Y_L \leq C_G(Q)$ and so Q! gives $L \leq N_G(Q)$, a contradiction. Thus $\tilde{Q} \neq 1$. Since Y_L is *p*-reduced, $O_p(\widetilde{L}^\circ) \leq O_p(\widetilde{L}) = 1$. Hence $\widetilde{Q} \leq O_p(\widetilde{L}^\circ)$ and so also $\overline{Q} \leq O_p(\overline{L}^\circ)$.

(c): If $\overline{L \cap M^{\circ}}$ is *p*-closed then $\overline{Q} \leq O_p(\overline{L \cap M^{\circ}})$. Since $Q \leq L^{\circ} \leq L \cap M^{\circ}$, this gives $\overline{Q} \leq O_p(\overline{L^{\circ}})$, which contradicts (b).

(d) : Since Y_L is faithful *p*-reduced \widetilde{L} -module, A.9(d) shows that $[Y_L, L^\circ]$ is faithful $\widetilde{L^\circ}$ -module. As $[Y_L, L^\circ] \leq [Y, M^\circ] \cap Y_L = V \cap Y_L$, also $V \cap Y_L$ is a faithful $\widetilde{L^\circ}$ -module.

Note that we can apply Theorem J to M. Our strategy is to discuss each of the cases of Theorem J, where we first determine all the subgroups \overline{L} of \overline{M} with $\overline{S} \leq \overline{L}$ and $\overline{Q} \leq \overline{L}$ and then the module structure of $Y_L = Y_Y(\overline{L})$.

Moreover, in some of the cases we will use the following observation to prove that $Y_L \leq Q^{\bullet}$:

- 2°. Suppose that $V \leq Q^{\bullet}$ and $N_M(Q)$ acts simply on V/[V,Q].
- (a) $V \cap Q^{\bullet} = [V, Q].$
- (b) If [V, Q, Q] = 1, then $V \cap Y_L \leq Q^{\bullet}$.
- (c) If [V, Q, Q, Q] = 1 and $[V \cap Y_L, Q, Q] \neq 1$, then $V \cap Y_L \leq Q^{\bullet}$.

Indeed, we have $[V,Q] \leq V \cap Q^{\bullet} < V$, and so the simple action of $N_M(Q)$ on V/[V,Q] implies $(2^{\circ})(a)$.

Suppose that [V, Q, Q] = 1. By $(2^{\circ})(a) V \cap Q^{\bullet} = [V, Q]$ and so $[V \cap Q^{\bullet}, Q] = 1$. Since by $(1^{\circ})(d) [V \cap Y_L, Q] \neq 1$, this gives $V \cap Y_L \leq Q^{\bullet}$, and $(2^{\circ})(b)$ holds.

Suppose next that [V, Q, Q, Q] = 1 and $[V \cap Y_L, Q, Q] \neq 1$. By $(2^\circ)(a) \ V \cap Q^\bullet = [V, Q]$ and so $[V \cap Q^\bullet, Q, Q] = [V, Q, Q, Q] = 1$. By hypothesis, $[V \cap Y_L, Q, Q] \neq 1$, and we conclude that $V \cap Y_L \leq Q^\bullet$. Hence, $(2^\circ)(c)$ holds.

Case 1. Suppose that the wreath product case of Theorem J holds for M.

Then Y is a natural $SL_2(q)$ -wreath product module for \overline{M} with respect to some \overline{M} -invariant set of subgroups \mathcal{K} of \overline{M} . Moreover, Q acts transitively on \mathcal{K} . Put $r = |\mathcal{K}|, \{K_1, \ldots, K_r\} := \mathcal{K}$ and $V_i := [Y, K_i]$. Then

$$Y = V_1 \times \ldots \times V_r, \qquad K := \langle \mathcal{K} \rangle = K_1 \times \ldots \times K_r$$

with $K_i \cong SL_2(q)$, and V_i is a natural $SL_2(q)$ -module for K_i .

Assume that $\overline{M^{\circ}} \leq \overline{L}$. Then $M^{\circ} = L^{\circ}$. Now 1.58 shows that $Y_L = Y$ and that Theorem A(3) holds. So assume that $\overline{M^{\circ}} \leq \overline{L}$. By A.28 $N_{K\overline{S}}(\overline{S} \cap K)$ is the unique maximal subgroup of $K\overline{S}$ containing \overline{S} . It follows that $O_p(\overline{L} \cap K) = \overline{S} \cap K$. In particular, $Y_L \leq C_Y(\overline{S} \cap K)$. Since $K_i \cong SL_2(q), N_{K_i}(\overline{S} \cap K_i)/\overline{S} \cap K_i \cong C_{q-1}$ and so $N_K(\overline{S} \cap K)/\overline{S} \cap K \cong C_{q-1}^r$. As $\overline{L_{\circ}} \leq O^p(\overline{M^{\circ}}) \leq K$, we conclude that $\widetilde{L_{\circ}}$ is abelian and every cyclic quotient of $\widetilde{L_{\circ}}$ has order dividing q-1. In particular, q > 2.

Let U_1, U_2, \ldots, U_s be the Wedderburn components of L_\circ on Y_L . Since $\widetilde{L_\circ}$ is an abelian p'-group, $Y_L = U_1 \oplus U_2 \oplus \ldots \oplus U_s$ and $L_\circ/C_{L_\circ}(U_i)$ is cyclic. Let $W_i := C_{V_i}(\overline{S} \cap K)$. Then $Y_L \leqslant W_1 \oplus \ldots \oplus W_r$, and each W_j is a homogeneous $N_K(\overline{S} \cap K)$ -module. Hence W_i is also a homogeneous L° -module. For $1 \leqslant i \leqslant s$, let R_i consists of all $1 \leqslant j \leqslant r$ such that the projection of U_i onto W_j is non-trivial. Put $W_{R_i} := \bigoplus_{j \in R_i} W_j$. Then W_{R_i} is an homogeneous L° -submodule of $C_V(\overline{S} \cap K)$ and $R_i \cap R_k = \emptyset$ for $1 \leqslant i < k \leqslant r$. Note that Q normalizes L_\circ and so also $\bigcup_{i=1}^s R_i$. Since Q acts transitively on the subgroups W_i , we conclude that, R_1, R_2, \ldots, R_s is a Q-invariant partition of $\{1, \ldots, r\}$ and that Q acts transitively on R_1, \ldots, R_s . It follows that Q acts transitively on U_1, U_2, \ldots, U_s . Since $\overline{S} \cap K \leqslant O_p(\overline{L}), \overline{Q} \leqslant K$. In particular, $\overline{M^\circ} \not\cong SL_2(q)$, and Theorem A(4) holds. Case 2. Suppose that the tensor product case of Theorem J holds for M.

If $\overline{M^{\circ}} = \overline{M} \cong SL_2(2) \wr C_2$, then \overline{S} is a maximal subgroup of \overline{M} and $\overline{M} = \overline{L}$. Thus, Theorem A(6) holds. So assume that $\overline{M^{\circ}}$ is one of $\overline{K_1}$, $\overline{K_2}$ or $\overline{K_1K_2}$. Let K_i be the inverse image of $\overline{K_i}$ in M, and let V_i be a natural $SL_{m_i}(q)$ -module for K_i such that $Y \cong V_1 \otimes_{\mathbb{F}_q} V_2$ as a K_1K_2 -module.

Note that either $\overline{K_i} \leq \overline{M}$ or p = 2 and $\overline{K_1}^{\overline{x}} = \overline{K_2}$ for some $\overline{x} \in \overline{S}$. In particular $N_L(K_1) = N_L(K_2)$. Put

$$L_0 := N_L(K_1) = N_L(K_2), L_i := \langle (S \cap K_i)^{L_0} \rangle, U_i := C_{V_i}(O_p(L_i)).$$

Then $L_1L_2 \leq L$, $[\overline{L_1}, \overline{L_2}] = 1$ and $Q \leq L_1L_2$. Since $\overline{L_i}$ is a parabolic subgroup of $\overline{K_i}$ generated by p-elements and $\overline{K_i} \cong SL_{m_i}(q)$, we get that U_i is a natural $SL_{t_i}(q)$ -module for L_i , where $1 \leq t_i \leq m_i$. Moreover, $Y_L \leq C_Y(O_p(\overline{L_1L_2})) \cong U_1 \otimes_{\mathbb{F}_q} U_2$ as an L_1L_2 -module. Since $Q \leq L$, $t_i \geq 2$ for some $i \in \{1, 2\}$. It follows that $U_1 \otimes_{\mathbb{F}_q} U_2$ is a simple $\mathbb{F}_p L_1 L_2$ -module and so $Y_L \cong U_1 \otimes_{\mathbb{F}_q} U_2$ as an $L_1 L_2$ -module. Let $\{i, j\} := \{1, 2\}$.

Assume that $t_j = 1$. Then Y_L is a natural $SL_{t_i}(q)$ -module for L_i and $\overline{S} \cap \overline{K_j} \leq \overline{L}$; in particular $Y_L = [Y_L, L^\circ]$. Since $\overline{Q} \leq \overline{L}$ we conclude that $\widetilde{L^\circ} = \widetilde{L_i}$. Hence Theorem A(1) holds, if $t_i \geq 3$, and A(3) holds if $t_i = 2$.

Assume next that $t_j \ge 2$ and $\overline{M^\circ} = \overline{K_r}$ for some $r \in \{1, 2\}$. Then $\widetilde{L^\circ} = \widetilde{L_r}$. Let $\{r, s\} := \{1, 2\}$. Then $\overline{K_s}$ normalizes $\overline{Q^\bullet}$ and $N_{\overline{K_r}}(Z) \sim q^{m_r-1}SL_{m_{r-1}}(q)$, where $O_p(N_{\overline{K_r}}(Z))$ is a natural module for $SL_{m_{r-1}}(q)$. Thus, $N_{\overline{K_r}}(Z)$ acts simply on $O_p(N_{\overline{K_r}}(Z))$, and $\overline{Q} = O_p(N_{\overline{K_r}}(Z))$. It follows that $N_M(Q)$ acts simply on $C_V(Q)$ and $V/C_V(Q)$. In particular, $C_V(Q) = [V, Q]$ and [V, Q, Q] = 1, and so by (2°) , $Y_L \leq Q^\bullet$. Thus Theorem A(6) holds.

Assume now that $t_j \ge 2$ and $\overline{M^\circ} = \overline{K_1 K_2}$. Then $\widetilde{L^\circ} = \widetilde{L_1 L_2}$ and, for $r \in \{1, 2\}$, $N_{\overline{K_r}}(Z) \sim q^{m_r - 1}SL_{m_{r-1}}(q)$. Hence as above, the simple action of $N_{\overline{K_r}}(Z)$ on $O_p(N_{\overline{K_r}}(Z))$ shows that $\overline{Q} = O_p(N_{\overline{K_1}}(Z))O_p(N_{\overline{K_2}}(Z))$. Moreover, V/[V,Q] is a simple $N_M(Q)$ -module, [V,Q,Q] = Z, and Q does not act quadratically on Y_L . Thus by $(2^\circ) Y_L \le Q^{\bullet}$, and again Theorem A(6) holds. This finishes (Case 2).

In all the remaining cases of Theorem J V is a simple M° -module. Suppose that $\overline{M^{\circ}} \leq \overline{L}$. Then V is a simple L-module and so $[Y, M^{\circ}, O_p(\overline{L})] = [V, O_p(\overline{L})] = 1$. Also $[O_p(\overline{L}), \overline{M^{\circ}}] \leq O_p(\overline{M^{\circ}}) = 1$, and the Three Subgroups Lemma implies $[Y, O_p(\overline{L}), M^{\circ}] = 1$. Since $C_Y(M^{\circ}) = 1$ by Q!, we have $[Y, O_p(\overline{L})] = 1$ and so $O_p(\overline{L}) = 1$. Thus $Y = Y_L$. Moreover $\overline{L^{\circ}} = \overline{M^{\circ}}$ and so by 1.52(c),

$$L^{\circ} = (L^{\circ}C_M(Y))^{\circ} = (M^{\circ}C_M(Y))^{\circ} = M^{\circ}.$$

We conclude that one of the cases of Theorem J holds for L in place of M, which gives the corresponding case for L in Theorem A. Thus we may assume

3°. $\overline{M^{\circ}} \leqslant \overline{L}$. In particular, $\overline{L} \cap \overline{M^{\circ}}$ is a proper parabolic subgroup of $\overline{M^{\circ}}$.

We first consider the case where $\overline{M^{\circ}}$ is a genuine group of Lie-Type in characteristic p. Then by (3°) $O_p(\overline{L} \cap \overline{M^{\circ}}) \neq 1$. Let Δ be the corresponding Dynkin diagram for $\overline{M^{\circ}}$. For any $\Psi \subseteq \Delta$ let $\overline{M_{\Psi}}$ be the Lie-parabolic subgroup of $\overline{M^{\circ}}$ with $\overline{S} \cap \overline{M^{\circ}} \leq \overline{M_{\Psi}}$ and Dynkin diagram Ψ . Put $\overline{R_{\Psi}} := O^{p'}(\overline{M_{\Psi}})$, and let R_{Ψ} be the inverse image of $\overline{R_{\Psi}}$ in M° .

By A.63 there exists a unique $\Lambda \subsetneq \Delta$ with

$$\overline{R}_{\Lambda} = O^{p'}(\overline{L} \cap \overline{M^{\circ}}) \leqslant \overline{L} \cap \overline{M^{\circ}} \leqslant \overline{M}_{\Lambda}.$$

Recall that $\mathbb{K} = End_{M^{\circ}}(V)$. Observe also that in all cases of Theorem J where $\overline{M^{\circ}}$ is a genuine group of Lie-type there exists a unique $\delta \in \Delta$ with $[Z, \overline{R}_{\delta}] \neq 1$. Moreover, $U_{\delta} := C_V(O_p(\overline{R}_{\delta}))$ is a natural $SL_2(\mathbb{K})$ -module or the symmetric or unitary square of a natural $SL_2(\mathbb{K})$ -module, i.e U_{δ} is a natural $SL_2(\mathbb{K})$ -, $\Omega_3(\mathbb{K})$ - or $\Omega_4^-(q)$ -module for \overline{R}_{δ} . By Q!, $Q \leq R_{\rho}$ for all $\delta \neq \rho \in \Delta$. Since $Q \leq L \cap M^{\circ}$ we have $\delta \in \Lambda$. Let Ξ be the connected component of Λ containing δ . Then $R_{\Lambda\setminus\Xi}$ normalizes Q. We conclude that $\overline{L^{\circ}(S \cap M^{\circ})} = \overline{R}_{\Xi}$. Smith's Lemma A.63, applied to \overline{M}_{Λ} and V, shows that Uis a simple $\mathbb{K}\overline{R}_{\Lambda}$ -module. Hence $R_{\Lambda\setminus\Xi}$ centralizes U, and U is a semisimple \mathbb{F}_pR_{Ξ} -module. Since U_{δ} is a simple \mathbb{F}_pR_{δ} -module we conclude that U is a simple \mathbb{F}_pR_{Ξ} -module. Hence U is a simple $\mathbb{F}_pL^{\circ}(S \cap M^{\circ})$ -module, and $U = V \cap Y_L$ by an earlier remark. Since each R_{ρ} , $\rho \in \Xi \setminus \{\delta\}$, centralizes Z, the Ronan-Smith's Lemma A.64 implies that the isomorphism type of U as an R_{Ξ} -module (and so as an $L^{\circ}(S \cap M^{\circ})$ -module) is uniquely determined by δ and the isomorphism type of U_{δ} as an R_{δ} -module. We have proved:

 4° . Suppose that $\overline{M^{\circ}}$ is a genuine group of Lie type. Then

- (a) $L^{\circ}(S \cap M^{\circ}) = \overline{R}_{\Xi}$.
- (b) U is the simple $\mathbb{F}_p \overline{R}_{\Xi}$ -module uniquely determined by δ , $[Z, \overline{R}_{\rho}] = 1$ for $\rho \in \Xi \setminus \{\delta\}$, and the isomorphism type of U_{δ} as an \overline{R}_{δ} -module.

Next we show:

5°. Suppose that $\overline{M^{\circ}}$ is a genuine group of Lie type, $V \leq Q^{\bullet}$, $N_{\overline{M^{\circ}}}(Z)$ acts simply on $O_p(N_{\overline{M^{\circ}}}(Z)), [V,Q,Q] \leq Z$, and $[Y_L,Q,Q] \neq 1$. Then $Y_L \leq Q^{\bullet}$.

Since $N_{\overline{M^{\circ}}}(Z)$ acts simply on $O_p(N_{\overline{M^{\circ}}}(Z))$ we have $\overline{Q} = O_p(N_{\overline{M^{\circ}}}(Z))$. Hence Smith's Lemma A.63 applied to the dual of V shows that $N_M(Q)$ acts simply on V/[V,Q]. From $[V,Q,Q] \leq Z$ we get [V,Q,Q,Q] = 1. Thus (2°) implies that $Y_L \leq Q^{\bullet}$.

6°. Suppose that $\overline{M^{\circ}}$ is a genuine group of Lie type. Then $Y_L = U$; in particular, Y_L is the simple $\mathbb{F}_p \overline{R}_{\Xi}$ -module uniquely determined by δ , $[Z, \overline{R}_{\rho}] = 1$ for $\rho \in \Xi \setminus \{\delta\}$, and the isomorphism type of U_{δ} as an \overline{R}_{δ} -module.

Otherwise, $Y_L \leq V$ and $V \neq Y$. Then Theorem J shows that one of the following holds

- (A) p = 2. |Y/V| = 2 and V is a natural $SL_3(2)$ -module,
- (B) $p = 2, \overline{M^{\circ}} \cong Sp_{2n}(q), n \ge 2$ and $|Y/V| \le q$.
- (C) p = 3, $\overline{M^{\circ}} \cong \Omega_{4}^{-}(3)$, V is the corresponding natural module, |Y/V| = 3, Y is isomorphic to the 5-dimensional quotient of a 6-dimensional permutation module for $\overline{M^{\circ}} \cong Alt(6)$, and $V \notin Q^{\bullet}$.
- (D) p = 3, $\overline{M^{\circ}} \cong \Omega_5(3)$, V is the corresponding natural module, |Y/V| = 3 and $V \leq Q^{\bullet}$.
- (E) p = 2, $\overline{M^{\circ}} \cong \Omega_6^+(2)$, V is the corresponding natural module, and |Y/V| = 2.

Let $x \in Y_L \setminus U$. We discuss the cases (A) – (E) one by one.

Suppose that $\overline{M^{\circ}} \cong SL_3(2)$. Then $C_{\overline{S}}(x) = 1$, a contradiction to $1 \neq O_2(\overline{L}) \leqslant C_{\overline{S}}(x)$.

Suppose that $\overline{M^{\circ}} \cong Sp_{2n}(q)$. Let *s* be an M° -invariant non-degenerate symplectic form on *V*. Then $C_{\overline{M^{\circ}}}(x) \cong O_{2n}^{\epsilon}(q)$, and there exists a non-degenerate $C_{\overline{M^{\circ}}}(x)$ -invariant quadratic form *t* on *V* with *s* being the associate symmetric form. With respect to the symplectic form *s* on *V*, the Lie-parabolic subgroups of $\overline{M^{\circ}}$ normalize a unique *s*-singular K-subspace of *V*. Since *U* is a simple \overline{R}_{Ξ} -module, we conclude that *U* is the *s*-singular K-subspace of *V* corresponding to \overline{M}_{Ξ} , and $\dim_{\mathbb{K}} U \geq 2$ since $\delta \in \Xi$. In particular, $[U, R_{\Xi}] \neq 1$. Note that radical of *t* on *U* has codimension at most 1 in *U* (see B.5), and so there exists $u \in U^{\sharp}$ with t(u) = 0.

Choose $\overline{g} \in \overline{M^{\circ}}$ with $[V,g] = \mathbb{K}u$. Then g centralizes the hyperplane u^{\perp} in the symplectic space V, and since U is singular with respect to $s, U \leq C_V(g)$. Thus g centralizes U, V/U and Y/V. It follows that $\overline{g} \in \overline{S}$ and $\overline{g} \in O_2(\overline{M^{\circ}} \cap \overline{L}) \leq O_2(\overline{L})$. Hence $Y_L \leq C_Y(O_2(\overline{L})) \leq C_Y(x)$ and $\overline{g} \in C_{M^{\circ}}(x)$. Thus \overline{g} leaves invariant the quadratic form t, a contradiction to t(u) = 0 (see B.9(c)).

Suppose that $\overline{M^{\circ}} \cong \Omega_4^-(3)$. Then $|\Delta| = 1$ a contradiction to $\emptyset \neq \Lambda \subsetneq \Delta$.

Suppose that $\overline{M_{\circ}} \cong \Omega_5(3)$. Then U is natural $SL_2(3)$ -module for $\widetilde{L^{\circ}}$. Since $[Y_L, L^{\circ}] \leq U$ and $C_{Y_L}(L^{\circ}) = 1$ this gives $U = Y_L$.

Suppose that $\overline{M^{\circ}} \cong \Omega_{6}^{+}(2)$. Then Y is isomorphic to the 7-dimensional quotient of the 8dimensional permutation module for $\overline{M^{\circ}} \cong Alt(8)$. Moreover, since $L^{\circ} \leqslant N_{M}(Z)$, there exists $\overline{R} \leqslant \overline{M^{\circ}}$ with $\overline{R} \sim 2^{3}L_{3}(2)$ and $\overline{L \cap M^{\circ}} \leqslant R$. Moreover, $O_{2}(\overline{R})$ acts regularly on the eight objects, so $C_{Y}(O_{2}(R)) \leqslant V$. Then $O_{2}(\overline{R}) \leqslant O_{2}(L \cap M^{\circ}) \leqslant O_{2}(L)$ and $Y_{L} \leqslant C_{Y}(O_{2}(L)) \leqslant C_{Y}(O_{2}(R)) \leqslant V$. So $Y_{L} = Y_{L} \cap V = U$.

We have shown that $U = Y_L$ in all cases, and (6°) is proved.

Case 3. Suppose that V is a natural $SL_n(q)$, $Sp_{2n}(q)$ or $\Omega_n^{\epsilon}(q)$ -module for $\overline{M^{\circ}}$ (with p odd if n is odd in the $\Omega_n^{\epsilon}(q)$ -module case).

Then δ is an end-node of Δ , with δ being short in the $Sp_{2n}(q)$ -case and long in the $\Omega_n^{\epsilon}(q)$ -case. Since Ξ is a proper connected subdiagram of Δ containing δ , Ξ is a Dynkin diagram of type A_{m-1} . Also U_{δ} is a natural $SL_2(q)$ -module for R_{δ} and so by (6°) Y_L is a natural $SL_m(q)$ -module for L° . Thus Theorem A(3) holds if m = 2, and Theorem A(1) holds if $m \ge 3$.

Case 4. Suppose that V is the exterior square of a natural $SL_n(q)$ -module for $\overline{M^{\circ}}$, where $n \ge 5$.

In this case δ is adjacent to an end-node of Δ and U_{δ} is the natural $SL_2(q)$ -module for R_{δ} . Hence by (6°) Y_L is a natural $SL_m(q)$ - or the exterior square of a natural $SL_m(q)$ -module (with $m \ge 4$ in the second case). In the first case Theorem A(1) holds if $m \ge 3$, and Theorem A(3) holds if m = 2. So suppose that Y_L is the exterior square of a natural $SL_m(q)$ -module with $m \ge 4$. Note that $O^{p'}(C_{\overline{M^{\circ}}}(Z)) \sim q^{2(n-2)}(SL_2(q) \times SL_{n-2}(q))$ and so $\overline{Q} = O_p(C_{M^{\circ}}(Z))$. In particular, [V, Q, Q] = Z and Q does not act quadratically on Y_L . Thus by (5°). we see that $Y_L \le Q^{\bullet}$. If m = 4, then the exterior square of a natural $SL_m(q)$ -module is the natural $\Omega_6^+(q)$ -module and so Theorem A(5) holds. If $m \ge 5$, then Theorem A(7:1) holds.

Case 5. Suppose that V is the symmetric or unitary square of a natural $SL_n(q)$ -module for $\overline{M^{\circ}}$.

In this case δ is an end-note, and U_{δ} is the symmetric or unitary square of a natural $SL_2(q)$ module. Hence by (6°) Y_L is the symmetric or unitary square of a natural $SL_m(q)$ -module for L° . Also $O^{p'}(C_{\overline{M^{\circ}}}(Z)) \sim q^{n-1}SL_{n-1}(q), \ \overline{Q} = O_p(C_{\overline{M^{\circ}}}(Z))), \ [V,Q,Q] \leq Z$, and Q does not act quadratically on Y_L . Thus (5°) gives $Y_L \leq Q^{\bullet}$ and Theorem A(7:2) or A(7:3) holds.

Case 6. Suppose that $\overline{M^{\circ}} \cong Spin_{10}^+(q)$ and V is the half-spin module.

In this case δ is one of the end notes of Δ corresponding to an $SL_5(q)$ -parabolic and so Ξ is of type A_{m-1} , $2 \leq m \leq 5$, or D_4 . Moreover, U_{δ} is a natural $SL_2(q)$ -module for R_{δ} . Thus by (6°) Y_L is a natural $SL_m(q)$ -module, $2 \leq m \leq 5$, or a natural $\Omega_8^+(q)$ -module for L° . In the $SL_m(q)$ -case, Theorem A(1) holds if $m \geq 3$, and Theorem A(3) holds if m = 2. So suppose that Y_L is a natural $\Omega_8^+(q)$ -module. We have $O^{p'}(C_{\overline{M^\circ}}(Z)) \sim q^{10}SL_5(q)$ and so $\overline{Q} = O_p(C_{\overline{M^\circ}}(Z))$. Thus [V, Q, Q] = Z, and Q does not act quadratically on Y_L . Hence by (2°) $Y_L \leq Q^{\bullet}$, and Theorem A(5) holds.

Case 7. Suppose that $\overline{M^{\circ}} \cong E_6(q)$ and $|V| = q^{27}$.

In this case δ is one of the end nodes of Δ corresponding to an $\Omega_{10}^+(q)$ -parabolic and so Ξ is of type A_{m-1} , $2 \leq m \leq 6$, or D_5 . Moreover, U_{δ} is a natural $SL_2(q)$ -module for R_{δ} . Hence by $(6^{\circ}) Y_L$ is a natural $SL_m(q)$ -module $(2 \leq m \leq 6)$, or the natural $\Omega_{10}^+(q)$ -module for L° . In the $SL_m(q)$ -case, Theorem A(1) holds if $m \geq 3$, and Theorem A(3) holds if m = 2. So suppose that Y_L is the natural $\Omega_{10}^+(q)$ -module. We have $O^{p'}(C_{\overline{M^{\circ}}}(Z)) \sim q^{16}Spin_{10}^+(q)$ and so $\overline{Q} = O_p(C_{\overline{M^{\circ}}}(Z))$. Hence [V, Q, Q] = Z, and Q does not act quadratically on Y_L . Thus by $(2^{\circ}) Y_L \leq Q^{\bullet}$, and Theorem A(5) holds.

This concludes the discussion of the cases where $\overline{M^{\circ}}$ is a genuine group of Lie-type.

Case 8. Suppose that $\overline{M^{\circ}} \cong Sp_4(2)'$ and $|V| = 2^4$.

Then $\overline{L} \cap \overline{M^{\circ}} \cong Sym(4)$, U is a natural $SL_2(2)$ -module for L° , $C_Y(O_2(\overline{L} \cap \overline{M})) \leqslant V$, and so $Y_L = Y_L \cap V = U$. Thus by 1.58 Theorem A(3) holds.

Case 9. Suppose that $\overline{M} \sim 3$ ·Sym(6) and $|Y| = 2^6$.

Then $\overline{L} \cong C_2 \times Sym(4)$, $Sym(3) \times Dih_8$ or $Sym(3) \times Sym(4)$. In the first two cases Y_L is the natural $SL_2(2)$ -module for L. Thus Theorem A(3) holds.

So suppose that $\overline{L} \cong Sym(3) \times Sym(4)$. Then Y_L has order 2^4 and is the tensor product of two natural $SL_2(2)$ -modules. Since $\langle Y_L^{C_{M'}(Z)} \rangle = Y$ and $Y \leq Q^{\bullet}$, we have $Y_L \leq Q^{\bullet}$. If $\overline{M^{\circ}} \sim$ $3 \cdot Alt(6)$, then $\overline{L^{\circ}} \cong Sym(4)$ and so $\widetilde{L^{\circ}} \cong SL_2(2)$; and if $\overline{M^{\circ}} \sim 3 \cdot Sym(6)$, then $\overline{L} = \overline{L^{\circ}}$ and $\widetilde{L^{\circ}} \cong SL_2(2) \times SL_2(2)$. Thus Theorem A(6) holds. Case 10. Suppose that p = 2, $\overline{M^{\circ}} \cong Mat_{22}$, and Y is the simple Golay-code module of \mathbb{F}_2 -dimension 10.

Then Y = V and $C_{\overline{M^{\circ}}}(Z) \sim 2^4 Alt(6)$. For a description of the action of the maximal parabolic subgroups of $\overline{M^{\circ}}$ on (the dual of) V see [**MSt**, 3.3]. It follows that $\overline{L} \cap \overline{M^{\circ}} \sim 2^4 \Gamma SL_2(4)$ and so $\overline{L^{\circ}} \sim 2^4 SL_2(4)$. Moreover, $Y_L = C_V(O_2(L^{\circ}))$ is a natural $\Omega_4^-(2)$ -module for L° , and so also the unitary square of natural $SL_2(4)$ -module. Also [V, Q, Q, Q] = 1 an $[Y_L, Q, Q] \neq 1$ and so $(2^{\circ})(c)$ shows that $Y_L \leq Q^{\bullet}$. Thus Theorem A(7:3:3) holds.

Case 11. Suppose that p = 2, $\overline{M^{\circ}} \cong Mat_{24}$, and Y is the 11-dimensional simple Golay code module.

Then $\overline{M} = \overline{M^{\circ}}$ and Y = V. For a description of the action of the maximal parabolic subgroups of M on (the dual of) V see [MSt, 3.5]. In particular, $C_{\overline{M}}(Z) \sim 2^4 SL_4(2)$.

Assume that \overline{L} is a maximal subgroup of \overline{M} . Then $\overline{L} \sim 2^6.3.Sym(6)$ or $2^6.(SL_2(2) \times SL_3(2))$, and U is a natural $Sp_4(2)$ - or $SL_2(2)$ -module, respectively. Thus $Y_L = U$. In the first case, since $[C_L(Y_L), Q] \leq O_p(L)$ and $3 \cdot Sym(6)$ acts non-trivially on $Z(3 \cdot Alt(6)), Y_L$ is a natural $Sp_4(2)'$ -module for L° . Moreover, as [V, Q, Q, Q] = 1 and $[Y_L, Q, Q] \neq 1$, $(2^\circ)(c)$ gives $Y_L \leq Q^\bullet$, and so Theorem A(2) holds. In the second case Theorem A(3) holds.

If \overline{L} is not a maximal subgroup, then \overline{L} is contained in a maximal subgroup $\overline{P} \sim 2^6 (SL_2(2) \times SL_3(2))$, $\widetilde{L} \cong SL_2(2)$, and U is a natural $SL_2(2)$ -module for L. Hence Theorem A(3) holds.

Case 12. Suppose that p = 2, $\overline{M^{\circ}} \cong Mat_{24}$, and V is the 11 dimensional simple Todd-module.

Then $\overline{M} = \overline{M^{\circ}}$ and $|Y/V| \leq 2$. For a description of the action of the maximal parabolic subgroups of M on V see [MSt, 3.5]. In particular, $C_{\overline{M}}(Z) \sim 2^6.3 \cdot Sym(6)$ and [V, Q, Q, Q] = 1.

Assume that \overline{L} is a maximal subgroup of \overline{M} . Then $\overline{L} \sim 2^4 L_4(2)$ or $2^6 (SL_2(2) \times SL_3(2))$, and U is a natural $\Omega_6^+(2)$ - or $SL_3(2)$ -module, respectively. Thus $Y_L \cap V = U$.

Suppose that U is a natural $\Omega_6^+(2)$ -module. Then Q does not act quadratically on U. So by $(2^\circ)(c) \ U \leq Q^{\bullet}$. If Y = V then Theorem A(5) holds. Suppose $Y \neq V$ and let $x \in Y \setminus V$. Then $C_{\overline{M}}(x) \cong Mat_{23}$ or $L_3(4).Sym(3)$ and so $C_{\overline{M}}(x)$ contains a conjugate of $O_2(\overline{L})$. Thus $|Y_L/U| = 2$ and Theorem A(10:5) holds,

Suppose that U is a natural $SL_3(2)$ -module. Since for $x \in Y \setminus V$, $C_{\overline{M}}(x)$ does not contain an elementary abelian subgroup of order 2^6 , we get $C_Y(O_2(\overline{L})) \leq V$. Hence $Y_L = U$ and Theorem A(1) holds.

Assume that \overline{L} is not a maximal subgroup of \overline{M} , then \overline{L} is contained in one of the above maximal subgroups. Thus $U = Y_L$ and Y_L is a natural $SL_2(2)$ or $SL_3(2)$ -module for L° . Hence Theorem A(3) or Theorem A(1) holds.

Case 13. Suppose that p = 3, $\overline{M^{\circ}} \cong Mat_{11}$ and Y is the 5-dimensional simple Golay-code module.

Then Y = V and $C_{\overline{M^{\circ}}}(Z) \sim 3^2 SDih_{16}$. It follows that $L^{\circ} \cong Alt(6)$, $Y_L = V$ and $[Y_L, L^{\circ}]$ is the natural $\Omega_4^-(3)$ -module. Since $Y = \langle [Y, L^{\circ}]^{C_{\overline{M^{\circ}}}(Z)} \rangle$ and $Y \notin Q^{\bullet}$, we have $[Y_L, L^{\circ}] \notin Q^{\bullet}$, and Theorem A(7:3:2) holds.

Case 14. Suppose that p = 2, $\overline{M^{\circ}} \cong Aut(Mat_{22})$, and Y is the 10-dimensional simple Toddmodule.

Then Y = V and $\overline{M} = \overline{M^{\circ}}$. For a description of the action of the maximal parabolic subgroups of $\overline{M^{\circ}}$ on V see [**MSt**, 3.3]. In particular, $C_M(Z) \sim 2^{4+1}.Sym(5)$, and $\overline{Q} = O_2(C_M(Z))$, [V, Q, Q, Q] = 1.

Suppose first that $\overline{L^{\circ}}$ is a maximal subgroup of \overline{M} . Then $\overline{L^{\circ}} \sim 2^4 \cdot Sp_4(2)$, $[U, L^{\circ}]$ is a natural $Sp_4(2)$ -module for L° , $|U/[U, L^{\circ}]| = 2$ and $[[U, L^{\circ}], Q, Q] \neq 1$. It follows that $U = Y_L$ and by $(2^{\circ})(c)$ $[Y_L, L^{\circ}] \notin \overline{Q}$, and Theorem A(2:d:2) holds.

Suppose next that $\overline{L^{\circ}}$ is not maximal subgroup of \overline{M} . Then $\overline{L^{\circ}}$ is contained in the above maximal subgroup of shape $2^4 \cdot Sp_4(2)$ and we conclude that Y_L is a natural $SL_2(2)$ -module for $\overline{L^{\circ}}$. Hence Theorem A(3) holds.

Case 15. Suppose that p = 3, $\overline{M^{\circ}} \cong 2 \cdot Mat_{12}$, and Y is the 6-dimensional simple Golay-code module.

Then Y = V, $C_{\overline{M^{\circ}}}(Z) \sim 3^2 \cdot GL_2(3)$ and [V, Q, Q, Q] = 1. It follows that $L^{\circ} \sim 3^2 SL_2(3)$, U is symmetric square of a natural $SL_2(3)$ for L° , and $[U, Q, Q] \neq 1$. Hence $U = Y_L$ and by $(2^{\circ})(c)$ $Y_L \leq \overline{Q}$. Thus Theorem A(7:3:4) holds.

10.3. Proof of the Corollary to the Local Structure Theorem

In this section we prove Corollary B. So as there let G be a finite \mathcal{K}_p -group of local characteristic p, let $S \in Syl_p(G)$ and suppose that there exist $M, \widetilde{C} \in \mathcal{M}_G(S)$ such that the following hold for $Q := O_p(\widetilde{C})$:

- (i) $N_G(\Omega_1 Z(S)) \leq \widetilde{C}$.
- (ii) $C_G(x) \leq \widetilde{C}$ for every $1 \neq x \in Z(Q)$.
- (iii) $M \neq \widetilde{C}$, and M = L for every $L \in \mathcal{M}_G(S)$ with $M = (M \cap L)C_M(Y_M)$.
- (iv) $Y_M \leq Q$.

It follows easily from (i) and (ii) that Q is a weakly closed subgroup of G, see [MSS, 2.4.2(a)] for a proof. Since $\widetilde{C} \in \mathcal{M}_G(S)$ and $Q \leq \widetilde{C}$ we have $N_G(Q) = \widetilde{C}$. Hence, by a Frattini argument and again (ii),

$$N_G(A) = C_G(A)(N_G(A) \cap N_G(Q)) \leqslant \widetilde{C}$$

for every $1 \neq A \leq Z(Q)$. Since G is of local characteristic p, \tilde{C} is of characteristic p. So $C_G(Q) \leq Q$, and we get that Q is a large subgroup of G. Note here that $Q = O_p(\tilde{C}) = O_p(N_G(Q))$, so $Q = Q^{\bullet}$ in the notation of Theorem J.

By (iii) $M \neq \tilde{C}$, and since $M \in \mathcal{M}_G(S)$, we conclude that $G \neq \tilde{C} = N_G(Q)$. So $Q \not \equiv M$. By 1.56(a), applied with the roles of M and L reversed, there exist $L \in \mathfrak{M}_G(S)$ and $M^* \leq L$ with

$$S \leq M^*, Y_M = Y_{M^*}, MC_G(Y_M) = M^*C_G(Y_M), M^\circ = (M^*)^\circ.$$
 and $Q \not \equiv L$.

Recall from the definition of $\mathfrak{M}_G(S)$ that $\mathcal{M}_G(L) = \{L^{\dagger}\}$ and $Y_L = Y_{L^{\dagger}}$. Also 2.2(b) gives $C_S(Y_L) = O_p(L)$. Since $M \in \mathcal{M}_G(S)$ and $Y_M = Y_{M^*}$, we have $M^* \leq N_G(Y_{M^*}) = N_G(Y_M) = M$. From $MC_G(Y_M) = M^*C_G(Y_M)$ we get

$$M = (M \cap L)C_G(Y_M) = (M \cap L^{\dagger})C_G(Y_M).$$

As $L^{\dagger} \in \mathcal{M}_G(S)$, (iii) shows that $M = L^{\dagger} = LC_G(Y_L)$ and $Y_M = Y_{L^{\dagger}} = Y_L$. In particular, $M^{\circ} = (L^{\dagger})^{\circ} = L^{\circ}$.

Since G is of local characteristic p, $C_G(x)$ is of characteristic p for all non-trivial p-elements x of G, and in particular, for all $1 \neq x \in Y_L$. Thus Theorem J, the Structure Theorem for Maximal Local Parabolic Subgroups, applies to L. By (iv) $Y_M = Y_L \leq Q = Q^{\bullet}$, and so only the first three cases, namely the linear, symplectic and wreath product case, of Theorem J are relevant. Moreover, as $Y_L \leq Q^{\bullet}$ we have $Y_L = [Y_L, L^{\circ}]$ in the wreath product case. Hence one of the following holds, where $\overline{L^{\dagger}} := L^{\dagger}/C_{L^{\dagger}}(Y_L)$.

- (I) $\overline{L^{\circ}} \cong SL_n(q), n \ge 3, Sp_{2n}(q), n \ge 2, \text{ or } Sp_4(2)' \text{ (and } p = 2) \text{ and } [Y_L, L^{\circ}] \text{ is a corresponding natural module for } \overline{L^{\circ}}.$ Moreover, $Y_L = [Y_L, L^{\circ}] \text{ or } p = 2 \text{ and } \overline{L^{\circ}} \cong Sp_{2n}(q), n \ge 2.$
- (II) There exists a unique \overline{L} -invariant set \mathcal{K} of subgroups of \overline{L} such that Y_L is a natural $SL_2(q)$ -wreath product module for \overline{L} with respect to \mathcal{K} . Moreover, $\overline{L^{\circ}} = O^p(\langle \mathcal{K} \rangle)\overline{Q}$, and Q acts transitively on \mathcal{K} .

Put $M_1 := \langle Q^M \rangle C_S(Y_M)$ and $P_1 := M_1 S$. Note that $M_1 = M^\circ C_S(Y_L) = L^\circ O_p(L)$ and so $O^p(M_1) = O^p(P_1) = M_\circ$. In particular $P_1 S = L^\circ S$.

Assume Case (II). Let P_1^* be the inverse image of $\langle \mathcal{K} \rangle$ in P_1 . We apply 1.58. By 1.58(c) $O^p(P_1) = O^p(P_1^*)$ and $\overline{P_1^*} \leq \overline{L}$; in particular $P_1^* \leq M$. Since $O^p(P_1) = O^p(M_1)$, we conclude that Corollary B(2:i) – (2:iii) hold. Moreover, 1.58(f) implies Corollary B(2:iv).

If $|\mathcal{K}| = 1$ then Corollary B(1) holds with n = 2 and $Y_M = [Y_M, M^\circ]$. If $|\mathcal{K}| > 1$ then $Q \leq P^*$, and Corollary B(2) holds.

Assume that Case (I) holds. Note that $SL_n(q)$, $n \ge 3$, $Sp_{2n}(q)$, $n \ge 2$ and $Sp_4(2)'$ all are quasisimple, except for $Sp_4(2)$. As $\overline{M_1} \cong \overline{L^{\circ}}$ we conclude that $F^*(\overline{M_1}) = \overline{M_1}'$ and $[Y, M_1]$ is a natural $SL_n(q)$, $Sp_{2n}(q)$ or $Sp_4(2)'$ -module for M_1 . To show that Corollary B(1) holds, it remains to determine $C_{M_1}(Y_M)$.

Since $M_1 = L^{\circ}O_p(L) = M^{\circ}O_p(M_1)$, we have $C_{M_1}(Y_M) = C_{M^{\circ}}(Y_M)O_p(M_1)$. Also 1.52(c) gives $[M^{\circ}, C_M(Y_M)] \leq O_p(M^{\circ}) \leq O_p(M_1)$. Thus $M_1/O_p(M_1)$ is a central extension of $\overline{M_1} = \overline{L^{\circ}}$ by the p'-group $C_{M_1}(Y_M)/O_p(M_1)$. Since M_1 is generated by p-elements we conclude that $C_{M_1}(Y_M)/O_p(M_1) \leq \Phi(M_1/O_p(M_1))$ and therefore $C_{M_1}(Y_M)/O_p(M_1)$ embeds into the Schur multiplier of $\overline{M_1}$. By [**Gr1**] the p'-part of the Schur multiplier of $SL_n(q)$ and $Sp_{2n}(q)$ is trivial, while the 2'-part of the Schur multiplier of $Sp_4(2)'$ has order 3. (Note here that $Sp_4(2)$ inverts the Schur multiplier of $Sp_4(2)'$). It follows that either $C_{M_1}(Y_M) = O_p(M)$ or $M_1/O_p(M_1) \cong 3 \cdot Sp_4(2)'$. Thus Corollary B(1) holds.

APPENDIX A

Module theoretic Definitions and Results

In this chapter we present the module-theoretic definitions used throughout this paper. Results based on these definitions can be found in [MS1], [MS2], [MS3], [MS4], [MS5], and [MS6]. Some of these results are used so often in various different places that we state them either in this or in one of the later appendices.

Throughout this appendix H is always a finite group and all modules considered are finite dimensional.

A.1. Module-theoretic Definitions

DEFINITION A.1. Let V be an $\mathbb{F}_p H$ -module and $A \leq H$. Then A acts

- (1) quadratically on V if [V, A, A] = 0,
- (2) cubically on V if [V, A, A, A] = 0,
- (3) *nilpotently* on V if [U, A] < U for every non-zero A-submodule $U \leq V$,
- (4) nearly quadratically on V if A acts cubically on V and

 $[v, A] + C_V(A) = [V, A] + C_V(A) \text{ for every } v \in V \setminus [V, A] + C_V(A).$

Moreover, V is a quadratic, cubic or nearly quadratic module for H, if there exists a subgroup $A \leq H$ with $[V, A] \neq 0$ that acts quadratically, cubically and nearly quadratically on V, respectively.

DEFINITION A.2. An $\mathbb{F}_p H$ -module V is

- (1) simple if $V \neq 0$, and 0 and V are the only H-submodules of V,
- (2) central if [V, H] = 0,
- (3) p-reduced if $O_p(H/C_H(V)) = 1$,
- (4) perfect if $V \neq 0$ and [V, H] = V,
- (5) quasisimple if V is perfect and p-reduced, and $V/C_V(O^p(H))$ is a simple \mathbb{F}_pH -module.

DEFINITION A.3. Let V an be $\mathbb{F}_p H$ -module and $S \in Syl_p(H)$.

- (a) $rad_V(H)$ is the intersection of all maximal *H*-submodules of *V*.
- (b) $P_H(S,V) := O^{p'}(C_H(C_V(S)))$ is the *point-stabilizer* of H on V with respect to S.

DEFINITION A.4. Let V be an \mathbb{F}_pH -module and let A and B be p-subgroups of H with $A \leq B$. Then V is a minimal asymmetric \mathbb{F}_pH -module with respect to $A \leq B$ provided that

- (i) $A \leq N_H(B)$, and B is a weakly closed subgroup of H,
- (ii) [V, A, B] = [V, B, A] = 0,
- (iii) $\langle A^H \rangle$ does not act nilpotently on V,

(iv) $\langle A^F \rangle$ acts quadratically on V for every proper subgroup F of H with $B \leq F$.

DEFINITION A.5. Let V be an \mathbb{F}_pH -module and Q a p-subgroup of H. Then V is a Q!-module for H with respect to Q if

(i) Q is not normal in H, and

(ii) $N_H(A) \leq N_H(Q)$ for every $0 \neq A \leq C_V(Q)$.

DEFINITION A.6. Let \mathcal{K} be a non-empty *H*-invariant set of subgroups of *H*. Then *V* is a *wreath* product module for *H* (with respect to \mathcal{K}) if

$$V = \bigoplus_{K \in \mathcal{K}} [V, K]$$
 and $C_V(\langle \mathcal{K} \rangle) = 0.$

DEFINITION A.7. Let V be an \mathbb{F}_pH -module, and let A be a subgroup of H such that $A/C_A(V)$ is an elementary abelian p-group. Then

- (1) A is an offender on V if $|V/C_V(A)| \leq |A/C_A(V)|$,
- (2) A is an over-offender if $|V/C_V(A)| < |A/C_A(V)|$,
- (3) A is a best offender on V if

$$|B||C_V(B)| \leq |A||C_V(A)|$$
 for every $B \leq A$,

(4) A is a strong offender on V if A is an offender on V and

$$C_V(A) = C_V(a)$$
 for every $a \in A \setminus C_A(V)$,

(5) A is a root offender on V if A is an offender on V and

$$C_V(A) = C_V(a)$$
 and $[V, A] = [V, a]$ for every $a \in A \setminus C_A(V)$,

(6) A is a strong dual offender on V if A acts nilpotently on V and

[V, A] = [v, A] for every $v \in V \setminus C_V(A)$.

By $J_H(V)$ we denote the normal subgroup of H generated by the best offenders of H on V. A non-trivial subgroup $K \leq J_H(V)$ with $K \leq C_H(V)$ that is minimal with respect to $K = [K, J_H(V)]$ is a $J_H(V)$ -component of H. By $\mathcal{J}_H(V)$ we denote the set of $J_H(V)$ -components of H and by $J_H^*(V)$ the normal subgroup generated by $\mathcal{J}_H(V)$.

A.2. Naming Modules

In this section we assign names to certain modules.

Let \mathbb{K} be a finite field of characteristic p and let V be a vector space of finite dimension mover \mathbb{K} . Let $\Lambda_2(V)$, $S_2(V)$ and $U_2(V)$ be the set of symplectic, symmetric, and unitary forms on V, where in the last case we assume that \mathbb{K} is a quadratic extension of a subfield \mathbb{F} and so has a unique automorphism of order 2. Let $V^* := Hom_{\mathbb{K}}(V,\mathbb{K})$ be the dual of V. Then $\Lambda^2(V) := \Lambda_2(V^*)$ is the *exterior (or symplectic) square* of V, $S^2(V) := S_2(V^*)$ is the *symmetric square* of V, and $U^2(V) := U_2(V^*)$ is the *unitary square* of V. Note that $\Lambda^2(V)$ and $S^2(V)$ are vector spaces of dimension $\binom{m}{2}$ and $\binom{m+1}{2}$, respectively, over \mathbb{K} , and $U^2(V)$ is a vector space of dimension m^2 over \mathbb{F} . Also $\Lambda^2(V)$, $S^2(V)$ and $U^2(V)$ are $\mathbb{F}_pSL_{\mathbb{K}}(V)$ -modules.

Suppose now that V is an \mathbb{F}_pH -module. Let K be a group and W an \mathbb{F}_pK -module. Suppose that there exists a surjective homomorphism

$$: H \to K/C_K(W), h \mapsto \tau_h,$$

and an \mathbb{F}_p -isomorphism $\phi: V \to W, v \mapsto \phi(v)$, such that

 $\phi(v^h) = \phi(v)^{\tau_h}$ for all $v \in V$ and $h \in H$.

- If $K \leq GL_{\mathbb{F}_p}(W)$, then V is a *natural* K-module for H^1 . In particular, if (W, f, h) is a non-degenerate classical space over the field \mathbb{K} and $K = Cl_{\mathbb{K}}(W)$,² then V is a natural $Cl_{\mathbb{K}}(W)$ -module for V.
- If W_0 is vector space over \mathbb{K} , $K = SL_{\mathbb{K}}(W_0)$, and W is $\Lambda^2(W_0)$, $S^2(W_0)$ or $U^2(W_0)$, then W is the *exterior*, symmetric or unitary (respectively) square of a natural $SL_{\mathbb{K}}(W_0)$ -module for H.
- Let *I* be a finite set and $K \leq Sym(I)$. View \mathbb{F}_p^I as an *K*-module via $(w_i)_{i \in I}^{\pi} = (w_{i\pi^{-1}})_{i \in I}$. - If $W = \mathbb{F}_p^I$ then *V* is an $\mathbb{F}_p K$ -permutation module for *H*.
 - If p = 2 and $W = \{(w_i)_{i \in I} \in \mathbb{F}_p^I | \sum_{i \in I} w_i = 0\}$ then V is an even $\mathbb{F}_p K$ -permutation module for H.

- If K = Alt(I) or Sym(I) and W is the non-central simple section of K on \mathbb{F}_p^I , then V is a *natural* $\mathbb{F}_p K$ -module for H.

- If $K = Sz(2^k)$ and W is the simple $\mathbb{F}_2Sz(2^k)$ -module of \mathbb{F}_{2^k} -dimension 4, then V is a *natural* $Sz(2^k)$ -module.

¹Note here that K is assumed to be subgroup of $GL_{\mathbb{F}_p}(W)$, not only isomorphic to a subgroup.

²Classical spaces and Cl(W) as defined in Appendix B

- If $K = G_2(2^k)$ and W is the simple $\mathbb{F}_2 G_2(2^k)$ -module of \mathbb{F}_{2^k} -dimension 6, then V is a *natural* $G_2(2^k)$ -module.
- If $K = {}^{3}D_{4}(p^{k})$ and W is the simple $\mathbb{F}_{p}{}^{3}D_{4}(p^{k})$ -module of $\mathbb{F}_{p^{3k}}$ -dimension 8, then V is a *natural* ${}^{3}D_{4}(p^{k})$ -module.
- If $K = E_6(p^k)$ and W is a simple $\mathbb{F}_p E_6(p^k)$ -module of \mathbb{F}_{p^k} -dimension 27, then V is a *natural* $E_6(p^k)$ -module.
- Suppose that (U, f, h) is a non-degenerate orthogonal space with Clifford algebra C with grading $C = C_1 \oplus C_{-1}$.³ Suppose also that K = Spin(U) and note that C is a K-module by right multiplication. If W is a minimal right ideal of C, then V is a spin K-module for H. If W is a minimal right ideal of C_1 , then V is a half-spin K-module for H.
- Let $U \leq \mathbb{F}_2^{24}$ be the binary Golay-code of length 24, dimension 12 and minimum distance 8. Note that $M := Aut(U) = Mat_{24}$ and let K be one of $M = Mat_{24}$, $C_M(24) = Mat_{23}$, $C_M(\{23,24\}) = Mat_{22}$ or $N_M(\{23,24\}) = Aut(Mat_{22})$. If W is the non-central simple section of K on U, then V is a Golay code K-module for H. If W is the non-central simple section of K on \mathbb{F}_2^{24}/U , then V is a Todd K-module.
- Let $U \leq \mathbb{F}_3^{12}$ be the ternary Golay code of length 12, dimension 6 and minimal distance 6. Let $M = Aut(U) \sim 2 \cdot Mat_{12}$ and let K be one of M or $C_M(12)' = Mat_{11}$. If W is the non-central simple section of K in U, then V is a Golay code K-module for H. If W is the non-central simple section of K on \mathbb{F}_3^{12}/U , then V is a Todd K-module.

Note that the Todd K-module and Golay-code K-module are simple and dual to each other. The following table lists the order of some of the modules defined above.

V
W
$q^{\binom{n}{2}}$
$q^{\binom{n+1}{2}}$
$q_0^{n^2} \\ q^{2^{n-1}}$
$q^{2^{n-1}}$
q^{2^n}
q^{2^n}
p^{n-1} if $p \nmid n, p^{n-2}$ if $p \mid n$
2^{4k}
2^{6k}
p^{24k}
p^{27k}
2^{10}
2^{11}
2^{11}
3^5
3^6

We remark that, for given H, K and W, the $\mathbb{F}_p H$ -module V fulfilling (*) might not be unique up to isomorphism. For example, if H has two different normal subgroups H_1 and H_2 with $H/H_i \cong K/C_K(W)$ then there exist $\mathbb{F}_p H$ -modules V_1 and V_2 fulfilling (*) with $C_H(V_i) = H_i$, and so V_1 and V_2 are not isomorphic. Also if $K/C_K(W)$ has outer automorphisms which are not induced by elements of $GL_{\mathbb{F}_p}(W)$ there will exist non-isomorphic V's with the same $C_H(V)$. We list some examples which occur in this paper:

- $SL_{\mathbb{K}}(V)$, dim_K $V \ge 3$, has two natural $SL_{\mathbb{K}}(V)$ -modules, namely V and its dual V*.
- $SL_{\mathbb{K}}(V)$, dim_K $V \ge 5$, has two exterior squares of natural $SL_{\mathbb{K}}(V)$ -modules, namely $\Lambda^2(V)$ and $\Lambda^2(V)^*$.
- $SL_{\mathbb{K}}(V)$, dim_K $V \ge 3$, char K odd, has two symmetric squares of natural $SL_{\mathbb{K}}(V)$ -modules, namely $S^{2}(V)$ and $S^{2}(V)^{*}$.

³For the Clifford algebra see also Appendix B

- $SL_{\mathbb{K}}(V)$, $\dim_{\mathbb{K}} V \ge 3$, $\dim_{\mathbb{F}_p} \mathbb{K}$ even, has two unitary squares of natural $SL_{\mathbb{K}}(V)$ -modules, namely $U^2(V)$ and $U^2(V)^*$.
- $O_4^+(2)$ has two natural $O_4^+(2)$ -modules.
- $Sp_4(q)$, q even, has two natural $Sp_4(q)$ -modules. For q = 2, these are also natural Sym(6)-modules.
- $Sp_4(2)'$ has two natural $Sp_4(2)'$ -modules, which are also natural Alt(6)-modules.
- $Spin_8^+(q)$ has three natural $\Omega_8^+(q)$ -modules, all of which are also half-spin $Spin_8^+(q)$ modules. For q odd, these are distinguished by the kernel of the action.
- $Spin_{10}^+(q)$ has two half-spin $Spin_{10}^+(q)$ -modules dual to each other.
- $E_6(q)$ has two natural $E_6(q)$ -modules, dual to each other.

We also remark that a group H can have the exterior, symmetric or unitary square of a natural $SL_{\mathbb{K}}(V)$ -module without having a natural $SL_{\mathbb{K}}(V)$ -module. For example, if p is odd and $\dim_{\mathbb{K}} V = 2$, then $S^2(V)$, viewed as a module for $PSL_{\mathbb{K}}(V)$, is the symmetric square of a natural $SL_{\mathbb{K}}(V)$ -module, but $PSL_{\mathbb{K}}(V)$ does not have a natural $SL_{\mathbb{K}}(V)$ -module.

A.3. p-Reduced Modules

In this section H is a finite group, p is a prime and V is an \mathbb{F}_pH -module.

DEFINITION A.8. (a) $C_H^*(V)$ is inverse image $O_p(H/C_H(V))$ in H.

(b) $Y_V(H)$ is the H-submodule of V generated by all the p-reduced H-submodules of V.

LEMMA A.9. Let $L \triangleleft \triangleleft H$. Then

- (a) L acts nilpotently on V if and only if $L \leq C_H^*(V)$.
- (b) $C_L^*(V) = C_L^*([V, L]) = C_L^*([V, O^p(L)]) \leq C_H^*(V).$
- (c) If V is p-reduced for H then [V, L] and $[V, O^p(L)]$ are p-reduced for L.
- (d) If V is p-reduced and faithful for H, then each of V, [V, L] and $[V, O^p(L)]$ is p-reduced and faithful for L.

PROOF. (a): Without loss V is a faithful H-module. Then $C_H^*(V) = O_p(H)$. Note that L acts nilpotently on V if and only if L is a p-group and so if and only if $L \leq O_p(H)$.

(b): Put $X := C_L^*([V, O^p(L)])$. Observe that $X, C_L^*(V)$ and $C_L^*([V, L])$ are normal in L and thus subnormal in H. By (a) $C_L^*(V)$ and $C_L^*([V, L])$ act nilpotently on [V, L] and $[V, O^p(L)]$, so again by (a),

Note that X acts as a p-group on $V/[V, O^p(L)]$. Since V is an \mathbb{F}_p -module, X acts nilpotently on $V/[V, O^p(L)]$ and thus also nilpotently on V. Hence $X \leq C_L^*(V)$ and $X = C_L^*(V)$, and equality holds in (*). Since $X \leq H$, (a) shows that $X \leq C_H^*(V)$.

(c) and (d): These are direct consequences of (b).

LEMMA A.10. The following are equivalent:

- (a) V is p-reduced for H.
- (b) $C_H^*(V) = C_H(V)$.
- (c) Any normal subgroup of H which acts nilpotently on V centralizes V.
- (d) Any subnormal subgroup of H which acts nilpotently on V centralizes V.

PROOF. By definition V is p-reduced for H if and only if $O_p(H/C_H(V)) = 1$, that is, if and only if $C_H^*(V)/C_H(V) = 1$, that is, if and only if $C_H^*(V) = C_H(V)$. Also by A.9(a) a subnormal subgroup of H acts nilpotently on V if and only if it is contained in $C_H^*(V)$. It follows that both (c) and (d) are equivalent to (a).

LEMMA A.11. (a) Let \mathcal{W} be a set of p-reduced H-submodule of V. Then $\langle \mathcal{W} \rangle$ is a p-reduced H-module.

(b) $Y_V(H)$ is the unique maximal p-reduced H-submodule of V.

PROOF. (a): Let K be a normal subgroup of H acting nilpotently on $\langle W \rangle$. Then K acts nilpotently on each $W \in W$ and so centralizes W and $\langle W \rangle$. Thus A.10 shows that $\langle W \rangle$ is p-reduced.

(b): By definition, $Y_V(H)$ is the submodule of V generated by all the *p*-reduced H-submodules of V, and by (a) $Y_V(H)$ is *p*-reduced. Hence (b) holds.

LEMMA A.12. Let L be a parabolic subgroup of H and U a p-reduced L-submodule of V. Then $\langle U^H \rangle$ is p-reduced for H. In particular, $Y_V(L) \leq Y_V(H)$.

PROOF. Let M be a normal subgroup of H acting nilpotently on $W := \langle U^H \rangle$. Then $M \cap L$ is a normal subgroup of L acting nilpotently on U. Thus $M \cap L \leq C_M(U)$. Since $M/C_M(W)$ is a p-group and normal in $H/C_H(W)$ and L is a parabolic subgroup of H, $M = (M \cap L)C_M(W)$. Thus [M, U] = 1 and since $M \leq H$, also $[M, \langle U^H \rangle] = 1$. Hence by A.10, $\langle U^H \rangle$ is p-reduced for H. \Box

LEMMA A.13. Let $P, Q \leq H$ and suppose that $P/C_P(V)$ is a p-group and $[P,Q] \leq C_H(V)$. Then

- (a) If $Q/C_Q(V)$ is a p'-group, $C_Q(C_V(P)) = C_Q(V)$.
- (b) $C_{Q}^{*}(C_{V}(P)) = C_{Q}^{*}(V).$
- (c) If V is p-reduced for Q, then $C_Q^*(C_V(P)) = C_Q(C_V(P)) = C_Q(V)$.
- (d) Suppose that V is a faithful Q-module and $O_p(Q) = 1$, then $C_V(P)$ is a faithful Q-module.

PROOF. We may assume that V is a faithful H-module, so [P,Q] = 1 and P is a p-group. (a): This follows from the $P \times Q$ -Lemma.

(b): Let x be a p'- element in $C_Q^*(C_V(P))$. Then x centralizes $C_V(P)$, and so by (a) applied with $Q = \langle x \rangle$, x centralizes V. Thus x = 1 and $C_Q^*(C_V(P))$ is a p-group. Hence $C_Q^*(C_V(P))$ is a normal p-subgroup of Q and so $C_Q^*(C_V(P)) \leq C_Q^*(V)$. The other inclusion is obvious.

(c): Since V is p-reduced for Q, $C_Q(V) = C_Q^*(V)$. Thus using (b),

$$C_Q(C_V(P)) \leqslant C_Q^*(C_V(P)) = C_Q^*(V) = C_Q(V) \leqslant C_Q(C_V(P)),$$

and so (c) holds.

(d): Since $O_p(Q) = 1$ and V is a faithful Q-module, V is a p-reduced Q-module. Thus (c) gives $C_Q(C_V(P)) = C_Q(V) = 1$.

LEMMA A.14. Let U and W be H-submodules of V with $C_H(W) = C_H(U)$. Then $C_H^*(U) = C_H^*(W)$. In particular, U is p-reduced for H if and only if W is p-reduced for H.

PROOF. Just recall that, by definition, $C_H^*(U)$ and $C_H^*(W)$ are the preimages of $O_p(H/C_H(U))$ and of $O_p(H/C_H(W))$, respectively, in H.

LEMMA A.15. Let $L \triangleleft \triangleleft H$.

- (a) If V is p-reduced for H, V is p-reduced for L.
- (b) $Y_V(H) \leq Y_V(L)$ and $C_L(Y_V(H)) = C_L(Y_V(L))$.

PROOF. (a): By A.10 V is p-reduced if and only if any subnormal subgroup of H which acts nilpotently on V centralizes V. As any subnormal subgroup of L is subnormal in H, this gives (a).

(b): By (a) $Y_V(H)$ is *p*-reduced for *L* and so $Y_V(H) \leq Y_V(L)$ and $C_L(Y_V(L)) \leq C_L(Y_V(H))$. It remains to show that $C_L(Y_V(H)) \leq C_L(Y_V(L))$. By induction on H/L we may assume that $L \leq H$. Hence $Y_V(L)$ is an *H*-submodule of *V*. To simplify notation we replace *V* by $Y_V(L)$ and so *V* is *p*-reduced for *L*. Let *W* be an *H*-submodule of *V* minimal with $C_L(W) = C_L(V)$. Since *V* is *p*-reduced for *L*, A.14 shows that *W* is also *p*-reduced for *L*. Let $P := C_H^*(W)$. Then $P/C_P(W)$ is a *p*-group and $[P, L] \leq C_L^*(W) = C_L(W)$. Thus A.13(c) shows that $C_L(C_W(P)) = C_L(W) = C_L(V)$. The minimal choice of *W* implies that $W = C_W(P)$. Thus $P = C_H(W)$ and *W* is *p*-reduced for *H*. Hence $W \leq Y_V(H)$ and so

$$C_L(Y_V(H)) \leqslant C_L(W) = C_L(V).$$

A.4. Wreath Product Modules

In this section H is a finite group and V a finite \mathbb{F}_pH -module.

LEMMA A.16. Let \mathcal{K} be an *H*-invariant set of subgroups of *H* and suppose that *V* is a wreath product module for *H* with respect to \mathcal{K} . Then for each $A \in \mathcal{K}$:

- (a) If $[V, A] \neq 0$. then $N_H([V, A]) = N_H(A)$.
- (b) $[V, B] \leq C_V(A)$ for all $B \in \mathcal{K} \setminus \{A\}$; in particular

$$V = [V, A] \oplus C_V(A), \qquad C_V(A) = \left[V, \left\langle \mathcal{K} \setminus \{A\} \right\rangle\right], \quad and \qquad [V, A] = C_V\left(\left\langle \mathcal{K} \setminus \{A\} \right\rangle\right).$$

- (c) [V, A] = [V, A, A] and $C_A([V, A]) = C_A(V)$.
- (d) $[A, B] \leq C_{\langle \mathcal{K} \rangle}(V)$ for all $B \in \mathcal{K} \setminus \{A\}$.

PROOF. By the definition of a wreath product module

(*)
$$V = \bigoplus_{K \in \mathcal{K}} [V, K]$$
 and $C_V(\langle \mathcal{K} \rangle) = 0.$

(a): Clearly $N_H(A) \leq N_H([V, A])$. Let $h \in H$ and assume that $[V, A] \neq 0$. Since \mathcal{K} is H-invariant, $A^h \in \mathcal{K}$. Hence (*) shows that either $A = A^h$ or $[V, A] \cap [V, A^h] = 0$. In the second case $[V, A] \neq [V, A]^h$ since $[V, A] \neq 0$. Thus also $N_H([V, A]) \leq N_H(A)$.

(b): Put $\mathcal{K}_A := \mathcal{K} \setminus \{A\}$ and $W := \sum_{B \in \mathcal{K}_A} [V, B]$. Note that $V = [V, A] \oplus W$ by (*). Since \mathcal{K}_A is A-invariant, also W is A-invariant, and so $[W, A] \leq [V, A] \cap W = 0$. Hence $W \leq C_V(A)$ and $V = [V, A] + C_V(A)$.

Since this is true for all $A \in \mathcal{K}$, [V, A] is centralized by each $B \in \mathcal{K}_A$. Hence $C_{[V,A]}(A) \leq C_V(\langle \mathcal{K} \rangle) = 0$ and $V = [V, A] \oplus C_V(A)$.

(c): By (b), $V = [V, A] + C_V(A)$, and (c) follows.

(d): Let $B \in \mathcal{K}_A$. By (b) [V, A, B] = [V, B, A] = 0, and the Three Subgroups Lemma gives [A, B, V] = 0. Thus $[A, B] \leq C_{\langle \mathcal{K} \rangle}(V)$.

LEMMA A.17. Let \mathcal{K} be an H-invariant set of subgroups of H. Suppose that V is a faithful $\langle \mathcal{K} \rangle$ -module and a wreath product module for H with respect to \mathcal{K} . Then for all $A \in \mathcal{K}$:

- (a) [V, A] is a faithful A-module.
- (b) $\langle \mathcal{K} \rangle = \bigotimes_{K \in \mathcal{K}} K.$

PROOF. (a): Since $\langle \mathcal{K} \rangle$ acts faithfully on V, $C_A(V) = 1$. By A.16(c) $C_A([V, A]) = C_A(V)$ and so (a) holds.

(b): Put $L_A := \langle \mathcal{K} \setminus \{A\} \rangle$. By A.16(b) L_A centralizes [V, A] and so by (a) $L_A \cap A = 1$. By A.16(d) $[A, B] \leq C_{\langle \mathcal{K} \rangle}(V)$. The faithful action of $\langle \mathcal{K} \rangle$ implies that [A, B] = 1 and thus $A \leq \langle \mathcal{K} \rangle$.

We have proved that $A \leq \langle \mathcal{K} \rangle$ and $A \cap L_A = 1$ for all $A \in \mathcal{K}$. Hence $\langle \mathcal{K} \rangle = \times_{K \in \mathcal{K}} K$.

LEMMA A.18. Let \mathcal{K} be an *H*-invariant set of subgroups of *H*. Suppose that *V* is a faithful *p*-reduced $\langle \mathcal{K} \rangle$ -module and $[V, \langle \mathcal{K} \rangle]$ is a wreath product module for *H* with respect to \mathcal{K} . Then $[V, \mathcal{K}] = [V, \langle \mathcal{K} \rangle, \mathcal{K}]$ for each $K \in \mathcal{K}$.

PROOF. Put $R := \langle \mathcal{K} \rangle$ and W := [V, R]. Since V is a faithful and p-reduced R-module, A.9(d) shows that W is a faithful R-module. Thus by A.17 $R = \times_{K \in \mathcal{K}} K$.

Let $K \in \mathcal{K}$ and put $L := \langle \mathcal{K} \setminus \{K\} \rangle$. Note that [L, K] = 1 and $[V, L, K] \leq [W, K]$. The Three Subgroups Lemma gives $[V, K, L] \leq [W, K]$. On the other hand by A.16(b) $W = [W, K] \oplus C_V(K)$, $[W, K] = C_W(L)$ and $C_W(K) = [W, L]$. Hence $C_{[W,L]}(L) = 0$ and [W, L] and W/[W, K] are isomorphic L-modules. It follows that $C_{W/[W,K]}(L) = 0$, and since $[V, K, L] \leq [W, K]$ we get $[V, K] \leq [W, K]$. Thus [V, K] = [W, K]. DEFINITION A.19. Let Δ be a set of non-zero subspaces of V. Then Δ is a system of imprimitivity for H on V if

$$\Delta$$
 is *H*-invariant, $|\Delta| > 1$, and $V = \bigoplus_{W \in \Delta} W$.

LEMMA A.20. Let Δ be a system of imprimitivity for H on V. Suppose that E is a subgroup of H that acts non-trivially on Δ and that $|[V, E]| \leq |W|$ for some $W \in \Delta \setminus C_{\Delta}(E)$. Then

- (a) $|W| = |[V, E]|, W \cap [V, E] = 0$ and $N_E(W) = C_E(V) = C_E(\Delta)$ for all $W \in \Delta \setminus C_\Delta(E)$,
- (b) $|E/C_E(V)| = 2 = |\Delta \backslash C_\Delta(E)|$, and
- (c) [X, E] = 0 for all $X \in C_{\Delta}(E)$.

PROOF. Pick $e \in E$ with $W^e \neq W$ and put $\Lambda := \{w^e - w \mid w \in W\}$. Since $W \cap W^e = 0$ we get $\Lambda \cap W = 0$ and $|\Lambda| = |W|$. Now $|[V, E]| \leq |W|$ and $\Lambda \subseteq [V, E]$ imply $[V, E] = \Lambda$, and so $[V, E] = \Lambda \leq W + W^e$. It follows that $\langle W^E \rangle = W + [W, E] \leq W + W^e$. Since $V = \bigoplus_{D \in \Delta} D$ this gives $W^E = \{W, W^e\}$. Put $Y = \langle \Delta \setminus W^E \rangle$. Then Y is E-invariant and so $[Y, E] \leq Y \cap$ $[V, E] \leq Y \cap (W + W^e) = 0$. In particular, $\Delta \setminus C_\Delta(E) = \{W, W^e\}$ and $|E/C_E(\Delta)| = 2$. Moreover, $[W, C_E(\Delta)] \leq W \cap [V, E] = W \cap \Lambda = 0$ and since $C_E(\Delta) \leq E$ also $[W^e, C_E(\Delta)] = 0$. Thus $C_E(\Delta) = C_E(V)$ and the lemma is proved.

LEMMA A.21. Let \mathcal{K} be a non-empty H-invariant set of subgroups of H. Suppose that

(i) [V, A, A] = [V, A] and $[V, A] \cap C_V(A) = 0$ for all $A \in \mathcal{K}$, and

(ii) $[A, B] \leq A$ and $[V, A] \cap [V, B] = 0$ for all distinct $A, B \in \mathcal{K}$.

Then $[V, \langle \mathcal{K} \rangle]$ is a wreath product module for H with respect to \mathcal{K} .

PROOF. Observe that (ii) shows that any two subgroups in \mathcal{K} normalize each other. Let $A \in \mathcal{K}$ and put $W = \sum_{A \neq B \in \mathcal{K}} [V, B]$. Since A normalizes B, $[V, B, A] \leq [V, B] \cap [V, A] = 0$ and so [W, A] = 0 and $[V, A] \cap W \leq [V, A] \cap C_V(A) = 0$.

Also $[V, \langle \mathcal{K} \rangle] = \sum_{A \in \mathcal{K}} [V, A]$ and so $[V, \langle \mathcal{K} \rangle] = \bigoplus_{A \in \mathcal{K}} [V, A]$ by the definition of an internal direct sum. From $W \leq C_V(A)$ and $[V, A] \cap C_V(A) = 0$ we conclude that $C_{[V, \langle \mathcal{K} \rangle]}(A) = W$. As this holds for all $A \in \mathcal{K}$ we get $C_{[V, \langle \mathcal{K} \rangle]}(\langle \mathcal{K} \rangle) = 0$.

Since [V, A] = [V, A, A] we have $[[V, \langle \mathcal{K} \rangle], A] = [V, A]$, and so $[V, \langle \mathcal{K} \rangle]$ is a wreath product module for H with respect to \mathcal{K} .

LEMMA A.22. Let \mathcal{K} be a non-empty H-invariant set of subnormal subgroups of H. Suppose that

(i) $|K/C_K([V,K])| > 2$ for all $K \in \mathcal{K}$,

- (ii) $[V, K] \cap C_V(K) = 0$ and [V, K, K] = [V, K] for all $K \in \mathcal{K}$,
- (iii) $[V, A] \cap [V, B] = 0$ for all distinct A, B in \mathcal{K} with $[A, B] \leq A \cap B$, and
- (iv) $[V, B] \leq [V, A]$ for all distinct A, B in \mathcal{K} .

Then $[V, \langle \mathcal{K} \rangle]$ is a wreath product module for H with respect to \mathcal{K} .

PROOF. If
$$h \in N_H([V, K])$$
, then $[V, K] = [V, K^h]$ and by (iv) $K = K^h$. We have shown:

(*)
$$N_H([V, K]) \leq N_H(K)$$
 for every $K \in \mathcal{K}$.

Let A, B be distinct elements of \mathcal{K} . In view of A.21, (ii) and (iii) it suffices to show that A and B normalizes each other. Put $R := \langle A, B \rangle$. If R = A, then $[V, B] \leq [V, R] = [V, A]$ a contradiction to (iv). Thus $A \neq R$ and so A is a proper subnormal subgroup of R. Hence $\langle A^R \rangle \neq R$ and by induction on $|\langle \mathcal{K} \rangle|$, $[V, \langle A^R \rangle]$ is a wreath product module for R with respect to A^R . By symmetry, also $B \neq R$, and $[V, \langle B^R \rangle]$ is a wreath product module for R with respect to B^R .

We now assume without loss that $|[V,B]| \leq |[V,A]|$. Suppose for a contradiction that B does not normalize A. Then by (*) B does not normalize [V,A]. Put $\Delta := [V,A]^R$. Since $U := [V,\langle A^R \rangle]$ is a wreath product module for R with respect to A^R , Δ is a system of imprimitivity for R on U. Since $|[V,B]| \leq |[V,A]|$, we can apply A.20 and conclude that $|B/C_B(U)| = 2$ and |[U,B]| = |[V,A]|. Since $|[V,B]| \leq |[V,A]|$ this gives |[V,B]| = |[U,B]| = |[V,A]| and $[V,B] = [U,B] \leq U$. But then $C_B(U) \leq C_B([V,B])$ and $|B/C_B([V,B])| \leq |B/C_B(U)| \leq 2$, contrary to (i). Thus B normalize A; in particular AB is a subgroup of H. Suppose for a contradiction that A does not normalizes B and pick $a \in A$ with $B^a \neq B$. Since V is a wreath product module for R with respect to B^R , A.16(c) shows that $[V, B, B^a] = 0$. Note that $B \leq BA = B^a A$. Also by (ii), [V, B] = [V, B, B] and so

$$[V,B] = [V,B,B] \le [V,B,B^aA] = [V,B,A] \le [V,A],$$

a contradiction to (iv)

Hence A and B normalize each other, and the lemma is proved.

LEMMA A.23. Let \mathcal{K} be a non-empty H-invariant set of subnormal subgroups of H and suppose that

(i) $|A/C_K([V, A])| > 2$ for all $A \in \mathcal{K}$.

(ii) [V, A] is a simple K-module for all $A \in \mathcal{K}$.

(iii) $[V, B] \leq [V, A]$ for all distinct A and B in \mathcal{K} .

Then $[V, \langle \mathcal{K} \rangle]$ is a wreath product module for H with respect to \mathcal{K} .

PROOF. We will verify that the hypothesis of A.22 holds. Let $K \in \mathcal{K}$. Since $|K/C_K([V,K])| > 2$, K does not centralize [V, K], and since [V, K] is a simple K-module, we conclude that [V, K] = [V, K, K] and $[V, K] \cap C_V(K) = 0$. So A.22(i) and (ii) hold.

Now let A, B be distinct elements of \mathcal{K} with $[A, B] \leq A \cap B$. Then B normalizes A and $[V, A] \cap [V, B]$ is an B-submodule of [V, B]. Since $[V, B] \leq [V, A]$, it is a proper B-submodule, and since [V, B] is simple, we conclude that $[V, A] \cap [V, B] = 0$. Hence also A.22(iii) holds. Also, (iii) is the same as A.22(iv).

Thus, we can apply A.22, and $[V, \langle \mathcal{K} \rangle]$ is a wreath product module for H with respect to \mathcal{K} .

DEFINITION A.24. Let H be a finite group, \mathcal{K} a non-empty H-invariant set of subgroups of Hand Ξ a class of modules. Then V is a Ξ -wreath product module for H with respect to \mathcal{K} provided that V is wreath product module for H with respect to \mathcal{K} and for each $K \in \mathcal{K}$, [V, K] is a Ξ -module for K.

Most important for our paper are faithful natural $SL_2(q)$ -wreath product modules, that is, where Ξ consists only of the natural $\mathbb{F}_pSL_2(q)$ - modules and the action of H is faithful. The next remark gives an explicit description of natural $SL_n(q)$ -wreath product modules.

REMARK A.25. Suppose that V is a faithful H-module and \mathcal{K} is non-empty H-invariant set of subgroups of H. Then V is a natural $SL_n(q)$ -wreath product module for H with respect to \mathcal{K} if and only if

$$V = \bigoplus_{K \in \mathcal{K}} [V, K] \qquad \text{and} \qquad \left\langle \mathcal{K} \right\rangle = \underset{K \in \mathcal{K}}{\times} K,$$

and for each $K \in \mathcal{K}, K \cong SL_n(q)$ and [V, K] is a natural $SL_n(q)$ -module for K.

PROOF. Suppose that V is a natural $SL_n(q)$ -wreath product-module for H with respect to V. Then by definition, $V = \bigoplus_{K \in \mathcal{K}} [V, K]$ and for each $K \in \mathcal{K}$, [V, K] is a natural $SL_n(q)$ -module for K. Since V is faithful, A.17 shows that [V, K] is a faithful K-module and $\langle \mathcal{K} \rangle = \times_{K \in \mathcal{K}} K$. So [V, K] is a faithful natural $SL_n(q)$ -module for K and thus $K \cong SL_n(q)$.

The converse should be obvious.

LEMMA A.26. Let \mathcal{K} be a non-empty H-invariant set of subnormal subgroups of H.

- (a) Suppose that for all $K \in \mathcal{K}$, K is quasisimple and [V, K] is a simple K-module. Then $[V, \langle \mathcal{K} \rangle]$ is a wreath product module for H with respect to \mathcal{K} .
- (b) Let q be a power of p and n≥ 2. Suppose that V is a faithful H-module and
 (i) for all K ∈ K, K ≅ SL_n(q) and [V, K] is a natural SL_n(q)-module for K, or
 (ii) for all K ∈ K, K ≅ SL₂(q)' and [V, K] is a natural SL₂(q)'-module for K. Then [V, ⟨K⟩] is a natural SL_n(q)- or natural SL₂(q)'-wreath product module for H with respect to ⟨K⟩.

PROOF. We will prove (a) and (b) simultaneously by verifying the hypothesis of A.23. Let $K \in \mathcal{K}$. Observe that in both cases [V, K] is a non-central simple K-module. Also $|K/C_K([V, K])| > 2$ since in (a) K is quasisimple and in (b) $|K/C_K([V, K])| \ge |SL_2(q)'| \ge 3$. Hence A.23(i) and (ii) hold and it remains to verify that K = E for all $E, K \in \mathcal{K}$ with $[V, E] \le [V, K]$.

Put W := [V, K], so $[V, E] \leq W$. Since W is a simple K-module, $End_{\mathbb{F}_pH}(W)$ is a finite division ring by Schur's Lemma, and so is commutative by Wedderburn's theorem. We get

(*)
$$[W, [E, K]] \neq 0$$
 or $E/C_E(W)$ is abelian.

Suppose first that K and E are quasisimple. Then K and E are components of H, so K = E or [K, E] = 1. By (*) either $[W, [E, K]] \neq 0$ or $E/C_E(W)$ is abelian. In the first case $[E, K] \neq 1$ and so E = K. In the second case $E = C_E(W)$ since E is quasisimple. But then $[V, E] = [V, E, E] \leq [W, E] = 0$, and [V, E] is central E-module, a contradiction.

Suppose next that one of K and E is not quasisimple. Then we are in case (b) and $K \cong E \cong$ $SL_2(p)$ or $SL_2(p)'$ with p = 2 or 3. In particular, $O_{p'}(K) \neq 1$ and $W = [V, E] = [W, O_{p'}(K)]$. Put $F := \langle E, K \rangle$ and $R := O_{p'}(F)$. Since K is subnormal in $F, 1 \neq O_{p'}(K) \leq R$. Hence [V, R] = W = [V, F], and coprime action shows that $V = W \oplus C_V(R)$. Since F normalizes R, we conclude that $[C_V(R), F] \leq C_V(R) \cap W = 0$. Thus $V = W \oplus C_V(F)$. Since V is a faithful H-module, F acts faithfully on W. Note that $|W| = p^2$ and $Aut(W) = GL_2(p)$ has a unique subgroup isomorphic to K. So E and K have the same image in Aut(W) and since $C_F(W) = 1, E = K$.

LEMMA A.27. Let $P \leq H$ and let \mathcal{K} be a non-empty P-invariant set of subgroups of P. Suppose that

- (i) $O^p(\langle \mathcal{K} \rangle) \leq H$,
- (ii) V is natural $SL_2(q)$ -wreath product module for P with respect to $\mathcal{K}, q = p^n$,
- (iii) V is a faithful H-module.

Then

- (a) If $E \leq H$ such that [V, E] is a faithful natural $SL_2(q)$ -module for E, then $E \in \mathcal{K}$.
- (b) V is a natural $SL_2(q)$ -wreath product module for H with respect to K.
- (c) \mathcal{K} is the unique *H*-invariant set of subgroups of *H* such that *V* is a natural $SL_2(q)$ -wreath product module for *H* with respect to \mathcal{K} .

PROOF. (a): Put $R := O^p(\langle \mathcal{K} \rangle)$. Since V is a natural $SL_2(q)$ -wreath product module for P with respect to \mathcal{K} and by (iii) V is a faithful P-module, the definition of a wreath product module and A.17(b) give

$$V = \bigoplus_{K \in \mathcal{K}} [V, K] \quad \text{and} \quad \langle \mathcal{K} \rangle = \bigotimes_{K \in \mathcal{K}} K,$$

and [V, K] is a natural $SL_2(q)$ modules for each $K \in \mathcal{K}$. By A.17(a) [V, K] is a faithful K-module and so $K \cong SL_2(q)$. In particular, [V, K] is a natural $SL_2(q)'$ module for $O^p(K)$ and for R. It follows that $[V, K], K \in \mathcal{K}$, are pairwise non-isomorphic simple R-submodules of V and so $\Delta := \{[V, K] \mid K \in \mathcal{K}\}$ is the set of Wedderburn components for R on V. Since $R \leq H$ we conclude that H acts on Δ .

Note that $|[V,K]| = q^2 = |[V,E]|$. Suppose that E acts non-trivially on Δ . Then $|\Delta| \ge 2$ and Δ is a system on imprimitivity for H on V. Hence A.20(b) implies that $|E/C_E(V)| = 2$, a contradiction. Thus E acts trivially on Δ . In particular, $[V,E] = \bigoplus_{W \in \Delta} [W,E]$, and since [V,E] is a simple E module, there exists a unique $W \in \Delta$ with $[W,E] \ne 0$. Let K be the unique element of \mathcal{K} with W = [V,K].

Put $F := \langle K, E \rangle$ and $U := \sum_{X \in \Delta \setminus \{W\}} X$. Then $V = W \oplus U$ and F centralizes U. So F acts faithfully on W. Moreover, since $R \leq H$, F normalizes $C_R(U) = O^p(K)$. Put $\mathbb{F} := End_K(W)$ and observe that $\mathbb{F} \cong \mathbb{F}_q$.

We claim that F acts \mathbb{F} -linearly on W. If p = q, then $\mathbb{F} = \mathbb{F}_q$ and this is obvious. If q > p, then $K = O^p(K)$ and F normalizes K. Since F = EK is perfect and $Aut(\mathbb{F})$ is abelian, we again conclude that F acts \mathbb{F} -linearly.

Note that $GL_{\mathbb{F}}(W)/SL_{\mathbb{F}}(W)$ is a p'-group and $SL_2(q)$ is generated by p-elements, so $SL_{\mathbb{F}}(W) \cong$ $SL_2(q)$ is the unique subgroup of $GL_{\mathbb{F}}(W)$ isomorphic to $SL_2(q)$. Since F acts faithfully on W and both E and K are isomorphic to $SL_2(q)$, this gives E = F = K. So $E \in \mathcal{K}$. (b): From (a) we conclude that \mathcal{K} is *H*-invariant and so (b) holds.

(c) follows immediately from (a).

LEMMA A.28. Let $K \leq H$ and $S \in Syl_p(H)$, and suppose that V is a faithful H-module. Put $\mathcal{K} := K^H$ and $R := \langle \mathcal{K} \rangle$. Suppose that $O^p(H) \leq R$ and V is a natural $SL_2(q)$ -wreath product module for H with respect to \mathcal{K} , $q = p^n$. Then the following hold:

- (a) H = RS, and S is transitive on \mathcal{K} .
- (b) H is p-minimal, and $N_H(R \cap S)$ is the unique maximal subgroup of H containing S.
- (c) V is a simple H-module. In particular, V is a p-reduced H-module and $O_p(H) = 1$.
- (d) Up to conjugation in H, K is the unique subgroup of H such that $K \cong SL_2(q)$ and [V, K] is a natural $SL_2(q)$ -module for K.
- (e) Let $S := \{v \in V \mid [v, F] \neq 0 \text{ for all } F \in \mathcal{K}\}$. Then R is transitive on S, and $C_V(T)^{\sharp} \subseteq S$ for every $T \leq H$ that is transitive on \mathcal{K} .

PROOF. (a): Since $O^p(H) \leq R$, H = RS, and since R normalizes K, $K^H = K^{RS} = K^S$.

(b): Let L be a maximal subgroup of H containing S. Since $K \cong SL_2(q)$, and $N_K(K \cap S)$ is the only maximal subgroup of K containing $K \cap S$, it follows that $K \leq L$ or $K \cap L \leq N_K(K \cap S)$. In the first case $R \leq L$ since S is transitive on \mathcal{K} , and so L = H, a contradiction. Hence $K \cap L \leq N_K(K \cap S)$; in particular $K \cap S = O_p(K \cap L)$. Since $K \cap L \leq R \cap L$, we conclude that $R \cap L \leq N_R(K \cap S)$. Now again the transitivity of S on \mathcal{K} gives $R \cap S = \langle (K \cap S)^S \rangle$ and $R \cap L \leq N_R(R \cap S)$ and so $L \leq N_H(R \cap S)$. Since $N_H(R \cap S)$ is a proper subgroup of H, $L = N_H(R \cap S)$ follows.

(c): Let W be a non-zero H-submodule of V. By definition of a wreath product module, $C_V(\langle \mathcal{K} \rangle) = 0$ and so $[W, A] \neq 0$ for some $A \in \mathcal{K}$. Thus $W \cap [V, A] \neq 0$. Since [V, A] is a natural $SL_2(q)$ -module for A, [V, A] is simple A-module and so $[V, A] \leq W$. As H acts transitively on \mathcal{K} , this gives $[V, A] \leq W$ for all $A \in \mathcal{K}$. By definition of wreath product module, $V = \bigoplus_{A \in \mathcal{K}} [V, A]$ and so V = W.

(d): By A.27, applied with (H, H, \mathcal{K}) in place of (P, H, \mathcal{K}) , any $E \leq H$ such that [V, E] is a faithful natural $SL_2(q)$ -module for E is contained in \mathcal{K} and so is conjugate to K.

(e): Let $v \in C_V(T) \setminus S$. Then [v, F] = 0 for some $F \in \mathcal{K}$. Since T acts transitively on \mathcal{K} , this gives $v \in C_V(\langle \mathcal{K} \rangle) = 0$. Thus $C_V(T)^{\sharp} \subseteq S$. Since K is transitive on [V, K], R is transitive on S. \Box

A.5. Offenders

In this section p is a prime, H is a finite group, V is an \mathbb{F}_pH -module and $V^* := Hom_{\mathbb{F}_p}(V, \mathbb{F}_p)$ is the dual of V.

LEMMA A.29 (Chermak-Delgado Measuring Argument). Let α be a positive real number and $X \leq H$.

- (a) Suppose that $|V/C_V(B)| \leq |B/C_B(V)|^{\alpha}$ for some $B \leq X$ with $[V,B] \neq 1$. Then there exists a $N_H(X)$ -invariant subgroup D of X such that $[V,D] \neq 1$, $|V/C_V(D)| \leq |D/C_D(V)|^{\alpha}$ and $|A|^{\alpha}|C_V(A)| \leq |D|^{\alpha}|C_V(D)|$ for all $A \leq X$.
- (b) Suppose that $X/C_X(V)$ is elementary abelian and X contains a non-trivial offender on V. Then X contains an $N_H(X)$ -invariant non-trivial best offender D on V with $|A||C_V(A)| \leq |D||C_V(D)|$ for all $A \leq X$.

PROOF. Replacing H be $H/C_H(V)$ we may assume that V is a faithful H-module. (a): Since $B \neq 1$ also $X \neq 1$ and we can define

$$m_{\alpha} = \max\left\{ |A|^{\alpha} |C_V(A)| \mid 1 \neq A \leq X \right\}$$

and

$$\alpha \mathcal{M} = \{ 1 \neq A \leq X \mid |A|^{\alpha} |C_V(A)| = m_{\alpha} \}.$$

Observe that $\alpha \mathcal{M} \neq \emptyset$. Since $|V/C_V(B)| \leq |B/C_B(V)|^{\alpha} = |B|^{\alpha}$, we have

$$m_{\alpha} \ge |B|^{\alpha} |C_V(B)| \ge |V|$$

Thus [CD, 1.2] shows that $\alpha \mathcal{M}$ has a unique maximal element D. Since D is unique, D is $N_H(X)$ -invariant. Also

$$|D|^{\alpha}|C_V(D)| = m_{\alpha} \ge |V|,$$

and so $|V/C_V(D)| \leq |D|^{\alpha} = |D/C_D(V)|^{\alpha}$.

By the definition of $\alpha \mathcal{M}, D \neq 1$ and so $[V, D] \neq 1$, and by the definition of m_{α} ,

 $|A|^{\alpha}|C_V(A)| \leqslant m_{\alpha} = |D|^{\alpha}|C_D(V)|$

for all $1 \neq A \leq X$. Since $m_{\alpha} \geq |V|$, this also holds for A = 1.

(b): Let D be as in (a) for $\alpha = 1$. Since $X/C_X(V)$ is elementary abelian, also $D/C_D(V)$ is elementary abelian. Thus (a) shows that (b) holds.

LEMMA A.30. Suppose that H does not contain any over-offenders on V. Then every offender in H on V is a best offender.

PROOF. Let $A \leq H$ be an offender on V and let $B \leq A$. Since A is an offender, $|V/C_V(A)| \leq |A/C_A(V)|$ and so $|V||C_A(V)| \leq |A||C_V(A)|$. By hypothesis, B is not an over-offender and so $|V/C_V(B)| \geq |B/C_B(V)|$. Thus

$$|B||C_V(B)| \leq |V||C_B(V)| \leq |V||C_A(V)| \leq |A||C_V(A)|$$

and A is a best offender on V.

LEMMA A.31 ([MS5, 1.2]). Let $A \leq H$. Then A is a best offender on V if and only if A is an offender on every A-submodule of V.

LEMMA A.32 ([MS5, 1.5]). Let A be a strong dual offender on V. Then the following hold:

- (a) A is quadratic on V.
- (b) A is a strong dual offender on every A-submodule of V and V^* .
- (c) A is best offender on V and on V^* .
- (d) If $|[V, A]| = |A/C_A(V)|$, then A is a strong offender on V.

LEMMA A.33. Let $A \leq H$, \mathbb{F} a finite field and V an $\mathbb{F}A$ -module. Suppose that A is an offender on V and [V, A] is 1-dimensional over \mathbb{F} . Then

- (a) $|V/C_V(A)| = |A/C_A(V)|.$
- (b) The canonical commutator map $A/C_A(V) \to Hom_{\mathbb{F}}(V/C_V(A), [V, A])$ is an isomorphism.
- (c) A is a strong dual offender and a best offender on every A-submodule of V.

PROOF. For (a) and (b) see [**MS6**, 3.4]. Note that (b) implies [v, A] = [V, A] for all $v \in V \setminus C_V(A)$. Thus A is a strong dual offender on V and on every A-submodule of V. Hence by A.32(c) A is also a best offender on every A-submodule of V.

LEMMA A.34 ([MS5, 1.6]). Let A be a strong offender on V. Then A is a quadratic best offender on V.

LEMMA A.35. Let $A \leq H$ be a strong offender on V. Then the following statements are equivalent:

(a) A is a root offender on V.

(b) $|[V, A]| = |V/C_V(A)|.$

(c) [V, A] = [V, a] for some $a \in A$.

- (d) [V, A] = [V, a] for some $1 \neq a \in A$.
- (e) $C_{V*}(A) = C_{V*}(a)$ for some $a \in A$.
- (f) $C_{V*}(A) = C_{V*}(a)$ for all $1 \neq a \in A$
- (g) A is a strong offender on V^* .

PROOF. Without loss V is a faithful A-module. If A = 1, the statements of the lemma are obvious. So suppose that $A \neq 1$.

(a) \iff (b) \iff (c) \iff (d): Let $1 \neq a \in A$. Since A is a strong offender, $C_V(a) = C_V(A)$. Thus

1100

$$|V/C_V(A)| = |V/C_V(a)| = |[V,a]| \le |[V,A]|.$$

Hence

$$|V/C_V(A)| = |[V,A]| \quad \Longleftrightarrow \quad |[V,a]| = |[V,A]| \quad \Longleftrightarrow \quad [V,a] = [V,A]$$

It follows that $|V/C_V(A)| = |[V, A]|$ iff [V, a] = [V, A] for some $a \in A$ iff [V, a] = [V, A] for all $1 \neq a \in A$. Since A is a strong offender, the latter condition holds if and only if A is a root offender on V. Thus (a), (b), (d) and (c) are equivalent.

(c) \iff (e) and (d) \iff (f): Since $C_{V*}(A) = [V, A]^{\perp}$ and $C_{V*}(a) = [V, a]^{\perp}$, (c) and (e) are equivalent, and also (d) and (f) are equivalent

(f) \implies (g): Suppose that (f) holds. Then also (a) holds. Since A is an offender we get $|[V, A]| = |V/C_V(A)| \leq |A|$. As $|V^*/C_{V^*}(A)| = |V^*/[V, A]^{\perp}| = |[V, A]|$ we conclude that A is an offender on V^* . Together with (f) this shows that A is a strong offender on V^* .

(g) \implies (f): If A is a strong offender on V^* , then by definition $C_{V^*}(A) = C_{V^*}(a)$ for all $1 \neq a \in A$. So (e) holds.

LEMMA A.36. Let $A \leq H$. Then the following are equivalent

- (a) A is a root offender on V.
- (b) A is a strong offender on V and a strong offender on V^* .
- (c) A is a root offender on V^* .

PROOF. Note that any root offender is a strong offender. By A.35 a strong offender is a root offender on V if and only if it is a strong offender on V^* . So (a) and (b) are equivalent. This equivalence applied to V^* in place of V shows that (b) and (c) are equivalent.

LEMMA A.37. Let $A \leq H$ be a root offender on V. Then

- (a) $|V/C_V(A)| = |[V, A]| = |A/C_A(V)|.$
- (b) A is strong dual offender on V.
- (c) A is quadratic on V.

PROOF. (a) and (b): Let $v \in V \setminus C_V(A)$. By definition of a root offender, $C_V(a) = C_V(A)$ for all $1 \neq a \in A$. So $[v, a] \neq 1$ for all such a, and $C_A(v) = C_A(V)$. Thus

$$A/C_A(V)| = |A/C_A(v)| \le |[v, A]| \le |[V, A]|$$

By definition any root offender is a strong offender. So we can apply A.35 and conclude that $|[V, A]| = |V/C_V(A)|$, and since A is an offender, $|[V, A]| \leq |A/C_A(V)|$. Hence equality holds in all these inequalities. In particular, (a) holds and [v, A] = [V, A]. So A is strong dual offender, and (b) holds.

(c): By A.32(a) all strong dual offenders are quadratic, and so (c) follows from (b).

LEMMA A.38. Let A be a subgroup of H. Suppose that V is selfdual as an \mathbb{F}_pA -module. Then the following statements are equivalent:

- (a) A is a root offender on V.
- (b) A is a strong offender on V.
- (c) $|V/C_V(A)| = |A|$ and A is a strong dual offender.

PROOF. (a) \iff (b) : Since V is selfdual, A is a strong offender on V if and only if A is a strong offender on V and V^{*}. By A.36 this is the case if and only if A is a root offender on V.

(b) \iff (c) : This is [MS5, 1.7].

LEMMA A.39 ([MS5, 1.3]). Suppose that B is a minimal offender on V and W is a B-submodule of V. Then B is a quadratic best offender on W. In particular, every non-trivial offender on V contains a non-trivial quadratic best offender on V.

LEMMA A.40. Let Y be an elementary abelian normal subgroup of H and A an elementary abelian p-subgroup of maximal order in H. Suppose that $[Y, A] \neq 1$. Then A acts as a non-trivial best offender on Y. Moreover, $C_A([Y, A])$ is a non-trivial quadratic best offender on Y.

PROOF. Pick $B \leq A$. By the maximality of |A|,

$$|B||C_Y(B)||B \cap Y|^{-1} = |BC_Y(B)| \le |A|.$$

Hence

 $|B||C_Y(B)| \leq |A||B \cap Y| \leq |A||A \cap Y| \leq |A||C_Y(A)|.$

This shows that A acts as a best offender on Y. The second statement now follows from Timmesfeld's replacement theorem [KS, 9.2.3]. \Box

LEMMA A.41 ([MS5, 2.2]). Suppose that V is a faithful p-reduced \mathbb{F}_pH -module and $J := J_H(V) \neq 1$. Put $\mathcal{J} := \mathcal{J}_H(V)$. Let \mathcal{K} be the set of non-solvable members of \mathcal{J} and put

$$\mathcal{I} := \mathcal{J} \backslash \mathcal{K}, E := \langle \mathcal{K} \rangle, I := \langle \mathcal{I} \rangle.$$

Then the following hold:

- (a) $C_H(J/Z(J)) = C_H(J)$.
- (b) Let N be a J-invariant subgroup of H with $[N, J] \neq 1$. Then there exists $K \in \mathcal{J}$ with $K \leq N$.
- (c) $\mathcal{J} \neq \emptyset$, $\mathcal{J} = \mathcal{I} \cup \mathcal{K}$, and \mathcal{K} is the set of components of J.
- (d) Let $K \in \mathcal{I}$. Then either p = 2, $K \cong C_3 \cong SL_2(2)'$, and $[V, K] \cong \mathbb{F}_2^2$, or p = 3, $K \cong Q_8 \cong SL_2(3)'$, and $[V, K] \cong \mathbb{F}_3^2$.
- (e) [W, K] = [W, K, K] for every $K \in \mathcal{J}$ and every K-submodule W of V.
- (f) [K, F] = 1 and [V, K, F] = 0 for every $K, F \in \mathcal{J}$ with $K \neq F$.
- (g) $C_J(IE) = Z(J)$, or p = 2 and $C_J(IE) = Z(J)I$. So in both cases $C_J(IE)$ is an abelian p'-group.
- (h) Let $U \leq H$ and $K \in \mathcal{J}$. Then either [K, U] = 1 or $[W, K] \leq [W, [K, U]]$ for every *K*-submodule $W \leq V$.

LEMMA A.42. Suppose V is faithful and p-reduced for H, and let $L \leq H$. Then $\mathcal{J}_L(V) = \{E \in \mathcal{J}_H(V) \mid [E, J_L(V)] \neq 1\}$. In particular, $\mathcal{J}_L(V) \subseteq \mathcal{J}_H(V)$.

PROOF. Since V is faithful p-reduced H-module and $L \leq H$, V is also a faithful p-reduced L-module, see A.9(d). In particular, we can apply A.41 to H and to L.

Let $E \in \mathcal{J}_H(V)$. Observe that both, $J_L(V)$ and E, are subnormal in H. Also observe that $J_L(V) \leq J_H(V)$, so $J_L(V) \leq J_H(V)$. By definition of a $J_H(V)$ -component, $E = [E, J_H(V)]$ and so $J_L(V)$ normalizes E.

1°. Either $E \in \mathcal{J}_L(V)$ or $[E, J_L(V)] = 1$.

Assume that E is a component of $J_H(V)$. Since $J_L(V) \leq J_H(V)$, [**KS**, 6.5.2] implies that $[E, J_L(V)] = 1$ or $E \leq J_L(V)$. In the latter case E is a component of $J_L(V)$, and A.41(c) shows that $E \in \mathcal{J}_L(V)$.

Assume that E is not a component of $J_H(V)$. Then by A.41(c) E is solvable, and by A.41(d)

(*)
$$E \cong C_3 \text{ and } p = 2$$
 or $E \cong Q_8 \text{ and } p = 3.$

In particular, E is a p'-group. Since $J_L(V)$ is generated by best offenders, $J_L(V) = O^{p'}(J_L(V))$, and since E and $J_L(V)$ are both subnormal in H, we conclude that $J_L(V) = O^{p'}(J_L(V)E)$ and Enormalizes $J_L(V)$, see 1.23. Thus $[E, J_L(V)] \leq E \cap J_L(V)$.

By (*) $E \cong C_3$ or Q_8 , and coprime action implies that either $[E, J_L(V)] = 1$ or $E = [E, J_L(V)] \leq J_L(V)$. In the latter case E is minimal in $J_L(V)$ with $1 \neq E = [E, J_L(V)]$, and so $E \in \mathcal{J}_L(V)$. Hence (1°) also holds in this case.

2° . Suppose that $[V, E, J_L(V)] \neq 0$, then $[E, J_L(V)] \neq 1$.

Since $[V, E, J_L(V)] \neq 0$, there exists a best offender B on V in $J_L(V)$ such that $[V, E, B] \neq 0$. By A.41(e), [V, E] = [V, E, E] and so [V, E] is a perfect E-submodule of V. Hence by [**MS5**, 2.7] $[E, B] \neq 1$ and so $[E, J_L(V)] \neq 1$.

We are now able to prove the assertion. From (1°) we get that

$${E \in \mathcal{J}_H(V) \mid [E, J_L(V)] \neq 1} \subseteq \mathcal{J}_L(V).$$

Now let $K \in \mathcal{J}_L(V)$. It remains to show that $K \in \mathcal{J}_H(V)$ and $[K, J_L(V)] \neq 1$. Put $R := \langle \mathcal{J}_H(V) \rangle$ and $J := J_H(V)$. Since R is normal in H and V is faithful p-reduced H-module, [V, R] is a faithful R-module, see A.9(d). Hence $C_R([V, R]) = 1$.

Suppose for a contradiction that [V, R, K] = 0. Then $[R, K] \leq C_R([V, R]) = 1$. Note that $K \leq J_L(V) \leq J_H(V) = J$ and by A.41(g) $C_J(R) \leq Z(J)R$. Hence $K \leq Z(J)R$. By the definition of a $J_L(V)$ -component we have $[K, J_L(V)] = K \neq 1$ and so $K \leq [K, J] \leq [Z(J)R, J] \leq R$. But then $K \leq C_R([V, R]) = 1$, a contradiction.

We have proved that $[V, R, K] \neq 1$ and so there exists $E \in \mathcal{J}_H(V)$ such that $[V, E, K] \neq 0$. Then also $[V, E, J_L(V)] \neq 0$, and (2°) shows that $[E, J_L(V)] \neq 1$. Thus (1°) implies $E \in \mathcal{J}_L(V)$. Hence Eand K are $J_L(V)$ -components with $[V, E, K] \neq 0$. Now A.41(f) gives K = E and so $K \in \mathcal{J}_H(V)$. \Box

LEMMA A.43 ([MS5, 2.4]). Let $K \in \mathcal{J}_H(V)$ and let A be a subgroup of M such that [V, A, A] = 0and $[K, A] \neq 1$. Suppose that X is a perfect K-submodule of V and \overline{X} is a non-zero K-factor module of X. Then

$$C_A(X) = C_A(K) = C_A(\overline{X})$$

LEMMA A.44 ([MS5, 2.8]). Suppose that V is a faithful p-reduced \mathbb{F}_pH -module. Let $K \in \mathcal{J}_H(V)$ and X be a perfect K-submodule of V. Then $J_H(V)$ normalizes X.

LEMMA A.45 ([MS6, 2.12]). Let $R := [O_p(H), O^p(H)]$ and $T \in Syl_p(H)$, and let Y be a T-submodule of V with $V = \langle Y^H \rangle \neq Y$. Then one of the following holds:

- (1) [V, R] = 0 and $C_{O_n(H)}(Y) \leq H$.
- (2) R is a non-trivial strong dual offender on Y.
- (3) There exist $O_p(H)O^p(H)$ -submodules $Z_1 \leq X_1 \leq Z_2 \leq X_2$ such that for $i = 1, 2, X_i/Z_i$ is a non-central simple $O^p(H)$ -module and $X_i \cap Y \leq Z_i$.

A.6. Nearly Quadratic Modules

In this section A is a group, \mathbb{F} is a field and V is an $\mathbb{F}A$ -module. Since quadratic action is a special case of nearly quadratic action, the results in this section also apply to quadratically acting groups. Recall the definition of a system of imprimitivity on V from Definition A.19.

DEFINITION A.46. Let \mathbb{K} be a field extension of \mathbb{F} such that V is also a \mathbb{K} -vector space.

- (a) Let $a \in A$ and $\sigma \in Aut(\mathbb{K})$. Then a acts σ -semilinearly on V if $(kv)^a = k^{\sigma}v^a$ for all $k \in \mathbb{K}$ and $v \in V$.
- (b) Let $\sigma : A \to Aut(\mathbb{K}), a \mapsto \sigma_a$, be a homomorphism. Then V is a σ -semilinear $\mathbb{K}A$ -module provided that each $a \in A$ acts σ_a -semilinearly on V. Set $A_{\mathbb{K}} := \ker \sigma$ and $\mathbb{K}_A := C_{\mathbb{K}}(Im\sigma)$.

LEMMA A.47 ([MS3, 2.4]). Let V be a nearly quadratic $\mathbb{F}A$ -module and W be an $\mathbb{F}A$ -submodule of V. Then W and V/W are nearly quadratic $\mathbb{F}A$ -modules.

LEMMA A.48 ([MS3, 2.13]). Let V be a nearly quadratic $\mathbb{F}A$ -module, and let Δ be a system of imprimitivity of \mathbb{F} -subspaces for A in V. Then one of the following holds:

- (1) A acts trivially on Δ and there exists at most one $W \in \Delta$ with $[W, A] \neq 0$.
 - (2) A acts trivially on Δ and quadratically on V.
 - (3) A acts quadratically on V, char $\mathbb{F} = 2$, and $|A/C_A(W)| \leq 2$ for every $W \in \Delta \setminus C_\Delta(A)$.

- (4) A does not act quadratically on V, $A/C_A(V)$ is elementary abelian and there exists a unique A-orbit $W^A \subseteq \Delta$ with $[W, A] \neq 0$. Moreover, $B := N_A(W)$ acts quadratically on V, $B = C_A(\Delta)$ and one of the following holds:
 - (1) $char \mathbb{F} = 2$, $|W^A| = 4$, $\dim_{\mathbb{F}} W = 1$, $B = C_A(V)$, and $A/C_A(V) \cong C_2 \times C_2$. (2) $char \mathbb{F} = 3$, $|W^A| = 3$, $\dim_{\mathbb{F}} W = 1$, $B = C_A(V)$, and $A/C_A(V) \cong C_3$.

 - (3) $char \mathbb{F} = 2$, $|W^A| = 2$, and $C_A(W) = C_A(V)$. Moreover, $\dim_{\mathbb{F}} W/C_W(B) = 1$ and $C_W(B) = [W, B].$

LEMMA A.49 ([MS3, 6.3]). Suppose that V is a semilinear but not linear $\mathbb{K}A$ -module for some field extension K of F and that V is a nearly quadratic FA-module. Then $A/C_A(V)$ is elementary abelian and one of the following holds:

- (1) $[V, A, A] = 0, [V, A_{\mathbb{K}}] = 0, and char \mathbb{K} = 2 = |A/A_{\mathbb{K}}|.$
- (2) $[V, A, A] \neq 0, [V, A_{\mathbb{K}}] = C_V(A_{\mathbb{K}}), \dim_{\mathbb{K}} V/C_V(A_{\mathbb{K}}) = 1, \mathbb{F} = \mathbb{K}_A, and char \mathbb{K} = 2 =$ $A/A_{\mathbb{K}}| = \dim_{\mathbb{F}} \mathbb{K}.$
- (3) $[V, A, A] \neq 0$, $[V, A_{\mathbb{K}}] = 0$, $\mathbb{F} = \mathbb{K}_A$, $\dim_{\mathbb{K}} V = 1$, and $char \mathbb{F} = 3 = |A/A_{\mathbb{K}}| = \dim_{\mathbb{F}} \mathbb{K}$.
- (4) $[V, A, A] \neq 0, [V, A_{\mathbb{K}}] = 0, \mathbb{F} = \mathbb{K}_A, \dim_{\mathbb{K}} V = 1, char\mathbb{F} = 2, A/A_{\mathbb{K}} \cong C_2 \times C_2, \dim_{\mathbb{F}} \mathbb{K} = 4,$ and \mathbb{F} is infinite.

A.7. Q!-Modules

In this section H is a finite group, Q is a p-subgroup of H, and V is a finite Q!-module for $\mathbb{F}_p H$ with respect to Q. By A.50(b) below Q is a weakly closed subgroup of H. Hence, the results in Section 1.5 apply to Q and H. In particular, we will use the $^{\circ}$ -notion introduced there, so for $L \leq H$,

$$L^{\circ} = \langle P \in Q^H \mid P \leqslant L \rangle$$
 and $L_{\circ} = O^p(L^{\circ}).$

LEMMA A.50. Let V be a non-zero Q!-module for H with respect to Q.

- (a) $N_H(T) \leq N_H(Q)$ for every p-subgroup T of H with $Q \leq T$.
- (b) Q is a weakly closed subgroup of H.
- (c) $C_V(Q) \cap C_V(Q^g) = 0$ for all $g \in H \setminus N_H(Q)$; in particular $N_H(Q) = N_H(C_V(Q))$.
- (d) Let K be a subgroup of H acting transitively on V. Then $H^{\circ} = \langle Q^K \rangle$.

PROOF. (a): Let $Q \leq T$, T a p-subgroup of H. Then $0 \neq C_V(T) \leq C_V(Q)$ and Q! implies

 $N_H(T) \leq N_H(C_V(T)) \leq N_H(Q).$

(b): By 1.45 the condition in (a) is equivalent to Q being a weakly closed subgroup of H.

(c) Let $g \in H$ with $C_V(Q) \cap C_V(Q)^g \neq 0$. By Q!, Q and Q^g are normal in $N_H(C_V(Q) \cap C_V(Q^g))$. Since Q is a weakly closed subgroup of H, this gives $Q = Q^g$ and thus $g \in N_H(Q)$.

(d) Let $0 \neq v \in C_V(Q)$. By a Frattini argument, $H = C_H(v)K$ and by $Q!, C_H(v) \leq N_H(Q)$. Thus $Q^H = Q^K$ and so $H^\circ = \langle Q^H \rangle = \langle Q^K \rangle$.

LEMMA A.51. Let V be a non-zero Q!-module for H with respect to Q. Then V is a Q!-module for $H/C_H(V)$ with respect to $QC_H(V)/C_H(V)$.

PROOF. Put $\overline{H} = H/C_H(V)$. Since $N_H(A) \leq N_H(Q)$ for all $1 \neq A \leq C_V(Q), N_{\overline{H}}(A) \leq N_{\overline{H}}(\overline{Q})$ for all $1 \neq A \leq C_V(\overline{Q})$. Since $V \neq 0$ also $C_V(\overline{Q}) \neq 0$. Thus

$$N_H(\overline{Q}) \leq N_H(C_V(\overline{Q})) \leq N_H(Q).$$

Since $Q \not \equiv H$ this implies $\overline{Q} \not \equiv \overline{H}$, and the lemma is proved.

LEMMA A.52 ([MS6, 4.2]). Let V be a faithful Q!-module for H with respect to Q.

- (a) $H^{\circ} = \langle Q^h \mid h \in H^{\circ} \rangle.$
- (b) $C_H(H^{\circ}/Z(H^{\circ})) = C_H(H^{\circ}).$
- (c) Let $H^{\circ} \leq L \leq H$ and W be a non-zero L-submodule of V. Then $C_L(W) \leq C_L(H^{\circ})$. In particular $C_{H^{\circ}}(W)$ is a p'-group.
- (d) $C_V(H^\circ) = 0.$

- (e) Let $Q \leq L \leq H$ with $Q \leq L$. Then V is Q!-module for $\mathbb{F}_p L$ with respect to Q.
- (f) Let $L \leq H$ with $[L,Q] \neq 1$. Then $C_V(\langle L^Q \rangle) = 0$.

LEMMA A.53. Let V be a Q!-module for H with respect to Q, and let N be a Q-invariant subgroup of H with $N \leq N_H(Q)$. Then $C_H(W) \leq N_H(Q)$ for every non-trivial NQ-submodule W of V. In particular $C_V(N) = 0$ and $C_H([V, N]) \leq N_H(Q)$.

PROOF. Let $W \neq 0$ be an NQ-submodule of V. Then $C_W(Q) \neq 0$, and the Q!-property of V implies

$$C_H(W) \leqslant C_H(C_W(Q)) \leqslant N_H(Q).$$

In particular, we get that $C_V(N) = 0$ since $N \leq N_H(Q)$. Then [V, N] is a non-trivial NQ-submodule of V, and the last claim also follows.

LEMMA A.54. Let V be a faithful p-reduced Q!-module for H with respect to Q and let $K \leq H$. (a) $V \neq 0$.

(b) If $K \leq N_H(Q)$, then [K, Q] = 1.

(c) If $C_V(K) \cap C_V(Q) \neq 0$, then [K, Q] = 1.

- (d) If $K \neq 1$, then $[V, K, Q] \neq 1$.
- (e) If $K \leq N_H(Q)$, then K acts faithfully on each of [V,Q], $C_V(Q)$ and $C_V(Q) \cap [V,Q]$.
- (f) $C_H([V, H_\circ]) = 1.$

(g) Let $E \leq H_{\circ}$. Then $C_H([V, E]) \cap C_H(V/[V, E]) = 1$.

PROOF. Note first that $O_p(H) = 1$ since V is faithful and p-reduced.

(a): If V = 0 then Q = 1 since V is faithful. But then $Q \leq H$, a contradiction to the definition of a Q!-module.

(b): Suppose that $K \leq N_H(Q)$ and put $L := \langle K^Q \rangle$. Then L is subnormal in H and so $O_p(L) \leq O_p(H) = 1$. Also $L \leq N_H(Q)$ and so $L \cap Q$ is a normal *p*-subgroup of L. Thus $[L,Q] \leq L \cap Q \leq O_p(L) = 1$.

(c): If $C_V(K) \cap C_V(Q) \neq 0$, then Q! implies $K \leq N_H(C_V(K) \cap C_V(Q)) \leq N_H(Q)$ and (b) gives [K, Q] = 1.

(d): Suppose that $K \neq 1$ but [V, K, Q] = 1. Replacing K by $\langle K^{N_H(Q)} \rangle$ we may assume that $N_H(Q) \leq N_H(K)$. Since V is faithful, $1 \neq [V, K] \leq C_V(Q)$ and Q! implies $N_H(K) \leq N_H([V, K]) \leq N_H(Q)$. Hence $N_H(K) = N_H(Q)$. Let L be the largest subnormal subgroup of H contained in $N_H(Q)$. Then $K \leq L$ and (b) gives [L, Q] = 1. Let M be the largest subnormal subgroup of H contained in $N_H(L)$. Since Q centralizes L, Q normalizes M and $\langle Q^M \rangle \leq C_H(L) \leq C_H(K)$. Note that $[M, Q] \leq M \leq H$ and so [M, Q] is a subnormal subgroup of H contained in $C_H(K)$. In particular, $[M, Q] \leq N_H(K) = N_G(Q)$ and the maximal choice of L gives $[M, Q] \leq L$. Thus $[M, Q, Q] \leq [L, Q] = 1$ and since $O_p(M) \leq O_p(H) = 1$, 1.9 gives [M, Q] = 1. Hence $M \leq N_H(Q)$ and so M = L by maximality of L. Since $L \leq H$ this implies $H = L \leq N_H(Q)$, a contradiction since $Q \notin H$ by definition of a Q!-module.

(e): By (b), [K,Q] = 1. Put $K_0 := C_K([V,Q])$. Then $[V,Q,K_0] = 1$ and the Three Subgroups Lemma gives $[V, K_0, Q] = 1$. Hence (d) implies $K_0 = 1$ and so K acts faithfully on [V,Q]. Since [K,Q] = 1 the $P \times Q$ - Lemma shows

$$O^p(C_K([V,Q] \cap C_V(Q))) \le C_K([V,Q]) = K_0 = 1,$$

and so $C_K([V,Q] \cap C_V(Q)) \leq O_p(K) = 1.$

(f): By A.52(d), $C_V(H^\circ) = 0$ and so also $C_V(H_\circ) = 0$ and $[V, H_\circ] \neq 0$. Hence by A.52(c) $E := C_H([V, H_\circ]) \leq C_H(H^\circ)$. Thus $[E, H_\circ] = 1$ and $[V, H_\circ, E] = 1$. The Three Subgroups Lemma implies $[V, E, H_\circ] = 1$. Since $C_V(H_\circ) = 0$ this gives [V, E] = 0, and as V is faithful, E = 1.

(g): Put $C := C_H([V, E]) \cap C_H(V/[V, E])$. Then C acts nilpotently on V and H_\circ normalizes C. Hence $[C, H_\circ] \leq C \cap H_\circ \leq H_\circ$, so $C \cap H_\circ$ is subnormal in H. Since V is p-reduced and faithful, $C \cap H_\circ = 1$, and thus $[C, H_\circ] = 1$. Since $E \leq H_\circ$, $C_H(H_\circ)$ normalizes E and C. It follows that $C \leq C_H(H_\circ) \leq H$, and again since V is p-reduced and faithful, C = 1.

LEMMA A.55. Let V be a faithful p-reduced Q!-module for H with respect to Q. Put $N := \bigcap_{g \in H} N_H(Q^g)$.

- (a) $[N, H^{\circ}] = 1$ and $C_V(Q)$ is a faithful p-reduced N-module.
- (b) Let $1 \neq t \in H$ with $|[V,t]| < |C_V(Q)|$. Then $t \in N$ and $[C_V(Q),t] \neq 1$.
- (c) $|C_V(Q)| \leq |[V,t]|$ for all $1 \neq t \in H$ with $[C_V(Q),t] = 1$.
- (d) $C_V(Q) = [V, t]$ for all $1 \neq t \in H$ with $[V, t] \leq C_V(Q)$.

PROOF. (a): Note that $N \leq H$ and $N \leq N_H(Q)$. Hence by A.54(b),(e) [N,Q] = 1 and $C_V(Q)$ is a faithful N-module. As $H^\circ = \langle Q^H \rangle$, this gives $[N, H^\circ] = 1$. Since $N \leq H$ and V is faithful and p-reduced for $H, O_p(N) \leq O_p(H) = 1$. Hence, since $C_V(Q)$ is a faithful N-module, $C_V(Q)$ is p-reduced for N.

(b): Let $t \in H$ with $|C_V(Q)| > |[V, t]|$, and let $g \in H$. Note that

$$|V/C_V(t)| = |[V,t]| < |C_V(Q)| = |C_V(Q^g)|.$$

Thus $A := C_V(Q^g) \cap C_V(t) \neq 0$ and $t \in C_H(A) \leq N_H(Q^g)$. Hence $t \in N$. By (a), $C_V(Q)$ is a faithful N-module and so $[C_V(Q), t] \neq 1$.

(c) follows immediately from (b).

(d): Suppose that $[V,t] \leq C_V(Q)$ but $[V,t] \neq C_V(Q)$. Let $g \in H$. Then $|[V,t]| < |C_V(Q)| = |C_V(Q^g)|$ and so by (b), $t \in N$ and

$$1 \neq [C_V(Q^g), t] \leq C_V(Q^g) \cap [V, t] \leq C_V(Q^g) \cap C_V(Q).$$

Thus $Q = Q^g$ and $Q \leq H$, contrary to the definition of a Q!-module.

LEMMA A.56. Let V be a faithful p-reduced Q!-module for H with respect to Q, and let \mathcal{K} be a non-empty H-invariant set of non-trivial subgroups of H. Put $R := \langle \mathcal{K} \rangle$. Suppose that [V, R] is a wreath product module for H with respect to \mathcal{K} such that one of the following holds:

- (1) [V, K] is a simple K-module for all $K \in \mathcal{K}$, or
- (2) $[R, H^{\circ}] \neq 1.$

Then

- (a) Q is transitive on \mathcal{K} and $C_V(R) = 0$.
- (b) Suppose that $|\mathcal{K}| > 1$. Let $K \in \mathcal{K}$ and put $T := N_Q(K)$. Then $C_K(z)$ is a p-group for all $0 \neq z \in C_{[V,K]}(T)$.

PROOF. Put W := [V, R]. Since V is p-reduced and faithful, A.9 shows that W = [V, R] is a faithful p-reduced R-module. Since W is faithful wreath product module, A.17 shows that

(*)
$$R = \underset{K \in \mathcal{K}}{\times} K$$
 and $W = \bigoplus_{K \in \mathcal{K}} [W, K].$

(a): Let \mathcal{K}_0 be an orbit of Q on \mathcal{K} and put $R_0 := \langle \mathcal{K}_0 \rangle$. Since \mathcal{K} is H-invariant, $R \leq H$, and since \mathcal{K} is a non-empty set of non-trivial subgroups, $R \neq 1$. As V is p-reduced, $O_p(R) = 1$. If $K \in \mathcal{K} \setminus \mathcal{K}_0$ then (*) shows that $[W, K] \leq C_{[W,R]}(R_0)$. Thus either $\mathcal{K}_0 = \mathcal{K}$ or $C_{[W,R]}(R_0) \neq 0$.

Assume that $C_V(R_0) \neq 0$. Then also $C_V(R_0) \cap C_V(Q) \neq 0$ and so by A.54(c) $[R_0, Q] = 1$. Since either Q acts transitively on \mathcal{K} or $C_V(\langle K^Q \rangle) \neq 0$ for all $K \in \mathcal{K}$, we get [R, Q] = 1 and so $[R, H^\circ] = 1$. Hence [V, K] is a simple K-module for all $K \in \mathcal{K}$. Since Q centralizes K, [V, K, Q] = 0, and since $K \neq 1$, this contradicts A.54(d).

Thus $C_V(R_0) = 0$. It follows that Q acts transitively on \mathcal{K} and $C_V(R) = 0$.

(b): Let $0 \neq z \in C_{[V,K]}(T)$. By A.18 [V,K] = [W,K]. Thus $z \in [W,K]$ and since $[z, N_Q(K)] = [z,T] = 0$, the conjugates z^Q are in distinct submodules [W,F], $F \in \mathcal{K}$. Hence $z_0 := \sum_{z_1 \in z^Q} z_1 \neq 0$, $[z_0,Q] = 1$ and $C_K(z) = C_K(z_0)$. By $Q! C_K(z_0) \leq N_H(Q)$ and so

$$[C_K(z_0), Q] \leqslant Q \cap C_R(z_0) \leqslant O_p(C_R(z_0)).$$

By (*) $K \leq R$ and so $C_K(z_0) \leq C_R(z_0)$. Hence $O^p(C_K(z_0)) = O^p(C_K(z_0)O_p(C_R(z_0)))$, so $O^p(C_K(z_0))$ is Q-invariant. Thus (*) shows that either $O^p(C_K(z_0)) = 1$ or K is Q-invariant. In the

first case $C_K(z_0) = C_K(z)$ is a *p*-group. In the second case the transitivity of Q on \mathcal{K} shows $|\mathcal{K}| = 1$.

LEMMA A.57. Suppose that $O_p(H) = 1$. Let V be a faithful Q!-module for H with respect to Q, and let Y be a p-subgroup of H with $C_Y([V,Y]) \neq 1$ and $[H^\circ, Y] \neq 1$. Then $C_Y(H^\circ) = 1$.

Proof. See [MS6, 4.4].

A.8. Genuine Groups of Lie Type

- DEFINITION A.58. (a) A genuine group of Lie-type in characteristic p is a group isomorphic to $O^{p'}(C_{\overline{K}}(\sigma))$, where \overline{K} is a semisimple $\overline{\mathbb{F}_p}$ -algebraic group, $\overline{\mathbb{F}_p}$ is the algebraic closure of \mathbb{F}_p , and σ is a Steinberg endomorphism of \overline{K} , see [**GLS3**, Definition 2.2.2] for details.
- (b) Let K be a genuine group of Lie-type. Let Σ be the root system, d the order of the graph automorphism and q the order of the fixed field of the field automorphism used to define K. Then we say that K is a version of ${}^{d}\Sigma(q)$, see [**GLS3**, Definition 2.2.4] for the details.

Note that a given symbol $d\Sigma(q)$ can have many non-isomorphic versions. Nevertheless, we will write $K = d\Sigma(q)$ to indicated that K is a version of $d\Sigma(q)$. We will use $\Sigma(q)$ for ${}^{1}\Sigma(q)$.

- LEMMA A.59 ([GLS3, 2.2.6]). (a) For each symbol $d\Sigma(q)$, there is up to isomorphism a unique largest version K_u (called the universal version) and a unique smallest version K_a (called the adjoint version).
- (b) For any version K of a symbol as in (a), there are surjective homomorphisms $K_u \to K \to K_a$, whose kernels are central. In particular, if K is simple, then $K \cong K_a$.
- (c) $Z(K_a) = 1$, and $K/Z(K) \cong K_u/Z(K_u) \cong K_a$.
- (d) The versions of a given symbol, up to isomorphism, are the groups K_u/Z as Z ranges over all subgroups of $Z(K_u)$.

LEMMA A.60. Let $K = {}^{d}\Sigma(q)$ be an adjoint group or universal group of Lie-type with Dynkin diagram Δ . Then there exist subgroups Diag and Φ and a subset Γ of Out(K) such that

- (a) $\Phi\Gamma$ is a subgroup of Out(K), $\Phi \leq \Phi\Gamma$, $Out(K) = Diag\Phi\Gamma$, $Diag \leq Out(K)$, and $Diag \cap \Phi\Gamma = 1$.
- (b) Diag has order dividing q 1, q + 1 or $gcd(q 1, 2)^2$. In particular, Diag is a p'-group.
- (c) $\Phi \cong Aut(\mathbb{F}_{q^d})$. In particular, Φ is cyclic.
- (d) $C_{Diag\Phi\Gamma}(\Delta) = Diag\Phi.$
- (e) One of the following holds:
 - (1) d = 1, Δ has only single bonds, Γ is a subgroup of $\Phi\Gamma$, $\Phi\Gamma = \Phi \times \Gamma$, and Γ is the group of symmetries of Δ .
 - (2) d = 1, Δ has double or triple bonds, and
 - (i) if p = 2 and Δ is of type B_2 or F_4 , or p = 3 and Δ is of type G_2 , then $\Gamma = \{1, \psi\}$, ψ acts non-trivially on Δ and $\Phi = \langle \psi^2 \rangle$,
 - (ii) otherwise $\Gamma = 1$.
 - In particular, $\Phi\Gamma$ is cyclic.
 - (3) $d \neq 1$ and $\Gamma = 1$. In particular, $\Phi \Gamma = \Phi$ is cyclic.

PROOF. See [GLS3, section 2.5]; in particular Theorem 2.5.12.

COROLLARY A.61. Let $K = {}^{d}\Sigma(q)$ be an adjoint group or universal group of Lie-type with Dynkin diagram Δ , and let Γ and Diag be as in A.60. Suppose that Diag Γ is not abelian. Then $K = D_4(q)$, $\Gamma \cong Sym(3)$ and $(\Gamma Diag)' = \Gamma' \cong C_3$.

PROOF. Since $\Gamma Diag$ is not abelian, $\Gamma Diag$ is not cyclic. This rules out the last two cases in A.60(e). Hence A.60(e:1) holds and so d = 1, Δ has only single bonds, Γ is the group of symmetries on Δ , and $\Phi\Gamma = \Phi \times \Gamma$. By A.60(b), Φ is cyclic. So $(\Phi\Gamma)' = \Gamma'$ and Γ is not abelian. Thus $\Sigma = D_4$, $\Gamma \cong Sym(3)$ and $\Gamma' \cong C_3$.

LEMMA A.62 (Steinberg's Lemma, [MS5, 4.1]). Let M be a genuine group of Lie-type defined over a finite field of characteristic p. Let V be a simple $\mathbb{F}_p M$ -module, $S \in Syl_p(M)$, and B := $N_M(S)$. Put $\mathbb{K} := End_M(V)$. Then $C_V(S)$ is 1-dimensional over \mathbb{K} , \mathbb{K} is isomorphic to the subring of $End_{\mathbb{F}_p}(C_V(S))$ generated by the image of B, and $C_V(S)$ is a simple $\mathbb{F}_p B$ -module.

THEOREM A.63 (Smith's Lemma, [MS5, 4.2]). Let M be a genuine group of Lie-type defined over a finite field of characteristic p. Let V be a simple $\mathbb{F}_p M$ -module, $\mathbb{K} := End_M(V)$, E a parabolic subgroup of M, $L := O^{p'}(E)$ and $P = N_M(L)$. Then $L = O^{p'}(P)$, $O_p(E) = O_p(P) = O_p(L)$ and P is a Lie-parabolic subgroup of M. Moreover, $C_V(O_p(P))$ is a simple $\mathbb{F}_p P$ -module, an absolutely simple $\mathbb{K}L$ -module, and an absolutely simple $\mathbb{K}E$ -module

Let \mathbb{F} be a finite field of characteristic p, M a finite group, V a simple $\mathbb{F}M$ -module and W a simple $\mathbb{F}_p M$ -submodule. Recall that the field $\mathbb{K} := End_M(W)$ is called the field of definition of the $\mathbb{F}M$ -module W.

THEOREM A.64 (**Ronan-Smith's Lemma**, [**MS5**, 4.3]). Let M be a universal group of Lietype defined over a finite field of characteristic p, S a Sylow p-subgroup of M, P_1, P_2, \ldots, P_n the minimal Lie-parabolic subgroups of M containing S, and $L_i = O^{p'}(P_i)$. Let \mathcal{V} be the class of all tuples $(\mathbb{K}, V_1, V_2, \ldots, V_n)$ such that

- (i) \mathbb{K} is a finite field of characteristic p.
- (ii) Each V_i is an absolutely simple $\mathbb{K}L_i$ -module.
- (iii) $\mathbb{K} = \langle \mathbb{K}_i \mid 1 \leq i \leq n \rangle$, where \mathbb{K}_i is the field of definition of the $\mathbb{K}L_i$ -module V_i .

Define two elements $(\mathbb{K}, V_1, V_2, \ldots, V_n)$ and $(\widetilde{\mathbb{K}}, \widetilde{V}_1, \widetilde{V}_2, \ldots, \widetilde{V}_n)$ of \mathcal{V} to be isomorphic if there exists a field isomorphism $\sigma : \widetilde{\mathbb{K}} \to \mathbb{K}$ such that $V_i \cong \widetilde{V}_i^{\sigma}$ as an $\mathbb{K}L_i$ -module for all $1 \leq i \leq n$. Then the map

$$V \to (End_M(V), C_V(O_p(L_i)), \dots C_V(O_p(L_n))) \quad (V \ a \ simple \ \mathbb{F}_pM\text{-module})$$

induces a bijection between the isomorphism classes of simple \mathbb{F}_pM -modules and the isomorphism classes of \mathcal{V} .

LEMMA A.65. Let $K = d\Sigma(q)$ be a universal group of Lie-type with Dynkin diagram Δ . Define $\tau \in \Gamma^4$ as follows:

- (1) If $K = A_n(q)$, $n \ge 2$, $K = D_{2n+1}(q)$, $n \ge 2$ ⁵, or $E_6(q)$, then τ induces the unique non-trivial graph automorphism on Δ ;
- (2) otherwise $\tau = 1$.

Then $\tau^2 = 1$ and $V^* \cong V^{\tau}$ for all simple $\mathbb{F}_p K$ -modules V.

PROOF. See [St, Lemma 73].

LEMMA A.66. Let M be a genuine group of Lie-type defined over a finite field of characteristic p, S a Sylow p-subgroup of M, P_1, P_2, \ldots, P_n the minimal Lie-parabolic subgroups of M containing S, $L_i = O^{p'}(P_i)$ and $B = N_M(S)$. Suppose that V is a simple $\mathbb{F}_p M$ -module such that $[C_V(S), B] = 0$ and $[C_V(S), L_i] \neq 0$ for all $1 \leq i \leq n$. Then V is the Steinberg module for M over \mathbb{F}_p of \mathbb{F}_p dimension |S|. Moreover, as an $\mathbb{F}_p S$ -module V is isomorphic to the regular permutation module $\mathbb{F}_p[S]$.

PROOF. We may assume without loss that M is universal. Let \mathbb{F} be the algebraic closure of \mathbb{F}_p and St the Steinberg module for M over \mathbb{F} . Then by [**GLS3**, 2.8.7] St is a simple $\mathbb{F}M$ module of dimension |S|. It is well-known and also follows from the weight of St as given in [**GLS3**, 2.8.7(b)] that $[C_{St}(S), B] = 0$ and $[C_V(S), L_i] \neq 0$ for all $1 \leq i \leq n$.

Put $\mathbb{K} = End_M(V)$ and let \mathbb{F} be the algebraic closure of \mathbb{K} . By [As, 25.8] V is an absolutely simple $\mathbb{K}M$ -module and so $\overline{V} := \mathbb{F} \otimes_{\mathbb{K}} V$ is a simple $\mathbb{F}M$ -module. By A.62 \mathbb{K} is isomorphic to the subring of $End_{\mathbb{F}_p}(C_V(S))$ generated by the image of B. Since $[C_V(S), B] = 0$ this gives $\mathbb{K} = \mathbb{F}_p$. We will now show that \overline{V} is uniquely determined and so $\overline{V} \cong St$.

 $^{^4\}text{see}$ A.60 for the definition of Γ

⁵Note here that $A_3 = D_3$

Suppose first that n = 1. By [**St**, Theorem 46] a simple $\mathbb{F}M$ -module W is uniquely determined by the action of B on $C_W(S)$ and a parameter $\mu \in \{0, -1\}$. In particular, there are (up to isomorphism) at most two simple $\mathbb{F}M$ -modules W with $[C_W(S), B] = 0$. Hence St is the unique non-central $\mathbb{F}M$ -module with $[C_{St}(S), B] = 0$.

In the general case, put $U_i = C_{\overline{V}}(O_p(P_i))$. By Smith's Lemma A.63 U_i is a simple L_i -module and the n = 1 case applied to $L_i/O_p(P_i)$ shows that U_i is the Steinberg-module for $L_i/O_p(P_i)$ over \mathbb{F} . This uniquely determines the parameters $\mu_i, 1 \leq i \leq n$ in [St, Theorem 46] and so \overline{V} is uniquely determined.

Thus \overline{V} is the Steinberg-module St. In particular, $\dim_{\mathbb{F}_p} V = \dim_{\mathbb{K}} V = \dim_{\mathbb{F}} \overline{V} = |S|$. By [**St**, Theorem 46] the conjugates of $C_{\overline{V}}(S)$ under the opposite Sylow *p*-subgroup S^- span \overline{V} . Let $0 \neq v \in C_V(S)$. Then $\langle v^{S^-} \rangle = V$ and since $|S^-| = |S|$ we conclude that v^{S^-} is an \mathbb{F}_p -basis of Vregularly permuted by S^- . Hence $V \cong \mathbb{F}_p[S]$ as an \mathbb{F}_pS -module.

APPENDIX B

Classical Spaces and Classical Groups

In this appendix \mathbb{K} is a finite field, $p := char\mathbb{K}$, V is a finite dimensional dimensional vector space over \mathbb{K} , $\alpha \in Aut(\mathbb{K})$ with $\alpha^2 = id_{\mathbb{K}}$ and \mathbb{F} is the fixed field of α .

DEFINITION B.1. Let $f: V \times V \to \mathbb{K}$ and $h: V \to \mathbb{F}$ be functions.

- (i) (V, f, h) is a linear space if $\alpha = id_{\mathbb{K}}$, f = 0 and h = 0.
- (ii) (V, f, h) is a symplectic space if $\alpha = id_{\mathbb{K}}$, f is \mathbb{K} -bilinear and for all $v \in V$,

$$h(v) = f(v, v) = 0.$$

(iii) (V, f, h) is a unitary space if $\alpha \neq id_{\mathbb{K}}$, f is \mathbb{K} -linear in the first component and for all $v, w \in V$,

$$f(v,w) = f(w,v)^{\alpha}$$
 and $h(v) = f(v,v)$.

(iv) (V, f, h) is an orthogonal space, if $\alpha = id_{\mathbb{K}}$, f is \mathbb{K} -bilinear, and for all $v, w \in V$ and $k \in \mathbb{K}$

$$h(kv) = k^2 h(v)$$
 and $h(v+w) = h(v) + f(v,w) + h(w)$.

(v) (V, f, h) is a *classical space* (of linear, symplectic, unitary or orthogonal type), if it is a linear, symplectic, unitary or orthogonal space.

Let (V, f, h) be a classical space. Abusing notion we will often just say that V is a classical space.

Assume that V is an orthogonal space. Then f(v, w) = h(v + w) - h(v) - h(w) and so f is symmetric, that is f(v, w) = f(w, v). Also

$$4h(v) = h(2v) = h(v + v) = h(v) + f(v, v) + h(v),$$

and so f(v, v) = 2h(v). In particular, f is a symplectic form if p = 2.

DEFINITION B.2. Let V be a classical space, and $v, w \in V$, and let U and W be K-subspaces of V.

- (a) v and w are *isometric* if h(v) = h(w).¹
- (b) v and w are perpendicular, and we write $v \perp w$, if f(v, w) = 0. We write $U \perp W$ if $u \perp w$ for all $u \in U$, $w \in W$. We write $V = U \oplus W$ if $V = U \oplus W$ and $U \perp W$.
- (c) v is *isotropic* if f(v, v) = 0; and U is isotropic if $f|_{U \times U} = 0$.
- (d) v is singular if h(v) = 0; and U is singular if U is isotropic and all its elements are singular.
- (e) $U^{\perp} = \{ v \in V \mid f(v, u) = 0 \text{ for all } u \in U \}.$
- (f) $rad(U) = \{ u \in U \cap U^{\perp} \mid h(u) = 0 \}.$
- (g) U is non-degenerate if rad(U) = 0.
- (h) $\mathcal{S}(U)$ is the set of 1-dimensional singular subspaces of U.
- (i) The Witt index of V is the maximum of the dimensions of the singular subspaces of V.

DEFINITION B.3. Let (V, f, h) and (V', f', h') be classical spaces over \mathbb{K} and $\phi : V \to V'$ a bijection.

(a) ϕ is an *isometry* if ϕ is K-linear and for all $v, w \in V$,

$$h(v^{\phi}) = h(v)$$
 and $f(v^{\phi}, w^{\phi}) = f(v, w).$

We also will say that h and f are ϕ -invariant if these equations hold.

¹Note that this implies f(v, v) = f(w, w).

(b) ϕ is a *similarity* if ϕ is \mathbb{K} -linear and there exists $k \in \mathbb{F}^{\sharp}$ such that for all $v, w \in V$,

$$h(v^{\phi}) = kh(v)$$
 and $f(v^{\phi}, w^{\phi}) = kf(v, w).$

(c) ϕ is a *semisimilarity* if there exist $\sigma \in Aut(\mathbb{K})$ and $k \in \mathbb{F}^{\sharp}$ such that ϕ is σ -semilinear² and for all $v, w \in V$,

$$h(v^{\phi}) = kh(v)^{\sigma}$$
 and $f(v^{\phi}, w^{\phi}) = kf(v, w)^{\sigma}$.

We denote the group of isometries of V by $Cl_{\mathbb{K}}(V, f, h)$, by $Cl_{\mathbb{K}}(V)$ or by Cl(V). We will also use the notation GL(V), Sp(V), GU(V) and O(V) for Cl(V), if V is a linear, symplectic, unitary and orthogonal space, respectively.

For the remainder of this appendix (V, f, h) is a non-degenerate or linear classical space and H = Cl(V). If V is linear we define R(V) := 0, otherwise $R(V) := V^{\perp}$. So R(V) = 0 unless V is an orthogonal space, p = 2 and $\dim_{\mathbb{K}} V$ is odd.

Note that (by B.18 below) V is uniquely determined, up to similarity, by its type and dimension, except in the case of an orthogonal space of even dimension. We sometimes use the notation $Cl_m(\mathbb{F})$ or $Cl_m(q)$, where $m := \dim_{\mathbb{K}} V$ and $q := |\mathbb{F}|$.

For an orthogonal space V of dimension 2n we write $O^+(V)$ or $O^+_{2n}(\mathbb{K})$ if V has Witt index n, and $O^-(V)$ or $O^-_{2n}(\mathbb{K})$ if V has Witt index n-1.

NOTATION B.4. For $Z \in \mathcal{S}(V)$ define

$$Q_Z := C_H(Z) \cap C_H(Z^{\perp}/Z), \ Cl^{\diamond}(V) := H^{\diamond} := \langle Q_Z \mid Z \in \mathcal{S}(V) \rangle \text{ and } D_Z := C_H(Z^{\perp}) \cap C_H(V/Z).$$

We remark that Q_Z is a weakly closed subgroup of H, so the notation H^{\diamond} is analogue to the \circ -notation 1.44 for weakly closed subgroup.

Note that we have one of the following cases:

$Cl^{\diamond}(V)$	Type of V	V^{\perp}	R(V)	Remark
SL(V)	linear	V	0	
Sp(V)	symplectic	0	0	
SU(V)	unitary	0	0	
1	orthogonal	0	0	$\dim V \leq 2$, $\dim V$ even or p odd
$\Omega(V)$	orthogonal	0	0	dim $V \ge 3$, dim V even or p odd
$O(V) = \Omega(V)$	orthogonal	1-dim	V^{\perp}	$\dim V$ odd and $p=2$

B.1. Elementary Properties

LEMMA B.5 ([MS5, 3.1]). Let U be an isotropic but not singular K-subspace of V. Let U_0 be the set of singular vectors in U. Then V is orthogonal, p = 2, U_0 is a K-subspace of U, and $\dim_{\mathbb{K}} U/U_0 = 1$. In particular, $\dim_{\mathbb{K}} V^{\perp} \leq 1$.

LEMMA B.6 ([MS5, 3.2]). Let U be a \mathbb{K} -subspace of V, and let A be a subgroup of H. Suppose that V is not a linear space.

- (a) V/U^{\perp} and $(U/U \cap V^{\perp})^*$ are isomorphic $\mathbb{F}N_H(U)$ -modules. In particular, if $V^{\perp} = 0$, then V and V^* are isomorphic $\mathbb{F}H$ -modules.
- (b) $C_{V/V^{\perp}}(A) = C_V(A)/V^{\perp}$.
- (c) $C_V(A) = [V, A]^{\perp}$.
- (d) $C_H(V/U) \leq C_H(U^{\perp})$; in particular $C_H(V/U) \leq C_H(U)$ if U is isotropic.
- (e) If A acts quadratically on V/V[⊥], then A acts quadratically on V and [V, A] is an isotropic subspace of V.

This is [MS5, 3.2], except we corrected a misprint in statement (a).

 $^{^2}$ for the definition see A.46

LEMMA B.7 ([MS5, 1.9]). Let L be a finite group and $N \leq L$, and let \mathbb{F} be a finite field of characteristic p and V a finite dimensional $\mathbb{F}L$ -module. Put $\mathbb{K} := End_{\mathbb{F}N}(V)$ and suppose that V is a selfdual simple $\mathbb{F}N$ -module. Then the following hold:

- (a) There exists an N-invariant non-degenerate symmetric, symplectic or unitary \mathbb{K} -form s on V.
- (b) There exists a homomorphism $\rho : L \to Aut_{\mathbb{F}}(\mathbb{K}), h \mapsto \rho_h$, such that L acts ρ -semilinearly on V.
- (c) There exists a map $\lambda : L \to \mathbb{K}^{\sharp}$, $h \mapsto \lambda_h$, such that the map $L \to \mathbb{K}^{\sharp} \rtimes Aut_{\mathbb{F}}(K)$, $h \mapsto (\lambda_h, \rho_h)$, is a homomorphism and

$$s(v^h, w^h) = \lambda_h s(v, w)^{\rho_h}$$

for all $v, w \in V$, $h \in H$.

- (d) Let U be a K-subspace of V and put $U^{\perp} = \{v \in V \mid s(u, v) = 0 \text{ for all } u \in U\}$. Then U^{\perp} is $N_L(U)$ -invariant.
- (e) Let U be a non-zero \mathbb{K} -subspace of V such that $C_L(U)$ acts simply on V/U^{\perp} . Then U is 1-dimensional over \mathbb{K} .
- (f) Put $L_0 = \ker \rho$. Then s is $O^{p'}(L_0)N$ -invariant.

LEMMA B.8. Let H = GL(V), V^* the dual of V and $D, E \leq H$. Then [V, E, D] = 0 if and only if $[V^*, D, E] = 0$.

PROOF. For $\alpha \in End(V)$ let $\alpha^* \in End(V^*)$ be the dual homomorphism. Note that $End(V) \rightarrow End(V^*), \alpha \mapsto \alpha^*$, is an anti-isomorphism of rings. Hence [V, E, D] = 0 iff (e-1)(d-1) = 0 for all $d \in D, e \in E$, iff $(d^*-1)(e^*-1) = 0$ for all $d \in D, e \in E$, iff $[V^*, D, E] = 0$.

LEMMA B.9. (a) Suppose that V is an orthogonal space. Let $v \in V$ and $a \in H$. Then h([v, a]) = -f(v, [v, a]). In particular, [v, a] is singular if and only if $v \perp [v, a]$.

(b) Suppose that V is an orthogonal space. Let a ∈ H such that [V, a] is 1-dimensional, and let 0 ≠ w ∈ [V, a]. Then h(w) ≠ 0, and a is the reflection associated to w, that is,

$$v^{a} = v - h(w)^{-1} f(v, w) w \qquad \text{for all } v \in V.$$

In particular, $C_H(V/[V,a]) = \{1,a\}, |a| = 2$ and [V,a] is not singular.

- (c) Suppose that V is an orthogonal space. Let $X \leq H$ such that [V, X, X] = 0 and [V, X] is 1-dimensional. Then p = 2, |X| = 2, X is generated by a reflection, and [V, X] is isotropic and not singular.
- (d) Let $A \leq H$ and suppose that U is an A-invariant subspace of V with $[U, A] \leq U^{\perp}$. Then [U, A] is singular.
- (e) Let $A \leq H$ and suppose that A acts cubically on V. Then [V, A, A] is singular.

PROOF. (a): We have $h(v^a) = h(v + [v, a]) = h(v) + f(v, [v, a]) + h([v, a])$. Since $h(v^a) = h(v)$, this gives h([v, a]) = -f(v, [v, a]).

(b): Let r be any element of H with [V, r] = [V, a]. Define $\alpha : V \to \mathbb{K}$ by $[v, r] = \alpha(v)w$ for $v \in V$. By B.6(c), $C_V(r) = [V, r]^{\perp} = w^{\perp}$. Thus ker $\alpha = w^{\perp}$ and so there exists $0 \neq k \in \mathbb{K}$ with $\alpha(v) = kf(v, w)$ for all $v \in V$.

(*)
$$[v,r] = kf(v,w)w \quad \text{and} \quad v^r = v + kf(v,w)w$$

for all $v \in V$. Since $w^{\perp} = C_V(r) \neq V$ we can choose $u \in V$ with f(u, w) = 1. Then [u, r] = kf(u, w)w = kw. Thus

$$h([u,r]) = h(kw) = k^2 h(w)$$
 and $f(u,[u,r]) = f(u,kw) = kf(u,w) = k$.

By (a) h([u,r]) = -f(u,[u,r]) and so $k^2h(w) = -k$. Recall that $k \neq 0$. So $h(w) = -k^{-1} \neq 0e$. Together with the second equation in (*) this shows that

(**)
$$v^{r} = v - h(w)^{-1} f(v, w) w \quad \text{for all } v \in V.$$

Obviously, the action of r is uniquely determined by (**), and the right hand side of the equation is independent of r. Since also a satisfies (**) in place of r, we get r = a, and the equation in (b) holds. Moreover, $C_H(V/[V,a]) = \{1,a\}$ and |a| = 2. As $h(w) \neq 0$, [V,a] is not singular. Hence (b) holds.

(c) Let $1 \neq a \in X$. Then $X \subseteq C_H(V/[V,X]) = C_H(V/[V,a])$. Thus by (b), $X \subseteq \{1,a\}$ and [V,X] = [V,a] is not singular. In particular, |X| = 2. Since X acts quadratically on V, B.6(e) shows that [V,X] is isotropic. As [V,X] is not singular, B.5 implies that p = 2.

(d): Since U is A-invariant, $[U, A] \leq U$ and since $[U, A] \leq U^{\perp}$ we conclude that [U, A] is isotropic. Let $u \in U$ and $a \in A$. Then $[u, a] \in [U, A] \leq U^{\perp} \leq u^{\perp}$ and so by (a) [u, a] is singular. Since [U, A] is isotropic, the singular vectors in [U, A] form a subspace of [U, A] (seeB.5). Since [U, A] is generated by the singular vectors $[u, a], u \in U, a \in A$, we conclude that [U, A] is singular.

(e): Since A acts cubically on V, $[V, A, A] \leq C_V(A)$ and so by B.6(c), $[V, A, A] \leq [V, A]^{\perp}$. Thus (e) follows from (d) applied with U = [V, A].

LEMMA B.10. Let V_1 and V_2 be K-subspaces of V with $V = V_1 + V_2$. Let $a \in GL_{\mathbb{K}}(V)$ and define $a_i : V_i \to V_i^a, v \mapsto v^a$. Then a is an isometry on V if and only if a_1 and a_2 are isometries and $f(v_1^a, v_2^a) = f(v_1, v_2)$ for all $v_1 \in V_1$ and $v_2 \in V_2$.

PROOF. The forward direction is obvious. So suppose that a_1 and a_2 are isometries and $f(v_1^a, v_2^a) = f(v_1, v_2)$ for all $v_1 \in V_1$ and $v_2 \in V_2$. Since f is \mathbb{F} -bilinear we conclude that f is a-invariant. Since $h(v_1 + v_2) = h(v_1) + f(v_1, v_2) + h(v_2)$, in the case of an orthogonal space, also h is a-invariant.

LEMMA B.11. Suppose that V is not a linear space. Let $Z \in \mathcal{S}(V)$ and $v \in V \setminus Z^{\perp}$. Let i_v be the number of elements $w \in v + Z$ isometric to v, and for $\lambda \in \mathbb{F}$ let s_{λ} be the number of elements $w \in v + Z$ with $h(w) = \lambda$.

- (a) If V is a symplectic space then $i_v = s_0 = |v + Z| = |\mathbb{K}|$.
- (b) If V is a unitary space then $i_v = s_\lambda = |\mathbb{F}|$ for all $\lambda \in \mathbb{F}$.
- (c) If V is an orthogonal space then $i_v = s_\lambda = 1$ for all $\lambda \in \mathbb{K}$.

PROOF. Choose $z \in Z$ with f(z, v) = -1 and let $k \in \mathbb{K}$.

(a): In a symplectic space all elements are singular. Hence (a) holds.

(b): Suppose that f is unitary, so h(x) = f(x, x) for $x \in V$. Then

 $h(v + kz) = f(v + kz, v + kz) = f(v, v) + kf(z, v) + k^{\alpha}f(z, v) + kk^{\alpha}f(z, z) = h(v) - (k + k^{\alpha}).$

Thus $h(v + kz) = \lambda$ if and only if $k + k^a = h(v) - \lambda$. Since the function $\mathbb{K} \to \mathbb{F}$, $k \mapsto k + k^{\alpha}$, is \mathbb{F} -linear and surjective, we conclude that for a given $\lambda \in \mathbb{F}$ there are exactly $|\mathbb{F}|$ elements $k \in \mathbb{K}$ with $k + k^{\alpha} = h(v) - \lambda$. So (b) holds.

(c): Suppose H = O(V). Then

$$h(v + kz) = h(v) + f(v, kz) + k^{2}h(z) = h(v) - k.$$

Hence $h(v + kz) = \lambda$ if and only if $k = h(v) - \lambda$. This gives (c).

COROLLARY B.12. Suppose that $\mathcal{S}(V) \neq \emptyset$ and that V is not a 2-dimensional orthogonal space.

- (a) The number of singular 1-spaces in V is congruent to 1 modulo p.
- (b) Then number of non-zero singular vectors in V is congruent to $|\mathbb{K}^{\sharp}|$ modulo p.
- (c) Any p-group of semilinear similarities of V fixes a singular vector and a singular 1-space in V.

PROOF. (a): Let $Z \in \mathcal{S}(V)$. Put $m := \dim_{\mathbb{K}} V$. If V is a linear, symplectic or unitary space put $t = |\mathbb{F}|$. If V is an orthogonal space put t = 1. Let E be a 2-dimensional subspace of V with $Z \leq E$ Suppose that $E \leq Z^{\perp}$. Note that one of the following holds:

-E is singular, $E/Z \in \mathcal{S}(Z^{\perp}/Z)$, and all $|\mathbb{K}|$ 1-spaces of E distinct from Z are in $\mathcal{S}(V)$.

- E is not singular, $E/Z \notin S(Z^{\perp}/Z)$, and Z is the only singular 1-space of E.

It follows that

$$|S(Z^{\perp}) \setminus \{Z\}| = |\mathbb{K}||\mathcal{S}(Z^{\perp}/Z)|.$$

Suppose next that $E \leq Z^{\perp}$. Then B.11 shows that E contains exactly t elements of $\mathcal{S}(V)$ distinct from Z. Note also that there are $|\mathbb{K}|^{m-2}$ 2-dimensional subspaces E of V with $Z \leq E \leq Z^{\perp}$. Thus

$$|\mathcal{S}(V) \setminus \mathcal{S}(Z^{\perp})| = |\mathbb{K}|^{m-2}t$$

Hence

$$|\mathcal{S}(V)| = 1 + |\mathbb{K}||\mathcal{S}(Z^{\perp}/Z)| + |\mathbb{K}|^{m-2}t.$$

Since $p \mid |\mathbb{K}|$, we conclude that either $|\mathcal{S}(V)| \equiv 1 \pmod{p}$ or m = 2 and $p \nmid t$. In the latter case, since $p \mid |\mathbb{F}|$ we get t = 1 and V is an orthogonal space. Since 2-dimensional orthogonal spaces are excluded by the hypothesis of the corollary, (a) is proved.

(b): Note that every singular 1-space contains exactly $|\mathbb{K}^{\sharp}|$ non-zero singular vectors. So (b) follows from (a).

(c): By (a) and (b), neither the number of singular 1-spaces nor the number of non-zero singular vectors in V is divisible by p. This gives (c).

LEMMA B.13. Let U be a K-subspace of V and put $W = \langle S(U) \rangle$. Then W = U or W = rad(U). In particular, $V = \langle S(V) \rangle$ or $S(V) = \emptyset$.

PROOF. Let Y be a 1-dimensional subspace of U. If $Y \notin W^{\perp}$, then there exists $Z \in \mathcal{S}(V)$ with $Y \notin Z^{\perp}$. By B.11 Z + Y contains a singular 1-space $X \neq Z$. Thus $Y \notin Z + Y = Z + X \notin W$.

We have proved that $U \subseteq W \cup W^{\perp}$, and so $U \leq W^{\perp}$ or $U \leq W$. In the second case U = W and we are done. So suppose $U \leq W^{\perp}$. Then $W \leq U \cap U^{\perp}$, W is singular and $W \leq rad(U)$. Clearly $rad(U) \leq W$ and so W = rad(U).

Either V is linear or rad(V) = 0. In the first case $\langle S(V) \rangle = V$ is obvious, in the second case either $\langle S(V) \rangle = V$ or $\langle S(V) \rangle = rad(V) = 0$ and $S(V) = \emptyset$.

LEMMA B.14. Suppose that V is a symplectic space and p = 2. Let $V' := V \times \mathbb{K}$ as a set. Define an addition and scalar multiplication on V' by

(v,k) + (w,l) := (v+w,k+l+f(v,w)) and $l(v,k) := (lv,l^2k)$

for all $v, w \in V, k, l \in \mathbb{K}$. Define

$$h': V' \to \mathbb{K}, (v,k) \mapsto k, \text{ and } f': V' \times V' \to \mathbb{K}, ((v,k),(w,l)) \mapsto f(v,w).$$

- (a) (V', f', h') is a non-degenerate orthogonal space with $V'^{\perp} = \{(0, k) \mid k \in \mathbb{K}\}.$
- (b) The function $V \to V'/V'^{\perp}, v \mapsto (v, 0) + V'^{\perp}$ an isometry of symplectic spaces.
- (c) Let $a \in Sp(V)$ and define

$$a': V' \rightarrow V', (v,k) \mapsto (v^a,k).$$

Then $a' \in O(V')$.

(d) The function

$$Sp(V) \rightarrow O(V'), \quad a \mapsto a',$$

is an isomorphism.

(e) Suppose in addition that $V = V_1/V_1^{\perp}$ where (V_1, f_1, h_1) is a non-degenerate orthogonal space with $V_1^{\perp} \neq 0$. Then the function

$$V_1 \to V', w \to \left(w + V_1^{\perp}, h_1(w)\right)$$

is an isometry.

PROOF. (a): Let $u, v, w \in V$ and $j, k, l \in \mathbb{K}$. The addition is clearly commutative, (0, 0) is an additive identity and (v, k) is its own inverse. Also

$$(u,j) + ((v,k) + (w,l)) = (u+v+w, j+k+l+f(u,v) + f(u,w) + f(v,w)) = ((u,j) + (v,k)) + (w,l)$$

and so V' is an abelian group. Note that

$$j((v,k) + (w,l)) = (jv + jw, j^2k + j^2l + j^2f(v,w)) = j(v,k) + j(w,l),$$

 $(j+k)(w,l) = (jw+kw, j^2l+k^2l) = j(w,l) + k(w,l) \text{ and } (jk)(w,l) = (jkw, j^2k^2l) = j(k(w,l)).$

Thus V' is a vector space over \mathbb{K} . Since f is a symmetric form, so is f'. Moreover,

$$h'(k(w,l)) = h'(kw,k^2l) = k^2l = k^2h'(w,l)$$

and

$$h'((v,k) + (w,l)) = h'(v+w,k+l+f(v,w)) = k+l+f(v,w) = h'(v,k) + f'(v,w) + h'(w,l))$$

and so (V', f', h') is an orthogonal space. Note that $(v, k) \in V'^{\perp}$ if and only if $v \in V^{\perp} = 0$. Also h'(v, k) = 0 if and only if k = 0. Thus rad(V') = 0 and V' is non-degenerate.

(b) and (c) should be obvious.

(d): Let $b \in O(V)$. Then b induces an isometry on the symplectic space V'/V'^{\perp} . Together with (b) we conclude that there exists a unique $a \in Sp(V)$ such that $(v, k)^b + V'^{\perp} = (v^a, 0) + V'^{\perp}$ for all $v \in V, k \in \mathbb{K}$. Since b is an isometry, $h'((v, k)^b) = h'(v, k) = k$ and we conclude that $(v, k)^b = (v^a, k)$. Thus b = a' and (d) holds.

(e) is readily verified.

LEMMA B.15 (Witt's Lemma). Let U and W be K-subspaces of V suppose that $\beta : U \to W$ is an isometry with $(U \cap R(V))^{\beta} = W \cap R(V)$. Then β extends to an isometry of V.

PROOF. If V is a linear space, this is obvious. So suppose V is a symplectic, orthogonal or unitary space. If $V^{\perp} = 0$, this is Witt's Lemma on page 81 of [As, 20].

It remains to treat the case where V is an orthogonal space with $V^{\perp} \neq 0$. Then $R(V) = V^{\perp}$. Since $(U \cap R(V))^{\beta} = W \cap R(V)$ we conclude that β induces an isometry of symplectic spaces

$$b: U + V^{\perp}/V^{\perp} \to W + V^{\perp}/V^{\perp}.$$

According to the already treated symplectic case, b extends to an isometry a of the symplectic space V/V^{\perp} . By B.14(c), there exists an isometry a' of V with $v^{a'} + V^{\perp} = (v + V^{\perp})^a$ for all $v \in V$. Let $u \in U$. Then $u^{\beta} + V^{\perp} = u^{a'} + V^{\perp}$ and since both β and a' are isometries, $h(u^{\beta}) = h(u^{a'})$. It follows that $u^{\beta} = u^{a'}$, and so the lemma also holds for an orthogonal space with $V^{\perp} \neq 0$.

LEMMA B.16. Let v and w be isometric elements in $V \setminus R(V)$. Then there exists $a \in H$ with $w^a = v$. In particular, H acts transitively on the set of non-zero singular vectors.

PROOF. Since v and w are isometric, the function $\beta : \mathbb{K}v \to \mathbb{K}w$, $kv \mapsto kw$ is an isometry. Also $\mathbb{K}v \cap R(V) = 0 = \mathbb{K}w \cap R(V)$, and so by Witt's Lemma β extends to an isometry a of V. Then $v^a = v^\beta = w$.

B.2. The Classification of Classical Spaces

DEFINITION B.17. Let $(v_i)_{i=1}^n$ be a family of vectors in V.

- (a) $(v_i)_{i=1}^n$ is orthogonal if $f(v_i, v_j) = 0$ for all $1 \le i, j \le n$ with $i \ne j$.
- (b) $(v_i)_{i=1}^n$ is orthonormal if it is orthogonal and $h(v_i) = 1$ for all $1 \le i \le n$.
- (c) $(v_i)_{i=1}^n$ is hyperbolic if n = 2l is even, $h(v_i) = 0$ for all $1 \le i \le n$, and $f(v_i, v_{n+1-i}) = 1$ for all $1 \le i \le l$, and $f(v_i, v_j) = 0$ for all $1 \le i, j \le n$ with $i + j \ne n + 1$.
- (d) V is hyperbolic if V has a hyperbolic basis.
- (e) V is *definite*, if V has no non-zero singular vectors.

LEMMA B.18. Let dim $V =: m =: 2n + \epsilon, \epsilon \in \{0, 1\}.$

- (a) Suppose V is a symplectic space.
 - (a) V has a hyperbolic basis. In particular, m is even.
 - (b) V has Witt index n.
 - (c) Up to isometry, V is uniquely determined by m.
- (b) Suppose V is a unitary space.
 - (a) V has an orthonormal basis.
 - (b) V has a basis $(v_i)_{i=1}^m$ such that $(v_i)_{i=1}^{2n}$ is hyperbolic, and if m is odd, $f(v_i, v_m) = 0$ for all $1 \le i \le 2n$ and $h(v_m) = 1$.
 - (c) V has Witt index n.
 - (d) Up to isometry, V is uniquely determined by m.
- (c) Suppose V is an orthogonal space and p is odd. Then V has an orthogonal basis $(v_i)_{i=1}^m$ such that $h(v_i) = 1$ for $1 \le i \le m-1$.
- (d) Suppose V is an orthogonal space and m is odd.
 - (a) V has a basis $(u_i)_{i=1}^m$ such that $(u_i)_{i=1}^{2n}$ is hyperbolic, $f(u_i, u_m) = 0$ for all $1 \le i \le m-1$, and $h(u_m) \ne 0$.
 - (b) V has Witt index n.
 - (c) Up to similarity, V is uniquely determined by m.
 - (d) If p = 2 then V is uniquely determined up to isometry by m.
 - (e) If p is odd then V is uniquely determined up to isometry by m and the coset $h(u_m)\mathbb{K}^{\sharp^2}$.
- (e) Suppose V is an orthogonal space and m is even.
 - (a) Either V has Witt index n and a hyperbolic basis, or V has Witt index n-1 and a basis $(v_i)_{i=1}^m$ such that $(v_i)_{i=3}^m$ is hyperbolic, $f(v_i, v_j) = 0$ for $1 \le i \le 2$ and $3 \le j \le m$, $h(v_1) = h(v_2) = 1$ and the polynomial $x^2 f(v_1, v_2)x + 1$ has no roots in \mathbb{K} .
 - (b) Up to isometry, V is uniquely determined by m and its Witt index.

PROOF. Suppose that V is a symplectic, unitary or orthogonal space. Let U be a singular subspace of V, so $U \leq U^{\perp}$. Then $U \cap V^{\perp} = 0$ and so $\dim_{\mathbb{K}} V/U^{\perp} = \dim_{\mathbb{K}} U$. In particular, $2 \dim_{\mathbb{K}} U \leq \dim_{\mathbb{K}} V$ and thus V has Witt index at most n.

(a): By [**Hu**, II.9.6(b)] V has a hyperbolic basis, dim V is even and, up to isometry, V is uniquely determined by its dimension. Let $(v_i)_{i=1}^{2n}$ be a hyperbolic basis. Then $\mathbb{K}\langle v_1, \ldots, v_n \rangle$ is a singular subspace of dimension n. Thus V has Witt index at least n, and (a) holds.

(b): By [**Hu**, II.10.4a] V has an orthonormal basis $(v_i)_{i=1}^m$ and up to isometry is uniquely determined by its dimension. Put $W = \mathbb{K}\langle v_1, \ldots, v_{2d} \rangle$. Then by [**Hu**, I0.4b] W has a hyperbolic basis $(u_i)_{i=1}^{2n}$. Then W^{\perp} is 1-dimensional with orthonormal basis say u_m . Also $\mathbb{K}\langle u_1, \ldots, u_n \rangle$ is a singular subspace of dimension n, and so (b) holds.

(c): [**Hu**, II.10.9b].

(d): Suppose first that p is odd. Then by $[\mathbf{As}, 21.3]$ V has a hyperbolic hyperplane W. Note that W has Witt index n and so also V has Witt index n. As in $[\mathbf{As}]$ choose $0 \neq x \in W^{\perp}$ and a generator c of \mathbb{K}^{\sharp} , and define sgn(V) = +1 if h(x) is a square in \mathbb{K} and sgn(V) = -1 if not. By $[\mathbf{As}, 21.4]$, up to isometry, there are exactly two m-dimensional orthogonal spaces, namely (V, f, h) and (V, cf, ch). Moreover, (V, f, h) and (V, cf, ch) are similar, and one has sgn equal to +1 and the other equal to -1. So (d) holds if p is odd.

If p = 2 then $V^{\perp} \neq 0$ and by (a), the symplectic space V/V^{\perp} has a hyperbolic basis $(v_i + V^{\perp})_{i=1}^{2n}$. Since $h(V^{\perp}) = \mathbb{K}$, $v_i + V^{\perp}$ contains a singular vector and we may choose v_i to be singular. Then $\mathbb{K}\langle (v_i)_{i=1}^n \rangle$ is an *n*-dimensional singular subspace of V and so V has Witt index n. Since $\mathbb{K}^2 = \mathbb{K}$ we can choose $v_m \in V^{\perp}$ with $h(v_m) = 1$. In particular, up to isometry, V is uniquely determined by its dimension, and so (d) also holds if p = 2.

(e): By [As, 21.6] V is isometric to D^n or $D^{n-1}Q$, where D and Q are 2-dimensional orthogonal spaces with D hyperbolic and Q definite. Moreover, D^n has Witt index n, while $D^{n-1}Q$ has Witt index n-1. Let \mathbb{E} be an extension field of \mathbb{K} with $\dim_{\mathbb{K}} \mathbb{E} = 2$ and let $id_{\mathbb{K}} \neq \sigma \in Aut_{\mathbb{K}}(\mathbb{E})$. Define

$$T_{\sigma}: \mathbb{E} \times \mathbb{E} \to \mathbb{K}, (a, b) \mapsto a^{\sigma}b + b^{\sigma}a, \quad \text{and} \quad N_{\sigma}: \mathbb{E} \to \mathbb{K}, a \mapsto a^{\sigma}a.$$

Then by $[\mathbf{As}, 21.9]$ $(\mathbb{E}, T_{\sigma}, N_{\sigma})$ is a definite orthogonal space and isometric to Q. Let λ be any element of \mathbb{K} such that $x^2 - \lambda x + 1$ has no root in \mathbb{K} . Then $x^2 - \lambda x + 1$ has a root $\xi \in \mathbb{E}$. It follows that $\xi + \xi^{\sigma} = \lambda$ and $\xi^{\sigma} \xi = 1$. Since $\xi \notin \mathbb{K}$, $(1, \xi)$ is \mathbb{K} -basis for \mathbb{E} and

$$N_{\sigma}(1) = 1^{\sigma}1 = 1, \qquad T_{\sigma}(1,\xi) = 1^{\sigma}\xi + \xi^{\sigma}1 = \lambda, \qquad N_{\sigma}(\xi) = \xi^{\sigma}\xi = 1.$$

Thus (e) holds.

LEMMA B.19. Suppose that $f \neq 0$ and let d be the Witt index of V.

- (a) *H* acts transitively on the maximal singular subspace of *V*. In particular, all maximal singular subspace of *V* have dimension *d*.
- (b) Let W be a maximal hyperbolic subspace of V. Then $V = W \oplus W^{\perp}$ and W^{\perp} is definite.
- (c) If V is definite, then $\dim_{\mathbb{K}} V \leq 1$ or $H = O^{-}(V)$ and $\dim_{\mathbb{K}} V = 2$.

PROOF. (a): See [As, 20.8].

(b): See [**As**, 19.5].

(c) follows from B.18.

B.3. The Clifford Algebra

In this section (V, f, h) is an orthogonal space. We will define a normal subgroup $\Omega(V)$ of O(V) via the Spinor norm and Dickson invariant. In our definition the Spinor norm S is defined for all $a \in O(V)$ and not only for products of reflections. This allows to define $\Omega(V)$ also in the case of a four dimensional orthogonal space of Witt index two over \mathbb{F}_2 .

We remark that $\Omega(V)$ is often defined to be O(V)'. With our definition $\Omega(V) = O(V)'$ with two exceptions: $\Omega_4^+(2) \cong SL_2(2) \times SL_2(2)$, while $O_4^+(2)' \sim 3^2 \cdot 2$ and $\Omega_5(2) = O_5(2) \cong Sym(6)$, while $O_5(2)' \cong Alt(6)$.

We will also prove that $C_{\Omega(V)}(W^{\perp}) \cong \Omega(W)$ if $V^{\perp} = 0$ and W is a K-subspace of V with $W \cap W^{\perp} = 0$. This of course is well-known, but the case, where W is a four dimensional orthogonal space of Witt index two over \mathbb{F}_2 , is often ignored.

As a byproduct we obtain that the elements of $Q_Z, Z \in \mathcal{S}(V)$, naturally correspond to elements of the Clifford algebra of V, see the elements ω_{1+bc} below.

Let C := C(V, f, h) be the *Clifford algebra* of the orthogonal space (V, f, h). So C is an associative \mathbb{K} -algebra with identity generated by the \mathbb{K} -space V subject to the relations $v^2 = h(v)$ for $v \in V$. Let $v, w \in V$. Then

$$h(v) + f(v, w) + h(w) = h(v + w) = (v + w)^{2} = v^{2} + vw + wv + w^{2} = h(v) + vw + wv + h(w),$$

and so

$$vw + wv = f(v, w) \in \mathbb{K}$$
 and $vw = -wv + f(v, w)$

Note that the opposite algebra fulfills the same relations and so there exists a unique antiautomorphism of \mathbb{K} -algebras

$$\theta: \quad C \to C \quad \text{with} \quad v^{\theta} = v \quad \text{for } v \in V.$$

Then for $x, y \in V$, $h(x) = x^2 = x^{\theta}x$ and $f(x, y) = xy + yx = x^{\theta}y + yx^{\theta}$. We extend h and f as follows:

$$h: C \to C, x \mapsto x^{\theta}x$$
 and $f: C \times C \to C, (x,y) \mapsto x^{\theta}y + y^{\theta}x$

Note that f is \mathbb{K} -bilinear and for all $x, y \in C$:

$$h(x+y) = (x+y)^{\theta}(x+y) = (x^{\theta}+y^{\theta})(x+y) = x^{\theta}x + x^{\theta}y + y^{\theta}x + y^{\theta}y = h(x) + f(x,y) + h(y).$$

Put $E := \{1, -1\} \subseteq \mathbb{Z}$ (so $|E| = 2$ even if $p = 2$). For $i \in E$ define

$$C_i := C_i(V, f, h) := \mathbb{K}\langle v_1 \cdots v_n \mid n \in \mathbb{N}, v_1, \dots, v_n \in V, (-1)^n = i \rangle,$$

where $v_1 \cdots v_n = 1$ if n = 0.

Then (C_1, C_{-1}) is an *E*-grading of *C*, that is $C = C_1 \oplus C_{-1}$ and $C_i C_j \subseteq C_{ij}$ for all $i, j \in E$. Define

$$Cliff(V) := \{ x \in C_1 \cup C_{-1} \mid 0 \neq h(x) \in \mathbb{K}, xV = Vx \}.$$

Let $x \in Cliff(V)$ and $y \in C$. Then $0 \neq x^{\theta}x = h(x) \in \mathbb{K}$ and so x is invertible with inverse $h(x)^{-1}x^{\theta}$. We compute

$$h(xy) = (xy)^{\theta} xy = y^{\theta} x^{\theta} xy = y^{\theta} h(x)y = h(x)y^{\theta} y = h(x)h(y).$$

For $y = x^{-1}$ this shows that $h(x^{-1}) = h(x)^{-1} \in \mathbb{K}^{\sharp}$. For $y \in Cliff(V)$ we get $0 \neq h(xy) \in \mathbb{K}$. It follows that Cliff(V) is a multiplicative subgroup of C and the restriction of h to Cliff(V) is a multiplicative homomorphism from Cliff(V) to \mathbb{K}^{\sharp} .

For $x \in Cliff(V)$ and $y \in C$ define $y^x := x^{-1}yx$. Then, since $h(x) \in \mathbb{K} \subseteq Z(C)$,

$$h(y^{x}) = h(x^{-1}yx) = h(x^{-1})(h(y)h(x)) = h(x)^{-1}h(y)h(x) = h(y).$$

So h and thus also f is invariant under conjugation by $x \in Cliff(V)$.

Let d(x) be the unique element of E with $x \in C_{d(x)}$. Then

$$d: \quad Cliff(V) \to E, \quad x \mapsto d(x),$$

is a group homomorphism.

Since x is invertible the condition xV = Vx is equivalent to $V^x = V$ (where $V^x := x^{-1}Vx$). Define

$$\omega_x: V \to V, v \mapsto d(x)v^x.$$

Since $d(x) = \pm 1$, h and f are invariant under multiplication by d(x), and, as seen above, also under conjugation by x. Hence $\omega_x \in O(V)$ and

$$\omega: \quad Cliff(V) \to O(V), \quad x \mapsto \omega_x,$$

is a homomorphism.

Let $a \in V$ with $h(a) \neq 0$, so a is invertible with inverse $h(a)^{-1}a$. Let $v \in V$. Observe that d(a) = -1, va = -av + f(v, a) and $a^{-1} = h(a)^{-1}a$. Thus

$$d(a)a^{-1}va = -(a^{-1}(-av + f(v, a))) = v - f(v, a)a^{-1} = v - h(a)^{-1}f(v, a)a^{-1}$$

In particular, $a \in Cliff(V)$, and ω_a is the reflection associated to a.

Next let $b, c \in V$ such that b is singular and $c \perp b$. Note that $b^2 = h(b) = 0$ and bc = -cb + f(b, c) = -cb. Hence

(*)
$$bcb = -bbc = h(b)c = 0$$
, and $(bc)^2 = bcbc = 0$

Put x := 1 + bc. Then $x^{\theta} = 1 + cb = 1 - bc$ and

$$h(x) = h(1 + bc) = \theta(1 + bc)(1 + bc) = (1 - bc)(1 + bc) = 1 - bc + bc - (bc)^{2} = 1.$$

In particular, x = 1 + bc is invertible with inverse 1 - bc. Recall that $1 \in C_1$ and so also $x \in C_1$ and d(x) = 1. Thus ω_x is conjugation by x.

We compute:

$$(**) \ vbc = (-bv + f(v, b))c = -bvc + f(v, b)c = -b(-cv + f(v, c)) + f(v, b)c = bcv - f(v, c)b + f(v, b)c = bcv$$

and

$$\begin{aligned} x^{-1}vx &= (1-bc)v(1+bc) = (1-bc)(v+vbc) = (1-bc)v + (1-bc)vbc \\ &\stackrel{(**)}{=} v - bcv + (1-bc)(bcv - f(v,c)b + f(v,b)c) \\ &= v - bcv + bcv - f(v,c)b + f(v,b)c - bcbcv + f(v,c)bcb - f(v,b)bcc \\ &\stackrel{(*)}{=} v - f(v,c)b + f(v,b)c - f(v,b)bh(c) \\ &= v - f(v,c)b + f(v,b)(c - h(c)b). \end{aligned}$$

In particular, $x^{-1}Vx = V$. Hence $x = 1 + bc \in Cliff(V)$ and

$$\omega_{1+bc}: \quad V \to V, \quad v \mapsto v - f(v,c)b + f(v,b)(c-h(c)b)$$

is an isometry of V.

We claim that

(I)

$$O(V) = \langle \omega_a, \omega_{1+bc} \mid a, b, c \in V, h(a) \neq 0, h(b) = 0, f(b, c) = 0 \rangle.$$

Indeed, by [As, 22.7] O(V) is generated by the reflections ω_a , unless $O(V) = O_4^+(2)$. In the latter case the group generated by reflections has index two and does not contain ω_{1+bc} for $b, c \in V^{\sharp}$ with h(b) = h(c) = 0, f(b, c) = 0 and $b \neq c$. So (I) holds.

In particular, ω defined above is surjective. Put $Z := \ker \omega$. So $Cliff(V)/Z \cong O(V)$, and h and d induce well-defined homomorphisms

$$S: O(V) \to \mathbb{K}^{\sharp}/h(Z), \ \omega_x \mapsto h(x)h(Z)$$
 and $D: O(V) \to E/d(Z), \ \omega_x \mapsto d(x)d(Z),$

where x runs through the elements of Cliff(V). S(x) is called the Spinor norm of x, and D(x) is called the *Dickson invariant* of x. We define

$$\Omega(V) := \ker S \cap \ker D = \{z \in O(V) \mid S(x) = 1 \text{ and } D(x) = 1\}.$$

Since h(1+bc) = 1 and d(1+bc) = 1 we have $S(\omega_{1+bc}) = 1$ and $D(\omega_{1+bc}) = 1$. So

$$O^{\diamond}(V) := \langle \omega_{1+bc} \mid b, c \in V, h(b) = 0, f(b,c) = 0 \rangle \leq \Omega(V).$$

We will determine now $O(V)/\Omega(V)$. By (I), $O(V) = O^{\diamond}(V)\langle \omega_a \mid a \in V, h(a) \neq 0 \rangle$, and since $O^{\diamond}(V) \leq \Omega(V)$, we conclude that

$$O(V)/\Omega(V) \cong \langle (S(\omega_a), D(\omega_a)) | a \in V, h(a) \neq 0 \rangle$$

Put $m := \dim \mathbb{K}$ and note that

$$Z(C) = \begin{cases} \mathbb{K} & \text{if } m \text{ is even,} \\ \mathbb{K} + \mathbb{K}(v_1 \cdots v_m) & \text{if } m \text{ is odd, } p \text{ is odd and } (v_i)_{i=1}^m \text{ is an orthogonal basis for } V, \\ \mathbb{K} + V^{\perp} & \text{if } m \text{ is odd and } p = 2. \end{cases}$$

In particular, $Z(C) \cap C_1 = \mathbb{K}$. We claim that

(II)
$$Z = \mathbb{K}^{\sharp} \cup V^{\perp \sharp}.$$

Let $x \in Cliff(V)$. Then $x \in Z$ if and only $v^x = d(x)v$ for all $v \in V$. If p = 2 this just means $x \in Z(C)$, and so $x \in C_1 \cap Z(C) = \mathbb{K}^{\sharp}$ or $x \in C_{-1} \cap Z(C) = V^{\perp \sharp}$, where *m* is odd in the latter case. So (II) holds for p = 2.

So suppose p is odd. Assume $x \in C_{-1}$. Then d(x) = -1 and so $v^x = -v$ for all $v \in V$. It follows that $w^x = -w$ for all $w \in C_{-1}$ and so also $x^x = -x$, a contradiction since $x^x = x$, p is odd and $x \neq 0$. Hence $x \in C_1$, d(x) = 1 and $x \in Z(C) \cap C_1 = \mathbb{K}$. So $x \in \mathbb{K}^{\sharp}$. Since p is odd, $V^{\perp} = 0$, and so (II) also holds for odd p.

If $V^{\perp} \neq 0$, then p = 2, $\mathbb{K}^{\sharp 2} = \mathbb{K}^{\sharp}$, and so $h(Z) = \mathbb{K}^{\sharp}$ and d(Z) = E. It follows that $O(V) = \ker D = \ker S = \Omega(V)$ in this case.

So suppose $V^{\perp} = 0$. Then (II) shows that $h(Z) = \mathbb{K}^{\sharp 2}$ and d(Z) = 1. Hence S and D are given by

$$S: O(V) \to \mathbb{K}^{\sharp}/\mathbb{K}^{\sharp 2}, \ \omega_x \mapsto h(x)\mathbb{K}^{\sharp 2}, \quad \text{and} \quad D: O(V) \to E, \ \omega_x \mapsto d(x).$$

Hence $S(\omega_a) = 1$ if and only if a is a square in \mathbb{K}^2 . Moreover, $D(\omega_a) = -1$.

Suppose that p = 2. Then $\mathbb{K}^{\sharp} = \mathbb{K}^{\sharp 2}$, and so $S(\omega_a) = 1$ for all $a \in V$ with $h(a) \neq 0$. Thus $\ker S = O(V), \Omega(V) = \ker D$ and $O(V)/\Omega(V) \cong C_2$.

Suppose now that p is odd and dim $V \ge 2$. Then $\mathbb{K}^{\sharp}/\mathbb{K}^{\sharp^2} \cong C_2$, and for each $k \in \mathbb{K}^{\sharp}$ there exists $a \in V$ with h(a) = k. If k is a square $S(\omega_a) = 1$ and $D(\omega_a) = -1$, and if k is not a square, $S(\omega_a) \neq 1$ and $D(\omega_a) = -1$. Thus $O(V)/\Omega(V) \cong C_2 \times C_2$.

Suppose that p is odd and dim V = 1. Then (for example by B.9(b)) $O(V) = \{1, \omega_a\}$, where $a \in V^{\sharp}$. Thus $\Omega(V) = 1$ and $O(V)/\Omega(V) \cong C_2$.

Suppose p is odd. Then we can identify $e \in E$ with $e1_{\mathbb{K}}$ in \mathbb{K} . It follows that $D(\omega_a) = -1 = \det(\omega_a)$ and $D(\omega_{1+bc}) = 1 = \det(\omega_{1+bc})$. By (I) the elements ω_a and ω_{1+bc} generate O(V). Thus $D(z) = \det(z)$ for all $z \in O(V)$. In particular, $\Omega(V) = \{z \in SO(V) \mid S(z) = 1\}$.

The following table summarize the preceding results:

$\dim V$	p	$O(V)/\Omega(V)$	$\Omega(V)$
odd	2	1	O(V)
even	2	C_2	$\{z \in O(V) \mid D(z) = 1\}$
≥ 2	odd	$C_2 \times C_2$	$\{z \in SO(V) \mid S(z) = 1\}$
1	odd	C_2	1

We define

$$Spin(V) := \langle 1 + bc \mid b, c \in V, h(b) = 0, f(b, c) = 0 \rangle \leq Cliff(V) \cap C_1$$

Note that $\omega(Spin(V)) = \Omega(V)$ if $\dim_{\mathbb{K}} V \ge 3$.

LEMMA B.20. Suppose that V is an orthogonal space with $V^{\perp} = 0$ and let W be a K-space of V with $W \cap W^{\perp} = 0$.

- (a) The restriction function $\tau : C_{O(V)}(W^{\perp}) \to O(W), t \mapsto t|_W$, is an isomorphism.
- (b) Let S^W and D^W be the Spinor norm and Dickson invariant for the orthogonal space W. Then $S(t) = S^W(t|_W)$ and $D(t) = D^W(t|_W)$ for all $t \in C_{O(V)}(W^{\perp})$.
- (c) τ induces an isomorphism from $C_{\Omega(V)}(W^{\perp})$ to $\Omega(W)$.

PROOF. (a): Since $V^{\perp} = 0$ and $W \cap W^{\perp} = 0$, $V = W \oplus W^{\perp}$. Hence (a) follows from B.10.

(b): Let $t \in C_{O(V)}(W^{\perp})$. Then $t|_W$ is a product of elements of the form ω_a^W , ω_{1+bc}^W , $a, b, c \in W$, $h(a) \neq 0$, h(b) = 0, f(b, c) = 0. Since $W^{\perp} \subseteq a^{\perp} \cap b^{\perp} \cap c^{\perp}$, ω_a and ω_{1+bc} centralize W^{\perp} , we get

$$\omega_a|_W = \omega_a^W$$
 and $\omega_{1+bc}|_W = \omega_{1+bc}^W$.

Thus t is the corresponding product of the elements of the form ω_a, ω_{1+bc} . Also

$$S(\omega_a) = h(a) \mathbb{K}^{\sharp 2} = S^W(\omega_{1+bc}^W), \qquad D(\omega_a) = -1 = D^W(\omega_a^W),$$

$$S(\omega_{1+bc}) = 1 = S^W(\omega_{1+bc}^W), \qquad D(\omega_{1+bc}) = 1 = D^W(\omega_{1+bc}^W)$$

So indeed $S(t) = S^W(t|_W)$ and $D(t) = D^W(t|_W)$.

(c): Let $t \in C_{O(V)}(W^{\perp})$. Then $t \in \Omega(V)$ if and only if S(t) = D(t) = 1 and so by (b) if and only if $S^W(t|_W) = D^W(t|_W) = 1$ and thus if and only if $t|_W \in \Omega(W)$. Hence (c) follows from (a).

B.4. Normalizers of Singular Subspaces

LEMMA B.21. Let U be an k-dimensional isotropic subspace of V and $E := C_H(U) \cap C_H(V/U)$.

- (a) Suppose V is not a linear space. Then $E = C_H(V/U)$.
- (b) Suppose $V^{\perp} = 0$. Then $E = C_H(V/U) = C_H(U^{\perp})$.
- (c) Suppose that V is a linear space. Then $E \cong U \otimes_{\mathbb{K}} (V/U)^*$, $|E| = |\mathbb{K}|^{k(n-k)}$ and $|V/C_V(E)| = |\mathbb{K}|^{n-k}$.
- (d) Suppose that V is a symplectic space. Then $E \cong S^2(U)$, $|E| = |\mathbb{K}|^{\frac{k(k+1)}{2}}$ and $|V/C_V(E)| = |\mathbb{K}|^k$.
- (e) Suppose that V is a unitary space. Then $E \cong U^2(U)$, $|E| = |\mathbb{F}|^{k^2}$ and $|V/C_V(E)| = |\mathbb{F}|^{2k}$.

- (f) Suppose that V is an orthogonal space and U is singular. Then $E \cong \Lambda^2(U), |E| = |\mathbb{K}|^{\frac{k(k-1)}{2}}$, $|V/C_V(E)| = |\mathbb{K}|^k,$
- (g) Suppose that V is an orthogonal space and U is not singular. Put $U_0 := \{u \in U \mid h(u) = 0\}$,
 $$\begin{split} E_0 &:= C_E(V/U_0), \text{ and } E_1 &:= E \cap \Omega(V). \text{ Then } p = 2, \ E_0 \leqslant E_1 \leqslant E, \ E_1/E_0 \cong U_0, \\ E_0 &\cong \Lambda^2(U_0), \text{ and } |E_1| = |\mathbb{K}|^{\frac{k(k-1)}{2}}. \text{ If } V^{\perp} \cap U \neq 0 \text{ then } |V/C_V(E)| = |\mathbb{K}|^{k-1} \text{ and } E = E_1. \end{split}$$
 If $V^{\perp} \cap U = 0$ then $|V/C_V(E)| = |\mathbb{K}|^k$ and $|E/E_1| = 2$.

Here all the isomorphisms are $\mathbb{Z}N_H(U)$ -module isomorphisms.

PROOF. (a): By B.6(d) $C_H(V/U) \leq C_H(U)$ and so $C_H(V/U) = C_H(V/U) \cap C_H(U) = E$.

(b): By B.6(a) $V/U^{\perp\perp}$ is dual to $U^{\perp}/U^{\perp} \cap V^{\perp}$ as an $\mathbb{F}N_H(U)$ module. Since $V^{\perp} = 0$ we have $U^{\perp \perp} = U$ and so V/U is dual to U^{\perp} . Hence $C_H(V/U) = C_H(U)$. By (c) $C_H(V/U) = E$ and so (b) is proved.

The remaining statements are [MS5, 3.4].

LEMMA B.22 ([MS5, 3.5]). Let U be a k-dimensional isotropic subspace of V. Let U_0 be the subspace of all singular elements of U and put $k := \dim_{\mathbb{K}} U_0$. Suppose that $k \ge 2$. Put E := $C_H(U) \cap C_H(V/U)$, and $P := O^{p'}(N_{H'}(U))$.

- (a) If V is a linear or unitary space, then E is a simple \mathbb{F}_pP -module.
- (b) If V is a symplectic space and p is odd, then E is a simple $\mathbb{F}_p P$ module.
- (c) If V is an orthogonal space and U is singular, then one of the following holds: (1) $k \ge 3$ and E is a simple $\mathbb{F}_p P$ -module.
 - (2) k = 2, P centralizes E and E is a simple $\mathbb{F}_p N_{H'}(U)$ -module.
- (d) Suppose that V is a symplectic space and p = 2 or an orthogonal space and U is not singular. Then p = 2. Let E_0 be the sum of the simple \mathbb{F}_2P -submodules of E. Then one of the following holds:
 - (1) $k \ge 3$, E_0 is a simple \mathbb{F}_2P -module, and $E_0 \cong \bigwedge_2 U_0^*$.
 - (2) k = 2, $|\mathbb{K}| > 2$ or $V^{\perp} \leq U$, $E_0 = C_E(P)$. $|E_0| = |\mathbb{K}|$ and $N_{H'}(U)$ acts simply on E_0 .
 - (3) k = 2, $|\mathbb{K}| = 2$, V is symplectic or $V^{\perp} \leq U$, and E is the direct sum of simple \mathbb{F}_2P -modules of order 2 and 4.

B.5. Point-Stabilizers

LEMMA B.23. Suppose that V is not a linear space. Let $Z \in \mathcal{S}(V)$, $0 \neq z \in Z$ and $v \in V$ with f(z,v) = -1. Let \mathcal{T} be the set of all a in Z^{\perp} such that v and v + a are isometric. For $a \in \mathcal{T}$ let γ_a be the unique element of $GL_{\mathbb{K}}(V)$ with

$$v^{\gamma_a} = v + a$$
 and $u^{\gamma_a} = u + f(u, a)z$ for all $u \in Z^{\perp}$.

- (a) $\gamma_a \in Q_Z$ for all $a \in \mathcal{T}$, $[v,q] \in \mathcal{T}$ for all $q \in Q_z$, and the function $\mathcal{T} \to Q_z, a \to \gamma_a$ is a bijection with inverse $Q_z \to \mathcal{T}, q \to [v, q]$.
- (b) Let a ∈ T. Then γ_a ∈ D_Z if and only if a ∈ Z.
 (c) For each w ∈ V\Z[⊥], Q_Z acts regularly on the set of elements in w + Z[⊥] isometric to w.
- (d) For each $w \in V \setminus Z^{\perp}$, D_Z acts regularly on the set of elements in w + Z isometric to w.
- (e) Let $a, b \in \mathcal{T}$. Then

$$\gamma_a \gamma_b = \gamma_{a+b+f(a,b)z}, \qquad [\gamma_a, \gamma_b] = \gamma_{(f(b,a)-f(a,b))z}, \qquad and \qquad \gamma_a^p = \gamma_{-f(a,a)z}.$$

- (f) The function $Q_Z/D_Z \to Z^{\perp}/Z$, $qD_Z \mapsto [v,q] + Z$, is an $\mathbb{F}_pC_H(Z)$ -isomorphism. (g) If $Q_Z \neq 1$, then $C_V(Q_Z) = V^{\perp} + Z$.

PROOF. (a): Let $a \in Z^{\perp}$ and $\tau \in Hom_{\mathbb{K}}(Z^{\perp}, \mathbb{K})$ with $Z\tau = 0$. Define $\gamma_{a,\tau} \in GL_{\mathbb{K}}(V)$ by

$$v^{\gamma_{a,\tau}} = v + a$$
 and $u^{\gamma_{a,\tau}} = u + (u\tau)z$ for $u \in Z^{\perp}$.

Then $\gamma_{\alpha,\tau}$ centralizes $Z, Z^{\perp}/Z$ and V/Z^{\perp} .

Now let $\gamma \in GL_{\mathbb{K}}(V)$ such that γ centralizes Z, Z^{\perp} , and V/Z^{\perp} . Then there exists a unique $a \in Z^{\perp}$ and $\tau \in Hom_{\mathbb{K}}(Z^{\perp},\mathbb{K})$ with $Z\tau = 0$ such that $\gamma = \gamma_{a,\tau}$, namely $a = [v,\gamma]$ and τ is defined by $[u, \gamma] = (u\tau)z$ for $u \in Z^{\perp}$.

Observe that $\gamma|_{Z^{\perp}}$ is an isometry of Z^{\perp} and that $\gamma|_{\mathbb{K}v} : \mathbb{K}v \to \mathbb{K}(v+a)$ is an isometry if and only if v + a is isometric to v, that is, if and only if $a \in \mathcal{T}$.

For $u \in Z^{\perp}$ we have

$$f(u^{\gamma}, v^{\gamma}) = f(u + (u\tau)z, v + a) = f(u, v) + f(u, a) + (u\tau)f(z, v) + (u\tau)f(z, a) = f(u, v) + f(u, a) - u\tau.$$

Hence B.10 shows that γ is an isometry if and only if $a \in \mathcal{T}$ and $u\tau = f(u, a)$ for all $u \in Z^{\perp}$, and so if and only if $a \in \mathcal{T}$ and $\gamma = \gamma_a$.

(b): If $a \in \mathcal{T} \cap Z$, then f(u, a) = 0 for all $u \in Z^{\perp}$. Thus γ_a centralizes Z^{\perp} and V/Z and so $\gamma_a \in D_Z$. Conversely, if $\gamma_a \in D_Z$, then $a = [v, \gamma_a] \in Z$.

(c) and (d): Without loss w = v. Let $v' \in v + Z^{\perp}$ be isometric to v and put a := v' - v. Then $a \in \mathcal{T}$ and by (a) γ_a is the unique element of Q_Z with $[v, \gamma_a] = a$ and so also the unique element of Q_Z with $v^{\gamma_a} = v'$. Thus (c) holds. Note that $v' \in v + Z$ if and only if $a \in Z$ and so by (b) if and only if $\gamma_a \in D_Z$. Hence also (d) holds.

(e): Let $a, b \in \mathcal{T}$. Then $\gamma_a \gamma_b$ is an isometry on V, so $v^{\gamma_a \gamma_b} = v + [v, \gamma_a \gamma_b]$ is isometric to v and $[v, \gamma_a \gamma_b] \in \mathcal{T}$. Since

$$v^{\gamma_a \gamma_b} = (v+a)^{\gamma_b} = v+b+a+f(a,b)z$$

we conclude that $[v, \gamma_a \gamma_b] = b + a + f(a, b)z \in \mathcal{T}$ and

$$\gamma_a \gamma_b = \gamma_{a+b+f(a,b)z}.$$

It follows that

 $\gamma_a \gamma_b = \gamma_b \gamma_a \gamma_{(f(b,a) - f(a,b))z}, \quad [\gamma_a, \gamma_b] = \gamma_{(f(b,a) - f(a,b))z} \quad \text{and} \quad \gamma_a^p = \gamma_{pa + (p-1)f(a,a)z} = \gamma_{-f(a,a)z}.$

(f): Define $\Phi: Q_Z \to Z^{\perp}/Z, q \mapsto [v,q] + Z$. Since Q_Z centralizes $Z^{\perp}/Z, \Phi$ is a homomorphism. Let $q \in Q_Z$. Note that $q \in D_Z$ if and only if $[v,q] \in Z$ and so ker $\Phi = D_Z$. Let $u \in Z^{\perp}$. By B.11 there exists $v' \in v + u + Z$ with h(v') = h(v). Hence by (b), $v^q = v'$ for some $q \in Q_Z$ and so $[v,q] = v' - v \in u + Z$, So Φ is surjective, and (f) is proved.

(g): By (f) $[V, Q_Z] + Z = Z^{\perp}$ and so B.6(c) gives

$$C_V(Q_Z) \cap Z^{\perp} = [V, Q_Z]^{\perp} \cap Z^{\perp} = ([V, Q_Z] + Z)^{\perp} = Z^{\perp \perp} = Z + V^{\perp}.$$

By (c) all orbits of Q_Z on $V \setminus Z$ are regular. So if $Q_Z \neq 1$, $C_V(Q_Z) \leq Z^{\perp}$, and (g) holds.

LEMMA B.24. Let $Z \in \mathcal{S}(V)$.

- (a) Let $\tau \in Hom_{\mathbb{K}}(Z^{\perp}, Z)$ with $Z + R(V) \leq \ker \tau$. Then there exists $q \in Q_Z$ with $u^q = u + u\tau$ for all $u \in Z^{\perp}$.
- (b) Let $z \in Z$ and $w \in Z^{\perp}$ with $w \notin Z + R(V)$. Then there exists $q \in Q_Z$ with $w^q = w + z$.

PROOF. (a): Suppose that V is a linear space. Then $Z^{\perp} = V$. Define $q: V \to V, u \to u + u\tau$. Then $q \in Q_Z$ and (a) holds.

So suppose that V is not a linear space. Pick $0 \neq z \in Z$ and $v \in V$ such that f(z, v) = -1. Since $Z + V^{\perp} = Z + R(V) \leq \ker \tau$, there exists $a \in z^{\perp}$ with $u\tau = f(u, a)z$ for all $u \in U^{\perp}$. By B.11 v + a + Z contains an element isometric to v and so we may assume that v + a is isometric to v. Let γ_a be the element of Q_Z defined in B.23. Then for all $u \in Z^{\perp}$

$$u^{\gamma_a} = u + f(u, a)z = u + u\tau.$$

(b): Since $w \notin Z + R(V)$, there exists $\tau \in Hom(Z^{\perp}, Z)$ with $Z + R(V) \leq \ker \tau$ and $w^{\tau} = z$. Now (b) follows from (a).

LEMMA B.25. Suppose that V is not a linear space. Let $Y, Z \in \mathcal{S}(V)$ with $Y \leq Z^{\perp}$. Put

$$K := C_H(Z) \cap C_H(Y), \quad K^* := N_H(Z) \cap N_H(Y) \quad and \quad C := C_{K^*}(Z^{\perp} \cap Y^{\perp}).$$

- (a) $V = Z + \langle Y^{Q_Z} \rangle$.
- (b) Q_Z acts regularly on $\mathcal{S}(V) \setminus \mathcal{S}(Z^{\perp})$.
- (c) $C_H(Z) = Q_Z K$, $Q_Z \cap K = 1$, $K \cong Cl(Z^{\perp}/Z)$, and Q_Z/D_Z is a natural $Cl(Z^{\perp}/Z)$ -module for $C_H(Z)$ and for K.

 \square

(d) $N_H(Z) = Q_Z K^*$, $Q_Z \cap K^* = 1$, $N_H(Z)$ acts transitively on Z and on V/Z^{\perp} , $K^* = C \times K$ and $Q_Z/D_Z \cong V/Z^{\perp} \otimes_{\mathbb{K}} Z/Z^{\perp}$ as an $\mathbb{F}_p(C \times K)$ -module and as an $\mathbb{F}_pN_H(Z)$ -module.

PROOF. Let $0 \neq y \in Y$ and choose $z \in Z$ with f(z, y) = -1.

(a): By B.23(f) the function $Q_Z/D_Z \to Z^{\perp}/Z$, $qD_Z \mapsto [y,q] + Z$, is an isomorphism. Thus $V = Y + Z^{\perp} = Y + [y,Q_Z] + Z \leq \langle Y^{Q_Z} \rangle + Z.$

(b): Let $X \in \mathcal{S}(V)$ with $X \leq Z^{\perp}$. Then $V = X + Z^{\perp}$ and we can choose $x \in X$ with f(z, x) = -1. Hence $x \in y + Z^{\perp}$. Note that x and y are both singular and so isometric. By B.23(c), Q_Z acts regularly on the elements in $y + Z^{\perp}$ isometric to y and so $x \in y^{Q_Z}$. Hence also $X \in Y^{Q_Z}$.

(c) and (d): Since Q_Z acts regularly on the elements in $y + Z^{\perp}$ isometric to y, a Frattini argument shows that $C_H(Z) = Q_Z(C_H(Z) \cap K)$ and $Q_Z \cap K = 1$. Similarly, as Q_Z acts regularly on $\mathcal{S}(V) \setminus \mathcal{S}(Z^{\perp})$ we have $N_H(Z) = Q_Z K^*$ and $Q_Z \cap K^* = 1$. Put $W := Z^{\perp} \cap Y^{\perp}$. Then, as a module for K^* ,

$$V = (Z \oplus Y) \oplus W.$$

Let $k, l \in \mathbb{K}^{\sharp}$ and $b \in GL_{\mathbb{K}}(W)$. Define $a \in GL_{\mathbb{K}}(V)$ by $z^{a} = kz$, $y^{a} = ly$ and $w^{a} = w^{b}$ for all $w \in W$. By B.10 *a* is an isometry if and only if $a|_{Z+Y}$ and *b* are isometries. Since *Y* and *Z* are singular, $a|_{Y}$ and $a|_{Z}$ are isometries, and another application of B.10 shows that $a|_{Z+Y}$ is an isometry if and only if $f(z^{a}, y^{a}) = -1$. This holds if and only if $kl^{\alpha} = 1$, that is if and only if $k = l^{-\alpha}$. Thus $C \cong \mathbb{K}^{\sharp}$ is cyclic and acts transitively on *Z* and V/Z^{\perp} . Also $K = K^{*} \cap C_{K}(Z) \cong Cl(W) \cong Cl(Z^{\perp}/Z)$. Since the function

$$\tau: Q_Z/D_Z \to Z^\perp/Z, \ qD_Z \mapsto [y,q] + Z$$

is a $C_H(Z)$ -isomorphism, we conclude that Q_Z/D_Z is a natural $Cl(Z^{\perp}/Z)$ -module for $C_H(Z)$ and for K. Let $q \in Q_Z$ and $c \in C$ with $y^c = ly$. Then $\tau(q^c) = [y^c, q] + Z = l\tau(q)$. Hence $Q_Z/D_Z \cong V/Z^{\perp} \otimes_{\mathbb{K}} Z/Z^{\perp}$ as an $\mathbb{F}_p(C \times K)$ -module and so also as an $\mathbb{F}_pN_H(Z)$ -module.

LEMMA B.26. Suppose that V symplectic space with $\dim_{\mathbb{K}} V \ge 2$, a unitary space with $\dim_{\mathbb{K}} V \ge 2$, or an V is an orthogonal space with $\dim_{\mathbb{K}} V \ge 3$. Let $Y, Z \in \mathcal{S}(V)$ with $Y \leq Z^{\perp}$.

- (a) $\langle Q_Y, Q_Z \rangle = H^\diamond$.
- (b) H^{\diamond} acts transitively on $\mathcal{S}(V)$.

PROOF. Put $L = \langle Q_Y, Q_Z \rangle$. We claim that L acts transitively on $\mathcal{S}(V)$. Let $X \in \mathcal{S}(V)$. By B.25(b) Q_Z acts transitively on $\mathcal{S}(V) \setminus \mathcal{S}(Z^{\perp})$. If $X \leq Z^{\perp}$ this gives $X \in Y^{Q_Z} \subseteq Y^L$.

Suppose next that $X \leq Z^{\perp}$. Note that $X \leq V^{\perp}$ and, by B.25(a), $V = Z + \langle Y^{Q_Z} \rangle$. Thus there exists $a \in Q_Z$ with $X \leq Y^{a\perp}$. Note that also $Z \leq Y^{a\perp}$ and so B.25(b) applied with Y^a in place of Z shows that $X \in Z^{Q_{Y^a}} \subseteq Z^L$. We proved that $\mathcal{S}(V) \setminus \mathcal{S}(Z^{\perp}) \subseteq Y^L$ and $\mathcal{S}(Z^{\perp}) \subseteq Z^L$.

Suppose for a contradiction that L does not acts transitively on $\mathcal{S}(V)$. Then L has two orbits on $\mathcal{S}(V)$, namely $Z^L = \mathcal{S}(Z^{\perp})$ and $Y^L = \mathcal{S}(V) \setminus \mathcal{S}(Z^{\perp})$. By symmetry, $Y^L = \mathcal{S}(Y^{\perp})$. Hence $U := \langle Y^L \rangle \leq Y^{\perp}$ and so also $U \leq U^{\perp}$ and U is singular. Note that

$$\mathcal{S}(U \cap Z^{\perp}) \subseteq \mathcal{S}(Y^{\perp}) \cap \mathcal{S}(Z^{\perp}) = Y^L \cap Z^L = \emptyset.$$

Since $U \cap Z^{\perp}$ is singular, this gives $U \cap Z^{\perp} = 0$ and $U = Y + (U \cap Z^{\perp}) = Y$. Thus $Y^{L} = \{Y\}$ and by symmetry $Z^{L} = \{Z\}$. It follows that $\mathcal{S}(V) = \{X, Y\}$. By B.13 $V = \langle \mathcal{S}(V) \rangle$ and so V = X + Y. On the other hand, by B.11 $|\mathcal{S}(X + Y) \setminus \{Y\}| = |\mathbb{K}|, |\mathbb{F}|$ or 2 if V is a symplectic, unitary or orthogonal space, respectively. Thus V is an orthogonal space. Since $\dim_{\mathbb{K}} V = 2$ this contradicts the hypothesis of the Lemma.

Hence L acts transitively on $\mathcal{S}(V)$. In particular, H^{\diamond} acts transitively on $\mathcal{S}(V)$ and

$$H^{\diamond} = \langle Q_X \mid X \in \mathcal{S}(V) \rangle = \langle Q_Z^L \rangle \leqslant L.$$

LEMMA B.27. Suppose that V contains a 2-dimensional singular subspace. Let v and w be isometric elements in $V \setminus R(V)$. Then there exists $a \in H^{\diamond}$ with $w^a = v$. In particular, H^{\diamond} acts transitively on the set of non-zero singular vectors. PROOF. If V is a linear space $H^{\diamond} = SL_{\mathbb{K}}(V)$ acts transitively on V and the lemma holds. So suppose that V is not a linear space.

Let E be a 2-dimensional singular subspace of V and $Z \in \mathcal{S}(E)$. By B.26(b) H^{\diamond} acts transitively on $\mathcal{S}(V)$ and by B.13, $V = \langle \mathcal{S}(V) \rangle$. Thus $V = \langle Z^{H^{\diamond}} \rangle$ and so $Z^{b} \leqslant v^{\perp}$ for some $b \in H^{\diamond}$. Replacing v by $v^{b^{-1}}$ we may assume that $v \notin Z^{\perp}$. Similarly we may assume that $w \notin Z^{\perp}$. Choose $z \in Z$ with f(z, v) = -1. Note that $X := E \cap w^{\perp} \in \mathcal{S}(w^{\perp})$. Also $V = Z + w^{\perp}$ and since $Z \leqslant X^{\perp} \neq V$, we get $V = X^{\perp} + w^{\perp}$ and $w^{\perp} \leqslant X^{\perp}$. Thus $X \leqslant w^{\perp \perp}$ and so $X \leqslant rad(w^{\perp})$. In particular, $\langle \mathcal{S}(w^{\perp}) \rangle \neq rad(w^{\perp})$, and B.13 shows that $\langle \mathcal{S}(w^{\perp}) \rangle = w^{\perp}$. As $Z \leqslant Z^{\perp} \neq V$ and $V = Z + w^{\perp}$, we have $w^{\perp} \leqslant Z^{\perp}$ and so there exists $U \in \mathcal{S}(w^{\perp})$ with $U \leqslant Z^{\perp}$.

We claim that there exists $Y \in \mathcal{S}(w^{\perp})$ with $Y \notin Z^{\perp}$ and $Y \notin \mathbb{K}w + V^{\perp}$. If $U \notin \mathbb{K}w + V^{\perp}$ we can choose Y = U. So suppose $U \notin \mathbb{K}w + V^{\perp}$. Since $w \perp X$ this gives $U \perp X$. Thus U + X is singular. Since $X \notin Z^{\perp}$ and $U \notin Z^{\perp}$, we have $U \neq X$ and $(U + X) \cap Z^{\perp} = X$. Let Y be any 1-dimensional subspace U + X with $Y \neq X$ and $Y \neq U$. Then $Y \notin Z^{\perp}$ and $Y \in \mathcal{S}(w^{\perp})$. If $Y \notin \mathbb{K}w + V^{\perp}$, then $U + Y \notin \mathbb{K}w + V^{\perp}$ and so $0 \neq V^{\perp} \notin U + Y$, a contradiction, since V^{\perp} contains no non-zero singular vectors. Thus the claim is proved.

Choose Y as in the claim. From $Y \notin \mathbb{K}w + V^{\perp}$ and $w \notin V^{\perp}$ get $w \notin Y + V^{\perp}$. Note that $Y + Z^{\perp} = V$, so we can choose $y \in Y$ with f(z, w + y) = -1. In particular f(z, v) = f(z, w + y) and $w + y \in v + Z^{\perp}$. Recall that $Y \in \mathcal{S}(w^{\perp})$, $w \notin Y + V^{\perp}$ and $V^{\perp} = R(V)$. Thus $w \in Y^{\perp} \setminus (Y + R(V))$, and B.24(b) shows that there exists $c \in Q_Y$ with $w^c = w + y$. In particular, w + y, w, v are all isometric. As $w + y \in v + Z^{\perp}$, we conclude from B.23(d) that there exists $d \in Q_Z$ with $(w + y)^d = v$. So $w^{cd} = v$, and the lemma is proved.

LEMMA B.28. Let $Z \in \mathcal{S}(V)$. Suppose that $\dim_{\mathbb{K}} V \ge 3$. Put $P := C_{H^{\diamond}}(Z)$.

- (a) Suppose that V is a linear space.
 - (a) $D_Z = 1$ and Q_Z is elementary abelian.
 - (b) $P/Q_Z \cong SL(V/Z)$ and Q_Z is the corresponding natural module for P dual to V/Z.
- (b) Suppose that V is a symplectic space.
 - (a) $|D_Z| = |\mathbb{K}|, D_Z = Q'_Z = \Phi(Q_Z) = Z(Q_Z)$ if p is odd, and Q_Z is elementary abelian if p = 2.
 - (b) $P/Q_Z \cong Sp(Z^{\perp}/Z)$ and Q_Z/D_Z is the corresponding natural module for P.
- (c) Suppose that V is a unitary space.
 - (a) $|D_Z| = |\mathbb{F}|$ and $D_Z = Q'_Z = \Phi(Q_Z) = Z(Q_Z)$.
 - (b) $P/Q_Z \simeq SU(Z^{\perp}/Z)$ and Q_Z/D_Z is the corresponding natural module for P.
- (d) Suppose that V is an orthogonal space.
 - (a) $D_Z = 1$ and Q_Z is elementary abelian.
 - (b) $P/Q_Z \cong \Omega(Z^{\perp}/Z)$ and Q_Z is the corresponding natural module for P.

PROOF. Suppose first that f = 0, that is H = GL(V). Then $V^{\perp} = V$ and so $D_Z = 0$. By B.21(c) $Q_Z \cong Z \otimes_{\mathbb{K}} (V/Z)^*$ as an $\mathbb{F}_p P$ -module. Since P centralizes Z and is 1-dimensional over \mathbb{K} this shows $Z \otimes_{\mathbb{K}} (V/Z)^* \cong (V/Z)^*$. Note that P induces SL(V/Z) on V/Z and so also on $(V/Z)^*$. Hence (a) holds.

Suppose now that $f \neq 0$. We will use the description of Q_Z given in B.23. So let v, z, \mathcal{T} , and $\gamma_a, a \in \mathcal{T}$, be as there. By B.23(d), D_Z acts regularly on the set of elements in v + Z isometric to v. By B.11 the number of such elements is $|\mathbb{K}|$ if H = Sp(V), $|\mathbb{F}|$ if H = GU(V), and 1 if H = O(V). So also $|D_Z| = |\mathbb{K}|$, $|\mathbb{F}|$ and 1, respectively.

Let $a, b \in \mathcal{T}$. Then by B.23(e):

 $[\gamma_a, \gamma_b] = \gamma_{(f(b,a)-f(a,b))z}$ and $\gamma_a^p = \gamma_{-f(a,a)z}$.

If either H = Sp(V) and p = 2 or H = O(V), we conclude that Q_Z is elementary abelian. If either H = Sp(V) and p is odd or H = GU(V), we conclude that $\Phi(Q_Z) = D_Z = Q'_Z = Z(Q_Z)$.

Put $P^* = C_H(Z)$, $K^* = C_{P^*}(v)$ and $K = C_P(v)$. Note that Q_Z act regularly on $v + \mathcal{T}$. Since $v + \mathcal{T}$ is the set of singular vectors in $v + Z^{\perp}$, $v + \mathcal{T}$ is P^* invariant and a Frattini argument gives $P^* = K^*Q_Z$ and $P = KQ_Z$. Put $W = Z^{\perp} \cap v^{\perp}$ and note that $V = W \oplus (\mathbb{K}v + Z)$. Since K^*

centralizes $\mathbb{K}v + Z$, we conclude from B.10 that K^* is (isomorphic to) the group of isometries of W. Note that $K = K^* \cap H^{\diamond}$. If H = Sp(V) then $H = H^{\diamond}$ and $K = K^* = Sp(W)$. If H = GU(V), then $H^{\diamond} = SU(V)$ and so K = SU(W). If H = O(V) and $V^{\perp} = 0$, then $H^{\diamond} = \Omega(V)$. Thus $K = C_{\Omega(V)}(W^{\perp})$, and B.20 shows that $K = \Omega(W)$. If H = O(V) and $V^{\perp} \neq 0$, then $H = H^{\diamond}$ and $K = K^* = O(W) = \Omega(W)$.

Since $P/Q_Z = KQ_Z/Q_Z \cong K$ and $Z^{\perp}/Z \cong W$ this shows that $P/Q_Z \cong Sp(Z^{\perp}/Z)$, $SU(Z^{\perp}/Z)$ and $\Omega(Z^{\perp}/Z)$, respectively. By B.23(f) $Q_Z/D_Z \cong Z^{\perp}/Z$ as an \mathbb{F}_pP -module and so all parts of the lemma are proved.

B.6. Simplicity of the Natural Module

LEMMA B.29. Suppose that $\dim_{\mathbb{K}} V \ge 3$ if V is an orthogonal space, and $\dim_{\mathbb{K}} V \ge 2$ otherwise. Suppose that there exists a proper $\mathbb{F}_p H^{\diamond}$ -submodule W of V with $W \leq R(V)$. Then one of the following holds:

- (a) V is a unitary space, dim_K V = 2, H[◊] ≈ SL₂(F), W is an F-subspace of V, W is a natural SL₂(F)-module for H[◊], V is the direct sum of two natural SL₂(F)-module for H[◊], and H acts transitively on the |F| + 1 simple H[◊]-submodules of V. In particular, V is a simple H-module and a simple KH[◊]-module.
- (b) V is an orthogonal space, $\dim_{\mathbb{K}} V = 3$, $|\mathbb{K}| = 2$, $H = H^{\diamond} \cong SL_2(2)$, W = [V, H] is a natural $SL_2(2)$ -module for H and $V = V^{\perp} \oplus W$.

PROOF. If V is linear, then $H^{\diamond} = SL_{\mathbb{K}}(V)$ and H^{\diamond} acts transitively on V. Thus V is a simple H-module, and no proper H^{\diamond} -submodule of V exists.

Hence V is not linear and so $R(V) = V^{\perp}$. Note that the hypothesis on $\dim_{\mathbb{K}} V$ ensure that there exists $Z \in \mathcal{S}(V)$ (see B.19(c)). By B.13, $V = \langle \mathcal{S}(V) \rangle$. Since $W \leqslant V^{\perp}$ we conclude that $W \leqslant Z^{\perp}$ for some $Z \in \mathcal{S}(V)$. Let $w \in W \setminus Z^{\perp}$. By B.23(e) the function $Q_Z/D_Z \to Z^{\perp}/Z, qD_Z \to [w,q] + Z$ is an isomorphism. Thus $Z^{\perp} \leqslant [W,Q_Z] + Z$ and so $[Z^{\perp},Q_Z] = [W,Q_Z,Q_Z] \leqslant W$.

Suppose that $Z^{\perp} \neq Z + V^{\perp}$ or H = Sp(V). In the first case B.24(b) shows that $Z = [Z^{\perp}, Q_Z] \leq W$, and in the second case B.28(b:a) shows that $D_Z \neq 1$ and so $[W, D_Z] = Z \leq W$. Thus $Z^{\perp} = [W, Q_Z] + Z \leq W$, $\langle \mathbb{K}W \rangle = V$, $W^{\perp} = V^{\perp}$ and $Z_1 \in W$ for all $Z_1 \in S(V)$, a contradiction since $W \neq V$ and $V = \langle S(V) \rangle$.

It follows that $Z^{\perp} = Z + V^{\perp}$ and $H \neq Sp(V)$. Hence dim $V/V^{\perp} = 2$ and either H = GU(V), $V^{\perp} = 0$ and dim V = 2, or p = 2, H = O(V), dim $V^{\perp} = 1$.

Suppose that H = GU(V). For i = 1, 2 let $U_i \in \mathcal{S}(V)$ with $U_1 \neq U_2$. Then $V = U_1 + U_2$. We can choose the following further notation:

 $0 \neq t \in \mathbb{K}$ with $t + t^{\alpha} = 0$, $0 \neq u_1 \in U_1$, $u_2 \in U_2$ with $f(u_1, u_2) = t$.

Let X be the \mathbb{F} -subspace of V spanned by u_1 and u_2 , and let $\lambda_i \in \mathbb{F}$. Then

$$h(\lambda_1 u_1 + \lambda_2 u_2) = \lambda_1 \lambda_2^{\alpha} t + \lambda_1^{\alpha} \lambda_2 t = \lambda_1 \lambda_2 (t + t^{\alpha}) = 0.$$

Thus all elements in X are singular. Let $0 \neq x \in X$ and choose $y \in X$ with $f(x, y) \neq 0$. By B.11(b) $\mathbb{K}x + y$ contains exactly $|\mathbb{F}|$ singular vectors. It follows that $\mathbb{F}x + y$ is the set of singular vectors in $\mathbb{K}x + y$ and so $Q_{\mathbb{K}x}$ normalizes $\mathbb{F}x + y$. Hence $Q_{\mathbb{K}x}$ normalizes X. As $\mathcal{S}(V) = |\mathbb{F}| + 1$ and X has $|\mathbb{F}| + 1$ 1-dimensional subspaces each $U \in \mathcal{S}(V)$ intersects X in 1-dimensional \mathbb{F} -space and so Q_U normalizes X. Hence X is an $\mathbb{F}H^{\diamond}$ submodule of V. Observe that X is natural $SL_2(\mathbb{F})$ -module for H^{\diamond} . Since u_1 was an arbitrary non-zero element on U_1 , each of the $|\mathbb{F}| + 1$ 1-dimensional \mathbb{F} -subspaces of U_1 lies in a 2-dimensional $\mathbb{F}H^{\diamond}$ -submodule of V. It follows that V is a direct sum of two natural $SL_2(\mathbb{F})$ -modules for H^{\diamond} . In particular, there exists exactly $|\mathbb{F}| + 1$ non-zero proper $\mathbb{F}_p H^{\diamond}$ submodules of V. As $N_{H^{\diamond}}(U_1)$ acts transitively on U_1 , we conclude that $N_{H^{\diamond}}(U_1)$ also acts transitively on the set of non-zero proper $F_p H^{\diamond}$ -submodules of V. Thus (a) holds.

So suppose that H = O(V). Then H^{\diamond} induces $Sp(V/V^{\perp}) = Sp_2(\mathbb{K}) = SL_2(\mathbb{K})$ on V/V^{\perp} and so $V = W + V^{\perp}$; in particular $[V, H^{\diamond}] \leq W$. Thus $[V, Q_Z]$ is 1-dimensional and so (for example by B.11) $Z_0 + [V, Q_Z]$ contains exactly two singular 1-spaces. Since $\langle Z_0^{Q_Z} \rangle \leq Z_0 + [V, Q_Z]$ this shows that $|\mathbb{K}| = |Q_Z| = |Z_0^{Q_Z}| = 2$, and (b) holds. LEMMA B.30. Let $Z \in \mathcal{S}(V)$, and put $P := C_{H^{\diamond}}(Z)$. Suppose that there exists a proper P-invariant subgroup T of Q_Z with $T \leq D_Z$.

- (a) Suppose that V is a linear space and $\dim_{\mathbb{K}} V \ge 2$. Then $\dim_{\mathbb{K}} V = 2$.
- (b) Suppose that V is a symplectic space and $\dim_{\mathbb{K}} V \ge 2$. Then $|\mathbb{K}| = 2$, $\dim_{\mathbb{K}} V = 4$, $T = [Q_Z, P] = H' \cap Q_Z$, and T has order 4.
- (c) Suppose that V is a unitary space and $\dim_{\mathbb{K}} V \ge 4$. Then $\dim_{\mathbb{K}} V = 4$, $D_Z \le T$, T/D_Z is a natural $SL_2(\mathbb{F})$ -module for P, and T is not invariant under $C_{H^{\diamond}}(D_Z)$. In particular, $N_{H^{\diamond}}(Z)$ acts simply on Q_Z/D_Z .
- (d) Suppose that V is an orthogonal space and $V^{\perp} = 0.^3$ Then $\dim_{\mathbb{K}} V \leq 4$.

PROOF. (a): By B.28(a) Q_Z is a natural SL(V/Z)-module for P and so, if dim $V/Z \ge 2$, a simple P-module. This gives (a).

(b): Note first that $T \notin D_Z$ gives $Q_Z \neq D_Z$, and so dim_K $V \ge 4$. By B.28(b:b) Q_Z/D_Z is a natural $Sp(Z^{\perp}/Z)$ -module for P and so simple. Thus $TD_Z = Q_Z$. If p is odd, then B.28(b:a) implies $D_Z = \Phi(Q_Z)$ and so $T = Q_Z$.

Hence p = 2. By B.14 $V \cong W/W^{\perp}$ and $H \cong O(W)$ for some non-degenerate orthogonal space W. Without loss $V = W/W^{\perp}$. Then the inverse image of Z in W contains a unique 1-dimensional singular subspace Z_0 , $Q_Z = Q_{Z_0}$ and $P = C_H(Z_0)$. Now B.28(d:b) shows that Q_Z is a natural $\Omega(Z_0^{\perp}/Z_0)$ -module for P. Thus by B.29, $|\mathbb{K}| = 2$, dim $Z_0^{\perp}/Z_0 = 3$ and $T = [Q_Z, P]$ has order 4. Hence (b) holds.

(c): By B.28(c) Q_Z/D_Z is a natural $SU(Z^{\perp}/Z)$ -module for P and $D_Z = \Phi(Q_Z)$. It follows that $Q_Z \neq TD_Z$. We now apply B.29(a) to Z^{\perp}/Z and $GU(Z^{\perp}/Z)$. Then dim $Z^{\perp}/Z = 2$, and TD_Z/D_Z is a natural $SL_2(\mathbb{F})$ -module for P.

Let $\lambda \in \mathbb{K}$ be of multiplicative order $|\mathbb{F}| + 1$. Then $\lambda \lambda^{\alpha} = 1$. By B.18(b:a) V has a hyperbolic basis (v_1, v_2, v_3, v_4) . Then $f(v_1, v_4) = f(v_2, v_3) = 1$ and $f(v_i, v_j) = 0$ for all other $1 \leq i \leq j \leq 4$. Since H acts transitive on $\mathcal{S}(V)$, we may assume that $v_1 \in Z$. Define $\phi \in GL_{\mathbb{K}}(V)$ by $v_i\phi = \lambda v_i$ for i = 1, 4 and $v_i\phi = \lambda^{-1}v_i$ for i = 2, 3. Observe that $\phi \in SU(V) = H^{\diamond}$ and that ϕ normalizes Z. Since ϕ acts as scalar multiplication by λ on V/Z^{\perp} and Z, ϕ centralizes D_Z . As ϕ acts as scalar multiplication by λ^{-1} on Z^{\perp}/Z , ϕ centralizes P/Q_Z . It follows that ϕ does not normalizes D_Z/D_Z and so $Q_Z = TT^{\phi}D_Z$. Since T is P invariant, $[T, Q_Z] \leq T \cap D_Z$, and since ϕ centralizes D_Z this gives $[T^{\phi}, Q_Z] \leq T^{\phi} \cap D_Z = T \cap D_Z$. Thus $D_Z = Q'_Z = [TT^{\phi}D_Z, Q_Z] \leq T \cap D_Z \leq T$ and (c) holds.

(d): By B.28(d:b) Q_Z is a natural $\Omega(Z^{\perp}/Z)$ -module for P. If $V^{\perp} = 0$ and $\dim_{\mathbb{K}}(Z^{\perp}/Z) \ge 3$, we conclude from B.29(b) that Q_Z is a simple P-module. Thus (d) holds.

B.7. Normalizers of Classical Groups

In this section we view \mathbb{K} as a subring of $End_{\mathbb{F}_pH}(V)$.

LEMMA B.31. Suppose that $\dim_{\mathbb{K}} V \ge 3$ if V is an orthogonal space, and $\dim_{\mathbb{K}} V \ge 2$ otherwise. Then $End_{\mathbb{F}_nH^{\diamond}}(V) = \mathbb{K}$, unless $H = O(V) = O_3(2)$ or $H = GU(V) = GU_2(\mathbb{F})$.

PROOF. Suppose first that $V^{\perp} = 0$ and $H \neq GU_2(\mathbb{K})$. Then by B.29, V is a simple $\mathbb{F}_p H^{\circ}$ -module and so $End_{\mathbb{F}_p H^{\circ}}(V)$ is a division ring. Let $Z \in \mathcal{S}(V)$. By B.23(g), $C_V(Q_Z) = V^{\perp} + Z = Z$ and so $C_V(Q_Z)$ is 1-dimensional over \mathbb{K} . This gives $End_{\mathbb{F}_p H^{\circ}}(V) = \mathbb{K}$.

Suppose next that $V^{\perp} \neq 0$ and $H \neq O_3(2)$. Then B.29 shows that $V = [V, H^{\diamond}]$. Let $\beta \in End_{\mathbb{F}_pH^{\diamond}}(V)$ with $V\beta \leq V^{\perp}$. Then $[V\beta, H^{\diamond}] = 0$ and so also $[V, H^{\diamond}]\beta = 0$. As $V = [V, H^{\diamond}]$ we get that $\beta = 0$, and $End_{\mathbb{F}_pH^{\diamond}}(V)$ acts faithfully on V/V^{\perp} . Since H^{\diamond} induces $Sp(V/V^{\perp})$ on V we conclude from the previous case that $End_{\mathbb{F}_pH^{\diamond}}(V) = \mathbb{K}$.

LEMMA B.32. Suppose that V is a linear space and put $H^* = N_{GL_{\mathbb{F}_p}(V)}(H^\diamond)$. Suppose that $\dim_{\mathbb{K}} V \ge 2$.

³If $V^{\perp} \neq 0$, then $p = 2, V/V^{\perp}$ is a non-degenerate symplectic space, $H \cong Sp(V/V^{\perp})$, and (b) applies

- (a) $H^* = \Gamma GL_{\mathbb{K}}(V)$, that is, $g \in GL_{\mathbb{F}_p}(V)$ normalizes H^\diamond if and only if there exists $\sigma \in Aut(\mathbb{K})$ such that g acts σ -semilinearly on V.⁴
- (b) There exists a homomorphism $\rho : H^* \to Aut(\mathbb{K}), g \mapsto \rho_g$, such that each $g \in H^*$ acts ρ_g -semilinearly on \mathbb{K} .
- (c) ker $\rho = H$ and ρ is surjective. In particular, $H^*/H \cong Aut(\mathbb{K})$.
- (d) Let T be p-subgroup of H^* acting K-linearly on V. Then $T \leq H^\diamond$.

PROOF. (a) and (b): Let $b, c \in GL_{\mathbb{F}_p}(V)$ acting β - and γ -semilinearly on \mathbb{K} , respectively. Then bc acts $\beta\gamma$ semilinearly on V and b^{-1} acts β^{-1} -semilinearly on V. In particular, if c acts \mathbb{K} -linearly, so does c^b . Hence b normalizes H and thus also H^{\diamond} .

By B.31 $\mathbb{K} = End_{\mathbb{F}_p H^{\diamond}}(V)$. Hence H^* acts on \mathbb{K} by conjugation and we obtain a homomorphism $\rho: H^* \to Aut(\mathbb{K}), g \mapsto \rho_g$, such that $g^{-1}kg = k^{\rho_g}$. It follows that $g \in H^*$ acts ρ_g -semilinearly on V.

(c): Clearly ker $\rho = H$. To show that ρ is surjective let $(v_i)_{i=1}^n$ be a K-basis and $\sigma \in Aut(\mathbb{K})$. Define $g \in GL_{\mathbb{F}_p}(V)$ by $(kv_i)^g = k^{\sigma}v_i$. Then g acts σ -linearly on V, and by (a) $g \in H^*$. Hence $\rho(g) = \sigma$.

(d): Since T acts K-linearly on V, $T \leq H$ and since $H/H^{\diamond} = GL_{\mathbb{K}}(V)/SL_{\mathbb{K}}(V)$ is a p' group, $T \leq H^{\diamond}$.

LEMMA B.33. Let $k \in \mathbb{F}^{\sharp}$ and $\sigma \in Aut(\mathbb{K})$. Define

 $\widetilde{f} := f_{k,\sigma} : V \times V \to \mathbb{K}, \, (v,w) \mapsto kf(v,w)^{\sigma}, \qquad \widetilde{h} := h_{k,\sigma} : V \to \mathbb{F}, v \mapsto kh(v)^{\sigma}.$

Let V_{σ} be the K-space with $V_{\sigma} = V$ as abelian group and scalar multiplication

$$\cdot_{\sigma} : \mathbb{K} \times V \to V, (l, v) \mapsto l^{\sigma^{-1}} v.$$

Then

- (a) $(V^{\sigma}, \tilde{f}, \tilde{h})$ is a classical space of the same type as (V, f, h).
- (b) The K-subspaces of V are the same as the K-subspaces of V_{σ} .
- (c) A K-subspace of V is singular with respect to (f, h) if and only if it is singular with respect to (f, h).
- (d) H is the isometry group of $(V, \tilde{f}, \tilde{h})$.
- (e) $(V^{\sigma}, \tilde{f}, \tilde{h})$ is not isometric to (V, f, h) if and only if H = O(V), p is odd, $\dim_{\mathbb{K}} V$ is odd, and k is not a square in \mathbb{K} .

PROOF. (a) is readily verified, and (b) should be obvious.

- (c): Just observe that $kf(v,w)^{\sigma}$ and $kh(v)^{\sigma}$ are 0 if and only if f(v,w) and h(v) are 0.
- (d): Let $g \in GL_{\mathbb{K}}(V)$. Then (f, h) is g-invariant if and only if (\tilde{f}, \tilde{h}) is.

(e): By B.18 any two linear spaces, any two symplectic spaces, and any two unitary spaces of the same dimension are isometric.

Note that U is a singular subspace of V if and only if U_{σ} is a singular subspace of V_{σ} . Hence V and V_{σ} have the same Witt index. Any two orthogonal spaces of the same even dimension are isometric if and only if they have the same Witt index. Also if p = 2 then any two orthogonal spaces of the same odd dimension are isometric.

So it remains to consider the case H = O(V), $\dim_{\mathbb{K}} V$ odd and p odd. Let Y be a maximal hyperbolic subspace of V and put $X = Y^{\perp}$. Then by B.19 $V = X \oplus Y$ and $\dim_{\mathbb{K}} X = 1$. Let $0 \neq x \in X$ and observe that, by the even dimensional orthogonal case, Y_{σ} is hyperbolic. Also $V_{\sigma} = X_{\sigma} \oplus Y_{\sigma}$ and $X_{\sigma} \perp Y_{\sigma}$. Hence by B.18(d:e) (V, f, h) and (V_{σ}, f, h) are isometric if and only if $\tilde{h}(x)h(x)^{-1}$ is a square in \mathbb{K} . Note that $\tilde{h}(x)h(x)^{-1} = kh(x)^{\sigma}h(x)^{-1}$ and that $h(x)^{\sigma}h(x)^{-1}$ is a square in \mathbb{K} . Thus (V, f, h) and $(V^{\sigma}, \tilde{f}, \tilde{h})$ are isometric if and only if k is a square.

⁴For the definition of σ -semilinear see A.46

LEMMA B.34. Let $g \in GL_{\mathbb{F}_p}(V)$. Define

$$f_g: V \times V \to \mathbb{K}, (v, w) \mapsto f(v^g, w^g), \quad and \quad h_g: V \to \mathbb{F}, v \mapsto h(v^g)$$

Let V_g be the K-space with $V_g = V$ as abelian group and scalar multiplication

$$\cdot_g : \mathbb{K} \times V \to V, (k, v) \mapsto (kv^g)^{g^{-1}}.$$

Then

(a) g is an isometry from (V_g, f_g, h_g) to (V, f, h).

(b) (V_g, f_g, h_g) is a classical space of the same type as (V, f, h).

(c) $H^{g^{-1}}$ is the isometry group of (V_g, f_g, h_g) .

PROOF. (a): Let $k \in \mathbb{K}$ and $v \in V$. Then

$$(k \cdot_g v)^g = \left(\left(kv^g\right)^{g^{-1}}\right)^g = kv^g,$$

so $g: V_g \to V$ is an isomorphism of \mathbb{K} spaces.

By the definition of f_g and h_g

$$f_g(v,w) = f(v^g,w^g)$$
 and $h_g(v) = h(v^g)$

for all $v, w \in V_q$, and so (a) holds.

(b) and (c) both follow from (a).

LEMMA B.35. Suppose that V is not a linear space and $\dim_{\mathbb{K}} V \ge 3$. Put $H^* := N_{GL_{\mathbb{F}_p}(V)}(H^\diamond)$.

- (a) Let $g \in GL_{\mathbb{K}}(V)$ Then $g \in H^*$ if and only there exist $k \in \mathbb{F}^{\sharp}$ and $\sigma \in Aut(\mathbb{K})$ such that g is a (k, σ) -semisimilarity of V.
- (b) Let $g \in H^*$. Then the elements $k \in \mathbb{F}^{\sharp}$ and $\sigma \in Aut(\mathbb{K})$ in (a) are uniquely determined. Moreover, if we denote k by λ_q and σ by ρ_q , then the function

$$(\lambda, \rho): H^* \to \mathbb{F}^{\sharp} \rtimes Aut(\mathbb{K}), \quad g \mapsto (\lambda_q, \rho_q).$$

is a homomorphism.

- (c) Put $S := \{k^2 \mid k \in \mathbb{K}^{\sharp}\}$ if V is an orthogonal space with $\dim_{\mathbb{K}} V$ odd and p odd; put $S := \mathbb{F}^{\sharp}$ otherwise. Then $\ker(\lambda, \rho) = H$ and $Im(\lambda, \rho) = S \rtimes Aut(\mathbb{K})$. In particular, $H^*/H \cong S \rtimes Aut(\mathbb{K})$.
- (d) Let T be a p-subgroup of H^* acting K-linearly on V. Then $T \leq H$. Moreover, $T \leq H^\diamond$, unless p = 2, V is an orthogonal space and $V^{\perp} = 0$.

PROOF. Suppose first that $H = O(V) = O_3(2)$. Then $H = H^{\diamond}$, $V = V^{\perp} \bigoplus [V, H]$ and H induces $GL_2(2)$ on [V, H]. It follows that $H^* = H$. Also $\mathbb{K}^{\sharp} = \{1\}$ and $Aut(\mathbb{K}) = 1$, and so the lemma holds in this case. So we may assume from now on that $H \neq O_3(2)$.

(a) and (b): Suppose first that there exists $k \in \mathbb{F}^{\sharp}$ and $\sigma \in Aut(\mathbb{K})$ such that g is a (k, σ) -semisimilarity of V. Then

$$f(v^g, w^g) = kf(v, w)^{\sigma}$$
 and $h(v^g) = kh(v)^{\sigma}$

for all $v, w \in V$. In the notation of B.33 and B.34 this just says that $f_g = f_{k,\sigma}$ and $h_{\sigma} = h_{k,\sigma}$. Since g is σ -semilinear, $(lv^g)^{g^{-1}} = l^{\sigma^{-1}}v$ and so $V_g = V_{\sigma}$. The isometry group of (V_g, f_g, h_g) is $H^{g^{-1}}$ and the isometry group of $(V_{\sigma}, f_{\sigma,k}, h_{\sigma,k})$ is H. So $H^g = H$ and thus also $(H^{\diamond})^g = H^{\diamond}$. Therefore, $g \in H^*$.

Since $\dim_{\mathbb{K}} V \geq 3$ and we exclude the $O_3(2)$ -case, B.31 shows that $\mathbb{K} = End_{\mathbb{F}_pH^{\diamond}}(V)$. Hence H^* acts on \mathbb{K} by conjugation and we obtain a homomorphism $\rho : H^* \to Aut(\mathbb{K}), g \mapsto \rho_g$, such $g^{-1}kg = k^{\rho_g}$. It follows that $g \in H^*$ acts g_{ρ} -semilinearly on V. By B.29 V/V^{\perp} is a simple H^{\diamond} -module and by B.31, $End_{\mathbb{F}_pH^{\diamond}}(V/V^{\perp}) = \mathbb{K}$. Since f induces a non-degenerate \mathbb{K} -sesquilinear form \overline{f} on $V/V^{\perp}, V/V^{\perp}$ is selfdual as an \mathbb{F}_pH^{\diamond} -module. So we can apply B.7 and conclude that there exists a function $\lambda : H^* \to \mathbb{K}^{\sharp}, g \mapsto \lambda_g$, such that the function

$$H^* \to \mathbb{K}^{\sharp} \rtimes Aut(\mathbb{K}), g \mapsto (\lambda_g, \rho_g)$$

is a homomorphism and

$$\overline{f}(\overline{v}^g, \overline{w}^g) = \lambda_g \overline{f}(\overline{v}, \overline{w})^{\rho_g}$$

for all $\overline{v}, \overline{w} \in V/V^{\perp}$. Hence also

(*)
$$f(v^g, w^g) = \lambda_q f(v, w)^{\rho_g}$$

for all $v, w \in V$.

We claim that $\lambda_g \in \mathbb{F}$. If $\mathbb{F} = \mathbb{K}$ there is nothing to prove. So suppose H = GU(V) and choose $v, w \in V$ with f(v, w) = 1. Then also $f(w, v) = 1^{\alpha} = 1$ and

$$\lambda_g = \lambda_g f(v, w)^{\sigma_g} = f(v^g, w^g) = f(w^g, v^g)^{\alpha} = \left(\lambda_g f(w, v)^{\sigma_g}\right)^{\alpha} = \lambda_g^{\alpha},$$

and so indeed $\lambda_q \in \mathbb{F}$.

It remains to show that $h(v^g) = \lambda_g h(v)^{\rho_g}$ for all $v \in V$. If H = Sp(V) or GU(V), then h(v) = f(v, v) and this follows from (*). So assume H = O(V).

Fix $g \in H^*$. Put

$$k := \lambda_g, \qquad \sigma := \rho_g, \qquad \widetilde{f} := f_{k,\sigma}, \qquad \widetilde{h} := h_{k,\sigma}.$$

Then (*) says that $f_g = \tilde{f}$ and we need to show that $h_g = \tilde{h}$. Since g is σ -semilinear, $V_g = V_{\sigma}$. Note that both (V_g, f_g, h_g) and $(V_{\sigma}, \tilde{f}, \tilde{g})$ are orthogonal spaces. Also H^{\diamond} is contained in their isometry group since g normalizes H^{\diamond} . In particular,

$$h_g(v+w) = h_g(v) + f_g(v,w) + h_g(w) \quad \text{and} \quad \widetilde{h}(v+w) = \widetilde{h}(v) + \widetilde{f}(v,w) + \widetilde{h}(w)$$

for all $v, w \in V$. Since $f_g = \tilde{f}$ we conclude that the function $r: V \to \mathbb{K}, v \mapsto h_g(v) - \tilde{h}(v)$, is \mathbb{F}_p -linear.

Since both h_g and \tilde{h} are H^{\diamond} -invariant, so is r. Thus ker r is an \mathbb{F}_p -submodule of V. As $|Imr| \leq |\mathbb{K}|$ and $|V| \geq |\mathbb{K}|^3$ we have $|\ker r| \geq |\mathbb{K}|^2 > |\mathbb{K}| \geq |V^{\perp}|$ and so ker $r \leq V^{\perp}$. Recall that we excluded the $O_3(2)$ -case and so B.29 shows that ker r = V. Thus r = 0, $h = \tilde{h}$, and (a) and (b) are proved.

(c): Let $g \in H^*$. Then $g \in H$ if and only if f and h are g-invariant and if and only if $\lambda_g = 1$ and $\rho_g = 1$. So ker $(\lambda, \rho) = H^*$.

To compute the image of (λ, ρ) , let $k \in \mathbb{F}^{\sharp}$ and $\sigma \in Aut(\mathbb{K})$ and put $\tilde{f} = f_{k,\sigma}$ and $\tilde{h} = h_{k,\sigma}$. Note that (k,σ) is in the image of (λ,ρ) if and only if $\tilde{f} = f_g$ and $\tilde{h} = h_g$ for some $g \in GL_{\mathbb{F}_p}(V)$. This in turn holds if and only if $(V_{\sigma}, \tilde{f}, \tilde{h})$ is isometric to (V, f, h). By B.33(e) $(V_{\sigma}, \tilde{f}, \tilde{h})$ is not isometric to (V, f, h) if and only if $\mathbb{K} = O(V)$, dim_{\mathbb{K}} V is odd, p is odd, and k is not a square in \mathbb{K} . Hence $(k, \sigma) \in Im(\lambda, \rho)$ if and only if $k \in S$. This gives (c).

(d): Since T acts \mathbb{K} -linearly on V, $\rho(T) = 1$. Since $S \leq \mathbb{K}^{\sharp}$ is a p'-group we conclude that $T \leq \ker(\lambda, \rho)$ and so $T \leq H$. Since $GL_{\mathbb{K}}(V)/SL_{\mathbb{K}}(V)$ is a p'-group, $T \leq SL_{\mathbb{K}}(V) \cap H$. Note that either $SL_{\mathbb{K}}(V) \cap H = H^{\diamond}$, or H = O(V) and $\dim_{\mathbb{K}} V$ is even if p = 2. In the later case H^{\diamond} has index two in $SL_{\mathbb{K}}(V) \cap H$. So either $T \leq H^{\diamond}$ or H = O(V), p = 2, and $\dim_{\mathbb{K}} V$ is even.

B.8. Q-Uniqueness in Classical Groups

LEMMA B.36. Let $H^{\diamond} \leq L \leq GL_{\mathbb{F}_p}(V)$ and let Q be a p-subgroup of L. Suppose that V is a Q!-module for L with respect to Q and that V contains a 2-dimensional singular subspace. Then $\langle Q^L \rangle = \langle Q^{H^{\diamond}} \rangle$. In particular, $H^{\diamond}Q \leq L$ and $O^p(\langle Q^L \rangle) \leq H^{\diamond}$.

PROOF. By B.35(a) L is contained in the group of semisimilarities of V and so acts on the set of non-zero singular vectors.

By B.27 H^{\diamond} acts transitively on this set. By B.12(c) there exists a non-zero singular vector centralized by Q. By a Frattini argument $L = C_L(v)H^{\diamond}$ and by $Q!, C_L(v) \leq N_L(Q)$. Thus $\langle Q^L \rangle = \langle Q^{H^{\diamond}} \rangle$.

LEMMA B.37. Suppose that $\dim_{\mathbb{K}} V \ge 3$ if V is a linear space, and $\dim_{\mathbb{K}} V \ge 4$ otherwise. Let Q be a p-subgroup of $GL_{\mathbb{F}_p}(V)$ normalizing H^{\diamond} and suppose that V is a Q!-module for $H^{\diamond}Q$ with respect to Q. Put $X := C_V(Q)$. Then $C_V(H^{\diamond}) = 0$; in particular, the case V orthogonal, p = 2 and $\dim_{\mathbb{K}} V$ odd does not occur. Moreover, one of the following holds:

- (1) $X \in \mathcal{S}(V), Q = Q_X \text{ and } \langle Q^{H^\diamond} \rangle = H^\diamond.$
- (2) $H = H^{\diamond} = Sp(V) = Sp_4(2), X \in \mathcal{S}(V), Q = Q_X \cap H' \text{ and } \langle Q^{H^{\diamond}} \rangle = H' = Sp_4(2)'.$
- (3) $H = GU(V) = GU_4(\mathbb{F}), \ p = 2, \ |X| = |\mathbb{F}|, \ \hat{X} := \langle \mathbb{K}X \rangle \in \mathcal{S}(V), \ H^{\diamond}Q = \langle Q^{H^{\diamond}} \rangle \cong O_6^{-}(\mathbb{F}), \ |Q/Q \cap Q_{\widehat{X}}| = 2 \ and \ either \ Q_{\widehat{X}} \leqslant Q \ or \ D_{\widehat{X}} \leqslant Q \ and \ Q \cap Q_{\widehat{X}}/D_{\widehat{X}} \ is \ a \ natural \ SL_2(\mathbb{F})-module \ for \ C_{H^{\diamond}}(\widehat{X}).$
- (4) $H = O(V) = O_4^+(\mathbb{K})$, X is a 2-dimensional singular subspace of V, $Q = C_{H^{\diamond}}(X)$ and $\langle Q^{H^{\diamond}} \rangle \cong SL_2(\mathbb{K})$.
- (5) $H = H^{\diamond}Q = O(V) = O_4^+(2), X \in \mathcal{S}(V)$ and either $Q \cong D_8$ and $\langle Q^{H^{\diamond}} \rangle = H$ or $Q \cong C_4$ and $\langle Q^{H^{\diamond}} \rangle \sim 3^2 C_4$.
- (6) $H = O(V) = O_4^+(4), H^{\diamond}Q = \langle Q^{H^{\diamond}} \rangle \cong O_4^+(4), |X| = 2, \hat{X} := \langle \mathbb{K}X \rangle \in \mathcal{S}(V), |Q/Q \cap Q_{\widehat{X}}| = 2, QQ_{\widehat{X}} \in Syl_2(H^{\diamond}Q) \text{ and either } Q_{\widehat{X}} \leqslant Q \text{ or } Q \text{ is the unique maximal elementary abelian subgroup of order 8 in } Q_{\widehat{X}}Q.$

PROOF. Since V is a Q!-module, $C_V(H^{\diamond}Q) = 0$ (see A.53) and so also $C_V(H^{\diamond}) = 0$. So the first statement holds. Moreover, by B.12(c) there exists a Q-invariant $Z \in \mathcal{S}(V)$. Put $P^* := N_{H^{\diamond}}(Z)$ and $P := C_{H^{\diamond}}(Z)$.

Note that $C_Q(\mathbb{K})$ is a *p*-group acting \mathbb{K} -linearly on V and normalizing H^\diamond . Thus B.32(d) (if V is linear) and B.35(d) (if V is not linear) show that $C_Q(\mathbb{K}) \leq H$. Put $Q^* := C_Q(Z^{\perp}/Z)$. Then Q^* acts \mathbb{K} -linearly on V and so $Q^* \leq C_Q(\mathbb{K}) \leq H$. Since Z is 1-dimensional, Q^* centralizes V/Z^{\perp} , Z^{\perp}/Z and Z. Thus $Q^* \leq Q_Z$.

Suppose first that Q centralizes Z^{\perp}/Z . Then $Q = Q^* \leq Q_Z$. Since Q centralizes Z, Q! implies that $Q \leq P^*$.

Assume for a contradiction that $Q \leq D_Z$. Then $D_Z \neq 1$ and so by B.28 H = Sp(V) or SU(V). Since Z^{\perp}/Z is at least 2-dimensional, it has a 1-dimensional singular subspace (see B.19(c)). Hence there exists $Y \in S(Z^{\perp})$ with $Y \neq Z$. Since $Q \leq D_Z$ we get [Y,Q] = 0, and Q!-shows that $N_{H^{\circ}}(Y)$ normalizes Q and so also [V,Q] = Z. Thus $[Z,Q_Y] = 0$, a contradiction as $C_V(Q_Y) = Y + V^{\perp} = Y$ by B.23(g).

Thus $Q \leq D_Z$. If $Q = Q_Z$, then $C_V(Q) = C_V(Q_Z) = Z$. Hence (1) holds in this case.

So suppose that $Q \neq Q_Z$. Since Q is P*-invariant, B.30 implies that either H = Sp(V), $|\mathbb{K}| = 2$, $\dim_{\mathbb{K}} V = 4$ and $Q = Q_Z \cap H'$ or H = O(V) and $\dim V = 4$. In the first case (2) holds.

So suppose H = O(V). If the quadratic form h is of -type, then $H^{\diamond} \cong L_2(|\mathbb{K}|^2)$ and so P^* acts simply on Q_Z . Thus h is of +type and $H^{\diamond} = H_1H_2$ with $H_i \cong SL_2(\mathbb{K})$ and $[H_1, H_2] = 1$. Note that $P^* \cap H_i$ acts simply on $Q_Z \cap H_i$. If $|\mathbb{K}| > 3$, then $[Q_Z, P^* \cap H_i] = Q_Z \cap H_i$ and we conclude that $Q = H_i \cap Q_Z$ for some $i \in \{1, 2\}$. Thus (4) holds in this case. If $|\mathbb{K}| \leq 3$, then $|Q_Z| = p^2$, |Q| = p and and since $[Z^{\perp}, Q] \leq Z$, X is 2-dimensional over \mathbb{K} . If $Q = Q_Z \cap H_i$ for some $1 \leq i \leq 2$, then again (4) holds. Otherwise X is non-singular and contains a non-singular 1-space Y. By Q!, $Q \leq C_{H^{\diamond}}(Y)$, a contradiction since $C_{H^{\diamond}}(Y) \cong \Omega_3(\mathbb{K}) \cong L_2(\mathbb{K})$ and so does not have any non-trivial normal p-subgroups. This completes the case where Q centralizes Z^{\perp}/Z .

Suppose now that Q does not centralizes Z^{\perp}/Z . Since $C_Z(Q) \neq 0$, Q! implies that P normalizes Q. In particular, $[Q, P] \leq Q \cap P \leq Q_Z$ and P does not act simply on Z^{\perp}/Z . By B.28 P induces SL(V/Z), $Sp(Z^{\perp}/Z)$, $SU(Z^{\perp}/Z)$ and $\Omega(Z^{\perp}/Z)$, respectively, on Z^{\perp}/Z . Moreover, B.29 shows that $\dim_{\mathbb{K}} V = 4$ and H = GU(V) or H = O(V). In either case since $Z^{\perp}/Z \cong Q_Z/D_Z$ as an P-module, $[Q, Q_Z] \leq D_Z$. Note also that $[Q, Q_Z] \neq Q_Z$.

Suppose H = GU(V). Then B.30 (with $T := [Q, Q_Z]$) shows that $D_Z \leq [Q, Q_Z], [Q, Q_Z]/D_Z$ is a natural $SL_2(\mathbb{F})$ -module for P and either $Q \cap Q_Z = [Q, Q_Z]$ or $Q \cap Q_Z = Q_Z$. By B.29(a) all P-submodules of Z^{\perp}/Z are \mathbb{F} -subspaces. It follows that $[Z^{\perp}/Z, Q]$ is a non-trivial \mathbb{F} -subspace centralized by Q, and so Q acts \mathbb{F} -linearly on \mathbb{K} . Hence $|Q/C_Q(\mathbb{K})| \leq 2$. By B.29(a) Z^{\perp}/Z is a simple $\mathbb{K}P$ -module. Thus $C_Q(\mathbb{K})$ centralizes Z^{\perp}/Z . As seen above $Q^* \leq Q_Z$, and we conclude that $C_Q(\mathbb{K}) = Q \cap Q_Z$. Together with $Q \leq Q_Z$ this gives $|Q/Q \cap Q_Z| = 2$ and so p = 2 and $H^{\diamond}Q \cong O_{6}^{-}(\mathbb{F})$. Since $C_{V}(Q \cap Q_{Z})$ is an K-subspace normalized by P and Z^{\perp}/Z is a simple KP-module, $C_{V}(Q \cap Q_{Z}) = Z$. Thus $Z = \langle \mathbb{K}C_{V}(Q) \rangle$ and (3) holds.

Suppose H = O(V). If h is of --type then $\Omega(Z^{\perp}/Z)$ has order $|\mathbb{K}| + 1$ or $(|\mathbb{K}| + 1)/2$ depending on p = 2 or p odd. It follows that Z^{\perp}/Z is a simple P-module unless $|\mathbb{K}| = 3$. In the latter case Q acts \mathbb{K} -linearly on V. Hence $Q \leq H$. As $Q_Z \in Syl_p(H)$ this gives $Q \leq Q_Z$, a contradiction.

Thus h is of +-type and $H^{\diamond} = H_1 H_2$ with $H_i \cong SL_2(\mathbb{K})$ and $[H_1, H_2] = 1$.

For $i \in \{1, 2\}$ define $Z_i := C_V(Q_Z \cap H_i)$. Let $z_k, 0 \leq k \leq 3$, be non-zero singular vectors in V such that $z_0 \in Z, z_1 \in Z_1 \setminus Z, z_2 \in Z_2 \setminus Z, f(z_0, z_3) = f(z_1, z_2) = 1$ and $f(z_k, z_l) = 0$ for all other $0 \leq k \leq l \leq 3$. For $\lambda \in \mathbb{K}^{\sharp}$ define $a_{\lambda} \in GL_{\mathbb{K}}(V)$ by

$$z_0^{a_\lambda} = z_0, \quad z_1^{a_\lambda} = \lambda z_1, \quad z_2^{a_\lambda} = \lambda^{-1} z_2, \quad z_3^{a_\lambda} = z_3.$$

Observe that a_{λ} is an isometry, and since H/H^{\diamond} is elementary abelian, $a_{\lambda}^{2} \in H^{\diamond}$ and $a_{\lambda}^{2} \in P$. It follows that Z_{i}/Z is a simple $\mathbb{F}_{p}P$ -module. Since P normalizes $N_{Q}(H_{i})$, we conclude that $N_{Q}(H_{i})$ centralizes Z_{i}/Z . Together with $N_{Q}(H_{1}) = N_{Q}(H_{2})$ this shows that $N_{Q}(H_{1})$ centralizes Z^{\perp}/Z and so $N_{Q}(H_{i}) \leq Q^{*} \leq Q_{Z}$. Thus $N_{Q}(H_{i}) = Q \cap Q_{z}$, $|Q/Q_{\Omega}Q_{Z}| = 2$ and p = 2.

Suppose that $|\mathbb{K}| = 2$. Then $H^{\diamond}Q = H$. Since $1 \neq [Q_Z, Q] \leq Q_Z \cap Q$ we have $|Q| \geq 4$. Let y be a non-singular vector of V. Then $C_H(y) \cong C_2 \times SL_2(2)$. Thus $O_2(C_H(y)) = 2$ and $Q \not \equiv C_H(y)$. Hence Q! implies $y \notin C_V(Q)$, and so $C_V(Q)$ is singular. It follows $C_V(Q) = Z$ and $Q \cong C_4$ or D_8 , and (5) holds.

Suppose that $|\mathbb{K}| \ge 4$. Then a_{λ} has odd order and so $a_{\lambda} \in P$ for all $\lambda \in \mathbb{K}^{\sharp}$. Note that a_{λ} acts as a scalar multiplication by λ and λ^{-1} on Z_1/Z and Z_2/Z , respectively. Since $|\mathbb{K}| \ge 4$ there exists $\lambda \in \mathbb{K}$ with $\lambda \neq \lambda^{-1}$. Thus Z_1/Z and Z_2/Z are non-isomorphic as $\mathbb{K}P/Q_Z$ -module. Since $Q \neq Q \cap Q_Z = N_Q(H_1)$ we have $Z_1^Q = \{Z_1, Z_2\}$. We conclude that Z^{\perp}/Z is a simple $\mathbb{K}PQ$ -module. It follows that $C_Q(\mathbb{K}) \le Q^* \le Q_Z$ and so Q does not act \mathbb{K} -linearly on V. Moreover, as Z^{\perp}/Z is not a simple \mathbb{F}_2PQ -module, we infer that Z_1/Z and Z_2/Z are isomorphic as \mathbb{F}_2P -modules, and so there exists an \mathbb{F}_2P -isomorphism ϕ from Z_1/Z to Z_2/Z . The action of a_{λ} on Z_1/Z and Z_2/Z shows that $\mathbb{K} = End_{\mathbb{F}_2P}(Z_i/Z)$, and ϕ induces a field automorphism σ on \mathbb{K} with $\lambda^{\sigma} = \lambda^{-1}$ for all λ in \mathbb{K}^{\sharp} . It follows that $\sigma^2 = 1$, $C_{\mathbb{K}}(\sigma) = \mathbb{F}_2$ and $\mathbb{K} = \mathbb{F}_4$.

Let $\lambda \in \mathbb{K} \setminus \mathbb{F}_2$ and put $d := a_{\lambda}$. Then d is an element of order three in P, and d acts fixed-point freely on Q_Z and so also on $Q_Z \cap Q$. Since $|Q_Z/Q_Z \cap Q| = 2$ we conclude that there exists $t \in Q$ with $Q = (Q_Z \cap Q) \langle t \rangle$, [t,d] = 1 and |t| = 2. Now $Q \cap Q_Z = N_Q(H_1)$ implies $H_1^t = H_2$. Hence $H^{\diamond}Q = H^{\diamond} \langle t \rangle \cong SL_2(4) \wr C_2 \cong H$. As Q does not act \mathbb{K} -linearly $H^{\diamond}Q \neq H$. Note that $[Q_Z, t] \leqslant Q$ and so by the action of d either $Q = Q_Z \langle t \rangle$ or $Q = [Q_Z, t] \langle t \rangle = C_{Q_Z}(t) \langle t \rangle$. In either case, Q! or equally well the action of $C_{H^{\diamond}}(t)$ on V show that $C_V(Q) = C_Z(Q)$ has order 2, and so (6) holds. \Box

LEMMA B.38. Let Q be a p-subgroup of $GL_{\mathbb{F}_p}(V)$ normalizing H^{\diamond} and U a K-subspace of V. Put

 $E_U := \langle Q^g \mid g \in H^\diamond, C_U(Q^g) \neq 0 \rangle, \quad F_U := \langle (Q \cap H^\diamond)^g \mid g \in H^\diamond, C_U(Q^g) \neq 0 \rangle \quad and \quad W := \langle \mathcal{S}(U) \rangle.$ Suppose that

- (i) $\dim_{\mathbb{K}} V \ge 3$ if V is a linear space, $\dim_{\mathbb{K}} V \ge 4$ if V is a symplectic or unitary space, and $\dim_{\mathbb{K}} V \ge 5$ if V is an orthogonal space.
- (ii) V is a Q!-module for $H^{\diamond}Q$ with respect to Q.

If W is not singular, then $E_U = \langle Q^{H^{\diamond}} \rangle$ and $V = \langle U^{E_U} \rangle$. If W is singular, then each of the following hold:

- (a) $W \leq U \leq W^{\perp}$ and F_U normalizes U and W.
- (b) F_U centralizes W^{\perp}/W .
- (c) W is a natural $SL_{\mathbb{K}}(W)$ -module for F_U .
- (d) Let T be a proper, non-zero \mathbb{K} -subspace of V. Then F_U normalizes T if and only if $W \leq T \leq W^{\perp}$.
- (e) If $E_U \neq F_U$, then $H^\diamond = SU_4(\mathbb{F})$, E_U normalizes W, and either $\dim_{\mathbb{K}} W = 1$, $F_U = Q_W = C_{E_U}(W)$ and $E_U/F_U \cong O_2^-(\mathbb{F})$, or $\dim_{\mathbb{K}} W = 2$, U = W, $|E_U/F_U| = 2$ and $E_U/C_{E_U}(W) \cong O_4^-(\mathbb{F})$.

PROOF. Put $X := \langle \mathbb{K}C_V(Q) \rangle$. Note that we can apply B.37; in particular, $V^{\perp} = 0$ if V is an orthogonal space. In the last three cases of B.37 V is a 4-dimensional orthogonal space, a contradiction to Hypothesis (i). In the other cases $X \in \mathcal{S}(V)$, and one of the following holds:

(A) $Q = Q_X$.

(B) $H = H^{\diamond} = Sp_4(2)$ and $Q = Q_X \cap H'$.

(C) $H^{\diamond} = SU_4(\mathbb{F}), \ H^{\diamond}Q \cong O_6^-(\mathbb{F}), \ |Q/Q \cap Q_X| = 2 \text{ and } D_X < Q \cap Q_X.$

If V is a linear space then $X = C_V(Q_X)$, and if V is not a linear space then by B.23(g) $C_V(Q_X) = X + V^{\perp}$ and again $C_V(Q_X) = X$ since $V^{\perp} = 0$.

Note that $Q \leq E_X$, $Q \cap Q_X \leq F_X$ and $N_{H^{\diamond}}(X)$ normalizes F_X . Let $g \in H^{\diamond}$. If $C_X(Q^g) \neq 0$, then $X = \langle \mathbb{K}C_V(Q^g) \rangle$ and so Q^g normalizes X. If Q^g normalizes X, the $C_X(Q^g) \neq 0$. This shows that

$$E_X = \langle Q^g \mid g \in H^\diamond, Q^g \leqslant N_H(X) \rangle \quad \text{and} \quad F_X = \langle Q^g \cap H^\diamond \mid g \in H^\diamond, Q^g \leqslant N_{H^\diamond}(X) \rangle.$$

In case (A), $Q = Q_X \leq H^{\diamond}$ and so $E_X = F_X = Q_X$. In particular, $C_V(F_X) = C_V(Q_X) = X$ and $\langle Q^{H^{\diamond}} \rangle = H^{\diamond}$.

In case (B), $Q = Q_X \cap H' \leq H^{\diamond}$ and so $E_X = F_X = Q_X \cap H'$. Observe that $D_X \leq H'$, so $Q_X = F_X D_X$. Since Q_X acts regularly on $V \setminus Z^{\perp}$, $C_V(F_X) \leq Z^{\perp} = C_V(D_X)$. Thus $C_V(F_X) = C_V(F_X D_X) = C_V(Q_X) = X$. Since $Sp_4(2)'$ is simple, $\langle Q^{H^{\diamond}} \rangle = H'$ and so $D_X \langle Q^{H^{\diamond}} \rangle = D_X H' = H = H^{\diamond}$.

In case (C) $Q \leq H^{\diamond}$ and $|Q/Q \cap Q_X| = 2$. Thus $Q \cap H^{\diamond} = Q \cap Q_X$. By B.30(c) Q_X/D_X is a simple $N_{H^{\diamond}}(X)$ -module. As $D_X < Q \cap H^{\diamond} \leq Q_X$ and $N_{H^{\diamond}}(X)$ normalizes F_X , this gives $F_X = Q_X$. Thus $C_V(F_X) = C_V(Q_X) = X$, $H^{\diamond} = \langle F_X^{H^{\diamond}} \rangle$ and $H^{\diamond}Q = \langle Q^{H^{\diamond}} \rangle$.

In each case we have proved:

(*)
$$H^{\diamond}Q = D_X \langle Q^{H^{\diamond}} \rangle, \quad Q_X = D_X F_X \text{ and } C_V(F_X) = X.$$

Let $Z \in \mathcal{S}(V)$. By B.26(b) H^{\diamond} acts transitively on $\mathcal{S}(V)$. Thus (*) holds for Z in place of X.

Let $g \in H^{\diamond}$. Since U is an K-subspace and $\langle \mathbb{K}C_V(Q^g) \rangle = X^g$ is a 1-dimensional singular subspace of V, we see that $C_U(Q^g) \neq 0$ if and only if $X^g \leq U$ and if and only if $C_Z(Q^g) \neq 0$ for some $Z \in \mathcal{S}(U)$. It follows that

$$E_U = \langle E_Z \mid Z \in \mathcal{S}(U) \rangle$$
 and $F_U = \langle F_Z \mid Z \in \mathcal{S}(U) \rangle.$

Observe that $\mathcal{S}(U) = \mathcal{S}(W)$. Thus

$$(**) E_U = \langle E_Z \mid Z \in \mathcal{S}(W) \rangle = E_W and F_U = \langle F_Z \mid Z \in \mathcal{S}(W) \rangle = F_W$$

If W = 0 then $E_U = E_W = 1$ and $F_U = F_W = 1$, and the lemma holds in this case. So suppose that $W \neq 0$ and without loss that $X \leq W$.

Suppose first that W is not singular and choose $Y, Z \in \mathcal{S}(U)$ with $Z \leq Y^{\perp}$. Then by B.26 $\langle Q_Y, Q_Z \rangle = H^{\diamond}$. Since $[V, D_Y] \leq Y$, D_Y normalizes Y + Z and so also E_{Y+Z} . Since $F_Y \leq E_{Y+Z}$ and $Q_Y = D_Y F_Y$, we conclude that Q_Y normalizes E_{Y+Z} . By symmetry Q_Z normalizes E_{Y+Z} . Pick $g \in H^{\diamond}$ with $X^g = Z$. Then $Q^g \leq E_{Y+Z}$, and we get

$$E_{Y+Z} \leq \langle Q_Y, Q_Z \rangle Q^g = H^\diamond Q^g = H^\diamond Q.$$

Thus $\langle Q^{H^{\diamond}} \rangle = E_{X+Y} = E_U$. By (*) $H^{\diamond}Q = D_X \langle Q^{H^{\diamond}} \rangle = D_X E_U$, so

$$V = \langle \mathcal{S}(V) \rangle = \langle X^{H^{\diamond}} \rangle \leqslant \langle X^{D_X E(U)} \rangle = \langle X^{E_U} \rangle \leqslant \langle U^{E_U} \rangle.$$

Hence $V = \langle U^{E_U} \rangle$, and the lemma holds in this case.

Suppose now that W is singular.

(a) and (b): By B.13 W = U or W = rad(U). In either case $W \leq U \leq W^{\perp}$. Let $Z \in \mathcal{S}(W)$. Then $Z \leq W \leq W^{\perp} \leq Z^{\perp}$. Since $F_Z \leq Q_Z$ and Q_Z centralizes Z^{\perp}/Z we conclude that F_Z normalizes W and centralizes W^{\perp}/W . By (**), $F_U = \langle F_Z \mid Z \in \mathcal{S}(W) \rangle$. Hence also F_U normalize W and centralizes W^{\perp}/W . Thus (a) and (b) hold.

(c): Let $Z \in \mathcal{S}(W)$. Then $W \leq Z^{\perp} \leq C_V(D_Z)$. As by (*) $Q_Z = D_Z F_Z$, this gives $Q_Z = C_{Q_Z}(W)F_Z$. Let $\beta \in Hom_{\mathbb{K}}(W,Z)$ with $Z \leq \ker \beta$. Since $W \leq Z^{\perp}$ and $W \cap R(V) = 0$ we can choose $\tau \in Hom_{\mathbb{K}}(Z^{\perp},Z)$ with $Z + R(V) \leq \ker \tau$ and $\tau \mid_W = \beta$. By B.24 there exists $q \in Q_Z$ with

 $u^q = u + u\tau$ for all $u \in Z^{\perp}$ and so $w^q = w + w\beta$ for all $w \in W$. Hence Q_Z induces all possible transvections with center Z on W. Note that this also holds for F_Z in place of Q_Z , since, as seen above, $Q_Z = F_Z C_{Q_Z}(W)$.

Since $Z \in \mathcal{S}(W)$ was arbitrary and $SL_{\mathbb{K}}(W)$ is generated by its transvections, we conclude that F_U induces $SL_{\mathbb{K}}(W)$ on W. Thus (c) is proved.

(d): Let T be any proper non-zero \mathbb{K} -subspace of V and $Z \in \mathcal{S}(W)$. If $W \leq T \leq W^{\perp}$ then F_U normalizes T since by (b) F_U centralizes W^{\perp}/W . Conversely, suppose F_U normalizes T. Then $C_T(F_Z) \neq 0$. By (*) $C_V(F_Z) = Z$. Since Z is 1-dimensional we conclude that $Z \leq T$. As $Z \in \mathcal{S}(W)$ was arbitrary, we conclude that $W \leq T$. It remains to show that $T \leq W^{\perp}$. This is obvious if $W^{\perp} = V$. Thus, we may assume that V is not a linear space. Then also T^{\perp} is a proper, non-zero F_U -invariant \mathbb{K} -subspace of V and thus $W \leq T^{\perp}$. Hence $T \leq W^{\perp}$.

(e): Since $E_U \neq F_U$ we have $Q \notin H^{\diamond}$. Thus (C) holds. In particular, $\dim_{\mathbb{K}} V = 4$ and so $\dim_{\mathbb{K}} W \leq 2$. Let L be the largest subgroup of $H^{\diamond}Q$ normalizing X and acting trivially on $\mathcal{S}(X^{\perp}/X)$. We claim that $Q \leq L$. Since $X = \langle \mathbb{K}C_V(Q) \rangle$, Q normalizes X. By B.12(c) applied to X^{\perp}/X , Q fixes at least one element of $\mathcal{S}(X^{\perp}/X)$. Also $C_{H^{\diamond}}(X)$ induces $SU(X^{\perp}/X)$ on X^{\perp}/X and so acts transitively on $\mathcal{S}(X^{\perp}/X)$. By Q!, $C_{H^{\diamond}}(X)$ normalizes Q. Thus Q acts trivially on $\mathcal{S}(X^{\perp}/X)$ and so $Q \leq L$. It follows that $E_X \leq L$.

Suppose that $\dim_{\mathbb{K}} W = 1$. Then W = X (but not necessarily W = U). Let $l \in L \cap H^{\diamond}$. Then l acts \mathbb{K} -linearly on X^{\perp}/X and fixes the $|\mathbb{F}| + 1$ elements of $\mathcal{S}(X^{\perp}/X)$. It follows that there exists $\lambda \in \mathbb{K}^{\sharp}$ such that l acts as scalar multiplication by λ on X^{\perp}/X . Let $\mu \in \mathbb{K}^{\sharp}$ such that l acts as scalar multiplication by μ on X. Since f is l-invariant, $\lambda^{\alpha}\lambda = 1$ and l acts as scalar multiplication by $\mu^{-\alpha}$ on V/X^{\perp} . Since $l \in H^{\diamond} = SU_{\mathbb{K}}(V)$, det l = 1 and so $\lambda^2 = \mu^{-1}\mu^{\alpha}$. Conversely, since p = 2, for any $\mu \in \mathbb{K}^{\sharp}$ there exists a unique $\lambda \in \mathbb{K}^{\sharp}$ with $\lambda^2 = \mu^{-1}\mu^{\alpha}$, and then, since $\alpha^2 = 1$,

$$(\lambda^{\alpha}\lambda)^2 = (\mu^{-1}\mu^{\alpha})^{\alpha}(\mu^{-1}\mu^{\alpha}) = 1$$
 and $\lambda^{\alpha}\lambda = 1$.
then $\lambda = 1$. Hence $C_{\tau}(X) = C_{\tau}(X) = C_{\tau}(X^{\perp}/X) = O_{\tau}$.

In particular, if $\mu = 1$ then $\lambda = 1$. Hence $C_L(X) = C_L(X) \cap C_L(X^{\perp}/X) = Q_X$ and

$$(L \cap H^\diamond)/Q_X \cong \mathbb{K}^{\mathfrak{g}} \cong C_{q^2-1} \cong C_{q-1} \times C_{q+1}.$$

Note that the elements in $L \setminus H^{\diamond}$ act α -semilinear on V and so centralize the first factor and invert the second one of the above decomposition of $(L \cap H^{\diamond})/Q_X$. Recall that $F_X = Q_X$ in case (C). So $F_U = F_W = F_X = Q_X$ and $E_U = E_W = E_X \preccurlyeq L$. From $Q \leqslant L \leqslant H^{\diamond}Q$ we get $L = (L \cap H^{\diamond})Q$. Since $Q/Q \cap Q_X$ has order 2 we conclude that $L/Q_X \cong C_{q-1} \times Dih_{q+1}$. Moreover, E_U/Q_X is a normal subgroup of L/Q_X generated by involutions. Thus $E_U/Q_X \cong Dih_{2(q+1)} \cong O_2^-(\mathbb{F})$, and (e) holds in this case.

Suppose next that $\dim_{\mathbb{K}} W = 2$. Then $W = W^{\perp}$. By (a) $W \leq U \leq W^{\perp}$ and so W = U. Note that $W/X \in \mathcal{S}(X^{\perp}/X)$. Since $Q \leq L$, we conclude that Q normalizes W. Thus E_U normalizes W. By (c), W is a natural $SL_2(\mathbb{K})$ -module for F_U . So F_U acts transitively on W, and Q! implies $E_U = \langle Q^{F_U} \rangle = QF_U$, see A.50(d). Thus $|E_U/F_U| = |Q/Q \cap F_U| = |Q/Q \cap Q_X| = 2$. As the elements of $Q \setminus Q_X$ act α -semilinearly on W, we conclude that $E_U/C_{E_U}(W) \cong O_4^-(\mathbb{F})$ and so (e) also holds in this case.

APPENDIX C

FF-Module Theorems and Related Results

C.1. FF-Module Theorems

DEFINITION C.1. A finite group M is $C\mathcal{K}$ -group if each composition factor of M is one of the known finite simple groups.

THEOREM C.2 (General FF-Module Theorem, [MS5]). Let M be a finite $C\mathcal{K}$ -group with $O_p(M) = 1$ and V be a faithful finite dimensional $\mathbb{F}_p M$ -module. Suppose that $J := J_M(V) \neq 1$. Then for $\mathcal{J} := \mathcal{J}_M(V), W := [V, \mathcal{J}] + C_V(\mathcal{J})/C_V(\mathcal{J}), K \in \mathcal{J}$ and $\overline{J} := J/C_J([W, K])$ the following hold:

- (a) K is either quasisimple, or p = 2 or 3 and $K \cong SL_2(p)'$.
- (b) [V, K, L] = 0 for all $K \neq L \in \mathcal{J}$, and $W = \bigoplus_{K \in \mathcal{J}} [W, K]$.
- (c) $J^p J' = O^p(J) = F^*(J) = \times_{K \in \mathcal{K}} K.$
- (d) W is a faithful semisimple $\mathbb{F}_p J$ -module.
- (e) If $A \leq M$ is a best offender on V, then A is a best offender on W.
- (f) $\overline{K} = \overline{F^*(J)} = O^p(\overline{J})$ and $C_J([W, K]) = C_J([V, K]).$
- (g) Either [W, K] is a simple $\mathbb{F}_p K$ -module, or one of the following holds, where q is a power of p:
 - (1) $\overline{J} \cong SL_n(q), n \ge 3$, and $[W, K] \cong N^r \oplus N^{*s}$, where N is a natural $SL_n(q)$ -module, H its dual, and r, s are integers with $0 \le r, s < n$ and $\sqrt{r} + \sqrt{s} \le \sqrt{n}$.
 - (2) $\overline{J} \cong Sp_{2m}(q), m \ge 3$, and $[W, K] \cong N^r$, where N is a natural $Sp_{2m}(q)$ -module and r is a positive integer with $2r \le m+1$.
 - (3) $\overline{J} \cong SU_n(q), n \ge 8$, and $[W, K] \cong N^r$, where N is a natural $SU_n(q)$ -module and r is a positive integer with $4r \le n$.
 - (4) $\overline{J} \cong \Omega_n^{\epsilon}(q)$ with p odd if n is odd, or $\overline{J} \cong O_n^{\epsilon}(q)$ with p = 2 and n even.¹ Moreover, $n \ge 10$ and $[W, K] \cong N^r$, where N is a natural $\Omega_n^{\epsilon}(q)$ -module and r is a positive integer with $4r \le n-2$.
- (h) If [W, K] is not a homogeneous $\mathbb{F}_p K$ module, then (g:1) holds with $r \neq 0 \neq s$ and $n \geq 4$.

THEOREM C.3 (**FF-Module Theorem**, [**MS5**]). Let $M \neq 1$ be a finite $C\mathcal{K}$ -group and V be a faithful \mathbb{F}_pM -module. Put

 $\mathcal{D} := \{A \leq M \mid \text{there exists } 1 \neq B \leq A \text{ such that } [V, B, A] = 0 \text{ and } A \text{ and } B \text{ are offenders on } V\}^2$. Suppose that V is a simple $\mathbb{F}_p J_M(V)$ -module and $M = \langle \mathcal{D} \rangle$. Then one of the following holds, where q is a power of p:

- (1) $M \cong SL_n(q), n \ge 2$, and V is a natural $SL_n(q)$ -module.
- (2) $M \cong Sp_{2n}(q), n \ge 1$, and V is a natural $Sp_{2n}(q)$ -module.
- (3) $M \cong SU_n(q), n \ge 4$, and V is a natural $SU_n(q)$ -module.
- (4) $M \cong \Omega_{2n}^+(q)$ for $2n \ge 6$, $M \cong \Omega_{2n}^-(q)$ for p = 2 and $2n \ge 6$, $M \cong \Omega_{2n}^-(q)$ for p odd and $2n \ge 8$, $M \cong \Omega_{2n+1}(q)$ for p odd and $2n + 1 \ge 7$, $M \cong O_4^-(2)$, or $M \cong O_{2n}^\epsilon(q)$ for p = 2 and $2n \ge 6$, and V is a corresponding natural module.
- (5) $M \cong G_2(q), p = 2$, and V is a natural $G_2(q)$ -module (of order q^6).
- (6) $M \cong SL_n(q)/\langle -id^{n-1} \rangle$, $n \ge 5$, and V is the exterior square of a natural $SL_n(q)$ -module.
- (7) $M \cong Spin_7(q)$, and V is a spin module of order q^8 .

¹The odd-dimensional orthogonal groups in characteristic 2 are covered in case (g:2).

² Note here that \mathcal{D} contains all quadratic offenders and by the Timmesfeld Replacement Theorem [**KS**, 9.2.3], also all best offenders in M on V.

- (8) $M \cong Spin_{10}^+(q)$, and V is a half-spin module of order q^{16} .
- (9) $M \cong 3 \cdot Alt(6), p = 2 and |V| = 2^6.$
- (10) $M \cong Alt(7), p = 2, and |V| = 2^4.$
- (11) $M \cong Sym(n), p = 2, n \text{ odd}, n \ge 3, and V \text{ is a natural } Sym(n)\text{-module}.$
- (12) $M \cong Alt(n)$ or Sym(n), p = 2, n is even, $n \ge 6$, and V is a corresponding natural module.

THEOREM C.4 (Best Offender Theorem, [MS5]). Let $M \neq 1$ be a finite group, $T \in Syl_p(M)$, and V be a faithful \mathbb{F}_pM -module, and let $A \leq T$ be a non-trivial offender on V.

- (a) Suppose that M ≈ G₂(q), p = 2, and V is a natural G₂(q)-module. Then N_M(A) is a maximal Lie-parabolic subgroup, |A| = |V/C_V(A)| = q³, [V, A] = C_V(A), and C_T(A) = A.
 (b) Suppose that M ≈ SL_n(q)/⟨-idⁿ⁻¹⟩, n ≥ 5, and V is the exterior square of a natural
- (b) Suppose that M ≅ SL_n(q)/⟨-idⁿ⁻¹⟩, n ≥ 5, and V is the exterior square of a natural SL_n(q)-module W. Let U be the (unique) T-invariant F_q-hyperplane of W. Then A = C_M(U). In particular, A is uniquely determined in T, C_T(A) = A, [V, A] = C_V(A) and |V/C_V(A)| = |A| = qⁿ⁻¹.
- (c) Suppose that $M \cong Spin_7(q)$, and V is a spin module of order q^8 . Then $C_V(A) = [V, A]$, $|V/C_V(A)| = q^4 \leq |A| \leq q^5$, and if A is maximal, then $|A| = q^5$, $C_T(A) = A$, $O^{p'}(N_M(A))/A \cong Sp_4(q)$, and A is uniquely determined in T.
- (d) Suppose that $M \cong Spin_{10}^+(q)$, and V is a half-spin module of order q^{16} . Then $[V, A] = C_V(A)$, $q^8 = |A| = |V/C_V(A)|$, $O^{p'}(N_M(A)/A) \cong Spin_8^+(q)$, and A is uniquely determined in T.
- (e) Suppose that $M \cong 3$ ·Alt(6), p = 2 and $|V| = 2^6$. Then $[V, A] = C_V(A)$, $|[V, A]| = |C_V(A)| = 16$, $|V/C_V(A)| = |A| = 4$, and A is uniquely determined in T.
- (f) Suppose that $M \cong Alt(7)$, p = 2 and $|V| = 2^4$. Then $[V, A] = C_V(A)$, $|[V, A]| = |C_V(A)| = 4$, $|V/C_V(A)| = |A| = 4$, and A is uniquely determined in T.
- (g) Suppose that M ≈ Sym(n), p = 2, n odd, and V is a natural Sym(n)-module. Then every offender on V is a quadratic best offender, A is generated by commuting transpositions and |V/C_V(A)| = |[V, A]| = |A|.
- (h) Suppose that $M \cong Alt(n)$ or Sym(n), p = 2, n is even, $n \ge 6$, and V is a corresponding natural module. Then every offender on V is a best offender, and there exists a set of pairwise commuting transpositions t_1, \ldots, t_k such that one of the following holds:
 - (1) $A = \langle t_1, \dots, t_k \rangle$, and either $n \neq 2k$, $[V, A] \leq C_V(A)$ and $|[V, A]| = |V/C_V(A)| = |A|$ or n = 2k, $[V, A] = C_V(A)$ and $2|V/C_V(A)| = |A|$.
 - (2) n = 2k and $A = \langle t_1 t_2, t_2 t_3 \dots, t_{l-1} t_l, t_{l+1}, t_{l+2}, \dots, t_k \rangle$ for some $2 \leq l \leq k$, $[V, A] = C_V(A)$ and $|V/C_V(A)| = |A|$.
 - (3) n = 2k and $A = \langle t_1t_2, s_1s_2, t_3, t_4, \dots, t_k \rangle$, where s_1, s_2 are transpositions distinct from t_1 and t_2 and s_1s_2 moves the same four symbols as t_1t_2 , A is not quadratic and $|[V, A]| = |V/C_V(A)| = |A|$.
 - (4) n = 8 = |A|, A acts regularly on $\{1, 2, \dots, 8\}$, $[V, A] = C_V(A)$ and $|V/C_V(A)| = |A|$.

In particular, if $A \leq Alt(n)$ and $n \neq 8$, then n = 2k and $A = \langle t_1t_2, t_2t_3, \dots, t_{k-1}t_k \rangle$.

The next result essentially is [MS6, 3.1]. We just use a slightly different hypothesis.

THEOREM C.5 (Strong Dual FF-Module Theorem, [MS6, 3.1]). Let M be a finite $C\mathcal{K}$ group, and let V be a faithful $\mathbb{F}_p M$ -module. Let \mathcal{A} be the set of strong dual offenders in M on V. Suppose that $M = \langle \mathcal{A} \rangle$ and that

(i) V is a simple M-module, or

(ii) $C_V(M) = 0, V = [V, M]$, and there exists $B \in \mathcal{A}$ with $M = \langle B^M \rangle$.

Then V is a simple M-module, and one of the following holds, where q is a power of p.

- (1) $M \cong SL_n(q), n \ge 2$, or $Sp_{2n}(q), n \ge 2$, and V is a corresponding natural module.
- (2) $p = 2, M \cong Alt(6) \text{ or } Alt(7), V \text{ is a spin-module of order } 2^4, \text{ and } A \cong \langle (12)(34), (13)(24) \rangle$ for all $A \in \mathcal{A}^{3}$
- (3) $p = 2, M \cong O_{2n}^{\epsilon}(2), n \ge 3$, or Sym(n), n = 5 or $n \ge 7, V$ is a corresponding natural module, and |A| = 2 for all $A \in A$.

³Note that in the Alt(6)-case, V might also be viewed as a natural Alt(6)-module with $A \cong \langle (12)(34), (34)(56) \rangle \rangle$.

PROOF. By A.32(c) strong dual offenders are best offender. Thus

1°. A is a best offender for every $A \in \mathcal{A}$.

It follows that $\langle \mathcal{A} \rangle \leq J_M(V)$, and $M = \langle \mathcal{A} \rangle$ gives

 2° . $M = J_M(V)$.

Now let W be a non-zero M-submodule of V. If (i) holds, V is a simple M-module and so W = V. Assume that (ii) holds. Then there exists $B \in \mathcal{A}$ such that $M = \langle B^M \rangle$. Hence $C_V(M) = 0$ implies $[W, B] \neq 0$. Since B is a strong dual offender, this gives $[V, B] = [W, B] \leq W$, and so $[V, \langle B^M \rangle] = [V, M] \leq W$. Now [V, M] = V yields V = W. We have shown that always W = V and so

 3° . V is a simple M-module.

Observe that (2°) now shows that V is a simple $J_M(V)$ -module. Hence we can apply C.3 and get

4°. Either $F^*(M)$ is quasisimple and $|M/F^*(M)| \leq 2$, or $M \cong SL_2(q)$, q = 2 or 3, and V is a natural $SL_2(q)$ -module for M.

In the second case of (4°) , (1) holds. Thus we may assume the first case in (4°) . Since $M = \langle \mathcal{A} \rangle$ there exists $B \in \mathcal{A}$ such that $M = F^*(M)B$. Then, for any such $B, M = \langle B^M \rangle$ and the hypothesis of [**MS6**, 3.1] is fulfilled for M and B. Thus one of the following holds:

- (A) $M \cong SL_n(q), n \ge 2$, or $Sp_{2n}(q), n \ge 2$, and V is a corresponding natural module.
- (B) $p = 2, M \cong Alt(6)$ or Alt(7), V is a spin-module of order 2^4 , and $B \cong \langle (12)(34), (13)(24) \rangle$. (C) $p = 2, M \cong O_{2n}^{\epsilon}(2), n \ge 3$, or Sym(n), n = 5 or $n \ge 7, V$ is a corresponding natural module, and |B| = 2.

In case (A), (1) holds. In case (B), M is simple and so $M = F^*(M)A$ for all $A \in \mathcal{A}$ and so (2) holds.

So suppose (C) holds and let $A \in \mathcal{A}$. If $A \leq F^*(M)$, then $F^*(M) = \langle A^{F^*(M)} \rangle$ and we can apply [**MS6**, 3.1] to $F^*(M)$ and V and so one of (A)–(C) holds for $F^*(M)$ in place of M. But since (C) holds for M, $F^*(M) \cong \Omega_{2n}^{\epsilon}(2)$, $n \geq 3$, or Alt(n), n = 5 or $n \geq 7$, and V is a corresponding natural module, a contradiction. Thus $A \leq F^*(M)$, $F^*(M)A = M$, and (3) holds.

THEOREM C.6 (Strong FF-Module Theorem, [MS6, 3.2]). Let M be a finite $C\mathcal{K}$ -group such that $K := F^*(M)$ is quasisimple, and let V be a faithful simple $\mathbb{F}_p K$ -module. Suppose that $A \leq M$ is a strong offender on V and $M = \langle A^M \rangle$. Then one of the following holds, where q is a power of p:

- (1) $M \cong SL_n(q)$ or $Sp_{2n}(q)$ and V is a corresponding natural module.
- (2) $p = 2, M \cong Alt(6), 3$ ·Alt(6) or $Alt(7), |V| = 2^4, 2^6$ or 2^4 , respectively, and |A| = 4.
- (3) $p = 2, M \cong O_{2n}^{\epsilon}(2)$ or Sym(n), V is a corresponding natural module, and |A| = 2.

DEFINITION C.7. Let M be a finite group and V a faithful M-module. Recall the definition of a point-stabilizer of M on V from A.3. By $\mathcal{AP}_M(V)$ we denote the set of non-trivial best offenders A of M on V such that $A \leq O_p(P)$ for some point-stabilizer P of M on V.

THEOREM C.8 (Point-Stabilizer Theorem, [MS6, 3.5]). Let M be a finite $C\mathcal{K}$ -group with $O_p(M) = 1$ and let V be a faithful $\mathbb{F}_p M$ -module. Suppose that $M = \langle \mathcal{A}P_M(V) \rangle$ and that there exists a $J_M(V)$ -component K with V = [V, K] and $C_V(K) = 0$. Let $A \in \mathcal{A}P_M(V)$ and let P be a point-stabilizer for M on V with $A \leq O_p(P)$. Then the following hold:

- (a) $M \cong SL_n(q)$, $Sp_{2n}(q)$, $G_2(q)$ or Sym(n), q a power of p, where p = 2 in the last two cases, and $n \equiv 2, 3 \pmod{4}$ in the last case.
- (b) V is a corresponding natural module.
- (c) Put $\mathbb{F} := End_M(V)$, $q := |\mathbb{F}|$ and $Z := C_V(P)$. Then Z is 1-dimensional over \mathbb{F} , and one of the following holds:
 - (1) $M \cong SL_n(q), [V, A] = Z$, and $A = C_M(C_V(A)) \cap C_M(V/Z)$.
 - (2) $M \cong Sp_{2n}(q), Z \leq [V, A] \leq Z^{\perp}, and A = C_M(C_V(A)) \cap C_M(Z^{\perp}/Z).$

(3) $M \cong G_2(q), [V, A] = C_V(A), |V/C_V(A)| = |A| = q^3, and A \leq P.$

(4) $M \cong Sym(n), n \equiv 2,3 \pmod{4}, n > 6, |A| = 2, and A \leq P$.

(d) $|V/C_V(A)| = |A|$, and V is a simple $\mathbb{F}_p K$ -module.

THEOREM C.9 (General Point-Stabilizer Theorem, [MS6, 3.6]). Let M be a finite $C\mathcal{K}$ group with $O_p(M) = 1$ and let V be a faithful $\mathbb{F}_p M$ -module. Put $\mathcal{A}P := \mathcal{A}P_M(V)$ and suppose that $\mathcal{A}P \neq \emptyset$. Then there exists an M-invariant set \mathcal{N} of subnormal subgroups of M such that the following hold:

- (a) $\langle \mathcal{A}P \rangle = \bigotimes_{N \in \mathcal{N}} N$, and $N = \langle A \in \mathcal{A}P \mid A \leq N \rangle$ for all $N \in \mathcal{N}$.
- (b) For all $N_1 \neq N_2 \in \mathcal{N}$, $[V, N_1, N_2] = 0$.
- (c) Put $\overline{V} = V/C_V(\mathcal{N})$. Then $[\overline{V}, \mathcal{N}] = \bigoplus_{N \in \mathcal{N}} [\overline{V}, N]$.
- (d) Let $N \in \mathcal{N}$. Then $(N, [\overline{V}, N])$ satisfies the hypothesis of C.8 in place of (M, V).
- (e) For all $N \in \mathcal{N}$, $C_V(N) = C_V(O^p(N))$ and $[V, O^p(N)] = [V, N]$.
- (f) Let $A \in \mathcal{AP}$. Then
 - (a) $|V/C_V(A)| = |A|$,
 - (b) $A = \times_{N \in \mathcal{N}} A \cap N$,
 - (c) $A \cap N \in \mathcal{A}P$ for all $N \in \mathcal{N}$ with $A \cap N \neq 1$.

LEMMA C.10. Let L be a finite CK-group of characteristic p. Suppose that

- (i) $C_L(Z_L)$ is p-closed,
- (ii) P is a point-stabilizer of L on Z_L ,⁴
- (iii) $O_p(L) \leq R \leq O_p(P)$,
- (iv) A and Y are elementary abelian subgroup of R, and
- (v) A normalizes $Y, Z_L \leq Y$, and $A \cap O_p(L)$ centralizes Y.

Then the following hold:

- (a) $C_A(Y) = A \cap O_p(L) = C_A(Z_L)$. In particular, if $A \leq O_p(L)$ then $[Y, A] \neq 1$.
- (b) Suppose that A is a best offender on Y. Then (a) $|A/A \cap O_p(L)| = |Z_L/C_{Z_L}(A)| = |Y/C_Y(A)|,$ (b) $Y = C_Y(A)Z_L.$
- (c) Suppose that $A \in \mathcal{A}_R$. Then
 - (a) A is a best offender on Y and on Z_L ,
 - (b) $Z_L(A \cap O_p(L)) \in \mathcal{A}_R \cap \mathcal{A}_{O_p(L)},$
 - (c) $Y = (A \cap Y)Z_L$.
- (d) $\mathcal{A}_{O_p(L)} \subseteq \mathcal{A}_R$. In particular, $J(O_p(L)) \leq J(R)$.
- (e) $\Omega_1 Z(J(R)) \leq \Omega_1 Z(J(O_p(L))).$
- (f) $[\Omega_1 Z(J(R)), \langle J(R)^L \rangle] \leq [\Omega_1 Z(J(O_p(L))), \langle J(R)^L \rangle] \leq Z_L.$

PROOF. (a): Note that $O_p(L)$ centralizes Z_L . As $C_L(Z_L)$ is *p*-closed we get that $O^{p'}(C_L(Z_L)) = O_p(L)$. Thus $C_A(Z_L) = A \cap O_p(L)$. Now $Z_L \leq Y$ and $[Y, A \cap O_p(L)] = 1$ give $A \cap O_p(L) \leq C_A(Y) \leq C_A(Z_L) = A \cap O_p(L)$, and so (a) holds.

(b): Since A is a best offender on Y, A.31 shows that A is a best offender on Z_L . By 1.24(i), Z_L is p-reduced for L and thus $O_p(L/C_L(Z_L)) = 1$. Also $A \leq R \leq O_p(P)$, and so C.9 shows that $|Z_L/C_{Z_L}(A)| = |A/C_A(Z_L)|$. Thus using (a) and that A is an offender on Z_L :

$$|A/A \cap O_p(L)| = |A/C_A(Z_L)| = |Z_L/C_{Z_L}(A)| = |Z_L/Z_L \cap C_Y(A)| = |Z_LC_Y(A)/C_Y(A)|$$

$$\leq |Y/C_Y(A)| \leq |A/C_A(Y)| = |A/A \cap O_p(L)|,$$

and so (b) holds.

(c:a) follows from A.40.

(c:b): Note that $Z_L(A \cap O_p(L))$ is an elementary abelian subgroup of R. Since A is a maximal elementary abelian subgroup of R, $C_{Z_L}(A) = Z_L \cap A$. Using (b)

$$|Z_L(A \cap O_p(L))| = |Z_L/A \cap Z_L||A \cap O_p(L)| = |A/A \cap O_p(L)||A \cap O_p(L)| = |A|.$$

⁴See 1.1(c) for the definition of Z_L

Thus $Z_L(A \cap O_p(L)) \in \mathcal{A}_R$ and so also $Z_L(A \cap O_p(L)) \in \mathcal{A}_{O_n(L)}$.

(c:c): Since A is a maximal elementary abelian subgroup of R, $C_Y(A) = Y \cap A$. By (c:a) A is a best offender on Y. Hence we can apply (b:b), and so $Y = C_Y(A)Z_L = (Y \cap A)Z_L$. Thus (c:c) is proved.

Let $D \in \mathcal{A}_{O_n(L)}$ and $A \in \mathcal{A}_R$.

(d): By (c:b) $|D| = |Z_L(A \cap O_p(L))| = |A|$ and so $D \in \mathcal{A}_R$.

(e): By (d) $J(O_p(L)) \leq J(R)$ and so both D and $J(O_p(L))$ centralize $\Omega_1 Z(J(R))$. Also by (d) $D \in \mathcal{A}_R$ and so the maximality of D gives $\Omega_1 Z(J(R)) \leq D \leq J(O_p(L))$. Hence

$$\Omega_1 Z(J(R)) \leqslant C_R(J(O_p(L))) \cap J(O_p(L)) = Z(J(O_p(L))),$$

and (e) follows.

(f): Put $Y := \Omega_1 Z(J(O_p(L)))$. By (c:b) $Z_L(A \cap O_p(L)) \in \mathcal{A}_{O_p(L)}$ and so $[Y, A \cap O_p(L)] = 1$. Thus by (c:c), $Y = (Y \cap A)Z_L$ and so $[Y, A] \leq Z_L$. Hence $[\Omega_1 Z(J(O_p(L))), J(R)] \leq Z_L$. Since $\Omega_1 Z(J(O_p(L)))$ and Z_L are normal in L, the second inclusion in (f) holds. The first inclusion follows from (e).

THEOREM C.11 ([Gl1, Theorem 2]). Let L be a finite group, A a non-trivial abelian p-subgroup of L and V a faithful p-reduced \mathbb{F}_pL -module. Suppose that A is a quadratic offender on V, L is Aminimal and $C_V(L) = 0$. Then $L \cong SL_2(q)$, V is a natural $SL_2(q)$ -module for L and $A \in Syl_p(L)$; in particular q = |A|.

PROOF. This is [Gl1, Theorem 2] just that the hypothesis and conclusion are stated differently:

Since V is a vector space over \mathbb{F}_p , V is an abelian p-group, and since V is a faithful L-module, we may view L as a subgroup of Aut(V). Since L is A-minimal, A is contained in a unique maximal subgroup M of L. Let $S \in Syl_p(M)$ with $A \leq S$. Since V is faithful and p-reduced, $O_p(L) = 1$. As A is quadratic on V, [V, A, A] = 0. The uniqueness of M shows that $\langle A, g \rangle = L$ for all $g \in L \setminus M$. So Hypothesis I in [**Gl1**] holds.

By assumption $C_V(L) = 0$, and since A is an offender on V, $|V/C_V(A)| \leq |A|$. Hence the Hypothesis of Theorem 2 in [**Gl1**] holds. Thus, there exists a field \mathbb{K} of endomorphisms of V such that $|\mathbb{K}| = |A|$, dim_{\mathbb{K}} V = 2 and $L = SL_{\mathbb{K}}(V)$. In particular, the Sylow *p*-subgroups of L have order $|\mathbb{K}| = |A|$, and $A \in Syl_p(L)$.

LEMMA C.12. Let p be prime, M be a finite group, V a faithful \mathbb{F}_pM module and \mathcal{D} a non-empty M-invariant set of subgroups of M. Suppose that

- (i) Each $A \in \mathcal{D}$ is a non-trivial root offender on V.
- (ii) $C_V(A) \cap [V, B] = 0$ for all $A, B \in \mathcal{D}$ with $[V, A] \neq [V, B]$.
- (iii) $M = \langle \mathcal{D} \rangle$ and V = [V, M].

Then $M \cong SL_2(q)$ and V is a natural $SL_2(q)$ -module for M, where q = |A|. In particular, $A \in Syl_p(M)$.

PROOF. For $X \leq V$ put

$$\mathcal{T}_X := \{ [V, D] \mid D \in \mathcal{D}, [V, D] \leq X \}$$

1°. Let $D, E \in \mathcal{D}$. Then $[V, D] \leq C_V(D)$, and either [V, D] = [V, E] or $[V, D] \cap [V, E] = C_V(D) \cap [V, E] = 0$.

By A.37(c) D acts quadratically on V, so $[V, D] \leq C_V(D)$. By (ii) [V, D] = [V, E] or $C_V(D) \cap [V, E] = 0$. In the latter case also $[V, D] \cap [V, E] = 0$ since $[V, D] \leq C_V(D)$.

2°. Let $D \in \mathcal{D}$. Then $|D| = |V/C_V(D)| = |[V,D]|$, [v,D] = [V,D], and $v^D = v + [V,D]$ for every $v \in V \setminus C_V(D)$.

As D is a root offender on V, A.37(a) gives $|D/C_D(V)| = |V/C_V(A)| = |[V,A]| = q$, and $C_D(V) = 1$ since V is faithful. Moreover, A.37(b) shows that D is a strong dual offender on V and so [v, D] = [V, D] for $v \in V \setminus C_V(D)$. Thus also $v^D = v + [V, D]$, and (2°) holds.

Since $\mathcal{D} \neq \emptyset$ and $M = \langle \mathcal{D} \rangle$, $M \neq 1$, and since V = [V, M], M does not act nilpotently on V. Hence, there exist $A, B \in \mathcal{D}$ with $[V, A] \neq [V, B]$. Let

$$Y:=[V,A], \qquad Z:=[V,B], \qquad X:=Y+Z, \qquad L:=\langle A,B\rangle.$$

3°. $X = Y \oplus Z$, $C_X(A) = Y$, \mathcal{T}_X is a partition of X, $\mathcal{T}_X = \{Y\} \cup Z^A$, and L acts doubly transitively on \mathcal{T}_X .

Note that $\langle A, B \rangle$ normalizes X. Since $[V, A] \neq [V, B]$, (1°) shows that $C_V(A) \cap [V, B] = Y \cap Z = 0$. Hence $X = Y \oplus Z$, and since by (1°) $Y \leq C_V(A)$, $C_X(A) = Y$.

Pick $0 \neq z \in Z$. Then $z \notin Y = C_X(A)$ and by $(2^\circ) z + Y = z^A \subseteq \bigcup Z^A$. Since X = Y + Z this shows that $X = Y + \bigcup Z^A$. Now (1°) implies that $\{Y\} \cup Z^A$ forms a partition of X and $\mathcal{T}_X = \{Y\} \cup Z^A$. By symmetry also $\mathcal{T}_X = \{Z\} \cup Y^B$, and $L = \langle A, B \rangle$ acts doubly transitively on \mathcal{T}_X .

4°. M is transitive on \mathcal{T}_V and V = X.

Let $D \in \mathcal{D}$. If $[V, D] \neq [V, A]$ then (3°) (with D in place of B) shows [V, A] and [V, D] are conjugate under $\langle A, D \rangle$. Hence M is transitive on \mathcal{T}_V . In particular, there exists q such that |[V, D]| = q for every $D \in \mathcal{D}$.

By $(2^{\circ}) |V/C_V(D)| = |[V,D]| = q$ while by $(3^{\circ}) |X| = q^2$. Hence $C_V(D) \cap X \neq 0$. Let $0 \neq w \in C_X(D)$. By $(3^{\circ}) \mathcal{T}_X$ is a partition of X and so there exists $E \in \mathcal{D}$ with $w \in [V, E] \leq X$. Then $[V, E] \cap C_V(D) \neq 0$. Now (ii) yields $[V, D] = [V, E] \leq X$.

We have shown that $\mathcal{T}_V = \mathcal{T}_X$. Hence by (iii) $V = [V, M] = [V, \langle \mathcal{D} \rangle] \leq X$ and X = V.

 5° . M acts transitively on V. In particular, V is a simple M-module.

Let $0 \neq y \in Y$ and $0 \neq z \in Z$. Since by $(2^{\circ}) z^A = z + Y$, $z + y \in z^M$. By symmetry, $(z + y)^B = y + Z$ and so $y + Z \subseteq z^M$. As V = X = Y + Z by (4°) , this gives $V \setminus Z \subseteq z^M$. In particular, $y \in Y^{\sharp} \subseteq z^M$. By symmetry also $Z^{\sharp} \subseteq y^M \subseteq z^M$, and so $z^M = V^{\sharp}$.

6°. $A = C_M(Y) \cap C_M(V/Y), N_M(A) = N_M(Y), and \mathcal{D} = \{A\} \cup B^A.$ In particular M = L.

Let $E := C_M(Y) \cap C_M(V/Y)$. Clearly $N_M(A) \leq N_M(Y) \leq N_M(E)$. Moreover, by the quadratic action of A on V, $\langle A^{N_M(Y)} \rangle \leq E$. Thus, if A = E, then also $N_M(A) = N_M(Y) = N_M(E)$.

Note that by (4°) V = X and so by (3°) $V = Y \oplus Z$ and $\mathcal{T}_V = \{Y\} \cup Z^A$. Hence E acts on Z^A . A Frattini argument gives $E = AN_E(Z)$. Thus $[Z, N_E(Z)] \leq Y \cap Z = 0$. By the definition of E, $N_E(Z)$ also centralizes Y. Since V = Y + Z, $N_E(Z)$ centralizes V, and since V is faithful, we get $N_E(Z) = 1$ and $E = AN_E(Z) = A$. Thus A = E and $N_M(A) = N_M(Y)$.

We have shown that $C_M([V,D]) \cap C_M(V/[V,D]) \mapsto [V,D]$ induces a bijection from \mathcal{D} to $\mathcal{P}_V = \{Y\} \cup Z^A$. It follows that $\mathcal{D} = \{A\} \cap B^A$. In particular $\langle \mathcal{D} \rangle = M \leq L$.

7°. $M = \langle A, A^g \rangle$ for all $g \in M$ with $A \neq A^g$. In particular, $N_M(A)$ is the unique maximal subgroup of M containing A, and M is A-minimal.

Pick $g \in M \setminus N_M(A)$. By (6°) there exists $a \in A$ such that $A^g = B^a$. Hence $\langle A, A^g \rangle = \langle A, B^a \rangle = L$, and again by (6°) $\langle A, A^g \rangle = M$. Hence $N_M(A)$ is the unique maximal subgroup of M containing A, and M is A-minimal.

We are now able to prove the lemma. By (5°) , V is a simple M-module. In particular, V is p-reduced and $C_V(M) = 0$. By assumption A is a non-trivial root offender and so a non-trivial quadratic offender. By (7°) , M is A-minimal. Hence C.11 shows that $M \cong SL_2(q)$, V is a natural $SL_2(q)$ -module, and $A \in Syl_p(M)$.

THEOREM C.13 ([MS5, 8.1]). Let p be a prime, M be a finite p-minimal group, V a faithful p-reduced $\mathbb{F}_p M$ -module and $T \in Syl_n(M)$. Set $J := J_M(V)$ and $\mathcal{J} := \mathcal{J}_M(V)$. Then there exist subgroups E_1, \ldots, E_r such that the following hold:

- (a) $J = E_1 \times \cdots \times E_r$ and $\mathcal{J} = \{E'_1, \dots, E'_r\}.$
- (b) $V = C_V(J) + \sum_{i=1}^r [V, E_i]$ and $[V, E_i, E_j] = 0$ for $i \neq j$. (c) $[C_V(T), O^p(M)] \neq 0$.
- (d) T is transitive on E_1, \ldots, E_r .
- (e) There are no over-offenders on V in M.
- (f) $E_i \cong SL_2(q), q = p^n, and [V, E_i]/C_{[V, E_i]}(E_i)$ is a natural $SL_2(q)$ -module for E_i , or p = 2, $E_i \cong Sym(2^n + 1)$, and $[V, E_i]$ is a natural $Sym(2^n + 1)$ -module for E_i .
- (g) If $A \leq M$ is an offender on V, then $A = (A \cap E_1) \times \ldots \times (A \cap E_r)$, and each $A \cap E_i$ is an offender on V.

The following lemma is an easy consequence of the Quadratic L-lemma [MS6, Lemma 2.9], in fact its proof is hidden in the proof of the Quadratic L-Lemma [MS6, Lemma 2.9]. But since the Quadratic L-Lemma was proved under a \mathcal{CK} -group assumption we prefer to reproduced the proof.

LEMMA C.14. Let L be a p-minimal finite group, and for i = 1, 2 let V_i be a natural $SL_2(q_i)$ module for L, where q_i be a power of p. Then $q_1 = q_2$, $L/C_L(V_1 \oplus V_2) \cong SL_2(q_i)$ and V_1 and V_2 are isomorphic L-modules.

PROOF. Put $V := V_1 \oplus V_2$. Replacing L by $L/C_M(V)$ we may assume that V is faithful Lmodule. In particular, $O_p(L) = 1$. Let $A \in Syl_p(L)$ and let L_0 be the unique maximal subgroup of L containing A. For i = 1, 2 put $C_i := C_L(V_i)$. Then $C_1 \cap C_2 = C_L(V) = 1$. If $C_1 = C_2$, then $C_1 = C_2 = 1$, $L \cong SL_2(q_1) \cong SL_2(q_2)$ and $q_1 = q_2$. Since $SL_2(q_1)$ has a unique natural $SL_2(q_i)$ -module, the lemma holds in this case.

So we may assume for a contradiction that $C_1 \leq C_2$. Note that $AC_1 \neq L$ and so $AC_1 \leq L_0$ and $C_1 \leq \bigcap L_0^L$. Since $O_p(L) = 1, 1.42(d)$ shows that $\bigcap L_0^L = \Phi(L)$. Thus $C_1 \leq \Phi(L)$ and so

$$1 \neq C_1 \cong C_1 C_2 / C_2 \leqslant \Phi(L/C_2).$$

Note that $\Phi(SL_2(q_2)) = Z(SL_2(q_2))$. It follows that p is odd and $|C_1| = 2$. In particular, $C_1 \leq Z(L)$. Since L is p-minimal, $L = \langle A^L \rangle = L'A$. So L/L' is a p-group and $C_1 \leq L'$. Thus the 2-part of the Schur-multiplier of L is non-trivial.

Suppose that $q_1 > 3$. Then $L/C_1 \cong SL_2(q_1)$ is quasisimple. By [Hu, V.25.7] the 2-part of Schur multiplier of $SL_2(q_1)$ is trivial, a contradiction. Thus $q_1 = 3$ and $L'/C_1 \cong Q_8$ By [Hu, V.25.3] the Schur multiplier of Q_8 is trivial, so $C_1 \leq L''$. Note that L'/L'' is a 2-group and coprime action shows that $C_1 \leq [L', A]$. But then also

$$C_1 \leqslant [L', A]A = \langle A^{L'} \rangle = \langle A^{L'A} \rangle = \langle A^L \rangle = L,$$

a contradiction.

THEOREM C.15 ([MS6, 2.10]). Let $L \cong SL_2(q)$ or Sz(q), $q = p^k$, where p = 2 in the latter case, and let V be a non-central simple \mathbb{F}_pL -module. Suppose that L is A-minimal for some $A \leq L$ with [V, A, A] = 0. Then V is a corresponding natural module.

LEMMA C.16. Let M be a finite group, $K \leq H$, $A \leq K$ and V a faithful \mathbb{F}_2H -module. Suppose that $K \cong 3$ ·Alt(6), A is a non-trivial offender on V and $|V| = 2^6$. Put $K_2 := C_M(V/C_V(A))$ and let \mathcal{V} be the set of 3-dimensional \mathbb{F}_2K_2 -submodules of V. Then

- (a) Either $H = K \cong 3$ ·Alt(6) or |H/K| = 2 and $H \cong 3$ ·Sym(6).
- (b) $|A| = 4 = |V/C_V(A)|$ and $[V, A] = C_V(A)$.

(

- (c) $N_M(A) = N_M(C_V(A))$ is a maximal 2-parabolic subgroup of M, and $N_K(A) \cong C_3 \times$ Sym(4).
- (d) $K_2 = O^{2'}(N_K(A)) \cong Sym(4).$
- (e) $\mathcal{V} = \{V_1, V_2, V_3\}$ has size three, and both, $N_M(A)$ and Z(K), act transitively on \mathcal{V} .
- (f) $V = V_i \oplus V_j$ for all $1 \le i < j \le 3$.
- (g) $C_{V_i}(A)$ is a natural $SL_2(2)$ -module for K_2 .

PROOF. Let $\mathbb{K} := End_K(V)$. Since \mathbb{K} contains the image of Z(K) in $End_{\mathbb{F}_2}(V)$, \mathbb{K} is a field of order 4. Put $M_2 := N_M(C_V(A))$.

(a): Note that K has orbits of length 15 and 6 on the 1-dimensional K-subspaces of V. Since $K \leq M$, M acts on the orbit of length 6. The kernel of this action centralizes K and, since $|\mathbb{K}^{\sharp}| = 3$, is equal to Z(K). Thus M/Z(K) is isomorphic to a subgroup of Sym(6) containing $Alt(6) \cong K/Z(K)$). So (a) holds.

(b) follows from Part (e) of the Offender Theorem C.4.

(c): Observe that $N_M(A) = N_M(AZ(K))$. Since A is an elementary abelian subgroup of order 4 with $A \leq K$ we conclude that $N_M(A)/Z(K) \cong Sym(4)$ if $M/Z(K) \cong Alt(6)$ and $N_M(A)/Z(K) \cong C_2 \times Sym(4)$ if $M/Z(K) \cong Sym(6)$. Thus $N_M(A)$ a maximal 2-parabolic subgroup of M and $N_K(A) \cong C_3 \times Sym(4)$. As $N_M(A)$ is a maximal subgroup of M and $N_M(A) \leq N_M(C_V(A))$ we have $N_M(A) = N_M(C_V(A)) = M_2$.

(d): Since K_2 centralizes the K-space $V/C_V(A)$, K_2 acts K-linearly on V and so $K_2 \leq K$. By (c), $M_2 \cap K = N_M(A) \cap K = N_K(A)$ and $N_K(A) \cong C_3 \times Sym(4)$. As Z(K) acts transitively on $V/C_V(A)$, we get $M_2 \cap K = Z(K) \times K_2$. Thus $K_2 = O^{2'}(M_2 \cap K) \cong Sym(4)$.

(e)-(g): Let $D_2 \in Syl_3(K_2)$ and $D_2^* := N_{K_2}(D_2)$, so $D_2 \cong C_3$, $K_2^* \cong Sym(3)$ and $K_2 = AK_2^*$. Then D_2 acts fixed-point freely on $C_V(A)$ and centralizes $V/C_V(A)$. It follows that $V = C_V(D_2) \oplus C_V(A)$ and $C_V(D_2) = C_V(D_2^*)$.

Let v_1, v_2, v_3 be the three nontrivial elements of $C_V(D_2^*)$ and define $V_i := \langle v_i^{K_2} \rangle$. Since $K_2 = AD_2^*$, we get $V_i = \langle v_i^A \rangle = \langle v_i \rangle [v_i, A]$. Note that $C_V(A) = C_V(a)$ for all $1 \neq a \in A$. Thus $C_A(v_i) = 1$ and $|v_i^A| = 4$. Since A act quadratically on V, this gives $|[v_i, A]| = 4$, and so V_i is an K_2 -submodule of order 8.

Let $1 \leq i < j \leq 3$. Then $\langle v_i, v_j \rangle C_V(A) = V$ and so $[v_i, A] + [v_j, A] = [V, A] = C_V(A)$. Hence $V = V_i + V_j = V_i \oplus V_j$ and $C_{V_i}(A) = [v_i, A]$ as order 4. As D_2 acts fixed-point freely on $C_V(A)$, this shows that $C_{V_i}(A)$ is a natural $SL_2(2)$ -module for K_2 .

Let U be any K_2 -submodule of V of order 8. Then $C_U(D_2) \neq 0$. Thus $v_i \in U$ for some $1 \leq i \leq 3$ and so $V_i = \langle v_i^{K_2} \rangle \leq U$ and $U = V_i$. It follows that $\mathcal{V} = \{V_1, V_2, V_3\}$. Observe that $N_M(A)$ normalizes K_2 and so acts on \mathcal{V} . In particular, Z(K) acts on \mathcal{V} since $Z(K) \leq N_M(A)$. As Z(K)does not normalize any of the V_i and $|\mathcal{V}| = 3$, we conclude that that Z(K) acts transitively on \mathcal{V} . \Box

C.2. H^1 - and H^2 -Results

LEMMA C.17 (Gaschütz). Let $T \in Syl_p(H)$, let V be an \mathbb{F}_pH module, and let W an \mathbb{F}_pH submodule of V with $[V, O^p(H)] \leq W$. Then $C_V(T) + W = C_V(H) + W$. In particular, if $C_V(H) = 0$, then $C_V(T) \leq W$.

PROOF. Note that $H = O^p(H)T$. Since $[V, O^p(H)] \leq W$, we conclude that $[C_V(T), H] \leq W$. Thus, $Y := C_V(T) + W$ is an *H*-submodule of *V* and $[Y, H] \leq W$.

Let $X := Y \rtimes H$ be the semidirect product of Y with H and let Y_0 be a complement to $C_W(T)$ in $C_V(T)$. Then Y_0T is a complement to W in YT. Note that YT is a Sylow p-subgroup of X and so Gaschütz' Theorem [**KS**, 3.3.2] gives a complement X_0 to W in X. Then $X = X_0W$ and since $W \leq Y$, $Y = (Y \cap X_0)W$. Hence $Y \cap X_0$ is an H-invariant complement to W in Y. Since $[Y, H] \leq W$ we get $[Y \cap X_0, H] \leq (Y \cap X_0) \cap W = 0$ and so $Y \cap X_0 \leq C_Y(H)$. Hence $Y = (Y \cap X_0) + W \leq C_Y(H) + W$. As $C_V(H) \leq C_V(T) \leq Y$ this gives $Y = C_V(H) + W$.

THEOREM C.18 ([MS5, 6.1]). Let H be a finite group, V an \mathbb{F}_pH -module, and $\mathbb{K} := End_H(V)$. Table 1 lists the dimension $d := \dim_{\mathbb{K}}(H^1(H, V))$ for various pairs (H, V).

LEMMA C.19. Let V be an \mathbb{F}_pH -module, and let K_1 and K_2 be subgroups of H. Suppose that (i) $[K_1, K_2] = 1$,

- (ii) K_2 has no central composition factor on $[V, K_1]$,
- (iii) $C_V(K_1) = 0.$

TABLE 1. H1 for common modules

Н	p	V	Conditions	d
$\Omega^{\epsilon}_n(p^k), n \geqslant 3$	p	V_{nat}^*	$n = 3, p^k = 2$	1
"	"	22	$n = 3, p^k = 5$	1
"	"	"	$n = 4, \epsilon = -, p^k = 3$	2
"	"	"	$n = 5, p^k = 3$	1
"	"	"	$n = 6, \epsilon = +, p^k = 2$	1
"	"	"	all others	0
$Sp_{2n}(p^k)$	p	V_{nat}	$p = 2, (2n, p^k) \neq (2, 2)$	1
"	"	"	all others	0
$SL_n(p^k)$	p	V_{nat}	n = 2, p = 2, k > 1	1
"	"	"	n = 3, p = 2, k = 1	1
"	"	"	all others	0
$SU_n(p^k), n \ge 3$	p	V_{nat}	$n = 4, p^k = 2$	1
"	"	"	all others	0
$G_2(2^k)'$	2	\mathbb{K}^6	—	1
$G_2(p^k)'$	$p \neq 2$	\mathbb{K}^7	—	0
$^{3}D_{4}(p^{k})$	p	\mathbb{K}^{8}	—	0
$Spin_n^{\epsilon}(p^k)$	p	(Half)-Spin	$n \ge 7$	0
$3 \cdot Alt(6)$	2	\mathbb{K}^3	—	0
$Alt(n), n \ge 5$	2	V_{nat}	n even	1
"	"	"	$n \mathrm{odd}$	0
$SL_n(p^k), n \ge 5$	p	$\Lambda^2(V_{nat})$	—	0
$SL_n(p^k), n \ge 3$	odd	$Sym^2(V_{nat})$	—	0
$SL_n(p^{2k}), n \ge 3$	p	$V_{nat} \otimes V_{nat}^{p^k}$	$n = 3, p^{2k} = 4$	2
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	"	""""""""""""""""""""""""""""""""""""""	all others	0
$E_6(p^k)$	p	\mathbb{K}^{27}	_	0
$Mat_n, 22 \leqslant n \leqslant 24$	2	Todd	n = 24	1
"	"	"	n = 22, 23	0
$Mat_n, 22 \leq n \leq 24$	2	Golay	n = 22	1
$Mat_n, 22 \le n \le 24$	2	Golay	n = 23, 24	0
$3.Mat_{22}$	2	\mathbb{F}_4^6	_	0
Mat_{11}	3	Todd	_	0
Mat_{11}	3	Golay	_	1
$2.Mat_{12}$	3	Todd	_	0
$2.Mat_{12}$	3	Golay	_	0

Then K_2 has no central composition factor on V. In particular, $V = [V, K_2]$ and $C_V(K_2) = 1$.

PROOF. Let $g \in K_1$. Since K_2 centralizes $g, V/C_V(g) \cong [V, g]$ as an K_2 -module. Since $[V, g] \leq [V, K_1]$, (ii) implies that K_2 has no central composition factor on $V/C_V(g)$. As $0 = C_V(K_1) = \bigcap_{g \in K_1} C_V(g)$, we conclude that K_2 has no central composition factor on V.

LEMMA C.20. Let V be an \mathbb{F}_pH -module. Suppose that $I := [V, O^p(H)]$ is a natural $Sp_{2m}(q)$ - or $Sp_{2m}(q)$ -module for H with $m \ge 1$ and q a power of p. If $C_V(O^p(H)) = 1$ and $C_H(V) = C_H(I)$, then [V, D] = [I, D] for all $D \le H$.

PROOF. We may assume that V is a faithful H-module and $V \neq I$. Then C.18 shows that p = 2and V is as an $O^2(H)$ -module isomorphic to a submodule of the dual of a natural $\Omega_{2m+1}(q)'$ -module for $O^2(H)$. In particular, $H^1(O^2(H), I)$ is 1-dimensional over \mathbb{F}_q and since H acts \mathbb{F}_q -linearly on $I, [V, H] \leq I$. So we can choose a natural $\Omega_{2m+1}(q)$ or $\Omega_{2m+1}(q)'$ -module U for H with $V \leq U^*$, where U^* is the \mathbb{F}_q -dual of U. Since $[U^*, H] = [U^*, H, H], I = [V, H] = [U^*, H]$. By B.6(b) $C_{U/U^{\perp}}(D) = C_U(D)/U^{\perp}$ for all $D \leq H$. In particular, $U^{\perp} = C_U(H)$. So if $0 \leq U_1 \leq U_2 \leq U$ such that H centralizes U_1 and D centralizes U_2/U_1 , then D centralizes U_2 . For U^* this means if $U^* \geq W_1 \geq W_2 \geq 0$ such that H centralizes U^*/W_1 and D centralizes W_1/W_2 , then D centralizes U^*/W_2 . Hence $[U^*, H, D] = [U^*, D]$. Thus

$$[I,D] \leq [V,D] \leq [U^*,D] = [U^*,H,D] = [I,D],$$

and [V, D] = [I, D].

LEMMA C.21. Let H be a finite group and V a natural $SL_n(q)$ -module for H, q a power of pand $n \ge 2$, and let V_1 be an \mathbb{F}_q -hyperplane of V. Suppose that $C_H(V) \le Z(H)$ and that there exists a $N_H(V_1) \cap C_H(V/V_1)$ -invariant complement to $C_H(V)$ in $C_H(V_1)$. Then there exists a complement K to $C_H(V)$ in H. In particular, if $C_H(V) \le H'$, then $C_H(V) = 1$.

PROOF. Put $Z := C_H(V)$, $Z_0 := O_{p'}(Z)$ and $H_1 := N_H(V_1) \cap C_H(V/V_1)$, and let B be an H_1 -invariant complement to $C_H(V)$ in $C_H(V_1)$. Then $H/Z \cong SL_n(q)$ and $Z \leq Z(H)$. By [**Gr1**] the Schur Multiplier of $SL_n(q)$ is a p-group, so $H' \cap Z$ is a p-group and $H' \cap Z_0 = 1$.

Suppose that n = 2. Then $BZ/Z \in Syl_p(H/Z)$, and by Gaschütz' Theorem [**KS**, 3.3.2] there exists a complement L/Z_0 to Z/Z_0 in H/Z_0 . It follows that H = LZ, H' = L' and $H' \cap Z \leq Z_0$, so $H' \cap Z = 1$. If $q \geq 4$, then H/Z is perfect and we can choose K = H'. If $q \leq 3$, then H' is a p'-group, |B| = p and we can choose K = H'B.

Suppose now that $n \ge 3$. Then H = H'Z and H' is perfect. Note that V_1 is a natural $SL_{n-1}(q)$ -module for H_1 , $C_{H_1}(V_1) = C_H(V_1) = Z \times B$, and $B \cong C_H(V_1)/Z$ is isomorphic to V_1 as an $\mathbb{F}_p H_1$ -module. In particular, $B = [B, H_1] \le H'$ and replacing H be H' we may assume that H is perfect. Thus Z is a p-group.

Let X be a 1-subspace of V_1 and \hat{V} a hyperplane of V with $V = X \oplus \hat{V}$. Define

$$\widehat{H} := C_H(X) \cap N_H(\widehat{V}), \quad \widehat{V}_1 := V_1 \cap \widehat{V}, \quad \widehat{H}_1 := N_{\widehat{H}}(\widehat{V}_1) \cap C_{\widehat{H}}(\widehat{V}/\widehat{V}_1), \quad \widehat{B} := B \cap C_{\widehat{H}}(\widehat{V}_1).$$

Then \hat{V} is a natural $SL_{n-1}(q)$ -module for \hat{H} , \hat{V}_1 is a hyperplane of \hat{V} and $V_1 = X \oplus \hat{V}_1$. Thus $\hat{H}_1 \leq N_H(V_1) \cap C_H(V/V_1) = H_1$.

Since $C_H(V) \leq \hat{H}$ and $C_{\widehat{H}}(\hat{V}) \leq C_H(X \oplus \hat{V}) = C_H(V)$ we have $C_H(V) = C_{\widehat{H}}(\hat{V})$. Also $C_{\widehat{H}}(\hat{V}_1) \leq C_H(X \oplus \hat{V}_1) = C_H(V_1)$ and so

$$C_H(V) = C_{\widehat{H}}(\widehat{V}) \leqslant C_{\widehat{H}}(\widehat{V}_1) \leqslant C_H(V_1) = C_H(V) \times B$$

Thus $\hat{B} = B \cap C_{\widehat{H}}(\hat{V}_1)$ is a complement to $C_H(V) = C_{\widehat{H}}(\hat{V})$ in $C_{\widehat{H}}(\hat{V}_1)$. Since $\hat{H}_1 \leq H_1 \cap \hat{H}$, \hat{H}_1 normalizes \hat{B} . Recall that $2 \leq n-1$, so by induction there exists a complement \hat{K} to $C_{\widehat{H}}(\hat{V})$ in \hat{H} . Then $\hat{K} \cong SL_{n-1}(q)$ acts faithfully on \hat{V} .

Pick $g \in H$ with $\hat{V}^g = V_1$. Then $V = X^g \oplus V_1$, \hat{K}^g normalizes V_1 , and \hat{K}^g centralizes X^g and V/V_1 . So $\hat{K}^g \leq H_1$, $H_1 = C_H(V_1)\hat{K}^g$ and $\hat{K}^g \cap C_H(V_1) = 1$. Since B is a complement to $C_H(V)$ in $C_H(V_1)$, and \hat{K}^g normalizes B we conclude that BK^g is a complement to $C_H(V)$ in H_1 .

Since $C_H(V)$ is an abelian *p*-group and H_1 contains a Sylow *p*-subgroup of *H*, Gaschütz' Theorem shows that there exists a complement *K* to $C_H(V)$ in *H*.

If K is any complement to Z in H, then H = KZ and K' = H', so $H' \cap Z = 1$. In particular Z = 1 if $Z \leq H'$.

THEOREM C.22 ([MS5, 8.4]). Let M be a finite $C\mathcal{K}$ -group with $O_p(M) = 1$ and V a faithful $\mathbb{F}_p M$ -module. Suppose that

- (i) $M = J_M(V)$ and there exists a unique $J_M(V)$ -component K,
- (ii) $C_V(K) \leq [V, K]$ and either $C_V(K) \neq 0$ or $V \neq [V, K]$.

Let $A \leq M$ be a best offender on V and put W := [V, K] and $\overline{V} := V/C_V(K)$. Then p = 2, and one of the following holds:

(a) $M = K \cong SL_3(2), V = W, |C_V(K)| = 2, \overline{V}$ is a natural $SL_3(2)$ -module, $|A| = 4, |\overline{V}, A|| = 2$ and $C_V(A) = [V, A]$ has order 4.

- (b) $M = K \cong SL_3(2), |V/W| = 2, C_V(K) = 0, W$ is a natural $SL_3(2)$ -module, $|A| = 4 = |C_W(A)|$ and $C_V(A) = [V, A] = C_W(A)$.
- (c) $M = K \cong SU_4(2), V = W, 2 \leq |C_V(K)| \leq 4, \overline{V}$ is a natural $SU_4(2)$ -module, A is the centralizer of a singular 2-subspace of \overline{V} , and $C_V(A) = [V, A]$.
- (d) $M \cong G_2(q), q = 2^k, V = W, 2 \leq |C_V(K)| \leq q, \overline{V} \text{ is a natural } G_2(q) \text{-module, } |A| = q^3, and C_V(A) = [V, A].$
- (e) $K \cong Alt(2m)$ and $M \cong Sym(2m)$ or Alt(2m). For $\Omega = \{1, 2, ..., 2m\}$ let $N = \{n_{\Sigma} \mid \Sigma \subseteq \Omega\}$ be the 2m-dimensional natural permutation module and \tilde{N} be the \mathbb{F}_2M -module defined by $\tilde{N} = N$ as an \mathbb{F}_2 -space and
- $n_{\Sigma}^{g} = n_{\Sigma^{g}} \text{ if } |\Sigma| \text{ is even or } g \in Alt(\Omega), \text{ and } n_{\Sigma}^{g} = n_{\Sigma^{g}} + n_{\Omega} \text{ if } |\Sigma| \text{ is odd and } g \notin Alt(\Omega).$

Then one of the following holds, where t_1, t_2, \ldots, t_m is a maximal set of commuting transpositions:

- (1) M = Sym(n), V is isomorphic to N or $N/C_N(K)$, and $A = \langle t_1, t_2, \dots, t_k \rangle$ for some $1 \leq k \leq m$.
- (2) $M = Sym(n), V \cong \widetilde{N} \text{ and } A = \langle t_1, t_2, \dots, t_m \rangle.$
- (3) $V \cong [N, K]$ and A fulfills one of the cases (h:1) (h:3) of Theorem C.4.
- (f) $M = K \cong Sp_{2m}(q), m \ge 1, q = 2^k, (m,q) \ne (1,2), (2,2)^5$, and \overline{W} is the direct sum of r natural $Sp_{2n}(q)$ -modules.⁶ Moreover, the following hold:
 - (a) $2r \leq m+1$, and if $V \neq W$ then m > 1 and 2r < m+1.
 - (b) Let X be the 2m+2-dimensional $\mathbb{F}_q M$ -module obtained from the embedding $Sp_{2m}(q) \cong \Omega_{2m+1}(q) \leq \Omega_{2m+2}^{\pm}(q)$. Then V is isomorphic to an $\mathbb{F}_p M$ -section of X^r .

C.3. Q!-Module Theorems

In this section H is a finite group, Q is a p-subgroup of H, and V is a finite Q!-module for $\mathbb{F}_p H$ with respect to Q. We again use the $^\circ$ -notion, so for $L \leq H$,

$$L^{\circ} = \langle P \in Q^H \mid P \leqslant L \rangle$$
 and $L_{\circ} = O^p(L^{\circ}).$

THEOREM C.23 ([MS6, 4.5]). Let $O_p(H) = 1$ and V be a faithful Q!-module for H with respect to Q. Suppose that one the following holds.

(i) $F^*(H) \cong Alt(n), n \ge 5$, and [V, H] is a natural $\mathbb{F}_pAlt(n)$ -module for $F^*(H)$, or

(ii) $H \cong Alt(7)$ and $|[V, H]| = 2^4$.

Then (i) holds, and either n = p or (n, p) is one of (5, 2), (6, 2), (8, 2), (6, 3).

THEOREM C.24 (Q!FF-Module Theorem, [MS6, 4.6]). Let H be a finite group with $O_p(H) = 1$ and Q be a p-subgroup of H, and let V be a faithful Q!-module for H. Put $H^\circ := \langle Q^H \rangle$ and $J := J_H(V)$. Suppose that there exists an offender Y in H such that $[H^\circ, Y] \neq 1$ and that one of the following holds:

- (i) Y is quadratic on V.
- (ii) Y is a best offender on V.
- (iii) $C_Y([V,Y]) \neq 1.$
- (iv) $C_Y(H^\circ) = 1.$

Then one of the following holds:

- (1) There exists an H-invariant set \mathcal{K} of subgroups of H such that:
 - (a) For all $K \in \mathcal{K}$, $K \cong SL_2(q)$ and [V, K] is a natural module for K,
 - (b) $J = \bigotimes_{K \in \mathcal{K}} K$ and $V = \bigoplus_{K \in \mathcal{K}} [V, K]$,
 - (c) Q acts transitively on \mathcal{K} ,
 - (d) $H^{\circ} = O^p(J)Q.$
- (2) Put $R := F^*(J)$. Then
- (a) R is quasisimple, $R \leq H^{\circ}$, and either J = R or p = 2 and $J \cong O_{2n}^{\pm}(q)$, $Sp_4(2)$ or $G_2(2)$.

⁵The case $K \cong Sp_4(2)' \cong Alt(6)$ is covered in (e), while the case $M = Sp_2(2)$ does not occur

⁶Observe that for m = 1, $Sp_2(q) \cong SL_2(q)$ and a natural $Sp_2(q)$ -module is also a natural $SL_2(q)$ -module.

- (b) $C_V(R) = 0$, [V, R] is a semisimple J-module, and H acts faithfully on [V, R].
- (c) Put $J^0 := J \cap H^\circ$. Then one of the following holds:
 - (1) (a) $R = J^0 \cong SL_n(q), n \ge 3, Sp_{2n}(q), n \ge 3, SU_n(q), n \ge 8, or \Omega_n^{\pm}(q), n \ge 10.$
 - (b) [V, R] is the direct sum of at least two isomorphic natural modules for R.
 (c) H° = RC_{H°}(R).
 - (d) If $V \neq [V, R]$ then $R \cong Sp_{2n}(q)$, p = 2, and $n \ge 4$.
 - (2) (a) [V, R] is a simple *R*-module.
 - (b) Either $H^{\circ} = R = J^0$ or $H^{\circ} \cong Sp_4(2)$, $3 \cdot Sym(6)$, $SU_4(q).2 \cong O_6^-(q)$ and [V, R] the natural $SU_4(q)$ -module), or $G_2(2)$.
 - (c) One of the cases C.3 (1) (9), (12) applies to (J, [V, R]), with $n \ge 3$ in case (1), $n \ge 2$ in case (2), and n = 6 in case (12).
 - (3) $p = 2, J = R \cong SL_4(q), H^{\circ}/R$ has order two and induces a graph automorphism on R, and V is the direct sum of two non-isomorphic natural modules.

PROOF. This is [**MS6**, 4.6], except that in (2:c:2:c) we added the assumption $n \ge 3$ to case (1) and the assumption $n \ge 2$ to case (2) of C.3. Note here if n = 2 in case (1) or n = 1 in case (2) then [V, R] is a natural $SL_2(q)$ -module for J, and so by C.22, V = [V, R]. Hence, these cases are already covered by (1).⁷

THEOREM C.25. Let H be a finite group with $O_p(H) = 1$, and let V be a faithful Q!-module for H with respect to Q. Suppose that there exists $1 \neq W \leq H$ such that

- (i) W is a strong offender on V; and
- (ii) [X, W] = [V, W] for all $X \leq V$ with $|X/C_X(W)| > 2$.
- Put $H^{\circ} := \langle Q^H \rangle$, $K^* := \langle W^H \rangle$, $K := \langle W^{K^*} \rangle$ and $\mathcal{K} := K^H$. Then

$$K^* = \bigotimes_{R \in \mathcal{K}} R$$
, $[V, K^*] = \bigoplus_{R \in \mathcal{K}} [V, R]$, and $K = \langle W^K \rangle$ is the subnormal closure of W in H

Moreover, one of the following holds:

- (1) (a) $K \leq H$, K' is quasisimple, $H^{\circ} = K'Q$ and $C_V(K) = 0$.
 - (b) One of the following holds:
 - (1) $K = K' = H^{\circ} \cong SL_n(q), \ n \ge 3.$
 - (2) $K = K' = H^{\circ} \cong Sp_{2n}(q), n \ge 2, (n,q) \ne (2,2).$
 - (3) $p = 2, K \leq H^{\circ} \text{ or } H^{\circ} \leq K, K \cong Sp_4(2)' \text{ or } Sp_4(2), \text{ and } H^{\circ} \cong Sp_4(2)' \text{ or } Sp_4(2).$
 - (4) $p = 2, K = K' \leq H^{\circ}, K \cong 3 \cdot Alt(6) \text{ and } H^{\circ} \cong 3 \cdot Alt(6) \text{ or } 3 \cdot Sym(6).$
 - (5) $p = 2, K \cong O_{2n}^{\epsilon}(2), H^{\circ} = K' \cong \Omega_{2n}^{\epsilon}(2), n \ge 2 \text{ and } (n, \epsilon) \neq (2, +), \text{ and } |W| = |V/C_V(W)| = 2.$
 - (c) [V, K] is a corresponding natural module.
- (2) (a) Q acts transitively on \mathcal{K} , $H^{\circ} = O^{p}(K^{*})Q$, and $V = [V, K^{*}]$.
- (b) $K \cong SL_2(q)$, and [V, K] is the corresponding natural module.
- (3) (a) $p = 2, K \cong SL_n(2), n \ge 3, V = [V, K]$ is the direct sum of two isomorphic natural modules for K, and $|V/C_V(W)| = 4$.
 - (b) $K \leq H$, $K \leq H^{\circ}$, and $H^{\circ} \cong SL_n(2)$ or $SL_n(2) \times SL_2(2)$.
- (4) (a) $p = 2, K \cong SL_n(2), n \ge 3, V = C_V(K^*) \oplus [V, K^*], [V, K]$ is the direct sum of two isomorphic natural modules for K, and $|V/C_V(W)| = 4$.
 - (b) $K^* \leq H$, $[K^*, H^\circ] = 1$ and $H^\circ \cong SL_2(2)$.

PROOF. This is [MS6, 4.7] with a couple of additions.

• In case (1:b:5) with $K \cong O_{2n}^{\epsilon}(2)$: We may assume $n \ge 2$ and $(n, \epsilon) \ne (2, +)$. Indeed $|O_2^+(2)| = 2$, so since $O_p(H) = 1$, this case does not occur; and $O_2^-(2) \cong SL_2(2)$, so this

⁷We made these changes for easier reference and to point out more clearly that H° does not have to be contained in J in the $SL_2(q)$ -case.

case is already covered by case (2) (with q = 2 and $|\mathcal{K}| = 1$). The $O_4^+(2)$ -case does not occur since $K = \langle W^{K^*} \rangle$, but $O_4^+(2)$ is not generated by transvections.

• From the structure of K as given in (1)–(4), $K = \langle W^K \rangle$ and so since $K = \langle W^{\langle W^H \rangle} \rangle$, K is the subnormal closure of W in H.

COROLLARY C.26. Let H be a finite group with $O_p(H) = 1$, and let V be a faithful Q!-module for H with respect to Q. Suppose that there exists $1 \neq W \leq Q$ such that

- (i) W is a strong offender on V; and
- (ii) [X, W] = [V, W] for all $X \leq V$ with $|X/C_X(W)| > 2$.
- Put $H^{\circ} := \langle Q^H \rangle$ and $K := \langle W^{\langle W^H \rangle} \rangle$. Then
- (a) $K = \langle W^H \rangle = \langle W^K \rangle$ is the subnormal closure of W in H and $C_V(K) = 0$.
- (b) $K \cong SL_n(q)$ or $Sp_{2n}(q)$, $n \ge 2$, q a power of p, and [V, K] is a corresponding natural module.
- (c) Either $H^{\circ} = K$ or $K \cong SL_2(q), q \neq p, H_{\circ} = K$ and $[V, W, Q] \neq 1$.
- (d) Either V = [V, K] or $K \cong Sp_{2n}(2), n \ge 2$ and |V/[V, K]| = 2.

PROOF. Note first that we can apply C.25.

Let $S \in Syl_p(H)$ with $Q \leq S$. Then by Q!, $N_H(C_V(S)) \leq N_H(Q)$. It follows that $W \leq Q \leq O_p(N_H(C_V(S)))$ and so we can apply the Point-Stabilizer Theorems C.8 and C.9. In particular, $[V, K]C_V(K)/C_V(K)$ is a simple K-module, and so cases C.25(3) and (4) do not occur.

Suppose that C.25(2) holds. Then $K \cong SL_2(q)$, Q acts transitively on $\mathcal{K} := \overline{K}^M$, [V, K] is a natural $SL_2(q)$ -module and $V = [V, \langle W^H \rangle]$. Since Q normalizes W, Q normalizes $K = \langle W^{\langle W^K \rangle} \rangle$. Hence $\mathcal{K} = \{K\}$ and V = [V, K]. Suppose Q acts \mathbb{F}_q -linearly on V. Then $Q \leq K$, $K = \langle Q^K \rangle = H^\circ$ and the corollary holds.

So suppose that Q does not act \mathbb{F}_q -linearly on V. Then $q \neq p$, so K is quasisimple and $K = [K, Q] \leq H^{\circ}$. Also [V, W] is a non-trivial \mathbb{F}_q subspace of V and hence $[V, W, Q] \neq 1$. As K acts transitively on V, Q! gives $H^{\circ} = \langle Q^K \rangle = KQ$ (see A.50(d))and so $H_{\circ} = O^p(KQ) = K$. So again the corollary holds.

Suppose that C.25(1) holds. Since none of $Sp_4(2)'$, $O_{2m}^{\epsilon}(2)$ and $3 \cdot Alt(6)$ appear as a possibility for K in the Point-Stabilizer Theorem C.8, we conclude that $K \cong SL_n(q)$, $n \ge 3$, or $Sp_{2n}(q)$, $n \ge 2$, and [V, K] is a corresponding natural module. Moreover, $H^{\circ} \le K$ and so $K = H^{\circ}$. It remains to verify (d).

Put U := [V, K]. By Q!, $Q \leq C_H(C_U(S))$. Thus $W \leq O_p(N_H(C_U(S)))$, and we can apply the Point-Stabilizer Theorem C.8(d) also to W and U. Hence $|U/C_U(W)| \geq |W|$ and so $V = C_V(W) + U$.

Suppose that $V \neq U$. Then by C.22 either $K \cong SL_3(2)$ and $C_V(W) \leq U$ or $K \cong Sp_{2n}(q)$, $n \geq 2, p = 2$, and V is isomorphic to a submodule of the dual of a natural $\Omega_{2n+1}(q)$ -module. The first case contradicts $V = C_V(W) + U$. In the second case, let $v \in C_V(W) \setminus U$. Then $C_K(v) \cong O_{2n}^{\epsilon}(q)$. Since $W \leq C_K(v)$ and W is a strong offender on U, the Strong Offender Theorem C.6 shows that |W| = 2 = q. So (d) holds.

THEOREM C.27. Let H be a finite group and let V be a faithful p-reduced Q!-module for H with respect to Q. Let $1 \neq A \leq H$ be a strong dual offender on V. Then one of the following holds:

- (1) (a) H° ≈ SL_n(q), n ≥ 3, and [V, H°] is a corresponding natural module for H°.
 (b) If V ≠ [V, H°] then H° ≈ SL₃(2) and |V/[V, H°]| = 2.
 (c) ⟨A^H⟩ = H°.
- (2) (a) $H^{\circ} \cong Sp_{2n}(q), n \ge 2$, or $Sp_4(q)'$ (and q = 2), and $[Y, H^{\circ}]$ is the corresponding natural module for H° .
 - (b) If $V \neq [V, H^{\circ}]$, then p = 2 and $|H/[Y, H^{\circ}]| \leq q$.
 - (c) One of the following holds:
 - (1) $H^{\circ} = \langle A^H \rangle.$
 - (2) $\langle A^H \rangle \leqslant H^{\circ}, \langle A^H \rangle \cong Sp_4(2)'$ and $H^{\circ} \cong Sp_4(2)$.

(3) $H^{\circ} \leq \langle A^H \rangle, \langle A^H \rangle \cong Sp_4(2)$ and $H^{\circ} \cong Sp_4(2)'.$

- (3) (a) There exists a unique H-invariant set K of subgroups of M such that V is a natural SL₂(q)-wreath product module for H with respect to K.
 - (b) $H^{\circ} = O^{p}(\langle \mathcal{K} \rangle)Q$ and Q acts transitively on \mathcal{K} .
 - (c) $A \leq K$ for some $K \in \mathcal{K}$.
- (4) (a) $H \cong O_{2n}^{\epsilon}(2), H^{\circ} \cong \Omega_{2n}^{\epsilon}(2), 2n \ge 4 \text{ and } (2n, \epsilon) \neq (4, +) \text{ and } [V, H] \text{ is a corresponding natural module.}$
 - (b) If $V \neq [V, H]$, then $H \cong O_6^+(2)$ and |V/[V, H]| = 2.
 - (c) |A| = 2 and $H = \langle A^H \rangle$.

PROOF. Put $K^* := \langle A^H \rangle$, $K := \langle A^{K^*} \rangle$ and $\mathcal{K} := K^H$. Since *H* is faithful and *p*-reduced, $O_p(H) = 1$. Thus we can apply [**MS6**, 4.8] and conclude that one of the following holds:

- (A) (a) $K \leq H$, $H^{\circ} = \langle Q^K \rangle$ and $C_V(K) = 0$.
 - (b) $K \cong SL_n(q), n \ge 3, Sp_{2n}(q), Alt(6), \text{ or } O_{2n}^{\epsilon}(2), q \text{ a power of } p, p = 2 \text{ in the last two cases; and } [V, K] \text{ is a corresponding natural module.}$
 - (c) Either $H^{\circ} \leq K$ or $K \cong Sp_4(2)'$ and $H^{\circ} \cong Sp_4(2)$.
 - (d) If $K \cong O_{2n}^{\epsilon}(2)$, then |W| = 2.
- (B) (a) Q acts transitively on \mathcal{K} and $H^{\circ} \leq \langle \mathcal{K} \rangle Q$
 - (b) $V = \bigoplus_{R \in \mathcal{K}} [V, R], K \cong SL_2(q)$, and [V, K] is a natural $SL_2(q)$ -module for K.

Suppose first that (B) holds. Then V is a natural $SL_2(q)$ -wreath product module for H with respect \mathcal{K} . By A.27(c) \mathcal{K} is uniquely determined by this property.

Since Q acts transitively on \mathcal{K} and $K \cong SL_2(q)$, we get $O^p(\langle \mathcal{K} \rangle) \leq \langle Q^H \rangle$. As $H^\circ \leq \langle \mathcal{K} \rangle Q$, this gives $O^p(H^\circ) = O^p(\langle \mathcal{K} \rangle)$. By A.52(a) we have $H^\circ = \langle Q^{H^\circ} \rangle$ and we conclude that $H^\circ = O^p(H^\circ Q) = O^p(\langle \mathcal{K} \rangle)Q$. Thus (3) holds.

Suppose next that (A) holds.

Assume that $K \cong SL_n(q)$, $n \ge 3$, and [V, K] is a corresponding natural module. Then $H^{\circ} \le K$ and since $SL_n(q)$ is quasisimple (or by B.37), H = K. By C.22 either V = [V, K] or $K \cong SL_3(2)$ and |V/[V, K]| = 2. Thus (1) holds.

Assume that $K \cong Sp_{2n}(q)$ and [V, K] is a corresponding natural module. Suppose that n = 1. Then by C.22, V = [V, K] and the already treated case (B) shows that (3) holds. So suppose that $n \ge 2$. Then by C.22 either V = [V, K] or p = 2 and $|V/[V, K]| \le q$. Also B.37 shows that either $H^{\circ} = K$ or $K \cong Sp_4(2)'$ and $H^{\circ} \cong Sp_4(2)$. Thus (2) holds.

Assume that $K \cong Alt(6)$ and [V, K] is a corresponding natural module, that is $K \cong Sp_4(2)'$ and [V, K] is a corresponding natural module. By (A:b) $H^{\circ} \leq K$ or $H^{\circ} \cong Sp_4(2)$, and since K is simple, we get $H^{\circ} \cong Sp_4(2)'$ or $Sp_4(2)$. By C.22, $|V/[V, K]| \leq 2$ and again (2) holds.

Assume that $K \cong O_{2n}^-(2)$. Since $O_2(H) = 1$, $K \not\cong O_2^+(2)$. If $K \cong O_2^-(2) \cong Sp_2(2)$, then [V, K] is a natural $Sp_2(2)$ -module, a case we already have treated. So suppose that $n \ge 2$. Then C.22 shows that either V = [V, K] or $K \cong O_6^+(2)$ and |V/[V, K]| = 2.

If $K \cong O_4^+(2) \cong SL_2(2) \wr C_2$, the already treated case (B) shows that (3) holds. So we may assume that $(2n, \epsilon) \neq (4, +)$. Then B.37 implies that $H^{\circ} \cong \Omega_{2n}^{\epsilon}(2)$ and thus (4) holds.

C.4. The Asymmetric Module Theorems

For the definition of a minimal asymmetric module see A.4.

THEOREM C.28 ([**MS6**, 5.4]). Let H be a finite group and V be a faithful simple minimal asymmetric $\mathbb{F}_p H$ -module with respect to $A \leq B$. Put $L := \langle A^H \rangle$ and $K := F^*(H)$. Then H = KB, $K = [K, A] \leq L$, L = KA, and one of the following holds:

- (1) |B| = 2 and $H = L \cong D_{2r}$, r an odd prime.
- (2) |A| = 2, $L \simeq SU_3(2)'$, $B \simeq C_4$ or Q_8 , and V is a natural $SU_3(2)'$ -module for L.
- (3) |B| = 3, $H = L \cong SL_2(3)$, and V is a natural $SL_2(3)$ -module for L.
- (4) K is quasisimple and not a p'-group, H = KB, V is a simple \mathbb{F}_pK -module, and H acts \mathbb{K} -linearly on V, where $\mathbb{K} = End_K(V)$.

THEOREM C.29 (Minimal Asymmetric Module Theorem, [MS6, 5.5]). Let H be a $C\mathcal{K}$ -group, $A \leq B \leq H$ and V be a faithful simple $\mathbb{F}_p H$ -module. Suppose that V is a minimal asymmetric $\mathbb{F}_p M$ -module with respect to A and B and that $F^*(H)$ is quasisimple with $p||F^*(H)|$. Then one of the following holds for $L := \langle A^H \rangle$:

- (1) $L \cong SL_n(q), Sp_{2n}(q), SU_n(q), {}^{3}D_4(q), Spin_7(q), Spin_8^-(q), G_2(q)' \text{ or } Sz(q), \text{ where } q \text{ is a power of } p, V \text{ is a corresponding natural or spin module for } L, \text{ and } A \text{ is a long root subgroup of } L.$
- (2) $L \cong Sym(2^k + 2), k \ge 3, |A| = 2, A$ is generated by a transposition, and V is the corresponding natural module.
- (3) $L \cong 3 \cdot Alt(6), |A| = 2 \text{ and } |V| = 2^6.$

APPENDIX D

The Fitting Submodule

Let H be a finite group and V be a finite \mathbb{F}_pH -module. In [MS2] an H-submodule of V was introduced which in some respect is the analogue of the generalized Fitting subgroup of a finite group. In this appendix we will give its definition and derive some properties that have been used in this paper.

LEMMA D.1. The following hold:

- (a) Suppose that $H/C_H(V)$ is a p-group. Then V is not perfect.
- (b) Suppose that V is a perfect H-module. Then $V = [V, O^p(H)]$.
- (c) Suppose that V is a quasisimple H-module. Then $C_V(O^p(H)) = rad_V(H)$.

PROOF. (a): This is an elementary fact about the action of *p*-groups on *p*-groups.

(b): Put $\overline{V} := V/[V, O^p(H)]$ and $\overline{H} := H/O^p(H)$. Then (a) shows that \overline{V} is not perfect. Since $[\overline{V}, \overline{H}] = \overline{V}$, we conclude that $\overline{V} = 0$.

(c): Let U be a maximal H-submodule of V. Then either $V = U + C_V(O^p(H))$ or $C_V(O^p(H)) \leq U$. The first case is impossible, since by (b) $V = [V, O^p(H)]$. Hence $C_V(O^p(H)) \leq rad_V(H)$. Since $V/C_V(O^p(H))$ is simple, also $rad_V(H) \leq C_V(O^p(H))$.

D.1. The Definition of the Fitting Submodule and Results from [MS2]

DEFINITION D.2. Let $S_V(H)$ be the sum of all simple H-submodules of V and

$$E_H(V) := C_{F^*(H)}(S_V(H)).$$

Let $L \leq H$. Then V is L-quasisimple for H if V is p-reduced for H, $V/rad_V(H)$ is a simple H-module, V is a perfect L-module, and L acts nilpotenly on $rad_V(H)$.

An *H*-submodule *U* of *V* is a *component* of *V* (or *H*-component of *V*), if either *U* is simple and $[U, F^*(H)] \neq 0$, or *U* is $E_H(V)$ -quasisimple. The sum of all components of *V* is the *Fitting* submodule $F_V(H)$ of *V*. Put

$$R_V(H) := \sum rad_W(H),$$

where the sum runs over all components W of V.

LEMMA D.3. The following hold:

- (a) Suppose that V is faithful and p-reduced. Then $E_H(V)$ is the (possibly empty) direct product of perfect simple groups. In particular, $F(E_H(V)) = 1$ and $E_H(V) \leq E(H)$.
- (b) If $E_H(V) = 1$, then $F_V(H)$ is a semisimple H-module.
- (c) $E_H(V)$ centralizes $R_V(H)$.

PROOF. (a): This is [MS2, 2.5d].

(b): Suppose that $E_H(V) = 1$. Then there does not exist any non-trivial *H*-module *U* with $U = [U, E_H(V)]$. It follows that all *H*-components of *V* are simple *H*-modules and so $F_V(H)$ is a semisimple *H*-module.

(c): By
$$[\mathbf{MS2}, 2.5a] C_{F_V(H)}(E_H(V)) = [S_V(H), F^*(H)] + R_V(H)$$
, and so (c) holds.

LEMMA D.4. Let $N \triangleleft \triangleleft H$. Then the following hold:

- (a) $S_V(H) \leq S_V(N)$.
- (b) $E_H(V) \cap N = E_N(V)$.

(c) $F_V(H) \leq S_V(N) + F_V(N)$.

PROOF. See [MS2, 3.1] and [MS2, 3.2].

The following theorems are the main results of [MS2]:

THEOREM D.5. $F_V(H)$ is a p-reduced H-module, and $R_V(H)$ is a semisimple $F^*(H)$ -module. Moreover $R_V(H) = rad_{F_V(H)}(H)$, in particular $F_V(H)/R_V(H)$ is a semisimple H-module.

THEOREM D.6. Suppose that V is a faithful and p-reduced H-module. Then also $F_V(H)$ and $F_V(H)/R_V(H)$ are faithful and p-reduced.

LEMMA D.7. Suppose that V is a faithful and p-reduced H-module. Let $N \leq H$. Then the following statements are equivalent:

- (a) $F_V(H)$ is a semisimple N-module.
- (b) $E_N(V) = 1$.
- (c) $N \cap E_H(V) = 1$.
- (d) $[N, E_H(V)] = 1.$
- (e) $[F^*(N), E_H(V)] = 1.$
- (f) $[N, E_N(V)] = 1.$

PROOF. Suppose that $F_V(H)$ is a semisimple N-module. Then $F_V(H) \leq S_V(N)$, and so $E_N(V) \leq C_N(S_V(N)) \leq C_H(F_V(H))$. Since V is faithful and p-reduced, D.6 shows that $F_V(H)$ is a faithful H-module, that is, $C_H(F_V(H)) = 1$. Hence $E_N(V) = 1$.

Suppose that $E_N(V) = 1$. Then by D.3(b) applied to N in place of H, $F_V(N)$ is a semisimple N-module. By D.4(c), $F_V(H) \leq S_V(N) + F_V(N)$. Since submodules of semisimple modules are semisimple we conclude that $F_V(H)$ is a semisimple N-module.

We have proved that (a) and (b) are equivalent. By D.4(b), $E_N(V) = N \cap E_H(V)$ and so (b) and (c) are equivalent. By D.3(a) $E_H(V)$ is a direct product of perfect simple groups. Thus 1.16 shows that (c),(d), (e) are equivalent.

In particular, $E_N(V) = 1$ if and only if $[N, E_H(V)] = 1$. This applied with H = N shows that $E_N(V) = 1$ if and only if $[N, E_N(V)] = 1$. So (f) is equivalent to (c).

D.2. The Fitting Submodule and Large Subgroups

LEMMA D.8. Suppose that V is a faithful p-reduced Q!-module for H. Then $[H^{\circ}, E_H(V)] = 1 = H^{\circ} \cap E_H(V)$, and $F_V(H)$ is a semisimple H° -module.

PROOF. Put $S := S_V(H)$ and $E := E_H(V)$. Then $E = C_{F^*(H)}(S)$. Since S is a non-zero H-submodule of V, A.52(c) gives $C_{H^\circ}(S) \leq C_{H^\circ}(H^\circ) = Z(H^\circ)$. Thus $[E, H^\circ] \leq E \cap H^\circ \leq Z(H^\circ)$. By A.52(b), $C_H(H^\circ/Z(H^\circ)) = C_H(H^\circ)$ and so $[H^\circ, E] = 1$. Hence D.7 shows that $H^\circ \cap E_H(V) = 1$ and that $F_V(H)$ is a semisimple H° -module.

LEMMA D.9. Suppose that V is a faithful p-reduced Q!-module for H. Let $N \leq H$ and suppose that $F^*(N) \leq F(N)F^*(H^\circ)$. Then $F_V(H)$ is a semisimple N-module.

PROOF. Put $E := E_H(V)$. By D.8 $[H^\circ, E] = 1$ and by D.3(a), $E \leq E(H)$. Since $F(N) \leq F(H)$ and [F(H), E(H)] = 1, we conclude that [F(N), E] = 1. Since $F^*(N) \leq F(N)H^\circ$ this gives $[F^*(N), E] = 1$. Thus D.7 shows that $F_V(H)$ is a semisimple N-module.

LEMMA D.10. Suppose that V is a faithful p-reduced Q!-module for H with respect to Q. Then also $F_V(H)$ and $F_V(H)/R_V(H)$ are faithful p-reduced Q!-modules for H with respect to Q. PROOF. By D.6 $F_V(H)$ and $F_V(H)/R_V(H)$ are faithful *p*-reduced *H*-modules. Put $I := F_V(H)$ and $R := R_V(H)$. The definition of a Q!-modules implies that any submodule of a Q!-module is a Q!-module, so I is a Q!-module for H with respect to Q.

Let $1 \neq B \leq C_{I/R}(Q)$. By D.9 *I* is a semisimple H° -module and so there exists an H° -submodule I_0 of *I* such that $I = I_0 \oplus R$. Hence, there exists a unique $B_0 \leq I_0$ with $B = (B_0 + R)/R$. This shows that $N_{H^{\circ}}(B) = N_{H^{\circ}}(B_0)$ and $[B_0, Q] \leq I_0 \cap R = 0$. Now Q! gives

$$Q \triangleleft N_{H^{\circ}}(B_0) = N_{H^{\circ}}(B) \triangleleft N_H(B).$$

Thus $Q \leq O_p(N_H(B))$. Hence $1 \neq C_V(O_p(N_H(B))) \leq C_V(Q)$, and Q! implies

$$N_H(B) \leq N_H(C_V(O_p(H))) \leq N_H(Q).$$

This shows that also I/R is a Q!-module for H with respect to Q.

D.3. The Nearly Quadratic Q! -Module Theorem

THEOREM D.11 (Nearly Quadratic Q!-Module Theorem). Suppose that Y is a faithful p-reduced $\mathbb{F}_p Q!$ -module for M with respect to Q. Put $I := F_Y(M)$ and suppose that there exists an elementary abelian p-subgroup A of M such that

- (i) A acts nearly quadratically but not quadratically on I,
- (ii) A normalizes Q, and Q normalizes A,
- (iii) $[Y, A] \leq I$.

Then one of the following holds:

- (1) $K := [F^*(M), A]$ is the unique component of $M, K \leq M^\circ$, I is a simple K-module, I = [Y, KA], and A acts K-linearly on I, where $K := End_K(I)$.
- (2) $M^{\circ} \cong \Omega_3(3)$, and Y is the corresponding natural module for M° .
- (3) Y = I, and there exists an M-invariant set $\{K_1, K_2\}$ of subnormal subgroups of M such that $K_i \cong SL_{m_i}(q), m_i \ge 2, q$ a power of p, $[K_1, K_2] = 1$, and as a K_1K_2 -module $Y \cong Y_1 \otimes_{\mathbb{F}_q} Y_2$ where Y_i is a natural $SL_{m_i}(q)$ -module for K_i . Moreover, $\mathbb{K} := End_{K_1K_2}(I) \cong \mathbb{F}_q$ and one of the following holds:
 - (1) M° is one of K_1, K_2 or K_1K_2 ,
 - (2) $m_1 = m_2 = q = 2, M \cong SL_2(2) \wr C_2, M^\circ = O_3(M)Q \text{ and } Q \cong C_4 \text{ or } D_8.$
 - (3) $m_1 = m_2 = p = 2, q = 4, M^{\circ} = K_1 K_2 Q \cong SL_2(4) \wr C_2, A acts K-linearly on I but <math>M^{\circ}$ does not.
- (4) $p = 2, M \cong \Gamma SL_2(4), M^{\circ} \cong SL_2(4)$ or $\Gamma SL_2(4), I$ is the corresponding natural module, and $|Y/I| \leq 2$,
- (5) $p = 2, M \cong \Gamma GL_2(4), M^{\circ} \cong SL_2(4), I$ is the corresponding natural module, and Y = I,
- (6) p = 2, $M \cong 3$ ·Sym(6), $M^{\circ} \cong 3$ ·Alt(6) or 3·Sym(6), and Y = I is simple of order 2^{6} .
- (7) $p = 3, M \cong Frob(39)$ or $C_2 \times Frob(39), M^{\circ} \cong Frob(39)$, and Y = I is simple of order 3^3 .

PROOF. Put $L := GL_{\mathbb{F}_p}(I)$. By D.6 *I* is a faithful *M*-module, so we may and do view *M* as a subgroup of *L*. Let *H* be the subnormal closure of *A* in *M*.

$$1^{\circ}$$
. $O_p(M) = O_p(H) = 1$.

Since M is a faithful p-reduced M-module, $O_p(M) = 1$ and since $H \leq M$ also $O_p(H) = 1$.

 2° . $H = \langle A^H \rangle$ and $[Y, H] \leq I$.

Since H is the subnormal closure of A, 1.13 gives $H = \langle A^H \rangle$, and by Hypothesis (iii) $[Y, A] \leq I$. Hence also $[Y, H] \leq I$.

 3° . I is a semisimple M° -module. In particular, I is a semisimple module for any subnormal subgroup of M° .

Since Y is a faithful p-reduced Q!-module for M with respect to Q, D.8 shows that I is a semisimple M° -module.

4°. Let R be a subnormal subgroup of M with $R \leq N_M(Q)$. Then [R, Q] = 1.

This holds by A.54(b).

5°. Let R be a subnormal subgroup of M and let U be a non-trivial Q- and R-invariant subspace of Y. Then $[C_R(U), Q] = 1$.

Note that $C_R(U)$ is normal in R and so subnormal in M. Also since $U \neq 0$, $C_U(Q) \neq 0$, and so Q!-gives $C_R(U) \leq N_M(C_U(Q)) \leq N_M(Q)$. Thus (4°) implies $[C_R(U), Q] = 1$.

 6° . $[F^*(M), Q, A] \neq 1$.

If $A \cap Q \neq 1$, then 1.15(b) shows that $[F^*(M), A \cap Q] \neq 1$ and so by 1.8(b),

$$1 \neq [F^*(M), A \cap Q, A \cap Q] \leq [F^*(M), Q, A].$$

So we may assume that $A \cap Q = 1$. Put $R := [F^*(M), Q]$ and suppose for a contradiction that [R, A] = 1. By 1.15(b), $R \neq 1$, and by 1.8(b), R = [R, Q]. Since $A \cap Q = 1$ and A and Qnormalizes each other we have [A, Q] = 1 and so [RQ, A] = 1. Observe that $R \leq M^\circ$. Thus, (3°) shows that I is a semisimple R-module. Hence I is the direct sum of the Wedderburn components of R on I. Since A centralizes R, each of the Wedderburn components of R is invariant under A. By Hypothesis (i), A is nearly quadratic but not quadratic on I, so A.48 shows that there exists a unique Wedderburn component W of R on I with $[W, A] \neq 0$. Let W_* be the sum of the remaining Wedderburn components of R. Then $I = W \oplus W_*$. Since Q normalizes R and A, Q also normalizes W and W_* .

Let W_1 be a simple $\mathbb{F}_p R$ -submodule of W and put $\mathbb{L} =: End_R(W_1)$. Since W is R-homogeneous and [R, A] = 1, [MS3, 5.2] shows that there exists an $\mathbb{L}A$ -module W_2 such that $W \cong W_1 \otimes_{\mathbb{L}} W_2$ as an \mathbb{F}_pRA -module. Let $m_i = \dim_{\mathbb{L}} W_i$. Then as an \mathbb{F}_pA -module, W is the direct sum of m_1 copies of W_2 . Applying A.48 a second times, A centralizes all but one of these m_1 summands. Since the summands are isomorphic this gives $m_1 = 1$. In particular, \mathbb{L} is generated by the image of R in $End_{\mathbb{F}_p}(W_1)$. As an R-module, W is a direct sum of copies of W_1 , and we conclude that the subring \mathbb{D} of $End_{\mathbb{F}_p}(W)$ generated by the image of R is a field isomorphic to \mathbb{L} . Then Q acts \mathbb{D} -semilinearly on W and $Q_0 := C_Q(R/C_R(W)) = C_Q(\mathbb{D})$. By $(5^\circ), [C_R(W), Q] = 1$ and so $[R, Q_0, Q] \leq [C_R(W), Q] = 1$. Thus $[F^*(M), Q_0, Q_0, Q_0] \leq [F^*(M), Q, Q_0, Q] = 1$, and by 1.8(b) $[F^*(M), Q_0] = 1$, so 1.15(b) gives $Q_0 = 1$. Hence Q acts faithfully on $R/C_R(W)$ and thus also on D. Put $\mathbb{D}_0 = C_{\mathbb{D}}(Q)$. By Galois Theory $\dim_{\mathbb{D}_0} \mathbb{D} = |Q|$ and there exists a \mathbb{D}_0 -basis of \mathbb{D} regularly permuted by Q. Also there exists a Q-invariant chain $0 = U_0 < U_1 < \ldots < U_{m_2-1} < U_{m_2} = W$ of \mathbb{D} -subspaces of W with each factor isomorphic to \mathbb{D} as a Q-module. Thus $C_{U_i}(Q) \leq U_{i-1}$ and so $\langle C_W(Q)^R \rangle = \langle \mathbb{D}C_W(Q) \rangle = W$. By $Q!, C_W(Q) \cap C_W(Q)^r = 0$ for all $r \in R \setminus N_R(Q)$, see A.50(c). Since $C_W(Q)$ and $C_W(Q)^r$ are isomorphic A-modules, A.48 shows that A acts quadratically on $C_W(Q)$ and so also on $W = \langle C_W(Q)^R \rangle$ and $I = W \oplus W_* = W + C_I(A)$, a contradiction.

7°. There exists a QA-invariant non-trivial subnormal subgroup X of $F^*(M)$ such that

$$X = [X, A], \quad X = [X, Q] \quad and if A \cap Q \neq 1, \ X = [X, A \cap Q].$$

If $A \cap Q \neq 1$, 1.15(b) shows that $[F^*(M), A \cap Q] \neq 1$ and 1.8(b) gives

$$[F^*(M), A \cap Q] = [F^*(M), A \cap Q, A \cap Q].$$

So we can choose $X = [F^*(M), A \cap Q]$ in this case.

Suppose next that $A \cap Q = 1$. By (6°) $[F^*(M), Q, A] \neq 1$ and so we can choose a QA-invariant subnormal subgroup X of $F^*(M)$ minimal with $[X, Q, A] \neq 1$. Then 1.10 shows X = [X, A] and X = [X, Q].

8°.
$$X \leq F^*(M^\circ) \cap F^*(H)$$
 and $X \leq N_M(Q)$. In particular, $H \leq N_M(Q)$.

Since X = [X, A] and $A \leq H \leq M^{\circ}$, 1.11 shows that $X \leq H$. Also X = [X, Q] implies $X \leq M^{\circ}$. Hence $X \leq F^{*}(M) \cap M^{\circ} = F^{*}(M^{\circ})$ and similarly $X \leq F^{*}(H)$. If $X \leq N_{M}(Q)$, (4°) implies [X, Q] = 1, a contradiction to $1 \neq X = [X, Q]$.

 9° . I is a semisimple X-module and $C_Y(X) = 1$. In particular, I = [I, X] and X has no central chief factor on I.

By (8°), $X \leq M^{\circ}$ and so X is a subnormal subgroup of M° . Hence (3°) shows that I is a semisimple X-module. By (8°) $X \leq N_M(Q)$. Since X is Q-invariant and Y is a Q!-module for M with respect to Q, this gives $C_Y(X) = 1$ (see A.53).

10°. Put
$$F := F^*(H)$$
. Then $C_Y(F) = 1$, $[Y, H] = [Y, F] = I$, and if H is solvable, then $Y = I$.

By (8°) $X \leq F$ and by (9°), $C_Y(X) = 1$ and I = [I, X]. So $C_Y(F) = 1$ and I = [I, F]. By (2°), $[Y, H] \leq I$ and so [Y, H] = [Y, F] = I.

Suppose now that H is solvable. Then $F = F^*(H) = F(H)$ is nilpotent. Since $O_p(H) = 1$, this implies that F is a p'-group. Coprime action now shows that $Y = C_Y(F) \oplus [Y, F] = I$.

11°. Let \mathcal{W} be a system of imprimitivity for H on I with $|\mathcal{W}| \ge 2$ such that X acts trivially on \mathcal{W} . Then Case (2) or Case (3) of the Theorem holds.

Let $W \in \mathcal{W}$. Then X normalizes W, and by (9°) X has no central chief factor on I, so W = [W, X] and $C_W(X) = 0$. In particular, |W| > 2, and since X = [X, A] we get $[W, A] \neq 0$.

We now apply A.48. Since $[W, A] \neq 0$ for all $W \in \mathcal{W}$, A.48(1) does not occur, and since A does not act quadratically on I, also A.48(2) and (3) do not occur. So A.48(4) holds. Hence A has a unique orbit W^A on \mathcal{W} with $[W, A] \neq 0$. It follows that $\mathcal{W} = A^W$, and one of the following holds.

- p = 2, $|W^A| = 4$ and $\dim_{\mathbb{F}_2} W = 1$.
- p = 3, $|W^A| = 3$ and $\dim_{\mathbb{F}_3} W = 1$.
- p = 2, $|W^A| = 2$ and $C_A(W) = C_A(V)$. Moreover, $\dim_{\mathbb{F}_2} W/C_W(B) = 1$ and $C_W(B) = [W, B]$, where $B := N_A(W)$.

Since |W| > 2 the first of these cases does not occur. Consider the second case. Recall that we view M as a subgroup of $L = GL_{\mathbb{F}_p}(I)$. Note that $N_L(\mathcal{W}) \cong C_2 \wr Sym(3)$ and so $O^2(N_L(\mathcal{W})) \cong Alt(4) \cong \Omega_3(3)$. Since $H = \langle A^H \rangle = O^2(H)$ and $1 \neq X \leq H \cap C_L(\mathcal{W})$ we get $H = O^2(N_L(\mathcal{W}))$. It follows that \mathcal{W} is the set of Wedderburn components of $O_2(H)$ on I and hence

$$N_L(O^2(H)) = N_L(H) \leq N_L(O_2(H)) \leq N_L(\mathcal{W}) \text{ and } O^2(N_L(\mathcal{W})) = H = O^2(H).$$

Thus 1.12 applied with $\mathcal{G} = O^2$ shows that $H = O^2(H) = O^2(M)$. In particular, $M^{\circ} \leq H$ and so $H = M^{\circ}$. Hence H is solvable, and (10°) shows that Y = I. So Case (2) of the Theorem holds.

Consider the third case. Put $H_0 := N_H(W)$. Then $|H/H_0| = 2$, $H = AH_0$ and $H_0 \leq H$. Let $w \in W \setminus C_W(B)$. Then $[w, B] = [W, B] = C_W(B)$ and so B acts transitively on $W \setminus C_W(B)$. In particular, B induces the full centralizer of $C_W(B)$ in $GL_{\mathbb{F}_2}(W)$ on W.

Let U be a proper H_0 -submodule of W. Since $B \leq H_0$, U is B-invariant, and the transitive action of B on $W \setminus C_W(B)$ shows that $U \leq C_W(B)$. Put $D := C_B(W/U)$. The transitive action of B shows that [W, D] = U. Note that D centralizes W/U and U. Let $a \in A \setminus B$. Since A is abelian, $D \leq A$ and so D centralizes W^a/U^a and U^a . Since $I = W + W^a$, it follows that $D \leq O_p(H_0)$. Hence U = [W, D] = 1 and so W is a simple H_0 -module.

Now [MS3, 7.3] shows that $\langle B^{H_0} \rangle$ induces $SL_{\mathbb{F}_2}(W) = Aut(W)$ on W. Suppose that H_0 acts faithfully on W. Then $H_0 \cong SL_{\mathbb{F}_2}(W)$. Thus H_0 has no outer automorphism, so $H = C_H(H_0)H_0$. But then $|C_H(H_0)| = 2$, a contradiction to $O_2(H) = 1$.

Put $\{W_1, W_2\} := \mathcal{W}, \{i, j\} := \{1, 2\}$ and $K_j := C_{H_0}(W_i)$. Then K_i acts faithfully on W_i . As H_0 does not act faithfully on W_j , $K_i \neq 1$. Thus $W_i = [W_i, K_i]$, and since $I = W_i \oplus W_j$, we get $W_i = [I, K_i]$ and $I = [I, K_1] \oplus [I, K_2]$. Put $m := \dim_{\mathbb{F}_2}(W)$. Then W_i is natural $SL_m(2)$ -module for $H_0, H_0/K_j = H_0/C_{H_0}(W_i) \cong SL_m(2)$ and

(*)
$$1 \neq K_i \cong K_i K_j / K_j \triangleleft H_0 / K_j \cong SL_m(2).$$

Suppose that $m \ge 3$. Then $SL_m(2)$ is simple, and (*) implies that that $H_0 = K_i K_j$. Hence $H_0 = K_1 \times K_2$ and W_i is natural $SL_m(2)$ -module for K_i . As seen above $I = [I, K_1] \oplus [I, K_2]$. Thus I is a wreath product module for H with respect to $\{K_1, K_2\}$, and A.56(b) shows that $C_{K_i}(w_i)$ is a 2-group for $0 \ne w_i \in C_{W_i}(N_Q(K_i))$. But this contradicts the action of K_i on the natural $SL_m(2)$ -module W_i .

Thus m = 2. Now (*) implies that $K_i \cong SL_2(2)$ or $SL_2(2)' \cong C_3$. Put $F_i := O_3(K_i)$. Then $F_1F_2 = O_3(H) = F^*(H) = F = O^2(H)$. In particular, H is solvable and I = Y by (10°). Since

 $C_B(W_i) = C_B(I) = 1$, |B| = 2 and so $A \cong C_2 \times C_2$. Since H is the subnormal closure of A, 1.13 gives $H = O^2(H)A = FA$. So $H = FA = H_1 \times H_2$ with $H_i \cong SL_2(2)$, and as an H-module $I = V_1 \otimes V_2$ where V_i is a natural $SL_2(2)$ -module for H_i .

Note that $N_L(\mathcal{W}) \cong SL_2(2) \wr C_2$ so $F = O^2(H) = O^2(N_L(\mathcal{W}))$. Also \mathcal{W} is the of set of Wedderburn components of $O^2(H)$ on I, and so $N_L(O^2(H)) \leq N_L(\mathcal{W})$. Hence 1.12 applied with $\mathcal{G} = O^2$ shows that $O^2(M) = O^2(H) = F \leq M$. Thus either $H = M \cong SL_2(2) \times SL_2(2)$ or $H \leq M = N_L(F) \cong SL_2(2) \wr C_2$. So to show that Case (3) of the Theorem holds it remains to determine M° .

Observe that $H = H_1 \times H_2 \cong \Omega_4^+(2)$, I is a natural $\Omega_4^+(2)$ -module for H and $H \leq M$. Since Q is weakly closed and $O^2(M) \leq H$, we have $M^\circ = \langle Q^{O^2(M)} \rangle = \langle Q^H \rangle$, see 1.46(d). Now B.37 shows that either M° is one H_1, H_2 and H, or Q is isomorphic to C_4 or D_8 . Thus indeed Case (3) of the Theorem holds.

In view of (11°) we may assume from now on that:

12°. Let \mathcal{W} be a system of imprimitivity for H on I with X acting trivially on \mathcal{W} . Then $|\mathcal{W}| = 1$.

Next we show:

13°. Suppose that I is not a simple M° -module. Then Case (3:1) of the Theorem holds.

By (3°) I is a semisimple M° -module and so the Wedderburn components of M° form a system of imprimitivity for H. Hence (12°) shows that I is a homogeneous M° -module. Let I_1 be a simple M° -submodule of I and $\mathbb{L} = End_{M^{\circ}}(I_1)$. Since M° is generated by p-elements, dim_L $I_1 \ge 2$. By [**MS3**, 5.5] there exists an \mathbb{L} -vector space I_0 and a regular tensor decomposition $I_0 \otimes_{\mathbb{L}} I_1$ of I for M, which is strict for QA and such that M° centralizes I_0 . Since I is not simple for M° , $I \ne I_1$ and so dim_L $I_2 \ge 2$. Hence $I_0 \otimes_{\mathbb{L}} I_1$ is a proper tensor decomposition and we can apply [**MS3**, 6.5]. We discuss the cases given there.

The first two cases do not occur since A does not act quadratically. Case (3.2) does not occur for regular tensor decompositions. Thus Case (3.1) holds. Hence A acts \mathbb{L} -linearly on I_j for j = 0, 1, $U_j := [I_j, A] = C_{I_j}(A)$ is an \mathbb{L} -hyperplane of I_j , and $[\mathbb{F}_p v_i, A] = U_j$ for all $v_j \in I_j \setminus U_j$. In particular, A acts quadratically on I_j and so $\{[v_j, a] \mid a \in A\} = [v_j, A] = [\mathbb{F}_p v_i, A] = U_j$. Thus A acts transitively on $v_j + U_j$. Put $L_j := GL_{\mathbb{L}}(I_j), H_j := C_{L_j}(U_j) \cap C_{L_j}(I_j/U_j)$ and for $P \subseteq C_M(\mathbb{L})$ let P_j be the image of P in L_j . Note that $A_j \leq H_j$ and a Frattini argument gives $H_j = A_j C_{H_j}(v_j)$. Since $C_{H_j}(v_j)$ centralizes $\mathbb{L}v_k + U_j = I_j$ we conclude that $A_j = H_j$.

Since I_1 is a simple M° -module, I_1 is also a simple $M^{\circ}A$ -module and so *p*-reduced for $M^{\circ}A$. Now $[\mathbf{MS3}, 7.2]$ shows $\langle A^{M^{\circ}} \rangle_1 = SL_{\mathbb{L}}(I_1)$. Since M° is generated by *p*-elements and $GL_{\mathbb{L}}(I_1)/SL_{\mathbb{L}}(I_1)$ is a *p*'-group, we get $(M^{\circ})_1 \leq SL_{\mathbb{L}}(I_1)$. As M_1° acts faithfully on I_1 ,

$$1 \neq M^{\circ} \cong (M^{\circ})_1 \triangleleft \langle A^{M^{\circ}} \rangle_1 = SL_{\mathbb{L}}(I_1).$$

Note that $SL_{\mathbb{L}}(I_1)$ is either quasisimple or $|\mathbb{L}| = p \leq 3$, $\dim_{\mathbb{L}} I_1 = 2$ and $SL_{\mathbb{L}}(I_1)'$ is a p'-group. We conclude that $(M^{\circ})_1 = L_1$ and $M^{\circ} \cong SL_{\mathbb{L}}(I_1)$.

Let $K := O^{p'}(C_{C_M}(\mathbb{L})(M^\circ))$. As $C_{GL_{\mathbb{F}_p}(I_1)}(M^\circ)$ is a p'-group, K centralizes I_1 and so also \mathbb{L} . In particular, K acts faithfully on I_0 and $K \cong K_0$. As $\langle A^{M^\circ} \rangle_1 = SL_{\mathbb{L}}(I_1)$, A induces inner automorphisms on M° and so $A \leq M^\circ K$. Suppose that U is a proper $\mathbb{L}K$ -submodule of I_0 . Since A acts transitively on $v_0 + U_0$, it also acts transitively on the 1-dimensional \mathbb{L} -subspaces not in U_0 . Thus $U \leq U_0$. Put $B := C_A(I_0/U)$. Since $A_0 = H_0$, $[I_0, B] = U$. Note that B centralizes I_0/U and U and so the same holds for $K \cap BM^\circ$. But K acts faithfully on I_0 and since $K \leq M$, $O_p(K) = 1$. Thus $K \cap BM^\circ = 1$. As $B \leq A \leq M^\circ K$ we get

$$B \leqslant M^{\circ}B \cap M^{\circ}K = M^{\circ}(K \cap BM^{\circ}) = M^{\circ}.$$

Thus $U = [I_0, B] \leq [I_0, M_\circ] = 0$, and I_0 is a simple $\mathbb{L}K$ -module. It follows that $\langle A^K \rangle_0 = L_0$, and arguing as above, $L_0 \cong SL_{\mathbb{L}}(I_0)$, $K_0 = L_0$ and $K \cong SL_{\mathbb{L}}(I_0)$. Thus Case (3:1) of the Theorem holds.

In view of (2°) we may assume from now on that

14°. I is a simple M° -module.

Next we prove:

 15° . I is a simple H-module.

Since I is a simple M° -module, I is a simple M-module. Since $H \leq M$ this implies that I is a semisimple H-module. So I is the direct sum of a set \mathcal{W} of simple H-submodules. Note that \mathcal{W} is a system of imprimitivity for H on I with H and so also X acting trivially on \mathcal{W} . Thus (12°) shows that $|\mathcal{W}| = 1$. Hence I is a simple H-module.

Recall that $F = F^*(H)$.

16°. Let W be a Wedderburn component for F on I and put $\mathbb{K} := Z(End_F(W))$. Then W = I and $\mathbb{K} = Z(End_F(I))$.

By (8°) $X \leq F^*(H) = F$. Hence the Wedderburn components for F on I form a system of imprimitivity for H on I on which X acts trivially. Thus (12°) shows that I = W.

We now apply [MS3, Theorem 2] and discuss the different cases given there. Define $\mathbb{E} := End_H(I)$.

Case 1. Suppose that F = KZ(H), where K is a component of H, I = W is a simple $\mathbb{F}_p K$ -module, and $\mathbb{K} = \mathbb{E}$. Then Case (1) of the Theorem holds.

Put $\mathbb{D} = End_K(I)$. Since I is a finite simple K-module, \mathbb{D} is a finite division ring and so a field. In particular, the multiplicative group \mathbb{D}^* of \mathbb{D} is a cyclic p'-group. Note that $C_M(K) \leq \mathbb{D}^*$ and so also $C_M(K)$ is cyclic p'-group. Thus K is the unique component of M and $K \leq M$. Moreover, if P is a non-trivial p-subgroup of M, then $[K, P] \neq 1$ and so K = [K, P]. Thus $K = [K, Q] \leq M^\circ$ and K = [K, A].

Since \mathbb{D} is commutative and $Z(H) \leq C_M(K) \leq \mathbb{D}^*$ we have $\mathbb{D} \subseteq End_{Z(H)}(I)$. Thus

 $\mathbb{D} \subseteq End_{Z(H)K}(I) = End_F(I) \subseteq End_K(I) = \mathbb{D}$

and so $\mathbb{D} = End_F(I) = End_K(I)$. Since I = W, $\mathbb{K} = Z(End_F(I)) = Z(End_K(I)) = Z(\mathbb{D})$, and since \mathbb{D} is commutative, this gives $\mathbb{K} = \mathbb{D}$.

As $KA \leq H$, (2°) shows [Y, KA] = I. Note that $F(M) \leq C_M(K) \subseteq \mathbb{D} = \mathbb{K}$. Since by Hypothesis of (Case 1) $\mathbb{K} = \mathbb{E} = End_H(I)$, this gives [F(M), A] = 1 and $[F^*(M), A] = [F(M)K, A] = [K, A] = K$. Thus all the statements in Case (1) of the Theorem hold.

We now discuss the remaining cases given in Theorem 2 of [MS3]. For the convenience of the reader we reproduce the table given there. We also have omitted case (13) of the table since in that case H would not be generated by abelian nearly quadratic subgroups.

	Н	Ι	W	K	$H/C_H(\mathbb{K})$	conditions
1.	$(C_2 \wr Sym(m))'$	$(\mathbb{F}_3)^m$	\mathbb{F}_3	\mathbb{F}_3	_	$m \geqslant 3, m \neq 4$
2.	$SL_n(\mathbb{F}_2) \wr Sym(m)$	$(\mathbb{F}_2^n)^m$	\mathbb{F}_2^n	\mathbb{F}_2	_	$m \ge 2, n \ge 3$
3.	$Wr(SL_2(\mathbb{F}_2),m)$	$(\mathbb{F}_2^2)^m$	$\mathbb{F}_2^{\overline{2}}$	\mathbb{F}_4	_	$m \ge 2$
4.	$Frob_{39}$	\mathbb{F}_{27}	Ι	\mathbb{F}_{27}	C_3	
5.	$\Gamma GL_n(\mathbb{F}_4)$	\mathbb{F}_4^n	I	\mathbb{F}_4	C_2	$n \ge 2$
6.	$\Gamma SL_n(\mathbb{F}_4)$	\mathbb{F}_4^n	I	\mathbb{F}_4	C_2	$n \ge 2$
7.	$SL_2(\mathbb{F}_2) \times SL_n(\mathbb{F}_2)$	$\mathbb{F}_2^2 \otimes \mathbb{F}_2^n$	Ι	\mathbb{F}_4	C_2	$n \ge 3$
8.	$3 \cdot Sym(6)$	\mathbb{F}_4^3	Ι	\mathbb{F}_4	C_2	
9.	$SL_n(\mathbb{K}) \circ SL_m(\mathbb{K})$	$\mathbb{K}^n \otimes \mathbb{K}^m$	Ι	any	1	$n,m \ge 3$
10.	$SL_2(\mathbb{K}) \circ SL_m(\mathbb{K})$	$\mathbb{K}^2 \otimes \mathbb{K}^m$	Ι	$\mathbb{K} \neq \mathbb{F}_2$	1	$m \ge 2$
11.	$SL_n(\mathbb{F}_2) \wr C_2$	$\mathbb{F}_2^n\otimes\mathbb{F}_2^n$	Ι	\mathbb{F}_2	1	$n \ge 3$
12.	$(C_2 \wr Sym(4))'$	$(\mathbb{F}_3)^4$	Ι	\mathbb{F}_3	1	

Case 2. Cases 1., 2., and 3. of the table do not occur.

In these cases $W \neq I$ contrary to (16°).

Case 3. In cases 5., 6. and 8. of the table, case (4), (5) and (6), respectively, of the Theorem holds.

Note that in each of these cases H has a unique component K_1 and I is a simple K_1 -module. In particular, $C_L(K_1)$, and so also $C_M(K_1)$, is a cyclic p'-group. Thus $[K_1, Q] \neq 1$ and $K_1 = [K_1, Q] \leq M^\circ$. Moreover, since $C_M(K_1)$ is cyclic and distinct components centralize each other, K_1 is the unique component of M and so $K_1 \leq M$. Note also that in each case $\mathbb{K} = \mathbb{F}_4$ and H does not act \mathbb{K} -linearly on I. As $H = \langle A^H \rangle$ also A does not act \mathbb{K} -linearly on I.

Assume case 5. or 6. of the table. Then $K_1 \cong SL_n(4)$ and I is a natural $SL_n(4)$ -module for K_1 .

Suppose that n > 2. Then by B.37 $K_1 = M^{\circ}$ and $Q = C_L(I/U) \cap C_L(U)$ for some 1-dimensional \mathbb{K} -subspace U of I. Let $A_{\mathbb{K}}$ be the largest subgroup of A acting \mathbb{K} -linearly on I. Since A does not act \mathbb{K} -linearly on I, [**MS3**, 6.3] shows that $[I, A_{\mathbb{K}}] = C_I(A_{\mathbb{K}})$ is a \mathbb{K} -hyperplane of I. Recall from Hypothesis (ii) of the Theorem that Q and A normalizes each other. Thus $[Q, A] \leq Q \cap A$ and $U \leq C_I([Q, A])$. We claim that $C_I([Q, A]) = U$. Otherwise choose $U < U_1 \leq C_I([Q, A])$ with $[U_1, A] \leq U$. Then $[Q, A, U_1] = 0$ and $[U_1, A, Q] \leq [U, Q] = 0$. Hence the Three Subgroups Lemma shows that $[U_1, Q, A] = 0$. As $Q = C_L(I/U) \cap C_L(U)$ and $U_1 \leq U$, this implies that $[U_1, Q] = U$. So A centralizes the non-trivial \mathbb{K} -subspace U of I, a contradiction, since A does not act \mathbb{K} -linearly on U. Thus $C_I([Q, A]) = U$. As Q acts \mathbb{K} -linearly on I, we have $[Q, A] \leq Q \cap A \leq A_{\mathbb{K}}$ and $C_I(A_{\mathbb{K}}) \leq C_I([Q, A]) \leq U$. Since $C_I(A_{\mathbb{K}})$ is a \mathbb{K} -hyperplane of I and dim $_{\mathbb{K}} U = 1$, this shows that n = 2.

Note that $M \leq N_L(K_1)$. By B.32(b), $N_L(K_1) \cong \Gamma GL_2(4)$ and so $N_L(K_1)/K_1 \cong Sym(3)$. Since $A \leq K_1$, this implies either $M = N_L(K_1) \cong \Gamma GL_2(4)$ or $M = K_1A \cong \Gamma SL_2(4)$. In both cases M = H. Since K_1 acts transitively on I, Q! shows that $M^\circ = \langle Q^{K_1} \rangle = K_1Q \leq M$. Thus either $M^\circ = K_1$ or $M^\circ = M \cong \Gamma SL_2(4)$.

By (2°) , $[Y, H] \leq I$ and so $[Y, K_1] = I$. Observe that $[K_1, Q] \neq 1$ and by Q!, $C_Y(K_1) = 1$. Thus Y/I embeds into $H^1(K_1, I)$. By C.18 $H^1(K_1, I)$ has order four. As $C_L(K_1)$ acts fixed-point freely on I, it also acts fixed-point freely on $H^1(K_1, I)$. Thus $N_L(K_1)$ induces Sym(3) on $H^1(K_1, I)$ with kernel K_1 . Since M = H, $[Y, M] \leq I$. Hence either Y = I or $M \cong \Gamma SL_2(4)$ and $|Y/I| \leq 2$, or $M \cong \Gamma GL_2(4)$ and Y = I. In the first case (4) of the Theorem holds, in the second case (5) of the Theorem holds.

Assume case 8. of the table. Since $End_{K_1}(I) = \mathbb{F}_4$ and $|Z(K_1)| = 3 = |\mathbb{F}_4^{\sharp}| = |\mathbb{K}^{\sharp}|$, $C_M(K_1) \leq K_1$. Note that K_1 has a unique conjugacy class of subgroups A_1 with $A_1 \cong Alt(5)$ and $C_I(A_1) \neq 1$. It follows that M acts on this conjugacy class. Thus $M/C_M(K_1) \cong Sym(6)$ and so $M \cong 3 \cdot Sym(6)$. Since $K_1 \leq M^{\circ}$ we get $M^{\circ} = K_1 \cong 3 \cdot Alt(6)$ or $M^{\circ} = M \cong 3 \cdot Sym(6)$. Thus case (6) of the Theorem holds.

Case 4. Suppose that either Case 12. or Case 10. with m = 2 and $\mathbb{K} = \mathbb{F}_3$ of the table holds. Then Case (3:1) of the Theorem holds.

Since H is solvable in these cases (10°) shows that Y = I. Note that in both cases $F = O_2(H) \cong Q_8 \circ Q_8$, and I is the unique simple F-module of order 3^4 . Moreover, $F = O^3(O^2(H))$ and $N_L(F)/F \cong O_4^+(2)$. It follows that $F = O^3(O^2(N_L(F)))$ and 1.12 applied with $\mathcal{G} = O^3O^2$ shows that $F = O^3(O^2(M)) \preccurlyeq M$. Note that $Q \leqslant O^2(M)$ since p = 3, and so $M_{\circ} = O^3(M^{\circ}) \leqslant F$. By 1.13 $M^{\circ} = \langle Q^{M_{\circ}} \rangle$ and thus $M^{\circ} = \langle Q^F \rangle$.

Suppose for a contradiction that Q normalizes an elementary abelian subgroup B of order eight in F. Since B/Z(F) and F/B are dual to each other as Q-modules, we conclude that Q acts fixed-point freely on F/Z(F). In particular, [B, Q] is a complement to Z(F) in B. Let

$$\mathcal{D} := \{ D \leq B \mid |B/D| = 2, C_I(B) \neq 0 \}.$$

Since I is a simple faithful F-module, $C_I(Z(F)) = 0$. Thus $Z(F) \cap D = 1$ for all $D \in \mathcal{D}$. By coprime action

$$I = \bigoplus_{D \in \mathcal{D}} C_I(D).$$

Note that F acts transitively on the four complements to Z(F) in B. We conclude that \mathcal{D} consists of the complements to Z(F) in B and $|C_I(D)| = 3$ for all $D \in \mathcal{D}$. In particular, $|C_I([B,Q])| = 3$ and $[C_I([B,Q]),Q] = 0$. Thus Q! gives $[B,Q] \leq N_M(Q)$ and so $[B,Q] = [B,Q,Q] \leq B \cap Q = 1$, which contradicts the fixed-point free action of Q on F.

Thus Q does not normalize any elementary abelian subgroup of order 8 in F. It follows that either |Q| = 9 and $M^{\circ} = FQ \cong SL_2(3) \circ SL_2(3)$ or |Q| = 3, $[F,Q] \cong Q_8$ and $M^{\circ} \cong SL_2(3)$. If the former holds, Case (3:1) of the Theorem holds. If the latter holds, M° does not act simply on I, a contradiction to (14°) .

Case 5. Suppose that Case 7., 9., 10. or 11. of the table holds. Then Case (3) of the Theorem holds.

In view of (Case 4) we assume that $\mathbb{K} \neq \mathbb{F}_3$ if m = 2 in Case 10. Note that $\mathbb{E} = \mathbb{F}_2$ and $\mathbb{K} = \mathbb{F}_4$ in case 7., $\mathbb{E} = \mathbb{K} = \mathbb{F}_4$ in in the cases 9., 10., and $\mathbb{E} = \mathbb{K} = F_2$ in case 11. In each of the four cases H has subgroups K_1, K_2 such that $K_i \cong SL_{n_i}(\mathbb{E}), n_i \ge 2$, $[K_1, K_2] = 1$, $K_1K_2 \le H$, $H = K_1K_2A$, and there exist natural $SL_{n_i}(\mathbb{E})$ -modules I_i for K_i such that as an K_1K_2 -module, $I \cong I_1 \otimes_{\mathbb{E}} I_2$. In particular, $X = O^p(X) \le K_1K_2$ and so $C_Y(K_1K_2) \le C_Y(X) = 1$. Since $[Y, K_1K_2] \le [Y, H] \le I$ and K_i has no central chief factor on I, we conclude from C.19 that Y = I.

Choose notation such that $n_1 \ge n_2$. In case 7. 9. and 11., $n_1 \ge 3$, and in case 10. either $n_1 \ge 3$ or $n_1 = m = 2$ and (according to our additional assumption) $|\mathbb{E}| > 3$. Thus K_1 is quasisimple and so a component of M.

Let R be a component of M with $R \neq K_1$. Then $[R, K_1] = 1$. Note that $C_L(K_1) \cong GL_{n_2}(\mathbb{E})$. As $K_2 \cong SL_{n_2}(\mathbb{E})$, this gives $K_2 = O^{p'}(C_M(K_1))$ and $C_M(K_1)^{\infty} \leq K_2$. It follows that either K_1 is the only component of M, or K_2 is a component of M and $\{K_1, K_2\}$ is the set of components of M. In either case $K_1K_2 \leq M$.

It follows that H acts on the set $S = \{v_1 \otimes v_2 \mid 0 \neq v_i \in V_i\}$ and this set is of size not divisible by p. So we can choose $0 \neq v_i \in V_i$ such that Q centralizes $v_1 \otimes v_2$; i.e., $C_M(v_1 \otimes v_2) \leq N_M(Q)$. Note that K_1K_2 acts transitively on S and so $M = HC_M(v_1 \otimes v_2) = HN_M(Q)$. Thus $M^\circ = (K_1K_2Q)^\circ$. Put $R_1 := C_{K_1}(v_1)$. Then $R = C_{K_1}(v_1 \otimes v_2)$, so $R_1 \leq N_M(Q)$ and $[R_1, Q]$ is a p-group. Note that $R_1/O_p(R_1) \cong SL_{n_1-1}(\mathbb{E})$.

Suppose that $n_1 \ge 3$. Then $R_1/Z(K_1)$ is not a *p*-group. It follows that *Q* normalizes K_1 and centralizes $R_1/O_p(R_1)$. Hence *Q* induces inner automorphisms on K_1 . Therefore *Q* acts \mathbb{E} -linearly on *I*. Since *Q* normalizes K_2 , this implies that *Q* induces inner automorphisms on K_2 (see B.32(d)). Thus $Q \le K_1K_2$ and $M_1^{\circ} \le K_1K_2$. The only normal subgroups of K_1K_2 generated by *p*-elements are K_1 , K_2 and K_1K_2 , so M° is one of K_1, K_2 and K_1K_2 and so Case (3) of the Theorem holds.

Suppose next that $n_1 = 2$. Since $n_2 \leq n_1$ this gives $n_2 = 2$, and case 10. of the table holds with m = 2 with $|\mathbb{E}| = |\mathbb{K}| > 3$. Note that $K_1K_2 \cong \Omega_4^+(q)$ and I is a natural $\Omega_4^+(q)$ -module for K_1K_2 . Now B.37 shows that either $M^\circ = \langle Q^{K_1K_2} \rangle$ is one of K_1, K_2 and K_1K_2 , or q = 4, $M^\circ \cong O_4^+(2) \cong SL_2(4) \wr C_2$ and Q does not act \mathbb{K} -linearly. Thus Case (3) of the Theorem holds.

Case 6. Suppose that Case 4. of the table holds. Then Case (7) of the Theorem holds.

Since $H \cong Frob(39)$, H is solvable and so by $(10^{\circ}) Y = I$. From $|I| = 3^3$ we get $N_{L'}(H) = H$. Since $H \leq M \cap L'$ this gives $M \cap L' = H$. So either $M = H \cong Frob(39)$ or $M = Z(L) \times H \cong C_2 \times Frob(39)$. In either case H is the only non-trivial subgroup generated by p-elements and so $M^{\circ} = H$, and Case (7) of the Theorem holds.

APPENDIX E

The Amalgam Method

The amalgam method is a convenient way to keep track of conjugation in (finite) groups and to combine conjugation of abelian subgroups with quadratic action.

The starting point is a prime p and a group G together with a collection of two or more finite subgroups H_i , $i \in I$, whose p-local structures should be investigated. Usually one requires that these subgroups are of characteristic p and have a Sylow p-subgroup in common, together with other properties that restrict the number (and often also the structure) of the non-abelian chief factors, like being p-irreducible.

It is rather astonishing that in such an apparently general situation most of the normal psubgroups of these subgroups H_i are already contained in normal p-subgroups of G. Or from a different point of view, modulo the largest normal p-subgroup of G contained in $B := \bigcap_{i \in I} H_i$, the number and module structure of the p-chief factors of the subgroups H_i are very limited.

The name amalgam method comes from the fact that this method does not really depend on G, but only on the embedding of B into the subgroups H_i , so it can as well be performed in the amalgamated product of these (sub)groups over B.

E.1. The Coset Graph

Let H be any group and let $(H_i)_{i \in I}$ be a family of distinct subgroups of H. We define the *coset* graph of H with respect to H_i , $i \in I$, as follows:

The cosets H_{ig} , $i \in I$ and $g \in H$, are the vertices of Γ , and the unordered pairs

$$\{H_ig, H_ig\}$$
 with $i \neq j$ and $g \in H$

are the *edges* of Γ . A vertex $H_i g$ we will call of *color i*. Note that a given vertex has a unique color. Indeed if $H_i g = H_j h$, then $H_j = H_i g h^{-1}$ is a coset of H_i containing 1 and so $H_j = H_i$ and i = j.

Apart from the elementary graph theoretic terminology, like neighbor, adjacent, path, and distance, we use the following notation for vertices γ and δ of Γ , $i \in I$, $K \subseteq I$, Δ a set of vertices of Γ , and $L \leq H$.

- $-\Gamma_i := H/H_i$ is the set of vertices of color i; $\Gamma_K := \bigcup_{k \in K} \Gamma_k$ is the set vertices of color contained in K. $\Delta(\gamma)$ is the set of vertices in Δ adjacent or equal to γ .
- $-L_{\delta}$ is the *stabilizer* of δ in $L, L_{\Delta} = \bigcap_{\delta \in \Delta} L_{\delta}$ is the element-wise stabilizer of Δ .
- $-d(\gamma,\delta)$ is the distance between γ and δ .
- A chamber of Γ is a set of vertices of the form $\{H_i g \mid i \in I\}$ for some $g \in H$.

E.2. Elementary Properties

We begin with some elementary facts about Γ (see also [**KS**]).

LEMMA E.1. The following hold:

- (a) Γ is an |I|-partite graph whose partition classes are the sets H/H_i , $i \in I$.
- (b) $\{H_ig, H_jh\}$ is an edge of Γ if and only if $i \neq j$ and $H_ig \cap H_jh \neq \emptyset$.
- (c) For any distinct *i*, *j* in *I*, *H* acts transitively on the set of edges whose vertices have colors *i* and *j*. In particular, every edge is contained in a chamber.
- (d) *H* acts transitively on the set of chambers.

PROOF. (a): As remarked above each vertex has a unique color, so Γ_i , $i \in I$, is a partition of Γ . By the definition of an edge, a vertex is only adjacent to vertices of distinct color.

(b): Note that

$$H_ig \cap H_jh \neq \emptyset \iff \exists a \in H_ig \cap H_jh \iff \exists a \in H : \{H_ig, H_jh\} = \{H_ia, H_ja\}.$$

(c) and (d): This follows immediately from the definition of an edge and a chamber, respectively. \Box

LEMMA E.2. Let $\alpha := H_i g$ be a vertex and $e := \{H_i g, H_j g\}$ be an edge of Γ . Then the following hold:

(a)
$$H_{\alpha} = H_i^g$$
.
(b) $H_e = (H_i \cap H_j)^g$

PROOF. Observe that for $h \in H$

$$H_igh = H_ig \iff gh \in H_ig \iff h \in g^{-1}H_ig \iff h \in H_i^g$$

This gives (a) and (b).

LEMMA E.3. H acts on Γ by right multiplication as a group of automorphisms, and

$$H_{\Gamma} = \bigcap_{i \in I, g \in H} H_i^g$$

is the kernel of this action. Moreover, for every vertex α of Γ , H_{α} is transitive on the chambers containing α and on the neighbors of color j of α , for every $j \in I$.

PROOF. Right multiplication r_g by an element $g \in H$ sends vertices to vertices and edges to edges. It is now easy to see that

$$r: H \to Aut(\Gamma)$$
 with $g \mapsto r_q$

is a homomorphism. By E.2

$$H_{\Gamma} = \bigcap_{i \in I, g \in G} H_i^g = \bigcap_{\delta \in \Gamma} H_{\delta} = \ker r.$$

Let $\alpha \in \Gamma$ be a vertex of color i and let $j \in I$. By E.1(d) H acts transitively on the set of chambers. As each chamber contains a unique vertex of color i we conclude that H_{α} acts transitively on the chambers containing α . If j = i, the set of neighbors of color j of α is empty. So suppose $i \neq j$. Then by E.1(c) H acts transitively of the edges with vertices of color i and j. It follows that H_{α} acts transitively on the set of vertices of color j adjacent to α .

In the following we will write this action of H exponentially: $\alpha \mapsto \alpha^g$ rather than αg .

LEMMA E.4. Suppose that Γ is connected, and let C be a chamber of Γ .

- (a) Let $K \leq H$. Suppose that for each $\gamma \in C$ and $i \in I$, K_{γ} acts transitive on $\Gamma_i(\gamma)$. Then for each $i \in I$, K acts transitively on Γ_i .
- (b) Let $R \leq H_C$ and suppose that for each $\gamma \in C$ and $i \in I$, $N_{H_{\gamma}}(R)$ acts transitively on $\Gamma_i(\gamma)$. Then $R \leq H_{\Gamma}$.

PROOF. (a): Let $\delta \in \Gamma$. We will show by induction on $d := d(C, \delta)$ that δ is K-conjugate to an element of C. If $d(C, \delta) = 0$, $\delta \in C$. So suppose that $d(C, \delta) > 0$ and let $(\alpha_0, \ldots, \alpha_d)$ be a path in Γ with $d = d(C, \delta)$, $\alpha_0 \in C$ and $\alpha_d = \delta$. Put $\gamma := \alpha_0$ and let $\alpha \in C$ be of the same color i as α_1 . Since K_{γ} acts transitively on $\Gamma_i(\gamma)$, we have $\alpha_1^k = \alpha$ for some $k \in K_{\gamma}$. Then

$$d(C,\delta^k) \leq d(\alpha,\delta^k) = d(\alpha_1^k,\delta^k) = d(\alpha_1,\gamma) = d-1,$$

and by induction δ^k is K-conjugate to an element of C. Hence the same holds for δ .

(b): Put $K := N_H(R)$. Let $i \in I$ and $\gamma \in C$. Then $K_{\delta} = N_{H_{\delta}}(R)$ acts transitively on $\Gamma_i(\gamma)$. So by (a) K acts transitively on H/H_i . Since $R \leq H_C$, R fixes a vertex of color i. As $R \leq K$ and K acts transitively on H/H_i , R fixes all vertices of color i. Thus (b) holds.

LEMMA E.5. Γ is connected if and only if $H = \langle H_i \mid i \in I \rangle$.

PROOF. Put $H_0 := \langle H_i, i \in I \rangle$ and let Γ_0 be the connected component of Γ that contains the chamber $C := \{H_i \mid i \in I\}$. Since each H_i leaves invariant Γ_0 , also H_0 does. Thus if $H = H_0$, Γ_0 contains all vertices of Γ , so $\Gamma_0 = \Gamma$.

Assume that Γ is connected. Let $i \in I$ and $\delta \in C$. Then $H_{0\delta} = H_{\delta}$ and so by E.3 $H_{0\delta}$ acts transitively on $\Gamma_i(\delta)$. Thus by E.4(a) H_0 acts transitively on H/H_i , and a Frattini argument gives $H = H_0 H_i = H_0$.

E.3. Critical Pairs

In this section we assume the following hypothesis.

HYPOTHESIS E.6. Let H be a group, $(H_i)_{i \in I}$ a family of distinct subgroups of H, $J \subseteq I$, p a prime, and Γ the coset graph of H with respect to $(H_i)_{i \in I}$. Put $B := \bigcap_{i \in I} H_i$, and suppose that the following hold:

- (i) For each $i \in I$, H_i is finite and $O_p(H_i) \leq B$.
- (ii) $J \neq \emptyset$, and for $j \in J$, Z_j is a *p*-reduced elementary abelian normal *p*-subgroup of H_j with $Z_j \leq H_{\Gamma}$.
- (iii) $H = \langle H_i \mid i \in I \rangle.$

Recall from E.5 that Γ is connected. For $j \in J$, $h \in H$, $\lambda := H_j h \in \Gamma_J$ and $\delta \in \Gamma$ we define:

$$Z_{\lambda} := Z_{i}^{h}, \qquad Q_{\delta} := O_{p}(H_{\delta}), \quad \text{and} \quad V_{\delta} := \langle Z_{\lambda} \mid \lambda \in \Gamma_{J}(\delta) \rangle.$$

LEMMA E.7. The following holds.

- (a) $Z_{\delta} \leq \Omega_1 Z(Q_{\delta})$ for all $\delta \in \Gamma_J$.
- (b) $Q_{\delta} \leq H_{\lambda}$ for all edges $\{\delta, \lambda\}$.

PROOF. (a): Let $j \in J$. By E.6(ii) Z_j is a *p*-reduced elementary abelian normal subgroup of H_j , and so $Z_j \leq \Omega_1 Z(O_p(H_j))$. This gives $Z_\delta \leq \Omega_1 Z(Q_\delta)$ for $\delta \in \Gamma_j$, and (a) holds.

(b): By Hypothesis E.6(i) $O_p(H_i) \leq B \leq H_k$ for all $i, k \in I$. By E.1(c) any edge with vertices of colors i and k is conjugate to $\{H_i, H_k\}$, and so (b) holds.

LEMMA E.8. There exists a pair of vertices (δ, λ) such $\delta \in \Gamma_J$ and $Z_{\delta} \leq Q_{\lambda}$.

PROOF. By Hypothesis E.6(ii) $J \neq \emptyset$, and for $j \in J$, $Z_j \leq H_{\Gamma}$. Hence there exists vertex λ such that $Z_j \leq H_{\lambda}$; in particular $Z_j \leq Q_{\lambda}$. Put $\delta := H_j$. Then $Z_{\delta} = Z_j$, and the claim holds for (δ, λ) .

Since Γ is connected we can choose a pair (α, α') of vertices of minimal distance among all pairs (δ, λ) with $\delta \in \Gamma_J$ and $Z_{\delta} \leq Q_{\lambda}$. Any such pair of minimal distance is called a *critical pair* (with respect to J). Moreover, we put $b := d(\alpha, \alpha')$. Note that b does not depend on the choice of the critical pair.

In the following (α, α') is always a critical pair, and γ is a path of length b from α to α' . We often denote γ by

$$\gamma = (\alpha, \dots, \alpha + i, \dots, \alpha + b) = (\alpha' - b, \dots, \alpha' - i, \dots, \alpha'),$$

 \mathbf{SO}

$$\alpha = \alpha' - b, \ \alpha' = \alpha + b, \ \text{and} \ \alpha + i = \alpha' - (b - i).$$

LEMMA E.9. The following hold:

- (a) $b \ge 1$.
- (b) Let $\lambda \in \Gamma_J$ and $\delta \in \Gamma$. If $d(\lambda, \delta) \leq b$ then $Z_\lambda \leq H_\delta$, and if $d(\lambda, \delta) < b$ then $Z_\lambda \leq Q_\delta$.
- (c) Let $0 \leq i < b$. Then $Z_{\alpha} \leq Q_{\alpha+i}$ and if $\alpha' \in \Gamma_J$, $Z_{\alpha'} \leq Q_{\alpha'-i}$.
- (d) $Z_{\alpha} \leq H_{\alpha'}$ and if $\alpha' \in \Gamma_J$, $Z_{\alpha'} \leq H_{\alpha}$.
- (e) If b > 1, then $V_{\alpha} \leq Q_{\alpha+i}$ and $V_{\alpha'} \leq Q_{\alpha'-i+1}$ for $0 \leq i < b-1$. In particular $V_{\alpha} \leq H_{\alpha'-1}$ and $V_{\alpha'} \leq H_{\alpha+1}$.
- (f) There exists $h \in H_{\alpha'}$ with $Z_{\alpha} \leqslant H^{h}_{\alpha'-1}$. In particular, $Z_{\alpha} \leqslant H_{\Gamma(\alpha')}$.
- (g) If $\alpha' \in \Gamma_J$ and $[Z_{\alpha}, Z_{\alpha'}] \neq 1$, then also (α', α) is a critical pair.
- (h) If $b \ge 3$ and $\delta \in \Gamma$, then V_{δ} is an elementary abelian normal p-subgroup of H_{δ} in Q_{δ} .

PROOF. (a): By definition of a critical pair, $Z_{\alpha} \leq Q_{\alpha'}$, and by E.7(a), $Z_{\alpha} \leq Q_{\alpha}$. Thus $\alpha \neq \alpha'$ and so $b \neq 0$.

(b): If $d(\lambda, \delta) < b$ then the definition of b gives $Z_{\lambda} \leq Q_{\delta}$. Suppose that $d(\lambda, \delta) = b$. Then there exists $\mu \in \Gamma(\delta)$ such that $d(\lambda, \mu) = b - 1$, so $Z_{\lambda} \leq Q_{\mu}$, and by E.7(b), $Z_{\lambda} \leq Q_{\mu} \leq H_{\delta}$.

(c): Since $\alpha \in \Gamma_J$ and $d(\alpha, \alpha_{\alpha+i}) < b$, (b) applies. Similarly, if $\alpha \in \Gamma_J$, again (b) applies since also $d(\alpha, \alpha - i) < b$.

(d): This is again an application of (b) since $d(\alpha, \alpha') = b$.

(e): Let $\lambda \in \Gamma_J(\alpha)$ and $\delta \in \Gamma$ such that $d(\alpha, \delta) < b-1$. Then $d(\lambda, \delta) < b$ and so by (b), $Z_\lambda \leq Q_\delta$. Thus, also $V_\alpha = \langle Z_\lambda \mid \lambda \in \Gamma_J(\alpha) \rangle \leq Q_\delta$. In particular for $\delta = \alpha' - 2$, $V_\alpha \leq Q_{\alpha'-2}$, and by E.7(b) $V_\alpha \leq Q_{\alpha'-2} \leq H_{\alpha'-1}$.

Similarly for $\rho \in \Gamma_J(\alpha')$, $d(\rho, \alpha + 2) < b$ and by (b) $Z_{\rho} \leq Q_{\alpha+2}$. Hence $V_{\alpha'} \leq Q_{\alpha+2} \leq H_{\alpha'+1}$.

(f): Put $X := \bigcap_{h \in H_{\alpha'}} (H_{\alpha'} \cap H_{\alpha'-1})^h$. Then X normalizes $Q_{\alpha'-1}$ and so $Q_{\alpha'-1} \cap X \leq O_p(X) \leq O_p(H_{\alpha'}) = Q_{\alpha'}$. Since $Z_{\alpha} \leq Q_{\alpha'-1}$ and $Z_{\alpha} \leq Q_{\alpha'}$ this shows $Z_{\alpha'} \leq X$ and thus (f) holds.

(g): Assume that $\alpha' \in \Gamma_J$ and $[Z_{\alpha}, Z_{\alpha'}] \neq 1$. Then clearly $Z_{\alpha'} \notin Q_{\alpha}$ since $Z_{\alpha} \leq Z(Q_{\alpha})$. Hence, (g) follows.

(h): Assume that $b \ge 3$ and let $\delta \in \Gamma$ and $\mu, \lambda \in \Gamma_J(\delta)$. Then $d(\mu, \lambda) \le 2 < b$ and so $Z_\mu \le Q_\lambda$. Since $Z_\lambda \le Z(Q_\lambda)$ this gives $[Z_\lambda, Z_\mu] = 1$. Also $Z_\lambda \le Q_\delta$ and Z_λ is elementary abelian. It follows that V_δ is elementary abelian and contained in Q_δ . This is (h).

E.4. The Case |I| = 2

In this section we assume

HYPOTHESIS E.10. Let H be a group, p a prime, H_1 and H_2 distinct subgroups of H and Γ the coset graph of H with respect to (H_1, H_2) .

- (i) H_1 and H_2 are finite of characteristic p.
- (ii) For $i \in \{1, 2\}$, Z_i is a *p*-reduced elementary abelian normal *p*-subgroup H_i with $Z_{H_i} \leq Z_i^{-1}$.
- (iii) $H = \langle H_1, H_2 \rangle$.
- (iv) $H_1 \cap H_2$ is a parabolic subgroup of H_1 and H_2 .
- (v) No nontrivial *p*-subgroup of $H_1 \cap H_2$ is normal in H_1 and H_2 .

Note here that since H_i is finite of characteristic p for i = 1, 2, then $Z_{H_i} \leq Y_{H_i}$ by 1.24(g) and both $Z_i = Z_{H_i}$ and $Z_i = Y_{H_i}$ fulfill (ii).

LEMMA E.11. (a) $H_{\Gamma} = 1$. (b) Hypothesis E.6 holds with $I = J = \{1, 2\}$.

PROOF. (a): Then $H_{\Gamma} \leq H_1 \cap H_2$ and so $O_p(H_{\Gamma})$ is *p*-subgroup of $H_1 \cap H_2$ normal in H_1 and H_2 . Thus Hypothesis E.10(v) gives $O_p(H_{\Gamma}) = 1$. Since $H_{\Gamma} \leq H_1$ and H_1 is of characteristic *p*, also H_{Γ} is of characteristic *p* (see 1.2(a).) Thus $H_{\Gamma} = 1$.

(b): Let $i \in I$. By Hypothesis E.10(i) H_i is finite of characteristic p. By Hypothesis E.10(iv) $B := H_1 \cap H_2$ is a parabolic subgroup group of H_i and so $O_p(H_i) \leq B$. By Hypothesis E.10(iv) Z_i

¹See 1.1(c) for the definition of Z_{H_i} .

is an elementary abelian *p*-reduced normal subgroup of H_i with $Z_{H_i} \leq Z_i$. The latter fact implies $Z_i \neq 1$ and since $H_{\Gamma} = 1$ we get $Z_i \leq H_{\Gamma}$. By Hypothesis E.10(iv) $H = \langle H_1, H_2 \rangle$ and so Hypothesis E.6 holds.

LEMMA E.12. The following hold:

- (a) H acts edge-transitively on Γ .
- (b) Two vertices δ and λ are of the same color if and only if $d(\delta, \lambda)$ is even.
- (c) Let $\{\lambda, \mu\}$ be an edge. Then $H_{\lambda} \cap H_{\mu}$ is a parabolic subgroup of H_{λ} and H_{μ} .
- (d) For every vertex δ , H_{δ} is finite of characteristic p, Z_{δ} is a p-reduced elementary abelian normal subgroup of H_{δ} and $Z_{H_{\delta}} \leq Z_{\delta} \leq Y_{H_{\delta}} \leq \Omega_1 Z(Q_{\delta})$.
- (e) Let $\{\lambda, \mu\}$ be an edge. Then $C_{Z_{\lambda}}(H_{\lambda}) \leq Z_{H_{\lambda} \cap H_{\mu}} \leq Z_{\lambda} \cap Z_{\mu}$.
- (f) Let {λ, μ} be an edge. Then no non-trivial p-subgroup of H_λ ∩ H_μ is normal in H_λ and H_μ.

PROOF. (a): Since |I| = 2, (a) follows from E.1(c).

(b): By E.1(a) Γ is a bipartite graph with partition classes H/H_1 and H/H_2 . This gives (b).

(c): By Hypothesis E.10(iv) $H_1 \cap H_2$ is a parabolic subgroup of H_1 and H_2 . Since H acts edge transitively, this gives (c).

(d): Let $i \in \{1, 2\}$. By E.10(i) H_i is finite. By E.10(ii), $Z_{H_i} \leq Z_i$ and Z_i is a *p*-reduced elementary abelian normal subgroup of H_i . Hence $Z_i \leq Y_{H_i} \leq \Omega_1 Z(O_p(H_i))$. By E.2(a) H_{δ} is conjugate to H_1 or H_2 and so (d) holds.

(e): Let $T \in Syl_p(H_{\lambda} \cap H_{\mu})$. Since $H_{\lambda} \cap H_{\mu}$ is a parabolic subgroup of H_{λ} and H_{μ} , T is a Sylow *p*-subgroup of H_{λ} and H_{μ} . Thus

$$C_{Z_{\lambda}}(H_{\lambda}) \leq \Omega_{1}Z(T) \leq Z_{H_{\lambda} \cap H_{\mu}} \leq Z_{H_{\lambda}} \cap Z_{H_{\mu}} \leq Z_{\lambda} \cap Z_{\mu},$$

and (e) is proved.

(f): By E.10(v) no non-trivial *p*-subgroup of $H_1 \cap H_2$ is normal in H_1 and H_2 . Since *H* is edge-transitive, (f) holds.

LEMMA E.13. Suppose that H_j is p-irreducible for some $j \in I$. Let $\{\lambda, \mu\}$ be an edge of Γ such that λ is of color j. Then the following hold:

- (a) $C_{H_{\lambda}}(Z_{\lambda})$ is p-closed or $Z_{\lambda} = C_{Z_{\lambda}}(H_{\lambda}) \leq Z_{\mu}$.
- (b) $C_{H_{\lambda}}(V_{\lambda})$ is p-closed.

PROOF. By E.2(a) H_{λ} is an *H*-conjugate of H_j and so *p*-irreducible. Hence either $C_{H_{\lambda}}(Z_{\lambda})$ is *p*-closed or $O^p(H_{\lambda}) \leq C_{H_{\lambda}}(Z_{\lambda})$. In the second case, $H_{\lambda}/C_{H_{\lambda}}(Z_{\lambda})$ is a *p*-group and since Z_{λ} is *p*-reduced we get $C_{H_{\lambda}}(Z_{\lambda}) = H_{\lambda}$. Thus $Z_{\lambda} \leq C_{Z_{\lambda}}(H_{\lambda})$. By E.12(e) $C_{Z_{\lambda}}(H_{\lambda}) \leq Z_{\lambda} \cap Z_{\mu}$ and so (a) is proved.

Similarly, either $C_{H_{\lambda}}(V_{\lambda})$ is *p*-closed or $O^{p}(H_{\lambda}) \leq C_{H_{\lambda}}(V_{\lambda})$. In the second case, since $H_{\lambda} \cap H_{\mu}$ is a parabolic subgroup of H_{λ} ,

$$H_{\lambda} = C_{H_{\lambda}}(V_{\lambda})(H_{\lambda} \cap H_{\mu}) = C_{H_{\lambda}}(Z_{\mu})(H_{\lambda} \cap H_{\mu}).$$

Hence Z_{μ} is normal in H_{λ} and H_{μ} . Since $Z_{\mu} \neq 1$ this contradicts to E.12(f).

LEMMA E.14. Let (α, α') be a critical pair (for some $\emptyset \neq J \subseteq I$) such that H_{α} is p-irreducible. Then $C_{H_{\alpha}}(Z_{\alpha})$ is p-closed. If in addition b is even, then $[Z_{\alpha}, Z_{\alpha'}] \neq 1$, and (α', α) is also a critical pair.

PROOF. By definition of $b, Z_{\alpha+1} \leq Q_{\alpha'}$. Since $Z_{\alpha} \leq Q_{\alpha'}$, this gives $Z_{\alpha} \leq Z_{\alpha+1}$, and so E.13(a) shows that $C_{H_{\alpha}}(Z_{\alpha})$ is *p*-closed.

Assume now that b is even. Then E.12(b) shows that α and α' are of the same color. Thus, also $C_{H_{\alpha'}}(Z_{\alpha'})$ is p-closed, and so $Q_{\alpha'} \in Syl_p(C_{H_{\alpha'}}(Z_{\alpha'}))$. Since $Z_{\alpha} \leq Q_{\alpha'}$ we conclude that $[Z_{\alpha}, Z_{\alpha'}] \neq 1$, and by E.9(g) also (α', α) is a critical pair.

E.5. An Application of the Amalgam Method

LEMMA E.15. Let H be a group, and let H_1 and H_2 be subgroups of H and $A_1 \leq H_1$. Put $A_2 := \langle A_1^{H_2} \rangle$ and, for $\{i, j\} = \{1, 2\}$,

$$D_i := \bigcap_{k \in H_i} (H_i \cap H_j)^k \quad and \quad E_i = \langle A_i^h \mid h \in H, A_i^h \leqslant C_{H_1 \cap H_2}(A_i) \rangle.$$

Suppose that

- (i) $H = \langle H_1, H_2 \rangle$ and $A_2 \leq H_1 \cap H_2$,
- (ii) $E_i \leq D_i$ for each $i \in \{1, 2\}$.

Then one of the following holds:

- (1) $\langle A_1^H \rangle$ is abelian and contained in $H_1 \cap H_2$.
- (2) There exists $h \in H$ with $1 \neq [A_1, A_1^h] \leq A_1 \cap A_1^h$ and $A_1 A_1^h \leq H_1 \cap H_1^h$.
- (3) $E_1 \leq D_2$ and there exists $g \in H$ with $1 \neq [A_2, A_2^g] \leq A_2 \cap A_2^g$ and $A_2 A_2^g \leq H_2 \cap H_2^g$.

PROOF. Let Γ be the coset graph of H with respect to H_1 and H_2 . For $\alpha = H_i h \in \Gamma$ define $A_{\alpha} = A_i^h$ and $D_{\alpha} = D_i^h$. Note that this is well defined since H_i normalizes A_i and D_i . Also $D_{\alpha} = H_{\Gamma(\alpha)}$.

Suppose first that A_1 acts trivially on Γ . Then $\langle A_1^H \rangle \leq H_1 \cap H_2 \leq H_1^h$ for all $k \in H$. If $\langle A_1^H \rangle$ is abelian, (1) holds. If $\langle A_1^H \rangle$ is not abelian then $[A_1, A_1^h] \neq 1$ for some $h \in H$ and $A_1A_1^h \leq H_1 \cap H_1^h \leq N_H(A_1) \cap N_H(A_1^h)$. Thus $[A_1, A_1^h] \leq A_1 \cap A_1^h$ and (2) holds.

Suppose next that A_1 does not act trivially on Γ . Then we can choose vertices $\alpha, \epsilon \in \Gamma$ of minimal distance d such that α is of color 1 and A_{α} does not fix ϵ . Since $A_1 \leq A_2 \leq H_1 \cap H_2$ and H acts edge transitively, $d \geq 2$. Since $A_2 \leq H_2$ and $A_2 \leq H_1$ we have $A_2 \leq D_2$. Thus $A_1 \leq D_2$ and so $d \geq 3$.

Let $(\alpha, \beta, \ldots, \beta', \alpha', \epsilon)$ be a path of minimal length from α to ϵ . Then $A_{\alpha} \leq H_{\Gamma(\alpha')} = D_{\alpha'}$. Since $A_2 = \langle A_1^{H_2} \rangle$ and H_{β} is an *H*-conjugate of H_2 , $A_{\beta} = \langle A_{\alpha}^{H_{\beta}} \rangle = \langle A_{\delta} \mid \delta \in \Gamma_1(\beta) \rangle$. The minimality of *d* implies that A_{β} fixes β' and α' . So $A_{\alpha} \leq A_{\beta} \leq H_{\beta'} \cap H_{\alpha'}$ and neither A_{α} nor A_{β} are contained in $D_{\alpha'}$.

Since H acts edge transitively we may assume that $\alpha' = H_i$ and $\beta' = H_j$ for some $\{i, j\} = \{1, 2\}$. In particular, $A_{\alpha} \leq A_{\beta} \leq H_i \cap H_j = H_1 \cap H_2$. Note that $A_{\alpha} = A_1^h$ for some $h \in H$ and $A_{\beta} = A_2^g$ for some $g \in H$.

Assume that $[A_1^h, A_1] \neq 1$. Since $A_1 = A_{\alpha'}$ or $A_{\beta'}$ the minimality of d gives $A_1 \leq A_{\alpha'}A_{\beta'} \leq H_{\alpha} = H_1^h$ and $A_1^h = A_{\alpha} \leq H_1$. Thus (2) holds in this case.

Assume next that $[A_1^h, A_1] = 1$. Then $A_{\alpha} = A_1^h \leq E_1 \leq D_1$. Since $A_{\alpha} \leq D_{\alpha'}$ this gives $\alpha' = H_2, A_{\alpha'} = A_2$ and $E_1 \leq D_2$. If $[A_{\beta}, A_{\alpha'}] = 1$ we get $A_{\beta} \leq E_2 \leq D_2 = D_{\alpha'}$, a contradiction. Thus $[A_2^h, A_2] = [A_{\beta}, A_{\alpha'}] \neq 1$. By minimality of $d, A_2 = A_{\alpha'} = \langle A_{\epsilon}^{H_{\alpha'}} \rangle \leq H_{\beta} = H_2^g$. Also $A_2^g = A_{\beta} \leq H_{\alpha'} = H_2$. Thus (3) holds in this final case.

COROLLARY E.16. Let H be a group, let A_1 , H_1 and H_2 be finite subgroups of H, and let p be a prime. Suppose that

- (i) A_1 is a nontrivial normal p-subgroup of H_1 and $C_{H_1}(A_1)$ is p-closed.
- (ii) No non-trivial p-subgroup of $H_1 \cap H_2$ is normal in H_1 and H_2 .

Then the following hold:

- (a) Suppose that $O_p(H_1) \leq B \leq H_2$ for some $B \leq H_1 \cap H_2$. Then there exists $h \in H$ such that $1 \neq [A_1, A_1^h] \leq A_1 \cap A_1^h$ and $A_1 A_1^h \leq H_1 \cap H_1^h$.
- (b) Suppose that H_2 is p-irreducible, that $A_1 \leq O_p(H_2)$ and that $H_1 \cap H_2$ is a parabolic subgroup of H_1 and H_2 . Put $A_2 := \langle A_1^{H_2} \rangle$. Then there exists $i \in \{1, 2\}$ and $h \in H$ such that $1 \neq [A_i, A_i^h] \leq A_i \cap A_i^h$ and $A_i A_i^h \leq H_i \cap H_i^h$.

PROOF. Replacing H by $\langle H_1, H_2 \rangle$ we may assume that $H = \langle H_1, H_2 \rangle$. Put $A_2 := \langle A_1^{H_2} \rangle$ and for $\{i, j\} = \{1, 2\}$,

$$D_i := \bigcap_{k \in H_i} (H_i \cap H_j)^k \quad \text{and} \quad E_i = \langle A_i^h \mid h \in H, A_i^h \leqslant C_{H_1 \cap H_2}(A_i) \rangle.$$

Note that $O_p(H_1) \leq H_2$ (in case (a) by hypothesis and in case (b) since $H_1 \cap H_2$ is a parabolic subgroup of H_1). Since $O_p(H_1) \leq H_1$ this gives $O_p(H_1) \leq D_1$. Since $C_{H_1}(A_1)$ is *p*-closed, we conclude that

(*)

$$E_1 \leqslant O^p(C_{H_1}(A_1)) \leqslant O_p(H_1) \leqslant D_1$$

As no non-trivial *p*-subgroup of $H_1 \cap H_2$ is normal in H_1 and in H_2 ,

 $\langle A_1^H \rangle$ is not an abelian subgroup of $H_1 \cap H_2$.

(a): From $B \leq H_1 \cap H_2$ and $B \leq H_2$ we get $B \leq D_2$. Since $A_1 \leq O_p(H_1) \leq B$ we have $A_2 \leq B \leq D \leq H_1 \cap H_2$. By definition of A_2 , $A_1 \leq A_2$ and A_2 is generated by *H*-conjugates of A_1 . The first property shows that $E_2 \leq C_{H_1 \cap H_2}(A_2) \leq C_{H_1 \cap H_2}(A_1)$ and the second that $E_2 \leq E_1$. This give

$$E_2 \leqslant E_1 \leqslant O^{p'}(C_{H_1}(A_1)) \leqslant O_p(H_1) \leqslant B \leqslant D_2.$$

Since $E_1 \leq D_1$ by (*), the assumptions of E.15 are fulfilled. As $\langle A_1^H \rangle$ is not an abelian subgroup of $H_1 \cap H_2$, E.15(1) does not hold. Since $E_1 \leq D_2$, also E.15(3) does not. Thus E.15(2) holds. We conclude that there exists $h \in H$ with $1 \neq [A_1, A_1^h] \leq A_1 \cap A_1^h$ and $A_1A_1^h \leq H_1 \cap H_1^h$.

(b): Suppose that $H_2 = (H_1 \cap H_2)C_{H_2}(A_2)$. Since $A_1 \leq A_2$ we conclude that $A_1 \leq H_2$, which contradicts (ii). As $H_1 \cap H_2$ contains a Sylow *p*-subgroup of H_2 we get $O^p(H_2) \leq C_{H_2}(A_2)$, and as H_2 is *p*-irreducible, $C_{H_2}(A_2)$ is *p*-closed. Since $H_1 \cap H_2$ contains a Sylow *p*-subgroup of H_2 , we also know that $O_p(H_2) \leq H_1 \cap H_2$. Together with $O_p(H_2) \leq H_2$ we infer $O_p(H_2) \leq D_2$. As above this gives

$$E_2 \leqslant O^{p'}(C_{H_2}(A_2)) \leqslant O_p(H_2) \leqslant D_2.$$

As $A_1 \leq O_p(H_2)$ and $A_2 = \langle A_1^{H_2} \rangle$, also $A_2 \leq O_p(H_2) \leq D_2 \leq H_1 \cap H_2$. By (*) we have $E_1 \leq D_1$, and so the assumptions of E.15 are fulfilled. Since $\langle A_1^H \rangle$ is not an abelian subgroup of $H_1 \cap H_2$, we conclude that there exist $i \in \{1, 2\}$ and $h \in H$ with $1 \neq [A_i, A_i^h] \leq A_i \cap A_i^h$ and $A_i A_i^h \leq H_i \cap H_i^h$. \Box

Bibliography

Introduction

- [As1] M. Aschbacher, On finite groups of component type, Ill. J. Math. 19 (1975), 78 115.
- [As2] M. Aschbacher, A characterization of Chevalley groups over fields of odd order, Ann Math. 106 (1977), 353 - 398, 399 - 468.
- [As3] M. Aschbacher, The uniqueness case for finite groups I,II, Ann. Math. 117 (1983), 383 454, 455 551.
- [AS] M. Aschbacher, S. Smith, The classification of quasithin groups, I,II, Mathematical Surveys and Monographs 111, 112, AMS (2004).
- [FT] W. Feit, J.G. Thompson, Solvability of groups of odd order, Pac.J.Math. 13 (1963), 775 1029.
- [GL] D. Gorenstein, R. Lyons, The local structure of finite groups of characteristic 2 type, Memoirs AMS, No. 276 (1983).
- [GLM] R.M. Guralnick, R. Lawther, G. Malle, 2F-modules for nearly simple groups, J. Algebra 307 (2007), no. 2, 643–676.
- [MMPS] M. Mainardis, U. Meierfrankenfeld, G. Parmeggiani, B. Stellmacher, The P¹-theorem. J. Algebra 292 (2005), no. 2, 363–392.
- [MeiStr3] U. Meierfrankenfeld, G. Stroth, A characterization of $Aut(G_2(3))$. J. Group Theory 11 (2008), no. 4, 479–494.
- [MSW] U. Meierfrankenfeld, G. Stroth, R.M. Weiss, Local identification of spherical buildings and finite simple groups of Lie type. Math. Proc. Cambridge Philos. Soc. 154 (2013), no. 3, 527–547.
- [PS1] Ch. Parker, G. Stroth, Strongly *p*-embedded subgroups, Pure and applied Math. Quaterly 7, (2011),797-858.
- [PS2] Ch. Parker, G. Stroth, On strongly *p*-embedded subgroups of Lie rank 2, Arch. Math. 93 (2009), 405–413.
- [SaS] M. Salarian, G. Stroth, Existence of strongly *p*-embedded subgroups, Comm. in Algebra, to appear.
- [Ti] F. Timmesfeld, Finite simple groups in which the generalized Fitting subgroup of the centralizer of some involution is extraspecial, Ann. Math. 107 (1978), 297 – 369.
- [T] J. Tits, Buildings of spherical type and finite BN-pairs, LN Math 386, Springer (1974).

Sections 1 – 10 and Appendices

- [As] M. Aschbacher, Finite Group Theory Cambridge studies in advanced mathematics 10, Cambridge University Press, (2000) New York.
- [Be] H. Bender, Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festläßt. J. Algebra 17 (1971) 527–554.
- [BHS] D. Bundy, N. Hebbinghaus, B. Stellmacher, The local C(G,T) theorem. J. Algebra 300 (2006), no. 2, 741–789.
- [Ca] R.W. Carter, Simple groups of Lie type, Pure and applied Mathematics, Vol.XXVIII, Jon Wiley & Sons (1972) London.
- [CD] A. Chermak, A. Delgado, A measuring argument, Proc. Amer. Math. Soc. 107 (1989), no. 4, 907–914.
- [Gl1] G. Glauberman, Weakly closed elements of Sylow subgroups. Math. Z. 107 (1968) 1–20.
- [Gl2] G. Glauberman, Failure of factorization in p-solvable groups. Quart. J. Math. Oxford Ser. (2) 24 (1973), 71–77.
- [Gor] D. Gorenstein, *Finite Groups*, Chelsea (1980) New York.
- [GM1] R.M. Guralnick, G. Malle, Classification of 2F-Modules, I, J. Algebra 257, 2002, 348–372.
- [GM2] R.M. Guralnick, G. Malle, Classification of 2F-modules. II. Finite groups 2003, 117–183, Walter de Gruyter GmbH & Co. KG, Berlin, 2004.
- [GLS3] D. Gorenstein, R. Lyons, R. Solomon, The Classification of the Finite Simple Groups, Number 3, Mathematical Surveys and Monographs, Volume 40, Number 3, AMS (1998).
- [Gr1] R.L. Griess, Schur multipliers of the known finite simple groups. II. The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), pp. 279–282, Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, R.I., (1980).
- [Gr2] R.L. Griess, A remark about representations of .1, Comm. Alg. 13 (1985) no.4, 835–844.
- [Hu] B. Huppert, Endliche Gruppen I, Springer (1967).
- [JLPW] C. Jansen, K. Lux, R. Parker, R. Wilson, An atlas of Brauer characters, Clarendon Press, Oxford (1995)

BIBLIOGRAPHY

- [KS] H. Kurzweil, B. Stellmacher, The Theory of Finite Groups. An Introduction. Springer-Verlag New York Berlin Heidelberg (2004).
- [MS1] U. Meierfrankenfeld, B. Stellmacher, The other PGV Theorem, Rend. Sem. Mat. Univ. Padova 115 (2006), 41–50.
- [MS2] U. Meierfrankenfeld, B. Stellmacher, The Fitting submodule, Arch. Math 87 (2006) 193–205.
- [MS3] U. Meierfrankenfeld, B. Stellmacher, Nearly quadratic modules, J. Algebra 319 (2008), 4798–4843.
- [MS4] U. Meierfrankenfeld, B. Stellmacher, F-stability in finite groups, Trans. Amer. Math. Soc. 361 (2009), no. 5, 2509–2525.
- [MS5] U. Meierfrankenfeld, B. Stellmacher, The general FF-module theorem. J. Algebra 351 (2012), 1–63.
- [MS6] U. Meierfrankenfeld, B. Stellmacher, Applications of the FF-Module Theorem and related results, J. Algebra 351 (2012), 64–106.
- [MSS] U. Meierfrankenfeld, B. Stellmacher, G. Stroth, Groups of local characteristic p An overview, in *Proceedings* of the 2001 Durham Conference on Groups and Geometry (2003).
- [MSt] U. Meierfrankenfeld, G. Stroth, Quadratic GF(2) modules for sporadic groups and alternating groups, Comm. in Algebra 18, (1990), 2099–2140.
- [P1] G. Parmeggiani, Pushing up point stabilizers, I, J. Algebra 319 (2008), 3854–3884.
- [P2] G. Parmeggiani, Pushing up point stabilizers, II, J. Alg. 322 (2009), 2272 2285.
- [PPS] C. Parker, G. Parmeggiani, B. Stellmacher, The P!-Theorem, J. Algebra 263 (2003), no. 1, 17–58.
- [RS] M.A. Ronan, G. Stroth, Minimal parabolic geometries for the sporadic groups. European J. Combin. 5 (1984), no. 1, 59–91.
- [SW] I. A. I. Suleiman, R. A. Wilson, The 2-modular characters of Conways group Co₂, Math. Proc. Camb. Phil. Soc. 116 (1994) 275283
- [St] R. Steinberg, Lectures on Chevalley Groups, Notes by J. Faulker and R. Wilson, Mimeographed notes, Yale University Mathematics Department (1968).

List of Symbols

 $(\alpha, \alpha'), 257$ $\mathcal{A}_H, 1$ $\mathcal{AP}_M(V), 231$ B(P), 1 Cl(V), 206 Cliff(V), 213 $C_H^*(V), 188$ $D_Z, 206$ $E_V(H), 245$ GL(V), 206 $\mathfrak{H}_K(O_p(M)), 27$ $H^{\diamond}, 206$ J(H), 1 $J_{H}(V), 186$ $J_{H}^{*}(V), 186$ $J_{H}(V), 186$ $\mathcal{L}_{K}(Y_{M}), 27$ $\mathcal{L}_H, \mathbf{x}$ $L^{\circ}, \, 17$ $L_{\circ}, 17$ $\mathfrak{M}_{H},\,\mathbf{x}$ $\mathcal{M}_H, \mathbf{x}$ M°, x $M^{\circ}, 20$ $M_{\circ}, 20$ M^{\dagger}, x O(V), 206 $O^+(V), 206$ O^-V , 206 $\Omega(V), 214$ $\mathcal{P}_{H}, \mathbf{x}$ $P_{H}(S, V), 185$ $Q_{Z}, 206$ Q^{\bullet} , x, 20 $Q!,\,\mathrm{viii},\,20$ R(V), 206 $R_V(H), 245$ $\mathcal{S}(V), 205$ Sp(V), 206 $S_V(H), 245$ U(V), 206 Y_H , x $Y_V(H), 188$ $Z_H, 1$ b, 257 \perp , 205 rad(V), 205 $rad_{V}(H), 185$

List of Definitions

 \mathcal{N} -short, 27 \mathcal{N} -tall, 27 Q-short, 27 Q-tall, 27 Y-indicator, 37 action semilinear, 198 action on Vcubic, 185 nearly quadratic, 185 nilpotent, 185 quadratic, 185 asymmetric, ix, 27 chamber (of a coset graph), 255 char p-tall, ix characteristic p (for finite groups), ix classical space definite, 211 hyperbolic, 211 Clifford algebra, 212 component of a module, 245 coset graph, 255 critical pair, 257 Dickson invariant, 214 family of vectors hyperbolic, 211 orthogonal, 211 orthonormal, 211 group A-minimal, ix, 12 \mathcal{K}_p -, ix of characteristic p, ix of local characteristic p, viii of parabolic characteristic p, ix p-irreducible, 1 p-minimal, ix, 12 strongly p-irreducible, 1 group of Lie type adjoint, 202 genuine, 202 universal, 202 isometric, 205isometry, 206 isotropic, 205 local characteristic p, viii module

Golay Code, 187 L-quasisimple, 245 Q!-, 185Todd, 187 central, 185 cubic, 185 even permutation, 186 exterior square of a natural, 186 half-spin, 187 minimal asymmetric, 185 natural ${}^{3}D_{4}(p^{k}))$ -, 187 natural Alt(I)-, 186 natural $E_6(p^k)$ -, 187 natural $G_2(2^k)$ -, 187 natural $SL_2(q)$ -wreath product, x natural Sym(I)-, 186 natural $Sz(2^k)$ -, 186 natural, 186 nearly quadratic, 185 p-reduced, 185 perfect, 185 permutation, 186 quadratic, 185 quasisimple, 185 simple, 185 spin, 187 symmetric square of a natural, 186 unitary square of a natural, 186 wreath product, 185 non-degenerate, 205 offender best, 186 over-, 186 root, 186 strong dual, 186 strong, 186parabolic characteristic, ix perpendicular, 205 point-stabilizer on a module, 185 short, 27 similarity, 206 semi-, 206 singular, 205space classical, 205 linear, 205 orthogonal, 205 symplectic, 205 unitary, 205

Spinor norm, 214 $\operatorname{subgroup}$ Baumann, 1 \mathcal{N} -short, 27 \mathcal{N} -tall, 27 Q-short, 27 Q-tall, 27Thompson, 1asymmetric, ix, 27char p-short, 27 char p-tall, ix, 27 large, viii, 20parabolic, ix short, 27 symmetric, ix, 27tall, ix, 27weakly closed, 1 submodule Fitting-, 245 subnormal closure, 1 symmetric, ix, 27 symmetric pair, $37\,$ tall, ix, 27vertex type of, 255

Witt index, 205

268