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1 Introduction

Suppose that H is a finite group, T ∈ Sylp(H), p any prime, and V is an elementary abelian normal
p-subgroup of H. Then an elementary Frattini argument shows that either H = CH(V )NH(J(T ))
or J(T ) 6≤ CH(V ), where J(T ) denotes the Thompson subgroup of T .

In this paper we are interested in this second case. One of the questions is how J(T ) :=
J(T )CH(V )/CH(V ) is embedded in H := H/CH(V ). The first problem is to find suitable properties
of the Thompson subgroup J(T ) that can be expressed in terms of H only. This is done in the
following way.

Recall that J(T ) is generated by the elementary abelian subgroups A of maximal order of T . It
is evident that BCV (B) is elementary abelian for every subgroup B ≤ A. Hence by the maximality
of |A|

|A| ≥ |BCV (B)| = |B||CV (B)||V ∩B|−1 ≥ |B||CV (B)||CV (A)|−1.

This gives rise to the condition

(∗) |B||CV (B)| ≤ |A||CV (A)| for every B ≤ A.

Note that B := CA(V ) yields an important special case of (∗):

(∗∗) |V/CV (A)| ≤ |A/CA(V )|.

Both conditions (∗) and (∗∗) can be phrased in terms of the factor group H and the GF (p)H-module
V just by replacing A by its image A in H. Evidently A satisfies (∗) with respect to V and H iff A
satisfies (∗) with respect to V and H.

This consideration gives rise to the following definition in the more general set up of a finite
group G and a finite dimensional GF (p)G-module V .

Definition 1.1 Let A be a subgroup of G such that A/CA(V ) is an elementary abelian p-group.
Then A is an offender of G on V if |V/CV (A)| ≤ |A/CA(V )|; and A is a best offender of G on
V if |B||CV (B)| ≤ |A||CV (A)| for every B ≤ A. The normal subgroup of G generated by the best
offenders of G on V is denoted by JG(V ).

In the literature, at least in the case of a faithful GF (p)G-module V , the set of best offenders is
denoted by P(G, V ).

The classical result about JG(V ) is the following:

The P(G, V )-Theorem. Suppose that V is a faithful finite dimensional GF (p)G-module and
that K is a component of G. Then either [JG(V ), K] = 1 or K E JG(V ).
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This theorem was proved by Timmesfeld [Ti] for the case p = 2. Later Chermak [Ch] gave
a proof for arbitrary p. Earlier proofs by Aschbacher [As] and Thompson (unpublished) used a
K-group hypothesis.

As we also want to allow certain solvable analogues of components, we need one further definition.

Definition 1.2 A non-trivial subgroup K of JG(V ) is a JG(V )-component if K is minimal with
respect to K = [K, JG(V )].

The Other P(G, V )-Theorem. Suppose that V is a faithful finite dimensional GF (p)G-
module and that Op(JG(V )) = 1. Then [E,K] = 1 and [V,E,K] = 0 for any two distinct JG(V )-
components E and K.

In the case of a faithful GF (p)G-module with Op(JG(V )) = 1 we also show that every compo-
nent of JG(V ) is a JG(V )-component (see 3.4) and that every JG(V )-component, which is not a
component, is isomorphic to SL2(p)′, p = 2 or 3 (see 3.2).

2 Offenders

In this section G is a finite group, p is a prime, and V is a finite dimensional GF (p)G-module. Some
of the arguments in this section got their inspiration from [CD].

Definition 2.3 Let A be a subgroup of G.

(a) A acts quadratically on V if [V,A, A] = 0.

(b) jA(V ) := |A||CV (A)|
|V ||CA(V )| .

(c) V is a simple GF (p)G-module, if V 6= 0 and V and 0 are the only G-submodules in V .

Lemma 2.4 Let A ≤ G such that A/CA(V ) is elementary abelian. Then the following hold:

(a) jA(V ) = |A/CA(V )|
|V/CV (A)| .

(b) A is an offender on V iff jA(V ) ≥ 1.

(c) If [V,A] = 0, then jA(V ) = 1.

(d) A is a best offender iff jB(V ) ≤ jA(V ) for all B ≤ A.

Proof: (a) is obvious, and (b) and (c) follow from (a).
(d) By (a) jB(V ) = jBCA(V )(V ) and so we may assume CA(V ) ≤ B. Then CA(V ) = CB(V ) and

so jB(V ) ≤ jA(V ) iff |B||CV (B)| ≤ |A||CV (A)|. �

Lemma 2.5 Let A ≤ G be a best offender on V and B ≤ G be an offender on V . Then the following
hold:

(a) A is an offender on V .
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(b) B contains a best offender B∗ on V with jB(V ) ≤ jB∗(V ) such that [V,B∗] 6= 0 or B∗ = B.

(c) A is a best offender on every A-submodule of V .

Proof: (a): By 2.4(c),(d) 1 = j1(V ) ≤ jA(V ), so by 2.4(b) A is an offender on V .
(b): Choose B∗ ≤ B such that first jB∗(V ) is maximal and then |B∗| is maximal. If [V,B∗] = 0,

then jB∗(V ) = 1 and thus by 2.4(b) also jB(V ) = 1. Now the maximal choice of |B∗| yields B∗ = B.
(c): Let W be an A-submodule of V and A0 ≤ A. Then

|A0||CW (A0) + CV (A)| ≤ |A0||CV (A0)| ≤ |A||CV (A)|

and thus
|A0||CW (A0)||CV (A)||CW (A0) ∩ CV (A)|−1 ≤ |A||CV (A)|.

Since CW (A0) ∩ CV (A) = CW (A) we get |A0||CW (A0)| ≤ |A||CW (A)|. �

Lemma 2.6 Let A and B be subgroups of G. Then

j〈A,B〉(V )jA∩B(V ) ≥ jA(V )jB(V )

with equality iff CV (A ∩B) = CV (A) + CV (B) and 〈A, B〉 = AB.

Proof: We may assume that CG(V ) = 1 since jA(V ) = jACH(V )/CH(V )(V ), so |V |jA(V ) =
|A||CV (A)|. Observe that

|〈A, B〉| ≥ |AB| and |CV (A ∩B)| ≥ |CV (A) + CV (B)|.

Then
|V |2j〈A,B〉(V )jA∩B(V ) = |〈A, B〉||CV (〈A, B〉)||A ∩B||CV (A ∩B)|

≥ |AB||CV (A) ∩ CV (B)||A ∩B||CV (A) + CV (B)|
≥ |A||B||CV (A)||CV (B)|
= |V |2jA(V )jB(V ).

�

Fundamental for the investigation of best offenders is a replacement property first proved by
Thompson, the Thompson Replacement Theorem, and then generalized by Timmesfeld, the Timmes-
feld Replacement Theorem. We will use the following version of the Timmesfeld Replacement The-
orem with [KS] as a reference.

Lemma 2.7 Let A be a best offender of G on V and W be a subgroup of V . Then for A∗ :=
CA([W, A]) the following hold:

(a) A∗ is a best offender on V with jA(V ) = jA∗(V ).

(b) CV (A∗) = [W, A] + CV (A).

(c) [W, A∗] 6= 0 if [W, A] 6= 0.

(d) [W, A∗, A] = 0.
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Proof: Properties (a) and (b) can be found in [KS, 9.2.1 and 9.2.3], (c) is stated there differently,
so we give a proof here.

Assume that [W, A∗] = 0. Then by (b) W ≤ [W, A] + CV (A); in particular [W, A] = [W, A, A].
As A/CA(V ) is a p-group, this last property gives [W, A] = 0.

Finally, by definition [W, A, A∗] = 0, and [A, A∗, W ] = 0 since A/CA(V ) is abelian. Hence the
Three Subgroups Lemma implies (d). �

Lemma 2.8 Let A and B be quadratic offenders of G on V such that

[A, B] ≤ CG(V ) and ACG(V ) ∩BCG(V ) = CG(V ).

Then 〈A, B〉 is a quadratic best offender on V , or there exists a quadratic best offender X ≤ 〈A, B〉
with

jX(V ) > max{jA(V), jB(V)}.

Proof: Let D := 〈A, B〉. Then D/CD(V ) is an elementary abelian p-group. We may assume
that G is faithful on V , so D is elementary abelian and A ∩ B = 1. From 2.6 we get that jD(V ) ≥
jA(V )jB(V ) since jA∩B(V ) = 1.

Assume first that jD(V ) > max{jA(V ), jB(V )}. Then jD(V ) > 1, and by 2.5(b) there exists
a best offender D∗ ≤ D with jD∗(V ) ≥ jD(V ) > 1; in particular [V,D∗] 6= 0. Now 2.7 gives the
desired quadratic best offender X ≤ D∗.

Assume now that jD(V ) ≤ max{jA(V ), jB(V )}. By 2.6

jD(V ) = jD(V )j1(D) ≥ jA(V )jB(V ),

so jD(V ) = jA(V )jB(V ) and again by 2.6 CV (A) + CV (B) = CV (A ∩B) = V . This yields [V,A] =
[CV (B), A] and [V,A, B] = 0, and the quadratic action of AB follows. �

Lemma 2.9 Let A ≤ G and L ≤ G wih L = [L, A]. Then CA(L) ∩ CA([V,L, A]) ≤ CA([V,L]).

Proof: Note that Op(L) = L ≤ 〈AL〉 since L = [L, A]. Thus, we may assume that V = [V,L], in
particular [V,A, A0] = 0. Let A0 := CA(L) ∩ CA([V,L, A]). Then

[V,L, A0] ≤ [V, 〈AL〉, A0] = 〈[V,A, A0]L〉 = 0.

�

Lemma 2.10 Let A be a best offender of G on V , L E G, and W a simple L-submodule of V .
Suppose that [L, A] � CL(W ). Then W is A-invariant.

Proof: Note that [L, A] 6≤ CG(W ) implies [W, A] 6= 0. Hence by 2.7 there exists a quadratic
best offender A∗ ≤ A such that [W, A∗] 6= 0 and [W, A∗, A] = 0. Then

[W, NA∗(W )] ≤W ∩ CV (A) ≤W ∩W b for every b ∈ A.

Since W ∩ W b is an L-module and W is simple, we conclude that either W is A-invariant or
[W, NA∗(W )] = 0. In the first case we are done, so we may assume that [W, NA∗(W )] = 0. In
particular

(1) W ∩W a = 0 for every a ∈ A∗ \ CA∗(W ).
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Pick c ∈ A∗ \ CA∗(W ). Then

(2) U := W ⊕W c = W ⊕ [W, c] = W c ⊕ [W, c].

and

(3) [W, c] ≤ U ∩ CV (A) ≤ U ∩ U b for every b ∈ A.

Assume that [W, c] is L-invariant. Then [W, c, A] = 0 implies that also [W, c, [L, A]] = 0. The
decomposition (2) shows that [W, [L, A]] = 0, a contradiction. Thus we have

(4) [W, c] is not L-invariant.

Let b ∈ A. Since U ∩U b is an L-module and W is simple, we get from (3) that either U ∩U b = [W, c]
or U = U b. The first case contradicts (4), so U is A-invariant. But then, as [W, A, c] = [W, c,A] = 0,
we get that

CU (A∗) = CU (c) = [W, c] and |U/CU (A∗)| = |W |.

By 2.5(c) A∗ is a best offender on U , so |W | = |U/CU (A∗)| ≤ |A∗/CA∗(U)|. Observe that |U ]| =
|W |2− 1 = (|W |+ 1)|W ]|. On the other hand, by (1) any two distinct A∗-conjugates of W intersect
trivially, so there are at most |W |+ 1 such conjugates. We conclude that |U/CU (A∗)| = |W | = |A∗|,
and the A∗-conjugates of W together with [W, c] form a partition of U . Since all these conjugates
of W are L-invariant, also [W, c] is L-invariant. This contradicts (4). �

3 JG(V )-Components

As in the last section G is a finite group and V is a finite dimensional GF (p)G-module.

Lemma 3.1 Suppose that V is a faithful GF (p)G-module. Let L E JG(V ) with Op(L) = 1 and
[L, JG(V )] 6= 1. Then L contains a JG(V )-component of G.

Proof: Let J := JG(V ), and let K E J be minimal with respect to K ≤ L and [K, J ] 6= 1. It
suffices to show that K = [K, J ].

Assume that K 6= [K, J ]. Then the minimality of K gives [K, J, J ] = 1 and thus [K, K,K] = 1.
Hence K is nilpotent. Again the minimality of K shows that K is an r-group, r a prime. Moreover
r 6= p since Op(L) = 1. As J is generated by p-elements we get that J = Or(J). Thus, [K, J, J ] = 1
implies [K, J ] = 1, a contradiction. �

In the next lemma we will use a result of Glauberman [Gl] as it is stated in [KS].

Lemma 3.2 Suppose that V is a faithful GF (p)G-module. Let R be a JG(V )-component with
Op(R) = 1 that is not a component of JG(V ). Then the following hold:

(a) p = 2 or 3.

(b) R ∼= SL2(p)′ and |[V,R]| = p2.

(c) For every JG(V )-component K with K 6= R, [R,K] = 1 and [V,R, K] = 0.
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Proof: Set J := JG(V ) and J̃ := J/Z(J). By 3.1 R̃ is a minimal normal subgroup of J̃ . Hence,
either R̃ is the product of components of J̃ or R̃ is an elementary abelian q-group.

Assume first that R̃ is the product of components. Then an elementary argument shows that
R′ is the product of components of J (see [KS, 6.5.1]). By the P(G, V )-Theorem each of these
components is normal in J , so by 3.1 R is a component, which is not the case.

Assume now that R̃ is a q-group. Then R is nilpotent and thus also R is a q-group. Moreover
q 6= p since Op(R) = 1, so R ≤ Op′(G). Pick T0 ∈ Sylp(CJ(R)), and set

J0 := JNJ (T0)(V ), W := CV (T0) and J0 := J0/CJ0(W ).

Observe that J = J0CG(R), so R is also a JJ0(V )-component. By the P × Q-Lemma R acts
faithfully on W . Also CJ0(R)/J0 ∩ T0 is a p′-group. Let X be the inverse image of CJ0

(R) in J0.
Then [R,X] ≤ CR(W ), and the faithful action of R gives X ≤ CJ0(R), so X is a p′-group.

We have shown that CJ0
(Op′(J0)) ≤ CJ0

(R) = X ≤ Op′(J0). In addition, by 2.5(c) J0 is
generated by best offenders on W . Hence W and J0 satisfy the hypothesis of Theorem 9.3.7 in [KS].
It follows that either

p = 2, R ∼= C3 and |[W, R]| = 4, or

p = 3, R ∼= Q8 and |[W, R]| = 9.

Let A ≤ J0 be a best offender on V such that [R,A] 6= 1. Clearly R = [R,A] and |A/CA(R)| = p.
Moreover, according to 2.7 there exists a best offender A∗ ≤ A such that [V,R, A] ≤ CV (A∗) and
[V,R, A∗] 6= 1. Hence 2.9 shows that [R,A∗] 6= 1, and we may assume that A acts quadratically on
[V,R]. But then again 2.9 shows that that CA(R) = CA([V,R]) and |A/CA([V,R])| = p. As A is an
offender on [V,R] by 2.5(c), we get |[V,R]/C[V,R](A)| = p. This gives [V,R] = [W, R], and (a) and
(b) hold.

Now let K be any other JG(V )-component. As we have seen above K is either a component or has
a structure as R. In the first case the fact that GL2(p) is solvable for p ≤ 3 shows that [V,R, K] = 0
and so also [R,K] = 1. In the second case we can choose a best offender B with K = [K, B] such
that 〈A, B〉 is a p-group. Then C〈A,B〉(RK) is a normal p-subgroup of RK〈A, B〉 and so centralizes
[V,RK]. Hence the above result from [KS] applies to RK〈A, B〉/CRK〈A,B〉([V,RK]). Then

[R,K] ≤ CR∩K([V,RK]) = 1

and [V,R, K] = 0. Hence (c) also holds in this case. �

Lemma 3.3 Suppose that V is a faithful GF (p)G-module and that K is a JG(V )-component with
Op(K) = 1. Then there exists a best offender A of G such that [K, A] = K and A is quadratic on
[V,K].

Proof: By 3.1 there exists a best offender B such that [K, B] 6= 1. Hence 3.2 gives [K, B] =
K and thus [V,K, B] 6= 0. Now 2.7 with W := [V,K] gives a best offender A ≤ B satisfying
[W, B, A] = 0 and [W, A] 6= 0. The first property shows that A is quadratic on W . It remains to
prove K = [K, A].

Assume that [K, A] 6= K. Then again 3.2 yields [K, A] = 1 and thus by 2.9 W = [W, K] ≤ CW (A),
a contradiction. �

Lemma 3.4 Suppose that V is a faithful GF (p)G-module and that K is a component of JG(V ) with
Op(K) = 1. Then K is a JG(V )-component.
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Proof: Let J := JG(V ). By the P(G, V )-Theorem K is normal in J , so K = [K, J ]. Hence,
either K is a JG(V )-component, or there exists a JG(V )-component R < K. Suppose that the
second case holds. Then R ≤ Z(K) since K is a component. Thus R is a JG(V )-component that
is not a component. Hence 3.2 implies that |[V,R]| = p2. But then GL([V,R]) is solvable and as
above [V,R, K] = 0; particular [V,R, R] = 0. This is impossible since R is a non-trivial p′-group. �

Lemma 3.5 Suppose that V is a faithful GF (p)G-module and that K is a JG(V )-component with
Op(K) = 1. Then there exists a best offender A in G such that [K, A] = K and A is quadratic on
[V,K].

Proof: By 3.3 there exists a best offender A such that [K, A] 6= 1 and A is quadratic on [V,A].
It remains to prove K = [K, A].

If K is a component, then [K, A] 6= 1 implies [K, A] = K. If K is not a component, then by
3.2(a),(b) R ∼= C3 or Q8 and again [K, A] 6= 1 implies [K, A] = K. �

Lemma 3.6 Suppose that V be a faithful GF (p)G-module and Op(JG(V )) = 1. Let K and L be
two distinct components of JG(V ). Then

[V,K, L] = [V,L, K] = 0.

Proof: We apply 3.4 and 3.5. Then there exist best offenders A and B such that [K, A] = K and
[L, B] = L, and A and B act quadratically on [V,K] and [V,L], respectively. Moreover since K and
L are normal in JG(V ), we may assume that 〈A, B〉 is a p-group.

By way of contradiction we assume that [V,K, L] 6= 0. Set G0 := KL〈A, B〉. Then there exists
a G0-submodule W of V that is minimal with respect to [W, K, L] 6= 0. Since [K, L] = 1 also
[W, L, K] 6= 0, and the situation is symmetric in K and L.

Suppose that W 6= [W, K]. Then the minimality of W gives [W, K, K, L] = 0. On the other hand
[W, K] = [W, K, K], so [W, K, L] = 0, a contradiction. Hence we have W = [W, K] and by symmetry
also W = [W, L]. Thus A and B are quadratic on W , and by 2.5(c) A and B are quadratic best
offenders on W .

Let U be a maximal GF (p)G0-submodule of W and set Ŵ := W/U . Then Ŵ is a simple
GF (p)G0-module. By 2.9 [W, CA(K)] = 0 and similarly [W, CB(L)] = 0. Thus we have

(∗) CA(Ŵ ) = CA(K) = CA(W ) and CB(Ŵ ) = CB(L) = CB(W ).

Since A and B are quadratic best offenders on W , (∗) shows that A and B are also quadratic offenders
on Ŵ . Hence there exist quadratic best offenders Â and B̂ on Ŵ in 〈A, B〉 such that [K, Â] = K
and [L, B̂] = L. In addition, we choose Â such that jÂ(Ŵ ) is maximal with that property.

Let X̂ be a simple K-submodule of Ŵ . Assume that [K, B̂] 6= 1. Then 2.10 shows that X̂ is
normalized by every L-conjugate of B̂, so L normalizes X̂. As X̂ is a simple K-module, Schur’s
Lemma shows that EndK(X̂) is a finite division ring and then Wedderburn’s Theorem that L/CL(X̂)
is cyclic. This shows that [X̂, L] = 0 since L is perfect. Hence CŴ (L) is a non-trivial G0-submodule
of Ŵ . As Ŵ is a simple G0-module, we conclude that [Ŵ , L] = 0, a contradiction.

We have shown that [K, B̂] = 1 and similarly [L, Â] = 1. Observe that C〈A,B〉(KL) is a normal
p-subgroup of G0 and hence centralizes Ŵ , so

[Â, B̂] ≤ CG0(Ŵ ) and ÂCG0(Ŵ ) ∩ B̂CG0(Ŵ ) = CG0(Ŵ ).
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Now 2.8 and the maximality of jÂ(Ŵ ) show that 〈Â, B̂〉 is a quadratic best offender on Ŵ . But the
above argument with 〈Â, B̂〉 in place of B̂ implies that [K, 〈Â, B̂〉] = 1, which contradicts [K, Â] = K.

�

The proof of The Other P(G, V )-Theorem. Let E and K be distinct JG(V )-components.
Then by 3.2(b) and 3.6 [V,E, K] = 0 = [V,K, E]. So by the Three Subgroups Lemma, [E,K] = 1.
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