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Introduction
Let p be a fixed prime and H be a finite group whose order is divisible by

p. A p-local subgroup of H is a subgroup of the form NH(U), where U is a
non-trivial p-subgroup of H.

H has characteristic p if CH(Op(H)) ≤ Op(H), where Op(H) is the largest
normal p-subgroup of H. If all the p-local subgroup of H have characteristic p,
we say that H has local characteristic p.

In this paper we describe the current status of a project whose goals are

– to understand the p-local structure of finite simple groups of local charac-
teristic p, and

– to classify the finite simple groups of local characteristic 2.

The generic examples of groups of local characteristic p are the groups of
Lie type defined over fields of characteristic p. Also some of the sporadic groups
have local characteristic p, for example J4,M24 and Th for p = 2, McL for
p = 3, Ly for p = 5, and O′N for p = 7.

But also every group with a self-centralizing Sylow p-subgroup of order p, like
Alt(p), is of local characteristic p. These latter groups are particular examples
of groups with a strongly p-embedded subgroup. Because of such groups we
used the word “understand” rather than “classify” in the first item.

We hope to obtain information that allows to understand why, apart from
groups with a strongly p-embedded subgroup, p-local subgroups of groups of
local characteristic p look like those in the above examples.

For p = 2 Bender’s fundamental classification of groups with a strongly
2-embedded subgroup puts us in a much better situation. In this case the
information collected about the 2-local structure actually suffice to classify the
finite simple groups of local characteristic 2. This then can be seen as part of a
third generation proof of the classification of the finite simple groups.

At this point we also should justify another technical hypothesis we have not
mentioned yet. We will assume that the simple sections (i.e., the composition
factors of subgroups) of p-local subgroups are “known” simple groups, a property
that surely holds in a minimal counterexample to the Classification Theorem of
the finite simple groups.

One final word about a possible third generation proof of that classification
and its relation to existing proofs. In 1954 R. Brauer [Br] suggested to classify
the finite simple groups by the structure of the centralizers of their involutions.
In principle the classification went this way, based on the epoch-making Theorem
of Feit-Thompson [FeTh] which shows that every non-abelian finite simple group
possesses involutions. Of course, a priori, there are as many centralizers as there
are finite groups, so one of the main steps in the proof is to give additional
information about the possible structure of centralizers of involutions in finite
simple groups (this corresponds to the first item of our project).
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In a given simple group the centralizers of involutions are particular 2-local
subgroups, and there are basically two cases: Either every such centralizer has
characteristic 2, in which case the group is of local characteristic 2, or this is
not the case.

In the latter case, with a great amount of work, one can prove that there
exists a centralizer of an involution that has a certain standard form. There is a
well established machinery that then can be used to classify the corresponding
groups.

The situation is more complicated if the simple group has local characteristic
2. The actual classification then works with a suitably chosen odd prime p and
centralizers of elements of order p rather than involutions. For example, in
the groups Ln(2m), which are of local characteristic 2, one would choose an
element of order p in a standard torus, or an element of order 3 if m = 1. The
idea is then to prove that there exists a p-element whose centralizer is again in
some standard form. This needs very delicate signalizer functor and uniqueness
group arguments, moreover, the classification of quasi-thin groups has to be
done separately.

If successful, our classification of groups of local characteristic 2 would give
an alternative proof that does not need the above described switch to another
prime and also does not need the separate treatment of quasi-thin groups.

In fact, in view of the part of the classification that deals with groups that
are not of local characteristic 2, it might be desirable to classify groups of
parabolic characteristic 2 rather than of local characteristic 2. Here a parabolic
subgroup of H is a subgroup of H which contains a Sylow p-subgroup of H.
And H has parabolic characteristic p if all p-local, parabolic subgroups of H
have characteristic p. The remaining simple groups would then have a 2-central
involution whose centralizer is not of characteristic 2, a condition which seems
to be fairly strong. We hope that our methods also work in the more general
situation of groups of parabolic characteristic p, but have not spent much time
on it.

Notation and Hypothesis

Let p be a fixed prime and H be a finite group whose order is divisible by p.
The largest normal p-subgroup of H, Op(H), is called the p-radical of H.
H is p-minimal if every Sylow p-subgroup S of H is contained in a unique

maximal subgroup of H and S 6= Op(H). The p-minimal parabolic subgroups
of H are called minimal parabolic subgroups.

If every simple section of H is a known finite simple group, then H is a
K-group. If every p-local subgroup of H is a K-group, then H is a Kp-group.

A proper subgroup M of H is called strongly p-embedded if p divides |H|,
but does not divide |H ∩Hg| for any g ∈ G \H.

F ∗p (H) is defined by F ∗p (H)/Op(H) = F ∗(H/Op(H)).
For any set T of subgroups of H and U ≤ H we set

TU := {T ∈ T | T ≤ U} and T (U) := {T ∈ T | U ≤ T}.
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We further set

L := {L ≤ H | CH(Op(L)) ≤ Op(L)} and P := {P ∈ L | P is p-minimal},

and denote the set of maximal elements of L by M. Observe that in the case
when H has local characteristic p and S ∈ Sylp(H)

L contains every p-local subgroup of H,

M is the set of maximal p-local subgroups of H,

L(S) is the set of parabolic subgroups containing S with a non-trivial
p-radical,

P(S) is the set of p-minimal parabolic subgroups containing S with a
non-trivial p-radical.

Let 1 = D0 < D2 < . . .Dn−1 < Dn = H be a chief-series for H and put Vi =
Di/Di−1. The shape of H is define to be the ordered tuple (H/CH(Vi), Vi)1≤i≤n.
Isomorphisms between the shapes of two groups are defined in the canonical
way. Note that by the Jordan Hölder Theorem the shape of H is unique up
to isomorphism. Abusing language we will say that two groups have the same
shape if they have isomorphic shapes.

From now on we assume

Main Hypothesis G is a finite Kp-group of local characteristic p with trivial
p-radical.

In the following we will discuss the principal steps and subdivisions in the
investigation of G. It splits into three major parts:

• Modules

• Local Analysis

• Global Analysis.

In the first part we collect information about pairs (H,V ), where H is a
finite K-group and V is a faithful FpH-module fulfilling certain assumptions,
like quadratic action or 2F . The results of this part serve as an invaluable
background for the local analysis.

The local analysis generates information about the structure of the p-local
subgroups of G, and in the global analysis this information is used to identify
G up to isomorphism.
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1 The Modules

In this part we collect some theorems about finite groups and their Fp-modules
that are needed in the local analysis of groups of local characteristic p. Some
of these theorems are known, others are not. Proofs for the theorems in this
section will appear in [BBSM].

Let H be a finite group, V an FpH module and A ≤ H. We say that A
acts quadratically on V if [V,A,A] = 0. Let i be a positive real number. We
say that A is an iF -offender provided that |V/CV (A)| ≤ |A/CA(V )|i. A is an
offender if A is an 1F -offender. If in addition [V,A] 6= 0, A is called a non-trivial
iF -offender. If there exists a non-trivial iF -offender in H then V is called an
iF -module. An FF -module is a 1F -module.

We say that H is a CK-group if every composition-factor of H is isomorphic
to one of the known finite simple groups.

1.1 Results

Theorem 1.1.1 (Quadratic Module Theorem) Let H be a finite CK-group
with F ∗(H) quasi-simple, V be a faithful irreducible FpH-module and A ≤ G
such that

(i) [V,A,A] = 0.

(ii) H = 〈AH〉.

(iii) |A| > 2.

Then one the following holds:

1. p = 2, H ∼= Alt(n) or Sym(n) and V is the natural module.

2. p = 2, H ∼= Alt(n) and V is the spin-module.

3. p = 2, H ∼= 3.Alt(6), Alt(7), 3.U4(3), M12, Aut(M12), Aut(M22), 3.M22,
M24, J2, Co1, Co2 or 3.Sz and V is known.

4. p = 2, H ∼= O±2n(2) and V is the natural module.

5. p = 3, H ∼= 2.Alt(n) and V is the spin module.

6. p = 3, H ∼= PGUn(2) and V is the Weil-module.

7. p = 3, H ∼= 2.Sp6(2), 2.Ω8(2), 2.J2, 2.G2(4), 2.Sz, 2.Co1 and V is known.

8. G = F ∗(H) ∼= σGΦ(F) is a group of Lie type over the field F with charF =
p. Moreover, if |A| > |F| or if there exists a root subgroup R of H with
A ∩R 6= 1 and A � R, then V = V (λi) where λi is a fundamental weight
with λi(α) = 1 for the highest long root α ∈ Φ.

5



Theorem 1.1.2 (FF-Module Theorem) Let H be a finite CK-group and V
a faithful, irreducible FF -module for H over Fp. Suppose that F ∗(H) is quasi-
simple and that H is generated by the quadratic offenders on V . Then one of
the following holds (where q is a power of p):

1. H ∼= SLn(q), n ≥ 2; Sp2n(q), n ≥ 2; SUn(q), n ≥ 4; Ω+
2n(q), n ≥ 3;

Ω−2n(q), n ≥ 4; or Ωn(q), n ≥ 7, n and q odd; and V is the corresponding
natural module.

2. H ∼= SLn(q), n ≥ 3 and V is the exterior square of a natural module.

3. H ∼= Ω7(q), and V is the spin-module.

4. H ∼= Ω+
10(q) and V is one of the two half-spin modules.

5. H ∼= O±2n(q), p = 2, n ≥ 3 and V is the natural module.

6. H ∼= G2(q), p = 2 and |V | = q6.

7. H ∼= Alt(n) or Sym(n), p = 2 and V is the natural module.

8. H ∼= Alt(7), p = 2 and |V | = 24.

9. H ∼= 3.Alt(6), p = 2 and |V | = 26.

Let V be an FpH-module and S ∈ Sylp(H). The group Op
′
(CH(CV (S))) is

called a point stabilizer for H on V . V is called p-reduced if Op(H/CH(V )) = 1.

Lemma 1.1.3 (Point Stabilizer Theorem) Let H be a finite CK- group, V
a FpH-module, L a point stabilizer for H on V and A ≤ Op(L).

(a) If V is p-reduced, then |V/CV (A)| ≥ |A/CA(V )|.

(b) Suppose V is faithful and irreducible for H, F ∗(H) is quasi-simple, H =
〈AH〉 and A is a non-trivial offender on V . Then H ∼= SLn(q), Sp2n(q),
G2(q) or Sym(n), where p = 2 in the last two cases, n = 2, 3 mod (4)
in the last case, and q is a power of p. Moreover, V is the corresponding
natural module.

Theorem 1.1.4 Let H be a finite CK-group with F ∗(H) quasi-simple. Let V
be a faithful irreducible FpH module. Suppose there exists 1 6= A ≤ T ∈ Sylp(H)
such that |A| > 2 and 〈AL〉 acts quadratically on V for all S ≤ L < H. Then

(a) F ∗(H)A ∼= SLn(q), Sp2n(q), SUn(q), G2(q)′ or Sz(q), where p = 2 in the
last two cases.

(b) Let I be an irreducible F ∗(H)A submodule of V . Then one of the following
holds:

1. I is a natural module for F ∗(H)A.
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2. p = 2, F ∗(H)A ∼= L3(q), H induces a graph automorphism on F ∗(H)
and I is the adjoint module.

3. p = 2, F ∗(H)(A) ∼= Sp6(q) and I is the spin-module.

(c) Either A is contained in a long root subgroup of F ∗(H)A, or p = 2,
F ∗(H)A ∼= Sp4(q), A ≤ Z(S ∩ F ∗(H)A) and H induces a graph auto-
morphism on F ∗(H).

The information given in the above theorem can be used to prove the fol-
lowing corollary, which is of great help in the local analysis.

Corollary 1.1.5 (Strong L-Lemma) Let L be a finite CK-group with Op(L) =
1 and V a faithful FpL-module. Suppose that there exists 1 6= A ≤ S ∈ Sylp(L)
such that

(∗) 〈AP 〉 acts quadratically on V for every proper subgroup P < L satisfying
A ≤ P and S ∩ P ∈ Sylp(P ).

Then

(a) L ∼= SL2(pm), Sz(2m) or D2r, where p = 2 in the last two cases and r is
an odd prime.

(b) [V, L]CV (L)/CV (L) is a direct sum of natural modules for L.

Let H be a finite group, V a FpH-module and A ≤ H. We say that A is
cubic on V if [V,A,A,A] = 0. We say that V is a cubic 2F -module if H contains
a non-trivial cubic 2F -offender. The following theorem is due to R. Guralnick
and G. Malle [GM]:

Theorem 1.1.6 (The 2F -Module Theorem,I) Let H be a finite CK-group
and V a faithful irreducible cubic 2F -module for H. Suppose that F ∗(H) is
quasi-simple, but F ∗(H) is not a group of Lie-type in characteristic p. Then
one of the following holds:

1. F ∗(H)/Z(F ∗(H)) ∼= Alt(n), p = 2 or 3 and one of the following holds.

1. V is the natural module.

2. H ∼= Alt(n), p = 2, n = 7 or 9 and V is a half-spin module.

3. H ∼= Sym(7), p = 2 and V is the spin-module.

4. F ∗(H) ∼= 2.Alt(5), p = 3 and V is the half spin module.

5. F ∗(H) ∼= 3.Alt(6) and |V | = 26.

2. F ∗(H) ∼= G2(2)′, p = 2 and |V | = 26.

3. F ∗(H) ∼= 3.U4(3), p = 2 and |V | = 212.

4. F ∗(H) ∼= 2.L3(4), p = 3 and |V | = 36.
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5. F ∗(H) ∼= Sp6(2), p = 3 and |V | = 37.

6. F ∗(H) ∼= 2.Sp6(2), p = 3 and |V | = 38.

7. F ∗(H) ∼= 2.Ω+
8 (2), p = 3 and |V | = 38.

8. F ∗(H) ∼= M12,M22,M23,M24, p = 2 and V is a non-trivial composition
factor of dimension 10, 10, 11, 11 resp. of the natural permutation module.

9. F ∗(H) = 3.M22, p = 2 and |V | = 212.

10. F ∗(H) = J2, p = 2 and V is the 12-dimensional module which arises from
the embedding into G2(4).

11. F ∗(H) ∼= Co2 or Co1, p = 2 and V is 22– resp. 24–dimensional module
arising from the Leech Lattice

12. F ∗(H) ∼= M11 or 2.M12, p = 3 and |V | = 35 and 36 respectively.

It is not known whether Case 11 in the preceding theorem really occurs. We
tend to believe it does not.

1.2 An Example

To get an idea how these theorems are used in the local analysis we now discuss
briefly a particular but fairly general situation.

Let G be as in the Main Hypothesis, that is a finite Kp-group of local char-
acteristic p with trivial p-radical. Fix S ∈ Sylp(G) and put Z := Ω1Z(S). Let
M1,M2 ∈ L(S) and put Fi = F ∗p (Mi). Suppose that

(i) Fi/Op(Fi) is quasisimple, i = 1, 2,

(ii) Op(〈F1, F2〉) = 1,

(iii) Mi = SFi, i = 1, 2.

Let Zi := 〈ZMi〉 and Vi := 〈ZMi
j 〉 for i 6= j. Note first that Zj ≤ Z(Op(Mj)) ≤

S ≤Mi, so Zi and Vi are normal subgroups of Mi.
As an elementary consequence of (i) we get:

(1) Let U ≤ Mi and Fi ≤ NMi(U). Then either Fi ≤ U , or U ∩ Op(Mi) ∈
Sylp(U).

This property (1) together with (iii) applied to U = CMi(Fi/Op(Mi)) and
U = CMi(V ), V a non-central Mi-chief factor in Op(Mi), gives:

(2) Suppose that V is a non-central Mi-chief factor in Op(Mi). Then

CS(V ) = Op(Mi) = CS(Fi/Op(Mi)).

Next we show that one of the following cases holds:
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(I) There exist g ∈ G and i ∈ {1, 2}, say i = 1, such that

[Z1, Z
g
1 ] 6= 1, [Z1, Z

g
1 ] ≤ Z1 ∩ Zg1 and Z1Z

g
1 ≤M1 ∩Mg

1 .

(II) There exists an i ∈ {1, 2}, say i = 1, such that Z1 6≤ Op(M2), and (I) does
not hold.

(III) V1 and V2 are elementary abelian, and (I) does not hold.

To see this, assume that (I) and (II) do not hold. Then V1V2 ≤ Op(M1) ∩
Op(M2), and either (III) holds, or for some i ∈ {1, 2}, say i = 2, V2 is not
abelian. In the latter case, there exists g ∈ M2 such that [Z1, Z

g
1 ] 6= 1. Since

〈Z1, Z
g
1 〉 ≤ Op(M2) ≤M1 ∩Mg

1 we also have [Z1, Z
g
1 ] ≤ Z1 ∩ Zg1 . This gives (I)

contrary to our assumption. We now discuss these three cases separately.

Assume case (I). We can choose the notation such that

|Zg1/CZg1 (Z1)| ≥ |Z1/CZ1(Zg1 )|,

so Zg1 is a quadratic offender on Z1.
Clearly [Z1,M1] 6= 1 since [Z1, Z

g
1 ] 6= 1, so the definition of Z1 implies that

M1 6= CM1(Z1)S. Thus [Z1, O
p(M1)] 6= 1 and there exists a non-central M1-

chief factor V = U/W of Z1. From (2) we conclude that CZg1 (Z1) = CZg1 (V ) =
Zg1 ∩Op(M1). It follows that

|V/CV (Zg1 )| ≤ |U/CU (Zg1 )| ≤ |Z1/CZ1(Zg1 )| ≤ |Zg1/CZg1 (Z1)| = |Zg1/CZg1 (V )|.

Hence Zg1 is a non-trivial quadratic offender on V , and the FF -Module Theorem
gives the structure of F1/Op(M1) and V .

Assume case (II). Then

[Op(M2), Z1, Z1] ≤ [Op(M2) ∩ Z1, Z1] = 1,

so Z1 is quadratic on every M2-chief factor V of Op(M2). Hence (unless
|Z1Op(M1)/Op(M1)| = 2) the Quadratic Module Theorem applies toM2/CM2(V )
and A = Z1CM2(V )/CM2(V ). But in this case one also gets information about
M1:

Among all subgroups U ≤ M2 with Z1 ≤ U , U ∩ S ∈ Sylp(U) and Z1 6≤
Op(U) choose U minimal and set U = U/Op(U). Then for every proper sub-
group Op(U) ≤ P < U with S ∩ P ∈ Sylp(P ) and Z1 ≤ P we get that Z1 ≤
Op(P ). But this implies, since we are not in case (I), that X := 〈ZP1 〉 is abelian.
Hence as above, since X is normal in S ∩ P , [Op(P ), X,X] = 1. This shows
that the Strong L-Lemma 1.1.5 applies with L = U , V = Op(U)/Φ(Op(U)) and
A = Z1.

Set B̃ := Z1 ∩ Op(U) and B := B̃x for some x ∈ U \ NU (S ∩ U). Note
that U = 〈Z1, Z

x
1 〉 and so U normalizes B̃B and B̃ ∩ B ≤ Z(U). By 1.1.5,

|Z1/B̃| ≤ |B/B̃ ∩B| and CB(y) = B̃ ∩B for every y ∈ Z1 \ B̃. It follows that

|Z1/CZ1(B) ≤ |Z1/B̃∩B| = |Z1/B̃||B̃/B̃∩B| = |Z1/B̃||B/B̃∩B| ≤ |B/B̃∩B|2,
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so B/B̃ ∩ B is a 2F -offender on Z1. Using (ii) we see that the 2F -Module
Theorem applies to M1/CM1(Z1) and a non-central M1-chief factor of Z1.

Assume case (III). Note that 〈CMi
(Vi),Mj〉 ≤ NG(Zj) and so by condition

(ii)
Fi 6≤ CMi

(Vi) for every i ∈ I.

In particular by (1) CS(Vi) ≤ Op(Mi) for every i ∈ I. Since by property (ii)
J(S) 6≤ Op(M1) ∩Op(M2) we may assume that

(∗∗) F1 6≤ CM1(V1) and J(S) 6≤ CM1(V1).

Let D be the inverse image of Op(M1/CM1(V1)). Pick A ∈ A(S) such that
A 6≤ CM1(V1). According to the Thompson Replacement Theorem we may
assume that A acts quadratically on V1. The maximality of A gives

|V1||CA(V1)||V1 ∩A|−1 = |V1CA(V1)| ≤ |A|

and thus |V1/CV1(A)| = |V1/V1 ∩A| ≤ |A/CA(V1)|, so A is a quadratic offender
on V1. This looks promising, but A0 := A∩D might not centralize V1. This is an
obstacle for the application of the FF-Module Theorem to F1A and non-central
F1A-chief factors of V1.

Evidently |A0/CA(V1)| ≤ |A/A0| or |A/A0| ≤ |A0/CA(V1)|. In the first case

|V1/CV1(A0)| ≤ |V1/V1 ∩A| ≤ |A/CA(V1)| = |A/A0||A0/CA(V1)| ≤ |A/A0|2,

so in this case, using again (2), A/A0 is a quadratic 2F-offender on the non-
central F1A-chief factors of V1.

In the second case

|V1/CV1(A0)| ≤ |V1/V1∩A| ≤ |A/CA(V1)| = |A/A0||A0/CA0(V1)| ≤ |A0/CA0(V1)|2,

so A0 is a quadratic 2F-offender on V1. An elementary calculation then shows
that there exists a quadratic 2F-offender on Z2.

This concludes the discussion of the cases (I) – (III). In all cases the module
theorems from 1.1 reveal the structure of F1/Op(F1) or F2/Op(F2).

2 The Local Analysis

In this part we discuss the p-local structure of G, where G is, according to
our Main Hypothesis, a finite Kp-group of local characteristic p with trivial
p-radical. We fix

S ∈ Sylp(G), Z := Ω1Z(S).

For further notation see the introduction.
The basic idea is to study the structure of L ∈ L by its action on elementary

abelian normal subgroups contained in Z(Op(L)) and by its interaction with
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other elements of L having a common Sylow p-subgroup. It is here where the
module results of Part 1 are used.

The appropriate candidates for such normal subgroups in Z(Op(L)) are the
p-reduced normal subgroups, i.e. elementary abelian normal subgroups V of L
with Op(L/CL(V )) = 1. Note that an elementary abelian normal subgroup V is
p-reduced iff any subnormal subgroup of L that acts unipotently on V already
centralizes V . Here are the basic properties of p-reduced normal subgroups.
They include the fact that there exists a unique maximal p-reduced normal
subgroup of L which we always denote by YL.

Lemma 2.0.1 Let L be a finite group of characteristic p and T ∈ Sylp(L).
Then

(a) There exists a unique maximal p-reduced normal subgroup YL of L.

(b) Let T ≤ R ≤ L and X a p-reduced normal subgroup of R. Then 〈XL〉 is
a p-reduced normal subgroup of L. In particular, YR ≤ YL.

(c) Let TL = CT (YL) and LT = NL(TL). Then L = LTCL(YL), TL = Op(LT )
and YL = Ω1Z(TL).

(d) YT = Ω1Z(T ), ZL := 〈Ω1Z(T )L〉 is p-reduced for L and Ω1Z(T ) ≤ ZL ≤
YL.

(e) Let V be p-reduced normal subgroup of L and K a subnormal subgroup of
L. Then [V,Op(K)] is a p-reduced normal subgroup of K.

Of course, the action of L on YL might be trivial, whence YL = Ω1Z(T ),
T ∈ Sylp(L). This leads to another notation. Let H be any finite group and
T ∈ Sylp(H). Then PH(T ) := Op

′
(CH(Ω1Z(T ))) is called a point stabilizer of

H. In the above situation trivial action on YL implies that Op
′
(L) = PL(T ).

Here are some basic (but not entirely elementary) facts about point stabilizers.

Lemma 2.0.2 Let H be a finite group of local characteristic p, T ∈ Sylp(H)
and L a subnormal subgroup of H. Then

(a) (Kieler Lemma) CL(Ω1Z(T )) = CL(Ω1Z(T ∩ L))

(b) PL(T ∩ L) = Op
′
(PH(T ) ∩ L)

(c) CL(YL) = CL(YH)

(d) Suppose L = 〈L1, L2〉 for some subnormal subgroups L1, L2 of H. Then

(da) PL(T ∩ L) = 〈PL1(T ∩ L1), PL2(T ∩ L2)〉.
(db) For i = 1, 2 let Pi be a point stabilizer of Li. Then 〈P1, P2〉 contains

a point stabilizer of L.
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It is evident that all elements of L(S) having a normal point stabilizer are
contained in NG(Z). Therefore, controlling NG(Z), or better a maximal p-
local subgroup containing NG(Z), means controlling all elements of L ∈ L(S)
with trivial action on YL. This point of view leads to the next definition and
subdivision.

Let C̃ be a fixed maximal p-local subgroup of G containing NG(Z). Put

E := Op(F ∗p (C eC(Y eC))), Q := Op(C̃)

The major subdivision is:

Non-E-Uniqueness (¬E!) : E is contained in at least two maximal p-local
subgroups of G.

E-Uniqueness (E!) : C̃ is the unique maximal p-local subgroup containing
E.

Another subdivision refers to the rank of G. Define the rank of G to be
the minimal size of a non-empty subset Σ of P(S) with 〈Σ〉 /∈ L. If no such
subset exists we define the rank to be 1. Note that rankG = 1 if and only if
|M(S)| = 1. The cases rankG = 1 and rankG ≥ 2 are treated separately, so in
the E!-case we will assume, in addition, that G has rank at least 2.

The subgroup 〈M(S)〉 is called the p-core of G (with respect to S). Note
that G has a proper p-core if G has rank 1, so the rank 1 case can be treated in
this more general context.

2.1 Pushing Up

Various times in the local analysis we will encounter a p-local subgroup L of G
and a parabolic subgroup H of L such that NG(Op(H)) and L are not contained
in a common p-local subgroup of G. In other words Op(〈L,NG(Op(H))〉) = 1.
In this section we provide theorems that allow, under additional hypotheses, to
determine the shape of L.

For a p-group R we let PU1(R) be the class of all finite CK-groups L con-
taining R such

(a) L is of characteristic p,

(b) R = Op(NL(R))

(c) NL(R) contains a point stabilizer of L.

Let PU2(R) be the class of all finite CK- groups L containing R such that
L is of characteristic p and

L = 〈NL(R),H | R ≤ H ≤ L,H ∈ PU1(R)〉.

Let PU3(R) be the class of all finite CK-groups L such that

12



(a) L is of characteristic p.

(b) R ≤ L and L = 〈RL〉

(c) L/CL(YL) ∼= SLn(q), Sp2n(q) or G2(q), where q is a power of p and p = 2
in the last case.

(d) YL/CYL(L) is the corresponding natural module.

(e) Op(L) < R and NL(R) contains a point stabilizer of L.

(f) If L/CL(YL) 6∼= G2(q) then R = Op(NL(R)).

Let PU4(R) be the class of all finite CK- groups L containing R
such that L is of characteristic p and

L = 〈NL(R),H | R ≤ H ≤ L,H ∈ PU3(R)〉.

For a finite p-group T let A(T ) be the set of elementary abelian subgroups
of maximal order in T , J(T ) = 〈A(T )〉, the Thompson subgroup of T , and
B(T ) = CR(Ω1Z(J(T ))), the Baumann subgroup of T . Recall that a finite group
F is p-closed if Op

′
(F ) = Op(F ). The following lemma is a generalization of a

well known lemma of Baumann, also the proof is similar to Baumann’s.

Lemma 2.1.1 (Baumann Argument) Let L be a finite group, R a p-subgroup
of L, V := Ω1Z(Op(L)), K := 〈B(R)L〉, Ṽ = V/CV (Op(K)), and suppose that
each of the following holds:

(i) Op(L) ≤ R and L = 〈J(R)L〉NL(J(R)).

(ii) CK(Ṽ ) is p-closed.

(iii) |Ṽ /CṼ (A)| ≥ |A/CA(Ṽ )| for all elementary abelian subgroups A of R.

(iv) If U is an FF -module for L/Op(L) with Ṽ ≤ U and U = CU (B(R))Ṽ ,
then U = CU (Op(K))Ṽ .

Then Op(K) ≤ B(R).

Using the Point Stabilizer Theorem 1.1.3 and the Baumann Argument 2.1.1
one can prove

Lemma 2.1.2 Let R be a p-group. Then PU2(R) ⊆ PU4(B(R)).

Similarly,

Lemma 2.1.3 Let L be a finite p-minimal CK- group of characteristic p. Let
T ∈ Sylp(L). Then either L centralizes Ω1Z(T ) (and so PL(T ) is normal in L)
or L ∈ PU4(B(T )).

13



If R is a group and Σ is a set of groups containing R we define

OR(Σ) = 〈T ≤ R | T � L, ∀L ∈ Σ〉

So OR(Σ) is the largest subgroup of R which is normal in all L ∈ Σ.

Theorem 2.1.4 Let R be a finite p-group with R = B(R) and Σ a subset of
PU3(R). Suppose OR(Σ) = 1. Then there exists L ∈ Σ such that Op(L) has
one of the following shapes: (where q is a power of p.)

1. qnSLn(q)′;

2. q2nSp2n(q)′, p odd;

3. q1+2nSp2n(q)′, p = 2;

3. 26G2(2)′, p = 2;

4. q1+6+8Sp6(q), p = 2;

5. 21+4+6L4(2), p = 2; or

6. q1+2+2SL2(q)′, p = 3.

Examples for above configurations can be found in SLn+1(q), Lpn(r)( with
q = p | r − 1), Sp2n+2(q), Ru, F4(q), Co2 and G2(q), respectively.

We are currently working on determining the shapes of all L ∈ Σ, not only of
one. We expect all elements L ∈ Σ to have one of the structures of the previous
theorem, accept for one additional possibility namely L/Op(L) ∼= SL2(q) and
all non-central chief-factors for L on Op(L) are natural. For a given R, the
number of such chief-factors is bounded. But as R varies it cannot be bounded.

About the proof: Using elements A ∈ A(R) and their interaction with the
YL’s, L ∈ Σ one shows that there exist L,M ∈ Σ such that 〈YML 〉 is not abelian.
The fact that 〈YML 〉 is not abelian allows us to pin down the structure of L and
M . (Compare this with the cases (I) and (II) in 1.2).

Theorem 2.1.5 (The Pushing Up Theorem) Let R be a finite p-group, 1 ≤
i ≤ 4, and Σ a subset of PU i(R) with OR(Σ) = 1. If i = 3 or 4 suppose that
R = B(R). Then the shape of 〈B(R)L〉 will be known for all L ∈ Σ.

Given 2.1.2, the Pushing Up Theorem should be a straight forward but
tedious consequence of 2.1.4. The details still need to be worked out.

2.2 Groups with a Proper p-Core

Recall from the introduction that a proper subgroup M < G is strongly p-
embedded if M is not a p′-group but M ∩Mg is a p′-group for every g ∈ G\M .
The following lemma is well known and elementary to prove:
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Lemma 2.2.1 Let H be a finite group, T a Sylow p-subgroup of H and M a
proper subgroup of H with p dividing |M |. Put K := 〈NG(A) | 1 6= A ≤ T 〉.
Then M is strongly p-embedded iff NG(A) ≤ M for all non-trivial p-subgroups
A of M and iff M contains a conjugate of K. In particular, H has a strongly
p-embedded subgroup if and only if p divides |H| and K is a proper subgroup of
M .

Note that the group K from the proceeding lemma contains the p-core of H
with respect to T . Thus if our G has a strongly p-embedded subgroup then G
also has a proper p-core. We say that G satisfies CGT if G has proper p-core
but no strongly p-embedded subgroups.

2.2.1 Strongly p-embedded subgroups

Suppose that G has a strongly p-embedded subgroup. If p = 2, we can apply
Bender’s theorem [Be]:

Theorem 2.2.2 (Bender) Let H be a finite group with a strongly 2-embedded
subgroup. Then one of the following holds:

1. Let t be an involution in H. Then H = O(H)CH(t) and t is the unique
involution in CH(t).

2. O2′(H/O(H)) ∼= L2(2k), U3(2k) or Sz(2k).

If p 6= 2 we end our analysis without a clue.

2.2.2 CGT

Suppose that G satisfies CGT . Let M := 〈M(S)〉 be the p-core with respect
to S. According to CGT , M is a proper subgroup of G, but M is not strongly
p-embedded. Thus there exists g ∈ G \M such that |M ∩Mg|p 6= 1. Evidently
we can choose g such that M ∩ Sg is a Sylow p-subgroup of M ∩Mg. Thus
|Sg ∩M |p 6= 1. If Sg ≤M , then Sgm = S for some m ∈M . Since NG(S) ≤M
we obtain the contradiction to g /∈M . Thus Sg �M . Also Sg ∈ L.

Among all L ∈ L satisfying L 6≤ M we choose L such that |L ∩ M |p is
maximal. Then |L ∩M |p ≥ |Sg ∩M |p 6= 1. Let T ∈ Sylp(L ∩M) and without
loss T ≤ S.

If T = S we get that L ∈ L(S) and so by the definition of M , L ≤ M , a
contradiction. Thus T 6= S. Let C be a non-trivial characteristic subgroup of
T . Then NS(T ) ≤ NG(C) and so |M ∩NG(C)|p > |M ∩L|. Hence the maximal
choice of |M ∩ L|p implies NG(C) ≤ M . In particular, NL(C) ≤ M ∩ L. For
C = T we conclude that T ∈ Sylp(L). We can now apply the following theorem
with L in place of H:

Theorem 2.2.3 (Local C(G,T)-Theorem) Let H be a finite Kp-group of
characteristic p, T a Sylow p-subgroup of H, and suppose that

C(H,T ) := 〈NH(C) | 1 6= C a characteristic subgroup of T 〉
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is a proper subgroup of H. Then there exists an H-invariant set D of subnormal
subgroups of H such that

(a) H = 〈D〉C(H,T )

(b) [D1, D2] = 1 for all D1 6= D2 ∈ D.

(c) Let D ∈ D, then D � C(H,T ) and one of the following holds:

1. D/Z(D) is the semi-direct product of SL2(pk) with a natural module
for SL2(pk). Moreover Op(D) = [Op(D), D] is elementary abelian.

2. p = 2 and D is the semi-direct product of Sym(2k+1) with a natural
module for Sym(2k + 1).

3. p = 3, D is the semi-direct product of O3(D) and SL2(3k), Φ(D) =
Z(D) ≤ O3(D) has order 3k, and both [Z(O3(D)), D] and O3(D)/Z(O3(D))
are natural modules for D/Op(D).

For p = 2 the local C(G,T )-theorem was proved by Aschbacher in [Asch]
without using the K2-hypothesis. For us it will be consequence of the 2.1.5.
Using the local C(G,T ) theorem and that G is of local characteristic p it is not
difficult to show:

Theorem 2.2.4 Suppose that G fulfills CGT . Let M be a p-core for G and
L ∈ L such that |L ∩M |p is maximal with respect to L 6≤M . Then there exists
a normal subgroup D of L such that D/Z(D) ∼= q2SL2(q) and CL(D) ≤ Op(L).

Using the preceding theorem, A. Hirn is currently trying to show that for
p = 2, G cannot fulfill CGT .

2.3 ¬E!

In this section we assume that we are in the ¬E!-case, so E is contained in C̃ and
at least one other maximal p-local subgroup of G. To illustrate this situation
we look at a few examples.

Let p = 2, q = 2k and G = F4(q)〈σ〉 where σ induces a graph automorphism
of order 2. ( Yes, G is not of local characteristic 2, only of parabolic characteristic
2. But as we mostly look at subgroups containing a Sylow p-subgroup, or at
least a large part of the Sylow p-subgroup, it is difficult for us to detect that G
is not of local characteristic p.)

Note that G′ is a group of Lie-type with Dynkin-diagram

◦ ◦ ◦ ◦.

Also S is only contained in two parabolic subgroups, namely the σ-invariant
B2- and A1 × A1-parabolic. Trying to treat this amalgam would not be easy.
To determine E, note that Z(S) has order q and is contained in the product of
the highest long root group and the highest short root group. It follows that
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E ≤ G′ and E is essentially the B2-parabolic. So E is contained in the B3- and
C3-parabolic, and G will be identified by the (Sp6(q), Sp6(q))-amalgam.

As a second example consider G = E8(q) oSym(pk) (Again this is a group of
parabolic characteristic p, but not of local characteristic p.) Here E helps us to
find p-local subgroups which are not of characteristic p. Let H be the normalizer
of a root subgroup in E8(q), i.e. the E7-parabolic. Then C̃ is H oSym(pk), and
E is essentially a direct product of pk copies of H. Hence, E is contained in a
p-local subgroup L which is a direct product of pk − 1 copies of H and E8(q),
so L is not of characteristic p.

As a final example consider p = 2 and G = M24. Then C̃ = 24L4(2) and
so C eC(Y eC) = O2(C̃) and E = 1. It seems that E is not of much use in this
case, but E = 1 can only occur if C̃/Op(C̃) acts faithfully on Y eC . Together with
the fact that C̃ contains NG(Z), the E = 1-situation can be handled with the
amalgam method.

To summarize, the ¬E!-case detects situations which allow a treatment via
the amalgam method. The general idea is to find a p-subgroup R and a set Σ of
subgroups of G containing R such that we can apply the Pushing Up Theorem
2.1.5 to (R,Σ).

To get started we choose a subgroup X of C̃ such that X is the point
stabilizer of some subnormal subgroup X̃ of C̃ and such that X is maximal
with respect to M(EX) 6= {C̃}. By assumption M(E) 6= C̃ so such a choice
is possible. For L ∈ L(EX) let S eC(L) be the largest subnormal subgroup of C̃
contained in L. We choose L such that in consecutive order

L1. L ∈ L(EX) with L 6≤ C̃.

L2. |C̃ ∩ L|p is maximal.

L3. S eC(L) is maximal.

L4. C̃ ∩ L is maximal.

L5. L is minimal.

Let R = Op(C̃ ∩ L). Consider the following two conditions:

(PU-L) N eC(R) � L ∩ C̃.

¬ (PU-L) N eC(R) = L ∩ C̃

If (PU-L) holds we define H := N eC(R). Note here that L ∩ C̃ < H.
If ¬ (PU-L) holds we choose a C̃ ∩ L-invariant subnormal subgroup N of C̃

minimal with respect to N 6≤ L and put H = N(L ∩ C̃).
Note that in both cases H 6≤ L and H ∩ L = C̃ ∩ L, since C̃ ∩ L ≤ H ≤ C̃.

Let T be a Sylow p-subgroup of H ∩ L such that T ∩X is a Sylow p-subgroup
of X. Without loss T ≤ S.

Lemma 2.3.1 (a) Op(〈H,L〉) = 1.
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(b) NG(Ω1Z(T )) ≤ C̃.

(c) T is a Sylow p-subgroup of L and H ∩ L contains a point stabilizer of L.

(d) If ¬(PU-L) holds, then Op(NH(R)) = R and Q ≤ R. In particular, H is
of characteristic p.

Proof: Suppose (a) is false. Then there exists a p-local subgroup L∗ of G
with 〈H,L〉 ≤ L∗. Since L ≤ L∗, L∗ fulfills all the assumptions on L (except
for the minimality of L, our last choice). But H ≤ L∗ and so C̃ ∩ L < C̃ ∩ L∗
contradicting (L4). This proves (a).

We claim that EX ≤ NG(Ω1Z(T )). Since X̃ is subnormal in C̃, and T

contains a Sylow p-subgroup of X and so of X̃, we conclude that T is a Sylow p-
subgroup of 〈X̃, T 〉. Thus by the Kieler Lemma 2.0.2, X ≤ C eX(Ω1Z(T ∩X)) ≤
CG(Ω1Z(T )) ≤ NG(Ω1Z(T )). Similarly E ≤ NG(Ω1Z(T )).

By the choice of C̃, NG(Ω1Z(S)) ≤ C̃. Thus to prove (b) we may assume
T 6= S. Since NS(T ) ≤ N eC(Ω1Z(T )) we conclude that |C̃ ∩ NG(Ω1Z(T ))|p >
|C̃ ∩L|p. If (L1) holds for NG(Ω1Z(T )) we obtain a contradiction to (L2). Thus
NG(Ω1Z(T )) ≤ C̃ and (b) holds.

By (b) NL(T ) ≤ H and so T is a Sylow p-subgroup of L. Hence (c) follows
from (b).

Suppose ¬ (PU-L) holds. Then

L ∩ C̃ ≤ NH(R) ≤ N eC(R) = L ∩ C̃, and

NQ(R)) ≤ Op(N eC(R)) = Op(C̃ ∩ L) = R,

so R = Op(NH(R)) and Q ≤ R. This is (d). 2

Proposition 2.3.2 Suppose ¬E! and that (PU-L) holds. Set Σ = LH . Then
Σ ⊆ PU1(R) and OR(Σ) = 1.

Proof: By 2.3.1(c) and since R is normal in H, Σ ⊆ PU1(R). As H and L
both normalize OR(Σ) we get from 2.3.1(a) that OR(Σ) = 1. 2

In view of the preceding proposition the (PU-L)-case can be dealt with via
the Pushing Up Theorem 2.1.5. The ¬ (PU-L)-case is more complicated. As a
first step we show

Lemma 2.3.3 Suppose ¬E! and ¬ (PU-L). Put Σ = {H,L}. Then OR(Σ) =
1 = OB(R)(Σ) and L ∈ PU1(R) ⊆ PU4(B(R)). If H ∩ L contains a point
stabilizer of H, then Σ ⊆ PU1(R) ⊆ PU4(B(R)).

Proof: By 2.3.1(a) OR(Σ) = 1 and by 2.3.1(c), L ∈ PU1(R). If H ∩ L
contains a point stabilizer of H, then by 2.3.1(d) H ∈ PU1(R). By 2.1.2,
PU1(R) ⊆ PU4(B(R)). Also OB(R)(Σ) ≤ OR(Σ) = 1 and all parts of the
lemma have been verified. 2

The preceding lemma is the main tool in the proof of:
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Proposition 2.3.4 Suppose ¬E!, ¬ (PU-L) and YH ≤ Op(L). Then H ∈
PU4(B(R)).

Outline of a Proof: Suppose that H /∈ PU4(B(R)). Note that by 2.3.1(d)
Q ≤ Op(H) ≤ R, so YH ≤ Q. Since H /∈ PU4(B(R)), B(R) is not normal in
H and so B(R) � Op(H). The definition of H (and the minimal choice of
N) shows that N = [N,B(R)]. As H 6∈ PU1(R), we get [YH , N ] 6= 1 and
thus also [YH , B(R)] 6= 1. It follows that YH is an FF -module for H. Let
H := H/CH(YH). Then there exist subnormal subgroups K1, . . . ,Km of N
such that Ki is quasi-simple and

N = K1 × · · · ×Km and [YH , N ] =
m⊕
i=1

[YH ,Ki].

(Note here that H 6∈ PU1(R) rules out the case where N is solvable.) We show
next:

(∗) Let 1 6= x ∈ CS((S ∩Ki)CS(Ki/Op(Ki)). Then M(CG(x)) = {C̃}.

Since Ki and X̃ are subnormal in C̃ and Ki � X̃ we get [Ki, X̃] ≤ Op(Ki).
By 2.0.2 and the choice of x, CG(x) contains a point stabilizer of 〈Ki, X̃〉.
Suppose that CG(x) ≤ L∗ for some L∗ ∈ L with L∗ 6≤ C̃. Then the maximal
choice of X implies that X contains a point stabilizer of Ki. But then by
2.0.2(d), H ∩ L contains a points stabilizer of H, which contradicts 2.3.3 and
H 6∈ PU1(R). So (∗) holds.

We apply the amalgam method to (H,L) using the standard notation as it
is given in [DS]. For α = Hg put Kαi = Kg

i and C̃α = C̃g.
Suppose that b is even and (α, α′) is a critical pair with α = H. Typically

we will find 1 6= x ∈ [Yα, Yα′ ] such that x is centralized by a Sylow p-subgroup of
Kαi and Kα′j . Thus (∗) implies C̃α = C̃α′ . But this contradicts Yα ≤ Op(C̃α)
and Yα � Op(Gα′).

A typical case where one cannot find such an x is, when Ki
∼= Ω±2n(2) and

A := [[Yα,Kαi], Yα′ ] has order 2 (for some i) andM(CG(A)) 6= {C̃}. Then there
exists CG(A) ≤ L∗ ∈ L with L∗ 6≤ C̃. It is easy to see that KiR

∗ ∈ PU4(R∗).
Using the Pushing Up Theorem 2.1.5 one derives a contradiction.

Suppose that b is even, but α 6= H for every critical pair (α, α′). One
then proves that YHYL is normal in L and Op(〈Op(H)L〉) ≤ Op(H). Another
application of 2.1.5 gives a contradiction.

So b is odd and without loss α = H. Let α′ + 1 ∈ 4(α′) with Yα � Gα′+1.
One usually gets that Yα ∩ Qα′ ∩ Qα′+1 contains an element x as in (∗). This
forces Yα′+1 ≤ C̃α′ ∩ Gα+1 ≤ Gα. This allows us to find y ∈ Yα′+1 ∩ Qα with
CG(y) ≤ C̃α′+1. Hence Yα ≤ Gα′+1, a contradiction. 2

The propositions in this section together with the Pushing Up Theorem leave
us with the following open problem:
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2.3.1 The open ”¬E!, b = 1”-Problem

Suppose ¬E!, ¬(PU-L), YH � Op(L) and H /∈ PU4(B(R)). Determine the
shapes of H and L.

2.4 E!

The way we usually use E! is through an intermediate property called Q-
Uniqueness.

(Q!) CG(x) ≤ C̃ for all 1 6= x ∈ CG(Q)

Lemma 2.4.1 E! implies Q!.

Proof: Since C̃ is a maximal p-local subgroup, NG(Q) = C̃. Thus x ∈
CG(Q) = C eC(Q). Since C̃ is of characteristic p we conclude x ∈ Z(Q). Without
loss |x| has order p and thus x ∈ Ω1Z(Q). Note that EQ/Q has no p-chief-factors
and so Ω1Z(Q) = YEQ. By 2.0.2(c)

CE(YEQ) = CE(YE) = CE(Y eC) = E

Thus E ≤ CG(x) and E! implies CG(x) ≤ C̃. 2

The reader might want to verify that Ln(q) is an example of a group which
fulfills Q! but not E!.

In this section we assume Q! and that G has rank at least two. For L ∈ L
define L◦ = 〈Qg | g ∈ G,Qg ≤ L〉.

Lemma 2.4.2 Suppose Q!.

(a) C̃◦ = Q, in particular, any p-subgroup of G contains at most one conjugate
of Q.

(b) If L ∈ L with Q ≤ Op(L), then L ≤ C̃. In particular, if 1 6= X ≤ Z(Q)
then NG(X) ≤ C̃.

(c) If Q1, Q2 ∈ QG with Z(Q1) ∩ Z(Q2) 6= 1, then Q1 = Q2.

(d) Let L ∈ L with Q ≤ L. Then

(da) L◦ = 〈QL◦〉

(db) L = L◦(L ∩ C̃).

(dc) [CL(YL), L◦] ≤ Op(L).

(dd) If L acts transitively on Y ]L, then L◦ = NG(YL)◦.

(de) If L◦ 6= Q, then CYL(L◦) = 1.
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Proof: (a) Let g ∈ G with Qg ≤ C̃. We may assume that Qg ≤ S. Then
Z(S) ≤ CG(Qg) and thus S ≤ CG(x) ≤ C̃g for 1 6= x ∈ Z(S). Since NG(S) ≤
NG(Ω1Z(S)) ≤ C̃ we conclude that S is in a unique conjugate of C̃, so C̃ = C̃g

and Q = Qg.
(b) By (a) Q = Op(L)◦ � L and so L ≤ NG(Q) = C̃. By Q! we have

CG(X) ≤ C̃, so Q ≤ Op(CG(X)) ≤ Op(NG(X)) and we are done.
(c) As 〈Q1, Q2〉 ≤ CG(Z(Q1)∩Z(Q2)), we get from Q! and (a) that Q1 = Q2.
(d) By (a) each Sylow p-subgroup of L◦ contains a unique G-conjugate of

Q. Thus Sylow’s Theorem gives

{Qg | Qg ≤ L} = QL
◦

= QL,

in particular (da) holds and by the Frattini argument L = L◦NL(Q). Then also
(db) holds since NL(Q) ≤ C̃. Note that CYL(Q) 6= 1, so CL(YL) ≤ L∩ C̃ by Q!.
Thus

[CL(YL), Q] ≤ CL(YL) ∩Q ≤ Op(CL(YL)) ≤ Op(L),

and (dc) follows from (da).
Let Qg ≤ NG(YL). Then there exists 1 6= x ∈ CYL(Qg). If L is transitive

on Y #
L , then x is also centralized by an L-conjugate of Q. On the other hand,

by Q! and (a) CG(x) contains a unique conjugate of Q. Hence Qg ≤ L and
NG(YL)◦ = L◦.

(de) follows immediately from Q! and (a). 2

2.4.1 The Structure Theorem

In this section we assume Q! and that G has rank at least two. Our goal is to
determine the action of L on YL for all L ∈ L(S) with L � C̃.

For this let M‡(S) be the set of all M ∈M(S) such that

M(L) = {M} for all L ∈ LM (S) with M = LCM (YM )

To explain the relevance of this set we define a partial ordering on a certain
subset of L(S). For L ∈ L define L† = LCG(YL) and so L = L† iff CG(YL) ≤ L.
Then clearly YL is a p-reduced normal subgroup of L† and so YL ≤ YL† . Thus
CG(YL†) ≤ CG(YL) ≤ L†. We conclude that every L ∈ L is contained in a
member of

L† = {L ∈ L | CG(YL) ≤ L}

For L1, L2 ∈ L†(S) we define

L1 � L2 ⇔ L1 = (L1 ∩ L2)CG(YL1)

The following lemma has an elementary proof:

Lemma 2.4.3 (a) � is a partial ordering on L†(S).
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(b) M‡(S) is precisely the set of maximal elements in L†(S) with respect to
�.

(c) If L,H ∈ L(S) with L† � H†, then YL ≤ YH† and L◦ ≤ H◦. 2

Let L ∈ L(S) with L � C̃. As we have said earlier, we want to determine
the action of L on YL. This will be done using a particular point of view based
on the following elementary observations.

By the preceding lemma L† �M for some M ∈M‡(S), so

L = (L ∩M)CL(YL) = (L ∩M)(L ∩ C̃)

since CL(YL) ≤ C̃; in particular, also M � C̃.
It is easy to see that

L = 〈PL(S)〉NL(S) = 〈PL(S)〉(L ∩ C̃),

so there exists P ∈ PL(S) with P 6≤ C̃.
According to these observations it suffices to study the action of M on YM ,

where M ∈M‡(P ) for a given P ∈ P(S) with P � C̃. This point of view allows
a case subdivision that requires another definition:

For L ∈ L(S) we write gb(L) = 1 if YM � Q for some M ∈ L(L), and
gb(L) > 1 otherwise. In the above discussion we now distinguish the cases
gb(P ) > 1 and gb(P ) = 1. These two cases are treated in the next two sections.
We remark that of the actual groups have gb(P ) = 1. Indeed among the groups
of Lie Type in characteristic p, only 2F4(2k), 3D4(q) and (for p 6= 3) G2(q) fulfill
E!, rankG > 1 and gb(P ) > 1.

We further set

L◦ = {L ∈ L | Op(L) ≤ L◦} and P◦ = P ∩ L◦.

Note that for P ∈ P(S), P ∈ P◦ iff P 6≤ C̃.

2.4.1.1 The Structure Theorem for YM ≤ Q

In this section we discuss a proof of the following theorem:

Theorem 2.4.4 (M-Structure Theorem for YM ≤ Q) Suppose Q! and that
P ∈ P◦(S) with gb(P ) > 1. Let M ∈ M‡(P ). Then one of the following two
cases holds for M := M/CM (YM ) and M0 := M◦CS(YM ):

(a) (aa) M0 ∼= SLn(pk) or Sp2n(pk) and C
M

(M0) ∼= Cq, q|pk − 1, or M ∼=
Sp4(2) and M0 ∼= Sp4(2)′ (and p = 2),

(ab) [YM ,M◦] is the corresponding natural module for M0,

(ac) CM0(YM ) = Op(M0), or p = 2 and M0/O2(M0) ∼= 3Sp4(2)′.
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(b) (ba) P = M0S, YM = YP , and there exists a unique normal subgroup P ∗

of P containing Op(P ) such that

(bb) P ∗ = K1 × · · · × Kr, Ki
∼= SL2(pk), YM = V1 × · · · × Vr, where

Vi := [YM ,Ki] is a natural Ki-module,

(bc) Q permutes the subgroups Ki of (bb) transitively,

(bd) Op(P ) = Op(P ∗) = Op(M0), and P ∗CM (YP ) is normal in M ,

(be) either CM0(YP ) = Op(M0), or p = 2, r > 1, Ki
∼= SL2(2), and

CM0(YP )/O2(M0) = Z(M0/O2(M0)) is a 3-group.

A second look at the situation discussed in section 1.2 (with M1 correspond-
ing to M) might help the reader to appreciate the conclusion of the Structure
Theorem. In section 1.2 we have assumed that F ∗(M1/Op(M1)) is quasisimple.
Here we get a similar statement as a conclusion in part (a), and part (b) shows
that only for “small groups” it is not true (in fact, this case later will be ruled
out in the P !-Theorem).

In section 1.2 we found that YM1 is an FF-module or a 2F -module for M1,
where the second case is basically ruled out here by the hypothesis YM ≤ Q.
But in the FF-module case a glance at the FF-Module Theorem 1.1.2 shows that
by far not all possible groups actually occur in the conclusion of the Structure
Theorem. In the following we want to demonstrate, using the groups Sym(I)
and G2(2k) as examples, how these additional groups are ruled out.

Suppose that M ∼= Sym(I), |I| ≥ 9, p = 2, and Y := [YM ,M ] is the non-
central irreducible constituent of the natural permutation module for Sym(I).
To describe the action of M on Y let V be a GF (2)-vector space with basis vk,
k ∈ I, and set vJ =

∑
k∈J vk for every J ⊆ I. Then Sym(I) acts on V via vk 7→

vkx, x ∈ Sym(I). Let Ve := {vJ | J ⊆ I, |J | even} and V e = Ve + 〈vI〉/〈vI〉.
Then V e is the irreducible constituent meant above, so Y = V e.

Assume first that Q does not act transitively on I. Then there exists a proper
Q-invariant subset J of I with |J | ≤ |I \ J | and vJ ∈ CY (Q). Hence Q! gives
CM (vJ ) ≤ C̃ and Q ≤ O2(CM (vJ )). Note that C

M
(aJ) ∼= Sym(J)×Sym(I\J)

(respectively Sym(I) oC2, if |J | = |I \ J |). By 2.4.2(b) Q 6= 1, we conclude that
O2(Sym(J)) 6= 1 or O2(Sym(I \ J)) 6= 1. Since |I| ≥ 9, |J | ≤ |I \ J |, and
O2(Sym(n)) = 1 for all n ≥ 5, we get that |J | ∈ {2, 4} and O2(Sym(I \J)) = 1.
Thus Q ≤ Sym(J), and Q centralizes every vJ∗ for J∗ ⊆ I \ J . Choose such
an J∗ with |J∗| = 2. Then C

M
(vJ∗) = Sym(J∗) × Sym(I \ J∗) and Q ≤

O2(C
M

(vJ∗))∩O2(Sym(J)). We conclude that Q = 1 since O2(Sym(I \J∗)) =
1. But this is impossible by 2.4.2(b).

Assume now that Q is transitive on I. Let J be an orbit of a maximal
subgroup of Q that contains the stabilizer of a point. Then |J | = 1

2 |I| and Q
centralizes vJ since vJ = vI\J . Now a similar argument as above leads to a
contradiction.

As a second example let p = 2, M ∼= G2(q), q = 2k, and Y := [YM ,M ]
be the module of order q6. In addition, suppose that there exists g ∈ G with
Y Y g ≤ M ∩Mg and [Y, Y g] 6= 1. Then it is easy to see that |Y g| = q3 and
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|[Y, Y g]| = q3. Let 1 6= x ∈ [Y, Y g]. Since M act transitively on Y , there exist
h ∈ M such that [x,Qh] = 1 From Q! applied to Qh, CG(x) ≤ C̃h. From the
hypothesis YM ≤ Q we get Y ≤ Qh and so Y ≤ O2(CG(x)); in particular

Y ≤ O2(CMg (x)) for all 1 6= x ∈ [Y, Y g].

This contradicts the action of Mg on Y g.

Outline of a proof for 2.4.4: Let H be minimal in M with S ≤ H
and M = HCM (YM ). Then by definition of M‡(S), M is the unique maximal
p-local subgroup containing H. Let Y = YH(= YM ).

We consider the following cases:

(a) [The Orthogonal Case] p = 2, H ∼= Oε2n(2), [Y,H] is the natural module
and CH(y) 6≤M for every non-singular element y ∈ [Y,H].

(b) [The Symmetric Case] (a) does not hold and there exists g ∈ G with
Y Y g ≤ H ∩Hg and [Y, Y g] 6= 1.

(c) [The Non Abelian Asymmetric Case] Neither (a) nor (b) holds and there
exists L ∈ L with Op(H) ≤ L and Y 6≤ Op(L).

(d) [The Abelian Asymmetric Case] None of (a),(b) or (c) holds.

In the following we show how these cases arise from the amalgam method
and how they are dealt with.

Choose P1 ∈ P eC(S) with P1 6≤ M and P1 minimal. Since M is the unique
maximal p-local containing H, Op(〈H,P1〉) = 1 and we can apply the amalgam
method to the pair (H,P1). For notation see [DS].

Assume that b is even. Let (α, α′) be a critical pair. Then Q! shows that
Gα ∼ H, and we obtain g ∈ G with Y Y g ≤ H∩Hg and [Y, Y g] 6= 1. Hence either
the Symmetric Case or the Orthogonal Case holds. Note that the symmetry in
H and Hg allows to assume that Y g is an offender on Y .

Suppose that there exists 1 6= x ∈ [Y, Y g] that is p-central in both, H
and Hg. Then our hypothesis Y ≤ Q and Q! imply that Y g ≤ Op(CH(x)), and
(after a technical reduction to one component of H/CH(Y )) the Point Stabilizer
Theorem 1.1.3 applies. This gives the desired conclusion since the preceding
discussion already ruled out Sym(n) and G2(2k).

Suppose now that [Y, Y g] does not contain such an element. Then (again
omitting a reduction to components) the FF-Module Theorem 1.1.2 shows that
Case (b) of the Structure Theorem holds, or that |[Y, Y g]| = 2. The latter
possibility leads to the Orthogonal Case.

Assume now that b is odd and (α, α′) is a critical pair. Then again Gα ∼ H.
If there exists 1 6= x ∈ Yα with [x,Op(Gα′)] = 1, then Yα 6≤ Op(CGα′ (x)) and
the Non-Abelian Asymmetric Case (or (a) or (b)) hold.

Suppose that [x,Op(Gα′)] 6= 1 for all x ∈ Y #
α (in the actual proof we do not

use Op(Gα′) but a possibly smaller subgroup of Gα′). Using the action of Yα on
Vα′ one can show the existence of a strong offender on Yα. Here an offender A
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on a module V is called strong, if CV (a) = CV (A) for all a ∈ A \ CA(V ). This
rules out most of the cases of the FF-module Theorem 1.1.2, and we get what
we want, (except that it does not rule out SLn(q) on a direct sum of natural
modules, a case which we will not discuss here).

This leaves us with the Orthogonal Case or the Non-Abelian Asymmetric
Case. In the Orthogonal Case we choose Lminimal with CH(x) ≤ (L∩H)CH(Y )
and L 6≤ M , where x is a non-singular vector (i.e. a non-p-central element) in
[Y,H]. Let z be a non-zero singular vector in [Y,H] perpendicular to x, so z is
p-central in H. Then [z,Qh] = 1 for some h ∈ H. Let Qz := Qh. We now show
that Op(〈Qz, L〉) = 1, [Qz, CL(z)] ≤ Qz ∩L, and that z and y are not conjugate
in G. Then 2.1.5 gives the shape of L, and one obtains a contradiction.

It remains to discuss the Non-Abelian Asymmetric Case. Let U ∈ L(Op(H))
with Y 6≤ Op(U) such that first |U ∩H|p is maximal and then U is minimal. Let
T ∈ Sylp(U ∩ H). If NG(T ) 6≤ M , then considering the amalgam (H,NG(T ))
we obtain g ∈ G with Y Y g ∈ H ∩ Hg and [Y, Y g] 6= 1. But this contradicts
the assumptions of the Non-Abelian Asymmetric Case. Hence NG(T ) ≤ M , in
particular T is a Sylow p-subgroup of U . If Q � U we can apply 2.1.5 and get
a contradiction. So Q ≤ U . Since Y ≤ Q but Y 6≤ Op(U), we have U � C̃, and
2.4.2(de) implies CYU (U) = 1.

Let T ≤ X < U . Then by minimality of U , Y ≤ Op(X). Since Op(X) ≤
T ≤ H we get 〈Y X〉 ≤ H. Hence 〈Y X〉 is abelian since we are not in the
symmetric case. So 1.1.4 gives the structure of U/Op(U) and YU . Moreover, in
most cases we can conclude that YU is a strong dual offender on Y and in all
cases we get some strong dual offender on Y . Here a group A is called a strong
dual offender on a module V if A acts quadratically on V and [v,A] = [V,A] for
all v ∈ V \ CV (A). The existence of a strong dual offender on Y together with
the FF-Module Theorem 1.1.2 gives the desired conclusion. 2

2.4.1.2 The Structure Theorem for YM � Q

In this section we outline a proof of the following theorem. (It might be
worthwhile to mention that given E! we do not need to assume in this section
that G is of local characteristic p but only that G is of parabolic characteristic
p.)

Theorem 2.4.5 (M-Structure Theorem for YM � Q) Let M ∈M(S) with
M◦ maximal and put K = F ∗(M◦/CM◦(YM )). Suppose E!, YM � Q and that
M◦S is not p-minimal, then one of the following holds

1. K is quasisimple and isomorphic to SLn(q), Ω±n (q), or E6(q). In case of
K ∼= SLn(q), or E6(q) no element in M induces a diagram automorphism.

2. K ∼= SLn(q)′ ◦ SLm(q)′.

3. p = 2 and K ∼= Alt(6), 3Alt(6), Sp8(2), M22, or M24
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4. p = 3 and K ∼= M11 or M12

Moreover, the module YM is a 2F–module with quadratic or cubic offender and
contains a module V as in the table below.

K prime module example
SLn(q) p ext. square Ω2n(q)
SLn(q) p odd sym. square Sp2n(q)
SLn(q2) p V (λ1)⊗ V (λσ1 ) SU2n(q)
SL3(2) 2 natural G2(3).2
Alt(6) 2 natural Suz
3Alt(6) 2 6-dim M24
Sp8(2) 2 8-dim F2

Ω±n (q) p natural Ω±n+2(q)
Ω±10(q) p half spin E6(q)
E6(q) p V (λ1) E7(q)
M11 3 5-dim Co3
2M12 3 6-dim Co1
M22 2 10-dim M(22)
M24 2 11-dim M(24)

The proof of the above theorem corresponds to the discussion of the Cases
(I) and (II) in section 1.2. Let L ∈ L eC be minimal with YM ≤ S ∩ L ∈ Sylp(L)
and YM � Op(L). Note that such a choice is possible since YM 6≤ Q. Let YM ≤
P < L and S ∩ P ∈ Sylp(P ). Then by the minimal choice of L, YM ≤ Op(P )
and so 〈Y PM 〉 ≤ Op(P ) ≤ S ≤ M . We now consider the following two cases
separately:

(1F) There exists g ∈ G such that 1 6= [YM , Y
g
M ] ≤ YM ∩ YMg and YMY

g
M ≤

M ∩Mg.

(2F) 〈Y PM 〉 is abelian for all YM ≤ P < L with S ∩ P ∈ Sylp(P ).

In the 1F-Case, possibly after replacing g be g−1, we may assume that
A := Y gM is a quadratic offender on YM .

In the 2F-Case 1.1.5 can be used to get a cubic 2F -offender on YM as in case
(III) of 1.2.

The FF-module Theorem1.1.2 and the 2F-module Theorem 1.1.6 now allow
us to identify the components (or solvable variants of components) ofM◦/CM◦(YM )
which are not centralizes by A. In the iF-case one can show that A centralizes
all but i of the components. Let K be the product of the components not cen-
tralized by A. By 2.4.2(de), M◦/CM◦(YM ) acts essentially faithful on [YM ,K].
This allows also to obtain information about all of M◦/CM◦(YM ) .

2.4.2 The P !-Theorem

In this section we assume Q! and that G has rank at least 2. Note that this
implies that P◦(S) 6= ∅. We investigate the members of P◦(S), and distinguish
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the two cases 〈P◦(S)〉 /∈ L and 〈P◦(S)〉 ∈ L. Detailed proofs for the following
two theorems can be found in [PPS].

Theorem 2.4.6 (The P! Theorem,I) Suppose Q! hold and 〈P◦(S)〉 /∈ L.
Then

(a) p is odd.

(b) Q = B(S), C̃ = NG(B(S)) and |Q| has order q3, q a power of p.

(c) P ◦ ∼ q2SL2(q) for all P ∈ P◦(S)

Outline of a Proof: Let L = NG(B(S)). By our assumption not every
element of P◦(S) is in L. We first investigate an element P ∈ P◦(S) with
P 6≤ L. Observe that Q! implies that Ω1Z(X) = 1 for every X ∈ P◦(S), so by
2.1.3 P ∈ PU4(B(S)); i.e.

(∗) P = 〈NP (B(S)), P0 | P0 ≤ P, P0 ∈ PU3(B(S))〉.

An application of 2.1.4 and a short argument show that for the groups P0
in (∗):

(1) YP = Op(P0) = Op(P ),

(2) P0/YP , YP is a natural SL2(q)-module for P0/YP (q = pm), and |B(S)| =
q3.

(3) P0 is normal in P , and P = SP0.

Suppose that p = 2. Then |A(S)| = 2, so L = SO2(L) ≤ NG(A) for all
A ∈ A(S). It is now easy to see that there exist exactly two maximal 2-local
subgroups containing S. One of them is C̃ and so 〈P◦(S)〉 is contained in the
other. But this contradicts our hypothesis.

So p is odd. Suppose that Q 6≤ B(S). Then (ii) shows that q = ppk for some
integer k ≥ 1. Moreover, [YP , Q] has order at least p(2p−1)k. Let V = 〈[YP , Q] eC〉.
Note that an elementary abelian p-subgroup of S not contained in B(S) has order
at most p2k+1. Since p > 2, (2p− 1)k > 2k + 1 and so V ≤ B(S).

In particular, Z(V ) ≤ CB(S)([YP , Q]) ≤ YP . It follows that either V ≤ YP

or [V, YP ] = Z(V ) = Z(B(S)). In both cases 〈Y eCP 〉 acts trivially on the series
1 ≤ Z(V ) ≤ V ≤ Q, so YP ≤ Q since C̃ has characteristic p. As YP is not
normal in C̃ we get B(S) = 〈Y eCP 〉 ≤ Q. In particular B(S) = B(Q), so C̃ = L
and Q ≤ Op(NP (B(S))) = B(S).

We have proved that Q ≤ B(S), so by 2.4.2(b) L ≤ C̃. In particular P 6≤ L
for every P ∈ P◦(S), and (1) – (3) hold for every P ∈ P◦(S). It remains to
prove that Q = B(S).

Suppose that Q 6= B(S). Again as C̃ is of characteristic p, we get that
Z(B(S)) < Q. Note thatNP (B(S)) acts irreducibly on YP /Z(B(S)) and B(S)/YP .
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It follows that either YP ≤ Q or YP ∩Q = Z(B(S)). The first case gives Q = YP
contrary to our assumption. The second case shows, with an argument as above
using the series 1 ≤ Ω1Z(Q) ≤ Q, that Ω1Z(Q) 6= Z(B(S)), so Q is elementary
abelian of order q2.

For every P ∈ P◦(S) let tP be an involution in P that maps onto the central
involution of P0/YP . Then tP normalizes B(S) and so also Q. We conclude
that tP inverts Z(B(S)) and B(S)/Q and centralize Q/Z(B(S)). There exists
X ∈ P◦(S) with YX 6= YP . Let u = tP tX . Then u centralizes Z(B(S)), B(S)/Q
and Q/Z(B(S)). So u induces a p-element on B(S) and since NG(B(S)) has
characteristic p, B(S)〈u〉 is a p-group. By (1)-(3) we conclude that u ∈ B(S)
and tP B(S) = tX B(S). But then YP = [B(S), tP ] = [B(S), tX ] = YX , a
contradiction.

We have shown that Q = B(S), and the lemma is proved. 2

We say that P ! holds in G provided that:

(P!-1) There exists a unique P ∈ P◦(S).

(P!-2) P ◦/Op(P ◦) ∼= SL2(q), q a power of p.

(P!-3) YP is a natural module for P ◦.

(P!-4) CYP (S ∩ P ◦) is normal in C̃.

Theorem 2.4.7 (The P! Theorem,II) Suppose that

(i) Q! holds and G has rank at least 2.

(ii) P is a maximal element of P◦(S) and gb(P ) > 1.

(iii) M := 〈P◦(S)〉 ∈ L

Then P ! holds in G.

Outline of a Proof: Applying the Structure Theorem 2.4.4 to some M̃ ∈
M‡(M) it is fairly easy to see that P = M . In case (a) of the Structure Theorem
2.4.4 P ◦/Op(P ◦) ∼= SL2(q) and Yp is the natural P ◦/Op(P ◦)-module. In this
case we define Z0 := CYP (P ◦∩S) (= Ω1Z(S∩P ◦)). In case (b) of the Structure
Theorem we define Z0 := CYP (S ∩ P ∗), where P ∗ is as given there.

The main step in the proof of the P!-Theorem is to show that Z0 is normal
in C̃. Suppose not and let P̃ ∈ P eC(S) be minimal with Z0 6�P̃ . Another
application of the Structure Theorem shows that Op(〈P, P̃ 〉) = 1. So we can
apply the amalgam method to the pair (P, P̃ ).

For γ = P̃ g put C̃γ = C̃g. Let (α, α′) be a critical pair. Suppose that
α ∼ P̃ ∼ α′. Then both Qα and Qα′ contain a conjugate of Q. Since 1 6=
[Zα, Zα′ ] ≤ Z(Qα) ∩ Z(Qα′) we conclude from 2.4.2(c) that C̃α = C̃α′ and so
ZαZα′ ≤ Z eCα . Thus [Zα, Zα′ ] = 1, a contradiction.
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So we may assume that α = P . Since YP ≤ Q ≤ Op(P̃ ) we have b > 1.
Suppose that b = 2. By the Structure Theorem Q ( and so also Qβ) acts
transitively on the ”components” of Gα/Qα. Hence Z0 = [Zα, Zα′ ]. This is
used to show that Z0 �Gβ , a contradiction.

Thus b ≥ 3. A lengthy amalgam argument now leads to contradiction.
We have established that Z0 is normal in C̃. In Case (a) of the Structure

Theorem we are done. So suppose that Case (b) of the Structure Theorem
holds. Since NP (Z0) ≤ C̃, Q ≤ Op(NP (Z0)). Since Q acts transitively on the
components we conclude that q = p = 2.

Note that M̃ is the unique maximal 2-local subgroup of G containing P .
Suppose that NG(B(S)) � M̃ . Then O2(〈P,NG(B(S))〉 = 1 and 2.1.4 gives a
contradiction. Hence NG(B(S)) ≤ M̃ . Since B(S) ≤ CG(Z0) and Z0 is normal
in C̃, the Frattini argument implies C̃ = (C̃ ∩ M̃)CG(Z0).

Let K be the one of the Sym(3)-components of P/Op(P ), T a subgroup of
index 2 in S with NS(K) ≤ T , X = 〈([YP ,K] ∩ Z0)T 〉 and L = NG(X). Then
〈K,T,CG(Z0)〉 ≤ L. Since Q acts transitively on the components of P/Op(P ),
Q 6≤ T and P = 〈L ∩ P,Q〉. Thus O2(〈Q,L〉) = 1. Suppose that T is not a
Sylow 2-subgroup of L. Since T is of index 2 in a Sylow 2-subgroup of G, NL(T )
contains a Sylow 2-subgroup of L and G. But NL(T ) ≤ NG(B(S)) ≤ M̃ and
so NL(T ) contains a Sylow 2-subgroup of M̃ . One concludes that P ≤ L, a
contradiction.

Thus T is a Sylow 2-subgroup of L. Since CL(Ω1Z(T )) ≤ CG(Ω1Z(S)) ≤ C̃
and |Q/Q ∩ T | = 2 we get CL(Ω1Z(T )) � QCL(Ω1Z(T )). So we can apply
2.1.5 to Σ = LQ and R = Op(CL(Ω1Z(T ))). A little bit of more work gives a
contradiction. 2

2.4.3 The P̃ ! Theorem

Suppose that G fulfills Q! and P !. We say that P̃ ! holds in G provided that

(P̃ !-1) There exists at most one P̃ ∈ P(S) such that P̃ does not normalize P ◦

and M := 〈P, P̃ 〉 ∈ L.

(P̃ !-2) If such a P̃ exists then,

(a) M ∈ L◦.
(b) M◦/CM◦(YM ) ∼= SL3(q), Sp4(q) or Sp4(2)′

(c) YM is a corresponding natural module.

In this section we outline a proof of the following theorem from [MMPS]:

Theorem 2.4.8 (The P̃ ! Theorem) Suppose Q! and gb(P ) > 1 for some P ∈
P◦(S). Then one of the following is true:

1. G fulfills P̃ !.
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2. Let P̃ ∈ P(S) with P̃ � NG(P ◦) and M := 〈P, P̃ 〉 /∈ L. Then

(a) p = 3 or 5.

(b) M/Op(M) ∼= SL3(p)

(c) Op(M)/Z(Op(M)) and Z(Op(M)) are natural SL3(p)-modules for
M/Op(M) dual to each other.

Outline of a Proof: We may assume that P̃ ! does not hold. Then there
exists P1 ∈ P(S) such that M1 = 〈P, P1〉 ∈ L and P1 � NG(P ◦). The Structure
Theorem 2.4.4 shows that M1/Op(M1) ∼= SL3(q) or Sp4(q) (or some variant of
Sp4(2)) and that YM1 is a corresponding natural module. In particular, if P1

were unique P̃ ! would hold. Hence we can choose P2 having the same properties
as P1 and P1 6= P2. Define M2 = 〈P, P2〉. The Structure Theorem also implies
that 〈M1,M2〉 /∈ L and so we can apply the amalgam method to (M1,M2).
Fairly short and elementary arguments show that b ≤ 2. In the b = 1 case
one easily gets M ′i ∼= 24Sp4(2)′ and then obtains a contradiction to YMi

≤ Q.
Fairly routine arguments in the b = 2 case show that Mi ∼ q3+3SL3(q) or
q3+3+3SL3(q). A little extra effort rules out the second of this possibilities. But
the proof that q = 3 or 5 in the remaining case currently is a rather tedious
commutator calculation. 2

The next lemma collects some information about C̃/Op(C̃) which can be
easily obtained using Q!, P ! and P̃ !:

Lemma 2.4.9 Suppose Q!, P !, P̃ ! and that G has rank at least three. Let
L = NG(P ◦). Then

(a) NG(T ) ≤ L ∩ C̃ for all Op(C̃ ∩ L) ≤ T � S.

(b) There exists a unique P̃ ∈ P eC(S) with P̃ � L.

(c) P̃ /Op(P̃ ) ∼ SL2(q).pk.

(d) C̃/Q has a unique component K/Q. Moreover, P̃ ≤ KS.

(e) C̃ = K(L ∩ C̃), L ∩ C̃ is a maximal subgroup of C̃ and Op(C̃ ∩ L) 6= Q.

(f) Let Z0 = CYP (S ∩ P ◦) and V = 〈Y eCP 〉. Then Z0 � V and V ≤ Q.

(g) Let D = C eC(K/Op(K)). Then D is the largest normal subgroup of C̃
contained in L and D/Q is isomorphic to a section of the Borel subgroup
of Aut(SL2(q)).

(h) Let V = V/Z0. Then

(ha) [V ,Q] = 1

(hb) C eC(V ) ≤ D and C eC(V ) ∩ C eC(Z0) = Q.
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(hc) Let 1 6= X ≤ YP /Z0. Then N eC(X) ≤ C̃ ∩ L.

(hd) C̃ ∩ L contains a point-stabilizer for C̃ on V .

(g) 〈C̃, L〉 /∈ L.

2.4.4 The Small World Theorem

Given Q! and P ∈ P◦(S). We say that gb(P ) = 2 if gb(P ) > 1 and 〈Y EP 〉 is not
abelian. If neither gb(P ) = 1 nor gb(P ) = 2 for P we say that gb(P ) is at least
three.

Theorem 2.4.10 (The Small World Theorem) Suppose E! and let P ∈
P◦(S). Then one of the following holds:

1. G has rank 1 or 2.

2. gb(P ) = 1 or gb(P ) = 2.

Outline of a Proof: Assume that G has rank at least three and that gb(P )
is at least three . In the exceptional cases of the P !-theorems (2.4.7, 2.4.6) one
easily sees that gb(P ) = 1. Thus P ! holds. Also in the exceptional case of the
P̃ ! -Theorem 2.4.8 one gets gb(P ) = 1 or gb(P ) = 2. Thus P̃ ! holds. We proved

Step 1 P ! and P̃ ! hold.

2.4.9 gives us a good amount of information about E. We use the notation
introduced in 2.4.9.

Since 〈C̃, L〉 /∈ L, we can apply the amalgam method to the pair (C̃, L). A
non-trivial argument shows

Step 2 One of the following holds:

1. Op(C̃ ∩ L)/Q contains a non-trivial quadratic offender on V .

2. There exists a non-trivial normal subgroup A of C̃ ∩ L/Q and normal
subgroups YP ≤ Z2 ≤ Z3 ≤ V of C̃ ∩ L such that:

(a) A and V/Z3 are isomorphic as FpC eC∩L(YP )-modules.

(b) |Z3/Z2| ≤ |A|.
(c) [V ,A] ≤ Z2 ≤ CV (A). In particular, A is a quadratic 2F -offender.

(d) [x,A] = YP for all x ∈ Z3 \ Z2.

(e) Let Z1 = 〈Y ePP 〉. Then Y1 ≤ Z2 and Z1 is a natural SL2(q)-module
for P̃ ∩ C eC(Z0).
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We remark that 1. and 2. of Step 2 correspond to the b > 3- and b = 3-Case
for the amalgam (C̃, L).

Let X = CV (Op(K)). Using 1.1.1, 1.1.3 and 2.4.9 (and the Z∗-theorem [Gl])
to deal with the case |A| = 2) it is not too difficult to derive

Step 3 K/Op(K) ∼= SLn(q), (n ≥ 3), Sp2n(q)′,(n ≥ 2) or G2(q)′,( p = 2).
Moreover, V/X is the natural module for K/Op(K) and C̃∩L contains a point-
stabilizer for C̃ on V/W .

An amalgam argument now shows that X = Z0. In particular, K acts
transitively on V . Hence all elements in V are conjugate under K to an element
of YP . From this it is not to difficult to show that b = 3 in the amalgam (C̃, L).
Finally also the b = 3 case leads to a contradiction.

2

We finish this section with

2.4.4.1 The open ”gb = 2”-Problem

Suppose P ∈ P◦(S), gb(P ) = 2 and that G has rank at least three. Determine
the shape of C̃ and P

Note that by the definition of gb(P ) = 2, YP ≤ Q and 〈Y eCP 〉 is not abelian.
So it should be possible to treat the gb = 2 problem with the methods of
Parker/Rowley from [PR].

2.4.5 Rank 2

In this section we consider the case where Q! holds and G has rank 2. The gen-
eral idea is to show that 〈P, P̃ 〉 is a weak BN-pair and then apply the Delgado-
Stellmacher weak BN-pair Theorem [DS]. More precisely we try to characterize
the situations where no weak BN-pair can be found. The following theorem has
been proved in [Ch1] and [Ch2]

Theorem 2.4.11 (The Rank 2 Theorem) Suppose Q!, P !, and P̃ ! and that
G has rank 2. Choose P̃ ∈ P eC(S) such that

(i) 〈P, P̃ 〉 /∈ L.

(ii) H := 〈P ∩ C̃, P̃ 〉 is minimal with respect to (i).

(iii) P̃ is minimal with respect to (i) and (ii).

Then one of the following holds:

1. YP � Op(P̃ )
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2. (NH(P ◦)P ◦,H) is a weak BN-pair.

3. (H,P ) has the same shape as a suitable pair of parabolic subgroups in one
of the following groups.

1. For p = 2, U4(3).2e, G2(3).2e, D4(3).2e, HS.2e, F3, F5.2e or Ru.

2. For p = 3, D4(3n).3e, Fi23 or F2.

3. For p = 5, F2.

4. For p = 7, F1.

We will not go into the details of this proof. It is a rather technical applica-
tion of the amalgam method applied to the pair (NH(P ◦)P ◦,H).

The Rank 2 Theorem leaves as in the rank 2 case with the following open
problem.

2.4.5.1 The open ”Rank 2, gb=1”-Problem

Suppose Q! holds and there exists P, P̃ ∈ P(S) such that 〈P, P̃ 〉 /∈ L, P ∈
P◦(S) and gb(P ) = 1. Determine the structure of P .

2.4.6 gb = 1

In this section we assume E! and that G has rank at least 3. We investigate the
case where YM � Q for some M ∈ M(S) with M◦ maximal. Put M0 = M◦S.
The Structure Theorem 2.4.5 tells us the action of M◦/Op(M◦) on YM .

But we can get a lot more information. Let us consider one example. Sup-
pose M0 = F ∗(M0/Op(M0)) ∼= SLn(q) and YM is the natural module. Then
M0 has the following Dynkin diagram

◦ ◦ ◦ · · · ◦ ◦ ◦

We have that C
M0

(Ω1(Z(S)) ∩ YM ) is a maximal parabolic, which then by

E! is in C̃. Hence there is a unique minimal parabolic P in M0 which is not in
C̃. Notice that most of our groups we aim at are groups of Lie type in which C̃
is a maximal parabolic. So there is a unique P ∈ P◦(S). Hence we are going to
approach this situation.

But this unique P does not exist in general, as one can see in Case 2 of
the structure theorem 2.4.5, in Case 3 with M◦/O2(M◦) ∼= 3A6 and YM a
6-dimensional module, and in Case 4 with M◦/O3(M◦) ∼= M11 and YM a 5-
dimensional module. Hence one cannot expect a similar theorem as 2.4.7 for
”gb = 1”.

To be able to state the theorems in this section we need to introduce some
notation:
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Let H∗ be a finite group. We say the G is of identification type H∗ provided
that:

(I1) There exist T ∗ ∈ SylP (H∗) and I∗ ⊆ PH∗(T ∗) with H∗ = 〈I∗〉.

(I2) There exists H ≤ G with CG(H) = 1 = Op(H) and M0 ≤ NG(H).

(I3) Let T = S ∩H. Then there exists I ⊆ PH(T ) with H = 〈I〉.

(I4) There exists a bijection I → I∗,L 7→ L∗ such that for all J ⊂ I,

〈J〉/Op(〈J〉) ∼= 〈J∗〉/Op(〈J∗〉).

(I5) There exist M∗, C∗ ∈ LH∗(T ∗) such that M0 ∩H has the same structure
as M∗ and C̃ ∩H has the same structure as C̃∗.

Theorem 2.4.12 Suppose E!, gb(P ) = 1, rankG > 2 and P◦(S) 6= {P}. If
p = 2 then G is of identification type M24,He or Ln(q).

So suppose from now on that P◦(S) = {P}.
Here is another observation. Let P ∈ P◦M0

(S). Then in our example P
corresponds to an end node of the Dynkin diagram of M0. Hence (in most
cases) there is a unique P̃ in PM0(S) with P̃ � NG(P ◦). Let us consider the
group G we aim at, a group of Lie type. Then again in most cases P corresponds
to an end node of the Dynkin diagram of G and there exists a unique minimal
parabolic in L(S) not normalizing P ◦.

Unfortunately this is not true in general, for example if YM is the exterior
square of the natural SLn(q)–module. To analyze this situation, we consider
P1 6= P2 in P(S) such that Pi does not normalize P ◦ for i = 1, 2. Let L =
〈P1, P, P2〉. The case Op(L) = 1 should be approachable with the amalgam
method, (see the open problem at the end of the section).

So suppose that L ∈ L. From the structure theorem we conclude that
L◦/CL◦(YL) ∼= SLn(q), n ≥ 4 (on the exterior square), M24 (on a 11-dimensional
module) or M22 (on a 10-dimensional module.) These cases lead to the different
groups in our next theorem.

Theorem 2.4.13 Suppose E!, rankG > 2, P(S) = {P} and gb(P ) = 1. Fur-
thermore, assume that there exist P1 6= P2 ∈ P(S) with Pi � NG(P ◦) and
〈P1, P, P2〉 ∈ L. Then G is of identification type Ω±n (q) or ( for p = 2) Co2,
M(22), Co1, J4, or M(24)′

From now on we can assume that there is a unique P in P◦(S) and a unique
P̃ ∈ PM0(S) which does normalize P ◦.

Theorem 2.4.14 Suppose E!, rankG > 2, P(S) = {P}, gb(P ) = 1 and that
there exists a unique P̃ ∈ P(S) with P̃ � NG(P ◦). If p = 2, then G is of
identification type Un(q), 2E6(q), E6(q), E7(q), Sz,F2 or F1.
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In the remainder of this section, we will illustrate in some examples the basic
ideas of the proof of the theorems. All the examples will be for p = 2.

Example 2.4.15 Let K = F ∗(M0/O2(M0)) ∼= M24 and assume that YM con-
tains an 11-dimensional submodule V with |YM : V | ≤ 2. Assume further that
V is the module in which L = CK(CV (S)) ∼= 263Sym(6). Then G is of identi-
fication type J4 or M(24)′.

For L we have the following series in V

1 < V1 < V2 < V,

where |V1| = 2, V2/V1 is the 6–dimensional 3Sym(6)–module and V/V1 is the
4–dimensional Sym(6)–module. As C̃ ∩ M/O2(M0) contains L, we see that
QO2(M0)/O2(M0) is the elementary abelian subgroup of order 26 in L.

Suppose V ≤ Q. By 1.1.2 V is not an FF–module and we conclude that
W = 〈(YM ∩Q) eC〉 is elementary abelian. Hence W ≤ O2(M0), i.e. [YM ,W ] = 1.
But as YM 6≤ Q and [Q,YM ] ≤W this contradicts C eC(Q) ≤ Q.

So we have V 6≤ Q. This now gives V2 = [V,Q] and V1 = [V2, Q]. Define
W := 〈V eC2 〉. Then V acts quadratically and nontrivially on W . Further from
M0 we see that for any x ∈ V we have |[W/V1, x]| ≤ 24. Let L1 be the pre-
image of L in M0. Then L1/O2(L1) ∼= 3Sym(6). Let U = 〈V eC〉Q. Then
CU (W )Q/Q ≤ Z(U/Q). Hence as |[W/V1, x]| ≤ 24 for x ∈ V , we see that
[F (U/Q), V ] = 1. So there is some component U1 of U/Q containing L′1/Q. If
U1 is a group of Lie type defined over a field of characteristic 2 we see that it
has to be F4(2) or Sp2n(2), for some n. But in both cases the Sp4(2)–parabolic
has no elementary abelian normal subgroup of order 16. So U1 is not a group
of Lie type defined over a field of characteristic 2. As V Q/Q acts quadratically
an application of 1.1.1 yields that U1 ∼= 3U4(3) or 3M22. This now tells us that
V1 is normal in U and that W/V1 involves exactly one nontrivial irreducible
module, which is 12–dimensional. As [V,Q] ≤ W , we see that [U,Q] ≤ W .
This shows that L1/O2(L1) possesses exactly three nontrivial chief-factors in
O2(L1), two of them 6–dimensional and one 4-dimensional. Since L1 has a a
4–dimensional and a 6-dimensional factor in V and a 6-dimensional factor in
QO2(M0)/O2(M0), we get that [F ∗(M0/O2(M0)), O2(M0)] ≤ V . This shows
that O2(M0) = YM and so O2(M0) = V or |O2(M0) : V | = 2.

In both cases we get that Q is extraspecial of order 213 and that C̃/Q
is an automorphism group of 3M22 or 3U4(3). In the former case we have
C̃/Q ∼= 3Aut(M22) and so G is of identificationtype J4. So assume the latter
case. Then we have that C̃/Q ∼= 3U4(3).2, or 3U4(3).4. Now M0 has a geometry
with diagram

◦ ◦ ∼ ◦

and C̃ has one with diagram

◦ ◦ ∼ ◦.

35



The intersection is the geometry for L1. Let P ∈ P◦M0
(S). Then P centralizes

the foursgroup on which P0 acts nontrivially. Hence 〈P0, P 〉 = P0P . This shows
that we have a geometry with diagram

◦ ◦ ∼ ◦ ◦

and that G is of identification type M(24)′.

Example 2.4.16 Let K = F ∗(M0/O2(M0)) ∼= Ω+
10(q), q a power of 2, and

assume that YM contains V the half spin module. Then G is of identification
type E6(q).

Let L = CK(CV (S)). Then L ∼ q(
n
2)Ln(q) and QO2(M0)/O2(M0) = O2(L).

Note that V has the following L–series

1 < V1 < V2 < V,

where |V1| = q, |V2/V1| = q10, |V/V2| = q5. As in 2.4.15 V 6≤ Q, and so
V2 = [V,Q] = V ∩ Q. Now |V/V ∩ Q| = q5 and V/V ∩ Q is a natural module
for L1/O2(L1), where L1 is the pre-image of L. We can now proceed as in
2.4.15. Let U be as before, then we again see that [F (U/Q), V ] = 1. Let U1
be a component of U/Q containing O2(L1/Q). Because of quadratic action and
the fact that |V Q/Q| ≥ 32, we get with 1.1.1 that U1 is a group of Lie type
in characteristic two and the list of possible groups U1 and the corresponding
modules W in Q. As L1 induces in some W on CW (O2(O2(L1))) the 10 -
dimensional module, we see that W is not a V (λ) where λ belongs to an end
node of the Dynkin diagram of U1. Hence the possible groups U1 are SLn(q),
Sp2n(q) or Un(q). Further for t ∈ V we have [W, t] ≤ CW (O2(O2(L1))) and
CL1(t) has to act on this group. This shows that |[W, t]| = q6 or q4. This in
the first place shows that U1 ∼= SLn(q) and then that W = V (λ2) or V (λ3). In
both cases we have U1 ∼= SL6(q), as |[W, t]| ≤ q6. Moreover, [W, t] is not the
natural CL(t)–module in the case |[W, t]| = q6. If we have W = V (λ2), then
W/CW (V ) is a 5-dimensional L1–module, but there is no such module in O2(L).
So we have that W = V (λ3). Now we see that L/O2(L) induces in QO2(M0)
exactly two 10-dimensional and one 5-dimensional module, as [V,Q] ≤ 〈V eC2 〉.
But in V this group induces one 10-dimensional module and one 5-dimensional
one. Further in QO2(M0)/O2(M0) we see another 10-dimensional module. This
shows [K,O2(M0)] = V . Again YM = O2(M0) and so YM = V . Now we see
that M◦ ∼= q16Ω+

10(q) and U ∼= q1+20SL6(q). The intersection is the SL5(q)-
parabolic. Now in this case we are in the situation of 2.4.14, so any minimal
parabolic not in M0 normalizes P ◦.

We try to show that H = 〈M◦, U〉 has a parabolic system with an E6 –
diagram.

◦ ◦

◦

◦ ◦ ◦
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We have that M0 = M◦S and so there might be some field automorphism
involved. But these field automorphisms are also field automorphisms on L, so
they induce field automorphisms on U/O2(U). This shows that U and M0 have
a common Sylow 2–subgroup, and so G is of identificationtype E6(q).

2.4.6.1 The open ”P̃ !,gb=1”-Problem 2

Suppose E!, rankG > 2, P◦(S) = {P}, gb(P ) = 1 and that there exist
P1, P2 ∈ P(S) such that for i = 1 and 2:

(i) Pi � NG(P ◦).

(ii) Mi := 〈P, Pi〉 ∈ L

(iii) 〈M1,M2〉 /∈ L.

Determine the shape of M1 and M2.

As a starting point towards a solution of the preceding problem we observe

Lemma 2.4.17 Suppose E! and P◦(S) = {P}. Let P̃ ∈ P(S) with P̃ 6= P ,
L := 〈P, P̃ 〉 ∈ L and P̃ � NG(P ◦). Then L ∈ L◦ and L◦/CL◦(YL) ∼= SL3(q),
Sp4(q), Ω5(q) (and p odd), Alt(6) (and p = 2), or 2.M12 (and p = 3).

Note that in all cases of the preceding lemma L/Op(L) has a weak BN-pair
of rank 2. Hence [StTi] provides a solution to the above open problem. But we
believe that our stronger assumptions allow for a shorter solution.

3 The Global Analysis

We have not yet devoted much time to this part of the project, but here are
some thoughts.

The main tool to identify the group G is via a diagram geometry for a non-
local parabolic subgroup H of G. Usually we will not only know the diagram
but also the group induced on each of the residues and so the isomorphism type
of each of the residues. This allows to identify the geometry and then the group
H.

For example if the diagram is the diagram of the spherical building of rank
at least four, then the isomorphism type of the residues uniquely determines
the building. This follows from the classification of spherical buildings, but can
actually be proved using only a small part of the theory of buildings.

For many of diagrams which we encounter, classification results are available
in the literature. At this time we have not decided which of these results we
will quote and which ones we will revise as part of our program.

The situation when M(S) = {M1,M2} is different. If (M1,M2) is a weak
BN -pair associated to a BN -pair of rank 2 defined over a not to small field, one
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tries to recover the Weyl-group. For p odd, this probably requires a K-group
assumptions not only for the p-local subgroups but also for some 2-locals. Once
the Weyl-group has been identified, H can be recognized as a group of Lie-type,
see [BS].

Suppose (M1,M2) is not associated to a BN -pair of rank 2. If p = 2, the
knowledge of the parabolic subgroups often allows to determine the order of G
by counting involutions. The actual identification will be done by some ad hoc
methods depending on the group. If p is odd, the group is probably better left
unidentified.

After the group H is identified, one still needs to deal with situations where
H 6= G. Usually our choice of the group H will allow us to show that H = is
the p-core with respect to S, but some exceptions will have to be dealt with.
The strongly p-embedded situation has been discussed before. If G has rank 1
the CGT-theorem 2.2.3 will limit the structure of H. For p = 2 this y hopefully
will lead to a contradcition, while for p 6= 2 we might not be able to identify G.
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