A characterization of $\operatorname{Aut}\left(G_{2}(3)\right)$

U. Meierfrankenfeld
G. Stroth

Let p be prime and G a finite group. We say that G has characteristic p if $C_{G}\left(O_{p}(G)\right) \leq$ $O_{p}(G)$ and that G has local characteristic p if all p-local subgroups of G have characteristic p. G is a \mathcal{K}_{p}-group, if any simple section of any p-local subgroup of G is a know finite simple group, that is an abelian, an alternating group, a group of Lie type or one of the 26 sporadic groups. This paper is part of a program to investigate \mathcal{K}_{p}-groups of local characteristic p. See [MeStStr1] for an overview.

Of fundamental importance to theory of groups of local characteristic p are large subgroups: A p-subgroup of a group G is called large if
(i) $C_{G}(Q) \leq Q$ and
(ii) $N_{G}(U) \leq N_{G}(Q)$ for all $1 \neq U \leq C_{G}(Q)$.

For example, if G is simple group of Lie-type in characteristic $p, S \in \operatorname{Syl}_{p}(G)$ and $Q=O_{p}\left(C_{G}(Z(S))\right)$, then Q is almost always a large subgroup of G. Indeed this is true exactly when $Z(S)$ is a root group, that is if G is neither $S p_{2 n}\left(2^{k}\right), n \geq 2, F_{4}\left(2^{k}\right)$ nor $G_{2}\left(3^{k}\right)$.

If Q is a large subgroup of G, then it easy to see that also $O_{p}\left(N_{G}(Q)\right)$ is a large subgroup of G. For a finite group L let Y_{L} be the unique maximal elementary abelian normal p-subgroup of L with $O_{p}\left(L / C_{L}\left(Y_{L}\right)\right)=1$. Such a group exists (see for example [MeStStr1, Lemma 2.0.1(a)]).

Let G be a finite \mathcal{K}_{p}-group of local characteristic p, S a Sylow p-subgroup of G and Q a large p-subgroup of G with $Q \leq S$ and $Q=O_{p}\left(N_{G}(Q)\right)$. Let M be a p-local subgroup of G with $S \leq M$ and $Q \nexists M$. The Structure Theorem (see [MeStStr2]) determines the pair $\left(M / C_{M}\left(Y_{M}\right), Y_{M}\right)$. The proof of the Structure Theorem is subdivided into the cases $Y_{M} \leq Q$ and $Y_{M} \not \leq Q$. Put $M^{\circ}=\left\langle Q^{M}\right\rangle, \bar{M}=M / C_{M}\left(Y_{M}\right)$ and $V=\left[Y_{M}, M^{\circ}\right]$. For the case that $Y_{M} \notin Q$ the Structure Theorem asserts that one of the following holds:

1. [a] There exists a normal subgroup K of \bar{M} such that $K=K_{1} \circ K_{2}$ with $K_{i} \cong S L_{m_{i}}(q)$, $Y_{M} \cong V_{1} \otimes V_{2}$, where V_{i} is a natural module for K_{i}, and $\overline{M^{\circ}}$ is one of K_{1}, K_{2} or $K_{1} \circ K_{2}$.
2. [b] $\left(\overline{M^{\circ}}, p, V\right)$ is as in the following table:

$\overline{M^{\circ}}$	p	V
$\operatorname{SL}_{n}(q)$	p	$V_{\text {nat }}$
$\operatorname{SL}_{n}(q)$	p	$\bigwedge^{2}\left(V_{\text {nat }}\right)$
$\operatorname{SL}_{n}(q)$	p	$\mathrm{~S}^{2}\left(V_{\text {nat }}\right)$
$\operatorname{SL}_{n}\left(q^{2}\right)$	p	$V_{\text {nat }} \otimes V_{\text {nat }}^{q}$
$3 \operatorname{Alt}(6), 3 \operatorname{Sym}(6)$,	2	2^{6}
$\Gamma \mathrm{SL}_{2}(4), \Gamma \mathrm{GL}_{2}(4)$	2	$V_{\text {nat }}$
$\operatorname{Sp}_{2 n}(q)$	2	$V_{\text {nat }}$
$\Omega_{n}^{ \pm}(q)$	p	$V_{\text {nat }}$

$\overline{M^{\circ}}$	p	V
$\mathrm{O}_{4}^{+}(2)$	2	$V_{\text {nat }}$
$\Omega_{10}^{ \pm}(q)$	2	halfspin
$\mathrm{E}_{6}(q)$	p	q^{27}
M_{11}	3	3^{5}
$2 M_{12}$	3	3^{6}
M_{22}	2	2^{10}
M_{24}	2	2^{11}

Here q is a power of p and $V_{\text {nat }}$ denotes the natural module of a classical group.
A priori there is no reason why one could not have that $Y_{M} \not \leq Q$ and $\left[Y_{M}, M^{\circ}\right] \leq$ Q. Indeed this does happen, but a corollary in [MeStStr2] states that its only possible if $M / C_{M}\left(Y_{M}\right) \cong S L_{3}(2)$ and $\left[Y_{M}, M^{\circ}\right]$ is a natural module. The purpose of this paper is to determine G in this case. We will show that $O_{2}(M)=Y_{M}, Q$ is extra-special of order 2^{5}, $N_{G}(Q)=C_{G}(Z(Q))$ and $N_{G}(Q) / Q \cong \operatorname{Sym}(3) \times \operatorname{Sym}(3)$. This allows us to conclude that G possess a subgroup G^{*} of index two. A result of Aschbacher [Asch] then shows that G^{*} is isomorphic to $G_{2}(3)$. More precisely we prove:
Theorem 1. [main] Let G be a finite \mathcal{K}_{2}-group, S a Sylow 2-subgroup of G and $Q \leq S \leq$ $M \leq G$. Suppose that
(i) [a] Q is a large 2-subgroup of G and $Q=O_{2}\left(N_{G}(Q)\right)$;
(ii) $[\mathbf{b}] ~ M / O_{2}(M) \cong L_{3}(2)$ and $\left[Y_{M}, M\right]$ is a natural $S L_{3}(2)$-module for M; and
(iii) $[\mathbf{c}] \quad Y_{M} \not \leq Q$ and $\left[Y_{M}, M\right] \leq Q$.

Then G is isomorphic to $\operatorname{Aut}\left(G_{2}(3)\right)$.
We remark that the proof of this theorem is independent from the Structure Theorem. In a forthcoming paper we will determine the structure of G in the remaining cases for $Y_{M} \nsubseteq Q$ in the Structure Theorem.

1 Preliminaries

In this section we collect some results on modules for quasisimple groups, which will be needed in the proof of the theorem.

As the three dimensional module for $S L_{3}(2)$ will play a prominent role, we start with collecting some facts about this module:

Lemma 1.1. [132] Let $M=S L_{3}(2)$ and V a corresponding natural $\mathbb{F}_{2} M$-module. Let W_{1} be the transvection group in M to a point in V and W_{2} the transvection group to a hyperplane in V.
(a) [i] Let τ_{i} be an element of order 3 in G normalizing $W_{i}, i=1,2$, then $\left[\left[W_{1}, V\right], \tau_{1}\right]=1$, while $\left[\left[W_{2}, V\right], \tau_{2}\right]=\left[W_{2}, V\right]$.
(b) [ii] Let V_{1} be a $\mathbb{F}_{2} M$-module with $\left[V_{1}, M\right]=V, C_{V_{1}}(M)=0$ and $V_{1} \neq V$. Then $\left|V_{1} / V\right|=2, V=\left[V_{1}, W_{1}\right]$ and $\left[V_{1}, W_{2}\right]=\left[V, W_{2}\right]$. In particular, W_{1} does not act quadratically on V_{1}.
(c) [iii] Let V_{1} be as in (b) and $v \in V_{1} \backslash V$. Then $\left|C_{M}(v)\right|=21$ and M acts transitively on $V_{1} \backslash V$.

Proof. (a) is clear. To prove (b) let $t \in W_{2}^{\sharp}$. Then $\left[V_{1}, t\right] \leq C_{V}(t)=C_{V}\left(W_{2}\right)=\left[V, W_{2}\right]$ and so $\left[V_{1}, W_{2}\right]=\left[V, W_{2}\right]$. Put $V_{2}=V+C_{V_{1}}(t)$ and note that V_{2} is an $\mathbb{F}_{2} M$-submodule of V_{1} and $\left|V_{2} / C_{V_{2}}(t)\right|=2$. Let $U=N_{M}\left(W_{2}\right)$. So $U \cong \operatorname{Sym}(4)$ and we may generate U by three conjugates of t. Hence $\mid V_{2} / C_{V_{2}}(U) \leq 2^{3}$. Since $C_{V}(U)=0$, we get $V_{2}=V \oplus C_{V_{2}}(U)$. Gaschütz' Theorem [Hu, (I.17.4)] now shows that V_{2} splits over V. Since $C_{V}(M)=0$ we conclude that $V=V_{2}$ and $C_{V_{1}}(t) \leq V$. From $\left[V_{2}, t\right] \leq C_{V}(t)$ we have $\left|V_{1} / C_{V}(t)\right|=$ $\left|V_{1} / C_{V_{1}}(t)\right|=\left|\left[V_{2}, t\right]\right| \leq 4$. Since $V_{1} \neq V$ this implies that $\left|V_{1} / V\right|=2$ and $\left[V_{1}, t\right]=C_{V}(t)$. Note that $V=\left\langle C_{V}(t) \mid t \in W_{1}^{\sharp}\right\rangle$ and so $V=\left[V, W_{1}\right]$. Thus (b) holds.

Let $v \in V_{1} \backslash V$. Since $C_{V_{1}}(t) \leq V, C_{M}(v)$ has odd order. Thus $8 \leq\left|M / C_{M}(v)\right|=\left|v^{M}\right| \leq$ $|v+V|=8$ and (c) holds.

A finite group is a $\mathcal{C K}$-group if all of its composition factors are known finite simple groups.

Lemma 1.2. [kleinlie] Let H be a finite $\mathcal{C K}$-group, V a faithful $\mathbb{F}_{2} H$-module and x a 2-central involution in H. Put $L=F^{*}(H)$. Suppose that
(i) [a] L is quasisimple and V is a simple $\mathbb{F}_{2} L$-module; and
(ii) $[\mathbf{b}] H=L\langle x\rangle,|[V, x]| \leq 4$ and x is contained in a quadratic fours group of H on V.

Then one of the following holds:

1. [i] $H \cong S L_{n}(2), S L_{n}(4), S p_{2 n}(2) S p_{2 n}(4), S U_{n}(2), G_{2}(2)^{\prime}$ or $\Omega_{2 n}^{ \pm}(2)$ and V is a corresponding natural module.
2. [ii] $H \cong S p(6,2)$, V is the spin module and x is a short root element.
3. [iii] $H \cong 3 \operatorname{Alt}(6)$ and V is the 6 -dimensional module.
4. [iv] $L \cong \operatorname{Alt}(n)$ and V is the permutation module. Moreover, either $H \cong \operatorname{Sym}(n)$ and x is 2-cycle or $H \cong \operatorname{Alt}(n)$ and x is a double 2-cycle.
5. [v] $H \cong \operatorname{Alt}(7)$ and V is the four dimensional module.

Proof. Suppose first that $L / Z(L)$ is a group of Lie type in characteristic 2. Since $O_{p}(L)=1$ we conclude from $[\mathrm{Gr}]$ that L itself is a group of Lie-type. Since x is 2 -central we have $x \in L$ and so $H=L$. Then by [PaRo, 14.25] either (1) holds or $L \cong S p_{6}(2)$ and V is the spin module.

Consider the latter case and let S be a Sylow 2 -subgroup of L with $x \in Z(S)$. Let W be the natural module for L. Then $[Z(S), W]$ is 2 -dimensional and singular. So there exists $u \in W$ such that $\langle[W, Z(S)], u\rangle$ is a 3 -dimensional singular space. Denote by y the transvection to u. Then we have that $C_{L}(y)$ acts irreducibly on $V_{y}=C_{V}\left(O_{2}\left(C_{G}(y)\right)\right)$ by [Sm1]. So V_{y} is the natural module for $C_{L}(y) / O_{2}\left(C_{L}(y)\right) \cong S p_{4}(2)$. As $[V, y] \cap V_{y} \not \leq 1$, we see that $V_{y} \leq[V, y] \leq C_{V}(y)$. In particular, $V / C_{V}(y)$ involves a natural module isomorphic to V_{y}. Further this natural modules is not isomorphic to $O_{2}\left(C_{L}(y)\right) /\langle y\rangle$ as $C_{L}(y)$-module. By the choice of y, we have that $Z(S) \cap O_{2}\left(C_{L}(y)\right)=1$ and $Z(S) O_{2}\left(C_{L}(y)\right) / O_{2}\left(C_{L}(y)\right)=$ $Z\left(S / O_{2}\left(C_{L}(y)\right)\right.$. Since $|[V, y]|=4, x$ has to induce a transvection on V_{y} and so does not act as a transvection on $O_{2}\left(C_{L}(y)\right) /\langle y\rangle$. Hence x is a short root element in $C_{L}(y) / O_{2}\left(C_{L}(y)\right)$ and then also in L. Thus (1) holds.

So we may assume from now on that $L / Z(L)$ is not a group of Lie-type in characteristic 2. Since $|[V, x]| \leq 4,[\operatorname{PaRo}, 15.3]$ shows that $L / Z(L)$ is not a sporadic group.

Suppose $L \cong \operatorname{Alt}(6), 2 F_{4}(2)^{\prime}$ or $G_{2}(2)^{\prime}$. Since x is 2 -central either $H=L$ or $H \cong S p_{4}(2)$. In the first case we are done by [PaRo, 14.29] and in the second by [PaRo, 14.25].

Suppose now $L / Z(L) \cong \operatorname{Alt}(n)$ but $Z(L) \neq 1$. Then by $[\mathrm{Gr}] n=6$ or 7 and $|Z(L)|=3$. As $[V, x] \mid \leq 4$ this forces $[Z(L), x]=1$. Thus $x \in L, H=L$ and H can be generated by three conjugates of x. Therefore $|V| \leq 64$ and so $n=6$, the assertion (3).

Suppose next that $L \cong \operatorname{Alt}(n), n=7$ or $n \geq 9$. If V is the permutation module, then $|[V, x]| \leq 4$ implies that x is a 2 -cycle or a double 2 -cycle and (4) holds.

If V is not the permutation module, then since M contains a quadratic fours-group on V, V is the spin-module (see [MeiStr2]). In particular, the 3 -cycles in M act fixed-point freely on V. If x is not a fixed-point free permutation, then x inverts a three cycle d and so $|V|=|[V, d]| \leq\left.[V, x]\right|^{2}=16$. Thus (5) holds. So suppose that x is a fixed-point free permutation. Then n is even, $n \geq 10$ and x inverts a double 3 -cycle. Since a 3 -cycle is the product of two double 3-cycles we conclude that $|V| \leq|[V, x]|^{4}=2^{8}$, a contradiction to $n \geq 10$.

Suppose finally that $L / Z(L)$ is a group of Lie-type in odd characteristic. Since M contains a quadratic fours group, [MeiStr1] show that $L \sim 3 . U_{4}(3)$. Since x is 2-central, $x \in L$ and since L has a unique conjugacy class of involutions, we see that x is contained subgroup K of L with $K \cong 3$.Alt(6). Let U be any composition factor for K on V. Since $Z(K) \leq Z(L), U$ is a faithful K-module. By the 3.Alt(6)-case, $|U|=2^{6}$ and since $[U, x]$ is $Z(K)$-invariant, $|[U, x]| \geq 4=|[V, x]|$. Thus U is the only composition factor for K on V and $|V|=2^{6}$, a contradiction, since 3^{7} divides $|L|$ but not $\left|G L_{6}(2)\right|$.

Lemma 1.3. [char irr] Let H be a group, \mathbb{F} a field, W an $\mathbb{F} H$-module and $A \unlhd B \leq H$. Suppose that there exist a simple $\mathbb{F} B$-submodule Y of W with $[W, A] \leq Y$ and $W=\left\langle Y^{H}\right\rangle$. Then every proper $\mathbb{F} H$-submodule of W is centralized by $\left\langle A^{H}\right\rangle$. In particular, $W / C_{W}\left(\left\langle A^{H}\right\rangle\right)$
is a simple $\mathbb{F} H$-module.
Proof. Let U be a submodule of $\mathbb{F} H$-submodule of W with $U \neq W$. Since $W=\left\langle Y^{H}\right\rangle$ we have $Y \npreceq U$. Hence $[U, A] \lesseqgtr Y$ and since Y is a simple B-module, $[U, A]=1$. Thus also $\left[U,\left\langle A^{H}\right\rangle\right]=1$.

2 Proof of the Theorem

In this section we prove Theorem 1. So let G, M, S and Q be as there. We set $\tilde{C}=N_{G}(Q)$, $V=\left[Y_{M}, M\right], \tilde{M}=N_{G}(V), M^{\circ}=\left\langle Q^{M}\right\rangle, Z=\Omega_{1} Z(S)$ and $Q_{M}=O_{2}(M)$.

Let L be minimal in \tilde{C} such that L is $M \cap \tilde{C}$-invariant and $Y_{M} \not \leq O_{2}\left(L Y_{M}\right)$. Set $W=\left\langle V^{L}\right\rangle, B=(M \cap \tilde{C})(L \cap \tilde{M}), M_{1}=M B, M_{2}=L B, Q_{i}=O_{2}\left(M_{i}\right), H=L Y_{M}$ and $T=O^{2}(M \cap \tilde{C})$. Note here that $M \unlhd M_{1} \leq \tilde{M}, L \unlhd M_{2} \leq \tilde{C}$ and $B \leq M_{1} \cap M_{2}$. For $X \leq M_{2}$ put $\bar{X}=X Q_{2} / Q_{2}$ and for $X \leq W$ put $\hat{X}=X Z(W) / Z(W)$.

Lemma 2.1. [M]
(a) $[\mathbf{f}] C_{G}\left(M^{\circ}\right)=1, Z(M)=1$ and $Y_{M}=\Omega_{1} \mathrm{Z}\left(Q_{M}\right)$.
(b) $[\mathbf{a}]|Z|=2, M \cap \tilde{C}=C_{M}(Z), Q Q_{M}=O_{2}(M \cap \tilde{C}), M=M^{\circ} Q_{M}$ and $\left[Y_{M}, Q\right]=V$.
(c) $[\mathbf{b}] \quad \tilde{M}=M^{\circ} C_{G}(V)$ and $\left[M^{\circ}, C_{G}(V)\right] \leq O_{2}\left(M^{\circ}\right) \leq O_{2}(\tilde{M}) \leq Q_{M}$.
(d) $[\mathbf{g}] \quad M_{1}=M^{\circ} B=M^{\circ}(L \cap \tilde{M})$ and M_{1} is a subgroup of \tilde{M}.
(e) $[\mathbf{c}] \quad Y_{M} \unlhd \tilde{M}$ and $C_{G}(V)=C_{G}\left(Y_{M}\right)$.
(f) $[\mathbf{d}] \quad O_{2}\left(M^{\circ}\right)=M^{\circ} \cap Q_{1}, B=\left(M^{\circ} \cap B\right) C_{B}(V), C_{M_{1}}(V)=C_{B}(V)$ and $M_{1} / Q_{1}=$ $M^{\circ} Q_{1} / Q_{1} \times C_{B}(V) / Q_{1}$.
(g) $[\mathbf{e}] \quad O_{2}(B)=Q_{1} Q_{2}=Q_{1} Q$.

Proof. (a) If $Q \leq Q_{M}$, then $Y_{M} \leq C_{G}(Q) \leq Q$, a contradiction to the assumptions. Thus $Q \not \leq Q_{M}$. Suppose $C_{G}\left(M^{\circ}\right) \neq 1$. Then since Q is large, $M \leq N_{G}\left(C_{G}\left(M^{\circ}\right)\right) \leq N_{G}(Q)=\tilde{C}$ and so $Q=O_{2}(\tilde{C}) \leq O_{2}(M)=Q_{M}$, a contradiction. Hence $C_{G}\left(M^{\circ}\right)=1$ and so also $Z(M)=1$. Clearly $Y_{M} \leq \Omega_{1} \mathrm{Z}\left(Q_{M}\right)$. Since $Q_{M} \leq C_{M}\left(\Omega_{1} \mathrm{Z}\left(Q_{M}\right)\right) \triangleleft M$ and $M / Q_{M}(\cong$ $\left.S L_{3}(2)\right)$ is simple, $C_{M}\left(\Omega_{1} \mathrm{Z}\left(Q_{M}\right)\right)=Q_{M}$ and so $O_{2}\left(M / C_{M}\left(\Omega_{1} \mathrm{Z}\left(Q_{M}\right)\right)=1\right.$. The definition of Y_{M} now implies that $Y_{M}=\Omega_{1} \mathrm{Z}\left(Q_{M}\right)$.
(b) By Gaschütz' theorem, $Z \leq\left[Y_{M}, M\right] Z(M)=V$. Since V is a natural $S L_{3}(2)$-module for M we get that $|Z|=\left|C_{V}(S)\right|=2$. Since $Q \not \leq Q_{M}$ and M / Q_{M} is simple, $M=M^{\circ} Q_{M}$. Since $Z \leq C_{G}(Q) \leq Q$ and Q is large, $C_{M}(Z) \leq M \cap \tilde{C}$. So $C_{M}(Z)$ normalizes $C_{V}(Q)$ and thus $C_{V}(Q)=Z$. Since $M \cap \tilde{C}$ normalizes $C_{V}(Q)$ this implies $C_{M}(Z)=M \cap \tilde{C}$. Thus $M \cap \tilde{C} / Q_{M} \cong \operatorname{Sym}(4)$ and since $Q Q_{M} / Q_{M}$ is a non-trivial normal 2-subgroup of $M \cap \tilde{C} / Q_{M}, Q Q_{M}=O_{2}(M \cap \tilde{C})$. Hence by $1.1(\mathrm{~b}),\left[Y_{M}, Q\right]=V$.
(c) Since M° induces $\operatorname{Aut}(V)$ on $V, \tilde{M}=M^{\circ} C_{G}(V)$.

Since Q is large, $C_{G}(V) \leq C_{G}\left(C_{V}(Q)\right) \leq N_{G}(Q)$ and thus $\left[Q, C_{G}(V)\right] \leq Q$. So $\left[Q, C_{G}(V)\right] \leq O_{2}\left(C_{G}(V)\right) \cap M^{\circ} \leq O_{2}\left(M^{\circ}\right)$. Conjugation under M gives, $\left[M^{\circ}, C_{G}(V)\right] \leq$ $O_{2}\left(M^{\circ}\right)$ and so (c) holds.
(d) By (b),$M=M^{\circ} Q_{M}$ and since $Q_{M} \leq B$, we have $M_{1}=M B=M^{\circ} B$. As $B=\left(M^{\circ} \cap B\right)(L \cap \tilde{M}), M_{1}=M^{\circ}\left(L \cap \tilde{M}\right.$. By (c), \tilde{M} normalizes M°. Since $B \leq \tilde{M}$, we conclude that $M_{1}=M^{\circ} B$ is a subgroup of \tilde{M}.
(e) Put $D:=\left\langle Y_{M}^{\tilde{M}}\right\rangle$. Since \tilde{M} normalize both M° and V we get $\left[D, M^{\circ}\right]=V$ and $\left[D, O_{2}\left(M^{\circ}\right)\right]=1$. By (a) $C_{D}\left(M^{\circ}\right)=1$. Since $[D, V]=1$ we have $\left[D, M^{\circ}, D\right]=1$ and the Three Subgroups Lemma implies $\left[D, D, M^{\circ}\right]=1$ and $D^{\prime} \leq C_{D}\left(M^{\circ}\right)=1$. So D is abelian and thus elementary abelian. Hence by 1.1, $|D / V| \leq 2$ and so $Y_{M}=D$. Hence $Y_{M} \unlhd \tilde{M}$. Since $\left|Y_{M} / V\right|=2$ we get $\left[Y_{M}, \tilde{M}\right] \leq V$ and so $\left[Y_{M}, O^{2}\left(C_{G}(V)\right)\right]=1$. Since $Q_{M}=C_{S}(V) \in \operatorname{Syl}_{2}\left(C_{G}(V)\right)$ and $\left[Q_{M}, Y_{M}\right]=1$, this gives $\left[Y_{M}, C_{G}(V)\right]=1$ and so $C_{G}(V)=C_{G}\left(Y_{M}\right)$.
(f) Since $M^{\circ} \unlhd \tilde{M}$ and $M_{1} \leq \tilde{M}, O_{2}\left(M^{\circ}\right) \unlhd M_{1}$. Also $Q_{1} \cap M^{\circ} \unlhd M^{\circ}$ and so $O_{2}\left(M^{\circ}\right)=$ $Q_{1} \cap M^{\circ}$. Since $\tilde{M}=M^{\circ} C_{G}(V), M_{1}=M^{\circ} C_{M_{1}}(V)$. As B normalizes $C_{V}(Q)=Z$ we have $B \leq N_{M_{1}}(Z)=\left(M^{\circ} \cap B\right) C_{M_{1}}(V)$ and so $B=\left(M^{\circ} \cap B\right) C_{B}(V), M_{1}=M^{\circ} C_{B}(V)$ and $C_{M_{1}}(V)=C_{B}(V) C_{M^{\circ}}(V)=C_{B}(V)$.
(g) Note that $O_{2}\left(C_{M_{1}}(V)\right) \leq Q_{1}$ and $O_{2}\left(M^{\circ} \cap B\right)=O_{2}\left(M^{\circ}\right) Q \leq Q_{1} Q$. Since $B / Q_{1}=$ $\left(M^{\circ} \cap B\right) Q_{1} / Q_{1} \times C_{B}(V) / Q_{1}$, this implies $O_{2}(B)=Q_{1} Q$. Since $Q \leq Q_{2} \leq O_{2}(B)$, we get $O_{2}(B)=Q_{1} Q_{2}$.

Lemma 2.2. [elem]

(a) $[\mathbf{e}] L=O^{2}(L)=\left[L, Y_{M}\right]$ and $H=\left\langle Y_{M}^{L}\right\rangle=\left\langle Y_{M}^{M_{2}}\right\rangle$
(b) $[\mathbf{f}] W \neq V,[W, L] \neq 1$ and $C_{Q_{2}}(L)=C_{Q_{2}}(H)=C_{Q_{2}}(W) \leq Q_{1}$.
(c) $[\mathbf{b}]\left[Q_{2}^{\prime}, L\right]=1$ and $\left[Q_{2}, L\right] \leq W$.
(d) $[\mathbf{z}] W Q_{1}=O_{2}(B),\left[Y_{M}, W\right]=V$ and $V \cap Z(W)=Z$.
(e) $[\mathbf{a}]\left[W, Q_{2}\right]=W^{\prime}=Z=\Phi(W)$.
(f) $[\mathbf{c}][W, L]=W$ and $C_{W}(L)=Z(W)$.
(g) $[\mathbf{d}] \hat{W}$ is a selfdual, simple $\mathbb{F}_{2} M_{2}$-module and homogeneous $\mathbb{F}_{2} H$-module.

Proof. By the minimal choice of $L, L=O^{2}(L)$ and $L=\left[L, Y_{M}\right]$. In particular, $\left\langle Y_{M}^{L}\right\rangle=$ $Y_{M}\left[L, Y_{M}\right]=L Y_{M}$. Together with 2.1(e) this is (a).

Suppose $W=V$. Then $L \leq N_{G}(V)=\tilde{M}$ and $Y_{M} \leq O_{2}\left(L Y_{M}\right)$, a contradiction to the choice of L. If $[W, L]=1$, then $W=\left\langle V^{L}\right\rangle=V$, a contradiction.

Thus $W \neq V$. Set $D=C_{Q_{2}}(L)$. Suppose $D \not \leq Q_{1}$. Since B normalizes D and acts simply on $O_{2}(B) / Q_{1}$ we get $D Q_{1}=O_{2}(B)$ and so by $1.1(\mathrm{~b}), V=\left[Y_{M}, D\right] \leq D$ and $[V, L]=1$, a contradiction. Thus $D \leq Q_{1}$ and $D \leq C_{Q_{2}}\left(L Y_{M}\right)=C_{Q_{2}}\left(\left\langle Y_{M}^{L}\right\rangle\right)$.

Since $C_{Q_{2}}(V)=Q_{2} \cap Q_{M}=C_{Q_{2}}\left(Y_{M}\right)$ we have $C_{Q_{2}}(W)=C_{Q_{2}}\left(\left\langle V^{M_{2}}\right\rangle\right)=C_{Q_{2}}\left(\left\langle Y_{M}^{M_{2}}\right\rangle\right) \leq$ $C_{Q_{2}}(L) \leq D$ and so (b) holds.

As $Q_{2}^{\prime} \leq Q_{M}$, we have that $\left[Q_{2}^{\prime}, Y_{M}\right]=1$. Since $L \leq\left\langle Y_{M}^{L}\right\rangle$, we get $\left[L, Q_{2}^{\prime}\right]=1$. Further as $\left[Y_{M}, Q_{2}\right] \leq V \leq W$, we also get $\left[Q_{2}, L\right] \leq W$, which is (c).

If $[W, V]=1$, then $W=Z(W)$. Thus (b) gives $W \leq C_{Q_{2}}(W)=C_{Q_{2}}(L)$, a contradiction. Hence $[W, V] \neq 1$ and $W \not \approx Q_{1}$. Since B normalizes $W Q_{1}$ this gives $W Q_{1}=O_{2}(B)$ and so $\left[Y_{M}, W\right]=V$ and $V \cap Z(W)=C_{V}(W)=Z$. Thus (d) holds. Moreover, $[W, V]=\left[Q_{2}, V\right]=$ Z. By (c) Z is centralized by L and so since $W=\left\langle V^{M_{2}}\right\rangle=\left\langle V^{L}\right\rangle,[W, W]=\left[W, Q_{2}\right]=Z$, which is (e).

By (b) $Z(W)=C_{W}(L)=C_{W}(H)$ and since $L=O^{2}(L), Z(W) / Z=C_{W / Z}(L)=$ $C_{W / Z}\left(\left\langle Y_{M}^{M_{2}}\right\rangle\right)$. Since $M \cap \tilde{C}$ acts simply on V / Z we conclude from 1.3 that $Z(W) / Z$ is the unique maximal M_{2}-submodule of W / Z. If $[W, L] \leq Z(W)$, then $W=\left\langle V^{L}\right\rangle=V Z(W)$ and W is abelian, a contradiction. Thus $[W, L] \nsubseteq Z(W)$ and so $W=[W, L] Z$. By (e) $Z \leq[W, L]$ and so $W=[W, L]$. So (f) is proved and \hat{W} is a simple $\mathbb{F}_{2} M_{2}$-module.

The commutator map $\hat{W} \times \hat{W} \rightarrow Z,[x Z(W), y Z(W)] \rightarrow[x, y]$ is a non-degenerate bilinear form on \hat{W} and so \hat{W} is a selfdual $\mathbb{F}_{2} M_{2}$-module. Suppose that \hat{W} is not homogeneous as an $\mathbb{F}_{2} H$-module and let $\hat{W}_{i}, 1 \leq i \leq n$, be the Wedderburn components of H in \hat{W}. Then $\hat{W}=\bigoplus_{i=1}^{n} \hat{W}_{i}$ and so $\hat{V}=\left[\hat{W}, Y_{M}\right]=\bigoplus_{i=1}^{n}\left[\hat{W}_{i}, Y_{M}\right]$. It follows that the action of B on \hat{V} is imprimitive. But $\hat{V} \cong V / V \cap Z(W)=V / Z$ as B-module and so $|\hat{V}|=4$ and B acts transitively on \hat{V}^{\sharp}, a contradiction.

Lemma 2.3. [Wquad]

(a) [a] W acts quadratically on Q_{M} / V. In particular, any non-trivial composition factor for M on Q_{M} / V is a natural $S L_{3}(2)$-module.
(b) $[\mathbf{b}] \quad N_{M_{2}}\left(Y_{M} Q_{2}\right)=N_{M_{2}}(V)=B$.
(c) $[\mathbf{c}]$ If $g \in L$ with $\left[Y_{M}, Y_{M}^{g}\right] \leq Q_{2}$, then $\left[Y_{M}, Y_{M}^{g}\right]=1$ and $Y_{M} Y_{M}^{g}$ acts quadratically on Q_{2} and \hat{W}.
(d) $[\mathbf{d}] \quad C_{M_{2}}(\hat{W})=Q_{2}$.

Proof. We have that $\left[Q_{M}, W, W\right] \leq[W, W]=Z \leq V$, by $2.2(\mathrm{c}),(\mathrm{e})$. So $\left[Q_{M} / V, W, W\right]=1$. Since $W Q_{M} / Q_{M}$ has order $4, W$ does not act quadratically on the Steinberg module. Since the only simple $\mathbb{F}_{2} S L_{3}(2)$ modules are the trivial module, the two natural modules and the Steinberg module, we have (a).
(b) Let $g \in N_{L}\left(Y_{M} Q_{2}\right)$. Then g normalizes $\left[W, Y_{M} Q\right]=\left[W, Y_{M}\right]=V$ by 2.2(d).
(c) By (b) we have that $Y_{M}^{g} \leq \tilde{M}$ and by symmetry $Y_{M} \leq \tilde{M}^{g}$. Thus $R:=\left[Y_{M}, Y_{M}^{g}\right] \leq$ $V \cap V^{g}$. Suppose that $R \neq 1$. Then by 2.1(e), $\left[V, Y_{M}^{g}\right] \neq 1$. By 1.1 (applied to $\left.V_{1}=Y_{M}\right) R$ is a fours group. Since $R \leq V^{g}$ the action of \tilde{M}^{g} on V^{g} shows that there is $1 \neq x \in R$ such that $V \npreceq O_{2}\left(C_{\tilde{M}^{g}}(x)\right)$. Note that $x \in V$ and so $\left[x, Q^{m}\right]=1$ for some $m \in M$. Then $V \leq Q^{m}$ and since Q^{m} is large, $Q^{m} \leq O_{2}\left(C_{G}(x)\right)$, a contradiction. So we have $R=1$. Hence $Y_{M} Y_{M}^{g}$ is abelian and since Q_{2} normalizes $Y_{M} Y_{M}^{g},\left[Q, Y_{M} Y_{M}^{g}\right] \leq Y_{M} Y_{M}^{g}$ and $\left[\left[Q, Y_{M} Y_{M}^{g}\right], Y_{M} Y_{M}^{g}\right]=1$. This is (c).
(d) Since \hat{W} is a simple M_{2}-module, $Q_{2} \leq C_{M_{2}}(\hat{W})$. Let $E:=O^{2}\left(C_{M_{2}}(\hat{W})\right)$. Since $L \not \leq E$, the minimality of L shows that $[H \cap E, H] \leq Q_{2}$. Hence $\overline{H \cap E} \leq Z(\bar{H})$ and so $\overline{H \cap E}$ has odd order and $O_{2}\left(\overline{(H \cap E) Y_{M}}\right)=\overline{Y_{M}}$. Since $[E, H] \leq H \cap E$ we conclude that E normalizes $\overline{(H \cap E) Y_{M}}$ and $\overline{Y_{M}}$. (b) implies that $E \leq B$. Thus $[V, E] \leq V \cap Z(W)=Z$. Since $E=O^{2}(E)$ we get $[V, E]=1$. Thus $\left[M^{\circ}, E\right] \leq C_{M^{\circ}}(V) \leq Q_{2}$. Since Q_{2} normalizes E we have $O^{2}\left(E Q_{2}\right)=O^{2}(E)=E$ and so M° normalizes E. Note that also M_{2} normalizes E. Suppose for a contradiction that $E \neq 1$. Since $C_{G}(Q) \leq Q$ we get $1 \neq[E, Q] \leq O_{2}(E)$. Since $M^{\circ} B=M_{1}, M_{1}$ normalizes E. So $O_{2}(E) \leq Q_{1}$ and since V is the unique minimal normal subgroup of $M_{1}, V \leq Z\left(O_{2}(E)\right)$. But then also $W \leq Z\left(O_{2}(E)\right)$ and W is abelian, which contradicts $2.2(\mathrm{e})$.

Thus $E=1, C_{M_{2}}(\hat{W})$ is 2-group and (d) holds.
Lemma 2.4. $[\mathbf{q m}=\mathbf{y m}]$ Suppose $\left[Q_{1}, O^{2}(M)\right] \leq Y_{M} Q_{2}$. Then $Y_{M}=Q_{M}$.
Proof. Put $E=\left[Q_{1}, O^{2}(M)\right]$. Since $\left[Q_{M}, O^{2}(M)\right]=\left[Q_{M}, O^{2}\left(M^{\circ}\right)\right] \leq O_{2}\left(M^{\circ}\right) \leq Q_{1}$ we have $E=\left[Q_{M}, O^{2}(M)\right]$. From $E \leq Y_{M} Q_{2}$ we get $[E, W] \leq\left[Y_{M} Q_{2}, W\right] \leq V$. It follows that $E=\left[E, O^{2}(M)\right] \leq V$. Thus $V \not \leq \Phi\left(Q_{M}\right), Q_{M}$ is elementary abelian and $Q_{M}=Y_{M}$

Lemma 2.5. [nonsolv] Suppose L is nonsolvable and let W_{1} be a simple L-submodule of \hat{W}. Then \bar{L} is quasisimple, $\bar{L}=F^{*}(\bar{H})$, H normalizes W_{1}, W_{1} is a selfdual H-module and either $\hat{W}=W_{1}$ or $\hat{W}=W_{1} \oplus W_{2}$ where W_{2} is a H-submodule of \hat{W} isomorphic to W_{1}.

Proof. Since L is nonsolvable the minimality of L shows that $\bar{L}=\mathrm{E}(\bar{L})$. By 2.3(d), \hat{W} is a faithful and simple $\overline{M_{2}}$-module. Let \mathcal{L} be the set of components of \bar{L} and $L_{1} \in \mathcal{L}$. Then $\bar{L}=\left\langle L_{1}^{B}\right\rangle=\langle\mathcal{L}\rangle$. By Feit-Thompson L_{1} has even order and since $\overline{Y_{M}} \leq Z(\bar{S})$, we get that Y_{M} normalizes L_{1}. So Y_{M} acts trivially on \mathcal{L}. As $H=\left\langle Y_{M}^{M_{2}}\right\rangle$ we conclude that all components of \bar{L} are normal in \bar{H}. Let U be a non-trivial simple L_{1}-submodule of \hat{W}. Since L_{1} is not solvable, $|U|>4$. Let $y \in Y_{M}$. Since $\left|W / C_{W}(y)\right| \leq 4, U \cap U^{y} \neq 1$ and since L_{1} normalizes $U \cap U^{y}, U=U^{y}$. Thus $H=\left\langle Y_{M}^{M_{2}}\right\rangle$ normalizes all non-trivial simple L_{1}-submodules of \hat{W}. Schur's Lemma together with the fact that finite division ring are commutative shows that $C_{H}\left(L_{1}\right)^{\prime}$ centralizes U. Since \hat{W} is a homogeneous H-module, this implies that $C_{H}\left(L_{1}\right)$ is abelian. Hence L_{1} is the only component of \bar{L} and $\bar{L}=L_{1}$. Note that $O_{2}(\bar{H}) \leq O_{2}\left(\overline{M_{2}}\right)=1$ and as \bar{H} / \bar{L} is a 2 -group, $F^{*}(\bar{H})=\bar{L}$. Since \hat{W} is homogeneous and $\left|\left[\hat{W}, Y_{M}\right]\right|=|\hat{V}| \leq 4, \hat{W}$ is the direct sum of at most two simple H-submodules and all parts of the lemma are proved.

Let U be a simple H-submodule of \hat{W}.
Lemma 2.6. [Xstruk] Suppose L is nonsolvable. Then one of the following holds:

1. [i] $\bar{H} \cong S L_{n}(2), S L_{n}(4), S p_{2 n}(2), S p_{2 n}(4), S U_{n}(2), \Omega_{2 n}^{ \pm}(2)$ or $G_{2}(2)^{\prime}$ and U is corresponding natural module.
2. [ii] $\bar{H} \cong S p_{6}(2), U$ is the spin-module and $\overline{Y_{M}}$ is a short root subgroup of \bar{H}.
3. [iii] $\bar{H} \cong \operatorname{Sym}(n)$ or $\operatorname{Alt}(n), U$ is the natural permutation module and $\overline{Y_{M}}$ is generated by a 2-cycle or double 2-cycle.
4. $[\mathbf{i v}] \bar{H} \cong \operatorname{Alt}(7)$ and U is a spin-module.
5. [v] $\bar{H} \cong 3 \operatorname{Alt}(6)$ and U is the 6 -dimensional module.

Proof. By $2.5 F^{*}(\bar{H})=\bar{L}$ and $F^{*}(\bar{H})$ is quasisimple. Since \hat{W} is a faithful, homogeneous \bar{H}-module, $C_{\bar{H}}(U)=1$. Note that $\left|\overline{Y_{M}}\right|=2$ and $\overline{Y_{M}} \leq Z(\bar{S} \cap \bar{H})$. Thus Glauberman's Z^{*}-Theorem implies that there exists $g \in L$ with $\overline{Y_{M}} \neq{\overline{Y_{M}}}^{g}$ and $\left[\overline{Y_{M}},{\overline{Y_{M}}}^{g}\right]=1$. By 2.3(c), $Y_{M} Y_{M}^{g}$ induces a quadratic fours group on U. Since $\left[U, Y_{M}\right] \leq \hat{V},\left[U, Y_{M}\right]$ has order at most 4. Now the assertion follows with 1.2.

Lemma 2.7. [Sln1] Suppose $\bar{L} \cong \operatorname{Alt}(n), n=5$ or $n>6$, then U is not the natural permutation module for \bar{L}.

Proof. By 2.3 for any $g \in L$ with $\left[Y_{M}, Y_{M}^{g}\right] \leq Q_{2}$, we have that $Y_{M} Y_{M}^{g}$ induces a quadratic group on \hat{W}. By 2.6(3) Y_{M} either corresponds to (12)(34) or (12). Since $\langle(12)(34),(13)(24)\rangle$ does not act quadratically on U, we get that $\overline{Y_{M}}$ is conjugate to $\langle(12)\rangle$. Since $\overline{Y_{M}}$ is 2central we get $n \neq 5$ and so $n>6$. Note that $Q_{1} L \unlhd L B=M_{2}$ and so $O_{2}\left(\overline{Q_{1} L}\right)=1$ and $\overline{Q_{1} L} \cong \operatorname{Sym}(n)$. Thus by 2.3(c), $\overline{B \cap Q_{1} L} \cong C_{2} \times \operatorname{Sym}(n-2)$. Since $n-2>4$ we have $O_{2}(\operatorname{Sym}(n-2))=1$ and so $O_{2}\left(B \cap Q_{1} L\right)=Y_{M} Q_{2}$. Hence $Q_{1} \leq Y_{M} Q_{2}$ and $\left[Q_{1}, W\right] \leq\left[Y_{M} Q_{2}, W\right] \leq V$. By $2.4 Q_{M}=Y_{M}$ and so $\left|S / Y_{M} Q_{2}\right|=\left|S / Q_{M} Q_{2}\right|=2$, a contradiction to $\left(B \cap Q_{1} L\right) / Q_{2} Y_{M} \cong \operatorname{Sym}(n-2)$.

Lemma 2.8. [orth] Suppose $\bar{L} \cong \Omega_{2 n}^{ \pm}(2)$ or $S p_{2 n}(2)^{\prime}$ and U is the corresponding natural module. Then $\bar{H} \cong S p_{2 n}(2), \hat{W}$ is the direct sum of two H-submodules isomorphic to U and Y_{M} induces a transvection on U.

Proof. Let \bar{P} be the point stabilizer of \bar{H} on the natural module with $\bar{S} \cap \bar{L} \leq P$. Then $\overline{Y_{M}} \leq$ $O_{2}(\bar{P})$ and $O_{2}(\bar{P})$ is abelian. Hence $\left\langle{\overline{Y_{M}}}^{\bar{P}}\right\rangle$ is abelian and (by 2.3(c)) acts quadratically on \hat{W} and on the natural module. The action of \bar{P} on the natural module now shows that $\bar{H} \cong S p_{2 n}(2), \bar{P}$ normalizes $\overline{Y_{M}}$ and Y_{M} induces a transvection on the natural module.

Lemma 2.9. [Sln] \bar{L} is none of $S L_{n}(2), n \geq 3, S L_{n}(4), n \geq 3,3 \cdot \operatorname{Alt}(6)$ and $\operatorname{Alt}(7)$
Proof. Then by $2.5, U$ is self-dual. Note that the natural modules for $S L_{n}(q), n \geq 3$, is not selfdual, the 6 -dimensional module for $3 . \operatorname{Alt}(6)$ is not selfdual and the 4 -dimensional module for $\operatorname{Alt}(7)$ is not self dual. Hence by 2.6 we conclude that U is the orthogonal module for $\bar{H} \cong S L_{4}(2) \cong \Omega_{6}^{+}(2)$, but this contradicts 2.8 .

Lemma 2.10. [elem b]
(a) $[\mathbf{a}]$ Let $F \unlhd B$ with $[V / Z, F] \neq 1$. Then $T \leq F$.
(b) $[\mathbf{b}]$ Suppose that $[V / Z, L \cap B] \neq 1$. Then $T \leq L \cap B$ and $M_{2}=L S$.

Proof. (a) By 2.1(f), $B=\left(B \cap M^{\circ}\right) C_{B}(V)$ and $B \cap M^{\circ} / O_{2}\left(B \cap M^{\circ}\right) \cong S L_{2}(2)$. It follows that $C_{B \cap M^{\circ}}(V / Z)=O_{2}\left(B \cap M^{\circ}\right)$. Hence $B / C_{B}(V / Z) \cong S L_{2}(2), R:=\left[F, M^{\circ} \cap B\right] \nexists C_{B}(V / Z)$ and $R \not \leq O_{2}\left(M^{\circ} \cap B\right)$. Since $R \unlhd M^{\circ} \cap B$ this gives $T=O^{2}\left(M^{\circ} \cap B\right) \leq R \leq F$.
(b) By (a) applied to $F=L \cap B$ we have $T \leq L \cap B \leq L$. Thus $M_{2}=L(M \cap B)=$ $L T S=L S$.

Lemma 2.11. [mi] Suppose L is non-solvable. Then one of the following holds.

1. $[\mathbf{a}] \quad M_{1} / Q_{1} \cong S L_{3}(2) \times S p_{2 n-2}(2), B / O_{2}(B) \cong S L_{2}(2) \times S p_{2 n-2}(2), \overline{M_{2}} \cong S p_{2 n}(2) \times$ $S L_{2}(2)$ and \hat{W} is the tensor product of the corresponding natural modules.
2. $[\mathbf{b}] M_{1} / Q_{1} \cong S L_{3}(2) \times S L_{2}(2), B / O_{2}(B) \cong S L_{2}(2) \times S L_{2}(2), \overline{M_{2}} \cong \Gamma S U_{4}(2) \sim S U_{4}(2) .2$ and \hat{W} is the corresponding natural module.
3. $[\mathbf{c}] \quad M=M_{1}, B / O_{2}(B) \cong \operatorname{Sym}(3), \overline{M_{2}} \cong \Gamma G L_{2}(4) \sim\left(C_{3} \times S L_{2}(4)\right) .2$ and \hat{W} is the corresponding natural module.
4. [d] $M=M_{1}, B / O_{2}(B) \cong \operatorname{Sym}(3), \overline{M_{2}} \cong G_{2}(2)$ or $G_{2}(2)^{\prime}$ and \hat{W} is the corresponding natural module.
5. [e] $M_{1} / Q_{1} \cong S L_{3}(2), B / O_{2}(B) \cong S L_{2}(2) \times S L_{2}(2), \overline{M_{2}} \cong S p_{6}(2)$ and \hat{W} is the spin-module.

Proof. By 2.6-2.9 one of the following holds:
(a) [1] $\bar{H} \cong S p_{2 n}(2), n \geq 4$ and \hat{W} is the direct sum of two isomorphic natural modules and Y_{M} induces a transvection on these natural modules.
(b) $[\mathbf{2}] \bar{H} \cong S U_{n}(2), \hat{W}$ is a natural module and Y_{M} induces a \mathbb{F}_{4}-transvection on \hat{W}.
(c) $[\mathbf{3}] \bar{H} \cong S p_{2 n}(4), \hat{W}$ is a natural module and Y_{M} induces a \mathbb{F}_{4}-transvection on \hat{W}.
(d) [4] $\bar{H} \cong G_{2}(2)^{\prime}, \hat{W}$ is the natural module and $\overline{Y_{M}}$ is long root element.
(e) $[\mathbf{5}] \bar{H} \cong S p_{6}(2), \hat{W}$ is the spin-module and $\overline{Y_{M}}$ is a short root element.

Since by 2.3(b) $\overline{H \cap B}=C_{\bar{H}}\left(\overline{Y_{M}}\right)$ this allows us to compute $\overline{H \cap B}$. Also $V / Z \cong\left[\hat{W}, Y_{M}\right]$ as a B-module and so this determines the action of $H \cap B$ on V / Z. Put $D=C_{M_{2}}(H)$. Note that $D \leq N_{M_{2}}\left(\overline{Y_{M}}\right)=B$ and
$\left(^{*}\right) \quad\left(M^{\circ} \cap B\right) O_{2}(B) / O_{2}(B)$ is a normal subgroup of $B / O_{2}(B)$ isomorphic to $S L_{2}(2)$.
Suppose (a) holds. Then $M_{2}=D H$. Since M_{2} acts simply on \hat{W}, but H does not, we get $\bar{D} \neq 1$. Since $W=\left\langle V^{M_{2}}\right\rangle$ we have $[V / Z, D] \neq 1$ and so by $2.10(\mathrm{a}), T \leq D$. Now $\left({ }^{*}\right)$ implies that $\bar{D} \notin Z\left(\bar{M}_{2}\right)$ and so D is not abelian. Now $C_{G L(\hat{W})}(\bar{H}) \cong S L_{2}(2)$ and thus $\bar{D} \cong S L_{2}(2)$. Moreover, $B \cap H / O_{2}(B \cap H) \cong S p_{2 n-2}(2)$ and we see that (1) holds in this case.

Suppose (b) holds. Then $L \cap B / O_{2}(L \cap B) \cong C_{3} \times S U_{2 n-2}(2)$ and $L \cap B / C_{L \cap B}(V / Z) \cong$ C_{3}. In particular, $L \cap B$ acts non-trivially on V / Z and so by $2.10(\mathrm{~b}), M_{2}=L S$. Then ${ }^{*}$) shows that $\overline{M_{2}} \neq \bar{L}$ and so $\overline{M_{2}} \cong \Gamma S U_{n}(2)=S U_{n}(2)\langle\sigma\rangle$, where σ induces a field automorphism of order 2. Thus $B / O_{2}(B) \cong\left(C_{3} \times S U_{n-2}(2)\right)\langle\sigma\rangle$ and $\left(^{*}\right)$ implies that $n=4$ and $B / O_{2}(B) \cong S L_{2}(2) \times S L_{2}(2)$. Thus (2) holds.

Suppose (c) holds. Then $L \cap B / O_{2}(L \cap B) \cong S p_{2 n-2}(4)$ and $L \cap B$ centralizes V / Z. Thus $T \npreceq L$ and since $\operatorname{Out}(\bar{H})=2$ we get $\bar{D} \neq 1$. Hence by $2.2(\mathrm{c}), T \leq D$. Since $C_{G L(\hat{W})}(\bar{H}) \cong$ C_{3} this gives $\bar{T}=\bar{D} \cong C_{3}$. Now $\left(^{*}\right)$ shows $\bar{D} \not \leq Z\left(\overline{M_{2}}\right)$ and so $\overline{M_{2}} \cong\left(C_{3} \times S p_{2 n}(4)\right)\langle\sigma\rangle$, where σ induces a field automorphism of order 2 . Thus $B / O_{2}(B) \cong\left(C_{3} \times S p_{2 n-2}(4)\right)\langle\sigma\rangle$ and $\left(^{*}\right)$ implies that $n=1$ and $B / O_{2}(B) \cong S L_{2}(2)$. Thus $B=M \cap B$ and (3) holds.

Suppose that (d) holds. Then $B \cap H / O_{2}(B \cap H) \cong S L_{2}(2)$ and $B \cap L$ acts non-trivally on V / Z. So 2.10 (b) shows that $M_{2}=L S$ and $T \leq L \cap B$. Therefore $B=M \cap B$ and (4) holds.

Suppose that (e) holds. Then $B \cap H / O_{2}(B \cap H) \cong S L_{2}(2)$ and $B \cap L$ acts non-trivally on V / Z. So $2.10(\mathrm{~b})$ shows that $T \leq L \cap B$ and $M_{2}=L S$. Since $\operatorname{Out}(\bar{H})=1$, this gives $\overline{M_{2}}=\bar{H}, B / O_{2}(B) \cong S L_{2}(2) \times S L_{2}(2)$ and (5) holds.

Lemma 2.12. $[\mathbf{q}=\mathbf{w}]$ Suppose L is nonsolvable. Then $Q_{2}=W=Q$ and $Z(W)=Z$.
Proof. Suppose first that $C_{Q_{2}}(W) \neq Z$ and let $D \unlhd M_{2}$ be minimal with $D \leq C_{Q_{2}}(W)$ and $D \neq Z$. By 2.2, $[D, L]=1$ and $D \leq Q_{1}$. Since $M_{2}=(M \cap B) L$ and $(M \cap B) / O_{2}(M \cap B) \cong$ $S L_{2}(2)$ we get that either $\left[D, M_{2}\right] \leq Z$ and $|D / Z|=2$ or $M_{2} / C_{M_{2}}(D / Z) \cong S L_{2}(2)$ and $|D / Z|=4$. In any case $\left[D, Q_{M}\right] \leq Z$ and $\Phi(D) \leq Z$. Let $g \in M_{1} \backslash B$. Then $Z \neq Z^{g}$.

We will now show that D is abelian. If $|D / Z|=2$ this is obvious. So suppose $|D / Z|=4$. Then $C_{M \cap B}(D / Z)=O_{2}(M \cap B)$. Since $W \cap B^{g}=C_{W}\left(Z^{g}\right)$ acts non-trivially on V / Z^{g}, we have $W \cap B^{g} \not \leq O_{2}\left(M \cap B^{g}\right)$. Put $R:=\left[D^{g}, W \cap B^{g}\right]$. It follows that $R \leq D^{g}$ and $R \not \leq Z^{g}$. Since $D^{g} \leq Q \leq N_{G}(W), R \leq W$. Thus by $2.1(\mathrm{~b}), \Phi(R) \leq Z$. On the other hand $\Phi(R) \leq \Phi\left(D^{g}\right) \leq \Phi\left(W^{g}\right)=Z^{g}$. As $Z \cap Z^{g}=1, R$ is elementary abelian. Since B^{g} acts transitively on D^{g} / Z^{g} this implies that all non-trivial elements of D^{g} have order two.

Thus D is abelian. Note that $\left[D, D^{g}\right] \leq\left[D, Q_{1}\right] \cap\left[Q_{1}, D^{g}\right] \leq Z \cap Z^{g}=1$ and so $E:=\left\langle D^{M_{1}}\right\rangle$ is abelian. Suppose that $[E, W] \leq V$. Since $O^{2}(M) \leq\left\langle W^{M_{1}}\right\rangle$, we get $\left[E, O^{2}(M)\right] \leq V$. Since $M_{1}=O^{2}(M) B$ and B normalizes $D, E=\left\langle D^{O^{2}(M)}\right\rangle \leq D V$. Hence $E=D V,\left[D, Q_{M}\right] \unlhd M$ and $\Phi(D) \unlhd M$. Since $\left[D, Q_{M}\right] \leq Z$ and $\Phi(D) \leq Z$ we conclude that $\left[D, Q_{M}\right]=1, \Phi(D)=1$ and $D \leq Y_{M}$. Thus $D \leq Y_{M} \cap Q_{2}=V$. Since B normalizes D and $V \not \approx D$ this implies $D=Z$, a contradiction.

Hence $[E, W] \not \approx V$ and so $E \not \leq Y_{M} Q_{2}$ and $\overline{Y_{M}} \lesseqgtr \overline{E Y_{M}}$. Since $E Y_{M}$ is abelian and W normalizes $E Y_{M}, E Y_{M}$ acts quadratically on \hat{W}.

In all cases of 2.11 except (3) $\overline{Y_{M}}$ is a maximal quadratic normal subgroup of $\overline{B \cap M_{2}}=$ $C_{\overline{M_{2}}}\left(\bar{Y}_{M}\right)$ on \hat{W}. So $\overline{M_{2}} \cong \Gamma G L_{2}(4)$. Note that $S \cap H=Y_{M} Y_{M}^{h} Q_{2}$ for some $h \in M_{2}$ and $[W, S \cap H] \leq\left[W, Y_{M} Y_{M}^{h}\right] Z \leq Y_{M} Y_{M}^{h}$. By $2.3(\mathrm{c}), Y_{M} Y_{M}^{h}$ is elementary abelian and so also $[W, S \cap H]$ is elementary abelian. Since $W=[W, H]$, Gaschütz Theorem shows that $Z(W) / Z=C_{W}(L) \leq[W / Z, S \cap H]$ and so $Z(W) \leq[W, S \cap H]$. It follows that $Z(W)$ is
elementary abelian. Since H acts transitively on \hat{W}^{\sharp} this means that all non-trivial elements in W are involutions. Thus W is elementary abelian, a contradiction.

We have proved that $C_{Q_{2}}(W)=Z$. In particular, $Z(W)=Z$. Since $\left[W, Q_{2}\right]=Z$ we have $\left|Q_{2} / C_{Q_{2}}(W)\right| \leq|\hat{W}|$ and so $Q_{2}=W C_{Q_{2}}(W)=W Z=W$.

Lemma 2.13. $[\mathbf{g 2 2}] \bar{L} \not \not G_{2}(2)^{\prime}$ and $\bar{L} \not \nsubseteq S L_{2}$ (4).
Proof. Otherwise \bar{L} acts transitively on \hat{W}^{\sharp}. Since $Z(W)=Z$ and $V \leq W$ we conclude that all elements of W^{\sharp} have order two and W is elementary abelian, a contradiction.

Lemma 2.14. $[\mathbf{e} / \mathbf{v}]$ Suppose L is nonsolvable. Then
(a) [a] $M_{1} / Q_{1} \cong S L_{3}(2) \times S L_{2}(2), Q_{1}=\left[Q_{1}, M_{1}\right] Y_{M}$, and $\left[Q_{1}, M_{1}\right] / V$ is a tensor product of natural modules.
(b) [b] $M_{2} / Q_{2} \cong \mathrm{SL}_{2}(2) \times \operatorname{Sp}_{4}(2), Q_{2}$ is extra special of order 2^{9} and Q_{2} / Z is the tensor product of natural modules.

Proof. Put $E=\left\langle\left(W \cap Q_{1}\right)^{M_{1}}\right\rangle$. By 2.13 one of 2.11(1), (2) and (5) holds. Put $m=n-1$ in the first case and $m=1$ in the other two. Since $Z(W)=Z$ by 2.12 this implies that in all cases $W \cap Q_{1}=\left[W, Q_{1}\right], B / O_{2}(B) \cong S L_{2}(2) \times S p_{2 m}(2)$ and $W \cap Q_{1} / V$ is the tensor product of natural modules for $B / O_{2}(B)$-module. In particular, $W \cap Q_{1} / V$ is a simple B-module. Moreover, $\left[E, Q_{1}\right]=V$ and E / V is elementary abelian. Put $F / V=C_{E / V}\left(\left\langle W^{M_{1}}\right\rangle\right)$. Then by $1.3, E / F$ is a simple M_{1}-module and so $E / F \cong E_{1} \otimes E_{2}$ where E_{1} is a simple M°-module and E_{2} is a simple $C_{B}(V)$-module. Since $\left[E_{1}, W\right] \otimes E_{2} \cong[E, W] F / F \cong W \cap Q_{1} / V$ as an B module we conclude that E_{2} is natural $S p_{2 m}(2)$-module for $C_{B}(V)$ and $\left[E_{1}, W\right]$ is a natural $S L_{2}(2)$-module for $B \cap M^{\circ}$. Thus E_{1} is a natural $S L_{3}(2)$-module for M° dual to V. In particular, $[E, T] \leq\left(W \cap Q_{1}\right) F$. Since $\left[Q_{1}, W\right] \leq Q_{1} \cap W \leq E$ we have $\left[Q_{1}, O^{2}(M)\right] \leq E$. It follows that $\left[Q_{1}, T\right] \leq W$. Since $O_{2}(B)=Q_{1} W$ by $2.2(\mathrm{~d})$ this implies $\left[O_{2}(B), T\right] \leq W \leq Q_{2}$. Thus T centralizes $O_{2}(B) / Q_{2}$. This rules out cases 2.11(2) and (5).

Hence 2.11(1) holds. The structure of M_{2} shows that $C_{B}(V)$ has exactly three non-trivial composition factors on $O_{2}(B)$. Since $C_{B}(V)$ also has three non-trivial composition factors on E / F we conclude that $\left[E, O^{2}\left(C_{B}(V)\right)\right] \leq V$. On the other hand, $E / V=\left\langle\left(W \cap Q_{1} / V_{1}\right)^{M^{\circ}}\right\rangle$ and so E / V as an $C_{B}(V)$-module is the direct sum of copies of the non-trivial simple $C_{B}(V)$ module $W \cap Q_{1} / V_{1}$. Thus $F=V$ and $E / W \cap Q_{1}$ is a natural $S p_{2 m}(2)$-module for $C_{B}(V)$. It follows that $E \cap Q_{2}=W \cap Q_{1}$ and so $E Q_{2} / Q_{2}$ is a natural $S p_{2 m}(2)$-module for $C_{B}(V)$. Hence $n=2$ (Indeed if $n \geq 3$ and so $m \geq 2$, the structure of M_{2} / Q_{2} shows that $O_{2}(B) / Q_{2}$ as a $C_{B}(V)$-module is a non-split extension $\overline{Y_{M}}$ by a natural $S p_{2 m}(2)$-module).

In M_{2} we see that $\left|O_{2}(B)\right|=2^{1+8+3}=2^{12}$ and so $\left|Q_{1}\right|=2^{10}$. This shows that $Q_{1}=$ $Y_{M} E$.

Lemma 2.15. [solv] L is solvable.

Proof. We need to show that the situation described in 2.14 does not occur. For this let D be a Sylow 3 -subgroup of $B, D_{1}=C_{D}(V)$ and $D_{2}=D \cap\left(M^{\circ} Q_{1}\right)$. Then $D=D_{1} D_{2}$ and $D_{1} Q_{1} \unlhd M_{1}$. Put $N_{1}=N_{M_{1}}\left(D_{1}\right)$. By the Frattini Argument $M_{1}=N_{1} Q_{1}$ and since D_{1} acts fixed-point freely on $Q_{1} / Y_{M}, N_{1} \cap Q_{1}=Y_{M}$. Hence $N_{1} \sim\left(2^{3+1}\right)\left(S L_{3}(2) \times S L_{2}(2)\right.$ and $\left|O_{2}\left(N_{1} / D_{1}\right)\right|=2^{5}$. Therefore 1.1(b) implies that $\left|Z\left(N_{1} / D_{1}\right)\right|=2$. Let E_{1} be the inverse image of $Z\left(N_{1} / D_{1}\right)$ in N_{1} and put $F_{1}=C_{N_{1}}\left(E_{1}\right)$. Then $E_{1} \cong S L_{2}(2)$ and so $N_{1}=F_{1} \times E_{1}$, $Y_{M} D_{2} \leq F_{1}$ and $F_{1} / Y_{M} \cong S L_{3}(2)$. Put $N=N_{B}(D)=N_{N_{1}}\left(D_{2}\right) \cap B$. Then $\left|Y_{M} \cap N\right|=4$ and $\left(F_{1} \cap N\right) /\left(Y_{M} \cap N\right) \cong S L_{2}(2)$. Moreover, by 1.1(c) $\left[Y_{M} \cap N, F_{1} \cap N\right] \neq 1$ and so $N / D \cong D_{8} \times C_{2}$. Also $C_{N}\left(D_{2}\right) / D=\left(Y_{M} \cap N\right) E_{1} D / D \cong C_{2}^{3}$.

We now investigate the embedding of N in M_{2}. Since D_{1} and D_{2} are the only normal subgroups of order three in N we have $D_{1} \leq L$ and $D_{2} Q_{2} \unlhd M_{2}$. Thus $\left[O_{2}\left(B \cap F_{1}\right), D_{2}\right] \leq Q_{2}$ and so $\left|C_{Q_{2}}\left(E_{1}\right)\right|=2^{5}$. Note that $\bar{H}=O^{2^{\prime}}\left(C_{\overline{M_{2}}}\left(D_{2}\right)\right) \cong S p_{4}(2)$ and W / Z is a direct sum of two natural modules for \bar{H}. Since $\left[E_{1}, D_{2}\right]=1$ we conclude that $\overline{E_{1}} \leq \bar{H}$ and the involutions in E_{1} act as transvections on these natural modules. It follows that $\overline{E_{1}} \npreceq \bar{H}^{\prime} \cong S p_{4}(2)^{\prime}$. Put $N_{2}=N_{M_{2}}\left(D_{2}\right)$ and $U_{2}=C_{M_{2}}\left(D_{2}\right)^{\prime}$. Then $N_{2} / D_{2} \sim 2 .\left(S p_{4}(2) \times 2\right)$ and $U_{2} Z / Z \cong S p_{4}(2)^{\prime}$. Since $C_{N}\left(D_{2}\right) / D$ is elementary abelian of order 2^{3} we conclude that $U_{2} Z$ contains a fours group and so $U_{2} \cong S p_{4}(2)^{\prime}$. Thus $U_{2} \cap N \cong S L_{2}(2)$ and $\left(U_{2} \cap N\right) D / D \leq \mathrm{Z}(N / D)$. Also $Z D / D \leq \mathrm{Z}(N / D)$ and $E_{1} D / D \leq \mathrm{Z}(N / D)$. Since $\overline{E_{1}} \not \leq \bar{H}^{\prime}=\overline{U_{2} Z}$ this implies $|Z(N / D)| \geq 8$, a contradiction to $N / D \cong D_{8} \times C_{2}$.

Proposition 2.16. [end] $Q_{M}=Y_{M}, Q$ is extraspecial of order 32 and $\tilde{C} / Q \cong \operatorname{Sym}(3) \times$ Sym(3).

Proof. By 2.15 we have that L is solvable and so by minimality \bar{L} is a r-group for some odd prime $r, M \cap B$ acts simply on $\bar{L} / \Phi(\bar{L}), Y_{M}$ inverts $\bar{L} / \Phi(\bar{L})$ and Y_{M} centralizes $\Phi(\bar{L})$. Thus $\Phi(\bar{L}) \leq \mathrm{Z}\left(\left\langle{\overline{Y_{M}}}^{\bar{L}}\right\rangle\right)=\mathrm{Z}(\bar{H})$. By $2.2 W=[W, L]$ and $\left[W / Z, Q_{2}\right]=1$, so $C_{W / Z}(L)=1$ and $Z(W)=Z$ by $2.2(\mathrm{f})$. Thus W is an extra-special 2-group.

Suppose for a contradiction that \bar{L} is not abelian. Then $Z(\bar{L})=Z(\bar{H}) \neq 1$. Since $W=\left\langle V^{\bar{H}}\right\rangle$ and \bar{L} acts faithfully on \hat{W}, we get that $Z(\bar{L})$ acts faithfully on V / Z. Thus $|Z(\bar{L})|=3$ and \bar{L} is an extraspecial 3 -group. Let $Z(\bar{L}) \leq A \leq \bar{L}$ with $|A|=9$ and put $A_{1}=\left[A, Y_{M}\right]$. Then $A=A_{1} \times Z(\bar{L})$ and A is elementary abelian. Let $A_{1}, A_{2}, A_{3}, \mathrm{Z}(\bar{L})$ be the subgroups of order 3 in A. From $C_{W / Z}(Z(\bar{L}))=1$ we have

$$
W / Z=\bigoplus_{i=1}^{3} C_{W / Z}\left(A_{i}\right) .
$$

Since \bar{L} acts transitively on $\left\{A_{1}, A_{2}, A_{3}\right\}$ we have $|W / Z|=\left|C_{W / Z}\left(A_{i}\right)\right|^{3}$. As $Z(\bar{L})$ acts non-trivially on $C_{W / Z}\left(A_{i}\right),\left|C_{W / Z}\left(A_{i}\right)\right| \geq 4$. Note that Y_{M} does not normalizes A_{2} and that $\left|\left[W / Z, Y_{M}\right]\right|=4$. Hence $\left|C_{W / Z}\left(A_{i}\right)\right|=4$ and so $|W / Z|=2^{6}$. It follows that $|\bar{L}|=3^{3}$. Since $\left[Z(\bar{L}), Y_{M}\right]=1,2.3(\mathrm{~b})$ gives $Z(\bar{L}) \leq \bar{B}$. Hence $\left[\overline{O_{2}(B)}, Z(\bar{L})\right]=1$. Since $C_{\text {Out }(\bar{L})}(Z(\bar{L})) \cong$ $S L_{2}(3)$ and $\left|C_{G L_{W / Z}}(\bar{L})\right|=3=|Z(\bar{L})|$ we get that $\overline{O_{2}(B)}$ is isomorphic to subgroup of $S L_{2}(3)$ and so to a subgroup of Q_{8}. Thus $\Omega_{1}\left(\overline{O_{2}(B)}\right) \leq \overline{Y_{M}}$. Put $E=\left\langle\left(W \cap Q_{M}\right)^{M}\right\rangle$. Since
$\Phi\left(W \cap Q_{M}\right) \leq Z \leq V$ we conclude that E / V is generated by involutions. As $V \leq Q_{2}$ this gives $\bar{E} \leq \Omega_{1}\left(\overline{O_{2}(B)} \leq \overline{Y_{M}}\right.$ and $E \leq Y_{M} Q_{2}$. Hence by $2.4 Q_{M}=Y_{M}$ and so $|S|=\overline{2^{7}}=|W|$, a contradiction.

So we have shown that \bar{L} is abelian. It follows that \bar{L} is elementary abelian and Y_{M} inverts \bar{L}. Let R be a simple L-submodule of \hat{W}. Note that $C_{\bar{L}}(R)$ is normalized by $L Y_{M}=H$ and so centralizes $\left\langle R^{H}\right\rangle$. Since \hat{W} is a homogeneous H-module by $2.2(\mathrm{~g})$, this gives that $C_{\bar{L}}(R)=1$ and so \bar{L} is cyclic. Thus $|W / Z|=\left|\left[W / Z, Y_{M}\right]\right|^{2}=4^{2}=16$. Hence W is extra special of order 2^{4} and since $V \leq W, W \cong Q_{8} \circ Q_{8}$. Thus $\operatorname{Out}(W) \cong O_{4}^{+}(2) \cong$ $\left.S L_{2}(2)\right\} C_{2}$ and $\bar{L} \cong C_{3}$. Since $\left[T, Y_{M}\right] \leq V \leq Q_{2}, \bar{T} \not \leq \bar{L}$ and so $\overline{T L} \cong C_{3} \times C_{3}$. Moreover, $\left[W, Q_{M}\right] \leq C_{W}(V)=V$ and so $\left[O^{2}(M), Q_{M}\right] \leq V$. Now 2.4 gives $Q_{M}=Y_{M}$ and so $|S|=2^{7}$. In particular, $Q_{M} \cap Q_{2}=V=Q_{M} \cap W$ and $Q_{1} W=Q_{1} Q_{2}=O_{2}(B)$. Thus $Q_{2}=W=Q$ and $\left|S / Q_{2}\right|=2^{2}$. It follows that $\overline{M_{2}}=\overline{T L S} \cong \operatorname{Sym}(3) \times \operatorname{Sym}(3)$. Since $C_{G}(Q) \leq Q$ and $\operatorname{Out}(Q) \cong O_{4}^{+}(2)$ we have $\left|N_{G}(Q) / M_{2}\right| \leq 2$. Since $S \in \operatorname{Syl}_{2}(G)$ this forces $M_{2}=N_{G}(Q)$.

Proof of Theorem 1:

We are now able to prove the theorem. By 2.16 we have that M is an extension of an elementary abelian group of order 16 by $S L_{3}(2)$. Let $z \in Z^{\sharp}$. Since Q is large, $C_{G}(z) \leq$ $N_{G}(Q)$ and so $N_{G}(Q)=C_{G}(z)$. Since Q is generated by involutions, there exists involutions in $M \backslash Y_{M}$ and so $M / V \nsupseteq S L_{2}(7)$. Hence M has a subgroup M^{*} of index two, which is an extension of V by $S L_{3}(2)$.

Let $y \in Y_{M} \backslash V$. 1.1(c) implies that $C_{M}(y)$ is divisible by seven. Since $C_{G}(z)=$ $N_{G}(Q)$ is not divisible by seven, y and z are not conjugate in G. Note that $V \leq Q=$ $[Q, B] \leq M^{*}$. Hence every involutions in M^{*} is conjugate to an involution in Q. Since $M_{2} / Q \cong \operatorname{Sym}(3) \times \operatorname{Sym}(3)$ we see that all involutions in $Q \backslash Z(Q)$ are conjugate under M_{2}. Thus all involution in M^{*} are conjugates of z in G. This shows that y is not conjugate to any involution in M^{*}. By Thompson's Transfer Lemma we get that G possesses a subgroup G^{*} of index two. Since M^{*} is perfect, $M^{*}=M \cap G^{*}$. Moreover $O^{2}\left(M_{2}\right) \leq G^{*}$, $M_{2} \cap G^{*}=C_{G^{*}}(z), O^{2}\left(M_{2}\right) \cong S L_{2}(3) * S L_{2}(3)$ and $\left|\left(M_{2} \cap G^{*}\right) / O^{2}\left(M_{2}\right)\right|=2$. Hence [Asch] shows that $G^{*} \cong G_{2}(3)$. Since $\left|\operatorname{Out}\left(G_{2}(3)\right)\right|=2$ we conclude that $G \cong \operatorname{Aut}\left(G_{2}(3)\right)$.

References

[Asch] M. Aschbacher, Finite groups of $G_{2}(3)$-type, J. Algebra 257, 2002, 197- 214.
[Gr] R.L. Griess, Schur multipliers of the known finite simple groups. II. The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), pp. 279-282, Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, R.I., 1980.
[Hu] B. Huppert, Endliche Gruppen I, Springer 1967
[MeStStr1] U. Meierfrankenfeld, B. Stellmacher, G. Stroth, Finite groups of local characteristic p : an overview in Groups, combinatorics and geometry, Durham 2001 (eds. A. Ivanov, M. Liebeck, J. Saxl), Cambridge Univ. Press, 155-191.
[MeStStr2] U. Meierfrankenfeld, B. Stellmacher, G. Stroth, The Structure Theorem, preprint.
[MeiStr1] U. Meierfrankenfeld, G. Stroth, On quadratic $G F(2)$ - modules for Chevalley groups over fields of odd order, Arch. Math. 55, (1990), 105-110.
[MeiStr2] U. Meierfrankenfeld, G. Stroth, Quadratic $G F(2)$ - modules for sporadic groups and alternating groups, Comm. in Algebra 18, (1990), 2099-2140.
[PaRo] C. Parker, P. Rowley, Symplectic Amalgams Springer 2002.
[Sm1] S. Smith, Irreducible modules and parabolic subgroups, J. Algebra 75, 286 289, 1982. - 279

