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Let p be prime and G a finite group. We say that G has characteristic p if CG(Op(G)) ≤
Op(G) and that G has local characteristic p if all p-local subgroups of G have characteristic
p. G is a Kp–group, if any simple section of any p-local subgroup of G is a know finite simple
group, that is an abelian, an alternating group, a group of Lie type or one of the 26 sporadic
groups. This paper is part of a program to investigate Kp-groups of local characteristic p.
See [MeStStr1] for an overview.

Of fundamental importance to theory of groups of local characteristic p are large sub-
groups: A p–subgroup of a group G is called large if

(i) CG(Q) ≤ Q and

(ii) NG(U) ≤ NG(Q) for all 1 6= U ≤ CG(Q).

For example, if G is simple group of Lie-type in characteristic p, S ∈ Sylp(G) and
Q = Op(CG(Z(S))), then Q is almost always a large subgroup of G. Indeed this is true
exactly when Z(S) is a root group, that is if G is neither Sp2n(2k), n ≥ 2, F4(2k) nor
G2(3k).

If Q is a large subgroup of G, then it easy to see that also Op(NG(Q)) is a large
subgroup of G. For a finite group L let YL be the unique maximal elementary abelian
normal p–subgroup of L with Op(L/CL(YL)) = 1. Such a group exists (see for example
[MeStStr1, Lemma 2.0.1(a)]).

Let G be a finite Kp-group of local characteristic p, S a Sylow p-subgroup of G and Q
a large p-subgroup of G with Q ≤ S and Q = Op(NG(Q)). Let M be a p-local subgroup
of G with S ≤ M and Q 5 M . The Structure Theorem (see [MeStStr2]) determines the
pair (M/CM (YM ), YM ). The proof of the Structure Theorem is subdivided into the cases
YM ≤ Q and YM � Q. Put M◦ = 〈QM 〉, M = M/CM (YM ) and V = [YM ,M

◦]. For the
case that YM � Q the Structure Theorem asserts that one of the following holds:

1. [a] There exists a normal subgroup K of M such that K = K1 ◦K2 with Ki
∼= SLmi(q),

YM
∼= V1⊗V2, where Vi is a natural module for Ki, and M◦ is one of K1,K2 or K1 ◦K2.
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2. [b] (M◦, p, V ) is as in the following table:

M◦ p V

SLn(q) p Vnat

SLn(q) p
∧2(Vnat)

SLn(q) p S2(Vnat)
SLn(q2) p Vnat ⊗ V q

nat

3Alt(6), 3Sym(6), 2 26

ΓSL2(4),ΓGL2(4) 2 Vnat

Sp2n(q) 2 Vnat

Ω±n (q) p Vnat

M◦ p V

O+
4 (2) 2 Vnat

Ω±10(q) 2 halfspin
E6(q) p q27

M11 3 35

2M12 3 36

M22 2 210

M24 2 211

Here q is a power of p and Vnat denotes the natural module of a classical group.
A priori there is no reason why one could not have that YM � Q and [YM ,M

◦] ≤
Q. Indeed this does happen, but a corollary in [MeStStr2] states that its only possible if
M/CM (YM ) ∼= SL3(2) and [YM ,M

◦] is a natural module. The purpose of this paper is to
determine G in this case. We will show that O2(M) = YM , Q is extra-special of order 25,
NG(Q) = CG(Z(Q)) and NG(Q)/Q ∼= Sym(3)× Sym(3). This allows us to conclude that G
possess a subgroup G∗ of index two. A result of Aschbacher [Asch] then shows that G∗ is
isomorphic to G2(3). More precisely we prove:

Theorem 1. [main] Let G be a finite K2-group, S a Sylow 2-subgroup of G and Q ≤ S ≤
M ≤ G. Suppose that

(i) [a] Q is a large 2-subgroup of G and Q = O2(NG(Q));

(ii) [b] M/O2(M) ∼= L3(2) and [YM ,M ] is a natural SL3(2)-module for M ; and

(iii) [c] YM � Q and [YM ,M ] ≤ Q .

Then G is isomorphic to Aut(G2(3)).

We remark that the proof of this theorem is independent from the Structure Theorem.
In a forthcoming paper we will determine the structure of G in the remaining cases for
YM � Q in the Structure Theorem.

1 Preliminaries

In this section we collect some results on modules for quasisimple groups, which will be
needed in the proof of the theorem.

As the three dimensional module for SL3(2) will play a prominent role, we start with
collecting some facts about this module:

Lemma 1.1. [l32] Let M = SL3(2) and V a corresponding natural F2M -module. Let W1 be
the transvection group in M to a point in V and W2 the transvection group to a hyperplane
in V .
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(a) [i] Let τi be an element of order 3 in G normalizing Wi, i = 1, 2, then [[W1, V ], τ1] = 1,
while [[W2, V ], τ2] = [W2, V ].

(b) [ii] Let V1 be a F2M -module with [V1,M ] = V , CV1(M) = 0 and V1 6= V . Then
|V1/V | = 2, V = [V1,W1] and [V1,W2] = [V,W2]. In particular, W1 does not act
quadratically on V1.

(c) [iii] Let V1 be as in (b) and v ∈ V1 \V . Then |CM (v)| = 21 and M acts transitively on
V1 \ V .

Proof. (a) is clear. To prove (b) let t ∈ W ]
2 . Then [V1, t] ≤ CV (t) = CV (W2) = [V,W2]

and so [V1,W2] = [V,W2]. Put V2 = V + CV1(t) and note that V2 is an F2M -submodule
of V1 and |V2/CV2(t)| = 2. Let U = NM (W2). So U ∼= Sym(4) and we may generate U by
three conjugates of t. Hence |V2/CV2(U) ≤ 23. Since CV (U) = 0, we get V2 = V ⊕ CV2(U).
Gaschütz’ Theorem [Hu, (I.17.4)] now shows that V2 splits over V . Since CV (M) = 0
we conclude that V = V2 and CV1(t) ≤ V . From [V2, t] ≤ CV (t) we have |V1/CV (t)| =
|V1/CV1(t)| = |[V2, t]| ≤ 4. Since V1 6= V this implies that |V1/V | = 2 and [V1, t] = CV (t).
Note that V = 〈CV (t) | t ∈W ]

1〉 and so V = [V,W1]. Thus (b) holds.
Let v ∈ V1\V . Since CV1(t) ≤ V , CM (v) has odd order. Thus 8 ≤ |M/CM (v)| = |vM | ≤

|v + V | = 8 and (c) holds.

A finite group is a CK-group if all of its composition factors are known finite simple
groups.

Lemma 1.2. [kleinlie] Let H be a finite CK-group, V a faithful F2H–module and x a
2-central involution in H. Put L = F ∗(H). Suppose that

(i) [a] L is quasisimple and V is a simple F2L-module; and

(ii) [b] H = L〈x〉, |[V, x]| ≤ 4 and x is contained in a quadratic fours group of H on V .

Then one of the following holds:

1. [i] H ∼= SLn(2), SLn(4), Sp2n(2) Sp2n(4), SUn(2), G2(2)′ or Ω±2n(2) and V is a corre-
sponding natural module.

2. [ii] H ∼= Sp(6, 2), V is the spin module and x is a short root element.

3. [iii] H ∼= 3Alt(6) and V is the 6–dimensional module.

4. [iv] L ∼= Alt(n) and V is the permutation module. Moreover, either H ∼= Sym(n) and x
is 2-cycle or H ∼= Alt(n) and x is a double 2-cycle.

5. [v] H ∼= Alt(7) and V is the four dimensional module.
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Proof. Suppose first that L/Z(L) is a group of Lie type in characteristic 2. Since Op(L) = 1
we conclude from [Gr] that L itself is a group of Lie-type. Since x is 2-central we have
x ∈ L and so H = L. Then by [PaRo, 14.25] either (1) holds or L ∼= Sp6(2) and V is the
spin module.

Consider the latter case and let S be a Sylow 2–subgroup of L with x ∈ Z(S). Let
W be the natural module for L. Then [Z(S),W ] is 2–dimensional and singular. So there
exists u ∈ W such that 〈[W,Z(S)], u〉 is a 3–dimensional singular space. Denote by y the
transvection to u. Then we have that CL(y) acts irreducibly on Vy = CV (O2(CG(y))) by
[Sm1]. So Vy is the natural module for CL(y)/O2(CL(y)) ∼= Sp4(2). As [V, y] ∩ Vy � 1, we
see that Vy ≤ [V, y] ≤ CV (y). In particular, V/CV (y) involves a natural module isomorphic
to Vy. Further this natural modules is not isomorphic to O2(CL(y))/〈y〉 as CL(y)–module.
By the choice of y, we have that Z(S) ∩ O2(CL(y)) = 1 and Z(S)O2(CL(y))/O2(CL(y)) =
Z(S/O2(CL(y)). Since |[V, y]| = 4, x has to induce a transvection on Vy and so does not act
as a transvection on O2(CL(y))/〈y〉. Hence x is a short root element in CL(y)/O2(CL(y))
and then also in L. Thus (1) holds.

So we may assume from now on that L/Z(L) is not a group of Lie-type in characteristic
2. Since |[V, x]| ≤ 4, [PaRo, 15.3] shows that L/Z(L) is not a sporadic group.

Suppose L ∼= Alt(6), 2F4(2)′ or G2(2)′. Since x is 2-central either H = L or H ∼= Sp4(2).
In the first case we are done by [PaRo, 14.29] and in the second by [PaRo, 14.25].

Suppose now L/Z(L) ∼= Alt(n) but Z(L) 6= 1. Then by [Gr] n = 6 or 7 and |Z(L)| = 3.
As [V, x]| ≤ 4 this forces [Z(L), x] = 1. Thus x ∈ L, H = L and H can be generated by
three conjugates of x. Therefore |V | ≤ 64 and so n = 6, the assertion (3).

Suppose next that L ∼= Alt(n), n = 7 or n ≥ 9. If V is the permutation module, then
|[V, x]| ≤ 4 implies that x is a 2-cycle or a double 2-cycle and (4) holds.

If V is not the permutation module, then since M contains a quadratic fours-group on
V , V is the spin-module (see [MeiStr2]). In particular, the 3-cycles in M act fixed-point
freely on V . If x is not a fixed-point free permutation, then x inverts a three cycle d and
so |V | = |[V, d]| ≤ [V, x]|2 = 16. Thus (5) holds. So suppose that x is a fixed-point free
permutation. Then n is even, n ≥ 10 and x inverts a double 3-cycle. Since a 3-cycle is
the product of two double 3-cycles we conclude that |V | ≤ |[V, x]|4 = 28, a contradiction to
n ≥ 10.

Suppose finally that L/Z(L) is a group of Lie-type in odd characteristic. Since M
contains a quadratic fours group, [MeiStr1] show that L ∼ 3.U4(3). Since x is 2-central,
x ∈ L and since L has a unique conjugacy class of involutions, we see that x is contained
subgroup K of L with K ∼= 3.Alt(6). Let U be any composition factor for K on V . Since
Z(K) ≤ Z(L), U is a faithful K-module. By the 3.Alt(6)-case, |U | = 26 and since [U, x] is
Z(K)-invariant, |[U, x]| ≥ 4 = |[V, x]|. Thus U is the only composition factor for K on V
and |V | = 26, a contradiction, since 37 divides |L| but not |GL6(2)|.

Lemma 1.3. [char irr] Let H be a group, F a field, W an FH-module and A E B ≤ H.
Suppose that there exist a simple FB-submodule Y of W with [W,A] ≤ Y and W = 〈Y H〉.
Then every proper FH-submodule of W is centralized by 〈AH〉. In particular, W/CW (〈AH〉)
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is a simple FH-module.

Proof. Let U be a submodule of FH-submodule of W with U 6= W . Since W = 〈Y H〉 we
have Y � U . Hence [U,A] � Y and since Y is a simple B-module, [U,A] = 1. Thus also
[U, 〈AH〉] = 1.

2 Proof of the Theorem

In this section we prove Theorem 1. So let G,M,S and Q be as there. We set C̃ = NG(Q),
V = [YM ,M ], M̃ = NG(V ), M◦ = 〈QM 〉, Z = Ω1Z(S) and QM = O2(M).

Let L be minimal in C̃ such that L is M ∩ C̃-invariant and YM � O2(LYM ). Set
W = 〈V L〉, B = (M ∩ C̃)(L ∩ M̃), M1 = MB, M2 = LB, Qi = O2(Mi), H = LYM and
T = O2(M ∩ C̃). Note here that M E M1 ≤ M̃ , L E M2 ≤ C̃ and B ≤ M1 ∩M2. For
X ≤M2 put X = XQ2/Q2 and for X ≤W put X̂ = XZ(W )/Z(W ).

Lemma 2.1. [M]

(a) [f] CG(M◦) = 1, Z(M) = 1 and YM = Ω1Z(QM ).

(b) [a] |Z| = 2, M ∩ C̃ = CM (Z), QQM = O2(M ∩ C̃), M = M◦QM and [YM , Q] = V .

(c) [b] M̃ = M◦CG(V ) and [M◦, CG(V )] ≤ O2(M◦) ≤ O2(M̃) ≤ QM .

(d) [g] M1 = M◦B = M◦(L ∩ M̃) and M1 is a subgroup of M̃ .

(e) [c] YM E M̃ and CG(V ) = CG(YM ).

(f) [d] O2(M◦) = M◦ ∩ Q1, B = (M◦ ∩ B)CB(V ), CM1(V ) = CB(V ) and M1/Q1 =
M◦Q1/Q1 × CB(V )/Q1.

(g) [e] O2(B) = Q1Q2 = Q1Q.

Proof. (a) If Q ≤ QM , then YM ≤ CG(Q) ≤ Q, a contradiction to the assumptions. Thus
Q � QM . Suppose CG(M◦) 6= 1. Then since Q is large, M ≤ NG(CG(M◦)) ≤ NG(Q) = C̃
and so Q = O2(C̃) ≤ O2(M) = QM , a contradiction. Hence CG(M◦) = 1 and so also
Z(M) = 1. Clearly YM ≤ Ω1Z(QM ). Since QM ≤ CM (Ω1Z(QM )) / M and M/QM (∼=
SL3(2)) is simple, CM (Ω1Z(QM )) = QM and so O2(M/CM (Ω1Z(QM )) = 1. The definition
of YM now implies that YM = Ω1Z(QM ).

(b) By Gaschütz’ theorem, Z ≤ [YM ,M ]Z(M) = V . Since V is a natural SL3(2)-module
for M we get that |Z| = |CV (S)| = 2. Since Q � QM and M/QM is simple, M = M◦QM .
Since Z ≤ CG(Q) ≤ Q and Q is large, CM (Z) ≤ M ∩ C̃. So CM (Z) normalizes CV (Q)
and thus CV (Q) = Z. Since M ∩ C̃ normalizes CV (Q) this implies CM (Z) = M ∩ C̃.
Thus M ∩ C̃/QM

∼= Sym(4) and since QQM/QM is a non-trivial normal 2-subgroup of
M ∩ C̃/QM , QQM = O2(M ∩ C̃). Hence by 1.1(b), [YM , Q] = V .

(c) Since M◦ induces Aut(V ) on V , M̃ = M◦CG(V ).
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Since Q is large, CG(V ) ≤ CG(CV (Q)) ≤ NG(Q) and thus [Q,CG(V )] ≤ Q. So
[Q,CG(V )] ≤ O2(CG(V )) ∩M◦ ≤ O2(M◦). Conjugation under M gives, [M◦, CG(V )] ≤
O2(M◦) and so (c) holds.

(d) By (b), M = M◦QM and since QM ≤ B, we have M1 = MB = M◦B. As
B = (M◦ ∩ B)(L ∩ M̃), M1 = M◦(L ∩ M̃ . By (c) , M̃ normalizes M◦. Since B ≤ M̃ , we
conclude that M1 = M◦B is a subgroup of M̃ .

(e) Put D := 〈Y M̃
M 〉. Since M̃ normalize both M◦ and V we get [D,M◦] = V and

[D,O2(M◦)] = 1. By (a) CD(M◦) = 1. Since [D,V ] = 1 we have [D,M◦, D] = 1 and
the Three Subgroups Lemma implies [D,D,M◦] = 1 and D′ ≤ CD(M◦) = 1. So D is
abelian and thus elementary abelian. Hence by 1.1, |D/V | ≤ 2 and so YM = D. Hence
YM E M̃ . Since |YM/V | = 2 we get [YM , M̃ ] ≤ V and so [YM , O

2(CG(V ))] = 1. Since
QM = CS(V ) ∈ Syl2(CG(V )) and [QM , YM ] = 1, this gives [YM , CG(V )] = 1 and so
CG(V ) = CG(YM ).

(f) Since M◦ E M̃ and M1 ≤ M̃ , O2(M◦) EM1. Also Q1 ∩M◦ EM◦ and so O2(M◦) =
Q1 ∩M◦. Since M̃ = M◦CG(V ), M1 = M◦CM1(V ). As B normalizes CV (Q) = Z we
have B ≤ NM1(Z) = (M◦ ∩B)CM1(V ) and so B = (M◦ ∩B)CB(V ), M1 = M◦CB(V ) and
CM1(V ) = CB(V )CM◦(V ) = CB(V ).

(g) Note that O2(CM1(V )) ≤ Q1 and O2(M◦ ∩ B) = O2(M◦)Q ≤ Q1Q. Since B/Q1 =
(M◦ ∩ B)Q1/Q1 × CB(V )/Q1, this implies O2(B) = Q1Q. Since Q ≤ Q2 ≤ O2(B), we get
O2(B) = Q1Q2.

Lemma 2.2. [elem]

(a) [e] L = O2(L) = [L, YM ] and H = 〈Y L
M 〉 = 〈YM2

M 〉

(b) [f] W 6= V , [W,L] 6= 1 and CQ2(L) = CQ2(H) = CQ2(W ) ≤ Q1.

(c) [b] [Q′2, L] = 1 and [Q2, L] ≤W .

(d) [z] WQ1 = O2(B), [YM ,W ] = V and V ∩ Z(W ) = Z.

(e) [a] [W,Q2] = W ′ = Z = Φ(W ).

(f) [c] [W,L] = W and CW (L) = Z(W ).

(g) [d] Ŵ is a selfdual, simple F2M2–module and homogeneous F2H-module.

Proof. By the minimal choice of L, L = O2(L) and L = [L, YM ]. In particular, 〈Y L
M 〉 =

YM [L, YM ] = LYM . Together with 2.1(e) this is (a).
Suppose W = V . Then L ≤ NG(V ) = M̃ and YM ≤ O2(LYM ), a contradiction to the

choice of L. If [W,L] = 1, then W = 〈V L〉 = V , a contradiction.
Thus W 6= V . Set D = CQ2(L). Suppose D � Q1. Since B normalizes D and acts

simply on O2(B)/Q1 we get DQ1 = O2(B) and so by 1.1(b), V = [YM , D] ≤ D and
[V,L] = 1, a contradiction. Thus D ≤ Q1 and D ≤ CQ2(LYM ) = CQ2(〈Y L

M 〉).
Since CQ2(V ) = Q2∩QM = CQ2(YM ) we have CQ2(W ) = CQ2(〈VM2〉) = CQ2(〈YM2

M 〉) ≤
CQ2(L) ≤ D and so (b) holds.
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As Q′2 ≤ QM , we have that [Q′2, YM ] = 1. Since L ≤ 〈Y L
M 〉, we get [L,Q′2] = 1. Further

as [YM , Q2] ≤ V ≤W , we also get [Q2, L] ≤W , which is (c).
If [W,V ] = 1, thenW = Z(W ). Thus (b) givesW ≤ CQ2(W ) = CQ2(L), a contradiction.

Hence [W,V ] 6= 1 and W � Q1. Since B normalizes WQ1 this gives WQ1 = O2(B) and so
[YM ,W ] = V and V ∩Z(W ) = CV (W ) = Z. Thus (d) holds. Moreover, [W,V ] = [Q2, V ] =
Z. By (c) Z is centralized by L and so since W = 〈VM2〉 = 〈V L〉, [W,W ] = [W,Q2] = Z,
which is (e).

By (b) Z(W ) = CW (L) = CW (H) and since L = O2(L), Z(W )/Z = CW/Z(L) =
CW/Z(〈YM2

M 〉). Since M ∩ C̃ acts simply on V/Z we conclude from 1.3 that Z(W )/Z is the
unique maximal M2-submodule of W/Z. If [W,L] ≤ Z(W ), then W = 〈V L〉 = V Z(W )
and W is abelian, a contradiction. Thus [W,L] � Z(W ) and so W = [W,L]Z. By (e)
Z ≤ [W,L] and so W = [W,L]. So (f) is proved and Ŵ is a simple F2M2-module.

The commutator map Ŵ × Ŵ → Z, [xZ(W ), yZ(W )]→ [x, y] is a non-degenerate bilin-
ear form on Ŵ and so Ŵ is a selfdual F2M2-module. Suppose that Ŵ is not homogeneous
as an F2H-module and let Ŵi, 1 ≤ i ≤ n, be the Wedderburn components of H in Ŵ . Then
Ŵ =

⊕n
i=1 Ŵi and so V̂ = [Ŵ , YM ] =

⊕n
i=1[Ŵi, YM ]. It follows that the action of B on

V̂ is imprimitive. But V̂ ∼= V/V ∩ Z(W ) = V/Z as B-module and so |V̂ | = 4 and B acts
transitively on V̂ ], a contradiction.

Lemma 2.3. [Wquad]

(a) [a] W acts quadratically on QM/V . In particular, any non-trivial composition factor
for M on QM/V is a natural SL3(2)-module.

(b) [b] NM2(YMQ2) = NM2(V ) = B.

(c) [c] If g ∈ L with [YM , Y
g
M ] ≤ Q2, then [YM , Y

g
M ] = 1 and YMY

g
M acts quadratically on

Q2 and Ŵ .

(d) [d] CM2(Ŵ ) = Q2.

Proof. We have that [QM ,W,W ] ≤ [W,W ] = Z ≤ V , by 2.2(c),(e). So [QM/V,W,W ] = 1.
Since WQM/QM has order 4, W does not act quadratically on the Steinberg module. Since
the only simple F2SL3(2) modules are the trivial module, the two natural modules and the
Steinberg module, we have (a).

(b) Let g ∈ NL(YMQ2). Then g normalizes [W,YMQ] = [W,YM ] = V by 2.2(d).
(c) By (b) we have that Y g

M ≤ M̃ and by symmetry YM ≤ M̃g. Thus R := [YM , Y
g
M ] ≤

V ∩V g. Suppose that R 6= 1. Then by 2.1(e), [V, Y g
M ] 6= 1. By 1.1 (applied to V1 = YM ) R is

a fours group. Since R ≤ V g the action of M̃g on V g shows that there is 1 6= x ∈ R such that
V � O2(CM̃g(x)). Note that x ∈ V and so [x,Qm] = 1 for some m ∈M . Then V ≤ Qm and
since Qm is large, Qm ≤ O2(CG(x)), a contradiction. So we have R = 1. Hence YMY

g
M is

abelian and since Q2 normalizes YMY
g
M , [Q,YMY

g
M ] ≤ YMY

g
M and [[Q,YMY

g
M ], YMY

g
M ] = 1.

This is (c).
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(d) Since Ŵ is a simple M2-module, Q2 ≤ CM2(Ŵ ). Let E := O2(CM2(Ŵ )). Since
L � E, the minimality of L shows that [H ∩ E,H] ≤ Q2. Hence H ∩ E ≤ Z(H) and so
H ∩ E has odd order and O2

(
(H ∩ E)YM

)
= YM . Since [E,H] ≤ H ∩ E we conclude that

E normalizes (H ∩ E)YM and YM . (b) implies that E ≤ B. Thus [V,E] ≤ V ∩ Z(W ) = Z.
Since E = O2(E) we get [V,E] = 1. Thus [M◦, E] ≤ CM◦(V ) ≤ Q2. Since Q2 normalizes
E we have O2(EQ2) = O2(E) = E and so M◦ normalizes E. Note that also M2 normalizes
E. Suppose for a contradiction that E 6= 1. Since CG(Q) ≤ Q we get 1 6= [E,Q] ≤ O2(E).
Since M◦B = M1, M1 normalizes E. So O2(E) ≤ Q1 and since V is the unique minimal
normal subgroup of M1, V ≤ Z(O2(E)). But then also W ≤ Z(O2(E)) and W is abelian,
which contradicts 2.2(e).

Thus E = 1, CM2(Ŵ ) is 2-group and (d) holds.

Lemma 2.4. [qm=ym] Suppose [Q1, O
2(M)] ≤ YMQ2. Then YM = QM .

Proof. Put E = [Q1, O
2(M)]. Since [QM , O

2(M)] = [QM , O
2(M◦)] ≤ O2(M◦) ≤ Q1 we

have E = [QM , O
2(M)]. From E ≤ YMQ2 we get [E,W ] ≤ [YMQ2,W ] ≤ V . It follows that

E = [E,O2(M)] ≤ V . Thus V � Φ(QM ), QM is elementary abelian and QM = YM

Lemma 2.5. [nonsolv] Suppose L is nonsolvable and let W1 be a simple L-submodule of
Ŵ . Then L is quasisimple, L = F ∗(H), H normalizes W1, W1 is a selfdual H-module and
either Ŵ = W1 or Ŵ = W1 ⊕W2 where W2 is a H-submodule of Ŵ isomorphic to W1.

Proof. Since L is nonsolvable the minimality of L shows that L = E(L). By 2.3(d), Ŵ
is a faithful and simple M2-module. Let L be the set of components of L and L1 ∈ L.
Then L = 〈LB

1 〉 = 〈L〉. By Feit-Thompson L1 has even order and since YM ≤ Z(S), we
get that YM normalizes L1. So YM acts trivially on L. As H = 〈YM2

M 〉 we conclude that
all components of L are normal in H. Let U be a non-trivial simple L1-submodule of Ŵ .
Since L1 is not solvable, |U | > 4. Let y ∈ YM . Since |W/CW (y)| ≤ 4, U ∩ Uy 6= 1 and
since L1 normalizes U ∩ Uy, U = Uy. Thus H = 〈YM2

M 〉 normalizes all non-trivial simple
L1-submodules of Ŵ . Schur’s Lemma together with the fact that finite division ring are
commutative shows that CH(L1)′ centralizes U . Since Ŵ is a homogeneous H-module, this
implies that CH(L1) is abelian. Hence L1 is the only component of L and L = L1. Note
that O2(H) ≤ O2(M2) = 1 and as H/L is a 2-group, F ∗(H) = L. Since Ŵ is homogeneous
and |[Ŵ , YM ]| = |V̂ | ≤ 4, Ŵ is the direct sum of at most two simple H-submodules and all
parts of the lemma are proved.

Let U be a simple H-submodule of Ŵ .

Lemma 2.6. [Xstruk] Suppose L is nonsolvable. Then one of the following holds:

1. [i] H ∼= SLn(2), SLn(4), Sp2n(2), Sp2n(4), SUn(2), Ω±2n(2) or G2(2)′ and U is corre-
sponding natural module.

2. [ii] H ∼= Sp6(2), U is the spin-module and YM is a short root subgroup of H.
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3. [iii] H ∼= Sym(n) or Alt(n), U is the natural permutation module and YM is generated
by a 2-cycle or double 2-cycle.

4. [iv] H ∼= Alt(7) and U is a spin-module.

5. [v] H ∼= 3Alt(6) and U is the 6–dimensional module.

Proof. By 2.5 F ∗(H) = L and F ∗(H) is quasisimple. Since Ŵ is a faithful, homogeneous
H-module, CH(U) = 1. Note that |YM | = 2 and YM ≤ Z(S ∩ H). Thus Glauberman’s
Z∗-Theorem implies that there exists g ∈ L with YM 6= YM

g and [YM , YM
g] = 1. By 2.3(c),

YMY
g
M induces a quadratic fours group on U . Since [U, YM ] ≤ V̂ , [U, YM ] has order at most

4. Now the assertion follows with 1.2.

Lemma 2.7. [Sln1] Suppose L ∼= Alt(n), n = 5 or n > 6, then U is not the natural
permutation module for L.

Proof. By 2.3 for any g ∈ L with [YM , Y
g
M ] ≤ Q2, we have that YMY

g
M induces a quadratic

group on Ŵ . By 2.6(3) YM either corresponds to (12)(34) or (12). Since 〈(12)(34), (13)(24)〉
does not act quadratically on U , we get that YM is conjugate to 〈(12)〉. Since YM is 2-
central we get n 6= 5 and so n > 6. Note that Q1L E LB = M2 and so O2(Q1L) = 1
and Q1L ∼= Sym(n). Thus by 2.3(c), B ∩Q1L ∼= C2 × Sym(n − 2). Since n − 2 > 4
we have O2(Sym(n − 2)) = 1 and so O2(B ∩ Q1L) = YMQ2. Hence Q1 ≤ YMQ2 and
[Q1,W ] ≤ [YMQ2,W ] ≤ V . By 2.4 QM = YM and so |S/YMQ2| = |S/QMQ2| = 2, a
contradiction to (B ∩Q1L)/Q2YM

∼= Sym(n− 2).

Lemma 2.8. [orth] Suppose L ∼= Ω±2n(2) or Sp2n(2)′ and U is the corresponding natural
module. Then H ∼= Sp2n(2), Ŵ is the direct sum of two H-submodules isomorphic to U
and YM induces a transvection on U .

Proof. Let P be the point stabilizer of H on the natural module with S∩L ≤ P . Then YM ≤
O2(P ) and O2(P ) is abelian. Hence 〈YM

P 〉 is abelian and (by 2.3(c)) acts quadratically on
Ŵ and on the natural module. The action of P on the natural module now shows that
H ∼= Sp2n(2), P normalizes YM and YM induces a transvection on the natural module.

Lemma 2.9. [Sln] L is none of SLn(2), n ≥ 3, SLn(4), n ≥ 3, 3 ·Alt(6) and Alt(7)

Proof. Then by 2.5, U is self-dual. Note that the natural modules for SLn(q), n ≥ 3, is
not selfdual, the 6-dimensional module for 3. · Alt(6) is not selfdual and the 4-dimensional
module for Alt(7) is not self dual. Hence by 2.6 we conclude that U is the orthogonal
module for H ∼= SL4(2) ∼= Ω+

6 (2), but this contradicts 2.8.

Lemma 2.10. [elem b]

(a) [a] Let F EB with [V/Z, F ] 6= 1. Then T ≤ F .

(b) [b] Suppose that [V/Z,L ∩B] 6= 1. Then T ≤ L ∩B and M2 = LS.
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Proof. (a) By 2.1(f), B = (B∩M◦)CB(V ) and B∩M◦/O2(B∩M◦) ∼= SL2(2). It follows that
CB∩M◦(V/Z) = O2(B ∩M◦). Hence B/CB(V/Z) ∼= SL2(2), R := [F,M◦ ∩B] � CB(V/Z)
and R � O2(M◦ ∩B). Since REM◦ ∩B this gives T = O2(M◦ ∩B) ≤ R ≤ F .

(b) By (a) applied to F = L ∩ B we have T ≤ L ∩ B ≤ L. Thus M2 = L(M ∩ B) =
LTS = LS.

Lemma 2.11. [mi] Suppose L is non-solvable. Then one of the following holds.

1. [a] M1/Q1
∼= SL3(2) × Sp2n−2(2), B/O2(B) ∼= SL2(2) × Sp2n−2(2), M2

∼= Sp2n(2) ×
SL2(2) and Ŵ is the tensor product of the corresponding natural modules.

2. [b] M1/Q1
∼= SL3(2)×SL2(2), B/O2(B) ∼= SL2(2)×SL2(2), M2

∼= ΓSU4(2) ∼ SU4(2).2
and Ŵ is the corresponding natural module.

3. [c] M = M1, B/O2(B) ∼= Sym(3), M2
∼= ΓGL2(4) ∼ (C3 × SL2(4)).2 and Ŵ is the

corresponding natural module.

4. [d] M = M1, B/O2(B) ∼= Sym(3), M2
∼= G2(2) or G2(2)′ and Ŵ is the corresponding

natural module.

5. [e] M1/Q1
∼= SL3(2), B/O2(B) ∼= SL2(2) × SL2(2) , M2

∼= Sp6(2) and Ŵ is the
spin-module.

Proof. By 2.6-2.9 one of the following holds:

(a) [1] H ∼= Sp2n(2), n ≥ 4 and Ŵ is the direct sum of two isomorphic natural modules
and YM induces a transvection on these natural modules.

(b) [2] H ∼= SUn(2), Ŵ is a natural module and YM induces a F4-transvection on Ŵ .

(c) [3] H ∼= Sp2n(4), Ŵ is a natural module and YM induces a F4-transvection on Ŵ .

(d) [4] H ∼= G2(2)′, Ŵ is the natural module and YM is long root element.

(e) [5] H ∼= Sp6(2), Ŵ is the spin-module and YM is a short root element.

Since by 2.3(b)H ∩B = CH(YM ) this allows us to computeH ∩B. Also V/Z ∼= [Ŵ , YM ]
as a B-module and so this determines the action of H ∩B on V/Z. Put D = CM2(H). Note
that D ≤ NM2(YM ) = B and

(*) (M◦ ∩B)O2(B)/O2(B) is a normal subgroup of B/O2(B) isomorphic to SL2(2).

Suppose (a) holds. Then M2 = DH. Since M2 acts simply on Ŵ , but H does not, we
get D 6= 1. Since W = 〈VM2〉 we have [V/Z,D] 6= 1 and so by 2.10(a), T ≤ D. Now (*)
implies that D � Z(M2) and so D is not abelian. Now CGL(Ŵ )(H) ∼= SL2(2) and thus
D ∼= SL2(2). Moreover, B ∩H/O2(B ∩H) ∼= Sp2n−2(2) and we see that (1) holds in this
case.
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Suppose (b) holds. Then L∩B/O2(L∩B) ∼= C3×SU2n−2(2) and L∩B/CL∩B(V/Z) ∼=
C3. In particular, L ∩ B acts non-trivially on V/Z and so by 2.10(b), M2 = LS. Then
(*) shows that M2 6= L and so M2

∼= ΓSUn(2) = SUn(2)〈σ〉, where σ induces a field
automorphism of order 2. Thus B/O2(B) ∼= (C3×SUn−2(2))〈σ〉 and (*) implies that n = 4
and B/O2(B) ∼= SL2(2)× SL2(2). Thus (2) holds.

Suppose (c) holds. Then L∩B/O2(L∩B) ∼= Sp2n−2(4) and L∩B centralizes V/Z. Thus
T � L and since Out(H) = 2 we get D 6= 1. Hence by 2.2(c), T ≤ D. Since CGL(Ŵ )(H) ∼=
C3 this gives T = D ∼= C3. Now (*) shows D � Z(M2) and so M2

∼= (C3 × Sp2n(4))〈σ〉,
where σ induces a field automorphism of order 2. Thus B/O2(B) ∼= (C3 × Sp2n−2(4))〈σ〉
and (*) implies that n = 1 and B/O2(B) ∼= SL2(2). Thus B = M ∩B and (3) holds.

Suppose that (d) holds. Then B ∩H/O2(B ∩H) ∼= SL2(2) and B ∩ L acts non-trivally
on V/Z. So 2.10(b) shows that M2 = LS and T ≤ L ∩ B. Therefore B = M ∩ B and (4)
holds.

Suppose that (e) holds. Then B ∩H/O2(B ∩H) ∼= SL2(2) and B ∩ L acts non-trivally
on V/Z. So 2.10(b) shows that T ≤ L ∩ B and M2 = LS. Since Out(H) = 1, this gives
M2 = H, B/O2(B) ∼= SL2(2)× SL2(2) and (5) holds.

Lemma 2.12. [q=w] Suppose L is nonsolvable. Then Q2 = W = Q and Z(W ) = Z.

Proof. Suppose first that CQ2(W ) 6= Z and let DEM2 be minimal with D ≤ CQ2(W ) and
D 6= Z. By 2.2, [D,L] = 1 and D ≤ Q1. Since M2 = (M ∩B)L and (M ∩B)/O2(M ∩B) ∼=
SL2(2) we get that either [D,M2] ≤ Z and |D/Z| = 2 or M2/CM2(D/Z) ∼= SL2(2) and
|D/Z| = 4. In any case [D,QM ] ≤ Z and Φ(D) ≤ Z. Let g ∈M1 \B. Then Z 6= Zg.

We will now show that D is abelian. If |D/Z| = 2 this is obvious. So suppose |D/Z| = 4.
Then CM∩B(D/Z) = O2(M ∩ B). Since W ∩ Bg = CW (Zg) acts non-trivially on V/Zg,
we have W ∩ Bg � O2(M ∩ Bg). Put R := [Dg,W ∩ Bg]. It follows that R ≤ Dg and
R � Zg. Since Dg ≤ Q ≤ NG(W ), R ≤W . Thus by 2.1(b), Φ(R) ≤ Z. On the other hand
Φ(R) ≤ Φ(Dg) ≤ Φ(W g) = Zg. As Z ∩ Zg = 1, R is elementary abelian. Since Bg acts
transitively on Dg/Zg this implies that all non-trivial elements of Dg have order two.

Thus D is abelian. Note that [D,Dg] ≤ [D,Q1] ∩ [Q1, D
g] ≤ Z ∩ Zg = 1 and so

E := 〈DM1〉 is abelian. Suppose that [E,W ] ≤ V . Since O2(M) ≤ 〈WM1〉, we get
[E,O2(M)] ≤ V . Since M1 = O2(M)B and B normalizes D, E = 〈DO2(M)〉 ≤ DV .
Hence E = DV , [D,QM ] E M and Φ(D) E M . Since [D,QM ] ≤ Z and Φ(D) ≤ Z we
conclude that [D,QM ] = 1, Φ(D) = 1 and D ≤ YM . Thus D ≤ YM ∩ Q2 = V . Since B
normalizes D and V � D this implies D = Z, a contradiction.

Hence [E,W ] � V and so E � YMQ2 and YM � EYM . Since EYM is abelian and W

normalizes EYM , EYM acts quadratically on Ŵ .
In all cases of 2.11 except (3) YM is a maximal quadratic normal subgroup of B ∩M2 =

CM2
(YM ) on Ŵ . So M2

∼= ΓGL2(4). Note that S ∩ H = YMY
h
MQ2 for some h ∈ M2

and [W,S ∩ H] ≤ [W,YMY
h
M ]Z ≤ YMY

h
M . By 2.3(c), YMY

h
M is elementary abelian and so

also [W,S ∩ H] is elementary abelian. Since W = [W,H], Gaschütz Theorem shows that
Z(W )/Z = CW (L) ≤ [W/Z, S ∩ H] and so Z(W ) ≤ [W,S ∩ H]. It follows that Z(W ) is
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elementary abelian. Since H acts transitively on Ŵ ] this means that all non-trivial elements
in W are involutions. Thus W is elementary abelian, a contradiction.

We have proved that CQ2(W ) = Z. In particular, Z(W ) = Z. Since [W,Q2] = Z we
have |Q2/CQ2(W )| ≤ |Ŵ | and so Q2 = WCQ2(W ) = WZ = W .

Lemma 2.13. [g22] L � G2(2)′ and L � SL2(4).

Proof. Otherwise L acts transitively on Ŵ ]. Since Z(W ) = Z and V ≤ W we conclude
that all elements of W ] have order two and W is elementary abelian, a contradiction.

Lemma 2.14. [e/v] Suppose L is nonsolvable. Then

(a) [a] M1/Q1
∼= SL3(2)× SL2(2), Q1 = [Q1,M1]YM , and [Q1,M1]/V is a tensor product

of natural modules.

(b) [b] M2/Q2
∼= SL2(2)× Sp4(2), Q2 is extra special of order 29 and Q2/Z is the tensor

product of natural modules.

Proof. Put E = 〈(W ∩Q1)M1〉. By 2.13 one of 2.11(1), (2) and (5) holds. Put m = n− 1 in
the first case and m = 1 in the other two. Since Z(W ) = Z by 2.12 this implies that in all
cases W ∩Q1 = [W,Q1], B/O2(B) ∼= SL2(2)×Sp2m(2) and W ∩Q1/V is the tensor product
of natural modules for B/O2(B)-module. In particular, W ∩ Q1/V is a simple B-module.
Moreover, [E,Q1] = V and E/V is elementary abelian. Put F/V = CE/V (〈WM1〉). Then
by 1.3, E/F is a simple M1-module and so E/F ∼= E1⊗E2 where E1 is a simple M◦-module
and E2 is a simple CB(V )-module. Since [E1,W ]⊗E2

∼= [E,W ]F/F ∼= W ∩Q1/V as an B-
module we conclude that E2 is natural Sp2m(2)-module for CB(V )and [E1,W ] is a natural
SL2(2)-module for B ∩M◦. Thus E1 is a natural SL3(2)-module for M◦ dual to V . In
particular, [E, T ] ≤ (W ∩Q1)F . Since [Q1,W ] ≤ Q1∩W ≤ E we have [Q1, O

2(M)] ≤ E. It
follows that [Q1, T ] ≤W . Since O2(B) = Q1W by 2.2(d) this implies [O2(B), T ] ≤W ≤ Q2.
Thus T centralizes O2(B)/Q2. This rules out cases 2.11(2) and (5).

Hence 2.11(1) holds. The structure ofM2 shows that CB(V ) has exactly three non-trivial
composition factors onO2(B). Since CB(V ) also has three non-trivial composition factors on
E/F we conclude that [E,O2(CB(V ))] ≤ V . On the other hand, E/V = 〈(W ∩Q1/V1)M◦〉
and so E/V as an CB(V )-module is the direct sum of copies of the non-trivial simple CB(V )-
module W ∩Q1/V1. Thus F = V and E/W ∩Q1 is a natural Sp2m(2)-module for CB(V ).
It follows that E ∩Q2 = W ∩Q1 and so EQ2/Q2 is a natural Sp2m(2)-module for CB(V ).
Hence n = 2 (Indeed if n ≥ 3 and so m ≥ 2, the structure of M2/Q2 shows that O2(B)/Q2

as a CB(V )-module is a non-split extension YM by a natural Sp2m(2)-module).
In M2 we see that |O2(B)| = 21+8+3 = 212 and so |Q1| = 210. This shows that Q1 =

YME.

Lemma 2.15. [solv] L is solvable.
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Proof. We need to show that the situation described in 2.14 does not occur. For this let D
be a Sylow 3-subgroup of B, D1 = CD(V ) and D2 = D ∩ (M◦Q1). Then D = D1D2 and
D1Q1 E M1. Put N1 = NM1(D1). By the Frattini Argument M1 = N1Q1 and since D1

acts fixed-point freely on Q1/YM , N1 ∩Q1 = YM . Hence N1 ∼ (23+1)(SL3(2)×SL2(2) and
|O2(N1/D1)| = 25. Therefore 1.1(b) implies that |Z(N1/D1)| = 2. Let E1 be the inverse
image of Z(N1/D1) in N1 and put F1 = CN1(E1). Then E1

∼= SL2(2) and so N1 = F1×E1,
YMD2 ≤ F1 and F1/YM

∼= SL3(2). Put N = NB(D) = NN1(D2) ∩ B. Then |YM ∩N | = 4
and (F1 ∩ N)/(YM ∩ N) ∼= SL2(2). Moreover, by 1.1(c) [YM ∩ N,F1 ∩ N ] 6= 1 and so
N/D ∼= D8 × C2. Also CN (D2)/D = (YM ∩N)E1D/D ∼= C3

2 .
We now investigate the embedding of N in M2. Since D1 and D2 are the only normal

subgroups of order three in N we have D1 ≤ L and D2Q2EM2. Thus [O2(B∩F1), D2] ≤ Q2

and so |CQ2(E1)| = 25. Note that H = O2′(CM2
(D2)) ∼= Sp4(2) and W/Z is a direct sum of

two natural modules for H. Since [E1, D2] = 1 we conclude that E1 ≤ H and the involutions
in E1 act as transvections on these natural modules. It follows that E1 � H

′ ∼= Sp4(2)′. Put
N2 = NM2(D2) and U2 = CM2(D2)′. Then N2/D2 ∼ 2.(Sp4(2)× 2) and U2Z/Z ∼= Sp4(2)′.
Since CN (D2)/D is elementary abelian of order 23 we conclude that U2Z contains a fours
group and so U2

∼= Sp4(2)′. Thus U2 ∩ N ∼= SL2(2) and (U2 ∩ N)D/D ≤ Z(N/D).
Also ZD/D ≤ Z(N/D) and E1D/D ≤ Z(N/D). Since E1 � H

′ = U2Z this implies
|Z(N/D)| ≥ 8, a contradiction to N/D ∼= D8 × C2.

Proposition 2.16. [end] QM = YM , Q is extraspecial of order 32 and C̃/Q ∼= Sym(3) ×
Sym(3).

Proof. By 2.15 we have that L is solvable and so by minimality L is a r-group for some
odd prime r, M ∩B acts simply on L/Φ(L), YM inverts L/Φ(L) and YM centralizes Φ(L).

Thus Φ(L) ≤ Z(〈YM
L〉) = Z(H). By 2.2 W = [W,L] and [W/Z,Q2] = 1, so CW/Z(L) = 1

and Z(W ) = Z by 2.2(f). Thus W is an extra-special 2-group.
Suppose for a contradiction that L is not abelian. Then Z(L) = Z(H) 6= 1. Since

W = 〈V H〉 and L acts faithfully on Ŵ , we get that Z(L) acts faithfully on V/Z. Thus
|Z(L)| = 3 and L is an extraspecial 3-group. Let Z(L) ≤ A ≤ L with |A| = 9 and put
A1 = [A, YM ]. Then A = A1 × Z(L) and A is elementary abelian. Let A1, A2, A3,Z(L) be
the subgroups of order 3 in A. From CW/Z(Z(L)) = 1 we have

W/Z =
3⊕

i=1

CW/Z(Ai).

Since L acts transitively on {A1, A2, A3} we have |W/Z| = |CW/Z(Ai)|3. As Z(L) acts
non-trivially on CW/Z(Ai), |CW/Z(Ai)| ≥ 4. Note that YM does not normalizes A2 and that
|[W/Z, YM ]| = 4. Hence |CW/Z(Ai)| = 4 and so |W/Z| = 26. It follows that |L| = 33. Since
[Z(L), YM ] = 1, 2.3(b) gives Z(L) ≤ B. Hence [O2(B), Z(L)] = 1. Since COut(L)(Z(L)) ∼=
SL2(3) and |CGLW/Z

(L)| = 3 = |Z(L)| we get that O2(B) is isomorphic to subgroup of
SL2(3) and so to a subgroup of Q8. Thus Ω1(O2(B)) ≤ YM . Put E = 〈(W ∩QM )M 〉. Since
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Φ(W ∩QM ) ≤ Z ≤ V we conclude that E/V is generated by involutions. As V ≤ Q2 this
gives E ≤ Ω1(O2(B) ≤ YM and E ≤ YMQ2. Hence by 2.4 QM = YM and so |S| = 27 = |W |,
a contradiction.

So we have shown that L is abelian. It follows that L is elementary abelian and YM

inverts L. Let R be a simple L-submodule of Ŵ . Note that CL(R) is normalized by
LYM = H and so centralizes 〈RH〉. Since Ŵ is a homogeneous H-module by 2.2(g), this
gives that CL(R) = 1 and so L is cyclic. Thus |W/Z| = |[W/Z, YM ]|2 = 42 = 16. Hence W
is extra special of order 24 and since V ≤ W , W ∼= Q8 ◦ Q8. Thus Out(W ) ∼= O+

4 (2) ∼=
SL2(2) oC2 and L ∼= C3. Since [T, YM ] ≤ V ≤ Q2, T � L and so TL ∼= C3 ×C3. Moreover,
[W,QM ] ≤ CW (V ) = V and so [O2(M), QM ] ≤ V . Now 2.4 gives QM = YM and so
|S| = 27. In particular, QM ∩ Q2 = V = QM ∩W and Q1W = Q1Q2 = O2(B). Thus
Q2 = W = Q and |S/Q2| = 22. It follows that M2 = TLS ∼= Sym(3) × Sym(3). Since
CG(Q) ≤ Q and Out(Q) ∼= O+

4 (2) we have |NG(Q)/M2| ≤ 2. Since S ∈ Syl2(G) this forces
M2 = NG(Q).

Proof of Theorem 1:

We are now able to prove the theorem. By 2.16 we have that M is an extension of an
elementary abelian group of order 16 by SL3(2). Let z ∈ Z]. Since Q is large, CG(z) ≤
NG(Q) and so NG(Q) = CG(z). Since Q is generated by involutions, there exists involutions
in M \ YM and so M/V � SL2(7). Hence M has a subgroup M∗ of index two, which is an
extension of V by SL3(2).

Let y ∈ YM \ V . 1.1(c) implies that CM (y) is divisible by seven. Since CG(z) =
NG(Q) is not divisible by seven, y and z are not conjugate in G. Note that V ≤ Q =
[Q,B] ≤ M∗. Hence every involutions in M∗ is conjugate to an involution in Q. Since
M2/Q ∼= Sym(3)× Sym(3) we see that all involutions in Q \Z(Q) are conjugate under M2.
Thus all involution in M∗ are conjugates of z in G. This shows that y is not conjugate
to any involution in M∗. By Thompson’s Transfer Lemma we get that G possesses a
subgroup G∗ of index two. Since M∗ is perfect, M∗ = M ∩ G∗. Moreover O2(M2) ≤ G∗,
M2 ∩G∗ = CG∗(z), O2(M2) ∼= SL2(3) ∗SL2(3) and |(M2 ∩G∗)/O2(M2)| = 2. Hence [Asch]
shows that G∗ ∼= G2(3). Since |Out(G2(3))| = 2 we conclude that G ∼= Aut(G2(3)).
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