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Chapter 1

Introduction

In this book we classify modules for finite groups fullfiling certain properties which forces
the module to be ”small” in some sense or annother. The main motivation for the book is
provide the information about modules necessary in the local classification of finite groups
of local characterisic p [LGCP].
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Chapter 2

Some Group Theory

Lemma 2.0.1 [three subgroup lemmal]
Proof:

Lemma 2.0.2 |nilpotent groups| Let M be a nilpotent group and A a proper subgroup
of M. Then A is a proper subgroup of Nas(A) and (AM) is a proper subgroup of M.
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Chapter 3

Some elementary representation
theory

Lemma 3.0.3 Let G be a finite group and V' an irreducible KG-module. If charK = p, p
a prime and OP(G) acts homogenously on 'V, OP(G) acts irreducible on V.

Proof: Comment: ref? any extra assumptions on K ?



CHAPTER 3. SOME ELEMENTARY REPRESENTATION THEORY



Chapter 4

Same Characteristic
Representations

This chapter is devoted to KG(F) modules, where K and F are field in the same characteristic
and G(F) is a group of Lie type over field K.

4.1 Root Systems

[root systems]

Definition 4.1.1 A root system is set ® together with vectorspace Vo over Q and a non-
degenerate, postive definite, symmetric form (, ) on Vg such that

(RS1) @ is a finite set of non zero vectors in Vo and ® spans V.

(RS2) For all a,f € ¥, <a, (> = 2(3 € Z.

(RS3) For all a, B € ®, wa(b) =€ ®, where
wo Ve = Vo, v - v—<v,a>a
is the reflection associated to c.

(RS4) If a, B € ® are linearly dependent over Q then a = £[.

Let @ be a root system. The elements of ® are called roots. Put W := (w, | a € ®(<
O(Vy, (,)). Note that (RS3) just says that & is invariant under W. Since ® is finite and
spans Vg, W is finite.

Lemma 4.1.2 [dual roots system] Let ® be a root system. For a € ® define o* :=
2 . Let ®* = {a* | a € ®} Then for all o, 3 € ®.

(a,@)

9
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Proof: (a)-(d) are readily verified and (e) follows from (c) and (d). O

Definition 4.1.3 ® be a root system. A system of simple roots for ® is a linearly indepen-
dent subset I1 of ® such that ® = ®TtJ &~ where ®+ = dPNQTI and @~ = dPNQ 11 = —dT.

Lemma 4.1.4 [existence of simple roots| Let & be a roots system.

(a) @ has a system of simple roots.
(b) Any two systems of simple roots are conjugate under W.
(c) If 11 is any system of simple roots, than ®+* = & N Z*1I.

Definition 4.1.5 A root « in a roots system ® is called long ( short) if (o, ) > (3, 5)
(@, @) < (8, B)) for all B € @.

Note here that f all roots in ® have the same length, then all roots are long and short.

Lemma 4.1.6 [dual fundamental roots| Let ® be a roots system with fundamental roots
II. Then IT* := {a* | a € 11 is a system of fundamental roots for ®*.

Proof: Since for all « € ®, a and o* only differ by a positive rational factor, QTII = Q*II*
and « € QTII if and only if o* € QTII*. Hence the lemma follows from the definition of a
fundamental system. O

A={ eV |(\a") eZVa" € D}
Note that by (RS2) ® C A. Let (Ay | @ € II) be the basis of Vg dual to II* so

. 1 fa=p
()\omﬁ ) = . :
0 ifa#p}
For a, 8 € ® and let r,s € N be maximal such that

Then (A, | @ € TI) is a Z basis for A.

B—ra,f—(r—1a,...,.0—a,3,0+a,...0+ sa)

all are roots. We call this sequence of roots the a-string through 3. r will be denoted by
rop and s by sqg.
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Definition 4.1.7 Let ® and ¥ C .
(a) ¥ is a root subsystem of ® if (U,QW) is a roots system.

(b) ¥ is a closed root subsystem of ¥ = & NQWU.

Lemma 4.1.8 [covering root systems| Let ® be a root system.

(a) Let W be a root subsystem on ®, « € ¥ and § € ®\ V. The wo(B) € V. If in addition
(o, B) # 0 and V¥ is closed, then wg(a) & V.

(b) Suppose that ® C X UY where X and Y are proper roots subsytems of ®. If X is
closed, then ® s disconnected.

(¢) Supose that ® is connected and o, € ®. Then there exists v € ® such that ~y
is neither perpendicular to o nor to 3. In particular o and B are contained in a
connected subroot system of rank at most 3.

Proof: (a) If wa(B) € ¥, then 8 = wq(wa(f)) € ¥ a contradiction. If (o, 3) # 0, ¥ is
closed and wg(a) € ¥, then f =< a, 8 > (o — wg(a)) € QU. Since ¥ is closed, 3 € @, a
contradiction.

(b) Choose X and Y as in (a) with |[X NY minimal.Let A = ®\Y, B = ®\ X and
C=®NXNY. Let a € A and b € B. Suppose that (a,b) # 0. By (a)ws(a) is neither
contained in X nor in Y, a contradiction. So A L B. Let X = BtNnX and Y = AL NY.
Then X and Y are subsystems with X closed. Also A C X and BCY. Let ¢c € C and
suppose that ¢ ¢ X. Then (c,a) # 0 for some a € A. Since ¢ € Y and a is not, (a) implies
we(a) = a— < a,c>ce A. Thus we(a) and a both perpendicular to B. Hence ¢ L B and
¢ €Y. We conclude that C = X UY. The minimal choice of X NY implies X NY = X NY.
Hence C C X NY < AL N BL. Since also A L B, AU B U C an decompostion of ® into
pairwise orthorgonal subsets.

(c) By (a) there exists v € ® \ (o U B+). Also ® N Q(a, 3,7) is connected root system
of rank at most 3. Thus (b) holds. O

Lemma 4.1.9 [generation by non perpendicular roots] Let ® be a connected root sys-
tem, and o a short root.

(a) Then Q(I) = @q)long = Q(I)Short'

(b) Let W be the roots subsystem generated by o and the long roots, then ¥ = ®. Com-
ment: false for F}y

(¢) Let U be the roots subsystem generated by o and the long roots which are not perpen-
dicular to a.. If ® is not of type By,n > 3, then ¥V = ®. Comment: maybe false
for Fy



12 CHAPTER 4. SAME CHARACTERISTIC REPRESENTATIONS

Proof:

(a) Let {i,j} = {long, short}. Since ® is connected there exists a®; and 8 € ®; with
<o, 3> #0. If b ¢ Q®; then 4.1.8(a) implies wg(a) € QP; a contradiction. Thus 3 € Q®;
and the transitivity of We on ®; implies Q®; C Q®;.

For (b) and (c) note that if ® has rank two, then every subsystem containing a long and
a short system equals ® (Comment: false for G, it contains a A;(long) x A;(short)
Also Q®;ppy = QP and so ¥ contains a long root. So we may assume that ® has rank at
least two. Let 3 be the subsystem generated by the long root.

(b) Without loss « is the highest short root. Let § be any short root. By (a) there
exists a long root § with <d,3> < 0. Then wgs(3) has larger height than 5 Comment:
this is false if 3 is negative and so by induction ws(/3) € V. Hence also § € V.

(c) We may assume and ® is not of type B,. Thus ¥ is connected. By definition of ¥,
Y= (EZN¥)U(XNat). Since ¥ Na't is closed in X, 4.1.8(b) implies that ¥ C ¥. So (c)
follows from (b). O

4.2 Lie Algebras

Let ® be a root system. We continue to use the notation introduced in 4.1.

Definition 4.2.1 Let K be a field and g a Lie-algebra over K. A Chevalley basis for g is

a basis
(Go,a € ;9,7 € II")

such that for all o, B € ®, ,6 € TI*:
(CB1) [$,%s] = 0.
(CB2) [$94,8a] = (,7)8a
(CB3) [B4, B 0] = 9o~
where §, for p =3 cp-myy € ©* is define by 9, 1= 3 e My Hy-
(CB4) [84,65] = £ra3&atp if a+ 3 € ®.
(CB5) (60,88l =01if0#a+5¢ .

Lemma 4.2.2 [nilpotent action for lie algebras] Let g be a Lie algebra over K and V
be a finite dimensional g module.

(a) Then there exists unique mazimal ideal u,(g) which acts nilpotently on V.
(b) Let d be an ideal in g, X a d submodule of V and & € g.

(ba) Define T : X — V/X,x — &x + X. Then T is a d-equivariant. Inparticular
BX 4+ X is a 0 submodule of V.
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(bb) If V' is irreducible for g then all compostion factors for d on V are isomorphic.
(be) If X is irreducible for ® and X £ X then 8X N X =0 and Annx (&) = 0.

Proof: (a) uy(g) is just the intersection of the annhilators of the composition factors of
gonV.
(b) Let ® € 9 and z € X. Then [¢,D]z € 0z < X and so

T(Dz) = 6Dz + X = (D6 + [6, D))z + X = D(6z + X) = D(T(x))

So (ba) holds.

For (bb) let Y be a ? submodule maximal such that all compostion factors for ? on
Y are isomorphic. By (ba) applied to Y, all compostion factors of @ on 8Y + Y/Y are
isomorphic to a comostion factor of Y. Hence by maximality of Y, &Y < Y. Since & € g
was arbitray and g acts irreducibly, V =Y.

For (bc) not that the irreducibilty of X and (ba) imply ker T" = 0. O

We remark that under the assumption of part (bb) of the preceeding lemma, V' does
not need to completely reducible for g. For example let g = sla(K) with charK =2 and V
the natural 2-dimensional module. Then K(®,, ) is an ideal in sl(K) and has a unique
proper submodule ( namely &,V). Thus example also shows that an ideal does not need
to act faithfully on its proper submodules.

Lemma 4.2.3 [X+bX] Let g be a Lie algebra, a and b subspaces of g with g =a+b. Let
X be an a invaraint subspace of V.

(a) Forallm € N, Y. (b'X is a invariant.
(b) -2, b'X is g invariant.
(¢) If X # 0 and V is irreducible as g-module, then V =Y ¢, b'X.

Proof: (a) By induction on i it suffices to show that X + bX is a invariant. Note that
gX =(a+b)X <X +bX. Let A€ a and B € b. Then

(AB)X = (B fA+ [, B)X < B( fAX) +gX < X + bX.

So (a) holds.

(b) By (a) N o
doox = JO v'x)
i=0 n=1 i=0

is a invariant. Clealry it is also b invarint and so (b) follows from g = a = b.
(c) Follows from (b). O
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Proposition 4.2.4 [smith’s lemmal]| Let g be a Lie algebra, [, q4 and q— sub algebras and
V' an irreducible g module. Suppose that

(i) g=a+++a4

(i) [La4] <q4 and [g-] <q-].

(iii) g+ and q— both act nilpotently on V.
Then

(a) I acts irreducible on Anny (g4).

(b) V = Anny(q+) @ Annj,(q—), where Annj, (q_) is smallest q— submodule of V' contain-
g q-V.

Proof: Since g4 acts nilpotently on V', Anny (q4) # 0. By (ii) Anny (g4 ) is a [ submodule.
Let X be any non-zero I submodule of Anny (q+ and Y = >2°, g° X. Then X is an q4 + [
submodule of Anny (q4) and Y < Annj,(q—). By 4.2.3,

*) V=X+Y

Suppose that X::: Anny (q4) N Anni,(q_) # 0. Since X is [ invariant, (*) applied
to X yields V' = X + Annj,(q-) < Annj(q-). Since g- acts nilpotently this implies
Annj (q—)) = 0, a contradiction to X # 0.

Thus X = 0. Hence also Anny (q+) NY = 0 and so using (*)

Anny(g4) = X + (Ammy(g7) NY) = X

Since X was an arbitray [ submodule of Anny (q+) we concldue that (a) and (b) hold.O

Lemma 4.2.5 [q- quadratic] Let g be a Lie algebra, [,q4+ and q_ sub algebras and V an
irreductble g module. Suppose that

(i) g=a+ ++q4

)
(i) [La+] < g+ and [l,q-] <q-].
(iii) g2V =0 and q_V # 0.
(iv) gt acts niloptently on V.
Then

(a) V = Anny(q4+) & Anny (q-).

(b) [ acts irreducibly on Anny(q+) and Anny (q-).
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(¢) 2V =0 and q_V # 0.
(d) Anny(q4) =q+V and Anny(q-) =q-V.

Proof: Note that q_V < Anny(q~). By 4.2.4(a) ( applied with the roles of + and —
interchanged, Anny (q_) is an irreducible fI module. Thus

q-V = Anny(q-) = Anny (q-)

Thus by 4.2.4(b) implies that (a) holds. In particular g+ acts irreducible on V/ Anny (q4)).
Hence q4 annhilates V/ Ann(q4) and the remaiing parts of the lemma are readily verified.
O

Comment: The preceeding lemma could be also used to in some later
places to avoid the use of the graph automorphism for A,

4.3 Groups of Lie Type and Irreducible Rational Represen-
taions

Let ® be a connected root system, K a field, E the algebraic closure of K and G¢(K) the
corresponding unversial group of Lie type. Then G¢(K) is generated by elements x, (), o €
®,t € K fulfilling the Steinberg Relations: For t € K# define wy(t) = xa(t)Xa(t™)xa(t)
and hq(t) = wa(t)wa (1)L

(St1) Xa(t)Xa(s) = Xa(t +s)

(St2) ha(w)ha(v) = ha(uv)

(St3) If o = >~ | n;3F for some n; € Z,5; € ® then ho(u) = [[;-; ha, (u"™).
(

(ST5) wa(1)xs(t)w ()71 = Xwa (8)(€apt) for some €4 = +.

)
)
)
St4) ha(u)xs(t)ha(u) ™" = xa(ul®*)t)
)
(ST6) Tf a + 3 is not a root, and o # —3 then [xa(t), x3(s)] = 1.
)

(ST7) If o + 3 is a root then

o (), X5(5)] = Xat+s(Nagts) ] Xiaris(Capist's’)
ij>1

Let Ho = {ha(u) | u € K#}, Xo = {xa(t) |t e K¥}, U =[Ipco+ Xa» H =1y, |aecll
and B= HU.

Let V be a finite dimensional rational EGg(E) module. Let g € Gg(E) let g¥ denote
the image of g € Endg (V). Slighty abusing notation we will often just write g for g"". Since
V' is rational and finite dimensional we have
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do,
Xa(t) - thqsa,i
1=0

for some d, € N and some &, ; € Endg (V). Note that &, = x.(0) = 1.

(We remark that, if V' is obtained from a module in characteristic zero via an admissible
lattice and taking tensor products, then &,; = (7&%) ® 1.)

Comment: It might be interesting to figure out what (ST1) means for the
®a,i

Since E is infinite ( and so |E| > d,) it is easy to see that the subalgebra of Endg(V)
generated by X, contains all of the &,;. Let @X = &1 and gV the Lie subalgebra of
gl(V) generated by the GY. Let AV be the subalgebra of Endg (V') generated by all the &,
(As usual we will ommit the superscript V). Then every Gg(IE) submodule of V' is also an
g submodule and &4 (F) and A have the same submodules. Comment: Maybe One
should define $ and verify the remaining relation for the Lie algebra

(6) and (7)

(o, 8] =0

if & + 3 is not a root and
[Ga, p] = Nap|®ais

if « + (3 is a root. By (ST4)

ho(u)® g ih(u) ™ = ui(o‘*’@éﬁg
Let € A and v € V. We say that v is a weight vector for p if

ha(uw)v = ul@Hy

for all u € K# and a € ®. Since E is infinite and every polynomial as at most finitely many
roots, two weights with a common non zero weight vector are equal. Let V), be the set of
all weights for p.

We observe

(**) Q5beta7iv,u < V/ﬁ—iﬁ
Indeed let v € V), then

ha(u)®g v = u'@9 &giha(u)v = ui(a*’@®beta7iu(a*’”)v = (@ ptid) &g,iv

Since the different weight spaces are linear independent ( that is the sum of the weight
spaces is a direct sum) for a wieght vector v that X, fixes v if and only if &, ;v = 0 for all
1< <infty.

A weight vector is called a highest weigth vector if uv = v for all u € U. In the view
of the preceeding this means &, ;v = 0 for all « € ®*. If V is irreducible there exists a
non-zero weight vector. Indeed, since U acts unipotenly Comment:  why? Cy (U) # 0.
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Since H is abelian and E is algebraicly closed, there exists a one dimensional EH submodule
Kv in Cy (U). Since V is rational it is easy to see that v is a weight vector for some weight
A€ A. Now V = Av and so (xx) implies that V is the direct sum of its weight spaces.

4.4 Translation from the group to the Lie algebra

Comment: This is taking from Tim’s file, needs to be adapted

Lemma 4.4.1 Let K C k be a subfield of k and A\ a dominant weight with A\(a)) < | K|, for
all « € . Then A(N) is irreducible as a kG(K)-module.

Proof: O

Let A be a dominant integral weight.
A = A()) be an irreducible kG (K )-module with highest weight A.
Order II in some way and then order the set of weights lexicographically. Comment:
mention positive, by carter we can choose the order to be compatible with the
height function

Define the following:

¢ Ul ={XplB<q)
e U, =(Xg| B < a). Note that U} = X, U .
o A, a weight space (as usual)
e Af=p _ A
M y<p
o A :®V<MA'7
Let PLU.
Let ®={aeXt | PNUS LU}

For a € @, pick g, € (PNUS)\ U, . Then g, = x4 (t)u, for some u, € U, and t # 0.
Let D = XkX* < £ - note, we'll drop the “*” from now on.

Lemma 4.4.2 1. D is a subalgebra of LF.
2. If P has nilpotent class m, then D has nilpotent class at most m.

5. If[PIP[ .. [P[P,A]]...]]| =0, then D"A =0.

n—times

4. dim(Anny (D)) > dim(C4(P)).
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Proof: Notice that [ga,gs|U,, 5 = [ra(ta),28(ts)lUs 5 = Ta+s(NastatplU,, 5, where
[Xo, Xg] = NoypXayp in L. If Noyg # 0, then [gags] € U(LB \ U, 5 Hence, a+ € @,
so D is a subalgebra of £¥, proving (1).

Now [ga;)Gass -+ Jon)Unytant o tay, = Tartasttan (Ttartas - tan )Usy tagtotay, - SO if
[9ars Gagy - -+ 9o, ] = 1, then 7 =0 and so [X,,, Xpy, .., Xo ] = 7 X0 4rgtetr,, = 0.

Now let a € A:[ with a = a, + a, where a, € A, and a, € A,
Then

Z —'thg a € taXaay + Ay,

S0 [ga,a] € taXaa, + A, and in particular,

ptao
(901 [Gas - - - [an-al .. ]] € tartas - tan Xay Xas - - - Xa, 0 + A;+a1+a2+,__+an.
SO7 if [P[P[ .. [P, A] R ” = 0, then XO(lXOZQ .. .Xanaﬂ S A;+a1+a2+-~-+anmA#+CV1+042+"'+an =

Hence Xy, Xo, ... Xo, A =0. That is, D" A = 0, proving (2).

Choose E, < A, so that CAZ(P) +A, > E,+A; (Ey= AN (CAj(P) +A;)). Let
E =@, E,. Then dimy(E) = dimg(Ca(P)).

Now, ifa € CA;r (P), then a = a,+a,, 50 [ga, a] € taXaau+A,,, implies that x4a, = 0.

Hence, X, F =0 and so DE = 0, proving (3). O



Chapter 5

Quadratic Modules

5.1 Quadratic modules for g

For a root system ® let pp := ((a,a

X where a is a long and b is a short root in ®. Note
that if ® is connected than pey € {1,2,3}. If g = go(K) and py = char K, then gghort ( the
subalgebra of g generated by {®, |, € Pghort}) is an ideal in g. Note that this happens
for p = 2 and ® of type B,,C, and F4 and for p = 3 and ® of type G5. These cases will

require special attention throughout this section.

N

=

Definition 5.1.1 A module V' for go(K) is called quadratic if (9o — 1)&,V = 0 for all
long roots a € ®.

The defintion of a quadratic module is motivited by the following lemma:

Lemma 5.1.2 [quadratic in odd characteritic] Comment: A version of the foll-
wing might be better at an earlier place With the notation from the previous proposi-
tion, let o be a long root. Then (382 € Uy, and so (362 acts on V. Note that [(182,8_,] =
(9o —1)&, and so (362 annihilates V we get (Ho—1)BV = 0. This indicated that maybe
the correct definition for quadratic action for Lie algebras is %63‘/ = 0. It works well in any
characteritic. But we prefer to work with the slightly weaker condition (o — 1)&,V = 0,
since it can be phrased just in terms of the Lie algebra. And for char K it turms out to
be equivalent to Gﬁe = 0: 9.8 = B, implies 26, = HoBo — B Ha = & — G,.9H, and
50 B Ha = —B,. So we can compute &,.H.B, in two different ways. First it equals
($050)B0 = —6,8, = 62 and secondly B4 (HaBa) = BBy = B2. So if char K # 2 we

can conclude &2 = 0.

The irreducible quadratic modules for goK are fairly easily classified ( see the next
theorem). The remainder of the section will be devoted to show that some weaker conditions
already imply that a module is quadratic. If V module for g and &;,®, € g we write
®1 = Gy if (1 — B2)V =0 ( that is if the image of &; and G4 in End(V) are equal.

19
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Theorem 5.1.3 [classification of quadratic modules for Lie algebras| Let K be an
field, ® a root system and g = go(K) the corresponding algebra. Let V- =V (X) the irreducible
restricted g module of heighest weight X\ # 0. Let o be the heighest long root. Then the
following are equivalent:

V' is quadratic.

(a
(

b —1)®.V =0

d) (A a) =

() A = Ag for some root 3 € II with ng. = 1, where n for v € II" is defined by
o _Zwel'[* 'yry

)

) (9D
(c) B3B8,V =0 for all B € ® with (5,0) >
(d)

)

(a,0)

(f) X = Ag for some root B € II with ng = pg, where pg = GHL and ng is defined by
a= Zﬁen ngp.
(g) One of the follwing holds: Comment: labeling of roots needs to be intro-
duced
1. = A, and A\ = \; for some 1 <1i < n.
2. ®=DB, and A = \{ or \,.
3. =C, and A\ = \; for some 1 < i <n.
4. =D, and X = A\, A\p_1 o Ay
5. ® = Eg and A = A\ or Xg.
6. &= FE7 and X\ = ).
7. ® = FEg: No such module.
8. & =Gy and A\ = ).
9. ®=Fy and A=)\

Proof: We assume without loss that K is algebraicly closed. (a)==(b): Obvious from

the definition of ” quadratic”
(b)==(c): Let 8 € ® with (5,a) > 0. If § =# « then (a*, f) = 1 and so [Ha, B5] = &;.

Note that 3 is postive, so 8+ a € ® be the maximality of o. Thus &,83 = &36,. Also
by assumption ($, — 1)&, == 0 and so $H,E, = &,. We compute:

G560 = [Ha, B5l60 = 98580 — B9, = HuGaBs — GH,65 = 6,65 — 636, =0

It remains to show that &2 = 0. If p = 2 this is obvious. So suppose p # 2. Then
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0 = [®Oc7 @a] == [ﬁa®a7 @OJ = 2@2

and (c) is proved.
(¢)==(d): Let v— = wp(v4) be a lowest weigth vector. Then v_ has weight wg(\). Also

no proper u submodule of V' contains v_ (?7) and so v~ ¢ Ann(&,). Hence v := &,v_ # 0
is a non zero weight vector with weight wo(\) + «. Let

da =K{(Gs | B € ¢,(a, 9) > 0)
and
[a:K<Gﬁ’ﬂe¢7(a’ﬁ):0>

By Smith’s Lemma4.2.4 Ann(q,) is an irreducible module for [,. Since vy is a highest
weigth vector in Ann(q,) we concldue from ?? that all weights in Ann(q,) are of the form
A+ p for some € N(®~ Nat).

Recall that with weights vectors we mean weight vectors for the cartan subgroup H
of Gg(®). In particular two weights in A which share a non-zero weight vector are equal.
Thus

wo()\)—FOé:)\‘FM

for some p € A with (a, ) = 0. Note also that wy has order two, peserves (-, and
wo(a) = —a. So we compute

(wo(A) + a, ) = (wo(A), @) + raa™ = (N wo(a™) +2=—(\, ") +2
On the other hand

(wWoA 4, 0)" = (A, @) + (1, @) = (A, )

The last three displayed equations imply 2(\, a*) = 2. Since this is statement in Z we
conclude (A, a*) = 1.
(d)==(a): Suppose that (A, a*) = 1. Suppose that q,®,V # 0. Then there exists

a weight vector v of weight p and § € ® with (8,0) > 0 such that &g&,v # 0. Thus
p:=p+a+fisaweight on V. By 77 —1 = —(\,a”) < (p,a”) and (p,a”) < (A, ) = 1.
Hence

1> (p,a) =(p,a)+ (,a®) + (B,a") > -1+2=1

This contradiction shows that &,V < Ann(q,). Since I, is irreducible on Ann(q, and
o commutes with I, H, acts as a scalar k£ on Ann(q,). Since vy € Ann(q, this scalar is
(A, a®) = 1. Thus (94 — 1 annihilates &,V < Ann(q,). Thus (o — 1),V = 0. Since W
acts transitively on the long roots, V' is quadratic.

(d)<= (e): Let A=} 5.1y mpAs. Then each mg is a non-negative integer and each n}
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is a positive integer. Also (A, %) = 3 5.5y mgnj. and so (d) and (e) are equivalent.
(e)<=> (f): Follows from ??

(e)<= (g): Follows from a glance of at the highest short root of ®* (77). O

Definition 5.1.4 A quadratic tuple is tuple (®,p, \, v, ) where ® is a connected root sys-
tem, X is a non-zero dominant integral p-restricted weight, o and 3 are roots, and V- = Vi ()
for some field K with char K = p such that

(a) BB,V =0.
(b) BaV #£0# B4V
(¢) If « = 3 then p # 2.

In the next few lemmas we will determine all the quadratic tuples. Comment:  We
should once and for all introduce weight vectors for arbitrary fields: For the
algebraicly closed case define it by the action of H, in general v € V() is called
a weight vector if 1 @k v is a weight vector in K @ KV. Note that for p-restricted
weights, V will be the direct sum of the weight spaces.( just start with the
lowest weight vector and take images under the &,’s

Lemma 5.1.5 [quadratic tuple for a=b long| Let (®,p,\,«,3) be a quadratic tuple
with « = B and « long. Then V is a quadratic module.

Proof: By assumption p # 2. So the lemma follows from 77 O

Lemma 5.1.6 [quadratic tuples for (a,b) positive and a long| Let (®,p, A\, o, 3) be a
quadratic tuple with  long, o # 3 and (o, 3) > 0. Then V is a quadratic module.

Proof: Without loss « is the highest long root. Then f is positive. Let ¥ = (a, 3), the
root subsystem generated by o and 3. Then W is of type As, By of Go. In any case § = a— 3
is a root, a = 0 + 3, a + 3 is nor a root, ,&z = 36, =0 and r53 + 1 = py.

Suppose first that p # 2 and p # py.
Since B3®, = 0 taking the Lie bracket with &; gives +py®2 = 0. Thus &2 = 0 and
we are done by 5.1.5.

Suppose next that Pp = py. Then p = pg and 3 is short. Let X be an irreducible
gshort-submodule in V. If 83X = 0 then also $, = [G3,B_g] annihilates X. Thus by
??(bb), 9, acys nilpotently on V. But £, is semisimple on V and so $,V = 0. Hence by
7?7 83V =0, a contrdiction to the definition of a quadratic tuple.

Thus &3X # 0. Since &,&3X = 0 we conclude Anny(®,) # 0 and so by ??(bc),
B,X < X. By symmetry the same holds for any long root subalgebra of g and so gX < X
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and V = X. Thus genort acts irreducibly on V. Let q = K(&, | 1t € Pshort, (14, @) > 0) and
[=K(&, | 1t € Pshort N at). Then q + [+ bgnort is a parabolic subalgebra and so by 4.2.4
Anny (q) is an irreducible [-module. Note that q is an ideal in g4 + [, and so Anny (q) is an
irreducible module for g, + I,. It follows that g, annihilates Anny (q). On the other hand
W(® N at) acts transitively on {g € ®guore, (1, a) > 0} and thus &,V = 0 and so also
4o GaV = 0. Thus V is quadratic by 5.1.3.

Suppose now that W is of type As. We claim that &,&, = 0 for all 1 € ® with (u, &) > 0.
This is obvious if 4 = « or if («, p) is conjugate to (o, 3) under W (®). If neither of this
holds then @ is of type A,. Let V* be g module dual to V. Then &,&3V* = 0. Since &,
and &g commute, &3, V* = 0. Now V* = V7 where o is the graph automorphism of g.
Thus &,(3B,(0)V = 0. Now (a, p) is conjugate under W(®) to (o(a),o(3) and we again
conclude that &,6, = 0. Thus V is quadratic by 5.1.3.

Suppose finally that p = 2 and V¥ is of type G2. Then ( is short. Let v = 3 — §. Then
7 is a root, rsg = 3, and o + 7y is not a root.

Thus &3,,&, = 0. Using the action of W (® N oﬁ) we conclude that qo®, =0 and V is
quadratic. O

Lemma 5.1.7 [a long implies quadratic| Let (®,p, \, a, 3) be a quadratic tuple with «
long. Then V i quadratic.

Proof: Without loss « is the highest long root. If 5 = a we are done by 5.1.5. So we may
choose € ® maximal with 3 # a, 83V # 0 and 36,V = 0. If (8, > 0 we are done by
5.1.6. So we may assume that («a, 5 < 0.

Suppose first that 3 is long. If ® is of type A; then 3 = —a and s0 262 = [G58,, B4, G4
iv0. Thus ®2 == 0 and V is quadratic by 5.1.3 ( Actually a moments thought even gives
a contradiction).

So assume that ® # Ay. If @y, is connected there exists v € II(Piong) with 3+ €
Piong. Then Ny, # 0 and so &,, = 0. The maximal choice of 3 implies 8+~ = a. But
then (a, §) > 0.

So ®;0 is disconnected, o L 3,9 is of type C, and v := %(a — ) € Dghort- Then
Ngy # 0 and &,,8, = 0. The maximal choice of v implies &,,,V = 0. In particular
P = 2, gshortV = 0 and [93,g]V = 0. Thus Hs acts as a scalar on V. Since o L b,
5B = [63G,, G_g == 0 and so HV = 0 But then g acts nilpotent on V a contradiction.

Suppose next that § is not long. Note that the highest short root has positive inner
product with a. So ( is not the highest short root. Assume ®g,q,¢ is connect. Then we can
choose v € II(Pgport) With B+ v € Pgpory and we get a contradiction to the maximal choice
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of 3. Hence ®gpqt is disconnected and @ is of type B,. If 3 is not perpendicular to o then
((b,a) <0, Ngo # 0 and we get Go4538, = 0, contradiction the maximality of 8. So f L «
and as above 36, = 0. Let v € Il with 3+~ € ®. If Ng, # 0, we get a contradiction
to the maximality of 5. Thus p = 2 and so [Hb,g] = 0 and $s centralizes V. But then
gshortV = 0, a contradiction as 3 is short and &gV # 0.

This settles the last case and the lemma is proved. O

Lemma 5.1.8 [quadratic tuples with GaGb not 0] Let (®,p, A\, «,3) be a quadratic
tuple with &,BgV (X) # 0. The up to conjugacy under W ® = A,,, a = ey — ey, and either
B=—-ey+e and A=A\, or 0 = —es+ e, and X = \1.

Proof: Let V* the dual of V. So V* = V(omegag(\)). Then &,83V* = 0 and we
conclude that A # —wy(A). Thus & = A,, Eg, or n > 5,n is odd and & = D,, Also
[Go, Gp] # 0 and so (o, f) < 0.

But in D,, for n > 3 and for Eg, W has a unique orbits on pairs of roots (,d) with
(7,0) < 0. Namely for D,, all are conjugate to (e; + e2, —e1 +e3) and for Eg. Thus (o beta)
is conjugate to (3, @) contradicting the assumptions.

Thus ® is of type A,. By 5.1.7 that V is quadratic and so by 5.1.3 A = \; for some
1<1<n.

Up to conjugation under W, we may assume o = ey — e, and either § = —eg + €1 or
08 = —e1+ey,. In view of the graph automorphismus it suffices to treat the case 6 = —eg+e,,.
Let

Y=(3,0Nat)={+(e;—¢;)|0<i<j<n—1}

Then ¥ is a closed root subsystem of type A,_1. Also &,V is invariant under [, and &g
and so under gy. Since &; annihilates &,V and W (X) is tranisitive on X, g, annihilates
B,V. As vy € &,V we conclude that A = A\, and the lemma is proved. O

Lemma 5.1.9 [quadratic tuples for (a,b) not postive and a long| Let (®,p, \, a, 3)
be a quadratic tuple with o long, o # 3 and (o, 3) < 0. Then one of the following holds:

(a) ® = A,, a =ey— e, and either

(aa) A=\ and B =e1 — ey or —eg + €, or

(ab) A=\, and f =e1 — ez or —eg + e;.
(b) ® =C,, A= A1, a =2e; and either 3 =2es orp#2,n>2 and = ey — e3.
(¢c) ® =By,n >3, a=e;+ ey and either

(ca) A=A\, and B =e1 — ez or
(cb) A=)\ and either f =e3 —eq andn >4, or f = ez and p # 2.
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(d) ® = Dy o= ey + ez and one of the following holds:

(da) A= XAy and f=e3 —eq ores+ ey.
(db) A= X3 and B =e1 — e or es + ey4.
(de) A= Xg and B =e1 — ey or ez — ey.

(e) ® =D,,n>5a=e;+ ey and either

(ea) B=e3—e4 and A = Ay or
(eb) B=e1 —ex and A = A1 o7 Ay

Proof: Without loss « is the highest root. Let W be the closed root subsystem generated
by a and 8. By 5.1.7 that V is quadratic and so by 5.1.3 A = A, for some § € II with
nz* = 1. Moreover, 8,V = Ann(q,) and so &3®,V = 0 just means that &z annihilates
Vo = Ann(qq).

Supose first that (3, ) = 0. Then &, < Ann(_ (V,). If (i, @) # 0 then all of [, annihilates
Vo and (a) or (b) holds.

Suppose next that (8,0) < 0. If &,63V0, then (a) holds by 5.1.8 So we may assume
that ,83 = 0. Then also [&,,®g] = 0. Since (5,0) < 0, a + [ is a root and since « is
long N3 # 0. It follows that G435 = 0. Thus p = ps and a + 3 is short. Since &3 # 0,
is long. But the sum of two long roots always long , a contradiction to a + 3 short. O

Lemma 5.1.10 [p=pphi and a and b short| Let (®,p, A\, o, B) be a quadratic tuple and
suppose that p = pe and both o and B are short. Then ® = Cp,, p = 2 and A = A\ or
A+ A

Proof: Note that ® is B,,, Cy, G2 or Fy and g is of type A}, Dy, Ay and Dy respec-
tively. Moreover W/W (®gport) induces the full group of graph automorphisms on ®gport.
Let p be the restriction of A to ®% .. Then all composition factors for genory on V'
are isomorphic to V(u). Moreover (Pghor, 4, v, 3) is a quadraic tuple. This easily rules
out the case Pgport = AT. Hence Pgpor is connected and so by 5.1.7 V(u) is quadratic for
Oshort- Since y is invariant under all graph automorphism, 5.1.3 implies that ®gnor = Dy

and g ="p”. Then A = A1 or A = A\ + A\, and the lemma is proved. O

It remains to look at quadratic tuples where ® has two root lengths, o and 3 are short
and p # pg,

Lemma 5.1.11 [a=b short| Let (®,p, A\, o, 3) be a quadratic tuple with o = [3 short and
p# ®, #1.. Then V is minuscule. That is one of the follwing holds

(a) ® =B, and A = \,.
(b) ®=C, and A = X\
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Proof: Without loss « is the highest short root. Since « is not the highest long, there
exists v € II with o 4+ v € ®. Since « is the highest short root, a + v is long, Noy = 0o
and neither a + 27 nor 2« 4 « are roots Thus

0= [627 67} = +2p38a+1 G0

Since a = 3, p # 2. By assumtion p # ps and so &,,&, = 0. Thus by 5.1.7 V is
quadratic. So A = As for some § € II so that §* appears once in the highest short root
of ®*. A glance at the highest long root of ®* shows that § appears once or twice in a*.
Thus (A, o) € {1,2}. Note that there exists a composition factor for K(Ga, H,&_,) with
heighest weight the restriction of . Since &2 annihilates this composition factor (), a*) = 1.
So A is minuscule. O

Lemma 5.1.12 [a,b short, (a,b) not negative| Let (®,p, \,a,3) be a quadratic tuple
with both o and B short, o # 3, (o, ) > 0 and p # @, # 1.. Then up to conjuagacy under
w,

P=Cy,A=A,a=e;+e and B =ey+e3 or f=-e3+e4.

Proof: Suppose that a + 3 is a long root. Then N,3 = ps # p. By 5.1.8 &3&, = 0 and
s0 NogGatp = 0. Thus Gy = 0 a contradiction.

Thus « + 3 is not a long root. This rules out the case ® = B, and ® = G5. It also
shows that (o, 8) > 0 for Fy. Also p # ps = 2 and in view of 5.1.11 we will be done if we
can show that &2 = 0.

Suppose that (alpha,f) > 0. Then («, ) is of type As. So v =  — « is a short root,
a + 7y is not a root and Ng, = +1 # 0. Hence

0= [658a, 6,] = N3, G,

and so ®2 = 0.
Suppose next that (a, ) = 0. Then ® = C,,, n > 4 and without loss o = e; + e2 and
B =e3+e4 Let v =ex—e3. Then 8+ =ey+eyis aroot, Ng, = £1 # 0 and a + 7 is
not a root and so
0=[6584,8,] = N3, &p1,80

and so 3., = 0. Since (8 + v, > 0, we are done by the previuos case. O

Lemma 5.1.13 [a,b short, (a,b) negative| Let (P,p, A\, a, 3) be a quadratic tuple with
both a and (3 short, a # B3, (o, ) < 0 and p # ®, # 1.. Then up to conjuagcay under W,
D is of type Go, A=A, p=2, a=a1 +2a, 0 =a1 + as

Proof: By 5.1.8 8,63 =0 and so [&,, ®g] = 0.
Suppose that § = —a then [&,, B3] = H,. By 77 H, = 0 implies &, = 0, a contradicion.
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Thus § # —a and (a, ) # 0 implies that o + (3 is a root. Hence No3Gop == 0 and as
p # pe we conclude Nog = 0. p # py implies Nog = £2, py # 2 and so & = G2 and p = 2.
Let I = {a, ag} with ag short. Define
Yr ={o, 01 + az, —2a1 — as}

and
=3t

Then Pgpory = X4 U X_ and W(Ping) acts transitively on Pjong, X4 and ¥_. Let
e € {+,—} and 0, u € X with 6 # u. Then (4, 1) is conjugate under W (®) to («, 3) and so
®56, = 0. Since p = 2 also &} = 0. Moreover [Gs, G,] = £2Gs4, = 0. Put
qe =K(Gs | 6 € XF)

We conclude that g, is an commuative subalgebra of g and that
¢z =0

Also &,, commutes with &4, 14, and with B_s,, _q, and [Ga,, Ba,| = £Ha, 40, Thus
[Bassd+] < q+. Let [ = giong. The action of W(®jopne) implies [I,q7] < g;. Since W(®)
interchanges X7 and X~ we also have [[,q7] < q~. Thus we can apply ?7 conclude that

V=VioV_

where V. = Anny (qc).

Since V. is H invariant, vy € V, for some € € {+, —}. Hence vy is annihilated by ¢. and
u=K(&;| € dT). It is easy to see that g is (as a Lie algebra) generated by q_ and wu.
Thus vy =€ V4 and v+ is annihilated by g+ and u. In particular & (24, 1q,)v+ = 0 and so
$2a1+a,0+ = 0. Since (2a1 + a2)* = 2a] + 3ab and p = 2 we have $24,+0, = Ha,. Thus
Haxt+ =0 and so A = A;. O

Comment: there probably exists more direct proof for the preceeding
lemma, but I like the proof seens it treats G5 for p = 2 like an Aj

5.2 Quadratic modules for Groups of Lie Type

Definition 5.2.1 A quadratic system is a tuple (M,V, A, D,p) such that
(a) M is a finite group.
(b) p is a prime and V' an irreducible faithful GF(p)M -module.
(¢) D is a p-subgroup of M with A < Z(D) and |D| > 2.
)

(d) M = (AM)D.
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(e) [V, A,D] = 0.

The purpose of this section is to study and (under some extra assumptions) classify quadratic
system.

Lemma 5.2.2 [[V,D,A]=0] Let (V, M, A, D,p) be a quadratic system. Then
(a) [V,D, Al =0.
(b) M =OP(M)D.

Proof: (a) By the definition of a quadratic system [V, A, D] = 0 and A < Z(D). Thus
[A,D,V] = 0 and the Three Subgroup Lemma 2.0.1 implies [D,V,A] = 0. (b) Since
M = (AMYD, M = (DM). So (b) follows from 2.0.2 applied to M/OP(M). O

Lemma 5.2.3 [imprimitive quadratic systems| Let (M,V, A, D,p) be a quadratic sys-
tem and suppose that A is a system of primitivity for M on V. Then

(a) p=2 and A acts non-trivially on A.
(b) |D/Cp(W)| =2=|W®| for all W € A with A £ Ny (W).
(c) OP(M) acts transitively on A.

Proof:

Since V' is faithful and V' = Y A, there exists W € A with [W, A] # 0). Suppose
first that A acts trivially on A. Then 0 # [W, 4] < Cw (D) and so D normalizes W.
Since M = (AMYD = Cg(A)D we conclude that M normalizes W, a contradiction to the
irreducibility of V.

So A acts non-trivially on A. Let W with A & Ny (W). [W, A, D] = 0 implies |[W4| =
WP| =p=2. Also [W,Np(W)] < Cw(A) and so [W,Np(W)] = 0. Therefore D/Cp(W) =
2.

Suppose that OP(M) does not act transitively on A. Replacing A by {3 WO (M) |
W € A} we may assume that OP(M) acts trivially on A. Thus by 5.2.2(b) M = Cp(A)D.
Hence A = WM = WP |A| = 2, Cp(A) = Cp(W) < Cy(V) =1 and so |[D| = 2 a
contradiction. O

Lemma 5.2.4 [OpM irreducible in quadratic system]| Let (M, V, A, D, p) be a quadratic
system. Then OP(M) acts irreducible on V.
Proof: By 5.2.3 V is homogenous on V. So the lemma follows from by ?7.

Definition 5.2.5 [dtendec] Let K be a field, H a group and V a KH-module. Then a
tensor decomposition of V' for H is a tuple (F,V;,i € I) such that
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(a) FF<Endg(V) is a field with K < F.
(b) H acts F-semilinear on V.

(¢) Put E = Cy(F) ( the largest subgroup of H acting F-linear on V). Then V; is an
F E-promodule.

(d) As FE-modules, V and Qp{Vi € I} are isomorphic.

Lemma 5.2.6 [qtp] Let Q be a group with |Q| > 3. 1 # Z < Z(Q), K a field with

char K = p, p a prime, V a faithful KQ-module with [V,Z,Q] = 0 and (F,V;,i € I) a
tensor decomposition of V' for Q. Then Q acts F-linear and one of the follwing holds:

1. There exists i € I so that [V;, Z,Q] =0 and Q acts trivially on all other Vj’s.

2. p=2, Q is F-linear and there exist i,j € I, ay, € Endp (Vi) with a3 =0 (k=i,j)and a
monomorphism A : Q — (F,+) so for q € Q,

(a) Fork=1,7, q acts on Vi, as 1+ A(q)a;.
(b) Q centralizes all Vs’s with s # i, j.

Proof: Note first that as Z acts quadratically on V', Z is an elementary abelian p-group.
Also [V, Z,Q] =0 and [Q, Z] = 1. So the three subgroup lemma implies that [V, @, Z] = 1.

Suppose that @@ does not act F-linear. Note thet z induces some field automorphism o
on F. Let F, be the fixed field of ¢ in F'. As z is quadraticon V, f — f7 € F, for all f € F.
It easy to see that this implies ' = F, or p = 2 and F, has inded two in F'. Moreover,
[V, 2] is an F,-subspace centralized by Q. So Q is F, and F, # F. Since [V,Cq(F)] is an
F-spave centralizes by z, Cg(F) = 1. Thus |Q| = 2 in contradcition to the assumptions.

Suppose from now on the ) is F-linear. Since Z is a p-group, we mau assume that the
Vi’s are actually F'Z-modules and not only promodules. If @ acts trivially on some Vi, V
is a direct sum of copies of the F'Q-module @ {Vi | i € I — k}. So the latter has the same
properties as V. Thus we may assume fom now on that ) acts non-trivially on each V;. If
|I| =1, then 1. holds

Suppose next that |I| = 2 and say I = {1,2}. Note that

[CV1(Z) ® V27Z] = CVl ® [V27Q]'

@ acts as scalars on [Va, Z] and [V1, Z]. Hence we may choose the promodules V; and
Vo so that [V;,Z,Q] = 0 for ¢ = 1,2. For ¢ € Q let ¢; be the endomorposim ¢ — 1 of V;.
Then z;q; = 0. Moreover, in Endp(V; @ V),

z2=1=(142)0(1+2)-10=2101+1®2 + 21 ® 2.
Thus [V, z, q] = 0 implies

2100 =—q1 & 2
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If z1 = 0 then as V is faithful, zo # 0. Thus the previuos equation implies go = 0 for
g, a contradcition to the assumption that () does not centalize V5. Hence both z; and 2z
are not zero. Choosing ¢ = z we see that p = 2. Hence for arbitray ¢, g1 = A\(¢)z1 and
g2 = A\(q)z2 for some A(q) € F. Thus 2. holds in this case.

Suppose now that |I| > 3. Say 1,2 € [ and but W = Qp{Vi | i € I\ {1,2}. Then
V = (V4 ® Vo) x W. Then by the prviuos case @ acts faithfully on V; ® Vo 2z —1 and ¢ — 1
are linear dependent on V; ® Va. Let A = A(¢q) be as above. Then on v; ® vy

g—1=014+X1) @1+ A22) - 101 =Xz ®14+1R® 22+ 21 ® 22).

On the otherhand z — 1 = 2; ® 1 + 1 X 29 + 21 ® 29 and we conclude that A = 0,1 and
so |@| = 2, a contradiction. O

Theorem 5.2.7 [same characteritic quadratic systems | Let (M,V, A, D, p) be a quadratic
system. Suppose that

(a) M is a quotient of “Ge(K) and char K = p.
(b) |D| > |K]| or |®p| > 2.

Then one of the following holds
(a)

Theorem 5.2.8 [same characteritic quadratic systems with outer automorphism]
Let (M,V,D,A,p) be a quadratic system and

(a) F*(M) is a quotient of °Ge(K) and char K = p.
(b) D £ F*(M).
Thenp =2, M = 05,,(K,) and V is the corresponding natural module.
Proof:

5.3 Quadratic Pairs

Lemma 5.3.1 [3 quadratic] Let F be a field with char F # 2, A an group and V an
F A-module. Let a,b € A such that a,b and ab acts quadratically on V. Then (a,[3) acts
quadratically on V.

Proof: Leta=a—1€ End(V)and 8 =5b—1. Then o? = 32 =0, af = Ba and

ab—1=(1+a)1+p)=1=af+a+4

Thus
0= (ab—1)?=a?8? + a® + % + 2aBa + 2a6% + 208 = 203

Since char F # 2 we get af = 0. O
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Lemma 5.3.2 [half quadratic| Let F be a field with char F' = p > 0 and p #, let A be a
finite abelian group, F' an F A-module Q the set of non-trivial quadratically acting elements

in A. Suppose that |Q| > ‘AT#l. The one of the following holds:

1. A acts quadratically on V.
2. p=3 and |A/B| =9 where B = Cy([V, A]).

Let E be a maximal quadratic subgroup of A. If E = A then (1) holds. So suppose
A#E. Let |A/JE| =p". Forae€ Q\ F and put E, ={e € E | ea € Q}. Let e € E,. Then
by 5.3.1 (e,a) is quadratic and we conclude that E, = Cg([V,a]). In particular, E, is a
subgroup of E,. Note also that F,(a) is quadratic and contains all the quadratic elements
in E(a) not contained in E. In particular, by maximality of F, E, # E. Thus E,a contains
at most %|E | quadratic elements.

Hence

3
—1
Q| < |E|—1+72

|E]

On the otherhand . 1
191> 14%| = (78] - 1)

Hence . n_q
p —
—(p"E|-1) < |E|—1+ FE
5 ("Bl = 1) < |E| 5 £
(p"“—2p"—2—2p)§—‘%|§0

(p—2)(p"—2)<6

Thus p =3 and n = 1. So A = E(a) and E, centralizes both [V, E] and [V,a]. Thus
E,<B. If E, < B, then A = EB or A = B{a) and in both cases A acts quadratically,
contradicting the maximal choice of E. Thus B = E, and (2) holds. O
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