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Chapter 1

Introduction

In this book we classify modules for finite groups fullfiling certain properties which forces
the module to be ”small” in some sense or annother. The main motivation for the book is
provide the information about modules necessary in the local classification of finite groups
of local characterisic p [LGCP].
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Chapter 2

Some Group Theory

Lemma 2.0.1 [three subgroup lemma]

Proof:

Lemma 2.0.2 [nilpotent groups] Let M be a nilpotent group and A a proper subgroup
of M . Then A is a proper subgroup of NM (A) and 〈AM 〉 is a proper subgroup of M .
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Chapter 3

Some elementary representation
theory

Lemma 3.0.3 Let G be a finite group and V an irreducible KG-module. If charK = p, p
a prime and Op(G) acts homogenously on V , Op(G) acts irreducible on V .

Proof: Comment: ref? any extra assumptions on K ?
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Chapter 4

Same Characteristic
Representations

This chapter is devoted toKG(F) modules, whereK and F are field in the same characteristic
and G(F) is a group of Lie type over field K.

4.1 Root Systems

[root systems]

Definition 4.1.1 A root system is set Φ together with vectorspace VΦ over Q and a non-
degenerate, postive definite, symmetric form ( , ) on VΦ such that

(RS1) Φ is a finite set of non zero vectors in VΦ and Φ spans VΦ.

(RS2) For all α, β ∈ Φ, <α, β> := 2 (α,β)
(β,β) ∈ Z.

(RS3) For all α, β ∈ Φ, ωα(b) =∈ Φ, where

ωα : VΦ → VΦ, v → v −<v, α>a

is the reflection associated to α.

(RS4) If α, β ∈ Φ are linearly dependent over Q then α = ±β.

Let Φ be a root system. The elements of Φ are called roots. Put W := 〈ωα | α ∈ Φ〈≤
O(VQ, ( , )). Note that (RS3) just says that Φ is invariant under W . Since Φ is finite and
spans VQ, W is finite.

Lemma 4.1.2 [dual roots system] Let Φ be a root system. For α ∈ Φ define α∗ :=
2

(α,α)α. Let Φ∗ = {α∗ | a ∈ Φ} Then for all α, β ∈ Φ.
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(a) <α, β> = (α, β∗).

(b) <α, β> = <β∗, α∗>.

(c) ωα = ωα∗

(d) ωα∗(β∗) = (ωα(β))∗

(e) Φ∗ ( together with VΦ and ( , )) is a root system.

Proof: (a)-(d) are readily verified and (e) follows from (c) and (d). 2

Definition 4.1.3 Φ be a root system. A system of simple roots for Φ is a linearly indepen-
dent subset Π of Φ such that Φ = Φ+∪. Φ− where Φ+ = Φ∩Q+Π and Φ− = Φ∩Q−Π = −Φ+.

Lemma 4.1.4 [existence of simple roots] Let Φ be a roots system.

(a) Φ has a system of simple roots.

(b) Any two systems of simple roots are conjugate under W .

(c) If Π is any system of simple roots, than Φ+ = Φ ∩ Z+Π.

Definition 4.1.5 A root α in a roots system Φ is called long ( short) if (α, α) ≥ (β, β)
((α, α) ≤ (β, β)) for all β ∈ Φ.

Note here that f all roots in Φ have the same length, then all roots are long and short.

Lemma 4.1.6 [dual fundamental roots] Let Φ be a roots system with fundamental roots
Π. Then Π∗ := {α∗ | α ∈ Π is a system of fundamental roots for Φ∗.

Proof: Since for all α ∈ Φ, α and α∗ only differ by a positive rational factor, Q+Π = Q+Π∗

and α ∈ Q+Π if and only if α∗ ∈ Q+Π∗. Hence the lemma follows from the definition of a
fundamental system. 2

Λ := {λ ∈ VΦ | (λ, α∗) ∈ Z∀α∗ ∈ Φ∗}.

Note that by (RS2) Φ ⊆ λ. Let (λα | α ∈ Π) be the basis of VQ dual to Π∗ so

(λα, β∗) =

{
1 if α = β

0 if α 6= β}
. Then (λα | α ∈ Π) is a Z basis for Λ.

For α, β ∈ Φ and let r, s ∈ N be maximal such that

β − rα, β − (r − 1)α, . . . , β − α, β, β + α, . . . β + sα)

all are roots. We call this sequence of roots the α-string through β. r will be denoted by
rαβ and s by sαβ .
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Definition 4.1.7 Let Φ and Ψ ⊆ Φ.

(a) Ψ is a root subsystem of Φ if (Ψ,QΨ) is a roots system.

(b) Ψ is a closed root subsystem of Ψ = Φ ∩QΨ.

Lemma 4.1.8 [covering root systems] Let Φ be a root system.

(a) Let Ψ be a root subsystem on Φ, α ∈ Ψ and β ∈ Φ \Ψ. The ωα(β) 6∈ Ψ. If in addition
(α, β) 6= 0 and Ψ is closed, then ωβ(α) 6∈ Ψ.

(b) Suppose that Φ ⊆ X ∪ Y where X and Y are proper roots subsytems of Φ. If X is
closed, then Φ is disconnected.

(c) Supose that Φ is connected and α, β ∈ Φ. Then there exists γ ∈ Φ such that γ
is neither perpendicular to α nor to β. In particular α and β are contained in a
connected subroot system of rank at most 3.

Proof: (a) If ωα(β) ∈ Ψ, then β = ωα(ωα(β)) ∈ Ψ a contradiction. If (α, β) 6= 0, Ψ is
closed and ωβ(α) ∈ Ψ, then β =< α, β >−1 (α− ωβ(α)) ∈ QΨ. Since Ψ is closed, β ∈ Φ, a
contradiction.

(b) Choose X and Y as in (a) with |X ∩ Y minimal.Let A = Φ \ Y , B = Φ \ X and
C = Φ ∩ X ∩ Y . Let a ∈ A and b ∈ B. Suppose that (a, b) 6= 0. By (a)ωb(a) is neither
contained in X nor in Y , a contradiction. So A ⊥ B. Let X̃ = B⊥ ∩X and Ỹ = A⊥ ∩ Y .
Then X̃ and Ỹ are subsystems with X̃ closed. Also A ⊆ X and B ⊆ Y . Let c ∈ C and
suppose that c 6∈ X̃. Then (c, a) 6= 0 for some a ∈ A. Since c ∈ Ỹ and a is not, (a) implies
ωc(a) = a− < a, c > c ∈ A. Thus ωc(a) and a both perpendicular to B. Hence c ⊥ B and
c ∈ Ỹ . We conclude that C = X̃ ∪ Ỹ . The minimal choice of X ∩Y implies X ∩Y = X̃ ∩ Ỹ .
Hence C ⊆ X̃ ∩ Ỹ ≤ A⊥ ∩ B⊥. Since also A ⊥ B, A ∪ B ∪ C an decompostion of Φ into
pairwise orthorgonal subsets.

(c) By (a) there exists γ ∈ Φ \ (α⊥ ∪ β⊥). Also Φ ∩Q〈α, β, γ〉 is connected root system
of rank at most 3. Thus (b) holds. 2

Lemma 4.1.9 [generation by non perpendicular roots] Let Φ be a connected root sys-
tem, and α a short root.

(a) Then QΦ = QΦlong = QΦShort.

(b) Let Ψ be the roots subsystem generated by α and the long roots, then Ψ = Φ. Com-
ment: false for F4

(c) Let Ψ be the roots subsystem generated by α and the long roots which are not perpen-
dicular to α. If Φ is not of type Bn, n ≥ 3, then Ψ = Φ. Comment: maybe false
for F4
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Proof:
(a) Let {i, j} = {long, short}. Since Φ is connected there exists αΦi and β ∈ Φj with

<α, β> 6= 0. If b /∈ QΦi then 4.1.8(a) implies ωβ(α) 6∈ QΦi a contradiction. Thus β ∈ QΦi

and the transitivity of WΦ on Φj implies QΦj ⊆ QΦi.
For (b) and (c) note that if Φ has rank two, then every subsystem containing a long and

a short system equals Φ (Comment: false for G2, it contains a A1(long)×A1(short)
Also QΦlong = QΦ and so Ψ contains a long root. So we may assume that Φ has rank at
least two. Let Σ be the subsystem generated by the long root.

(b) Without loss α is the highest short root. Let β be any short root. By (a) there
exists a long root δ with <δ, β> < 0. Then ωδ(β) has larger height than β Comment:
this is false if β is negative and so by induction ωδ(β) ∈ Ψ. Hence also β ∈ Ψ.

(c) We may assume and Φ is not of type Bn. Thus Σ is connected. By definition of Ψ,
Σ = (Σ ∩Ψ) ∪ (Σ ∩ α⊥). Since Σ ∩ α⊥ is closed in Σ, 4.1.8(b) implies that Σ ⊆ Ψ. So (c)
follows from (b). 2

4.2 Lie Algebras

Let Φ be a root system. We continue to use the notation introduced in 4.1.

Definition 4.2.1 Let K be a field and g a Lie-algebra over K. A Chevalley basis for g is
a basis

(Gα, α ∈ Φ;Hγ , γ ∈ Π∗)

such that for all α, β ∈ Φ, γ, δ ∈ Π∗:

(CB1) [Hγ ,Hδ] = 0.

(CB2) [Hγ ,Gα] = (α, γ)Gα

(CB3) [Gα,G−α] = Hα∗

where Hρ for ρ =
∑

γ∈Π∗mγγ ∈ Φ∗ is define by Hρ :=
∑

γ∈Π∗mγHγ.

(CB4) [Gα,Gβ] = ±rαβGα+β if α+ β ∈ Φ.

(CB5) [Gα,Gβ] = 0 if 0 6= α+ β /∈ Φ.

Lemma 4.2.2 [nilpotent action for lie algebras] Let g be a Lie algebra over K and V
be a finite dimensional g module.

(a) Then there exists unique maximal ideal uv(g) which acts nilpotently on V .

(b) Let d be an ideal in g, X a d submodule of V and G ∈ g.

(ba) Define T : X → V/X, x → Gx + X. Then T is a d-equivariant. Inparticular
GX +X is a d submodule of V .
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(bb) If V is irreducible for g then all compostion factors for d on V are isomorphic.

(bc) If X is irreducible for d and GX 6≤ X then GX ∩X = 0 and AnnX(G) = 0.

Proof: (a) uV (g) is just the intersection of the annhilators of the composition factors of
g on V .

(b) Let D ∈ d and x ∈ X. Then [G,D]x ∈ dx ≤ X and so

T (Dx) = GDx+X = (DG + [G,D])x+X = D(Gx+X) = D(T (x))

So (ba) holds.
For (bb) let Y be a d submodule maximal such that all compostion factors for d on

Y are isomorphic. By (ba) applied to Y , all compostion factors of d on GY + Y/Y are
isomorphic to a comostion factor of Y . Hence by maximality of Y , GY ≤ Y . Since G ∈ g
was arbitray and g acts irreducibly, V = Y .

For (bc) not that the irreducibilty of X and (ba) imply kerT = 0. 2

We remark that under the assumption of part (bb) of the preceeding lemma, V does
not need to completely reducible for g. For example let g = sl2(K) with charK = 2 and V
the natural 2-dimensional module. Then K〈Gα,Hα〉 is an ideal in sl2(K) and has a unique
proper submodule ( namely GαV ). Thus example also shows that an ideal does not need
to act faithfully on its proper submodules.

Lemma 4.2.3 [X+bX] Let g be a Lie algebra, a and b subspaces of g with g = a + b. Let
X be an a invaraint subspace of V .

(a) For all n ∈ N,
∑n

i=0 b
iX is a invariant.

(b)
∑∞

i=0 b
iX is g invariant.

(c) If X 6= 0 and V is irreducible as g-module, then V =
∑∞

i=0 b
iX.

Proof: (a) By induction on i it suffices to show that X + bX is a invariant. Note that
gX = (a + b)X ≤ X + bX. Let A ∈ a and B ∈ b. Then

(AB)X = (B fA+ [A,B])X ≤ B( fAX) + gX ≤ X + bX.

So (a) holds.
(b) By (a)

∞∑
i=0

biX =
∞⋃
n=1

(
n∑
i=0

biX)

is a invariant. Clealry it is also b invarint and so (b) follows from g = a = b.
(c) Follows from (b). 2
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Proposition 4.2.4 [smith’s lemma] Let g be a Lie algebra, l, q+ and q− sub algebras and
V an irreducible g module. Suppose that

(i) g = q+ + l + q+

(ii) [l, q+] ≤ q+ and [l, q−] ≤ q−].

(iii) q+ and q− both act nilpotently on V .

Then

(a) l acts irreducible on AnnV (q+).

(b) V = AnnV (q+)⊕Ann∗V (q−), where Ann∗V (q−) is smallest q− submodule of V contain-
ing q−V .

Proof: Since q+ acts nilpotently on V , AnnV (q+) 6= 0. By (ii) AnnV (q+) is a l submodule.
Let X be any non-zero l submodule of AnnV (q+ and Y =

∑∞
i=1 q

i
−X. Then X is an q+ + l

submodule of AnnV (q+) and Y ≤ Ann∗V (q−). By 4.2.3,

(*) V = X + Y

Suppose that X̃ := AnnV (q+) ∩ Ann∗V (q−) 6= 0. Since X̃ is l invariant, (*) applied
to X yields V = X̃ + Ann∗V (q−) ≤ Ann∗V (q−). Since q− acts nilpotently this implies
Ann∗V (q−)) = 0, a contradiction to X̃ 6= 0.

Thus X̃ = 0. Hence also AnnV (q+) ∩ Y = 0 and so using (*)

AnnV (q+) = X + (AnnV (q+) ∩ Y ) = X

Since X was an arbitray l submodule of AnnV (q+) we concldue that (a) and (b) hold.2

Lemma 4.2.5 [q- quadratic] Let g be a Lie algebra, l, q+ and q− sub algebras and V an
irreducible g module. Suppose that

(i) g = q+ + l + q+

(ii) [l, q+] ≤ q+ and [l, q−] ≤ q−].

(iii) q2
−V = 0 and q−V 6= 0.

(iv) q+ acts niloptently on V .

Then

(a) V = AnnV (q+)⊕AnnV (q−).

(b) l acts irreducibly on AnnV (q+) and AnnV (q−).
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(c) q2
+V = 0 and q−V 6= 0.

(d) AnnV (q+) = q+V and AnnV (q−) = q−V .

Proof: Note that q−V ≤ AnnV (q−). By 4.2.4(a) ( applied with the roles of + and −
interchanged, AnnV (q−) is an irreducible fl module. Thus

q−V = AnnV (q−) = Ann∗V (q−)

Thus by 4.2.4(b) implies that (a) holds. In particular q++l acts irreducible on V/AnnV (q+)).
Hence q+ annhilates V/Ann(q+) and the remaiing parts of the lemma are readily verified.
2

Comment: The preceeding lemma could be also used to in some later
places to avoid the use of the graph automorphism for An

4.3 Groups of Lie Type and Irreducible Rational Represen-
taions

Let Φ be a connected root system, K a field, E the algebraic closure of K and GΦ(K) the
corresponding unversial group of Lie type. Then GΦ(K) is generated by elements χα(t), α ∈
Φ, t ∈ K fulfilling the Steinberg Relations: For t ∈ K# define ωα(t) = χα(t)χα(t−1)χα(t)
and hα(t) := ωα(t)ωα(1)−1.

(St1) χα(t)χα(s) = χα(t+ s)

(St2) hα(u)hα(v) = hα(uv)

(St3) If α∗ =
∑n

i=1 niβ
∗
i for some ni ∈ Z, βi ∈ Φ then hα(u) =

∏n
i=1 hβi(u

ni).

(St4) hα(u)χβ(t)hα(u)−1 = χα(u(β,α∗)t)

(ST5) ωα(1)χβ(t)ωα(1)−1 = χωα(β)(εαβt) for some εαβ = ±.

(ST6) If α+ β is not a root, and α 6= −β then [χα(t), χβ(s)] = 1.

(ST7) If α+ β is a root then

[χα(t), χβ(s)] = χα+β(Nαβts)
∏
i,j>1

χiα+jβ(Cαβijtisj)

LetHα = {hα(u) | u ∈ K#}, Xα = {χα(t) | t ∈ K#}, U =
∏
α∈Φ+ Xα, H =

∏
Hα
| α ∈ Π

and B = HU .
Let V be a finite dimensional rational EGΦ(E) module. Let g ∈ GΦ(E) let gV denote

the image of g ∈ EndE(V ). Slighty abusing notation we will often just write g for gV . Since
V is rational and finite dimensional we have
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χα(t) =
dα∑
i=0

tiGα,i

for some dα ∈ N and some Gα,i ∈ EndE(V ). Note that Gα,0 = χα(0) = 1.
(We remark that, if V is obtained from a module in characteristic zero via an admissible

lattice and taking tensor products, then Gα,i = ( 1
i!G

i
α)⊗ 1.)

Comment: It might be interesting to figure out what (ST1) means for the
Gα,i

Since E is infinite ( and so |E| > dα) it is easy to see that the subalgebra of EndE(V )
generated by Xα contains all of the Gα,i. Let GV

α = Gα,1 and gV the Lie subalgebra of
gl(V ) generated by the GVα . Let AV be the subalgebra of EndE(V ) generated by all the Gα,i

(As usual we will ommit the superscript V ). Then every GΦ(E) submodule of V is also an
g submodule and GΦ(E) and A have the same submodules. Comment: Maybe One
should define HVα and verify the remaining relation for the Lie algebra

(6) and (7)
[Gα,Gβ] = 0

if α+ β is not a root and
[Gα,Gβ] = Nαβ]Gα+β

if α+ β is a root. By (ST4)

hα(u)Gβ,ihα(u)−1 = ui(α
∗,β)Gβ

Let µ ∈ Λ and v ∈ V . We say that v is a weight vector for µ if

hα(u)v = u(α∗,µ)v

for all u ∈ K# and α ∈ Φ. Since E is infinite and every polynomial as at most finitely many
roots, two weights with a common non zero weight vector are equal. Let Vµ be the set of
all weights for µ.

We observe

(∗∗) Gbeta,iVµ ≤ Vµ+iβ

Indeed let v ∈ Vµ then

hα(u)Gβ,iv = ui(α
∗,β)Gβ,ihα(u)v = ui(α

∗,β)Gbeta,iu
(α∗,µ)v = u(α∗,µ+iβ)Gβ,iv

Since the different weight spaces are linear independent ( that is the sum of the weight
spaces is a direct sum) for a wieght vector v that Xα fixes v if and only if Gα,iv = 0 for all
1 ≤ i ≤ infty.

A weight vector is called a highest weigth vector if uv = v for all u ∈ U . In the view
of the preceeding this means Gα,iv = 0 for all α ∈ Φ+. If V is irreducible there exists a
non-zero weight vector. Indeed, since U acts unipotenly Comment: why? CV (U) 6= 0.
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Since H is abelian and E is algebraicly closed, there exists a one dimensional EH submodule
Kv in CV (U). Since V is rational it is easy to see that v is a weight vector for some weight
λ ∈ Λ. Now V = Av and so (∗∗) implies that V is the direct sum of its weight spaces.

4.4 Translation from the group to the Lie algebra

Comment: This is taking from Tim’s file, needs to be adapted

Lemma 4.4.1 Let K ⊆ k be a subfield of k and λ a dominant weight with λ(α) < |K|, for
all α ∈ Σ. Then A(λ) is irreducible as a kG(K)-module.

Proof: 2

Let λ be a dominant integral weight.
A = A(λ) be an irreducible kG(K)-module with highest weight λ.
Order Π in some way and then order the set of weights lexicographically. Comment:
mention positive, by carter we can choose the order to be compatible with the
height function

Define the following:

• U+
α = 〈Xβ | β ≤ α〉

• U−α = 〈Xβ | β < α〉. Note that U+
α = XαU

−
α .

• Aµ a weight space (as usual)

• A+
µ =

⊕
γ≤µAγ

• A−µ =
⊕

γ<µAγ

Let P ≤ U .
Let Φ = {α ∈ Σ+ | P ∩ U+

α 6≤ U−α }.
For α ∈ Φ, pick gα ∈ (P ∩ U+

α ) \ U−α . Then gα = xα(t)uα for some uα ∈ U−α and t 6= 0.
Let D = ΣkXk

α ≤ Lk - note, we’ll drop the “k” from now on.

Lemma 4.4.2 1. D is a subalgebra of Lk.

2. If P has nilpotent class m, then D has nilpotent class at most m.

3. If [P [P [ . . .︸︷︷︸
n−times

[P [P,A]] . . . ]]] = 0, then DnA = 0.

4. dim(AnnA(D)) ≥ dim(CA(P )).



18 CHAPTER 4. SAME CHARACTERISTIC REPRESENTATIONS

Proof: Notice that [gα, gβ]U−α+β = [xα(tα), xβ(tβ)]U−α+β = xα+β(Nαβtαtβ]U−α+β, where
[Xα, Xβ] = Nα+βXα+β in L. If Nα+β 6= 0, then [gαgβ] ∈ U+

α+β \ U
−
α+β. Hence, α + β ∈ Φ,

so D is a subalgebra of Lk, proving (1).
Now [gα1 , gα2 , . . . , gαn ]U−α1+α2+···+αn = xα1+α2+···+αn(rtα1tα2 . . . tαn)U−α1+α2+···+αn . So if

[gα1 , gα2 , . . . , gαn ] = 1, then r = 0 and so [Xr1 , Xr2 , . . . , Xrn ] = rXr1+r2+···+rn = 0.
Now let a ∈ A+

µ with a = aµ + a−µ where aµ ∈ Aµ and aµ ∈ A−µ .
Then

[xα(tα), a] =
∞∑
n=1

1
n!
tnαX

n
α)a ∈ tαXαaµ +A−µ+α

So [gα, a] ∈ tαXαaµ +A−µ+α, and in particular,

[gα1 [gα2 [. . . [gαn , a] . . . ]] ∈ tα1tα2 . . . tαnXα1Xα2 . . . Xαnaµ +A−µ+α1+α2+···+αn .

So, if [P [P [. . . [P,A] . . . ]] = 0, thenXα1Xα2 . . . Xαnaµ ∈ A−µ+α1+α2+···+αn∩Aµ+α1+α2+···+αn =
0.

Hence Xα1Xα2 . . . XαnA = 0. That is, DnA = 0, proving (2).
Choose Eµ ≤ Aµ so that CA+

µ
(P ) + A−µ ≥ Eµ + A−µ (Eµ = Aµ ∩ (CA+

µ
(P ) + A−µ )). Let

E =
⊕

µEµ. Then dimk(E) = dimk(CA(P )).
Now, if a ∈ CA+

µ
(P ), then a = aµ+a−µ , so [gα, a] ∈ tαXαaµ+A−µ+α implies that xαaµ = 0.

Hence, XαE = 0 and so DE = 0, proving (3). 2



Chapter 5

Quadratic Modules

5.1 Quadratic modules for g

For a root system Φ let pΦ := (a,a)
(b,b) where a is a long and b is a short root in Φ. Note

that if Φ is connected than pΦ ∈ {1, 2, 3}. If g = gΦ(K) and pφ = charK, then gshort ( the
subalgebra of g generated by {Gα |, α ∈ Φshort}) is an ideal in g. Note that this happens
for p = 2 and Φ of type Bn, Cn and F4 and for p = 3 and Φ of type G2. These cases will
require special attention throughout this section.

Definition 5.1.1 A module V for gΦ(K) is called quadratic if (Hα − 1)GαV = 0 for all
long roots α ∈ Φ.

The defintion of a quadratic module is motivited by the following lemma:

Lemma 5.1.2 [quadratic in odd characteritic] Comment: A version of the foll-
wing might be better at an earlier place With the notation from the previous proposi-
tion, let α be a long root. Then (1

2G
2
α ∈ UZ and so (1

2G
2
α acts on V . Note that [(1

2G
2
α,G−α] =

(Hα−1)Gα and so (1
2G

2
α annihilates V we get (Hα−1)GαV = 0. This indicated that maybe

the correct definition for quadratic action for Lie algebras is 1
2G

2
αV = 0. It works well in any

characteritic. But we prefer to work with the slightly weaker condition (Hα − 1)GαV = 0,
since it can be phrased just in terms of the Lie algebra. And for charK it turms out to
be equivalent to G2

αe ≡ 0: HαGα ≡ Gα implies 2Gα ≡ HαGα − GαHα ≡ G − GαHα and
so GαHα = −Gα. So we can compute GαHαGα in two different ways. First it equals
(GαHα)Gα ≡ −GαGα ≡ G2

α and secondly Gα(HαGα) = GαGα = G2
α. So if charK 6= 2 we

can conclude G2
α ≡ 0.

The irreducible quadratic modules for gΦK are fairly easily classified ( see the next
theorem). The remainder of the section will be devoted to show that some weaker conditions
already imply that a module is quadratic. If V module for g and G1,G2 ∈ g we write
G1 ≡ G2 if (G1 −G2)V = 0 ( that is if the image of G1 and G2 in End(V ) are equal.

19
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Theorem 5.1.3 [classification of quadratic modules for Lie algebras] Let K be an
field, Φ a root system and g = gΦ(K) the corresponding algebra. Let V = V (λ) the irreducible
restricted g module of heighest weight λ 6= 0. Let α be the heighest long root. Then the
following are equivalent:

(a) V is quadratic.

(b) (Hα − 1)GαV = 0

(c) GβGαV = 0 for all β ∈ Φ with (β, α) > 0.

(d) (λ, α∗) = 1.

(e) λ = λβ for some root β ∈ Π with n∗β∗ = 1, where n∗γ for γ ∈ Π∗ is defined by
α∗ =

∑
γ∈Π∗ n

∗
γγ.

(f) λ = λβ for some root β ∈ Π with nβ = pβ, where pβ = (α,α)
(β,β) , and nβ is defined by

α =
∑

β∈Π nββ.

(g) One of the follwing holds: Comment: labeling of roots needs to be intro-
duced

1. Φ = An and λ = λi for some 1 ≤ i ≤ n.

2. Φ = Bn and λ = λ1 or λn.

3. Φ = Cn and λ = λi for some 1 ≤ i ≤ n.

4. Φ = Dn and λ = λ1, λn−1 or λn.

5. Φ = E6 and λ = λ1 or λ6.

6. Φ = E7 and λ = λ1.

7. Φ = E8: No such module.

8. Φ = G2 and λ = λ1.

9. Φ = F4 and λ = λ1

Proof: We assume without loss that K is algebraicly closed. (a)=⇒(b): Obvious from

the definition of ”quadratic”
(b)=⇒(c): Let β ∈ Φ with (β, α) > 0. If β =6= α then (α∗, β) = 1 and so [Hα,Gβ] = Gβ.

Note that β is postive, so β + α 6∈ Φ be the maximality of α. Thus GαGβ = GβGα. Also
by assumption (Hα − 1)Gα =≡ 0 and so HαGα = Gα. We compute:

GβGα = [Hα,Gβ]Gα = HαGβGα −GβHαGα = HαGαGβ −GβHαGβ ≡ GαGβ −GβGα = 0

It remains to show that G2
α ≡ 0. If p = 2 this is obvious. So suppose p 6= 2. Then
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0 = [Gα,Gα] =≡ [HαGα,Gα] = 2G2
a

and (c) is proved.
(c)=⇒(d): Let v− = ω0(v+) be a lowest weigth vector. Then v− has weight ω0(λ). Also

no proper u submodule of V contains v− (??) and so v− 6∈ Ann(Gα). Hence v := Gαv− 6= 0
is a non zero weight vector with weight ω0(λ) + α. Let

qα = K〈Gβ | β ∈ φ, (α, β) > 0〉

and
lα = K〈Gβ | β ∈ φ, (α, β) = 0〉

By Smith’s Lemma4.2.4 Ann(qα) is an irreducible module for lα. Since v+ is a highest
weigth vector in Ann(qα) we concldue from ?? that all weights in Ann(qα) are of the form
λ+ µ for some µ ∈ N(Φ− ∩ α⊥).

Recall that with weights vectors we mean weight vectors for the cartan subgroup H
of GK(Φ). In particular two weights in Λ which share a non-zero weight vector are equal.
Thus

ω0(λ) + α = λ+ µ

for some µ ∈ Λ with (α, µ) = 0. Note also that ω0 has order two, peserves (·, ·) and
ω0(α) = −α. So we compute

(ω0(λ) + α, α∗) = (ω0(λ), α∗) + rαα∗ = (λ, ω0(α∗)) + 2 = −(λ, α∗) + 2

On the other hand

(ω0(λ+ µ, α)∗ = (λ, α∗) + (µ, α∗) = (λ, α∗)

The last three displayed equations imply 2(λ, α∗) = 2. Since this is statement in Z we
conclude (λ, α∗) = 1.

(d)=⇒(a): Suppose that (λ, α∗) = 1. Suppose that qaGαV 6= 0. Then there exists

a weight vector v of weight ρ and β ∈ Φ with (β, α) > 0 such that GβGαv 6= 0. Thus
ρ̃ := ρ + α + β is a weight on V . By ?? −1 = −(λ, α∗) ≤ (ρ, α∗) and (ρ̃, α∗) ≤ (λ, α∗) = 1.
Hence

1 ≥ (ρ̃, α∗) = (ρ, α∗) + (α, α∗) + (β, α∗) > −1 + 2 = 1

This contradiction shows that GαV ≤ Ann(qα). Since lα is irreducible on Ann(qa and
Hα commutes with lα, Hα acts as a scalar k on Ann(qα). Since v+ ∈ Ann(qα this scalar is
(λ, α∗) = 1. Thus (Hα − 1 annihilates GαV ≤ Ann(qa). Thus (Hα − 1)GαV = 0. Since W
acts transitively on the long roots, V is quadratic.

(d)⇐⇒ (e): Let λ =
∑

β∈Πmβλβ. Then each mβ is a non-negative integer and each n∗γ
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is a positive integer. Also (λ, α∗) =
∑

β∈Πmβn
∗
β∗ and so (d) and (e) are equivalent.

(e)⇐⇒ (f): Follows from ??

(e)⇐⇒ (g): Follows from a glance of at the highest short root of Φ∗ (??). 2

Definition 5.1.4 A quadratic tuple is tuple (Φ, p, λ, α, β) where Φ is a connected root sys-
tem, λ is a non-zero dominant integral p-restricted weight, α and β are roots, and V = VK(λ)
for some field K with charK = p such that

(a) GβGαV = 0.

(b) GαV 6= 0 6= GβV .

(c) If α = β then p 6= 2.

In the next few lemmas we will determine all the quadratic tuples. Comment: We
should once and for all introduce weight vectors for arbitrary fields: For the
algebraicly closed case define it by the action of H, in general v ∈ V (λ) is called
a weight vector if 1⊗K v is a weight vector in K̄⊗KV . Note that for p-restricted
weights, V will be the direct sum of the weight spaces.( just start with the
lowest weight vector and take images under the Gα’s

Lemma 5.1.5 [quadratic tuple for a=b long] Let (Φ, p, λ, α, β) be a quadratic tuple
with α = β and α long. Then V is a quadratic module.

Proof: By assumption p 6= 2. So the lemma follows from ?? 2

Lemma 5.1.6 [quadratic tuples for (a,b) positive and a long] Let (Φ, p, λ, α, β) be a
quadratic tuple with α long, α 6= β and (α, β) > 0. Then V is a quadratic module.

Proof: Without loss α is the highest long root. Then β is positive. Let Ψ = 〈α, β〉, the
root subsystem generated by α and β. Then Ψ is of type A2, B2 of G2. In any case δ = α−β
is a root, α = δ + β, α+ β is nor a root, GαGβ = GβGα ≡ 0 and rδβ + 1 = pΨ.

Suppose first that p 6= 2 and p 6= pΨ.
Since GβGα ≡ 0 taking the Lie bracket with Gδ gives ±pΨG2

α ≡ 0. Thus G2
α = 0 and

we are done by 5.1.5.

Suppose next that Pp = pΨ. Then p = pΦ and β is short. Let X be an irreducible
gshort-submodule in V . If GβX = 0 then also Hα = [Gβ,G−β] annihilates X. Thus by
??(bb), Hα acys nilpotently on V . But Hα is semisimple on V and so HαV = 0. Hence by
?? GβV = 0, a contrdiction to the definition of a quadratic tuple.

Thus GβX 6= 0. Since GαGβX = 0 we conclude AnnX(Gα) 6= 0 and so by ??(bc),
GαX ≤ X. By symmetry the same holds for any long root subalgebra of g and so gX ≤ X
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and V = X. Thus gshort acts irreducibly on V . Let q = K〈Gµ | µ ∈ Φshort, (µ, α) > 0〉 and
l = K〈Gµ | µ ∈ Φshort ∩ α⊥〉. Then q + l + hshort is a parabolic subalgebra and so by 4.2.4
AnnV (q) is an irreducible l-module. Note that q is an ideal in qα + lα and so AnnV (q) is an
irreducible module for qα + lα. It follows that qα annihilates AnnV (q). On the other hand
W (Φ ∩ α⊥) acts transitively on {µ ∈ Φshort, (µ, α) > 0} and thus qGαV = 0 and so also
qαGαV = 0. Thus V is quadratic by 5.1.3.

Suppose now that Ψ is of type A2. We claim that GµGα ≡ 0 for all µ ∈ Φ with (µ, α) > 0.
This is obvious if µ = α or if (α, µ) is conjugate to (α, β) under W (Φ). If neither of this
holds then Φ is of type An. Let V ∗ be g module dual to V . Then GαGβV

∗ = 0. Since Gα

and Gβ commute, GβGαV
∗ = 0. Now V ∗ ∼= V σ where σ is the graph automorphism of g.

Thus Gσ(β)Gσ(α)V = 0. Now (α, µ) is conjugate under W (Φ) to (σ(α), σ(β) and we again
conclude that GµGα ≡ 0. Thus V is quadratic by 5.1.3.

Suppose finally that p = 2 and Ψ is of type G2. Then β is short. Let γ = β − δ. Then
γ is a root, rδβ = 3, and α+ γ is not a root.

0 ≡ [GβGα,Gγ ] = ±3Gβ+γGα

Thus Gβ+γGα ≡ 0. Using the action of W (Φ ∩ α⊥) we conclude that qαGα ≡ 0 and V is
quadratic. 2

Lemma 5.1.7 [a long implies quadratic] Let (Φ, p, λ, α, β) be a quadratic tuple with α
long. Then V i quadratic.

Proof: Without loss α is the highest long root. If β = α we are done by 5.1.5. So we may
choose β ∈ Φ maximal with β 6= a, GβV 6= 0 and GβGαV = 0. If (β, α) > 0 we are done by
5.1.6. So we may assume that (α, β) ≤ 0.

Suppose first that β is long. If Φ is of typeA1 then β = −α and so 2G2
α = [GβGα,Gα,Gα] =

iv0. Thus G2
α ≡= 0 and V is quadratic by 5.1.3 ( Actually a moments thought even gives

a contradiction).
So assume that Φ 6= A1. If Φlong is connected there exists γ ∈ Π(Φlong) with β + γ ∈

Φlong. Then Nβγ 6= 0 and so Gβ+γGa = 0. The maximal choice of β implies β+γ = α. But
then (α, β) > 0.

So Φlo is disconnected, α ⊥ β,Φ is of type Cn and γ := 1
2(α − β) ∈ Φshort. Then

Nβγ 6= 0 and Gγ+αGα ≡ 0. The maximal choice of γ implies Gγ+αV = 0. In particular
p = 2, gshortV = 0 and [Hβ, g]V = 0. Thus Hβ acts as a scalar on V . Since α ⊥ b,
HβGα = [GβGα, G−β =≡ 0 and so HβV = 0 But then g acts nilpotent on V a contradiction.

Suppose next that β is not long. Note that the highest short root has positive inner
product with α. So β is not the highest short root. Assume Φshort is connect. Then we can
choose γ ∈ Π(Φshort) with β + γ ∈ Φshort and we get a contradiction to the maximal choice
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of β. Hence Φshort is disconnected and Φ is of type Bn. If β is not perpendicular to α then
((b, a) < 0, Nβα 6= 0 and we get Gα+βGα = 0, contradiction the maximality of β. So β ⊥ α
and as above HβGα = 0. Let γ ∈ Π with β + γ ∈ Φ. If Nβγ 6= 0, we get a contradiction
to the maximality of β. Thus p = 2 and so [Hb, g] = 0 and Hβ centralizes V . But then
gshortV = 0, a contradiction as β is short and GβV 6= 0.

This settles the last case and the lemma is proved. 2

Lemma 5.1.8 [quadratic tuples with GaGb not 0] Let (Φ, p, λ, α, β) be a quadratic
tuple with GαGβV (λ) 6= 0. The up to conjugacy under W Φ = An, α = e0 − en and either
β = −e0 + e1 and λ = λn or β = −e2 + en and λ = λ1.

Proof: Let V ∗ the dual of V . So V ∗ = V (omega0(λ)). Then GαGβV
∗ = 0 and we

conclude that λ 6= −ω0(λ). Thus Φ = An, E6, or n ≥ 5, n is odd and Φ = Dn Also
[Gα, Gb] 6= 0 and so (α, β) < 0.

But in Dn for n > 3 and for E6, W has a unique orbits on pairs of roots (γ, δ) with
(γ, δ) < 0. Namely for Dn all are conjugate to (e1 + e2,−e1 + e3) and for E6. Thus (α beta)
is conjugate to (β, α) contradicting the assumptions.

Thus Φ is of type An. By 5.1.7 that V is quadratic and so by 5.1.3 λ = λi for some
1 ≤ i ≤ n.

Up to conjugation under W , we may assume α = e0 − en and either β = −e0 + e1 or
β = −e1+en. In view of the graph automorphismus it suffices to treat the case β = −e0+en.
Let

Σ = 〈β,Φ ∩ α⊥〉 = {±(ei − ej) | 0 ≤ i < j ≤ n− 1}.

Then Σ is a closed root subsystem of type An−1. Also GαV is invariant under lα and Gβ

and so under gΣ. Since Gb annihilates GαV and W (Σ) is tranisitive on Σ, gσ annihilates
GαV . As v+ ∈ GαV we conclude that λ = λn and the lemma is proved. 2

Lemma 5.1.9 [quadratic tuples for (a,b) not postive and a long] Let (Φ, p, λ, α, β)
be a quadratic tuple with α long, α 6= β and (α, β) ≤ 0. Then one of the following holds:

(a) Φ = An, α = e0 − en and either

(aa) λ = λ1 and β = e1 − e2 or −e2 + en or

(ab) λ = λn and β = e1 − e2 or −e0 + e1.

(b) Φ = Cn, λ = λ1, α = 2e1 and either β = 2e2 or p 6= 2, n > 2 and β = e2 − e3.

(c) Φ = Bn, n ≥ 3, α = e1 + e2 and either

(ca) λ = λn and β = e1 − e2 or

(cb) λ = λ1 and either β = e3 − e4 and n ≥ 4, or β = e3 and p 6= 2.
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(d) Φ = D4 α = e1 + e2 and one of the following holds:

(da) λ = λ1 and β = e3 − e4 or e3 + e4.

(db) λ = λ3 and β = e1 − e2 or e3 + e4.

(dc) λ = λ4 and β = e1 − e2 or e3 − e4.

(e) Φ = Dn, n ≥ 5,α = e1 + e2 and either

(ea) β = e3 − e4 and λ = λ1 or

(eb) β = e1 − e2 and λ = λn−1 or λn.

Proof: Without loss α is the highest root. Let Ψ be the closed root subsystem generated
by α and β. By 5.1.7 that V is quadratic and so by 5.1.3 λ = λµ for some δ ∈ Π with
n∗µ∗ = 1. Moreover, GαV = Ann(qα) and so GβGαV = 0 just means that Gβ annihilates
Vα := Ann(qα).

Supose first that (β, α) = 0. Then Gb ≤ Annlα(Vα). If (µ, α) 6= 0 then all of lα annihilates
Vα and (a) or (b) holds.

Suppose next that (β, α) < 0. If GαGβV 0, then (a) holds by 5.1.8 So we may assume
that GαGβ ≡ 0. Then also [Gα,Gβ] ≡ 0. Since (β, α) < 0, α + β is a root and since α is
long Nαβ 6= 0. It follows that Gα+β ≡ 0. Thus p = pΦ and α+ β is short. Since Gβ 6≡ 0, β
is long. But the sum of two long roots always long , a contradiction to α+ β short. 2

Lemma 5.1.10 [p=pphi and a and b short] Let (Φ, p, λ, α, β) be a quadratic tuple and
suppose that p = pΦ and both α and β are short. Then Φ = Cn, p = 2 and λ = λ1 or
λ1 + λn.

Proof: Note that Φ is Bn, Cn, G2 or F4 and Φshort is of type An1 , Dn, A2 and D4 respec-
tively. Moreover W/W (Φshort) induces the full group of graph automorphisms on Φshort.

Let µ be the restriction of λ to Φ∗short. Then all composition factors for gshort on V
are isomorphic to V (µ). Moreover (Φshort, µ, α, β) is a quadraic tuple. This easily rules
out the case Φshort = An1 . Hence Φshort is connected and so by 5.1.7 V (µ) is quadratic for
gshort. Since µ is invariant under all graph automorphism, 5.1.3 implies that Φshort = Dn

and µ = ”µ1”. Then λ = λ1 or λ = λ1 + λn and the lemma is proved. 2

It remains to look at quadratic tuples where Φ has two root lengths, α and β are short
and p 6= pφ,

Lemma 5.1.11 [a=b short] Let (Φ, p, λ, α, β) be a quadratic tuple with α = β short and
p 6= Φp 6= 1.. Then V is minuscule. That is one of the follwing holds

(a) Φ = Bn and λ = λn.

(b) Φ = Cn and λ = λ1
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Proof: Without loss α is the highest short root. Since α is not the highest long, there
exists γ ∈ Π with α + γ ∈ Φ. Since α is the highest short root, α + γ is long, Nαγ = ±pΦ
and neither α+ 2γ nor 2α+ γ are roots Thus

0 ≡ [G2
α,Gγ ] = ±2pΦGα+γGα

Since α = β, p 6= 2. By assumtion p 6= pΦ and so Gα+γGα ≡ 0. Thus by 5.1.7 V is
quadratic. So λ = λδ for some δ ∈ Π so that δ∗ appears once in the highest short root
of Φ∗. A glance at the highest long root of Φ∗ shows that δ appears once or twice in α∗.
Thus (λ, α∗) ∈ {1, 2}. Note that there exists a composition factor for K〈Gα,HαG−α〉 with
heighest weight the restriction of λ. Since G2

a annihilates this composition factor (λ, α∗) = 1.
So λ is minuscule. 2

Lemma 5.1.12 [a,b short, (a,b) not negative] Let (Φ, p, λ, α, β) be a quadratic tuple
with both α and β short, α 6= β, (α, β) ≥ 0 and p 6= Φp 6= 1.. Then up to conjuagacy under
W ,

Φ = Cn, λ = λ1, α = e1 + e2 and β = e2 + e3 or β = e3 + e4.

Proof: Suppose that α+ β is a long root. Then Nαβ = pΦ 6= p. By 5.1.8 GβGα ≡ 0 and
so NαβGα+β ≡ 0. Thus Gα+β ≡ 0 a contradiction.

Thus α + β is not a long root. This rules out the case Φ = Bn and Φ = G2. It also
shows that (α, β) > 0 for F4. Also p 6= pφ = 2 and in view of 5.1.11 we will be done if we
can show that G2

α ≡ 0.
Suppose that (alpha, β) > 0. Then 〈α, β〉 is of type A2. So γ = β − α is a short root,

α+ γ is not a root and Nβγ = ±1 6= 0. Hence

0 ≡ [GβGα,Gγ ] = NβγG
2
α

and so G2
α ≡ 0.

Suppose next that (α, β) = 0. Then Φ = Cn, n ≥ 4 and without loss α = e1 + e2 and
β = e3 + e4. Let γ = e2 − e3. Then β + γ = e2 + e4 is a root, Nβγ = ±1 6= 0 and α + γ is
not a root and so

0 ≡ [GβGα,Gγ ] = NβγGβ+γGα

and so Gβ+γGα ≡ 0. Since (β + γ, α) > 0, we are done by the previuos case. 2

Lemma 5.1.13 [a,b short, (a,b) negative] Let (Φ, p, λ, α, β) be a quadratic tuple with
both α and β short, α 6= β, (α, β) < 0 and p 6= Φp 6= 1.. Then up to conjuagcay under W ,

Φ is of type G2, λ = λ1, p = 2, α = α1 + 2α2, β = α1 + α2

Proof: By 5.1.8 GαGβ ≡ 0 and so [Gα,Gβ] ≡ 0.
Suppose that β = −α then [Gα,Gβ] = Hα. By ?? Hα ≡ 0 implies Gα ≡ 0, a contradicion.
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Thus β 6= −α and (α, β) 6= 0 implies that α+ β is a root. Hence NαβGαβ ≡= 0 and as
p 6= pΦ we conclude Nαβ = 0. p 6= pφ implies Nαβ = ±2, pφ 6= 2 and so Φ = G2 and p = 2.
Let Π = {α1, α2} with α1 short. Define

Σ+ = {α1, α1 + α2,−2α1 − α2}

and
Σ− = −Σ+

Then Φshort = Σ+ ∪ Σ− and W (Φlong) acts transitively on Φlong,Σ+ and Σ−. Let
ε ∈ {+,−} and δ, µ ∈ Σε with δ 6= µ. Then (δ, µ) is conjugate under W (Φ) to (α, β) and so
GδGµ ≡ 0. Since p = 2 also G2

δ ≡ 0. Moreover [Gδ, Gµ] = ±2Gδ+µ = 0. Put

qε = K〈Gδ | δ ∈ Σε〉

We conclude that qε is an commuative subalgebra of g and that

q2
ε ≡ 0

Also Gα2 commutes with Gα1+α2 and with G−2α1−α2 and [Gα2 ,Gα1 ] = ±Gα1+α2 . Thus
[Gα2 , q+] ≤ q+. Let l = glong. The action of W (Φlong) implies [l, q+] ≤ q+. Since W (Φ)
interchanges Σ+ and Σ− we also have [l, q−] ≤ q−. Thus we can apply ?? conclude that

V = V+ ⊕ V−
where Vε = AnnV (qε).

Since Vε is H invariant, v+ ∈ Vε for some ε ∈ {+,−}. Hence v+ is annihilated by qε and
u = K〈Gδ | δ ∈ Φ+〉. It is easy to see that g is (as a Lie algebra) generated by q− and u.
Thus v+ =∈ V+ and v+ is annihilated by q+ and u. In particular G±(2α1+α2)v+ = 0 and so
H2α1+α2v+ = 0. Since (2α1 + α2)∗ = 2α∗1 + 3α∗2 and p = 2 we have H2α1+α2 = Hα2 . Thus
Hα2v+ = 0 and so λ = λ1. 2

Comment: there probably exists more direct proof for the preceeding
lemma, but I like the proof seens it treats G2 for p = 2 like an A3

5.2 Quadratic modules for Groups of Lie Type

Definition 5.2.1 A quadratic system is a tuple (M,V,A,D, p) such that

(a) M is a finite group.

(b) p is a prime and V an irreducible faithful GF (p)M -module.

(c) D is a p-subgroup of M with A ≤ Z(D) and |D| > 2.

(d) M = 〈AM 〉D.
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(e) [V,A,D] = 0.

The purpose of this section is to study and (under some extra assumptions) classify quadratic
system.

Lemma 5.2.2 [[V,D,A]=0] Let (V,M,A,D, p) be a quadratic system. Then

(a) [V,D,A] = 0.

(b) M = Op(M)D.

Proof: (a) By the definition of a quadratic system [V,A,D] = 0 and A ≤ Z(D). Thus
[A,D, V ] = 0 and the Three Subgroup Lemma 2.0.1 implies [D,V,A] = 0. (b) Since
M = 〈AM 〉D, M = 〈DM 〉. So (b) follows from 2.0.2 applied to M/Op(M). 2

Lemma 5.2.3 [imprimitive quadratic systems] Let (M,V,A,D, p) be a quadratic sys-
tem and suppose that ∆ is a system of primitivity for M on V . Then

(a) p = 2 and A acts non-trivially on ∆.

(b) |D/CD(W )| = 2 = |WQ| for all W ∈ ∆ with A � NM (W ).

(c) Op(M) acts transitively on ∆.

Proof:
Since V is faithful and V =

∑
∆, there exists W ∈ ∆ with [W,A] 6= 0). Suppose

first that A acts trivially on ∆. Then 0 6= [W,A] ≤ CW (D) and so D normalizes W .
Since M = 〈AM 〉D = CG(∆)D we conclude that M normalizes W , a contradiction to the
irreducibility of V .

So A acts non-trivially on ∆. Let W with A � NM (W ). [W,A,D] = 0 implies |WA| =
WD| = p = 2. Also [W,ND(W )] ≤ CW (A) and so [W,ND(W )] = 0. Therefore D/CD(W ) =
2.

Suppose that Op(M) does not act transitively on ∆. Replacing ∆ by {
∑
WOp(M) |

W ∈ ∆} we may assume that Op(M) acts trivially on ∆. Thus by 5.2.2(b) M = CM (∆)D.
Hence ∆ = WM = WD, |∆| = 2, CD(∆) = CD(W ) ≤ CM (V ) = 1 and so |D| = 2 a
contradiction. 2

Lemma 5.2.4 [OpM irreducible in quadratic system] Let (M,V,A,D, p) be a quadratic
system. Then Op(M) acts irreducible on V .

Proof: By 5.2.3 V is homogenous on V . So the lemma follows from by ??.

Definition 5.2.5 [dtendec] Let K be a field, H a group and V a KH-module. Then a
tensor decomposition of V for H is a tuple (F, Vi, i ∈ I) such that
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(a) F ≤ EndK(V ) is a field with K ≤ F .

(b) H acts F -semilinear on V .

(c) Put E = CH(F ) ( the largest subgroup of H acting F -linear on V ). Then Vi is an
FE-promodule.

(d) As FE-modules, V and
⊗

F {Vi ∈ I} are isomorphic.

Lemma 5.2.6 [qtp] Let Q be a group with |Q| ≥ 3. 1 6= Z ≤ Z(Q), K a field with
charK = p, p a prime, V a faithful KQ-module with [V, Z,Q] = 0 and (F, Vi, i ∈ I) a
tensor decomposition of V for Q. Then Q acts F -linear and one of the follwing holds:

1. There exists i ∈ I so that [Vi, Z,Q] = 0 and Q acts trivially on all other Vj’s.

2. p = 2, Q is F -linear and there exist i, j ∈ I, ak ∈ EndF (Vk) with a2
k = 0 (k=i,j)and a

monomorphism λ : Q→ (F,+) so for q ∈ Q,

(a) For k = i, j, q acts on Vk as 1 + λ(q)ai.

(b) Q centralizes all Vs’s with s 6= i, j.

Proof: Note first that as Z acts quadratically on V , Z is an elementary abelian p-group.
Also [V, Z,Q] = 0 and [Q,Z] = 1. So the three subgroup lemma implies that [V,Q,Z] = 1.

Suppose that Q does not act F -linear. Note thet z induces some field automorphism σ
on F . Let Fσ be the fixed field of σ in F . As z is quadratic on V , f −fσ ∈ Fσ for all f ∈ F .
It easy to see that this implies F = Fσ or p = 2 and Fσ has inded two in F . Moreover,
[V, z] is an Fσ-subspace centralized by Q. So Q is Fσ and Fσ 6= F . Since [V,CQ(F )] is an
F -spave centralizes by z, CQ(F ) = 1. Thus |Q| = 2 in contradcition to the assumptions.

Suppose from now on the Q is F -linear. Since Z is a p-group, we mau assume that the
Vi’s are actually FZ-modules and not only promodules. If Q acts trivially on some Vk, V
is a direct sum of copies of the FQ-module

⊗
F {Vi | i ∈ I − k}. So the latter has the same

properties as V . Thus we may assume fom now on that Q acts non-trivially on each Vi. If
|I| = 1, then 1. holds

Suppose next that |I| = 2 and say I = {1, 2}. Note that

[CV1(Z)⊗ V2, Z] = CV1 ⊗ [V2, Q].

Q acts as scalars on [V2, Z] and [V1, Z]. Hence we may choose the promodules V1 and
V2 so that [Vi, Z,Q] = 0 for i = 1, 2. For q ∈ Q let qi be the endomorposim q − 1 of Vi.
Then ziqi = 0. Moreover, in EndF (V1 ⊗ V ),

z − 1 = (1 + z1)⊗ (1 + z2)− 1⊗ = z1 ⊗ 1 + 1⊗ z2 + z1 ⊗ z2.

Thus [V, z, q] = 0 implies

z1 ⊗ q2 = −q1 ⊗ z2
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If z1 = 0 then as V is faithful, z2 6= 0. Thus the previuos equation implies q2 = 0 for
q, a contradcition to the assumption that Q does not centalize V2. Hence both z1 and z2
are not zero. Choosing q = z we see that p = 2. Hence for arbitray q, q1 = λ(q)z1 and
q2 = λ(q)z2 for some λ(q) ∈ F . Thus 2. holds in this case.

Suppose now that |I| ≥ 3. Say 1, 2 ∈ I and but W =
⊗

F {Vi | i ∈ I \ {1, 2}. Then
V ∼= (V1 ⊗ V2)×W . Then by the prviuos case Q acts faithfully on V1 ⊗ V2 z − 1 and q − 1
are linear dependent on V1 ⊗ V2. Let λ = λ(q) be as above. Then on v1 ⊗ v2

q − 1 = (1 + λz1)⊗ (1 + λz2)− 1⊗ 1 = λ(z1 ⊗ 1 + 1⊗ z2 + λz1 ⊗ z2).
On the otherhand z − 1 = z1 ⊗ 1 + 1× z2 + z1 ⊗ z2 and we conclude that λ = 0, 1 and

so |Q| = 2, a contradiction. 2

Theorem 5.2.7 [same characteritic quadratic systems ] Let (M,V,A,D, p) be a quadratic
system. Suppose that

(a) M is a quotient of σGΦ(K) and charK = p.

(b) |D| > |K| or |ΦD| ≥ 2.

Then one of the following holds

(a)

Theorem 5.2.8 [same characteritic quadratic systems with outer automorphism]
Let (M,V,D,A, p) be a quadratic system and

(a) F∗(M) is a quotient of σGΦ(K) and charK = p.

(b) D 6≤ F ∗(M).

Then p = 2, M = Oε2n(Kσ) and V is the corresponding natural module.

Proof:

5.3 Quadratic Pairs

Lemma 5.3.1 [3 quadratic] Let F be a field with charF 6= 2, A an group and V an
FA-module. Let a, b ∈ A such that a, b and ab acts quadratically on V . Then 〈a, β〉 acts
quadratically on V .

Proof: Let α = a− 1 ∈ End(V ) and β = b− 1. Then α2 = β2 = 0, αβ = βα and

ab− 1 = (1 + α)(1 + β) = 1 = αβ + α+ β

Thus
0 = (ab− 1)2 = α2β2 + α2 + β2 + 2αβα+ 2αβ2 + 2αβ = 2αβ

Since char F 6= 2 we get αβ = 0. 2
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Lemma 5.3.2 [half quadratic] Let F be a field with charF = p > 0 and p 6=, let A be a
finite abelian group, F an FA-module Q the set of non-trivial quadratically acting elements
in A. Suppose that |Q| ≥ |A

#|
2 . The one of the following holds:

1. A acts quadratically on V .

2. p = 3 and |A/B| = 9 where B = CA([V,A]).

Let E be a maximal quadratic subgroup of A. If E = A then (1) holds. So suppose
A 6= E. Let |A/E| = pn. For a ∈ Q \ E and put Ea = {e ∈ E | ea ∈ Q}. Let e ∈ Ea. Then
by 5.3.1 〈e, a〉 is quadratic and we conclude that Ea = CE([V, a]). In particular, Ea is a
subgroup of Ea. Note also that Ea〈a〉 is quadratic and contains all the quadratic elements
in E〈a〉 not contained in E. In particular, by maximality of E, Ea 6= E. Thus Eaa contains
at most 1

p |E| quadratic elements.
Hence

|Q| ≤ |E| − 1 +
pn − 1
p
|E|

On the otherhand
|Q| ≥ 1

2
|A#| = 1

2
(pn|E| − 1)

Hence
1
2

(pn|E| − 1) ≤ |E| − 1 +
pn − 1
p
|E|

(pn+1 − 2pn − 2− 2p) ≤ − p

|E|
≤ 0

(p− 2)(pn − 2) ≤ 6

Thus p = 3 and n = 1. So A = E〈a〉 and Ea centralizes both [V,E] and [V, a]. Thus
Ea ≤ B. If Ea < B, then A = EB or A = B〈a〉 and in both cases A acts quadratically,
contradicting the maximal choice of E. Thus B = Ea and (2) holds. 2
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