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Introduction

This paper revisits the work of John Thompson and Chat-Yin Ho (cf. [Th], [H1],
[H2]) from the early 1970’s, on the “Quadratic Pairs”. Thus, we will be concerned with
the following situation.

Hypothesis 1.0. G is a finite group, p is an odd prime, and V is a faithful, irreducible
module for G over the field Fp of p elements. Further, there is a subgroup A of G such
that G = 〈AG〉 and such that [V,A,A] = 0.

Recall that a group H is quasisimple if H = [H,H] and H/Z(H) is simple. In [Ch]
the author considered the case in which, in addition to Hypothesis 1.0, it is assumed that
G has no quasisimple subnormal subgroups. (Such subgroups are the components of G.)
In this paper, we take up the alternative case, in which G has at least one component.
By lemma 1.4 in [Ch] this amounts to making the following stronger hypothesis.

Hypothesis 1.1. In addition to Hypothesis 1.0, we assume that there is a normal,
quasisimple subgroup H of G, such that CG(H) = Z(G).

As an addendum to Hypothesis 1.1 we assume that, in fact, H/Z(H) is one of the
groups given by the Classification of the Finite Simple Groups. That is to say, H/Z(H)
is isomorphic to an alternating group, a group of Lie type, or one of twenty-six sporadic
groups. We assume also that we have complete information about the Schur multipliers
of the finite simple groups, so that not only H/Z(H), but H itself, is a “known” group.
We shall prove the following result.
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Theorem A. Assume Hypothesis 1.1 and the above addendum. Then Z(G) ≤ H, and
either G = H is a group of Lie type in characteristic p, or |A| = p = 3, and one of the
following holds.

(a) G ∼= PGU(n, 2), n ≥ 5,
(b) |Z(G)| = 2, G ∼= Alt(n), n ≥ 5 and n 6= 6, or
(c) |Z(G)| = 2, and G is isomorphic to D4(2), G2(4), Sp(6, 2), Co1, Suz, or J2.

We rely largely on [GLS3] for information about “known” simple or quasisimple
groups, but we have made an attempt to keep to a minimum the amount of detailed
information that we draw upon, and to rely on general principles as far as is practicable.
For the sporadic groups, by their very nature (or by the nature of the current state of
understanding of these groups) we are forced to take an opportunistic approach, but we
can get by with information on conjugacy classes, centralizers, Schur multipliers, and the
fact that none of the sporadic groups have outer automorphisms of odd order. That is,
we require only “basic” information, such as can be found either in the ATLAS of Finite
Groups [CCNPW] or in Table 5.3 in [GLS3]. Concerning the simple groups of Lie type,
the situation is turned on its head, and we have made it a point to avoid appealing to
the detailed information (provided in [GLS3] and elsewhere) concerning the structure of
centralizers, and to rely only on information derivable from the most basic results relating
the simple groups of Lie type to simple algebraic groups, and from the Coxeter diagrams
of these various groups. As has already been mentioned, we take for granted the deter-
mination of the Schur multipliers. Aside from that, we need the theorem of Borel and
Tits which states that p-local subgroups of simple groups of Lie type in characteristic p
are contained in parabolic subgroups, and are p-constrained, and we need some results,
due to Steinberg, concerning automorphisms of the groups of Lie type. Other properties
of the groups of Lie type that will be needed here will be developed in section 3, below.

Whenever Hypothesis 1.1 is in effect, we denote by H the unique normal, quasisimple
subgroup of G, and we set G = G/Z(G).

By a quadratic module for a group X, we mean a module U such that [U,A,A] = 0
for some non-identity subgroup A of X such that X = 〈AX〉. We then say that A is a
quadratic subgroup of X.

In the exceptional cases (a) through (c) of Theorem 1.2, we determine the possible
conjugacy classes of quadratic subgroups of order 3. The result is as follows.

Theorem B. Assume Hypothesis 1.1, and assume that G is not a group of Lie type in
characteristic p. Let A be a quadratic subgroup of order 3 in G.

(a) Suppose that G = PGU(n, 2), n ≥ 5. Let φ : GU(n, 2) −→ PGU(n, 2) be the
canonical homomorphism, and let U be the natural module for GU(n, 2) over the
field F4. Then there is an element a∗ of GU(n, 2) with 〈φ(a∗)〉 = A, such that
CU (a∗) has codimension 1 in U .

(b) If G ∼= Alt(n), n 6= 6, then A is generated by a 3-cycle in G.
(c) If G ∼= D4(2) then CG(A) ∼= 3×U4(2), and A lies in a maximal subgroup M of G

such that O2(M) is an extraspecial 2-group of order 27, with M/O2(M) ∼= L4(2),
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and such that [O2(M), A] is a quaternion group.
(d) If G ∼= G2(4) then CG(A) ∼= SL(3, 4).
(e) If G ∼= Sp(6, 2) then CG(A) ∼= 3× Sp(4, 2).
(f) If G ∼= J2 then CG(A) ∼= 3·Alt(6).
(g) If G ∼= Suz then CG(A) ∼= 3·U4(3).
(f) If G ∼= Co1 then CG(A) ∼= 3·Suz.

Moreover, in every case except (c), the conjugacy class of A in G is uniquely determined
by the given conditions. In case (c) the class of A is uniquely determined up to conjugacy
in Aut(G).

We remark, in connection with Theorem A, that there are descending chains of groups

2·Co1 ≥ 6·Suz ≥ 2·G2(4) ≥ 2·J2,

and
2·Co1 ≥ 2·D4(2) ≥ 2·Sp(6, 2).

Denote by Λ the (24-dimensional) Leech Lattice, with automorphism group 2·Co1. We
will show in section 9, below, that Λ/3Λ is a quadratic module for 2·Co1, and a quadratic
module also for each of the groups in each of the above chains of subgroups. Thus, all of
the groups listed in part (c) of Theorem A possess quadratic modules in characteristic 3.

Also, the groups G listed in parts (a) and (b) of Theorem A have quadratic modules
in characteristic 3. For 2·Alt(n) such modules have been classified in [M]. For the uni-
tary groups in characteristic 2, and also for the exceptional groups in (c), a complete
determination of the quadratic modules appears in [GMST]. The quadratic modules for
the groups of Lie type in characteristic p, p odd, were determined long ago, in [PS].

The following corollary to Theorems A and B is useful for certain applications.

Corollary C. Assume Hypothesis 1.1, and assume that G is not a group of Lie type in
characteristic p. Assume also that there exists a quadratic subgroup A of G such that
|A|2 ≥ |V/CV (A)|. Then p = 3, G ∼= SL(2, 5), and V is a natural SL(2, 9)-module for
G.

In proving Theorem A, we can reduce immediately to the case where G = HA, as the
following lemma shows.

Lemma 1.2. Let G be a minimal counter-example to Theorem A. Then G = HA.

Proof. Set G0 = HA. As H is quasisimple we have G0 = 〈AG0〉, and evidently V is a
quadratic module for G0. By Clifford’s theorem, there exists an irreducible H-submodule
U of V on which H acts faithfully. Then also H acts faithfully on any irreducible G0-
submodule V0 of 〈UA〉. As V is irreducible for G, Z(G) is a 3′-group, and then since
CG(H) = Z(G), by 1.1, we have CG0(V0) = 1. Thus, Hypothesis 1.1 is satisfied by G0
and V0 in place of G and V . Suppose now that G 6= G0. Then A � H, and since G is a
minimal counter-example to Theorem A, we may appeal to Theorem A for the structure
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of G0. The condition that A not be contained in H then yields G0 ∼= PGU(n, 2), where
3 divides n. But then G0 ∼= Aut(H), and so G = CG(H)G0. Hypothesis 1.1 then yields
G = Z(G)G0. As G = 〈AG〉 = [G,A]A, it follows that G = G0A, and so G = G0. �

The structure of this paper is as follows. We begin, in section 2, by collecting to-
gether some general results about quadratic action, including a lemma of Meierfranken-
feld (lemma 2.8, below) which gives a useful characterization of the groups SL(2, p) for
p > 3.

Section 3 concerns properties of quasisimple groups of Lie type. As indicated above,
we have found it convenient to draw on [GLS3] for basic background material. From this
background we obtain results on automorphisms, on centralizers, and on the action of
certain automorphisms on Schur multipliers.

In section 4 we use the results of section 3 in order to show that, if G is a group of Lie
type (possibly of characteristic p) then a induces an inner-diagonal automorphism on G.
We also show that if G is an alternating group, then A is generated by a 3-cycle, and
|Z(G)| = 2. Thus, in the succeeding sections, we need only be concerned with groups of
Lie type (possibly extended above by diagonal automorphisms) in characteristic different
from p, and with sporadic groups.

Section 5 provides a quick treatment of the case where p is greater than 3. (Of course,
the result here is not new. See [Sa] for a treatment which is based on Aschbacher’s
classification [A1] of groups of Lie type in odd characteristic. Much more recently, one
has Timmesfeld’s work [Ti], where the groups are not assumed to be finite, but in which
the question addressed by lemma 2.8 below is left hanging.) From then on, we assume
that p = 3, and section 6 is devoted to the case where H is of Lie type in characteristic
different from 3. Section 7 treats the case where p = 3 and H is a sporadic group. Finally,
sections 8 and 9 provide proofs for Theorem B and Corollary C, and establish that all of
the “exceptional” groups that arise in Theorem A do indeed have quadratic modules.

It should be emphasized that this paper should in no way be construed as somehow
finessing the work of Thompson and Ho. The work of Thompson was begun before the
Classification was anywhere within sight, and before there was even any strong reason
to believe that only a small number of finite simple groups remained to be discovered.
Thompson’s work (and that of Ho) may be understood as an attempt to continue the
momentum towards the Classification that had begun with the Odd Order Paper and
the N-Group Paper. Their work was dropped when a powerful program leading to the
Classification began to take shape. On the other hand, a new approach to at least one
aspect of the Classification (concerning groups having a “generic” prime characteristic)
is currently developing, under the leadership of Meierfrankenfeld. The determination of
certain kinds of quadratic groups and modules, in arbitrary prime characteristic, forms
one of the tools that are needed for the Meierfrankenfeld program.

Section 2. Quadratic groups

Lemma 2.1. Let G be a finite group generated by two elements x1 and x2 of odd
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prime order p. Suppose that there exists a faithful, irreducible G-module V over Fp,
with [V, xi, xi] = 0 for both i = 1 and 2. Then one of the following holds:

(i) G ∼= SL(2, pn) for some n, and V is a natural module for G, or
(ii) p = 3, G ∼= SL(2, 5), and V is a natural SL(2, 9)- module for G.

Proof. Let F be a splitting field for G over Fp, and put Ṽ = F ⊗ V . Put Γ = Aut(F ).
Then Ṽ is an irreducible module for Γ×G, by [A2, result 25.7]. Let U be an irreducible
F [G]-submodule of Ṽ . There is then a finite subset Σ of Aut(F ), containing the identity
automorphism, such that:

Ṽ = ⊕{Uσ : σ ∈ Σ}

Since CG(Ṽ ) = 1, we then have CG(U) = 1. Thus, U is a faithful, irreducible F [G]-
module. Theorem 3.8.1 of [G] then says that G contains a subgroup isomorphic to
SL(2, p). But the point is that a much stronger statement is actually proved. Namely,
the argument of [G, Theorem 3.8.1] shows that dimF (U) = 2, and that, relative to a
suitable basis of U , the generators x1 and x2 of G have the matrix form:(

1 1
0 1

)
and

(
1 0
λ 1

)
for some λ ∈ F . A theorem of L.E.Dickson (Theorem 2.8.4 in [G]) then implies that
either G ∼= SL(2, pn), where λ is a primitive (pn − 1)th-root of unity; or else p = 3,
λ ∈ F9, and G ∼= SL(2, 5). Moreover, U is then seen to be irreducible as a G-module
over Fp, and hence U is isomorphic to V as Fp[G]-modules. This yields the lemma. �
Lemma 2.2. Set L = SL(2, p) with p an odd prime, let V be the natural Ω3(p)-module
for L, and form the semi-direct product H = V L. Then every complement to V in H is
conjugate to L.

Proof. Identify V with the space of all homogeneous polynomials of degree 2 in the
variables x and y, over Fp. Thus, {x2, xy, y2} is a basis for V . Let a and t be the
elements of L given as follows.

a =
(

1 1
0 1

)
and t =

(
0 1
−1 0

)
Regard x and y as the standard basis vectors (1, 0) and (0, 1) for the natural SL(2, p)-
module for L. Then the action of a and of t on V is given as follows.

(x2)a = x2 + 2xy + y2 (xy)a = xy + y2 (y2)a = y2

(x2)t = y2 (y2)t = x2 (xy)t = −xy

Suppose, by way of contradiction, that we are given a complement L1 to V in H with
L1 not conjugate to L. All cyclic groups of order p in V 〈a〉 − V are V -conjugate to each
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other, so we may assume that a ∈ L1. Set N = NH(〈a〉). Then N = 〈y2, a〉D where D is
the diagonal subgroup of L, of order p− 1. Thus D is a Hall p′-subgroup of N , and since
any two such are conjugate in N , we may assume that D ≤ L1. If p = 3 then L is the
normalizer in H of a Sylow 2-subgroup of H, and there is then nothing to show. Thus,
we have p > 3. Then D acts non-trivially on V , and we find that NH(D) = 〈xy,D, t〉.
Then L1 = 〈a, t1〉 for some t1 ∈ 〈xy〉t. Thus t1 = (cxy)t for some c ∈ F×p .

Notice that (ta)3 = I. Then also (t1a)3 = I. We will therefore have a contradiction if
we can show that, in fact, (t1a)3 is a non-zero element of V . This is indeed the case, by
the following calculation:

(t1a)2 = ((cxy)ta)((cxy)ta) = (cxy + (cxy)(ta)2
)(ta)2 = (−cx2)(ta)2 and then

(t1a)3 = ((−cx2)(ta)2)((cxy)ta) = −cx2 + (cxy)ta = −c(x2 + xy + y2).

This contradiction proves the lemma. �
Lemma 2.3. Let p be an odd prime, let V be a vector space of dimension 4 over Fp, and
let U be a subspace of V of dimension 2. Let H be a subgroup of GL(V ) which leaves U
invariant, and assume that H has the following two properties.

(1) Op(H) = CH(U) = CH(V/U),
(2) H/Op(H) ∼= SL(2, p).

Then the following hold.
(a) If there exists an element a of order p in H, with [V, a, a] = 0, then there is a

complement L to Op(H) in H, containing a. For any such complement L we
have V = U ⊕ U1 for some L- submodule U1 of V .

(b) If p > 3 and there exists a complement L to Op(H) in H containing a, then
[V, b, b] = 0 for any element b of order p in L.

Proof. Set N = NGL(V )(U), R = Op(N), N = N/R, and M = Op
′
(N). Then M ∼=

SL(2, p) × SL(2, p) and R is a natural Ω+
4 (p)-module for M . Here H is a “diagonal”

copy of SL(2, p) in M . That is, H ∼= SL(2, p) and H is not a direct factor of M . If p = 3
we observe that also O2(H) acts non-trivially on both U and V/U . For any p, the above
conditions determine H up to conjugacy in N , and we may therefore identify RH with
the subgroup of GL(4, p) consisting of all matrices of the form

(*)
(
X A
0 X

)
where X ∈ SL(2, p) and where A is an arbitrary 2 × 2 matrix over Fp. Then R =
[R,H]× CR(H), with |CR(H)| = p and where [R,H] is a natural Ω3(p)-module for H.

Suppose that there exists a complement L to Op(H) in H. Then L is a complement
to R in RH. By lemma 2.2, CR(H)L is determined up to conjugacy in RH. If p > 3
then L = [CR(H)L,CR(H)L], and so L is uniquely determined up to conjugacy in RH

6



in this case. Thus, if p > 3 we may take L to be the set of matrices in (*) with A = 0.
This yields (b).

Suppose next that [V, a, a] = 0. Every element of order p in R〈a〉 −R is R-conjugate
to an element of 〈a〉CR(H) not contained in CR(H). Moreover, if z is a non-identity
element of CR(H) then no element of 〈a〉z is quadratic on V . Thus, up to R-conjugacy
there is a unique subgroup C of order p in R〈a〉 such that C � R. We may therefore
take a to be given by a matrix as in (*), with A = 0 and with

X =
(

1 1
0 1

)
.

Then a lies in a complement L1 to R in RH such that V is completely reducible as
an L1-module. Suppose that also a lies in a complement L to Op(H) in H. Then L
is R-conjugate to a subgroup of CR(H)L1, by 2.2. As L1 is the unique subgroup of
CR(H)L1 which is isomorphic to SL(2, p) and which contains a quadratic element of
order p, it follows that L and L1 are R-conjugate. Thus, we may assume that a lies in no
complement to Op(H) in H. In particular, Op(H) 6= 1, H is not isomorphic to a direct
product SL(2, p)× Zp, and H 6= RH. It follows that R ∩H = [R,H]. If p > 3 we then
have H = [RH,RH] and H contains every complement to R in RH. Thus p = 3 and
the normalizer in H of a Sylow 2-subgroup of H is a complement to Op(H) in H. Here
all subgroups of order 3 in H −O3(H) are conjugate in H, so once again we have a in a
complement. This contradiction completes the proof of (a). �
Lemma 2.4. Let G be a finite group, p an odd prime, and V a faithful Fp[G]-module.
Suppose that we are given an element a ∈ G−Op(G) with [V, a, a] = 0. Then there is a
subgroup H = 〈aH〉 of G having the following properties:

(a) H ∼= SL(2, p), or else p > 3 and H ∼= Zp × SL(2, p).
(b) V = [V,H]⊕CV (Op(H)), and [V,H] is a direct sum of natural SL(2, p)-modules

for H.
In particular, there exists an element b of order p in H such that b acts quadratically on
V and such that b lies in a subgroup of G which is isomorphic to SL(2, p).

Proof. Suppose false, and let a counter-example (G,V ) be chosen with |G|+ |V | minimal.
As a /∈ Op(G) the Baer-Suzuki Theorem implies that there is a conjugate b of a in G
such that 〈a, b〉 is not a p-group. Set H = 〈a, b〉. Then a /∈ Op(H), and we may therefore
assume that a and b are conjugate in H. By minimality of |G| we then have G = H.

Suppose first that V is irreducible for G. Then 2.1 yields G ∼= SL(2, pn) or SL(2, 5),
and by minimality we then have G ∼= SL(2, p). Moreover, 2.1 shows also that V is a
natural module for G, so we are done in this case. As (G,V ) is a counter-example to 2.4,
we conclude that V is reducible. By minimality of |V |, all non-central chief factors for G
in V are natural SL(2, p)-modules for G. Let W0 ≥ W1 ≥ W2 be a descending chain of
G-submodules of V , with irreducible quotients, and set X = W0/W2 and G = G/CG(X).
Suppose that X is indecomposable, and consider first the case in which exactly one of
the irreducible constituents for G in X is non-trivial. Then G/Op(G) is isomorphic to
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SL(2, p), and Op(G) is a natural SL(2, p)-module for G/Op(G). Every element of order p
in G−Op(G) is then contained in a complement to Op(G) in G, and we thereby contradict
the minimality of |G|. Thus no such indecomposable section X of V exists. It follows
that V = [V,G]⊕CV (Op(G), and that both irreducible constituents of X are non-trivial.
Let U be the irreducible submodule of X. Then Op(G) = CG(U) = CG(X/U) as G is
generated by two conjugate elements of order p, and G/Op(G) ∼= SL(2, p). Now 2.3(a)
and minimality of |G| together imply that Op(G) = 1 and that Xis decomposable. We
have thus shown that [V,G] is a direct sum of natural SL(2, p)-modules for G. �
Lemma 2.5. Let G = K×〈c〉, with K ∼= SL(2, 5) and with c an element of order 3. Let
G be a faithful F3G-module, and suppose that there exists an element a of order 3 in G
which acts quadratically on V . Then such an element a may be chosen to lie in K ∪ 〈c〉.

Proof. Suppose false, and let b be an element of order 3 in K, with a ∈ 〈b, c〉. Also,
let L be a subgroup of G, containing a, with L ∼= SL(2, 3). Then [V,K] = [V, Z(K)] =
[V, Z(L)] = [V,O2(L)] is a direct sum of natural SL(2, 3)-modules for L, by 2.4(b). As
a /∈ K, c acts quadratically on CV (K), and then since c is not quadratic on V we conclude
that there exists an irreducible L-submodule U of [V,K] such that c is not quadratic on
the subspace W = 〈U 〈c〉〉 of V . Then W = U⊕U c⊕U c2 , and then also W = U⊕Ux⊕Ux2

for any x ∈ 〈a, c〉 − 〈a〉. Thus, 〈a〉 is the unique quadratic subgroup of order 3 in 〈a, c〉.
But 〈a〉 = 〈bc〉 or 〈b2c〉, where bc and b2c are conjugate via K. Thus, 〈a, c〉 contains at
least two quadratic subgroups of order 3, and we have a contradiction at this point. �
Lemma 2.6. Let G be a finite group, p an odd prime, and V a faithful FpG-module.
Suppose that we are given an element a of G − Op(G) with [V, a, a] = 0, and suppose
further that G has cyclic Sylow p-subgroups. Let g ∈ G−NG(〈a〉), and set H = 〈a, ag〉.
Then either H ∼= SL(2, p) or p = 3 and H ∼= SL(2, 5).

Proof. Assume false, and let (G,V ) be a counter-example with |G|+ |V | minimal. Then
V is reducible for the action of H, by 2.1. As in the proof of 2.4, let W0 ≥ W1 ≥ W2
be a properly descending chain of H-submodules of V , set X = W0/W2, and set H =
H/CH(X). Assume that H acts non-trivially on X. As H has cyclic Sylow p-subgroups
we then have Op(H) = 1. If one of the constituents for H in X is trivial, it then follows
that X is completely reducible, and this shows that each irreducible constituent for H in
[V,H] is either a natural SL(2, p)-module or, exceptionally, a natural SL(2, 9)-module for
H. Now let U be an irreducible H-submodule of V , chosen if possible so that [U,H] = 0,
and set Ĥ = H/CH(U). Then Op(H) acts non-trivially on V/U , and by the minimality
of |V | we then have Ĥ ∼= SL(2, p) or SL(2, 5). Set K = CH(V/U). Then K is a normal
p′-subgroup of H, and K 6= 1 as otherwise we are done. Then K acts non-trivially on U ,
so U is a natural SL(2, p) or SL(2, 9)-module for H, and |K| = 2. Thus H is a central
extension of SL(2, p) or SL(2, 9) by a group of order 2. But for any prime power q, the
2-part of the Schur multiplier of SL(2, q) is trivial, and so H has a direct factor of order
2. This is contrary to H being generated by two elements of order p, and the lemma is
thereby proved. �
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Lemma 2.7. Let G be a finite group, p an odd prime, and A a subgroup of G such that
G = 〈AG〉. Suppose that G has a faithful Fp-module M such that [M,A,A] = 0. Then
for any element a of A and any conjugate b of a in G, either 〈a, b〉 is a p-group, or the
following hold.

(a) 〈a, b〉 has a normal subgroup N such that 〈a, b〉/N is isomorphic to one of the
groups SL(2, pn), (n ≥ 1), or SL(2, 5).

(b) 〈a, b〉 has a subgroup K = 〈aK〉 with K isomorphic to SL(2, p) or SL(2, p)× Zp.
Moreover, if p = 3 then K ∼= SL(2, 3).

Proof. Let a ∈ A and let b ∈ aG, and put L = 〈a, b〉. Suppose that L is not a p-group,
and let W be a non-trivial irreducible constuent in M for the action of L. Setting
N = CL(W ), it follows from lemma 2.1 that L/N is isomorphic to SL(2, pn) for some
n, or to SL(2, 5). Further, lemma 2.4 implies that L has a subgroup K = 〈aK〉 with K
isomorphic to SL(2, p) or Zp × SL(2, p). �

The following result is due to Ulrich Meierfrankenfeld.

Lemma 2.8. Let G be a finite group, p a prime, p > 3, and let V be a faithful, irreducible
FpG-module. Suppose that G = 〈AG〉, where A is a non-identity subgroup of G which
acts quadratically on V . Suppose further that G has cyclic Sylow p- subgroups, and that
all involutions in CG(A) are contained in Z(G). Then G ∼= SL(2, p).

Proof. Let g ∈ G−NG(A), set H = 〈A,Ag〉, and set B = NH(A). As G has cyclic Sylow
p-subgroups, we have H ∼= SL(2, p), by 2.5. The involution z in H is then in Z(G), and
since V is irreducible we have V = [V, z]. Then 2.4(b) implies that V = ⊕1≤i≤nVi, where
each Vi is a natural SL(2, p)- module for H. As p > 3, B is non-abelian and we find that
AutB(Vi) = AutH(Vi) for all i. Setting D = AutH(V ), it follows that AutB(V ) = D.

The centralizer in G of the chain V ≥ CV (A) ≥ 0 acts quadratically on V , and is
therefore an elementary abelian p-subgroup of G containing A. As G has cyclic Sylow
p-subgroups we therefore conclude that

(1) A = CG(CV (A)) ∩ CG(V/CV (A)).

Now let H̃ be a subgroup of G with A ≤ H̃ ∼= H, and set B̃ = N eH(A). The image of B
in GL(CV (A))×GL(V/CV (A)) is {(λI, λ−1I) : 0 6= λ ∈ Fp}, and the same is true of B̃.
Then (1) implies that B = B̃, and so Aut eH(V ) = Aut eB(V ) = D. On the other hand, we
have AutD(V ) ∼= GL(2, p), and 〈H, H̃〉 ≤ AutD(V ). Thus H = H̃.

For any x ∈ G−NG(A), we may now conclude that 〈Ax, Agx〉 = 〈A,Ax (by replacing
A by Ax in the preceding discussion). Since also H = 〈A,Ag〉 = 〈A,Ax〉, we conclude
that H is invariant under 〈G−NG(A)〉. That is, H is G-invariant, and thus H = 〈AG〉 =
G. �
Lemma 2.9. Assume Hypothesis 1.1, and let a be a non-identity element of A. Suppose
that we are given a p′-subgroup Q of G, with [Q, a] = Q. Then p = 3 and Q is a
non-abelian 2-group. Moreover, if Q is extraspecial then Q is a quaternion group.
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Proof. Let R be an a-invariant Sylow subgroup of Q, with [R, a] 6= 1. Then 2.6(ib)
implies that p = 3, R is a 2-group, and Q = CQ(a)R. But then also Q = R, since
Q = [Q, a]. Further, 2.7(b) also shows that every a-invariant abelian subgroup of Q is
centralized by a, and so Q itself is non-abelian. Now suppose that Q is extraspecial.
Then CQ(a) = Z(Q), and it follows that for any involution t in Q− Z(Q) we have 〈t, a〉
containing a subgroup isomorphic to Alt(4). Therefore there is no such involution t, and
so Q is a quaternion group. �
Lemma 2.10. Assume Hypothesis 1.1, let a ∈ A, and let L be an a-invariant subgroup
of G. Then every component of L is a-invariant.

Proof. Suppose false, and let K be a component of L which is not a-invariant. As K is
quasisimple, there is a prime divisor r of |K/Z(K)| with r /∈ {2, p}. Let R be a Sylow
R-subgroup of K. Then [R, a] is a non-identity r-group, and we contradict 2.9. �

Section 3: Groups of Lie type

In this section we collect the information that we need concerning automorphisms,
Schur multipliers, and centralizers of semisimple elements in groups of Lie type. In doing
so, we are guided to a great extent by [GLS3]. Many of the results from [GLS3] that we
quote come indirectly from [St1], [St2], [St3], [Gr], and [Ma].

Let r be a prime, let F be an algebraic closure of the field Fr of r elements, and let K
be a simple (linear) algebraic group defined over F . (If also Z(K) = 1 then we say that
K is of adjoint type.)

Fix a maximal torus T of K, and let Σ be the root system associated with T . For any
α in Σ, let Xα = {xα(t) : t ∈ F} be the one- parameter subgroup (i.e. the root subgroup
of K) associated with α, and denote by X the set of all elements xα(t) of K, α ∈ Σ and
t ∈ F . The root subgroups of K generate K, so any endomorphism of K is determined
by its action on X .

A surjective algebraic endomorphism σ of K is said to be a Steinberg endomor-
phism if CK(σ) is finite. A finite group K is a group of Lie type (in characteristic
r) if K = Or

′
(CK(σ)) for some simple algebraic group K and some Steinberg endomor-

phism σ of K, and we then say that (K,σ) is a σ-setup of K. If K is of adjoint type
(i.e. if Z(K) = 1) then Z(K) = 1, and we say also that K is of adjoint type. The class
of groups of Lie type in characteristic r is denoted Lie(r).

Let q = rn be a power of r, where n is a positive integer. There is then a Steinberg
endomorphism φq of K given on X by

(3.1) φq(xα(t)) = xα(tq).

For any isometry ρ of Σ there is an automorphism γρ of K given on X by

(3.2) γρ(xα(t)) = xαρ(t).
10



If Σ is B2, F4, or G2, and r is 2, 2, or 3, respectively, then there is a unique angle-
preserving, length-changing bijection ρ on Σ, and and there is an automorphism ψ of K
given on X by

(3.3) ψ(xα(t)) =

{
xαρ(t) if α is long

xαρ(tr) if α is short.

One observes that φr commutes with γρ for any isometry ρ of Σ, and in the special cases
given by 3.3 one observes that ψ2 = φr.

The following result is Theorem 2.2.3 in [GLS3].

Proposition 3.4. Let K ∈ Lie(r) and let (K,σ) be a σ-setup of K. Then there is a
maximal torus T of K, with associated root system Σ, such that, after conjugating σ by
a suitable inner automorphism of K, one of the following holds.

(i) σ = γρ ◦ φq for some isometry ρ of Σ and some positive integral power q of r.
(ii) Σ = B2, F4, or G2, with r = 2, 2, or 3, respectively, and σ = ψn for some odd

positive integer n, where ψ is as in 3.3.

The group K in 3.4 may be denoted dΣ(q), where d = |ρ| in case (i), and where d = 2
in case (ii). If d = 1 then we may write simply K = Σ(q), and we say in this case that
K is a Chevalley group. If d 6= 1 and σ is conjugate to γρ ◦φq, where ρ is a non-trivial
isometry of Σ, then K is a Steinberg variation. If d = 2 and σ is conjugate to ψn, n
odd, where ψ is as in 3.3, then K is a Ree-Suzuki group.

Let K = dΣ(rn) ∈ Lie(r), let (K,σ) be a σ-setup of K, and let x be an automorphism
of K. We say that x is an inner-diagonal automorphism if x is the restriction to K
of an inner automorphism of CK(σ). The group of all inner-diagonal automorphisms of
K is denoted Inndiag(K). We say that x is a field automorphism if x is conjugate
via Inndiag(K) to a non-identity automorphism of the form φq|K . We say that φ is a
graph automorphism if d = 1 and x is conjugate via Inndiag(K) to an automorphism
of the form (γρ)|K , ρ a non-identity isometry of Σ. We say that x is a graph-field
automorphism if either d = 1 and φ is conjugate via Inndiag(K) to an automorphism
of the form γρ ◦ φq) of K, ρ a non-trivial isometry of Σ, or if d = 2 and φ is conjugate
via Inndiag(K) to an automorphism of the form ψn, n odd, where ψ is given as in 3.3.

If Σ is not B2, F4, or G2, with p = 2, 2, or 3, respectively, set ψ = φr. In any case,
set ΦK = 〈ψ〉. Also, denote by ΓK the set of all γρ, ρ an isometry of Σ.

Proposition 3.5. Let K be a group of Lie type and let (K,σ) be a σ-setup for K.
Assume that Z(K) = 1, and identify K with the group of inner automorphisms of K.
Denote by Aut1(K) the group of automorphisms τ of K as an abstract group, such that
either τ or τ−1 is an algebraic endomorphism of K. Then the following hold.

(a) We have Aut1(K) = (ΦK × ΓK)K.
(b) The restriction map from CAut1(K)(σ) to Aut(K) is surjective, with kernel 〈σ〉.
(c) We have CAut1(K)(K) = 〈σ〉.
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Proof. Parts (b) and (c) are Theorem 2.5.4 and Lemma 2.5.7, respectively, in [GLS3].
Part (a) follows from (b) and from the theorem of Steinberg [St, Theorem 30] which
states that every automorphism of K is the product of inner-diagonal, field, and graph
automorphisms. �

The next result is [GLS3, Proposition 4.9.1]. The proof given below supplies a few
details not given in the cited reference.

Proposition 3.6. Let K = dΣ(q) ∈ Lie(r), with Z(K) = 1. Let x be a field automor-
phism or a graph-field automorphism of K, of prime order p, and let y ∈ Inndiag(K)x.
If K is a Steinberg variation, assume that d 6= p. Then x and y are conjugate via
Inndiag(K).

Proof. Let (K,σ) be a σ-setup of K, with Z(K) = 1. If K is a Chevalley group or a
Ree-Suzuki group (resp. a Steinberg variation) we may take σ = ψn (resp. γρ ◦ φrn , for
some appropriate n > 0. We claim:

(1) There exists a Steinberg endomorphism τ of K, with x ∈ 〈τ |K〉 and with τp = σ.

Suppose that (1) holds, and let k be the integer, 1 ≤ k < p, such that τ |K = xk. We are
given y ∈ Aut(K) with y ∈ Inndiag(K)x. Identify Inndiag(K) with CK(σ). Then yk is
the restriction to K of some automorphism τ1 = hτ of K, where h ∈ CK(σ). As |yk| = p,
we have (τ1)p ∈ 〈σ〉, by 3.5(c). As τp1 ≡ τp (mod Inndiag(K)), we then have τp1 = σ,
by (1). As τ is a Steinberg endomorphism of K we may apply Lang’s Theorem ([GLS3,
Theorem 2.1.1]), and conclude that h = gτg−1τ−1 for some g ∈ K. Then τ1 = gτg−1,
and by taking pth powers we obtain σ = gσg−1. Thus g ∈ CK(σ) = Inndiag(K), and
y = gxg−1, as required. Thus, it remains to establish (1).

Set Φ = ΦK and Γ = ΓK . By 3.4, we may take σ = ψn ◦ γρ for some n > 0 and
some isometry ρ of Σ. We are free to replace x by any Inndiag(K)-conjugate of x, and
then since x is a field or graph-field automorphism of K we may take x = τ0|K , for some
τ0 ∈ ΦΓ. Moreover, we have [σ, τ0] = 1 by 3.5(b), and (τ0)p ∈ 〈σ〉 by 3.5(c).

Suppose that τ0 ∈ Γ〈σ〉. By assumption, x is not a graph automorphism of K, so K
is not a Chevalley group. If K is a Ree-Suzuki group then Γ = 1, and since τ0 /∈ 〈σ〉 we
conclude that K is a Steinberg variation. Then ρ 6= 1, and since τ0 and σ commute it
follows that τ0 ∈ 〈ρ, σ〉. Then d = p, contrary to assumption. Thus, we conclude that
τ0 /∈ Γ〈σ〉.

We have ΦΓ/〈σ〉Γ ∼= Zn, and since xp = 1 it now follows that p divides n. Write
n = pm and set ψ1 = ψm. Suppose that ρ = 1. We then have (ψ1)p = σ, and τ0 ∈ 〈ψ1〉Γ.
Write τ0 = (ψ1)kγ, where γ ∈ Γ. As [Φ,Γ] = 1 we conclude that |γ| = 1 or p, so there
exists an integer ` with γk` = γ. We then take τ = ψ1γ

`, and obtain τp = σ and τk = τ0.
Thus, (1) holds in this case. On the other hand, suppose that ρ 6= 1. Then p does not
divide |ρ|, by assumption, and so there exists γ ∈ 〈γρ〉 with γp = ρ. Setting τ = ψ1γ,
we then have τp = σ. Any homomorphic image of Φ× 〈γρ〉 has at most one subgroup of
order p, so x ∈ 〈τ |K〉, and thus (1) holds in any case. �
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We next consider centralizers of semisimple elements.

Lemma 3.7. Let K be a simple group of Lie type in characteristic r, and let (K,σ) be a
σ-setup of K. Identify Inndiag(K) with CK(σ), and let x ∈ Inndiag(K) with |x| prime
to r. Then the following conditions are equivalent.

(1) CK(x) contains a non-identity unipotent element.
(2) Or

′
(CK(x)) 6= 1.

(3) Or
′
(CK(x)) is a product L1 · · ·Ln, (n ≥ 1), where each Li is a group of Lie type

in characteristic r, and where [Li, Lj ] = 1 for all i and j with i 6= j.

Proof. Set C = CK(x). As |x| is relatively prime to r, x is a semisimple element of K,
and hence C is closed, connected and reductive. Set L = [C,C]. Thus C = Z(C)L, where
L is closed, connected and semisimple, and where Z(C) is a torus. Then L contains all of
the unipotent elements of C. Denote byM the set of normal, simple algebraic subgroups
of M . Then L is the commuting product of the members of M. If M is non-empty, we
writeM = {M i}1≤i≤t. Notice that if L = 1 then CK(x) = CC(σ) consists of semisimple
elements, so that Or

′
(CK(x)) = 1. Thus (2) implies (1).

Suppose that M is non-empty. That is, assume that (1) holds. As σ commutes with
x, C is σ-invariant and σ then induces a permutation action on M. Let M1 · · ·Mn be
the set of orbits for σ onM, and assume (without loss) that indices have been chosen so
that M1 = {M i}1≤i≤k. Since any positive power of a Steinberg endomorphism is again
a Steinberg endomorphism, it follows that σk induces a Steinberg endomorphism on each
Li, 1 ≤ i ≤ k. For such i, set Mi = Or

′
(CMi

(σk)). Then each Mi is a group of Lie type
in characteristic r, by definition. Now set M = M1 · · ·Mk. Then M/Z(M) is the direct
product of the images in M/Z(M) of the groups Mi, 1 ≤ i ≤ k, and the action of σ on
M/Z(M) is given by the transitive permuting of these factors. Set L1 = Or

′
(CM (σ)). It

now follows that L1 = Or
′
(CM (σ)) is isomorphic to a quotient of M1 by a subgroup of

Z(M1). We repeat this procedure for the remaining σ- orbits, obtaining the groups L1
through Ln.

Now set L = Or
′
(CL(σ)). Since central quotients of groups in Lie(r) are also in Lie(r),

we conclude that L is the pairwise commuting product of the groups Lj , 1 ≤ j ≤ n, where
each Lj is a member of Lie = (r). On the other hand, we have CK(σ) = CT (σ)K for
some σ-invariant maximal torus T , and then L = Or

′
(CK(σ, x)) = Or

′
(CC

K
(σ)(x)) =

Or
′
(CK(x)). Thus (3) holds. Clearly, (3) implies (2), and thus the lemma is proved. �

Lemma 3.8. Let r be a prime and let K be a simple linear algebraic group over an
algebraic closure F of the field F = Fr of r elements. Let σ be a Steinberg endomorphism
of K, and set K = Or

′
(CK(σ)) (so that K is a group of Lie type in characteristic r).

Let g ∈ K, and assume that either

(i) |g| = 2 and K is not of type A1, or
(ii) |g| = 3 and K is not of type A1 or A2.

Then CK(g) contains a non-identity unipotent element.
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Proof. We may assume that |g| 6= r as otherwise the result holds trivially. Thus g
is a semisimple element of K, and so there is a maximal torus T of K containing g.
Let Σ be the root system for K given by T , Π a fundamental system in Σ, B the
corresponding Borel subgroup, and U the unipotent radical of B. Recall that each α ∈ Σ
is a homomorphism of T into F

×
, and that there is then a T -invariant subgroup Uα of

U and a parametrization
xα : F

× −→ Uα

such that gxα(t)g−1 = xα(α(g)t) for all t ∈ F×.
We aim to show that, under the conditions given in (a) and (b), there exists a root α

such that Uα ≤ CK(g). Suppose false, and suppose first that |g| = 2. Here α(g)2 = 1, so
we have α(g) = −1 for all α ∈ Σ. Assuming that Σ is not A1, there exist two roots α and
β whose sum is a root, and we then have (α+β)(g) = α(g)β(g) = 1, for a contradiction.
Now suppose that |g| = 3, and let ω be a primitive cube root of unity in F . Then
α(g) = ω or ω−1 for all roots α. It follows that α(g) = β(g) 6= 1 whenever α and β are
roots whose sum is again a root. In particular, we may assume that α(g) = ω for all
α ∈ Π. If Σ has more than one root length then there are fundamental roots α and β
such that α+ 2β is a root, and we obtain (α+ 2β)(g) = 1 in that case. Also, if the rank
of Σ is at least 3 then there exist fundamental roots α, β, and γ whose sum is a root,
yielding (α + β + γ)(g) = 1. Thus, Σ is of rank at most two, and Σ has only one root
length. That is, Σ is A1 or A2. �
Lemma 3.9. Let K be a simple group of Lie type in characteristic r, let p be a prime
different from r, and let x be an element of order p in Inndiag(K). Suppose that x
is contained in a non-cyclic abelian p-subgroup of Inndiag(K). Then there exists an
element y of order p in CK(x) such that Or

′
(CK(y)) 6= 1.

Proof. Let E be an elementary abelian subgroup of Inndiag(K) of order p2, containing
x, and let (K,σ) be a σ-setup for K. Let T be a maximal torus of K containing E, let B
be a Borel subgroup of K containing T , let Σ be the root system defined by T and B, and
let α ∈ Σ. Then α is a homomorphism of T into the multiplicative group of an algrebaic
closure of Fr. The image of α is then cyclic, and so there exists a non-identity element
y ∈ E ∩Ker(α). This means that CK(y) contains the root subgroup of B corresponding
to α. The desired result then follows from 3.7. �

We next consider normalizers of r-groups in groups K, K ∈ Lie(r).

Lemma 3.10 (Borel-Tits). Let K ∈ Lie(r) and let R be a non-identity r-subgroup of
K. Then there is a parabolic subgroup P of K such that R ≤ Or(P ) and NK(R) ≤ P .

Proof. This result, proved first in [BT], appears as [GLS3, Theorem 3.1.3(a)].

Recall that a group G is said to be r-constrained if CG(Or(G)) ≤ Or(G).

Lemma 3.11. Let K ∈ Lie(r), let X be a subgroup of Aut(K) containing Inn(K), and
let R be a non-identity r-subgroup of K. Then the following hold.

(a) Both CX(R) and NX(R) are r-constrained.
14



(b) If R = Or(NK(R)) then the group P = NK(R) is a parablic subgroup of K, and
R = Or(P ).

Proof. See [GLS3, Corollaries 3.1.4 and 3.1.5]. �
We now review the Schur multipliers of the groups of Lie type.

Proposition 3.12. Let K be a simple group of Lie type, in characteristic r, and let K̂
be the universal, perfect central extension of K. Set Z = Z(K). Then Z = Zc × Ze,
where Zc (the “canonical” part of Z is isomorphic to the quotient group Outdiag(K) =
Inndiag(K)/Inn(K), and where Ze (the “exceptional” part of Z) is equal to Or(Z).
Moreover, we have Ze = 1 except in the following cases.

(a) |Ze| = 2, and K is isomorphic to L2(4), L3(2), Sp(4, 2)′, L4(2), Sp(6, 2), U4(2),
F4(2), or G2(4).

(b) Ze ∼= Z2 × Z2, and K is isomorphic to U6(2), D4(2), Sz(8), or 2E6(2).
(c) Ze ∼= Z4 × Z4, and K is isomorphic to L3(4).
(d) |Ze| = 3, and K is isomorphic to L2(9), Sp(6, 3), or G2(3).
(e) Ze ∼= Z3 × Z3, and K is isomorphic to U4(3).

Proof. The relevant references are [St3], and [Gr]. See also chapter 6 of [GLS3]. �
Lemma 3.13. Let K be one of the groups Sz(8), L3(4), D4(2), or U6(2), and let α be
an outer automorphism of K of order 3. Define K̂ and Ze as in 3.12. Then α lifts to
an automorphism of K̂ which acts faithfully on Ze.

Proof. The result is contained in [GLS3, Theorem 6.3.1], but we present an altwernative
proof here.

Assume that α acts trivially on Z(K∗), let K1 be a perfect central extension of K by
Z2, and view α as an automorphism of K1. Suppose first that K ∼= L3(4). Let P be an α-
invariant maximal parabolic subgroup of K. Then P is a semidirect product of SL(2, 4)
with the natural SL(2, 4)-module, and α centralizes a complement to O2(P ) in P . Let
P1 denote the pre-image of P in K1. Then O2(P1) is elementary abelian, since P acts
transitively on the non-identity elements of O2(P ). Further, we may choose K1 so that
P1 has a subgroup isomorphic to SL(2, 4), since SL(2, 4) has no perfect central extension
by Z2 × Z2. But now [O2(P1), α](CP1(α))′ is isomorphic to P , and is a complement to
Z(K1) in P1. Gaschütz’s Theorem [A2, result(10.4)] then implies that K1 splits over
Z(K1), and we have a contradiction.

Suppose next that K ∼= U6(2). Then K〈α〉 has a subgroup P of the form 21+8
+ :

(U4(2)× 3). The Schur multiplier of U4(2) contains no fours group, so there is a perfect
central extension of K〈α〉 by Z2 in which P lifts to a group P1 having a sugroup U4(2)×3.
By Lemma 3.2, above, O2(P1) splits over Z(K1), and as in the case of L3(4) we find that
[O2(P1), α](CP1(α))′ is a complement to Z(K1) in P1, andr a contradiction is reached as
before.

Suppose that K ∼= Sz(8). Let S be an α-invariant Sylow 2-subgroup of K and put
U = Ω1(S). Then U = Z(S), and NK(S) acts transitively on the set of non-identity
elements of U . Let S1 and U1 denote the pre-images of S and U , respectively, in K1.
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It follows at once that U1 is elementary abelian. We have CS(α) ∼= Z4, and since all
involutions in S1 lie in U1 it then follows that CS1(α) ∼= Z4 × Z2. Let u ∈ CU1(α) with
u /∈ Z(K1). Then CS1(u) is α-invariant, of index at most 2 in S1, and containing CS1(α).
We conclude that in fact u ∈ Z(S1), and hence U1 = Z(S1). Now let U∗ and S∗ be the
inverse images of U and S in the full covering group K∗ of K, and let X be a subgroup
of NK∗(S∗) of order 7. It follows from the fore-going that U∗ = Z(S∗). Let g ∈ S∗−U∗.
Then g2 = yz where y ∈ [U∗, X] and where z ∈ Z(K∗). Without loss, we may assume
that K1 was chosen to begin with so that z projects to the identity element of K1. Taking
g1 for the image of g, and X1 for the image of X in K1, we then have (g1)2 ∈ [U1, X1],
and then Φ(S1) = [U1, X1]. Thus S1 splits over Z(K1), with a contradiction as before.

Suppose that K ∼= D4(2). In order to analyze this group we will require the detailed
structure of the group P = V : L, where L ∼= Alt(8) and where V ∼= 26 is the unique non-
trivial constituent in the permutation module for L over F2. Here V may be described
as follows. Put Ω = {1, 2, · · · , 8} and let E be the F2-space of all even-cardinality subsets
of Ω, with addition given by symmetric difference. We may then identify V with E/〈Ω〉,
with natural action by L. We require the following facts.

(1) P is isomorphic to a maximal parabolic subgroup of D4(2).

(2) L ∼= Ω+
6 (2) and V is isomorphic to the natural orthogonal module for L. Moreover,

the singular vectors correspond to the four-element subsets of Ω.

(3) We have H1(L, V ) ∼= Z2. (Up to isomorphism, E is the unique indecomposable L-
module of order 27 with quotient module V .)

The next two results are easily computed from the above information.

(4) Let S be a Sylow 2-subgroup of P . Then S has exactly three elementary abelian
subgroups of order 26. They are V , A1, and A2, where |Ai ∩ V | = |Ai ∩ L| = 8, and
NL(Ai ∩ L) ∼= 23 : L3(2).

(5) In the semidirect product E : L, the pre-image of each Ai is an extraspecial group.

From the D4 diagram, and from (4), we obtain the following fact.

(6) Identify S with an α-invariant Sylow 2-subgroup ofK, and P with a maximal parabolic
subgroup of K. Then α permutes {V,A1, A2} transitively.

With these facts in hand, one may prove that α acts non-trivially on the Schur mul-
tiplier of K. For, taking K1 as in the previous cases, suppose first that V lifts in K1 to
a group V1 which is elementary abelian. Then (4) and (6) imply that the pre-image L1
of L is isomorphic to L × Z2. The inverse image P1 of P is then isomorphic to E : L,
as otherwise Z(K1) has a complement in P . Now (4) and (5) imply that the general-
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ized Fitting subgroups of the pre-images in K1 of the remaining two connected maximal
parabolics over S are extaspecial. Since α fuses these to V1, we have a contradiction.
We therefore conclude that V1 is not abelian, and so V1 is extraspecial. In the four-fold
covering group K∗ the pre-image V ∗ of V is then of the form 21+6

+ × 2, by Lemma 3.2.
But then, taking K∗/(V ∗)′ in place of K1, we have a perfect double cover of K in which
the pre-image of V is abelian, after all, and so we have a contradiction at this point. �

We end this section with a result which will be useful in determining the possible
quadratic subgroups of sporadic groups.

Lemma 3.14. Let G be a finite group, put X = O2(G), and assume that X = F ∗(G) is
an extraspecial 2-group of width n and sign ε. Assume also that either:

(1) G/X ∼= Ωε2n(2), with n ≥ 3 if ε = 1, or
(2) G/X ∼= SU(n, 2), with n 6= 2, and with ε = (−1)n.

Let G∗ be a group having a normal subgroup 〈t〉 of order 2, with G∗/〈t〉 ∼= G. Then
O2(G∗) ∼= X × 〈t〉.
Proof. Put M = X/Z(X). Then the squaring map from M into Z(X) defines a quadratic
form Q on M , with respect to which M is a non-degenerate orthogonal space over
F2, of Witt index ε. If G/X ∼= Ωε2n(2), it follows that M may be identified with the
natural G/X-module. If G/X ∼= SU(n, 2), then M may be identified with the natural
n-dimensional hermitian module for G/X over F4, whose hermitian form h satisfies
h(v, v) = Q(v) for all v ∈M . In both the cases (1) and (2), the singular vectors and the
non-singular vectors in M with respect to Q each form a single orbit for the action of
G/X.

Denote by Z the pre-image of Z(X) in G∗. Also, denote by D the set of subgroups
D of G such that [X,D] = [X,D,D] is a quaternion group. Thus, D is a set of groups
of order 3, and since n ≥ 3 if G/X ∼= Ω+(2n, 2) it follows that D is non-empty. Fix
D ∈ D, and denote by Y the inverse image of 〈DX〉 in G∗. Then Y is isomorphic to
SL(2, 3)× Z2. Denote by z the involution in Z(Y ), set G∗0 = CG∗(z), and let G0 be the
image of G∗0 in G. Then |G : G0| ≤ 2, and z 6= t. We now make the following claim.

(*) For any element x∗ of O2(G∗) whose image in G has order 4, we have (x∗)2 = z.

Suppose that (*) is not the case. As G is transitive on the non-singular vectors in M ,
it follows that G 6= G0, and that G0 has two orbits on D. Let D0 and D1 be the two orbits
for G0 on D. Then, for any D0 ∈ D0 and any D1 ∈ D1, we have |[X,D0] ∩ [X,D1]| = 2,
and hence [X,D0] commutes with [X,D1]. Thus [X, 〈D0〉] commutes with [X, 〈D1〉], and
so each [X, 〈Di〉] is a proper subgroup of X. In particular, it follows that 〈Di〉 6= O2(G),
and hence G/X ∼= Ω+

4 (2) or SU(2, 2). These two cases are excluded by the conditions
placed on n in (1) and (2), so (*) holds.

Now let s ∈ X be an involution. By transitivity of G/X on singular points, we may
assume that Y was chosen so that 〈DX , s〉 ∼= SL(2, 3)◦Z4 (the central product). Denote
by L the pre-image of 〈DX , s〉 in G∗. Then O2(L) is not isomorphic to Q8 × Z4, by (*),
and therefore s lifts to an involution in G∗. This shows that {g2 : g ∈ O2(G∗)} is of
cardinality 2, and hence |Φ(O2(G∗))| = 2. This yields the lemma. �
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Section 4: Automorphisms, and alternating groups

Our aim in this section is to prove the following result.

Proposition 4.1. Let G be a minimal counterexample to Theorem A. Then either H
is a sporadic group, or H ∈ Lie(r), r 6= p, and A induces a group of inner-diagonal
automorphisms of H.

Lemma 4.2. Assume Hypothesis 1.1, set G = G/Z(G), and assume that H is a group
of Lie type in characteristic r, possibly with r = p. Assume further that G is a mini-
mal counter-example to Theorem A, and let a ∈ A. Then a induces an inner-diagonal
automorphism of H.

Proof. Denote by α the automorphism of H induced by a. By 3.5 we have α = xfg
where x is an inner-diagonal automorphism, and where f and g are field and graph
automorphisms, respectively. We assume that α 6= x, and our aim will be to derive a
contradiction from this assumption. We proceed by induction on |G|.

Suppose first that a is not contained in any r-local subgroup of G. Then r 6= p, and
α is not conjugate to f in Aut(H). Then 3.6 implies that p = 3, and that H ∼= D4(q) or
3D4(q) for some power q of r. As a is contained in an SL(2, 3) subgroup of G, a is in a
2-local subgroup of G, and so r 6= 2. Let b be an element of order 3 in CH(a), and set
L = Or

′
(CH(b)). Then 3.8 and 3.7 together imply that L 6= 1 and that L = L1 · · ·Lk is a

commuting product of groups Li ∈ Lie(r). Moreover, as r > 3, each Li is quasisimple. If
k ≥ 3 and a permutes the factors L1, L2, and L3, then L contains an abelian 3′-subgroup
on which a acts non-trivially, and contrary to 2.9. Thus, a fixes each of the factors Li.
If [L1, a] = 1 then a is in an r-local subgroup, so in fact [L1, a] 6= 1. We note that
L1 6= H since O3(G) = 1. By the induction hypothesis, a induces an inner-diagonal
automorphism on L1, and then since r 6= 2, induction in Theorem A implies that r = 5
and L1 ∼= SL(2, 5). Now 2.5 shows that either L1 or CL1〈a〉(L1) contains a quadratic
element of order 3. As neither D4(q) nor 3D4(q) occur as outcomes in Theorem A, we
conclude, by induction, that CL1〈a〉(L1) contains a quadratic element a1 of order 3. Now
a1 lies in an r-local subgroup of G, and we may replace a by a1. That is, we may assume
from the beginning, and without loss of generality, that a is in an r-local subgroup of G.
As r-local subgroups of G are r-constrained, by 3.11, 2.9 implies that r = p, or r = 2
and p = 3.

Write H = dΣ(q) as in section 3, and suppose first that r = p. As Op(G) = 1, 3.12
implies that H ∈ Lie(r), and then any irreducible FpH-module is the restriction to H
of an irreducible module for Σ(q), by [St1, Theorem 13.3]. Here V is irreducible for H,
by [Ch, Lemma 1.3], so we may now assume that H is a Chevalley group. If g = 1 then
H may be taken to be L2(q), q = rpm, and we then violate 2.9 via the action of a on a
Cartan subgroup of H. On the other hand, suppose that g 6= 1, so that H ∼= D4(q). As
a normalizes a Sylow 3-subgroup of H, there is then an a-invariant maximal subgroup
M of H with M/O3(M) isomorphic to a commuting product of three copies of SL(2, q),
permuted transitively by a. There is a section W of V which centralizes O3(M) and on
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which (M/O3(M))〈a〉 acts faithfully. By 2.9, applied to the action of a on Z(M/O3(M)),
M/O3(M) is a central product (with center of order 2). Then a acts on a central product
of three quaternion groups in M/O3(M), permuting the factors, and then once again
there is an abelian 2-group on which a acts non-trivially. Thus 2.9 is violated in any
case, and we conclude that r 6= p.

We now have r = 2 and p = 3. Suppose next that α = f . There is then an a-
invariant subgroup L of H, of Lie rank 1, such that a induces a field automorphism on
L. By induction, it follows that H itself has Lie rank 1. If H ∼= U3(23m) then again
there is an a-invariant subgroup of H isomorphic to L2(23m), and on which a induces
a field automorphism, contrary to induction. If H ∼= L2(23m) or Sz(23m) then a acts
non-trivially on the center of a Sylow 2-subgroup of H, contrary to 2.9. Thus Z(H) 6= 1,
and indeed the preceding argument via 2.9 shows that Z(H) contains a non-identity
2-group. Then H ∼= Sz(8), by 3.12, and then 3.13 implies that a acts non-trivially on
Z(H). Again, this outcome is contrary to 2.9.

We conclude that α 6= f . Then 3.6 yields either H ∼= D4(q) and g 6= 1, or H ∼= 3D4(q).
If Z(H) 6= 1 then 3.12 and 3.13 yield H ∼= D4(2), Z(H) ∼= Z2 × Z2, and a acts non-
trivially on Z(H), contrary to 2.9. Thus Z(H) = 1. As a lies in an SL(2, 3)-subgroup of
G, there exists a maximal 2-local subgroup M of H〈a〉 containing a. Set L = O2′(M).
Then M∩H is a parabolic subgroup of H, and [Z(O2(M)), a] = 1. In particular, we have
[Z(S), a] = 1 for some Sylow 2-subgroup S of L, and S is also a Sylow 2-subgroup of G.
We may then choose M so that M ∩H is the maximal parabolic subgroup NH(Z(S)),
and then L/O2(L) is isomorphic to a direct product of three copies of L2(q) permuted
transitively by a (in the D4(q) case), or to L3(q3) (in the 3D4(q) case). A Sylow 3-
subgroup of L〈a〉 is then contained in a complement to O2(L), so in either case we find
that a acts non-trivially on an abelian 2-subgroup of L. Again 2.9 yields a contradiction,
and the lemma is thereby proved. �
4.3 Lemma. Assume Hypothesis 1.1, and suppose that G is an alternating group of
degree n. Then |Z(G)| = 2, and if n is not equal to 6 then |A| = 3, and the non-identity
elements of A project to 3-cycles in G.

Proof. Suppose first that p > 3. There is then a quasisimple subgroup K of G with
K/Z(K) ∼= Alt(p) and with K = [K, a]. Then two conjugates of a suffice to generate
K〈a〉, and then 2.7(a) implies that p = 5 and K ∼= SL(2, 5). If K is contained in an
a-invariant subgroup L of G with L/Z(L) ∼= Alt(6) then two conjugates of a will generate
L〈a〉, which is contrary to 2.7(a). Thus we may assume that n is divisible by 5. If n = 5
then there is nothing more to prove, so we may reduce to the case where G ∼= Alt(10)
and where a is a product of two disjoint 5-cycles. Here a lies in a subgroup L of G of the
form SL(2, 5) ◦SL(2, 5) (central product with amalgamated centers) and two conjugates
of a will then generate a subgroup of L isomorphic to Alt(5). This is again contrary to
2.7(a). Thus, we need now only consider the case where p = 3.

By Hypothesis 1.1, 3 does not divide |Z(G)|, and so a classical result of Schur implies
that |Z(G)| ≤ 2. Let a ∈ A, a 6= 1. Let k be the number of 3-cycles in the standard
notation for a, and suppose first that k > 1. As a lies in no Frobenius subgroup of G
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of order 21, by 2.9, we then have n = 3k. Suppose k ≥ 3, and let L be the stabilizer in
G of n − 9 points which are permuted by a in three 3-cycles. Then L has a subgroup
K isomorphic to SL(2, 8), acting on the nine points of the projective line. Any element
of L of order 3 is fixed-point-free on these points, so we can choose L to be a-invariant.
Denote by L the pre-image of L in G, and set L0 = [L,L]. Then L0 ∼= SL(2, 8) and
L0 = [L0, a]. But SL(2, 8) has no subgroup isomorphic to SL(2, 3), so we violate 2.7(a).
Assuming now that n 6= 6, we conclude that every non-identity element of A projects to
a 3-cycle in G. Then |A| = 3, and since A lies in no subgroup of G which is isomorphic
to Alt(4), we obtain |Z(G)| = 2. On the other hand, if n = 6 and Z(G) = 1 then every
element of order 3 in G lies in an Alt(4)-subgroup of G. Thus we conclude that, in any
case, we have |Z(G)| = 2. �

Notice that 4.1 follows from lemmas 4.2 and 4.3, given our background hypothesis
that H is a “known” simple group.

Section 5: The case p > 3

Our aim in this section is to give a short proof of the following result (which is is
proved also in [Sa]).

Theorem 5.1. Assume Hypothesis 1.1 with p > 3. Then G/Z(G) is a group of Lie type
in characteristic p.

We fix notation as in section 1, so that H = F ∗(G) is a quasisimple group, and we have
G = G/Z(H). Assume Hypothesis 1.1, and fix a non-identity element a of A. Take G to
be a minimal counter-example to Theorem 5.1. The following result is then immediate.

Lemma 5.2. Let K be a proper quasisimple subgroup of H, with K = [K, a]. Then
K/Z(K) is a group of Lie type in characteristic p.

Lemma 5.3. H is not a sporadic group.

Proof. Suppose false. Then the outer automorphism group of H is of order at most 2,
and so G = H. Suppose first that |CG(a)| is even. Let t be an involution in CG(a), and
set C = CG(t). As p > 3, 2.9 implies that F ∗(C) 6= O2(C), and it follows from [GLS3,
Table 5.3] that C has a component K with a ∈ K. By 5.2, K/Z(K) is of Lie type in
characteristic p, and then [GLS3, Table 5.3] yields p = 5, K ∼= Alt(5), and G ∼= M12, J1,
or J2. The inverse image K of K in G is then isomorphic to SL(2, 5), by 2.7, so Z(G) 6= 1,
and so G ∼= 2·M12 or 2·J2. In fact, in both these cases the cited table in [GLS3] gives the
extra information that K ∼= Z2 × Alt(5), and so we may obtain a contradiction in this
way. Alternatively, one may note that M12 has cyclic Sylow 5-subgroups and contains
Alt(6), so that we contradict 2.7 in this case. In the case that G ∼= J2, we have 〈a〉
contained in a subgroup isomorphic to Alt(4)×Alt(5) (the unique maximal subgroup of
G containing C), and thus |CG(a)| is divisible by 3. Of the two classes of subgroups of
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order 5 in G, 〈a〉 is then identified as lying in a subgroup isomorphic to 3�Alt(6), contrary
to 2.7.

We conclude that CG(a) is of odd order. Now 2.8 implies that G has non-cyclic Sylow
p-subgroups. Another trip through the cited table in [GLS3] shows, however, that for any
element g of prime order p in a sporadic group X, if X has non-cyclic Sylow p-subgroups
then CX(g) is of even order. This yields the desired contradiction. �
Lemma 5.4. G is not isomorphic to SL(2, rn) for any n.

Proof. Suppose false, and put q = rn. From L.E. Dickson’s determination of the sub-
groups of L2(q) (for which one may see [Suz]), we know that, for p 6= r, the only possible
SL(2, p) subgroups of G are given by p = 5. Here 5 must divide q+1, as otherwise a acts
non-trivially on a Sylow r-subgroup of G, in violation of 2.9. Put N = NG(〈a〉), and let
L be the set of all subgroups L of G containing a and with L ∼= SL(2, 5). Each L ∈ L
has precisely 50 elements g such that L = 〈a, ag〉. From this we obtain:

|L| = (|G| − |N |)/50 = (q3 − 3q − 2)/50

Since each L ∈ L has exactly five Sylow 5-subgroups other than 〈a〉 it then follows that
G has exactly 1 + (q3 − 3q− 2)/10 Sylow 5-subgroups. But this number is then equal to
|G : N |, so we obtain:

1 +
1
10

(q3 − 3q − 2) =
1
2

(q2 − q)

which yields q3 − 5q2 + 2q + 8 = 0. That is: (q − 4)(q − 2)(q + 1) = 0, so that q = 4. As
SL(2, 4) does not contain SL(2, 5) we have a contradiction at this point. �
Lemma 5.5. H is not a group of Lie type in characteristic r different from p.

Proof. Suppose false. By 4.1, A induces a subgroup of Inndiag(H). Let 1 6= a ∈ A, and
suppose first that |CH(a)| is of even order. Let t be an involution in CH(a). If r = 2
then 3.11 implies that CG(t) is 2-constrained, and we contradict 2.9. Thus r 6= 2. If
H ∼= PSL(2, rn) then H ∼= SL(2, rn) since H involves SL(2, p), and we then contradict
5.4. ThusH is not isomorphic to PSL(2, rn), and then by 3.8 and 3.7 there is a subnormal
subgroup K of CH(t), with K of Lie type in characteristic r. As p > 3 and r 6= 2 there
are no isomorphisms between any members of Lie(r) and Lie(p), and so K /∈ Lie(p).
If [K, a] = 1 then a is in an r-local subgroup of G, and we again contradict 2.9 via the
Borel-Tits theorem. Thus, [K, a] 6= 1. Then 5.2 implies that 〈(K)〈a〉〉 is a product of
p components of CH(t), or a commuting product of p copies of SL(2, 3) or of L2(3).
Again, the result is that a lies in an r-local subgroup of G, and a contradiction ensues.
We therefore conclude that CG(a) is of odd order.

Now 2.8 shows that G has non-cyclic Sylow p-subgroups. As p is odd, there is then
an elementary abelian subgroup B of G of order p2, with a ∈ B. Then 3.9 implies
that Or

′
(CH(b)) 6= 1 for some b ∈ B. By 3.7 we then have Or

′
(CH(b) = L1 · · ·Lm,

where each Li is a group of Lie type in characteristic r, and where [Li, Lj ] = 1 for all
i 6= j. Here Or

′
(CH(b)) is a-invariant, and since we have already seen that a lies in
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no r-local subgroup of G, we conclude that each Li is a-invariant and that [Li, a] 6= 1.
Now 5.2 implies that each Li is solvable, and since p > 3 it then follows that Li has no
automorphisms of order p. Then [L, a] = 1, and we have a contradiction. �

Notice that lemma 4.3, and lemmas 5.2 through 5.5, yield Theorem 5.1.

Section 6: Cross-Characteristic Lie Type Groups, p = 3

In this section we assume Hypothesis 1.1 with p = 3. As always, we set G = G/Z(G)
and H = E(G) We shall assume further that H is a group of Lie type in characteristic
different from 3. Indeed, we even wish to assume that there exists no exceptional iso-
morphism of H with a group of Lie type in characteristic 3. Thus, H is not isomorphic
to Sp(4, 2)′ (∼= L2(9)), G2(2)′ (∼= U3(3)), or U4(2) (∼= PSp(4, 3)).

By a “parabolic subgroup” of H, we mean the complete inverse image in H of a bona
fide parabolic subgroup of H/Z(H). Similarly, we have the notions of “Borel subgroup”,
“Cartan subgroup”, and of “root group” in H.

Our goal, in this section, is the following result.

6.1 Theorem. Assume Hypothesis 1.1, with H/Z(H) a group of Lie type, and not
isomorphic to a group of Lie type in characteristic 3. Then either G is isomorphic to
one of the groups PGU(n, 2), n ≥ 5, or else |Z(G)| = 2, and G is isomorphic to one of
the groups L2(4), L4(2), Sp(6, 2), D4(2), or G2(4). Moreover, we have |A| = 3 in every
case.

For the remainder of this section, let G be a minimal counter-example to Theorem 6.1.
Throughout, let r denote the defining characteristic of H, r 6= 3, and fix a non-identity
element a ∈ A.

Lemma 6.2. Suppose that the Lie rank of H/Z(H) is equal to 1. Then G ∼= 2�L2(4).

Proof. By 4.2, A induces inner-diagonal automorphisms on H. Thus |Inndiag(H)| is
divisible by 3, and so H is not isomorphic to Sz(2n). Also, as r 6= 3, by assumption, H
is not a Ree group in characteristic 3. Thus H ∼= PSL(2, q) or PSU(3, q) for some q,
q = rn.

Suppose first that H ∼= PSL(2, q). Then |Inndiag(H) : H| ≤ 2, so A ≤ H, and so
H = G. As G involves SL(2, 3), we conclude that |Z(G)| = 2. Assuming that G is
not isomorphic to SL(2, 4), it follows from 3.12 that r is odd. Thus r ≥ 5, and since
2·SL(2, 4) ∼= SL(2, 5) we have q > 5. Put d = q − 1, and let λ be a primitive dth root of
unity in Fq. Then take:

a =
(
−1 −1

1 0

)
b =

(
0 λ−1

−λ −1

)
and obtain:
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ab =
(
λ 1− λ−1

0 λ−1

)
Here b is of order 3, so b is conjugate to a in G. By 2.6, we have 〈a, b〉 isomorphic to

SL(2, 3) or SL(2, 5), and so |ab| ≤ 5. But ab has order q − 1, so we conclude that q ≤ 6,
and then q = 5, contrary to our choice of q.

Suppose next that H ∼= PSU(3, q). Let L0 be a subgroup of H with L0 = 〈aL0〉 ∼=
SL(2, 3). Let t be the involution in L0, and set L = Or

′
(CH(t)). Then L ∼= SL(2, q), and

[L, a] 6= 1. By what has already been shown in the preceding paragraph, we then have
q = 5. Both SU(3, 5) and PGU(3, 5) have extraspecial Sylow 3-subgroups of exponent 3.
In particular, all subgroups of order 3 in PGU(3, 5) which are contained in PSU(3, 5) are
conjugate. By the Frattini argument, the normalizer in PGU(3, 5) of a Sylow 5-subgroup
contains such an “outer” subgroup of order 3, so we must conclude from 2.9 that a ∈ H.
One may deduce from the action of SU(3, 5) on its natural module that all subgroups of
order 3 in PSU(3, 5) are conjugate. As PSU(3, 5) contains a Frobenius group of order
21, we again contradict 2.9. �
Lemma 6.3. H is not isomorphic to PSL3(q) for any power q of r.

Proof. Suppose H ∼= PSL3(q), q = rn. As always, we have a subgroup X of G containing
a, with X ∼= SL(2, 3). Consider first the case where Z(H) = 1. If r is even, then the
centralizer in G of any non-identity 2-subgroup of G is contained in a parabolic subgroup
of G, while if r is odd then G has a unique conjugacy class of involutions. In either case
we find that CG(Z(X)) is contained in a proper parabolic subgroup P of G. Here Or(P )
is abelian, and then 2.9 yields a ∈ CG(Or(P )), whereas Or(P ) ≥ CG(Or(P )).

We conclude that Z(H) 6= 1. As G acts irreducibly on V , |Z(H)| is prime to 3, so 3.12
implies that H ∼= L3(4) and Z(H) is a 2-group. Since a centralizes Z(H), we conclude
from 3.13 that a ∈ H. As all elements of order 3 in L3(4) are conjugate, and as L3(4)
contains a Frobenius group of order 21, we contradict 2.9. This proves the lemma. �
Lemma 6.4. If the Lie rank of H is at least 2 then r = 2, and a normalizes a maximal
parabolic subgroup of H.

Proof. Assume that the Lie rank of H is at least 2. Then a lies in an r-local subgroup N
of G, by 6.3 and 3.8. By 3.11(a), N is r-constrained, so 2.9 implies that r = 2. By 3.11(b)
we may choose N so that N ∩H is a parabolic subgroup of H. Let P be an a-invariant,
proper parabolic subgroup of H. As a induces an inner-diagonal automorphism of H we
may write a = xd where x ∈ P and where d ∈ NG(S) where S is a Sylow r-subgroup of
P . Then any maximal parabolic subgroup of H containing P is a-invariant. �

For the remainder of this section we assume that the Lie rank of G is at least 2. Thus
r = 2, by 6.4. Fix a Borel subgroup B of H, and let Σ (resp. Σ+) be the root system
(resp. the positive subsystem) associated with H and with B, so that O2(B) is generated
by the root groups Xα, α ∈ Σ+. If P is a parabolic subgroup of H containing B then the
set of simple roots α ∈ Σ+ such that X−α ≤ P will be denoted D(P ). We take D(P ) to
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have also the structure of a graph, with incidence induced from the Coxeter diagram of
Σ, and we say that P is connected if D(P ) is connected. More generally, let D1, · · · ,Dr
be the connected components of D(P ), and for each i, 1 ≤ i ≤ r, put

Li = 〈Xαi , X−αi : α ∈ Di〉 and Λ = Λ(P ) = {L1, · · · , Lr}.

We will refer to the members of Λ(P ) as the Levi complements of P , relative to Σ.

Lemma 6.5. Assume that the Lie rank of G is at least 2. Then there is a Sylow 2-
subgroup S of H, and a proper parabolic subgroup P of G containing 〈NH(S), a〉, for
which the following condition holds.

(*) For every L ∈ Λ(P ) we have 1 6= [a, L] ≤ L.

Moreover, we can choose P so that the Lie rank of each L in Λ(P ) is equal to 1.

Proof. By 6.4, a normalizes a maximal parabolic subgroup N of H. If [N, a] ≤ O2(N)
then a normalizes a Sylow 2-subgroup of N (hence of H), and then a normalizes every
parabolic subgroup of H containing S. In particular, there is then a rank-1 parabolic
subgroup P of H, invariant under a, and with [O2′(P ), a] � O2(P ). Thus, the desired
conclusion holds in this case, and we may therefore assume that [N, a] � O2(N).

Among all a-invariant parabolic subgroups N with [N, a] � O2(N), choose N so
that the Lie rank of N is as small as possible. We then construct the set Λ(N) =
{L1, · · · , Lr} of Levi complements in N , relative to a fixed Borel subgroup of N . Then
N = O2(N)L1 · · ·LrK, for some Cartan subgroup K of B, and we may assume (possibly
after replacing a by a conjugate) that a normalizes L1 · · ·LrK. As a is inner-diagonal, a
normalizes each Li, and if [a, Li] = 1 for some i we contradict the minimality of N . This
proves the first part of the lemma. But further, if the Lie rank of some Li is bigger than
1, then we may apply induction on the Lie rank, with Li〈a〉 in place of G, to conclude
that Li〈a〉 has a proper parabolic subgroup containing a. From this we again contradict
the minimality of N , and thus each Li has Lie rank equal to 1. �
Lemma 6.6. Assume that the Lie rank of H is at least 2, and assume that the field
of definition for H (in the sense of a σ-setup, as in section 3) is larger than F2. Then
G ∼= 2·G2(4), and |A| = 3. Moreover, we have A = Z(R) for some Sylow 3-subgroup R
of G, and CG(A) ∼= SL(3, 4).

Proof. By 6.5 there exists a proper parabolic subgroup P of G, and a Levi complement
L in P , such that L ≥ [L, a] 6= 1. Since the field of definition of G is larger than F2,
we may apply 6.2 to L〈a〉 and obtain L ∼= 2·L2(4). Here L /∈ Lie(2), so Z(L) ≤ Z(H).
Then 3.12 and 6.3 yield G ∼= 2·G2(4).

Let R be a Sylow 3-subgroup of G containing A. Then |R| = 27, and R is contained
in an SL(3, 4) subgroup X of G2(4). Every element of R − Z(R) is contained in a
Frobenius subgroup of X of order 21, so 2.9 implies that A = Z(R) is of order 3. We
observe that A is contained in a Cartan subgroup D of X, which is a Cartan subgroup
of G. The Chevalley relations imply that X is generated by the set of root subgroups
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centralized by A, relative to the root system determined by D. Then X = O2′(CG(A)),
and CG(A) = XD = X. �

For the remainder of this section we assume that the Lie rank of H is at least 2, and
that F2 is the field of definition for H. Further, we assume that there exists no exceptional
isomorphism between H and a group in Lie(3). By 6.5, we may fix a parabolic subgroup
P of G containing a, such that condition (*) in 6.5 holds, and such that every member
of Λ(P ) is of Lie rank 1. Let M be the set of of all maximal parabolic subgroups of H
containing P , and having the property that every connected component of the diagram
D(M) contains at least one vertex of D(P ). One readily verifies that M is non-empty,
and we fix M ∈M.

Lemma 6.7. The following hold.

(a) We have [L, a] 6= 1 for any L ∈ Λ(M).
(b) We have 〈aM 〉 ≥ O2′(M).
(c) Let S be a Sylow 2-subgroup of M , and suppose that Z(S) � Z(H). Then M =

NH(Z(S)), and M = {M}.

Proof. Part (a) is immediate from the definition ofM. Then L ≤ 〈aL〉 for any L ∈ Λ(M),
and (b) follows. Suppose that Z(S) � Z(H). We have [Z(O2(M)), a] = 1 by 2.9, and it
follows from part (b) that [Z(O2(M)), O2′(M)] = 1. Then Z(S) EM , and then since M
is a maximal parabolic we have M = NH(Z(S)). This yields (c). �
Lemma 6.8. Suppose that H is isomorphic to PSU(n, 2) n ≥ 5. Let φ be the canonical
homomorphism from GU(n, 2) onto PGU(n, 2), and let U be the natural module for
GU(n, 2) over F4. Then G ∼= PGU(n, 2), |A| = 3, and a = φ(a∗) for some element
a∗ ∈ GU(n, 2) such that CU (a∗) has codimension 1 in U .

Proof. Let S be a Sylow 2-subgroup of M . It follows from 3.14 that Z(S) � Z(G),
so 6.7(b) yields M = NH(Z(S)). Then O2(M) is extraspecial of width n − 2, and
O2′(M/O2(M)) is isomorphic to SU(n−2, 2). Further, as O3(G) = 1 and Z(G) is cyclic,
it follows from 3.12 that |Z(G)| ≤ 2, and that Z(G) = 1 if n 6= 6. Then 3.14 implies that
O2(M) = X × Z(G), where X is a central product of n− 2 quaternion groups.

Set Y = [O2(M), a]. We have Φ(Y ) ≤ Z(X), so Y is contained in an extraspecial
subgroup of O2(M), and then 2.9 implies that Y is a quaternion group. From this
we may conclude that M/O2(M)Z(G) is isomorphic to GU(n − 2, 2), and then G ∼=
PGU(n, 2). In particular, if 3 divides n then a /∈ H, and so 3.13 yields Z(G) = 1. Thus
O2(M) = X, and CX(a) is a central product of n− 3 quaternion groups. It follows that
O2′(CG(a)) ∼= SU(n−1, 2). Set G∗ = GU(n, 2), let U be the natural module for G∗ over
F4, and let a∗ be a pre-image of a in G∗. Then O2′(CG∗(a∗)) ∼= SU(n − 1, 2), and we
may choose a∗ so that CU (a∗) has codimension 1 in U .

Suppose that |A| > 3. Then CG(a) = 〈ACG(a)〉, and so

0 = [V, a, CG(a)] = [V,CG(a), CG(a)].
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Then [CG(a), CG(a)] centralizes V , by the Three Subgroups Lemma. But CG(a) is non-
abelian, as n > 3. Thus |A| = 3, and all parts of the lemma have been established. �
Lemma 6.9. Assume that H is defined over F2, that H is not a unitary group PSU(n, 2)
with n ≥ 5, and that H cannot be viewed (via an exceptional isomorphism) as a group
of Lie type in characteristic 3. Then |Z(G)| = 2, and G is isomorphic to Ω−4 (2), L4(2),
Sp(6, 2), or D4(2).

Proof. As A induces inner-diagonal automorphisms on H, it follows that H = G or that
H ∼= 2E6(2). Suppose first that G is isomorphic to Ln(2) or Sp(2n, 2). If Z(G) 6= 1 then
3.12 and 6.3 yield G ∼= 2·L4(2) or 2·Sp(6, 2), and thus the lemma holds in this case. On
the other hand, if Z(G) = 1 then CG(Z(S)) is not a maximal parabolic subgroup of G,
and we contradict 6.7(b). Thus, we may assume that G is not isomorphic to Ln(2) or
Sp(2n, 2).

Suppose that G is an orthogonal group Ωε2n(2), and let U be a natural module for G
over F2, of dimension 2n. As G is non-solvable we have n ≥ 2, and n ≥ 3 if ε = +1. In
view of 6.2, and the isomorphism of Ω−4 (2) with SL(2, 4), we need only consider the cases
where n ≥ 3. As Ω+

6 (2) ∼= L4(2), and Ω−6 (2) ∼= PSp(4, 3), we may in fact take n ≥ 4. If
Z(H) 6= 1, then 3.12 yields G ∼= D4(2) (which is isomorphic to Ω+

8 (2)), and then since
Z(G) is cyclic, 3.12 yields |Z(G)| = 2. Thus, the lemma holds in this case, and so we
may assume that Z(G) = 1.

Let U0 be a totally singular subspace of U , of dimension 2, and denote by L the
stabilizer in G of U0. Without loss, we may assume that a Sylow 2-subgroup S of L is
contained in M . With the aid of Witt’s Theorem on extensions of isometries, we find
that L = X(K1 ×K2), where X = O2(L), K1 ∼= Ωε2n−4(2) and K2 ∼= L2(2). Further, X
is extraspecial, of width 2n− 4, and X/Z(X) is isomorphic, as a module for K1K2, to a
tensor product N1⊗N2, where Ni is a natural module for Ki over F2. In particular, L is
a maximal parabolic subgroup of G, and Z(S) = Z(L), so L = M by 6.7(b), and a ∈ L.
Now let N0 be an irreducible K1-submodule of X/Z(X). Then X/Z(X) = N0⊕(N0)g for
any g ∈ K1K2−K1. For any element d of K1 of order 3 we then have |[X/Z(X), d]| ≥ 16,
and so [X, d] is not a quaternion group. Thus a /∈ K1, by 2.9. But, for any element d of
K1K2 −K1 of order 3, we have |[X/Z(X), d]| ≥ |N0|, where |N0| ≥ 16 as n ≥ 4. As a is
conjugate to an element of K1K2, we have a contradiction at this point. Thus, we may
assume that H is not an orthogonal group.

As H is not a unitary group (the case of U4(2) ∼= Ω−6 (2) having been treated above),
we now conclude that G is not a classical group. If G ∼= En(2), (n = 6, 7, 8), then
|Z(G)| is odd, and so |M| = 1, by 6.7. Recall, however, that M is the set of maximal
parabolic subgroups M of H containing P , where P is a totally disconnected parabolic
subgroup of H, and where each connected component of M contains at least one vertex
of D(P ). One has only to glance at the diagrams for the groups En(2), however, to see
that in fact |M| > 1 for any choice of P . Thus, G � En(2). Suppose that G ∼= 2F4(2)′.
Then again Z(G) = 1 and M = {CG(Z(S))}. Then M/O2(M) ∼= Sz(2), and so |M | is
prime to 3, contrary to a ∈ M . By a similar argument, if H ∼= 3D4(2) then |Z(G)| = 1
and a ∈ M = CG(Z(S)), so that M has an a-invariant Levi complement isomorphic to
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SL(2, 8). But this result is excluded by 6.2. As G2(2)′ may be viewed as a group in
characteristic 3, we come finally to G ∼= F4(2) or H ∼= 2E6(2). Then D(G) is the F4
diagram, and since D(P ) is totally disconnected we can choose M ∈ M so that D(M)
contains a subdiagram of type A2. There then exists L ∈ Λ(M) with L/Z(L) ∼= L3(2)
or L3(4). Replacing G by L〈arangle, we obtain a contradiction from 6.3. �
Lemma 6.10. If G ∼= L4(2), Sp(6, 2), G2(4), or D4(2) then |A| = 3.

Proof. Suppose, by way of contradiction, that |A| = 9. If G ∼= L4(2) it follows that both
classes of elements of order 3 in G are represented in A, and since G contains a Frobenius
group of order 21, we contradict 2.9.

Suppose next that G ∼= Sp(6, 2), and let U be the natural module for G over F2. If
there exists a in A with |[U, a]| 6= 16 then a is contained in an L3(2)-subgroup of G,
contrary to 6.3. On the other hand, we have U = 〈CU (a) : 1 6= a ∈ A〉, so there exist
a, b ∈ A such that |[U, a]| = |[U, b]| = 4, and with 〈a, b〉 = A. Then |[U, ab]| = 16, and so
we have a contradiction in this case.

Finally, suppose that G ∼= D4(2), and let U be a natural O+
8 (2)-module for G. We

claim that there exists a ∈ A with 16 ≤ |[U, a]| ≤ 64. Suppose false. Then |[U, a]| = 4 or
28 for every non-identity element a ∈ A. Let a and b generate A. If |[U, a]| = |[U, b]| = 4
then |[U, ab]| = 16, while if |[U, a]| = 4 and |[U, b]| = 28 then either [U, ab] or [U, ab2] is of
order 64. The only other case is that in which CU (a) = 0 for every non-identity a ∈ A,
which is absurd. The claim is therefore established. Now fix a ∈ A with |[U, a]| = 16 or
64. There is then a non-degenerate a-invariant subspace W of V , of type O+

6 (2), with
|[W,a]| = 16. Let H be the point-wise stabilizer in G of W⊥. Then H ∼= Ω+

6 (2) ∼= Alt(8),
and we have H = [H, a]. Identifying H with Alt(8), and identifying W with the non-
trivial irreducible constituent in the natural permutation module for Alt(8), it follows
that a induces on W the action of a product of two disjoint 3-cycles. There is then a
7-cycle x in H with xa = x2. This contradicts 2.9, so the lemma is proved. �

Theorem 6.1 follows from lemmas 6.2 through 6.10.

Section 7: Sporadic Groups, p = 3

We continue to assume Hypothesis 1.1, with p = 3. Further, we assume that H is
among the 26 sporadic simple groups. The index of H in its automorphism group is then
at most 2, and then since G = 〈AG〉 we have G = H. Also, since O3(G) = 1, the only
cases in which Z(G) 6= 1 occur when Z(G) is of order 2 or (in the unique case of M22)
of order 4). We will obtain the following result.

7.1 Theorem. Assume Hypothesis 1.1, with G a sporadic simple group. Then G ∼= 2·J2,
2·Suz, or 2·Co1, and we have |A| = 3.

We will make free use of the tables in section 5.3 of [GLS3], in which, for each sporadic
group X, and each subgroup Y of X of prime order, the normalizer N = NX(Y ) is
determined, in the sense that a chief series for N is given, along with the action of N
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on the various chief factors. Also, we will draw on the character tables in the ATLAS
of Finite Groups [CCNPW], in order to establish that 2·Co1 contains a perfect central
extension 6·Suz, and that 2·Suz contains a perfect central extension 6·U4(3).

Six cases may be eliminated right away. Namely, by 2.9, if G has a unique conjugacy
class of subgroups of order 3, then G does not contain a Frobenius subgroup of order 21.
In this way, we obtain the following result.

7.2. G is not isomorphic to M22, M23, J1, HS, Ru, or O′N .

We next observe, that the centralizer of any element of order 3 in any sporadic group
is of even order. In particular, |CG(a)| is even. For the remainder of this section, we fix
an element t of CG(a) with t of order 2. Set C = CG(t), and denote by C the inverse
image of C in G. Also, set K = 〈aC〉, and set R = F ∗(K). We will proceed by induction
on |G|.

Definition 7.3. Let X be a group, and set R0 = F ∗(X). We say that X is of ex-
traspecial type if the following three conditions hold.

(i) R0 = Z(R0)E where R0 is an extraspecial group of width n ≥ 2.
(ii) X/R0 is isomorphic to one of the groups Alt(2n + 1), Alt(2n + 2), GU(n, 2),

Ω ε
2n(2) (for some sign ε), or Sp(2n, 2), and

(iii) R0/Z(R0) is a natural (irreducible) F2-module for K/R0.

Lemma 7.4. The following hold.

(a) If K is quasisimple then K/O3(K) is in the list of quasisimple groups which are
outcomes in Theorem 1.2.

(b) If R = Z(R)E is a 2-group where E is extraspecial of width n ≥ 2, then K is of
extraspecial type, in the sense of 7.3.

Proof. Part (a) is by induction on |G|. Part (b) is immediate from [Ch, Theorem A]. �
Before going to work with 7.4, it will be convenient to eliminate eight more groups by

considering 5-local subgroups.

Lemma 7.5. G is not isomorphic to Mc, Co3, Co2, Ly, F5, F3, F2, or F1.

Proof. We first show that in each of the above possibilities for G we have |CG(a)| divisible
by 5. Indeed, in the cases other than G ∼= Mc, F3, or Co3, one checks that the centralizer
of every element of order 3 has a subgroup of order 5.

Suppose that G ∼= Mc. Then Z(G) = 1, G has one class of involutions, and then
CG(t) ∼= 2�A8. Then CG(〈a, t〉) ∼= Z3 × SL(2, 5), by 4.3, and thus |CG(a)| is divisible by
5 in this case.

Suppose next that G ∼= F3. Then Z(G) = 1, G has just one conjugacy class of
involutions, and we have CG(t) of the form 21+8

+ .Alt(9). Now [Ch] shows that a is
incident with a 3-cycle in CG(t)/O2(CG(t)), and so we again get 5 dividing the order of
CG(a).
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Suppose that G ∼= Co3 and that 5 does not divide the order of CG(a). Again, we
have Z(G) = 1, and we find that CG(a) ∼= Z3 × L2(8) : 3. In particular, a is not
contained in the commutator subgroup of CG(a). Now consider C = CG(t). By 7.4(a),
C is not isomorphic to Z2×M12. This leaves only the case C ∼= 2·Sp(6, 2). Let U denote
the natural Sp(6, 2)-module for C. As 5 does not divide |CG(a)| we have |[U, a]| > 4,
and since a is not in the commutator subgroup of CG(a) we have |[U, a]| 6= 64. This
leaves |[U, a]| = 16. But then a lies in a Frobenius 21-subgroup of G, and we have a
contradiction via 2.9. Thus, we have found that |CG(a)| is divisible by 5 in all cases
under consideration.

Let F be a subgroup of CG(a) of order 5. Then CG(F ) is not 5-constrained, by 2.9.
We consult [GLS3, Table 5.3] for the structure of centralizers of elements of order 5.
setting D = O3′(CG(F )), we have D 6= 1. Further, D is not isomorphic to Alt(5) (as
follows from 2.4) or to U3(5) (by theorem 6.1), or to HS or F5 (by induction in 7.1). But
in fact, as one checks, this exhausts the list of possibilities for the structure of CG(F ),
and so 7.5 is proved. �
7.6. G is isomorphic to J2, Suz, or Co1.

Proof. We shall go through the list of groups, and check the conditions in 7.3 against
the structure of the centralizers of involutions in the sporadic groups that remain to be
considered. In view of 7.2 and 7.5, these are (aside from the three groups mentioned in
the statement of the lemma) the nine groups Fi′24, Fi23, Fi22, He, J4, J3, M24, M12,
and M11. We note that, among these nine groups, only Fi22, and M12 have non-trivial
Schur multipliers, and in these two cases the multiplier is of order 2.

We begin with G ∼= Fi′24. Here there are two classes of involutions, and we find that
either K is double cover of Fi22 or R is an extraspecial 2-group of width 6 with K/R
isomorphic to 3U4(3). In both these cases, we violate 7.4.

Suppose next that G ∼= Fi23. In view of 7.4(a), K is not a Schur extension of Fi22 or
U6(2). This leaves only the possibility that C is of the form

(1) (22 ×Q(4)
8 )((GU4(2))2).

Then Z(C/O2(C)) is of order 3, acting non-trivially on Z(O2(C)), as follows from the
structure of the corresponding involution-centralizer in Fi′24. Thus K/R ∼= U4(2). Here
Z(C/O2(C)) acts non-trivially on R/Z(R), so that R/Z(R) is the natural unitary module
for K/R. This violates 7.4(b).

Suppose that G ∼= Fi22. By 7.4(a), K is not a Schur extension of U6(2) and exam-
ination of the remaining classes of involution centralizers then yields F ∗(C) = O2(C).
Further, for any involution s of G such that CG(s) is 2- constrained, either CG(s) is of
the form

(2) (2×Q∗48 )U4(2)

or CG(s) does not contain a Sylow 2-subgroup of G. It follows from 2.9 that [Z(S), a] = 1
for some Sylow 2-subgroup S of G. Since the group in (2) lifts to a subgroup of the group
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in (1) in Fi23, one observes that there exists a 2-central involution s of G with s /∈ Z(G).
We may then take s = t, whence C is as in (2). This violates 7.4.

In the group He there are are two classes of involutions, and we find that either K is
a Schur extension of L3(4) or K is of the form D∗38 : L3(2). Both these possibilities are
excluded by 7.4 (or by noticing that in both these groups, each element of order 3 lies in
a Frobenius group of order 21).

In J4 there are two classes of involutions, and we find that K is of the form Q∗68 (3M22)
or 211M22, in each case violating of 7.4.

IfG is isomorphic to J1 or J3, we obtain C/O2(C) ∼= Alt(5), and C contains a subgroup
isomorphic to Alt(5). This violates 2.7.

In M24 there are two classes of involutions, with centralizers of the form (D∗38 )L3(2)
and (26)Sym(5). Thus, we violate 7.4 if G ∼= M24.

If G is isomorphic to M11 then G has a single conjugacy class of elements of order 3,
and since M11 ≥M10 ≥ Alt(6) ≥ Alt(4), we contradict 2.9.

Finally, suppose that G is isomorphic to M12, and let S be a Sylow 3-subgroup of G
containing a. Then S is extraspecial of order 27. If a ∈ Z(S) then every elementary
abelian subgroup of order 9 in G contains a conjugate of a, and hence a lies in an
M11-subgroup of G, contrary to the preceeding paragraph. Thus a /∈ Z(S), and one
then has CG(a) ∼= Z3 × A4. Let s be an involution in CG(a). If s is 2-central then
O2(CG(s)) ∼= 21+4

+ : Z3, whereas CG(〈a, s)〉) ∼= Z6 × Z2. Thus s is not 2-central, and
so CG(s) ∼= Z2 × Σ5. Then also a normalizes a fours group F ⊆ E(CG(s)), where
every involution in F is 2-central. Now 2.9 implies that G ∼= 2·M12. But also, we have
NG(F ) ∼= 42 : D12. Let X be the normal subgroup of NG(F ) with X ∼= Z4 × Z4, let X
be the pre-image of X in G, and let F be the pre-image of F in G. Then X = 〈x, y〉,
where F = 〈x2, y2〉 and F 〈a〉 ∼= SL(2, 3). Thus [x2, y2] 6= 1. But [x, y] ∈ Z(X), so
[x2, y2] = [x, y]4 = [x4, y] = 1, for a final contradiction. �
7.7. If G ∼= J2, Suz, or Co1 then |Z(G)| = 2 and |A| = 3, and we have CG(A) ∼=
2·Alt(6), 6·U4(3), or 6·Suz, respectively.

Proof. Suppose first that G ∼= J2. There are two classes of involutions in G, with
centralizers isomorphic to either 21+4

− : Alt(5) or 22 ×Alt(5). Thus, C has a subgroup L
containing a and isomorphic to Alt(5), and so 2.6 implies that Z(G) 6= 1. There are two
conjugacy classes of subgroups of order 3 in G, with centralizers 3·Alt(6) and 3×SL(2, 3).
Suppose that CG(a) ∼= 3× SL(2, 3). In the notation of [GLS3, Table 5.3g] (which is the
same as ATLAS notation, cf. [CCNPW]) we then have a ∈ 3B, and the table gives
[3B, 2C] = 1 where 2C is an outer involution of G satisfying CG(2C) ∼= L3(2). Thus a
lies in a Frobenius group of order 21, and we violate 2.9. This shows that a is in the class
3A. Now suppose that |A| > 3. A Sylow 3-subgroup S of G is extraspecial of order 27,
and NG(S) contains a dihedral subgroup D of order 8 which acts faithfully on S/Φ(S).
It follows that D acts transitively on the set of maximal elementary abelian subgroups
of S, and so A contains representatives from each conjugacy class of subgroups of order
3 in G. But we have seen that A contains representatives of only one class, so in fact
|A| = 3.
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Suppose next that G ∼= Suz. Then G has two classes of involutions. One of these
has a corresponding centralizer C0 with O3′(C0) ∼= L3(4). It follows from theorem 6.1
that t represents the other class, with C an extension of an extraspecial group 21+6

− by
Ω−6 (2). By 3.14, Z(G) is a direct factor of O2(C), and then 2.9 implies that CO2(C)(a) ∼=
21+4

+ . Thus CG(〈a, t〉) is an extension of 〈a〉 × CO2(C)(a) by Ω+
4 (2), and so 27 divides

|CG(a)|. This information suffices to single out the conjugacy class of 〈a〉, and to yield
CG(a) ∼= 3·U4(3). Let f be an element of order 5 in CG(a) and set Y = O3′(CG(f)).
Then a ∈ Y ∼= Alt(6) or Alt(5), and then 2.6 implies that |Z(Y )| = 2. But Z(Y ) ≤ Z(G),
and so |Z(G)| = 2.

Suppose that |A| > 3. One checks from the character table for 2·Suz in [CCNPW]
that CG(a) lifts to a completely nonsplit extension 6·U4(3) in G, so CG(a) = 〈ACG(a)〉.
Then [V, a, CG(a)] = 0, whereas Z(G) is fixed-point-free on V . This contradiction shows
that |A| = 3.

Suppose finally that G ∼= Co1. Then G has three classes of involutions, with corre-
sponding centralizers Ci, (1 ≤ i ≤ 3), where the groups Ci have the structure given as
follows.

O2(C1) ∼= 211 and C1/O2(C1) ∼= M11,

C2 ∼= 22 ×G2(4),

O2(C3) ∼= 21+8
+ and C3/O2(C3) ∼= D4(2).

Let Ci denote the inverse image of Ci in G. If C = C1 we obtain a faithful quadratic
module either for M11 or for C1, and we contradict 7.4. Suppose that C = C2. Then
5.1 implies that Z(G) 6= 1, and it only remains to show that |A| = 3. Further, it follows
from 6.6 that CG(〈a, t〉) contains a subgroup isomorphic to 22×SL(3, 4), and this serves
to identify 〈a〉 among the three conjugacy classes of subgroups of order 3 in G, and to
yield CG(a) ∼= 3�Suz.

On the other hand, suppose that C = C3. We then appeal 3.14 to conclude that
O2(CG(〈a, t〉)) ∼= 21+6

− , and then also CG(〈a, t〉)/O2(CG(〈a, t〉)) ∼= Ω−6 (2)). This infor-
mation again serves to identify 〈a〉, among the three conjugacy classes of subgroups
of order 3 in G, and we again obtain O3′(CG(a)) ∼= 3·Suz. Let g be an element of
order 7 in CG(a). Then O3′(CG(g)) ∼= L3(2) or Alt(7), and then 6.3 and 4.2 yield
O3′(CG(g)) ∼= 2�Alt(7), and Z(G) 6= 1. Thus, we have shown that, in any case, we
have Z(G) 6= 1, and O3′(CG(a)) ∼= 3·Suz. The character table for 2·Co1 in [CCNPW]
then yields CG(a) ∼= 6·Suz (with no non-trivial direct factors). As in the case of Suz,
we obtain CG(a) ≤ 〈ACG(a) if |A| > 3, and in that case we contradict the fact that
CV (Z(G)) = 1. Thus |A| = 3 and the lemma is proved. �

Notice that results 7.2 through 7.6 yield theorem 7.1. Theorem A is then given by the
union of the results 4.1, 5.1, 6.1, and 7.1.

Section 8: Theorem B and Corollary C
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Hypothesis 8.1. Assume Hypothesis 1.1 and assume also that G is not a group of Lie
type in characteristic p.

By Theorem A, Hypothesis 8.1 implies that |A| = p = 3, and G is one of the ex-
ceptional groups listed in Theorem A. We aim first of all to determine which subgroups
of order 3 in G can possibly be quadratic subgroups, with respect to some irreducible
G-module V . Some of these identifications have already been made, in 4.3, 6.6, 6.8, and
7.7. Whenever Hypothesis 8.1 is in effect, let a be a generator of A, set G = G/Z(G),
and set C = CG(A). We note that, by 2.4, A is contained in a 2-local subgroup of G,
and we may fix a subgroup M of G, containing Z(G)A, such that M is a maximal 2-local
subgroup of G.

Lemma 8.2. Assume Hypothesis 8.1, and suppose that G is isomorphic to D4(2). Then
C ∼= GU(4, 2), and A is contained in a subgroup L of G of the form (21+6

+ )L4(2). These
conditions determine A up to conjugacy in Aut(G).

Proof. Identify G with Ω+
8 (2) and let U be the natural module for G over F2. Then

|[U,A]| = 22k for some k, 1 ≤ k ≤ 4. The integer k determines the structure of C, and
we have:

(1) If k = 1 then C ∼= 3× Ω−6 (2).

(2) If k = 2 then C ∼= GU(2, 2)× Ω+
4 (2).

(3) If k = 3 then C ∼= GU(3, 2)× 3, and A ≤ [C,C].

(4) If k = 4 then C ∼= GU(4, 2)

The maximal 2-local subgroup M of G is a maximal parabolic subgroup. Suppose first
that M is of the form 26 : Ω+

6 (2). Then 3.14 implies that M is of the form (21+6
+ )Ω+

6 (2),
and that [O2(M), A] is a quaternion group. Then CO2(M)(A) is of order 32, and so |C|
is divisible by 16. In this case we have k = 1 or 4. Let S be a Sylow 2-subgroup of M .
There are then three maximal parabolic subgroups of G containing S and of the form
26 : Ω+

6 (2). In the full covering group 22·D4(2) these parabolics lift to subgroups of the
form (2×21+6

+ )Ω+
6 (2), as follows from 3.14. Since Out(D4(2)) acts faithfully on the Schur

multiplier of D4(2), by 3.13, it follows that, in G, two of these maximal parabolics lift
to groups which are isomorphic to M , and that one lifts to a group N such that O2(N)
is elementary abelian. Let M and M1 be the two which are isomorphic to M . Then M
and M1 are fused in Aut(G), and thus A is determined up to conjugacy in Aut(G) in
this case.

On the other hand, suppose that A is not contained in a maximal parabolic subgroup
of G of the form 26 : Ω+

6 (2). Then k = 2 or 3, and M is of the form (21+8
+ ) : (Sym(3)×

Sym(3) × Sym(3)). Set R = [O2(M), A], and let V1 be an irreducible RA-submodule
of V . Then RA/CR(V1) ∼= SL(2, 3), as follows from Theorem A of [Ch]. Set R1 =
[CR(V1), A]. If R1 = 1 then |C| is divisible by 27, which is contrary to having k = 2
or 3. Thus R1 6= 1. Let V2 be a non-trivial irreducible section for R1A in V . Then
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R1A/CR1(V2) ∼= SL(2, 3). We have Z(G)∩R1 = 1, so R1 is isomorphic to a subgroup of
R. As R1/CR1(V2) is a quaternion group, it follows that CR1(V2) is elementary abelian,
and then [CR1(V2), A] = 1, by 4.3. Thus, |R/CR(A)| = 16, and so |C| is divisible by 32.
This is again contrary to k = 2 or 3, and the lemma is thereby proved. �
Lemma 8.3. Assume Hypothesis 8.1, and suppose that G ∼= Sp(6, 2). Then C ∼= 3 ×
Sp(4, 2), and this condition determines A up to conjugacy in G.

Proof. There are three conjugacy classes of subgroups of order 3 in G, two of which are
represented in a subgroup L of G of the form L2(8) : 3. Theorem 1.1 implies that A � L,
so the conjugacy class of A in G is uniquely determined. Let U be the natural module
for G over F2, and let b be an element of order 3 in L−E(L). Then b lies in a Frobenius
subgroup of L of order 21, and hence |[U, b]| = 16. Let c be an element of order 3 in
E(L). Then c is contained in a cyclic group of order 9, and so [U, c] = U . Thus, [U, a] is
of order 4, and the lemma follows. �

Theorem B now follows from the results 4.3 (concerning the alternating groups), 6.6
(concerning 2·G2(4)), 6.8 (concerning the groups PGU((n, 2)), 7.7 (concerning 2·J2,
2·Suz, and 2·Co1), 8.2, and 8.3.

We end this section with the proof of Corollary C. Thus, assume Hypothesis 8.1, and
assume that |A|2 ≥ |V/CV (A)|. That is, assume that |V/CV (A)| ≤ 9. Denote by L
the set of all pairs (L,B) where L is a quasisimple subgroup L of CG(A) and B is a
G-conjugate of A contained in L, with B � Z(L). Then [V,A,B] = 0, and so AB acts
quadratically on V . This is contrary to Theorem B, so L is empty.

If G ∼= PGU(n, 2) with n ≥ 5 then the conditions given by 6.8 guarantee that L is
non-empty. This will also be the case if G ∼= Alt(n) with n ≥ 8, by 4.3. If G ∼= D4(2)
or Sp(6, 2), we again get L non-empty, by 8.2 and 8.3. Suppose that G ∼= Co1. Then
C ∼= 3·Suz, and A is not contained in the center of a Sylow 3-subgroup of G. Then A
is not weakly closed in C with respect to G, and so L is non-empty in this case as well.
Thus, none of these cases occur.

We have 2·Suz ≥ 2·G2(4) ≥ 2·J2, and this descending series of groups corresponds
to a descending chain of values for C: 3·U4(3) ≥ SL(3, 4) ≥ 3·Alt(6). These conditions
guarantee that the class of quadratic elements in 2·Suz restricts to the class of quadratic
elements in the groups farther down the chain. Thus, to eliminate these groups it will
suffice to eliminate the case G ∼= J2. In that case A is contained in a subgroup M of G of
the form (21+4

− )Alt(5), where the extension is split. Thus, A is contained in a subgroup
K of G with K ∼= SL(2, 5) and with Z(K) ≤ Z(G). Then CV (Z(K)) = 0, and V is a
direct sum of 2-dimensional subspaces Vi, 1 ≤ i ≤ m, where each Vi is an irreducible
module for a fixed quaternion subgroup K1 of K. We may choose K1 to be A-invariant,
so m ≤ 2. But evidently G � SL(4, 3), so we have a contradiction at this point.

It remains to consider the cases G ∼= Alt(n), n = 5 or 7. In these cases, there is an A-
invariant quaternion subgroup K1 of G with Z(K1) = Z(G), so we obtain an embedding
of G in SL(4, 3). As 7 does not divide the order of SL(4, 3) we conclude that n = 5, and
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then 2.1 implies that V is a natural SL(2, 9)-module for G. This completes the proof of
Corollary C.

Section 9: Examples

As mentioned in the introduction, the classification of the irreducible quadratic mod-
ules for 2·Alt(n) is given in [M], where it is shown that all such modules are “spin
modules” and that all spin modules are quadratic. In this section we will show, by exam-
ple, that all of the groups mentioned in parts (a) and (c) of Theorem B have quadratic
modules. In order to do this, it will be convenient to have available the information given
by the following lemma.

Lemma 9.1. Let X be an extraspecial 2-group, expressed as the central product of sub-
groups Xi, 1 ≤ i ≤ n, where each Xi is a quaternion group or a dihedral group of order
8. Let F be a field of characteristic different than 2, and let U be a faithful irreducible
module for X over F . Then the following hold.

(a) The module U is uniquely determined up to isomorphism. It has dimension 2n,
and it is the tensor product module U = U1 ⊗ · · · ⊗ Un, where Ui is the (unique)
faithful 2-dimensional module for Xi over F .

(b) We have NGL(U)(X)/CGL(U)(X) ∼= Aut(X).
(c) If the characteristic of F is 3, and a is an automorphism of X such that [X, a] is a

quaternion group, then a induces an F -linear automorphism of U with [U, a, a] =
0, and with dim([U, a]) = 2n−1.

Proof. Each Xi has four linear characters and one irreducible character of degree 2. Since
F is a splitting field for Xi, there is then a unique faithful irreducible representation of Xi

over F , and it has degree 2. Any irreducible representation of X over F factors through
a representation of the direct product X1 × · · · ×Xn, and is therefore a tensor product
of irreducible representations of the groups Xi. If the representation is also faithful
then each of its tensor factors is faithful, and so (a) holds. Part (b) is immediate from
the uniqueness of U . Let a be an automorphism of X such that [X, a] is a quaternion
group. Then |a| = 3, and (b) implies that a induces a non-trivial automorphism of U
over F . Here [X, a] commutes with CX(a), by the Three Subgroups Lemma, and so we
may take [X, a] = X1. The tensor decomposition in (a) then implies that U is a direct
sum of isomorphic two-dimensional modules for the group L = 〈aX〉 = [X, a]〈a〉. Here
L ∼= SL(2, 3), and if F has characteristic 3 then a acts quadratically on each irreducible
L invariant summand of U . This yields (c). �

Now for the examples.

G = PGU(n, 2) : Let X be the central product of n quaternion groups. Then the
semidirect product K = X : GU(n, 2) is contained in a maximal parabolic subgroup of
SU(n + 2, 2). It follows from the preceding lemma that there is a quadratic module U
for K, of dimension 2n over F3.
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G = D4(2) or Sp(6, 2) : Take G = 2·D4(2). Then G is the commutator subgroup of
the Weyl group of the E8-root lattice Λ. Set V = Λ/3Λ. Then G acts faithfully on V .
Choose a maximal subgroup M of G, of the form (21+6

+ )Ω+
6 (2), and let A be a subgroup

of order 3 in M , such that [O2(M), A] is a quaternion group. By 9.1, we may identify V
with the unique faithful irreducible module for O2(M), and A acts quadratically on V .

We may identify G with Ω+
8 (2), in such a way that A centralizes a 6-dimensional

non-degenerate subspace of the natural F2-module U for G. Let G0 be the stabilizer in
G of a non-singular point in U . Then G0 ∼= 2× Sp(6, 2). Let G1 be the inverse image in
G of the commutator subroup of G0. Then A ≤ G1, and since A acts quadratically on
V , Theorem 1.2 implies that G1 ∼= 2·Sp(6, 2).

G = Co1, Suz, G2(4), or J2: Next consider the case where Λ is the Leech lattice and
where G = 2·Co1 – the automorphism group of Λ. Again, take V = Λ/3Λ. Then G
acts faithfully on Λ. Let M be a maximal subgroup of G, such that M is of the form
(21+8

+ )D4(2). Then 4.1 implies that Z(G) is a direct factor of O2(M). There then exists
a subgroup A of M , of order 3, such that [O2(M), A] is a quaternion group. Let R be
a complement to Z(G) in O2(M), chosen so that R is invariant under an elementary
abelian subgroup E of M of order 81. Then R is generated by four conjugates of A, and
R = [R,E]. Set W = [V, Z(R)]. Then 9.1 implies that dim(W ) ≥ 16 and that A acts
quadratically on W , with dim([W,A]) = 1/2dim(W ). We now have dim(CV (Z(R)) ≤ 8,
and evidently neither M/Z(R) nor M/Z(R)Z(G) has a faithful representation of degree
8 over F3. Thus CV (Z(R)) = CV (R), and then also [V, Z(R)] = [V,R]. This implies
that both CV (R) and [V,R] are M -invariant, and so R is normal in M . As Z(G) is
not a direct factor of G, it now follows from Gaschütz’s Theorem that M/R is a non-
split central extension of D4(2), and thus M has a subgroup K with K ∼= 2cdotD4(2),
and with A ≤ K. As [V,R] is a quadratic module for K, Theorem 1.3 implies that
A is contained in a subgroup N of K of the form (21+6

+ )L4(2), where [O2(N), A] is a
quaternion group. Then 9.1 implies that dim(CV (R)) = 8, that A acts quadratically on
CV (R), and dim([CV (R), A]) = 4. Then also dim([V,R]) = 16, dim([V,A]) = 12, and A
acts quadratically on V .

We now have CG(A) ∼= 6·Suz, by Theorem 1.2. Then A is not contained in the center
of a Sylow 3-subgroup of G, and so there exists a subgroup G1 of G with G1 ∼= 6·Suz,
such that A ≤ G1 and A � Z(G1). Set V1 = [V, Z(G1)]. As Z(G1) is conjugate to
A, we have dim(V1) = 12, and V1 is then a quadratic module for G1/O3(G1). There
are subgroups G2 and G3 of G1, with G2 ∼= 2·G2(4) and with G2 ≥ G3 ∼= 2·J2. By
considering the structure of centralizers of elements of order 3 in the groups Gi, one
finds that G2 and G3 contain conjugates of A, and thus V1 is a quadratic module for
Gi, 1 ≤ i ≤ 3. As O2(Gi) = Z(G), for all i, all irreducible constituents for Gi in V1 are
non-trivial. As 25 divides the order of G3 and does not divide the order of SL(6, 3), we
conclude that V1 is irreducible for each Gi. Then also V is irreducible for G.
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