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Introduction. This paper concerns “small” modules for finite groups which are
themselves “small” in a certain sense to be defined, and it is directed towards some
specific applications. For the space of a few paragraphs, however, we can try to place
things in a fairly broad context.

For any finite group Y and any prime p, one may consider the action induced by Y ,
via conjugation, on the largest normal p-subgroup Op(Y ) of Y . As an example, let Y be
a proper parabolic subgroup in a simple group X of Lie type, in characteristic p. Then
CY (Op(Y )) ≤ Op(Y ), which is to say that Y/Z(Op(Y )) is faithfully represented as a
group of automorphisms of Op(Y ). Denote by L the subgroup of Y generated by the
p-elements in Y , and assume that L properly contains Op(Y ). That is, assume that Y
is not a Borel subgroup of X. Then Op(Y ) = Op(L), and L/Op(L) is itself a group of
Lie type in characteristic p. Further, there then exists an L-invariant section V of Op(L)
having exponent p, and such that L/Op(L) acts faithfully on V . Thus V is a module for
L/Op(L) over the field Fp of p elements, and one may then appeal to the enormous body
of work concerning such representations of characteristic-p groups of Lie type, in order
to obtain information about the structure of V and, indirectly, about the structure of L
and even of X.

The assumption that Y be a proper parabolic subgroup of X and that Y not be
a Borel subgroup implies that the Lie rank of X is at least 2. There is then a rich
geometry Γ(X) associated with X, namely the building associated with the set of all
parabolic subgroups of X, and which is encoded in the Dynkin diagram associated with
X. From this diagram one also reads off information about the various “residues” at the
proper parabolic subgroups of X, so that the geometry Γ(L) associated with the group
L/Op(L) is given by a sub-diagram. The point is that this geometry imposes severe
restrictions on the sorts of modules V which can arise in the above context. Indeed,
if we choose L so that the diagram for Γ(L) is connected then, as it happens, all such
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modules V are “small”, in the sense that |L/Op(L)|2 > |V |. This fact can be seen as
a consequence of another one, which has more to do with the particular nature of the
action of L on V . Namely, in “most” cases in which Γ(L) is connected there exists an
elementary abelian p-subgroup A of X/Op(X), A 6= 1, with the property that

(0.1) |A|2 ≥ |V/CV (A)|.

(The qualifying adjective “most” will be made more precise, further along in this intro-
duction.) For the moment, we mention that the condition (0.1) implies the condition
that |L/Op(L)|2 > |V | as a consequence of [CD, Theorem 2.3].

Suppose now that we weaken the above hypotheses, so that the ambient group X is no
longer assumed to be a simple group of Lie type. Suppose instead that we require only
that Op(X) = 1 and that for any non-identity p-subgroup Q of X, the group Y = NX(Q)
has the property that CY (Op(Y )) ≤ Op(Y ). (That is, all p-local subgroups of X are p-
constrained.) As above, let L be the group generated by the p-elements in Y . One may
ask whether there exists a suitable p-local subgroup Y of X, a non-identity elementary
abelian subgroup A of L/Op(L), and an elementary abelian section V of L in Op(L),
admitting faithful action by A, such that (0.1) holds.

In raising this question, we have in mind the situation where X is a simple, or nearly
simple, group in which the composition factors of the various groups Y are on the list if
“known” simple groups, but in which X itself is not assumed to be on such a list. That
is to say, our intention is to address issues that pertain to the Classification of the Finite
Simple Groups (or the CFSG, for short).

Specifically, the aim of this paper is to provide support for a project, initiated by
Ulrich Meierfrankenfeld, to classify the finite simple groups X which are of “generic
characteristic p type.” We will not attempt here to outline this program, other than
to say that the groups under consideration correspond roughly to the class of simple
groups of Lie type, of Lie rank at least 2. The feature of Meierfrankenfeld’s project
which distinguishes it most clearly from the treatment of characteristic p-type groups
in the CFSG as it currently stands, and from the treatment in the ongoing revision
project of Gorenstein, Lyons, and Solomon (GLS), consists in directly targeting the
groups Y = NX(Q) for analysis, rather than switching attention to a prime r different
from p. This difference in approach can be summarized by saying that in the CFSG as it
stands, the emphasis is on “semisimple” subgroups, while in the Meiefrankenfeld program
the emphasis is on normalizers of unipotent subgroups. Actually, even in the old version
of CFSG, and in the GLS revision, an important chapter - namely the classification of
Quasithin Groups - is treated via a “unipotent” approach for the prime 2 (for which
see [AS]). So it may be more correct to say that in the Meierfrankenfeld program, the
unipotent approach takes center stage, rather than being relegated to the treatment of
a difficult special case.

In the Meierfrankenfeld program one begins with a group X of characteristic p-type,
with Op(X) = 1, and in which a Sylow p-subgroup S of X is contained in at least two
different maximal p-local subgroups of X (so that one has, from the outset, the rudiments
of a geometry). The analysis then centers on a pair of p-local subgroups C̃ and M of X
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containing S, such that C̃ contains the centralizer in X of Z(S), and such that M/Op(M)
acts faithfully on a subgroup V of exponent p in Op(M) (where V is taken to be as large
as possible for this condition). The normal closure W of V in C̃ is then either an abelian
p-group, a non-abelian p-group, or (of course) a group which is not a p-group. One then
finds:

(0.2) If W is an abelian p-group then there exists a conjugate A of V in C̃ such that
[V,A,A] = 1, and such that |A/CA(V )|2 ≥ |V/CV (A)|.

The case where W is not a p-group leads to a variant of (0.2), as follows.

(0.3) If W is not a p-group then there is a C̃-conjugate A of a subgroup of V , such that the
following hold.

(i) [V,A,A,A] = 1,
(ii) [CV (a), A,A] = 1 for every a ∈ A− CA(V ), and
(iii) |A/CA(V )|2 ≥ |V/CV (A)|, and if p = 2 then |A/CA(V )|3/2 ≥ |V/CV (A)|.

The case in which W is a non-abelian p-group does not lend itself to the formulation of
conditions as in (0.2) or (0.3). This is the reason for the qualification concerning “most”
cases in the condition (0.1).

We have, so far, explained what a small module is, for our purposes. But we have not
yet explained the other half of the title of this paper. A group G is a “minimal parabolic”
group (for the prime p) if a Sylow p-subgroup S of G is not normal in G and is contained
in a unique maximal subgroup of G. Such groups G are the “small” groups that we will
consider here, and a general description of such groups may be found in 11.1, below. Our
aim in this paper is to obtain information about FpG-modules V , where G is a minimal
parabolic group and where V satisfies conditions as in (0.2) or (0.3). The reason for
restricting attention to these groups has to do with the specific demands made by one
portion of the Meierfrankenfeld project. But some of our results do in fact concern small
modules for groups which are not necessarily minimal parabolics. We therefore begin by
stating a series of hypotheses, of varying degrees of restrictiveness.

Hypothesis 1. G is a finite group, p is a prime, S is a Sylow p-subgroup of G, and V
is a faithful FpG-module. Further, we have Op(G) = 1, and there exists a non-identity,
elementary abelian subgroup A of S such that |A|2 ≥ |V/CV (A)|.

Whenever Hypothesis 1 is in effect, we put:

H = Op(G).

That is:
H = 〈g ∈ G : |h| is relatively prime to p〉.
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Also, whenever Hypothesis 1 is in effect, we will use additive notation for the group
operation in V (so that 0, rather than 1, denotes the identity element of V ). It will
be important to observe that, under Hypothesis 1, if H is quasisimple then the Fitting
subgroup F (G) is contained in H, and so H = F ∗(G).

Hypothesis 2. In addition to Hypothesis 1, assume that V = 〈(CV (S ∩ H))G〉, and
CV (G) = 0. Assume also that G = 〈SG〉.

Hypothesis 3. Let G, p, S, V , and A satisfy the conditions of Hypothesis 2. We further
assume that S is contained in a unique maximal subgroup of G.

Hypothesis 4. In addition to Hypothesis 3, we assume that A can be chosen so that A
acts quadratically on V . That is, we have [V,A,A] = 0.

Recall that a group X is “quasisimple” if X/Z(X) is simple and Z(X) ≤ [X,X].

Hypothesis 4′. Assume Hypothesis 2, and assume that H is quasisimple. Assume
further that there is a non-identity elementary abelian p-subgroup A of G satisfiying the
following conditions.

(a) [V,A,A,A] = 0.
(b) [CV (a), A,A] = 0 for every non-identity element a of A.
(c) If p = 2 then |A|3/2 ≥ |V/CV (A)|, while if p is odd then |A|2 ≥ |V/CV (A)|.

Recall that a “component” of a group X is a quasisimple subnormal subgroup of X.
We assume always that the Classification of the Finite Simple Groups applies to the
components (if any) of G. Thus, to state things explicitly, we have the following:

Background Hypothesis. Whenever Hypothesis 1 holds, and K is a component of G,
then K/Z(K) is an alternating group, the commutator subgroup of a group of Lie type,
or one of twenty-six “sporadic” groups.

(To be scrupulously honest, it must be said that we assume also that if K is a qua-
sisimple subgroup of SL(4, p) then K/Z(K) is given by the CFSG. But, presumably, this
assumption is not essential.) We accept, as part of the above background hypothesis, the
classification as it stands, of the Schur multipliers of the alternating groups, the groups
of Lie type, and the sporadic groups, together with structural information of various
kinds concerning these groups. The information that we need can be found in [GLS3]
and, for the sporadic groups, in [A2]. Also, whenever the ATLAS of finite simple groups
[CCNPW] asserts that a certain group occurs as a maximal subgroup of some group,
we accept that information uncritically. This kind of information from the ATLAS will
be used (and will indeed be used extensively) only in section 10 below, in dealing with
groups of Lie type in characteristic different from p.

In order to state our results, we need first of all to establish some terminological
conventions relating to specific groups and modules.

Let G be an alternating or symmetric group Alt(n) or Sym(n), and denote by P (n, p)
the permutation module for G, of dimension n over Fp. The “natural module” for G
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in characteristic p is, by definition, the module V = [P (n, p), G]/C[P (n,p),G](G). When
p = 2 we shall need also the notion of a “spin module” for G, and for this we adopt the
view-point taken in [M]. Thus, set U = [P (n, 2), G]. There is then a natural G-invariant
quadratic form Q on U , and if Q is degenerate then n is divisible by 4 and the radical of
Q has dimension 1. In any case, set U = U/Rad(Q), and let Q be the (non-degenerate)
form on U induced by Q. There is then an induced action of G on the Clifford algebra
C associated with Q. An F2-module V is then said to be a spin module for G if V is
isomorphic to an irreducible G-submodule of C.

The class Lie(p) of “groups of Lie type in characteristic p” will have the following
meaning. A group X is in Lie(p) if there is a simple, affine algebraic group X, defined
over an algebraic closure of Fp, and a Steinberg endomorphism σ of X, such that X is
isomorphic to the subgroup of X generated by the elements of p-power order in CX(σ).
Having said this, we then make three exceptions. Namely, it will be convenient, for our
purposes, to consider also the commutator subgroups of Sp(4, 2), 2F4(2), and of 2G2(3)
to be groups of Lie type in the characteristics 2, 2, and 3, respectively.

By “a” natural module” for SL(2, pn) we mean any module for SL(2, pn) which is iso-
morphic over Fp to “the” natural module for SL(2, pn) (and by which we mean the vector
space of dimension 2 over Fpn on which SL(2, pn) acts by matrix multiplication). We also
have the notion of a natural Ω3(pn)- module and, for n even, a natural Ω−4 (pn)-module
for SL(2, pn), given by identifying PSL(2, pn) with one or the other of these orthogonal
groups. In the same way, we have the notion of a natural module for SU(3, pn). A
natural module for a Suzuki group Sz(2n) is, by definition, any irreducible module of
dimension 4 over F2n for Sz(2n) (n odd), it being known from [St2] that all such modules
are isomorphic over F2 to a module obtained from an embedding of Sz(2n) in Sp(4, 2n)
as the fixed points of a symplectic polarity. The notions of natural modules for SL(3, pn)
and Sp(4, pn) should now require no further explanation. If V is a natural module for
Sp(4, 2n) then a “contragredient module” associated with V is, by definition, the image
of V under a symplectic polarity.

We require also some terminology concerning the groups A which enter into the various
hypotheses stated above. Thus, let V be a vector space over Fp, and let G be a subgroup
of GL(V ). A subgroup A of G is said to act quadratically on V (or to be a quadratic
subgroup of G) if A 6= 1 and [V,A,A] = 0. It is an entirely elementary result that such
a group A is necessarily an elementary abelian p-group (for which see lemma 1.1 in [C1],
for example). Let Y be a subgroup of G. We denote by Q(Y, V ) the set of all quadratic
subgroups A of Y . Assuming that Q(Y, V ) 6= ∅, we then define q(Y, V ) to be the smallest
real number q for which there exists A ∈ Q(Y, V ) with |A|q|CV (A)| = |V |. We then set

Q∗(Y, V ) = {A ∈ Q(Y, V ) | |A|q(Y,V )|CV (A)| = |V |}.

For i = 1 and 2, we say that V is an Fi-module for G if there exists a non-identity
elementary abelian p-subgroup A of G such that |A|i ≥ |V/CV (A)|, and that V is a
quadratic Fi-module if such an A can be chosen in Q(G,V ). The group A is then said
to be an Fi-offender on V , and a quadratic Fi-offender if also A acts quadratically
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on V . If |A| = p and A is an F2-offender on V then any non-identity element of A is
said to be a 2-transvection on V .

We may now state our main results.

Theorem 1. Assume Hypothesis 4. Then there exists a subgroup K of H, unique up to
conjugation, such that, upon setting U = [V,K], the following conditions hold.

(a) H = K1 × · · · ×Kr where {K1, · · · ,Kr} = KS.
(b) We have [V,Ki,Kj ] = 0 whenever i 6= j.
(c) One of the following holds:

(i) K ∼= Op(SL(2, pn)), n ≥ 1, and U/CU (K) is a natural SL(2, pn)-module
for K, or a direct sum of two natural modules for K.

(ii) K ∼= Op(Oε4(pn)), n ≥ 1, ε = ±1, and U is a natural orthogonal module for
K.

(iii) K ∼= Op(SU(3, pn)) and U is a natural module for K.
(iv) p = 2, K ∼= O2(Sz(2n)), and U is a natural module for K.
(v) p = 2, A ≤ CG(K)K, K ∼= SL(3, 2n) (resp. O2(Sp(4, 2n)) and U is the

direct sum of a natural and a dual module (resp. a natural and a contra-
gredient module) for K. Moreover, there exists g ∈ NS(K) such that g
interchanges, by conjugation, the two maximal subgroups of K containing
S ∩K.

(vi) p = 2, K ∼= Alt(2n + 1), n ≥ 3, and U is a natural module for K, or a
direct sum of two natural modules for K.

(vii) p = 2, K ∼= Alt(9), and U is a spin module for K, of dimenson 8 over F2.

Moreover, if K is not invariant under Q∗(S, V ) then p = 2, K ∼= Z3, |U | = 4, and
q(S, V ) = 2.

Two special cases of Theorem 1 are of importance in their own right, where q(A, V ) <
2, and where q(A, V ) ≤ 1. Theorems 2 and 3 describe the possible outcomes in these
two cases.

Theorem 2. In Theorem 1, suppose that we have q(A, V ) < 2. Then one of the following
holds.

(i) K ∼= Op(SL(2, pn)), n ≥ 1, and U/CU (K) is a natural SL(2, pn)-module for K.
(ii) p = 2, KA/CKA(K) ∼= Oε4(2n), n ≥ 1, ε = ±1, and U is a natural orthogonal

module for K. Moreover, we have |A/CA(K)| = 2n+1, and if n = 1 then ε = −1.
(iii) p = 2, A ≤ CG(K)K, K ∼= SL(3, 2n) and U is the direct sum of a natural and a

dual module for K. Moreover, there exists g ∈ NS(K) such that g interchanges,
by conjugation, the two maximal subgroups of K containing S ∩K.

(iv) p = 2, K ∼= Alt(2n + 1), n ≥ 3, and U is isomorphic to the natural module for
K.

Theorem 3. In Theorem 1, suppose that we have q(S, V ) ≤ 1. Denote by A(S, V ) the
set of all subgroups A of S such that |A| ≥ |V/CV (A)| and such that [V,A,A] = 0. Then
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q(S, V ) = 1 and H ≤ 〈A(S, V )G〉 = E1 · · ·Er where Ei is a subnormal subgroup of G
and where one of the following holds.

(i) Ei ∼= SL(2, pn), n ≥ 1, and [V,Ei] is a natural SL(2, pn)-module for Ei.
(ii) p = 2, Ei ∼= Sym(2n + 1), n ≥ 2, and V = CV (Ei) ⊕ [V,Ei], where [V,Ei] is

isomorphic to the natural module for Ei.

In Theorems 4,5, and 6 we drop the assumption that A acts quadratically.

Theorem 4. Assume Hypothesis 3, and assume that H is a quasisimple group of Lie
type in characteristic p. Let A be an F2-offender on V . Then one of the following holds.

(a) H ∼= SL(2, pn) and one of the following holds.
(i) V is a natural SL(2, pn)-module for H.
(ii) V has an H- submodule U such that both U and V/U are natural SL(2, pn)-

modules for H.
(iii) p is odd, H ∼= L2(pn), and V is a natural Ω3(pn)-module for H.
(iv) n is even and V is a natural Ω−4 (pn/2)-module for H.

(b) H ∼= SU(3, pn) and V is a natural module for H.
(c) p = 2, H ∼= Sz(2n), and V is a natural module for H.
(d) p = 2, H ∼= SL(3, 2n) (resp. O2(Sp(4, 2n)) and V is the direct sum of a natural

and a dual module (resp. a natural and a contragredient module) for H. More-
over, there exists g ∈ NS(K) such that g interchanges, by conjugation, the two
maximal subgroups of H containing S ∩H. If A is a quadratic F2-offender then
A ≤ H, and if also H ∼= Sp(4, 2n) then A is conjugate to Z(S).

Theorem 5. Assume Hypothesis 4′, and assume that H/Z(H) is isomorphic to Alt(n),
n ≥ 5. Assume also that H/Z(H) is not of Lie type in characteristic p, and if p = 2
assume that n is odd. Then one of the following holds.

(i) p = 2, H ∼= Alt(n), n ≥ 5, and V is a natural module for H.
(ii) p = 2, H ∼= Alt(n), n = 5, 7, or 9, and V is a spin module for H (of dimension

4, 4, or 8, respectively). Moreover, if n = 9 then A is the direct product of two
quadratic fours groups in H.

(iii) |A| = p = 3, G ∼= Alt(n), n 6= 6, and V is a natural module for G. Moreover, A
is generated by a 3-cycle.

(iv) |A| = p = 3, H ∼= SL(2, 5), and V is isomorphic to the natural SL(2, 9)-module
for H.

(v) p = 3, H ∼= Alt(9), |A| = 27, and V is a spin module for H (of dimension 8 over
F3). Moreover, we have |A|2 = |V/CV (A)|.

Theorem 6. Assume Hypothesis 4′, and assume that S is contained in a unique max-
imal subgroup of G. Assume also that H/Z(H) is a quasisimple group of Lie type in
characteristic different from p, or a sporadic group, and that there exists no isomorphism
of H/Z(H) with a group of Lie type in characteristic p. Then p = 3, G/Z(H) ∼= Sp(6, 2),
|A|2 = |V/CV (A)|, and one of the following holds.

(i) |A| = 3, Z(H) = 1, and V has dimension 7 over F3.
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(ii) |A| = 27, |Z(H)| = 2, and V has dimension 8 over F3.

We mention that the case where G is solvable is hidden in Theorem 1. Section 4,
below, contains many results concerning the case where F ∗(G) is solvable, and which
are not revealed in the statements of Theorems 1 through 6. Of these results, 4.6 is the
most important, and figures strongly in the proof of 11.1. There is a certain sense in
which this case forms the core of this paper, and we therefore invite the reader to glance
through section 4 before undertaking a thorough reading of the whole.

We attempt to list our notational conventions, many of which stem from the ATLAS),
and to list also those cases where we are torn between competing conventions. We denote
by 21+2n

ε an extraspecial 2-group T whose corresponding orthogonal space T/Z(T ) has
“defect” ε, where ε = 1 or −1. But we also write Q8 and D8 for the quaternion and
dihedral groups, respectively, of order 8, and we write X ◦Y for the “central product” of
the groups X and Y , this being the direct product, modulo the relations which identify
the centers of X and Y , and which is defined only only if those centers are isomorphic.
An alternative notation for the groups 21+2n

ε is given by the iterated central products
D

(n)
8 and Q

(n)
8 .

The symbol [n] indicates a group of order n, and if p is a prime then pn is often used
to denote an elementary abelian group of order pn. If X and Y are groups then X.Y or
(X).Y or sometimes just XY is said to be the “shape” of a group G provided that G has
a normal subgroup X∗ isomorphic to X, with G/X∗ isomorphic to Y , and with G not
isomorphic to the direct product of X and Y . Conventional notation for the groups of
Lie type will always be taken to give the corresponding adjoint version. So, the center of
the group 2An(q), for example, is trivial. We often write Ln(q) for PSL(n, q), and Un(q)
for PSU(n, q). In general we write [X,X] for the commutator subgroup of a group X,
but in the case where X is a group of Lie type or, more specifically, a classical group, we
feel free to use the “apostrophic” notation to indicate derived groups. Thus, Sp(4, 2n)′,
or U3(2)′, or 2F4(2)′, for example. Our hope is that other notation, which we have not
had the foresight to introduce at this point, will be self- explanatory.

Section 1: Decomposability questions

1.1 Lemma. Let G be a group acting faithfully on a vector space V over Fp. Let T be
a Sylow p-subgroup of Op(G), and assume that V = 〈CV (T )G〉. Then V = [V,Op(G)] +
CV (Op(G)).

Proof. Set H = Op(G), let {h1, · · · , hr} be a right transversal for T in H, let u be a non-
zero element of CV (T ), and set v = uh1 + · · ·+ uhr . Each g ∈ H defines a permutation
in Sym(r) by means of the formula hig ∈ Thig, and then

vg = uh1g + · · ·+ uhrg = uh1g + · · ·+ uhrg = v.

If u /∈ [V,H] then v = ru + w for some w ∈ [V,H], and so ru ∈ [V,H] + CV (H). As p
8



does not divide r, we conclude that CV (T ) ≤ [V,H] + CV (H). As V = 〈CV (T )G〉, we
then have the lemma. �
1.2 Corollary. Assume Hypothesis 2, and suppose that there is a unique non-trivial
irreducible constituent for G in V . Then V is irreducible.

Proof. Immediate from 1.1. �
1.3 Lemma. Let (L,U) be a pair consisting of a group L and an irreducible F2[L]-module
U . Assume that (L,U) is given by one of the following:

(1) L ∼= SL(2, 2n), U the natural module.
(2) L ∼= Ωε4(2n), ε = ±1, U the natural orthogonal module.
(3) L ∼= SL(3, 2n), U the natural module.
(4) L ∼= Sp(4, 2n)′, U the natural module for Sp(4, 2n).
(5) L ∼= Alt(n), U the natural module.

Then one of the following holds.

(i) H1(L,U) = 0.
(ii) L ∼= SL(2, 2n) and H1(L,U) ∼= F2n .
(iii) L ∼= SL(3, 2) and H1(L,U) ∼= F2.
(iv) L ∼= Sp(4, 2n)′ and H1(L,U) ∼= F2n .
(v) L ∼= Alt(n), n even, and H1(L,U) ∼= F2.

Proof. In each of the cases to be considered, let W denote an L-module containing U ,
with [W,L] = U and with CW (L) = 0. Suppose first that L ∼= SL(2, 2n) and that U is
the natural module for L. For any involution t in L we have [W, t] ≤ CU (t), and hence
|W/CW (t)| ≤ 2n. Since three involutions suffice to generate L, it follows that |W | ≤ 23n.
On the other hand, one may produce an example where |W | = 23n, in the following
way. Put L∗ = SL(2, 22n) and regard L as a subgroup of L∗. Identify L∗ with Ω−4 (2n)
and let V be the natural orthogonal module for L∗. Then L centralizes a 1-dimensional
singular subspace V0 of V , and by taking W = V/V0 we obtain the desired example.
Thus |H1(L,U)| = 2n.

Next, take L = Ω−4 (2n), U the natural orthogonal module. Assume that |W/U | = 2.
Put q = 2n and let D be a subgroup of L of order q + 1. Then |CW (D)| = 2q2. For any
involution t of L one then has CW (〈D, t〉) 6= 0. But an elementary counting argument
shows that one may choose t so that 〈D, t〉 is not an SL(2, 2n)-subgroup of L, and is
not a dihedral group of order 2(q + 1). Then 〈D, t〉 = L, by appeal to Dickson’s list of
subgroups of L. That is, CW (L) 6= 0, so W is decomposable after all, and H1(L,U) = 0.

Assume next that L = Ω+
4 (2n), U the natural module, and form the semi-direct

product H = U : L. Let K = K1 × K2 be a complement to U in H, Ki
∼= SL(2, 2n).

After a suitable conjugation, we may assume thatK∩L contains a subgroupX = X1×X2,
where Xi = X ∩ Ki is of order 2n + 1. But CU (Xi) = 0, so CH(Xi) = XiK3−i. This
shows that K = L, and so there is only one conjugacy class of complements to U in H.
That is, H1(L,U) = 0.
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We next consider the case where L = SL(3, 2n) or Sp(4, 2n)′. Let P1 and P2 be the two
maximal subgroups of L containing a fixed Sylow 2-subgroup S of L. Put Li = [Pi, Pi],
Qi = O2(Pi), and Zi = CQi(Li), and let the indexing be chosen so that CU (L1) 6= 0.

Assume now that L ∼= SL(3, 2n), n > 1. Assume that |W/U | = 2, and let K
be a complement to Q2 in L2. Then both Q2 and CU (Q2) are natural SL(2, 2n)-
modules for K, so we have |HomK(Q2, CU (Q2))| = 2n. Then [W,L2] ≤ CU (Q2),
and so W = U + CW (Q2). Then [W,Q1 ∩ Q2] ≤ [U,Q1] = CU (L1), and then also
[W,Q1] = [W, 〈(Q1 ∩Q2)L1〉] ≤ CU (L1). This yields |CW (Q1)| = |CW (L1)| = 2n+1. But
also, for any involution t ∈ L we have |W/CW (t)| = 2n. Choosing t ∈ L − L1, we get
L = 〈L1, t〉, and so CW (L) 6= 0. Thus H1(L,U) = 0.

One may produce an indecomposable module for L = L3(2) by considering the action
of Alt(7) on the natural L4(2)-module, and observing that Alt(7) contains two classes
of L3(2)-subgroups. Thus |H1(L,U)| ≥ 2 in this case. Let W be an L-module of order
32, with U = [W,L]. For any y ∈ L with |y| = 3 one has |[W,y]| = 4, and since
two conjugates of y suffice to generate L we then have CW (L) 6= 0. This shows that
|H1(L,U)| = 2 if L ∼= L3(2).

Next, suppose that L ∼= Sp(4, 2n), n > 1, and assume that |W/U | > 2n. We have
|U/CU (Z1)| = |[U,Z1]| = 2n, and [W,L1] ≤ CU (Z1). The Three Subgroups Lemma
yields [W,Z1, L1] = 0, and so [W,Z1] = [U,Z1]. Let K1 be a complement to Q1 in
L1 such that K1 is generated by two conjugates of Z1. Then |[W,K1]|| ≤ 22n, and
[W,K1] is a natural SL(2, 2n)-module for K1. By what has already been proved, we
have |H1(K1, [W,K1])| = 2n, and so there exists w ∈W −U with [w,K1] = 0. Then also
there exists v ∈ W − U with [v, Z1] = 0. Set W0 = 〈v〉 + U . As four conjugates of Z1
suffice to generate L we then have CW0(L) 6= 0, contrary to assumption. This shows that
|H1(L,U)| ≤ 2n. To see that equality holds, it is enough to observe that in Sp(6, 2n)
there is a maximal parabolic subgroup P with O2′(P/O2(P )) ∼= L and with O2(P ) an
indecomposable module for O2′(P ), such that CO2(P )(O2′(P )) is of order 2n and such
that O2(P )/CO2(P )(O2′(P )) is a natural SL(2, 2n)-module for O2′(P/O2(P )). (This is
entirely well known, but one can find this worked out in detail in lemma 5.4 of [C2].)

Suppose next that L = (Sp(4, 2))′. The natural permutation module for Alt(6) pro-
vides an example which shows that |H1(L,U)| ≥ 2. Let W be an L-module of order 64
with U = [W,L], and let L0 be a subgroup of L, L0 ∼= Alt(5), such that U is the natural
Ω−4 (2)-module for L0. By what has already been shown, we have H1(L0, U) = 0, and so
W = U ⊕ CW (L0). Let S be a Sylow 2-subgroup of L such that |S ∩ L0| = 4, and let
t be an involution in S − L0. Here |CU (S ∩ L0)| = 2, and so CW (L0) ∩ CW (t) 6= 0. As
〈L0, t〉 = L we then have CW (L) 6= 0, and this shows that |H1(L,U)| = 2.

Finally, let L = Alt(n), with U the natural module. Suppose that n = 2m+ 1 is odd.
Then L is generated by m 3-cycles, each of which centralizes a subspace of codimension
2 in W . Then dim(W ) ≤ 2m = dim(U). Thus W = U , and H1(L,U) = 0 in this
case. Now suppose that n = 2m is even. Then m − 1 3-cycles suffice to generate the
subgroup Ki of L which fixes the point i in the natural action of L on n points. Here
CU (Ki) = 0, and dim(U) = 2m−2, so we have W = U+CW (Ki). Set X = K1∩K2, and
observe that dim(CU (X)) = 1. Thus CW (Ki) is a hyperplane of CW (X), for i = 1 and
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2. As 〈K1,K2〉 = G we have CW (K1) ∩ CW (K2) = 0, and we conclude that |W/U | ≤ 2.
On the other hand, the natural permutation module for L, modulo its fixed-points for
L, provides an example of an indecomposable module W in which |W/U | = 2. Thus
|H1(L,U)| = 2 in this case, and the lemma is proved. �
1.4 Lemma. Let L be the group L2(q), q a power of p, p odd, and let V be a module
for L over Fp, such that [V/CV (L), L] is isomorphic to the natural Ω3(q)-module for L.
Then V = [V, L]⊕ CV (L).

Proof. Let T be a Sylow p-subgroup of L, let D be a complement to T in NL(T ), let
U be the natural Ω3(q)-module for L, and form the semi-direct product U : L. We will
show that there is a unique conjugacy class of D-invariant complements to U in UT , and
the lemma will follow from a standard result on 1-cohomology. (See 17.7 in [A3].)

Let T1 be a D-invariant complement to U in UT , and set X = 〈TU 〉. Then X =
[U, T ]T , where [U, T ] is a 2-dimensional Fq- subspace of U . Every element of order p in
UT lies in X, so we have T1 ≤ X. Notice that D acts trivially on the 1-dimensional space
[U, T ]/CU (T ), and so the q distinct conjugates of T under [U, T ] are allD-invariant. These
conjugates, together with CU (T ), provide a partition of (CU (T )T )# into D-invariant sets,
so if T1 ≤ CU (T )T then T1 is conjugate to T . Suppose now that q > 3, so that D 6= 1.
Then [X,D] = CU (T )T , and so T1 ≤ CU (T )T in this case. Thus, we are reduced to the
case p = 3. Here there are exactly 9 conjugates of T under U , and there are exactly
13 = (33 − 1)/(3 − 1) subgroups of X of order 3, four of which lie in U . Thus T1 is
conjugate to T in this case as well, and the lemma is proved. �
1.5 Lemma. Let L = L3(2) and let V be an F2L-module such that CV (L) ≤ [V, L],
and such that [V/CV (L), L] is a natural L3(2)-module for L. Then either V = [V, L] or
CV (L) = 0.

Proof. Suppose false. Then 1.1 implies that |V/[V, L]| = |CV (L)| = 2, and so |V | = 32.
Let t be an involution in L. Then two conjugates of t generate a Sylow 2-subgroup of
L, and then three conjugates of t suffice to generate L. If t induces a transvection on
[V, L] we then obtain C[V,L](L) 6= 0, while if t induces a transvection on V/CV (L) then
L has a non-trivial fixed-point on V/CV (L). These results are contrary to the case,
so we conclude that t induces a 2- transvection on both [V, L] and V/CV (L). Then
CV (t) ≤ [V, L], and |V/CV (t)| ≥ 8. But |V/CV (t)| ≤ 4 as |V | = 32. This contradiction
proves the lemma. �
1.6 Lemma. Let L = SL(2, pn) and let U be a module for L over Fp. Suppose that every
irreducible constituent for L in U is a natural module for L. If p = 3 assume further that
a Sylow p-subgroup of L acts quadratically on U . Then U is completely reducible.

Proof. This is an old result of Richard Niles (Theorem 3.2 in [N]). To be precise, Niles’
theorem states that if the Sylow p-subgroup S of L does not act quadratically on V , and
V is indecomposable, then p = 3. But in fact, Niles’ proof makes no use of the assumption
that S acts non-quadratically, and what is really proved is that if V is indecomposable
then p = 3 and S acts non-quadratically. The lemma follows from this result. �
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1.7 Lemma. Let L = SL(2, pn), and let V = [V, L] be a non-zero module for L over
Fp. Suppose that a Sylow p-subgroup of L acts quadratically on V , and if p = 2 assume
that CV (X) = 0 for some Cartan subgroup X of L. Then V is a direct sum of natural
modules for L.

Proof. If p is odd then CU (Z(L)) = CU (L), and we may assume that CU (Z(L)) = 0
in this case. Let U be an irreducible L-invariant section of V . Then U is a non-trivial
L-module, since CU (X) = 0 if p = 2. Let S be a Sylow p-subgroup of L, and set
F = EndL(U). As is well known (see Corollary (a) to Theorem 46 in [St2]), F is a
subfield of Fpn and dimF (CU (S)) = 1. As S acts quadratically on V , by hypothesis, and
as two conjugates of S generate L, it follows that dimF (U) = 2, and then F = Fpn and
U is a natural module for L. Thus, we are reduced to the situation in which V has a
submodule U such that both U and V/U are natural modules for L. Now apply 1.6. �
1.8 Lemma. Let L = Alt(n), n odd, and let V be an F2L-module such that the only
non-trivial irreducible constituents for L in V are natural modules. Then V is completely
reducible.

Proof. In view of 1.3, we may assume that CV (L) = 0, and then that V has a submodule
U such that both U and V/U are natural modules for O2(L). Let K be the stabilizer
of a point for the natural action of L on n points. As n is odd, U is isomorphic, as
a K-module, to the natural permutation module for K. As n − 1 is even we then
have U 6= [U,K] ≥ CU (K) 6= 0, and the same is true with V/U in place of U . As
H1(K, [U,K]/CU (K)) ∼= F2, by 1.3, it follows that CV/U (K) = (U + CV (K))/U 6= 0.
Let w ∈ CV (K) − U and set W = 〈wO2(L)〉. Then dim(W ) ≤ |O2(L) : K| = n, and so
W is an O2(L)-invariant complement to U in V . �

Section 2: Cyclic Sylow p-subgroups

In this section we treat Hypothesis 4′, in “miniature”.

2.1 Lemma. Let V be a 4-dimensional vector space over Fp, p an odd prime, and set
G = SL(V ). Let X be a quasisimple subgroup of G, and assume that X satisfies the
following conditions.

(a) Z(X) ≤ Z(G).
(b) X has cyclic Sylow p-subgroups.
(c) For any element a of X of order p, we have [V, a, a, a] = 0 and [V, a, a] 6= 0.

Assume further that X/Z(X) is an alternating group, a group of Lie type, or one of
the twenty-six sporadic groups. Then one of the following holds.

(i) p ≥ 5, X ∼= L2(p), V = [V,X] ⊕ CV (X), and [V,X] is a natural Ω3(p)-module
for X (of dimension 3).

(ii) p = 3 and X ∼= Alt(5).
12



Proof. The 2-rank of SL(4, p) is equal to 3, so we obtain the following information at
the outset.

(1) The 2-rank of X is at most 3, and if equal to 3 then Z(X) is of even order.

Suppose first that X ∈ Lie(p). Condition (b) then implies that X ∼= L2(p) or SL(2, p),
and then since X is assumed to be quasisimple, we have p 6= 3. Denote by Mi the space
(of dimension i+ 1) of homogeneous polynomials of degree i in the two variables x and
y. Then Mi admits a natural action by SL(2, p), and {Mi}0≤i≤p−1 forms a complete
set of representatives for the isomorphism classes of the irreducible modules for SL(2, p)
over Fp. (See [St 1] or section 13 in [St 2].) Let S be a Sylow p-subgroup of SL(2, p).
One checks easily that [Mi, S, S, S] 6= 0 for i > 2, and so condition (c) implies that any
irreducible constituent U for X in V is isomorphic to one of the modules Mi, 0 ≤ i ≤ 2.
That is, U is either a trivial module, a natural SL(2, p)-module, or a natural Ω3(p)-
module for X. If there exists a constituent U such that U is a natural SL(2, p)-module
then 1 6= Z(X) ≤ Z(G), by condition (a), so all irreducible constituents of X in V are
natural SL(2, p)- modules, and then V is completely reducible for X, by 1.6. But then
a acts quadratically on V , contrary to (c), so we conclude that no such constituent U
exists. Thus, X has a unique non-trivial irreducible constituent U in V , and U is a
natural Ω3(p)-module. Now 1.2 implies that V is completely reducible, and so (i) holds.

Suppose next that X is of Lie type in characteristic different from p. We appeal to
Table I in [SZ] for the list of minimal degrees of cross-characteristic projective representa-
tions of groups of Lie type, where we find that only the groups L2(4), L2(9), L3(2), L3(4),
and U4(2) have such representations of degree at most 4. Suppose that X/Z(X) ∼= L2(4).
Then p = 3 (as L2(4) ∈ Lie(5)). If Z(X) 6= 1 then there is an element f of order 4 in
X such that f inverts a, with 〈f2〉 = Z(X), and since |[V, a, a]| = 3 it follows that Z(X)
centralizes [V, a, a]. But CV (Z(X)) = 0, so in fact Z(X) = 1, and (ii) holds. Suppose
that X/Z(X) ∼= L3(2). Then p = 3 as L3(2) ∈ Lie(7). As 7 does not divide the order
of G, we have a contradiction in this case. We note that any central extension of L3(4)
has 2-rank at least 4, so (1) implies that X/Z(X) is not isomorphic to L3(4). Suppose
that X/Z(X) ∼= U4(2). The 2-rank of U4(2) is greater than 3, U4(2) ∼= PSp(4, 3), and
Sp(4, 3) is the universal perfect central extension of U4(2), so we have X ∼= Sp(4, 3) and
p = 5. But 27 does not divide the order of SL(4, 5), so we have a contradiction. Now
suppose that X/Z(X) ∼= L2(9). Then X/Z(X) ∈ Lie(2) ∪ Lie(3), and so p = 5. There
are then non-conjugate subgroups K1 and K2 of X, with Ki/Z(X) ∼= L2(5), and with
a ∈ K1 ∩K2. The argument in the preceding paragraph then shows that for each i we
have Ki

∼= L2(5), V is completely reducible for Ki, and [V,Ki] is a natural Ω3(5)-module
for Ki. Let xi be an element of order 3 in Ki. It now follows that dim(CV (xi)) = 2.
On the other hand, a Sylow 3-subgroup of X is one of G, and evidently G contains an
element x of order 3 such that CV (x) = 0. As x1 and x2 represent the two conjugacy
classes of elements of order 3 in X, we have a contradiction.

Suppose next that X/Z(X) is an alternating group Alt(n). The 2-rank of any central
extension of Alt(8) is at least 4, so (1) implies that n ≤ 7. As Alt(5) and Alt(6) are of Lie
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type, we then have n = 7. By condition (b), p 6= 3, and since Alt(7) contains L2(9) we
have p 6= 5. Then p = 7, and since Alt(7) contains L2(7) we have Z(X) = 1. The minimal
degree of a non-trivial complex irreducible representation of Alt(6) is greater than 4, and
since |Alt(6)| is not divisible by 7 the same is true of the irreducible representations of
Alt(6) over F7. Thus, Alt(7) is not a subgroup of G.

Suppose finally that X/Z(X) is a sporadic group. Then (1) implies that X ∼= M11 or
2·M12 . Then p 6= 3, by (b), and since M11 is a subgroup of 2·M12 it will now suffice to
derive a contradiction in the case that X ∼= M11. In this case we have p = 5 or 11, and
since M11 contains L2(9) we conclude that p = 11. Let B be a Sylow 3-subgroup of X.
Then all subgroups of order 3 in B are fused in X. But also B is a Sylow subgroup of
G, and evidently there are two different classes of elements of subgroups of order 3 in G.
This contradiction proves the lemma. �
2.2 Corollary. Assume Hypothesis 3, with H quasisimple, and assume that S is of
order p. Suppose further that p is odd, that [V,A,A,A] = 0, and that A is not quadratic
on V . Then G ∼= L2(p) or Alt(5).

Proof. By Hypothesis 3 there is a unique maximal subgroup M of G containing A. As
H is quasisimple, there exists g ∈ G with Ag �M . Then 〈A,Ag〉 = G, and so G ∼= L2(p)
or Alt(5) by 2.1. �
2.3 Theorem. Assume Hypothesis 4′, and assume that H/Z(H) is one of the twenty-six
sporadic groups. Then S is contained in more than one maximal subgroup of G.

Proof. By 2.2, |S| > p, and then a survey of the sporadic groups shows that S is non-
cyclic. In [A3] it is shown that if X is a group with F ∗(X) sporadic, and T is a non-cyclic
Sylow p-subgroup of X, then either T is contained in two distinct maximal subgroups
of X, or else X ∼= J4 and p = 11. Moreover, it is shown that if J4 has a faithful
112-dimensional module over F2 then also for p = 11 there are at least two maximal
overgroups of T in J4. The existence of such a module for J4 is now known from various
sources. (?) �

Section 3: Measuring lemmas

3.1 Lemma. Let G be a group, and let V be a faithful FpG-module. Suppose G has a
cyclic subgroup of order pk + 1. Then dim(V ) ≥ 2k.

Proof. Suppose first that p2k = 26. Then pk + 1 = 9, and since L5(2) has elementary
abelian Sylow 3-subgroups we are done in this case. Also, the result evidently obtains if
k = 1. Thus, we may assume that p2k 6= 26 and that k > 1. The main result of [Z] then
says that p2k − 1 is divisible by a prime r such that r does not divide pi − 1 for any i
with 1 ≤ i < 2k. Then r does not divide |GL(V )| if dim(V ) < 2k. �

[For sure there is a proof of 3.1 that does not use [Z].]

The next result is extracted from [CD].
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3.2 Lemma. Let X be a finite group, Y a normal subgroup of X, p a prime, and V a
faithful FpX-module. Let r be a positive real number, and let E be an elementary abelian
p-subgroup of Y , chosen so that

(*) |E|r|CV (E)| is as large as possible.

Then For any x ∈ X we have |EEx|r|CV (EEx)| ≥ |E|r|V/CV (E)|. In particular, If E
is chosen to be as large as possible, subject to (*), then E is weakly closed in CX(E) with
respect to X.

Proof. . Set F = Ex, and suppose that |E|r|CV (E)| > |EF |r|CV (EF )|. We then have

|F |r

|E ∩ F |r
=
|EF |r

|E|r
<
|CV (E)|
|CV (EF )|

=
|CV (E) + CV (F )|

|CV (F )|
≤ |CV (E ∩ F )|

|CV (F )|
,

and hence

(**) |F |r|CV (F )| < |E ∩ F |r|CV (E ∩ F )|.

But |F |r|CV (F )| = |E|r|CV (E)|, and the maximality of this number, among elementary
abelian subgroups of X, contradicts (**). Thus |E|r|CV (E)| ≤ |EF |r|CV (EF )|. �
3.3 Lemma. Let X be a finite group, p a prime, and V a faithful FpX-module. Let A
be a subgroup of X, and let r be a real number such that |A|r ≥ |V/CV (A)|. Then let B
be a normal subgroup of A, set W = CV (B), and suppose that |A/B|r ≤ |W/CW (A)|.
Then |B|r ≥ |V/CV (B)|.

Proof. As |A|r ≥ |V/CV (A)| and |A/B|r ≤ |W/CW (A)|, we have

|B|r|CV (A)||W |/|CW (A)| ≥ |V |.

But CW (A) = CV (A), so we obtain |B|r ≥ |V/W | = |V/CV (B)|, as required. �
We end this section with a result which will effectively reduce the proof of Theorem 1

to the consideration of the case where F ∗(G) is quasisimple or where F ∗(G) is a q-group
for some prime q, q 6= p.

3.4 Lemma. Assume Hypothesis 1, and let A ∈ Q(S, V ) with A ∈ Q∗(A, V ). Let X be a
non-identity subgroup of G with X = [A,X], and such that X/Φ(X) is a minimal normal
subgroup of AX/Φ(X). Let A0 be a complement in A to CA(X). Then the following hold:

(a) [V,X,CA(X)] = 0.
(b) For any AX-invariant section W of [V,X] on which X acts non-trivially, we

have CA0(W ) = 1, and:

q(A0,W ) ≤ q(A0, [V,X]) ≤ q(A, V )

(c) A0 ∈ Q∗(A0, [V,X]).
15



Proof. We have X ≤ 〈AX〉, so [V,X,CA(X)] = 1 since A acts quadratically on V . Put
U = [V,X], and let U1 ≤ U0 be AX-invariant subspaces of U with [U0, X] � U1. Put
W = U0/U1 and set Y = CX(W ). Then Y ≤ Φ(X) and so [X,CA0(W )] ≤ Φ(X). Thus,
we get CA0(W ) ≤ A0 ∩ CA(X), and so CA0(W ) = 1.

Put U∗ = CV (CA(X)) and put q = q(A, V ). Suppose next that |A0|q < |U∗/CU∗(A0)|.
Since CU∗(A0) = CV (A) we then have:

|V | = |A|q|CV (A)| < |CA(X)|q|U∗|

and thus q(CA(X), V ) < q(A, V ). But this is contrary to A ∈ Q∗(S, V ), so we now
conclude that |A0|q ≥ |U∗/CU∗(A0)|. Then also |A0|q ≥ |U/CU (A0)|, and so q(A0, U) ≤
q(A, V ).

Next, put r = q(A0, U). We have:

|A0|r = |U/CU (A0)| ≥ |U0/CU0(A0)|

and also:
|CW (A0)| ≥ |CU0(A0)U1/U1| = |CU0(A0)/CU1(A0)|

and thus:
|A0|r|CW (A0)| ≥ |U0/CU1(A0)| ≥ |W |.

This shows that q(A0,W ) ≤ r, and completes the proof of (b).
Next, let B ≤ A0 and put A1 = CA(X)B. Since A ∈ Q∗(S, V ) we have q ≤ q(A1, V ),

and so:
|A0/B|q = |A/A1|q ≥ |CV (A1)/CV (A)| ≥ |CU (A1)/CU (A)|

which shows that |A0|q|CU (A0)| ≥ |B|q|CU (B)|. This proves (c). �

Section 4: Solvable Groups

In this section we assume Hypothesis 1. Recall that for any subgroup X of G, Q(X,V )
is the set of quadratic subgroups of X, and that if Q(X,V ) is non-empty then q(S, V )
is the minimum, over all A ∈ Q(X,V ), of the numbers q for which |A|q = |V/CV (A)|.
Denote by Q∗(X,V ) the set of all A ∈ Q(X,V ) such that |A|q(X,V ) = |V/CV (A)|.

4.1 Lemma. Assume Hypothesis 1, with p odd. Let a be an element of order p in G,
such that a acts quadratically on V , and let R be an a-invariant p′-subgroup of G. If
p = 3 assume also that R is abelian or that |R| is odd. Then [R, a] = 1.

Proof. This is [C2, Lemma 1.2].
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4.2 Lemma. Let S be a 2-group, and let a be an automorphism of S of order 3. Assume
that S = [S, a], and that the following condition holds.

(*) Every a-invariant abelian subgroup of S is centralized by a.

Then Φ(S) = [S, S] = Z(S) = Ω1(S) = CS(a).

Proof. It will be convenient to form the semi-direct product G = S〈a〉. Let R denote
the set of all proper subgroups R of S such that R = [R, a]. We assume that S provides
a minimal counter-example to the lemma. So:

(1) For any R ∈ R we have Φ(R) = [R,R] = Z(R) = Ω1(R) = CR(a).

Put X = 〈CS(a)G〉. Then X ⊆ Φ(S) since S = [S, a]. Here Φ(S) = 〈s2 : s ∈ S〉 since
S is a 2-group. Suppose that X 6= Φ(S) and let g ∈ S with g2 /∈ X. Put T = 〈g, ga〉Φ(S),
and put R = [T, a]. Then T = RX. Now R/(R ∩X) ∼= T/X, and so R/(R ∩X) is not
elementary abelian. If now T 6= S, then R ∈ R and (1) then implies that R/CR(a) is
elementary abelian, for a contradiction. We have thus shown:

(2) Either X = Φ(S) or |S/Φ(S)| = 4.

Notice that Z(S) ⊆ X,by (*). Now let Y be a normal 2-subgroup of G properly
containing Z(S), and with Y minimal for this property. Moreover, if possible, choose
Y ⊆ X. If [Y, a] = 1 then [Y, S] ⊆ [Y, 〈aS〉] = 1, contrary to the choice of Y . Thus
|Y : Z(S)| = 4. Setting H = [Y, a], it then follows from (*) that H is a quaternion group,
of order 8. Notice that H is invariant under CS(a), and then [H,CS(a)] = 1. But then
1 = [Z(S)H,CS(a)] = [Y,CS(a)], and so [Y,X] = 1. In particular, we have [H,X] = 1,
and so H * X. By our choice of Y , it then follows that [X, a] = 1, whence [X, 〈aS〉] = 1.
Thus:

(3) We have X = CS(a) = Z(S).

Suppose next that X = Φ(S). In particular, (3) then says that the nilpotence class of
S is 2. Let Q denote the set of all subgroups Q of S such that Q = [Q, a] is a quaternion
group, and put Z = 〈[Q,Q] : Q ∈ Q〉. Then Z ⊆ Ω1(Z(S)). Let t be an arbitrary
element of S and put D = 〈t, ta, ta2〉 and R = [D, a]. Then either R ∈ Q or R = 1,
and in either case we have D = CD(a)R = (D ∩ X)R. Write t = xr with r ∈ R and
x ∈ X. Then t2 = x2r2 ∈ Φ(X)Z. But then X = Φ(S) = Φ(X)Z, and so X = Z. In
particular, we now have Φ(S) = Ω1(Z(S)) = [S, S]. Moreover, if t is an involution then
1 = x2r2 = r2, and so r ∈ Z(R) ⊆ X, and t ∈ X. This shows that Ω1(S) = X, and thus
the proposition is proved in the case that X = Φ(S). In view of (2) we then have:

(4) |S/Φ(S)| = 4, and X is a proper subgroup of Φ(S).

Here Φ(S) = [Φ(S), a]X, so it follows from (1) that Φ(S)/X is elementary abelian.
Suppose that |Φ(S)/X| > 4. We may then choose a normal subgroup M of G with
X ⊆ M ⊂ Φ(S), and with |Φ(S)/M | = 16. Put V = Φ(S)/M . Then G/Φ(S) operates
faithfully on V , as otherwise |S/Φ(S)| > 4. Here G/Φ(S) ∼= Alt(4), and a is fixed-point-
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free on V . One may then verify that for every g in S − Φ(S) we have CV (g) = [V, g] =
CV (S) = [V, S], a subgroup of V of order 4. But then g2 lies in [S,Φ(S)] for all g ∈ S,
whereas Φ(S) = 〈g2 : g ∈ S〉. Thus we have a contradiction, proving that |Φ(S)/X| = 4.
This immediately implies:

(5) S/X ∼= Z4 × Z4.

Recall from the proof of (3) that we have a quaternion group H = [H, a] with H * X.
It now follows from (5) that Φ(S) = HX. Suppose that Ω1(X) 6= Z(H), and let Z be a
subgroup of X of order 2 with Z 6= Z(H). Then observe that S/Z satisfies the condition
(*), in place of S. (Indeed, if g ∈ S−CS(a) then 〈a, ag〉 = H〈a〉 or G.) By minimality of
the counter-example, we then have [Φ(S/Z), a] = 1, which is contrary to (5). Thus, we
conclude that Ω1(X) = Z(H), and hence X is cyclic. Then H is the unique quaternion
subgroup of HX, and so H is a normal subgroup of G. Then S = CS(H)H, a central
product. This violates |S/Φ(S)| = 4, and the proposition is thereby proved. �
4.3 Lemma. Assume Hypothesis 1 with G = QA, Q a normal p′- subgroup of G, and
with |A| = p. Assume further that Q = [Q,A], V = [V,Q], and |V : CV (A)| ≤ p2.
Finally, assume that A acts quadratically on V . Then one of the following holds.

(i) G ∼= SL(2, 2) and V is either a natural SL(2, 2)-module or a direct sum of two
natural SL(2, 2)-modules for G.

(ii) G ∼= (3× 3) : 2, |V | = 16, and V is the direct sum of two G-invariant subspaces
of dimension 2.

(iii) G ∼= (SU(3, 2))′, and V is a natural SU(3, 2)-module for G, of order 64.
(iv) G ∼= Dih(10) and |V | = 16.
(v) G ∼= SL(2, 3), V is either a natural SL(2, 3)-module or a direct sum of two natural

SL(2, 3)-modules for G.
(vi) G ∼= (Q8×Q8) : 3, |V | = 81, and V is the direct sum of two G-invariant subspaces

of dimension 2.

Proof. Let (G,V ) be a counter-example with |G|+|V | as small as possible. WriteA = 〈a〉.
Suppose first that p is odd. As Q is generated by its A-invariant Sylow subgroups,

4.1 implies that p = 3 and that CQ(A) has index a power of 2 in Q. Let T be an A-
invariant Sylow 2-subgroup of Q, and put X = [T,A]. Then G = CG(A)X and we have
〈Z(X)G〉 = 〈Z(X)CG(A)〉 ≤ CG(A), and so 〈Z(X)G〉 centralizes 〈AG〉 = G. That is, we
have Z(X) ≤ Z(G).

Suppose now that X 6= Q. The minimality of |G|+ |V | then implies that outcome (v)
or (vi) of the lemma holds, with (XA, [V,X]) in place of (G,V ). Then [V,X] = [V, Z(X)]
and CV (X) = CV (Z(X)). Thus [V,X] and CV (X) are G-invariant. As Q = [Q,A] =
〈XQ〉, we conclude that [CV (X), Q] = 0, so CV (X) = 0, and |V | = 9 or 81. Observe that
in SL(4, 3) the centralizer of any element of order 3 is a {2, 3}-group. Thus CQ(A) ≤ T ,
and thus Q = T = X. Thus, we have shown that Q = X after all.

Now 4.2 yields Φ(Q) = [Q,Q] = Z(Q) = Ω1(Q) = CQ(A). Suppose that |Z(Q)| = 2.
Then Q is a quaternion group of order 8 and G is generated by two conjugates of A. As
|V/CV (A)| ≤ 9 we then have |V | ≤ 81, and then 2.3 implies that V is a direct sum of two
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natural SL(2, 3)-modules for G. That is, (v) holds, and (G,V ) is not a counter-example.
We therefore conclude that |Z(Q)| > 2. Let 〈s, t〉 be a fours group in Z(Q), with the
generators s and t chosen so that both CV (s) and CV (t) are non-trivial. As G = 〈AG〉,
A acts non-trivially on both [V, s] and on CV (s), and so A induces a transvection on
each of these subspaces. By induction, both [V, s] and CV (s) are of order 9, and then
CV (s) = [V, t], and V = [V, s] + [V, t]. Set Q1 = CQ([V, s]) and Q2 = CQ([V, t]). Then
Q1 ∩ Q2 = 1, and Q/Qi is a quaternion group for i = 1, 2. As Φ(Q) is non-cyclic, the
2-rank m of Q/Φ(Q) is greater than 2, and since Q = [Q,A] we have m = 4. It follows
that each Qi is a quaternion group, and Q = Q1 × Q2. Thus, (vi) holds, and so the
lemma holds if p is odd.

We now take p = 2. Let R be the set of all proper subgroups R of Q with R = [R,A]
and with |R| > 3. For any R ∈ R, the pair (RA, [V,R]) is then given by one of the
outcomes (ii) through (iv) in the statement of the lemma. We note also the following
consequence of our hypothesis that V = [V,Q].

(1) No proper Q-invariant subspace of V contains [V,A].

From this it follows that:

(2) If R ∈ R and R is a normal subgroup of Q, then V = [V,R].

Let 1 6= x ∈ Q with xa = x−1. Then |V/CV (x)| ≤ 16, and then 〈a, x〉 is dihedral of
order 6 or 10. Suppose |x| = 5, and then suppose that there exists y ∈ Q − 〈x〉 with
ya = y−1. Examining outcomes (i) through (iv) of the Lemma, we see that 〈x, y〉 /∈ R,
and hence 〈x, y〉 = Q. Here [V,A] ≤ [V, x], so |V | ≤ |[V, x] + [V, y]| ≤ 26, and G may be
identified with a subgroup of L6(2). One may readily verify that no subgroup of L6(2)
of odd order admits faithful action by a dihedral group of order 10. Therefore x lies in
Z(Q), and then (2) yields that V = [V, x] is of order 16. Then Q is cyclic, and since
SL(4, 2) contains no dihedral group of order 30 it follows that G is dihedral of order 10.
Thus, no element y exists as chosen above, and so (iv) holds in this case.

We now conclude that x3 = 1 for all x in Q with xa = x−1. Then Q = CQ(A)T where
T is an A-invariant Sylow 3-subgroup of Q. Then [Q,A] ≤ T , so since Q = [Q,A] by
hypothesis we obtain [Q,A] = T , and Q is a 3-group. Put Q = Q/Φ(Q), and suppose
first that |Q| > 9. Then any maximal subgroup of Q is the image of some element of R,
and so |Q| = 27. Notice that for any R ∈ R we have CR(A) = Φ(R) and R/CR(A) = 9.
It follows R ∩ Φ(Q) ≤ CR(a), and then [Φ(Q), A] = 1 and Φ(Q) ≤ Z(G). Suppose that
there exists R ∈ R with R non-abelian. Then (RA, [V,R]) is described by outcome (iii)
of the lemma, so [V,R] = [V, Z(R)], and thus [V,R] is G-invariant. Then V = [V,R],
by (2). Then |V | = 64,, and since R 6= Q, Q is isomorphic to a Sylow 3-subgroup of
L6(2), of order 34. Then Q is a wreath product, contrary to |Q| = 9. We conclude that
every R ∈ R is abelian. As |Q| = 27 it follows that Q has a generating set consisting
of elements which commute pair-wise, and so Q is abelian. But with |V/CV (A)| ≤ 4 we
then have |Q| = 9.

We conclude that |Q ≤ 9. If |Q| = 3 then Q is cyclic, and (i) holds, so in fact |Q| = 9.
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Then three conjugates of a suffice to generate G, and so:

(3) |V | ≤ 64.

Suppose next that Φ(Q) ≤ Z(G). Then Φ(Q) is cyclic, of exponent at most 3, and so
Q is either elementary abelian of order 9 or extraspecial of order 27. Suppose that Q is
elementary abelian, and let x ∈ Q# with [V, x] as large as possible. As xa = x−1 we then
have |[V, x]| = 16 and [V, a] ≤ [V, x]. Here [V, x] is G-invariant, so [V, x] = V and (ii)
holds. On the other hand, suppose that Q is extraspecial. No member of R is cyclic of
order 9, so the exponent of Q is 3, and then G is isomorphic to the commutator subgroup
of SU(3, 2). Then |V | > 32, and (3) then yields |V | = 64. There is, up to isomorphism,
a unique faithful representation of Q of degree 3 over F4 (by ordinary character theory),
and so we obtain (iii) in this case. We therefore conclude that Φ(Q) � Z(G).

Now [Φ(Q), a] 6= 1, and we may choose y ∈ Φ(Q) with ya = y−1. Choose a generating
set {x1, x2} for Q with (xi)a = (xi)−1 for i = 1 and 2, and set Ri = 〈xi, y〉. Then Ri ∈ R
and Q = 〈R1, R2〉. Suppose y ∈ Z(Q). Then each Ri is abelian, and so |[V,Ri]| = 16,
and [V,R1] 6= [V,R2]. Then [V, y] 6= [V,Ri] for some i, and so |[V, y]| = 4. But then
Q = CQ([V, y]) × 〈y〉, contrary to y ∈ Φ(Q). Thus y /∈ Z(Q), and we may assume
that R1 is non-abelian. Then R1A ∼= SU(3, 2)′ and |[V,R1]| = |[V, y]| = 64. Then
also R2 is non-abelian, and (3) yields [V,R1] = [V,R2] = V . We conclude that Q is
isomorphic to a Sylow 3-subgroup of GL(V ), of order 81. Then Q has an elementary
abelian subgroup E of order 27, and every element of order 3 in Q is contained in
E ∪R1. Then R2 = (R1 ∩R2)∪ (E ∩R2), and so R2 ≤ E. As R2 is non-abelian, we have
a contradiction at this point, proving the lemma. �
4.4 Proposition. Assume Hypothesis 1, and assume that G = QA, where Q = [Q,A] is
a p′-subgroup of G and where A is a subgroup of G which satisfies the following conditions.

(a) A acts quadratically on V .
(b) |A|2 ≥ |V/CV (A)|.
(c) For any non-identity subgroup B of A, we have |A|2|CV (A)| ≥ |B|2|CV (B)|.

Denote by Y the set of subgroups Y of Q for which there exists a hyperplane B of A such
that Y = [CQ(B), A], and such that Y 6= 1. Then Q is the direct product

∏
{[V, Y ]}Y ∈Y ,

and [V,Q] is the direct sum
⊕
{[V, Y ]}Y ∈Y . Further, for any Y ∈ Y and any a ∈

A− CA(Y ), the pair (Y 〈a〉, [V, Y ]) is given by one of the outcomes in 4.3, with Y 〈a〉 in
place of G and [V, Y ] in place of V .

Proof. Put Q0 = CQ(CV (A)). The quadratic action of A yields [V,A,Q0] = 0, while also
[V,Q0, A] ≤ [V,A] ≤ CV (Q0). The Three Subgoups Lemma then yields [V, [Q0, A]] ≤
CV (Q0), and then [Q0, A] = 1, by coprime action. Thus:

(1) CQ(CV (A)) ≤ CQ(A).

Denote by B the set of hyperplanes B of A such that [CQ(B), A] � Φ(Q). For any
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B ∈ B put YB = [CQ(B), A] and set VB = CV (B). Thus, Y = {YB}B∈B. Fix B ∈ B.
Then YB acts non-trivially on VB , by (1). Choose a ∈ A−B, and set X = YB , U = VB ,
L = X〈a〉, and L = L/CL(U). Condition (c) implies that |U : CU (a)| ≤ p2, so 4.3
applies and identifies a list of possibilities for the pair (L, [U,X]). Further, as [V,B] is
X-invariant and centralizes a, we obtain [V,B,X] = 0. Then [V,X,B] = 0, and thus
V = CV (X) + U . In particular, L acts faithfully on U . We have shown:

(2) For any B ∈ B we have V = CV (YB) + CV (B), and for any a ∈ A − B the pair
(YB〈a〉, [V, YB ]) satisfies the hypothesis (and conclusion) of 4.3.

We may also record the following result.

(3) For any B ∈ B we have [V, YB , B] = 0.

Now let X and Y be distinct elements of Y, and put D = CA(X) ∩ CA(Y ). Then
|A : D| = p2, and there exist elements a, b ∈ A such that A = D〈a, b〉,and with CA(X) =
D〈b〉 and CA(Y ) = D〈a〉. Then also X = [X, a] and Y = [Y, b]. Set W = CV (D)
and set E = 〈a, b〉. We have CW (a) = CW (D〈a〉) admitting faithful action by Y 〈b〉,
by (2), so CW (a) is contained properly in CW (E). Notice also that condition (c) yields
|W/CW (E)| ≤ p4. Thus:

(4) |W/CW (a)| ≤ p3 and |W/CW (E)| ≤ p4.

We aim now to show:

(5) [X,Y ] = 1.

Suppose first that |[W,Y ]| = p2, so that Y 〈b〉 ∼= SL(2, p). Let x ∈ X, and set a′ = ax

and A′ = D〈a′, b〉. Then A′ = Ax acts quadratically on V , and so A′ centralizes [W, b].
Put W0 = [W,Y ] + [W,Y ]a

′
. Thus |W0| ≤ p3 and W0 is invariant under Y 〈a′, b〉. Here

p = 2 or 3, and Y 〈a′, b〉 acts as a subgroup K of SL(3, p) on W0, containing a copy of
SL(2, p), and with K = Op′(K)P where P is a p-group. However, it is easy to check that
the only such subgroups K of SL(3, p) are in fact isomorphic to SL(2, p). (In L3(2) we
are looking for the normalizer of a non-identity 3-group, and in L3(3) for the normalizer
of a non-identity 2-group.) Thus Y 〈a′, b〉 induces an action of SL(2, p) on W0, and so
W0 = [W,Y ], and [W,Y ] is ax-invariant. As X ≤ 〈aX〉 we conclude that Y is X-invariant,
and then [X,Y ] = 1 since [X, b] = 1. Thus (5) holds in this case.

We may now assume that neither [W,X] nor [W,Y ] is of order p2. If |W/CW (a)| = p3

then (4) implies that b induces a transvection on CW (a) = CV (D〈a〉, and then (2)
implies that |[W,Y ]| = p2; which is a contradiction. We therefore conclude that |W :
CW (a)| = p2. Further, as |[W,X]| > p2, (2) shows that [W,a] ≤ [W,X]. We now set
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R = [CQ(D), a]. Then X ≤ R, and so 4.3 applies to the pair (R〈a〉, [W,R]).
We have X ≤ R E CQ(D)E, and Y ≤ 〈bCQ(D)〉. If [R, b] = 1 it follows that [R, Y ] = 1

and we have (5). So assume that [R, b] 6= 1. Then X is a proper subgroup of R, so
4.3 implies that R is of the form 32,31+2, or Q8 × Q8, while X ∼= (SL(2, p))′. Suppose
R ∼= (SL(2, p)′× (SL(2, p))′. Then [W,R] = [W,X], and then [W,R, b] = 0, by (3). Then
[W,R, Y ] = 0, so [W,X, Y ] = 0. We have [V,X] = [W,X], by (2), so [V,X, Y ] = 0 in
this case. On the other hand, suppose that R〈a〉 ∼= (SU(3, 2))′ and |[W,R]| = 64. Then
X is of order 3 and |[W,X]| = 16. As b centralizes [W,X], by (3), and b leaves CW (X)
invariant, it follows that |[W,R]/C[W,R](b)| ≤ 2. But b either inverts Z(R) (in which case
|[W,R]/C[W,R](b)| ≥ 8) or b centralizes Z(R) (in which case C[W,R](b) may be regarded
as an F4-space). Thus b centralizes Z(R) and [W,R, b] = 0. As above, we then obtain
[V,X, Y ] = 0, and thus [V,X, Y ] = 0 in any case. Similarly, we have [V, Y,X] = 0, and
so [X,Y ] = 1 by the Three Subgroups Lemma. This proves (5).

Notice that [W, b,X] ≤ [W, b, 〈aX〉] = 0, and so also [W,X, b] = 0. Now (5) yields
[W,X, Y ] = 0, and so [W,X] ∩ [W,Y ] = 0. But [W,X] = [V,X] by (2), so we may
conclude that X ∩ Y = 1. Thus, we have shown:

(6) For any distinct X,Y ∈ Y we have 〈X,Y 〉 = X × Y and [V,X] ∩ [V, Y ] = 0.

Now let Y1, · · · , Yr ∈ Y and put K = 〈Y1, · · · , Yr〉. Suppose that K = Y1 × · · · × Yr
and that [V,K] = [V, Y1] ⊕ · · · ⊕ [V, Yr]. Let X ∈ Y with X 6= Yi for any i. Then (6)
implies that [V,X] ≤ CV (K), and so [V,X]∩ [V,K] = 0. Then also X∩K = 1. Induction
on r then yields:

(7) 〈
⋃
Y〉 =

∏
Y and [V,

∏
Y] =

⊕
{[V, Y ]}Y ∈Y .

Put Q0 = 〈
⋃
Y〉. It now only remains to show that Q = Q0. By coprime action,

for each prime divisor r of |Q| there is an A-invariant Sylow r-subgroup of Q, and then
Q = CQ(A)Q0. Then Q0 is a normal subgroup of Q, and since Q = [Q,A] we obtain
Q = Q0, as required. �
4.5 Corollary. Let the hypotheses be as in 4.4.

(a) Assume that there is no element Y ∈ Y with |[V, Y ]| = p2. Then for any Y ∈ Y
there is a uniquely determined 2-transvection a ∈ A with Y = [Q, a], and we have
q(A, V ) = 2.

(b) Assume that q(A, V ) ≤ 1. Then q(A, V ) = 1, and for any Y ∈ Y there is a
uniquely determined transvection a ∈ A with Y = [Q, a]. Moreover, we then have
Y 〈a〉 ∼= SL(2, p), and [V, Y 〈a〉] is a natural module for Y 〈a〉.

Proof. Suppose first that there exists no Y ∈ Y with |[V, Y ]| = p2. If |A| = p then (a)
holds by 4.3. So assume |A| > p. Let Y = {Y1, · · · , Yr}, and set Ui = [V, Yi]. Then 4.4
yields Q = Y1 × · · · × Yr and [V,Q] = U1 ⊕ · · · ⊕Ur. By construction, each Yi centralizes
a hyperplane Bi of A. Since Ui = [Ui, Yi] = [Ui, 〈AYi ], quadratic action implies that
[Ui, Bi] = 0. By assumption, and by 4.3, we have |Ui/CUi(A)| = p2 for all i. Then
|Bi|2 ≥ |V/CV (Bi)| for any i, and so 4.4 applies with Bi in place of A. By induction, for
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any j with j 6= i there is a 2-transvection b ∈ Bi with Yj = [Q, b]. In this way we obtain
[Q,A]A = Y1〈a1〉 × · · · × Yr〈ar〉, where ai is a 2-transvection on V , centralizing Uj for
i 6= j. Evidently {a1, · · · , ar} is the set of all 2-transvections in A, and thus (a) holds.

Suppose next that q(A, V ) ≤ 1. If |A| = p then (b) follows from 4.3, so assume |A| > p.
As in the preceding paragraph, define Yi, Bi, and Ui, 1 ≤ i ≤ r. As |Ui/CUi(A)| ≥ p for
all i, we have |Bi| ≥ |V/CV (Bi)| for any i, and again 4.4 applies with Bi in place of A.
As in the preceding paragraph, induction on |A| yields (b). �
4.6 Proposition. Assume Hypothesis 1, with F ∗(G) = F (G), and with q(G,V ) ≤ 2.
Denote by A the set of elements of Q∗(G,V ) of minimal order, and set G0 = 〈A〉 and
D = [F (G), G0]. If p = 3 and q(G,V ) = 2 assume further that G0/Q is of odd order.
There is then a G-invariant set K = {K1, · · · ,Kr} of subgroups of D, such that the
following hold.

(a) D = K1 × · · · ×Kr.
(b) V = [V,K1]⊕ · · · ⊕ [V,Kr]⊕ CV (D).
(c) For any K ∈ K, and for U = [V,K], one of the following holds.

(i) p = 2, K ∼= Z3 and |U | = 4 or 16.
(ii) p = 2, K ∼= 31+2

+ and |U | = 64.
(iii) p = 2, K ∼= Z5 and |U | = 16.
(iv) p = 3, K ∼= Q8 and |U | = 9 or 81.
(v) p = 3, K ∼= Q8 ◦Q8 and |U | = 81.

(d) Suppose that there exists K ∈ K such that |[V,K]| > p2. Then q(G,V ) = 2 and
each A ∈ A is of order p

(e) Suppose that there exists K ∈ K such that K is not G0-invariant. Then p = 2,
|[V,K] = 4, q(G,V ) = 2, and each A ∈ A is of order 2.

(f) Let A ∈ A such that A acts non-trivially on some K ∈ K. Then every member
of K is A-invariant.

Proof. Set Q = F (G) and q = q(G,V ). For any A ∈ A, let YA be the set of subgroups
Y of Q such that 1 6= Y = [CQ(B), A] for some hyperplane B of A. Let K0 be the set of
subgroups K of Q such that, for some A ∈ A and some Y ∈ YA, we have K = [K,A] ≤ Y ,
with K ∼= (SL(2, p))′ and with |[V,K]| = p2. If p = 2, let K1 be the set of subgroups K of
Q such that K ∈ YA for some A ∈ A, and such that K is not in K0 and is not contained
in a direct product of two elements of K0. If p = 3 let Y1 be the set of all subgroups Y
of Q such that Y ∈ YA for some A ∈ A, with Y ∼= Q8 and with |[V, Y ]| = 81. For Y
and Y ′ in Y1, write Y Ỹ ′ if Z(Y ) = Z(Y ′). We then take K1 be the set of subgroups K
of Q of the form 〈S〉, where S is an equivalence class for this relation. In any case, set
K = K0 ∪ K1, and observe that K is G-invariant.

Let A ∈ A, and suppose that there exists Y ∈ YA with Y /∈ K0. Set B = CA(Y ) and
let a ∈ A − B. Then |[V, Y ]| ≥ p4 and [V, Y ]/C[V,Y ](a) ≥ p2, by 4.4. Here [V, Y,B] = 0
by quadratic action, so |V/CV (A)| ≥ p2|V/CV (B)|. As |A|q = |V/CV (A)|, we then have
|B|q ≥ p2−q|V/CV (B)|. As q ≤ 2 the minimality of q and of A then yields q = 2 and
B = 1. Thus (d) is proved.
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Let K1 and K2 be distinct members of K, and set X = 〈K1,K2〉, Ui = [V,Ki], and
W = U1 + U2. Suppose first that Ki ∈ K0 for both i = 1 and 2. If p = 2 then X is
isomorphic to a 3- subgroup of L4(2), so X = K1 ×K2 and W = U1 ⊕U2. On the other
hand, suppose that p = 3, so that each Ki is a quaternion group, with |[V,Ki]| = 9. A
Sylow 2-subgroup of GL(2, 3) contains a unique quaternion group, so U1 6= U2. Suppose
U1 ∩ U2 6= 0. Then each Ki has a subgroup of index 2 which lies in a fixed subgroup
X0 of GL(W ) with X0 ∼= GL(2, 3). Then Z(K1) = Z(K2) and since Ui = [V, Z(Ki)]
we arrive back at U1 = U2 in this case. Thus, U1 ∩ U2 = 0, and X is contained in a
subgroup X1 of GL(W ) of the form 34 : (GL(2, 3)×GL(2, 3). But then X is contained
in a complement to O3(X1) in X1, and since |Ui| = 9 we then have [K1,K2] = 1 and
W = U1 ⊕ U2. In particular, we have thus shown that if K = K0 then (a) and (b), and
either (c)(i) or (c)(iv) (with |U | = p2), hold.

Let K ∈ K0, and suppose that there exists A ∈ A such that K is not A-invariant. Let
a ∈ A −NA(K) and set L = KKa. As we have just seen, L is the direct product of K
and Ka, and |[V, L]| = p4. Set A0 = CA(L). The quadratic action of A implies that L
is A-invariant and that A = 〈a〉 × A0. Then |A|q = |V/CV (A)| ≥ p2|V/CV (A0)|, as A0
centralizes [W,L]. As q ≤ 2 we then have |A0|q ≥ |V/CV (A0)|. The minimality of q and
of A then implies that A0 = 1 and q = 2. Thus:

(1) If K 6= K0, or if there exists K ∈ K0 which is not G0-invariant, then |A| = p for all
A ∈ A.

Thus, parts (a) through (e) of the lemma hold if K = K0. Moreover, we may record
the following result

(2) If K1 and K2 are in K0 then [K1,K2] = 1 and U1 ∩ U2 = 0.

We assume henceforth that K 6= K0. Suppose that p = 2, |K1| = 5 and |U1| = 16. If
also |K2| = 5 then, since any Sylow 5-subgroup of L8(2) is abelian, we have X = K1×K2.
In this case we have also U1 ∩U2 = 0. On the other hand, suppose that K2 is a 3-group.
then [K1,K2] = 1 since Q is nilpotent. Suppose that U1 ∩U2 6= 0. As EndK1(U1) ∼= Z15
it follows that U1 ≤ U2 and that |K2/CK2(U1)| = 3. Then U2 is not a natural SU(3, 2)-
module for K2, with K2 ∼= 31+2

+ . By 4.4 and the definition of K, we then have |K2| = 3
and U1 = U2. By (d), which has already been proved, there exist 2-transvections ai with
Ki = [Q, ai], (i = 1 and 2). But then X〈a1, a2〉 ∼= Dih(6) × Dih(10), which is not a
subgroup of L4(2). We therefore conclude that U1 ∩ U2 = 0 in this case.

Suppose next that p = 2, and that both K1 and K2 are 3-groups in K1. By definition,
we then have Ki ∈ YAi for some Ai ∈ A, and then (d) implies, as above, that Ki = [Q, ai]
for some 2-transvection ai. In particular, we have Ki E X for each i. Suppose that
|K1| = |K2| = 3. Then X = K1 × K2, and X〈a1, a2〉 ∼= Sym(3) × Sym(3). Suppose
U1 = U2, and set a = a1a2 and A = 〈a〉. Then a is a 2-transvection, so A ∈ A, X ∈ YA,
and each Ki is contained in the direct product of two members of K0. This is contrary to
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the definition of K1, so we conclude that U1 6= U2. Suppose U1∩U2 6= 0. Then |W | = 64.
Set Ci = CX(Ki〈ai〉). Then |Ci| = 3 and [U3−i, Ci] = U3−i for both i = 1 and 2. As
X = KiCi, it follows that [W,Ci] = W . But only one cyclic subgroup of X is without
fixed points on W , so C1 = C2. As [X, 〈a1, a2〉] = X we have a contradiction at this
point, and so U1 ∩ U2 = 0.

Suppose that |K1| = 3 (with K1 ∈ K1) and that K2 ∼= 31+2
+ . Then K1 E X, so

[K1,K2] = 1. If K1 ≤ K2 then [U2,K1] = U2 is of order 64, whereas |U1| = 16, so in
fact K1 � K2 and X = K1 ×K2. As K2 acts irreducibly on U2 we have U1 ∩ U2 = 0.
Now suppose that both K1 and K2 are isomorphic to 31+2

+ . Then Ki E X and so
[K1,K2] ≤ K1∩K2. In particular, we have Z(K1)Z(K2) ≤ Z(X). Suppose K1∩K2 6= 1.
It follows that Z(K1) = Z(K2), and since Ui = [V, Z(Ki)] we get U1 = U2. Then X is
isomorphic to a 3- subgroup of L6(2), which is to say that X ∼= 3 o 3. There are then
exactly two maximal subgroups of X which having exponent 3, and one of these two is
elementary abelian. We therefore conclude that, in fact, K1∩K2 = 1, and X = K1×K2.
Irreducible action of Ki on Ui then yields U1 ∩ U2 = 0. We have shown:

(3) If p = 2 and both K1 and K2 lie in K1, or some Ki is of order 5, then X = K1 ×K2
and W = U1 ⊕ U2.

Continue now to assume that p = 2, let K1 ∈ K0 and let K2 be a 3-group in K1.
Let b be a 2-transvection such that K2 = [Q, b]. Thus K2 E X. Suppose |K2| = 3.
Then X = K1 × K2. If U1 ∩ U2 6= 0 then U1 ≤ U2 and we obtain a contradiction via
X = [X, b] = K2. Thus, we are reduced to the case where K2 ∼= 31+2

+ . Then K1 � K2,
since |[V, x]| ≥ 16 for any non-identity element x of K2. By the definition of K0, and
by (d), there exists a 2-transvection a with K1 = [K1, a]. By (3), either K2 = (K2)a or
U2 ∩ (U2)a = 0. As a is a 2-transvection, we conclude that K2 = (K2)a, and then that
[Z(K2), a] = 0. As K1 ≤ [Q, a], we have [Q, a] � 31+2, and so |[Q, a]| ≤ 9 by 4.3. It now
follows that [K2, a] = 1, and then also [K2,K1] = 1. Thus X = K1 ×K2, and we again
obtain U1 ∩ U2 = 0 from the irreducible action of K2 on U2. Thus, (a), (b) and (c) hold
if p = 2.

Now let p = 3, and let K ∈ K1. By definition, and by 4.5, there then exists Y ∈ Y1
such that K = 〈S〉, where S is the set of all Y ′ ∈ Y1 with Z(Y ) = Z(Y ′). Suppose that
|S| > 1, let Y ′ ∈ S − {Y }, and set K0 = Y Y ′. By (d), there is are 2-transvections a and
a′ such that Y = [Q, a] and Y = [Q, a′], so Y and Y ′ are normal subgroups of K0, and
K0 is 〈a, a′〉-invariant. Suppose Φ(K0) � Z(Y ). Then [Y, Y ′] � Z(Y ) and then Φ(K0)
contains both Y and As Φ(K0) is a proper subgroup of K0, we conclude that in fact
Φ(K0) = Z(Y ). Then K0 = Z(K0)X where X is an extraspecial group.

Set L = K0〈a, a′〉. Then [CV (Z(Y )), L] = 0, and so L acts faithfully on the space U =
[V, Z(Y )]. Suppose Z(K0) 6= Z(Y ) We have [Z(K0), a] = 0 by 4.1, and EndK0〈a〉(U) ∼=
GL(2, 3), so Z(K0) is cyclic or is a fours group. If Z(K0) is cyclic then Y is the unique
quaternion subgroup of K0, contrary to Y 6= Y ′. Thus Z(K0) is a fours group 〈z, z′〉
where 〈z〉 = Z(Y ), and we have K0 = Y × 〈z′〉. The set Q of quaternion subgroups
of K0 then has cardinality 4, and it follows that 〈a, a′〉 induces the action of Alt(4)
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on Q. We now employ our hypothesis that, in the case p = 3 and q = 2, G0/Q is
of odd order. Thus [L ∩ Q, a] properly contains Y , which is contrary to Y = [Q, a].
This proves that Z(K0) = Z(Y ), so K0 is extraspecial of width 2. [We remark that,
if the hypothesis concerning G0/Q is dropped, then one has to face the possibility that
L ∼= (Q8 × Q8) : 3, with Y and Y ′ equal to “diagonal” subgroups of O2(L), and with
CQ(a) acting on O2(L) by interchanging the two direct factors. This appears to lead to
some serious difficulties.] If K0 ∼= 21+4

− then L/CL(K0)K0 has cyclic Sylow 3-subgroups,
so 〈a〉 and 〈a′〉 are congruent modulo CL(K0)K0, contrary to Y 6= Y ′. Thus X ∼= Q8◦Q8.
Then X has just two quaternion subgroups, and [Y, Y ′] = 1.

We now conclude that S is a commuting set of quaternion groups acting on [V, Z(Y )].
Then |S| ≤ 2, and either K = Y or K ∼= Q8 ◦ Q8. Returning now to the group
X = 〈K1,K2〉, suppose that both K1 and K2 lie in K1. Then each Ki is normal in X,
and |Ui| = 81. In particular, we have Z(K1)Z(K2) ≤ Z(X). Here Z(K1) 6= Z(K2), as
K1 and K2 are defined by distinct equivalence classes on Y1. Then Z(Ki) � Z(K3−i),
and so X = K1 ×K2. If U1 = U2 then Z(K1) and Z(K2) induce identical actions on V ,
so in fact U1 6= U2. Since there is a unique quaternion group in EndKi(Ui), it follows
that U1 ∩ U2 = 0.

Now suppose that K1 ∈ K0 and that K2 ∈ K1. Then K2 E X, and we have [Q, a1] =
K1 or [Q, a1] is a direct product of two isomorphic copies of K1. So, either K1 E X or
〈KX

1 〉 ∼= K1 ×K1. Set R = NK2(K1). Then |K2 : R| ≤ 2, and [K1, R] ≤ K1 ∩K2. Set
R0 = CR(K1), and suppose that R0 has exponent 4. As EndK1(U1) ∼= Z2, we obtain
[U1, Z(K2)] = 1 in this case. So assume that R0 has exponent 2. If K2 ∼= Q8 then
K1 ∩K2 = 1, as Z(K1) 6= Z(K2), and so R = R0 in this case. Here R has exponent 4, so
we conclude thatK2 ∼= Q8◦Q8, and that R 6= R0. ThenK1∩K2 6= 1, and so Z(K1) ≤ K2.
Then R = CK2(Z(K1)) ∼= D8 × Z2. As [R, a1] ≤ [Q, a1], R/CR(U1) acts as a group of
inner automorphisms on K1, and it follows that [U1,Φ(R)] = 0. Thus, [U1, Z(K2)] = 0
in any case, and so [U1,K2] = 0. Now U1 ∩ U2 = 0, and since [Z(K2),K1] = 1 we then
have [U2,K1] = 0. Then X = K1 ×K2, and we have thereby proved (a) through (d).

Suppose that we are given K ∈ K and A ∈ A such that K is not A-invariant. Set
U = [V,K] and let a ∈ A − NA(K). Then U ∩ Ua = 0, by the foregoing. If K ∈ K1
then A = 〈a〉, a is a 2-transvection, and |U | ≥ p4. But then a is not a 2-transvection,
so we conclude that K ∈ K0. If p = 3 we obtain [V,K〈a〉] = U ⊕ Ua ⊕ Ua2

, contrary to
quadratic action. Thus p = 2. Now (e) follows from (1).

Finally, by way of contradiction to (f), suppose that we are given A ∈ A, and elements
K1 and K2 of K such that 1 6= [K1, A] ≤ K1 and such that K2 is not A-invariant. Then
A = 〈a〉 where a is a 2-transvection, by (d). But a already acts as a 2-transvection
on [V,K2] ⊕ [V,K2]a, so [V,K1, a] = 0, and so [K1, a] centralizes [V,K1]. Then [K1, a]
centralizes V , and we have the desired contradiction. �
4.7 Corollary. Assume Hypothesis 1 with G = QS, Q = Or(G) for some prime q,
q 6= p, and with S a Sylow p-subgroup of G. Assume that S acts irreducibly on Q/Φ(Q),
and assume that there exists A ∈ Q(S, V ) with |A|2 ≥ |V/CV (A)|. Then there is a
subgroup K of Q, unique up to conjugation, such that the following hold.
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(a) Q = K1 × · · · ×Kr, where {Ki}1≤i≤r = KS.
(b) V = [V,K1]⊕ · · · ⊕ [V,Kr]⊕ CV (Q).
(c) Setting U = [V,K], one of the following holds.

(i) p = 2, K ∼= Z3 and |U | = 4 or 16.
(ii) p = 2, K ∼= 31+2

+ and |U | = 64.
(iii) p = 2, K ∼= Z5 and |U | = 16.
(iv) p = 3, K ∼= Q8 and |U | = 9 or 81.
(v) p = 3, K ∼= Q8 ◦Q8 and |U | = 81.

Moreover, if K is not invariant under 〈Q∗(S, V )〉 then p = 2, |K| = 3, |U | = 4, and
q(S, V ) = 2.

Proof. Immediate from 4.6 and the irreducible action of S on Q/Φ(Q). �
The next result gives some information concerning the situation defined by Hypothesis

4′.

4.8 Lemma. Assume Hypothesis 2, with |A| of order p. Assume further that G =
QA, where Q = [Q,A] is an r-group for some prime r, r 6= p. Finally, assume that
[V,A,A,A] = 0 and that [V,A,A] 6= 0. Then p = 3 and one of the following holds.

(i) G ∼= Alt(4) and |V | = 27.
(ii) G ∼= SL(2, 3) and |V | = 81.
(iii) Q ∼= 21+4

+ and |V | = 81.
(iv) G is a Frobenius group of order 39 and |V | = 27.

Proof. Regard G as a subgroup of SL(V ). The minimal polynomial for a non-identity
element a of A is then (X−1)3, and the Hall-Higman Theorem ([HH, Theorem B], or [G,
Theorem 11.1.1]) then yields p = 3. Also, as A is non-quadratic, we have |V/CV (A)| = 9,
and then since V = [V,Q] it follows that V is irreducible for G. In particular, Z(G) is
cyclic. Moreover, it follows that EndG(V ) = F3, and so |Z(G)| ≤ 2.

Suppose first that Q is cyclic. Then G = 〈A,Ag〉 for some g ∈ G, and so |V | ≤ 34.
Here 3 divides |Q|−1, while |Q| divides 28 ·36 ·5 ·13 = |SL(4, 3)|. It follows that |R| = 13,
and that (iv) holds.

We assume henceforth that Q is non-cyclic. There then exists a non-cyclic subgroup
Q0 = [Q0, A] of Q, with Q0A generated by two conjugates of A, and so |[V,Q0]| ≤ 34

and r = 2.
Suppose that |Q/Φ(Q)| = 4. Then we again have G = 〈A,Ag〉 for some g ∈ G, and

|V | ≤ 34. For any involution t ∈ Q we then have [V, t] = V or |[V, t] = 9, and since A is not
quadratic on V it follows that CQ(A) ≤ Z(SL(V )). In particular, we have |CQ(A)| ≤ 2.
Set Y = [Φ(Q), A], and set W = [V, Y ]. If Y = 1 then (i) or (ii) holds, so assume that
Y 6= 1. As A is non-quadratic we have W ≥ [V,A] and V = W + CV (A). Suppose that
Y A ∼= Alt(4). Then |W | = 8, and Φ(Q) is elementary abelian, of order at most 8. If
Y = Φ(Q) then W = V , |Q| = 16, and Y ≤ Z(Q), whereas a Sylow 2-subgroup of L3(3)
is semi-dihedral of order 16, with center of order 2. Thus Y 6= Φ(Q), and |V | = 81.
There is a unique conjugacy class of elementary abelian subgroups of SL(V ) of order 8,
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and we then find that NGL(V )(Φ(Q)) ∼= 24 : Sym(4) and that Q is extraspecial of width
two. This is contrary to |Q/Φ(Q)| = 4, so we conclude that Y A � Alt(4).

Suppose that Y A ∼= SL(2, 3). Then Z(Y ) = Z(SL(V )), and Y = Φ(Q). But with
Y normal in Q we have Q = CQ(Y )Y , and this is contrary to Φ(Q) ≥ Y . Thus Y A �
SL(2, 3). As A is non-quadratic on W , induction then implies that Y is extraspecial, of
width 2. As |CY (A)| 6= 1 we have Y = Φ(Q). Let Q1 and Q2 be the two quaternion
subgroups of Y . Then each Qi is A-invariant, so each Qi is normal in G, and we have
Q = CQ(Qi)Qi = CQ(Y )Y . Again, this is contrary to Y = Φ(Q), so we conclude that
Q/Φ(Q)| ≥ 16.

Suppose that |Q/Φ(Q)| ≥ 64 or that Y 6= 1. Then there are proper A-invariant
subgroups R1 and R2 of Q, with Ri = [Ri, A] of order bigger than 8, with [R1∩R2, A] 6= 1,
and with 〈R1, R2〉 = Q. Here A acts non-quadratically on [V,Ri] for each i, so by
induction each Ri is extraspecial, of width 2. Set Wi = [V,Ri] and set X = [R1 ∩R2, A].
Then XA is isomorphic to either Alt(4) or SL(2, 3), and |[V,X]| is either 27 or 81. As
[V,X] ≤ W1 ∩ W2, where |Wi| = 81, we then have |V | ≤ 35. Let T be a Sylow 2-
subgroup of SL(V ) containing Q. As Ri acts irreducibly on Wi we have CT (Ri) ≤ Zi,
and thus Z(T ) = Z(R1) = Z(R2). Then also [V, Z(T )] = W1 = W2, and so |V | = 81.
Set D = CR(A) and set Di = ND(Ri). Then |Di/Z(Ri)| ≤ 2, and if Di 6= Z(Ri) then
Di = Z(Ri)〈di〉 where di interchanges the two quaternion subgroups of Ri. In any case,
we then have Ri = J(RiDi mod Z(Ri)), and so Ri is characteristic in RiDi. It follows
that [NQ(Ri), A] � Ri, and so each Ri is normal in Q. As Aut(Ri) ∼= Sym(4) o 2, we
conclude that [R1, R2] = Z(R1) = Z(R2), and so Q = R1R2 is extraspecial of width 3.
The minimal degree of a faithful representation of Q over F3 is then 8, and so we have a
contradiction at this point.

Suppose finally that |Q/Φ(Q)| = 16 and that Y = 1. As G = 〈AG〉 we then have
Φ(Q) ≤ Z(G). Then |Φ(Q)| = 2, as follows from the first paragraph of the proof. Suppose
that Φ(Q) 6= Z(Q), and set F = [Z(Q), A]. Then FA ∼= Alt(4) and |[V, F ]| = 27. As
[V, F ] is G-invariant we then have |V | = 27, and R is not faithfully represented on Q. We
conclude that Z(Q) = Φ(Q), and hence Q is extraspecial of width 2. Let Q1 and Q2 be
the two quaternion subgroups of Q. Then QiA ∼= SL(2, 3) and [V,Qi] = [V, Z(Q)] = V
is of order 81. Thus (iii) holds. �

Section 5: Quadratic modules for quasisimple groups

In this section we shall be concerned mostly with the situation where F ∗(G) is qua-
sisimple, and in which V is a quadratic module for G. The first main step is to establish a
criterion (5.4, below) for G to contain a quadratic fours group. The proof of 5.4 requires
some preliminary results, all of which, perhaps, are well known, but which we include for
the sake of completeness.

Lemma 5.1. Let T be a 2-group, and let F be a subgroup of T with F ∼= Z2 × Z2.
Suppose that CT (F ) = F . Then T is either dihedral or semi-dihedral.
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Proof. It will be enough to show that T has a cyclic subgroup X of index 2, as then we
will have |CX(a)| = 2 and T = X〈a〉 for any a ∈ F −X. If |T | ≤ 8 then T is dihedral
and there is nothing to prove. So assume |T | > 8 and proceed by induction on |T |. Let
R be a subgroup of T of index 2, containing F . Then R is dihedral or semi- dihedral,
and we may write R = T 〈t〉 where Y = 〈y〉 is the unique maximal cyclic subgroup of R
and where t ∈ F . Let x ∈ T −R. Then T = R〈x〉 and Y = Y x. Put 2n = |Y | and let z
be the unique involution in Y .

Suppose first that R is semi-dihedral. Then the coset 〈y2〉t is the set of non-central
involutions of R, and forms a single conjugacy class in R, of order 2n−1. Then CT (t)
is not contained in R, and so we may take [t, x] = 1. But also F = Z(R)〈t〉, and then
[F, x] = 1, contrary to CT (F ) = F . Thus R is dihedral. Further, the same argument
then shows that conjugation by x interchanges the two conjugacy classes of non-central
involutions of R. In particular, it follows that CR(x) contains no non-cenral involutions,
and so x2 ∈ Y . If now 〈x2〉 = Y then 〈x〉 is a cyclic subgroup of T of index 2. Setting
X = 〈x〉 we then have CX(t) = CX(F ) = 〈z〉 and then T is dihedral or semi-dihedral.
Thus, we may assume:

(1) 〈x2〉 6= Y .

Now assume that x has been chosen so that |CY (x)| is as large as possible, and then
(subject to this condition) so that |x| is as small as possible. Let y0 be a generator for
CY (x), and put y1 = x2. If 〈y0〉 6= 〈y1〉 then there exists u ∈ CY (x) with u2 = y1. But
in that case we have (ux)2 = u2x2 = (y1)2, and the minimality of |x| then gives y1 = 1.
This shows:

(2) Either 〈x2〉 = CY (x) or |x| = 2.

Suppose |x2| 6= 2, and then use (1) to again choose u ∈ Y with u2 = x2. Then
[x, u]2 = [x, u2] = 1, and so [x, u] = z. Then (xu)2 = x−2u−2[x, u] = u−4z. Minimality
of |x| then implies u4 = 1 and x2 = z. Thus, in any case we have the following result.

(3) x2 ∈ 〈z〉.

Suppose that CY (x) 6= 〈z〉. Then |x| = 2 by (2) and (3). But it then also follows
that x inverts no element of Y − 〈z〉, and so 〈x, z〉 = Ω1(Y 〈x〉). Then [x, t] = z and
NT (F ) = NR(F )〈x〉, whence CT (F ) properly contains F . This is contrary to assumption,
so:

(4) CY (x) = 〈z〉.

Now x inverts the subgroup of order 4 in Y , and then |CY (xt)| > |CY (x)|. Replacing x
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by xt, we then contradict the minimality of |CY (x)| in our choice of x. This contradiction
proves the lemma. �
5.2 Corollary. Let X be a group, t an involution in X, and suppose that X = 〈tX〉.
Assume that Z∗(X) = 1, and suppose that CX(t) contains no subgroup of the form 〈t〉×E
with |E| = 4. Then a Sylow 2-subgroup of X is dihedral or semi-dihedral.

Proof. Glauberman’s Z∗ Theorem implies that there is a fours group F = 〈s, t〉 in X,
with s ∈ tX . The hypothesis then yields CY (F ) = F for any Sylow 2-subgroup T of X
containing F . Now apply the preceding lemma. �
5.3 Proposition. Let X be a finite group acting faithfully on a vector space V over F2,
and assume that X = 〈tX〉 for some involution t in X. Assume further that F ∗(X) is
quasisimple, that O2(X) = 1, and that |V/CV (t)| ≤ 4. Then one of the following holds.

(i) There is a fours group E in X with t ∈ E and with [V,E,E] = 0.
(ii) A Sylow 2-subgroup of X is dihedral or semi-dihedral.

Proof. Suppose that t lies in no fours group in X which acts quadratically on V . There
is then no involution s in CX(t) − 〈t〉 with [V, t, s] = 0. As |[V, t]| ≤ 4 it then follows
that CX(t) contains no subgroup of the form 〈t〉×F with |F | = 4. Then 5.2 applies, and
yields (ii). �
Remark. The known simple groups with dihedral or semi-dihedral Sylow 2-subgroups are
the groups L2(q), q odd; L3(q), q ≡ 3 (mod 4); U3(q), q ≡ 1 (mod 4); Alt(7); and M11.
Using this classification, we will obtain Proposition 5.5, below, on groups which contain
a 2-transvection which lies in no quadratic fours group.

Proposition 5.4. Let X, t, and V be as in 5.3, and assume that CV (X) ≤ [V,X].
Assume that there does not exist a fours group E in X, containing t,and such that
[V,E,E] = 0. Then one of the following holds.

(i) X ∼= Alt(5) and V is the O−4 (2)-module for X.
(ii) X ∼= Sym(5) and [V,X]/CV (X) is the natural ΓL(2, 4)-module for X.

Proof. Set X0 = F ∗(X), let S be a Sylow 2-subgroup of X containing t, and set T =
S∩X0. Suppose first that X0/Z(X0) ∼= L3(q), q ≡ 3 (mod 4); or U3(q), q ≡ 1 (mod 4). As
S has 2-rank equal to 2, by 5.2, S contains no element which induces a field automorphism
on X0, and so X0 = X. The involutions in X form a single conjugacy class, so there is
a non-abelian subgroup R of X of order q3 such that R = [R, t]. It then follows from
4.3 that q = 3, (so that X ∼= L3(3)), and that |[V,R]| = 64. Then R〈t〉 is generated by
three conjugates of t, and then X is generated by four conjugates of t. It follows that X
is isomorphic to a subgroup of L8(2), whereas 13 does not divide |L8(2)|. Thus, we have
a contradiction via Lagrange’s Theorem.

Suppose next that Z(X0) 6= 1. As O2(X) = 1 we then have X0 ∼= 3·Alt(6) or 3·Alt(7).
Set V0 = [V, Z(X0)]. Then V = V0 ⊕ CV (Z(X)0), and then, by induction, it suffices to
show that every fours group in X containing t acts quadratically on V0. Here, V0 may
be regarded as an F4X0-module. As 3·Alt(6) is not a subgroup of SL(2, 4), we have
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dimF4(V0) > 2, and it follows that [Z(X0), t] = 1. Then [V0, t] is an F4- subspace of V0 of
dimension 1, and so [V0, t, F ] = 0 for any fours group F containing t, as required. Thus,
we may assume henceforth that Z(X0) = 1.

Suppose next that X0 ∼= L2(q), q odd, and suppose that X0 6= X. As before, no
element of S induces a field automorphism on X0. Suppose that q ≡ 3 (mod 4), A Sylow
2-subgroup of X is dihedral, so all involutions in X −X0 are conjugate, and thus t lies
in a dihedral subgroup D of X of order 2q. Then 4.3 implies that q ≤ 5, so q = 3, which
is contrary to our hypothesis that q ≥ 5. Thus q ≡ 1 (mod 4).

Let λ be a generator of the Sylow 2-subgroup of F×q . As in the preceding paragraph,
all involutions in X −X0 are conjugate, and so t may be identified with the involution
ds, where d and s are represented in GL(2, q) by the matrices

d̃ =
(
λ 0
0 1

)
and s̃ =

(
0 1
−1 0

)
respectively. Set Y = 〈s, t〉, and let z be the central involution in Y . Then Y is dihedral,
of order 2(q − 1), and since 〈t, z〉 is not quadratic it follows that Y acts faithfully on
[V, t] + [V, t]s. Any dihedral subgroup of L4(2) whose order is divisible by 4 has order
dividing 12 or 8, so q − 1 divides 6 or 4. The given congruence satisfied by q then yields
q = 5, and thus X ∼= Sym(5).

Set F = 〈z, t〉, and set U = [V, F ]. As zt is conjugate to t we have |U | ≤ 16, and since
F is not quadratic we conclude that |U | = 8 and U 6= [V, z]. Thus |V/CV (z)| ≤ 4. As z
inverts an element of order 5 in X0, X0 has no irreducible F2-modules on which z induces
a transvection, and we conclude that X0 has a unique non-trivial irreducible constituent
W in V . Suppose that W is an O−4 (2)- module for X0. Then 1.3 that W = V , and one
then observes that F acts quadratically on V . Thus, W is a natural SL(2, 4)-module for
X0, and outcome (ii) holds in this case.

Suppose next that X = X0 and X ∼= L2(q). Then three conjugates of t generate X,
and so |V/CV (X)| ≤ 64. Then q ≤ 9, by Lagrange’s Theorem applied to L6(2). Suppose
that q = 9, so that X ∼= Alt(6). Let t ∈ X1 ≤ X with X1 ∼= Alt(5). By induction, and
by 1.3, we then have V = [V,X1] ⊕ CV (X1), where [V,X1] is a natural Sym(5)-module
for X1. There exists a subgroup X2 of X, with X1 ∼= X2, and with X1 not conjugate to
X2, and such that X1 ∩ X2 is dihedral of order 10. Let f be an element of order 5 in
X1 ∩ X2. Then [V,X1] = [V, f ] = [V,X2]. As X1X2 = X we then have |[V,X]| = 16.
Further, the elements of order 3 in X1 and in X2 come from different conjugacy classes in
X. As [V,X] is a natural Sym(5)-module for each Xi it follows that no element of order
3 in X is fixed-point-free on [V,X]. This result is inconsistent with a faithful action of
Z3 × Z3 on 24, and we therefore conclude that q 6= 9.

Suppose that q = 7, so that X ∼= L3(2). There are three isomorphism classes of non-
trivial irreducible F2-modules for X, of which one, the adjoint module for L3(2), admits
no 2-transvections, and of which the other two are a dual pair of natural L3(2)- modules.
Suppose that there is a unique non-trivial constituent for X in V . Then 1.5 implies that
|V | ≤ 16, and either V/CV (X) or [V,X] is a natural L3(2)-module. One then observes
that there is a maximal subgroup P of X containing S such that |[W,O2(P )]| = 4, and
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then O2(P ) is a quadratic fours group. Thus, we have a contradiction in this case, and
since |V/CV (X)| ≤ 64 it follows that V has a submodule U such that both U/CU (X)
and V/U are irreducible X-modules of order 8. Since t induces a transvection on U ,
and since three conjugates of t suffice to generate X, we have |[U,X]| = 8. Similarly, we
have |[V,X]/[U,X]| = 8, and since CV (X) ∩ [V,X] = 0 we conclude that CV (X) = 0.
Let s be a conjugate of t such that [s, t] = 1, and set F = 〈s, t〉. As F is not quadratic
we have |[V, F ]| = 8, and it follows that U and V/U are not isomorphic as X-modules.
We may assume that F has been chosen so that |[U,F ]| = 4, and we then have [V, F ] =
[V, t] + [U,F ] ≤ CV (t). That is, we have [V, F, t] = 0, and so F is quadratic, after all.

Suppose that q = 5, so that X ∼= SL(2, 4). No involution in X induces a transvection
on any irreducible F2X-module, so there is a unique non-trivial irreducible constituent
U for X in V . If U is an O−4 (2)-module for X, then 1.3 yields (i). So assume that U is a
natural SL(2, 4)-module. Set V = V/CV (X) and identify U with [V ,X]. We then have
|V /CV (t)| = 4, and [V , t] = C[V ,X](t) = C[V ,X](S). Set V0 = [V,X]. Then the inverse
image in V0 of C[V ,X](S) is CV0(S), and so S acts quadratically on V .

We are now reduced to the cases where F ∗(X) is isomorphic to Alt(7) or M11. A Sylow
2-subgroup of Sym(7) has 2-rank equal to 3, while M11 has no outer automorphisms, so
we have X ∼= Alt(7), or M11. Then X has a subgroup X0 with F ∗(X0)/ ∼= Alt(6), and
with S ≤ X0. But it follows from what we have already shown that such an X0 contains
a quadratic fours group on V . This completes the proof of 5.4. �
5.5 Lemma. Assume Hypothesis 3, with H quasisimple. Let A be a quadratic subgroup
of H, with |A|2 ≥ |V/CV (A)|. Then one of the following holds.

(i) H/Z(H) is a group of Lie type in characteristic p.
(ii) We have p = 2, and H is an alternating group Alt(2n + 1), n ≥ 2.
(iii) We have |A| = p = 3, H ∼= SL(2, 5), and V is a natural SL(2, 9)-module for H.

Proof. If p is odd then Corollary 1.4 in [C3] yields (iii). So assume that p = 2. By 3.6 we
either have (i) or G contains a fours group E, acting quadratically on V . Thus, we may
assume the existence of such a quadratic fours group. If H/Z(H) is a sporadic group
then the main result of [A4] shows that S is not contained in a unique maximal subgroup
of G, and so Hypothesis 3 is violated in this case. Assume that H/Z(H) is of Lie type in
odd characteristic (and that there is no isomorphism of H/Z(H) with a group of Lie type
in characteristic 2). The main result of [MS1] then implies that H/Z(H) ∼= U4(3). The
2-local subgroups of H containing S ∩H then form a diagram geometry of type B̃2 (for
which see [RS], for example) and it follows that S is not contained in a unique maximal
subgroup of G. Thus, we are reduced to the case where H/Z(H) is an alternating group
Alt(n), n ≥ 7. As S is contained in a unique maximal subgroup of G, the main theorem
of [LPR] implies that n = 2m + 1 for some m, m ≥ 3, �
5.6 Proposition. Let G be a symmetric group Sym(n), n ≥ 2, and let V be faithful
F2-module for G, such that V is isomorphic to a constituent of the natural permutation
module for G. Let A be a non-identity, elementary abelian 2-subgroup of G such that
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|A| ≥ |V/CV (A)|. Then one of the following holds.
(i) A is generated by a set of transpositions, and |A| = |V/CV (A)|.

(ii) n is even, A is generated by a set of n/2 pairwise distinct transpositions, CV (G) =
0, V = [V,G], and |A| = 2|V/CV (A)|.

(iii) n is even, A is a subgroup of index 2 in a group generated by n/2 pairwise distinct
commuting transpositions, CV (G) = 0, V = [V,G], and |A| = |V/CV (A)|.

(iv) n = 4, A = O2(G), |V | = 8, and either V = [V,G] and |A| = |V/CV (A)| or
CV (G) = 0 and |A| = 2|V/CV (A)|.

(v) n = 6, |A| = 8, V = [V,G], and |A| = |V/CV (G)|.
(vi) n = 8, |A| = 8, every non-identity element of A is the product of three pairwise

disjoint transpositions, CV (G) = 0, V = [V,G], and |A| = |V/CV (G)|.

Proof. For any m ≥ 2, denote by P (m) the permutation module of dimension m for
Sym(m) over F2, P0(m) the submodule of P (m) of index 2, P (m) the quotient of P (m)
by CP (m)(Sym(m)), and P 0(m) the image of P0(m) in P (m).

We proceed by induction on |V |. The cases where n ≤ 4 may be verified by inspection,
so we assume that n ≥ 5. (As G acts faithfully on V , by assumption, we have V = P (2)
if n = 2, and V 6= P 0(4) if n = 4.) Suppose that V 6= P 0(n). If n is odd then
P (n) ∼= P 0(n) ⊕ CV (G), so we may assume that n is even. Set V0 = [V,G] and set
V = V/CV (G). Induction implies that one of the outcomes (i) through (vi) applies with
V 0 in place of V . Suppose that A is generated by a set A of commuting transpositions.
Then |A| ≤ n/2, and

(1) |A| ≥ |V/CV (A)| ≥ |V 0/CV 0
(A)| ≥ |A|/2,

where the final inequality in (1) is strict unless |A| = n/2. Thus, (i) holds if |A| < n/2.
If |A| = n/2 and V 6= V0, then V 6= V0 +CV (A) and |A| = |V/CV (A)|, and we again have
(i). Otherwise, if V = V0 then CV (A) = CV (〈A0〉) for any subset A0 of A of cardinality
n/2− 1, and we have |A| = 2|V/CV (A)|. Thus (ii) holds in this case. Next, take A to be
a set of n/2 pairwise commuting transpositions, suppose that A is a subgroup of index 2
in 〈A〉, and suppose that A is not generated by a subset of A. Then CV (A) = CV (〈A〉),
and so (iii) holds in this case. Next, suppose that n = 6, |A| = 8, and A is not generated
by transpositions. Then A is conjugate in G to the group 〈(1 2), (3 4)(5 6), (3 5)(4 6)〉,
and direct calculation then shows that CV (A) ≤ V0. As |A| = |V 0/CV 0

(A)|, we then
have (v). Finally, suppose that n = 8 = |A| and that every element of A# is the
product of three pairwise disjoint transpositions. Here NG(A) ∼= 23 : L3(2), and both
the commutator series and the central series of A with P (8) have the shape (1, 3, 3, 1).
Then |A| ≥ |V/CV (A)| if and only if V = V 0, and so (vi) holds in this case. Thus, we
may assume henceforth that V = V 0 ∼= P 0(n), n ≥ 5.

Let {xi : 1 ≤ i ≤ n} be the standard basis for P (n), and identify V with P 0(n).
Write xi,j for the image in V of xi + xj . Fix a ∈ A# so that the number k of non-trivial
orbits of a on {1, 2, · · · , n} is as small as possible. Identify a with (1 2)(3 4) · · · (2k−1 k),
and denote by H1 the pointwise stabilizer in G of {2k+1, · · · , n} and by H2 the pointwise
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stabilizer in G of {1, · · · , 2k}. Set K = CH1(A). Then CG(a) = K ×H2, and we have
K ∼= 2k : Sym(k) and H2 ∼= Sym(m). Denote by E the subgroup of K generated by
the set of pairwise disjoint transpositions whose product is a. (Thus, E = O2(K) unless
k = 2 or 4.) Then A ∩E = 1, by the minimality of k. Choose a complement B to 〈a〉 in
A. Also, set Vi = [V,Hi], and set U = CV1(E).

Suppose first that n = 2k, so that K = CG(a) and V = V1, and k ≥ 3. If k is odd
then U = CV (a), while if k is even we have CV (a) = U + 〈y〉 where y = x1,3 + x5,7 +
· · ·x2k−3,2k−1, and where [y,E] = U . In any case we have U ∼= P (k) as modules for K/E,
and |V/U | = 2k−1. Define ` by ` = 1 if k is odd, and ` = 2 if k is even. By induction,
we have |B| ≤ 2|U/CU (B)|, and so

|A| ≥ |V/CV (A)| ≥ 2k−`|U/CU (B)| ≥ 2k−`−1|B| = 2k−`−2|A|.
Thus k = 3 or 4. Suppose k = 3. Every fours group in Sym(6) contains an element which
is the product of two disjoint transpositions, so the minimality of k yields |A| = 2, and a
acts as a transvection on V . As only the transpositions in Sym(6) act as transvections, we
have a contradiction in this case. So assume that k = 4 and n = 8. Then |V/CV (a)| = 8,
and so |A| ≥ 8. There exists no elementary abelian subgroup of G of order 16, in which
every non-identity element is the product of four pairwise disjoint transpositions, so we
have |A| = 8. Thus, (vi) holds in this case.

We assume henceforth that n 6= 2k. Then U = CV1(a), and U ∼= P (k) as modules for
K/E. Also, we have V2 ∼= P0(m) as H2-modules, where m = n− 2k. Set W = V1 + V2.
Then |V/W | = 2, and CV (a) = U + V2 ≤ W . Also, |V1 ∩ V2| = 1 if n is odd, and 2 if n
is even, and we have |V1/U | = 2k−1.

Set B1 = CB(H2) and let B1 be a complement in B to B2. As U ∼= P (k) we have
|U/CU (B1)| ≥ |B1|. Then

|A| ≥ |V/CV (A)| = 2|W/CW (A)| ≥ 2k|U/CU (B1)||V2/CV2(B2)|
≥ 2k|B1| · 1/2|B2| = 2k−2|A|.(2)

Thus k ≤ 2.
Suppose k = 2. As V2 ∼= P0(m), we may apply induction in (2) and find that |A| =

|V/CV (A)|, m is even, and B2 induces on H2 a group generated by m/2 pairwise disjoint
transpositions. But B2 contains no bona fide transpositions, by the minimality of k, so
we have [V1, B2] 6= 0. Let b ∈ B2 such that b induces a transposition on {2k+ 1, · · · , n},
and such that b is non-trivial on {1, · · · , 2k}. Then b = xt where 1 6= x ∈ CK(A) and
where t is a transposition in H2. If B1 6= 1 then CK(A) = B1〈a〉, so that x ∈ A and
t ∈ A, contrary to the minimality of k. Thus B1 = 1, and now (iii) holds.

Finally, suppose that k = 1. Then B1 = 1 and B = B2. We may therefore choose B
so that B ≤ K2. Suppose that |A| > |V/CV (A)|. Then (2) implies that n is even and
that B is generated by a set of m/2 transpositions, and so (ii) holds in this case. So
assume that |A| = |V/CV (A)|. If B is generated by a set of transpositions then we have
(i). So assume that B is not so generated. By induction, m is even, and either (iii) or
(iv) applies with B, H2, and V2 in the roles of A, G, and V . If (iii), then (iii) holds for
G, while if (iv) then (v) holds for G. This completes the proof of the 5.6. �
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5.7 Lemma. Assume Hypothesis 2 with p = 2, and with H = Alt(n), n ≥ 5. Assume
that there exists a non-identity subgroup A of G such that A acts quadratically on V , with
|A|2 ≥ |V/CV (A)|. If n is even, assume that G ∼= Sym(n) and that |A| ≥ |V/CV (A)|.
Then one of the following holds.

(i) n = 5 or 7, each non-trivial constituent for H in V is a spin module (of dimension
4 over F2), and there are at most two such constituents.

(ii) n = 6 and V is a natural Sp(4, 2)-module for G.
(iii) n = 8 and V is a spin module for G, of dimension 8. Moreover, as a module for

H we have V = U ⊕ U ′, where U is a natural L4(2)-module for H and where U ′

is dual to U .
(iv) n = 9, G = H, dim(V ) = 8, and V is a spin module for G. Further, A is

conjugate in G to the fours group F = 〈(1 2)(3 4), (1 3)(2 4)〉, and |V/CV (A)| =
|V/CV (a)| = 16 for any a ∈ A#.

(v) V is a natural Sym(n)-module for G.
(vi) n is odd and V is a direct sum of two natural Sym(n)- modules for G.

Suppose further that n is odd and that V is a natural Sym(n)-module or a direct sum
of two natural Sym(n)-modules for G, and let TA be the set of all transpositions t in
Sym(n) such that t is a factor of some a ∈ A, in a representation of a as a product
of pairwise disjoint transpositions. Set A∗ = 〈TA〉. Then A∗ is elementary abelian,
[V,A] = [V,A∗], and CV (A) = CV (A∗).

Proof. Let a ∈ A#, and suppose first that a is not a member of any quadratic fours
group in G. Then A = 〈a〉, a is a 2-transvection on V , and 5.4 implies that n = 5 and
that (i) or (v) holds. If (v) holds then A = A∗, so we may assume henceforth that a lies
in a quadratic fours group B, and we take B ≤ A if |A| ≥ 4.

Let U be a non-trivial irreducible HAB-invariant section of V . Then Theorem 4 of
[MS2] implies that U is a spin module or a natural module for HAB. Suppose first that
U is a spin module, and that n 6= 8. Let F be the fours group given in (vi). Lemmas
4.1 through 4.3 in [MS2] then establish that every quadratic subgroup of HAB of order
bigger than 2 is conjugate to F , and that CU (x) = 0 for any 3-cycle x in H. Notice that
there exists a 3-cycle x inverted by a. If a is a 2-transvection it follows that |U | ≤ 16,
and that U is the unique non-trivial irreducible constituent for G in V . In that case, 1.2
yields V = U , and n ≤ 7 (since G = Sym(8) if n = 8). If now n = 6 then the spin module
V is isomorphic to the natural Sp(4, 2)-module, and so (ii) holds. Suppose n = 5 or 7.
We observe that A does not act quadratically on the natural Sym(n)-module for G, and
so every non- trivial irreducible constituent for HA in V is a spin module. Moreover,
there are at most two such constituents in V , and we obtain (i). Thus, we may assume
that a is not a 2-transvection, and hence also n ≥ 7.

Now |A| = 4 and we may take A = B = F . If n is even then |A| ≥ |V/CV (A)|,
by assumption, and then a is a 2-transvection. Thus, n is odd, and we have |A|2 ≥
|V/CV (A)|. Set X = O2(CH(A)), and set t = 1 if n = 5, and otherwise set t = (3 4)(5 6).
ThenX〈t〉 ∼= Sym(n−4), and since all quadratic fours groups are conjugate to F it follows
that X acts faithfully on [V,A]. As |[V,A]| ≤ 16, we then have n ≤ 9, and then n = 9.
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Let x be a 3-cycle inverted by an element of A. As CU (x) = 0 we obtain dim(U) ≤ 8
Then since |[U,A]| = |U/CU (A)| we obtain dim(V ) = 8, and CU (a) = CU (A). Thus
|A|2 = |U/CU (A)| = |V/CV (A)|, and so U = [V,H]. Then U = V by 1.2, and so (iv)
holds.

Now suppose that U is a spin module for HA and that n = 8. Then G ∼= Sym(8),
and so also G ∼= O+

6 (2). The Clifford algebra C associated with this orthogonal group
is isomorphic to the algebra of 8 × 8 matrices over F2, by [Chev, II.2.1], and the spin
module W for G is isomorphic to a minimal left ideal of C. Thus dim(W ) = 8. Moreover,
as the characteristic is even, G is isomorphic to the spinor group associated with O+

6 (2),
and [Chev, II.4.2] implies that W is the direct sum of two inequivalent irreducible repre-
sentations for Ω+

6 (2), which are then conjugate via O+
6 (2). As O+

6 (2) ∼= Aut(L4(2)), we
thereby obtain (iii). Thus, we have exhausted the possibilities where U is a spin module,
and we may assume henceforth that U is a natural Sym(n)-module for HA, for every
non-trivial irreducible constituent U for HA in G.

Let Ω = {1, 2, · · · , n} be the set on whichG has its natural permutation representation,
and identify U with the unique non-trivial irreducible constituent in the permutation
module F2Ω. As A is quadratic, all orbits of A on Ω have length at most 2, and hence
A∗ is generated by a set of pairwise disjoint transpositions. One computes that [U,A] =
[U,A∗] and CU (A) = CU (A∗). Suppose n is even. Then |A∗| = 2|U/CU (A∗)|, and since
|A| ≥ |V/CV (A)| it follows that U is the unique non-trivial constituent for G in V . Thus,
(v) holds in this case, and we may assume that n is odd. Then |A|∗ = |U/CU (A∗)|. As
|A|2 ≥ |V/CV (A)|, it follows that there are at most two non-trivial irreducible sections
for G in V , and if there are two, then A = A∗. If there is only one such section then
U = V , by 1.2. Suppose there are two. As CV (H) = 0, and as H1(H,U) = 0 by 1.3,
it follows that we may take U to be a submodule of V , with V/U irreducible. Then 1.8
implies that there is an H-invariant complement W to U in V . As A = A∗ there is a
transposition a ∈ A, and we have |V/CV (a)| = 4. Then W ∩W a 6= 0, and so W = W a,
and W is G-invariant. This yields (vi). �

The following result is immediate from 5.6 and 5.7.

5.8 Corollary. Assume Hypothesis 2, with p = 2, and let H and A be as in 5.7. Then
the following hold.

(a) If |A| > |V/CV (A)| then n is even, V is a natural module for G, A is generated
by a set of n/2 pairwise disjoint transpositions, and |A| = 2|V/CV (A)|.

(a) If |A|2 < |V/CV (A)|, n is odd, and n ≥ 9, then V is a natural module for G.
(c) If |A| = |V/CV (A)|, n is odd, and n ≥ 9, then G ∼= Sym(n) and A is generated

by a set of pairwise disjoint transpositions.

�
5.9 Lemma. Assume Hypothesis 3, and assume that H is a quasisimple group of Lie
type in characteristic p. Then one of the following holds:

(i) The Lie rank of H/Z(H) is equal to 1. That is, H/Z(H) ∼= L2(pn), U3(pn),
Sz(2n) (with p = 2) or (2G2(3n))′ (with p = 3).
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(ii) p = 2, and H/Z(H) ∼= L3(2n) or Sp(4, 2n)′. Moreover, there exists an element
t of S such that t induces a non- trivial symmetry on the Coxeter diagram for
H/Z(H).

Proof. Assume that the Lie rank of H/Z(H) is at least 2. Recall that the vertices of
the Coxeter diagram associated with H/Z(H) are in one-to-one correspondence with the
maximal subgroups of H which contain S ∩H. Since G ∈ M∗(S), a Sylow p-subgroup
of Aut(H) then acts transitively on the vertices of this diagram. It follows (from the
classification of Coxeter diagrams) that the diagram has just two vertices, so p = 2, and
the diagram is of type A2 or B2. Thus, (ii) holds. �

Section 6: Lie rank 1 in characteristic p.

In this section we will be concerned with Hypothesis 2, with the additional assumption
that H is a group of Lie type, in characteristic p, and of Lie rank 1. We begin by re-
establishing some well known properties of these groups.

6.1 Lemma. Let G be a group containing a normal subgroup H ∼= 2G2(q), q = 32n+1,
and with CG(H) = 1. Let S be a Sylow 3-subgroup of G and set T = S ∩H. Then the
following hold.

(a) We have |T | = q3, Z(T ) is elementary abelian of order q, and Ω1(T ) is elementary
abelian of order q2. Moreover, T is a trivial intersection set in H, and we have
NH(T ) = TD where D is cyclic of order q − 1, and where D acts regularly
on T/Ω1(T ) and on Z(T ). Further, D acts irreducibly on Ω1(T )/Z(T ), with
|CD(Ω1(T )/Z(T ))| = 2.

(b) There is a single conjugacy class of involutions in G, and for any involution t in
G we have CG(t) = 〈t〉 × L where L is isomorphic to L2(q). Further, CG(t) is
the unique maximal subgroup of G containing L, and L ∩ Z(T ) = 1.

(c) Any two conjugates of Z(T ) generate O3(H).
(d) Suppose that S − H contains an element a of order 3. Set X = [Ω1(T ), a] and

set A = 〈aX〉. Then A = Ω1(CS(a)), and A is elementary abelian.

Proof. Part (a) follows from the Chevalley relations (see Tables 2.4 and 2.4.7 in [GLS3]).
If q = 3 then it is known that H is isomorphic to ΓL(2, 8), and one observes in this case
that (b) through (d) hold. Thus we may assume that q > 3 in proving (b) through (d).

Let t be an involution in H and set M = CH(t). It is then well known (see for example
[GLS3, Theorem 4.5.1]) that M = 〈t〉 × L, where L ∼= L2(q). In particular, a Sylow 2-
subgroup R of H is elementary abelian, of order 8, and for any fours group F contained
in R we have CH(F ) ∼= F × D where D is dihedral of order (q + 1)/2. It follows that
〈t〉 = CH(L).

Let M be a maximal subgroup of H containing L, with M 6= CH(t). Then Z(M) = 1.
Also, we have O3(M) = 1, since every 3-local subgroup of H is contained in a Borel
subgroup. For primes other than 2 or 3 the Sylow subgroups of H are cyclic, so F (M) = 1
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and F ∗(M) is simple. A Cartan subgroup of H is cyclic of order q − 1, so F ∗(L) is not
isomorphic to PSL(2, q′), q′ a power of 3. If F ∗(M) ∼= 2G2(q0) for some q0 then a Cartan
subgroup of L is contained in a Cartan subgroup of M , and so q0 = q and M = G. Thus
F ∗(M) is not a Ree group. As q > 3, M is not isomorphic to J1 and M is not isomorphic
to a linear group L2(r), r odd, r not a power of 3. The classification ([B] or [W]) of groups
with abelian Sylow 2-subgroups now yields a contradiction to the presumed existence of
M , and so CG(t) is the unique maximal subgroup of G containing L. Since CG(z) = T
for any non-identity element z of Z(T ), as follows from (a), we have L ∩ Z(T ) = 1, and
(b) holds.

Next, let K be a subgroup of H generated by a pair of conjugates of Z(T ). As
CH(z) = T for any non-identity element z of Z(T ), we have Z(K) = 1, while O3(K) = 1
as T is a T.I. set in H. As q > 3 and O2(K) is elementary abelian of order at most
8, we have also O2(K) = 1, and then F ∗(K) is simple. As in the preceding paragraph,
we find that F ∗(K) is not isomorphic to L2(r) for r odd, r not a power of 3, or to
J1. Hence F ∗(K) is a Ree group 2G2(q0) or a linear group L2(q0), q0 a power of 3.
Comparison of a Cartan subgroup of F ∗(K) with a Cartan subgroup of H yields q0 = q,
and K ∼= L2(q). Then K contains a subgroup isomorphic to L2(3), and so a non-identity
element z of Z(T ) normalizes a fours group F in H. As CH(F ) is of order prime to 3,
z then normalizes a Sylow 2-subgroup of CH(F ), of order 8, and then |CH)z)| is even.
This contradiction proves (c).

Now let X, a and A be as in (d). Then the coset Ta contains an element a0 such
that a0 induces a field automorphism on H. A Cartan subgroup of NH(T ) acts regularly
on T/Ω1(T ), so we may assume that a ∈ Xa0. Thus, CΩ1(T )(a0) = COmega1(T )(a) =
[X, ao] = [X, a]. If g is an element of order 3 in CS(a) then g ∈ T 〈a〉, and g = g1a

i for
some element g1 of CT (a) and some power ai of a. Then g1 ∈ Ω1(T ), and so g1 ∈ [X, a].
This yields (d). �
6.2 Lemma. Let G be a group containing a normal subgroup H ∼= Sz(q), q = 22n+1,
and with CG(H) = 1. Let S be a Sylow 2-subgroup of G and set T = S ∩H. Then the
following hold.

(a) We have |T | = q2, and Z(T ) = Ω1(T ) is elementary abelian of order q. Moreover,
T is a trivial intersection set in H, and we have NH(T ) = TD where D is cyclic
of order q − 1, and where D acts regularly on T/Z(T ) and on Z(T ).

(b) Any two distinct conjugates of Z(T ) generate O2(H)Z(T ).
(c) We have S = T .

Proof. Part (a) is well known and may be justified in the same way as part (a) of the
preceding lemma. Part (c) also is well known, and follows from the fact that automor-
phisms of Sz(q) are induced by automorphisms of Sp(4, q) (where q is an odd power of
2). If q = 2 then G = H is a Frobenius group of order 20, where (b) is obvious. So
assume henceforth that we have q > 2.

Let L be a subgroup of H such that L is generated by two distinct conjugates of Z(T ).
For any element x of H of odd order, CH(x) is cyclic of odd order, and it follows that
Or(L) = 1 for every odd prime r. Also O2(L) = 1 as T is a trivial intersection set, so we
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conclude that F ∗(L) is a non-abelian simple group. As |L| is relatively prime to 3, L is
a Suzuki group, and then since Z(T ) ≤ L we have L = H. Thus (b) holds. �
6.3 Lemma. Let G be a group containing a normal subgroup H ∼= SU(3, q), q = pn,
and with CG(H) = 1. Let S be a Sylow p-subgroup of G and set T = S ∩H. Then the
following hold.

(a) We have |T | = q3, and Z(T ) is elementary abelian of order q. Moreover, T is
a trivial intersection set in H, and we have NH(T ) = TD where D is cyclic of
order q2 − 1, and where D acts regularly on T/Z(T ) and |CD(Z(T )| = q − 1.

(b) Any two distinct conjugates of Z(T ) generate a subgroup of H isomorphic to
SL(2, q). If L = 〈Z(T ), Z(T )g〉 is such a subgroup then NH(L) ∼= GU(2, q), and
if q > 2 then NH(L) is the unique maximal subgroup of H containing L.

(c) Suppose that S − H contains an element a of order p. If p is odd then q1/p is
an integer, and CH(a) ∼= SU(3, q1/p). If p = 2 then Ω1(CS(a)) = CZ(T )(a)〈a〉 =
〈aZ(T ).

Proof. That T is a trivial intersection set ffollows from H having Lie rank 1. The rest
of part (a) is standard fare and may be obtained by direct computation.

Let L be a subgroup of H generated by two conjugates of Z(T ), and let V be the
natural 3-dimensional module for H over F = Fq2 , endowed with the usual hermitian
form. Then [V, Z(T )] is a 1-dimensional singular subspace of V whose stabilizer in H
is the Borel group NH(T ). It follows that [V, L] is a hyperbolic plane, and hence the
stabilizer in H of [V, L] is isomorphic to GU(2, q). Then L ∼= SL(2, q), and this is the
first part of (b).

Let M be a subgroup of H containing L, with M � NH(L). We observe that L acts
transitively (in fact regularly) on the set of singular points not contained in [V, L], and
acts transitively on the set of singular points contained in [V, L]. The stabilizer in H of
[V, L] is equal to NH(L), so we conclude that M has just one orbit on the set of singular
points of V . Then H = NH(Z(T ))M , and we have 〈Z(T )M 〉 = 〈Z(T )H〉 ≤ M . As H is
quasisimple if q 6= 2, we then have M = G or q = 2, and this completes the proof of (b).

Suppose next that we are given an element a of order p in S−H. There is an element
a0 of the coset Ta such that a0 induces a field automorphism on H, and one observes
that a0 acts freely on T/Z(T ). Denote by T0 the inverse image in T of CT/Z(T )(a0). If
p = 2 then a0 acts by inversion on T0, and otherwise CT (a0) is isomorphic to a Sylow
p-subgroup of SU(3, q1/p). In either case, all elements of order p in T0a0 are fused by T
to elements of CZ(T )(a0)a0. Let D be an a0-invariant complement to T in NH(T ). Then
all elements of order p in CZ(T )(a0)a0 are fused by CT (a0), and so 〈a〉 is conjugate to
〈a0〉 in NH(T ). This proves (c). �

We require some of the representation theory of groups of Lie type, as developed in
[St1]. Thus, let X be the universal version of a group of Lie type in characteristic p,
let U be a Sylow p-subgroup of X,and let H be a complement to U in NX(U). Set
q′ = |H0|+ 1 where H0 is a cyclic subgroup of H of maximal order. (That is, q′ = e+ 1
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where e is the exponent of H.) Then q′ is a power of p. Set F = Fq′ .
If X is a Chevalley group or a Suzuki-Ree group, set q = q′ and set d = 1.

If X is a Steinberg variation (and not a Suzuki-Ree group) obtained in the standard
way from a Chevalley group Y via a graph automorphism of order d (d = 2 or 3), set
q = (q′)1/d.

With q defined in the above way, we write X = X(q). Then Fq is the usual “field of
definition” of X, as expressed, for example, in the formula for the order of X as given
in Table 16.1 in [A3]. (We mention, however, that for the Suzuki-Ree groups there is an
alternative formalism, whereby d = 2, and where q is taken to be the irrational number
(q′)1/2.)

6.4 Lemma. Let X = X(q) be a group of Lie type in characteristic p, and let F = Fqd
be the field defined as above. Further, let V be an irreducible FpX-module, and set
F0 = EndX(V ). Then the following hold.

(a) F is a splitting field for X over Fp.
(b) We have dimF0(CV (U)) = 1 for any Sylow p-subgroup U of X.

Proof. Part (a) is Corollary (a) to Theorem 46 in [St2]. Theorems 44(b) and 46(b) in
[St2] yield (b).

Let X = X(q) and F = Fqd be as above, and regard X as the set of fixed points of a
Steinberg endomorphism of a simple algebraic group X over an algebraic closure of F .
Let T be a σ-invariant maximal torus of X, let Σ be the root system of X with respect
to T , let Π be a fundamental system for Σ, and let Λ be the weight lattice of T . A weight
λ ∈ Λ is basic if either

(1) X is not a Suzuki-Ree group and 0 ≤ 〈λ, α〉 for all α ∈ Π, or

(2) X is a Suzuki-Ree group and we have 0 ≤ 〈λ, α〉 for all short α ∈ Π, and 〈λ, α〉 = 0
for all long α ∈ Π.
Let U be an irreducible FX-module, with high weight λ. Then U is a basic module

for X if λ is a basic weight.

6.5 Lemma. Let X = X(q) and F = Fqd have the meanings given above, and assume
that X is a Steinberg variation or a Suzuki-Ree group. Let X∗ = X∗(qd) be a Chevalley
group such that X is obtained from X∗, in the standard way, via a graph automorphism
or, in the Suzuki-Ree cases, via the composition of a graph and a field automorphism.
Then the irreducible (resp., basic irreducible) modules for X over F are the restrictions
to X of the irreducible (resp., basic irreducible) modules for X∗.

Proof. Let X be a simple algebraic group such that X∗ = Op
′
(CX(σ∗)) where σ∗ is a

Steinberg endomorphism of X, and let τ be an automorphism of X∗ such that X =
Op
′
(CX∗)(τ). Then σ ◦ τ is a Steinberg endomorphism of X, and X = Op

′
(CX(σ ◦ τ)).

Let F be an algebraic closure of F . The theory in [St2] establishes that any irreducible
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FX∗-module U is the restriction to X∗ of an irreducible FX-module, and the same is
true of any irreducible FX-module. Thus any irreducible FX-module is the restriction
to X of an irreducible FX∗-module. As F is a splitting field for both X and X∗, by
6.4(a), it follows that any irreducible FX-module is the restriction to X of an irreducible
FX∗-module. The corresponding statement concerning basic modules is then immediate
from the definition of the basic modules. �
6.6 Lemma. Let X = X(q), F = Fqd , V , and F0 be as in 6.4, and set Ṽ = V ⊗F0 F .
Denote by Γ the full automorphism group of the field F , and by Γ0 the Galois group of
F over F0. Set t = |Γ|, m = |Γ0|, and set r = t/m. Let {φ1, · · · , φr} be a complete set
of coset representatives for Γ0 in Γ, and write Γ0 = {ψ1, · · · , ψm}. Then the following
hold.

(a) There exist basic irreducible modules M1, · · · ,Mr for X such that, upon setting

Ni = Mφiψ1
i ⊗ · · · ⊗Mφiψm

i

we have an isomorphism

Ṽ ∼= N1 ⊗ · · · ⊗Nr

of FX-modules. (The modules Mi are not necessarily pairwise distinct.)
(b) With the modules Mi as in (a), set di = dimF (Mi). Then

dimF0(V ) = dimF (Ṽ ) = (d1 · · · dr)m.

(c) If k is an integer such |V | ≤ |F |k, then (d1 · · · dr)m ≤ km.

Proof. Let (α1, · · · , αt) be a fixed ordering of Γ, and let B be a set of representatives
of the isomorphism classes of basic irreducible FX-modules. As Ṽ is an irreducible
FX-module, Steinberg’s tensor product theorem states that there exists a uniquely de-
termined sequence (Mi1 , · · · ,Mit) of elements of elements of B such that

(*) Ṽ ∼= Mα1
i1
⊗ · · · ⊗Mαt

it
.

Here Ṽ is a module for G × Γ0 over F0, in a unique way compatible with the action of
G. The uniqueness of the tensor decomposition in (*) then yields (a). Parts (b) and (c)
are then immediate. �
6.7 Lemma. The following hold.

(a) Let X = SL(2, q), q = pn, and for each i, 1 ≤ i ≤ p, let Mi be the X-module of
homogeneous polynomials of degree i− 1 in two variables. Then {Mi}1≤i≤p con-
tains exactly one representative from each isomorphism class of basic irreducible
FqX-modules.
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(b) Let X = SL(3, q), q = 2n. Let V be the natural module for L, U the adjoint
module, and 1 the trivial module. Then {1, V, V ∗, U} contains exactly one repre-
sentative from each isomorphism class of basic irreducible FqX-modules.

(c) Let X = Sp(4, q), q = 2n. Let V be the natural module for L, V ′ the contragre-
dient module to V , and 1 the trivial module. Then {1, V, V ′, V ⊗ V ′} contains
exactly one representative from each isomorphism class of basic irreducible FqX-
modules.

Proof. The number of isomorphism classes of basic irreducible modules for a (non-
twisted) Chevalley group X in characteristic p, and having a root system of rank r,
is pr. So, we have the correct number of modules listed in parts (a) through (c) of the
lemma, and it remains to check that the given modules for the given groups are in fact
irreducible and basic. In the case of SL(2, q), this result is fundamental and well known
(see [St2, page 219]), and requires no further discussion here.

Set F = Fq, q = 2n, and let F be an algebraic closure of F . For the groups L =
SL(3, F ) or Sp(4, F ), let T be the maximal torus given by the diagonal matrices in L,
let B be the Borel subgroup given by the upper triangular matrices in L, let Σ be the
root system determined by T , and let Π = {α1, α2} be the fundamental system in Σ
determined by B. Then let λ1 and λ2 be the characters of T given in the usual way by
〈λi, αj〉 = δi,j . We may assume that the ordering of Π has been chosen so that λ1 is the
highest weight for the natural module V for L. Then λ2 is the highest weight for the
dual of V if L = SL(3, F ), or for the contragredient of V if L = Sp(4, F ).

Take L = SL(3, q), q = 2n, and let L0 be the natural SL(3, 2) subgroup of L (i.e.
the subgroup in which all the matrix entries are in F2). Then all irreducible modules for
L0 are basic. In addition to the trivial module, the natural module, and the dual of the
natural module (with high weights 0, λ1, and λ2, respectively), there is an irreducible
module U0 for L0 of dimension 8; namely the Steinberg module, and its highest weight
is λ1 + λ2. By direct calculation, the adjoint module U for L contains a high weight
vector v with corresponding weight λ1 + λ2. As dimF2(U0) = dimF (U), it follows that
U ∼= U0⊗F as modules for L0. In particular, U is an irreducible FL0-module, and hence
also an irreducible FL-module. The adjoint module U for L is an F -form of U , and so
U is irreducible for L with highest weight λ1 + λ2. This weight is basic, so we have (b).

Now take L = Sp(4, q). The module V ⊗ V ′ is irreducible by [St2, pages 218-19], and
its highest weight is λ1 + λ2. As this weight is basic, we then have (c). �
6.8 Lemma. Assume Hypothesis 2, with H/Z(H) isomorphic to L2(q), q = pn. Let
A be an elementary abelian p-subgroup of S such that |A|2 ≥ |V/CV (A)|. Then |A| ≤
|V/CV (A)|, and one of the following holds.

(i) V is a natural SL(2, q)-module for H.
(ii) For any irreducible H-submodule W of V , both V and V/W are natural SL(2, q)-

modules for H. Moreover, we have |A|2 = |V/CV (A)|, and A is a Sylow p-
subgroup of H.

(iii) q is odd, V is a natural Ω3(q)-module for H, |A|2 = |V/CV (A)|, and A is a
p-Sylow subgroup of H.
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(iv) q is a perfect square, H ∼= Ω−4 (q1/2), and V is a natural orthogonal module for
H.

(v) q = 4, G ∼= O−4 (2), and for any irreducible G- submodule W of V , both W
and V/W are natural orthogonal modules for G. Moreover, we have |A|2 =
|V/CV (A)|, and A � H.

Proof. Let E be an elementary abelian subgroup of S such that |E|2|CV (E)| is as large
as possible and, subject to this condition, so that E is maximal with respect to inclusion.
Then E is weakly closed in CG(T ), by 2.2. Let U be a non-trivial, irreducible H- invariant
section of V , and set F0 = EndH(U). Set F = Fq, and define the integers r,m, and t,
the modules Mi and Ni, and the dimensions di, (1 ≤ i ≤ r) as in 6.6. We observe that
since q + 1 divides the order of H, 2.1 implies that |V | ≥ q2.

Set T = S ∩H, and suppose first that E � T . Let a ∈ E − T . Then all elements of
order p in the coset Ta are fused by T , and so a induces a (non-trivial) field automorphism
on H. Denote by T0 the largest subgroup of T such that [T0, a, a] = 1. Then [T0, a] =
CT (a) = CT (E), and since E is weakly closed in CG(E) we then have E = CT (a)〈a〉.

We claim that two conjugates of E suffice to generate HE. Indeed, if p is odd then
the claim follows from a theorem of L.E. Dickson (Theorem 2.8.4 in [Gor]) on subgroups
of L2(q). On the other hand, suppose that p = 2. Then an element b of CT (a) lies in
a dihedral subgroup X of H of order 2 · (q + 1), and X is maximal in H. Thus, our
claim holds if q 6= 4. If q = 4 then HE ∼= Sym(5), and the image of E under such an
isomorphism is generated by two commuting transpositions. One confirms that Sym(5)
is generated by the conjugate fours groups 〈(12), (34)〉 and 〈(14)(35)〉, so our claim holds
for all q. As |E| = p · q1/p, we then have |V | ≤ p4q4/p. As p2n ≤ |V | we obtain
p(1 − 2/n) ≤ 2, and then either p = 2 or p = n = 3. Moreover, we have |V | ≤ 16 · q2 if
p = 2, and V ≤ 38 if p = n = 3. We have proved the following result.

(1) If E � T then E = CT (a)〈a〉 for any a ∈ E − T , and either p = n = 3 and |V | ≤ 38,
or p = 2 and |V | ≤ 16 · q2.

On the other hand, suppose that E ≤ T . As NH(T ) acts irreducibly on T , and as E
is weakly closed in CH(E), we then have E = T and |E| = q. Then two conjugates of E
suffice to generate H, and so |V | ≤ q4. Also, in this case we have |CU (E)| = |F0|, 6.4(b).
Thus:

(2) If E ≤ T then E = T , |V | ≤ q4, and |U | ≤ q2q0, where q0 = |F0|.

With (1) and (2) we conclude that |V | ≤ q4 in any case. Then 6.6 yields the following
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information.

(3) We have (d1 · · · dr)m ≤ 4m.

Set d = d1 · · · dr, and suppose that m > 1. Then d = 2 and m ≤ 4. If m = 4 then
|U | = q4 and q ≥ p4, and so (1) shows that E ≤ T . Then E = T , and we have |U | < q3,
by (2), so we conclude that m ≤ 3.

Suppose that m = 3. Then |U | = q8/3. If E = T then (2) yields |U | ≤ q2q1/3, so in fact
we have E 6= T . Suppose that p = 2. Then (1) gives 16 · q2 ≥ q8/3. Here n is divisible by
2 (as E 6= T ) and by 3 (as m = 3), and we conclude that q = 64. Moreover, we then have
|U/CU (E)| = |E|2, so U is the unique non-trivial constituent for H in V . Then U = V ,
by 1.2. Now CV (E ∩H) is a subspace of V over F0, while a acts F0- semilinearly on V .
It follows that |CV (E ∩ T )| = |CV (E)|2, and then |E ∩ T |2|CV (E ∩ T )| > |E|2|CV (E)|.
This is contrary to the definition of E, so we conclude that p 6= 2.

With p odd, (1) shows that G ∼= ΓL(2, 27) and that |U | = 38. Here |V/CV (E)| ≤
|E|2 = 81, while |U/CU (E)| = 81 since G is generated by two conjugates of E. Thus
V = U , by 1.2, and we have an F0-linear action of G on U . Then G acts F -linearly on Ũ .
Identify Ũ with N⊗Nφ⊗Nφ2

, where φ is an automorphism of F of order 3, and identify
a with a standard field automorphism of H. Then a acts on Ũ by permuting the three
tensor factors. Explicitly, let x = (1, 0) and y = (0, 1) be the standard basis elements for
N . One may then identify a standard basis for Ũ with the set of monomials of degree 3
in the non-commuting variables x and y, and then CeU (a) is the F -linear span of

{x3, x2y + xyx+ yx2, xy2 + yxy + y2x, y3}.

Thus dimF (CeU (a) = 4. One observes that the given basis for CeU (a) is not invariant
under E ∩ T , so dimF (CeU (E)) ≤ 3. Then also dimF0(CU (E)) ≤ 3, and so |U/CU (E)| ≥
35 > |E|2. With this contradiction, we have shown that m 6= 3, and so m ≤ 2.

If m = 2 then U is an Ω−4 (q0)-module, where q0 = q1/2. On the other hand, suppose
that m = 1. Then (3) yields d ≤ 4. If d = 4 then |U | = q4, so (1) and (2) imply that
E � T and q = 4. Then U ∼= N ⊗ Nφ, where N is the natural SL(2, 4)-module for
H and where φ is the non-identity field automorphism. But then U is reducible as an
F2H-module, and contrary to the definition of U . Thus, we have d ≤ 3. This shows the
following.

(4) U is a natural SL(2, q)-module, a natural Ω3(q)- module, or a natural Ω−4 (q0)-module
(q0 = q1/2), for H. Moreover, if E 6= T then p = 2.

We observe that if U is not E-invariant then E � T and |CU (E ∩ T )| ≥ p2. Then
|U/CU (E ∩ T )| ≥ |E ∩ T |. For any minimal HE-invariant section W of V involving U
we then have

|E ∩ T |2|CW (E ∩ T )| > p2|E ∩ T |2|CW (E)| ≥ |E|2|CW (E)|,
44



and
|W/CW (E ∩ T )| ≥ |E ∩ T |2.

Then |W | ≥ |E|2|CW (E)|, so |W | = |V | = |E|2|CV (E)|, and

|E ∩ T |2|CV (E ∩ T )| > |E|2|CV (E)|.

This is contrary to the definition of E, so we conclude that U is E-invariant. More-
over, the preceding estimates show that HE has at most two non-trivial irreducible
constituents in V , and if there are two then for any choice of U we have |E| = |U/CU (E)|.

If H has only one non-trivial constituent in V then 1.2 gives V = U . So assume that
H has two non-trivial constituents in V . If E = T then |U/CU (E)| = |U |/|F0| ≤ q, so
|U | ≤ q · q0, and then q = q0 and U is a natural SL(2, q)-module for H. On the other
hand, suppose that E 6= T . Then (1) and (4) yield p = 2 and |U/CU (E)| ≤ |E| = 2 ·q1/2.
As two conjugates of E generate G we then have |U | ≤ 4 · q, and since |U | ≥ q2 we then
have q = 4 and |U | = 16. If U is a natural ΓL(2, 4)-module for G then |U/CU (E)| = 8,
so in fact U is a natural O−4 (2)-module for G. Thus:

(5) Suppose that U 6= V . Then H has exactly two non-trivial irreducible constituents
in V . Moreover, these constituents are E- invariant, and for any such irreducible
constituent U we have |E| = |U/CU (E)|. Either both irreducible constituents are
natural SL(2, q)-modules for H, or else q = 4 and both are natural O−4 (2)- modules
for G.

Suppose that U 6= V , and suppose that there is a trivial constituent for H in V .
As CV (H) = 0 and V = [V,H], by hypothesis, there is then an indecomposable H-
submodule W of V such that [W,H] is irreducible for H and such that |W/[W,H]| = p.
Take U = [W,H]. Then (5) says that either U is a natural SL(2, q)-module for H, or
q = 4 and U is a natural O−4 (2)-module for G. In either case, we have W = U +CW (E).
Suppose that U is a natural SL(2, q)- module. As |E| = |U/CU (E)| we then have E = T
and W = U + CW (T ). As two conjugates of T generate H we then have CW (H) 6= 0,
and W is decomposable. Thus q = 4 and U is an O−4 (2)-module, but in that case we
contradict 1.4. Thus, H has no trivial constituents in V .

Now let A be any elementary abelian subgroup of S such that |A|2 ≥ |V/CV (A)|.
Suppose first that |E|2 = |V/CV (A)|. Then we may take A ≤ E (by definition of E). In
particular, if V is a natural Ω3(q)-module for H we have A ≤ E = T , and then A = E.
Thus, (iii) holds in this case. In the same way, if H has two non-trivial irreducible
constituents in V then A ≤ E = T . In the case that these constituents are natural
SL(2, q)- modules we find that A = E, and (ii) holds. In the case that these constituents
are natural O−4 (2)-modules we observe that E ∩ H induces a 2-transvection on each
irreducible constituent, and so |E ∩H|2 < |V/CV (E ∩H|. Thus A 6= E ∩H, and so (v)
holds in this case. If V is a natural Ω−4 (q)-module or a natural SL(2, q)-module for H
then we make no assertion about A, and we have (iv) or (i).
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In order to complete the proof of the lemma, it remains to show that |A| ≤ |V/CV (A)|.
Suppose false. Then (i) or (iv) holds, by what has already been proved, and we then
observe that A 6= T . By [REF] we may assume that A is weakly closed in CG(A), and
therefore A � T . Setting A0 = A∩ T we then have T 6= A0 6= 1 and |A0| ≥ |V/CV (A0)|.
This condition excludes (i), and so (iv) holds. But 〈ANH(T )

0 〉 = T , and [REF] then implies
that |T | ≥ |V/CV (T )|, which is not the case in (iv). Thus, we have a contradiction, and
the lemma is proved. �
6.9 Lemma. Assume Hypothesis 2, with H isomorphic to the commutator subgroup
of a group of Lie type and of Lie rank equal to 1, in characteristic p. Assume that
H/Z(H) � PSL(2, q). If G ∼= 2G2(3) set T = S, and otherwise set T = S ∩H. Then
|A|2 = |V/CV (A)|, A ≤ H, and one of the following holds.

(1) (i) H ∼= SU(3, q) and V is a natural module for H. Moreover, either A = Z(T )
and [V,A,A] = 0, or else p is odd, |A| = q2, and [V,A,A] 6= 0.

(2) (ii) H ∼= Sz(q) and V is a natural module for H. Moreover, we have A = Z(T )
and [V,A,A] = 0.

Proof. As in the proof of the preceding lemma, we fix an elementary abelian subgroup
E of S such that |E|2|CV (E)| is as large as possible and, subject to this condition, so
that E maximal with respect to inclusion. Then 2.2 implies that E is weakly closed in
CG(E) with respect to G.

Suppose first that HT/Z(H) is isomorphic to 2G2(q), q = 32n+1. Surveying the Schur
multipliers of these groups, we find that Z(H) is a 3-group, and so Z(H) = 1. We
observe right away that q3 + 1 divides |G|, and hence |V | ≥ q6 by 2.1. Let D be a
subgroup of NH(T ) of order q − 1, let d be an involution in D, and set L = O2(CH(t)).
Then L ∼= L2(q), and L ∩ T is a complement in Ω1(T ) to Z(T ), by 6.1. Suppose that
E � T . Then 6.1(d) implies that E = Ω1(CS(a)) for any a ∈ E − T . We may choose
a ∈ E − T so that a centralizes an involution in NH(T ), and so we may assume that
[a, d] = 1. Set X = CE∩T (d). Then |X| = q1/3. Here q is an odd power of 3, so q 6= 9,
and a theorem of L.E. Dickson (2.8.4 in [Gor]) implies that two conjugates of X suffice
to generate L. As E ∩ T � X we then conclude from 6.1(b) that two conjugates of E
suffice to generate HE. Then |V | = |V/CV (HE)| ≤ 81 · q8/3. As q ≥ 33 in this case, we
then have |V | ≤ q4/3q8/3 = q4, contrary to |V | ≥ q6. We therefore conclude that E ≤ T .
As Ω1(T ) is abelian, E is normal in NH(T ), and then E = Z(T ) or E = Ω1(T ).

If E = Z(T ) then two conjugates of E suffice to generate H, by 6.1(c), and so |V | ≤
q4. We therefore conclude that E = Ω1(T ). Now two conjugates of E generate HE,
and so |V | ≤ q8. Let U be a non- trivial, irreducible L-invariant section of V . Then
|U/CU (E ∩L)| ≤ q4 and since E ∩L is a Sylow subgroup of L it follows from 6.4(b) that
|U | ≤ q5. Set F0 = EndL(U), F = Fq, and denote by Γ0 the Galois group of F over F0.
Define the integers t and m by |F : Fp| = t and |F : F0| = m, and set r = t/m. Set
Ũ = U ⊗F0 F , and let modules Mi and Nj , (1 ≤ i, j ≤ m) be given as in 6.6. Write di
for the dimension of Mi over F . As p = 3 we have di ≤ 3, and there are exactly three
basic irreducible modules for SL(2, q). Thus, any Mi is either a trivial module, a natural
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SL(2, q)-module, or a natural Ω3(q)-module for the universal cover SL(2, q) of L. As
|U | ≤ q5, 4.6(c) yields

(d1 · · · dr)m ≤ 5m.

As Ũ affords a representation of SL(2, q) with the scalar matrix −I acting trivially,
there are an even number of occurances of the natural SL(2, q)-module in the tensor
decomposition of Ũ given by 6.6. As |Γ0| is odd, it follows that there are an even number
(possibly 0) of the non-trivial modules Ni for which the associated basic irreducible
modules Mi are natural SL(2, q)-modules. Taking d1 to be maximal among the numbers
di, we then have either d1 = 3 and 3m ≤ 5m, or else d1 = di = 2 for some i 6= 1 and
4m ≤ 5m. As also m is odd, we conclude that d1 = 3, m = 1, F0 = F , and U is a natural
Ω3(q)-module for L. As |V | ≤ q8 there are then at most two non-trivial irreducible
constituents for L in V .

Suppose that there L has two non-trivial constituents in V . As |U/CU (E ∩ L)| = q2

we then have |V/CV (E ∩ L)| = |V/CV (E)| = q4. Then CV (L) ≤ CV (E), and since
〈L,E〉 = H, by 6.1(b), we conclude that CV (L) = 0. Then 1.5 implies that there are no
trivial constituents for L in V , and so |V | = q6. As all involutions in H are conjugate,
all have non-trivial fixed points on V , and so the involution d centralizes a subspace of
V of order q3. But one observes that for any involution x ∈ L we have |CU (x)| = q, and
so |CV (x)| = q2. With this contradiction we conclude that L has a unique non-trivial
constituent in V . Then V = U ⊕ CV (L), by 1.3, and so |E ∩ L|2 = |V/CV (L)| = q2.
Then |E|2 = |V/CV (E)| = q4, and so |CV (E)| ≥ q2. As CV (E) ≤ CV (E ∩ L) =
CU (E ∩ L) ⊕ CV (L), it follows that CV (L) ∩ CV (E) 6= 0, and so CV (H) 6= 0. We
therefore conclude that H is not isomorphic to 2G2(q).

It remains to treat the cases where H/Z(H) is a Suzuki group or a 3-dimensional
unitary group. Again, let U be a non-trivial, irreducible H-invariant section of V and
set F0 = EndH(U). If H ∼= Sz(q) set F = Fq, while if H/Z(H) ∼= U3(q) set F = Fq2 .
Set Ũ = U ⊗F0 F , and let Γ, Γ0, Mi, Ni, di, m, r, and t be given as in 6.6.

Suppose that p = 2 and that H ∼= Sz(q). Here we have S = T , by 6.2(c). As
Ω1(T ) = Z(T ), and since NH(T ) acts irreducibly on Z(T ), we then have E = Z(T ).
Then two conjugates of E suffice to generate H, by 6.2(b), and since CV (H) = 0, it
follows that |V | ≤ q4. Then 6.6 yields (d1 · · · dr)m ≤ 4m. But also, as q2 + 1 divides
|H|, it follows from 2.1 that di ≥ 4 for any i for which di 6= 1. As m is odd, we then
have m = 1 and di = 1 for all but one index i. That is, U is an algebraic conjugate of a
basic irreducible module for H, of dimension 4 over F . The basic irreducible modules for
H are obtained by restriction from those for Sp(4, q), by 4.5, so 4.7 implies that U is a
natural Sp(4, q)-module for H. One then observes that |U/CU (Z(T ))| = |E|2, so A = E,
and V = U + CV (E). As H = O2(H) we then have U = [V,H], and then 1.2 implies
that U = V . Thus, (ii) holds in this case.

Suppose next that H/Z(H) ∼= U3(q). Then q3 + 1 divides |H|, and so |V | ≥ q6, by
3.1. Consider first the case where E � T . Then 6.3(c) shows that E = (E ∩T )〈a〉 where
a induces a field automorphism on H. Suppose further that p is odd, so that CT (a) is
isomorphic to a Sylow p- subgroup of U3(q1/p). In particular, we note that q 6= 9. Let X
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be the largest subgroup of T for which [X, a, a] = 1. Then [X ∩ Z(T ), a] = CZ(T )(a) =
CZ(T )(E), and since E is weakly closed in CH(E) we then have CZ(T )(a) ≤ E. We claim
that E ∩T � Z(T ). Suppose false, and let x ∈ X −Z(T ). Then [x, a] = [x,E] ≤ CT (E),
and so 〈E,Ex〉 is elementary abelian and properly contains E. This is contrary to E
being weakly closed in its centralizer, and proves the claim.

We next claim that HE is generated by two conjugates of E. Indeed, we have E ∩
Z(T ) ≤ L where L is a subgroup of H isomorphic to SL(2, q). As q is odd and q 6= 9,
it follows from [Gor, 2.8.4] that L is generated by two conjugates of E ∩Z(T ), and then
6.3(b) yields our claim. As |E| ≤ p ·q2/p it follows that |V | ≤ p4 ·q8/p. As q ≥ p3 we then
have |V | ≤ q4. But we have seen already that |V | ≥ q6, so we have a contradiction at this
point. On the other hand, suppose that E � T and that p = 2. Then Ω1(T ) = Z(T ),
and we conclude from 6.3(c) that E ∩ T = Z(T ). Let L be a subgroup of H, generated
by Z(T ) and a conjugate of Z(T ), with L ∼= SL(2, q). If L is E-invariant then E induces
inner automorphisms on L, and there is then an element a1 of E − Z(T ) such that
[L, a1] = 1, and we have L1 = CH(a1). As |E−Z(T )| = q, and since there are at least q2

conjugates of L under T , we may therefore choose L so that L is not E-invariant. It then
follows from 6.3(b) that two conjugates of E suffice to generate HE. We then obtain a
contradiction to |V | ≥ q6, just as in the case where p is odd.

We now have E ≤ T . Suppose that E ≤ Z(T ). As NH(T ) acts irreducibly on Z(T ) we
then have E = Z(T ). Now 6.3(b) implies that three conjugates of E suffice to generate H,
and so |V | ≤ q6. Here F = Fq2 , so 6.6 yields (d1 · · · dr)m ≤ 3m. But also di ≥ 3 if di 6= 1,
so we obtain m = 1, and U is a natural SU(3, q)-module for H. Here |E|2 = |V/CV (E)|,
so U = [V,H], and then U = V , by 1.2. Further, E acts quadratically on V , and since
|E0|2 < |V/CV (E0)| for every proper non- identity subgroup E0 of E, we conclude that
A = Z(T ) if A ≤ Z(T ).

On the other hand, suppose that E � Z(T ). As already mentioned, Z(T ) = Ω1(T )
if p = 2, so we must have p odd in this case. Now q < |E| ≤ q2, and two conjugates of
E suffice to generate H. Then |V | ≤ q8, and so (d1 · · · dr)m ≤ 4m. Again, as di ≥ 3 for
all i for which di 6= 1, we obtain m = 1 and U = V is an irreducible FH-module with
dimF (U) = 3 or 4. By 4.5, V is the restriction to H of an irreducible module for the
group H∗ = SL(3, F ). Regard H as a subgroup of H∗. Then T is contained in two non-
conjugate parabolic subgroups P1 and P2 of H∗, and we have Z(T ) ≤ Op(P1) ∩Op(P2).
Also, we have Pi = 〈EPi〉 for both i = 1 and 2, and not both P1 and P2 centralize
CV (Z(T )). It follows that CV (Z(T )) 6= CV (E). But dimF (CV (E) ≥ 2 since |E|2 ≥
|V/CV (E)|, so we conclude that dimF (CV (Z(T )) ≥ 3. Then |V/CV (Z(T ))| = q2, and
since three conjugates of Z(T ) generate H we obtain |V | ≤ q6. This contradiction shows
that dimF (V ) = 3. That is, V is the restriction to H of a natural SL(3, F )-module,
which is to say that V is a natural SU(3, q)-module for H. Then |E| = q2, in order to
achieve |E|2 ≥ |V/CV (E)|.

Since E was chosen so that |E|2|CV (E)| is as large as possible, we now conclude that
|A|2|CV (A)| = |V |. The maximality of E then yields A ≤ E for some choice of E. Then
A ≤ H, and since |E0|2 < |V/CV (E0)| for any non-identity subgroup E0 of E other than
E and Z(T ), we conclude that A = Z(T ) or A = E. Thus (i) holds, and the lemma is
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proved. �
We now consider the case in which A acts quadratically on V .

6.10 Lemma. Assume Hypothesis 4, and suppose that H/Z(H) is a simple group of Lie
type in characteristic p and of Lie rank 1. Let A be a non-identity subgroup of S such
that |A|2 ≥ |V/CV (A)| and such that [V,A,A] = 0. Then one of the following holds.

(i) H ∼= SL(2, q), V is a natural SL(2, q)-module for H, and A ≤ H. If |A| ≥
|V/CV (A)| then equality holds, and A is a Sylow subgroup of H.

(ii) H ∼= SL(2, q), V is a direct sum of two natural SL(2, q)-modules for H, A is a
Sylow subgroup of H, and |A|2 = |V/CV (A)|.

(iii) H ∼= L2(q2) and V is a natural Ω−4 (q)-module for H. If A ≤ H then |A|2 =
|V/CV (A)| and A is conjugate to a Sylow p-subgroup of a subgroup K of H with
K ∼= L2(q). If |A|2 > |V/CV (A)| then p = 2, |A|2 = 2 · |V/CV (A)| , and either:

(a) A = (A ∩ H)〈a〉, where a induces a field automorphism on H and where
A ∩H is a Sylow subgroup of CH(a), or

(b) q = 4, |A| = 2, and A induces a transvection on V .
(iv) G ∼= Sym(5), V is a direct sum of two natural O−4 (2)-modules for G, |A|2 =

|V/CV (A)|, and A � H.
(v) H ∼= SU(3, q), V is a natural module for H, |A|2 = |V/CV (A)|, and A is the

center of a Sylow subgroup of H.
(vi) H ∼= Sz(q), V is a natural module for H, |A|2 = |V/CV (A)|, and A is the center

of a Sylow subgroup of H.

Proof. Suppose that H ∼= SL(2, q), that H has more than one non- trivial irreducible
constituent in V . Then 6.8 shows that there are just two such constituents, and no trivial
constituents, for H in V . Suppose that the constituents are natural SL(2, q)- modules
for H. Then 6.8 says that A is a Sylow subgroup of H, and then V is a completely
reducible H-module, by 1.6. Thus (ii) holds in this case. On the other hand, suppose
that not both of the irreducible constituents for H in V are natural SL(2, q)-modules for
H. Then 6.8 says that q = 4, that A � H, and that both irreducible constituents are
natural O−4 (2)-modules for G. Let a be an element of A −H. If |A| = 2 then A = 〈a〉
and a induces a 2-transvection on V . Suppose instead that |A| = 4. Then |CV (A)| = 16
and for any irreducible constituent U for G in V we observe that |CU (A)| = 4. Since a
commutes with an element g of H of order 3, and A is not g-invariant, it follows that
|CV (a)| = 64, and that a is a 2-transvection in this case as well. Let K be a subgroup
of G generated by three conjugates of a, with K ∼= Sym(4). Then, in any case, we
have |V/CV (K)| = 4, and if V0 is a fixed irreducible submodule of V we may choose
v ∈ CV (K) so that v /∈ V0. Now |vG| = 5, and so 〈vG〉 is a proper subspace of V . This
shows that V is completely reducible, and thus (iv) holds in this case.

We are now reduced to the case where V is irreducible. If H ∼= L2(q) and V is a
natural Ω3(q)-module for H then A ≤ H, by 6.8. But here p is odd and no non-identity
element of H acts quadratically on V , so Hypothesis (4) is violated in this case. If
H ∼= SL(2, q) and V is a natural SL(2, q)-module for H then (i) follows. Assume that
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H ∼= L2(q2) and that V is a natural Ω−4 (q)-module for H. Suppose further that A ≤ H.
No element of H centralizes a 3-dimensional Fq-subspace of V , so we have |A| ≥ q. Let
K be a subgroup of H with K ∼= L2(q) and with K ∩ S a Sylow p-subgroup of K. Set
B = K∩S. The conjugates of B# under NH(T ) then form a partition of (H∩S)#. Here
B acts quadratically on V , and for any b ∈ B# we have CV (b) = [V, b] = [V,B] = CV (B)
is a 2-dimensional subspace of V . Let C be a conjugate of C under NH(H ∩ S), C 6= B.
Then H ∩ S = BC, and so CV (BC) is of dimension 1. Then CV (B) 6= CV (C), and
so [V, b, c] 6= 0 for any non-identity elements b ∈ B and c ∈ C. We conclude that A is
conjugate to B and that |A|2 = |V/CV (A)|. On the other hand, suppose that A � H
and that |A|2 > |V/CV (A)|. Then the foregoing shows that either A ∩ H = 1 , or
|A ∩ H|2 = |V/CV (A ∩ H)| = |V/CV (A)| and that A ∩ H is conjugate to the group B
given as above. If A∩H 6= 1 we then have (iii)(a), while if A∩H = 1 then |V/CV (A)| = 2
and we have (iii)(b). Thus (iii) holds if V is a natural Ω−4 (q)-module for H.

It remains to consider the cases in which H/Z(H) is not a linear group. We then have
(v) or (vi), as follows from 6.9 and from elementary properties of the natural modules
for SU(3, q) and for Sz(q). �

Section 7: Lie rank 2 in characteristic p

7.1 Lemma. Let G = L3(2) and let W be an indecomposable G-module of dimension 4
over F2. Then there exists a fours group A ≤ G with |CW (A)| = 2.

Proof. Since G is generated by three involutions, and all involutions in G are conjugate,
no involution induces a transvection on W . Put Z = CW (G), and suppose first that
Z 6= 0. Then |Z| = 2 and W/Z is a natural G-module. Let P be a rank-1 parabolic
subgroup of G such that CW/Z(P ) = 0, and put A = O2(P ). Then CW/Z(A) is a fours
group on which P acts irreducibly, and since A contains no transvections we conclude
that CW (A) = Z. On the other hand, suppose that Z = 0. Then W has a submodule U
of order 8, on which every involution in G act as a transvection. Now let P be the rank-1
parabolic subgroup with |CU (P )| = 2, and put A = O2(P ). Then CU (A) = CU (P ), and
since A contains no transvections on W we have CW (A) ≤ U . Thus |CW (A)| = 2. �
7.2 Lemma. There are exactly four isomorphism classes of irreducible modules for
Alt(6) over F2. These classes are represented by the principal module 1, a natural
Sp(4, 2)-module U , the module U ′ contragredient to V , and a module V of dimension
8 which is a direct summand of the Steinberg module for Sp(4, 2)

Proof. Set H = Alt(6) and G = Sp(4, 2), and identify H with [G,G]. There are four
2-regular conjugacy classes in H, and so, by a well known result of Brauer, there are
also four isomorphism classes of irreducible modules for H. The modules 1, U , and U ′

represent three of these classes (with U and U ′ distinguishable by their restrictions to
subgroups of order 3 in H). Let W be the Steinberg module for G. Then W is the
reduction mod 2 of an irreducible complex representation of G, written over Z, and since
H has no irreducible characters of degree 16 we conclude that W is reducible for H.

50



Let S be a Sylow 2-subgroup of G, and set T = S ∩H. Then S acts freely on W , and
so dim(CW (T )) = 2. But W is a direct sum of G-conjugate, irreducible H-submodules,
so we conclude that W has an H-submodule V of dimension 8. Now {1, U, U ′, V } is a
complete set of representatives of the isomorphism classes of F2H-modules. �
7.3 Lemma. Assume Hypothesis 2 with p = 2, and assume that H/Z(H) ∼= L3(2n) or
Sp(4, 2n)′. Suppose further that Z(H) 6= 1. Then H ∼= SL(3, 2n).

Proof. Suppose false. As O2(H) = 1, a survey of the Schur multipliers of the groups in
question yields H/Z(H) ∼= Alt(6) and |Z(H)| = 3. Without loss, V is irreducible, and
then V may be regarded as a vector space over the field F = F4. Evidently dimF (V ) ≥ 3.
Also, we may assume that A has been taken to be as small as possible, subject to the
condition that |A|2 ≥ |V/CV (A)|. Therefore:

(1) Let B be a subgroup of index 2 in A. Then |CV (B)/CV (A)| ≤ 2, or B = 1.

Let X1 and X2 be the two maximal subgroups of H containing S ∩H, and set T =
NS(X1). Then also T = NS(X2), and since S is contained in a unique maximal subgroup
of G we have |S : T | = 2. Set Z = CV (S ∩H), and set Ui = 〈ZXi〉, (i = 1, 2). As V is
irreducible we have CV (H) = 0, and then since X1 and X2 are fused by S, we conclude
that dimF (Ui/Z) ≥ 1, (i = 1, 2). As [Ui, O2(Xi)] = 0, we have [U1 + U2, Z(S ∩H)] = 0,
and so V 6= U1 + U2, and dimF (V ) ≥ 4.

Let R be a Sylow 3-subgroup of H. Then NH(R) contains a representative from each
conjugacy of involutions in HT , and one observes that all involutions in HT − H act
non-trivially on Z(H). That is, there does not exist a central extension of the form
3·Sym(6).

Suppose that A = 〈a〉 is of order 2. Then a is a 2-transvection, and since dimF (V ) ≥ 3
it follows from the preceding paragraph that a commutes with Z(H). Suppose a ∈ T .
Then a ∈ H, and three conjugates of a generate H, so |V | = |V/CV (H)| ≤ 43. This is
contrary to dimF (V ) ≥ 4, so we conclude that a /∈ T . Then a interchanges the two fours
groups in S ∩ H, and so (S ∩ H)A is dihedral of order 16. Then Z(H)(S ∩ H)A is a
maximal subgroup of HA, and so again, three conjugates of A suffice to generate HA,
with a contradiction as before. We therefore conclude that |A| > 2.

Suppose that A � T , and let a ∈ A−T . Then CS(a) ≤ Z(S∩H), and so [U1 +U2, A∩
T ] = 0. But a interchanges U1 and U2, so |(U1 +U2)/CU1+U2(a)| ≥ 4. This is contrary to
(1), so we conclude that A ≤ T . Now suppose that A � H, and let a ∈ A−H. Then a
centralizes an F2-hyperplane of CV (A ∩H), by (1), and so dimF (CV (A ∩H) = 1. Thus
|CV (A)| = 2, and since |A| ≤ 8 we obtain |V | ≤ 27. but then dimF (V ) = 3, and we
have the same contradiction as before. Thus A ≤ H, and |A| = 4. Now A ≤ O2(Xi)
for some i, and we may take i = 1. By conjugating A within X1 we may assume also
that A � O2(X2). Set B = A ∩ O2(X2). Then |B| = 2 and CV (B) ≥ U1 + U2. As
O2′(X2) acts non-trivially on U2, we have [U2, A] 6= 1, and then |U2/CU2(A)| ≥ 4. This
contradicts (1), and the lemma is thereby proved. �
7.4 Lemma. Let L = L3(q) or Sp(4, q), q = 2n, and identify L with the group of inner
automorphisms of L. Let t be a non-inner automorphism of L of order 2. Then all
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involutions in Lt are conjugate via L. Moreover, the following hold.
(a) If L = L3(q) and n is odd, and t is conjugate to a standard graph automorphism

of L, and CL(t) ∼= L2(q).
(a) If L = L3(q) and n is even, then t is conjugate to a standard graph automorphism

(with CL(t) ∼= L2(q)), or a field automorphism (with CL(t) ∼= L3(q1/2)), or a
graph-field automorphism (with CL(t) ∼= U3(q1/2).

(c) If L = Sp(4, q) and n is odd, then t is conjugate to an automorphism of L which
induces a non-trivial polarity on the Dynkin diagram of L, and CL(t) ∼= Sz(q).

(d) If L = Sp(4, q) and n is even, then t is conjugate to a field automorphism of L,
and CL(t) ∼= Sp(4, q1/2).

Proof. Let F be an algebraic closure of F = Fq, set L = L3(F ) (resp. Sp(4, F )), and
view L as the set of fixed-points for a Steinberg endomorphism σ of L. Fix a σ- invariant
Borel subgroup B of L, a σ-invariant maximal torus T of B, let Σ be the root system
determined by T , and let Π be the fundamental system of roots determined by T and B.
Let S be the unipotent radical of B, and set S = CS(σ), so that S is a Sylow 2-subgroup
of L. If n = 2m is even, set r = 2m, and let φ be the standard field automorphism of
L of order 2, given by (xα(v))φ = xα(vr) for α ∈ Σ and v ∈ F . Let ρ be the unique
automorphism (resp. angle-preserving, length-changing bijection) of Σ of order 2 which
preserves Π, and let γ be the automorphism of L given, in the case of L = L3(q), by

xα(v)γ = xαρ(v),

and in the case of L = Sp(4, q) by

xα(v)γ =

{
xαρ(v) if α is long,

xαρ(v2) if α is short.

If L = L3(q) set τ = γ, and if L = Sp(4, q) set τ = γn. Notice that if L = Sp(4, q) we
have Aut(L) = Inn(L)〈γ〉, τ = 1 if n is even, and τ is an involution if n is odd. Further,
if L = Sp(4, q) and n is odd then CL(τ) ∼= Sz(q). (See [GLS3, 2.5.1].) It therefore only
remains to show that all involutions in St are conjugate via L.

Identify L with Inn(L). Let E and F be the two maximal (under inclusion) elementary
abelian subgroups of S, and set Z = E∩F . Then Z = Z(T ). Suppose first that F = Et.
Then either t ∈ Sτ or L ∼= L3(q) and t ∈ Sτφ. Set J = {zxxt | z ∈ CZ(t), x ∈ E}.
Then J is the set of elements of S inverted by t, and so Jt is the set of involutions
in St. Let µ : E × CZ(t) −→ J be the mapping given by (x, z) 7→ zxxt. Then for any
(x, z) ∈ E×CZ(t) we have µ−1(zxxt) = {(xu, zuut) | u ∈ Z}. Thus |J | = |E×CZ(t)|/|Z|.
If t ∈ Sτ we then have |J | = q2, while if L = L3(q) and t ∈ Sτφ we have |J | = q3/2.
Thus, |Jt| = |J | = |S : CS(τ)| if t ∈ Sτ , and again |Jt| = |J | = |S : CS(τφ)| if t ∈ Sτφ.
It follows that t ∈ τS or (τφ)S , and so we are done if t interchanges E and F .

We are now reduced to the case where t ∈ Sφ. Let P be a maximal parabolic subgroup
of L containing S, set X = O2′(P ), and take E = O2(P ). Then P is φ-invariant, and
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|CS/E(φ)| = |S/E|1/2. It follows that the number of involutions in (S/E)φ is equal to the
number of S/E-conjugates of φ, and so we may take t ∈ Eφ. But also |CE(φ)| = |E|1/2,
and so the number of involutions in Eφ is equal to |φE |. Thus t and φ are conjugate via
S, and the lemma is proved. �
7.5 Proposition. Assume Hypothesis 3 with p = 2, and assume that H is isomorphic to
the commutator subgroup of a group of Lie type in characteristic p, with Lie rank greater
than 1. Then p = 2, and HA ∼= SL(3, q) or Sp(4, q), with q = 2n. Moreover, there
exists an element s of S which interchanges the two maximal parabolic subgroups of HA
containing S ∩HA, and one of the the following holds.

(i) H ∼= SL(3, q) and V is the direct sum of H-submodules U and Us, where U is a
natural SL(3, q)-module for H. If A � H then q = 2, |A| = 4, [V,A,A] 6= 0, and
|A|2 = |V/CV (A)|.

(ii) HA ∼= Sp(4, q) and V is the direct sum of HA-submodules U and Us, where U
is a natural Sp(4, 2n)-module for H. Further, we have |A|3/2 < |V/CV (A)|, and
if [V,A,A] = 0 then |A|2 = |V/CV (A)| and A is conjugate in G to Z(S ∩HA).

Proof. By 5.9 we have p = 2 and H/Z(H) ∼= L3(q) or Sp(4, q) (q = 2n), or Alt(6). If H
is not isomorphic to Alt(6) set T = S∩H, and if H ∼= Alt(6) set T = (S∩H)CS(S∩H).
Thus, either T = S∩H or HT ∼= Sp(4, 2). Let P1 and P2 be the two maximal subgroups
of HT containing T . We use the following notation:

Hi = O2′(Pi), Zi = CS(Hi), Qi = O2(Hi), and Vi = 〈CV (T )Hi〉.

For the sake of easy reference, we record also the following basic facts.

(1) Either Zi ≤ Hi or HT ∼= Sp(4, 2).

(2) Hi/Qi ∼= SL(2, q), and Qi/Zi is a natural SL(2, q)-module for Hi/Qi.

We list a few well known (and easily checked) facts about the Sylow 2-subgroups of
SL(3, q), Sp(4, q), and Alt(6), as follows.

(3) We have T = Q1Q2, Z(T ) = Q1 ∩Q2, and every elementary abelian subgroup of T is
contained in Q1 or in Q2.

As S is contained in a unique maximal subgroup of G, we have the following result.

(4) There exists s ∈ S with (H1)s = H2, and with (H2)s = H1. In particular, the number
c of non-trivial irreducible constituents for Hi in Vi is independent of i.

Let X be a non-central chief factor for some Hi in V , and let B be a non-identity
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subgroup of T . Then for any i, i = 1 or 2, B is conjugate in G to a subgroup B1 of T
with B1 � Q1. We have |X| ≥ q2 and |X/CX(B1)| ≥ q, by 6.8. Thus:

(5) For any non-identity subgroup B of T , we have |V/CV (B)| ≥ qc.

Notice that [V1 + V2, Z(T )] = 0. Then V 6= V1 + V2, and so [V,O2(Hi)] � Vi. Since
CV (H) = 0, we also have [Vi, O2(Hi)] 6= 0. Then (5) yields the following result.

(6) c ≥ 2, and |V/CV (B)| ≥ q2 for any non-identity subgroup B of T .

We now choose an elementary abelian subgroup E of S in the following way. If there
exists a non-identity elementary abelian subgroup F of T , with |F |2 ≥ |V/CV (F )|, then
we take E ≤ T so that |E|2|CV (E)| is as large as possible and, subject to these conditions,
so that |E| is as large as possible. Otherwise, if no such subgroup F of T exists, we take
E so that |E|2|CV (E)| and then |E| are as large as possible. Then E is weakly closed in
CG(E), by 3.2. In particular, E is invariant under NT (CS(E)). As CS(T ) ≤ T it follows
that E∩T 6= 1. Notice that our way of choosing E then yields the following information.

(7) If E � T then
|V | > |F |2|CV (F )| < |E|2|CV (E)|

for any non-identity subgroup F of E ∩ T .

Let W be a non-trivial, irreducible G-invariant section of V and let U be an irreducible
HT -submodule of W . Set F0 = EndHT (U), F = Fq, and note that F0 ≤ F , by 6.4(a).
Denote by Γ0 the Galois group of F over F0, and by Γ the full automorphism group of
F . Write |F0| = q0 = 2m, and set r = |Γ0|. Thus n = mr. Set Ũ = Y ⊗F0 F . Let the
modules Mi and Ni, 1 ≤ r, be given as in 6.6, and set di = dimF (Mi) and d = d1 · · · dr.
Further, let the indexing be given so that d1 ≥ · · · ≥ dr, and denote by c0 the number of
irreducible constituents for HT in W .

Suppose first that HT = HE and that HT is not isomorphic to Alt(6). That is,
suppose that HE is a group of Lie type. With E ≤ T , it follows from (3) that E ≤ Qi
for some i, (say i = 1), and with HT = HE we then have 〈EH1〉 = Q1, and thus
E = Q1. Let s ∈ S be as in (4). Then EEs = T and E ∩ Es = Z(T ). Then 2.2
implies that |T |2|CV (T )| ≥ |E|2|CV (E)|. In particular, we have |T |2 ≥ |V/CV (T )| and
|T |2 ≥ |W/CW (T )|. As |CU (T )| = q0, by 6.4(b), we then have |W | ≤ (q0)c0q6 (resp.
|W | ≤ qc00 q

8) if H/Z(H) ∼= L3(q) (resp. HT ∼= Sp(4, q)). By 6.6(c) we have dm ≤ 6m+ 1
(resp. 8m+ 1). Here d1 = 3 or d1 ≥ 8 (resp. d1 = 4 or d1 ≥ 16) by 6.7, so in fact d1 = 3
(resp. d1 = 4), and if m > 1 then m = 2 and di = 1 for 1 < i ≤ r. Further, if m = 1 and
r > 1 it follows that r = 2. Thus, we have proved the following result.

(8) Suppose that HT = HE � Alt(6). Then HT/Z(HT ) ∼= L3(q) (resp Sp(4, q)) and one
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of the following holds.
(i) U is a natural module of dimension 3 (resp. 4) for HA.

(ii) q = q2
0 , and Ũ ∼= M ⊗F Mφ where M is a natural module for HT , and where

〈φ〉 = Γ0.

With U as in (8i) or (8ii) one observes that CU (Q1) � CU (Q2), so U is not invariant
under s. Then W contains U ⊕ Us, and we obtain

6m+ 2 ≥ 2 · 3m (resp. 8m+ 2 ≥ 2 · 4m).

It follows that m = 1 and that (8i) holds. Moreover, we have shown that any non-trivial,
irreducible, HE〈s〉-invariant section of V is isomorphic to U ⊕ Us, and from this, and
from the preceding estimates, it follows that there is a unique such section. Then 1.2
yields V ∼= U ⊕ Us.

Suppose now that HE ∼= Sp(4, q), and then suppose that A ≤ T . Then A ≤ Qi
for some i, and we set A∗ = 〈AHi〉. Thus A∗ = Z(HiT ), or O2(HiT ), or O2(Hi), and
it is now a straightforward matter to check that |A ∗ |3/2|CV (A∗)| < |V |. Then also
|A|3/2|CV (A)| < |V |, by 2.2. Assume that |A|3/2|CV (A)| ≥ |V |, and let A be minimal for
this property. Then A � T and we may take A so that |A0|3/2|CV (A0)| < |A|3/2|CV (A)|
for any proper subgroup A0 of A. Then NA(U) = NA(Us) = A. Then any element a
of A− T induces a non-identity field automorphism on L, by 7.4. Then [CV (T ), a] 6= 0,
and so A ∩ T = A, contrary to what has just been shown. Thus |A|3/2|CV (A)| < |V |.

Continuing to assume that HE ∼= Sp(4, q), suppose now that A ≤ HE and that
[V,A,A] = 0. Inspection of the structure of U and of Us allows us to fix the indices
so that CU (H1) 6= 0 and CUs(H1) = 0. By (3), and possibly after conjugation by s,
we may assume that A ≤ Q1. Let Ri, 1 ≤ i ≤ 3, be root subgroups of Q1, with
respect to a standard set-up of HT as a group of Lie type, with Q1 = R1R2R3, and
taking Z(H1) = R1 and Z(T ) = R1R2. Set U1 = [U,H1]. Then CU (x) ≤ U1 for any
non-identity element x of Q1. Here both U1/CU (H1) and Q1/R1 are natural SL(2, q)-
modules for H1/Q1, and the commutator map defines a pairing of U1/CU (H1)×Q1/R1
into CU (H1), defined over F . Suppose that AR1 ∩ Ri 6= 1 for both i = 2 and 3. Then
CU (Ri) = CU (ER1 ∩ Ri) for any i, and thus CU (AR1) = CU (Q1) = CU (H1) is of order
q. But we also have R1 = CQ1(U/CU (H1)) so [U,A] � CU (H1), and thus A fails to act
quadratically on U . We therefore conclude that AR1 ∩Ri = 1 for some i. In particular,
we have |AR1| ≤ q2.

If |CU (A)| > q2 then A ≤ R1 and CV (A) = CU (R1) + CU∗(R1) is of index q3 in
V . In that case we have |V/CV (A)| > |A|2, so we conclude that |CU (A)| ≤ q2. On
the other hand, we have |CU∗(x)| = q2 for any non-identity element x of Q1, so we
have |V/CV (A)| ≥ q4, and hence |A| = q2. It follows that R1‘A. Now view Q1/R1 as
a 2-dimensional vector space over F , for the action of H1/Q1. This action is doubly
transitive on 1-spaces, and the 1-spaces partition the space. As Ri ∩ A = 1 for some i,
and since the same is true for any H1-conjugate of A, it follows that A is conjugate in
H1 to R1R2. Thus, (ii) holds if HE ∼= Sp(4, q).

55



Now assume that HE ∼= SL(3, q), and suppose that A � H. Then 7.4 implies that
|A| ≤ 2q, and so |V/CV (A)| ≤ 4q2. Suppose q > 2. Then |V/CV (A)| ≤ q3, while
7.4 shows that |CV (a)| = q3 for any a ∈ A − H. Then |A| > 4, so A ∩ T 6= 1, and
CV (a) ≤ CV (A ∩ T ). But for a ∈ A − H, either V = U + Ua or a induces a field
automorphism on L (and on V ), and one checks in either case that [CV (a), x] 6= 0 for
any x ∈ T . Thus, we have a contradiction in this case, and so q = 2. Then A = Z(T )〈a〉,
where a induces a graph automorphism on H, and (i) holds. We are thus reduced to the
following cases.

(9) Either E � T or HE ∼= Alt(6).

Suppose that HE ∼= Alt(6), and set T0 = S ∩H. By (3) and 3.2 we have E = T0 ∩Qi
for some i, and then |V/CV (E)| ≤ 16. Suppose that U is a natural Sp(4, 2)-module for
H. Then U 6= Us, and one checks that |(U +Us)/CU+Us)(E)| ≥ 32. Thus |V/CV (E)| >
16, and we conclude that U is not a natural Sp(4, 2)-module. Then 7.2 implies that
dim(U) = 8 and that U is a direct summand of the Steinberg module for Sp(4, 2). It
follows that E acts freely on U , and thus 64 = |U/CU (A)| > |E|2. This contradiction
shows that HE � Alt(6), and thus E � T .

Set E1 = E ∩ T , and suppose next that E normalizes H1 and H2. Then |E/E1| = 2,
and by 7.4 there is an element b ∈ E − E1 such that b induces a non-identity field
automorphism on H. In particular, we then have q ≥ 4. By (3) we may choose indexing
so that E1 ≤ Q1, and then [Q1, b] = CQ1(b). We then have E = 〈bQ1〉, by 3.2. If
|V1/CV1(b)| ≥ 4 then |V/CV (E1)| ≤ |E1|2, in violation of (7), so in fact |V1/CV1(b)| = 2.
Then 6.8 implies that q = 4 and that V1/CV1(H1) is a natural O−4 (2)-module for H1〈b〉.
Now |E| = 8 (resp. 16) if H/Z(H) ∼= L3(q) (resp. (Sp(4, q))′), and so |V/CV (E)| ≤
64 (resp. 28). Then also |V/CV (E1)| ≤ 25 (resp 27). Set E2 = A ∩ Z(T ). Then
|E1/E2| = 2, and we observe that [V2, E2] = [V2, Z(T )] = 0, while |V2/CV2(E1)| ≥ 4.
Thus |V/CV (E2)| ≤ 8 (resp 32). If H/Z(H) ∼= L3(4) we then contradict (6), so in fact
we have H ∼= Sp(4, 4) and |E2| = 4. Let x ∈ CH1(b) − T , and set E3 = (E2)x. Then
|E3/(E3 ∩ Z(T ))| = 2, and it follows, by a repetition of the preceding argument, that
|V/CV (E3 ∩ Z(T )| ≤ 8. Thus, we violate (6) in this case as well. We have shown:

(10) There exists a ∈ E such that (H1)a = H2.

Fix a as in (10). Set E0 = NE(H1) and, as above, set E1 = E ∩ T . Then |E/E0| = 2,
|E/E1| ≤ 4, and E1 = E∩Z(T ). Moreover, by 7.4 we have |E/E1| = 2 if HT ∼= Sp(4, q).
Also, we have E1 ≤ CT (a) = CZ(T )(a), and so 3.2 implies that E1 = [CZ(T )(E0), a].
Notice that |V1/(V1 ∩ V2)| = |V1/CV (T )| ≥ q, by 6.8. If |E/E1|2 ≤ q then |V/CV (E1)| ≤
|E1|2, which is contrary to (7). Thus |E/E1|2 > q. Then q ≤ 4.

Suppose q = 4. Then |E1| = 2 and |E| = 8. Moreover, we have |V/CV (E)| ≤ 64, while
|V/CV (E1)| ≥ 16 by (6). It follows that |V1/CV (T )| = 4, and so V1/CV1(H1) is a natural
SL(2, 4)-module for H1/Q1. Then an element of E0 − E1 induces a field automorphism
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on V1/CV1(H1), and so |V1/CV1(E)| ≥ 8. But then |V/CV (E1)| ≤ 8, and so we have a
contradiction in this case. We therefore conclude that q = 2, and H ∼= Alt(6) or L3(2).

Suppose that H ∼= Alt(6). Then |A| = 4, and CH(a) is a dihedral group of order 10.
Let X be the subgroup of CH(a) of order 5, and let c be the involution in A∩H. Suppose
that X has more than one non- trivial constituent in V . Then |[V, c]| ≥ 16, and since
|V/CV (A)| ≤ 16 we obtain |[V, c]| = 16 and CV (c) = CV (A). Then [V,A,A] = 0, and
[V,X, a] = 0. But also CV (X) ≤ CV (c) ≤ CV (a) in this case, and so a centralizes V . So,
we conclude that X has a single non-trivial irreducible constituent in V . We again obtain
[V,X, a] = 0. As two conjugates of X suffice to generate H, we have |CV (X)| ≤ 16, and
so |V | ≤ 28. Let D be a dihedral group of order 8 generated by two conjugates of a.
Then Z(D) = 〈c〉, and since c is not a 2-transvection, by (7), it follows that a is not a
transvection. Then |CV (X)| = 16 and |V | = 28. In particular, we have |[V,A]| ≥ 16.
Moreover, we now have |V/CV (a)| = 4, and |V/CV (A)| = 16. Now also CV (A) = CV (D)
and, again since D is generated by two conjugates of a, [V,D] = [V,A] is of order 16.
Then [V,A,A] = 0, and then also [V,D,D] = 0, which implies that D is elementary
abelian. With this, we conclude that H is not isomorphic to Alt(6).

Suppose finally that H ∼= L3(2). Let U be an irreducible H-submodule of V , and
suppose first that U is a natural L3(2)-module. Then U � Ua as H-modules, and we
find that |(U + Ua)/CU+Ua(A)| = 16. In view of 1.1, it follows that V = U + Ua, and
so outcome (i) of the lemma holds in this case. On the other hand, suppose that U is of
dimension 8. Then U is the Steinberg module for H, so |U : CU (A∩H)| = 16. As |A| = 4
we then have U = [V,H], CU (A) = CU (A ∩ H), and A acts quadratically on U . Here
A∩H = Z(T ), so we have also [CU (Q1)+CU (Q2), A] = 0. As a interchanges H1 and H2,
it follow that [CU (Q1), Q2] = 0, and then [CU (Q1),H1] = 0. Then [CU (T ), 〈H1,H2〉] = 0,
contrary to CV (H) = 0. With this contradiction, the proof of the 7.5 is complete. �

Section 8: Alternating groups, p odd

Theorem. Let G = Alt(n), n ≥ 5, and let V be an irreducible G-module over F3.
Suppose that there exists a 3-cycle a in G such that |V/CV (a)| = 9 and such that 0 =
[V, a, a, a] 6= [V, a, a]. Then V is isomorphic to the unique non-trivial constituent in the
natural permutation module for G over F .

Proof. For any m, denote by P (m) the permutation module for Alt(m) over F3, with
basis vectors x1, · · ·xm permuted in the natural way by Alt(m). Denote by P0(m) the
codimension-1 submodule of P (m) consisting of the vectors a1x1 + · · ·+amxm for which
a1 + · · ·+ am = 0. Set F (m) = CP (m)(Alt(m)), and set P (m) = P (m)/F (m). Take a to
be the 3-cycle (1 2 3), and let H be the subgroup of G fixing the point 1 in the natural
permutation representation for G. Similarly, let K be the subgroup of G fixing both 1
and 2, and let L be the subgroup fixing each of 1, 2, and3. Thus [a, L] = 1.

(1) We have dim F (m) = 1. Further, P (m) = P0(m) ⊕ F (m) if n is not divisible by 3,
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and otherwise F (m) ≤ P0(m).

The irreducibility of P 0(m) will be assumed for m ≤ n. We shall see that the irre-
ducibility of P 0(n) will follow by induction.

(2) Let ` be the least integer such that 3 + 2` ≥ n. Then `+ 1 conjugates of a generate G.

We will need the following result.

(3) Let W be an F3G-submodule of V , such that P0(n) is a submodule of W , and such
that with dim(W/P0(n)) = 1. Suppose that there exists a 3- cycle a in G such that
|V/CV (a)| = 9 and such that 1 = [V, a, a, a] 6= [V, a, a]. Then CW (G) 6= 0.

The proof of (3) is as follows. If 3 divides n then P0(n) ≥ F (n) and there is nothing
to prove. So assume that 3 does not divide n. Suppose first that 3 + 2` = n. Then
dim(W/CW (G)) ≤ 2` + 2 = n − 1, by (2). As dim(P0(n)) = n − 1 we then have
W = P0(n)⊕CW (G), and CW (G) has dimension 1. Suppose finally that 3 + 2` = n+ 1.
Then 3 + 2(`− 1) = n− 1 and so H is generated by ` 3-cycles. Then dim(W/CW (H)) ≤
2` = n − 2. As dim(P0(n)/CP0(n)(H)) = n − 2 we conclude that CW (H) � P0(n). Let
x ∈ CW (H) − P0(n). Assuming that [x,G] 6= 0 we obtain |xG| = n and so 〈xG〉 is a
homomorphic image of P (n). Then W ∼= P (n), and thus CW (G) 6= 0, proving (3).

Suppose now that 8.1 is false, and let n be minimal for this property. Suppose
CV (H) 6= 0 and let 0 6= x ∈ CV (H). Then |xG| = n and V = 〈xG〉, and so V is a
homomorphic image of P (n). As V is irreducible we are done in this case. We may
therefore assume henceforth that CV (H) = 0.

Suppose that 3 divides n. As CV (H) = 0 it follows from (3), and induction on n, that
V ∼= P0(n − 1) as a module for H. Then also V ∼= P0(K) ⊕ CV (K) as a module for K,
where dim CV (K) = 1. Further, we then have V ∼= P (n− 3) + CV (L), where CV (L) is
of dimension 2. Here [V, L] ∼= P0(n − 3), and [V, L, a] = 0. As CV (L) is a-invariant, we
then have CV (L) = [V, a].

(4) If 3 divides n then [V, L, a] = 0, CV (L) = [V, a], and C[V,L](L) = [V, a, a].

We continue to suppose that 3 divides n. Identify G with the image of G in GL(V ),
and let t be the element of order 2 in GL(V ) given by CV (t) = [V,K] and [V, t] = CV (K).
Then [NG(K), t] = 1, where NG(K) ∼= Sym(n− 2).

Set G∗ = 〈t, G〉. We claim that G∗ ∼= Sym(n). To prove this, it now suffices to
show that at = a−1, by the standard presentation of Sym(n) as a Coxeter group. This
calculation can be made as follows. Take b = (3 4 5), set J = 〈a, b〉, and set U =
[V, J ]. Then J ∼= Alt(5) and U ∼= P0(5) as a module for J . Identify J with Alt(5),
let {xi | 1 ≤ i ≤ 5} be the standard basis of P (5), and identify U with P0(5). As
b ∈ K, t centralizes [U, b]. Also, we have [V, a, a] = C[V,L](L) ≤ [V,K] ≤ CV (t), and
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so CU (t) ≥ [U, b] + [U, a, a] = 〈x3 − x4, x4 − x5, x1 + x2 + x3〉. Now observe that
[U, a] = CV (L), by (4). As K = 〈b, L〉 we then have C[U,a](b) = CV (K), and thus
CV (K) = 〈x1 − x2〉. As t acts as −1 on CV (K), the action of t on U has now been
completely determined, and one may compute directly that t inverts a. In detail: on the
3-dimensional subspace of U with ordered basis (x3 + x4 + x5, x2 − x1, x1 + x2 + x3) the
matrices of a and of t are given respectively by 1 1 −1

0 1 1
0 0 1

 and

 1 0 0
0 −1 0
0 0 1

 ,

and one then checks that the matrix for t inverts the matrix for a. This shows:

(5) Suppose that 3 divides n, let t be the element of GL(V ) defined above, and identify
G with the image of G in GL(V ). Set G∗ = 〈t, G〉. Then G∗ ∼= Sym(n).

We continue to suppose that 3 divides n, and we now form the semi-direct product
V G∗. The usefulness of (5) lies in its providing us with a means to produce complements
to V in V G∗, by means of generators and relations. (This would be a more difficult task
if we were forced to work with the smaller group V G.)

The key to the proof of 8.1 is the following result.

(6) If 3 divides n then H1(G,V ) ∼= F3.

The proof of (6) is as follows. Assume that 3 divides n, and denote by K∗ the pointwise
stabilizer in G∗ of {1, 2}. Then K∗ is generated by conjugates of t, i.e. by transvections,
and it follows that CV (K) = CV (K∗). Using multiplicative notation in V G∗, let w be a
non-identity element of [V, t] = CV (K∗) and set ti = twi, 0 ≤ i ≤ 3. Then [ti,K∗] = 1.
Identify t with the transposition (1 2) in G∗, and set s = (2 3). Then each ti is conjugate
to t via an element of CV (s), and so |tis| = 3 for all i. Setting G∗i = 〈ti, s,K∗〉, it now
follows that G∗i ∼= Sym(n), and that G∗i is a complement to V in V G∗.

Suppose next that there exists x ∈ V G and indices i and j such that (G∗i )
x = Gj .

We may take x ∈ V . We have G∗i ∩ (G∗i )
x ≥ H, so that Hx−1 ≤ G∗i ∩ V H = H. Thus

x ∈ NV (H) = CV (H) = 1 and so G∗i = G∗j . Thus there are at least three conjugacy
classes of complements to V in V G∗, and so |H1(G∗, V )| ≥ 3. Now let Ĝ be a complement
to V in V G∗. We have H1(H,V ) = 0, as follows from (3), so we may assume (after
conjugation) that H ≤ Ĝ, and then Ĝ = 〈tx,H〉 for some x ∈ V . Here [tx,K∗] = 1, so
x ∈ CV (K) = [V, t], and so Ĝ = Gi for some i. This shows that |H1(G∗, V )| = 3. But
then also |H1(G,V )| = 3, as the reader may verify. This completes the proof of (6).

We may now complete the proof of 8.1. Suppose first that n ≡ 2 (mod 3). As
CV (H) = 0 it follows from (3), and from induction, that V ∼= P0(n− 1) as a module for
H. In particular, we have dim V = n− 2. As 5 does not divide the order of SL(3, 3) we
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then have n > 5. Now V ∼= P (n−2) as a module for K, and then V ∼= P0(n−3)⊕CV (L)
as a module for L. As dim P0(n−3) = n−4 we then have dim CV (L) = 2. As P0(n−3)
is irreducible for L we then have [V, L, a] = 0 and a induces a transvection on V , contrary
to hypothesis.

Suppose next that n ≡ 1 (mod 3). Then V has an H-submodule V0 with V0 ∼=
P 0(n − 1), and (6) implies that either V = V0 or V ∼= P (n − 1) as a module for H.
In particular, we have dim V = n − 3 or n − 2. As an L- module we then have V ∼=
P0(n− 3)⊕CV (L), where dim CV (L) ≤ 2. We therefore obtain a contradiction as in the
preceding paragraph.

Suppose that n ≡ 0 (mod 3). Then V ∼= P0(n − 1) as an H-module. By (6) V is a
submodule of an indecomposable G-module W with dim W/V = 1, and by (3) we have
CW (H) 6= 0. Then W is spanned by xG for any non-zero x ∈ CW (H), and W is then a
homomorphic image of P (n). Thus, W ∼= P (n) and V ∼= P 0(n), as required. �
Lemma 8.2. Let H be the group 2·Alt(9) and let V be a non-trivial, irreducible H-
module over F3, of dimension at most 8. Then either dim(V ) = 8 and V is a spin
module for H, or dim(V ) = 7 and V is isomorphic to the non-trivial constituent in the
natural permutation module for H.

Proof. Let x be an element of order 3 in H such that the image of x in H/Z(H) is a
3-cycle. If x acts quadratically on V then V is a spin module of dimension 8, by [M]. So
we may assume that x does not act quadratically. Let J be a matrix in Jordan canonical
form which represents x on V , let m be the number of 3× 3 blocks of J , and let n be the
number of 2×2 blocks. As x is not quadratic, we have m ≥ 1. Set L = E(CH(x)). Then
L ∼= SL(2, 9) or L2(9), and so any non-trivial module for L over F3 is of dimension at least
4. Suppose that m ≥ 2 or that n ≥ 1. As dim(V ) ≤ 8, it follows that L centralizes the
chain [V, x] > [V, x, x] > 0, and the chain CV (x) ≥ CV (x)∩ [V, x] ≥ CV (x)∩ [V, x, x] ≥ 0.
But also, with m ≥ 2 or n ≥ 1 we have dim(V/([V, x] + CV (x)) ≤ 3. As [V, L] 6= 0, we
conclude that m = 1 and n = 0. Then V is isomorphic to the non-trivial constituent in
the natural permutation module, by 8.1. �
Theorem 8.3. Assume Hypothesis 4′, with p odd, and assume that G/Z(G) ∼= Alt(n),
n ≥ 5. If p = 5 assume also that n 6= 5, and if p = 3 assume n 6= 6. Then p = 3,
|A|2 = |V/CV (A)|, and one of the following holds.

(i) |A| = 3, A acts non-quadratically on V , G ∼= Alt(n), and V is isomorphic to the
unique non-trivial irreducible constituent in the natural permutation module for
G over F3.

(ii) G ∼= SL(2, 5) and V is isomorphic to the natural SL(2, 9)-module for H.
(iii) G ∼= 2·Alt(9), |A| = 27, and V is a spin module for G, of dimension 8 over F3.

Proof. If A acts quadratically on V then (ii) holds, by 5.6(iii). Thus, we may assume that
A is not quadratic. If V is reducible, then 2.2 shows that G has more than one non-trivial
constituent in V , and then, by induction, we may assume that a proper submodule U
satisfies the conclusion of the lemma. But then V = CV (A) + U and [V,G] = U , so we
may in fact assume that V is irreducible.
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Suppose first that |A| = p, and then suppose further that p ≥ 5. Then A is not
quadratic on V , as follows from [Sa] or from [C3]. Let a ∈ A#, let a1 be a p-cycle
of a, and put b = a(a1)−1. Then two conjugates of a generate a group L = K × 〈b〉,
where K/Z(K) ∼= Alt(p). As |V/CV (a)| ≤ p2 there is then a homomorphism of L into
SL(4, p) which is non-trivial on K. If p ≥ 13 then K contains an elementary abelian
subgroup of order 81, whereas SL(4, p) contains no such subgroup. Thus 5 ≤ p ≤ 11, and
one observes in these three cases that K has a subgroup K0 with K0/Z(K0) ∼= L2(p).
As A acts non-quadratically, and as [V,A,A,A] = 0, it follows from 6.8 that K0 has a
unique non-trivial constituent U in V , and that U is a natural O3(p)-module for K0.
In particular, we have Z(K0) = 1, and so K ∼= Alt(p) or 3·Alt(7). As Alt(6) has no
faithful complex representation of degree 4, we conclude that p = 5 or K ∼= 3·Alt(7). It
is easy to check for any element d of order 3 in X = SL(4, 7), that any component of
CX(d) is isomorphic SL(2, 7) or SL(3, 7), and then since |SL(3, 7)| is not divisible by 5,
we conclude that p = 5 and K ∼= Alt(5). Here K = K0, and with U as above we have
H1(K,U) = 0 by 1.4. Thus V = U ⊕ CV (K). But |U/CU (A)| = 25, so [CV (K), A] = 0,
and so A ≤ K. That is, a is a 5-cycle. Since n 6= 5, by hypothesis, it follows that there is
a subgroup J of H with J ∼= Alt(6) or 3·Alt(6), and with J generated by two conjugates
of A.

Set W = [V, J ]. As |SL(3, 5)| is not divisible by 9 we have W 6= U , and so |W | = 54.
As |SL(4, 5)| is not divisible by 27 we have J ∼= Alt(6). There is a subgroup K1 of J with
NJ(A) ≤ K1 ∼= Alt(5) and with 〈K,K1〉 = J . Just as with K, we find that [V,K1] is
an O3(5)-module for K1, and W = [V,K1]⊕ CW (K1). As CW (K) 6= CW (K1) it follows
that CW (NJ(A)) is of dimension 2. Then CU (NJ(A)) 6= 0. But this is contrary to the
case, as one may check that an involution in K inverting A acts non-trivially on CU (A).
We conclude that |A| = 3.

Fix an identification of G/Z(G) with Alt(n), and suppose that aZ(G) corresponds to
a 3-cycle. Then two conjugates of a generate a subgroup X of G containing Z(G) and
with X/Z(G) ∼= Alt(5). Then dim([V,X]) = 4, and it follows from 3.1 that X ∼= Alt(5)
and Z(G) = 1. Then 8.1 yields (i). So assume that a does not correspond to a 3-cycle.
Then n ≥ 7, and one may observe that two conjugates of a suffice to generate a subgroup
of G whose order is divisible by 7. (Indeed, if a corresponds to a product of two disjoint
3-cycles then a is contained in a Frobenius subgroup of G of order 21, and if a corresponds
to a product of three or more pairwise disjoint 3-cycles then one has only to observe that
(1 2 3)(4 5 6)(7 8 9)(1 3 5)(2 6 9)(4 8 7) is a seven-cycle.) As 7 does not divide the order
of SL(4, 3), we have a contradiction at this point. Thus |A| > p.

We continue to fix an identification of G/Z(G) with Alt(n). Fix a ∈ A# so as to
minimize the number k of p-cycles in writing the permutation aZ(G) as a product of
pairwise disjoint p-cycles. Set Ca = O2(CG(a)). Then Ca = EK1 × K2, where E is a
normal elementary abelian p-subgroup of Ca of order pk, K1 ∼= Alt(k), and K2/Z(K2) ∼=
Alt(n− pk). The minimality of k implies that E ∩A = 〈a〉, and so p divides |Ca/E|.

Suppose that A acts non-trivially on some K ∈ {K1E/E,K2}, and if possible choose
K so that K = K1E/E. (Notice that A acts non-trivially on some such K if p ≥ 5.)
As [V,A,A,A] = 0 we have [V,A,A] ≤ CV (a), and so A acts quadratically on V/CV (a).
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Also, A acts quadratically on CV (a), by Hypothesis 4′. There is then a non-trivial
irreducible constituent U for K in V , admitting A, and on which A acts quadratically.
As K/Z(K) is an alternating group it follows from [C3] that p = 3, or that p = 5 and
K ∼= SL(2, 5). Suppose p = 5. Then K may be identified with a component of Ca, and
we have 1 6= Z(K) ≤ Z(H) Then every non-trivial constituent for K0 in V is a natural
SL(2, 5)-module. A Sylow 5-subgroup B of K acts quadratically on every irreducible
constituent for K in V , and it then follows from 1.6 that B acts quadratically on V .
This is contrary to what has aleady been shown, so we conclude that p = 3. Then [M]
yields K ∼= 2·Alt(m) for some m, m ≥ 4, so K = K2, Z(K) = Z(G) 6= 1, and either
|A/CA(K)| = 3 or m = 6. As V is irreducible for G, Z(K) acts as −1 on V , and so every
irreducible constituent for K in V is non-trivial.

Set W = CV (CA(K)). Suppose that |A/CA(K)|2 ≤ |W/CW (A)|. Then 3.3 implies
that CA(K) is an F2-offender on V . Induction on |A| then yields |CA(K)| = 3 and that
(i) holds with CA(K) in place of A. This is contrary to 1 6= Z(H), so we conclude that,
in fact, we have |A/CA(K)|2 > |W/CW (A)|. Then W is irreducible, m = 4 or 6, and
W is a natural SL(2, 3)-module (if m = 4) or a natural SL(2, 9)-module (if m = 6).
Moreover, if m = 6 then |A/CA(K)| = 9. In either of our two remaining cases, the choice
of K implies that k ≤ 3, and so |CA(K)| ≤ 9.

Suppose m = 6. Then |A| ≤ 81 and CV (A) = CW (A) is of order 9, so |V | ≤ 310.
Since all irreducible constituents for K in V are natural SL(2, 9)-modules we then have
|V | = 38 and there are just two such constituents. Then Ca ∼= 〈a〉 × K, so k = 1 and
n = 9, and |CV (a)| = 34. Here [V, a] = CV (a), so a acts quadratically on V . Now [M]
implies (iii).

Suppose m = 4. If k = 3 then n = 13, and the minimality of k implies that A∩K = 1,
and so |A| = 9. If k < 3 then A ∩ EK1 = 〈a〉, and so |A| = 9 in any case. As
CV (A) = CW (A) is of order 3, we then have |V | ≤ 35. Then |V | = 34 (and V/W is a
natural SL(2, 3)-module for K). As 7 doesn’t divide the ordr of SL(4, 3) we then have
n ≤ 6, and with |A| = 9 we get n = 6, contrary to hypothesis.

We have now reduced to the case where no K as above exists. Thus p = 3, and A acts
trivially on Ca/E, whence also [K2, A] = 1. Suppose k > 3. Then CCa(EK1/E) = EK2,
so A ≤ EK2, and then n − 3k = 3. Then |A| = 9 and, by the minimality of k, any
b ∈ A − 〈a〉 is a product of at least k disjoint 3-cycles, k − 1 of which represent orbits
of 〈a〉. But with k > 3 we can then choose b so that two at least of the 3-cycles in b
are 3- cycles of a−1, and then ab has fewer than k 3-cycles. With this contradiction we
conclude that k ≤ 3.

Suppose k = 1. Then Ca/Z(H) ∼= 3 × Alt(n − 3), and since |A| > 3 and [A,K2] = 1
we have n = 6, contrary to hypothesis.

Suppose that k = 2. Then Ca ∼= 32 ×Alt(n− 6), and EK1 = E. As A ∩E = 〈a〉 and
[A,K2] = 1, we then have n = 9 and |A| = 9. Here we may identify Z(H)A/Z(H) with

〈(1 2 3)(4 5 6), (4 5 6)(7 8 9)〉.

There is then a unique element c of A such that c can be represented as aproduct of
three disjoint 3-cycles. By [M], c is not quadratic on V , and so c acts non-trivially on
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V/CV (c). Here 〈c〉 = Z(S) for some Sylow 3-subgroup S of H, and so S acts faithfully
on V/CV (c). Then |V/CV (c)| ≥ 34, and we conclude that CV (c) = CV (A) has index 34

in V . Now observe that since a is represented as a product of two disjoint 3-cycles, there
exists a subgroup J of H with a ∈ J ∼= Alt(4), and such that every involution t in J is
represented as a product of four disjoint transpositions. Suppose CV (a) 6= CV (A). Then
|V/CV (a)| ≤ 27, from which it follows that J has a unique non-trivial constituent in V .
That is, we have |[V,O2(J)]| = 27, and |V/CV (t)| = 9. On the other hand, t inverts an
element of order 7 in H, whereas 7 does not divide |GL(4, 3)|. This shows that, in fact,
we have CV (a) = CV (A), and thus CV (A) = CV (d) for all d ∈ A#.

Set X = NH(EA). Here EA = J(S) for a Sylow 3-subgroup S of H (so EA is
elementary abelian of order 27), and we have X/EA ∼= Sym(4), with X acting irreducibly
on EA. Now

X ≤ 〈g ∈ H : A ∩Ag 6= 1〉

and so CV (A) is invariant under X. Then CV (A) = CV (EA). Let x be an element
of EA such that x is represented by a 3-cycle, and let L be the component in CH(x)
(L/Z(H) ∼= Alt(6)). No 3-element of L induces a transvection on CV (x), by [M] so
we have CV (x) = CV (EA), and indeed we have shown that CV (EA) = CV (y) for all
y ∈ (EA)#. Then CV (EA) is invariant under the group

X∗ = 〈g ∈ H : EA ∩ (EA)g 6= 1〉.

We now ask the reader to perform the fairly straightforward exercise of showing that
X∗ = H. With this we have H acting on the 4-space V/CV (EA), and an evident
contradiction.

Finally, suppose that k = 3. Then EK1 ∼= Z3 o Z3, and the minimality of k implies
that |A ∩ EK1| ≤ 9. Suppose that |A| > 9. Then A � EK1, and since [A,K2] = 1
we conclude that |K2| = 3 and n = 12. Let S be a Sylow 3-subgroup of H containing
A. Then S ∼= (3 o 3) × 3, and the minimality of k = 3 implies that A � J(S). Then
A = CS(A) ≥ Z(S), so A contains a 3- cycle, and so k = 1. We conclude from this
contradiction that |A| = 9.

For any b ∈ A such that b is represented as a product of three disjoint 3-cycles, we
have |V/CV (b)| ≥ 34, by the same reasoning as in the treatment of the case k = 2. Then,
for such an element b, we have CV (b) = CV (A), of index 34 in V . Suppose next that
A ≤ EK1. In this case we may identify Z(H)A/Z(H) with the group

(1) 〈(1 2 3)(4 5 6)(7 8 9), (1 4 7)(2 5 8)(3 6 9)〉.

Here every non-identity element of A has a representation as a product of three disjoint
3-cycles. We may assume that n = 9, by restricting to an appropriate subgroup of H. Set
X = 〈CH(b) : b ∈ A#〉. Then CV (A) is X-invariant. On the other hand, Z(H)X/Z(H)
contains all the 3-cycles in the two generators given in (1), and one may check that these
six 3-cycles generate Alt(9). Then CV (A) = CV (H), and indeed [V,H] = 0. We conclude
that A � EK1.
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Now n = 12 (as [A,K2] = 1) and there are, up to conjugation, two possibilities for
Z(H)A/Z(H). These are as follows:

(2) 〈(1 2 3)(4 5 6)(7 8 9), (4 6 5)(7 8 9)(10 11 12)〉, or

(3) 〈(1 2 3)(4 5 6)(7 8 9), (1 4 7)(2 5 8)(3 6 9)(10 11 12)〉.

Suppose that A is as in (2). Then every element of A# is represented as a product
of three disjoint 3-cycles. Now set X = 〈CH(b) : b ∈ A#〉, as before. Then CV (A)
is X-invarian, and X contains a subgroup X0 ∼= 34 : Alt(4), and O3(X0) = 〈AX0〉.
Then CV (A) = CV (O3(X0)), and so O3(X0) is an F1- offender on V . By Thompson
Replacement there then exists a quadratic F1- offender B on V . This is contrary to
[M], and we thereby conclude that A is as in (3). Take Z(H)a = (1 2 3)(4 5 6)(7 8 9)
and let b ∈ A with Z(H)b = (1 4 7)(2 5 8)(3 6 9)(10 11 12). Then 〈b〉 is contained
in a subgroup J of H with J/Z(J) ∼= Alt(4). If CV (b) 6= CV (A) then, as in the case
k = 2, we find that an involution t in J satisfies |[V, t] = 9 and that t inverts an element
of H of order 7, contrary to 7 not being a divisor of |GL(4, 3)|. Thus CV (b) = CV (A).
Set Y = O2(CH(b)). Then Y ∼= 34 : Alt(4), and O3(Y )Z(H)/Z(H) is generated by
the 3-cycles of Z(H)b. Then a /∈ O3(Y ), and since we now have CV (b) = CV (a) we
conclude that [CV (b), Y ] = 0. Then O3(Y ) is an F1-offender on V , and again, Thompson
Replacement yields a quadratic F1-offender and a contradiction to [M]. This completes
the proof of the theorem. �

Section 9: Alternating groups, p = 2

This section contains a single result, which is as follows.

9.1 Proposition. Assume Hypothesis 4′, with p = 2. Suppose that F ∗(G) = H ∼=
Alt(n), n odd, n ≥ 7. Then there exists a ∈ A# and an involution t ∈ G− 〈a〉 such that
[V, a, t] = 0.

Proof. Fix A as in Hypothesis 4′, and assume that 9.1 is false. The following is then
obvious.

(1) For any involution a ∈ A and for any subgroup D of CG(a) of even order with a /∈ D,
we have [V, a,D] 6= 0.

Suppose first that V is reducible for G. Then 1.2 implies that G has at least two
non-trivial constituents in V . As |A|3/2 ≥ |V/CV (A)|, by Hypothesis 4′, there then
exists a non-trivial irreducible constituent W for G in V such that |A|3/4 ≥ |W/CW (A)|.
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By Timmesfeld Replacement, there is then a quadratic subgroup B of A with |B|3/4 ≥
|W/CW (B)|, and then 9.4 yields n even, contrary to hypothesis. Thus:

(2) V is irreducible for G.

Let a ∈ A#. As n ≥ 7 it follows from (1) and from 5.5 that |V/CV (a)| ≥ 8. Suppose
that we have |V/CV (a)| = 8. Then |[V, a]| = 8, and since L3(2) has 2-rank equal to 2 it
follows from (1) that the 2-rank of CG(a) is at most 3. Then n = 7, and we may record
this result as follows.

(3) We have |V/CV (a)| ≥ 8 for any involution a in A, with equality only if n = 7.

In particular, (3) implies that |A| > 2. As A contains no quadratic fours group, we
have CV (a) 6= CV (A) for a ∈ A#. If |A| = 4 then |V/CV (A)| ≤ 8 and |V/CV (a)| ≤ 4,
contrary to (3). Suppose that |A| = 8. Then |V/CV (A)| ≤ 16 and |V/CV (a)| ≤ 8. Then
(3) yields n = 7, and since the 2-rank of Alt(7) is just 2 we obtain G ∼= Sym(7). Then a
may be chosen to be a transposition, whence CG(a) contains a subgroup X isomorphic
to Alt(5), and we have [V, a,X] = 0. This is contrary to (1), so:

(4) We have |A| ≥ 16.

Let Ω = {1, 2, · · · , n} be the set supporting the natural permutation representation
of G. We now fix a ∈ A# so that the number of orbits of length 2 for 〈a〉 on Ω is
as small as possible. Denote this number by k, and identify a with the permutation
(1 2) · · · (2k − 1 2k). Set m = n− 2k.

Set Ca = O2(CG(a)). We then have

Ca ∼= 2k−1 : Alt(k)×Alt(m).

Denote by K∗1 the pointwise stabilizer in CG(a) of {2k + 1, · · · , n}, and by K∗2 the
pointwise stabilizer in CG(a) of {1, 2, · · · , 2k}. Denote by E∗ the subgroup of CG(a)
generated by the set of pairwise disjoint 2-cycles whose product is a. Set Ki = K∗i ∩Ca,
and E = E∗ ∩ Ca. Then E is elementary abelian of order 2k−1, K1/E ∼= Alt(k), E/〈a〉
is a natural Sym(k)-module for K1/E, and K2 ∼= Alt(m). The minimality of k yields:

(5) A ∩ E∗ = 〈a〉.

Set L = O2(〈ACG(a)〉. Suppose that L is solvable, and then suppose that K1 is non-
solvable. Then [K1, A] ≤ E, and so A ≤ E∗K∗2 . Then (4) and (5) imply that the 2-rank
of K∗2 is at least 3, so K2 is non-solvable, K2 ≤ L, and L is non-solvable, contrary to
assumption. On the other hand, suppose that K2 is non-solvable. Then A ≤ K∗1 , and
then (4) and (5) imply that K1 is non-solvable and K1 ≤ L. Thus, under the assumption
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that L is solvable we conclude that Ca is solvable. That is, we have k ≤ 4 and, as n
is odd, m ≤ 3. Suppose that k = 3 or 4. No involution in K∗2 is the product of 3 or
4 pairwise disjoint transpositions, so the minimality of k yields A ∩ K∗2 = 1. Let b be
an involution in E∗K∗2 . As m ≤ 3, either b or ab is a product of fewer than k disjoint
transpositions, and so A ∩ E∗K∗2 = 〈a〉. Then CA(K1/E) = 〈a〉, and |A| ≤ 8, contrary
to (4). We conclude that k ≤ 2. Then n ≤ 7, again contrary to (4). This proves:

(6) L is non-solvable.

Set Li = L ∩Ki, i = 1, 2. Then L = L1 × L2. Set X = CV (a) and Y = [V, a]. By
Hypothesis 4′, A acts quadratically on X, and hence also on Y .

Set A0 = CA(L/O2(L)). Then 〈a〉 ≤ A0 = A∩O2(LA). Suppose that A0 6= 〈a〉. Then
O2(LA) 6= E∗, and it follows that either L1 is solvable (which includes the possibility that
L1 = 1) or that L2 = 1. Suppose that L2 = 1. Then A ≤ K∗1 , and L1 is non-solvable, by
(6), and then A0 = A∩E∗ = 〈a〉. So in fact L2 6= 1, and L1 is solvable. Then A0 ≤ K∗1 .
If k = 1 we have K∗1 = 〈a〉, while if k = 3 we have CK∗1 (K1) = 〈a〉. So k = 2 or 4.
Suppose k = 2. Then L1 = 1, K∗1 is dihedral of order 8, and |A0| ≤ 4. On the other
hand, suppose that k = 4. If L1 6= 1 then A � O2(K∗1 )K∗2 , and |CO2(K∗1 )(A)E∗/E∗| = 2.
Therefore |A0| ≤ 4 in this case. If instead we have L1 = 1 then |A0| ≤ 8 since the 2-rank
of O2(K∗1 )/E∗ is 2. Thus:

(7) Suppose A0 6= 〈a〉. Then A0 ≤ O2(K∗1 ), k = 2 or 4, and |A0| ≤ 8. Moreover, we have
|A0| = 4 unless k = 4 and L1 = 1.

Fix a complement B to A0 in A. Set B1 = CB(K2) and let B2 be a complement to B1
in B. Set Yi = [Y, Li], and set Ui = Yi/CYi(Li), (i = 1, 2). We will obtain the following
result.

(8) Suppose that CB(L2) 6= 1. Then [Y1, L2] = [Y2, L1] = 0, and

|Y/CY (B)| ≥ |U1/CU1(B1)||U2/CU2(B2)|.

Indeed, set D = CB(L2). If L2 = 1 then B1 = B and (8) follows trivially. So we may
assume that L2 6= 1. As L2 = [A,L2] = [B,L2], we have

0 = [Y,B,D] = [Y, 〈BL2〉, D] ≥ [Y, L2, D] ≥ [Y, L2, 〈DL1〉].

As D 6= 1, by assumption, we have L1 ≤ 〈DL1〉, and thus [Y, L2, L1] = 0. The Three
Subgroups Lemma yields also [Y, L1, L2] = 0, so it remains only to prove the second
assertion in (8). Set U = U1 ⊕ U2. Then U is a homomorphic image of the submodule
Y1 + Y2 of Y , so

|Y/CY (B)| ≥ |U/CU (B)| ≥ |U1/CU1(B1)||U2/CU2(B2)|,
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and we have (8).
The next step is to show:

(9) |B| ≤ |Y/CY (B)|.

Suppose that (9) is false. If CB(L2) = 1 then, since m is odd, 5.8 yields |Y2/CY2(B)| ≥
|B|, and then (9) follows. Thus, we may assume that CB(L2) 6= 1, and then |Y/CY (B)| ≥
|U1/CU1(B1)||U2/CU2(B2)|, by (8). Again, as m is odd, 5.8 implies that |U2/CU2(B2)| ≥
|B2|, and hence |U1/CU1(B1)| < |B1|. In particular, we have L1 6= 1, and L1 = K1.
Notice that there exists t ∈ CG(a) such that K1〈t〉/E ∼= Sym(k). It then follows from
5.8 that k is even and that if k > 4 then U1 is a natural Sym(k)-module for K1/E and B1
is generated by elements which correspond to transpositions in Sym(k). That is, either
k = 4 or B contains elements which are the product of two disjoint transpositions. The
minimality of k then yields k = 4. Then |B1| = 2, and so |U1/CU1(B1)| ≥ |B1|. This
completes the proof of (9).

We have |A| = |A0||B|, so

(*) |A0|3/2|B|3/2 ≥ |V/CV (A)|.

Notice that V/X ∼= Y as modules for CG(a). Then

(**) |V/CV (A)| = |V/X||X/CX(B)| ≥ |Y ||Y/CY (B)| = |Y/CY (B)|2|CY (B)|.

As |Y/CY (B)| ≤ |B|, by (9), we then have

(10) |A0|3 ≥ |B||CY (B)|2, and if |Y/CY (B)| > |B| then |A0|3 ≥ 16|B||CY (B)|2.

Suppose that A0 = 〈a〉. Then (10) yields |B| = 2, |CY (B)| = 2, and |Y/CY (B)| = 2.
But L/〈a〉 has a non- solvable direct factor which, by (1), acts faithfully on Y , and so
we have a contradiction in this case. Now (6) and (7) yield:

(11) |A0| > 2, k = 2 or 4, and m ≥ 5.

Suppose next that k = 4 and that |Y | ≤ 32. Then (1) implies that L5(2) has a
subgroup of the form 24 : 3 × Alt(m). As m ≥ 5 we may choose x ∈ L2 of order 5,
and find that [Y, x] is a hyperplane of Y , and that [Y, x,O2(K1)] = 0. Here O2(K1)/〈a〉
is elementary abelian of order 16, and contains its centralizer in L5(2), so we have a
contradiction. Thus:

(12) If k = 4 then |Y | ≥ 64.

Suppose that |Y/CY (B)| > |B|. If also |A0| = 4 then (10) yields |B| = 1, which is
contrary to (4). Thus |A0| = 8, and (7) implies that k = 4, L1 = 1, and A0E

∗ = O2(K∗1 ).
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Now (10) yields |B| ≤ 8 so |A| ≤ 64 and |V/CV (A)| ≤ 29. Note also that if |B| = 4 then
|V/CV (A)| ≤ 27, and if |B| = 2 then |V/CV (A)| ≤ 26. But |V/CV (A)| ≥ |Y ||Y/CY (B)|,
by (**), and so |Y | ≤ 32, contrary to (12). Thus:

(13) We have |Y/CY (B)| = |B|.

Suppose that L1 = 1. Then L = L2, and B acts faithfully on L2. Set Y0 =
U2/CU2(L2). Notice that there exists an involution t in CH(a) such that L2〈t〉 ∼=
Sym(m). As m is odd it follows from (13) and 5.7 that either Y0 is a natural mod-
ule for LB, or m = 5 and Y0 is a spin module for LB, of dimension 4. Suppose that
m = 5 and Y0 is a spin module (i.e. a natural SL(2, 4)-module). Then |B| = 4, and
since |A0| ≤ 8, by (7), we get |A| ≤ 25. Moreover, if |A| = 25 then |A ∩ L2| = 4 and so
k = 2. But with k = 2 we have |A0| ≤ 4, so we conclude that, in fact, |A| ≤ 16, and
thus |V/CV (A)| ≤ 64. As CV (A) 6= CV (a), by (1), it follows that |Y | ≤ 32. By (11), we
may choose a0 ∈ A0 − 〈a〉, and then (1) implies that 〈a0〉 ×L2 acts faithfully on Y . But
2 × L2(4) has no faithful action on a 5-dimensional space over F2, so we conclude that
Y0 is not a spin module.

Suppose that k = 2. Then L1 = 1, and the preceding paragraph applies. As m is odd,
(13) and 9.4 imply that B contains an element b which acts as a transvection on U2. As
k 6= 1, b /∈ K∗2 . Notice that either K∗1 = A0 or K∗1 is dihedral of order 8. In either case
we have CG(A0) = A0K

∗
2 . Thus, there exists c ∈ A0 so that bc ∈ K∗2 . But [U2, c] = 0,

so bc is a transvection on U2, and then bc is a transposition in K∗2 . This is contrary to
the minimality of k, so we now conclude that k = 4. If also |A0| = 4 then (10) yields
|B| ≤ 16, |A| ≤ 64, and |V/CV (A)| ≤ 29. Then also |Y | ≤ 32, and we contradict (12).
Thus |A0| = 8. As A0 ≤ O2(K∗1 ), by (7), it follows that E∗A0 = O2(K∗1 ), and since
[B,A0] = 1 we get [L1, B] ≤ E. Then L1 = 1. As in the case k = 2, there then exists
b ∈ B such that b induces a transvection on U2, and we have b = xt where x ∈ O2(K∗1 )
and t is a transposition in K∗2 . Then a0x ∈ E∗ for some a0 ∈ A0. Then either a0x or
aa0x is the product of fewer than three pairwise disjoint transpositions. Replacing a0
by aa0 if necessary, it follows that a0b = a0xt is the product of fewer than four pairwise
disjoint transpositions, and we again contradict the minimality of k. This completes the
proof of 9.1. �

Section 10: Lie type groups in cross characteristic

10.1 Hypothesis. Hypothesis 4′ holds, and S is contained in a unique maximal subgroup
of G. Further, H/Z(H) is a quasisimple group of Lie type, whose defining characteristic
r is different from p. Indeed, it is assumed that there exists no isomorphism between
H/Z(H) and a group of Lie type in characteristic p

Our aim in this section is to prove the following result.
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10.2 Theorem. Assume Hypothesis 10.1. Then |A| = 3, and one of the following holds.

(a) G/Z(G) ∼= L2(5).
(b) G ∼= Sp(6, 2), CG(A) ∼= 3× Sp(4, 2), and |V | = 37.

We remark that there is a natural embedding of Sp(6, 2) in Ω7(3), which one obtains
by identifying 2 × Sp(6, 2) with the Weyl group of E7. Further, it is the case that in
Sp(6, 2) a Sylow 3-subgroup is contained in a unique maximal subgroup (isomorphic to
Aut(U4(2)).

Whenever Hypothesis 10.1 is in effect we set G = G/Z(H). We begin the proof of
10.2 by considering the case where H ∼= Sp(6, 2).

10.3 Lemma. Assume Hypothesis 10.1, and assume that H ∼= Sp(6, 2). Then p = 3
and one of the following holds.

(i) |A| = 3, G ∼= Sp(6, 2), CG(A) ∼= 3× Sp(4, 2), and |V | = 37.
(ii) |A| = 27, |Z(G)| = 2, and |V | = 38.

Proof. We have G = H and |Z(G)| ≤ 2. Let U be the natural F2-module for G. There
are three conjugacy classes of subgroups of order 3 in G, which are distinguished by
the dimensions of the commutators [U,X], X a representive of the class. We will say
that a subgroup (or element) X of order 3 is in the class 3A (resp. 3B, resp. 3C) if
dim([U,X]) = 1 (resp. 2, resp. 3). There is a subgroup M of G with M ∼= L2(8) :
3 ∼= 2G2(3), and M contains representatives of the classes 3C (in [M,M ]) and 3B (in
M − [M,M ]).

Suppose first that |A| = 3, so that |V/CV (A)| ≤ 9. By 5.6, A is not quadratic on
V , and so |V/CV (A)| = 9. Then A � M , as follows from 6.9. Thus, A is of type 3A.
Then there is a maximal subgroup K∗ of G containing A, with K

∗ ∼= Sym(8), and such
that A is generated by a 3-cycle in K

∗
. Let K be a subgroup of K∗ containing A, with

K ∼= Alt(7). Then 8.3 implies that K ∼= Alt(7) and that [V,K] is a natural module for K,
of dimension 6 over F3. In particular, we now have Z(G) = 1. Let K0 be a subgroup of
K containing A, with K0 ∼= Alt(6), and let b be an element of of order 3 in CG(K0). By
[C2, Theorem 4.2], [K∗,K∗] is the unique proper subgroup of G which properly contains
K and which is generated by conjugates of A. Since 〈b〉 is conjugate to A we then have
〈K, b〉 = G. We may then assume that Kb � K∗, and so also G = 〈K,Kb〉. Here b
centralizes [V,K0], which has codimension 1 in [V,K], so we get V = [V,K] + [V,Kb] of
dimension at most 7. But Sp(6, 2) has no faithful representation on degree 6 over F3, by
[SZ], so dim(V ) = 7. Thus, (i) holds in this case.

We next consider the various conjugacy classes of subgroups of G of order 9. Any such
class is characterized by the conjugacy classes of its four cyclic subgroups, and in this
way we find that there are exactly four such classes, which we list as follows, and where
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we list also a subgroup of G containing a representative of the given class.

Y1 = (3A, 3A, 3B, 3B) ≤ Alt(7),

Y2 = (3C, 3B, 3B, 3B) ≤ L2(8) : 3,

Y3 = (3A, 3B, 3C, 3C) ≤ Sym(3)× Sym(6),

Y4 = (3C, 3C, 3C, 3C) ≤ 31+2 : GL(2, 3).

Suppose that |A| = 9, so that |V/CV (A)| ≤ 34. Then A is not of type Y1, by 8.3, and
A is not of type Y2 by 6.9. Thus A is of type Y3 or Y4, and so A contains a subgroup
〈a〉 of type 3C. Set K = CG(a), and observe that K ∼= 31+2 : SL(2, 3). Theorem 1.3
of [C3] implies that any quadratic element of order 3 in G is of type 3A, so a is not
quadratic. Set W = [V, a]. Then dim(W ) ≤ 4, and [W,a] 6= 0, so K acts faithfully
on W . It follows that dim(W ) = 4, and then CV (a) = CV (A). As 〈AK〉 ≥ O3(K)
we then have CW (a) = CW (O3(K)). Also, by Hypothesis 4′ we have [W,A,A] = 0, so
[W,A,O3(K)] = 0, and then O3(K) acts quadratically on W , contrary to Φ(O3(K)) 6= 1.
We therefore conclude that |A| 6= 9.

Suppose finally that |A| = 27. Let Y be a subgroup of A of type Y2. Then two
conjugates of Y suffice to generate a maximal subgroup M of G with M ∼= L2(8) :
3, and since A � M it follows that two conjugates of A suffice to generate G. As
dim(V/CV (A)) ≤ 6 we then have dim(V ) ≤ 12. Let A ≤ L ≤ G with L ∼= Sym(3) ×
Sym(6), set L0 = E(L), set A0 = CA(L0), and set V0 = [V,A0] +CV (A0). Then A ∩ L0
acts quadratically on V0, by Hypothesis 4′, and so 1.7 implies that [V0, L0] is a direct
sum of natural SL(2, 9)-modules for L0. As V/CV (A0) ∼= [V,A0] as L0-modules, we
have [V0, L0] 6= 0, so we conclude that Z(L0) = Z(G) 6= 1. We may assume that V is
irreducible for G, so V = [V, Z(G)], and since dim(V ) ≤ 12, V0 is a direct sum of one
or two natural modules for L0. Then also V/V0 is a natural module for L0. If A0 is
not quadratic on V we then have dim(V ) = 12 and |CV (A)| = |CV0(A)| = 34, so that
|V/CV (A)| > |A|2. Thus, A0 is quadratic on V , and dim(V ) = 8. Thus, (ii) holds in this
case.

�

The following lemma is given by Table I in [SZ].

10.4 Lemma. Let X be a simple group of Lie type, in characteristic different from p,
and let V be a non-trivial projective FpX-module. Assume that X is not isomorphic to
any of the groups in the following list L0.

L0 = {L2(4), L2(9), L3(2), L3(4), L4(2) L4(3), PSp(4, 2), U4(3),

PΩ+
8 (2), PΩ7(3), F4(2), G2(3), G2(4), Sz(8)}
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Then the dimension of V is at least `, where ` is given as follows.

(1) L2(q): ` = (1/d)(q − 1), d = (2, q − 1).

(2) Ln(q), n ≥ 3: ` = (qn − 1)/(q − 1)− n.

(3) PSp(2n, q), n ≥ 2:

` =

{
(qn − 1)/2 if q is odd, and

q(qn − 1)(qn−1 − 1)/2(q + 1) if q is even.

(4) Un(q), n ≥ 3:

` =

{
q(qn−1 − 1)/(q + 1) if n is odd, and

(qn − 1)/(q + 1) if n is even.

(5) PΩ2n+1(q), q odd, n ≥ 3:

` =

{
(q2n − 1)/(q2 − 1)− n if q 6= 3, and

(32n − 1)/8− (3n − 1)/2 if q = 3.

(6) PΩ+
2n(q), n ≥ 4:

` =

{
q(q2n−2 − 1)/(q2 − 1) + qn−1 − n if q 6= 2, 3, and

q(q2n−2 − 1)/(q2 − 1)− (qn−1 − 1)/(q − 1)− 7δ2,p if q is even.

(7) PΩ−2n(q), n ≥ 4: ` = q(q2n−2 − 1)/(q2 − 1)− qn−1 − n+ 2.

(8) E6(q): ` = q9(q2 − 1).

(9) E7(q): ` = q15(q2 − 1).

(10) E8(q): ` = q27(q2 − 1).

(11) F4(q): ` = q6(q2 − 1).

(12) 2E6(q): ` = q9(q2 − 1).

(13) G2(q): ` = q(q2 − 1).

(14) 3D4(q): ` = q3(q2 − 1).

(15) 2F4(q): ` = (
√
q/2)q4(q − 1).

(16) Sz(q): ` = (
√
q/2)(q − 1).

(17) 2G2(q): ` = q(q − 1). �
We insert the following lemma, as support for the case where H ∼= L2(q).
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10.5 Lemma. Set L = L2(q), q odd, and identify L with the group Inn(L) of inner
automorphisms of L. Let A be an elementary abelian 2-subgroup of Aut(L). Then one
of the following holds.

(i) q is a perfect square, A � L, and there exists an element t of A − L such that
t is conjugate via Aut(L) to a field automorphism of L. Further, we have A =
(A ∩ L)〈t〉 and |A| ≤ 8.

(ii) A � L, and LA = L〈d〉, where d is a diagonal automorphism of L. Here |A/(A∩
L)| = 2, |A| ≤ 4, and all involutions in LA − L are conjugate. If |A| = 4 then
LA = 〈A,Ag〉 for some g ∈ L.

(iii) A ≤ L, |A| ≤ 4, and if |A| = 4 then LA = 〈A,Ag〉 for some g ∈ L.

Proof. Set G = LA, and let T be a Sylow 2-subgroup of G containing A. Also, set
G1 = PGL(2, q), and set G∗ = G1T . Further let T ∗ be a Sylow 2-subgroup of G∗

containing T and set T1 = T ∗ ∩G1.
We first note the following.

(1) T1 is dihedral, and G1 has exactly two classes of involutions.

Suppose that q = r2 is a perfect square, and let α be the standard field automorphism
of L of order 2, induced by the automorphism of GL(2, q) which raises matrix entries to
the power r (and which we denote also by α). Our first step will be to provide a proof
of the following (well known) fact.

(2) We have CG1(α) = CL(α) ∼= PGL(2, r).

The proof is as follows. Set G̃1 = GL(2, q), let Z be the group of scalar matrices in
G̃1, and set Z0 = {λq−1I ‖ λ ∈ Fq}. Denote by C̃1 the set of matrices x̃ ∈ G̃1 such that
[x̃, α] ∈ Z. As Z ≤ Z(C̃1), there is a homomorphism φ : C̃1 −→ Z given by φ(x̃) = [x̃, α].
Then the image of phi is Z0, and the kernel of φ is C eG1

(α) = GL(2, r). One observes
that φ|Z maps Z onto Z0, so C̃1 = Ker(φ)Z. We then have

CG1(α) = Ker(φ)Z/Z ∼= Ker(φ)/(Ker(φ) ∩ Z) ∼= PGL(2, r).

On the other hand, let ω ∈ Fq − Fr so that 〈ω〉 = F×r , and let d be the linear fractional
transformation x 7→ ω2x. Then ωr = −ω, and so [d, α] = 1. Also, d ∈ L, and d induces an
outer automorphism on the subgroup PSL(2, r) of L. Thus CL(α) contains a subgroup
isomorphic to PGL(2, r), and this yields (2).

Next, suppose that there exists an element t ∈ A−G1. As |t| = 2 we have gα = g−1,
and then t is conjugate either to α or to zα, where z is an involution in CG1(α). Suppose
that t is not conjugate to α. Then z ∈ L, by (2). We now apply (1) to CL(t) in
place of G1, and find that, up to conjugation in L, there are two choices for z. One
(in L2(r)) is given by the linear fractional transformation z1 : x 7→ −1/x−1, and the
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other (in CL(α)− L2(r)) is given by z2 : x 7→ −ω2x, where ω is as above. To show that
α and ziα are conjugate, we suffices to display elements gi of G1 such that gαi = gizi.
Let ρ ∈ Fq with ρ1+r = −1. The transformations g1 : x 7→ (x + ρr)/(ρx + ρ2r) and
g2 : x 7→ (x−ω)/(ωx+ω2) perform this trick, as the careful reader may check. Thus (i)
holds if A � G1.

Suppose next that A ≤ G1, suppose that A � L, and let t ∈ A−L. As T1 is dihedral,
we have |CT (t)| = 2, and thus |A| ≤ 4. Let s be the involution in CT (t), and set
D = CL(s). Then D is dihedral of order q − ε, ε = 1 or −1, and where q ∼= ε(mod 4).
Further, D〈t〉 is dihedral, and so CD(t) = 〈s〉. It follows that CL(t) is dihedral, of twice-
odd order. Now let D1 be a dihedral subgroup of L, containing s, of order q+ ε. Suppose
that Dx

1 is t-invariant, for every x ∈ CL(s). Then [D, t] ≤ NL(D1). As D1 is maximal
in L, and |D ∩D1| = 2, we conclude that [D, t] = 〈s〉, |D| = 4, and q = 5. In this case
we have G1 ∼= Sym(5), and one checks that two conjugates of 〈(1 2), (3 4)〉 suffice to
generate Sym(5). On the other hand, suppose that there exists x ∈ CL(s) such that Dx

1
is not t-invariant. We may then take x = 1, and we conclude that G = 〈s, t, sg, tg〉, where
g is a generator for the maximal cyclic subgroup of D1. Thus (ii) holds in this case.

Finally, suppose that A ≤ L, and that |A| > 2. Then A is a fours group. Let s be an
involution in A, and let D be a dihedral subgroup of L containing s, of twice-odd order
q − 1 or q + 1. Then D is maximal, so D is not A-invariant, and so G = L = 〈A,Ag〉 for
any generator g of [D,D]. Thus, (iii) holds in this case, and the lemma is proved. �
10.6 Lemma. Assume Hypothesis 10.1, and suppose that H/Z(H) ∼= L2(q), q a power
of r. Then q = 5, r = 3, and |V | = 81.

Proof. First of all, if |Z(H)| > 2 then |Z(H)| is divisible by 3, and H/Z(H) ∼= L2(9).
Then p = 2 or 5, and since L2(9) ∼= (Sp(4, 2))′ we have p = 5. Then |A| = 5 and H is
generated by two conjugates of A, so that |V | ≤ 54. As 3 divides |Z(H)|, V may then
be regarded as a 2-dimensional space over F25. But L2(9) is not a subgroup of L2(25),
so we conclude that |Z(H)| ≤ 2.

Suppose that G contains a quadratic subgroup of order at least 3. If p is odd then 3.1
yields H ∼= SL(, 2, 5), p = 3, and V is a natural SL(2, 9)-module for H. Thus, the lemma
holds in this case. If p = 2 then the main result of [MS1] implies that H/Z(H) ∼= U4(3),
contrary to H/Z(H) ∼= L2(q). Thus, we may assume henceforth that any quadratic
subgroup of G has order at most 2.

Suppose first that p = 2. Then q is odd, and since H/Z(H) is not isomorphic to a
group of Lie type in characteristic 2 we have q ≥ 11. By 5.4 we have |V/CV (a)| ≥ 8 for
any a ∈ A#. Also, |A|3/2 ≥ |V/CV (A)| by Hypothesis 4′, and so |A| 6= 2. If |A| = 4
we have |V/CV (A)| ≤ 8, and then CV (a) = CV (A) for all a ∈ A#, and A is a quadratic
fours group. Thus |A| 6= 4. Then 10.5 implies that |A| = 8, |A ∩ H| = 4, and there
exists a ∈ A −H such that a induces a field automorphism on H/Z(H). Further, if we
apply 10.5 to A∩H then we find that H is generated by two conjugates of A∩H. Here
|V/CV (A)| ≤ 16, so dim(V ) ≤ 8. But dim(V ) ≥ (q − 1)/2, by 10.4(1), and so q ≤ 17.
As q is odd and a perfect square we then have q = 9, and thus H/Z(H) ∼= (Sp(4, 2))′.
We therefore conclude that p is odd.
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Suppose that |A| = p, so that |V/CV (A)| ≤ p2. Suppose also that A ≤ H. The group
L2(r) is a homomorphic image of L2(Z), and L2(Z) contains the free product Z3 ∗ Z3
as a subgroup of index 2, so L2(r) is generated by two elements of order 3. Thus, if
p = 3 then two conjugates of A generate a subgroup Y of H with Y/Z(Y ) ∼= L2(r), and
2.2 then yields r = 5. Then in any case, we may choose a conjugate B of A so that
〈A,B〉 is nonsolvable, and then 〈A,B〉 is quasisimple. By 2.2 we then have p ≥ 5 (resp.
p = 3), 〈A,B〉 ∼= L2(p) (resp. L2(5)), and |[V, 〈A,B〉]| = p3 (resp. 81). Any quasisimple
subgroup of H/Z(H) is isomorphic to L2(5) or L2(q1) for some power q1 of r, so we
have p = 3 or 5 at this point. If p = 3 and q = 5 we have the conclusion of the lemma.
Assuming that the lemma is false, choose a conjugate C of A, not contained in 〈A,B〉,
so that 〈A,C〉 is quasisimple, and set X = 〈A,B,C〉. Then |[V,X]| ≤ p4 (resp. 36), and
X/Z(X) ∼= L2(q1) for some power q1 of r (with q1 ≥ 25 if p = 3). Then q1 > 5. If q1 = 7
then p = 3 and X contains a Frobenius group of order 21, which is contrary to 4.2. If
q1 = 9 then p = 5 and we may choose B so that 〈A,B〉 = X, which is contrary to 2.2.
Thus q ≥ 11. If p = 5 then dim([V,X]) ≤ 4, and 10.4(1) yields q ≤ 9. So in fact p = 3,
dim([V,X]) ≤ 6, and 10.4(1) yields q ≤ 13. But we have seen that q1 ≥ 25 if p = 3, so
we have a contradiction at this point. Thus, A � H.

Let a ∈ A − H. By Theorem 4.9.1 of [GLS3], a induces a field automorphism on
H, and thus A normalizes a Sylow r-subgroup R of H. Then also [R,A] is non-cyclic.
Suppose that |A| = p. Then 2.1 implies that p = 3 and that |[R,A]| = 4. It follows
that q = 8 and that HA ∼= 2G2(3), contrary to H /∈ Lie(p). We therefore conclude that
|A| = p2. Set X = CH(a). Then X/Z(H) ∼= L2(q0) where (q0)p = q. Hypothesis 4′

implies that A ∩ X acts quadratically on the subspace W = [V, a] + CV (a) of V , and
since V/CV (a) is X-isomorphic to [V, a] it follows that X acts non-trivially on W . Then
5.6 yields p = 3 and X ∼= SL(2, 5), so that q = 53. Evidently, three conjugates of A
suffice to generate HA, so dim(V ) ≤ 12. But 10.4(1) yields dim(V ) ≥ 62, so we have a
final contradiction, and the lemma is proved. �

In the following lemma we shall eliminate from consideration a further number of
“small” groups, including groups having exceptional Schur multipliers, and the groups
in the list L0 from 10.4. Conspicuously missing from this expanded list are any of the
groups PSp(4, q). These will be addressed later, in 10.10.

10.7 Lemma. Assume Hypothesis 10.1, and let L be the set of groups whose members
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are as follows:

L3(q), 3 ≤ q ≤ 5,

Ln(q), with n = 4 or 5, and with n+ q ≤ 7,

U3(q), q ≤ 7,

U4(q), q ≤ 3,

Un(2), n ≤ 7,

PSp(2n, q), with n = 3 or 4, and with q ≤ 3,

Ω7(3), Ω+
8 (2), Ω−8 (2), and 3D4(2)

2E6(2), F4(2), 2F4(2), G2(3), G2(4), and Sz(8).

Assume that H is isomorphic to a group in the list L. Then H ∼= Sp(6, 2).

Proof. Assume that H is not isomorphic to Sp(6, 2). We shall consider the various groups
individually, and we shall make free use of the ATLAS, in deciding whether a Sylow p-
subgroup of a particular group G is contained in a unique maximal subgroup of G. This
task will be simplified by the following reduction.

(a) Set H∗ = HS. Then there exists at most one maximal subgroup of H
∗

containing S,
and at most one H-invariant maximal subgroup of S.

Indeed, if (a) is false then the unique maximal subgroup M of G containing S contains
H. But M contains also NG(S ∩H), and the Frattini argument then yields M = G.

We may also employ the following consequence of 2.2.

(b) A Sylow p-subgroup of G has order greater than p.

Most groups in L, and most primes, may be eliminated at once by recourse to (a)
and (b). The only exceptions will be given by the groups L3(4) and 3D4(2) with p = 3,
and the groups L3(3) and L4(3) with p = 2. Apart from the treatment of these four
exceptions, the argument will consist simply of a list, in which we give the isomorphism
type of H, the order of H and of Out(H), and then, for each prime p different from r,
and for which p2 divides the order of Aut(H), a pair of distinct maximal subgroups of
H
∗

= HS containing S.

(1) H ∼= L3(3), |H| = 24 · 33 · 13, |Out(H)| = 2, (p = 2).
There is a unique maximal subgroup containing S if S � H. This case will be treated
below.

(2) H ∼= L3(4), |H| = 26 · 32 · 5 · 7, |Out(H)| = 12, (p = 3).
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There is a unique maximal subgroup of H
∗

containing S if S � H, so this case will be
considered separately below.
Maximal subgroups when S ≤ H:

M10, U3(2).

(3) H ∼= L3(5), |H| = 25 · 3 · 53 · 31, |Out(H)| = 2, (p = 2).
Maximal subgroups when S ≤ H:

52 : GL(2, 5), 42 : Sym(3).

Maximal subgroups when S � H:

GL(2, 5).2, 42.(Sym(3)× 2).

(4) H ∼= L4(2), |H| = 26 · 32 · 5 · 7, |Out(H)| = 2, (p = 3).
Maximal subgroups:

Alt(7), 24 : (Sym(3)× Sym(3)).

(5) H ∼= L4(3), |H| = 27 · 36 · 5 · 13, |Out(H)| = 4, (p = 2).
There may be a unique maximal subgroup of H

∗
containing S, if S � H. This will be

treated below.

(6) H ∼= L5(2), |H| = 210 · 32 · 5 · 7 · 31, |Out(H)| = 2, (p = 3).
Maximal subgroups:

24 : L4(2), 26 : (L3(2)× L2(2)).

(7) H ∼= U3(3) ∼= (G2(2))′, |H| = 25 · 33 · 7, |Out(H)| = 2, cyclic Sylow subgroups in cross
characteristic.

(8) H ∼= U3(4), |H| = 26 · 3 · 52 · 13, |Out(H)| = 2, (p = 5).
Two maximal subgroups GU(2, 4).

(9) H ∼= U3(5), |H| = 24 · 32 · 54 · 7, |Out(H)| = 6, (p = 2 or 3).
Maximal subgroups for p = 3, with S ≤ H:

Alt(7), M10.

Maximal subgroups of H
∗
, for p = 3, with S � H:

62 : Sym(3), 32 : SL(2, 3).
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S-invariant maximal subgroups of H, for p = 2:

M10, 2.Sym(5).

(10) H ∼= U4(2) ∼= PSp(4, 3), |H| = 26 · 34 · 5, |Out(H)| = 2, cyclic Sylow subgroups in
cross characteristic.

(11) H ∼= U4(3), |H| = 27 · 36 · 5 · 7, |Out(H)| = 8, (p = 2).
In this case, the existence of a pair of proper subgoups of G, containing S, and generating
G, is evident from the B̃2 geometry of 2-local subgroups of G. See [K].

(12) H ∼= U5(2), |H| = 210 · 35 · 5 · 11, |Out(H)| = 2, (p = 3).
Maximal subgroups of H containing S:

Sym(3)×GU(3, 2), GU(4, 2).

(13) H ∼= U6(2), |H| = 215 · 36 · 5 · 7 · 11, |Out(H)| = 6, (p = 3).
Maximal subgroups of H containing S, if S ≤ H:

31+4.[27.3], U4(3) : 2.

Maximal subgroups of H
∗

containing S, if S � H.

31+4.[27.3], 35 : Sym(6).

(14) H ∼= U7(2), |H| = 221 · 38 · 5 · 7 · 11 · 43, |Out(H)| = 2, (p = 3).
Subgroups of H containing S and which generate H:

GU(6, 2), U4(2)×GU(3, 2).

(16) H ∼= PSp(6, 3), |H| = 29 · 39 · 5 · 7 · 13, |Out(H)| = 2, (p = 2).
Maximal subgroups of H invariant under S:

2(Alt(4)× U4(2)), 22+6 : 33 : Sym(3).

(19) H ∼= Sp(8, 2), |H| = 216 · 35 · 52 · 7 · 17, |Out(H)| = 1, (p = 3 or 5).
Maximal subgroups of H containing S if p = 5:

D4(2), Sp(4, 4) : 2.
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Maximal subgroups of H containing S if p = 3:

D4(2), Sym(3)× Sp(6, 2).

(20) H ∼= PSp(8, 3), |H| = 214 · 316 · 52 · 7 · 13 · 41, |Out(H)| = 2, (p = 2 or 5).
Maximal subgroups of H containing S if p = 5:

(Sp(4, 3) ◦ Sp(4, 3))2, PSp(4, 9) : 2.

Maximal subgroups of H invariant under S if p = 2:

(Sp(4, 3) ◦ Sp(4, 3))2, M,

where M is the image in H of a subgroup of Sp(8, 3) of the form SL(2, 3) o Sym(4).

(21) H ∼= Ω7(3), |H| = 29 · 39 · 5 · 7 · 13, |Out(H)| = 2, (p = 2).
Maximal subgroups of H invariant under S:

2U4(3) : 2, 26 : Alt(7).

(22) H ∼= Ω+
8 (2), |H| = 212 · 35 · 52 · 7, |Out(H)| = 6, (p = 3 or 5).

Maximal subgroups of H containing S if p = 5:

(Alt(5)×Alt(5)) : 22 in three different ways.

Maximal subgroups of H containing S if p = 3 and S ≤ H:

(3× U4(2)) : 2, 34 : 23.Sym(4).

Maximal subgroups of H
∗

containing S if p = 3 and S � H:

31+4
+ : GL(2, 3), (34 : 23.Sym(4)).3.

(23) H ∼= Ω−8 (2), |H| = 212 · 34 · 5 · 7 · 17, |Out(H)| = 2, (p = 3).
Maximal subgroups of H containing S:

26 : U4(2), Sp(6, 2).

(24) H ∼= 3D4(2), |H| = 212 · 34 · 72 · 13, |Out(H)| = 3, (p = 3 or 7).
Maximal subgroups of H containing S if p = 7:

(7× L3(2)) : 2, 72 : SL(2, 3).
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There is a unique maximal subgroup of H
∗

containing S if p = 3. This case will be
treated below.

(25) H ∼= G2(3), |H| = 26 · 36 · 7 · 13, |Out(H)| = 2, (p = 2).
Maximal subgroups of H invariant under S:

(23)L3(2), 21+4
+ : 32.2.

(26) H ∼= G2(4), |H| = 212 · 33 · 52 · 7 · 13, |Out(H)| = 2, (p = 3 or 5).
Maximal subgroups of H containing S if p = 5:

U3(4) : 2, Alt(5)×Alt(5).

Maximal subgroups of H containing S if p = 3:

SL(3, 4) : 2, J2.

(27) H ∼= F4(2), |H| = 224 · 36 · 52 · 72 · 13 · 17, |Out(H)| = 2, (p = 3, 5, or 7).
Maximal subgroups of H containing S if p = 7:

3D4(2), in two different ways.

Maximal subgroups of H containing S if p = 5:

2F4(2), Sp(8, 2).

Maximal subgroups of H containing S if p = 3:

Aut(D4(2)), L4(3) : 2.

(28) H ∼= (2F4(2))′, |H| = 211 · 33 · 52 · 13, |Out(H)| = 2, (p = 3 or 5).
Maximal subgroups containing S if p = 5:

L2(25), 52 : 4Alt(4).

Maximal subgroups containing S if p = 3:

L3(3) : 2 in two different ways.
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(29) H ∼= Sz(8), |H| = 26 · 5 · 7 · 13, |Out(H)| = 3. This case contradicts (2).

(30) H ∼= 2E6(2), |H| = 236 · 39 · 52 · 72 · 11 · 13 · 17 · 19, |Out(H)| = 6, (p = 3, 5, or 7).
Maximal subgroups of H containing S if p = 7:

F4(2), in three different ways.

Maximal subgroups of H containing S if p = 5:

F4(2), in three different ways.

Maximal subgroups of H containing S if p = 3 and S ≤ H:

Fi22 in three different ways.

Maximal subgroups of H
∗

containing S if p = 3 and S � H.

36 : U4(2) : 2, 31+6.23+6.(Sym(3)× 3).3.

It now remains to take up the four exceptional cases: H ∼= L3(4), 3D4(2), L3(3), and
L3(4).

Suppose first that H ∼= L3(4), of order 26 · 32 · 5 · 7. Then p = 3, by (2). Then Z(H)
is a 2-group, the 3-rank of G is 2, and so |A| ≤ 9. We claim that four conjugates of A
suffice to generate HA if |A| = 3, and that three conjugates suffice if |A| = 9. Indeed,
suppose that A ∩ H 6= 1, and let 1 6= a ∈ A ∩ H. Then two conjugates of a generate
a subgroup K of H with Z(H)K/Z(H) ∼= L3(2), and A ∩ K is a Sylow 3-subgroup of
NG(K). Here Z(H)K is maximal in H, so the claim holds in this case. On the other
hand, suppose that A ∩ H = 1, and set X = CH(A). Referring to the ATLAS, we
find that Z(H)X/Z(H) ∼= SL(2, 4) or Fr(21). Let B be a Sylow 3-subgroup of CG(A).
Then A is conjugate to every cyclic subgroup of B not contained in X, and so there are
conjugates A1 and A2 of A such that Z(H)〈A1, A2〉 = Z(H)XA. It is left to the reader
to demonstrate that two conjugates of XA suffice to generate HA (or to find a different
argument) and thus to prove the claim. We conclude that |V | ≤ 38.

If S ≤ H then there are two different maximal subgroups M1 and M2 of H containing
S (with M1 ∼= U3(2) and with M2 ∼= M10), contrary to (1). Thus S � H. There then
exists a subgroup Y of G with Y ∼= Fr(21) × 3. Let b be a non-identity element of
O3(Y ) and x a non-identity element of O7(Y ). Then dim([V, x]) = 6, and [V, x, b] = 0,
so |V/CV (b)| ≤ 9. But, as we have seen, b is conjugate to an element of Y not contained
in 〈b〉, and in this way we violate 2.2. Thus, H/Z(H) � L3(4).

Suppose next that H ∼= 3D4(2) and that p = 3. It so happens that Z(H) = 1, so
G = G. There are exactly two classes of elements of order 3 in H. To be consistent with
ATLAS notation, we label a pair of fixed representatives of these two classes by 3A and
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3B, where NH(3A) ∼= Sym(3)×L2(8), and where NH(3B) is of the form 31+2
+ )GL(2, 3).

Set L = E(CH(3A)). We may assume that [3A, 3B] = 1, and then 3B ∈ E(CH(3A)) since
3A is not contained in a cyclic group of order 9. Let t be an involution in NH(3A) with
[t, L] = 1. Then CH(t) is a maximal parabolic subgroup of H, of the form 21+8

+ : L2(8).
As two conjugates of 3B suffice to generate L, it follows that three conjugates of 3B
suffice to generate CH(t), and then four conjugates suffice to generate H. On the other
hand, we observe that 3A is not central in a Sylow 3-subgroup of H, and hence 3A is not
weakly closed in a Sylow 3- subgroup of NH(3A). Thus, there is a conjugate of 3A which
is “diagonal” in 〈3A〉 × L, and so CH(3A) is generated by two conjugates of 3A. Then
four conjugates of 3A suffice to generate a subgroup of H containing CH(t). As CH(t)
contains no conjugate of 3A, it follows that four conjugates of 3A suffice to generate H.
Thus, we have shown that for any element x ∈ H of order 3, four conjugates of x suffice
to generate H.

No involution-centralizer in H contains a copy of Z3 × Z3, and then it follows from
the given structure of NH(3B) that the 3-rank of H is two, and the 3-rank of Aut(H) is
then at most three. In particular, we have |A| ≤ 27, and so |V/CV (A)| ≤ 36. We now
appeal to 10.4, where we find that dim(V ) ≥ 24. It follows that four conjugates of A do
not suffice to generate HA, and therefore A ∩ H = 1. Thus |A| = 3, |V/CV (A)| ≤ 9,
and twelve conjugates of A do not suffice to generate HA. But A is not weakly closed
in S, and therefore eight conjugates of A suffice to generate HA. Thus, we have a
contradiction, and H � 3D4(2).

Suppose next that H ∼= L3(3). Then Z(G) = 1, |G/H| ≤ 2, and by (2) we have
p = 2. A Sylow 2-subgroup of Aut(H) is a direct product of a semidihedral with Z2,
so the 2-rank of A is at most 3. By [MS1], G contains no quadratic fours groups, and
then no element of A is a 2-transvection on V , by 5.6. Also, as A contains no quadratic
fours group we have CV (a) 6= CV (A) for any a ∈ A#. As |A|3/2 ≥ |V/CV (A)|, by
Hypothesis 4′, we conclude that |A| = 8, that |V/CV (A)| = 16, and that |V/CV (a)| = 8
for all a ∈ A#. Let a ∈ A − H. Then CH(a) ∼= GL(2, 3), and since |[V, a]| = 8 we
have [V, a, Z(CH(a))] = 0. Thus A contains a quadratic fours group, and we have a
contradiction in this case.

Finally, suppose that H ∼= L4(3). Then p = 2, as seen in (5). As Z(H) is a 2-group,
we then have Z(H) = 1 and H ∼= L4(4). A Sylow 2 subgroup of Aut(H) is contained
in a unique maximal subgroup of Aut(G), of the form 2× (GL(2, 3) ◦GL(2, 3))2, so we
have |A| ≤ 32. As in the preceding paragraph, G contains no quadratic fours groups, so
|V/CV (a)| ≥ 8 and CV (a) 6= CV (A) for any a ∈ A#, and we have |A| ≥ 8. In particular,
we then have A ∩H 6= 1.

There are exactly two conjugacy classes of involutions in H, with representatives 2A
and 2B, and where CH(2A) and CH(2B) have the form (4 × L2(9)) : 2 and (SL(2, 3) ◦
SL(2, 3)) : 22, respectively. Moreover, an element of CH(2B) interchanges the two sub-
normal SL(2, 3)- subgroups of CH(2B). (The involution 2B lifts to an involution in
SL(4, 3), while 2A lifts to an element of order 4.) Let 1 6= a ∈ A∩H, and set K = CH(a).
As H contains no quadratic fours groups, it follows that a is the unique involution in
CK([V, a]), and hence dim([V, a]) ≥ 4. As |A|3/2 ≥ |V/CV (A)| > |V/CV (a)|, we then
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have |A| = 16 or 32.

Suppose |A| = 16. Then |V/CV (A)| ≤ 26, and so |V/CV (a)| ≤ 25. We have dim(V ) ≥
26, by 10.4(2), so it follows that H cannot be generated by five conjugates of a. Suppose
that a is of type 2B, and let L1 and L2 be two copies of L3(3) inH such that 〈L1, L2〉 = H,
with L1 ∩ L2 ∼= GL(2, 3). Then L1 ∩ L2 is generated by three conjugates of a, and since
L1 ∩ L2 is maximal in each Li it follows that five conujugates of a suffice to generate
H. On the other hand, suppose that a is of type 2A. Then K lifts in SL(4, 4) to a
group of the form (8 ◦ SL(2, 9)) : 2, so O2(K) contains a conjugate of a, and then three
conjugates of a suffice to generate O2(K). We have O2(K) ≤ L, where L ∼= PSp(4, 3),
and NL(O2(K)) is the unique maximal subgroup of L containing O2(K). It follows that
four conjugates of a suffice to generate L. As NH(L) is the unique maximal subgroup of
H containing L, it follows that five conjugates of a generate H.

We conclude that |A| = 32. Here |V/CV (A)| ≤ 27, so |V/CV (a)| ≤ 26. Then HA is
not generated by A together with three conjugates of a. Further, we now have HA =
G ∼= Aut(H), so we may choose a ∈ G − H so that H〈a〉 ∼= PGL(4, 3), and so that a
inverts an element x of order 13 in H. Then three conjugates of a generate a subgroup N
of G of the form 33 : 13 : 2, while a conjugate of A contains an element b which induces
a transpose-inverse automorphism of H, and such that 〈O3(N), O3(N)b〉 = H. Thus, we
have a contradiction in this case, and the lemma is proved. �

Having disposed of so many individual groups in 10.7, we may now start in on the
general case. To this end, the following elementary lemma will be helpful.

10.8 Lemma. Let 1 ≤ n1 ≤ n2 < · · · ≤ nk be a non-decreasing sequence of natural
numbers, and let q > 1. Set N =

∑k
i=1 ni. Then

∏k
i=1(qni + (−1)i) < qN .

Proof. Let k be the least integer for which the lemma fails. Let ` be the largest even
integer smaller than k. Then ` ≥ 0 and one has

∏`
i=1(qni + (−1)i) < qM where N =∑`

i=1 ni. The reader is invited to supply the last step in the induction. �

10.9 Lemma. Let G0 be a group such that F ∗(G0) is a quasisimple group of Lie type in
characteristic r different from p. Assume also that Op(G0) = 1 and that G0 = F ∗(G0)A
where A is an elementary abelian p-group. Set X = F ∗(G0)/Z(F ∗(G0)). Finally, assume
that r does not divide |Z(F ∗(G0))|. Then one of the following holds.
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(1) X ∼= PSL(n, q) or PSU(n, q), and |G0| ≤ 2p · qn2−1.

(2) X ∼= PSp(2n, q), n ≥ 2, and |G0| ≤ 2p · qn(2n+1).

(3) X ∼= PΩ(2n+ 1, q), n ≥ 3, and |G0| ≤ 2p · qn(2n+1).

(4) X ∼= PΩε2n(q), n ≥ 4, and |G0| ≤ 3p · qn(2n−1).

(5) X ∼= 3D4(q) and |G0| ≤ pq28.

(6) X ∼= E6(q) or 2E6(q), and |G0| ≤ 2pq78.

(7) X ∼= E7(q) and |G0| ≤ pq133.

(8) X ∼= E8(q) and |G0| ≤ pq248.

(9) X ∼= F4(q) and |G0| ≤ 2pq52.

(10) X ∼= 2F4(q) and |G0| ≤ pq26.

(11) X ∼= G2(q) and |G0| ≤ pq14.

(12) X ∼= 2G2(q) and |G0| ≤ q7.

(13) X ∼= Sz(q) and |G0| ≤ pq5.
Moreover, in (1) through (13), the factor p appearing in the estimate for |G| is present
only if q is a pth power.

Proof. Let L = L(q) be a Chevalley group (i.e. a non-twisted group of Lie type) of
universal type. Then |L| is a polynomial in q, of the form qM

∏k
i=1(qni−1), and so we have

|L| ≤ qM+N , where N =
∑
i = 1kni, and where, as it happens, M +N is the dimension

of the adjoint module for L. We may of course take the sequence of natural numbers
n1, n2, · · ·nk to be non-decreasing. Now assume that L is not of type Dn, n ≥ 4, and let
2L(q) be a Steinberg Variation of L. Then |2L(q)| = qM

∏k
i=1(qni + (−1)i), and so also

|2L(q)| < qM+N by 10.5. Suppose that L =2 D4(q), of order qn(n−1)(qn+1)
∏n−1
i=1 (q2i−1).

Then |L| < qn(2n−1), as follows from an obvious variation on 10.5. Also, we have

|3D4(q)| = q12(q8 + q4 + 1)(q6 − 1)(q2 − 1) = q12(q12 − 1)(q6 − 1)/(q2 + 1),

and so |3D4(q)| < q30/(q2 + 1) < q28. So, in all these cases, |L| < |U | where U is the
adjoint module for the untwisted version of L. Here we refer to Table 16.1 in [A1] for the
group orders, and to [J] for the dimensions of the adjoint modules. From these references,
the reader may check that if L is a Suzuki-Ree group then |L| <

√
|U | where U is the

adjoint module for the untwisted antecedent of L.
We are given G0 = F ∗(G0)A where A is an elementary abelian p-group. Without

loss of generality, we have A ∩ F ∗(G) = 1. Let A1 be the largest subgroup of A which
induces inner-diagonal automorphisms on X, and A2 the largest subgroup of A which
induces inner-diagonal-graph automorphisms of X. Then |A/A2| ≤ p, since the group

83



of field automorphisms of X is cyclic. Also, |A2/A1| = 1 if X is a twisted group or if
the Dynkin diagram for X admits no symmetries. Otherwise we have |A2/A1| ≤ 3, with
equality only if p = 3 and X is of type D4. We have |A1| ≤ p, and if |A1| = p then p
divides the order of Z(L) where L is the universal version of X. Since Op(G) = 1, |A1| is
then “absorbed” by the estimate, given in the preceding paragraph, for |L|. In this way,
we obtain (1) through (13). �
10.10 Lemma. Assume Hypothesis 10.1. Then H is not isomorphic to PSp(4, q) for
any q.

Proof. Set G0 = HA. Then |G0| ≤ q11, as follows from 10.9. Suppose first that q is
even, so that p is odd. Then 10.4 yields dim(V ) ≥ q(q− 1)2/2. As |A|2 ≥ |V/CV (A)| we
have also |G0| ≥ |V |, by Theorem 2.3 of [CD1], and thus

22logp(q) > q(q − 1)2/2.

This inequality evidently fails if q ≥ 8, so we have q = 2 or 4. The case q = 2 has already
been eliminated in 10.5, so H ∼= Sp(4, 4). Then |H| = 28 · 32 · 52 · 17, and Out(H) is a
2-group. The criteria (a) and (b) in the proof of 10.7 then reduce the problem to finding
a pair of distinct maximal subgroups of H containing S, in the case that p = 3 or that
p = 5. According to the ATLAS, there are in fact two different maximal subgroups of H
of the form (SL(2, 4)× SL(2, 4)) : 2, and so we conclude that q is odd.

Now 10.4 yields

(1) 22logp(q) > (q − 1)2/2.

Suppose that p = 2. Then Hypothesis 4′ yields |A|3/2 ≥ |V/CV (A)|, and so (1) improves
to

(2) 33log2(q) > (q − 1)2.

This yields q ≤ 11. Here Z(H) is a 2-group, so Z(H) = 1 and H = H. There is an
S-invariant maximal subgroup L of H of the form (SL(2, q) ◦ SL(2, q)) : 2, where the
components of L are interchanged by an involution in L. If q is congruent to 3 or 5 mod
8 then there is also a maximal S-invariant subgroup M of H of the form 24 : Alt(5)
(and which may be described as the set-wise stabilizer of an orthonormal basis in the
Ω5(q)-module for H). Thus, we are reduced to the cases where q = 7 or 9.

Denote by L∗ the normalizer in Aut(H) of L. If q = 7 then L∗ = L〈d〉 where d is
an involution which induces a diagonal automorphism on each of the components of L.
If q = 9 then L∗ = L〈d, α〉, where d is as just described and where α induces a field
automorphism on each component of L. It follows that the 2-rank of S is 4 if q = 7, and
at most 5 if q = 9. In particular, we have |A| ≤ 32, and |A| ≤ 16 if q = 7.

By 5.6, G contains no quadratic fours groups, and so 5.5 implies that |A| ≥ 8 and
that CV (A) 6= CV (a) for any a ∈ A#. As |A|3/2 ≥ |V/CV (A)| we have |V/CV (A)| ≤ 27,
and |V/CV (A)| ≤ 26 if q = 5. Then |[V, a]| ≤ 26 (and |[V, a]| ≤ 25 if q = 5) for any
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a ∈ A#. Suppose that A ∩H contains an involution a with CH(a) = L. As A contains
no quadratic fours groups, L/〈a〉 acts faithfully on [V, a], whereas [V, a] is too small to
support such an action. Thus A ∩ Z(L) = 1. There are only two conjugacy classes of
subgroups of order 2 in H, and one of these lifts to a class of cyclic subgroups of order 4
in SP (4, q). It follows from this that |A ∩H| ≤ 4. Thus |A| ≤ 16, and |A| = 8 if q = 7.
Fix an involution a ∈ A∩H. Then |V/CV (a)| ≤ 32, and |V/CV (a)| ≤ 8 if q = 7. On the
other hand, 8.4 yields dim(V ) ≥ 24 if q = 7, and dim(V ) ≥ 40 if q = 9. As CV (H) = 0
it follows that H cannot be generated by eight conjugates of a. We leave to the reader
the task of verifying the absurdity of this outcome. �

We may now complete the proof of Theorem 10.2. Thus, assume Hypothesis 10.1. In
view of 10.3, 10.5, 10.6, and 10.9, we may assume that H is not isomorphic to L2(q),
or to any of the groups in the list L given by 10.6. Among the groups in L one finds
all the groups of Lie type (other than those which are isomorphic to L2(q)) which have
an exceptional Schur multiplier. Having excluded these groups, it follows that H is a
homomorphic image of the universal version, in the Lie-theoretic sense, of H.

Set G0 = HA. By Hypothesis 10.1 we have |A|2 ≥ |V/CV (A)|, and then Theorem
2.3 of [CD1] implies that |G0|2 ≥ |V |. An upper bound for G0 is given by 10.8, while a
lower bound for dim(V ) is given by 10.4. The proof of 10.2 now reduces to a systematic
comparison of logp(|G0|2) with dim(V ).

Suppose first that H ∼= Ln(q), n ≥ 3. Then |G0| ≤ 2pqn
2−1, and the factor p is

required only if q is a pth power. Thus |G0| ≤ qn
2
. By 10.4 we then have

(1) 2n2logp(q) > (qn − 1)/(q − 1)− n.

Suppose that q = 2. Then p ≥ 3, and so 2logp(q) < 1.5. Then (1) yields 1.5n2 > 2n−n−1,
and then n ≤ 5. Thus H ∈ L in this case, and thus q ≥ 3. From (1) we have

2n2q + n > qn−1,

and then

(2) 2n2 + n > qn−2.

We observe that (2) is false if q ≥ 3 and n ≥ 6. As q > 2, it follows that (2) holds only
if n ≤ 5. For n = 3 one checks that (1) is false for q ≥ 7, and for n = 4 we find that (1)
is false if q ≥ 5. Also, (1) fails to hold if n = 5 and q ≥ 3. Thus, H ∈ L.

Suppose next that H ∼= Un(q), n ≥ 3. As in the preceding case, we find |G0| ≤ qn
2
.

Referring to 10.8, we then have

(3) 2n2logp(q) >

{
(qn − q)/(q + 1) if n is odd, and

(qn − 1)/(q + 1) if n is even.

Suppose q = 2. Then we replace (3) by the estimate

(4) 2n2log3(2) > (2n − 2)/3.
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If n = 8 then the left side of (4) is less than 81 and the right side is bigger than 84, so (4)
fails in this case. Taking the derivative of each side of (4) with respect to n, we observe
that

4nlog3(2) < (ln(2))2n

for all n ≥ 8, and so (4) holds only if n ≤ 7. Thus H ∈ L if q = 2, and so q ≥ 3.
Suppose n = 3. We may take p = 2 in (3), and obtain 18log2(q) > (q3− q)/4, which is

false if q = 7. Taking derivatives with respect to q we find that 18/(ln(2)q) < (3q2−1)/4
for n ≥ 7, so q ≤ 5 if n = 3. Now suppose that n = 4. Then (3) yields 32log2(q) >
(q4 − 1)/4, which is false if q = 5. We leave it to the reader to perform the derivative
test which establishes that (3) is false if n = 4 and q ≥ 5. We also leave to the reader
the task of verifying that if n = 5 then q = 2. Thus, in all these cases we have H ∈ L.

We now have n ≥ 6, and we obtain

2n2logp(q) > q(qn−1 − 1)/(q + 1)

from (3). Then also

2n2 > (qn−1 − 1)/(q + 1) > (qn−1 − 1)/2(q − 1) > qn−2/2,

and so 4n2 > qn−2. This result fails to hold if q = 4 and n = 6, and it is a trivial matter
to check that qn−2 grows more rapidly than 4n2 as a function of q and n, independently,
for q ≥ 4 and for n ≥ 6. One also checks directly that (3) fails to hold if n = 6 and q = 3.
This completes the proof that H ∈ L if H ∼= Un(q).

Suppose next that H ∼= PSp(2n, q), n ≥ 3 (the case n = 2 having been dealt with in
10.9). Then 10.8 yields |G0| < q2n2+n+1, and then with 10.4 we have

(5) 2(2n2 + n+ 1)logp(q) >

{
(qn − 1)/2 if q is odd, and

q(qn − 1)(qn−1 − 1)/2(q + 1) if q is even.

If p = 2 then there is more than one maximal subgroup of G containing S, by Theorem
A in [A1]. Thus p ≥ 3.

Suppose n = 3, and then suppose that q is even. Then (5) yields 44 > (q3−1)(q−1)/2,
which is false if q ≥ 4. On the other hand, suppose that q is odd. Then (5) yields
44logp(q) > (q3 − 1)/2, which is false if q ≥ 7. If q = 5 then q is not a pth power, and
then |G0| < 510. One then checks that 40log3(5) < 60 < (53 − 1)/2. We conclude that
q = 2 if n = 3.

Suppose n = 4. Then q ≥ 3, by 10.6, and (5) then reduces us to the case q = 3. The
only prime greater than 3 whose square divides |PSp(8, 3)| is 5, so 2.2 yields p = 5. Then
S is contained in a pair of subgroups L1 and L2 of H, with L1 ∼= PSp(4, 3) ◦ PSp(4, 3)
and with L2 ∼= PSp(4, 9), such that H = 〈L1, L2〉. Thus n ≥ 5.

Suppose that n = 5. If q = 2 then (5) yields 228logp(2) > 155, which is false for
p = 3 (as one checks on one’s pocket calculator) and which is therefore false for all p
since p 6= 2. Then also (5) fails to hold for all even q, when n = 5. If instead q is odd
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then (5) yields 228logp(q) > q5 − 2, and one quickly verifies that this is false for q = 3
(where p ≥ 5) and then for all odd q and p.

Suppose q = 2. Then (5) yields

2(2n2 + n+ 1)log3(2) > (2n − 1)(2n−1 − 1)/3,

which fails to hold for n ≥ 6. Thus, q > 2. In general, (5) yields

2(2n2 + n+ 1) > (qn − 1)/2logp(q) > (qn − 1)/q > qn−1 − 1.

This fails for n = 6 and q = 3, and since qn−1−1 grows more rapidly than 2(2n2 +n+1)
as a function of n, we have thereby eliminated all of the groups PSp(2n, q) as possibilities
for H, with the exception of Sp(6, 2).

Suppose next that H ∼= PΩ2n+1(q), q odd, n ≥ 3. Then 10.8 and 10.4 yield

(6) 2(2n2 + n+ 1)logp(q) >

{
(q2n − 1)/(q2 − 1)− n if q 6= 3, and

(32n − 1)/8− (3n − 1)/2 if q = 3.

Supppose q 6= 3. If n = 3 then (6) yields 44log2(q) > q4 + q2 − 2, which fails to hold for
any odd q. Also, in the case n = 4 we have 78log2(q) > q6 + q4 + q2 − 3, which also fails
for odd q. In general, (6) yields

2(2n2 + n+ 1) > (q2n−2 − 1)/(q2 − 1)logp(q)− n/logp(q) > q2n−4/logp(q)− n,

and so 4n2 +3n+2 > q2n−5. This fails for n ≥ 5 and all odd q, so we have a contradiction
in the case q 6= 3. On the other hand, if q = 3 then logp(q) < 2, and so (6) implies that
4(2n2 + n + 1) > 32n−2 − 3n−2 > 32n−3. This fails for n ≥ 4, and then since Ω7(3) ∈ L
we have a contradiction.

Suppose next that H ∼= PΩ+
2n(q), n ≥ 4. Then 10.8 and 10.4 yield

(7)

2(2n2−n+ 2)logp(q) >

{
q(q2n−2 − 1)/(q2 − 1) + qn−1 − n q 6= 2, 3, and

q(q2n−2 − 1)/(q2 − 1)− (qn−1 − 1)/(q − 1)− 7δ2,q q even.

Suppose that q 6= 2 or 3. As logp(q) < q we then have

2(2n2 − n+ 2) + n > q2n−4 + qn−2,

This fails to hold if n = 4 and q = 4, and then also if n ≥ 4 and q ≥ 4. Thus, q = 2 or
3. As logp(q) < q, (7) yields

2(2n2 − n+ 2) > q2n−4 − qn−3 − 7δ2, q/q > q2n−5 − 4.

These inequalities fail if n = 6 and q = 2, and then also if n ≥ 6 and q ≥ 2. They also
fail if n = 5 and q = 3. As Ω+

8 (2) ∈ L, we are then reduced to the case n = 4 and q = 3,
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and to the case n = 5 and q = 2. One may then check directly from (7) that neither of
these cases may occur.

Suppose next that H ∼= PΩ−2n(q), n ≥ 4. Then 10.8 and 10.4 yield

(8) 2(2n2 − n+ 2)logp(q) > q(q2n−2 − 1)/(q2 − 1)− qn−1 + 2.

Then 2(2n2−n+ 2) > q2n−4− qn−2, and this fails if n ≥ 6, or if q ≥ 3. As PΩ−8 (2) ∈ L,
we are reduced to the case where n = 5 and q = 2, and in this case one checks directly
that (8) fails to hold.

It remains to consider the exceptional groups and the groups 3D4(q). The estimates
that we obtain from 10.4 and 10.8 are as follows.

3D4(q): 58logp(q) > q3(q2 − 1).

E6(q) or 2E6(q): 158logp(q) > q9(q2 − 1).

E7(q): 268logp(q) > q15(q2 − 1).

E8(q): 498logp(q) > q27(q2 − 1).

F4(q): 106logp(q) > q6(q2 − 1) if q is odd, or q7(q3 − 1)(q − 1)/2 if q is even.

2F4(q): 54logp(q) >
√
q/2(q4)(q − 1).

G2(q) (q ≥ 3): 30logp(q) > q(q2 − 1).

2G2(q) (q ≥ 27 an odd power of 3): 14logp(q) > q(q − 1).

Sz(q) (q ≥ 8 an odd power of 2): 12logp(q) >
√
q/2(q − 1).

In the case of Sz(q) we may take q ≥ 32, as Sz(8) ∈ L. None of the above inequalities
holds for q = 5, and then none holds for q ≥ 5. For p = 3, only the inequality for G2(3)
is valid, and for q = 2, only the inequalities for 3D4(2) and 2F4(2) are valid. All three
of these groups are in L, so we have a final contradiction at this point, proving Theorem
10.2.

Section 11: Theorems 1 through 6

We ask the reader to recall the definitions of Q(Y, V ), q(Y, V ) and Q∗(Y, V ), from
the Introduction. Recall also that, for any group G, a component of G is a subnormal
quasisimple subgroup of G, and that E(G) is the product of all the componentsof G.

11.1 Lemma. Let p a prime, G a group whose order is divisible by p, and let S be
a Sylow p-subgroup of G. Assume that Op(G) = 1 and that S is contained in a unique
maximal subgroup of G. Set H = Op(G) and set G = G/Φ(G). Then one of the following
holds.

(i) H is an r-group for some prime r 6= p, and S acts irreducibly on H/Φ(H).
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(ii) H is a direct product of non-abelian simple groups, permuted transitively by S.
Moreover, for any component L of G, NS(L) is contained in a unique maximal
subgroup of NS(L)L.

Moreover, if there exists a faithful FpG-module V with q(S, V ) ≤ 2 then, in case (ii),
we have H = E(G).

Proof. Denote by M be the unique maximal subgroup of G containing S, and set F =
∩{Mg}g∈G. Then G = NG(S ∩ F )F . As Op(G) = 1 and G 6= M it follows that
S ∩ F = 1, and so F is a p′-group. Let M∗ be any maximal subgroup of G. If F � M∗

then G = FM∗, so Sg ≤ M∗ for some g ∈ G, and this implies that M∗ is conjugate to
M . Thus F ≤ M∗, and F = Φ(G). Now let N be the inverse image in G of a minimal
normal subgroup of G. Then NS = G, and so N = H. Suppose that N is a p′-group.
For any prime divisor r of |N | there then exists an S-invariant Sylow r-subgroup of N ,
and it follows that N is an r-group. Uniqueness of M then implies that S acts irreducibly
on N/Φ(N), and so (i) holds in this case. On the other hand, suppose that N is not a
p′-group. Here N is not a p-group, as N 6= F , so N is a direct product of simple groups.

Suppose that (ii) is false. We may then assume without loss of generality that F = 1.
The uniqueness of M implies that S acts transitively on the set of components of N . Fix
a component L of N , and suppose that there exist distinct maximal subgroups X1 and
X2 of NS(L)L containing NS(L). Set X∗i = 〈SXi〉. Then X∗i is a proper subgroup of G,
and 〈X∗1 , X∗2 〉 = G. As this contradicts the uniqueness of M , (ii) is proved.

Suppose now that G is non-solvable, and that [Φ(G),H] 6= 1. Setting Q = Φ(G), we
then have Q = F (G) = F ∗(G). Suppose also that there is a faithful FpG-module V with
q(G,V ) ≤ 2, and set q = q(S, V ). Without loss of generality, we may assume that V is
irreducible for G. Denote by A the set of elements A of Q∗(S, V ) of minimal order, and
set G0 = 〈A〉. Then H ≤ G0. Let K the set of subgroups of Q given by 4.6, and set
D = [Q,G0]. Every member of K has a solvable automorphism group, so if H fixes every
member of K we obtain [D,H] = 1. But in that case we have [Q,H,H] = 1, and then
[Q,Op

′
(H)] = 1, and so H = 1. We conclude that H acts non-trivially on K, and then

4.6(d) implies that |A| = p for any A ∈ A.
We have p ≤ 3, as follows from 4.1. Suppose first that p = 2, and let K ∈ K. By the

definition of K (at the start of the proof of 4.6) there then exists A ∈ A with K = [K,A].
Then 4.6(f) says that every element of K is A-invariant. But H ≤ 〈AG〉, so it follows
that, in fact, H acts trivially on K. Thus, we have a contradiction if p = 2.

Suppose that p = 3. Fix A ∈ A, and set L = 〈AH〉. Then L = 〈AL〉 and F ∗(L) =
F (L). There then exists an irreducible L-submodule U of V such that [F (L), L] acts
non-trivially on U . Setting L = L/CL(U), we then have F ∗(L) = F (L), and we have
A ∼= A as |A| = 3. Set Y = [F (L), A]. Then [C2, Theorem A] implies that F (L) is a
2-group of symplectic type, that Y is a quaternion group, and that U is an irreducible
module for F (L). Further, if the width of a largest extraspecial subgroup X of F (L)
is n, then U is a direct sum of 2n−1 natural SL(2, 3)-modules for Y A if X = F (L),
and a direct sum of 2n such modules if X 6= F (L). As q(G,V ) ≤ 2, A is generated
by a 2-transvection, so we conclude that n ≤ 2, and that X = F (L) if n = 2. As L
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is non-solvable, it follows that n = 2, F (L) ∼= Q8 ◦ D8, and L/F (L) ∼= Alt(5). Here
L/F (L) is incident with a component of G/Q, so outcome (ii), above, implies that A is
contained in a unique maximal subgroup of L/F (L). But such is not the case, and we
have a contradiction at this point. Thus, the final statement in the lemma holds for all
p. �
11.2 Proposition. Let G be a group with Op(G) = 1 and let V be a faithful FpG-module.
Let A ∈ Q(S, V ), let K be a component of G, put E = 〈KA〉, and assume that K 6= E.
Then p = 2, and one of the following holds:

(i) |A/CA(E)| = 2, or
(ii) E ∼= Ω+

4 (2n) for some n, n ≥ 2, and [V,E] is a direct sum of natural O+
4 (2n)-

modules for EA.

Proof. Without loss, G = 〈K,A〉 and CA(E) = 1. Let Ω = {K1, · · · ,Kt} be the set of
components of G, with K = K1. Suppose first that |A| = p, and let 1 6= a ∈ A. Then
t = p, and for each prime factor q of |K| there is an A-invariant Sylow q-subgroup Q of
E with [Q,A] 6= 1. If p is odd then Theorem 3.8.1 in [G] says that QA involves SL(2, p),
and so p = 3 and q = 2. But then K is a {2, 3}-group, and hence K is solvable by a
theorem of Burnside. Thus p = 2, and (i) holds. On the other hand, if |A| > p, then
Theorem 2 of [C1] yields (ii). �
11.3 Lemma. Assume Hypothesis 4, and let A ∈ Q∗(S, V ). Suppose further that there
exists a component X of G not normalized by A. Set K = 〈XA〉, and let KS =
{K1, · · · ,Kr}. Set Vi = [V,Ki], 1 ≤ i ≤ r. Then the following hold:

(i) p = 2, H = K1× · · · ×Kr, and V = CV (H)⊕V1⊕ · · · ⊕Vr, where Ki
∼= Ω+

4 (2n),
and Vi is a natural orthogonal module for Ki.

(ii) Each Ki is invariant under 〈Q(S, V )〉, and KiA/CKiA(Ki) ∼= O+
4 (2n).

Proof. Set U = [V,K], and let A0 be a complement to CA(K) in A. As q(A, V ) ≤ 2, 3.4
implies that q(A0, U) ≤ 2. Suppose that |A0| > 2. Then 11.2 yields p = 2, K ∼= Ω+

4 (2n),
and V = CV (K)⊕ U , where U is a direct sum of natural orthogonal modules for KA0.
Set q = 2n, and let U0 be an irreducible KA0-submodule of U . Then |U0| = q4, and
|A0| ≤ 2q. Further, no element of A0 ∩ K induces a transvection on U0 over Fq, and
so |U0/CU0(A0)| ≥ q2. Thus |A0|2 ≤ 4|U0/CU0(A0)|, and if U 6= U0 it follows that
|A0|2 ≤ 4|U/CU (A0)|1/2. But if U 6= U0 we have 4|U/CU (A0)|1/2 < |U/CU (A0)|, and
so q(A, V ) > 2. We therefore conclude that U = U0. We have H = 〈XS〉, by 11.2, so
H = 〈KS〉. Let {K1, · · · ,Kr} be the set of conjugates of K in G, and put Vi = [V,Ki].
Then [Ui,Kj ] = 0 for i 6= j, and so (i) holds. Part (ii) follows from 11.2.

Suppose next that |A0| = 2, and let a be the involution in A0. Then |U/CU (a)| ≤ 4.
As O2(G) = 1, there is a Sylow 2-subgroup T of K of the form R × Ra, where R is a
Sylow 2-subgroup of X, and R has 2-rank at least 2. Then CR(a) has 2-rank at least
2, and so CR(a) contains an involution b such that [U, a, b] = 0. Setting A1 = 〈a, b〉, we
then have [U,A1, A1] = 0, and so 11.2 implies that K ∼= Ω+

4 (2n) and that U is a direct
sum of natural orthogonal modules for KA0. As in the preceding paragraph, let U0 be
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an irreducible KA0-submodule of U . As 2n ≥ 4, we then have |A0|2 ≤ |U0/CU0(A0)|,
and hence U = U0. Now (i) and (ii) follow, as above. �

We may now assemble the proofs of Theorems 1 through 6.

Theorem 1. Assume Hypothesis 4. Then there exists a subgroup K of H, unique up to
conjugation, such that, upon setting U = [V,K], the following conditions hold.

(a) H = K1 × · · · ×Kr where {K1, · · · ,Kr} = KS.
(b) We have [V,Ki,Kj ] = 0 whenever i 6= j.
(c) One of the following holds:

(i) K ∼= Op(SL(2, pn)), n ≥ 1, and U/CU (K) is a natural SL(2, pn)-module
for K, or a direct sum of two natural modules for K.

(ii) K ∼= Op(Oε4(pn)), n ≥ 1, ε = ±1, and U is a natural orthogonal module for
K.

(iii) K ∼= Op(SU(3, pn)) and U is a natural module for K.
(iv) p = 2, K ∼= O2(Sz(2n)), and U is a natural module for K.
(v) p = 2, A ≤ CG(K)K, K ∼= SL(3, 2n) (resp. O2(Sp(4, 2n)) and U is the

direct sum of a natural and a dual module (resp. a natural and a contra-
gredient module) for K. Moreover, there exists g ∈ NS(K) such that g
interchanges, by conjugation, the two maximal subgroups of K containing
S ∩K, and if K ∼= O2(Sp(4, 2n)) then A is conjugate to Z(S).

(vi) p = 2, K ∼= Alt(2n + 1), n ≥ 3, and U is a natural module for K, or a
direct sum of two natural modules for K.

(vii) p = 2, K ∼= Alt(9), and U is a spin module for K, of dimenson 8 over F2.
viii p = 3, K ∼= SL(2, 5), and U is a natural SL(2, 9)-module for K.

Moreover, if K is not invariant under Q∗(S, V ) then p = 2, K ∼= Z3, |U | = 4, and
q(S, V ) = 2.

Proof. If G is solvable then the theorem follows from 11.1 and 4.6. So assume that G is
non-solvable. Then 11.1 yields H = E(G). Let A ∈ Q(S, V ). If there is a component X
of G such that X is not A-invariant, then the theorem follows from 11.3. So assume that
X is A-invariant. If X ∼= SL(2, pn), [V,X] is a direct sum of two natural modules for X,
and there exists a unique conjugate Y of X such that [X,Y ] = 1 and [V,X, Y ] 6= 0, set
K = XY , and otherwise set K = X. Let {K1, · · · ,Kr} be the set of conjugates of K
under S. By 11.1 we then have H = K1 · · ·Kr. Set Vi = [V,Ki], and set U = [V,K].

As Op(G) = 1 we may assume that A and X have been chosen so that [X,A] 6= 1.
Choose a complement A0 to CA(K) in A. Then q(A0, U) ≤ 2, by 3.4. If K = X set
A1 = A0, and otherwise take A1 to be a complement in A0 to CA0(X). Then also
q(A1, [V,X]) ≤ 2. If p = 3, X ∼= SL(2, 5), and [V,X] is a natural SL(2, 9)-module for
X then K = X and the theorem holds (with (c)(viii)), so we may assume that this
special case does not obtain. Then 5.5 implies that X/Z(X) is a group of Lie type in
characteristic p, or that p = 2 and X is an alternating group Alt(2n + 1). If X/Z(X)
is of Lie type in characteristic p then 5.9 says that the pair (X, [V,X]) is described by
6.10 or by 7.5, while if X ∼= Alt(2n + 1) then 5.7 provides a description of (X, [V,X]). In
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particular, if [V,X] is reducible, and is not a direct sum of two non-isomorphic irreducible
submodules, then X ∼= SL(2, pn) or Alt(2n + 1) and X is a direct sum of two natural
modules forX. It follows that if EndX([V,X]) contains a subgroup isomorphic toX, then
[V,X] is a direct sum of two isomorphic irreducible modules, and if W is an irreducible
submodule of [V,X] then the dimension of W over EndX(W ) is equal to 2. This is the
case only if X ∼= SL(2, pn) and [V,X] is a direct sum of two natural modules.

Suppose that [V,X, Y ] 6= 0 for some conjugate Y of X with Y 6= X. Then the
preceding discussion yields XY ∼= Ω+

4 (pn), [V,X] is a natural orthogonal module for
XY , and X and Y are the only conjugates of X which act non-trivially on [V,X]. By
definition, we then have K = XY and U = [V,X]. The theorem follows in this case
(with (c)(ii)), so we may assume henceforth that [V,X, Y ] = 0 for any conjugate of X
distinct from X. Then also K = X.

If K/Z(K) is a group of Lie type in characteristic p, the theorem now follows from
6.10 and 7.5. Thus, we are reduced to the case where p = 2 and K ∼= Alt(2n + 1). Since
Alt(5) is a group of Lie type in characteristic 2, we may assume that n ≥ 3. The theorem
then follows from 5.7 (with either part (vi) or part (vii) of (c) obtaining). �

In order to prove Theorems 2 and 3, let the hypotheses be as in Theorem 1, and fix
A ∈ Q∗(S, V ). Suppose that q∗(A, V ) < 2, and let K and U be as in Theorem 1, with
[K,A] 6= 1. Let A0 be a complement in A to CA(K). Then q(A0, U) < 2 by 3.4, and
so we do not have the case given by (c)(viii) in Theorem 1. Thus, K is of Lie type in
characteristic p, or p = 2 and K ∼= Alt(2n + 1) with n ≥ 3.

Suppose that K is quasisimple. If the Lie rank of K/Z(K) is 1 then 6.10 implies
that H ∼= SL(2, pn), or that p = 2 and H ∼= Ω−4 (2n) or Alt(5), with U a natural
module for K in each of these cases. Moreover, if H ∼= Omega−4 (2n) then 6.10 says
that KA/CKA(K) ∼= O−4 (2n). Thus, Theorem 2 holds in these cases. If the Lie rank of
K/Z(K) is greater than 1 then 5.9 and 7.5 yield p = 2 and K ∼= SL(3, 2n), and Theorem
2 holds in this case. Now suppose that K ∼= Alt(2n + 1), n ≥ 3. Then 5.7 applies. In
particular, the condition q(A0, U) < 2 excludes the case where n = 3 and U is a spin
module for K, and excludes also the case where U is a direct sum of two natural modules
for K. Thus, U is a natural module for K, and we have Theorem 2 in this case.

Now assume that K is not quasisimple, and that K is non-solvable. Then Theorem 1
yields K ∼= Ω+

4 (pn). Suppose that A fixes each of the components of K. As q(A0, U) < 2
it is then easy to see that |A| > p, and so A0 ∩ CG(K)K 6= 1. Quadratic action then
forces A0 ≤ CG(K)K, and we again appeal to the quadratic action of A0, to conclude
that |A0| ≤ pn. But dimFpn (CU (a)) ≤ 2 for any a ∈ A#

0 , so q(A0, U) ≥ 2 in this case.
We therefore conclude that p = 2 and that A0 interchanges the two components of K.
Then 11.2 yields KA/CKA(K) ∼= O+

4 (2n). This is outcome (ii) of Theorem 2.
Suppose finally that K is solvable. If K is not A-invariant then Theorem 1 yields

K ∼= Z3 and |U | = 4, and this result is contained in outcome (i) of Theorem 2. So
assume that K is A-invariant. As q(A, V ) < 2, 4.5(a) implies that |U | = p2, and that
K ∼= Op(SL(2, p)) (p = 2 or 3). We have thus eliminated all the cases in Theorem 1
which do not remain in the statement of Theorem 2, and thus Theorem 2 is proved.

Now suppose that q(S, V ) ≤ 1. If K is solvable then Theorem 3 follows from 4.5(b),
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so assume that K is non-solvable. We have q(A0, U) ≤ 1, so 7.5 implies that K is not
isomorphic to SL(3, 2n) with p = 2. If p = 2 and K ∼= Ω+

4 (2n), n ≥ 2, then Theorem
2 yields |A0| = 2n+1 and |U/CU (A0)| = 22n, and so q(A0, U) > 1 in this case. If
p = 2 and K ∼= Alt(2n + 1), n ≥ 3, then 5.7 implies that A0 is generated by a set of
commuting transvections on the natural module U , so that KA/CKA(K) ∼= Sym(2n+1)
and q(A0, U) = 1. Then 1 = q(A, V ) = q(S, V ), and 〈AH〉 is isomorphic to a direct
product of copies of Sym(2n + 1). Then also 〈AG〉 is the point-wise stabilizer in G of
{K1, · · · ,Kr}, and is a direct product of copies of Sym(2n + 1). Thus, Theorem 3 holds
in this case. Finally, the last case given by Theorem 2 is that in which K ∼= SL(2, pn)
and U is a natural module for K. Again, we have q(A0, U) ≤ 1, and it follows that A0
is incident with a Sylow p-subgroup of KA/CKA(K) and that q(A0, U) = 1. We then
obtain q(S, V ) = 1, and 〈AG〉 = H. This completes the proof of Theorem 3.

Theorem 4. Assume Hypothesis 3, and assume that H is a quasisimple group of Lie
type in characteristic p. Let A be an F2-offender on V . Then one of the following holds.

(a) H ∼= SL(2, pn) and one of the following holds.
(i) V is a natural SL(2, pn)-module for H.
(ii) V has an H- submodule U such that both U and V/U are natural SL(2, pn)-

modules for H.
(iii) n is even and V is a natural Ω−4 (pn/2)-module for H.

(b) H ∼= SU(3, pn) and V is a natural module for H.
(c) p = 2, H ∼= Sz(2n), and V is a natural module for H.
(d) p = 2, H ∼= SL(3, 2n) (resp. O2(Sp(4, 2n)) and V is the direct sum of a natural

and a dual module (resp. a natural and a contragredient module) for H. More-
over, there exists g ∈ NS(K) such that g interchanges, by conjugation, the two
maximal subgroups of H containing S ∩H. If A is a quadratic F2-offender then
A ≤ H, and if also H ∼= Sp(4, 2n) then A is conjugate to Z(S).

Proof. Immediate from 5.9, 6.8, 6.9, and 7.5. �
Theorem 5. Assume Hypothesis 4′, and assume that H/Z(H) is isomorphic to Alt(n),
n ≥ 5. If p = 2 assume that n is odd. Then one of the following holds.

(i) p = 2, H ∼= Alt(n), n ≥ 5, and V is a natural module for H.
(ii) p = 2, H ∼= Alt(n), n = 5, 7, or 9, and V is a spin module for H (of dimension

4, 4, or 8, respectively). Moreover, if n = 9 then A is the direct product of two
quadratic fours groups in H.

(iii) |A| = p = 3, G ∼= Alt(n), n 6= 6, and V is a natural module for G. Moreover, A
is generated by a 3-cycle.

(iv) |A| = p = 3, H ∼= SL(2, 5), and V is isomorphic to the natural SL(2, 9)-module
for H.

(v) p = 3, H ∼= Alt(9), |A| = 27, and V is a spin module for H (of dimension 8 over
F3). Moreover, we have |A|2 = |V/CV (A)|.

Proof. If p is odd then 8.3 yields one of the outcomes (iii) through (v) above. So assume
that p = 2 (and hence also that n is odd). Suppose that there is more than one non-
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trivial irreducible constituent for HA in V . As q(A, V ) ≤ 3/2, there there then exists
a non-trivial irreducible constituent U for HA in V such that q(A,U) ≤ 3/4. By the
Timmesfeld Replacement Theorem there then exists B ∈ Q(S,U) with q(B,U) ≤ 3/4,
and this is contrary to 5.7. Thus, there is a unique non-trivial constituent in V for HA,
and then V is irreducible for HA, and hence also for G, by 1.2.

If n = 5 then H ∼= L2(4), and we obtain (i) or (ii) from Theorem 4. So we may assume
that n ≥ 7. By 9.1 there then exists a fours group F in G with A ∩ F 6= 1 and with
[V, F, F ] = 0. Assuming that V is not a natural module for G, it then follows from [MS2,
Theorem 4] that V is a spin module for HF . Let a be a non-identity element of A ∩ F ,
and identify H with Alt(n). After conjugation, we have F = 〈(1 2)(3 4), (1 3)(2 4)〉,
and F is the unique quadratic fours group in G containing a. Denote by k the greatest
integer in n/3. Then H contains a subgroup E generated by k pairwise disjoint 3-cycles.
For any 3-cycle x in H we have CV (x) = 0, so the dimension of V over F2 is a multiple
of 2k. In particular, if dim(V ) < 8 then n = 7, and we have (ii). So we may assume that
dim(V ) ≥ 8 (and that n ≥ 9).

As a inverts a 3-cycle, we have also dim(V ) = 2dim(CV (a)). Then |V/CV (a)| ≥ 16,
and then since |A|3/2 ≥ |V/CV (A)| ≥ |V/CV (a)| we have |A| ≥ 8. If CV (a) = CV (A),
and then every fours group in A which contains a is quadratic, contrary to the uniqueness
of F . We therefore conclude that CV (a) 6= CV (A), and this yields |A| ≥ 16.

Let K be the component in CH(a), and let A0 be a complement to CA(K) in A.
Then |A0| ≥ 4. For any 3-cycle y in K we have C[V,a](y) = 0, so [V, a] = [V, a,K], and
Theorem 4 in [MS2] implies that every irreducible constituent for K in [V, a] is a spin
module. As A0 acts quadratically on [V, a], by hypothesis, we conclude that |A0| = 4.
Then F ≤ A, we may take A0 to be a quadratic fours group contained in K, and we
have A = F ×A0. Now |A|3/2 = 64, and since CV (a) 6= CV (A) we have dim(CV (a)) ≤ 5.
Then dim(CV (a)) = 4, and the faithful action of K on CV (a) yields n = 9 or 11. Now
dim(V ) = 8, and since 11 is not a divisor of |L8(2)| we have n = 9, and (ii) holds. �
Theorem 6. Assume Hypothesis 4′, and assume that S is contained in a unique max-
imal subgroup of G. Assume also that H/Z(H) is a quasisimple group of Lie type in
characteristic different from p, or a sporadic group, and that there exists no isomorphism
of H/Z(H) with a group of Lie type in characteristic p. Then |A| = p = 3, G ∼= Sp(6, 2),
V has dimension 7 over F3, and |A|2 = |V/CV (A)|.
Proof. Immediate from 2.2 and 10.2. �
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