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Introduction. This paper concerns “small” modules for finite groups which are
themselves “small” in a certain sense to be defined, and it is directed towards some
specific applications. For the space of a few paragraphs, however, we can try to place
things in a fairly broad context.

For any finite group Y and any prime p, one may consider the action induced by Y,
via conjugation, on the largest normal p-subgroup O,(Y) of Y. As an example, let Y be
a proper parabolic subgroup in a simple group X of Lie type, in characteristic p. Then
Cy (0,(Y)) < Op(Y), which is to say that Y/Z(0,(Y)) is faithfully represented as a
group of automorphisms of O,(Y). Denote by L the subgroup of Y generated by the
p-elements in Y, and assume that L properly contains O,(Y"). That is, assume that Y
is not a Borel subgroup of X. Then O,(Y) = O,(L), and L/O,(L) is itself a group of
Lie type in characteristic p. Further, there then exists an L-invariant section V' of O, (L)
having exponent p, and such that L/O,(L) acts faithfully on V. Thus V is a module for
L/O,(L) over the field IF,, of p elements, and one may then appeal to the enormous body
of work concerning such representations of characteristic-p groups of Lie type, in order
to obtain information about the structure of V' and, indirectly, about the structure of L
and even of X.

The assumption that Y be a proper parabolic subgroup of X and that Y not be
a Borel subgroup implies that the Lie rank of X is at least 2. There is then a rich
geometry I'(X) associated with X, namely the building associated with the set of all
parabolic subgroups of X, and which is encoded in the Dynkin diagram associated with
X. From this diagram one also reads off information about the various “residues” at the
proper parabolic subgroups of X, so that the geometry I'(L) associated with the group
L/O,(L) is given by a sub-diagram. The point is that this geometry imposes severe
restrictions on the sorts of modules V' which can arise in the above context. Indeed,
if we choose L so that the diagram for I'(L) is connected then, as it happens, all such
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modules V are “small”, in the sense that |L/O,(L)|* > |V|. This fact can be seen as
a consequence of another one, which has more to do with the particular nature of the
action of L on V. Namely, in “most” cases in which I'(L) is connected there exists an
elementary abelian p-subgroup A of X/O,(X), A # 1, with the property that

(0.1) AP > [V/Cv(A)].

(The qualifying adjective “most” will be made more precise, further along in this intro-
duction.) For the moment, we mention that the condition (0.1) implies the condition
that |L/O,(L)|?> > |V| as a consequence of [CD, Theorem 2.3].

Suppose now that we weaken the above hypotheses, so that the ambient group X is no
longer assumed to be a simple group of Lie type. Suppose instead that we require only
that O,(X) = 1 and that for any non-identity p-subgroup @ of X, the group Y = Nx(Q)
has the property that Cy (O,(Y)) < O,(Y). (That is, all p-local subgroups of X are p-
constrained.) As above, let L be the group generated by the p-elements in Y. One may
ask whether there exists a suitable p-local subgroup Y of X, a non-identity elementary
abelian subgroup A of L/O,(L), and an elementary abelian section V' of L in O,(L),
admitting faithful action by A, such that (0.1) holds.

In raising this question, we have in mind the situation where X is a simple, or nearly
simple, group in which the composition factors of the various groups Y are on the list if
“known” simple groups, but in which X itself is not assumed to be on such a list. That
is to say, our intention is to address issues that pertain to the Classification of the Finite
Simple Groups (or the CFSG, for short).

Specifically, the aim of this paper is to provide support for a project, initiated by
Ulrich Meierfrankenfeld, to classify the finite simple groups X which are of “generic
characteristic p type.” We will not attempt here to outline this program, other than
to say that the groups under consideration correspond roughly to the class of simple
groups of Lie type, of Lie rank at least 2. The feature of Meierfrankenfeld’s project
which distinguishes it most clearly from the treatment of characteristic p-type groups
in the CFSG as it currently stands, and from the treatment in the ongoing revision
project of Gorenstein, Lyons, and Solomon (GLS), consists in directly targeting the
groups Y = Nx(Q) for analysis, rather than switching attention to a prime r different
from p. This difference in approach can be summarized by saying that in the CFSG as it
stands, the emphasis is on “semisimple” subgroups, while in the Meiefrankenfeld program
the emphasis is on normalizers of unipotent subgroups. Actually, even in the old version
of CFSG, and in the GLS revision, an important chapter - namely the classification of
Quasithin Groups - is treated via a “unipotent” approach for the prime 2 (for which
see [AS]). So it may be more correct to say that in the Meierfrankenfeld program, the
unipotent approach takes center stage, rather than being relegated to the treatment of
a difficult special case.

In the Meierfrankenfeld program one begins with a group X of characteristic p-type,
with O,(X) = 1, and in which a Sylow p-subgroup S of X is contained in at least two
different maximal p-local subgroups of X (so that one has, from the outset, the rudiments
of a geometry). The analysis then centers on a pair of p-local subgroups C and M of X
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containing S, such that C contains the centralizer in X of Z(S), and such that M/ O, (M)
acts faithfully on a subgroup V' of exponent p in O,(M) (where V is taken to be as large
as possible for this condition). The normal closure W of V in C is then either an abelian

p-group, a non-abelian p-group, or (of course) a group which is not a p-group. One then
finds:

(0.2) If W is an abelian p-group then there exists a conjugate A of V in C such that
[V, A, A] = 1, and such that |[A/Ca(V)|?> > |V/Cy(A)|.

The case where W is not a p-group leads to a variant of (0.2), as follows.

(0.3) If W is not a p-group then there is a 5’—conjugate A of a subgroup of V', such that the
following hold.
(i) [V, A, A4, 4] =1,
(ii) [Cy(a),A, A] =1 for every a € A — Cy(V), and
(iii) [A/Ca(V)|? > |V/Cy(A)], and if p = 2 then |A/Ca(V)|3/2 > |V/Cy (A)].

The case in which W is a non-abelian p-group does not lend itself to the formulation of
conditions as in (0.2) or (0.3). This is the reason for the qualification concerning “most”
cases in the condition (0.1).

We have, so far, explained what a small module is, for our purposes. But we have not
yet explained the other half of the title of this paper. A group G is a “minimal parabolic”
group (for the prime p) if a Sylow p-subgroup S of G is not normal in G and is contained
in a unique maximal subgroup of G. Such groups G are the “small” groups that we will
consider here, and a general description of such groups may be found in 11.1, below. Our
aim in this paper is to obtain information about [F,G-modules V', where G is a minimal
parabolic group and where V' satisfies conditions as in (0.2) or (0.3). The reason for
restricting attention to these groups has to do with the specific demands made by one
portion of the Meierfrankenfeld project. But some of our results do in fact concern small
modules for groups which are not necessarily minimal parabolics. We therefore begin by
stating a series of hypotheses, of varying degrees of restrictiveness.

Hypothesis 1. G is a finite group, p is a prime, S is a Sylow p-subgroup of G, and V
is a faithful F,G-module. Further, we have O,(G) = 1, and there ezists a non-identity,
elementary abelian subgroup A of S such that |A|> > |V/Cy (A)].

Whenever Hypothesis 1 is in effect, we put:
H = 0"(G).

That is:
H= (g€ G : |h| isrelatively prime to p).
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Also, whenever Hypothesis 1 is in effect, we will use additive notation for the group
operation in V' (so that 0, rather than 1, denotes the identity element of V). It will
be important to observe that, under Hypothesis 1, if H is quasisimple then the Fitting
subgroup F(G) is contained in H, and so H = F*(G).

Hypothesis 2. In addition to Hypothesis 1, assume that V = ((Cy(S N H))%), and
Cyv(G) = 0. Assume also that G = (S%).

Hypothesis 3. Let G, p, S, V, and A satisfy the conditions of Hypothesis 2. We further
assume that S is contained in a unique maximal subgroup of G.

Hypothesis 4. In addition to Hypothesis 3, we assume that A can be chosen so that A
acts quadratically on V. That is, we have [V, A, A] = 0.

Recall that a group X is “quasisimple” if X/Z(X) is simple and Z(X) < [X, X].

Hypothesis 4'. Assume Hypothesis 2, and assume that H is quasisimple. Assume
further that there is a non-identity elementary abelian p-subgroup A of G satisfiying the
following conditions.

(a) [V, A, A, Al =0.

(b) [Cv(a),A, A] =0 for every non-identity element a of A.

(c) If p =2 then |A]3/2 > |V/Cy (A)|, while if p is odd then |A|> > |V/Cy (A)].

Recall that a “component” of a group X is a quasisimple subnormal subgroup of X.
We assume always that the Classification of the Finite Simple Groups applies to the
components (if any) of G. Thus, to state things explicitly, we have the following:

Background Hypothesis. Whenever Hypothesis 1 holds, and K is a component of G,
then K/Z(K) is an alternating group, the commutator subgroup of a group of Lie type,
or one of twenty-six “sporadic” groups.

(To be scrupulously honest, it must be said that we assume also that if K is a qua-
sisimple subgroup of SL(4,p) then K/Z(K) is given by the CFSG. But, presumably, this
assumption is not essential.) We accept, as part of the above background hypothesis, the
classification as it stands, of the Schur multipliers of the alternating groups, the groups
of Lie type, and the sporadic groups, together with structural information of various
kinds concerning these groups. The information that we need can be found in [GLS3|
and, for the sporadic groups, in [A2]. Also, whenever the ATLAS of finite simple groups
[CCNPW] asserts that a certain group occurs as a maximal subgroup of some group,
we accept that information uncritically. This kind of information from the ATLAS will
be used (and will indeed be used extensively) only in section 10 below, in dealing with
groups of Lie type in characteristic different from p.

In order to state our results, we need first of all to establish some terminological
conventions relating to specific groups and modules.
Let G be an alternating or symmetric group Alt(n) or Sym(n), and denote by P(n,p)
the permutation module for G, of dimension n over IF,. The “natural module” for G
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in characteristic p is, by definition, the module V' = [P(n,p), G]/Cip(np),c)(G). When
p = 2 we shall need also the notion of a “spin module” for GG, and for this we adopt the
view-point taken in [M]. Thus, set U = [P(n,2), G]. There is then a natural G-invariant
quadratic form Q) on U, and if () is degenerate then n is divisible by 4 and the radical of
Q has dimension 1. In any case, set U = U/Rad(Q), and let Q be the (non-degenerate)
form on U induced by Q. There is then an induced action of G on the Clifford algebra
C associated with Q. An Fy-module V is then said to be a spin module for G if V is
isomorphic to an irreducible G-submodule of C.

The class Lie(p) of “groups of Lie type in characteristic p” will have the following
meaning. A group X is in Lie(p) if there is a simple, affine algebraic group X, defined
over an algebraic closure of [F,,, and a Steinberg endomorphism o of X, such that X is
isomorphic to the subgroup of X generated by the elements of p-power order in Cx(0).
Having said this, we then make three exceptions. Namely, it will be convenient, for our
purposes, to consider also the commutator subgroups of Sp(4,2), 2F4(2), and of 2G5(3)
to be groups of Lie type in the characteristics 2, 2, and 3, respectively.

By “a” natural module” for SL(2,p") we mean any module for SL(2,p"™) which is iso-
morphic over F,, to “the” natural module for SL(2, p™) (and by which we mean the vector
space of dimension 2 over F,» on which SL(2, p™) acts by matrix multiplication). We also
have the notion of a natural {23(p™)- module and, for n even, a natural  (p")-module
for SL(2,p™), given by identifying PSL(2,p™) with one or the other of these orthogonal
groups. In the same way, we have the notion of a natural module for SU(3,p"). A
natural module for a Suzuki group Sz(2") is, by definition, any irreducible module of
dimension 4 over Fan for Sz(2") (n odd), it being known from [St2] that all such modules
are isomorphic over Fy to a module obtained from an embedding of Sz(2") in Sp(4,2™)
as the fixed points of a symplectic polarity. The notions of natural modules for SL(3,p™)
and Sp(4,p™) should now require no further explanation. If V' is a natural module for
Sp(4,2™) then a “contragredient module” associated with V' is, by definition, the image
of V under a symplectic polarity.

We require also some terminology concerning the groups A which enter into the various
hypotheses stated above. Thus, let V' be a vector space over [F,,, and let G' be a subgroup
of GL(V'). A subgroup A of G is said to act quadratically on V' (or to be a quadratic
subgroup of G) if A # 1 and [V, A, A] = 0. It is an entirely elementary result that such
a group A is necessarily an elementary abelian p-group (for which see lemma 1.1 in [C1],
for example). Let Y be a subgroup of G. We denote by Q(Y, V') the set of all quadratic
subgroups A of Y. Assuming that Q(Y, V) # (), we then define ¢(Y, V) to be the smallest
real number ¢ for which there exists A € Q(Y, V') with |A|?|Cy (A)| = |V]. We then set

Q*(Y,V) ={A e Q. V) | [A1"V|Cy(4) = [V]}.

For i = 1 and 2, we say that V is an Fi-module for GG if there exists a non-identity
elementary abelian p-subgroup A of G such that |A|* > |[V/Cy(A)|, and that V is a
quadratic Fi-module if such an A can be chosen in Q(G, V). The group A is then said
to be an Fi-offender on V', and a quadratic Fi-offender if also A acts quadratically
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on V. If |A] = p and A is an F2-offender on V then any non-identity element of A is
said to be a 2-transvection on V.

We may now state our main results.

Theorem 1. Assume Hypothesis 4. Then there exists a subgroup K of H, unique up to
conjugation, such that, upon setting U = [V, K|, the following conditions hold.
(a) H=K; x---x K, where {K,,--- ,K,} = K°.
(b) We have [V, K;, K;] = 0 whenever i # j.
(c) One of the following holds:
(i) K =2 OP(SL(2,p™)), n > 1, and U/Cy(K) is a natural SL(2,p™)-module
for K, or a direct sum of two natural modules for K.
(ii) K =20P(045(p™)), n > 1, e = %1, and U is a natural orthogonal module for
K.
(iii) K = OP(SU(3,p™)) and U is a natural module for K.
(iv) p=2, K =2 0?(Sz(2")), and U is a natural module for K.
(v) p=2, A< Cq(K)K, K = SL(3,2"™) (resp. O*(Sp(4,2")) and U is the
direct sum of a natural and a dual module (resp. a natural and a contra-
gredient module) for K. Moreover, there exists g € Ng(K) such that g
interchanges, by conjugation, the two maximal subgroups of K containing
SNK.
(vi) p =2, K 2 Alt(2" + 1), n > 3, and U is a natural module for K, or a
direct sum of two natural modules for K.
(vil) p=2, K = Alt(9), and U is a spin module for K, of dimenson 8 over F.
Moreover, if K is not invariant under Q*(S,V) then p = 2, K = Zs, |U| = 4, and
q(S, V) =2.

Two special cases of Theorem 1 are of importance in their own right, where ¢(A4,V) <
2, and where q(A,V) < 1. Theorems 2 and 3 describe the possible outcomes in these
two cases.

Theorem 2. In Theorem 1, suppose that we have q(A, V') < 2. Then one of the following
holds.

(i) K 2 0P(SL(2,p")), n>1, and U/Cy(K) is a natural SL(2,p™)-module for K.
(ii) p =2, KA/Cga(K) 2 05(2"), n > 1, e = +1, and U is a natural orthogonal
module for K. Moreover, we have |A/Ca(K)| = 2"t and if n = 1 then e = —1.
(iii) p=2, A< Cq(K)K, K =2 SL(3,2") and U is the direct sum of a natural and a
dual module for K. Moreover, there exists g € Ng(K) such that g interchanges,
by conjugation, the two maximal subgroups of K containing S N K.
(iv) p=2, K =2 Alt(2" + 1), n > 3, and U is isomorphic to the natural module for
K.

Theorem 3. In Theorem 1, suppose that we have q(S,V) < 1. Denote by A(S,V) the
set of all subgroups A of S such that |A| > |V/Cy (A)| and such that [V, A, A] = 0. Then
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q(S,V) =1 and H < (A(S,V)¥) = E, --- E, where E; is a subnormal subgroup of G
and where one of the following holds.
(i) E; = SL(2,p"), n > 1, and [V, E;] is a natural SL(2,p")-module for E;.
(ii) p=2, B; 2 Sym((2" + 1), n > 2, and V = Cy(E;) ® [V, E;], where [V, E;] is
isomorphic to the natural module for E;.

In Theorems 4,5, and 6 we drop the assumption that A acts quadratically.

Theorem 4. Assume Hypothesis 3, and assume that H is a quasisimple group of Lie
type in characteristic p. Let A be an F2-offender on V. Then one of the following holds.

(a) H=SL(2,p") and one of the following holds.

(i) V is a natural SL(2,p™)-module for H.
(ii) V has an H- submodule U such that both U and V/U are natural SL(2,p™)-
modules for H.
(iii) p is odd, H = La(p™), and V is a natural Qs(p™)-module for H.
(iv) n is even and V is a natural Q (p™/?)-module for H.

(b) H = SU(3,p™) and V is a natural module for H.

(c) p=2, H=S2(2"), and V is a natural module for H.

(d) p=2, H = SL(3,2") (resp. O?(Sp(4,2™)) and V is the direct sum of a natural
and a dual module (resp. a natural and a contragredient module) for H. More-
over, there exists g € Ng(K) such that g interchanges, by conjugation, the two
maximal subgroups of H containing S N\ H. If A is a quadratic F2-offender then
A < H, and if also H = Sp(4,2™) then A is conjugate to Z(S).

Theorem 5. Assume Hypothesis 4', and assume that H/Z(H) is isomorphic to Alt(n),
n > 5. Assume also that H/Z(H) is not of Lie type in characteristic p, and if p = 2
assume that n is odd. Then one of the following holds.

(i) p=2, H= Alt(n), n > 5, and V is a natural module for H.

(ii) p=2, H = Alt(n), n =5,7, or 9, and V is a spin module for H (of dimension
4, 4, or 8, respectively). Moreover, if n = 9 then A is the direct product of two
quadratic fours groups in H.

(iii) |A|=p =3, G = Alt(n), n # 6, and V is a natural module for G. Moreover, A
1s generated by a 3-cycle.

(iv) |[Al=p =3, H= SL(2,5), and V is isomorphic to the natural SL(2,9)-module
for H.

(v) p=3, H=Alt(9), |A| =27, and V is a spin module for H (of dimension 8 over
F3). Moreover, we have |A|* = |[V/Cy (A)].

Theorem 6. Assume Hypothesis 4', and assume that S is contained in a unique maz-
imal subgroup of G. Assume also that H/Z(H) is a quasisimple group of Lie type in
characteristic different from p, or a sporadic group, and that there exists no isomorphism
of H/Z(H) with a group of Lie type in characteristicp. Thenp =3, G/Z(H) = Sp(6,2),
|A|? = |V/Cv(A)|, and one of the following holds.
(i) |[A| =3, Z(H) =1, and V has dimension 7 over Fs.
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(ii) |A| =27, |[Z(H)| =2, and V has dimension 8 over Fs.

We mention that the case where G is solvable is hidden in Theorem 1. Section 4,
below, contains many results concerning the case where F*(G) is solvable, and which
are not revealed in the statements of Theorems 1 through 6. Of these results, 4.6 is the
most important, and figures strongly in the proof of 11.1. There is a certain sense in
which this case forms the core of this paper, and we therefore invite the reader to glance
through section 4 before undertaking a thorough reading of the whole.

We attempt to list our notational conventions, many of which stem from the ATLAS),
and to list also those cases where we are torn between competing conventions. We denote
by 2172" an extraspecial 2-group T whose corresponding orthogonal space T//Z(T) has
“defect” €, where ¢ = 1 or —1. But we also write Jgs and Dg for the quaternion and
dihedral groups, respectively, of order 8, and we write X oY for the “central product” of
the groups X and Y, this being the direct product, modulo the relations which identify
the centers of X and Y, and which is defined only only if those centers are isomorphic.
An alternative notation for the groups 21%2" is given by the iterated central products
D{™ and Q™.

The symbol [n] indicates a group of order n, and if p is a prime then p™ is often used
to denote an elementary abelian group of order p™. If X and Y are groups then X.Y or
(X).Y or sometimes just XY is said to be the “shape” of a group G provided that G has
a normal subgroup X isomorphic to X, with G/X* isomorphic to Y, and with G not
isomorphic to the direct product of X and Y. Conventional notation for the groups of
Lie type will always be taken to give the corresponding adjoint version. So, the center of
the group 24,,(q), for example, is trivial. We often write L, (q) for PSL(n,q), and U, (q)
for PSU(n,q). In general we write [X, X| for the commutator subgroup of a group X,
but in the case where X is a group of Lie type or, more specifically, a classical group, we
feel free to use the “apostrophic” notation to indicate derived groups. Thus, Sp(4,2")’,
or Uz(2)’, or 2Fy(2)’, for example. Our hope is that other notation, which we have not
had the foresight to introduce at this point, will be self- explanatory.

Section 1: Decomposability questions

1.1 Lemma. Let G be a group acting faithfully on a vector space V over IF,,. Let T be
a Sylow p-subgroup of OP(G), and assume that V = (Cy(T)%). Then V = [V,0P(GQ)] +
Cv (07(G)).

Proof. Set H = O,(G), let {h1,--- , h,} be aright transversal for 7" in H, let u be a non-

zero element of Oy (T), and set v = u? + .- 4+ u”. Each g € H defines a permutation
in Sym(r) by means of the formula h;g € Th;4, and then

vg:uhlg_{_..._{_uhrg:uhlg+...+uh7‘9 = .

If uw ¢ [V, H] then v = ru + w for some w € [V, H|, and so ru € [V,H|] + Cy(H). As p
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does not divide r, we conclude that Cy (T) < [V, H] + Cy(H). As V = (Cy(T)%), we
then have the lemma. [

1.2 Corollary. Assume Hypothesis 2, and suppose that there is a unique non-trivial
irreducible constituent for G in V. Then V is irreducible.

Proof. Immediate from 1.1. [

1.3 Lemma. Let (L,U) be a pair consisting of a group L and an irreducible Fo[L]-module
U. Assume that (L,U) is given by one of the following:

(1) L= SL(2,2™), U the natural module.

(2) L=Q5(2"), e = £1, U the natural orthogonal module.
(3) L= SL(3,2"), U the natural module.

(4) L = Sp(4,2™), U the natural module for Sp(4,2™).
(5) L= Alt(n), U the natural module.

Then one of the following holds.

i)
(ii) L= SL(2 2”) and HY(L,U) = Fan.
(iii) L= SL(3,2) and HY(L,U) = F,.
(iv) L = Sp(4,2") and H'(L,U) = Fgn.
(v) L= Alt(n), n even, and H'(L,U) = Ty

Proof. In each of the cases to be considered, let W denote an L-module containing U,
with [W, L] = U and with Cw (L) = 0. Suppose first that L = SL(2,2") and that U is
the natural module for L. For any involution ¢ in L we have [W,t] < Cy(t), and hence
|W/Cw (t)| < 2". Since three involutions suffice to generate L, it follows that |W| < 237,
On the other hand, one may produce an example where |[W| = 237 in the following
way. Put L* = SL(2,2?") and regard L as a subgroup of L*. Identify L* with Q; (2")
and let V be the natural orthogonal module for L*. Then L centralizes a 1-dimensional
singular subspace V{ of V, and by taking W = V/V we obtain the desired example.
Thus |HY(L,U)| = 2".

Next, take L = Q (2"), U the natural orthogonal module. Assume that |W/U| = 2.
Put ¢ = 2" and let D be a subgroup of L of order ¢ + 1. Then |Cy (D)| = 2¢*. For any
involution ¢ of L one then has Cy ((D,t)) # 0. But an elementary counting argument
shows that one may choose ¢ so that (D,t) is not an SL(2,2")-subgroup of L, and is
not a dihedral group of order 2(q + 1). Then (D,t) = L, by appeal to Dickson’s list of
subgroups of L. That is, Cyy (L) # 0, so W is decomposable after all, and H'(L,U) = 0.

Assume next that L = QF (2"), U the natural module, and form the semi-direct
product H = U : L. Let K = K; x K5 be a complement to U in H, K; = SL(2,2™).
After a suitable conjugation, we may assume that KNL contains a subgroup X = X x X5,
where X; = X N K is of order 2" + 1. But Cy(X;) = 0, so Cy(X;) = X;K3_,;. This
shows that K = L, and so there is only one conjugacy class of complements to U in H.
That is, H'(L,U) = 0.
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We next consider the case where L = SL(3,2") or Sp(4,2™)". Let P; and P» be the two
maximal subgroups of L containing a fixed Sylow 2-subgroup S of L. Put L; = [P;, P;],
Qi = O2(P;), and Z; = Cg,(L;), and let the indexing be chosen so that Cy(L1) # 0.

Assume now that L = SL(3,2"), n > 1. Assume that |W/U| = 2, and let K
be a complement to Q2 in Ls. Then both Q2 and Cy(Q2) are natural SL(2,2")-
modules for K, so we have |[Homg(Q2,Cy(Q2))] = 2". Then [W,Ls] < Cy(Q2),
and so W = U + Cw(Q2). Then [W,Q1 N Q2] < [U,Q1] = Cy(L1), and then also
[W,Ql] = [W, <(Q1 N QQ)L1>] < CU(Ll) This yields ’CW(Q1)| = |Cw(L1)‘ = 2n+1. But
also, for any involution ¢t € L we have |W/Cy (t)| = 2™. Choosing t € L — Ly, we get
L = (Ly,t), and so Cy (L) # 0. Thus H'(L,U) = 0.

One may produce an indecomposable module for L = L3(2) by considering the action
of Alt(7) on the natural L,(2)-module, and observing that Alt(7) contains two classes
of L3(2)-subgroups. Thus |[H*(L,U)| > 2 in this case. Let W be an L-module of order
32, with U = [W,L]. For any y € L with |y| = 3 one has |[W,y]| = 4, and since
two conjugates of y suffice to generate L we then have Cy (L) # 0. This shows that
|HY(L,U)| = 2 if L = L3(2).

Next, suppose that L = Sp(4,2™), n > 1, and assume that |[WW/U| > 2™. We have
\U/Cu(Z1)| = |[U, Z1]| = 2™, and [W, L;] < Cy(Z1). The Three Subgroups Lemma
yields [W,Zy,L1] = 0, and so [W,Z,] = [U,Z;]. Let K; be a complement to @1 in
Ly such that K is generated by two conjugates of Z;. Then |[W, Ki]|| < 2?7, and
[W, K1] is a natural SL(2,2")-module for K;. By what has already been proved, we
have |H (K1, [W, K1])| = 2", and so there exists w € W — U with [w, K1] = 0. Then also
there exists v € W — U with [v, Z1] = 0. Set Wy = (v) + U. As four conjugates of Z;
suffice to generate L we then have Cyy, (L) # 0, contrary to assumption. This shows that
|HY(L,U)| < 2™. To see that equality holds, it is enough to observe that in Sp(6,2")
there is a maximal parabolic subgroup P with O2? (P/Oy(P)) = L and with Oy(P) an
indecomposable module for O% (P), such that Co,( p)(02/(P)) is of order 2™ and such
that Oa(P)/Co,py (0% (P)) is a natural SL(2,2")-module for O? (P/Ox(P)). (This is
entirely well known, but one can find this worked out in detail in lemma 5.4 of [C2].)

Suppose next that L = (Sp(4,2))’. The natural permutation module for Alt(6) pro-
vides an example which shows that |[H*(L,U)| > 2. Let W be an L-module of order 64
with U = [W, L], and let Ly be a subgroup of L, Ly = Alt(5), such that U is the natural
Q; (2)-module for Ly. By what has already been shown, we have H!(Lg,U) = 0, and so
W =U @& Cw(Lg). Let S be a Sylow 2-subgroup of L such that |S N Ly| = 4, and let
t be an involution in S — Lg. Here |Cy (S N Lg)| = 2, and so Cyw (Lg) N Cyw(t) # 0. As
(Lg,t) = L we then have Cy (L) # 0, and this shows that |H'(L,U)| = 2.

Finally, let L = Alt(n), with U the natural module. Suppose that n = 2m + 1 is odd.
Then L is generated by m 3-cycles, each of which centralizes a subspace of codimension
2 in W. Then dim(W) < 2m = dim(U). Thus W = U, and H'(L,U) = 0 in this
case. Now suppose that n = 2m is even. Then m — 1 3-cycles suffice to generate the
subgroup K; of L which fixes the point ¢ in the natural action of L on n points. Here
Cy(K;) =0, and dim(U) = 2m—2, so we have W = U+ Cy (K;). Set X = K; N K>, and
observe that dim(Cy (X)) = 1. Thus Cw (K;) is a hyperplane of Cy (X), for i = 1 and
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2. As (K1, K2) = G we have Cy (K1) N Cw (K32) = 0, and we conclude that |W/U| < 2.
On the other hand, the natural permutation module for L, modulo its fixed-points for
L, provides an example of an indecomposable module W in which |W/U| = 2. Thus
|H'(L,U)| = 2 in this case, and the lemma is proved. [

1.4 Lemma. Let L be the group L2(q), q a power of p, p odd, and let V' be a module
for L over T, such that [V/Cv (L), L] is isomorphic to the natural Q3(q)-module for L.
Then V =[V,L| & Cy(L).

Proof. Let T be a Sylow p-subgroup of L, let D be a complement to T in N (T), let
U be the natural Q3(g)-module for L, and form the semi-direct product U : L. We will
show that there is a unique conjugacy class of D-invariant complements to U in UT', and
the lemma will follow from a standard result on 1-cohomology. (See 17.7 in [A3].)

Let T1 be a D-invariant complement to U in UT, and set X = (TV). Then X =
U, T|T, where [U,T] is a 2-dimensional F,- subspace of U. Every element of order p in
UT lies in X, so we have T} < X. Notice that D acts trivially on the 1-dimensional space
[U,T)/Cu(T), and so the ¢ distinct conjugates of T'under [U, T'] are all D-invariant. These
conjugates, together with Cy;(T'), provide a partition of (Cy (T)T)# into D-invariant sets,
so if Ty < Cy(T)T then T; is conjugate to T. Suppose now that ¢ > 3, so that D # 1.
Then [X, D] = Cy(T)T, and so Ty < Cy(T)T in this case. Thus, we are reduced to the
case p = 3. Here there are exactly 9 conjugates of T' under U, and there are exactly
13 = (3% —1)/(3 — 1) subgroups of X of order 3, four of which lie in U. Thus T} is
conjugate to T in this case as well, and the lemma is proved. [

1.5 Lemma. Let L = L3(2) and let V' be an FyL-module such that Cy (L) < [V, L],
and such that [V/Cy (L), L] is a natural L3(2)-module for L. Then either V = [V, L] or
Cy(L)=0.

Proof. Suppose false. Then 1.1 implies that |V/[V, L]| = |Cy(L)| = 2, and so |V| = 32.
Let t be an involution in L. Then two conjugates of ¢t generate a Sylow 2-subgroup of
L, and then three conjugates of ¢ suffice to generate L. If ¢ induces a transvection on
[V, L] we then obtain Cpy,z)(L) # 0, while if ¢ induces a transvection on V/Cy (L) then
L has a non-trivial fixed-point on V/Cy(L). These results are contrary to the case,
so we conclude that ¢ induces a 2- transvection on both [V, L] and V/Cy (L). Then
Cy(t) < [V,L], and |V/Cy(t)| > 8. But |V/Cy(t)| < 4 as |V| = 32. This contradiction
proves the lemma. [

1.6 Lemma. Let L = SL(2,p") and let U be a module for L overF,. Suppose that every
irreducible constituent for L in U is a natural module for L. If p = 3 assume further that
a Sylow p-subgroup of L acts quadratically on U. Then U is completely reducible.

Proof. This is an old result of Richard Niles (Theorem 3.2 in [N]). To be precise, Niles’
theorem states that if the Sylow p-subgroup S of L does not act quadratically on V', and
V is indecomposable, then p = 3. But in fact, Niles’ proof makes no use of the assumption
that S acts non-quadratically, and what is really proved is that if V' is indecomposable
then p = 3 and S acts non-quadratically. The lemma follows from this result. [
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1.7 Lemma. Let L = SL(2,p"), and let V = [V, L] be a non-zero module for L over
F,,. Suppose that a Sylow p-subgroup of L acts quadratically on 'V, and if p = 2 assume
that Cy(X) = 0 for some Cartan subgroup X of L. Then V is a direct sum of natural
modules for L.

Proof. If p is odd then Cy(Z(L)) = Cy(L), and we may assume that Cy(Z(L)) = 0
in this case. Let U be an irreducible L-invariant section of V. Then U is a non-trivial
L-module, since Cy(X) = 0 if p = 2. Let S be a Sylow p-subgroup of L, and set
F = Endp(U). As is well known (see Corollary (a) to Theorem 46 in [St2]), F' is a
subfield of [F)n and dimp(Cy(S)) = 1. As S acts quadratically on V, by hypothesis, and
as two conjugates of S generate L, it follows that dimp(U) = 2, and then F' = [Fp» and
U is a natural module for L. Thus, we are reduced to the situation in which V has a
submodule U such that both U and V/U are natural modules for L. Now apply 1.6. [

1.8 Lemma. Let L = Alt(n), n odd, and let V' be an FaL-module such that the only
non-trivial irreducible constituents for L in V' are natural modules. Then V' is completely
reducible.

Proof. In view of 1.3, we may assume that Cy (L) = 0, and then that V' has a submodule
U such that both U and V/U are natural modules for O%(L). Let K be the stabilizer
of a point for the natural action of L on n points. As n is odd, U is isomorphic, as
a K-module, to the natural permutation module for K. As n — 1 is even we then
have U # [U,K] > Cy(K) # 0, and the same is true with V/U in place of U. As
HY(K,[U,K]/Cy(K)) = F, by 1.3, it follows that Cy,y(K) = (U + Cy(K))/U # 0.
Let w € Cy(K) — U and set W = (w9 @), Then dim(W) < |0?(L) : K| = n, and so
W is an O?(L)-invariant complement to U in V. [

Section 2: Cyclic Sylow p-subgroups

In this section we treat Hypothesis 4’, in “miniature”.

2.1 Lemma. Let V' be a 4-dimensional vector space over F,, p an odd prime, and set
G = SL(V). Let X be a quasisimple subgroup of G, and assume that X satisfies the
following conditions.

(a) Z(X) < Z(G).

(b) X has cyclic Sylow p-subgroups.

(¢) For any element a of X of order p, we have [V,a,a,a] =0 and [V, a,a] # 0.

Assume further that X/Z(X) is an alternating group, a group of Lie type, or one of
the twenty-siz sporadic groups. Then one of the following holds.

(i) p>5, X = Ly(p), V = [V, X] & Cy(X), and [V, X] is a natural Q3(p)-module

for X (of dimension 3).
(ii) p=3 and X = Alt(5).
12



Proof. The 2-rank of SL(4,p) is equal to 3, so we obtain the following information at
the outset.

(1) The 2-rank of X is at most 3, and if equal to 3 then Z(X) is of even order.

Suppose first that X € Lie(p). Condition (b) then implies that X = Ly(p) or SL(2,p),
and then since X is assumed to be quasisimple, we have p # 3. Denote by M, the space
(of dimension i 4+ 1) of homogeneous polynomials of degree ¢ in the two variables z and
y. Then M, admits a natural action by SL(2,p), and {M;}o<i<p—1 forms a complete
set of representatives for the isomorphism classes of the irreducible modules for SL(2, p)
over IF,,. (See [St 1] or section 13 in [St 2].) Let S be a Sylow p-subgroup of SL(2,p).
One checks easily that [M;, S, S,S] # 0 for i« > 2, and so condition (c) implies that any
irreducible constituent U for X in V is isomorphic to one of the modules M;, 0 < i < 2.
That is, U is either a trivial module, a natural SL(2,p)-module, or a natural Q3(p)-
module for X. If there exists a constituent U such that U is a natural SL(2, p)-module
then 1 # Z(X) < Z(G), by condition (a), so all irreducible constituents of X in V are
natural SL(2,p)- modules, and then V is completely reducible for X, by 1.6. But then
a acts quadratically on V', contrary to (c), so we conclude that no such constituent U
exists. Thus, X has a unique non-trivial irreducible constituent U in V, and U is a
natural Q3(p)-module. Now 1.2 implies that V' is completely reducible, and so (i) holds.

Suppose next that X is of Lie type in characteristic different from p. We appeal to
Table I in [SZ] for the list of minimal degrees of cross-characteristic projective representa-
tions of groups of Lie type, where we find that only the groups L2(4), L2(9), L3(2), L3(4),
and Uy (2) have such representations of degree at most 4. Suppose that X/Z(X) = Ly(4).
Then p = 3 (as La(4) € Lie(5)). If Z(X) # 1 then there is an element f of order 4 in
X such that f inverts a, with (f2?) = Z(X), and since |[V, a, a]| = 3 it follows that Z(X)
centralizes [V, a,a]. But Cy(Z(X)) = 0, so in fact Z(X) = 1, and (ii) holds. Suppose
that X/Z(X) = L3(2). Then p = 3 as L3(2) € Lie(7). As 7 does not divide the order
of G, we have a contradiction in this case. We note that any central extension of L3(4)
has 2-rank at least 4, so (1) implies that X/Z(X) is not isomorphic to L3(4). Suppose
that X/Z(X) = Uy(2). The 2-rank of Uy(2) is greater than 3, Us(2) = PSp(4,3), and
Sp(4,3) is the universal perfect central extension of Uy(2), so we have X = Sp(4,3) and
p = 5. But 27 does not divide the order of SL(4,5), so we have a contradiction. Now
suppose that X/Z(X) = L9(9). Then X/Z(X) € Lie(2) U Lie(3), and so p = 5. There
are then non-conjugate subgroups K; and Ks of X, with K;/Z(X) = Ly(5), and with
a € K1 N Ky. The argument in the preceding paragraph then shows that for each i we
have K; = Ly(5), V is completely reducible for K;, and [V, K;] is a natural Q3(5)-module
for K;. Let x; be an element of order 3 in K;. It now follows that dim(Cy(z;)) = 2.
On the other hand, a Sylow 3-subgroup of X is one of GG, and evidently G contains an
element = of order 3 such that Cy(z) = 0. As x; and x5 represent the two conjugacy
classes of elements of order 3 in X, we have a contradiction.

Suppose next that X/Z(X) is an alternating group Alt(n). The 2-rank of any central
extension of Alt(8) is at least 4, so (1) implies that n < 7. As Alt(5) and Alt(6) are of Lie
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type, we then have n = 7. By condition (b), p # 3, and since Alt(7) contains Lo(9) we
have p # 5. Then p = 7, and since Alt(7) contains Ly (7) we have Z(X) = 1. The minimal
degree of a non-trivial complex irreducible representation of Alt(6) is greater than 4, and
since |Alt(6)| is not divisible by 7 the same is true of the irreducible representations of
Alt(6) over F7. Thus, Alt(7) is not a subgroup of G.

Suppose finally that X/Z(X) is a sporadic group. Then (1) implies that X = M, or
2-Miz Then p # 3, by (b), and since Mi; is a subgroup of 2 M, it will now suffice to
derive a contradiction in the case that X = Mj;. In this case we have p = 5 or 11, and
since M7, contains Ls(9) we conclude that p = 11. Let B be a Sylow 3-subgroup of X.
Then all subgroups of order 3 in B are fused in X. But also B is a Sylow subgroup of
G, and evidently there are two different classes of elements of subgroups of order 3 in G.
This contradiction proves the lemma. [J

2.2 Corollary. Assume Hypothesis 3, with H quasisimple, and assume that S is of
order p. Suppose further that p is odd, that [V, A, A, A] =0, and that A is not quadratic
on V. Then G = Lo(p) or Alt(5).

Proof. By Hypothesis 3 there is a unique maximal subgroup M of G containing A. As
H is quasisimple, there exists g € G with A9 £ M. Then (A, A9) = G, and so G = Ls(p)
or Alt(5) by 2.1. O

2.3 Theorem. Assume Hypothesis 4, and assume that H/Z(H) is one of the twenty-siz
sporadic groups. Then S s contained in more than one mazximal subgroup of G.

Proof. By 2.2, |S| > p, and then a survey of the sporadic groups shows that S is non-
cyclic. In [A3] it is shown that if X is a group with F*(X) sporadic, and T is a non-cyclic
Sylow p-subgroup of X, then either T' is contained in two distinct maximal subgroups
of X, or else X = J, and p = 11. Moreover, it is shown that if J; has a faithful
112-dimensional module over o then also for p = 11 there are at least two maximal
overgroups of 7" in J4. The existence of such a module for J4 is now known from various
sources. (7) O

Section 3: Measuring lemmas

3.1 Lemma. Let G be a group, and let V' be a faithful F,G-module. Suppose G has a
cyclic subgroup of order p* + 1. Then dim(V) > 2k.

Proof. Suppose first that p?* = 26, Then p* +1 = 9, and since L5(2) has elementary
abelian Sylow 3-subgroups we are done in this case. Also, the result evidently obtains if
k = 1. Thus, we may assume that p?* £ 26 and that k£ > 1. The main result of [Z] then
says that p?* — 1 is divisible by a prime 7 such that r does not divide p* — 1 for any ¢
with 1 <4 < 2k. Then r does not divide |GL(V)| if dim(V) < 2k. O

[For sure there is a proof of 3.1 that does not use [Z].]

The next result is extracted from [CD].
14



3.2 Lemma. Let X be a finite group, Y a normal subgroup of X, p a prime, and V a
faithful F, X -module. Let r be a positive real number, and let E be an elementary abelian
p-subgroup of Y, chosen so that

(*) |E|"|Cv(E)| s as large as possible.

Then For any x € X we have |EE*|"|Cy(EE™)| > |E|"|V/Cy(E)|. In particular, If E
is chosen to be as large as possible, subject to (*), then E is weakly closed in Cx (E) with
respect to X .

roof. . Set F = , and suppose that Vv > Vv . We then have
Proof. . Set ' = E* d hat |E|"|Cy(E)| > |EF|"|Cy(EF)|. We then h

FI_EF]_ |Cu(B)] _ |Cv(E)+ Cy(F)| _ |Cv(ENF)|
[ENF|"  |E|" |Cy(EF) |Cy(F)] - Cv(E)]

and hence

(**) |[F"|Cy (F)| < |[ENF|"|Cv(ENF)|

But |F|"|Cy (F)| = |E|"|Cv (F)|, and the maximality of this number, among elementary
abelian subgroups of X, contradicts (**). Thus |E|"|Cy (E)| < |EF|"|Cy(EF)|. O

3.3 Lemma. Let X be a finite group, p a prime, and V a faithful F,X-module. Let A
be a subgroup of X, and let v be a real number such that |A|" > |V/Cyv(A)|. Then let B
be a normal subgroup of A, set W = Cy(B), and suppose that |A/B|" < |W/Cw (A)|.
Then |B|" > |V/Cyv(B)|.

Proof. As |A|" > |V/Cy(A)| and |A/B|" < |[W/Cw(A)|, we have
|B"|Cv (A[[W]/|Cw (A)] = V],

But Cyw(A) = Cy(A), so we obtain |B|" > |V/W| = |V/Cy(B)|, as required. [

We end this section with a result which will effectively reduce the proof of Theorem 1
to the consideration of the case where F*(G) is quasisimple or where F*(G) is a g-group
for some prime q, q # p.

3.4 Lemma. Assume Hypothesis 1, and let A € Q(S, V) with A € Q*(A,V). Let X be a
non-identity subgroup of G with X = [A, X|, and such that X/®(X) is a minimal normal
subgroup of AX/®(X). Let Ay be a complement in A to C4(X). Then the following hold:
(a) [V, X,Ca(X)]=0.
(b) For any AX-invariant section W of [V, X]| on which X acts non-trivially, we
have C4,(W) =1, and:

(c) Ao € @ (Ao, [V, X]).
15



Proof. We have X < (A%) so [V, X,C4(X)] = 1 since A acts quadratically on V. Put
U = [V,X], and let U; < Uy be AX-invariant subspaces of U with [Up, X] € U;. Put
W =Uy/U; and set Y = Cx(W). Then Y < ®(X) and so [X,Cy,(W)] < &(X). Thus,
we get Cy, (W) < Ag N Cy(X), and so Cyx, (W) = 1.

Put U* = Cy (Cx (X)) and put ¢ = q(A, V). Suppose next that |Ag|? < |U*/Cy=(Ao)|-
Since Cpy«(Ag) = Cy(A) we then have:

VI = [A1|Cv (A)] < [Ca(X)[*]U

and thus ¢(Ca(X),V) < q(A4,V). But this is contrary to A € Q.(S,V), so we now
conclude that [Ag|? > |U*/Cpy+(Ap)|. Then also |Ag|? > |U/Cuy(Ap)|, and so q(Ap,U) <
q(A, V).

Next, put r = q(Ap, U). We have:

[Ao|" = [U/Cu(Ao)| = [Uo/Cu,(Ao)|
and also:
|Cw (Ao)| = |Cu, (A0)Ur/Ur| = |Cu, (Ao) /Cuy (Ao)]

and thus:
[Ao|"[Cw (Ao)| > [Uo/Cu, (Ao)| = [W].

This shows that q(Ag, W) < r, and completes the proof of (b).
Next, let B < Ag and put A; = C4(X)B. Since A € Q,(S,V) we have ¢ < q(A1,V),
and so:
[Ao/B|* = |A[A1]7 =2 |Cyv (A1) /Cv (A)| = [Cu(A1)/Cu(A)|

which shows that |Ay|?|Cy(Ao)| > |B|9|Cy(B)|. This proves (c). O

Section 4: Solvable Groups

In this section we assume Hypothesis 1. Recall that for any subgroup X of G, Q(X, V)
is the set of quadratic subgroups of X, and that if Q(X, V') is non-empty then ¢(S,V)
is the minimum, over all A € Q(X, V), of the numbers ¢ for which |A|? = |V/Cy(A)|.
Denote by Q*(X, V) the set of all A € Q(X,V) such that |A]7XV) = |V/Cy (A)].

4.1 Lemma. Assume Hypothesis 1, with p odd. Let a be an element of order p in G,
such that a acts quadratically on V', and let R be an a-invariant p'-subgroup of G. If
p = 3 assume also that R is abelian or that |R| is odd. Then [R,a] = 1.

Proof. This is [C2, Lemma 1.2].
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4.2 Lemma. Let S be a 2-group, and let a be an automorphism of S of order 3. Assume
that S =[S, a|, and that the following condition holds.

(*) Ewvery a-invariant abelian subgroup of S is centralized by a.
Then ®(S) = [5,S] = Z(S) = Q1(S) = Cs(a).

Proof. It will be convenient to form the semi-direct product G = S(a). Let R denote
the set of all proper subgroups R of S such that R = [R, a]. We assume that S provides
a minimal counter-example to the lemma. So:

(1) For any R € R we have ®(R) = [R,R] = Z(R) = Q1(R) = Cgr(a).

Put X = (Cs(a)®). Then X C ®(S) since S = [S,a]. Here ®(S) = (s? : s € S) since
S is a 2-group. Suppose that X # ®(S) and let g € S with g2 ¢ X. Put T = (g, g*)®(S),
and put R = [T,a]. Then T = RX. Now R/(RNX)=T/X, and so R/(RN X) is not
elementary abelian. If now 7" # S, then R € R and (1) then implies that R/Cg(a) is
elementary abelian, for a contradiction. We have thus shown:

(2) Either X = &(S) or |S/®(S)| = 4.

Notice that Z(S) C X,by (*). Now let Y be a normal 2-subgroup of G properly
containing Z(S), and with Y minimal for this property. Moreover, if possible, choose
Y C X. If [Y,a] = 1 then [V, S] C [Y,{a”)] = 1, contrary to the choice of Y. Thus
Y : Z(5)| = 4. Setting H = [Y, al, it then follows from (*) that H is a quaternion group,
of order 8. Notice that H is invariant under Cs(a), and then [H,Cgs(a)] = 1. But then
1=1[Z(S)H,Cs(a)] = [Y,Cs(a)], and so [Y, X] = 1. In particular, we have [H, X| = 1,
and so H ¢ X. By our choice of Y, it then follows that [X,a] = 1, whence [X, (a®)] = 1.
Thus:

(3) We have X = Cgs(a) = Z(S).

Suppose next that X = ®(S). In particular, (3) then says that the nilpotence class of
S is 2. Let Q denote the set of all subgroups @ of S such that @ = [Q, a] is a quaternion
group, and put Z = ([Q,Q] : Q@ € Q). Then Z C Q;(Z(S)). Let t be an arbitrary
element of S and put D = (t,t“,t“2> and R = [D,a]. Then either R € Q or R = 1,
and in either case we have D = Cp(a)R = (D N X)R. Write t = xr with r € R and
x € X. Then t* = 2%r? € ®(X)Z. But then X = &(S) = ®(X)Z, andso X = Z. In
particular, we now have ®(S) = Q1(Z(5)) =[S, S]. Moreover, if ¢ is an involution then
1=2?r?=7r? andsor € Z(R) C X, and t € X. This shows that ;(S) = X, and thus
the proposition is proved in the case that X = ®(S). In view of (2) we then have:

(4) |S/®(S)| =4, and X is a proper subgroup of ®(S5).

Here ®(S) = [®(S),a]lX, so it follows from (1) that ®(S)/X is elementary abelian.
Suppose that |®(S)/X| > 4. We may then choose a normal subgroup M of G with
X C M C ®(S), and with |®(S)/M| = 16. Put V = &(5)/M. Then G/®(S) operates
faithfully on V', as otherwise |S/®(S)| > 4. Here G/®(S5) = Alt(4), and a is fixed-point-
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free on V. One may then verify that for every g in S — ®(S) we have Cy (g) = [V, g] =
Cy(S) = [V, S], a subgroup of V of order 4. But then g2 lies in [S, ®(S)] for all g € S,
whereas ®(S) = (g% : g € S). Thus we have a contradiction, proving that |®(S)/X| = 4.
This immediately implies:

(5) S/X = Z4 X Z4.

Recall from the proof of (3) that we have a quaternion group H = [H, a] with H ¢ X.
It now follows from (5) that ®(S) = HX. Suppose that Q(X) # Z(H), and let Z be a
subgroup of X of order 2 with Z # Z(H). Then observe that S/Z satisfies the condition
(*), in place of S. (Indeed, if g € S — Cg(a) then (a,a¥) = H(a) or G.) By minimality of
the counter-example, we then have [®(S/Z),a] = 1, which is contrary to (5). Thus, we
conclude that ,(X) = Z(H), and hence X is cyclic. Then H is the unique quaternion
subgroup of HX, and so H is a normal subgroup of G. Then S = Cs(H)H, a central
product. This violates |S/®(S)| = 4, and the proposition is thereby proved. [

4.3 Lemma. Assume Hypothesis 1 with G = QA, Q a normal p’- subgroup of G, and
with |A| = p. Assume further that Q = [Q,A], V = [V,Q], and |V : Cy(A)| < p?.
Finally, assume that A acts quadratically on V. Then one of the following holds.
(i) G = SL(2,2) and V is either a natural SL(2,2)-module or a direct sum of two
natural SL(2,2)-modules for G.
(i) G2 (3x3):2,|V| =16, and V is the direct sum of two G-invariant subspaces
of dimension 2.
(iii) G=(SU(3,2)), and V is a natural SU(3,2)-module for G, of order 64.
(iv) G = Dih(10) and |V| = 16.
(v) G=SL(2,3), V is either a natural SL(2, 3)-module or a direct sum of two natural
SL(2,3)-modules for G.
(vi) G = (QsxQs): 3, |V| =81, and V is the direct sum of two G-invariant subspaces
of dimension 2.

Proof. Let (G, V) be a counter-example with |G|4|V| as small as possible. Write A = (a).

Suppose first that p is odd. As @ is generated by its A-invariant Sylow subgroups,
4.1 implies that p = 3 and that Cg(A) has index a power of 2 in ). Let T be an A-
invariant Sylow 2-subgroup of @, and put X = [T, A]. Then G = C¢(A)X and we have
(Z(X)G) = (Z(X)Ce()) < Cgq(A), and so (Z(X)E) centralizes (AY) = G. That is, we
have Z(X) < Z(G).

Suppose now that X # ). The minimality of |G|+ |V| then implies that outcome (v)
or (vi) of the lemma holds, with (X A, [V, X]) in place of (G, V). Then [V, X]| = [V, Z(X)]
and Cy(X) = Cy(Z(X)). Thus [V, X] and Cy(X) are G-invariant. As Q = [Q, 4] =
(X9), we conclude that [Cy(X), Q] = 0, so Cy/(X) =0, and |V| = 9 or 81. Observe that
in SL(4,3) the centralizer of any element of order 3 is a {2, 3}-group. Thus Cq(A4) < T,
and thus Q =T = X. Thus, we have shown that ) = X after all.

Now 4.2 yields ®(Q) = [Q,Q] = Z(Q) = 21(Q) = Co(A). Suppose that |Z(Q)| = 2.
Then @ is a quaternion group of order 8 and G is generated by two conjugates of A. As
|[V/Cyv(A)] <9 we then have |V| < 81, and then 2.3 implies that V' is a direct sum of two

18



natural SL(2,3)-modules for G. That is, (v) holds, and (G, V) is not a counter-example.
We therefore conclude that |Z(Q)| > 2. Let (s,t) be a fours group in Z(Q), with the
generators s and ¢ chosen so that both Cy (s) and Cy (t) are non-trivial. As G = (A%),
A acts non-trivially on both [V]s| and on Cy(s), and so A induces a transvection on
each of these subspaces. By induction, both [V, s] and Cy (s) are of order 9, and then
Cy(s) = [V,t], and V = [V, s] + [V,t]. Set Q1 = Cq([V,s]) and Q2 = Cq([V,t]). Then
Q1 NQ2 =1, and Q/Q; is a quaternion group for i = 1,2. As ®(Q) is non-cyclic, the
2-rank m of Q/®(Q) is greater than 2, and since @ = [@, A] we have m = 4. It follows
that each ; is a quaternion group, and @ = @1 X Q2. Thus, (vi) holds, and so the
lemma holds if p is odd.

We now take p = 2. Let R be the set of all proper subgroups R of @ with R = [R, A]
and with |R| > 3. For any R € R, the pair (RA, [V, R]) is then given by one of the
outcomes (ii) through (iv) in the statement of the lemma. We note also the following
consequence of our hypothesis that V = [V, Q).

(1) No proper Q-invariant subspace of V' contains [V, A].
From this it follows that:
(2) If R € R and R is a normal subgroup of @, then V = [V, R].

Let 1 # 2 € Q with 2% = z71. Then |V/Cy (z)| < 16, and then (a,x) is dihedral of
order 6 or 10. Suppose |z| = 5, and then suppose that there exists y € Q — (z) with
y* = y~!. Examining outcomes (i) through (iv) of the Lemma, we see that (z,y) ¢ R,
and hence (z,y) = Q. Here [V, A] < [V, z], so |[V| < |[V,z] + [V,y]] < 25, and G may be
identified with a subgroup of Lg(2). One may readily verify that no subgroup of Lg(2)
of odd order admits faithful action by a dihedral group of order 10. Therefore x lies in
Z(Q), and then (2) yields that V = [V, z] is of order 16. Then @ is cyclic, and since
SL(4,2) contains no dihedral group of order 30 it follows that G is dihedral of order 10.
Thus, no element y exists as chosen above, and so (iv) holds in this case.

We now conclude that 23 = 1 for all z in @ with 2% = 2!, Then Q = Cq(A)T where
T is an A-invariant Sylow 3-subgroup of ). Then [Q, A] < T, so since @ = [Q, A] by
hypothesis we obtain [@Q, A] = T, and Q is a 3-group. Put Q = Q/®(Q), and suppose
first that |@Q| > 9. Then any maximal subgroup of @Q is the image of some element of R,
and so |@Q| = 27. Notice that for any R € R we have Cr(A) = ®(R) and R/Cr(A) = 9.
It follows RN ®(Q) < Cg(a), and then [®(Q), A] = 1 and ®(Q) < Z(G). Suppose that
there exists R € R with R non-abelian. Then (RA, [V, R]) is described by outcome (iii)
of the lemma, so [V, R] = [V, Z(R)|, and thus [V, R] is G-invariant. Then V = [V, R],
by (2). Then |V| = 64,, and since R # @, @ is isomorphic to a Sylow 3-subgroup of
Lg(2), of order 3%. Then @ is a wreath product, contrary to |Q| = 9. We conclude that
every R € R is abelian. As |Q| = 27 it follows that @ has a generating set consisting
of elements which commute pair-wise, and so @ is abelian. But with |V/Cy (A)| < 4 we
then have |Q| = 9.

We conclude that |Q < 9. If |Q| = 3 then Q is cyclic, and (i) holds, so in fact |Q| = 9.
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Then three conjugates of a suffice to generate GG, and so:
(3) |V] < 64,

Suppose next that ®(Q) < Z(G). Then ®(Q) is cyclic, of exponent at most 3, and so
Q is either elementary abelian of order 9 or extraspecial of order 27. Suppose that @) is
elementary abelian, and let z € Q# with [V, z] as large as possible. As 2% = 27! we then
have |[V,z]| = 16 and [V,a] < [V,z]. Here [V,z] is G-invariant, so [V,z] = V and (ii)
holds. On the other hand, suppose that @) is extraspecial. No member of R is cyclic of
order 9, so the exponent of @) is 3, and then G is isomorphic to the commutator subgroup
of SU(3,2). Then |V| > 32, and (3) then yields |V| = 64. There is, up to isomorphism,
a unique faithful representation of @ of degree 3 over F, (by ordinary character theory),
and so we obtain (iii) in this case. We therefore conclude that ®(Q) £ Z(G).

Now [®(Q), a] # 1, and we may choose y € ®(Q) with y* = y~!. Choose a generating
set {x1, 22} for Q with (z;)® = (x;) "' fori = 1 and 2, and set R; = (z;,y). Then R; € R
and @Q = (Ry, R2). Suppose y € Z(Q). Then each R; is abelian, and so |[V, R;]| = 16,
and [V, R1| # [V, Rz]. Then [V,y| # [V, R;] for some ¢, and so |[V,y]| = 4. But then
Q = Co([V,y]) x (y), contrary to y € ®(Q). Thus y ¢ Z(Q), and we may assume
that Ry is non-abelian. Then R1A = SU(3,2)" and |[V,Ri]| = |[V,y]| = 64. Then
also Ry is non-abelian, and (3) yields [V, R1] = [V, Rz] = V. We conclude that @Q is
isomorphic to a Sylow 3-subgroup of GL(V), of order 81. Then ) has an elementary
abelian subgroup E of order 27, and every element of order 3 in () is contained in
EUR;. Then Ry = (RiNR2)U(ENR;y), and so Ry < E. As Ry is non-abelian, we have
a contradiction at this point, proving the lemma. [

4.4 Proposition. Assume Hypothesis 1, and assume that G = QA, where Q = [Q, A] is
a p’-subgroup of G and where A is a subgroup of G which satisfies the following conditions.

(a) A acts quadratically on V.

(b) [AP? > |V/Cv(A)].

(c) For any non-identity subgroup B of A, we have |A]?|Cy (A)| > |BJ?|Cy (B)].
Denote by Y the set of subgroups Y of @QQ for which there exists a hyperplane B of A such
that Y = [Cq(B), A], and such that Y # 1. Then Q is the direct product [[{[V,Y]}yvey,
and [V, Q)] is the direct sum @{[V,Y|}yey. Further, for any Y € Y and any a €
A —Ca(Y), the pair (Y{(a),[V,Y]) is given by one of the outcomes in 4.3, with Y {a) in
place of G and [V,Y] in place of V.

Proof. Put Qo = Cg(Cv(A)). The quadratic action of A yields [V, A, Qo] = 0, while also
[V, Qo, A] < [V,A] < Cy(Qp). The Three Subgoups Lemma then yields [V, [Qq, A]] <
Cv(Qo), and then [Qq, A] = 1, by coprime action. Thus:

(1) Co(Cv(A)) < Co(A).

Denote by B the set of hyperplanes B of A such that [Cq(B), 4] £ ®(Q). For any
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BeB put Ys = [CQ(B),A] and set Vg = Cv(B) Thus, Yy = {YB}B€B~ Fix B € B.
Then Yp acts non-tr