SMALL MODULES FOR SMALL GROUPS

Andrew Chermak
Department of Mathematics
Kansas State University
Manhattan KS, 66502

December, 2001

Introduction. This paper concerns "small" modules for finite groups which are themselves "small" in a certain sense to be defined, and it is directed towards some specific applications. For the space of a few paragraphs, however, we can try to place things in a fairly broad context.

For any finite group Y and any prime p, one may consider the action induced by Y, via conjugation, on the largest normal p-subgroup $O_{p}(Y)$ of Y. As an example, let Y be a proper parabolic subgroup in a simple group X of Lie type, in characteristic p. Then $C_{Y}\left(O_{p}(Y)\right) \leq O_{p}(Y)$, which is to say that $Y / Z\left(O_{p}(Y)\right)$ is faithfully represented as a group of automorphisms of $O_{p}(Y)$. Denote by L the subgroup of Y generated by the p-elements in Y, and assume that L properly contains $O_{p}(Y)$. That is, assume that Y is not a Borel subgroup of X. Then $O_{p}(Y)=O_{p}(L)$, and $L / O_{p}(L)$ is itself a group of Lie type in characteristic p. Further, there then exists an L-invariant section V of $O_{p}(L)$ having exponent p, and such that $L / O_{p}(L)$ acts faithfully on V. Thus V is a module for $L / O_{p}(L)$ over the field \mathbb{F}_{p} of p elements, and one may then appeal to the enormous body of work concerning such representations of characteristic- p groups of Lie type, in order to obtain information about the structure of V and, indirectly, about the structure of L and even of X.

The assumption that Y be a proper parabolic subgroup of X and that Y not be a Borel subgroup implies that the Lie rank of X is at least 2. There is then a rich geometry $\Gamma(X)$ associated with X, namely the building associated with the set of all parabolic subgroups of X, and which is encoded in the Dynkin diagram associated with X. From this diagram one also reads off information about the various "residues" at the proper parabolic subgroups of X, so that the geometry $\Gamma(L)$ associated with the group $L / O_{p}(L)$ is given by a sub-diagram. The point is that this geometry imposes severe restrictions on the sorts of modules V which can arise in the above context. Indeed, if we choose L so that the diagram for $\Gamma(L)$ is connected then, as it happens, all such
modules V are "small", in the sense that $\left|L / O_{p}(L)\right|^{2}>|V|$. This fact can be seen as a consequence of another one, which has more to do with the particular nature of the action of L on V. Namely, in "most" cases in which $\Gamma(L)$ is connected there exists an elementary abelian p-subgroup A of $X / O_{p}(X), A \neq 1$, with the property that

$$
\begin{equation*}
|A|^{2} \geq\left|V / C_{V}(A)\right| \tag{0.1}
\end{equation*}
$$

(The qualifying adjective "most" will be made more precise, further along in this introduction.) For the moment, we mention that the condition (0.1) implies the condition that $\left|L / O_{p}(L)\right|^{2}>|V|$ as a consequence of [CD, Theorem 2.3].

Suppose now that we weaken the above hypotheses, so that the ambient group X is no longer assumed to be a simple group of Lie type. Suppose instead that we require only that $O_{p}(X)=1$ and that for any non-identity p-subgroup Q of X, the group $Y=N_{X}(Q)$ has the property that $C_{Y}\left(O_{p}(Y)\right) \leq O_{p}(Y)$. (That is, all p-local subgroups of X are p constrained.) As above, let L be the group generated by the p-elements in Y. One may ask whether there exists a suitable p-local subgroup Y of X, a non-identity elementary abelian subgroup A of $L / O_{p}(L)$, and an elementary abelian section V of L in $O_{p}(L)$, admitting faithful action by A, such that (0.1) holds.

In raising this question, we have in mind the situation where X is a simple, or nearly simple, group in which the composition factors of the various groups Y are on the list if "known" simple groups, but in which X itself is not assumed to be on such a list. That is to say, our intention is to address issues that pertain to the Classification of the Finite Simple Groups (or the CFSG, for short).

Specifically, the aim of this paper is to provide support for a project, initiated by Ulrich Meierfrankenfeld, to classify the finite simple groups X which are of "generic characteristic p type." We will not attempt here to outline this program, other than to say that the groups under consideration correspond roughly to the class of simple groups of Lie type, of Lie rank at least 2. The feature of Meierfrankenfeld's project which distinguishes it most clearly from the treatment of characteristic p-type groups in the CFSG as it currently stands, and from the treatment in the ongoing revision project of Gorenstein, Lyons, and Solomon (GLS), consists in directly targeting the groups $Y=N_{X}(Q)$ for analysis, rather than switching attention to a prime r different from p. This difference in approach can be summarized by saying that in the CFSG as it stands, the emphasis is on "semisimple" subgroups, while in the Meiefrankenfeld program the emphasis is on normalizers of unipotent subgroups. Actually, even in the old version of CFSG, and in the GLS revision, an important chapter - namely the classification of Quasithin Groups - is treated via a "unipotent" approach for the prime 2 (for which see $[A S])$. So it may be more correct to say that in the Meierfrankenfeld program, the unipotent approach takes center stage, rather than being relegated to the treatment of a difficult special case.

In the Meierfrankenfeld program one begins with a group X of characteristic p-type, with $O_{p}(X)=1$, and in which a Sylow p-subgroup S of X is contained in at least two different maximal p-local subgroups of X (so that one has, from the outset, the rudiments of a geometry). The analysis then centers on a pair of p-local subgroups \widetilde{C} and M of X
containing S, such that \widetilde{C} contains the centralizer in X of $Z(S)$, and such that $M / O_{p}(M)$ acts faithfully on a subgroup V of exponent p in $O_{p}(M)$ (where V is taken to be as large as possible for this condition). The normal closure W of V in \widetilde{C} is then either an abelian p-group, a non-abelian p-group, or (of course) a group which is not a p-group. One then finds:
(0.2) If W is an abelian p-group then there exists a conjugate A of V in \widetilde{C} such that $[V, A, A]=1$, and such that $\left|A / C_{A}(V)\right|^{2} \geq\left|V / C_{V}(A)\right|$.

The case where W is not a p-group leads to a variant of (0.2), as follows.
(0.3) If W is not a p-group then there is a \widetilde{C}-conjugate A of a subgroup of V, such that the following hold.
(i) $[V, A, A, A]=1$,
(ii) $\left[C_{V}(a), A, A\right]=1$ for every $a \in A-C_{A}(V)$, and
(iii) $\left|A / C_{A}(V)\right|^{2} \geq\left|V / C_{V}(A)\right|$, and if $p=2$ then $\left|A / C_{A}(V)\right|^{3 / 2} \geq\left|V / C_{V}(A)\right|$.

The case in which W is a non-abelian p-group does not lend itself to the formulation of conditions as in (0.2) or (0.3). This is the reason for the qualification concerning "most" cases in the condition (0.1).

We have, so far, explained what a small module is, for our purposes. But we have not yet explained the other half of the title of this paper. A group G is a "minimal parabolic" group (for the prime p) if a Sylow p-subgroup S of G is not normal in G and is contained in a unique maximal subgroup of G. Such groups G are the "small" groups that we will consider here, and a general description of such groups may be found in 11.1, below. Our aim in this paper is to obtain information about $\mathbb{F}_{p} G$-modules V, where G is a minimal parabolic group and where V satisfies conditions as in (0.2) or (0.3). The reason for restricting attention to these groups has to do with the specific demands made by one portion of the Meierfrankenfeld project. But some of our results do in fact concern small modules for groups which are not necessarily minimal parabolics. We therefore begin by stating a series of hypotheses, of varying degrees of restrictiveness.

Hypothesis 1. G is a finite group, p is a prime, S is a Sylow p-subgroup of G, and V is a faithful $\mathbb{F}_{p} G$-module. Further, we have $O_{p}(G)=1$, and there exists a non-identity, elementary abelian subgroup A of S such that $|A|^{2} \geq\left|V / C_{V}(A)\right|$.

Whenever Hypothesis 1 is in effect, we put:

$$
H=O^{p}(G)
$$

That is:

$$
H=\langle g \in G:| h \mid \quad \text { is relatively prime to } p\rangle .
$$

Also, whenever Hypothesis 1 is in effect, we will use additive notation for the group operation in V (so that 0 , rather than 1 , denotes the identity element of V). It will be important to observe that, under Hypothesis 1, if H is quasisimple then the Fitting subgroup $F(G)$ is contained in H, and so $H=F^{*}(G)$.

Hypothesis 2. In addition to Hypothesis 1, assume that $V=\left\langle\left(C_{V}(S \cap H)\right)^{G}\right\rangle$, and $C_{V}(G)=0$. Assume also that $G=\left\langle S^{G}\right\rangle$.

Hypothesis 3. Let G, p, S, V, and A satisfy the conditions of Hypothesis 2. We further assume that S is contained in a unique maximal subgroup of G.

Hypothesis 4. In addition to Hypothesis 3, we assume that A can be chosen so that A acts quadratically on V. That is, we have $[V, A, A]=0$.

Recall that a group X is "quasisimple" if $X / Z(X)$ is simple and $Z(X) \leq[X, X]$.
Hypothesis 4'. Assume Hypothesis 2, and assume that H is quasisimple. Assume further that there is a non-identity elementary abelian p-subgroup A of G satisfiying the following conditions.
(a) $[V, A, A, A]=0$.
(b) $\left[C_{V}(a), A, A\right]=0$ for every non-identity element a of A.
(c) If $p=2$ then $|A|^{3 / 2} \geq\left|V / C_{V}(A)\right|$, while if p is odd then $|A|^{2} \geq\left|V / C_{V}(A)\right|$.

Recall that a "component" of a group X is a quasisimple subnormal subgroup of X. We assume always that the Classification of the Finite Simple Groups applies to the components (if any) of G. Thus, to state things explicitly, we have the following:

Background Hypothesis. Whenever Hypothesis 1 holds, and K is a component of G, then $K / Z(K)$ is an alternating group, the commutator subgroup of a group of Lie type, or one of twenty-six "sporadic" groups.
(To be scrupulously honest, it must be said that we assume also that if K is a quasisimple subgroup of $S L(4, p)$ then $K / Z(K)$ is given by the CFSG. But, presumably, this assumption is not essential.) We accept, as part of the above background hypothesis, the classification as it stands, of the Schur multipliers of the alternating groups, the groups of Lie type, and the sporadic groups, together with structural information of various kinds concerning these groups. The information that we need can be found in [GLS3] and, for the sporadic groups, in [A2]. Also, whenever the ATLAS of finite simple groups [CCNPW] asserts that a certain group occurs as a maximal subgroup of some group, we accept that information uncritically. This kind of information from the ATLAS will be used (and will indeed be used extensively) only in section 10 below, in dealing with groups of Lie type in characteristic different from p.

In order to state our results, we need first of all to establish some terminological conventions relating to specific groups and modules.

Let G be an alternating or symmetric group $\operatorname{Alt}(n)$ or $\operatorname{Sym}(n)$, and denote by $P(n, p)$ the permutation module for G, of dimension n over \mathbb{F}_{p}. The "natural module" for G
in characteristic p is, by definition, the module $V=[P(n, p), G] / C_{[P(n, p), G]}(G)$. When $p=2$ we shall need also the notion of a "spin module" for G, and for this we adopt the view-point taken in $[\mathrm{M}]$. Thus, set $U=[P(n, 2), G]$. There is then a natural G-invariant quadratic form Q on U, and if Q is degenerate then n is divisible by 4 and the radical of Q has dimension 1 . In any case, set $\bar{U}=U / \operatorname{Rad}(Q)$, and let \bar{Q} be the (non-degenerate) form on \bar{U} induced by Q. There is then an induced action of G on the Clifford algebra \mathcal{C} associated with \bar{Q}. An \mathbb{F}_{2}-module V is then said to be a spin module for G if V is isomorphic to an irreducible G-submodule of \mathcal{C}.

The class Lie (p) of "groups of Lie type in characteristic p " will have the following meaning. A group X is in $\operatorname{Lie}(p)$ if there is a simple, affine algebraic group \bar{X}, defined over an algebraic closure of \mathbb{F}_{p}, and a Steinberg endomorphism σ of \bar{X}, such that X is isomorphic to the subgroup of \bar{X} generated by the elements of p-power order in $C_{\bar{X}}(\sigma)$. Having said this, we then make three exceptions. Namely, it will be convenient, for our purposes, to consider also the commutator subgroups of $S p(4,2),{ }^{2} F_{4}(2)$, and of ${ }^{2} G_{2}(3)$ to be groups of Lie type in the characteristics 2,2 , and 3 , respectively.

By "a" natural module" for $S L\left(2, p^{n}\right)$ we mean any module for $S L\left(2, p^{n}\right)$ which is isomorphic over \mathbb{F}_{p} to "the" natural module for $S L\left(2, p^{n}\right)$ (and by which we mean the vector space of dimension 2 over $\mathbb{F}_{p^{n}}$ on which $S L\left(2, p^{n}\right)$ acts by matrix multiplication). We also have the notion of a natural $\Omega_{3}\left(p^{n}\right)$ - module and, for n even, a natural $\Omega_{4}^{-}\left(p^{n}\right)$-module for $S L\left(2, p^{n}\right)$, given by identifying $P S L\left(2, p^{n}\right)$ with one or the other of these orthogonal groups. In the same way, we have the notion of a natural module for $S U\left(3, p^{n}\right)$. A natural module for a Suzuki group $S z\left(2^{n}\right)$ is, by definition, any irreducible module of dimension 4 over $\mathbb{F}_{2^{n}}$ for $S z\left(2^{n}\right)$ (n odd), it being known from [St2] that all such modules are isomorphic over \mathbb{F}_{2} to a module obtained from an embedding of $S z\left(2^{n}\right)$ in $S p\left(4,2^{n}\right)$ as the fixed points of a symplectic polarity. The notions of natural modules for $S L\left(3, p^{n}\right)$ and $S p\left(4, p^{n}\right)$ should now require no further explanation. If V is a natural module for $S p\left(4,2^{n}\right)$ then a "contragredient module" associated with V is, by definition, the image of V under a symplectic polarity.

We require also some terminology concerning the groups A which enter into the various hypotheses stated above. Thus, let V be a vector space over \mathbb{F}_{p}, and let G be a subgroup of $G L(V)$. A subgroup A of G is said to act quadratically on V (or to be a quadratic subgroup of G) if $A \neq 1$ and $[V, A, A]=0$. It is an entirely elementary result that such a group A is necessarily an elementary abelian p-group (for which see lemma 1.1 in [C1], for example). Let Y be a subgroup of G. We denote by $\mathcal{Q}(Y, V)$ the set of all quadratic subgroups A of Y. Assuming that $\mathcal{Q}(Y, V) \neq \emptyset$, we then define $q(Y, V)$ to be the smallest real number q for which there exists $A \in \mathcal{Q}(Y, V)$ with $|A|^{q}\left|C_{V}(A)\right|=|V|$. We then set

$$
\mathcal{Q}^{*}(Y, V)=\left\{\left.A \in \mathcal{Q}(Y, V)| | A\right|^{q(Y, V)}\left|C_{V}(A)\right|=|V|\right\} .
$$

For $i=1$ and 2, we say that V is an $F i$-module for G if there exists a non-identity elementary abelian p-subgroup A of G such that $|A|^{i} \geq\left|V / C_{V}(A)\right|$, and that V is a quadratic $F i$-module if such an A can be chosen in $\mathcal{Q}(G, V)$. The group A is then said to be an Fi-offender on V, and a quadratic $F i$-offender if also A acts quadratically
on V. If $|A|=p$ and A is an $F 2$-offender on V then any non-identity element of A is said to be a 2 -transvection on V.

We may now state our main results.
Theorem 1. Assume Hypothesis 4. Then there exists a subgroup K of H, unique up to conjugation, such that, upon setting $U=[V, K]$, the following conditions hold.
(a) $H=K_{1} \times \cdots \times K_{r}$ where $\left\{K_{1}, \cdots, K_{r}\right\}=K^{S}$.
(b) We have $\left[V, K_{i}, K_{j}\right]=0$ whenever $i \neq j$.
(c) One of the following holds:
(i) $K \cong O^{p}\left(S L\left(2, p^{n}\right)\right)$, $n \geq 1$, and $U / C_{U}(K)$ is a natural $S L\left(2, p^{n}\right)$-module for K, or a direct sum of two natural modules for K.
(ii) $K \cong O^{p}\left(O_{4}^{\epsilon}\left(p^{n}\right)\right), n \geq 1, \epsilon= \pm 1$, and U is a natural orthogonal module for K.
(iii) $K \cong O^{p}\left(S U\left(3, p^{n}\right)\right)$ and U is a natural module for K.
(iv) $p=2, K \cong O^{2}\left(S z\left(2^{n}\right)\right)$, and U is a natural module for K.
(v) $p=2, A \leq C_{G}(K) K, K \cong S L\left(3,2^{n}\right)\left(\right.$ resp. $O^{2}\left(S p\left(4,2^{n}\right)\right)$ and U is the direct sum of a natural and a dual module (resp. a natural and a contragredient module) for K. Moreover, there exists $g \in N_{S}(K)$ such that g interchanges, by conjugation, the two maximal subgroups of K containing $S \cap K$.
(vi) $p=2, K \cong \operatorname{Alt}\left(2^{n}+1\right), n \geq 3$, and U is a natural module for K, or a direct sum of two natural modules for K.
(vii) $p=2, K \cong \operatorname{Alt}(9)$, and U is a spin module for K, of dimenson 8 over \mathbb{F}_{2}.

Moreover, if K is not invariant under $\mathcal{Q}^{*}(S, V)$ then $p=2, K \cong \mathbb{Z}_{3},|U|=4$, and $q(S, V)=2$.

Two special cases of Theorem 1 are of importance in their own right, where $q(A, V)<$ 2 , and where $q(A, V) \leq 1$. Theorems 2 and 3 describe the possible outcomes in these two cases.

Theorem 2. In Theorem 1, suppose that we have $q(A, V)<2$. Then one of the following holds.
(i) $K \cong O^{p}\left(S L\left(2, p^{n}\right)\right)$, $n \geq 1$, and $U / C_{U}(K)$ is a natural $S L\left(2, p^{n}\right)$-module for K.
(ii) $p=2, K A / C_{K A}(K) \cong O_{4}^{\epsilon}\left(2^{n}\right), n \geq 1, \epsilon= \pm 1$, and U is a natural orthogonal module for K. Moreover, we have $\left|A / C_{A}(K)\right|=2^{n+1}$, and if $n=1$ then $\epsilon=-1$.
(iii) $p=2, A \leq C_{G}(K) K, K \cong S L\left(3,2^{n}\right)$ and U is the direct sum of a natural and a dual module for K. Moreover, there exists $g \in N_{S}(K)$ such that g interchanges, by conjugation, the two maximal subgroups of K containing $S \cap K$.
(iv) $p=2, K \cong \operatorname{Alt}\left(2^{n}+1\right), n \geq 3$, and U is isomorphic to the natural module for K.

Theorem 3. In Theorem 1, suppose that we have $q(S, V) \leq 1$. Denote by $\mathcal{A}(S, V)$ the set of all subgroups A of S such that $|A| \geq\left|V / C_{V}(A)\right|$ and such that $[V, A, A]=0$. Then
$q(S, V)=1$ and $H \leq\left\langle\mathcal{A}(S, V)^{G}\right\rangle=E_{1} \cdots E_{r}$ where E_{i} is a subnormal subgroup of G and where one of the following holds.
(i) $E_{i} \cong S L\left(2, p^{n}\right), n \geq 1$, and $\left[V, E_{i}\right]$ is a natural $S L\left(2, p^{n}\right)$-module for E_{i}.
(ii) $p=2, E_{i} \cong \operatorname{Sym}\left(2^{n}+1\right), n \geq 2$, and $V=C_{V}\left(E_{i}\right) \oplus\left[V, E_{i}\right]$, where $\left[V, E_{i}\right]$ is isomorphic to the natural module for E_{i}.

In Theorems 4,5, and 6 we drop the assumption that A acts quadratically.
Theorem 4. Assume Hypothesis 3, and assume that H is a quasisimple group of Lie type in characteristic p. Let A be an F2-offender on V. Then one of the following holds.
(a) $H \cong S L\left(2, p^{n}\right)$ and one of the following holds.
(i) V is a natural $S L\left(2, p^{n}\right)$-module for H.
(ii) V has an H-submodule U such that both U and V / U are natural $S L\left(2, p^{n}\right)$ modules for H.
(iii) p is odd, $H \cong L_{2}\left(p^{n}\right)$, and V is a natural $\Omega_{3}\left(p^{n}\right)$-module for H.
(iv) n is even and V is a natural $\Omega_{4}^{-}\left(p^{n / 2}\right)$-module for H.
(b) $H \cong S U\left(3, p^{n}\right)$ and V is a natural module for H.
(c) $p=2, H \cong S z\left(2^{n}\right)$, and V is a natural module for H.
(d) $p=2, H \cong S L\left(3,2^{n}\right)\left(\right.$ resp. $O^{2}\left(S p\left(4,2^{n}\right)\right)$ and V is the direct sum of a natural and a dual module (resp. a natural and a contragredient module) for H. Moreover, there exists $g \in N_{S}(K)$ such that g interchanges, by conjugation, the two maximal subgroups of H containing $S \cap H$. If A is a quadratic $F 2$-offender then $A \leq H$, and if also $H \cong S p\left(4,2^{n}\right)$ then A is conjugate to $Z(S)$.

Theorem 5. Assume Hypothesis 4^{\prime}, and assume that $H / Z(H)$ is isomorphic to Alt (n), $n \geq 5$. Assume also that $H / Z(H)$ is not of Lie type in characteristic p, and if $p=2$ assume that n is odd. Then one of the following holds.
(i) $p=2, H \cong \operatorname{Alt}(n), n \geq 5$, and V is a natural module for H.
(ii) $p=2, H \cong \operatorname{Alt}(n)$, $n=5,7$, or 9 , and V is a spin module for H (of dimension 4, 4, or 8 , respectively). Moreover, if $n=9$ then A is the direct product of two quadratic fours groups in H.
(iii) $|A|=p=3, G \cong \operatorname{Alt}(n), n \neq 6$, and V is a natural module for G. Moreover, A is generated by a 3-cycle.
(iv) $|A|=p=3, H \cong S L(2,5)$, and V is isomorphic to the natural $S L(2,9)$-module for H.
(v) $p=3, H \cong \operatorname{Alt}(9),|A|=27$, and V is a spin module for H (of dimension 8 over \mathbb{F}_{3}). Moreover, we have $|A|^{2}=\left|V / C_{V}(A)\right|$.

Theorem 6. Assume Hypothesis 4^{\prime}, and assume that S is contained in a unique maximal subgroup of G. Assume also that $H / Z(H)$ is a quasisimple group of Lie type in characteristic different from p, or a sporadic group, and that there exists no isomorphism of $H / Z(H)$ with a group of Lie type in characteristic p. Then $p=3, G / Z(H) \cong S p(6,2)$, $|A|^{2}=\left|V / C_{V}(A)\right|$, and one of the following holds.
(i) $|A|=3, Z(H)=1$, and V has dimension 7 over \mathbb{F}_{3}.
(ii) $|A|=27,|Z(H)|=2$, and V has dimension 8 over \mathbb{F}_{3}.

We mention that the case where G is solvable is hidden in Theorem 1. Section 4, below, contains many results concerning the case where $F^{*}(G)$ is solvable, and which are not revealed in the statements of Theorems 1 through 6 . Of these results, 4.6 is the most important, and figures strongly in the proof of 11.1. There is a certain sense in which this case forms the core of this paper, and we therefore invite the reader to glance through section 4 before undertaking a thorough reading of the whole.

We attempt to list our notational conventions, many of which stem from the ATLAS), and to list also those cases where we are torn between competing conventions. We denote by $2_{\epsilon}^{1+2 n}$ an extraspecial 2-group T whose corresponding orthogonal space $T / Z(T)$ has "defect" ϵ, where $\epsilon=1$ or -1 . But we also write Q_{8} and D_{8} for the quaternion and dihedral groups, respectively, of order 8 , and we write $X \circ Y$ for the "central product" of the groups X and Y, this being the direct product, modulo the relations which identify the centers of X and Y, and which is defined only only if those centers are isomorphic. An alternative notation for the groups $2_{\epsilon}^{1+2 n}$ is given by the iterated central products $D_{8}^{(n)}$ and $Q_{8}^{(n)}$.

The symbol $[n]$ indicates a group of order n, and if p is a prime then p^{n} is often used to denote an elementary abelian group of order p^{n}. If X and Y are groups then $X . Y$ or $(X) . Y$ or sometimes just $X Y$ is said to be the "shape" of a group G provided that G has a normal subgroup $X *$ isomorphic to X, with $G / X *$ isomorphic to Y, and with G not isomorphic to the direct product of X and Y. Conventional notation for the groups of Lie type will always be taken to give the corresponding adjoint version. So, the center of the group ${ }^{2} A_{n}(q)$, for example, is trivial. We often write $L_{n}(q)$ for $P S L(n, q)$, and $U_{n}(q)$ for $\operatorname{PSU}(n, q)$. In general we write $[X, X]$ for the commutator subgroup of a group X, but in the case where X is a group of Lie type or, more specifically, a classical group, we feel free to use the "apostrophic" notation to indicate derived groups. Thus, $S p\left(4,2^{n}\right)^{\prime}$, or $U_{3}(2)^{\prime}$, or ${ }^{2} F_{4}(2)^{\prime}$, for example. Our hope is that other notation, which we have not had the foresight to introduce at this point, will be self- explanatory.

Section 1: Decomposability questions

1.1 Lemma. Let G be a group acting faithfully on a vector space V over \mathbb{F}_{p}. Let T be a Sylow p-subgroup of $O^{p}(G)$, and assume that $V=\left\langle C_{V}(T)^{G}\right\rangle$. Then $V=\left[V, O^{p}(G)\right]+$ $C_{V}\left(O^{p}(G)\right)$.
Proof. Set $H=O_{p}(G)$, let $\left\{h_{1}, \cdots, h_{r}\right\}$ be a right transversal for T in H, let u be a nonzero element of $C_{V}(T)$, and set $v=u^{h_{1}}+\cdots+u^{h_{r}}$. Each $g \in H$ defines a permutation in $\operatorname{Sym}(r)$ by means of the formula $h_{i} g \in T h_{i g}$, and then

$$
v^{g}=u^{h_{1} g}+\cdots+u^{h_{r} g}=u^{h_{1 g}}+\cdots+u^{h_{r g}}=v
$$

If $u \notin[V, H]$ then $v=r u+w$ for some $w \in[V, H]$, and so $r u \in[V, H]+C_{V}(H)$. As p
does not divide r, we conclude that $C_{V}(T) \leq[V, H]+C_{V}(H)$. As $V=\left\langle C_{V}(T)^{G}\right\rangle$, we then have the lemma.
1.2 Corollary. Assume Hypothesis 2, and suppose that there is a unique non-trivial irreducible constituent for G in V. Then V is irreducible.

Proof. Immediate from 1.1.
1.3 Lemma. Let (L, U) be a pair consisting of a group L and an irreducible $\mathbb{F}_{2}[L]$-module U. Assume that (L, U) is given by one of the following:
(1) $L \cong S L\left(2,2^{n}\right), U$ the natural module.
(2) $L \cong \Omega_{4}^{\epsilon}\left(2^{n}\right), \epsilon= \pm 1, U$ the natural orthogonal module.
(3) $L \cong S L\left(3,2^{n}\right)$, U the natural module.
(4) $L \cong \operatorname{Sp}\left(4,2^{n}\right)^{\prime}$, U the natural module for $\operatorname{Sp}\left(4,2^{n}\right)$.
(5) $L \cong \operatorname{Alt}(n)$, U the natural module.

Then one of the following holds.
(i) $H^{1}(L, U)=0$.
(ii) $L \cong S L\left(2,2^{n}\right)$ and $H^{1}(L, U) \cong \mathbb{F}_{2^{n}}$.
(iii) $L \cong S L(3,2)$ and $H^{1}(L, U) \cong \mathbb{F}_{2}$.
(iv) $L \cong S p\left(4,2^{n}\right)^{\prime}$ and $H^{1}(L, U) \cong \mathbb{F}_{2^{n}}$.
(v) $L \cong \operatorname{Alt}(n)$, n even, and $H^{1}(L, U) \cong \mathbb{F}_{2}$.

Proof. In each of the cases to be considered, let W denote an L-module containing U, with $[W, L]=U$ and with $C_{W}(L)=0$. Suppose first that $L \cong S L\left(2,2^{n}\right)$ and that U is the natural module for L. For any involution t in L we have $[W, t] \leq C_{U}(t)$, and hence $\left|W / C_{W}(t)\right| \leq 2^{n}$. Since three involutions suffice to generate L, it follows that $|W| \leq 2^{3 n}$. On the other hand, one may produce an example where $|W|=2^{3 n}$, in the following way. Put $L^{*}=S L\left(2,2^{2 n}\right)$ and regard L as a subgroup of L^{*}. Identify L^{*} with $\Omega_{4}^{-}\left(2^{n}\right)$ and let V be the natural orthogonal module for L^{*}. Then L centralizes a 1-dimensional singular subspace V_{0} of V, and by taking $W=V / V_{0}$ we obtain the desired example. Thus $\left|H^{1}(L, U)\right|=2^{n}$.

Next, take $L=\Omega_{4}^{-}\left(2^{n}\right), U$ the natural orthogonal module. Assume that $|W / U|=2$. Put $q=2^{n}$ and let D be a subgroup of L of order $q+1$. Then $\left|C_{W}(D)\right|=2 q^{2}$. For any involution t of L one then has $C_{W}(\langle D, t\rangle) \neq 0$. But an elementary counting argument shows that one may choose t so that $\langle D, t\rangle$ is not an $S L\left(2,2^{n}\right)$-subgroup of L, and is not a dihedral group of order $2(q+1)$. Then $\langle D, t\rangle=L$, by appeal to Dickson's list of subgroups of L. That is, $C_{W}(L) \neq 0$, so W is decomposable after all, and $H^{1}(L, U)=0$.

Assume next that $L=\Omega_{4}^{+}\left(2^{n}\right), U$ the natural module, and form the semi-direct product $H=U: L$. Let $K=K_{1} \times K_{2}$ be a complement to U in $H, K_{i} \cong S L\left(2,2^{n}\right)$. After a suitable conjugation, we may assume that $K \cap L$ contains a subgroup $X=X_{1} \times X_{2}$, where $X_{i}=X \cap K_{i}$ is of order $2^{n}+1$. But $C_{U}\left(X_{i}\right)=0$, so $C_{H}\left(X_{i}\right)=X_{i} K_{3-i}$. This shows that $K=L$, and so there is only one conjugacy class of complements to U in H. That is, $H^{1}(L, U)=0$.

We next consider the case where $L=S L\left(3,2^{n}\right)$ or $S p\left(4,2^{n}\right)^{\prime}$. Let P_{1} and P_{2} be the two maximal subgroups of L containing a fixed Sylow 2-subgroup S of L. Put $L_{i}=\left[P_{i}, P_{i}\right]$, $Q_{i}=O_{2}\left(P_{i}\right)$, and $Z_{i}=C_{Q_{i}}\left(L_{i}\right)$, and let the indexing be chosen so that $C_{U}\left(L_{1}\right) \neq 0$.

Assume now that $L \cong S L\left(3,2^{n}\right), n>1$. Assume that $|W / U|=2$, and let K be a complement to Q_{2} in L_{2}. Then both Q_{2} and $C_{U}\left(Q_{2}\right)$ are natural $S L\left(2,2^{n}\right)$ modules for K, so we have $\left|\operatorname{Hom}_{K}\left(Q_{2}, C_{U}\left(Q_{2}\right)\right)\right|=2^{n}$. Then $\left[W, L_{2}\right] \leq C_{U}\left(Q_{2}\right)$, and so $W=U+C_{W}\left(Q_{2}\right)$. Then $\left[W, Q_{1} \cap Q_{2}\right] \leq\left[U, Q_{1}\right]=C_{U}\left(L_{1}\right)$, and then also $\left[W, Q_{1}\right]=\left[W,\left\langle\left(Q_{1} \cap Q_{2}\right)^{L_{1}}\right\rangle\right] \leq C_{U}\left(L_{1}\right)$. This yields $\left|C_{W}\left(Q_{1}\right)\right|=\left|C_{W}\left(L_{1}\right)\right|=2^{n+1}$. But also, for any involution $t \in L$ we have $\left|W / C_{W}(t)\right|=2^{n}$. Choosing $t \in L-L_{1}$, we get $L=\left\langle L_{1}, t\right\rangle$, and so $C_{W}(L) \neq 0$. Thus $H^{1}(L, U)=0$.

One may produce an indecomposable module for $L=L_{3}(2)$ by considering the action of $\operatorname{Alt}(7)$ on the natural $L_{4}(2)$-module, and observing that $\operatorname{Alt}(7)$ contains two classes of $L_{3}(2)$-subgroups. Thus $\left|H^{1}(L, U)\right| \geq 2$ in this case. Let W be an L-module of order 32 , with $U=[W, L]$. For any $y \in L$ with $|y|=3$ one has $|[W, y]|=4$, and since two conjugates of y suffice to generate L we then have $C_{W}(L) \neq 0$. This shows that $\left|H^{1}(L, U)\right|=2$ if $L \cong L_{3}(2)$.

Next, suppose that $L \cong \operatorname{Sp}\left(4,2^{n}\right), n>1$, and assume that $|W / U|>2^{n}$. We have $\left|U / C_{U}\left(Z_{1}\right)\right|=\left|\left[U, Z_{1}\right]\right|=2^{n}$, and $\left[W, L_{1}\right] \leq C_{U}\left(Z_{1}\right)$. The Three Subgroups Lemma yields $\left[W, Z_{1}, L_{1}\right]=0$, and so $\left[W, Z_{1}\right]=\left[U, Z_{1}\right]$. Let K_{1} be a complement to Q_{1} in L_{1} such that K_{1} is generated by two conjugates of Z_{1}. Then $\left\|\left[W, K_{1}\right]\right\| \leq 2^{2 n}$, and [W, K_{1}] is a natural $S L\left(2,2^{n}\right)$-module for K_{1}. By what has already been proved, we have $\left|H^{1}\left(K_{1},\left[W, K_{1}\right]\right)\right|=2^{n}$, and so there exists $w \in W-U$ with $\left[w, K_{1}\right]=0$. Then also there exists $v \in W-U$ with $\left[v, Z_{1}\right]=0$. Set $W_{0}=\langle v\rangle+U$. As four conjugates of Z_{1} suffice to generate L we then have $C_{W_{0}}(L) \neq 0$, contrary to assumption. This shows that $\left|H^{1}(L, U)\right| \leq 2^{n}$. To see that equality holds, it is enough to observe that in $S p\left(6,2^{n}\right)$ there is a maximal parabolic subgroup P with $O^{2^{\prime}}\left(P / O_{2}(P)\right) \cong L$ and with $O_{2}(P)$ an indecomposable module for $O^{2^{\prime}}(P)$, such that $C_{O_{2}(P)}\left(O^{2^{\prime}}(P)\right)$ is of order 2^{n} and such that $O_{2}(P) / C_{O_{2}(P)}\left(O^{2^{\prime}}(P)\right)$ is a natural $S L\left(2,2^{n}\right)$-module for $O^{2^{\prime}}\left(P / O_{2}(P)\right)$. (This is entirely well known, but one can find this worked out in detail in lemma 5.4 of [C2].)

Suppose next that $L=(S p(4,2))^{\prime}$. The natural permutation module for $\operatorname{Alt}(6)$ provides an example which shows that $\left|H^{1}(L, U)\right| \geq 2$. Let W be an L-module of order 64 with $U=[W, L]$, and let L_{0} be a subgroup of $L, L_{0} \cong \operatorname{Alt}(5)$, such that U is the natural $\Omega_{4}^{-}(2)$-module for L_{0}. By what has already been shown, we have $H^{1}\left(L_{0}, U\right)=0$, and so $W=U \oplus C_{W}\left(L_{0}\right)$. Let S be a Sylow 2-subgroup of L such that $\left|S \cap L_{0}\right|=4$, and let t be an involution in $S-L_{0}$. Here $\left|C_{U}\left(S \cap L_{0}\right)\right|=2$, and so $C_{W}\left(L_{0}\right) \cap C_{W}(t) \neq 0$. As $\left\langle L_{0}, t\right\rangle=L$ we then have $C_{W}(L) \neq 0$, and this shows that $\left|H^{1}(L, U)\right|=2$.

Finally, let $L=\operatorname{Alt}(n)$, with U the natural module. Suppose that $n=2 m+1$ is odd. Then L is generated by m-cycles, each of which centralizes a subspace of codimension 2 in W. Then $\operatorname{dim}(W) \leq 2 m=\operatorname{dim}(U)$. Thus $W=U$, and $H^{1}(L, U)=0$ in this case. Now suppose that $n=2 m$ is even. Then $m-13$-cycles suffice to generate the subgroup K_{i} of L which fixes the point i in the natural action of L on n points. Here $C_{U}\left(K_{i}\right)=0$, and $\operatorname{dim}(U)=2 m-2$, so we have $W=U+C_{W}\left(K_{i}\right)$. Set $X=K_{1} \cap K_{2}$, and observe that $\operatorname{dim}\left(C_{U}(X)\right)=1$. Thus $C_{W}\left(K_{i}\right)$ is a hyperplane of $C_{W}(X)$, for $i=1$ and
2. As $\left\langle K_{1}, K_{2}\right\rangle=G$ we have $C_{W}\left(K_{1}\right) \cap C_{W}\left(K_{2}\right)=0$, and we conclude that $|W / U| \leq 2$. On the other hand, the natural permutation module for L, modulo its fixed-points for L, provides an example of an indecomposable module W in which $|W / U|=2$. Thus $\left|H^{1}(L, U)\right|=2$ in this case, and the lemma is proved.
1.4 Lemma. Let L be the group $L_{2}(q), q$ a power of p, p odd, and let V be a module for L over \mathbb{F}_{p}, such that $\left[V / C_{V}(L), L\right]$ is isomorphic to the natural $\Omega_{3}(q)$-module for L. Then $V=[V, L] \oplus C_{V}(L)$.

Proof. Let T be a Sylow p-subgroup of L, let D be a complement to T in $N_{L}(T)$, let U be the natural $\Omega_{3}(q)$-module for L, and form the semi-direct product $U: L$. We will show that there is a unique conjugacy class of D-invariant complements to U in $U T$, and the lemma will follow from a standard result on 1-cohomology. (See 17.7 in [A3].)

Let T_{1} be a D-invariant complement to U in $U T$, and set $X=\left\langle T^{U}\right\rangle$. Then $X=$ $[U, T] T$, where $[U, T]$ is a 2-dimensional $\mathbb{F}_{q^{-}}$subspace of U. Every element of order p in $U T$ lies in X, so we have $T_{1} \leq X$. Notice that D acts trivially on the 1-dimensional space $[U, T] / C_{U}(T)$, and so the q distinct conjugates of T under $[U, T]$ are all D-invariant. These conjugates, together with $C_{U}(T)$, provide a partition of $\left(C_{U}(T) T\right)^{\#}$ into D-invariant sets, so if $T_{1} \leq C_{U}(T) T$ then T_{1} is conjugate to T. Suppose now that $q>3$, so that $D \neq 1$. Then $[X, D]=C_{U}(T) T$, and so $T_{1} \leq C_{U}(T) T$ in this case. Thus, we are reduced to the case $p=3$. Here there are exactly 9 conjugates of T under U, and there are exactly $13=\left(3^{3}-1\right) /(3-1)$ subgroups of X of order 3 , four of which lie in U. Thus T_{1} is conjugate to T in this case as well, and the lemma is proved.
1.5 Lemma. Let $L=L_{3}(2)$ and let V be an $\mathbb{F}_{2} L$-module such that $C_{V}(L) \leq[V, L]$, and such that $\left[V / C_{V}(L), L\right]$ is a natural $L_{3}(2)$-module for L. Then either $V=[V, L]$ or $C_{V}(L)=0$.

Proof. Suppose false. Then 1.1 implies that $|V /[V, L]|=\left|C_{V}(L)\right|=2$, and so $|V|=32$. Let t be an involution in L. Then two conjugates of t generate a Sylow 2-subgroup of L, and then three conjugates of t suffice to generate L. If t induces a transvection on [$V, L]$ we then obtain $C_{[V, L]}(L) \neq 0$, while if t induces a transvection on $V / C_{V}(L)$ then L has a non-trivial fixed-point on $V / C_{V}(L)$. These results are contrary to the case, so we conclude that t induces a 2 - transvection on both $[V, L]$ and $V / C_{V}(L)$. Then $C_{V}(t) \leq[V, L]$, and $\left|V / C_{V}(t)\right| \geq 8$. But $\left|V / C_{V}(t)\right| \leq 4$ as $|V|=32$. This contradiction proves the lemma.
1.6 Lemma. Let $L=S L\left(2, p^{n}\right)$ and let U be a module for L over \mathbb{F}_{p}. Suppose that every irreducible constituent for L in U is a natural module for L. If $p=3$ assume further that a Sylow p-subgroup of L acts quadratically on U. Then U is completely reducible.

Proof. This is an old result of Richard Niles (Theorem 3.2 in [N]). To be precise, Niles' theorem states that if the Sylow p-subgroup S of L does not act quadratically on V, and V is indecomposable, then $p=3$. But in fact, Niles' proof makes no use of the assumption that S acts non-quadratically, and what is really proved is that if V is indecomposable then $p=3$ and S acts non-quadratically. The lemma follows from this result.
1.7 Lemma. Let $L=S L\left(2, p^{n}\right)$, and let $V=[V, L]$ be a non-zero module for L over \mathbb{F}_{p}. Suppose that a Sylow p-subgroup of L acts quadratically on V, and if $p=2$ assume that $C_{V}(X)=0$ for some Cartan subgroup X of L. Then V is a direct sum of natural modules for L.

Proof. If p is odd then $C_{U}(Z(L))=C_{U}(L)$, and we may assume that $C_{U}(Z(L))=0$ in this case. Let U be an irreducible L-invariant section of V. Then U is a non-trivial L-module, since $C_{U}(X)=0$ if $p=2$. Let S be a Sylow p-subgroup of L, and set $F=\operatorname{End}_{L}(U)$. As is well known (see Corollary (a) to Theorem 46 in [St2]), F is a subfield of $\mathbb{F}_{p^{n}}$ and $\operatorname{dim}_{F}\left(C_{U}(S)\right)=1$. As S acts quadratically on V, by hypothesis, and as two conjugates of S generate L, it follows that $\operatorname{dim}_{F}(U)=2$, and then $F=\mathbb{F}_{p^{n}}$ and U is a natural module for L. Thus, we are reduced to the situation in which V has a submodule U such that both U and V / U are natural modules for L. Now apply 1.6.
1.8 Lemma. Let $L=\operatorname{Alt}(n)$, n odd, and let V be an $\mathbb{F}_{2} L$-module such that the only non-trivial irreducible constituents for L in V are natural modules. Then V is completely reducible.

Proof. In view of 1.3 , we may assume that $C_{V}(L)=0$, and then that V has a submodule U such that both U and V / U are natural modules for $O^{2}(L)$. Let K be the stabilizer of a point for the natural action of L on n points. As n is odd, U is isomorphic, as a K-module, to the natural permutation module for K. As $n-1$ is even we then have $U \neq[U, K] \geq C_{U}(K) \neq 0$, and the same is true with V / U in place of U. As $H^{1}\left(K,[U, K] / C_{U}(K)\right) \cong \mathbb{F}_{2}$, by 1.3, it follows that $C_{V / U}(K)=\left(U+C_{V}(K)\right) / U \neq 0$. Let $w \in C_{V}(K)-U$ and set $W=\left\langle w^{O_{2}(L)}\right\rangle$. Then $\operatorname{dim}(W) \leq\left|O^{2}(L): K\right|=n$, and so W is an $O^{2}(L)$-invariant complement to U in V.

Section 2: Cyclic Sylow p-subgroups

In this section we treat Hypothesis 4^{\prime}, in "miniature".
2.1 Lemma. Let V be a 4-dimensional vector space over \mathbb{F}_{p}, p an odd prime, and set $G=S L(V)$. Let X be a quasisimple subgroup of G, and assume that X satisfies the following conditions.
(a) $Z(X) \leq Z(G)$.
(b) X has cyclic Sylow p-subgroups.
(c) For any element a of X of order p, we have $[V, a, a, a]=0$ and $[V, a, a] \neq 0$.

Assume further that $X / Z(X)$ is an alternating group, a group of Lie type, or one of the twenty-six sporadic groups. Then one of the following holds.
(i) $p \geq 5, X \cong L_{2}(p)$, $V=[V, X] \oplus C_{V}(X)$, and $[V, X]$ is a natural $\Omega_{3}(p)$-module for X (of dimension 3).
(ii) $p=3$ and $X \cong \operatorname{Alt}(5)$.

Proof. The 2-rank of $S L(4, p)$ is equal to 3 , so we obtain the following information at the outset.
(1) The 2-rank of X is at most 3 , and if equal to 3 then $Z(X)$ is of even order.

Suppose first that $X \in \operatorname{Lie}(p)$. Condition (b) then implies that $X \cong L_{2}(p)$ or $S L(2, p)$, and then since X is assumed to be quasisimple, we have $p \neq 3$. Denote by M_{i} the space (of dimension $i+1$) of homogeneous polynomials of degree i in the two variables x and y. Then M_{i} admits a natural action by $S L(2, p)$, and $\left\{M_{i}\right\}_{0 \leq i \leq p-1}$ forms a complete set of representatives for the isomorphism classes of the irreducible modules for $S L(2, p)$ over \mathbb{F}_{p}. (See [St 1] or section 13 in [St 2].) Let S be a Sylow p-subgroup of $S L(2, p)$. One checks easily that $\left[M_{i}, S, S, S\right] \neq 0$ for $i>2$, and so condition (c) implies that any irreducible constituent U for X in V is isomorphic to one of the modules $M_{i}, 0 \leq i \leq 2$. That is, U is either a trivial module, a natural $S L(2, p)$-module, or a natural $\Omega_{3}(p)$ module for X. If there exists a constituent U such that U is a natural $S L(2, p)$-module then $1 \neq Z(X) \leq Z(G)$, by condition (a), so all irreducible constituents of X in V are natural $S L(2, p)$ - modules, and then V is completely reducible for X, by 1.6. But then a acts quadratically on V, contrary to (c), so we conclude that no such constituent U exists. Thus, X has a unique non-trivial irreducible constituent U in V, and U is a natural $\Omega_{3}(p)$-module. Now 1.2 implies that V is completely reducible, and so (i) holds.

Suppose next that X is of Lie type in characteristic different from p. We appeal to Table I in [SZ] for the list of minimal degrees of cross-characteristic projective representations of groups of Lie type, where we find that only the groups $L_{2}(4), L_{2}(9), L_{3}(2), L_{3}(4)$, and $U_{4}(2)$ have such representations of degree at most 4 . Suppose that $X / Z(X) \cong L_{2}(4)$. Then $p=3$ (as $\left.L_{2}(4) \in \operatorname{Lie}(5)\right)$. If $Z(X) \neq 1$ then there is an element f of order 4 in X such that f inverts a, with $\left\langle f^{2}\right\rangle=Z(X)$, and since $|[V, a, a]|=3$ it follows that $Z(X)$ centralizes $[V, a, a]$. But $C_{V}(Z(X))=0$, so in fact $Z(X)=1$, and (ii) holds. Suppose that $X / Z(X) \cong L_{3}(2)$. Then $p=3$ as $L_{3}(2) \in \operatorname{Lie}(7)$. As 7 does not divide the order of G, we have a contradiction in this case. We note that any central extension of $L_{3}(4)$ has 2-rank at least 4, so (1) implies that $X / Z(X)$ is not isomorphic to $L_{3}(4)$. Suppose that $X / Z(X) \cong U_{4}(2)$. The 2-rank of $U_{4}(2)$ is greater than $3, U_{4}(2) \cong \operatorname{PSp}(4,3)$, and $S p(4,3)$ is the universal perfect central extension of $U_{4}(2)$, so we have $X \cong S p(4,3)$ and $p=5$. But 27 does not divide the order of $S L(4,5)$, so we have a contradiction. Now suppose that $X / Z(X) \cong L_{2}(9)$. Then $X / Z(X) \in \operatorname{Lie}(2) \cup \operatorname{Lie}(3)$, and so $p=5$. There are then non-conjugate subgroups K_{1} and K_{2} of X, with $K_{i} / Z(X) \cong L_{2}(5)$, and with $a \in K_{1} \cap K_{2}$. The argument in the preceding paragraph then shows that for each i we have $K_{i} \cong L_{2}(5), V$ is completely reducible for K_{i}, and [V, K_{i}] is a natural $\Omega_{3}(5)$-module for K_{i}. Let x_{i} be an element of order 3 in K_{i}. It now follows that $\operatorname{dim}\left(C_{V}\left(x_{i}\right)\right)=2$. On the other hand, a Sylow 3-subgroup of X is one of G, and evidently G contains an element x of order 3 such that $C_{V}(x)=0$. As x_{1} and x_{2} represent the two conjugacy classes of elements of order 3 in X, we have a contradiction.

Suppose next that $X / Z(X)$ is an alternating group $\operatorname{Alt}(n)$. The 2-rank of any central extension of $\operatorname{Alt}(8)$ is at least 4, so (1) implies that $n \leq 7$. As $A l t(5)$ and $\operatorname{Alt}(6)$ are of Lie
type, we then have $n=7$. By condition (b), $p \neq 3$, and since $\operatorname{Alt}(7)$ contains $L_{2}(9)$ we have $p \neq 5$. Then $p=7$, and since $\operatorname{Alt}(7)$ contains $L_{2}(7)$ we have $Z(X)=1$. The minimal degree of a non-trivial complex irreducible representation of $\operatorname{Alt}(6)$ is greater than 4 , and since $|\operatorname{Alt}(6)|$ is not divisible by 7 the same is true of the irreducible representations of $\operatorname{Alt}(6)$ over \mathbb{F}_{7}. Thus, $\operatorname{Alt}(7)$ is not a subgroup of G.

Suppose finally that $X / Z(X)$ is a sporadic group. Then (1) implies that $X \cong M_{11}$ or $2^{M_{12}}$. Then $p \neq 3$, by (b), and since M_{11} is a subgroup of $2 M_{12}$ it will now suffice to derive a contradiction in the case that $X \cong M_{11}$. In this case we have $p=5$ or 11 , and since M_{11} contains $L_{2}(9)$ we conclude that $p=11$. Let B be a Sylow 3 -subgroup of X. Then all subgroups of order 3 in B are fused in X. But also B is a Sylow subgroup of G, and evidently there are two different classes of elements of subgroups of order 3 in G. This contradiction proves the lemma.
2.2 Corollary. Assume Hypothesis 3, with H quasisimple, and assume that S is of order p. Suppose further that p is odd, that $[V, A, A, A]=0$, and that A is not quadratic on V. Then $G \cong L_{2}(p)$ or $\operatorname{Alt}(5)$.
Proof. By Hypothesis 3 there is a unique maximal subgroup M of G containing A. As H is quasisimple, there exists $g \in G$ with $A^{g} \not \leq M$. Then $\left\langle A, A^{g}\right\rangle=G$, and so $G \cong L_{2}(p)$ or $\operatorname{Alt}(5)$ by 2.1 .
2.3 Theorem. Assume Hypothesis 4^{\prime}, and assume that $H / Z(H)$ is one of the twenty-six sporadic groups. Then S is contained in more than one maximal subgroup of G.
Proof. By 2.2, $|S|>p$, and then a survey of the sporadic groups shows that S is noncyclic. In [A3] it is shown that if X is a group with $F^{*}(X)$ sporadic, and T is a non-cyclic Sylow p-subgroup of X, then either T is contained in two distinct maximal subgroups of X, or else $X \cong J_{4}$ and $p=11$. Moreover, it is shown that if J_{4} has a faithful 112-dimensional module over \mathbb{F}_{2} then also for $p=11$ there are at least two maximal overgroups of T in J_{4}. The existence of such a module for J_{4} is now known from various sources. (?)

Section 3: Measuring lemmas

3.1 Lemma. Let G be a group, and let V be a faithful $\mathbb{F}_{p} G$-module. Suppose G has a cyclic subgroup of order $p^{k}+1$. Then $\operatorname{dim}(V) \geq 2 k$.
Proof. Suppose first that $p^{2 k}=2^{6}$. Then $p^{k}+1=9$, and since $L_{5}(2)$ has elementary abelian Sylow 3 -subgroups we are done in this case. Also, the result evidently obtains if $k=1$. Thus, we may assume that $p^{2 k} \neq 2^{6}$ and that $k>1$. The main result of $[\mathrm{Z}]$ then says that $p^{2 k}-1$ is divisible by a prime r such that r does not divide $p^{i}-1$ for any i with $1 \leq i<2 k$. Then r does not divide $|G L(V)|$ if $\operatorname{dim}(V)<2 k$.
[For sure there is a proof of 3.1 that does not use [Z].]
The next result is extracted from [CD].
3.2 Lemma. Let X be a finite group, Y a normal subgroup of X, p a prime, and V a faithful $\mathbb{F}_{p} X$-module. Let r be a positive real number, and let E be an elementary abelian p-subgroup of Y, chosen so that

$$
\begin{equation*}
|E|^{r}\left|C_{V}(E)\right| \quad \text { is as large as possible. } \tag{*}
\end{equation*}
$$

Then For any $x \in X$ we have $\left|E E^{x}\right|^{r}\left|C_{V}\left(E E^{x}\right)\right| \geq|E|^{r}\left|V / C_{V}(E)\right|$. In particular, If E is chosen to be as large as possible, subject to $\left(^{*}\right)$, then E is weakly closed in $C_{X}(E)$ with respect to X.
Proof. . Set $F=E^{x}$, and suppose that $|E|^{r}\left|C_{V}(E)\right|>|E F|^{r}\left|C_{V}(E F)\right|$. We then have

$$
\frac{|F|^{r}}{|E \cap F|^{r}}=\frac{|E F|^{r}}{|E|^{r}}<\frac{\left|C_{V}(E)\right|}{\left|C_{V}(E F)\right|}=\frac{\left|C_{V}(E)+C_{V}(F)\right|}{\left|C_{V}(F)\right|} \leq \frac{\left|C_{V}(E \cap F)\right|}{\left|C_{V}(F)\right|}
$$

and hence

$$
\begin{equation*}
|F|^{r}\left|C_{V}(F)\right|<|E \cap F|^{r}\left|C_{V}(E \cap F)\right| . \tag{**}
\end{equation*}
$$

But $|F|^{r}\left|C_{V}(F)\right|=|E|^{r}\left|C_{V}(E)\right|$, and the maximality of this number, among elementary abelian subgroups of X, contradicts (${ }^{* *}$). Thus $|E|^{r}\left|C_{V}(E)\right| \leq|E F|^{r}\left|C_{V}(E F)\right|$.
3.3 Lemma. Let X be a finite group, p a prime, and V a faithful $\mathbb{F}_{p} X$-module. Let A be a subgroup of X, and let r be a real number such that $|A|^{r} \geq\left|V / C_{V}(A)\right|$. Then let B be a normal subgroup of A, set $W=C_{V}(B)$, and suppose that $|A / B|^{r} \leq\left|W / C_{W}(A)\right|$. Then $|B|^{r} \geq\left|V / C_{V}(B)\right|$.
Proof. As $|A|^{r} \geq\left|V / C_{V}(A)\right|$ and $|A / B|^{r} \leq\left|W / C_{W}(A)\right|$, we have

$$
|B|^{r}\left|C_{V}(A)\right||W| /\left|C_{W}(A)\right| \geq|V|
$$

But $C_{W}(A)=C_{V}(A)$, so we obtain $|B|^{r} \geq|V / W|=\left|V / C_{V}(B)\right|$, as required.
We end this section with a result which will effectively reduce the proof of Theorem 1 to the consideration of the case where $F^{*}(G)$ is quasisimple or where $F^{*}(G)$ is a q-group for some prime $q, q \neq p$.
3.4 Lemma. Assume Hypothesis 1, and let $A \in \mathcal{Q}(S, V)$ with $A \in \mathcal{Q}^{*}(A, V)$. Let X be a non-identity subgroup of G with $X=[A, X]$, and such that $X / \Phi(X)$ is a minimal normal subgroup of $A X / \Phi(X)$. Let A_{0} be a complement in A to $C_{A}(X)$. Then the following hold:
(a) $\left[V, X, C_{A}(X)\right]=0$.
(b) For any $A X$-invariant section W of $[V, X]$ on which X acts non-trivially, we have $C_{A_{0}}(W)=1$, and:

$$
q\left(A_{0}, W\right) \leq q\left(A_{0},[V, X]\right) \leq q(A, V)
$$

(c) $A_{0} \in \mathcal{Q}^{*}\left(A_{0},[V, X]\right)$.

Proof. We have $X \leq\left\langle A^{X}\right\rangle$, so $\left[V, X, C_{A}(X)\right]=1$ since A acts quadratically on V. Put $U=[V, X]$, and let $U_{1} \leq U_{0}$ be $A X$-invariant subspaces of U with $\left[U_{0}, X\right] \not \leq U_{1}$. Put $W=U_{0} / U_{1}$ and set $Y=C_{X}(W)$. Then $Y \leq \Phi(X)$ and so $\left[X, C_{A_{0}}(W)\right] \leq \Phi(X)$. Thus, we get $C_{A_{0}}(W) \leq A_{0} \cap C_{A}(X)$, and so $C_{A_{0}}(W)=1$.

Put $U^{*}=C_{V}\left(C_{A}(X)\right)$ and put $q=q(A, V)$. Suppose next that $\left|A_{0}\right|^{q}<\left|U^{*} / C_{U^{*}}\left(A_{0}\right)\right|$. Since $C_{U^{*}}\left(A_{0}\right)=C_{V}(A)$ we then have:

$$
|V|=|A|^{q}\left|C_{V}(A)\right|<\left|C_{A}(X)\right|^{q}\left|U^{*}\right|
$$

and thus $q\left(C_{A}(X), V\right)<q(A, V)$. But this is contrary to $A \in \mathcal{Q}_{*}(S, V)$, so we now conclude that $\left|A_{0}\right|^{q} \geq\left|U^{*} / C_{U^{*}}\left(A_{0}\right)\right|$. Then also $\left|A_{0}\right|^{q} \geq\left|U / C_{U}\left(A_{0}\right)\right|$, and so $q\left(A_{0}, U\right) \leq$ $q(A, V)$.

Next, put $r=q\left(A_{0}, U\right)$. We have:

$$
\left|A_{0}\right|^{r}=\left|U / C_{U}\left(A_{0}\right)\right| \geq\left|U_{0} / C_{U_{0}}\left(A_{0}\right)\right|
$$

and also:

$$
\left|C_{W}\left(A_{0}\right)\right| \geq\left|C_{U_{0}}\left(A_{0}\right) U_{1} / U_{1}\right|=\left|C_{U_{0}}\left(A_{0}\right) / C_{U_{1}}\left(A_{0}\right)\right|
$$

and thus:

$$
\left|A_{0}\right|^{r}\left|C_{W}\left(A_{0}\right)\right| \geq\left|U_{0} / C_{U_{1}}\left(A_{0}\right)\right| \geq|W|
$$

This shows that $q\left(A_{0}, W\right) \leq r$, and completes the proof of (b).
Next, let $B \leq A_{0}$ and put $A_{1}=C_{A}(X) B$. Since $A \in \mathcal{Q}_{*}(S, V)$ we have $q \leq q\left(A_{1}, V\right)$, and so:

$$
\left|A_{0} / B\right|^{q}=\left|A / A_{1}\right|^{q} \geq\left|C_{V}\left(A_{1}\right) / C_{V}(A)\right| \geq\left|C_{U}\left(A_{1}\right) / C_{U}(A)\right|
$$

which shows that $\left|A_{0}\right|^{q}\left|C_{U}\left(A_{0}\right)\right| \geq|B|^{q}\left|C_{U}(B)\right|$. This proves (c).

Section 4: Solvable Groups

In this section we assume Hypothesis 1. Recall that for any subgroup X of $G, \mathcal{Q}(X, V)$ is the set of quadratic subgroups of X, and that if $\mathcal{Q}(X, V)$ is non-empty then $q(S, V)$ is the minimum, over all $A \in \mathcal{Q}(X, V)$, of the numbers q for which $|A|^{q}=\left|V / C_{V}(A)\right|$. Denote by $\mathcal{Q}^{*}(X, V)$ the set of all $A \in \mathcal{Q}(X, V)$ such that $|A|^{q(X, V)}=\left|V / C_{V}(A)\right|$.
4.1 Lemma. Assume Hypothesis 1, with p odd. Let a be an element of order p in G, such that a acts quadratically on V, and let R be an a-invariant p^{\prime}-subgroup of G. If $p=3$ assume also that R is abelian or that $|R|$ is odd. Then $[R, a]=1$.

Proof. This is [C2, Lemma 1.2].
4.2 Lemma. Let S be a 2-group, and let a be an automorphism of S of order 3. Assume that $S=[S, a]$, and that the following condition holds.
(*) Every a-invariant abelian subgroup of S is centralized by a.
Then $\Phi(S)=[S, S]=Z(S)=\Omega_{1}(S)=C_{S}(a)$.
Proof. It will be convenient to form the semi-direct product $G=S\langle a\rangle$. Let \mathcal{R} denote the set of all proper subgroups R of S such that $R=[R, a]$. We assume that S provides a minimal counter-example to the lemma. So:
(1) For any $R \in \mathcal{R}$ we have $\Phi(R)=[R, R]=Z(R)=\Omega_{1}(R)=C_{R}(a)$.

Put $X=\left\langle C_{S}(a)^{G}\right\rangle$. Then $X \subseteq \Phi(S)$ since $S=[S, a]$. Here $\Phi(S)=\left\langle s^{2}: s \in S\right\rangle$ since S is a 2-group. Suppose that $X \neq \Phi(S)$ and let $g \in S$ with $g^{2} \notin X$. Put $T=\left\langle g, g^{a}\right\rangle \Phi(S)$, and put $R=[T, a]$. Then $T=R X$. Now $R /(R \cap X) \cong T / X$, and so $R /(R \cap X)$ is not elementary abelian. If now $T \neq S$, then $R \in \mathcal{R}$ and (1) then implies that $R / C_{R}(a)$ is elementary abelian, for a contradiction. We have thus shown:
(2) Either $X=\Phi(S)$ or $|S / \Phi(S)|=4$.

Notice that $Z(S) \subseteq X$,by $\left(^{*}\right)$. Now let Y be a normal 2 -subgroup of G properly containing $Z(S)$, and with Y minimal for this property. Moreover, if possible, choose $Y \subseteq X$. If $[Y, a]=1$ then $[Y, S] \subseteq\left[Y,\left\langle a^{S}\right\rangle\right]=1$, contrary to the choice of Y. Thus $|Y: Z(S)|=4$. Setting $H=[Y, a]$, it then follows from $\left(^{*}\right)$ that H is a quaternion group, of order 8. Notice that H is invariant under $C_{S}(a)$, and then $\left[H, C_{S}(a)\right]=1$. But then $1=\left[Z(S) H, C_{S}(a)\right]=\left[Y, C_{S}(a)\right]$, and so $[Y, X]=1$. In particular, we have $[H, X]=1$, and so $H \nsubseteq X$. By our choice of Y, it then follows that $[X, a]=1$, whence $\left[X,\left\langle a^{S}\right\rangle\right]=1$. Thus:
(3) We have $X=C_{S}(a)=Z(S)$.

Suppose next that $X=\Phi(S)$. In particular, (3) then says that the nilpotence class of S is 2 . Let \mathcal{Q} denote the set of all subgroups Q of S such that $Q=[Q, a]$ is a quaternion group, and put $Z=\langle[Q, Q]: Q \in \mathcal{Q}\rangle$. Then $Z \subseteq \Omega_{1}(Z(S))$. Let t be an arbitrary element of S and put $D=\left\langle t, t^{a}, t^{a^{2}}\right\rangle$ and $R=[D, a]$. Then either $R \in \mathcal{Q}$ or $R=1$, and in either case we have $D=C_{D}(a) R=(D \cap X) R$. Write $t=x r$ with $r \in R$ and $x \in X$. Then $t^{2}=x^{2} r^{2} \in \Phi(X) Z$. But then $X=\Phi(S)=\Phi(X) Z$, and so $X=Z$. In particular, we now have $\Phi(S)=\Omega_{1}(Z(S))=[S, S]$. Moreover, if t is an involution then $1=x^{2} r^{2}=r^{2}$, and so $r \in Z(R) \subseteq X$, and $t \in X$. This shows that $\Omega_{1}(S)=X$, and thus the proposition is proved in the case that $X=\Phi(S)$. In view of (2) we then have:
(4) $|S / \Phi(S)|=4$, and X is a proper subgroup of $\Phi(S)$.

Here $\Phi(S)=[\Phi(S), a] X$, so it follows from (1) that $\Phi(S) / X$ is elementary abelian. Suppose that $|\Phi(S) / X|>4$. We may then choose a normal subgroup M of G with $X \subseteq M \subset \Phi(S)$, and with $|\Phi(S) / M|=16$. Put $V=\Phi(S) / M$. Then $G / \Phi(S)$ operates faithfully on V, as otherwise $|S / \Phi(S)|>4$. Here $G / \Phi(S) \cong \operatorname{Alt}(4)$, and a is fixed-point-
free on V. One may then verify that for every g in $S-\Phi(S)$ we have $C_{V}(g)=[V, g]=$ $C_{V}(S)=[V, S]$, a subgroup of V of order 4. But then g^{2} lies in $[S, \Phi(S)]$ for all $g \in S$, whereas $\Phi(S)=\left\langle g^{2}: g \in S\right\rangle$. Thus we have a contradiction, proving that $|\Phi(S) / X|=4$. This immediately implies:
(5) $S / X \cong \mathbb{Z}_{4} \times \mathbb{Z}_{4}$.

Recall from the proof of (3) that we have a quaternion group $H=[H, a]$ with $H \nsubseteq X$. It now follows from (5) that $\Phi(S)=H X$. Suppose that $\Omega_{1}(X) \neq Z(H)$, and let Z be a subgroup of X of order 2 with $Z \neq Z(H)$. Then observe that S / Z satisfies the condition $\left(^{*}\right)$, in place of S. (Indeed, if $g \in S-C_{S}(a)$ then $\left\langle a, a^{g}\right\rangle=H\langle a\rangle$ or G.) By minimality of the counter-example, we then have $[\Phi(S / Z), a]=1$, which is contrary to (5). Thus, we conclude that $\Omega_{1}(X)=Z(H)$, and hence X is cyclic. Then H is the unique quaternion subgroup of $H X$, and so H is a normal subgroup of G. Then $S=C_{S}(H) H$, a central product. This violates $|S / \Phi(S)|=4$, and the proposition is thereby proved.
4.3 Lemma. Assume Hypothesis 1 with $G=Q A, Q$ a normal p^{\prime} - subgroup of G, and with $|A|=p$. Assume further that $Q=[Q, A], V=[V, Q]$, and $\left|V: C_{V}(A)\right| \leq p^{2}$. Finally, assume that A acts quadratically on V. Then one of the following holds.
(i) $G \cong S L(2,2)$ and V is either a natural $S L(2,2)$-module or a direct sum of two natural $S L(2,2)$-modules for G.
(ii) $G \cong(3 \times 3): 2,|V|=16$, and V is the direct sum of two G-invariant subspaces of dimension 2 .
(iii) $G \cong(S U(3,2))^{\prime}$, and V is a natural $S U(3,2)$-module for G, of order 64 .
(iv) $G \cong \operatorname{Dih}(10)$ and $|V|=16$.
(v) $G \cong S L(2,3), V$ is either a natural $S L(2,3)$-module or a direct sum of two natural $S L(2,3)$-modules for G.
(vi) $G \cong\left(Q_{8} \times Q_{8}\right): 3,|V|=81$, and V is the direct sum of two G-invariant subspaces of dimension 2 .

Proof. Let (G, V) be a counter-example with $|G|+|V|$ as small as possible. Write $A=\langle a\rangle$.
Suppose first that p is odd. As Q is generated by its A-invariant Sylow subgroups, 4.1 implies that $p=3$ and that $C_{Q}(A)$ has index a power of 2 in Q. Let T be an A invariant Sylow 2-subgroup of Q, and put $X=[T, A]$. Then $G=C_{G}(A) X$ and we have $\left\langle Z(X)^{G}\right\rangle=\left\langle Z(X)^{C_{G}(A)}\right\rangle \leq C_{G}(A)$, and so $\left\langle Z(X)^{G}\right\rangle$ centralizes $\left\langle A^{G}\right\rangle=G$. That is, we have $Z(X) \leq Z(G)$.

Suppose now that $X \neq Q$. The minimality of $|G|+|V|$ then implies that outcome (v) or (vi) of the lemma holds, with $(X A,[V, X])$ in place of (G, V). Then $[V, X]=[V, Z(X)]$ and $C_{V}(X)=C_{V}(Z(X))$. Thus $[V, X]$ and $C_{V}(X)$ are G-invariant. As $Q=[Q, A]=$ $\left\langle X^{Q}\right\rangle$, we conclude that $\left[C_{V}(X), Q\right]=0$, so $C_{V}(X)=0$, and $|V|=9$ or 81 . Observe that in $S L(4,3)$ the centralizer of any element of order 3 is a $\{2,3\}$-group. Thus $C_{Q}(A) \leq T$, and thus $Q=T=X$. Thus, we have shown that $Q=X$ after all.

Now 4.2 yields $\Phi(Q)=[Q, Q]=Z(Q)=\Omega_{1}(Q)=C_{Q}(A)$. Suppose that $|Z(Q)|=2$. Then Q is a quaternion group of order 8 and G is generated by two conjugates of A. As $\left|V / C_{V}(A)\right| \leq 9$ we then have $|V| \leq 81$, and then 2.3 implies that V is a direct sum of two
natural $S L(2,3)$-modules for G. That is, (v) holds, and (G, V) is not a counter-example. We therefore conclude that $|Z(Q)|>2$. Let $\langle s, t\rangle$ be a fours group in $Z(Q)$, with the generators s and t chosen so that both $C_{V}(s)$ and $C_{V}(t)$ are non-trivial. As $G=\left\langle A^{G}\right\rangle$, A acts non-trivially on both $[V, s]$ and on $C_{V}(s)$, and so A induces a transvection on each of these subspaces. By induction, both $[V, s]$ and $C_{V}(s)$ are of order 9 , and then $C_{V}(s)=[V, t]$, and $V=[V, s]+[V, t]$. Set $Q_{1}=C_{Q}([V, s])$ and $Q_{2}=C_{Q}([V, t])$. Then $Q_{1} \cap Q_{2}=1$, and Q / Q_{i} is a quaternion group for $i=1,2$. As $\Phi(Q)$ is non-cyclic, the 2-rank m of $Q / \Phi(Q)$ is greater than 2 , and since $Q=[Q, A]$ we have $m=4$. It follows that each Q_{i} is a quaternion group, and $Q=Q_{1} \times Q_{2}$. Thus, (vi) holds, and so the lemma holds if p is odd.

We now take $p=2$. Let \mathcal{R} be the set of all proper subgroups R of Q with $R=[R, A]$ and with $|R|>3$. For any $R \in \mathcal{R}$, the pair $(R A,[V, R])$ is then given by one of the outcomes (ii) through (iv) in the statement of the lemma. We note also the following consequence of our hypothesis that $V=[V, Q]$.
(1) No proper Q-invariant subspace of V contains $[V, A]$.

From this it follows that:
(2) If $R \in \mathcal{R}$ and R is a normal subgroup of Q, then $V=[V, R]$.

Let $1 \neq x \in Q$ with $x^{a}=x^{-1}$. Then $\left|V / C_{V}(x)\right| \leq 16$, and then $\langle a, x\rangle$ is dihedral of order 6 or 10 . Suppose $|x|=5$, and then suppose that there exists $y \in Q-\langle x\rangle$ with $y^{a}=y^{-1}$. Examining outcomes (i) through (iv) of the Lemma, we see that $\langle x, y\rangle \notin \mathcal{R}$, and hence $\langle x, y\rangle=Q$. Here $[V, A] \leq[V, x]$, so $|V| \leq|[V, x]+[V, y]| \leq 2^{6}$, and G may be identified with a subgroup of $L_{6}(2)$. One may readily verify that no subgroup of $L_{6}(2)$ of odd order admits faithful action by a dihedral group of order 10 . Therefore x lies in $Z(Q)$, and then (2) yields that $V=[V, x]$ is of order 16 . Then Q is cyclic, and since $S L(4,2)$ contains no dihedral group of order 30 it follows that G is dihedral of order 10. Thus, no element y exists as chosen above, and so (iv) holds in this case.

We now conclude that $x^{3}=1$ for all x in Q with $x^{a}=x^{-1}$. Then $Q=C_{Q}(A) T$ where T is an A-invariant Sylow 3 -subgroup of Q. Then $[Q, A] \leq T$, so since $Q=[Q, A]$ by hypothesis we obtain $[Q, A]=T$, and Q is a 3 -group. Put $\bar{Q}=Q / \Phi(Q)$, and suppose first that $|\bar{Q}|>9$. Then any maximal subgroup of \bar{Q} is the image of some element of \mathcal{R}, and so $|\bar{Q}|=27$. Notice that for any $R \in \mathcal{R}$ we have $C_{R}(A)=\Phi(R)$ and $R / C_{R}(A)=9$. It follows $R \cap \Phi(Q) \leq C_{R}(a)$, and then $[\Phi(Q), A]=1$ and $\Phi(Q) \leq Z(G)$. Suppose that there exists $R \in \mathcal{R}$ with R non-abelian. Then $(R A,[V, R])$ is described by outcome (iii) of the lemma, so $[V, R]=[V, Z(R)]$, and thus $[V, R]$ is G-invariant. Then $V=[V, R]$, by (2). Then $|V|=64$, and since $R \neq Q, Q$ is isomorphic to a Sylow 3 -subgroup of $L_{6}(2)$, of order 3^{4}. Then Q is a wreath product, contrary to $|\bar{Q}|=9$. We conclude that every $R \in \mathcal{R}$ is abelian. As $|\bar{Q}|=27$ it follows that Q has a generating set consisting of elements which commute pair-wise, and so Q is abelian. But with $\left|V / C_{V}(A)\right| \leq 4$ we then have $|Q|=9$.

We conclude that $\mid \bar{Q} \leq 9$. If $|\bar{Q}|=3$ then Q is cyclic, and (i) holds, so in fact $|\bar{Q}|=9$.

Then three conjugates of a suffice to generate G, and so:

$$
\begin{equation*}
|V| \leq 64 \tag{3}
\end{equation*}
$$

Suppose next that $\Phi(Q) \leq Z(G)$. Then $\Phi(Q)$ is cyclic, of exponent at most 3 , and so Q is either elementary abelian of order 9 or extraspecial of order 27 . Suppose that Q is elementary abelian, and let $x \in Q^{\#}$ with $[V, x]$ as large as possible. As $x^{a}=x^{-1}$ we then have $|[V, x]|=16$ and $[V, a] \leq[V, x]$. Here $[V, x]$ is G-invariant, so $[V, x]=V$ and (ii) holds. On the other hand, suppose that Q is extraspecial. No member of \mathcal{R} is cyclic of order 9 , so the exponent of Q is 3 , and then G is isomorphic to the commutator subgroup of $S U(3,2)$. Then $|V|>32$, and (3) then yields $|V|=64$. There is, up to isomorphism, a unique faithful representation of Q of degree 3 over \mathbb{F}_{4} (by ordinary character theory), and so we obtain (iii) in this case. We therefore conclude that $\Phi(Q) \nsubseteq Z(G)$.

Now $[\Phi(Q), a] \neq 1$, and we may choose $y \in \Phi(Q)$ with $y^{a}=y^{-1}$. Choose a generating set $\left\{x_{1}, x_{2}\right\}$ for Q with $\left(x_{i}\right)^{a}=\left(x_{i}\right)^{-1}$ for $i=1$ and 2 , and set $R_{i}=\left\langle x_{i}, y\right\rangle$. Then $R_{i} \in \mathcal{R}$ and $Q=\left\langle R_{1}, R_{2}\right\rangle$. Suppose $y \in Z(Q)$. Then each R_{i} is abelian, and so $\left|\left[V, R_{i}\right]\right|=16$, and $\left[V, R_{1}\right] \neq\left[V, R_{2}\right]$. Then $[V, y] \neq\left[V, R_{i}\right]$ for some i, and so $|[V, y]|=4$. But then $Q=C_{Q}([V, y]) \times\langle y\rangle$, contrary to $y \in \Phi(Q)$. Thus $y \notin Z(Q)$, and we may assume that R_{1} is non-abelian. Then $R_{1} A \cong S U(3,2)^{\prime}$ and $\left|\left[V, R_{1}\right]\right|=|[V, y]|=64$. Then also R_{2} is non-abelian, and (3) yields $\left[V, R_{1}\right]=\left[V, R_{2}\right]=V$. We conclude that Q is isomorphic to a Sylow 3-subgroup of $G L(V)$, of order 81 . Then Q has an elementary abelian subgroup E of order 27, and every element of order 3 in Q is contained in $E \cup R_{1}$. Then $R_{2}=\left(R_{1} \cap R_{2}\right) \cup\left(E \cap R_{2}\right)$, and so $R_{2} \leq E$. As R_{2} is non-abelian, we have a contradiction at this point, proving the lemma.
4.4 Proposition. Assume Hypothesis 1, and assume that $G=Q A$, where $Q=[Q, A]$ is a p^{\prime}-subgroup of G and where A is a subgroup of G which satisfies the following conditions.
(a) A acts quadratically on V.
(b) $|A|^{2} \geq\left|V / C_{V}(A)\right|$.
(c) For any non-identity subgroup B of A, we have $|A|^{2}\left|C_{V}(A)\right| \geq|B|^{2}\left|C_{V}(B)\right|$.

Denote by \mathcal{Y} the set of subgroups Y of Q for which there exists a hyperplane B of A such that $Y=\left[C_{Q}(B), A\right]$, and such that $Y \neq 1$. Then Q is the direct product $\prod\{[V, Y]\}_{Y \in \mathcal{Y}}$, and $[V, Q]$ is the direct sum $\bigoplus\{[V, Y]\}_{Y \in \mathcal{Y}}$. Further, for any $Y \in \mathcal{Y}$ and any $a \in$ $A-C_{A}(Y)$, the pair $(Y\langle a\rangle,[V, Y])$ is given by one of the outcomes in 4.3, with $Y\langle a\rangle$ in place of G and $[V, Y]$ in place of V.

Proof. Put $Q_{0}=C_{Q}\left(C_{V}(A)\right)$. The quadratic action of A yields $\left[V, A, Q_{0}\right]=0$, while also $\left[V, Q_{0}, A\right] \leq[V, A] \leq C_{V}\left(Q_{0}\right)$. The Three Subgoups Lemma then yields $\left[V,\left[Q_{0}, A\right]\right] \leq$ $C_{V}\left(Q_{0}\right)$, and then $\left[Q_{0}, A\right]=1$, by coprime action. Thus:

$$
\begin{equation*}
C_{Q}\left(C_{V}(A)\right) \leq C_{Q}(A) \tag{1}
\end{equation*}
$$

Denote by \mathcal{B} the set of hyperplanes B of A such that $\left[C_{Q}(B), A\right] \not \leq \Phi(Q)$. For any
$B \in \mathcal{B}$ put $Y_{B}=\left[C_{Q}(B), A\right]$ and set $V_{B}=C_{V}(B)$. Thus, $\mathcal{Y}=\left\{Y_{B}\right\}_{B \in \mathcal{B}}$. Fix $B \in \mathcal{B}$. Then Y_{B} acts non-trivially on V_{B}, by (1). Choose $a \in A-B$, and set $X=Y_{B}, U=V_{B}$, $L=X\langle a\rangle$, and $\bar{L}=L / C_{L}(U)$. Condition (c) implies that $\left|U: C_{U}(a)\right| \leq p^{2}$, so 4.3 applies and identifies a list of possibilities for the pair $(\bar{L},[U, X])$. Further, as $[V, B]$ is X-invariant and centralizes a, we obtain $[V, B, X]=0$. Then $[V, X, B]=0$, and thus $V=C_{V}(X)+U$. In particular, L acts faithfully on U. We have shown:
(2) For any $B \in \mathcal{B}$ we have $V=C_{V}\left(Y_{B}\right)+C_{V}(B)$, and for any $a \in A-B$ the pair $\left(Y_{B}\langle a\rangle,\left[V, Y_{B}\right]\right)$ satisfies the hypothesis (and conclusion) of 4.3.

We may also record the following result.
(3) For any $B \in \mathcal{B}$ we have $\left[V, Y_{B}, B\right]=0$.

Now let X and Y be distinct elements of \mathcal{Y}, and put $D=C_{A}(X) \cap C_{A}(Y)$. Then $|A: D|=p^{2}$, and there exist elements $a, b \in A$ such that $A=D\langle a, b\rangle$, and with $C_{A}(X)=$ $D\langle b\rangle$ and $C_{A}(Y)=D\langle a\rangle$. Then also $X=[X, a]$ and $Y=[Y, b]$. Set $W=C_{V}(D)$ and set $E=\langle a, b\rangle$. We have $C_{W}(a)=C_{W}(D\langle a\rangle)$ admitting faithful action by $Y\langle b\rangle$, by (2), so $C_{W}(a)$ is contained properly in $C_{W}(E)$. Notice also that condition (c) yields $\left|W / C_{W}(E)\right| \leq p^{4}$. Thus:
$\left|W / C_{W}(a)\right| \leq p^{3}$ and $\left|W / C_{W}(E)\right| \leq p^{4}$.

We aim now to show:
(5) $[X, Y]=1$.

Suppose first that $|[W, Y]|=p^{2}$, so that $Y\langle b\rangle \cong S L(2, p)$. Let $x \in X$, and set $a^{\prime}=a^{x}$ and $A^{\prime}=D\left\langle a^{\prime}, b\right\rangle$. Then $A^{\prime}=A^{x}$ acts quadratically on V, and so A^{\prime} centralizes $[W, b]$. Put $W_{0}=[W, Y]+[W, Y]^{a^{\prime}}$. Thus $\left|W_{0}\right| \leq p^{3}$ and W_{0} is invariant under $Y\left\langle a^{\prime}, b\right\rangle$. Here $p=2$ or 3 , and $Y\left\langle a^{\prime}, b\right\rangle$ acts as a subgroup K of $S L(3, p)$ on W_{0}, containing a copy of $S L(2, p)$, and with $K=O_{p^{\prime}}(K) P$ where P is a p-group. However, it is easy to check that the only such subgroups K of $S L(3, p)$ are in fact isomorphic to $S L(2, p)$. (In $L_{3}(2)$ we are looking for the normalizer of a non-identity 3 -group, and in $L_{3}(3)$ for the normalizer of a non-identity 2-group.) Thus $Y\left\langle a^{\prime}, b\right\rangle$ induces an action of $S L(2, p)$ on W_{0}, and so $W_{0}=[W, Y]$, and $[W, Y]$ is a^{x}-invariant. As $X \leq\left\langle a^{X}\right\rangle$ we conclude that Y is X-invariant, and then $[X, Y]=1$ since $[X, b]=1$. Thus (5) holds in this case.

We may now assume that neither $[W, X]$ nor $[W, Y]$ is of order p^{2}. If $\left|W / C_{W}(a)\right|=p^{3}$ then (4) implies that b induces a transvection on $C_{W}(a)=C_{V}(D\langle a\rangle$, and then (2) implies that $|[W, Y]|=p^{2}$; which is a contradiction. We therefore conclude that $\mid W$: $C_{W}(a) \mid=p^{2}$. Further, as $|[W, X]|>p^{2},(2)$ shows that $[W, a] \leq[W, X]$. We now set
$R=\left[C_{Q}(D), a\right]$. Then $X \leq R$, and so 4.3 applies to the pair $(R\langle a\rangle,[W, R])$.
We have $X \leq R \unlhd C_{Q}(D) E$, and $Y \leq\left\langle b^{C_{Q}(D)}\right\rangle$. If $[R, b]=1$ it follows that $[R, Y]=1$ and we have (5). So assume that $[R, b] \neq 1$. Then X is a proper subgroup of R, so 4.3 implies that R is of the form $3^{2}, 3^{1+2}$, or $Q_{8} \times Q_{8}$, while $X \cong(S L(2, p))^{\prime}$. Suppose $R \cong\left(S L(2, p)^{\prime} \times(S L(2, p))^{\prime}\right.$. Then $[W, R]=[W, X]$, and then $[W, R, b]=0$, by (3). Then $[W, R, Y]=0$, so $[W, X, Y]=0$. We have $[V, X]=[W, X]$, by (2), so $[V, X, Y]=0$ in this case. On the other hand, suppose that $R\langle a\rangle \cong(S U(3,2))^{\prime}$ and $|[W, R]|=64$. Then X is of order 3 and $|[W, X]|=16$. As b centralizes $[W, X]$, by (3), and b leaves $C_{W}(X)$ invariant, it follows that $\left|[W, R] / C_{[W, R]}(b)\right| \leq 2$. But b either inverts $Z(R)$ (in which case $\left|[W, R] / C_{[W, R]}(b)\right| \geq 8$) or b centralizes $Z(R)$ (in which case $C_{[W, R]}(b)$ may be regarded as an \mathbb{F}_{4}-space). Thus b centralizes $Z(R)$ and $[W, R, b]=0$. As above, we then obtain $[V, X, Y]=0$, and thus $[V, X, Y]=0$ in any case. Similarly, we have $[V, Y, X]=0$, and so $[X, Y]=1$ by the Three Subgroups Lemma. This proves (5).

Notice that $[W, b, X] \leq\left[W, b,\left\langle a^{X}\right\rangle\right]=0$, and so also $[W, X, b]=0$. Now (5) yields $[W, X, Y]=0$, and so $[W, X] \cap[W, Y]=0$. But $[W, X]=[V, X]$ by (2), so we may conclude that $X \cap Y=1$. Thus, we have shown:
(6) For any distinct $X, Y \in \mathcal{Y}$ we have $\langle X, Y\rangle=X \times Y$ and $[V, X] \cap[V, Y]=0$.

Now let $Y_{1}, \cdots, Y_{r} \in \mathcal{Y}$ and put $K=\left\langle Y_{1}, \cdots, Y_{r}\right\rangle$. Suppose that $K=Y_{1} \times \cdots \times Y_{r}$ and that $[V, K]=\left[V, Y_{1}\right] \oplus \cdots \oplus\left[V, Y_{r}\right]$. Let $X \in \mathcal{Y}$ with $X \neq Y_{i}$ for any i. Then (6) implies that $[V, X] \leq C_{V}(K)$, and so $[V, X] \cap[V, K]=0$. Then also $X \cap K=1$. Induction on r then yields:

$$
\begin{equation*}
\langle\cup \mathcal{Y}\rangle=\Pi \mathcal{Y} \text { and }[V, \Pi \mathcal{Y}]=\bigoplus\{[V, Y]\}_{Y \in \mathcal{Y}} \tag{7}
\end{equation*}
$$

Put $Q_{0}=\langle\bigcup \mathcal{Y}\rangle$. It now only remains to show that $Q=Q_{0}$. By coprime action, for each prime divisor r of $|Q|$ there is an A-invariant Sylow r-subgroup of Q, and then $Q=C_{Q}(A) Q_{0}$. Then Q_{0} is a normal subgroup of Q, and since $Q=[Q, A]$ we obtain $Q=Q_{0}$, as required.
4.5 Corollary. Let the hypotheses be as in 4.4.
(a) Assume that there is no element $Y \in \mathcal{Y}$ with $|[V, Y]|=p^{2}$. Then for any $Y \in \mathcal{Y}$ there is a uniquely determined 2-transvection $a \in A$ with $Y=[Q, a]$, and we have $q(A, V)=2$.
(b) Assume that $q(A, V) \leq 1$. Then $q(A, V)=1$, and for any $Y \in \mathcal{Y}$ there is a uniquely determined transvection $a \in A$ with $Y=[Q, a]$. Moreover, we then have $Y\langle a\rangle \cong S L(2, p)$, and $[V, Y\langle a\rangle]$ is a natural module for $Y\langle a\rangle$.

Proof. Suppose first that there exists no $Y \in \mathcal{Y}$ with $|[V, Y]|=p^{2}$. If $|A|=p$ then (a) holds by 4.3. So assume $|A|>p$. Let $\mathcal{Y}=\left\{Y_{1}, \cdots, Y_{r}\right\}$, and set $U_{i}=\left[V, Y_{i}\right]$. Then 4.4 yields $Q=Y_{1} \times \cdots \times Y_{r}$ and $[V, Q]=U_{1} \oplus \cdots \oplus U_{r}$. By construction, each Y_{i} centralizes a hyperplane B_{i} of A. Since $U_{i}=\left[U_{i}, Y_{i}\right]=\left[U_{i},\left\langle A^{Y_{i}}\right]\right.$, quadratic action implies that $\left[U_{i}, B_{i}\right]=0$. By assumption, and by 4.3 , we have $\left|U_{i} / C_{U_{i}}(A)\right|=p^{2}$ for all i. Then $\left|B_{i}\right|^{2} \geq\left|V / C_{V}\left(B_{i}\right)\right|$ for any i, and so 4.4 applies with B_{i} in place of A. By induction, for
any j with $j \neq i$ there is a 2-transvection $b \in B_{i}$ with $Y_{j}=[Q, b]$. In this way we obtain $[Q, A] A=Y_{1}\left\langle a_{1}\right\rangle \times \cdots \times Y_{r}\left\langle a_{r}\right\rangle$, where a_{i} is a 2-transvection on V, centralizing U_{j} for $i \neq j$. Evidently $\left\{a_{1}, \cdots, a_{r}\right\}$ is the set of all 2-transvections in A, and thus (a) holds.

Suppose next that $q(A, V) \leq 1$. If $|A|=p$ then (b) follows from 4.3, so assume $|A|>p$. As in the preceding paragraph, define Y_{i}, B_{i}, and $U_{i}, 1 \leq i \leq r$. As $\left|U_{i} / C_{U_{i}}(A)\right| \geq p$ for all i, we have $\left|B_{i}\right| \geq\left|V / C_{V}\left(B_{i}\right)\right|$ for any i, and again 4.4 applies with B_{i} in place of A. As in the preceding paragraph, induction on $|A|$ yields (b).
4.6 Proposition. Assume Hypothesis 1, with $F^{*}(G)=F(G)$, and with $q(G, V) \leq 2$. Denote by \mathcal{A} the set of elements of $\mathcal{Q}^{*}(G, V)$ of minimal order, and set $G_{0}=\langle\mathcal{A}\rangle$ and $D=\left[F(G), G_{0}\right]$. If $p=3$ and $q(G, V)=2$ assume further that G_{0} / Q is of odd order. There is then a G-invariant set $\mathcal{K}=\left\{K_{1}, \cdots, K_{r}\right\}$ of subgroups of D, such that the following hold.
(a) $D=K_{1} \times \cdots \times K_{r}$.
(b) $V=\left[V, K_{1}\right] \oplus \cdots \oplus\left[V, K_{r}\right] \oplus C_{V}(D)$.
(c) For any $K \in \mathcal{K}$, and for $U=[V, K]$, one of the following holds.
(i) $p=2, K \cong \mathbb{Z}_{3}$ and $|U|=4$ or 16 .
(ii) $p=2, K \cong 3_{+}^{1+2}$ and $|U|=64$.
(iii) $p=2, K \cong \mathbb{Z}_{5}$ and $|U|=16$.
(iv) $p=3, K \cong Q_{8}$ and $|U|=9$ or 81 .
(v) $p=3, K \cong Q_{8} \circ Q_{8}$ and $|U|=81$.
(d) Suppose that there exists $K \in \mathcal{K}$ such that $|[V, K]|>p^{2}$. Then $q(G, V)=2$ and each $A \in \mathcal{A}$ is of order p
(e) Suppose that there exists $K \in \mathcal{K}$ such that K is not G_{0}-invariant. Then $p=2$, $\mid[V, K]=4, q(G, V)=2$, and each $A \in \mathcal{A}$ is of order 2 .
(f) Let $A \in \mathcal{A}$ such that A acts non-trivially on some $K \in \mathcal{K}$. Then every member of \mathcal{K} is A-invariant.

Proof. Set $Q=F(G)$ and $q=q(G, V)$. For any $A \in \mathcal{A}$, let \mathcal{Y}_{A} be the set of subgroups Y of Q such that $1 \neq Y=\left[C_{Q}(B), A\right]$ for some hyperplane B of A. Let \mathcal{K}_{0} be the set of subgroups K of Q such that, for some $A \in \mathcal{A}$ and some $Y \in \mathcal{Y}_{A}$, we have $K=[K, A] \leq Y$, with $K \cong(S L(2, p))^{\prime}$ and with $|[V, K]|=p^{2}$. If $p=2$, let \mathcal{K}_{1} be the set of subgroups K of Q such that $K \in \mathcal{Y}_{A}$ for some $A \in \mathcal{A}$, and such that K is not in \mathcal{K}_{0} and is not contained in a direct product of two elements of \mathcal{K}_{0}. If $p=3$ let \mathcal{Y}_{1} be the set of all subgroups Y of Q such that $Y \in \mathcal{Y}_{A}$ for some $A \in \mathcal{A}$, with $Y \cong Q_{8}$ and with $|[V, Y]|=81$. For Y and Y^{\prime} in \mathcal{Y}_{1}, write $Y \tilde{Y}^{\prime}$ if $Z(Y)=Z\left(Y^{\prime}\right)$. We then take \mathcal{K}_{1} be the set of subgroups K of Q of the form $\langle\mathcal{S}\rangle$, where \mathcal{S} is an equivalence class for this relation. In any case, set $\mathcal{K}=\mathcal{K}_{0} \cup \mathcal{K}_{1}$, and observe that \mathcal{K} is G-invariant.

Let $A \in \mathcal{A}$, and suppose that there exists $Y \in \mathcal{Y}_{A}$ with $Y \notin \mathcal{K}_{0}$. Set $B=C_{A}(Y)$ and let $a \in A-B$. Then $|[V, Y]| \geq p^{4}$ and $[V, Y] / C_{[V, Y]}(a) \geq p^{2}$, by 4.4. Here $[V, Y, B]=0$ by quadratic action, so $\left|V / C_{V}(A)\right| \geq p^{2}\left|V / C_{V}(B)\right|$. As $|A|^{q}=\left|V / C_{V}(A)\right|$, we then have $|B|^{q} \geq p^{2-q}\left|V / C_{V}(B)\right|$. As $q \leq 2$ the minimality of q and of A then yields $q=2$ and $B=1$. Thus (d) is proved.

Let K_{1} and K_{2} be distinct members of \mathcal{K}, and set $X=\left\langle K_{1}, K_{2}\right\rangle, U_{i}=\left[V, K_{i}\right]$, and $W=U_{1}+U_{2}$. Suppose first that $K_{i} \in \mathcal{K}_{0}$ for both $i=1$ and 2 . If $p=2$ then X is isomorphic to a 3- subgroup of $L_{4}(2)$, so $X=K_{1} \times K_{2}$ and $W=U_{1} \oplus U_{2}$. On the other hand, suppose that $p=3$, so that each K_{i} is a quaternion group, with $\left|\left[V, K_{i}\right]\right|=9$. A Sylow 2-subgroup of $G L(2,3)$ contains a unique quaternion group, so $U_{1} \neq U_{2}$. Suppose $U_{1} \cap U_{2} \neq 0$. Then each K_{i} has a subgroup of index 2 which lies in a fixed subgroup X_{0} of $G L(W)$ with $X_{0} \cong G L(2,3)$. Then $Z\left(K_{1}\right)=Z\left(K_{2}\right)$ and since $U_{i}=\left[V, Z\left(K_{i}\right)\right]$ we arrive back at $U_{1}=U_{2}$ in this case. Thus, $U_{1} \cap U_{2}=0$, and X is contained in a subgroup X_{1} of $G L(W)$ of the form $3^{4}:(G L(2,3) \times G L(2,3)$. But then X is contained in a complement to $O_{3}\left(X_{1}\right)$ in X_{1}, and since $\left|U_{i}\right|=9$ we then have $\left[K_{1}, K_{2}\right]=1$ and $W=U_{1} \oplus U_{2}$. In particular, we have thus shown that if $\mathcal{K}=\mathcal{K}_{0}$ then (a) and (b), and either (c)(i) or (c)(iv) (with $|U|=p^{2}$), hold.

Let $K \in \mathcal{K}_{0}$, and suppose that there exists $A \in \mathcal{A}$ such that K is not A-invariant. Let $a \in A-N_{A}(K)$ and set $L=K K^{a}$. As we have just seen, L is the direct product of K and K^{a}, and $|[V, L]|=p^{4}$. Set $A_{0}=C_{A}(L)$. The quadratic action of A implies that L is A-invariant and that $A=\langle a\rangle \times A_{0}$. Then $|A|^{q}=\left|V / C_{V}(A)\right| \geq p^{2}\left|V / C_{V}\left(A_{0}\right)\right|$, as A_{0} centralizes $[W, L]$. As $q \leq 2$ we then have $\left|A_{0}\right|^{q} \geq\left|V / C_{V}\left(A_{0}\right)\right|$. The minimality of q and of A then implies that $A_{0}=1$ and $q=2$. Thus:
(1) If $\mathcal{K} \neq \mathcal{K}_{0}$, or if there exists $K \in \mathcal{K}_{0}$ which is not G_{0}-invariant, then $|A|=p$ for all $A \in \mathcal{A}$.

Thus, parts (a) through (e) of the lemma hold if $\mathcal{K}=\mathcal{K}_{0}$. Moreover, we may record the following result
(2) If K_{1} and K_{2} are in \mathcal{K}_{0} then $\left[K_{1}, K_{2}\right]=1$ and $U_{1} \cap U_{2}=0$.

We assume henceforth that $\mathcal{K} \neq \mathcal{K}_{0}$. Suppose that $p=2,\left|K_{1}\right|=5$ and $\left|U_{1}\right|=16$. If also $\left|K_{2}\right|=5$ then, since any Sylow 5 -subgroup of $L_{8}(2)$ is abelian, we have $X=K_{1} \times K_{2}$. In this case we have also $U_{1} \cap U_{2}=0$. On the other hand, suppose that K_{2} is a 3 -group. then $\left[K_{1}, K_{2}\right]=1$ since Q is nilpotent. Suppose that $U_{1} \cap U_{2} \neq 0$. As $\operatorname{End}_{K_{1}}\left(U_{1}\right) \cong \mathbb{Z}_{15}$ it follows that $U_{1} \leq U_{2}$ and that $\left|K_{2} / C_{K_{2}}\left(U_{1}\right)\right|=3$. Then U_{2} is not a natural $S U(3,2)$ module for K_{2}, with $K_{2} \cong 3_{+}^{1+2}$. By 4.4 and the definition of \mathcal{K}, we then have $\left|K_{2}\right|=3$ and $U_{1}=U_{2}$. By (d), which has already been proved, there exist 2 -transvections a_{i} with $K_{i}=\left[Q, a_{i}\right],\left(i=1\right.$ and 2). But then $X\left\langle a_{1}, a_{2}\right\rangle \cong \operatorname{Dih}(6) \times \operatorname{Dih}(10)$, which is not a subgroup of $L_{4}(2)$. We therefore conclude that $U_{1} \cap U_{2}=0$ in this case.

Suppose next that $p=2$, and that both K_{1} and K_{2} are 3 -groups in \mathcal{K}_{1}. By definition, we then have $K_{i} \in \mathcal{Y}_{A_{i}}$ for some $A_{i} \in \mathcal{A}$, and then (d) implies, as above, that $K_{i}=\left[Q, a_{i}\right]$ for some 2-transvection a_{i}. In particular, we have $K_{i} \unlhd X$ for each i. Suppose that $\left|K_{1}\right|=\left|K_{2}\right|=3$. Then $X=K_{1} \times K_{2}$, and $X\left\langle a_{1}, a_{2}\right\rangle \cong \operatorname{Sym}(3) \times \operatorname{Sym}(3)$. Suppose $U_{1}=U_{2}$, and set $a=a_{1} a_{2}$ and $A=\langle a\rangle$. Then a is a 2-transvection, so $A \in \mathcal{A}, X \in \mathcal{Y}_{A}$, and each K_{i} is contained in the direct product of two members of \mathcal{K}_{0}. This is contrary to
the definition of \mathcal{K}_{1}, so we conclude that $U_{1} \neq U_{2}$. Suppose $U_{1} \cap U_{2} \neq 0$. Then $|W|=64$. Set $C_{i}=C_{X}\left(K_{i}\left\langle a_{i}\right\rangle\right)$. Then $\left|C_{i}\right|=3$ and $\left[U_{3-i}, C_{i}\right]=U_{3-i}$ for both $i=1$ and 2. As $X=K_{i} C_{i}$, it follows that $\left[W, C_{i}\right]=W$. But only one cyclic subgroup of X is without fixed points on W, so $C_{1}=C_{2}$. As $\left[X,\left\langle a_{1}, a_{2}\right\rangle\right]=X$ we have a contradiction at this point, and so $U_{1} \cap U_{2}=0$.

Suppose that $\left|K_{1}\right|=3$ (with $K_{1} \in \mathcal{K}_{1}$) and that $K_{2} \cong 3_{+}^{1+2}$. Then $K_{1} \unlhd X$, so $\left[K_{1}, K_{2}\right]=1$. If $K_{1} \leq K_{2}$ then $\left[U_{2}, K_{1}\right]=U_{2}$ is of order 64 , whereas $\left|U_{1}\right|=16$, so in fact $K_{1} \not \leq K_{2}$ and $X=K_{1} \times K_{2}$. As K_{2} acts irreducibly on U_{2} we have $U_{1} \cap U_{2}=0$. Now suppose that both K_{1} and K_{2} are isomorphic to 3_{+}^{1+2}. Then $K_{i} \unlhd X$ and so [$\left.K_{1}, K_{2}\right] \leq K_{1} \cap K_{2}$. In particular, we have $Z\left(K_{1}\right) Z\left(K_{2}\right) \leq Z(X)$. Suppose $K_{1} \cap K_{2} \neq 1$. It follows that $Z\left(K_{1}\right)=Z\left(K_{2}\right)$, and since $U_{i}=\left[V, Z\left(K_{i}\right)\right]$ we get $U_{1}=U_{2}$. Then X is isomorphic to a 3 - subgroup of $L_{6}(2)$, which is to say that $X \cong 3 \imath 3$. There are then exactly two maximal subgroups of X which having exponent 3 , and one of these two is elementary abelian. We therefore conclude that, in fact, $K_{1} \cap K_{2}=1$, and $X=K_{1} \times K_{2}$. Irreducible action of K_{i} on U_{i} then yields $U_{1} \cap U_{2}=0$. We have shown:
(3) If $p=2$ and both K_{1} and K_{2} lie in \mathcal{K}_{1}, or some K_{i} is of order 5, then $X=K_{1} \times K_{2}$ and $W=U_{1} \oplus U_{2}$.

Continue now to assume that $p=2$, let $K_{1} \in \mathcal{K}_{0}$ and let K_{2} be a 3 -group in \mathcal{K}_{1}. Let b be a 2 -transvection such that $K_{2}=[Q, b]$. Thus $K_{2} \unlhd X$. Suppose $\left|K_{2}\right|=3$. Then $X=K_{1} \times K_{2}$. If $U_{1} \cap U_{2} \neq 0$ then $U_{1} \leq U_{2}$ and we obtain a contradiction via $X=[X, b]=K_{2}$. Thus, we are reduced to the case where $K_{2} \cong 3_{+}^{1+2}$. Then $K_{1} \not \leq K_{2}$, since $|[V, x]| \geq 16$ for any non-identity element x of K_{2}. By the definition of \mathcal{K}_{0}, and by (d), there exists a 2 -transvection a with $K_{1}=\left[K_{1}, a\right]$. By (3), either $K_{2}=\left(K_{2}\right)^{a}$ or $U_{2} \cap\left(U_{2}\right)^{a}=0$. As a is a 2-transvection, we conclude that $K_{2}=\left(K_{2}\right)^{a}$, and then that $\left[Z\left(K_{2}\right), a\right]=0$. As $K_{1} \leq[Q, a]$, we have $[Q, a] \nexists 3^{1+2}$, and so $|[Q, a]| \leq 9$ by 4.3. It now follows that $\left[K_{2}, a\right]=1$, and then also $\left[K_{2}, K_{1}\right]=1$. Thus $X=K_{1} \times K_{2}$, and we again obtain $U_{1} \cap U_{2}=0$ from the irreducible action of K_{2} on U_{2}. Thus, (a), (b) and (c) hold if $p=2$.

Now let $p=3$, and let $K \in \mathcal{K}_{1}$. By definition, and by 4.5, there then exists $Y \in \mathcal{Y}_{1}$ such that $K=\langle\mathcal{S}\rangle$, where \mathcal{S} is the set of all $Y^{\prime} \in \mathcal{Y}_{1}$ with $Z(Y)=Z\left(Y^{\prime}\right)$. Suppose that $|\mathcal{S}|>1$, let $Y^{\prime} \in \mathcal{S}-\{Y\}$, and set $K_{0}=Y Y^{\prime}$. By (d), there is are 2-transvections a and a^{\prime} such that $Y=[Q, a]$ and $Y=\left[Q, a^{\prime}\right]$, so Y and Y^{\prime} are normal subgroups of K_{0}, and K_{0} is $\left\langle a, a^{\prime}\right\rangle$-invariant. Suppose $\Phi\left(K_{0}\right) \not \leq Z(Y)$. Then $\left[Y, Y^{\prime}\right] \not \leq Z(Y)$ and then $\Phi\left(K_{0}\right)$ contains both Y and As $\Phi\left(K_{0}\right)$ is a proper subgroup of K_{0}, we conclude that in fact $\Phi\left(K_{0}\right)=Z(Y)$. Then $K_{0}=Z\left(K_{0}\right) X$ where X is an extraspecial group.

Set $L=K_{0}\left\langle a, a^{\prime}\right\rangle$. Then $\left[C_{V}(Z(Y)), L\right]=0$, and so L acts faithfully on the space $U=$ $[V, Z(Y)]$. Suppose $Z\left(K_{0}\right) \neq Z(Y)$ We have $\left[Z\left(K_{0}\right), a\right]=0$ by 4.1, and $E n d_{K_{0}\langle a\rangle}(U) \cong$ $G L(2,3)$, so $Z\left(K_{0}\right)$ is cyclic or is a fours group. If $Z\left(K_{0}\right)$ is cyclic then Y is the unique quaternion subgroup of K_{0}, contrary to $Y \neq Y^{\prime}$. Thus $Z\left(K_{0}\right)$ is a fours group $\left\langle z, z^{\prime}\right\rangle$ where $\langle z\rangle=Z(Y)$, and we have $K_{0}=Y \times\left\langle z^{\prime}\right\rangle$. The set \mathcal{Q} of quaternion subgroups of K_{0} then has cardinality 4 , and it follows that $\left\langle a, a^{\prime}\right\rangle$ induces the action of $\operatorname{Alt}(4)$
on \mathcal{Q}. We now employ our hypothesis that, in the case $p=3$ and $q=2, G_{0} / Q$ is of odd order. Thus $[L \cap Q, a]$ properly contains Y, which is contrary to $Y=[Q, a]$. This proves that $Z\left(K_{0}\right)=Z(Y)$, so K_{0} is extraspecial of width 2. [We remark that, if the hypothesis concerning G_{0} / Q is dropped, then one has to face the possibility that $L \cong\left(Q_{8} \times Q_{8}\right): 3$, with Y and Y^{\prime} equal to "diagonal" subgroups of $O_{2}(L)$, and with $C_{Q}(a)$ acting on $O_{2}(L)$ by interchanging the two direct factors. This appears to lead to some serious difficulties.] If $K_{0} \cong 2_{-}^{1+4}$ then $L / C_{L}\left(K_{0}\right) K_{0}$ has cyclic Sylow 3 -subgroups, so $\langle a\rangle$ and $\left\langle a^{\prime}\right\rangle$ are congruent modulo $C_{L}\left(K_{0}\right) K_{0}$, contrary to $Y \neq Y^{\prime}$. Thus $X \cong Q_{8} \circ Q_{8}$. Then X has just two quaternion subgroups, and $\left[Y, Y^{\prime}\right]=1$.

We now conclude that \mathcal{S} is a commuting set of quaternion groups acting on [$V, Z(Y)$]. Then $|\mathcal{S}| \leq 2$, and either $K=Y$ or $K \cong Q_{8} \circ Q_{8}$. Returning now to the group $X=\left\langle K_{1}, K_{2}\right\rangle$, suppose that both K_{1} and K_{2} lie in \mathcal{K}_{1}. Then each K_{i} is normal in X, and $\left|U_{i}\right|=81$. In particular, we have $Z\left(K_{1}\right) Z\left(K_{2}\right) \leq Z(X)$. Here $Z\left(K_{1}\right) \neq Z\left(K_{2}\right)$, as K_{1} and K_{2} are defined by distinct equivalence classes on \mathcal{Y}_{1}. Then $Z\left(K_{i}\right) \not \leq Z\left(K_{3-i}\right)$, and so $X=K_{1} \times K_{2}$. If $U_{1}=U_{2}$ then $Z\left(K_{1}\right)$ and $Z\left(K_{2}\right)$ induce identical actions on V, so in fact $U_{1} \neq U_{2}$. Since there is a unique quaternion group in $E n d_{K_{i}}\left(U_{i}\right)$, it follows that $U_{1} \cap U_{2}=0$.

Now suppose that $K_{1} \in \mathcal{K}_{0}$ and that $K_{2} \in \mathcal{K}_{1}$. Then $K_{2} \unlhd X$, and we have $\left[Q, a_{1}\right]=$ K_{1} or $\left[Q, a_{1}\right]$ is a direct product of two isomorphic copies of K_{1}. So, either $K_{1} \unlhd X$ or $\left\langle K_{1}^{X}\right\rangle \cong K_{1} \times K_{1}$. Set $R=N_{K_{2}}\left(K_{1}\right)$. Then $\left|K_{2}: R\right| \leq 2$, and $\left[K_{1}, R\right] \leq K_{1} \cap K_{2}$. Set $R_{0}=C_{R}\left(K_{1}\right)$, and suppose that R_{0} has exponent 4. As $\operatorname{End}_{K_{1}}\left(U_{1}\right) \cong \mathbb{Z}_{2}$, we obtain $\left[U_{1}, Z\left(K_{2}\right)\right]=1$ in this case. So assume that R_{0} has exponent 2 . If $K_{2} \cong Q_{8}$ then $K_{1} \cap K_{2}=1$, as $Z\left(K_{1}\right) \neq Z\left(K_{2}\right)$, and so $R=R_{0}$ in this case. Here R has exponent 4, so we conclude that $K_{2} \cong Q_{8} \circ Q_{8}$, and that $R \neq R_{0}$. Then $K_{1} \cap K_{2} \neq 1$, and so $Z\left(K_{1}\right) \leq K_{2}$. Then $R=C_{K_{2}}\left(Z\left(K_{1}\right)\right) \cong D_{8} \times \mathbb{Z}_{2}$. As $\left[R, a_{1}\right] \leq\left[Q, a_{1}\right], R / C_{R}\left(U_{1}\right)$ acts as a group of inner automorphisms on K_{1}, and it follows that $\left[U_{1}, \Phi(R)\right]=0$. Thus, $\left[U_{1}, Z\left(K_{2}\right)\right]=0$ in any case, and so $\left[U_{1}, K_{2}\right]=0$. Now $U_{1} \cap U_{2}=0$, and since $\left[Z\left(K_{2}\right), K_{1}\right]=1$ we then have $\left[U_{2}, K_{1}\right]=0$. Then $X=K_{1} \times K_{2}$, and we have thereby proved (a) through (d).

Suppose that we are given $K \in \mathcal{K}$ and $A \in \mathcal{A}$ such that K is not A-invariant. Set $U=[V, K]$ and let $a \in A-N_{A}(K)$. Then $U \cap U^{a}=0$, by the foregoing. If $K \in \mathcal{K}_{1}$ then $A=\langle a\rangle, a$ is a 2-transvection, and $|U| \geq p^{4}$. But then a is not a 2-transvection, so we conclude that $K \in \mathcal{K}_{0}$. If $p=3$ we obtain $[V, K\langle a\rangle]=U \oplus U^{a} \oplus U^{a^{2}}$, contrary to quadratic action. Thus $p=2$. Now (e) follows from (1).

Finally, by way of contradiction to (f), suppose that we are given $A \in \mathcal{A}$, and elements K_{1} and K_{2} of \mathcal{K} such that $1 \neq\left[K_{1}, A\right] \leq K_{1}$ and such that K_{2} is not A-invariant. Then $A=\langle a\rangle$ where a is a 2-transvection, by (d). But a already acts as a 2-transvection on $\left[V, K_{2}\right] \oplus\left[V, K_{2}\right]^{a}$, so $\left[V, K_{1}, a\right]=0$, and so $\left[K_{1}, a\right]$ centralizes $\left[V, K_{1}\right]$. Then $\left[K_{1}, a\right]$ centralizes V, and we have the desired contradiction.
4.7 Corollary. Assume Hypothesis 1 with $G=Q S, Q=O_{r}(G)$ for some prime q, $q \neq p$, and with S a Sylow p-subgroup of G. Assume that S acts irreducibly on $Q / \Phi(Q)$, and assume that there exists $A \in \mathcal{Q}(S, V)$ with $|A|^{2} \geq\left|V / C_{V}(A)\right|$. Then there is a subgroup K of Q, unique up to conjugation, such that the following hold.
(a) $Q=K_{1} \times \cdots \times K_{r}$, where $\left\{K_{i}\right\}_{1 \leq i \leq r}=K^{S}$.
(b) $V=\left[V, K_{1}\right] \oplus \cdots \oplus\left[V, K_{r}\right] \oplus C_{V}(Q)$.
(c) Setting $U=[V, K]$, one of the following holds.
(i) $p=2, K \cong \mathbb{Z}_{3}$ and $|U|=4$ or 16 .
(ii) $p=2, K \cong 3_{+}^{1+2}$ and $|U|=64$.
(iii) $p=2, K \cong \mathbb{Z}_{5}$ and $|U|=16$.
(iv) $p=3, K \cong Q_{8}$ and $|U|=9$ or 81 .
(v) $p=3, K \cong Q_{8} \circ Q_{8}$ and $|U|=81$.

Moreover, if K is not invariant under $\left\langle\mathcal{Q}^{*}(S, V)\right\rangle$ then $p=2,|K|=3,|U|=4$, and $q(S, V)=2$.

Proof. Immediate from 4.6 and the irreducible action of S on $Q / \Phi(Q)$.
The next result gives some information concerning the situation defined by Hypothesis 4^{\prime}.
4.8 Lemma. Assume Hypothesis 2, with $|A|$ of order p. Assume further that $G=$ $Q A$, where $Q=[Q, A]$ is an r-group for some prime $r, r \neq p$. Finally, assume that $[V, A, A, A]=0$ and that $[V, A, A] \neq 0$. Then $p=3$ and one of the following holds.
(i) $G \cong \operatorname{Alt}(4)$ and $|V|=27$.
(ii) $G \cong S L(2,3)$ and $|V|=81$.
(iii) $Q \cong 2_{+}^{1+4}$ and $|V|=81$.
(iv) G is a Frobenius group of order 39 and $|V|=27$.

Proof. Regard G as a subgroup of $S L(V)$. The minimal polynomial for a non-identity element a of A is then $(X-1)^{3}$, and the Hall-Higman Theorem ([HH, Theorem B], or [G, Theorem 11.1.1]) then yields $p=3$. Also, as A is non-quadratic, we have $\left|V / C_{V}(A)\right|=9$, and then since $V=[V, Q]$ it follows that V is irreducible for G. In particular, $Z(G)$ is cyclic. Moreover, it follows that $\operatorname{End}_{G}(V)=\mathbb{F}_{3}$, and so $|Z(G)| \leq 2$.

Suppose first that Q is cyclic. Then $G=\left\langle A, A^{g}\right\rangle$ for some $g \in G$, and so $|V| \leq 3^{4}$. Here 3 divides $|Q|-1$, while $|Q|$ divides $2^{8} \cdot 3^{6} \cdot 5 \cdot 13=|S L(4,3)|$. It follows that $|R|=13$, and that (iv) holds.

We assume henceforth that Q is non-cyclic. There then exists a non-cyclic subgroup $Q_{0}=\left[Q_{0}, A\right]$ of Q, with $Q_{0} A$ generated by two conjugates of A, and so $\left|\left[V, Q_{0}\right]\right| \leq 3^{4}$ and $r=2$.

Suppose that $|Q / \Phi(Q)|=4$. Then we again have $G=\left\langle A, A^{g}\right\rangle$ for some $g \in G$, and $|V| \leq 3^{4}$. For any involution $t \in Q$ we then have $[V, t]=V$ or $\mid[V, t]=9$, and since A is not quadratic on V it follows that $C_{Q}(A) \leq Z(S L(V))$. In particular, we have $\left|C_{Q}(A)\right| \leq 2$. Set $Y=[\Phi(Q), A]$, and set $W=[V, Y]$. If $Y=1$ then (i) or (ii) holds, so assume that $Y \neq 1$. As A is non-quadratic we have $W \geq[V, A]$ and $V=W+C_{V}(A)$. Suppose that $Y A \cong \operatorname{Alt}(4)$. Then $|W|=8$, and $\Phi(Q)$ is elementary abelian, of order at most 8. If $Y=\Phi(Q)$ then $W=V,|Q|=16$, and $Y \leq Z(Q)$, whereas a Sylow 2-subgroup of $L_{3}(3)$ is semi-dihedral of order 16 , with center of order 2 . Thus $Y \neq \Phi(Q)$, and $|V|=81$. There is a unique conjugacy class of elementary abelian subgroups of $S L(V)$ of order 8,
and we then find that $N_{G L(V)}(\Phi(Q)) \cong 2^{4}: \operatorname{Sym}(4)$ and that Q is extraspecial of width two. This is contrary to $|Q / \Phi(Q)|=4$, so we conclude that $Y A \not \approx \operatorname{Alt}(4)$.

Suppose that $Y A \cong S L(2,3)$. Then $Z(Y)=Z(S L(V))$, and $Y=\Phi(Q)$. But with Y normal in Q we have $Q=C_{Q}(Y) Y$, and this is contrary to $\Phi(Q) \geq Y$. Thus $Y A \not \approx$ $S L(2,3)$. As A is non-quadratic on W, induction then implies that Y is extraspecial, of width 2. As $\left|C_{Y}(A)\right| \neq 1$ we have $Y=\Phi(Q)$. Let Q_{1} and Q_{2} be the two quaternion subgroups of Y. Then each Q_{i} is A-invariant, so each Q_{i} is normal in G, and we have $Q=C_{Q}\left(Q_{i}\right) Q_{i}=C_{Q}(Y) Y$. Again, this is contrary to $Y=\Phi(Q)$, so we conclude that $Q / \Phi(Q) \mid \geq 16$.

Suppose that $|Q / \Phi(Q)| \geq 64$ or that $Y \neq 1$. Then there are proper A-invariant subgroups R_{1} and R_{2} of Q, with $R_{i}=\left[R_{i}, A\right]$ of order bigger than 8 , with $\left[R_{1} \cap R_{2}, A\right] \neq 1$, and with $\left\langle R_{1}, R_{2}\right\rangle=Q$. Here A acts non-quadratically on $\left[V, R_{i}\right]$ for each i, so by induction each R_{i} is extraspecial, of width 2 . Set $W_{i}=\left[V, R_{i}\right]$ and set $X=\left[R_{1} \cap R_{2}, A\right]$. Then $X A$ is isomorphic to either $\operatorname{Alt}(4)$ or $S L(2,3)$, and $|[V, X]|$ is either 27 or 81 . As $[V, X] \leq W_{1} \cap W_{2}$, where $\left|W_{i}\right|=81$, we then have $|V| \leq 3^{5}$. Let T be a Sylow 2subgroup of $S L(V)$ containing Q. As R_{i} acts irreducibly on W_{i} we have $C_{T}\left(R_{i}\right) \leq Z_{i}$, and thus $Z(T)=Z\left(R_{1}\right)=Z\left(R_{2}\right)$. Then also $[V, Z(T)]=W_{1}=W_{2}$, and so $|V|=81$. Set $D=C_{R}(A)$ and set $D_{i}=N_{D}\left(R_{i}\right)$. Then $\left|D_{i} / Z\left(R_{i}\right)\right| \leq 2$, and if $D_{i} \neq Z\left(R_{i}\right)$ then $D_{i}=Z\left(R_{i}\right)\left\langle d_{i}\right\rangle$ where d_{i} interchanges the two quaternion subgroups of R_{i}. In any case, we then have $R_{i}=J\left(R_{i} D_{i} \bmod Z\left(R_{i}\right)\right)$, and so R_{i} is characteristic in $R_{i} D_{i}$. It follows that $\left[N_{Q}\left(R_{i}\right), A\right] \not \leq R_{i}$, and so each R_{i} is normal in Q. As $\operatorname{Aut}\left(R_{i}\right) \cong \operatorname{Sym}(4)$ 亿 2 , we conclude that $\left[R_{1}, R_{2}\right]=Z\left(R_{1}\right)=Z\left(R_{2}\right)$, and so $Q=R_{1} R_{2}$ is extraspecial of width 3 . The minimal degree of a faithful representation of Q over \mathbb{F}_{3} is then 8 , and so we have a contradiction at this point.

Suppose finally that $|Q / \Phi(Q)|=16$ and that $Y=1$. As $G=\left\langle A^{G}\right\rangle$ we then have $\Phi(Q) \leq Z(G)$. Then $|\Phi(Q)|=2$, as follows from the first paragraph of the proof. Suppose that $\Phi(Q) \neq Z(Q)$, and set $F=[Z(Q), A]$. Then $F A \cong A l t(4)$ and $|[V, F]|=27$. As $[V, F]$ is G-invariant we then have $|V|=27$, and R is not faithfully represented on Q. We conclude that $Z(Q)=\Phi(Q)$, and hence Q is extraspecial of width 2 . Let Q_{1} and Q_{2} be the two quaternion subgroups of Q. Then $Q_{i} A \cong S L(2,3)$ and $\left[V, Q_{i}\right]=[V, Z(Q)]=V$ is of order 81. Thus (iii) holds.

Section 5: Quadratic modules for quasisimple groups

In this section we shall be concerned mostly with the situation where $F^{*}(G)$ is quasisimple, and in which V is a quadratic module for G. The first main step is to establish a criterion (5.4, below) for G to contain a quadratic fours group. The proof of 5.4 requires some preliminary results, all of which, perhaps, are well known, but which we include for the sake of completeness.

Lemma 5.1. Let T be a 2-group, and let F be a subgroup of T with $F \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Suppose that $C_{T}(F)=F$. Then T is either dihedral or semi-dihedral.

Proof. It will be enough to show that T has a cyclic subgroup X of index 2 , as then we will have $\left|C_{X}(a)\right|=2$ and $T=X\langle a\rangle$ for any $a \in F-X$. If $|T| \leq 8$ then T is dihedral and there is nothing to prove. So assume $|T|>8$ and proceed by induction on $|T|$. Let R be a subgroup of T of index 2 , containing F. Then R is dihedral or semi- dihedral, and we may write $R=T\langle t\rangle$ where $Y=\langle y\rangle$ is the unique maximal cyclic subgroup of R and where $t \in F$. Let $x \in T-R$. Then $T=R\langle x\rangle$ and $Y=Y^{x}$. Put $2^{n}=|Y|$ and let z be the unique involution in Y.

Suppose first that R is semi-dihedral. Then the coset $\left\langle y^{2}\right\rangle t$ is the set of non-central involutions of R, and forms a single conjugacy class in R, of order 2^{n-1}. Then $C_{T}(t)$ is not contained in R, and so we may take $[t, x]=1$. But also $F=Z(R)\langle t\rangle$, and then $[F, x]=1$, contrary to $C_{T}(F)=F$. Thus R is dihedral. Further, the same argument then shows that conjugation by x interchanges the two conjugacy classes of non-central involutions of R. In particular, it follows that $C_{R}(x)$ contains no non-cenral involutions, and so $x^{2} \in Y$. If now $\left\langle x^{2}\right\rangle=Y$ then $\langle x\rangle$ is a cyclic subgroup of T of index 2 . Setting $X=\langle x\rangle$ we then have $C_{X}(t)=C_{X}(F)=\langle z\rangle$ and then T is dihedral or semi-dihedral. Thus, we may assume:

$$
\begin{equation*}
\left\langle x^{2}\right\rangle \neq Y \tag{1}
\end{equation*}
$$

Now assume that x has been chosen so that $\left|C_{Y}(x)\right|$ is as large as possible, and then (subject to this condition) so that $|x|$ is as small as possible. Let y_{0} be a generator for $C_{Y}(x)$, and put $y_{1}=x^{2}$. If $\left\langle y_{0}\right\rangle \neq\left\langle y_{1}\right\rangle$ then there exists $u \in C_{Y}(x)$ with $u^{2}=y_{1}$. But in that case we have $(u x)^{2}=u^{2} x^{2}=\left(y_{1}\right)^{2}$, and the minimality of $|x|$ then gives $y_{1}=1$. This shows:
(2) Either $\left\langle x^{2}\right\rangle=C_{Y}(x)$ or $|x|=2$.

Suppose $\left|x^{2}\right| \neq 2$, and then use (1) to again choose $u \in Y$ with $u^{2}=x^{2}$. Then $[x, u]^{2}=\left[x, u^{2}\right]=1$, and so $[x, u]=z$. Then $(x u)^{2}=x^{-2} u^{-2}[x, u]=u^{-4 z}$. Minimality of $|x|$ then implies $u^{4}=1$ and $x^{2}=z$. Thus, in any case we have the following result.
(3) $x^{2} \in\langle z\rangle$.

Suppose that $C_{Y}(x) \neq\langle z\rangle$. Then $|x|=2$ by (2) and (3). But it then also follows that x inverts no element of $Y-\langle z\rangle$, and so $\langle x, z\rangle=\Omega_{1}(Y\langle x\rangle)$. Then $[x, t]=z$ and $N_{T}(F)=N_{R}(F)\langle x\rangle$, whence $C_{T}(F)$ properly contains F. This is contrary to assumption, so:

$$
\begin{equation*}
C_{Y}(x)=\langle z\rangle . \tag{4}
\end{equation*}
$$

Now x inverts the subgroup of order 4 in Y, and then $\left|C_{Y}(x t)\right|>\left|C_{Y}(x)\right|$. Replacing x
by $x t$, we then contradict the minimality of $\left|C_{Y}(x)\right|$ in our choice of x. This contradiction proves the lemma.
5.2 Corollary. Let X be a group, t an involution in X, and suppose that $X=\left\langle t^{X}\right\rangle$. Assume that $Z^{*}(X)=1$, and suppose that $C_{X}(t)$ contains no subgroup of the form $\langle t\rangle \times E$ with $|E|=4$. Then a Sylow 2-subgroup of X is dihedral or semi-dihedral.

Proof. Glauberman's Z^{*} Theorem implies that there is a fours group $F=\langle s, t\rangle$ in X, with $s \in t^{X}$. The hypothesis then yields $C_{Y}(F)=F$ for any Sylow 2-subgroup T of X containing F. Now apply the preceding lemma.
5.3 Proposition. Let X be a finite group acting faithfully on a vector space V over \mathbb{F}_{2}, and assume that $X=\left\langle t^{X}\right\rangle$ for some involution t in X. Assume further that $F^{*}(X)$ is quasisimple, that $O_{2}(X)=1$, and that $\left|V / C_{V}(t)\right| \leq 4$. Then one of the following holds.
(i) There is a fours group E in X with $t \in E$ and with $[V, E, E]=0$.
(ii) A Sylow 2-subgroup of X is dihedral or semi-dihedral.

Proof. Suppose that t lies in no fours group in X which acts quadratically on V. There is then no involution s in $C_{X}(t)-\langle t\rangle$ with $[V, t, s]=0$. As $|[V, t]| \leq 4$ it then follows that $C_{X}(t)$ contains no subgroup of the form $\langle t\rangle \times F$ with $|F|=4$. Then 5.2 applies, and yields (ii).

Remark. The known simple groups with dihedral or semi-dihedral Sylow 2-subgroups are the groups $L_{2}(q), q$ odd; $L_{3}(q), q \equiv 3(\bmod 4) ; U_{3}(q), q \equiv 1(\bmod 4) ; \operatorname{Alt}(7) ;$ and M_{11}. Using this classification, we will obtain Proposition 5.5, below, on groups which contain a 2-transvection which lies in no quadratic fours group.

Proposition 5.4. Let X, t, and V be as in 5.3, and assume that $C_{V}(X) \leq[V, X]$. Assume that there does not exist a fours group E in X, containing t,and such that $[V, E, E]=0$. Then one of the following holds.
(i) $X \cong \operatorname{Alt}(5)$ and V is the $O_{4}^{-}(2)$-module for X.
(ii) $X \cong \operatorname{Sym}(5)$ and $[V, X] / C_{V}(X)$ is the natural $\Gamma L(2,4)$-module for X.

Proof. Set $X_{0}=F^{*}(X)$, let S be a Sylow 2-subgroup of X containing t, and set $T=$ $S \cap X_{0}$. Suppose first that $X_{0} / Z\left(X_{0}\right) \cong L_{3}(q), q \equiv 3(\bmod 4)$; or $U_{3}(q), q \equiv 1(\bmod 4)$. As S has 2-rank equal to 2 , by $5.2, S$ contains no element which induces a field automorphism on X_{0}, and so $X_{0}=X$. The involutions in X form a single conjugacy class, so there is a non-abelian subgroup R of X of order q^{3} such that $R=[R, t]$. It then follows from 4.3 that $q=3$, (so that $X \cong L_{3}(3)$), and that $|[V, R]|=64$. Then $R\langle t\rangle$ is generated by three conjugates of t, and then X is generated by four conjugates of t. It follows that X is isomorphic to a subgroup of $L_{8}(2)$, whereas 13 does not divide $\left|L_{8}(2)\right|$. Thus, we have a contradiction via Lagrange's Theorem.

Suppose next that $Z\left(X_{0}\right) \neq 1$. As $O_{2}(X)=1$ we then have $X_{0} \cong 3 \operatorname{Alt}(6)$ or $3 \operatorname{Alt}(7)$. Set $V_{0}=\left[V, Z\left(X_{0}\right)\right]$. Then $V=V_{0} \oplus C_{V}(Z(X) 0)$, and then, by induction, it suffices to show that every fours group in X containing t acts quadratically on V_{0}. Here, V_{0} may be regarded as an $\mathbb{F}_{4} X_{0}$-module. As $3 \operatorname{Alt}(6)$ is not a subgroup of $S L(2,4)$, we have
$\operatorname{dim}_{\mathbb{F}_{4}}\left(V_{0}\right)>2$, and it follows that $\left[Z\left(X_{0}\right), t\right]=1$. Then $\left[V_{0}, t\right]$ is an $\mathbb{F}_{4^{-}}$subspace of V_{0} of dimension 1 , and so $\left[V_{0}, t, F\right]=0$ for any fours group F containing t, as required. Thus, we may assume henceforth that $Z\left(X_{0}\right)=1$.

Suppose next that $X_{0} \cong L_{2}(q), q$ odd, and suppose that $X_{0} \neq X$. As before, no element of S induces a field automorphism on X_{0}. Suppose that $q \equiv 3(\bmod 4)$, A Sylow 2-subgroup of X is dihedral, so all involutions in $X-X_{0}$ are conjugate, and thus t lies in a dihedral subgroup D of X of order $2 q$. Then 4.3 implies that $q \leq 5$, so $q=3$, which is contrary to our hypothesis that $q \geq 5$. Thus $q \equiv 1(\bmod 4)$.

Let λ be a generator of the Sylow 2-subgroup of \mathbb{F}_{q}^{\times}. As in the preceding paragraph, all involutions in $X-X_{0}$ are conjugate, and so t may be identified with the involution $d s$, where d and s are represented in $G L(2, q)$ by the matrices

$$
\widetilde{d}=\left(\begin{array}{cc}
\lambda & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad \widetilde{s}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

respectively. Set $Y=\langle s, t\rangle$, and let z be the central involution in Y. Then Y is dihedral, of order $2(q-1)$, and since $\langle t, z\rangle$ is not quadratic it follows that Y acts faithfully on $[V, t]+[V, t]^{s}$. Any dihedral subgroup of $L_{4}(2)$ whose order is divisible by 4 has order dividing 12 or 8 , so $q-1$ divides 6 or 4 . The given congruence satisfied by q then yields $q=5$, and thus $X \cong \operatorname{Sym}(5)$.

Set $F=\langle z, t\rangle$, and set $U=[V, F]$. As $z t$ is conjugate to t we have $|U| \leq 16$, and since F is not quadratic we conclude that $|U|=8$ and $U \neq[V, z]$. Thus $\left|V / C_{V}(z)\right| \leq 4$. As z inverts an element of order 5 in X_{0}, X_{0} has no irreducible \mathbb{F}_{2}-modules on which z induces a transvection, and we conclude that X_{0} has a unique non-trivial irreducible constituent W in V. Suppose that W is an $O_{4}^{-}(2)$ - module for X_{0}. Then 1.3 that $W=V$, and one then observes that F acts quadratically on V. Thus, W is a natural $S L(2,4)$-module for X_{0}, and outcome (ii) holds in this case.

Suppose next that $X=X_{0}$ and $X \cong L_{2}(q)$. Then three conjugates of t generate X, and so $\left|V / C_{V}(X)\right| \leq 64$. Then $q \leq 9$, by Lagrange's Theorem applied to $L_{6}(2)$. Suppose that $q=9$, so that $X \cong \operatorname{Alt}(6)$. Let $t \in X_{1} \leq X$ with $X_{1} \cong \operatorname{Alt}(5)$. By induction, and by 1.3 , we then have $V=\left[V, X_{1}\right] \oplus C_{V}\left(X_{1}\right)$, where $\left[V, X_{1}\right]$ is a natural $\operatorname{Sym}(5)$-module for X_{1}. There exists a subgroup X_{2} of X, with $X_{1} \cong X_{2}$, and with X_{1} not conjugate to X_{2}, and such that $X_{1} \cap X_{2}$ is dihedral of order 10 . Let f be an element of order 5 in $X_{1} \cap X_{2}$. Then $\left[V, X_{1}\right]=[V, f]=\left[V, X_{2}\right]$. As $X_{1} X_{2}=X$ we then have $|[V, X]|=16$. Further, the elements of order 3 in X_{1} and in X_{2} come from different conjugacy classes in X. As $[V, X]$ is a natural $S y m(5)$-module for each X_{i} it follows that no element of order 3 in X is fixed-point-free on $[V, X]$. This result is inconsistent with a faithful action of $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ on 2^{4}, and we therefore conclude that $q \neq 9$.

Suppose that $q=7$, so that $X \cong L_{3}(2)$. There are three isomorphism classes of nontrivial irreducible \mathbb{F}_{2}-modules for X, of which one, the adjoint module for $L_{3}(2)$, admits no 2 -transvections, and of which the other two are a dual pair of natural $L_{3}(2)$ - modules. Suppose that there is a unique non-trivial constituent for X in V. Then 1.5 implies that $|V| \leq 16$, and either $V / C_{V}(X)$ or $[V, X]$ is a natural $L_{3}(2)$-module. One then observes that there is a maximal subgroup P of X containing S such that $\left|\left[W, O^{2}(P)\right]\right|=4$, and
then $O_{2}(P)$ is a quadratic fours group. Thus, we have a contradiction in this case, and since $\left|V / C_{V}(X)\right| \leq 64$ it follows that V has a submodule U such that both $U / C_{U}(X)$ and V / U are irreducible X-modules of order 8 . Since t induces a transvection on U, and since three conjugates of t suffice to generate X, we have $|[U, X]|=8$. Similarly, we have $|[V, X] /[U, X]|=8$, and since $C_{V}(X) \cap[V, X]=0$ we conclude that $C_{V}(X)=0$. Let s be a conjugate of t such that $[s, t]=1$, and set $F=\langle s, t\rangle$. As F is not quadratic we have $|[V, F]|=8$, and it follows that U and V / U are not isomorphic as X-modules. We may assume that F has been chosen so that $|[U, F]|=4$, and we then have $[V, F]=$ $[V, t]+[U, F] \leq C_{V}(t)$. That is, we have $[V, F, t]=0$, and so F is quadratic, after all.

Suppose that $q=5$, so that $X \cong S L(2,4)$. No involution in X induces a transvection on any irreducible $\mathbb{F}_{2} X$-module, so there is a unique non-trivial irreducible constituent U for X in V. If U is an $O_{4}^{-}(2)$-module for X, then 1.3 yields (i). So assume that U is a natural $S L(2,4)$-module. Set $\bar{V}=V / C_{V}(X)$ and identify U with $[\bar{V}, X]$. We then have $\left|\bar{V} / C_{\bar{V}}(t)\right|=4$, and $[\bar{V}, t]=C_{[\bar{V}, X]}(t)=C_{[\bar{V}, X]}(S)$. Set $V_{0}=[V, X]$. Then the inverse image in V_{0} of $C_{[\bar{V}, X]}(S)$ is $C_{V_{0}}(S)$, and so S acts quadratically on V.

We are now reduced to the cases where $F^{*}(X)$ is isomorphic to $\operatorname{Alt}(7)$ or M_{11}. A Sylow 2-subgroup of $\operatorname{Sym}(7)$ has 2-rank equal to 3 , while M_{11} has no outer automorphisms, so we have $X \cong \operatorname{Alt}(7)$, or M_{11}. Then X has a subgroup X_{0} with $F^{*}\left(X_{0}\right) / \cong \operatorname{Alt}(6)$, and with $S \leq X_{0}$. But it follows from what we have already shown that such an X_{0} contains a quadratic fours group on V. This completes the proof of 5.4.
5.5 Lemma. Assume Hypothesis 3, with H quasisimple. Let A be a quadratic subgroup of H, with $|A|^{2} \geq\left|V / C_{V}(A)\right|$. Then one of the following holds.
(i) $H / Z(H)$ is a group of Lie type in characteristic p.
(ii) We have $p=2$, and H is an alternating group $\operatorname{Alt}\left(2^{n}+1\right), n \geq 2$.
(iii) We have $|A|=p=3, H \cong S L(2,5)$, and V is a natural $S L(2,9)$-module for H.

Proof. If p is odd then Corollary 1.4 in [C3] yields (iii). So assume that $p=2$. By 3.6 we either have (i) or G contains a fours group E, acting quadratically on V. Thus, we may assume the existence of such a quadratic fours group. If $H / Z(H)$ is a sporadic group then the main result of [A4] shows that S is not contained in a unique maximal subgroup of G, and so Hypothesis 3 is violated in this case. Assume that $H / Z(H)$ is of Lie type in odd characteristic (and that there is no isomorphism of $H / Z(H)$ with a group of Lie type in characteristic 2). The main result of [MS1] then implies that $H / Z(H) \cong U_{4}(3)$. The 2-local subgroups of H containing $S \cap H$ then form a diagram geometry of type \widetilde{B}_{2} (for which see $[\mathrm{RS}]$, for example) and it follows that S is not contained in a unique maximal subgroup of G. Thus, we are reduced to the case where $H / Z(H)$ is an alternating group $\operatorname{Alt}(n), n \geq 7$. As S is contained in a unique maximal subgroup of G, the main theorem of [LPR] implies that $n=2^{m}+1$ for some $m, m \geq 3$,
5.6 Proposition. Let G be a symmetric group $\operatorname{Sym}(n), n \geq 2$, and let V be faithful \mathbb{F}_{2}-module for G, such that V is isomorphic to a constituent of the natural permutation module for G. Let A be a non-identity, elementary abelian 2 -subgroup of G such that
$|A| \geq\left|V / C_{V}(A)\right|$. Then one of the following holds.
(i) A is generated by a set of transpositions, and $|A|=\left|V / C_{V}(A)\right|$.
(ii) n is even, A is generated by a set of $n / 2$ pairwise distinct transpositions, $C_{V}(G)=$ $0, V=[V, G]$, and $|A|=2\left|V / C_{V}(A)\right|$.
(iii) n is even, A is a subgroup of index 2 in a group generated by $n / 2$ pairwise distinct commuting transpositions, $C_{V}(G)=0, V=[V, G]$, and $|A|=\left|V / C_{V}(A)\right|$.
(iv) $n=4, A=O_{2}(G),|V|=8$, and either $V=[V, G]$ and $|A|=\left|V / C_{V}(A)\right|$ or $C_{V}(G)=0$ and $|A|=2\left|V / C_{V}(A)\right|$.
(v) $n=6,|A|=8, V=[V, G]$, and $|A|=\left|V / C_{V}(G)\right|$.
(vi) $n=8,|A|=8$, every non-identity element of A is the product of three pairwise disjoint transpositions, $C_{V}(G)=0, V=[V, G]$, and $|A|=\left|V / C_{V}(G)\right|$.

Proof. For any $m \geq 2$, denote by $P(m)$ the permutation module of dimension m for $\operatorname{Sym}(m)$ over $\mathbb{F}_{2}, P_{0}(m)$ the submodule of $P(m)$ of index $2, \bar{P}(m)$ the quotient of $P(m)$ by $C_{P(m)}(\operatorname{Sym}(m))$, and $\bar{P}_{0}(m)$ the image of $P_{0}(m)$ in $\bar{P}(m)$.

We proceed by induction on $|V|$. The cases where $n \leq 4$ may be verified by inspection, so we assume that $n \geq 5$. (As G acts faithfully on V, by assumption, we have $V=P(2)$ if $n=2$, and $V \neq \bar{P}_{0}(4)$ if $n=4$.) Suppose that $V \neq \bar{P}_{0}(n)$. If n is odd then $P(n) \cong \bar{P}_{0}(n) \oplus C_{V}(G)$, so we may assume that n is even. Set $V_{0}=[V, G]$ and set $\bar{V}=V / C_{V}(G)$. Induction implies that one of the outcomes (i) through (vi) applies with \bar{V}_{0} in place of V. Suppose that A is generated by a set \mathcal{A} of commuting transpositions. Then $|\mathcal{A}| \leq n / 2$, and

$$
\begin{equation*}
|A| \geq\left|V / C_{V}(A)\right| \geq\left|\bar{V}_{0} / C_{\bar{V}_{0}}(A)\right| \geq|A| / 2 \tag{1}
\end{equation*}
$$

where the final inequality in (1) is strict unless $|\mathcal{A}|=n / 2$. Thus, (i) holds if $|\mathcal{A}|<n / 2$. If $|\mathcal{A}|=n / 2$ and $V \neq V_{0}$, then $V \neq V_{0}+C_{V}(A)$ and $|A|=\left|V / C_{V}(A)\right|$, and we again have (i). Otherwise, if $V=V_{0}$ then $C_{V}(A)=C_{V}\left(\left\langle\mathcal{A}_{0}\right\rangle\right)$ for any subset \mathcal{A}_{0} of A of cardinality $n / 2-1$, and we have $|A|=2\left|V / C_{V}(A)\right|$. Thus (ii) holds in this case. Next, take \mathcal{A} to be a set of $n / 2$ pairwise commuting transpositions, suppose that A is a subgroup of index 2 in $\langle\mathcal{A}\rangle$, and suppose that A is not generated by a subset of \mathcal{A}. Then $C_{V}(A)=C_{V}(\langle\mathcal{A}\rangle)$, and so (iii) holds in this case. Next, suppose that $n=6,|A|=8$, and A is not generated by transpositions. Then A is conjugate in G to the group $\langle(12),(34)(56),(35)(46)\rangle$, and direct calculation then shows that $C_{V}(A) \leq V_{0}$. As $|A|=\left|\bar{V}_{0} / C_{\bar{V}_{0}}(A)\right|$, we then have (v). Finally, suppose that $n=8=|A|$ and that every element of $A^{\#}$ is the product of three pairwise disjoint transpositions. Here $N_{G}(A) \cong 2^{3}: L_{3}(2)$, and both the commutator series and the central series of A with $P(8)$ have the shape $(1,3,3,1)$. Then $|A| \geq\left|V / C_{V}(A)\right|$ if and only if $V=\bar{V}_{0}$, and so (vi) holds in this case. Thus, we may assume henceforth that $V=\bar{V}_{0} \cong \bar{P}_{0}(n), n \geq 5$.

Let $\left\{x_{i}: 1 \leq i \leq n\right\}$ be the standard basis for $P(n)$, and identify V with $\bar{P}_{0}(n)$. Write $x_{i, j}$ for the image in V of $x_{i}+x_{j}$. Fix $a \in A^{\#}$ so that the number k of non-trivial orbits of a on $\{1,2, \cdots, n\}$ is as small as possible. Identify a with (12)(34) $\cdots(2 k-1 k)$, and denote by H_{1} the pointwise stabilizer in G of $\{2 k+1, \cdots, n\}$ and by H_{2} the pointwise
stabilizer in G of $\{1, \cdots, 2 k\}$. Set $K=C_{H_{1}}(A)$. Then $C_{G}(a)=K \times H_{2}$, and we have $K \cong 2^{k}: \operatorname{Sym}(k)$ and $H_{2} \cong \operatorname{Sym}(m)$. Denote by E the subgroup of K generated by the set of pairwise disjoint transpositions whose product is a. (Thus, $E=O_{2}(K)$ unless $k=2$ or 4.) Then $A \cap E=1$, by the minimality of k. Choose a complement B to $\langle a\rangle$ in A. Also, set $V_{i}=\left[V, H_{i}\right]$, and set $U=C_{V_{1}}(E)$.

Suppose first that $n=2 k$, so that $K=C_{G}(a)$ and $V=V_{1}$, and $k \geq 3$. If k is odd then $U=C_{V}(a)$, while if k is even we have $C_{V}(a)=U+\langle y\rangle$ where $y=x_{1,3}+x_{5,7}+$ $\cdots x_{2 k-3,2 k-1}$, and where $[y, E]=U$. In any case we have $U \cong \bar{P}(k)$ as modules for K / E, and $|V / U|=2^{k-1}$. Define ℓ by $\ell=1$ if k is odd, and $\ell=2$ if k is even. By induction, we have $|B| \leq 2\left|U / C_{U}(B)\right|$, and so

$$
|A| \geq\left|V / C_{V}(A)\right| \geq 2^{k-\ell}\left|U / C_{U}(B)\right| \geq 2^{k-\ell-1}|B|=2^{k-\ell-2}|A|
$$

Thus $k=3$ or 4 . Suppose $k=3$. Every fours group in Sym(6) contains an element which is the product of two disjoint transpositions, so the minimality of k yields $|A|=2$, and a acts as a transvection on V. As only the transpositions in $\operatorname{Sym}(6)$ act as transvections, we have a contradiction in this case. So assume that $k=4$ and $n=8$. Then $\left|V / C_{V}(a)\right|=8$, and so $|A| \geq 8$. There exists no elementary abelian subgroup of G of order 16 , in which every non-identity element is the product of four pairwise disjoint transpositions, so we have $|A|=8$. Thus, (vi) holds in this case.

We assume henceforth that $n \neq 2 k$. Then $U=C_{V_{1}}(a)$, and $U \cong P(k)$ as modules for K / E. Also, we have $V_{2} \cong P_{0}(m)$ as H_{2}-modules, where $m=n-2 k$. Set $W=V_{1}+V_{2}$. Then $|V / W|=2$, and $C_{V}(a)=U+V_{2} \leq W$. Also, $\left|V_{1} \cap V_{2}\right|=1$ if n is odd, and 2 if n is even, and we have $\left|V_{1} / U\right|=2^{k-1}$.

Set $B_{1}=C_{B}\left(H_{2}\right)$ and let B_{1} be a complement in B to B_{2}. As $U \cong P(k)$ we have $\left|U / C_{U}\left(B_{1}\right)\right| \geq\left|B_{1}\right|$. Then

$$
\begin{align*}
|A| & \geq\left|V / C_{V}(A)\right|=2\left|W / C_{W}(A)\right| \geq 2^{k}\left|U / C_{U}\left(B_{1}\right)\right|\left|V_{2} / C_{V_{2}}\left(B_{2}\right)\right| \\
& \geq 2^{k}\left|B_{1}\right| \cdot 1 / 2\left|B_{2}\right|=2^{k-2}|A| . \tag{2}
\end{align*}
$$

Thus $k \leq 2$.
Suppose $k=2$. As $V_{2} \cong P_{0}(m)$, we may apply induction in (2) and find that $|A|=$ $\left|V / C_{V}(A)\right|, m$ is even, and B_{2} induces on H_{2} a group generated by $m / 2$ pairwise disjoint transpositions. But B_{2} contains no bona fide transpositions, by the minimality of k, so we have $\left[V_{1}, B_{2}\right] \neq 0$. Let $b \in B_{2}$ such that b induces a transposition on $\{2 k+1, \cdots, n\}$, and such that b is non-trivial on $\{1, \cdots, 2 k\}$. Then $b=x t$ where $1 \neq x \in C_{K}(A)$ and where t is a transposition in H_{2}. If $B_{1} \neq 1$ then $C_{K}(A)=B_{1}\langle a\rangle$, so that $x \in A$ and $t \in A$, contrary to the minimality of k. Thus $B_{1}=1$, and now (iii) holds.

Finally, suppose that $k=1$. Then $B_{1}=1$ and $B=B_{2}$. We may therefore choose B so that $B \leq K_{2}$. Suppose that $|A|>\left|V / C_{V}(A)\right|$. Then (2) implies that n is even and that B is generated by a set of $m / 2$ transpositions, and so (ii) holds in this case. So assume that $|A|=\left|V / C_{V}(A)\right|$. If B is generated by a set of transpositions then we have (i). So assume that B is not so generated. By induction, m is even, and either (iii) or (iv) applies with B, H_{2}, and V_{2} in the roles of A, G, and V. If (iii), then (iii) holds for G, while if (iv) then (v) holds for G. This completes the proof of the 5.6.
5.7 Lemma. Assume Hypothesis 2 with $p=2$, and with $H=\operatorname{Alt}(n), n \geq 5$. Assume that there exists a non-identity subgroup A of G such that A acts quadratically on V, with $|A|^{2} \geq\left|V / C_{V}(A)\right|$. If n is even, assume that $G \cong \operatorname{Sym}(n)$ and that $|A| \geq\left|V / C_{V}(A)\right|$. Then one of the following holds.
(i) $n=5$ or 7 , each non-trivial constituent for H in V is a spin module (of dimension 4 over \mathbb{F}_{2}), and there are at most two such constituents.
(ii) $n=6$ and V is a natural $S p(4,2)$-module for G.
(iii) $n=8$ and V is a spin module for G, of dimension 8. Moreover, as a module for H we have $V=U \oplus U^{\prime}$, where U is a natural $L_{4}(2)$-module for H and where U^{\prime} is dual to U.
(iv) $n=9, G=H$, $\operatorname{dim}(V)=8$, and V is a spin module for G. Further, A is conjugate in G to the fours group $\left.F=\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)\right.$, (13)(24) $\left.\mathbf{1}_{\text {, and }}\right| V / C_{V}(A) \right\rvert\,=$ $\left|V / C_{V}(a)\right|=16$ for any $a \in A^{\#}$.
(v) V is a natural $\operatorname{Sym}(n)$-module for G.
(vi) n is odd and V is a direct sum of two natural Sym(n)-modules for G.

Suppose further that n is odd and that V is a natural $\operatorname{Sym}(n)$-module or a direct sum of two natural $\operatorname{Sym}(n)$-modules for G, and let \mathcal{T}_{A} be the set of all transpositions t in $\operatorname{Sym}(n)$ such that t is a factor of some $a \in A$, in a representation of a as a product of pairwise disjoint transpositions. Set $A^{*}=\left\langle\mathcal{I}_{A}\right\rangle$. Then A^{*} is elementary abelian, $[V, A]=\left[V, A^{*}\right]$, and $C_{V}(A)=C_{V}\left(A^{*}\right)$.

Proof. Let $a \in A^{\#}$, and suppose first that a is not a member of any quadratic fours group in G. Then $A=\langle a\rangle, a$ is a 2 -transvection on V, and 5.4 implies that $n=5$ and that (i) or (v) holds. If (v) holds then $A=A^{*}$, so we may assume henceforth that a lies in a quadratic fours group B, and we take $B \leq A$ if $|A| \geq 4$.

Let U be a non-trivial irreducible $H A B$-invariant section of V. Then Theorem 4 of [MS2] implies that U is a spin module or a natural module for $H A B$. Suppose first that U is a spin module, and that $n \neq 8$. Let F be the fours group given in (vi). Lemmas 4.1 through 4.3 in [MS2] then establish that every quadratic subgroup of $H A B$ of order bigger than 2 is conjugate to F, and that $C_{U}(x)=0$ for any 3 -cycle x in H. Notice that there exists a 3 -cycle x inverted by a. If a is a 2-transvection it follows that $|U| \leq 16$, and that U is the unique non-trivial irreducible constituent for G in V. In that case, 1.2 yields $V=U$, and $n \leq 7$ (since $G=\operatorname{Sym}(8)$ if $n=8$). If now $n=6$ then the spin module V is isomorphic to the natural $S p(4,2)$-module, and so (ii) holds. Suppose $n=5$ or 7 . We observe that A does not act quadratically on the natural $\operatorname{Sym}(n)$-module for G, and so every non- trivial irreducible constituent for $H A$ in V is a spin module. Moreover, there are at most two such constituents in V, and we obtain (i). Thus, we may assume that a is not a 2 -transvection, and hence also $n \geq 7$.

Now $|A|=4$ and we may take $A=B=F$. If n is even then $|A| \geq\left|V / C_{V}(A)\right|$, by assumption, and then a is a 2-transvection. Thus, n is odd, and we have $|A|^{2} \geq$ $\left|V / C_{V}(A)\right|$. Set $X=O^{2}\left(C_{H}(A)\right)$, and set $t=1$ if $n=5$, and otherwise set $t=(34)(56)$. Then $X\langle t\rangle \cong \operatorname{Sym}(n-4)$, and since all quadratic fours groups are conjugate to F it follows that X acts faithfully on $[V, A]$. As $|[V, A]| \leq 16$, we then have $n \leq 9$, and then $n=9$.

Let x be a 3 -cycle inverted by an element of A. As $C_{U}(x)=0$ we obtain $\operatorname{dim}(U) \leq 8$ Then since $|[U, A]|=\left|U / C_{U}(A)\right|$ we obtain $\operatorname{dim}(V)=8$, and $C_{U}(a)=C_{U}(A)$. Thus $|A|^{2}=\left|U / C_{U}(A)\right|=\left|V / C_{V}(A)\right|$, and so $U=[V, H]$. Then $U=V$ by 1.2, and so (iv) holds.

Now suppose that U is a spin module for $H A$ and that $n=8$. Then $G \cong \operatorname{Sym}(8)$, and so also $G \cong O_{6}^{+}(2)$. The Clifford algebra \mathcal{C} associated with this orthogonal group is isomorphic to the algebra of 8×8 matrices over \mathbb{F}_{2}, by [Chev, II.2.1], and the spin module W for G is isomorphic to a minimal left ideal of \mathcal{C}. Thus $\operatorname{dim}(W)=8$. Moreover, as the characteristic is even, G is isomorphic to the spinor group associated with $O_{6}^{+}(2)$, and [Chev, II.4.2] implies that W is the direct sum of two inequivalent irreducible representations for $\Omega_{6}^{+}(2)$, which are then conjugate via $O_{6}^{+}(2)$. As $O_{6}^{+}(2) \cong \operatorname{Aut}\left(L_{4}(2)\right)$, we thereby obtain (iii). Thus, we have exhausted the possibilities where U is a spin module, and we may assume henceforth that U is a natural $\operatorname{Sym}(n)$-module for $H A$, for every non-trivial irreducible constituent U for $H A$ in G.

Let $\Omega=\{1,2, \cdots, n\}$ be the set on which G has its natural permutation representation, and identify U with the unique non-trivial irreducible constituent in the permutation module $\mathbb{F}_{2} \Omega$. As A is quadratic, all orbits of A on Ω have length at most 2 , and hence A^{*} is generated by a set of pairwise disjoint transpositions. One computes that $[U, A]=$ $\left[U, A^{*}\right]$ and $C_{U}(A)=C_{U}\left(A^{*}\right)$. Suppose n is even. Then $\left|A^{*}\right|=2\left|U / C_{U}\left(A^{*}\right)\right|$, and since $|A| \geq\left|V / C_{V}(A)\right|$ it follows that U is the unique non-trivial constituent for G in V. Thus, (v) holds in this case, and we may assume that n is odd. Then $|A|^{*}=\left|U / C_{U}\left(A^{*}\right)\right|$. As $|A|^{2} \geq\left|V / C_{V}(A)\right|$, it follows that there are at most two non-trivial irreducible sections for G in V, and if there are two, then $A=A^{*}$. If there is only one such section then $U=V$, by 1.2. Suppose there are two. As $C_{V}(H)=0$, and as $H^{1}(H, U)=0$ by 1.3 , it follows that we may take U to be a submodule of V, with V / U irreducible. Then 1.8 implies that there is an H-invariant complement W to U in V. As $A=A^{*}$ there is a transposition $a \in A$, and we have $\left|V / C_{V}(a)\right|=4$. Then $W \cap W^{a} \neq 0$, and so $W=W^{a}$, and W is G-invariant. This yields (vi).

The following result is immediate from 5.6 and 5.7.
5.8 Corollary. Assume Hypothesis 2, with $p=2$, and let H and A be as in 5.7. Then the following hold.
(a) If $|A|>\left|V / C_{V}(A)\right|$ then n is even, V is a natural module for G, A is generated by a set of $n / 2$ pairwise disjoint transpositions, and $|A|=2\left|V / C_{V}(A)\right|$.
(a) If $|A|^{2}<\left|V / C_{V}(A)\right|, n$ is odd, and $n \geq 9$, then V is a natural module for G.
(c) If $|A|=\left|V / C_{V}(A)\right|$, n is odd, and $n \geq 9$, then $G \cong \operatorname{Sym}(n)$ and A is generated by a set of pairwise disjoint transpositions.
5.9 Lemma. Assume Hypothesis 3, and assume that H is a quasisimple group of Lie type in characteristic p. Then one of the following holds:
(i) The Lie rank of $H / Z(H)$ is equal to 1 . That is, $H / Z(H) \cong L_{2}\left(p^{n}\right), U_{3}\left(p^{n}\right)$, $S z\left(2^{n}\right)$ (with $p=2$) or $\left({ }^{2} G_{2}\left(3^{n}\right)\right)^{\prime}$ (with $p=3$).
(ii) $p=2$, and $H / Z(H) \cong L_{3}\left(2^{n}\right)$ or $S p\left(4,2^{n}\right)^{\prime}$. Moreover, there exists an element t of S such that t induces a non- trivial symmetry on the Coxeter diagram for $H / Z(H)$.

Proof. Assume that the Lie rank of $H / Z(H)$ is at least 2. Recall that the vertices of the Coxeter diagram associated with $H / Z(H)$ are in one-to-one correspondence with the maximal subgroups of H which contain $S \cap H$. Since $G \in \mathcal{M}^{*}(S)$, a Sylow p-subgroup of $\operatorname{Aut}(H)$ then acts transitively on the vertices of this diagram. It follows (from the classification of Coxeter diagrams) that the diagram has just two vertices, so $p=2$, and the diagram is of type A_{2} or B_{2}. Thus, (ii) holds.

Section 6: Lie rank 1 in characteristic p.

In this section we will be concerned with Hypothesis 2, with the additional assumption that H is a group of Lie type, in characteristic p, and of Lie rank 1 . We begin by reestablishing some well known properties of these groups.
6.1 Lemma. Let G be a group containing a normal subgroup $H \cong{ }^{2} G_{2}(q), q=3^{2 n+1}$, and with $C_{G}(H)=1$. Let S be a Sylow 3-subgroup of G and set $T=S \cap H$. Then the following hold.
(a) We have $|T|=q^{3}, Z(T)$ is elementary abelian of order q, and $\Omega_{1}(T)$ is elementary abelian of order q^{2}. Moreover, T is a trivial intersection set in H, and we have $N_{H}(T)=T D$ where D is cyclic of order $q-1$, and where D acts regularly on $T / \Omega_{1}(T)$ and on $Z(T)$. Further, D acts irreducibly on $\Omega_{1}(T) / Z(T)$, with $\left|C_{D}\left(\Omega_{1}(T) / Z(T)\right)\right|=2$.
(b) There is a single conjugacy class of involutions in G, and for any involution t in G we have $C_{G}(t)=\langle t\rangle \times L$ where L is isomorphic to $L_{2}(q)$. Further, $C_{G}(t)$ is the unique maximal subgroup of G containing L, and $L \cap Z(T)=1$.
(c) Any two conjugates of $Z(T)$ generate $O^{3}(H)$.
(d) Suppose that $S-H$ contains an element a of order 3 . Set $X=\left[\Omega_{1}(T), a\right]$ and set $A=\left\langle a^{X}\right\rangle$. Then $A=\Omega_{1}\left(C_{S}(a)\right)$, and A is elementary abelian.

Proof. Part (a) follows from the Chevalley relations (see Tables 2.4 and 2.4.7 in [GLS3]). If $q=3$ then it is known that H is isomorphic to $\Gamma L(2,8)$, and one observes in this case that (b) through (d) hold. Thus we may assume that $q>3$ in proving (b) through (d).

Let t be an involution in H and set $M=C_{H}(t)$. It is then well known (see for example [GLS3, Theorem 4.5.1]) that $M=\langle t\rangle \times L$, where $L \cong L_{2}(q)$. In particular, a Sylow 2subgroup R of H is elementary abelian, of order 8 , and for any fours group F contained in R we have $C_{H}(F) \cong F \times D$ where D is dihedral of order $(q+1) / 2$. It follows that $\langle t\rangle=C_{H}(L)$.

Let M be a maximal subgroup of H containing L, with $M \neq C_{H}(t)$. Then $Z(M)=1$. Also, we have $O_{3}(M)=1$, since every 3-local subgroup of H is contained in a Borel subgroup. For primes other than 2 or 3 the Sylow subgroups of H are cyclic, so $F(M)=1$
and $F^{*}(M)$ is simple. A Cartan subgroup of H is cyclic of order $q-1$, so $F^{*}(L)$ is not isomorphic to $P S L\left(2, q^{\prime}\right), q^{\prime}$ a power of 3 . If $F^{*}(M) \cong{ }^{2} G_{2}\left(q_{0}\right)$ for some q_{0} then a Cartan subgroup of L is contained in a Cartan subgroup of M, and so $q_{0}=q$ and $M=G$. Thus $F^{*}(M)$ is not a Ree group. As $q>3, M$ is not isomorphic to J_{1} and M is not isomorphic to a linear group $L_{2}(r)$, r odd, r not a power of 3 . The classification ([B] or [W]) of groups with abelian Sylow 2-subgroups now yields a contradiction to the presumed existence of M, and so $C_{G}(t)$ is the unique maximal subgroup of G containing L. Since $C_{G}(z)=T$ for any non-identity element z of $Z(T)$, as follows from (a), we have $L \cap Z(T)=1$, and (b) holds.

Next, let K be a subgroup of H generated by a pair of conjugates of $Z(T)$. As $C_{H}(z)=T$ for any non-identity element z of $Z(T)$, we have $Z(K)=1$, while $O_{3}(K)=1$ as T is a T.I. set in H. As $q>3$ and $O_{2}(K)$ is elementary abelian of order at most 8, we have also $O_{2}(K)=1$, and then $F^{*}(K)$ is simple. As in the preceding paragraph, we find that $F^{*}(K)$ is not isomorphic to $L_{2}(r)$ for r odd, r not a power of 3 , or to J_{1}. Hence $F^{*}(K)$ is a Ree group ${ }^{2} G_{2}\left(q_{0}\right)$ or a linear group $L_{2}\left(q_{0}\right), q_{0}$ a power of 3 . Comparison of a Cartan subgroup of $F^{*}(K)$ with a Cartan subgroup of H yields $q_{0}=q$, and $K \cong L_{2}(q)$. Then K contains a subgroup isomorphic to $L_{2}(3)$, and so a non-identity element z of $Z(T)$ normalizes a fours group F in H. As $C_{H}(F)$ is of order prime to 3, z then normalizes a Sylow 2-subgroup of $C_{H}(F)$, of order 8, and then $\left.\left.\mid C_{H}\right) z\right) \mid$ is even. This contradiction proves (c).

Now let X, a and A be as in (d). Then the coset $T a$ contains an element a_{0} such that a_{0} induces a field automorphism on H. A Cartan subgroup of $N_{H}(T)$ acts regularly on $T / \Omega_{1}(T)$, so we may assume that $a \in X a_{0}$. Thus, $C_{\Omega_{1}(T)}\left(a_{0}\right)=C_{O m e g a_{1}(T)}(a)=$ $\left[X, a_{o}\right]=[X, a]$. If g is an element of order 3 in $C_{S}(a)$ then $g \in T\langle a\rangle$, and $g=g_{1} a^{i}$ for some element g_{1} of $C_{T}(a)$ and some power a^{i} of a. Then $g_{1} \in \Omega_{1}(T)$, and so $g_{1} \in[X, a]$. This yields (d).
6.2 Lemma. Let G be a group containing a normal subgroup $H \cong S z(q), q=2^{2 n+1}$, and with $C_{G}(H)=1$. Let S be a Sylow 2-subgroup of G and set $T=S \cap H$. Then the following hold.
(a) We have $|T|=q^{2}$, and $Z(T)=\Omega_{1}(T)$ is elementary abelian of order q. Moreover, T is a trivial intersection set in H, and we have $N_{H}(T)=T D$ where D is cyclic of order $q-1$, and where D acts regularly on $T / Z(T)$ and on $Z(T)$.
(b) Any two distinct conjugates of $Z(T)$ generate $O^{2}(H) Z(T)$.
(c) We have $S=T$.

Proof. Part (a) is well known and may be justified in the same way as part (a) of the preceding lemma. Part (c) also is well known, and follows from the fact that automorphisms of $S z(q)$ are induced by automorphisms of $S p(4, q)$ (where q is an odd power of 2). If $q=2$ then $G=H$ is a Frobenius group of order 20, where (b) is obvious. So assume henceforth that we have $q>2$.

Let L be a subgroup of H such that L is generated by two distinct conjugates of $Z(T)$. For any element x of H of odd order, $C_{H}(x)$ is cyclic of odd order, and it follows that $O_{r}(L)=1$ for every odd prime r. Also $O_{2}(L)=1$ as T is a trivial intersection set, so we
conclude that $F^{*}(L)$ is a non-abelian simple group. As $|L|$ is relatively prime to $3, L$ is a Suzuki group, and then since $Z(T) \leq L$ we have $L=H$. Thus (b) holds.
6.3 Lemma. Let G be a group containing a normal subgroup $H \cong S U(3, q), q=p^{n}$, and with $C_{G}(H)=1$. Let S be a Sylow p-subgroup of G and set $T=S \cap H$. Then the following hold.
(a) We have $|T|=q^{3}$, and $Z(T)$ is elementary abelian of order q. Moreover, T is a trivial intersection set in H, and we have $N_{H}(T)=T D$ where D is cyclic of order $q^{2}-1$, and where D acts regularly on $T / Z(T)$ and $\mid C_{D}(Z(T) \mid=q-1$.
(b) Any two distinct conjugates of $Z(T)$ generate a subgroup of H isomorphic to $S L(2, q)$. If $L=\left\langle Z(T), Z(T)^{g}\right\rangle$ is such a subgroup then $N_{H}(L) \cong G U(2, q)$, and if $q>2$ then $N_{H}(L)$ is the unique maximal subgroup of H containing L.
(c) Suppose that $S-H$ contains an element a of order p. If p is odd then $q^{1 / p}$ is an integer, and $C_{H}(a) \cong S U\left(3, q^{1 / p}\right)$. If $p=2$ then $\Omega_{1}\left(C_{S}(a)\right)=C_{Z(T)}(a)\langle a\rangle=$ $\left\langle a^{Z(T)}\right.$.

Proof. That T is a trivial intersection set ffollows from H having Lie rank 1. The rest of part (a) is standard fare and may be obtained by direct computation.

Let L be a subgroup of H generated by two conjugates of $Z(T)$, and let V be the natural 3-dimensional module for H over $F=\mathbb{F}_{q^{2}}$, endowed with the usual hermitian form. Then $[V, Z(T)]$ is a 1-dimensional singular subspace of V whose stabilizer in H is the Borel group $N_{H}(T)$. It follows that $[V, L]$ is a hyperbolic plane, and hence the stabilizer in H of $[V, L]$ is isomorphic to $G U(2, q)$. Then $L \cong S L(2, q)$, and this is the first part of (b).

Let M be a subgroup of H containing L, with $M \not \leq N_{H}(L)$. We observe that L acts transitively (in fact regularly) on the set of singular points not contained in [$V, L]$, and acts transitively on the set of singular points contained in $[V, L]$. The stabilizer in H of [$V, L]$ is equal to $N_{H}(L)$, so we conclude that M has just one orbit on the set of singular points of V. Then $H=N_{H}(Z(T)) M$, and we have $\left\langle Z(T)^{M}\right\rangle=\left\langle Z(T)^{H}\right\rangle \leq M$. As H is quasisimple if $q \neq 2$, we then have $M=G$ or $q=2$, and this completes the proof of (b).

Suppose next that we are given an element a of order p in $S-H$. There is an element a_{0} of the coset $T a$ such that a_{0} induces a field automorphism on H, and one observes that a_{0} acts freely on $T / Z(T)$. Denote by T_{0} the inverse image in T of $C_{T / Z(T)}\left(a_{0}\right)$. If $p=2$ then a_{0} acts by inversion on T_{0}, and otherwise $C_{T}\left(a_{0}\right)$ is isomorphic to a Sylow p-subgroup of $S U\left(3, q^{1 / p}\right)$. In either case, all elements of order p in $T_{0} a_{0}$ are fused by T to elements of $C_{Z(T)}\left(a_{0}\right) a_{0}$. Let D be an a_{0}-invariant complement to T in $N_{H}(T)$. Then all elements of order p in $C_{Z(T)}\left(a_{0}\right) a_{0}$ are fused by $C_{T}\left(a_{0}\right)$, and so $\langle a\rangle$ is conjugate to $\left\langle a_{0}\right\rangle$ in $N_{H}(T)$. This proves (c).

We require some of the representation theory of groups of Lie type, as developed in [St1]. Thus, let X be the universal version of a group of Lie type in characteristic p, let U be a Sylow p-subgroup of X, and let H be a complement to U in $N_{X}(U)$. Set $q^{\prime}=\left|H_{0}\right|+1$ where H_{0} is a cyclic subgroup of H of maximal order. (That is, $q^{\prime}=e+1$
where e is the exponent of H.) Then q^{\prime} is a power of p. Set $F=\mathbb{F}_{q^{\prime}}$.
If X is a Chevalley group or a Suzuki-Ree group, set $q=q^{\prime}$ and set $d=1$.
If X is a Steinberg variation (and not a Suzuki-Ree group) obtained in the standard way from a Chevalley group Y via a graph automorphism of order $d(d=2$ or 3$)$, set $q=\left(q^{\prime}\right)^{1 / d}$.

With q defined in the above way, we write $X=X(q)$. Then \mathbb{F}_{q} is the usual "field of definition" of X, as expressed, for example, in the formula for the order of X as given in Table 16.1 in [A3]. (We mention, however, that for the Suzuki-Ree groups there is an alternative formalism, whereby $d=2$, and where q is taken to be the irrational number $\left(q^{\prime}\right)^{1 / 2}$.)
6.4 Lemma. Let $X=X(q)$ be a group of Lie type in characteristic p, and let $F=\mathbb{F}_{q^{d}}$ be the field defined as above. Further, let V be an irreducible $\mathbb{F}_{p} X$-module, and set $F_{0}=\operatorname{End}_{X}(V)$. Then the following hold.
(a) F is a splitting field for X over \mathbb{F}_{p}.
(b) We have $\operatorname{dim}_{F_{0}}\left(C_{V}(U)\right)=1$ for any Sylow p-subgroup U of X.

Proof. Part (a) is Corollary (a) to Theorem 46 in [St2]. Theorems 44(b) and 46(b) in [St2] yield (b).

Let $X=X(q)$ and $F=\mathbb{F}_{q^{d}}$ be as above, and regard X as the set of fixed points of a Steinberg endomorphism of a simple algebraic group \bar{X} over an algebraic closure of F. Let \bar{T} be a σ-invariant maximal torus of \bar{X}, let Σ be the root system of \bar{X} with respect to \bar{T}, let Π be a fundamental system for Σ, and let Λ be the weight lattice of \bar{T}. A weight $\lambda \in \Lambda$ is basic if either
(1) X is not a Suzuki-Ree group and $0 \leq\langle\lambda, \alpha\rangle$ for all $\alpha \in \Pi$, or
(2) X is a Suzuki-Ree group and we have $0 \leq\langle\lambda, \alpha\rangle$ for all short $\alpha \in \Pi$, and $\langle\lambda, \alpha\rangle=0$ for all long $\alpha \in \Pi$.
Let U be an irreducible $F X$-module, with high weight λ. Then U is a basic module for X if λ is a basic weight.
6.5 Lemma. Let $X=X(q)$ and $F=\mathbb{F}_{q^{d}}$ have the meanings given above, and assume that X is a Steinberg variation or a Suzuki-Ree group. Let $X^{*}=X^{*}\left(q^{d}\right)$ be a Chevalley group such that X is obtained from X^{*}, in the standard way, via a graph automorphism or, in the Suzuki-Ree cases, via the composition of a graph and a field automorphism. Then the irreducible (resp., basic irreducible) modules for X over F are the restrictions to X of the irreducible (resp., basic irreducible) modules for X^{*}.

Proof. Let \bar{X} be a simple algebraic group such that $X^{*}=O^{p^{\prime}}\left(C_{\bar{X}}\left(\sigma^{*}\right)\right)$ where σ^{*} is a Steinberg endomorphism of \bar{X}, and let τ be an automorphism of X^{*} such that $X=$ $O^{p^{\prime}}\left(C_{X^{*}}\right)(\tau)$. Then $\sigma \circ \tau$ is a Steinberg endomorphism of \bar{X}, and $X=O^{p^{\prime}}\left(C_{\bar{X}}(\sigma \circ \tau)\right)$. Let \bar{F} be an algebraic closure of F. The theory in [St2] establishes that any irreducible
$\bar{F} X^{*}$-module \bar{U} is the restriction to X^{*} of an irreducible $\overline{F X}$-module, and the same is true of any irreducible $\bar{F} X$-module. Thus any irreducible $\bar{F} X$-module is the restriction to X of an irreducible $\bar{F} X^{*}$-module. As F is a splitting field for both X and X^{*}, by 6.4 (a), it follows that any irreducible $F X$-module is the restriction to X of an irreducible $F X^{*}$-module. The corresponding statement concerning basic modules is then immediate from the definition of the basic modules.
6.6 Lemma. Let $X=X(q), F=\mathbb{F}_{q^{d}}, V$, and F_{0} be as in 6.4, and set $\widetilde{V}=V \otimes_{F_{0}} F$. Denote by Γ the full automorphism group of the field F, and by Γ_{0} the Galois group of F over F_{0}. Set $t=|\Gamma|, m=\left|\Gamma_{0}\right|$, and set $r=t / m$. Let $\left\{\phi_{1}, \cdots, \phi_{r}\right\}$ be a complete set of coset representatives for Γ_{0} in Γ, and write $\Gamma_{0}=\left\{\psi_{1}, \cdots, \psi_{m}\right\}$. Then the following hold.
(a) There exist basic irreducible modules M_{1}, \cdots, M_{r} for X such that, upon setting

$$
N_{i}=M_{i}^{\phi_{i} \psi_{1}} \otimes \cdots \otimes M_{i}^{\phi_{i} \psi_{m}}
$$

we have an isomorphism

$$
\widetilde{V} \cong N_{1} \otimes \cdots \otimes N_{r}
$$

of FX-modules. (The modules M_{i} are not necessarily pairwise distinct.)
(b) With the modules M_{i} as in (a), set $d_{i}=\operatorname{dim}_{F}\left(M_{i}\right)$. Then

$$
\operatorname{dim}_{F_{0}}(V)=\operatorname{dim}_{F}(\widetilde{V})=\left(d_{1} \cdots d_{r}\right)^{m} .
$$

(c) If k is an integer such $|V| \leq|F|^{k}$, then $\left(d_{1} \cdots d_{r}\right)^{m} \leq k m$.

Proof. Let $\left(\alpha_{1}, \cdots, \alpha_{t}\right)$ be a fixed ordering of Γ, and let \mathcal{B} be a set of representatives of the isomorphism classes of basic irreducible $F X$-modules. As \widetilde{V} is an irreducible $F X$-module, Steinberg's tensor product theorem states that there exists a uniquely determined sequence $\left(M_{i_{1}}, \cdots, M_{i_{t}}\right)$ of elements of elements of \mathcal{B} such that

$$
\begin{equation*}
\widetilde{V} \cong M_{i_{1}}^{\alpha_{1}} \otimes \cdots \otimes M_{i_{t}}^{\alpha_{t}} . \tag{}
\end{equation*}
$$

Here \tilde{V} is a module for $G \times \Gamma_{0}$ over F_{0}, in a unique way compatible with the action of G. The uniqueness of the tensor decomposition in $\left(^{*}\right.$) then yields (a). Parts (b) and (c) are then immediate.
6.7 Lemma. The following hold.
(a) Let $X=S L(2, q), q=p^{n}$, and for each $i, 1 \leq i \leq p$, let M_{i} be the X-module of homogeneous polynomials of degree $i-1$ in two variables. Then $\left\{M_{i}\right\}_{1 \leq i \leq p}$ contains exactly one representative from each isomorphism class of basic irreducible $F_{q} X$-modules.
(b) Let $X=S L(3, q), q=2^{n}$. Let V be the natural module for L, U the adjoint module, and 1 the trivial module. Then $\left\{1, V, V^{*}, U\right\}$ contains exactly one representative from each isomorphism class of basic irreducible $F_{q} X$-modules.
(c) Let $X=S p(4, q), q=2^{n}$. Let V be the natural module for L, V^{\prime} the contragredient module to V, and 1 the trivial module. Then $\left\{1, V, V^{\prime}, V \otimes V^{\prime}\right\}$ contains exactly one representative from each isomorphism class of basic irreducible $F_{q} X$ modules.

Proof. The number of isomorphism classes of basic irreducible modules for a (nontwisted) Chevalley group X in characteristic p, and having a root system of rank r, is p^{r}. So, we have the correct number of modules listed in parts (a) through (c) of the lemma, and it remains to check that the given modules for the given groups are in fact irreducible and basic. In the case of $S L(2, q)$, this result is fundamental and well known (see [St2, page 219]), and requires no further discussion here.

Set $F=\mathbb{F}_{q}, q=2^{n}$, and let \bar{F} be an algebraic closure of F. For the groups $\bar{L}=$ $S L(3, \bar{F})$ or $S p(4, \bar{F})$, let \bar{T} be the maximal torus given by the diagonal matrices in \bar{L}, let \bar{B} be the Borel subgroup given by the upper triangular matrices in \bar{L}, let Σ be the root system determined by \bar{T}, and let $\Pi=\left\{\alpha_{1}, \alpha_{2}\right\}$ be the fundamental system in Σ determined by \bar{B}. Then let λ_{1} and λ_{2} be the characters of \bar{T} given in the usual way by $\left\langle\lambda_{i}, \alpha_{j}\right\rangle=\delta_{i, j}$. We may assume that the ordering of Π has been chosen so that λ_{1} is the highest weight for the natural module V for L. Then λ_{2} is the highest weight for the dual of V if $\bar{L}=S L(3, \bar{F})$, or for the contragredient of V if $\bar{L}=S p(4, \bar{F})$.

Take $L=S L(3, q), q=2^{n}$, and let L_{0} be the natural $S L(3,2)$ subgroup of L (i.e. the subgroup in which all the matrix entries are in \mathbb{F}_{2}). Then all irreducible modules for L_{0} are basic. In addition to the trivial module, the natural module, and the dual of the natural module (with high weights $0, \lambda_{1}$, and λ_{2}, respectively), there is an irreducible module U_{0} for L_{0} of dimension 8; namely the Steinberg module, and its highest weight is $\lambda_{1}+\lambda_{2}$. By direct calculation, the adjoint module \bar{U} for \bar{L} contains a high weight vector v with corresponding weight $\lambda_{1}+\lambda_{2}$. As $\operatorname{dim}_{\mathbb{F}_{2}}\left(U_{0}\right)=\operatorname{dim}_{\bar{F}}(\bar{U})$, it follows that $\bar{U} \cong U_{0} \otimes \bar{F}$ as modules for L_{0}. In particular, \bar{U} is an irreducible $\bar{F} L_{0}$-module, and hence also an irreducible $\bar{F} L$-module. The adjoint module U for L is an F-form of \bar{U}, and so U is irreducible for L with highest weight $\lambda_{1}+\lambda_{2}$. This weight is basic, so we have (b).

Now take $L=S p(4, q)$. The module $V \otimes V^{\prime}$ is irreducible by [St2, pages 218-19], and its highest weight is $\lambda_{1}+\lambda_{2}$. As this weight is basic, we then have (c).
6.8 Lemma. Assume Hypothesis 2, with $H / Z(H)$ isomorphic to $L_{2}(q), q=p^{n}$. Let A be an elementary abelian p-subgroup of S such that $|A|^{2} \geq\left|V / C_{V}(A)\right|$. Then $|A| \leq$ $\left|V / C_{V}(A)\right|$, and one of the following holds.
(i) V is a natural $S L(2, q)$-module for H.
(ii) For any irreducible H-submodule W of V, both V and V / W are natural $S L(2, q)$ modules for H. Moreover, we have $|A|^{2}=\left|V / C_{V}(A)\right|$, and A is a Sylow p subgroup of H.
(iii) q is odd, V is a natural $\Omega_{3}(q)$-module for $H,|A|^{2}=\left|V / C_{V}(A)\right|$, and A is a p-Sylow subgroup of H.
(iv) q is a perfect square, $H \cong \Omega_{4}^{-}\left(q^{1 / 2}\right)$, and V is a natural orthogonal module for H.
(v) $q=4, G \cong O_{4}^{-}(2)$, and for any irreducible G - submodule W of V, both W and V / W are natural orthogonal modules for G. Moreover, we have $|A|^{2}=$ $\left|V / C_{V}(A)\right|$, and $A \not \leq H$.

Proof. Let E be an elementary abelian subgroup of S such that $|E|^{2}\left|C_{V}(E)\right|$ is as large as possible and, subject to this condition, so that E is maximal with respect to inclusion. Then E is weakly closed in $C_{G}(T)$, by 2.2 . Let U be a non-trivial, irreducible H - invariant section of V, and set $F_{0}=\operatorname{End}_{H}(U)$. Set $F=\mathbb{F}_{q}$, and define the integers r, m, and t, the modules M_{i} and N_{i}, and the dimensions $d_{i},(1 \leq i \leq r)$ as in 6.6. We observe that since $q+1$ divides the order of $H, 2.1$ implies that $|V| \geq q^{2}$.

Set $T=S \cap H$, and suppose first that $E \nsubseteq T$. Let $a \in E-T$. Then all elements of order p in the coset $T a$ are fused by T, and so a induces a (non-trivial) field automorphism on H. Denote by T_{0} the largest subgroup of T such that $\left[T_{0}, a, a\right]=1$. Then $\left[T_{0}, a\right]=$ $C_{T}(a)=C_{T}(E)$, and since E is weakly closed in $C_{G}(E)$ we then have $E=C_{T}(a)\langle a\rangle$.

We claim that two conjugates of E suffice to generate $H E$. Indeed, if p is odd then the claim follows from a theorem of L.E. Dickson (Theorem 2.8.4 in [Gor]) on subgroups of $L_{2}(q)$. On the other hand, suppose that $p=2$. Then an element b of $C_{T}(a)$ lies in a dihedral subgroup X of H of order $2 \cdot(q+1)$, and X is maximal in H. Thus, our claim holds if $q \neq 4$. If $q=4$ then $H E \cong \operatorname{Sym}(5)$, and the image of E under such an isomorphism is generated by two commuting transpositions. One confirms that Sym(5) is generated by the conjugate fours groups $\langle(12),(34)\rangle$ and $\langle(14)(35)\rangle$, so our claim holds for all q. As $|E|=p \cdot q^{1 / p}$, we then have $|V| \leq p^{4} q^{4 / p}$. As $p^{2 n} \leq|V|$ we obtain $p(1-2 / n) \leq 2$, and then either $p=2$ or $p=n=3$. Moreover, we have $|V| \leq 16 \cdot q^{2}$ if $p=2$, and $V \leq 3^{8}$ if $p=n=3$. We have proved the following result.
(1) If $E \not \leq T$ then $E=C_{T}(a)\langle a\rangle$ for any $a \in E-T$, and either $p=n=3$ and $|V| \leq 3^{8}$, or $p=2$ and $|V| \leq 16 \cdot q^{2}$.

On the other hand, suppose that $E \leq T$. As $N_{H}(T)$ acts irreducibly on T, and as E is weakly closed in $C_{H}(E)$, we then have $E=T$ and $|E|=q$. Then two conjugates of E suffice to generate H, and so $|V| \leq q^{4}$. Also, in this case we have $\left|C_{U}(E)\right|=\left|F_{0}\right|, 6.4(\mathrm{~b})$. Thus:
(2) If $E \leq T$ then $E=T,|V| \leq q^{4}$, and $|U| \leq q^{2} q_{0}$, where $q_{0}=\left|F_{0}\right|$.

With (1) and (2) we conclude that $|V| \leq q^{4}$ in any case. Then 6.6 yields the following
information.
(3) We have $\left(d_{1} \cdots d_{r}\right)^{m} \leq 4 m$.

Set $d=d_{1} \cdots d_{r}$, and suppose that $m>1$. Then $d=2$ and $m \leq 4$. If $m=4$ then $|U|=q^{4}$ and $q \geq p^{4}$, and so (1) shows that $E \leq T$. Then $E=T$, and we have $|U|<q^{3}$, by (2), so we conclude that $m \leq 3$.

Suppose that $m=3$. Then $|U|=q^{8 / 3}$. If $E=T$ then (2) yields $|U| \leq q^{2} q^{1 / 3}$, so in fact we have $E \neq T$. Suppose that $p=2$. Then (1) gives $16 \cdot q^{2} \geq q^{8 / 3}$. Here n is divisible by 2 (as $E \neq T$) and by 3 (as $m=3$), and we conclude that $q=64$. Moreover, we then have $\left|U / C_{U}(E)\right|=|E|^{2}$, so U is the unique non-trivial constituent for H in V. Then $U=V$, by 1.2. Now $C_{V}(E \cap H)$ is a subspace of V over F_{0}, while a acts F_{0} - semilinearly on V. It follows that $\left|C_{V}(E \cap T)\right|=\left|C_{V}(E)\right|^{2}$, and then $|E \cap T|^{2}\left|C_{V}(E \cap T)\right|>|E|^{2}\left|C_{V}(E)\right|$. This is contrary to the definition of E, so we conclude that $p \neq 2$.

With p odd, (1) shows that $G \cong \Gamma L(2,27)$ and that $|U|=3^{8}$. Here $\left|V / C_{V}(E)\right| \leq$ $|E|^{2}=81$, while $\left|U / C_{U}(E)\right|=81$ since G is generated by two conjugates of E. Thus $V=U$, by 1.2 , and we have an F_{0}-linear action of G on U. Then G acts F-linearly on \widetilde{U}. Identify \widetilde{U} with $N \otimes N^{\phi} \otimes N^{\phi^{2}}$, where ϕ is an automorphism of F of order 3 , and identify a with a standard field automorphism of H. Then a acts on \widetilde{U} by permuting the three tensor factors. Explicitly, let $x=(1,0)$ and $y=(0,1)$ be the standard basis elements for N. One may then identify a standard basis for \widetilde{U} with the set of monomials of degree 3 in the non-commuting variables x and y, and then $C_{\widetilde{U}}(a)$ is the F-linear span of

$$
\left\{x^{3}, x^{2} y+x y x+y x^{2}, x y^{2}+y x y+y^{2} x, y^{3}\right\} .
$$

Thus $\operatorname{dim}_{F}\left(C_{\widetilde{U}}(a)=4\right.$. One observes that the given basis for $C_{\widetilde{U}}(a)$ is not invariant under $E \cap T$, so $\operatorname{dim}_{F}\left(C_{\widetilde{U}}(E)\right) \leq 3$. Then also $\operatorname{dim}_{F_{0}}\left(C_{U}(E)\right) \leq 3$, and so $\left|U / C_{U}(E)\right| \geq$ $3^{5}>|E|^{2}$. With this contradiction, we have shown that $m \neq 3$, and so $m \leq 2$.

If $m=2$ then U is an $\Omega_{4}^{-}\left(q_{0}\right)$-module, where $q_{0}=q^{1 / 2}$. On the other hand, suppose that $m=1$. Then (3) yields $d \leq 4$. If $d=4$ then $|U|=q^{4}$, so (1) and (2) imply that $E \not \leq T$ and $q=4$. Then $U \cong N \otimes N^{\phi}$, where N is the natural $S L(2,4)$-module for H and where ϕ is the non-identity field automorphism. But then U is reducible as an $\mathbb{F}_{2} H$-module, and contrary to the definition of U. Thus, we have $d \leq 3$. This shows the following.
(4) U is a natural $S L(2, q)$-module, a natural $\Omega_{3}(q)$ - module, or a natural $\Omega_{4}^{-}\left(q_{0}\right)$-module $\left(q_{0}=q^{1 / 2}\right)$, for H. Moreover, if $E \neq T$ then $p=2$.

We observe that if U is not E-invariant then $E \not \leq T$ and $\left|C_{U}(E \cap T)\right| \geq p^{2}$. Then $\left|U / C_{U}(E \cap T)\right| \geq|E \cap T|$. For any minimal $H E$-invariant section W of V involving U we then have

$$
|E \cap T|^{2}\left|C_{W}(E \cap T)\right|>p_{44}^{2}|E \cap T|^{2}\left|C_{W}(E)\right| \geq|E|^{2}\left|C_{W}(E)\right|
$$

and

$$
\left|W / C_{W}(E \cap T)\right| \geq|E \cap T|^{2}
$$

Then $|W| \geq|E|^{2}\left|C_{W}(E)\right|$, so $|W|=|V|=|E|^{2}\left|C_{V}(E)\right|$, and

$$
|E \cap T|^{2}\left|C_{V}(E \cap T)\right|>|E|^{2}\left|C_{V}(E)\right|
$$

This is contrary to the definition of E, so we conclude that U is E-invariant. Moreover, the preceding estimates show that $H E$ has at most two non-trivial irreducible constituents in V, and if there are two then for any choice of U we have $|E|=\left|U / C_{U}(E)\right|$.

If H has only one non-trivial constituent in V then 1.2 gives $V=U$. So assume that H has two non-trivial constituents in V. If $E=T$ then $\left|U / C_{U}(E)\right|=|U| /\left|F_{0}\right| \leq q$, so $|U| \leq q \cdot q_{0}$, and then $q=q_{0}$ and U is a natural $S L(2, q)$-module for H. On the other hand, suppose that $E \neq T$. Then (1) and (4) yield $p=2$ and $\left|U / C_{U}(E)\right| \leq|E|=2 \cdot q^{1 / 2}$. As two conjugates of E generate G we then have $|U| \leq 4 \cdot q$, and since $|U| \geq q^{2}$ we then have $q=4$ and $|U|=16$. If U is a natural $\Gamma L(2,4)$-module for G then $\left|U / C_{U}(E)\right|=8$, so in fact U is a natural $O_{4}^{-}(2)$-module for G. Thus:
(5) Suppose that $U \neq V$. Then H has exactly two non-trivial irreducible constituents in V. Moreover, these constituents are E - invariant, and for any such irreducible constituent U we have $|E|=\left|U / C_{U}(E)\right|$. Either both irreducible constituents are natural $S L(2, q)$-modules for H, or else $q=4$ and both are natural $O_{4}^{-}(2)$ - modules for G.

Suppose that $U \neq V$, and suppose that there is a trivial constituent for H in V. As $C_{V}(H)=0$ and $V=[V, H]$, by hypothesis, there is then an indecomposable H submodule W of V such that $[W, H]$ is irreducible for H and such that $|W /[W, H]|=p$. Take $U=[W, H]$. Then (5) says that either U is a natural $S L(2, q)$-module for H, or $q=4$ and U is a natural $O_{4}^{-}(2)$-module for G. In either case, we have $W=U+C_{W}(E)$. Suppose that U is a natural $S L(2, q)$ - module. As $|E|=\left|U / C_{U}(E)\right|$ we then have $E=T$ and $W=U+C_{W}(T)$. As two conjugates of T generate H we then have $C_{W}(H) \neq 0$, and W is decomposable. Thus $q=4$ and U is an $O_{4}^{-}(2)$-module, but in that case we contradict 1.4. Thus, H has no trivial constituents in V.

Now let A be any elementary abelian subgroup of S such that $|A|^{2} \geq\left|V / C_{V}(A)\right|$. Suppose first that $|E|^{2}=\left|V / C_{V}(A)\right|$. Then we may take $A \leq E$ (by definition of E). In particular, if V is a natural $\Omega_{3}(q)$-module for H we have $A \leq E=T$, and then $A=E$. Thus, (iii) holds in this case. In the same way, if H has two non-trivial irreducible constituents in V then $A \leq E=T$. In the case that these constituents are natural $S L(2, q)$ - modules we find that $A=E$, and (ii) holds. In the case that these constituents are natural $O_{4}^{-}(2)$-modules we observe that $E \cap H$ induces a 2-transvection on each irreducible constituent, and so $|E \cap H|^{2}<\mid V / C_{V}(E \cap H \mid$. Thus $A \neq E \cap H$, and so (v) holds in this case. If V is a natural $\Omega_{4}^{-}(q)$-module or a natural $S L(2, q)$-module for H then we make no assertion about A, and we have (iv) or (i).

In order to complete the proof of the lemma, it remains to show that $|A| \leq\left|V / C_{V}(A)\right|$. Suppose false. Then (i) or (iv) holds, by what has already been proved, and we then observe that $A \neq T$. By [REF] we may assume that A is weakly closed in $C_{G}(A)$, and therefore $A \not \leq T$. Setting $A_{0}=A \cap T$ we then have $T \neq A_{0} \neq 1$ and $\left|A_{0}\right| \geq\left|V / C_{V}\left(A_{0}\right)\right|$. This condition excludes (i), and so (iv) holds. But $\left\langle A_{0}^{N_{H}(T)}\right\rangle=T$, and [REF] then implies that $|T| \geq\left|V / C_{V}(T)\right|$, which is not the case in (iv). Thus, we have a contradiction, and the lemma is proved.
6.9 Lemma. Assume Hypothesis 2, with H isomorphic to the commutator subgroup of a group of Lie type and of Lie rank equal to 1, in characteristic p. Assume that $H / Z(H) \nsupseteq P S L(2, q)$. If $G \cong{ }^{2} G_{2}(3)$ set $T=S$, and otherwise set $T=S \cap H$. Then $|A|^{2}=\left|V / C_{V}(A)\right|, A \leq H$, and one of the following holds.
(1) (i) $H \cong S U(3, q)$ and V is a natural module for H. Moreover, either $A=Z(T)$ and $[V, A, A]=0$, or else p is odd, $|A|=q^{2}$, and $[V, A, A] \neq 0$.
(2) (ii) $H \cong S z(q)$ and V is a natural module for H. Moreover, we have $A=Z(T)$ and $[V, A, A]=0$.

Proof. As in the proof of the preceding lemma, we fix an elementary abelian subgroup E of S such that $|E|^{2}\left|C_{V}(E)\right|$ is as large as possible and, subject to this condition, so that E maximal with respect to inclusion. Then 2.2 implies that E is weakly closed in $C_{G}(E)$ with respect to G.

Suppose first that $H T / Z(H)$ is isomorphic to ${ }^{2} G_{2}(q), q=3^{2 n+1}$. Surveying the Schur multipliers of these groups, we find that $Z(H)$ is a 3 -group, and so $Z(H)=1$. We observe right away that $q^{3}+1$ divides $|G|$, and hence $|V| \geq q^{6}$ by 2.1. Let D be a subgroup of $N_{H}(T)$ of order $q-1$, let d be an involution in D, and set $L=O^{2}\left(C_{H}(t)\right)$. Then $L \cong L_{2}(q)$, and $L \cap T$ is a complement in $\Omega_{1}(T)$ to $Z(T)$, by 6.1. Suppose that $E \not \leq T$. Then $6.1(\mathrm{~d})$ implies that $E=\Omega_{1}\left(C_{S}(a)\right)$ for any $a \in E-T$. We may choose $a \in E-T$ so that a centralizes an involution in $N_{H}(T)$, and so we may assume that $[a, d]=1$. Set $X=C_{E \cap T}(d)$. Then $|X|=q^{1 / 3}$. Here q is an odd power of 3 , so $q \neq 9$, and a theorem of L.E. Dickson (2.8.4 in [Gor]) implies that two conjugates of X suffice to generate L. As $E \cap T \not \leq X$ we then conclude from 6.1(b) that two conjugates of E suffice to generate $H E$. Then $|V|=\left|V / C_{V}(H E)\right| \leq 81 \cdot q^{8 / 3}$. As $q \geq 3^{3}$ in this case, we then have $|V| \leq q^{4 / 3} q^{8 / 3}=q^{4}$, contrary to $|V| \geq q^{6}$. We therefore conclude that $E \leq T$. As $\Omega_{1}(T)$ is abelian, E is normal in $N_{H}(T)$, and then $E=Z(T)$ or $E=\Omega_{1}(T)$.

If $E=Z(T)$ then two conjugates of E suffice to generate H, by 6.1(c), and so $|V| \leq$ q^{4}. We therefore conclude that $E=\Omega_{1}(T)$. Now two conjugates of E generate $H E$, and so $|V| \leq q^{8}$. Let U be a non- trivial, irreducible L-invariant section of V. Then $\left|U / C_{U}(E \cap L)\right| \leq q^{4}$ and since $E \cap L$ is a Sylow subgroup of L it follows from 6.4(b) that $|U| \leq q^{5}$. Set $F_{0}=\operatorname{End}_{L}(U), F=\mathbb{F}_{q}$, and denote by Γ_{0} the Galois group of F over F_{0}. Define the integers t and m by $\left|F: \mathbb{F}_{p}\right|=t$ and $\left|F: F_{0}\right|=m$, and set $r=t / m$. Set $\widetilde{U}=U \otimes_{F_{0}} F$, and let modules M_{i} and $N_{j},(1 \leq i, j \leq m)$ be given as in 6.6. Write d_{i} for the dimension of M_{i} over F. As $p=3$ we have $d_{i} \leq 3$, and there are exactly three basic irreducible modules for $S L(2, q)$. Thus, any M_{i} is either a trivial module, a natural
$S L(2, q)$-module, or a natural $\Omega_{3}(q)$-module for the universal cover $S L(2, q)$ of L. As $|U| \leq q^{5}, 4.6$ (c) yields

$$
\left(d_{1} \cdots d_{r}\right)^{m} \leq 5 m
$$

As \widetilde{U} affords a representation of $S L(2, q)$ with the scalar matrix $-I$ acting trivially, there are an even number of occurances of the natural $S L(2, q)$-module in the tensor decomposition of \widetilde{U} given by 6.6. As $\left|\Gamma_{0}\right|$ is odd, it follows that there are an even number (possibly 0) of the non-trivial modules N_{i} for which the associated basic irreducible modules M_{i} are natural $S L(2, q)$-modules. Taking d_{1} to be maximal among the numbers d_{i}, we then have either $d_{1}=3$ and $3^{m} \leq 5 m$, or else $d_{1}=d_{i}=2$ for some $i \neq 1$ and $4^{m} \leq 5 m$. As also m is odd, we conclude that $d_{1}=3, m=1, F_{0}=F$, and U is a natural $\Omega_{3}(q)$-module for L. As $|V| \leq q^{8}$ there are then at most two non-trivial irreducible constituents for L in V.

Suppose that there L has two non-trivial constituents in V. As $\left|U / C_{U}(E \cap L)\right|=q^{2}$ we then have $\left|V / C_{V}(E \cap L)\right|=\left|V / C_{V}(E)\right|=q^{4}$. Then $C_{V}(L) \leq C_{V}(E)$, and since $\langle L, E\rangle=H$, by $6.1(\mathrm{~b})$, we conclude that $C_{V}(L)=0$. Then 1.5 implies that there are no trivial constituents for L in V, and so $|V|=q^{6}$. As all involutions in H are conjugate, all have non-trivial fixed points on V, and so the involution d centralizes a subspace of V of order q^{3}. But one observes that for any involution $x \in L$ we have $\left|C_{U}(x)\right|=q$, and so $\left|C_{V}(x)\right|=q^{2}$. With this contradiction we conclude that L has a unique non-trivial constituent in V. Then $V=U \oplus C_{V}(L)$, by 1.3, and so $|E \cap L|^{2}=\left|V / C_{V}(L)\right|=q^{2}$. Then $|E|^{2}=\left|V / C_{V}(E)\right|=q^{4}$, and so $\left|C_{V}(E)\right| \geq q^{2}$. As $C_{V}(E) \leq C_{V}(E \cap L)=$ $C_{U}(E \cap L) \oplus C_{V}(L)$, it follows that $C_{V}(L) \cap C_{V}(E) \neq 0$, and so $C_{V}(H) \neq 0$. We therefore conclude that H is not isomorphic to ${ }^{2} G_{2}(q)$.

It remains to treat the cases where $H / Z(H)$ is a Suzuki group or a 3-dimensional unitary group. Again, let U be a non-trivial, irreducible H-invariant section of V and set $F_{0}=\operatorname{End}_{H}(U)$. If $H \cong S z(q)$ set $F=\mathbb{F}_{q}$, while if $H / Z(H) \cong U_{3}(q)$ set $F=\mathbb{F}_{q^{2}}$. Set $\widetilde{U}=U \otimes_{F_{0}} F$, and let $\Gamma, \Gamma_{0}, M_{i}, N_{i}, d_{i}, m, r$, and t be given as in 6.6.

Suppose that $p=2$ and that $H \cong S z(q)$. Here we have $S=T$, by $6.2(\mathrm{c})$. As $\Omega_{1}(T)=Z(T)$, and since $N_{H}(T)$ acts irreducibly on $Z(T)$, we then have $E=Z(T)$. Then two conjugates of E suffice to generate H, by $6.2(\mathrm{~b})$, and since $C_{V}(H)=0$, it follows that $|V| \leq q^{4}$. Then 6.6 yields $\left(d_{1} \cdots d_{r}\right)^{m} \leq 4 m$. But also, as $q^{2}+1$ divides $|H|$, it follows from 2.1 that $d_{i} \geq 4$ for any i for which $d_{i} \neq 1$. As m is odd, we then have $m=1$ and $d_{i}=1$ for all but one index i. That is, U is an algebraic conjugate of a basic irreducible module for H, of dimension 4 over F. The basic irreducible modules for H are obtained by restriction from those for $S p(4, q)$, by 4.5 , so 4.7 implies that U is a natural $S p(4, q)$-module for H. One then observes that $\left|U / C_{U}(Z(T))\right|=|E|^{2}$, so $A=E$, and $V=U+C_{V}(E)$. As $H=O^{2}(H)$ we then have $U=[V, H]$, and then 1.2 implies that $U=V$. Thus, (ii) holds in this case.

Suppose next that $H / Z(H) \cong U_{3}(q)$. Then $q^{3}+1$ divides $|H|$, and so $|V| \geq q^{6}$, by 3.1. Consider first the case where $E \not \approx T$. Then $6.3(\mathrm{c})$ shows that $E=(E \cap T)\langle a\rangle$ where a induces a field automorphism on H. Suppose further that p is odd, so that $C_{T}(a)$ is isomorphic to a Sylow p - subgroup of $U_{3}\left(q^{1 / p}\right)$. In particular, we note that $q \neq 9$. Let X
be the largest subgroup of T for which $[X, a, a]=1$. Then $[X \cap Z(T), a]=C_{Z(T)}(a)=$ $C_{Z(T)}(E)$, and since E is weakly closed in $C_{H}(E)$ we then have $C_{Z(T)}(a) \leq E$. We claim that $E \cap T \not \approx Z(T)$. Suppose false, and let $x \in X-Z(T)$. Then $[x, a]=[x, E] \leq C_{T}(E)$, and so $\left\langle E, E^{x}\right\rangle$ is elementary abelian and properly contains E. This is contrary to E being weakly closed in its centralizer, and proves the claim.

We next claim that $H E$ is generated by two conjugates of E. Indeed, we have $E \cap$ $Z(T) \leq L$ where L is a subgroup of H isomorphic to $S L(2, q)$. As q is odd and $q \neq 9$, it follows from [Gor, 2.8.4] that L is generated by two conjugates of $E \cap Z(T)$, and then 6.3 (b) yields our claim. As $|E| \leq p \cdot q^{2 / p}$ it follows that $|V| \leq p^{4} \cdot q^{8 / p}$. As $q \geq p^{3}$ we then have $|V| \leq q^{4}$. But we have seen already that $|V| \geq q^{6}$, so we have a contradiction at this point. On the other hand, suppose that $E \nexists T$ and that $p=2$. Then $\Omega_{1}(T)=Z(T)$, and we conclude from 6.3 (c) that $E \cap T=Z(T)$. Let L be a subgroup of H, generated by $Z(T)$ and a conjugate of $Z(T)$, with $L \cong S L(2, q)$. If L is E-invariant then E induces inner automorphisms on L, and there is then an element a_{1} of $E-Z(T)$ such that $\left[L, a_{1}\right]=1$, and we have $L_{1}=C_{H}\left(a_{1}\right)$. As $|E-Z(T)|=q$, and since there are at least q^{2} conjugates of L under T, we may therefore choose L so that L is not E-invariant. It then follows from $6.3(\mathrm{~b})$ that two conjugates of E suffice to generate $H E$. We then obtain a contradiction to $|V| \geq q^{6}$, just as in the case where p is odd.

We now have $E \leq T$. Suppose that $E \leq Z(T)$. As $N_{H}(T)$ acts irreducibly on $Z(T)$ we then have $E=Z(T)$. Now $6.3(\mathrm{~b})$ implies that three conjugates of E suffice to generate H, and so $|V| \leq q^{6}$. Here $F=\mathbb{F}_{q^{2}}$, so 6.6 yields $\left(d_{1} \cdots d_{r}\right)^{m} \leq 3 m$. But also $d_{i} \geq 3$ if $d_{i} \neq 1$, so we obtain $m=1$, and U is a natural $S U(3, q)$-module for H. Here $|E|^{2}=\left|V / C_{V}(E)\right|$, so $U=[V, H]$, and then $U=V$, by 1.2. Further, E acts quadratically on V, and since $\left|E_{0}\right|^{2}<\left|V / C_{V}\left(E_{0}\right)\right|$ for every proper non- identity subgroup E_{0} of E, we conclude that $A=Z(T)$ if $A \leq Z(T)$.

On the other hand, suppose that $E \not \leq Z(T)$. As already mentioned, $Z(T)=\Omega_{1}(T)$ if $p=2$, so we must have p odd in this case. Now $q<|E| \leq q^{2}$, and two conjugates of E suffice to generate H. Then $|V| \leq q^{8}$, and so $\left(d_{1} \cdots d_{r}\right)^{m} \leq 4 m$. Again, as $d_{i} \geq 3$ for all i for which $d_{i} \neq 1$, we obtain $m=1$ and $U=V$ is an irreducible $F H$-module with $\operatorname{dim}_{F}(U)=3$ or 4 . By $4.5, V$ is the restriction to H of an irreducible module for the group $H^{*}=S L(3, F)$. Regard H as a subgroup of H^{*}. Then T is contained in two nonconjugate parabolic subgroups P_{1} and P_{2} of H^{*}, and we have $Z(T) \leq O_{p}\left(P_{1}\right) \cap O_{p}\left(P_{2}\right)$. Also, we have $P_{i}=\left\langle E^{P_{i}}\right\rangle$ for both $i=1$ and 2 , and not both P_{1} and P_{2} centralize $C_{V}(Z(T))$. It follows that $C_{V}(Z(T)) \neq C_{V}(E)$. But $\operatorname{dim}_{F}\left(C_{V}(E) \geq 2\right.$ since $|E|^{2} \geq$ $\left|V / C_{V}(E)\right|$, so we conclude that $\operatorname{dim}_{F}\left(C_{V}(Z(T)) \geq 3\right.$. Then $\left|V / C_{V}(Z(T))\right|=q^{2}$, and since three conjugates of $Z(T)$ generate H we obtain $|V| \leq q^{6}$. This contradiction shows that $\operatorname{dim}_{F}(V)=3$. That is, V is the restriction to H of a natural $S L(3, F)$-module, which is to say that V is a natural $S U(3, q)$-module for H. Then $|E|=q^{2}$, in order to achieve $|E|^{2} \geq\left|V / C_{V}(E)\right|$.

Since E was chosen so that $|E|^{2}\left|C_{V}(E)\right|$ is as large as possible, we now conclude that $|A|^{2}\left|C_{V}(A)\right|=|V|$. The maximality of E then yields $A \leq E$ for some choice of E. Then $A \leq H$, and since $\left|E_{0}\right|^{2}<\left|V / C_{V}\left(E_{0}\right)\right|$ for any non-identity subgroup E_{0} of E other than E and $Z(T)$, we conclude that $A=Z(T)$ or $A=E$. Thus (i) holds, and the lemma is
proved.
We now consider the case in which A acts quadratically on V.
6.10 Lemma. Assume Hypothesis 4, and suppose that $H / Z(H)$ is a simple group of Lie type in characteristic p and of Lie rank 1 . Let A be a non-identity subgroup of S such that $|A|^{2} \geq\left|V / C_{V}(A)\right|$ and such that $[V, A, A]=0$. Then one of the following holds.
(i) $H \cong S L(2, q), V$ is a natural $S L(2, q)$-module for H, and $A \leq H$. If $|A| \geq$ $\left|V / C_{V}(A)\right|$ then equality holds, and A is a Sylow subgroup of H.
(ii) $H \cong S L(2, q), V$ is a direct sum of two natural $S L(2, q)$-modules for H, A is a Sylow subgroup of H, and $|A|^{2}=\left|V / C_{V}(A)\right|$.
(iii) $H \cong L_{2}\left(q^{2}\right)$ and V is a natural $\Omega_{4}^{-}(q)$-module for H. If $A \leq H$ then $|A|^{2}=$ $\left|V / C_{V}(A)\right|$ and A is conjugate to a Sylow p-subgroup of a subgroup K of H with $K \cong L_{2}(q)$. If $|A|^{2}>\left|V / C_{V}(A)\right|$ then $p=2,|A|^{2}=2 \cdot\left|V / C_{V}(A)\right|$, and either:
(a) $A=(A \cap H)\langle a\rangle$, where a induces a field automorphism on H and where $A \cap H$ is a Sylow subgroup of $C_{H}(a)$, or
(b) $q=4,|A|=2$, and A induces a transvection on V.
(iv) $G \cong \operatorname{Sym}(5), V$ is a direct sum of two natural $O_{4}^{-}(2)$-modules for $G,|A|^{2}=$ $\left|V / C_{V}(A)\right|$, and $A \not \leq H$.
(v) $H \cong S U(3, q)$, V is a natural module for $H,|A|^{2}=\left|V / C_{V}(A)\right|$, and A is the center of a Sylow subgroup of H.
(vi) $H \cong S z(q)$, V is a natural module for $H,|A|^{2}=\left|V / C_{V}(A)\right|$, and A is the center of a Sylow subgroup of H.

Proof. Suppose that $H \cong S L(2, q)$, that H has more than one non- trivial irreducible constituent in V. Then 6.8 shows that there are just two such constituents, and no trivial constituents, for H in V. Suppose that the constituents are natural $S L(2, q)$ - modules for H. Then 6.8 says that A is a Sylow subgroup of H, and then V is a completely reducible H-module, by 1.6. Thus (ii) holds in this case. On the other hand, suppose that not both of the irreducible constituents for H in V are natural $S L(2, q)$-modules for H. Then 6.8 says that $q=4$, that $A \nsubseteq H$, and that both irreducible constituents are natural $O_{4}^{-}(2)$-modules for G. Let a be an element of $A-H$. If $|A|=2$ then $A=\langle a\rangle$ and a induces a 2-transvection on V. Suppose instead that $|A|=4$. Then $\left|C_{V}(A)\right|=16$ and for any irreducible constituent U for G in V we observe that $\left|C_{U}(A)\right|=4$. Since a commutes with an element g of H of order 3 , and A is not g-invariant, it follows that $\left|C_{V}(a)\right|=64$, and that a is a 2-transvection in this case as well. Let K be a subgroup of G generated by three conjugates of a, with $K \cong \operatorname{Sym}(4)$. Then, in any case, we have $\left|V / C_{V}(K)\right|=4$, and if V_{0} is a fixed irreducible submodule of V we may choose $v \in C_{V}(K)$ so that $v \notin V_{0}$. Now $\left|v^{G}\right|=5$, and so $\left\langle v^{G}\right\rangle$ is a proper subspace of V. This shows that V is completely reducible, and thus (iv) holds in this case.

We are now reduced to the case where V is irreducible. If $H \cong L_{2}(q)$ and V is a natural $\Omega_{3}(q)$-module for H then $A \leq H$, by 6.8 . But here p is odd and no non-identity element of H acts quadratically on V, so Hypothesis (4) is violated in this case. If $H \cong S L(2, q)$ and V is a natural $S L(2, q)$-module for H then (i) follows. Assume that
$H \cong L_{2}\left(q^{2}\right)$ and that V is a natural $\Omega_{4}^{-}(q)$-module for H. Suppose further that $A \leq H$. No element of H centralizes a 3-dimensional \mathbb{F}_{q}-subspace of V, so we have $|A| \geq q$. Let K be a subgroup of H with $K \cong L_{2}(q)$ and with $K \cap S$ a Sylow p-subgroup of K. Set $B=K \cap S$. The conjugates of $B^{\#}$ under $N_{H}(T)$ then form a partition of $(H \cap S)^{\#}$. Here B acts quadratically on V, and for any $b \in B^{\#}$ we have $C_{V}(b)=[V, b]=[V, B]=C_{V}(B)$ is a 2-dimensional subspace of V. Let C be a conjugate of C under $N_{H}(H \cap S), C \neq B$. Then $H \cap S=B C$, and so $C_{V}(B C)$ is of dimension 1. Then $C_{V}(B) \neq C_{V}(C)$, and so $[V, b, c] \neq 0$ for any non-identity elements $b \in B$ and $c \in C$. We conclude that A is conjugate to B and that $|A|^{2}=\left|V / C_{V}(A)\right|$. On the other hand, suppose that $A \not \leq H$ and that $|A|^{2}>\left|V / C_{V}(A)\right|$. Then the foregoing shows that either $A \cap H=1$, or $|A \cap H|^{2}=\left|V / C_{V}(A \cap H)\right|=\left|V / C_{V}(A)\right|$ and that $A \cap H$ is conjugate to the group B given as above. If $A \cap H \neq 1$ we then have (iii)(a), while if $A \cap H=1$ then $\left|V / C_{V}(A)\right|=2$ and we have (iii)(b). Thus (iii) holds if V is a natural $\Omega_{4}^{-}(q)$-module for H.

It remains to consider the cases in which $H / Z(H)$ is not a linear group. We then have (v) or (vi), as follows from 6.9 and from elementary properties of the natural modules for $S U(3, q)$ and for $S z(q)$.

Section 7: Lie rank 2 in characteristic p

7.1 Lemma. Let $G=L_{3}(2)$ and let W be an indecomposable G-module of dimension 4 over \mathbb{F}_{2}. Then there exists a fours group $A \leq G$ with $\left|C_{W}(A)\right|=2$.
Proof. Since G is generated by three involutions, and all involutions in G are conjugate, no involution induces a transvection on W. Put $Z=C_{W}(G)$, and suppose first that $Z \neq 0$. Then $|Z|=2$ and W / Z is a natural G-module. Let P be a rank- 1 parabolic subgroup of G such that $C_{W / Z}(P)=0$, and put $A=O_{2}(P)$. Then $C_{W / Z}(A)$ is a fours group on which P acts irreducibly, and since A contains no transvections we conclude that $C_{W}(A)=Z$. On the other hand, suppose that $Z=0$. Then W has a submodule U of order 8 , on which every involution in G act as a transvection. Now let P be the rank-1 parabolic subgroup with $\left|C_{U}(P)\right|=2$, and put $A=O_{2}(P)$. Then $C_{U}(A)=C_{U}(P)$, and since A contains no transvections on W we have $C_{W}(A) \leq U$. Thus $\left|C_{W}(A)\right|=2$.
7.2 Lemma. There are exactly four isomorphism classes of irreducible modules for Alt (6) over \mathbb{F}_{2}. These classes are represented by the principal module 1, a natural $S p(4,2)$-module U, the module U^{\prime} contragredient to V, and a module V of dimension 8 which is a direct summand of the Steinberg module for $S p(4,2)$

Proof. Set $H=\operatorname{Alt}(6)$ and $G=S p(4,2)$, and identify H with $[G, G]$. There are four 2-regular conjugacy classes in H, and so, by a well known result of Brauer, there are also four isomorphism classes of irreducible modules for H. The modules $1, U$, and U^{\prime} represent three of these classes (with U and U^{\prime} distinguishable by their restrictions to subgroups of order 3 in H). Let W be the Steinberg module for G. Then W is the reduction $\bmod 2$ of an irreducible complex representation of G, written over \mathbb{Z}, and since H has no irreducible characters of degree 16 we conclude that W is reducible for H.

Let S be a Sylow 2-subgroup of G, and set $T=S \cap H$. Then S acts freely on W, and so $\operatorname{dim}\left(C_{W}(T)\right)=2$. But W is a direct sum of G-conjugate, irreducible H-submodules, so we conclude that W has an H-submodule V of dimension 8 . Now $\left\{1, U, U^{\prime}, V\right\}$ is a complete set of representatives of the isomorphism classes of $\mathbb{F}_{2} H$-modules.
7.3 Lemma. Assume Hypothesis 2 with $p=2$, and assume that $H / Z(H) \cong L_{3}\left(2^{n}\right)$ or $S p\left(4,2^{n}\right)^{\prime}$. Suppose further that $Z(H) \neq 1$. Then $H \cong S L\left(3,2^{n}\right)$.
Proof. Suppose false. As $O_{2}(H)=1$, a survey of the Schur multipliers of the groups in question yields $H / Z(H) \cong \operatorname{Alt}(6)$ and $|Z(H)|=3$. Without loss, V is irreducible, and then V may be regarded as a vector space over the field $F=\mathbb{F}_{4}$. Evidently $\operatorname{dim}_{F}(V) \geq 3$. Also, we may assume that A has been taken to be as small as possible, subject to the condition that $|A|^{2} \geq\left|V / C_{V}(A)\right|$. Therefore:
(1) Let B be a subgroup of index 2 in A. Then $\left|C_{V}(B) / C_{V}(A)\right| \leq 2$, or $B=1$.

Let X_{1} and X_{2} be the two maximal subgroups of H containing $S \cap H$, and set $T=$ $N_{S}\left(X_{1}\right)$. Then also $T=N_{S}\left(X_{2}\right)$, and since S is contained in a unique maximal subgroup of G we have $|S: T|=2$. Set $Z=C_{V}(S \cap H)$, and set $U_{i}=\left\langle Z^{X_{i}}\right\rangle,(i=1,2)$. As V is irreducible we have $C_{V}(H)=0$, and then since X_{1} and X_{2} are fused by S, we conclude that $\operatorname{dim}_{F}\left(U_{i} / Z\right) \geq 1,(i=1,2)$. As $\left[U_{i}, O_{2}\left(X_{i}\right)\right]=0$, we have $\left[U_{1}+U_{2}, Z(S \cap H)\right]=0$, and so $V \neq U_{1}+U_{2}$, and $\operatorname{dim}_{F}(V) \geq 4$.

Let R be a Sylow 3 -subgroup of H. Then $N_{H}(R)$ contains a representative from each conjugacy of involutions in $H T$, and one observes that all involutions in $H T-H$ act non-trivially on $Z(H)$. That is, there does not exist a central extension of the form 3 Sym (6).

Suppose that $A=\langle a\rangle$ is of order 2. Then a is a 2 -transvection, and since $\operatorname{dim}_{F}(V) \geq 3$ it follows from the preceding paragraph that a commutes with $Z(H)$. Suppose $a \in T$. Then $a \in H$, and three conjugates of a generate H, so $|V|=\left|V / C_{V}(H)\right| \leq 4^{3}$. This is contrary to $\operatorname{dim}_{F}(V) \geq 4$, so we conclude that $a \notin T$. Then a interchanges the two fours groups in $S \cap H$, and so $(S \cap H) A$ is dihedral of order 16. Then $Z(H)(S \cap H) A$ is a maximal subgroup of $H A$, and so again, three conjugates of A suffice to generate $H A$, with a contradiction as before. We therefore conclude that $|A|>2$.

Suppose that $A \not \leq T$, and let $a \in A-T$. Then $C_{S}(a) \leq Z(S \cap H)$, and so $\left[U_{1}+U_{2}, A \cap\right.$ $T]=0$. But a interchanges U_{1} and U_{2}, so $\left|\left(U_{1}+U_{2}\right) / C_{U_{1}+U_{2}}(a)\right| \geq 4$. This is contrary to (1), so we conclude that $A \leq T$. Now suppose that $A \not \leq H$, and let $a \in A-H$. Then a centralizes an \mathbb{F}_{2}-hyperplane of $C_{V}(A \cap H)$, by (1), and so $\operatorname{dim}_{F}\left(C_{V}(A \cap H)=1\right.$. Thus $\left|C_{V}(A)\right|=2$, and since $|A| \leq 8$ we obtain $|V| \leq 2^{7}$. but then $\operatorname{dim}_{F}(V)=3$, and we have the same contradiction as before. Thus $A \leq H$, and $|A|=4$. Now $A \leq O_{2}\left(X_{i}\right)$ for some i, and we may take $i=1$. By conjugating A within X_{1} we may assume also that $A \not \leq O_{2}\left(X_{2}\right)$. Set $B=A \cap O_{2}\left(X_{2}\right)$. Then $|B|=2$ and $C_{V}(B) \geq U_{1}+U_{2}$. As $O^{2^{\prime}}\left(X_{2}\right)$ acts non-trivially on U_{2}, we have $\left[U_{2}, A\right] \neq 1$, and then $\left|U_{2} / C_{U_{2}}(A)\right| \geq 4$. This contradicts (1), and the lemma is thereby proved.
7.4 Lemma. Let $L=L_{3}(q)$ or $S p(4, q), q=2^{n}$, and identify L with the group of inner automorphisms of L. Let t be a non-inner automorphism of L of order 2. Then all
involutions in Lt are conjugate via L. Moreover, the following hold.
(a) If $L=L_{3}(q)$ and n is odd, and t is conjugate to a standard graph automorphism of L, and $C_{L}(t) \cong L_{2}(q)$.
(a) If $L=L_{3}(q)$ and n is even, then t is conjugate to a standard graph automorphism (with $C_{L}(t) \cong L_{2}(q)$), or a field automorphism (with $C_{L}(t) \cong L_{3}\left(q^{1 / 2}\right)$), or a graph-field automorphism (with $C_{L}(t) \cong U_{3}\left(q^{1 / 2}\right)$.
(c) If $L=S p(4, q)$ and n is odd, then t is conjugate to an automorphism of L which induces a non-trivial polarity on the Dynkin diagram of L, and $C_{L}(t) \cong S z(q)$.
(d) If $L=\operatorname{Sp}(4, q)$ and n is even, then t is conjugate to a field automorphism of L, and $C_{L}(t) \cong S p\left(4, q^{1 / 2}\right)$.

Proof. Let \bar{F} be an algebraic closure of $F=\mathbb{F}_{q}$, set $\bar{L}=L_{3}(\bar{F})($ resp. $S p(4, \bar{F})$), and view L as the set of fixed-points for a Steinberg endomorphism σ of \bar{L}. Fix a σ-invariant Borel subgroup \bar{B} of \bar{L}, a σ-invariant maximal torus \bar{T} of \bar{B}, let Σ be the root system determined by \bar{T}, and let Π be the fundamental system of roots determined by \bar{T} and \bar{B}. Let \bar{S} be the unipotent radical of \bar{B}, and set $S=C_{\bar{S}}(\sigma)$, so that S is a Sylow 2-subgroup of L. If $n=2 m$ is even, set $r=2^{m}$, and let ϕ be the standard field automorphism of L of order 2, given by $\left(x_{\alpha}(v)\right)^{\phi}=x_{\alpha}\left(v^{r}\right)$ for $\alpha \in \Sigma$ and $v \in F$. Let ρ be the unique automorphism (resp. angle-preserving, length-changing bijection) of Σ of order 2 which preserves Π, and let γ be the automorphism of L given, in the case of $L=L_{3}(q)$, by

$$
x_{\alpha}(v)^{\gamma}=x_{\alpha^{\rho}}(v),
$$

and in the case of $L=S p(4, q)$ by

$$
x_{\alpha}(v)^{\gamma}=\left\{\begin{array}{cc}
x_{\alpha^{\rho}}(v) & \text { if } \alpha \text { is long }, \\
x_{\alpha^{\rho}}\left(v^{2}\right) & \text { if } \alpha \text { is short. }
\end{array}\right.
$$

If $L=L_{3}(q)$ set $\tau=\gamma$, and if $L=S p(4, q)$ set $\tau=\gamma^{n}$. Notice that if $L=S p(4, q)$ we have $\operatorname{Aut}(L)=\operatorname{Inn}(L)\langle\gamma\rangle, \tau=1$ if n is even, and τ is an involution if n is odd. Further, if $L=S p(4, q)$ and n is odd then $C_{L}(\tau) \cong S z(q)$. (See [GLS3, 2.5.1].) It therefore only remains to show that all involutions in $S t$ are conjugate via L.

Identify L with $\operatorname{Inn}(L)$. Let E and F be the two maximal (under inclusion) elementary abelian subgroups of S, and set $Z=E \cap F$. Then $Z=Z(T)$. Suppose first that $F=E^{t}$. Then either $t \in S \tau$ or $L \cong L_{3}(q)$ and $t \in S \tau \phi$. Set $J=\left\{z x x^{t} \mid z \in C_{Z}(t), x \in E\right\}$. Then J is the set of elements of S inverted by t, and so $J t$ is the set of involutions in St. Let $\mu: E \times C_{Z}(t) \longrightarrow J$ be the mapping given by $(x, z) \mapsto z x x^{t}$. Then for any $(x, z) \in E \times C_{Z}(t)$ we have $\mu^{-1}\left(z x x^{t}\right)=\left\{\left(x u, z u u^{t}\right) \mid u \in Z\right\}$. Thus $|J|=\left|E \times C_{Z}(t)\right| /|Z|$. If $t \in S \tau$ we then have $|J|=q^{2}$, while if $L=L_{3}(q)$ and $t \in S \tau \phi$ we have $|J|=q^{3 / 2}$. Thus, $|J t|=|J|=\left|S: C_{S}(\tau)\right|$ if $t \in S \tau$, and again $|J t|=|J|=\left|S: C_{S}(\tau \phi)\right|$ if $t \in S \tau \phi$. It follows that $t \in \tau^{S}$ or $(\tau \phi)^{S}$, and so we are done if t interchanges E and F.

We are now reduced to the case where $t \in S \phi$. Let P be a maximal parabolic subgroup of L containing S, set $X=O^{2^{\prime}}(P)$, and take $E=O_{2}(P)$. Then P is ϕ-invariant, and
$\left|C_{S / E}(\phi)\right|=|S / E|^{1 / 2}$. It follows that the number of involutions in $(S / E) \phi$ is equal to the number of S / E-conjugates of ϕ, and so we may take $t \in E \phi$. But also $\left|C_{E}(\phi)\right|=|E|^{1 / 2}$, and so the number of involutions in $E \phi$ is equal to $\left|\phi^{E}\right|$. Thus t and ϕ are conjugate via S, and the lemma is proved.
7.5 Proposition. Assume Hypothesis 3 with $p=2$, and assume that H is isomorphic to the commutator subgroup of a group of Lie type in characteristic p, with Lie rank greater than 1. Then $p=2$, and $H A \cong S L(3, q)$ or $S p(4, q)$, with $q=2^{n}$. Moreover, there exists an element s of S which interchanges the two maximal parabolic subgroups of $H A$ containing $S \cap H A$, and one of the the following holds.
(i) $H \cong S L(3, q)$ and V is the direct sum of H-submodules U and U^{s}, where U is a natural $S L(3, q)$-module for H. If $A \not 又 H$ then $q=2,|A|=4,[V, A, A] \neq 0$, and $|A|^{2}=\left|V / C_{V}(A)\right|$.
(ii) $H A \cong \operatorname{Sp}(4, q)$ and V is the direct sum of $H A$-submodules U and U^{s}, where U is a natural $\operatorname{Sp}\left(4,2^{n}\right)$-module for H. Further, we have $|A|^{3 / 2}<\left|V / C_{V}(A)\right|$, and if $[V, A, A]=0$ then $|A|^{2}=\left|V / C_{V}(A)\right|$ and A is conjugate in G to $Z(S \cap H A)$.

Proof. By 5.9 we have $p=2$ and $H / Z(H) \cong L_{3}(q)$ or $S p(4, q)\left(q=2^{n}\right)$, or $\operatorname{Alt}(6)$. If H is not isomorphic to $\operatorname{Alt}(6)$ set $T=S \cap H$, and if $H \cong \operatorname{Alt}(6)$ set $T=(S \cap H) C_{S}(S \cap H)$. Thus, either $T=S \cap H$ or $H T \cong S p(4,2)$. Let P_{1} and P_{2} be the two maximal subgroups of $H T$ containing T. We use the following notation:

$$
H_{i}=O^{2^{\prime}}\left(P_{i}\right), \quad Z_{i}=C_{S}\left(H_{i}\right), \quad Q_{i}=O_{2}\left(H_{i}\right), \text { and } V_{i}=\left\langle C_{V}(T)^{H_{i}}\right\rangle
$$

For the sake of easy reference, we record also the following basic facts.
(1) Either $Z_{i} \leq H_{i}$ or $H T \cong S p(4,2)$.
(2) $H_{i} / Q_{i} \cong S L(2, q)$, and Q_{i} / Z_{i} is a natural $S L(2, q)$-module for H_{i} / Q_{i}.

We list a few well known (and easily checked) facts about the Sylow 2-subgroups of $S L(3, q), S p(4, q)$, and $\operatorname{Alt}(6)$, as follows.
(3) We have $T=Q_{1} Q_{2}, Z(T)=Q_{1} \cap Q_{2}$, and every elementary abelian subgroup of T is contained in Q_{1} or in Q_{2}.

As S is contained in a unique maximal subgroup of G, we have the following result.
(4) There exists $s \in S$ with $\left(H_{1}\right)^{s}=H_{2}$, and with $\left(H_{2}\right)^{s}=H_{1}$. In particular, the number c of non-trivial irreducible constituents for H_{i} in V_{i} is independent of i.

Let X be a non-central chief factor for some H_{i} in V, and let B be a non-identity
subgroup of T. Then for any $i, i=1$ or $2, B$ is conjugate in G to a subgroup B_{1} of T with $B_{1} \not \leq Q_{1}$. We have $|X| \geq q^{2}$ and $\left|X / C_{X}\left(B_{1}\right)\right| \geq q$, by 6.8. Thus:
(5) For any non-identity subgroup B of T, we have $\left|V / C_{V}(B)\right| \geq q^{c}$.

Notice that $\left[V_{1}+V_{2}, Z(T)\right]=0$. Then $V \neq V_{1}+V_{2}$, and so $\left[V, O^{2}\left(H_{i}\right)\right] \not \leq V_{i}$. Since $C_{V}(H)=0$, we also have $\left[V_{i}, O^{2}\left(H_{i}\right)\right] \neq 0$. Then (5) yields the following result.
(6) $c \geq 2$, and $\left|V / C_{V}(B)\right| \geq q^{2}$ for any non-identity subgroup B of T.

We now choose an elementary abelian subgroup E of S in the following way. If there exists a non-identity elementary abelian subgroup F of T, with $|F|^{2} \geq\left|V / C_{V}(F)\right|$, then we take $E \leq T$ so that $|E|^{2}\left|C_{V}(E)\right|$ is as large as possible and, subject to these conditions, so that $|E|$ is as large as possible. Otherwise, if no such subgroup F of T exists, we take E so that $|E|^{2}\left|C_{V}(E)\right|$ and then $|E|$ are as large as possible. Then E is weakly closed in $C_{G}(E)$, by 3.2. In particular, E is invariant under $N_{T}\left(C_{S}(E)\right)$. As $C_{S}(T) \leq T$ it follows that $E \cap T \neq 1$. Notice that our way of choosing E then yields the following information.
(7) If $E \not \leq T$ then

$$
|V|>|F|^{2}\left|C_{V}(F)\right|<|E|^{2}\left|C_{V}(E)\right|
$$

for any non-identity subgroup F of $E \cap T$.

Let W be a non-trivial, irreducible G-invariant section of V and let U be an irreducible $H T$-submodule of W. Set $F_{0}=E n d_{H T}(U), F=\mathbb{F}_{q}$, and note that $F_{0} \leq F$, by 6.4(a). Denote by Γ_{0} the Galois group of F over F_{0}, and by Γ the full automorphism group of F. Write $\left|F_{0}\right|=q_{0}=2^{m}$, and set $r=\left|\Gamma_{0}\right|$. Thus $n=m r$. Set $\widetilde{U}=Y \otimes_{F_{0}} F$. Let the modules M_{i} and $N_{i}, 1 \leq r$, be given as in 6.6, and set $d_{i}=\operatorname{dim}_{F}\left(M_{i}\right)$ and $d=d_{1} \cdots d_{r}$. Further, let the indexing be given so that $d_{1} \geq \cdots \geq d_{r}$, and denote by c_{0} the number of irreducible constituents for $H T$ in W.

Suppose first that $H T=H E$ and that $H T$ is not isomorphic to $\operatorname{Alt}(6)$. That is, suppose that $H E$ is a group of Lie type. With $E \leq T$, it follows from (3) that $E \leq Q_{i}$ for some i, (say $i=1$), and with $H T=H E$ we then have $\left\langle E^{H_{1}}\right\rangle=Q_{1}$, and thus $E=Q_{1}$. Let $s \in S$ be as in (4). Then $E E^{s}=T$ and $E \cap E^{s}=Z(T)$. Then 2.2 implies that $|T|^{2}\left|C_{V}(T)\right| \geq|E|^{2}\left|C_{V}(E)\right|$. In particular, we have $|T|^{2} \geq\left|V / C_{V}(T)\right|$ and $|T|^{2} \geq\left|W / C_{W}(T)\right|$. As $\left|C_{U}(T)\right|=q_{0}$, by $6.4(\mathrm{~b})$, we then have $|W| \leq\left(q_{0}\right)^{c_{0}} q^{6}$ (resp. $\left.|W| \leq q_{0}^{c_{0}} q^{8}\right)$ if $H / Z(H) \cong L_{3}(q)$ (resp. $H T \cong S p(4, q)$). By $6.6(\mathrm{c})$ we have $d^{m} \leq 6 m+1$ (resp. $8 m+1$). Here $d_{1}=3$ or $d_{1} \geq 8$ (resp. $d_{1}=4$ or $d_{1} \geq 16$) by 6.7 , so in fact $d_{1}=3$ (resp. $d_{1}=4$), and if $m>1$ then $m=2$ and $d_{i}=1$ for $1<i \leq r$. Further, if $m=1$ and $r>1$ it follows that $r=2$. Thus, we have proved the following result.
(8) Suppose that $H T=H E \nsubseteq A l t(6)$. Then $H T / Z(H T) \cong L_{3}(q)(\operatorname{resp} S p(4, q))$ and one
of the following holds.
(i) U is a natural module of dimension 3 (resp. 4) for $H A$.
(ii) $q=q_{0}^{2}$, and $\widetilde{U} \cong M \otimes_{F} M^{\phi}$ where M is a natural module for $H T$, and where $\langle\phi\rangle=\Gamma_{0}$.

With U as in (8i) or (8ii) one observes that $C_{U}\left(Q_{1}\right) \not \not C_{U}\left(Q_{2}\right)$, so U is not invariant under s. Then W contains $U \oplus U^{s}$, and we obtain

$$
6 m+2 \geq 2 \cdot 3^{m} \quad\left(\text { resp. } 8 m+2 \geq 2 \cdot 4^{m}\right)
$$

It follows that $m=1$ and that (8 i) holds. Moreover, we have shown that any non-trivial, irreducible, $H E\langle s\rangle$-invariant section of V is isomorphic to $U \oplus U^{s}$, and from this, and from the preceding estimates, it follows that there is a unique such section. Then 1.2 yields $V \cong U \oplus U^{s}$.

Suppose now that $H E \cong S p(4, q)$, and then suppose that $A \leq T$. Then $A \leq Q_{i}$ for some i, and we set $A *=\left\langle A^{H_{i}}\right\rangle$. Thus $A *=Z\left(H_{i} T\right)$, or $O_{2}\left(H_{i} T\right)$, or $O_{2}\left(H_{i}\right)$, and it is now a straightforward matter to check that $|A *|{ }^{3 / 2}\left|C_{V}(A *)\right|<|V|$. Then also $|A|^{3 / 2}\left|C_{V}(A)\right|<|V|$, by 2.2. Assume that $|A|^{3 / 2}\left|C_{V}(A)\right| \geq|V|$, and let A be minimal for this property. Then $A \not \leq T$ and we may take A so that $\left|A_{0}\right|^{3 / 2}\left|C_{V}\left(A_{0}\right)\right|<|A|^{3 / 2}\left|C_{V}(A)\right|$ for any proper subgroup A_{0} of A. Then $N_{A}(U)=N_{A}\left(U^{s}\right)=A$. Then any element a of $A-T$ induces a non-identity field automorphism on L, by 7.4. Then $\left[C_{V}(T), a\right] \neq 0$, and so $A \cap T=A$, contrary to what has just been shown. Thus $|A|^{3 / 2}\left|C_{V}(A)\right|<|V|$.

Continuing to assume that $H E \cong S p(4, q)$, suppose now that $A \leq H E$ and that $[V, A, A]=0$. Inspection of the structure of U and of U^{s} allows us to fix the indices so that $C_{U}\left(H_{1}\right) \neq 0$ and $C_{U^{s}}\left(H_{1}\right)=0$. By (3), and possibly after conjugation by s, we may assume that $A \leq Q_{1}$. Let $R_{i}, 1 \leq i \leq 3$, be root subgroups of Q_{1}, with respect to a standard set-up of $H T$ as a group of Lie type, with $Q_{1}=R_{1} R_{2} R_{3}$, and taking $Z\left(H_{1}\right)=R_{1}$ and $Z(T)=R_{1} R_{2}$. Set $U_{1}=\left[U, H_{1}\right]$. Then $C_{U}(x) \leq U_{1}$ for any non-identity element x of Q_{1}. Here both $U_{1} / C_{U}\left(H_{1}\right)$ and Q_{1} / R_{1} are natural $S L(2, q)$ modules for H_{1} / Q_{1}, and the commutator map defines a pairing of $U_{1} / C_{U}\left(H_{1}\right) \times Q_{1} / R_{1}$ into $C_{U}\left(H_{1}\right)$, defined over F. Suppose that $A R_{1} \cap R_{i} \neq 1$ for both $i=2$ and 3. Then $C_{U}\left(R_{i}\right)=C_{U}\left(E R_{1} \cap R_{i}\right)$ for any i, and thus $C_{U}\left(A R_{1}\right)=C_{U}\left(Q_{1}\right)=C_{U}\left(H_{1}\right)$ is of order q. But we also have $R_{1}=C_{Q_{1}}\left(U / C_{U}\left(H_{1}\right)\right)$ so $[U, A] \notin C_{U}\left(H_{1}\right)$, and thus A fails to act quadratically on U. We therefore conclude that $A R_{1} \cap R_{i}=1$ for some i. In particular, we have $\left|A R_{1}\right| \leq q^{2}$.

If $\left|C_{U}(A)\right|>q^{2}$ then $A \leq R_{1}$ and $C_{V}(A)=C_{U}\left(R_{1}\right)+C_{U^{*}}\left(R_{1}\right)$ is of index q^{3} in V. In that case we have $\left|V / C_{V}(A)\right|>|A|^{2}$, so we conclude that $\left|C_{U}(A)\right| \leq q^{2}$. On the other hand, we have $\left|C_{U^{*}}(x)\right|=q^{2}$ for any non-identity element x of Q_{1}, so we have $\left|V / C_{V}(A)\right| \geq q^{4}$, and hence $|A|=q^{2}$. It follows that $R_{1}{ }^{`} A$. Now view Q_{1} / R_{1} as a 2-dimensional vector space over F, for the action of H_{1} / Q_{1}. This action is doubly transitive on 1 -spaces, and the 1 -spaces partition the space. As $R_{i} \cap A=1$ for some i, and since the same is true for any H_{1}-conjugate of A, it follows that A is conjugate in H_{1} to $R_{1} R_{2}$. Thus, (ii) holds if $H E \cong S p(4, q)$.

Now assume that $H E \cong S L(3, q)$, and suppose that $A \not \leq H$. Then 7.4 implies that $|A| \leq 2 q$, and so $\left|V / C_{V}(A)\right| \leq 4 q^{2}$. Suppose $q>2$. Then $\left|V / C_{V}(A)\right| \leq q^{3}$, while 7.4 shows that $\left|C_{V}(a)\right|=q^{3}$ for any $a \in A-H$. Then $|A|>4$, so $A \cap T \neq 1$, and $C_{V}(a) \leq C_{V}(A \cap T)$. But for $a \in A-H$, either $V=U+U^{a}$ or a induces a field automorphism on L (and on V), and one checks in either case that $\left[C_{V}(a), x\right] \neq 0$ for any $x \in T$. Thus, we have a contradiction in this case, and so $q=2$. Then $A=Z(T)\langle a\rangle$, where a induces a graph automorphism on H, and (i) holds. We are thus reduced to the following cases.

(9) Either $E \not \leq T$ or $H E \cong \operatorname{Alt}(6)$.

Suppose that $H E \cong \operatorname{Alt}(6)$, and set $T_{0}=S \cap H$. By (3) and 3.2 we have $E=T_{0} \cap Q_{i}$ for some i, and then $\left|V / C_{V}(E)\right| \leq 16$. Suppose that U is a natural $S p(4,2)$-module for H. Then $U \neq U^{s}$, and one checks that $\left|\left(U+U^{s}\right) / C_{\left.U+U^{s}\right)}(E)\right| \geq 32$. Thus $\left|V / C_{V}(E)\right|>$ 16 , and we conclude that U is not a natural $S p(4,2)$-module. Then 7.2 implies that $\operatorname{dim}(U)=8$ and that U is a direct summand of the Steinberg module for $S p(4,2)$. It follows that E acts freely on U, and thus $64=\left|U / C_{U}(A)\right|>|E|^{2}$. This contradiction shows that $H E \nsubseteq \operatorname{Alt}(6)$, and thus $E \not \leq T$.

Set $E_{1}=E \cap T$, and suppose next that E normalizes H_{1} and H_{2}. Then $\left|E / E_{1}\right|=2$, and by 7.4 there is an element $b \in E-E_{1}$ such that b induces a non-identity field automorphism on H. In particular, we then have $q \geq 4$. By (3) we may choose indexing so that $E_{1} \leq Q_{1}$, and then $\left[Q_{1}, b\right]=C_{Q_{1}}(b)$. We then have $E=\left\langle b^{Q_{1}}\right\rangle$, by 3.2. If $\left|V_{1} / C_{V_{1}}(b)\right| \geq 4$ then $\left|V / C_{V}\left(E_{1}\right)\right| \leq\left|E_{1}\right|^{2}$, in violation of (7), so in fact $\left|V_{1} / C_{V_{1}}(b)\right|=2$. Then 6.8 implies that $q=4$ and that $V_{1} / C_{V_{1}}\left(H_{1}\right)$ is a natural $O_{4}^{-}(2)$-module for $H_{1}\langle b\rangle$. Now $|E|=8$ (resp. 16) if $H / Z(H) \cong L_{3}(q)\left(\right.$ resp. $\left.(S p(4, q))^{\prime}\right)$, and so $\left|V / C_{V}(E)\right| \leq$ 64 (resp. 2^{8}). Then also $\left|V / C_{V}\left(E_{1}\right)\right| \leq 2^{5}$ (resp 2^{7}). Set $E_{2}=A \cap Z(T)$. Then $\left|E_{1} / E_{2}\right|=2$, and we observe that $\left[V_{2}, E_{2}\right]=\left[V_{2}, Z(T)\right]=0$, while $\left|V_{2} / C_{V_{2}}\left(E_{1}\right)\right| \geq 4$. Thus $\left|V / C_{V}\left(E_{2}\right)\right| \leq 8$ (resp 32). If $H / Z(H) \cong L_{3}(4)$ we then contradict (6), so in fact we have $H \cong S p(4,4)$ and $\left|E_{2}\right|=4$. Let $x \in C_{H_{1}}(b)-T$, and set $E_{3}=\left(E_{2}\right)^{x}$. Then $\left|E_{3} /\left(E_{3} \cap Z(T)\right)\right|=2$, and it follows, by a repetition of the preceding argument, that $\mid V / C_{V}\left(E_{3} \cap Z(T) \mid \leq 8\right.$. Thus, we violate (6) in this case as well. We have shown:
(10) There exists $a \in E$ such that $\left(H_{1}\right)^{a}=H_{2}$.

Fix a as in (10). Set $E_{0}=N_{E}\left(H_{1}\right)$ and, as above, set $E_{1}=E \cap T$. Then $\left|E / E_{0}\right|=2$, $\left|E / E_{1}\right| \leq 4$, and $E_{1}=E \cap Z(T)$. Moreover, by 7.4 we have $\left|E / E_{1}\right|=2$ if $H T \cong S p(4, q)$. Also, we have $E_{1} \leq C_{T}(a)=C_{Z(T)}(a)$, and so 3.2 implies that $E_{1}=\left[C_{Z(T)}\left(E_{0}\right), a\right]$. Notice that $\left|V_{1} /\left(V_{1} \cap V_{2}\right)\right|=\left|V_{1} / C_{V}(T)\right| \geq q$, by 6.8. If $\left|E / E_{1}\right|^{2} \leq q$ then $\left|V / C_{V}\left(E_{1}\right)\right| \leq$ $\left|E_{1}\right|^{2}$, which is contrary to (7). Thus $\left|E / E_{1}\right|^{2}>q$. Then $q \leq 4$.

Suppose $q=4$. Then $\left|E_{1}\right|=2$ and $|E|=8$. Moreover, we have $\left|V / C_{V}(E)\right| \leq 64$, while $\left|V / C_{V}\left(E_{1}\right)\right| \geq 16$ by (6). It follows that $\left|V_{1} / C_{V}(T)\right|=4$, and so $V_{1} / C_{V_{1}}\left(H_{1}\right)$ is a natural $S L(2,4)$-module for H_{1} / Q_{1}. Then an element of $E_{0}-E_{1}$ induces a field automorphism
on $V_{1} / C_{V_{1}}\left(H_{1}\right)$, and so $\left|V_{1} / C_{V_{1}}(E)\right| \geq 8$. But then $\left|V / C_{V}\left(E_{1}\right)\right| \leq 8$, and so we have a contradiction in this case. We therefore conclude that $q=2$, and $H \cong \operatorname{Alt}(6)$ or $L_{3}(2)$.

Suppose that $H \cong \operatorname{Alt}(6)$. Then $|A|=4$, and $C_{H}(a)$ is a dihedral group of order 10 . Let X be the subgroup of $C_{H}(a)$ of order 5 , and let c be the involution in $A \cap H$. Suppose that X has more than one non- trivial constituent in V. Then $|[V, c]| \geq 16$, and since $\left|V / C_{V}(A)\right| \leq 16$ we obtain $|[V, c]|=16$ and $C_{V}(c)=C_{V}(A)$. Then $[V, A, A]=0$, and $[V, X, a]=0$. But also $C_{V}(X) \leq C_{V}(c) \leq C_{V}(a)$ in this case, and so a centralizes V. So, we conclude that X has a single non-trivial irreducible constituent in V. We again obtain $[V, X, a]=0$. As two conjugates of X suffice to generate H, we have $\left|C_{V}(X)\right| \leq 16$, and so $|V| \leq 2^{8}$. Let D be a dihedral group of order 8 generated by two conjugates of a. Then $Z(D)=\langle c\rangle$, and since c is not a 2-transvection, by (7), it follows that a is not a transvection. Then $\left|C_{V}(X)\right|=16$ and $|V|=2^{8}$. In particular, we have $|[V, A]| \geq 16$. Moreover, we now have $\left|V / C_{V}(a)\right|=4$, and $\left|V / C_{V}(A)\right|=16$. Now also $C_{V}(A)=C_{V}(D)$ and, again since D is generated by two conjugates of $a,[V, D]=[V, A]$ is of order 16 . Then $[V, A, A]=0$, and then also $[V, D, D]=0$, which implies that D is elementary abelian. With this, we conclude that H is not isomorphic to $\operatorname{Alt}(6)$.

Suppose finally that $H \cong L_{3}(2)$. Let U be an irreducible H-submodule of V, and suppose first that U is a natural $L_{3}(2)$-module. Then $U \nsubseteq U^{a}$ as H-modules, and we find that $\left|\left(U+U^{a}\right) / C_{U+U^{a}}(A)\right|=16$. In view of 1.1, it follows that $V=U+U^{a}$, and so outcome (i) of the lemma holds in this case. On the other hand, suppose that U is of dimension 8. Then U is the Steinberg module for H, so $\left|U: C_{U}(A \cap H)\right|=16$. As $|A|=4$ we then have $U=[V, H], C_{U}(A)=C_{U}(A \cap H)$, and A acts quadratically on U. Here $A \cap H=Z(T)$, so we have also $\left[C_{U}\left(Q_{1}\right)+C_{U}\left(Q_{2}\right), A\right]=0$. As a interchanges H_{1} and H_{2}, it follow that $\left[C_{U}\left(Q_{1}\right), Q_{2}\right]=0$, and then $\left[C_{U}\left(Q_{1}\right), H_{1}\right]=0$. Then $\left[C_{U}(T),\left\langle H_{1}, H_{2}\right\rangle\right]=0$, contrary to $C_{V}(H)=0$. With this contradiction, the proof of the 7.5 is complete.

Section 8: Alternating groups, p odd

Theorem. Let $G=\operatorname{Alt}(n), n \geq 5$, and let V be an irreducible G-module over \mathbb{F}_{3}. Suppose that there exists a 3-cycle a in G such that $\left|V / C_{V}(a)\right|=9$ and such that $0=$ $[V, a, a, a] \neq[V, a, a]$. Then V is isomorphic to the unique non-trivial constituent in the natural permutation module for G over F.

Proof. For any m, denote by $P(m)$ the permutation module for $\operatorname{Alt}(m)$ over \mathbb{F}_{3}, with basis vectors $x_{1}, \cdots x_{m}$ permuted in the natural way by $\operatorname{Alt}(m)$. Denote by $P_{0}(m)$ the codimension- 1 submodule of $P(m)$ consisting of the vectors $a_{1} x_{1}+\cdots+a_{m} x_{m}$ for which $a_{1}+\cdots+a_{m}=0$. Set $F(m)=C_{P(m)}(\operatorname{Alt}(m))$, and set $\bar{P}(m)=P(m) / F(m)$. Take a to be the 3 -cycle (1 23), and let H be the subgroup of G fixing the point 1 in the natural permutation representation for G. Similarly, let K be the subgroup of G fixing both 1 and 2 , and let L be the subgroup fixing each of 1,2 , and3. Thus $[a, L]=1$.
(1) We have $\operatorname{dim} F(m)=1$. Further, $P(m)=P_{0}(m) \oplus F(m)$ if n is not divisible by 3 ,
and otherwise $F(m) \leq P_{0}(m)$.

The irreducibility of $\bar{P}_{0}(m)$ will be assumed for $m \leq n$. We shall see that the irreducibility of $\bar{P}_{0}(n)$ will follow by induction.
(2) Let ℓ be the least integer such that $3+2 \ell \geq n$. Then $\ell+1$ conjugates of a generate G.

We will need the following result.
(3) Let W be an $\mathbb{F}_{3} G$-submodule of V, such that $P_{0}(n)$ is a submodule of W, and such that with $\operatorname{dim}\left(W / P_{0}(n)\right)=1$. Suppose that there exists a 3- cycle a in G such that $\left|V / C_{V}(a)\right|=9$ and such that $1=[V, a, a, a] \neq[V, a, a]$. Then $C_{W}(G) \neq 0$.

The proof of (3) is as follows. If 3 divides n then $P_{0}(n) \geq F(n)$ and there is nothing to prove. So assume that 3 does not divide n. Suppose first that $3+2 \ell=n$. Then $\operatorname{dim}\left(W / C_{W}(G)\right) \leq 2 \ell+2=n-1$, by (2). As $\operatorname{dim}\left(P_{0}(n)\right)=n-1$ we then have $W=P_{0}(n) \oplus C_{W}(G)$, and $C_{W}(G)$ has dimension 1. Suppose finally that $3+2 \ell=n+1$. Then $3+2(\ell-1)=n-1$ and so H is generated by $\ell 3$-cycles. Then $\operatorname{dim}\left(W / C_{W}(H)\right) \leq$ $2 \ell=n-2$. As $\operatorname{dim}\left(P_{0}(n) / C_{P_{0}(n)}(H)\right)=n-2$ we conclude that $C_{W}(H) \not \leq P_{0}(n)$. Let $x \in C_{W}(H)-P_{0}(n)$. Assuming that $[x, G] \neq 0$ we obtain $\left|x^{G}\right|=n$ and so $\left\langle x^{G}\right\rangle$ is a homomorphic image of $P(n)$. Then $W \cong P(n)$, and thus $C_{W}(G) \neq 0$, proving (3).

Suppose now that 8.1 is false, and let n be minimal for this property. Suppose $C_{V}(H) \neq 0$ and let $0 \neq x \in C_{V}(H)$. Then $\left|x^{G}\right|=n$ and $V=\left\langle x^{G}\right\rangle$, and so V is a homomorphic image of $P(n)$. As V is irreducible we are done in this case. We may therefore assume henceforth that $C_{V}(H)=0$.

Suppose that 3 divides n. As $C_{V}(H)=0$ it follows from (3), and induction on n, that $V \cong P_{0}(n-1)$ as a module for H. Then also $V \cong P_{0}(K) \oplus C_{V}(K)$ as a module for K, where $\operatorname{dim} C_{V}(K)=1$. Further, we then have $V \cong P(n-3)+C_{V}(L)$, where $C_{V}(L)$ is of dimension 2. Here $[V, L] \cong P_{0}(n-3)$, and $[V, L, a]=0$. As $C_{V}(L)$ is a-invariant, we then have $C_{V}(L)=[V, a]$.
(4) If 3 divides n then $[V, L, a]=0, C_{V}(L)=[V, a]$, and $C_{[V, L]}(L)=[V, a, a]$.

We continue to suppose that 3 divides n. Identify G with the image of G in $G L(V)$, and let t be the element of order 2 in $G L(V)$ given by $C_{V}(t)=[V, K]$ and $[V, t]=C_{V}(K)$. Then $\left[N_{G}(K), t\right]=1$, where $N_{G}(K) \cong \operatorname{Sym}(n-2)$.

Set $G^{*}=\langle t, G\rangle$. We claim that $G^{*} \cong \operatorname{Sym}(n)$. To prove this, it now suffices to show that $a^{t}=a^{-1}$, by the standard presentation of $\operatorname{Sym}(n)$ as a Coxeter group. This calculation can be made as follows. Take $b=\left(\begin{array}{ll}345\end{array}\right)$, set $J=\langle a, b\rangle$, and set $U=$ $[V, J]$. Then $J \cong \operatorname{Alt}(5)$ and $U \cong P_{0}(5)$ as a module for J. Identify J with $\operatorname{Alt}(5)$, let $\left\{x_{i} \mid 1 \leq i \leq 5\right\}$ be the standard basis of $P(5)$, and identify U with $P_{0}(5)$. As $b \in K, t$ centralizes $[U, b]$. Also, we have $[V, a, a]=C_{[V, L]}(L) \leq[V, K] \leq C_{V}(t)$, and
so $C_{U}(t) \geq[U, b]+[U, a, a]=\left\langle x_{3}-x_{4}, x_{4}-x_{5}, x_{1}+x_{2}+x_{3}\right\rangle$. Now observe that $[U, a]=C_{V}(L)$, by (4). As $K=\langle b, L\rangle$ we then have $C_{[U, a]}(b)=C_{V}(K)$, and thus $C_{V}(K)=\left\langle x_{1}-x_{2}\right\rangle$. As t acts as -1 on $C_{V}(K)$, the action of t on U has now been completely determined, and one may compute directly that t inverts a. In detail: on the 3 -dimensional subspace of U with ordered basis $\left(x_{3}+x_{4}+x_{5}, x_{2}-x_{1}, x_{1}+x_{2}+x_{3}\right)$ the matrices of a and of t are given respectively by

$$
\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and one then checks that the matrix for t inverts the matrix for a. This shows:
(5) Suppose that 3 divides n, let t be the element of $G L(V)$ defined above, and identify G with the image of G in $G L(V)$. Set $G^{*}=\langle t, G\rangle$. Then $G^{*} \cong \operatorname{Sym}(n)$.

We continue to suppose that 3 divides n, and we now form the semi-direct product $V G^{*}$. The usefulness of (5) lies in its providing us with a means to produce complements to V in $V G^{*}$, by means of generators and relations. (This would be a more difficult task if we were forced to work with the smaller group $V G$.)

The key to the proof of 8.1 is the following result.
(6) If 3 divides n then $H^{1}(G, V) \cong \mathbb{F}_{3}$.

The proof of (6) is as follows. Assume that 3 divides n, and denote by K^{*} the pointwise stabilizer in G^{*} of $\{1,2\}$. Then K^{*} is generated by conjugates of t, i.e. by transvections, and it follows that $C_{V}(K)=C_{V}\left(K^{*}\right)$. Using multiplicative notation in $V G^{*}$, let w be a non-identity element of $[V, t]=C_{V}\left(K^{*}\right)$ and set $t_{i}=t w^{i}, 0 \leq i \leq 3$. Then $\left[t_{i}, K^{*}\right]=1$. Identify t with the transposition (12) in G^{*}, and set $s=(23)$. Then each t_{i} is conjugate to t via an element of $C_{V}(s)$, and so $\left|t_{i} s\right|=3$ for all i. Setting $G_{i}^{*}=\left\langle t_{i}, s, K^{*}\right\rangle$, it now follows that $G_{i}^{*} \cong \operatorname{Sym}(n)$, and that G_{i}^{*} is a complement to V in $V G^{*}$.

Suppose next that there exists $x \in V G$ and indices i and j such that $\left(G_{i}^{*}\right)^{x}=G_{j}$. We may take $x \in V$. We have $G_{i}^{*} \cap\left(G_{i}^{*}\right)^{x} \geq H$, so that $H^{x^{-1}} \leq G_{i}^{*} \cap V H=H$. Thus $x \in N_{V}(H)=C_{V}(H)=1$ and so $G_{i}^{*}=G_{j}^{*}$. Thus there are at least three conjugacy classes of complements to V in $V G^{*}$, and so $\left|H^{1}\left(G^{*}, V\right)\right| \geq 3$. Now let \hat{G} be a complement to V in $V G^{*}$. We have $H^{1}(H, V)=0$, as follows from (3), so we may assume (after conjugation) that $H \leq \hat{G}$, and then $\hat{G}=\langle t x, H\rangle$ for some $x \in V$. Here $\left[t x, K^{*}\right]=1$, so $x \in C_{V}(K)=[V, t]$, and so $\hat{G}=G_{i}$ for some i. This shows that $\left|H^{1}\left(G^{*}, V\right)\right|=3$. But then also $\left|H^{1}(G, V)\right|=3$, as the reader may verify. This completes the proof of (6).

We may now complete the proof of 8.1. Suppose first that $n \equiv 2(\bmod 3)$. As $C_{V}(H)=0$ it follows from (3), and from induction, that $V \cong P_{0}(n-1)$ as a module for H. In particular, we have $\operatorname{dim} V=n-2$. As 5 does not divide the order of $S L(3,3)$ we
then have $n>5$. Now $V \cong P(n-2)$ as a module for K, and then $V \cong P_{0}(n-3) \oplus C_{V}(L)$ as a module for L. As $\operatorname{dim} P_{0}(n-3)=n-4$ we then have $\operatorname{dim} C_{V}(L)=2$. As $P_{0}(n-3)$ is irreducible for L we then have $[V, L, a]=0$ and a induces a transvection on V, contrary to hypothesis.

Suppose next that $n \equiv 1(\bmod 3)$. Then V has an H-submodule V_{0} with $V_{0} \cong$ $\bar{P}_{0}(n-1)$, and (6) implies that either $V=V_{0}$ or $V \cong \bar{P}(n-1)$ as a module for H. In particular, we have $\operatorname{dim} V=n-3$ or $n-2$. As an L - module we then have $V \cong$ $P_{0}(n-3) \oplus C_{V}(L)$, where $\operatorname{dim} C_{V}(L) \leq 2$. We therefore obtain a contradiction as in the preceding paragraph.

Suppose that $n \equiv 0(\bmod 3)$. Then $V \cong P_{0}(n-1)$ as an H-module. By (6) V is a submodule of an indecomposable G-module W with $\operatorname{dim} W / V=1$, and by (3) we have $C_{W}(H) \neq 0$. Then W is spanned by x^{G} for any non-zero $x \in C_{W}(H)$, and W is then a homomorphic image of $P(n)$. Thus, $W \cong \bar{P}(n)$ and $V \cong \bar{P}_{0}(n)$, as required.

Lemma 8.2. Let H be the group 2 Alt(9) and let V be a non-trivial, irreducible H module over \mathbb{F}_{3}, of dimension at most 8 . Then either $\operatorname{dim}(V)=8$ and V is a spin module for H, or $\operatorname{dim}(V)=7$ and V is isomorphic to the non-trivial constituent in the natural permutation module for H.

Proof. Let x be an element of order 3 in H such that the image of x in $H / Z(H)$ is a 3 -cycle. If x acts quadratically on V then V is a spin module of dimension 8 , by $[\mathrm{M}]$. So we may assume that x does not act quadratically. Let J be a matrix in Jordan canonical form which represents x on V, let m be the number of 3×3 blocks of J, and let n be the number of 2×2 blocks. As x is not quadratic, we have $m \geq 1$. Set $L=E\left(C_{H}(x)\right)$. Then $L \cong S L(2,9)$ or $L_{2}(9)$, and so any non-trivial module for L over \mathbb{F}_{3} is of dimension at least 4. Suppose that $m \geq 2$ or that $n \geq 1$. As $\operatorname{dim}(V) \leq 8$, it follows that L centralizes the chain $[V, x]>[V, x, x]>0$, and the chain $C_{V}(x) \geq C_{V}(x) \cap[V, x] \geq C_{V}(x) \cap[V, x, x] \geq 0$. But also, with $m \geq 2$ or $n \geq 1$ we have $\operatorname{dim}\left(V /\left([V, x]+C_{V}(x)\right) \leq 3\right.$. As $[V, L] \neq 0$, we conclude that $m=1$ and $n=0$. Then V is isomorphic to the non-trivial constituent in the natural permutation module, by 8.1.

Theorem 8.3. Assume Hypothesis 4^{\prime}, with p odd, and assume that $G / Z(G) \cong \operatorname{Alt}(n)$, $n \geq 5$. If $p=5$ assume also that $n \neq 5$, and if $p=3$ assume $n \neq 6$. Then $p=3$, $|A|^{2}=\left|V / C_{V}(A)\right|$, and one of the following holds.
(i) $|A|=3, A$ acts non-quadratically on $V, G \cong \operatorname{Alt}(n)$, and V is isomorphic to the unique non-trivial irreducible constituent in the natural permutation module for G over \mathbb{F}_{3}.
(ii) $G \cong S L(2,5)$ and V is isomorphic to the natural $S L(2,9)$-module for H.
(iii) $G \cong 2 \operatorname{Alt}(9),|A|=27$, and V is a spin module for G, of dimension 8 over \mathbb{F}_{3}.

Proof. If A acts quadratically on V then (ii) holds, by 5.6(iii). Thus, we may assume that A is not quadratic. If V is reducible, then 2.2 shows that G has more than one non-trivial constituent in V, and then, by induction, we may assume that a proper submodule U satisfies the conclusion of the lemma. But then $V=C_{V}(A)+U$ and $[V, G]=U$, so we may in fact assume that V is irreducible.

Suppose first that $|A|=p$, and then suppose further that $p \geq 5$. Then A is not quadratic on V, as follows from [Sa] or from [C3]. Let $a \in A^{\#}$, let a_{1} be a p-cycle of a, and put $b=a\left(a_{1}\right)^{-1}$. Then two conjugates of a generate a group $L=K \times\langle b\rangle$, where $K / Z(K) \cong \operatorname{Alt}(p)$. As $\left|V / C_{V}(a)\right| \leq p^{2}$ there is then a homomorphism of L into $S L(4, p)$ which is non-trivial on K. If $p \geq 13$ then K contains an elementary abelian subgroup of order 81 , whereas $S L(4, p)$ contains no such subgroup. Thus $5 \leq p \leq 11$, and one observes in these three cases that K has a subgroup K_{0} with $K_{0} / Z\left(K_{0}\right) \cong L_{2}(p)$. As A acts non-quadratically, and as $[V, A, A, A]=0$, it follows from 6.8 that K_{0} has a unique non-trivial constituent U in V, and that U is a natural $O_{3}(p)$-module for K_{0}. In particular, we have $Z\left(K_{0}\right)=1$, and so $K \cong \operatorname{Alt}(p)$ or $3 \operatorname{Alt}(7)$. As $\operatorname{Alt}(6)$ has no faithful complex representation of degree 4 , we conclude that $p=5$ or $K \cong 3 \operatorname{Alt}(7)$. It is easy to check for any element d of order 3 in $X=S L(4,7)$, that any component of $C_{X}(d)$ is isomorphic $S L(2,7)$ or $S L(3,7)$, and then since $|S L(3,7)|$ is not divisible by 5 , we conclude that $p=5$ and $K \cong \operatorname{Alt}(5)$. Here $K=K_{0}$, and with U as above we have $H^{1}(K, U)=0$ by 1.4. Thus $V=U \oplus C_{V}(K)$. But $\left|U / C_{U}(A)\right|=25$, so $\left[C_{V}(K), A\right]=0$, and so $A \leq K$. That is, a is a 5 -cycle. Since $n \neq 5$, by hypothesis, it follows that there is a subgroup J of H with $J \cong \operatorname{Alt}(6)$ or $3 \operatorname{Alt}(6)$, and with J generated by two conjugates of A.

Set $W=[V, J]$. As $|S L(3,5)|$ is not divisible by 9 we have $W \neq U$, and so $|W|=5^{4}$. As $|S L(4,5)|$ is not divisible by 27 we have $J \cong \operatorname{Alt}(6)$. There is a subgroup K_{1} of J with $N_{J}(A) \leq K_{1} \cong \operatorname{Alt}(5)$ and with $\left\langle K, K_{1}\right\rangle=J$. Just as with K, we find that $\left[V, K_{1}\right]$ is an $O_{3}(5)$-module for K_{1}, and $W=\left[V, K_{1}\right] \oplus C_{W}\left(K_{1}\right)$. As $C_{W}(K) \neq C_{W}\left(K_{1}\right)$ it follows that $C_{W}\left(N_{J}(A)\right)$ is of dimension 2. Then $C_{U}\left(N_{J}(A)\right) \neq 0$. But this is contrary to the case, as one may check that an involution in K inverting A acts non-trivially on $C_{U}(A)$. We conclude that $|A|=3$.

Fix an identification of $G / Z(G)$ with $\operatorname{Alt}(n)$, and suppose that $a Z(G)$ corresponds to a 3 -cycle. Then two conjugates of a generate a subgroup X of G containing $Z(G)$ and with $X / Z(G) \cong \operatorname{Alt}(5)$. Then $\operatorname{dim}([V, X])=4$, and it follows from 3.1 that $X \cong \operatorname{Alt}(5)$ and $Z(G)=1$. Then 8.1 yields (i). So assume that a does not correspond to a 3 -cycle. Then $n \geq 7$, and one may observe that two conjugates of a suffice to generate a subgroup of G whose order is divisible by 7. (Indeed, if a corresponds to a product of two disjoint 3 -cycles then a is contained in a Frobenius subgroup of G of order 21, and if a corresponds to a product of three or more pairwise disjoint 3-cycles then one has only to observe that $(123)(456)(789)(135)(269)(487)$ is a seven-cycle.) As 7 does not divide the order of $S L(4,3)$, we have a contradiction at this point. Thus $|A|>p$.

We continue to fix an identification of $G / Z(G)$ with $\operatorname{Alt}(n)$. Fix $a \in A^{\#}$ so as to minimize the number k of p-cycles in writing the permutation $a Z(G)$ as a product of pairwise disjoint p-cycles. Set $C_{a}=O^{2}\left(C_{G}(a)\right)$. Then $C_{a}=E K_{1} \times K_{2}$, where E is a normal elementary abelian p-subgroup of C_{a} of order $p^{k}, K_{1} \cong \operatorname{Alt}(k)$, and $K_{2} / Z\left(K_{2}\right) \cong$ $\operatorname{Alt}(n-p k)$. The minimality of k implies that $E \cap A=\langle a\rangle$, and so p divides $\left|C_{a} / E\right|$.

Suppose that A acts non-trivially on some $K \in\left\{K_{1} E / E, K_{2}\right\}$, and if possible choose K so that $K=K_{1} E / E$. (Notice that A acts non-trivially on some such K if $p \geq 5$.) As $[V, A, A, A]=0$ we have $[V, A, A] \leq C_{V}(a)$, and so A acts quadratically on $V / C_{V}(a)$.

Also, A acts quadratically on $C_{V}(a)$, by Hypothesis 4^{\prime}. There is then a non-trivial irreducible constituent U for K in V, admitting A, and on which A acts quadratically. As $K / Z(K)$ is an alternating group it follows from [C3] that $p=3$, or that $p=5$ and $K \cong S L(2,5)$. Suppose $p=5$. Then K may be identified with a component of C_{a}, and we have $1 \neq Z(K) \leq Z(H)$ Then every non-trivial constituent for K_{0} in V is a natural $S L(2,5)$-module. A Sylow 5 -subgroup B of K acts quadratically on every irreducible constituent for K in V, and it then follows from 1.6 that B acts quadratically on V. This is contrary to what has aleady been shown, so we conclude that $p=3$. Then $[\mathrm{M}]$ yields $K \cong 2 \operatorname{Alt}(m)$ for some $m, m \geq 4$, so $K=K_{2}, Z(K)=Z(G) \neq 1$, and either $\left|A / C_{A}(K)\right|=3$ or $m=6$. As V is irreducible for $G, Z(K)$ acts as -1 on V, and so every irreducible constituent for K in V is non-trivial.

Set $W=C_{V}\left(C_{A}(K)\right)$. Suppose that $\left|A / C_{A}(K)\right|^{2} \leq\left|W / C_{W}(A)\right|$. Then 3.3 implies that $C_{A}(K)$ is an $F 2$-offender on V. Induction on $|A|$ then yields $\left|C_{A}(K)\right|=3$ and that (i) holds with $C_{A}(K)$ in place of A. This is contrary to $1 \neq Z(H)$, so we conclude that, in fact, we have $\left|A / C_{A}(K)\right|^{2}>\left|W / C_{W}(A)\right|$. Then W is irreducible, $m=4$ or 6 , and W is a natural $S L(2,3)$-module (if $m=4$) or a natural $S L(2,9)$-module (if $m=6$). Moreover, if $m=6$ then $\left|A / C_{A}(K)\right|=9$. In either of our two remaining cases, the choice of K implies that $k \leq 3$, and so $\left|C_{A}(K)\right| \leq 9$.

Suppose $m=6$. Then $|A| \leq 81$ and $C_{V}(A)=C_{W}(A)$ is of order 9 , so $|V| \leq 3^{1} 0$. Since all irreducible constituents for K in V are natural $S L(2,9)$-modules we then have $|V|=3^{8}$ and there are just two such constituents. Then $C_{a} \cong\langle a\rangle \times K$, so $k=1$ and $n=9$, and $\left|C_{V}(a)\right|=3^{4}$. Here $[V, a]=C_{V}(a)$, so a acts quadratically on V. Now $[\mathrm{M}]$ implies (iii).

Suppose $m=4$. If $k=3$ then $n=13$, and the minimality of k implies that $A \cap K=1$, and so $|A|=9$. If $k<3$ then $A \cap E K_{1}=\langle a\rangle$, and so $|A|=9$ in any case. As $C_{V}(A)=C_{W}(A)$ is of order 3 , we then have $|V| \leq 3^{5}$. Then $|V|=3^{4}$ (and V / W is a natural $S L(2,3)$-module for $K)$. As 7 doesn't divide the ordr of $S L(4,3)$ we then have $n \leq 6$, and with $|A|=9$ we get $n=6$, contrary to hypothesis.

We have now reduced to the case where no K as above exists. Thus $p=3$, and A acts trivially on C_{a} / E, whence also $\left[K_{2}, A\right]=1$. Suppose $k>3$. Then $C_{C_{a}}\left(E K_{1} / E\right)=E K_{2}$, so $A \leq E K_{2}$, and then $n-3 k=3$. Then $|A|=9$ and, by the minimality of k, any $b \in A-\langle a\rangle$ is a product of at least k disjoint 3 -cycles, $k-1$ of which represent orbits of $\langle a\rangle$. But with $k>3$ we can then choose b so that two at least of the 3 -cycles in b are 3 - cycles of a^{-1}, and then $a b$ has fewer than $k 3$-cycles. With this contradiction we conclude that $k \leq 3$.

Suppose $k=1$. Then $C_{a} / Z(H) \cong 3 \times \operatorname{Alt}(n-3)$, and since $|A|>3$ and $\left[A, K_{2}\right]=1$ we have $n=6$, contrary to hypothesis.

Suppose that $k=2$. Then $C_{a} \cong 3^{2} \times \operatorname{Alt}(n-6)$, and $E K_{1}=E$. As $A \cap E=\langle a\rangle$ and $\left[A, K_{2}\right]=1$, we then have $n=9$ and $|A|=9$. Here we may identify $Z(H) A / Z(H)$ with

$$
\langle(123)(456),(456)(789)\rangle
$$

There is then a unique element c of A such that c can be represented as aproduct of three disjoint 3 -cycles. By $[\mathrm{M}], c$ is not quadratic on V, and so c acts non-trivially on
$V / C_{V}(c)$. Here $\langle c\rangle=Z(S)$ for some Sylow 3-subgroup S of H, and so S acts faithfully on $V / C_{V}(c)$. Then $\left|V / C_{V}(c)\right| \geq 3^{4}$, and we conclude that $C_{V}(c)=C_{V}(A)$ has index 3^{4} in V. Now observe that since a is represented as a product of two disjoint 3-cycles, there exists a subgroup J of H with $a \in J \cong \operatorname{Alt}(4)$, and such that every involution t in J is represented as a product of four disjoint transpositions. Suppose $C_{V}(a) \neq C_{V}(A)$. Then $\left|V / C_{V}(a)\right| \leq 27$, from which it follows that J has a unique non-trivial constituent in V. That is, we have $\left|\left[V, O_{2}(J)\right]\right|=27$, and $\left|V / C_{V}(t)\right|=9$. On the other hand, t inverts an element of order 7 in H, whereas 7 does not divide $|G L(4,3)|$. This shows that, in fact, we have $C_{V}(a)=C_{V}(A)$, and thus $C_{V}(A)=C_{V}(d)$ for all $d \in A^{\#}$.

Set $X=N_{H}(E A)$. Here $E A=J(S)$ for a Sylow 3-subgroup S of H (so $E A$ is elementary abelian of order 27), and we have $X / E A \cong \operatorname{Sym}(4)$, with X acting irreducibly on $E A$. Now

$$
X \leq\left\langle g \in H: A \cap A^{g} \neq 1\right\rangle
$$

and so $C_{V}(A)$ is invariant under X. Then $C_{V}(A)=C_{V}(E A)$. Let x be an element of $E A$ such that x is represented by a 3 -cycle, and let L be the component in $C_{H}(x)$ $(L / Z(H) \cong \operatorname{Alt}(6))$. No 3 -element of L induces a transvection on $C_{V}(x)$, by $[\mathrm{M}]$ so we have $C_{V}(x)=C_{V}(E A)$, and indeed we have shown that $C_{V}(E A)=C_{V}(y)$ for all $y \in(E A)^{\#}$. Then $C_{V}(E A)$ is invariant under the group

$$
X^{*}=\left\langle g \in H: E A \cap(E A)^{g} \neq 1\right\rangle
$$

We now ask the reader to perform the fairly straightforward exercise of showing that $X^{*}=H$. With this we have H acting on the 4 -space $V / C_{V}(E A)$, and an evident contradiction.

Finally, suppose that $k=3$. Then $E K_{1} \cong \mathbb{Z}_{3} \backslash \mathbb{Z}_{3}$, and the minimality of k implies that $\left|A \cap E K_{1}\right| \leq 9$. Suppose that $|A|>9$. Then $A \not \leq E K_{1}$, and since $\left[A, K_{2}\right]=1$ we conclude that $\left|K_{2}\right|=3$ and $n=12$. Let S be a Sylow 3 -subgroup of H containing A. Then $S \cong(3<3) \times 3$, and the minimality of $k=3$ implies that $A \not \leq J(S)$. Then $A=C_{S}(A) \geq Z(S)$, so A contains a 3 - cycle, and so $k=1$. We conclude from this contradiction that $|A|=9$.

For any $b \in A$ such that b is represented as a product of three disjoint 3 -cycles, we have $\left|V / C_{V}(b)\right| \geq 3^{4}$, by the same reasoning as in the treatment of the case $k=2$. Then, for such an element b, we have $C_{V}(b)=C_{V}(A)$, of index 3^{4} in V. Suppose next that $A \leq E K_{1}$. In this case we may identify $Z(H) A / Z(H)$ with the group

$$
\begin{equation*}
\langle(123)(456)(789),(147)(258)(369)\rangle \tag{1}
\end{equation*}
$$

Here every non-identity element of A has a representation as a product of three disjoint 3 -cycles. We may assume that $n=9$, by restricting to an appropriate subgroup of H. Set $X=\left\langle C_{H}(b): b \in A^{\#}\right\rangle$. Then $C_{V}(A)$ is X-invariant. On the other hand, $Z(H) X / Z(H)$ contains all the 3 -cycles in the two generators given in (1), and one may check that these six 3 -cycles generate $\operatorname{Alt}(9)$. Then $C_{V}(A)=C_{V}(H)$, and indeed $[V, H]=0$. We conclude that $A \not \leq E K_{1}$.

Now $n=12$ (as $\left.\left[A, K_{2}\right]=1\right)$ and there are, up to conjugation, two possibilities for $Z(H) A / Z(H)$. These are as follows:

$$
\left.\left.\begin{array}{l}
\left\langle(123)(456)(789),\left(\begin{array}{ll}
4 & 6
\end{array}\right)(789)(101112)\right\rangle, \\
\langle(123
\end{array}\right)(456)(789),\left(\begin{array}{lll}
1 & 4 & 7
\end{array}\right)\left(\begin{array}{lll}
2 & 5 & 8
\end{array}\right)\left(\begin{array}{lll}
3 & 6 & 9 \tag{3}
\end{array}\right)(101112)\right\rangle .
$$

Suppose that A is as in (2). Then every element of $A^{\#}$ is represented as a product of three disjoint 3 -cycles. Now set $X=\left\langle C_{H}(b): b \in A^{\#}\right\rangle$, as before. Then $C_{V}(A)$ is X-invarian, and X contains a subgroup $X_{0} \cong 3^{4}: \operatorname{Alt}(4)$, and $O_{3}\left(X_{0}\right)=\left\langle A^{X_{0}}\right\rangle$. Then $C_{V}(A)=C_{V}\left(O_{3}\left(X_{0}\right)\right)$, and so $O_{3}\left(X_{0}\right)$ is an $F 1$ - offender on V. By Thompson Replacement there then exists a quadratic $F 1$ - offender B on V. This is contrary to $[\mathrm{M}]$, and we thereby conclude that A is as in (3). Take $Z(H) a=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\left(\begin{array}{ll}4 & 5\end{array}\right)(789)$ and let $b \in A$ with $Z(H) b=\left(\begin{array}{lll}1 & 4 & 7\end{array}\right)\left(\begin{array}{lll}2 & 5 & 8\end{array}\right)\left(\begin{array}{ll}3 & 6\end{array}\right)(101112)$. Then $\langle b\rangle$ is contained in a subgroup J of H with $J / Z(J) \cong \operatorname{Alt}(4)$. If $C_{V}(b) \neq C_{V}(A)$ then, as in the case $k=2$, we find that an involution t in J satisfies $\mid[V, t]=9$ and that t inverts an element of H of order 7 , contrary to 7 not being a divisor of $|G L(4,3)|$. Thus $C_{V}(b)=C_{V}(A)$. Set $Y=O^{2}\left(C_{H}(b)\right)$. Then $Y \cong 3^{4}: \operatorname{Alt}(4)$, and $O_{3}(Y) Z(H) / Z(H)$ is generated by the 3 -cycles of $Z(H) b$. Then $a \notin O_{3}(Y)$, and since we now have $C_{V}(b)=C_{V}(a)$ we conclude that $\left[C_{V}(b), Y\right]=0$. Then $O_{3}(Y)$ is an $F 1$-offender on V, and again, Thompson Replacement yields a quadratic $F 1$-offender and a contradiction to $[\mathrm{M}]$. This completes the proof of the theorem.

Section 9: Alternating groups, $p=2$

This section contains a single result, which is as follows.
9.1 Proposition. Assume Hypothesis 4^{\prime}, with $p=2$. Suppose that $F^{*}(G)=H \cong$ Alt (n), n odd, $n \geq 7$. Then there exists $a \in A^{\#}$ and an involution $t \in G-\langle a\rangle$ such that $[V, a, t]=0$.

Proof. Fix A as in Hypothesis 4^{\prime}, and assume that 9.1 is false. The following is then obvious.
(1) For any involution $a \in A$ and for any subgroup D of $C_{G}(a)$ of even order with $a \notin D$, we have $[V, a, D] \neq 0$.

Suppose first that V is reducible for G. Then 1.2 implies that G has at least two non-trivial constituents in V. As $|A|^{3 / 2} \geq\left|V / C_{V}(A)\right|$, by Hypothesis 4^{\prime}, there then exists a non-trivial irreducible constituent W for G in V such that $|A|^{3 / 4} \geq\left|W / C_{W}(A)\right|$.

By Timmesfeld Replacement, there is then a quadratic subgroup B of A with $|B|^{3 / 4} \geq$ $\left|W / C_{W}(B)\right|$, and then 9.4 yields n even, contrary to hypothesis. Thus:
(2) V is irreducible for G.

Let $a \in A^{\#}$. As $n \geq 7$ it follows from (1) and from 5.5 that $\left|V / C_{V}(a)\right| \geq 8$. Suppose that we have $\left|V / C_{V}(a)\right|=8$. Then $|[V, a]|=8$, and since $L_{3}(2)$ has 2-rank equal to 2 it follows from (1) that the 2 -rank of $C_{G}(a)$ is at most 3 . Then $n=7$, and we may record this result as follows.
(3) We have $\left|V / C_{V}(a)\right| \geq 8$ for any involution a in A, with equality only if $n=7$.

In particular, (3) implies that $|A|>2$. As A contains no quadratic fours group, we have $C_{V}(a) \neq C_{V}(A)$ for $a \in A^{\#}$. If $|A|=4$ then $\left|V / C_{V}(A)\right| \leq 8$ and $\left|V / C_{V}(a)\right| \leq 4$, contrary to (3). Suppose that $|A|=8$. Then $\left|V / C_{V}(A)\right| \leq 16$ and $\left|V / C_{V}(a)\right| \leq 8$. Then (3) yields $n=7$, and since the 2-rank of $\operatorname{Alt}(7)$ is just 2 we obtain $G \cong \operatorname{Sym}(7)$. Then a may be chosen to be a transposition, whence $C_{G}(a)$ contains a subgroup X isomorphic to $\operatorname{Alt}(5)$, and we have $[V, a, X]=0$. This is contrary to (1), so:
(4) We have $|A| \geq 16$.

Let $\Omega=\{1,2, \cdots, n\}$ be the set supporting the natural permutation representation of G. We now fix $a \in A^{\#}$ so that the number of orbits of length 2 for $\langle a\rangle$ on Ω is as small as possible. Denote this number by k, and identify a with the permutation (12) $\cdots(2 k-12 k)$. Set $m=n-2 k$.

Set $C_{a}=O^{2}\left(C_{G}(a)\right)$. We then have

$$
C_{a} \cong 2^{k-1}: \operatorname{Alt}(k) \times \operatorname{Alt}(m) .
$$

Denote by K_{1}^{*} the pointwise stabilizer in $C_{G}(a)$ of $\{2 k+1, \cdots, n\}$, and by K_{2}^{*} the pointwise stabilizer in $C_{G}(a)$ of $\{1,2, \cdots, 2 k\}$. Denote by E^{*} the subgroup of $C_{G}(a)$ generated by the set of pairwise disjoint 2 -cycles whose product is a. Set $K_{i}=K_{i}^{*} \cap C_{a}$, and $E=E^{*} \cap C_{a}$. Then E is elementary abelian of order $2^{k-1}, K_{1} / E \cong \operatorname{Alt}(k), E /\langle a\rangle$ is a natural $\operatorname{Sym}(k)$-module for K_{1} / E, and $K_{2} \cong \operatorname{Alt}(m)$. The minimality of k yields:
(5) $A \cap E^{*}=\langle a\rangle$.

Set $L=O^{2}\left(\left\langle A^{C_{G}(a)}\right\rangle\right.$. Suppose that L is solvable, and then suppose that K_{1} is nonsolvable. Then $\left[K_{1}, A\right] \leq E$, and so $A \leq E^{*} K_{2}^{*}$. Then (4) and (5) imply that the 2-rank of K_{2}^{*} is at least 3 , so K_{2} is non-solvable, $K_{2} \leq L$, and L is non-solvable, contrary to assumption. On the other hand, suppose that K_{2} is non-solvable. Then $A \leq K_{1}^{*}$, and then (4) and (5) imply that K_{1} is non-solvable and $K_{1} \leq L$. Thus, under the assumption
that L is solvable we conclude that C_{a} is solvable. That is, we have $k \leq 4$ and, as n is odd, $m \leq 3$. Suppose that $k=3$ or 4 . No involution in K_{2}^{*} is the product of 3 or 4 pairwise disjoint transpositions, so the minimality of k yields $A \cap K_{2}^{*}=1$. Let b be an involution in $E^{*} K_{2}^{*}$. As $m \leq 3$, either b or $a b$ is a product of fewer than k disjoint transpositions, and so $A \cap E^{*} K_{2}^{*}=\langle a\rangle$. Then $C_{A}\left(K_{1} / E\right)=\langle a\rangle$, and $|A| \leq 8$, contrary to (4). We conclude that $k \leq 2$. Then $n \leq 7$, again contrary to (4). This proves:
(6) L is non-solvable.

Set $L_{i}=L \cap K_{i}, i=1,2$. Then $L=L_{1} \times L_{2}$. Set $X=C_{V}(a)$ and $Y=[V, a]$. By Hypothesis $4^{\prime}, A$ acts quadratically on X, and hence also on Y.

Set $A_{0}=C_{A}\left(L / O_{2}(L)\right)$. Then $\langle a\rangle \leq A_{0}=A \cap O_{2}(L A)$. Suppose that $A_{0} \neq\langle a\rangle$. Then $O_{2}(L A) \neq E^{*}$, and it follows that either L_{1} is solvable (which includes the possibility that $L_{1}=1$) or that $L_{2}=1$. Suppose that $L_{2}=1$. Then $A \leq K_{1}^{*}$, and L_{1} is non-solvable, by (6), and then $A_{0}=A \cap E^{*}=\langle a\rangle$. So in fact $L_{2} \neq 1$, and L_{1} is solvable. Then $A_{0} \leq K_{1}^{*}$. If $k=1$ we have $K_{1}^{*}=\langle a\rangle$, while if $k=3$ we have $C_{K_{1}^{*}}\left(K_{1}\right)=\langle a\rangle$. So $k=2$ or 4 . Suppose $k=2$. Then $L_{1}=1, K_{1}^{*}$ is dihedral of order 8 , and $\left|A_{0}\right| \leq 4$. On the other hand, suppose that $k=4$. If $L_{1} \neq 1$ then $A \not \neq O_{2}\left(K_{1}^{*}\right) K_{2}^{*}$, and $\left|C_{O_{2}\left(K_{1}^{*}\right)}(A) E^{*} / E^{*}\right|=2$. Therefore $\left|A_{0}\right| \leq 4$ in this case. If instead we have $L_{1}=1$ then $\left|A_{0}\right| \leq 8$ since the 2-rank of $O_{2}\left(K_{1}^{*}\right) / E^{*}$ is 2. Thus:
(7) Suppose $A_{0} \neq\langle a\rangle$. Then $A_{0} \leq O_{2}\left(K_{1}^{*}\right), k=2$ or 4 , and $\left|A_{0}\right| \leq 8$. Moreover, we have $\left|A_{0}\right|=4$ unless $k=4$ and $L_{1}=1$.

Fix a complement B to A_{0} in A. Set $B_{1}=C_{B}\left(K_{2}\right)$ and let B_{2} be a complement to B_{1} in B. Set $Y_{i}=\left[Y, L_{i}\right]$, and set $U_{i}=Y_{i} / C_{Y_{i}}\left(L_{i}\right),(i=1,2)$. We will obtain the following result.
(8) Suppose that $C_{B}\left(L_{2}\right) \neq 1$. Then $\left[Y_{1}, L_{2}\right]=\left[Y_{2}, L_{1}\right]=0$, and

$$
\left|Y / C_{Y}(B)\right| \geq\left|U_{1} / C_{U_{1}}\left(B_{1}\right)\right|\left|U_{2} / C_{U_{2}}\left(B_{2}\right)\right|
$$

Indeed, set $D=C_{B}\left(L_{2}\right)$. If $L_{2}=1$ then $B_{1}=B$ and (8) follows trivially. So we may assume that $L_{2} \neq 1$. As $L_{2}=\left[A, L_{2}\right]=\left[B, L_{2}\right]$, we have

$$
0=[Y, B, D]=\left[Y,\left\langle B^{L_{2}}\right\rangle, D\right] \geq\left[Y, L_{2}, D\right] \geq\left[Y, L_{2},\left\langle D^{L_{1}}\right\rangle\right]
$$

As $D \neq 1$, by assumption, we have $L_{1} \leq\left\langle D^{L_{1}}\right\rangle$, and thus $\left[Y, L_{2}, L_{1}\right]=0$. The Three Subgroups Lemma yields also $\left[Y, L_{1}, L_{2}\right]=0$, so it remains only to prove the second assertion in (8). Set $U=U_{1} \oplus U_{2}$. Then U is a homomorphic image of the submodule $Y_{1}+Y_{2}$ of Y, so

$$
\left|Y / C_{Y}(B)\right| \geq\left|U / C_{U}(B)\right| \geq\left|U_{1} / C_{U_{1}}\left(B_{1}\right)\right|\left|U_{2} / C_{U_{2}}\left(B_{2}\right)\right|
$$

and we have (8).
The next step is to show:
(9) $|B| \leq\left|Y / C_{Y}(B)\right|$.

Suppose that (9) is false. If $C_{B}\left(L_{2}\right)=1$ then, since m is odd, 5.8 yields $\left|Y_{2} / C_{Y_{2}}(B)\right| \geq$ $|B|$, and then (9) follows. Thus, we may assume that $C_{B}\left(L_{2}\right) \neq 1$, and then $\left|Y / C_{Y}(B)\right| \geq$ $\left|U_{1} / C_{U_{1}}\left(B_{1}\right)\right|\left|U_{2} / C_{U_{2}}\left(B_{2}\right)\right|$, by (8). Again, as m is odd, 5.8 implies that $\left|U_{2} / C_{U_{2}}\left(B_{2}\right)\right| \geq$ $\left|B_{2}\right|$, and hence $\left|U_{1} / C_{U_{1}}\left(B_{1}\right)\right|<\left|B_{1}\right|$. In particular, we have $L_{1} \neq 1$, and $L_{1}=K_{1}$. Notice that there exists $t \in C_{G}(a)$ such that $K_{1}\langle t\rangle / E \cong \operatorname{Sym}(k)$. It then follows from 5.8 that k is even and that if $k>4$ then U_{1} is a natural $\operatorname{Sym}(k)$-module for K_{1} / E and B_{1} is generated by elements which correspond to transpositions in $\operatorname{Sym}(k)$. That is, either $k=4$ or B contains elements which are the product of two disjoint transpositions. The minimality of k then yields $k=4$. Then $\left|B_{1}\right|=2$, and so $\left|U_{1} / C_{U_{1}}\left(B_{1}\right)\right| \geq\left|B_{1}\right|$. This completes the proof of (9).

We have $|A|=\left|A_{0}\right||B|$, so

$$
\begin{equation*}
\left|A_{0}\right|^{3 / 2}|B|^{3 / 2} \geq\left|V / C_{V}(A)\right| . \tag{}
\end{equation*}
$$

Notice that $V / X \cong Y$ as modules for $C_{G}(a)$. Then
$\left({ }^{* *}\right) \quad\left|V / C_{V}(A)\right|=|V / X|\left|X / C_{X}(B)\right| \geq|Y|\left|Y / C_{Y}(B)\right|=\left|Y / C_{Y}(B)\right|^{2}\left|C_{Y}(B)\right|$.
As $\left|Y / C_{Y}(B)\right| \leq|B|$, by (9), we then have

$$
\begin{equation*}
\left|A_{0}\right|^{3} \geq\left|B \| C_{Y}(B)\right|^{2}, \text { and if }\left|Y / C_{Y}(B)\right|>|B| \text { then }\left|A_{0}\right|^{3} \geq 16\left|B \| C_{Y}(B)\right|^{2} \tag{10}
\end{equation*}
$$

Suppose that $A_{0}=\langle a\rangle$. Then (10) yields $|B|=2,\left|C_{Y}(B)\right|=2$, and $\left|Y / C_{Y}(B)\right|=2$. But $L /\langle a\rangle$ has a non- solvable direct factor which, by (1), acts faithfully on Y, and so we have a contradiction in this case. Now (6) and (7) yield:
(11) $\left|A_{0}\right|>2, k=2$ or 4 , and $m \geq 5$.

Suppose next that $k=4$ and that $|Y| \leq 32$. Then (1) implies that $L_{5}(2)$ has a subgroup of the form $2^{4}: 3 \times \operatorname{Alt}(m)$. As $m \geq 5$ we may choose $x \in L_{2}$ of order 5, and find that $[Y, x]$ is a hyperplane of Y, and that $\left[Y, x, O_{2}\left(K_{1}\right)\right]=0$. Here $O_{2}\left(K_{1}\right) /\langle a\rangle$ is elementary abelian of order 16 , and contains its centralizer in $L_{5}(2)$, so we have a contradiction. Thus:
(12) If $k=4$ then $|Y| \geq 64$.

Suppose that $\left|Y / C_{Y}(B)\right|>|B|$. If also $\left|A_{0}\right|=4$ then (10) yields $|B|=1$, which is contrary to (4). Thus $\left|A_{0}\right|=8$, and (7) implies that $k=4, L_{1}=1$, and $A_{0} E^{*}=O_{2}\left(K_{1}^{*}\right)$.

Now (10) yields $|B| \leq 8$ so $|A| \leq 64$ and $\left|V / C_{V}(A)\right| \leq 2^{9}$. Note also that if $|B|=4$ then $\left|V / C_{V}(A)\right| \leq 2^{7}$, and if $|B|=2$ then $\left|V / C_{V}(A)\right| \leq 2^{6}$. But $\left|V / C_{V}(A)\right| \geq|Y|\left|Y / C_{Y}(B)\right|$, by $\left({ }^{* *}\right)$, and so $|Y| \leq 32$, contrary to (12). Thus:
(13) We have $\left|Y / C_{Y}(B)\right|=|B|$.

Suppose that $L_{1}=1$. Then $L=L_{2}$, and B acts faithfully on L_{2}. Set $Y_{0}=$ $U_{2} / C_{U_{2}}\left(L_{2}\right)$. Notice that there exists an involution t in $C_{H}(a)$ such that $L_{2}\langle t\rangle \cong$ $\operatorname{Sym}(m)$. As m is odd it follows from (13) and 5.7 that either Y_{0} is a natural module for $L B$, or $m=5$ and Y_{0} is a spin module for $L B$, of dimension 4. Suppose that $m=5$ and Y_{0} is a spin module (i.e. a natural $S L(2,4)$-module). Then $|B|=4$, and since $\left|A_{0}\right| \leq 8$, by (7), we get $|A| \leq 2^{5}$. Moreover, if $|A|=2^{5}$ then $\left|A \cap L_{2}\right|=4$ and so $k=2$. But with $k=2$ we have $\left|A_{0}\right| \leq 4$, so we conclude that, in fact, $|A| \leq 16$, and thus $\left|V / C_{V}(A)\right| \leq 64$. As $C_{V}(A) \neq C_{V}(a)$, by (1), it follows that $|Y| \leq 32$. By (11), we may choose $a_{0} \in A_{0}-\langle a\rangle$, and then (1) implies that $\left\langle a_{0}\right\rangle \times L_{2}$ acts faithfully on Y. But $2 \times L_{2}(4)$ has no faithful action on a 5 -dimensional space over \mathbb{F}_{2}, so we conclude that Y_{0} is not a spin module.

Suppose that $k=2$. Then $L_{1}=1$, and the preceding paragraph applies. As m is odd, (13) and 9.4 imply that B contains an element b which acts as a transvection on U_{2}. As $k \neq 1, b \notin K_{2}^{*}$. Notice that either $K_{1}^{*}=A_{0}$ or K_{1}^{*} is dihedral of order 8. In either case we have $C_{G}\left(A_{0}\right)=A_{0} K_{2}^{*}$. Thus, there exists $c \in A_{0}$ so that $b c \in K_{2}^{*}$. But $\left[U_{2}, c\right]=0$, so $b c$ is a transvection on U_{2}, and then $b c$ is a transposition in K_{2}^{*}. This is contrary to the minimality of k, so we now conclude that $k=4$. If also $\left|A_{0}\right|=4$ then (10) yields $|B| \leq 16,|A| \leq 64$, and $\left|V / C_{V}(A)\right| \leq 2^{9}$. Then also $|Y| \leq 32$, and we contradict (12). Thus $\left|A_{0}\right|=8$. As $A_{0} \leq O_{2}\left(K_{1}^{*}\right)$, by (7), it follows that $E^{*} A_{0}=O_{2}\left(K_{1}^{*}\right)$, and since $\left[B, A_{0}\right]=1$ we get $\left[L_{1}, B\right] \leq E$. Then $L_{1}=1$. As in the case $k=2$, there then exists $b \in B$ such that b induces a transvection on U_{2}, and we have $b=x t$ where $x \in O_{2}\left(K_{1}^{*}\right)$ and t is a transposition in K_{2}^{*}. Then $a_{0} x \in E^{*}$ for some $a_{0} \in A_{0}$. Then either $a_{0} x$ or $a a_{0} x$ is the product of fewer than three pairwise disjoint transpositions. Replacing a_{0} by $a a_{0}$ if necessary, it follows that $a_{0} b=a_{0} x t$ is the product of fewer than four pairwise disjoint transpositions, and we again contradict the minimality of k. This completes the proof of 9.1.

Section 10: Lie type groups in cross characteristic

10.1 Hypothesis. Hypothesis 4^{\prime} holds, and S is contained in a unique maximal subgroup of G. Further, $H / Z(H)$ is a quasisimple group of Lie type, whose defining characteristic r is different from p. Indeed, it is assumed that there exists no isomorphism between $H / Z(H)$ and a group of Lie type in characteristic p

Our aim in this section is to prove the following result.
10.2 Theorem. Assume Hypothesis 10.1. Then $|A|=3$, and one of the following holds.
(a) $G / Z(G) \cong L_{2}(5)$.
(b) $G \cong S p(6,2), C_{G}(A) \cong 3 \times S p(4,2)$, and $|V|=3^{7}$.

We remark that there is a natural embedding of $S p(6,2)$ in $\Omega_{7}(3)$, which one obtains by identifying $2 \times S p(6,2)$ with the Weyl group of E_{7}. Further, it is the case that in $S p(6,2)$ a Sylow 3 -subgroup is contained in a unique maximal subgroup (isomorphic to Aut $\left(U_{4}(2)\right)$.

Whenever Hypothesis 10.1 is in effect we set $\bar{G}=G / Z(H)$. We begin the proof of 10.2 by considering the case where $\bar{H} \cong S p(6,2)$.
10.3 Lemma. Assume Hypothesis 10.1, and assume that $\bar{H} \cong S p(6,2)$. Then $p=3$ and one of the following holds.
(i) $|A|=3, G \cong S p(6,2), C_{G}(A) \cong 3 \times S p(4,2)$, and $|V|=3^{7}$.
(ii) $|A|=27,|Z(G)|=2$, and $|V|=3^{8}$.

Proof. We have $G=H$ and $|Z(G)| \leq 2$. Let U be the natural \mathbb{F}_{2}-module for \bar{G}. There are three conjugacy classes of subgroups of order 3 in G, which are distinguished by the dimensions of the commutators $[U, X], X$ a representive of the class. We will say that a subgroup (or element) X of order 3 is in the class $3 A$ (resp. $3 B$, resp. $3 C$) if $\operatorname{dim}([U, X])=1$ (resp. 2, resp. 3). There is a subgroup M of G with $\bar{M} \cong L_{2}(8)$: $3 \cong{ }^{2} G_{2}(3)$, and M contains representatives of the classes $3 C$ (in $[M, M]$) and $3 B$ (in $M-[M, M])$.

Suppose first that $|A|=3$, so that $\left|V / C_{V}(A)\right| \leq 9$. By $5.6, A$ is not quadratic on V, and so $\left|V / C_{V}(A)\right|=9$. Then $A \not \leq M$, as follows from 6.9. Thus, A is of type $3 A$. Then there is a maximal subgroup K^{*} of G containing A, with $\bar{K}^{*} \cong \operatorname{Sym}(8)$, and such that \bar{A} is generated by a 3 -cycle in \bar{K}^{*}. Let K be a subgroup of K^{*} containing A, with $\bar{K} \cong \operatorname{Alt}(7)$. Then 8.3 implies that $K \cong \operatorname{Alt}(7)$ and that $[V, K]$ is a natural module for K, of dimension 6 over \mathbb{F}_{3}. In particular, we now have $Z(G)=1$. Let K_{0} be a subgroup of K containing A, with $K_{0} \cong \operatorname{Alt}(6)$, and let b be an element of of order 3 in $C_{G}\left(K_{0}\right)$. By [C2, Theorem 4.2], $\left[K^{*}, K^{*}\right]$ is the unique proper subgroup of G which properly contains K and which is generated by conjugates of A. Since $\langle b\rangle$ is conjugate to A we then have $\langle K, b\rangle=G$. We may then assume that $K^{b} \not \leq K^{*}$, and so also $G=\left\langle K, K^{b}\right\rangle$. Here b centralizes $\left[V, K_{0}\right]$, which has codimension 1 in $[V, K]$, so we get $V=[V, K]+\left[V, K^{b}\right]$ of dimension at most 7 . But $\operatorname{Sp}(6,2)$ has no faithful representation on degree 6 over \mathbb{F}_{3}, by [SZ], so $\operatorname{dim}(V)=7$. Thus, (i) holds in this case.

We next consider the various conjugacy classes of subgroups of \bar{G} of order 9 . Any such class is characterized by the conjugacy classes of its four cyclic subgroups, and in this way we find that there are exactly four such classes, which we list as follows, and where
we list also a subgroup of \bar{G} containing a representative of the given class.

$$
\begin{aligned}
& Y_{1}=(3 A, 3 A, 3 B, 3 B) \leq \operatorname{Alt}(7), \\
& Y_{2}=(3 C, 3 B, 3 B, 3 B) \leq L_{2}(8): 3, \\
& Y_{3}=(3 A, 3 B, 3 C, 3 C) \leq \operatorname{Sym}(3) \times \operatorname{Sym}(6), \\
& Y_{4}=(3 C, 3 C, 3 C, 3 C) \leq 3^{1+2}: G L(2,3) .
\end{aligned}
$$

Suppose that $|A|=9$, so that $\left|V / C_{V}(A)\right| \leq 3^{4}$. Then A is not of type Y_{1}, by 8.3, and A is not of type Y_{2} by 6.9. Thus A is of type Y_{3} or Y_{4}, and so A contains a subgroup $\langle a\rangle$ of type $3 C$. Set $K=C_{G}(a)$, and observe that $\bar{K} \cong 3^{1+2}: S L(2,3)$. Theorem 1.3 of [C3] implies that any quadratic element of order 3 in G is of type $3 A$, so a is not quadratic. Set $W=[V, a]$. Then $\operatorname{dim}(W) \leq 4$, and $[W, a] \neq 0$, so K acts faithfully on W. It follows that $\operatorname{dim}(W)=4$, and then $C_{V}(a)=C_{V}(A)$. As $\left\langle A^{K}\right\rangle \geq O_{3}(K)$ we then have $C_{W}(a)=C_{W}\left(O_{3}(K)\right)$. Also, by Hypothesis 4^{\prime} we have $[W, A, A]=0$, so $\left[W, A, O_{3}(K)\right]=0$, and then $O_{3}(K)$ acts quadratically on W, contrary to $\Phi\left(O_{3}(K)\right) \neq 1$. We therefore conclude that $|A| \neq 9$.

Suppose finally that $|A|=27$. Let Y be a subgroup of A of type Y_{2}. Then two conjugates of Y suffice to generate a maximal subgroup M of G with $M \cong L_{2}(8)$: 3 , and since $A \not \leq M$ it follows that two conjugates of A suffice to generate G. As $\operatorname{dim}\left(V / C_{V}(A)\right) \leq 6$ we then have $\operatorname{dim}(V) \leq 12$. Let $A \leq L \leq G$ with $\bar{L} \cong \operatorname{Sym}(3) \times$ $\operatorname{Sym}(6)$, set $L_{0}=E(L)$, set $A_{0}=C_{A}\left(L_{0}\right)$, and set $V_{0}=\left[V, A_{0}\right]+C_{V}\left(A_{0}\right)$. Then $A \cap L_{0}$ acts quadratically on V_{0}, by Hypothesis 4^{\prime}, and so 1.7 implies that $\left[V_{0}, L_{0}\right.$] is a direct sum of natural $S L(2,9)$-modules for L_{0}. As $V / C_{V}\left(A_{0}\right) \cong\left[V, A_{0}\right]$ as L_{0}-modules, we have $\left[V_{0}, L_{0}\right] \neq 0$, so we conclude that $Z\left(L_{0}\right)=Z(G) \neq 1$. We may assume that V is irreducible for G, so $V=[V, Z(G)]$, and since $\operatorname{dim}(V) \leq 12, V_{0}$ is a direct sum of one or two natural modules for L_{0}. Then also V / V_{0} is a natural module for L_{0}. If A_{0} is not quadratic on V we then have $\operatorname{dim}(V)=12$ and $\left|C_{V}(A)\right|=\left|C_{V_{0}}(A)\right|=3^{4}$, so that $\left|V / C_{V}(A)\right|>|A|^{2}$. Thus, A_{0} is quadratic on V, and $\operatorname{dim}(V)=8$. Thus, (ii) holds in this case.

The following lemma is given by Table I in [SZ].
10.4 Lemma. Let X be a simple group of Lie type, in characteristic different from p, and let V be a non-trivial projective $\mathbb{F}_{p} X$-module. Assume that X is not isomorphic to any of the groups in the following list \mathcal{L}_{0}.

$$
\begin{aligned}
& \mathcal{L}_{0}=\left\{L_{2}(4), L_{2}(9), L_{3}(2), L_{3}(4), L_{4}(2) L_{4}(3), P S p(4,2), U_{4}(3),\right. \\
& \left.\quad P \Omega_{8}^{+}(2), P \Omega_{7}(3), F_{4}(2), G_{2}(3), G_{2}(4), S z(8)\right\}
\end{aligned}
$$

Then the dimension of V is at least ℓ, where ℓ is given as follows.
(1) $L_{2}(q): \quad \ell=(1 / d)(q-1), d=(2, q-1)$.
(2) $L_{n}(q), n \geq 3: \quad \ell=\left(q^{n}-1\right) /(q-1)-n$.
(3) $\operatorname{PSp}(2 n, q), n \geq 2$:

$$
\ell=\left\{\begin{array}{l}
\left(q^{n}-1\right) / 2 \quad \text { if } q \text { is odd, and } \\
q\left(q^{n}-1\right)\left(q^{n-1}-1\right) / 2(q+1) \quad \text { if } q \text { is even. }
\end{array}\right.
$$

(4) $U_{n}(q), n \geq 3$:

$$
\ell=\left\{\begin{array}{l}
q\left(q^{n-1}-1\right) /(q+1) \quad \text { if } n \text { is odd, and } \\
\left(q^{n}-1\right) /(q+1) \quad \text { if } n \text { is even } .
\end{array}\right.
$$

(5) $P \Omega_{2 n+1}(q), q$ odd, $n \geq 3$:

$$
\ell=\left\{\begin{array}{lc}
\left(q^{2 n}-1\right) /\left(q^{2}-1\right)-n & \text { if } q \neq 3, \text { and } \\
\left(3^{2 n}-1\right) / 8-\left(3^{n}-1\right) / 2 & \text { if } q=3
\end{array}\right.
$$

(6) $P \Omega_{2 n}^{+}(q), n \geq 4$:

$$
\ell=\left\{\begin{array}{l}
q\left(q^{2 n-2}-1\right) /\left(q^{2}-1\right)+q^{n-1}-n \quad \text { if } q \neq 2,3, \text { and } \\
q\left(q^{2 n-2}-1\right) /\left(q^{2}-1\right)-\left(q^{n-1}-1\right) /(q-1)-7 \delta_{2, p} \quad \text { if } q \text { is even. }
\end{array}\right.
$$

(7) $P \Omega_{2 n}^{-}(q), n \geq 4: \quad \ell=q\left(q^{2 n-2}-1\right) /\left(q^{2}-1\right)-q^{n-1}-n+2$.
(8) $E_{6}(q): \quad \ell=q^{9}\left(q^{2}-1\right)$.
(9) $E_{7}(q): \quad \ell=q^{15}\left(q^{2}-1\right)$.
(10) $E_{8}(q): \quad \ell=q^{27}\left(q^{2}-1\right)$.
(11) $F_{4}(q): \quad \ell=q^{6}\left(q^{2}-1\right)$.
(12) ${ }^{2} E_{6}(q): \quad \ell=q^{9}\left(q^{2}-1\right)$.
(13) $G_{2}(q): \quad \ell=q\left(q^{2}-1\right)$.
(14) ${ }^{3} D_{4}(q): \quad \ell=q^{3}\left(q^{2}-1\right)$.
$(15){ }^{2} F_{4}(q): \quad \ell=(\sqrt{q / 2}) q^{4}(q-1)$.
(16) $S z(q): \quad \ell=(\sqrt{q / 2})(q-1)$.
(17) ${ }^{2} G_{2}(q): \quad \ell=q(q-1)$.

We insert the following lemma, as support for the case where $H \cong L_{2}(q)$.
10.5 Lemma. Set $L=L_{2}(q), q$ odd, and identify L with the group $\operatorname{Inn}(L)$ of inner automorphisms of L. Let A be an elementary abelian 2-subgroup of $\operatorname{Aut}(L)$. Then one of the following holds.
(i) q is a perfect square, $A \not \leq L$, and there exists an element t of $A-L$ such that t is conjugate via $\operatorname{Aut}(L)$ to a field automorphism of L. Further, we have $A=$ $(A \cap L)\langle t\rangle$ and $|A| \leq 8$.
(ii) $A \not \leq L$, and $L A=L\langle d\rangle$, where d is a diagonal automorphism of L. Here $\mid A /(A \cap$ $L)|=2,|A| \leq 4$, and all involutions in $L A-L$ are conjugate. If $| A \mid=4$ then $L A=\left\langle A, A^{g}\right\rangle$ for some $g \in L$.
(iii) $A \leq L,|A| \leq 4$, and if $|A|=4$ then $L A=\left\langle A, A^{g}\right\rangle$ for some $g \in L$.

Proof. Set $G=L A$, and let T be a Sylow 2-subgroup of G containing A. Also, set $G_{1}=P G L(2, q)$, and set $G^{*}=G_{1} T$. Further let T^{*} be a Sylow 2-subgroup of G^{*} containing T and set $T_{1}=T^{*} \cap G_{1}$.

We first note the following.
(1) T_{1} is dihedral, and G_{1} has exactly two classes of involutions.

Suppose that $q=r^{2}$ is a perfect square, and let α be the standard field automorphism of L of order 2 , induced by the automorphism of $G L(2, q)$ which raises matrix entries to the power r (and which we denote also by α). Our first step will be to provide a proof of the following (well known) fact.
(2) We have $C_{G_{1}}(\alpha)=C_{L}(\alpha) \cong P G L(2, r)$.

The proof is as follows. Set $\widetilde{G}_{1}=G L(2, q)$, let Z be the group of scalar matrices in \widetilde{G}_{1}, and set $Z_{0}=\left\{\lambda^{q-1} I \| \lambda \in \mathbb{F}_{q}\right\}$. Denote by \widetilde{C}_{1} the set of matrices $\widetilde{x} \in \widetilde{G}_{1}$ such that $[\widetilde{x}, \alpha] \in Z$. As $Z \leq Z\left(\widetilde{C}_{1}\right)$, there is a homomorphism $\phi: \widetilde{C}_{1} \longrightarrow Z$ given by $\phi(\widetilde{x})=[\widetilde{x}, \alpha]$. Then the image of $p h i$ is Z_{0}, and the kernel of ϕ is $C_{\widetilde{G}_{1}}(\alpha)=G L(2, r)$. One observes that $\left.\phi\right|_{Z}$ maps Z onto Z_{0}, so $\widetilde{C}_{1}=\operatorname{Ker}(\phi) Z$. We then have

$$
C_{G_{1}}(\alpha)=\operatorname{Ker}(\phi) Z / Z \cong \operatorname{Ker}(\phi) /(\operatorname{Ker}(\phi) \cap Z) \cong P G L(2, r) .
$$

On the other hand, let $\omega \in \mathbb{F}_{q}-\mathbb{F}_{r}$ so that $\langle\omega\rangle=\mathbb{F}_{r}^{\times}$, and let d be the linear fractional transformation $x \mapsto \omega^{2} x$. Then $\omega^{r}=-\omega$, and so $[d, \alpha]=1$. Also, $d \in L$, and d induces an outer automorphism on the subgroup $P S L(2, r)$ of L. Thus $C_{L}(\alpha)$ contains a subgroup isomorphic to $P G L(2, r)$, and this yields (2).

Next, suppose that there exists an element $t \in A-G_{1}$. As $|t|=2$ we have $g^{\alpha}=g^{-1}$, and then t is conjugate either to α or to $z \alpha$, where z is an involution in $C_{G_{1}}(\alpha)$. Suppose that t is not conjugate to α. Then $z \in L$, by (2). We now apply (1) to $C_{L}(t)$ in place of G_{1}, and find that, up to conjugation in L, there are two choices for z. One (in $L_{2}(r)$) is given by the linear fractional transformation $z_{1}: x \mapsto-1 / x^{-1}$, and the
other (in $C_{L}(\alpha)-L_{2}(r)$) is given by $z_{2}: x \mapsto-\omega^{2} x$, where ω is as above. To show that α and $z_{i} \alpha$ are conjugate, we suffices to display elements g_{i} of G_{1} such that $g_{i}^{\alpha}=g_{i} z_{i}$. Let $\rho \in \mathbb{F}_{q}$ with $\rho^{1+r}=-1$. The transformations $g_{1}: x \mapsto\left(x+\rho^{r}\right) /\left(\rho x+\rho^{2 r}\right)$ and $g_{2}: x \mapsto(x-\omega) /\left(\omega x+\omega^{2}\right)$ perform this trick, as the careful reader may check. Thus (i) holds if $A \not \leq G_{1}$.

Suppose next that $A \leq G_{1}$, suppose that $A \not \leq L$, and let $t \in A-L$. As T_{1} is dihedral, we have $\left|C_{T}(t)\right|=2$, and thus $|A| \leq 4$. Let s be the involution in $C_{T}(t)$, and set $D=C_{L}(s)$. Then D is dihedral of order $q-\epsilon, \epsilon=1$ or -1 , and where $q \cong \epsilon(\bmod 4)$. Further, $D\langle t\rangle$ is dihedral, and so $C_{D}(t)=\langle s\rangle$. It follows that $C_{L}(t)$ is dihedral, of twiceodd order. Now let D_{1} be a dihedral subgroup of L, containing s, of order $q+\epsilon$. Suppose that D_{1}^{x} is t-invariant, for every $x \in C_{L}(s)$. Then $[D, t] \leq N_{L}\left(D_{1}\right)$. As D_{1} is maximal in L, and $\left|D \cap D_{1}\right|=2$, we conclude that $[D, t]=\langle s\rangle,|D|=4$, and $q=5$. In this case we have $G_{1} \cong \operatorname{Sym}(5)$, and one checks that two conjugates of $\langle(12),(34)\rangle$ suffice to generate $\operatorname{Sym}(5)$. On the other hand, suppose that there exists $x \in C_{L}(s)$ such that D_{1}^{x} is not t-invariant. We may then take $x=1$, and we conclude that $G=\left\langle s, t, s^{g}, t^{g}\right\rangle$, where g is a generator for the maximal cyclic subgroup of D_{1}. Thus (ii) holds in this case.

Finally, suppose that $A \leq L$, and that $|A|>2$. Then A is a fours group. Let s be an involution in A, and let D be a dihedral subgroup of L containing s, of twice-odd order $q-1$ or $q+1$. Then D is maximal, so D is not A-invariant, and so $G=L=\left\langle A, A^{g}\right\rangle$ for any generator g of $[D, D]$. Thus, (iii) holds in this case, and the lemma is proved.
10.6 Lemma. Assume Hypothesis 10.1, and suppose that $H / Z(H) \cong L_{2}(q)$, q a power of r. Then $q=5, r=3$, and $|V|=81$.

Proof. First of all, if $|Z(H)|>2$ then $|Z(H)|$ is divisible by 3 , and $H / Z(H) \cong L_{2}(9)$. Then $p=2$ or 5 , and since $L_{2}(9) \cong(S p(4,2))^{\prime}$ we have $p=5$. Then $|A|=5$ and H is generated by two conjugates of A, so that $|V| \leq 5^{4}$. As 3 divides $|Z(H)|, V$ may then be regarded as a 2-dimensional space over \mathbb{F}_{25}. But $L_{2}(9)$ is not a subgroup of $L_{2}(25)$, so we conclude that $|Z(H)| \leq 2$.

Suppose that G contains a quadratic subgroup of order at least 3. If p is odd then 3.1 yields $H \cong S L(, 2,5), p=3$, and V is a natural $S L(2,9)$-module for H. Thus, the lemma holds in this case. If $p=2$ then the main result of [MS1] implies that $H / Z(H) \cong U_{4}(3)$, contrary to $H / Z(H) \cong L_{2}(q)$. Thus, we may assume henceforth that any quadratic subgroup of G has order at most 2 .

Suppose first that $p=2$. Then q is odd, and since $H / Z(H)$ is not isomorphic to a group of Lie type in characteristic 2 we have $q \geq 11$. By 5.4 we have $\left|V / C_{V}(a)\right| \geq 8$ for any $a \in A^{\#}$. Also, $|A|^{3 / 2} \geq\left|V / C_{V}(A)\right|$ by Hypothesis 4^{\prime}, and so $|A| \neq 2$. If $|A|=4$ we have $\left|V / C_{V}(A)\right| \leq 8$, and then $C_{V}(a)=C_{V}(A)$ for all $a \in A^{\#}$, and A is a quadratic fours group. Thus $|A| \neq 4$. Then 10.5 implies that $|A|=8,|A \cap H|=4$, and there exists $a \in A-H$ such that a induces a field automorphism on $H / Z(H)$. Further, if we apply 10.5 to $A \cap H$ then we find that H is generated by two conjugates of $A \cap H$. Here $\left|V / C_{V}(A)\right| \leq 16$, so $\operatorname{dim}(V) \leq 8$. But $\operatorname{dim}(V) \geq(q-1) / 2$, by $10.4(1)$, and so $q \leq 17$. As q is odd and a perfect square we then have $q=9$, and thus $H / Z(H) \cong(S p(4,2))^{\prime}$. We therefore conclude that p is odd.

Suppose that $|A|=p$, so that $\left|V / C_{V}(A)\right| \leq p^{2}$. Suppose also that $A \leq H$. The group $L_{2}(r)$ is a homomorphic image of $L_{2}(\mathbb{Z})$, and $L_{2}(\mathbb{Z})$ contains the free product $\mathbb{Z}_{3} * \mathbb{Z}_{3}$ as a subgroup of index 2 , so $L_{2}(r)$ is generated by two elements of order 3 . Thus, if $p=3$ then two conjugates of A generate a subgroup Y of H with $Y / Z(Y) \cong L_{2}(r)$, and 2.2 then yields $r=5$. Then in any case, we may choose a conjugate B of A so that $\langle A, B\rangle$ is nonsolvable, and then $\langle A, B\rangle$ is quasisimple. By 2.2 we then have $p \geq 5$ (resp. $p=3),\langle A, B\rangle \cong L_{2}(p)\left(\right.$ resp. $\left.L_{2}(5)\right)$, and $|[V,\langle A, B\rangle]|=p^{3}$ (resp. 81). Any quasisimple subgroup of $H / Z(H)$ is isomorphic to $L_{2}(5)$ or $L_{2}\left(q_{1}\right)$ for some power q_{1} of r, so we have $p=3$ or 5 at this point. If $p=3$ and $q=5$ we have the conclusion of the lemma. Assuming that the lemma is false, choose a conjugate C of A, not contained in $\langle A, B\rangle$, so that $\langle A, C\rangle$ is quasisimple, and set $X=\langle A, B, C\rangle$. Then $|[V, X]| \leq p^{4}$ (resp. 3^{6}), and $X / Z(X) \cong L_{2}\left(q_{1}\right)$ for some power q_{1} of r (with $q_{1} \geq 25$ if $p=3$). Then $q_{1}>5$. If $q_{1}=7$ then $p=3$ and X contains a Frobenius group of order 21, which is contrary to 4.2. If $q_{1}=9$ then $p=5$ and we may choose B so that $\langle A, B\rangle=X$, which is contrary to 2.2 . Thus $q \geq 11$. If $p=5$ then $\operatorname{dim}([V, X]) \leq 4$, and $10.4(1)$ yields $q \leq 9$. So in fact $p=3$, $\operatorname{dim}([V, X]) \leq 6$, and $10.4(1)$ yields $q \leq 13$. But we have seen that $q_{1} \geq 25$ if $p=3$, so we have a contradiction at this point. Thus, $A \nsubseteq H$.

Let $a \in A-H$. By Theorem 4.9.1 of [GLS3], a induces a field automorphism on H, and thus A normalizes a Sylow r-subgroup R of H. Then also $[R, A]$ is non-cyclic. Suppose that $|A|=p$. Then 2.1 implies that $p=3$ and that $|[R, A]|=4$. It follows that $q=8$ and that $H A \cong{ }^{2} G_{2}(3)$, contrary to $H \notin \operatorname{Lie}(p)$. We therefore conclude that $|A|=p^{2}$. Set $X=C_{H}(a)$. Then $X / Z(H) \cong L_{2}\left(q_{0}\right)$ where $\left(q_{0}\right)^{p}=q$. Hypothesis 4^{\prime} implies that $A \cap X$ acts quadratically on the subspace $W=[V, a]+C_{V}(a)$ of V, and since $V / C_{V}(a)$ is X-isomorphic to $[V, a]$ it follows that X acts non-trivially on W. Then 5.6 yields $p=3$ and $X \cong S L(2,5)$, so that $q=5^{3}$. Evidently, three conjugates of A suffice to generate $H A$, so $\operatorname{dim}(V) \leq 12$. But $10.4(1)$ yields $\operatorname{dim}(V) \geq 62$, so we have a final contradiction, and the lemma is proved.

In the following lemma we shall eliminate from consideration a further number of "small" groups, including groups having exceptional Schur multipliers, and the groups in the list \mathcal{L}_{0} from 10.4. Conspicuously missing from this expanded list are any of the groups $P S p(4, q)$. These will be addressed later, in 10.10.
10.7 Lemma. Assume Hypothesis 10.1, and let \mathcal{L} be the set of groups whose members
are as follows:

$$
\begin{aligned}
& L_{3}(q), 3 \leq q \leq 5, \\
& L_{n}(q), \text { with } n=4 \text { or } 5, \text { and with } n+q \leq 7, \\
& U_{3}(q), q \leq 7, \\
& U_{4}(q), q \leq 3 \\
& U_{n}(2), n \leq 7, \\
& P S p(2 n, q), \text { with } n=3 \text { or } 4, \text { and with } q \leq 3, \\
& \Omega_{7}(3), \Omega_{8}^{+}(2), \Omega_{8}^{-}(2), \text { and }{ }^{3} D_{4}(2) \\
& { }^{2} E_{6}(2), F_{4}(2),{ }^{2} F_{4}(2), G_{2}(3), G_{2}(4), \text { and } S z(8) .
\end{aligned}
$$

Assume that \bar{H} is isomorphic to a group in the list \mathcal{L}. Then $\bar{H} \cong S p(6,2)$.
Proof. Assume that \bar{H} is not isomorphic to $S p(6,2)$. We shall consider the various groups individually, and we shall make free use of the ATLAS, in deciding whether a Sylow p subgroup of a particular group G is contained in a unique maximal subgroup of G. This task will be simplified by the following reduction.
(a) Set $H^{*}=H S$. Then there exists at most one maximal subgroup of \bar{H}^{*} containing \bar{S}, and at most one \bar{H}-invariant maximal subgroup of \bar{S}.

Indeed, if (a) is false then the unique maximal subgroup M of G containing S contains H. But M contains also $N_{G}(S \cap H)$, and the Frattini argument then yields $M=G$.

We may also employ the following consequence of 2.2 .
(b) A Sylow p-subgroup of G has order greater than p.

Most groups in \mathcal{L}, and most primes, may be eliminated at once by recourse to (a) and (b). The only exceptions will be given by the groups $L_{3}(4)$ and ${ }^{3} D_{4}(2)$ with $p=3$, and the groups $L_{3}(3)$ and $L_{4}(3)$ with $p=2$. Apart from the treatment of these four exceptions, the argument will consist simply of a list, in which we give the isomorphism type of \bar{H}, the order of \bar{H} and of $O u t(\bar{H})$, and then, for each prime p different from r, and for which p^{2} divides the order of $A u t(\bar{H})$, a pair of distinct maximal subgroups of $\bar{H}^{*}=\overline{H S}$ containing \bar{S}.
(1) $\bar{H} \cong L_{3}(3),|\bar{H}|=2^{4} \cdot 3^{3} \cdot 13,|O u t(\bar{H})|=2,(p=2)$.

There is a unique maximal subgroup containing S if $S \not \approx H$. This case will be treated below.
(2) $\bar{H} \cong L_{3}(4),|\bar{H}|=2^{6} \cdot 3^{2} \cdot 5 \cdot 7,|O u t(\bar{H})|=12,(p=3)$.

There is a unique maximal subgroup of \bar{H}^{*} containing \bar{S} if $S \not \leq H$, so this case will be considered separately below.
Maximal subgroups when $S \leq H$:

$$
M_{10}, \quad U_{3}(2)
$$

(3) $\bar{H} \cong L_{3}(5),|\bar{H}|=2^{5} \cdot 3 \cdot 5^{3} \cdot 31,|O u t(H)|=2,(p=2)$.

Maximal subgroups when $S \leq H$:

$$
5^{2}: G L(2,5), \quad 4^{2}: \operatorname{Sym}(3)
$$

Maximal subgroups when $S \not \leq H$:

$$
G L(2,5) \cdot 2, \quad 4^{2} \cdot(\operatorname{Sym}(3) \times 2)
$$

(4) $\bar{H} \cong L_{4}(2),|\bar{H}|=2^{6} \cdot 3^{2} \cdot 5 \cdot 7,|O u t(H)|=2,(p=3)$.

Maximal subgroups:

$$
\operatorname{Alt}(7), \quad 2^{4}:(\operatorname{Sym}(3) \times \operatorname{Sym}(3))
$$

(5) $\bar{H} \cong L_{4}(3),|\bar{H}|=2^{7} \cdot 3^{6} \cdot 5 \cdot 13,|O u t(\bar{H})|=4,(p=2)$.

There may be a unique maximal subgroup of \bar{H}^{*} containing \bar{S}, if $S \not \leq H$. This will be treated below.
(6) $\bar{H} \cong L_{5}(2),|\bar{H}|=2^{10} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31,|\operatorname{Out}(\bar{H})|=2,(p=3)$.

Maximal subgroups:

$$
2^{4}: L_{4}(2), \quad 2^{6}:\left(L_{3}(2) \times L_{2}(2)\right)
$$

(7) $\bar{H} \cong U_{3}(3) \cong\left(G_{2}(2)\right)^{\prime},|\bar{H}|=2^{5} \cdot 3^{3} \cdot 7,|O u t(\bar{H})|=2$, cyclic Sylow subgroups in cross characteristic.
(8) $\bar{H} \cong U_{3}(4),|\bar{H}|=2^{6} \cdot 3 \cdot 5^{2} \cdot 13,|O u t(\bar{H})|=2,(p=5)$.

Two maximal subgroups $\operatorname{GU}(2,4)$.
(9) $\bar{H} \cong U_{3}(5),|\bar{H}|=2^{4} \cdot 3^{2} \cdot 5^{4} \cdot 7,|O u t(\bar{H})|=6,(p=2$ or 3$)$.

Maximal subgroups for $p=3$, with $S \leq H$:

$$
\operatorname{Alt}(7), \quad M_{10}
$$

Maximal subgroups of \bar{H}^{*}, for $p=3$, with $S \not \leq H$:

$$
6^{2}: \operatorname{Sym}(3), \quad 3_{76}^{2}: S L(2,3)
$$

\bar{S}-invariant maximal subgroups of \bar{H}, for $p=2$:

$$
M_{10}, \quad 2 . \operatorname{Sym}(5) .
$$

(10) $\bar{H} \cong U_{4}(2) \cong P S p(4,3),|\bar{H}|=2^{6} \cdot 3^{4} \cdot 5,|O u t(\bar{H})|=2$, cyclic Sylow subgroups in cross characteristic.
(11) $\bar{H} \cong U_{4}(3),|\bar{H}|=2^{7} \cdot 3^{6} \cdot 5 \cdot 7,|O u t(\bar{H})|=8,(p=2)$.

In this case, the existence of a pair of proper subgoups of G, containing S, and generating G, is evident from the \tilde{B}_{2} geometry of 2-local subgroups of \bar{G}. See $[\mathrm{K}]$.
(12) $\bar{H} \cong U_{5}(2),|\bar{H}|=2^{10} \cdot 3^{5} \cdot 5 \cdot 11,|O u t(\bar{H})|=2,(p=3)$.

Maximal subgroups of \bar{H} containing \bar{S} :

$$
\operatorname{Sym}(3) \times G U(3,2), \quad G U(4,2) .
$$

(13) $\bar{H} \cong U_{6}(2),|\bar{H}|=2^{15} \cdot 3^{6} \cdot 5 \cdot 7 \cdot 11,|O u t(\bar{H})|=6,(p=3)$.

Maximal subgroups of \bar{H} containing \bar{S}, if $\bar{S} \leq \bar{H}$:

$$
3^{1+4} \cdot\left[2^{7} .3\right], \quad U_{4}(3): 2
$$

Maximal subgroups of \bar{H}^{*} containing \bar{S}, if $\bar{S} \not \leq \bar{H}$.

$$
3^{1+4} \cdot\left[2^{7} \cdot 3\right], \quad 3^{5}: \operatorname{Sym}(6) .
$$

(14) $\bar{H} \cong U_{7}(2),|\bar{H}|=2^{21} \cdot 3^{8} \cdot 5 \cdot 7 \cdot 11 \cdot 43,|O u t(\bar{H})|=2,(p=3)$.

Subgroups of \bar{H} containing \bar{S} and which generate \bar{H} :

$$
G U(6,2), \quad U_{4}(2) \times G U(3,2)
$$

(16) $\bar{H} \cong \operatorname{PSp}(6,3),|\bar{H}|=2^{9} \cdot 3^{9} \cdot 5 \cdot 7 \cdot 13,|\operatorname{Out}(\bar{H})|=2,(p=2)$.

Maximal subgroups of \bar{H} invariant under \bar{S} :

$$
2\left(\operatorname{Alt}(4) \times U_{4}(2)\right), \quad 2^{2+6}: 3^{3}: \operatorname{Sym}(3) .
$$

(19) $\bar{H} \cong S p(8,2),|\bar{H}|=2^{16} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 17,|\operatorname{Out}(\bar{H})|=1,(p=3$ or 5$)$.

Maximal subgroups of \bar{H} containing \bar{S} if $p=5$:

$$
D_{4}(2), \quad \begin{gathered}
\\
77
\end{gathered}
$$

Maximal subgroups of \bar{H} containing \bar{S} if $p=3$:

$$
D_{4}(2), \quad \operatorname{Sym}(3) \times \operatorname{Sp}(6,2)
$$

(20) $\bar{H} \cong \operatorname{PSp}(8,3),|\bar{H}|=2^{14} \cdot 3^{16} \cdot 5^{2} \cdot 7 \cdot 13 \cdot 41,|\operatorname{Out}(\bar{H})|=2,(p=2$ or 5$)$. Maximal subgroups of \bar{H} containing \bar{S} if $p=5$:

$$
(S p(4,3) \circ S p(4,3)) 2, \quad P S p(4,9): 2 .
$$

Maximal subgroups of \bar{H} invariant under \bar{S} if $p=2$:

$$
(S p(4,3) \circ S p(4,3)) 2, \quad \bar{M}
$$

where \bar{M} is the image in \bar{H} of a subgroup of $S p(8,3)$ of the form $S L(2,3)$ 亿 $S y m(4)$.
(21) $\bar{H} \cong \Omega_{7}(3),|\bar{H}|=2^{9} \cdot 3^{9} \cdot 5 \cdot 7 \cdot 13, \mid$ Out $(\bar{H}) \mid=2,(p=2)$.

Maximal subgroups of \bar{H} invariant under \bar{S} :

$$
2 U_{4}(3): 2, \quad 2^{6}: \operatorname{Alt}(7)
$$

(22) $\bar{H} \cong \Omega_{8}^{+}(2),|\bar{H}|=2^{12} \cdot 3^{5} \cdot 5^{2} \cdot 7, \mid$ Out $(\bar{H}) \mid=6,(p=3$ or 5$)$.

Maximal subgroups of \bar{H} containing \bar{S} if $p=5$:

$$
(\operatorname{Alt}(5) \times \operatorname{Alt}(5)): 2^{2} \quad \text { in three different ways. }
$$

Maximal subgroups of \bar{H} containing \bar{S} if $p=3$ and $S \leq H$:

$$
\left(3 \times U_{4}(2)\right): 2, \quad 3^{4}: 2^{3} \cdot \operatorname{Sym}(4)
$$

Maximal subgroups of \bar{H}^{*} containing \bar{S} if $p=3$ and $S \not \leq H$:

$$
3_{+}^{1+4}: G L(2,3), \quad\left(3^{4}: 2^{3} \cdot \operatorname{Sym}(4)\right) \cdot 3
$$

(23) $\bar{H} \cong \Omega_{8}^{-}(2),|\bar{H}|=2^{12} \cdot 3^{4} \cdot 5 \cdot 7 \cdot 17,|O u t(\bar{H})|=2,(p=3)$.

Maximal subgroups of \bar{H} containing \bar{S} :

$$
2^{6}: U_{4}(2), \quad S p(6,2)
$$

(24) $\bar{H} \cong{ }^{3} D_{4}(2),|\bar{H}|=2^{12} \cdot 3^{4} \cdot 7^{2} \cdot 13,|O u t(\bar{H})|=3,(p=3$ or 7$)$.

Maximal subgroups of \bar{H} containing \bar{S} if $p=7$:

$$
\left(7 \times L_{3}(2)\right): 2, \quad 7^{2}: S L(2,3)
$$

There is a unique maximal subgroup of \bar{H}^{*} containing \bar{S} if $p=3$. This case will be treated below.
(25) $\bar{H} \cong G_{2}(3),|\bar{H}|=2^{6} \cdot 3^{6} \cdot 7 \cdot 13,|\operatorname{Out}(\bar{H})|=2,(p=2)$.

Maximal subgroups of \bar{H} invariant under \bar{S} :

$$
\left(2^{3}\right) L_{3}(2), \quad 2_{+}^{1+4}: 3^{2} .2
$$

(26) $\bar{H} \cong G_{2}(4),|\bar{H}|=2^{12} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 13,|O u t(\bar{H})|=2,(p=3$ or 5$)$.

Maximal subgroups of \bar{H} containing \bar{S} if $p=5$:

$$
U_{3}(4): 2, \quad \operatorname{Alt}(5) \times \operatorname{Alt}(5) .
$$

Maximal subgroups of \bar{H} containing \bar{S} if $p=3$:

$$
S L(3,4): 2, \quad J_{2}
$$

(27) $\bar{H} \cong F_{4}(2),|\bar{H}|=2^{24} \cdot 3^{6} \cdot 5^{2} \cdot 7^{2} \cdot 13 \cdot 17, \mid$ Out $(\bar{H}) \mid=2,(p=3,5$, or 7$)$.

Maximal subgroups of \bar{H} containing \bar{S} if $p=7$:

$$
{ }^{3} D_{4}(2), \quad \text { in two different ways. }
$$

Maximal subgroups of \bar{H} containing \bar{S} if $p=5$:

$$
{ }^{2} F_{4}(2), \quad S p(8,2)
$$

Maximal subgroups of \bar{H} containing \bar{S} if $p=3$:

$$
\operatorname{Aut}\left(D_{4}(2)\right), \quad L_{4}(3): 2
$$

(28) $\bar{H} \cong\left({ }^{2} F_{4}(2)\right)^{\prime},|\bar{H}|=2^{11} \cdot 3^{3} \cdot 5^{2} \cdot 13, \mid$ Out $(\bar{H}) \mid=2,(p=3$ or 5$)$.

Maximal subgroups containing \bar{S} if $p=5$:

$$
L_{2}(25), \quad 5^{2}: 4 A l t(4)
$$

Maximal subgroups containing \bar{S} if $p=3$:

$$
L_{3}(3): 2 \text { in two different ways. }
$$

(29) $\bar{H} \cong S z(8),|\bar{H}|=2^{6} \cdot 5 \cdot 7 \cdot 13,|O u t(\bar{H})|=3$. This case contradicts (2).
$\bar{H} \cong{ }^{2} E_{6}(2),|\bar{H}|=2^{36} \cdot 3^{9} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19,|O u t(\bar{H})|=6,(p=3,5$, or 7$)$.
Maximal subgroups of \bar{H} containing \bar{S} if $p=7$:
$F_{4}(2), \quad$ in three different ways.
Maximal subgroups of \bar{H} containing \bar{S} if $p=5$:
$F_{4}(2)$, in three different ways.
Maximal subgroups of \bar{H} containing \bar{S} if $p=3$ and $S \leq H$:
$F i_{22}$ in three different ways.
Maximal subgroups of \bar{H}^{*} containing \bar{S} if $p=3$ and $S \not \leq H$.

$$
3^{6}: U_{4}(2): 2, \quad 3^{1+6} .2^{3+6} .(\operatorname{Sym}(3) \times 3) .3
$$

It now remains to take up the four exceptional cases: $\bar{H} \cong L_{3}(4),{ }^{3} D_{4}(2), L_{3}(3)$, and $L_{3}(4)$.

Suppose first that $\bar{H} \cong L_{3}(4)$, of order $2^{6} \cdot 3^{2} \cdot 5 \cdot 7$. Then $p=3$, by (2). Then $Z(H)$ is a 2-group, the 3 -rank of G is 2 , and so $|A| \leq 9$. We claim that four conjugates of A suffice to generate $H A$ if $|A|=3$, and that three conjugates suffice if $|A|=9$. Indeed, suppose that $A \cap H \neq 1$, and let $1 \neq a \in A \cap H$. Then two conjugates of a generate a subgroup K of H with $Z(H) K / Z(H) \cong L_{3}(2)$, and $A \cap K$ is a Sylow 3-subgroup of $N_{G}(K)$. Here $Z(H) K$ is maximal in H, so the claim holds in this case. On the other hand, suppose that $A \cap H=1$, and set $X=C_{H}(A)$. Referring to the ATLAS, we find that $Z(H) X / Z(H) \cong S L(2,4)$ or $\operatorname{Fr}(21)$. Let B be a Sylow 3 -subgroup of $C_{G}(A)$. Then A is conjugate to every cyclic subgroup of B not contained in X, and so there are conjugates A_{1} and A_{2} of A such that $Z(H)\left\langle A_{1}, A_{2}\right\rangle=Z(H) X A$. It is left to the reader to demonstrate that two conjugates of $X A$ suffice to generate $H A$ (or to find a different argument) and thus to prove the claim. We conclude that $|V| \leq 3^{8}$.

If $S \leq H$ then there are two different maximal subgroups M_{1} and M_{2} of H containing S (with $\bar{M}_{1} \cong U_{3}(2)$ and with $\bar{M}_{2} \cong M_{10}$), contrary to (1). Thus $S \not \leq H$. There then exists a subgroup Y of G with $Y \cong \operatorname{Fr}(21) \times 3$. Let b be a non-identity element of $O_{3}(Y)$ and x a non-identity element of $O_{7}(Y)$. Then $\operatorname{dim}([V, x])=6$, and $[V, x, b]=0$, so $\left|V / C_{V}(b)\right| \leq 9$. But, as we have seen, b is conjugate to an element of Y not contained in $\langle b\rangle$, and in this way we violate 2.2 . Thus, $H / Z(H) \nsubseteq L_{3}(4)$.

Suppose next that $\bar{H} \cong{ }^{3} D_{4}(2)$ and that $p=3$. It so happens that $Z(H)=1$, so $\bar{G}=G$. There are exactly two classes of elements of order 3 in H. To be consistent with ATLAS notation, we label a pair of fixed representatives of these two classes by $3 A$ and
$3 B$, where $N_{H}(3 A) \cong \operatorname{Sym}(3) \times L_{2}(8)$, and where $N_{H}(3 B)$ is of the form $\left.3_{+}^{1+2}\right) G L(2,3)$. Set $L=E\left(C_{H}(3 A)\right)$. We may assume that $[3 A, 3 B]=1$, and then $3 B \in E\left(C_{H}(3 A)\right)$ since $3 A$ is not contained in a cyclic group of order 9 . Let t be an involution in $N_{H}(3 A)$ with $[t, L]=1$. Then $C_{H}(t)$ is a maximal parabolic subgroup of H, of the form $2_{+}^{1+8}: L_{2}(8)$. As two conjugates of $3 B$ suffice to generate L, it follows that three conjugates of $3 B$ suffice to generate $C_{H}(t)$, and then four conjugates suffice to generate H. On the other hand, we observe that $3 A$ is not central in a Sylow 3 -subgroup of H, and hence $3 A$ is not weakly closed in a Sylow 3 - subgroup of $N_{H}(3 A)$. Thus, there is a conjugate of $3 A$ which is "diagonal" in $\langle 3 A\rangle \times L$, and so $C_{H}(3 A)$ is generated by two conjugates of $3 A$. Then four conjugates of $3 A$ suffice to generate a subgroup of H containing $C_{H}(t)$. As $C_{H}(t)$ contains no conjugate of $3 A$, it follows that four conjugates of $3 A$ suffice to generate H. Thus, we have shown that for any element $x \in H$ of order 3 , four conjugates of x suffice to generate H.

No involution-centralizer in H contains a copy of $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$, and then it follows from the given structure of $N_{H}(3 B)$ that the 3-rank of H is two, and the 3-rank of $A u t(H)$ is then at most three. In particular, we have $|A| \leq 27$, and so $\left|V / C_{V}(A)\right| \leq 3^{6}$. We now appeal to 10.4 , where we find that $\operatorname{dim}(V) \geq 24$. It follows that four conjugates of A do not suffice to generate $H A$, and therefore $A \cap H=1$. Thus $|A|=3,\left|V / C_{V}(A)\right| \leq 9$, and twelve conjugates of A do not suffice to generate $H A$. But A is not weakly closed in S, and therefore eight conjugates of A suffice to generate $H A$. Thus, we have a contradiction, and $H \not{ }^{3} D_{4}(2)$.

Suppose next that $\bar{H} \cong L_{3}(3)$. Then $Z(G)=1,|G / H| \leq 2$, and by (2) we have $p=2$. A Sylow 2-subgroup of $\operatorname{Aut}(H)$ is a direct product of a semidihedral with \mathbb{Z}_{2}, so the 2 -rank of A is at most 3 . By [MS1], G contains no quadratic fours groups, and then no element of A is a 2 -transvection on V, by 5.6. Also, as A contains no quadratic fours group we have $C_{V}(a) \neq C_{V}(A)$ for any $a \in A^{\#}$. As $|A|^{3 / 2} \geq\left|V / C_{V}(A)\right|$, by Hypothesis 4^{\prime}, we conclude that $|A|=8$, that $\left|V / C_{V}(A)\right|=16$, and that $\left|V / C_{V}(a)\right|=8$ for all $a \in A^{\#}$. Let $a \in A-H$. Then $C_{H}(a) \cong G L(2,3)$, and since $|[V, a]|=8$ we have $\left[V, a, Z\left(C_{H}(a)\right)\right]=0$. Thus A contains a quadratic fours group, and we have a contradiction in this case.

Finally, suppose that $\bar{H} \cong L_{4}(3)$. Then $p=2$, as seen in (5). As $Z(H)$ is a 2-group, we then have $Z(H)=1$ and $H \cong L_{4}(4)$. A Sylow 2 subgroup of $A u t(H)$ is contained in a unique maximal subgroup of $\operatorname{Aut}(G)$, of the form $2 \times(G L(2,3) \circ G L(2,3)) 2$, so we have $|A| \leq 32$. As in the preceding paragraph, G contains no quadratic fours groups, so $\left|V / C_{V}(a)\right| \geq 8$ and $C_{V}(a) \neq C_{V}(A)$ for any $a \in A^{\#}$, and we have $|A| \geq 8$. In particular, we then have $A \cap H \neq 1$.

There are exactly two conjugacy classes of involutions in H, with representatives $2 A$ and $2 B$, and where $C_{H}(2 A)$ and $C_{H}(2 B)$ have the form $\left(4 \times L_{2}(9)\right): 2$ and $(S L(2,3) \circ$ $S L(2,3)): 2^{2}$, respectively. Moreover, an element of $C_{H}(2 B)$ interchanges the two subnormal $S L(2,3)$ - subgroups of $C_{H}(2 B)$. (The involution $2 B$ lifts to an involution in $S L(4,3)$, while $2 A$ lifts to an element of order 4.) Let $1 \neq a \in A \cap H$, and set $K=C_{H}(a)$. As H contains no quadratic fours groups, it follows that a is the unique involution in $C_{K}([V, a])$, and hence $\operatorname{dim}([V, a]) \geq 4$. As $|A|^{3 / 2} \geq\left|V / C_{V}(A)\right|>\left|V / C_{V}(a)\right|$, we then
have $|A|=16$ or 32 .
Suppose $|A|=16$. Then $\left|V / C_{V}(A)\right| \leq 2^{6}$, and so $\left|V / C_{V}(a)\right| \leq 2^{5}$. We have $\operatorname{dim}(V) \geq$ 26, by $10.4(2)$, so it follows that H cannot be generated by five conjugates of a. Suppose that a is of type $2 B$, and let L_{1} and L_{2} be two copies of $L_{3}(3)$ in H such that $\left\langle L_{1}, L_{2}\right\rangle=H$, with $L_{1} \cap L_{2} \cong G L(2,3)$. Then $L_{1} \cap L_{2}$ is generated by three conjugates of a, and since $L_{1} \cap L_{2}$ is maximal in each L_{i} it follows that five conujugates of a suffice to generate H. On the other hand, suppose that a is of type $2 A$. Then K lifts in $S L(4,4)$ to a group of the form $(8 \circ S L(2,9)): 2$, so $O^{2}(K)$ contains a conjugate of a, and then three conjugates of a suffice to generate $O^{2}(K)$. We have $O^{2}(K) \leq L$, where $L \cong P S p(4,3)$, and $N_{L}\left(O^{2}(K)\right)$ is the unique maximal subgroup of L containing $O^{2}(K)$. It follows that four conjugates of a suffice to generate L. As $N_{H}(L)$ is the unique maximal subgroup of H containing L, it follows that five conjugates of a generate H.

We conclude that $|A|=32$. Here $\left|V / C_{V}(A)\right| \leq 2^{7}$, so $\left|V / C_{V}(a)\right| \leq 2^{6}$. Then $H A$ is not generated by A together with three conjugates of a. Further, we now have $H A=$ $G \cong \operatorname{Aut}(H)$, so we may choose $a \in G-H$ so that $H\langle a\rangle \cong P G L(4,3)$, and so that a inverts an element x of order 13 in H. Then three conjugates of a generate a subgroup N of G of the form $3^{3}: 13: 2$, while a conjugate of A contains an element b which induces a transpose-inverse automorphism of H, and such that $\left\langle O_{3}(N), O_{3}(N)^{b}\right\rangle=H$. Thus, we have a contradiction in this case, and the lemma is proved.

Having disposed of so many individual groups in 10.7, we may now start in on the general case. To this end, the following elementary lemma will be helpful.
10.8 Lemma. Let $1 \leq n_{1} \leq n_{2}<\cdots \leq n_{k}$ be a non-decreasing sequence of natural numbers, and let $q>1$. Set $N=\sum_{i=1}^{k} n_{i}$. Then $\prod_{i=1}^{k}\left(q^{n_{i}}+(-1)^{i}\right)<q^{N}$.

Proof. Let k be the least integer for which the lemma fails. Let ℓ be the largest even integer smaller than k. Then $\ell \geq 0$ and one has $\prod_{i=1}^{\ell}\left(q^{n_{i}}+(-1)^{i}\right)<q^{M}$ where $N=$ $\sum_{i=1}^{\ell} n_{i}$. The reader is invited to supply the last step in the induction.
10.9 Lemma. Let G_{0} be a group such that $F^{*}\left(G_{0}\right)$ is a quasisimple group of Lie type in characteristic r different from p. Assume also that $O_{p}\left(G_{0}\right)=1$ and that $G_{0}=F^{*}\left(G_{0}\right) A$ where A is an elementary abelian p-group. Set $X=F^{*}\left(G_{0}\right) / Z\left(F^{*}\left(G_{0}\right)\right)$. Finally, assume that r does not divide $\left|Z\left(F^{*}\left(G_{0}\right)\right)\right|$. Then one of the following holds.
(1) $X \cong P S L(n, q)$ or $\operatorname{PSU}(n, q)$, and $\left|G_{0}\right| \leq 2 p \cdot q^{n^{2}-1}$.
(2) $X \cong P \operatorname{Sp}(2 n, q), n \geq 2$, and $\left|G_{0}\right| \leq 2 p \cdot q^{n(2 n+1)}$.
(3) $X \cong P \Omega(2 n+1, q), n \geq 3$, and $\left|G_{0}\right| \leq 2 p \cdot q^{n(2 n+1)}$.
(4) $X \cong P \Omega_{2 n}^{\epsilon}(q), n \geq 4$, and $\left|G_{0}\right| \leq 3 p \cdot q^{n(2 n-1)}$.
(5) $X \cong{ }^{3} D_{4}(q)$ and $\left|G_{0}\right| \leq p q^{28}$.
(6) $X \cong E_{6}(q)$ or ${ }^{2} E_{6}(q)$, and $\left|G_{0}\right| \leq 2 p q^{78}$.
(7) $X \cong E_{7}(q)$ and $\left|G_{0}\right| \leq p q^{133}$.
(8) $X \cong E_{8}(q)$ and $\left|G_{0}\right| \leq p q^{248}$.
(9) $X \cong F_{4}(q)$ and $\left|G_{0}\right| \leq 2 p q^{52}$.
(10) $X \cong{ }^{2} F_{4}(q)$ and $\left|G_{0}\right| \leq p q^{26}$.
(11) $X \cong G_{2}(q)$ and $\left|G_{0}\right| \leq p q^{14}$.
(12) $X \cong{ }^{2} G_{2}(q)$ and $\left|G_{0}\right| \leq q^{7}$.
(13) $X \cong S z(q)$ and $\left|G_{0}\right| \leq p q^{5}$.

Moreover, in (1) through (13), the factor p appearing in the estimate for $|G|$ is present only if q is a $p^{\text {th }}$ power.

Proof. Let $L=L(q)$ be a Chevalley group (i.e. a non-twisted group of Lie type) of universal type. Then $|L|$ is a polynomial in q, of the form $q^{M} \prod_{i=1}^{k}\left(q^{n_{i}}-1\right)$, and so we have $|L| \leq q^{M+N}$, where $N=\sum i=1^{k} n_{i}$, and where, as it happens, $M+N$ is the dimension of the adjoint module for L. We may of course take the sequence of natural numbers $n_{1}, n_{2}, \cdots n_{k}$ to be non-decreasing. Now assume that L is not of type $D_{n}, n \geq 4$, and let ${ }^{2} L(q)$ be a Steinberg Variation of L. Then $\left|{ }^{2} L(q)\right|=q^{M} \prod_{i=1}^{k}\left(q^{n_{i}}+(-1)^{i}\right)$, and so also $\left.\right|^{2} L(q) \mid<q^{M+N}$ by 10.5. Suppose that $L={ }^{2} D_{4}(q)$, of order $q^{n(n-1)}\left(q^{n}+1\right) \prod_{i=1}^{n-1}\left(q^{2 i}-1\right)$. Then $|L|<q^{n(2 n-1)}$, as follows from an obvious variation on 10.5. Also, we have

$$
\left|{ }^{3} D_{4}(q)\right|=q^{12}\left(q^{8}+q^{4}+1\right)\left(q^{6}-1\right)\left(q^{2}-1\right)=q^{12}\left(q^{12}-1\right)\left(q^{6}-1\right) /\left(q^{2}+1\right),
$$

and so $\left|{ }^{3} D_{4}(q)\right|<q^{30} /\left(q^{2}+1\right)<q^{28}$. So, in all these cases, $|L|<|U|$ where U is the adjoint module for the untwisted version of L. Here we refer to Table 16.1 in [A1] for the group orders, and to $[\mathrm{J}]$ for the dimensions of the adjoint modules. From these references, the reader may check that if L is a Suzuki-Ree group then $|L|<\sqrt{|U|}$ where U is the adjoint module for the untwisted antecedent of L.

We are given $G_{0}=F^{*}\left(G_{0}\right) A$ where A is an elementary abelian p-group. Without loss of generality, we have $A \cap F^{*}(G)=1$. Let A_{1} be the largest subgroup of A which induces inner-diagonal automorphisms on X, and A_{2} the largest subgroup of A which induces inner-diagonal-graph automorphisms of X. Then $\left|A / A_{2}\right| \leq p$, since the group
of field automorphisms of X is cyclic. Also, $\left|A_{2} / A_{1}\right|=1$ if X is a twisted group or if the Dynkin diagram for X admits no symmetries. Otherwise we have $\left|A_{2} / A_{1}\right| \leq 3$, with equality only if $p=3$ and X is of type D_{4}. We have $\left|A_{1}\right| \leq p$, and if $\left|A_{1}\right|=p$ then p divides the order of $Z(L)$ where L is the universal version of X. Since $O_{p}(G)=1,\left|A_{1}\right|$ is then "absorbed" by the estimate, given in the preceding paragraph, for $|L|$. In this way, we obtain (1) through (13).
10.10 Lemma. Assume Hypothesis 10.1. Then \bar{H} is not isomorphic to $\operatorname{PSp}(4, q)$ for any q.

Proof. Set $G_{0}=H A$. Then $\left|G_{0}\right| \leq q^{11}$, as follows from 10.9. Suppose first that q is even, so that p is odd. Then 10.4 yields $\operatorname{dim}(V) \geq q(q-1)^{2} / 2$. As $|A|^{2} \geq\left|V / C_{V}(A)\right|$ we have also $\left|\bar{G}_{0}\right| \geq|V|$, by Theorem 2.3 of [CD1], and thus

$$
22 l o g_{p}(q)>q(q-1)^{2} / 2
$$

This inequality evidently fails if $q \geq 8$, so we have $q=2$ or 4 . The case $q=2$ has already been eliminated in 10.5 , so $\bar{H} \cong S p(4,4)$. Then $|\bar{H}|=2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 17$, and $\operatorname{Out}(\bar{H})$ is a 2-group. The criteria (a) and (b) in the proof of 10.7 then reduce the problem to finding a pair of distinct maximal subgroups of \bar{H} containing \bar{S}, in the case that $p=3$ or that $p=5$. According to the ATLAS, there are in fact two different maximal subgroups of \bar{H} of the form $(S L(2,4) \times S L(2,4)): 2$, and so we conclude that q is odd.

Now 10.4 yields

$$
\begin{equation*}
22 \log _{p}(q)>(q-1)^{2} / 2 \tag{1}
\end{equation*}
$$

Suppose that $p=2$. Then Hypothesis 4^{\prime} yields $|A|^{3 / 2} \geq\left|V / C_{V}(A)\right|$, and so (1) improves to

$$
\begin{equation*}
33 \log _{2}(q)>(q-1)^{2} . \tag{2}
\end{equation*}
$$

This yields $q \leq 11$. Here $Z(H)$ is a 2-group, so $Z(H)=1$ and $H=\bar{H}$. There is an S-invariant maximal subgroup L of H of the form $(S L(2, q) \circ S L(2, q)): 2$, where the components of L are interchanged by an involution in L. If q is congruent to 3 or 5 mod 8 then there is also a maximal S-invariant subgroup M of H of the form $2^{4}: \operatorname{Alt}(5)$ (and which may be described as the set-wise stabilizer of an orthonormal basis in the $\Omega_{5}(q)$-module for $\left.H\right)$. Thus, we are reduced to the cases where $q=7$ or 9 .

Denote by L^{*} the normalizer in $A u t(H)$ of L. If $q=7$ then $L^{*}=L\langle d\rangle$ where d is an involution which induces a diagonal automorphism on each of the components of L. If $q=9$ then $L^{*}=L\langle d, \alpha\rangle$, where d is as just described and where α induces a field automorphism on each component of L. It follows that the 2 -rank of S is 4 if $q=7$, and at most 5 if $q=9$. In particular, we have $|A| \leq 32$, and $|A| \leq 16$ if $q=7$.

By 5.6, G contains no quadratic fours groups, and so 5.5 implies that $|A| \geq 8$ and that $C_{V}(A) \neq C_{V}(a)$ for any $a \in A^{\#}$. As $|A|^{3 / 2} \geq\left|V / C_{V}(A)\right|$ we have $\left|V / C_{V}(A)\right| \leq 2^{7}$, and $\left|V / C_{V}(A)\right| \leq 2^{6}$ if $q=5$. Then $|[V, a]| \leq 2^{6}$ (and $|[V, a]| \leq 2^{5}$ if $q=5$) for any
$a \in A^{\#}$. Suppose that $A \cap H$ contains an involution a with $C_{H}(a)=L$. As A contains no quadratic fours groups, $L /\langle a\rangle$ acts faithfully on $[V, a]$, whereas $[V, a]$ is too small to support such an action. Thus $A \cap Z(L)=1$. There are only two conjugacy classes of subgroups of order 2 in H, and one of these lifts to a class of cyclic subgroups of order 4 in $S P(4, q)$. It follows from this that $|A \cap H| \leq 4$. Thus $|A| \leq 16$, and $|A|=8$ if $q=7$. Fix an involution $a \in A \cap H$. Then $\left|V / C_{V}(a)\right| \leq 32$, and $\left|V / C_{V}(a)\right| \leq 8$ if $q=7$. On the other hand, 8.4 yields $\operatorname{dim}(V) \geq 24$ if $q=7$, and $\operatorname{dim}(V) \geq 40$ if $q=9$. As $C_{V}(H)=0$ it follows that H cannot be generated by eight conjugates of a. We leave to the reader the task of verifying the absurdity of this outcome.

We may now complete the proof of Theorem 10.2. Thus, assume Hypothesis 10.1. In view of $10.3,10.5,10.6$, and 10.9 , we may assume that \bar{H} is not isomorphic to $L_{2}(q)$, or to any of the groups in the list \mathcal{L} given by 10.6. Among the groups in \mathcal{L} one finds all the groups of Lie type (other than those which are isomorphic to $L_{2}(q)$) which have an exceptional Schur multiplier. Having excluded these groups, it follows that H is a homomorphic image of the universal version, in the Lie-theoretic sense, of \bar{H}.

Set $G_{0}=H A$. By Hypothesis 10.1 we have $|A|^{2} \geq\left|V / C_{V}(A)\right|$, and then Theorem 2.3 of [CD1] implies that $\left|G_{0}\right|^{2} \geq|V|$. An upper bound for G_{0} is given by 10.8 , while a lower bound for $\operatorname{dim}(V)$ is given by 10.4. The proof of 10.2 now reduces to a systematic comparison of $\log _{p}\left(\left|G_{0}\right|^{2}\right)$ with $\operatorname{dim}(V)$.

Suppose first that $\bar{H} \cong L_{n}(q), n \geq 3$. Then $\left|G_{0}\right| \leq 2 p q^{n^{2}-1}$, and the factor p is required only if q is a $p^{t h}$ power. Thus $\left|G_{0}\right| \leq q^{n^{2}}$. By 10.4 we then have

$$
\begin{equation*}
2 n^{2} \log _{p}(q)>\left(q^{n}-1\right) /(q-1)-n \tag{1}
\end{equation*}
$$

Suppose that $q=2$. Then $p \geq 3$, and so $2 \log _{p}(q)<1.5$. Then (1) yields $1.5 n^{2}>2^{n}-n-1$, and then $n \leq 5$. Thus $\bar{H} \in \mathcal{L}$ in this case, and thus $q \geq 3$. From (1) we have

$$
2 n^{2} q+n>q^{n-1}
$$

and then

$$
\begin{equation*}
2 n^{2}+n>q^{n-2} \tag{2}
\end{equation*}
$$

We observe that (2) is false if $q \geq 3$ and $n \geq 6$. As $q>2$, it follows that (2) holds only if $n \leq 5$. For $n=3$ one checks that (1) is false for $q \geq 7$, and for $n=4$ we find that (1) is false if $q \geq 5$. Also, (1) fails to hold if $n=5$ and $q \geq 3$. Thus, $\bar{H} \in \mathcal{L}$.

Suppose next that $\bar{H} \cong U_{n}(q), n \geq 3$. As in the preceding case, we find $\left|G_{0}\right| \leq q^{n^{2}}$. Referring to 10.8 , we then have

$$
2 n^{2} \log _{p}(q)> \begin{cases}\left(q^{n}-q\right) /(q+1) & \text { if } n \text { is odd, and } \tag{3}\\ \left(q^{n}-1\right) /(q+1) & \text { if } n \text { is even }\end{cases}
$$

Suppose $q=2$. Then we replace (3) by the estimate

$$
\begin{equation*}
2 n^{2} \log _{3}(2)>\left(2^{n}-2\right) / 3 \tag{4}
\end{equation*}
$$

If $n=8$ then the left side of (4) is less than 81 and the right side is bigger than 84 , so (4) fails in this case. Taking the derivative of each side of (4) with respect to n, we observe that

$$
4 n \log _{3}(2)<(\ln (2)) 2^{n}
$$

for all $n \geq 8$, and so (4) holds only if $n \leq 7$. Thus $\bar{H} \in \mathcal{L}$ if $q=2$, and so $q \geq 3$.
Suppose $n=3$. We may take $p=2$ in (3), and obtain $18 \log _{2}(q)>\left(q^{3}-q\right) / 4$, which is false if $q=7$. Taking derivatives with respect to q we find that $18 /(\ln (2) q)<\left(3 q^{2}-1\right) / 4$ for $n \geq 7$, so $q \leq 5$ if $n=3$. Now suppose that $n=4$. Then (3) yields $32 \log _{2}(q)>$ $\left(q^{4}-1\right) / 4$, which is false if $q=5$. We leave it to the reader to perform the derivative test which establishes that (3) is false if $n=4$ and $q \geq 5$. We also leave to the reader the task of verifying that if $n=5$ then $q=2$. Thus, in all these cases we have $\bar{H} \in \mathcal{L}$.

We now have $n \geq 6$, and we obtain

$$
2 n^{2} \log _{p}(q)>q\left(q^{n-1}-1\right) /(q+1)
$$

from (3). Then also

$$
2 n^{2}>\left(q^{n-1}-1\right) /(q+1)>\left(q^{n-1}-1\right) / 2(q-1)>q^{n-2} / 2
$$

and so $4 n^{2}>q^{n-2}$. This result fails to hold if $q=4$ and $n=6$, and it is a trivial matter to check that q^{n-2} grows more rapidly than $4 n^{2}$ as a function of q and n, independently, for $q \geq 4$ and for $n \geq 6$. One also checks directly that (3) fails to hold if $n=6$ and $q=3$. This completes the proof that $\bar{H} \in \mathcal{L}$ if $\bar{H} \cong U_{n}(q)$.

Suppose next that $\bar{H} \cong P S p(2 n, q), n \geq 3$ (the case $n=2$ having been dealt with in 10.9). Then 10.8 yields $\left|G_{0}\right|<q^{2 n^{2}+n+1}$, and then with 10.4 we have

$$
2\left(2 n^{2}+n+1\right) \log _{p}(q)>\left\{\begin{array}{l}
\left(q^{n}-1\right) / 2 \quad \text { if } q \text { is odd, and } \tag{5}\\
q\left(q^{n}-1\right)\left(q^{n-1}-1\right) / 2(q+1) \quad \text { if } q \text { is even. }
\end{array}\right.
$$

If $p=2$ then there is more than one maximal subgroup of G containing S, by Theorem A in [A1]. Thus $p \geq 3$.

Suppose $n=3$, and then suppose that q is even. Then (5) yields $44>\left(q^{3}-1\right)(q-1) / 2$, which is false if $q \geq 4$. On the other hand, suppose that q is odd. Then (5) yields $44 \log _{p}(q)>\left(q^{3}-1\right) / 2$, which is false if $q \geq 7$. If $q=5$ then q is not a $p^{t h}$ power, and then $\left|G_{0}\right|<5^{10}$. One then checks that $40 \log _{3}(5)<60<\left(5^{3}-1\right) / 2$. We conclude that $q=2$ if $n=3$.

Suppose $n=4$. Then $q \geq 3$, by 10.6, and (5) then reduces us to the case $q=3$. The only prime greater than 3 whose square divides $|P S p(8,3)|$ is 5 , so 2.2 yields $p=5$. Then S is contained in a pair of subgroups L_{1} and L_{2} of H, with $L_{1} \cong \operatorname{PSp}(4,3) \circ \operatorname{PSp}(4,3)$ and with $L_{2} \cong P S p(4,9)$, such that $H=\left\langle L_{1}, L_{2}\right\rangle$. Thus $n \geq 5$.

Suppose that $n=5$. If $q=2$ then (5) yields $228 \log _{p}(2)>155$, which is false for $p=3$ (as one checks on one's pocket calculator) and which is therefore false for all p since $p \neq 2$. Then also (5) fails to hold for all even q, when $n=5$. If instead q is odd
then (5) yields $228 \log _{p}(q)>q^{5}-2$, and one quickly verifies that this is false for $q=3$ (where $p \geq 5$) and then for all odd q and p.

Suppose $q=2$. Then (5) yields

$$
2\left(2 n^{2}+n+1\right) \log _{3}(2)>\left(2^{n}-1\right)\left(2^{n-1}-1\right) / 3
$$

which fails to hold for $n \geq 6$. Thus, $q>2$. In general, (5) yields

$$
2\left(2 n^{2}+n+1\right)>\left(q^{n}-1\right) / 2 \log _{p}(q)>\left(q^{n}-1\right) / q>q^{n-1}-1 .
$$

This fails for $n=6$ and $q=3$, and since $q^{n-1}-1$ grows more rapidly than $2\left(2 n^{2}+n+1\right)$ as a function of n, we have thereby eliminated all of the groups $P S p(2 n, q)$ as possibilities for \bar{H}, with the exception of $S p(6,2)$.

Suppose next that $\bar{H} \cong P \Omega_{2 n+1}(q), q$ odd, $n \geq 3$. Then 10.8 and 10.4 yield

$$
2\left(2 n^{2}+n+1\right) \log _{p}(q)>\left\{\begin{array}{lc}
\left(q^{2 n}-1\right) /\left(q^{2}-1\right)-n & \text { if } q \neq 3, \text { and } \tag{6}\\
\left(3^{2 n}-1\right) / 8-\left(3^{n}-1\right) / 2 & \text { if } q=3
\end{array}\right.
$$

Supppose $q \neq 3$. If $n=3$ then (6) yields $44 \log _{2}(q)>q^{4}+q^{2}-2$, which fails to hold for any odd q. Also, in the case $n=4$ we have $78 \log _{2}(q)>q^{6}+q^{4}+q^{2}-3$, which also fails for odd q. In general, (6) yields

$$
2\left(2 n^{2}+n+1\right)>\left(q^{2 n-2}-1\right) /\left(q^{2}-1\right) \log _{p}(q)-n / \log _{p}(q)>q^{2 n-4} / \log _{p}(q)-n,
$$

and so $4 n^{2}+3 n+2>q^{2 n-5}$. This fails for $n \geq 5$ and all odd q, so we have a contradiction in the case $q \neq 3$. On the other hand, if $q=3$ then $\log _{p}(q)<2$, and so (6) implies that $4\left(2 n^{2}+n+1\right)>3^{2 n-2}-3^{n-2}>3^{2 n-3}$. This fails for $n \geq 4$, and then since $\Omega_{7}(3) \in \mathcal{L}$ we have a contradiction.

Suppose next that $\bar{H} \cong P \Omega_{2 n}^{+}(q), n \geq 4$. Then 10.8 and 10.4 yield
$2\left(2 n^{2}-n+2\right) \log _{p}(q)>\left\{\begin{array}{l}q\left(q^{2 n-2}-1\right) /\left(q^{2}-1\right)+q^{n-1}-n \quad q \neq 2,3, \text { and } \\ q\left(q^{2 n-2}-1\right) /\left(q^{2}-1\right)-\left(q^{n-1}-1\right) /(q-1)-7 \delta_{2, q} \quad q \text { even. }\end{array}\right.$
Suppose that $q \neq 2$ or 3 . As $\log _{p}(q)<q$ we then have

$$
2\left(2 n^{2}-n+2\right)+n>q^{2 n-4}+q^{n-2}
$$

This fails to hold if $n=4$ and $q=4$, and then also if $n \geq 4$ and $q \geq 4$. Thus, $q=2$ or 3. As $\log _{p}(q)<q,(7)$ yields

$$
2\left(2 n^{2}-n+2\right)>q^{2 n-4}-q^{n-3}-7 \delta 2, q / q>q^{2 n-5}-4 .
$$

These inequalities fail if $n=6$ and $q=2$, and then also if $n \geq 6$ and $q \geq 2$. They also fail if $n=5$ and $q=3$. As $\Omega_{8}^{+}(2) \in \mathcal{L}$, we are then reduced to the case $n=4$ and $q=3$,
and to the case $n=5$ and $q=2$. One may then check directly from (7) that neither of these cases may occur.

Suppose next that $\bar{H} \cong P \Omega_{2 n}^{-}(q), n \geq 4$. Then 10.8 and 10.4 yield

$$
\begin{equation*}
2\left(2 n^{2}-n+2\right) \log _{p}(q)>q\left(q^{2 n-2}-1\right) /\left(q^{2}-1\right)-q^{n-1}+2 \tag{8}
\end{equation*}
$$

Then $2\left(2 n^{2}-n+2\right)>q^{2 n-4}-q^{n-2}$, and this fails if $n \geq 6$, or if $q \geq 3$. As $P \Omega_{8}^{-}(2) \in \mathcal{L}$, we are reduced to the case where $n=5$ and $q=2$, and in this case one checks directly that (8) fails to hold.

It remains to consider the exceptional groups and the groups ${ }^{3} D_{4}(q)$. The estimates that we obtain from 10.4 and 10.8 are as follows.

$$
\begin{aligned}
& { }^{3} D_{4}(q): 58 \log _{p}(q)>q^{3}\left(q^{2}-1\right) . \\
& E_{6}(q) \text { or }{ }^{2} E_{6}(q): 158 \log _{p}(q)>q^{9}\left(q^{2}-1\right) . \\
& E_{7}(q): 268 \log _{p}(q)>q^{15}\left(q^{2}-1\right) . \\
& E_{8}(q): 498 \log _{p}(q)>q^{27}\left(q^{2}-1\right) . \\
& F_{4}(q): 106 \log _{p}(q)>q^{6}\left(q^{2}-1\right) \text { if } q \text { is odd, or } q^{7}\left(q^{3}-1\right)(q-1) / 2 \text { if } q \text { is even. } \\
& { }^{2} F_{4}(q): 54 \log _{p}(q)>\sqrt{q / 2}\left(q^{4}\right)(q-1) . \\
& G_{2}(q)(q \geq 3): 30 \log _{p}(q)>q\left(q^{2}-1\right) . \\
& { }^{2} G_{2}(q)(q \geq 27 \text { an odd power of } 3): 14 \log _{p}(q)>q(q-1) . \\
& S z(q)(q \geq 8 \text { an odd power of } 2): 12 \log _{p}(q)>\sqrt{q / 2}(q-1) .
\end{aligned}
$$

In the case of $S z(q)$ we may take $q \geq 32$, as $S z(8) \in \mathcal{L}$. None of the above inequalities holds for $q=5$, and then none holds for $q \geq 5$. For $p=3$, only the inequality for $G_{2}(3)$ is valid, and for $q=2$, only the inequalities for ${ }^{3} D_{4}(2)$ and ${ }^{2} F_{4}(2)$ are valid. All three of these groups are in \mathcal{L}, so we have a final contradiction at this point, proving Theorem 10.2 .

Section 11: Theorems 1 through 6

We ask the reader to recall the definitions of $\mathcal{Q}(Y, V), q(Y, V)$ and $\mathcal{Q}^{*}(Y, V)$, from the Introduction. Recall also that, for any group G, a component of G is a subnormal quasisimple subgroup of G, and that $E(G)$ is the product of all the componentsof G.
11.1 Lemma. Let p a prime, G a group whose order is divisible by p, and let S be a Sylow p-subgroup of G. Assume that $O_{p}(G)=1$ and that S is contained in a unique maximal subgroup of G. Set $H=O^{p}(G)$ and set $\bar{G}=G / \Phi(G)$. Then one of the following holds.
(i) H is an r-group for some prime $r \neq p$, and S acts irreducibly on $H / \Phi(H)$.
(ii) \bar{H} is a direct product of non-abelian simple groups, permuted transitively by \bar{S}. Moreover, for any component \bar{L} of $\bar{G}, N_{\bar{S}}(\bar{L})$ is contained in a unique maximal subgroup of $N_{\bar{S}}(\bar{L}) \bar{L}$.
Moreover, if there exists a faithful $\mathbb{F}_{p} G$-module V with $q(S, V) \leq 2$ then, in case (ii), we have $H=E(G)$.

Proof. Denote by M be the unique maximal subgroup of G containing S, and set $F=$ $\cap\left\{M^{g}\right\}_{g \in G}$. Then $G=N_{G}(S \cap F) F$. As $O_{p}(G)=1$ and $G \neq M$ it follows that $S \cap F=1$, and so F is a p^{\prime}-group. Let M^{*} be any maximal subgroup of G. If $F \not \leq M^{*}$ then $G=F M^{*}$, so $S^{g} \leq M^{*}$ for some $g \in G$, and this implies that M^{*} is conjugate to M. Thus $F \leq M^{*}$, and $F=\Phi(G)$. Now let N be the inverse image in G of a minimal normal subgroup of \bar{G}. Then $N S=G$, and so $N=H$. Suppose that N is a p^{\prime}-group. For any prime divisor r of $|N|$ there then exists an S-invariant Sylow r-subgroup of N, and it follows that N is an r-group. Uniqueness of M then implies that S acts irreducibly on $N / \Phi(N)$, and so (i) holds in this case. On the other hand, suppose that N is not a p^{\prime}-group. Here \bar{N} is not a p-group, as $N \neq F$, so \bar{N} is a direct product of simple groups.

Suppose that (ii) is false. We may then assume without loss of generality that $F=1$. The uniqueness of M implies that S acts transitively on the set of components of N. Fix a component L of N, and suppose that there exist distinct maximal subgroups X_{1} and X_{2} of $N_{S}(L) L$ containing $N_{S}(L)$. Set $X_{i}^{*}=\left\langle S^{X_{i}}\right\rangle$. Then X_{i}^{*} is a proper subgroup of G, and $\left\langle X_{1}^{*}, X_{2}^{*}\right\rangle=G$. As this contradicts the uniqueness of M, (ii) is proved.

Suppose now that G is non-solvable, and that $[\Phi(G), H] \neq 1$. Setting $Q=\Phi(G)$, we then have $Q=F(G)=F^{*}(G)$. Suppose also that there is a faithful $\mathbb{F}_{p} G$-module V with $q(G, V) \leq 2$, and set $q=q(S, V)$. Without loss of generality, we may assume that V is irreducible for G. Denote by \mathcal{A} the set of elements A of $\mathcal{Q}^{*}(S, V)$ of minimal order, and set $G_{0}=\langle\mathcal{A}\rangle$. Then $H \leq G_{0}$. Let \mathcal{K} the set of subgroups of Q given by 4.6 , and set $D=\left[Q, G_{0}\right]$. Every member of \mathcal{K} has a solvable automorphism group, so if H fixes every member of \mathcal{K} we obtain $[D, H]=1$. But in that case we have $[Q, H, H]=1$, and then $\left[Q, O^{p^{\prime}}(H)\right]=1$, and so $H=1$. We conclude that H acts non-trivially on \mathcal{K}, and then 4.6(d) implies that $|A|=p$ for any $A \in \mathcal{A}$.

We have $p \leq 3$, as follows from 4.1. Suppose first that $p=2$, and let $K \in \mathcal{K}$. By the definition of \mathcal{K} (at the start of the proof of 4.6) there then exists $A \in \mathcal{A}$ with $K=[K, A]$. Then $4.6(\mathrm{f})$ says that every element of \mathcal{K} is A-invariant. But $H \leq\left\langle A^{G}\right\rangle$, so it follows that, in fact, H acts trivially on \mathcal{K}. Thus, we have a contradiction if $p=2$.

Suppose that $p=3$. Fix $A \in \mathcal{A}$, and set $L=\left\langle A^{H}\right\rangle$. Then $L=\left\langle A^{L}\right\rangle$ and $F^{*}(L)=$ $F(L)$. There then exists an irreducible L-submodule U of V such that $[F(L), L]$ acts non-trivially on U. Setting $\bar{L}=L / C_{L}(U)$, we then have $F^{*}(\bar{L})=F(\bar{L})$, and we have $\bar{A} \cong A$ as $|A|=3$. Set $\bar{Y}=[F(\bar{L}), \bar{A}]$. Then $[\mathrm{C} 2$, Theorem A] implies that $F(\bar{L})$ is a 2-group of symplectic type, that \bar{Y} is a quaternion group, and that U is an irreducible module for $F(\bar{L})$. Further, if the width of a largest extraspecial subgroup \bar{X} of $F(\bar{L})$ is n, then U is a direct sum of 2^{n-1} natural $S L(2,3)$-modules for $\overline{Y A}$ if $\bar{X}=F(\bar{L})$, and a direct sum of 2^{n} such modules if $\bar{X} \neq F(\bar{L})$. As $q(G, V) \leq 2, \bar{A}$ is generated by a 2 -transvection, so we conclude that $n \leq 2$, and that $\bar{X}=F(\bar{L})$ if $n=2$. As \bar{L}
is non-solvable, it follows that $n=2, F(\bar{L}) \cong Q_{8} \circ D_{8}$, and $\bar{L} / F(\bar{L}) \cong \operatorname{Alt}(5)$. Here $\bar{L} / F(\bar{L})$ is incident with a component of G / Q, so outcome (ii), above, implies that \bar{A} is contained in a unique maximal subgroup of $\bar{L} / F(\bar{L})$. But such is not the case, and we have a contradiction at this point. Thus, the final statement in the lemma holds for all p.
11.2 Proposition. Let G be a group with $O_{p}(G)=1$ and let V be a faithful $\mathbb{F}_{p} G$-module. Let $A \in \mathcal{Q}(S, V)$, let K be a component of G, put $E=\left\langle K^{A}\right\rangle$, and assume that $K \neq E$. Then $p=2$, and one of the following holds:
(i) $\left|A / C_{A}(E)\right|=2$, or
(ii) $E \cong \Omega_{4}^{+}\left(2^{n}\right)$ for some $n, n \geq 2$, and $[V, E]$ is a direct sum of natural $O_{4}^{+}\left(2^{n}\right)$ modules for $E A$.

Proof. Without loss, $G=\langle K, A\rangle$ and $C_{A}(E)=1$. Let $\Omega=\left\{K_{1}, \cdots, K_{t}\right\}$ be the set of components of G, with $K=K_{1}$. Suppose first that $|A|=p$, and let $1 \neq a \in A$. Then $t=p$, and for each prime factor q of $|K|$ there is an A-invariant Sylow q-subgroup Q of E with $[Q, A] \neq 1$. If p is odd then Theorem 3.8.1 in [G] says that $Q A$ involves $S L(2, p)$, and so $p=3$ and $q=2$. But then K is a $\{2,3\}$-group, and hence K is solvable by a theorem of Burnside. Thus $p=2$, and (i) holds. On the other hand, if $|A|>p$, then Theorem 2 of [C1] yields (ii).
11.3 Lemma. Assume Hypothesis 4, and let $A \in \mathcal{Q}_{*}(S, V)$. Suppose further that there exists a component X of G not normalized by A. Set $K=\left\langle X^{A}\right\rangle$, and let $K^{S}=$ $\left\{K_{1}, \cdots, K_{r}\right\}$. Set $V_{i}=\left[V, K_{i}\right], 1 \leq i \leq r$. Then the following hold:
(i) $p=2, H=K_{1} \times \cdots \times K_{r}$, and $V=C_{V}(H) \oplus V_{1} \oplus \cdots \oplus V_{r}$, where $K_{i} \cong \Omega_{4}^{+}\left(2^{n}\right)$, and V_{i} is a natural orthogonal module for K_{i}.
(ii) Each K_{i} is invariant under $\langle\mathcal{Q}(S, V)\rangle$, and $K_{i} A / C_{K_{i} A}\left(K_{i}\right) \cong O_{4}^{+}\left(2^{n}\right)$.

Proof. Set $U=[V, K]$, and let A_{0} be a complement to $C_{A}(K)$ in A. As $q(A, V) \leq 2,3.4$ implies that $q\left(A_{0}, U\right) \leq 2$. Suppose that $\left|A_{0}\right|>2$. Then 11.2 yields $p=2, K \cong \Omega_{4}^{+}\left(2^{n}\right)$, and $V=C_{V}(K) \oplus U$, where U is a direct sum of natural orthogonal modules for $K A_{0}$. Set $q=2^{n}$, and let U_{0} be an irreducible $K A_{0}$-submodule of U. Then $\left|U_{0}\right|=q^{4}$, and $\left|A_{0}\right| \leq 2 q$. Further, no element of $A_{0} \cap K$ induces a transvection on U_{0} over \mathbb{F}_{q}, and so $\left|U_{0} / C_{U_{0}}\left(A_{0}\right)\right| \geq q^{2}$. Thus $\left|A_{0}\right|^{2} \leq 4\left|U_{0} / C_{U_{0}}\left(A_{0}\right)\right|$, and if $U \neq U_{0}$ it follows that $\left|A_{0}\right|^{2} \leq 4\left|U / C_{U}\left(A_{0}\right)\right|^{1 / 2}$. But if $U \neq U_{0}$ we have $4\left|U / C_{U}\left(A_{0}\right)\right|^{1 / 2}<\left|U / C_{U}\left(A_{0}\right)\right|$, and so $q(A, V)>2$. We therefore conclude that $U=U_{0}$. We have $H=\left\langle X^{S}\right\rangle$, by 11.2 , so $H=\left\langle K^{S}\right\rangle$. Let $\left\{K_{1}, \cdots, K_{r}\right\}$ be the set of conjugates of K in G, and put $V_{i}=\left[V, K_{i}\right]$. Then $\left[U_{i}, K_{j}\right]=0$ for $i \neq j$, and so (i) holds. Part (ii) follows from 11.2.

Suppose next that $\left|A_{0}\right|=2$, and let a be the involution in A_{0}. Then $\left|U / C_{U}(a)\right| \leq 4$. As $O_{2}(G)=1$, there is a Sylow 2-subgroup T of K of the form $R \times R^{a}$, where R is a Sylow 2-subgroup of X, and R has 2-rank at least 2. Then $C_{R}(a)$ has 2-rank at least 2 , and so $C_{R}(a)$ contains an involution b such that $[U, a, b]=0$. Setting $A_{1}=\langle a, b\rangle$, we then have $\left[U, A_{1}, A_{1}\right]=0$, and so 11.2 implies that $K \cong \Omega_{4}^{+}\left(2^{n}\right)$ and that U is a direct sum of natural orthogonal modules for $K A_{0}$. As in the preceding paragraph, let U_{0} be
an irreducible $K A_{0}$-submodule of U. As $2^{n} \geq 4$, we then have $\left|A_{0}\right|^{2} \leq\left|U_{0} / C_{U_{0}}\left(A_{0}\right)\right|$, and hence $U=U_{0}$. Now (i) and (ii) follow, as above.

We may now assemble the proofs of Theorems 1 through 6 .
Theorem 1. Assume Hypothesis 4. Then there exists a subgroup K of H, unique up to conjugation, such that, upon setting $U=[V, K]$, the following conditions hold.
(a) $H=K_{1} \times \cdots \times K_{r}$ where $\left\{K_{1}, \cdots, K_{r}\right\}=K^{S}$.
(b) We have $\left[V, K_{i}, K_{j}\right]=0$ whenever $i \neq j$.
(c) One of the following holds:
(i) $K \cong O^{p}\left(S L\left(2, p^{n}\right)\right)$, $n \geq 1$, and $U / C_{U}(K)$ is a natural $S L\left(2, p^{n}\right)$-module for K, or a direct sum of two natural modules for K.
(ii) $K \cong O^{p}\left(O_{4}^{\epsilon}\left(p^{n}\right)\right), n \geq 1, \epsilon= \pm 1$, and U is a natural orthogonal module for K.
(iii) $K \cong O^{p}\left(S U\left(3, p^{n}\right)\right)$ and U is a natural module for K.
(iv) $p=2, K \cong O^{2}\left(S z\left(2^{n}\right)\right)$, and U is a natural module for K.
(v) $p=2, A \leq C_{G}(K) K, K \cong S L\left(3,2^{n}\right)$ (resp. $O^{2}\left(S p\left(4,2^{n}\right)\right.$) and U is the direct sum of a natural and a dual module (resp. a natural and a contragredient module) for K. Moreover, there exists $g \in N_{S}(K)$ such that g interchanges, by conjugation, the two maximal subgroups of K containing $S \cap K$, and if $K \cong O^{2}\left(S p\left(4,2^{n}\right)\right)$ then A is conjugate to $Z(S)$.
(vi) $p=2, K \cong \operatorname{Alt}\left(2^{n}+1\right), n \geq 3$, and U is a natural module for K, or a direct sum of two natural modules for K.
(vii) $p=2, K \cong \operatorname{Alt}(9)$, and U is a spin module for K, of dimenson 8 over \mathbb{F}_{2}. viii $p=3, K \cong S L(2,5)$, and U is a natural $S L(2,9)$-module for K.
Moreover, if K is not invariant under $\mathcal{Q}^{*}(S, V)$ then $p=2, K \cong \mathbb{Z}_{3},|U|=4$, and $q(S, V)=2$.

Proof. If G is solvable then the theorem follows from 11.1 and 4.6. So assume that G is non-solvable. Then 11.1 yields $H=E(G)$. Let $A \in \mathcal{Q}(S, V)$. If there is a component X of G such that X is not A-invariant, then the theorem follows from 11.3. So assume that X is A-invariant. If $X \cong S L\left(2, p^{n}\right),[V, X]$ is a direct sum of two natural modules for X, and there exists a unique conjugate Y of X such that $[X, Y]=1$ and $[V, X, Y] \neq 0$, set $K=X Y$, and otherwise set $K=X$. Let $\left\{K_{1}, \cdots, K_{r}\right\}$ be the set of conjugates of K under S. By 11.1 we then have $H=K_{1} \cdots K_{r}$. Set $V_{i}=\left[V, K_{i}\right]$, and set $U=[V, K]$.

As $O_{p}(G)=1$ we may assume that A and X have been chosen so that $[X, A] \neq 1$. Choose a complement A_{0} to $C_{A}(K)$ in A. Then $q\left(A_{0}, U\right) \leq 2$, by 3.4. If $K=X$ set $A_{1}=A_{0}$, and otherwise take A_{1} to be a complement in A_{0} to $C_{A_{0}}(X)$. Then also $q\left(A_{1},[V, X]\right) \leq 2$. If $p=3, X \cong S L(2,5)$, and $[V, X]$ is a natural $S L(2,9)$-module for X then $K=X$ and the theorem holds (with (c)(viii)), so we may assume that this special case does not obtain. Then 5.5 implies that $X / Z(X)$ is a group of Lie type in characteristic p, or that $p=2$ and X is an alternating group $\operatorname{Alt}\left(2^{n}+1\right)$. If $X / Z(X)$ is of Lie type in characteristic p then 5.9 says that the pair $(X,[V, X])$ is described by 6.10 or by 7.5 , while if $X \cong \operatorname{Alt}\left(2^{n}+1\right)$ then 5.7 provides a description of $(X,[V, X])$. In
particular, if $[V, X]$ is reducible, and is not a direct sum of two non-isomorphic irreducible submodules, then $X \cong S L\left(2, p^{n}\right)$ or $\operatorname{Alt}\left(2^{n}+1\right)$ and X is a direct sum of two natural modules for X. It follows that if $\operatorname{End}_{X}([V, X])$ contains a subgroup isomorphic to X, then [$V, X]$ is a direct sum of two isomorphic irreducible modules, and if W is an irreducible submodule of $[V, X]$ then the dimension of W over $\operatorname{End}_{X}(W)$ is equal to 2 . This is the case only if $X \cong S L\left(2, p^{n}\right)$ and $[V, X]$ is a direct sum of two natural modules.

Suppose that $[V, X, Y] \neq 0$ for some conjugate Y of X with $Y \neq X$. Then the preceding discussion yields $X Y \cong \Omega_{4}^{+}\left(p^{n}\right),[V, X]$ is a natural orthogonal module for $X Y$, and X and Y are the only conjugates of X which act non-trivially on $[V, X]$. By definition, we then have $K=X Y$ and $U=[V, X]$. The theorem follows in this case (with (c)(ii)), so we may assume henceforth that $[V, X, Y]=0$ for any conjugate of X distinct from X. Then also $K=X$.

If $K / Z(K)$ is a group of Lie type in characteristic p, the theorem now follows from 6.10 and 7.5. Thus, we are reduced to the case where $p=2$ and $K \cong \operatorname{Alt}\left(2^{n}+1\right)$. Since $\operatorname{Alt}(5)$ is a group of Lie type in characteristic 2 , we may assume that $n \geq 3$. The theorem then follows from 5.7 (with either part (vi) or part (vii) of (c) obtaining).

In order to prove Theorems 2 and 3, let the hypotheses be as in Theorem 1, and fix $A \in \mathcal{Q}^{*}(S, V)$. Suppose that $q^{*}(A, V)<2$, and let K and U be as in Theorem 1, with $[K, A] \neq 1$. Let A_{0} be a complement in A to $C_{A}(K)$. Then $q\left(A_{0}, U\right)<2$ by 3.4, and so we do not have the case given by (c)(viii) in Theorem 1. Thus, K is of Lie type in characteristic p, or $p=2$ and $K \cong \operatorname{Alt}\left(2^{n}+1\right)$ with $n \geq 3$.

Suppose that K is quasisimple. If the Lie rank of $K / Z(K)$ is 1 then 6.10 implies that $H \cong S L\left(2, p^{n}\right)$, or that $p=2$ and $H \cong \Omega_{4}^{-}\left(2^{n}\right)$ or $\operatorname{Alt}(5)$, with U a natural module for K in each of these cases. Moreover, if $H \cong \operatorname{Omega}_{4}^{-}\left(2^{n}\right)$ then 6.10 says that $K A / C_{K A}(K) \cong O_{4}^{-}\left(2^{n}\right)$. Thus, Theorem 2 holds in these cases. If the Lie rank of $K / Z(K)$ is greater than 1 then 5.9 and 7.5 yield $p=2$ and $K \cong S L\left(3,2^{n}\right)$, and Theorem 2 holds in this case. Now suppose that $K \cong \operatorname{Alt}\left(2^{n}+1\right), n \geq 3$. Then 5.7 applies. In particular, the condition $q\left(A_{0}, U\right)<2$ excludes the case where $n=3$ and U is a spin module for K, and excludes also the case where U is a direct sum of two natural modules for K. Thus, U is a natural module for K, and we have Theorem 2 in this case.

Now assume that K is not quasisimple, and that K is non-solvable. Then Theorem 1 yields $K \cong \Omega_{4}^{+}\left(p^{n}\right)$. Suppose that A fixes each of the components of K. As $q\left(A_{0}, U\right)<2$ it is then easy to see that $|A|>p$, and so $A_{0} \cap C_{G}(K) K \neq 1$. Quadratic action then forces $A_{0} \leq C_{G}(K) K$, and we again appeal to the quadratic action of A_{0}, to conclude that $\left|A_{0}\right| \leq p^{n}$. But $\operatorname{dim}_{\mathbb{F}_{p^{n}}}\left(C_{U}(a)\right) \leq 2$ for any $a \in A_{0}^{\#}$, so $q\left(A_{0}, U\right) \geq 2$ in this case. We therefore conclude that $p=2$ and that A_{0} interchanges the two components of K. Then 11.2 yields $K A / C_{K A}(K) \cong O_{4}^{+}\left(2^{n}\right)$. This is outcome (ii) of Theorem 2.

Suppose finally that K is solvable. If K is not A-invariant then Theorem 1 yields $K \cong \mathbb{Z}_{3}$ and $|U|=4$, and this result is contained in outcome (i) of Theorem 2. So assume that K is A-invariant. As $q(A, V)<2$, 4.5(a) implies that $|U|=p^{2}$, and that $K \cong O^{p}(S L(2, p))(p=2$ or 3$)$. We have thus eliminated all the cases in Theorem 1 which do not remain in the statement of Theorem 2, and thus Theorem 2 is proved.

Now suppose that $q(S, V) \leq 1$. If K is solvable then Theorem 3 follows from $4.5(\mathrm{~b})$,
so assume that K is non-solvable. We have $q\left(A_{0}, U\right) \leq 1$, so 7.5 implies that K is not isomorphic to $S L\left(3,2^{n}\right)$ with $p=2$. If $p=2$ and $K \cong \Omega_{4}^{+}\left(2^{n}\right), n \geq 2$, then Theorem 2 yields $\left|A_{0}\right|=2^{n+1}$ and $\left|U / C_{U}\left(A_{0}\right)\right|=2^{2 n}$, and so $q\left(A_{0}, U\right)>1$ in this case. If $p=2$ and $K \cong \operatorname{Alt}\left(2^{n}+1\right), n \geq 3$, then 5.7 implies that A_{0} is generated by a set of commuting transvections on the natural module U, so that $K A / C_{K A}(K) \cong \operatorname{Sym}\left(2^{n}+1\right)$ and $q\left(A_{0}, U\right)=1$. Then $1=q(A, V)=q(S, V)$, and $\left\langle A^{H}\right\rangle$ is isomorphic to a direct product of copies of $\operatorname{Sym}\left(2^{n}+1\right)$. Then also $\left\langle A^{G}\right\rangle$ is the point-wise stabilizer in G of $\left\{K_{1}, \cdots, K_{r}\right\}$, and is a direct product of copies of $\operatorname{Sym}\left(2^{n}+1\right)$. Thus, Theorem 3 holds in this case. Finally, the last case given by Theorem 2 is that in which $K \cong S L\left(2, p^{n}\right)$ and U is a natural module for K. Again, we have $q\left(A_{0}, U\right) \leq 1$, and it follows that A_{0} is incident with a Sylow p-subgroup of $K A / C_{K A}(K)$ and that $q\left(A_{0}, U\right)=1$. We then obtain $q(S, V)=1$, and $\left\langle A^{G}\right\rangle=H$. This completes the proof of Theorem 3 .

Theorem 4. Assume Hypothesis 3, and assume that H is a quasisimple group of Lie type in characteristic p. Let A be an F2-offender on V. Then one of the following holds.
(a) $H \cong S L\left(2, p^{n}\right)$ and one of the following holds.
(i) V is a natural $S L\left(2, p^{n}\right)$-module for H.
(ii) V has an H-submodule U such that both U and V / U are natural $S L\left(2, p^{n}\right)$ modules for H.
(iii) n is even and V is a natural $\Omega_{4}^{-}\left(p^{n / 2}\right)$-module for H.
(b) $H \cong S U\left(3, p^{n}\right)$ and V is a natural module for H.
(c) $p=2, H \cong S z\left(2^{n}\right)$, and V is a natural module for H.
(d) $p=2, H \cong S L\left(3,2^{n}\right)$ (resp. $O^{2}\left(S p\left(4,2^{n}\right)\right.$) and V is the direct sum of a natural and a dual module (resp. a natural and a contragredient module) for H. Moreover, there exists $g \in N_{S}(K)$ such that g interchanges, by conjugation, the two maximal subgroups of H containing $S \cap H$. If A is a quadratic $F 2$-offender then $A \leq H$, and if also $H \cong S p\left(4,2^{n}\right)$ then A is conjugate to $Z(S)$.

Proof. Immediate from 5.9, 6.8, 6.9, and 7.5.
Theorem 5. Assume Hypothesis 4^{\prime}, and assume that $H / Z(H)$ is isomorphic to $\operatorname{Alt}(n)$, $n \geq 5$. If $p=2$ assume that n is odd. Then one of the following holds.
(i) $p=2, H \cong \operatorname{Alt}(n)$, $n \geq 5$, and V is a natural module for H.
(ii) $p=2, H \cong \operatorname{Alt}(n)$, $n=5,7$, or 9 , and V is a spin module for H (of dimension 4, 4, or 8, respectively). Moreover, if $n=9$ then A is the direct product of two quadratic fours groups in H.
(iii) $|A|=p=3, G \cong \operatorname{Alt}(n), n \neq 6$, and V is a natural module for G. Moreover, A is generated by a 3-cycle.
(iv) $|A|=p=3, H \cong S L(2,5)$, and V is isomorphic to the natural $S L(2,9)$-module for H.
(v) $p=3, H \cong \operatorname{Alt}(9),|A|=27$, and V is a spin module for H (of dimension 8 over \mathbb{F}_{3}). Moreover, we have $|A|^{2}=\left|V / C_{V}(A)\right|$.

Proof. If p is odd then 8.3 yields one of the outcomes (iii) through (v) above. So assume that $p=2$ (and hence also that n is odd). Suppose that there is more than one non-
trivial irreducible constituent for $H A$ in V. As $q(A, V) \leq 3 / 2$, there there then exists a non-trivial irreducible constituent U for $H A$ in V such that $q(A, U) \leq 3 / 4$. By the Timmesfeld Replacement Theorem there then exists $B \in \mathcal{Q}(S, U)$ with $q(B, U) \leq 3 / 4$, and this is contrary to 5.7. Thus, there is a unique non-trivial constituent in V for $H A$, and then V is irreducible for $H A$, and hence also for G, by 1.2.

If $n=5$ then $H \cong L_{2}(4)$, and we obtain (i) or (ii) from Theorem 4. So we may assume that $n \geq 7$. By 9.1 there then exists a fours group F in G with $A \cap F \neq 1$ and with $[V, F, F]=0$. Assuming that V is not a natural module for G, it then follows from [MS2, Theorem 4] that V is a spin module for $H F$. Let a be a non-identity element of $A \cap F$, and identify H with $\operatorname{Alt}(n)$. After conjugation, we have $F=\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right)(24)\right\rangle$, and F is the unique quadratic fours group in G containing a. Denote by k the greatest integer in $n / 3$. Then H contains a subgroup E generated by k pairwise disjoint 3 -cycles. For any 3-cycle x in H we have $C_{V}(x)=0$, so the dimension of V over \mathbb{F}_{2} is a multiple of 2^{k}. In particular, if $\operatorname{dim}(V)<8$ then $n=7$, and we have (ii). So we may assume that $\operatorname{dim}(V) \geq 8$ (and that $n \geq 9$).

As a inverts a 3 -cycle, we have also $\operatorname{dim}(V)=2 \operatorname{dim}\left(C_{V}(a)\right)$. Then $\left|V / C_{V}(a)\right| \geq 16$, and then since $|A|^{3 / 2} \geq\left|V / C_{V}(A)\right| \geq\left|V / C_{V}(a)\right|$ we have $|A| \geq 8$. If $C_{V}(a)=C_{V}(A)$, and then every fours group in A which contains a is quadratic, contrary to the uniqueness of F. We therefore conclude that $C_{V}(a) \neq C_{V}(A)$, and this yields $|A| \geq 16$.

Let K be the component in $C_{H}(a)$, and let A_{0} be a complement to $C_{A}(K)$ in A. Then $\left|A_{0}\right| \geq 4$. For any 3-cycle y in K we have $C_{[V, a]}(y)=0$, so $[V, a]=[V, a, K]$, and Theorem 4 in [MS2] implies that every irreducible constituent for K in $[V, a]$ is a spin module. As A_{0} acts quadratically on $[V, a]$, by hypothesis, we conclude that $\left|A_{0}\right|=4$. Then $F \leq A$, we may take A_{0} to be a quadratic fours group contained in K, and we have $A=F \times A_{0}$. Now $|A|^{3 / 2}=64$, and since $C_{V}(a) \neq C_{V}(A)$ we have $\operatorname{dim}\left(C_{V}(a)\right) \leq 5$. Then $\operatorname{dim}\left(C_{V}(a)\right)=4$, and the faithful action of K on $C_{V}(a)$ yields $n=9$ or 11. Now $\operatorname{dim}(V)=8$, and since 11 is not a divisor of $\left|L_{8}(2)\right|$ we have $n=9$, and (ii) holds.

Theorem 6. Assume Hypothesis 4^{\prime}, and assume that S is contained in a unique maximal subgroup of G. Assume also that $H / Z(H)$ is a quasisimple group of Lie type in characteristic different from p, or a sporadic group, and that there exists no isomorphism of $H / Z(H)$ with a group of Lie type in characteristic p. Then $|A|=p=3, G \cong S p(6,2)$, V has dimension 7 over \mathbb{F}_{3}, and $|A|^{2}=\left|V / C_{V}(A)\right|$.
Proof. Immediate from 2.2 and 10.2.

References

[A1] M. Aschbacher, On finite groups of Lie type and odd characteristic.
[A2] , GF (2)-representations of finite groups, Amer. Jour. of Math. 1044 (1982), 683-771.
[A3]
__, Finite Group Theory, Cambridge University Press Cambridge, 1986.
[A4]
[AS]
[B] H. Bender, On groups with abelian Sylow 2-subgroups, Math. Zeit. 117 (1970), 164-176.
[C1] A. Chermak, An elementary proof of the $\mathcal{P}(G, V)$-theorem in arbitrary characteristic, Jour. of group theory 2 (1999), 1-13.
[C2] , Quadratic pairs without components, (preprint).
[C3] , Quadratic pairs, (preprint).
[CD] A. Chermak and A. L. Delgado, A measuring argument for finitte groups, Proc. Amer. Math. Soc. 1074 (1989), 907-914.
[Chev] Claude Chevalley, The Algebraic Theory of Spinors and Clifford Algebras, Springer Verlag, 1991.
[CCNPW] Conway, Curtis, Norton, Parker, Wilson, ATLAS of Finite Groups, Clarendon Press, Oxford, 1985.
[DS] A. L. Delgado and B. Stellmacher, Weak (B, N)-pairs of rank 2, in Groups and Graphs: New Results and Methods (Goldschmidt, Delgado, and Stellmacher, eds.), Birkhäuser, Basel, 1985.
[G] Daniel Gorenstein, Finite Groups, Second Edition, Chelsea, New York, 1980.
[GLS3] D. Gorenstein, R. Lyons, and R. Solomon, The Classification of the Finite Simple Groups, Number 3, American Math. Soc., 1994.
[HH] Phillip Hall and Graham Higman, The p-length of a p-soluble group and reduction theorems for Burnside's problem, Proc. London Math. Soc. 6 (1956), 1-42.
[J] N. Jacobson, Lie Algebras, Dover, 1979.
[K] William Kantor, Some exceptional 2-adic buildings, J. Algebra 92 (1985), 208-223.
[LPR] W. Lempken C. Parker and P. Rowley, Minimal parabolic systems for the symmetric and alternating groups, preprint.
[M] Ulrich Meierfrankenfeld, A characterization of the Spin-module for $2 \cdot A_{n}$.
[MS1] Ulrich Meierfrankenfeld and Gernot Stroth, On quadratic GF(2)-modules for Chevalley groups over fields of odd order, Arch. Math. 55 (1990), 105-110.
[MS2] , Quadratic GF(2)-modules for sporadic simple groups and alternating groups, Comm. in Algebra 187 (1990), 2099-2139.
[N] R. Niles, Pushing-up in finite groups, J. of Algebra 57 (1979), 26-63.
[Sa] B. Salzberg, Another look at Thompson's quadratic pairs, J. Algebra 45 (1977), no. 2, 334342.
[St1] R. Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33-56.
[St2] , Lectures on Chevalley Groups, Notes by J. Faulkner and R. Wilson, Mimeographed notes, Yale University Mathematics Department, 1968.
[Stel] Bernd Stellmacher, On the 2-local structure of finite groups, in Groups, Combinatorics, and Geometry (Liebeck and Saxl, eds.), London Math. Soc. Lecture Notes 165, Cambridge University Press, 1992.
[T] F. Timmesfeld, A remark on Thompson's replacement lemma, Arch. Math. 38 (1982), 491495.
[W] J. Walter, The characterization of finite groups with abelian Sylow 2-subgroups, Ann. of Math. 89 (1969), 405-514.
[Z] K. Zsigmondy, Zur Theorie Potenzreste, Monatsh. Math. Phys. 3 (1892), 265-284.

