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1. Introduction

Suppose that p is a prime, P is a finite group and S ∈ Sylp(P ). Then P is p-minimal if S is
not normal in P and S is contained in a unique maximal subgroup of P . Now suppose that G
is a finite group and S ∈ Sylp(G), if S ≤ H ≤ G and S is not normal in H, then we call P a
p-parabolic subgroup of G. In most cases the prime p will be evident from the context in which
we are working and in these cases we often simply call P a parabolic subgroup of G. The set of
maximal parabolic subgroups of G (containing S) is denoted by MG(S) and the set of p-minimal
parabolic subgroups of G (containing S) is denoted by PG(S). Suppose that G is a Lie type group
defined in characteristic p. Then the parabolic subgroups of G in the traditional sense are also
p-parabolic subgroups in our context, though it should be noted that we do not require that our
p-parabolic subgroups contain the Borel subgroup of G. If R is a rank 1 parabolic subgroup in G,
then P = Op′(R) is a p-minimal parabolic subgroup of G. Moreover it is easy to see that in the
Lie type groups we have G = 〈PG(S)〉NG(S) and it turns out that this is a property of p-minimal
parabolic subgroups in general (see 2.1). Suppose that P ∈ PG(S) and set

B = BP = 〈PG(S) \ {P}, NG(S)〉.
Notice that when P is Lie type group in characteristic p, BP ∈ MG(S) for all P ∈ PG(S). In fact
minimal p-parabolic subgroups in the Lie type groups have two further properties. The first is that
Op(BP ) 6≤ Op(P ) and the second is that P/Op(P ) is a rank 1 Lie type group in characteristic p. We
shall see that for p sufficiently large (p ≥ 11) these two properties characterize Lie type groups in
characteristic p among the finite simple groups.

We now make these notions more precise. We say that P ∈ PG(S) is isolated with respect to A
provided A is a normal p-subgroup of BP and A 6≤ Op(P ). Notice that A ≤ Op(BP ) and so we also
have Op(BP ) 6≤ Op(P ). Suppose that P is a p-minimal group, S ∈ Sylp(P ) and M is the maximal
subgroup of P containing S. Set R =

⋂
MP , the core of M in P , and E = Op(P )R/R. Then,

loosely approximating the structure of a rank 1 Lie type group, we say that P is narrow if either E
is a simple group or E is elementary abelian and M acts primitively on E. Our first result, proved
in Section 2 is a basic structure theorem for groups which possess a narrow, p-minimal, isolated
parabolic subgroup.

Theorem 1.1. [Thm1] Suppose that P ∈ PG(S) is narrow and isolated in G. Set Y = 〈Op(P )G〉.
Then either Y/Op(Y ) is quasisimple or Y = Op(P ) and G = BP P .

Suppose that G is a p-minimal simple group, then so long at the unique maximal subgroup of G
is a p-local subgroup, G satisfies the hypothesis of the theorem.

In keeping with the structure of the Lie type groups in characteristic p (perhaps extended by field
automorphisms) we wish to restrict our further attentions to those candidates for LS which have
P/QP a rank 1 Lie type group in characteristic p extended by automorphisms of order p. Thus we
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let L1(p) consist of groups H with Op(H) = 1 and Op(H) isomorphic to Op(L) for some (either
adjoint or universal) rank 1 Lie type group in characteristic p. This has the effect of including some
groups which are a little bit smaller than we might expect. For example, as O2(2B2(2)) has order
5, Dih(10) and 2B2(2) are both in H. A similar phenomena occurs with PSU3(2) ∼= 32 : Q8. The
extra condition that we will impose is contained in the following definition.

Definition 1.2. [p-restricted] Suppose that p is a prime and G is a group and S ∈ Sylp(G). Then
P ∈ PG(S) is p-restricted in G if P isolated in G and P/QP ∈ L1(p). If G possesses a p-restricted
p-minimal parabolic subgroup, then we say that G is p-restricted.

Notice that if P ∈ PG(S) and P/QP ∈ L1(p), then P is narrow. Thus 1.1 tells us that when
Op(G) = 1, then Y = 〈Op(P )G〉 is either quasisimple or Y = Op(P ). In this latter case we also have
that Y is quasisimple or Y is soluble and Op(P ) is isomorphic to one of Z3, Q8, 22 or 31+2

+ or 32.

Theorem 1.3. [Thm2] Suppose that p is a prime, G is a finite group, X = F ∗(G) is a non-abelian
simple group and G/X is a p-group. If G is p-restricted, then either X is a Lie type group defined
in characteristic p or

(a) [a] p = 2 and X ∼= Alt(12) (see 4.2).
(b) [b] X is a Lie type group in characteristic r with r 6= p, p ∈ {2, 3} and the possibilities for p,

X, P and BP are as listed in Table 1.
(c) [c] X is a sporadic simple group and the possibilities for (X, p) are as follows: (Mat12, 2),

(Mat12, 3), (Mat22, 2), (J2, 2), (J2, 3), (Mat23, 2), (HS, 2), (J3, 2), (Mat24, 2), (McL, 3), (He, 2),
(Ru, 2), (Suz, 2), (Suz, 3), (O′N, 2), (Co3, 2), (Co3, 3), (Co2, 2), (Co2, 3), (Fi22, 2), (Fi22, 3),
(HN, 2), (HN, 5), (Ly, 5), (Th, 2), (Th, 3), (Fi23, 2), (Fi23, 3), (Co1, 2), (Co1, 3), (Co1, 5), (Fi24, 2),
(Fi24, 3), (BM, 2), (BM, 3), (BM, 5), (M, 2), (M, 3), (M, 5), (M, 7).

In particular, if p ≥ 11, X is a Lie type group in characteristic p and, if p ≥ 5, then X is a Lie type
group or one of the sporadic groups HN, Ly, Co1, BM or M.
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Group Condition on ra P B
PGL2(ra) 5 (mod 8) Sym(4) Dih(2(ra − 1))
PGL2(ra) 3 (mod 8) Sym(4) Dih(2(ra + 1))

PSL2(7) ∼= PSL3(2) Sym(4) Sym(4)
PSL2(9) ∼= Alt(6) Sym(4) Sym(4)

PΣL2(9) ∼= Sym(6) Sym(4)× 2 Sym(4)× 2
PSL2(5) ∼= Alt(5) PSL2(5) Alt(4)

PGL2(5) ∼= Sym(5) PGL2(5) Sym(4)
PGL2(19) Dih(40) Sym(4)
PSU3(ra) 3 (mod 8) 2. Sym(4) ∗ 4 (ra + 1)2 : Sym(3)

PSU3(ra) : 2 3 (mod 8) 2. Sym(4) ∗Q8 (ra + 1)2 : (2× Sym(3))
PSU3(3) ∼= G2(2)′ 42 : Sym(3) 2. Sym(4) ∗ 4

PSU3(3) : 2 ∼= G2(2) 42 : (2× Sym(3)) 2. Sym(4) ∗Q8

PSL3(ra) : 2 5 (mod 8) 2. Sym(4) ∗Q8 (ra − 1)2 : (2× Sym(3))
PSU4(3) 22+2+2.Sym(3) 21+4.(Sym(3)× Sym(3))

PSU4(3).21 22+2+2.Sym(3).2 21+4.(Sym(3)× Sym(3)).2
PSU4(3).22 22+2+2.Sym(3).2 21+4.(Sym(3)× Sym(3)).2
PSU4(3).22 22+2+2.Sym(3).2 21+4.(Sym(3)× Sym(3)).2
PSU4(3).4 22+2+2.Sym(3).4 21+4.(Sym(3)× Sym(3)).4

PSU4(3).22
122 22+2+2.Sym(3).22 21+4.(Sym(3)× Sym(3)).22

PSU4(3).22
133 22+2+2.Sym(3).22 21+4.(Sym(3)× Sym(3)).22

PSU4(3).Dih(8) 22+2+2.Sym(3).Dih(8) 21+4.(Sym(3)× Sym(3)).Dih(8)
PSU4(3) : 21 21+2+1+2.Sym(3).2 24.Alt(6).2
PSU4(3) : 21 21+2+1+2.Sym(3).2 24.Alt(6).2

PSU4(3) : 2122 21+2+1+2.Sym(3).22 24.Alt(6).22

PSU6(3) ≤ 45.Sym(6) 1
2 GU2(3) o Sym(3) ∩ PSU6(3)

PGU6(3) ≤ 45(Sym(6)× 2) 1
2 GU2(3) o Sym(3)

PSp4(3) ∼= PSU4(2)
PSp6(3)
PΩ+

7 (3) 1
2O1(3) o Sym(7)) ∩X

PΩ+
7 (3) : 2 1

2O1(3) o Sym(7))
PΩ+

8 (3) 1
2O+

4 (3) o Sym(2) ∩X
PΩ+

8 (3) : 2 1
2O+

4 (3) o Sym(2)
PΩ+

12(3) 1
2O+

4 (3) o Sym(3) ∩X
PΩ+

12(3) : 2 1
2O+

4 (3) o Sym(3)
2G2(3) ∼= SL2(8) : 3 SL2(8) : 3 73 : 21

G2(3) 42 : Dih(12) 21+4 : 32.2
G2(3) 42 : Dih(12).2 21+4 : Sym(3)× Sym(3)

3 D4(3) 42 : Dih(12) (SL2(3) ∗ SL2(27)).2
E7(3) 23.(PSL2(3))7.24.PSL3(2)

E7(3).2 23.(PSL2(3))7.24.PSL3(2).2
Table 1: Lie type group exceptions with p = 2
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Group Condition on ra P B
PGL3(ra) ra ≡ 4, 7 (mod 9) 32 : SL2(3) (ra − 1)2 : Sym(3)
PGU3(ra) ra ≡ 2, 5 (mod 9) 32 : SL2(3) (ra + 1)2 : Sym(3)
PGL3(7) 32 : SL2(3) 32 : Sym(3)
PSU4(ra) ra ≡ 2, 5 (mod 9) 31+2

+ : SL2(3) 1
(2,ra+1) (r

a + 1)3 : Sym(4)
PSU4(2) 33 : Sym(4) 31+2

+ : SL2(3)
PSU5(2) 3× 31+2

+ .SL2(3) 34.Sym(5)
PSU6(2) 35 : Alt(6) 31+4

+ (Q8×Q8).3
PSU6(2) : 3 36 : Alt(6) 31+4

+ (Q8×Q8).32

PSp4(2) ∼= PSL2(9) PSL2(9) 32 : 4
PΩ+

8 (ra) ra ≡ 2, 5 (mod 9) 31+2.SL2(3)× 3 O−
2 (ra) o Sym(4)

PΩ+
8 (ra) : 〈τ〉 ra ≡ 2, 5 (mod 9) 31+4

+ .SL2(3) O−
2 (ra) o Sym(4).3

2E6(2) 1
3PSU3(2) o Sym(3).3 ∩X

2E6(2).3 1
3PSU3(2) o Sym(3).32 ∩X

E8(2) 32.(PSU3(2)4).32.GL2(3)
Table 1: Lie type group exceptions with p = 3

For our intended application of 1.3 we will know additional information about the over groups of
the p-restricted minimal parabolic subgroup. Indeed we will know for such a maximal p-parabolic
subgroup M that M/Op(M) is SLn(pb) or PSLn(pb) perhaps extended by a group of field automor-
phisms (for some n ≥ 2 and natural number b). Our next result can is designed to make 1.3 more
immediately applicable in the circumstances just described.

Corollary 1.4. [L3-restricted] Suppose that p is a prime, G is a finite group, X = F ∗(G) is
a non-abelian simple group and G/X is a p-group. If P ∈ PG(S) is p-restricted and there is a
P1 ∈ PG(S) such that Op(〈P, P1〉/Op(〈P, P1〉) ∼= SL3(pb) or PSL3(pb) for some integer b, then is
either X is a Lie type group defined in characteristic p or p = 2 and X is one of the following
sporadic simple groups .....

Suppose that p is a prime. Then we use Rp to denote the set of group G for which there is
P ∈ Pp(G) which is narrow and p-restricted. One of our goals is to determine those simple groups
which are in Rp.

For a group H, we denote the preimage of F (H/Op(H)) by Fp(H) and the preimage of Φ(H/Op(H))
by Φp(H). The remainder of our group theoretic notation is standard as can be found in [1].

2. Groups with isolated p-minimal parabolic subgroups

Recall from the introduction that for a prime p, a group P is called p-minimal if for a Sylow
p-subgroup S of P , S is not normal in P and S is contained in a unique maximal subgroup of P .
For a group G and S ∈ Sylp(G), we denote the set of p-minimal parabolic subgroups of G (which
contain S) by PG(S). For an arbitrary subgroup R of G, we set QR = Op(R).

The following result is elementary to prove.

Lemma 2.1. [gen] G = 〈PG(S)〉NG(S).

We shall also need the following general result.

Lemma 2.2. [no subnormal] Let M be a maximal subgroup of the finite group H and let N be a
subnormal subgroup of H with N ≤ M . Then N ≤

⋂
MH .

Proof. Suppose that H is a counterexample to the statement and select N subnormal in H with
N ≤ M of maximal order. Let N = N0 E N1 E . . . E Nk E Nk+1 = H be a subnormal chain from



ISOLATED p-MINIMAL SUBGROUPS 5

N to H. By Wielandt’s subnormal lemma, 〈NM 〉 E EH. Because of the maximal choice of N , we
have 〈NM 〉 = N E M . Also by the maximal choice of N , N1 6≤ M . Therefore, N E 〈N1,M〉. Since
M is a maximal subgroup of H, we have N E H as claimed. �

Lemma 2.3. [basic p-minimal] Assume that P is p-minimal, S ∈ Sylp(P ) and M is the maximal
subgroup of P containing S.
(a) [a]

⋂
MP is p-closed, that is S ∩

⋂
MP = QP .

(b) [d] If Op(Op(P )) = 1, then
⋂

MP is nilpotent.
(c) [b] If Op(P ) is p-closed, then P is a {t, p}-group for some prime t 6= p.
(d) [c] If N is a subnormal subgroup of P with N ≤ M , then N ∩ S ≤ QP .

Proof. Let F =
⋂

MP and set T = S ∩ F . Plainly QP ≤ T and, by the Frattini Argument,
P = FNP (T ). Since NP (T ) ≥ S and P is p-minimal, we have P = NP (T ). So T ≤ QP and (a)
holds.

Assume that Op(Op(P )) = 1. Then (a) implies that F ∩ Op(P ) is a p′-group. Let T ∈ Sylt(F )
for some prime t 6= p. Then T ≤ Op(P ) and so T ≤ F ∩ Op(P ). The Frattini Argument gives
P = NP (T )(F ∩Op(P )). Since p does not divide |F ∩Op(P )|, we infer that NP (T ) contains a Sylow
p-subgroup of P . Thus T is normal in P and F is nilpotent.

Without loss of generality, we now assume that QP = 1.
For (c) let t be a prime such that t divides |P/M |. Note that t 6= p. Since Op(P/QP ) is a

p′-group, there exists an S-invariant Sylow t-subgroup T of Op(P ). Then, as T � M , P = ST as p
is p-minimal. Thus (c) holds. Finally (d) follows from (a) and 2.2. �

Definition 2.4. [def:restricted] Suppose that G is a group, S ∈ Sylp(G), P ∈ PG(S), B = BP =
〈PG(S) \ {P}, NG(S)〉 and A is a normal subgroup of B. If A 6≤ QP , then we say that P is isolated
in H with respect to A.

Note that if P is isolated in H with respect to A, then P is also isolated in H with respect to
QB . Furthermore, we note that if P is isolated in H with respect to A, then certainly A > 1 and so
QB > 1.

The next lemma is the primary structural result about groups which possess an isolated p-minimal
subgroup.

Lemma 2.5. [quasi] Suppose that P ∈ PH(S) is isolated in H with respect to A. Set Y = 〈Op(P )H〉
and F =

⋂
BH . Then

(a) [a-1] Suppose that S ≤ M ≤ H and M 6≤ B, then P ≤ M , B ∩ M is a maximal subgroup of
M ; furthermore, P is isolated in M with respect to A;

(b) [a-2] P ∩B is the unique maximal subgroup of P containing S;
(c) [a] B is a maximal subgroup of H;
(d) [b] NH(T ) ≤ B for all A ≤ T E S;
(e) [c] if Op(H) is p-closed, then H = BP and 〈AH〉 = 〈AP 〉;
(f) [d] if R is a normal subgroup of H and R 6≤ B, then Y ≤ R;
(g) [e] if R is a proper characteristic subgroup of Y , then Y ≤ F ;
(h) [e+1] [F, Y ] ≤ QH ;
(i) [f] either Y = Op(P ) or Y QH/QH is semisimple; and
(j) [g] if KQH/QH is a component in Y QH/QH and Y 6= Op(P ), then Y = 〈KS〉 and K ∩P 6≤ B.

Proof. Suppose that S ≤ M ≤ H and M 6≤ B. Then, by 2.1, M = 〈PM (S)〉NM (S). Since
NM (S) ≤ B and P is the unique member of PH(S) which is not contained in B, we have P ∈ PM (S).
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Since PM (S) \ {P} ⊆ PB(S), we have M ∩B = 〈PM (S) \ {P}〉NM (S). Now let M ∩B < D ≤ M .
Then also PD(S) ≤ PM (S) and so as D > M ∩B, we must have P ∈ PD(S) and we conclude that
D = M . Thus M ∩B is a maximal subgroup of M . Finally, as A E B, A E B ∩M and A 6≤ QP and
so P is isolated in M with respect to A. This proves (a). Parts (b) and (c) follow immediately from
(a).

Suppose that A ≤ T E S. Since A 6≤ QP , P is not in NH(T ). Taking M = NH(T ), (a) gives
NH(T ) ≤ B. So (d) holds.

For the proof of the remaining statements assume that QH = 1.
Suppose that X := Op(H) is p-closed. Then, as QH = 1, X is a p′-group. Since Op(P ) ≤ X,

Op(P ) is also a p′-group. Therefore, by 2.3(c), P is a {t, p}-group for some prime t 6= p. Since p and
|X| are coprime, for each prime divisor r of |X| there is an S-invariant Sylow r-subgroup Sr of X.
If r 6= t, then P 6≤ SrS and so Sr ≤ B by (a). Hence, by considering |X|, we have H = (X ∩B)StS.
We now consider StS, we have that (St ∩ B)S is a maximal subgroup of StS by (a) and so St ∩ B
is a maximal S-invariant subgroup of St. Since St is nilpotent, NSt(St ∩B) > St ∩B and of course
NSt(St ∩ B) is also normalized by S. Hence St ∩ B is normal in St. In particular, we have that
(St ∩ B)Op(P ) is a subgroup of St and, as St ∩ B is a maximal with respect to being S-invariant,
we infer that St = (St ∩B)Op(P ). Hence

H = (B ∩X)StS = (B ∩X)Op(P )S = (B ∩X)P = BP.

Finally, we have 〈AH〉 = 〈ABP 〉 = 〈AP 〉 and this completes the proof of (e).
Set Y = 〈Op(P )H〉. Suppose R is a normal subgroup of H which is not contained in B. Then,

by (a), RS ≥ P and so Op(P ) ≤ R. Thus (f) holds. Plainly (g) is a direct corollary of (f).
Set F =

⋂
BH . Then as F ≤ B, F normalizes A. Therefore, A ∩ F ≤ QF ≤ QH = 1. Therefore,

as [F,A] ≤ A ∩ F , 1 = [F,A] = [F, 〈AH〉]. Since 〈AP 〉 ≥ Op(P ), we have 〈AH〉 ≥ 〈Op(P )H〉 = Y .
Therefore, [F, Y ] = 1 and (h) is true.

Suppose that Y is not perfect. Then Y ′ < Y hence Y ′ ≤ Z(Y ) by (g) and (h). In particular, Y is
nilpotent and so p-closed. Applying part (e) to Y S, we have that 〈AH〉 = 〈ABY 〉 = 〈AY 〉 = 〈AP 〉 =
AOp(P ) and so Y = Op(P ). If on the other hand, Y is perfect, then Y is semisimple by (g) and
(h). So (i) holds.

Let K be a component of Y . Then Y is not nilpotent, so Y is semisimple by (j) and, in particular,
K is normal in Y . Hence, as H = Y B, 〈KB〉 = 〈KY B〉 = 〈KH〉 and so K � B. Therefore,
〈KS〉 ≥ Op(P ) by (a). If L is a component of Y not contained in 〈KS〉, then Op(P ) ≤ 〈KS〉∩〈LS〉 ≤
Z(Y ) ≤ B, a contradiction. Therefore, KH = KB = KS and the first part of (j) holds. Assume that
K∩P ≤ B∩P . Since Op(P ) ≤ Y , K 6= Y . Furthermore, as (K∩P )EEP , 2.3(d) gives K∩S ≤ QP .
Hence Y ∩S = Y ∩QP EP and, in particular, Op(P ) is p-closed. Set R = NY (Y ∩S)S. The Op(R)
is p-closed and R ≥ P . Therefore, R = (R ∩ B)P and 〈AR〉 = 〈AP 〉 ≤ P by (e). Suppose that
A ≤ NH(K). Then [A,K∩R] ≤ K∩〈AR〉 ≤ K∩P ≤ B which normalizes A. It follows that [A,K∩R]
is a p-group and so, as K∩R is p-closed, [A,K∩R] ≤ QP∩K. Therefore, [A,R] = 〈[A,K∩R]S〉 ≤ QP .
But then 〈AR〉 = 〈AP 〉 is a p-group, a contradiction. Hence A 6≤ NH(K). Therefore, QB properly
permutes the components of Y . Since [K ∩B,QB ] is a p-group, we get K ∩B ≤ (K ∩S)F and then
that Y ∩S = Op(Y ∩B). But then Y ∩S E 〈Op(P ), B∩Y 〉 = Y and we conclude that H is p-closed.
Now a final application of (e) indicates that Y ≤ 〈AH〉 = 〈AP 〉 ≤ P . So Y = Op(Y ) = Op(P ) and
thus (g) holds. �

To control the structure of Y in (??) further we have to impose further conditions on the isolated
p-minimal subgroup P .
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Definition 2.6. [def:narrow] Let P be a p-minimal group and S ∈ Sylp(P ). Let M be the maximal
subgroup of P containing S, R =

⋂
MP and E := Op(P )R/R. Then P is called narrow provided

that either
(a) [a] E is non-abelian and simple; or
(b) [b] E is elementary abelian and B acts primitively on E.

Lemma 2.7. [qs] Suppose that P ∈ PG(S) is narrow and isolated in G. Then either P/QP is
soluble or Op(P )QP /QP is quasisimple.

Proof. Let M = B ∩ P , then by 2.5(b), M is the unique maximal subgroup of P containing S. Put
R =

⋂
MP . Then R is normal in P and contained in B, therefore, [QB , R] ≤ QB∩R ≤ S∩R = QP .

Thus R/QP is centralized by 〈QP
B〉 ≥ Op(P ). Thus RQP /QP ≤ Z(Op(P )QP /QP . Since P is

narrow, we have either P is soluble or Op(P )QP /QP is quasisimple. �

Theorem 2.8. [simple] Suppose that P ∈ PH(S) is narrow and isolated in H with respect to A.
Assume that QH = 1 and set Y = 〈Op(P )H〉. Then either Y = Op(P ) or Y is quasisimple.

Proof. We may assume that Y 6= Op(P ). Set M = P ∩B. The by 2.5(b) M is the unique maximal
subgroup of P containing S. Put R =

⋂
MP . By 2.5(i) and 2.5(j), Y is semisimple and for any

component K of Y , Y = 〈KS〉 = 〈KM 〉 and K∩P 6≤ B. If K is normalized by S, then Y = 〈KS〉 = K
is quasisimple and we are done. Hence we assume that K is not normalized by S and look for a
contradiction. Suppose first that Op(P )R/R is a non-abelian simple group. Then, as (K ∩ P )R/R
is normalized by Op(P )R/R, we have (K ∩P )R ≥ Op(P )R. Now selecting s ∈ S such that Ks 6= K,
we have (Op(P )R/R)′ ≤ [K, Ks]R/R = (K ∩Ks)R/R which is abelian, a contradiction. Therefore,
Op(P )R/R is an elementary abelian t-group for some prime t 6= p and Op(P ) is p-closed. Hence P
is a {t, p}-group. We have that Op(K ∩ P ) ≤ X and so X = 〈Op(K ∩ P )S〉. Put R∗ = Z(Y ) ∩X
and D = Op(K ∩ P ). Then X ∩ Z(Y ) is normal in P and contained in B. Therefore R∗ ≤ R. Note
that, as Y is semisimple,

X/R∗ ∼= XZ(Y )/Z(Y ) ∼=
∏

T∈DM

T.

For a group L, let Φp(L) denote the full preimage of Φ(L/Op(L)). Then, as P is narrow and soluble,
Φp(X) ≤ R ∩X and, as P is p-minimal Maschke’s Theorem implies that Φp(X) = R ∩X. On the
other hand

Φp(X/R∗) =
∏

T∈DM

Φp(T )

and so we conclude that
XR/R ∼= X/X ∩R =

∏
T∈DM

T/Φp(T ).

Since P is narrow, it must be that DM = D and so K is normalized by M , a contradiction. �

¿From Section ?? onwards we will be investigation specific simple groups with an eye to showing
that they have or do not have an isolated narrow p-minimal parabolic subgroup. The next few results
in this section will be applied to proper subgroups of such groups. We continue the notation from
the previous lemmas. In particular, if P ∈ PG(S) is narrow and isolated, then we set Y = 〈Op(P )G〉.

Lemma 2.9. [comps] Suppose that G is a group, Op(G) = 1, F (G) = CG(E(G)) and G operates
transitively on the components of G. If P ∈ PG(S) is narrow and isolated, then E(G) = Y and, in
particular, there is exactly one component in G.
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Proof. Assume that P is narrow and isolated in G. Then, if Y 6= Op(P ) or Y = Op(P ) and Op(P ) is
not soluble, 2.8 implies that Y is a component of G. Hence, as by hypothesis G acts transitively on
its components, we get Y = E(G). Thus Y = Op(P ) is soluble. Since Y is a normal subgroup of G,
Y centralizes E(G). Since G = BY , we have that QBY E G and QBY centralizes E(G). But then
QBY ≤ CG(E(G)) = F (G) by assumption. Thus QBY is nilpotent and this contradicts QB 6≤ QP .
�

Lemma 2.10. [quot] Suppose that P ∈ PG(S) is isolated in G. Then CB(Y ) is normal in G and
if X ≤ CB(Y ) is normal in G, then

(a) [a] PX/X ∈ PG(SX/X) is isolated in G/X; and
(b) [b] if P is narrow, then PX/X is narrow.

Proof. We first of all note that G = BY . So CB(Y ) = B ∩ CG(Y ) is normalized by G = BY . Now
suppose that X ≤ CB(Y ) is normal in G. We claim that PX/X is a p-minimal parabolic subgroup
which is narrow and isolated in G/X. Suppose that R̄ ∈ PG/X(SX/X) is not contained in B/X.
Let R be the full preimage of R in G. Then R ≥ S and R 6≤ B so P ≤ R by 2.5(a). Furthermore,
as R̄ ∈ PG/X(SX/X) and B ≥ X, B ∩R is the maximal subgroup R containing SX. Since P 6≤ B,
we infer that R = PX and consequently R̄ = PX/X is the unique p-minimal parabolic subgroup
of G/X not contained in B/X. Let U be the full preimage of Op(R) and let Up = U ∩ S. We have
R = NR(Up)U by the Frattini lemma. In particular, as R 6≤ B and U ≤ XS ≤ B, NR(Up) 6≤ B.
Since S ≤ NR(Up), it follows that P ≤ NR(Up) and so Up ≤ QP . Since QB 6≤ QP , it follows that
QB 6≤ Up = U ∩ S. Therefore, QBX/Xnot ≤ UX/X and PX/X is isolated in G/X. This proves
(a).

Suppose that P is narrow. Then PX/X ∈ PG(S) by (a). We have so PX/X ∼= P/P ∩ X and,
putting F =

⋂
(B∩P )P , we have P∩X ≤ F . It follows that Op(P )F/F ∼= Ωp(P/X)(FX/X)/(FX/X)

and so PX/X is narrow. �

Corollary 2.11. [quot2]Assume that P ∈ PG(S) is narrow and p-restricted. Let Y = 〈Op(P )G〉
and assume that Y = Op(P ) is soluble. If the holomorph of Y is soluble but not abelian, then G′ is
not perfect.

Proof. We have G/CB(Y ) is isomorphic to a subgroup of the holomorph of Y which is soluble but
not abelian. �

Lemma 2.12. [Opnormal] Suppose that P ∈ PG(S) is narrow and isolated, L E H with L soluble
and CH(L) ≤ L. Assume also that Op(H) = 1. Then Op(P ) E H and P is soluble.

Proof. Set Y = 〈Op(P )H〉. Then Y = Op(P ) or Y is quasisimple. Assume that Op(P ) is not soluble.
Then, because Y EH, Op(Y ) = 1 and so when Y = Op(P ) we also have that Y is quasisimple by 2.7.
Thus in any event Y is quasisimple. Therefore, as L is soluble, L∩Y is soluble and so L∩Y ≤ Z(Y ).
Hence [L, Y, Y ] = 1 and the three subgroup lemma gives Y = [Y, Y ] ≤ CH(L) ≤ L, a contradiction.
�

Lemma 2.13. [sbnrml2] Suppose that H is a group and A ≤ H. Set L = 〈AH〉. Assume that
AF (L) E L, CH/F (L)(L/F (L)) = 1 and that there exists h ∈ H such that [Ah, A] ≤ F (L). If Y E H,
then Y/F (Y ) is not a non-abelian simple group.
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Proof. Suppose that Y/F (Y ) is a non-abelian simple group. Since Y E H, F (Y ) ≤ F (H) and since
[F (H), L] ≤ F (L), CH/F (L)(L/F (L)) = 1 implies that F (H) = F (L). Now L∩ Y E Y and so either
Y ≤ L or L ∩ Y = F (Y ). In the latter case we have [L, Y ] ≤ F (L) which means that Y ≤ F (L), a
contradiction. Therefore, Y ≤ L. Since F (L)A is normal in L, we either have AF (L) ∩ Y = F (Y )
or AF (L) ≥ Y = Y . In the latter case we have Y ≤ AF (L)∩AhF (L) where h is as in the statement
of the lemma. This gives

[Y, Y ] ≤ [AF (L), AhF (L)] ≤ F (L),
which is a contradiction. Therefore, AF (L) ∩ Y = F (Y ) ≤ F (L). But Y ≤ L and so Y normalizes
AF (L) and this means that [AF (L), Y ] ≤ AF (L) ∩ Y ≤ F (L). Thus [〈AH〉, Op(P )] ≤ F (L) and,
since CH/F (L)(L/F (L)) = 1, we conclude that Y ≤ F (L) and once again have a contradiction. �

Corollary 2.14. [P soluble] Suppose that H is a group, Op(H) = 1 and A ≤ H. Set L = 〈AH〉.
Assume that AF (L)EL, CH/F (L)(L/F (L)) = 1 and that there exists h ∈ H such that [Ah, A] ≤ F (L).
If P ∈ PH(S) is narrow and P is restricted in H, then Op(P ) E H and Op(P ) ≤ F (L).

Proof. Let M be a maximal subgroup of P containing a Sylow p-subgroup S of P and set R =
⋂

MP

Set Y = 〈Op(P )H〉. Then by (??) either Y is quasisimple or Y = Op(P ). However (??) implies
that Y/F (Y ) is not simple. So Y = Op(P ). Hence Op(P ) = 1 and R is nilpotent by (??)d. Since
P is narrow (??) implies that Op(P )/F (Op(P )) is abelian and hence p-closed. But then Op(P ) is a
t-group for some prime t and Op(P ) ≤ F (L) as claimed. �

Corollary 2.15. [P soluble2] Suppose that H is a group, Op(H) = 1 and A ≤ H. Set L = 〈AH〉.
Assume that AF (L)EL, CH/F (L)(L/F (L)) = 1 and that there exists h ∈ H such that [Ah, A] ≤ F (L).
If L is perfect and F (L) = Z(L), then H 6∈ Rp.

Proof. Assume that H ∈ Rp. By the previous corollary we have that Op(P ) ≤ F (L). Let B =
〈PH(S) \ {P}〉. Then, as H ∈ Rp, BOp(P ) = H and B < H. As Op(P ) ≤ Z(L) ≤ L, L =
L ∩ BOp(P ) = (L ∩ B)Op(P ) and L ∩ B < L. Therefore L′ ≤ ((L ∩ B)Z(L))′ ≤ L ∩ B < L, a
contradiction. �

Lemma 2.16. [non-local p-minimal] Suppose G ≥ H ≥ S and QH = 1. Then H ≥ P .

Proof. Suppose H ≤ B. Then QB ≤ QH = 1, a contradiction. Thus H � B and H ≥ P by 2.5(a).
�

I don’t think that this next one is used.

Lemma 2.17. [no cubic] Suppose that QB is abelian and that no non-trivial normal subgroup of
S acts non-trivially and cubically on QB. Then P is not of characteristic p.

Proof. Suppose not and let D be normal subgroup of P in QP minimal such that [D,Op(P )] 6= 1.
Then D = [D,Op(P )] ≤ Op(P ) and so, by the minimality of D, [D,D,D] ≤ [D,D,Op(P )] = 1.
In particular, as QB normalizes D, [QB , D, D, D] = 1 and so by assumption [QB , D] = 1. Since
QB � QP , we get [D,Op(P )] = 1, which is a contradiction. �

We finish this section with one final general lemma. It exploits the fact that isolated p-minimal
parabolic subgroups are normalized by NG(S).

Lemma 2.18. [ngs maximal] Suppose that P ∈ PG(S) is isolated in G. Suppose that one of the
following holds:
1. [1] NG(S) acts irreducibly on S.
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2. [2] NG(S) = B.
3. [3] NG(S) is contained in a unique maximal subgroup of G.
Then P E G

Proof. Suppose (1) holds. Since NG(S) ≤ B we get that QB = S and so (2) holds.
Suppose (2) holds. Then, by 2.5(c), NG(S) is a maximal subgroup of G and so (3) holds.
So we may assume that (3) holds. Since NG(S) ≤ B, we get that B is the unique maximal

subgroup of G containing NG(S). Since NG(S)P ≤ NG(P ) and P � B, we have G = NG(P ) and
so P E G. �

3. General observations

¿From here on we wish to determine the possibilities for Y in 2.8(??)iven that we know that
Op(P/QP ) is a rank 1 Lie type group. So we shall assume the following hypothesis:

Hypothesis 3.1. [hyp] p is a prime, G is a group with QG = 1 and
(a) [a] X = Op(G) is a non-abelian simple K-group; and
(b) [b] there is a P ∈ PG(S) such that P is narrow and isolated in G (with respect to A) and

Op(P/QP ) is a rank 1 Lie type group.

We next establish some elementary consequences of 3.1

Lemma 3.2. [s cyclic] If S is cyclic, then 〈AP 〉E G.

Proof. Suppose that |SQP /QP | = p, then, as A 6≤ QP , S = A = QB and the result follows from
2.18(??) So assume that |SQP /QP | > p, then as S is cyclic, we have P/QP

∼= Suz(2) or 31+2
+ .4. In

particular, p = 2 and so transfer (see [?, 37.7]) implies that O2(G) is group of odd order. Therefore
the lemma follows from 2.5(e). �

Proposition 3.3. [GL][Gorenstein Lyons] Suppose that X is a finite simple K-group and that S is
a Sylow p-subgroup of X. If S is abelian, then NG(S) acts irreducibly on Ω1(S).

Proof. See [3, 12-1,pg 158]. �

This allows us easily to establish the following lemma.

Lemma 3.4. [SinXnotabl] If G satisfies 3.1 and X has abelian Sylow p-subgroups, then G 6= X.

Proof. Suppose that G = X and X has abelian Sylow p-subgroups. Then, as QB > 1, (??) and
NG(S) ≤ B implies that Ω1(S) ≤ QB and B = NG(Ω1(S)). If QP > 1, then as QP is normalized
by NG(S), we have Ω1Z(QP ) = Ω1(S). But then P ≤ B, a contradiction. Thus QP = 1. Since
Op(P/QP ) is a rank 1 Lie type group, we have that S is elementary abelian. Hence 2.18 applies and
we have a P E G, a contradiction. �

Lemma 3.5. [not char] Suppose that P is not of characteristic p and QB is abelian. Then QB is
elementary abelian.( except maybe for Sz(2) or Ree(3)′).

Proof. Since QBQP /QP is an abelian normal subgroups of (P ∩ B)/QP we see ( except for Sz(2)
that Φ(QB) ≤ QP and so Φ(QB) is normal in P and in B. Hence QB is elementary abelian �

Lemma 3.6. [irr on z(s)] Suppose that P is not of characteristic p, NG(S) is irreducible on Ω1Z(S)
and q > 3. Then QP = 1 and |QB | = q.
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Proof. By 3.5 QB is elementary abelian. Suppose q > 3. Then Op(P ) ∩QP = 1. By irreducibility
of NG(S) on Ω1Z(S) we get Z(S) ≤ Op(P ) ∩ S and so Ω1Z(S) ∩QP = 1. Hence QP = 1. �

Lemma 3.7. [norm] If P is not soluble, then NOp(P )(S ∩ Op(P )) ≤ B and QBQP E NOp(P )(S ∩
Op(P ))S.

Proof. Let R = NOp(P )(S ∩Op(P )). Since R is normalized by S and, as P is not soluble, RS 6≥ P ,
R ≤ B by 2.5(a). This of course then gives QBQP E RS. �

Lemma 3.8. [QBnX=1] Suppose QB ∩Op(P ) = 1. Then P is soluble and, in particular, p ≤ 3.

Proof. Assume that QB ∩X = 1 and put R = NOp(P )(S ∩ Op(P )). Suppose that P is not soluble.
Then by 3.7, R normalizes QB . Now [QB , R] ≤ Op(P )∩QB ≤ X∩QB = 1. Therefore, QBQP /QP ≤
Z(Op(RS/QP )). Since, from the structure of P/QP , CP/QP

(RQP /QP ) = 1, we infer that QB ≤ QP ,
which is a contradiction. �

Lemma 3.9. [order8] If QB ≤ Z(S) and Z(S) is cyclic, then |S| ≤ p3.

Proof. As QB ≤ Z(S), [QP , QB ] = 1 and so P is not p-constrained. Therefore Ω1(QB) = Ω1(Z(S))∩
QP = 1 and so QP = 1. Since QBQP is normalized by NO2(P )(S ∩ O2(P )), the structure of the
rank 1 Lie type groups gives Op(P )QP /QP is defined over GF(p). But then |S| = |S/QP | ≤ p3, as
claimed. �

4. Alternating groups

It looks like we can do this for narrow p-isolated P and not insist on Lie type.
I guess it lets in Sym(p) and Sym(9).

In this section we determine those groups G are p-restricted and have Op(G) = F ∗(G) an al-
ternating group of degree at least 5. Among the small alternating and symmetric groups there are
a number of isomorphisms with the classical groups and these examples always lead to G being
p-restricted for the appropriate prime. Before proving our main result on the symmetric groups we
recall these isomorphisms.

Lemma 4.1. [smallalts] We have the following isomorphisms
(a) [a] Sym(3) ∼= SL2(2);
(b) [b] Alt(4) ∼= PSL2(3);
(c) [c] Alt(5) ∼= SL2(4) ∼= PSL2(5);
(d) [d] Alt(6) ∼= PSL2(9);
(e) [e] Sym(6) ∼= Sp4(2);
(f) [f] Alt(8) ∼= PSL4(2);
(g) [g] Sym(8) ∼= O+

6 (2).

Proof. These facts are well known. But see for example [6, 2.9.1]. �

Lemma 4.2. [altcase] Suppose that p is a prime, G is a group such that F ∗(G) = Op(G) ∼= Alt(n)
with n ≥ 5 and that G is not isomorphic to a Lie type group defined in characteristic p. If G
is p-restricted, then p = 2 and n = 12. Furthermore, in this case if P is p-restricted in G, then
B is the stabilizer of a system of imprimitivity with blocks {Ω1,Ω2,Ω3} of size 4 and P , which is
isomorphic to a subgroup of index at most 2 in (Sym(2) o Sym(4))× (Sym(2) o Sym(2)), is contained
in Stab(Ω1 ∪ Ω2)× Stab(Ω3).
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Proof. Let X = F ∗(G) = Op(G) ∼= Alt(n) with n ≥ 5, S ∈ Sylp(G) and assume that P ∈ PG(S) is
p-restricted in G. Because of 3.2 we may assume that S is not cyclic and so in particular, n > 2p−1.
Since, for p ≤ 3, Alt(6) is a Lie type group in characteristic p, we may assume that n ≥ 7. Suppose
that n = 7. Then p ∈ {2, 3}. When p = 3, then NG(S) operates irreducibly on S so 2.18 delivers
G = P , a contradiction. So assume that p = 2. If G = Alt(7), then 2.16 implies P ≤ Alt(6) ∈ MG(S)
and P ≤ Sym(5) ∈ MG(S), which is impossible as Sym(5) is p-minimal. For G = Sym(7), the same
argument shows that P ≤ Sym(6) with P = Sym(2) o Sym(3) and B = Sym(5) × Sym(2). But P
must also be contained in Sym(3)× Sym(4) and we have a contradiction.

Now we assume that n ≥ 8 and that if n = 8, then p 6= 2 (as Alt(8) ∼= SL4(2)). We consider G
acting on the set Ω = {1, . . . , n}. Set Z = Ω1(Z(QB)). Suppose first that B operates primitively on
Ω. Then Z operates transitively on Ω and, as Z is abelian, Z acts regularly on Ω and, in particular,
|Ω| = |Z| = pa for some a ∈ N. As n > p, we have a ≥ 2. Select a p-cycle x ∈ S (or when p = 2 a
product of two transpositions). Then

|FixΩ(x)| = pa − p = |CZ(x)| ≤ pa−1

( 2a − 4 ≤ 2a−1 when p = 2) which has no solution in for our values of n = pa. Therefore, B does
not act primitively on Ω.

Assume that B is not transitive on Ω and let Ω1, Ω2 be proper subsets of Ω fixed by B with
|Ω2| = k ≤ n

2 . So B ≤ StabG(Ω1)× StabG(Ω2). Since B is a maximal subgroup of G we must have
B = StabG(Ω1) × StabG(Ω2) and k 6= n

2 (otherwise B would not be maximal in G). Since B is a
p-local subgroup, we infer that Sym(Ω1) or Sym(Ω2) must be a p-local subgroup. Thus, as n ≥ 8 and
k 6= n

2 , we have that k = 2, 3, 4 and QB = Op(Sym(Ω2)). Now let T = 〈Qg
B | g ∈ G, Qg

B ≤ S〉. Then
QB ≤ TES. By 2.5(d), we have that NG(T ) ≤ B, but we have NG(T ) ≥ Op(Sym(Ω2))oSym([n/|Ω2|])
which plainly does not normalize QB . Thus B operates transitively but not primitively on Ω. Let
B = {Θ1, . . . ,Θr} be a system of imprimitivity for B on Ω with |Θ1| = k. Then B ≤ StabG(B)
and, since B is a maximal subgroup of G and B is a p-local subgroup of G, we have B = StabG(B)
and k ∈ {2, 3, 4}. Suppose that k = 2 or 4. Then p = 2. Write the 2-adic decomposition of n
as n = 2a1 + 2a2 + . . . 2al and notice that as n ≥ 8, a1 ≥ 3. For i = 1, . . . , l, let Sai represent a
Sylow 2-subgroup of Sym(2ai). Then take S = Sa1 × Sa2 × · · ·Sal

∩ G as our“standard” Sylow 2-
subgroup. If k = 2, we note that the subgroup H := Sym(4) oSym(2) o · · · o Sym(2)︸ ︷︷ ︸

a1−2

×Sa2× . . . Sal
∩G

is not contained in B and consequently must contain P . Suppose that n ≥ 9 or G = Sym(n).
Then H is actually p-minimal and we have that H = P , but H is not narrow. Thus we have that
G = Alt(n) and n = 9. So we have that S ≤ Alt(8) and G = P is 2-minimal, a contradiction to
the uniqueness of P (as P ≤ H also). Next assume that k = 4. Then set H := Sym(2) o Sym(4) o
Sym(2) o · · · o Sym(2)︸ ︷︷ ︸

a1−3

×Sa2 × . . . Sal
. Again we have that H 6≤ B and so P ≤ H. Furthermore, if

a1 ≥ 4, H is 2-minimal and so H = P contradicting the structure of P . Thus a1 = 3 and since
k = 4 divides n we infer that n = 12, and we have the example listed in the lemma.

Finally suppose that k = 3. Then let n = b13a1 + · · ·+bl3al be the 3-adic decomposition of n. Let
Sai

be a Sylow 3-subgroup of Sym(3ai) and Sbl
al

be a Sylow 3-subgroup of Sym(bi3ai). Then we may
suppose that S = Sb1

a1
×· · ·×Sbl

al
. We first note that Alt(9) itself is 3-minimal and so it is impossible

that G = Alt(9). Then taking H := Sym(9) oSym(3) o · · · o Sym(3)︸ ︷︷ ︸
a1−2

oSym(b1)×Sb2
a2
×· · ·×Sbl

al
∩Alt(n)

is not contained in B. Thus H contains P and we have a contradiction via 2.9 if either a1 > 3 or
b1 > 1 and otherwise we use the fact that Sym(9) is not 3-restricted. �
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5. Lie type groups in characteristic not p

In this section we begin our investigation of the groups which satisfy 3.1 and have X a Lie type
group defined in characteristic r 6= p. Our objective here is to prove two general results.

Lemma 5.1. [para-arg] Suppose that X is a simple group of Lie type defined over GF(ra) and
assume that for every parabolic subgroup R of X, G = NG(R)X. If S ∩X is contained in a proper
parabolic subgroup R of G, then G is not p-restricted.

Proof. Suppose that R is a parabolic subgroup of X and assume that R contains S ∩ X. Then
as NG(R)X = G, we have that NG(R) contains S. It follows that S normalizes a standard Levi-
complement L of R and thus S ≤ LOr(R) and S ≤ LOr(R)x for x ∈ G with Or(R) ∩Or(R)x = 1.

Setting H1 = SOr(R) and H2 = SOr(R)x we have that Op(H1) = Op(H2) = 1 and so 2.16
implies that P ≤ H1 ∩ H2. But then Op(P ) ≤ Op(H1) ∩ Op(H2) = Or(H1) ∩ Or(H2) = 1 and we
have a contradiction. Thus the lemma holds. �

Lemma 5.2. [abelian] Suppose that X = Op(G) is a Lie type group G(ra) with p 6= r. If X has
abelian Sylow p-subgroups and P < G, then p ≤ 3 and G > X.

Proof. If X = G, we simply cite 3.4 to obtain G = P . So assume that G > X and p ≥ 5. Since
Op(P ) ≤ X, Op(P ) has abelian Sylow p-subgroups and so, as p ≥ 5, Op(P/QP ) ∼= SL2(pb) or
PSL2(pb) for some b ≥ 1 and P/QP is the same group extended by a cyclic group of field automor-
phisms. Since the Sylow p-subgroups of Op(P ) are abelian, we infer further that Op(P ) ∼= SL2(pb)
or PSL2(pb) and that [QP , Op(P )] = 1. Since NG(S ∩ Op(P )QP )S ≤ B, QBQP ∈ Sylp(Op(P )QP )
and Φ(QB) ≤ QP . Therefore Φ(QB)E 〈B,P 〉, so QB is elementary abelian. Since QB is normalized
by NG(S ∩Op(P )) and NG(S ∩Op(P )) acts irreducibly on S ∩Op(P ) and centralizes QP , we infer
that QB ∩ Op(P ) = S ∩ Op(P ) > 1. In particular, QB ∩ X > 1 so QB ∩ Ω1(S ∩ X) > 1 and 3.3
implies that QB ∩X = Ω1(S).

Set S0 = S ∩ X and consider S0O
p(P ). Since S0 is abelian and Op(P ) ∼= SL2(pb) or PSL2(pb),

we infer that Φ(S0) ≤ QP . But then Φ(S0) ∩ Ω1(S0) E NX(S0), so 3.3 implies that Ω1(S0) ≤ QP .
But then Ω1(S0) E 〈B,P 〉 = G so S0 is elementary abelian.

Since p > 3, G/X does not contain a graph automorphism. If X has a diagonal automorphism of
order p, then using p > 3 again, we have that p divides (n, Φ1(ra)) and X ∼= PSLn(ra) or p divides
(n, Φ2(ra)) and X ∼= PSUn(ra). In the first case we have that X contains a monomial subgroup

1
(n,ra−1)2 (ra − 1)n.Sym(n) and in the second case 1

(n,ra+1)2 (ra + 1)n.Sym(n) and, as p > 3, these
subgroups exhibit that fact that S0 is non-abelian. Thus X has no diagonal automorphisms of order
p. So G/X must consist of field automorphisms. As p > 3, this means that ra = rpa0 for some
integer a0. Letting m be the order of ra mod p, [3, pg. 112] presents the relationship

Φm(rpa0)
Φm(ra0)

≡ Φm(ra0)φ(p) (mod p).

Finally, [3, 10-1 (2)] shows that the exponent of S0 is at least p2 (using here that X has no diagonal
automorphisms of order p) and so the Sylow p-subgroups of X are not elementary abelian, which is
a contradiction. This final contradiction finishes the proof of the lemma. �

We remark here that there are examples of 3-restricted groups G with X = Op(G) a simple Lie
type group with abelian Sylow 3-subgroups and |G/X| = 3 (see 6.11).
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6. Linear and unitary groups

In this section we investigate the linear and unitary groups. To simplify our notation we use
GL+

n (ra) and GL−
n (ra) to represent the general linear and unitary groups respectively. The notation

GLε
n(ra) denotes either of the groups. So here ε = ±. However we will also write ra − ε and in

this case we regard ε as ±1 according to ε = ±. Throughout this section X ∼= SLε
n(ra) and p is a

prime with p 6= r. Recall that ΓLε
n(ra) has X as a normal subgroup and includes all the diagonal

and field automorphisms of X. In the event that X ∼= SLn(ra), we denote the inverse transpose
automorphism by ι and, for ease of notation, when X ∼= SUn(ra) or SL2(ra), we take ι to be the
trivial automorphism. Let V represent the natural linear space when X ∼= SLn(ra) and the natural
unitary space when X ∼= SUn(q).

For the remainder of this section we take

X ≤ G ≤ ΓLε
n(ra) : 〈ι〉

with G/X a p-group and G non-soluble. Finally set G = G/F (G), X = XF (G)/F (G) and for
S ∈ Sylp(G), S = SF (G)/F (G). Our objective is to determine for which values of n and ra, G is
p-restricted. The first few lemmas form the base of our final induction arguments.

Our first lemma helps us apply induction.

Lemma 6.1. [subquot] Suppose that R ≤ F (G) is normal in G and P ∈ PG(S) is p-restricted in
G. Then either G/ovR is p-restricted or Op(P ) ≤ R.

Proof. If Op(P ) 6≤ R, then RS ≤ B and R ≤ CB(Y ). Thus the result follows from 2.10. �

Lemma 6.2. [sl2] If X ∼= PSL2(ra) and P is p-restricted in G, then one of the following holds:
(a) [a] p = 2, ra ≡ 3, 5 (mod 8), G ∼= PGL2(ra), B = CG(Ω1(Z(S))) and P ∼= Sym(4);
(b) [a+1] p = 2, G ∼= PGL2(19), B ∼= Sym(4) and P ∼= Dih(40) with P/O2(P ) ∼= Dih(10);
(c) [b] p = 2, G ∼= PSL2(7), PSL2(9) and B ∼= P ∼= Sym(4) or G ∼= PΣL2(9) ∼= Sym(6) and

B ∼= P ∼= Sym(4)× 2;
(d) [c] G = P ∼= PSL2(5) ∼= Alt(5) or PGL2(5) ∼= Sym(5);
(e) [d] p = 3, X ∼= 2G2(3) ∼= PSL2(8).3 = PΓL2(8).

Proof. We first consider the case when p = 2. Set S0 = S ∩X. Let t be a central involution in S0

and put D = CG(t). We shall often use the following straight forward observation.

1◦. [1] If P ≤ D, then P/O2(P ) ∼= Sym(3), Dih(10) or Frob(20) and D∩B is a maximal subgroup
of D of index 3 in the first case and 5 in the last two cases.

Suppose first that |S0| = 4. Then ra ≡ 3, 5 (mod 8) and consequently a is odd. Therefore
X admits no field automorphisms of order 2 and G is isomorphic to a subgroup of PGL2(ra). If
G = X, then 5.2 implies that G = P and in this case (d) holds. Hence we have G ∼= PGL2(ra).
So S ∼= Dih(8) and NG(S0) ∼= Sym(4). Assume that P ≤ D. Then, as B is a 2-local subgroup
of G, we must have B ≤ NG(S0). Hence (1◦) implies that |D| = 24 if P/O2(P ) ∼= Sym(3) and
|D| = 40 if P/O2(P ) ∼= Dih(10). Since ra ≡ 3, 5 (mod 8) and |D| = ra ± 1, we infer that the
second possibility occurs and that G ∼= PGL2(19) which is possibility (b). Next suppose that have
P 6≤ D. Then B ≥ D and, as NG(S0) ∼= Sym(4) is 2-minimal and is not contained in B, we have
P = NG(S0). This delivers the examples listed in part (a). (Here we may mention that if a > 1,
then P is contained in the subfield subgroups PGL2(ra/b) whenever b divides a.)

Assume that |S0| ≥ 8 and let F1 and F2 be non-conjugate fours subgroups of S0.

2◦. [2] QP ∩X > 1.
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Suppose that QP ∩ X = 1. Then P 6≤ D and so B ≥ D. Additionally, we have O2(O2(P )) ≤
QP ∩ X = 1 and so, as O2(P/QP ) ∈ L1(p), O2(P ) ∼= SU3(2n), PSU3(2n), 2B2(2n), SL2(2n) for
some n ∈ N or we have one of our unusual cases O2(P ) ∼= 3, 5, 31+2

+ , 32.2, 2.SL2(4). Since S0 is
a dihedral group and the Sylow 3 and 5-subgroups of X are cyclic, either O2(P ) ∼= SL2(4) or P is
soluble. In the latter case we have that |S/QP | ≤ 8 |S| = 23|QP | leaving only the extreme case
with P/QP

∼= PSU3(2) ∼= 32 : Q8 as a possibility and this contradicts the fact that S/QP
∼= S0 is

dihedral. So O2(P ) ∼= SL2(4) and again by considering orders we get P/O2(P ) ∼= SL2(4) : 2 and
|S0| = 8. Since SL2(4) : 2 contains a subgroup P1 = Sym(4) and since P1 is 2-minimal, B ≥ 〈P1, D〉
and hence QB ∩X = 1. But then 3.8 implies that P is soluble, a contradiction.

3◦. [3] If P 6≤ D, then (c) holds.

Assume that P 6≤ D. Then necessarily B ≥ D. By (2◦) we have that QP ∩X > 1. Therefore, as
P does not centralize t, we have QP ∩X is a fours group F of S. Consequently S also normalizes
F and so S0 is a dihedral group of order 8. Furthermore, as in this case the Sylow 2-subgroups of
PGL2(ra) are dihedral of order 32, we infer that G ≤ PΣL2(ra). Letting F1 6= F also be a fours
group of S0, we have H = NG(F1) is also a minimal parabolic subgroup (because H and P are
conjugate in PΓL2(ra)). Thus H ≤ B also. But then D ∼= Dih(8) or Dih(8) × 2 and we infer that
one of the possibilities in part (c) occurs.

We now assume that P ≤ D. Suppose that QB ∩X > 1. If |S0| > 8, then 〈P,B〉 ≤ CG(t) and we
have a contradiction. So |S0| = 8 and QB∩X is a fours group F1 of S0. Furthermore, F1 is normalized
by S. Let F2 be a fours group of S0 not equal to F1. Then N2 = NX(F2)S is 2-minimal and so as
N2 6≤ D and P ≤ D, N2 ≤ B. But then 1 = O2(〈N1, N2〉) = QB ∩X, a contradiction. Therefore,
QB ∩ X = 1 and in particular, S0 ≤ CX(QB). It follows at once that G is not isomorphic to a
subgroup of PGL2(ra) which has dihedral Sylow 2-subgroups. Hence X admits field automorphisms
and consequently as |S0| = 8, ra ≡ 7, 9 (mod 16) and a is even. So in fact ra ≡ 9 (mod 16) and
hence D ∩ X has order ra − 1. Notice that the centre of the Sylow 2-subgroup of Aut(X) has
order 2. Let θ be an automorphism of X which normalizes S and maps QB to Qθ

B . Then Dθ = D
and NG(Qθ

B) is also a 2-local subgroup and which is unequal to B = CG(QB) (as QBQθ
B ≥ 〈t〉).

Therefore, P ≤ NG(Qθ
B), But DS is invariant under θ and so O2(P ) = O2(PS) ≤ NG(Qθ

B)θ−1
= B,

a contradiction.
Assume that p ≥ 3. Since the Sylow p-subgroups of PSL2(ra) are abelian, p = 3 and G > X by

5.2. Now O3(P ) ≤ X has cyclic Sylow 3-subgroups. Since O3(P ) ∈ L1(3), have O3(P ) ∼= Q8, 22 or
2G2(3)′. By considering the Sylow 2-subgroup structure of X we deduce that O3(P ) ∼= 22 or ra is
a power of 2 and O3(P ) ∼= 2G2(3)′. If, in the latter case, ra > 8, then O3(P ) is not normalized by
NG(S) and we have a contradiction. Thus if O3(P ) ∼= 2G2(3)′, we have G = P and we are done.
So O3(P ) ∼= 22 and P/QP

∼= PSL2(3). Now QP ∩X is cyclic and centralized by O3(P ). Since the
centralizer of an involution in X is dihedral, we infer that QP ∩ X = 1. Hence P ∩ X ∼= PSL2(3)
and so X has a cyclic Sylow 3-subgroup of order 3. Since X admits field automorphisms of order 3,
we in fact have |S ∩X| is divisible by 9, a contradiction. �

If p is odd then set d = ord(p, εr) and if p = 2 put d = 1 if ra ≡ ε (mod 4) and otherwise put
d = 2. Define L∗ = GLε

d(r
a) o Sym(s) × GLε

n−sd(r
a) where s =

[
n
d

]
, put L = L∗ ∩ G and finally

L = L/F (G). Then we may suppose that S ∩X ≤ L and that L is normalized by S (notice that the
natural realization of L is closed under inverse-transpose operation). We shall use similar notation
for other imprimitive subgroups of G. Let K∗ be the base group of L∗ and K = K∗ ∩G.

In the next lemma we use the well-known fact that the irreducible section of the natural GF(p) Sym(s)-
permutation module has dimension s− 1 if (s, p) = 1 and s− 2 if p divides s. In the latter instance
the permutation module is uniserial.
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Lemma 6.3. [sln1] Suppose that G ≤ GLε
n(ra), n = ds > 2 and assume that L ≤ H. If Op(H) > 1,

then either
(a) [a] H > L, n = s = 4, d = 1, ra = 4 + ε and H ∼ 4 ∗ 21+4

+ .(2× Sym(6)) ∩G; or
(b) [b] H = LS and either d = 1 or d = 2, ra ∈ {2, 3} and L∗ ∼= GL+

2 (ra) o Sym(s).

Proof. Assume that d = 1 and let R be a normal p-subgroup of L. Put R0 = Ω1(R). If R0 ≤ K,
then as R0 6= 1, |R0| = ps−1 if (p, s) = 1 and |R0| ≥ ps−2 if (p, s) = p. In either case, we have that
the homogeneous components of R0 on V coincide with those of K and consequently H = LS. So we
may assume that R0 6≤ K. This means that K is a 2-group and s = 4 or 2. The case s = 2 has been
ruled out by assumption and so we have that s = 4 and X ∼= PSL4(ra). Now by the definition of d,
we have the 4 divides ra − ε and consequently, as [K, R0] ≤ K ∩R0 which is elementary abelian, we
have that ra = 4+ε as claimed in (a). So suppose that d = 2. If ra = 2, then an argument similar to
the one above shows that H normalizes O3(L) and we are done. So suppose that ra = 3, let R be a
normal 2-subgroup of H. Then R ≤ O2(L) and this is contained in the base group K of L. Consider
R0 = R∩Z(K). Since Z(K) is the natural GF(2) Sym(s) permutation module for L, we either have
|R0| = 2 or |R0| ≥ 2n−1. If |R0| > 2, then the K and R0 have the same homogeneous components
and we are done. So R0 ≤ Z(G). But then R0∩Z(K) = 1, a contradiction as Z(K) ≥ Z(S). Finally
assume that ra > 3 and that d ≥ 2. Then as L is a p-local subgroup and K is non-soluble, we have
that Op(L) ≤ Z(K) and then, as d ≥ 2, we have that d = 2 = p and ra − ε is not divisible by 4. We
now argue as in the ra = 3 case to obtain our contradiction. �

Lemma 6.4. [QBX] Suppose that n = ds and B ≥ LS, then QB ∩X > 1.

Proof. Suppose that QB ∩ X = 1. Then [QB , L ∩ X] = 1. Notice that QB induces the same type
of automorphism on each SLε

d(r
a) contained in K as it does on X. Suppose that d > 2 or p is odd

and d ≥ 2. Then the Sylow p-subgroup structure of Out(X) is identical to that of SLε
d(r

a) and so
in these cases it is impossible for QB ∩ X = 1. Assume that p = 2 and d = 2. Then the inverse
transpose automorphism of X induces an inner automorphism of SL2(ra) but not of GL2(ra) and
thus in this case also it is impossible for QB to centralize K. Assume that d = 1. In this case,
as inversion is not a field automorphism, we deduce that the only possibility is that QB induces a
diagonal automorphism of X. But then QB ≤ L and the result now follows. �

Lemma 6.5. [monomial1] Suppose that t is a prime and L ≤ G is as above with d = 1 so that
L ∩X ∼ 1

(ra−ε,n) (r
a − ε)n−1.Sym(n) and n ≥ 4. If Y is a non-trivial elementary abelian t-group of

rank at most 2 and Y E L, then n = 4 and p = 2.

Proof. This is the result of an elementary calculation. �

Lemma 6.6. [monomial2] Suppose that L ∩ X ∼ 1
(ra−ε,n) (r

a − ε)n−1.Sym(n) with n ≥ 3. Set
T = F (L). If P ∈ PLS(S) is p-restricted in LS, then either
(a) [a] T is a p-group; or
(b) [b] P is soluble and n = 3.

Proof. If P ∈ PLS(S) is p-restricted in LS and T is not a p-group. Then Op(LS) ∩ X ≤ Op(L)
which is abelian. Furthermore, E(LS/Op(LS)) = 1, and so Op(P/Op(LS)) is normal and soluble
in LS/Op(LS) by ??. Since Op(P ) ≤ Op(LS) ≤ X, we have that Op(P/Op(LS)) ≤ T/Op(LS).
Because T is abelian, we have Op(P ) E L and, as Op(P ) is a t-group for some prime t ∈ {2, 3}
of rank at most 2, we either have n ≤ 3 or n = 4 and t = 2 by 6.5. The former case gives
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(b). In the latter case, we have p = 3 and QBOp(P )O3(LS)/O3(LS) ∼= PSL2(3). Since also
[QB , CB(Y O3(LS)/O3(LS)] = 1, we obtain a contradiction in this case. �

Lemma 6.7. [monomial3] Suppose that n = p ≥ 5 and d = 1, Then LS contains every proper
p-local subgroup of G which contains S.

Proof. We have L∗ ∼= (ra − ε) o Sym(p). Let R be a proper p-local subgroup of G containing S.
Set QR = Op(R) and QL = Op(L). Now LS/F (L) ∼= Sym(p) × T where T is a cyclic p-subgroup
(which may be trivial) consisting of Frobenius automorphisms. In particular, we have S/F (LS) is
abelian and so Q′

R ≤ QL. If V |Q′
R

is not homogeneous, then the homogeneous components of Q′
R

coincide with the homogeneous components of QL and we conclude that R ≤ L as claimed. If on
other other hand V |Q′

R
is homogeneous, then QR

′ ≤ Z(L). It follows that [QL, QR, QR] ≤ Z(L).
In particular, we see that QR is not inducing field automorphisms on QL. Furthermore, since
QL/Φ(QL) is isomorphic to a section of the GF(p)-permutation module for Sym(p) of order at least
pp−1, p ≥ 5 and [QL, QR, QR] ≤ Z(L) imply that QR ≤ QM . If V |QR

is also homogeneous, then
QR ≤ Z(X) and and R = G, a contradiction. Therefore, V |QR

is not homogeneous and again we
have that R ≤ M . �

Lemma 6.8. [L3andU3] Suppose that p = 2, X ∼= PSLε
3(r

a) and P is p-restricted in G. Then one
of the following holds.

(a) [a] G ∼= PSU3(ra) with s ≡ 3 (mod 8), P ∼= 2. Sym(4) ∗ 4 and B ∼= (s + 1)2 : Sym(3).
(b) [b] G ∼= PSU3(ra) : 2 with s ≡ 3 (mod 8), P ∼= 2. Sym(4) ∗Q8 and B ∼= (s+1)2 : (2×Sym(3)).
(c) [c] G ∼= PSU3(3) ∼= G2(2)′, P ∼= 42 : Sym(3) and B ∼= 2. Sym(4) ∗ 4.
(d) [d] G ∼= PSU3(3) : 2 ∼= G2(2), P ∼= 42 : (2× Sym(3)) and B ∼= 2. Sym(4) ∗Q8.
(e) [e] G ∼= PSL3(ra) : 〈ι〉 with s ≡ 5 (mod 8), P ∼= 2. Sym(4) ∗Q8 and B ∼= (s− 1)2 : (2×Sym(3)).

Proof. Let S ∈ Syl2(G) and assume that P ∈ PG(S) is p-restricted. If ra = 3, we use the Atlas [2]
to see that statements (a), (b), (c) and (d) hold. So assume that ra > 3.

Set L∗
1 = GLε

2(r
a)×GLε

1(r
a), L = L∗∩G. Let K1 be the component of L1. Then K1 is S-invariant.

By 6.3, O2(〈K1, L, S〉) = 1 and so P ≤ K1S or P ≤ L1S (or both). Assume that B ≥ K1S, then
QB ≤ O2(K1S) ≤ Ω2(LS) ≤ QP , which is a contradiction (note here it could be that ra − ε is a
power of 2 and that QB 6≤ X induces ι). Thus P ≤ K1S and is p-restricted therein. Using (??)
together with s ≡ 1 (mod 4) implies that ra ≡ ε(5) (mod 8) and that P 6≤ LS. Noting also that
when ε = +, S ∩X does not operate irreducibly on V , 5.1 implies that G > X. Thus we have the
examples in (a), (b) and (e).

So suppose that s ≡ −ε (mod 4). Then L ∼= GLε
2(r

a) contains a Sylow 2-subgroup of X. Suppose
that R is a 2-local subgroup of X which contains S ∩ X. Then the decomposition of V restricted
to Ω1(Z(QR)) is preserved by R and we see that P ∩ X ≤ NX(Ω1(Z(QR))) ≤ (ra − ε)2 : Sym(3)
or P ≤ LS. The former subgroup does not contain a Sylow 2-subgroup of X and so we infer that
every 2-local subgroup of X which contains S ∩X is contained in LS. Hence we cannot have both
QB ∩X > 1 and QP ∩X > 1. Suppose that QB ∩X = 1. Then Lemma 3.7 implies that P is soluble
and that P is not 2-constrained. Now L′S < L and contains a Sylow 2-subgroup of G. Thus P ≤ L′S.
Then as P is not 2-constrained, Lemma 6.2 implies that s = 19 and G ∼= PGL+

3 (19) : 2 and that
(B ∩L)Z(L)/Z(L) ∼= Sym(4). But then QB normalizes L/Z(L) and centralizes (B ∩L)Z(L)/Z(L).
It follows from the structure of Aut(PGL2(19)) that [QB , L] ≤ Z(L), but then [O2(P ), L/Z(L)] = 1,
a contradiction.
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Next suppose that QP ∩X = 1. Then B ≥ N and so |QB ∩X| = 2. Since |QBQP /QP | is also
cyclic, we infer that P/QP has Sylow 2-subgroups of order at most 8. Therefore, |S| ≤ 8|QP | so
that |S ∩X| ≤ 8, which is of course a contradiction. �

Lemma 6.9. [4dim] Suppose that p = 2, and X is isomorphic to PSLε
4(r

a). If P ∈ PG(S) is
2-restricted, then X ∼= PSU4(3) and the possibilities for P and B and G are as described in Table
1. In particular, if G ≥ PGU4(3), then P ≤ LS.

Proof. Let X = PSLε
4(r

a). If ra = 3, we inspect the Atlas [2] and see that in the case that
X = PSL4(3) there is no candidate for B and so we have that X ∼= PSU4(3) and the possibilities
for B and P follow. So assume that ra > 3. Since p = 2, L1 = GLε

2(r
a) o Sym(2) ∩G is normalized

by S. Using 2.9 and ra > 3 we infer that B ≥ L1S. Assume that s − ε ≡ 0 (mod 4). Then
d = 1 and L1 6= L. By 6.3, B doesn’t contain LS and so P ≤ LS. Since QB ≤ O2(L), we have
QB ≤ O2(L1) ≤ QP , a contradiction. So assume that ra + ε ≡ 0 (mod 4), then QB ∩X = Ω1(Z(S))
has order 2 and again Lemma 3.9 finishes this case. �

Lemma 6.10. [su63] Suppose that X ∼= PSUn(3) with n ∈ {5, 6, 7}. If P ∈ PG(S) is 2-restricted,
then X ∼= PSU6(3) and B ≥ GU2(3) o Sym(3) ∩G and P ≤ LS ∼ 45.Sym(6).

Proof. Suppose first that X ∼= PSU5(3). Then L ∼= 44.Sym(5) is a 2-minimal minimal parabolic.
Thus either L ≤ B or P = L. Let L1 = GU4(3) × GU1(3) ∩ G. Then L1

∼= GU4(3). If B ≥ L1,
then, using 6.3, P ≤ LS and QB ≤ O2(L) ≤ QP , a contradiction. Therefore, P ≤ L1S and B ≥ L.
However, since L1/O2(L1) ∼= PGU4(3), applying 6.9 we obtain P ≤ LS ≤ B, a contradiction .

Next consider X ∼= PSU6(3). Then L∩X ∼= 45.Sym(6). We set L1 = (GU4(3)×GU2(3))∩G and
L2 = GU2(3) oSym(3)∩G. If P ≤ L2S and we 2.12 implies that Op(P )O2(L2S)/O2(L2S) is normal
in L2S/O2(L2S) and has order 3. Then QBOp(P )O2(L2S)/O2(L2S) ∼= Sym(3) and is a direct factor
of L2S/O2(LsS), which is a contradiction. Hence B ≥ L2S and by 6.3 B does not contain L and so
P ≤ LS.

Suppose finally that X ∼= PSU7(3). Then L ∼= 47 : Sym(7). Since Sym(7) is not 2-restricted, we
have B ≥ LS. Setting L1 = GU6(3) × GU1(3) ∩ G, we have that P ≤ L1S we are in the PSU6(3)
configuration. In particular, P ≤ (L1 ∩ L)S ≤ B, a contradiction. �

We next consider the situation when p = 3 and X ∼= PSLε
3(r

a). However, before initiating the
investigation we draw attention to the fact that when ra − ε ≡ 3, 6 (mod 9), then 31+2

+ : SL2(3) is
contained in GLε

3(r
a) and contains a Sylow 3-subgroup of GL3(ra). (See [4, 6.5.3].)

Lemma 6.11. [3dimchr3] Suppose that p = 3 and X ∼= PSLε
3(r

a).If P ∈ PG(S) is 3-restricted,
then G ∼= PGLε

3(r
a), ra − ε ≡ 3, 6 (mod 9) with ra 6= 4 and either

(a) [a] P ∼= 32 : SL2(3); or
(b) [b] ra = 7 and P ∼= (32 × 22) : Sym(3).

Proof. Notice that 3 divides one of ra + 1 and ra − 1. If ra − ε is not divisible by 3, then d = 2 and
L ∼= GLε

2(r
a). Since O3(LS) = 1, we infer that P ≤ LS and LS is 3-restricted. Then calling upon 6.2

delivers a contradiction. So we may assume that 3 divides ra−ε. In this case L
∗ ∼= GLε

1(r
a) oSym(3).

Let K be the base group of L∗ and KX = K ∩X.
If ra = 7 we examine the Atlas [2] and observe the configuration in (a) and (b). So assume

that ra 6= 7. Let t be a prime dividing ra − ε and, if l = 2, assume that t2 divides ra − 1. Let
T ∈ Sylt(KX). Then T normalized by S and, by the choice of t (and using 2.8), P 6≤ ST . It follows
that ST ≤ B and QB ≤ O3(ST ) = O3(KXS). If P ≤ LS, then QP ≥ O3(KXS) and we have a
contradiction. Therefore P 6≤ LS and, by 6.3 B = LS and QB = O3(LS).
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If P is of characteristic 3, then O3(O3(P )) > 1. Let D be a normal subgroup of O3(P ) chosen
minimal such that [D,O3(O3(P ))] 6= 1. If D is abelian, then D ≤ QB and we have a contradiction as
[D,QB ] 6= 1. Therefore D is non-abelian and hence irreducible on V . In particular, the centralizer of
D is cyclic and P/CP (D) ∼= SL2(3). By considering the order of S we now obtain the configuration
listed in part (a).

Suppose that P is not of characteristic 3. Then by 3.5 either QB is elementary abelian or O3(P ) ∼=
Ree(3)′ ∼= SL2(8). In the former case, it follows that G/X does not have field automorphisms, that
|S| = 33 and that X has elementary abelian Sylow 3-subgroups. Therefore, the only possibilities
for O3(P ) in this case are SL2(9), PSL2(9), 22 or Q8. Since 3 does not divides |Out(PSL2(9))|,
the first two cases deliver S elementary abelian of order 27 which is impossible. Therefore, O3(P )
is a 2-group and |QP | = 9. But then QP is abelian and P is contained in a conjugate of L, a
configuration we have already seen off. So assume that QB is not elementary abelian and that
O3(P ) ∼= Ree(3)′ ∼= SL2(8). By considering representations of the normalizer of a Sylow 2-subgroup
of O3(P ), we see that r = 2. Now |S ∩ X| > 27 and so QP ∩ X > 1. Since [O3(P ), QP ∩ X] = 1,
and O3(P ) 6≤ LS, O3(P ) is contained in GLε

2(r
a) × GLε

1(r
a) in a unique way. But then S has to

normalize this configuration, a contradiction. �

We next consider the immediate repercussions if 6.11.

Lemma 6.12. [4dim2] Suppose that p = 3, X ∼= PSLε
n(ra) with 4 ≤ n ≤ 5 and P ∈ PG(S) is

3-restricted. Then either

(a) [a] G = X ∼= PSU4(ra) with s ≡ 2, 5 (mod 9), P ∼= 31+2 : GL2(3) and B ∼= 1
(2,s+1) (s + 1)3 :

Sym(4);
(b) [b] G = X ∼= PSU4(2), P ∼= 33 : Sym(4) and B ∼= 31+2

+ : SL2(3); or
(c) [c] G = X = PSU5(2), P ∼= 3× 31+2

+ .SL2(3) and B = 34.Sym(5).

Proof. If X ∼= PSLn(ra), then S∩X cannot act irreducibly on V and consequently S∩X is contained
in a parabolic subgroup of X contrary to 5.1. So assume that X ∼= PSUn(ra). We consider the case
n = 4 first. Assume that d = 2. Then L∗ ∼= GU2(ra) o 2, since ra > 3, 2.9 implies that L ≤ B. But
then QB ≤ F (L) and we have that 3 divides ra + 1, which is a contradiction. So d = 1 and we have
that L∗ = (s + 1) o Sym(4). Set L1 = (GU3(ra) × GU1(ra)) ∩ G. Assume that B ≥ L1. Then, by
6.3, P ≤ LS. If ra > 2, then QB ≤ O3(L1) ≤ O3(L) ≤ QP , a contradiction. Thus if B ≥ L1, then
s = 2 and (b) holds. So assume that P ≤ L1. Then 6.11 gives s ≡ 2, 5 (mod 9) as claimed in (a).

Assume now that n = 5. Arguing as in the n = 4 case we have that 3 divides d = 1. Set
L1 = (GU3(ra) × GU2(ra)) ∩ G. Since Sym(5) is not 3-restricted, we have that B ≥ L from 6.6.
Assume that s > 2, then B contains at least one of the components from L1 and then B ≥ 〈LS,L1S〉,
a contradiction to(??). So s = 2 and we have X ∼= SU5(2). Finally, we inspect the subgroup structure
in the Atlas [2] to obtain the result as stated in (c). �

The situation in X = SU4(ra) with ra ≡ 2, 5 (mod 9) is more exotic than a first look suggests.
In the case that s = 2, we have that U4(2) ∼= Sp4(3). So suppose that s > 2. Then in the monomial
group (s + 1)3.Sym(4), there are three subgroups isomorphic to 33 : Sym(4) each containing NG(S)
call them P1, P2, P3 with Pi∩Pj = NG(S) whenever i 6= j. Let P = 31+2

+ SL2(3). Then, up to change
of notation we have, we have 〈P, P1〉 ∼= 〈P, P2〉 ∼= PSp4(3) and 〈P, P3〉 ∼= GU3(ra). The embedding
of PSp4(3) into SU4(ra) stems from the fact that SU4(ra) ∼= Ω−

6 (ra) and PSp4(3) has index 2 in the
Weyl group of type E6. Finally we note that the two subgroups 〈P, P1〉 and 〈P, P2〉 are conjugate
in GU4(ra).

Because of the situation for SU5(2) we need to individually inspect SU6(2) and SU7(2).
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Lemma 6.13. [u62andu72] Suppose that X ∼= SU6(2) or SU7(2) and P is 3-restricted in G. Then
X ∼= SU6(2), |G/X| ≤ 3, P ∩X ∼= 35 : PSL2(9) ∼= 35 : Alt(6) and B ∩X ∼ 31+4

+ .(Q8×Q8) : 3.

Proof. For G ∼= SU6(2), we just inspect the Atlas[2]. So suppose that X ∼= SU7(2). Then L ∼= 36 :
Sym(7). Since Sym(7) is not 3-restricted, we have B ≥ LS. Setting L1 = GU6(2) × GU1(2) ∩ G.
We have that P ≤ L1S. From the PSU6(2) example we now read that P ∼ 36 : Alt(6) ≤ B, which
is a contradiction. �

Lemma 6.14. [dimp2] Suppose that p ≥ 5 and n ≤ p. If X 6∼= PSLε
n(ra), then G is not p-restricted.

Proof. Suppose for a contradiction that P is p-restricted in G. If n < p or d > 1, then X has
abelian Sylow p-subgroups and 5.2 delivers a contradiction. Therefore, n = p and d = 1. So
L∗ ∼= (ra− ε) oSym(p). Using p ≥ 5, 6.7 and 3.8 we have that B = LS and QP = 1∩X. Since QB is
normalized by NP (Op(P )∩S) and QB∩X = Op(LS)∩X is abelian, we have that Op(P ) ∼= SL2(pb),
PSL2(pb) for some a and QB ∩ Op(P ) ∈ Sylp(Op(P )) is elementary abelian. Since QP ∩ X = 1,
we then have b = p − 2 and P ∩X = Op(P ) because SL2(pp−2) has no field automorphisms. This
contradicts the fact that X has non-abelian Sylow p-subgroups. �

We at last come to the induction argument.

Lemma 6.15. [LU-generic] Suppose that X ∼= PSLε
n(ra) and assume one of the following condi-

tions hold:
(a) [a] if p = 2 and ra > 3 or X ∼= PSLn(ra), then n ≥ 5;
(b) [a1] if p = 2 and X ∼= PSUn(3), then n ≥ 8;
(c) [b] if p = 3 and ra > 2 or X ∼= PSLn(ra), then n ≥ 6;
(d) [b2] if p = 3 and X ∼= PSUn(2), then n ≥ 8;
(e) [c] if p ≥ 5, then n > p.
Then G is not p-restricted.

Proof. Furthermore, assume that n as defined in the statement of the lemma and then is chosen
minimally so that G is p-restricted. Recall that L∗ = GLε

d(r
a) oSym(s)×GLε

n−ds(r
a) where s =

[
n
d

]
and L is normalized by S.

1◦. [1] ds = n.

Assume that ds < n. Plainly d > 1. Then S ∩X centralizes an n− ds dimensional subspace of V
and so, in particular, it centralizes a 1-dimensional subspace W of V . If ε = + and G/X consist of
diagonal or graph automorphisms or ε = − and W is singular, then S∩X is contained in a parabolic
subgroup of X and we have a contradiction via 5.1. In the other cases we have W is non-degenerate
and, setting H̄ = GLε

n−1(r
a) (fixing W ), S∩X ≤ H and H is normalized by S. Because of the choice

of n, 6.9, 6.10, 6.12, 6.13 and 6.14 imply that H is not p-restricted. Hence B ≥ H. Since QB > 1,
we infer that p divides ra − ε and so d = 1 when p is odd, a contradiction. So p = 2. In this case,
since d > 1, |QB | = 2, and n−1 is even. 3.7 implies that P/QP

∼= SL2(2), (a subgroup of) PSU3(2),
(a subgroup of) SU3(2) or (a subgroup of) 2B2(2). Since d = 2, QB ≤ [S ∩X, S ∩X, S ∩X] ≤ QP

(from the structure of a Sylow 2-subgroup in GL2(ra)), which is a contradiction.

2◦. [2] s ≥ p.

If s < p, then from the structure of L we see that S ∩X is abelian. Hence 5.2 implies that p ≤ 3.
But then d ≤ 2 and n = ds < dp ≤ 6 so the restrictions on n deliver a contradiction.

3◦. [3] If d > 1, then B ≥ LS and either
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(a) [i] p = 3, d = ra = 2 and L∗ ∼= GL+
2 (2) o Sym(n/2);

(b) [ii] p = 2, d = 2, ra = 3 and L∗ ∼= GL+
2 (3) o Sym(n/2).

If B ≥ LS, then by 6.4 QB ∩ X > 1 and 6.3 implies that one of (a) or (b) holds. So for a
contradiction assume that B does not contain LS. Then P ≤ LS. If GLε

d(r
a), is not soluble, we

apply 2.9 to obtain s = 1 and this contradicts (2◦). Therefore GLd(ra) is soluble. Using (??) we
have that Op(P ) ≤ Fp(LS). Suppose that d ≥ 2 and ra = 2. If Op(LS) = 1, then Fp(LS) is a
3-group and we have Op(P ) is a 3-group from which we infer that p = 2 = ra, a contradiction.
Therefore, p = 3, and L∗/O3(L∗) ∼ 2 o Sym(n/2) and n ≥ 6 by (c) or Q8 : 3 o Sym(n/3) and n ≥ 8
by (d). Furthermore, from 2.5(e) we have that LS = (B ∩LS)Op(P ), |QBO3(LS)/O3(LS)| = 3 and
Op(P )O3(LS)/O3(LS) is either elementary abelian of order 4 or isomorphic or Q8 and is normal in
LS/O3(LS). The only possibility is that n/2 = 3 and that LS/O3(LS) ∼= 2 o Sym(3) ∼= 2× Sym(4).
So L ∼= SL2(2) o Sym(3) ≤ X = G = SL6(2). Now in this case L can be embedded in H ∼= Sp6(2)
and so we must have that Sp6(2) is 3-restricted. However, a look in the Atlas [2] confirms that a
Sylow 3-subgroup of Sp6(2) is contained in a unique maximal subgroup and consequently Sp6(2) is
a 2-minimal parabolic group, a contradiction. Suppose that next that ra = 3. Then just as above
we argue that p = 2. Then L∗/O2(L∗) ∼ Sym(3) o Sym(n/2) and O2(P )O2(L)/O2(L) has order 3.
Considering again the centralizer of QB in L/O2(L), we obtain a contradiction. This proves (3◦).

4◦. [4] If d = 1, then LS ≤ B.

Suppose that B 6≥ LS. Then 6.5 gives either Op(P ) is soluble and n ≤ 3, which contradicts
n ≥ 4, or ra − ε is a power of p and LS/Op(LS) is p-restricted. So LS/Op(LS) ∈ Rp. If p = 2,
then as n ≥ 6, we have LS/O2(LS) ∼= Sym(6), Sym(8) or Sym(12) by 4.1 and 4.2. Suppose that
LS/O2(LS) ∼= Sym(6) and define L1 = GLε

2(r
a) o Sym(3) ∩ G. Then S ∩ G is contained in L1. If

ra > 3, then 2.9 implies that L1S is not 2-restricted. Thus, if ra > 3, then B ≥ L1S and we get
QB ≤ Op(L) ≤ QP , a contradiction. Therefore, ra = 3. But then L1 is soluble and so, if P ≤
L1S, O2(P )(L1)O2(L1)/O2(L1) has order 3 and L1/O2(L1) = CB/O2(L1)(O

2(P )O2(L1)/O2(L1) ×
QBO2(P )O2(L1)/O2(L1) has a direct factor isomorphic to Sym(3), a contradiction. Hence B ≥ L1S.
Finally consider, L2 = (GLε

2(3)×GLε
4(3))∩G. Then as B ≥ L1, P ≤ L2S. And furthermore, letting

K be the component in L2, we have P ≤ KS is 3-restricted. It follows that ε = − but then we
contradict our supposition on the size of n as given in (b).

Next assume that n = 8 and set L1 = GLε
4(r

a) o Sym(2) ∩ G. By 2.9, B ≥ L1S and so P ≤ LS
and QB ≤ QP , a contradiction. So suppose that n = 12 and set L1 = GLε

4(r
a) × GLε

8(r
a) ∩ G.

If P ≤ L1S, then we must have P ≤ GL8(ra) and this contradicts the minimal choice of n. Thus
B ≥ L1S and again QB ≤ QP , a contradiction. Thus p > 2 and consequently n ≤ 6. Hence p ≥ 5.
This then forces n = 5 and L/O5(L) ∼= Sym(5) and this configuration has been considered in 6.14.
This proves (3◦).

5◦. [5] p does not divide s.

Suppose that p divides s. Assume additionally that d = 1. Set L1 = GLε
dp(r

a) o Sym(s/p) ∩ G.
Then, as s > p, 2.9 implies that L1S ≤ B. Therefore (4◦) gives B ≥ 〈L, L1〉S. Since QB > 1, this
contradicts 6.3. Suppose that d = 2. Then restrictions (b) and (e) imply that n ≥ 8. In particular,
n > dp and so s/p > 1. Now we apply the above argument to obtain a contradiction.

Let t = n− d[s/p]. Then 1 ≤ t ≤ p− 1. Let L1 = GLε
d[s/p](r

a)×GLε
t(r

a). Then P ≤ L1S. If L1

has two components, K1 and K2 say, then at least one of them is contained in B, a contradiction.
Therefore, L1 has at most one component. Since n > 4, we infer that n has exactly one component
say K1. Furthermore, we must have K1S is p-restricted. If t = 1, we have a contradiction from our
usual lemmas. Thus t = 2 and ra ∈ {2, 3}. The restrictions on and the minimal choice of n then
mean that n = 8. If p = 2, we obtain s = 4 or s = 8 and we contradict (5◦). If p = 3, we have
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K1
∼= SU6(3) and K1S is 3-restricted. By 6.10 we then have P ≤ L ∩ K1S ≤ B, a contradiction.

This completes the proof of the lemma. �

7. Symplectic groups

In this section we suppose that r is a prime with r 6= p and that X ∼= PSp2n(ra). As usual we have
G/X is a r-group. Notice that, as p 6= 3, G/X never involves the exceptional graph automorphism
which only appears in characteristic 2. We define GΓSp2n(ra) to be Sp2n(ra) decorated with its
diagonal automorphism of order 2 and its field automorphisms. So [GΓSp2n(ra) : Sp2n(ra)] = 2a.
Now as in the unitary case we let X be Sp2n(ra) and G ≤ GΓSp2n(ra) with G/X a p-group.
Then G = G/Z(G) and X = X/Z(G). Define d = lcm(2, ord(p, r)) and set s =

[
2n
d

]
. Define

L = Spd(ra) o Sym(s)× Sp2n−ds)(ra)∩G. Then L∩X contains a Sylow p-subgroup of S ∩X and L
is S-invariant.

Lemma 7.1. [spcases] Assume that X ∼= PSp2n(ra) with n ≥ 2. If X ∈ Rp, then one of the
following holds
(a) [a] p = 3, X ∼= PSp4(2) and P = X;
(b) [b] p = 2 and X ∼= PSp4(3) ∼= PSU4(2); or
(c) [c] p = 2, X ∼= PSp6(3) and B = ...

Proof. Suppose first that 2n− ds 6= 0. then S ∩ X centralizes an isotropic vector in V and conse-
quently S ∩ X is contained in a parabolic subgroup of X and this contradicts 5.1. So n − ds = 0.
If d = 2n, then X has abelian Sylow p-subgroups. Thus p = 2, 3 by 5.2. But then 2n ≤ d ≤ 2, a
contradiction. So we have

1◦. [1] ds = n and s > 1.

Assume that P ≤ LS. Then LS ∈ Rp and so 2.9 implies that Spd(ra) is soluble. That is d = 2
and ra = 2 or ra = 3. Arguing exactly as in 6.15 3 delivers a contradiction unless 2n = 4 and
L ∼= SL2(2) o 2 or L ∼= SL2(3) o 2. Thus we have examples (a) and (b).

Henceforth we assume that B ≥ LS. In particular, as QB > 1, we have that either p = 3 and
G ∼= Sp2n(2) or p = 2. In any case we have that d = 2.

Assume that 2n = 4. If ra ≤ 3, then again possibilities (a) and (b) holds. So assume that ra > 3.
Then as QB > 1, we infer that p = 2 and that |QB | = 2 contrary to 3.9.

We now assume 2n > 4 and when p = 2 and ra = 3 that 2n > 6. Furthermore, select n minimal
so that the above conditions on n are satisfied and G ∈ Rp. Write s = 2k + l with l ≤ 1 and set
L1 = Sp4(ra) o Sym(k)× Sp2l(ra) and factor L1 as K1 ×K2 with K2

∼= Sp2(ra). Then as L1S and
LS generate G, L1S contains P . Since P 6≤ LS, we infer that PS ≤ K2. Then 2.9 implies that
k = 1 and that K2

∼= Sp4(ra) ∈ Rp. It follows that p = 2 and ra = 3 or p = 3 and ra = 2. The first
case fails because of the choice of n, the second case indicates that G ∼= Sp6(2) and we have already
seen that this group does not satisfy R3. �

8. The orthogonal groups

Assume first that X ∼= POε
2n(ra) with n ≥ 4 and no triality automorphism.

Suppose that p and r are distinct primes and set d = 1
2 lcm(2, ord(p, ra)).

η =


+ ord(p, r) odd and p odd
+ p = 2 and ra ≡ 1 (mod 4)
− ord(p, r) even and p odd
− p = 2 and ra ≡ 3 (mod 4).
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Let

s =


[

n
d

]
d does not divide n[

n
d

]
d divides n and η[n

d ] = ε[
n
d

]
− 1 d divides n and η[n

d ] 6= ε.

Finally put
L = Oη

2d(r
a) o Sym(s)×Oθ

2(n−ds)(r
a).

Then L contains a Sylow p-subgroup of Oε
2n(ra).

Lemma 8.1. [orth1] Suppose that X ∼= PΩ2p(ra), d = 1 and ηp = ε. If p ≥ 3, then every p-local
subgroup of X which contains S ∩X is contained in L.

Proof. Suppose that R is a p-local subgroup of X containing S ∩ X and put QR = Op(R). Let
ZR = Z(QR). If ZR ≤ Op(L), then the homogeneous components of ZR on V coincide with those
of Op(L) and we have R ≤ L. So assume that ZR 6≤ Op(L). But then ZR operates quadratically on
Op(L) and, as Ω1(Op(L)) is the permutation module for Sym(p) and p ≥ 3, we have a contradiction.

�

Lemma 8.2. [Orth2] Suppose that X ∼= PΩε
2n(ra) with n ≥ 4 and G ∈ Rp, then one of the following

holds:

(a) [a] p = 2, X ∼= PΩ+
8 (3) and B = O+

4 (3) o Sym(2);
(b) [b] p = 2, X ∼= PΩ+

12(3) and B ∼= O+
4 (3) o Sym(3).

(c) [c] p = 3, X ∼= PΩ+
8 (ra) with ra ∼= 2, 5 (mod 9), B ∼= Ω−

2 (ra) oSym(4) and P ∼ 31+2.SL2(3)×3.

Proof. Suppose that n is chosen minimally so that PΩµ
2n−2(r

a) 6∈ Rp.

1◦. [1] n = sd.

Suppose first that p is odd. Then G does not involve the graph automorphism of G and S ∩X
centralizes a non-degenerate subspace of V of dimension 2(n−ds). In particular, S∩X centralizes a
singular vector and hence S∩X is contained in a parabolic subgroup of G. Suppose then that p = 2.
Then we have that L = Oη

2(ra) o Sym(s)×Oθ
2(r

a), η 6= θ and s =
[

n
d

]
− 1. Observe that a Sylow 2-

subgroup of Oθ
2(r

a) has order 4. Thus we also see that in this case S. Set L
∗

= Ω0η
2 oSym(s)S. Then

L∗ leaves invariant two distinct anisotropic 1-spaces. Thus L
∗
S is contained in two proper subgroups

of G each isomorphic to O2n−1(ra). Since |QB | > 2, we have P is contained in the intersection of
these two groups and this means that P ≤ L∗S. But then ra = 3 and we have 2n = 8 and L∗

involves PSU4(3), 2n = 10 and L∗ involve PΩ+
8 (3) or 2n = 14 and L∗ involves PΩ+

12(3). In the first
case we note that L2Ω+

6 (3)×O−
2 (3) also contains a Sylow 2-subgroup of G and we obtain B ≥ LS

for a contradiction from 6.9. In the second and third cases we use the fact that O9(3) contains a
subgroup O1(3) o Sym(9) case O13(3) contains a subgroup O1(3) o Sym(13) and apply 4.2 to see that
in each case B must contain this subgroup. This contradicts the structure of B as described in (a)
and (b). Thus we have that n = sd.

2◦. [2] s > 2.

For p = 2 or 3, this follows because of the requirements on the size of n. So p ≥ 5 and s ≥ 2
follows from 5.2. So we assume that s = p.

3◦. [3] B ≥ LS.
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Suppose on the contrary that P ≤ LS. Assume for a moment that p > 3. Then Op(P ) is
not soluble. Thus (2◦), 2.9 and ?? together imply that Oε

2d(r
a) is a p-group. But then the only

possibility is that p = 2, a contradiction. Thus p ∈ {2, 3}. Thus d = 1 and L ∼= Oη
2(ra) o Sym(s).

Assume that Oη
2(ra) is not a 2-group. Then, since the derived subgroup of L is perfect when n ≥ 5,

we have that n = 4 from 2.11. Easy TO SEE n 6= 4. Write a nice argument. Therefore, we have is a
2-group and Sym(n) ∈ R2. Therefore 4.2 implies that n ∈ {4, 6, 8, 12}. Set m = 2, 2, 4, 4 according
as n = 4, 6, 8, 12 and define L1 = Oµ

2m(ra) o Sym(n/m) where µ = ηm. If Oµ
2m(ra) is not soluble,

then, by 2.9, B ≥ L1S and QB has order 2m−1 and is contained in QP , a contradiction. Therefore,
Oµ

2m(ra) which means that m = 2, ra = 3 and µ = +. Hence X ∼= PΩ+
8 (3) or PΩ+

12(3) which is a
contradiction to our choice of n. Hence (3◦) holds.

Since B ≥ LS, we must have that LS is a p-local subgroup. Thus

4◦. [4] L ∼= Oη
2(ra) o Sym(n).

Suppose for a moment that p ≥ 5. Then 5.2 implies that the Sylow p-subgroups of X are not
abelian. Thus n ≥ p. If n = p, then ?? implies that QP = 1 and the argument in ?? works to give
a contradiction. Therefore,

5◦. [5] n > p.

Write n = lp + k where k ≤ p − 1. Then put L1 = Oτ
2rp(r

a) × 〈I2k〉. Then S normalizes L1.
Assume that lp 6= n. Since L1S 6≤ B, we have that P ≤ L1S and so L1S/Op(L1S) ∈ Rp. If p ≥ 5,
this immediately contradicts the minimal choice of n. Therefore, p ≤ 3. If p = 3, then we require
lp < 4 which means that n = 4 or n = 5 and that Oµ

6 (ra) ∈ R3 and this again contradicts our
supposition on n. If n = 5, then set L2 = 〈I4〉 × O−

4 (ra) and note that as P ≤ L1S, L2S ≤ B, a
contradiction. So suppose that p = 2. Then 2n = 12 and ra = 3. But then from the example in
O+

12(3) we read that P ≤ L ≤ B, a contradiction. Hence n = rp. Now set L2 = Oρ
2dp(r

a) o Sym(r)
where ρ = ηp. Then L2 is normalized by S. Plainly L1S 6≤ B and so P ≤ L1S. Since r > 1 by (5◦),
2dp = 4 and ra = 3 as well as p = 2. Investigating the structure of L2 using 2.10 readily reveals a
contradiction. This completes the proof of the lemma. �

Lemma 8.3. [Orthodd] Suppose that r is odd and X ∼= PΩ2n+1(ra) with n ≥ 3. If G ∈ Rp, then
p = 2, X ∼= PΩ7(3) and B = O1(3) o Sym(7).

Proof. We have that |O2n+1(ra) : Oε
2n(ra)| = (rna + ε)rb for some b. Thus a Sylow p-subgroup of

O2n+1(ra) fixes either a plus point or a minus point when acting on V . Since these point stabilizers
H have Op(H) of order at most 2, we H ∈ Rp by 3.9. Thus the possibilities for p, ra and n may be
read from 6.9 and 8.2. Suppose that n = 3. Then H ∼= 2 × Oε

6(r
a). Thus 6.9, 6.12 and 6.14 imply

that p is either 2 or 3. If p = 2, then from 6.9 we get ε = − and ra = 3 and (??) holds. If p = 3,
then again ε = − and ra ≡ 2, 5 (mod 9). But then r3n + 1 is divisible by 3, a contradiction.

Assume now that n ≥ 4. Then ?? implies that p = 2 or 3. Assuming that p = 2, the subgroups
O1(3) o Sym(9) and O1(3) o Sym(13) yield contradictions. So p = 3 and H ∼= O+

8 (ra) × 2. Set
L = O−

6 (ra) × O3(ra). Then L is S invariant. Since ra > 3, O3(ra) is not soluble. Furthermore,
writing L = K1 × K2 with K2

∼= O3(ra), we have that K2 6≤ H and so K2 ≤ B, but then
B ≥ 〈K2, B ∩H〉 = G. �

Finally in this section we come to the situation when p = 3, X ∼= PΩ+
8 (3) and S does not normalize

all the parabolic subgroups of X. (So the triality automorphism of X is having an influence. From
the examples in ?? we only need consider the case when ra 6≡ 2, 5 (mod 9) (otherwise the example
in X immediately lifts to an example in G with G/X a 3-group.



ISOLATED p-MINIMAL SUBGROUPS 25

Lemma 8.4. [triality] Suppose that X ∼= PΩ+
8 (3) and G/X is a 3-group. If G ∈ R3, then ra ≡ 2, 5

(mod 9).

9. Exceptional groups of Lie type

In this section we suppose that X is a universal group of Lie type defined over a field over GF(ra).
We use the notation introduced in [4, page 237] writing

|X| = rNA
∏

i

Φi(ra)ni

where Φi(x) is the cyclotomic polynomial for for i-th roots of unity. The product
∏

i Φi(ra)ni

in the case when X is an exceptional group is conveniently presented in [3, Table 10:2]. We set
d = ord(p, ra) if p is odd and, if p = 2, d = 1 when ra ≡ 1 (mod 4) and otherwise d = 2.

Lemma 9.1. [OrdSylow] Let X be a universal group of Lie type defined over GF(ra), S be a Sylow
p-subgroup of X with p odd. Then

|S| = pbΦd(ra)nd
p

where b =
∑

pd|i ni. Furthermore, if b = 0, then the Sylow p-subgroups of X are abelian.

Proof. Consult [3, Equation (*) page 113] and [4, Theorem 4.10.2 (c)].

Lemma 9.2. [bigdexcep] Suppose G ∈ Rp and that d = ord(p, ra) > 2. Then d = 4, p = 5 and
X ∼= E8(ra).

Proof. Since d.2, p ≥ 5. We show that other than in the d = 4, p = 5, X ∼= E8(ra) cases the Sylow
p-subgroups of X are abelian. The result then follows form 5.2. Since d > 2 and p ≥ 5, pd ≥ 20
(note d = 3 and p = 7 gives pd = 21). From [3, Table 10:2] the only exceptional group involving
Φk(ra) with k ≥ 20 is E8(ra). So consider E8(ra). If d = 3, we see no Φ21(ra), if d = 4 we can only
have p = 5 and if d ≥ 5, there are also no possibilities. �

Lemma 9.3. [E8p5] Suppose that d = 4, p = 5 and X ∼= E8(ra). Then G 6∈ R5.

Proof. In this case we have that 5 divides Φ4(ra) = r2a+1. Using [3, Table 4-1 (37)] we see that X
contains a subgroup L isomorphic to SU5(r2a) and by comparing orders we see that this subgroup
contains a Sylow 5-subgroup of X and furthermore L is invariant under S. ¿From 6.15 we have that
LS 6≥ P and therefore, B ≥ LS and |QB | = 5. But Z(S) is cyclic and so we have a contradiction
with 3.9. �

Lemma 9.4. [SuzandRee] If G ∈ Rp and X ∼= B
2 (2a) or 2G2(3a)′, then p = 2 and X ∼= G

2 (3)′.

Proof. If X ∼= 2B2(2a), then p > 3 and the Sylow p-subgroups of X are abelian. Therefore, 5.2
shows that G 6∈ Rp. Let X ∼= 2G2(3a) with a ≥ 3. in this case also the Sylow 2-subgroups are
abelian and so 5.2 delivers either a contradiction or X ∼= 2G2(3)′ ∼= SL2(8). �

Guess

Lemma 9.5. [ReeF]If G ∈ Rp, then X 6∼= 2F4(2a)′.

Proof. By 9.1 we only need to consider the situation when p = 3 and d = 2. we have |S ∩ X| =
3|Φd(2a)2|3. If ra = 2, we have G = X = F

2 (2)′ and the Atlas [2] shows us that there are no 3-local
subgroups which are maximal subgroups of G. So assume that 2a ≥ 8. Using [7, Table 5.1 and 5.2]
we see that S ∩X is contained in maximal subgroups L1 = (2a + 1)2.GL2(3) and L2

∼= SU3(2a) : 2.
According to 6.11 L2 6∈ R3, so B ≥ L2 and P ≤ L1. But then QB ≤ QP , a contradiction. �
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Lemma 9.6. [F4]If G ∈ Rp, then X 6∼= F4(ra).

Proof. By 9.1 and 5.2 we have that p ∈ {2, 3}. Notice that as p 6= r, the graph automorphism of
F4(2a) makes no appearance in this discussion. We first suppose that p = 2. Then, using ??Table
5.1]LSS, there is a maximal subgroup L ∈ X with L ∼= 2.Ω9(ra). By 8.3, L 6∈ Rp. Therefore,
B = L. But then |QB | = 2 and ?? provides a contradiction. Next assume that p = 3. Then we
set L = (2, q − 1)2.PΩ+

8 (ra).Sym(3). By 8.2. Notice that L contains S ∩ X and that L is not a
3-local subgroup. Hence, if G ∈ Rp then L must also be in Rp. But then 8.2 implies that ra ≡ 2, 5
(mod 9) and that P ≤ CG(Z(S)). Furthermore, we note that B ∩ L2 ∼ (q + 1)4 : W (F4) where
W (F4) denotes the Weyl group of type F4. (As a subsystem subgroup the E(L1) is generated by
the root spanned by the D4 subsystem {} details. ) If ra = 2, we consult the Atlas [2] and see that
there is a unique maximal 3-local subgroup and so B = NG(Z(S)). But then we have P ≤ B, a
contradiction.

Suppose then that ra > 2 and let L2 = 3.(PGU3(ra) × PGU3(ra)).3.2 be as in [7, Table 5.2].
Then L2 can be chosen to contain S ∩X. Now P ≤ L2 and so P is contained in exactly one of the
components of L2 and the other component must be contained in B. But then B = G if ra is odd
and if r = 2, then B contains a subgroup isomorphic to L1 (but this time generated by short root
groups). In either case we have a contradiction as QB = 1. �

Get details for the above argument.

Lemma 9.7. [G2 and 3D4] Suppose that X = Op(G) is isomorphic to either G2(ra) or 3D4(ra),
then X ∼= G2(3) or 3 D4(3) and the possibilities for G, B, and P are listed in Table 1.

Proof. By Lemma 5.2, we need only consider the cases with p = 2 or p = 3. Suppose that X ∼=
G2(ra). If ra = 3, we refer the reader to the Atlas [2] to verify the details needed to confirm that
G2(3) is an example. Let ∆ be the root system associated with X and let M be the monomial group
Φn(s) : Dih(12) where n is 1 or 2 as appropriate for M to contain a Sylow 2-subgroup, respectively 3,
of X. Let {α, β} be a fundamental system for ∆ with α a long root. Let T = 〈hα, hβ〉 be the Torus of
order Φ1(s)2. Then N = 〈Xα, X−α, Xα+2β , X−α−2β〉 Then Z(N) = 〈hα(−1)〉(= 〈hα+2β(−1)〉). In
particular, we notice that [T : T∩N ] = 2 and so |TN/N | = 2. Since |X|s′ = Φ1(s)2Φ2(s)2Φ3(s)Φ6(s),
and |NT |s′ = 1

2 (Φ1(s)Φ2(s))2.2, we infer that NTS contains a Sylow 2-subgroup of G. Since s ≥ 3,
NTS contains two normal components F1 and F2 say, and so at least one of these component
must be contained in B. So suppose that F1 ≤ B. Then O2(F1S) is isomorphic to a Sylow 2-
subgroup of SL2(s) and consequently O2(F1S) contains a unique involution, namely t = hα(−1).
Since QB ≤ O2(F1S), we see that B ≤ CG(t). But then QB = Z(S) is cyclic of order 2 and we have
a contradiction via Lemma 3.9.

If X ∼= 3 D4(s) and s 6= 3, then an argument just as above works. CHECK THIS. Need to
show that |Z(S)| = |QB | = 2. Now suppose that p = 3. Then the following groups are over-
groups of the Sylow 2-subgroup of X are G2(3), (7×PSU(3)).2 and (SL2(3) ∗SL2(27)).2 and taking
B = (SL2(3) ∗ SL2(27)).2 and P = 42.Dih(12) we satisfy the conditions required for X to be P̃ -
restricted. So this group appears on Table 1. �

Lemma 9.8. [E6]Assume that X ∼= E6(ra) or 2E6(pa) and G ∈ Rp, then p = 3 and X ∼= 2E6(2)
and B ∩X ∩ 3.(PSU3(2)× PSU3(2)× PSU3(2)).3.Sym(3).

look at p=5

Proof. Suppose first that d = 2 when X ∼= E6(ra) and that d = 1 when X ∼= 2E6(ra) and as is
standard write X ∼= Eε

6(r
a) with ε = + when X is not twisted and otherwise ε = −. Because of

the choice of d we see that p ≤ 3. Suppose that p = 3, then S ∩ X is contained in the subgroup
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L ∼= F4(q). Using 9.6 we have that B ≥ L and then QB = 1, a contradiction. So suppose that p = 2
and ε = −. Then take L = (4, ra − ε).(PΩε

10(r
a) × (ra − ε)/(4, ra − ε)).(4, ra − ε) (use root groups

Xα3 , Xα4 , Xα5 , Xα2X−α0 and their negatives so that L is normalized by the graph automorphism. It
follows that QB is cyclic of order 2 and we have a contradiction. If p = 2 and d = 1 we take L as above
and see that QB is cyclic and obtain a contradiction via?? So suppose that p = 3 and d = 1 when
ε = 1 and d = 2 when ε = −. In this case we take L = 3.(PSLε

3(r
a)×PSLε

3(r
a)×PSLε

3(r
a)).32.Sym(3)

and when (ra, ε) 6= (2,−), the components of L are permuted transitively by L. Thus in this case
B ≥ L by 2.9 and then |QB | = 3. Thus (ra, ε) = (2,−) and the lemma follows. �

Mention the Fischer groups?

Lemma 9.9. [E7] Assume that X ∼= E7(ra) and G ∈ Rp, then p = 2, X ∼= E7(3) and B =
23.(PSL2(3)7).23.SL3(2).

Proof. We have to consider p ∈ {2, 3, 5, 7}. According as d = 1, 2 set ε = +, − and note that
L1 = (q−ε)7 : (2×Sp6(2) contains S∩X. Set L2 = (3, ra−ε).(Eε

6(r
a)×(ra−ε)/(3, ra−ε)).(3, ra−ε).2.

Then so long as p 6= 2, 7, S ∩X ≤ L2 and we easily derive contradictions in these cases??
For p = 7 we set L3 = f.PSL8(ra).g.(2 × (2/f)) where f and g are powers of 2. Then ?? shows

that L2 ≤ B, a contradiction. So suppose that p = 2. Then set L3 = 2(PSL2(ra) × PΩ+
12(r

a)).2.
Set L4 = 23.(PSL2(ra)7).d3.PSL3(2). Assume that ra > 3. Then 6.2 and 8.2 imply that L3 = B
and that QB has order 2 contrary to 3.9. Thus p = 3. Suppose that B = L3. Then P ≤ L4 and
QB ≤ Q2(L4) ≤ QP for a contradiction. Therefore, B = L4 as claimed. Need to argue P 6≤ L4 ∩L3

(use ??).

Lemma 9.10. [E8] Assume that X ∼= E8(ra) and G ∈ Rp, then p = 3, X ∼= E8(2) and B ∩ X =
32.(PSU3(2)× PSU3(2)× PSU3(2)× PSU3(2)).32.GL2(3).

Proof. We have to consider the possibilities p = 2, 3, 5 and 7. Recall also that d ∈ {1, 2}. For p = 2
or 7 the group L = (2, ra−1).PΩ+

16(r
a).2 contains a Sylow p subgroup of X. Applying 8.2 and 3.9 we

obtain a contradiction. For p = 5, we consider the subgroup 5.(PSLε
4(r

a)×PSLε
4(r

a)).5.4 where ε is
chosen so that 5 divides ra− ε. Then 3.9 and 2.9 delivers a contradiction. So assume that p = 3. Set
L1 = 3.(PSLε

3(r
a) × Eε

6(r
a)).3.2 L2 = 32.(PSLε(ra) × PSLε(ra) × PSLε(ra) × PSLε(ra)).32.GL2(3)

(with ε = + if d = 1 and ε = − if d = 1). Then 2.9 implies that P ≤ L1 and B = L2. Using 9.8 we
obtain ra = 2 and this completes the lemma. �

10. Sporadic groups

Before we begin the case by case investigation of the sporadic simple groups we note that, by
Lemma ??, we may assume that S is not cyclic.

Lemma 10.1. [m11] X 6= Mat11.

Proof. Suppose that G ∈ Rp. Then p ∈ {2, 3}. Suppose that p = 2. Let H ≤ G with H ∼ Mat10.
Then H is a 2-minimal subgroup of G and QH = 1. Hence by 2.16 H = P , a contradiction. Next
we consider p = 3. This time we note that NG(S) is a maximal subgroup of G and apply 2.18 to
get a contradiction. �

Lemma 10.2. [m12] Suppose X = Mat12. Then p = 2 or 3 and B is either of the two maximal
p-local parabolic subgroups of G.

Proof. For p > 3, S is cyclic and for p ≤ 3, M(S) = P(S) has size two. �
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Lemma 10.3. [j1] X 6= J1.

Proof. For p > 2, S is cyclic and for p = 2, NG(S) acts irreducibly on S. So the lemma follows from
2.18. �

Lemma 10.4. [m22] Suppose X = Mat22. Then p = 2 and B is is either of the two maximal
2-local parabolic subgroups of G.

Proof. For p ≥ 5, the Sylow p-subgroups are cyclic. For p = 3, NG(S) acts irreducibly on S. Thus
by 2.18, p = 2. Now B can be either of the maximal 2-local parabolics of G and (by definition) P
is the unique minimal parabolic not in B. �

Lemma 10.5. [j2] Suppose that X = J2. The one of the following holds:
(a) [1] p = 3, B ∼ 3.PGL2(9) and P ∼ PSU3(3).
(b) [2] p = 2 and B is either of the two maximal 2-local parabolic subgroups of G.

Proof. For p = 7, S is cyclic and for p = 5, NG(S) acts irreducibly on S. So p ≤ 3. For p = 3,
G has a unique maximal 3-local parabolic subgroup M and M ∼ 3.PGL2(9). Thus B = M and
B ∼ 3.PGL2(9). Note that G has a parabolic subgroup H ∼= PSU3(3). Then by 2.16 P = H and
(a) holds.

For p = 2, P(S) = M(S) has size 2 and (b) holds. �

Lemma 10.6. [m23] Suppose X = Mat23. Then p = 2, B ∼= 24.Alt(7) and P ∼= 24.Sym(5).

Proof. For p ≥ 5, the Sylow p-subgroups of G are cyclic. For p = 3, NG(S) acts irreducibly on S.
Thus by 2.18, p = 2. Since L = 24.Alt(7) is a subgroup of G and L/QL ∈ R2 by 4.2 B = L. So P
is the unique minimal parabolic subgroup of G not in B and the lemma holds. �

Lemma 10.7. [hs] Suppose X = HS. Then p = 2 and B is any of the two maximal local parabolic
subgroups of G.

Proof. For p ≥ 7, the Sylow p-subgroups of G are cyclic. For p = 3, NG(S) acts irreducibly on S.
Suppose p = 5. If G = X, then no 5-local subgroup is maximal in G, a contradiction. If G 6= X,

then NG(S) is maximal in G, again a contradiction.
Thus p = 2. Now B is either one of the maximal local parabolic subgroups and the P is the

unique minimal parabolic not contained in B. �

Lemma 10.8. [j3] Suppose X ∼= J3. The p = 2 and B is any of the two maximal local parabolic
subgroups of G.

For p > 3, the Sylow p-subgroups are cyclic. For p = 3, NG(S) is maximal. So p = 2, P(S) =
M(S) has size 2 and the lemma holds. �

Lemma 10.9. [m24] Suppose X ∼= Mat24. The p = 2 and B is any of the three maximal 2-local
parabolic subgroups.

Proof. For p > 3, the Sylow p-subgroups are cyclic. No 3-local subgroup is maximal in G and
so p = 2. Now B is one of the three maximal 2-local subgroups containing S and P the unique
2-minimal parabolic subgroup not contained in B. �
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Lemma 10.10. [mcl] Suppose X = McL. Then p = 3, B = 31+4.2.Sym(5) and P = 34.PSL2(9).

Proof. For p > 5, the Sylow p-subgroups are cyclic. For p = 5, NG(S) is maximal in G. For p = 3,
P has a unique 3-minimal parabolic of rank 1 type. Thus the lemma holds in this case.

Suppose p = 2. If G 6= X, then G has a 2-minimal parabolic subgroup PSL3(4).22 and we get a
contradiction to 2.16. Thus G = X. Let S ≤ H ≤ G with H ∼ 24.Alt(7). Then H 6∈ R2 by 4.2 and
so H = B. But there are two different choices for B, a contradiction. �

Lemma 10.11. [he] Suppose X = He. Then G = X,p = 2 and B ∼= 26.3.Sym(6)

Proof. For p > 7, the Sylow p-subgroups are cyclic, for p = 7, NG(S) is maximal in G and for p = 5,
NG(S) is irreducible on S. Thus p ≤ 3. For p = 3, there exists a minimal parabolic subgroup 26.33

[≤ 263.Sym(6)], a contradiction to 2.16.
Thus p = 2. Suppose G 6= X. Let H ∈ PG(S). Then H/QH

∼= Sym(3) oSym(2) or PSL3(2).2 and
so there is no candidate for P .

Thus G = X. Since 21+3+3.PSL3(2) only contains two of the four members of PG(S), B ∼=
26.Sym(6) and the lemma is proved. �

Lemma 10.12. [ru] Suppose X = Ru. Then p = 2 and B is any of the two maximal 2-local
parabolic subgroups of G .

Proof. For p > 5, the Sylow p-subgroups of G are cyclic. For p = 5, NG(S) is maximal in G. For
p = 3, G contains a 3-minimal parabolic subgroup 26.32 [≤ 26.G2(2)], contradicting 2.16. So p = 2
and M(S) has size two. �

Lemma 10.13. [suz] Suppose that X ∼= Suz. The one of the following holds.
1. [1] p = 3 and B ∼= 35.Mat11.
2. [2] p = 2 and B is any of the three maximal 2-local parabolic subgroups of G.

Proof. For p > 5, S is cyclic and for p = 5, NG(S) acts irreducibly on S. So p ≤ 3. For p = 3, G
has a maximal parabolic subgroup H ∼ 35.Mat11. Since H 6∈ R3 by 10.1 H = B. So (1) holds.

For p = 2 M(S) has size three and (2) holds. �

Lemma 10.14. [on] If X = O′N, then p = 2 then B ∩X ∼ 4.PSL3(4).2.

Proof. For p > 7 and p = 5, S is cyclic and forp = 3, NG(S) acts irreducibly on S so these cases do
not arise. For p = 7, G contains a parabolic subgroup H = PSL3(7).2. Since QH = 1, H 6= B and
so H ∈ R7. But NH(S) is maximal in H, a contradiction to 2.18 applied to H in place of G.

Thus p = 2. Let H ≤ G with H ∩X ∼ 4.PSL3(4).21. Then H is 2-minimal and we conclude that
B = H. �

Lemma 10.15. [co3] If X = Co3, then one of the following holds:
1. [1] p = 3 and B ∼= 35.2.Mat11.
2. [2] p = 2 and B is any of the three maximal local parabolic subgroups of G.

Proof. For p > 5, S is cyclic, so p ≤ 5. For p = 5, G contains a parabolic subgroup McL : 2, a
contradiction to 10.10.

For p = 3, G contains a maximal parabolic subgroup H ∼ 35.2.Mat11. Since H 6∈ R3, we conclude
that H = B. So (1) holds.

For p = 2, M(S) has size three and (2) holds. �
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Lemma 10.16. [co2] If X ∼= Co2, then one of the following holds:

1. [1] p = 3 and B ∼ 31+4
+ .21+4

− .Sym(5).
2. [2] p = 2 and B is any of the three maximal 2-local parabolic subgroups of G.

Proof. If p > 5, S is cyclic and for p = 5, NG(S) is a maximal subgroup in G and so p ≤ 3.
Suppose p = 3 and let S ≤ H ≤ G be a local subgroups H ∼ 31+4

+ .21+4
− .Sym(5). Then H 6∈ R3

and so H = B and (1) holds.
For p = 2, M(S) has size two and (2) holds. �

Lemma 10.17. [fi22] Suppose X = Fi22. Then one of the following holds:

1. [1] p = 3 and B ∼ 31+6
+ .21+2+2+2.31+1.2.

2. [2] p = 2 and B is an arbitrary maximal local parabolic subgroup.

Proof. For p > 5, S is cyclic and for p = 5, NG(S) acts irreducibly on S.
Suppose p = 3. Then G has a maximal parabolic subgroup H with H ∼ 31+6

+ .21+2+2+2.31+1.2.
If H 6= B we get that Op(P ) is normal in H, a contradiction (as can been seen by intersection H
with a subgroup Ω7(3). So H = B and (1) holds.

If p = 2 then (2) holds. �

Lemma 10.18. [HN] Suppose X = HN. Then one of the following holds:

1. [1] p = 5 and B‘ ∼ 51+4
+ .21+4

− .5.4.
2. [2] p = 2 and B ∩X ∼ 21+8

+ .Alt(5) o Sym(2).

Proof. If p > 5, then S is cyclic so p ≤ 5.
If p = 5 let H be the maximal 5-local parabolic subgroup with H ∼ 51+421+4.5.4. Then, as H is

soluble and p 6= 2, 3, P � H and consequently H = B. Thus (1) holds.
If p = 3, then X contains a subgroup contains a subgroup L ∼ 31+4.4.Alt(5). Since L 6∈ R3, we

have that B = X. Let H be the parabolic with H/QH
∼= 2.(PSL2(3) × PSL2(3)).4 Since NH(S) is

a maximal subgroup of H, we get that H ≤ B by 2.18. But then G = B, a contradiction.
Suppose p = 2. Then G has maximal parabolic subgroup H with H ∼= 21+8

+ .Alt(5) o Sym(2).
using 2.9 we have that H = B and (2) holds. �

Lemma 10.19. [ly] Suppose X = Ly. Then p = 5 and H ∼ 51+4
+ .4.Sym(6).

Proof. For p ≥ 7, S is cyclic. So p ≤ 5.
Suppose that p = 5. Let S ≤ H ≤ G with H ∼ 51+4

+ .4.Sym(6). Since Sym(6) 6∈ R5, we get
B = H and the lemma holds in this case.

Suppose p = 3, then G has two maximal parabolic subgroup F,H with F/QF ∼ 2 ×Mat11 and
H/QH ∼ 2.Alt(5).Dih8. So by 4.2 and 10.1 neither F nor H are in R3, a contradiction.

Suppose that p = 2. Then G has a parabolic subgroups H ∼ 3.McL .2. Since QH 6= 1, H � B,
but this contradicts 10.10 �

Lemma 10.20. [th] Suppose X = Th. Then one of the following holds:

1. [1] p = 3 and {B,P} = P(S).
2. [2] p = 2 and B ∼ 21+8

+ .Alt(9).
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Proof. For p > 7, S is cyclic, for p = 7, NG(S) acts irreducibly on S and for p = 5, NG(S) is
maximal in G. Hence p ≤ 3.

For p = 3, (1) holds.
For p = 2, let S ≤ H ≤ G with H ∼ 21+8

+ .Alt(9). Then H 6∈ R2 so B = H and (2) holds. �

Lemma 10.21. [fi23] Suppose that X ∼= Fi23. Then one of the following holds:
1. [1] p = 3 and B ∼ 31+8

+ 21+6
− .31+2

+ .2.Sym(4).
2. [2] p = 2 and B ∼ 211.Mat23 or B ∼ 26+2·4.(Alt(7)× Sym(3)).

Proof. For p ≥ 7, S is cyclic and for p = 5, NG(S) acts irreducibly on S. So p ≤ 3.
Suppose that p = 3 and let S ≤ H ≤ G with H = 31+8

+ .21+6
− .31+2

+ .2.Sym(4). Since H is soluble
and Op(P ) is not normal in H, we get that H = B and (1) holds.

Suppose p = 2 and let S ≤ H ≤ G with H ∼ 211.Mat23. If H = B (2) holds. So suppose that
H � B, then by 10.6, (H ∩ B)/O2(H ∩ B) ∼= Alt(7). Since B is a maximal 2-local subgroup of G,
we conclude B ∼ 26+2·4.(Alt(7)× Sym(3)) and again (2) holds. �

Lemma 10.22. [co1] Suppose X = Co1. Then one of the following holds:
1. [1] p = 5 and B is one of the two maximal 5-local parabolic subgroups of G.
2. [2] p = 3 and B is one of the three maximal 3-local parabolic subgroups of G. (Note here that

the two maximal subgroups N(3C2) in the Atlas [2] need to be deleted, see Modular Atlas[5].)
3. [3] p = 2 and B is one of the four maximal 2-local parabolic subgroups of G.

Proof. For p > 7, S is cyclic and for p = 7, NG(S) is irreducible on S. So p ≤ 5 and one of (1), (2)
and (3) holds. �

Lemma 10.23. [j4] Suppose X = J4. The p = 2 and B is one of the three maximal 2-local parabolic
subgroups of G.

Proof. If p ≤ 5 but p 6= 11, then S is cyclic and we are done. If p = 11 then NG(S) is maximal so
this case falls. If p = 3, then S is contained in H ∼ 211.Mat24 which is not in R3 by 10.9. Since
QH = 1 we have a contradiction. So p = 2 and the lemma is proved. �

Lemma 10.24. [fi24] Suppose X = Fi24. The one of the following holds:
1. [1] p = 3 and B ∼ 31+10.PSU5(2).2.
2. [2] p = 2 and B is any of the four maximal 2-local parabolic subgroups of G.

Proof. For p > 7, S is cyclic and so p ≤ 7. For p = 7, S is contained in He.2 and we obtain a
contradiction via 10.11. For p = 5, NG(S) acts irreducibly on S, so this case fails.

Suppose p = 3. If B ∼ 37.Ω7(3), then P/QP
∼= Alt(5), a contradiction as Alt(5) 6∈ R3. Hence (1)

holds in this case.
If p = 2, then (2) holds. �

Lemma 10.25. [bm] Suppose X ∼= BM. Then one of the following holds:
1. [1] p = 5 and B ∼ 51+4

+ .21+4
− .Alt(5).4.

2. [2] p = 3 and B ∼= 31+8
+ .21+6

− O−
6 (2).

3. [3] p = 2 and B is any of the four maximal 2-local parabolic subgroups of G.



32 ULRICH MEIERFRANKENFELD CHRISTOPHER PARKER PETER ROWLEY

Proof. If p > 7, then S is cyclic and, if p = 7, NG(S) is irreducible on S. So p ≤ 5.
Suppose p = 5 and let S ≤ H ≤ B with H ∼ 51+4

+ .21+4
− .Alt(5).4. Then H 6∈ R5 and so H = B

and (1) holds.
Suppose that p = 3 and let S ≤ H ≤ B with H ∼ 31+8

+ .21+6
− .O−

6 (2). Then H 6∈ R3 and so H = B
and (2) holds.

Suppose that p = 2. The (3) holds. �

Lemma 10.26. [m] Suppose that X ∼= M. Then one of the following holds:
1. [1] p = 7 and B ∼ 71+4

+ .6.Sym(7).
2. [2] p = 5 and B ∼ 51+6

+ .4.J2.2.
3. [3] p = 3 and B ∼ 31+12

+ .2.Suz .2 or B ∼ 32+5+5·2.(Mat11×GL2(3)).
4. [4] p = 2 and B is any of the five maximal 2-local parabolic subgroups.

Proof. For p > 13, S is cyclic, for p = 13, NG(S) is maximal in G and for p = 11, NG(S) is
irreducible on S. Thus p ≤ 7.

For p = 7 choose S ≤ H ≤ G with H ∼ 71+4
+ .6.Sym(7). Then H 6∈ R7 and so B = H. Hence (1)

holds.
For p = 5 choose S ≤ H ≤ G with H ∼ 51+6

+ .4.J2.2. By 10.5 H 6∈ calR5 and so B = H. Hence
(2) holds.

For p = 3 choose S ≤ H ≤ G with H ∼ 31+12
+ .2.Suz .2. If H = B, then (3) holds. If H 6= B then

10.13 implies that H ∩ B/O3(H ∩ B) ∼= 2.Mat11 .2. Thus B ∼ 32+5+5·2.(Mat11×GL2(3)) and (3)
holds.

If p = 2, then (4) holds.

11. The smaller list

In this section we assume in addition that if P̃ ≤ M ≤ S and M/QM is a classical group extended
by field automorphism, then the classical groups is (S)Ln(q).
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