1 Introduction

Let G be a finite group and p a prime. A subgroup P containing a Sylow p-subgroup of G is a p-parabolic subgroup of G, and P is a local p-parabolic subgroup if in addition $O_p(P) \neq 1$.

Moreover, G has characteristic p if $C_G(O_p(G)) \leq O_p(G)$; and G has parabolic characteristic p if every local p-parabolic subgroup has characteristic p.

The standard examples for groups of parabolic characteristic p are the finite simple groups of Lie type in characteristic p. In these examples every proper parabolic subgroup is a local p-parabolic subgroup, and for maximal parabolic subgroups M the normal subgroup $\Omega_1 Z(O_p(M))$, considered as a $GF(p)M$-module, has a remarkably restricted structure. In this paper we try to understand this phenomena in arbitrary finite groups.

What kind of properties of the module $\Omega_1 Z(O_p(M))$ should one aim at in general? A possible answer arose during our detailed study of the p-local structure of groups of local characteristic p in [MSS], where a group has local characteristic p if each of its p-local subgroup has characteristic p.

Definition 1.1 Let A be an elementary abelian p-group and V a finite dimensional $GF(p)A$-module. Then A is

(a) quadratic on V if $[V, A, A] = 0$,

(b) nearly quadratic on V if $[V, A, A, A] = 0$ and

$$[V, A] + C_V(A) = [v, A] + C_V(A) \text{ for every } v \in V \setminus [V, A] + C_V(A),$$

(c) an offender on V if $|V/C_V(A)| \leq |A/C_A(V)|$,

(d) a $2F$-offender on V if $|V/C_V(A)| \leq |A/C_A(V)|^2$,

(e) non-trivial on V if $[V, A] \neq 0$.

A p-subgroup Y of G is called p-reduced (for G) if Y is elementary abelian and normal in G, and $O_p(G/C_G(Y)) = 1$. The largest p-reduced subgroup of G is denoted by Y_G; for the existence of Y_G see 2.2(a).

Let M be a subgroup of G. Then M is F-stable (in G) if none of the elementary abelian p-subgroups of $N_G(Y_M)/C_G(Y_M)$ are non-trivial offenders on Y_M. Similarly, M is $2F$-stable (in G) if none of the elementary abelian p-subgroups of $N_G(Y_M)/C_G(Y_M)$ are non-trivial nearly quadratic $2F$-offenders on Y_M.

Modules admitting non-trivial $2F$-offenders have been investigated by Guralnick, Lawther and Malle in [GLM],[GM1],[GM2], and [L]. They have classified all pairs (V,G), where V is an irreducible $GF(p)G$-module and G is a known finite almost quasisimple group containing a non-trivial $2F$-offender on V.

Their result is a major generalization of earlier results, where G was assumed to contain a non-trivial offender.

For stating our results we need some further definitions.

Definition 1.2 By $S(X)$ we denote the subgroups of G containing X. Let S be Sylow p-subgroup of G.

\[B(S) := C_S(\Omega_1 Z J(S)), \]

\[C^*(G,S) := \langle C_G(\Omega_1 Z(S)), N_G(C) \mid 1 \neq C \text{ char } B(S) \rangle, \]

and

\[C^{**}(G,S) = \langle N_G(J(S)), C_G(\Omega_1 Z(S)) \rangle. \]

A factorization family for $S(S)$ is a subset $\mathcal{F}(S) \subseteq S(S)$ with the following two properties:

(i) For every $H \in S(S)$ there exists $M \in \mathcal{F}(S)$ with $H \subseteq C_G(Y_H)M$ and $Y_H \leq Y_M$.

(ii) If $H \in S(S)$ and $M \in \mathcal{F}(S)$ with $M \subseteq C_G(Y_M)H$ and $Y_M \leq Y_H$, then $Y_M = Y_H$ and $H \leq M$.

Property (i) implies

\[H/C_H(Y_H) \cong HC_G(Y_H)/C_G(Y_H) \cong (HC_G(Y_H) \cap M)C_G(Y_H)/C_G(Y_H), \]

so the action of H on Y_H is isomorphic to the action of $HC_G(Y_H) \cap M$ on the submodule Y_H of Y_M. In particular, it suffices to identify $M/C_M(Y_M)$ and its action on Y_M to identify $H/C_H(Y_H)$ and Y_H.

Property (ii) is the crucial one for applications since it has strong consequences. For example, if G is of parabolic characteristic p and $S \leq H \leq M \in \mathcal{F}(S)$ such that $M = HC_M(Y_M)$, then M is the unique maximal p-local subgroup of G containing H (see 3.5).

Of course, it is not clear a priori that factorization families exist. The existence (and uniqueness) will be established in Theorem 3.4.

Theorem 1.3 Let G be a finite group and $S \in \text{Syl}_p(G)$. There exists a unique factorization family $\mathcal{F}(S)$ for $S(S)$ in G. Moreover, at most one member of $\mathcal{F}(S)$ is F-stable, and

\[\Omega_1 Z(S) \leq Y_M \text{ and } M = N_G(Y_M) \text{ for every } M \in \mathcal{F}(S); \]

in particular, the elements of $\mathcal{F}(S)$ are p-local subgroups of G if $S \neq 1$.

In the following results $\mathcal{F}(S)$ is always a factorization family for $S(S)$. Recall that a finite group H is p-constrained if $H/O_p(H)$ is of characteristic p.

Theorem 1.4 Let G be a finite group and $S \in \text{Syl}_p(G)$, and let $1 \neq C \text{ char } B(S)$ and $M := N_G(C)$. Suppose that there exists $N \in \mathcal{F}(S)$ that is F-stable.

(a) If $C = B(S)$, then $Y_N = Y_M$ and $N = C_G(Y_M)M = N_G(Y_M)$.

2
(b) If $Y_N \leq O_p(M)$, then $Y_M = Y_N$ and $M \leq N$.

(c) If M is p-constrained, then $M = O'_p(M)(M \cap N)$.

Theorem 1.5 Let G be a finite group and $S \in \text{Syl}_p(G)$, and let $M \in S(S)$ such that $\Omega_1 Z(S) \leq M$ or $M = N_G(C)$ for some $1 \neq C \text{ char } B(S)$. Suppose that there exists $N \in F(S)$ that is $2F$-stable.

(a) If $Y_N \leq O_p(M)$, then $M \leq N$.

(b) If M is p-constrained, then $M = O'_p(M)(M \cap N)$.

(c) The following hold for any p-constrained $H \in S(B(S))$ with $H \nsubseteq O'_p(H)N$ (where $\overline{H} = H/O'_p(H)$):

(a) $\overline{Y_N} \leq O_p(\overline{H})$.

(b) $C_{O_p(\overline{H})}(\overline{Y_N}) \leq \overline{H}$.

(c) $Y_{\overline{H}}$ is not F-stable in \overline{H}.

(d) $C^{**}(\overline{H}, T) \leq \overline{H} \cap N < \overline{H}$, where $B(S) \leq T \in \text{Syl}_p(H)$.

For groups of parabolic characteristic p more can be said about the members of the factorization family $F(S)$.

Theorem 1.6 Let G be a finite group of parabolic characteristic p and $1 \neq S \in \text{Syl}_p(G)$. Then the members of $F(S)$ are maximal p-local subgroups of G. Moreover, if $N \in F(S)$ is $2F$-stable and $H \in S(B(S))$ with $B(S) \leq T \in \text{Syl}_p(H)$, then $C^*(H, T) \leq N$.

Corollary 1.7 Let G be a finite group of parabolic characteristic p and $S \in \text{Syl}_p(G)$. If S is contained in at least two maximal p-local subgroups of G, then there exists $M \in F(S)$ such that M is not $2F$-stable.

Let G and N be as in 1.6, and let H be a p-local subgroup containing S such that $H \nsubseteq N$. Then by 1.6 $C^*(H, S)$ is a proper subgroup of H. In this case the structure of H can be described precisely using the Local $C(G, T)$-Theorem proved in [BHS].

The proof of the above theorems relies heavily on two elementary results from [PPS] and [Ste], the L-Lemma and the qrc-Lemma. The authors found it remarkable that these results allow to study finite groups in this context without any K-group assumption.

In fact, using the L-Lemma another result is proved, which is interesting in its own right and which can be used to improve the qrc-Lemma.

Theorem 1.8 Let G be a finite group, $S \in \text{Syl}_p(G)$, and V be a finite dimensional faithful $GF(p)G$-module. Suppose that $O_p(G) = 1$ and S is contained in a unique maximal subgroup of G. Then $|A| = |V/C_V(A)|$ for every offender A of G on V.

3
2 Elementary Properties

In this section \(G \) is a finite group, \(p \) is a prime, and \(S \in \text{Syl}_p(G) \).

Notation 2.1 Let \(X \) be a \(p \)-subgroup of \(G \). A subgroup \(P \) of \(G \) is \(X \)-minimal if \(X \) is contained in a unique maximal subgroup of \(P \) and \(X \not\subseteq O_p(P) \).

Lemma 2.2 Let \(L \) be a subgroup of \(G \) and \(P \) be a \(p \)-parabolic subgroup of \(L \).

(a) There exists a unique largest \(p \)-reduced subgroup \(Y_L \) of \(L \).

(b) If \(Y \) is a \(p \)-reduced subgroup of \(P \) with \(Y \leq O_p(L) \), then \(\langle Y^L \rangle \) is \(p \)-reduced for \(L \) and so \(Y \leq Y_L \).

(c) If \(L \) is of characteristic \(p \), then \(Y_P \leq Y_L \).

Proof: (a): Let \(A \) and \(B \) be \(p \)-reduced subgroups of \(L \). It suffices to show that also \(AB \) is \(p \)-reduced. Then \(Y_L \) is the product of all \(p \)-reduced subgroups of \(L \).

Since \(A \) is \(p \)-reduced, \(B \leq O_p(L) \leq C_L(A) \) and so \(AB \) is elementary abelian. Let \(D \) be the inverse image of \(O_p(L/C_L(AB)) \). Since \(C_L(AB) \leq C_L(A) \), \(D\langle C_L(A)/C_L(AB) \rangle \leq O_p(L/C_L(AB)) \) and so \(D \leq C_L(A) \). By symmetry, \(D \leq C_L(B) \) and thus \(D \leq C_L(A) \cap C_L(B) = C_L(AB) \).

(b): Since \(P \) is a \(p \)-parabolic subgroup of \(L \), \(O_p(L) \leq P \). Hence \([Y,O_p(L)] = 1 \) since \(Y \) is \(p \)-reduced in \(P \). By assumption \(Y \leq O_p(L) \) and so \(Y \leq Y_L \).

(c): As in (b), \([Y_P,O_p(L)] = 1 \). Since \(L \) is characteristic \(p \), \(Y_P \leq O_p(L) \). So (b) implies \(Y_P \leq Y_L \).

\(\square \)

Lemma 2.3 Let \(X \leq S \leq P \leq G \). Suppose that \(P \) is \(X \)-minimal and \(N \trianglelefteq P \). Then either \(O_p(P) \leq N \) and \(P = XN \), or \(S \cap N \leq O_p(P) \). In particular, \(P = XO^p(P) = \langle X^P \rangle \).

Proof: Observe that \(P = NN_P(S \cap N) \). As \(P \) is \(X \)-minimal, either \(NX = P \) or \(N_P(S \cap N) = P \), and in the second case \(S \cap N \leq O_p(P) \).

Since \(X \nsubseteq O_p(P) \), \(S \cap XO^p(P) \nsubseteq O_p(P) \) and so \(P = XO^p(P) \). A similar argument gives \(P = \langle X^P \rangle \).

Lemma 2.4 Let \(A \) be an \(F \)-stable elementary abelian \(p \)-subgroup of \(G \), and let \(Q \) be a \(p \)-subgroup of \(G \) with \(A \leq Q \). Then the following hold:

(a) \(A \leq Z(J(Q)) \).

(b) \(\langle A^{N_G(Q)} \rangle \) is elementary abelian.

Proof: (a): Let \(B \in A(Q) \). Then \(B \) acts on \(A \), and \(|B| \geq |C_B(A)A| \) by the maximality of \(B \). Also \(C_B(A) \cap A \leq A \cap B = C_B(A) \) and so \(C_B(A) \cap A = A \cap B \). Hence

\[|C_B(A)||A||C_B(A)^{-1} | = |C_B(A)||A||A \cap B|^{-1} = |C_B(A)A| \leq |B|, \]

and \(|A/C_B(A)| \leq |B/C_B(A)| \) follows. The \(F \)-stability of \(A \) gives \(|A,B| = 1 \) and (a) holds.

(b): This is a direct consequence of (a) since \(Z(J(Q)) \leq N_G(Q) \).

\(\square \)
Lemma 2.5 Let Q be a normal p-subgroup of G with $C_G(Q) \leq Q$ and Y be an abelian p-subgroup of G. If $C_Q(Y) \unlhd G$ and Q normalizes Y, then $Y \leq O_p(G)$.

Proof: Observe that
\[
\langle Q,Y \rangle \leq Q \cap Y \leq C_Q(Y).
\]
Since $C_Q(Y) \leq G$ this shows that $\langle Y^G \rangle$ centralizes $Q/C_Q(Y)$ and $C_Q(Y)$. Hence $O_p((Y^G))$ centralizes Q and since $C_G(Q) \leq Q$, $O_p((Y^G)) = 1$ and $\langle Y^G \rangle$ is a p-group. Thus $Y \leq O_p(G)$. \hfill \Box

Lemma 2.6 Let A be a finite elementary abelian p-group and V a finite dimensional $GF(p)A$-module. Suppose that A is quadratic on V and $[v,A] = [V,A]$ for every $v \in V \setminus C_V(A)$. Then A is a quadratic offender on every A-submodule of V.

Proof: Since every A-submodule of V satisfies the same hypothesis it suffices to show that A is an offender on V. Without loss, $|V,A| \neq 1$. Choose $W \leq [V,A]$ with $|V,A|/|W| = p$ and put $\overline{V} = V/W$. Let U be the inverse image of $C_{\overline{V}}(A)$ in V. Then $[U,A] \leq W$ and so $[V,A] \nleq [U,A]$. Thus $U \leq C_V(A)$ and $C_{\overline{V}}(A) = C_V(A)$; in particular, $|V/C_V(A)| = |\overline{V}/C_{\overline{V}}(A)|$. Note that \overline{V} satisfies the hypothesis, so replacing V by \overline{V} we may assume that $|[V,A]| = p$. Let $B < A$ with $|A/B| = p$. Since $[V,B]$ is at most 1-dimensional, B in place of A also satisfies the hypothesis of the lemma. Hence by induction on $|A|$, $|V/C_V(B)| \leq |B|$.

Let $a \in A \setminus B$. Since $|[V,a]| = p$, $|V/C_V(a)| \leq p$ and so also $|C_V(B)/C_V(B) \cap C_V(a)| \leq p$. But $C_V(A) = C_V(B) \cap C_V(a)$ and so
\[
|V/C_V(A)| \leq |V/C_V(B)|p \leq |B|p = |A|.
\]
\hfill \Box

3 A Partial Ordering

In this section G is a finite group, p is a prime, and $S \in Syl_p(G)$.

Notation 3.1 Let A and B be subgroups of G. The relation \ll on the subgroups of G is defined by
\[
A \ll B : \iff A \subseteq C_G(Y_A)B \text{ and } Y_A \leq Y_B.
\]
Furthermore, we define
\[
A^\dagger := C_G(Y_A)A \text{ and } S^\dagger := \{L \leq G \mid L = L^\dagger \}.
\]

Lemma 3.2 Let L and M be subgroups of G.
\[(a) \ Y_L \leq Y_{L^\dagger}, \ L \ll L^\dagger, \text{ and } (L^\dagger)^\dagger = L^\dagger.
\[(b) \ S^\dagger = \{L \leq G \mid C_G(Y_L) \leq L \}.
\[(c) \ll \text{ is reflexive and transitive.}
\[(d) \ L \subseteq C_G(Y_L)M \text{ if and only if } L \leq C_G(Y_L)N_M(Y_L).
\[(e) \text{ Suppose that } L \subseteq C_G(Y_L)M \text{ and } L \cap M \text{ is a } p\text{-parabolic subgroup of } L \text{ and } M. \text{ Then } Y_L \text{ is } p\text{-reduced for } N_M(Y_L) \text{ and } L \ll N_M(Y_L).
\]
(f) If \(L = L^\dagger \), then \(L \ll L \) if and only if \(Y_L \leq Y_M \) and \(L = C_G(Y_L)(L \cap M) \).

(g) Restricted to \(S^\dagger \), \(\ll \) is a partial ordering.

Proof:
(a): Clearly \(Y_L \) is a \(p \)-reduced subgroup of \(L^\dagger \), so \(Y_L \leq Y_L^\dagger \). Thus \(C_G(Y_L^\dagger) \leq C_G(Y_L) \leq L^\dagger \) and \(L^\dagger = (L^\dagger)^\dagger \).

(b): This is an immediate consequence of the definition of \(L^\dagger \).

(c): Obviously \(\ll \) is reflexive. If \(A, B, C \leq G \) with \(A \ll B \) and \(B \ll C \), then \(Y_A \leq Y_B \leq Y_C \) and so \(Y_A \leq Y_C \). Also \(C_G(Y_A) \leq C_G(Y_B) \) and hence
\[
A \subseteq C_G(Y_A)B \subseteq C_G(Y_A)C_G(Y_B)C = C_G(Y_A)C.
\]

Thus \(A \ll C \) and \(\ll \) is transitive.

(d): If \(L \subseteq C_G(Y_L)M \) then \(L \leq N_G(Y_L) \cap C_G(Y_L)M = C_G(Y_L)N_M(Y_L) \). The other direction is obvious.

(e): Since \(L \cap M \) is a \(p \)-parabolic subgroup of \(L \),
\[
Y_L \leq O_p(L) \leq L \cap M \leq N_M(Y_L),
\]

so \(Y_L \) is an elementary abelian normal subgroup of \(N_M(Y_L) \). Since \(L \cap M \) is a \(p \)-parabolic subgroup of \(M \), \(C_G(Y_L)(L \cap M) \) and thus also \(C_G(Y_L)L \) are \(p \)-parabolic subgroups of \(C_G(Y_L)N_M(Y_L) \).

As \(Y_L \) is a \(p \)-reduced subgroup of \(C_G(Y_L)L \), 2.2(b) shows that \(Y_L = (Y_L^{C_G(Y_L)N_M(Y_L)}) \) is \(p \)-reduced for \(C_G(Y_L)N_M(Y_L) \). Hence \(Y_L \) is also a \(p \)-reduced subgroup of \(N_M(Y_L) \). Thus \(Y_L \leq Y_{N_M(Y_L)} \) and so \(L \ll N_M(Y_L) \).

(f): Since \(L \in S^\dagger \) we have \(C_G(Y_L) \leq L \) and so \(L \subseteq C_G(Y_L)M \) implies \(L = C_G(Y_L)(L \cap M) \). Now (f) is obvious.

(g): Let \(L, M \in S^\dagger \) with \(L \ll M \) and \(M \ll L \). Since \(Y_L \leq Y_M \leq Y_L \), we have \(Y_L = Y_M \). By (f) \(L = C_G(Y_L)(L \cap M) \) and \(M = C_G(Y_M)(M \cap L) \). Hence \(Y_M = Y_L \) gives \(L = M \). So the restriction of \(\ll \) to \(S^\dagger \) is anti-symmetric. Now (g) follows (c). □

Notation 3.3 Put \(S^\dagger(S) := \{ L \in S^\dagger \mid S \leq L \} \). According to 3.2(g) \(\ll \) restricted to \(S^\dagger(S) \) is a partial ordering on \(S^\dagger(S) \). We denote the set of maximal elements of \(S^\dagger(S) \) with respect to \(\ll \) by \(F(S) \).

Theorem 3.4 \(F(S) \) is the unique factorization family for \(S(S) \).

Proof: Let \(G \) be a factorization family for \(S(S) \) and let \(M \in G \). Clearly \(M \leq M^\dagger \) and by 3.2(a), \(Y_M \leq Y_M^\dagger \). So Condition (ii) of 1.2 gives \(M = M^\dagger \). Thus \(M \in S^\dagger(S) \) and \(G \subseteq S^\dagger(S) \).

Now let \(G \) be any subset of \(S^\dagger(S) \). Then Condition (i) of 1.2 is fulfilled for \(G \) if and only if for each \(L \in S(S) \) there exists \(M \in G \) with \(L \ll M \). Since \(L \ll L^\dagger \) and \(\ll \) is transitive by 3.2, we conclude that \(G \) fulfills (i) if and only if \(G \) contains all the maximal elements of \(S^\dagger(S) \) with respect to \(\ll \). And Condition (ii) holds if and only if all elements of \(G \) are maximal with respect to \(\ll \) in \(S^\dagger(S) \). Thus \(F(S) \) is the unique factorization family for \(S(S) \). □

Lemma 3.5 Let \(M \in F(S) \) and \(H \in S(S) \) with \(M = C_M(Y_M)(M \cap H) \). If \(H \) is \(p \)-constrained, then \(H = O_p(H)(H \cap M) \). In particular, if \(G \) is of parabolic characteristic \(p \) and \(S \leq L \leq M \) with \(M = C_M(Y_M)L \), then \(M \) is the unique maximal \(p \)-local subgroup of \(G \) containing \(L \).
Proof: Put $\overline{T} = H/O_{p'}(H)$. Since $M = C_M(Y_M)(H \cap M)$, Y_M is p-reduced for $H \cap M$ and $\overline{Y_M}$ is a p-reduced subgroup of H/\overline{M}. So by 2.2(c), $\overline{Y_M} \leq Y_{\overline{T}}$. Let $Y \leq S$ with $Y = Y_{\overline{T}}$ and $K := N_H(Y)$. Then by the Frattini argument, $H = O_{p'}(H)K$. It follows that Y is a p-reduced subgroup of K, so $Y_M \leq Y \leq Y_K$.

As $YO_{p'}(H) \cap M = Y(O_{p'}(H) \cap M)$, we also get, using the Frattini argument one more time,

$$H \cap M = (O_{p'}(H) \cap M)(K \cap M) = O_{p'}(M \cap H)(K \cap M).$$

Thus $M = C_M(Y_M)(H \cap M) \leq C_G(Y_M)K$ since $O_{p'}(M \cap H)$ centralizes Y_M. Now 1.2(ii) implies that $K \leq M$ and so $H = O_{p'}(H)(H \cap M)$. Hence the first statement holds.

To prove the second statement, let H be a p-local subgroup containing L. Then $M = C_M(Y_M)L$ implies $M = C_M(Y_M)(H \cap M)$. On the other hand H is of characteristic p since G has parabolic characteristic p, so H is p-constrained and $O_{p'}(H) = 1$. Hence by the first statement $H = O_{p'}(H)(H \cap M) \leq M$.

□

Lemma 3.6 Let $M \in \mathcal{F}(S)$, $S_0 := C_S(Y_M)$ and $M_0 := N_M(S_0)$.

(a) $M = C_M(Y_M)M_0$, $S_0 = O_p(M_0)$ and $C_S(S_0) \leq S_0$.

(b) $\Omega_1 Z(S) \leq Y_M = Y_{M_0} = \Omega_1 Z(S_0)$.

Proof: (a): The Frattini argument gives $M = C_M(Y_M)M_0$. Hence $O_p(M_0) = S_0$, since Y_M is p-reduced. Clearly $Y_M \leq \Omega_1 Z(S_0)$, and so $C_S(S_0) \leq C_S(\Omega_1 Z(S_0)) \leq C_S(Y_M) \leq S_0$.

(b): Let $S_0 \leq S_1 \leq S$ with

$$S_1 C_{M_0}(\Omega_1 Z(S_0))/C_{M_0}(\Omega_1 Z(S_0)) = O_p(M_0/C_{M_0}(\Omega_1 Z(S_0))).$$

Then $S_1 C_M(Y_M)/C_M(Y_M)$ is a normalized by $M_0 C_M(Y_M) = M$. Since $O_p(M/C_M(Y_M)) = 1$ we get $S_1 \leq C_M(Y_M)$, so $S_1 = S_0 = O_p(M_0)$ by (a), and $\Omega_1 Z(S_0)$ is p-reduced for M_0. Together with 3.2(a) this gives

$$Y_M \leq \Omega_1 Z(S_0) \leq Y_{M_0} \leq Y_{M_1}. $$

In particular $M \ll M_1$, and the maximality of M yields $Y_M = Y_{M_1}$. Now (b) follows, since also $\Omega_1 Z(S) \leq \Omega_1 Z(S_0)$.

Proof of Theorems 1.3 and 1.4:

By 3.4 $\mathcal{F}(S)$ is the unique factorization family for $S(S)$. Let $M \in \mathcal{F}(S)$. By 3.6(b) $\Omega_1 Z(S) \leq Y_M$ and by 3.2(e) $M \ll N_G(Y_M)$. Hence the maximality of M gives $M = N_G(Y_M)$.

Assume that there exists $N \in \mathcal{F}(S)$ that is F-stable, i.e. $Y := Y_N$ is F-stable in $N_G(Y_N) = N$. Then by 2.4 $B(S) \leq C_G(Y)$ and

$$N = C_G(Y) N_N(B(S)) \subseteq C_G(Y)L, \quad \text{where } L := N_G(B(S));$$
in particular $Y \leq \Omega_1 Z(B(S)) \leq O_p(N_G(B(S)))$. Now 2.2(b) implies that $Y \leq Y_L$ and so by 1.2(ii) $Y = Y_L$. It follows that $N = N_G(Y_L)$. In particular, N is the unique F-stable member of $\mathcal{F}(S)$. This finishes the proof of 1.3 and also shows 1.4(a).
Now let \(1 \neq C \text{char} B(S) \) and put \(M := N_G(C) \). Then \(N_N(B(S)) \leq M \) and thus also \(N = C_G(Y)(M \cap N) \). Suppose that \(Y_N \leq O_P(M) \). Then as above 2.2(b) implies that \(Y_N \leq Y_M \), and by 1.2(ii) \(Y_N = Y_M \) and \(M \leq N \). So 1.4(b) holds.

Suppose next that \(M \) is \(p \)-constrained. From \(N = C_G(Y)(N \cap M) \) and 3.5 we get that \(M = O_{p'}(M)(M \cap N) \). Hence 1.4(c) holds. \(\square \)

4 The L-Lemma and the qrc-Lemma

In this chapter we will work with the following hypothesis.

Hypothesis 4.1 Let \(P \) be a finite group of characteristic \(p \), \(T \in \text{Syl}_p(P) \), \(Y \trianglelefteq T \), and \(R := C_T(Y) \). Suppose that \(P \) is \(RO_p(P) \)-minimal with \(M \) being the unique maximal subgroup of \(P \) containing \(RO_p(P) \).

Notation 4.2 Let \(X \) be a finite group and \(V \) a finite dimensional \(GF(p)X \)-module. By \(c(V, X) \) we denote the number of non-central chief factors of \(X \) in \(V \) (in a given chief series). We define \(q(V, X) := 0 \) if every quadratically acting subgroup of \(X \) already centralizes \(V \), and

\[
q(V, X) := \min\{\log_{|A/C_A(V)|}|V/C_A(V)||A \leq X, [V, A] = 1 \neq [V, A]\}
\]

otherwise. Moreover, \(r(V, X) := 0 \) if \(V \) does not possess non-central \(X \)-chief-factors, and

\[
r(V, X) := \min\{q(C, X) \mid C \text{ non-central } X\text{-chief-factor on } V\}
\]

otherwise.

Lemma 4.3 (L-Lemma) Assume Hypothesis 4.1. Let \(A \) be a subgroup of \(T \) such that \(A \not\leq O_p(P) \). Then there exists a subgroup \(L \leq P \) with \(AO_p(L) \leq L \) satisfying:

(a) \(AO_p(L) \) is contained in a unique maximal subgroup \(L_0 \) of \(L \), and \(L_0 = L \cap M^g \) for some \(g \in P \).

(b) \(L = \langle A, A^x \rangle O_p(L) \) for every \(x \in L \setminus L_0 \).

(c) \(L \) is not contained in any \(P \)-conjugate of \(M \).

Proof: See [PPS]. \(\square \)

The next lemma is very similar to [Ste, 3.3].

Lemma 4.4 Assume Hypothesis 4.1. Suppose \(V := \langle Y^P \rangle \) is elementary abelian, \(C_{O_p(P)}(Y) \not\leq P \) and \(c(V, P) = 1 \). Then \([O_p(P), O^p(P)] \) is non-trivial quadratic offender on \(Y \).

Proof: Since \(P \) is \(RO_p(P) \)-minimal, we get from 2.3 that \(P = RO^p(P)O_p(P) \). Put

\[
Q := [O_p(P), O^p(P)], \quad W := [V, O^p(P)] \quad \text{and} \quad D := C_V(O^p(P)).
\]

Since \(c(V, P) = 1 \), \(W/W \cap D \) is chief-factor for \(P \) on \(V \). Hence \([W, O_p(P)] \leq D \). Note that \(P = TO^p(P) \) normalizes \(YW \) and so \(V = YW \). Thus \([Y, Q]D \leq P \). Observe that \(R \) centralizes
$[Y, Q]/D$ is. Since $O^p(P) \leq \langle R^p \rangle$ we conclude that $[Y, Q, O^p(P)] \leq D$. Hence $O^p(P)$ centralizes $[Y, Q]$. So $P = TO^p(P)$ normalizes $[Y, Q]$ and $[V, Q] = [Y, Q] \leq D$. It follows that

$$[V, O^p(P), O_p(P)] = [W, O_p(P)] \leq D \quad \text{and} \quad [O_p(P), O^p(P), V] = [Q, V] \leq D.$$

Hence the Three Subgroup Lemma implies $[V, O_p(P), O^p(P)] \leq D$ and so

(*) $$[V, O_p(P)] \leq D.$$

Pick $x \in Y \setminus D$. Since R centralizes x we conclude from (*) that $P = RO^p(P)O_p(P)$ normalizes $\langle x^{O^p(P)} \rangle D$ and so $W \leq \langle x^{O^p(P)} \rangle D$. Put $X := [x, Q]$. Since $X \leq D$ it follows that

$$[W, Q] \leq [\langle x^{O^p(P)} \rangle D, Q] = [x, Q] = X.$$

As $[V, Q, O^p(P)] = 1 \leq X$ and $[V, O^p(P), Q] = [W, Q] \leq X$, the Three Subgroup Lemma implies $[Q, O^p(P), V] \leq X$. Since $[Q, O^p(V)] = Q$ we get $[V, Q] = X$. In particular,

$$[y, Q] = X \text{ for every } y \in Y \setminus C_Y(Q).$$

Now 2.6 shows that Q is a quadratic offender on Y.

If Q acts trivially on Y, then $Q \leq C_{O_p(P)}(Y)$ and so $C_{O_p(P)}(Y) \leq TO^p(P) = P$, a contradiction. \qed

Lemma 4.5 Let L be a finite group acting on a p-group E, and let A and B be p-subgroups of L and X and Z subgroups of E. Suppose that

(i) $B \not\subseteq O_p(L),$

(ii) $[E, A] \leq X \leq C_E(A)$ and $[E, B] \leq Z \leq C_E(B),$

(iii) L is $AO_p(L)$-minimal and $[E, O^p(L)] \neq 1,$

(iv) X is normalized by E and $O_p(L)$, X is abelian, and $E = \langle X^L \rangle.$

Then

(a) $C_B(E) \leq B \cap O_p(L),$

(b) $E = X^gZ = X^gC_E(B)$ for some $g \in L,$

(c) $Z = [E, B]C_Z(E) = [E, b]C_Z(E)$ for all $b \in B \setminus O_p(L),$

(d) $[B, E, E, E] = 1,$

(e) $|Z/C_Z(E)| \leq |ZD/D| \leq |E/C_E(B)|,$

(f) $|BO_p(L)/O_p(L)| \leq |E/C_E(B)|.$

Proof: By (iii) there exists a unique maximal subgroup L_0 of L containing $AO_p(L)$, and by 2.3 $(\bigcap_{g \in L} L_0^g)/O_p(L)$ is a p'-group.

Pick $b \in B \setminus O_p(L)$. Then there exists $g \in L$ with $b \notin L_0^g$. Put $H := \langle A^g, b \rangle$. Then $L = HO_p(L)$ since $H \not\leq L_0^g$. Furthermore, we put $D := \bigcap_{g \in L} X^g$.

9
Since \(Z \in C(E) \) by (ii), (b) holds.

(c): Since \(X^g \cap Z \subseteq C(E) \subseteq D \), we get \(X^g \cap Z = D \cap Z \) and so by (b) and (*)

\[
|E/X| = |E/X^g| = |Z/X^g|/|X/Z| = |Z/Z \cap X^g| = |Z/Z \cap D|.
\]

Moreover, using (*)

\[
Z = (X^g \cap Z)[E,b] \leq (Z \cap D)[E,b] \leq C(Z)[E,b] \leq C(Z)[E,B] \leq Z,
\]

and so (c) holds.

(d): Since \(L \) is \(A_0(L) \)-minimal, \(A \notin O_p(L) \) and so (b) can be applied with \(A \) and \(A^g \) in place of \(A \) and \(B \). Then \(E = X^g X^t \) for some \(t \in L \); in particular \([X^t, X] \leq X \cap X^t \leq D \leq Z(E) \). Thus \(E' \leq D \leq Z(E) \) and \([B, E, E, E] \leq [E', E] = 1 \). So (d) holds.

(e): By (ii) and (b)

\[
C(E) \leq C(E) = C(E) = DZ.
\]

Hence

\[
|E/C(E)| \geq |E/D| = |X^g ZD/ZD| = |X^g/D|.
\]

On the other hand, by (b) \(|E/X| = |Z/Z \cap X^g| = |Z/Z \cap D| \), while the same result applied to \(A \) in place of \(B \) gives \(|E/X| = |X/D| = |X^g/D| \). Since \(D \leq Z(E) \) this gives

\[
|E/C(E)| \geq |Z/Z \cap D| \geq |Z/C(Z(E))|.
\]

(f): Let \(x \in X^g \setminus D \) and suppose that \([x, b] \in D \). Then \((x)D \) is normalized by \(\langle X^g, b \rangle = H \) and so \(x \in D \), a contradiction. This shows that \([x, c] \notin D \) for every \(c \in B \setminus O_p(L) \). Since \(B \) acts quadratically on the abelian group \(E/D \) we conclude

\[
|[x, b]/D/D| = |[x, c]/D \mid c \in B) | \geq |BO_p(L)/O_p(L)|.
\]

Note that by (ii), \(|x, b| \) \(D \leq ZD \) and so (f) now follows from (e).

\(\square \)

Theorem 4.6 Assume Hypothesis 4.1. Let \(V \) be a finite dimensional \(GF(p) \)P-module such that \([V, O_p(P)] = 0 \) and \(|V, O_p(P)| \neq 0 \). Then \(q(V, P) = 0 \) or \(q(V, P) \geq 1 \).

Proof: Let \(A \leq T \) be a quadratic on \(V \) with \([V, A] \neq 0 \). We need to show that \(|V/C_V(A)| \geq |A/C_A(V)\). The proof is by induction on \(|A| \).

Let \(Y \) be a non-central \(P \)-chief factor in \(V \). By 2.3 \(C_T(Y) \leq O_p(P) \leq C_T(V) \). It follows that

\[
|Y/C_V(A)| \leq |V/C_V(A)| \quad \text{and} \quad |A/C_A(Y)| = |A/C_A(V)|
\]

for every \(A \leq T \). Hence we may assume that

1° \(V \) is a non-trivial simple \(P \)-module.
We now apply 4.3. Then there exists \(A \leq L \) such that \(L \) has the properties given in 4.3. In particular, there exists \(g \in P \) such that \(A \leq T^g \cap L \in Syl_p(L) \), and \(L \cap M^g \) is the unique maximal subgroup of \(L \) containing \(AO_p(L) \). Put \(U := (C_V(T^g))^L \).

2° \[[U, O^p(L)] \neq 0 \text{ and } [U, A] \neq 0. \]

By (1°) \(C_V(T^g) \) is not \(P \)-invariant, so \(N_P(C_V(T^g)) \leq M^g \). Since \(L \not\leq M^g \), we get that \([U, O^p(L)] \neq 0 \) and thus also \([U, A] \neq 0. \]

3° Put \(D := C_A(U) \). Then \([A/D] \leq [U/C_U(A)] \).

Observe that by the definition of \(U \), \([U, O^p(L)] \neq 0 \). Thus, for \(E := U, B := A \), and \(X := Z := C_U(A), L \) satisfies the hypothesis of 4.5. By 4.5(f)

\[|A/D| = |A/C_A(U)| \leq |A/A \cap O_p(L)| \leq |U/C_U(A)|. \]

So (3°) holds.

4° \[|D/C_D(V)| \leq |V/C_V(D)|. \]

Since \([U, A] \neq 0 \), \(D < A \) and (4°) follows by induction on \(|A| \).

Using (3°) and (4°) we compute

\[|A/C_A(V)| = |A/D||D/C_D(V)| \leq |U/C_U(A)||V/C_V(D)| \leq |C_V(D)/C_V(A)||V/C_V(D)| = |V/C_V(A)|. \]

□

The next lemma is a variation of [Ste, 3.2].

Lemma 4.7 (grc-Lemma) Assume Hypothesis 4.1. Let \(V := \langle Y^P \rangle \). Suppose that

(i) \(Y \leq \Omega_1 Z(J(O_p(P))) \),

(ii) \(C_{O_p(P)}(Y) \not\leq P \),

(iii) \(J(R) \not\leq O_p(P) \).

Then \(V \leq \Omega_1 Z(J(O_p(P))) \), \(V \neq Y \), \(N_L(Y) \leq M \), \([V, O^p(P)] \neq 1 \), \(C_T(V) \leq O_p(P) \) and there exists \(A \in \mathcal{A}(R) \) with

\[[V, A, A] = 1 \neq [V, A] \text{ and } A \not\leq O_p(P). \]

Moreover, one of the following holds, where \(q := q(Y, O_p(P)), r := r(V, P) \) and \(c := c(V, P) \):

(a) \(0 \neq q \leq 1 \).

(b) \(2 \leq c, 1 \leq r, \) and \((q - 1)(rc - 1) \leq 1 \). In particular, \(0 \neq q \leq 2 \).
Proof: By (i) $V \leq ZJ(O_p(P))$. If $V = Y$, then $C_{O_p(P)}(Y) \subseteq P$, a contradiction to (ii). Hence $V \neq Y$ and $RO_p(P) \leq T \leq N_P(Y) < P$. Since P is $RO_p(P)$-minimal we conclude that $N_P(Y) \leq M$. So $[V,O^p(P)] \neq 1$. Hence 2.3 gives $C_T(V) \leq O_p(P)$. In particular, (P,Y) satisfies Hypothesis III of [Ste].

As $C_T(V) \leq O_p(P)$, (iii) shows that there exists $A \in \mathcal{A}(R)$ such that $[V,A] \neq 1$. By the Timmesfeld Replacement Theorem [KS] we may assume that $[V,A,A] = 1$. Moreover, (i) implies that $A \notin O_p(P)$. Assume that (b) holds. Then also $| \langle A \rangle \cdot \mathcal{O} | \leq | A/C_A(U) |$ and thus A is minimal. Hence 4.7(iii) holds for A. By 4.3(a) there exists J and (c) holds.

Proof: From (ii) $[V,J(T)] = 1$ and so $J(T) \leq R$ and $J[R] = J(T)$. So the assumptions of 4.7 are fulfilled. In particular, V is elementary abelian and there exists $A \in \mathcal{A}(T)$ with $[V,A,A] = 1 \neq [V,A]$ and $A \notin O_p(P)$.

Hence we are allowed to apply the L-Lemma 4.3. This gives a subgroup L having the properties (a) - (c) given in 4.3. By 4.3(c) L is not a p-group, and so L is $AO_p(L)$-minimal. This is (a).

According to 4.3(a) there exists $g \in P$ such that $AO_p(L) \leq T^g \cap L \leq Syl_p(L)$, and $L \cap M^g$ is the unique maximal subgroup containing $AO_p(L)$. Hence replacing A by A^g and L by L^g we may assume that (b) holds.

Clearly $Y \notin L$ since $L \not\leq M$ but $N_P(Y) \leq M$. Since V is abelian, V_0 is abelian and (c) holds.

From $A \notin O_p(P)$ and (ii) we get that $J(C_T \cap L(Y)) \subseteq O_p(L)$ and L is $C_T \cap L(Y)O_p(L)$-minimal. Hence 4.7(iii) holds for L and Y. Assume that $C_{O_p(L)}(Y) \subseteq L$. Then also $C_{O_p(L)}(Y) \subseteq L$ and thus $P = \langle T, L \rangle \leq N_P(C_{O_p(L)}(Y))$. This contradicts (i). Hence also 4.7(ii) holds for L and Y, and (d) follows.

Lemma 4.8 Assume hypothesis 4.1. Suppose that

(i) $C_{O_p(P)}(Y) \not\subseteq P$,

(ii) $Y \leq Z(J(O_p(P))) \cap Z(J(T))$,

(iii) $J(T) \not\subseteq O_p(P)$.

Then there exist subgroups $A \in \mathcal{A}(T)$ and L of P such that the following hold:

(a) L is $AO_p(L)$-minimal.

(b) $O_p(P)A \leq T \cap L \subseteq Syl_p(L)$, and $M \cap L$ is the unique maximal subgroup of L containing $AO_p(L)$.

(c) $Y \not\subseteq L$, and $V_0 := \langle Y^L \rangle$ is abelian.

(d) If $Y \leq Z(J(O_p(L)))$, then L and Y satisfies the hypothesis of 4.7 with L in place of P.

5 F-stability

In this section we explore the following hypothesis:

Hypothesis 5.1 Let p be a prime and H a finite group. Suppose that Y is an elementary abelian p-subgroup of H such that for $T \in \text{Syl}_p(N_H(Y))$ and $R := C_T(Y)$ the following hold:

(i) $Y \leq N_H(J(R))$.

(ii) Y is F-stable in H.

(iii) Either $Y \leq O_p(H)$ or H is of characteristic p.

This hypothesis is motivated by the following observation:

Lemma 5.2 Let G be a finite group, $S \in \text{Syl}_p(G)$ and $J(S) \leq H \leq G$, and let $\mathcal{F}(S)$ be a factorization family for $S(S)$. Suppose that $N \in \mathcal{F}(S)$ is F-stable.

(a) If $Y_N \leq O_p(H)$, then $Y := Y_H$ and H satisfy Hypothesis 5.1.

(b) If H is p-constrained and $\overline{H} := H/O_p(H)$, then $\overline{Y_N}$ and \overline{H} satisfy Hypothesis 5.1 in place of Y and H.

Proof: Let $T \in \text{Syl}_p(H)$ with $J(S) \leq T$. Put $Y := Y_N$ and $R := C_T(Y)$. Since $Y \leq S$ and Y is F-stable, 2.4(a) implies that $Y \leq \Omega_1 Z(J(S)) \leq H$ and $J(S) = J(T) = J(R)$. Observe that $Y \leq O_p(N_G(J(S)))$ and so by 1.4(b), $N_G(J(S)) \leq N$. In particular, $T \leq N_G(Y)$ and so $T \in \text{Syl}_p(N_H(Y))$. Now (a) follows.

Assume that H is p-constrained. Then $\overline{H} = H/O_p(H)$ is of characteristic p. By the Frattini-argument, $N_{\overline{H}}(\overline{Y}) = N_H(Y)$ and $N_{\overline{H}}(\overline{J(R)}) = N_H(J(R))$. Moreover since Y is F-stable in G, \overline{Y} is F-stable in \overline{H}. Thus Hypothesis 5.1 holds for \overline{Y} and \overline{H}. \hfill \square

Lemma 5.3 Assume Hypothesis 5.1. Then $Y \leq T$, $Y \leq Z(J(T))$, $J(R) = J(T)$, $N_H(T) \leq N_H(Y)$ and $T \in \text{Syl}_p(H)$.

Proof: Clearly $Y \leq T$. Thus by 2.4(a), $[Y, J(T)] = 1$. So $J(T) \leq R$ and $J(T) = J(R)$. Therefore $N_H(T) \leq N_H(J(R))$ and so by Hypothesis 5.1(i) $N_H(T) \leq N_H(Y)$. Hence $T \in \text{Syl}_p(H)$. \hfill \square

Theorem 5.4 Assume Hypothesis 5.1 and suppose $C_{O_p(H)}(Y) \not\in H$. Then Y is not $2F$-stable in H.

Proof: If any subgroup of H satisfies the conclusion of 5.4 with respect to Y, then also H does. Thus we may assume:

1° No proper subgroup of H satisfies the hypothesis of 5.4 with respect to Y.

Put

$$H_0 = N_H(C_{O_p(H)}(Y)).$$

From 5.3 we conclude

2° $N_H(T) \leq N_H(Y) \leq H_0$, $J(R) = J(T)$, $Y \leq Z(J(R))$ and $T \in \text{Syl}_p(H_0)$.\hfill 13
Next we show:

3° Let \(J(R)O_p(H) \leq \tilde{H} < H \). Then \(C_{O_p(\tilde{H})}(Y) \leq \tilde{H} \) and \(\tilde{H} \leq H_0 \).

By \((2')\) there exists \(\tilde{R} \in \text{Syl}_p(C_{\tilde{H}}(Y)) \) with \(J(R) \leq \tilde{R} \) and \(J(R) = J(T) = J(\tilde{R}) \), and so \(Y \leq N_{\tilde{H}}(J(\tilde{R})) \). Since \(O_p(H) \leq O_p(\tilde{H}) \), \(Y \leq O_p(\tilde{H}) \) or \(\tilde{H} \) is of characteristic \(p \). Moreover \(Y \) is \(F \)-stable in \(\tilde{H} \), and so \(Y \) and \(\tilde{H} \) satisfy Hypothesis 5.1. Now \((1')\) shows that \(C_{O_p(\tilde{H})}(Y) \leq \tilde{H} \).

Hence \(C_{O_p(H)}(Y) = O_p(H) \cap C_{O_p(\tilde{H})}(Y) \) is normal in \(\tilde{H} \) and \(\tilde{H} \leq H_0 \).

4° \(H_0 \) is the unique maximal subgroup of \(H \) containing \(J(R)O_p(H) \), and \(H \) is \(J(R)O_p(H) \)-minimal.

The first statement follows from \((3')\). If \(J(R) \leq O_p(H) \), then by 5.3, \(J(R) = J(O_p(H)) \leq H \), and so by Hypothesis 5.1(i), \(H \leq N_{\tilde{H}}(Y) \leq H_0 \), a contradiction. Hence \(J(R)O_p(H) \nleq O_p(H) \), and \(H \) is \(J(R)O_p(H) \)-minimal.

5° Put \(W := (Y^{H_0}) \). Then \(W \) is elementary abelian.

We will first show that \(Y \leq O_p(H_0) \). If \(Y \leq O_p(H) \), this is obvious. Otherwise \(H \) is of characteristic \(p \) and by 5.3, \(O_p(H) \) normalizes \(Y \). So by 2.5 and \((2')\) \(Y \leq O_p(H_0) \leq T \). Now \((5')\) follows from Hypothesis 5.1(ii) and 2.4(b).

Let \(W \) be the set of all \(p \)-subgroups \(D \) of \(H \) satisfying:

(a) \(WO_p(H) \leq N_H(D) \nleq H_0 \).

(b) \(D = J(D) \leq H_0 \).

Clearly \(1 \in W \) and so \(W \neq \emptyset \). Pick \(D \in W \) such that first \(\lvert A \rvert \) is maximal for \(A \in A(D) \) and then \(\lvert D \rvert \) is maximal. Put \(N := N_H(D) \) and \(T_0 := DO_p(H) \) and let \(T_1 \in \text{Syl}_p(N \cap H_0) \). Since \(T_0 \leq O_p(N \cap H_0) \), \(T_0 \leq T_1 \). As \(W \) is \(H_0 \)-invariant and by \((2')\) \(T \in \text{Syl}_p(H_0) \), there exists \(g \in H_0 \) with \(W^g = W \) and \(T_1^g \leq T \); in particular \(D^g \in W \). Thus, after replacing \(D \) by \(D^g \) we may assume that \(T_1 \leq T \).

6° \(Y \leq Z(J(T_1)) \), and if \(Y \leq T_0 \) then \(Y \leq Z(J(T_0)) \).

Since \(T_1 \leq T \), \(T_1 \) normalizes \(Y \). So \((6')\) follows from 2.4(a).

7° Let \(U \) be a \(p \)-subgroup of \(H_0 \) containing \(D \). Suppose that \(W \leq N_H(U) \) and \(N_H(U) \nleq H_0 \). Then \(J(U) = D \), and if \(Y \leq U \) then \(Y \leq Z(D) \).

Observe that \(W \leq N_H(U) \leq N_H(UO_p(H)) \). Hence \(N_H(UO_p(H)) \nleq H_0 \) and \(J(UO_p(H)) \in W \). Since \(D \leq U \leq UO_p(H) \), the maximal choice of \(D \) gives \(D = J(UO_p(H)) = J(U) \).

Suppose that \(Y \leq U \), then \(J(U) = D \leq T_1 \leq N_H(Y) \) and so by 2.4(a), \(Y \leq Z(J(U)) = Z(D) \).

8° \(J(T) \neq D \) and \(J(T_1) \neq D \).

Suppose \(J(T) = D \). Then by 5.3 and Hypothesis 5.1(i), \(N \leq N_G(J(T)) \leq N_G(Y) \) and so \(N \leq N_{J(T)}(C_{O_p(H)}(Y)) \leq H_0 \), contrary to the choice of \(D \).

Suppose \(J(T_1) = D \). Then \(N_T(T_1) \leq N_H(J(T_1)) = N \). So \(N_T(T_1) \leq T_1 \), \(T = T_1 \) and \(J(T) = J(T_1) = D \), a contradiction.
9° Let U be a p-subgroup of H_0 containing WD. Suppose that $J(U) \neq D$ or $Y \not\subset Z(D)$. Then U is not contained in any H-conjugate of H_0 other than H_0.

Let $g \in H$ with $U \leq H_0^g$ and $U \leq T_2 \in Syl_p(H_0 \cap H_0^g)$. If $J(T_2) = D$, then also $D = J(U)$ and thus $Y \not\subset Z(D)$. Thus either $J(T_2) \neq D$ or $Y \not\subset Z(D)$. So (7°) gives $N_H(T_2) \leq H_0$. This implies $N_{H_0}(T_2) \leq H_0 \cap H_0^g$ and so $T_2 \in Syl_p(H_0^g)$. By (4°), H_0^g is the unique maximal subgroup of H containing T_2. Since $T_2 \leq H_0$ we get $H_0 = H_0^g$.

10° $T_1 \in Syl_p(N)$, $J(T_1) \not\subset O_p(N)$, and $WJ(T_1)D$ is not contained in any other H-conjugate of H_0.

By (8°) and (7°) $N_H(J(T_1)D) \leq H_0$, so $N_Y(T_1) \leq N \cap H_0$ and $T_1 \in Syl_p(N)$. If $J(T_1) \subset O_p(N)$, then $J(T_1) = J(O_p(N))$ and $N \leq N_H(J(T_1)D) \leq H_0$, a contradiction.

Put $U := WJ(T_1)D$. By (8°), $J(U) \neq D$ and so the last statement in (10°) follows from (9°).

11° There exists a $WJ(T_1)T_0$-minimal subgroup $H_1 \leq N$ such that $H_1 \cap H_0$ is a maximal subgroup of H_1 and $J(O_p(H_1)) = D$.

By definition of W, $N \not\subset H_0$. Choose $WJ(T_1)T_0 \leq H_1 \leq N$ such that H_1 is minimal with $H_1 \not\subset H_0$. Since $H_1 \not\subset H_0$, $N_H(O_p(H_1)) \not\subset H_0$. Also $WO_p(H)$ normalizes $O_p(H_1)$ and $D \leq O_p(H_1)$.

So by (7°) $J(O_p(H_1)) = D$. Since $J(T_1) \neq D$ by (8°) we conclude $J(T_1) \not\subset O_p(H_1)$. Hence also $WJ(T_1)T_0 \not\subset O_p(H_1)$, and H_1 is $WJ(T_1)T_0$-minimal.

In the following let H_1 be as in (11°). Pick $WJ(T_1)T_0 \leq T_3 \in Syl_p(H_1 \cap H_0)$. Then H_1 is T_3-minimal and so $T_3 \in Syl_p(H_1)$. Since $T_3 \leq N \cap H_0$ and $T_1 \in Syl_p(H_0 \cap N)$, there exists $g \in N \cap H_0$ with $J(T_1) \leq T_3 \leq T_3^g$. Hence g normalizes $J(T_1)$, D and W, and thus also $WJ(T_1)T_0$. So replacing H_1 by H_1^g and T_3 by T_3^g we may assume that $T_3 \leq T_1 \leq T$.

Case 1 The case $Y \not\subset O_p(H_1)$.

12° Y and H_1 satisfy the hypotheses of 4.8.

Since $T_3 \leq T_1$, $Y \leq T_3$. By (5°) and (6°) $Y \leq Z(WJ(T_1))$, so H_1 satisfies Hypothesis 4.1. Hence (8°) and (11°) give Hypothesis 4.8(iii), while 2.4(a) gives Hypothesis 4.8(ii).

Assume that $CO_p(H_1)(Y) \leq H_1$. As $O_p(H) \leq O_p(H_1)$, also $CO_p(H)(Y) \leq H_1$, which contradicts $H_1 \not\subset H_0$. Hence also Hypothesis 4.8(i) holds.

According to (12°) we are allowed to apply 4.8 to Y and H_1. Let L and V be with the properties given there. Since $Y \leq O_p(L) \leq T_1$, we get from 2.4(a) that $Y \leq Z(J(O_p(L)))$. Thus, by 4.8(d) L and Y satisfy the hypothesis of 4.7.

Since Y is $2F$-stable we are in case 4.7(b), so $0 \neq q(Y, O_p(H_1)) \leq 2$. Thus there exists non-trivial quadratic $2F$-offender on Y and the lemma is proved in (Case 1).

Case 2 The case $Y \not\subset O_p(H_1)$.

By our assumption on H, in this case H has characteristic p. Hence also H_1 has characteristic p since $O_p(H) \leq H_1$. We now apply the L-Lemma 4.3 with W and H_1 in place of A and P. Then there exists $WO_p(H_1) \leq L$ such that

(i) L is $WO_p(L)$-minimal and
(ii) there exists $g \in H_1$ such that $L_0 := H_0^g \cap L$ is the unique maximal subgroup of L containing $WO_p(L)$.

13° \quad $L_0 = L \cap H_0, \; Y \not\subseteq Z(D)$ and $J(O_p(L)) = D$.

Let g as in (ii). Then $WD \leq H_0 \cap H_0^g$ and $Y \not\subseteq Z(D)$ since $D \leq O_p(H_1)$. Hence (9$^\circ$) implies $H_0 = H_0^g$; in particular $L_0 = L \cap H_0$ and $L \not\subseteq H_0$. Now (7$^\circ$) also gives $J(O_p(L)) = D$.

According to (13$^\circ$) we may assume, after conjugation by a suitable element of $H_0 \cap H_1$, that

14° \quad $WO_p(L) \leq T \cap L \in Syl_p(L_0)$. In particular $O_p(L) \leq T$ and $O_p(L)$ normalizes Y.

By (13$^\circ$), $Y \not\subseteq ZJ(O_p(L))$. Since $O_p(L)$ normalizes Y, we get from 2.4 that

15° \quad $Y \not\subseteq O_p(L)$.

Put

$$A := W, \quad B := Y, \quad X := O_p(L) \cap A, \quad E := (X^L), \quad Z := O_p(L) \cap B.$$

By (5$^\circ$) A is abelian, and by (14$^\circ$) $O_p(L)$ normalizes A and B. Moreover, since $O_p(H_1) \leq O_p(L)$ and H_1 has characteristic p, $[E, O^p(L)] \neq 1$. It follows that the hypotheses of 4.5 are satisfied.

By 4.5(a), $C_Y(E) \leq Y \cap O_p(L)$ and so by 4.5(c), $[b, Y]C_Y(E) = [E, Y]C_Y(E) = Y \cap O_p(L)$ for all $b \in Y \setminus O_p(L)$. Moreover, by 4.5(d) $[Y, E, E, E] = 1$ and by 4.5(e),(f) we have $|Y/C_Y(E)| \leq |E/C_E(Y)|^2$. So E is a nearly quadratic 2F-offender on Y. Hence the lemma also holds in (Case 2).

\[\square\]

Lemma 5.5 Assume Hypothesis 5.1. Suppose that $Y \not\subseteq H$ and Y is 2F-stable. Then $\Omega_1 Z(T) \not\subseteq H$.

Proof: Let $T \leq P \leq H$ and P be minimal with $Y \not\subseteq P$. By 5.3 $N_H(T) \leq N_H(Y)$, so $T \not\subseteq P$ and P is T-minimal. Put

$$Q := C_{O_p(P)}(Y), \quad V_0 := \Omega_1(Z(Q)), \quad V := C_{V_0}(O_p(P)), \quad \mathcal{P} := P/C_P(V).$$

If $Z(T) \not\subseteq O_p(P)$, $Z(T) \not\subseteq P$. So we may assume $\Omega_1 Z(T) \leq O_p(P)$ and thus $\Omega_1 Z(T) = C_V(T)$. By 5.4 $Q \leq P$. Since either $Y \leq O_p(H) \leq O_p(P)$ or P is of characteristic p, 2.5 implies $Y \leq O_p(P)$.

Thus $Y \leq V_0$. Since $Y \not\subseteq P$, we get that $[V_0, O^P(P)] \neq 1$. By 5.3, $J(R) = J(T)$ and so by Hypothesis 5.1(i), $J(R) \not\subseteq O_p(P)$. Hence 2.3 shows that $[O^p(P), J(R)] = O^p(P)$. Since $J(R)$ centralizes Y, $[O_p(P), J(R)] \leq O_p(P) \cap J(T) \leq Q$ and so $[O_p(P), O^p(P)] \leq Q$. The $P \times Q$-Lemma yields $[V, O^p(P)] \neq 1$.

Again 2.3 gives $C_T(V) = O_p(P)$ and $O_p(\mathcal{P}) = 1$. Moreover $J(T) \neq 1$ since $J(R) \not\subseteq O_p(P)$. Hence \mathcal{P} and V satisfy the hypothesis of [BHS, 5.6]. It follows that $[C_V(T), P] \neq 1$. Since $C_V(T) = \Omega_1 Z(T)$ and $P = \langle T^P \rangle$ we conclude that $\Omega_1 Z(T) \not\subseteq P$ and so also $Z(T) \not\subseteq H$.

\[\square\]
6 The Proof of Theorems 1.5 – 1.8

Recall that Theorems 1.3 and 1.4 have been proved in Section 3.

Proof of Theorem 1.5:

(a): Observe that $N = N_G(Y_N)$ by 1.3. Suppose $Y_N \leq O_p(M)$. If $M = N_G(C)$ for $1 \neq C \text{ char } B(S)$, then 1.5(a) follows from 1.4(b). If $\Omega_1 Z(S) \leq M$, then 5.2(a) shows that Y_N and M satisfy Hypothesis 5.1. Hence 5.5 gives $Y_N \leq M$ and so $M \leq N$.

(b): Put $\mathfrak{M} := M/O_p(M)$. Then 5.2(b) shows that $\overline{Y_N}$ and \mathfrak{M} satisfy Hypothesis 5.1. Thus 5.5 gives $\overline{Y_N} \leq \mathfrak{M}$. By the Frattini-argument $M = O_p(M)N_M(Y_N) = O_p(M)(M \cap N)$.

(c): Let $B(S) \leq H \leq G$ and H be p-constrained with $H \neq O_p(H)(H \cap N)$, and let $B(S) \leq T \in Syl_p(N_H(Y_N))$. Put $\overline{H} := H/O_p(H)$. Then again 5.2(b) shows that $\overline{Y_N}$ and \overline{H} satisfy Hypothesis 5.1. Hence by 5.4, $C_{\overline{H}}(\overline{Y_N}) \leq H$ and by 2.5, $\overline{Y_N} \leq O_p(\overline{H})$. From 5.5 applied to $N_{\overline{H}}(\Omega_1 Z(T))$ we get $\overline{Y_N} \leq N_{\overline{H}}(\Omega_1 Z(T))$. Recall that $Y_N \leq \Omega_1 Z(J(S)) \leq O_p(N_G(J(S)))$. Thus by 1.4(b), $N_G(J(S)) \leq N$. Since $B(T) = B(S)$ we have $J(T) = J(S)$ and so $\overline{Y_N} \leq C^{**}(\overline{H}, T)$. By the Frattini Argument $N_{\overline{H}}(\overline{Y_N}) = N_H(Y_N) = \overline{H} \cap \overline{N}$. Hence also $C^{**}(\overline{H}, T) \leq \overline{H} \cap \overline{N}$.

Proof of Theorem 1.6:

Let $P \in \mathcal{F}(S)$. By 1.3 P is a p-local subgroup of G. Let L be a maximal p-local subgroup containing P. By 2.2(c) $Y_P \leq Y_L$ and so $P \triangleleft L$. Hence by 3.4 $P = L$.

Suppose that $N \in \mathcal{F}(S)$ is 2F-stable. Let $M = N_G(C)$ for $1 \neq C \text{ char } B(S)$ or $M = N_G(\Omega_1 Z(S))$. Then $S \leq M$, so M has characteristic p since G is of parabolic characteristic p. Hence 1.5(a) implies $M \leq N$.

Let $H \in S(B(S))$ and $B(S) \leq T \in Syl_p(H)$. Then $B(S) = B(T)$ and so $N_H(C) \leq N$ for $1 \neq C \text{ char } B(T)$. Also $T \leq S^g$ for some $g \in N_G(B(S)) \leq N$ and $\Omega_1 Z(S^g) \leq J(S) \leq T$, so $\Omega_1 Z(S^g) \leq Z(T)$ and $C_H(\Omega_1 Z(T)) \leq C_G(\Omega_1 Z(S^g)) \leq N^g = N$. Thus $C^{*}(H, T) \leq H \cap N$.

Proof of Corollary 1.7:

By 1.6 the members of $\mathcal{F}(S)$ are maximal p-local subgroups. We may assume that there exists a 2F-stable $N \in \mathcal{F}(S)$.

Let L be a maximal p-local subgroup containing S with $L \not\leq N$ and choose $M \in \mathcal{F}(S)$ with $L \triangleleft M$. Then $L \leq C_G(Y_L)M$. On the other hand, by 2.2(c) $\Omega_1 Z(S) \leq Y_L$ and so by 1.6 $C_G(Y_M) \leq C_G(\Omega_1 Z(S)) \leq N$. Since $L \not\leq N$ we conclude that $M \not\leq N$ and $M \neq N$. By 1.4 N is the only member of $\mathcal{F}(S)$ which is F-stable. Hence M is not F-stable.

Proof of Theorem 1.8:

Let P be the semi-direct product of G and V. Then $O_p(P) = V$ and $[V, O_p(P)] \neq 1$. Let A be an offender on V such that $|A| |C_V(A)|$ is maximal. Because of [KS, 9.2.3] we may assume that A is quadratic on V. Hence 4.6 implies $|A/C_A(V)| = |V|$, and 1.8 follows.
References

