F-stability in finite groups

U. Meierfrankenfeld, B. Stellmacher

October 13, 2009

1 Introduction

Let G be a finite group and p a prime. A subgroup P containing a Sylow p-subgroup of G is a p-parabolic subgroup of G, and P is a local p-parabolic subgroup if in addition $O_{p}(P) \neq 1$.

Moreover, G has characteristic p if $C_{G}\left(O_{p}(G)\right) \leq O_{p}(G)$; and G has parabolic characteristic p if every local p-parabolic subgroup has characteristic p.

The standard examples for groups of parabolic characteristic p are the finite simple groups of Lie type in characteristic p. In these examples every proper parabolic subgroup is a local p-parabolic subgroup, and for maximal parabolic subgroups M the normal subgroup $\Omega_{1} Z\left(O_{p}(M)\right)$, considered as a $G F(p) M$-module, has a remarkably restricted structure. In this paper we try to understand this phenomena in arbitrary finite groups.

What kind of properties of the module $\Omega_{1} Z\left(O_{p}(M)\right)$ should one aim at in general? A possible answer arose during our detailed study of the p-local structure of groups of local characteristic p in [MSS], where a group has local characteristic p if each of its p-local subgroup has characteristic p.

Definition 1.1 Let A be an elementary abelian p-group and V a finite dimensional $G F(p) A$-module. Then A is
(a) quadratic on V if $[V, A, A]=0$,
(b) nearly quadratic on V if $[V, A, A, A]=0$ and

$$
[V, A]+C_{V}(A)=[v, A]+C_{V}(A) \text { for every } v \in V \backslash[V, A]+C_{V}(A)
$$

(c) an offender on V if $\left|V / C_{V}(A)\right| \leq\left|A / C_{A}(V)\right|$,
(d) a $2 F$-offender on V if $\left|V / C_{V}(A)\right| \leq\left|A / C_{A}(V)\right|^{2}$,
(e) non-trivial on V if $[V, A] \neq 0$.

A p-subgroup Y of G is called p-reduced (for G) if Y is elementary abelian and normal in G, and $O_{p}\left(G / C_{G}(Y)\right)=1$. The largest p-reduced subgroup of G is denoted by Y_{G}; for the existence of Y_{G} see 2.2(a).

Let M be a subgroup of G. Then M is F-stable (in G) if none of the elementary abelian p subgroups of $N_{G}\left(Y_{M}\right) / C_{G}\left(Y_{M}\right)$ are non-trivial offenders on Y_{M}. Similarly, M is $2 F$-stable (in G) if none of the elementary abelian p-subgroups of $N_{G}\left(Y_{M}\right) / C_{G}\left(Y_{M}\right)$ are non-trivial nearly quadratic $2 F$-offenders on Y_{M}.

Modules admitting non-trivial $2 F$-offenders have been investigated by Guralnick, Lawther and Malle in [GLM], [GM1], [GM2], and [L]. They have classified all pairs (V, G), where V is an irreducible $G F(p) G$-module and G is a known finite almost quasisimple group containing a non-trivial $2 F$ offender on V.

Their result is a major generalization of earlier results, where G was assumed to contain a nontrivial offender.

For stating our results we need some further definitions.
Definition 1.2 By $\mathcal{S}(X)$ we denote the subgroups of G containing X. Let S be Sylow p-subgroup of G.

$$
\begin{gathered}
B(S):=C_{S}\left(\Omega_{1} Z J(S)\right), \\
\left.C^{*}(G, S):=\left\langle C_{G}\left(\Omega_{1} Z(S)\right)\right), N_{G}(C) \mid 1 \neq C \text { char } B(S)\right\rangle
\end{gathered}
$$

and

$$
C^{* *}(G, S)=\left\langle N_{G}(J(S)), C_{G}\left(\Omega_{1} Z(S)\right\rangle\right.
$$

A factorization family for $\mathcal{S}(S)$ is a subset $\mathcal{F}(\mathcal{S}) \subseteq \mathcal{S}(S)$ with the following two properties:
(i) For every $H \in \mathcal{S}(S)$ there exists $M \in \mathcal{F}(\mathcal{S})$ with $H \subseteq C_{G}\left(Y_{H}\right) M$ and $Y_{H} \leq Y_{M}$.
(ii) If $H \in \mathcal{S}(S)$ and $M \in \mathcal{F}(S)$ with $M \subseteq C_{G}\left(Y_{M}\right) H$ and $Y_{M} \leq Y_{H}$, then $Y_{M}=Y_{H}$ and $H \leq M$.

Property (i) implies

$$
H / C_{H}\left(Y_{H}\right) \cong H C_{G}\left(Y_{H}\right) / C_{G}\left(Y_{H}\right) \cong\left(H C_{G}\left(Y_{H}\right) \cap M\right) C_{G}\left(Y_{H}\right) / C_{G}\left(Y_{H}\right)
$$

so the action of H on Y_{H} is isomorphic to the action of $H C_{G}\left(Y_{H}\right) \cap M$ on the submodule Y_{H} of Y_{M}. In particular, it suffices to identify $M / C_{M}\left(Y_{M}\right)$ and its action on Y_{M} to identify $H / C_{H}\left(Y_{H}\right)$ and Y_{H}.

Property (ii) is the crucial one for applications since it has strong consequences. For example, if G is of parabolic characteristic p and $S \leq H \leq M \in \mathcal{F}(S)$ such that $M=H C_{M}\left(Y_{M}\right)$, then M is the unique maximal p-local subgroup of G containing H (see 3.5).

Of course, it is not clear a priori that factorization families exist. The existence (and uniqueness) will be established in Theorem 3.4.

Theorem 1.3 Let G be a finite group and $S \in \operatorname{Syl}_{p}(G)$. There exists a unique factorization family $\mathcal{F}(\mathcal{S})$ for $\mathcal{S}(S)$ in G. Moreover, at most one member of $\mathcal{F}(S)$ is F-stable, and

$$
\Omega_{1} Z(S) \leq Y_{M} \text { and } M=N_{G}\left(Y_{M}\right) \text { for every } M \in \mathcal{F}(S)
$$

in particular, the elements of $\mathcal{F}(S)$ are p-local subgroups of G if $S \neq 1$.
In the following results $\mathcal{F}(S)$ is always a factorization family for $\mathcal{S}(S)$. Recall that a finite group H is p-constrained if $H / O_{p^{\prime}}(H)$ is of characteristic p.

Theorem 1.4 Let G be a finite group and $S \in \operatorname{Syl}_{p}(G)$, and let $1 \neq C \operatorname{char} B(S)$ and $M:=N_{G}(C)$. Suppose that there exists $N \in \mathcal{F}(S)$ that is F-stable.
(a) If $C=B(S)$, then $Y_{N}=Y_{M}$ and $N=C_{G}\left(Y_{M}\right) M=N_{G}\left(Y_{M}\right)$.
(b) If $Y_{N} \leq O_{p}(M)$, then $Y_{M}=Y_{N}$ and $M \leq N$.
(c) If M is p-constrained, then $M=O_{p^{\prime}}(M)(M \cap N)$.

Theorem 1.5 Let G be a finite group and $S \in \operatorname{Syl}_{p}(G)$, and let $M \in \mathcal{S}(S)$ such that $\Omega_{1} Z(S) \unlhd M$ or $M=N_{G}(C)$ for some $1 \neq C$ char $B(S)$. Suppose that there exists $N \in \mathcal{F}(S)$ that is $2 F$-stable.
(a) If $Y_{N} \leq O_{p}(M)$, then $M \leq N$.
(b) If M is p-constrained, then $M=O_{p^{\prime}}(M)(M \cap N)$.
(c) The following hold for any p-constrained $H \in \mathcal{S}\left(\mathcal{B}(S)\right.$) with $H \nsubseteq O_{p^{\prime}}(H) N$ (where $\bar{H}=$ $\left.H / O_{p^{\prime}}(H)\right)$:
(a) $\overline{Y_{N}} \leq O_{p}(\bar{H})$.
(b) $C_{O_{p}(\bar{H})}\left(\overline{Y_{N}}\right) \unlhd \bar{H}$.
(c) $Y_{\bar{H}}$ is not F-stable in \bar{H}.
(d) $C^{* *}(\bar{H}, \bar{T}) \leq \overline{H \cap N}<\bar{H}$, where $B(S) \leq T \in \operatorname{Syl}_{p}(H)$.

For groups of parabolic characteristic p more can be said about the members of the factorization family $\mathcal{F}(S)$.

Theorem 1.6 Let G be a finite group of parabolic characteristic p and $1 \neq S \in S y l_{p}(G)$. Then the members of $\mathcal{F}(S)$ are maximal p-local subgroups of G. Moreover, if $N \in \mathcal{F}(S)$ is $2 F$-stable and $H \in \mathcal{S}(B(S))$ with $B(S) \leq T \in \operatorname{Syl}_{p}(H)$, then $C^{*}(H, T) \leq N$.

Corollary 1.7 Let G be a finite group of parabolic characteristic p and $S \in S y l_{p}(G)$. If S is contained in at least two maximal p-local subgroups of G, then there exists $M \in \mathcal{F}(S)$ such that M is not $2 F$-stable.

Let G and N be as in 1.6, and let H be a p-local subgroup containing S such that $H \not \leq N$. Then by $1.6 C^{*}(H, S)$ is a proper subgroup of H. In this case the structure of H can be described precisely using the Local $C(G, T)$-Theorem proved in [BHS].

The proof of the above theorems relies heavily on two elementary results from [PPS] and [Ste], the L-Lemma and the $q r c$-Lemma. The authors found it remarkable that these results allow to study finite groups in this context without any \mathcal{K}-group assumption.

In fact, using the L-Lemma another result is proved, which is interesting in its own right and which can be used to improve the qre-Lemma.

Theorem 1.8 Let G be a finite group, $S \in S y l_{p}(G)$, and V be a finite dimensional faithful $G F(p) G$ module. Suppose that $O_{p}(G)=1$ and S is contained in a unique maximal subgroup of G. Then $|A|=\left|V / C_{V}(A)\right|$ for every offender A of G on V.

2 Elementary Properties

In this section G is a finite group, p is a prime, and $S \in \operatorname{Syl}_{p}(G)$.
Notation 2.1 Let X be a p-subgroup of G. A subgroup P of G is X-minimal if X is contained in a unique maximal subgroup of P and $X \not \leq O_{p}(P)$.

Lemma 2.2 Let L be a subgroup of G and P be a p-parabolic subgroup of L.
(a) There exists a unique largest p-reduced subgroup Y_{L} of L.
(b) If Y is a p-reduced subgroup of P with $Y \leq O_{p}(L)$, then $\left\langle Y^{L}\right\rangle$ is p-reduced for L and so $Y \leq Y_{L}$.
(c) If L is of characteristic p, then $Y_{P} \leq Y_{L}$.

Proof: (a): Let A and B be p-reduced subgroups of L. It suffices to show that also $A B$ is p-reduced. Then Y_{L} is the product of all p-reduced subgroups of L.

Since A is p-reduced, $B \leq O_{p}(L) \leq C_{L}(A)$ and so $A B$ is elementary abelian. Let D be the inverse image of $O_{p}\left(L / C_{L}(A B)\right)$. Since $C_{L}(A B) \leq C_{L}(A), D C_{L}(A) / C_{L}(A) \leq O_{p}\left(L / C_{L}(A)\right)$ and so $D \leq C_{L}(A)$. By symmetry, $D \leq C_{L}(B)$ and thus $D \leq C_{L}(A) \cap C_{L}(B)=C_{L}(A B)$.
(b): Since P is a p-parabolic subgroup of $L, O_{p}(L) \leq P$. Hence $\left[Y, O_{p}(L)\right]=1$ since Y is p-reduced in P. By assumption $Y \leq O_{p}(L)$ and so $Y \leq \Omega_{1} Z\left(O_{p}(L)\right)$. In particular, $V:=\left\langle Y_{P}^{L}\right\rangle$ is an elementary abelian normal subgroup of L.

Since P contains a Sylow p-subgroup of L, there exists $S_{0} \leq P$ such that $S_{0} C_{L}(V) / C_{L}(V)=$ $O_{p}\left(L / C_{L}(V)\right)$ and $S_{0} \in S y l_{p}\left(S_{0} C_{L}(V)\right)$. As $S_{0} C_{P}(V) \unlhd P$ and $C_{P}(V) \leq C_{P}\left(Y_{P}\right)$, we get that $S_{0} C_{P}\left(Y_{P}\right) \unlhd P$. Hence $S_{0} C_{P}(V) \leq C_{P}\left(Y_{P}\right)$ since Y_{P} is p-reduced in P, and so $\left[V, S_{0} C_{P}(V)\right]=1$ since $S_{0} C_{P}(V) \unlhd P$. Thus V is p-reduced for L, and by (a) $V \leq Y_{L}$.
(c): As in (b), $\left[Y_{P}, O_{p}(L)\right]=1$. Since L is characteristic $p, Y_{P} \leq O_{p}(L)$. So (b) implies $Y_{P} \leq Y_{L}$.

Lemma 2.3 Let $X \leq S \leq P \leq G$. Suppose that P is X-minimal and $N \unlhd P$. Then either $O^{p}(P) \leq N$ and $P=X N$, or $S \cap N \leq O_{p}(P)$. In particular, $P=X O^{p}(P)=\left\langle X^{P}\right\rangle$.

Proof: Observe that $P=N N_{P}(S \cap N)$. As P is X-minimal, either $N X=P$ or $N_{P}(S \cap N)=P$, and in the second case $S \cap N \leq O_{p}(P)$.

Since $X \not \leq O_{p}(P), S \cap X O^{p}(P) \not \leq O_{p}(P)$ and so $P=X O^{p}(P)$. A similar argument gives $P=\left\langle X^{P}\right\rangle$.

Lemma 2.4 Let A be an F-stable elementary abelian p-subgroup of G, and let Q be a p-subgroup of G with $A \unlhd Q$. Then the following hold:
(a) $A \leq Z(J(Q))$.
(b) $\left\langle A^{N_{G}(Q)}\right\rangle$ is elementary abelian.

Proof: (a): Let $B \in \mathcal{A}(Q)$. Then B acts on A, and $|B| \geq\left|C_{B}(A) A\right|$ by the maximality of B. Also $C_{B}(A) \cap A \leq A \cap B \leq C_{B}(A)$ and so $C_{B}(A) \cap A=A \cap B$. Hence

$$
\left|C_{B}(A)\right||A|\left|C_{A}(B)\right|^{-1} \leq\left|C_{B}(A)\|A\| A \cap B\right|^{-1}=\left|C_{B}(A) A\right| \leq|B|
$$

and $\left|A / C_{A}(B)\right| \leq\left|B / C_{B}(A)\right|$ follows. The F-stability of A gives $[A, B]=1$ and (a) holds.
(b): This is a direct consequence of (a) since $Z(J(Q)) \unlhd N_{G}(Q)$.

Lemma 2.5 Let Q be a normal p-subgroup of G with $C_{G}(Q) \leq Q$ and Y be an abelian p-subgroup of G. If $C_{Q}(Y) \unlhd G$ and Q normalizes Y, then $Y \leq O_{p}(G)$.

Proof: Observe that

$$
[Q, Y] \leq Q \cap Y \leq C_{Q}(Y)
$$

Since $C_{Q}(Y) \unlhd G$ this shows that $\left\langle Y^{G}\right\rangle$ centralizes $Q / C_{Q}(Y)$ and $C_{Q}(Y)$. Hence $O^{p}\left(\left\langle Y^{G}\right\rangle\right)$ centralizes Q and since $C_{G}(Q) \leq Q, O^{p}\left(\left\langle Y^{G}\right\rangle\right)=1$ and $\left\langle Y^{G}\right\rangle$ is a p-group. Thus $Y \leq O_{p}(G)$.

Lemma 2.6 Let A be a finite elementary abelian p-group and V a finite dimensional $G F(p) A$ module. Suppose that A is quadratic on V and $[v, A]=[V, A]$ for every $v \in V \backslash C_{V}(A)$. Then A is a quadratic offender on every A-submodule of V.

Proof: Since every A-submodule of V satisfies the same hypothesis it suffices to show that A is an offender on V. Without loss, $[V, A] \neq 1$. Choose $W \leq[V, A]$ with $|[V, A] / W|=p$ and put $\bar{V}=V / W$. Let U be the inverse image of $C_{\bar{V}}(A)$ in V. Then $[U, A] \leq W$ and so $[V, A] \not \leq[U, A]$. Thus $U \leq C_{V}(A)$ and $C_{\bar{V}}(A)=\overline{C_{V}(A)}$; in particular, $\left|V / C_{V}(A)\right|=\left|\bar{V} / C_{\bar{V}}(A)\right|$. Note that \bar{V} satisfies the hypothesis, so replacing V by \bar{V} we may assume that $|[V, A]|=p$. Let $B<A$ with $|A / B|=p$. Since $[V, B]$ is at most 1-dimensional, B in place of A also satisfies the hypothesis of the lemma. Hence by induction on $|A|,\left|V / C_{V}(B)\right| \leq|B|$.

Let $a \in A \backslash B$. Since $|[V, a]|=p,\left|V / C_{V}(a)\right| \leq p$ and so also $\left|C_{V}(B) / C_{V}(B) \cap C_{V}(a)\right| \leq p$. But $C_{V}(A)=C_{V}(B) \cap C_{V}(a)$ and so

$$
\left|V / C_{V}(A)\right| \leq\left|V / C_{V}(B)\right| p \leq|B| p=|A|
$$

3 A Partial Ordering

In this section G is a finite group, p is a prime, and $S \in \operatorname{Syl}_{p}(G)$.
Notation 3.1 Let A and B be subgroups of G. The relation \ll on the subgroups of G is defined by

$$
A \ll B: \Longleftrightarrow A \subseteq C_{G}\left(Y_{A}\right) B \text { and } Y_{A} \leq Y_{B}
$$

Furthermore, we define

$$
A^{\dagger}:=C_{G}\left(Y_{A}\right) A \text { and } \mathcal{S}^{\dagger}:=\left\{L \leq G \mid L=L^{\dagger}\right\}
$$

Lemma 3.2 Let L and M be subgroups of G.
(a) $Y_{L} \leq Y_{L^{\dagger}}, L \ll L^{\dagger}$, and $\left(L^{\dagger}\right)^{\dagger}=L^{\dagger}$.
(b) $\mathcal{S}^{\dagger}=\left\{L \leq G \mid C_{G}\left(Y_{L}\right) \leq L\right\}$.
(c) \ll is reflexive and transitive.
(d) $L \subseteq C_{G}\left(Y_{L}\right) M$ if and only if $L \leq C_{G}\left(Y_{L}\right) N_{M}\left(Y_{L}\right)$.
(e) Suppose that $L \subseteq C_{G}\left(Y_{L}\right) M$ and $L \cap M$ is a p-parabolic subgroup of L and M. Then Y_{L} is p-reduced for $N_{M}\left(Y_{L}\right)$ and $L \ll N_{M}\left(Y_{L}\right)$.
(f) If $L=L^{\dagger}$, then $L \ll M$ if and only if $Y_{L} \leq Y_{M}$ and $L=C_{G}\left(Y_{L}\right)(L \cap M)$.
(g) Restricted to $\mathcal{S}^{\dagger}, \ll$ is a partial ordering.

Proof: (a): Clearly Y_{L} is a p-reduced subgroup of L^{\dagger}, so $Y_{L} \leq Y_{L^{\dagger}}$. Thus $C_{G}\left(Y_{L^{\dagger}}\right) \leq C_{G}\left(Y_{L}\right) \leq$ L^{\dagger} and $L^{\dagger}=\left(L^{\dagger}\right)^{\dagger}$.
(b): This is an immediate consequence of the definition of L^{\dagger}.
(c): Obviously \ll is reflexive. If $A, B, C \leq G$ with $A \ll B$ and $B \ll C$, then $Y_{A} \leq Y_{B} \leq Y_{C}$ and so $Y_{A} \leq Y_{C}$. Also $C_{G}\left(Y_{B}\right) \leq C_{G}\left(Y_{A}\right)$ and hence

$$
A \subseteq C_{G}\left(Y_{A}\right) B \subseteq C_{G}\left(Y_{A}\right) C_{G}\left(Y_{B}\right) C=C_{G}\left(Y_{A}\right) C
$$

Thus $A \ll C$ and \ll is transitive.
(d): If $L \subseteq C_{G}\left(Y_{L}\right) M$ then $L \leq N_{G}\left(Y_{L}\right) \cap C_{G}\left(Y_{L}\right) M=C_{G}\left(Y_{L}\right) N_{M}\left(Y_{L}\right)$. The other direction is obvious.
(e): Since $L \cap M$ is a p-parabolic subgroup of L,

$$
Y_{L} \leq O_{p}(L) \leq L \cap M \leq N_{M}\left(Y_{L}\right)
$$

so Y_{L} is an elementary abelian normal subgroup of $N_{M}\left(Y_{L}\right)$. Since $L \cap M$ is a p-parabolic subgroup of $M, C_{G}\left(Y_{L}\right)(L \cap M)$ and thus also $C_{G}\left(Y_{L}\right) L$ are p-parabolic subgroups of $C_{G}\left(Y_{L}\right) N_{M}\left(Y_{L}\right)$.

As Y_{L} is a p-reduced subgroup of $C_{G}\left(Y_{L}\right) L, 2.2(\mathrm{~b})$ shows that $Y_{L}=\left\langle Y_{L}^{C_{G}\left(Y_{L}\right) N_{M}\left(Y_{L}\right)}\right\rangle$ is p-reduced for $C_{G}\left(Y_{L}\right) N_{M}\left(Y_{L}\right)$. Hence Y_{L} is also a p-reduced subgroup of $N_{M}\left(Y_{L}\right)$. Thus $Y_{L} \leq Y_{N_{M}\left(Y_{L}\right)}$ and so $L \ll N_{M}\left(Y_{L}\right)$.
(f): Since $L \in \mathcal{S}^{\dagger}$ we have $C_{G}\left(Y_{L}\right) \leq L$ and so $L \subseteq C_{G}\left(Y_{L}\right) M$ implies $L=C_{G}\left(Y_{L}\right)(L \cap M)$. Now (f) is obvious.
(g): Let $L, M \in \mathcal{S}^{\dagger}$ with $L \ll M$ and $M \ll L$. Since $Y_{L} \leq Y_{M} \leq Y_{L}$, we have $Y_{L}=Y_{M}$. By (f) $L=C_{G}\left(Y_{L}\right)(L \cap M)$ and $M=C_{G}\left(Y_{M}\right)(M \cap L)$. Hence $Y_{M}=Y_{L}$ gives $L=M$. So the restriction of \ll to \mathcal{S}^{\dagger} is anti-symmetric. Now (g) follows (c).

Notation 3.3 Put $\mathcal{S}^{\dagger}(S):=\left\{L \in \mathcal{S}^{\dagger} \mid S \leq L\right\}$. According to 3.2 $(g) \ll$ restricted to $\mathcal{S}^{\dagger}(S)$ is a partial ordering on $\mathcal{S}^{\dagger}(S)$. We denote the set of maximal elements of $\mathcal{S}^{\dagger}(S)$ with respect to \ll by $\mathcal{F}(S)$.

Theorem 3.4 $\mathcal{F}(\mathcal{S})$ is the unique factorization family for $\mathcal{S}(S)$.
Proof: Let \mathcal{G} be a factorization family for $\mathcal{S}(S)$ and let $M \in \mathcal{G}$. Clearly $M \leq M^{\dagger}$ and by $3.2(\mathrm{a}), Y_{M} \leq Y_{M^{\dagger}}$. So Condition (ii) of 1.2 gives $M=M^{\dagger}$. Thus $M \in \mathcal{S}^{\dagger}(S)$ and $\mathcal{G} \subseteq \mathcal{S}^{\dagger}(S)$.

Now let \mathcal{G} be any subset of $\mathcal{S}^{\dagger}(S)$. Then Condition (i) of 1.2 is fulfilled for \mathcal{G} if and only if for each $L \in \mathcal{S}(S)$ there exists $M \in \mathcal{G}$ with $L \ll M$. Since $L \ll L^{\dagger}$ and \ll is transitive by 3.2 , we conclude that \mathcal{G} fulfills (i) if and only if \mathcal{G} contains all the maximal elements of $\mathcal{S}^{\dagger}(S)$ with respect to \ll. And Condition (ii) holds if and only if all elements of \mathcal{G} are maximal with respect to \ll in $\mathcal{S}^{\dagger}(S)$. Thus $\mathcal{F}(S)$ is the unique factorization family for $\mathcal{S}(S)$.

Lemma 3.5 Let $M \in \mathcal{F}(S)$ and $H \in \mathcal{S}(S)$ with $M=C_{M}\left(Y_{M}\right)(M \cap H)$. If H is p-constrained, then $H=O_{p^{\prime}}(H)(H \cap M)$. In particular, if G is of parabolic characteristic p and $S \leq L \leq M$ with $M=C_{M}\left(Y_{M}\right) L$, then M is the unique maximal p-local subgroup of G containing L.

Proof: Put $\bar{H}=H / O_{p^{\prime}}(H)$. Since $M=C_{M}\left(Y_{M}\right)(H \cap M), Y_{M}$ is p-reduced for $H \cap M$ and $\overline{Y_{M}}$ is a p-reduced subgroup of $\overline{H \cap M}$. So by $2.2(\mathrm{c}), \overline{Y_{M}} \leq Y_{\bar{H}}$. Let $Y \leq S$ with $\bar{Y}=Y_{\bar{H}}$ and $K:=N_{H}(Y)$. Then by the Frattini argument, $H=O_{p^{\prime}}(H) K$. It follows that Y is a p-reduced subgroup of K, so $Y_{M} \leq Y \leq Y_{K}$.

As $Y O_{p^{\prime}}(H) \cap M=Y\left(O_{p^{\prime}}(H) \cap M\right)$, we also get, using the Frattini argument one more time,

$$
H \cap M=\left(O_{p^{\prime}}(H) \cap M\right)(K \cap M)=O_{p^{\prime}}(M \cap H)(K \cap M)
$$

Thus $M=C_{M}\left(Y_{M}\right)(H \cap M) \leq C_{G}\left(Y_{M}\right) K$ since $O_{p^{\prime}}(M \cap H)$ centralizes Y_{M}. Now 1.2(ii) implies that $K \leq M$ and so $H=O_{p^{\prime}}(H)(H \cap M)$. Hence the first statement holds.

To prove the the second statement, let H be a p-local subgroup containing L. Then $M=$ $C_{M}\left(Y_{M}\right) L$ implies $M=C_{M}\left(Y_{M}\right)(H \cap M)$. On the other hand H is of characteristic p since G has parabolic characteristic p, so H is p-constrained and $O_{p^{\prime}}(H)=1$. Hence by the first statement $H=O_{p^{\prime}}(H)(H \cap M) \leq M$.

Lemma 3.6 Let $M \in \mathcal{F}(S), S_{0}:=C_{S}\left(Y_{M}\right)$ and $M_{0}:=N_{M}\left(S_{0}\right)$.
(a) $M=C_{M}\left(Y_{M}\right) M_{0}, S_{0}=O_{p}\left(M_{0}\right)$ and $C_{S}\left(S_{0}\right) \leq S_{0}$.
(b) $\Omega_{1} Z(S) \leq Y_{M}=Y_{M_{0}}=\Omega_{1} Z\left(S_{0}\right)$.

Proof: (a): The Frattini argument gives $M=C_{M}\left(Y_{M}\right) M_{0}$. Hence $O_{p}\left(M_{0}\right)=S_{0}$, since Y_{M} is p-reduced. Clearly $Y_{M} \leq \Omega_{1} Z\left(S_{0}\right)$, and so

$$
C_{S}\left(S_{0}\right) \leq C_{S}\left(\Omega_{1} Z\left(S_{0}\right)\right) \leq C_{S}\left(Y_{M}\right) \leq S_{0}
$$

(b): Let $S_{0} \leq S_{1} \leq S$ with

$$
S_{1} C_{M_{0}}\left(\Omega_{1} Z\left(S_{0}\right)\right) / C_{M_{0}}\left(\Omega_{1} Z\left(S_{0}\right)\right)=O_{p}\left(M_{0} / C_{M_{0}}\left(\Omega_{1} Z\left(S_{0}\right)\right)\right)
$$

Then $S_{1} C_{M}\left(Y_{M}\right) / C_{M}\left(Y_{M}\right)$ is a normalized by $M_{0} C_{M}\left(Y_{M}\right)=M$. Since $O_{p}\left(M / C_{M}\left(Y_{M}\right)\right)=1$ we get $S_{1} \leq C_{M}\left(Y_{M}\right)$, so $S_{1}=S_{0}=O_{p}\left(M_{0}\right)$ by (a), and $\Omega_{1} Z\left(S_{0}\right)$ is p-reduced for M_{0}. Together with 3.2(a) this gives

$$
Y_{M} \leq \Omega_{1} Z\left(S_{0}\right) \leq Y_{M_{0}} \leq Y_{M_{0}^{\dagger}}
$$

In particular $M \ll M_{0}^{\dagger}$, and the maximality of M yields $Y_{M}=Y_{M_{0}^{\dagger}}$. Now (b) follows, since also $\Omega_{1} Z(S) \leq \Omega_{1} Z\left(S_{0}\right)$.

Proof of Theorems 1.3 and 1.4:

By 3.4 $\mathcal{F}(\mathcal{S})$ is the unique factorization family for $\mathcal{S}(S)$. Let $M \in \mathcal{F}(S)$. By $3.6(\mathrm{~b}) \Omega_{1} Z(S) \leq Y_{M}$ and by $3.2(\mathrm{e}) M \ll N_{G}\left(Y_{M}\right)$. Hence the maximality of M gives $M=N_{G}\left(Y_{M}\right)$.

Assume that there exists $N \in \mathcal{F}(\mathcal{S})$ that is F-stable, i.e. $Y:=Y_{N}$ is F-stable in $N_{G}\left(Y_{N}\right)=N$. Then by $2.4 B(S) \leq C_{G}(Y)$ and

$$
N=C_{G}(Y) N_{N}(B(S)) \subseteq C_{G}(Y) L, \quad \text { where } L:=N_{G}(B(S)
$$

in particular $Y \leq \Omega_{1} Z(B(S)) \leq O_{p}\left(N_{G}(B(S))\right)$. Now $2.2(\mathrm{~b})$ implies that $Y \leq Y_{L}$ and so by $1.2(\mathrm{ii})$ $Y=Y_{L}$. It follows that $N=N_{G}\left(Y_{L}\right)$. In particular, N is the unique F-stable member of $\mathcal{F}(S)$. This finishes the proof of 1.3 and also shows 1.4(a).

Now let $1 \neq C \operatorname{char} B(S)$ and put $M:=N_{G}(C)$. Then $N_{N}(B(S)) \leq M$ and thus also $N=$ $C_{G}(Y)(M \cap N)$. Suppose that $Y_{N} \leq O_{p}(M)$. Then as above $2.2(\mathrm{~b})$ implies that $Y_{N} \leq Y_{M}$, and by 1.2 (ii) $Y_{N}=Y_{M}$ and $M \leq N$. So 1.4(b) holds.

Suppose next that M is p-constrained. From $N=C_{G}(Y)(N \cap M)$ and 3.5 we get that $M=$ $O_{p^{\prime}}(M)(M \cap N)$. Hence 1.4(c) holds.

4 The L-Lemma and the qre-Lemma

In this chapter we will work with the following hypothesis.
Hypothesis 4.1 Let P be a finite group of characteristic $p, T \in \operatorname{Syl}_{p}(P), Y \unlhd T$, and $R:=C_{T}(Y)$. Suppose that P is $R O_{p}(P)$-minimal with M being the unique maximal subgroup of P containing $R O_{p}(P)$.

Notation 4.2 Let X be a finite group and V a finite dimensional $G F(p) X$-module. By $c(V, X)$ we denote the number of non-central chief factors of X in V (in a given chief series). We define $q(V, X):=0$ if every quadratically acting subgroup of X already centralizes V, and

$$
q(V, X):=\min \left\{\log _{\left|A / C_{A}(V)\right|}\left|V / C_{V}(A)\right| \mid A \leq X,[V, A, A]=1 \neq[V, A]\right\}
$$

otherwise. Moreover, $r(V, X):=0$ if V does not possess non-central X-chief-factors, and

$$
r(V, X):=\min \{q(C, X) \mid C \text { non-central } X \text {-chief-factor on } V\}
$$

otherwise.
Lemma 4.3 (L-Lemma) Assume Hypothesis 4.1. Let A be a subgroup of T such that $A \not \leq O_{p}(P)$. Then there exists a subgroup $L \leq P$ with $A O_{p}(P) \leq L$ satisfying:
(a) $A O_{p}(L)$ is contained in a unique maximal subgroup L_{0} of L, and $L_{0}=L \cap M^{g}$ for some $g \in P$.
(b) $L=\left\langle A, A^{x}\right\rangle O_{p}(L)$ for every $x \in L \backslash L_{0}$.
(c) L is not contained in any P-conjugate of M.

Proof: See [PPS].
The next lemma is very similar to [Ste, 3.3].
Lemma 4.4 Assume Hypothesis 4.1. Suppose $V:=\left\langle Y^{P}\right\rangle$ is elementary abelian, $C_{O_{p}(P)}(Y) \nexists P$ and $c(V, P)=1$. Then $\left[O_{p}(P), O^{p}(P)\right]$ is non-trivial quadratic offender on Y.

Proof: Since P is $R O_{p}(P)$-minimal, we get from 2.3 that $P=R O^{p}(P) O_{p}(P)$. Put

$$
Q:=\left[O_{p}(P), O^{p}(P)\right], \quad W:=\left[V, O^{p}(P)\right] \quad \text { and } D:=C_{V}\left(O^{p}(P)\right)
$$

Since $c(V, P)=1, W / W \cap D$ is chief-factor for P on V. Hence $\left[W, O_{p}(P)\right] \leq D$. Note that $P=T O^{p}(P)$ normalizes $Y W$ and so $V=Y W$. Thus $[Y, Q] D \unlhd P$. Observe that R centralizes
$[Y, Q] D / D$. Since $O^{p}(P) \leq\left\langle R^{P}\right\rangle$ we conclude that $\left[Y, Q, O^{p}(P)\right] \leq D$. Hence $O^{p}(P)$ centralizes $[Y, Q]$. So $P=T O^{p}(P)$ normalizes $[Y, Q]$ and $[V, Q]=[Y, Q] \leq D$. It follows that

$$
\left[V, O^{p}(P), O_{p}(P)\right]=\left[W, O_{p}(P)\right] \leq D \quad \text { and } \quad\left[O_{p}(P), O^{p}(P), V\right]=[Q, V] \leq D
$$

Hence the Three Subgroup Lemma implies $\left[V, O_{p}(P), O^{p}(P)\right] \leq D$ and so

$$
\begin{equation*}
\left[V, O_{p}(P)\right] \leq D \tag{*}
\end{equation*}
$$

Pick $x \in Y \backslash D$. Since R centralizes x we conclude from $(*)$ that $P=R O^{p}(P) O_{p}(P)$ normalizes $\left\langle x^{O^{p}(P)}\right\rangle D$ and so $W \leq\left\langle x^{O^{p}(P)}\right\rangle D$. Put $X:=[x, Q]$. Since $X \leq D$ it follows that

$$
[W, Q] \leq\left[\left\langle x^{O^{p}(P)}\right\rangle D, Q\right]=[x, Q]=X
$$

As $\left[V, Q, O^{p}(P)\right]=1 \leq X$ and $\left[V, O^{p}(P), Q\right]=[W, Q] \leq X$, the Three Subgroup Lemma implies $\left[Q, O^{p}(P), V\right] \leq X$. Since $\left[Q, O^{p}(V)\right]=Q$ we get $[V, Q]=X$. In particular,

$$
[y, Q]=X \text { for every } y \in Y \backslash C_{Y}(Q)
$$

Now 2.6 shows that Q is a quadratic offender on Y.
If Q acts trivially on Y, then $Q \leq C_{O_{p}(P)}(Y)$ and so $C_{O_{p}(P)}(Y) \unlhd T O^{p}(P)=P$, a contradiction.

Lemma 4.5 Let L be a finite group acting on a p-group E, and let A and B be p-subgroups of L and X and Z subgroups of E. Suppose that
(i) $B \not \leq O_{p}(L)$,
(ii) $[E, A] \leq X \leq C_{E}(A)$ and $[E, B] \leq Z \leq C_{E}(B)$,
(iii) L is $A O_{p}(L)$-minimal and $\left[E, O^{p}(L)\right] \neq 1$,
(iv) X is normalized by E and $O_{p}(L), X$ is abelian, and $E=\left\langle X^{L}\right\rangle$.

Then
(a) $C_{B}(E) \leq B \cap O_{p}(L)$,
(b) $E=X^{g} Z=X^{g} C_{E}(B)$ for some $g \in L$,
(c) $Z=[E, B] C_{Z}(E)=[E, b] C_{Z}(E)$ for all $b \in B \backslash O_{p}(L)$,
(d) $[B, E, E, E]=1$,
(e) $\left|Z / C_{Z}(E)\right| \leq|Z D / D| \leq\left|E / C_{E}(B)\right|$,
(f) $\left|B O_{p}(L) / O_{p}(L)\right| \leq\left|E / C_{E}(B)\right|$.

Proof: By (iii) there exists a unique maximal subgroup L_{0} of L containing $A O_{p}(L)$, and by 2.3 $\left(\bigcap_{g \in L} L_{0}^{g}\right) / O_{p}(L)$ is a p^{\prime}-group.

Pick $b \in B \backslash O_{p}(L)$. Then there exists $g \in L$ with $b \notin L_{0}^{g}$. Put $H:=\left\langle A^{g}, b\right\rangle$. Then $L=H O_{p}(L)$ since $H \not \leq L_{0}^{g}$. Furthermore, we put $D:=\bigcap_{g \in L} X^{g}$.
(a): Again by (iii) $O^{p}(L) \not \leq C_{L}(E)$, so 2.3 shows that $C_{L}(E) / C_{O_{p}(L)}(E)$ is a p^{\prime}-group. Now (a) follows.
(b): By (iv) $O_{p}(L)$ normalizes X, so $X^{L}=X^{H}$. It follows that $D=\bigcap_{h \in H} X^{h}$ and $C_{X^{g}}(b) \leq$ $C_{X^{g}}(H) \leq D$. From $E=\left\langle X^{L}\right\rangle=\left\langle X^{H}\right\rangle$ and (ii) we conclude that

$$
\begin{equation*}
E=X^{g}[E, H]=X^{g}\left[E, A^{g}\right][E, b]=X^{g}[E, b]=X^{g} Z \tag{*}
\end{equation*}
$$

Since $Z \leq C_{E}(B)$ by (ii), (b) holds.
(c): Since $X^{g} \cap Z \leq C_{X^{g}}(H) \leq D$, we get $X^{g} \cap Z=D \cap Z$ and so by (b) and (*)

$$
|E / X|=\left|E / X^{g}\right|=\left|Z X^{g} / X^{g}\right|=\left|Z / Z \cap X^{g}\right|=|Z / Z \cap D|
$$

Moreover, using (*)

$$
Z=\left(X^{g} \cap Z\right)[E, b] \leq(Z \cap D)[E, b] \leq C_{Z}(E)[E, b] \leq C_{Z}(E)[E, B] \leq Z
$$

and so (c) holds.
(d): Since L is $A O_{p}(L)$-minimal, $A \not \leq O_{p}(L)$ and so (b) can be applied with A and A^{g} in place of A and B. Then $E=X X^{t}$ for some $t \in L$; in particular $\left[X^{t}, X\right] \leq X \cap X^{t} \leq D \leq Z(E)$. Thus $E^{\prime} \leq D \leq Z(E)$ and $[B, E, E, E] \leq\left[E^{\prime}, E\right]=1$. So (d) holds.
(e): By (ii) and (b)

$$
C_{E}(B) \leq C_{X^{g}}(B) Z=C_{X^{g}}(H) Z=D Z
$$

Hence

$$
\left|E / C_{E}(B)\right| \geq|E / Z D|=\left|X^{g} Z D / Z D\right|=\left|X^{g} / X^{g} \cap Z D\right|=\left|X^{g} / D\right|
$$

On the other hand, by (b) $|E / X|=\left|Z / Z \cap X^{g}\right|=|Z / Z \cap D|$, while the same result applied to A in place of B gives $|E / X|=|X / D|=\left|X^{g} / D\right|$. Since $D \leq Z(E)$ this gives

$$
\left|E / C_{E}(B)\right| \geq|Z / Z \cap D| \geq\left|Z / C_{Z}(E)\right|
$$

(f): Let $x \in X^{g} \backslash D$ and suppose that $[x, b] \in D$. Then $\langle x\rangle D$ is normalized by $\left\langle X^{g}, b\right\rangle=H$ and so $x \in D$, a contradiction. This shows that $[x, c] \notin D$ for every $c \in B \backslash O_{p}(L)$. Since B acts quadratically on the abelian group E / D we conclude

$$
|[x, B] D / D|=|\{[x, c] D \mid c \in B\}| \geq\left|B O_{p}(L) / O_{p}(L)\right|
$$

Note that by (ii), $[x, B] D \leq Z D$ and so (f) now follows from (e).

Theorem 4.6 Assume Hypothesis 4.1. Let V be a finite dimensional $G F(p) P$-module such that $\left[V, O_{p}(P)\right]=0$ and $\left[V, O^{p}(P)\right] \neq 0$. Then $q(V, P)=0$ or $q(V, P) \geq 1$.

Proof: Let $A \leq T$ be a quadratic on V with $[V, A] \neq 0$. We need to show that that $\left|V / C_{V}(A)\right| \geq$ $\mid A / C_{A}(V)$. The proof is by induction on $|A|$.

Let Y be a non-central P-chief factor in V. By $2.3 C_{T}(Y) \leq O_{p}(P) \leq C_{T}(V)$. It follows that

$$
\left|Y / C_{Y}(A)\right| \leq\left|V / C_{V}(A)\right| \text { and }\left|A / C_{A}(Y)\right|=\left|A / C_{A}(V)\right|
$$

for every $A \leq T$. Hence we may assume that

$1^{\circ} \quad V$ is a non-trivial simple P-module.

We now apply 4.3. Then there exists $A \leq L$ such that L has the properties given in 4.3. In particular, there exists $g \in P$ such that $A \leq T^{g} \cap L \in S y l_{p}(L)$, and $L \cap M^{g}$ is the unique maximal subgroup of L containing $A O_{p}(L)$. Put $U:=\left\langle C_{V}\left(T^{g}\right)^{L}\right\rangle$.
$\mathbf{2}^{\circ} \quad\left[U, O^{p}(L)\right] \neq 0$ and $[U, A] \neq 0$.
By $\left(1^{\circ}\right) C_{V}\left(T^{g}\right)$ is not P-invariant, so $N_{P}\left(C_{V}\left(T^{g}\right)\right) \leq M^{g}$. Since $L \not \leq M^{g}$, we get that $\left[U, O^{p}(L)\right] \neq 0$ and thus also $[U, A] \neq 0$.
$3^{\circ} \quad$ Put $D:=C_{A}(U)$. Then $|A / D| \leq\left|U / C_{U}(A)\right|$.
Observe that by the definition of $U,\left[U, O_{p}(L)\right]=0$. Thus, for $E:=U, B:=A$, and $X:=Z:=$ $C_{U}(A), L$ satisfies the hypothesis of 4.5 . By $4.5(\mathrm{f})$

$$
|A / D|=\left|A / C_{A}(U)\right| \leq\left|A / A \cap O_{p}(L)\right| \leq\left|U / C_{U}(A)\right|
$$

So $\left(3^{\circ}\right)$ holds.
$4^{\circ} \quad\left|D / C_{D}(V)\right| \leq\left|V / C_{V}(D)\right|$.
Since $[U, A] \neq 0, D<A$ and $\left(4^{\circ}\right)$ follows by induction on $|A|$.
Using $\left(3^{\circ}\right)$ and $\left(4^{\circ}\right)$ we compute

$$
\begin{aligned}
\left|A / C_{A}(V)\right| & =\left|A / D \| D / C_{D}(V)\right| \leq\left|U / C_{U}(A)\right|\left|V / C_{V}(D)\right| \\
& \leq\left|C_{V}(D) / C_{V}(A)\right|\left|V / C_{V}(D)\right|=\left|V / C_{V}(A)\right| .
\end{aligned}
$$

The next lemma is a variation of [Ste, 3.2].
Lemma 4.7 (qrc-Lemma) Assume Hypothesis 4.1. Let $V:=\left\langle Y^{P}\right\rangle$. Suppose that
(i) $Y \leq \Omega_{1} Z\left(J\left(O_{p}(P)\right)\right)$,
(ii) $C_{O_{p}(P)}(Y) \nexists P$,
(iii) $J(R) \not \subset O_{p}(P)$.

Then $V \leq \Omega_{1} Z\left(J\left(O_{p}(P)\right)\right), V \neq Y, N_{L}(Y) \leq M,\left[V, O^{p}(P)\right] \neq 1, C_{T}(V) \leq O_{p}(P)$ and there exists $A \in \mathcal{A}(R)$ with

$$
[V, A, A]=1 \neq[V, A] \text { and } A \npreceq O_{p}(P) .
$$

Moreover, one of the following holds, where $q:=q\left(Y, O_{p}(P)\right), r:=r(V, P)$ and $c:=c(V, P)$:
(a) $0 \neq q \leq 1$.
(b) $2 \leq c, 1 \leq r$, and $(q-1)(r c-1) \leq 1$. In particular, $0 \neq q \leq 2$.

Proof: By (i) $V \leq Z J\left(O_{p}(P)\right)$. If $V=Y$, then $C_{O_{p}(P)}(Y) \unlhd P$, a contradiction to (ii). Hence $V \neq Y$ and $R O_{p}(P) \leq T \leq N_{P}(Y)<P$. Since P is $R O_{p}(P)$-minimal we conclude that $N_{P}(Y) \leq M$. So $\left[V, O^{p}(P)\right] \neq 1$. Hence 2.3 gives $C_{T}(V) \leq O_{p}(P)$. In particular, (P, Y) satisfies Hypothesis III of [Ste].

As $C_{T}(V) \leq O_{p}(P)$, (iii) shows that there exists $A \in \mathcal{A}(R)$ such that $[V, A] \neq 1$. By the Timmesfeld Replacement Theorem [KS] we may assume that $[V, A, A]=1$. Moreover, (i) implies that $A \not \leq O_{p}(P)$.

Suppose that $c=1$. Then 4.4 shows that (a) holds. Thus, we may assume from now on that $c \geq 2$.

Suppose that $\left[A \cap O_{p}(P), V\right]=1$. Again by $2.3 O_{p}(P) \cap A=C_{A}(V)=C_{A}(U)$ for every non-central P-chief factor U of V. On the other and, by the maximality of $A,\left|V / C_{V}(A)\right| \leq\left|A / C_{A}(V)\right|$ and thus also $\left|U / C_{U}(A)\right| \leq\left|A / C_{A}(U)\right|$. Hence 4.6 implies that $c=1$, which contradicts our assumption. We have shown that $\left[A \cap O_{p}(P), V\right] \neq 1$; in particular $q \neq 0$. Now [Ste, 3.2 (c)] and 4.6 yield (b).

Lemma 4.8 Assume hypothesis 4.1. Suppose that
(i) $C_{O_{p}(P)}(Y) \nexists P$,
(ii) $Y \leq Z\left(J\left(O_{p}(P)\right)\right) \cap Z(J(T))$,
(iii) $J(T) \nsubseteq O_{p}(P)$.

Then there exist subgroups $A \in \mathcal{A}(T)$ and L of P such that the following hold:
(a) L is $A O_{p}(L)$-minimal.
(b) $O_{p}(P) A \leq T \cap L \in S y L_{p}(L)$, and $M \cap L$ is the unique maximal subgroup of L containing $A O_{p}(L)$.
(c) $Y \nsubseteq L$, and $V_{0}:=\left\langle Y^{L}\right\rangle$ is abelian.
(d) If $Y \leq Z\left(J\left(O_{p}(L)\right)\right)$, then L and Y satisfies the hypothesis of 4.7 with L in place of P.

Proof: From (ii) $[Y, J(T)]=1$ and so $J(T) \leq R$ and $J(R)=J(T)$. So the assumptions of 4.7 are fulfilled. In particular, V is elementary abelian and there exists $A \in \mathcal{A}(T)$ with $[V, A, A]=1 \neq$ $[V, A]$ and $A \not \leq O_{p}(P)$.

Hence we are allowed to apply the L-Lemma 4.3. This gives a subgroup L having the properties (a) - (c) given in 4.3. By 4.3(c) L is not a p-group, and so L is $A O_{p}(L)$-minimal. This is (a).

According to $4.3(\mathrm{a})$ there exists $g \in P$ such that $A O_{p}(L) \leq T^{g} \cap L \in \operatorname{Syl}_{p}(L)$, and $L \cap M^{g}$ is the unique maximal subgroup containing $A O_{p}(L)$. Hence replacing A by $A^{g^{-1}}$ and L by $L^{g^{-1}}$ we may assume that (b) holds.

Clearly $Y \nsubseteq L$ since $L \not \leq M$ but $N_{P}(Y) \leq M$. Since V is abelian, V_{0} is abelian and (c) holds.
From $A \not \leq O_{p}(P)$ and (ii) we get that that $J\left(C_{T \cap L}(Y)\right) \not \leq O_{p}(L)$ and L is $C_{T \cap L}(Y) O_{p}(L)$ minimal. Hence 4.7 (iii) holds for L and Y. Assume that $C_{O_{p}(L)}(Y) \unlhd L$. Then also $C_{O_{p}(P)}(Y) \unlhd L$ and thus $P=\langle T, L\rangle \leq N_{P}\left(C_{O_{p}(P)}(Y)\right)$. This contradicts (i). Hence also 4.7(ii) holds for L and Y, and (d) follows.

$5 \quad$ F-stability

In this section we explore the following hypothesis:
Hypothesis 5.1 Let p be a prime and H a finite group. Suppose that Y is an elementary abelian p-subgroup of H such that for $T \in \operatorname{Syl}_{p}\left(N_{H}(Y)\right)$ and $R:=C_{T}(Y)$ the following hold:
(i) $Y \unlhd N_{H}(J(R))$.
(ii) Y is F-stable in H.
(iii) Either $Y \leq O_{p}(H)$ or H is of characteristic p.

This hypothesis is motivated by the following observation:
Lemma 5.2 Let G be a finite group, $S \in \operatorname{Syl}_{p}(G)$ and $J(S) \leq H \leq G$, and let $\mathcal{F}(S)$ be a factorization family for $\mathcal{S}(S)$. Suppose that $N \in \mathcal{F}(S)$ is F-stable.
(a) If $Y_{N} \leq O_{p}(H)$, then $Y:=Y_{H}$ and H satisfy Hypothesis 5.1.
(b) If H is p-constrained and $\bar{H}:=H / O_{p^{\prime}}(H)$, then $\overline{Y_{N}}$ and \bar{H} satisfy Hypothesis 5.1 in place of Y and H.

Proof: Let $T \in S y l_{p}(H)$ with $J(S) \leq T$. Put $Y:=Y_{N}$ and $R:=C_{T}(Y)$. Since $Y \unlhd S$ and Y is F-stable, 2.4(a) implies that $Y \leq \Omega_{1} Z(J(S)) \leq H$ and $J(S)=J(T)=J(R)$. Observe that $Y \leq O_{p}\left(N_{G}(J(S))\right)$ and so by $1.4(\mathrm{~b}), N_{G}(J(S)) \leq N$. In particular, $T \leq N_{G}(Y)$ and so $T \in \operatorname{Syl}_{p}\left(N_{H}(Y)\right)$. Now (a) follows.

Assume that H is p-constrained. Then $\bar{H}=H / O_{p^{\prime}}(H)$ is of characteristic p. By the Frattiniargument, $\left.N_{\bar{H}}(\bar{Y})\right)=\overline{N_{H}(Y)}$ and $N_{\bar{H}}(J(\bar{R}))=\overline{N_{H}(J(R))}$. Moreover since Y is F-stable in G, \bar{Y} is F-stable in \bar{H}. Thus Hypothesis 5.1 holds for \bar{Y} and \bar{H}.

Lemma 5.3 Assume Hypothesis 5.1. Then $Y \unlhd T, Y \leq Z(J(T)), J(R)=J(T), N_{H}(T) \leq N_{H}(Y)$ and $T \in \operatorname{Syl}_{p}(H)$.

Proof: Clearly $Y \unlhd T$. Thus by $2.4(\mathrm{a}),[Y, J(T)]=1$. So $J(T) \leq R$ and $J(T)=J(R)$. Therefore $N_{H}(T) \leq N_{H}(J(R))$ and so by Hypothesis 5.1(i) $N_{H}(T) \leq N_{H}(Y)$. Hence $T \in \operatorname{Syl}_{p}(H)$.

Theorem 5.4 Assume Hypothesis 5.1 and suppose $C_{O_{p}(H)}(Y) \nexists H$. Then Y is not $2 F$-stable in H.

Proof: If any subgroup of H satisfies the conclusion of 5.4 with respect to Y, then also H does. Thus we may assume:
$\mathbf{1}^{\circ} \quad$ No proper subgroup of H satisfies the hypothesis of 5.4 with respect to Y.
Put

$$
H_{0}=N_{H}\left(C_{O_{p}(H)}(Y)\right)
$$

From 5.3 we conclude

$$
\left.\mathbf{2}^{\circ} \quad N_{H}(T) \leq N_{H}(Y) \leq H_{0}, J(R)=J(T), Y \leq Z J(R)\right) \text { and } T \in S y l_{p}\left(H_{0}\right)
$$

Next we show:
$\mathbf{3}^{\circ} \quad$ Let $J(R) O_{p}(H) \leq \tilde{H}<H$. Then $C_{O_{p}(\tilde{H})}(Y) \unlhd \tilde{H}$ and $\tilde{H} \leq H_{0}$.
By $\left(2^{\circ}\right)$ there exists $\tilde{R} \in \operatorname{Syl}_{p}\left(C_{\tilde{\tilde{H}}}(Y)\right)$ with $J(R) \leq \tilde{R}$ and $J(R)=J(T)=J(\widetilde{R})$, and so $Y \unlhd N_{\tilde{H}}(J(\tilde{R}))$. Since $O_{p}(H) \leq O_{p}(\tilde{H}), Y \leq O_{p}(\tilde{H})$ or \tilde{H} is of characteristic p. Moreover Y is F-stable in \widetilde{H}, and so Y and \widetilde{H} satisfy Hypothesis 5.1. Now $\left(1^{\circ}\right)$ shows that $C_{O_{p}(\tilde{H})}(Y) \unlhd \tilde{H}$. Hence $C_{O_{p}(H)}(Y)=O_{p}(H) \cap C_{O_{p}(\tilde{H})}(Y)$ is normal in \tilde{H} and $\tilde{H} \leq H_{0}$.
$4^{\circ} \quad H_{0}$ is the unique maximal subgroup of H containing $J(R) O_{p}(H)$, and H is $J(R) O_{p}(H)$ minimal.

The first statement follows from $\left(3^{\circ}\right)$. If $J(R) \leq O_{p}(H)$, then by 5.3, J(R)=J(O$\left.(H)\right) \unlhd H$, and so by Hypothesis $5.1(\mathrm{i}), H \leq N_{H}(Y) \leq H_{0}$, a contradiction. Hence $J(R) O_{p}(H) \not \leq O_{p}(H)$, and H is $J(R) O_{p}(H)$-minimal.
$5^{\circ} \quad$ Put $W:=\left\langle Y^{H_{0}}\right\rangle$. Then W is elementary abelian.
We will first show that $Y \leq O_{p}\left(H_{0}\right)$. If $Y \leq O_{p}(H)$, this is obvious. Otherwise H is of characteristic p and by $5.3, O_{p}(H)$ normalizes Y. So by 2.5 and $\left(2^{\circ}\right) Y \leq O_{p}\left(H_{0}\right) \leq T$. Now (5°) follows from Hypothesis 5.1(ii) and 2.4(b).

Let \mathcal{W} be the set of all p-subgroups D of H satisfying:
(a) $W O_{p}(H) \leq N_{H}(D) \not \leq H_{0}$.
(b) $D=J(D) \leq H_{0}$.

Clearly $1 \in \mathcal{W}$ and so $\mathcal{W} \neq \emptyset$. Pick $D \in \mathcal{W}$ such that first $|A|$ is maximal for $A \in \mathcal{A}(D)$ and then $|D|$ is maximal. Put $N:=N_{H}(D)$ and $T_{0}:=D O_{p}(H)$ and let $T_{1} \in \operatorname{Syl}_{p}\left(N \cap H_{0}\right)$. Since $T_{0} \leq O_{p}\left(N \cap H_{0}\right), T_{0} \leq T_{1}$. As W is H_{0}-invariant and by $\left(2^{\circ}\right) T \in \operatorname{Syl}_{p}\left(H_{0}\right)$, there exists $g \in H_{0}$ with $W^{g}=W$ and $T_{1}^{g} \leq T$; in particular $D^{g} \in \mathcal{W}$. Thus, after replacing D by D^{g} we may assume that $T_{1} \leq T$.
$\mathbf{6}^{\circ} \quad Y \leq Z\left(J\left(T_{1}\right)\right)$, and if $Y \leq T_{0}$ then $Y \leq Z\left(J\left(T_{0}\right)\right)$.
Since $T_{1} \leq T, T_{1}$ normalizes Y. So (6°) follows from 2.4(a).
$7^{\circ} \quad$ Let U be a p-subgroup of H_{0} containing D. Suppose that $W \leq N_{H}(U)$ and $N_{H}(U) \not 又 H_{0}$. Then $J(U)=D$, and if $Y \leq U$ then $Y \leq Z(D)$.

Observe that $W \leq N_{H}(U) \leq N_{H}\left(U O_{p}(H)\right)$. Hence $N_{H}\left(U O_{p}(H)\right) \not \leq H_{0}$ and $J\left(U O_{p}(H)\right) \in \mathcal{W}$. Since $D \leq U \leq U O_{p}(H)$, the maximal choice of D gives $D=J\left(U O_{p}(H)\right)=J(U)$.

Suppose that $Y \leq U$, then $J(U)=D \leq T_{1} \leq N_{H}(Y)$ and so by $2.4(\mathrm{a}), Y \leq Z(J(U))=Z(D)$.
$8^{\circ} \quad J(T) \neq D$ and $J\left(T_{1}\right) \neq D$.
Suppose $J(T)=D$. Then by 5.3 and Hypothesis $5.1(\mathrm{i}), N \leq N_{G}(J(T)) \leq N_{G}(Y)$ and so $N \leq$ $N_{H}\left(C_{O_{p}(H)}(Y)\right) \leq H_{0}$, contrary to the choice of D.

Suppose $J\left(T_{1}\right)=D$. Then $N_{T}\left(T_{1}\right) \leq N_{H}\left(J\left(T_{1}\right)\right)=N$. So $N_{T}\left(T_{1}\right) \leq T_{1}, T=T_{1}$ and $J(T)=$ $J\left(T_{1}\right)=D$, a contradiction.
$\mathbf{9}^{\circ} \quad$ Let U be a p-subgroup of H_{0} containing $W D$. Suppose that $J(U) \neq D$ or $Y \not \leq Z(D)$. Then U is not contained in any H-conjugate of H_{0} other than H_{0}.

Let $g \in H$ with $U \leq H_{0}^{g}$ and $U \leq T_{2} \in S y l_{p}\left(H_{0} \cap H_{0}^{g}\right)$. If $J\left(T_{2}\right)=D$, then also $D=J(U)$ and thus $Y \not \leq Z(D)$. Thus either $J\left(T_{2}\right) \neq D$ or $Y \not \leq Z(D)$. So $\left(7^{\circ}\right)$ gives $N_{H}\left(T_{2}\right) \leq H_{0}$. This implies $N_{H_{0}^{g}}\left(T_{2}\right) \leq H_{0} \cap H_{0}^{g}$ and so $T_{2} \in \operatorname{Syl}_{p}\left(H_{0}^{g}\right)$. By $\left(4^{\circ}\right), H_{0}^{g}$ is the unique maximal subgroup of H containing T_{2}. Since $T_{2} \leq H_{0}$ we get $H_{0}=H_{0}^{g}$.
$1 \mathbf{1 0}^{\circ} \quad T_{1} \in \operatorname{Syl}_{p}(N), J\left(T_{1}\right) \not \leq O_{p}(N)$, and $W J\left(T_{1}\right) D$ is not contained in any other H-conjugate of H_{0}.

By $\left(8^{\circ}\right)$ and $\left(7^{\circ}\right) N_{H}\left(J\left(T_{1}\right) D\right) \leq H_{0}$, so $N_{N}\left(T_{1}\right) \leq N \cap H_{0}$ and $T_{1} \in \operatorname{Syl}_{p}(N)$. If $J\left(T_{1}\right) \leq O_{p}(N)$, then $J\left(T_{1}\right)=J\left(O_{p}(N)\right)$ and $N \leq N_{H}\left(J\left(T_{1}\right) D\right) \leq H_{0}$, a contradiction.

Put $U:=W J\left(T_{1}\right) D$. By $\left(8^{\circ}\right), J(U) \neq D$ and so the last statement in $\left(10^{\circ}\right)$ follows from $\left(9^{\circ}\right)$.
$11^{\circ} \quad$ There exists a $W J\left(T_{1}\right) T_{0}$-minimal subgroup $H_{1} \leq N$ such that $H_{1} \cap H_{0}$ is a maximal subgroup of H_{1} and $J\left(O_{p}\left(H_{1}\right)\right)=D$.

By definition of $\mathcal{W}, N \not \leq H_{0}$. Choose $W J\left(T_{1}\right) T_{0} \leq H_{1} \leq N$ such that H_{1} is minimal with $H_{1} \not \leq H_{0}$. Since $H_{1} \not \leq H_{0}, N_{H}\left(O_{p}\left(H_{1}\right)\right) \not \leq H_{0}$. Also $W O_{p}(H)$ normalizes $O_{p}\left(H_{1}\right)$ and $D \leq O_{p}\left(H_{1}\right)$. So by $\left(7^{\circ}\right) J\left(O_{p}\left(H_{1}\right)\right)=D$. Since $J\left(T_{1}\right) \neq D$ by $\left(8^{\circ}\right)$ we conclude $J\left(T_{1}\right) \not \leq O_{p}\left(H_{1}\right)$. Hence also $W J\left(T_{1}\right) T_{0} \not \leq O_{p}\left(H_{1}\right)$, and H_{1} is $W J\left(T_{1}\right) T_{0}$-minimal.

In the following let H_{1} be as in $\left(11^{\circ}\right)$. Pick $W J\left(T_{1}\right) T_{0} \leq T_{3} \in S y l_{p}\left(H_{1} \cap H_{0}\right)$. Then H_{1} is $T_{3}{ }^{-}$ minimal and so $T_{3} \in \operatorname{Syl}_{p}\left(H_{1}\right)$. Since $T_{3} \leq N \cap H_{0}$ and $T_{1} \in \operatorname{Syl}_{p}\left(H_{0} \cap N\right)$, there exists $g \in N \cap H_{0}$ with $J\left(T_{1}\right) \leq T_{3} \leq T_{1}^{g}$. Hence g normalizes $J\left(T_{1}\right), D$ and W, and thus also $W J\left(T_{1}\right) T_{0}$. So replacing H_{1} by H_{1}^{g} and T_{3} by T_{3}^{g} we may assume that $T_{3} \leq T_{1} \leq T$.

Case $1 \quad$ The case $Y \leq O_{p}\left(H_{1}\right)$.
$\mathbf{1 2}^{\circ} \quad Y$ and H_{1} satisfy the hypotheses of 4.8.
Since $T_{3} \leq T_{1}, Y \unlhd T_{3}$. By $\left(5^{\circ}\right)$ and $\left(6^{\circ}\right) Y \leq Z\left(W J\left(T_{1}\right)\right)$, so H_{1} satisfies Hypothesis 4.1. Hence $\left(8^{\circ}\right)$ and $\left(11^{\circ}\right)$ give Hypothesis 4.8(iii), while 2.4(a) gives Hypothesis 4.8(ii).

Assume that $C_{O_{p}\left(H_{1}\right)}(Y) \unlhd H_{1}$. As $O_{p}(H) \leq O_{p}\left(H_{1}\right)$, also $C_{O_{p}(H)}(Y) \unlhd H_{1}$, which contradicts $H_{1} \not \leq H_{0}$. Hence also Hypothesis 4.8(i) holds.

According to $\left(12^{\circ}\right)$ we are allowed to apply 4.8 to Y and H_{1}. Let L and V be with the properties given there. Since $Y \leq O_{p}(L) \leq T_{1}$, we get from 2.4(a) that $Y \leq Z\left(J\left(O_{p}(L)\right)\right.$. Thus, by $4.8(\mathrm{~d}) L$ and Y satisfy the hypothesis of 4.7.

Since Y is $2 F$-stable we are in case $4.7(\mathrm{~b})$, so $0 \neq q\left(Y, O_{p}\left(H_{1}\right)\right) \leq 2$. Thus there exists non-trivial quadratic 2 F -offender on Y and the lemma is proved in (Case 1).

Case $2 \quad$ The case $Y \not \leq O_{p}\left(H_{1}\right)$.
By our assumption on H, in this case H has characteristic p. Hence also H_{1} has characteristic p since $O_{p}(H) \leq H_{1}$. We now apply the L-Lemma 4.3 with W and H_{1} in place of A and P. Then there exists $W O_{p}\left(H_{1}\right) \leq L$ such that
(i) L is $W O_{p}(L)$-minimal and
(ii) there exists $g \in H_{1}$ such that $L_{0}:=H_{0}^{g} \cap L$ is the unique maximal subgroup of L containing $W O_{p}(L)$.
$13^{\circ} \quad L_{0}=L \cap H_{0}, Y \not \leq Z(D)$ and $J\left(O_{p}(L)\right)=D$.
Let g as in (ii). Then $W D \leq H_{0} \cap H_{0}^{g}$ and $Y \not \leq Z(D)$ since $D \leq O_{p}\left(H_{1}\right)$. Hence $\left(9^{\circ}\right)$ implies $H_{0}=H_{0}^{g}$; in particular $L_{0}=L \cap H_{0}$ and $L \not \leq H_{0}$. Now $\left(7^{\circ}\right)$ also gives $J\left(O_{p}(L)\right)=D$.

According to $\left(13^{\circ}\right)$ we may assume, after conjugation by a suitable element of $H_{0} \cap H_{1}$, that
$14^{\circ} \quad W O_{p}(L) \leq T \cap L \in \operatorname{Syl}_{p}\left(L_{0}\right)$. In particular $O_{p}(L) \leq T$ and $O_{p}(L)$ normalizes Y.
By $\left(13^{\circ}\right), Y \not \leq Z J\left(O_{p}(L)\right)$. Since $O_{p}(L)$ normalizes Y, we get from 2.4 that
$15^{\circ} \quad Y \not \leq O_{p}(L)$.
Put

$$
A:=W, B:=Y, X:=O_{p}(L) \cap A, E:=\left\langle X^{L}\right\rangle, Z:=O_{p}(L) \cap B
$$

By $\left(5^{\circ}\right) A$ is abelian, and by $\left(14^{\circ}\right) O_{p}(L)$ normalizes A and B. Moreover, since $O_{p}\left(H_{1}\right) \leq O_{p}(L)$ and H_{1} has characteristic $p,\left[E, O^{p}(L)\right] \neq 1$. It follows that the hypotheses of 4.5 are satisfied.

By 4.5(a), $C_{Y}(E) \leq Y \cap O_{p}(L)$ and so by $4.5(\mathrm{c}),[b, Y] C_{Y}(E)=[E, Y] C_{Y}(E)=Y \cap O_{p}(L)$ for all $b \in Y \backslash O_{p}(L)$. Moreover, by $4.5(\mathrm{~d})[Y, E, E, E]=1$ and by $4.5(\mathrm{e})$,(f) we have $\left|Y / C_{Y}(E)\right| \leq$ $\left|E / C_{E}(Y)\right|^{2}$. So E is a nearly quadratic $2 F$-offender on Y. Hence the lemma also holds in (Case 2).

Lemma 5.5 Assume Hypothesis 5.1. Suppose that $Y \not \geqq H$ and Y is $2 F$-stable. Then $\Omega_{1} Z(T) \nexists H$.
Proof: Let $T \leq P \leq H$ and P be minimal with $Y \nsupseteq P$. By $5.3 N_{H}(T) \leq N_{H}(Y)$, so $T \nexists P$ and P is T-minimal. Put

$$
Q:=C_{O_{p}(P)}(Y), V_{0}:=\Omega_{1}(Z(Q)), V:=C_{V_{0}}\left(O_{p}(P)\right), \bar{P}:=P / C_{P}(V)
$$

If $Z(T) \not \leq O_{p}(P), Z(T) \nsubseteq P$. So we may assume $\Omega_{1} Z(T) \leq O_{p}(P)$ and thus $\Omega_{1} Z(T)=C_{V}(T)$. By $5.4 Q \unlhd P$. Since either $Y \leq O_{p}(H) \leq O_{P}(P)$ or P is of characteristic $p, 2.5$ implies $Y \leq O_{p}(P)$. Thus $Y \leq V_{0}$. Since $Y \nsubseteq P$, we get that $\left[V_{0}, O^{p}(P)\right] \neq 1$. By $5.3, J(R)=J(T)$ and so by Hypothesis 5.1(i), $J(R) \nsubseteq O_{p}(P)$. Hence 2.3 shows that $\left[O^{p}(P), J(R)\right]=O^{p}(P)$. Since $J(R)$ centralizes $Y,\left[O_{p}(P), J(R)\right] \leq O_{p}(P) \cap J(T) \leq Q$ and so $\left[O_{p}(P), O^{p}(P)\right] \leq Q$. The $P \times Q$-Lemma yields $\left[V, O^{p}(P)\right] \neq 1$.

Again 2.3 gives $C_{T}(V)=O_{p}(P)$ and $O_{p}(\bar{P})=1$. Moreover $\overline{J(T)} \neq 1$ since $J(R) \not \leq O_{p}(P)$. Hence \bar{P} and V satisfy the hypothesis of $[\mathrm{BHS}, 5.6]$. It follows that $\left[C_{V}(T), P\right] \neq 1$. Since $C_{V}(T)=\Omega_{1} Z(T)$ and $P=\left\langle T^{P}\right\rangle$ we conclude that $\Omega_{1} Z(T) \nsubseteq P$ and so also $Z(T) \nsubseteq H$.

6 The Proof of Theorems 1.5-1.8

Recall that Theorems 1.3 and 1.4 have been proved in Section 3.

Proof of Theorem 1.5:

(a): Observe that $N=N_{G}\left(Y_{N}\right)$ by 1.3. Suppose $Y_{N} \leq O_{p}(M)$. If $M=N_{G}(C)$ for $1 \neq$ C char $B(S)$, then $1.5(\mathrm{a})$ follows from $1.4(\mathrm{~b})$. If $\Omega_{1} Z(S) \unlhd M$, then $5.2(\mathrm{a})$ shows that Y_{N} and M satisfy Hypothesis 5.1. Hence 5.5 gives $Y_{N} \unlhd M$ and so $M \leq N$.
(b): Put $\bar{M}:=M / O_{p^{\prime}}(M)$. Then 5.2(b) shows that $\overline{Y_{N}}$ and \bar{M} satisfy Hypothesis 5.1. Thus 5.5 gives $\overline{Y_{N}} \unlhd \bar{M}$. By the Frattini-argument $M=O_{p^{\prime}}(M) N_{M}\left(Y_{N}\right)=O_{p^{\prime}}(M)(M \cap N)$.
(c): Let $B(S) \leq H \leq G$ and H be p-constrained with $H \neq O_{p^{\prime}}(H)(H \cap N)$, and let $B(S) \leq T \in$ $S y l_{p}\left(N_{H}\left(Y_{N}\right)\right)$. Put $\bar{H}:=H / O_{p^{\prime}}(H)$. Then again $5.2(\mathrm{~b})$ shows that $\overline{Y_{N}}$ and \bar{H} satisfy Hypothesis 5.1. Hence by 5.4, $C_{O_{p}(\bar{H})}\left(\overline{Y_{N}}\right) \unlhd H$ and by $2.5, \overline{Y_{N}} \leq O_{p}(\bar{H})$. From 5.5 applied to $N_{\bar{H}}\left(\Omega_{1} Z(\bar{T})\right)$ we get $\overline{Y_{N}} \unlhd N_{\bar{H}}\left(\Omega_{1} Z(\bar{T})\right)$. Recall that $Y_{N} \leq \Omega_{1} Z(J(S)) \leq O_{p}\left(N_{G}(J(S))\right.$. Thus by 1.4(b), $N_{G}(J(S)) \leq N$. Since $B(T)=B(S)$ we have $J(T)=J(S)$ and so $\overline{Y_{N}} \unlhd C^{* *}(\bar{H}, \bar{T})$. By the Frattini Argument $N_{\bar{H}}\left(\overline{Y_{N}}\right)=\overline{N_{H}\left(Y_{N}\right)}=\overline{H \cap N}$. Hence also $C^{* *}(\bar{H}, \bar{T}) \leq \overline{H \cap N}$.

Proof of Theorem 1.6:

Let $P \in \mathcal{F}(S)$. By 1.3 P is a p-local subgroup of G. Let L be a maximal p-local subgroup containing P. By 2.2 (c) $Y_{P} \leq Y_{L}$ and so $P \ll L$. Hence by $3.4 P=L$.

Suppose that $N \in \mathcal{F}(S)$ is $2 F$-stable. Let $M=N_{G}(C)$ for $1 \neq C$ char $B(S)$ or $M=N_{G}\left(\Omega_{1} Z(S)\right)$. Then $S \leq M$, so M has characteristic p since G is of parabolic characteristic p. Hence 1.5(a) implies $M \leq N$.

Let $H \in \mathcal{S}(B(S))$ and $B(S) \leq T \in S y l_{p}(H)$. Then $B(S)=B(T)$ and so $N_{H}(C) \leq N$ for $1 \neq C$ char $B(T)$. Also $T \leq S^{g}$ for some $g \in N_{G}(B(S)) \leq N$ and $\Omega_{1} Z\left(S^{g}\right) \leq J(S) \leq T$, so $\Omega_{1} Z\left(S^{g}\right) \leq Z(T)$ and $C_{H}\left(\Omega_{1} Z(T)\right) \leq C_{G}\left(\Omega_{1} Z\left(S^{g}\right)\right) \leq N^{g}=N$. Thus $C^{*}(H, T) \leq H \cap N$.

Proof of Corollary 1.7:

By 1.6 the members of $\mathcal{F}(S)$ are maximal p-local subgroups. We may assume that there exists a $2 F$-stable $N \in \mathcal{F}(S)$.

Let L be a maximal p-local subgroup containing S with $L \not \leq N$ and choose $M \in \mathcal{F}(S)$ with $L \ll M$. Then $L \leq C_{G}\left(Y_{L}\right) M$. On the other hand, by $2.2(\mathrm{c}) \Omega_{1} Z(S) \leq Y_{L}$ and so by 1.6 $C_{G}\left(Y_{M}\right) \leq C_{G}\left(\Omega_{1} Z(S)\right) \leq N$. Since $L \not \leq N$ we conclude that $M \not \leq N$ and $M \neq N$. By 1.4 N is the only member of $\mathcal{F}(S)$ which is F-stable. Hence M is not F-stable.

Proof of Theorem 1.8:

Let P be the semi-direct product of G and V. Then $O_{p}(P)=V$ and $\left[V, O^{p}(P)\right] \neq 1$. Let A be an offender on V such that $|A|\left|C_{V}(A)\right|$ is maximal. Because of $[\mathrm{KS}, 9.2 .3]$ we may assume that A is quadratic on V Hence 4.6 implies $\left|A / C_{A}(V)\right|=|V|$, and 1.8 follows.

References

[BHS] D. Bundy, N. Hebbinghaus, B. Stellmacher, The Local $C(G, T)$-Theorem, to appear J. Algebra.
[GLM] R. M. Guralnick, R. Lawther, G. Malle, The $2 F$-Modules of Nearly Simple Groups, preprint.
[GM1] R. M. Guralnick, G. Malle, Classification of $2 F$-Modules, I, J. Algebra 257 (2002), 348372.
[GM2] R. M. Guralnick, G. Malle, Classification of $2 F$-Modules, II, Finite Groups 2003, 117-183.
[KS] H. Kurzweil, B. Stellmacher, The Theory of Finite Groups, Springer Universitext, New York, 2004, xii +387 pp.
[L] R. Lawther, 2F-Modules, Abelian Sets of Roots and 2-ranks, preprint.
[MSS] U. Meierfrankenfeld, B. Stellmacher, G. Stroth, The Structure Theorem, in preparation.
[PPS] C. Parker, G. Parmeggiani, B. Stellmacher, The P!-Theorem, J. Algebra 263 (2003), no. 1, 17-58.
[Ste] B. Stellmacher, On the 2-local Structure of Finite Groups, in Groups, Combinatorics and Geometry, LMS Lecture Notes Series 165 (1992), Cambridge University Press.

