F-stability in finite groups

U. Meierfrankenfeld, B. Stellmacher

October 13, 2009

1 Introduction

Let G be a finite group and p a prime. A subgroup P containing a Sylow p-subgroup of G is a p-parabolic subgroup of G, and P is a local p-parabolic subgroup if in addition $O_p(P) \neq 1$.

Moreover, G has characteristic p if $C_G(O_p(G)) \leq O_p(G)$; and G has parabolic characteristic p if every local p-parabolic subgroup has characteristic p.

The standard examples for groups of parabolic characteristic p are the finite simple groups of Lie type in characteristic p. In these examples every proper parabolic subgroup is a local p-parabolic subgroup, and for maximal parabolic subgroups M the normal subgroup $\Omega_1 Z(O_p(M))$, considered as a GF(p)M-module, has a remarkably restricted structure. In this paper we try to understand this phenomena in arbitrary finite groups.

What kind of properties of the module $\Omega_1 Z(O_p(M))$ should one aim at in general? A possible answer arose during our detailed study of the p-local structure of groups of local characteristic p in [MSS], where a group has local characteristic p if each of its p-local subgroup has characteristic p.

Definition 1.1 Let A be an elementary abelian p-group and V a finite dimensional GF(p)A-module. Then A is

- (a) quadratic on V if [V, A, A] = 0,
- (b) nearly quadratic on V if [V, A, A, A] = 0 and

 $[V,A] + C_V(A) = [v,A] + C_V(A) \text{ for every } v \in V \setminus [V,A] + C_V(A),$

- (c) an offender on V if $|V/C_V(A)| \leq |A/C_A(V)|$,
- (d) a 2F-offender on V if $|V/C_V(A)| \leq |A/C_A(V)|^2$,
- (e) non-trivial on V if $[V, A] \neq 0$.

A p-subgroup Y of G is called p-reduced (for G) if Y is elementary abelian and normal in G, and $O_p(G/C_G(Y)) = 1$. The largest p-reduced subgroup of G is denoted by Y_G ; for the existence of Y_G see 2.2(a).

Let M be a subgroup of G. Then M is F-stable (in G) if none of the elementary abelian psubgroups of $N_G(Y_M)/C_G(Y_M)$ are non-trivial offenders on Y_M . Similarly, M is 2F-stable (in G) if none of the elementary abelian p-subgroups of $N_G(Y_M)/C_G(Y_M)$ are non-trivial nearly quadratic 2F-offenders on Y_M . Modules admitting non-trivial 2F-offenders have been investigated by Guralnick, Lawther and Malle in [GLM],[GM1],[GM2], and [L]. They have classified all pairs (V, G), where V is an irreducible GF(p)G-module and G is a known finite almost quasisimple group containing a non-trivial 2F-offender on V.

Their result is a major generalization of earlier results, where G was assumed to contain a non-trivial offender.

For stating our results we need some further definitions.

Definition 1.2 By S(X) we denote the subgroups of G containing X. Let S be Sylow p-subgroup of G. $B(S) := C_S(\Omega_1 Z J(S))$

$$C^*(G,S) := \langle C_G(\Omega_1 Z(S))), N_G(C) \mid 1 \neq C \text{ char } B(S) \rangle,$$

and

$$C^{**}(G,S) = \langle N_G(J(S)), C_G(\Omega_1 Z(S)) \rangle.$$

A factorization family for $\mathcal{S}(S)$ is a subset $\mathcal{F}(S) \subseteq \mathcal{S}(S)$ with the following two properties:

- (i) For every $H \in \mathcal{S}(S)$ there exists $M \in \mathcal{F}(\mathcal{S})$ with $H \subseteq C_G(Y_H)M$ and $Y_H \leq Y_M$.
- (ii) If $H \in \mathcal{S}(S)$ and $M \in \mathcal{F}(S)$ with $M \subseteq C_G(Y_M)H$ and $Y_M \leq Y_H$, then $Y_M = Y_H$ and $H \leq M$.

Property (i) implies

$$H/C_H(Y_H) \cong HC_G(Y_H)/C_G(Y_H) \cong (HC_G(Y_H) \cap M)C_G(Y_H)/C_G(Y_H)$$

so the action of H on Y_H is isomorphic to the action of $HC_G(Y_H) \cap M$ on the submodule Y_H of Y_M . In particular, it suffices to identify $M/C_M(Y_M)$ and its action on Y_M to identify $H/C_H(Y_H)$ and Y_H .

Property (ii) is the crucial one for applications since it has strong consequences. For example, if G is of parabolic characteristic p and $S \leq H \leq M \in \mathcal{F}(S)$ such that $M = HC_M(Y_M)$, then M is the unique maximal p-local subgroup of G containing H (see 3.5).

Of course, it is not clear a priori that factorization families exist. The existence (and uniqueness) will be established in Theorem 3.4.

Theorem 1.3 Let G be a finite group and $S \in Syl_p(G)$. There exists a unique factorization family $\mathcal{F}(S)$ for $\mathcal{S}(S)$ in G. Moreover, at most one member of $\mathcal{F}(S)$ is F-stable, and

$$\Omega_1 Z(S) \leq Y_M$$
 and $M = N_G(Y_M)$ for every $M \in \mathcal{F}(S)$;

in particular, the elements of $\mathcal{F}(S)$ are p-local subgroups of G if $S \neq 1$.

In the following results $\mathcal{F}(S)$ is always a factorization family for $\mathcal{S}(S)$. Recall that a finite group H is *p*-constrained if $H/O_{p'}(H)$ is of characteristic *p*.

Theorem 1.4 Let G be a finite group and $S \in Syl_p(G)$, and let $1 \neq C$ char B(S) and $M := N_G(C)$. Suppose that there exists $N \in \mathcal{F}(S)$ that is F-stable.

(a) If
$$C = B(S)$$
, then $Y_N = Y_M$ and $N = C_G(Y_M)M = N_G(Y_M)$.

- (b) If $Y_N \leq O_p(M)$, then $Y_M = Y_N$ and $M \leq N$.
- (c) If M is p-constrained, then $M = O_{p'}(M)(M \cap N)$.

Theorem 1.5 Let G be a finite group and $S \in Syl_p(G)$, and let $M \in \mathcal{S}(S)$ such that $\Omega_1 Z(S) \leq M$ or $M = N_G(C)$ for some $1 \neq C$ char B(S). Suppose that there exists $N \in \mathcal{F}(S)$ that is 2F-stable.

- (a) If $Y_N \leq O_p(M)$, then $M \leq N$.
- (b) If M is p-constrained, then $M = O_{p'}(M)(M \cap N)$.
- (c) The following hold for any p-constrained $H \in \mathcal{S}(\mathcal{B}(S))$ with $H \nsubseteq O_{p'}(H)N$ (where $\overline{H} = H/O_{p'}(H)$):
 - (a) $\overline{Y_N} \leq O_p(\overline{H}).$
 - $(b) \ C_{O_{p}(\overline{H})}(\overline{Y_{N}}) \trianglelefteq \overline{H}.$
 - (c) $Y_{\overline{H}}$ is not *F*-stable in \overline{H} .
 - (d) $C^{**}(\overline{H},\overline{T}) \leq \overline{H \cap N} < \overline{H}$, where $B(S) \leq T \in Syl_p(H)$.

For groups of parabolic characteristic p more can be said about the members of the factorization family $\mathcal{F}(S)$.

Theorem 1.6 Let G be a finite group of parabolic characteristic p and $1 \neq S \in Syl_p(G)$. Then the members of $\mathcal{F}(S)$ are maximal p-local subgroups of G. Moreover, if $N \in \mathcal{F}(S)$ is 2F-stable and $H \in \mathcal{S}(B(S))$ with $B(S) \leq T \in Syl_p(H)$, then $C^*(H,T) \leq N$.

Corollary 1.7 Let G be a finite group of parabolic characteristic p and $S \in Syl_p(G)$. If S is contained in at least two maximal p-local subgroups of G, then there exists $M \in \mathcal{F}(S)$ such that M is not 2F-stable.

Let G and N be as in 1.6, and let H be a p-local subgroup containing S such that $H \leq N$. Then by 1.6 $C^*(H,S)$ is a proper subgroup of H. In this case the structure of H can be described precisely using the Local C(G,T)-Theorem proved in [BHS].

The proof of the above theorems relies heavily on two elementary results from [PPS] and [Ste], the *L*-Lemma and the *qrc*-Lemma. The authors found it remarkable that these results allow to study finite groups in this context without any \mathcal{K} -group assumption.

In fact, using the L-Lemma another result is proved, which is interesting in its own right and which can be used to improve the qrc-Lemma.

Theorem 1.8 Let G be a finite group, $S \in Syl_p(G)$, and V be a finite dimensional faithful GF(p)Gmodule. Suppose that $O_p(G) = 1$ and S is contained in a unique maximal subgroup of G. Then $|A| = |V/C_V(A)|$ for every offender A of G on V.

2 Elementary Properties

In this section G is a finite group, p is a prime, and $S \in Syl_p(G)$.

Notation 2.1 Let X be a p-subgroup of G. A subgroup P of G is X-minimal if X is contained in a unique maximal subgroup of P and $X \leq O_p(P)$.

Lemma 2.2 Let L be a subgroup of G and P be a p-parabolic subgroup of L.

(a) There exists a unique largest p-reduced subgroup Y_L of L.

(b) If Y is a p-reduced subgroup of P with $Y \leq O_p(L)$, then $\langle Y^L \rangle$ is p-reduced for L and so $Y \leq Y_L$.

(c) If L is of characteristic p, then $Y_P \leq Y_L$.

Proof: (a): Let A and B be p-reduced subgroups of L. It suffices to show that also AB is p-reduced. Then Y_L is the product of all p-reduced subgroups of L.

Since A is p-reduced, $B \leq O_p(L) \leq C_L(A)$ and so AB is elementary abelian. Let D be the inverse image of $O_p(L/C_L(AB))$. Since $C_L(AB) \leq C_L(A)$, $DC_L(A)/C_L(A) \leq O_p(L/C_L(A))$ and so $D \leq C_L(A)$. By symmetry, $D \leq C_L(B)$ and thus $D \leq C_L(A) \cap C_L(B) = C_L(AB)$.

(b): Since P is a p-parabolic subgroup of L, $O_p(L) \leq P$. Hence $[Y, O_p(L)] = 1$ since Y is p-reduced in P. By assumption $Y \leq O_p(L)$ and so $Y \leq \Omega_1 Z(O_p(L))$. In particular, $V := \langle Y_P^L \rangle$ is an elementary abelian normal subgroup of L.

Since P contains a Sylow p-subgroup of L, there exists $S_0 \leq P$ such that $S_0C_L(V)/C_L(V) = O_p(L/C_L(V))$ and $S_0 \in Syl_p(S_0C_L(V))$. As $S_0C_P(V) \leq P$ and $C_P(V) \leq C_P(Y_P)$, we get that $S_0C_P(Y_P) \leq P$. Hence $S_0C_P(V) \leq C_P(Y_P)$ since Y_P is p-reduced in P, and so $[V, S_0C_P(V)] = 1$ since $S_0C_P(V) \leq P$. Thus V is p-reduced for L, and by (a) $V \leq Y_L$.

(c): As in (b), $[Y_P, O_p(L)] = 1$. Since L is characteristic $p, Y_P \leq O_p(L)$. So (b) implies $Y_P \leq Y_L$.

Lemma 2.3 Let $X \leq S \leq P \leq G$. Suppose that P is X-minimal and $N \leq P$. Then either $O^p(P) \leq N$ and P = XN, or $S \cap N \leq O_p(P)$. In particular, $P = XO^p(P) = \langle X^P \rangle$.

Proof: Observe that $P = NN_P(S \cap N)$. As P is X-minimal, either NX = P or $N_P(S \cap N) = P$, and in the second case $S \cap N \leq O_p(P)$.

Since $X \nleq O_p(P)$, $S \cap XO^p(P) \nleq O_p(P)$ and so $P = XO^p(P)$. A similar argument gives $P = \langle X^P \rangle$.

Lemma 2.4 Let A be an F-stable elementary abelian p-subgroup of G, and let Q be a p-subgroup of G with $A \leq Q$. Then the following hold:

(a) $A \leq Z(J(Q)).$

(b) $\langle A^{N_G(Q)} \rangle$ is elementary abelian.

Proof: (a): Let $B \in \mathcal{A}(Q)$. Then B acts on A, and $|B| \ge |C_B(A)A|$ by the maximality of B. Also $C_B(A) \cap A \le A \cap B \le C_B(A)$ and so $C_B(A) \cap A = A \cap B$. Hence

$$|C_B(A)||A||C_A(B)|^{-1} \le |C_B(A)||A||A \cap B|^{-1} = |C_B(A)A| \le |B|,$$

and $|A/C_A(B)| \leq |B/C_B(A)|$ follows. The *F*-stability of *A* gives [A, B] = 1 and (a) holds. (b): This is a direct consequence of (a) since $Z(J(Q)) \leq N_G(Q)$.

Lemma 2.5 Let Q be a normal p-subgroup of G with $C_G(Q) \leq Q$ and Y be an abelian p-subgroup of G. If $C_Q(Y) \leq G$ and Q normalizes Y, then $Y \leq O_p(G)$.

Proof: Observe that

$$[Q, Y] \le Q \cap Y \le C_Q(Y).$$

Since $C_Q(Y) \leq G$ this shows that $\langle Y^G \rangle$ centralizes $Q/C_Q(Y)$ and $C_Q(Y)$. Hence $O^p(\langle Y^G \rangle)$ centralizes Q and since $C_G(Q) \leq Q$, $O^p(\langle Y^G \rangle) = 1$ and $\langle Y^G \rangle$ is a p-group. Thus $Y \leq O_p(G)$.

Lemma 2.6 Let A be a finite elementary abelian p-group and V a finite dimensional GF(p)Amodule. Suppose that A is quadratic on V and [v, A] = [V, A] for every $v \in V \setminus C_V(A)$. Then A is a quadratic offender on every A-submodule of V.

Proof: Since every A-submodule of V satisfies the same hypothesis it suffices to show that A is an offender on V. Without loss, $[V, A] \neq 1$. Choose $W \leq [V, A]$ with |[V, A]/W| = p and put $\overline{V} = V/W$. Let U be the inverse image of $C_{\overline{V}}(A)$ in V. Then $[U, A] \leq W$ and so $[V, A] \nleq [U, A]$. Thus $U \leq C_V(A)$ and $C_{\overline{V}}(A) = \overline{C_V(A)}$; in particular, $|V/C_V(A)| = |\overline{V}/C_{\overline{V}}(A)|$. Note that \overline{V} satisfies the hypothesis, so replacing V by \overline{V} we may assume that |[V, A]| = p. Let B < A with |A/B| = p. Since [V, B] is at most 1-dimensional, B in place of A also satisfies the hypothesis of the lemma. Hence by induction on $|A|, |V/C_V(B)| \leq |B|$.

Let $a \in A \setminus B$. Since |[V, a]| = p, $|V/C_V(a)| \le p$ and so also $|C_V(B)/C_V(B) \cap C_V(a)| \le p$. But $C_V(A) = C_V(B) \cap C_V(a)$ and so

$$|V/C_V(A)| \le |V/C_V(B)| p \le |B| p = |A|.$$

-	_	-	-
г			
-	-	-	

3 A Partial Ordering

In this section G is a finite group, p is a prime, and $S \in Syl_p(G)$.

Notation 3.1 Let A and B be subgroups of G. The relation \ll on the subgroups of G is defined by

 $A \ll B : \iff A \subseteq C_G(Y_A)B \text{ and } Y_A \leq Y_B.$

Furthermore, we define

$$A^{\dagger} := C_G(Y_A)A \text{ and } \mathcal{S}^{\dagger} := \{L \leq G \mid L = L^{\dagger}\}.$$

Lemma 3.2 Let L and M be subgroups of G.

- (a) $Y_L \leq Y_{L^{\dagger}}, L \ll L^{\dagger}, and (L^{\dagger})^{\dagger} = L^{\dagger}.$
- (b) $\mathcal{S}^{\dagger} = \{ L \leq G \mid C_G(Y_L) \leq L \}.$
- $(c) \ll$ is reflexive and transitive.
- (d) $L \subseteq C_G(Y_L)M$ if and only if $L \leq C_G(Y_L)N_M(Y_L)$.
- (e) Suppose that $L \subseteq C_G(Y_L)M$ and $L \cap M$ is a p-parabolic subgroup of L and M. Then Y_L is p-reduced for $N_M(Y_L)$ and $L \ll N_M(Y_L)$.

(f) If $L = L^{\dagger}$, then $L \ll M$ if and only if $Y_L \leq Y_M$ and $L = C_G(Y_L)(L \cap M)$.

(g) Restricted to S^{\dagger} , \ll is a partial ordering.

Proof: (a): Clearly Y_L is a *p*-reduced subgroup of L^{\dagger} , so $Y_L \leq Y_{L^{\dagger}}$. Thus $C_G(Y_{L^{\dagger}}) \leq C_G(Y_L) \leq L^{\dagger}$ and $L^{\dagger} = (L^{\dagger})^{\dagger}$.

(b): This is an immediate consequence of the definition of L^{\dagger} .

(c): Obviously \ll is reflexive. If $A, B, C \leq G$ with $A \ll B$ and $B \ll C$, then $Y_A \leq Y_B \leq Y_C$ and so $Y_A \leq Y_C$. Also $C_G(Y_B) \leq C_G(Y_A)$ and hence

$$A \subseteq C_G(Y_A)B \subseteq C_G(Y_A)C_G(Y_B)C = C_G(Y_A)C.$$

Thus $A \ll C$ and \ll is transitive.

(d): If $L \subseteq C_G(Y_L)M$ then $L \leq N_G(Y_L) \cap C_G(Y_L)M = C_G(Y_L)N_M(Y_L)$. The other direction is obvious.

(e): Since $L \cap M$ is a *p*-parabolic subgroup of L,

$$Y_L \le O_p(L) \le L \cap M \le N_M(Y_L),$$

so Y_L is an elementary abelian normal subgroup of $N_M(Y_L)$. Since $L \cap M$ is a *p*-parabolic subgroup of M, $C_G(Y_L)(L \cap M)$ and thus also $C_G(Y_L)L$ are *p*-parabolic subgroups of $C_G(Y_L)N_M(Y_L)$.

As Y_L is a *p*-reduced subgroup of $C_G(Y_L)L$, 2.2(b) shows that $Y_L = \langle Y_L^{C_G(Y_L)N_M(Y_L)} \rangle$ is *p*-reduced for $C_G(Y_L)N_M(Y_L)$. Hence Y_L is also a *p*-reduced subgroup of $N_M(Y_L)$. Thus $Y_L \leq Y_{N_M(Y_L)}$ and so $L \ll N_M(Y_L)$.

(f): Since $L \in S^{\dagger}$ we have $C_G(Y_L) \leq L$ and so $L \subseteq C_G(Y_L)M$ implies $L = C_G(Y_L)(L \cap M)$. Now (f) is obvious.

(g): Let $L, M \in S^{\dagger}$ with $L \ll M$ and $M \ll L$. Since $Y_L \leq Y_M \leq Y_L$, we have $Y_L = Y_M$. By (f) $L = C_G(Y_L)(L \cap M)$ and $M = C_G(Y_M)(M \cap L)$. Hence $Y_M = Y_L$ gives L = M. So the restriction of \ll to S^{\dagger} is anti-symmetric. Now (g) follows (c).

Notation 3.3 Put $S^{\dagger}(S) := \{L \in S^{\dagger} \mid S \leq L\}$. According to $3.2(g) \ll$ restricted to $S^{\dagger}(S)$ is a partial ordering on $S^{\dagger}(S)$. We denote the set of maximal elements of $S^{\dagger}(S)$ with respect to \ll by $\mathcal{F}(S)$.

Theorem 3.4 $\mathcal{F}(\mathcal{S})$ is the unique factorization family for $\mathcal{S}(S)$.

Proof: Let \mathcal{G} be a factorization family for $\mathcal{S}(S)$ and let $M \in \mathcal{G}$. Clearly $M \leq M^{\dagger}$ and by 3.2(a), $Y_M \leq Y_{M^{\dagger}}$. So Condition (ii) of 1.2 gives $M = M^{\dagger}$. Thus $M \in \mathcal{S}^{\dagger}(S)$ and $\mathcal{G} \subseteq \mathcal{S}^{\dagger}(S)$.

Now let \mathcal{G} be any subset of $\mathcal{S}^{\dagger}(S)$. Then Condition (i) of 1.2 is fulfilled for \mathcal{G} if and only if for each $L \in \mathcal{S}(S)$ there exists $M \in \mathcal{G}$ with $L \ll M$. Since $L \ll L^{\dagger}$ and \ll is transitive by 3.2, we conclude that \mathcal{G} fulfills (i) if and only if \mathcal{G} contains all the maximal elements of $\mathcal{S}^{\dagger}(S)$ with respect to \ll . And Condition (ii) holds if and only if all elements of \mathcal{G} are maximal with respect to \ll in $\mathcal{S}^{\dagger}(S)$. Thus $\mathcal{F}(S)$ is the unique factorization family for $\mathcal{S}(S)$.

Lemma 3.5 Let $M \in \mathcal{F}(S)$ and $H \in \mathcal{S}(S)$ with $M = C_M(Y_M)(M \cap H)$. If H is p-constrained, then $H = O_{p'}(H)(H \cap M)$. In particular, if G is of parabolic characteristic p and $S \leq L \leq M$ with $M = C_M(Y_M)L$, then M is the unique maximal p-local subgroup of G containing L. **Proof:** Put $\overline{H} = H/O_{p'}(H)$. Since $M = C_M(Y_M)(H \cap M)$, Y_M is *p*-reduced for $H \cap M$ and $\overline{Y_M}$ is a *p*-reduced subgroup of $\overline{H} \cap \overline{M}$. So by 2.2(c), $\overline{Y_M} \leq Y_{\overline{H}}$. Let $Y \leq S$ with $\overline{Y} = Y_{\overline{H}}$ and $K := N_H(Y)$. Then by the Frattini argument, $H = O_{p'}(H)K$. It follows that Y is a *p*-reduced subgroup of K, so $Y_M \leq Y \leq Y_K$.

As $YO_{p'}(H) \cap M = Y(O_{p'}(H) \cap M)$, we also get, using the Frattini argument one more time,

$$H \cap M = (O_{p'}(H) \cap M)(K \cap M) = O_{p'}(M \cap H)(K \cap M).$$

Thus $M = C_M(Y_M)(H \cap M) \leq C_G(Y_M)K$ since $O_{p'}(M \cap H)$ centralizes Y_M . Now 1.2(ii) implies that $K \leq M$ and so $H = O_{p'}(H)(H \cap M)$. Hence the first statement holds.

To prove the second statement, let H be a p-local subgroup containing L. Then $M = C_M(Y_M)L$ implies $M = C_M(Y_M)(H \cap M)$. On the other hand H is of characteristic p since G has parabolic characteristic p, so H is p-constrained and $O_{p'}(H) = 1$. Hence by the first statement $H = O_{p'}(H)(H \cap M) \leq M$.

Lemma 3.6 Let $M \in \mathcal{F}(S)$, $S_0 := C_S(Y_M)$ and $M_0 := N_M(S_0)$.

(a) $M = C_M(Y_M)M_0$, $S_0 = O_p(M_0)$ and $C_S(S_0) \le S_0$. (b) $\Omega_1 Z(S) \le Y_M = Y_{M_0} = \Omega_1 Z(S_0)$.

Proof: (a): The Frattini argument gives $M = C_M(Y_M)M_0$. Hence $O_p(M_0) = S_0$, since Y_M is *p*-reduced. Clearly $Y_M \leq \Omega_1 Z(S_0)$, and so

$$C_S(S_0) \le C_S(\Omega_1 Z(S_0)) \le C_S(Y_M) \le S_0.$$

(b): Let $S_0 \leq S_1 \leq S$ with

$$S_1 C_{M_0}(\Omega_1 Z(S_0)) / C_{M_0}(\Omega_1 Z(S_0)) = O_p(M_0 / C_{M_0}(\Omega_1 Z(S_0))).$$

Then $S_1C_M(Y_M)/C_M(Y_M)$ is a normalized by $M_0C_M(Y_M) = M$. Since $O_p(M/C_M(Y_M)) = 1$ we get $S_1 \leq C_M(Y_M)$, so $S_1 = S_0 = O_p(M_0)$ by (a), and $\Omega_1Z(S_0)$ is *p*-reduced for M_0 . Together with 3.2(a) this gives

$$Y_M \le \Omega_1 Z(S_0) \le Y_{M_0} \le Y_{M_0^{\dagger}}$$

In particular $M \ll M_0^{\dagger}$, and the maximality of M yields $Y_M = Y_{M_0^{\dagger}}$. Now (b) follows, since also $\Omega_1 Z(S) \leq \Omega_1 Z(S_0)$.

Proof of Theorems 1.3 and 1.4:

By 3.4 $\mathcal{F}(S)$ is the unique factorization family for $\mathcal{S}(S)$. Let $M \in \mathcal{F}(S)$. By 3.6(b) $\Omega_1 Z(S) \leq Y_M$ and by 3.2(e) $M \ll N_G(Y_M)$. Hence the maximality of M gives $M = N_G(Y_M)$.

Assume that there exists $N \in \mathcal{F}(S)$ that is *F*-stable, i.e. $Y := Y_N$ is *F*-stable in $N_G(Y_N) = N$. Then by 2.4 $B(S) \leq C_G(Y)$ and

$$N = C_G(Y)N_N(B(S)) \subseteq C_G(Y)L$$
, where $L := N_G(B(S);$

in particular $Y \leq \Omega_1 Z(B(S)) \leq O_p(N_G(B(S)))$. Now 2.2(b) implies that $Y \leq Y_L$ and so by 1.2(ii) $Y = Y_L$. It follows that $N = N_G(Y_L)$. In particular, N is the unique F-stable member of $\mathcal{F}(S)$. This finishes the proof of 1.3 and also shows 1.4(a).

Now let $1 \neq C$ char B(S) and put $M := N_G(C)$. Then $N_N(B(S)) \leq M$ and thus also $N = C_G(Y)(M \cap N)$. Suppose that $Y_N \leq O_p(M)$. Then as above 2.2(b) implies that $Y_N \leq Y_M$, and by 1.2(ii) $Y_N = Y_M$ and $M \leq N$. So 1.4(b) holds.

Suppose next that M is p-constrained. From $N = C_G(Y)(N \cap M)$ and 3.5 we get that $M = O_{p'}(M)(M \cap N)$. Hence 1.4(c) holds.

4 The L-Lemma and the qrc-Lemma

In this chapter we will work with the following hypothesis.

Hypothesis 4.1 Let P be a finite group of characteristic $p, T \in Syl_p(P), Y \leq T$, and $R := C_T(Y)$. Suppose that P is $RO_p(P)$ -minimal with M being the unique maximal subgroup of P containing $RO_p(P)$.

Notation 4.2 Let X be a finite group and V a finite dimensional GF(p)X-module. By c(V,X) we denote the number of non-central chief factors of X in V (in a given chief series). We define q(V,X) := 0 if every quadratically acting subgroup of X already centralizes V, and

$$q(V,X) := \min\{\log_{|A/C_A(V)|} |V/C_V(A)| | A \le X, [V,A,A] = 1 \ne [V,A]\}$$

otherwise. Moreover, r(V, X) := 0 if V does not possess non-central X-chief-factors, and

$$r(V,X) := \min\{q(C,X) \mid C \text{ non-central } X \text{-chief-factor on } V\}$$

otherwise.

Lemma 4.3 (L-Lemma) Assume Hypothesis 4.1. Let A be a subgroup of T such that $A \not\leq O_p(P)$. Then there exists a subgroup $L \leq P$ with $AO_p(P) \leq L$ satisfying:

- (a) $AO_p(L)$ is contained in a unique maximal subgroup L_0 of L, and $L_0 = L \cap M^g$ for some $g \in P$.
- (b) $L = \langle A, A^x \rangle O_p(L)$ for every $x \in L \setminus L_0$.
- (c) L is not contained in any P-conjugate of M.

Proof: See [PPS].

The next lemma is very similar to [Ste, 3.3].

Lemma 4.4 Assume Hypothesis 4.1. Suppose $V := \langle Y^P \rangle$ is elementary abelian, $C_{O_p(P)}(Y) \not \leq P$ and c(V, P) = 1. Then $[O_p(P), O^p(P)]$ is non-trivial quadratic offender on Y.

Proof: Since P is $RO_p(P)$ -minimal, we get from 2.3 that $P = RO^p(P)O_p(P)$. Put

$$Q := [O_p(P), O^p(P)], \quad W := [V, O^p(P)] \text{ and } D := C_V(O^p(P)).$$

Since c(V, P) = 1, $W/W \cap D$ is chief-factor for P on V. Hence $[W, O_p(P)] \leq D$. Note that $P = TO^p(P)$ normalizes YW and so V = YW. Thus $[Y, Q]D \leq P$. Observe that R centralizes

[Y,Q]D/D. Since $O^p(P) \leq \langle R^P \rangle$ we conclude that $[Y,Q,O^p(P)] \leq D$. Hence $O^p(P)$ centralizes [Y,Q]. So $P = TO^p(P)$ normalizes [Y,Q] and $[V,Q] = [Y,Q] \leq D$. It follows that

$$[V,O^p(P),O_p(P)]=[W,O_p(P)]\leq D \quad \text{ and } \quad [O_p(P),O^p(P),V]=[Q,V]\leq D.$$

Hence the Three Subgroup Lemma implies $[V, O_p(P), O^p(P)] \leq D$ and so

$$(*) [V, O_p(P)] \le D.$$

Pick $x \in Y \setminus D$. Since R centralizes x we conclude from (*) that $P = RO^p(P)O_p(P)$ normalizes $\langle x^{O^p(P)} \rangle D$ and so $W \leq \langle x^{O^p(P)} \rangle D$. Put X := [x, Q]. Since $X \leq D$ it follows that

$$[W,Q] \le [\langle x^{O^p(P)} \rangle D, Q] = [x,Q] = X.$$

As $[V, Q, O^p(P)] = 1 \leq X$ and $[V, O^p(P), Q] = [W, Q] \leq X$, the Three Subgroup Lemma implies $[Q, O^p(P), V] \leq X$. Since $[Q, O^p(V)] = Q$ we get [V, Q] = X. In particular,

$$[y,Q] = X$$
 for every $y \in Y \setminus C_Y(Q)$.

Now 2.6 shows that Q is a quadratic offender on Y.

If Q acts trivially on Y, then $Q \leq C_{O_p(P)}(Y)$ and so $C_{O_p(P)}(Y) \leq TO^p(P) = P$, a contradiction.

Lemma 4.5 Let L be a finite group acting on a p-group E, and let A and B be p-subgroups of L and X and Z subgroups of E. Suppose that

- (i) $B \not\leq O_p(L)$,
- (ii) $[E, A] \leq X \leq C_E(A)$ and $[E, B] \leq Z \leq C_E(B)$,
- (iii) L is $AO_p(L)$ -minimal and $[E, O^p(L)] \neq 1$,
- (iv) X is normalized by E and $O_p(L)$, X is abelian, and $E = \langle X^L \rangle$.

Then

(a)
$$C_B(E) \leq B \cap O_p(L)$$
,

- (b) $E = X^g Z = X^g C_E(B)$ for some $g \in L$,
- (c) $Z = [E, B]C_Z(E) = [E, b]C_Z(E)$ for all $b \in B \setminus O_p(L)$,
- (d) [B, E, E, E] = 1,
- (e) $|Z/C_Z(E)| \le |ZD/D| \le |E/C_E(B)|$,
- (f) $|BO_p(L)/O_p(L)| \le |E/C_E(B)|.$

Proof: By (iii) there exists a unique maximal subgroup L_0 of L containing $AO_p(L)$, and by 2.3 $(\bigcap_{a \in L} L_0^g)/O_p(L)$ is a p'-group.

Pick $b \in B \setminus O_p(L)$. Then there exists $g \in L$ with $b \notin L_0^g$. Put $H := \langle A^g, b \rangle$. Then $L = HO_p(L)$ since $H \nleq L_0^g$. Furthermore, we put $D := \bigcap_{g \in L} X^g$.

(a): Again by (iii) $O^p(L) \not\leq C_L(E)$, so 2.3 shows that $C_L(E)/C_{O_p(L)}(E)$ is a p'-group. Now (a) follows.

(b): By (iv) $O_p(L)$ normalizes X, so $X^L = X^H$. It follows that $D = \bigcap_{h \in H} X^h$ and $C_{X^g}(b) \leq C_{X^g}(H) \leq D$. From $E = \langle X^L \rangle = \langle X^H \rangle$ and (ii) we conclude that

(*)
$$E = X^{g}[E, H] = X^{g}[E, A^{g}][E, b] = X^{g}[E, b] = X^{g}Z.$$

Since $Z \leq C_E(B)$ by (ii), (b) holds.

(c): Since $X^g \cap Z \leq C_{X^g}(H) \leq D$, we get $X^g \cap Z = D \cap Z$ and so by (b) and (*)

$$|E/X| = |E/X^g| = |ZX^g/X^g| = |Z/Z \cap X^g| = |Z/Z \cap D|.$$

Moreover, using (*)

$$Z = (X^{g} \cap Z)[E, b] \le (Z \cap D)[E, b] \le C_{Z}(E)[E, b] \le C_{Z}(E)[E, B] \le Z,$$

and so (c) holds.

(d): Since L is $AO_p(L)$ -minimal, $A \notin O_p(L)$ and so (b) can be applied with A and A^g in place of A and B. Then $E = XX^t$ for some $t \in L$; in particular $[X^t, X] \leq X \cap X^t \leq D \leq Z(E)$. Thus $E' \leq D \leq Z(E)$ and $[B, E, E, E] \leq [E', E] = 1$. So (d) holds.

(e): By (ii) and (b)

$$C_E(B) \le C_{X^g}(B)Z = C_{X^g}(H)Z = DZ.$$

Hence

$$|E/C_E(B)| \ge |E/ZD| = |X^g ZD/ZD| = |X^g/X^g \cap ZD| = |X^g/D|.$$

On the other hand, by (b) $|E/X| = |Z/Z \cap X^g| = |Z/Z \cap D|$, while the same result applied to A in place of B gives $|E/X| = |X/D| = |X^g/D|$. Since $D \leq Z(E)$ this gives

$$|E/C_E(B)| \ge |Z/Z \cap D| \ge |Z/C_Z(E)|.$$

(f): Let $x \in X^g \setminus D$ and suppose that $[x, b] \in D$. Then $\langle x \rangle D$ is normalized by $\langle X^g, b \rangle = H$ and so $x \in D$, a contradiction. This shows that $[x, c] \notin D$ for every $c \in B \setminus O_p(L)$. Since B acts quadratically on the abelian group E/D we conclude

$$|[x, B]D/D| = |\{[x, c]D \mid c \in B\}| \ge |BO_p(L)/O_p(L)|.$$

Note that by (ii), $[x, B]D \leq ZD$ and so (f) now follows from (e).

Theorem 4.6 Assume Hypothesis 4.1. Let V be a finite dimensional GF(p)P-module such that $[V, O_p(P)] = 0$ and $[V, O^p(P)] \neq 0$. Then q(V, P) = 0 or $q(V, P) \ge 1$.

Proof: Let $A \leq T$ be a quadratic on V with $[V, A] \neq 0$. We need to show that that $|V/C_V(A)| \geq |A/C_A(V))$. The proof is by induction on |A|.

Let Y be a non-central P-chief factor in V. By 2.3 $C_T(Y) \leq O_p(P) \leq C_T(V)$. It follows that

$$|Y/C_Y(A)| \le |V/C_V(A)|$$
 and $|A/C_A(Y)| = |A/C_A(V)|$

for every $A \leq T$. Hence we may assume that

 1° V is a non-trivial simple P-module.

We now apply 4.3. Then there exists $A \leq L$ such that L has the properties given in 4.3. In particular, there exists $g \in P$ such that $A \leq T^g \cap L \in Syl_p(L)$, and $L \cap M^g$ is the unique maximal subgroup of L containing $AO_p(L)$. Put $U := \langle C_V(T^g)^L \rangle$.

 $\mathbf{2}^{\circ} \qquad [U,O^p(L)] \neq 0 ~ and ~ [U,A] \neq 0.$

By (1°) $C_V(T^g)$ is not *P*-invariant, so $N_P(C_V(T^g)) \leq M^g$. Since $L \leq M^g$, we get that $[U, O^p(L)] \neq 0$ and thus also $[U, A] \neq 0$.

3° Put $D := C_A(U)$. Then $|A/D| \le |U/C_U(A)|$.

Observe that by the definition of U, $[U, O_p(L)] = 0$. Thus, for E := U, B := A, and $X := Z := C_U(A)$, L satisfies the hypothesis of 4.5. By 4.5(f)

$$|A/D| = |A/C_A(U)| \le |A/A \cap O_p(L)| \le |U/C_U(A)|.$$

So (3°) holds.

 $\mathbf{4}^{\circ} \qquad |D/C_D(V)| \le |V/C_V(D)|.$

Since $[U, A] \neq 0$, D < A and (4°) follows by induction on |A|.

Using (3°) and (4°) we compute

$$|A/C_A(V)| = |A/D||D/C_D(V)| \le |U/C_U(A)||V/C_V(D)| \le |C_V(D)/C_V(A)||V/C_V(D)| = |V/C_V(A)|.$$

The next lemma is a variation of [Ste, 3.2].

Lemma 4.7 (*qrc-Lemma*) Assume Hypothesis 4.1. Let $V := \langle Y^P \rangle$. Suppose that

- (i) $Y \leq \Omega_1 Z(J(O_p(P))),$
- (ii) $C_{O_p(P)}(Y) \not \leq P$,
- (iii) $J(R) \not\leq O_p(P)$.

Then $V \leq \Omega_1 Z(J(O_p(P))), V \neq Y, N_L(Y) \leq M, [V, O^p(P)] \neq 1, C_T(V) \leq O_p(P)$ and there exists $A \in \mathcal{A}(R)$ with

$$[V, A, A] = 1 \neq [V, A] \text{ and } A \nleq O_p(P).$$

Moreover, one of the following holds, where $q := q(Y, O_p(P)), r := r(V, P)$ and c := c(V, P):

(a) $0 \neq q \leq 1$.

(b) $2 \le c, 1 \le r, and (q-1)(rc-1) \le 1$. In particular, $0 \ne q \le 2$.

Proof: By (i) $V \leq ZJ(O_p(P))$. If V = Y, then $C_{O_p(P)}(Y) \leq P$, a contradiction to (ii). Hence $V \neq Y$ and $RO_p(P) \leq T \leq N_P(Y) < P$. Since P is $RO_p(P)$ -minimal we conclude that $N_P(Y) \leq M$. So $[V, O^p(P)] \neq 1$. Hence 2.3 gives $C_T(V) \leq O_p(P)$. In particular, (P, Y) satisfies Hypothesis III of [Ste].

As $C_T(V) \leq O_p(P)$, (iii) shows that there exists $A \in \mathcal{A}(R)$ such that $[V, A] \neq 1$. By the Timmesfeld Replacement Theorem [KS] we may assume that [V, A, A] = 1. Moreover, (i) implies that $A \leq O_p(P)$.

Suppose that c = 1. Then 4.4 shows that (a) holds. Thus, we may assume from now on that $c \ge 2$.

Suppose that $[A \cap O_p(P), V] = 1$. Again by 2.3 $O_p(P) \cap A = C_A(V) = C_A(U)$ for every non-central P-chief factor U of V. On the other and, by the maximality of A, $|V/C_V(A)| \leq |A/C_A(V)|$ and thus also $|U/C_U(A)| \leq |A/C_A(U)|$. Hence 4.6 implies that c = 1, which contradicts our assumption. We have shown that $[A \cap O_p(P), V] \neq 1$; in particular $q \neq 0$. Now [Ste, 3.2 (c)] and 4.6 yield (b). \Box

Lemma 4.8 Assume hypothesis 4.1. Suppose that

- (i) $C_{O_n(P)}(Y) \not \leq P$,
- (*ii*) $Y \leq Z(J(O_p(P))) \cap Z(J(T)),$
- (iii) $J(T) \not\leq O_p(P)$.

Then there exist subgroups $A \in \mathcal{A}(T)$ and L of P such that the following hold:

- (a) L is $AO_p(L)$ -minimal.
- (b) $O_p(P)A \leq T \cap L \in SyL_p(L)$, and $M \cap L$ is the unique maximal subgroup of L containing $AO_p(L)$.
- (c) $Y \not\leq L$, and $V_0 := \langle Y^L \rangle$ is abelian.
- (d) If $Y \leq Z(J(O_p(L)))$, then L and Y satisfies the hypothesis of 4.7 with L in place of P.

Proof: From (ii) [Y, J(T)] = 1 and so $J(T) \leq R$ and J(R) = J(T). So the assumptions of 4.7 are fulfilled. In particular, V is elementary abelian and there exists $A \in \mathcal{A}(T)$ with $[V, A, A] = 1 \neq [V, A]$ and $A \notin O_p(P)$.

Hence we are allowed to apply the *L*-Lemma 4.3. This gives a subgroup *L* having the properties (a) – (c) given in 4.3. By 4.3(c) *L* is not a *p*-group, and so *L* is $AO_p(L)$ -minimal. This is (a).

According to 4.3(a) there exists $g \in P$ such that $AO_p(L) \leq T^g \cap L \in Syl_p(L)$, and $L \cap M^g$ is the unique maximal subgroup containing $AO_p(L)$. Hence replacing A by $A^{g^{-1}}$ and L by $L^{g^{-1}}$ we may assume that (b) holds.

Clearly $Y \not \leq L$ since $L \not \leq M$ but $N_P(Y) \leq M$. Since V is abelian, V_0 is abelian and (c) holds.

From $A \nleq O_p(P)$ and (ii) we get that that $J(C_{T \cap L}(Y)) \nleq O_p(L)$ and L is $C_{T \cap L}(Y)O_p(L)$ minimal. Hence 4.7(iii) holds for L and Y. Assume that $C_{O_p(L)}(Y) \trianglelefteq L$. Then also $C_{O_p(P)}(Y) \trianglelefteq L$ and thus $P = \langle T, L \rangle \le N_P(C_{O_p(P)}(Y))$. This contradicts (i). Hence also 4.7(ii) holds for L and Y, and (d) follows.

5 F-stability

In this section we explore the following hypothesis:

Hypothesis 5.1 Let p be a prime and H a finite group. Suppose that Y is an elementary abelian p-subgroup of H such that for $T \in Syl_p(N_H(Y))$ and $R := C_T(Y)$ the following hold:

(i)
$$Y \leq N_H(J(R))$$
.

- (ii) Y is F-stable in H.
- (iii) Either $Y \leq O_p(H)$ or H is of characteristic p.

This hypothesis is motivated by the following observation:

Lemma 5.2 Let G be a finite group, $S \in Syl_p(G)$ and $J(S) \leq H \leq G$, and let $\mathcal{F}(S)$ be a factorization family for $\mathcal{S}(S)$. Suppose that $N \in \mathcal{F}(S)$ is F-stable.

- (a) If $Y_N \leq O_p(H)$, then $Y := Y_H$ and H satisfy Hypothesis 5.1.
- (b) If H is p-constrained and $\overline{H} := H/O_{p'}(H)$, then $\overline{Y_N}$ and \overline{H} satisfy Hypothesis 5.1 in place of Y and H.

Proof: Let $T \in Syl_p(H)$ with $J(S) \leq T$. Put $Y := Y_N$ and $R := C_T(Y)$. Since $Y \leq S$ and Y is F-stable, 2.4(a) implies that $Y \leq \Omega_1 Z(J(S)) \leq H$ and J(S) = J(T) = J(R). Observe that $Y \leq O_p(N_G(J(S)))$ and so by 1.4(b), $N_G(J(S)) \leq N$. In particular, $T \leq N_G(Y)$ and so $T \in Syl_p(N_H(Y))$. Now (a) follows.

Assume that H is p-constrained. Then $\overline{H} = H/O_{p'}(H)$ is of characteristic p. By the Frattiniargument, $N_{\overline{H}}(\overline{Y}) = \overline{N_H(Y)}$ and $N_{\overline{H}}(J(\overline{R})) = \overline{N_H(J(R))}$. Moreover since Y is F-stable in G, \overline{Y} is F-stable in \overline{H} . Thus Hypothesis 5.1 holds for \overline{Y} and \overline{H} .

Lemma 5.3 Assume Hypothesis 5.1. Then $Y \leq T$, $Y \leq Z(J(T))$, J(R) = J(T), $N_H(T) \leq N_H(Y)$ and $T \in Syl_p(H)$.

Proof: Clearly $Y \leq T$. Thus by 2.4(a), [Y, J(T)] = 1. So $J(T) \leq R$ and J(T) = J(R). Therefore $N_H(T) \leq N_H(J(R))$ and so by Hypothesis 5.1(i) $N_H(T) \leq N_H(Y)$. Hence $T \in Syl_p(H)$.

Theorem 5.4 Assume Hypothesis 5.1 and suppose $C_{O_p(H)}(Y) \not \cong H$. Then Y is not 2F-stable in H.

Proof: If any subgroup of H satisfies the conclusion of 5.4 with respect to Y, then also H does. Thus we may assume:

 1° No proper subgroup of H satisfies the hypothesis of 5.4 with respect to Y.

Put

$$H_0 = N_H(C_{O_p(H)}(Y)).$$

From 5.3 we conclude

2°
$$N_H(T) \le N_H(Y) \le H_0, \ J(R) = J(T), \ Y \le ZJ(R)) \ and \ T \in Syl_p(H_0).$$

Next we show:

3° Let
$$J(R)O_p(H) \leq \tilde{H} < H$$
. Then $C_{O_p(\tilde{H})}(Y) \leq \tilde{H}$ and $\tilde{H} \leq H_0$.

By (2°) there exists $\tilde{R} \in Syl_p(C_{\tilde{H}}(Y))$ with $J(R) \leq \tilde{R}$ and $J(R) = J(T) = J(\tilde{R})$, and so $Y \leq N_{\tilde{H}}(J(\tilde{R}))$. Since $O_p(H) \leq O_p(\tilde{H})$, $Y \leq O_p(\tilde{H})$ or \tilde{H} is of characteristic p. Moreover Y is F-stable in \tilde{H} , and so Y and \tilde{H} satisfy Hypothesis 5.1. Now (1°) shows that $C_{O_p(\tilde{H})}(Y) \leq \tilde{H}$. Hence $C_{O_p(H)}(Y) = O_p(H) \cap C_{O_p(\tilde{H})}(Y)$ is normal in \tilde{H} and $\tilde{H} \leq H_0$.

 4° H_0 is the unique maximal subgroup of H containing $J(R)O_p(H)$, and H is $J(R)O_p(H)$ -minimal.

The first statement follows from (3°). If $J(R) \leq O_p(H)$, then by 5.3, $J(R) = J(O_p(H)) \leq H$, and so by Hypothesis 5.1(i), $H \leq N_H(Y) \leq H_0$, a contradiction. Hence $J(R)O_p(H) \not\leq O_p(H)$, and H is $J(R)O_p(H)$ -minimal.

5° Put $W := \langle Y^{H_0} \rangle$. Then W is elementary abelian.

We will first show that $Y \leq O_p(H_0)$. If $Y \leq O_p(H)$, this is obvious. Otherwise H is of characteristic p and by 5.3, $O_p(H)$ normalizes Y. So by 2.5 and $(2^\circ) Y \leq O_p(H_0) \leq T$. Now (5°) follows from Hypothesis 5.1(ii) and 2.4(b).

Let \mathcal{W} be the set of all *p*-subgroups D of H satisfying:

(a)
$$WO_p(H) \le N_H(D) \le H_0$$
.

(b)
$$D = J(D) \le H_0$$
.

Clearly $1 \in \mathcal{W}$ and so $\mathcal{W} \neq \emptyset$. Pick $D \in \mathcal{W}$ such that first |A| is maximal for $A \in \mathcal{A}(D)$ and then |D| is maximal. Put $N := N_H(D)$ and $T_0 := DO_p(H)$ and let $T_1 \in Syl_p(N \cap H_0)$. Since $T_0 \leq O_p(N \cap H_0), T_0 \leq T_1$. As W is H_0 -invariant and by (2°) $T \in Syl_p(H_0)$, there exists $g \in H_0$ with $W^g = W$ and $T_1^g \leq T$; in particular $D^g \in \mathcal{W}$. Thus, after replacing D by D^g we may assume that $T_1 \leq T$.

$$6^{\circ}$$
 $Y \leq Z(J(T_1))$, and if $Y \leq T_0$ then $Y \leq Z(J(T_0))$.

Since $T_1 \leq T$, T_1 normalizes Y. So (6°) follows from 2.4(a).

7° Let U be a p-subgroup of H_0 containing D. Suppose that $W \leq N_H(U)$ and $N_H(U) \not\leq H_0$. Then J(U) = D, and if $Y \leq U$ then $Y \leq Z(D)$.

Observe that $W \leq N_H(U) \leq N_H(UO_p(H))$. Hence $N_H(UO_p(H)) \not\leq H_0$ and $J(UO_p(H)) \in \mathcal{W}$. Since $D \leq U \leq UO_p(H)$, the maximal choice of D gives $D = J(UO_p(H)) = J(U)$. Suppose that $Y \leq U$, then $J(U) = D \leq T_1 \leq N_H(Y)$ and so by 2.4(a), $Y \leq Z(J(U)) = Z(D)$.

$$\mathbf{8}^{\circ}$$
 $J(T) \neq D$ and $J(T_1) \neq D$.

Suppose J(T) = D. Then by 5.3 and Hypothesis 5.1(i), $N \leq N_G(J(T)) \leq N_G(Y)$ and so $N \leq N_H(C_{O_p(H)}(Y)) \leq H_0$, contrary to the choice of D.

Suppose $J(T_1) = D$. Then $N_T(T_1) \leq N_H(J(T_1)) = N$. So $N_T(T_1) \leq T_1$, $T = T_1$ and $J(T) = J(T_1) = D$, a contradiction.

9° Let U be a p-subgroup of H_0 containing WD. Suppose that $J(U) \neq D$ or $Y \nleq Z(D)$. Then U is not contained in any H-conjugate of H_0 other than H_0 .

Let $g \in H$ with $U \leq H_0^g$ and $U \leq T_2 \in Syl_p(H_0 \cap H_0^g)$. If $J(T_2) = D$, then also D = J(U) and thus $Y \nleq Z(D)$. Thus either $J(T_2) \neq D$ or $Y \nleq Z(D)$. So (7°) gives $N_H(T_2) \leq H_0$. This implies $N_{H_0^g}(T_2) \leq H_0 \cap H_0^g$ and so $T_2 \in Syl_p(H_0^g)$. By (4°), H_0^g is the unique maximal subgroup of Hcontaining T_2 . Since $T_2 \leq H_0$ we get $H_0 = H_0^g$.

10° $T_1 \in Syl_p(N), J(T_1) \not\leq O_p(N)$, and $WJ(T_1)D$ is not contained in any other H-conjugate of H_0 .

By (8°) and (7°) $N_H(J(T_1)D) \leq H_0$, so $N_N(T_1) \leq N \cap H_0$ and $T_1 \in Syl_p(N)$. If $J(T_1) \leq O_p(N)$, then $J(T_1) = J(O_p(N))$ and $N \leq N_H(J(T_1)D) \leq H_0$, a contradiction.

Put $U := WJ(T_1)D$. By (8°), $J(U) \neq D$ and so the last statement in (10°) follows from (9°).

11° There exists a $WJ(T_1)T_0$ -minimal subgroup $H_1 \leq N$ such that $H_1 \cap H_0$ is a maximal subgroup of H_1 and $J(O_p(H_1)) = D$.

By definition of \mathcal{W} , $N \not\leq H_0$. Choose $WJ(T_1)T_0 \leq H_1 \leq N$ such that H_1 is minimal with $H_1 \not\leq H_0$. Since $H_1 \not\leq H_0$, $N_H(O_p(H_1)) \not\leq H_0$. Also $WO_p(H)$ normalizes $O_p(H_1)$ and $D \leq O_p(H_1)$. So by (7°) $J(O_p(H_1)) = D$. Since $J(T_1) \neq D$ by (8°) we conclude $J(T_1) \not\leq O_p(H_1)$. Hence also $WJ(T_1)T_0 \not\leq O_p(H_1)$, and H_1 is $WJ(T_1)T_0$ -minimal.

In the following let H_1 be as in (11°). Pick $WJ(T_1)T_0 \leq T_3 \in Syl_p(H_1 \cap H_0)$. Then H_1 is T_3 minimal and so $T_3 \in Syl_p(H_1)$. Since $T_3 \leq N \cap H_0$ and $T_1 \in Syl_p(H_0 \cap N)$, there exists $g \in N \cap H_0$ with $J(T_1) \leq T_3 \leq T_1^g$. Hence g normalizes $J(T_1)$, D and W, and thus also $WJ(T_1)T_0$. So replacing H_1 by H_1^g and T_3 by T_3^g we may assume that $T_3 \leq T_1 \leq T$.

Case 1 The case $Y \leq O_p(H_1)$.

12° Y and H_1 satisfy the hypotheses of 4.8.

Since $T_3 \leq T_1$, $Y \leq T_3$. By (5°) and (6°) $Y \leq Z(WJ(T_1))$, so H_1 satisfies Hypothesis 4.1. Hence (8°) and (11°) give Hypothesis 4.8(iii), while 2.4(a) gives Hypothesis 4.8(ii).

Assume that $C_{O_p(H_1)}(Y) \leq H_1$. As $O_p(H) \leq O_p(H_1)$, also $C_{O_p(H)}(Y) \leq H_1$, which contradicts $H_1 \leq H_0$. Hence also Hypothesis 4.8(i) holds.

According to (12°) we are allowed to apply 4.8 to Y and H_1 . Let L and V be with the properties given there. Since $Y \leq O_p(L) \leq T_1$, we get from 2.4(a) that $Y \leq Z(J(O_p(L)))$. Thus, by 4.8(d) L and Y satisfy the hypothesis of 4.7.

Since Y is 2F-stable we are in case 4.7(b), so $0 \neq q(Y, O_p(H_1)) \leq 2$. Thus there exists non-trivial quadratic 2F-offender on Y and the lemma is proved in (Case 1).

Case 2 The case $Y \not\leq O_p(H_1)$.

By our assumption on H, in this case H has characteristic p. Hence also H_1 has characteristic p since $O_p(H) \leq H_1$. We now apply the *L*-Lemma 4.3 with W and H_1 in place of A and P. Then there exists $WO_p(H_1) \leq L$ such that

(i) L is $WO_p(L)$ -minimal and

(ii) there exists $g \in H_1$ such that $L_0 := H_0^g \cap L$ is the unique maximal subgroup of L containing $WO_p(L)$.

13°
$$L_0 = L \cap H_0, Y \nleq Z(D) \text{ and } J(O_p(L)) = D.$$

Let g as in (ii). Then $WD \leq H_0 \cap H_0^g$ and $Y \not\leq Z(D)$ since $D \leq O_p(H_1)$. Hence (9°) implies $H_0 = H_0^g$; in particular $L_0 = L \cap H_0$ and $L \not\leq H_0$. Now (7°) also gives $J(O_p(L)) = D$.

According to (13°) we may assume, after conjugation by a suitable element of $H_0 \cap H_1$, that

14° $WO_p(L) \leq T \cap L \in Syl_p(L_0)$. In particular $O_p(L) \leq T$ and $O_p(L)$ normalizes Y.

By (13°), $Y \not\leq ZJ(O_p(L))$. Since $O_p(L)$ normalizes Y, we get from 2.4 that

15° $Y \not\leq O_p(L).$

Put

$$A := W, B := Y, X := O_p(L) \cap A, E := \langle X^L \rangle, Z := O_p(L) \cap B.$$

By (5°) A is abelian, and by (14°) $O_p(L)$ normalizes A and B. Moreover, since $O_p(H_1) \leq O_p(L)$ and H_1 has characteristic p, $[E, O^p(L)] \neq 1$. It follows that the hypotheses of 4.5 are satisfied.

By 4.5(a), $C_Y(E) \leq Y \cap O_p(L)$ and so by 4.5(c), $[b, Y]C_Y(E) = [E, Y]C_Y(E) = Y \cap O_p(L)$ for all $b \in Y \setminus O_p(L)$. Moreover, by 4.5(d) [Y, E, E, E] = 1 and by 4.5(e),(f) we have $|Y/C_Y(E)| \leq |E/C_E(Y)|^2$. So E is a nearly quadratic 2F-offender on Y. Hence the lemma also holds in (Case 2).

Lemma 5.5 Assume Hypothesis 5.1. Suppose that $Y \not \trianglelefteq H$ and Y is 2F-stable. Then $\Omega_1 Z(T) \not \trianglelefteq H$.

Proof: Let $T \leq P \leq H$ and P be minimal with $Y \not\leq P$. By 5.3 $N_H(T) \leq N_H(Y)$, so $T \not\leq P$ and P is T-minimal. Put

$$Q := C_{O_p(P)}(Y), V_0 := \Omega_1(Z(Q)), V := C_{V_0}(O_p(P)), \overline{P} := P/C_P(V).$$

If $Z(T) \notin O_p(P)$, $Z(T) \notin P$. So we may assume $\Omega_1 Z(T) \leq O_p(P)$ and thus $\Omega_1 Z(T) = C_V(T)$. By 5.4 $Q \leq P$. Since either $Y \leq O_p(H) \leq O_P(P)$ or P is of characteristic p, 2.5 implies $Y \leq O_p(P)$. Thus $Y \leq V_0$. Since $Y \notin P$, we get that $[V_0, O^p(P)] \neq 1$. By 5.3, J(R) = J(T) and so by Hypothesis 5.1(i), $J(R) \notin O_p(P)$. Hence 2.3 shows that $[O^p(P), J(R)] = O^p(P)$. Since J(R)centralizes Y, $[O_p(P), J(R)] \leq O_p(P) \cap J(T) \leq Q$ and so $[O_p(P), O^p(P)] \leq Q$. The $P \times Q$ -Lemma yields $[V, O^p(P)] \neq 1$.

Again 2.3 gives $C_T(V) = O_p(P)$ and $O_p(\overline{P}) = 1$. Moreover $\overline{J(T)} \neq 1$ since $J(R) \nleq O_p(P)$. Hence \overline{P} and V satisfy the hypothesis of [BHS, 5.6]. It follows that $[C_V(T), P] \neq 1$. Since $C_V(T) = \Omega_1 Z(T)$ and $P = \langle T^P \rangle$ we conclude that $\Omega_1 Z(T) \nleq P$ and so also $Z(T) \nleq H$.

6 The Proof of Theorems 1.5 - 1.8

Recall that Theorems 1.3 and 1.4 have been proved in Section 3.

Proof of Theorem 1.5:

(a): Observe that $N = N_G(Y_N)$ by 1.3. Suppose $Y_N \leq O_p(M)$. If $M = N_G(C)$ for $1 \neq C \operatorname{char} B(S)$, then 1.5(a) follows from 1.4(b). If $\Omega_1 Z(S) \leq M$, then 5.2(a) shows that Y_N and M satisfy Hypothesis 5.1. Hence 5.5 gives $Y_N \leq M$ and so $M \leq N$.

(b): Put $\overline{M} := M/O_{p'}(M)$. Then 5.2(b) shows that $\overline{Y_N}$ and \overline{M} satisfy Hypothesis 5.1. Thus 5.5 gives $\overline{Y_N} \leq \overline{M}$. By the Frattini-argument $M = O_{p'}(M)N_M(Y_N) = O_{p'}(M)(M \cap N)$.

(c): Let $B(S) \leq H \leq G$ and H be p-constrained with $H \neq O_{p'}(H)(H \cap N)$, and let $B(S) \leq T \in Syl_p(N_H(Y_N))$. Put $\overline{H} := H/O_{p'}(H)$. Then again 5.2(b) shows that $\overline{Y_N}$ and \overline{H} satisfy Hypothesis 5.1. Hence by 5.4, $C_{O_p(\overline{H})}(\overline{Y_N}) \leq H$ and by 2.5, $\overline{Y_N} \leq O_p(\overline{H})$. From 5.5 applied to $N_{\overline{H}}(\Omega_1 Z(\overline{T}))$ we get $\overline{Y_N} \leq N_{\overline{H}}(\Omega_1 Z(\overline{T}))$. Recall that $Y_N \leq \Omega_1 Z(J(S)) \leq O_p(N_G(J(S)))$. Thus by 1.4(b), $N_G(J(S)) \leq N$. Since B(T) = B(S) we have J(T) = J(S) and so $\overline{Y_N} \leq C^{**}(\overline{H}, \overline{T})$. By the Frattini Argument $N_{\overline{H}}(\overline{Y_N}) = \overline{N_H(Y_N)} = \overline{H \cap N}$. Hence also $C^{**}(\overline{H}, \overline{T}) \leq \overline{H \cap N}$.

Proof of Theorem 1.6:

Let $P \in \mathcal{F}(S)$. By 1.3 P is a p-local subgroup of G. Let L be a maximal p-local subgroup containing P. By 2.2(c) $Y_P \leq Y_L$ and so $P \ll L$. Hence by 3.4 P = L.

Suppose that $N \in \mathcal{F}(S)$ is 2*F*-stable. Let $M = N_G(C)$ for $1 \neq C$ char B(S) or $M = N_G(\Omega_1 Z(S))$. Then $S \leq M$, so M has characteristic p since G is of parabolic characteristic p. Hence 1.5(a) implies $M \leq N$.

Let $H \in \mathcal{S}(B(S))$ and $B(S) \leq T \in Syl_p(H)$. Then B(S) = B(T) and so $N_H(C) \leq N$ for $1 \neq C$ char B(T). Also $T \leq S^g$ for some $g \in N_G(B(S)) \leq N$ and $\Omega_1 Z(S^g) \leq J(S) \leq T$, so $\Omega_1 Z(S^g) \leq Z(T)$ and $C_H(\Omega_1 Z(T)) \leq C_G(\Omega_1 Z(S^g)) \leq N^g = N$. Thus $C^*(H,T) \leq H \cap N$.

Proof of Corollary 1.7:

By 1.6 the members of $\mathcal{F}(S)$ are maximal *p*-local subgroups. We may assume that there exists a 2*F*-stable $N \in \mathcal{F}(S)$.

Let L be a maximal p-local subgroup containing S with $L \nleq N$ and choose $M \in \mathcal{F}(S)$ with $L \ll M$. Then $L \leq C_G(Y_L)M$. On the other hand, by 2.2(c) $\Omega_1 Z(S) \leq Y_L$ and so by 1.6 $C_G(Y_M) \leq C_G(\Omega_1 Z(S)) \leq N$. Since $L \nleq N$ we conclude that $M \nleq N$ and $M \neq N$. By 1.4 N is the only member of $\mathcal{F}(S)$ which is F-stable. Hence M is not F-stable.

Proof of Theorem 1.8:

Let P be the semi-direct product of G and V. Then $O_p(P) = V$ and $[V, O^p(P)] \neq 1$. Let A be an offender on V such that $|A||C_V(A)|$ is maximal. Because of [KS, 9.2.3] we may assume that A is quadratic on V Hence 4.6 implies $|A/C_A(V)| = |V|$, and 1.8 follows.

References

- [BHS] D. Bundy, N. Hebbinghaus, B. Stellmacher, The Local C(G,T)-Theorem, to appear J. Algebra.
- [GLM] R. M. Guralnick, R. Lawther, G. Malle, The 2*F*-Modules of Nearly Simple Groups, preprint.
- [GM1] R. M. Guralnick, G. Malle, Classification of 2F-Modules, I, J. Algebra 257 (2002), 348– 372.
- [GM2] R. M. Guralnick, G. Malle, Classification of 2F-Modules, II, Finite Groups 2003, 117–183.
- [KS] H. Kurzweil, B. Stellmacher, The Theory of Finite Groups, Springer Universitext, New York, 2004, xii+387 pp.
- [L] R. Lawther, 2F-Modules, Abelian Sets of Roots and 2-ranks, preprint.
- [MSS] U. Meierfrankenfeld, B. Stellmacher, G. Stroth, The Structure Theorem, in preparation.
- [PPS] C. Parker, G. Parmeggiani, B. Stellmacher, The P!-Theorem, J. Algebra 263 (2003), no. 1, 17–58.
- [Ste] B. Stellmacher, On the 2-local Structure of Finite Groups, in Groups, Combinatorics and Geometry, LMS Lecture Notes Series 165 (1992), Cambridge University Press.