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1 Introduction

Let G be a finite group and p a prime. A subgroup P containing a Sylow p-subgroup of G is a
p-parabolic subgroup of G, and P is a local p-parabolic subgroup if in addition O,(P) # 1.

Moreover, G has characteristic p if Cq(Op(G)) < Op(G); and G has parabolic characteristic p if
every local p-parabolic subgroup has characteristic p.

The standard examples for groups of parabolic characteristic p are the finite simple groups of Lie
type in characteristic p. In these examples every proper parabolic subgroup is a local p-parabolic
subgroup, and for maximal parabolic subgroups M the normal subgroup Q4 Z(0,(M)), considered
as a GF(p)M-module, has a remarkably restricted structure. In this paper we try to understand
this phenomena in arbitrary finite groups.

What kind of properties of the module Q1 Z(0,(M)) should one aim at in general? A possible
answer arose during our detailed study of the p-local structure of groups of local characteristic p in
[MSS], where a group has local characteristic p if each of its p-local subgroup has characteristic p.

Definition 1.1 Let A be an elementary abelian p-group and V' a finite dimensional GF(p)A-module.
Then A is

(a) quadratic on'V if [V, A, A] =0,
(b) nearly quadratic on V if [V, A, A, A] = 0 and

[V, A] + Cv (A) = [v, A] + Cv (A) for every v € V\ [V, Al + Cv(A),

(¢) an offender on V if [V/Cy(A)| < |A/Ca(V)],
(d) a 2F-offender on V if |V/Cyv(A)| < |A/Ca(V)]?,
(e) non-trivial on V if [V, A] # 0.

A p-subgroup Y of G is called p-reduced (for G) if Y is elementary abelian and normal in G,
and O,(G/Cq(Y)) = 1. The largest p-reduced subgroup of G is denoted by Y, for the existence of
Yo see 2.2(a).

Let M be a subgroup of G. Then M is F-stable (in G) if none of the elementary abelian p-
subgroups of Na(Yar)/Ca(Yar) are non-trivial offenders on Yyr. Similarly, M is 2F -stable (in G)
if none of the elementary abelian p-subgroups of Na(Yar)/Ca(Yar) are non-trivial nearly quadratic
2F -offenders on Y.



Modules admitting non-trivial 2F-offenders have been investigated by Guralnick, Lawther and
Malle in [GLM],[GM1],[GM2], and [L]. They have classified all pairs (V, G), where V is an irreducible
GF(p)G-module and G is a known finite almost quasisimple group containing a non-trivial 2F-
offender on V.

Their result is a major generalization of earlier results, where G was assumed to contain a non-
trivial offender.

For stating our results we need some further definitions.

Definition 1.2 By S(X) we denote the subgroups of G containing X. Let S be Sylow p-subgroup
of G.
B(S) :=Cs(212J(S)),

C*(G,95) == (Ca(n Z(5))), Na(C) | 1 # C char B(S)),

and

C(G, S) = (Na(J(5)), Ca(u Z(5)).
A factorization family for S(S) is a subset F(S) C S(S) with the following two properties:
(i) For every H € S(S) there exists M € F(S) with H C Cq(Yyr)M and Yy < Yas.
(i) If H € §(S) and M € F(S) with M C Ce(Ym)H and Yy <Yy, then Yy =Yy and H < M.
Property (i) implies
H/Cu(Yu) = HCo(Yn)/Co(Yu) = (HCa(Yu) N M)Cq(Yn)/Ca(Yn),

so the action of H on Yy is isomorphic to the action of HC¢(Yy) N M on the submodule Yy of
Y. In particular, it suffices to identify M/Cy(Yys) and its action on Yy to identify H/Cy(Yi)
and Ypg.

Property (ii) is the crucial one for applications since it has strong consequences. For example, if
G is of parabolic characteristic p and S < H < M € F(S) such that M = HCp(Yas), then M is
the unique maximal p-local subgroup of G containing H (see 3.5).

Of course, it is not clear a priori that factorization families exist. The existence (and uniqueness)
will be established in Theorem 3.4.

Theorem 1.3 Let G be a finite group and S € Syl,(G). There exists a unique factorization family
F(S) for S(S) in G. Moreover, at most one member of F(S) is F-stable, and

01 Z(S) <Yy and M = Ng(Yy) for every M € F(S);
in particular, the elements of F(S) are p-local subgroups of G if S # 1.

In the following results F(5) is always a factorization family for S(S). Recall that a finite group
H is p-constrained if H/O,,(H) is of characteristic p.

Theorem 1.4 Let G be a finite group and S € Syl,(G), and let 1 # C char B(S) and M := N¢g(C).
Suppose that there exists N € F(S) that is F-stable.

(a) IfC' == B(S), then YN = Y]V[ and N = CG(Y]\J)M == Ng(Y]u).



(b) If Yy < Op(M), then Yyr = YN and M < N.
(c) If M is p-constrained, then M = Oy (M)(M N N).

Theorem 1.5 Let G be a finite group and S € Syl,(G), and let M € S(S) such that 01 Z(S) <M
or M = Ng(C) for some 1 # C char B(S). Suppose that there exists N € F(S) that is 2F-stable.

(a) If Yn < Op(M), then M < N.
(b) If M is p-constrained, then M = Op (M)(M N N).

(¢c) The following hold for any p-constrained H € S(B(S)) with H ¢ Oy (H)N (where H =
H/Op (H)):

(a) Yn < Op(H).

(b) Co, @) (Yv) < H.

(¢) Y47 is not F-stable in H.

(d) C**(H,T) < HNN < H, where B(S) < T € Syl,(H).

For groups of parabolic characteristic p more can be said about the members of the factorization
family F(S5).

Theorem 1.6 Let G be a finite group of parabolic characteristic p and 1 # S € Syl,(G). Then
the members of F(S) are mazximal p-local subgroups of G. Moreover, if N € F(S) is 2F-stable and
H € §S(B(S)) with B(S) <T € Syl,(H), then C*(H,T) < N.

Corollary 1.7 Let G be a finite group of parabolic characteristic p and S € Syl,(G). If S is
contained in at least two mazximal p-local subgroups of G, then there exists M € F(S) such that M
is not 2F -stable.

Let G and N be as in 1.6, and let H be a p-local subgroup containing S such that H £ N.
Then by 1.6 C*(H, S) is a proper subgroup of H. In this case the structure of H can be described
precisely using the Local C(G,T)-Theorem proved in [BHS].

The proof of the above theorems relies heavily on two elementary results from [PPS] and [Ste],
the L-Lemma and the grc-Lemma. The authors found it remarkable that these results allow to
study finite groups in this context without any /C-group assumption.

In fact, using the L-Lemma another result is proved, which is interesting in its own right and
which can be used to improve the qre-Lemma.

Theorem 1.8 Let G be a finite group, S € Syl,(G), and V be a finite dimensional faithful GF (p)G-
module. Suppose that Op(G) = 1 and S is contained in a unique mazimal subgroup of G. Then
|A| = |V/Cv (A)| for every offender A of G on V.



2 Elementary Properties

In this section G is a finite group, p is a prime, and S € Syl,(G).

Notation 2.1 Let X be a p-subgroup of G. A subgroup P of G is X -minimal if X is contained in
a unique mazimal subgroup of P and X £ O,(P).

Lemma 2.2 Let L be a subgroup of G and P be a p-parabolic subgroup of L.

(a) There exists a unique largest p-reduced subgroup Y, of L.

(b) If Y is a p-reduced subgroup of P with Y < O,(L), then (Y'X) is p-reduced for L and soY < Y.
(¢) If L is of characteristic p, then Yp <Yp.

Proof: (a): Let A and B be p-reduced subgroups of L. It suffices to show that also AB is p-reduced.
Then Y}, is the product of all p-reduced subgroups of L.

Since A is p-reduced, B < Op(L) < CL(A) and so AB is elementary abelian. Let D be the
inverse image of O,(L/CL(AB)). Since CL(AB) < Cp(A), DCL(A)/CL(A) < O,(L/CL(A)) and so
D < Cp(A). By symmetry, D < C(B) and thus D < C(A) N Cp(B) = CL(AB).

(b): Since P is a p-parabolic subgroup of L, O,(L) < P. Hence [Y,0,(L)] = 1 since Y is
p-reduced in P. By assumption Y < O,(L) and so Y < Q;Z(0,(L)). In particular, V := (Y£) is
an elementary abelian normal subgroup of L.

Since P contains a Sylow p-subgroup of L, there exists Sy < P such that SoCr(V)/CL(V) =
O,(L/CL(V)) and Sy € Syl,(SoCL(V)). As SoCp(V) < P and Cp(V) < Cp(Yp), we get that
SoCp(Yp) < P. Hence SoCp(V) < Cp(Yp) since Yp is p-reduced in P, and so [V, SoCp(V)] =1
since SyCp(V) < P. Thus V is p-reduced for L, and by (a) V < Yr.

(c): Asin (b), [Yp,Op(L)] = 1. Since L is characteristic p, Yp < Op(L). So (b) implies Yp < Y7,.
O

Lemma 2.3 Let X < § < P < G. Suppose that P is X-minimal and N < P. Then either
OP(P) < N and P=XN, or SN N < O,(P). In particular, P = XOP(P) = (XF).

Proof: Observe that P = NNp(SNN). As P is X-minimal, either NX = P or Np(SNN) = P,
and in the second case S NN < O,(P).

Since X £ O,(P), SN XOP(P) £ O,(P) and so P = XOP(P). A similar argument gives
P=(XP). O

Lemma 2.4 Let A be an F-stable elementary abelian p-subgroup of G, and let Q be a p-subgroup
of G with A < Q. Then the following hold:

(a) A< Z(J(Q)).
(b) (ANG(@)) is elementary abelian.

Proof: (a): Let B € A(Q). Then B acts on A, and |B| > |Cp(A)A| by the maximality of B.
Also Cp(A)NA<ANB < Cpg(A) and so Cp(A)N A= AN B. Hence

[C(A)||A[Ca(B)|™ < [Cr(AAIANB|™! = |Cp(A)A| < |B],

and |A/C4(B)| < |B/Cp(A)| follows. The F-stability of A gives [A, B] =1 and (a) holds.
(b): This is a direct consequence of (a) since Z(J(Q)) < Ng(Q). O



Lemma 2.5 Let QQ be a normal p-subgroup of G with C(Q) < @ and Y be an abelian p-subgroup
of G. If Co(Y) <G and Q normalizes Y, then Y < O,(G).

Proof: Observe that
QY] <QNY < Cq(Y).

Since Cg(Y) < G this shows that (Y'¢) centralizes Q/Cq(Y) and Cq(Y). Hence OP((Y?)) central-
izes @ and since Cq(Q) < Q, OP((YY9)) =1 and (YY) is a p-group. Thus Y < O,(G). O

Lemma 2.6 Let A be a finite elementary abelian p-group and V a finite dimensional GF(p)A-
module. Suppose that A is quadratic on V and [v, A] = [V, A] for every v € V' \ Cy(A). Then A is
a quadratic offender on every A-submodule of V.

Proof: Since every A-submodule of V satisfies the same hypothesis it suffices to show that A is
an offender on V. Without loss, [V, A] # 1. Choose W < [V, A] with |[V, A]/W| = p and put
V = V/W. Let U be the inverse image of C7(A4) in V. Then [U, A] < W and so [V, A] £ [U, A].
Thus U < Cy(4) and C(A) = Cy(A); in particular, |[V/Cy(A4)| = |V /Cy#(A4)|. Note that V
satisfies the hypothesis, so replacing V' by V we may assume that |[V, A]| = p. Let B < A with
|A/B| = p. Since [V, B] is at most 1-dimensional, B in place of A also satisfies the hypothesis of the
lemma. Hence by induction on |A4|, |V/Cy(B)| < |B].

Let a € A\ B. Since |[V,a]| = p, |V/Cy(a)| < p and so also |Cy(B)/Cv(B) N Cy(a)| < p. But
Cy(A) = Cy(B)NCy(a) and so

[V/Cv(A)| < |[V/Cv(B)lp < |Blp = |A].

3 A Partial Ordering

In this section G is a finite group, p is a prime, and S € Syl,(G).
Notation 3.1 Let A and B be subgroups of G. The relation < on the subgroups of G is defined by
ALK B:<—= ACCg(Ya)B and Y4 <Yp.
Furthermore, we define
AT :=Cg(Ya)A and ST:={L <G |L=L"}.
Lemma 3.2 Let L and M be subgroups of G.
(a) Y, <Yp+, L< LY, and (LY)T = LT.
(b) ST ={L<G|Ca(Vy) < L}.
(c) < is reflexive and transitive.
(d) L C Ca(YL)M if and only if L < Ce(YL)Na (Y1)

(e) Suppose that L C Co(Y)M and L N M is a p-parabolic subgroup of L and M. Then Yy, is
p-reduced for Ny (Yr) and L < Ny (YL).



(f) If L = LT, then L < M if and only if Y, < Ypr and L = Cq(Yz)(L N M).
(g9) Restricted to ST, < is a partial ordering.

Proof: (a): Clearly Y7, is a p-reduced subgroup of LT, so Y7, < Yy+. Thus Cq(Yz+) < Cq(Yy) <
LT and LT = (L.

(b): This is an immediate consequence of the definition of LT.

(c): Obviously « is reflexive. If A, B,C < G with A <« B and B <« C, then Y4 <Yp < Y¢ and
so Ya <Ye. Also Cq(Yp) < Cg(Ya) and hence

A C Ca(Ya)B C Ca(Ya)Ca(Yn)C = Ca(Ya)C.

Thus A <« C and < is transitive.

(d): L CCq(Yr)M then L < Ng(Yr) N Cq(Yr)M = Cq(YL)Np(YL). The other direction is
obvious.

(e): Since L N M is a p-parabolic subgroup of L,

Y, < OP(L) <LNM< NM(YL),

so Y7, is an elementary abelian normal subgroup of N/ (Yz). Since LN M is a p-parabolic subgroup
of M, Ce(Yr)(L N M) and thus also Cg(Yy)L are p-parabolic subgroups of C(Yr)Nas(YL).

As Y7, is a p-reduced subgroup of Ce(Yy)L, 2.2(b) shows that Y7, = (YLC G(YL)NM(YL)> is p-reduced
for Cq(YL)Nar(Yr). Hence Y7, is also a p-reduced subgroup of N/ (Yz). Thus Yz < Y, (v, and
so L <« NM(YL).

(f): Since L € ST we have C(Yz) < L and so L C Cg(Y,)M implies L = Cq(Y7)(L N M). Now
(f) is obvious.

(g): Let L, M € ST with L < M and M < L. Since Y7, < Yj; < Y7, we have Y7, = Y. By (f)
L=Ce(YL)(LNM) and M = Ce(Yr)(M N L). Hence Yy = Yy, gives L = M. So the restriction
of < to ST is anti-symmetric. Now (g) follows (c). O

Notation 3.3 Put ST(S) := {L € St | S < L}. According to 3.2(g) < restricted to ST(S) is a
partial ordering on ST(S). We denote the set of mazimal elements of St(S) with respect to < by
F(S).

Theorem 3.4 F(S) is the unique factorization family for S(S).

Proof: Let G be a factorization family for S(S) and let M € G. Clearly M < MT and by
3.2(a), Yar < Yyt So Condition (ii) of 1.2 gives M = MT. Thus M € S7(S) and G C ST(S).

Now let G be any subset of ST(S). Then Condition (i) of 1.2 is fulfilled for G if and only if for
each L € S(9) there exists M € G with L < M. Since L < L' and < is transitive by 3.2, we
conclude that G fulfills (i) if and only if G contains all the maximal elements of ST(S) with respect
to <. And Condition (ii) holds if and only if all elements of G are maximal with respect to < in
ST(S). Thus F(S9) is the unique factorization family for S(.9). O

Lemma 3.5 Let M € F(S) and H € 8(S) with M = Cp(Yar)(M N H). If H is p-constrained,
then H = Oy (H)(H N M). In particular, if G is of parabolic characteristic p and S < L < M with
M = Cy (Y )L, then M is the unique mazimal p-local subgroup of G containing L.



Proof: Put H = H/O, (H). Since M = Cy(Yar)(HNM), Yy is p-reduced for HNM and Yy is a
p-reduced subgroup of H N M. So by 2.2(c) , Yas < Y. Let Y < S with Y = Y3 and K := Ny (Y).
Then by the Frattini argument, H = O,/ (H)K. It follows that Y is a p-reduced subgroup of K, so
Y <Y <Yg.

AsYO, (H)NM =Y (O, (H) N M), we also get, using the Frattini argument one more time,

HNM=OyH)NM)(KNM)=0,(MNH)(KNM).

Thus M = Cy (Y )(H N M) < Ca(Yar)K since Op (M N H) centralizes Yy,. Now 1.2(ii) implies
that K < M and so H = O, (H)(H N M). Hence the first statement holds.

To prove the the second statement, let H be a p-local subgroup containing L. Then M =
Cr(Yar)L implies M = Cpy(Yas)(H N M). On the other hand H is of characteristic p since G has
parabolic characteristic p, so H is p-constrained and O, (H) = 1. Hence by the first statement
H=0yH)HNM) <M. O

Lemma 3.6 Let M € F(S), Sy := Cs(Yar) and My := Nar(So).
(a) M = CM(YM)M(), SO = Op(Mo) and Cs(S()) S S(),
(b) 1 Z(S) <Yn =Yn, = UZ(So).

Proof: (a): The Frattini argument gives M = Cy(Yar)Mo. Hence O,(My) = So, since Yy is
p-reduced. Clearly Y < 94Z(Sp), and so

Cs(S0) < Cs(11Z(So)) < Cs(Yar) < So.
(b): Let Sy <57 < S with
5100, (§1Z(50))/ Cro (21 Z(S0)) = Op(Mo/Cra, (21 Z(S0))).-

Then S1Cn (Yar)/Cr(Yar) is a normalized by MoCa(Yar) = M. Since O, (M/Crn(Yar)) = 1 we
get S1 < Cyv(Yr), so S1. = So = 0,(Mp) by (a), and Q1 Z(Sp) is p-reduced for My. Together with
3.2(a) this gives

Yar < 0Z(S0) < Yag, < V-

In particular M <« Mg , and the maximality of M yields Yy, = YMJ' Now (b) follows, since also
M Z(S) <Z(Sh). |

Proof of Theorems 1.3 and 1.4:

By 3.4 F(S) is the unique factorization family for S(S). Let M € F(S). By 3.6(b) 1 Z(S) < Yu
and by 3.2(e) M <« Ng(Yr). Hence the maximality of M gives M = Ng(Yar).

Assume that there exists N € F(S) that is F-stable, i.e. Y := Yy is F-stable in Ng(Yn) = N.
Then by 2.4 B(S) < Cg(Y) and

N =Ce(Y)Nn(B(S)) C Cq(Y)L, where L := Ng(B(S5);
in particular Y < Q1 Z(B(S)) < Op(Ng(B(S))). Now 2.2(b) implies that ¥ < Y7, and so by 1.2(ii)

Y =Y. It follows that N = Ng(Yz). In particular, N is the unique F-stable member of F(S).
This finishes the proof of 1.3 and also shows 1.4(a).



Now let 1 # C'char B(S) and put M := Ng(C). Then Ny(B(S)) < M and thus also N =
Ca(Y)(M N N). Suppose that Yy < O,(M). Then as above 2.2(b) implies that Yy < Yar, and by
1.2(ii) Yy = Yar and M < N. So 1.4(b) holds.

Suppose next that M is p-constrained. From N = Cg(Y)(N N M) and 3.5 we get that M =
Oy (M)(M N N). Hence 1.4(c) holds. O

4 The L-Lemma and the qrc-Lemma
In this chapter we will work with the following hypothesis.

Hypothesis 4.1 Let P be a finite group of characteristicp, T € Syl,(P),Y AT, and R := Cr(Y).
Suppose that P is RO,(P)-minimal with M being the unique mazimal subgroup of P containing
RO,(P).

Notation 4.2 Let X be a finite group and V a finite dimensional GF(p)X-module. By c¢(V,X)
we denote the number of non-central chief factors of X in V (in a given chief series). We define
q(V, X) := 0 if every quadratically acting subgroup of X already centralizes V', and

q(V, X) == min{log 4 /¢, vy [V/Cv(A)[|A < X, [V, A, A] =1 # [V, A}
otherwise. Moreover, r(V,X) := 0 if V does not possess non-central X -chief-factors, and
r(V, X) := min{q(C, X) | C non-central X -chief-factor on V'}
otherwise.

Lemma 4.3 (L-Lemma) Assume Hypothesis 4.1. Let A be a subgroup of T such that A £ O,(P).
Then there exists a subgroup L < P with AO,(P) < L satisfying:

(a) AO,(L) is contained in a unique mazimal subgroup Lo of L, and Lo = LN MY for some g € P.
(b) L =(A,A")O,(L) for every x € L\ L.
(¢) L is not contained in any P-conjugate of M.

Proof: See [PPS]. O

The next lemma is very similar to [Ste, 3.3].

Lemma 4.4 Assume Hypothesis 4.1. Suppose V := (YT) is elementary abelian, Co,p)(Y) 4 P
and ¢(V, P) = 1. Then [O,(P), OP(P)] is non-trivial quadratic offender on'Y .

Proof: Since P is RO, (P)-minimal, we get from 2.3 that P = ROP(P)O,(P). Put
Q:=1[0,(P),07(P)], W:=[V,0”(P)] and D :=Cy(O"(P)).

Since ¢(V,P) = 1, W/W N D is chief-factor for P on V. Hence [W,0,(P)] < D. Note that
P = TOP(P) normalizes YW and so V = YW. Thus [V,Q]D < P. Observe that R centralizes



[Y,Q]D/D. Since OP(P) < (RF) we conclude that [Y,Q,OP(P)] < D. Hence OP(P) centralizes
[Y,Q]. So P =TOP(P) normalizes [Y,Q] and [V, Q] = [V, Q] < D. It follows that

[V,0P(P), Op(P)] = [W,0p(P)] <D and  [0,(P),0"(P),V] = [Q,V] < D
Hence the Three Subgroup Lemma implies [V, O,(P), OP(P)] < D and so
(%) [V, Op(P)] < D.

Pick € Y\ D. Since R centralizes z we conclude from (x) that P = ROP(P)O,(P) normalizes
(PN D and so W < (z°"(P)YD. Put X := [z,Q]. Since X < D it follows that

W, Q] < [(z°"ND,Q] = [2,Q] =

As [ ,Q,0P(P)] =1 < X and [V,0P(P),Q] = [W,Q] < X, the Three Subgroup Lemma implies
[Q,0P(P),V] < X. Since [@Q,0P(V)] = Q we get [V, Q] = X. In particular,

[y, Q] = X for every y € Y\ Oy (Q).

Now 2.6 shows that () is a quadratic offender on Y.
If Q acts trivially on Y, then Q < Cp,(py(Y) and so Co, (p)(Y) < TOP(P) = P, a contradiction.
O

Lemma 4.5 Let L be a finite group acting on a p-group E, and let A and B be p-subgroups of L
and X and Z subgroups of E. Suppose that

(i) B £ Op(L)
(it) [E,A] < X < Cg(A) and [E,B] < Z < Cg(B),
(iii) L is AO,(L)-minimal and [E,OP(L)] # 1,
(iv) X is normalized by E and O,(L), X is abelian, and E = (XL).
Then
(a) Cp(E) < BNOy(L),
(b) E=X9Z = X9Cg(B) for some g € L,
(¢c) Z =|E,B]Cz(E) = [E,b]Cy(E) for allb € B\ O,(L),
(d) [B,E,E,E] =1,
(e) |2/Cz(E)| < |ZD/D| < |E/CEp(B)|,
(f) 1BOy(L)/Op(L)| < |E/CE(B)|.

Proof: By (iii) there exists a unique maximal subgroup Ly of L containing AO,(L), and by 2.3
(Nyer L8)/Op(L) is a p'-group.

Pick b € B\ Op(L). Then there exists g € L with b ¢ L. Put H := (A9,b). Then L = HO,(L)
since H £ LY. Furthermore, we put D := ﬂgEL X9,



a): Again by (iii) OP(L) £ Cr(FE), so 2.3 shows that C1(F)/Co (r)(E) is a p'-group. Now (a
(a): Again by p(L) g
follows.

(b): By (iv) O,(L) normalizes X, so X* = X, It follows that D = (. X" and Cxs(b) <
Cxq(H) < D. From E = (X%) = (X*) and (ii) we conclude that

(%) E = XY[E,H] = X9[E, A9)[E,b] = X9[E,b] = X9Z.

Since Z < Cg(B) by (ii), (b) holds.
(c): Since X9NZ < Cxq(H) <D, weget X9NZ=DNZ and so by (b) and (x)

|E/X|=|E/XI =|ZX9/X9 =|Z/ZNXI =|Z/Z N D|.
Moreover, using (x)
Z=(XINZ)Eb <(ZND)E,b <Cz(E)E, <Cz(E)E,B|<Z,

and so (c) holds.

(d): Since L is AO,(L)-minimal, A £ O,(L) and so (b) can be applied with A and A9 in place
of A and B. Then E = XX* for some t € L; in particular [X*, X] < X N X* < D < Z(E). Thus
E' <D< Z(E) and [B,E, E,E] < [E', E] = 1. So (d) holds.

(e): By (ii) and (b)

Cr(B) < Cxs(B)Z =Cxq(H)Z =DZ.

Hence
|E/Cr(B)| >|E/ZD|=|X9ZD/ZD|=|X9/X9NZD|=|X9/D|.

On the other hand, by (b) |E/X|=|Z/ZN XY =|Z/Z N D|, while the same result applied to A in
place of B gives |E/X| = |X/D|=|X9/D|. Since D < Z(E) this gives

|E/Cu(B)| > 12/Z0 D| > |2/C4(E).

(f): Let # € X9\ D and suppose that [x,b] € D. Then (z)D is normalized by (X9,b) = H
and so ¢ € D, a contradiction. This shows that [z,c] ¢ D for every ¢ € B\ Op(L). Since B acts
quadratically on the abelian group E/D we conclude

[z, BID/D| = [{[z,d]D | ¢ € B}| > [BOy(L)/Op(L)].

Note that by (ii), [z, B]D < ZD and so (f) now follows from (e). O

Theorem 4.6 Assume Hypothesis 4.1. Let V be a finite dimensional GF(p)P-module such that
[V,O,(P)] =0 and [V,OP(P)] # 0. Then ¢q(V,P) =0 or ¢(V,P) > 1.

Proof: Let A < T be a quadratic on V with [V, A] # 0. We need to show that that |V/Cy (A4)| >
|A/C4(V). The proof is by induction on |A|.
Let Y be a non-central P-chief factor in V. By 2.3 Cp(Y) < O,(P) < Cp(V). It follows that
[Y/Cy (A)] < [V/Cy(A)] and [A/Ca(Y)| = [A/Ca(V)

for every A < T'. Hence we may assume that

1° V is a non-trivial simple P-module.
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We now apply 4.3. Then there exists A < L such that L has the properties given in 4.3. In
particular, there exists g € P such that A <T9NL € Syl,(L), and L N M9 is the unique maximal
subgroup of L containing AO,(L). Put U := (Cy (T9)%).

20 [U,0°(L)] # 0 and [U, A] # 0.

By (1°) Cy(T9) is not P-invariant, so Np(Cy(T9)) < M9. Since L £ M9, we get that
[U,0P(L)] # 0 and thus also [U, A] # 0.

3°  Put D:=CA(U). Then |A/D| < |U/Cy(A)|.

Observe that by the definition of U, [U, O,(L)] = 0. Thus, for E:=U, B:= A, and X = 7 :=
Cu(A), L satisfies the hypothesis of 4.5. By 4.5(f)

|A/D| = [A/Ca(U)] < [A/ANOp(L)] < |U/Cu(A)].
So (3°) holds.
4°  |D/Cp(V)| < |V/Cy(D)|.
Since [U, A] #0, D < A and (4°) follows by induction on |A].

Using (3°) and (4°) we compute

[A/Ca(V)| =[A/D||D/Cp(V)| < |U/Cu(A)||V/Cy(D)|

= |
< |Cv(D)/Cv (A)||[V/Cv(D)| = [V/Cv (A)].

The next lemma is a variation of [Ste, 3.2].
Lemma 4.7 (qre-Lemma) Assume Hypothesis 4.1. Let V := (YF). Suppose that
(1) Y < Z(J(Op(P))),
(i) Co,p)(Y) 4 P,
(i) J(R) £ 0,(P).

Then V< MZ(J(O,(P))),V #Y, N (Y) < M, [V,0P(P)] # 1, Cr(V) < Op(P) and there exists
A € A(R) with
[V,A, Al =1# [V, A] and A £ O,(P).

Moreover, one of the following holds, where q := q(Y, Op(P)), v :=r(V,P) and ¢ := ¢(V, P):

(a) 0#q<1.
(b) 2<e¢,1<r,and (¢q—1)(rec—1) <1. In particular, 0 # q < 2.

11



Proof: By (i) V < ZJ(Oy(P)). If V. =Y, then Cp, p)(Y) < P, a contradiction to (ii). Hence
V #Y and RO,(P) <T < Np(Y) < P. Since P is RO, (P)-minimal we conclude that Np(Y') < M.
So [V,0P(P)] # 1. Hence 2.3 gives Cr(V) < O,(P). In particular, (P,Y") satisfies Hypothesis III of
[Ste].

As Cr(V) < O,(P), (iii) shows that there exists A € A(R) such that [V, A] # 1. By the
Timmesfeld Replacement Theorem [KS] we may assume that [V, A, A] = 1. Moreover, (i) implies
that A £ O,(P).

Suppose that ¢ = 1. Then 4.4 shows that (a) holds. Thus, we may assume from now on that
c>2.

Suppose that [ANO,(P),V] = 1. Again by 2.3 O,(P)NA = C4(V) = C4(U) for every non-central
P-chief factor U of V. On the other and, by the maximality of A, |V/Cy(A)| < |A/Ca(V)| and thus
also |U/Cy(A)| < |A/Ca(U)|. Hence 4.6 implies that ¢ = 1, which contradicts our assumption. We
have shown that [A N O,(P), V] # 1; in particular ¢ # 0. Now [Ste, 3.2 (c)] and 4.6 yield (b). O

Lemma 4.8 Assume hypothesis 4.1. Suppose that

(i) Co,p(Y) 4 P,
(1) Y < Z(J(0p(P))) N Z(J(T)),
(iit) J(T) £ Op(P).
Then there exist subgroups A € A(T) and L of P such that the following hold:
(a) L is AO,(L)-minimal.
(b) O,(P)A<TNL € SyL,(L), and MNL is the unique mazimal subgroup of L containing AO,(L).
(c) Y AL, and Vy := (Y'F) is abelian.
(d) If Y < Z(J(O,(L))), then L and Y satisfies the hypothesis of 4.7 with L in place of P.

Proof: From (ii) [Y,J(T)] =1 and so J(T') < R and J(R) = J(T). So the assumptions of 4.7
are fulfilled. In particular, V is elementary abelian and there exists A € A(T) with [V, 4, A] =1 #
[V, A] and A £ O,(P).

Hence we are allowed to apply the L-Lemma 4.3. This gives a subgroup L having the properties
(a) — (c) given in 4.3. By 4.3(c) L is not a p-group, and so L is AO,(L)-minimal. This is (a).

According to 4.3(a) there exists g € P such that AO,(L) <T9NL € Syl,(L), and LN MY is the
unique maximal subgroup containing AO,(L). Hence replacing A by A9 and L by LY we may
assume that (b) holds.

Clearly Y ¢ L since L « M but Np(Y) < M. Since V is abelian, Vj is abelian and (c) holds.

From A £ O,(P) and (ii) we get that that J(Crar(Y)) £ Op(L) and L is Crar(Y)O,(L)-
minimal. Hence 4.7(iii) holds for L and Y. Assume that Cp ()(Y) < L. Then also Cop,p)(Y) < L
and thus P = (T, L) < Np(Co,p)(Y)). This contradicts (i). Hence also 4.7(ii) holds for L and Y,
and (d) follows. O
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5 F-stability
In this section we explore the following hypothesis:

Hypothesis 5.1 Let p be a prime and H a finite group. Suppose that'Y is an elementary abelian
p-subgroup of H such that for T € Syl,(Ny(Y)) and R := Cr(Y) the following hold:

(i) Y < Ny (J(R)).
(i) Y is F-stable in H.
(11t) EitherY < O,(H) or H is of characteristic p.
This hypothesis is motivated by the following observation:

Lemma 5.2 Let G be a finite group, S € Syl,(G) and J(S) < H < G, and let F(S) be a factoriza-
tion family for S(S). Suppose that N € F(S) is F-stable.

(a) If YN < Op(H), thenY :=Yy and H satisfy Hypothesis 5.1.

(b) If H is p-constrained and H := H/O,,(H), then Y and H satisfy Hypothesis 5.1 in place of Y
and H.

Proof: Let T € Syl,(H) with J(S) < T. Put Y :
Y is F-stable, 2.4(a) implies that Y < Q,Z(J(S))
that ¥ < O,(Ng(J(S))) and so by 1.4(b), Ng(J(S
T € Syl,(Nu(Y)). Now (a) follows.

Assume that H is p-constrained. Then H = H /O, (H) is of characteristic p. By the Frattini-
argument, N77(Y)) = Ny (Y) and N7(J(R)) = Ny (J(R)). Moreover since Y is F-stable in G, Y is
F-stable in H. Thus Hypothesis 5.1 holds for Y and H. g

Yy and R := Cr(Y). Since Y < S and
H and J(S) = J(T) = J(R). Observe
< N. In particular, T < Ng(Y) and so

= IA I

~

Lemma 5.3 Assume Hypothesis 5.1. ThenY <T,Y < Z(J(T)), J(R) = J(T), Nu(T) < Ng(Y)
and T € Syl,(H).

Proof: Clearly Y <T. Thus by 2.4(a), [Y,J(T)] = 1. So J(T) < R and J(T) = J(R). Therefore
Ny (T) < Ng(J(R)) and so by Hypothesis 5 1(i) Nu(T) < Ng(Y). Hence T € Syl,(H). O

Theorem 5.4 Assume Hypothesis 5.1 and suppose Co, () (Y) 4 H. Then'Y is not 2F-stable in
H.

Proof: If any subgroup of H satisfies the conclusion of 5.4 with respect to Y, then also H does.
Thus we may assume:

1° No proper subgroup of H satisfies the hypothesis of 5.4 with respect to Y .

Put
Ho = Nu(Co,m)(Y))-

From 5.3 we conclude

2°  Ny(T) < Nu(Y) < Ho, J(R) = J(T), Y < ZJ(R)) and T € Syl,(Ho).
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Next we show:

3°  Let J(R)O,(H) < H < H. Then Cy, j3)(Y) < H and H < H.

By (2°) there exists R € Syl,(Cz(Y)) with J(R) < R and J(R) = J(T) = J(R), and so
Y < Nj(J(R)). Since O,(H) < O,(H), Y < O,(H) or H is of characteristic p. Moreover Y is
F-stable in H, and so Y and H satisfy Hypothesis 5.1. Now (1°) shows that Co,m(Y) < H.
Hence Co,,(m)(Y) = Op(H) N Cq (7)(Y) is normal in H and H < H,.

4° Hy is the unique mazimal subgroup of H containing J(R)Op(H), and H is J(R)O,(H)-
minimal.

The first statement follows from (3°). If J(R) < O,(H), then by 5.3, J(R) = J(O,(H)) < H,
and so by Hypothesis 5.1(1), H < Ny(Y) < Hy, a contradiction. Hence J(R)O,(H) £ Op(H), and
H is J(R)O,(H)-minimal.

5° Put W := (YHo). Then W is elementary abelian.

We will first show that Y < O,(Hp). If Y < O,(H), this is obvious. Otherwise H is of
characteristic p and by 5.3, O,(H) normalizes Y. So by 2.5 and (2°) Y < O,(Hy) < T. Now (5°)
follows from Hypothesis 5.1(ii) and 2.4(b).

Let W be the set of all p-subgroups D of H satisfying:
(a) WO,(H) < Niu(D) £ Hy.
(b) D= J(D) < Hy.

Clearly 1 € W and so W # 0. Pick D € W such that first |A| is maximal for A € A(D) and
then |D| is maximal. Put N := Ng(D) and Ty := DO,(H) and let Ty € Syl,(N N Hp). Since
To < Op(N N Hy), Ty < Ti. As W is Hy-invariant and by (2°) T' € Syl,(Hy), there exists g € Hp
with W9 = W and T < T'; in particular D9 € W. Thus, after replacing D by DY we may assume
that Ty < T.

6° Y <Z(J(T1)), and if Y < Ty then Y < Z(J(Tp)).
Since T1 < T, T} normalizes Y. So (6°) follows from 2.4(a).

7° Let U be a p-subgroup of Hy containing D. Suppose that W < Ny (U) and Ny(U) £ Hy.
Then J(U) =D, and if Y < U then Y < Z(D).

Observe that W < Ny (U) < Ny(UO,(H)). Hence Ny(UO,(H)) £ Hy and J(UO,(H)) € W.
Since D < U < UO,(H), the maximal choice of D gives D = J(UO,(H)) = J(U).
Suppose that Y < U, then J({U) =D <T; < Nyg(Y) and so by 2.4(a), Y < Z(J(U)) = Z(D).

8  J(T)# D and J(Ty) # D.

Suppose J(T') = D. Then by 5.3 and Hypothesis 5.1(1), N < Ng(J(T)) < Ng(Y) and so N <
Nu(Co,m)(Y)) < Ho, contrary to the choice of D.

Suppose J(T1) = D. Then Np(Th) < Ng(J(Th)) = N. So Np(Th) < Ty, T =Ty and J(T) =
J(T1) = D, a contradiction.

14



9° Let U be a p-subgroup of Hy containing WD. Suppose that J(U) # D orY & Z(D). Then
U is not contained in any H-conjugate of Hy other than Hy.

Let g € H with U < H§ and U < T € Syl,(Ho N HY). If J(T3) = D, then also D = J(U) and
thus Y £ Z(D). Thus either J(T2) # D or Y £ Z(D). So (7°) gives Ny (T2) < Hp. This implies
Nug(Tz) < Ho N Hy and so Tz € Syl,(Hg). By (4°), Hj is the unique maximal subgroup of H
containing T5. Since Tb < Hy we get Hy = Hg.

10° Ty € Syl,(N), J(T1) £ Op(N), and WJ(T1)D is not contained in any other H-conjugate
Of Ho.

By (8°) and (7°) Ny (J(T1)D) < Ho, so Ny (Ty) < NN Ho and Ty € Syl (N). If J(Ty) < O,(N),
then J(T1) = J(O,(N)) and N < Ny (J(T1)D) < Hy, a contradiction.
Put U := WJ(T1)D. By (8°), J(U) # D and so the last statement in (10°) follows from (9°).

11° There exists a W J(T1)To-minimal subgroup Hy < N such that Hy N Hy is a maximal
subgroup of Hy and J(O,(Hy)) = D.

By definition of W, N £ Hy. Choose WJ(T1)Ty < H; < N such that H; is minimal with
Hy & Hy. Since Hy £ Ho, Ny (Op(H1)) £ Hp. Also WO, (H) normalizes O,(Hy) and D < O,(Hy).
So by (7°) J(O,(H1)) = D. Since J(T1) # D by (8°) we conclude J(T1) £ O,(H;). Hence also
WJ(T1)To £ Op(Hy), and Hy is WJ(T1)T,-minimal.

In the following let H; be as in (11°). Pick WJ(Th)Ty < T € Sylp,(Hi N Hy). Then Hy is Ts-
minimal and so T3 € Syl,(H1). Since T3 < NN Hy and T1 € Syl,(Ho N N), there exists g € NN Hy
with J(T1) < T3 < T{. Hence g normalizes J(T1), D and W, and thus also W .J(T1)T,. So replacing
H, by H{ and T3 by T§ we may assume that 75 < T < T.

Case 1 The case Y < Op(Hy).
12° Y and H, satisfy the hypotheses of 4.8.

Since T5 < T3, Y < T5. By (5°) and (6°) Y < Z(W.J(TY)), so H; satisfies Hypothesis 4.1. Hence
(8°) and (11°) give Hypothesis 4.8(iii), while 2.4(a) gives Hypothesis 4.8(ii).

Assume that Co, g,)(Y) < Hi. As Op(H) < Op(Hy), also Co,)(Y) < Hy, which contradicts
Hy, £ Hy. Hence also Hypothesis 4.8(i) holds.

According to (12°) we are allowed to apply 4.8 to Y and H;. Let L and V' be with the properties
given there. Since Y < O,(L) < Ty, we get from 2.4(a) that Y < Z(J(O,(L)). Thus, by 4.8(d) L
and Y satisfy the hypothesis of 4.7.

Since Y is 2F-stable we are in case 4.7(b), so 0 # ¢(Y, Op(H1)) < 2. Thus there exists non-trivial
quadratic 2F-offender on Y and the lemma is proved in (Case 1).

Case 2 The case Y £ O,(H).

By our assumption on H, in this case H has characteristic p. Hence also H; has characteristic
p since Op(H) < Hy. We now apply the L-Lemma 4.3 with W and H; in place of A and P. Then
there exists WO, (H1) < L such that

(i) L is WO, (L)-minimal and
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(ii) there exists g € Hy such that Lo := H§ N L is the unique maximal subgroup of L containing
WO,(L).

13°  Lo=LNHy, Y % Z(D) and J(O,(L)) = D.

Let g as in (ii). Then WD < HyN H§ and Y £ Z(D) since D < O,(H;). Hence (9°) implies
Hy = H§; in particular Lo = L N Hy and L £ Hy. Now (7°) also gives J(O,(L)) = D.

According to (13°) we may assume, after conjugation by a suitable element of Hy N Hy, that
14°  WOL(L) <TNLe Syl,(Lo). In particular Op(L) <T and O,(L) normalizes Y .

By (13°), Y £ ZJ(O,(L)). Since Op(L) normalizes Y, we get from 2.4 that
15° Y £ O,(L).

Put
A=W, B:=Y, X:=0,(L)NA, E:= (X", Z:=0,(L)NB.

By (5°) A is abelian, and by (14°) O,(L) normalizes A and B. Moreover, since Op(H1) < O,(L)
and H; has characteristic p, [E, OP(L)] # 1. It follows that the hypotheses of 4.5 are satisfied.

By 4.5(a), Cy(E) <Y NO,(L) and so by 4.5(c), [b,Y]Cy(E) = [E,Y]|Cy(E) =Y N O,(L) for
all b € Y \ O,(L). Moreover, by 4.5(d) [Y,E,E, E] = 1 and by 4.5(¢),(f) we have |Y/Cy(E)| <
|E/Cgr(Y)|?. So E is a nearly quadratic 2F-offender on Y. Hence the lemma also holds in (Case 2).

O

Lemma 5.5 Assume Hypothesis 5.1. Suppose that Y 4 H andY is 2F-stable. Then Q1 Z(T) £ H.

Proof: Let T'< P < H and P be minimal with Y ¢4 P. By 5.3 Ny(T) < Ng(Y),soT ¢ P
and P is T-minimal. Put

Q = Co,m (V). Vo = % (Z(Q)), V = Cyy (Oy(P)). P := P/Cp(V).

If Z(T) £ O,(P), Z(T) 4 P. So we may assume 0 Z(T) < O,(P) and thus 0 Z(T) = Cv(T).
By 5.4 Q@ < P. Since either Y < O,(H) < Op(P) or P is of characteristic p, 2.5 implies Y < O,(P).
Thus ¥ < V,. Since Y ¢4 P, we get that [Vp,OP(P)] # 1. By 5.3, J(R) = J(T) and so by
Hypothesis 5.1(i), J(R) £ Op(P). Hence 2.3 shows that [OP(P),J(R)] = OF(P). Since J(R)
centralizes Y, [O,(P), J(R)] < Op(P)N J(T) < Q and so [O,(P),0?(P)] < Q. The P x Q-Lemma
yields [V, OP(P)] # 1. -

Again 2.3 gives C7(V) = O,(P) and O, (P) = 1. Moreover J(T') # 1 since J(R) % O,(P). Hence
P and V satisfy the hypothesis of [BHS, 5.6]. It follows that [Cy (T'), P] # 1. Since Cy(T) = Q1 Z(T)
and P = (TF) we conclude that Q;Z(T) # P and so also Z(T) ¢ H. O
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6 The Proof of Theorems 1.5 — 1.8

Recall that Theorems 1.3 and 1.4 have been proved in Section 3.
Proof of Theorem 1.5:

(a): Observe that N = Ng(Yy) by 1.3. Suppose Yy < O,(M). If M = Ng(C) for 1 #
C char B(S), then 1.5(a) follows from 1.4(b). If Q;Z(S) < M, then 5.2(a) shows that Yy and M
satisfy Hypothesis 5.1. Hence 5.5 gives Yy < M and so M < N.

(b): Put M := M /O,y (M). Then 5.2(b) shows that Yy and M satisfy Hypothesis 5.1. Thus 5.5
gives Yy < M. By the Frattini-argument M = Op (M)Np (Yn) = Op (M)(M N N).

(c): Let B(S) < H < G and H be p-constrained with H # O, (H)(HNN), and let B(S) <T €
Syl,(Np(Yy)). Put H := H/O,(H). Then again 5.2(b) shows that Yy and H satisfy Hypothesis
5.1. Hence by 5.4, C, ) (Yy) < H and by 2.5, Yy < O,(H). From 5.5 applied to N&(Q21Z(T))
we get Yy <9 Ng(Z(T)). Recall that Yy < Q,Z(J(S)) < O (Ng(J(S)). Thus by 1.4(b),
Ng(J(S)) < N. Since B(T) = B(S) we have J(T) = J(S) and so Y C’**(H T). By the Frattini
Argument N (Yn) = Ny (Yn) = H N N. Hence also C**(H,T

SO
)<H
Proof of Theorem 1.6:

Let P € F(S). By 1.3 P is a p-local subgroup of G. Let L be a maximal p-local subgroup
containing P. By 2.2(c) Yp <Y}, and so P <« L. Hence by 3.4 P = L.

Suppose that N € F(S) is 2F-stable. Let M = Ng(C) for 1 # C char B(S) or M = Ng(Q1Z(S)).
Then S < M, so M has characteristic p since G is of parabolic characteristic p. Hence 1.5(a) implies
M < N.

Let H € S(B(S)) and B(S) < T € Syl,(H). Then B(S) = B(T) and so Ng(C)
1 # CcharB(T). Also T < S9 for some g € Ng(B(S)) < N and 9,Z(59) < J(5)

Z(89) < Z(T) and Cy (1 Z(T)) < Ca(2012(S9)) < N9 =N. Thus C*(H,T) < HN N.

N for

<
< 7T, so

)

Proof of Corollary 1.7:

By 1.6 the members of F(S) are maximal p-local subgroups. We may assume that there exists
a 2F-stable N € F(S).

Let L be a maximal p-local subgroup containing S with L £ N and choose M € F(S) with
L <« M. Then L < Cg(Yr)M. On the other hand, by 2.2(c) 2:Z(S) < Y and so by 1.6
Ce(Ynm) < Ca(1Z(S)) < N. Since L £ N we conclude that M £ N and M # N. By 1.4 N is the
only member of F(S) which is F-stable. Hence M is not F-stable.

Proof of Theorem 1.8:
Let P be the semi-direct product of G and V. Then O,(P) =V and [V,0P(P)] # 1. Let A be

an offender on V such that |A||Cy (A)| is maximal. Because of [KS, 9.2.3] we may assume that A is
quadratic on V' Hence 4.6 implies |A/C4 (V)| = |V, and 1.8 follows.
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