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1 Introduction

Let G be a finite group and p a prime. A subgroup P containing a Sylow p-subgroup of G is a
p-parabolic subgroup of G, and P is a local p-parabolic subgroup if in addition Op(P ) 6= 1.

Moreover, G has characteristic p if CG(Op(G)) ≤ Op(G); and G has parabolic characteristic p if
every local p-parabolic subgroup has characteristic p.

The standard examples for groups of parabolic characteristic p are the finite simple groups of Lie
type in characteristic p. In these examples every proper parabolic subgroup is a local p-parabolic
subgroup, and for maximal parabolic subgroups M the normal subgroup Ω1Z(Op(M)), considered
as a GF (p)M -module, has a remarkably restricted structure. In this paper we try to understand
this phenomena in arbitrary finite groups.

What kind of properties of the module Ω1Z(Op(M)) should one aim at in general? A possible
answer arose during our detailed study of the p-local structure of groups of local characteristic p in
[MSS], where a group has local characteristic p if each of its p-local subgroup has characteristic p.

Definition 1.1 Let A be an elementary abelian p-group and V a finite dimensional GF (p)A-module.
Then A is

(a) quadratic on V if [V,A, A] = 0,

(b) nearly quadratic on V if [V,A, A, A] = 0 and

[V,A] + CV (A) = [v, A] + CV (A) for every v ∈ V \ [V,A] + CV (A),

(c) an offender on V if |V/CV (A)| ≤ |A/CA(V )|,

(d) a 2F -offender on V if |V/CV (A)| ≤ |A/CA(V )|2,

(e) non-trivial on V if [V,A] 6= 0.

A p-subgroup Y of G is called p-reduced (for G) if Y is elementary abelian and normal in G,
and Op(G/CG(Y )) = 1. The largest p-reduced subgroup of G is denoted by YG; for the existence of
YG see 2.2(a).

Let M be a subgroup of G. Then M is F -stable (in G) if none of the elementary abelian p-
subgroups of NG(YM )/CG(YM ) are non-trivial offenders on YM . Similarly, M is 2F -stable (in G)
if none of the elementary abelian p-subgroups of NG(YM )/CG(YM ) are non-trivial nearly quadratic
2F -offenders on YM .
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Modules admitting non-trivial 2F -offenders have been investigated by Guralnick, Lawther and
Malle in [GLM],[GM1],[GM2], and [L]. They have classified all pairs (V,G), where V is an irreducible
GF (p)G-module and G is a known finite almost quasisimple group containing a non-trivial 2F -
offender on V .

Their result is a major generalization of earlier results, where G was assumed to contain a non-
trivial offender.

For stating our results we need some further definitions.

Definition 1.2 By S(X) we denote the subgroups of G containing X. Let S be Sylow p-subgroup
of G.

B(S) := CS(Ω1ZJ(S)),

C∗(G, S) := 〈CG(Ω1Z(S))), NG(C) | 1 6= C char B(S)〉,

and
C∗∗(G, S) = 〈NG(J(S)), CG(Ω1Z(S)〉.

A factorization family for S(S) is a subset F(S) ⊆ S(S) with the following two properties:

(i) For every H ∈ S(S) there exists M ∈ F(S) with H ⊆ CG(YH)M and YH ≤ YM .

(ii) If H ∈ S(S) and M ∈ F(S) with M ⊆ CG(YM )H and YM ≤ YH , then YM = YH and H ≤M .

Property (i) implies

H/CH(YH) ∼= HCG(YH)/CG(YH) ∼= (HCG(YH) ∩M)CG(YH)/CG(YH),

so the action of H on YH is isomorphic to the action of HCG(YH) ∩M on the submodule YH of
YM . In particular, it suffices to identify M/CM (YM ) and its action on YM to identify H/CH(YH)
and YH .

Property (ii) is the crucial one for applications since it has strong consequences. For example, if
G is of parabolic characteristic p and S ≤ H ≤ M ∈ F(S) such that M = HCM (YM ), then M is
the unique maximal p-local subgroup of G containing H (see 3.5).

Of course, it is not clear a priori that factorization families exist. The existence (and uniqueness)
will be established in Theorem 3.4.

Theorem 1.3 Let G be a finite group and S ∈ Sylp(G). There exists a unique factorization family
F(S) for S(S) in G. Moreover, at most one member of F(S) is F-stable, and

Ω1Z(S) ≤ YM and M = NG(YM ) for every M ∈ F(S);

in particular, the elements of F(S) are p-local subgroups of G if S 6= 1.

In the following results F(S) is always a factorization family for S(S). Recall that a finite group
H is p-constrained if H/Op′(H) is of characteristic p.

Theorem 1.4 Let G be a finite group and S ∈ Sylp(G), and let 1 6= C char B(S) and M := NG(C).
Suppose that there exists N ∈ F(S) that is F-stable.

(a) If C = B(S), then YN = YM and N = CG(YM )M = NG(YM ).
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(b) If YN ≤ Op(M), then YM = YN and M ≤ N .

(c) If M is p-constrained, then M = Op′(M)(M ∩N).

Theorem 1.5 Let G be a finite group and S ∈ Sylp(G), and let M ∈ S(S) such that Ω1Z(S) EM
or M = NG(C) for some 1 6= C char B(S). Suppose that there exists N ∈ F(S) that is 2F -stable.

(a) If YN ≤ Op(M), then M ≤ N .

(b) If M is p-constrained, then M = Op′(M)(M ∩N).

(c) The following hold for any p-constrained H ∈ S(B(S)) with H * Op′(H)N (where H =
H/Op′(H)):

(a) YN ≤ Op(H).

(b) COp(H)(YN ) E H.

(c) YH is not F -stable in H.

(d) C∗∗(H, T ) ≤ H ∩N < H, where B(S) ≤ T ∈ Sylp(H).

For groups of parabolic characteristic p more can be said about the members of the factorization
family F(S).

Theorem 1.6 Let G be a finite group of parabolic characteristic p and 1 6= S ∈ Sylp(G). Then
the members of F(S) are maximal p-local subgroups of G. Moreover, if N ∈ F(S) is 2F -stable and
H ∈ S(B(S)) with B(S) ≤ T ∈ Sylp(H), then C∗(H,T ) ≤ N .

Corollary 1.7 Let G be a finite group of parabolic characteristic p and S ∈ Sylp(G). If S is
contained in at least two maximal p-local subgroups of G, then there exists M ∈ F(S) such that M
is not 2F -stable.

Let G and N be as in 1.6, and let H be a p-local subgroup containing S such that H 6≤ N .
Then by 1.6 C∗(H,S) is a proper subgroup of H. In this case the structure of H can be described
precisely using the Local C(G, T )-Theorem proved in [BHS].

The proof of the above theorems relies heavily on two elementary results from [PPS] and [Ste],
the L-Lemma and the qrc-Lemma. The authors found it remarkable that these results allow to
study finite groups in this context without any K-group assumption.

In fact, using the L-Lemma another result is proved, which is interesting in its own right and
which can be used to improve the qrc-Lemma.

Theorem 1.8 Let G be a finite group, S ∈ Sylp(G), and V be a finite dimensional faithful GF (p)G-
module. Suppose that Op(G) = 1 and S is contained in a unique maximal subgroup of G. Then
|A| = |V/CV (A)| for every offender A of G on V .
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2 Elementary Properties

In this section G is a finite group, p is a prime, and S ∈ Sylp(G).

Notation 2.1 Let X be a p-subgroup of G. A subgroup P of G is X-minimal if X is contained in
a unique maximal subgroup of P and X 6≤ Op(P ).

Lemma 2.2 Let L be a subgroup of G and P be a p-parabolic subgroup of L.

(a) There exists a unique largest p-reduced subgroup YL of L.

(b) If Y is a p-reduced subgroup of P with Y ≤ Op(L), then 〈Y L〉 is p-reduced for L and so Y ≤ YL.

(c) If L is of characteristic p, then YP ≤ YL.

Proof: (a): Let A and B be p-reduced subgroups of L. It suffices to show that also AB is p-reduced.
Then YL is the product of all p-reduced subgroups of L.

Since A is p-reduced, B ≤ Op(L) ≤ CL(A) and so AB is elementary abelian. Let D be the
inverse image of Op(L/CL(AB)). Since CL(AB) ≤ CL(A), DCL(A)/CL(A) ≤ Op(L/CL(A)) and so
D ≤ CL(A). By symmetry, D ≤ CL(B) and thus D ≤ CL(A) ∩ CL(B) = CL(AB).

(b): Since P is a p-parabolic subgroup of L, Op(L) ≤ P . Hence [Y,Op(L)] = 1 since Y is
p-reduced in P . By assumption Y ≤ Op(L) and so Y ≤ Ω1Z(Op(L)). In particular, V := 〈Y L

P 〉 is
an elementary abelian normal subgroup of L.

Since P contains a Sylow p-subgroup of L, there exists S0 ≤ P such that S0CL(V )/CL(V ) =
Op(L/CL(V )) and S0 ∈ Sylp(S0CL(V )). As S0CP (V ) E P and CP (V ) ≤ CP (YP ), we get that
S0CP (YP ) E P . Hence S0CP (V ) ≤ CP (YP ) since YP is p-reduced in P , and so [V, S0CP (V )] = 1
since S0CP (V ) E P . Thus V is p-reduced for L, and by (a) V ≤ YL.

(c): As in (b), [YP , Op(L)] = 1. Since L is characteristic p, YP ≤ Op(L). So (b) implies YP ≤ YL.
�

Lemma 2.3 Let X ≤ S ≤ P ≤ G. Suppose that P is X-minimal and N E P . Then either
Op(P ) ≤ N and P = XN , or S ∩N ≤ Op(P ). In particular, P = XOp(P ) = 〈XP 〉.

Proof: Observe that P = NNP (S ∩N). As P is X-minimal, either NX = P or NP (S ∩N) = P ,
and in the second case S ∩N ≤ Op(P ).

Since X � Op(P ), S ∩ XOp(P ) � Op(P ) and so P = XOp(P ). A similar argument gives
P = 〈XP 〉. �

Lemma 2.4 Let A be an F -stable elementary abelian p-subgroup of G, and let Q be a p-subgroup
of G with A E Q. Then the following hold:

(a) A ≤ Z(J(Q)).

(b) 〈ANG(Q)〉 is elementary abelian.

Proof: (a): Let B ∈ A(Q). Then B acts on A, and |B| ≥ |CB(A)A| by the maximality of B.
Also CB(A) ∩A ≤ A ∩B ≤ CB(A) and so CB(A) ∩A = A ∩B. Hence

|CB(A)||A||CA(B)|−1 ≤ |CB(A)||A||A ∩B|−1 = |CB(A)A| ≤ |B|,

and |A/CA(B)| ≤ |B/CB(A)| follows. The F -stability of A gives [A, B] = 1 and (a) holds.
(b): This is a direct consequence of (a) since Z(J(Q)) E NG(Q). �
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Lemma 2.5 Let Q be a normal p-subgroup of G with CG(Q) ≤ Q and Y be an abelian p-subgroup
of G. If CQ(Y )EG and Q normalizes Y , then Y ≤ Op(G).

Proof: Observe that
[Q, Y ] ≤ Q ∩ Y ≤ CQ(Y ).

Since CQ(Y ) E G this shows that 〈Y G〉 centralizes Q/CQ(Y ) and CQ(Y ). Hence Op(〈Y G〉) central-
izes Q and since CG(Q) ≤ Q, Op(〈Y G〉) = 1 and 〈Y G〉 is a p-group. Thus Y ≤ Op(G). �

Lemma 2.6 Let A be a finite elementary abelian p-group and V a finite dimensional GF (p)A-
module. Suppose that A is quadratic on V and [v, A] = [V,A] for every v ∈ V \ CV (A). Then A is
a quadratic offender on every A-submodule of V .

Proof: Since every A-submodule of V satisfies the same hypothesis it suffices to show that A is
an offender on V . Without loss, [V,A] 6= 1. Choose W ≤ [V,A] with |[V,A]/W | = p and put
V = V/W . Let U be the inverse image of CV (A) in V . Then [U, A] ≤ W and so [V,A] � [U, A].
Thus U ≤ CV (A) and CV (A) = CV (A); in particular, |V/CV (A)| = |V /CV (A)|. Note that V
satisfies the hypothesis, so replacing V by V we may assume that |[V,A]| = p. Let B < A with
|A/B| = p. Since [V,B] is at most 1-dimensional, B in place of A also satisfies the hypothesis of the
lemma. Hence by induction on |A|, |V/CV (B)| ≤ |B|.

Let a ∈ A \ B. Since |[V, a]| = p, |V/CV (a)| ≤ p and so also |CV (B)/CV (B) ∩ CV (a)| ≤ p. But
CV (A) = CV (B) ∩ CV (a) and so

|V/CV (A)| ≤ |V/CV (B)|p ≤ |B|p = |A|.

�

3 A Partial Ordering

In this section G is a finite group, p is a prime, and S ∈ Sylp(G).

Notation 3.1 Let A and B be subgroups of G. The relation � on the subgroups of G is defined by

A� B :⇐⇒ A ⊆ CG(YA)B and YA ≤ YB .

Furthermore, we define

A† := CG(YA)A and S† := {L ≤ G | L = L†}.

Lemma 3.2 Let L and M be subgroups of G.

(a) YL ≤ YL† , L� L†, and (L†)† = L†.

(b) S† = {L ≤ G | CG(YL) ≤ L}.

(c) � is reflexive and transitive.

(d) L ⊆ CG(YL)M if and only if L ≤ CG(YL)NM (YL).

(e) Suppose that L ⊆ CG(YL)M and L ∩M is a p-parabolic subgroup of L and M . Then YL is
p-reduced for NM (YL) and L� NM (YL).
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(f) If L = L†, then L�M if and only if YL ≤ YM and L = CG(YL)(L ∩M).

(g) Restricted to S†, � is a partial ordering.

Proof: (a): Clearly YL is a p-reduced subgroup of L†, so YL ≤ YL† . Thus CG(YL†) ≤ CG(YL) ≤
L† and L† = (L†)†.

(b): This is an immediate consequence of the definition of L†.
(c): Obviously � is reflexive. If A, B,C ≤ G with A� B and B � C, then YA ≤ YB ≤ YC and

so YA ≤ YC . Also CG(YB) ≤ CG(YA) and hence

A ⊆ CG(YA)B ⊆ CG(YA)CG(YB)C = CG(YA)C.

Thus A� C and � is transitive.
(d): If L ⊆ CG(YL)M then L ≤ NG(YL) ∩ CG(YL)M = CG(YL)NM (YL). The other direction is

obvious.
(e): Since L ∩M is a p-parabolic subgroup of L,

YL ≤ Op(L) ≤ L ∩M ≤ NM (YL),

so YL is an elementary abelian normal subgroup of NM (YL). Since L∩M is a p-parabolic subgroup
of M , CG(YL)(L ∩M) and thus also CG(YL)L are p-parabolic subgroups of CG(YL)NM (YL).

As YL is a p-reduced subgroup of CG(YL)L, 2.2(b) shows that YL = 〈Y CG(YL)NM (YL)
L 〉 is p-reduced

for CG(YL)NM (YL). Hence YL is also a p-reduced subgroup of NM (YL). Thus YL ≤ YNM (YL) and
so L� NM (YL).

(f): Since L ∈ S† we have CG(YL) ≤ L and so L ⊆ CG(YL)M implies L = CG(YL)(L∩M). Now
(f) is obvious.

(g): Let L, M ∈ S† with L� M and M � L. Since YL ≤ YM ≤ YL, we have YL = YM . By (f)
L = CG(YL)(L ∩M) and M = CG(YM )(M ∩ L). Hence YM = YL gives L = M . So the restriction
of � to S† is anti-symmetric. Now (g) follows (c). �

Notation 3.3 Put S†(S) := {L ∈ S† | S ≤ L}. According to 3.2(g) � restricted to S†(S) is a
partial ordering on S†(S). We denote the set of maximal elements of S†(S) with respect to � by
F(S).

Theorem 3.4 F(S) is the unique factorization family for S(S).

Proof: Let G be a factorization family for S(S) and let M ∈ G. Clearly M ≤ M† and by
3.2(a), YM ≤ YM† . So Condition (ii) of 1.2 gives M = M†. Thus M ∈ S†(S) and G ⊆ S†(S).

Now let G be any subset of S†(S). Then Condition (i) of 1.2 is fulfilled for G if and only if for
each L ∈ S(S) there exists M ∈ G with L � M . Since L � L† and � is transitive by 3.2, we
conclude that G fulfills (i) if and only if G contains all the maximal elements of S†(S) with respect
to �. And Condition (ii) holds if and only if all elements of G are maximal with respect to � in
S†(S). Thus F(S) is the unique factorization family for S(S). �

Lemma 3.5 Let M ∈ F(S) and H ∈ S(S) with M = CM (YM )(M ∩ H). If H is p-constrained,
then H = Op′(H)(H ∩M). In particular, if G is of parabolic characteristic p and S ≤ L ≤M with
M = CM (YM )L, then M is the unique maximal p-local subgroup of G containing L.
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Proof: Put H = H/Op′(H). Since M = CM (YM )(H∩M), YM is p-reduced for H∩M and YM is a
p-reduced subgroup of H ∩M . So by 2.2(c) , YM ≤ YH . Let Y ≤ S with Y = YH and K := NH(Y ).
Then by the Frattini argument, H = Op′(H)K. It follows that Y is a p-reduced subgroup of K, so
YM ≤ Y ≤ YK .

As Y Op′(H) ∩M = Y (Op′(H) ∩M), we also get, using the Frattini argument one more time,

H ∩M = (Op′(H) ∩M)(K ∩M) = Op′(M ∩H)(K ∩M).

Thus M = CM (YM )(H ∩M) ≤ CG(YM )K since Op′(M ∩ H) centralizes YM . Now 1.2(ii) implies
that K ≤M and so H = Op′(H)(H ∩M). Hence the first statement holds.

To prove the the second statement, let H be a p-local subgroup containing L. Then M =
CM (YM )L implies M = CM (YM )(H ∩M). On the other hand H is of characteristic p since G has
parabolic characteristic p, so H is p-constrained and Op′(H) = 1. Hence by the first statement
H = Op′(H)(H ∩M) ≤M . �

Lemma 3.6 Let M ∈ F(S), S0 := CS(YM ) and M0 := NM (S0).

(a) M = CM (YM )M0, S0 = Op(M0) and CS(S0) ≤ S0.

(b) Ω1Z(S) ≤ YM = YM0 = Ω1Z(S0).

Proof: (a): The Frattini argument gives M = CM (YM )M0. Hence Op(M0) = S0, since YM is
p-reduced. Clearly YM ≤ Ω1Z(S0), and so

CS(S0) ≤ CS(Ω1Z(S0)) ≤ CS(YM ) ≤ S0.

(b): Let S0 ≤ S1 ≤ S with

S1CM0(Ω1Z(S0))/CM0(Ω1Z(S0)) = Op(M0/CM0(Ω1Z(S0))).

Then S1CM (YM )/CM (YM ) is a normalized by M0CM (YM ) = M . Since Op(M/CM (YM )) = 1 we
get S1 ≤ CM (YM ), so S1 = S0 = Op(M0) by (a), and Ω1Z(S0) is p-reduced for M0. Together with
3.2(a) this gives

YM ≤ Ω1Z(S0) ≤ YM0 ≤ YM†0
.

In particular M � M†0 , and the maximality of M yields YM = YM†0
. Now (b) follows, since also

Ω1Z(S) ≤ Ω1Z(S0). �

Proof of Theorems 1.3 and 1.4:

By 3.4 F(S) is the unique factorization family for S(S). Let M ∈ F(S). By 3.6(b) Ω1Z(S) ≤ YM

and by 3.2(e) M � NG(YM ). Hence the maximality of M gives M = NG(YM ).
Assume that there exists N ∈ F(S) that is F -stable, i.e. Y := YN is F -stable in NG(YN ) = N .

Then by 2.4 B(S) ≤ CG(Y ) and

N = CG(Y )NN (B(S)) ⊆ CG(Y )L, where L := NG(B(S);

in particular Y ≤ Ω1Z(B(S)) ≤ Op(NG(B(S))). Now 2.2(b) implies that Y ≤ YL and so by 1.2(ii)
Y = YL. It follows that N = NG(YL). In particular, N is the unique F -stable member of F(S).
This finishes the proof of 1.3 and also shows 1.4(a).
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Now let 1 6= C char B(S) and put M := NG(C). Then NN (B(S)) ≤ M and thus also N =
CG(Y )(M ∩N). Suppose that YN ≤ Op(M). Then as above 2.2(b) implies that YN ≤ YM , and by
1.2(ii) YN = YM and M ≤ N . So 1.4(b) holds.

Suppose next that M is p-constrained. From N = CG(Y )(N ∩M) and 3.5 we get that M =
Op′(M)(M ∩N). Hence 1.4(c) holds. �

4 The L-Lemma and the qrc-Lemma

In this chapter we will work with the following hypothesis.

Hypothesis 4.1 Let P be a finite group of characteristic p, T ∈ Sylp(P ), Y E T , and R := CT (Y ).
Suppose that P is ROp(P )-minimal with M being the unique maximal subgroup of P containing
ROp(P ).

Notation 4.2 Let X be a finite group and V a finite dimensional GF (p)X-module. By c(V,X)
we denote the number of non-central chief factors of X in V (in a given chief series). We define
q(V,X) := 0 if every quadratically acting subgroup of X already centralizes V , and

q(V,X) := min{log|A/CA(V )| |V/CV (A)|
∣∣A ≤ X, [V,A, A] = 1 6= [V,A]}

otherwise. Moreover, r(V,X) := 0 if V does not possess non-central X-chief-factors, and

r(V,X) := min{q(C, X) | C non-central X-chief-factor on V }

otherwise.

Lemma 4.3 (L-Lemma) Assume Hypothesis 4.1. Let A be a subgroup of T such that A 6≤ Op(P ).
Then there exists a subgroup L ≤ P with AOp(P ) ≤ L satisfying:

(a) AOp(L) is contained in a unique maximal subgroup L0 of L, and L0 = L∩Mg for some g ∈ P .

(b) L = 〈A, Ax〉Op(L) for every x ∈ L \ L0.

(c) L is not contained in any P -conjugate of M .

Proof: See [PPS]. �

The next lemma is very similar to [Ste, 3.3].

Lemma 4.4 Assume Hypothesis 4.1. Suppose V := 〈Y P 〉 is elementary abelian, COp(P )(Y ) 5 P
and c(V, P ) = 1. Then [Op(P ), Op(P )] is non-trivial quadratic offender on Y .

Proof: Since P is ROp(P )-minimal, we get from 2.3 that P = ROp(P )Op(P ). Put

Q := [Op(P ), Op(P )], W := [V,Op(P )] and D := CV (Op(P )).

Since c(V, P ) = 1, W/W ∩ D is chief-factor for P on V . Hence [W, Op(P )] ≤ D. Note that
P = TOp(P ) normalizes Y W and so V = Y W . Thus [Y,Q]D E P . Observe that R centralizes
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[Y,Q]D/D. Since Op(P ) ≤ 〈RP 〉 we conclude that [Y,Q, Op(P )] ≤ D. Hence Op(P ) centralizes
[Y,Q]. So P = TOp(P ) normalizes [Y, Q] and [V,Q] = [Y,Q] ≤ D. It follows that

[V,Op(P ), Op(P )] = [W, Op(P )] ≤ D and [Op(P ), Op(P ), V ] = [Q, V ] ≤ D.

Hence the Three Subgroup Lemma implies [V,Op(P ), Op(P )] ≤ D and so

(∗) [V,Op(P )] ≤ D.

Pick x ∈ Y \D. Since R centralizes x we conclude from (∗) that P = ROp(P )Op(P ) normalizes
〈xOp(P )〉D and so W ≤ 〈xOp(P )〉D. Put X := [x, Q]. Since X ≤ D it follows that

[W, Q] ≤ [〈xOp(P )〉D,Q] = [x, Q] = X.

As [V,Q, Op(P )] = 1 ≤ X and [V,Op(P ), Q] = [W, Q] ≤ X, the Three Subgroup Lemma implies
[Q, Op(P ), V ] ≤ X. Since [Q, Op(V )] = Q we get [V,Q] = X. In particular,

[y, Q] = X for every y ∈ Y \ CY (Q).

Now 2.6 shows that Q is a quadratic offender on Y .
If Q acts trivially on Y , then Q ≤ COp(P )(Y ) and so COp(P )(Y ) E TOp(P ) = P , a contradiction.

�

Lemma 4.5 Let L be a finite group acting on a p-group E, and let A and B be p-subgroups of L
and X and Z subgroups of E. Suppose that

(i) B � Op(L),

(ii) [E,A] ≤ X ≤ CE(A) and [E,B] ≤ Z ≤ CE(B),

(iii) L is AOp(L)-minimal and [E,Op(L)] 6= 1,

(iv) X is normalized by E and Op(L), X is abelian, and E = 〈XL〉.

Then

(a) CB(E) ≤ B ∩Op(L),

(b) E = XgZ = XgCE(B) for some g ∈ L,

(c) Z = [E,B]CZ(E) = [E, b]CZ(E) for all b ∈ B \Op(L),

(d) [B, E, E,E] = 1,

(e) |Z/CZ(E)| ≤ |ZD/D| ≤ |E/CE(B)|,

(f) |BOp(L)/Op(L)| ≤ |E/CE(B)|.

Proof: By (iii) there exists a unique maximal subgroup L0 of L containing AOp(L), and by 2.3
(
⋂

g∈L Lg
0)/Op(L) is a p′-group.

Pick b ∈ B \Op(L). Then there exists g ∈ L with b /∈ Lg
0. Put H := 〈Ag, b〉. Then L = HOp(L)

since H 6≤ Lg
0. Furthermore, we put D :=

⋂
g∈L Xg.
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(a): Again by (iii) Op(L) 6≤ CL(E), so 2.3 shows that CL(E)/COp(L)(E) is a p′-group. Now (a)
follows.

(b): By (iv) Op(L) normalizes X, so XL = XH . It follows that D =
⋂

h∈H Xh and CXg (b) ≤
CXg (H) ≤ D. From E = 〈XL〉 = 〈XH〉 and (ii) we conclude that

(∗) E = Xg[E,H] = Xg[E,Ag][E, b] = Xg[E, b] = XgZ.

Since Z ≤ CE(B) by (ii), (b) holds.
(c): Since Xg ∩ Z ≤ CXg (H) ≤ D, we get Xg ∩ Z = D ∩ Z and so by (b) and (∗)

|E/X| = |E/Xg| = |ZXg/Xg| = |Z/Z ∩Xg| = |Z/Z ∩D|.

Moreover, using (∗)

Z = (Xg ∩ Z)[E, b] ≤ (Z ∩D)[E, b] ≤ CZ(E)[E, b] ≤ CZ(E)[E,B] ≤ Z,

and so (c) holds.
(d): Since L is AOp(L)-minimal, A � Op(L) and so (b) can be applied with A and Ag in place

of A and B. Then E = XXt for some t ∈ L; in particular [Xt, X] ≤ X ∩Xt ≤ D ≤ Z(E). Thus
E′ ≤ D ≤ Z(E) and [B, E, E,E] ≤ [E′, E] = 1. So (d) holds.

(e): By (ii) and (b)
CE(B) ≤ CXg (B)Z = CXg (H)Z = DZ.

Hence
|E/CE(B)| ≥ |E/ZD| = |XgZD/ZD| = |Xg/Xg ∩ ZD| = |Xg/D|.

On the other hand, by (b) |E/X| = |Z/Z ∩Xg| = |Z/Z ∩D|, while the same result applied to A in
place of B gives |E/X| = |X/D| = |Xg/D|. Since D ≤ Z(E) this gives

|E/CE(B)| ≥ |Z/Z ∩D| ≥ |Z/CZ(E)|.

(f): Let x ∈ Xg \ D and suppose that [x, b] ∈ D. Then 〈x〉D is normalized by 〈Xg, b〉 = H
and so x ∈ D, a contradiction. This shows that [x, c] 6∈ D for every c ∈ B \ Op(L). Since B acts
quadratically on the abelian group E/D we conclude

|[x, B]D/D| = |{[x, c]D | c ∈ B}| ≥ |BOp(L)/Op(L)|.

Note that by (ii), [x, B]D ≤ ZD and so (f) now follows from (e). �

Theorem 4.6 Assume Hypothesis 4.1. Let V be a finite dimensional GF (p)P -module such that
[V,Op(P )] = 0 and [V,Op(P )] 6= 0. Then q(V, P ) = 0 or q(V, P ) ≥ 1.

Proof: Let A ≤ T be a quadratic on V with [V,A] 6= 0. We need to show that that |V/CV (A)| ≥
|A/CA(V ). The proof is by induction on |A|.

Let Y be a non-central P -chief factor in V . By 2.3 CT (Y ) ≤ Op(P ) ≤ CT (V ). It follows that

|Y/CY (A)| ≤ |V/CV (A)| and |A/CA(Y )| = |A/CA(V )|

for every A ≤ T . Hence we may assume that

1◦ V is a non-trivial simple P -module.
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We now apply 4.3. Then there exists A ≤ L such that L has the properties given in 4.3. In
particular, there exists g ∈ P such that A ≤ T g ∩ L ∈ Sylp(L), and L ∩Mg is the unique maximal
subgroup of L containing AOp(L). Put U := 〈CV (T g)L〉.

2◦ [U, Op(L)] 6= 0 and [U, A] 6= 0.

By (1◦) CV (T g) is not P -invariant, so NP (CV (T g)) ≤ Mg. Since L 6≤ Mg, we get that
[U, Op(L)] 6= 0 and thus also [U, A] 6= 0.

3◦ Put D := CA(U). Then |A/D| ≤ |U/CU (A)|.

Observe that by the definition of U , [U, Op(L)] = 0. Thus, for E := U , B := A, and X := Z :=
CU (A), L satisfies the hypothesis of 4.5. By 4.5(f)

|A/D| = |A/CA(U)| ≤ |A/A ∩Op(L)| ≤ |U/CU (A)|.

So (3◦) holds.

4◦ |D/CD(V )| ≤ |V/CV (D)|.

Since [U,A] 6= 0, D < A and (4◦) follows by induction on |A|.

Using (3◦) and (4◦) we compute

|A/CA(V )| = |A/D||D/CD(V )| ≤ |U/CU (A)||V/CV (D)|
≤ |CV (D)/CV (A)||V/CV (D)| = |V/CV (A)|.

�

The next lemma is a variation of [Ste, 3.2].

Lemma 4.7 (qrc-Lemma) Assume Hypothesis 4.1. Let V := 〈Y P 〉. Suppose that

(i) Y ≤ Ω1Z(J(Op(P ))),

(ii) COp(P )(Y ) 6E P ,

(iii) J(R) � Op(P ).

Then V ≤ Ω1Z(J(Op(P ))), V 6= Y , NL(Y ) ≤ M , [V,Op(P )] 6= 1, CT (V ) ≤ Op(P ) and there exists
A ∈ A(R) with

[V,A, A] = 1 6= [V,A] and A � Op(P ).

Moreover, one of the following holds, where q := q(Y,Op(P )), r := r(V, P ) and c := c(V, P ):

(a) 0 6= q ≤ 1.

(b) 2 ≤ c, 1 ≤ r, and (q − 1)(rc− 1) ≤ 1. In particular, 0 6= q ≤ 2.
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Proof: By (i) V ≤ ZJ(Op(P )). If V = Y , then COp(P )(Y ) E P , a contradiction to (ii). Hence
V 6= Y and ROp(P ) ≤ T ≤ NP (Y ) < P . Since P is ROp(P )-minimal we conclude that NP (Y ) ≤M .
So [V,Op(P )] 6= 1. Hence 2.3 gives CT (V ) ≤ Op(P ). In particular, (P, Y ) satisfies Hypothesis III of
[Ste].

As CT (V ) ≤ Op(P ), (iii) shows that there exists A ∈ A(R) such that [V,A] 6= 1. By the
Timmesfeld Replacement Theorem [KS] we may assume that [V,A, A] = 1. Moreover, (i) implies
that A � Op(P ).

Suppose that c = 1. Then 4.4 shows that (a) holds. Thus, we may assume from now on that
c ≥ 2.

Suppose that [A∩Op(P ), V ] = 1. Again by 2.3 Op(P )∩A = CA(V ) = CA(U) for every non-central
P -chief factor U of V . On the other and, by the maximality of A, |V/CV (A)| ≤ |A/CA(V )| and thus
also |U/CU (A)| ≤ |A/CA(U)|. Hence 4.6 implies that c = 1, which contradicts our assumption. We
have shown that [A ∩Op(P ), V ] 6= 1; in particular q 6= 0. Now [Ste, 3.2 (c)] and 4.6 yield (b). �

Lemma 4.8 Assume hypothesis 4.1. Suppose that

(i) COp(P )(Y ) 6E P ,

(ii) Y ≤ Z(J(Op(P ))) ∩ Z(J(T )),

(iii) J(T ) 6≤ Op(P ).

Then there exist subgroups A ∈ A(T ) and L of P such that the following hold:

(a) L is AOp(L)-minimal.

(b) Op(P )A ≤ T∩L ∈ SyLp(L), and M∩L is the unique maximal subgroup of L containing AOp(L).

(c) Y 6E L, and V0 := 〈Y L〉 is abelian.

(d) If Y ≤ Z(J(Op(L))), then L and Y satisfies the hypothesis of 4.7 with L in place of P .

Proof: From (ii) [Y, J(T )] = 1 and so J(T ) ≤ R and J(R) = J(T ). So the assumptions of 4.7
are fulfilled. In particular, V is elementary abelian and there exists A ∈ A(T ) with [V,A, A] = 1 6=
[V,A] and A � Op(P ).

Hence we are allowed to apply the L-Lemma 4.3. This gives a subgroup L having the properties
(a) – (c) given in 4.3. By 4.3(c) L is not a p-group, and so L is AOp(L)-minimal. This is (a).

According to 4.3(a) there exists g ∈ P such that AOp(L) ≤ T g ∩L ∈ Sylp(L), and L∩Mg is the
unique maximal subgroup containing AOp(L). Hence replacing A by Ag−1

and L by Lg−1
we may

assume that (b) holds.
Clearly Y 6E L since L � M but NP (Y ) ≤M . Since V is abelian, V0 is abelian and (c) holds.
From A � Op(P ) and (ii) we get that that J(CT∩L(Y )) 6≤ Op(L) and L is CT∩L(Y )Op(L)-

minimal. Hence 4.7(iii) holds for L and Y . Assume that COp(L)(Y ) E L. Then also COp(P )(Y ) E L
and thus P = 〈T, L〉 ≤ NP (COp(P )(Y )). This contradicts (i). Hence also 4.7(ii) holds for L and Y ,
and (d) follows. �
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5 F-stability

In this section we explore the following hypothesis:

Hypothesis 5.1 Let p be a prime and H a finite group. Suppose that Y is an elementary abelian
p-subgroup of H such that for T ∈ Sylp(NH(Y )) and R := CT (Y ) the following hold:

(i) Y E NH(J(R)).

(ii) Y is F -stable in H.

(iii) Either Y ≤ Op(H) or H is of characteristic p.

This hypothesis is motivated by the following observation:

Lemma 5.2 Let G be a finite group, S ∈ Sylp(G) and J(S) ≤ H ≤ G, and let F(S) be a factoriza-
tion family for S(S). Suppose that N ∈ F(S) is F -stable.

(a) If YN ≤ Op(H), then Y := YH and H satisfy Hypothesis 5.1.

(b) If H is p-constrained and H := H/Op′(H), then YN and H satisfy Hypothesis 5.1 in place of Y
and H.

Proof: Let T ∈ Sylp(H) with J(S) ≤ T . Put Y := YN and R := CT (Y ). Since Y E S and
Y is F -stable, 2.4(a) implies that Y ≤ Ω1Z(J(S)) ≤ H and J(S) = J(T ) = J(R). Observe
that Y ≤ Op(NG(J(S))) and so by 1.4(b), NG(J(S)) ≤ N . In particular, T ≤ NG(Y ) and so
T ∈ Sylp(NH(Y )). Now (a) follows.

Assume that H is p-constrained. Then H = H/Op′(H) is of characteristic p. By the Frattini-
argument, NH(Y )) = NH(Y ) and NH(J(R)) = NH(J(R)). Moreover since Y is F -stable in G, Y is
F -stable in H. Thus Hypothesis 5.1 holds for Y and H. �

Lemma 5.3 Assume Hypothesis 5.1. Then Y E T , Y ≤ Z(J(T )), J(R) = J(T ), NH(T ) ≤ NH(Y )
and T ∈ Sylp(H).

Proof: Clearly Y E T . Thus by 2.4(a), [Y, J(T )] = 1. So J(T ) ≤ R and J(T ) = J(R). Therefore
NH(T ) ≤ NH(J(R)) and so by Hypothesis 5.1(i) NH(T ) ≤ NH(Y ). Hence T ∈ Sylp(H). �

Theorem 5.4 Assume Hypothesis 5.1 and suppose COp(H)(Y ) 5 H. Then Y is not 2F -stable in
H.

Proof: If any subgroup of H satisfies the conclusion of 5.4 with respect to Y , then also H does.
Thus we may assume:

1◦ No proper subgroup of H satisfies the hypothesis of 5.4 with respect to Y .

Put
H0 = NH(COp(H)(Y )).

From 5.3 we conclude

2◦ NH(T ) ≤ NH(Y ) ≤ H0, J(R) = J(T ), Y ≤ ZJ(R)) and T ∈ Sylp(H0).
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Next we show:

3◦ Let J(R)Op(H) ≤ H̃ < H. Then COp(H̃)(Y )E H̃ and H̃ ≤ H0.

By (2◦) there exists R̃ ∈ Sylp(CH̃(Y )) with J(R) ≤ R̃ and J(R) = J(T ) = J(R̃), and so
Y E NH̃(J(R̃)). Since Op(H) ≤ Op(H̃), Y ≤ Op(H̃) or H̃ is of characteristic p. Moreover Y is
F -stable in H̃, and so Y and H̃ satisfy Hypothesis 5.1. Now (1◦) shows that COp(H̃)(Y ) E H̃.
Hence COp(H)(Y ) = Op(H) ∩ COp(H̃)(Y ) is normal in H̃ and H̃ ≤ H0.

4◦ H0 is the unique maximal subgroup of H containing J(R)Op(H), and H is J(R)Op(H)-
minimal.

The first statement follows from (3◦). If J(R) ≤ Op(H), then by 5.3, J(R) = J(Op(H)) E H,
and so by Hypothesis 5.1(i), H ≤ NH(Y ) ≤ H0, a contradiction. Hence J(R)Op(H) 6≤ Op(H), and
H is J(R)Op(H)-minimal.

5◦ Put W := 〈Y H0〉. Then W is elementary abelian.

We will first show that Y ≤ Op(H0). If Y ≤ Op(H), this is obvious. Otherwise H is of
characteristic p and by 5.3, Op(H) normalizes Y . So by 2.5 and (2◦) Y ≤ Op(H0) ≤ T . Now (5◦)
follows from Hypothesis 5.1(ii) and 2.4(b).

Let W be the set of all p-subgroups D of H satisfying:

(a) WOp(H) ≤ NH(D) � H0.

(b) D = J(D) ≤ H0.

Clearly 1 ∈ W and so W 6= ∅. Pick D ∈ W such that first |A| is maximal for A ∈ A(D) and
then |D| is maximal. Put N := NH(D) and T0 := DOp(H) and let T1 ∈ Sylp(N ∩ H0). Since
T0 ≤ Op(N ∩H0), T0 ≤ T1. As W is H0-invariant and by (2◦) T ∈ Sylp(H0), there exists g ∈ H0

with W g = W and T g
1 ≤ T ; in particular Dg ∈ W. Thus, after replacing D by Dg we may assume

that T1 ≤ T .

6◦ Y ≤ Z(J(T1)), and if Y ≤ T0 then Y ≤ Z(J(T0)).

Since T1 ≤ T , T1 normalizes Y . So (6◦) follows from 2.4(a).

7◦ Let U be a p-subgroup of H0 containing D. Suppose that W ≤ NH(U) and NH(U) � H0.
Then J(U) = D, and if Y ≤ U then Y ≤ Z(D).

Observe that W ≤ NH(U) ≤ NH(UOp(H)). Hence NH(UOp(H)) 6≤ H0 and J(UOp(H)) ∈ W.
Since D ≤ U ≤ UOp(H), the maximal choice of D gives D = J(UOp(H)) = J(U).

Suppose that Y ≤ U , then J(U) = D ≤ T1 ≤ NH(Y ) and so by 2.4(a), Y ≤ Z(J(U)) = Z(D).

8◦ J(T ) 6= D and J(T1) 6= D.

Suppose J(T ) = D. Then by 5.3 and Hypothesis 5.1(i), N ≤ NG(J(T )) ≤ NG(Y ) and so N ≤
NH(COp(H)(Y )) ≤ H0, contrary to the choice of D.

Suppose J(T1) = D. Then NT (T1) ≤ NH(J(T1)) = N . So NT (T1) ≤ T1, T = T1 and J(T ) =
J(T1) = D, a contradiction.
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9◦ Let U be a p-subgroup of H0 containing WD. Suppose that J(U) 6= D or Y � Z(D). Then
U is not contained in any H-conjugate of H0 other than H0.

Let g ∈ H with U ≤ Hg
0 and U ≤ T2 ∈ Sylp(H0 ∩Hg

0 ). If J(T2) = D, then also D = J(U) and
thus Y � Z(D). Thus either J(T2) 6= D or Y � Z(D). So (7◦) gives NH(T2) ≤ H0. This implies
NHg

0
(T2) ≤ H0 ∩ Hg

0 and so T2 ∈ Sylp(Hg
0 ). By (4◦), Hg

0 is the unique maximal subgroup of H

containing T2. Since T2 ≤ H0 we get H0 = Hg
0 .

10◦ T1 ∈ Sylp(N), J(T1) 6≤ Op(N), and WJ(T1)D is not contained in any other H-conjugate
of H0.

By (8◦) and (7◦) NH(J(T1)D) ≤ H0, so NN (T1) ≤ N ∩H0 and T1 ∈ Sylp(N). If J(T1) ≤ Op(N),
then J(T1) = J(Op(N)) and N ≤ NH(J(T1)D) ≤ H0, a contradiction.

Put U := WJ(T1)D. By (8◦), J(U) 6= D and so the last statement in (10◦) follows from (9◦).

11◦ There exists a WJ(T1)T0-minimal subgroup H1 ≤ N such that H1 ∩ H0 is a maximal
subgroup of H1 and J(Op(H1)) = D.

By definition of W, N 6≤ H0. Choose WJ(T1)T0 ≤ H1 ≤ N such that H1 is minimal with
H1 � H0. Since H1 � H0, NH(Op(H1)) � H0. Also WOp(H) normalizes Op(H1) and D ≤ Op(H1).
So by (7◦) J(Op(H1)) = D. Since J(T1) 6= D by (8◦) we conclude J(T1) � Op(H1). Hence also
WJ(T1)T0 � Op(H1), and H1 is WJ(T1)T0-minimal.

In the following let H1 be as in (11◦). Pick WJ(T1)T0 ≤ T3 ∈ Sylp(H1 ∩H0). Then H1 is T3-
minimal and so T3 ∈ Sylp(H1). Since T3 ≤ N ∩H0 and T1 ∈ Sylp(H0 ∩N), there exists g ∈ N ∩H0

with J(T1) ≤ T3 ≤ T g
1 . Hence g normalizes J(T1), D and W , and thus also WJ(T1)T0. So replacing

H1 by Hg
1 and T3 by T g

3 we may assume that T3 ≤ T1 ≤ T .

Case 1 The case Y ≤ Op(H1).

12◦ Y and H1 satisfy the hypotheses of 4.8.

Since T3 ≤ T1, Y E T3. By (5◦) and (6◦) Y ≤ Z(WJ(T1)), so H1 satisfies Hypothesis 4.1. Hence
(8◦) and (11◦) give Hypothesis 4.8(iii), while 2.4(a) gives Hypothesis 4.8(ii).

Assume that COp(H1)(Y ) E H1. As Op(H) ≤ Op(H1), also COp(H)(Y ) E H1, which contradicts
H1 6≤ H0. Hence also Hypothesis 4.8(i) holds.

According to (12◦) we are allowed to apply 4.8 to Y and H1. Let L and V be with the properties
given there. Since Y ≤ Op(L) ≤ T1, we get from 2.4(a) that Y ≤ Z(J(Op(L)). Thus, by 4.8(d) L
and Y satisfy the hypothesis of 4.7.

Since Y is 2F -stable we are in case 4.7(b), so 0 6= q(Y, Op(H1)) ≤ 2. Thus there exists non-trivial
quadratic 2F-offender on Y and the lemma is proved in (Case 1).

Case 2 The case Y 6≤ Op(H1).

By our assumption on H, in this case H has characteristic p. Hence also H1 has characteristic
p since Op(H) ≤ H1. We now apply the L-Lemma 4.3 with W and H1 in place of A and P . Then
there exists WOp(H1) ≤ L such that

(i) L is WOp(L)-minimal and
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(ii) there exists g ∈ H1 such that L0 := Hg
0 ∩ L is the unique maximal subgroup of L containing

WOp(L).

13◦ L0 = L ∩H0, Y � Z(D) and J(Op(L)) = D.

Let g as in (ii). Then WD ≤ H0 ∩ Hg
0 and Y 6≤ Z(D) since D ≤ Op(H1). Hence (9◦) implies

H0 = Hg
0 ; in particular L0 = L ∩H0 and L � H0. Now (7◦) also gives J(Op(L)) = D.

According to (13◦) we may assume, after conjugation by a suitable element of H0 ∩H1, that

14◦ WOp(L) ≤ T ∩ L ∈ Sylp(L0). In particular Op(L) ≤ T and Op(L) normalizes Y .

By (13◦), Y 6≤ ZJ(Op(L)). Since Op(L) normalizes Y , we get from 2.4 that

15◦ Y � Op(L).

Put
A := W, B := Y, X := Op(L) ∩A, E := 〈XL〉, Z := Op(L) ∩B.

By (5◦) A is abelian, and by (14◦) Op(L) normalizes A and B. Moreover, since Op(H1) ≤ Op(L)
and H1 has characteristic p, [E,Op(L)] 6= 1. It follows that the hypotheses of 4.5 are satisfied.

By 4.5(a), CY (E) ≤ Y ∩ Op(L) and so by 4.5(c), [b, Y ]CY (E) = [E, Y ]CY (E) = Y ∩ Op(L) for
all b ∈ Y \ Op(L). Moreover, by 4.5(d) [Y, E,E, E] = 1 and by 4.5(e),(f) we have |Y/CY (E)| ≤
|E/CE(Y )|2. So E is a nearly quadratic 2F -offender on Y . Hence the lemma also holds in (Case 2).

�

Lemma 5.5 Assume Hypothesis 5.1. Suppose that Y 5 H and Y is 2F -stable. Then Ω1Z(T ) 5 H.

Proof: Let T ≤ P ≤ H and P be minimal with Y 5 P . By 5.3 NH(T ) ≤ NH(Y ), so T 5 P
and P is T -minimal. Put

Q := COp(P )(Y ), V0 := Ω1(Z(Q)), V := CV0(Op(P )), P := P/CP (V ).

If Z(T ) � Op(P ), Z(T ) 5 P . So we may assume Ω1Z(T ) ≤ Op(P ) and thus Ω1Z(T ) = CV (T ).
By 5.4 QEP . Since either Y ≤ Op(H) ≤ OP (P ) or P is of characteristic p, 2.5 implies Y ≤ Op(P ).
Thus Y ≤ V0. Since Y 5 P , we get that [V0, O

p(P )] 6= 1. By 5.3, J(R) = J(T ) and so by
Hypothesis 5.1(i), J(R) � Op(P ). Hence 2.3 shows that [Op(P ), J(R)] = Op(P ). Since J(R)
centralizes Y , [Op(P ), J(R)] ≤ Op(P ) ∩ J(T ) ≤ Q and so [Op(P ), Op(P )] ≤ Q. The P ×Q-Lemma
yields [V,Op(P )] 6= 1.

Again 2.3 gives CT (V ) = Op(P ) and Op(P ) = 1. Moreover J(T ) 6= 1 since J(R) � Op(P ). Hence
P and V satisfy the hypothesis of [BHS, 5.6]. It follows that [CV (T ), P ] 6= 1. Since CV (T ) = Ω1Z(T )
and P = 〈TP 〉 we conclude that Ω1Z(T ) 5 P and so also Z(T ) 5 H. �
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6 The Proof of Theorems 1.5 – 1.8

Recall that Theorems 1.3 and 1.4 have been proved in Section 3.

Proof of Theorem 1.5:

(a): Observe that N = NG(YN ) by 1.3. Suppose YN ≤ Op(M). If M = NG(C) for 1 6=
C char B(S), then 1.5(a) follows from 1.4(b). If Ω1Z(S) EM , then 5.2(a) shows that YN and M
satisfy Hypothesis 5.1. Hence 5.5 gives YN EM and so M ≤ N .

(b): Put M := M/Op′(M). Then 5.2(b) shows that YN and M satisfy Hypothesis 5.1. Thus 5.5
gives YN EM . By the Frattini-argument M = Op′(M)NM (YN ) = Op′(M)(M ∩N).

(c): Let B(S) ≤ H ≤ G and H be p-constrained with H 6= Op′(H)(H ∩N), and let B(S) ≤ T ∈
Sylp(NH(YN )). Put H := H/Op′(H). Then again 5.2(b) shows that YN and H satisfy Hypothesis
5.1. Hence by 5.4, COp(H)(YN ) E H and by 2.5, YN ≤ Op(H). From 5.5 applied to NH(Ω1Z(T ))
we get YN E NH(Ω1Z(T )). Recall that YN ≤ Ω1Z(J(S)) ≤ Op(NG(J(S)). Thus by 1.4(b),
NG(J(S)) ≤ N . Since B(T ) = B(S) we have J(T ) = J(S) and so YN E C∗∗(H, T ). By the Frattini
Argument NH(YN ) = NH(YN ) = H ∩N . Hence also C∗∗(H, T ) ≤ H ∩N .

Proof of Theorem 1.6:

Let P ∈ F(S). By 1.3 P is a p-local subgroup of G. Let L be a maximal p-local subgroup
containing P . By 2.2(c) YP ≤ YL and so P � L. Hence by 3.4 P = L.

Suppose that N ∈ F(S) is 2F -stable. Let M = NG(C) for 1 6= C char B(S) or M = NG(Ω1Z(S)).
Then S ≤M , so M has characteristic p since G is of parabolic characteristic p. Hence 1.5(a) implies
M ≤ N .

Let H ∈ S(B(S)) and B(S) ≤ T ∈ Sylp(H). Then B(S) = B(T ) and so NH(C) ≤ N for
1 6= C char B(T ). Also T ≤ Sg for some g ∈ NG(B(S)) ≤ N and Ω1Z(Sg) ≤ J(S) ≤ T , so
Ω1Z(Sg) ≤ Z(T ) and CH(Ω1Z(T )) ≤ CG(Ω1Z(Sg)) ≤ Ng = N . Thus C∗(H,T ) ≤ H ∩N .

Proof of Corollary 1.7:

By 1.6 the members of F(S) are maximal p-local subgroups. We may assume that there exists
a 2F -stable N ∈ F(S).

Let L be a maximal p-local subgroup containing S with L � N and choose M ∈ F(S) with
L � M . Then L ≤ CG(YL)M . On the other hand, by 2.2(c) Ω1Z(S) ≤ YL and so by 1.6
CG(YM ) ≤ CG(Ω1Z(S)) ≤ N . Since L � N we conclude that M � N and M 6= N . By 1.4 N is the
only member of F(S) which is F -stable. Hence M is not F -stable.

Proof of Theorem 1.8:

Let P be the semi-direct product of G and V . Then Op(P ) = V and [V,Op(P )] 6= 1. Let A be
an offender on V such that |A||CV (A)| is maximal. Because of [KS, 9.2.3] we may assume that A is
quadratic on V Hence 4.6 implies |A/CA(V )| = |V |, and 1.8 follows.
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