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Abstract

The lists of the maximal 2-local subgroups of the Monster and Baby
Monster simple groups in the Atlas are complete.

1 Introduction

The Monster and the Baby Monster are the two largest groups among the
26 sporadic finite simple groups. After the classification of the finite simple
groups was announced in 1981 the focus of research in the area of finite
simple groups moved toward the study of the properties of the known groups.
One of the most important pieces of information about a simple group G is
its list of maximal subgroups, taken up to conjugation in G.

Methods used to classify maximal subgroups H of G differ significantly
depending on whether or not H is p-local. A subgroup H of G is p-local,
where p is a prime number dividing the order of G, if H is the normalizer of a
nontrivial p-subgroup. We say that H is a maximal p-local subgroup if H is
maximal by inclusion among p-local subgroups of G. Notice that a maximal
p-local subgroup H may or may not be maximal in G. Nevertheless, the
classification of all maximal p-local subgroups of G for each p is an important
step toward a complete determination of all maximal subgroups of G.

In the case where G is one of the 26 sporadic finite simple groups the
lists of maximal p-locals subgroups–as well as lists of non p-local maximal
subgroups–have been compiled and proven complete for almost allG by work
of many people, but most notably, R.A. Wilson. One significant omission
to date has been the lists of maximal 2-local subgroups of M and BM . The
Atlas of Finite Groups [ATLAS] provides lists of the known maximal 2-local
subgroups of M and BM . What was missing was a proof that these lists
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are in fact complete. In this paper and its sequel [M] we bridge this gap by
supplying necessary proofs.

Let us now review the lists from [ATLAS]. Seven conjugacy classes
of maximal 2-local subgroups were known for G = M . The correspond-
ing structures are as follows (see [ATLAS] for the exact meaning of these
structures; however, notice that [ATLAS] uses the notation B for the Baby
Monster group; also we use the good old “Ω” and “Sp” where [ATLAS] uses
“O” and “S”):

(1) 2 ·BM ;

(2) 22 · (2E6(2)) : S3;

(3) 21+24
+ .Co1;

(4) 22.211.222.(S3 ×M24);

(5) 23.26.212.218.(L3(2)× 3 · S6);

(6) 25.210.220.(S3 × L5(2));and

(7) 210+16 · Ω+
10(2).

Eight classes of maximal 2-local subgroups were known for G = BM .
Their structures are shown in [ATLAS] as follows.

(1) 2 · (2E6(2)) : S3;

(2) (22 × F4(2)) : 2;

(3) S4 × 2F4(2);

(4) 21+22
+ · Co2;

(5) 22.210.220.(M22 : 2× S3);

(6) 23.[232].(S5 × L3(2));

(7) 25.[225].L5(2); and

(8) 29.216.Sp8(2).

Recall that O2(H) denotes the largest normal 2-subgroup of H. We say
that H is of characteristic 2 if CH(Q) ≤ Q, where Q = O2(H). We split the
work as follows. In this papers we determine all maximal 2-local subgroups
of M and BM that are of characteristic 2. The sequel [M] deals with the

2



remaining classes. In the above lists the partition into the characteristic 2
type and non characteristic 2 type is as follows: For M , classes (1) and (2)
are not of characteristic 2, while classes (3)–(7) are of characteristic 2. For
BM , classes (1)–(3) are not of characteristic 2, while classes (4)–(8) are of
characteristic 2. Notice that classifying the maximal 2-local subgroups that
are not of characteristic 2 is rather more simple and some may even say
that this part of the lists has been known to be complete. However, as we
are unaware of any published proof, we include this subcase in our work.
Needless to say, we believe that our result on the maximal 2-local subgroups
of characteristic 2 is entirely new.

Our approach was in part motivated by the work on the geometries of
the groups M and BM , by A.A. Ivanov and the second author (see [IS]).
We noticed that the known maximal 2-local subgroups of characteristic 2 are
either the normalizers of certain very special elementary abelian subgroups
that we call singular subgroups, or the normalizers of yet another type of
elementary abelian subgroups (of order 210) that we call arks. The above-
mentioned geometries of M and BM consist of singular subgroups, while
arks also have a geometrical meaning, namely, they correspond to certain
natural subgeometries.

We introduce singular subgroups in Section 4, in which we also classify
them up to conjugation. Arks are introduced in Section 5. They form
a single conjugacy class of subgroups. Our choice of the word “ark” was
motivated by the fact that an ark contains representatives of all “species”
(i.e., conjugacy classes) of singular subgroups.

We will now formally state the principal results of this paper. We start
with the following definitions of the groups M and BM : The Monster M is a
finite simple group with a large extraspecial 2-subgroup Q whose normalizer
C has the following structure: C ∼ 21+24.Co1. (Here and in what follows
we use ∼ as shorthand for “has structure”, while ∼= as usual stands for “is
isomorphic”.) Recall that a group G is said to have a large extraspecial
subgroup if for some involution z ∈ G its centralizer C = CG(z) contains a
normal extraspecial 2-subgroup Q such that CG(Q) ≤ Q. It easily follows
from this that z is 2-central in G, that is, the centralizer of Z contains a
Sylow 2-subgroup of G. It also follows that G has a unique conjugacy class
of 2-central involutions. Returning to the Monster group M , in addition to
the above structure of C, we have that the Co1-module arising in the action
of C on Q/〈z〉 is isomorphic to the module on Λ/2Λ, where Λ is the Leech
lattice. This due to R. Griess who showed in [Gr2] that Λ/2Λ is the only
faithful Co1-module in dimension 24.

For the purposes of this paper, the Baby Monster BM is simply the group
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H/〈t〉, where t is a non 2-central involution in the Monster M and H =
CM (t). All the work in this papers takes place in M ; singular subgroups,
arks and the Baby Monster BM “live” in M .

Under these definitions, we prove the following.

Theorem 1 The Monster M contains exactly 5 conjugacy classes of max-
imal 2-local subgroups of characteristic 2. They are: (a) the normalizers of
singular subgroups of types 21, 22, 23 and 25

2; and (b) the normalizers of
arks.

Theorem 2 The Baby Monster BM contains exactly 5 conjugacy classes
of maximal 2-local subgroups of characteristic 2. Their preimages in H are:
(a) the normalizers in H of special singular subgroups U of types 21, 22, 23

and 25
1; and (b) the normalizers of arks containing t.

The exact meaning of the word “special” in this last theorem is as follows:
With each singular subgroup U we associate in Section 4 a second subgroup
QU . The special singular subgroups U are those for which t ∈ QU .

In simple words, Theorems 1 and 2 state that the lists of maximal 2-
local subgroups of M and BM given in [ATLAS] are complete in their
characteristic 2 part.

Finally, we need to explain our policy with respect to citing vs. proving.
A lot of information is available about the two monsters. However, much
of it exists as a sort of finite group theory lore, that is, with no proper
published proof known. In particular, at least some of the information given
in [ATLAS] should be considered as semi-lore because there is no proofs there
and very little by way of citation. Of course, we cannot prove everything
in a single paper, and so we decided to take an “inductive” approach. We
use some “lore” information about the smaller simple groups involved in M
(mostly, Co1 and Ω+

10(2)). At the same time, we prove everything we need
as far as the properties of M and BM themselves are concerned. Likely,
some of the facts that we prove can be found in the available sources such
as [As1], [AsSe], [Gr1], [Se] and many others. However, we believe that the
bulk of the detailed information that we need cannot be covered by citation.
Notice also that M. Aschbacher in [As1] determines all maximal subgroups
of M containing a Sylow 2-subgroup.

2 Classes of involutions, I

In this section we classify conjugacy classes of involutions of a group H
satisfying the following conditions:
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(H1) O2(H) ∼ 224;

(H2) H/O2(H) ∼= Co1; and

(H3) the action of H/O2(H) on O2(H) is equivalent to the action of Co1
on Λ̂ = Λ/2Λ, the Leech lattice taken modulo 2.

If C is the centralizer of a 2-central involution z in the Monster group M
then the group H = C/Z, where Z = 〈z〉, satisfies (H1)–(H3) and so the
results of this section give us some insight into the structure of C.

We refer to [ATLAS], page 180, for a description of the Leech lattice Λ,
terminology and notation related to Λ, and a summary of properties of Λ.
A whole wealth of information about the Leech lattice can be found in [CS].
Let (x, y) = 1

8
∑24
i=1 xiyi be the integral inner product that exists on Λ. Let

Λn = {x ∈ Λ|(x, x) = 2n}. One useful fact that is the following

Lemma 2.1 The orbits of Co1 on W = Λ̂# are the sets Λ̂2, Λ̂3 and Λ̂4.

For i = 2, 3 and 4, let wi ∈ Λ̂i. The structure of the stabilizer of wi in
Co1 is also well-known.

Lemma 2.2 The following hold.

(1) CCo1(w2) ∼= Co2;

(2) CCo1(w3) ∼= Co3;

(3) CCo1(w4) ∼= 211 : M24.

Recall that in its action onW = Λ̂ the group Co1 preserves a nondegener-
ate quadratic form q defined as follows: if u = x̂ for some x ∈ Λ then q(u) =
1
2(x, x) (mod 2). Let Φ denote the symmetric bilinear form that corresponds
to q: for u = x̂ and v = ŷ, we have Φ(u, v) = q(u+ v) + q(u) + q(v) = (x, y)
(mod 2). It follows from the definition of q that w2 and w4 are singular,
while w3 is nonsingular.

Before we go on, let us record the following property that can be verified,
say, using the description of Λ from [ATLAS].

Lemma 2.3 There is no Λ̂2-pure subgroups 23 in W = Λ̂.

According to [ATLAS], Co1 contains three conjugacy classes of involu-
tions. We will need to know how the involutions and their centralizers act
on W .
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Let t be an involution in Co1 and let Ct = CCo1(t). Define Ut = CW (t)
and Vt = [W, t]. Since t is an involution, Vt ⊆ Ut. Furthermore, dimW/Ut =
dimVt. In fact, Ut is the orthogonal complement (with respect to Φ) of Vt,
and so the Ct-modules W/Ut and Vt are dual to each other.

First, let t be an involution of type 2A. Then Ct is an extension of an
extraspecial group 21+8

+ by Ω+
8 (2). The action on the 8-dimensional quotient

of O2(Ct) provides an irreducible module for Ct/O2(Ct) ∼= Ω+
8 (2). We will

refer to this module as to the natural module. Notice that Ω+
8 (2) has two

more irreducible 8-dimensional modules, and we will refer to those as to the
two halfspin modules. Notice also that the natural module and the halfspin
modules are all self-dual.

Lemma 2.4 If t is of type 2A then

(1) Vt has dimension 8 and Ut has dimension 16;

(2) Ct acts irreducibly on each of W/Ut, Ut/Vt, and Vt; furthermore, Vt
and Ut/Vt are two non-isomorphic halfspin modules and W/Ut ∼= Vt.

Proof: Notice that t (or rather, its preimage in Co0) can be chosen to
act on the standard frame, inverting signs in an octad. This allows to
establish (1) by direct computation. Let x ∈ Ct be an element of order
three, such that x has a 6-dimensional centralizer in the natural module.
Then 213 divides the order of the centralizer of x in Ct, and hence x is of
type 3A (a Suzuki 3-element). According to [ATLAS], x acts fixed-point-
freely on W , which implies that W/Ut, Ut/Vt, and Vt are halfspin modules
for Ct/O2(Ct) ∼= O+

8 (2). Since the halfspin modules are self-dual, we have
W/Ut ∼= Vt. Finally, if Ut/Vt ∼= Vt then Ct contains a 3-element with an
18-dimensional centralizer in W , which contradicts the information from
[ATLAS].

Let t be an involution of type 2B. Then Ct ∼ (22 ×G2(4)).2.

Lemma 2.5 If t is of type 2B then

(1) Ut = Vt and so they are of dimension 12;

(2) Ct acts transitively on V #
t ; furthermore, V #

t ⊆ Λ̂4.

Proof: Notice that 13 divides the order of G2(4), and it does not divide
the orders of Co2, Co3 and 211 : M24. Therefore, G2(4) fixes no non-zero
vector in W . Again, since 13 divides the order of G2(4), the latter group has
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no nontrivial GF (2)-modules in dimensions less than 12. It follows that Vt
has dimension at least 12. Hence, Ut = Vt and they are both of dimension
exactly 12. According to [MOD], Vt must be the natural module for G2(4).
In particular, G2(4) is transitive on V #

t . Since Λ̂4 has odd length, t fixes a
vector in Λ̂4. Now the transitivity implies that V #

t ⊆ Λ̂4.

Finally, let t be of type 2C. Then Ct ∼ 211 : AutM12.

Lemma 2.6 If t is of type 2C then

(1) Ut = Vt, and so they are of dimension 12;

(2) as a Ct-module, Ut is uniserial with submodules of dimension 1 and
11; furthermore, the non-zero vector fixed by Ct is from Λ̂4, and Λ̂3∩Vt
coincides with the setwise complement of the 11-dimensional submod-
ule.

Proof: In this case again t can be chosen inside the diagonal subgroup
stabilizing the standard frame. Namely, t inverts signs in a dodecad. This
allows to compute all vectors in W fixed by t and thus establish (1) and also
that Vt contains some elements from Λ̂3. Since Ut = Vt, we have that Vt is
totally isotropic (with regard to Φ). Since the vectors in Λ̂3 are non-singular,
we obtain that Vt∩Λ̂3 coincides with the complement of a hyperplane. So Vt
contains an 11-dimensional subspace V0 left invariant by Ct. Observe that
Ct is fully contained in the stabilizer of the standard frame. So Ct stabilizes
a vector v ∈ Λ̂4, the image of the standard frame. Clearly, v ∈ V0. Since 11
divides the order of M12, Ct acts irreducibly on V0/〈v〉. It remains to notice
that v is the only vector in W fixed by Ct (indeed, already the diagonal
group 211 fixes no other vector in W#). The uniseriality now follows.

We can now determine the conjugacy classes of involutions in a group H
satisfying conditions (H1)–(H3). Let E = O2(H) and H̄ = H/E. First of
all, Lemma 2.1 implies the following.

Lemma 2.7 The group H has exactly three classes of involutions contained
in E. If e2, e3 and e4 are representatives of those classes then CH(e2) ∼
224.Co2, CH(e3) ∼ 224.Co3, and CH(e4) ∼ 224.(211 : M24).

We will classify the classes of involutions outside E case by case, depend-
ing on whether x̄ is of type 2A, 2B or 2C. We start with a general lemma.
Let U = CE(x̄) and V = [E, x̄]. Let X = 〈x,U〉 and X̃ = X/V . Let C be
the full preimage in H of CH̄(x̄).
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Lemma 2.8 Suppose x ∈ H is an involution, and x̄ 6= 1. Then the following
hold:

(1) An element y ∈ xE is an involution if and only if y ∈ xU .

(2) The subgroups X and V are invariant under C; furthermore, E acts
trivially on X̃.

(3) If y, z ∈ xU then y and z are conjugate in H if and only if ỹ and z̃
are in the same C̄-orbit.

Remark. Part (2) contends that the action of C̄ = CH̄(x̄) on X̃ is well
defined, which allows us to view X̃ as a C̄-module. Since U = X ∩ E, Ũ is
invariant under C̄, and so C̄ permutes the vectors in X̃ \ Ũ . The meaning
of part (3) is that the orbits of C̄ on X̃ \ Ũ bijectively correspond to those
conjugacy classes of involutions in H that map onto x̄H̄ .

Proof: If e ∈ E then (xe)2 = [x, e] since both x and e are involutions.
Part (1) follows. Clearly, V is invariant under C. Since X is generated by
all the involutions from the coset x̄ = xU , X is C-invariant, too. Clearly,
E acts trivially on Ũ . Furthermore, E fixes x̃, because V = [E, x]. This
proves (2). For (3), let y, z ∈ xU . If z = yh for some h ∈ H then h̄ ∈ C̄,
since ȳ = x̄ = z̄. So ỹ and z̃ are in the same C̄-orbit. Reversely, suppose
that ỹc̄ = z̃ for some c ∈ C. Then yc = zv for some v ∈ V . Since V = [E, x]
there exists an element e ∈ E such that v = [e, x]. However, [e, x] = [e, z],
since z ∈ xU . Therefore, ze = vz = zv, implying that y and z are conjugate.

We will first classify those involutions x for which x̄ is of type 2A. We
will need the following fact proved in [Po].

Lemma 2.9 Suppose Y is a GF (2)-module for Ω+
8 (2) that is an extension

of an irreducible 8-dimensional submodule Y0 by a 1-dimensional module.
Then Y splits.

Lemma 2.10 The group H has exactly three classes of involutions whose
images in H̄ are of type 2A. If a1, a2 and a3 are representatives of these
classes then CH(ai) has the structure 216.21+8.Ω+

8 (2), 216.21+8.Sp6(2) and
216.21+8.(26 : L4(2)), for i = 1, 2 and 3, respectively.

Proof: Let x be an element of H such that x̄ is of type 2A. We will first
show that the coset x̄ contains an involution, and so x can be chosen to be
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an involution. Let R = 〈x,E〉. Then R is a normal subgroup of C, where
C is defined, as above, as the full preimage in H of CH̄(x̄). Let U = CE(x)
and V = [E, x]. Clearly, U = Z(R). Consider X = R/U . According
to Lemma 2.4, C has two chief factors within X, of dimensions 8 and 1.
This implies that X is an elementary abelian group, which we can view as
a module for C̄. Furthermore, by the same Lemma 2.4, the 8-dimension
chief factor in X is not a natural module for C̄/O2(C̄) ∼= Ω+

8 (2). Therefore,
O2(C̄) acts trivially on X. Now Lemma 2.9 implies that X contains a 1-
dimensional subspace T invariant under C. Let R0 be the full preimage
in R of T . Clearly, R0 is normal in C. Next, define X0 = R0/V . Again
X0 is an extension of an 8-dimensional chief factor U/V by a 1-dimensional
R0/U . We conclude again that X0 is elementary abelian. Clearly, R0 acts
trivially on X0. Furthermore, by Lemma 2.4 the 8-dimensional chief factor
in X0 differs, as a module, from the chief factors in O2(C)/R0, which means
that O2(C) acts trivially on X0. Applying again Lemma 2.9 we obtain a
C-invariant 1-dimensional subspace T0 in X0. Let R1 be the full preimage
of T0 in R. Setting X1 = R1, we observe for the third time that X1 is an
extension of an 8-dimensional chief factor V by a 1-dimensional one, R1/V .
Hence R1 is elementary abelian. Since R1 6≤ E, we finally conclude that
the coset x̄ contains some involutions. Without loss of generality we can
now assume that x is itself an involution and so Lemma 2.8 applies. In
the notation introduced before Lemma 2.8, X̃ (which has already appeared
above as X0 = R0/V ) is the direct sum of a halfspin module and a 1-
dimensional module. Therefore, C has three orbits on X̃ \ Ũ , of sizes 1, 120
and 135, and this immediately leads to the conclusion as in the lemma.

The classification of involutions x with x̄ of type 2B or 2C is an easy
corollary of Lemmas 2.5 and 2.6.

Lemma 2.11 For L = B or C, H has a unique conjugacy class of involu-
tions whose images in H̄ are of type 2L. If b and c are representatives of
those two classes then CH(b) ∼ 212.(22 × G2(4)).2 and CH(c) ∼ 212.(211 :
AutM12).

Proof: Let x be an element of H such that x̄ is of type 2L. Then according
to Lemmas 2.5 and 2.6, we have that CE(x) = [E, x]. In particular, x2 =
[e, x] for some e ∈ E. It follows that (xe)2 = x2[x, e] = 1, that is, the coset
xE contains involutions. Furthermore, in the notation of Lemma 2.8 we
have that X̃ is 1-dimensional, and so the claim follows.

This completes the classification of conjugacy classes of involutions in
H. According to Lemmas 2.7, 2.10 and 2.11, the group H contains eight
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classes of involutions. We will refer to these classes as to the classes 2ei,
2 ≤ i ≤ 4, 2ai, 1 ≤ i ≤ 3, 2b and 2c.

3 A fusion lemma and an application

In the first part of this section G is an arbitrary group having a large ex-
traspecial subgroup. This means that for some involution z ∈ G the central-
izer C = CG(z) contains a normal extraspecial 2-subgroup Q and, further-
more, CG(Q) ≤ Q. This implies that G contains a unique class of 2-central
involutions (recall that a 2-central involution is an involution in the center
of some Sylow 2-subgroup of G) and that z is itself 2-central. We let S
denote the class of 2-central involutions in G. For x = zg ∈ S we denote
Cx = CG(x) = Cg and Qx = Qg. Thus, C = Cz and Q = Qz.

We will assume throughout this section that

(∗) S ∩ C 6= {z}.

Indeed the principal case of interest for us is where G is simple. However
in that case the Z∗-theorem of Glauberman makes S ∩C = {z} impossible.
In this section we prove that, modulo some small configurations, (∗) implies
the following stronger condition:

(∗∗) S ∩Q 6= {z}.

Let, as above, Q = Qz and let Q̄ denote Q/Z where Z = 〈z〉.

Lemma 3.1 Suppose S ∩ Q = {z} and let x ∈ S ∩ C, x 6= z. Denote
E = Q ∩Qx. Then one of the following holds:

(1) E = 1; or

(2) |E| = 2 and either

(a) Ē 6≤ [Q̄, x], or

(b) z 6= [x, y] for all y ∈ Q; or

(3) |E| = 4 and furthermore, for W = 〈E, z, x〉,

(a) NG(W ) induces on W ∼= 24 either O−4 (2), or Ω−4 (2) acting as on
the natural module;

(b) |W ∩ S| = 5 and, under the identification of W with the orthog-
onal module, the involutions in W ∩ S are the singular vertors;
moreover, for each w ∈W ∩ S, W ∩Qw is the perp of w.
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Proof: Suppose that E 6= 1. (Otherwise, (1) holds.) If e ∈ E then
e2 ∈ Z ∩ 〈x〉 = 1, since E is contained in both Q and Qx. Hence E is
elementary abelian. Let U and V be defined as the full preimages in Q
of CQ̄(x) and [Q̄, x], respectively. Observe that since Q is extraspecial we
have that V = CQ(U) = Z(U) and that CQ(x) is either equal to U or
[U : CQ(x)] = 2. In the latter case, [x, y] = z for all y ∈ U \ CQ(x).

Notice that [CQ(x), E] ≤ [Q,Q]∩ [CQ(x), Qx] ≤ Z ∩Qx. By assumption,
S ∩Q = {z} and hence S ∩Qx = {x}. We conclude that z 6∈ Qx and hence
[CQ(x), E] = 1.

Let e ∈ E# and suppose e = [x, y] for some y ∈ Q. Then ex = xy is a
conjugate of x contained in Qx, i.e., S∩Qx 6= {x}. This contradiction shows
that no nontrivial element from E is an elementary commutator [x, y], for
y ∈ Q.

If CQ(x) 6= U then [U : CQ(x)] = 2, which implies that [CQ(CQ(x)) :
V ] = 2. Hence [E : E ∩ V ] ≤ 2. If E ∩ V = 1 then |E| = 2, implying (2a).
So let us assume that E ∩ V 6= 1 and let e ∈ (E ∩ V )#. Since e ∈ V , we
have that either e = [x, y] or ez = [x, y] for some y ∈ Q. However, by the
preceding paragraph e 6= [x, y]. So ez = [x, y]. Furthermore, z = [x, t] for
t ∈ U \ CQ(x). Thus, [x, ty] = [x, t]y[x, y] = zez = e; a contradiction.

Now assume that CQ(x) = U and so z 6= [x, y] for all y ∈ Q. Also,
E ≤ V , since [CQ(x), E] = 1. If |E| = 2 then we obtain (2b). Hence we
may assume that |E| ≥ 4. Set W = 〈E, z, x〉. Our next step is to determine
which involutions from W are in S. First of all, the involutions in W fall
into the following types: z, x, e, ze, xe, zx, and zxe, where e denotes an
arbitrary involution from E#. Clearly, z, x ∈ S. By assumption, no other
involution in Q∪Qx is in S. Hence the involutions e, ze, and xe are not in S.
Since E ≤ V , we have that ē = [ȳ, x] for some y ∈ Q. We have shown above
that e 6= [x, y]. Hence ze = [x, y]. It follows that zxe = xze = x[x, y] = xy.
Thus, all elements zxe are in S. The element zx may or may not be in S.

Observe also that the element y above normalizes W . Indeed, 〈E, z〉 is
normal in Q, so y leaves it invariant. Also xy = zxe ∈ W . Thus, W y = W .
We conclude that x and all the elements zxe are conjugate under NG(W ).
Symmetrically, z is conjugate under NG(W ) to the elements zxe and so also
to x. Notice that Wx = 〈E, x〉 is an index two subgroup of W such that
|Wx ∩ S| = {x}. Pick an element e ∈ E#. By transitivity, there exists a
subgroup Wzxe of index 2 in E such that Wzxe ∩ S = {zxe}. Since z and x
are not in Wzxe, we have that zx ∈ Wzxe. Thus, zx 6∈ S, which completes
the enumeration of the elements in W ∩ S.

If |E| > 4 then for every e′ ∈ E# there exist elements e1 and e2 = e1e
′

such that e1 6= e 6= e2. Since both zxe1 and zxe2 are not in Wzxe, we
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conclude that e′ = (zxe1)(zxe2) is in Wzxe, i.e., E ≤ Wzxe. However, in
that case all elements zxe′, e′ ∈ E#, are in Wzxe ∩ S, a contradiction. This
establishes that |E| = 4 and, consequently, |W ∩ S| = 5. Observe that
the elements y from the preceeding paragraph stabilize z. This proves that
NG(W ) induces a 2-transitive group on W ∩ S. Also y2 ∈ Z for all those
elements y, which rules out the Frobenius group F 4

5 . Hence NG(W ) induces
on W ∩ S one of the groups S5 ∼= O−4 (2) or A5 ∼= Ω−4 (2) and the claim (2)
follows.

In the remainder of this section G = M , the Monster, z is a 2-central
involution in G, Z = 〈z〉, C = Cz = CG(z) and Q = Qz = O2(Cz). Since by
assumption M is simple, Glauberman’s Z∗ theorem [Gl] shows that S ∩C 6=
{z}. Recall that S denotes the conjugacy class of 2-central involutions, zM .
Recall alsoy that for x = zg we set Cx = Cg and Qx = Qg. Since M has a
large extraspecial subgroup, Lemma 3.1 applies to it. We use that lemma
to prove the following.

Proposition 3.2 Q ∩ S 6= {z}.

Proof: Suppose Q∩S = {z}. Since C∩S 6= {z}, we can choose x ∈ C∩S,
x 6= z. According to Lemma 3.1, one of the exceptional cases (2a), (2b), or
(3) must hold. In particular, E = Q ∩Qx has size at most four.

Observe now that the group H = C̄ = C/Z satisfies the conditions
(H1)–(H3) from Section 2. In particular, we can use the classification of
conjugacy classes of involutions obtained in that section. Let D = C ∩ Cx
and R = Qx ∩ C. Clearly, R is normal in D, and D̄ is of index two or one
in CC̄(x̄) depending on whether or not x and xz are conjugate in C.

Suppose first that x̄ is in the class 2ai for some i. Then also z〈x〉 is
in 2ai in Cx/〈x〉. In particular, R is of order at least 216 (cf., Lemma
2.4). Consider C̃ = C/Q. Since E = Q ∩ R is of order at most four,
we obtain that D̃ contains a normal 2-subgroup R̃ of order at least 214.
Comparing with Lemma 2.10, we see that i = 3 must hold. However, i = 3
also leads to a contradiction. Indeed, let Ỹ be the normal extraspecial
subgroup 21+8 of CC̃(x̃) ∼ 21+8.Ω+

8 (2). We have that [Ỹ : Ỹ ∩ R̃] ≤ 2 and
[R̃, R̃] ≤ 〈x̃〉 = Z(Ỹ ). Therefore, all elements of R̃ centralize a hyperplane
in the 8-dimensional quotient of Ỹ , which is impossible.

Suppose next that x̄ is in 2b. Then also z〈x〉 is in the class 2b in Cx/〈x〉.
Hence |R| ≥ 212. Considering again C̃ = C/Q and taking into account that
|E| ≤ 4, we see that D̃ contains a normal 2-group of size at least 210, clearly
contradicting Lemma 2.11.

12



Finally, suppose x̄ is in the class 2c. In this case our argument must be
slightly more subtle. Let U be the full preimage in Q of Ū = CQ̄(x̄). Then
U is a subgroup of order 213. We claim that CQ(x) is a proper subgroup of
U . Indeed, according to Lemma 2.4, Ū contains elements from the class 2e3.
Observe that the mapping ē 7→ e2 defines a nondegenerate quadratic form g
on Q̄. Since, as a module for C/Q ∼= Co1, Q̄ is absolutely irreducible, this
quadratic form is unique, and hence g is equivalent to the form q (cf. Section
2). In particular, if ē is in 2e3 then e is of order four. Since Ū = [Q̄, x̄],
we have that ē = [q̄, x̄] for some q ∈ Q. Therefore, [q, x] = e or e3. Since,
clearly, q can be chosen to be an involution, we obtain that x inverts e,
i.e., e 6∈ CQ(x).

This has two consequences. First, CQ(x) is of size 212, and symmetrically,
also |R| = 212. (Clearly, z〈x〉 must also be in the class 2c in Cx/〈x〉.)
Secondly, we record for further use that z = [q, x] for some q ∈ Q.

Since |E| ≤ 4, we have that R̃ (where, as above, C̃ = C/Q) has size 210,
211, or 212. Comparing with Lemma 2.11 and using that R̃ is normal in D̃,
we obtain that |R̃| = 211, and hence |E| = 2. This means that either (2a) or
(2b) of Lemma 3.1 must hold. Above we recorded that z = [q, x] for some
q ∈ Q. Hence, in fact, it must be the case (2a). To obtain a contradiction
in this last case, it remains to see that Ē ≤ [Q̄, x]. However, this is clear
because Ē ≤ CQ̄(x̄) = [Q̄, x̄] = [Q̄, x].

4 Singular subgroups

First, let G be again a group with a large extraspecial subgroup, that is,
let there be an involution z ∈ G and an extraspecial 2-subgroup Q normal
in C = CG(z) such that CG(Q) ≤ Q. Adopt the notation from Section
3, that is, let S = {zG} be the class of 2-central involutions in G and, for
x = zg ∈ S, let Cx = CG(x) = Cg and Qx = Qg.

Let x and y be two 2-central involutions. We will say that x perpendicular
to y if and only if y ∈ Qx. The following important lemma is a slight
improvement on [As0], Lemma 8.7 (3).

Lemma 4.1 The perpendicularity relation is symmetric.

Proof: If |Q| > 23 then this is proven in [As0], Lemma 8.7 (3). So suppose
Q ∼ 21+2. Suppose that the relation is not symmetric so that for some
x ∈ S we have that x ∈ Q, but z 6∈ Qx. In particular, there is no g ∈ G
such that zg = x and xg = z. Since x ∈ Q, Q must be isomorphic to
D8. Since CG(Qx) = 〈x〉 and since OutD8 is of order two, we have that
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Cx = Qx〈z〉 ∼= D16. It remains to notice that an element from NCx(U),
where U = 〈z, x〉, permutes z and zx and, likewise, an element from NC(U)
permutes x and zx. Hence the normalizer of U induces on it the full group
S3. Thus, there exists an element g ∈ G such that zg = x and xg = z; a
contradiction.

Let U be a purely 2-central (i.e., all involutions in U are in S) elementary
abelian 2-subgroup of G. We will say that U is singular if U ≤ Qu for every
u ∈ U#. If U is singular define QU = ∩u∈U# Qu and LU = 〈Qu | u ∈ U#〉.
Clearly, U ≤ QU ≤ LU .

Lemma 4.2 Let U be singular. Then the following hold:

(1) U and QU are normal in LU and LU acts trivially on QU/U ;

(2) if W ≤ QU and W ∩ U = 1 then CLU (W ) induces on U the full
group Ln(2) (where n is the rank of U); in particular (for W = 1),
NG(U) = LUCG(U);

(3) if W1,W2 ≤ QU , W1 ∩ U = W2 ∩ U = 1 and W1U = W2U then there
is an element x ∈ CLU (U) such that W x

1 = W2; in particular, CLU (U)
acts transitively on every coset qU , q ∈ Q \ U ;

(4) if |U | > 2 then QU is elementary abelian.

Proof: Let U ≤ U ′ ≤ QU . If u ∈ U# then U ′ ≤ Qu. Since Qu is
extraspecial, U ′ is normal in Qu and hence U ′ is normal in LU . This proves
(1).

For W as in (2), take U ′ = WU . Clearly, U ′ is elementary abelian and
so we can view it as a GF (2)-vector space. Notice that Qu induces on U ′ all
transvections with center 〈u〉. Since W ∩ U = 1, CQu(W ) induces on U all
transvections with center 〈u〉. This implies (2), since the group generated
by all transvections of U is Ln(2).

Let W1 and W2 be as in (3). We will use induction on the rank of W1.
If W1 = 1 then there is nothing to prove. Otherwise, choose W ′1 ≤ W1
such that |W1/W

′
1| = 2, and let W ′2 = W2 ∩W ′1U . By induction, there is

an element x′ ∈ CLU (U) such that (W ′1)x = W ′2. Let w1 ∈ W1 \W ′1 and
let {w2} = W2 ∩ w1U . Notice that, by (1), wx1 ∈ w1U = w2U and hence
wx1 = w2u for some u ∈ U . If u = 1 then take x = x′. Otherwise, let y be
an element of Qu that induces on W1U the transvection with center 〈u〉 and
axis W ′2U . Clearly, y ∈ CLU (U) and W x

1 = W2, where x = x′y. This proves
(3).
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Finally, if q ∈ QU then q2 ∈ Φ(Qu) = 〈u〉 for every u ∈ U#. This proves
(4).

Lemma 4.3 A subgroup U is singular if and only if it is generated by a
set of pairwise perpendicular 2-central involutions. Furthermore, if U =
〈u1, . . . , uk〉 (ui 6= 1 for all i) is singular then QU = ∩ki=1Qui.

Proof: We only need to prove the ‘if’ part of the first claim. Suppose
U = 〈u1, . . . , uk〉, where u1, . . . , uk are 2-central and pairwise perpendicular.
By induction, U ′ = 〈u2, . . . , uk〉 is singular. Since u1 is perpendicular to
u2, . . . , uk, we have that U ′ ≤ Qu1 which by Lemma 4.1 implies that u1 ∈
QU ′ . By Lemma 4.2 (2), all involutions in U \ U ′ = u1U

′ are 2-central,
since u1 is 2-central. Finally, let u ∈ U#. Then u ∈ U ≤ Qui for every i,
since the involutions ui are pairwise perpendicular. By Lemma 4.1, U =
〈u1, . . . , uk〉 ≤ Qu.

Suppose now that U = 〈u1, . . . , uk〉 is singular. Clearly, Q0 = ∩ki=1Qui
contains QU . So it remains to see that Q0 ≤ QU . Let us use induction on
k. The claim is obviously true if k = 1. Consider now the case k > 1 and
set U ′ = 〈u2, . . . , uk〉. By induction, QU ′ = ∩ki=2Qui and hence Q0 ≤ Qu for
all u ∈ U#. However, this means that Q0 is normal in Qu. In particular,
Q0 is invariant under an element x ∈ Qu which induces on U a transvection
taking u1 to u1u. Hence Q0 = Qx0 ≤ Qxu1

= Qu1u. Thus Q0 ≤ Qu for all
u ∈ U#.

We now switch back to the case G = M . Our goal is to classify all
singular subgroups in M up to conjugation. Notice that Proposition 3.2
means that the perpendicularity relation on 2-central involutions in M is
nontrivial, that is, there exist singular subgroups of size more than two.
We start by getting the details of the perpendicularity relation in M . For
that we need to know the fusion of involutions in Q. Let C̄ = C/Z, where
Z = 〈z〉. Recall that the classes of involutions in C̄ were determined in
Section 2.

Lemma 4.4 The group C has exactly two classes of involutions x 6= z, con-
tained in Q. If q2 and q4 are representatives of those classes then CC(q2) ∼
21+23.Co2 and CC(q4) ∼ 21+23.(211 : M24). Furthermore, q4 is 2-central and
q2 is not.

Proof: For x ∈ Q \ Z, the mapping x̄ 7→ x2 defines a nondegenerate
quadratic form g on Q̄. Since the action of C/Q ∼= Co1 on Q̄ is absolutely
irreducible, g is unique and hence g is equivalent to the form q existing on
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Λ̂ = Λ/2Λ (cf. Section 2). The form q is zero on Λ̂2 and Λ̂4, and it is non-
zero on Λ̂3. This means that x is an involution if and only if x̄ belongs to
the class 2e2 or 2e4. The involutions x and xz are conjugate in Q, because
Q is extraspecial. Combined with Lemma 2.7, this establishes the first two
claims of the lemma.

According to Proposition 3.2, at least one of q2 and q4 is conjugate to
z in G. So, to complete the proof of the lemma, it suffices to show that
x = q2 is not 2-central. Suppose that x ∈ S. Let D = CC(x) = C ∩ Cx
and R = Q ∩Qx. From the structure of D (see above), it is clear that R =
O2(D) ∼ 21+23. Since R ≤ Q, we have that [R,R] = Z. Symmetrically, since
R ≤ Qx we have that [R,R] = 〈x〉, implying that z = x, a contradiction.

In particular, if a 2-central involution y 6= z is perpendicular to z then y is
conjugate in C to x = q4. This lemma implies that every singular subgroup
U ∼ 22 in M is conjugate to 〈z, q4〉. So there is only one conjugacy class of
such subgroups.

Lemma 4.5 Let U ∼ 22 be singular. Then W = QU/U ∼ 211 and CM (U)
induces on W a group M24 acting as on the Todd module. Under the identi-
fication of W with the Todd module, the images of 2-central involutions from
QU \ U correspond to sextets, while the images of non 2-central involutions
correspond to pairs.

Proof: Without loss of generality, U = 〈z, x〉, where x = q4. Let D =
C ∩ Cx = CM (U) and R = Q ∩ Qx. Notice that by Lemma 4.3 we have
R = QU . Recall that Q̄ = Q/Z affords a quadratic form g defined by
ȳ 7→ y2. By Lemma 4.2 (4), QU is elementary abelian. In particular, R̄ is a
totally singular subspace with respect to g. This implies that |R̄| ≤ 212, and
hence |R| ≤ 213. On the other hand, both C ∩ Qx and Cx ∩ Q have order
224 and they are normal in D. Since (C ∩Qx) ∩ (Cx ∩Q) = R, the order of
(C ∩Qx)(Cx ∩Q) is at least 224+24−13 = 235 = |O2(D)| (see Lemma 4.4 for
the structure of D). Hence |R| = 213.

It follows that R̄ is a 12-dimensional subspace in Q̄ invariant under the
monomial group D/Q ∼ 211 : M24. Such a subspace is known to be unique.
Identifying Q̄ with Λ̂ and assuming that x̄ is the image of the standard
frame, we get that R̄# consists of the images of the vectors of the shape
±81023 (x̄), ±42022 (Λ̂2, non 2-central), and ±44020 (Λ̂4, 2-central). Each
pair of coordinates gives four vectors of the second kind, mapping onto two
elements in R̄ ∩ Λ̂2. These two elements of R̄ sum up to x̄. Similarly,
every sextet produces 96 vectors of the third kind (two frames), mapping
onto two elements in R̄ ∩ Λ̂4. These two elements of R̄ again sum up to
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x̄. Thus, in R/U ∼= R̄/〈x̄〉, the nonidentity elements correspond simply to
pairs and sextets. By Lemma 4.4, the elements from R/U# corresponding
to pairs (respectively, sextets) are the images of non 2-central (respectively,
2-central) involutions from R \ U .

For the record, the normalizer of a singular subgroup U ∼ 22 is now
known to be an extension of a normal 2-subgroup of order 235 by S3×M24.
(The latter being the action of NM (U) on U ×QU/U .)

In the above proof, if we do not assume that x̄ is the image of the
standard frame then the condition for ȳ to be in R̄ looks as follows: Let {vi}
be the frame corresponding to x̄ (i.e., v̂i = x̄ and vi ∈ Λ4 for all i) and let
u be a short vector in Λ (i.e., a vector from Λ2 ∪ Λ3 ∪ Λ4) such that v̄ = ŷ.
Then ȳ ∈ R̄ if and only if (vi, y) ∈ {0,±4,±8} for all i. When {vi} is the
standard frame, this corresponds to the statement in the above proof about
the shapes of the vectors mapping into R̄.

Combining Lemma 4.2 (3) with the fact that M24 acts transitively on
pairs and on sextets, we obtain the following.

Corollary 4.6 If U ∼= 22 is singular then CM (U) has exactly two conjugacy
classes in QU \U , one consisting of non 2-central involutions, and one other
consisting of 2-central involutions.

Since QU \ U contains a unique class of 2-central involutions, M has
exactly one conjugacy class of singular subgroups 23.

Before we proceed further we need to understand better the perpendicu-
larity relation among the elements in QU \U , where U is a singular subgroup
22. For a non 2-central (respectively, 2-central) involution y ∈ QU \ U , let
P (y) (respectively, S(y)) be the pair (respectively, sextet) corresponding to
yU ∈ QU/U .

We say that two sextets S1 and S2 intersect evenly if |T1 ∩ T2| is even
for all tetrads T1 ∈ S1 and T2 ∈ S2. Suppose T1 and T2 are two tetrads
and suppose |T1 ∩ T2| = 2. Then the sextets defined by T1 and T2 intersect
evenly if and only if T1 ∪ T2 is contained in an octad. This allows us to
compute that every sextet evenly intersects exactly 90 other sextets.

Lemma 4.7 Let U ∼ 22 be singular. Suppose y, t ∈ QU \U , and suppose y
is 2-central. Then

(1) if t is non 2-central then t ∈ Qy if and only if P (t) is contained in one
of the tetrads from S(y); and
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(2) if t is 2-central then t ∈ Qy if and only if S(t) and S(y) intersect
evenly.

Proof: Assume again that U = 〈z, x〉, where x = q4. Let {vi} be the
frame in Λ that corresponds to ȳ and let u be a short vector in Λ such that
û corresponds to t̄. Then the vectors vi are of the shape ±44020, where
the nonzero coordinates appear in a tetrad from the sextet S(y). Similarly,
u is of shape ±42022 (respectively, ±44020) with the nonzero coordinates
appearing in the pair P (t) (respectively, sextet S(t)) if t is non 2-central
(respectively, 2-central). According to the remark after the proof of Lemma
4.5 we have t ∈ Qy if and only if (vi, u) ∈ {0,±4,±8} for all i. The claim of
the lemma follows.

One implication of Corollary 4.6 is that M contains exactly one con-
jugacy class of singular subgroups 23. Indeed, pick a 2-central involution
y ∈ Q〈z,x〉 \ 〈z, x〉. Then every singular subgroup 23 is conjugate to 〈z, x, y〉.

Lemma 4.8 Let U ∼ 23 be singular. Then W = QU/U ∼ 26 and CM (U)
induces on W a group 3 · S6 that acts on W irreducibly. Furthermore,
NM (U) has two orbits on W#: an orbit of length 18 (images of non 2-
central involutions from QU \ U) and an orbit of length 45 (images of 2-
central involutions).

Proof: Without loss of generality, U = 〈z, x, y〉. We set U0 = 〈z, x〉 and
V = Q̃U0/U0. According to Lemma 4.5, CM (U0) induces on V a group M24
acting on V as on the Todd module. Let S = S(y) be the sextet correspond-
ing to ỹ under the identification of V with the Todd module. According to
Lemma 4.7, Q̃#

U consists of elements corresponding to pairs contained in the
tetrads of S and to sextets evenly intersecting S. By counting, Q̃#

U consists
of 91 sextets (including S) and 36 pairs. Hence |Q̃U | = 27. This means
that |QU/U | = 26. Furthermore, (QU/U)# contains 45 (respectively, 18) el-
ements that are images of 2-central (respectively, non 2-central) involutions.

Recall that CM (U0) induces on V a group M24. The stabilizer of S in
the latter group is a subgroup 26 : 3 · S6. Let D = NM (U) ∩ CM (U0) be
the full preimage in CM (U0) of the stabilizer of S. According to Lemma 4.2
(2), NM (U) ∩ NM (U0) induces on U \ U0 a group S4. Since D is normal
in NM (U) ∩ NM (U0) and since CM (U) is the kernel of the action of D on
U \U0, we conclude that CM (U) induces the whole sextet stabilizer 26 : 3 ·S6
in its action on V . Thus, it induces a quotient of 26 : 3 · S6 on QU/U . Let
a ∈ CM (U) be a 3-element mapping into the normal 3-subgroup of the
quotient 3 · S6. Consider the action of a on V . Clearly, a stabilizes every
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tetrad in the sextet S. Let S′ be a sextet evenly intersecting S. Observe
that every tetrad from S meets exactly two tetrads from S′. Being a 3-
element, if a stabilizes S′ then it must stabilize it tetradwise. However, in
that case a stabilizes every part of a partition of {1, . . . , 24} into 12 pairs
(intersections of tetrads from S with tetrads from S′), which makes a to
act on {1, . . . , 24} trivially. This contradiction shows that a cannot stabilize
S′ and hence a acts nontrivially on QU/U . Therefore, CM (U) induces on
QU/U either 26 : 3 · S6 or 3 · S6.

It is easy to see that the stabilizer of S in M24 acts transitively on pairs
contained in tetrads from S and on sextets evenly intersecting S. Conse-
quently, CM (U) has orbits of size 18 and 45 on QU/U . This makes the
action on QU/U irreducible, implying that the group induced by CM (U) is
in fact 3 · S6.

For the record, this lemma and Lemma 4.2 (2) imply that NM (U), where
U is a singular subgroup 23, is an extension of a normal subgroup of order
239 by L3(2)× 3 · S6.

Also, let us record what we proved about the classes of 2-central and
non 2-central involutions in QU .

Corollary 4.9 If U ∼= 23 is singular then CM (U) has exactly two conjugacy
classes in QU \U , one consisting of non 2-central involutions, and one other
consisting of 2-central involutions.

Proof: Follows from Lemma 4.2 (3).

In particular, M contains a unique conjugacy class of singular subgroups
24.

Lemma 4.10 Let U ∼ 24 be singular. Then W = QU/U ∼ 23. Further-
more, W# contains exactly three elements that are images of non 2-central
involutions, and these three elements generate W . The group CM (U) in-
duces on W a group S3.

Proof: Without loss of generality, U ≥ U0 = 〈z, x〉, say, U = 〈z, x, y, t〉.
We will work with the Todd module V = Q̃U0 = QU0/U0. Let S = S(y) and
S′ = S(t). If s ∈ QU \U is a non 2-central involution then P (s) is contained
in a tetrad from S and in a tetrad from S′. Hence T (s) must be one the
twelve pairs P1, . . . , P12 (partitioning {1, . . . , 24}) that are intersections of
tetrads from S with tetrads from S′. This proves thatQU/U contains exactly
three involutions that are images of non 2-central involutions. (Indeed, the
twelve involutions in Q̃U merge into three involutions in QU/U .)
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Let us be more specific. Since S and S′ intersect evenly, there is a unique
trio T := {O1, O2, O3〉 of which both S and S′ are refinements (we view trios
and sextets as partitions of {1, . . . , 24}). Then every Oi is a union of some
four pairs Pj . It is easy to see that pairs Pj and Pk produce the same
element in QU/U if and only if they are contained in the same octad Oi.
Thus, the octads Oi correspond to the “non 2-central” elements ai ∈ QU/U .
Clearly, the stabilizer of S and S′ in M24 induces an S3 on the trio T . Hence
also NM (U) induces an S3 on the three involutions ai. Furthermore, since
NM (U) induces a simple group L4(2) on U , we also have that CM (U) induces
an S3 on the ai’s. It remains to see that they are linearly independent and
generate QU/U .

Observe that if Pj and Pk belong to distinct octads Oi then the sum (we
switch to the additive notation in V and QU/U) of the elements from V
corresponding to Pj and Pk is of sextet type and, furthermore, that sextet is
not a refinement of T . This means that the sum of two distinct involutions
ai is nontrivial and “2-central”. This implies the linear independence. Let b
be an arbitrary “2-central” element from (QU/U)#, say, it is the image of an
element of V that corresponds to a sextet S′′ = {R1, . . . , R6}. Observe that
S′′ evenly intersects both S and S′. In particular, |Oi ∩Rj | is even for all i
and j. Suppose for some i and j we have |Oi ∩ Rj | = 2. (We will say that
such an S′′ is of the first kind.) Observe that Oi is a union of some four pairs
Pk. If Rj meets two of these pairs then Rj meets a tetrad from S or from
S′ in just one point, a contradiction. Hence, Oi ∩ Rj coincides with some
Pk. Similarly, considering a nontrivial intersection of Rj with some other
Oi′ we obtain that Rj contains a second pair Pk′ and hence b is the sum of
two of the ai’s. It remains to consider the case where |Oi ∩Rj | ∈ {0, 4} for
all i and j, that is, every Rj is fully contained in some Oi. (Then we will
say that S′′ is of the second kind.) Fix Oi and Rj with Rj ⊂ Oj . If Pk ⊂ Rj
then b + ai is “non 2-central”, which means that Rj \ Pk = Pk′ . However,
since Pk and Pk′ are both in Oi, we get b = ai + ai = 0, a contradiction.
Therefore, Ri meets each of the four pairs Pk partitioning Oi in one point.
Fix Pk ⊂ Oi and consider c = b + ai. Then one of the preimages of c in V
will correspond to the sextet S′′′ containing the tetrad Rj4Pk (4 denotes
symmetric difference of sets). If S′′′ is of the second kind then S′′′ contains
a tetrad contained in Oi′ 6= Oi. That tetrad of S′′′ will meet some tetrad of
S′′ in at least two points. This gives us two octads meeting in five points, a
contradiction. Therefore, S′′′ is of first kind. By the above, c is in the span
of ai’s and hence so is also b.

We will continue using the notation ai for the three “non 2-central”
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elements from QU/U . According to Lemma 4.10, CM (U) has three orbits
on (QU/U)#: {a1, a2, a3} (“non 2-central”), {a1 + a2, a1 + a3, a2 + a3} (“2-
central”, sextets of the first kind), and {a1 + a2 + a3} (“2-central”, sextets
of the second kind).

We record this as the following

Corollary 4.11 If U ∼= 24 is singular then CM (U) has exactly three con-
jugacy classes in QU \ U , two consisting of 2-central involutions, and one
other consisting of non 2-central involutions.

For the record, the normalizer of a singular subgroup U ∼ 24 is an
extension of a normal subgroup of order 239 by L4(2)× S3.

It follows from Corollary 4.11 that M contains two conjugacy classes of
singular subgroups 25. One of these two classes is represented by 〈z, x, y, t, s〉
with the image of s in Q〈z,x,y,t〉/〈z, x, y, t〉 being a1 + a2, while for the other
the image of s can be chosen as a1 + a2 + a3. We will write “a singular
subgroup 25

1” (respectively, 25
2) for the two types of singular subgroups 25.

We will need the following corollary of Lemma 4.11.

Corollary 4.12 Every singular subgroup 24 is contained in exactly three
singular subgroups 25

1 and a unique singular subgroup 25
2.

To complete the classification of singular subgroups of M we need to
discuss perpendicularity between the elements of QU \ U .

Lemma 4.13 Suppose U ∼ 24 is singular. Let s and r be two elements from
QU \ U , whose images in QU/U are distinct. If s is 2-central and r ∈ Qs
then the image of s is ai + aj for some i and j. Furthermore, the image of
r is either ai or aj.

Proof: Without loss of generality, U = 〈z, x, y, t〉 as in lemma 4.10. Since
r ∈ Qs, we have that r and rs are both 2-central or both non 2-central. This
implies that the image of s cannot be a1 + a2 + a3. Hence the image of s
coincides with some ai+aj . Next, it is easy to see that if r′ maps onto ai or
aj then r′ ∈ Qs. Since no element mapping onto a1 + a2 + a3 can be in Qs,
we conclude that the image of Qs ∩QU in QU/U coincides with 〈ai, aj〉.

The information in Lemma 4.13 allows us to determine QU for singular
subgroups U ∼ 25.

Lemma 4.14 The following hold.
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(1) If U is singular 25
1 then QU/U is of order two. Furthermore, all invo-

lutions in QU \ U are non 2-central.

(2) If U is singular 25
2 then QU = U .

Proof: Follows from Lemma 4.13.

For the record, the normalizer of a singular 25
1 is an extension of a sub-

group of order 236 by L5(2), while the normalizer of a singular 25
2 is an

extension of a subgroup of order 2363 by L5(2).

Lemma 4.14 means that M contains no singular subgroups of order more
than 25 and so we have completed the classification of the singular subgroups
in M .

Proposition 4.15 The Monster group M contains exactly 6 classes of non-
trivial singular subgroups. The corresponding orders are 2, 22, 23, 24, 25 and
25.

Let Si, 1 ≤ i ≤ 4, denote the conjugacy class of all singular subgroups
2i of M . For i = 5, we will use the notation S5,1 and S5,2 for the conjugacy
classes of singular subgroups 25

1 and 25
2, respectively.

Notice that in this section we only indicated the order of the normalizers
of singular subgroups and their action on U × QU/U . A more detailed
information about the structure of these 2-local subgroups can be found in
the appendix.

5 Arks

From this section on, G = M , the Monster simple group. In this section we
construct and study a class of subgroups 210 of M , associated with singular
subgroups.

Let U be a singular subgroup 25
1. According to Lemma 4.12, every index

two subgroup of U is contained in a unique singular 25
2. Let A = {U ′ ∈

S5,2|[U : U ∩U ′]| = 2} and let A(U), the ark defined by U , be the subgroup
of M generated by all U ′ ∈ A. Clearly, A(U) is invariant under NM (U).

Lemma 5.1 The ark A(U) is elementary abelian of order 210. Furthermore,
U and A(U)/U are dual to each other as modules for NM (U).

Proof: Suppose U ′, U ′′ ∈ A with U ′ 6= U ′′. Then W = U ′ ∩ U ′′ ∩ U is
a singular subgroup 23. Since U ′, U ′′ ≤ QW and since QW is elementary
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abelian by Lemma 4.2 (4), we have that U ′ and U ′′ commute elementwise
and, therefore, A = A(U) is elementary abelian.

Consider Ā = A/U . If U ′ ∈ A then Ū ′ is of order two. This yields a
mapping V 7→ āV from the set of index 2 subgroups V < U to Ā#. Namely,
〈āV 〉 = Ū ′, where U ′ ∈ A is the only singular 25

1 containing V . Clearly, the
elements āV generate Ā. Furthermore, the subgroups V correspond to the
elements in (U∗)#, where U∗ is the dual of U . Therefore, in order to com-
plete the proof of this lemma it suffices to establish the three-term relations:
āV1 āV2 āV3 = 1 whenever V1, V2 and V3 are three index two subgroups of U ,
containing a given index four subgroup W < U .

Consider Q̂W = QW /W . According to Lemma 4.8, Q̂W is 6-dimensional
(as a vector space over GF (2)) and CM (W ) induces on Q̂W a group 3 · S6.
Let x ∈ CM (W ) be a 3-element that maps onto a nontrivial element in
the center of that action. Let V be a singular subgroup 24 containing W .
Then V̂ is of order two, and we claim that if U ′ is the unique singular 25

2
containing V then Û ′ = V̂ V̂ x. Indeed, on the one hand, each of the 45 (cf.
Lemma 4.8) subgroups V is contained in a unique U ′. On the other hand,
each U ′ contains three subgroups V . Therefore, W is contained in exactly
15 singular subgroups 25

2. It follows that each of them is invariant under x,
since S6 cannot nontrivially act on 15/3 = 5 points. This proves our claim.

We can now finish the proof of the lemma. Suppose V1, V2 and V3 are
the three index two subgroups of U , containing W . Let U ′i , i = 1, 2, 3,
be the unique singular 25

2 containing Vi. Working again in Q̂W = QW /W ,
we obtain that the image of 〈U ′1, U ′2, U ′3〉 in Q̂W coincides with Û Ûx, since
〈V1, V2, V3〉 = U . Thus, 〈āV1 , āV2 , āV3〉 = 〈U ′1, U ′2, U ′3〉/U is of order four and
hence āV1 āV2 āV3 = 1 holds.

Let U ∈ S5,1 and let A, A = A(U) and Ā = A/U be as above.

Lemma 5.2 The following hold.

(1) If a ∈ A \ U then 〈U, a〉 = 〈U,U ′〉 for some U ′ ∈ A. In particular,
every coset of U in A contains a 2-central involution.

(2) If a ∈ A\U is 2-central then U∩Qa is of index two in U . Furthermore,
au (where u ∈ U) is 2-central if and only if u ∈ U ∩Qa.

Proof: Part (1) follows directly from Lemma 5.1. Let U ′ ∈ A be such
that 〈U, a〉 = 〈U,U ′〉. Then 〈U, a〉 ≤ QW , where W = U ∩ U ′. Since
perpendicularity is symmetric, we have that W ≤ Qa. On the other hand,
U 6≤ Qa, because otherwise 〈U, a〉 must be singular in view of Lemma 4.3.
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Thus, U ∩ Qa = W is of index two in U . Clearly, 〈W,a〉 is a singular
subgroup; in particular, au is singular if u ∈ W . Comparing now with
Lemma 4.10, we see that all elements in 〈U, a〉 \ (U ∪ U ′) are non 2-central.
Consequently, a ∈ U ′ (and hence U ′ = 〈W,a〉) and au is non 2-central for
all u ∈ U \W .

It follows from this lemma that A contains exactly 31 · 16 = 496 non
2-central and 31 + 31 ∗ 16 = 527 2-central involutions. Moreover, all non
2-central involutions in A are conjugate to q2. Also notice that both non
2-central and 2-central involutions generate A.

Next, we analize the embedding of the ark A = A(U) in Cu for u ∈ U#.
First of all, we claim that Lemma 5.2 implies that A ∩ Qu has index two
in A. Indeed, u is contained in 15 subgroups W = U ∩ U ′, U ′ ∈ A, and
hence A ∩Qu is of order 16. Let a ∈ A \ (A ∩Qu). Since A is generated by
2-central involutions, we can choose a to be 2-central.

Lemma 5.3 We have A∩Qu = [Qu, a] and the image of a in Cu/Qu ∼= Co1
is a 2A-involution.

Proof: Notice that Qu normalizes U and hence it also normalizes A.
Therefore, [Qu, A] ≤ A ∩ Qu. If the image of a in Co1 is of type 2B or
2C then Lemmas 2.5 and 2.6 imply that |[Qu, a]| ≥ 212, a contradiction.
Hence, the image of a is of type 2A. Furthermore, it follows from Lemma
2.4 that [Qu, a]〈u〉/〈u〉 is of order 28, implying that [Qu, a]〈u〉 = A ∩ Qu.
Since [Qu, a] is normal in Qu, it contains u and hence [Qu, a] = A ∩Qu.

Let D = NCu(Qu〈a〉) ∼ 21+24.21+8.Ω+
8 (2). Let C̄u = Cu/〈u〉.

Lemma 5.4 A is normal in D.

Proof: Let R = 〈Qu, a〉. Then R̄ is normal in D̄. Observe that R̄ has ex-
actly two maximal elementary abelian subgroups: Q̄u and R̄0 = 〈CQ̄u(ā), ā〉.
Since Qu is normal in D, we conclude that R0 (defined as the full preimage
of R̄0 in D) is also normal in D. We claim that A = Z(R0). Indeed, clearly,
A ∩ Qu = [Qu, a] is the center of R0 ∩ Qu, because Qu is extraspecial and
because R0 ∩Qu = CQ̄u(ā). Hence, it remains to see that [R0 ∩Qu, a] = 1.
However, this is clear: since R̄0 is abelian, we have that [R0 ∩Qu, a] ≤ 〈u〉;
on the other hand, by Lemma 5.2 (2), the involution au is not 2-central.
Hence u cannot be written as a commutator [r, a] for r ∈ R. Since R0 is
normal in D and A = Z(R0), we finally obtain that A is normal in D.

Let N = NM (A).
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Corollary 5.5 The action of N on A is irreducible. In particular, A =
〈uN 〉.

Proof: According to Lemma 5.1, A has two 5-dimensional composition
factors as a module for NM (U) ≤ N . On the other hand, it follows from
Lemmas 5.4, 5.3 and 2.4 that A has composition factors of dimensions 1, 8
and 1 as a module for D ≤ N .

In view of this lemma we can assume that a is conjugate to u in N . Let
A0 = A ∩Qa ∩Qu. Notice that A0 ∼ 28.

Lemma 5.6 We have CD(〈a, u〉) ∼ 210.216.Ω+
8 (2). In particular, ā is of

type 2a1 in C̄u (cf. Section 2) and CD(〈a, u〉) = Ca ∩ Cu. Furthermore,
Ca ∩ Cu induces on A0 a group Ω+

8 (2) acting as on a halfspin module.

Proof: Since A∩Qu = [Qu, a], the orbit of a under Qu consists of at least
28 elements. On the other hand, if a′ is a 2-central involution in A \ Qu
then a′u is non 2-central by Lemma 5.2. Therefore, A \ (A ∩ Qu) consists
of exactly 28 2-central and 28 non 2-central involutions. Furthermore, all 2-
central (respectively, non 2-central) involutions in A\(A∩Qu) are conjugate
by Qu.

This shows that QuCD(〈a, u〉) = D. Comparing with Lemma 2.4 we
obtain that CD(〈a, u〉) ∼ 210.28.28.Ω+

8 (2). Notice that the two 8-dimensional
chief factors (again, see Lemma 2.4) provide nonisomorphic modules for the
quotient Ω+

8 (2). Therefore, O2(CD(〈a, u〉))/A is elementary abelian and so
we can record the structure of CD(〈a, u〉) as 210.216.Ω+

8 (2).
Comparing with Lemmas 2.10 and 2.11, we see that ā must be of type

2a1 and that CD(〈a, u〉) = Ca ∩Cu. Clearly, A0 is invariant under Ca ∩Cu.
Since x 7→ x̄ establishes an isomorphism between A0 and [Q̄u, a], the last
claim follows from Lemma 2.4 (2).

Define a mapping f : A −→ GF (2) as follows: for x ∈ A, f(x) = 0 if
and only if x is the identity or a 2-central involution.

Lemma 5.7 The mapping f is a nondegenerate quadratic form of plus type.

Proof: We will switch to the additive notation in A. Decompose A as
A = 〈a, u〉 ⊕ A0. Then the restriction of f on 〈a, u〉 is a plus type form,
because au is non 2-central. It was shown in the preceding lemma that
Ca∩Cu induces on A0 a group Ω+

8 (2) acting as on a halfspin module (which
is a triality conjugate of the natural module). In particular, Ca ∩ Cu has
two orbits on A#

0 , of length 120 and 135. Thus, in order to show that the
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restriction of f to A0 is a quadratic form of plus type it suffices to show that
A0 contains exactly 120 non 2-central involutions. However, this is clear.
Indeed, by Lemma 5.2, each of the 15 cosets a′ + (U ∩A0) = a′ + (U ∩Qu),
with a′ ∈ A0 \ (U ∩ Qu), contains exactly eight 2-central and eight non 2-
central involutions. We have shown that the restriction of f on A0 is also a
plus type form.

It remains to verify the values of f on the elements x + y, x ∈ 〈a, u〉#
and y ∈ A0. If x = a or u then f(x + y) = f(y) because y and x + y
are conjugate in Qx. In view of Lemma 5.6, Ca ∩ Cu has orbits of length
120 and 135 on the set a+ u+A#

0 . Since the total number of non 2-central
involutions in A is known to be 496, we compute that among the elements in
a+u+A#

0 there are exactly 135 non 2-central involutions and 120 2-central
involutions. Hence f(a+ u+ y) = 1 + f(y) for all y ∈ A#

0 .

We can now pin down the structure of N = NM (A). Let PA = O2(N).

Lemma 5.8 We have N ∼ 210+16.Ω+
10(2). In particular, PA = CM (A) ∼

210+16.

Proof: First of all, Lemma 5.6 yields that CM (A) is an extension of A
by a group 216, i.e., CM (A) ∼ 210+16. Consider now the action of N on
A. Clearly, N leaves the form f invariant. So N/CM (A) is isomorphic
to a subgroup of O+

10(2). We claim that it is isomorphic to Ω+
10(2). Indeed,

observe that D and NM (U) share a Sylow 2-subgroup T (indeed, the 2-parts
of the orders of D and NM (U) coincide and hence as T we can take a Sylow
2-subgroup of NM (U) centralizing u). Consider an index two subgroup in
U invariant under T and the unique singular 25

2, say U ′, containing that
subgroup. Both U and U ′ are maximal totally singular with respect to f
and T leaves invariant both U and U ′. This yields that the image of T lies
in Ω+

10(2) and, moreover, the images of D and NM (U) lie in Ω+
10(2), too.

Comparing the orders we obtain that they are two maximal parabolics in
Ω+

10(2). Therefore, N/CM (A) is either Ω+
10(2) or O+

10(2). It remains to notice
that N/CM (A) ∼= O+

10(2) is impossible, because U and U ′ are not conjugate.

For x ∈ A#, let x⊥ be the orthogonal complement of 〈x〉 with respect
to the symplectic form (x1, x2) = f(x1 + x2) − f(x1) − f(x2) on A. (We
continue using the additive notation in A.)

Corollary 5.9 If x ∈ A# is 2-central then x⊥ = A ∩Qx.
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Proof: First of all, by the preceding lemma, N is transitive on 2-central
involutions in A. Hence A ∩ Qx has index two in A. Furthermore, since y
and x+y have the same type whenever y ∈ Qx, we have that f(y) = f(x+y)
for all y ∈ A ∩Qx. This proves that A ∩Qx ≤ x⊥.

This shows that a subgroup of A is singular if and only if it is totally
singular with respect to f . Notice that A contains both a singular 25

1 and a
singular 25

2 and so, indeed, an ark contains all species of singular subgroups.
Furthermore, all singular subgroups of A of the same kind are conjugate in
N . This implies, in particular, the following

Lemma 5.10 If U ∈ S5,1 then A(U) is the only ark containing U . If U ∈
S5,2 then U is contained in exactly three arks. Furthermore, those three arks
are conjugate under NM (U).

Proof: The first claim follows since NM (U) ≤ N if U ∈ S5,1. If U ∈ S5,2
and U ≤ A, we compute that NN (U) has index three in NM (U).

6 Elementary abelian subgroups in PA

Let A be an ark and N = NM (A). We first produce an inventory of the
elements from PA \ A. Since A ≤ Z(PA), every coset xA with x ∈ PA \ A
consists entirely of involutions or entirely of elements of order four.

Let Ñ = N/PA ∼= Ω+
10(2).

Lemma 6.1 If u is a 2-central involution from A then R = PA ∩ Qu is of
order 217. In particular, PA is nonabelian.

Proof: Notice that Qu normalizes any singular 25
1 subgroup U such that

u ∈ U ≤ A, and hence Qu normalizes A = A(U). Thus, Qu ≤ N . Notice
further that Qu cannot be fully contained in PA. Indeed, if Qu ≤ PA then
Qu has index two in PA, which implies that Qu must have a center of size
at least 25; clearly a contradiction. Thus, Qu 6≤ PA, which means that
Q̃u is a nontrivial normal subgroup of D̃, where D = N ∩ Cu. Since D̃ is
a maximal parabolic (the stabilizer of a singular vector from the natural
module), we get that Q̃u ∼ 28. Hence |R| = 225−8 = 217. Being a subgroup
of an extraspecial group 21+24, R must be nonabelian. Hence, PA is also
nonabelian.

We will now classify the cosets xA with x ∈ PA \A. It turns out that the
cosets consisting of involutions correspond to singular subgroups 25

1 from A.
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Lemma 6.2 Suppose U ≤ A, U ∈ S5,1. Then

(1) QU ≤ PA and QU 6≤ A; hence, X = QUA \ A is a coset from PA \ A,
consisting of involutions; if x ∈ X then U = [PA, x]; and

(2) K = NM (U) has exactly two orbits on X; one of the orbits is QU \U ,
and it consists of non 2-central involutions (conjugate to q2); the other
orbit is X \QU , and it consists of 2-central involutions.

Proof: Let K = NM (U). Notice that K̃ is a maximal parabolic in Ñ ∼=
Ω+

10(2); namely, it is the stabilizer of a maximal totally singular subspace
U from the natural module A. Clearly, QU is invariant under K. Since
K has two 5-dimensional chief factors in A and since QU/U has order two,
we conclude that QU 6≤ A. If y ∈ A \ U is 2-central then W = U ∩ y⊥
is a singular 24. Since 〈y,QU 〉 ≤ QW (which is abelian), the subgroup QU
centralizes every y and hence QU ≤ PA.

Recall that K = NM (U) is contained in N , because A = A(U). Clearly,
K acts on X = QUA \ A. Notice that [PA, QU ] ≤ QU ∩ A = U and hence
[PA, QU ] = U , because K acts on U irreducibly. This implies that for
x ∈ QU \ U we have [PA, x] = U . Since A = Z(PA), the same must be true
for all x ∈ X. In particular, for all x ∈ X, all elements in xU are conjugate
under PA. Let T = QUA and let T̂ = T/U . Clearly, T̂ is the product of
Â ∼ 25 and Q̂U ∼ 2. Furthermore, K stabilizes both Â and Q̂U , and it acts
transitively on Â#. Thus, K indeed has exactly two orbits on xA = T \A.

We already know from Lemma 4.14 (1) that the involutions from QU \U
are non 2-central. Since those involutions are contained in Qu for u ∈ U#,
they are conjugate to q2. To see that the involutions in X \ QU are 2-
central, consider W ≤ U , W ∼ 24. Let U ′ be the unique singular subgroup
25

2 containing W . Then, by definition of A = A(U), we have U ′ ≤ A. Let
x ∈ QU \ U and s ∈ U ′ \W . Comparing with Corollary 4.11 and with the
definition of singular subgroups 25

2 (following Corollary 4.11), we see that
xs is 2-central. Clearly, xs ∈ X \QU , and so the claim follows.

In particular, this lemma shows that QU and hence also U can be recog-
nized from the coset X = QUA \A. Therefore, such cosets are in a natural
bijection with the set of all singular subgroups 25

1 from A. The latter set
has size 2295, which means that at least 2295 cosets of A in PA \ A consist
of involutions. We claim that the remaining (216 − 1)− 2295 cosets of A in
PA \A consist of elements of order four.

Suppose x ∈ PA is of order four. Then s = x2 is an element of A and
furthermore s = y2 for each y ∈ xA.
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Lemma 6.3 If u is a 2-central involution from A then (PA ∩ Qu)A \ A
contains exactly 120 cosets xA such that u = x2. The group K = N ∩ Cu
transitively permutes those cosets.

Proof: Consider R = PA ∩ Qu. By Lemma 6.1, |R| = 217. Let a be a 2-
central involution from A\u⊥. Then R ≤ Ca, the image of a in Cu/Qu ∼= Co1
is of type 2A, and, comparing with Lemma 2.4, we see that R = Qu ∩ Ca.
Since Qu ≤ N , we have that [Qu, a] ≤ Qu∩A = u⊥. Since F = N ∩Ca∩Cu
involves Ω+

8 (2) (indeed, if we view A as the natural module for Ñ = N/PA ∼=
Ω+

10(2) then a and u span in A a nondegenerate subspace of plus type),
Lemma 2.4 gives us that R̄ ∼ 28 and F induces on R̄ a group Ω+

8 (2) acting
as on a halfspin module. Here the bar indicates the image in P̄A = PA/A.

Define a mapping q : R̄ −→ GF (2) by q(xA) = 0 if x2 = 1, and q(xA) =
1 if x2 = u. Then q is a quadratic form on R̄ and this form is invariant under
K. Since the halfspin module for Ω∗8(2) is triality conjugate to the natural
module and since the latter admits a unique invariant quadratic form, the
claims of the lemma follow.

Since A contains 527 2-central involutions u, Lemma 6.3 accounts for
527 · 120 cosets xA consisting of elements of order four. Since 527 · 120 =
(216−1)−2295, all the cosets of A in PA \A have been accounted for. Thus,
we obtain the following.

Lemma 6.4 The group N has exactly two orbits on the nonidentity ele-
ments of P̄A = PA/A. The smaller orbit has length 2295 and it consists of
cosets containing involutions. The longer orbit has length 527 · 120 and it
consists of cosets containing elements of order four.

In particular, P̄A is irreducible as a module for Ñ = N/PA ∼= Ω+
10(2). We

remark that this module is isomorphic to the halfspin module. Indeed, this
follows from the fact that the stabilizer of maximal totally singular subspace
U ≤ A, U ∈ S5,1, fixes a vector in P̄A.

Additionally, Lemma 6.2 gives us the following.

Corollary 6.5 The group N has exactly two conjugacy classes of involu-
tions in PA\A. One class has length 2295·32, and it consists of non 2-central
involutions conjugate to q2. The other class has length 2295 · (1024 − 32)
and it consists of 2-central involutions.

We will not classify the classes of elements of order four in PA. However,
we will need the following fact.

29



Lemma 6.6 If x ∈ PA is of order four then x ∈ (PA ∩Qu)A where u = x2.

Proof: We have seen above that PA ∩Qu is nonabelian and hence it con-
tains an element y of order four. Clearly, y2 = u. Since N has just one
orbit on cosets from PA/A that consist of elements of order four, there is a
conjugate yn, n ∈ N , of y which lies in the coset xA. Then (yn)2 = x2 = u
and hence, without loss of generality, we may assume that y = yn lies in
xA. Now since y ∈ (PA ∩Qu)A, we have that x ∈ yA ≤ (PA ∩Qu)A.

Next, we need to know when two involutions from PA \A commute. For
an involution x ∈ PA \A let U(x,A) (or simply U(x), if A is clear from the
context) be the singular subgroup 25

1 from A, that corresponds to the coset
xA. Recall that U(x) = [x, PA] (cf. Lemma 6.2 (1)).

Lemma 6.7 Involutions x and y from PA\A commute if and only if U(x)∩
U(y) has size at least eight.

Proof: Notice first of all that [x, y] = [x′, y′] for arbitrary x′ ∈ xA and
y′ ∈ yA. Hence, commutation of x and y depends solely on U ′ = U(x) and
U ′′ = U(y). In particular, we may assume that x ∈ QU ′ and y ∈ QU ′′ .
Secondly, observe that U ′ and U ′′ meet in a subgroup of order 2, 23, or 25.
Since N = NM (A) acts transitively on pairs (U ′, U ′′) with U ′∩U ′′ of a given
size and since PA is nonabelian, it suffices to show that x and y commute
if W = U ′ ∩ U ′′ has size eight. However, this is clear: both x and y are
contained in QW , which is abelian.

This lemma allows us to determine now all maximal elementary abelian
subgroups of PA.

Lemma 6.8 With respect to conjugation by N = NM (A), the group PA has
exactly two classes of maximal elementary abelian subgroups Y :

(1) for W ≤ A, W ∈ S2, Y consists of A and all involutions y ∈ PA \ A
such that W < U(y); and

(2) for V ≤ A, V ∈ S5,2, Y consists of A and all involutions y ∈ PA \ A
such that V ∩ U(y) is of order 24.

Proof: First of all, it follows from Lemma 6.7 that the subgroups Y from
(1) and (2) are elementary abelian. (Indeed, in (1) if U(y1) and U(y2) both
contain W then U(y1) ∩ U(y2) is of order at least 23; the other case is even
easier.)
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Let E now be an elementary abelian subgroup of PA. Let E = {U(x)|x ∈
E \ A}. It follows from Lemma 6.7 that if U and U ′ are distinct elements
of E then U ∩ U ′ has order 23. Let us now show that if U,U ′, U ′′ ∈ E
are pairwise distinct then U ∩ U ′ ∩ U ′′ is of order at least 22. Suppose
not. Then U ∩ U ′ ∩ U ′′ has order two. Observe that by Lemma 4.3 the
subgroup W = 〈U ∩ U ′, U ∩ U ′′, U ′ ∩ U ′′〉 is singular. Furthermore, since
(U ∩ U ′) ∩ (U ∩ U ′′) has order two, we have U = 〈U ∩ U ′, U ∩ U ′′〉, which
means that U ≤ W . Similarly, U ′, U ′′ ≤ W ; clearly, a contradiction, since
U , U ′ and U ′′ are maximal singular. Thus, indeed, U ∩ U ′ ∩ U ′′ has order
at least 22.

Fix U ∈ E and let T = {U ∩ U ′|U ′ ∈ E , U ′ 6= U}. This is a set of
subgroups 23 from U , such that any two of them meet in a subgroup 22.
We claim that one of the following two possibilities holds: (a) there is a
subgroup W ≤ U of order four such that every T ∈ T contains W ; or (b)
there is a subgroup W ≤ U of order 16, such that every T ∈ T is contained
in W . Let T1, T2 be distinct elements from T , and let W1 = T1 ∩ T2 and
W2 = 〈T1, T2〉. Then clearly W1 is of order four and W2 is of order 16. If
every T ∈ T is contained in W2 then we have case (b) with W = W2. So
suppose T3 ∈ T and T3 6≤W2. Observe that T3∩W2 has order four and hence
T3 ∩W2 = T3 ∩ T1 = T3 ∩ T2 = W1. Finally, consider an arbitrary T ∈ T .
If T 6≥ W1 then T ∩ T1 6= T ∩ T2 and hence T = 〈T ∩ T1, T ∩ T2〉 ≤ W2.
However, this means that T ∩ T3 = T3 ∩ W2 = W1, that is, T ≥ W1, a
contradiction. We proved that case (a) holds with W = W1.

We can now complete the proof of the lemma. If T satisfies the condition
in (a) then E is contained in the subgroup from (1) defined by W . If, on
the other hand, T satisfies the condition from (b) then E is contained in the
subgroup from (2), where V is defined as the unique singular 25

2 containing
W . Indeed, every U ′ from E meets V in a subgroup of size at least eight.
Since U ′ and V are nonconjugate maximal totally singular subgroups from
A, we must have that V ∩ U ′ has size 16.

We will use the following notation. For an ark A and a singular W ≤ A,
W ∈ S2, let Ab2(A,W ) (or simply, Ab2(W )) be the maximal elementary
abelian subgroup of PA defined by W as in (1). Similarly, if V ≤ A and V ∈
S5,2 then let Ab5(A, V ) (or just Ab5(V )) denote the maximal elementary
abelian subgroup defined by V as in (2). Notice that |Ab2(W )| = 214 and
|Ab5(V )| = 215.

Recall that N = NM (A) and let P̄A = PA/A.

Lemma 6.9 Suppose W,V ≤ A with W ∈ S2 and V ∈ S5,2. Let Y =
Ab2(W ) and Y ′ = Ab5(V ). The following hold:

31



(1) NN (W ) induces on Ȳ ∼ 24 the group L4(2); and

(2) NN (V ) induces on Ȳ ′ ∼ 25 the group L5(2).

Proof: The involutions ȳ ∈ Ȳ bijectively correspond to the 25
1 subgroups

U in A, that contain W . Since W⊥/W is a 6-dimensional orthogonal space
of plus type, NN (W ) induces on Ȳ the group Ω+

6 (2) ∼= L4(2). Similarly, the
involutions in ȳ′ ∈ Ȳ ′ bijectively correspond to index two subgroups in V .
So NN (V ) induces on Ȳ ′ the group L5(2).

Lemma 6.10 Suppose B ≤ PA is elementary abelian and B̄ ∼ 23. Then
there exist unique W,V ≤ A with W ∈ S2 and V ∈ S5,2, such that Ab2(W )
and Ab5(V ) contain B.

Proof: Let b1, b2, b3 ∈ B and B̄ = 〈b̄1, b̄2, b̄3〉. Then W = U(b1) ∩ U(b2) ∩
U(b3) and V is the unique singular 25

2 in A containing (U(b1)∩U(b2))(U(b1)∩
U(b3)) ∼ 24.

We complete this section with a different construction of the maximal
elementary abelian subgroups Ab5(A, V ). Suppose V is a singular subgroup
25

2 and let A1, A2 and A3 be the three arks containing V (cf. Lemma 5.10).
Furthermore, let Pi = PAi for all i.

Lemma 6.11 Let {i, j, k} = {1, 2, 3} and R = AiAj. Then the following
hold:

(1) the subgroups Ai and Aj commute elementwise and Ai ∩ Aj = V ; in
particular, R ∼ 215; furthermore, R = Ab5(Ai, V ) = Ab5(Aj , V );

(2) Pi ∩ Pj = R; in particular, R is maximal abelian;

(3) R contains Ak; in particular, R = AiAk = AjAk.

Proof: If a ∈ Ai and b ∈ Aj then a and b lie in QW for some subgroup
W ∼= 23 of V . Since QW is abelian, we have that a and b commute. In
particular, Aj ≤ Pi and hence also R ≤ Pi. The stabilizer K of V in
NM (Ai) involves L5(2) acting irreducibly on both V and Ai/V (see Lemma
5.1). Since the stabilizer of Aj in K is of index at most two, we obtain that
Ai ∩Aj = V . If y ∈ Aj \ V then U(y) contains an index two subgroup from
V . Hence Aj ≤ Ab5(Ai, V ), proving (1).

For (2), let N = NM (Aj), K = NN (V ) and S = Pi ∩ N . Since K acts
on {Ai, Ak}, the index of K0 = NM (Ai) ∩ N in K is at most two. Notice
that the image of K in N/Pj ∼= Ω+

10(2) is a maximal parabolic 210.L5(2)
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with an irreducible action of L5(2) on the normal 210. This means that S,
being normal in K0, is either contained in Pj and so S = Pi ∩ Pj , or R has
index 210 in S. In its turn, S has index at most two in Pi. Thus, in the
first case Pi ∩ Pj has index two in Pi, which is clearly impossible. In the
second case, Pi ∩ Pj has order 215 or 216, implying that R has index one or
two in Pi ∩Pj . Suppose R 6= Pi ∩Pj . Since R is in the center of Pi ∩Pj and
since R is a maximal elementary abelian subgroup by (1), all elements in
(Pi ∩ Pj) \R are of order four and they all square to the same involution in
Ai ∩Aj = V . Since K0 involves L5(2) acting transitively on the involutions
from V , we obtain a contradiction, proving that R = Pi ∩ Pj . This shows
that R is self-centralized, which means that R is maximal abelian. So (2) is
proven.

Since Ak commutes with both Ai and Aj , it is contained in CM (R) = R.

In particular, this lemma shows that the subgroup Ab5(A, V ) depends,
in fact, only on V . So we will use the notation Ab5(V ).

7 Classes of involutions, II

In this section z is a 2-central involution in M , the Monster, Z = 〈z〉,
C = Cz, and Q = Qz. We classify conjugacy classes of involution in C and
determine the fusion of these classes in M .

Let C̄ = C/Z. If x 6= z is an involution from C then c̄ is again an
involution. Notice that the group C̄ satisfies the conditions (H1)–(H3) from
Section 2. The results from that section tell us that C̄ has exactly eight
classes of involutions. If x̄ is an involution then x is either an involution
or an element of order four, having the property that x2 = z. Suppose x
is an involution. Then y = xz is also an involution, and either x and y
are conjugate in C, or they are not. As a result, each conjugacy class of
involutions from C̄ leads to zero, one, or two conjugacy classes of involutions
in C. We now have to decide which case takes place for each of the eight
classes of involutions from C̄.

The three classes contained in Q̄, namely, 2e2, 2e3 and 2e4, were dis-
cussed in Lemma 4.4. There we proved that 2e3 produces a class of elements
of order four, while each of 2e2 and 2e4 leads to a class of involutions. We
denoted by q2 and q4 representatives of those classes and noted that q4 is
2-central (i.e., conjugate to z) and q2 is non 2-central. Thus, in this section
we only need to discuss the classes 2ai, 2b and 2c.

Let q = q4, D = C ∩Cq and R = Q∩Qq ∼ 21+23.(211 : M24). According
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to Lemma 4.5, Q ∩Qq has order 213 and hence (C ∩Qq)(Cq ∩Q) = O2(D).
That is, the subgroup C ∩ Qq maps in C̃ = C/Q ∼= Co1 onto the diagonal
subgroup 211. Since the latter contains representatives of the conjugacy
classes 2A and 2C from Co1, we may be able to find elements y with ȳ in
the classes 2a1, 2a2, 2a3 and 2c by looking at C ∩Qq.

If x is an involution in C ∩ Qq and x 6∈ 〈z, q〉 then 〈z, x〉 maps onto a
size four subgroup of Qq/〈q〉. Under the identification of the latter with
Λ̂ = Λ/2Λ, the Leech lattice modulo two, the images of z, x, and xz belong
to Λ̂2 ∪ Λ̂4, because these elements are involutions (cf. Lemma 4.4).

To proceed, we will need some information about the subgroups of order
four in Λ̂. According to [ATLAS], Co1 has exactly fifteen orbits on such
subgroups. Representatives of nine of those orbits contain elements from
Λ̂3. The remaining six orbits are shown in Table 1. Let Û ∼ 22 be a
representative of one of these orbits. Then the second column contains the
types of the three involutions from Û . For example, if the entry there is 244
then one involution lies in Λ̂2, while two involutions lie in Λ̂4. The third
column shows the structure of the elementwise stabilizer (centralizer) of Û
in Co1. The fourth column shows the group induced on Û by the setwise
stabilizer (normalizer) of Û in Co1. Notice that [ATLAS] shows a different
structure (namely, [212].L3(2)) of the elementwise stabilizer of Û for Û from
orbit 6. That structure is incorrect.

Orbit Type Stabilizer Induced group
1 222 U6(2) S3
2 224 210 : AutM22 2
3 244 21+8A8 2
4 444 24+12.3 · S6 S3
5 444 AutM12 S3
6 444 [211].L3(2) S3

Table 1: (Λ̂2 ∪ Λ̂4)-pure subgroups 22 in Λ̂

Lemma 7.1 Suppose x ∈ C. Then the following hold:

(1) if x̄ is of type 2a1 then x and xz are involutions; one of them is non
2-central (fused with q2) and the other one is 2-central;

(2) if x̄ is of type 2a3 then x and xz are 2-central involutions and they are
conjugate in C;
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(3) if x̄ is of type 2c then x and xz are 2-central involutions and they are
conjugate in C.

Proof: Let x be an involution from C ∩Qq \ 〈z, q〉. Let U = 〈z, x〉 and Û
be the image of U in Λ̂. Notice that z maps onto an element from Λ̂4 (cf.
Lemma 4.4). Thus, Û cannot be in orbit 1 from Table 1. If x ∈ Q and x is
2-central then 〈z, q, x〉 is singular. Comparing with with Lemma 4.8, we see
that in this case Û is in orbit 4. If x ∈ Q and x is non 2-central, then xz is
also non 2-central and hence Û is of type 224, that is, Û is in orbit 2. Thus,
orbits 2 and 4 correspond to x’s from Q.

Suppose next that we choose x so that Û is in orbit 3. Then, according
to Table 1 and Lemma 4.4, one of the elements x and xz is 2-central and the
other one is non 2-central. In particular, x 6∈ Q. Let A be an ark containing
z and q and let a ∈ A be a 2-central involution contained in q⊥, but not
in z⊥. Then az is non 2-central and hence 〈z, a〉 is conjugate to U in Cq.
Furthermore, since the normalizer of Û in Co1 permutes the two elements
from Λ̂4 ∩ Û and since U is contained in the extraspecial group Qq, we get
that 〈z, a〉 is conjugate to U in C ∩ Cq. It follows from Lemma 5.8 that
C ∩ Ca involves Ω+

8 (2). Comparing with Lemmas 2.10 and 2.11, we obtain
that ā (and hence also x̄) is of type 2a1.

Next choose x so that Û is in orbit 5. Then C ∩ Cx involves M12,
whose order is divisible by 11. Comparing with Lemmas 2.10 and 2.11, we
immediately obtain that x̄ is of type 2c.

Finally, let x be such that Û is in orbit 6. In this case both x and xz
are 2-central, which rules out the possibility that x̄ is of type 2a1. It follows
from Table 1 that 238 divides |C ∩Cx|. Comparing again with Lemmas 2.10
and 2.11, we see that x̄ can only be of type 2a3.

In fact, we have proved a bit more.

Lemma 7.2 Suppose x is an involution in C. Then there exists a 2-central
involution q 6∈ 〈z, x〉, such that z, x ∈ Qq, if and only if either x ∈ Q or x̄ is
of type 2a1, 2a3, or 2c. Furthermore, if such q’s exist then C ∩Cx permutes
them transitively.

Proof: Only the transitivity claim requires proof. Let q and q′ be 2-central
involutions such that z, x ∈ Qq∩Qq′ . Since q, q′ ∈ Q, there exists c ∈ C such
that (q′)c = q. Then xc is of the same type as x̄. It follows from the above
that 〈z, xc〉 and U are conjugate in Cq and moreover there is an element
s ∈ C ∩ Cq such that (xc)s = x. Clearly, cs ∈ C ∩ Cx and (q′)cs = q.
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Our next goal is to show that the classes 2a2 and 2b do not lead to
involutions. We start with 2a2.

Lemma 7.3 If x ∈ C and x̄ is of type 2a2 then x is of order four.

Proof: Let R be the full preimage in Q of CQ̄(x̄) and let F = 〈R, x〉. Then
|R| = 217 and |F | = 218. The coset F\R consists entirely of elements y with ȳ
of type 2ai for some i. According to Lemma 7.1, y is an involution if i = 1 or
3. Suppose x is also an involution. Then all elements in F \R are involutions.
This implies that CR(x) contains no elements of order four, implying that
CR(x) is elementary abelian. Since CR(x) ≤ Q and |CR(x)| ≥ 216, we get a
contradiction.

It remains to consider the class 2b.

Lemma 7.4 If x ∈ C and x̄ is of type 2b then x is of order four.

Proof: Suppose by contradiction that x is an involution. We first show
that x and xz are not conjugate in C. Indeed, according to Lemma 2.11,
C ∩ Cx involves G2(4). Let D be the Sylow 13-subgroup from C ∩ Cx.
Clearly, if x and xz are conjugate in C then they are also conjugate in
NC(D). Let C̃ = C/Q ∼= Co1. According to [ATLAS], CC̃(D̃) ∼= 13 × A4.
Notice also that CQ(D) = Z. This means that F = CC(D) is an extension
of Z by a group 13 × A4. Now the fact that x is an involution yields that
F ∼= 2× 13× A4. (Here Z is the direct factor of order two.) Consequently,
one of x and xz is contained in the commutator subgroup of F and the other
is not. Thus, x and xz cannot be conjugate in NC(D), and hence they are
not conjugate in C.

Choose an involution a ∈ Q such that ā 6∈ CQ̄(x̄). Then for b = [a, x]
we have that b̄ ∈ CQ̄(x̄). It follows from Lemma 2.5 that b is a 2-central
involution. In particular, x commutes with b and, furthermore, x and xb
are conjugate in 〈a, x〉 ≤ Cb. Shifting now our attention to Cb we see that
the image of x in Cb/〈b〉 cannot be of type 2a1 or 2b because x and xb are
conjugate in Cb (cf. Lemma 7.1 for 2a1). Also, by Lemma 7.3, it cannot
be of type 2a2. Thus, the image of x in Cb/〈b〉 must be of type 2a3 or 2c.
Lemma 7.1 forces now that x is 2-central.

Clearly, the image of z in Cx/〈x〉 must also be of type 2b. Observe that
Q ∩ Cx is of index at most four in O2(C ∩ Cx). Symmetrically, Qx ∩ C is
of index at most four in O2(C ∩ Cx). This shows that Q ∩Qx 6= 1, that is,
there exists a 2-central involution q such that z, x ∈ Qq. Now Lemma 7.2
provides a contradiction.

We summarize all the above as follows.
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Proposition 7.5 The group C has exactly seven conjugacy classes of invo-
lutions, three in Q and four in C \Q.

One important corollary of Lemmas 7.1, 7.3 and 7.4 is that the group
M contains exactly two classes of involutions. Indeed, we have shown that
every involution is either 2-central and hence fused with z, or non 2-central,
fused with q2. We record this as the following

Proposition 7.6 Every involution in M is either conjugate with z or with
q2.

A second important corollary is that we now know all pairs of commuting
2-central involutions in M .

Lemma 7.7 Let a and b be two commuting 2-central involutions, a 6= b,
and let R = Qa∩Qb. Let bar indicate the image in Ca/〈a〉. Then one of the
following is true:

(1) b̄ is of type 2e4, i.e., b ∈ Qa and 〈a, b〉 is singular;

(2) b̄ is of type 2a1; moreover, 〈a, b〉 is contained in a unique ark A and
R = a⊥ ∩ b⊥; in particular, A = 〈a, b〉R;

(3) b̄ is of type 2a3 and R ∼ 25; R contains a singular 24 subgroup W and
every involution in R \W is non 2-central; subgroups Wa = W 〈a〉 and
Wb = W 〈b〉 are singular 25

1; we have that R〈a〉 = QWa and R〈b〉 =
QWb

; finally, QW = R〈a, b〉; or

(4) b̄ is of type 2c, R ∼= 2, and the involution in R is 2-central.

Proof: According to Lemmas 4.4, 7.1, 7.3 and 7.4, b̄ is of type 2e4, 2a1,
2a3 or 2c in C̄a. By Lemma 7.2 Ca ∩ Cb is transitive on the (nonempty)
set of 2-central involutions q 6∈ 〈a, b〉 such that a and b are in Qq. Dividing
|Ca∩Cb| by |Ca∩Cb∩Cq| (the latter can be found using Table 1) we obtain
that the number of involutions q is equal to 7084, 135, 15 and 1 depending
on whether the type of b̄ is 2e4, 2a1, 2a3 or 2c. We now turn to the concrete
cases.

If b̄ is of type 2e4 then, clearly, (1) holds. Suppose b̄ is of type 2a1. Then
a and b are contained in an ark A. Clearly, a⊥ ∩ b⊥ ∼ 28 lies in R. On
the other hand, R is abelian and invariant under the action of Ca ∩ Cb. It
follows from Lemma 2.4 that R cannot have size more than 28 and hence it
coincides with a⊥ ∩ b⊥. Now all claims of (2) follow.
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Consider next the case where b̄ is of type 2a3. Choose a singular 24

subgroup W and let A and B be two singular 25
1 containing W . Let a′ ∈

A \W and b′ ∈ B \W . If the image of b′ is of type 2a1 in Ca′/〈a′〉 then
both A and B are contained in the unique ark containing a′ and b′. This
is impossible because in an ark every singular 24 is contained in a unique
singular 25

1. Also the image of b′ cannot be of type 2c because all the
involutions q ∈W have the property that a′, b′ ∈ Qq. Hence the image of b′

is of type 2a3 and without loss of generality we may assume that a′ = a and
b′ = b. Clearly, W ≤ R and W contains all 15 2-central involutions from R.
Hence all involutions in R \W are non 2-central. In particular, if c ∈ R \W
and w ∈ W then cw is non 2-central. According to Lemmas 7.1, 7.3 and
7.4, this means that c ∈ Qw. That is, R ≤ QW . Since also a, b ∈ QW , the
claim (3) follows from Lemmas 4.10 and 4.13.

Finally, suppose that b̄ is of type 2c. Let q be the only 2-central involution
in R. Then it follows from Lemma 2.3 that [R : 〈q〉] ≤ 4. Comparing with
Lemmas 2.6 and 2.11 we see that R = 〈q〉.

8 More on PA

In this section A is an arc. For an involution x ∈ PA \ A let W (x,A) (or
simply W (x)) be the subgroup of A generated by all 2-central involutions
in a ∈ A such that x ∈ Qa. Recall from Section 6 that U(x,A) (or simply
U(x)) is the singular subgroup 25

1 in A that corresponds to the coset xA.

Lemma 8.1 We have W (x) ≤ U(x). If x is non 2-central then W (x) =
U(x); otherwise, W (x) is an index two subgroup in U(x).

Proof: We first notice that W (x) is a singular subgroup. Indeed, suppose
a, b ∈ A are 2-central involutions such that x ∈ Qa ∩ Qb. If a and b are
not perpendicular then (a, b) is as in Lemma 7.7 (2). However, in this case
Qa ∩ Qb ≤ A, which means that x ∈ A, a contradiction. Hence W (x) is
singular.

If x is non 2-central then x ∈ QU , where U = U(x). Clearly, this means
that U ≤ W (x). Since U is maximal singular, we obtain that W (x) = U .
Now suppose x is 2-central. Then for some a ∈ A, we have that t = xa is
non 2-central. Let U = U(x) = U(t) and W = U ∩ a⊥. Clearly, the index
of W in U is at most two. If w ∈ W then a ∈ Qw and t ∈ Qw. Hence
also x ∈ Qw, i.e., W ≤W (x). On the other hand, W (x)〈x〉 is singular, and
hence |W (x)| ≤ 24. Thus, W (x) = W .

The next result adds to Lemma 6.1.
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Lemma 8.2 Suppose u is a 2-central involution in A and x is an involution
in PA \A. Then x ∈ (PA ∩Qu)A if and only if u ∈ U(x).

Proof: Suppose first that x ∈ (PA ∩ Qu)A, that is, for some a ∈ A the
element t = xa is in Qu. By Lemma 8.1, this means that u ∈ U(t) = U(x).
Reversely, suppose u ∈ U(x). Let a ∈ A be such that t = xa is non 2-
central. Since u ∈ U(x) = U(t), Lemma 8.1 implies that t ∈ Qu. Therefore,
x ∈ (PA ∩Qu)A.

9 Heart of the proof

Suppose t ∈ M , where either t = 1, or t is a non 2-central involution. We
call a 2-central involution u marked if t ∈ Qu. In this section we are going
to prove the following result.

Proposition 9.1 Let Q be a 2-subgroup of M such that CM (Q) = Z(Q)
and t ∈ Z(Q). Let E = Ω1Z(Q). Let J be the set of all those marked
involutions u ∈ E for which |E ∩Qu| reaches maximum. Then either 〈J 〉 is
singular, or E is an ark.

The proposition will be proven in a sequence of lemmas. We first show
that J is nonempty.

Lemma 9.2 There exists a marked 2-central involution in E. In particular,
J is nonempty.

Proof: If t = 1 then E contains a 2-central involution, since if T is a Sylow
2-subgroup of M containing Q then Z(T ) ≤ Z(Q). So suppose now that
t 6= 1. Suppose T0 is a Sylow 2-subgroup of CM (t) containing Q and T is a
Sylow 2-subgroup of M containing T0. Suppose z is the 2-central involution
in the center of T . Then z ∈ CM (Q) and hence z ∈ E. Also, since Cz
contains a full Sylow 2-subgroup of CM (t), it follows that t̄ cannot be of
type 2a1 in C̄z = Cz/〈z〉. Hence t ∈ Qz, i.e., z is marked.

Thus, J is nonempty. We need to show that either 〈J 〉 is singular, or E
is an ark. Notice that in both cases J is fully contained in an ark. Inside an
ark, every pair of 2-central involutions (in particular, two involutions from
J ) is either as in case (1), or as in the case (2) of Lemma 7.7. Therefore,
we first show that the other two cases are impossible. Fix a, b ∈ J , a 6= b.
Let U = 〈a, b〉 and R = Qa ∩ Qb. Notice that t ∈ R because a and b are
marked. Let Q̄a = Qa/〈a〉.
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Lemma 9.3 The pair (a, b) is not in case (4) of Lemma 7.7.

Proof: Indeed, suppose the pair (a, b) is in case (4). Since the only non-
trivial element q from R is 2-central, we have t = 1. In particular, q is
marked. According to Lemma 7.7, b̄ is of type 2c, which means that, with
respect to the identification of Qq/〈q〉 with Λ̂, we have that Û is in orbit
5 from Table 1. In particular, the image of Ca ∩ Cb in Cq/Qq ∼= Co1 is
isomorphic to M12 or AutM12. We obtain that Ca ∩Qb (which is normal in
Ca ∩ Cb!) is contained in Qq. Similarly, Cb ∩Qa ≤ Qq.

We claim that q ∈ E. Indeed, Q centralizes a and b, hence also q, as it is
the only nontrivial element in R = Qa∩Qb. Therefore, q ∈ CM (Q) = Z(Q),
that is, q ∈ E, as claimed. On the other hand, we have E ∩Qb ≤ Ca ∩Qb ≤
Qq. This means that E ∩ Qb ≤ E ∩ Qq, hence, by maximality of |E ∩ Qb|,
we have q ∈ J and E ∩ Qb = E ∩ Qq. Symmetrically, E ∩ Qa = E ∩ Qq.
However, as b 6∈ Qa, we have E ∩Qb 6= E ∩Qa; a contradiction.

The second case, where (a, b) is as in Lemma 7.7 (3), is harder and
requires several lemmas. Let us start with some additional notation. By
Lemma 7.7, R = Qa ∩ Qb ∼= 25 and it contains a singular 24 subgroup W .
All elements in R \W are non 2-central. Furthermore, Wa = 〈a,W 〉 and
Wb = 〈b,W 〉 are singular subgroups 25

1. By Lemma 5.10, Wa is contained
in a unique ark Aa = A(Wa). Similarly, let Ab = A(Wb) be the only ark
containing Wb. We have Aa 6= Ab, since (a, b) is not as in case (1) or (2) of
Lemma 7.7. Let also Pa = PAa and Pb = PAb .

By Lemma 4.12, W is contained in a unique singular 25
2 subgroup T .

By the definition of an ark, T ≤ Aa and T ≤ Ab. It follows from Lemma
6.11 that Aa ∩ Ab = T and that S = Pa ∩ Pb coincides with AaAb and is
elementary abelian. (It coincides with Ab5(T ).) In particular, a ∈ Pb and
b ∈ Pa. Notice that W = T ∩Wa = T ∩Wb. Also W = W (b, Aa) < U(b, Aa)
(cf. Lemma 8.1) and similarly W = W (a,Ab) < U(a,Ab).

First of all, we note the following.

Lemma 9.4 For x, y ∈ {a, b}, x 6= y, we have that Wx = U(y,Ax). Also,
1 6= CWx(Q) ≤ E and all involutions in Wx are marked.

Proof: By Lemma 8.1, W = W (y,Ax) < U(y,Ax). Since W is contained
in Ax in a unique singular 25

1, it follows that Wx = U(y,Ax). The next
claim follows from the fact that E = CM (Q). Since t ∈ R (because a and
b are marked) and since R ≤ QW by Lemma 7.7 (3), we conclude that
t ∈ QW . Taking now in the account that also t ∈ Qx and using Lemma 4.3,
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we obtain that t ∈ QWx , because Wx = 〈x,W 〉. Thus, every involution in
Wx is marked.

Let Ea = E ∩ Pa and Eb = E ∩ Pb. Since a ∈ Pb and b ∈ Pa, we have
that a ∈ Eb and b ∈ Ea.

Lemma 9.5 We have E∩Qa ≤ Pa and hence E∩Qa ≤ Ea. Symmetrically,
E ∩Qb ≤ Eb.

Proof: Since E ≤ Cb it suffices to show that Cb∩Qa ≤ Pa. Let c ∈ T \W .
Clearly, Aa is the only ark containing a and c. Since b, c ∈ QW and since
Qa ∩QW = QWa has index two in QW we have that bQa = cQa. It follows
from Lemma 7.1 that Cc ∩Qa has order 217, namely, it is the full preimage
in Qa of CQ̄a(c). Since CQ̄a(b) = CQ̄a(c), we obtain that Cb ∩Qa ≤ Cc ∩Qa.
On the other hand, Pa ∩ Qa ≤ Cc and according to Lemma 6.1 the size of
Pa ∩Qa is exactly 217. Therefore, Qa ∩ Cc = Pa ∩Qa ≤ Qa.

Since E ∩Qa is fully contained in Ea, the maximality property of a ∈ J
implies that for every marked 2-central involution s ∈ Ea we have |Ea∩Qs| ≤
|Ea ∩ Qa|. Symmetrically, for every marked 2-central involution s ∈ Eb we
have that |Eb ∩Qs| ≤ |Eb ∩Qb|. Since b 6∈ Qa, it follows that Ea ∩Qa 6= Ea
and similarly Eb ∩Qb 6= Eb.

Our argument depends on how Ea and Eb embed into Pa and Pb, re-
spectively. Since Ea and Eb are elementary abelian we can make use of the
classification from Section 6.

Lemma 9.6 For x ∈ {a, b}, if Ex∩Qx has index more than two in Ex then
ExAx = Ab5(V ) for some singular 25

2 subgroup Vx ≤ Ax, and the index of
Ex ∩Qx in Ex is four.

Proof: We may assume that x = a. Suppose [Ea : Ea ∩ Qa] > 2. Notice
that EaAa is elementary abelian. It follows from Lemma 6.8 that either
EaAa = Ab5(Va) for some singular 25

2 subgroup Va ≤ Aa, or the intersection
F of all U(s), s ∈ Ea\Aa, is nontrivial. Suppose the latter. Since b ∈ Ea\Aa,
we get F ≤ Wa. Therefore Q centralizes some 1 6= e ∈ F , as Q clearly
normalizes F . It follows from Lemma 9.4 that e ∈ E and e is marked. If
s ∈ Ea then e ∈ U(s), which by Lemma 8.2 means that Ea ≤ (Pa ∩Qa)Aa.
The latter group contains Pa ∩ Qa as an index two subgroup. It follows
that [Ea : Ea ∩ Qe] ≤ 2. By the maximality property of a we now have
that [Ea : Ea ∩ Qa] = 2, since Ea 6≤ Qa. This is a contradiction. Thus,
if [Ea : Ea ∩ Qa] > 2 then EaAa = Ab5(Va) for some singular 25

2 subgroup
Va ≤ Aa. Let K = Ab5(Va). Observe that Q acts trivially on Va, since it acts
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trivially on K/Aa. Hence Va ≤ E. Since b ∈ Ea, we have that Va∩Wa ∼ 24.
Let e ∈ Va ∩ Wa. Then e is a marked 2-central involution in E. Using
Lemma 8.2, we see that [K : K ∩Qe] = 4 and hence [Ea : Ea ∩Qe] ≤ 4. By
the maximality of a, we now must conclude that [Ea : Ea ∩Qa] ≤ 4.

Out of the two options given by this lemma, we will first dispose of the
possibility that ExAx = Ab5(Vx) for some singular 25

2 subgroup Vx ≤ Ax.

Lemma 9.7 For x ∈ {a, b}, we have that ExAx/Ax 6∼ 25. In particular,
[Ex : Ex ∩Qx] = 2.

Proof: Suppose by contradiction that K = ExAx = Ab5(Vx) for some
singular 25

2 subgroup Vx ≤ Ax. Then again Q acts trivially on Vx because
it acts trivially on K/Ax. Suppose x 6∈ Vx. If s ∈ Ex ∩ Qx then U(s)
contains x (cf. Lemma 8.2) and also U(s) meets Vx in a subgroup of index
two (because s ∈ K = Ab5(Vx)). Since U(s) is singular, we have that
U(s) ∩ Vx = Vx ∩Qx. This shows that U(s) = 〈x, Vx ∩Qx〉 is unique, which
means that [Ex ∩Qx : Ex ∩Qx ∩ Ax] = 2. However, in that case the index
of Ex ∩ Qx in Ex is at least 16, a contradiction with Lemma 9.6. Thus,
x ∈ Vx. In particular, Vx 6= T . Now let y ∈ {a, b}, y 6= x. Observe that
Vx ∩ Qy ≤ W (y) = W ≤ T . Consequently, Vx ∩ Qy ≤ Vx ∩ T , which gives
us that [Vx : Vx ∩ Qy] ≥ 4. (Here we use that both Vx and T are singular
subgroups 25

2 and hence |Vx ∩ T | ≤ 23.) As Vx ≤ E ∩ Py = Ey, it follows
that [Ey : Ey ∩Qy] ≥ 4. By Lemma 9.6, EyAy = Ab5(Vy) for some singular
25

2 subgroup Vy ≤ Ay. Repeating the above argument with y in place of x,
we obtain that y ∈ Vy and hence Vy 6= T , and also that [Ex : Ex ∩Qx] = 4.

Since U(y,Ax) meets both Vx and T in a subgroup of order 16, we
conclude that that |Vx ∩ T | ≥ 8. Symmetrically, |Vy ∩ T | ≥ 8. As a result,
F = Vx ∩ Vy ∩ T 6= 1. Clearly, Q normalizes F and so we can choose
e ∈ CF (Q). Then e is a marked 2-central involution and e ∈ E. Since
e ∈ Vx, we have that [K : K ∩ Qe] = 4 and therefore [Ex : Ex ∩ Qe] ≥ 4.
Because of the maximality of x, we must have that E ∩Qe = Ex ∩Qe and
that this subgroup has index four in Ex. In particular, E ∩ Qx ≤ Ex and,
symmetrically, E ∩ Qe ≤ Ey. Hence E ∩ Qe ≤ Ex ∩ Ey] ≤ Px ∩ Py = S =
Ab5(T ). This shows that E ∩ Qe is contained in K ∩ S. By Lemma 6.10,
[E ∩Qe : E ∩Qe ∩ Ax] ≤ 4. However, this means that [Ex : E ∩Qe] ≥ 8, a
contradiction.

Thus, we now know that |ExAx/Ax| ≤ 24 and [Ex : Ex ∩ Qx] = 2
for x = a and b. We will obtain the final contradiction by showing that
[Eb : Eb∩Qb] must at the same time be equal to four. However, the proof of
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this claim will be different for the following two cases: (a) |EaAa/Aa| ≤ 4,
and (b) |EaAa/Aa| ≥ 8. We first consider the case (a).

Lemma 9.8 If |EaAa/Aa| ≤ 4 then the index of Eb ∩ Qb in Eb is at least
four.

Proof: By assumption, Ea = 〈Ea ∩ Aa, b, c〉 for some c ∈ Ea. Notice that
since b 6∈ Qa and since [Ea : Ea ∩ Qa] = 2, we can choose c ∈ Qa. Since b
and c commute, Lemma 6.7 tells us that U(b)∩U(c) has size at least eight.
Since b is 2-central, W (b) = W is of index two in U(b). Depending on the
type of c, the subgroup W (c) either coincides with U(c) or is an index two
subgroup in it. In any case, F = W (b) ∩W (c) is nontrivial. In particular,
we can select 1 6= e ∈ CF (Q). This e is a marked 2-central involution and
e ∈ E. Since b, c ∈ Qe, we have [〈Aa, b, c〉 : 〈Aa, b, c〉 ∩Qe] ≤ 2, which gives
us that [Ea : Ea ∩ Qe] ≤ 2. By the maximality of a, we have that e ∈ J
and, furthermore, that E ∩Qe is an index two subgroup in Ex.

Since b, c ∈ Qe and Ea = 〈Ea ∩ Aa, b, c〉, we can choose s ∈ Ea ∩ Aa
such that s 6∈ Qe. Consider the subgroup X = 〈a, s〉 = {1, a, s, as}. Clearly,
X ≤ Eb, because X ≤ E and X ≤ Aa ≤ Pb. We have a 6∈ Qb. Also, both
s and as are not contained in Qe, because a ∈ Qe (the latter holds since
both a and e are in U(b)). We claim that s and as do not belong to Qb. For
that, view Aa ∩ Qb as a subspace of the orthogonal space Aa (cf. Lemma
5.7). All singular vectors in Aa ∩ Qb form the subspace W . This implies
that W is in the radical of Aa ∩ Qb. So if s or as is in Qb then it must be
also perpendicular to e, because e ∈W .

We have shown that X trivially intersects Qb. Since X ≤ Eb, this means
that [Eb : Eb ∩Qb] ≥ 4.

This lemma and Lemma 9.7 rule out case (a). So it remains to deal with
case (b), i.e., we now assume that |EaAa/Aa| ≥ 8. We borrow ideas for our
argument from the proof of Lemma 9.7.

First a preparatory lemma.

Lemma 9.9 There is a subgroup D ≤ Ea such that

(1) |DAa/Aa| ≥ 23 and b ∈ D;

(2) D is contained in Ab5(V ) for some singular 25
2 subgroup V ≤ Aa;

(3) for every 2-central involution e ∈ Aa we have that D 6≤ Qe.
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Proof: We consider two cases: Either (a) EaAa = Ab2(F ) for some singu-
lar 22 subgroup F ≤ Aa, or (b) EaAa 6= Ab2(F ) for all such F . Suppose we
are in case (a), that is, EaAa = Ab2(F ) for some F . Let P̄a = Pa/Aa. Notice
that since b ∈ Ea we have that F ≤ U(b) = Wa. Let F = {1, f1, f2, f3}.
Lemma 9.4 yields that each fi is marked. Suppose Ea ≤ Qfi for some i.
The set of all such fi together with 1 forms a Q-invariant subspace F0 of
F . Hence Q centralizes some fi with Ea ≤ Qfi ; a contradiction to the max-
imality of a. Thus, Ea 6≤ Qfi for all i. In particular, there exist x1, x2 and
x3 ∈ Ea such that xi 6∈ Qfi . Moreover, we can choose x1 and x2 equal,
because no group can be fully covered by two proper subgroups. Let D be
the full preimage in Ea of a subgroup 23 from Ēa that contains the three
elements x̄1 = x̄2, x̄3, and b̄. Clearly, (1) is satisfied for this D. Also, (2)
follows from Lemma 6.10. In case (b) we simply take D = Ea. Then (1) is
trivially satisfied, while (2) follows from Lemmas 6.8 and 6.10.

It remains to show that (3) holds in both cases. If e ∈ Aa is a 2-central
involution such that D ≤ Qe then e lies in the intersection X of all W (s),
s ∈ D \ Aa. Reversely, if e ∈ X then e is 2-central and D ≤ Qe. Suppose
X 6= 1. In case (a) we have that F is the intersection of all U(s), s ∈ D\Aa.
Therefore, X ≤ F . However, no fi can be in X because the corresponding
xi is in D, a contradiction. Suppose now we are in case (b). Since b ∈ D,
we have that X ≤ W (b) = W , and Lemma 9.4 implies that all e ∈ X
are marked. Finally, since Q centralizes D, it normalizes X, and hence it
centralizes some 1 6= e ∈ X. That e is a marked 2-central involution in Ea
with the property that D = Ea ≤ Qe. However, we know that no such e
exists.

Choose D as in this lemma and let V ≤ Aa be the singular subgroup 25
2

such that D ≤ Ab5(V ). In view of Lemma 6.10 this V is unique. Since V is
unique, Q normalizes V .

Lemma 9.10 The group Q centralizes V and, in particular, V ≤ E.

Proof: If s ∈ D\Aa then we set B(s) = V ∩U(s). If s ∈ (D∩Aa)\V then
we set B(s) = V ∩s⊥. In both cases B(s) is a hyperplane of V . Let F be the
intersection of subgroups B(s) for all s ∈ D \ V . Since Q normalizes every
B(s), it normalizes F and acts trivially on V/F . That is, [V,Q] ≤ F . If
F = 1 then there is nothing else to prove, so we assume that F 6= 1. Notice
that since |DAa/Aa| ≥ 23 and since F ≤ U(s) for all s ∈ D \ Aa, the size
of F is at most four. Notice also that every e ∈ F is perpendicular to all of
D ∩Aa. Finally, since F ≤ U(s) for all s ∈ D \Aa, we have that D ≤ AaQe
for every e ∈ F , e 6= 1. Therefore, [D : D ∩Qe] = 2 for every such e.

44



Set X = D ∩ QF and for a hyperplane H of F set Y = Y (H) to be
D ∩QH . (Here if H = 1 then QH is the entire group M and Y = D.) Since
[D : D ∩ Qe] = 2 for every e ∈ F , we have |D/Y | ≤ 2, |Y/X| ≤ 2, and so
|XAa/Aa| ≥ 2.

We claim that Y is never equal to X. Indeed, suppose Y ≤ QF . If
|F | = 2, we have Y = D and so D ≤ QF , a contradiction with the definition
of D. Thus |F | = 4. Pick x ∈ D \ Y . Since W (x) is of index at most two in
U(x) and since F ≤ U(x), there exists 1 6= e ∈ F with e ∈ W (x). For that
e, we have D = 〈Y, x〉 ≤ Qe, since Y = X ≤ Qe. This is a contradiction,
proving that Y 6= X.

Thus, D ∩ Aa < X < Y , and there exist s1, s2 ∈ Y \ X with s1Aa 6=
s2Aa. Then U(s1) 6= U(s2), and since every singular subgroup 24 in Aa
lies in a unique singular 25

2, we also get B(s1) 6= B(s2). Since si 6∈ QF but
F ≤ U(si), the involution si is 2-central and U(si) = FW (si). Notice that
F ∩W (si) = H for i = 1, 2. As Q centralies si, Q normalizes W (si), F and
H. Observe that [F,Q] ≤ H and also [W (si), Q] ≤ F ∩W (si) = H. Thus,
[U(si), Q] ≤ H. Finally, since V = U(s1)U(s2), we have [V,Q] ≤ H. As H
was an arbitrary hyperplane of F we conclude [V,Q] = 1 and V ≤ E.

The next question is whether V = T or not.

Lemma 9.11 We have V 6= T . In particular, [Eb : Eb ∩Qb] ≥ 4.

Proof: Since a 6∈ T , it suffices to show that a ∈ V . Suppose a 6∈ V .
If s ∈ Ab5(V ) ∩ Qa then U(s) = 〈a, V ∩ U(s)〉. Since U(s) is singular,
V ∩ U(s) must coincide with V ∩ a⊥. Hence U(s) is unique. This shows
that Ab5(V ) ∩Qa ∩ Aa has index at most two in Ab5(V ) ∩Qa. Therefore,
also |(D ∩ Qa)Aa/Aa| ≤ 2. Since DAa/Aa has size at least eight, we must
have that [D : D ∩ Qa] ≥ 4, yielding [Ea : Ea ∩ Qa] ≥ 4, which is a
contradition with Lemma 9.7. Hence V 6= T . Finally, notice that V ≤ Eb
and V ∩Qb ≤ V ∩W (b) ≤ V ∩ T . Since [V : V ∩ T ] ≥ 4, we conclude that
[Eb : Eb ∩Qb] ≥ 4.

Manifestly, the conclusion of this lemma contradicts Lemma 9.7, ruling
out case (2) and thus showing that b̄ cannot be of type 2a3 in C̄a = Ca/〈a〉.

Corollary 9.12 The pair (a, b) is not in case (3) of Lemma 7.7.

According to Lemma 9.3 and Corollary 9.12, any two involutions a, b ∈ J
are either perpendicular, or (a, b) is as in case (2) of Lemma 7.7. If any two
involutions in J are perpendicular then the subgroup generated by J is
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singular. Thus, it order to complete the proof of Proposition 9.1 all we need
is to prove the following lemma.

Lemma 9.13 If the pair (a, b) is as in case (2) of Lemma 7.7 then E is an
ark and 〈J 〉 = E ∩ t⊥.

Proof: In this case b̄ is of type 2a1 in C̄a = Ca/〈a〉. By Lemma 7.7,
A = 〈a, b〉(Qa∩Qb) is the unique ark containing a and b. Let P = PA. Notice
that Qa∩Cb has order 217 by Lemma 7.1 and that P ∩Qa also has size 217 by
Lemma 6.1. Since P ≤ Cb, we conclude that Qa∩Cb = P∩Qa. In particular,
E ∩Qa ≤ P . Symmetrically, E ∩Qb ≤ P . Let D = (E ∩Qa)(E ∩Qb). Then
D ≤ P and E∩Qx = D∩Qx for x ∈ {a, b}. The maximality of x now shows
that |D ∩ Qe| ≤ |D ∩ Qx| for all marked 2-central involutions from E. Let
y ∈ {a, b}, y 6= x. Since y 6∈ Qx, we have that E ∩ A ∩ Qx is a hyperplane
of E ∩ A. This implies that |E ∩ A ∩ Qx| = |E ∩ A ∩ Qy| and hence also
|(E ∩ Qx)A/A| = |(E ∩ Qy)A/A|. We will denote this latter number by r.
We intend to prove that r = 1, that is, E ∩Qx ≤ A.

If s ∈ P \A then U(s) = U(s,A) is singular, and hence it cannot contain
both x and y. This means that (E ∩ Qx)A/A and (E ∩ Qy)A/A meet
trivially in P/A. Therefore, |DA/A| = r2. Furthermore, this shows that
[D : D ∩ Qx] = [DA/A : (D ∩ Qx)A/A] · [D ∩ A : D ∩ Qx ∩ A] = 2r. Since
D is abelian we have that |DA/A| ≤ 25 and hence r ≤ 4.

Suppose first that r = 2 and let F be the intersection of all U(s), s ∈
D \A. Then F is a singular subgroup 23. Note that t ∈ Qa ∩Qb ≤ A. This
means that t⊥ is a hyperplane in A and hence F0 = F ∩ t⊥ is nontrivial.
Clearly, Q normalizes F0 so we can select 1 6= e ∈ CF0(Q). This e is a marked
2-central involution in E. Since e ∈ F we have that [D : D ∩ Qe] ≤ 2. In
view of maximality of x we must have that 2 ≥ 2r = 4, a contradiction.

Suppose now that r = 4. Pick a hyperplane H in D such that D∩A ≤ H.
Let F be the intersection of all U(s), s ∈ H \ A. Then F ∼ 22 and hence
again F0 = F ∩ t⊥ 6= 1. Choosing 1 6= e ∈ CF0(Q), we see that e is a marked
2-central involution from E and [D : D∩Qe] ≤ 2[H : H ∩Qe] ≤ 4 < 2r = 8.
So again we have a contradiction with the maximality of x.

Thus, r = 1, that is, E ∩Qx ≤ A for x ∈ {a, b}. Let e be any 2-central
involution in E∩A that is perpendicular to t. Since [E∩A : E∩A∩Qa] ≤ 2
the maximality of x implies that e ∈ J , E∩Qe ≤ A and [E∩A : E∩A∩Qe] =
2. Consider F = (E ∩ A)⊥. We would like to show that A ≤ E, that is
we need to prove that F = 1. Suppose the contrary. We first remark that
t ∈ E ∩ A. Indeed, t ∈ A and t ∈ E = Ω1Z(Q) by assumption. Since
t ∈ E ∩ A, every 2-central involution in F is marked. Recall now that the
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2-central involutions in A are simply the singular vectors with respect to
the quadratic form f on A. Since Q normalizes F , if the number of singular
vectors in F is odd then Q centralizes a 2-central involution e ∈ F . Then
e is marked and 2-central, e ∈ E and E ∩ A ≤ Qe, a contradiction with
the maximality of x. Hence the number of singular vectors in F is even.
This means that that either F is 1-dimensional containing a nonsingular
vector, or 2-dimensional nondegenerate. Suppose F is 2-dimensional. Then
F contains an odd number of nonsingular vectors and hence Q centralizes
one of them, say c. Since E = CM (Q), we have that c ∈ E. Hence c is in
the radical of the symplectic form on F , a contradiction, since that form is
nondegenerate. If F is 1-dimensional then Q centralizes a hyperplane in A.
Since NM (A) induces on A the group Ω+

10(2), no element of Q can act on
A as a transvection. This means that Q centralizes A, that is, A ≤ E and
W = 1, a contradiction. Thus, F = 1 and A ≤ E.

Now, A ≤ E implies that Q ≤ CM (A) = P . In particular, E ≤ P .
Suppose s ∈ E \ A. Then W (s) ∩ t⊥ 6= 1. By the above every involution
e ∈W (s)∩t⊥ is in J and E∩Qe ≤ A. This contradicts the fact that s ∈ Qe.

The proof of Proposition 9.1 is now complete.

10 Proof of the theorems

In this section we derive Theorems 1 and 2. We start with the Monster
group M .

Proof of Theorem 1. Suppose N is a maximal 2-local subgroup in M such
that CN (Q) ≤ Q, where Q = O2(N). Let E = Ω1Z(Q). If E is an ark then
N is the normalizer of an ark, which agrees with Theorem 1. So now suppose
that E is not an ark. Set t = 1 and let J be the set of all 2-central involutions
e ∈ E for which |E ∩Qe| reaches maximum. According to Proposition 9.1,
U = 〈J 〉 is singular, since E is not an ark. Thus, N coincides with the
normalizer of a singular subgroup. The singular subgroups of M have been
classified in Section 4 (cf. Proposition 4.15). The normalizer of a singular 24

is not maximal because it is contained in the larger normalizer of a singular
subgroup 25

2 (cf. Lemma 4.12). Also the normalizer of a singular subgroup
25

1 is not maximal, because it is contained in the normalizer of an ark (cf.
Lemma 5.10). The remaining possibilities agree with Theorem 1.

We now turn to the case of the Baby Monster BM . Recall that for
us BM is defined as the group H̄, where H = CM (t), t is a non 2-central

47



involution in M , and H̄ = H/〈t〉.

Proof of Theorem 2. Let N̄ be a maximal 2-local subgroup of H̄ and
suppose CH̄(Q̄) ≤ Q̄, where Q̄ = O2(H̄). Let N and Q be the full preimages
of N̄ and Q̄ in H. Then CH(Q) ≤ Q and t ∈ Z(Q). Thus Proposition
9.1 applies to Q. Let E = Ω1Z(Q) and let J be the set of all marked 2-
central involutions e ∈ E, for which |E ∩Qe| reaches maximum. According
to Proposition 9.1, either E is an ark, or U = 〈J 〉 is singular. Suppose first
that E is an ark. Notice that t ∈ E and that t is a nonsingular vector in the
orthogonal space E. The group Ω+

10(2) induced on E acts transitively on
nonsingular vectors. Thus, H has a unique conjugacy class of arks containing
t. This leads to one of the cases from Theorem 2. Next suppose that E is
not an ark and hence U is singular. Observe that U is generated by marked
2-central involutions which means that t ∈ QU . It follows from the results
of Section 4 (namely, Lemma 4.4, Corollaries 4.6, 4.9 and 4.11, and Lemma
4.14; see also Lemma 4.2 (3)) that U cannot be a singular 25

2 and that in
every other case the normalizer of U has a unique conjugacy class of non
2-central involutions in QU . Thus, H contains exactly five classes of singular
subgroups U ′ having the property that t ∈ QU ′ . For the case U ′ ∼ 24 we
claim that in fact NH(U ′) is not a maximal subgroup (so U = 〈J 〉 can never
be a singular 24). Namely, we claim that U ′ and t are contained together in
a unique ark A and hence NH(U ′) ≤ NH(A). First notice that U ′ and t are
contained in some ark. Indeed, if A is an ark containing U ′ then A ∩ QU ′
does contain some non 2-central involutions. Since NM (U ′) is transitive on
non 2-central involutions from QU ′ , there must be an ark containing U ′ and
t. It follows from Lemmas 4.12 that U ′ is contained in exactly three singular
25

1 subgroups V , each of which is in turn contained in a unique ark A. By
Lemma 4.13, t belongs to QV for two of these V . If t ∈ QV then by Lemma
6.2 we have for the corresponding ark A that t ∈ PA \ A. Thus, there is
at most one ark containing U ′ and t. We have shown that U 6∼ 24. The
remaining four classes of possible singular subgroups U appear in Theorem
2.
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