Maximal 2-local subgroups of the Monster and Baby Monster

U. Meierfrankenfeld and S. Shpectorov

September 6, 2002

Abstract

The lists of the maximal 2-local subgroups of the Monster and Baby Monster simple groups in the Atlas are complete.

1 Introduction

The Monster and the Baby Monster are the two largest groups among the 26 sporadic finite simple groups. After the classification of the finite simple groups was announced in 1981 the focus of research in the area of finite simple groups moved toward the study of the properties of the known groups. One of the most important pieces of information about a simple group G is its list of maximal subgroups, taken up to conjugation in G.

Methods used to classify maximal subgroups H of G differ significantly depending on whether or not H is p-local. A subgroup H of G is p-local, where p is a prime number dividing the order of G, if H is the normalizer of a nontrivial p-subgroup. We say that H is a maximal p-local subgroup if H is maximal by inclusion among p-local subgroups of G. Notice that a maximal p-local subgroup H may or may not be maximal in G. Nevertheless, the classification of all maximal p-local subgroups of G for each p is an important step toward a complete determination of all maximal subgroups of G.

In the case where G is one of the 26 sporadic finite simple groups the lists of maximal p-locals subgroups-as well as lists of non p-local maximal subgroups-have been compiled and proven complete for almost all G by work of many people, but most notably, R.A. Wilson. One significant omission to date has been the lists of maximal 2-local subgroups of M and $B M$. The Atlas of Finite Groups [ATLAS] provides lists of the known maximal 2-local subgroups of M and $B M$. What was missing was a proof that these lists
are in fact complete. In this paper and its sequel $[\mathrm{M}]$ we bridge this gap by supplying necessary proofs.

Let us now review the lists from [ATLAS]. Seven conjugacy classes of maximal 2-local subgroups were known for $G=M$. The corresponding structures are as follows (see [ATLAS] for the exact meaning of these structures; however, notice that [ATLAS] uses the notation B for the Baby Monster group; also we use the good old " Ω " and "Sp" where [ATLAS] uses "O" and "S"):
(1) $2 \cdot B M$;
(2) $2^{2} \cdot\left({ }^{2} E_{6}(2)\right): S_{3}$;
(3) $2_{+}^{1+24} \cdot \mathrm{Co}_{1}$;
(4) $2^{2} .2^{11} .2^{22} \cdot\left(S_{3} \times M_{24}\right)$;
(5) $2^{3} \cdot 2^{6} \cdot 2^{12} \cdot 2^{18} \cdot\left(L_{3}(2) \times 3 \cdot S_{6}\right)$;
(6) $2^{5} .2^{10} \cdot 2^{20} \cdot\left(S_{3} \times L_{5}(2)\right) ;$ and
(7) $2^{10+16} \cdot \Omega_{10}^{+}(2)$.

Eight classes of maximal 2-local subgroups were known for $G=B M$. Their structures are shown in [ATLAS] as follows.
(1) $2 \cdot\left({ }^{2} E_{6}(2)\right): S_{3}$;
(2) $\left(2^{2} \times F_{4}(2)\right): 2$;
(3) $S_{4} \times{ }^{2} F_{4}(2)$;
(4) $2_{+}^{1+22} \cdot \mathrm{Co}_{2}$;
(5) $2^{2} .2^{10} \cdot 2^{20} .\left(M_{22}: 2 \times S_{3}\right)$;
(6) $2^{3} \cdot\left[2^{32}\right] \cdot\left(S_{5} \times L_{3}(2)\right)$;
(7) $2^{5} \cdot\left[2^{25}\right] \cdot L_{5}(2)$; and
(8) $2^{9} \cdot 2^{16} \cdot S p_{8}(2)$.

Recall that $O_{2}(H)$ denotes the largest normal 2-subgroup of H. We say that H is of characteristic 2 if $C_{H}(Q) \leq Q$, where $Q=O_{2}(H)$. We split the work as follows. In this papers we determine all maximal 2-local subgroups of M and $B M$ that are of characteristic 2. The sequel $[\mathrm{M}]$ deals with the
remaining classes. In the above lists the partition into the characteristic 2 type and non characteristic 2 type is as follows: For M, classes (1) and (2) are not of characteristic 2 , while classes (3)-(7) are of characteristic 2 . For $B M$, classes (1)-(3) are not of characteristic 2 , while classes (4)-(8) are of characteristic 2 . Notice that classifying the maximal 2-local subgroups that are not of characteristic 2 is rather more simple and some may even say that this part of the lists has been known to be complete. However, as we are unaware of any published proof, we include this subcase in our work. Needless to say, we believe that our result on the maximal 2-local subgroups of characteristic 2 is entirely new.

Our approach was in part motivated by the work on the geometries of the groups M and $B M$, by A.A. Ivanov and the second author (see [IS]). We noticed that the known maximal 2-local subgroups of characteristic 2 are either the normalizers of certain very special elementary abelian subgroups that we call singular subgroups, or the normalizers of yet another type of elementary abelian subgroups (of order 2^{10}) that we call arks. The abovementioned geometries of M and $B M$ consist of singular subgroups, while arks also have a geometrical meaning, namely, they correspond to certain natural subgeometries.

We introduce singular subgroups in Section 4, in which we also classify them up to conjugation. Arks are introduced in Section 5. They form a single conjugacy class of subgroups. Our choice of the word "ark" was motivated by the fact that an ark contains representatives of all "species" (i.e., conjugacy classes) of singular subgroups.

We will now formally state the principal results of this paper. We start with the following definitions of the groups M and $B M$: The Monster M is a finite simple group with a large extraspecial 2-subgroup Q whose normalizer C has the following structure: $C \sim 2^{1+24} . C o_{1}$. (Here and in what follows we use \sim as shorthand for "has structure", while \cong as usual stands for "is isomorphic".) Recall that a group G is said to have a large extraspecial subgroup if for some involution $z \in G$ its centralizer $C=C_{G}(z)$ contains a normal extraspecial 2-subgroup Q such that $C_{G}(Q) \leq Q$. It easily follows from this that z is 2-central in G, that is, the centralizer of Z contains a Sylow 2-subgroup of G. It also follows that G has a unique conjugacy class of 2 -central involutions. Returning to the Monster group M, in addition to the above structure of C, we have that the $C_{o_{1}}$-module arising in the action of C on $Q /\langle z\rangle$ is isomorphic to the module on $\Lambda / 2 \Lambda$, where Λ is the Leech lattice. This due to R. Griess who showed in $[\mathrm{Gr} 2]$ that $\Lambda / 2 \Lambda$ is the only faithful Co_{1}-module in dimension 24.

For the purposes of this paper, the Baby Monster BM is simply the group
$H /\langle t\rangle$, where t is a non 2-central involution in the Monster M and $H=$ $C_{M}(t)$. All the work in this papers takes place in M; singular subgroups, arks and the Baby Monster $B M$ "live" in M.

Under these definitions, we prove the following.
Theorem 1 The Monster M contains exactly 5 conjugacy classes of maximal 2 -local subgroups of characteristic 2 . They are: (a) the normalizers of singular subgroups of types $2^{1}, 2^{2}, 2^{3}$ and 2_{2}^{5}; and (b) the normalizers of arks.

Theorem 2 The Baby Monster BM contains exactly 5 conjugacy classes of maximal 2-local subgroups of characteristic 2. Their preimages in H are: (a) the normalizers in H of special singular subgroups U of types $2^{1}, 2^{2}, 2^{3}$ and 2_{1}^{5}; and (b) the normalizers of arks containing t.

The exact meaning of the word "special" in this last theorem is as follows: With each singular subgroup U we associate in Section 4 a second subgroup Q_{U}. The special singular subgroups U are those for which $t \in Q_{U}$.

In simple words, Theorems 1 and 2 state that the lists of maximal 2local subgroups of M and $B M$ given in [ATLAS] are complete in their characteristic 2 part.

Finally, we need to explain our policy with respect to citing vs. proving. A lot of information is available about the two monsters. However, much of it exists as a sort of finite group theory lore, that is, with no proper published proof known. In particular, at least some of the information given in [ATLAS] should be considered as semi-lore because there is no proofs there and very little by way of citation. Of course, we cannot prove everything in a single paper, and so we decided to take an "inductive" approach. We use some "lore" information about the smaller simple groups involved in M (mostly, $C o_{1}$ and $\left.\Omega_{10}^{+}(2)\right)$. At the same time, we prove everything we need as far as the properties of M and $B M$ themselves are concerned. Likely, some of the facts that we prove can be found in the available sources such as [As1], [AsSe], [Gr1], [Se] and many others. However, we believe that the bulk of the detailed information that we need cannot be covered by citation. Notice also that M. Aschbacher in [As1] determines all maximal subgroups of M containing a Sylow 2-subgroup.

2 Classes of involutions, I

In this section we classify conjugacy classes of involutions of a group H satisfying the following conditions:
(H1) $O_{2}(H) \sim 2^{24}$;
(H2) $H / O_{2}(H) \cong C o_{1}$; and
(H3) the action of $H / O_{2}(H)$ on $O_{2}(H)$ is equivalent to the action of $C o_{1}$ on $\hat{\Lambda}=\Lambda / 2 \Lambda$, the Leech lattice taken modulo 2 .

If C is the centralizer of a 2 -central involution z in the Monster group M then the group $H=C / Z$, where $Z=\langle z\rangle$, satisfies (H1)-(H3) and so the results of this section give us some insight into the structure of C.

We refer to [ATLAS], page 180, for a description of the Leech lattice Λ, terminology and notation related to Λ, and a summary of properties of Λ. A whole wealth of information about the Leech lattice can be found in [CS]. Let $(x, y)=\frac{1}{8} \sum_{i=1}^{24} x_{i} y_{i}$ be the integral inner product that exists on Λ. Let $\Lambda_{n}=\{x \in \Lambda \mid(x, x)=2 n\}$. One useful fact that is the following

Lemma 2.1 The orbits of $C o_{1}$ on $W=\hat{\Lambda}^{\#}$ are the sets $\hat{\Lambda}_{2}, \hat{\Lambda}_{3}$ and $\hat{\Lambda}_{4}$.
For $i=2,3$ and 4 , let $w_{i} \in \hat{\Lambda}_{i}$. The structure of the stabilizer of w_{i} in $C o_{1}$ is also well-known.

Lemma 2.2 The following hold.
(1) $C_{C o_{1}}\left(w_{2}\right) \cong C o_{2}$;
(2) $C_{C o_{1}}\left(w_{3}\right) \cong C o_{3} ;$
(3) $C_{C o_{1}}\left(w_{4}\right) \cong 2^{11}: M_{24}$.

Recall that in its action on $W=\hat{\Lambda}$ the group $C o_{1}$ preserves a nondegenerate quadratic form q defined as follows: if $u=\hat{x}$ for some $x \in \Lambda$ then $q(u)=$ $\frac{1}{2}(x, x)(\bmod 2)$. Let Φ denote the symmetric bilinear form that corresponds to q : for $u=\hat{x}$ and $v=\hat{y}$, we have $\Phi(u, v)=q(u+v)+q(u)+q(v)=(x, y)$ $(\bmod 2)$. It follows from the definition of q that w_{2} and w_{4} are singular, while w_{3} is nonsingular.

Before we go on, let us record the following property that can be verified, say, using the description of Λ from [ATLAS].

Lemma 2.3 There is no $\hat{\Lambda}_{2}$-pure subgroups 2^{3} in $W=\hat{\Lambda}$.
According to [ATLAS], $C o_{1}$ contains three conjugacy classes of involutions. We will need to know how the involutions and their centralizers act on W.

Let t be an involution in $C o_{1}$ and let $C_{t}=C_{C o_{1}}(t)$. Define $U_{t}=C_{W}(t)$ and $V_{t}=[W, t]$. Since t is an involution, $V_{t} \subseteq U_{t}$. Furthermore, $\operatorname{dim} W / U_{t}=$ $\operatorname{dim} V_{t}$. In fact, U_{t} is the orthogonal complement (with respect to Φ) of V_{t}, and so the C_{t}-modules W / U_{t} and V_{t} are dual to each other.

First, let t be an involution of type $2 A$. Then C_{t} is an extension of an extraspecial group 2_{+}^{1+8} by $\Omega_{8}^{+}(2)$. The action on the 8 -dimensional quotient of $O_{2}\left(C_{t}\right)$ provides an irreducible module for $C_{t} / O_{2}\left(C_{t}\right) \cong \Omega_{8}^{+}(2)$. We will refer to this module as to the natural module. Notice that $\Omega_{8}^{+}(2)$ has two more irreducible 8 -dimensional modules, and we will refer to those as to the two halfspin modules. Notice also that the natural module and the halfspin modules are all self-dual.

Lemma 2.4 If t is of type $2 A$ then
(1) V_{t} has dimension 8 and U_{t} has dimension 16;
(2) C_{t} acts irreducibly on each of $W / U_{t}, U_{t} / V_{t}$, and V_{t}; furthermore, V_{t} and U_{t} / V_{t} are two non-isomorphic halfspin modules and $W / U_{t} \cong V_{t}$.

Proof: Notice that t (or rather, its preimage in Co_{0}) can be chosen to act on the standard frame, inverting signs in an octad. This allows to establish (1) by direct computation. Let $x \in C_{t}$ be an element of order three, such that x has a 6 -dimensional centralizer in the natural module. Then 2^{13} divides the order of the centralizer of x in C_{t}, and hence x is of type $3 A$ (a Suzuki 3 -element). According to [ATLAS], x acts fixed-pointfreely on W, which implies that $W / U_{t}, U_{t} / V_{t}$, and V_{t} are halfspin modules for $C_{t} / O_{2}\left(C_{t}\right) \cong O_{8}^{+}(2)$. Since the halfspin modules are self-dual, we have $W / U_{t} \cong V_{t}$. Finally, if $U_{t} / V_{t} \cong V_{t}$ then C_{t} contains a 3 -element with an 18-dimensional centralizer in W, which contradicts the information from [ATLAS].

Let t be an involution of type $2 B$. Then $C_{t} \sim\left(2^{2} \times G_{2}(4)\right) .2$.
Lemma 2.5 If t is of type $2 B$ then
(1) $U_{t}=V_{t}$ and so they are of dimension 12;
(2) C_{t} acts transitively on $V_{t}^{\#}$; furthermore, $V_{t}^{\#} \subseteq \hat{\Lambda}_{4}$.

Proof: Notice that 13 divides the order of $G_{2}(4)$, and it does not divide the orders of $\mathrm{Co}_{2}, \mathrm{Co}_{3}$ and $2^{11}: M_{24}$. Therefore, $G_{2}(4)$ fixes no non-zero vector in W. Again, since 13 divides the order of $G_{2}(4)$, the latter group has
no nontrivial $G F(2)$-modules in dimensions less than 12. It follows that V_{t} has dimension at least 12. Hence, $U_{t}=V_{t}$ and they are both of dimension exactly 12 . According to [MOD], V_{t} must be the natural module for $G_{2}(4)$. In particular, $G_{2}(4)$ is transitive on $V_{t}^{\#}$. Since $\hat{\Lambda}_{4}$ has odd length, t fixes a vector in $\hat{\Lambda}_{4}$. Now the transitivity implies that $V_{t}^{\#} \subseteq \hat{\Lambda}_{4}$.

Finally, let t be of type $2 C$. Then $C_{t} \sim 2^{11}$: Aut M_{12}.
Lemma 2.6 If t is of type $2 C$ then
(1) $U_{t}=V_{t}$, and so they are of dimension 12;
(2) as a C_{t}-module, U_{t} is uniserial with submodules of dimension 1 and 11; furthermore, the non-zero vector fixed by C_{t} is from $\hat{\Lambda}_{4}$, and $\hat{\Lambda}_{3} \cap V_{t}$ coincides with the setwise complement of the 11-dimensional submodule.

Proof: In this case again t can be chosen inside the diagonal subgroup stabilizing the standard frame. Namely, t inverts signs in a dodecad. This allows to compute all vectors in W fixed by t and thus establish (1) and also that V_{t} contains some elements from $\hat{\Lambda}_{3}$. Since $U_{t}=V_{t}$, we have that V_{t} is totally isotropic (with regard to Φ). Since the vectors in $\hat{\Lambda}_{3}$ are non-singular, we obtain that $V_{t} \cap \hat{\Lambda}_{3}$ coincides with the complement of a hyperplane. So V_{t} contains an 11-dimensional subspace V_{0} left invariant by C_{t}. Observe that C_{t} is fully contained in the stabilizer of the standard frame. So C_{t} stabilizes a vector $v \in \hat{\Lambda}_{4}$, the image of the standard frame. Clearly, $v \in V_{0}$. Since 11 divides the order of M_{12}, C_{t} acts irreducibly on $V_{0} /\langle v\rangle$. It remains to notice that v is the only vector in W fixed by C_{t} (indeed, already the diagonal group 2^{11} fixes no other vector in $\left.W^{\#}\right)$. The uniseriality now follows.

We can now determine the conjugacy classes of involutions in a group H satisfying conditions (H1)-(H3). Let $E=O_{2}(H)$ and $\bar{H}=H / E$. First of all, Lemma 2.1 implies the following.

Lemma 2.7 The group H has exactly three classes of involutions contained in E. If e_{2}, e_{3} and e_{4} are representatives of those classes then $C_{H}\left(e_{2}\right) \sim$ $2^{24} . \mathrm{Co}_{2}, C_{H}\left(e_{3}\right) \sim 2^{24} . \mathrm{Co}_{3}$, and $C_{H}\left(e_{4}\right) \sim 2^{24} .\left(2^{11}: M_{24}\right)$.

We will classify the classes of involutions outside E case by case, depending on whether \bar{x} is of type $2 A, 2 B$ or $2 C$. We start with a general lemma. Let $U=C_{E}(\bar{x})$ and $V=[E, \bar{x}]$. Let $X=\langle x, U\rangle$ and $\tilde{X}=X / V$. Let C be the full preimage in H of $C_{\bar{H}}(\bar{x})$.

Lemma 2.8 Suppose $x \in H$ is an involution, and $\bar{x} \neq 1$. Then the following hold:
(1) An element $y \in x E$ is an involution if and only if $y \in x U$.
(2) The subgroups X and V are invariant under C; furthermore, E acts trivially on \tilde{X}.
(3) If $y, z \in x U$ then y and z are conjugate in H if and only if \tilde{y} and \tilde{z} are in the same \bar{C}-orbit.

Remark. Part (2) contends that the action of $\bar{C}=C_{\bar{H}}(\bar{x})$ on \tilde{X} is well defined, which allows us to view \tilde{X} as a \bar{C}-module. Since $U=X \cap E, \tilde{U}$ is invariant under \bar{C}, and so \bar{C} permutes the vectors in $\tilde{X} \backslash \tilde{U}$. The meaning of part (3) is that the orbits of \bar{C} on $\tilde{X} \backslash \tilde{U}$ bijectively correspond to those conjugacy classes of involutions in H that map onto $\bar{x}^{\bar{H}}$.
Proof: If $e \in E$ then $(x e)^{2}=[x, e]$ since both x and e are involutions. Part (1) follows. Clearly, V is invariant under C. Since X is generated by all the involutions from the coset $\bar{x}=x U, X$ is C-invariant, too. Clearly, E acts trivially on \tilde{U}. Furthermore, E fixes \tilde{x}, because $V=[E, x]$. This proves (2). For (3), let $y, z \in x U$. If $z=y^{h}$ for some $h \in H$ then $\bar{h} \in \bar{C}$, since $\bar{y}=\bar{x}=\bar{z}$. So \tilde{y} and \tilde{z} are in the same \bar{C}-orbit. Reversely, suppose that $\tilde{y}^{\bar{c}}=\tilde{z}$ for some $c \in C$. Then $y^{c}=z v$ for some $v \in V$. Since $V=[E, x]$ there exists an element $e \in E$ such that $v=[e, x]$. However, $[e, x]=[e, z]$, since $z \in x U$. Therefore, $z^{e}=v z=z v$, implying that y and z are conjugate.

We will first classify those involutions x for which \bar{x} is of type $2 A$. We will need the following fact proved in $[\mathrm{Po}]$.

Lemma 2.9 Suppose Y is a $G F(2)$-module for $\Omega_{8}^{+}(2)$ that is an extension of an irreducible 8-dimensional submodule Y_{0} by a 1-dimensional module. Then Y splits.

Lemma 2.10 The group H has exactly three classes of involutions whose images in \bar{H} are of type $2 A$. If a_{1}, a_{2} and a_{3} are representatives of these classes then $C_{H}\left(a_{i}\right)$ has the structure $2^{16} \cdot 2^{1+8} . \Omega_{8}^{+}(2), 2^{16} \cdot 2^{1+8} . S_{6}(2)$ and $2^{16} \cdot 2^{1+8} \cdot\left(2^{6}: L_{4}(2)\right)$, for $i=1,2$ and 3 , respectively.

Proof: Let x be an element of H such that \bar{x} is of type $2 A$. We will first show that the coset \bar{x} contains an involution, and so x can be chosen to be
an involution. Let $R=\langle x, E\rangle$. Then R is a normal subgroup of C, where C is defined, as above, as the full preimage in H of $C_{\bar{H}}(\bar{x})$. Let $U=C_{E}(x)$ and $V=[E, x]$. Clearly, $U=Z(R)$. Consider $X=R / U$. According to Lemma 2.4, C has two chief factors within X, of dimensions 8 and 1. This implies that X is an elementary abelian group, which we can view as a module for \bar{C}. Furthermore, by the same Lemma 2.4, the 8 -dimension chief factor in X is not a natural module for $\bar{C} / O_{2}(\bar{C}) \cong \Omega_{8}^{+}(2)$. Therefore, $O_{2}(\bar{C})$ acts trivially on X. Now Lemma 2.9 implies that X contains a 1dimensional subspace T invariant under C. Let R_{0} be the full preimage in R of T. Clearly, R_{0} is normal in C. Next, define $X_{0}=R_{0} / V$. Again X_{0} is an extension of an 8 -dimensional chief factor U / V by a 1 -dimensional R_{0} / U. We conclude again that X_{0} is elementary abelian. Clearly, R_{0} acts trivially on X_{0}. Furthermore, by Lemma 2.4 the 8 -dimensional chief factor in X_{0} differs, as a module, from the chief factors in $O_{2}(C) / R_{0}$, which means that $O_{2}(C)$ acts trivially on X_{0}. Applying again Lemma 2.9 we obtain a C-invariant 1-dimensional subspace T_{0} in X_{0}. Let R_{1} be the full preimage of T_{0} in R. Setting $X_{1}=R_{1}$, we observe for the third time that X_{1} is an extension of an 8 -dimensional chief factor V by a 1 -dimensional one, R_{1} / V. Hence R_{1} is elementary abelian. Since $R_{1} \not \leq E$, we finally conclude that the coset \bar{x} contains some involutions. Without loss of generality we can now assume that x is itself an involution and so Lemma 2.8 applies. In the notation introduced before Lemma 2.8, \tilde{X} (which has already appeared above as $\left.X_{0}=R_{0} / V\right)$ is the direct sum of a halfspin module and a 1dimensional module. Therefore, C has three orbits on $\tilde{X} \backslash \tilde{U}$, of sizes 1,120 and 135 , and this immediately leads to the conclusion as in the lemma.

The classification of involutions x with \bar{x} of type $2 B$ or $2 C$ is an easy corollary of Lemmas 2.5 and 2.6.

Lemma 2.11 For $L=B$ or C, H has a unique conjugacy class of involutions whose images in \bar{H} are of type $2 L$. If b and c are representatives of those two classes then $C_{H}(b) \sim 2^{12} .\left(2^{2} \times G_{2}(4)\right) .2$ and $C_{H}(c) \sim 2^{12} .\left(2^{11}\right.$: Aut M_{12}).

Proof: Let x be an element of H such that \bar{x} is of type $2 L$. Then according to Lemmas 2.5 and 2.6, we have that $C_{E}(x)=[E, x]$. In particular, $x^{2}=$ $[e, x]$ for some $e \in E$. It follows that $(x e)^{2}=x^{2}[x, e]=1$, that is, the coset $x E$ contains involutions. Furthermore, in the notation of Lemma 2.8 we have that \tilde{X} is 1-dimensional, and so the claim follows.

This completes the classification of conjugacy classes of involutions in H. According to Lemmas 2.7, 2.10 and 2.11, the group H contains eight
classes of involutions. We will refer to these classes as to the classes $2 e_{i}$, $2 \leq i \leq 4,2 a_{i}, 1 \leq i \leq 3,2 b$ and $2 c$.

3 A fusion lemma and an application

In the first part of this section G is an arbitrary group having a large extraspecial subgroup. This means that for some involution $z \in G$ the centralizer $C=C_{G}(z)$ contains a normal extraspecial 2-subgroup Q and, furthermore, $C_{G}(Q) \leq Q$. This implies that G contains a unique class of 2-central involutions (recall that a 2-central involution is an involution in the center of some Sylow 2 -subgroup of G) and that z is itself 2 -central. We let \mathcal{S} denote the class of 2 -central involutions in G. For $x=z^{g} \in \mathcal{S}$ we denote $C_{x}=C_{G}(x)=C^{g}$ and $Q_{x}=Q^{g}$. Thus, $C=C_{z}$ and $Q=Q_{z}$.

We will assume throughout this section that

$$
\text { (*) } \mathcal{S} \cap C \neq\{z\} .
$$

Indeed the principal case of interest for us is where G is simple. However in that case the Z^{*}-theorem of Glauberman makes $\mathcal{S} \cap C=\{z\}$ impossible. In this section we prove that, modulo some small configurations, (*) implies the following stronger condition:

$$
\text { (**) } \mathcal{S} \cap Q \neq\{z\} .
$$

Let, as above, $Q=Q_{z}$ and let \bar{Q} denote Q / Z where $Z=\langle z\rangle$.
Lemma 3.1 Suppose $\mathcal{S} \cap Q=\{z\}$ and let $x \in \mathcal{S} \cap C, x \neq z$. Denote $E=Q \cap Q_{x}$. Then one of the following holds:
(1) $E=1$; or
(2) $|E|=2$ and either
(a) $\bar{E} \not \subset[\bar{Q}, x]$, or
(b) $z \neq[x, y]$ for all $y \in Q$; or
(3) $|E|=4$ and furthermore, for $W=\langle E, z, x\rangle$,
(a) $N_{G}(W)$ induces on $W \cong 2^{4}$ either $O_{4}^{-}(2)$, or $\Omega_{4}^{-}(2)$ acting as on the natural module;
(b) $|W \cap \mathcal{S}|=5$ and, under the identification of W with the orthogonal module, the involutions in $W \cap \mathcal{S}$ are the singular vertors; moreover, for each $w \in W \cap \mathcal{S}, W \cap Q_{w}$ is the perp of w.

Proof: Suppose that $E \neq 1$. (Otherwise, (1) holds.) If $e \in E$ then $e^{2} \in Z \cap\langle x\rangle=1$, since E is contained in both Q and Q_{x}. Hence E is elementary abelian. Let U and V be defined as the full preimages in Q of $C_{\bar{Q}}(x)$ and $[\bar{Q}, x]$, respectively. Observe that since Q is extraspecial we have that $V=C_{Q}(U)=Z(U)$ and that $C_{Q}(x)$ is either equal to U or $\left[U: C_{Q}(x)\right]=2$. In the latter case, $[x, y]=z$ for all $y \in U \backslash C_{Q}(x)$.

Notice that $\left[C_{Q}(x), E\right] \leq[Q, Q] \cap\left[C_{Q}(x), Q_{x}\right] \leq Z \cap Q_{x}$. By assumption, $\mathcal{S} \cap Q=\{z\}$ and hence $\mathcal{S} \cap Q_{x}=\{x\}$. We conclude that $z \notin Q_{x}$ and hence $\left[C_{Q}(x), E\right]=1$.

Let $e \in E^{\#}$ and suppose $e=[x, y]$ for some $y \in Q$. Then $e x=x^{y}$ is a conjugate of x contained in Q_{x}, i.e., $\mathcal{S} \cap Q_{x} \neq\{x\}$. This contradiction shows that no nontrivial element from E is an elementary commutator $[x, y$], for $y \in Q$.

If $C_{Q}(x) \neq U$ then $\left[U: C_{Q}(x)\right]=2$, which implies that $\left[C_{Q}\left(C_{Q}(x)\right)\right.$: $V]=2$. Hence $[E: E \cap V] \leq 2$. If $E \cap V=1$ then $|E|=2$, implying (2a). So let us assume that $E \cap V \neq 1$ and let $e \in(E \cap V)^{\#}$. Since $e \in V$, we have that either $e=[x, y]$ or $e z=[x, y]$ for some $y \in Q$. However, by the preceding paragraph $e \neq[x, y]$. So $e z=[x, y]$. Furthermore, $z=[x, t]$ for $t \in U \backslash C_{Q}(x)$. Thus, $[x, t y]=[x, t]^{y}[x, y]=z e z=e$; a contradiction.

Now assume that $C_{Q}(x)=U$ and so $z \neq[x, y]$ for all $y \in Q$. Also, $E \leq V$, since $\left[C_{Q}(x), E\right]=1$. If $|E|=2$ then we obtain (2b). Hence we may assume that $|E| \geq 4$. Set $W=\langle E, z, x\rangle$. Our next step is to determine which involutions from W are in \mathcal{S}. First of all, the involutions in W fall into the following types: $z, x, e, z e, x e, z x$, and $z x e$, where e denotes an arbitrary involution from $E^{\#}$. Clearly, $z, x \in \mathcal{S}$. By assumption, no other involution in $Q \cup Q_{x}$ is in \mathcal{S}. Hence the involutions $e, z e$, and xe are not in \mathcal{S}. Since $E \leq V$, we have that $\bar{e}=[\bar{y}, x]$ for some $y \in Q$. We have shown above that $e \neq[x, y]$. Hence $z e=[x, y]$. It follows that $z x e=x z e=x[x, y]=x^{y}$. Thus, all elements $z x e$ are in \mathcal{S}. The element $z x$ may or may not be in \mathcal{S}.

Observe also that the element y above normalizes W. Indeed, $\langle E, z\rangle$ is normal in Q, so y leaves it invariant. Also $x^{y}=z x e \in W$. Thus, $W^{y}=W$. We conclude that x and all the elements $z x e$ are conjugate under $N_{G}(W)$. Symmetrically, z is conjugate under $N_{G}(W)$ to the elements $z x e$ and so also to x. Notice that $W_{x}=\langle E, x\rangle$ is an index two subgroup of W such that $\left|W_{x} \cap \mathcal{S}\right|=\{x\}$. Pick an element $e \in E^{\#}$. By transitivity, there exists a subgroup $W_{z x e}$ of index 2 in E such that $W_{z x e} \cap \mathcal{S}=\{z x e\}$. Since z and x are not in $W_{z x e}$, we have that $z x \in W_{z x e}$. Thus, $z x \notin \mathcal{S}$, which completes the enumeration of the elements in $W \cap \mathcal{S}$.

If $|E|>4$ then for every $e^{\prime} \in E^{\#}$ there exist elements e_{1} and $e_{2}=e_{1} e^{\prime}$ such that $e_{1} \neq e \neq e_{2}$. Since both $z x e_{1}$ and $z x e_{2}$ are not in $W_{z x e}$, we
conclude that $e^{\prime}=\left(z x e_{1}\right)\left(z x e_{2}\right)$ is in $W_{z x e}$, i.e., $E \leq W_{z x e}$. However, in that case all elements $z x e^{\prime}, e^{\prime} \in E^{\#}$, are in $W_{z x e} \cap \mathcal{S}$, a contradiction. This establishes that $|E|=4$ and, consequently, $|W \cap \mathcal{S}|=5$. Observe that the elements y from the preceeding paragraph stabilize z. This proves that $N_{G}(W)$ induces a 2-transitive group on $W \cap \mathcal{S}$. Also $y^{2} \in Z$ for all those elements y, which rules out the Frobenius group F_{5}^{4}. Hence $N_{G}(W)$ induces on $W \cap \mathcal{S}$ one of the groups $S_{5} \cong O_{4}^{-}(2)$ or $A_{5} \cong \Omega_{4}^{-}(2)$ and the claim (2) follows.

In the remainder of this section $G=M$, the Monster, z is a 2-central involution in $G, Z=\langle z\rangle, C=C_{z}=C_{G}(z)$ and $Q=Q_{z}=O_{2}\left(C_{z}\right)$. Since by assumption M is simple, Glauberman's Z^{*} theorem [Gl] shows that $\mathcal{S} \cap C \neq$ $\{z\}$. Recall that \mathcal{S} denotes the conjugacy class of 2-central involutions, z^{M}. Recall alsoy that for $x=z^{g}$ we set $C_{x}=C^{g}$ and $Q_{x}=Q^{g}$. Since M has a large extraspecial subgroup, Lemma 3.1 applies to it. We use that lemma to prove the following.

Proposition 3.2 $Q \cap \mathcal{S} \neq\{z\}$.
Proof: Suppose $Q \cap \mathcal{S}=\{z\}$. Since $C \cap \mathcal{S} \neq\{z\}$, we can choose $x \in C \cap \mathcal{S}$, $x \neq z$. According to Lemma 3.1, one of the exceptional cases (2a), (2b), or (3) must hold. In particular, $E=Q \cap Q_{x}$ has size at most four.

Observe now that the group $H=\bar{C}=C / Z$ satisfies the conditions (H1)-(H3) from Section 2. In particular, we can use the classification of conjugacy classes of involutions obtained in that section. Let $D=C \cap C_{x}$ and $R=Q_{x} \cap C$. Clearly, R is normal in D, and \bar{D} is of index two or one in $C_{\bar{C}}(\bar{x})$ depending on whether or not x and $x z$ are conjugate in C.

Suppose first that \bar{x} is in the class $2 a_{i}$ for some i. Then also $z\langle x\rangle$ is in $2 a_{i}$ in $C_{x} /\langle x\rangle$. In particular, R is of order at least 2^{16} (cf., Lemma 2.4). Consider $\tilde{C}=C / Q$. Since $E=Q \cap R$ is of order at most four, we obtain that \tilde{D} contains a normal 2 -subgroup \tilde{R} of order at least 2^{14}. Comparing with Lemma 2.10, we see that $i=3$ must hold. However, $i=3$ also leads to a contradiction. Indeed, let \tilde{Y} be the normal extraspecial subgroup 2^{1+8} of $C_{\tilde{C}}(\tilde{x}) \sim 2^{1+8} . \Omega_{8}^{+}(2)$. We have that $[\tilde{Y}: \tilde{Y} \cap \tilde{R}] \leq 2$ and $[\tilde{R}, \tilde{R}] \leq\langle\tilde{x}\rangle=Z(\tilde{Y})$. Therefore, all elements of \tilde{R} centralize a hyperplane in the 8-dimensional quotient of \tilde{Y}, which is impossible.

Suppose next that \bar{x} is in $2 b$. Then also $z\langle x\rangle$ is in the class $2 b$ in $C_{x} /\langle x\rangle$. Hence $|R| \geq 2^{12}$. Considering again $\tilde{C}=C / Q$ and taking into account that $|E| \leq 4$, we see that \tilde{D} contains a normal 2 -group of size at least 2^{10}, clearly contradicting Lemma 2.11.

Finally, suppose \bar{x} is in the class $2 c$. In this case our argument must be slightly more subtle. Let U be the full preimage in Q of $\bar{U}=C_{\bar{Q}}(\bar{x})$. Then U is a subgroup of order 2^{13}. We claim that $C_{Q}(x)$ is a proper subgroup of U. Indeed, according to Lemma 2.4, \bar{U} contains elements from the class $2 e_{3}$. Observe that the mapping $\bar{e} \mapsto e^{2}$ defines a nondegenerate quadratic form g on \bar{Q}. Since, as a module for $C / Q \cong C o_{1}, \bar{Q}$ is absolutely irreducible, this quadratic form is unique, and hence g is equivalent to the form q (cf. Section 2). In particular, if \bar{e} is in $2 e_{3}$ then e is of order four. Since $\bar{U}=[\bar{Q}, \bar{x}]$, we have that $\bar{e}=[\bar{q}, \bar{x}]$ for some $q \in Q$. Therefore, $[q, x]=e$ or e^{3}. Since, clearly, q can be chosen to be an involution, we obtain that x inverts e, i.e., $e \notin C_{Q}(x)$.

This has two consequences. First, $C_{Q}(x)$ is of size 2^{12}, and symmetrically, also $|R|=2^{12}$. (Clearly, $z\langle x\rangle$ must also be in the class $2 c$ in $C_{x} /\langle x\rangle$.) Secondly, we record for further use that $z=[q, x]$ for some $q \in Q$.

Since $|E| \leq 4$, we have that \tilde{R} (where, as above, $\tilde{C}=C / Q$) has size 2^{10}, 2^{11}, or 2^{12}. Comparing with Lemma 2.11 and using that \tilde{R} is normal in \tilde{D}, we obtain that $|\tilde{R}|=2^{11}$, and hence $|E|=2$. This means that either (2a) or (2b) of Lemma 3.1 must hold. Above we recorded that $z=[q, x]$ for some $q \in Q$. Hence, in fact, it must be the case (2a). To obtain a contradiction in this last case, it remains to see that $\bar{E} \leq[\bar{Q}, x]$. However, this is clear because $\bar{E} \leq C_{\bar{Q}}(\bar{x})=[\bar{Q}, \bar{x}]=[\bar{Q}, x]$.

4 Singular subgroups

First, let G be again a group with a large extraspecial subgroup, that is, let there be an involution $z \in G$ and an extraspecial 2-subgroup Q normal in $C=C_{G}(z)$ such that $C_{G}(Q) \leq Q$. Adopt the notation from Section 3, that is, let $\mathcal{S}=\left\{z^{G}\right\}$ be the class of 2-central involutions in G and, for $x=z^{g} \in \mathcal{S}$, let $C_{x}=C_{G}(x)=C^{g}$ and $Q_{x}=Q^{g}$.

Let x and y be two 2 -central involutions. We will say that x perpendicular to y if and only if $y \in Q_{x}$. The following important lemma is a slight improvement on [As0], Lemma 8.7 (3).

Lemma 4.1 The perpendicularity relation is symmetric.
Proof: If $|Q|>2^{3}$ then this is proven in [As0], Lemma 8.7 (3). So suppose $Q \sim 2^{1+2}$. Suppose that the relation is not symmetric so that for some $x \in \mathcal{S}$ we have that $x \in Q$, but $z \notin Q_{x}$. In particular, there is no $g \in G$ such that $z^{g}=x$ and $x^{g}=z$. Since $x \in Q, Q$ must be isomorphic to D_{8}. Since $C_{G}\left(Q_{x}\right)=\langle x\rangle$ and since Out D_{8} is of order two, we have that
$C_{x}=Q_{x}\langle z\rangle \cong D_{16}$. It remains to notice that an element from $N_{C_{x}}(U)$, where $U=\langle z, x\rangle$, permutes z and $z x$ and, likewise, an element from $N_{C}(U)$ permutes x and $z x$. Hence the normalizer of U induces on it the full group S_{3}. Thus, there exists an element $g \in G$ such that $z^{g}=x$ and $x^{g}=z$; a contradiction.

Let U be a purely 2 -central (i.e., all involutions in U are in \mathcal{S}) elementary abelian 2-subgroup of G. We will say that U is singular if $U \leq Q_{u}$ for every $u \in U^{\#}$. If U is singular define $Q_{U}=\cap_{u \in U^{\#}} Q_{u}$ and $L_{U}=\left\langle Q_{u} \mid u \in U^{\#}\right\rangle$. Clearly, $U \leq Q_{U} \leq L_{U}$.

Lemma 4.2 Let U be singular. Then the following hold:
(1) U and Q_{U} are normal in L_{U} and L_{U} acts trivially on Q_{U} / U;
(2) if $W \leq Q_{U}$ and $W \cap U=1$ then $C_{L_{U}}(W)$ induces on U the full group $L_{n}(2)$ (where n is the rank of U); in particular (for $W=1$), $N_{G}(U)=L_{U} C_{G}(U) ;$
(3) if $W_{1}, W_{2} \leq Q_{U}, W_{1} \cap U=W_{2} \cap U=1$ and $W_{1} U=W_{2} U$ then there is an element $x \in C_{L_{U}}(U)$ such that $W_{1}^{x}=W_{2}$; in particular, $C_{L_{U}}(U)$ acts transitively on every coset $q U, q \in Q \backslash U$;
(4) if $|U|>2$ then Q_{U} is elementary abelian.

Proof: Let $U \leq U^{\prime} \leq Q_{U}$. If $u \in U^{\#}$ then $U^{\prime} \leq Q_{u}$. Since Q_{u} is extraspecial, U^{\prime} is normal in Q_{u} and hence U^{\prime} is normal in L_{U}. This proves (1).

For W as in (2), take $U^{\prime}=W U$. Clearly, U^{\prime} is elementary abelian and so we can view it as a $G F(2)$-vector space. Notice that Q_{u} induces on U^{\prime} all transvections with center $\langle u\rangle$. Since $W \cap U=1, C_{Q_{u}}(W)$ induces on U all transvections with center $\langle u\rangle$. This implies (2), since the group generated by all transvections of U is $L_{n}(2)$.

Let W_{1} and W_{2} be as in (3). We will use induction on the rank of W_{1}. If $W_{1}=1$ then there is nothing to prove. Otherwise, choose $W_{1}^{\prime} \leq W_{1}$ such that $\left|W_{1} / W_{1}^{\prime}\right|=2$, and let $W_{2}^{\prime}=W_{2} \cap W_{1}^{\prime} U$. By induction, there is an element $x^{\prime} \in C_{L_{U}}(U)$ such that $\left(W_{1}^{\prime}\right)^{x}=W_{2}^{\prime}$. Let $w_{1} \in W_{1} \backslash W_{1}^{\prime}$ and let $\left\{w_{2}\right\}=W_{2} \cap w_{1} U$. Notice that, by (1), $w_{1}^{x} \in w_{1} U=w_{2} U$ and hence $w_{1}^{x}=w_{2} u$ for some $u \in U$. If $u=1$ then take $x=x^{\prime}$. Otherwise, let y be an element of Q_{u} that induces on $W_{1} U$ the transvection with center $\langle u\rangle$ and axis $W_{2}^{\prime} U$. Clearly, $y \in C_{L_{U}}(U)$ and $W_{1}^{x}=W_{2}$, where $x=x^{\prime} y$. This proves (3).

Finally, if $q \in Q_{U}$ then $q^{2} \in \Phi\left(Q_{u}\right)=\langle u\rangle$ for every $u \in U^{\#}$. This proves (4).

Lemma 4.3 A subgroup U is singular if and only if it is generated by a set of pairwise perpendicular 2-central involutions. Furthermore, if $U=$ $\left\langle u_{1}, \ldots, u_{k}\right\rangle\left(u_{i} \neq 1\right.$ for all $\left.i\right)$ is singular then $Q_{U}=\cap_{i=1}^{k} Q_{u_{i}}$.

Proof: We only need to prove the 'if' part of the first claim. Suppose $U=\left\langle u_{1}, \ldots, u_{k}\right\rangle$, where u_{1}, \ldots, u_{k} are 2 -central and pairwise perpendicular. By induction, $U^{\prime}=\left\langle u_{2}, \ldots, u_{k}\right\rangle$ is singular. Since u_{1} is perpendicular to u_{2}, \ldots, u_{k}, we have that $U^{\prime} \leq Q_{u_{1}}$ which by Lemma 4.1 implies that $u_{1} \in$ $Q_{U^{\prime}}$. By Lemma 4.2 (2), all involutions in $U \backslash U^{\prime}=u_{1} U^{\prime}$ are 2-central, since u_{1} is 2 -central. Finally, let $u \in U^{\#}$. Then $u \in U \leq Q_{u_{i}}$ for every i, since the involutions u_{i} are pairwise perpendicular. By Lemma 4.1, $U=$ $\left\langle u_{1}, \ldots, u_{k}\right\rangle \leq Q_{u}$.

Suppose now that $U=\left\langle u_{1}, \ldots, u_{k}\right\rangle$ is singular. Clearly, $Q_{0}=\cap_{i=1}^{k} Q_{u_{i}}$ contains Q_{U}. So it remains to see that $Q_{0} \leq Q_{U}$. Let us use induction on k. The claim is obviously true if $k=1$. Consider now the case $k>1$ and set $U^{\prime}=\left\langle u_{2}, \ldots, u_{k}\right\rangle$. By induction, $Q_{U^{\prime}}=\cap_{i=2}^{k} Q_{u_{i}}$ and hence $Q_{0} \leq Q_{u}$ for all $u \in U^{\#}$. However, this means that Q_{0} is normal in Q_{u}. In particular, Q_{0} is invariant under an element $x \in Q_{u}$ which induces on U a transvection taking u_{1} to $u_{1} u$. Hence $Q_{0}=Q_{0}^{x} \leq Q_{u_{1}}^{x}=Q_{u_{1} u}$. Thus $Q_{0} \leq Q_{u}$ for all $u \in U^{\#}$.

We now switch back to the case $G=M$. Our goal is to classify all singular subgroups in M up to conjugation. Notice that Proposition 3.2 means that the perpendicularity relation on 2-central involutions in M is nontrivial, that is, there exist singular subgroups of size more than two. We start by getting the details of the perpendicularity relation in M. For that we need to know the fusion of involutions in Q. Let $\bar{C}=C / Z$, where $Z=\langle z\rangle$. Recall that the classes of involutions in \bar{C} were determined in Section 2.

Lemma 4.4 The group C has exactly two classes of involutions $x \neq z$, contained in Q. If q_{2} and q_{4} are representatives of those classes then $C_{C}\left(q_{2}\right) \sim$ $2^{1+23} . C_{o}$ and $C_{C}\left(q_{4}\right) \sim 2^{1+23} .\left(2^{11}: M_{24}\right)$. Furthermore, q_{4} is 2 -central and q_{2} is not.

Proof: For $x \in Q \backslash Z$, the mapping $\bar{x} \mapsto x^{2}$ defines a nondegenerate quadratic form g on \bar{Q}. Since the action of $C / Q \cong C o_{1}$ on \bar{Q} is absolutely irreducible, g is unique and hence g is equivalent to the form q existing on
$\hat{\Lambda}=\Lambda / 2 \Lambda$ (cf. Section 2). The form q is zero on $\hat{\Lambda}_{2}$ and $\hat{\Lambda}_{4}$, and it is nonzero on $\hat{\Lambda}_{3}$. This means that x is an involution if and only if \bar{x} belongs to the class $2 e_{2}$ or $2 e_{4}$. The involutions x and $x z$ are conjugate in Q, because Q is extraspecial. Combined with Lemma 2.7, this establishes the first two claims of the lemma.

According to Proposition 3.2, at least one of q_{2} and q_{4} is conjugate to z in G. So, to complete the proof of the lemma, it suffices to show that $x=q_{2}$ is not 2-central. Suppose that $x \in \mathcal{S}$. Let $D=C_{C}(x)=C \cap C_{x}$ and $R=Q \cap Q_{x}$. From the structure of D (see above), it is clear that $R=$ $O_{2}(D) \sim 2^{1+23}$. Since $R \leq Q$, we have that $[R, R]=Z$. Symmetrically, since $R \leq Q_{x}$ we have that $[R, R]=\langle x\rangle$, implying that $z=x$, a contradiction.

In particular, if a 2 -central involution $y \neq z$ is perpendicular to z then y is conjugate in C to $x=q_{4}$. This lemma implies that every singular subgroup $U \sim 2^{2}$ in M is conjugate to $\left\langle z, q_{4}\right\rangle$. So there is only one conjugacy class of such subgroups.

Lemma 4.5 Let $U \sim 2^{2}$ be singular. Then $W=Q_{U} / U \sim 2^{11}$ and $C_{M}(U)$ induces on W a group M_{24} acting as on the Todd module. Under the identification of W with the Todd module, the images of 2 -central involutions from $Q_{U} \backslash U$ correspond to sextets, while the images of non 2-central involutions correspond to pairs.

Proof: Without loss of generality, $U=\langle z, x\rangle$, where $x=q_{4}$. Let $D=$ $C \cap C_{x}=C_{M}(U)$ and $R=Q \cap Q_{x}$. Notice that by Lemma 4.3 we have $R=Q_{U}$. Recall that $\bar{Q}=Q / Z$ affords a quadratic form g defined by $\bar{y} \mapsto y^{2}$. By Lemma 4.2 (4), Q_{U} is elementary abelian. In particular, \bar{R} is a totally singular subspace with respect to g. This implies that $|\bar{R}| \leq 2^{12}$, and hence $|R| \leq 2^{13}$. On the other hand, both $C \cap Q_{x}$ and $C_{x} \cap Q$ have order 2^{24} and they are normal in D. Since $\left(C \cap Q_{x}\right) \cap\left(C_{x} \cap Q\right)=R$, the order of $\left(C \cap Q_{x}\right)\left(C_{x} \cap Q\right)$ is at least $2^{24+24-13}=2^{35}=\left|O_{2}(D)\right|$ (see Lemma 4.4 for the structure of $D)$. Hence $|R|=2^{13}$.

It follows that \bar{R} is a 12 -dimensional subspace in \bar{Q} invariant under the monomial group $D / Q \sim 2^{11}: M_{24}$. Such a subspace is known to be unique. Identifying \bar{Q} with $\hat{\Lambda}$ and assuming that \bar{x} is the image of the standard frame, we get that $\bar{R} \#$ consists of the images of the vectors of the shape $\pm 8^{1} 0^{23}(\bar{x}), \pm 4^{2} 0^{22}$ ($\hat{\Lambda}_{2}$, non 2-central), and $\pm 4^{4} 0^{20}$ ($\hat{\Lambda}_{4}, 2$-central). Each pair of coordinates gives four vectors of the second kind, mapping onto two elements in $\bar{R} \cap \hat{\Lambda}_{2}$. These two elements of \bar{R} sum up to \bar{x}. Similarly, every sextet produces 96 vectors of the third kind (two frames), mapping onto two elements in $\bar{R} \cap \hat{\Lambda}_{4}$. These two elements of \bar{R} again sum up to
\bar{x}. Thus, in $R / U \cong \bar{R} /\langle\bar{x}\rangle$, the nonidentity elements correspond simply to pairs and sextets. By Lemma 4.4, the elements from $R / U^{\#}$ corresponding to pairs (respectively, sextets) are the images of non 2-central (respectively, 2-central) involutions from $R \backslash U$.

For the record, the normalizer of a singular subgroup $U \sim 2^{2}$ is now known to be an extension of a normal 2 -subgroup of order 2^{35} by $S_{3} \times M_{24}$. (The latter being the action of $N_{M}(U)$ on $U \times Q_{U} / U$.)

In the above proof, if we do not assume that \bar{x} is the image of the standard frame then the condition for \bar{y} to be in \bar{R} looks as follows: Let $\left\{v_{i}\right\}$ be the frame corresponding to \bar{x} (i.e., $\hat{v}_{i}=\bar{x}$ and $v_{i} \in \Lambda_{4}$ for all i) and let u be a short vector in Λ (i.e., a vector from $\left.\Lambda_{2} \cup \Lambda_{3} \cup \Lambda_{4}\right)$ such that $\bar{v}=\hat{y}$. Then $\bar{y} \in \bar{R}$ if and only if $\left(v_{i}, y\right) \in\{0, \pm 4, \pm 8\}$ for all i. When $\left\{v_{i}\right\}$ is the standard frame, this corresponds to the statement in the above proof about the shapes of the vectors mapping into \bar{R}.

Combining Lemma 4.2 (3) with the fact that M_{24} acts transitively on pairs and on sextets, we obtain the following.

Corollary 4.6 If $U \cong 2^{2}$ is singular then $C_{M}(U)$ has exactly two conjugacy classes in $Q_{U} \backslash U$, one consisting of non 2 -central involutions, and one other consisting of 2-central involutions.

Since $Q_{U} \backslash U$ contains a unique class of 2-central involutions, M has exactly one conjugacy class of singular subgroups 2^{3}.

Before we proceed further we need to understand better the perpendicularity relation among the elements in $Q_{U} \backslash U$, where U is a singular subgroup 2^{2}. For a non 2-central (respectively, 2-central) involution $y \in Q_{U} \backslash U$, let $P(y)$ (respectively, $S(y)$) be the pair (respectively, sextet) corresponding to $y U \in Q_{U} / U$.

We say that two sextets S_{1} and S_{2} intersect evenly if $\left|T_{1} \cap T_{2}\right|$ is even for all tetrads $T_{1} \in S_{1}$ and $T_{2} \in S_{2}$. Suppose T_{1} and T_{2} are two tetrads and suppose $\left|T_{1} \cap T_{2}\right|=2$. Then the sextets defined by T_{1} and T_{2} intersect evenly if and only if $T_{1} \cup T_{2}$ is contained in an octad. This allows us to compute that every sextet evenly intersects exactly 90 other sextets.

Lemma 4.7 Let $U \sim 2^{2}$ be singular. Suppose $y, t \in Q_{U} \backslash U$, and suppose y is 2 -central. Then
(1) if t is non 2 -central then $t \in Q_{y}$ if and only if $P(t)$ is contained in one of the tetrads from $S(y)$; and
(2) if t is 2 -central then $t \in Q_{y}$ if and only if $S(t)$ and $S(y)$ intersect evenly.

Proof: Assume again that $U=\langle z, x\rangle$, where $x=q_{4}$. Let $\left\{v_{i}\right\}$ be the frame in Λ that corresponds to \bar{y} and let u be a short vector in Λ such that \hat{u} corresponds to \bar{t}. Then the vectors v_{i} are of the shape $\pm 4^{4} 0^{20}$, where the nonzero coordinates appear in a tetrad from the sextet $S(y)$. Similarly, u is of shape $\pm 4^{2} 0^{22}$ (respectively, $\pm 4^{4} 0^{20}$) with the nonzero coordinates appearing in the pair $P(t)$ (respectively, sextet $S(t)$) if t is non 2-central (respectively, 2-central). According to the remark after the proof of Lemma 4.5 we have $t \in Q_{y}$ if and only if $\left(v_{i}, u\right) \in\{0, \pm 4, \pm 8\}$ for all i. The claim of the lemma follows.

One implication of Corollary 4.6 is that M contains exactly one conjugacy class of singular subgroups 2^{3}. Indeed, pick a 2 -central involution $y \in Q_{\langle z, x\rangle} \backslash\langle z, x\rangle$. Then every singular subgroup 2^{3} is conjugate to $\langle z, x, y\rangle$.

Lemma 4.8 Let $U \sim 2^{3}$ be singular. Then $W=Q_{U} / U \sim 2^{6}$ and $C_{M}(U)$ induces on W a group $3 \cdot S_{6}$ that acts on W irreducibly. Furthermore, $N_{M}(U)$ has two orbits on $W^{\#}$: an orbit of length 18 (images of non 2central involutions from $Q_{U} \backslash U$) and an orbit of length 45 (images of 2central involutions).

Proof: Without loss of generality, $U=\langle z, x, y\rangle$. We set $U_{0}=\langle z, x\rangle$ and $V=\tilde{Q}_{U_{0}} / U_{0}$. According to Lemma 4.5, $C_{M}\left(U_{0}\right)$ induces on V a group M_{24} acting on V as on the Todd module. Let $S=S(y)$ be the sextet corresponding to \tilde{y} under the identification of V with the Todd module. According to Lemma 4.7, $\tilde{Q}_{U}^{\#}$ consists of elements corresponding to pairs contained in the tetrads of S and to sextets evenly intersecting S. By counting, $\tilde{Q}_{U}^{\#}$ consists of 91 sextets (including S) and 36 pairs. Hence $\left|\tilde{Q}_{U}\right|=2^{7}$. This means that $\left|Q_{U} / U\right|=2^{6}$. Furthermore, $\left(Q_{U} / U\right)^{\#}$ contains 45 (respectively, 18) elements that are images of 2-central (respectively, non 2-central) involutions.

Recall that $C_{M}\left(U_{0}\right)$ induces on V a group M_{24}. The stabilizer of S in the latter group is a subgroup $2^{6}: 3 \cdot S_{6}$. Let $D=N_{M}(U) \cap C_{M}\left(U_{0}\right)$ be the full preimage in $C_{M}\left(U_{0}\right)$ of the stabilizer of S. According to Lemma 4.2 (2), $N_{M}(U) \cap N_{M}\left(U_{0}\right)$ induces on $U \backslash U_{0}$ a group S_{4}. Since D is normal in $N_{M}(U) \cap N_{M}\left(U_{0}\right)$ and since $C_{M}(U)$ is the kernel of the action of D on $U \backslash U_{0}$, we conclude that $C_{M}(U)$ induces the whole sextet stabilizer $2^{6}: 3 \cdot S_{6}$ in its action on V. Thus, it induces a quotient of $2^{6}: 3 \cdot S_{6}$ on Q_{U} / U. Let $a \in C_{M}(U)$ be a 3 -element mapping into the normal 3 -subgroup of the quotient $3 \cdot S_{6}$. Consider the action of a on V. Clearly, a stabilizes every
tetrad in the sextet S. Let S^{\prime} be a sextet evenly intersecting S. Observe that every tetrad from S meets exactly two tetrads from S^{\prime}. Being a 3element, if a stabilizes S^{\prime} then it must stabilize it tetradwise. However, in that case a stabilizes every part of a partition of $\{1, \ldots, 24\}$ into 12 pairs (intersections of tetrads from S with tetrads from S^{\prime}), which makes a to act on $\{1, \ldots, 24\}$ trivially. This contradiction shows that a cannot stabilize S^{\prime} and hence a acts nontrivially on Q_{U} / U. Therefore, $C_{M}(U)$ induces on Q_{U} / U either $2^{6}: 3 \cdot S_{6}$ or $3 \cdot S_{6}$.

It is easy to see that the stabilizer of S in M_{24} acts transitively on pairs contained in tetrads from S and on sextets evenly intersecting S. Consequently, $C_{M}(U)$ has orbits of size 18 and 45 on Q_{U} / U. This makes the action on Q_{U} / U irreducible, implying that the group induced by $C_{M}(U)$ is in fact $3 \cdot S_{6}$.

For the record, this lemma and Lemma $4.2(2)$ imply that $N_{M}(U)$, where U is a singular subgroup 2^{3}, is an extension of a normal subgroup of order 2^{39} by $L_{3}(2) \times 3 \cdot S_{6}$.

Also, let us record what we proved about the classes of 2-central and non 2-central involutions in Q_{U}.

Corollary 4.9 If $U \cong 2^{3}$ is singular then $C_{M}(U)$ has exactly two conjugacy classes in $Q_{U} \backslash U$, one consisting of non 2-central involutions, and one other consisting of 2-central involutions.

Proof: Follows from Lemma 4.2 (3).
In particular, M contains a unique conjugacy class of singular subgroups 2^{4}.

Lemma 4.10 Let $U \sim 2^{4}$ be singular. Then $W=Q_{U} / U \sim 2^{3}$. Furthermore, $W^{\#}$ contains exactly three elements that are images of non 2-central involutions, and these three elements generate W. The group $C_{M}(U)$ induces on W a group S_{3}.

Proof: Without loss of generality, $U \geq U_{0}=\langle z, x\rangle$, say, $U=\langle z, x, y, t\rangle$. We will work with the Todd module $V=\tilde{Q}_{U_{0}}=Q_{U_{0}} / U_{0}$. Let $S=S(y)$ and $S^{\prime}=S(t)$. If $s \in Q_{U} \backslash U$ is a non 2-central involution then $P(s)$ is contained in a tetrad from S and in a tetrad from S^{\prime}. Hence $T(s)$ must be one the twelve pairs P_{1}, \ldots, P_{12} (partitioning $\{1, \ldots, 24\}$) that are intersections of tetrads from S with tetrads from S^{\prime}. This proves that Q_{U} / U contains exactly three involutions that are images of non 2-central involutions. (Indeed, the twelve involutions in \tilde{Q}_{U} merge into three involutions in Q_{U} / U.)

Let us be more specific. Since S and S^{\prime} intersect evenly, there is a unique trio $T:=\left\{O_{1}, O_{2}, O_{3}\right\rangle$ of which both S and S^{\prime} are refinements (we view trios and sextets as partitions of $\{1, \ldots, 24\}$). Then every O_{i} is a union of some four pairs P_{j}. It is easy to see that pairs P_{j} and P_{k} produce the same element in Q_{U} / U if and only if they are contained in the same octad O_{i}. Thus, the octads O_{i} correspond to the "non 2-central" elements $a_{i} \in Q_{U} / U$. Clearly, the stabilizer of S and S^{\prime} in M_{24} induces an S_{3} on the trio T. Hence also $N_{M}(U)$ induces an S_{3} on the three involutions a_{i}. Furthermore, since $N_{M}(U)$ induces a simple group $L_{4}(2)$ on U, we also have that $C_{M}(U)$ induces an S_{3} on the a_{i} 's. It remains to see that they are linearly independent and generate Q_{U} / U.

Observe that if P_{j} and P_{k} belong to distinct octads O_{i} then the sum (we switch to the additive notation in V and Q_{U} / U) of the elements from V corresponding to P_{j} and P_{k} is of sextet type and, furthermore, that sextet is not a refinement of T. This means that the sum of two distinct involutions a_{i} is nontrivial and "2-central". This implies the linear independence. Let b be an arbitrary "2-central" element from $\left(Q_{U} / U\right)^{\#}$, say, it is the image of an element of V that corresponds to a sextet $S^{\prime \prime}=\left\{R_{1}, \ldots, R_{6}\right\}$. Observe that $S^{\prime \prime}$ evenly intersects both S and S^{\prime}. In particular, $\left|O_{i} \cap R_{j}\right|$ is even for all i and j. Suppose for some i and j we have $\left|O_{i} \cap R_{j}\right|=2$. (We will say that such an $S^{\prime \prime}$ is of the first kind.) Observe that O_{i} is a union of some four pairs P_{k}. If R_{j} meets two of these pairs then R_{j} meets a tetrad from S or from S^{\prime} in just one point, a contradiction. Hence, $O_{i} \cap R_{j}$ coincides with some P_{k}. Similarly, considering a nontrivial intersection of R_{j} with some other $O_{i^{\prime}}$ we obtain that R_{j} contains a second pair $P_{k^{\prime}}$ and hence b is the sum of two of the a_{i} 's. It remains to consider the case where $\left|O_{i} \cap R_{j}\right| \in\{0,4\}$ for all i and j, that is, every R_{j} is fully contained in some O_{i}. (Then we will say that $S^{\prime \prime}$ is of the second kind.) Fix O_{i} and R_{j} with $R_{j} \subset O_{j}$. If $P_{k} \subset R_{j}$ then $b+a_{i}$ is "non 2-central", which means that $R_{j} \backslash P_{k}=P_{k^{\prime}}$. However, since P_{k} and $P_{k^{\prime}}$ are both in O_{i}, we get $b=a_{i}+a_{i}=0$, a contradiction. Therefore, R_{i} meets each of the four pairs P_{k} partitioning O_{i} in one point. Fix $P_{k} \subset O_{i}$ and consider $c=b+a_{i}$. Then one of the preimages of c in V will correspond to the sextet $S^{\prime \prime \prime}$ containing the tetrad $R_{j} \triangle P_{k}(\triangle$ denotes symmetric difference of sets). If $S^{\prime \prime \prime}$ is of the second kind then $S^{\prime \prime \prime}$ contains a tetrad contained in $O_{i^{\prime}} \neq O_{i}$. That tetrad of $S^{\prime \prime \prime}$ will meet some tetrad of $S^{\prime \prime}$ in at least two points. This gives us two octads meeting in five points, a contradiction. Therefore, $S^{\prime \prime \prime}$ is of first kind. By the above, c is in the span of a_{i} 's and hence so is also b.

We will continue using the notation a_{i} for the three "non 2-central"
elements from Q_{U} / U. According to Lemma 4.10, $C_{M}(U)$ has three orbits on $\left(Q_{U} / U\right)$ ": $\left\{a_{1}, a_{2}, a_{3}\right\}$ ("non 2-central"), $\left\{a_{1}+a_{2}, a_{1}+a_{3}, a_{2}+a_{3}\right\}$ (" 2 central", sextets of the first kind), and $\left\{a_{1}+a_{2}+a_{3}\right\}$ ("2-central", sextets of the second kind).

We record this as the following
Corollary 4.11 If $U \cong 2^{4}$ is singular then $C_{M}(U)$ has exactly three conjugacy classes in $Q_{U} \backslash U$, two consisting of 2-central involutions, and one other consisting of non 2-central involutions.

For the record, the normalizer of a singular subgroup $U \sim 2^{4}$ is an extension of a normal subgroup of order 2^{39} by $L_{4}(2) \times S_{3}$.

It follows from Corollary 4.11 that M contains two conjugacy classes of singular subgroups 2^{5}. One of these two classes is represented by $\langle z, x, y, t, s\rangle$ with the image of s in $Q_{\langle z, x, y, t\rangle} /\langle z, x, y, t\rangle$ being $a_{1}+a_{2}$, while for the other the image of s can be chosen as $a_{1}+a_{2}+a_{3}$. We will write "a singular subgroup $2_{1}^{5 "}$ (respectively, 2_{2}^{5}) for the two types of singular subgroups 2^{5}.

We will need the following corollary of Lemma 4.11.
Corollary 4.12 Every singular subgroup 2^{4} is contained in exactly three singular subgroups 2_{1}^{5} and a unique singular subgroup 2_{2}^{5}.

To complete the classification of singular subgroups of M we need to discuss perpendicularity between the elements of $Q_{U} \backslash U$.

Lemma 4.13 Suppose $U \sim 2^{4}$ is singular. Let s and r be two elements from $Q_{U} \backslash U$, whose images in Q_{U} / U are distinct. If s is 2 -central and $r \in Q_{s}$ then the image of s is $a_{i}+a_{j}$ for some i and j. Furthermore, the image of r is either a_{i} or a_{j}.

Proof: Without loss of generality, $U=\langle z, x, y, t\rangle$ as in lemma 4.10. Since $r \in Q_{s}$, we have that r and $r s$ are both 2-central or both non 2-central. This implies that the image of s cannot be $a_{1}+a_{2}+a_{3}$. Hence the image of s coincides with some $a_{i}+a_{j}$. Next, it is easy to see that if r^{\prime} maps onto a_{i} or a_{j} then $r^{\prime} \in Q_{s}$. Since no element mapping onto $a_{1}+a_{2}+a_{3}$ can be in Q_{s}, we conclude that the image of $Q_{s} \cap Q_{U}$ in Q_{U} / U coincides with $\left\langle a_{i}, a_{j}\right\rangle$.

The information in Lemma 4.13 allows us to determine Q_{U} for singular subgroups $U \sim 2^{5}$.

Lemma 4.14 The following hold.
(1) If U is singular 2_{1}^{5} then Q_{U} / U is of order two. Furthermore, all involutions in $Q_{U} \backslash U$ are non 2-central.
(2) If U is singular 2_{2}^{5} then $Q_{U}=U$.

Proof: Follows from Lemma 4.13.
For the record, the normalizer of a singular 2_{1}^{5} is an extension of a subgroup of order 2^{36} by $L_{5}(2)$, while the normalizer of a singular 2_{2}^{5} is an extension of a subgroup of order $2^{36} 3$ by $L_{5}(2)$.

Lemma 4.14 means that M contains no singular subgroups of order more than 2^{5} and so we have completed the classification of the singular subgroups in M.

Proposition 4.15 The Monster group M contains exactly 6 classes of nontrivial singular subgroups. The corresponding orders are $2,2^{2}, 2^{3}, 2^{4}, 2^{5}$ and 2^{5}.

Let $\mathcal{S}_{i}, 1 \leq i \leq 4$, denote the conjugacy class of all singular subgroups 2^{i} of M. For $i=5$, we will use the notation $\mathcal{S}_{5,1}$ and $\mathcal{S}_{5,2}$ for the conjugacy classes of singular subgroups 2_{1}^{5} and 2_{2}^{5}, respectively.

Notice that in this section we only indicated the order of the normalizers of singular subgroups and their action on $U \times Q_{U} / U$. A more detailed information about the structure of these 2-local subgroups can be found in the appendix.

5 Arks

From this section on, $G=M$, the Monster simple group. In this section we construct and study a class of subgroups 2^{10} of M, associated with singular subgroups.

Let U be a singular subgroup 2_{1}^{5}. According to Lemma 4.12, every index two subgroup of U is contained in a unique singular 2_{2}^{5}. Let $\mathcal{A}=\left\{U^{\prime} \in\right.$ $\left.\mathcal{S}_{5,2}\left|\left[U: U \cap U^{\prime}\right]\right|=2\right\}$ and let $A(U)$, the ark defined by U, be the subgroup of M generated by all $U^{\prime} \in \mathcal{A}$. Clearly, $A(U)$ is invariant under $N_{M}(U)$.

Lemma 5.1 The ark $A(U)$ is elementary abelian of order 2^{10}. Furthermore, U and $A(U) / U$ are dual to each other as modules for $N_{M}(U)$.

Proof: Suppose $U^{\prime}, U^{\prime \prime} \in \mathcal{A}$ with $U^{\prime} \neq U^{\prime \prime}$. Then $W=U^{\prime} \cap U^{\prime \prime} \cap U$ is a singular subgroup 2^{3}. Since $U^{\prime}, U^{\prime \prime} \leq Q_{W}$ and since Q_{W} is elementary
abelian by Lemma 4.2 (4), we have that U^{\prime} and $U^{\prime \prime}$ commute elementwise and, therefore, $A=A(U)$ is elementary abelian.

Consider $\bar{A}=A / U$. If $U^{\prime} \in \mathcal{A}$ then \bar{U}^{\prime} is of order two. This yields a mapping $V \mapsto \bar{a}_{V}$ from the set of index 2 subgroups $V<U$ to $\bar{A}^{\#}$. Namely, $\left\langle\bar{a}_{V}\right\rangle=\bar{U}^{\prime}$, where $U^{\prime} \in \mathcal{A}$ is the only singular 2_{1}^{5} containing V. Clearly, the elements \bar{a}_{V} generate \bar{A}. Furthermore, the subgroups V correspond to the elements in $\left(U^{*}\right)^{\#}$, where U^{*} is the dual of U. Therefore, in order to complete the proof of this lemma it suffices to establish the three-term relations: $\bar{a}_{V_{1}} \bar{a}_{V_{2}} \bar{a}_{V_{3}}=1$ whenever V_{1}, V_{2} and V_{3} are three index two subgroups of U, containing a given index four subgroup $W<U$.

Consider $\hat{Q}_{W}=Q_{W} / W$. According to Lemma 4.8, \hat{Q}_{W} is 6-dimensional (as a vector space over $G F(2)$) and $C_{M}(W)$ induces on \hat{Q}_{W} a group $3 \cdot S_{6}$. Let $x \in C_{M}(W)$ be a 3-element that maps onto a nontrivial element in the center of that action. Let V be a singular subgroup 2^{4} containing W. Then \hat{V} is of order two, and we claim that if U^{\prime} is the unique singular 2_{2}^{5} containing V then $\hat{U}^{\prime}=\hat{V} \hat{V}^{x}$. Indeed, on the one hand, each of the 45 (cf. Lemma 4.8) subgroups V is contained in a unique U^{\prime}. On the other hand, each U^{\prime} contains three subgroups V. Therefore, W is contained in exactly 15 singular subgroups 2_{2}^{5}. It follows that each of them is invariant under x, since S_{6} cannot nontrivially act on $15 / 3=5$ points. This proves our claim.

We can now finish the proof of the lemma. Suppose V_{1}, V_{2} and V_{3} are the three index two subgroups of U, containing W. Let $U_{i}^{\prime}, i=1,2,3$, be the unique singular 2_{2}^{5} containing V_{i}. Working again in $\hat{Q}_{W}=Q_{W} / W$, we obtain that the image of $\left\langle U_{1}^{\prime}, U_{2}^{\prime}, U_{3}^{\prime}\right\rangle$ in \hat{Q}_{W} coincides with $\hat{U} \hat{U}^{x}$, since $\left\langle V_{1}, V_{2}, V_{3}\right\rangle=U$. Thus, $\left\langle\bar{a}_{V_{1}}, \bar{a}_{V_{2}}, \bar{a}_{V_{3}}\right\rangle=\left\langle U_{1}^{\prime}, U_{2}^{\prime}, U_{3}^{\prime}\right\rangle / U$ is of order four and hence $\bar{a}_{V_{1}} \bar{a}_{V_{2}} \bar{a}_{V_{3}}=1$ holds.

Let $U \in \mathcal{S}_{5,1}$ and let $\mathcal{A}, A=A(U)$ and $\bar{A}=A / U$ be as above.
Lemma 5.2 The following hold.
(1) If $a \in A \backslash U$ then $\langle U, a\rangle=\left\langle U, U^{\prime}\right\rangle$ for some $U^{\prime} \in \mathcal{A}$. In particular, every coset of U in A contains a 2-central involution.
(2) If $a \in A \backslash U$ is 2 -central then $U \cap Q_{a}$ is of index two in U. Furthermore, au (where $u \in U$) is 2-central if and only if $u \in U \cap Q_{a}$.

Proof: Part (1) follows directly from Lemma 5.1. Let $U^{\prime} \in \mathcal{A}$ be such that $\langle U, a\rangle=\left\langle U, U^{\prime}\right\rangle$. Then $\langle U, a\rangle \leq Q_{W}$, where $W=U \cap U^{\prime}$. Since perpendicularity is symmetric, we have that $W \leq Q_{a}$. On the other hand, $U \not \leq Q_{a}$, because otherwise $\langle U, a\rangle$ must be singular in view of Lemma 4.3.

Thus, $U \cap Q_{a}=W$ is of index two in U. Clearly, $\langle W, a\rangle$ is a singular subgroup; in particular, $a u$ is singular if $u \in W$. Comparing now with Lemma 4.10, we see that all elements in $\langle U, a\rangle \backslash\left(U \cup U^{\prime}\right)$ are non 2-central. Consequently, $a \in U^{\prime}$ (and hence $U^{\prime}=\langle W, a\rangle$) and $a u$ is non 2-central for all $u \in U \backslash W$.

It follows from this lemma that A contains exactly $31 \cdot 16=496$ non 2 -central and $31+31 * 16=527$ 2-central involutions. Moreover, all non 2 -central involutions in A are conjugate to q_{2}. Also notice that both non 2 -central and 2 -central involutions generate A.

Next, we analize the embedding of the ark $A=A(U)$ in C_{u} for $u \in U^{\#}$. First of all, we claim that Lemma 5.2 implies that $A \cap Q_{u}$ has index two in A. Indeed, u is contained in 15 subgroups $W=U \cap U^{\prime}, U^{\prime} \in \mathcal{A}$, and hence $\overline{A \cap Q_{u}}$ is of order 16. Let $a \in A \backslash\left(A \cap Q_{u}\right)$. Since A is generated by 2-central involutions, we can choose a to be 2-central.

Lemma 5.3 We have $A \cap Q_{u}=\left[Q_{u}, a\right]$ and the image of a in $C_{u} / Q_{u} \cong C o_{1}$ is a 2A-involution.

Proof: Notice that Q_{u} normalizes U and hence it also normalizes A. Therefore, $\left[Q_{u}, A\right] \leq A \cap Q_{u}$. If the image of a in $C o_{1}$ is of type $2 B$ or $2 C$ then Lemmas 2.5 and 2.6 imply that $\left|\left[Q_{u}, a\right]\right| \geq 2^{12}$, a contradiction. Hence, the image of a is of type $2 A$. Furthermore, it follows from Lemma 2.4 that $\left[Q_{u}, a\right]\langle u\rangle /\langle u\rangle$ is of order 2^{8}, implying that $\left[Q_{u}, a\right]\langle u\rangle=A \cap Q_{u}$. Since $\left[Q_{u}, a\right]$ is normal in Q_{u}, it contains u and hence $\left[Q_{u}, a\right]=A \cap Q_{u}$.

$$
\text { Let } D=N_{C_{u}}\left(Q_{u}\langle a\rangle\right) \sim 2^{1+24} \cdot 2^{1+8} . \Omega_{8}^{+}(2) . \text { Let } \bar{C}_{u}=C_{u} /\langle u\rangle \text {. }
$$

Lemma 5.4 A is normal in D.
Proof: Let $R=\left\langle Q_{u}, a\right\rangle$. Then \bar{R} is normal in \bar{D}. Observe that \bar{R} has exactly two maximal elementary abelian subgroups: \bar{Q}_{u} and $\bar{R}_{0}=\left\langle C_{\bar{Q}_{u}}(\bar{a}), \bar{a}\right\rangle$. Since Q_{u} is normal in D, we conclude that R_{0} (defined as the full preimage of \bar{R}_{0} in D) is also normal in D. We claim that $A=Z\left(R_{0}\right)$. Indeed, clearly, $A \cap Q_{u}=\left[Q_{u}, a\right]$ is the center of $R_{0} \cap Q_{u}$, because Q_{u} is extraspecial and because $\overline{R_{0} \cap Q_{u}}=C_{\bar{Q}_{u}}(\bar{a})$. Hence, it remains to see that $\left[R_{0} \cap Q_{u}, a\right]=1$. However, this is clear: since \bar{R}_{0} is abelian, we have that $\left[R_{0} \cap Q_{u}, a\right] \leq\langle u\rangle$; on the other hand, by Lemma 5.2 (2), the involution $a u$ is not 2-central. Hence u cannot be written as a commutator $[r, a]$ for $r \in R$. Since R_{0} is normal in D and $A=Z\left(R_{0}\right)$, we finally obtain that A is normal in D.

Let $N=N_{M}(A)$.

Corollary 5.5 The action of N on A is irreducible. In particular, $A=$ $\left\langle u^{N}\right\rangle$.

Proof: According to Lemma 5.1, A has two 5-dimensional composition factors as a module for $N_{M}(U) \leq N$. On the other hand, it follows from Lemmas 5.4, 5.3 and 2.4 that A has composition factors of dimensions 1,8 and 1 as a module for $D \leq N$.

In view of this lemma we can assume that a is conjugate to u in N. Let $A_{0}=A \cap Q_{a} \cap Q_{u}$. Notice that $A_{0} \sim 2^{8}$.

Lemma 5.6 We have $C_{D}(\langle a, u\rangle) \sim 2^{10} .2^{16} . \Omega_{8}^{+}(2)$. In particular, \bar{a} is of type $2 a_{1}$ in \bar{C}_{u} (cf. Section 2) and $C_{D}(\langle a, u\rangle)=C_{a} \cap C_{u}$. Furthermore, $C_{a} \cap C_{u}$ induces on A_{0} a group $\Omega_{8}^{+}(2)$ acting as on a halfspin module.

Proof: Since $A \cap Q_{u}=\left[Q_{u}, a\right]$, the orbit of a under Q_{u} consists of at least 2^{8} elements. On the other hand, if a^{\prime} is a 2 -central involution in $A \backslash Q_{u}$ then $a^{\prime} u$ is non 2 -central by Lemma 5.2. Therefore, $A \backslash\left(A \cap Q_{u}\right)$ consists of exactly $2^{8} 2$-central and 2^{8} non 2 -central involutions. Furthermore, all 2central (respectively, non 2-central) involutions in $A \backslash\left(A \cap Q_{u}\right)$ are conjugate by Q_{u}.

This shows that $Q_{u} C_{D}(\langle a, u\rangle)=D$. Comparing with Lemma 2.4 we obtain that $C_{D}(\langle a, u\rangle) \sim 2^{10} .2^{8} .2^{8} . \Omega_{8}^{+}(2)$. Notice that the two 8-dimensional chief factors (again, see Lemma 2.4) provide nonisomorphic modules for the quotient $\Omega_{8}^{+}(2)$. Therefore, $O_{2}\left(C_{D}(\langle a, u\rangle)\right) / A$ is elementary abelian and so we can record the structure of $C_{D}(\langle a, u\rangle)$ as $2^{10} .2^{16} . \Omega_{8}^{+}(2)$.

Comparing with Lemmas 2.10 and 2.11, we see that \bar{a} must be of type $2 a_{1}$ and that $C_{D}(\langle a, u\rangle)=C_{a} \cap C_{u}$. Clearly, A_{0} is invariant under $C_{a} \cap C_{u}$. Since $x \mapsto \bar{x}$ establishes an isomorphism between A_{0} and $\left[\bar{Q}_{u}, a\right]$, the last claim follows from Lemma 2.4 (2).

Define a mapping $f: A \longrightarrow G F(2)$ as follows: for $x \in A, f(x)=0$ if and only if x is the identity or a 2 -central involution.

Lemma 5.7 The mapping f is a nondegenerate quadratic form of plus type.
Proof: We will switch to the additive notation in A. Decompose A as $A=\langle a, u\rangle \oplus A_{0}$. Then the restriction of f on $\langle a, u\rangle$ is a plus type form, because $a u$ is non 2 -central. It was shown in the preceding lemma that $C_{a} \cap C_{u}$ induces on A_{0} a group $\Omega_{8}^{+}(2)$ acting as on a halfspin module (which is a triality conjugate of the natural module). In particular, $C_{a} \cap C_{u}$ has two orbits on $A_{0}^{\#}$, of length 120 and 135. Thus, in order to show that the
restriction of f to A_{0} is a quadratic form of plus type it suffices to show that A_{0} contains exactly 120 non 2 -central involutions. However, this is clear. Indeed, by Lemma 5.2, each of the 15 cosets $a^{\prime}+\left(U \cap A_{0}\right)=a^{\prime}+\left(U \cap Q_{u}\right)$, with $a^{\prime} \in A_{0} \backslash\left(U \cap Q_{u}\right)$, contains exactly eight 2-central and eight non 2central involutions. We have shown that the restriction of f on A_{0} is also a plus type form.

It remains to verify the values of f on the elements $x+y, x \in\langle a, u\rangle^{\#}$ and $y \in A_{0}$. If $x=a$ or u then $f(x+y)=f(y)$ because y and $x+y$ are conjugate in Q_{x}. In view of Lemma 5.6, $C_{a} \cap C_{u}$ has orbits of length 120 and 135 on the set $a+u+A_{0}^{\#}$. Since the total number of non 2-central involutions in A is known to be 496, we compute that among the elements in $a+u+A_{0}^{\#}$ there are exactly 135 non 2-central involutions and 1202 -central involutions. Hence $f(a+u+y)=1+f(y)$ for all $y \in A_{0}^{\#}$.

We can now pin down the structure of $N=N_{M}(A)$. Let $P_{A}=O_{2}(N)$.
Lemma 5.8 We have $N \sim 2^{10+16} . \Omega_{10}^{+}(2)$. In particular, $P_{A}=C_{M}(A) \sim$ 2^{10+16}.

Proof: First of all, Lemma 5.6 yields that $C_{M}(A)$ is an extension of A by a group 2^{16}, i.e., $C_{M}(A) \sim 2^{10+16}$. Consider now the action of N on A. Clearly, N leaves the form f invariant. So $N / C_{M}(A)$ is isomorphic to a subgroup of $O_{10}^{+}(2)$. We claim that it is isomorphic to $\Omega_{10}^{+}(2)$. Indeed, observe that D and $N_{M}(U)$ share a Sylow 2-subgroup T (indeed, the 2-parts of the orders of D and $N_{M}(U)$ coincide and hence as T we can take a Sylow 2-subgroup of $N_{M}(U)$ centralizing u). Consider an index two subgroup in U invariant under T and the unique singular 2_{2}^{5}, say U^{\prime}, containing that subgroup. Both U and U^{\prime} are maximal totally singular with respect to f and T leaves invariant both U and U^{\prime}. This yields that the image of T lies in $\Omega_{10}^{+}(2)$ and, moreover, the images of D and $N_{M}(U)$ lie in $\Omega_{10}^{+}(2)$, too. Comparing the orders we obtain that they are two maximal parabolics in $\Omega_{10}^{+}(2)$. Therefore, $N / C_{M}(A)$ is either $\Omega_{10}^{+}(2)$ or $O_{10}^{+}(2)$. It remains to notice that $N / C_{M}(A) \cong O_{10}^{+}(2)$ is impossible, because U and U^{\prime} are not conjugate.

For $x \in A^{\#}$, let x^{\perp} be the orthogonal complement of $\langle x\rangle$ with respect to the symplectic form $\left(x_{1}, x_{2}\right)=f\left(x_{1}+x_{2}\right)-f\left(x_{1}\right)-f\left(x_{2}\right)$ on A. (We continue using the additive notation in A.)

Corollary 5.9 If $x \in A^{\#}$ is 2-central then $x^{\perp}=A \cap Q_{x}$.

Proof: First of all, by the preceding lemma, N is transitive on 2-central involutions in A. Hence $A \cap Q_{x}$ has index two in A. Furthermore, since y and $x+y$ have the same type whenever $y \in Q_{x}$, we have that $f(y)=f(x+y)$ for all $y \in A \cap Q_{x}$. This proves that $A \cap Q_{x} \leq x^{\perp}$.

This shows that a subgroup of A is singular if and only if it is totally singular with respect to f. Notice that A contains both a singular 2_{1}^{5} and a singular 2_{2}^{5} and so, indeed, an ark contains all species of singular subgroups. Furthermore, all singular subgroups of A of the same kind are conjugate in N. This implies, in particular, the following

Lemma 5.10 If $U \in \mathcal{S}_{5,1}$ then $A(U)$ is the only ark containing U. If $U \in$ $\mathcal{S}_{5,2}$ then U is contained in exactly three arks. Furthermore, those three arks are conjugate under $N_{M}(U)$.

Proof: The first claim follows since $N_{M}(U) \leq N$ if $U \in \mathcal{S}_{5,1}$. If $U \in \mathcal{S}_{5,2}$ and $U \leq A$, we compute that $N_{N}(U)$ has index three in $N_{M}(U)$.

6 Elementary abelian subgroups in P_{A}

Let A be an ark and $N=N_{M}(A)$. We first produce an inventory of the elements from $P_{A} \backslash A$. Since $A \leq Z\left(P_{A}\right)$, every coset $x A$ with $x \in P_{A} \backslash A$ consists entirely of involutions or entirely of elements of order four.

Let $\tilde{N}=N / P_{A} \cong \Omega_{10}^{+}(2)$.
Lemma 6.1 If u is a 2-central involution from A then $R=P_{A} \cap Q_{u}$ is of order 2^{17}. In particular, P_{A} is nonabelian.

Proof: Notice that Q_{u} normalizes any singular 2_{1}^{5} subgroup U such that $u \in U \leq A$, and hence Q_{u} normalizes $A=A(U)$. Thus, $Q_{u} \leq N$. Notice further that Q_{u} cannot be fully contained in P_{A}. Indeed, if $Q_{u} \leq P_{A}$ then Q_{u} has index two in P_{A}, which implies that Q_{u} must have a center of size at least 2^{5}; clearly a contradiction. Thus, $Q_{u} \not \leq P_{A}$, which means that \tilde{Q}_{u} is a nontrivial normal subgroup of \tilde{D}, where $D=N \cap C_{u}$. Since \tilde{D} is a maximal parabolic (the stabilizer of a singular vector from the natural module), we get that $\tilde{Q}_{u} \sim 2^{8}$. Hence $|R|=2^{25-8}=2^{17}$. Being a subgroup of an extraspecial group $2^{1+24}, R$ must be nonabelian. Hence, P_{A} is also nonabelian.

We will now classify the cosets $x A$ with $x \in P_{A} \backslash A$. It turns out that the cosets consisting of involutions correspond to singular subgroups 2_{1}^{5} from A.

Lemma 6.2 Suppose $U \leq A, U \in \mathcal{S}_{5,1}$. Then
(1) $Q_{U} \leq P_{A}$ and $Q_{U} \not \leq A$; hence, $X=Q_{U} A \backslash A$ is a coset from $P_{A} \backslash A$, consisting of involutions; if $x \in X$ then $U=\left[P_{A}, x\right]$; and
(2) $K=N_{M}(U)$ has exactly two orbits on X; one of the orbits is $Q_{U} \backslash U$, and it consists of non 2-central involutions (conjugate to q_{2}); the other orbit is $X \backslash Q_{U}$, and it consists of 2-central involutions.

Proof: Let $K=N_{M}(U)$. Notice that \tilde{K} is a maximal parabolic in $\tilde{N} \cong$ $\Omega_{10}^{+}(2)$; namely, it is the stabilizer of a maximal totally singular subspace U from the natural module A. Clearly, Q_{U} is invariant under K. Since K has two 5-dimensional chief factors in A and since Q_{U} / U has order two, we conclude that $Q_{U} \not \leq A$. If $y \in A \backslash U$ is 2-central then $W=U \cap y^{\perp}$ is a singular 2^{4}. Since $\left\langle y, Q_{U}\right\rangle \leq Q_{W}$ (which is abelian), the subgroup Q_{U} centralizes every y and hence $Q_{U} \leq P_{A}$.

Recall that $K=N_{M}(U)$ is contained in N, because $A=A(U)$. Clearly, K acts on $X=Q_{U} A \backslash A$. Notice that $\left[P_{A}, Q_{U}\right] \leq Q_{U} \cap A=U$ and hence $\left[P_{A}, Q_{U}\right]=U$, because K acts on U irreducibly. This implies that for $x \in Q_{U} \backslash U$ we have $\left[P_{A}, x\right]=U$. Since $A=Z\left(P_{A}\right)$, the same must be true for all $x \in X$. In particular, for all $x \in X$, all elements in $x U$ are conjugate under P_{A}. Let $T=Q_{U} A$ and let $\hat{T}=T / U$. Clearly, \hat{T} is the product of $\hat{A} \sim 2^{5}$ and $\hat{Q}_{U} \sim 2$. Furthermore, K stabilizes both \hat{A} and \hat{Q}_{U}, and it acts transitively on $\hat{A}^{\#}$. Thus, K indeed has exactly two orbits on $x A=T \backslash A$.

We already know from Lemma 4.14 (1) that the involutions from $Q_{U} \backslash U$ are non 2-central. Since those involutions are contained in Q_{u} for $u \in U^{\#}$, they are conjugate to q_{2}. To see that the involutions in $X \backslash Q_{U}$ are 2central, consider $W \leq U, W \sim 2^{4}$. Let U^{\prime} be the unique singular subgroup 2_{2}^{5} containing W. Then, by definition of $A=A(U)$, we have $U^{\prime} \leq A$. Let $x \in Q_{U} \backslash U$ and $s \in U^{\prime} \backslash W$. Comparing with Corollary 4.11 and with the definition of singular subgroups 2_{2}^{5} (following Corollary 4.11), we see that $x s$ is 2-central. Clearly, $x s \in X \backslash Q_{U}$, and so the claim follows.

In particular, this lemma shows that Q_{U} and hence also U can be recognized from the coset $X=Q_{U} A \backslash A$. Therefore, such cosets are in a natural bijection with the set of all singular subgroups 2_{1}^{5} from A. The latter set has size 2295 , which means that at least 2295 cosets of A in $P_{A} \backslash A$ consist of involutions. We claim that the remaining $\left(2^{16}-1\right)-2295$ cosets of A in $P_{A} \backslash A$ consist of elements of order four.

Suppose $x \in P_{A}$ is of order four. Then $s=x^{2}$ is an element of A and furthermore $s=y^{2}$ for each $y \in x A$.

Lemma 6.3 If u is a 2-central involution from A then $\left(P_{A} \cap Q_{u}\right) A \backslash A$ contains exactly 120 cosets $x A$ such that $u=x^{2}$. The group $K=N \cap C_{u}$ transitively permutes those cosets.

Proof: Consider $R=P_{A} \cap Q_{u}$. By Lemma 6.1, $|R|=2^{17}$. Let a be a $2-$ central involution from $A \backslash u^{\perp}$. Then $R \leq C_{a}$, the image of a in $C_{u} / Q_{u} \cong C o_{1}$ is of type $2 A$, and, comparing with Lemma 2.4 , we see that $R=Q_{u} \cap C_{a}$. Since $Q_{u} \leq N$, we have that $\left[Q_{u}, a\right] \leq Q_{u} \cap A=u^{\perp}$. Since $F=N \cap C_{a} \cap C_{u}$ involves $\Omega_{8}^{+}(2)$ (indeed, if we view A as the natural module for $\tilde{N}=N / P_{A} \cong$ $\Omega_{10}^{+}(2)$ then a and u span in A a nondegenerate subspace of plus type), Lemma 2.4 gives us that $\bar{R} \sim 2^{8}$ and F induces on \bar{R} a group $\Omega_{8}^{+}(2)$ acting as on a halfspin module. Here the bar indicates the image in $\bar{P}_{A}=P_{A} / A$.

Define a mapping $q: \bar{R} \longrightarrow G F(2)$ by $q(x A)=0$ if $x^{2}=1$, and $q(x A)=$ 1 if $x^{2}=u$. Then q is a quadratic form on \bar{R} and this form is invariant under K. Since the halfspin module for $\Omega_{8}^{*}(2)$ is triality conjugate to the natural module and since the latter admits a unique invariant quadratic form, the claims of the lemma follow.

Since A contains 527 2-central involutions u, Lemma 6.3 accounts for $527 \cdot 120$ cosets $x A$ consisting of elements of order four. Since $527 \cdot 120=$ $\left(2^{16}-1\right)-2295$, all the cosets of A in $P_{A} \backslash A$ have been accounted for. Thus, we obtain the following.

Lemma 6.4 The group N has exactly two orbits on the nonidentity elements of $\bar{P}_{A}=P_{A} / A$. The smaller orbit has length 2295 and it consists of cosets containing involutions. The longer orbit has length $527 \cdot 120$ and it consists of cosets containing elements of order four.

In particular, \bar{P}_{A} is irreducible as a module for $\tilde{N}=N / P_{A} \cong \Omega_{10}^{+}(2)$. We remark that this module is isomorphic to the halfspin module. Indeed, this follows from the fact that the stabilizer of maximal totally singular subspace $U \leq A, U \in \mathcal{S}_{5,1}$, fixes a vector in \bar{P}_{A}.

Additionally, Lemma 6.2 gives us the following.
Corollary 6.5 The group N has exactly two conjugacy classes of involutions in $P_{A} \backslash A$. One class has length 2295•32, and it consists of non 2-central involutions conjugate to q_{2}. The other class has length $2295 \cdot(1024-32)$ and it consists of 2-central involutions.

We will not classify the classes of elements of order four in P_{A}. However, we will need the following fact.

Lemma 6.6 If $x \in P_{A}$ is of order four then $x \in\left(P_{A} \cap Q_{u}\right) A$ where $u=x^{2}$.
Proof: We have seen above that $P_{A} \cap Q_{u}$ is nonabelian and hence it contains an element y of order four. Clearly, $y^{2}=u$. Since N has just one orbit on cosets from P_{A} / A that consist of elements of order four, there is a conjugate $y^{n}, n \in N$, of y which lies in the coset $x A$. Then $\left(y^{n}\right)^{2}=x^{2}=u$ and hence, without loss of generality, we may assume that $y=y^{n}$ lies in $x A$. Now since $y \in\left(P_{A} \cap Q_{u}\right) A$, we have that $x \in y A \leq\left(P_{A} \cap Q_{u}\right) A$.

Next, we need to know when two involutions from $P_{A} \backslash A$ commute. For an involution $x \in P_{A} \backslash A$ let $U(x, A)$ (or simply $U(x)$, if A is clear from the context) be the singular subgroup 2_{1}^{5} from A, that corresponds to the coset $x A$. Recall that $U(x)=\left[x, P_{A}\right]$ (cf. Lemma 6.2 (1)).

Lemma 6.7 Involutions x and y from $P_{A} \backslash A$ commute if and only if $U(x) \cap$ $U(y)$ has size at least eight.

Proof: Notice first of all that $[x, y]=\left[x^{\prime}, y^{\prime}\right]$ for arbitrary $x^{\prime} \in x A$ and $y^{\prime} \in y A$. Hence, commutation of x and y depends solely on $U^{\prime}=U(x)$ and $U^{\prime \prime}=U(y)$. In particular, we may assume that $x \in Q_{U^{\prime}}$ and $y \in Q_{U^{\prime \prime}}$. Secondly, observe that U^{\prime} and $U^{\prime \prime}$ meet in a subgroup of order $2,2^{3}$, or 2^{5}. Since $N=N_{M}(A)$ acts transitively on pairs ($\left.U^{\prime}, U^{\prime \prime}\right)$ with $U^{\prime} \cap U^{\prime \prime}$ of a given size and since P_{A} is nonabelian, it suffices to show that x and y commute if $W=U^{\prime} \cap U^{\prime \prime}$ has size eight. However, this is clear: both x and y are contained in Q_{W}, which is abelian.

This lemma allows us to determine now all maximal elementary abelian subgroups of P_{A}.

Lemma 6.8 With respect to conjugation by $N=N_{M}(A)$, the group P_{A} has exactly two classes of maximal elementary abelian subgroups Y :
(1) for $W \leq A, W \in \mathcal{S}_{2}, Y$ consists of A and all involutions $y \in P_{A} \backslash A$ such that $W<U(y)$; and
(2) for $V \leq A, V \in \mathcal{S}_{5,2}$, Y consists of A and all involutions $y \in P_{A} \backslash A$ such that $V \cap U(y)$ is of order 2^{4}.

Proof: First of all, it follows from Lemma 6.7 that the subgroups Y from (1) and (2) are elementary abelian. (Indeed, in (1) if $U\left(y_{1}\right)$ and $U\left(y_{2}\right)$ both contain W then $U\left(y_{1}\right) \cap U\left(y_{2}\right)$ is of order at least 2^{3}; the other case is even easier.)

Let E now be an elementary abelian subgroup of P_{A}. Let $\mathcal{E}=\{U(x) \mid x \in$ $E \backslash A\}$. It follows from Lemma 6.7 that if U and U^{\prime} are distinct elements of \mathcal{E} then $U \cap U^{\prime}$ has order 2^{3}. Let us now show that if $U, U^{\prime}, U^{\prime \prime} \in \mathcal{E}$ are pairwise distinct then $U \cap U^{\prime} \cap U^{\prime \prime}$ is of order at least 2^{2}. Suppose not. Then $U \cap U^{\prime} \cap U^{\prime \prime}$ has order two. Observe that by Lemma 4.3 the subgroup $W=\left\langle U \cap U^{\prime}, U \cap U^{\prime \prime}, U^{\prime} \cap U^{\prime \prime}\right\rangle$ is singular. Furthermore, since $\left(U \cap U^{\prime}\right) \cap\left(U \cap U^{\prime \prime}\right)$ has order two, we have $U=\left\langle U \cap U^{\prime}, U \cap U^{\prime \prime}\right\rangle$, which means that $U \leq W$. Similarly, $U^{\prime}, U^{\prime \prime} \leq W$; clearly, a contradiction, since U, U^{\prime} and $U^{\prime \prime}$ are maximal singular. Thus, indeed, $U \cap U^{\prime} \cap U^{\prime \prime}$ has order at least 2^{2}.

Fix $U \in \mathcal{E}$ and let $\mathcal{T}=\left\{U \cap U^{\prime} \mid U^{\prime} \in \mathcal{E}, U^{\prime} \neq U\right\}$. This is a set of subgroups 2^{3} from U, such that any two of them meet in a subgroup 2^{2}. We claim that one of the following two possibilities holds: (a) there is a subgroup $W \leq U$ of order four such that every $T \in \mathcal{T}$ contains W; or (b) there is a subgroup $W \leq U$ of order 16 , such that every $T \in \mathcal{T}$ is contained in W. Let T_{1}, T_{2} be distinct elements from \mathcal{T}, and let $W_{1}=T_{1} \cap T_{2}$ and $W_{2}=\left\langle T_{1}, T_{2}\right\rangle$. Then clearly W_{1} is of order four and W_{2} is of order 16. If every $T \in \mathcal{T}$ is contained in W_{2} then we have case (b) with $W=W_{2}$. So suppose $T_{3} \in T$ and $T_{3} \not \leq W_{2}$. Observe that $T_{3} \cap W_{2}$ has order four and hence $T_{3} \cap W_{2}=T_{3} \cap T_{1}=T_{3} \cap T_{2}=W_{1}$. Finally, consider an arbitrary $T \in \mathcal{T}$. If $T \nsupseteq W_{1}$ then $T \cap T_{1} \neq T \cap T_{2}$ and hence $T=\left\langle T \cap T_{1}, T \cap T_{2}\right\rangle \leq W_{2}$. However, this means that $T \cap T_{3}=T_{3} \cap W_{2}=W_{1}$, that is, $T \geq W_{1}$, a contradiction. We proved that case (a) holds with $W=W_{1}$.

We can now complete the proof of the lemma. If \mathcal{T} satisfies the condition in (a) then E is contained in the subgroup from (1) defined by W. If, on the other hand, \mathcal{T} satisfies the condition from (b) then E is contained in the subgroup from (2), where V is defined as the unique singular 2_{2}^{5} containing W. Indeed, every U^{\prime} from \mathcal{E} meets V in a subgroup of size at least eight. Since U^{\prime} and V are nonconjugate maximal totally singular subgroups from A, we must have that $V \cap U^{\prime}$ has size 16 .

We will use the following notation. For an ark A and a singular $W \leq A$, $W \in \mathcal{S}_{2}$, let $\mathrm{Ab}_{2}(A, W)$ (or simply, $\mathrm{Ab}_{2}(W)$) be the maximal elementary abelian subgroup of P_{A} defined by W as in (1). Similarly, if $V \leq A$ and $V \in$ $\mathcal{S}_{5,2}$ then let $\mathrm{Ab}_{5}(A, V)$ (or just $\mathrm{Ab}_{5}(V)$) denote the maximal elementary abelian subgroup defined by V as in (2). Notice that $\left|\mathrm{Ab}_{2}(W)\right|=2^{14}$ and $\left|\mathrm{Ab}_{5}(V)\right|=2^{15}$.

Recall that $N=N_{M}(A)$ and let $\bar{P}_{A}=P_{A} / A$.
Lemma 6.9 Suppose $W, V \leq A$ with $W \in \mathcal{S}_{2}$ and $V \in \mathcal{S}_{5,2}$. Let $Y=$ $\mathrm{Ab}_{2}(W)$ and $Y^{\prime}=\mathrm{Ab}_{5}(V)$. The following hold:
(1) $N_{N}(W)$ induces on $\bar{Y} \sim 2^{4}$ the group $L_{4}(2)$; and
(2) $N_{N}(V)$ induces on $\bar{Y}^{\prime} \sim 2^{5}$ the group $L_{5}(2)$.

Proof: The involutions $\bar{y} \in \bar{Y}$ bijectively correspond to the 2_{1}^{5} subgroups U in A, that contain W. Since W^{\perp} / W is a 6-dimensional orthogonal space of plus type, $N_{N}(W)$ induces on \bar{Y} the group $\Omega_{6}^{+}(2) \cong L_{4}(2)$. Similarly, the involutions in $\bar{y}^{\prime} \in \bar{Y}^{\prime}$ bijectively correspond to index two subgroups in V. So $N_{N}(V)$ induces on \bar{Y}^{\prime} the group $L_{5}(2)$.

Lemma 6.10 Suppose $B \leq P_{A}$ is elementary abelian and $\bar{B} \sim 2^{3}$. Then there exist unique $W, V \leq A$ with $W \in \mathcal{S}_{2}$ and $V \in \mathcal{S}_{5,2}$, such that $\mathrm{Ab}_{2}(W)$ and $\mathrm{Ab}_{5}(V)$ contain B.

Proof: Let $b_{1}, b_{2}, b_{3} \in B$ and $\bar{B}=\left\langle\bar{b}_{1}, \bar{b}_{2}, \bar{b}_{3}\right\rangle$. Then $W=U\left(b_{1}\right) \cap U\left(b_{2}\right) \cap$ $U\left(b_{3}\right)$ and V is the unique singular 2_{2}^{5} in A containing $\left(U\left(b_{1}\right) \cap U\left(b_{2}\right)\right)\left(U\left(b_{1}\right) \cap\right.$ $\left.U\left(b_{3}\right)\right) \sim 2^{4}$.

We complete this section with a different construction of the maximal elementary abelian subgroups $\mathrm{Ab}_{5}(A, V)$. Suppose V is a singular subgroup 2_{2}^{5} and let A_{1}, A_{2} and A_{3} be the three arks containing V (cf. Lemma 5.10). Furthermore, let $P_{i}=P_{A_{i}}$ for all i.

Lemma 6.11 Let $\{i, j, k\}=\{1,2,3\}$ and $R=A_{i} A_{j}$. Then the following hold:
(1) the subgroups A_{i} and A_{j} commute elementwise and $A_{i} \cap A_{j}=V$; in particular, $R \sim 2^{15}$; furthermore, $R=\operatorname{Ab}_{5}\left(A_{i}, V\right)=\operatorname{Ab}_{5}\left(A_{j}, V\right)$;
(2) $P_{i} \cap P_{j}=R$; in particular, R is maximal abelian;
(3) R contains A_{k}; in particular, $R=A_{i} A_{k}=A_{j} A_{k}$.

Proof: If $a \in A_{i}$ and $b \in A_{j}$ then a and b lie in Q_{W} for some subgroup $W \cong 2^{3}$ of V. Since Q_{W} is abelian, we have that a and b commute. In particular, $A_{j} \leq P_{i}$ and hence also $R \leq P_{i}$. The stabilizer K of V in $N_{M}\left(A_{i}\right)$ involves $L_{5}(2)$ acting irreducibly on both V and A_{i} / V (see Lemma 5.1). Since the stabilizer of A_{j} in K is of index at most two, we obtain that $A_{i} \cap A_{j}=V$. If $y \in A_{j} \backslash V$ then $U(y)$ contains an index two subgroup from V. Hence $A_{j} \leq \operatorname{Ab}_{5}\left(A_{i}, V\right)$, proving (1).

For (2), let $N=N_{M}\left(A_{j}\right), K=N_{N}(V)$ and $S=P_{i} \cap N$. Since K acts on $\left\{A_{i}, A_{k}\right\}$, the index of $K_{0}=N_{M}\left(A_{i}\right) \cap N$ in K is at most two. Notice that the image of K in $N / P_{j} \cong \Omega_{10}^{+}(2)$ is a maximal parabolic $2^{10} . L_{5}(2)$
with an irreducible action of $L_{5}(2)$ on the normal 2^{10}. This means that S, being normal in K_{0}, is either contained in P_{j} and so $S=P_{i} \cap P_{j}$, or R has index 2^{10} in S. In its turn, S has index at most two in P_{i}. Thus, in the first case $P_{i} \cap P_{j}$ has index two in P_{i}, which is clearly impossible. In the second case, $P_{i} \cap P_{j}$ has order 2^{15} or 2^{16}, implying that R has index one or two in $P_{i} \cap P_{j}$. Suppose $R \neq P_{i} \cap P_{j}$. Since R is in the center of $P_{i} \cap P_{j}$ and since R is a maximal elementary abelian subgroup by (1), all elements in $\left(P_{i} \cap P_{j}\right) \backslash R$ are of order four and they all square to the same involution in $A_{i} \cap A_{j}=V$. Since K_{0} involves $L_{5}(2)$ acting transitively on the involutions from V, we obtain a contradiction, proving that $R=P_{i} \cap P_{j}$. This shows that R is self-centralized, which means that R is maximal abelian. So (2) is proven.

Since A_{k} commutes with both A_{i} and A_{j}, it is contained in $C_{M}(R)=R$.

In particular, this lemma shows that the subgroup $\mathrm{Ab}_{5}(A, V)$ depends, in fact, only on V. So we will use the notation $\operatorname{Ab}_{5}(V)$.

7 Classes of involutions, II

In this section z is a 2 -central involution in M, the Monster, $Z=\langle z\rangle$, $C=C_{z}$, and $Q=Q_{z}$. We classify conjugacy classes of involution in C and determine the fusion of these classes in M.

Let $\bar{C}=C / Z$. If $x \neq z$ is an involution from C then \bar{c} is again an involution. Notice that the group \bar{C} satisfies the conditions (H1)-(H3) from Section 2. The results from that section tell us that \bar{C} has exactly eight classes of involutions. If \bar{x} is an involution then x is either an involution or an element of order four, having the property that $x^{2}=z$. Suppose x is an involution. Then $y=x z$ is also an involution, and either x and y are conjugate in C, or they are not. As a result, each conjugacy class of involutions from \bar{C} leads to zero, one, or two conjugacy classes of involutions in C. We now have to decide which case takes place for each of the eight classes of involutions from \bar{C}.

The three classes contained in \bar{Q}, namely, $2 e_{2}, 2 e_{3}$ and $2 e_{4}$, were discussed in Lemma 4.4. There we proved that $2 e_{3}$ produces a class of elements of order four, while each of $2 e_{2}$ and $2 e_{4}$ leads to a class of involutions. We denoted by q_{2} and q_{4} representatives of those classes and noted that q_{4} is 2 -central (i.e., conjugate to z) and q_{2} is non 2 -central. Thus, in this section we only need to discuss the classes $2 a_{i}, 2 b$ and $2 c$.

Let $q=q_{4}, D=C \cap C_{q}$ and $R=Q \cap Q_{q} \sim 2^{1+23} .\left(2^{11}: M_{24}\right)$. According
to Lemma 4.5, $Q \cap Q_{q}$ has order 2^{13} and hence $\left(C \cap Q_{q}\right)\left(C_{q} \cap Q\right)=O_{2}(D)$. That is, the subgroup $C \cap Q_{q}$ maps in $\tilde{C}=C / Q \cong C o_{1}$ onto the diagonal subgroup 2^{11}. Since the latter contains representatives of the conjugacy classes $2 A$ and $2 C$ from $C o_{1}$, we may be able to find elements y with \bar{y} in the classes $2 a_{1}, 2 a_{2}, 2 a_{3}$ and $2 c$ by looking at $C \cap Q_{q}$.

If x is an involution in $C \cap Q_{q}$ and $x \notin\langle z, q\rangle$ then $\langle z, x\rangle$ maps onto a size four subgroup of $Q_{q} /\langle q\rangle$. Under the identification of the latter with $\hat{\Lambda}=\Lambda / 2 \Lambda$, the Leech lattice modulo two, the images of z, x, and $x z$ belong to $\hat{\Lambda}_{2} \cup \hat{\Lambda}_{4}$, because these elements are involutions (cf. Lemma 4.4).

To proceed, we will need some information about the subgroups of order four in $\hat{\Lambda}$. According to [ATLAS], $C o_{1}$ has exactly fifteen orbits on such subgroups. Representatives of nine of those orbits contain elements from $\hat{\Lambda}_{3}$. The remaining six orbits are shown in Table 1. Let $\hat{U} \sim 2^{2}$ be a representative of one of these orbits. Then the second column contains the types of the three involutions from \hat{U}. For example, if the entry there is 244 then one involution lies in $\hat{\Lambda}_{2}$, while two involutions lie in $\hat{\Lambda}_{4}$. The third column shows the structure of the elementwise stabilizer (centralizer) of \hat{U} in $C o_{1}$. The fourth column shows the group induced on \hat{U} by the setwise stabilizer (normalizer) of \hat{U} in $C o_{1}$. Notice that [ATLAS] shows a different structure (namely, $\left.\left[2^{12}\right] . L_{3}(2)\right)$ of the elementwise stabilizer of \hat{U} for \hat{U} from orbit 6 . That structure is incorrect.

Orbit	Type	Stabilizer	Induced group
1	222	$U_{6}(2)$	S_{3}
2	224	$2^{10}:$ Aut M_{22}	2
3	244	$2^{1+8} A_{8}$	2
4	444	$2^{4+12} \cdot 3 \cdot S_{6}$	S_{3}
5	444	Aut M_{12}	S_{3}
6	444	$\left[2^{11}\right] \cdot L_{3}(2)$	S_{3}

Table 1: $\left(\hat{\Lambda}_{2} \cup \hat{\Lambda}_{4}\right)$-pure subgroups 2^{2} in $\hat{\Lambda}$

Lemma 7.1 Suppose $x \in C$. Then the following hold:
(1) if \bar{x} is of type $2 a_{1}$ then x and $x z$ are involutions; one of them is non 2 -central (fused with q_{2}) and the other one is 2 -central;
(2) if \bar{x} is of type $2 a_{3}$ then x and $x z$ are 2-central involutions and they are conjugate in C;
(3) if \bar{x} is of type $2 c$ then x and $x z$ are 2-central involutions and they are conjugate in C.

Proof: Let x be an involution from $C \cap Q_{q} \backslash\langle z, q\rangle$. Let $U=\langle z, x\rangle$ and \hat{U} be the image of U in $\hat{\Lambda}$. Notice that z maps onto an element from $\hat{\Lambda}_{4}$ (cf. Lemma 4.4). Thus, \hat{U} cannot be in orbit 1 from Table 1. If $x \in Q$ and x is 2 -central then $\langle z, q, x\rangle$ is singular. Comparing with with Lemma 4.8, we see that in this case U is in orbit 4. If $x \in Q$ and x is non 2-central, then $x z$ is also non 2-central and hence \hat{U} is of type 224, that is, \hat{U} is in orbit 2 . Thus, orbits 2 and 4 correspond to x 's from Q.

Suppose next that we choose x so that \hat{U} is in orbit 3. Then, according to Table 1 and Lemma 4.4, one of the elements x and $x z$ is 2-central and the other one is non 2 -central. In particular, $x \notin Q$. Let A be an ark containing z and q and let $a \in A$ be a 2-central involution contained in q^{\perp}, but not in z^{\perp}. Then $a z$ is non 2-central and hence $\langle z, a\rangle$ is conjugate to U in C_{q}. Furthermore, since the normalizer of \hat{U} in $C o_{1}$ permutes the two elements from $\hat{\Lambda}_{4} \cap \hat{U}$ and since U is contained in the extraspecial group Q_{q}, we get that $\langle z, a\rangle$ is conjugate to U in $C \cap C_{q}$. It follows from Lemma 5.8 that $C \cap C_{a}$ involves $\Omega_{8}^{+}(2)$. Comparing with Lemmas 2.10 and 2.11, we obtain that \bar{a} (and hence also \bar{x}) is of type $2 a_{1}$.

Next choose x so that \hat{U} is in orbit 5 . Then $C \cap C_{x}$ involves M_{12}, whose order is divisible by 11 . Comparing with Lemmas 2.10 and 2.11, we immediately obtain that \bar{x} is of type $2 c$.

Finally, let x be such that \hat{U} is in orbit 6 . In this case both x and $x z$ are 2 -central, which rules out the possibility that \bar{x} is of type $2 a_{1}$. It follows from Table 1 that 2^{38} divides $\left|C \cap C_{x}\right|$. Comparing again with Lemmas 2.10 and 2.11 , we see that \bar{x} can only be of type $2 a_{3}$.

In fact, we have proved a bit more.
Lemma 7.2 Suppose x is an involution in C. Then there exists a 2 -central involution $q \notin\langle z, x\rangle$, such that $z, x \in Q_{q}$, if and only if either $x \in Q$ or \bar{x} is of type $2 a_{1}, 2 a_{3}$, or 2 c. Furthermore, if such q 's exist then $C \cap C_{x}$ permutes them transitively.

Proof: Only the transitivity claim requires proof. Let q and q^{\prime} be 2 -central involutions such that $z, x \in Q_{q} \cap Q_{q^{\prime}}$. Since $q, q^{\prime} \in Q$, there exists $c \in C$ such that $\left(q^{\prime}\right)^{c}=q$. Then $\overline{x^{c}}$ is of the same type as \bar{x}. It follows from the above that $\left\langle z, x^{c}\right\rangle$ and U are conjugate in C_{q} and moreover there is an element $s \in C \cap C_{q}$ such that $\left(x^{c}\right)^{s}=x$. Clearly, $c s \in C \cap C_{x}$ and $\left(q^{\prime}\right)^{c s}=q$.

Our next goal is to show that the classes $2 a_{2}$ and $2 b$ do not lead to involutions. We start with $2 a_{2}$.

Lemma 7.3 If $x \in C$ and \bar{x} is of type $2 a_{2}$ then x is of order four.
Proof: Let R be the full preimage in Q of $C_{\bar{Q}}(\bar{x})$ and let $F=\langle R, x\rangle$. Then $|R|=2^{17}$ and $|F|=2^{18}$. The coset $F \backslash R$ consists entirely of elements y with \bar{y} of type $2 a_{i}$ for some i. According to Lemma 7.1, y is an involution if $i=1$ or 3. Suppose x is also an involution. Then all elements in $F \backslash R$ are involutions. This implies that $C_{R}(x)$ contains no elements of order four, implying that $C_{R}(x)$ is elementary abelian. Since $C_{R}(x) \leq Q$ and $\left|C_{R}(x)\right| \geq 2^{16}$, we get a contradiction.

It remains to consider the class $2 b$.
Lemma 7.4 If $x \in C$ and \bar{x} is of type $2 b$ then x is of order four.
Proof: Suppose by contradiction that x is an involution. We first show that x and $x z$ are not conjugate in C. Indeed, according to Lemma 2.11, $C \cap C_{x}$ involves $G_{2}(4)$. Let D be the Sylow 13-subgroup from $C \cap C_{x}$. Clearly, if x and $x z$ are conjugate in C then they are also conjugate in $N_{C}(D)$. Let $\tilde{C}=C / Q \cong C o_{1}$. According to [ATLAS], $C_{\tilde{C}}(\tilde{D}) \cong 13 \times A_{4}$. Notice also that $C_{Q}(D)=Z$. This means that $F=C_{C}(D)$ is an extension of Z by a group $13 \times A_{4}$. Now the fact that x is an involution yields that $F \cong 2 \times 13 \times A_{4}$. (Here Z is the direct factor of order two.) Consequently, one of x and $x z$ is contained in the commutator subgroup of F and the other is not. Thus, x and $x z$ cannot be conjugate in $N_{C}(D)$, and hence they are not conjugate in C.

Choose an involution $a \in Q$ such that $\bar{a} \notin C_{\bar{Q}}(\bar{x})$. Then for $b=[a, x]$ we have that $\bar{b} \in C_{\bar{Q}}(\bar{x})$. It follows from Lemma 2.5 that b is a 2 -central involution. In particular, x commutes with b and, furthermore, x and $x b$ are conjugate in $\langle a, x\rangle \leq C_{b}$. Shifting now our attention to C_{b} we see that the image of x in $C_{b} /\langle b\rangle$ cannot be of type $2 a_{1}$ or $2 b$ because x and $x b$ are conjugate in C_{b} (cf. Lemma 7.1 for $2 a_{1}$). Also, by Lemma 7.3, it cannot be of type $2 a_{2}$. Thus, the image of x in $C_{b} /\langle b\rangle$ must be of type $2 a_{3}$ or $2 c$. Lemma 7.1 forces now that x is 2-central.

Clearly, the image of z in $C_{x} /\langle x\rangle$ must also be of type $2 b$. Observe that $Q \cap C_{x}$ is of index at most four in $O_{2}\left(C \cap C_{x}\right)$. Symmetrically, $Q_{x} \cap C$ is of index at most four in $O_{2}\left(C \cap C_{x}\right)$. This shows that $Q \cap Q_{x} \neq 1$, that is, there exists a 2 -central involution q such that $z, x \in Q_{q}$. Now Lemma 7.2 provides a contradiction.

We summarize all the above as follows.

Proposition 7.5 The group C has exactly seven conjugacy classes of involutions, three in Q and four in $C \backslash Q$.

One important corollary of Lemmas 7.1, 7.3 and 7.4 is that the group M contains exactly two classes of involutions. Indeed, we have shown that every involution is either 2 -central and hence fused with z, or non 2-central, fused with q_{2}. We record this as the following

Proposition 7.6 Every involution in M is either conjugate with z or with q_{2}.

A second important corollary is that we now know all pairs of commuting 2-central involutions in M.

Lemma 7.7 Let a and b be two commuting 2-central involutions, $a \neq b$, and let $R=Q_{a} \cap Q_{b}$. Let bar indicate the image in $C_{a} /\langle a\rangle$. Then one of the following is true:
(1) \bar{b} is of type $2 e_{4}$, i.e., $b \in Q_{a}$ and $\langle a, b\rangle$ is singular;
(2) \bar{b} is of type $2 a_{1}$; moreover, $\langle a, b\rangle$ is contained in a unique ark A and $R=a^{\perp} \cap b^{\perp}$; in particular, $A=\langle a, b\rangle R ;$
(3) \bar{b} is of type $2 a_{3}$ and $R \sim 2^{5}$; R contains a singular 2^{4} subgroup W and every involution in $R \backslash W$ is non 2-central; subgroups $W_{a}=W\langle a\rangle$ and $W_{b}=W\langle b\rangle$ are singular 2_{1}^{5}; we have that $R\langle a\rangle=Q_{W_{a}}$ and $R\langle b\rangle=$ $Q_{W_{b}} ;$ finally, $Q_{W}=R\langle a, b\rangle ;$ or
(4) \bar{b} is of type $2 c, R \cong 2$, and the involution in R is 2 -central.

Proof: According to Lemmas 4.4, 7.1, 7.3 and $7.4, \bar{b}$ is of type $2 e_{4}, 2 a_{1}$, $2 a_{3}$ or $2 c$ in \bar{C}_{a}. By Lemma $7.2 C_{a} \cap C_{b}$ is transitive on the (nonempty) set of 2-central involutions $q \notin\langle a, b\rangle$ such that a and b are in Q_{q}. Dividing $\left|C_{a} \cap C_{b}\right|$ by $\left|C_{a} \cap C_{b} \cap C_{q}\right|$ (the latter can be found using Table 1) we obtain that the number of involutions q is equal to $7084,135,15$ and 1 depending on whether the type of \bar{b} is $2 e_{4}, 2 a_{1}, 2 a_{3}$ or $2 c$. We now turn to the concrete cases.

If \bar{b} is of type $2 e_{4}$ then, clearly, (1) holds. Suppose \bar{b} is of type $2 a_{1}$. Then a and b are contained in an ark A. Clearly, $a^{\perp} \cap b^{\perp} \sim 2^{8}$ lies in R. On the other hand, R is abelian and invariant under the action of $C_{a} \cap C_{b}$. It follows from Lemma 2.4 that R cannot have size more than 2^{8} and hence it coincides with $a^{\perp} \cap b^{\perp}$. Now all claims of (2) follow.

Consider next the case where \bar{b} is of type $2 a_{3}$. Choose a singular 2^{4} subgroup W and let A and B be two singular 2_{1}^{5} containing W. Let $a^{\prime} \in$ $A \backslash W$ and $b^{\prime} \in B \backslash W$. If the image of b^{\prime} is of type $2 a_{1}$ in $C_{a^{\prime}} /\left\langle a^{\prime}\right\rangle$ then both A and B are contained in the unique ark containing a^{\prime} and b^{\prime}. This is impossible because in an ark every singular 2^{4} is contained in a unique singular 2_{1}^{5}. Also the image of b^{\prime} cannot be of type $2 c$ because all the involutions $q \in W$ have the property that $a^{\prime}, b^{\prime} \in Q_{q}$. Hence the image of b^{\prime} is of type $2 a_{3}$ and without loss of generality we may assume that $a^{\prime}=a$ and $b^{\prime}=b$. Clearly, $W \leq R$ and W contains all 15 2-central involutions from R. Hence all involutions in $R \backslash W$ are non 2-central. In particular, if $c \in R \backslash W$ and $w \in W$ then $c w$ is non 2-central. According to Lemmas 7.1, 7.3 and 7.4 , this means that $c \in Q_{w}$. That is, $R \leq Q_{W}$. Since also $a, b \in Q_{W}$, the claim (3) follows from Lemmas 4.10 and 4.13.

Finally, suppose that \bar{b} is of type $2 c$. Let q be the only 2 -central involution in R. Then it follows from Lemma 2.3 that $[R:\langle q\rangle] \leq 4$. Comparing with Lemmas 2.6 and 2.11 we see that $R=\langle q\rangle$.

8 More on P_{A}

In this section A is an arc. For an involution $x \in P_{A} \backslash A$ let $W(x, A)$ (or simply $W(x)$) be the subgroup of A generated by all 2 -central involutions in $a \in A$ such that $x \in Q_{a}$. Recall from Section 6 that $U(x, A)$ (or simply $U(x)$) is the singular subgroup 2_{1}^{5} in A that corresponds to the coset $x A$.

Lemma 8.1 We have $W(x) \leq U(x)$. If x is non 2-central then $W(x)=$ $U(x)$; otherwise, $W(x)$ is an index two subgroup in $U(x)$.

Proof: We first notice that $W(x)$ is a singular subgroup. Indeed, suppose $a, b \in A$ are 2-central involutions such that $x \in Q_{a} \cap Q_{b}$. If a and b are not perpendicular then (a, b) is as in Lemma 7.7 (2). However, in this case $Q_{a} \cap Q_{b} \leq A$, which means that $x \in A$, a contradiction. Hence $W(x)$ is singular.

If x is non 2-central then $x \in Q_{U}$, where $U=U(x)$. Clearly, this means that $U \leq W(x)$. Since U is maximal singular, we obtain that $W(x)=U$. Now suppose x is 2 -central. Then for some $a \in A$, we have that $t=x a$ is non 2-central. Let $U=U(x)=U(t)$ and $W=U \cap a^{\perp}$. Clearly, the index of W in U is at most two. If $w \in W$ then $a \in Q_{w}$ and $t \in Q_{w}$. Hence also $x \in Q_{w}$, i.e., $W \leq W(x)$. On the other hand, $W(x)\langle x\rangle$ is singular, and hence $|W(x)| \leq 2^{4}$. Thus, $W(x)=W$.

The next result adds to Lemma 6.1.

Lemma 8.2 Suppose u is a 2-central involution in A and x is an involution in $P_{A} \backslash A$. Then $x \in\left(P_{A} \cap Q_{u}\right) A$ if and only if $u \in U(x)$.

Proof: Suppose first that $x \in\left(P_{A} \cap Q_{u}\right) A$, that is, for some $a \in A$ the element $t=x a$ is in Q_{u}. By Lemma 8.1, this means that $u \in U(t)=U(x)$. Reversely, suppose $u \in U(x)$. Let $a \in A$ be such that $t=x a$ is non 2central. Since $u \in U(x)=U(t)$, Lemma 8.1 implies that $t \in Q_{u}$. Therefore, $x \in\left(P_{A} \cap Q_{u}\right) A$.

9 Heart of the proof

Suppose $t \in M$, where either $t=1$, or t is a non 2-central involution. We call a 2-central involution u marked if $t \in Q_{u}$. In this section we are going to prove the following result.

Proposition 9.1 Let Q be a 2-subgroup of M such that $C_{M}(Q)=Z(Q)$ and $t \in Z(Q)$. Let $E=\Omega_{1} Z(Q)$. Let \mathcal{J} be the set of all those marked involutions $u \in E$ for which $\left|E \cap Q_{u}\right|$ reaches maximum. Then either $\langle\mathcal{J}\rangle$ is singular, or E is an ark.

The proposition will be proven in a sequence of lemmas. We first show that \mathcal{J} is nonempty.

Lemma 9.2 There exists a marked 2-central involution in E. In particular, \mathcal{J} is nonempty.

Proof: If $t=1$ then E contains a 2-central involution, since if T is a Sylow 2-subgroup of M containing Q then $Z(T) \leq Z(Q)$. So suppose now that $t \neq 1$. Suppose T_{0} is a Sylow 2-subgroup of $C_{M}(t)$ containing Q and T is a Sylow 2-subgroup of M containing T_{0}. Suppose z is the 2 -central involution in the center of T. Then $z \in C_{M}(Q)$ and hence $z \in E$. Also, since C_{z} contains a full Sylow 2-subgroup of $C_{M}(t)$, it follows that \bar{t} cannot be of type $2 a_{1}$ in $\bar{C}_{z}=C_{z} /\langle z\rangle$. Hence $t \in Q_{z}$, i.e., z is marked.

Thus, \mathcal{J} is nonempty. We need to show that either $\langle\mathcal{J}\rangle$ is singular, or E is an ark. Notice that in both cases \mathcal{J} is fully contained in an ark. Inside an ark, every pair of 2 -central involutions (in particular, two involutions from \mathcal{J}) is either as in case (1), or as in the case (2) of Lemma 7.7. Therefore, we first show that the other two cases are impossible. Fix $a, b \in \mathcal{J}, a \neq b$. Let $U=\langle a, b\rangle$ and $R=Q_{a} \cap Q_{b}$. Notice that $t \in R$ because a and b are marked. Let $\bar{Q}_{a}=Q_{a} /\langle a\rangle$.

Lemma 9.3 The pair (a, b) is not in case (4) of Lemma 7.7.
Proof: Indeed, suppose the pair (a, b) is in case (4). Since the only nontrivial element q from R is 2 -central, we have $t=1$. In particular, q is marked. According to Lemma $7.7, \bar{b}$ is of type $2 c$, which means that, with respect to the identification of $Q_{q} /\langle q\rangle$ with $\hat{\Lambda}$, we have that \hat{U} is in orbit 5 from Table 1. In particular, the image of $C_{a} \cap C_{b}$ in $C_{q} / Q_{q} \cong C o_{1}$ is isomorphic to M_{12} or Aut M_{12}. We obtain that $C_{a} \cap Q_{b}$ (which is normal in $C_{a} \cap C_{b}!$) is contained in Q_{q}. Similarly, $C_{b} \cap Q_{a} \leq Q_{q}$.

We claim that $q \in E$. Indeed, Q centralizes a and b, hence also q, as it is the only nontrivial element in $R=Q_{a} \cap Q_{b}$. Therefore, $q \in C_{M}(Q)=Z(Q)$, that is, $q \in E$, as claimed. On the other hand, we have $E \cap Q_{b} \leq C_{a} \cap Q_{b} \leq$ Q_{q}. This means that $E \cap Q_{b} \leq E \cap Q_{q}$, hence, by maximality of $\left|E \cap Q_{b}\right|$, we have $q \in \mathcal{J}$ and $E \cap Q_{b}=E \cap Q_{q}$. Symmetrically, $E \cap Q_{a}=E \cap Q_{q}$. However, as $b \notin Q_{a}$, we have $E \cap Q_{b} \neq E \cap Q_{a}$; a contradiction.

The second case, where (a, b) is as in Lemma 7.7 (3), is harder and requires several lemmas. Let us start with some additional notation. By Lemma 7.7, $R=Q_{a} \cap Q_{b} \cong 2^{5}$ and it contains a singular 2^{4} subgroup W. All elements in $R \backslash W$ are non 2-central. Furthermore, $W_{a}=\langle a, W\rangle$ and $W_{b}=\langle b, W\rangle$ are singular subgroups 2_{1}^{5}. By Lemma 5.10, W_{a} is contained in a unique ark $A_{a}=A\left(W_{a}\right)$. Similarly, let $A_{b}=A\left(W_{b}\right)$ be the only ark containing W_{b}. We have $A_{a} \neq A_{b}$, since (a, b) is not as in case (1) or (2) of Lemma 7.7. Let also $P_{a}=P_{A_{a}}$ and $P_{b}=P_{A_{b}}$.

By Lemma 4.12, W is contained in a unique singular 2_{2}^{5} subgroup T. By the definition of an ark, $T \leq A_{a}$ and $T \leq A_{b}$. It follows from Lemma 6.11 that $A_{a} \cap A_{b}=T$ and that $S=P_{a} \cap P_{b}$ coincides with $A_{a} A_{b}$ and is elementary abelian. (It coincides with $\mathrm{Ab}_{5}(T)$.) In particular, $a \in P_{b}$ and $b \in P_{a}$. Notice that $W=T \cap W_{a}=T \cap W_{b}$. Also $W=W\left(b, A_{a}\right)<U\left(b, A_{a}\right)$ (cf. Lemma 8.1) and similarly $W=W\left(a, A_{b}\right)<U\left(a, A_{b}\right)$.

First of all, we note the following.
Lemma 9.4 For $x, y \in\{a, b\}, x \neq y$, we have that $W_{x}=U\left(y, A_{x}\right)$. Also, $1 \neq C_{W_{x}}(Q) \leq E$ and all involutions in W_{x} are marked.

Proof: By Lemma 8.1, $W=W\left(y, A_{x}\right)<U\left(y, A_{x}\right)$. Since W is contained in A_{x} in a unique singular 2_{1}^{5}, it follows that $W_{x}=U\left(y, A_{x}\right)$. The next claim follows from the fact that $E=C_{M}(Q)$. Since $t \in R$ (because a and b are marked) and since $R \leq Q_{W}$ by Lemma 7.7 (3), we conclude that $t \in Q_{W}$. Taking now in the account that also $t \in Q_{x}$ and using Lemma 4.3,
we obtain that $t \in Q_{W_{x}}$, because $W_{x}=\langle x, W\rangle$. Thus, every involution in W_{x} is marked.

Let $E_{a}=E \cap P_{a}$ and $E_{b}=E \cap P_{b}$. Since $a \in P_{b}$ and $b \in P_{a}$, we have that $a \in E_{b}$ and $b \in E_{a}$.

Lemma 9.5 We have $E \cap Q_{a} \leq P_{a}$ and hence $E \cap Q_{a} \leq E_{a}$. Symmetrically, $E \cap Q_{b} \leq E_{b}$.

Proof: Since $E \leq C_{b}$ it suffices to show that $C_{b} \cap Q_{a} \leq P_{a}$. Let $c \in T \backslash W$. Clearly, A_{a} is the only ark containing a and c. Since $b, c \in Q_{W}$ and since $Q_{a} \cap Q_{W}=Q_{W_{a}}$ has index two in Q_{W} we have that $b Q_{a}=c Q_{a}$. It follows from Lemma 7.1 that $C_{c} \cap Q_{a}$ has order 2^{17}, namely, it is the full preimage in Q_{a} of $C_{\bar{Q}_{a}}(c)$. Since $C_{\bar{Q}_{a}}(b)=C_{\bar{Q}_{a}}(c)$, we obtain that $C_{b} \cap Q_{a} \leq C_{c} \cap Q_{a}$. On the other hand, $P_{a} \cap Q_{a} \leq C_{c}$ and according to Lemma 6.1 the size of $P_{a} \cap Q_{a}$ is exactly 2^{17}. Therefore, $Q_{a} \cap C_{c}=P_{a} \cap Q_{a} \leq Q_{a}$.

Since $E \cap Q_{a}$ is fully contained in E_{a}, the maximality property of $a \in \mathcal{J}$ implies that for every marked 2-central involution $s \in E_{a}$ we have $\left|E_{a} \cap Q_{s}\right| \leq$ $\left|E_{a} \cap Q_{a}\right|$. Symmetrically, for every marked 2-central involution $s \in E_{b}$ we have that $\left|E_{b} \cap Q_{s}\right| \leq\left|E_{b} \cap Q_{b}\right|$. Since $b \notin Q_{a}$, it follows that $E_{a} \cap Q_{a} \neq E_{a}$ and similarly $E_{b} \cap Q_{b} \neq E_{b}$.

Our argument depends on how E_{a} and E_{b} embed into P_{a} and P_{b}, respectively. Since E_{a} and E_{b} are elementary abelian we can make use of the classification from Section 6.

Lemma 9.6 For $x \in\{a, b\}$, if $E_{x} \cap Q_{x}$ has index more than two in E_{x} then $E_{x} A_{x}=\mathrm{Ab}_{5}(V)$ for some singular 2_{2}^{5} subgroup $V_{x} \leq A_{x}$, and the index of $E_{x} \cap Q_{x}$ in E_{x} is four.

Proof: We may assume that $x=a$. Suppose $\left[E_{a}: E_{a} \cap Q_{a}\right]>2$. Notice that $E_{a} A_{a}$ is elementary abelian. It follows from Lemma 6.8 that either $E_{a} A_{a}=\mathrm{Ab}_{5}\left(V_{a}\right)$ for some singular 2_{2}^{5} subgroup $V_{a} \leq A_{a}$, or the intersection F of all $U(s), s \in E_{a} \backslash A_{a}$, is nontrivial. Suppose the latter. Since $b \in E_{a} \backslash A_{a}$, we get $F \leq W_{a}$. Therefore Q centralizes some $1 \neq e \in F$, as Q clearly normalizes F. It follows from Lemma 9.4 that $e \in E$ and e is marked. If $s \in E_{a}$ then $e \in U(s)$, which by Lemma 8.2 means that $E_{a} \leq\left(P_{a} \cap Q_{a}\right) A_{a}$. The latter group contains $P_{a} \cap Q_{a}$ as an index two subgroup. It follows that $\left[E_{a}: E_{a} \cap Q_{e}\right] \leq 2$. By the maximality property of a we now have that $\left[E_{a}: E_{a} \cap Q_{a}\right]=2$, since $E_{a} \not \leq Q_{a}$. This is a contradiction. Thus, if $\left[E_{a}: E_{a} \cap Q_{a}\right]>2$ then $E_{a} A_{a}=\operatorname{Ab}_{5}\left(V_{a}\right)$ for some singular 2_{2}^{5} subgroup $V_{a} \leq A_{a}$. Let $K=\operatorname{Ab}_{5}\left(V_{a}\right)$. Observe that Q acts trivially on V_{a}, since it acts
trivially on K / A_{a}. Hence $V_{a} \leq E$. Since $b \in E_{a}$, we have that $V_{a} \cap W_{a} \sim 2^{4}$. Let $e \in V_{a} \cap W_{a}$. Then e is a marked 2-central involution in E. Using Lemma 8.2, we see that $\left[K: K \cap Q_{e}\right]=4$ and hence $\left[E_{a}: E_{a} \cap Q_{e}\right] \leq 4$. By the maximality of a, we now must conclude that $\left[E_{a}: E_{a} \cap Q_{a}\right] \leq 4$.

Out of the two options given by this lemma, we will first dispose of the possibility that $E_{x} A_{x}=\operatorname{Ab}_{5}\left(V_{x}\right)$ for some singular 2_{2}^{5} subgroup $V_{x} \leq A_{x}$.

Lemma 9.7 For $x \in\{a, b\}$, we have that $E_{x} A_{x} / A_{x} \not \nsim 2^{5}$. In particular, $\left[E_{x}: E_{x} \cap Q_{x}\right]=2$.

Proof: Suppose by contradiction that $K=E_{x} A_{x}=\operatorname{Ab}_{5}\left(V_{x}\right)$ for some singular 2_{2}^{5} subgroup $V_{x} \leq A_{x}$. Then again Q acts trivially on V_{x} because it acts trivially on K / A_{x}. Suppose $x \notin V_{x}$. If $s \in E_{x} \cap Q_{x}$ then $U(s)$ contains x (cf. Lemma 8.2) and also $U(s)$ meets V_{x} in a subgroup of index two (because $s \in K=\operatorname{Ab}_{5}\left(V_{x}\right)$). Since $U(s)$ is singular, we have that $U(s) \cap V_{x}=V_{x} \cap Q_{x}$. This shows that $U(s)=\left\langle x, V_{x} \cap Q_{x}\right\rangle$ is unique, which means that $\left[E_{x} \cap Q_{x}: E_{x} \cap Q_{x} \cap A_{x}\right]=2$. However, in that case the index of $E_{x} \cap Q_{x}$ in E_{x} is at least 16, a contradiction with Lemma 9.6. Thus, $x \in V_{x}$. In particular, $V_{x} \neq T$. Now let $y \in\{a, b\}, y \neq x$. Observe that $V_{x} \cap Q_{y} \leq W(y)=W \leq T$. Consequently, $V_{x} \cap Q_{y} \leq V_{x} \cap T$, which gives us that $\left[V_{x}: V_{x} \cap Q_{y}\right] \geq 4$. (Here we use that both V_{x} and T are singular subgroups 2_{2}^{5} and hence $\left|V_{x} \cap T\right| \leq 2^{3}$.) As $V_{x} \leq E \cap P_{y}=E_{y}$, it follows that $\left[E_{y}: E_{y} \cap Q_{y}\right] \geq 4$. By Lemma 9.6, $E_{y} A_{y}=\operatorname{Ab}_{5}\left(V_{y}\right)$ for some singular 2_{2}^{5} subgroup $V_{y} \leq A_{y}$. Repeating the above argument with y in place of x, we obtain that $y \in V_{y}$ and hence $V_{y} \neq T$, and also that $\left[E_{x}: E_{x} \cap Q_{x}\right]=4$.

Since $U\left(y, A_{x}\right)$ meets both V_{x} and T in a subgroup of order 16, we conclude that that $\left|V_{x} \cap T\right| \geq 8$. Symmetrically, $\left|V_{y} \cap T\right| \geq 8$. As a result, $F=V_{x} \cap V_{y} \cap T \neq 1$. Clearly, Q normalizes F and so we can choose $e \in C_{F}(Q)$. Then e is a marked 2-central involution and $e \in E$. Since $e \in V_{x}$, we have that $\left[K: K \cap Q_{e}\right]=4$ and therefore $\left[E_{x}: E_{x} \cap Q_{e}\right] \geq 4$. Because of the maximality of x, we must have that $E \cap Q_{e}=E_{x} \cap Q_{e}$ and that this subgroup has index four in E_{x}. In particular, $E \cap Q_{x} \leq E_{x}$ and, symmetrically, $E \cap Q_{e} \leq E_{y}$. Hence $\left.E \cap Q_{e} \leq E_{x} \cap E_{y}\right] \leq P_{x} \cap P_{y}=S=$ $\operatorname{Ab}_{5}(T)$. This shows that $E \cap Q_{e}$ is contained in $K \cap S$. By Lemma 6.10, $\left[E \cap Q_{e}: E \cap Q_{e} \cap A_{x}\right] \leq 4$. However, this means that $\left[E_{x}: E \cap Q_{e}\right] \geq 8$, a contradiction.

Thus, we now know that $\left|E_{x} A_{x} / A_{x}\right| \leq 2^{4}$ and $\left[E_{x}: E_{x} \cap Q_{x}\right]=2$ for $x=a$ and b. We will obtain the final contradiction by showing that [$\left.E_{b}: E_{b} \cap Q_{b}\right]$ must at the same time be equal to four. However, the proof of
this claim will be different for the following two cases: (a) $\left|E_{a} A_{a} / A_{a}\right| \leq 4$, and (b) $\left|E_{a} A_{a} / A_{a}\right| \geq 8$. We first consider the case (a).

Lemma 9.8 If $\left|E_{a} A_{a} / A_{a}\right| \leq 4$ then the index of $E_{b} \cap Q_{b}$ in E_{b} is at least four.

Proof: By assumption, $E_{a}=\left\langle E_{a} \cap A_{a}, b, c\right\rangle$ for some $c \in E_{a}$. Notice that since $b \notin Q_{a}$ and since $\left[E_{a}: E_{a} \cap Q_{a}\right]=2$, we can choose $c \in Q_{a}$. Since b and c commute, Lemma 6.7 tells us that $U(b) \cap U(c)$ has size at least eight. Since b is 2-central, $W(b)=W$ is of index two in $U(b)$. Depending on the type of c, the subgroup $W(c)$ either coincides with $U(c)$ or is an index two subgroup in it. In any case, $F=W(b) \cap W(c)$ is nontrivial. In particular, we can select $1 \neq e \in C_{F}(Q)$. This e is a marked 2-central involution and $e \in E$. Since $b, c \in Q_{e}$, we have $\left[\left\langle A_{a}, b, c\right\rangle:\left\langle A_{a}, b, c\right\rangle \cap Q_{e}\right] \leq 2$, which gives us that $\left[E_{a}: E_{a} \cap Q_{e}\right] \leq 2$. By the maximality of a, we have that $e \in \mathcal{J}$ and, furthermore, that $E \cap Q_{e}$ is an index two subgroup in E_{x}.

Since $b, c \in Q_{e}$ and $E_{a}=\left\langle E_{a} \cap A_{a}, b, c\right\rangle$, we can choose $s \in E_{a} \cap A_{a}$ such that $s \notin Q_{e}$. Consider the subgroup $X=\langle a, s\rangle=\{1, a, s, a s\}$. Clearly, $X \leq E_{b}$, because $X \leq E$ and $X \leq A_{a} \leq P_{b}$. We have $a \notin Q_{b}$. Also, both s and $a s$ are not contained in Q_{e}, because $a \in Q_{e}$ (the latter holds since both a and e are in $U(b))$. We claim that s and as do not belong to Q_{b}. For that, view $A_{a} \cap Q_{b}$ as a subspace of the orthogonal space A_{a} (cf. Lemma 5.7). All singular vectors in $A_{a} \cap Q_{b}$ form the subspace W. This implies that W is in the radical of $A_{a} \cap Q_{b}$. So if s or $a s$ is in Q_{b} then it must be also perpendicular to e, because $e \in W$.

We have shown that X trivially intersects Q_{b}. Since $X \leq E_{b}$, this means that $\left[E_{b}: E_{b} \cap Q_{b}\right] \geq 4$.

This lemma and Lemma 9.7 rule out case (a). So it remains to deal with case (b), i.e., we now assume that $\left|E_{a} A_{a} / A_{a}\right| \geq 8$. We borrow ideas for our argument from the proof of Lemma 9.7.

First a preparatory lemma.
Lemma 9.9 There is a subgroup $D \leq E_{a}$ such that
(1) $\left|D A_{a} / A_{a}\right| \geq 2^{3}$ and $b \in D$;
(2) D is contained in $\mathrm{Ab}_{5}(V)$ for some singular 2_{2}^{5} subgroup $V \leq A_{a}$;
(3) for every 2 -central involution $e \in A_{a}$ we have that $D \not \leq Q_{e}$.

Proof: We consider two cases: Either (a) $E_{a} A_{a}=\mathrm{Ab}_{2}(F)$ for some singular 2^{2} subgroup $F \leq A_{a}$, or (b) $E_{a} A_{a} \neq \mathrm{Ab}_{2}(F)$ for all such F. Suppose we are in case (a), that is, $E_{a} A_{a}=\mathrm{Ab}_{2}(F)$ for some F. Let $\bar{P}_{a}=P_{a} / A_{a}$. Notice that since $b \in E_{a}$ we have that $F \leq U(b)=W_{a}$. Let $F=\left\{1, f_{1}, f_{2}, f_{3}\right\}$. Lemma 9.4 yields that each f_{i} is marked. Suppose $E_{a} \leq Q_{f_{i}}$ for some i. The set of all such f_{i} together with 1 forms a Q-invariant subspace F_{0} of F. Hence Q centralizes some f_{i} with $E_{a} \leq Q_{f_{i}}$; a contradiction to the maximality of a. Thus, $E_{a} \not \leq Q_{f_{i}}$ for all i. In particular, there exist x_{1}, x_{2} and $x_{3} \in E_{a}$ such that $x_{i} \notin Q_{f_{i}}$. Moreover, we can choose x_{1} and x_{2} equal, because no group can be fully covered by two proper subgroups. Let D be the full preimage in E_{a} of a subgroup 2^{3} from \bar{E}_{a} that contains the three elements $\bar{x}_{1}=\bar{x}_{2}, \bar{x}_{3}$, and \bar{b}. Clearly, (1) is satisfied for this D. Also, (2) follows from Lemma 6.10 . In case (b) we simply take $D=E_{a}$. Then (1) is trivially satisfied, while (2) follows from Lemmas 6.8 and 6.10.

It remains to show that (3) holds in both cases. If $e \in A_{a}$ is a 2-central involution such that $D \leq Q_{e}$ then e lies in the intersection X of all $W(s)$, $s \in D \backslash A_{a}$. Reversely, if $e \in X$ then e is 2-central and $D \leq Q_{e}$. Suppose $X \neq 1$. In case (a) we have that F is the intersection of all $U(s), s \in D \backslash A_{a}$. Therefore, $X \leq F$. However, no f_{i} can be in X because the corresponding x_{i} is in D, a contradiction. Suppose now we are in case (b). Since $b \in D$, we have that $X \leq W(b)=W$, and Lemma 9.4 implies that all $e \in X$ are marked. Finally, since Q centralizes D, it normalizes X, and hence it centralizes some $1 \neq e \in X$. That e is a marked 2-central involution in E_{a} with the property that $D=E_{a} \leq Q_{e}$. However, we know that no such e exists.

Choose D as in this lemma and let $V \leq A_{a}$ be the singular subgroup 2_{2}^{5} such that $D \leq \operatorname{Ab}_{5}(V)$. In view of Lemma 6.10 this V is unique. Since V is unique, Q normalizes V.

Lemma 9.10 The group Q centralizes V and, in particular, $V \leq E$.
Proof: If $s \in D \backslash A_{a}$ then we set $B(s)=V \cap U(s)$. If $s \in\left(D \cap A_{a}\right) \backslash V$ then we set $B(s)=V \cap s^{\perp}$. In both cases $B(s)$ is a hyperplane of V. Let F be the intersection of subgroups $B(s)$ for all $s \in D \backslash V$. Since Q normalizes every $B(s)$, it normalizes F and acts trivially on V / F. That is, $[V, Q] \leq F$. If $F=1$ then there is nothing else to prove, so we assume that $F \neq 1$. Notice that since $\left|D A_{a} / A_{a}\right| \geq 2^{3}$ and since $F \leq U(s)$ for all $s \in D \backslash A_{a}$, the size of F is at most four. Notice also that every $e \in F$ is perpendicular to all of $D \cap A_{a}$. Finally, since $F \leq U(s)$ for all $s \in D \backslash A_{a}$, we have that $D \leq A_{a} Q_{e}$ for every $e \in F, e \neq 1$. Therefore, $\left[D: D \cap Q_{e}\right]=2$ for every such e.

Set $X=D \cap Q_{F}$ and for a hyperplane H of F set $Y=Y(H)$ to be $D \cap Q_{H}$. (Here if $H=1$ then Q_{H} is the entire group M and $Y=D$.) Since $\left[D: D \cap Q_{e}\right]=2$ for every $e \in F$, we have $|D / Y| \leq 2,|Y / X| \leq 2$, and so $\left|X A_{a} / A_{a}\right| \geq 2$.

We claim that Y is never equal to X. Indeed, suppose $Y \leq Q_{F}$. If $|F|=2$, we have $Y=D$ and so $D \leq Q_{F}$, a contradiction with the definition of D. Thus $|F|=4$. Pick $x \in D \backslash Y$. Since $W(x)$ is of index at most two in $U(x)$ and since $F \leq U(x)$, there exists $1 \neq e \in F$ with $e \in W(x)$. For that e, we have $D=\langle Y, x\rangle \leq Q_{e}$, since $Y=X \leq Q_{e}$. This is a contradiction, proving that $Y \neq X$.

Thus, $D \cap A_{a}<X<Y$, and there exist $s_{1}, s_{2} \in Y \backslash X$ with $s_{1} A_{a} \neq$ $s_{2} A_{a}$. Then $U\left(s_{1}\right) \neq U\left(s_{2}\right)$, and since every singular subgroup 2^{4} in A_{a} lies in a unique singular 2_{2}^{5}, we also get $B\left(s_{1}\right) \neq B\left(s_{2}\right)$. Since $s_{i} \notin Q_{F}$ but $F \leq U\left(s_{i}\right)$, the involution s_{i} is 2 -central and $U\left(s_{i}\right)=F W\left(s_{i}\right)$. Notice that $F \cap W\left(s_{i}\right)=H$ for $i=1,2$. As Q centralies s_{i}, Q normalizes $W\left(s_{i}\right), F$ and H. Observe that $[F, Q] \leq H$ and also $\left[W\left(s_{i}\right), Q\right] \leq F \cap W\left(s_{i}\right)=H$. Thus, $\left[U\left(s_{i}\right), Q\right] \leq H$. Finally, since $V=U\left(s_{1}\right) U\left(s_{2}\right)$, we have $[V, Q] \leq H$. As H was an arbitrary hyperplane of F we conclude $[V, Q]=1$ and $V \leq E$.

The next question is whether $V=T$ or not.
Lemma 9.11 We have $V \neq T$. In particular, $\left[E_{b}: E_{b} \cap Q_{b}\right] \geq 4$.
Proof: Since $a \notin T$, it suffices to show that $a \in V$. Suppose $a \notin V$. If $s \in \mathrm{Ab}_{5}(V) \cap Q_{a}$ then $U(s)=\langle a, V \cap U(s)\rangle$. Since $U(s)$ is singular, $V \cap U(s)$ must coincide with $V \cap a^{\perp}$. Hence $U(s)$ is unique. This shows that $\mathrm{Ab}_{5}(V) \cap Q_{a} \cap A_{a}$ has index at most two in $\mathrm{Ab}_{5}(V) \cap Q_{a}$. Therefore, also $\left|\left(D \cap Q_{a}\right) A_{a} / A_{a}\right| \leq 2$. Since $D A_{a} / A_{a}$ has size at least eight, we must have that $\left[D: D \cap Q_{a}\right] \geq 4$, yielding $\left[E_{a}: E_{a} \cap Q_{a}\right] \geq 4$, which is a contradition with Lemma 9.7. Hence $V \neq T$. Finally, notice that $V \leq E_{b}$ and $V \cap Q_{b} \leq V \cap W(b) \leq V \cap T$. Since $[V: V \cap T] \geq 4$, we conclude that $\left[E_{b}: E_{b} \cap Q_{b}\right] \geq 4$.

Manifestly, the conclusion of this lemma contradicts Lemma 9.7, ruling out case (2) and thus showing that \bar{b} cannot be of type $2 a_{3}$ in $\bar{C}_{a}=C_{a} /\langle a\rangle$.

Corollary 9.12 The pair (a, b) is not in case (3) of Lemma 7.7.

According to Lemma 9.3 and Corollary 9.12, any two involutions $a, b \in \mathcal{J}$ are either perpendicular, or (a, b) is as in case (2) of Lemma 7.7. If any two involutions in \mathcal{J} are perpendicular then the subgroup generated by \mathcal{J} is
singular. Thus, it order to complete the proof of Proposition 9.1 all we need is to prove the following lemma.

Lemma 9.13 If the pair (a, b) is as in case (2) of Lemma 7.7 then E is an ark and $\langle\mathcal{J}\rangle=E \cap t^{\perp}$.

Proof: In this case \bar{b} is of type $2 a_{1}$ in $\bar{C}_{a}=C_{a} /\langle a\rangle$. By Lemma 7.7, $A=\langle a, b\rangle\left(Q_{a} \cap Q_{b}\right)$ is the unique ark containing a and b. Let $P=P_{A}$. Notice that $Q_{a} \cap C_{b}$ has order 2^{17} by Lemma 7.1 and that $P \cap Q_{a}$ also has size 2^{17} by Lemma 6.1. Since $P \leq C_{b}$, we conclude that $Q_{a} \cap C_{b}=P \cap Q_{a}$. In particular, $E \cap Q_{a} \leq P$. Symmetrically, $E \cap Q_{b} \leq P$. Let $D=\left(E \cap Q_{a}\right)\left(E \cap Q_{b}\right)$. Then $D \leq P$ and $E \cap Q_{x}=D \cap Q_{x}$ for $x \in\{a, b\}$. The maximality of x now shows that $\left|D \cap Q_{e}\right| \leq\left|D \cap Q_{x}\right|$ for all marked 2-central involutions from E. Let $y \in\{a, b\}, y \neq x$. Since $y \notin Q_{x}$, we have that $E \cap A \cap Q_{x}$ is a hyperplane of $E \cap A$. This implies that $\left|E \cap A \cap Q_{x}\right|=\left|E \cap A \cap Q_{y}\right|$ and hence also $\left|\left(E \cap Q_{x}\right) A / A\right|=\left|\left(E \cap Q_{y}\right) A / A\right|$. We will denote this latter number by r. We intend to prove that $r=1$, that is, $E \cap Q_{x} \leq A$.

If $s \in P \backslash A$ then $U(s)=U(s, A)$ is singular, and hence it cannot contain both x and y. This means that $\left(E \cap Q_{x}\right) A / A$ and $\left(E \cap Q_{y}\right) A / A$ meet trivially in P / A. Therefore, $|D A / A|=r^{2}$. Furthermore, this shows that $\left[D: D \cap Q_{x}\right]=\left[D A / A:\left(D \cap Q_{x}\right) A / A\right] \cdot\left[D \cap A: D \cap Q_{x} \cap A\right]=2 r$. Since D is abelian we have that $|D A / A| \leq 2^{5}$ and hence $r \leq 4$.

Suppose first that $r=2$ and let F be the intersection of all $U(s), s \in$ $D \backslash A$. Then F is a singular subgroup 2^{3}. Note that $t \in Q_{a} \cap Q_{b} \leq A$. This means that t^{\perp} is a hyperplane in A and hence $F_{0}=F \cap t^{\perp}$ is nontrivial. Clearly, Q normalizes F_{0} so we can select $1 \neq e \in C_{F_{0}}(Q)$. This e is a marked 2 -central involution in E. Since $e \in F$ we have that $\left[D: D \cap Q_{e}\right] \leq 2$. In view of maximality of x we must have that $2 \geq 2 r=4$, a contradiction.

Suppose now that $r=4$. Pick a hyperplane H in D such that $D \cap A \leq H$. Let F be the intersection of all $U(s), s \in H \backslash A$. Then $F \sim 2^{2}$ and hence again $F_{0}=F \cap t^{\perp} \neq 1$. Choosing $1 \neq e \in C_{F_{0}}(Q)$, we see that e is a marked 2-central involution from E and $\left[D: D \cap Q_{e}\right] \leq 2\left[H: H \cap Q_{e}\right] \leq 4<2 r=8$. So again we have a contradiction with the maximality of x.

Thus, $r=1$, that is, $E \cap Q_{x} \leq A$ for $x \in\{a, b\}$. Let e be any 2-central involution in $E \cap A$ that is perpendicular to t. Since $\left[E \cap A: E \cap A \cap Q_{a}\right] \leq 2$ the maximality of x implies that $e \in \mathcal{J}, E \cap Q_{e} \leq A$ and $\left[E \cap A: E \cap A \cap Q_{e}\right]=$ 2. Consider $F=(E \cap A)^{\perp}$. We would like to show that $A \leq E$, that is we need to prove that $F=1$. Suppose the contrary. We first remark that $t \in E \cap A$. Indeed, $t \in A$ and $t \in E=\Omega_{1} Z(Q)$ by assumption. Since $t \in E \cap A$, every 2-central involution in F is marked. Recall now that the

2-central involutions in A are simply the singular vectors with respect to the quadratic form f on A. Since Q normalizes F, if the number of singular vectors in F is odd then Q centralizes a 2 -central involution $e \in F$. Then e is marked and 2-central, $e \in E$ and $E \cap A \leq Q_{e}$, a contradiction with the maximality of x. Hence the number of singular vectors in F is even. This means that that either F is 1-dimensional containing a nonsingular vector, or 2 -dimensional nondegenerate. Suppose F is 2 -dimensional. Then F contains an odd number of nonsingular vectors and hence Q centralizes one of them, say c. Since $E=C_{M}(Q)$, we have that $c \in E$. Hence c is in the radical of the symplectic form on F, a contradiction, since that form is nondegenerate. If F is 1 -dimensional then Q centralizes a hyperplane in A. Since $N_{M}(A)$ induces on A the group $\Omega_{10}^{+}(2)$, no element of Q can act on A as a transvection. This means that Q centralizes A, that is, $A \leq E$ and $W=1$, a contradiction. Thus, $F=1$ and $A \leq E$.

Now, $A \leq E$ implies that $Q \leq C_{M}(A)=P$. In particular, $E \leq P$. Suppose $s \in E \backslash A$. Then $W(s) \cap t^{\perp} \neq 1$. By the above every involution $e \in W(s) \cap t^{\perp}$ is in \mathcal{J} and $E \cap Q_{e} \leq A$. This contradicts the fact that $s \in Q_{e}$.

The proof of Proposition 9.1 is now complete.

10 Proof of the theorems

In this section we derive Theorems 1 and 2. We start with the Monster group M.

Proof of Theorem 1. Suppose N is a maximal 2-local subgroup in M such that $C_{N}(Q) \leq Q$, where $Q=O_{2}(N)$. Let $E=\Omega_{1} Z(Q)$. If E is an ark then N is the normalizer of an ark, which agrees with Theorem 1. So now suppose that E is not an ark. Set $t=1$ and let \mathcal{J} be the set of all 2-central involutions $e \in E$ for which $\left|E \cap Q_{e}\right|$ reaches maximum. According to Proposition 9.1, $U=\langle\mathcal{J}\rangle$ is singular, since E is not an ark. Thus, N coincides with the normalizer of a singular subgroup. The singular subgroups of M have been classified in Section 4 (cf. Proposition 4.15). The normalizer of a singular 2^{4} is not maximal because it is contained in the larger normalizer of a singular subgroup 2_{2}^{5} (cf. Lemma 4.12). Also the normalizer of a singular subgroup 2_{1}^{5} is not maximal, because it is contained in the normalizer of an ark (cf. Lemma 5.10). The remaining possibilities agree with Theorem 1.

We now turn to the case of the Baby Monster $B M$. Recall that for us $B M$ is defined as the group \bar{H}, where $H=C_{M}(t), t$ is a non 2-central
involution in M, and $\bar{H}=H /\langle t\rangle$.
Proof of Theorem 2. Let \bar{N} be a maximal 2-local subgroup of \bar{H} and suppose $C_{\bar{H}}(\bar{Q}) \leq \bar{Q}$, where $\bar{Q}=O_{2}(\bar{H})$. Let N and Q be the full preimages of \bar{N} and \bar{Q} in H. Then $C_{H}(Q) \leq Q$ and $t \in Z(Q)$. Thus Proposition 9.1 applies to Q. Let $E=\Omega_{1} Z(Q)$ and let \mathcal{J} be the set of all marked 2central involutions $e \in E$, for which $\left|E \cap Q_{e}\right|$ reaches maximum. According to Proposition 9.1, either E is an ark, or $U=\langle\mathcal{J}\rangle$ is singular. Suppose first that E is an ark. Notice that $t \in E$ and that t is a nonsingular vector in the orthogonal space E. The group $\Omega_{10}^{+}(2)$ induced on E acts transitively on nonsingular vectors. Thus, H has a unique conjugacy class of arks containing t. This leads to one of the cases from Theorem 2 . Next suppose that E is not an ark and hence U is singular. Observe that U is generated by marked 2 -central involutions which means that $t \in Q_{U}$. It follows from the results of Section 4 (namely, Lemma 4.4, Corollaries 4.6, 4.9 and 4.11, and Lemma 4.14; see also Lemma 4.2 (3)) that U cannot be a singular 2_{2}^{5} and that in every other case the normalizer of U has a unique conjugacy class of non 2-central involutions in Q_{U}. Thus, H contains exactly five classes of singular subgroups U^{\prime} having the property that $t \in Q_{U^{\prime}}$. For the case $U^{\prime} \sim 2^{4}$ we claim that in fact $N_{H}\left(U^{\prime}\right)$ is not a maximal subgroup (so $U=\langle\mathcal{J}\rangle$ can never be a singular 2^{4}). Namely, we claim that U^{\prime} and t are contained together in a unique ark A and hence $N_{H}\left(U^{\prime}\right) \leq N_{H}(A)$. First notice that U^{\prime} and t are contained in some ark. Indeed, if A is an ark containing U^{\prime} then $A \cap Q_{U^{\prime}}$ does contain some non 2-central involutions. Since $N_{M}\left(U^{\prime}\right)$ is transitive on non 2-central involutions from $Q_{U^{\prime}}$, there must be an ark containing U^{\prime} and t. It follows from Lemmas 4.12 that U^{\prime} is contained in exactly three singular 2_{1}^{5} subgroups V, each of which is in turn contained in a unique ark A. By Lemma 4.13, t belongs to Q_{V} for two of these V. If $t \in Q_{V}$ then by Lemma 6.2 we have for the corresponding ark A that $t \in P_{A} \backslash A$. Thus, there is at most one ark containing U^{\prime} and t. We have shown that $U \nsim 2^{4}$. The remaining four classes of possible singular subgroups U appear in Theorem 2.

References

[As0] M. Aschbacher, Sporadic Groups, Cambridge University Press 1994.
[As1] M. Aschbacher, Overgroups of Sylow Subgroups in Sporadic Groups, Memoirs of the AMS, 60 (1986).
[AsSe] M.Aschbacher and Y.Segev, Extending morphisms of groups and graphs, Ann. of Math. (2) 135 (1992), 297-323.
[ATLAS] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Perkel and R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[CS] J.H.Conway and N.J.A.Sloane Sphere Packings, Lattices and Groups Springer Verlag, New York, 1988
[G1] G. Glauberman, Central elements in core-free groups, J. Algebra 4 (1966) 403-420.
[Gr1] R.L. Griess, The friendly Giant, Invent. Math. 69 (1982), 1-102.
[Gr2] R.L. Griess, A remark about representations of .1, Comm. Alg. 13 (1985), 835-844.
[IS] A.A. Ivanov and S. Shpectorov, The flag-transitive tilde and Petersen type geometries are all known, Bull. Amer. Math. Soc. (N.S.) 31 (1994), 173-184.
[M] U. Meierfrankenfeld, The maximal 2-locals of the Monster and Baby Monster, II, preprint.
[MOD] C. Jansen, K. Lux, R. Parker and R. Wilson, An Atlas of Brauer Characters, LMS monographs N.S. bf 11, Clarendon Press (1995).
[Po] H. Pollatsek, First cohomology groups of some orthogonal groups, J. Algebra 28 (1974), 477-483.
[Se] Y. Segev, On the uniqueness of Fischer's Babymonster, Proc. LMS (3) 62 (1991), 509-536.

Department of Mathematics
Michigan State University
East Lansing, MI 48824
meier@math.msu.edu
Department of Mathematics and Statistics
Bowling Green State University
Bowling Green, OH 43403
sergey@bgnet.bgsu.edu

