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Abstract

In this paper the maximal 2-local subgroups in the Monster and
Baby Monster simple groups which are not of characteristic 2 are de-
termined.

1 Introduction

Let p be a prime and G a finite group. We say G is of characteristic p
if CG(Op(G)) ≤ Op(G). A subgroup of G is called a p-local subgroup if
its the normalizer of a non-trivial p-subgroup of G. In [MS] all maximal
2-local subgroups of the Monster M and the Baby Monster BM which are
of characteristic 2 have been classified. As a follow up in this paper we
determine whose maximal 2-local subgroups of the Monster and the Baby
Monster which are not of characteristic 2.

Theorem A The Monster group M contains exactly 2 conjugacy classes of
maximal 2-local subgroups which are not of characteristic 2 with the struc-
tures as follows:

(1) 2.BM ;

(2) 22.2E6(2).S3

Theorem B The Baby Monster group BM contains exactly 3 conjugacy
classes of maximal 2-local subgroups which are not of characteristic 2 with
the structures as follows:

(1) 2.2E6(2).S3;

(2) 22.F4(2).2;
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(3) S4 × 2F4(2)

Let G be a finite group. For g ∈ G let Cg = CG(g). An element z in G
is called singular that if there exists a normal subgroup Qz of Cz such Qz
is an extraspecial p-group for some prime p and CG(Qz) = 〈z〉. So Qz is a
large extra special subgroups of G. Note that this implies that z has order
p and that Cz is of characteristic p. If x, y ∈ G and x is singular we say y
is perpendicular to x provided that y ∈ Qx. A subgroup E of G is called
singular if all the elements in E# are singular and pairwise perpendicular.
If E ≤ G, put CE = CG(E) and QE =

⋂
{Qz | z ∈ E, z singular }. If X,Y

are subgroups of G with Y singular, we say that X is perpendicular to Y if
X ≤ QY .

With the Monster we mean a finite group M such that M has a singular
involution z with Cz/Qz ∼= Co1 and |Qz| = 225 Then M has two classes of
involutions, see for example [MS, 7.6]. Let t be a non-singular involution
in M and put T = 〈t〉 and B = Ct. With the Baby Monster we mean the
group BM = B = B/T .

2 Subgroups of p-type

In this section G is a finite group and p a prime.

Lemma 2.1 Let A be p-subgroup of G. Then the following two statements
are equivalent.

(a) CG(Op(CG(A))A) is a p-group.

(b) NG(A) is of characteristic p.

Proof: Let Q∗ = Op(NG(A)) and Q = Op(CG(A)).
Suppose (a) holds, i.e. that CG(QA) is a p-group. Since AQ is a normal

p-subgroup of NG)A), AQ ≤ Q∗. Thus CG(Q∗) ≤ CG(AQ). So CG(Q∗) is
a normal p-subgroup of NG(A) and CG(Q∗) ≤ Q∗. Thus by definition of
”characteristic p”, (b) holds.

Suppose (b) holds. Let E = Op(CG(QA)). Then (a) is equivalent to
E = 1. Note that Q∗ normalizes E and E normalizes Q∗. Thus [Q∗, E] ≤
Q∗∩E ≤ Op(E). Since Op(E) is a normal p-subgroup of CG(A), Op(E) ≤ Q
and so [Op(E), E] = 1 and [Q∗, E,E] = 1. Since E = Op(E) and Q∗

is a p-group, we get E ≤ CG(Q∗). Since NG(A) is of characteristic p,
CG(Q∗)) ≤ Q∗. Hence E ≤ Q∗ and E = 1.
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A p-subgroup A of G is called of p-type in G provided that it fulfills one
of the equivalent conditions of the previous lemma.

Lemma 2.2 Let A be p-subgroup of G and D ≤ A. If D is of p-type then
A is of p-type.

Proof: Put Q = Op(CG(D)) and T = Op(CG(A)). By induction on
|A/D| we may assume that A normalizes D. Let x be a p′-element in G
centralizing AT . By 2.1a it suffices to show that x = 1. Since CG(A) ≤
CG(D), CG(A) normalizes Q. So CQ(A) is a normal p-subgroup of CG(A)
and hence CQ(A) ≤ T . Thus x centralizes CQ(A). Since A and x normalize
Q, the P ×Q-lemma implies, [Q, x] = 1. So x ∈ CG(QD). By 2.1a CG(QD)
is a p-group. Since x is a p′ element we get x = 1.

Lemma 2.3 Let L be a finite group, X ≤ L and suppose:

(a) CL(t) ≤ X for all involutions t ∈ X.

(b) There exists an involution s ∈ X with sL ∩X = sX .

(c) L has at least two classes of involutions.

Then X = L.

Proof: Let t be an involution in X and r an involution in L not conjugate
to t. Since 〈r, t〉 is a dihedral group and r and t are not conjugate, |rt| is even
and there exists a unique involution u in 〈rt〉. Then by (a) u ∈ CL(t) ≤ X
and r ∈ CL(u) ≤ X.

Applying this to t = s we see that X contains all the involutions in L
not conjugate to X. So by (c) there exists a involution t ∈ X with t /∈ sL.

So by the first paragraph sL ⊆ X. Thus by (b) sL = sX and so by the
Frattini argument, L = XCL(s) = X.

3 Purely non-singular subgroups

Define arks as in [MS]. In this section we determine the purely non-singular
elementary abelian subgroups of M and their normalizers.

Lemma 3.1 Let z be a singular involution and t a non-singular involution.
Suppose that t ∈ Cz \Qz. Then
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(a) tz is singular.

(b) Let V = (Qz∩Qtz)〈t, z〉. Then V is ark and so V is elementary abelian
of order 210, |CM (V )/V | = 216 and NM (V )/CM (V ) = Ω+

10(2).

(c) There exists a NM (V ) invariant non-degenerate quadratic form f on
V . Let s be the bilinear form associate to f and let a, b ∈ V #. Then
a is singular if and only if f(a) = 0. If a is singular, then b is perpen-
dicular to a if and only if s(a, b) = 0,

(d) V Qz = 〈t〉Qz and tQz is in Class 2A of Cz/Qz ∼= Co1.

(e) V is the unique conjugate of V in M containing 〈t, z〉.

Proof: By [MS, 7.7](and using the notations wherein) t̄ is of type 2a1, 2a3
or 2c. Since t is non-singular, [MS, 7.1] shows that t is of type 2a1 and that
tz is singular. Hence (a) holds. Moreover, [MS, 7.7(2)] gives that V is the
unique ark containing t and z. So (e) holds. (b) follows from [MS, 5.1,5.8]
and (c) from [MS, 5.7, 5.9]. Note that z is singular, t is non-singular and
t 6∈ Qz. From (c), V = 〈t〉(V ∩Qz) and so (d) follows from [MS, 5.6].

Lemma 3.2 (a) For each 1 ≤ i ≤ 3, M has a unique orbit on pairs
(Ei, Di) such that Ei is a singular 2i, Di is a purely non-singular
fours group and Di is perpendicular to Ei.

(b) M has a unique orbits on pairs (D4, V ) such that D4 is a purely non-
singular fours group, V is an ark and D4 ≤ V .

(c) No purely non-singular fours group is perpendicular to a singular 24

or 25.

(d) Representatives (Ei, Di), 1 ≤ i ≤ 3 and (D4, V ) for the above orbits
can be chosen such that E1 ≤ E2 ≤ E3 ≤ V and D := D1 = D2 =
D3 = D4 ≤ V . The stabilizers in L̄ := NM (D)/D are as follows:

(a) NL̄(E1) ∼ 21+[20].U6(2).

(b) NL̄(E2) ∼ 22+[27].(S3 × L3(4)).

(c) NL̄(E3) ∼ 23+[28].(L3(2)×Alt(5)).

(d) NL̄(V ) ∼ 28+[16].Ω−8 (2).
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Proof: Let E be a singular 2i in M and put R = NM (E). We first
determine the orbits of R on the purely non-singular fours groups F in QE
and also CR(F ).

By [MS, 4.10], a singular 24 is not perpendicular to a purely non-singular
fours group. So (c) holds.

So suppose i ≤ 3. Let V = QE/E, F̃ = FE/E, T = CR(QE/E),
S = CT (E) and K = R/T . By [MS, 4.2(3)], S acts transitively on the 22i

complements to E in EF , and T/S ∼= SLi(2). Note that [NT (F ), F ] ≤ E ∩
F = 1. Thus NT (F ) = CT (F ) and so T/CT (F )| = |S/CS(F )| = 22i = |E|2.
In particular, T = CT (F )S. In particular CT (F )/CS(F ) ∼= CT (F )S/S =
T/S ∼= SLi(2). We proved:

CT (F )/CS(F ) ∼= SLi(2) (1)

Since |S/CS(F )| = 22i and |EF | = 2i+2

|CS(F )| = S

23i+2 . (2)

From [MS] the order of |S| is as follows:

i 1 2 3

|S| 225 235 239
(3)

From (2) and (3) we obtain the order of CS(F )/FE:

i 1 2 3

|CS(F )/FE| 220 225 228
(4)

Since CT (F ) induces Aut(E) on E, CR(F ) = CT (F )CR(EF ). Since
CT (F ) ∩ CR(EF ) = CS(F ) we conclude

CR(F )/CS(F ) ∼= CT (F )/CS(F )× CR(F )/CT (F ) (5)

Also CR(F ) ≤ CR(F̃ ), where F̃ = FE/E, and by the Frattiargument,
CR(F̃ ) = TCR(F ) so

CR(F )/CT (F ) ∼= CR(F̃ )/T = CK(F̃ ). (6)

In view of (1),(4),(5) and (6), the structure of CR(F )/F will be deter-
mined once we know CK(F̃ ). Also the orbits of R on the possible F are in
one to one correspondence with the orbits of K on the possible F̃ .
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Suppose that i = 1. Let Λ be the Leech lattice and Λ = Λ/2Λ. Let
(x, y) = 1

8
∑24
i=1 xiyi be the unimodular inner product on Λ. 1

2(x, x) is called
the type of x. The type of x = x + 2Λ is the minimum type of a vector in
x + 2Λ. By our definition of the Monster, V is as a Cz/Qz ∼= Co1-module
isomorphic to Λ. By [MS, 4.4] the non-singular elements in Qz corresponds
to the vectors of type 2 in Λ. By [ATLAS], Co1 acts transitively on the fours
groups in Λ all of whose non-trivial elements have type 2. Moreover, the
centralizer of such a fours group is U6(2). So (a) and (d:a) hold for i = 1.
holds in this case.

Suppose next that i = 2. By [MS, 4.5], V = QE/E is the Todd-module
for K ∼= M24 and if t is a non-singular involutions in QE , tE corresponds
to a pair in Ω := {1, 2, . . . , 24}. Hence F̃# corresponds to three pairs in a
subset of size three of Ω. Since M24 is five transitive on Ω we conclude that
CK(F̃ ) ∼= M21 ∼= L3(4) and so (a) and (d:b) holds for i = 2.

Suppose now that i = 3. Then by [MS, 4.8], K ∼= 3.Sym(6), V is
irreducible of order 26 and the non-singular involutions in QE lie in the orbit
of length for 18 for K on V #. Note that Z(K ′) has order three and acts
fixed-point freely on V . For v ∈ V let v∗ = Z(K ′)v ∪ {1}. It follows that v∗

is a fours group in V . Let a, b ∈ F̃#. Suppose that a∗ 6= b∗ and observe that
(ab)∗ ≤ a∗b∗ and a∗ 6= (ab)∗ 6= b∗. Let I = {(a∗)k | k ∈ K}. Since |aK | = 18,
|I| = 6. HenceK induces Sym(I) on I andNK(a∗)∩NK(b∗) acts transitively
on I \ {a∗, b∗} and so d∗ ≤ a∗b∗ for all d∗ ∈ I. But then 〈I〉 ≤ a∗b∗,
contradicting the irreducible action of K on V ( and |a∗b∗| = 24 < |V |).
Hence a∗ = b∗ and F̃ = a∗. Thus NK(F̃ ) = 3.Sym(5). Since [Z(K ′),K] 6= 1,
NK(F̃ ) induced Sym(3) on F̃ = a∗ and so CK(F̃ ) = Alt(5). Thus (a) and
(d:c) holds for i = 3.

Now let V be an ark with D ≤ V . Then by 3.1, D is a non-degenerate
2-space in V . Thus by 3.1, D is unique up to conjugacy in NM (V ), NM (V )∩
NM (D) induces Sym(3) on D and NM (V )∩CM (D) ∼ 210+16Ω+

8 (2). So (b)
and (dd) hold. Finally that exists a chain E1 < E2 < E3 of subgroups of
order 2, 4 and 8 in V which are (with respect to the quadratic form on V )
singular and perpendicular to D. Thus by 3.1 Ei is ( in M) singular and
perpendicular to D.

Lemma 3.3 Let z be a singular involution in M . Then Cz is transitive on
the purely non-singular fours group in Qz. Moreover, there does not exist
any purely non-singular subgroups of order larger than four in Qz.

Proof: The first statement follows from 3.2(a). For the second we use the
use the same notations for Qz/ < z >∼= Λ as in the the previous lemma.
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Suppose that exist vectors a, b, c of type 2 in Λ such that 〈a, b, c〉 has
order eight and only contains vectors of type 2. Since a+ b has type two
it is easy to see that (a, b) = ±2. Moreover, if (a, b) = 2, then a − b
has type 2, and if (a, b) = −2 then a + b has type 2. Replacing b and c
by their negatives, if necessary, we may assume (a, b) = (a, c) = 2. Thus
(a, b + c) = 4 and (a, b − c) = 0. Since either b + c or b − c has type 2, we
get that a+ b+ c = a+ b− c is not of type 2, a contradiction.

Lemma 3.4 There exists a unique class of purely non-singular fours groups
in M .

Proof: Let F = {1, a, b, c} be a purely non-singular fours group in M .
By 3.3 it suffices to show that F ≤ Qz for some singular involution. For
this let z be a singular involution with a ∈ Qz. Then Ca ∩ Cz contains a
Sylow 2-subgroup of Ca and so we may choose z such that F ≤ Ca ∩ Cz. If
F ≤ Qz we are done. So we may assume that F 6≤ Qz. Then b, z ∈ Cz \Qz
and by 3.1 bz and cz are singular and there exists a unique ark V containing
b and z. Since a ∈ Qz, az is conjugate to a and so az is non-singular. Also
(az)(bz) = c is non-singular and thus 3.1a applied with to bz in place of z
shows that az ∈ Qbz. Thus az ∈ Qz ∩Qbz ≤ V and so F ≤ V . By 3.1c there
exists a singular involution in V perpendicular to F .

Lemma 3.5 Let D be purely non-singular fours group. Then there exist
eights groups D1, D2 and D3 containing F such that

(a) D1 contains a unique singular involution z and D1 ≤ Qz.

(b) D2 \ D contains a unique non-singular involution and D2 lies in an
unique ark.

(c) All elements of D3\D are singular, D3 is not contained in a ark and the
singular involutions in M perpendicular to D3 generate a non-trivial
singular subgroup of M .

Proof: By 3.1c groups D1 and D2 as in (a) and (b) can be found in any ark.
It remains find a group D3 as in (c). Let E be a singular fours group with
D ≤ QE . By [MS, 4.5] QE/E is the Todd-module for CE/O2(CE) ∼= M24.
Moreover, the pairs represent the non-singular involutions, while the sextetts
represent singular involutions. Let S = (Ti | 1 ≤ i ≤ 6) be a sextett and
ki ∈ Ti. Let a and b be non-singular involutions in QE such that Ea and
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Eb correspond to {k1, k2} and {k1, k3} respectively. Then Eab correspond
to {k2, k3} and so D := 〈a, b〉 is a purely non-singular fours group. Let Ez
correspond to S and put D3 = 〈a, b, z〉. Then az corresponds to the sextett
determined by the T1∪{k2}\{k1} and so az is singular. Similarly bz and abz
are singular. In particular, no element in D# is perpendicular to z and so
D3 cannot be contained contained in an arc. Also E is perpendicular to D3.
So it remains to show that if d and e are singular involutions perpendicular
to D3, then d is perpendicular to e. Note that d and e commute. [MS, 7.7]
lists the orbits of M on pairs of commuting singular involutions and their
common perp. We apply this to (c, d). Since D3 ≤ Qc∩Qd, Qc∩Qd contains
a purely non-singular fours group ( namely D). This rules out Cases (3) and
(4) of the list in [MS, 7.7]. In Case (1) we would conclude that D3 lies in
the ark (Qc ∩ Qd)〈c, d〉. So Case (2) holds, d and e are perpendicular and
(c) is established.

Lemma 3.6 Let D be a purely non-singular fours group and put L = CM (D)
and L̄ = L/D.

(a) L̄ ∼= 2E6(2) and NM (A)/A ∼= Aut(2E6(2)) ∼ 2E6(2).Sym(3)

(b) M has exactly three classes of eights groups containing a pure non-
singular fours group. Representatives are as given in 3.5. In particu-
lar, any purely non-singular subgroup has order at most four.

(c) If x ∈ L with x2 ∈ D then x2 = 1.

Proof: (a) Let E1, E2, E3, D and V be as in 3.2(d). Define X =
〈NL(Ei), NL(V ) | 1 ≤ i ≤ 3〉. It is straightforward from 3.2(d) to show that
X acts faithfully and flag transitively on a geometry B with F4-diagram.
By [Ti2, Theorem 1] B is covered by a building. By the classifications
of spherical buildings [Ti1] B is the building associate to 2E6(2). Thus
X ≤ Aut(B ∼= Aut(2E6(2)) ∼ 2E6(2).Sym(3). It is now easy to see that
NL̄(E1) ≤ 2E6(2) and is a maximal parabolic subgroup of 2E6(2). Hence
X̄ ∼= 2E6(2).

We may choose the Di such that E1 contains the unique singular in-
volution in D1, V is the unique ark containing D2 and for some i, Ei is
the subgroup generated by the singular involutions perpendicular to D3. It
follows that CL̄(D1/D) ≤ NL̄(E1) ≤ X̄, CL̄(D2/D) ≤ NL̄(V ) ≤ X̄ and
CL̄(D3/D) ≤ NL̄(Ei) ≤ X̄..

By [AS] X̄ has three classes of involutions. Thus D1/D,D2/D and D3/D
are representatives for the classes of subgroups of order two in X̄. Since for
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i 6= j, Di is not conjugate to Dj in M , two involutions in X̄ are conjugated
in X̄ if and only if they are conjugate in L. Hence all assumptions of 2.3
are fulfilled and so X = L.

In NM (V ) we see that NM (A)/CM (A) ∼= Sym(3) and CM (L) = 1. Thus
NM (A)/A ∼= Aut(2E6(2)). So (a) holds.

(b) As L = X this was proved in (a).
(c) By the prove of (a), D〈x〉/D is conjugate in L̄ to some Di/D. Since

Di is elementary abelian, (c) holds.

4 Proof of Theorem A

In this section we prove Theorem A. So let P be a maximal p-local subgroup
of M which is not of characteristic p. Let A = Ω1Z(Op(P )). Then NM (A) =
P and as P is not of characteristic p, A is not of p-type. Thus by 2.2 none of
the involutions are of 2-type and so all the involutions in A are non-singular.
By 3.6 |A| ≤ 4. If |A| = 2 then by [MS, 7.6], A is conjugate to T and so Case
(1) of Theorem A holds. If |A| = 4 then by 3.4 A is unique up to conjugacy
and by 3.6(a), Case (2) of Theorem A holds.

5 Involutions in the Baby Monster

In this section we determine the conjugacy classes of involution in the Baby
Monster. The conjugacy classes of involution in the Baby Monster which
lift to involution in the monster already have been determined. So we need
to investigate the set F of elements of order four in M which square to a
non-singular involution. We start with a technical lemma used later to show
that elements in F normalize a purely non-singular fours group.

Lemma 5.1 Let H be a finite group, Q a normal subgroup of H and f ∈ H.
Suppose that Q is an extra-special 2-group, f2 ∈ Q \ Z(Q) and that there
exists an involution in Qf . Then one of the following holds:

(a) There exists an involution q ∈ Q with [q, f ] = f2.

(b) NH(Qf) normalizes f2Z(Q).

Proof: Recall the commutator formulas:

[a, bc] = [a, c][a, b]c (1)
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[ab, c] = [a, c]b[b, c] (2)

Let i be an involution in Qf . Set s = fi and z = s2. Then s ∈ Q, f = si
and since Q is extra special, z ∈ Z(Q). By (1), [s, f ] = [s, si] = [s, i] and so
f2 = sisi = s2[s, i] = z[s, f ]. We record

f2 = z[s, f ] (3)

If z = 1, (a) holds with q = s. So suppose that z 6= 1. Then Z(Q) = {1, z}.
Assume first that there exist an involutions r ∈ [Q, i] with [r, s] 6= 1.

Since [Q, i] = {[u, i], z[u, i] | u ∈ Q} we may assume that r = [u, i] = iui for
some u ∈ Q. Then〈iu, i〉 is a Dihedral group of order four and so

[r, i] = 1 (4)

Since Q is extraspecial and r, s ∈ Q, [r, s] = z. Hence r inverts s and q := rs
is an involution. Moreover, by (2)

[q, s] = [rs, s] = [r, s]s[s, s] = zs = z (5)

by (2) and (4)
[q, i] = [rs, i] = [r, i]s[s, i] = [s, i] (6)

and so by (1),(5),(6) and (3)

[q, f ] = [q, si] = [q, i][q, s]i = [s, i]z = f2. (7)

Thus (a) holds in this case.
Assume finally that s centralizes E := Ω1([Q, i]). Note that [Q, i] =

[Q,Qf ] and so NH(Qf) normalizes E. Moreover, [Q, i] is abelian and so E
has index at most two in [Q, i]. Let D := CQ([Q, i]) and R := CQ(E). Then
s ∈ R, |R/D| = |[Q, i]/E| ≤ 2 and D/Z(Q) = CQ/Z(Q)(i). If s ∈ D we get
[s, i] ∈ Z(Q) and f2 = z[s, i] ∈ Z(Q), a contradiction to the assumptions of
the lemma. Thus s 6∈ D, E has index two in [Q, i] and 〈s〉D = R. Thus

〈f2〉Z(Q) = 〈[s, i]〉Z(Q) = [R, i]Z(Q) = [R,Qi]Z(Q) = [R,Qf ]Z(Q).

As NH(Qf) normalizes Q, E, R and Z(Q) we conclude that (b) holds.

Lemma 5.2 Let f ∈ F . Then there exists a dihedral group H of order eight
in M with f ∈ H and such that H contains exactly two singular involutions.
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Proof: Let z be a singular involution with f2 ∈ Qz. Then z is 2-central
in Cf2 and so we may assume f ∈ Cz. Since f2 is non-singular, f̃2 is of
2-type in Q̃z = Qz/〈Z〉 ∼= Λ/2Λ. By [MS, 2.5] involutions of type 2B in Co1
do not centralizes elements of type 2 in Λ/2Λ. Hence Qzf is of 2A or 2C.
By [MS, 7.1] in both case there exists an involution i ∈ Qzf . Moreover by
[MS, 2.4,2.5] NCz(Qzf) normalizes no elements type 2 in the Leech lattice
Q̃z. Thus by 5.1 there exists an involution q ∈ Qz with [q, f ] = f2.

Suppose that all such q’s are non-singular. Let X = Qz ∩ Cf ∩ Cq. X
has index at most 4 in CQx

(f) and CQx
(f) has order at least 212. Thus

|X| ≥ 210. Hence X contains elementary abelian subgroup of order 25 and
so also 24 E with z 6∈ E. Since M contains no pure non-singular 24, there
exists a singular involution s in E. Then s 6= z, s ∈ Qz and s centralizes q
and f . In particular, sq is an involution in Qz with [sq, f ] = f2 and so by
assumption sq is non-singular. Then as q and sq are non-singular, q ∈ Qs. If
sqf is non-singular, then qf ∈ Qs and so also f = q−1qf ∈ Qs and f2 ∈ 〈s〉,
a contradiction since s is singular and f2 is not. Thus sqf is singular and
we can choose H = 〈sq, sqf〉.

So we may assume now that q is singular. If qf is non-singular we can
choose H = 〈q, qf〉. So we may assume that qf is singular.

Put X = {1, f2, q, qf}. Then X is a fours group normalized by f and
[X, f ] = 〈f2〉. Put Y = QX . Since q and qf are singular and f2 is not,
3.1 implies that X lies in a unique ark V , and that Y is a non-degenerate
subspace of order 28 in V . Namely Y is the orthogonal complement to X
in V . Suppose that CY (f) is singular. Since CY (f) has order at least 24 we
get |CY (f)| = 24 and |CV (f)| = 25. But this contradicts the fact that any
involution in Ω(V ) centralizes an even dimensional subspace of V .

Hence CY (f) is not singular. Let b be any non-singular involution in
CY (f). Since b ∈ Y ≤ Qq also bq is non-singular. If bqf is singular, we can
choose H = 〈bq, bqf〉. So we may assume that bqf is non-singular for all
such b. Since b and bqf are non-singular we conclude that b ∈ Qqf . Let E
be the group of generated by the non-singular involution in CY (f). Then
E ≤ Qqf . If E contains a singular involution s we get 〈q, qf〉 ∈ Qs. But
then f2 = [q, f ] ∈ 〈s〉, a contradiction, as f2 is non-singular. We conclude
that E is purely non-singular and so |E| ≤ 4. But then also |CY (f)| ≤ 4, a
contradiction.

Lemma 5.3 Let V be an ark and t, z ∈ V # with z singular, t non-singular
and t ∈ Qz. Then Ṽ is in class 2A of ˜Cz ∩ Ct ∼= Co2.
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Proof: V is the natural module for NM (V )/CM (V ) ∼= Ω10(2) we get Cz ∩
Ct∩NM (V ) has factor group isomorphic to Sp6(2). Thus the lemma follows
from Lagrange’s Theorem and [ATLAS].

Lemma 5.4 There exist subgroups D and D◦ of M such that with X =
NM (D):

(a) D ∼= D8 and all involutions in D are non-singular.

(b) X interchanges the two fours groups in D.

(c) Let f be the element of order four in D and J a Sylow 2-subgroup of
NG(〈f〉) containing D. Then D is the unique conjugate of D under
NG(〈f〉) contained in J .

(d) Let e be an involution in CM (D) \D. Then e or ef2 is singular.

(e) X/D ∼= Aut(F4(2)).

(f) f ∈ D◦, D◦ ∼= D8 and D◦ contains exactly two singular involutions.

(g) D and D◦ is a complete set of representatives for the conjugacy classes
of subgroups isomorphic to D8 in M which contain a purely non-
singular fours group. In particular, any two D8’s in M containing
only non-singular involutions are conjugate.

(h) X/D has a unique class of subgroup of order two not contained in
(X/D)′. Moreover if S is the inverse image in X of such a group,
then X ∼= SD16 and NX(S)/S ∼= 2F4(2).

Proof: Let t = f2.
(a) Let A be a purely non-singular fours group in G. Then by 3.6

NM (A)/A ∼= Aut(2E6(2)) and so by [AS] there exists a unique class of sub-
group D ≤ NM (A) with A ≤ D, |D/A| = 2, (NM (A) ∩NM (D))/D ∼= F4(2)
and D 6≤ CG(A). Then D ∼= D8. Let t be an involution in D. As 17 divides
the order of F4(2) and so also of CM (t), t is non-singular. Thus (a) holds.

(b) By (a) the fours group B in D distinct from A is also pure non-
singular. Hence B = As for some s ∈M . But then D and Ds are conjugate
in NM (B) and we may and do choose s such that Ds = D. Let Y =
NM (A) ∩NM (D). Then X = Y 〈s〉.

(c) Suppose that is D is the unique conjugate of D under NG(〈f〉) nor-
malizing D. Then NNJ (D)(NJ(D)) ≤ NJ(D), D is normal in J and (c) holds
in this case.
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So to prove (c) we may assume (for a contradiction) that there exists a
conjugate D∗ of D under NG(〈f〉) normalizing D. Put U = 〈D,D∗〉. As
f ∈ D ∩D∗, |U | = 16.

Assume that D∗ induces only inner automorphism on D. Then U =
DCU (D), |CU (D)| = 4, Z(U) = CD(U) and either Z(U) is cyclic or Z(U) is
a fours group. Note that D∪D∗ contains eight involutions from U \Z(U). If
Z(U) ∼= C4, every non -trivial coset of Z(U) contains exactly two involutions
and U \Z(U) contains six involutions, a contradiction. Thus Z(U) is a fours
group and there are exactly eight involution in U \Z(U). We conclude that
all the involutions of U \Z(U) are in D ∪D∗ and so are non-singular. Thus
U contains at most two singular involutions. Let E be an eights group in
U . Then D ∩ E is a purely non-singular fours group in E and E contains
at most two singular involutions. By 3.6b and 3.5, E contains a unique
singular involution z. But then z is the unique singular involution in U ,
all involutions in U are in Qz, U ≤ Qz and f2 = z a contradiction, a
contradiction as f2 = t is non-singular.

Hence D∗ induces an outer automorphism on D and so interchanges the
two fours groups in D. Let a and a∗ be non central involutions in D and
D∗ respectively. Put b = aa

∗
. Then D = 〈a, b〉 and U = 〈a, a∗〉 ∼= D16. Put

t = f2 and let z be a singular involution perpendicular with t ∈ Qz. As z is
2-central in Ct we may assume that U ≤ Cz. Since f2 6∈ 〈z〉, f 6∈ Qz. Let N
be a normal subgroup of U with N 6≤ Z(U) = 〈t〉. Then |N | ≥ 4, |U/N | ≤ 4
and so 〈f〉 = U ′ ≤ N . Thus U ∩ Qz = 〈t〉. Let C̃z = Cz/Qz ∼= Co1. As
U centralizes t, Ũ is contained in ˜Cz ∩ Ct ∼= Co2. In particular, f̃ is not of
G2(4)-type.

Since U ∩ Qz = 〈t〉 we have a 6∈ Qz and so az is singular. By 3.1
there exists a unique ark Va containing z and a. Consider the eights group
E = 〈t, a, z〉 and the purely non-singular subgroup B = 〈a, t〉. Also tz is
non-singular and so Case (b) of 3.5 must hold for E. So E lies in an ark.
Since Va is the unique arl containing z and a, we get t ∈ E ≤ Va. Thus 5.3
implies that ã ∈ Ṽa is a 2A involution in Co2. By symmetry all involution
in Ũ except maybe f̃ are in 2A.

Suppose first that f̃ is in one of the classes 2A or 2B of Co2. Then f̃
is 2-central in Co1 and there exists an ark Vf containing z and such that
f̃ ∈ Ṽf . Since QzVf/Vf is elementary abelian, t = f2 ∈ Vf . So 5.3 implies
that f̃ ∈ Ṽf is 2A in Co2. Hence {1, f̃ , ã, b̃} is a pure 2A-subgroup of
Co2. But no such fours groups exists. ( For example by [ATLAS] the 2A
involutions have trace −9 on the complex 23-space and 23 − 9 − 9 − 9 is
negative, contradicting the orthogonally relations)
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Thus f̃ is in the class 2C. Let x be an element of order four in Ũ . Let
m be the trace of x on the complex 23-space. By [ATLAS] the 2A elements
have trace −9 and the 2C-elements have trace −1. Thus the sum of the
traces of the elements in Ũ is 23 + 4 · (−9) + (−1) + 2m = 2m− 14. Hence
m ≥ 7. From [ATLAS] we conclude m = 7, x is in the class 4A and x2 is in
the class 2A. A contradiction, since x2 = f̃ .

(d) Suppose that both e and et are non-singular. Then by 3.6b and 3.5
applied to A〈e〉, there exist a unique singular involution z in A〈e〉. As D
normalizes A〈e〉 we conclude that D centralizes z. But then D centralizes
〈t, e, z〉 = A〈e〉, a contradiction.

(e) Let L = 〈t〉X∞. Then L ∼ 2.F4(2). So by [AS] there exists e ∈ L
with e2 ∈ 〈t〉 such CL/〈t〉(e) ∼ [215]Sp6(2). By [ATLAS] e has order two
and e is not conjugate to et in L. Thus CL(e) ∼ [216].Sp6(2). By (d) (and
replacing e be et if necessary) we may assume that e is singular. Note that
f /∈ Qe. Let s = f if f2 ∈ Qe and s = f2 if f2 6∈ Qe. Then s̃ is an involution
in C̃e = Ce/Qe. Also [DCL(e), s] ≤ 〈s2〉 ≤ Qe. Since C̃L(e) has factor group
Sp6(2) we conclude form [ATLAS] that C

C̃e
(s̃) ∼ 21+8Ω+

8 (2). Since no fours

group in 21+8Ω+
8 (2) has a centralizer involving Sp6(2) we conclude that D̃

is neither isomorphic to D8 nor a fours group. Since f̃ 6= 1 we conclude
that D ∩ Qe ∈ {A,B}. If X induces only inner automorphisms on L/〈t〉.
Since L/〈t〉 is perfect, we conclude that X = CX(L)L and so there exists
x ∈ CX(L) \DL. Then by the proven part of (b), Ax = B, a contradiction
as x normalizes D ∩Qz. Thus (e) holds.

(f) Moreover, a ∈ A \ Z(D) and b ∈ B with ab = f . As a ∈ Qe, ae
is non-singular and as b /∈ Qe, be is singular. Put D◦ = 〈ae, be〉. Then (f)
holds.

(g) By [AS] 2E6(2).2 has exactly two classes of involutions outside 2E6(2).
Thus (g) follows from (a) and (f).

(h) The uniqueness part of (h) and the structure of NX(S)/S follows
from [AS]. Suppose that there exists an involution d in S \D and let a be
an involution D with a 6= t. Then D = 〈a, ad〉 and so S = 〈a, d〉 ∼= D16
and D∗ := 〈d, da〉 ∼= D8. Moreover, CX(d) involves 2F4(2)′ and so CM (d) is
divisible by 13. Thus d is non-singular. By (e) D and D∗ are conjugate in
M and as 〈f〉 is the unique cyclic subgroup of order four in D ( in D∗), D
and D∗ are conjugate in NG(〈f〉). But this contradicts (c). Hence S \ D
contains no involutions, S ∼= SD16 and all part of 5.4 are proved.

Lemma 5.5 Let F be the set of elements of order four squaring to a non-
singular involution, f ∈ F and F = NM (〈f〉). Then
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(a) M acts transitively on F .

(b) F ∼ D8.Aut(F4(2)).

(c) F/O2(F ) has a unique class of subgroup of order two not contained in
(F/O2(F ))′. Moreover if S is the inverse image in F of such a group,
then S ∼= SD16 and NF (S)/S ∼= 2F4(2).

Proof: (a) Let f ∈ F and choose H as in 5.2. By 5.4 H is conjugate to
D◦. Since the two elements of order four in D◦ are conjugate in D◦, (a) is
proved.

To prove (b) and (c) let D, X and f be as in 5.4. Put L = NM (〈f〉).
Then (b) and (c) follow from 5.4a,g once we establish that L = X. By 5.4c
and the Z∗ theorem ([Gl]) applied to L/〈f〉 we have L = O(L)X, where
O(L) is the largest normal subgroup of order odd order in L. Let z be an
involution in CM (D) with z 6= f2. By 5.4d z or zf2 is singular and so by 2.2
〈f, z〉 is of 2-type. Thus O(CM (〈f, z〉)) = 1 and z inverts O(L). Since this is
true for any involution in CM (D) distinct from f2 and as CM (D) contains
elementary abelian groups of order eight we conclude that O(L) = 1 and
L = X.

6 Proof of Theorem B

In this section we prove Theorem B. So let P be a maximal 2-local of
BM = B such that P is not of characteristic 2. Let P its preimage in B,
R = O2(P ) and T = 〈t〉. Then P = NB(R). We claim that R is not of
2-type in M .

Let U be the preimage of CB(Q) in B. Since P is not of characteristic
p, U 6≤ R and U is not a 2-group. Since [R,U ] ≤ T and [T,U ] = 1 we
get [R,O2(U)] = 1. Hence CM (R) is not a 2-group. Since t ∈ R,CM (R) =
CB(R) = CP (R) and so O2(CM (R)) ≤ R. Thus by 2.1(b) R is not a of
2-type, proving the claim.

So 2.2 none of the involutions in R are of 2-type. That is all the involu-
tions in R are non-singular.

Let A be a normal subgroup of P minimal with respect to A 6≤ T . Then
P = NB(A). Note that AT/T

is elementary abelian and AT ≤ R. So if x ∈ TA# then x is a non-
singular involution or x has order 4.

Suppose that A contains an involution a with a 6= t. Let D = 〈a, t〉.
Then D is a purely non-singular fours group. Note that b2 ∈ T ≤ A for
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all b ∈ CAT (D). Thus by 3.6c, CAT (D) is elementary abelian and by 3.6b,
|CAT (D))| ≤ 4. Thus CAT (D) = D. Since D is normal in AT and |D| = 4
we get |AT/D| ≤ 2. Hence AT is a fours group or AT ∼= D8. If AT is a
fours group, then by 3.4 AT is unique up to conjugacy in M . By 3.5 we
conclude that NM (AT ) induces Sym(3) on AT . Thus NB(AT ) induces C2
on AT , A = AT and A is unique up to conjugacy in B. So by 3.5, Case
(1) of Theorem B holds. If AT ∼= D8, then A = AT and P normalizes the
unique cyclic group of order four in A, a contradiction to the minimal choice
of A.

Suppose next that t is the only involution in A. Then A ∼= C4 or Q8. If
A ∼= C4, then by 5.5, Case (2) of Theorem B holds.

So suppose A ∼= Q8. Let R be one of the three cyclic subgroups of order
four in A. Then T ≤ R. Put D = O2(NM (R)). Then by 5.5, D ∼= D8.
Note that A ≤ NM (R) and so A normalizes D. Let F be a fours group
in D and suppose that A normalizes F . Then |A/CA(F )| ≤ 2. So there
exists H ≤ CA(F ) with H ∼= C4. Then Φ(H) = T ≤ A and |HA| = 8, a
contradiction two 3.6c.

Thus A does not normalize F and so A 6≤ DCM (D). Put S = DA. Then
S/D has order two and by 5.5 S is unique up to conjugation in NM (D) and
NM (S)/S ∼= 2F4(2). Note that A (D) is the unique subgroup of S isomorphic
to Q8 (D8). . So A,D and R = A ∩D are all normal subgroups of NM (S).
Since S = DA and NM (D) = NM (R) we get NM (S) = NM (D) ∩NM (A) =
NM (R) ∩ NM (A). Moreover, NM (S) = D(NM (S) ∩ CM (A)) = DCM (A).
Since D∩CM (A) = T we conclude CM (A)/T ∼= 2F4(2) and CM (A) ≤ NG(S).

Let L be the subgroup of M generated by the various S as R runs
through the three subgroups of order four in A. Since [S,CM (A)] ≤ CS(A) =
T we get [L,CM (A)] ≤ T and so CL(A)/T ≤ Z(CM (A)/A) = 1. Thus
CL(A) = T . Since [S,A] = R, L induces Sym(3) on A/T and so L/T =
L/CL(A) ∼= Aut(A) ∼= Sym(4). Thus NM (A) = LCM (A) and NM (A)/T ∼=
Sym(4)× 2F4(2). Thus Case (3) of Theorem B holds.
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