The maximal 2-local subgroups of the Monster and Baby Monster, II

U. Meierfrankenfeld

April 17, 2003

Abstract

In this paper the maximal 2-local subgroups in the Monster and Baby Monster simple groups which are not of characteristic 2 are determined.

1 Introduction

Let p be a prime and G a finite group. We say G is of characteristic p if $C_{G}\left(O_{p}(G)\right) \leq O_{p}(G)$. A subgroup of G is called a p-local subgroup if its the normalizer of a non-trivial p-subgroup of G. In [MS] all maximal 2-local subgroups of the Monster M and the Baby Monster $B M$ which are of characteristic 2 have been classified. As a follow up in this paper we determine whose maximal 2-local subgroups of the Monster and the Baby Monster which are not of characteristic 2.

Theorem A The Monster group M contains exactly 2 conjugacy classes of maximal 2-local subgroups which are not of characteristic 2 with the structures as follows:
(1) $2 . B M$;
(2) $2^{2} \cdot{ }^{2} E_{6}(2) \cdot S_{3}$

Theorem B The Baby Monster group BM contains exactly 3 conjugacy classes of maximal 2-local subgroups which are not of characteristic 2 with the structures as follows:
(1) $2 .{ }^{2} E_{6}(2) . S_{3}$;
(2) $2^{2} \cdot F_{4}(2) \cdot 2$;
(3) $S_{4} \times{ }^{2} F_{4}(2)$

Let G be a finite group. For $g \in G$ let $C_{g}=C_{G}(g)$. An element z in G is called singular that if there exists a normal subgroup Q_{z} of C_{z} such Q_{z} is an extraspecial p-group for some prime p and $C_{G}\left(Q_{z}\right)=\langle z\rangle$. So Q_{z} is a large extra special subgroups of G. Note that this implies that z has order p and that C_{z} is of characteristic p. If $x, y \in G$ and x is singular we say y is perpendicular to x provided that $y \in Q_{x}$. A subgroup E of G is called singular if all the elements in $E^{\#}$ are singular and pairwise perpendicular. If $E \leq G$, put $C_{E}=C_{G}(E)$ and $Q_{E}=\bigcap\left\{Q_{z} \mid z \in E, z\right.$ singular $\}$. If X, Y are subgroups of G with Y singular, we say that X is perpendicular to Y if $X \leq Q_{Y}$.

With the Monster we mean a finite group M such that M has a singular involution z with $C_{z} / Q_{z} \cong C o_{1}$ and $\left|Q_{z}\right|=2^{25}$ Then M has two classes of involutions, see for example [MS, 7.6]. Let t be a non-singular involution in M and put $T=\langle t\rangle$ and $B=C_{t}$. With the Baby Monster we mean the group $B M=\bar{B}=B / T$.

2 Subgroups of p-type

In this section G is a finite group and p a prime.
Lemma 2.1 Let A be p-subgroup of G. Then the following two statements are equivalent.
(a) $C_{G}\left(O_{p}\left(C_{G}(A)\right) A\right)$ is a p-group.
(b) $N_{G}(A)$ is of characteristic p.

Proof: Let $Q^{*}=O_{p}\left(N_{G}(A)\right)$ and $Q=O_{p}\left(C_{G}(A)\right)$.
Suppose (a) holds, i.e. that $C_{G}(Q A)$ is a p-group. Since $A Q$ is a normal p-subgroup of $\left.N_{G}\right) A$), $A Q \leq Q^{*}$. Thus $C_{G}\left(Q^{*}\right) \leq C_{G}(A Q)$. So $C_{G}\left(Q^{*}\right)$ is a normal p-subgroup of $N_{G}(A)$ and $C_{G}\left(Q^{*}\right) \leq Q^{*}$. Thus by definition of "characteristic p ", (b) holds.

Suppose (b) holds. Let $E=O^{p}\left(C_{G}(Q A)\right)$. Then (a) is equivalent to $E=1$. Note that Q^{*} normalizes E and E normalizes Q^{*}. Thus $\left[Q^{*}, E\right] \leq$ $Q^{*} \cap E \leq O_{p}(E)$. Since $O_{p}(E)$ is a normal p-subgroup of $C_{G}(A), O_{p}(E) \leq Q$ and so $\left[O_{p}(E), E\right]=1$ and $\left[Q^{*}, E, E\right]=1$. Since $E=O^{p}(E)$ and Q^{*} is a p-group, we get $E \leq C_{G}\left(Q^{*}\right)$. Since $N_{G}(A)$ is of characteristic p, $\left.C_{G}\left(Q^{*}\right)\right) \leq Q^{*}$. Hence $E \leq Q^{*}$ and $E=1$.

A p-subgroup A of G is called of p-type in G provided that it fulfills one of the equivalent conditions of the previous lemma.

Lemma 2.2 Let A be p-subgroup of G and $D \leq A$. If D is of p-type then A is of p-type.

Proof: Put $Q=O_{p}\left(C_{G}(D)\right)$ and $T=O_{p}\left(C_{G}(A)\right)$. By induction on $|A / D|$ we may assume that A normalizes D. Let x be a p^{\prime}-element in G centralizing $A T$. By 2.1a it suffices to show that $x=1$. Since $C_{G}(A) \leq$ $C_{G}(D), C_{G}(A)$ normalizes Q. So $C_{Q}(A)$ is a normal p-subgroup of $C_{G}(A)$ and hence $C_{Q}(A) \leq T$. Thus x centralizes $C_{Q}(A)$. Since A and x normalize Q, the $P \times Q$-lemma implies, $[Q, x]=1$. So $x \in C_{G}(Q D)$. By 2.1a $C_{G}(Q D)$ is a p-group. Since x is a p^{\prime} element we get $x=1$.

Lemma 2.3 Let L be a finite group, $X \leq L$ and suppose:
(a) $C_{L}(t) \leq X$ for all involutions $t \in X$.
(b) There exists an involution $s \in X$ with $s^{L} \cap X=s^{X}$.
(c) L has at least two classes of involutions.

Then $X=L$.
Proof: Let t be an involution in X and r an involution in L not conjugate to t. Since $\langle r, t\rangle$ is a dihedral group and r and t are not conjugate, $|r t|$ is even and there exists a unique involution u in $\langle r t\rangle$. Then by (a) $u \in C_{L}(t) \leq X$ and $r \in C_{L}(u) \leq X$.

Applying this to $t=s$ we see that X contains all the involutions in L not conjugate to X. So by (c) there exists a involution $t \in X$ with $t \notin s^{L}$.

So by the first paragraph $s^{L} \subseteq X$. Thus by (b) $s^{L}=s^{X}$ and so by the Frattini argument, $L=X C_{L}(s)=X$.

3 Purely non-singular subgroups

Define arks as in [MS]. In this section we determine the purely non-singular elementary abelian subgroups of M and their normalizers.

Lemma 3.1 Let z be a singular involution and t a non-singular involution. Suppose that $t \in C_{z} \backslash Q_{z}$. Then
(a) $t z$ is singular.
(b) Let $V=\left(Q_{z} \cap Q_{t z}\right)\langle t, z\rangle$. Then V is ark and so V is elementary abelian of order $2^{10},\left|C_{M}(V) / V\right|=2^{16}$ and $N_{M}(V) / C_{M}(V)=\Omega_{10}^{+}(2)$.
(c) There exists a $N_{M}(V)$ invariant non-degenerate quadratic form f on V. Let s be the bilinear form associate to f and let $a, b \in V^{\#}$. Then a is singular if and only if $f(a)=0$. If a is singular, then b is perpendicular to a if and only if $s(a, b)=0$,
(d) $V Q_{z}=\langle t\rangle Q_{z}$ and $t Q_{z}$ is in Class $2 A$ of $C_{z} / Q_{z} \cong C o_{1}$.
(e) V is the unique conjugate of V in M containing $\langle t, z\rangle$.

Proof: By [MS, 7.7](and using the notations wherein) \bar{t} is of type $2 a_{1}, 2 a_{3}$ or $2 c$. Since t is non-singular, [MS, 7.1] shows that t is of type $2 a_{1}$ and that $t z$ is singular. Hence (a) holds. Moreover, $[\mathrm{MS}, 7.7(2)]$ gives that V is the unique ark containing t and z. So (e) holds. (b) follows from [MS, 5.1,5.8] and (c) from [MS, 5.7, 5.9]. Note that z is singular, t is non-singular and $t \notin Q_{z}$. From (c), $V=\langle t\rangle\left(V \cap Q_{z}\right)$ and so (d) follows from [MS, 5.6].

Lemma 3.2 (a) For each $1 \leq i \leq 3$, M has a unique orbit on pairs $\left(E_{i}, D_{i}\right)$ such that E_{i} is a singular $2^{i}, D_{i}$ is a purely non-singular fours group and D_{i} is perpendicular to E_{i}.
(b) M has a unique orbits on pairs $\left(D_{4}, V\right)$ such that D_{4} is a purely nonsingular fours group, V is an ark and $D_{4} \leq V$.
(c) No purely non-singular fours group is perpendicular to a singular 2^{4} or 2^{5}.
(d) Representatives $\left(E_{i}, D_{i}\right), 1 \leq i \leq 3$ and $\left(D_{4}, V\right)$ for the above orbits can be chosen such that $E_{1} \leq E_{2} \leq E_{3} \leq V$ and $D:=D_{1}=D_{2}=$ $D_{3}=D_{4} \leq V$. The stabilizers in $\bar{L}:=N_{M}(D) / D$ are as follows:
(a) $N_{\bar{L}}\left(E_{1}\right) \sim 2^{1+[20]} . U_{6}(2)$.
(b) $N_{\bar{L}}\left(E_{2}\right) \sim 2^{2+[27]}$. $\left(S_{3} \times L_{3}(4)\right)$.
(c) $N_{\bar{L}}\left(E_{3}\right) \sim 2^{3+[28]}$. $\left(L_{3}(2) \times \operatorname{Alt}(5)\right)$.
(d) $N_{\bar{L}}(V) \sim 2^{8+[16]} . \Omega_{8}^{-}(2)$.

Proof: Let E be a singular 2^{i} in M and put $R=N_{M}(E)$. We first determine the orbits of R on the purely non-singular fours groups F in Q_{E} and also $C_{R}(F)$.

By [MS, 4.10], a singular 2^{4} is not perpendicular to a purely non-singular fours group. So (c) holds.

So suppose $i \leq 3$. Let $V=Q_{E} / E, \tilde{F}=F E / E, T=C_{R}\left(Q_{E} / E\right)$, $S=C_{T}(E)$ and $K=R / T$. By [MS, 4.2(3)], S acts transitively on the $2^{2 i}$ complements to E in $E F$, and $T / S \cong S L_{i}(2)$. Note that $\left[N_{T}(F), F\right] \leq E \cap$ $F=1$. Thus $N_{T}(F)=C_{T}(F)$ and so $T / C_{T}(F)\left|=\left|S / C_{S}(F)\right|=2^{2 i}=|E|^{2}\right.$. In particular, $T=C_{T}(F) S$. In particular $C_{T}(F) / C_{S}(F) \cong C_{T}(F) S / S=$ $T / S \cong S L_{i}(2)$. We proved:

$$
\begin{equation*}
C_{T}(F) / C_{S}(F) \cong S L_{i}(2) \tag{1}
\end{equation*}
$$

Since $\left|S / C_{S}(F)\right|=2^{2 i}$ and $|E F|=2^{i+2}$

$$
\begin{equation*}
\left|C_{S}(F)\right|=\frac{S}{2^{3 i+2}} . \tag{2}
\end{equation*}
$$

From [MS] the order of $|S|$ is as follows:

$$
\begin{array}{|c|c|c|c|}
i & 1 & 2 & 3 \tag{3}\\
\hline|S| & 2^{25} & 2^{35} & 2^{39}
\end{array}
$$

From (2) and (3) we obtain the order of $C_{S}(F) / F E$:

$$
\begin{array}{|c|c|c|c|}
i & 1 & 2 & 3 \tag{4}\\
\hline\left|C_{S}(F) / F E\right| & 2^{20} & 2^{25} & 2^{28}
\end{array}
$$

Since $C_{T}(F)$ induces $\operatorname{Aut}(E)$ on $E, C_{R}(F)=C_{T}(F) C_{R}(E F)$. Since $C_{T}(F) \cap C_{R}(E F)=C_{S}(F)$ we conclude

$$
\begin{equation*}
C_{R}(F) / C_{S}(F) \cong C_{T}(F) / C_{S}(F) \times C_{R}(F) / C_{T}(F) \tag{5}
\end{equation*}
$$

Also $C_{R}(F) \leq C_{R}(\tilde{F})$, where $\tilde{F}=F E / E$, and by the Frattiargument, $C_{R}(\tilde{F})=T C_{R}(F)$ so

$$
\begin{equation*}
C_{R}(F) / C_{T}(F) \cong C_{R}(\tilde{F}) / T=C_{K}(\tilde{F}) \tag{6}
\end{equation*}
$$

In view of (1),(4),(5) and (6), the structure of $C_{R}(F) / F$ will be determined once we know $C_{K}(\tilde{F})$. Also the orbits of R on the possible F are in one to one correspondence with the orbits of K on the possible \tilde{F}.

Suppose that $i=1$. Let Λ be the Leech lattice and $\bar{\Lambda}=\Lambda / 2 \Lambda$. Let $(x, y)=\frac{1}{8} \sum_{i=1}^{24} x_{i} y_{i}$ be the unimodular inner product on $\Lambda . \frac{1}{2}(x, x)$ is called the type of x. The type of $\bar{x}=x+2 \Lambda$ is the minimum type of a vector in $x+2 \Lambda$. By our definition of the Monster, V is as a $C_{z} / Q_{z} \cong C o_{1}$-module isomorphic to $\bar{\Lambda}$. By [MS, 4.4] the non-singular elements in Q_{z} corresponds to the vectors of type 2 in $\bar{\Lambda}$. By [ATLAS], $C o_{1}$ acts transitively on the fours groups in $\bar{\Lambda}$ all of whose non-trivial elements have type 2. Moreover, the centralizer of such a fours group is $U_{6}(2)$. So (a) and (d:a) hold for $i=1$. holds in this case.

Suppose next that $i=2$. By [MS, 4.5], $V=Q_{E} / E$ is the Todd-module for $K \cong M_{24}$ and if t is a non-singular involutions in $Q_{E}, t E$ corresponds to a pair in $\Omega:=\{1,2, \ldots, 24\}$. Hence $\tilde{F}^{\#}$ corresponds to three pairs in a subset of size three of Ω. Since M_{24} is five transitive on Ω we conclude that $C_{K}(\tilde{F}) \cong M_{21} \cong L_{3}(4)$ and so (a) and (d:b) holds for $i=2$.

Suppose now that $i=3$. Then by $[\mathrm{MS}, 4.8], K \cong 3 . \operatorname{Sym}(6), V$ is irreducible of order 2^{6} and the non-singular involutions in Q_{E} lie in the orbit of length for 18 for K on $V^{\#}$. Note that $Z\left(K^{\prime}\right)$ has order three and acts fixed-point freely on V. For $v \in V$ let $v^{*}=Z\left(K^{\prime}\right) v \cup\{1\}$. It follows that v^{*} is a fours group in V. Let $a, b \in \tilde{F}^{\#}$. Suppose that $a^{*} \neq b^{*}$ and observe that $(a b)^{*} \leq a^{*} b^{*}$ and $a^{*} \neq(a b)^{*} \neq b^{*}$. Let $I=\left\{\left(a^{*}\right)^{k} \mid k \in K\right\}$. Since $\left|a^{K}\right|=18$, $|I|=6$. Hence K induces $\operatorname{Sym}(I)$ on I and $N_{K}\left(a^{*}\right) \cap N_{K}\left(b^{*}\right)$ acts transitively on $I \backslash\left\{a^{*}, b^{*}\right\}$ and so $d^{*} \leq a^{*} b^{*}$ for all $d^{*} \in I$. But then $\langle I\rangle \leq a^{*} b^{*}$, contradicting the irreducible action of K on V (and $\left|a^{*} b^{*}\right|=2^{4}<|V|$). Hence $a^{*}=b^{*}$ and $\tilde{F}=a^{*}$. Thus $N_{K}(\tilde{F})=3 . \operatorname{Sym}(5)$. Since $\left[Z\left(K^{\prime}\right), K\right] \neq 1$, $N_{K}(\tilde{F})$ induced $\operatorname{Sym}(3)$ on $\tilde{F}=a^{*}$ and so $C_{K}(\tilde{F})=\operatorname{Alt}(5)$. Thus (a) and (d:c) holds for $i=3$.

Now let V be an ark with $D \leq V$. Then by 3.1, D is a non-degenerate 2 -space in V. Thus by $3.1, D$ is unique up to conjugacy in $N_{M}(V), N_{M}(V) \cap$ $N_{M}(D)$ induces $S y m(3)$ on D and $N_{M}(V) \cap C_{M}(D) \sim 2^{10+16} \Omega_{8}^{+}(2)$. So (b) and (dd) hold. Finally that exists a chain $E_{1}<E_{2}<E_{3}$ of subgroups of order 2,4 and 8 in V which are (with respect to the quadratic form on V) singular and perpendicular to D. Thus by $3.1 E_{i}$ is (in M) singular and perpendicular to D.

Lemma 3.3 Let z be a singular involution in M. Then C_{z} is transitive on the purely non-singular fours group in Q_{z}. Moreover, there does not exist any purely non-singular subgroups of order larger than four in Q_{z}.
Proof: The first statement follows from 3.2(a). For the second we use the use the same notations for $Q_{z} /\langle z\rangle \cong \bar{\Lambda}$ as in the the previous lemma.

Suppose that exist vectors a, b, c of type 2 in Λ such that $\langle\bar{a}, \bar{b}, \bar{c}\rangle$ has order eight and only contains vectors of type 2 . Since $\overline{a+b}$ has type two it is easy to see that $(a, b)= \pm 2$. Moreover, if $(a, b)=2$, then $a-b$ has type 2 , and if $(a, b)=-2$ then $a+b$ has type 2 . Replacing b and c by their negatives, if necessary, we may assume $(a, b)=(a, c)=2$. Thus $(a, b+c)=4$ and $(a, b-c)=0$. Since either $b+c$ or $b-c$ has type 2 , we get that $\overline{a+b+c}=\overline{a+b-c}$ is not of type 2, a contradiction.

Lemma 3.4 There exists a unique class of purely non-singular fours groups in M.

Proof: Let $F=\{1, a, b, c\}$ be a purely non-singular fours group in M. By 3.3 it suffices to show that $F \leq Q_{z}$ for some singular involution. For this let z be a singular involution with $a \in Q_{z}$. Then $C_{a} \cap C_{z}$ contains a Sylow 2-subgroup of C_{a} and so we may choose z such that $F \leq C_{a} \cap C_{z}$. If $F \leq Q_{z}$ we are done. So we may assume that $F \not \leq Q_{z}$. Then $b, z \in C_{z} \backslash Q_{z}$ and by 3.1 bz and $c z$ are singular and there exists a unique ark V containing b and z. Since $a \in Q_{z}, a z$ is conjugate to a and so $a z$ is non-singular. Also $(a z)(b z)=c$ is non-singular and thus 3.1a applied with to $b z$ in place of z shows that $a z \in Q_{b z}$. Thus $a z \in Q_{z} \cap Q_{b z} \leq V$ and so $F \leq V$. By 3.1c there exists a singular involution in V perpendicular to F.

Lemma 3.5 Let D be purely non-singular fours group. Then there exist eights groups D_{1}, D_{2} and D_{3} containing F such that
(a) D_{1} contains a unique singular involution z and $D_{1} \leq Q_{z}$.
(b) $D_{2} \backslash D$ contains a unique non-singular involution and D_{2} lies in an unique ark.
(c) All elements of $D_{3} \backslash D$ are singular, D_{3} is not contained in a ark and the singular involutions in M perpendicular to D_{3} generate a non-trivial singular subgroup of M.

Proof: By 3.1c groups D_{1} and D_{2} as in (a) and (b) can be found in any ark. It remains find a group D_{3} as in (c). Let E be a singular fours group with $D \leq Q_{E}$. By [MS, 4.5] Q_{E} / E is the Todd-module for $C_{E} / O_{2}\left(C_{E}\right) \cong M_{24}$. Moreover, the pairs represent the non-singular involutions, while the sextetts represent singular involutions. Let $\mathcal{S}=\left(T_{i} \mid 1 \leq i \leq 6\right)$ be a sextett and $k_{i} \in T_{i}$. Let a and b be non-singular involutions in Q_{E} such that $E a$ and
$E b$ correspond to $\left\{k_{1}, k_{2}\right\}$ and $\left\{k_{1}, k_{3}\right\}$ respectively. Then Eab correspond to $\left\{k_{2}, k_{3}\right\}$ and so $D:=\langle a, b\rangle$ is a purely non-singular fours group. Let $E z$ correspond to \mathcal{S} and put $D_{3}=\langle a, b, z\rangle$. Then $a z$ corresponds to the sextett determined by the $T_{1} \cup\left\{k_{2}\right\} \backslash\left\{k_{1}\right\}$ and so $a z$ is singular. Similarly $b z$ and $a b z$ are singular. In particular, no element in $D^{\#}$ is perpendicular to z and so D_{3} cannot be contained contained in an arc. Also E is perpendicular to D_{3}. So it remains to show that if d and e are singular involutions perpendicular to D_{3}, then d is perpendicular to e. Note that d and e commute. [MS, 7.7] lists the orbits of M on pairs of commuting singular involutions and their common perp. We apply this to (c, d). Since $D_{3} \leq Q_{c} \cap Q_{d}, Q_{c} \cap Q_{d}$ contains a purely non-singular fours group (namely D). This rules out Cases (3) and (4) of the list in [MS, 7.7]. In Case (1) we would conclude that D_{3} lies in the ark $\left(Q_{c} \cap Q_{d}\right)\langle c, d\rangle$. So Case (2) holds, d and e are perpendicular and (c) is established.

Lemma 3.6 Let D be a purely non-singular fours group and put $L=C_{M}(D)$ and $\bar{L}=L / D$.
(a) $\bar{L} \cong{ }^{2} E_{6}(2)$ and $N_{M}(A) / A \cong \operatorname{Aut}\left({ }^{2} E_{6}(2)\right) \sim{ }^{2} E_{6}(2) . \operatorname{Sym}(3)$
(b) M has exactly three classes of eights groups containing a pure nonsingular fours group. Representatives are as given in 3.5. In particular, any purely non-singular subgroup has order at most four.
(c) If $x \in L$ with $x^{2} \in D$ then $x^{2}=1$.

Proof: (a) Let E_{1}, E_{2}, E_{3}, D and V be as in 3.2(d). Define $X=$ $\left\langle N_{L}\left(E_{i}\right), N_{L}(V) \mid 1 \leq i \leq 3\right\rangle$. It is straightforward from 3.2(d) to show that \bar{X} acts faithfully and flag transitively on a geometry \mathcal{B} with F_{4}-diagram. By [Ti2, Theorem 1] \mathcal{B} is covered by a building. By the classifications of spherical buildings [Ti1] \mathcal{B} is the building associate to ${ }^{2} E_{6}(2)$. Thus $X \leq \operatorname{Aut}\left(\mathcal{B} \cong \operatorname{Aut}\left({ }^{2} E_{6}(2)\right) \sim{ }^{2} E_{6}(2) . \operatorname{Sym}(3)\right.$. It is now easy to see that $N_{\bar{L}}\left(E_{1}\right) \leq{ }^{2} E_{6}(2)$ and is a maximal parabolic subgroup of ${ }^{2} E_{6}(2)$. Hence $\bar{X} \cong{ }^{2} E_{6}(2)$.

We may choose the D_{i} such that E_{1} contains the unique singular involution in D_{1}, V is the unique ark containing D_{2} and for some i, E_{i} is the subgroup generated by the singular involutions perpendicular to D_{3}. It follows that $C_{\bar{L}}\left(D_{1} / D\right) \leq N_{\bar{L}}\left(E_{1}\right) \leq \bar{X}, C_{\bar{L}}\left(D_{2} / D\right) \leq N_{\bar{L}}(V) \leq \bar{X}$ and $C_{\bar{L}}\left(D_{3} / D\right) \leq N_{\bar{L}}\left(E_{i}\right) \leq \bar{X} .$.

By [AS] \bar{X} has three classes of involutions. Thus $D_{1} / D, D_{2} / D$ and D_{3} / D are representatives for the classes of subgroups of order two in \bar{X}. Since for
$i \neq j, D_{i}$ is not conjugate to D_{j} in M, two involutions in \bar{X} are conjugated in \bar{X} if and only if they are conjugate in \bar{L}. Hence all assumptions of 2.3 are fulfilled and so $\bar{X}=\bar{L}$.

In $N_{M}(V)$ we see that $N_{M}(A) / C_{M}(A) \cong \operatorname{Sym}(3)$ and $C_{M}(\bar{L})=1$. Thus $N_{M}(A) / A \cong \operatorname{Aut}\left({ }^{2} E_{6}(2)\right)$. So (a) holds.
(b) As $L=X$ this was proved in (a).
(c) By the prove of (a), $D\langle x\rangle / D$ is conjugate in \bar{L} to some D_{i} / D. Since D_{i} is elementary abelian, (c) holds.

4 Proof of Theorem A

In this section we prove Theorem A. So let P be a maximal p-local subgroup of M which is not of characteristic p. Let $A=\Omega_{1} Z\left(O_{p}(P)\right)$. Then $N_{M}(A)=$ P and as P is not of characteristic p, A is not of p-type. Thus by 2.2 none of the involutions are of 2 -type and so all the involutions in A are non-singular. By $3.6|A| \leq 4$. If $|A|=2$ then by $[\mathrm{MS}, 7.6], A$ is conjugate to T and so Case (1) of Theorem A holds. If $|A|=4$ then by $3.4 A$ is unique up to conjugacy and by $3.6(\mathrm{a})$, Case (2) of Theorem A holds.

5 Involutions in the Baby Monster

In this section we determine the conjugacy classes of involution in the Baby Monster. The conjugacy classes of involution in the Baby Monster which lift to involution in the monster already have been determined. So we need to investigate the set \mathcal{F} of elements of order four in M which square to a non-singular involution. We start with a technical lemma used later to show that elements in \mathcal{F} normalize a purely non-singular fours group.

Lemma 5.1 Let H be a finite group, Q a normal subgroup of H and $f \in H$. Suppose that Q is an extra-special 2-group, $f^{2} \in Q \backslash Z(Q)$ and that there exists an involution in $Q f$. Then one of the following holds:
(a) There exists an involution $q \in Q$ with $[q, f]=f^{2}$.
(b) $N_{H}(Q f)$ normalizes $f^{2} Z(Q)$.

Proof: Recall the commutator formulas:

$$
\begin{equation*}
[a, b c]=[a, c][a, b]^{c} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
[a b, c]=[a, c]^{b}[b, c] \tag{2}
\end{equation*}
$$

Let i be an involution in $Q f$. Set $s=f i$ and $z=s^{2}$. Then $s \in Q, f=s i$ and since Q is extra special, $z \in Z(Q)$. By $(1),[s, f]=[s, s i]=[s, i]$ and so $f^{2}=s i s i=s^{2}[s, i]=z[s, f]$. We record

$$
\begin{equation*}
f^{2}=z[s, f] \tag{3}
\end{equation*}
$$

If $z=1$, (a) holds with $q=s$. So suppose that $z \neq 1$. Then $Z(Q)=\{1, z\}$.
Assume first that there exist an involutions $r \in[Q, i]$ with $[r, s] \neq 1$. Since $[Q, i]=\{[u, i], z[u, i] \mid u \in Q\}$ we may assume that $r=[u, i]=i^{u} i$ for some $u \in Q$. Then $\left\langle i^{u}, i\right\rangle$ is a Dihedral group of order four and so

$$
\begin{equation*}
[r, i]=1 \tag{4}
\end{equation*}
$$

Since Q is extraspecial and $r, s \in Q,[r, s]=z$. Hence r inverts s and $q:=r s$ is an involution. Moreover, by (2)

$$
\begin{equation*}
[q, s]=[r s, s]=[r, s]^{s}[s, s]=z^{s}=z \tag{5}
\end{equation*}
$$

by (2) and (4)

$$
\begin{equation*}
[q, i]=[r s, i]=[r, i]^{s}[s, i]=[s, i] \tag{6}
\end{equation*}
$$

and so by $(1),(5),(6)$ and (3)

$$
\begin{equation*}
[q, f]=[q, s i]=[q, i][q, s]^{i}=[s, i] z=f^{2} \tag{7}
\end{equation*}
$$

Thus (a) holds in this case.
Assume finally that s centralizes $E:=\Omega_{1}([Q, i])$. Note that $[Q, i]=$ $[Q, Q f]$ and so $N_{H}(Q f)$ normalizes E. Moreover, $[Q, i]$ is abelian and so E has index at most two in $[Q, i]$. Let $D:=C_{Q}([Q, i])$ and $R:=C_{Q}(E)$. Then $s \in R,|R / D|=|[Q, i] / E| \leq 2$ and $D / Z(Q)=C_{Q / Z(Q)}(i)$. If $s \in D$ we get $[s, i] \in Z(Q)$ and $f^{2}=z[s, i] \in Z(Q)$, a contradiction to the assumptions of the lemma. Thus $s \notin D, E$ has index two in $[Q, i]$ and $\langle s\rangle D=R$. Thus

$$
\left\langle f^{2}\right\rangle Z(Q)=\langle[s, i]\rangle Z(Q)=[R, i] Z(Q)=[R, Q i] Z(Q)=[R, Q f] Z(Q)
$$

As $N_{H}(Q f)$ normalizes Q, E, R and $Z(Q)$ we conclude that (b) holds.

Lemma 5.2 Let $f \in \mathcal{F}$. Then there exists a dihedral group H of order eight in M with $f \in H$ and such that H contains exactly two singular involutions.

Proof: Let z be a singular involution with $f^{2} \in Q_{z}$. Then z is 2-central in $C_{f^{2}}$ and so we may assume $f \in C_{z}$. Since f^{2} is non-singular, $\widetilde{f^{2}}$ is of 2-type in $\widetilde{Q_{z}}=Q_{z} /\langle Z\rangle \cong \Lambda / 2 \Lambda$. By [MS, 2.5] involutions of type $2 B$ in $C o_{1}$ do not centralizes elements of type 2 in $\Lambda / 2 \Lambda$. Hence $Q_{z} f$ is of $2 A$ or $2 C$. By [MS, 7.1] in both case there exists an involution $i \in Q_{z} f$. Moreover by [MS, 2.4,2.5] $N_{C_{z}}\left(Q_{z} f\right)$ normalizes no elements type 2 in the Leech lattice $\widetilde{Q_{z}}$. Thus by 5.1 there exists an involution $q \in Q_{z}$ with $[q, f]=f^{2}$.

Suppose that all such q 's are non-singular. Let $X=Q_{z} \cap C_{f} \cap C_{q} . \bar{X}$ has index at most 4 in $C_{\bar{Q}_{x}}(f)$ and $C_{\bar{Q}_{x}}(f)$ has order at least 2^{12}. Thus $|\bar{X}| \geq 2^{10}$. Hence X contains elementary abelian subgroup of order 2^{5} and so also $2^{4} E$ with $z \notin E$. Since M contains no pure non-singular 2^{4}, there exists a singular involution s in E. Then $s \neq z, s \in Q_{z}$ and s centralizes q and f. In particular, $s q$ is an involution in Q_{z} with $[s q, f]=f^{2}$ and so by assumption $s q$ is non-singular. Then as q and $s q$ are non-singular, $q \in Q_{s}$. If $s q f$ is non-singular, then $q f \in Q_{s}$ and so also $f=q^{-1} q f \in Q_{s}$ and $f^{2} \in\langle s\rangle$, a contradiction since s is singular and f^{2} is not. Thus $s q f$ is singular and we can choose $H=\langle s q, s q f\rangle$.

So we may assume now that q is singular. If $q f$ is non-singular we can choose $H=\langle q, q f\rangle$. So we may assume that $q f$ is singular.

Put $X=\left\{1, f^{2}, q, q^{f}\right\}$. Then X is a fours group normalized by f and $[X, f]=\left\langle f^{2}\right\rangle$. Put $Y=Q_{X}$. Since q and q^{f} are singular and f^{2} is not, 3.1 implies that X lies in a unique ark V, and that Y is a non-degenerate subspace of order 2^{8} in V. Namely Y is the orthogonal complement to X in V. Suppose that $C_{Y}(f)$ is singular. Since $C_{Y}(f)$ has order at least 2^{4} we get $\left|C_{Y}(f)\right|=2^{4}$ and $\left|C_{V}(f)\right|=2^{5}$. But this contradicts the fact that any involution in $\Omega(V)$ centralizes an even dimensional subspace of V.

Hence $C_{Y}(f)$ is not singular. Let b be any non-singular involution in $C_{Y}(f)$. Since $b \in Y \leq Q_{q}$ also $b q$ is non-singular. If $b q f$ is singular, we can choose $H=\langle b q, b q f\rangle$. So we may assume that $b q f$ is non-singular for all such b. Since b and $b q f$ are non-singular we conclude that $b \in Q_{q f}$. Let E be the group of generated by the non-singular involution in $C_{Y}(f)$. Then $E \leq Q_{q f}$. If E contains a singular involution s we get $\langle q, q f\rangle \in Q_{s}$. But then $f^{2}=[q, f] \in\langle s\rangle$, a contradiction, as f^{2} is non-singular. We conclude that E is purely non-singular and so $|E| \leq 4$. But then also $\left|C_{Y}(f)\right| \leq 4$, a contradiction.

Lemma 5.3 Let V be an ark and $t, z \in V^{\#}$ with z singular, t non-singular and $t \in Q_{z}$. Then \tilde{V} is in class $2 A$ of $C_{z} \widetilde{\cap} C_{t} \cong C o s_{2}$.

Proof: $\quad V$ is the natural module for $N_{M}(V) / C_{M}(V) \cong \Omega_{10}(2)$ we get $C_{z} \cap$ $C_{t} \cap N_{M}(V)$ has factor group isomorphic to $S p_{6}(2)$. Thus the lemma follows from Lagrange's Theorem and [ATLAS].

Lemma 5.4 There exist subgroups D and D° of M such that with $X=$ $N_{M}(D)$:
(a) $D \cong D_{8}$ and all involutions in D are non-singular.
(b) X interchanges the two fours groups in D.
(c) Let f be the element of order four in D and J a Sylow 2-subgroup of $N_{G}(\langle f\rangle)$ containing D. Then D is the unique conjugate of D under $N_{G}(\langle f\rangle)$ contained in J.
(d) Let e be an involution in $C_{M}(D) \backslash D$. Then e or ef ${ }^{2}$ is singular.
(e) $X / D \cong \operatorname{Aut}\left(F_{4}(2)\right)$.
(f) $f \in D^{\circ}, D^{\circ} \cong D_{8}$ and D° contains exactly two singular involutions.
(g) D and D° is a complete set of representatives for the conjugacy classes of subgroups isomorphic to D_{8} in M which contain a purely nonsingular fours group. In particular, any two D_{8} 's in M containing only non-singular involutions are conjugate.
(h) X / D has a unique class of subgroup of order two not contained in $(X / D)^{\prime}$. Moreover if S is the inverse image in X of such a group, then $X \cong S D_{16}$ and $N_{X}(S) / S \cong{ }^{2} F_{4}(2)$.

Proof: Let $t=f^{2}$.
(a) Let A be a purely non-singular fours group in G. Then by 3.6 $N_{M}(A) / A \cong \operatorname{Aut}\left({ }^{2} E_{6}(2)\right)$ and so by [AS] there exists a unique class of subgroup $D \leq N_{M}(A)$ with $A \leq D,|D / A|=2,\left(N_{M}(A) \cap N_{M}(D)\right) / D \cong F_{4}(2)$ and $D \notin C_{G}(A)$. Then $D \cong D_{8}$. Let t be an involution in D. As 17 divides the order of $F_{4}(2)$ and so also of $C_{M}(t), t$ is non-singular. Thus (a) holds.
(b) By (a) the fours group B in D distinct from A is also pure nonsingular. Hence $B=A^{s}$ for some $s \in M$. But then D and D^{s} are conjugate in $N_{M}(B)$ and we may and do choose s such that $D^{s}=D$. Let $Y=$ $N_{M}(A) \cap N_{M}(D)$. Then $X=Y\langle s\rangle$.
(c) Suppose that is D is the unique conjugate of D under $N_{G}(\langle f\rangle)$ normalizing D. Then $N_{N_{J}(D)}\left(N_{J}(D)\right) \leq N_{J}(D), D$ is normal in J and (c) holds in this case.

So to prove (c) we may assume (for a contradiction) that there exists a conjugate D^{*} of D under $N_{G}(\langle f\rangle)$ normalizing D. Put $U=\left\langle D, D^{*}\right\rangle$. As $f \in D \cap D^{*},|U|=16$.

Assume that D^{*} induces only inner automorphism on D. Then $U=$ $D C_{U}(D),\left|C_{U}(D)\right|=4, Z(U)=C_{D}(U)$ and either $Z(U)$ is cyclic or $Z(U)$ is a fours group. Note that $D \cup D^{*}$ contains eight involutions from $U \backslash Z(U)$. If $Z(U) \cong C_{4}$, every non -trivial coset of $Z(U)$ contains exactly two involutions and $U \backslash Z(U)$ contains six involutions, a contradiction. Thus $Z(U)$ is a fours group and there are exactly eight involution in $U \backslash Z(U)$. We conclude that all the involutions of $U \backslash Z(U)$ are in $D \cup D^{*}$ and so are non-singular. Thus U contains at most two singular involutions. Let E be an eights group in U. Then $D \cap E$ is a purely non-singular fours group in E and E contains at most two singular involutions. By 3.6 b and $3.5, E$ contains a unique singular involution z. But then z is the unique singular involution in U, all involutions in U are in $Q_{z}, U \leq Q_{z}$ and $f^{2}=z$ a contradiction, a contradiction as $f^{2}=t$ is non-singular.

Hence D^{*} induces an outer automorphism on D and so interchanges the two fours groups in D. Let a and a^{*} be non central involutions in D and D^{*} respectively. Put $b=a^{a^{*}}$. Then $D=\langle a, b\rangle$ and $U=\left\langle a, a^{*}\right\rangle \cong D_{16}$. Put $t=f^{2}$ and let z be a singular involution perpendicular with $t \in Q_{z}$. As z is 2 -central in C_{t} we may assume that $U \leq C_{z}$. Since $f^{2} \notin\langle z\rangle, f \notin Q_{z}$. Let N be a normal subgroup of U with $N \not \leq Z(U)=\langle t\rangle$. Then $|N| \geq 4,|U / N| \leq 4$ and so $\langle f\rangle=U^{\prime} \leq N$. Thus $U \cap Q_{z}=\langle t\rangle$. Let $\widetilde{C_{z}}=C_{z} / Q_{z} \cong C o_{1}$. As U centralizes t, \widetilde{U} is contained in $C_{z} \cap C_{t} \cong C o_{2}$. In particular, \widetilde{f} is not of $G_{2}(4)$-type.

Since $U \cap Q_{z}=\langle t\rangle$ we have $a \notin Q_{z}$ and so $a z$ is singular. By 3.1 there exists a unique ark V_{a} containing z and a. Consider the eights group $E=\langle t, a, z\rangle$ and the purely non-singular subgroup $B=\langle a, t\rangle$. Also $t z$ is non-singular and so Case (b) of 3.5 must hold for E. So E lies in an ark. Since V_{a} is the unique arl containing z and a, we get $t \in E \leq V_{a}$. Thus 5.3 implies that $\widetilde{a} \in \widetilde{V_{a}}$ is a $2 A$ involution in C_{2}. By symmetry all involution in \widetilde{U} except maybe \widetilde{f} are in $2 A$.

Suppose first that \widetilde{f} is in one of the classes $2 A$ or $2 B$ of $C o_{2}$. Then \tilde{f} is 2-central in $C o_{1}$ and there exists an ark V_{f} containing z and such that $\widetilde{f} \in \widetilde{V_{f}}$. Since $Q_{z} V_{f} / V_{f}$ is elementary abelian, $t=f^{2} \in V_{f}$. So 5.3 implies that $\widetilde{f} \in \widetilde{V_{f}}$ is $2 A$ in $C o_{2}$. Hence $\{1, \widetilde{f}, \widetilde{a}, \widetilde{b}\}$ is a pure $2 A$-subgroup of Co_{2}. But no such fours groups exists. (For example by [ATLAS] the $2 A$ involutions have trace -9 on the complex 23 -space and $23-9-9-9$ is negative, contradicting the orthogonally relations)

Thus \tilde{f} is in the class $2 C$. Let x be an element of order four in \tilde{U}. Let m be the trace of x on the complex 23 -space. By [ATLAS] the $2 A$ elements have trace -9 and the $2 C$-elements have trace -1 . Thus the sum of the traces of the elements in \widetilde{U} is $23+4 \cdot(-9)+(-1)+2 m=2 m-14$. Hence $m \geq 7$. From [ATLAS] we conclude $m=7, x$ is in the class $4 A$ and x^{2} is in the class $2 A$. A contradiction, since $x^{2}=\widetilde{f}$.
(d) Suppose that both e and $e t$ are non-singular. Then by 3.6 b and 3.5 applied to $A\langle e\rangle$, there exist a unique singular involution z in $A\langle e\rangle$. As D normalizes $A\langle e\rangle$ we conclude that D centralizes z. But then D centralizes $\langle t, e, z\rangle=A\langle e\rangle$, a contradiction.
(e) Let $L=\langle t\rangle X^{\infty}$. Then $L \sim 2 . F_{4}(2)$. So by [AS] there exists $e \in L$ with $e^{2} \in\langle t\rangle$ such $C_{L /\langle t\rangle}(e) \sim\left[2^{15}\right] \operatorname{Sp}_{6}(2)$. By [ATLAS] e has order two and e is not conjugate to $e t$ in L. Thus $C_{L}(e) \sim\left[2^{16}\right] \cdot S p_{6}(2)$. By (d) (and replacing e be et if necessary) we may assume that e is singular. Note that $f \notin Q_{e}$. Let $s=f$ if $f^{2} \in Q_{e}$ and $s=f^{2}$ if $f^{2} \notin Q_{e}$. Then \tilde{s} is an involution in $\widetilde{C}_{e}=C_{e} / Q_{e}$. Also $\left[D C_{L}(e), s\right] \leq\left\langle s^{2}\right\rangle \leq Q_{e}$. Since $\widetilde{C_{L}(e)}$ has factor group $S p_{6}(2)$ we conclude form [ATLAS] that $\bar{C}_{\widetilde{C_{e}}}(\tilde{s}) \sim 2^{1+8} \Omega_{8}^{+}(2)$. Since no fours group in $2^{1+8} \Omega_{8}^{+}(2)$ has a centralizer involving $S p_{6}(2)$ we conclude that \tilde{D} is neither isomorphic to D_{8} nor a fours group. Since $\tilde{f} \neq 1$ we conclude that $D \cap Q_{e} \in\{A, B\}$. If X induces only inner automorphisms on $L /\langle t\rangle$. Since $L /\langle t\rangle$ is perfect, we conclude that $X=C_{X}(L) L$ and so there exists $x \in C_{X}(L) \backslash D L$. Then by the proven part of (b), $A^{x}=B$, a contradiction as x normalizes $D \cap Q_{z}$. Thus (e) holds.
(f) Moreover, $a \in A \backslash Z(D)$ and $b \in B$ with $a b=f$. As $a \in Q_{e}$, $a e$ is non-singular and as $b \notin Q_{e}$, be is singular. Put $D^{\circ}=\langle a e, b e\rangle$. Then (f) holds.
(g) By $[\mathrm{AS}]^{2} E_{6}(2) .2$ has exactly two classes of involutions outside ${ }^{2} E_{6}(2)$. Thus (g) follows from (a) and (f).
(h) The uniqueness part of (h) and the structure of $N_{X}(S) / S$ follows from [AS]. Suppose that there exists an involution d in $S \backslash D$ and let a be an involution D with $a \neq t$. Then $D=\left\langle a, a^{d}\right\rangle$ and so $S=\langle a, d\rangle \cong D_{16}$ and $D^{*}:=\left\langle d, d^{a}\right\rangle \cong D_{8}$. Moreover, $C_{X}(d)$ involves ${ }^{2} F_{4}(2)^{\prime}$ and so $C_{M}(d)$ is divisible by 13. Thus d is non-singular. By (e) D and D^{*} are conjugate in M and as $\langle f\rangle$ is the unique cyclic subgroup of order four in D (in D^{*}), D and D^{*} are conjugate in $N_{G}(\langle f\rangle)$. But this contradicts (c). Hence $S \backslash D$ contains no involutions, $S \cong S D_{16}$ and all part of 5.4 are proved.

Lemma 5.5 Let \mathcal{F} be the set of elements of order four squaring to a nonsingular involution, $f \in \mathcal{F}$ and $F=N_{M}(\langle f\rangle)$. Then
(a) M acts transitively on \mathcal{F}.
(b) $F \sim D_{8} \cdot \operatorname{Aut}\left(F_{4}(2)\right)$.
(c) $\mathrm{F} / \mathrm{O}_{2}(\mathrm{~F})$ has a unique class of subgroup of order two not contained in $\left(F / O_{2}(F)\right)^{\prime}$. Moreover if S is the inverse image in F of such a group, then $S \cong S D_{16}$ and $N_{F}(S) / S \cong{ }^{2} F_{4}(2)$.

Proof: (a) Let $f \in \mathcal{F}$ and choose H as in 5.2. By $5.4 H$ is conjugate to D°. Since the two elements of order four in D° are conjugate in D°, (a) is proved.

To prove (b) and (c) let D, X and f be as in 5.4. Put $L=N_{M}(\langle f\rangle)$. Then (b) and (c) follow from 5.4a,g once we establish that $L=X$. By 5.4c and the Z^{*} theorem ([Gl]) applied to $L /\langle f\rangle$ we have $L=O(L) X$, where $O(L)$ is the largest normal subgroup of order odd order in L. Let z be an involution in $C_{M}(D)$ with $z \neq f^{2}$. By $5.4 \mathrm{~d} z$ or $z f^{2}$ is singular and so by 2.2 $\langle f, z\rangle$ is of 2-type. Thus $O\left(C_{M}(\langle f, z\rangle)\right)=1$ and z inverts $O(L)$. Since this is true for any involution in $C_{M}(D)$ distinct from f^{2} and as $C_{M}(D)$ contains elementary abelian groups of order eight we conclude that $O(L)=1$ and $L=X$.

6 Proof of Theorem B

In this section we prove Theorem B. So let \bar{P} be a maximal 2-local of $B M=\bar{B}$ such that \bar{P} is not of characteristic 2 . Let P its preimage in B, $R=O_{2}(P)$ and $T=\langle t\rangle$. Then $P=N_{B}(R)$. We claim that R is not of 2-type in M.

Let U be the preimage of $C_{\bar{B}}(\bar{Q})$ in B. Since \bar{P} is not of characteristic $p, U \not \subset R$ and U is not a 2-group. Since $[R, U] \leq T$ and $[T, U]=1$ we get $\left[R, O^{2}(U)\right]=1$. Hence $C_{M}(R)$ is not a 2-group. Since $t \in R, C_{M}(R)=$ $C_{B}(R)=C_{P}(R)$ and so $O_{2}\left(C_{M}(R)\right) \leq R$. Thus by 2.1(b) R is not a of 2-type, proving the claim.

So 2.2 none of the involutions in R are of 2-type. That is all the involutions in R are non-singular.

Let A be a normal subgroup of P minimal with respect to $A \not \leq T$. Then $P=N_{B}(A)$. Note that $A T / T$
is elementary abelian and $A T \leq R$. So if $x \in T A^{\#}$ then x is a nonsingular involution or x has order 4 .

Suppose that A contains an involution a with $a \neq t$. Let $D=\langle a, t\rangle$. Then D is a purely non-singular fours group. Note that $b^{2} \in T \leq A$ for
all $b \in C_{A T}(D)$. Thus by $3.6 \mathrm{c}, C_{A T}(D)$ is elementary abelian and by 3.6 b , $\left.\mid C_{A T}(D)\right) \mid \leq 4$. Thus $C_{A T}(D)=D$. Since D is normal in $A T$ and $|D|=4$ we get $|A T / D| \leq 2$. Hence $A T$ is a fours group or $A T \cong D_{8}$. If $A T$ is a fours group, then by $3.4 A T$ is unique up to conjugacy in M. By 3.5 we conclude that $N_{M}(A T)$ induces $\operatorname{Sym}(3)$ on $A T$. Thus $N_{B}(A T)$ induces C_{2} on $A T, A=A T$ and A is unique up to conjugacy in B. So by 3.5 , Case (1) of Theorem B holds. If $A T \cong D_{8}$, then $A=A T$ and P normalizes the unique cyclic group of order four in A, a contradiction to the minimal choice of A.

Suppose next that t is the only involution in A. Then $A \cong C_{4}$ or Q_{8}. If $A \cong C_{4}$, then by 5.5 , Case (2) of Theorem B holds.

So suppose $A \cong Q_{8}$. Let R be one of the three cyclic subgroups of order four in A. Then $T \leq R$. Put $D=O_{2}\left(N_{M}(R)\right)$. Then by $5.5, D \cong D_{8}$. Note that $A \leq N_{M}(R)$ and so A normalizes D. Let F be a fours group in D and suppose that A normalizes F. Then $\left|A / C_{A}(F)\right| \leq 2$. So there exists $H \leq C_{A}(F)$ with $H \cong C_{4}$. Then $\Phi(H)=T \leq A$ and $|H A|=8$, a contradiction two 3.6c.

Thus A does not normalize F and so $A \not \leq D C_{M}(D)$. Put $S=D A$. Then S / D has order two and by $5.5 S$ is unique up to conjugation in $N_{M}(D)$ and $N_{M}(S) / S \cong{ }^{2} F_{4}(2)$. Note that $A(D)$ is the unique subgroup of S isomorphic to $Q_{8}\left(D_{8}\right)$. So A, D and $R=A \cap D$ are all normal subgroups of $N_{M}(S)$. Since $S=D A$ and $N_{M}(D)=N_{M}(R)$ we get $N_{M}(S)=N_{M}(D) \cap N_{M}(A)=$ $N_{M}(R) \cap N_{M}(A)$. Moreover, $N_{M}(S)=D\left(N_{M}(S) \cap C_{M}(A)\right)=D C_{M}(A)$. Since $D \cap C_{M}(A)=T$ we conclude $C_{M}(A) / T \cong{ }^{2} F_{4}(2)$ and $C_{M}(A) \leq N_{G}(S)$.

Let L be the subgroup of M generated by the various S as R runs through the three subgroups of order four in A. Since $\left[S, C_{M}(A)\right] \leq C_{S}(A)=$ T we get $\left[L, C_{M}(A)\right] \leq T$ and so $C_{L}(A) / T \leq Z\left(C_{M}(A) / A\right)=1$. Thus $C_{L}(A)=T$. Since $[S, A]=R, L$ induces $\operatorname{Sym}(3)$ on A / T and so $L / T=$ $L / C_{L}(A) \cong \operatorname{Aut}(A) \cong \operatorname{Sym}(4)$. Thus $N_{M}(A)=L C_{M}(A)$ and $N_{M}(A) / T \cong$ $\operatorname{Sym}(4) \times{ }^{2} F_{4}(2)$. Thus Case (3) of Theorem B holds.

References

[AS] M. Aschbacher and G. Seitz, Involutions In Chevalley Groups Over Fields Of Even Order, Nagoya Math. J., 63(1976), 1-91.
[ATLAS] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Perkel and R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[CS] J.H.Conway, N.J.A.Sloane Sphere Packings, Lattices and Groups Springer Verlag, New York, 1988
[Gl] G. Glauberman, Central elements in core-free groups, J. Algebra 4 (1966) 403-420.
[MS] U. Meierfrankenfeld and S. Shpectorov, The maximal 2-local subgroups of the Monster and Baby Monster, I.
[Ti1] J. Tits, Buildings of Spherical Type and finite BN-pairs, Lecture Notes in Mathematics 386, Springer-Verlag (1974).
[Ti2] J.Tits, A local approach to buildings, The Geometric Vein Springer-Verlag, (1981) 517-547.

Department of Mathematics
Michigan State University
East Lansing, Michigan 48824
meier@math.msu.edu

