Let L be a standard Lie algebra with Chevalley basis $\mathcal{C} = (x_\alpha, h_\beta \mid \alpha \in \Phi, \beta \in \Pi)$.

1. Let I be a finite set and for $i \in I$, let V_i be an L-module. Let $\Psi \subseteq \Phi$, $m \in \mathbb{N}^\Psi$ and $v_i \in V_i$. Then

$$\frac{x^m}{m!} \bigotimes_{i \in I} v_i = \sum \left\{ \bigotimes_{i \in I} \frac{x^{m_i}}{m_i!} \cdot v_i \mid m_i \in \mathbb{N}^\Psi, \sum_{i \in I} m_i = m. \right\}$$

2. Let λ be a minimal dominant integral weight for $\hat{\Phi}$. Show that $W(\Phi)$ acts transitively on the set of weights for H on $V(\lambda)$.

3. Suppose Φ is of type B_n and let α be the unique long root in Π. Determine $\dim V(\alpha^*)$.

4. Suppose Φ is of type G_2. For all $\alpha, \beta \in \Phi$ with $\alpha + \beta \in \Phi$ compute $k_{\alpha \beta}$. (Note that sign of $k_{\alpha \beta}$ depends on the choice of \mathcal{C}, make choices such that the $k_{\alpha \beta}$ become unique).