1. Let K be a standard field, $L = \mathfrak{sl}(K^n)$ and let H be the subalgebra consisting of the diagonal matrices in L. Put $E_i = E_{ii}$ (and so $H = \{ \sum_{i=1}^n k_i E_i \mid k_i \in K, \sum_{i=1}^n k_i = 0 \}$). Let $f = f_L, f^*, \Lambda, \Phi, t_\alpha, h_\alpha$ and ω_α be defined as in class. Define $\lambda_j : H \to K, \sum k_i E_i \to k_j$. Let $\alpha \in \Phi$.

(a) Show that KE_{ij} is an H-submodule of L with weight $\lambda_i - \lambda_j$.
(b) Determine Λ and L_α.
(c) Show that H is a Cartan subalgebra of L.
(d) Compute $f(\sum k_i E_i, \sum l_i E_i)$.
(e) For all $1 \leq i, j \leq n$ compute $f^*(\lambda_i, \lambda_j)$.
(f) Determine t_α and h_α
(g) For $1 \leq i \leq n$ compute $\omega_\alpha(\lambda_i)$.
(h) Determine all the α-strings in Λ.

2. Let L be simple and finite dimensional and suppose that K is algebraically closed. Let f and g be L-invariant bilinear forms on L with $f \neq 0$. Show that there exists $k \in K$ with $g = kf$. (Hint: Use the corresponding maps $\tilde{f}, \tilde{g} : L \to L^*$ and Schur’s Lemma)