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Chapter 1

Basic Properties of Lie Algebras

1.1 Definition

Let K be a field. With a K-space we mean a vector space over K. For K-space V', End(V)
denotes the ring of K-linear maps from V to V. For a,b € End(V) define [a, b] := ab — ba.
[a, b] is called the commutator or bracket of @ and b. The bracket operation has an amazing

property
[a, [b, c]] + [b, [e, a]] + [¢, [a,b]] = 0

for all a,b,c € End(V). Indeed,
[a, [b,c]] + [b, ¢, a]] + [c, [a, b]]
= a(bc — cb) — (be — cb)a + b(ca — ac) — (ca — ac)b + c¢(ab — ba) — (ab — ba)c
= abc — acb — beca + cba + bea — bac — cab + acb + cab — cba — abe + bac
=0

Also note that [,] is K-bilinear and that [a,a] = 0. These observations motivate the
following definitions:

Definition 1.1.1 [def:algebra] Let K be a field, A a (left) vector space over K and - :
Ax A— A a K-bilinear map. Then (A,-) is called a K-algebra. If - is associative, then A
1s called an associative algebra.

Definition 1.1.2 [def: lie algebra] A K-algebra (A,[,]) is called a Lie algebra over K
provided that

(i) [a] [,] is symplectic, that isla,a] =0 for all a € A.
(ii) [b] [,] fullfills the Jacobi identity
[a, [b, c]] + [b, [e, a]] + [e, [a, b]] =0

for all a,b,c € A.



6 CHAPTER 1. BASIC PROPERTIES OF LIE ALGEBRAS

From now on K is always a field and L a Lie algebra over K.

The prime example for a Lie algebra is (End(V),[,]). We denote this Lie algebra by
gl(V). L is called abelian if [a,b] = 0 for all a,b € L. Any K-space V' becomes an abelian
Lie algebra if one defines [a,b] = 0 for all a,b € V.

Let (A,-) be any associative K-algebra and define [a, b] := ab — ba for all a,b € A. Just
as for End(V') none shows that (A,[,]) is a Lie algebra over K. We denote this Lie algebra

by [(A).
Similar as for groups, rings and modules one defines homomorphisms, subalgebras, gen-
erations, ideals, .... For example a subalgebra of an algebra A is a K-subspace I of A such

that i-j € I for all 4,7 € I. Note that this equivalent to requiring that (I,-) is K-algebra.
If I is a K-subspace of A with i-a € I and a-i € [ for all a € A,i € I then [ is called
an ideal. In this case the quotient A/I is a K-algebra. The kernel ker ¢ of an homomor-
phism ¢ : A — B of K-algebras is an ideal in A and the First Isomorphism Theorem holds:
A/ ker ¢ = ¢(A) as K-algebras.

In general one needs to distinguish between left and right ideals. This is not necessary
for Lie algebras:

Lemma 1.1.3 [alternating]
(a) [a] [,] is alternating, that is [z,y] = —[y,x] for all z,y € L.

(b) [b] Let I be a K-subspace of L. Then I is an ideal (in L) iff I is a right ideal and iff
1 is a left ideal.

Proof: () 0= [z +y,z+y] = [z, 2]+ [z,9] + [y, 2] + [y,y] = [z, 9] + [y, 2].
follows immediately from @ U

We remark that if char K # 2, then xy = —yx for all z,y in an algebra A implies zz = 0.
Indeed xx = —zx and so 2zx = 0. As 2 is invertible we get za = 0.
Let V' be a K-space and W a set of subspaces of V with 0 € W and V € W. Put

End(W) = {¢ € End(V) | ¢(W) < W YW € W}

Note that End(W) is a subalgebra of End(V). We denote the corresponding Lie algebra
by gl(W). Suppose that V has a finite basis (v1,va,...,v,) and W consist of the n + 1
subspace Kv; +Kuvg + ... + Kv;, 0 < i < n. The reader should verify that gl(WW) now consist
of all the upper triangular matrices (with respect to the given basis).

Let f be a bilinear form on V, that is a K-bilinear function f : V x V — K. Define

cd(f) ={acgl(V)| flav,w) + f(v,aw) =0 Vv,w € V}

We claim that cI(f) is a Lie subalgebra of gl(V'). Clearly it’s a K-subspace. Let a, 8 €
cl(f) and v,w € V. Then
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f(la, Blo,w) = flaBv,w) — f(Bo, w)
= —f(Bv,aw) + f(av, fw)
= f(v,Baw) — f(v,afw)
= —f(v,[a, flw)

So [a, B] € cl(f) and cl(f) is a Lie subalgebra of gl(V).

1.2 Structure constants

Let L be a Lie algebra over K and B a basis for L. So every [ € L can be uniquely written
asl = Zbe 5 kub, where ky € K and all but finitely many of the ks are zero. Hence we can
deﬁnea €K, i, j,kebB, by

= Z afjk.

keB

The a ’s are called the structure constants of L with respect to B. Since [,] is bilinear
the Structure constants uniquely determine [, ]. Since [,] is symplectic, alternating and fulfils
the Jacobi identity we have for all 4, j, k,l € B.

ak =0

n

aZ+a§Z:0

l l l
Z a7 Oy + Q1 G, + agias,, = 0.
m
Conversely, given a set B and a €K, 1,7,k € B which fulfill the above three identities

one easily obtains a Lie algebra Wlth basis B and the aU as structure constants.

As an example consider the case of a 2-dimensional Lie-algebra L with basis x,y. Put
a:= [z,y]. Then [L,L] = Ka. If @ = 0 then L is abelian.

Suppose that L is not abelian and choose b € L \ Ka. Then also (a,b) is a basis for L
and [a,b] = ka for some 0 # k € K. Replacing b by k~1b we may assume [a,b] = a. So up
to isomorphism there exists at most one 2-dimensional non abelian Lie Algebra. For later
use we record:

Lemma 1.2.1 [2 dim] If L is 2-dimensional and non-abelian, then L has a basis (a,b)
with [a,b] = a. O
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To show existence of such a Lie-algebra we could compute the structure constant and
verify the above identies. But its easier to exhibit such Lie-algebra as a subalgebra of gl(K?).

Namely choose
{0 0 b 0 0
“=\1 o0 —\o 1

1.3 Derivations

Definition 1.3.1 [def:derivation]| Let A be a K-algebra. Then a derivation of A is a map
d € gl(A) such that

d(ab) = 6(a)b+ ad(b)
for all a,b € A. der(A) denotes the set of all derivations of A.

Lemma 1.3.2 [derivations are lie] Let A be a K-algebra. Then der(A) is a subalgebra of
gl(A) as a Lie algebra.

Obviously detr(A) is a K-subspace of gl(A). Now let v,d € der(A) and a,b € A. Then

[v,6](ab) = ~d(ab) — d(ab)
7(ad (b)) +~(d(a)b
= (a)d(b) + av(5(b)
—0(a)y(b) — ad(v(b)) — )b
= a(y(8(b)) — d(v(b))) + (v(6(a)) — o (v(e)))b
= [7,0l(a)b+ alv,6](b)

d(ay(b)

) — )~
) +7(6(a))b + 6
o

Lemma 1.3.3 [left multiplication] Let A be an assocative K-algebra and for a € A define
l(a)a: A — Ab—ab, r(a) : A— A,b— ba and ad (a) = 1(a) —r(a), i.e. ad (a)(b) = [a,b].
Let a,b,c € A

(a) [a] 1(a),r(a) and ad (a) all are K-linear.

(b) [b] [a,bc] =Dbla,c]+ [a,blc. That is ad (a) is a derivation of A
(c) [c] 1: A— End(A),a — 1(a) is a homomorphism.

(d) [d] r: A— End(A),a — r(a) is an anti-homomorphism.

Proof: @ Obvious.
@ We compute

bla, c] + [a, blc = bac — bea + abe — bac = a(be) — (be)a = [a, bc]
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Also ad(a)(b) = ab — ba = [a,b] and the preceeding equation says that ad(a) is a
derivation of A.
and @ are readily verifed as A is associative. O

Lemma 1.3.4 [inner derivations| Let a € L. Define (ad)(a): L — L,1 — [a,l]
(a) [a] ada is a derivation of L.

(b) [b] Let é € ver(L). Then [d,ada] = ad (d(a)).

(c) [c] ad: L — gl(L) is a homomorphism.

(d) [d] ad(L) is an ideal in der(L).

Proof: Let a,b,c € A. Then

ad (a)([b, c]) = [a, [b; ]} = =[b, [¢, a]] — [¢, [a, b]] = [b,ad a(¢)] + [ad (a)(b), c]

and so ad (a) is a derivation.
Let  be a derivation of A. Then

[0,ad (a)](b) = d(ad (a)(b)) — ad (a)(5(b))

Thus holds.
From (b)) applied to the derivation adb in place of § we have [adb,ad a] = ad ([b, a]) so

holds.
Finally @ follows from (]ED g

A derivation of the form ad (a) is called an inner derivation. All other derivations of a
Lie Algebra are called outer derivations.

1.4 Modules

In this section A is an associative or Lie algebra over the field K.

Definition 1.4.1 [def:rep for associative|] Let A be an associative K-algebra and V a
K-space.

(a) [a] A representation for A over V is a homomorphism ® : A — End(V).
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(b) [b] An action for A on'V is a bilinear map A xV — V, (a,v) — av such that
(ab)v = a(bv)
foralla,be A, veV.
Definition 1.4.2 [def:rep for lie] Let V' be a K-space.
(a) [a] A representation for L is a homomorphism ® : L — gl(V).
(b) [b] An action for L on V is a bilinear map L x V' — V,(a,v) — av such that
[a, blv = a(bv) — b(av)
foralla,be L,veV.

If A is a associative algebra, then by the left multiplication 1 is a representaion for
Aon A. And if L is a Lie algebra then by ad is a representation of L on L.

Lemma 1.4.3 [rep=action| Let A be an associative or a Lie algebra and V' a K-space.

(a) [a] Let ® be a representation for A over V. Then AxV — V,(a,v) — ®(a)(v) is an
action for A on V.

(b) [b] Suppose AxV — V,(a,v) = av is an action for A on V. Define & : A — End(V)
by ®(a)(v) = av for alla € A, v € V. Then ® is a representation for A over V.

Proof: Straightforward. 0
If A acts on V' we say that V is a module for A.

Lemma 1.4.4 [associative to lie] Let V' be a module for the associative algebra A. Then
with the same action V is also a module for ((A). In particular, left multiplication is an

action of the Lie-Algebra [(A) on A.
Proof: Let a,b € A and v in v. Then

[a,blv = (ab — ba)v = a(bv) — b(av).
(|

Definition 1.4.5 [def:centralizer| Let V' be a module for the associative or Lie algebra
A.

(a) [a] Cyv(A)={veV |av=0Vaec A}.
(b) [b] Ca(V)={a€A|av=0Y eV}
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(c) [c] If C4(V) =0 we say that V is a faithful A-module.

If @ is the representation corresponding to the module V| then Cy(V) = ker ®. In
particular, C4(V) is an ideal in A. Note that V is also a module for A/C4 (V') via (a +
Ca(V))v = av. Even more, V is faithful for A/C4(V).

Put Z(A) :={a€ A|ab=0Vb € A} = C4(A). Then Z(A) is an ideal in A called to
center of A. Note that L is abelian iff L = Z(L).

If X is a subsets of A and Y a subset of the A-module V', then we denote by XY the
K-subspace of V' generated by {zy | x € X,y € Y}. We say that Y is X-invariant if zy € Y
forall z € X, y € Y. (Y) denotes the additive subgroup of V' generate by Y, while KY
denotes the K-subspace of V' generated by Y.

Lemma 1.4.6 [product of subspaces| Let A be a Lie or an associative algebra, V an
A-module, X a subset of A and Y an X-invariant subset of V.. Then KY is X -invariant.

Proof: Let z € X and put Z = {z €V | zz € KY'}. Then Z is an K-subspace of V' and
since Y C Z, KY C Z. Thus zKY C KY and KY is X-invariant. O

Lemma 1.4.7 [submodules and ideals] Let V' an L-module and I C L.
(a) [a] I is an ideal in L if and only if I is L-submodule of L.

(b) [b] If I is an ideal in L then IV and Cy(I) are L-submodule of V.

Proof: Clearly I is a submodule iff its a left ideal. As left ideals are the same as ideals,

@ holds.

For (b)) let v € V, i€ I and ! € L. Then I(iv) = ([l,4])v + i(lv) € IV. In particular, IV
is a L-submodule. Moreover, if v € Cy (1) we get i(lv) = 0 and so lv € Cy (1) and Cy (1) is
an L-submodule. O

1.5 The universal enveloping algebra

We assume the reader to be familiar with the definitions of tensor products and symmetric
powers, see for example [Lal.

Definition 1.5.1 [universal]

(a) [a] Let V be a K-space. Then a tensor algebra for V is an associative algebra T with
1 together with an K-linear map ® : V. — T such that whenever T' is an associative
K-algebra with one and ®' : V — T is K-linear, then there exists an unique K-algebra
homomorphis ¥ : T — T' with ® = Vo ®.
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(b) [b] LetV be a K-space. Then a symmetric algebra for V' is a commutative and asso-
ciative algebra T with 1 together with an K-linear map ® : V. — T such that whenever
T is a commuative and associative K-algebra with one and ® : V. — T’ is K-linear,
then there exists an unique K-linear map ¥ : T — T with ®' = ¥ o ®.

(c) [c] Let L be a Lie algebra over K. Then an universal enveloping algebra for L is
an associative K-algebra U with one together with a homomorphism ® : L — I(U)
such that whenever U’ is an associative K-algebra with one and ® : L — (U') is a
homomorphism, then there exists a unique homomorphism of K-algebra ¥ : U — U’
with ® = ¥ o ®.

Lemma 1.5.2 [existence of universal]

(a) [a] LetV be a K-space. Then V' has a tensor algebra T(V') and T(V') is unique up to
isomorphism.

(b) [b] LetV be a K-space. Then V has a symmetric algebra &(V') and &(V) is unique
up to isomorphism.

(c) [c] Let L be a Lie algebra. Then L has a universal enveloping algebra $\(L) and (L)
is unique up to isomorphism.

Proof: The uniqueness statements follows easily from the definitions.
@ Define T = ;2 Q" V and define a multiplication on T by

(N ®...QUp) (W R .. Wy) =V R ... Uy QW @ ... W,

The its is staighforward to check that ¥ is an associative algebra with 1. If 7" is an
associative algebra with 1, and ® : V' — T is linear. Define ¥ : T — T" by U(v1®. ..Quy,) =
D' (v1)D (va) ... D' (Vy,).

(]EI) Let &V be the n-th symmetric power of V and define & := @2, &'V. Proceed
as in @

Let I be the ideal in T(L) generated by all the a®b—b® a — [a,b], a,b € L. Then
T/I is a universal enveloping algebra. O

Lemma 1.5.3 [basis for tensor]

(a) [a] Let I be set and for i € I let V; be a K-space with basis B;. Put B = ®Qic1B; =
(®ierbi | bi € BiVi € I). Then B is a basis for Q;c; Vi.

(b) [b] LetV be a K-space with ordered basis B. Let n € N. Then (biba...by | by < by <
oo < by, b; € B) is a basis for "V
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Proof: Wellknown. See for example [La]. O

Let A be any associative K-algebra. Note that the definition of an universal enveloping
algebra implies that the map

Hom(U(L), A) — Hom(L,[(A)), a—aod
is a bijection. For the case that A = End(V) for a K-space V' we conclude:
Lemma 1.5.4 [modules for universal] Let ¢ : L — 8 be an universal enveloping alebra.
Let V' an L-module. Then there exists a unique action of th on V with ¢(l)v = lv for

all | € L. The resulting map between the set of L-modules and the set of -modules is a
bijection.

0

Lemma 1.5.5 [d spans u| Let ¢ : L — 4 be an universal enveloping algebra for L. Also
let B be an ordered basis for L. Put 4, = > 1" #(L)". Then

LLm:K<¢)(b1)¢(bz)|0§2§m,b]€[5,b1§b2§sz>

Proof: By induction on m. Since we interpret the empty product as 1, the statement is
true for m = 0. Suppose its is true for m—1. Let by, bo, ..., b, € B. For simplicity, we write
the product ¢(b1)¢(b2) ... ¢(bk)Vk € N/{0} Also let 0 < i < m and put a = biba...b;i—1
and ¢ = bj42...bp. Then

biby ... by = abibip1c = abi1bic+ a[bi, bi+1]c

Thus
biba...by + 1 = b1 ... bi—1bit1bibiva .. by + Uy

and so for all 7 € Sym(m),

biby... by, + U1 = bﬂ(l) o bw(m) + U1

Choosing 7 such that br(1) < br2) < ... < br(y) and we see that the lemma also holds
for m. ]

Lemma 1.5.6 [action of 1 on s] Let B be an ordered basis for the Lie algebra L. Identify
L with its image in S := S(L). Let b € B and s € B™. Define b < s if either n = 0 or
s = [1iy bi,bi € B with b < b; for all 1 < i < n. Then there exists a unique action - of L
on S such that b-s ="0bs for allbe B, n € N and s € B™ with b < s.

Proof: Put S, =3 ;" L™ < S. To show the uniqueness of - we show by induction on m
that the restriction of - to L x S, is unique and that
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1° 1]  w(b,s):=b-s—bs€ Sy forallbe L and s € Sy,.

Note that implies that b- s = bs +w(b, s) € Spm41

If m =0, the Sy =K and b-s = bs = sb for all s € Sy. Suppose now that m > 1. Let
s=dt € B" withd € B, t € B" ! and d < t. We need to compute b - s uniquely and show
that b-s —bs € S,,. Note that dt =d - t.

If b <d, then b < s. So

2° [2]  b-s=bs, whenever b <s

Alsob-s—bs=0¢€ S,,.
If b > d, then since - is an action

3° [3]
b-s=b-(d-t)=d-(b-t)+[bd ¢

By induction on m, b-t and [b, d] -t are uniquely determined. Moreover, b-t = bt +w(b, t)
with w(b,t) € Sy,—1 and [b,d] -t € Sp,. Since d < bt we have d - (bt) = dbt = bs. Also by
induction d - w is uniquely determined and contained in .S,,. Thus the formula

4° [4]  b-s=dbt+d-w(b,t)+ [b,d]-t, wheneverb £ s

uniquely determines b - s. Moreover w(b, s) = d - w(b,t) + [b,d] -t € Sp,.

Thus - is unique and holds.

To prove existence we define b- s for b € B and s € B” by induction on m via and
. Once b--- s is defined for all s € B™, define [ - s for all [ € L and s € S, by linear
extension. Note also that will hold inductively. So all terms are on the right side of
are defined at the time its used to define the left side.

We need to verify that - is an action.

Let a,b € L and s € S. We say that {a,b} actsonvifa-(b-s)—b-(a-s)=la,b]-s.
Note that set of s € S on which {a, b} acts is a K-subspace of V.

Suppose inductively that we have shown

5° [5]  Foralla,be L and all s € Sp—1, {a,b} acts on s.

Let a,b € B and s € B™. We need to show that {a, b} acts on s. This is obviously the
case then a = b. So suppose a # b

Suppose that a < s or b < s. Without loss a > b. Then b < s. Using the definition of
a-ufor u="b-s (compare (3%) we get

6° [6] Ifa<s orb<s then {a,b} acts on all s € B™.
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Suppose next that a > s and b > s. Let s = dt = d -t be as above. Then

Since d < bt gives that {a,d} acts on bt. By induction {a,d} also acts on w(b,t) €
Sm—1 and so {a, d} acts on b-t = bt+w(b, t). This allows us to compute (using our inductive
assumption ([5°)) various times):

a-(b-(d-t)) = (d-(b-t)+[b,d]-1)

= d-(a-(b-t)+[a,d]-(b-t)+[b,d]-(a-t)+ [a,[b,d]] -t

Since the situation is symmetric in a and b the above equation also holds with the roles
of a and b interchanged. Subtracting these two equations we obtain:

a-(b-dt)—b-(a-dt) = d-(a-(b-t)—b-(a-t))+ [a,[b,d]]-t—[b,[a,d]] -t
= d-([a,b]-t) + [a,[b,d]] - t+ [b,[d,a]] - t
= [aa b] ’ (d ’ t) + ([d7 [a7 bH + [aa [b7 d]] + [b7 [d7 a]]) -t
= [a,b]-dt
Thus {a,b} acts on s = dt and so by induction L acts on S. O

Theorem 1.5.7 (Poincare-Birkhof-Witt) [pbw] Let ¢ : L — i be an universal en-
veloping algebra of L. Let B be the ordered basis of L and view &(L) as an L- (and so as

an $(L)-) module via[1.5.6
(a) [a] The map ¥ : (L) — S(L),u — u-1 is a isomorphism of K-spaces.

(b) [b]
D= (¢(b1)p(b2) ... ¢(bn) [n € N,by < by < ... < by € B)

is a basis for Al

(c) [c] @& is one to one.

Proof: Let b1,bo,...b, be a nondecreasing sequence in B. The definition of the action of
L on &(L) implies that ¢(by)p(ba) ... ¢(by)-1 = bibs...b,. Hence ¥(D) is a basis for &(L).
Thus ¥ is onto and D is linearly independent in 4. By KD = 4 and so D is a basis
for 4. Hence ¥ sends a basis of 4 to a basis of (L) and so is an isomorphism. Also ¢(B)
is linearly independent and so ¢ is one to one. O

From now on 4l denotes a universal envelpong algebra for L. In view of the Poincare-
Witt-Birkhoff Theorem we may and do identify L with its image in 4. In particular for
n € N we obtain the K-subspace L™ of { Also according to we view every L-module
V as an {-module. Indeed if ay,as,...,a, € L and v € V, then ajas...a, € U just acts
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(araz...an)v = ai(az(...(apv)...)).

In particular the adjoint action of L on L extends to an action of 4l on L. We denote
this action by U x L — L,u — w* (. For example a,b,l € L we have a *xl = [a,l] and
(ab) * 1 = [a, [b,]]. With this notations we have

L"«L=L,L,...[L,L]..]].
-times

Lemma 1.5.8 [[,L,n]] L™ « L < L*1,

Proof: The proof is by induction on n.. The statement is clearly true for n = 0. Suppose
now that L" '« L < IL". Letle Landa e L" 1« L. Thena € L™ and sol*a = la—al €
L™ Thus L" + L = L* (L" ! % L) < L"™*! and the lemma is proved. O

1.6 Nilpotent Action

Let R be a ring and X C R. We say that X is nilpotent if X™ = 0 for some n € N. Note
that for R = End(V') we have X" = 0 iff X"V = 0.

Now let A be an associative or Lie algebra and V' a module for A. Then we say that
X C A acts nilpotenly on V' if the image of X in End(V) is nilpotent. Note that that X
acts nilpotently on V' if and only if X™V = 0 for some n € N.

We say that L is nilpotent if L acts nilpotently on L, that is if L™ * L = 0 for some n.
Note that for associative algebra A a subalgebra B is nilpotent if an only if the action of B
on A by left multiplication is nilpotent. Indeed if B™ = 0, then B"A = 0 and if B"A =0
then B"*! = 0. The analog of this statement is not true for Lie algebras. For example
consider that Lie algebra L with basis x, y such that [z,y] = x. Then Ky is an abelian and
so a nilpotent subalgebra of L, but y does not act nilpotently on L. On the other hand if
I is an ideal in L, then [ is nilpotent if and only if I acts nilpotently on L.

We remark that if X acts nilpotently on V' then all elements in X act nilpotently on
V. The main goal of this section is to show that for finite dimensional Lie-algebras, the
converse holds. That is if all elements of the finite dimensional Lie-algebra L act nilpotently
on V, then also L acts nilpotenly on V.

We say that L acts trivially on V if LV = 0.

Lemma 1.6.1 [nilpotent and chains| Let A be an associative or Lie algebra. Let V be
an A-module. Then the following are equivalent:

(a) [a] A acts nilpotently on V.

(b) [b] There exists a finite chain of A submodules 0 =V, < V,_1 <...Vo =V such that
A acts trivially on each V;/Viy1.
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(¢) [c] There exists a finite chain of A submodules 0 =V, < V,_1 < ...Vo =V such that
A acts nilpotently on each V;/Vii1.
Proof: @:> @): Just put V; = AV,
@:> : This holds since trivial action is nilpotent.
()= (&): For 0 < i < n choose m; with A™i(V;/Viy1) = 0. Then A™V; < Viyy. Put
m = 31" m;. Then A™V = 0. O

Lemma 1.6.2 [nilpotent implies nilpotent]| Suppose L acts nilpotenly on the L-module
V. Then L/CL(V) is nilpotent.

Proof: Let L™V = 0 for some n > 1. Then by (L" Y% L)V =0. Thus L" 1% L <
Cr(V) and L/Cr(V) is nilpotent. O

Lemma 1.6.3 |nilpotent + nilpotent| Let A be an associative or Lie algebra. Let V' be
an A-module, D, E subalgebras of A with [E,D] < D. If E and D acts nilpotently on V,
then E 4+ D acts nilpotently on V.

Proof: In the case that A is associative, we replace A by [(A). So A is now a Lie algebra.
Since [E, D] < D, D is an ideal in E + D. By [L.47([b) DV is an E + D-submodule. By
induction, D™V is a E + D-submodule. D acts trivially and so E + D acts nilpotenly on
D"V/D"1V for all n. Thus the lemma follows from O

Lemma 1.6.4 [associative and nilpotent] Let A be an associative K-algebra.
(a) [a] Let D, E < A be nilpotent with [E,D] < D. Then D + E is nilpotent.

(b) [b] Let D < A be nilpotent. Then D acts nilpotently on (A) by adjoint action.

Proof: @ By D + E acts nilpotently on A and so is nilpotent.

() Since D™ = 0 we have (D)™ = 0 and r(D)" = 0. Also since A is associative 1(D)" and
r(D)™ commute. Thus (&) implies that 1(D)+r(D) is nilpotent. Since ad (a) = 1(a) —r(a) we
have ad (D) <1(D) 4 r(D) and so ad (D) is nilpotent in End(A) and so D acts nilpotently
[(A). O

Corollary 1.6.5 [nil on V and in L] Suppose that L acts faithfully on V and that X C L
acts nilpotently on V. Then X acts nilpotently on L.
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Proof: Let ® : L — gl(V) be the corresponding representation. Then by the definition
of nilpotent action, ®(X) is nilpotent in End(V). From the adjoint action of ®(X)
on gl(V) is nilpotent. Thus ®(X) acts nilpotently on ®(L) and as ® is one to one, X acts
nilpotently on L. (Il

Lemma 1.6.6 [normalizer of nilpotent| Suppose L acts nilpotenly on V- and W C V
with 0 € W # V. Then there exists v e V. \ W with Lv < W.

Proof: Since L acts nilpotently on V and 0 € W, we can choose n € N minimal with
L™V C W. Since W # V, n # 0. By minmality of n, L"1V £ W. Pick v € L" "1V \ W.
Then Lv < L(L"'V) = L"V < W. O

For a subalgebra A < L put Np(A) = {l € L | [[,A] < A}. Note that Np(A) is
subalgebra of L and that A is an ideal in Np,(A).

Corollary 1.6.7 [normalizer of nilpotent II| Suppose that M is a subalgebra of L act-
ing nilpotenly on L. If M # L, then M < Np(M).

Proof: By (applied with (M, L, M) in the roles of (L, V,W)) there exists d € L\ M
with [M,d] < M. Then d € Ny(M). 0

Definition 1.6.8 [def:subideal] Let A be a K-algebra and I C A. We write I < A if I
is an ideal in A. We say that I is a subideal in A and write I < <A if there exists chain
I=0<L<...<91,<41, = A.

Lemma 1.6.9 [subideals in nilpotent| Suppose L is nilpotent. Then every subalgebra in
L is an subideal in L.

Proof: Let n be minimal with L« L =0 and A < L. Let Z=L" '% L. Then L*Z = 0,
that is Z < Z(L). Thus [A,Z + A] = [A,A] < Aand A Z+ A. Put L = L/Z. Since
L1« L <Z, "'« =0 By induction on n we may assume Z + A/Z < <L/Z. Thus
Z+A<<L andso A< <L since AdZ+A<<L O

Theorem 1.6.10 [elementwise nilpotent| Let L be a finite dimensional Lie algebra and
V' a L-module. If all elements of L act nilpotently on V', then L acts nilpotently on V.

Proof: We may assume without loss that L is faithful on V. The proof is by induction
on dimV. Let M be a maximal subalgebra of L. By induction M acts nilpotently on
V. So by M acts nilpotenly on L. implies that there exists d € Ny (M) \ M.
Note that Kd is a subalgebra and M + Kd are subalgebras of L. By maximality of M,
L=M+Kd< Np(M). As d is nilpotent on V, Kd is nilpotent on V as well. Thus [L.6.3|
implies that L is nilpotent on V' .
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Corollary 1.6.11 (Engel) [engel| Let L be a finite dimensional Lie algebra all of whose
elements act nilpotently on L. Then L is nilpotent.

Proof: Apply[1.6.10] to the adjoint module. O

1.7 Finite Dimensional Modules

Definition 1.7.1 [series| Let A be Lie or an associate K-algebra and V' an A-module.

(a) [a] V is called simple if V' has no proper A-submodules. (that is O and V are the
only A-submodules. V is semisimple if its the direct sum of simple modules and its
homogeneous if its the direct sum of isomorphic simple modules.

(b) [b] A series for A onV is a chain S of A-submodules of V' such that

(a) [a] 0 €S andV € S.

(b) [b] S is closed under intersections and unions, that is for every nonempty D C S,

NDeS and|yD € S.

(Here a chain is a set of sets which is totally ordered with respect inclusion)

(c) [c] LetS be an A-series. A jump of S is pair (D, E)) such that D,E € S, D < E and
C € S with D < C < E implies C =D or C = E. In this case E/D ‘s called a factor
of S.

(d) [d] A composition series for A on V is a series all of whose factors are simple A-
modules.

(e) [e] Let S and T be A-series on V. We say that S and T have isomorphic factors if
there exists a bijection ® between the sets of factors of S and T such that for each factor
F of S, F and ®F are isomorphic A-modules. Such a ® is called an isomorphism of
the sets of factor.

(f) If] LetV and W be A-modules and ¢ € Hom(V,W). Then ¢ is called A-invariant if
¢(av) = ap(v) for alla € A, v € V. Homy(V, W) denotes the set of such ¢.

(9) (8] If X andY are A-submodules of V with X <Y, then Y/X is called an A-section
of V.

Lemma 1.7.2 [lifting series| Let V' be an L-module and W an L-submodule of V. Let S
be a L-series on W and T a L-series on V/W. Let T be the inverse image of T in'V (so
T={T/W |T¢€T}). Then SUT is a series for L on V. The factors of SUT are the
factors of S and T. In particular, S U T is an L-composition seres if and only if both S
and T are L-composition series.
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Proof: This follows readily from the definition. We leave the details as an exercise.  [J

Lemma 1.7.3 (Jordan Hoélder) [jordan hoelder| Let A be a Lie or an associative K-
algebra. Suppose that there exists a finite composition series for A on V. Then any two
composition series for A on V have isomorphic factors.

Proof: Let S be a finite composition series for A on V and 7 any compostion series. For
a jump (B,C) of T choose D € S maximal with C ¢« B + D. Let E be minimal in S
with D < E. Then E/D is a factor of 7, C'//B is a factor of S and we will show that map
B/C — E/D is an isomorphism of the sets of factor.
By maximality of D we have
C<B+FE.

Thus C =CN(B+ FE)=B+ (CNE) and so
C/B2CNE/CNENB=CNE/BNE.
Since C £ B+ D, CNE % D and since E/D is simple, E = D + (C'N E). Thus
E/D=CnE/CND.

IfBﬂEfD, then E=(BNE)+ D < B+ Dandso C < B+ E < B+ D, contrary to
our choice of D. Thus BNE < D and so BNE = BN D. Suppose that CN D £ B. Then
C=(CnNnD)+ B < B+ D, again a contradiction. Thus CND =BND = BNE and so

C/B=CnNE/BND=CNE/BNE=E/D.

It remains to show that our map between the factor sets is a bijection. Let (B’,C") be
a jump other than (B,C) and say C' < B. Then C'NE < BNE =BND < D and so
(B’,C") is not mapped to E/D. So our map is one to one.

Since S is finite we conclude that, 7 has finitely many jumps and so also T is finite and
|7] < |S|. But now the situation is symmetric in 7 and S. Thus |S| < |T], |S| = |T]| and
our map is a bijection. O

Lemma 1.7.4 [submodules for ideals] Let L be a Lie algebra, V an L-module, I an
ideal in L, W an I-submodule in V andl € L. Let X be an I submodule of V' containing
[I,qW

(a) [a] The map W — V/X w — lw+ X is I-invariant.
(b) [b] The map W — V/W,w — lw + W is I-invariant.

(c) [c] If[1,l]] =0 then the map W — V,w — lw is I-invariant.
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Proof: @ Let ¢ be the map in question. Let i € I and w € W. Then ilw = liw+[i, l[Jw €
liw 4+ X and so i¢(w) = ¢(iw).

(]E[) Since W is an I-submodule and I is an ideal, [I,{]/W < W and so we can apply @
with X = W.

Apply @ with X = 0.

Definition 1.7.5 [def:nil v| Let V' be a finite dimensional L-module.

(a) [a] Compy, (L) is the set of factors of some L-compositions series on V. (Note by the
Jordan Hélder Theorem, Compy, (L) is essentially independent from the choice of the
composition series)

(b) [b] Nilp(V) = {CL(W) | W € Compy (L)}

Lemma 1.7.6 [nil V] Let V be a finite dimensional L-module. Then Nilg (V') is the unique
mazimal ideal of L acting nilpotently on V.

Proof: Nil, (V) is the intersection of ideals and so an ideal in L. By [1.6.1|(b]), Nil. (V)
is nilpotent on V. Now let I be an ideal of L acting nilpotently on V. Also let W be
a composition factor for L on V. Then 0 # Cw(I) is an L-submodule of W and so
Cw(l)=W,I<Cr(W)and I <Nilg(V). O

Corollary 1.7.7 [Nil L] Let L be finite dimensional. Then L has a unique mazimal nilpo-
tent ideal Nil(L).

Proof: An ideal in L is nilpotent if and only if its acts nilpotently on L. So the lemma
follows from [1.7.6] applied to the adjoint module. O

We remark that there may not exist a unique largest nilpotenly acting subideal in L.
For example consider L = sl[(K?) and let V = K2. Let

01 0 0 1 0
$=E12=(0 0>, y:Em:(l O) andh:EnEzQ:(O _1>

Then [h,z] = 2z, [y, h] = 2y and [z,y| = h.

If charK = 2 we conclude that Kz + Kh is an ideal in sl[(K?) and Kz is an ideal in
in Kz + Kh. Thus Kz is a subideal acting nilpotently on K2?. The same holds for Ky.
But s[(K?) is the subalgebra generated by = and y. Since sl[(K?)V =V, sl(K?) does not
act nilpotently on V and so Kz and Ky are not contained in common nilpotently acting
subideal of L.

Definition 1.7.8 [def:vd] Let V' be finite dimesional L-module.

(a) [a] Sim(L) is the set of all isomorphism classes of finite dimensional simple L-modules.
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(b) [b] Simy = Simy (L) is the set of the isomorphism classes of the L-composition factors
of V.

(c) [c] Let D C Sim(L). A D-module is an L-module W with Simy, C D (If W is simple
this means that the isomorphism class of W is in D.

(d) [d] Vp is the sum of all the simple D-submodules in V
(e) [e] Vp(0) =0 and inductively define the submodule Vp(n+ 1) of L in V by

Vp(n+1)/Vp(n) = (V/Vp(n))p.

(F) 1t Vi =UZo Vo (i)

(9) [g] Let A< L and A C Sim(A). Then A |* is the set of isomorphism classes of the
finite dimensional simple L-modules which are A-modules.

To digest the preceeding definitions we consider an example. Let L be the subalgebra
of gl(K3) consisting of all 3 x 3 matrices of the form

0
0
0

S ¥ ¥
S % ¥

Let V = K? viewed as an L-module via left multiplication. Let (e1,e2,e3) be the
standard basis for K3. Let V; = Z;:O Ke;,i =0,1,2,3 and ey = 0. Then

0=W<Vi<Vo< V3=V

is a composition series for L on V. Put I = Vi /Vi_1. Then I is a simple 1-dimensional
L-module. Note that LI; = 0 and LIs = 0 while LIs # 0. So Iy = I3 but I; 2 I» as
L-module. For an L-module W let [W] be the isomorphism class of W ( that is the class of
L-modules isomorphic to W. Then Simy = {[[1], [[2]}. For k = 1,2 let Dy = {[I]}. Also
put D = D; U Dy = Simy . Observe that any L-submodule of V is one of the V;.

By definition Vp, is the sum of all the simple L-submodule of V' isomorphic to I;. Vi
is the only simple L-submodule of V' and Vi = I; so Vp, = Vi. To compute Vp,, put
V = V/Vj. The only simple submodule of V is Iy = V5/V;. Since I) % I we get Vp, = 0.
Thus Vp, (2) = V;. It follows that Vp,(j) = Vi for all 7 > 1 and so also VE, =W

No submodule of V' is isomorphic to I3 and hence Vp, = 0. Thus V{5, = Vp,(j) = 0 for
all j > 0.

V1 is the only submodule of V' isomorphic to I; or I and so Vp = Vi. V,/V] is the only
submodule of V/V} isomorphic to I1 or Is. So (V/Vi)p = Va/Vi and Vp(2) = Va. V/Va is
isomorphic to I; and so V = Vp(3) = V.

Definition 1.7.9 [def:linear indep]| Let V' be K-space and V a set of K-subspaces of V.
We say that V is linearly independent if >V = @ V.



1.7. FINITE DIMENSIONAL MODULES 23

Lemma 1.7.10 [basic semisimple]| Let V be an L-modules and V a set of simple L-
submodules in V. Suppose that V. ="> V.

(a) [a] Let W be an L-submodule of V', Then there exists W CV such that V =W &P W.

(b) [b] Let X <Y be L-submodules. Then there exists W C V with Y/X = @ W as

L-modules.
(c) [c] Ewvery L-section of V is semisimple. In particular, V is semisimple.

(d) [d] Ewvery composition factor of V is isomorphic to some member of V.

Proof: () Let C be the set of linearly independet subsets W of V with W N Y W = 0.
Order C by inclusion. If D is a chain in C, then it is easy to verify that (JD € C. So every
chain in C has an upper bound. By Zorn’s Lemma, C has a maximal elements WW. Suppose
that V' # W + >~ W. Then there exists U € V with U £ W + Y W. Since U is simple,
UNW +> W) =0. But then WU {U} € C, contradicting the maximality of W. Thus
V =W + > W and the definition of C implies that V=W & @ W.

(b) By (a) there exists an L-submodule Z of V with V =Y @ Z. Put V = V/Z. Then
Y 2V. Let W € Vwith W £ Z. Then WNZ =0and W = W+ Z/Z = W. Let
V={W|WeV,WLZ Then V=3 V. By @ applied to X <V there exists W C V
with V=X &@W. Hence Y/X 2Y /X =V /X = @ W and so (]E[) holds.

and (d)) follow directly from (). O

Lemma 1.7.11 [basic vd| Let V be a finite dimensional L-module and D C Sim(L).

(a) [z] Let A < L and A C Sim(A). Then V is an A-module if and only if V is an
A |F-module.

(b) [a] Let A< B<C <L andACSim(A). Then A|B|¢=A|°.

(c) [b] Let W be L-submodule of V.. Then V is an D-module if and only if W and V/W
are D-modules.

(d) [y] Vp is the unique mazimal semisimple D-submodule in V.
(e) [c] VS is the unique mazimal D-submodule of V.
(f) [x] Let & CSim(L). Then VENVE = Ve and Vi +VE <V e

(9) [d] Let I Q<L and T C Sim(I). Put £L =T |¥ . Then V¥ is an L submodule and
Vi =V§.

(h) [e] Suppose I < Z(L), Z C Sim(I) and i € N. Then Vz(i) is an L-submodule of V.
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Proof:

@ Let & a composition series for L on V and choose a composition series R for A on
V with S € R. Then a factor A/B of S is an A |F-module iff all the factors C/D of R
with B < C < D < A are A-modules. Thus V is an A ]L—module iff each factor T of S is
an A |F-module iff each factor of R is an A-module iff V' is an .A-module.

(]E[) Let X be finite dimensional C-module. Then by @, the following are equivalent.

X is an A |P|%-module, X is an A |P-module, X is an A-module, X is an A |-
module.

follows from m
@ By 1.7.10, Vp is semisimple and by 1.7.10@, Vp is a D-module. Conversely every

semisimple D-module is a sum of simple D-modules and so contained in Vp.

@ Any composition factor of V5 is isomorphic to a compostion factor of some Vp(n +
1)/Vp(n) and so (by (d)) is a D-module. So Vf is a D-module. Conversely let W be a
D-submodule and 0 = Wy < W7 < ... < W,, = W an L-composition series on W.

We show by induction on i that W; < Vp(i). For i = 0 this is obvious. So suppose
W; < Vp(i). Since W is a maximal submodule of W;;1 we either have W11 N Vp(i) = W;
or Wiy1. In the latter case, W11 < Vp(i + 1). In the former put V = V/Vp(i) and note
that W1 = Wiy /Wi is a simple D-module. Hence W;;; < Vp. Hence the defintion of
Vp(i + 1) implies W11 < Vp(i + 1).

In particular, W;,, < Vp(n) < V5 and (ED is proved.

@ This follow easily from @ We leave the details to the reader.

Suppose first that I is an ideal in L. Let W = V7. We claim that W is a L-
submodule. Let [ € L. Then by (]ED, ¢:W = V/W,w— lw+ W is [-invariant. Hence
¢(W) = W/ ker ¢ and so by (d), ¢(W) is an Z-submodule. Now ¢(W) = [W +W/W and so
by , IW 4+ W is an Z-submodule. According to (E[), W is a maximal Z-submodule. Thus
IW4+W=W,IW <W and W is an L-submodule. By @ W is an L-submodule. Thus
by (), W < VE£. Also by (@), V£ is an Z-submodule and thus by (), V£ < W.

So (jg) holds if I is an ideal. In the general can choose I <[} ... <1, 1 <. We
prove by induction. Let A = T |11, since I < Ij, we have V7 is an I;-module and
Vi=Vi Pt J=1,1and J =1 |7, By induction assumption, Vi = V5. By @,
L=T|F=T|’|F= J | and so by the ideal case V5 = V. Thus VF = Vf. As the latter is
an L-submodule,so is VF and @ is proved.

Let | € L. Note that I is and ideal of L. By , [Vz is a sum of simple
Z-modules. So (V7 < Vz. Thus V7 is an L-submodule. The definition of Vz(n 4+ 1) and
induction on n now shows that holds. ([l

Proposition 1.7.12 [clifford] Let I a subideal in L and V a finite dimensional simple
L-module. Then any two composition factors for I on V are isomorphic. If in addition
I < Z(L), then V is an homogenous I-module.

Proof: Let W be as simple I-submodule in V' and Z the isomorphism class of W. Then
by V7 is a non-trival L-submodule of V. Since V is simple, V' = VF. Similarly if
I<Z(L),V=V O
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Lemma 1.7.13 (Schur) [schur] Let V' be a simple L-module. Then Endr (V) is a skew-
field. If K is algebraicly closed and V' is finite dimensional, then Endy (V) = K* = Kidy,
where K* is the image of K in Endg (V).

Proof: Let 0 # f € Endz(V). Then V # Cy(f) is L-submodule of V' and since V is
simple, Cy(f) =0. So fis 1 — 1. Similarly V' = fV and so f is onto. Simple calculations
show that f~! € End.(V) and so Endy(V) is a skew-field. Suppose now that V is finite
dimensional and K is algebraicly closed. Then Endy, (V') is a finite field extension of K* and
so Endp (V) = K*. O

Lemma 1.7.14 [simple for abelian| Let L be an abelian Lie algebra and V' a simple L-
module. Put D = Endp (V). Then D is a field, V is 1-dimensional over D and D = K*(L*),
where K* and L* are the images of K and L in End(V'). If K is algebrilcy closed and V is
finite dimensional, then K* =D and V s 1-dimensional over K.

Proof: Note that L* is abelian and L* < Z(ID). Let E be the subfield of Z(ID) generated
by K* and L*. Let 0 # v € V. Then Ev is an L-submodule and since V is simple we get
V = Ev. Hence V is 1-dimensional over . Moreover, if d € D, then dv = ev for some
e € E. Then (d —e)v =0, d =e, E=D and the E = D.

Suppose in addition that K is alegbraicly closed and V is finite dimensional. Then D is
a finite extension of K* and so D = K*. O

Lemma 1.7.15 [independence of d spaces| Let V' be finite dimensional L-module and
A a partition of Simy. Then (V5 | D € A) is linearly independent, that is

{5 | Deay={Vs I De A}

Proof: Let D€ Aand W =3} {Vi|D # Ac A}. We need to show that V5N = 0.
For this put £ = |JA\ {D}. Then Vj is a D-module, W is an £-module and so V5N W
is an D N E-module. As A was a partition, DN E = (). Hence VSN W = 0. O

Definition 1.7.16 [def:trace] Let V be a finite dimensional L-module, ¢ : L — L be the
univeral enveloping algebra and uw € L. Then try (u) = tr(u*), where u* is the image of u
in End(V). try denotes the corresponding function 4 — K,u — ty(u). trl denotes the
restriction of try to L.

Lemma 1.7.17 [trace and series| Let V' be a finite dimensional L-module.

(a) [a] try is K-linear and try(ab) = try(ba) for all a,b € 4.

(b) [b] try(l) =0 for alll € [L, L]
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(c) [c] Let W the set of factors of some L-series on V. Then

try = Z tryy

Wew
(d) [d] If W is an L-module isomorphic to V', then try = tryy.

This follows from elementray facts about traces of linear maps. O



Chapter 2

The Structure Of Standard Lie
Algebras

2.1 Solvable Lie Algebras

Put L(® = L and inductively, L("+*Y) = [L(") L], We say that L is solvable if L*) = 0
for some k < oo.

Lemma 2.1.1 [basic solvable]
(a) [a] Let I < L. Then L is solvable if and only if I and L/I are solvable.

(b) [b] Let A,B < L with A < Np(B). Then A+ B is solvable if and only if A and B are
solvable.

(c) [c] Suppose that L is finite dimensional. Then L has a unique mazximal solvable ideal

Sol(L).

Proof: () If L*®) = 0, then I*®) = 0 and (L/I)®) = 0. If I = 0 and (L/1)™ = 0, then
L™ < T and L") = L)) = 0.

(o) Suppose A and B are solvable. Since A < Np(B), B< A+ B. Now B and
A+ B/B =~ AJ/AN B are solvable and so by (a) A+ B is solvable.

Since L is finite dimensional, there exists a maximal solvable ideal B in L. Let A be
any solvable ideal in L. Then by @, A + B is solvable ideal and so by maximality of B,
A< B. O

Lemma 2.1.2 |nilpotent is solvable]
(a) [a] L*+D < Lk« L.

(b) [b] Any nilpotent Lie algebra is solvable.

27
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(c) [e] IfNil(L) =0, then Sol(L) =

Proof: @ By induction on k: The statement is obviously true for ¥ = 1. Suppose
L) < LF=1 % L. Then

kD) — L k)Lk)]
< [L,LF's 1)
—L*(Lkl* L)
=Lk«

(]ED follows from @

(c) If Sol(L) # 0 the last non-trival term of the derived series of L is an abelian and so
nilpotent ideal in L. O

Write I/ = [L, L] = LM). We say that L is perfect if L = L'. Let L(>) be the sum of
the perfect ideals in L. Then L(*) is perfect and so the unique maximal perfect ideal in L.

If L is finite dimensional there exists k € N with L*) = L*+D Tt follows that L(>) =
L®) | L/L(*) is solvable, L(>) is the unique ideal minimal such that L/L(*) is solvable and
L) is the unique maximal perfect subalgebra in L.

Definition 2.1.3 [standard] We say K is standard if char K = 0 and K is algebraicly
closed. We say that L is standard if K is standard and L is finite dimensional. We say that
the L-module V is standard if L is standard and V is finite dimensional.

Proposition 2.1.4 [sol and simple] Let V be a simple, standard L-module.
(a) [a] [Sol(L),L] < Sol(L)N L' < Sol(L) Nkertry = Sol(L) N Cr(V).
(b) [b] The elements of Sol(L) act as scalars on V.

Proof:

(a) Let I = Sol(L)Nker try. Obviously [Sol(L), L] < Sol(L)NL’ and Sol(L)NCL(V) < I.
By [L.7.17({b), L’ < ker try, so we also have Sol(L) N L’ < I. It remains to show to show that
I <Sol(L)NCL(V). Wenow let L = L/Cp(V) and consider V =V as an L-module. Then
V is a faithful, simple, standard L-module. Note that V and V has the same set. Now we
want to show that I := Sol(L) Nkertry = 0 If not, let k be the derived length of I and
put J = I*=D. Then J is a non-trivial abelian ideal in L and try(J) = 0. Let 0 # j € J
and let Z be a simple J-submodule in V. Since K is algebraicly closed, implies
that Z is 1-dimensional over K. Hence there exists k € K with jz = kz for all z € Z.
By m 1.7.12] all composition factors for J on V are isomorphic and so implies that
0= try(j) = dimV - k. Since charK = 0 we get k = 0. Thus J < N11L(V) <Cp(V)=0.
Now note that I := Sol(L) Nkertry = (Sol(L)/Cr(V)) N (kertry /CL(V)) = I/CL(V), so
I =0 implies I < C(V). Hence I < Sol(V)NCr(V) and @ is proved.
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(b) Contiune to using the notations L and V' as above. By , [Sol(L),L] < C;(V) = 0.
Thus Sol(L) < Z(L). Hence by V is a homogeneous Sol(L)-module. Now Sol(L) is
abelian and by all the simple Sol(L) submodules in V are 1-dimensional. Therefore
elements of Sol(L) act as scalars on V. Since Sol(L) = Sol(L)/CL(V) and V =V as a
K-space, elements Sol(L) also act as scalars on V. Hence (@ holds.

Theorem 2.1.5 (Lie) [lie] Let V be a standard L-module.

[Sol(L), L] < Sol(L) N L' < Nilz (V).

Proof: Let W be a composition factor for L on V. By Sol(L)NL' < Cr(W) and so
Sol(L) N L' < Nilp (V). O

Corollary 2.1.6 [solvable and flags| Suppose that L is solvable and V is a standard L-
module. Then

(a) [a] L' <Nil (V).
(b) [b] IfV is simple, then V is 1-dimensional.
(c) [c] There exists a series of L-submodules 0 = Vo < Vi < ... <V, =V withdimV; = .

(d) [d] Nilp(V)={l€ L |l acts nilpotently on V'}.

Proof: By L acts as scalars on any composition factor for L on V. Thus @—
holds.

@ Clearly each elements of Nilz (V') acts nilpotently on V. Now let I € L act nilpotently
on V. Then [ also acts nilpotently any every composition factor W of L on V. (@ implies
that [ centralizes W and so [ € Nilg (V).

Corollary 2.1.7 [[sol 1, 1] nilpotent]| Let L be standard. Then
(a) [a] [Sol(L),L] < Sol(L)N L' < Nil(L).

(b) [b] If L is solvable then L' is nilpotent and there exists a series of ideals 0 = Ly <
L1 <...<L,=0Lin L withdimL; = 1.

Proof: Apply and to V being the adjoint module L.
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2.2 Tensor products and invariant maps

Let VW and Z be L-module. Then L acts on V @ W by

llv@w)=(v)@w+v (lw)
and L acts on Hom(V, W) by

(9)(v) = U(¢(v)) = ¢(l(v)).

In particular, if we view K as a trivial L-module, L acts on V* := Hom(V,K) by

(9)(v) = =¢(lv).

Let X C L and ¢ € Hom(V,W). We say that ¢ is X-invariant if ¢(lv) = I(¢(v)) for
all v € V and | € X. Note that this is the case if and only if ¢ = 0 for all | € X.
Homyx (V, W) denotes all the X-invariant K-linear maps from V' to W. So Homx (V, W) is
just the centralizer of X in Hom(V,W). Let f : V x W — Z be K-bilinear. Then f gives

rise to a unique K-linear map f : V@ W — Z with f(v ® w) = f(v,w). We say that f is
X invariant if f is X invariant. So f is X-invariant if and only if

f(lv7w) + f(U, lw) = l(f(”?“’))

for all l € X,v € V and w € W. In the special case that Z is a trivial L-module we see
that f is X-invariant if and only if

f(lv,w) - _f(va lw)

forallle X,veV and we W.
Note that the sets of all / in L which leave f invariant (that f is l-invariant) is equal to

Cr(f) and so forms a subalgebra of L.
Let f:V xW — Z be K-bilinear. For X C V define

Xt ={weW]| f(z,w) =0z € X}.
Similarly for Y C W define
LY ={veV|f(v,y) =0y Y}

f is called non-degenerate, if V- =11 = 0.

Consider now the case where V = W. We say that f is symmetric if (for all v,w € W)
f(v,w) = f(w,v), f is alternating if f(v,w) = —f(w,v) and f is sympletic if f(v,v) = 0.
Note that if f is symplectic then f is alternating. We say that f is L-symmetric, provided
that f(v,w) = 0 if and only if f(w,v) = 0. Observe that if f is symmetric or alternating,
then f is 1-symmetric.

If fis L-symmetric then V+ = +V and we define rad(f) = V+.
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Lemma 2.2.1 [basic bilinear| f : V x W — Z a L-invariant and K-bilinear. Let X be a
L-submodule of V then X+ is L-submodule of W.

Proof: Let w e X+, 1€ L and z € X. Then lz € X and so
f(z,lw) =1f(x,w) — f(lz,w) =10—-0=0.

Thus lw € X+ and X1 is a submodule of W. OJ

Lemma 2.2.2 [multiplications are invariant|

(a) [a] LetV be an L-module. Then the map [(U)xV — V, (u,v) = uwv is L-invariant.(Here
we view (Y1) as an L-module via the adjoint representation.)

(b) [b] Lx L — L,(a,b) = |a,b] is L-invariant.

(c) [c] LxuU— 4 (a,u) — au is L-invariant. (Here we view L as an L-module via left
multiplication.)

(d) [d] Lx L — (L), (a,b) — ab is L-invariant. (Here we view () as an L-module via
the adjoint representation.)

Proof: (a) Let a € L, u € U and v € V. Define f(u,v:) = uv. Then
flaxu,v)+ f(u,av) = [a,ulv + u(av) = a(uwv) = af(u,v).

@ and are special cases of @
(d) Let a,b,c in L and define f(b,c) := be. Then using b

flaxb,c)+ f(b,axc) = la,blc+ bla,c] = [a,bc] = ax* f(b,c).

2.3 A first look at weights

Definition 2.3.1 [def:weights| A weight for L is a Lie-algebra homomorphism X\ : L —
I(K). A(L) = Homp; (L, (K)) is the set of all weights of L.

Note that a weight for A is nothing else as K-linear map A : L — K with L’ < ker \.
Thus A(L) =2 A(L/L') = (L/L')*. For a weight A we denote by K, the L-module with
action L x K — K| (I, k) — A(Dk.

Lemma 2.3.2 [weights and simple] The map A\ — K is a one to one correspondence
between weights of L and isomorphism classes of 1-dimensional L-modules.
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Proof: Let V be a 1-dimensional L-module. Then [v = try (l)v for all [ € L,v € V and
so try is a weight and V' = Ky,,,. Clearly two 1-dimensional L-modules are isomorphic if
and only their trace functions are equal. O

Corollary 2.3.3 [simple for solvable| Let L be standard and solvable. Then the map
A — K is one to one correspondence between the weights of L and finite dimensional
stmple L-modules.

Proof: (]ED and O

Let A be a weight for L. Since A corresponds to an isomorphism class of simple L-
modules we obtain from Definition the notations V), V(i) and VY. V) is called the
weight space for A on V.

A weight A for L on V is a weight with V) # 0. Ay = Ay (L) is the set of weights for L
on V. V¢ is called the generalized weight space for A on V. We also will write V)(oo) for
Vi

Lemma 2.3.4 [weights and eigenspaces| Suppose that L = Kl is 1-dimensional, \ a
weight of for L, k = X\(I) and n € N.

(a) [a] V) is the eigenspace for | on V corresponding to k,

(b) [b] Vi(n)=Cv((k—10)").

(¢c) [c] VY is the generalized eigenspace for 1 on V' corresponding to k.

Proof: @ By definition V) is the sum of all L-submodules isomorphic to Ky. Since
(k=0DK\ =0, V) < Cy(k—1). Clearly Cy(k — ) is the sum of submodules isomorphic
to Ky. For if g = {v1,...,v,} is a K-basis for Cy(k — 1), Kv; 2 K, for all ¢ = 1,...,n. So
Vy=Cy(k—1).

For n = 0 both sides are 0. By induction we may assume W = Vy(n — 1) =
Cy((k — D" 1). Applying @ to V = V/W we get

Va(n)/W = Vi = Cy(k—1) = Cy((k—1)")/W.

So holds.
follows from @ O

Lemma 2.3.5 [weights and invariant maps| Let f : V x W — Z be L-invariant, K-
bilinear map of L-modules. Let A and u be weights of L and i,j € NU {oco}. Then

FWA@), Wu(d)) < Zagui + 5 = 1)
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Proof: We first consider the case i = j = 1. Let [ € L,v € V), and w € W,. Then

Fw) = fv,w)+ fodw) = A0, w) + fo, plw)
= ADS(,w) + pD)fw) = A+ @) (v, w).

So the lemma holds in this case.

Also the lemma is obviously true for ¢ = 0 or j = 0. If the lemma holds for all finite ¢
and j it also holds for ¢ = co or j = o

So assume 1 <4 < oo and 1 < j < co. By induction on ¢ 4+ j we also may assume that

JOW(E = 1), Wa(4)) < Zyypu(i+ 5 —2) and f(VA(i), Wu(j — 1)) < Zapu(i +5 —2).

Put X = Vi(i)/Va(i—1), Y = W,(j)/W.(j—1) and Z = Z/Z+,,(i+j—2). Then we obtain
a well defined L-invariant map f : X x Y — Z with f(v,w) = f(v,w) for all v € Vy(i)
and w € W,(j). Note that X = X and Y =Y. So by the “i = j = 1”-case we get that
f(X.Y) < Z4,. Taking inverse images in V, W and Z we see that the lemma holds. [

Corollary 2.3.6 [weight formula] Let V' be an L modules, A < L, X\ and p weights for
A andi,j e NU{oo}

(a) la] La(i)Vu(j) < Vapuli+Jj—1)
(b) [b] [LA(3), Lu(9)] < Lagp(i+Jj —1).

Proof: By the map ({,v) — v is L- and so also A-invariant. Hence (&) follows from

(]ED is just a special case of @ ]

2.4 Minimal non-solvable Lie algebras

Proposition 2.4.1 [minimal non solvable| Let L be a standard Lie algebra such that all
proper subalgebras are solvable but L is not solvable. Then

(a) [a] L=L".
(b) [b] Sol(L) is the unique maximal ideal in L.
(c¢) [c] L/Sol(L) is simple.

(d) [d] Sol(L) = Cr(W), where W is any non-trivial, finite dimensional simple L-module.
(

(e) [e] Sol(L) = Nilp(V), where V is any non-trivial, finite dimensional L-module.

(f) If] Sol(L) = Nil(L).
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Proof: @ If L' # L, then both L' and L/L" are solvable. Thus L is solvable, a contra-
diction.

(]E[) Let I be any proper ideal in L. Then [ is solvable and so I < Sol(L).

By (]E[), L/Sol(L) has no proper ideals.

(d). Since W is non-trivial, C,(W) # L. Thus C(W) < Sol(L). By (&), Sol(L) < L’
and so by Sol(L) < Cr(W).

Note that by (a) L/C(V) is perfect. If L acts nilpotently on V', then implies
that L/CL(V) is nilpotent and perfect, and so trivial. This contradictions shows that
L # Nilg (V). By (d) Sol(L) < Nilg(V) since Nil (V) = n{C(W) | W is a factor of V'}
and so (b)) implies Sol(L) = Nil. (V).

@Apply@toV:L. ([l

Theorem 2.4.2 [minimal simple] Let L be a non-solvable, standard simple Lie-algebra
all of whose proper subalgebra are solvable. Then L = sI(K?).

Proof: For X < L let X = Nily(L). Also let N’ be the set of elements in L acting
nilpotently on L.

1° [1]  Let X < L, then X' < X = X NN and X is a nilpotent ideal in X .

_ Since X # L, X is solvable by assumption. Thus X’ < Nilx (L) and by 2.1.6(d),
X = X NN. Since L is non-abelian, L # Z(L) and since L is simple, Z(L) =0. Thus L is
a faithful L-module and so by X is nilpotent.

Let A and B be distinct maximal subalgebras of L and D = AN B
2° 2] L=A+BanddimL/A=1=dimA/D =dimB/D =dimL/B.

Since A is solvable applied to V' = L/A implies that there exists a 1-dimensional
A submodule W/A in L/A. Let w € W\ A. Then [A, W] < W as W is a A-submodule
of L. Also W = A+ Kw and so [w, W] = [w, A] < W. Thus [W,W] < W, that is W is
a subalgebra of L. The maximality of A implies L = W. So dim L/A = 1. By symmetry
dimL/B =1. Since A# B, L = A+ B. Thus A/D = A/JANB= A+ B/B = L/B and

holds.

3° [8] D is an ideal in A.

fromthatD<N(D) By (1°), AND = (ANN)ND =D and so N3(D) £ D. For

if Nz(D D) < D, then N5 (D D) < AN D = D which leads to a contradiction. By A/D is
1- dlmensmanal and so

If D= A this is obvious. So su ose that A % D. Since D acts nllpotenly on A we get

A= NzD)+D < Na(D).
Thus holds.
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4° 4 AND=BnND=D=0.

By , D is an ideal in A and by symmetry also in B. Thus Dis anideal in L = A+B,
and as L is simple, D = 0. By AND<AND=D. Thus holds.

5° [5] D is abelian and A’ is at most 1-dimensional.

By (@) D' < A/ND=0. Also A’ A/A'nD=A"+D/D < A/D and so by (2, A’

is at most 1-dimensional.

Let a € A\ D with a € A’ if possible. If A" = 0 the [a, A] = 0 and if A" # 0, then by
, A’ = Ka. In any case Ka is an ideal in A. Let A4 = trﬂga. Similarly, define b € B and
AB

6° 6] L=Kao®DdKDand Ay =—Ap.

The first statement follows immediately from . In particular tr? = A4+ trg + AB.
Since D is abelian, tr3 = 0. Since L = [L, L], tr? = 0. Thus (6°) holds.

7° [7]  kerAg =ker Ap =0 and D is one-dimensional.

Note that [ker A4, Ka + D] = 0 and since 4 = Ka + D we get ker \y4 < Z(A). By (6°),
ker A4 = ker Ap and so kerAy < Z(A)NZ(B) < Z(L) =0. If D =0, dimL = 2 and
L is solvable by a contradiction. Thus D # 0. Since dim D = dim(D/ker A4) =
dim A4 (D) < dimK = 1 we conclude that D is 1-dimensional.

In particular, we have A4 # 0 and so A4 is onto and there exists d € D with Ag(d) = 1.

Also note that 0, \4 and Ap are the weights of D on V and are pairwise distinct. Also
Ka < Ly, (D), Kb < Ly, (D) and D < Lo(D). Thus implies that Ly ,(D) = Ka,
Ly, (D) = Kb and Lo(D) = D. Now shows that [a,b] € D. Suppose that [a,b] = 0.
Then A is an ideal in L, a contradiction. Thus [a,b] = kd for some non-zero k € K.
Replacing b by k~'b we may assume [a, b] = d. Also from [d,a] = a and A\p = —\4 we have
[d,b] = —b. Thus

8° [8]  a,b,d is a basis for L, [a,b] =d, [d,a] = a and [b,d] = b.

From we see that L is unique up to isomorphism. Since s[(K?) fullfils the assump-
tions of the theorem we get L = s[(K?). O
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2.5 The simple modules for s[(K?)

In this section L = sl(K?). Let 2 = E12,y = Eo; and h = E11 — Eay. Then (z,y, h) is basis
for L with [h,x] = 2z, [y, h] = 2y and [z, y] = h. We call (x,y, h) the Chevalley basis for L.

Lemma 2.5.1 [autos for s12] Let L = sl(K?) with Chevalley basis (x,y,h).

(a) [a] Let ®: L — L be the K-linear map with ®(x) = z, ®(y) =y and ®(h) = —h. Then
® is an anti-automorphism of L.

(b) [b] Let ®: L — L be the K-linear map with ®(x) =y, ®(y) = x and ®(h) = —h. Then
® is an automorphism of L.

(c) [c] Let ®: L — L be the K-linear map with ®(x) =y, ®(y) = x and ®(h) = h. Then
® is an anti-automorphism of L.

Proof: Readily verified from commutator relations of (z,y, h). O

Lemma 2.5.2 [u for sl2] Let L = sl(K?) with Chevalley basis (x,y,h) and let i € Z, .
Then the following holds in L.

(a) [a] hy' = y'(h — 2i)
(b) [b] zy' =y'z+iy~'(h— (i 1)).
(c) [c] ya'=xy" —iz""Y(h+i—1)

Proof: Readily verified using the commutator relations and induction on 4. O

Corollary 2.5.3 [u for sl2 in char 0] Let L = sl(K?) with Chevalley basis (z,y, h). Sup-
pose char K = 0 and define V) = %azl and y) = %yz Leti € Z,4.Then

(a) [a] hy' =y (h - 2i).

(b) [b] @y =y +y=D(h (i - 1)).

This follows immediately from O
Theorem 2.5.4 [modules for sl2] Suppose K is standard, L = sl(K?), V is a an L-
module and (xz,y,h) is the Chevalley basis for L. Let k € K and 0 £v € V.

(a) [a] IfV is finite dimensional, then there exists 0 #v € V and k € K with xv =0 and
hv = kv.
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(b) [b] Suppose that there exist 0 # v € V and k € K with xzv = 0 and hv = kv. Let
m € N be minimal with y" v = 0, if such an m exists and m = oo otherwise. Also let
W = Uv be the smallest L-submodule of V' containing v. Put v; = Z’l’.—;v =yDo. Then

[z] (vi|i€eN,i<m) isa basis for W.

[a] yvi = (i + vit.

[b] hv; = (k — 2i)v;.

[c] zv; = (k— (i —1))vi_1, where v_1 = 0.
[d] zyv; = (i+1)(k —i)v;

(f) le] If m < oo, then m =k =dimW — 1.

Proof: @ Let A = Kz + Kh. Then A is solvable and A’ = Kz. Let V4 be a simple A-
submodule in V. Then by Vp is 1-dimensional. Let 0 # vy € V. Then since A’ = Kz,
zvg = 0 and hvg = kvg for some k € K.

(b) yvi = yyPDvg = (i + 1)yt Dy = (i + 1)vi41 and so holds.
From [2.5.3)(a) we have

hv; = hyWvg =y (h — 20)vg = y D (k — 2i)ve = (k — 20)v;

and so holds. From (]ED

av; = 2y = (Y2 + D (h = (i = 1)) =0+ y D (k= (i — 1))vo = (k= (i — 1))vi1

and holds. follows from and .

By (b:c) v; is an eigenvector with eigenvalue k — 2i for h. Thus the non-zero v;’s are

linearly independent. From , (b:c)) and the K-space spanned by v}s invariant under
L and so is equal to W, which means it is an L-module by the property of W. Thus
holds.

Suppse now that m < co. By (b:d]) with i =m + 1 we get

0 =20 =2vm+1 = (kK —m)vy,

As vy, # 0 and K is a field, kK = m. Thus holds. O

2.6 Non-degenerate Bilinear Forms

In this section we establish some basic facts about non-degenerate bilinear forms that will
be of use later on.

Lemma 2.6.1 [basic non-deg bilinear| Let V and W be finite dimensional K -spaces and
f:V xW — K be non-degenerate and K-bilinear.
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(a) [a] There ezists a unique K-isomorphismt: W* — V. a — to with a(w) = f(te,w) for
all o € W*,w e W. In particular, dimV = dim W.

(b) [b] Let (w; | i€ I) be a basis for W. Then there a unique basis (v; | i € I) of V' with
f(vi, wj) = 045 for alli,j € I.

(c) [c] Let X be a subspace of V. Then dim X + dim X+ = dim V. In particular, X =V
if and only if X+ = 0.

Proof: () Note first that if we define ¢; € W* by ¢;(w;) = &5, then (¢; | i € I) is a basis
for W*. In particular, dim W = dim W*. Since f is non-degenerate the map ¥ :V — W*
with U(v)(w) = f(v,w) is one to one. Thus dimV =< dim W* = dim W,. By symmetry
dimW < dimV. So dimV = dim W and ¥ is an isomorphism. Putting ¢ = U~! we see
that @ holds

(b)) Just put w; = t4,.

(c) The form X x W/X*, (z,w + X+) — f(z,y) is well defined and non-degenerate.
Thus by (a) dim X = dim W/X " and so (d) holds. O

Definition 2.6.2 [def:omega] A quadratic form on the K-space V is a map q : V — K
such that q(kv) = k2q(v) for all k € K,v € V and such that the function s : V x V. —
K, (v,w) = q(v+ w) — q(v) — q(w) is K-bilinear. Note that s is symmetric. We call s the
bilinear form associated to q. Let u € V with q(u) # 0. Define @ = q(u)'u and

s(v,u)
q(u)

wy:V—=oVo—=o—sv,a)u=uv—
Lemma 2.6.3 [omega u] Let V be a K-space, q : V — K a quadratic form with associated
bilinear form s, w € V with q(u) # 0.
(a) [c] s(v,v) =2q(v) for allv e V.
(b) [d] q(i) =q(u)~t #0, 4=u, s(u,1) =2 and w,(u) = —u.
(c) [a] Let0+# ke K. Then ku =k~ '0 and wyy, = wy. In particular, w, = wy.
(d) le] wy is an isometry of q.
(e) [f] Let o be an isometry of q. Then o() = o(u) and ow,o™t = We(u)-

Proof:

) . (q(u) ) tq(u)"tu = u. Also
and s(u, 1) = ((;(LJ)L) So by (), s(u, %) = 2 and hence wy(u) =u —2u = —u
ku = q(ku)Vku = k2q(u) " 'ku = k'@ and
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@

q(wu(v)) = qv—s(v,)u) =
= q(v) = s(v,a)(s(v,u) = s(v, q(u) " u)gq(v)) =

Lemma 2.6.4 [1/2 f] Suppose f is a non-degenerate symmetric form on the K-space V

and that charK # 2. Then q(v) := % f(v,v) is a quadratic form and f is its associated
bilinear form.

Proof: q(v+w)— q(v) — a(w) = L(f(v +w) = F(v,0) = Flw,w) = f(v,w) O

Lemma 2.6.5 [f circ|] Let V and W be finite dimensional K-spaces and f:V x W — K
a non-degenerate bilinear form. Define ® : V@ W — (V@ W)* by ®(v @ w)(v' @ w') =
fo, ") f(V w) for all v,v' € V and w,w' € W.

(a) [a] According to choose bases (vi,i € I) and (w;,i € I) for V and W such that

Ec(vi, wj) = 8i;. Then (®(v; @ w;))ij is the dual of the basis (v; @ wy)ij of V@ W
(b) [b] ® is an isomorphism.

(c) [c] Let fo=® Y(f). Then f° =3 ;v ®w;.

(d) [e] f(f°)=dimV

(e) [d] Suppose that V and W are L-modules and f is L-invariant. Then ® is L-invariant
and Lf° =0.

Proof: We compute

(%) O (v; @ wy) (v @ wy) = f(vi, wp) f(v, wi) = 66

Thus @ holds. (]E[) follows directly from @
Let t = >.c; vi ® wy. Then by (*)

O(t)(vp ®w) =Y P(v; ® wi)(vk @ wy) = Y Sl = Oy = f(vg,wy) = flv @ wy)
iel il
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Thus ®(t) = f and so t = ®~1(f) = f°
@ From we compute
FF) =Y fi@w) =Y fli,w) =Y 1=|I|=dimV.
il iel il

@ That & is L-invariant is readily verified. Since f is L-invariant, Lf: 0. Since ¢ is
an L-isomorphism, Lf° = 0. (|

2.7 The Killing Form

For a finite dimensional L-module V' we define fy : L x L — K, (a,b) — try(ab). fy is

called the killing form of L with respect to V. In the case of the adjoint module, f7, is just
called the Killing form of L.

Lemma 2.7.1 [basic killing] Let V' be a finite dimension L-module.
(a) [a] fv is a symmetric, L-invariant bilinear form on L.
(b) [b] IfI<QL, then I* QL and [I, 1] < rad(fy).

(c) [c] Let W be the set of factors for some L-series on V. Then

fv="> fw.

wew

(d) [d] Let I be an ideal in L. Then f1 |Lx1= fL |Lx1-
(e) [e] Nilp(V) <rad(fv).
(f) If] If L is finite dimensional, then Nil(L) < rad(fr).

() Clearly fy is K-bilinear. Let a,b € 4. Then try (ab) = try (ba) so fy is symmetric.
Thus also shows that try ([a,b]) = try(ab — ba) = 0 and so try : Y4 — K is L-invariant.
By the map my : L x L — 8 (a,b) — ab is L-invariant. So also fyy = try omyp i
L-invariant.

(]EI) The first statement follows from For the second, let i € I,j € I'- and | € L.
Then [4,1] € I+ and so since fy is L-invariant:

fV([iaj]vl) = _fV(i, [], l]) =0.
Thus [i, 7] € rad(fy).

Follows from 1.7.17.
@) By v fr = fr+fr;r- Then I and so also LI acts trivially on L/I. Thus f;/1, [Lxr=
0 and @ holds.
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() Let W be composition factors for L on V. Then Nil (V)W = 0 and so also
LNily (V)W = 0. Thus for all I € L and n € Nil (V) we have fiy(I,n) = try(In) = 0. So

by (<) fv(I,n) =0 and (¢ holds.
@ This is @ applied to the adjoint module. (Il

Theorem 2.7.2 (Cartan’s Solvabilty Criterion) [cartan| Suppose L posseses a stan-
dard, faithful L-module with fiy = 0. Then L is solvable.

Proof: Suppose L is a counter example with dim L minimal. Then all proper algebras
of L are solvable, but L is not. Thus by 2.4.1) and [2.4.2] L := L/Nilp(V) = sl(K?). Let
(x,y, h) be a Chevalley basis for L and choose Z and 3 in L which are mapped onto z and ¥.
Since L # Nilz (V') there exists a non-trivial compostion factor W for L on V. For any such
W we have Cr,(W) = Nilp(V) and implies that try(zy) is a positive integer.
Hence implies that fy(z,y) = try(Zy) is a positive integer. This is contradiction
to fy = 0 and the theorem is proved. O

Proposition 2.7.3 [rad=sol] Let V be standard,faithful L-module. Then
[Sol(L), L] < Sol(L) N L' < Nil,(V) < rad(fy) < Sol(L)
In particular, if L is perfect, then Sol(L) = Nilg (V) = rad(fy).
Proof: By Lie’s Theorem [2.1.5
[Sol(L), L] < Sol(L) N L' < Nily (V).

By [2.7.1{{d), Nilz(V) < rad(fy). Finally, Cartan’s Solvabilty Criterion (applied to
rad(fyv) in place of L), we have that rad(fy ) is solvable and so rad(fy) < Sol(L). O

Corollary 2.7.4 [basic non-degenerate| Let V be a standard L-module with fy non-
degenerate. Then

(a) [a] V is faithful and Nilp(V) = 0.
(b) [b] Sol(L) = Z(L) and Sol(L)N L = 0.
(c) [c] If L is solvable, then L is abelian.

Proof: By[.7.1|[d), Cr(V) < Nil (V) < rad(fv) = 0. So (a)) holds. (b) now follows from
follows from the first statement in (b)) O

Corollary 2.7.5 [faithful=non-degenerate| Suppose Sol(L) = 0 and V is a standard
L-module. Then fy is non-degenerate if and only if V' is faithful.
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Proof: If fi is non-degenerate, then V is faithful by @ Suppose now that V is
faithful. Then by rad(fy) < Sol(L) = 0 and so fy is non-degenerate. O

Lemma 2.7.6 [non-degenerate implies semisimple| Suppose that L is finite dimen-
sional and f1, is non-degenerate. Then Sol(L) = 0.

Proof: By[2.7.1][¢), Nil(L) < rad(fz) = 0. So by 2.1.2|(d), Sol(L) = 0. O

Corollary 2.7.7 [semisimple=non-degenerate| Suppose L is standard. Then Sol(L) =
0 if and only if fr is non-degenerate.

Proof: 1If f1 is non-degenerate, then by[2.7.6/Sol(L) = 0. If Sol(L) = 0, then also Z(L) = 0
and so the adjoint module is faithful. So by fL is non-degenerate. O

If f is a symmetric bilinear form on a vector space W, we write W = WD Wy if W;
are subspaces of W with W = W; @ Wy and f(wi,wz) = 0 for all w; € W;. Note that in
this case, W is non-degenerate if and only if f |y, is non-degenerate for i = 1 and 2.

Proposition 2.7.8 [decomposing 1] Let V' be a finite dimensional L module and suppose
that fy is non-degenerate. Let I be an ideal in L with I N Sol(L) = 0. Then

(a) [a] [1,14]=0.
(b) [b] L=IDI+.
(c) [c] I+ = Cr(I).
Proof: By @, [I,I'] <rad(fy) = 0. Thus @ holds and

(1) < o).

Since I N CL(I) is an abelian ideal of L and since Sol(L) NI = 0, we get

(2) INnCL(I)=0.
From (1) and (2)
(3) Init=o.
From we have dim I + dim I+ = dim L and so (3) implies that (]EI) holds. From (]EI),
(1) and (2) we compute
CrH=Cy)NL=C(I)NnI+I1H)=(CrI)NI)+ I+ =1t
So () holds. O
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Theorem 2.7.9 [composition of 1] Let V be a finite dimensional L-module and sup-
pose that Sol(L) = 0 and fy is non-degenerate. Then there exists perfect, simple ideals
Li,Ls,...,L, in L such that

L=0LDOL,D.. DL,

Proof: By induction on dim L. If L is simple we can choose n = 1 and Ly = L. So suppose
that L is not simple and let I be proper ideal in L. Since Sol(L) = 0 the assumptions of
are fulfilled. Hence L = ID I+ and [I,I1] = 0. In particular, fi/ |; and fy |;1 are
non-degenerate. Also any ideal in I or I is an ideal in L. By induction we can decompose
I and I+ into an orthogonal sum of ideals. Thus the same is true for L. Since Sol(L) = 0,
the L; are not abelian and so perfect. ]

Corollary 2.7.10 [decomposing standard| Let V' be a standard L-module with fy-non-
degenerate. Then L = I’ D Z(L) and L is semisimple

Proof: By L' N Sol(L) = 0. So by L = L'DL*. In particular, [L'*, L] <
L'NL* =0. Thus L't = Z(L), L = L*@ Z(L). Thus Sol(L’) is an ideal in L and hence
Sol(L) < L' N Sol(L) = 0. By L’ is semisimple. Clearly also Z(L) is semisimple and
so L is semisimple. O

Corollary 2.7.11 [standard semisimple| Suppose L is standard and Sol(L) = 0. Then
(a) [a] fr is non-degenerate.
(b) [b] There exists perfect,simple ideals L1, Lo ... Ly such that

L=LiOL,D .. DL,.

(c) [c] {Li,La,...Ly} is precisely the set of minimal ideals in L.
(d) [d] FEvery ideal in L is a sum of some of the L;’s.

Proof: @ follows from

@ By @ we can apply with V the adjoint module. Thus @ holds.

Let I be a minimal ideal in L. Since Sol(L) =0, Z(L) = 0 and so by (b)), [Z, L;] # 0
for some i. As I is a minimal ideal and L; is simple, I = [I, L;] = L;.

@ Let I be anideal in L. Let A be the sum of the L;’s with L; < I and B the sum of the
remaining L;’s. Then A < I, L =A+Band [A,B] =0. Thus [ = IN(A+B) = A+(INB).

Suppose that I N B # 0. Then I N B contains a minimal ideal and so by , L;<INB
for some . Since L; < I, L; < A. Since L; < B and [A, B] = 0 we conclude that [L;, L;] = 0,
a contradiction since L; is perfect.

Thus INB=0and I = A. O

We say that L is semisimple if L is the direct sum of simple ideals. Note that this is the
case if and only if the adjoint module is a semisimple L-module.
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Corollary 2.7.12 [sol 1 and semisimple| Let L be standard. Then Sol(L) = 0 if and
only if L is perfect and semisimple.

Proof: One direction follows from while the other is obvious. O

2.8 Non-split Extensions of Modules

In this section A is an associative algebra.

Definition 2.8.1 [def:extension]
(a) [a] An extensions of A-modules is a pair of A-modules (W, V) with W < V.

(b) [b] An extension of A-modules (W, V') is called split if there exists a A-submodule X
of VwithV =W @ X.

(c) [c] Let B and T be A-modules and (W,V') an extension of A-modules. We say that
(W, V) is an extension of B by T if W = B and V/W = T as A-modules.

Lemma 2.8.2 [basic split I| An extension (W, V) of A-modules. is split if and only if
there exists ¢ € Homa(V, W) with ¢ | W = idyw .

Suppose first that V =W @& X for some A-submodule X of V. Let ¢ be the projection of
V onto X. Then ¢ is A-invariant and ¢y = idy .

Suppose next that ¢ : V' — W is A-invarinant with ¢ |p= idy. Let X = ker ¢. Then X
is submodule of V and XNW = 0. Let v € V. Then ¢(v) € W and so ¢(¢(v)) = ¢(v).Hence
¢(v— ¢(v)) == 0. That is v — p(v) € kerp = X. So v = ¢(v) + (v — ¢(v)) € W + X. Thus
V=W X and (W, V) splits. O

Lemma 2.8.3 [basic split II] Let (W, V) be an extension of A-modules. Let
® : Hom(V, W) — Hom(W, W)

be the restriction map. Then

(a) [a] @ is A-invariant and onto.

(b) [b] ker ® =2 Hom(V/W, W) and ker ® is submodule of Hom(V, W)

(c) [c] S:= @ ' (Kidy) is an A-submodule of Hom(V, W) and S/ ker ® = K

(d) [e] (W,V) is split if and only if (ker ®,S) is split.
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Proof:

@ Clearly ® is A-invariant. Note thate there exists K-subspace X of V with V =
W e X. Let a € Hom(W, W) and define a(w + ) = a(w). Then ®(&) = a.. So @ is onto.

(]E[) Since ® is A-invarinat, ker ® is an A-submodule.

Let a € ker ®. Define 8 : V/W — Vv + W — a(v). Conversely let 5 € Hom(V/W, W)
define a: V. — W, a(v) = (v + W). Then « € ker ®.

follows from @

@ Suppose first that (W, V') splits. Let ¢ be as in d. Then S = ker ® @ K¢ and
so (ker @, .5) splits.

Next suppose that (ker ®, S) splits and let Y be an A-submodule of S with § = ker PDY.
Then @ | Y : Y — Kidw,¢ — ¢ |w is an A-invariant isomorphism. Hence Y is a trivial
A-module, all ¢ € Y are A-invariant and there exists ¢ € Y with ¢ |yy= idy. Thus by

(W, V) splits. O

Lemma 2.8.4 [b simple] Let T' be A-module and suppose there exists a non-split exten-
sion of a finite dimensional A-module by T'. Then there exists on-split extension of finite
dimensional simple A-module by T .

Proof: Let (W,V) be a non-split extension with V/W = T and W finite dimensional.
Since W is finite dimensional we can choose a submodule Y of W maximal such that
(W/Y,V/Y) is non-split. Since (V/Y)/(W/Y) = V/W = T, (W/Y,V/Y) has the same
properties as (W, V). So we may assume that Y = 0. Let B be a simple A-submodule of
W. The maximality of Y implies that (W/B,V/B) is split. So V/B = W/B & X/B for
some A-submodule X of V with B < X. Then WNX =B and W + X = V. Thus

TEV/W=X+W/W~X/XNW =X/B.

Hence (B, X) is an extension of B by T. Suppose this extension is split. Then X =
B aY for some A-submodule Y of X. Thus V =X4+W =Y +B+W =Y + W and
YNW<YN(XnNW)+YNB=0. SoV =WaY, contrary to the assumptions. Thus
(B, X) is non-split and the lemma is proved. O

Corollary 2.8.5 [splitting reduction]

(a) [a] a Suppose there ezists a finite dimensional A-module which is not semisimple. Then
there exists a non-split extension of finite dimensional A-modules.

(b) [b] Suppose there exists a non-split extension of finite dimensional A-modules. Then
there non-split extension of finite dimensional simple A- module by K.

Proof:
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@ Let V be a finite dimensional A-module of minimal dimension with respect to not
being semisimple. Let W be simple A-submodule of V. Suppose V = W & X for A-
submodule X of W. Then by minimalty of V', X is semisimple. But then also V is
semisimple.

(]E[) From there exist a non-split extension of a finite dimensional module by K.
(@ now follows from g

2.9 Casimir Elements and Weyl’s Theorem

In this section will show that a standard module for a perfect, semisimple Lie algebra is
semisimple.

Proposition 2.9.1 [casimir| Suppose L is finite dimensional and f : L x L — K is a
non-degenerate, L-invariant, K-bilinear form. Define U : L ® L — 4 by V(a ® b) = ab. Let

f° be as in[2.6.9 and put c; = (f°).
(a) [a] ¢ € Z(h)N L2

(b) [b] Let (vi,i € I) and (w;, € I) be bases of L with f(vi,w;) = 6;;. Then

Cf = Zviwi

i€l

Proof: View U as L-module via the adjoint representation. By U is L-invariant, By
@ Lf° =0 and so [L,cf] = 0. Since U is generated by L as an associative algebra,
[Ucf] = 0. Thus ¢f € Z(U). Also ¢y € V(L ® L) = L*. So holds. (]ED follows
immediately from . O

The elements cy from the preceeding proposition is called the Casimir element of f.

Lemma 2.9.2 [cv]| Let V be a finite dimensional L-module and suppose that fy is non-
degenerate. Define cy = cy,, .

(a) [a] try(cy) = dim L.

(b) [b] Suppose K is algebraicly closed and V is simple. Then cy acts as a scalar k € K
on V. Moreover one of the following holds:

[a] char K {dimV and k = 3112%/

1.
2. [b] char K | dimV and char K | dim L.
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Proof: (@} Let ¥ be defined as in Then by definiton of fy, fv = try o W. Thus

try(ev) = trv (U(f°)) = F(f°)

So () follows from [2.6.5|(d).
() Since ¢y < Z(U), Schur’s Lemma [1.7.13] applied to the image of ¢y in End (V)
gives that cy acts as a scalar k € K. Thus try(cy) = kdim V and so (b)) holds. O

Theorem 2.9.3 (Weyl) [weyl] Let L be standard, prefect and semisimple and V' a finite
dimensional L-module. Then V' is semisimple.

Proof: By[2.8.5]its suffices to show that any finite dimensional L-module extension (W, V')
with W simple and V/W = K splits. Since L/CL(V) is also semisimple we may assume
that V is faithful. By fv is non-degenerate. So by c:=cy € Z(4)N L2 Since
LV <W, cV < W. Since W is simple, Schur’s lemma applied to the image of ¢ in
Endy (V) gives that ¢ acts as a scalar k on W. Then

try (¢) = trw(c) + tryw(c) = kdim W + 0.

By [2.9.2ffa) and since charK = 0, try(c) # 0 and so k # 0. Thus k~'c¢V < W and
k~'c acts idy on W. Thus k~!c induces an L-invarinat K-linear map ® : V — W with

¢ |w= idw. Thus by , (W, V) splits. O

2.10 Cartan Subalgebras and Cartan Decomposition

Definition 2.10.1 [def:icartan] H < L is called selfnormalizing if H = Nr,(H). A Cartan
subalgebra of L is a nilpotent, selfnormalizing subalgebra of L.

Lemma 2.10.2 [existence of cartan] Suppose that L is finite dimensional and |K| >
dim L. Then L has a Cartan subalgebra.

Proof: Choose d € L with H := L§(Kd) minimal. Note that a simple module with
weight 0 is a trivial module. So by , H is the largest Kd-submodule on which
d acts nilpotently. In particular, d € H. By [L§(Kd), Lg(Kd)] < L§(Kd) so H is a
subalgebra. Let V' = L/H. Then V is an H-module and Cy(d) = 0. In particular, the
image d* of d in End(V) is invertible. Also Np(H)/H < Cy(d) = 0 and so H = Np(H).
To complete the proof we may assume that H is not nilpotent and derive a contradiction.
Let D < H such that d € D and D is maximal with respect to acting nilpotently on H.
Then D # H and by there exists h € Ny (D) \ D. Since the number of eigenvalues
for h*d*~1 on V is at most dim V' and since |K| > dim L > dim V, there exists k € K such
that k is not an eigenvalue of h*d*~!. Then h*d~' — kidy is invertible and so also h* — kd*
invertible. Put [ = h — kd. Then [ € Ng(D) \ D and Cy(l) = 0. Hence Vj(¢)(kL) = 0. As
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LE(KI) + H/H < VE(KL) = 0 we conclude L(kL) < H. The minimality of H = L§(Kd)
implies that H = L§(K!). Thus [ acts nilpotently on H. From we conclude that D +KI
acts nilpotently on H, contradicting the maximal choice of D. O

Lemma 2.10.3 [cartan decomposition] Let V' be a standard L-module and N a nilpotent
subideal in L. Then
v= P W

)\GAv(N)
Moreover, each of the VY are L-submodule.
Proof: By 1.7.11, the VY are L-submodules. So it remains to prove the first statement.

If V' is the direct sum of two proper N-submodules, we may by induction assume that the
lemma holds for both summands. But then it also holds for V. So we may and do assume

(*)  V is not the direct sum of proper N-submodules.

Let [ € N. Since N is nilpotent implies that KI is subideal in N. The Jordan
Canonical Form of [ shows that V' is the direct sum of the generalized eigenspaces of [. But
the generalized eigenspaces are just the generalized weight spaces of Ki. Hence
shows that the generalized eigenspaces are N-submodules. So by (*), [ has a unique eigen-
value A\; on V.

Let W be any N-composition factor on V. Then by W = K, for some weight A
of N. Then A(l) is an eigenvalue for [ on V and A(l) = \;. Asl € N was arbitrary, \ is
independent of the choice W and so V = VY. U

2.11 Perfect semsisimple standard Lie algebras

In this section we will investigate the structure of the perfect semisimple standard Lie
algebras. For this we fix the following

Notation 2.11.1 [not:semisimple]

(a) [a] L is a perfect, semisimple, standard Lie algebra.

(b) [b] H is a Cartan subalgebra of L.

(c) [c] A= AL(H) is the set of weights for H on L.

(d) [d] ® =A\{0}. The non-zero weights for H on L are called the roots of H.

(e) [e] f= fr, and L is always meant with respect to f.

Lemma 2.11.2 [root decomposition]
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(a) [a] L =&D,ep L
(b) [b] H=L§.
(c) [c] [Lg,Lg] < L. g foralla, B € A.

Proof: (E This follows from applied with V =L, L= H and N = H.

@ By m@, Lo(H) is the largest H-submodule of L, such that all compostion
factors for H on Ly(H) are trivial. Since H is nilpotent, all composition factors for H an H
are trivial. Thus H < L§. Suppose H # Lo and let A/H be a simple submodule of Lo/H.
By definition of Ly, A/H is a trivial module. Thus [A, H| < H, a contradiction since H is
selfnormalizing..

This follows from O

Lemma 2.11.3 [simple properties] Let o,5 € A and h € H.
(a) [a] f is non-degenerate.

(b) [b] trre(h) = a(h)dim L,

(c¢) [c] If a(h) # 0, then [h, LS| = LE,.
(@) d] If B# —a, L L L.

(e) [e] flu is non-degenerate.

(f) [f] H is abelian.

(9) lg] —a€A.
(h) [h] Lo #0.
Proof: @ : @

@ Obvious.
By 2.11.27 [h, Lg] < LE,. Since a(h) # 0, Cre (h) = 0 and so the action of i on
L, is invertible.

) - . a+ﬁ Ifa+p5#0, (K )+ﬂ—and@holds
e) By (d), and [2 d@) L =HODH"'. Sosince f is non-degenerate, (EI) holds.
) This follows from (le}) and |2 -.

1@ Otherwise @ would imply L¢ < L+ = 0.
(h) Follows from the definition of A = Ap(H). O

Notation 2.11.4 [ta for 1] Since f|g is nondegenerate yields a K-isomorphism t :
H* — H,a — t,, with a(h) = f(ta,h) for alla € H*;h € H. For o, € H* and h € H
define q(h) = S f(h,h), f*(o, B) = f(ta,tg) and q*(c) = q(ta). Recall the definition of h
and wo in[2.6.4 Note also that A C A(H) = H*.
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Lemma 2.11.5 [x,y| Let a € &, z € L, andy € L_,. Put h = [z,y]. Then
(a) [a] he H.

(b) [b] Let B € A. Then there exists ¢ € Q with 3(h) = qa(h).

(c) [c] h =0 if and only if a(h) = 0.

(d) [d] h=[z,y] = —f(z,y)ta.

(¢) [e] h=0 if and only if x L y.

Proof: @ follows from |2.11.2

@ Put V=3 -, L3 6 By 2.11.2, V' is invariant under x and y and so under h.
We compute:

0=try(h) =Y trog, h=> (B(h)+na(h)dimLi ,,
neL ne”L

and so

B(h)Y dimL§, ., =—a(h) > ndimL§,,,.
nez nez

So holds.

Suppose «(h) = 0, then by (]ED, B(h) =0 for all B € A. Hence h acts nilpotently on
L. Since H is abelian we get Kh < Nilg(L). Since f|y is non-degenerate, implies
Nilg (L) =0. So h = 0.

(d) Let a € H. Since y € L_q, [a,y] = —a(a)y. Since f is L-invariant we obtain:

f(hoa) = f([z,y],a)) = f(z,[y,a]) = = f(z,[a,y]) = —f(z, —ala)y) = ala) f(z,y)
On the otherhand,

f(f(:c,y)ta,a) = f(x7y)f(t0ma) = f($7y)a(a) = a(a)f(w,y)

Since f |z is non-degenerate, this implies h = f(x, y)tq.
(@ follows immediately from @ 0

Lemma 2.11.6 [dim la] Let a € ®.

(a) [a] Lo = LS is 1-dimensional.

(b) [c] Letn € Z. Then na € ® if and only if n = £1.
(c) [b] [La,L—0] =Kt,.

(d) [d] f(ta,ta) # 0.
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Proof: Pick 0 #y € L_,. By 2.11.3@, L = y*+ + L. Hence there exists z € LS with
z Ly. Put h = [z,y]. By RILH[J and (€, h # 0 and a(h) # 0. Put

Vi=KyoH® P Lna-

neZy

By 2.11.2, V is invariant under x. Since y € L_,, [y, H] < Ky. Also [y,y] = 0 and so
V' is also invariant under y and h. Thus

0=try(h) = —a(h)+0+ > na(h)dim L,

Since a(h) # 0 we can divide by a(h) to obtain:

> ndimL, =

neZy

Thus dim Ly, = 0 for n > 1 and dim L, = 1. So @ holds. Also (]ED holds for positive

n. Applying this result to —a we see that (]ED holds. As L, and L_, are 1-dimensional,

[Loy L—q] is at most 1-dimensional. But h = [m,y] # 0 and so [Lq, L_o] = Kh.
By , h = f(z,y)t, and hence is proved.

Finally O 7é a( ) =a(f(x,y)te) = f(:n,y)a(ta) = f(z,y)f(ta, ta) and so also (d)) holds.
O

Lemma 2.11.7 [xa =slw]| Let a« € ®. Define H, = Kt,, Xo = Lo + L—o + Hy and
ha = to = mtw Then X, is a subalgebra of L, X, = sl(K?) and a(hs) = 2. More
precisely, if ©o € Lo and x_q € L_, with (x4, x_o] = ha, then there exists an isomorphism

form X, to sl(K?) with

x—><0 1) y—><0 0) and h —><1 0)

0 0)° 10 « 0 -1

Proof: Note first that by @, f(ta,ta) # 0, so hy is well defined. By [2.11.6} m. we
can choose x1, as in the lemma. Now a(hy) = f(ta, ha) = f(ta, f(ta,ta)ta) = 2 and so
[has o] = a(ha)xe = 224 and [2_qo, he| = —|ha,2—a] = —(—a(ha))y = 22—, and so the
lemma holds. U

Notation 2.11.8 [def: a string] Let « € ®. We define an equivalence relation ~q on A
by B ~q v if B— € Za. We denote the set of equivalence classes by A/Zo. The equivalence
classes for of ~q are called a-strings. If B, are in the same a-string we say that f <, v if
— B € Na. For B € ® let B —rqpa be the minimal and B + sqopa be the maximal element
(with respect to <) in the a-string through (. For an a string A define La = Y 5o Ls,
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Lemma 2.11.9 [xa on 1] Let a € ® and A an a-string.

(a) [a] La is an X,-submodule and

L= EB La.

A€EN/Za

(b) [b] Let f € A and i € Z with ia + 3 € A. Then Layiq is the eigenspaces for hy on
LA corresponding to the eigenvector 5(hey) + 2i.

(c) [c] Suppose a € A, then

(a) [a] A={—,0,a}.
(b) [b] La =X, @ kera.
(c) [c] kera=Cy(X,)=HNHLE.

(d) [d] Suppose that a« ¢ A and let 5 € A.

-~
NS
=
Q
g
—~
™~
Q
~—
I
™~
=
+
»
Q
sy
2

Proof: @ follows immediately from [2.11.2
(]ED Since a(ha) = 2, Lgiiq is contained in the eigenspace for h, corresponding to

B(ha) + 2i. Since the S(hq) + 2i, i € Z are pairwise distinct we conclude that Lg.;, is the
eigenspace corresponding to B(hy) + 2i.

By 2.11.6@ , A = {a,0,—a}. Since a(hy) = 2 # 0, H = kera ® H, and so
La =X, ®kera.

Cu(Xa) =Cu(La) NCy(L_o) NCr(H) =keraNker —aN H = kera.

By definition of t, f(t,h) = a(h) and so kera = H Nt = H N H. Thus all parts of
are proved.

(d) For an X,-module I and k € K let d,(I) be the number of composition factor ( in
a given composition series) for H, on I on which h, acts by multiplication by k. Then

de(La) = > di(W).
WGCompLA(XQ)

Let W € Compy,, (Xo) and let my = dim W — 1. Then by

1 if k is an integer between —myy and my with K = myy  (mod 2)

dy (k) = { .

0 otherwise
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In particular, dy (0) + dw (1) = 1. Thus dr,, (0) + dr,(1) is the number of composition
factor for X, on La. On the otherhand by @ dr (k) =1if k = (hq)+ 2i for some i € Z
such that § + i« is a root and dy,, (k) = 0 otherwise. Hence dy,, (0) + dr,(1) < 1. So there
exists a unique composition factor for X, on Lao. Hence LA is simple and @ follows from

254 O

Lemma 2.11.10 [f(ta,hb)] Let o € ®, A an a-string in A and 8 € A.

(a) [a] wa(B) € A

(b) [b] Let A ={Bo,B1,... Bk} with Bo <a B1 <a --- <a Br. Then wa(Bi) = Bri.
(c) [e] B(ha) = f*(B:@) =Tap — Sap € L.

Proof: If o € A, this is readily verified. So suppose a ¢ A. Let i = 3(hy). Then i is an
eigenvalue for h, on La and so by also —i is an eigenvalue. Since a(hq) = 2 we have
(B —ia)(ha) = —i and we conclude from 2.11.9[b) that 8 — i € A. Also

i = B(ha) = ftg, ha) = [*(8,&)

and so
B—ia=p— f*(B,d)a=wa(B)

Thus @ holds.
(]E[) follows easily from the proof of @

From (]ED, Wa (B + sapar) = B — rqpa. Hence
ﬁ + Sapd — f*(ﬁ + SaBQ, d)a = ﬁ — Tapl

sap — B(ha) = 25ap = —Tag
TaB — Sap = B(ha) = f*(ﬂad)

Lemma 2.11.11 [h=sum ha] H =} .4 H,.

Proof: Let h € H with h L H, = 0 for all « € ®. Then a(h) = 0 for all @« € A. So
[h,Lo] = 0 and h € Z(L) = 0. Thus h = 0. Since f|g is non-degenerate and H is finite
dimensional the lemma now follows from [2.6.1J(d). O

Lemma 2.11.12 [q rational]
(a) [a] f*(a,B) €Q for all o, B € P.
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(b) [b] The restriction of Io of [ to Q@ is a positive definite symmetric Q-bilinear form
on Q.

(c) [c] Any Q-basis of QP is a K-basis of H*.

Proof: Let h € H. Then f(h,h) = try(h?). Since h acts trivially on H and acts as 3(h)
on the 1-dimensional space Lg we have

(1) F(hh) =" B(h)%.

Bed

Since to € Hy = [Lq, Ly] we can apply 2.11.5@ to h = t4. So there exists gg € Q such
that

(2) f(tﬁvtoc) = /B(toa) = Qﬁ’a(ta) = QBf(tomtoz)

Plucking (2) into (1) with h = t, we obtain

f(tonta) = Z Q%f(taata)2-
Bed

Since (fta,ta)) # 0 we can divided by f(ta,ts) to conclude f(ta,ts) € Q. From (2)
we get [*(B,a) = f(tg,ta) € Q. Put Hg = ) 4 Qo and note that Hg = t(Q®). Then
f(h,1') € Q for all h,h' € Hgp. Thus also S(h) = f(tg,h) € Q for all b € ®, h € Hy. (1)
now implies that f(h,h) > 0. Suppose f(h,h) = 0 then S(h) = 0 for all 5 € P.
shows that h€ HNH+ =0. So f |Hg is positive definite and so (]E[) holds.

Let B be a Q-basis for Hg. By .11.11), KB = H and so B contains a K-basis D for H.
Let h € Hg with i L QD. Then H = KD < h'. Hence h = 0 and by (b) and [2.6.1](d),
QD = Hg. So B="D and is proved.



Chapter 3

Rootsystems

3.1 Definition and Rank 2 Rootsystems

Throughout this chapter F is a subfield of R, E a finite dimensional vector space over F
and (-,-) a positive definite symmetric bilinear form on E. E* = E'\ {0}.

Definition 3.1.1 [def:root system| A subset ® of E* is called a root system in E provided
that for all o, B € ®:

(i) [a] ws(a) € a+7ZB (that is (o, B) € Z.)
(ii) [b] wa(B) € .

(iii) [c] E =Fd

(iv) [d] Fan® ={a,—a}.

If only (@) to hold, then ® is called a weak root system. If only ([z]) holds then ® is
called a pre-root system.

Note that by [2.11.10] [2.11.11] and [2.11.12| the non-zero weights of a perfect semisimple
standard Lie algebra are a root system in the dual of the Cartan subalgebra. The purpose of
this chapter is determine all the roots system up to ismomophism. This will be used in later
chapters to complete the classifications of the perfect semisimple standard Lie algebras.

Throughout this chapter ® denotes a weak root system in F.

Definition 3.1.2 [defiweyl groups| Let A C E* and o, B € EF.

(a) [a] W(A) is the subgroups of the isometry group of (-,-) generated by the wy,a € A.
(b) [b] W =W(®) is called the Weyl group of ®.
(c) [e] (A)=UA"®) ={w(o) |weW(A),deA}.

95
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(d) [d] Vap is the angle between o and 3, that is the real number 6 with 0 < 6 < 180 and
(a,B)
V(a)\/(8.8)

(¢) le] mas = (a,5)(8, ).

Lemma 3.1.3 [rank 2 root| Let o, 3 € E*. Then

cosf =

(a) [a] cos?Pap = Tmag.

(b) [b] 0<mys <4.

(c) el Zfor kB then (557 = G55y
(d) [d] Fa=TFb iff mas = 4. In this case a = 3(a, B)B.

Proof: (@.5)(6.0) . )
m = Z(aaﬁ)(/@ad) = 1Mas

and so (a]) holds. (]E[) follows immediately from @ follows easily from the definition of
&. For (d)) note that Fa = Ff iff ¥,5 € {0°,180°}, that is iff cos? 9,5 = 1. By this holds

iff mas = 4. Suppose now that Fa = F3. Then (3(a, )8, &) = $(a, )(8,¢) =2 = (o, &)
and soa:%(a,B)ﬁ O

cos? Vop =

Lemma 3.1.4 [sab] Let {a, B} € E* with (o, 3) € Z and (B,&) € Z and (o, ) > (B, 3).
Then one of the following holds:

(. 8) | (8.6) | costlag | Yas | 4551
0 0 0] 90° | 7
1 1 2| 60° 1
1l a1 S|
1 o
2 1 G| e
-2 1| -k 135 2
3 1 3300 3
3| -1 -—¥3|150°| 3
2 2 1| 0°| 1| a=8
2 -2 ~1[180°| 1| a=-8
4 1 1| 0°| 4| a=28
—4| -1 ~1/180°| 4|a=-28

In particular, if Fa # F3, then |(8,a )] = 1.

Proof: Note that |(a,3)| > |(8,&)|. This follows easily from O
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Definition 3.1.5 [def:discret] For D C E define
min-d(D) = inf{(e —d,e —d) | d # e € D}
and
max-d(D) = sup{(e —d,e —d) | d # e € D}.
We say that D is discret if min-d(D) > 0 and that D is bounded if max-d(D) < oo

Lemma 3.1.6 [discret] Let A be linear indepdendent subset of E. Then ZA is discret.

Proof: Since ZA is closed under subtraction we need to show that inf,czas (£,¢) > 0.
Let d € A and put ¥ = A\ d. For e € E define f. € F and é € d* by e = f.d+é. Then

¥ is a linear indepedent. By induction on A, m :=inf ;5 (s,5) > 0. Let 0 # ¢t € ZA. If

t#0, then (t,t) > (f,1) >m. If { = 0, then t € Fd N ZA* = Zd and so (t,t) > (d,d). O

Lemma 3.1.7 [discret and bounded| Let D C E be discret and bounded. Then |D| is

finite and bounded by a function of E?E_’g((g)) and dim E.

Proof: Let | = min-d(D), v = max-d(D) and n = dimE. Let E; be a 1-dimensional
supspace of E and put Ey = Ei-. Let m; the the projection of E onto E;. Let Dj be a
subset of (D) with (d —e,d—e) > L for all d,e € Dy. Since (d —e,d—e) < u for all
d,e € m(D), D; is a set in a 1-dim vector space within an interval of length u and the
distance between each pair of point in it is greater than %, we have

du

() 1Dl <

In particular, we can choose a maximal such D;. For e € D; let D(e) = {d € D |
(m(d) — e,m(d) —e) < L. We claim that

(%) D= U D(e).
ec Dy
For if there is a d € D/J.cp, D(e), then (mi(d) —e,mi(d) —e) > iVe € Dy, by the
maximality of Dy, 71(d) must be in D; and hence (71 (d) — e, m1(d) — e ) = 0 for some e € D;
which is a contradiction. Now let g, f € D(e). Then (mi(g) — m(f),m(g9) —m(f)) < &
and so (ma(g) — ma(f), m2(g) — m2(f)) > §. In particular, m |D(e) is 1 — 1 and by induction
on n, |ma(D(e))| is bounded by a function of 2* and n — 1. (*) and (**) now imply the
lemma. U

Lemma 3.1.8 [finite] Let U be pre-root system in E and E = FU. Then ZY is discret
and V¥ is finite.
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Proof: Since F is finite dimensional and E = FW¥ there exists a finite subset A of ¥ with
FA = FV. Denote A = {#|v € A} Let ¥ be the basis of E dual to A. Since (d, ) € Z for
all p € ¥ and d € A we have ¥ C ZX. Hence also Z¥ < ZX.. By 7Y is discret and
so also ¥ and ZV¥ are discret.
Put u = maxgea (0,0 ) and o € W. Then there exists 6 € A with («,d) # 0 and so by
B.14
(a,a) <4(8,0) < 4u

thus ¥ is bounded. So by ¥ is finite.
Lemma 3.1.9 [basic <>] Let A C E*.
(a) [a] W((A)) =W(A).

(b) [b] W(A)=W(A).

(c) [e] (A) =(A).

Proof: Put ¥ = (A). Clearly W(A) C W(V). Let @ € ¥. Then o = w(p) for some
w € W(A) and 8 € A. Then by wa = www~ ! € W(A) and so W(¥) C W(A).

Thus @) holds. follows from we = ws and (d)) follows from w(a) = w(a). O
From now on, for a weak-root or root system ®, we denote W (®) by W.

Lemma 3.1.10 [basic root]

(a) [a] @ is a weak root system in E. If ® is a root system, so is ®.
(b) [b] @ is W-invariant, that is w(®) = & for allw € W.

(c) [c] W acts faithfully on ®. In particular, W is finite.

Proof: (@) follows immediately from and the definition of a root system.
@) Put T = {w € GL(E) | w(®) = ®)}. Let o € ®. Note that ws(®) C ® and since
w2 =1

D = wo(Wa(P)) Cwa(P)C P

Thus w, € T. As T is a subgroup of GL(FE), we have conclude W < T.

Let w € W with w(a) = « for all & € ®. Since ® spans F we get w(e) = 1 for all
e € F and so w = 1. Hence W acts faithfully on ¢ and so the homomorphism from W to
Sym(®) is one to one. By ® is finite. Therefore also Sym(®) and W are finite. O

Definition 3.1.11 [def:span| Let ¥ C ® and R a subring of F (with1 € R and so Z < R).
Then
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(a) [a] W is called a (weak) root subsystem of ® if ¥ is a (weak) root system in FW.
(b) [b] W is called R-closed if ¥ = RY N ®.

(c) [d] (¥)r denotes the smallest R-closed subset of ® containing V. (V)g is called the
R-closure of W.

We often just say “subsystem” for “weak root subsystem”. Note that if ® is a root
system and ¥ a weak roots subsystem then ¥ is already a root subsystem.

Lemma 3.1.12 [closure] Let ¥ C & and R a subring of IF.

(a) [a] V¥ is a subsystem iff wa(B) € ¥ for all o, B € V.

(b) [b] W is a subsystem iff ¥ is invariant under W ().

(c) [c] (V) C ® and ¥ is the smallest subsystem of ® containing V.

(d) [d] LetT be an R-submodule in E. Then T N® is an R-closed subsystem of ®.

(e) (€] (¥)g is a subsystem of ® and (V) C (¥)p =P NRY C RV.

Proof: @ The forward direction is obvious. For the backward let o, € W. Then
—a = wqa(a) € ¥ and all the axiom of a root system are fulfilled.

(]ED follows from @

Let 3 be a any root subsystem of ® containing W. Since ¥ is invariant under W (%),
w(y) € X for all w e W(¥) < W(X) and ¢ € ¥. Thus (¥) C ¥. In particular, (V) C &.

By definition of (¥), (¥) is invariant under W (¥). By W(¥) = W((¥)) and so
(W) is invariant under W ((¥)). Thus by (b)), (¥) is a root subsystem.

@ Let o, € TN ®. Then wg(a) = a—(a,f)3 €a+1ZB € Ra+ RB < T and so
wa(B) € TN®. So by (&), TN ® is a subsystem of ®. Clearly TN ® is R-closed and so (d))
holds.

Follows from @ applied to T'= RV. g

Lemma 3.1.13 [creating root systems| Let A C EF.

(a) [a] ¥ := {0 € ZA*|(0,5) € ZVS € A} is a weak roots system in FX.
(b) [c] Suppose A is a pre-root system. Then (A) is a weak root subsystem of X.

(c) [d] Suppose A is linearly independent pre-root system. Then U = (A) is a root system
in FA

Proof: @ Let o, 8 € 2.

1° 1] (a,()B) €.
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Since v € ¥ C ZA, v = ) 5.5 160 for some ng € Z, almost all 0. Since 3 € X, (6,3) € Z
for all 6 € A. So

(aaB) = Zn(S(éaB) € Z.
0EA

2° 2] wgla) €X.

By , (o, ) € Z and so wg(a) = a — (o, B)B € ZA. Let 6 € A. Then

(6,wp(e)") = (6,ws(@) ) = (wp(6), &) = (8 - (6,4)B,6) = (§,&) = (5,3) (B, &) € Z.

Note that and imply .
(]E[) Since A is a pre-root system A C . So by 3.1.12@, U is a weak root subsystem
of 3.

By @, ¥ a weak root system and ¥ C 3 C ZA. Let n € F and o € ¥ with na € V.
We need to show that n = +1. Since « is conjugate under W (A) to some element in A we
may assume that a € A. As na € ¥ C ZA, na = ) 5.4 56 for some ns € Z. Since A is
linearly independent n = ny € Z.

By BL90 - (A).

Also na = %éz and a symmetric result shows % € Z. Thus n = £1. O

Definition 3.1.14 [def:a string 2] Let o, € ®. Then A = (8 + Fa) N ® is called the
a-sring through (3. Define a total ordering <, on A byy <, 0 if §—v € F=%. Let B—rqpa
and B + sqopa be the minimal and mazimal element in A with respect to <.

Lemma 3.1.15 [a string] Suppose ® is a root system, «,3 € ® and A is the a-string
through (3.

(a) [d] Suppose o # £5. If (o, 3) <0, then a+ € ® and if (a,5) >0, a— 5 € .

(b) [a] wq leaves A invariant and reverses the <o ordering. So if A = {po, b1, .. Br} with
Bo <a 1 <a - <a B, then wa(Bi) = Br—i-

(c) [b] If B = ta then A = {£a}. Otherwise
A={f+ia| —Tag <1< SaB,t €7}
In particular, rog and s, are integers.

(d) [c] (B,0) =rag = Sas-
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Proof: () Suppose that (a,3) < 0. Without loss (a,a) > (3,8). Then by
(B8,a&0) = —1. Thus S+ a = we(B) € . The second statement follows from the first applied
to a and —f.

() Let 6 € A. Then wa(d) = 6 + (5,0 )a € B+ Fa and so wa(d) € A. If v € A
with v < 4, then 6 = v + fa for a nonnegative f € F. Thus w,(0) = wa(v) — fa and so
wa(8) < waly).

The case § = ta is obvious. So suppose o ¢ A. Without loss 5 = y. Then 7,5 = 0.
Let f € F with 0 < f < s,3. We need to show that 6 := 8+ fa € ® iff f € Z. Since
wa(B) = by, we have by, = 8+ sapa and so wa(8) = B+ (sqp — f)a. So replacing 6 by wq(6)
if necessary we may assume that (J, ) < 0.

Pick ¢ € N maximal with ¢ < f and v:= 4+ ia € ®. Put k = f —4. Then 6 = v+ ko
and k > 0. If Kk = 0 then f € Z and § € &. So we may assume that £k > 0. Then
(v,&) < (0,) <0 and so by (a) v+ o € ®. The maximality of ¢ shows i + 1 > f and
so k < 1. It remains to show that § ¢ ®. Suppose for a contradiction that § € ®. Then
(0,t) = (v,&) 4+ 2k. As 0 < k < 1 and both (4,¢) and (y,&) are integers this implies
k = 3. Hence (6,%) =2+ 3(a,%). Thus (a,¥) is even. Since (o, ¥) < 0 and we conclude
from [3.1.4] that (o, ) = —2. Hence

DO|—

1
wyla) =a+2y = 2(’y+§a) =26

and we obtained a contradiction to the definition of a roots system.

@ Same proof as for . O

Definition 3.1.16 [def rank]
(a) [a] The rank of ® is the minimal size of subset A of ® with ® = (A).

(b) [b] @ is called disconnected if it is the disjoint union of two proper perpendicular
subsets. Otherwise, ® is called connected.

Let ® be rank two roots system and choose «, with ® = («,5). If a L 8 then
¢ = {+a} U {£p} and ® is disconnected. Also 5 # +a since otherwise & = () as rank 1.
Using [3.1.4] and [3.1.12|(c) one now easily obtains a complete list of connected rank 2 root
systems. See Figure [3.1

3.2 A base for root systems
Definition 3.2.1 [def:base]

(a) [a] A subset II of ® is called base for ® provided that 11 is an F-basis for E and
O =dT UDP™ where for 8T =NIIND and ¢~ = —dT.



62 CHAPTER 3. ROOTSYSTEMS

[rank2]

Figure 3.1: The connected Rank 2 Root Systems

71 1+ T2 71+ 219
—T9 T2
=711+ 279 —r1 — 1o -1
T1 T+ T2
-T2 T2
—Tr1 =12 —T1
2r1 4+ 3ro
r1+ 712 1+ 2r9
r1 r1 + 3rg
—T9 T9
—Tr1 — 37“2 —T1
—r1 — 27“2 —T1 — 79

—27"1 — 37“2
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(b) [b] LetIl be a base for ®. The elements of I are called simple roots and the element
of @ are called positive roots. For e =7 . fac define hte =3 py fo. hte is called
the height of e with respect to the base I1.

In this section we show that ® has a base and that any two base are conjugate under
w.

Lemma 3.2.2 [no finite cover| Let V' be an finite dimensional vector sapce over an infi-
nite field K and let H a finite set of proper subspace of V. Then V # |JH.

By induction dim V. Each H € # lies in a hyperplane H of V. Since K is infinite there
exists infintely many hyperplane in V. So we can choose a hyperplane W of V with W # H
for all H € H. Then W # W N H and so by induction there exists w € W with w ¢ WNH
for all H € H. Thus w ¢ |JH. O

Definition 3.2.3 [defiregular| e € E is called regular if (a,e) # 0 for all a € ®.

Lemma 3.2.4 [not perp] Let S be finite subset of E\ {0}. Then there exists e € E with
(s,e) #0 for all s € S. In particular, there exist reqular elements in E.

Proof: ByV#UseSal. O

Lemma 3.2.5 [s linear indep| Let S be a finite subset of E and e € E. Suppose that
(s,e) >0 and (s,t)<0
foralls#t e S. Then S is linearly independent.

Proof: Let fs € Fwith ) ¢ fss=0. Let Sy ={se€ S| f; >0} and S_ =S5\ S,. Then

U= Z fops+ = Z (=fs)s—

S+ES+ s_€S_
and
0< (wyu)= Y > (=fofs )st,5-)<0.
s1ESLs_eS_
Therefore w = 0 and 0 = (u,e) = >, cg fs.(s4,¢) = 0. Hence fs, = 0 for all
S+ € Sy. By symmetry, fs_ =0 for all s_ € S_ and so S is linearly independent. O

Proposition 3.2.6 (Existence of Bases) [existence of bases| Let e € E be regular.
with (a,e) # 0 for alla € ®. Put F = {a € @ | (a,e) > 0} and I, = F \ (®F + 7).
Then 11, is a base for ® and &+ (1I.) = O .
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Proof: Let ,f € Il.. Since o« = (a— )+ 3 we have that a— 3 ¢ ®F. Also f = (8—a)+«
and so B —a ¢ ®F. So a— 3 ¢ ® and by B.L.15|fa), (o, 8) < 0. Thus by [3.2.5 IL, is linearly
independent.

Let a € ®F. We will show by induction on («, e ) that a € NII. If @ € Il this is obvious.
So suppose a = 8 + 7y for some 3,7 € ®F. Then (a,e) = (B,e) + (7,¢), (B,e) < (a,e)
and (v,e) < (a,e). So by induction § € NII, v € NII and so also o € NII.

Hence 7 = NII.N® = &7 (II.). Thus ® = o7 UP, = ¢+ (II,) UP (IL.). In particular
as ® spans F, so does I, and Il. is a base for ®. O

3.3 Elementary Properties of Base

Lemma 3.3.1 [ch and sum]| Let A be a linearly independent subset of ® and e € (A).
Write e = 3 cp Na. Then

and ((Z’:)) Ng 1S an integer.

- 2(o,a a,o -
Proof: ¢= %e =3 aea mnaa =3 nea %naa.
, €

By € (A) and hence by [3.1.13, ¢ € ZA. The linear independence of A now

shows that ((ae’g)) Ne is an integer. O

Lemma 3.3.2 [basic base] Let II be a base for ®.
(a) [z] 11 is a base for ® and (®1) = (®)7.
(b) [a] Leta#pBe€ll. Thena— ¢ ® and (o, ) <O0.

(c) [b] Let a« € ®. Then ht « is an integer, ht «v is positive if and only if « is positive and
a € 11 if and only if hta = 1.

(d) [c] Let o € . Then ®* \ {a} is w, invariant.

(e) [d] Let 3 € @ \II. Then there exists o € I with (o, 3) > 0. For any such «, both
wa(B) and B — a are in ®T and ht(wy(B) < ht(8 —a) =ht 3 — 1.

(f) le] Let 8 € ®*. Then there exists a1, sz, ...qx € I1 such that = Zle a; and for all
1<j<k >l 0;€9.

(9) [f] Let B € ®*. Then there exists ag,a1,qo,...ar € I such that if we inductively
define By = ap and B; = wa, (Bi—1) then B = By and B; € &1 for all 0 <i < k.
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(h) [g] ® = II), W =W(II) and each root is conjugate under W to some root in II.

(i) (h] Put éy = 1> ®*. Then for all o € II, wa(6) = 6 — a.

Proof: () This follows from
(]E[) Note that neither o — 8 nor § — « is in NII. So the definition of a base implies

a — [ ¢ ®. The second statement now follows from [3.1.15
Obvious.
@) Let =3 cnnyyand i = (B,a).

wa(B) =B —ia = (ng —i)a+ Z NyY.

a#vyell

Suppose that wq(8) € ®~. Then n, =0 for all @ # v € ® and so f € NaN® = {a} and
8 = «, contrary to the assumptions.

@ 0<(B8,8) =2 pernna(B,a) and so (B,a) > 0 for some a € II. Suppose now that
a € Il with i := (8,&) > 0. By (d), 8 — i = wa(B) € ®F. By B.1.15()), 8 — @ € @ and so
B—a=wy(B)+ (i—1)acdt.

@ By induction on ht 8. If ht 3 = 1, then 5 € II and @ holds with k£ =1 and oy = f.
So suppose htb > 1 and thus § ¢ II. Choose « as in @ By induction @) holds for 8 — «
and so also for 5.

By induction on ht 8. If ht 5 = 1, then 8 € II and holds with £ = 0 and «, = .
So suppose htb > 1 and thus 8 ¢ II. Choose « as in @ By induction @ holds for wq(f)
and so also for .

(h)) This follows from and .

H By 1} wq fixes %Z(#ﬁeqﬁ B. Also wa(%a) = %oz — « and so (i) holds. O

Lemma 3.3.3 |[bases equals chambers| Any bases is of the form Il. for some regular
element.

Proof: Let I be a base. Note that there exists a regular element e with II C ®F. (Indeed
choose o* € E,« € II with (a*,8) = dap and put e = > .. a*.) Then &F(II) C & and
&~ () C &, . Hence (1) = & and by B.3.2[), &F \ (2} + ¢F) =1I. O

3.4 Weyl Chambers

Define two regular elements e and d to be equivalent if ®F = @I. The equivalence classes
of this relation are called Weyl chambers. Note that there is natural 1-1 correspondence
between Weyl chambers and bases for ®. Also the equivalence relation is invariant under
W and so W acts on the set Weyl of chambers. For a regular element e let €(e) be the
Weyl chamber containing e. For a € ® let P,(e) ={d € E'| (a,e)(a,d) > 0}. Then
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€e) = [ Pale)
acd
Define Py(e) = {d € E | (a,e)(a,d) > 0} and €(e) = (\,cqp Pale). €(e) is called a
closed Weyl chamber. Topologically, P, (e) and so also €(e) are open convex subsets of E.
P,(e) and €(e) are their closures.

Definition 3.4.1 [def:dominant] Given a base II of ®. Let e,d € E. We say that is
positive if 0 < e € FZI1. Define the relation < on E by d < e if e —d is positive. e is called
dominant if (e,&) > 0 for all o € 1. e is strictly dominat if (e,&) > 0 for all o € 1. Let
¢ and € be the set of dominant and strictly dominant elements in E.

Let w e W. If w=wy for a simple root a, then w is called a simple reflection.

n = l(w) is the minimal integer such that there are simple reflections wy, ..., w, with
W= wWpwp—1-..wi. n(w) =P Nw(®")|.

Observe that € = €(dy) and € = &(dyy).
Also I(1) = 0 and I(w) = 1 if and only if w is a simple reflection; and n(w) is the number
of positive roots whose image under w is negative.

Proposition 3.4.2 [existence of dominant| Let e € E and d be an element of mazimal
height in W (e). Then d is dominant. In particular, there exists w € W with w(e) € €. Ife
is reqular, then d is regular and w(e) € €.

Let o € II. Then wq(d) € W(e) and wa(d) = d — (d, & )a has height htd — (d, & ). The
maximal choice of ht d implies that (d, &) > 0. Thus d € P(«) and d € €. O

Lemma 3.4.3 [reducing] Let w € W and (w1,ws,...w) be a tuple of simple reflections
with w = wwy—1 . .. w1. Suppose that o a positive root with w(a) negative. Then there there
exists 1 < s <t with

Wy = WtWi—1 « + - W 1Wg—1Wg—2 . . . W1

Proof: Put p; = wjw;—1...wy and B; = p;(ap). Choose s minimal such that (s is negative.
Then [s_; is positive and s = ws(fBs—1) is negative. Since wy is a simple refections there
exists 0 € II with wy = ws with § € 7. Since ws(Bs—1) is negative, [3.3.2)(d) implies that
Bs—1 = 6. Thus

_ _ _ _ —1
Ws = Ws = Wa, | = Wp,_(a) = Ps—1WaPs 1,

Ps = WsPs—1 = Ps—1wWq and pswe = ps—1. Multiplying the last equation with wywi—1 ... wst1
from the left gives the lemma. O

Lemma 3.4.4 [n(w)=l(w)] Let w € W and o € II.
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(a) [b] If w(a) is negative, then l(wwy) = l(w) — 1 and n(wwy) = n(w) — 1
(b) [c] If w(a) is positive, then l(wwy) = l(w) + 1 and n(wwy) = n(w) + 1.
(c) [a] l(w) = n(w).

Proof: @ Let t = [(w) and choose simple roots wi, . ..,w; with w = wyw;—1 ... wi. Then
by l(wwy) <1 —1. Since wwawa = w, l(wwy) > l(w) — 1 and so the first statement in

(a) hold.
Let ¥ = &1\ {a}. By wa(X) = X. Hence also w(X) N @~ = (wwe)(X) NP~
Now w(a) € @~ while (wwq)(a) ¢ ®~. So also the second statement in (i) holds,
(b) We have wwq (o) = w(—a) is negative. So (b)) follows from (@) applied to wwq.
Since /(1) = n(1) this follows from () and (b)) and induction on I(w) O

Theorem 3.4.5 [transitivity on bases|

(a) [a] Let w € W and e € € with w(e) € €. Then w(e) = e and w € W(IINet). If, in
addition, e € €, then w = 1.

(b) [b] Let® and®’ be Weyl chambers. Then there exists a unique w € W with w(®D) = D’.
(c) [c] LetII and I be bases for ®. Then there exists a unqive w € W with w(Il) = II'.
(d) [d] |W| is the number of Weyl chambers.

(e) [e] There exists a unique element wyg € W with n(wy) mazimal. Moreover n(wy) =
l(wo) = |®T|, wo(I) = —II, wo(®T) = &~ and wi = 1.

Proof: @ If e € €, then IINet = 0. So it suffices to proof first statement. If I(w) = 0,

w = 1 and (ja)) holds. So suppose I(w) > 0 and pick a simple root « with I(ww,) < l(w).
Then by w(a) is negative. As both e and w(e) are in € we have

0<(e,a) = (w(e),w(a)) <0

Thus « € e*, wwq(e) = w(e) and the results follows by induction on I(w).

(]E[) Without loss of generality ®' = €. Pick d € ©. Then by there exists w € W
with w(e) € €. Then w(®) = €. Let w’' be any element of W with w'(D) = €. Then
(w'w ) (w(e)) = w'(e) € € and so by @ appled to w'w~! and w(e) we have w'w™! = 1
and so v’ = w.

and @ follow immediately from (]ED

(€). Note that n(w) < [®~| = |®T| for all w € W. Also n(w) = |®7| if and only if
w(®T) = &~ and so if and only if w(IT) = —II. By () such an w exists and is unique. Also
w?(IT) = II and so w? = 1. Thus @ holds. O
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Definition 3.4.6 [def:obtuse] A subset S of E \ {0} is called acute (obtuse) if (s,t) > 0
((s,t) <0) forall s #t € E.

Lemma 3.4.7 [easy base| Let A be a linear independent obtuse preroot system in E. Then
A is base for the root system (A) in FA.

Proof: Put ® = (A). Then by ® is a root sytem.

Let a € ® and write a = ZﬁeA ngB with ng € Z. We need to show that the non-zero
ng all have the same sign. Suppose not and choose such an o with 3 5. A [ng| minimal.
Since («, ) is positive there exists 6 € A with ng(c,d) > 0. Replacing o by —« if necessary
we may assume that ns > 0. Then also (o, ) is positive. Note that a ¢ Fd and so by

@, a — 0 is a root. Now
a—0=(ns—1)0+ Z ngf

SABEA
By the minimal choice of «, the non zero coefficents of o — ¢ are either all positive or all
negative. Let 6 # 8 € A. If ng > 0 then n, > 0 for all ¥ € A, contrary to our assumptions.
Hence ng < 0. Thus also ng —1 < 0. But ns —1 > 0 and so nsy — 1 = 0 and ns = 1. Since
(8,0) < 0 this implies that

(@=0,0)= Y ns(B,6)=0.

S£BEA

(a,a)
(a, ), a contradiction. O

(o,
0) < (a, ). On the other hand by [3.3.1 (09) ng is an integer. Since ng = 1, this implies
§) =

3.5 Orbits and Connected Components
Definition 3.5.1 [def:coxeter graph| Let ¥ C ®.
LX) = {(a,B,i) | @, B € B, (@, B) # 0, € Zy,i < |(a, §)][}

We view I'(X) as a multiple edged directed graph on %, namely each (o, B,1) € I'(X) is an
edge from o to B. So if (o, f)) = 0, then there exists no edge from a to 8, and if (o, 5) # 0,
then there exists |(a, B)| edges from a to 3. T'(®) is called the Coxeter graph of ®. T(IT) is
called the Dynkin diagram of ®. For S C E let I'°(S) be the undirect graph without multiply

edges, where s,t are adjacent if and only if (s,t) # 0.
Note that for ¥ C ®, I'(X) and I'°(X) have the same connected component.

Lemma 3.5.2 [connected components| Let ® be a root system.
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(a) [a] Let a, B € ® witha L B. Then o, 8 and wy(B) are in the same connected component
(with respect to the coxeter graph T'(®)).

(b) [b] Let D be the set of connected components of ® . Then E = D pcpFA and W =
XAeD W(A)

(¢c) [c] Let A be a connected component of ®. Then A s invariant under W, A is a
subsystem of ®, ANTI is a base for A, A = (ANTII) and ANTI is connected.

(d) [d] The map A — (A) is one 1-1 correspondence between the connected components of
II and the connected components of ®.

(e) [e] @ is connected iff II is connected.

Proof: Since a £  we also have a £ wq (/) and so @ holds.

Let A be a connected component of II. Also let A be the connected component of &
containing A . We claim that A is W-invariant. For this let « € ® and € A. If a L 8
then wa(8) = B € A. If o £ B, then by (a), wa(B) and B are in the same connected
component of I'(®) and again w, () € A. So A is invarinat under all w,, o € ® and so also
under W. Thus (A) = JAW(®) C A,

Put ¥ =II\ A. Then ¥ L A. Hence W(A) centralizes W(X), W = W(A)W(X). In
particular, (A) L (3) and (A) and () are W(A)W(X) = W invariant

Thus
o= o = Ja"ul =V =(a)u(x)

Since A is connected, this implies A C (A) and AN () = §. Hence A = (A) and so by
A is a base for A. Moreover ANTI =AU (ANX) = A and so () holds.

Note that W(A) N W (X) centralizes FA +FY = E and so W(A)NW(X) = 1 and
W =W(A) x W(X). An easy induction proof now shows that (b)) holds.

@ and @ follow easily from from . O

Lemma 3.5.3 [z closed] Let ® be a root system and W C ®. Then V is Z-closed iff
VU CVUVanda+Be€V forall a,8 €V witha+ 8 € ®.

Proof: One direction id obvious. For the other suppose that —a € V¥ for all @« € ¥ and
a+p e Vforal o, €V with a+ 3 € . Let a € (V). Then o = Zﬁe\pnﬁﬁ with
ng € Z. Since ngff = (—ng)(—F) we may assume that ng > 0 for all 5 € V.

Since } geq ng(a, B) = (a, ) > 0 there exists § € ¥ with ng(c,d) > 0. Thus ns > 1
and (a,0) > 0. If @ = £4, then o € V. If « # +6 then by@), a—06 € .
Thus @ — 6 € (¥)z and by induction on » 5.y ng we conclude that « — 3§ € W. Thus
a=(a—-90)+de V. O

Lemma 3.5.4 [root lengths| Let ® be a connected root system, L(P) = {(a, ) | « € P}.
Let r € L(®) and put &, = {a € @ | (a,a) =1}.
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(a) [a] E=F®, and ® = (®,)q

(b) [b] If r is minimal in L(D), then ® = (P,)z < Z,.

(c) [c] W acts transitively on ®,.

(d) [e] Ifr is mazimal in L(P), then @, = (P, )z is Z-closed.

(e) [d] £(®) <2.

Proof: Let X be an orbit for W on ®,. and let @ € ®. Suppose that « [ o for some o € 3.

Then

1
(0, )

(%) a= (0 —wa(0)) € QX

Thus @ = (&N (QX)1) U (X)g and since ® is connected, ® = (X)g C (®,)g € ® and so
@ holds. In particular, ¥+ N ® = ). If 7 is minimal in £(®), then (o,) > (0,0). So by
3.1.4 either a = +0 or (0,&) = +1. From (*) we get in any case that a € ZX and so (D)
holds.

Suppose now that « € ®,. Then either & = +0 or («, o) is a root system of type As.
In either case a and o are conjugate in W ((«, o)). Thus (c)) holds.

Suppose that r is maximal. Let o, € &, with a 4+ 8 € ®. Then o # + and since

(a,a) = (B,5) implies (o, ) > —1. Thus

(@+fa+B)= (a,a)+2af)+(B.8) =(aa)+(aB)B.8)+(B.5)
(2+saB)(B,8) =z (8,8)

So o+ B € ®,.. (d) now follows from
Let s,l € £(®) with s < I. Then by () we can choose 8 € @, and a € ®; with 8 £ .

Then by [3.1.4] £ = &gg; €{2,3}. If |£(®)| > 2, we can choose s <[ <t € L(P). But then
t_ 1t

- = <7 is not a prime, a contradiction and @ holds. (|

Lemma 3.5.5 [dominant| Let ® be a root system in E and E an Buclidean F space with
E < E. Let A be an orbit for W on E and e € €. Then

(a) [a] A contains a unique dominant member d.
(b) [b] b=<d and for all b€ A.
(c) [c] (e,b) < (e,d) forallbe A.

(d) [d] LetTINet is a basis for ®Ne .
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(e) [e] Letbe A with (e,b) = (e,d). Then there exists w € W(IINet) with w(d) = b.

Proof:

(&) Let e and d be dominant in A. Then d = w(e) for some w € W and implies
that d = e.

@ Choose a € A such that b < a and a is maximal in A with respect to <. We claim
that a is dominant. Otherwise there exists 3 € II with (a,3) < 0. Then a < a — (a, )3 =
wg(a) € A, a contradiction to the maximality of a. Thus a is dominant and so by @ a=d
and (]ED holds.

(d) By (b) d — b € NII and since e is dominant, (e,d —b) > 0.

Let 8 € ®TNet we need to show that 3 € N(IINet). If ht 8 = 1, then 8 € TINe*. So
suppose ht § > 1, that is § ¢ II. Then by @ there exists « € Il with 6 = 8 —a € &
Since e € € both (e,a) and (e,§) are non-negative. Since 0 = (e,3) = (e, ) + (e,6) we
conclude that both o and § are in e*. ht § < ht 8 and so by induction on ht 3, § € N(IINne™).
Hence 8 € N(ITNet)

@ If b is dominant, then by @ b = d and we are done. So suppose that b is not
dominant and and choose exists « € II with (8,&) < 0. Then ¢ := wy(b) € A, (e,c) =
(e,b) — (B, )(e,a) > (e,b). On the other hand, by (e,c) < (e,d). This implies
(e,c) = (e,d) and (e,a) = 0. So a € TN et and by induction on ht b, ¢ = w(d) for some
we W(IINet). Hence b = wy(c) = (waw)(d) and @ holds. O

3.6 Cramer’s Rule and Dual Bases

Lemma 3.6.1 (Cramer’s Rule) [cramer rule] Let I a finite set, R a commutative ring
with 1, A : I x I — R be I x I-matriz over R. Define (i,7) € I x I to be an edge if
a;j # 0. Let S(i,7) be the set of all direct paths s = (ig,i1,...,in) from i to j, where
i = i,in = J, (ik—1,1%) s an edge Yk = 1,...,n and the iy’s are pairwise distinct. Put
Is| = n, m(s) = [[p_yai, i, and I —s = 1\ {io,%1,...9n}. For J C I let Ay be the
restriction of A to J x J. Define

bij= Y (=1FIm(s)det A,
s€S5(4,5)
and B = (bij). Then AB = det(A) Id;, where Idy is the I x I identity matriz.

Proof: Let i,j € I and define the matrix D = DY by dy; = ay; if k # j and dji = d;. We
will show that b;; = det D. For K C I and o € Sym(K) define

a(o) = sgn(o) H Ao (k)-
keK

Similarly define d(¢). Then
detD= > d(m)

meSym([])
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We investigate d(m) for 7 € Sym(I). If m(j) # 4, then dj;
d(m) = 0.

Suppose 7(j) = i. Let n € N be minimal with 77+1(3) = 4. For 0 < k < n, put i, = 7" (i)
and s = (ig,41,...,1,). The i) are pairwise distinct, ig = ¢ and i, = j. If (ix_1,ix) not an
edge for some 1 < k <n, then d;,  ~;,_,) = @i,_,i, = 0 and so also d(m) =0.

Suppose s is a string and view s as a cycle in Sym({ig,...,i,}). Then 7 = so for a
unique o € Sym(I — s). Now d(r) = d(s)d(c), sgn(s) = (—1)" = (—1)*| and dj; = 1. Thus
d(s) = (=1)l*lm(s), d(c) = a(o) and so

= Oir(jy = 0 and so also

d(m) = (=1)*lm(s)a(0).
It follows that

detD = > d(m)

weSym([I)

— Z Z (=1)llm(s)a(o)

s€8(i,j) o€Sym(I—s)
= > (=DFlm(s)det A;_,

s€S(i,5)

Thus indeed b;; = det D,

Note that ZjeJ aijbjr = ZjeJ a;j det D7% is the determinant of the matrix E% obtained
from A by replacing row k of A by row i. Now det E** = §;, det(A) and so AB = det AId;.
O

Lemma 3.6.2 [dual basis| Let B be a basis for E. Forb € B defineb* € E by (b*,a) = dpq
Va € B. Put B* = {b* | b € B} and let A(B) be the I x I matriz ((a,b)), a,b € B.

(a) [a] Thend =73 cp5(d,b)b* =", 5 (d,b*)b.
() [b] A(B*) = A(B)~.
(c) [c] det A(B) > 0.

(d) [d] Suppose that B is obtuse. Then B* is acute and, for a,b € B, (a*,b*) > 0 if and
only if a and b lie in the same connected component of the 1 -graph on B.

Proof: @ Let d = ,cp5 fob and let a € B. Then (d,a*) = f,. Also B** = B and so @
holds.
(]E[) Let a € B. Then by @,

a=>Y (a,b)b" =) (a,b)(b*,d*)d

beB beB deB
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and so holds.

Let £ be an orthogonal basis for £ and let D be the B x £ matrix defined by
b= > dpe. Then A(B) = DA(E)D" and so det A(B) = (det D)2 det A(E). Since A(E) is a
diagonal matrix with positive diagonal elements, det A(E) is positive and so holds.

(d) Let A= A(B). From (b)) and [3.6.1] we have

* 1k 1 S
(a*,b") = —(4) > (=D)Flm(s) det Ap_s.
s€S(a,b)

Since B is obtuse m(s) is the product of |s| negative elements. Hence (—1)I*lm(s) is posi-
tive. By (c|) also det A;_, and det(A(B)) are positive. Hence (a*,b*) is non-negative and
(a*,b*) = 0 if and only if S(a,b) = 0. So (d)) holds. O

3.7 Minimal Weights

Throughout this section ® is root system. We call a root a long (short) if (o, ) > (3,5)
((,ar) < (B,P8)) for all g € @, which are on the same connected component of ¢ as a.
Note that if ® has only one root length then all roots are long and short. ®; and ®5 denotes
the sets of long and short roots in @, respectively.

Definition 3.7.1 [def:weights for phi] Let A € E. We say that X\ is an integral weight
of ® if (\,a) € Z,aw € . For a € 11 define o* € E by (o*,8) = dap for all B € II. For

e :Zaergfoca put e* =3 o fa™. )
A = A(D) is the set of integral weights and IT* = {a* | a € II}. AT is the set of
dominant integral weights.

Lemma 3.7.2 [z basis|

(a) [a] ® C A.

(b) [b] Lete€ E. Thene=Y . (e;a)a*. In particular, € = F=0II*.

(¢) [¢] 1I* is a Z-basis for A

(d) [d] @ is acute and, if ® is connected, strictly acute.

(e) [e] Letec & then e = Y acm (& )a, (e,a*) >0 and if ® is connected, (e,a*) > 0.

Proof: (@) follows directly from the definition of a root system.

@ Follows from @

Since II is a base for @, every 8 € ® is a integral linear combination of II. This
implies that each o for « in II is an integral weight. now follows from (]E[)

@ and @ follows easily from O
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Lemma 3.7.3 [along min] Let ® be a connected root system.

(a) [a] @) has a unique dominant root oy and ®s has a unique dominant root os.

(b) [b] If o € ® with a # oy then there exists 3 € ®T with a + € ®.
(c) [c] Lete e @ and a € . Then —ap<a<a and —(e,oq) < (e,a) < (e, ).

Proof: By W is transitive on ®;. So (@) follows from

For (]E suppose first that « is not dominant. Then there exists 5 € II with (a, ) < 0
and so by m@, a+ 8 € ®. Suppose next that « is dominant. Since o # oy we conclude
that ® has two root lengths and a = as. By[3.7.2|(d) (cu, ) > 0 and so by [3.1.4] (o, ciy ) = 1.
Thus f:= oy — v is a roots and (5,d;) =2 —1=1 > 0. Since ¢ is dominant this implies
B € &+ and so (b) holds.

Note that by (]ED, aq is the unique element of maximal height in ®. From (]ED and
induction on ht o) — ht o, @ < o and so oy = a + ¢ for some ¢ € NII. Since (e,¢) > 0,
(e,a0) < (e, ). Note that this results also holds for the base —II and so is proved. [0

Definition 3.7.4 [def:minimal] A\ € A is called minimial if (\, ) € {—1,0,1} for all
acd.

Proposition 3.7.5 [minimal 1] Let 0 # X € AT Then the following are egiuvalent
(a) [a] X is minimal.

(b) [b] (Aan)=1.

(c) [c] A= B* for some B € II where ng =1 is defined by ay = Y 5o 160-

Proof: (@)= (b): Since A is dominant and minimal, (A\,a1) € {0,1}. If (A\,an) = 0,

then [3.7.3| implies A = 0.
(o)=> (a): Suppose (A, ;) = 1. Then by shows that A is minimal.

@<:> : Note that (A, 1) = > scpns(A,0).

By 3.7.2(€) each ns is a positive integer. So we see that (X\,cq) = 1 iff the following
holds:

There exists a unique § € II with (A, 8) # 0; and for this 3, (A\,8) = 1 = ng.
Note that this is equivalent to . ]

Definition 3.7.6 [def:affine]

(a) [a] TI° =TTIU{—a}. T'(II°) is called the affine diagram of ®.
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(b) [b] wr is the unique element in W with wr(Il) = —II ( and so (—wr)(II) =1I).

For an example let I = {0,1,...n} and let Ey be the euclidean F-space with orthonormal
basis (e; | i € I). For 0 # ¢ € I put oy = €1 —e;. Put Il = {o; | 1 < i < n and
® = (IT). Note that (o, 0;) = 2if i = 5, —1if [i—j| = 1 and 0 if |i — j| > 1. In
particular, &; = «; and II is a linear independent pre-root system. Thus & is a root
system. Note that wq,(e;) = €;—1, wa,;(ei—1) = €; and wq,(ej) = e; if j # 4,1 — 1. Hence
if we view Sym(I) as a subgroup of GL(Ey), then w,, is the cycle (i — 1,4¢) in Sym(I) and
W(II) = Sym(I). Thus the definition of (II) implies that ® = {e; —e; | ¢ # j € I}. Let
e = —3 icriei. Then (e,a;) =1 for all i € I and so e is a regular and dominant. Hence
Pt ={ae®|(e,a) >0} ={e;—ej|i<jel}. Let @« =ey— e,. Suppose that n > 1.
Then (o, 1) = (o, ) = 1 and (o, ;) =0 for 1 <i <n. If n =1 then (o,a; ) = 2. In
any case « is dominant, @ = oy and so II° = ITU{—a}. Note that I'(I) is a string of lenght
n with only single bonds. If n > 1 then I'(II°) is circle of length n + 1 with only single
bonds and if n = 1, then I'(II°) consist of two vertices with a double bond.

Let w € Sym(I) be defined by w(i) = n —4. Then w(a;) = €,_(i—1) — €n—i = —Qny1-i-
Thus w(II) = —II and so wyy = w. Note that —w induces the unique non-trivial graph
automorphism on I'(IT).

Lemma 3.7.7 [phi-sigma invariant| Let ¥ C ®. Then ®1 \ (X) is invarinant under
wW(x).

Proof: By definition, () is invarinat under W (X). Hence also @\ (¥) is W (X)-invariant.
Let o € @+ \ (¥) and 0 € . Then a # o and so by .3.2(d), w(a) € ®+. Thus &+ \ (X)

is wy-invariant and so also W(X) invariant. O

Proposition 3.7.8 [minimal 2| Let § € II and ¥ = II — 3. Then the following are
equivalent.

(a) [a] B* is minimal.

(b) [b] B is long and W(X) act transitively on &\ ().

(c) e ws(B)=a.

(d) [d] II° is invariant under —wsy

(e) [e] There exists a graph automorphism o of I'(II°) with o(8) = —ay.
(f) If] T(II°— B) and I'(Il) are isomorphic graphs.

(9) [g] @ =(I°—-p).



76 CHAPTER 3. ROOTSYSTEMS

Proof: (@:> (IEI): By [3.7.5/ng = 1. By [3.3.1 ((Cf’gl))ng is an integer and so (f3,5) =

(g, 1) and S is long
Let 0 € <I>+\ @ = ®N Bt and so (B*,0) # 0. Since B* is minimal,

(5*,0)=1=(p* ,Oq) 1) now follows from [3.5.5(e]).
()= (c): Since IT is obtuse and wx,(X) = —%, wx(f) is dominant on X. Since also a;

is dominant on ¥ and since wyx(f) and oy are conjugate under W (3 -@ (applied to
() in place of @) implies wx(f) = aj.
()= (d): We have —w5(¥) = ¥ and —wx(8) = —a. Since —wy has order 2,

—wyx(—ay) = B and so (d) holds.
(= (¢): By wx(B) € T and so —wx(B) # B. Since —wy leaves II° and X

invariant we conclude —wx(f8) = —aj. Also —wsy, is an isometry and so —wsy, induces a
graph automorphism on I'(II°). So (€) holds with o = —ws, |rre.
@:> (@: Obvious.

@:> (g): By (@) (II° — B) is a subroot system of ® isomorphic to (II) = ®. As & is

finite, (g) holds.
.:> @) We have 3 € (II° — ) and so 3 = naj+o for some n € Z and ¢ € ZX C b*+,

Thus 1 = (8*,8) = n(8*, 1) and so (5%, «;) = 1. Hence by [B* is minimal. O

For ® = A,, we have that II° is circle of lenght n 4+ 1. Hence for all a € II, II° — « is
a string of length n and so isomorphic to II. Thus each o* for a € II is a minimal weight.
Also 0 is a minimal weight and hence A,, has n + 1 minimal weights.

Definition 3.7.9 [def:cartan matrix| C' and E are the II x II matriz defined by cop =
(&, B) and eqp = w C' is called the Cartan matriz of ©. Put ey = eqq-

Lemma 3.7.10 [basic cartan matrix]
(a) [a] &=} gep capB”.

(b) [b] a* =3 5en cash-

(c) [c] E=CL.

Proof: (@] follows from [3.6.2)(a]) applied to B = II.

(o) BYB6.4R). 0 = S pen (0%, 8718 = Spen (07,57 ) 525 = Sy cash
(c) Follows easily from and (]ED O

Proposition 3.7.11 [decomposing pi] Suppose ® is connected. Let o € 11 be long and
let A be the set of neighbors of o in T'(I). Put ¥ =11 — « and let {6 | 0 € ¥} the basis of

FY dual to X. For 6 € A define é5 = (9.9)(99) )(55) and rs = ((i’;—?)). Then
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(a) [a] FEach connected component of ¥ contains exactly one element of A.

(b) [b] b is a minimal dominant weight for ().

(d) [d] oo+ Ysearsts =2.

Proof: Let D be the set of connected components of . Note that

E=TFa* OFL =Fa* @ O pep FD.

and so

(%) d:ma*fZ)\D

77

for some m € F and Ap € FD. Let g € (D). The (Ap,B3) = —(5,¢&). Since II is linearly
independent, § ¢ Fa and since « is long we conclude that (5,&) € {—1,0,1}. Thus Ap is a
minimal weight for (D). Since II is obtuse, Ap is dominant for D. From we conclude
that Ap = 6 for some § € D. Then clearly § is the unique element of A contained in D and

SO and hold.
Note that 1 = (a*, ) = (a*,d)@ and so by (¥), 1 = m(a*,a*)(o";)
m= é and (c|) follows from (*).

Note that
4
(a’a)_(a,a)’
o aF 1 (a*, ") 1 2(aa") 2 1
&Ly~ - Aee) 2l
€a €q €a  €a eq (0" )(a,a) () eq
and 05 5
N €s ~
5,0) = = —
OO =G0 " )

Computing the squared lengths of both sides in we now obtain

4 2 1 2 .
wa) ~ ajen 22 (ma) "

(o)

Multiplying with ~=— we get

Thus @ holds.

= megy. Thus
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Proposition 3.7.12 [composing pi| Let I be a finite set. For i € i let E; an euclidean

F-space, ®; a connected root system in E; with base II; and 6; € I1;. Let {0 | 6 € II;} be the

(6:,6:)(84,8:)
2

basis dual to II; in E; and put €; = . Also let | in F be positive. Suppose that for

alliel
(i) [a] &; is a minimal dominant weight for ;.
(ii) [b] ;= (61_7[75” is an integer.

(iii) [c] D ;crri€s < 2.

Define e € F by % + Y icrTi€i = 2. Choose a one dimensional euclidean F space X and
z € X with (v,2) =2¢. Pt E=X 0D e1E;. Puta=5(2-3,;0), I={a}UlU;c; i
and ® = (IT). Then ® is a root system with base 11, « is a long root with (a,a) = I,
eq =€, o =z, {II; | i € I} is the set of connected components of Il — « and, for i € I,
(6;,&0) = —1, and §; is the unique neighbor of a in 1I;.

Proof: A straight forward calculation shows that (o, ) =1 and so

. x z
i€l
Hence (0;, ) = —1 and (8, ) = 0 for all other d € IT—a. Also (o, d; ) = ri(6;, &) = —7
is a negative integer. Hence II is a linearly independent, obtuse pre-root system and so
by [3.1.13| @ is a root system.z L II — « and (z,a) = ﬁ(x,x) =1 Soz = o and

2
o = (04701)(201*706*) = e =e. (]

Lemma 3.7.13 [echa] Let ((@)* | a € II) be the basis for E dual to 1. Then (&)* =

(OL,O&) * —
ok and eg = eq.

Proof: Let r:= (a’;‘). Then ré& = . Clearly 3 L ra* for all a # 8 € II. Also

and so (&)* = ra*.

2¢; = (a,a)-((a)* (@)*) =(a,a)-(ra*,ra™)
= (ra,ra) - (a*,a*) =(oq,a)-(a",a") =2e,
So e; = e, and the lemma is proved. ]

Lemma 3.7.14 [pi a tree] Let ® be a connected root system.
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(a) [a] TO(II) is a tree.
(b) [z] Let o € II). Then e, > % with equality iff 1T = {a}.

(c) [b] Suppose a € 11} with eq < 1. Then ® = Ay, « is an end-node of Il and eq = 75

(d) [c] Ezxactly one of the following holds:

1. [a] & = p* for a long root € II.

2. [b] ® = A, and &y = B] + B} where 1 and By, are the end nodes of I ( with
ap = 267 if [ = 1).

5 [ T(F) = =
for the short end-node 3 of 1I.

o

o=—=—o and & = p*

(e) [yl If ® ¥ A, then oy is an end-node of 1I° and T'(11°) is a tree.

(f) [d] Suppose ® % A, and B € II such that 5* is a minimal weight. Then [ is an
end-node of 11° and 1I.

Proof: @ Let o € 1I be long. By induction each connected component of Il — « is a tree.
Also by « is joint to exactly one vertex from each connected component of II — a.
Thus also II is tree.

By €a = €5. S0 @ and () are true for (a, ®) iff they are true for (&, ®). So for
(@ and we assume without loss that « is long.

@ By 3.7.11@ i + D scaTss = 2. S0 eq > % with equality iff A = (). Since II is
connected (bf) holds.

If A =0, holds with n = 1. Suppose that |A| > 0. Then e, < 1 implies
Y searsts < 1. Thus A = {6}, rs = 1 and €5 < 1. So by induction on II, <H a) = Am, )

is an end-node of II — v and e5 = . Thus ® = A,,11 and i P +1 = zﬁ and
is proved.
Since ¢ is a dominant intergral weight & = Zle BF for some 3; € II. Since

2=(,q)=2= Zé:l( *,oq) and ((B], a1) is a positive integer we get, k < 2.

If & = 2, then (87,aq) = 1, B is a minimal weight and so by @, B is long.
Also by -. 51,52 > 0 and so (G, 1) > (B1,81) + (B2,B82). Since p; is long,
(a1, 1) = (B, Bi ) and multiplication with (O”’ 1) gives 2 > eg, + 652 So eg, < 1 for at least
one i. By ., ® = A,. For ® = A, we have oq = ¢g — e, and (d:2) holds in this case.

So suppose k = 1 and put g = p;. If 8 is long, holds. So suppose that 3 is not

long. Put r = (?,61’:;1))' By [3.7.13

(B, ﬁ) (B,B8) 1

(B)* = p* = 5 1= —ax

Hence a; = 7(3)*. Since (6)* is an integral weight on ® we conclude that 7 divides
(o, &) for all @ € . Choosing o = oy we see that r = 2. If a € ®; with o # +ay we get
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a L o1. Let 6 be a long root of minimal distance from 3 in T'°(II). Let ¥ be the set of
vertices of the path from j to 6. By[3.5.4]a we have ¥ C F((X);) and so there exists a long
root € € X1 with oy f/ e. Then o) = € € FX. Suppose p € II\ . Then o € FY implies
(p*,c1) =0, a contradiction to[3.7.2(d). Thus ¥ =1II and (d)) holds.

(e) By @, & = 8* for some B € II. Thus B is the unique neighbor of —ay in T'O(II°0.
By , (1) is a tree and so (ED holds.

@ By @, —qy is an end-node of II°. Hence by @, also 8 is an end-node of II°.

O

Lemma 3.7.15 [w pi] Let ® be a connected root system with [II| > 1. Put ¥ = 11N i
and let a € 11\ X.

(a) a] wi = wo Wy = we Wy
(b) [b] a1 = (—wn)(a) + ws(a).
(¢) le] T\ %= {a, (—wn)(a)}.
(d) [d] (—wn) [s= (-ws) |5

(e) [e] FEach connected component of T'(X) is invariantt under —wry.

Proof: @ Let 8 € @ and put 6 = wx(B). We claim that (we,ws)(8) = wa(d) € O~
Since ¥ 1 ag we have wy(aq) = ay. Since wy is an isometry,

(*) (Byan) = (wsd, ws()) = (6,a1)

Suppose first that 5 L a;. By @, dNaf =< Nai) = () and so B € (X). Thus
by definition of wy, 6 = wx(8) € 7. By (*), 6 L oy and so wq,(d) = € ¢~
Suppose next that (B, >)0. Then since w,, is an isomoetry and has order two

(War (0), 1) = (8, Wy (1) = =(6, (Jar ) = —=(B,01) <O

and again wq, (0) € .

This proves the claim and so wn = wqwy. Taking the inverse on both sides of this
equation gives wy = WxWey,-

() Since IT # {a}, B.7.2/) implies a1 # o and so (a,éy) = 1. Thus we, (@) = & — ay.
Also wy (1) = —ay and so by (b)) wi(e) = ws(wa, (@) = ws(a) — .

Let ' = ¥ U {o, (—wn)(a)}. Note that wx(a) < (o, ) < FII'. So by () also
ay < FII'. Suppose that 8 € IT\ IT', then (o, 8*) = 0, a contradiction to [3.7.2)(e]).

@ Since wq, acts trivially on X, this follows from @

Let D be the set of connected componenent of ¥. Then —wy = —[] AeD WA fixes

each A € D. So @ follows from @ O
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Proposition 3.7.16 [decomposing affine| Suppose that &y = o for a long root . Re-
tain the notation from |3.7.11 and for § € A let Ils be the connected component of 3
containing 9.

(a) [a] eq =2.
(b) [b] —wx(d) =0 forall § € A.
(¢) le] Ysenrsbs =3

(d) [d] One of the following holds.

| A={d,e}, Il = {0}, llc = {€}, 6 is long and r. = 2.
d] A={6}, 9 islong and és = %
e] A={0}, Il ={0} and rs =3.

a3 T e T o

Proof: @) €0 = (ma)(a*a®) _ (o, )2(641,511) —9

Note that (—wHZ) fixes oy and II and so also a and A. By [B.7.15(¢]), wr also fixes
II; and so II6 N A = {§}. Thus (—wn)(8) = ¢ and (b)) follows from [3.7.15|(d).

Follows @ and @

(d) Let 6 € A. If &5 < 1, then by (I14) = A, and 6 is an end-node in IT5. Thus
(o) implies that n =1 and so (Il5) = {d}. (d) now follows easily from (d.

Proposition 3.7.17 [composing affine| Retain the assumptions and notations of|3.7.12.
Suppose in addition that for all i € I,

(iii’) [a] ierrifi =3
(iv) [b] —wz-Hi(éi) = (51
Then oy = a + w(a) and a; = o*.

Proof: Put A=} . ; 6; and w = [Iic; wm,. Since —wr, normalizes II; and by fixes
0; we have —wni(&) = ;. Thus w(A) = —A. From we have e = 2 and @ = 12 — \.
Hence &+ w(d) = z = o*. Since (z,2) = § = (&, &) we see that & = o+ w(a). By
« is long and so also and z is a long root. Since x = «* is dominant and o is the unique
dominant long root, & = . O

Lemma 3.7.18 [l-m| Let A\ and p dominant minimal integral weights on ®. Then also
A — i is minimal.
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Proof: Let a € ®". Then (A\,a) € {0,1} and (u,a) € {0,1} and so (A —p,a) €
{~1,0,1}. O

Lemma 3.7.19 [basic min]

(a) [a] Let a,b € E with a=<b. Then a + Z& = b+ Zd.
(b) [b] If W acts trivially on A/Z.®.

(c) [c] Lete€ € Then {bec €|b=e} is finite.

(d) [d] Every coset of Z& in A contains a dominant integral weight which is minimal in

9

AT wit respect to <.

Proof: @ By definition of <, b — a € NII < Z®.

(b). Let A € A and @ € ®. Then we(A) = o — (A, a)d € A + Zd.

(c) Let b € € with b<e. Then e —b € NIl and e + b € €. Thus (e +b,e —b) > 0 and
(b,b) < (e e). By ZI1 is discret Hence also b+ ZII is discret. Therefore {b € € | b=e}
is discret and bounded and so by finite.

@). Let A € A. Then w()\) is dominant for some w € W. By (c) there exists b < w(\)
such that b is <-minimal in A*. Then by @ and @, b, w(\) and A all lie in the same coset
of Z&. So (d) holds.

Lemma 3.7.20 [min equal min]
(a) [b] Let A € Zd be minimal. Then X = 0.
(b) [a] Let X € A*. Then X is <- minimal if and only if \ is minimal.

(¢) [c] Every coset of Z® in A contains a unique dominant minimal weight.

Proof: Without loss @ is connected.

() By [3.4.2)there exists w € W such that w(\ dominant. Then also w(}) is minimal and
we may assume that A is dominant. Let A = )y no& with n, € Z. Suppose that X # 0.
Let a € IL. By[3.7.2((), (A, @) > 0. So also nq = 2 (X, a*) > 0. Also (X, ;) = 1 and since
(&, ;) € N we conclude that there existts a unique « € II with (&,a;) # 0. Moreover,
ne = 1 = (& o). and « is long. As « is long —1 < (B,&) < 1 for all +a # p € P.
Also II is obtuse and so —d& is a dominant minimal weight on ¥ := II — «. Hence also
—wy(—a&) = wx (@) is a dominant minimal weight on . Since n, = 1 we have A — & € 7.
By (]EI), o and and wy(@) lie in the same coset of ZY. Thus A —wy (&) € Z¥. By|[3.7.18
A — wx (&) is a minimal weight on ¥. Thus by induction A — wx (&) = 0. So A = wx(a&).
Thus & is a mimimal weight a contradiction to (o, &) = 2.

(]E[) and : We frist show that

(**) If A € AT is <- minimal then X is minimal.
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For this it suffices to show that (A, 1) < 1. Choose a long root ¢ of minimal height with
(A,6) = (A, a),. Since A is <-minimal, A — 0 is not dominant and so there exists 8 € II
with (A —d, ) < 0. So

(). (A, B) < (B,0).

Suppose that § # 3. Then since 6 is long, (8,6) = 1 and so (A, 3) = 0. Hence (Aws(d)) =

(A, 6) = (N a) and wg(0) is a positive long root of smaller height than §, a contradiction to

the choice of §. Hence § = 3. So by (*) (A\,aq) = (A,8) < (§,6) = 2. Hence A is minimal.
Next we show that

(***) Every coset of Z& in A contains at most one minimal dominant weight.

For this let A and p be minimal dominant weights in the same coset of Z®. Then

A—p € Z& and by [3.7.18, A — p is minimal. So by (a), A — ;=0 and X = p.
Now let A be any dominant minimal weight in A. By 3.7.19@), A\ + Z® contains a
<-minimal element p. By (**) p is minimal and by (***) A = p. Thus (D] holds.

follows from (]ED, @ and (%), -

Definition 3.7.21 [o ab]
(a) [a] For a path p = (ag, o, ... ay) in TOII) define s(p) = [Tl [(di-1, i )|.

(b) [b] If o, B € 11 be in the same connected component of T'II), then af denotes the
unique path in TO(IT) from « to B.

(c) [c] detIl is the number of minimal dominant weights for ®.

Lemma 3.7.22 [basic det pi]
(a) [a] detIl =|A/Z®| = det C.

(b) [b] Let o, € Il If a and B are in the same connected componenent of TV(I1), then

€aB = s(@)%}afﬂ). Otherwise eq3 = 0.

Proof: @ By , detII = [A/Z|.
Define T' € Endz(A) by T(a*) = & =3 _gcp capB™. Then T(A) = Z(®) and so

|A/Z®| = |det T| = det C

Thus (a)) holds.

By E = C7'. Let o, € II. Then there either exists no path or exactly
one path from a to 3 in T'9(IT). In the first case implies eap = 0. In the second let
aB = (ag, 1 ..., ay,). Then since IT is obtuse,



84 CHAPTER 3. ROOTSYSTEMS

n

(1" Hcai—lai = H [(Gi—1,0;)| = S(Oliﬁ)

i=1 i=1
Thus by
— det C(IT — af)
6015 = S(Oéﬁ) det C(H)
(]E[) now follows from @ O

3.8 The classification of root system

In the section we determine all the connected roots systems up to isomorphism. We also
determine the affine diagrams, the action of —wry on II and the minimal weights. we combine
all thus information in what we call the labeled affine diagram:

Recall that the non-zero minimal weights are all of the from a* for some root o € II.
We will label such an « with det(Il — «). We also label —«a; with detII. We use a filled
node to distinguish —q; from the remaining vertices for II°. We also draw a dotted line
betweeen any two distinct elements of II which are interchanged by —wr.

Theorem 3.8.1 [labeled affine| The labeled affine diagrams of the connected root systems
are exactly as listed in Figure[3.8.

Proof: By induction we assume that labeled affine diagrams of rank smaller than n are
exactly as in Figure 3.8

Suppose we know the affine diagrams for the rank connected roots sytems. Then m[f]
gives us det IT and all o € II such that o* is minimal. From [3.7.15| and induction we obtain
the action of —wy on II. Also by induction we can compute det(Il — «).

So it remains to determine the affine diagrams.

In case [3.7.14)(d:2) [d:2] we see that the II° = A3 or II° = Cp.

So suppose that o = o* for a long root a.

We now consider the different case of 3.7.16@.

In case [d:1] II° = Dj.
In case II, is a connected rankn — 2 root system, é. = 1 and wyy, (¢) = €. Note that
by 3.7.22 l@) €e = %ﬁ:e) and so e, can be computed from the labeled affine diagram of

II,.
Suppose that II. = A,,_2. Then since wyy, fixes €, we get n —2 = 2k + 1 and

_(detTI(Ag)?  (k+1)* k41
7 detT(Aggyr) 2k+2 0 2
Thus £ =1, n =5 and II° = Dg.

l=e
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If II. = B,,_2, then € is the long end-node and II° = B, for n > 5.
If I, = C),—2, then again € is the long end-node, "T_Q =1 and so n =4 and II° = Bj.
If Il = D, _ then either € is the left end-node or n — 2 = 4. In any case 1I° = D;,.

According to Figure [3.8] no other possibilities occur in the current case.

In case II° = B3.
In case IIs is a connected rankn — 1 root system, é;5 = % and wry; (0) = 4.
2

IfIls = A,_1. n—1:2k+1and%:é(5: (gktz = % Thus k = 2, n = 6 and
Il° = E§.

If IT; = C),_1, then € is the long end-node, ”T_l = % and so n =4 and 1I° = F}.

If Il = D,,_1 then € is one of the right end-nodes end-node and ”T_l = % son =7 and
Il° = E7.

If IIs = E7, then ¢ is the right end-node and II° = Eg.

According to Figure [3.§ no other possibilities occurs in the current case.

In case [d:5] II° = G5.
Finally we remark that ensures that all the root systems encounter actually do
exit. 0




86 CHAPTER 3. ROOTSYSTEMS

Figure 3.2: The labeled affine diagrams
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Chapter 4

Uniqueness and Existence

4.1 Simplicity of semisimple Lie algebras

We say that a subset W of a root system is closed if « + 8 € ¥ whenever o, € ¥ with
a+ped.

Proposition 4.1.1 [h invariant in 1] Let L be a standard Liealgebra with Sol(L) = 0. Let
H be a Cartan Subalgebra and ® the set of roots for H on L. Let ¥ C ® be closed. Put
LW)=(Ly|a€ Wi and HY) =(Hy |a € U N =T) 0.

(a) [a] L(¥) =@, cy La ® H(V). In partcular, if 3 € ®, then Lg € L(V) if and only if
gew.

(b) [b] Let A< L with [A,H] < A and put A ={a € & | Lo, < A}. Then A is closed and
A=L(A)+ (AN H). If, in addition, A is perfect, then A = L(A).

(c) [c] Let A < L. Then A is an ideal iff A = A(V) for some closed ¥ C & with
O=TVU(@NTH.

(d) [d] Let D be the set of connected components of ®. Then L(A),A € D are the simple
ideals in L and L = @rcp L(A).

Proof: (a): Let A := L(¥) P, ey La ® H(V). Let a € N —W. Then Hy = [La, La] €
L(V¥) and so A < L(V). So it suffices to show that A is a subalgebra of L. Clearly
[H(Psi), A] < A. Now let a, f € U. If a + 3 € ®, then since @ is closed, o + € ¥ and so
(Lo, L) = Loyy <A If a+b=0,then a =be VN-V, [Ly, Lg] = H, < H¥) < A If
0#a+ 5 ¢ P, then [L,, Lg] =0 < A. Thus A is a subalgebra and @ is proved.

@. Let a, f € A with o+ € ®. Then Loy g = [Lqa, Lg] < A and so A is closed. Since
A is invariant under H, A = @, Ax. For a € ®, L, is 1-dimensional so either L, = A,
or Ay = 0. Also Ag=ANH and so A =@, cp La ®(HNA)=L(A)+(HNA).

Since [L(V), H] < L(V) and H is abelian we conclude that [A, A] < L(¥). So if A is
perfect, A = L(V).

89
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(Lt v={acd|Ly<Aand T =3nTL

Suppose that A = L(V¥) and & = ¥ N X. Note that [L(¥), H] < L(V). Let f € ¥ and
a € V. Then «a + (3 is neither perpendicular to 3 nor to ¥ and so o+ § ¢ ®. Also a # —f
and so [Lq, Lg] = 0. Hence L(¥), Lg] = 0 and L(¥) is an ideal.

Suppose next that A is an ideal. By A is perfect and so by @, A= L(V). Let
a € ¢ and suppose that 5 f « for some 5 € ¥. We claim that « € U. If —a € Ly,
then Lo, = [[La,L—o],L—o] < A and so @ € VY. So we may assume that (a,5) < 0
and so by B.LIFD), o + 8 € ®. So Loy = [La,Lg] < L(¥). Also —3 € ¥ and so
a=(a+ )+ (—8) € U. Hence ® =V U X.

@ By L = @}, L;, where Li,...,L, are the simple ideals in L. By (]ED,
L; = L(¥;), where ¥; is a closed subset of ®. Moreover, ¥; L ¥; for all i # j and
® = J;; ¥;. Let A be a connected component of U. Then clearly A C ¥; for some i. By
L(A) is an ideal and so since L; is simple, L(A) = L; = L(¥;). implies A = U;.
Therefore the ¥; are exactly the connected components of . O

4.2 Generators and relations

Proposition 4.2.1 [relations for 1] Let L be a standard Lie algebra with Sol(L) = 0. Let
H be a Cartan subalgebra, ® be the set of roots for H on L and Il an base for ®. For
a € £II pick 0 # x4 € Lo with [zq,2_o) = ho. Then for all o, B € 11:

(Rel:a) [a] [ha,hg] =0.
(Rel:b) [b] [ha,xg] = cagrg and [ha,v_5] = —capr_3.

(Rel:c) [c] [za,z_g] = dapha.

—Capt1

(Rel:d) [d] If a # 8 then LA zg=0 and z_, xx_g=0.

Proof: @ holds since H is abelian. (]ED follows since x4+3 € L4y .

Note that for § # a, 0 # a— ¢ ® and so [x4,2_g] € Lo—3 = 0. By choice of the x4,
[T, —a] = ho and so holds.

By induction on i we have z°, * x; € Lgiiq. Since a — 3 is not a root, 1,3 = 0. So by

2.11.10(d), sap = —cap and hence 4 (—cap + 1)ar ¢ ®. Thus the first statement in (d)
holds. By symmetr y also the second holds. O

Definition 4.2.2 [def:locally nilpotent| Let V' be a vector space and ¢ € End(V'). Then
¢ is called locally nilpotent if for all v € V' there exists n € N with ¢™(v) = 0.

Lemma 4.2.3 [e phi] Let V' be a vectorspace over the field K and ¢, locally nilpotent
endomorphism. Suppose that char K = 0.



4.2. GENERATORS AND RELATIONS 91

(a) [a] There exists a unique p € End(V) with p(v) = 31 %¢'(v) whenever v € V and
n € N with ¢"*t1(v) = 0. We denote p by e? and by >3, %

(b) [b] If [¢,9] = 0 then e?T¥ = ePe?.
(c) [c] e® is invertible with inverse e™¥.
Proof: Readily verified.

Lemma 4.2.4 [inner aut] Let A be a K algebra, 6 a derivation and suppose that char K =
0. Then

(a) [a]

" 5, &
T = 3 S@%o
i+j:n
(b) [b] If § is locally nilpotent then e is an automorphism of A.

Proof: @ This is the usually product rule for differentiation. Indeed for n =1, it is just
the defintion of a derivation and the general formula can be established by induction on n.

()
00 o 5]
= 5@ Z I
1=0 7=0 n=0i+j=n
-z

Lemma 4.2.5 [locally nilpotent and semisimple| Suppose that K is standard and L =
sI(K?) with Chevalley basis (x,y,h). Let V be an L-module. Then the following are equiv-
alent:

= ¢°(ab) O

(a) [a] V is the sum of the finite dimensional L-submodule.
(b) [b] V is the direct sum of finite dimensional simple L-submodules.

(¢) [c] z andy act locally nilpotent on V' and h is diagonliazible on V.

By @ implies (]ED Also by (]E[} implies .

Suppose now that holds. Let W be the sum of the finite dimensional L-submodule.
Suppose V' # W. Since z is locally nilpotent on V', there exists v € V' \ W with zv € W.
Then there exists a finite dimensional L-submodule T of W with zv € T. Hence Cyp(x) £
V/T and since h is diagonalizible on V/, there exists eigenvector u+1' € Cyp(x) with u ¢ W.
Let U/T be the smallest L-submodule of V/T containing u+T'. Since y is locally nilpotent,
there exists m € N with y"u = 0. now implies that U/T is finite dimensional. But

then U is is finite dimensional and so u € U < W, a contradiction.
Thus V = W and implies . O
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Lemma 4.2.6 [e and w]| Let K be standard, S and H subalgebra of V., « € A(H) and V
an L-module. Suppose that

(i) [i] S = sl(K?) with Chevalley basis (z,y,h).

(i) [ii] H is abelian, h € H, v € Ly andy € L_,
(11i) [iii] V is the direct sum of the weight spaces for H.
(i) [iv] = and y are locally nilpotent.

Then for each A € H* dim V) = dim V) _y(p)q-

Proof: Without loss L = S + H. If the lemma is true for the composition factors for
L on V its also true for V. So we may assume that V' is a simple L-module. Since x is
locally nilpotent, Cy(z) # 0 and so by there exists p € H* and 0 # v € V, with
zv = 0. Since y is locally nilpotent, there exists m € N minimal with y™*!'v = 0. Note
that v; := y'v is a weightvector for H of weight y — io. By @ W =Kuv; |0<1i<m)
is S-invarinat and p(h) = m. Since W is also H invariant, W is an L-submodule and
so W =V. Let A\ € Ay(H). Then A = p — i« for some 0 < i < m and V) = Kuv; is
1-dimensional. From = € L, and [h, ] = 22 we have a(h) = 2 and so A(h) = m — 2i. Thus
A= Ah)a=p—ia—(m—2)a=p—(m—1i)aand so A — A(h)a € Ay(H). O

Definition 4.2.7 [def:iso of root systems] Let ®; and ®o be root systems over the same
field F. An isomomorphism of root systems is a bijection p : ®1 — P9 which extends to a
F-linear map from F® to Fd,.

Theorem 4.2.8 (Serre) [serre| Let ® be a root system with basis I1 and L the Lie-algebra

over K generated by elements To,T—q,ha,a € II subject to the relations (d)-(d) in[{.2.1]
Suppose that char K = 0. Then

(a) [a] dim L = |®|+ |II|.
(b) [b] Sol(L) = 0.
(c) [c] H:= (hy|a€ll)L is a Cartan subalgebra.

(d) [d] There exists a Q-linear map p: ® — H* with p(a)(hg) = (a,B) for alla € B, €
II.

(e) [e] p(®) is the set of roots ®r(H) for H on L and P.

(f) f] p:®— ®p(H) is an isomorphism of roots systems over Q.
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Proof: Let L be the Lie-algebra over K generated by elements &, T_q, ha,o €11 subject
to the relations (a)-(c) in Note that L isomorphic to a quotient of L. As a first step
in determining the structure of L we derive some information about L. Let H = <ﬁa | a €
IT) 1;e. Note the relation (a) ensures that H is abelian and spanned by the iLa as a K-space.

Let V' be a K-space with basis v(a),a € II. Let T be the tensor algebra over V, so
T has basis B = {®' jv(a;) | n € Nya; € II}. For b = @ ;v(a;) € B and a € II define
Cab = |[;1 Caa,- In particular ( for the case n = 0) cq1 = 0. Define endomorphism
Fos o, Ta,a € I1 of T via:

(i) [0:a] hq(b) = —capb.
(ii) [0:b] Z_o(b) = v(a) ®b.
(ili) [0:¢] Za(1) =0 and Z4(v(8) @ b) = v(B) @ Za(b) — SusCabb-
To establish L # 0 we show:

1° [1] There exists a Lie-homomorphism L — gl(T) with #o — 7o for all v € {z,h}
and o € £I1.

We merely need to verify that the 7, fulfill the relations [4.2.1)(a)) to £.2.1}(d). By (i) the
hq act diagonally on T' with respect to B and so commute. Thus [4.2.1f(a) holds.

(Ta(@-p(b) —T-p(Tp(b)) = Ta(v(B)®@b) —v(B) @ Talb)
= v(B8) ®Ta(b) — dapcarb — v(B) @ Ta(b)
= Sapha(b)

and so [Ta,Z_g] = dapha. That is{4.2.1f(c) holds.

Note that (896 = Cap + cap and so

(i s(0) — & p(ha)(®) = Fa(o(8) @ D) — &_s(carh
= —(cap+ cap)v(B) ®b) — (—capv(B) @ b)
= —Cap_p(b).

Hence [hg,%_g] = —Cap_p and the second part of @ holds.
From the definiton of Z, and induction we see that

Es(b) = —(cap—cgp) D v(a)®...@v(ap-1) @ v(ops1 @ ... @ v(am)
k with ap=08

Each of the summands are eigenvectors with eigenvalue —(cqp — cop for he and so the
same is true for zz(b). Thus



94 CHAPTER 4. UNIQUENESS AND EXISTENCE

ha(Z5(b)) = E5(ha(b) = =(cab — cap)zs(b) = (—Cavip (b)) = capip(b)
and so [ﬁa, Zg] = cop@. Therefore the 7, fulfill all the required relations and is proved.

2° [2]  Letky € K,a €11 such that [y kahe, 5] = 0. Then ko =0 for all o € T1.

In particular, he | a € 1) is linearly independent.

Let k be the {1} x II-matrix (kq)acrr- We have

0= kaha,&s] = Y _ kaCap = kC

a€ll a€cll
Since C' is invertible, this implies k£ = 0 and is proved.

3° [3] There exist Q-linear monomorphism p : Q® — H* and p: QI — H such that
p(d)(p(e)) = (d,e) for all d € QP and e € Q.

By , iLg, B € I is a K-basis for H. Hence for each o € II there exists a unique

pla) € H* with p(a)(hg) = (o, 8) for all B € II. Since II is a Q basis for Q® we can extend
p uniquely to a linear map from Q® to H*. Define p(B) = hg and extend to a linear map
ﬁ:Qé—)ﬁ. Then for all o, 5 € 11

p(@)(p(B)) = p(@)(hg) = (a, B).
Since both p(d)(4(e)) and (d,e) are Q linear in d and e we conclude that p(d)(p(e)) =
(d,e) for all d € Q®,e € Q®. Since (-,-) is non-degenerate, p and p must be 1-1. So
holds.

Let n € Z' and a = (a1, a9,...a,) € 11" we define Z, = [Zay, [Tags - -+ Lay] - -] and
a®° = a1 +as +...a, € £NII. Note that n = hta®. Also put Xo=H and X4, =K <
faq|aell™). Let pe +NIL If =0 put X(p) = X and if g # 0 put X () = K(Z, | a €
+IIM 1 6 = p).

4 (4]
(a) [4:a] 4 € L.

() [4b] (1) = Ly(p).

(¢) [4:c] Let m e Z. Then [Xom, Xo] < Xom, [Xm, X1] < Xng1 and [Xom, X_1] < X1
(d) [4:d] L= Dez X = @ueiNHn X(H)

(e) [4:€] Let \ be a weight for H on L. Then A\ = p(p) for some p € £NII.

(f) [4:6] Let o € II. Then ﬁp(a) = K&, is 1-dimensional, while flp(ka) =0 forallk € Z
with k > 1.
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By Rel , [h, 2] = (@, B)Ta = p(a)(hg)zq for all o, 8 € I and so &, € ﬁp(a).
Let a € IT". Thus by induction on n

& (a,0) = [Fas Za] € [Ly(@)s Ly(ae)] < Loty tp(ae) = Lp((any)-
So @ holds. In particular, X(p) < L(p(p)). Thus [X (), H] < X(u) and since X,,, =
thy =m ( ) [vaH] <X A A A A o
If n € Z* the definition of Xn+1 implies X,11 = [Xa, X,]. Also [X1, Xo] = [X1, H] <

. From Rel 4 -. we have
(X1, X_1] = K{[#a, z_5] | @, B € TT) = K(h, | @ € TT) = X,.

By induction on n and the Jacobi identity

[Xthnfl] - [le [Xflaan]
< [XflaanJrl] + [ana XO]

We proved that [Xm, Xl] < Xm+1 for all m € Z. By symmetry also [Xm,X_l] < Xpq
and so (c)) holds.

Put X = Zmer . Then by (¢ [X o] < X for all r € z,y,h and a € II. Since L
is generate by the 7, we conclude that X is an ideal in L and in particular, a subalgebra.
Since X contains all the 7o conclude that X = L. Thus

%= Y X< @ L.
pEENTI AE+p(NIT)
This easily implies (]ED, @ and (ED
Let o € IT and k € Z. Note that k = ht ka and a; := (o, a, ..., «) is the unique element
—_——

k—times
of £IT* with af = ka. If k > 1, then &,, = 0 and 50 L4 = X (ka) = 0. Now &4, = Zq.
If 2, = O then also hy = [Za,Z—a] = 0, a contradiction to . Thus ﬁp(a) = Kz, is one
dimensional. So @ holds and is proved.

5° (5]  Let o, 8,y € II with a # 8 and put 0,5 = gocartl &g. Then [Z_~,0a8] = 0.
Case 1: v # o . Then [Z_,, 2] = 0 and so ad z, and ad x_, commutes. Hence

7 —C,
* hg = —0,5C80Ta P % Ty

A—Caﬂ-i—l

+1 ~ ~
—Cap * [x_,y7"L‘B:| = — Vﬂxa

[‘T—’yu vcxﬁ] = Za

If cgo = 0, this is zero as desired. If cgq # 0, then cop < 0. Thus a8 w i, =
~—caf—1 N .
Za * [Zq,Tq) = 0 and again we are done.

Case 2: v =a. Note that Kz, + Kh,Kz_, is isomorph}c to sl(K?) with Chevalley basis
(2o, Bay —ha). Put k = —cqp. Since [#_q,25) = 0 and [—ha, &3] = kzg. So (5°) now folles
from applied with i = k + 1.
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6° (6] Fore=+let X =3 X = (Zea | @ € M)pie < L. Let I be be the ideal in
Xt generate by the vap and similarly define X ~. Then I€ is an ideal in L.

Let I;7 = K(tag | « # B € TI). Since Uap are eigenvectors (of weight p(8+ (—cag+ 1))
for H we conclude I; is invariant under H. Put I ,j = = [I;;, X1]. Since also X is invariant

under H we get by induction on k that each I lj is invariant under H. Put far = 0. We
claim that [f,j, X,l] < f,il. For k = 1 this follows from 1) Using induction

T, Xa) =[5, X4], X 4]
< [H Iﬂ [Ik 17X1]

< [[le ]7 ] HX—hI ]7X1]
< It

It follows that ZOO I, [+ is invarinat under Xl and Xl and so also under L. Thus
It =32, is an ideal in L.

707 L=L/IT+1I)

By , It + I~ is the ideal in I generated by the gz:oéco‘ﬁJr *xg and y;caﬂﬂ *x_g and
SO follows from the definition of L and L.

If 7 is is any element or subset of L we denote the i image of Tin L by T. From @
we have HN (T +17)=0and so H and H are isomorphic. It follows that ) and
remain true for L replaced by L.

8° [8] For each a € 11, ad x,, and ad x_,, are locally nilpotent endomorphism ofL.

Let M be the set of all elements in L annihilated by some power of ad z,. For i = 1,2
let m; € N, I; € L with 27 % [; = 0. Then by [.2.4fa)) «+™+2 « [11,15] = 0. Thus M is

a subalgebra of L. Let aw # 3 € II. Then [z4,2_g] =0 and so v_3 € M. [24,2—a] = ha,

[T, ha] = =224 and |24, 24] = 0. So 22 xx_, = 0 and 24,7 € M. caﬁH

xg € M and so M contains all the generators of L. Thus L = M and | . ) hold.

xxg = 0,

9° [11]  Let A be an ideal in L, w € W(®), and d € Q®. Then dim A,g) = dim A, (q))-

Suppose first that w = w,, a € II. Then

plwa(d)) = p(6 — (d. 6 )a) = p(d) — p(d)(ha)p(cx)

Thus implies that holds in this case. As W(®) is generated by wa,a € II, ([1°)1
holds for all w.

10° [12]  p(®) = ®L(H) and dim L,y =1 for all a € .



4.2. GENERATORS AND RELATIONS 97

Let ainIl. Then there exists w € W(®) with w(a) € II. So () and imply that
dim L) = 1 and L) = 0 for all k > 1. In particular, p(®) C &1 (H). Conversely, let
A€ Op(H). Thenby@ A = p(p) for some p € ZII. Let w € W(®). By (9°) also
p(w(p)) is a weight for H on L and so .@ implies w(u) € £NII. Thus by Exercise 11.1.3,
we have = ka for some k € N and « € II. As just seen this implies £ = 1 and A = p(«).

11° [13] dim L = |®| + |Pi| is finite.
Thus follows from and .
12° [14]  Sol(L) =0.
Let A be an abelian ideal in L. We need to show that A = 0. Since A is invariant under

H, A=(ANH) & @uea(AN Lya))-
Suppose that AN Ly, # 1 for some a € ®. Since L,,) is 1-dimensional we get

Ly < A. Let 8 € 11 be conjugate to o inder W(®). Tehn inplies that both Lg and
L_p are in A. Hence xzg and x_g are in A and sine A is abelian hq = [Ta,2—a] = 0, a
contradiction.

Hence AN L, # 1 for all @ € ® and so A < H. Moreover, [A, Ly] < AN L, =0 and
so A < ker p(a). Since (-,-) is non-degerate, (3°) implies that p(), € ® is a basis for H*.
Thus (e ker p(a) = 0, A = 0 and ((12°)) is proved.

13° [15]  H is a Cartan subalgebra of L.

H is abelian and so nilpotent. By (4 ' c), Cr/p(H) =0 and so NL(H) =0. Thus H is

selfnormalizing.
14° [16] @ and @y (L) are isomorphic rootsytem over Q.

y (10°), p(®) = &y (L) and so also p(QP) = Q@ (L). So p is an isomorphism of root
systems.
The Theorem now follows from ({11°)-(14°). O

Corollary 4.2.9 [isomorphism| For ¢ € {e, 1} let L be a standard, perfect, semisimple
Lie algebra over the field K. Let H¢ be a cartan subalgebra for L€ with root system ®¢ and
base TI¢. For a € +11€ let x§, € L&, with [25,2,] = hS,. Suppose that p : ®* — &1 is an
isomomorphism of root systems with p(I1*) = It. Then there exists a unique isomorphism
of Lie-algebras T : L* — LT with 7(x%) = a:j)(a) for all o € £II°. Moreover, 7(hy) = h!

p(B)
and 7(Ly) = L! ) for all B € ®*.

Proof: Let L be the Lie algebra with generators Z<,Z¢ ,, hy,, @ € II¢ and relations as in

4.2.1} Then by - 4.2.1| there exists an Lie- homomorphlsm from 7¢ : L° — L€ with 7, = ¢,
for all r € {z,h} and o € +II°. Since L° is generated by the r¢’s, 7¢ is onto. By
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dim L = |®¢| + |II¢| = dim L and so 7¢ is onto. Since p is an isomorphism of roots systems,
c(’w = Cj)(oz)p( %) for all o, 3 € II*. Thus L* and T are defined by the same relations and

there exists a Lie-isomorphism 79 : L® — L' with To(FPullet,) = ?;r)(a). Put 7 = rTrpre— L.
Then 7(r?) = 7l p(a) 3 desired. Since the x?,z* , generate L®, 7 is uniquely determined.
Finally, 7(h3) = 7([28, 2% 4] = [#ha, 2] 0] = h;(a) O

Corollary 4.2.10 [auto of order two| Retain the notations of |4.2.1. Then there exists
a unique Lie-automorphism 7 of L such that T(xq) = —x_o for all o € £I1. For this T,
7(h) = —h for allh € H, 7(Ly) = L_q for all € ® and 7 has order 2.

For e = {o,7} let L = L and H* = H. Then also ®° = ® and A, = hy. Choose II* = 1II,
It = —1II and p(B) = —3 for all B € ®. For a € +II put 2% = z, and xTa = —x4. Then
the assumptions of are fulfilled. All but the very last assertion now follow from
Since 72 fixes x, for all & € £II the uniqueness assertion in implies that 72 = idy. O



Chapter 5

Chevalley Lie Algebras and Groups

5.1 The Chevalley Basis

The goal of this section is to find a basis for a given standard, perfect and semisimple
Lie algebras such that all of the structure constants are integers. This will allows has the
construct Lie algebras over arbitray fields in arbitray characteristic.

We start with a lemma about root systems which helps in the computation of the
structure constants.

Definition 5.1.1 [def: pphi| Let ® be a root system. If ® is connected let py= %gg;’

where « is a long and B is a short root in ®. Im general let ps be the maximum of the py,

1 a connected component of ®.
(B8.8)

(a,a)’

For a € @ let &, be the connected component of ® containing o and pa = Poa =
where B is a long root in P,

Lemma 5.1.2 [rab—+1] Let ® be a root system and a, B € ® with o # +6. Then

(a) [a] cap=(40)=rap— sap-
(b) [b] At most two different root lenghts occur in the a-string through (.

(c) [c] Ifa+ B €@, thenras+1 :s(w%.

(d) [d] Tap + Sap < Pa-

Proof: (a) This is c.

(o) By [.1.12|() is a roots system in F(x, 8) and so has a basis II'. Since dimF < o 8) =
2, |II'| = 2. By [3.3.2)(i), each elemet of @’ is conjugate under W (®’) to an element of IT'.
Conjugate elements have the same length and so @ holds.

Put 7 = rop and 5 = s,p. Then using (@)

99
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A:zr—i—l—sW = s+(a,6)+1—8(a+(§:§)+b)
= o8 gl (00)
GG )
= (@) + 005G

Put B=(&,8)+1)and C =1 —sgggg Then A = BC. We need to show that A =0
that is B=0or C = 0.

Case 1: (o) > (B, 5).

Then by 8.1.4] (&, 8) € {1,0,—1}. If (o, 3) < 0 we conclude (&,3) =1 and B =0. So
suppose that (a, 3) > 0.

Then « + § has length larger than « and than 5. From (]ED we conclude that (o, ) =
(8,8). Also a + 20 has length larger a + 5 and @ implies that o 4+ 26 is not a root.
Therefore s =1 and C = 0.

Case 2: (o, ) < (B, ).

If (o, B) > 0, then o + 8 has length larger than 3, contradicting (]ED Thus (a,5) <0
and § — « has length larger than . Thus § — « is not a root and r = 0. Also by [3.1.4]
(o, ) = —1. Hence by @)

and so C' = 0, completing the proof of .
@ Note that 7,3 4 s + 1 is the size of the « string through «, and so we may replace
B by the second to last term of the this a-string. Hence s,3 = 1 and so by ,

a+p,a+
(0+Both) _
(8,8)
Moreover, 743 + Sqg < 1, unless a + 8 is long in ®’ and f is short. Consider the latter

case. If « is long, then by also 8 = (—a) + (a + B) is long, a contradiction. Thus « is
short and @ holds. O

Tap + Sap :Tag—i-l = Sap

Lemma 5.1.3 [xxx| Let L be a standard, perfect, semisimple Lie algebra with roots system
®. Leta,B € ® with a # £ and o € Lo, x—q € L_o and g € Lg with [2o,2_o] = hq.
Then

[T—a; [T, 25]] = sap(rap + 1)z
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Proof: If a+ (3 is not a root, then both sides are zero and we may assume that a+ g € .
Put 7 = rag, s = sqp and v = 27, * xg. Since f — ra is a root, but 8 — (r + 1)a is not,
we have 0 # v € Lg_rq and 2, v = 0. Also 0 # w := z, x v € Lg and so xg is a scalar

multiple of w. By [2.5.2|(b) we have

[T_a, [Ta, w]] = x_axgﬂ * U = acnglx_a xv— (r+ 1)zl (he +7)*v

Using 5.1.2)(d), (a,b —ra) = (& 8)—r(d,a) =r—s—2r = —r—s and so (ha+7)*v = —sv

and so

[z_q, [Ta,w]] = (r+ 1)sw.

Since z3 € Kw, the lemma is proved. [l

Lemma 5.1.4 [char of chev basis| Let L be a standard,perfect,semisimple Lie algebra
with roots system ® and s 0 # x4 € Lo, a0 € @ such that [zq,x_o] = ho for all a € ®. Then
the following are equivalent:

(a) [a] For o,f € ® with a+ f € & define kog € K by [za,28) = kapZats. Then
k_a—p = —FKag.

(b) [b] The unique K-linear map 7 : L — L with 7(xy) = —x4 for alla € ® and 7(h) = —h
for all h € H is an Lie-automorphism of L.

Proof: Note first that 7 is isomorphism of K spaces.
1° 1] [7(h1),7(h2)] = 7([h1, ha)) for all hy,hy € H.
Clear since both side are zero.
2° (2] [7(h), T(za)] = 7([h, x0]) for all h € H and o € .
[7(h), 7(za)] = [=h, —7_a] = (=h)(=) (—2-a) = M()7(2a) = T(h(a)za) = 7([h, 7a])-

3° 8]  [1(za),T(z_0)] = T([Ta,x—0]) for all a € P.

[T(2a), T(2—a)] = [~Z—as —Za) = hea = —ha = T(ha) = T([Ta, 2_a].
4° 4] [1(zq),T28] = T([T0a, 28]) for all a,f € @ with0# a+ [ ¢ .
From 0 # a+ 8 ¢ ® we have 0 # (—a) + (=) ¢ ® and so both sides in are zero.

5° [5]  Leta,p € ® witha+ e ®. Then [1(xa), 725] = T([Ta, xb]) iff k—a—p = —kag-
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[7(2a), 78] = [~ -0, —2-p] = ka-pT-a-p
and
T([za, 2]) = T(kapTas = —kap—a—p
So holds.
Clearly — imply the lemma. O

Definition 5.1.5 [def:chev basis] Let L be a standard,perfect,semisimple Lie algebra with
roots system ® and 0 # zo € Lo, a € ® such that

(a) [a] [Ta,ZT—a] = ho for all a € .

b) [b] For a,8 € ® with a + [ € ® define kog € K by [xa,28] = kapTars. Then
B B B B
k_a—p = —FKag.

Then the basis C = (zq,hg | a € ®,8 € ®) for L is called a Chevalley basis for L.

Proposition 5.1.6 [existence of chev basis| Let L be a standard,perfect,semisimple Lie
algebra with roots system ®. Then L has a Chevalley basis.

Proof: By[4.2.10|there exists an automorphism 7 of L of order two such that 7(La) = L_q
and 7(h) = —h for all « € ®, h € H. For a € ®* pick 0 # 24 € L. Then 7(2,) € Ly and
SO [zay —T(2a)] = kahe for some k, € K. Since K is algebrailcy closed there exists ¢, € K
with 2k, = 1. Put 24 = co2q and x_, = —7(24). Then

[Ty T_o] = ci[za, —7(z0)] = cik‘aha = hy,

Hence also [T_q4,%a] = —[Ta,Ta] = —ha = h_qs. Note also that 7(—a) = —7%(a) = —«
and hence 7(8) = —p for all 5 € ®. now implies that (zo,hg | @ € ®,8 € 1II) is a
Chevalley basis. O

The next lemma shows that Chevalley bases are unique up to an automorphisms and
+-signs.

Lemma 5.1.7 [uniqueness of chev basis| For i € {e,1} let L' be a standard, perfect,
semisimple Lie algebra with roots system ® and 0 # 2, € L, a € ® such that [x%,2° ] =
R, for all « € ®'. Put C' := (ait, th | o € & 8 € ®%). Suppose that C* is a Chevalley
basis for L* and that p : ®* — ®1 is an isomorphism of root systems with p(I1*) = IIT.

According to|4.2.9, let o be the unique isomorphism from L* to Lt with o(z2) = xl(a) for

all o € £I1*. Then the following are equivalent:

(a) [a] C! is a Chevalley basis for L.
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(b) [b] There exist e, € {£1},a € ®°* such that e, = €_o and xl(a) = €qo(x2) for all
a e d°.

Proof: Replacing a by p~!(a), zh by o~ (zt) for all o € ®F, ®F by ®* and L' by L*® we
may assume that p and o are the identity map and z?, = le for all & € £II*. We drop the

superscript o. Since L, is 1-dimensional there exists unique €, € K? with 2t = eyzq for all
a € ¢. We have

he = |} f

C¥7$—a] = [Ea.%‘a,e_ax_a] = €at—ala
and so
(*) €—aq = 6;1
Let 7 be the unique automorphism of L with 7(z4) = —2_4. Since C is a Chevalley

basis implies that

(k%) T(rq) = —x_o forall € ®

A second application of shows that C' is a Chevalley basis iff T(:L‘l;) = —:L‘JLO[ for
all @ € ®. Now from(*) and (**)

T(LUL) =T(€aTaq) = —€aT—q = —eixL

If follows that C' is a Chevalley basis if and only if €2 = 1 for all a € ®. So () and (b)
O

are equivalent.

Theorem 5.1.8 (Chevalley) [chevalley| Let L be a standard, perfect, semisimple Lie-
algebra with Chevalley C = (xa,hg | @ € ®,5 € II). Then [a,b] € ZC for all a,b € C. More
precisely

(a) [a] [hashg) for all a,b € 7.
(b) ] [haas) = (a,B) for alla €11, b€ .
(c) [c]

(a) [a] [2a,

Zﬁeﬂnﬁﬁv'_
(b) [b] [xa,x5] =0 for all o, € ® with 0 # a4+ ¢ P.

(c) [c] [za,xp] = £(rap + 1)Tayp for all o, f € © with a + 5 € P.

al = Y pemNaghg for all a € 11, where nag € 7Z is defined by a =
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Proof: (@), (b) and (c:b) are obvious. For observe that h, =tz and the linearity of
t imply ha = >, cr aghs. So it remains to proof (c:b)).
Solet aff € ¢ with a+ 8 € CD We will compute hy4p in two different ways. First by

Ty () (8,
3.3.1la+b= ey (R ey a+ﬁ S and so
(o, ) (8,8)
x) hqop=—""——"~—hty +—————h
&) e = G B0t m) Tt Bath)”
Using the defining relation we have hatg = [Tats; T—(at8)], Tatb = Kap[Ta, T3]
and v_q—g = k_aplT—a,r-5] = —kap[r—a,z_g] and so

(**) - kiﬁha,é’ = [[l’a, 33/3], [33*043 :C_g]]
From the Jacobi identity applied with a = [z4,2g],b = 2_, and ¢ = x_g)

(k% W)llwas 25, [r-a, )] = ~[o—as g, [t 2ll] — (2, [[2a, 25], 2]
= [o-ola—p, [25, Talll + [2-p, [7—a, [7a, 2]

By p.1.3| [z—g, [#—a: [Ta, ©8] = [24, Sap(ras + 1)T3] = —50(rap + 1)hg. Similary (with
the roles of « and B interchanged: [x_q,[z_g, [T3,Za]]] = —sPa(rge + 1)ha. Substituting
into (***) and then into (**) gives:

(5 * k) kighaﬁ = sBa(rga + 1)ha + 5as(ras + 1)h3

Comparing the coefficent of hg in (*) and (****) (and using that h, and hg are linearly
independent) we get

2 (57/8) _
kaﬁm = Sap(Tap +1)

Hence using [5.1.2| we conclude

+B,a+f)

k2 :sa(a’—ra +1) = (ros + 1)

3 6(5’5)(5)(5)

Hence ko3 = £(rqp + 1) as desired. O

Lemma 5.1.9 [nab] Let ® be a root system and (xo,hg | o € ®) a Chevalley basis for
Lg(®). Let o,y € ® with a + + v =0 and define noz= Then

r 5+1
(a) [a] nap = sgnkeps = £1.
(b) [b] Nap = —Npa

(c) le] Nap=—1-a-p
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(d) [d] Nap = N3y = Tha
(e) [e] Ezxactly one of the sets {a, B}, {—a, =B}, {8,7}, {-8,—7}, {v,a} and {—~,—a}

consists of two positive roots.

(&) follows from [5.1.8|(c:d). (B) follows from [4, 5] = —[xs, za]. follows from () and
the definition of a Chevalley basis (see [5.1.5|[b)).

@ We have

[T—a, [Tas Tp]] = [T—a) kapT—y] = k—a—rkapTs

On the other hand by

[.’L‘_a, [xavxﬁ]] = Sa,B(Taﬁ + 1)56/3
and we concldue that n_o—yn.3 = 1. Thus using @ and

NaB = N—a—y = —Nay = Nya-
By symmetry also 7, = 1,4 and so @ holds.
@ Replacing (a, 8,7) by (—a,—8,—7) we may assume that at least two of the root
(a, By) are positive. Say «, [ are positive. Then v, —«a and b are negative and —v is
positive. Thus {«a 8} is the unique positive pair of the six pairs in @ [l

The preceeding lemma shows that the 7,5 and so also the k,g are uniquely determined
by the n4p’s for a, B € T,

5.2 Chevalley algebras

Given a standard perfect, semisimple Lie algebra L with Chevalley basis C. Define = ZC.
By la,b] € Z for all a,b € C and so restriction of [-,-] to Lz gives a well defined
Z-bilinear map

[',']:L2XL2—>LZ

Note that the Jacobi identity holds and so Lz is a Lie-algebra over Z. Also C is a Z
basis for Ly.

Now let E be an arbitray field of arbitray characteristic and define = E®y Lyz. Note that
map E®RZ — E, (e @ m) — me is well defined and has inverse E - EQ E,e — e® 1. Thus
E = Z®E, in other words Z®E is 1-dimensional vectorspace over E with basis 1 ® 1. Since
tensor products behave well with respect to direct sums we conclude that Cg = (1®c | ¢ € C)
is a E-basis for Lg. Observe that the map

(Ex Lz) x (Ex Lz) — Lg, ((e,a),(f,b)) = ef & [a,b]

is linear in each coordinate and so we obtain a unique bilinear map
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[,]: Lg X Lgp — Ly with [e® a, f @ b] = ef & [a, b]

foralle, f €E, a,be€e€ Ly.

Since the Jacobi identity holds for the subset 1® Lz of Ly and since 1® Ly spans Lg has
an [E-space we conclude that the Jacobi identity holds on all of Lg. Thus L is Lie-algebra
over E. Lie algebras of this form are called Chevalley algebras. Let $7(L) be the subring of
(L) generated by the %, ae® meN.

Lemma 5.2.1 [hz] Let Hy = Z(hqa € IT). Then

(a) [a] Hz=LzNH.

(b) [b] There exists an Z-isomorphism g : Z® — Hy with g(&) = he for all a € ®.
(¢) [c] ha € Hz for all o € ®.

Proof: @ Since (zq,hg | @ € ®,5 € II) is a K basis for L and a Z basis for Ly, we see
that H N Lx = Hy.

@ Let g be the restriction of the K-isomomorphism H* — H,a — t, to Z® (See before
2.11.6). Then for a € @, f(&) = ts = ho and so f sends the Z basis (a | « € II) to the
Z-basis (ho | o € II) of Z. Thus (b)) holds.

Let o € @, then h, = f(&) € Hz. O

Proposition 5.2.2 [lz invariant| Let L be a standard Lie algebra with Chevalley basis
C=(za,hg|laec®,Bell). Let m e Zy and o € ®. Then

zp _ —(a,f)ra  ifm=1
(a) [a] !*hﬂ—{o if m > 1.
R, if 6+ma=0
o ) -, if 6+ma=a«a
(b) [b] S ap = (" e f @£ B+ ma €D
0 ifO0#B+mag¢d

In particular, Lz, is invariant under Uz (L).

Proof: @ To % hg = [Ta,hg] = —[hg,2a] = —(@, B)Tq. Since [zq4,74] = 0 concldue
%*hﬂzforallm>1.
(]E[) If B+ ma =0, then § = —ma and so m = 1. Also [z, Z_a] = ha.
If 6+ ma = a, then § = (1 —ma) and so m =2 and = a. Also
z? 1 1

i T _o = 5[1‘0“ ha] == 5((1,6{)1‘& = —Tq-
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If a # b+ ma € @, then o # +8 and m < (fB). We claim that % *xg =
i(ra/;:m)xr3+ma. Clearly this is true for m = 0. Supppose m > 0 and that its true
for m — 1. Note that r4 gym—104 = 7ag +m — 1 and so

T 1 rag+m—1
ﬁ *¥Tp = m[xaai< aﬁm_ 1 )wa—l—(m—l)ﬁ
1 frog+m—1
— i% ( aﬁm B 1 > (:l:('ra,ﬁ+(m—1)a + 1)x6+ma)
R <Taﬁ+m) 8 ma.
m
Suppose finally that 0 # 5 4+ ma ¢ ®. Then %3: * Xy € Loymp = 0. O
Let E be a field, e € F and ¢ € End(Lyz). Then we denotes the unique endomorphism of
Ly which sends f®1 to ef @ ¢(1) by e® ¢. Bymeach Za- gives rises to an endomorphsim

¢a,m of Lz. Moreover, ¢qm is zero for almost all m and so we can define yo(e) =:=
Y20 €" @ pam € End(Lg). Also put ~o = {xa(e) | e € E}. We will later proof that
Xa(€)Xa(f) = Xe+f and so each xq(e) is invertible and %, is a subgroup of GL(Lg)
isomorphic to (E,+). Denote by Gg(Lz) the subgroups of GLg(Lg) generated by the
Fasa € ®. Gg(Ly) is called a adjoint Chevalley group of type ® over the field E. The
next lemma shows that the isomorphism class of the group Gg(Lz) does not depend on the
choice of the Chevalley basis C. Moreover, it shows that any graph autmorphism of II can
be extended to an automorphism of Gg(Lz).

Proposition 5.2.3 [gel well defined] Fore € {e,}} let L¢ be a standard perfect, semisim-
ple Lie algebra with Chevalley basis C¢ = (z€,hS, | @ € ®¢, 5 € II¢) over K. Suppose that

(s3]

p: ®* — @ is an isomorphism of root systems with p(II*) = IIT and let E be any field. Then
there existe, € {+}, a € ®°, with €, = € and €5, = 1 for a € II* and an isomorphism
o:Gg(Ly) — GE(L%) such that

U(Xa(t)) = Xp(a) (eat)
for all o € £11°

Proof: Let e¢,, o € ®* and 7 : LT — L~ be as in Replacing L by L® and C! by
771(C1) we may assume p = idge, and 2%, = eqzh for all in®*. But then y%(t) = xh(€at),
#eo ="AL, and G := Gg(LY) = Gr(L}). So the lemma holds with o = idg. O

5.3 Konstant Theorem

Let L be a standard, perfect semisimple Lie algebra with Chevalley basis C = (24, hg | a €
®, 5 € II). The goal of this section is to find a Z-basis for 4z (L).
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Let K be a field with char K = 0 and A a K-algebra. For m € N and a € A define

<a> CIta+i—1

m m!

We claim (, ¢ )+ (%) = (a:;bl). Note that both sides are polynomials in a with rational
coefficients. The difference of these polynomials has each positive integer as a root and
therefore is 0.

Let I be a finite set. For a = (a;)ic; € Al and m = (m;) € N! we define

() =1I(x)

Fix some total ordering on ®. For ¥ C ® and m = (ma)acy € N¥ define

™ = H zpe € (L)
acV
where the product is taken in the given order. Also define htm = ) ¢ mq, m! =
[Loco ma! and Ay, = >~y Mmacr. Note thatv Am € QIT and ht m = ht \,,,. Since ® C H* we
have A, € H* and Ay (hg) = > cq Male, ). Put h = (hg)gepi-

Let K[s; | i € I] the ring of polynomials in the variables s;,i € I and coefficients in K.
We say that f € K[s; | i € I] is integral-valued if f(Z') C Z. Kg[s; | i € I] is the set of
integral valued polynomials. Let s = (s;); € I and m € N’. Then (°) is an integral valued
polynomial.

Lemma 5.3.1 [basis for kz| Let I be a finite set, and K a field with charK = 0. Then
((2) | meN) is a Z basis for Ky[s; | i € I).

Proof: By induction on I. If I = () then Kyz[s; | i € I] = Z and has basis 1.

Suppose now that [I| > 1, pick i € I, and put J =1 —i. Let f € Kg[s; | i € I]. Then
there exists n € N and fr € K[s; | i € J], 0 < k < n with f =37 fi(5). Let go = f
viewed as a polynomial in Bls;|. Inductively define g,+1 = g.(s; + 1) — g,(s;). We claim
9r = > e f&(;”,). Indeed this is true for = 0 and by induction

n s; +1 S; . & S;
gr+1 = ka((k‘r) a (kr>) B Z fk<k’ (r+ 1))
k=r k=r+1
Thus completes the proof of the claim. Also by induction each g, € Kyzls; | i € I]. For
r=n we get
gn = fn

and so f, is integral valued. By induction on

fn€ Z(<(Sjrijf‘]) ,m’ € N/.)
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Hence f, (%) € Z{(;}) | m € N'). By induction on n, the same is true for f — f,,(%). It
is easy to see that (m) ,m € NI are linearly independent over Z and the theorem is proved.
O

Lemma 5.3.2 [basis for u0] Let 43 (L) = {f(h) | f € Kz[sa | « € T1]}. Then
(a) [a] ((::L) | m € N) is a Z basis for U9(L).
(b) [b] UY(L) is subring of $i(L) generated by the (’;f), B ell,meN.

(c) [e] Foralla € ®, meN andn €Z, (ho;:{") e 39(L).

(1) 1m e,

is a K basis for U(H). In particular, its linearly independent over Z. now follows from

- Observe that @ implies (]ED

For note that h, is an intergral linear combination of the hg, 3 € II. Thus (ha+") is

m

an 1ntegral valued polynomial in the hg, 8 € I and . ) holds. O

Proof: By the PBW-theorem,

Lemma 5.3.3 [xa eigenvalue| Let m € N® and f € K[s, | a € I). For e = (eq)act €
H" and X € H* define \"(e) = (Mea)acn. Let V be an L-module. Also view (L) is a
L-module via the adjoint action | xu = [l, u).

(a) [y] Let A\ € H* andv € V. Then f(h)v = f(A(h))v.

(b) [a] Let A€ H* and u € Y. Then uf(h) = f(h — M(h))u.

(c) 2] Let \,ue H*, veV, anduecl,. Thenuv € Vyy,.

(d) [b] Fori=1,2let \j € H*l. Let u € Uy,. Then ujus € Ly, 1 ,.
(e) [c] @m € Uyimy-

(f) [d] zmf(h) = f(h = Am(h))zm

Proof: @ Note that f(s) — f(AM(h)) is the unique K-linear ringhomorphism K[s] — K
with s3 — A(hg). This implies ().

() For a fixed A € H* and u € t let A be set of all f € K[s] := K[sq | @ € ® for which
(@ holds. We first show that A is a K-subalgebra of K[s]. Since is linear in f, A is a
K-subspace of K[s]. Now let fi, fo € A. Then

u(f1f2)(h) = fi(h = Nufa(h) = fi(h = A(h)) f2(h = Aa)u = (f1f2)(h — A(R))

and so ffy € A.
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Now let 8 € IT and f = s3. Then f(h) = hg and so

uf(h) =uhg = hgu — A(hg)u = (hgA(hg)u = f(h — A(h))u
Thus sg € A. Clearly also 1 € A and since A is a subalgebra, K[s] < A. Hence @
holds.

This follows from @ and

@ Apply to V = 4 views as an L-module by left multiplication.

Since x4 € Lo < U(L)q, @ holds for ht m = 1. Using @ and induction on ht m we
see that @ holds.

@ Follows from @ and (]ED O

Lemma 5.3.4 [konstant for sl2] Let (x,y,h) be a Chevalley basis for L = sl(K?). Then
for alli,j € N.

miyj_ v (h—1—m\z™
T2 zv( b )i

k-tm=i k+l=j

Proof: By (@ we have
1° 1]  zf(h) = f(h—2)x for any f € K[s].

From [2.5.2|(b) we have
. . - .
2 [ ol =Yoot B (h—(j-1))

The proof of the lemma is by induction on ¢ For ¢ = 0 both sides are equal to v,

7!
Suppose the lemma is true for . Then using and :

j l m
iy Yy (h=1l—m\a™
== ) xu( k ml

|
J: k4+m=i,k+l=j
l -1 m
_ Y Y h—Il—m\z
= 2 .(z!xﬂ—l!(h(ll))% k >m'
k+m=i,k+l=j
l m—+1
B y (h—1l—m—2 T
=D u( k >(m+1>m+1!
k+m=i,k+1=]
-1 m
Y h—1—m—2)\z™
v gt 1)( k >m!
k+m=i,k+l=j

We shift the summation indices: In the first summand we replace m + 1 by m and in
the second [ — 1 by [ and k£ by £ — 1. Thus
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j ! m
i+1£ B Y h—1l—-m-—1 ™
T T 2. u( k ol

l m
B Y h—l—-m-1\=z
= D u<h‘”< ko1 >m'

k4+m=i+1,k+l=j
! m
Y h—l—m-—1 h—l—m-—1 ™
Z N <m( k >+(h l)< k-1 m!
k+m=i+1,k+l=j

Putt=h —1—m — 1. Then it remains to show that

m(}i) +(h—1)<kf1> :(i—|—1)<t;1>.

Since (tzl) = (t) + ( t ) this is equivalent to

k k—1
h—Il—i+1 t [t
i+1—m \k—1) \k
From k£ +m =7+ 1 and the definiton of t we have h— [l —i—1=t+m—-i=t—k+1
and i +1—m = k. So we need to show

()= )

But this follows directly from the definition of (li) O

Corollary 5.3.5 [hb in uz] ) < ilz.

Proof: By is suffices to show that (hf) € Uy for all B € Il and ¢ € N. This is clearly
true for i = 0. Apply to (Lo, L—a)Lie With i = j. So

) 2l ha : 2ty (ha —2m\
() 5 _(i 2 Ui )
m=1
B . h ha—2m\ - . 11 . . £ ha ith < .
y eac ( i ) is an integral linear combinations o (k) with K <i—m >4

and so is by induction on i contained in Uz. So by (*) also (hi") € iz,

Lemma 5.3.6 [xm and tensor| Let I be a finite set and fori € I, let V; be an L-module.
Let U C®, m e NY and v; € V;. Then

x™ z™ v
o &= 2 AQQ Ly i [mi €N D mi =)

el iel icl
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Proof: See Exercise 11.2.1. O

Corollary 5.3.7 [tensor invariant| Let I be a finite set and for i € I, let V; be a L-
module and M; and 7, invarinat subgroup of V;. Then ®i€[ M; is a Uz-invaraint subgroup

of ®i€[ Vi.

Proof: Follows immediately from [5.3.6 g

Lemma 5.3.8 [relatively prime| For 1 <i <d let a; € ®. Let H; =7 < hy | a € D)
and let k € K. Put h = ®hq, € ®dL and suppose that kh € ®d Hy. Thenk € Z

Proof: For 1 < i < d choose a base II; of ® with a; € II;. Then II; is a Z-basis for Z®
and so H; = {hq | oIl} is a Z-basis for Hz and a K-basis for H. Thus @ H; is a Z basis
for @ Hz and a K-basis for ®". Since h is one of these basis vectors we get m € Z. [

Lemma 5.3.9 [konstant for nilpotent| Let U be a closed subset of  with U N —W¥ = ().
Let 8z(V) be the subring of Uz (L) generated by the >%, o € W, m € N. Then

x T
o Imeny)
is a Z basis for Uz (V).

Proof: Let L(¥) be the Lie subalgebra of L generated by the z,,a € ¥ and note that
since W is closed and U N =¥ = (), (24, € ¥) is a basis for L(¥). Also Ug(¥) := KUz(P)
is the K-subalgebra of (L) generated by L(¥) and using the PBW-theorem we see that
(x™ | m € N¥) is a K basis for Uk (V). Thus also

m

T
(= |meN)

is a K-basis of Ug (V). Let u € Uz(¥). Then u =} v km%, where almost all k&, = 0.
We need to show that k,, € Z for all m. Define d = ht(u) = {maxhtm | k,, # 0}. By
induction on d it sufficed to show that k,, € Z for all m with ht m = d. So fix n € N¥ with
kn # 0 and htn = d. Let I = {(a,k) | @« € U,1 < k < ny} and for i = (a, k) € I define
a(i) = a. Put

I
V= ®x—a(i) S ®LZ, and h := ®ha(z)

i€l i€l
Note that ® C is a Z basis for @' Lz and K-basis for @’ L. Let # = {hs | 8 € I} and
A= ®I H. So A has K basis ®I ‘H. Let B be the K-subspace spanned by the remaining
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basis vectors ® C\ ®' H. We compute the projection w of u* v onto A. For this we first
investigate % x v for m € N¥ with htm < d. By

vm

E*U:%*®$—a(z Z{®7*$_a‘mZEN m= ZmZ}

el el el

Consider the summand z := @),¢; % * T_o (). 1f m; = 0 for some i € I, then f;:i *
T_q@) = 1 xT_44) = T_o) and so 2 € B. Suppose that m; # 0 for all ¢ € 4. Since
d>htm =3, . htm; and |I| = htn = d we see that htm; = 1 for all 4 € I. Hence there

exists (i) € ¥ with m; = (0(;)8)sew. That is % = zg(;) and s0

Z—®l’ﬂ —a(z

el

Since [Zg(), T—a(i)] € La(i)—a() We conclude that z € B unless 3(i) = a(i) for all i € I.
Now if 5(i) = (i) for all i € I, then z = h and

m= ZmZ Z 0)8)pev = (ng)sew = n.

el el

Therefore 7+ v € B for all m # n, while for m = n the projection of ' % v onto A is
h. Asu=> k: o o7 we conclude that the projection of u * v onto A is ky, h

By 5 - ® Ly is invariant under 7 (L) and so u v and the projection k,h are in Ly.
Thus |5.3.8 implies k,, € Z. O]

We call any product in any order of elements of the forms % and f(h), where m € Z,
a € ® and fcKyz[s] a monomial of height the sum of the m/'s.

Lemma 5.3.10 [xaxb] Let o, € ® and i,j € N. Then

z! »’Uig ! ad,
.f?f‘ = l" + an integral linear combination of monomials of height less than i+j.
il ! gt !

Proof: If o = 3, thisis obvious, if « = —f this follows from So suppose a # +5 and
let ¥ = (Na+Np)NW. Then U is clearly closed and since a and f3 are linearly independent,

W N —W¥ = 0. Choose the ordering on ® such that § < a. By|5.3.9 Za 8 Y N km%’:

n! m!

with k,,, € Z. From the proof of the PBW theorem we have km = 0 for all m with ht m > i+j

and there exists a unique summand of height 7 + j, namely ]‘,’ a;, . g

Theorem 5.3.11 (Konstant) [konstant]| Let L be standard,perfect, simisimple Lie al-
gebar with Chevalley basis C = (xa,hg | a € ®,8 € II). For e = £+ put 45 = Uz (D).
Then
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(a) [a] (2= ( h )mm_ | my € N®" mg € NI m_ € N® is a Z basis for tz and a K-basis

m4! \mg/ m_!

for sl

(b) [b] Lz =i UpLl; .

Proof: () By all monomials are in 7. So we just need to show that every monomial
is a an integral linear combination of the monomials - :! ( 77];0) ——. Monomials of height

0 are handle by [5.3.2|f). By [5.3.10] and [5.3.3|[) two monomials with the same factors
but different order of multiplication only differ by a integral combination of monomials of

) s i+,
smaller height. Also %% = (Z? )fj—j, and so we can combine factors. Induction on the
height of the monomials now completes the proof of @

(]E[) Follows immediately from @

5.4 Highest weight modules

In this section L continues to be a standard, semisimple Lie-algebra with Chevalley basis
C={za,hg| e ®bell). Let L* =3 _4c Lo and B = LT & H. By the PBW-theorem
we may view U(B) as subalgebra of L((L).

Lemma 5.4.1 [structure of ]

(a) [a] LT is nilpotent.

(b) [b] L+ =[L* H]=[L", B]=[B,B].
(c) [c] B is solvable.

Proof: () Fori € Zlet Ly = Y {Lx | A € ®U{0},ht X < i. Since [Ly, La] < Lyta we
have [L;, L] < L;;1. Also L; = 0 if i > ht « for all a® and so (@) holds.
(b) [La, H) = Ly for al a € ® and so [L™, H] = 0. Also [H.H] = 0 and so (b)) holds.

Follows from (@) and (b)). 0

Definition 5.4.2 [def:maximal vector| Let V be an L-module.
(a) [a] A maximal vector for L on V with weight X € Ay (B) is a non-zero vector vt € Ls.

(b) [b] V is called a cyclic L-module with heighest weight X provided that there exists a
maximal vector with weight \ which is not conatined in any proper L-submodule of V.

Let A € A(L) = Homp(B,gl(K)). Since gl(K) is abelian, LT < ker X and so A is
uniquely determined by its restriction A to H. Conversely, if A\ is a weight for H, then
A: L — gl(K),l+h — A(h) is a well defined weight for H. In particular, a maximal vector
for L on V is just a weight vector v+ for H on V with LTv* = 0.
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Lemma 5.4.3 [weight for b] Let V' be a standard L-module. Then V' contains a maximal
vector. In particular, any standard, simple L-module is cylic and V is the direct sum of
cylic, simple L-modules.

By there exists a 1-dimensional B submodule V; < V. Then any non-zero vector in
V1 is a maximal weight. This clearly implies that standard simple L-module is cyclic. By
Weyl’s Theorem[2.9.3] V' is the direct sum of simple L-modules and so all parts of the lemma
are proved. O

Lemma 5.4.4 [structure of cyclic modules| Let V be a cyclic L-module with mazimal
vector vt of heighest weight \. Then

(a) [a] V =Uvt =U"vT.
(b) [b] V =B,ca, ) Va-

(c) [c] Let p € Ay(H). Then = X —§ for some § € NII and V,, = K(Z;vt | m €
N(I)_vé = _A(m)>

(d) [d] Vy=Kot and dimVy_s5<|[{m € N® |§=-A(m)}| < .

(e) (€] Let W be an H-submodule in V. Then W = y WV,

pEAy (H

(f) [f] Any nontrival quotient of V' is cylic with highest weight A

(9) (8] V has a unique mazimal L-submodule W, W contains all proper L-submodules and
V/W is a simple.

Proof: @ vt is a L-submodule of V' containing v* and so the definition of a cyclic
module implies that V = v+, Since Kv™ is invariant under B, it is also invariant under
U(B) = U%U*. So

V=t = 40Ut =y vt =

and so @ holds.
For § € NII put V(§) = K(25v* | m € N*,§ = —A(m)). Then by [.3.3ff), [l
V(6) < Va_s. Thus using (a) we have

V=Y V<> Vs P
0eNII deNT nEAy (H)
Thus @ and (d) hold. If m € N? with A(m) = 0, then m = 0. So V), = V(0) = Ko™
and @ holds.
By (]ED, V is a semisimple L-module. So by also W is a semisimple H-
module and so @ holds.
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@ Let W # V be a L-submodule. Then v™ + W is a maximal vector in V/W with
weight A and is not contain in any prober L-submodule of V/W.

Let U be any proper L-submodule. Then v ¢ U and sicne V), = Ko™, X is not a
weight for H on U. Hence by @, A is also not a weight on the sum W of all proper
L-submodules. Thus W # V and holds. O

Corollary 5.4.5 [unique maximal vector| Let V be a L module. Fori=,1,2. let v; be
a maximal vectors with weight \;. If V is simple or if V is cyclic with respect to v1 and
v+ 2, then Ay = Ay and Kvy = Kuos.

Proof: If V is simple, then V is cylic with respect to v; and ve. So we may assume the
latter. Then by - applied to v = vy, A — A2 € NII. By symmetry, also As —\; € NIIL.
Thus A\; = Ay and Kv; = V), = Kuvs. [

Lemma 5.4.6 [ul free for ub] View U(L) as a right-t4( B)-module via right multiplication.
Then (L) is a free l(B)-module with basis (x™ | m € N®").

Proof: By the PBW-Theorem xm+hm0mm,m+ € N¢+,m0 e N, m € N® is a K-
basis for $(L). Also 2™ h™ m* € N®" mg € N is a ${(B). Thus every element in ${(L)
can be written as ) o bpa™ for uniquely determined by, € {(B). So (z™ | m € N®T)
is an 4U(B)-basis for U(L). O

Lemma 5.4.7 [induced]| Let A be a ring (with 1), 1 € B < A and W a B-module.
Put V. = AQg W and define f : W — Aw — 1®w. Then V is an A-module via
ale ® w) = ae @ w. f is B-invariant and if V is an A-module and f : W — V is B-
invariant, then there exists a unique A-invarinat g :V — V with go f = f.

Proof: Fix a € A. Then map (e,w) — ae ® w is Z-bilinear and B-balanced and so we
obtain a welldefined map A x A ®p B - A ® B with (a,e ® w) — ae ® w. It is readily
verfied that this is an action. Also for b € B and w € W

bf(w)=b(l®w)=bw=1b@w=1® bw = f(bw)

and so f is B-invariant.
Given f : W — V. Define Ax W — V, (a,w) — af Thus is Z-bilinear and B-balanced
and so we obtain a unique g : V — V,a® w — af(w). Clearly g is A-invarinat, and

gof=1 O

Proposition 5.4.8 [highest weight modules| Let A € H*. Let D(\) be the B-module,
such that D(A\) = K as a K-space, Ik =0 and hk = X(h)k for alll € LT, h€ H and k € K.
Put M(/\) = L((L) ®u(3) D(/\)
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(a) [a] 2™ ®1,m € N® is an K-basis for M()).
(b) [b] M(X) is a cyclic L-module with maximal vector vt =1® 1 and highest weight \.

(c) [c] LetV be any cylic L-module with mazimal vector v and heighest weight X. Then
there exists a unique L-invariant map g : M(\) — V with g(vt) = oF. Moreover g is
onto.

(d) [d] Let W(A) be the unique mazimal L-submodule in M(X). Then any simple L-module
with a mazimal vector of highest weight X is isomorphic to V(X) := M(X)/W(A).

@ follows from

(b) Since I(\) = Uv™, v is not contained in any proper L-submodule. Kvt = 1® D())
is ismomoprhic to D(\) as B-module. So v is a maximal vector with weight \.

The existence and uniqueness of ¢ follows from Since g(I(A) is a submodule
of V containing v, g is onto.

@ Let V be any simple L-module with a maximal vector of heighest weight A. Then V is
cyclic and so by () there exists an onto L-invaraint maps g : I(A\) — V. So I(\)/kerg = V.
As V is simple, ker g is a maximal L-submodule. So by [5.4.4|[g), ker g = W (X). O

Definition 5.4.9 [def:integral| Let A € H*. We say that X is integral if A(hy) € Z for
all a € ®. A is dominant integral if an only if A(he) € N for all « € &,

Note that the roots system ¢(®) = {ha | a € ®} < Q(hy | @ € ®) is isomorphic to ®. In
particular we have natural bijection between the ( domminat) integral weights for ® and
the (dominant) integral weights for H.

Theorem 5.4.10 [standard simple] Let A\ € H*. Then the following are equivalent
(a) [a] V(A) is finite dimensional.

(b) [b] A is dominant integral.

(c) [c] dimV, =dimV,,, for allw € We and p € H*.

(d) [d] Av(H) is invariant under We.

(e) [e] Av(H) is finite.

Proof: Let v be a maximal vector with weight X in V := V().

()= (b): Let a € ®* and put So = (La, L_a)rie = sla(K). Let 71 < To < V()) be
Sq-submodules such that v € T \ 71 and T} is a maximal S,-submodule. Let ¢t = v7T} <
T :=T/T5. Then t is a highest maximal vector for S, on T with weight A |g . Since T is
a finite dimensional simple S,-module implies that A(hy) = dimV —1 € N. So A is
dominant integral.

@:> : Suppose now that A is dominant integral. Let 8 € ®1 define mg = A(hg).

So mg is a positive integer.
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1 1] 2"t =o0.

Suppose w := ng+1v+ % 0.. Then by 5.3.3@), w is a weightvector for H with weight
A—2mgy18 # A Let 8 # o € II. Then z, commutes with z_g and annihilates v™. Thus
T also annihilates w. By ( applied with i = mg + 1) also x5 annihilates Since
LT is generate by the z,,a € II as a Lie-algebra, we have LTw = 0 and w is a maximal
vector of weight unequal to A. This contradiction to m proves (|1°)).

2° [2] Let So = (LoyL_o)rie- Then V is the union of the finite dimensioal Se-
submodules.

Let W be the union of the finite dimensioanl L-submodules in V. From and
we have that vT is a contained in a finite dimensional S, module and so v™ € W.
Let T be any finite dimensional S,-submodule. Since L is finite dimensional, also LT is
finite dimensional Since S, LT < (LS, + [L, So])T < LT, LT is S, invariant and LT < W.
Thus W is an L-submodule. Since V is cylic and v € W,V = W.

So hold. Since W (®) is generated by the w,, a € II, we may assume that w = w,

for a € II. From and 2o and x, are locally nilpotent. now implies that
holds.

:> @: is obvious.

(D= (¢):

Let u € Ay (H). By B.5.5|fa) there exists w € Wg such that w(p) is dominant. From
(d) we have w(p) € Ay (H). Thus by p.4.4(d), w(p) < A. B.7.19(d) implies that there are

only finitely many possiblities for w(y). Since W is finite (¢ holds.

= @:

From (E[) and implies that dim V' =3 o\ () dim V), is finite. O

Proposition 5.4.11 [all standard l-modules] Let Lambdat be the set of dominant in-
tegral weights for H.

(a) [a] For each standard simple L-module V' there exists a unique X\ € AT with V = V(A).

(b) [b] For each standard L-module V there exists a unique m € @i+ N with

Ve B voym

AeA+

Proof: (g) By V is cylic. So by V = V(A) for some A € H*. By A is
unique and by A is dominant integral.
(o) By Weyl Theorem V is the direct sum of simple L-modules. So by (@) theres

exist m € @i+ N with V=P, 5+ V(A)™.
Let A € A*. From my is the dimension of Cy (L™)y. So m is unique. O
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Lemma 5.4.12 [symmetric powers] Suppose L = sl(K?), ® = {a} and X the dominant
integral weight with A = (&)*. Then for alln € N,

V(nA) = S™(V(N).

Proof: Let v be a maximal vector in V := V(A). Then v" € S™(V) is a maximal vector
with weight nA. Let X = {(L)v"™. Then by X has a unique maximal L-submodule Y’
and X/Y =2 V(nA). From V is 2-dimensional and V' (nA) is n + 1-dimensional. Thus
dim S™(V) = (2+271) = n+ l-dimensional. Hence X = S™(V), Y =0 and V(n\) = S™(V).
O

5.5 Modules over arbitary fields

Lemma 5.5.1 [delta polynomial] Let I be finite set, D a finite subset of Z! and d € D.
Then there exists f € Qz[s; | i € I] such that for all e € D

fa(e) = dge.

Proof: Choose k € N such that |d; — e;|legk for all e € D and ¢ € I. Define

= di R (—si+ di+
f:H<s k+><s+k+>

el
Then clearly f(d) = 1. Let d # e € D and choose i € I with d; # e;. If e; < d; then
0< —e;+di+k <k and so (_eizd#k) =0. If d; < e;, then 0 <e; —d; + k <k and so
(Sﬁiﬁk) = 0. In any case f(e) =0. O

Lemma 5.5.2 [decompose m| Let V be a finite dimensional L-module and M a U°Z-
imwvariant subgroup of V.. Then

M= @ M0V,
eV (H)

Proof: Let m € M. Then m = ZHGAV(H) m,, with m, € V,. We need to show that
m, € M for all p € Ay(H). Let D = {uf(h) | p € Ayv(H)} C Z". By there exists
JeKz[sq | oIl] with f(u!(h)) = 8,,. Then by|5.3.3((b)

f(h)m = Zf(h)mu = Z f(ﬂl(h))mu = Zépumu = Myp.
1 1

I

Since f(h) € UY this imples m, € M as desired. O
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Definition 5.5.3 [def:lattice] Let V' be a vector space over the field E and R a subring of
E. Then an R-lattice in V is a free R-submodule M in V such that the map E @ RM —
V,e®m — em is an isomorphism. A lattice in V is a Z-lattice.

Observe that M is an R-lattice in V iff there exists a E-basis B for V with M = RB
and iff M is a free R-submodule of V' such that any R-basis for M is an E-basis for V.

Lemma 5.5.4 [invariant lattice| Let V' be a standard L-module and that L is perfect and
semisimple. Then there exists an Ugz-invariant lattice in V.

Proof: By Weyl’s Theorem V' is the direct sum of simple L-modules an so we may
assume that V is a simple L-module. Let v be a maximal vector with highest weight \.
Put M = $lzvT. Let f € Kgz[s]. Then f(h)v™ = f(A(h))v™ € ZvT. Also v = 0. This
implies that M = 4, v* and

1° [1] the projection of M onto Vy is Zv™.

Since V), = 0 for almost all u we have z(m)vt = 0 for almost all m € NP*" and so M
is a finitely generated Z-module and so is free. Since V is simple

2° 2] V== (Kig)v=K(Uzv) for all0 #v e V.

In particular, KM = V. Thus the K-span of any Z-basis of M is V. It remains to
show that any Z-linearly independent subset is also linearly independent over K. Suppose
not. Then there exists a Z-linearly independent subset M in M of minimal size such that
Y mecar kmm = 0 for some k,, € K not all zero. Next we show

3° [3] (km, m € M) is linearly independent over Z.

Suppose not. Then Y npky, = 0 for some n,, € Z, not all zero. Pick a € M with
ng 7 0. Then

0= na(z kmm) — (Z Nnkm)a = Z km(ngm — npa)

a#meM

But the nym — nma,a # m € M are linear independent over Z, contradicting the
minimal choice of M. Thus holds.

For v € V and let vy be the projection of v onto Vy.let m € M. By , (um)y # 0 for
some u € Uz and by (19, (um)) = nyvt for some 0 # n,, € Z. Thus

0=0y=0 _kmm)rx = kmmr=>_ kpnmv®

and Y kymny, = 0, a contradiction to (3°). O
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5.6 Properties of the exponential map

Lemma 5.6.1 [e ad y| Let K be field with char K = 0 and let A be an associative K algebra
with a 1. Let x,y € A

(a) [a]

(@) [a) = 3 2,0

| | |
n. 2. .
i+j=n J

n

W) ] o' = 3 iy (7)o ad @

& i
i+j=k
(b) [b] Suppose that x is nilpotent.

(a) [a] adx € End(A) is nilpotent.

(b) [b] e¥(y) = e"ye .

(c) [c] Ify is invertible, then ye®y =1 = vy

(c) [c] Suppose that z,y and [z,y] are nilpotent and that [x,y] commutes with x and y.
Then

(a) [a] z+y is nilpotent.

(b) [b] ety = eﬁeye—é[x,y]

@ Let I, and r; be endomorphism of A obtained by left and right multiplication by x.
Then ad (z) = I — . Since A is associative, [, and r, commute. So follows from the
binomial formula. Similarly r, = I, — ad (x) implies

and follows from @ (b:c) follows from ya"y ! = (yaxzy=!)".

H Put z = —%[.’L‘, y|. The first prove that

ety 2yl
R DI 1w
i+j+2k=n

This is true for n = 0. Since [z,y] commutes with z we have ad (z)?(y) = 0 for all j > 1.
So by (a:b) yat = z'y — iz [z, y] = 2’y + 22" 12, Assume (*) is true for n — 1. Then



122 CHAPTER 5. CHEVALLEY LIE ALGEBRAS AND GROUPS

(@+y)" _ vty alyl F
n! N Z il j! k!
i+j+2k=n—1
B 1 CL'H_lyj zk’
= . X aim
i+j+2k=n—1

1 :L,iyj-l-lzk
a T

1
" it oken—1 J:
9 i1 g k1
=y =2
n oGl k!
i+7+2k=n—1
o n il g1 k!
i+j+2k=n
oyl o
i+j+2k=n
So (*) holds. But (*) implies both and (lc:b)). O

5.7 Rational functions

Definition 5.7.1 [def:rational] Let J be a finite set, V,W be standard K-spaces, M and N
lattices lattice in V and W, respectively and A and B an Z- basis for M and N, respectively.
Let f: V xK¥ — W be a function. We say that f is rational with respect to M and N if
there exists integral polynomials

fo € L]sq,a € A;sj,j € J;55,5 € J],
for b € B such that

al;Kj,] € = b(Ka,Q € iR, 1€ J5k: 7,7 €
fOY keaskj,5€J) fo(k Ak g€ J;k;tje )b
acA beB

forallk, € K,a € A and k; € KE j € J.
Definition 5.7.2 [def:fe| Let E be a field.

Let f: A — W be a rational function as in Let VE = E®y M, AE = VE x E¥/,
WE =E ®7 KN. Thenf® : AE — WE is defined by

f]E(Zeaéba;ej,j eJ) :Zfb(ea la€ Asej,jeJ)®b
acA beB

for alle, € K,a € Ae; ekt jeJ
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Lemma 5.7.3 [basic rational| Let V be a standard K-space with Z-lattice M.
(a) [a] Letm; € M, 0<i<n. Then the function K — V,t — > t'v; is rational.

(b) [b] The map End(V) x V. — V,(g,v) — g(v) is rational with respect to the lattices
Endz(M) x M in End(V) x V and M in V.

(c) [c] The map Endg (V) x Endg (V) — Endg(V), (f,9) — fg is rational.

(d) [d] SupposeV is an L-module and M is Uz, invariant. Then the map K — End(V),t —
Xa(t), is rational for all o € ®.

(e) [e] The map L x L — L, (a,b) — [a,b] is rational.
(f) [f] Compositions of rational function are rational.

T

Proof: Readily verified. (EI) for example follows from @) applied to m; = Z.—}!", "M =
Endz(M)"” and "V = End(V)". O

Proposition 5.7.4 [rational equation| Let f,g: A — W be a rational function. Suppose
that f(a) = g(a) for alla € A. Then also f%(e) = g¥(e) for all e € E.

Proof: Put h = f — g. Then h is rational and h(a) = 0 for all @ € A. We can choose
n;j € N,j € J) such that for all b € B,

iLb(sl,ZGAUJ) —h(sa,aeAsj,jeJ,s Hsn’
J€I
is in a integral polynomial in the s;,l € AU J. From h(a) = 0 for all a € A we get that
hb(kl,l e AU J) =0 for all 0 # k; € K. Since K is infinite, this implies that hj = 0. Let
h = hlles k‘JJ. From hy, = 0 we get h® = 0. Thus 0 = hE(e) = hE(e )HJEJ ;7 for all
e = (viej,j € J) € A% Hence also hZ(e) = 0 and fZ(e) = g% (e). O

We call an equation f(a) = g(a) as in the preceeding lemma a rational equation.

5.8 Relations in Chevalley groups

[sec:relations]

In this section K is a standard field and E is any field. Let V¥ be a finite dimensional
vector space over K and LK a perfect, semisimple Lie-subalgebra of gl(V®). Let CK =
(2% h]K | @ € ®,8 € ) be a Chevalley basis for L. Let M be an iz invariant lattice in

i K
VE. Let V = E@ZML EwM, % =1®% € Endg(V). For a € ® and ¢ € E let

Xalt) = xa (1) = 152 5 € End(V). Also let x™ o (t) = xa*"(t). #a = {xa(t) |t € E}
and G = (Ao | a € ®). We view A(®) as a subset of (HX)*. For peAP)let V, =ExQM,.
In this section we establish some relations between the various x,(t).
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Lemma 5.8.1 [automorphism]
(a) [a] Xa(®)Ixa(—t) = x4 () for alla € ®,t €E andl € L.

(b) [b] L is invariant under G in the action of G on End(V') by conjugation.

Proof: () If E = K this follows from [5.6.1|(b:a)). Observe that the equation is rational in
¢t and I. So[5.7.4]implies that (a)) holds for arbitrary E.
By (b), L is invariant under all x4(t) and so also under G. O

For g € G and [ € End(V) we write g * [ for glg™t. We have
ekl = e "le® = e = Y0 ar () = 7% I x| so this is consistent with our

" -notation for the adjoint action of £{(L) on L. Also observe that xa(t) * [ = k).
For o, f € ® and ¢ € N with 8 +ia € ® define mqg; by f—‘:* * T = MaBiTh+ia. NOte that

by Mqp; 1S an integer.
For a,b in a groups G define [a,b] = a~ b~ lab.

Theorem 5.8.2 (Chevalley Commutator Formula) [commutator formula] There ez-
ist integers cqpij such that for all o, f € ® with o # B and all t,u € E

[xs(w), Xa®)] = [ Xiatis(casii(—t)u?)
4,7>0

where the product is taking over all postive integers i and j for which ia + jB is a root, in
any order which is non-decreasing in 1 + j. Moreover,

Caﬁil = Mapi
Capj = (=1)mgq,
1
Oa632 = gma—i—ﬁ,cﬁ

2
Coz523 = _gma+,8,a2

Proof: Both sides of the commutator formula are rational functions in ¢ and » and so by
we may assume that E = K.

Sap
1° 1] xa(®)*z5=>  Magit Tatia
=0

This follows immediately from the definitions.

Sap
2° [2] Xa(t) * Xs (u) = exp <Z Magi t'u xﬁ-‘ria) .

1=0
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By [5.6.1)(b:c)) xa(t) * xs(u) = xa(t)e® x3' = exp(xa(t)uzsxa(t) ™) and so (2°) follows

from (|1

Let ¥ = (o, f)z. Then U is of type A; x Ay, Az, By or G2. The easiest case is A;
and As. Then a + f is not a root and z, and g commute. Then also x.(t) and xg(u)
commute. Actually this is just a special case of

3° [3] Suppose that neither o+ 28 nor 3a+ 283 are roots. Then

SaB

Xa(t) * Xs(u) = H Xia-t5(Magpit ).
1=0

By inspection of ¥ we see that the condition on « and 8 just says that o+ j3 € ® for
t,J > 0 implies that j = 1. In particular, the z;,43, ¢ € N commute with each other and so

follows from .

4° [4] Suppose that a + 2 is a root and V is of type By. Then
Xa(t) * Xp(u) = Xs(1u)Xa+s(Mastt) Xatr2s(Msaztu?).

From , Xa(t) * xp(u) = exp(uzg + koptuzaig).
Put x = uxg and y = k,gtur,yg. Then
[x, y] = kaﬁkﬂ,oﬂrﬁtu?xuwr?b'

So [z, y] is nilpotent. Also neither av+ 35 nor 2ac+ 30 is a root and [z, y] commutes with

v and y. So by B.6.1jfc:H)

Xa(t) * xp(u) = €
—  TeVe 3Tyl

T+y

— eua:ﬁekagtue—%kaﬁkg7a+btu2:va+25
= XB (U)XOH—,B (kaﬁtu)XoH—Qﬂ (mﬁo&tu2)

5° [5]  Suppose 3o+ 23 is a root (and so V¥ is of type Ga). Then xq(t) * x5(u) =
1
Xﬁ(u)Xoa-‘rﬂ(ka,B tu)X?a—I—B (maﬁQ t2u) X3a+p (ma63 t3u) X3a+283 (gmoﬁ-ﬁﬁﬂ t3u2) :
First observe that

®NZ {a, B} = {a+ 8,2a+ 3,30 + §,3a + 23}

In particular, s,g = 3. Put x = Z?:o MaBi tiux5+ia and y = map3 t3u Z3q+43- Then

[ffa y] = kB,SaJrB Map3 t3u? T3a+283
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Thus [z, y] commutes with x and y and so by 1' Xa(t) * xe(u) = Y = eTeVealm Y],
Hence

1
(%) Xa(t) * xt(u) = " X3a+4b(Maps3 t3“)X3a+26(_§kﬁ,3o¢+ﬁ Mapat’u?).

Put 2 = Zz‘l:o Magi tiux5+ia and § = mapo t2u T2a+4- Then x = + gy and

[, 7] = Kot B.20+0Map1 Map2t u® 34495

So [Z,y] commutes with Z and §. So by 1D allows us to compute e* = e el 3120
(

and (*) gives

- 1
Xa(t) * xg(u) = exp(Z) X2a+p(Mag2 t*u) X3a+25(_§ka+3,2a+5 M1 Magal u?)

1
X3a+b(Map3 t3“)X3a+2,8(_§kﬁ,3a+ﬂ Map3 °u?)
(**) = X8 (U)onJrﬁ (maﬂl tu)X3a+b(ma53 t3u)

1
X3a+25(*§(/€a+5,2a+5 Mapl Map2 + kp 3045 Maps) ou?)

We now compute each of the summand in the parameter for x3,425. Using kiﬁ =
(£1)2 = 1 we have

1
(* * *) ka+ﬁ,2a+ﬁ Mag1Map2 = ka+ﬁ,2a+ﬁkaﬁ§ka,3ka,a+,3

1
= - 5 ka—i—,@,a ka—l—ﬁ,?a—i—,ﬁ

= —Ma+tB,a,2
Also xglJrﬁ = (koplTa,25))? = [Ta,25)? and thus
2Mo4Ba2T30428 = [TarTs]” * Ta
= [lzg, zal, [[28, Tal, 7al]

Put v = [[z8, %], Ta] € Laa+s. Then [x5,u] € Lagi2s = 0 and so

(8, o], u] = [23, [Ta, ul] = (xpTa) * u.
Since u = [T, [Ta, 7p]] = 22 * 23, and so

2ot g 0,2 T3at2s = (TpTh) * L5 = 6Ty % Maps T3as s = 6k3 3048 Maps

Hence

1

(x % x%) kg 3qt+8Maps = gMatp a2
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Together with (***) we see that the parameter of x3412g in (**) is

1 1 1
—5(—1 + g) Mot gzt u? = 3Mats t3u?

Hence follows from (**).

6° [6] Suppose that 2o+ 33 € ® (and so ® is of type Ga). Then xq(t) * xg(u) equals

2
X8(1) Xa+8(kap 1) Xat28(Magz 1) Xa+38(—Mgas tu®) x2ar38(— gmaw,ﬂ,ﬂzug)

This time we have

®NZ {a,f} = {a+ B,a+28,a+ 36,2 + 35}
By with the roles of a and § interchanged

XB (u) * Xa (t) = Xa (t)Xa+B(k6aUt)X2B+a (m,é’aQ UZt)

1
X38+a(Mga3 ugt)X3B+2a(§m5+a,B,Q ut?)

= Xa+ﬁ(k6aUt)X2,B+a (mBaZ 'U'Qt)
1
(Xa (t) * X36+a (mﬁai’) ust)) X36+2a (gmﬁ-‘rcx,ﬂﬂ u3t2) Xa (t)

= Xats(ksatit) X2p+a(mpaz u’t)

1
X38+0(Mpa3 u3t) X35+20((Ka35+1a Mpas §Mﬁ+a,/3,2) ut?) Xa(t)

By (****) ko,38+a MBas = %m5+a,5,2 and so the parameter of x3342, in the above
equation is Zmgia 0. Multiplication with yz(—u) from the left, with xo(—t) from the
right and replacing u by —u gives .

7° 7] Suppose that 2a + 3 € @, @ is of type Go and neither 2o + 38 nor 3a + 2 are
in ®. Then

Xa(t) * xp(u) = x5(U) Xats(kap tw) X2a+8(Mas2 °1) Xat28(Mgaz tu?)
Observe that ® N Z1{a, B} = {a+ B,2a + B,a+ 2.} So sa3 = 2. Let

; 2
r = § Magit UTjath = T3 + Magat UL+ 8
=02

and
Y = Map1tuTotg = KaglUTayg.
Then )
[, y] = k57a+5ka5tu2ma+25 = —2§kﬁ,a+bkaﬂ$a+25 = —2mBa2Tas
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So [z,y] commutes with z and y. Also the two summands of z commute. Thus (7°)

follows from and [5.6.1)(c:b)). O

Put A= A(®). Let ®° be the set of weights for HX on VK, viewed as a subset of
A < QII. Let
°={peQ®|(p,p) € ZVp € 2°}

and note th%t 7 C .
For p € ®° and k € Ef define t,(k)e GLg(V) by

to(k)v = kPt
whenever p € ®° and v € V,,. For aw € ® put hq(k) = ts(k). Also put
wa (k) = Xa(k)X-a(—k"")xa(k).

Lemma 5.8.3 [chi and tensor| For i = 1,2 let VX be a standard L* modules with a
Uz -tnvariant lattice M;. Then

(a) [a] xa"®ME(t) = xa" (1) @ X3 (t) for alla € @, t € E.
(b) [b] thrOM2E ey = DB (k) @ 32 (k) for all p € Z®, k € EE.

@ The equation is rational and so we may assume that E = K. Since x, acts as z, ® 1 +
1® x, on Vi ® Vo we have

X§41®M2(t) _ et(za®1+1®xa)
— etma@)lel@tma
= (W enexi®(1)
= Xa't(t) @ x4 (t)
(b) This follows from (V{€),, ® (Va%)u, < (VI @ VE) 1 O

Theorem 5.8.4 [s]2 relations] Let a, 3 € ®, p € ®° and k € EF.

(a) [a] Let € ®° and v € V). Then there exists v € V,,, () independent from k such that

wa(k)v = kW)
(b) [b] ha(k) = wa(k)wa(l)~".
(c) [c] wa(k)*h=wu(h) for allh € H.

(@) [d] walk)*zp = cop kP Tun(p) Where cop = £1 is independent from E, VX and k.
Moreover cog = Cq,—g and coq = —1
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(e) le] tp(k) * 20 = £39(k) (za) = kP,

Proof: All the equations are rational. So we may assume K = E.

@ - : Note that H = H, @ ker a. From z,, *x kera@ = 0 we conldue that x, (k) and
wa (k) fix each element in kera. So we may assume that L = s[(K?). V is a direct sum
of simple L-modules and we may assume that V' is simple. From if @ and @ hold
for Vi and V4 then also for Vi @ Va. So if we (a)) - (d) hold for V(X), where A € A(®) with
A(@) = 1, they also hold for ®" V()\) and V(n\) = S™(V(A)). So we may assume that
V =V()A). By V(XA) has a basis vg and v; such that the matrices for x,, ho and x_,

are
N 0 1 b o 1 0 R 0 0
@ 00 * 0 -1 - 10

In particular xi =0 and so xa(t) =1+ tz, and x_o = 1 + tx_,. Hence

wo(p 1) e () )

and

The weight spaces for H on ®° are Kvy with weight A and Kv; with weight —\. Thus
@ holds. Also this shows
k0
ha(k) - <0 k,‘_l)

wa (k)wa(1) ™" = (_;S—l ]S) (2 _01> - <IS k91>

So holds. As
Wea (k) he < <-1?1 1’“) & h_qwa(k)

holds.
@) From we have w (k) * 7o = wX(k)(z4). So from by @ applied to the adjoint
module

wa(k) *xg = cagk(ﬂ’d)mwa(ﬁ)
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for some cog € K. Observe that 7 is invariant under xo(1), x—a(—1) and wa(1). Thus
Cap € 7.
Conjugating the equation [z, 2_g] = hg by we(1) and using (c) we get

CapBCa,—BMuw, B — hwa(ﬁ)

Hence cogca,—g = 1. As cqp and c,, g are both integers, this implies cog = cq,—g = £1.
Now

As
0 0
wa(k)xe < 0 —k-1] % —2_qwqa (k)
we have wq (k) * T4 = —7_4 and so caq — 1.
Let p € ®° and v € V. Then z,v € Vo and so t,z,v = k(p’“+°‘)xav. Also
Zatp(k)v = xo k™ o, This implies (). O

Lemma 5.8.5 [h*chi] Let p,oc € °, o, 3 € ®, k,u € E! and t € E. Then
(a) [a] to(k) * Xa(t) = xa (k7))

(0) [d] wa(k) *x5(t) = Xun(s)(Capt®)).

(c) [b] walk) s tp(u) = tu,(p)(u).

(d) [c] tpro(k) = tp(k)ts (k)

Proof: () and (b)). The equations are rational and we may assume K = E. From [5.8.4|(d)
and [d we have

wa(k) *Tg = Caﬂt(67d)wwa(ﬁ) and tp(k‘) o k'(p’d).%'a.

Exponentiating (see [5.6.1|(b:d)) gives (a) and (b).
Let p,v and © be as in[5.8.4([d). Then

Wa (k) tp(1)v = wa (k) ulP )y = cog ulPH) )5

and
twa(P) (u)wa(k)’u = th(p) (u)caﬂ k;(,LL,Oé),l‘} — COJ,B k(ﬂ,a)u(wa(p)vwa(#))/{)

Since w,, is an isometry we see that holds.
(d) follows immediately from the definition of t,(k).

Lemma 5.8.6 [ge(m) non-degenerate| %, # £ _, for alla € ®.
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Proof: Suppose that xo(t) = x—a(s) for some t, sinE with ¢t # 0. Let p € ®° and v € V,.
Note that %U € Vjitia and so the projection of x (t)v onto Vi, yiq is ti%v. On the otherhand
"Ei X

=2v € V,,_jo and so for ¢ > 1, the projection of x_o(s)(v) onto Vj,4q is 0. Thus oy = ()

3! Kl
for all 4 > 1. Thus # =1 and so also A_, =1 and w, = 1. Thus V,, = we(V,) = Vi ()
But V is the direct sum of the V), and so p = wo(p) and (o, pp) = 0 for all g € ®°. Thus
implies that hEVMK =0 and hXVE =0, a contradiction to L* < sl(V¥). O
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Chapter 6

Steinberg Groups

6.1 The Steinberg Relations

Definition 6.1.1 [def:steinberg] Let E be a field and ® a root system. Let G be group
generated by elements xo(t), wa(k), ha(k), wa,a € ®,t € B, k € EF such that

(5t: 1) 1] Xa(t +u) = Xa(t)Xa(u).

(St: 2) [2] [xp(u),xa®)] = I =0 Xia+jp(Capij(—t)'uw?) for a # £b, where the cop;j and
the order of multiplication are as in[5.8.9

(St" 3) [3] Wa(k) = Xa(k)X—a(_k_l)Xa(k)'
(5t: 4) (5] we = wa(l).
(St: 5) (4] ha(k) :wa(k)wfl.

a

(St: 6) [6] waha(k)wg' = he, ) (k)
(St: ) 17) waxs()ws" = Xua(s)(Capt), where cag is as in[5.5.4)
(St: 8) [8] ha(k)xs(D)ha(k)™* = xa (KO (1)).
(St: 9) [9]
(a) (1] ha(k)ha(k) = ha(kl)

h
(b) [2] h—a(k) = ha(k)~"
(c) 3] hy(k) = ha(k)hg(k), whenever & + =75
for alla,f € ®, t,u € E and k,1 € EL.
Then G is called a Steinberg group of type ® over the field E. Let %o = {xa(t) | t € E}.

G is called degenerate if #o = #p some a # b € ®. The group Gg(®P) defined by the
above generators and relations is called the universal Steinberg group of type ® over E.

133
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In this chapter G is always a Steinberg group. The goal is to determine the structure of
G. Also let L¥ be a standard, perfect semisimple Lie algebra with roots sytems isomorphic
to ® and M a 4y invariant lattice in the faithful LK module V¥.

For U C @ let Gy = (A4 | a € ¥) < G. Define T = (ho(k) | a € &,k € EF) and
N = (wo(k) | € &,k € EF). T is called the Cartan subgroup of G.

Lemma 6.1.2 [positive closed] Let ¥ C ® with NUN® C & and VN —¥ =. Then there
exists a reqular e € QP with ¥ C &F.

Proof: Let f:= ) W¥. We claim that (f,« )0 for all « € . Let § € ¥ with (5,a) < 0.
Then wa(B) = B — (B,&)a € NU C ¥ and (84 wa(f),a) = 0. Let Uy = {a}, ¥y =
{B,ws(a) | (Bya) <0,8€ ¥}, U3 =UNatand ¥y ={B€ V| (Ba)>0,wsa) &V}
Then (¥; | 1 <i<4)isa partion of ¥, (> ¥y, a) >0, (O ¥o,x) =0, (O ¥3,¢) =0 and
(P4,a) > 0. So indeed (f,a) > 0. Let g € QP be regular and choose k € Q with

0<k< 252‘3' for alla € @\ f.

Put e = f + kg. O

Lemma 6.1.3 [product xi| Let X be a groups generated by subgroups X1, Xo,...X,. Put
Zm =(Xi|m<i<n).

(a) [a] Suppose that X;X;Zy, = X;X;Zy, for all1 <i,5 <n and k =1+ max(i,j). Then
for all w e Sym(n), X = Xﬂ.(l)Xﬂ.(Q) . Xﬂ'(n)

(b) [b] Suppose that [X;, X;] < Zy, for all1 <i,j <n and k =1+ max(i,j), Then
(a) [a] X;X;Zy = X;X;7Z; for all1 <i,j <n and k =1+ max(i, j).
(b) [b] X is nilpotent.

(c) [c] Suppose that there exists p € Sym(n) such that x; € X; and [[;; z,u) = 1
implies x; = 1 for all 1 <i <n. Then for each x € X and m € Sym(n) there exists
uniquely determined x; € X; with x =[]}, Tr(i)-

Proof: @ Since Z,+1 = 1, we have X;X,, = X, X; for all ¢ In particular, X,,_1X,, is a
subgroup of X. Let X7 = X forall 1 <¢<n—-2and X | = X,_1X,. Note that for
1<i<m, Z,=(X/|1<m-1).

Let a = 7 !(n) and b = 7~1(n — 1). Since X;X,, = X, X; for all 4,

XeXz@) - Xem) = Xo@) - Xnp-1)Xn-1XnXrp11) - Xna—1) Xrat1- - Xn
= X)X X1 Xr0r) - Xre ) Xa@ry - Xao)

By induction on n the last product equals X.
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is obvious.

We have [X;, X,)] < Z,+1 =1 and so X,, < Z(X). By induction on n, X/X,, is
nilpotent and so also X is nilpotent.

Put X = X/X, anda = p~1(n). For1 <i<n—1letz; € X; with HZ# 1 Zu) =
L Let xp = ([[52i21 ) " Then z, € X, < Z(X) and so [[i_;z,4 = 1. By
assumptions this implies z; = 1 for all 1 <4 < m and in particular, T; = 1. ThlS also shows
that for 1 <1 < n, the map X; — X;,z — Z is a bijection.

Let z € X and 7 € Sym(n). Put b = 7~ 1(n). By induction there exists uniquely

determined 7; € X;, 1 <i<n—1withz = ]_[b;,éZ (i)- Let x; be the unique element in x;
with z;X,, = 7; and put x,, = x - (Ha#:l x ()) Then Ty € Xp < Z(X), z =[] %ni
and the x; are the uniquely determined. O

Lemma 6.1.4 [closed implies nilpotent| Let ¥ C & with NUN® C & and VN -V = (.
Then

(a) [a] Gy = [lpcq #ar where the product is taken in any given order.
(b) [b] Gy is nilpotent.

Proof: Bywe may assume that ¥ C . Let ¥ = {ay,...a,} with ht oy <htas <
.<hta,. Put X; = %4, and Z,,, = (X; | 1 < i <n). Let 1 <4,5 <nand k = max(i,j)+
1. If nj, n;Z" with nja; +njo; € ®, then ht(n;o; +n+ ja;) = nihtn)a; +njo; >i+j > k.
Thus by Relation |6.1.1] “. (X, X;] < Zy.
The lemma now follows from m O

Lemma 6.1.5 [nilpotent] Let X be a nilpotent group and Y < X with X = (YX) =
(z7Yax|xeX). Then X =Y =Y? forallz € X

Proof: If X = 1, the lemma holds. By induction on the nilpotency class of X we have
X/Z(X)=YZ(X)/Z(X)and so X = YZ(X). Hence Y is normal in X andso Y = (YX) =
X. O
Lemma 6.1.6 [chi-a] Let k € Ef. Then xq(k) = Xa (™" ) Xa(—k Dwaxa (k™).

Proof: By , applied to —k~!

wa(_kil) - Xa(_kil)x—a(kb(oa(_kil)

and so using

and thus by
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X—Oé(k) = Xa(kil)ha(_kilyu}axa(kil)

Lemma 6.1.7 [char degenerate| Let a« € &. We say that o is degenerate with respect to
G if #a = #p for some a# B € ®. Then the following statements are equivalent

(a) [a] o is degenerate with respect to G.
(b) [b] (Fa, 25" s nilpotent for some k € EE.
(c) [d] (A #—a) is nilpotent.

(d) [c] Fa=Fa

Proof:  (a)= (b): Let o # § € ® with A4 = # 3. Let ¥ = N{—a, 3} N ®. Then

implies that Gy is nilpotent. Since (£q, #—a) = (%8, #—a) < Gy we see that (]ED holds
for all k € Ef.

@:> @): By , ho(—k~1) normalizes # . Also by , AWa = and
so by [6.1.0]

'}égfa(k) — f%:éa(kil)Xa(_kil)waon(kil — ”}{&‘:‘l(k_l)
Thus <'}{a,'}€>f;(k_1)> is nilpotent and conjugation by y.(k~!)~! gives that

(Ao, #—a) s nilpotent

Thus hold.
(= (d): By [6.1.1@B), wa €< #a, #-a) and so #, and #, are conjugate in

(Ao, #—a). Thus by Fa=F _a
(M= (a): Obvious. .

Lemma 6.1.8 [chia neq chib] Let V¥ be a faithful L¥-module and M a iz invarinat
lattice in VE. Gg(M) is a non-denerate Steinberg group. In particular, the universal
Steinberg groups Gg(®) is non degenerate.

Proof: By the results in section Gg(M) is a quotient of Gg(®). By A M #*
AEM g6 by Gr(M) is non-degenerate. Hence also Gg(®) is non-degenerate. O
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6.2 The degenerate Steinberg groups

Proposition 6.2.1 [degenerate steinberg] Let G be a non-trivial degenerate Steinberg
groups of type ® over the field E. Suppose that ® is connected. Then |E| = |G| € {2,3} and
one of the following holds.

1. [a] |[E|=2, ® = A or By and xa(1) # 1 # w, for alla € ®

2. [b] |[E| =2, ® = Ga, xa(l) # 1 # wy all short roots a, but xo(1) =1 = w, for all the
long roots o € .

3. [c] |El =3, &= Ay, xoll) = x_ol(—1) # 1 and wa(k) = ha(k) = 1 for all k € KF,
ac®.

Proof: By Fa = F_q for some a € . Let r = (o, ). Since @ is connected, W
acts tranistively on ®;, the set of roots of length r. So implies that %, = % _a
for all « € ®,. Let a € ®, and put Ry = £a = (Aay A—a). Then R, is abelian. Since
ha(k) € Ry, we conclude that [ £, ha(k)] = 1. By ,

1° 1] [ha(k),xs(t)] = xa( (7% — 1))

and so either #, =1 or k2 =1 for all k € Ef.
By [5-8.4(d), can = —1 and so by (and since R, is abelian)

Xa(t) = waXa(t)wc_ul = Xfa(*t)

Let € € +1. Then wa(€) = Xa(€)X—a(€)Xa(€) = Xa(3€) and ho(—1) = X0 (3)xa(3)™! =

Xa(6)
Suppose that %, # 1. Then |[E| =2 or [E| = 3. So we conclude

2° [2]  ha(k) =1 for all k € E* and one the following holds
1. [2:a] #a=1and w, =1.
2. [2:b] E=2, xa(1l) = x—a(l) = w, # 1.
3. [2:c] E=3, xa(l) = x—a(—1) #1 and wy = 1.
In particular,
3° [3] If|I] =1 then or (3) holds.
So suppose from now on that |II| > 1. Next we prove

4° [4] Xa+s(1) = H Xiatjs(EcCapij)  for all B € ® with € ® with a4+ € ® and
ij>1
—a+p3¢®
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Since —a + 3 is not a root, gives [ £ _q, #5] = 1. Since £ = #_qo another
application of |6.1.1)2) gives

1=[xa(1), xs()] = [] Xiat+ss(Ecasii)
4,7>0

Also cap11 = kap = £(10p + 1) = £1 and so (4°) holds.

5° (6] If {a, B)z is of type Ay for some 3 € ®, then £ = 1. Inparticular, ® has two
root lengths.

Without loss o + 8 € ® and so —a + 3 ¢ ®. So we can apply (4°). But the product
in has no factors and so xa+5(1) = 1. Since o +  and « have equal length we get

:7{——04 =1

Since ® is connected all roots in II of the same length as « are conjugate to o under
Wg. So we can choose a € ® and such that there exists 8 € II with («,5) # 0 and « and
B of different lengths.

6° [5]  Suppose |[E| = 3 and either « is long or |(58,&)| is odd. Then #5=1.

By (29), ha(—1) = 1. If ais long, (B,¢) = 1. So in any case (8, ) is odd and and
follows from applied with & = —1.

7° 7] Suppose {a, B)7 is of type Ba. Then holds.

Note that a+ 3 is short and the the product on the right side of has just one factor,
namely x5(+1), where ¢ is long (and ¢ € {a + 28,2a + 8}.) Thus #43 = #5. Hence
both a + 3 and ¢ are degenerate and it follows easily that £, = %, for all ¢ € (a, ).
Inparticular "%, # 1 and |E| € 2,3. Suppose that [E| = 3. We may assume that « is long.
Then implies %3 =1 and so #~4 = 1 for all ¢ € ®, a contradiction.

So |E| = 2. Suppose that |[II|] > 3. Then there exists a1, as € II such that (a1, ag)z is
of type Ay and so by (5%, #a, = 1, a contradiction. Thus |II| = 2 and holds.

8° [8] Suppose {(a, B)7 is of type Go. Then (@ holds.

Suppose that |E| = 3. Then (a, ) € {—1,—-3} and implies %3 = 1. Thus also
is degenerate and by symmetry, ~, = 1, a contradiction.

Thus |E| # 3.

Suppose that %, # 1. Then implies |E| = 2 The long roots in Go form a Z-closed
root system of type As. So if « is long, shows that %, = 1, a contradiction. Thus «
is short. Pick a short root § with (a,d) > 0. Then a + § is a long root and from [6.1.1}(2)),

[Xa(l)szi(lﬂ = Xa+5(:l:3) = Xa+§(1)'
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As xa(1) = x—a(1) and xs(1) = x—s(1) we conclude that

Xa+s(1) = X—a—s(1).

So a+ 4 is degenerate long root. By (5%), %a+5 = 1. Thus %, = 1 for all the long roots .
Hence w, =1 and so % _o = %o = wy %aw = C’hzwu(a) =% _, (o) Thus Chiy = o
for all short roots p and so G = #£,. Hence (2) holds in this case.

Suppose finally that %, = 1, then w, = 1 and so £ = wy Apwil = Chiy,, (g)- Thus
also /3 is degenerate and %3 # 1 and we are done by the previous case. O

6.3 Generators and Relations for Weyl Groups

Lemma 6.3.1 [generators for w| Let ® be a root system. Let R the group defined by the
generators ro, a € ® and relations r2 = 1 and rargr;1 = Tua(b)s @, 0 € ©. Then there exists
an isomorphism f : R — W (®) with f(ra) = wqa for all o € .

Proof: Since W(®) is generated by the wy,a € ® and the w, fulfill the above relations,
there exists an onto homomorphism f : R — W(®) with f(r,) = we. In particular, there
exists an action of R on ® via g(a) = f(g)(a) for all g € R,a € ®. Then rqrgry' =7, (5
for all a3 € ¢. The set of all g € R with grgg=! = T4(3) cleary forms a su group of R and
Slo)

1° 1]  gregt= rep) for all g € R.

Let Ry be the subgroup of R generated by the rq,a € II. Then f(Ry) = W(II) = W(®).
Let 0 € ® then 6 = w(«) for some w € W(®) and « € II. Pick g € Ry with f(g) = w. Then

g(a) = 6 and so by (1°) rs5 = rg(a) = grag™" € Ro. Thus
2° 2]  R=Ro

To show that f is one to one let g € R with f(g) = 1. We need to show that g = 1. By
we can choose aq, as,...qy € Il with

g =TaiTay---Tay

If k=0, g =1. So suppose that k > 0. From f(g) = 1 we have

1= waWay - - - Way,

Since [(1) = 0 < k we conclude that there exists j < k with

UWayWay - - - Wajy) = UWay Way + - - Way) — 1

and so by -. Way Wasg - .waj(ajﬂ) € ®~. Hence ther e exits ¢ < j such that
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Wai g+ - Waj (Oéj+1) e oF

WaiWa iy - Waj(ajr1) € @

Since «; € I1, @ implies that wa,,, - .. Wa, (@j1+1) = @;. From

-1
(Taiar +Tag)Tajn Ty -+ Tay)” = Tay

and so

Taipr - TogTajin = TaTaipr -+ Tay
But this implies

9= (TayTas - Ta;) (Ta;Taisy - ..raj)(raj+2 e Tay)
2

Since r;, = 1, induction on k gives g = 1. O

6.4 The structure of non-degenerate Steinberg groups

In this section G is a non-degenerate Steinberg Group. Let Tz = (ho(—1) | @ € @) and
Nz = (wo | @ € D).

Lemma 6.4.1 [n]

(a) [a] T is normal in N and Ty is normal in Ny.

(b) [b] There exists a unique homomorphism f : W — Nz /Ty with f(wa) = wa(k)T for
all o € ® and k € EF.

(c) [c] f is an isomorphism and Ny /Ty = N/T = W.
(d) [e] N = NyzT and NzyNT =1Ty.

(e) [d] There exists a well defined action of N x ® — @, (n,¢) = n(¢p) with wg(a) = wg(e)
for all o, 8 € ®. Moreover, On(®) =T and n'Aon™ = ) for alln € N,a € ®.

Proof: () By Relation [6.1.1)(6), each w, normalizes T and T%. By [6.1.1][F)),

(¥)  wa(t) = ha(t)wa € Twgy

and so @ holds.

() From (&) and (*), wa(t)T = waT and so N = NzT. Also by Relation and
, wl = we(—1) and 50 ha(—1) = wa(—1Dw;! = w,? € Nyz. Hence Ty, < Nz. For n € Ny,
let m = nly. We will verify that the w,, fullfill the relations in First observe that
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(+%) @2 =ha(—1) =1

Let ¢ = cap = Ca,—p = £1( see[5.8.4)(d)). Then from Relations and

wawpwy = wWaXa(LX-(~DX8(1)W5" = Xua(8) ()X -wa(8)(—)Xu () (€) = Wan (5 (©)-
From (*), wy, (5)(c) = w,, ) and so

(* * *) @aﬁgﬁgl = @wa(ﬁ).

From (**), (***) and we see that holds.
Since N7z is generated by the w,, f is onto.

Let I ={#4|a€ ®}. By and [6.1.1|(7), (W, ®) and (N/Cn(I),I) are isomorphic
permutation groups. Hence W = N/Cx(I). Also by [6.1.1([8), 7' < Cn(I) and so

(W[ < [fW)| = [Nz/Tz| < |Nz/Nz NT| = [NzT/T| = [N/T| < [N/Cn(I)].

Thus f is one to one and Nz NT =1Ty. So (]ED and @ holds.
follows from (]ED and ]

For a subset ¥ of II, let &y := (X) be the root subsystem of ® generated by . Let
Us, = G‘I>+\¢’27 Ky = G‘I’zv and Py = <U2,KE,T>. Put U = Gq)+ =Upand B =F) =
(U, T).

Lemma 6.4.2 [psigma] Let ¥ C II.
(a) [a] T normalizes Uy, and K.
(b) [b] Us is normal in Ps.

(c) [e] Px=UsKsT

Proof: (f]) Follows from Relation
Let A= &%\ ®y. Let 6 € A and 0 € @x. Let p =3,y a”. Since § ¢ @5 and

§ is positive, (u,0) > 0. Let i,j € Z*, with i§ + jo € ®. Then (a,id + jo ) = i(a,d) > 0
and so 70 4+ jo €€ A. Relation implies now that Ky normalizes Uy. The same is
true for T and Us: and so (]ED holds.

Follows from @ and (]E[) O

Lemma 6.4.3 [double cosets] Letn € N, o € T and k € Ef

(a) [a] Bw,' = Bw, = Bwa(k) and w;'B = woB = w,(k)B.
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(b) [b] w2 € B.
(c) [c] n#hwa € BnwaB - BwaB.
(d) [d] wi'Aiws € Bw.B.

Proof: (@) follows from waT = wa(k)T, T <N and T < B.

follows from @
(c)

Put ¢ = cqo = ¢ 1

nXa(t)Wa = nwe-w, xa(l)we
= nwg - X—alct)
= nwaXa((—ct) Hwal((—ct)™)))xal(—ct) ™))
€ Bnw,B - Bw.,B

Lemma 6.4.4 [double cosets for sl2] Let a € II. Then P, = BU Bw,B.

Proof: Byl6.1.1)3), w, € P, and so by wq normalizes U,. By [6.4.1f(a), wa normal-
izes T. Also from B =UKyT = UT = U, #4T and so using [6.4.3|(d) we compute

w;lea = w;anwa . wa'}{awglwangl
C Uy(BUBw,B)T
= BU Buw,B.

Thus Bw,Bw,B C BU Bw,B. Put A = BU Bw,B. It follows that AA C A. Also
A = A7! and so A is a subgroup of P, and A = (B,w,). Since #_, = Fwala) =
Wa Aawyt € (B, wy) we conclude that A = P,. O

Lemma 6.4.5 [double coset multiplication| Let « € Pi and n € N. Then
(a) [a] Ifn(a) € ®F, then BnB - Bw,B = Bnw,B.

(b) [c] Ifn(a) € @, then BnB - Bw,B = Bnw,B U BnB

(c) [b] BnB - Bw,B C Bnw,B U BnB.

Proof: @

BnB-Bw,B = Bn#,U,Tw,B

Bn#an ! nwaw, ' Uswe - wy, Tw,, - B
B#on(a) - mwaUsTB

= Bnw,B
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Put m = nw,. Then m(a) =n(—a) = —n(—a) € *. Thus by (a)

BmB - Bw,B = Bnw,B = BnB

and so using [6.4.4

BnB - Bw,B = BmB-Bw.,B-Bw,B
BmB - (B U Bw,B)
BmB U BmBw,B

= Bnw, U BnB

N

Clearly BnwoB C BnB - Bw,B. From [6.4.3((d),

nA¥we C BnweB - BuaB = BnB

Note that the left hand side of this equation is contained in BnB - Bw,B. Also BnB -
Bw,B is the union of double cosets. Since double cosets are either equal or disjoint we get
BnB C BnB - Bw,B. Thus holds.

(]E[) follows from @ and . O

Corollary 6.4.6 [more double cosets| Let a € Il and n € N. Then Bw,B - BnB C
Bw,nBU BnB.

Proof: (BwaB-BnB)™!=Bn"'B-Bw,B C Bn 'w,BUBn !B = (Bw,nBUBnB)™L.
(]

Lemma 6.4.7 [generators] Let X be a group, Y C X with X = (Y) and Y =Y ! and
0#£ZCX with ZY CZ. Then Z =X.

Proof: Lety €Y. Then Zy C Z and Zy ' C Z. Thus Zy=Z. Let D={d € X | Zd =
Z}. Clearly D is a subgroup of X. Also Y € D and so X = (Y) = D. Let z € Z. Then
X=2X=2zDCZand Z=X. O

Corollary 6.4.8 [g=bnb]| Let ¥ C II and define Ny, = T(w, | o € ¥). Then Py =
(B, Ny) = BNy B. In particular, G = BN B.

Proof: Note that BNyB < (B, Ny) < Px. So it suffices to prove that Py, < BNyB. Put
Z = BNsB,Y = B Uges, BuaB and X = (V). Then Z C X < Ps. Also Y~' =Y and by
6.4.5([c), ZY C Z. Thus by X = Z and it remains to show that Py, < X. From



144 CHAPTER 6. STEINBERG GROUPS

Py =UsTKy, = (B, Ao | a € ®x). Let a € ®x. Then there exists n € Ny, and 8 € ¥ with
o = n(B). Thus using GATIE),

Fo= Pty = Fan < X
and so Py < X. D

Note that for n € N there exists a unique w, € W with f(w,) = nT. We define
I(n) = l(wy), that is [ = [(n) is minimal such that there exists oy, a9, ...q; with

N € Wo Wy - - - Wa, T

n

Let a € II. From we have [(nwy) > I(n) if and only if n(a) € ®*. Also since
nwaT = nw 1T, l(nwy) = [(nw, .

Lemma 6.4.9 [b cap nbn] For n € N and € € {£} let D,(¢) = {a € T | n(a) € P¢}.
Also put Us = [l.ea, () Aa- Then

(a) [a] Letty, € E,a € @, with [[,co+ Xalta) € n'Bn. Thent, =0 for all a € ®p(—).
(b) [c] U=U\U, .

(c)[d UNnn=tBn=U} and BNnn='Bn=U;T

(d) le] Letng € N withng(®+t) =®~. ThenUNn'Bn=1and BNn 'Bn="T

(e) [f] UNT =1.

(f) [b] For every u € U there exists uniquely determined t, € E, a € ®* with u =
[oco+ Xal(ta)-

Proof: () By induction on I(n). If {(n) = 0, then n € T, ®,(~) = and n~'Bn = B.
So @ holds in this case. So suppose [(n) > 0 and pick § € II with l(nwgl) < Il(n). Put

m = nwﬂl Then

(%) n=mw, and m(B)€ d"

and
wg - H x5(t) - wgl € wfgn_anw/gl
acdt
and so
H Xws(a y(capta) m~'Bm
acedt

Suppose for a contradiction that tg # 0 and put & = cggtg. Then k € Ef. Note that
Us A Pg, and A ,0) < Ug forall B #£a € " and that wg(B) =b. Let Py = P3/Us. The
definition of v now implies
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(xxx) ©=x_g(k)
From (*), m’}{ﬁm_l = f?ém(ﬁ) < U < Bandso %3 <m 'Um. Since v € m~'Bm <
Ng(m™'Um) we get #5 € m™'Um. As m~'Um is nilpotent, also (£, £%) is nilpotent.
(***) implies that

(%5 7a") = (7 75 ()

and so (Zg, A5 (k)> is nilpotent. applied to the Steinberg group (#3, ~_3) gives
Fp = F_p. Thus #_3 < #3Us = U and (£, #_p) is nilpotent. So by B is
degenerate with respect to GG, a contradiction.

Thus tg = 0. For a # 3, wa(b) € ®T. Since [(m) < I(n) we conclude from (**) and
induction that t, = 0 for all 8 # a € @ with mwg(a) € . But n = mw, and so @
holds.

(b) Follows from [6.1.4(a)).

(c) The first statement follows from @ Since T' < BN n~'Bn we have

BNn'Bn=UT)Nn'Bn=(Unn"'Bn)T =U,T.
(d)) is a special case of .
() UNT <UNng'Bng=1.
@ If [T co Xa(ta) = 1, then @ applied with n = ng gives t, = 0 for all « € ®. @ now

follows from [6.1.3((b:c]).

Lemma 6.4.10 [xa in psigma] Let a € ® and X,% C II.
(a) [a] Let %o < Ng(Us) if and only if « € T U Py..
(b) [b] Ps < P if and only if ¥ C ¥.

(c) [c] Ps = Ps if and only if ¥ = .

(d) [d] (Ps, Pg) = Py 5.

Proof: @ Let A = &%\ &y. Then " U &y, = A U Py, and so the definition of P,
implies ~o < Py < Ng(Us) for all @ € & U ®&y. Now suppose that %, < Ng(Us) but
a ¢ & U dy. Note that @\ (AU Py) = —A and so o = —¢ for some d € A. We conclude
that (£s, #_s) < Us and so is nilpotent. Thus implies that § is degenerate with
respect to GG, a contradiction.

(]E[) Follows from @ and the definition of Ps.

follows immediately from @

(d) We have Ny, s = (N5, Ng,) and so

Pyos = (B. Ny ) = (B, N UNg) = (P, Pg)

us
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Lemma 6.4.11 [wa in bnbnb] Let n € N and o € ® with l(nw, ') < I(n). Then w, €
Bn~'BnB.

Proof: We have n(a) € ® and so by , n € BnBw,B. So n = bynbowybs for
some b; € B and w, = by 'n~ 1oy byt O
Lemma 6.4.12 [b nbn] Let n € N. Putl = I(n), pick a1,a2...ax € II with n €
Wey Way - - - Wo, T and put ¥ = {oy | 1 < i <l}. Then
(B,n 'Bn) = (B,n) = BNgB = Py
Moreover, the set ¥, := X only depends on n and not on the choice of the aq,...,ay.

Proof: Cleary < B,n"'Bn) < (B,n) < BNsB. Put m = nw, 1. Then I(m) = I(n) — 1
and so by induction on [

(*) wa; € (B,m 'Bm) forall 1 <i <1
Since I(m) < I(n) we have n(a;) € &~ and so by [6.4.11

(#%)wa, € Bn 'BnB < (B,n" 'Bn)
Hence (B,m™1Bm) = (B,w,'n"!Bnw,) < B,n"'Bn,w,,) = (B,n"'B)
So from (*) and (**), Py = BNgB < (n,n !Bn) and the the first statement of the
lemma holds. The independence of 3 follows from 6.4.10 g
Corollary 6.4.13 [b cap n] BNN =T

Ifne BNT, then Py= B = (B,n) andso %, =0,l(n) =0and n € T. O

Lemma 6.4.14 [overgroups of b| Let B< P < G. Then P = Py, for a unique ¥ C II.

Proof: Since G = BNB we have P = B(NNP)B = (B,NNP). Let ¥ =J,cp_. Since
(B,n) = PrSigman} we have

P=(B,NNnP)=((B,n) |[n€e PNN)=(Ps, |n€ PNN) =P
The uniqueness of 3 follows from 6.4.10. O

Lemma 6.4.15 [conjugates] Let 3,3 C II.

(a) [a] Let g € G with g~'Prg < Pg. Then g € Py and X C %,
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(b) [b] If Ps and Py are conjugate in G' then ¥ = 3.
(c) [e] Ne(Pg)= P
(d) [d] Ng(Us)= Ps.
Proof: Let g :~bn5 with b,b € B and n € N. Then b~ 'n~'Pynb = g 'Pyg < P and
conjuagtion with b gives
n_lPEn < P5

So by [6.4.12

n € Ps, = (B,n 'Bn) < (B,n 'Bn) < P;

So also g € bnb € Ps. Since g 'Prg < P, conjugation with g gives Py < Py, and by
10|(b) gives © < %

@) Let g € G with g7 'Pyxg = Ps. By @ ¥ C ¥ and by symmetry, & C 3.

Follows from @ applied with ¥ = X.

@) Since B < Py, < Ng(Us;) we have Ng(X) = Py, for some ¥ C » CII From@,
YCPTUPy and so ¥ = X. g

For w € W pick n,, € N with f(w) = n,T. For later convience choose n; = 1.

Lemma 6.4.16 [w to bnwn| Let n,n € N with BnB = BnB. Then nT = nT and so the
map W — B\G/B,w — Bn,,B is a bijection.

Proof: Ifl(n) =0,thenn € T < B and so BhB = BnB =N and me NNB =T. By

neT and sonT =T =nT.
Suppose now that I(n) > 0 and let €I and I(nw,) < {(n). Put m = nw,. Then by

and [
BnB - Bw,B = Bhw,BU BnB = BmB U BnB

and
BnB - Bw,B C Bhw,B U BnB

Since BnB = BnB, this implies

(x) BmBUBnB C Bhw,BU BnB

Since mT # nT and I(m) < I(n), induction on [(n) gives BmB # BnB. Since double
cosets are either equal or disjoint (*) implies BmB = Bnw,B. Again by induction on I(n),
nw,T = mT = nw,T and so nT = nT. O

Proposition 6.4.17 [unique factorization] Let g € G.
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(a) [a] There there ezists unique u € U,h € T,w € W,v € U, with g = uhny,v.
(b) [b] There exists unique to, a0 € T and sg,b € Of (=) with u = [[ cqpr Xalta) and
v= H,@eqﬁ(f) x3(58)-

Proof: (a) We first show the existence. Let n € N. By nUtn=t <U, U =U}U;
and UtnNU"n = 1. Thus
BnB = BnTUYU™ = B-nTn~ ' -nU'tn™' -nU~ = UTnU,

As G = BN B, this implies the exists of u, h,w and v. Since B = UT'and UNT =1,
any b in B can be uniquely written as ut with w € U and t € T. Now let b,b € B, w,w € W,
v e U, and v € U with

brny,v = l~mu~)1~1

Then Bn,B = BngB and so by [6.4.16, w = w. Put @ = b and # = ov~!. Then
a€B,zxecU, <U and

-1
Ny, ANy =

So by [6.4.9(d), € UNnng'Un, < UY.

Thus z € U NU, = 1. Hence also a = 1, v = & and b = b, proving @)

@ follows from . O

6.5 Normal subgroups of Steinberg groups

Lemma 6.5.1 [gprime and zg| G/G’ is degenerate, while G/Z(G) is non-degenerate.

Proof: Let a € ®. "%, and A _, are conjugate in G and so A,G" = #A_,G" and « is
degenerate with respect to G/G’.

Since « is non-degerate in G, implies that (£4, %~ _a) is not nilpotent. Then also
(#a, #-a)Z(G)/Z(G) is not nilpotent and so « is non-degenerate for G/Z(G).

Lemma 6.5.2 [b core] (B¢ < Z(G)NT.

Proof: By @, M :=NB%<BnNny'Bng<T. Let a € d*. Using @,

(o, M AaNT <UNT =1
Since wo, Mw, ' = M we also have [#_,, M] =1 and so M < Z(G). O

Proposition 6.5.3 [normal subgroups| Let M <1 G. Then one of the following holds:
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(a) [a] G/M is degenerate. Also if in addition ® is connected, T < M = G', |G/M| = |E|
and either |E| =3 and ® = A; or |E| =2 and ® = Ay, By or Ga.

(b) [b] G/M is non-degenerate and M < Z(G) =(BY <T

Proof: Suppose first that G/M is degenerate. Then implies @, except that we still
need to show G = M. But G' < M, G/G’ is degenerate and so |G/G’'| < [E| = |G/M]|.
Thus G' = M

Suppose next that G := G/M is non degenerate and let m € M. Then by there
exists to € B, € @1, h € T, w € W and sg, 8 € ®(—) with

m= 1] xa®) - h-nw- [ xs(ss)

acdt BePy ()

Hence

t=m= ] %@ -h-m- J[ Xs(ss)

acdt BED L ()

Since n1 = 1 we also have

1= [[ %@ -1-7m- JT %500

aedt BEDL(—)

So the uniqueness assertions in applied the the non-degenerate Steinberg group G
givest, = 0foralla € ®, h=1,w = landsB =0forall 8 € ®f(—). Thusm=heT < B.
So umng-M < ﬂBG < Z(G) NnT.

By - 6.5.1, G/Z(Q) is non-degenerate and from what we just proved Z(G) < B%. Thus
Z(G) =N BY and all parts of @ are proved. O

Corollary 6.5.4 [g/zg] Let G = G/Z(G). Then Z(G) = ﬂB = 1. Moroever, if G =G,
then G is simple.

Proof: By [6.5.3 applied to G, Z(G) = ﬂB Also Z(G) = N BY and thus 1 = (B¢ =
ﬂEG. If G = @, 6.5.3 applied to G shows that G is simple.

O

We group G/Z(G) is called the adjoint Steinberg groups of type ® over the field E. Note
that any non-degenerate Steinberg groups is a quotient of the universal groups and has the
adjoint groups as a quotient.
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6.6 The structure of the Cartan subgroup

In this section G continues to be a non-degenerate Steinberg group of type ® over the field
E. We will investigate the structure of 7.

Lemma 6.6.1 [t abelian] T is abelian.
Proof: Let o, € ® and k,t € Ef. From and We have
ha (k)ws (t)ha(k) ™" = wa(kP)t)
Thus (freely using the Steinberg relations
ha(k)hg(t) hto (k)" = ho(k)wa (1) hte (k)™

)
(
= WKV t)ws (kP )
= ha(EPV)wa(hg(RP))wa) ™!
= hg(EP D) g (K)
— hlg(kjﬂa)tk‘ B,a))
= hp(t)

So any two of the hq (k) commute and since T is generated by the h,(k), T is abelian.[]

Definition 6.6.2 [character| Let A and F be abelian groups. An F-character & for A is
homomorphism from A to F. £(A, F) denotes the set of F-characters.

In our main applications of characters, A will be subgroup of Q® and F' the multiplicative
group Ef. For this reason we will usually use additive notation for A and multiplicative
notation for F.

Note that £(A, F') is an abelian group via (&1 + &)(a) = &1(a)éa(a).

Lemma 6.6.3 [xi and tensor] Let A and F be abelian groups and put A* = £(A,Z). Then
there exists a unique homomorphism ¢ : F @z A* — §(A, F) with k@ b — & (k) where & (k)
is defined by &,(k)(a) = kY@,

Proof: Each &3(k) clearly is an F-character for A. Also the map (k,b) — zp(k) is Z-
bilinear and so ( exists and is unique. O

Lemma 6.6.4 [xi for free abelian]
(a) [a] Let A be a free abelian group with basis A. Then map p : FA — £(A, F) define by
(ka)aGA)(Z nbb) = H kga
be A acA

18 an isomomorphism.
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(b) [b] Let A be a free abelian group of finite rank, then  as defined in s an isomor-
phism.

Proof: @ follows immediately from the definition of a basis via a universial property.
(]E[) Note that A* is free abelian with Z basis the dual basis of A. Thus every element
in FF® A* can be uniquely written as ) _ ko, ® a* for some k, € F', a € A. Now

> ka@a) (S meh) = [ €ar (ka) (S mpb) = [ k& S0 = [ ke
a b a [o% a

Thus ¢(3, ka ® a*) = p((ka)a) and so (b)) follows from (al). O

Lemma 6.6.5 [xi for zchphi]

(a) [a] There exists a isomorphism g : Z& — £(A,Z) with g(d)(\) = (\,d) for all d €
Zd,\ € A.

(b) [b] For a € ® and k € B define &u(k) € (A E* by &a(k)(A) = kM) for all X € A,
There exists an isomorphism ¢ : Ef @z Z& — (A E*) with ((k ® &) = & (k) for all
keE, ae® and A € A.

Proof: @ Note that II is a Z-basis for ¢ and (a)*,« € II is a Z-basis for A. Also
g(&) = (&)* and so () holds.
(o) follows from (@) and O

Lemma 6.6.6 [restriction of characters| Let A, F' be an abelian group and B < A.
Let Res : §(A, F)) = &§(B,F),§ — §B, be the restriction map. Denote by ¢A(B,F) the
image of Res and by £g(A, F) the kernel of Res. Then £8(A, F) =2 €(A, F)/¢ég(A, F) and
gB(AvF) = f(A/B,F)

Proof: obvious. g

Lemma 6.6.7 [closure of pi] If ¥ is closed then ®* C U and if ¥ is closed and ¥ = —V,
then U = ®.

Proof: Suppose first that U is closed and let & € ®. If htoo = 1, then o € II C U, If
ht « > 1, then by there exists 8 € Il and v € &1 with o = 8+ v and hty < hta.
By induction on ht a, both 3 and ~ are in ¥. Since ¥ is closed, also o € ¥. Thus &+ C .

Suppose in addition that ¥ = —¥, then &~ = —d+ C ¥ and ¥ = P. O

Lemma 6.6.8 [linear extension| Let A be an abelian group and g : & — A and function
such that g(—a) = —g(a) for all o € ® and g(a+ B) = g(a) + g(B) whenever a, B € © with
a+ B € ¢. Then g can be uniquely extented to a Z-linear map Z® — A.
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Proof: Define g : Z® — A,> ) cpna — Y jcninaf(a). Let ¥ = {bec ®|g(B) = g(p).
Then W is closed, ¥ = —W¥ and II C ¥. Hence by U= . O

Lemma 6.6.9 [t as characters]

(a) [a] There exists a unique homomorphism 7 : {(A,E) — T with 7(&4(k)) = ha(k) for
all o € ® and k € EF.

(b) [b] T is onto.
(c) le] T(E)xs(t)T()~" = xs(§(B)t) for all B € @, & € §(AE), t € E.
(d) [d] 7(§) € Z(G) iff € lo=10. So Z(G) = 7(§za (A, E)).

Proof: By T is abelian. Let k € Ef. From @) and ( applied to ®
in place of ®) the map & — hqo(k) extends to a Z-linear map s;, : Z® — T . Define
s:Ef x Z® = T, (k,a) — si(a).

Then clearly s is Z-linear in the second coordinate. For a € ®, implies that s
is also linear in the first coordinate. Since ® generates Zphi, s is Z-bilinear. So there exists
a homomorphism

7B QZP — T with k ® & — ha(k)Vk € B a € ®

let ¢ be as in m@ and put 7 =7 o (. Then @ holds.
follows since T is generated by the h, (k).
(<)

Let = be the set of ¢ € &(A,Ef) which fulfill the equation in () for all § € ®
and t € E. Then clearly = is a subgroups of §iA Ef). Let aed and k € Ef. Then

7(€5(k)) = hg(k) and & (k)(8) = kP). So by [6.1.1|f8), & (k) € =. But the &, (k) generate
£(A,E*) and so (c) holds.
@ Since G is generated by the x5(t), (&) € Z(G) iff 7(&)xs(t)T(€)™1 = x5(t) for all
B € ®andtelkE. So @ follows from .

Lemma 6.6.10 [phicirc for faithful] Let V' be a standard, faithful Lx-module and put
®° = Ay (Hg). Then Z® < Z9° < A.

Proof: Let a € ®. Since V is faithful and V' = ®u€¢°’ there exists p € ®° with LXKV, # 0.
Since LEVH < Viagp we conclude that also 4+ o € ®°. Hence o = (u+ ) —p € Z9°. [

Lemma 6.6.11 [t for chevalley] Let M be an iz invarinat lattice in the standard, faithful
L¥-module VX. Put ® = Ayx(HX). Suppose that G = Gg(M).

(a) [a] Let pe ®°, ve VHE and £ € E(A,EF). Then 7(£)(v) = &(u)v.

(b) [b] kert = &zp0 (A, EP).
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(c) [e] T =¢h(zoeEF)
(d) [d] Z(G) = NP (2e° /20, EF)

Proof: @ By the definition of h, (k) for Chevalley groups, we have hq(k)v = k+®)y. So
the same argument as in the proof of shows that @ holds.

) By (a) 7(¢) = 0iff £&() = 0 for all p € ° and so iff (A) = 0 for all X € Z®°. Thus
@ holds.

By we have Z® < Z®°. So using (]E[), (]ED and we compute

r= f(AvEﬁ)/kerT = g(A)Eﬁ)/g%bo(AvEﬁ)
=2 £(A/Z®,B) /00 20 (A/ 20, BY) 2 V52 (28° /20, EF)

So holds.

@ Follows from (]ED, @ and ([l

Lemma 6.6.12 [characters for finite| Let A be a finite abelian group and B < A. Let
n € Z* be minimal with nA =0. Put F ={k € E| k" =1} and m = |F|. Then

(a) [a] E(A,EF) =2 &,a(A F) =2 A/mA.
(b) [b] Letac A. Then &(a) =1 for all € € E(A,E) iff a € mA.
(c) [c] Let Z < &(A,EH) and put B={a € A|¢&(a) =1VE € Z}. Then E = £5(A,EP).

Proof: Leta € Aand ¢ € £(A,E?) then £(a)” = £(an) = £(0) = 1 and so £(a) € F. Hence
£(ma) = £(a)™ = 1. Thus £(A, Ff) = €,a(A, F).

Replacing A by A/mA we may assume from now on that m = n. Since every finite
abelian group is the direct sum of cylcic groups we can choose A C A with A = . 4 Za.

Let no be the order on a. Since finite subgroups of Ef are cyclic, F is cylic of order
n = m. In particular, there exists an element f, of order n, in F.

For a € Adefine ¢, € £(A,EF) by Ea(Dopeampb) = fe. IEE € §(A, E*), then &(a) = fe
for some mq € Z. Then § = Y° . 4 MaTia. Also Y max, = 0 if and only if f7"* =1 and so
Ng | mq for all a € A. Thus

SAEN =) Z/n,Z= A
acA

So (@) holds.

Let b=, 4Ma € A. Then £(b) =1 for all £ € (A, EF) iff £, (b) = 1 for all a € A, iff

ma =1, iff ng | mg and iff b= 0. So (b)) holds.

To prove observe first that 2 < ¢p(A,Ef) = ¢(A/B,EF). By @ £(A/B,E") has
order |A/B|. Define p: A — &(Z,EF) by p(a)(¢) = £(a). Then kerp = B. By @ £(2,EF)
has order |Z| and so |A/B| < |Z]. So all of our inequalities in this paragraph are equalities
and holds.
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Lemma 6.6.13 [intermediate lattices]

(a) [a] Let Z& < A° < A. Then there evists a faithful L module VE with A° =
ZAyx (HX).

(b) [b] Let E < &z0(A,E). Then there exists Z® < A° < A with Z = &xo (A, EF)

Proof: () By 3.7.22)[)), A/Z® finite. So we can choose a finite subset £ of A such that
A = Z(L) + Z®. (We remark for no particular reason that by [3.7.20|(c) we can choose all
A € L to be minimal). Put

VE=La ) vEW)
AeL
By 4.4, A € Ay (HX) € A+ Z&. Thus () holds.
Put A° = {A e A| &) =0,V € E}. Then Z&® < A° < A. Since &0 (A, BF) =

E(A/ZD,EH), (]EI) now follows from .

Lemma 6.6.14 [z for universial] Let G = Go(E).

(a) [a] Let p: G — Gg(M) be the canonical epimorphism. Then ker po T = £z¢0 (A, E)
(b) [b] T is an isomorphism and so T = ¢(A,EF) and Z(G) = &70 (A, EF).

(c) [c] G=Gg(M) iff &(A/ZD°,EF) =1 iff ¥ containes no non-trivial elements of order
dividing |N/Z.|.

(d) [d] The isomorphism type of Gg(M) only dependes on Z®° and in particular is inde-
pendent of the choice of the lattice M in VK.

Proof: () Since Gg(M) is non-degenerate, G/ker p is non-degenerate and so kerp <
Z(G) <T. (&) now follows from [6.6.11|(b) applied to Gg(M).

(]EI) From [6.6.13{(al), we can choose VE such that Z®° = A. So by @), ker pr =1 and so
also ker 7 = 1.

The first “iff” follows easily from @ and @ The second from 6.6.12@.
@ follows immediately from @ O

Proposition 6.6.15 [chevalley = steinberg| Every non-degenerate Steinberg group is
isomorphic to a Chevalley group of the same type and over the same field.

Proof: By any non degenerate Steinberg groups is isomorphic to G/Z, where G =
Ga(E) and Z is some subgroup of Z(G). Let E = 771(Z) < &(A,Ef). By there
exists Z® < A° < A with Z = £x0 (A, EF). Then by @, we may choose V¥ such that
A° =79°. [6.6.14(a)) and (b)) now show that ker p = Z and so G/Z = Gg(M). O
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6.7 Minimal weights modules

Lemma 6.7.1 [minimal weight modules] Let A\ # 0 be a minimal weight for ®, M a
Uz, invariant lattice in VX(A), V = E®z V(K)\), ®° = &y x(HX) and G = Gg(M).

(a) [a] W(®) acts transively on ®°.
(b) [b] LetneZ", a € ® and p € ®° with %VH #0. Thenn =1 and (u,c¢) = —1.
(c) [c] Let v € ®. Then % =0 for alln <2 and xo(t) =1+ tz,.

(d) |d] Leta € o € ®, p € ®° with (u,&) = =1 and v € V,. Then xov = we(v) and
Xa(t)v = v+ wuv.

(e) [e] V is a simple ZG-module and a simple L*-module.

(f) If] dimg V' = [®°] = [W(®)/Wrn|.

Proof: () Let u € ®°. Then by [3.5.5([), there exists w € W(®) such that w(y) is
dominant. By [5.4.10, w(u) € ®°. By [p.4.4, w(p) < A and by 3.7.20)(b), A is <-mimimal in
AT, Thus w(p) = A

@ Since %Vu = Vitna- Thgs both p and p 4 no are in ®° and so by @, both p and
1+ na are minimal weights on ®. Thus

1> (p+na,a)=(pda)+2n>2n—-1>1

hence equality most hold for each of the preceeding inequalities. Therefore n = 1 and

(,a) =—1.
Follows immediately from and the definition of x/(t).
@ By definition of w, and we have

(*) wa = Xa(1)x—a(=1)Xa(1) = (1 +za)(1 —2_a)(1 + 2a)
From [z4, %4 = ha we have —z_o2q = —ToT_q + he and so

(x%) (1—2_o)(14z4)=1424 —2T_q — TaZa + ha

From () 2,v = 0 and since v € V,,, hqv = (1, & )v = —v. Thus from (**)

(kx%) (1—2_0)(1+24)v =04 To0 —v =240
From @7 LaZal = 2(2*2?21 =0 and so by (***)

(14 20)(1 —2_0)(1 + z4)v = 20V

So by (*), wac = Xa(v). So the first statement in (d) holds. The second follows from
the first and ().
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(EI) Let 0 # I be either a ZG-submodule of V or an L®-submodule of V. For v € V
define v, € V, be v = 3 cqovu. If v # 0 define htv = min{ht mu | p € ®o}. Choose
0 # 4 € I with hti maximal. We claim that ¢ € V). For this choose p € ®° with v, # 0
and ht p = ht . Suppose that p is not dominant. Then there exists o € II with (p, ) < 0.
Since p is minimal, (p,&) = —1. Thus by @,

(Xa(1) — l)ip == TaVlp = wa(ip) #0
On the otherhand by @

(Xa(l) = 1)i = x40 = Z Taly

pede

Since xqiy € Vyro and zq4i, # 0 we get htzqv = ht(p+ a) = htp+hta > htp, a
contradiction to the maximality of ht 4.

Thus p is dominant and so by @ and E@, p = A. By definition, i, = 0 for all y of
height less then hti = ht p and so by [3.4.2 i =i, = i) € V.

Let v € V). Since V) is 1-dimensional there exists k € E with v = ki. Since A # 0 there
exists a € IT with (\,&) # 1 and since A is minimal, (A, &) = 1. Hence hqo (k)i = kM) =
ki =wv and so V) < I. Let p € ®°. By @ there exists n € N with n(A) = p. Hence
Vi = Vo) =nVx < 1. We conclude that V =3_ 40 V) < I. Thus holds.

() From (&) and dim V) = 1 we have dimV = |@°| = [W/Cyw (X). By B.4.5((a) we have
Cw(X) = W(IIN X°)| and so (ff) is proved.

Lemma 6.7.2 [orbits on perp| Let o be a dominant root in ® and A € €. and A =
W(®)- A\ be the the orbit of X\ under W(®). Then there is a 1-1 correspondence between the
orbits of W(IIN at) on ANat and the connected components of IIN AL containing roots
conjugate to o under W(®P).

Proof: Let W =W (®), ¥ =W  -aand X = {(6,0) | d € A,5 € ¥,d L B}. Since W is
transitive on ¥ and A there 1-1 correspondence between the orbits of CW( ) on Aﬂoﬁ, the
orbits of W on ¥ and the orbits of CW()\) on YNAL. By -@) Cw(a) = W(IINat) and
Cw(A) = W(IINAL). Also by - and |3.3.2) - there is a 1-1 correspondence between
the orbits of W(IINA+) on ¥ N A+ and the connected components of IIN A+ containing an
element of W. O

Corollary 6.7.3 [orbits on minimal weights| Let a be a dominant root in ® and X\ a
dominant minimal weight. Let A = W(®) - X be the the orbit of X under W(®). For
ie{-1,0,1} let A, ={d € A|(d,a) =1i. Then

(a) [a] A=A_1UAJUA;.

(b) [b] wa(Deltar) = A_1 and w, fizes every member of Ag.
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(c) [c] W(IINat) acts transitively on Ay and A_;.

(d) [d] There here is a 1-1 correspondence between the orbits of W (IINat) on Ag and the
connected components of ILN A\ containing roots conjugate to o under W (®).

Proof: () Each § € A is a minimal weight and so (6, a) € {—1,0,1} and so () holds.
() (wa(8),a) = (S,wala)) = (6, —a) = —(§,a) and Ag = Anat. So (b) holds.
We may assume that A # (). Then by , (A\,a) = 1 and so by @ applied
with e = aand d = A\, W(IINat) is transitive on A1. As wa (A1) = A1 and w, commutes
with W(ITNat, W(IIN ot is also tranistive on A_j.

@ Follows from m OJ

6.8 Steinberg Groups of type A,

In this section we have a closer look at the Steinberg groups of type A,. Let Ey be
the n + 1 dimensional Euklidean space over Q with orthonormal basis eg,e1,...e,. Let
b = {ei —6’j | 0 S 1 75] S n} and FF = QEO = {E?:Okiei | k‘l S Q,Z?:Ok‘i = 0}. Put
ay = ex_1—eg. Th Then ® is a roots system of type A,, in E with base Il = {ay, a0 ..., ax}.

Let V be a finite dimensional vector space over K with basis vy, v, ... v,. Let L = sl(V),
the lie algebra of trace zero endomorphisms of V. Define E;; € End(V) by Ejjui, = §;,v;.
Define z¢;—¢; = Ejj and he,—; = Ej;—;j. Slightly abusing notations we write z;_; for ze, .,
and h;_; for hei,ej. Then z;_; and h;_; are in L.

Let H =K(hog | @€ ® = {3 " jkiEi | ki € K.Y yki = 0. Then H is an abelian
subalgebra of L. For e = Y. . gie; € E define n(e) € H* by é(>°kiEi;) = ) giki. Then
ne = 0 if and only if ¢; = ¢; for all i. Inparticular, n |g, is 1 — 1 and we identify Ey with
its image in H*. Let h = Y k;E;; € H. It is easy to compute that [h, x;—;] = (k; — kj)zi—;
and so x;_; is weight vector with weight e; —e; for H in V.

A]SO [l’i,j,l‘j,i] = EZJE]Z - EjiEij = E“ - Ejj = hifj and

if ¢ 7& j 75 k 7& 1, [aci_j,xj_k] = Ez'jEjk — EjkEij = Eik = Tk and so

(i—j, o, | 0 <i#j<nl<k<n}is a Chevalley basis for L.

From z;_jv, = d;,v; and ;=0 for all m € N, > 2 we see that M = Z(vy,...vy) is
a Uz invariant lattice in V. Let 1 < m < n and put V,, = A’V and M,, = A’ M, with
M, viewed as a Z-submodule of V;. For i € N let N; = {{0,1,...4i} and for I C N,, with
|I| = m put v = v;; Avgy A...v, where I = {i; | 1 < j < m} with 4; < 43...%y,. Then
(vr | I €Ny, |I| =m} is a K basis for V; and a Z-basis for M;. It follows that M; is an z
invarinant lattice in V;.

Define §;; = 1if j € I and 07; = 0if j € I. A straighforward computation shows that

(*) hz‘_j'U[ = (511‘ — (5Ij)1}[

Thus vy is a weight vector for H on V,, of weight say A\(I). Suppose that I # N,,_1.
Then there exists j < 1 with j € I but j —1¢ I. Then by (*) ha;v;r = —vr and so A(I) is
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not dominant. If I = Ny, 1, then hyv; = 6;mv; and so A(M,,—1) = aj,. Thus o, is the
unique dominat weight for H on V, and [5.4.13|[b), Vi, = V(o).

It now follows from (*) and or equally well from m o, is minimal weight. Hence by
Vi(az,) is a simple LF and a simple Gg(M,,)-module. Note also that

m

Va(ag,) 2E®@ My = \(E® M) = A\ Ve(a))

and that the image of L” in Vg := E® M is sl(Vg).
To round up this section we will now show that Gg(M) = SL(Vg). Let u € Lz. Abusing
notations we will denote the element 1 ® u of End(Vg) also by u. Similarly we write v; for
gk
1®@w;, V for Vg and yi—j(t) = Sk =0®t""22 € GL(Vg). Then G := Gg(M) is the

zk
subgroup of GL(V) generated by all the x;_;(t). Since —5* = 0 for all k& < 2 we have
Xi—j(t) = 14+ tz;—j and x;—;(t) € SI(V') and so

1° [chiij] XijUk = Uk + t050;.

In particular, x;; € SL(V) and so
2° [ginsl] G <SI(V)

Next we show:

3° [op point] Leti € N,, and fori # j € N,, let k; € E. Then there exists g € G with
gv; = v; and gv; = vj + kv; for all i # j € N,,.

Just choose g = HjeNn\{i} Xi—j(kj)'

4° [g transitive] Let 0 #£v € V and i € mbN. Then there exists k € E and g € G
such that kgv; = v and if n > 1, then k = 1.

Without loss i = n. Let v = sv, + v with s € E and v € E(vg,...v,—1). If o = 0, then
holds with ¢ = 1 and k£ = s. So we may assume that © # 0. In particular, n > 1. By
induction on n, there exists g € (x;—j(t) | 0 <i# j <n—1.t € E) and k € E with kgvy = .
Note that gv, = v, and so §(sv, + kvg) = v. Put t = k~1(s —1). Then s = kt + 1. By
there exists g1 € G with g1v, = kvg + v, and g9 € G with govg = vy + tv, and gov,, = vy.
Then

Gg9291vn = Gg2(kvo + vn)
Gkga(vo + k1uy,)
Gk(vo + top, + ko,
gkvo + (kt + 1)v,
gkvg + svp,

= v
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So holds.

5° [g multi transitive] Let 0 < m < n and wy,w; ... w, be linearly independent in
V. Then there exists g € G and k € E such that kgv,, = wy, and gv; = w; for all0 < j <m
and if m #n, then k = 1.

By there exists g1 € G and s € E with sgivg = wg. If n = 0 we are done. So
suppose that n > 0. Then we can choose s = 1. For 1 < j < m let gflwi = vy + W;
with l; € E and w; € E(vq,...v,). By induction on n there exists § € (x;—; | 1 < h and
0 # k; € E with k;gv; = w;, with k; = 1 for 1 <i < m and if m < n, k,, = 1. Note that
gJug = vg. By there exists go € G with gavg = vg and gov; = k:i_ll,- +uo; foralll <i<m.
Put g = g1gge. Then gvg = g1v, = wg and for all 1 < i < m:

91992kivi = g1g(ki(k; Lo + v;)
g13livo + kv;)

g1livo + W,

91(g7 " (wi))

= wi

and so holds.
We are now able to show that G = SL(V). Let h € SL(V). Then (hv; | 0 < i < n)

is linearly independent so by there exist ¢ € G and k € E with kgv,, = hv,, and
hv; = hv; for all 0 < i < n. Thus g~ 'hv,, = kv, and g~ hv; = v; for all 1 <4 < n. Thus
det(g~'h) = k. On the otherhand detg = deth =1 andso k= 1and g =h. So h € G and
G =SL(V).

6.9 Steinberg groups of type Ej

In this section we explicitly determine the roots system of type Eg and show if A is a non-zero
minimal weight for Eg, then V(\) has dimension 27 and that Chevalley group Gg(M())) is
the universal Steinberg group of type Eg over E, where M ()) is a iz invariant lattice ein
V(A).

According to the affine diagram for ® = Fj is
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Here IT = {a; | 0 < i < 5} and o is the highest root in ®. Let ¥ = {a; | 1 <i < 5}. So
(3) is a root sytem of type As. We now will define explicit embedding of ® into an eight
dimensional euclidean space with orthormal basis ¢; | 0 < ¢ < 7. For 1 < i <5 we choose
a; = e; —e;41. Also let ay = —eg + e7. Note that this implies (o, ) = 2 and « = @& for all
a € ¢. Let E be the 6 dimensional space spanned by ¥ and «;. So

7 6
E={> kiei| ko+k; =0,> ki =0}
i=0 i=1

Let ag = 21'7:0 kie;. From (ag, —y ) = —1 we have —ko + k7 = 1. Also ko = —k7 and so
k7 = % = —ko. From (Oéo,di) =0 for i = 1,2,4,5 we have kl = kz == kjg and k4 = ]{,‘5 = k6.
From (ag,ds) = —1 we have k3 — ks = —1. So kg = kg + 1. Also 0 = 30 k; = 6k + 3
and so k1 = kg = k3 = —% and ky = ks = kg = % For subset I of N7 let e; = >, ;e;. Also
write e;; for eg;;1 and so on. Then

1
oy = 5(—60123 + e4567)

Since We;—e; fixed each ey, for k # 7,5 and interchanges e; and e;. It follows that the
orbit of g under W (%) is

1 ..
W(Z) Qo = {5(_60'@% + €imn7 | {1727374>5’6} = {Za]a k,lama n}

To show that we found all positive roots by now we prove the following general lemma.

Lemma 6.9.1 [orbits on long roots| Let ® be a connected root system and put ¥ = 1IN
M. Let A C% such that A contains exactly one long root from each connected component
of I'(X) which contains a long root. Then each orbit of W(X) on ®; contains exactly one
element of

A UTI \ Y u —(Hl \ 2) U {al, —Ozl}.

Proof: Note that by B.55|(d), ® Ny = (X). Let @ € ®;. Then —2 < (a,q;) < 2. If
(o,d;) = £2. Then o = +oy.

Suppose that (a,d;) = 1 and let § be the unique conjugate of § under W (X) such that
—§ is dominant on IT N AL, We need to show that 6 € II. Suppose not. Then by @
there exist 8 € II with (8,6) > 0 and v = ws(§) € ®+. Then B ¢ ¥ and so (B,d;) > 0.
Thus

0< (v,a1)=(B,a1) —(6,8)(B, 1))

It follows that (6,5) = 1= (8,d;), Bislong, vy =6 — B, (6,q;) =0 and (y,6) =2—1=1.
Sovy € PdNa; = (X). Since v € ® and —¢ is dominant on 3, (4,5 ) < 0, a contradiction.

If (a, ;) = —1, then by the preceeding case —« is conjugate unde W (X) to an unique
element of II; \ X.
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If (o, q;) = 0, then oy € @ Naj- = () and so by (EI) ( applied to each connected
component of(¥), « is conjugate under W(X) to an unique element of A. 0.

Back to ® = Eg. The lemma shows that

ot ={ e — ej, 1<i<j<6
%(_60’iﬂ€ + €imn7, {]-a 27 3747 57 6} = {i’j7 kv l7m,n}
—eg + e }

Thus [&F] = (§) + (§) +1=15+20+1 =36 and |®| = 72.

Let A = of, so (A\,a);, = d6;. By A is a minimal weight. Let A = ZZ:O k;e;. Since
AL a;foralll <i<5wehave ki = kg = ks = kg = ks. Since (A, a5) =1, ks — kg = 1
and so kg = ks + 1. Thus 0 = >, ;6 k; = 6ks + 1. Thus k; = —% forall 1 < i <5 and
ke = 1—%. Since A L ag we have kg + k1 + ko + k3 = kg + ks + kg + k7. Also kr = —kg and
so 2kg = 1. So kg = % = —k7. Thus

1 1
A= 5(60 —e7) + e+ §€123456

Let ®° be the orbit of A under W (®). Let i € {—1,0,1} let ¢ = {u € ®° | (A, q7) = 1.
By ®° = ;U ®F U D%, and W(IIN qjt) acts tranistively on ®°,, ®§ and 3. So

o 1 1 .
DY = {pi = 5(60 —er)+ei+ G 123456 |1<i<6}

Also wq, (®7) = ®°, and so

o 1 1 4
D) ={p_i:= 5(—60 +e7) +e+ 6123456 |1 <i<6}.

Alos (p3,00) = 3(3(=1—1) — 1) = —1 and so

2 1 2

Wag (Ml) =p3+ag=e; — 56123 + 56456 = —5612 + 563456

Thus

] 12 .
0= {pij = —gez‘j + geklmn 1{1,2,3,4,5,6} = {i,4,k,l,m,m} }

Hence |®°| = 6+ (5) + 6 = 27.

By |detII| = 3. Thus |[A/Z®| = 3 and so A = Z® + Z\ = ZP°. So [6.6.14|(d)
implies that Gg(M(A) is a univeral Steinberg group. Thus the universal Steinberg group
of type Fg has a faithful simple module of dimension 27.
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6.10 Automorphism of Chevalley groups

In this section we determine some automorphism Chevalley groups.

Lemma 6.10.1 [base for orbit] Suppose that ® is the disjoint union of the W invariant
subsets @1 and ®y. For ¥ C ® andi € {1,2} put ¥; = ¥ N ;. Also put ¥y = UHIIV(HQ).

(a) [a] W(®1) is normal in W and W = W (@)W (Ilz) = W (P1)W (D2).

(b) [b] @ is invarinant under W (Ily), ¥ is a base for ®; and 7 = &; NNX;.

Proof: () Since ® is W invariant, W (®1) is normal in W. L Also W = W(II) =
<W(H1), W(CIDQ» = W((I)l)W(HQ) S W((I)l)W((I)Q) S W and @ holds.

(b) Let @ € ITy and 8 € @7 By[3.3.2|(d)., wa(B) is positive. Thus &7 is W (Il,) invariant.

Let e € €. Then (®1)f = ®] and so by 3.2.6/ A := & \ (@] + @) is a base for ®;.
Since @f is W (Ilz) invariant, so is A. Also II; C A and so ¥; C A.

Now let 6 € A. We will show by induction on htd that 6 € X;. If htd = 1, then
d € IIN Phi; = II; C 3;. Suppose now that htd > 1, then ¢ ¢ II and so by (ED there
exists @ € I with (§,) > 0, wa(d) € @+ and ht w,(6) < htd. Since A is obtuse, o ¢ II.
Thus « € IIs and so w,(d) € A and by induction w,(d) € 31. Since ¥q is W (Ily) invariant,
also 0 € 3.

Thus ¥; = A and is proved. d

Lemma 6.10.2 [auto for zphi] Let ® be a connected root systems with two root lengths.
— — (Oél,al)
Let p = pp = +—2-15. Define

(as,as) "

a=a+pZ®, VaecZd

and
b=b+Z(®,) +pLd, VbeZd.

Then
(a) [a] W(®s) acts trivially on Z.®; and 7d.
(b) [b] (@]« €1ly) is an F, basis for Z®,.

(¢) [c] (&]|a€ll) is an F, basis for 70,

(d) [d] There exists a unique Fy-linear isomorphism p : Z®; — Z& with pa = & for all
a € 9.
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Proof: @ Let a € ®; and g € ®;. Then

(@8) = 22 5.0) = plasa) ez
Thus ws(a) = a+ (o, )8 € a+pZ® and so ws(a) = @. Thus wg acts trivially on Zd;.
Since W(®,) = (ws ] B € @), also W(®Pas) acts trivially on Z®;.

Next let o € <I> and 8 € ®,. Then

wa(a) =a+ (&)BB=a+(&,B)B € a+ Z(Ps) + pZd

and so wg(&) = = &. Thus (@) holds.

@By 10@){11) ) | w e W(lly),a € &} is a base for @;. Thus w(a) | w €
W (L)), € II;} spans Z®;. By w(a) = @ and so (@ | a € II;) spans Z®;. Since II is a Z
basis for Z®, II is an F, basis for Z®. Thus I, is linearly independent and @ holds.

To apply (b)) to <I> we now put b= b+ pZ® for b€ Z

ch®. Then by QH) (Ily)" = (H)l is an F,, basis for (V)l = (®,)". Also I is an IF,, basis for
Z. Thus (@ + Z(®s)" | a € L) is a Fy-basis for Z®/Z(®,)". Thus (d) holds.

By and H there exists a unique F,-linear isomorphism p: L& — Z& with
p(@) = & for all & € TI;. We need to show that p(@) = & for all @ € ®;. So let o in®;
and pick w € W(®) and 8 € II with a = w(5). Then g € II;. By @ there exists
ws € W(®s) and w; € W(II;) with w = wsw;. Put § = w;(5). Then 6 € (II;) C ZII; and
80 0 = ) e, Nac for some ng € Z*. Since § is long we have (6,6) = (a,«) for all a € TI;
and so

E N .

aEHl a€lly

Hence

= Znap(a): Zna}i: Znad:i

a€cll; a€ell; a€cll;

By (a)) we w,(6) =6 and w,() = . Also a = w,(d) and so

p(@) = p(w:(3)) = p(3) = 3 = w,(3) = &
and so also (d)) is proved.

Lemma 6.10.3 [sum of roots] Let ® be a connected root system with two root lengths.
Let o, 8 € ® with o+ 3 € P.

(a) [a] If a and B are long then a+ B is long and (a+ )" =a+ f € ®
(b) [b] If o is long and j3 is short, then o+ B is short, (a4 )" = pad + 3 and &+ 5 € ®.
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(c) [c] If a and B are short and oo+ (3 is long, then kog = £ps, pg(a+ B)" =da +b) ¢ @

Proof: Note first that (a + )" = y(a+ 5) and so

2
(a+B,a+8

@a) B8,
(a+B,a+ ) (a+B,a+ )
EI) By @, ®; is Z-closed. So a+ f is long. By (*) (a4 )" = &+ /3 and @) holds.
b) Suppose that a+ 3 is long. Then by (&) 8 = (—a) + (a+ ) is long, a contradiction.
Thus o + f8 is short and by (*), (v + 3)” = pgc + (. In particular, ssp7#0and a+fisa
root in ®.
Eb By 5.1. 2 roag+1= Saﬂ(omt(g,ig;rﬁ) = Sa8P¢- By 5.1. 2@), rog < po and since a + 3

is a root saﬁ > 1. Thus 1o + 1 = po. By p.1.§c:c), kap = £(rag +1 = ps. By (*)
i‘

(a+p) = (a + f3). Since (o + )" € ®, and ® is a root system, ) implies that
a+6¢¢ O

() (a+p) =

Lemma 6.10.4 [matching kab] Let ® be a connected root system and K a standard field.
Then there exist Chevalley basis (Za,hg | o € @, € II) and (xz4,h | « € ®,8 € II) for
Lk (®) and Lk (Phi), respectively, such that kag = ksz for all af € @;.

Proof: Let L = Lg(®) and L; = (L | a € ®) . Also let L = Lyg(Phi) and Ly = (L |
€ (Pi)s). Let X be base for ®;. Note that *: & — &, — @ is an isomorphism of root
systems.
Let (x4, hy | « € @, € II) and (ya, by | o € ®, 8 € IT) be any Chevalley bases for L and
L, respectively. Then (xa,hﬁ e ®;,%) is a Chevalley basis for L; and (ya, ;1€ @1,%)
is a Chevalley basis for Ls. By [5 - there exists Lie isomorphism o : L; — L, and
€a € {Fa},a € @, with with ¢, = €_, and o(z,) = €,yz for all a € :I:E. For ain®,
pick €, € ®, arbitrarily subject to €, = €_,. For each a € ® define x5 = enys. Then by
5.1.7| (applied with p = idg), (x4, b | @ € ®, 8 € II) is a Chevalley basis for L. Let a, B € @
with a + 3 € ®. Then by [6.10.3| we have a + 8 € ®; and so (a + )" = & + b. We compute

o([Ta,78]) = 0(kapTarp) = kapT(ats) = KapTal

lo(@a), o(xp)] = [ra: 75 = kapTars

Since o is a Lie homomorphism, this implies kg = kg 3 ]

Lemma 6.10.5 [chi for adjoint] Let ® be a roots system, L = Lg(®) and G = Gg(LZ).
Then

(a) [a] If o is long then 2% *L =0 for alln >3 and xo(t) =1+ ta, +t2%.
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(b) [b] If a is not long then “& x L =0 for all n > pa and xa(t) = > bee t”;—?,"

n!

Proof: Let a8 € ® and n > 2. Then none of (n+ 1)a, na and (n — 1)« is in @ and so %

annihilates zo, hg and x_,. If3 + na is a root, then by @, a is not long and n < pgq.
O

Lemma 6.10.6 [action on 1 and wl] Let ® be a connected root system with two root

lengths. Let E be a field with p := charE = pg. Let (xq,hg | @ € ®,5 € II) be a Chevalley
basis for E. Put Ly = E(xq, ho | a € P).

(a) [a] Let B € ®s.

(a) [a] Let o € @;.
(a) [a] zq*hg=0.

(b) [b] To % T = kaﬁxa-Fﬂ ifa + ﬁ € Py
“ 0 otherwise

() [c] % Ly=0.
(b) [b] Let a € 5. Then
(a) [a] 2o %hg=—(0, )70

hﬁ if@ = _B
(b) (] wox 2= kaptass ot Bed,
0 otherwise

(c) [c] Zfxhg=

(d) [d] s = {"” foa=—fandp=2

0 otherwise

(b) [b] Ls is invariant under Uz, Ls is am ideal in L, Ls = (Lo | a € Pg)pie, and
L :=L/Ls is a module for

(c) [c] Let B € ®;. Then
(a) [a] Let o € ®;. Then
() [a] waxhs = —(a,3)7a

hg ifa=—0
(0) [b] xo*Tg = kaglars ifa+pBEP
0 otherwise

(c) [e] 2§ xhg=0
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(d) [d] 2«75 =

0 otherwise

_ {:?; if o = —f and p=2

(a) [a) waxL=
(b) [b] Z§ xhg=0

ma,@plm if pa+ B € P

D —~—
c) [c] Zxxzg=
(c) le] ! A otherwise

—N
S

(d) [d] Define f : $g(Lz)) — Endg(L) by F@) = ul for all uw € Ug(Lz))T and l € L.
Then

2
o

(a) [a] Leta € ®;. Then f(xa(t)) :1+tf(xa)+t2f(x—!
(b) [b] Let o € ®y. Then f(xa(t)) =1+ t°f(%%.
(¢) [c] G:=Gg(Ly) acts faithfully on L, that is f | is 1-1.

(e) [e] Define g : Ug(Lz)) — Endg(Ls) by g(uw)ll = ul for all w € Ug(Lz))T and l € L.
Then

(a) [a] Let a € ;. Then g(xa(t)) =1+ tg(xq).
(b) [b] Leta € B,. Then f(xa(t)) = 1+ tg(ws) + 2g(%
(c) [c] G acts faithfully on Ls, that is g |¢ is 1-1.

Proof: We will use [£.2.2] without further reference.

1@' (B,&) = p¢(a,B) and since charE = po, [2q, hg)] = —(a,B)xa =0. So
holds. a and B have different lenghts and a # +5. If a+ 3 € ® then by (]ED, a+p e d
and so [Za, 28] = kapZag. If 0 # a+ 3 ¢ @ then [z,,25] = 0. Thus holds. Since
« is long, and 8 is short, pa + 8 is not a root and so %ﬁ = 0. pa is not a root and so
%%hg = 0. Thus (a:a:c) holds.

(a:b:a)) is obvious. If a+ § € ®; then by , we have k.3 = £ps and so since
charE = pa, [2a, 28] = kaptap = 0. Thus (a:b:b) holds. pa is not a root and so (a:b:c|
holds. Since both « and 3 are short, pa + (5 is not a root unless 5 = a and p = 2. In the

latter case % X*T_oq = —Xa = Lo and holds.

@) Let o, 8 € ®. Indeed, by @, Ly is invariant under z, and %%. If n > p, the by
J6.10.5

% x Ly = 0. Suppose that 1 < n < p. n! is invertible in E. Since L is an E-subspace

n n
Lo

n
invariant under 2} and since (n!)% = z% we conclude that L, is invariant under 2.
. . . n ) . . p
So L is invariant under all %a, n € N, € ® and since this elements generate 47 as a

ring, L is invaraint under z. In particular L= L/Lg is a module for . Since Ly < iz
and L, is a E-subspace, Ls is invariant under . = E ® Ly and so L, is an ideal in L. In
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particular, Ls is a Lie subalgebra and (L, | o € ®4) < L,. But hy = (20, 2—0] € (Lo | @ €
) for all « € 4 and (L, | « € 5) = L. Thus (]ED holds.

is obvious. If a + 8 € @, then z,75 = 0. So (c:a:b) holds. and
(c:a:d]

d)) are proved justed as (ja:b:c) and (a:b:dJ).

. By . Zo, L] < [Ls, L] < Lg and (| - ) holds. is obvious. « and (8 have
different lenghts and so a # +4. Also if pa + 8 is a roots then pa + B is long and
holds.

The first two statement of @ and of @ follow easily from (] . andm It remains
to show that G acts faithfully on L and Lo. Note that ZA x(H®) = Z® and so by 6. @
Z(G) = 1. Let a € ®. It follows easily from the above that f(#.) # f(%,a) and

9(#a) # g(#—a. Hence by both f(G) and g(G) are non-degenerate. So by
ker f |g= 1 = ker g|midg. O

Lemma 6.10.7 [he| Let ® be a root system, E a field, p = charE and F, = Q if p =0 and
F, =Z/pZ if p# 0. We view F), as a subfield of E.

(a) [a] There exists a Z-linear map f : E ®z Z& — Hg with f(k® &) = khy, for all k € E,
a € &. Moreover, f is an E-linear isomorphism.

(b) [b] There exists an isomorphism g : B @z Z& — (E ®r, (Fp®z Z®) with g(k@1®d) =
kl®d.

(¢) [c] Ifp=0 there exists an isomorphism f : F, @7 Z®) — Q® with f(k ® d) = kd.

(d) [d] Suppose p # 0 and let d=d+ pZd for d € Z®. The there exists an isomorphism
f:F, @z Z®) — Z& with f(k® d) = kd..

Proof: @ Since Hg = E® Hyp, @) follows from @)

The maps F, ® E with k ® e — ke is an isomorphism. So follows from the
associtive property of tensor products.

. Clearly there exists a F, linear map f : Fj, @7 Z®) — Q& with f(k ® d) = kd. Also
f sends the IF,-basis 1 ® &, aGHtothe]F ba51sa a €11 of Q.

@ ForneZletn —n—l—pZ Then it is easy to see that I, ® Z — F,,a ® n — an is
an Z-isomorphism. Since Z® is free abelian (with basis |II|) we see that hold. O

Theorem 6.10.8 [lie-hom from 1 to chl| Let ® be a connected root system with two root
lengths. Let E be a field with charE = pg. Let (zq,hg | @ € ®,8 € II) and (za,h; | o €
®, 8 € ) be Chevalley basis for L := Lg(®) and L := Lg(Phi), respectively with kag = ks
for all af € ;. Then there exists a unique Lie-homomorphism p : L — L with p(xa) = x4
for all a € ®; and p(xy) = 0 for all a € &,. Moreover, Imp = Ly := (Lo | a € ()4 1ie
and ker p = Ls := (Lo | @ € ®5) Lie-
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Proof: Let H = Hg(®), H = Hg(Phi), Hy = E(hy | a € ®,) and H, = E(hohy | a €

(®)s). Let p = charE = pg.
From 6.10.6@ we have

1° [1]  Ls=Hs®@ucp, Lo and Ly = Hy ® B, La
Next we show.

2° [2] There exists a E-linear map o : H — H such that o(hy) = hg for all o € @y,
o(hy) =0 for all a € ®, kero = Hy and Imo = H,.

For a € Z® let @ = a+ pZ®. For a € Zd let a = a+pZd and @ = a+Z(®;)". By|6.10.7
there exists an isomorphism g : H — E ®p, Z® with g(h,) = 1 ® @ for all & € ®. Then

9(Hs) = E®p, Z(®;)” and so there exists an E- isomorphism

g1 H/Hy — E ®p, Z& with g(ha) = 1®aVa € ®
By [6.10.2(|d)) there exists an E-isomorphism

92 : E®p, Z& — E @p, Z®; with g2(1® &) = 1@ aVa € &
By [6.10.7 applied to ® there exists an isomorphism

g3 : L6 — B @n, T8 — H with g3(1® &) = ha Vo € &
For h € H define o(h) = g3g291(h + Hs). Then clearly holds.

Let p be the unique E-linear map with p(z,) = 24 for a € &, p(a) =0 for a € ¢; and
p(h) = o(h) for h € H. Note that

3° [3] kerp=Ls andImp= L.

Next we will show that p is a Lie-homomorphism, that is p([l1,l2] = [p(l1), p(l2)] for all
l1,l5 € L.

4° [3.5]  Ifl; € L, then [rho(ly), p(l2)] = p([l1,12]).

By [6.10.6{(b) L is an ideal in L and so [l1,l5] € Ls. Hence p(l1) = 0 and p([l1, l2]) = 0.
Thus holds.

Since L = Lg + E(zq, ho | @ € ®;) and since p is E-linear it remains to consider /; and
lo of the form z,, or hy for a € ®;. For this let o, 5 € ®;.

5° [4]  p([has hsl) = 0 = [p(ha), p(hs)]

Clear since H and H are abelian.
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<

6° 5] p(lhasz5)) = (@, B)ag = [p(ha), p(z5)]
[p(ha), plap)] = [ha, 23] = (B )25 = (o B ).

70 (7] Ifais long, then p([za, 7)) = ha = [p(za), pz—a)].
Obvious.

8 [9] Ifa+Bed, thena+f is long and p([ta, 5]) = kasTayj = [0(2a), p(z5)]-

(0%
By @, a+ fis long and (a + 8)°

kap = kaé and so holds.

9° [11] If0# a+ B¢ P, then p([ra, v]) = kapTyyp = [p(za), p(zp)]-

& + /. From the assumptions of the lemma

We have [zq,25] = 0. If & + 5 ¢ & we conclude that holds. So suppose that
&+ [ € ®. Since a + f is not a root we conlude from [6.10.3( applied to ®) that & + ( is
long in ® and ksp = po. Hence [x4,2 B] = 0 and again {ﬁ) holds.

From to , p is a Lie-homomorphism and the Theorem is proved. O

Lemma 6.10.9 [nice choice of kab| Let ® be a connected root system, K a standard
field and put p = pe. Then there exists Chevalley basis (xq,hpg | o € ®,8 € II) and
(za,hy | @ € ®,8 € IT) for Lg(®) and Lg(Phi), respectively, such that kg = ks for all
aB € ® with a+ B € ® and mag, = k;; mod p for all o € 4, € O with pa + B € P.

Proof: By there exist Chevalley basis (zq,hg | @ € ®,8 € II) and (ya, h; | o €
¢, 3 € II) for Lg(®) and Lk (Phi), respectively, such that kop = ks for all af € &; with
a+ p € ®. Let a be long and 3 be short with a4+ 3 € ®. Then s,5 > p and so by @,
rog = 0 and so by @, Mapp = i(g) = +1. Also by , a+ (€ ®. Since & is
long in @, @@) implies Tsp =0 and so kd,é ==£1.

If p = 2 we conclude mag, = 1 = ky; mod 2 and so the lemma holds in this case. So
suppose that p = 3 and so ® is of type Ga. For short root « pick long root f = f(«) with
po+ 3 € ®&. Define €4 = magp3 Kap € {£1}. We will show that €, is independent of the
choice of § and that ¢, = e_,. From Figure there exists exactly one root § # § with
opa—+ 6 € P, Let

The « sting through £ is

Bo=PB,61+a,Br=B+2a,p3 =0+ 3
So

—f3=—-f—-3a,—fr=—-F-20,-fr=—-PB—-a,—fo=—P
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is an « string through « and so § = —f3 = — 38 — 3a.
Since mag3 = £1, 743 = sgnkag we have

2 2
1
Maps = oy 11 *ap = [T 7108
" i=0 i=0

and

2 2
ma63 - H T]Oz—ﬁg_i - H na5i+1 .
=0 =0

Since o+ B; = Bit1, implies Nap;, = N—pit1,0 = —Ta,—pgi+1- Thus

Mmap3 = (_1)ma53 = —Mqas3

On the otherhand by —6 = (8 + 3a)” = @+ 3 and by €35 = —€45- Thus

Ca = Map3 Kgg == Mad3 Kg

is indeed independent of .

Using BT9
2 2
ma-p3=[[1-a-p; = = [ [ M08 = mags
i=0 i=0
and k_, ;= _kaé and thus e_, = eq,.

Let x5 = ys for a € ®; and x5 = €,ys for a € ®;. By [5.1. (xd,h[; | @ € @, Binll) is
Chevalley basis for L. Note that the change of basis did not effect the ks 3 for a, B € ®; with
a+ 3 € ®. On the otherhand if o € ®, and § € &; with pa+ 3 € ®;, then & + 5 = pa +

is long and so ks is changed by €,. Thus for the new base mqg, = k 5 and the lemma is
proved.

Theorem 6.10.10 [monomorphism] Let ® be a connected rootsystem with two root lengths

and E a field with p := charE = pg. Choose a Chevalley basis (xq, hg,o € ®,5 € II) for
L = Lg(®) and (4,hza € ®,8 € T for L := Lg(®) as in . Let L = L/Ls. Let
p: L — L be as in and let p: L — Ly, 1 — p(l) be the isomorphism induced by p. By
there exists a homomorphisms f : Ug(Lz)) — Endg(L) and § : Ug(Lz) — Endg(Ls).

Define o : Endg(L) — Endg(Ls),r — porop L.

(a) la] o(f(%3)) = g(%%) forn=1,2 and all o € ¥;.

n!

3

(b) b] o(f(%2) =0=g(%d) for alln >3 and all a« € ®

n!

(c) [e] o(f(%)) =g(zs) for all o € D,
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(d) [d] o(f(%2)=0= g(%) for alln,m € Z*, nn #p, m # 1.

n:

(¢) 6] of(xa(t?) = g(xa)(t) for alla € @, t € E.

(f) [f] There exists a monomorphism

v:G — G with xa(t)) = xa(t?)
forallao € @, t € E.
(9) (8] IfE is perfect, that is E = EP := {kP | k € E}, then v is an isomorphism.

Proof: Observe that if p # 2 and o(f(7,)) = 0(g(74), then also o(f(24))? = o(g(wa)?

and a(f(%?,*)) = a(g(%). :@) now follow easily from |6.10.6
. Suppose first that « is long. Then p, = 1 an by and (]E[)

Foxalt) =t
=0

)= (% = glxal)
=0

Supppose next that « is short. Then p, = ps = p and by and @

) =1+ tpfff‘ 14 Py(aa) = glxa(t?))

So () holds.
Since both f |¢ and g |¢ are 1-1, (f) follows from (¢).

follows from @
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