Chapter 1

General Representation Theory

1.1 Basic Definitions

With ring we always mean a ring with 1 and all ring homomorphisms send 1 to 1.

Definition 1.1.1. Let R be a ring and M an abelian group. An R-module structure on M is a function

$$
\cdot : \ R \times M \to M, \ (r, m) \to r \cdot m
$$

such that

(a) $r(m + \tilde{m}) = rm + r\tilde{m}$ for all $r \in R$ and $m, \tilde{m} \in M$.

(b) $(r + \tilde{r})m = rm + \tilde{r}m$ for all $r, \tilde{r} \in R$ and $m \in M$.

(c) $(r\tilde{r})m = r(\tilde{r}m)$ for all $r, \tilde{r} \in R$ and $m, \tilde{m} \in M$.

(d) $1m = m$.

An R-module is a pair (M, \cdot), where M is an abelian group and \cdot is an R-module structure on M.

Example 1.1.2. Let M be an abelian group.

(1) There exists a unique \mathbb{Z}-module structure on M. Indeed $1m = m$, $2m = (1 + 1)m = m + m$ and so inductively

$$
nm = m + \cdots + m
$$

for all $n \in \mathbb{Z}^+$ and $m \in M$. Also $0m = 0$ and $(-n)m = -(nm)$. So there exists at most one \mathbb{Z}-module structure on M. Conversely, it is easy to see that the above actually defines a \mathbb{Z}-module structure on M.

(2) $\text{End}(M)$ denotes the endomorphism ring on M. So, as a set, $\text{End}(M)$ consists of all group homomorphisms from M to M. For $\alpha, \beta \in \text{End}(M)$, $\alpha + \beta$ and $\alpha \beta$ are defined by

$$(\alpha + \beta)(m) = \alpha(m) + \beta(m) \quad (\alpha \beta)(m) = \alpha(\beta(m)).$$

Then M is an $\text{End}(M)$ module via $\alpha m = \alpha(m)$ for all $\alpha \in \text{End}(M), m \in M$.

3
(3) Let \(\mathbb{K} \) is a field. Then the \(\mathbb{K} \)-modules are exactly the \(\mathbb{K} \)-spaces, that is the vector spaces over \(\mathbb{K} \).

Definition 1.1.3. Let \(R \) be a ring and let \(M, N \) be \(R \)-modules.

(a) A (group) homomorphism \(\alpha : M \to N \) is called \(R \)-linear provided that \(\alpha(rm) = ra(m) \) for all \(r \in R \) and \(m \in M \).

(b) \(\text{Hom}_R(M, N) \) denotes the set of all \(R \)-linear homomorphisms from \(M \) to \(N \).

(c) \(\text{End}_R(M) \) denotes the set of \(R \)-linear endomorphisms of \(M \). So \(\text{End}_R(M) = \text{Hom}_R(M, M) \).

(d) \(\text{GL}_R(M) \) consists of all \(R \)-linear isomorphisms of \(M \).

(e) \(M \) and \(N \) are called isomorphic \(R \)-modules provided that there exists an \(R \)-linear isomorphism from \(M \) to \(N \).

Note that \(\text{End}_R(M) \) is a subring of \(\text{End}(M) \) and \(\text{GL}_R(M) \) is a subgroup of \(\text{Aut}(M) \).

Remark 1.1.4. Let \(R \) be a ring and let \(M, N \) be \(R \)-modules. Then

(a) \(\text{Hom}_R(M, N) \) is an subgroup of the abelian group \(\text{Hom}(M, N) \).

(b) \(\text{End}_R(M) \) is a subring of the ring \(\text{End}(M) \).

(c) \(\text{GL}_R(M) \) is a subgroup of group \(\text{Aut}(M) \).

Lemma 1.1.5. Let \(R \) be a ring and \(M \) an abelian group. Then there exists a natural 1-1 correspondence between set \(\text{Hom}_{\text{ring}}(R, \text{End}(M)) \) of ring homomorphism from \(R \) to \(\text{End}(M) \) and the set of \(R \)-module structure on \(M \).

Proof. Let \(\phi : R \to \text{End}(M) \) be a ring homomorphism. Define

\[
\cdot_{\phi} : \quad R \times M \to M, \quad (r, m) \mapsto \phi(r)(m).
\]

Then it is readily verified that \(\cdot_{\phi} \) is an \(R \)-module structure on \(M \).

Conversely, suppose that \(\cdot : R \times M \to M \) is an \(R \)-module structure. For \(r \in R \) define

\[
\phi_r : \quad M \to M, \quad m \mapsto rm.
\]

Then it is easy to verify that \(\phi_r \in \text{End}(M) \) and

\[
\phi : \quad R \to \text{End}(M), \quad r \to \phi_r
\]

is a ring homomorphism.

Note also that these two functions are inverse to each other. Indeed

\[
\phi \cdot_{\phi} (r)(m) = r \cdot_{\phi} m = \phi(r)(m)
\]

and so \(\phi \cdot_{\phi} = \cdot \). Also

\[
\cdot_{\phi} \cdot m = \phi_r(m) = rm = r \cdot m
\]

and so \(\cdot_{\phi} = \cdot. \)
1.1. BASIC DEFINITIONS

Observe, that for any ring R there exists a unique ring homomorphism $\mathbb{Z} \to R$, namely $n \mapsto n1_R$. In particular, for any abelian group M there exists a unique ring homomorphism $\mathbb{Z} \to \text{End}(M)$. Together with the preceding lemma gives a second proof that there exists a unique \mathbb{Z}-module structure on a given abelian group M.

Definition 1.1.6. Let R be a ring, M an R-module and G a group. Then an RG-module structure on M is a binary operation

$$\cdot : \quad G \times M \to M, \quad (g, m) \mapsto g \cdot m$$

such that

(i) $(g \cdot g)m = g(gm)$ for all $g, \tilde{g} \in G$ and $m \in M$.

(ii) $1_Gm = m$ for all $m \in M$.

(iii) $g(rm) = r(gm)$ for all $g \in G, r \in R$ and $m \in M$.

(iv) $g(m + \tilde{m}) = gm + g\tilde{m}$ for all $g \in G$ and $m, \tilde{m} \in M$.

An RG-module is a pair (M, \cdot) where M is an R-module and \cdot is RG-module structure on M.

Note that (i) and (ii) in the preceding definition just say that G acts on the set M, while (iii) and (iv) say for each $g \in G$ the function $m \mapsto gm$ is a R-linear homomorphism.

Definition 1.1.7. Let R be a field, M an R-module and G a group. A representation of G on M over R is a group homomorphism $\rho : G \to \text{GL}_R(M)$.

Lemma 1.1.8. Let R be a ring, M an R-module and G a group. Then there exists a natural 1-1-correspondence between representations of G on M over R and RG-module structures on M.

Proof. If $\rho : G \to \text{GL}_R(M)$ is a homomorphism, then $G \times M \to M, (g, m) \mapsto \rho(g)(m)$ is an R-module structure. Conversely if $G \times M \to M, (g, m) \mapsto gm$ is an R-module structure, define $\rho(g) \in \text{GL}_R(M)$ by $\rho(g)(m) = gm$. Then $\rho : G \to \text{GL}_R(M)$ is a representation of G on M over R. □

Definition 1.1.9. (a) Let $(A_i)_{i \in I}$ be a family of sets. Then

$$\times_{i \in I} A_i := \left\{ f : I \to \bigcup_{i \in I} A_i \bigg| f(i) \in A_i, \forall i \in I \right\}.$$
We denote $f \in \times_{i \in I} A_i$ by $(f(i))_{i \in I}$. The set $\times_{i \in I} A_i$ is called the direct product of $(A_i)_{i \in I}$.

(b) Let $(A_i)_{i \in I}$ be family of monoids, then

$$\bigoplus_{i \in I} A_i := \left\{ (a_i)_{i \in I} \in \times_{i \in I} A_i \bigg| \{i \in I \mid a_i \neq 1_{A_i} \text{ is finite} \} \right\}.$$
The set $\bigoplus_{i \in I} A_i$ is called the direct sum of $(A_i)_{i \in I}$.

(c) Let A and I be sets. Then $A^I = \times_{i \in I} A$.

(d) Let A be a monoid and I a set. Then $A^I = \bigoplus_{i \in I} A$.

Remark 1.1.10. (a) We often write (a_i) for $(a_i)_{i \in I}$.
Remark 1.1.12. If \((A_i)_{i \in I}\) is a family of monoids (groups), then both \(\times_{i \in I} A_i\) and \(\bigoplus_{i \in I} A_i\) are monoids (groups) via \((a_i)(b_i) = (a_ib_i)\).

(c) If \((A_i)_{i \in I}\) is a family of rings, then \(\times_{i \in I} A_i\) is a ring. If \(I\) is finite, then also \(\bigoplus_{i \in I} A_i\) is a ring, but if \(I\) is infinite, \(\bigoplus_{i \in I} A_i\) might not have a multiplicative identity.

(d) If \((M_i)_{i \in I}\) is a family of \(R\)-modules then both \(\times_I M_i\) and \(\bigoplus_{i \in I} M_i\) are \(R\)-modules via \(r \cdot (m_i) = (rm_i)\).

Definition 1.1.11. Let \(R\) be a ring and \(G\) a monoid. Then the monoid ring \(R[G]\) for \(G\) over \(R\) is the ring with \(R[G] = R_G\) as an abelian group and multiplication defined by

\[
(r_g)_{g \in G} \cdot (s_h)_{h \in G} := \left(\sum_{g \in G, h \in H, r_g \neq 0, s_h \neq 0} r_g s_h \right)_{k \in G}.
\]

For \(g, h \in G\) define

\[
\delta_{gh} := \begin{cases} 1_R & \text{if } g = h \\ 0_R & \text{if } g \neq h \end{cases}
\]

We identify \(r \in R\) with \((\delta_{1r})_r\) in \(R[G]\) and \(h \in G\) with \((\delta_{gh})_g\) in \(R[G]\). Then \(R\) is a subring of \(R[G]\) and \(G\) as a submonoid of the multiplicative monoid \((R[G], \cdot)\).

Remark 1.1.12. Let \(R\) be a ring and \(G\) a monoid.

(a) \(R[G]\) is a ring with identity \(1_R 1_G\).

(b) Let \(r \in R\) and \(g \in G\). Then \(rg = gr = (\delta_{gh})_h\).

(c) For each \(a \in R[G]\) there exists a unique \((r_g)_{g \in G} \in R_G\) with \(a = \sum_{g \in G} r_g g\), namely \((r_g)_{g \in G} = a\).

(d) \(R[G]\) is generated by \(R\) and \(G\) as a ring.

Proof. (a) and (b) are readily verified. From (b) we conclude that \(\sum_{g \in G} r_g g = (r_g)_{g \in G}\) and so (c) holds. Now (d) follows from (c).

Example 1.1.13. Compute \((1 + (12) + (13)) \cdot ((123) + (23))\) in \(\mathbb{Z}_2[\text{Sym}(3)]\).

\[
(1 + (12) + (13)) \cdot ((123) + (23)) = (123) + (23) + (12)(123) + (12)(23) + (13)(123) + (13)(23) \\
= (123) + (23) + (23) + (123) + (12) + (132) \\
= (12) + (132)
\]

Lemma 1.1.14. Let \(R\) and \(S\) be rings and \(G\) a monoid. Let \(\alpha : R \to S\) be a ring homomorphism and \(\beta : G \to (S, \cdot)\) be a monoid homomorphism. Suppose that \(\alpha(r)\beta(g) = \beta(g)\alpha(r)\) for all \(r \in R\) and \(g \in G\). Then

\[
\gamma : R[G] \to S, \quad \sum_{g \in G} r_g g \mapsto \sum_{g \in G} \alpha(r_g)\beta(g)
\]

is the unique ring homomorphism \(\gamma : R[G] \to S\) with \(\gamma(r) = \alpha(r)\) and \(\gamma(g) = \beta(g)\) for all \(r \in R\), \(g \in G\).
1.1. BASIC DEFINITIONS

Proof. Define \(\gamma : R[G] \to S \) by \(\gamma(\sum_{g \in G} r_g s g) := \sum \alpha(r_g) \beta(g) \). Then

\[
\begin{align*}
\gamma(1_{R[G]}) &= \gamma(1_R \cdot 1_G) = \alpha(1_R) \cdot \beta(1_G) = 1_S \cdot 1_S = 1_S, \\
\gamma(g) &= \gamma(1_{R[G]}) = \alpha(1_R) \beta(g) = 1_S \beta(g) = \beta(g), \\
\gamma(r) &= \gamma(r1_G) = \alpha(r) \beta(1_G) = \alpha(r) 1_S = \alpha(g)
\end{align*}
\]

for all \(r \in R, g \in G \). Since \(\alpha \) is an additive homomorphism, \(\gamma \) is an additive homomorphism as well. To check

that \(\gamma \) is a multiplicative homomorphism we compute

\[
\gamma \left(\sum_{g \in G} r_g s g \cdot \sum_{h \in G} s_h h \right) = \gamma \left(\sum_k \left(\sum_{g, h \in G, gh = k} r_g s_h \right) k \right) = \sum_k \alpha \left(\sum_{g, h \in G, gh = k} r_g s_h \right) \beta(k)
\]

\[
= \sum_k \sum_{g, h \in G, gh = k} \alpha(r_g) \alpha(s_h) \beta(k) = \sum_k \sum_{g, h \in G, gh = k} \alpha(r_g) \alpha(s_h) \beta(gh)
\]

\[
= \sum_{g \in G} \alpha(r_g) \alpha(s_g) \beta(g) \beta(h) = \sum_{g \in G} \alpha(r_g) \beta(g) \alpha(s_g) \beta(h)
\]

\[
= \left(\sum_{g \in G} \alpha(r_g) \beta(g) \right) \cdot \left(\sum_{h \in G} \alpha(s_h) \beta(h) \right) = \gamma \left(\sum_{g \in G} r_g s g \right) \cdot \gamma \left(\sum_{h \in G} s_h h \right)
\]

Thus \(\gamma \) is a ring homomorphism.

Now suppose that \(\gamma : RG \to S \) is any ring homomorphism with \(\gamma(r) = \alpha(r) \) and \(\gamma(g) = \beta(g) \). Then

\[
\gamma(\sum_{g \in G} r_g s g) = \sum_{g \in G} \gamma(r_g) \gamma(s_g) = \sum_{g \in G} \alpha(r_g) \beta(g)
\]

and so \(\gamma \) is unique. \(\square \)

Lemma 1.1.15. Let \(R \) be a ring and \(G \) a group. Then there exists a natural 1-1 correspondence between \(R \)-modules and \(\text{End}(R)[G] \)-modules.

Proof. By 1.1.8 there exists a natural 1-1 correspondence between \(RG \)-modules and group homomorphisms \(\beta : G \to \text{GL}_g(M), M \) an \(R \)-module.

By 1.1.5 there exists a natural 1-1 correspondence between \(\text{End}(M) \)-modules and ring homomorphism \(\gamma : \text{End}(R)[G] \to \text{End}(M), M \) an abelian group.

Let \(M \) be an \(RG \)-module and \(\beta : G \to \text{GL}_g(M) \) the corresponding groups homomorphism. As \(\text{GL}_g(M) \subseteq \text{End}(M) \), \(\beta \) is also a monoid homomorphism \(\beta : G \to (\text{End}(M), \cdot) \). Since \(M \) is an \(R \)-module, the function \(\alpha : R \to \text{End}(M), r \mapsto (m \mapsto rm) \) is a homomorphism of rings. Let \(r \in R, g \in G \) and \(m \in M \). Since \(\beta(g) \in \text{GL}_g(M) \) we have \(r(\beta(g)m) = \beta(g)(rm) \).

We compute

\[
(\alpha(r)\beta(g))(m) = \alpha(r)(\beta(g)(m)) = r(\beta(g)(m)) = \beta(g)(rm) = \beta(g)(\alpha(r)(m)) = (\beta(g)\alpha(r))(m).
\]

Hence \(\alpha(r)\beta(g) = \beta(g)\alpha(r) \). Thus we can apply 1.1.14 and conclude that there exists a (unique) ring homomorphism \(\gamma : \text{End}(R)[G] \to \text{End}(M) \) with \(\gamma(r) = \alpha(r) \) and \(\gamma(g) = \beta(g) \). So \(M \) is an \(\text{End}(R)[G] \)-module.
Conversely, suppose $\cdot : R[G] \times M \to Ma \to am$ is an $R[G]$-module structure on the abelian group M. Recall that we view R as a subring of $R[G]$. So $\cdot : R \times M \to M, (r, m) \to rm$ is an R-module structure. Also G is a submonoid of (R, \cdot) and so $\cdot : G \times M \to M, (g, m) \to M$ is an action of G on M. Since $rg = gr$ in $R[g]$ we have

$$r(gm) = (rg)m = (gr)m = g(rm)$$

for all $r, g \in G$ and $m \in M$ and so $G \times M$ is an RG-module structure for G on the R-module M. □

Definition 1.1.16. Let R be a ring and M an R-module.

(a) An R-submodule of M is a subgroup N of M with $rn \in N$ for all $r \in R, n \in N$.

(b) M is a simple R-module $M \neq 0$ and if 0 and M are the only R-submodules of M.

Example 1.1.17. Let R be a ring, I a set and G a group action on I. Note that both R^I and R_I are $R[G]$-modules via

$$r \cdot (r_i)_{i \in I} = (rr_i)_{i \in I} \quad \text{and} \quad g \cdot (r_i)_{i \in I} = (r_{g^{-1}i})_{i \in I}$$

for all $r \in R, g \in G, (r_i)_{i \in I} \in R^I$.

(a) Let J be a G-invariant subset of I. Identify, $(r_j)_{j \in J}$ with $(s_i)_{i \in I}$, where $s_i = r_i$ if $i \in J$ and $s_i = 0$ if $i \notin J$. Then R^I is an $R[G]$-submodule of R^I and R_J an $R[G]$-submodule of R_I.

(b) Let K be an ideal in R. Then K^I is an $R[G]$-submodule of R^I and K_I is an $R[G]$-submodule of R_I.

(c) Define $W := \{(r_i)_I \in R_I \mid \sum_{i \in I} r_i = 0\}$. Then W is an $R[G]$-submodule of R_I and R^I.

(d) Define $Z := \{(r)_I \mid r \in R\}$. Then Z is an $R[G]$-submodule of R^I.

(e) Put $n = |I|$. If $n = \infty$ then $W \cap Z = 0$. If $n < \infty$, then $W \cap Z = \{(r)_{i \in I} \mid r \in R, nr = 0\}$. If R is a field, n is finite and $\text{char } R \nmid n$, then $W \cap Z = 0$. If R is a field, n is finite and $\text{char } R \mid n$, then $Z \subseteq W$.

(f) Suppose R is a field and $|I| \geq 2$. If $|I| = 2$ suppose also that $\text{char } p \neq 2$. Then $W + Z/Z$ is a simple $R[G]$-module.

Definition 1.1.18. Let R be a ring and M an R-module.

(a) $N \leq_R M$ means that N is an R-submodule of M.

(b) For $I \subseteq M$ define $\langle I \rangle_R = \bigcap\{N \mid I \subseteq N \leq_R M\}$. $\langle I \rangle_R$ is called the R-submodule of R generated by I. Observe that R is the smallest R-submodule of M containing R.

(c) For a family $(N_i)_{i \in I}$ of R-submodules in M, let

$$\sum_{i \in I} N_i := \left\{(n_i)_{i \in I} \in \bigoplus_{i \in I} N_i \right\}.$$

Observe that $\sum_{i \in I} N_i = \langle \bigcup_{i \in I} N_i \rangle_R$.

(d) We say that M is the internal direct sum of the family $(N_i, i \in I)$ of R-submodules in M if for each $m \in M$ there exists a unique $(n_i) \in \bigoplus_{i \in I} N_i$ with $m = \sum_{i \in I} n_i$.
1.1. BASIC DEFINITIONS

(e) We say that a family \((N_i, i \in I)\) of \(R\)-submodules in \(M\) is linearly independent if \(N_i \neq 0\) for all \(i \in I\) and if \((n_i)_{i \in I} \in \bigoplus_{i \in I} N_i\) with \(\sum_{i \in I} n_i = 0\) implies \(n_i = 0\) for all \(i \in I\).

Lemma 1.1.19. Let \((N_i)_{i \in I}\) be a family of \(R\)-submodules of the \(R\)-module \(M\). Then \((N_i)_{i \in I}\) is linearly independent iff \((N_i)_{i \in J}\) is linearly independent for all finite subsets \(J\) of \(I\).

Proof. Obvious. \(\square\)

Lemma 1.1.20. Let \(M\) be an \(R\)-module \((M_i, i \in I)\) a family of non-zero \(R\)-submodules of \(M\). Let \(W = \sum_{i \in I} M_i\). Then the following are equivalent.

(a) \(W\) is the internal direct sum of \((M_i)_{i \in I}\).

(b) \((M_i)_{i \in I}\) is linearly independent.

(c) The function \(\phi : \bigoplus_{i \in I} M_i \to W, (m_i) \to \sum_{i \in I} m_i\) is an \(R\)-linear isomorphism.

(d) For each \(k \in I\), \(M_k \cap \bigoplus_{j \neq k} M_j = 0\).

Proof. Observe that \(\phi\) is \(R\)-linear and onto. The definition of an internal direct sum implies that \(\phi\) is a bijection if and only if \(W\) is the internal direct sum of the \((M_i, i \in I)\). Also \((M_i)_{i \in I}\) is linearly independent iff \(\ker \phi = 0\). So (a), (b) and (c) are equivalent.

Suppose (d) holds and let \(m \in M_k \cap \bigoplus_{j \neq k} M_j\). Then there exists \((m_j) \in \bigoplus_{j \neq k} M_j\) with \(\sum m_j = m\). Put \(m_k = -m\). Then \(\phi((m_i)) = 0\). Thus \(m_i = 0\) for all \(i\) and so \(m = -m_k = 0\). Thus (d) holds.

Suppose that (d) holds and let \((m_i) \in \bigoplus_{i \in I} M_i\) with \(\phi((m_i)) = 0\). Let \(k \in I\). Then

\[-m_k = \sum_{j \neq k} m_j \in M_k \cap \bigoplus_{j \neq k} M_j = 0.\]

Thus \(m_k = 0\), \((m_i) = 0\) and \(\phi\) is one to one. So (d) holds. \(\square\)

By the previous lemma, if \(\sum M_i\) is the internal direct sum of \((M_i)_{i \in I}\), then \(\sum M_i \cong \bigoplus_{i \in I} M_i\). In this case we usually identify \(\sum_{i \in I} M_i\) with \(\bigoplus_{i \in I} M_i\). In particular, we will write \(\sum M_i = \bigoplus M_i\) to indicate that \(\sum M_i\) is the internal direct sum of \((M_i, i \in I)\). We will also write just “direct sum” instead of “internal direct sum”.

Definition 1.1.21. Let \(R\) a ring, \(M\) an \(R\)-module, \(I\) a set and \(b = (b_i)_{i \in I} \in M^I\).

(a) \(M\) is a free \(R\)-module with respect to \(b\) if for all \(R\)-modules \(N\) and all \(c \in N^I\) there exists a unique \(R\)-linear functions \(f : M \to N\) with \(c_i = f(b_i)\) for all \(i \in I\) (that is with \(c = f \circ b\)).

(b) \(b\) is called an \(R\)-basis for \(M\) if for all \(m \in M\) there exists a unique \((r_i) \in \bigoplus_i R\) with \(m = \sum_{i \in I} r_i m_i\).

Example 1.1.22. (1) Let \(R\) be a ring and \(I\) a set. Put \(e_i := (\delta_{ij})_{j \in I}\). Then \((e_i)_{i \in I}\) is an \(R\)-basis for \(R_I\).

(2) Let \(R\) be a ring and \(G\) a monoid. Then \(G\) is an \(R\)-basis for \(R[G]\), or to be more precise \((g)_{g \in G}\) is an \(R\)-basis for \(R[G]\).

Lemma 1.1.23. Let \(R\) be a ring, \(I\) a set and let \(M\) and \(N\) free \(R\)-modules. Suppose that \(M\) is free with respect to \(b \in M^I\) and \(N\) is free with respect to \(c \in N^I\). Then there exists a unique \(R\)-isomorphism \(f : M \to N\) with \(f(b_i) = c_i\) for all \(i \in I\).

Proof. By definition of a free \(R\)-module there exist \(R\)-linear function \(f : M \to N\) and \(g : N \to M\) with \(c = f \circ b\) and \(b = g \circ c\). Then \((g \circ f) \circ b = g \circ (f \circ b) = g \circ c = b = \text{id}_M \circ b\). The uniqueness assertion in the definition of free \(R\)-modules now shows that \(g \circ f = \text{id}_M\). By symmetry \(f \circ g = \text{id}_N\). \(\square\)
Lemma 1.1.24. Let I be a set, M an R-module and $b = (b_i)_{i \in I} \in M^I$. Then the following are equivalent.

(a) The function $\alpha : R_I \to M, (r) \to \sum r_i b_i$ is an isomorphism.

(b) b is an R-basis for M.

(c) M is a free R-module with respect to b.

Proof. Clearly (a) and (b) are equivalent.

Suppose (b) holds, that is b is an R-basis for M. Let N be an R-module and $c \in N^I$, function. If $f : M \to N$ is linear with $f(b_i) = c_i$, then

\[f(\sum_{i \in I} r_i b_i) = \sum_{i \in I} r_i c_i \]

for all $r \in R_I$. Hence f is unique. Conversely, since b is a basis for M, (*) defines an R-linear function $M \to N$ with $f(b_i) = c_i$. Thus M is a free R-module with respect to b.

Suppose now that (c) holds, that is M is a free R-module with respect to b.

By Example 1.1.22(a) $e := (e_i)_{i \in I}$ is a R-basis for R_I. As (b) implies (c) this shows that M is a free R-module with respect to e. Hence 1.1.23 shows that there exists a R-isomorphism $\alpha : R_I \to M$ with $\alpha(e_i) = b_i$ for all $i \in I$. This gives (a). □

Definition 1.1.25. Let R be a ring and M an R-module.

(a) We say that M is semisimple if M is the direct sum of simple R-submodules.

(b) M is directly indecomposable if M is not the direct sum of two proper R-submodules.

(c) Let N be an R-submodule of M. Then we say that N is a direct summand of M (or that M splits over N) as an R-module if there exists an R-submodule K of M with $M = N \oplus K$.

Lemma 1.1.26. Let S a set of simple R-submodules of the R-module M. Also let N be a R-submodule of M and suppose that $M = \sum S$.

(a) There exists a linearly independent subset M of S with $M = N \oplus \oplus M$.

(b) N is a direct summand of M.

(c) $M = \oplus T$ for some linearly independent subset T of S.

(d) $M/N \cong \oplus M$ for some linearly independent subset M of S.

(e) M/N is semisimple.

(f) $N \cong \oplus N$ for some linearly independent subset N of S.

(g) N is semisimple.

(h) If N is simple then $N \cong S$ for some $S \in S$.

1.1. BASIC DEFINITIONS

Proof. (a): In the following regular capital letter like \(M, N, W \) will denote submodules of \(M \). Calligraphic letters like \(\mathcal{D}, \mathcal{M} \) denotes subsets of \(S \) and so are sets of submodules of \(M \). Bourbaki letters like \(\mathfrak{B} \) and \(\mathfrak{D} \) will denote sets of subsets of \(S \). Let \(\mathfrak{B} \) consists of all the linearly independent subsets \(\mathcal{T} \) of \(S \) with \(N \cap \bigcap \mathcal{T} = 0 \). Since \(\emptyset \in \mathfrak{B} \) we see that \(\mathfrak{B} \neq \emptyset \). Order \(\mathfrak{B} \) by inclusion and let \(\mathcal{D} := \bigcup \mathfrak{B} \).

Let \(\mathcal{F} = \{F_1, \ldots, F_n\} \) be a finite subset of \(\mathcal{D} \). Then for each \(1 \leq i \leq n \) there exists \(D_i \in \mathfrak{D} \) with \(F_i \in \mathcal{D}_i \). As \(\mathfrak{D} \) is a chain we may assume that \(D_1 \subseteq D_2 \subseteq \ldots \subseteq D_n \). Thus \(\mathcal{F} \subseteq D_n \). As \(D_n \) is linearly independent we conclude that also \(\mathcal{F} \) is linearly independent. Hence 1.1.19 shows that \(\mathcal{D} \) is a linearly independent subset of \(S \).

Let \(m \in M \cap \sum \mathcal{D} \). Then there exists \(D_i \in \mathcal{D}, 1 \leq i \leq n \) and \(d_i \in D_i \) with \(m = \sum_{i=1}^{n} d_i \). For each \(D_i \) there exists \(D_j \in \mathfrak{D} \) with \(D_i \subseteq D_j \). As above we may assume that \(D_1 \subseteq D_2 \subseteq \ldots \subseteq D_n \) Then \(D_i \in D_n \) for all \(1 \leq i \leq n \) and so \(m \in N \cap \sum \mathcal{D}_n = 0 \).

Therefore \(N \cap \sum \mathcal{D} = 0 \) and so \(\mathcal{D} \in \mathfrak{B} \). So we can apply Zorn’s lemma to obtain a maximal element \(M \) in \(\mathfrak{B} \). Put \(W := \sum \mathcal{M} \). As \(\mathcal{M} \in \mathfrak{B} \) we know that \(\mathcal{M} \) is linearly independent and \(N \cap W = 0 \). In particular, \(W = \bigoplus \mathcal{M} \). If \(M = N + W \) we conclude that \(M = N \oplus W = N \oplus \bigoplus \mathcal{M} \) and (a) holds.

Suppose we may assume for a contradiction that \(M \neq N + W \). Since \(\sum \mathcal{S} = M \) there exists \(S \in \mathcal{S} \) with \(S \subseteq N + W \). Then \(S \subsetneq W \) and so also \(S \notin \mathcal{M} \). Put \(\mathcal{M}^* = \mathcal{M} \cup \{S\} \). Then \(\mathcal{M} \subseteq \mathcal{M}^* \) and we will obtain a contradiction by showing that \(\mathcal{M}^* \in \mathfrak{B} \). Note that \(\sum \mathcal{M}^* = W + S \). So we need to show that \(N \cap (W + S) = 0 \) and \(\mathcal{M}^* \) is linearly independent.

From \(S \subsetneq N + W \) we get \(S \neq (N + W) \cap S \) and since \(S \) is simple:

\[(N + W) \cap S = 0.
\]

Note that

\[W \subseteq (N + W) \cap (W + S) \subseteq W + S
\]

and so the modular law shows that

\[(N + W) \cap (S + W) = W + ((N + W) \cap (W + S) \cap S) = W + ((N + W) \cap S) = W + 0 = W.
\]

It follows that

\[N \cap \sum \mathcal{M}^* = N \cap N \cap (S + W) \subseteq N \cap (N \cap W) \alpha' (S + W) \subseteq N \cap W = 0.
\]

For \((N \cap W) \cap S = 0 \) we have \(W \cap S = 0 \) and so

\[\sum \mathcal{M}^* = W + S = W \oplus S = (\bigoplus \mathcal{M}) \oplus S = \bigoplus \mathcal{M}^*.
\]

Thus \(\mathcal{M}^* \) is linearly independent and so \(\mathcal{M}^* \in \mathfrak{B} \), a contradiction to the maximality of \(\mathcal{M} \).

(a) follows from (a).

(b) follows from (a) applied with \(N = 0 \).

(c) follows from (a).

(d) follows from (a).

(e) follows from (a).

(f) Note that \(N \cong M/W \). So (f) follows from (d) applied to \(W \) in place of \(N \).

(g) follows from (f).

(h): Suppose \(N \) is simple. Then the set \(\mathfrak{N} \) from (c) only contains one element, say \(S \). So \(N \cong S \) and (h) is proved. \[\square\]
Lemma 1.1.27. Let R be a ring and M an R-module. Then the following are equivalent

(a) M is a sum of simple R-modules.

(b) Every R-submodule of M is semisimple.

(c) M is a semisimple R-module.

(d) Every non-zero R-submodule of M is a direct summand of M and contains a simple R-submodule.

(e) If N is an R-submodule of M with $N \neq M$, then there exists simple R-submodule S with $S \subseteq N$.

Proof. By 1.1.26(g), (a) implies (b). Clearly (b) implies (c).

Suppose that (c) holds and let N be a non-zero R-submodule of M. By 1.1.26(b) N is a direct summand of M and by 1.1.26(g) N is semisimple. So since $N \neq 0$, N has a simple submodule.

Suppose now that (d) holds and let $N \neq M$ be an R-submodule of M. By (d) $M = N \oplus W$ for some R-submodule W. Since $N \neq M$, $W \neq 0$. Thus (d) implies W has a simple R-submodule S. Since $N \cap W = 0$, $S \subseteq N$ and (e) holds.

Suppose (e) holds. Let N be the sum of all the simple R-submodules in M. If $N \neq M$, then (e) implies the existence of a simple R-submodule S of M with $S \subseteq N$. But this contradicts the definition of N. So $N = M$ and (a) holds.

□

Corollary 1.1.28. Let M semisimple R-module. Then all R-sections of M are semisimple.

Proof. Let $A \leq B \leq M$ be R-submodules of M. Then 1.1.26(g) implies that B is semisimple. Then 1.1.26(c) applied to (A, B) in place of (N, M) shows that B/A is semisimple.

□

Definition 1.1.29. Let R be a ring.

(a) $\mathcal{S}(R)$ is set of all isomorphism classes of simple R-modules.

(b) For an R-module M and $S \in \mathcal{S}(R)$ define $M_S := \sum \{ S \in S \mid S \leq_R M \}$.

Lemma 1.1.30. Let R be a ring and M a semisimple R-module. Then

$$M = \bigoplus_{S \in \mathcal{S}(R)} M_S.$$

Proof. Let S be a simple R module and S the class of R-modules isomorphic to S. Then $S \in S \in \mathcal{S}(R)$. It follows that $S \leq S_S \leq \sum S \in \mathcal{S}(R) M_S$. As M is a semisimple R-module we know that M is sum of it simple R-modules and we conclude that

$$M = \sum_{S \in \mathcal{S}(R)} M_S$$

Let $S \in \mathcal{S}(R)$ and define $W := \sum_{T \in \mathcal{S}(R), S} M_T$. Suppose for a contradiction that $M_S \cap W \neq 0$. Since M is semisimple 1.1.27 shows that also $M_S \cap W$ is a semisimple R-module and so there exists a simple R-submodule U of $M_S \cap W$. Then

$$U \leq M_S = \sum \{ S \in S \mid S \leq R M \}$$

and so 1.1.26(h) shows that $U \cong_R S$ for some $S \in S$ with $S \leq R M$. Since S is an isomorphism class of simple R-modules this implies that $U \in S$. Similarly,
\[U \subseteq W = \sum \{ T \in \mathcal{T} \mid S \subseteq T \in \mathcal{S}(R), T \leq R \} M \]

and \([1.1.26(\text{h})]\) shows that \(U \cong T \) for some \(T \in \mathcal{T} \) with \(T \leq R \) and \(S \subseteq \mathcal{S}(R) \) with \(\mathcal{T} \neq S \). Since \(\mathcal{T} \) is isomorphism class of simple \(R \)-modules this implies that \(U \in \mathcal{T} \). Hence \(U \in \mathcal{T} \cap \mathcal{S} \) and so \(\mathcal{T} = \mathcal{S} \), a contradiction.

This contradiction shows that \(M_S \cap W = 0 \) and so \(M \) is the internal direct sum of the family \((M_S)_{S \in \mathcal{S}(R)} \).

\[\square \]

1.2 Krull-Schmidt Theorem

Definition 1.2.1. A ring with a largest proper left ideal is called a local ring.

Lemma 1.2.2. Let \(G \) be a monoid and \(a, r, l \in G \). If \(la = ar = 1 \), then \(a \) is unit and \(r = l \) is the inverse of \(a \).

Proof. \(l = l1 = l(ar) = (la)r = 1r = 1 \). \[\square \]

Lemma 1.2.3. Let \(\alpha : A \rightarrow B \) be homomorphism of \(R \)-modules and \(D \) an \(R \)-submodule of \(A \)

(a) If \(\alpha|_D \) is 1-1, then \(D \cap \ker \alpha = 0 \).

(b) If \(\alpha|_D \) is onto, then \(A = D + \ker \alpha \).

(c) If \(\alpha|_D \) is an isomorphism, \(A = D \oplus \ker \alpha \).

Proof. (a) is obvious.

(b): Let \(a \in A \) and pick \(d \in D \) with \(\alpha(a) = \alpha(d) \). Then \(a - d \in \ker \alpha \) and so \(a = d + (a - d) \in D + \ker \alpha \).

(c) follows from (a) and (b). \[\square \]

Lemma 1.2.4. Let \(R \) be a non-zero ring. Let \(R^* \) be the set of units in \(R \) and put \(I := T \setminus R^* \).

(a) Suppose \(I \) is an ideal in \(R \). Then \(I \) is the largest proper left ideal of \(R \) and \(I \) is the largest proper right ideal in \(R \).

(b) \(R \) is local ring if and only if \(I \) is an ideal in \(R \).

Proof. (a) Suppose first that \(I \) is an ideal. Since \(1 \notin I \) we see that \(I \) is a proper left ideal in \(R \). Let \(J \) be any proper left ideal in \(R \) and let \(j \in J \). Then \(Rj \subseteq J \neq R \) and so \(Rj \neq R \). Hence \(j \) is not a unit in \(R \) so \(j \notin I \). Thus \(J \subseteq I \) and so \(I \) is the largest proper left ideal of \(R \). By symmetry, \(I \) is also the largest proper right ideal in \(R \).

(b) If \(I \) is an ideal in \(R \), then (a) shows that \(I \) is a largest proper ideal of \(R \). Thus \(R \) is a local ring.

Suppose next that \(R \) is a local ring. Then \(R \) has largest proper ideal \(J \). We will first show that \(J \) is also a right ideal in \(R \). For this let \(r \in R \).

Suppose for a contradiction that \(Jr = R \). View \(R \) as a \(R \)-module by left multiplication. Then \(\alpha : R \rightarrow R, t \rightarrow tr \) is \(R \)-linear and so \(\ker \alpha \) is a left ideal in \(R \). Also \(\alpha|_J \) is onto and so by \([1.2.3(b)]\), \(R = J + \ker \alpha J \). It follows that \(\ker \alpha \not\subseteq J \). As \(\ker \alpha \) is left ideal and \(J \) is the largest proper left ideal this implies that \(R = \ker \alpha \). It follows that \(R = Jr = 0 \), contrary to the hypothesis of the lemma.

Thus \(Jr \neq R \). Hence \(Jr \) is a proper left ideal in \(R \) and since \(J \) is the largest proper left ideal if \(R \) we get \(Jr \subseteq J \). Thus \(J \) is a right ideal. As \(J \) is a left ideal this shows that \(J \) is an ideal in \(R \).
Next we will show $J = I$. As $I = R \setminus R^*$ we see that $J = I$ if and only if $R \setminus J = R^*$. If $r \in R^*$, then $Rr = R \not\subseteq J$. Thus $r \notin J$ and so $R^* \subseteq \setminus J$.

Now let $r \in R \setminus J$. Since $r \in Rr$, this gives $Rr \not\subseteq J$. As Rr is left ideal and J is the largest proper left ideal this shows that $Rr = R$. In particular, there exists $s \in R$ with $sr = 1$. If $s \in J$, then, since J is a right ideal, also $1 = sr \in J$, a contradiction. Thus $s \notin J$. So s fulfills the same hypothesis as r and thus $ks = 1$ for some $k \in R$. We proved that $ks = 1$ and $sr = 1$. Thus by 1.2.4 the set $\langle s \rangle$ is an ideal in R with inverse of r. Hence $r \in R^*$ and so $R \setminus J = R^*$. We proved that $R \setminus J = R^*$ and so $I = J$. As J is an ideal of R this shows that I is an ideal of iR. Thus (b) is proved. \hfill \qedsymbol

Lemma 1.2.5. Let R be a local ring and $r_1, \ldots, r_n \in R$ such that $r_1 + r_2 + \ldots + r_n$ is a unit. Then r_i is a unit for some $1 \leq i \leq n$.

Proof. By 1.2.4 the set I of non-units is an ideal in R. If $r_i \in I$ for all $1 \leq i \leq n$, then also $r_1 + r_2 + \ldots + r_n \in I$, a contradiction. \hfill \qedsymbol

Lemma 1.2.6. Let $\alpha : A \to B$ and $\beta : B \to C$ be R-linear functions such that $\beta \circ \alpha$ is invertible.

(a) α is 1-1 and $\alpha : A \to \text{Im} \, \alpha$ is an isomorphism.
(b) β is onto and $\beta|_{\text{Im} \, \alpha}$ is an isomorphism.
(c) $B = \text{Im} \, \alpha \oplus \ker \beta$.
(d) If, in addition, B is directly indecomposable and $A \neq 0$, then both α and β are isomorphisms.

Proof. (a) and (b) are readily verified.

(a) From (b) we know that $\beta|_{\text{Im} \, \alpha}$ is an isomorphism. Thus 1.2.3((c)) shows that $B = \text{Im} \, \alpha \oplus \ker \beta$.

(b) Suppose now that B is directly indecomposable. By (c) $B = \text{Im} \, \alpha \oplus \ker \beta$ and so either either $\text{Im} \, \alpha = 0$ and $\ker \beta = B$ or $\text{Im} \, \alpha = B$ and $\ker \beta = 0$. In the first case $\text{Im} \, \alpha = 0$, by (a) we know $A \cong \text{Im} \, \alpha$, so also shows that $A = 0$, a contradiction. In the second case $\text{Im} \, \alpha = B$ and (a) and (b) show that both α and β are both isomorphisms. \hfill \qedsymbol

Definition 1.2.7. Let M be an R-module.

(a) We say that M fulfills the ascending chain condition (ACC) if each countable ascending chain
\[M_1 \leq M_2 \leq \ldots \leq M_n \leq M_{n+1} \leq \ldots \]
terminates, that is there exists $m \in \mathbb{Z}^+$ with $M_k = M_m$ for all $k \geq m$.

(b) We say that M fulfills the descending chain condition (DCC) if each countable descending chain
\[M_1 \geq M_2 \geq \ldots \geq M_n \geq M_{n+1} \geq \ldots \]
 terminates.

Lemma 1.2.8. Let M be an R-module. Then the following are equivalent.

(a) M fulfills DCC.

(b) Every nonempty set of R-submodules of M has a minimal element.

(c) If M is a non-empty set of R-submodules, then there exists a finite subset N of M with $\bigcap M = \bigcap N$.

1.2. KRULL–SCHMIDT THEOREM

Proof. (a) \implies (b): Let M be a non-empty set of R-submodules of M and suppose M has no minimal element. Let $M_1 \in M$ and inductively assume we already found $M_1, M_2, \ldots, M_k \in M$ with

$$M_1 > M_2 > \ldots > M_k$$

Since M_k is not a minimal element, there exists $M_{k+1} \in M$ with $M_k > M_{k+1}$. Hence $\{M_k \mid k \in \mathbb{Z}^+\}$ is a non-terminating descending chain of R-submodules, a contradiction to DCC.

(b) \implies (c): Let M be a set of R-submodules and define

$$\mathcal{F} := \left\{ N \mid N \text{ a finite subset of } M \right\}.$$

By (b), \mathcal{F} has a minimal element W. Then $W = \bigcap N$ for some finite $N \subseteq M$. Let $N \in M$. Then $W \cap N = \bigcap (N \cup \{N\}) \in \mathcal{F}$ and so by minimality of W, $W = W \cap N \leq N$. Thus $W = \bigcap M$ and (b) holds.

(c) \implies (a): Let $M_1 \geq M_2 \geq M_3 \ldots$ be an descending chain of R-submodules of M. By (c) applied to $M = \{M_i \mid 1 \leq i < \infty\}$ there exists a finite subset N of M with $\bigcap N = \bigcap M$. Since N is finite and total ordered $\bigcap N = M$, where M is the minimal element of N. It follows that $M_i \leq M_j$ for all j and so $M_i = M_j$ for all $j \geq i$. \hfill \square

Lemma 1.2.9 (Fitting). Let M be an R-module and $f \in \text{End}_R(M)$.

(a) If f is onto, then f^n is onto for all $n \in \mathbb{Z}^+$.

(b) If f is onto and M fulfills ACC, then f is an isomorphism.

(c) If M fulfills DCC, there exists $n \in \mathbb{Z}^+$ with $\text{Im } f^n = \text{Im } f^{n+1}$.

(d) If M fulfills ACC and DCC then there exists $n \in \mathbb{Z}^+$ such that $M = \ker f^n \oplus \text{Im } f^n$.

(e) If M is directly indecomposable and fulfills ACC and DCC, then f is either invertible or nilpotent.

Proof. (a): Suppose inductively that f^n is onto. Then $f^{n+1}(M) = f(f^n(M)) = f(M) = M$. So also f^{n+1} is onto.

(b): By (a) we know that f^n is onto and so we obtain on isomorphism:

$$\alpha : M/\ker f^n \to M, \quad m + \ker f^n \to f^n(a)$$

Note that $\alpha(m + \ker f^n) \leq \ker f$ if and only if $f(f^n(m)) = 0$ and so if only if $m \in \ker f^{n+1}$. Thus α induces an isomorphism from $\ker f^{n+1}/\ker f^n$ to $\ker f$. Hence

$$(*) \quad \ker f^{n+1}/\ker f^n \cong \ker f.$$

Now $0 \leq \ker f \leq \ker f^2 \leq \ldots$ is an ascending chain of R modules and so by ACC there exists n with $\ker f^{n+1} = \ker f^n$. Thus $(*)$ implies that $\ker f = 0$ and so f is 1-1.

(c): Just observe that $M \geq \text{Im } f \geq \text{Im } f^2 \geq \text{Im } f^3 \geq \ldots$, is an descending chain of R-submodules in M.

(d): Choose n as in (c). Then $f : \text{Im } f^n \to \text{Im } f^n$ is onto. Hence also $f^n : \text{Im } f^n \to \text{Im } f^n$ is onto. By (c) we conclude that $f^n : \text{Im } f^n \to \text{Im } f^n$ is an isomorphism. So we can apply 1.2.3(c) to $f^n : M \to \text{Im } f^n$ in place of α and $\text{Im } f^n$ in place of D. Therefore $M = \text{Im } f^n \oplus \ker f^n$.

(e): Since M is directly indecomposable, (d) implies that either $\ker f^n = M$ and $\text{Im } f^n = 0$, or $\ker f^n = 0$ and $\text{Im } f^n = M$. In the first case $f^n = 0$ and so f is nilpotent. In the second case f^n is an isomorphism and so invertible. But then also f is invertible. \hfill \square
Lemma 1.2.10. Let R be a non-zero ring.

(a) Let I be a maximal left ideal in R and suppose that all elements of I are nilpotent. Then I is the largest proper left ideal of R. In particular, R is a local ring.

(b) Suppose each element of R is invertible or nilpotent. Then R is a local ring.

Proof. (a): Let $r \in R \setminus I$. Then $R_r + I$ is left ideal of R and the maximality of R shows that $R_r + I = R$. Thus $1 = ar + i$ for some $a \in R$ and $i \in I$. Since $i \in I$ we know that i is nilpotent. In particular, $1 + i$ is has an inverse j, namely $j = \sum_{k=0}^{n-1} i^k$, where $n \in \mathbb{Z}^+$ with $i^n = 0$. As $1 = ar + i$ we have $1 - i = ar$ and so $(jr)(ar) = j(1 - i) = 1$. It follows that $R_r = R$ and so r is not contained in any proper left ideal of R. Hence every proper left ideal of R is contained in I.

(b): Since R is a non-zero ring with identity, R has maximal left ideal I. Note that no element of I is invertible, and so the hypothesis of (b) shows that all elements of I are nilpotent. Hence (b) now follows from (a). □

Lemma 1.2.11. Let M be an R-module.

(a) If $\text{End}_R(M)$ is a local ring, M is directly indecomposable.

(b) If M fulfills ACC and DCC, then M is directly indecomposable if and only if $\text{End}_R(M)$ is a local ring.

Proof. Put $A := \text{End}_R(M)$.

(a): Suppose for a contradiction that A is a local ring and M is directly decomposable. Let $M = X \oplus Y$ for some proper R-submodules X and Y. Let $\pi_X : M \to M$ be the projection map defined by, $\pi_X(x + y) = x$ for all $x \in X$ and $y \in Y$. Similarly define π_Y. Then π_X and π_Y are in A and $\pi_X + \pi_Y = \text{id}_M$. Since $X = \ker \pi_Y$, π_Y is not invertible. Similarly π_X is not invertible. But this contradicts 1.2.5.

(b) By (a) the backward direction in (b) holds. For the forward direction suppose that M fulfills ACC and DCC and M is directly indecomposable. Then 1.2.9(c) shows that all each elements of R is invertible or nilpotent. Now 1.2.10(b) implies that A is a local ring. □

Proposition 1.2.12. Let M be an R-module, \mathcal{B} a finite set of directly indecomposable R-submodules of M with $M = \bigoplus \mathcal{B}$. If A is a direct summand of M such that $\text{End}_R(A)$ is a local ring, then there exists $B \in \mathcal{B}$ such that

$$M = A \oplus E, \quad \text{where } E = \bigoplus_{B \neq D \in \mathcal{B}} D.$$

In particular,

$$A \cong_R M/E \cong_R B \quad \text{and} \quad M/A \cong_R E \cong_R M/B.$$

Proof. Let X be an R-submodule of M with $M = A \oplus X$. Let

$$\iota_A : A \to M, \ a \mapsto a \quad \text{and} \quad \pi_A : M \to A, \ a + x \mapsto a$$

be the associated inclusion and projection maps. For $D \in \mathcal{B}$, let

$$\iota_D : D \to M, \ d \mapsto d \quad \text{and} \quad \pi_D : M \to D, \ \sum_{B \in \mathcal{B}} m_B \mapsto m_D$$

be the inclusion and projection map associated to the direct sum decomposition $M = \bigoplus \mathcal{B}$. Then

$$\pi_A \iota_A = \text{id}_A \quad \text{and} \quad \sum_{B \in \mathcal{B}} \iota_B \pi_B = \text{id}_M.$$
1.3. MASCHKE’S THEOREM

Let \(h \) be a field and \(A \) a finite ring. \((K_\text{rull}-S_\text{chmidt}) \)

Theorem 1.2.14

Let \(\mathcal{A} \) be sets of \(R \) modules. We say that \(\mathcal{A} \) and \(\mathcal{B} \) are \(R \)-isomorphic and write \(\mathcal{A} \cong \mathcal{B} \) or \(\mathcal{A} \cong _R \mathcal{B} \) if there exists a bijection \(\alpha : \mathcal{A} \to \mathcal{B}, \mathcal{A} \to \mathcal{A}' \) with \(\mathcal{A} \cong _R \mathcal{A}' \) for all \(\mathcal{A} \in \mathcal{A} \).

Theorem 1.2.14 (Krull-Schmidt). Let \(\mathcal{A} \) and \(\mathcal{B} \) be sets of directly indecomposable \(R \)-modules. Suppose that \(\mathcal{B} \) is finite and that for each \(A \in \mathcal{A}, \text{End}_R(A) \) is a local ring. If \(\bigoplus \mathcal{A} \cong _R \bigoplus \mathcal{B} \) then \(\mathcal{A} \cong _R \mathcal{B} \).

Proof. Note that the theorem holds if \(\mathcal{B} = \emptyset \). We proceed by induction on \(|\mathcal{B}| \). We may assume that \(M := \bigoplus \mathcal{A} = \bigoplus \mathcal{B} \). Let \(A \in \mathcal{A} \). Then by 1.2.12 there exists \(B \in \mathcal{B} \) such that \(A \cong _R B \) and \(M/A \cong _R M/B \).

Let \(\mathcal{A}^* = \mathcal{A} \setminus \{A\} \) and \(\mathcal{B}^* = \mathcal{B} \setminus \{B\} \). Then \(M/A \cong \bigoplus \mathcal{A}^* \) and \(M/B \cong \bigoplus \mathcal{B}^* \). Thus \(\bigoplus \mathcal{A}^* \cong _R \bigoplus \mathcal{B}^* \). By induction \(\mathcal{A}^* \cong _R \mathcal{B}^* \) and since \(A \cong _R B \), also \(\mathcal{A} \cong _R \mathcal{B} \).

1.3 Maschke’s Theorem

Theorem 1.3.1 (Maschke). Let \(K \) be a field and \(G \) a finite group such that \(\text{char } K \) does not divide \(|G| \).

(a) Let \(V \) be a \(K[G] \)-module. Then every \(K[G] \)-submodule of \(V \) is a direct summand of \(V \) as a \(K[G] \)-module.

(b) Every \(K[G] \)-module is semisimple.

Proof. Let \(V \) be a \(K[G] \) module.

(a) Let \(W \) a \(K[G] \) submodule of \(V \). Note that there exists a \(K \)-subspace \(Z \) of \(V \) with \(V = W \oplus Z \). Define \(\pi : V \to W \) by \(\pi(w + z) = w \) for all \(w \in W, z \in Z \). Let \(g \in G \) and \(v \in V \). Then \(\pi(gv) \in W \) and since \(W \) is a \(K[G] \)-module we have

\[g^{-1}(\pi(gv)) \in W. \]

Since \(\text{char } K \) does not divide \(|G| \), \(\frac{1}{|G|} \) is a well defined element of \(K \) and we can define

\[\rho : V \to W, \quad v \mapsto \frac{1}{|G|} \sum_{g \in G} g^{-1}(\pi(gv)). \]

We claim that \(\rho \) is \(K[G] \)-linear. Note that \(\rho \) is a sum of compositions of \(K \)-linear functions and so \(K \)-linear. Let \(h \in G \) and \(v \in V \). Then

\[\rho(hv) = \frac{1}{|G|} \sum_{g \in G} g^{-1}(\pi(g(hv))) = \frac{1}{|G|} \sum_{g \in G} g^{-1}(\pi(g(hv))) = \frac{1}{|G|} \sum_{g \in G} g^{-1}(\pi(ghv)) = \frac{1}{|G|} \sum_{g \in G} g^{-1}(\pi(ghv)). \]
\[\rho(hv) = \frac{1}{|G|} \sum_{g \in G} g^{-1}(\pi(g(hv))) \]
\[= \frac{1}{|G|} \sum_{g \in G} (h(gh)^{-1}) \pi((gh)v)) \]
\[= h \frac{1}{|G|} \sum_{g \in G} (gh)^{-1}(\pi((gh)v)) \]
\[= h \frac{1}{|G|} \sum_{g \in G} g^{-1}(\pi(gv)) \]
\[= h(\rho(v)) \]

Thus \(\rho \) is indeed \(\mathbb{K}G \)-linear. For \(w \in W \) we have \(gw \in W \). It follows that
\[\pi(gw) = gw, \quad g^{-1}(\pi(gw))) = g^{-1}(gw) = w, \quad \text{and} \quad \rho(w) = \frac{1}{|G|} \sum_{g \in G} w = w. \]

So \(\rho|_W = id_W \) and \(\rho|_W \) is an isomorphism. Hence 1.2.3(c) shows that \(V \cong W \). As \(\rho \) is \(\mathbb{K}G \)-linear, \(\ker \rho \) is a \(G \)-submodule of \(V \). Hence \(W \) is a direct summand of \(V \) as an \(\mathbb{K}G \)-module.

\[\square \]

Example 1.3.2. Let \(\mathbb{K} \) be a field and let
\[g := \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \in \text{GL}_2(\mathbb{K}) \quad \text{and} \quad G := \langle g \rangle \leq \text{GL}_2(\mathbb{K}) \]

Then \(\mathbb{K}^2 \) is a \(\mathbb{K}G \)-module. Define \(p := \text{char} \mathbb{K} \) and let \(n \in \mathbb{N} \).
\[g^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}. \]

So \(G \) has order \(p \) if \(p > 0 \) and \(G \) has infinite order of \(p = 0 \).

We claim that \(\mathbb{K} \times 0 \) is the unique non-zero proper \(\mathbb{K}G \)-submodule of \(\mathbb{K}^2 \). Indeed \(\mathbb{K} \times 0 \) is a \(\mathbb{K}G \)-submodule. Let \(W \) be a non-zero proper \(\mathbb{K}G \)-submodule of \(\mathbb{K}^2 \). Then \(\dim_{\mathbb{K}} W = 1 \) and each \(0 \neq w \in W \) in an eigenvector of \(g \). Note that \(1 \) is the only eigenvalue for \(g \) and \(\mathbb{K} \times 0 \) is the corresponding eigenspace for \(g \). Thus \(W = \mathbb{K} \times 0 \).

So \(\mathbb{K} \times 0 \) is the unique non-zero proper \(\mathbb{K}G \)-submodule of \(\mathbb{K}^2 \). It follows that \(\mathbb{K}^2 \) is not semisimple as an \(\mathbb{K}G \)-module. Hence Maschke’s Theorem can fail if \(0 \neq \text{char} \mathbb{K} || |G| \) or if \(\text{char} \mathbb{K} = 0 \) and \(G \) is infinite.
1.4 Jacobson Radical

Definition 1.4.1. Let M be an R-module, $S \subseteq R$ and $N \subseteq M$.

(a) SN is the additive subgroup of M generated by $\{sn \mid s \in S, n \in N\}$

(b) $A_{S}(N) := \{s \in S \mid sN = 0\}$. $A_{S}(N)$ is called the annihilator of N in S.

(c) $A_{N}(S) = \{n \in N \mid Sn = 0\}$

(d) M is a faithful R-module if $A_{R}(M) = 0$.

(e) M is a cyclic R-module if $M = Rm$ for some $m \in M$.

(f) M is a finitely generated R-module if $M = RN$ for a finite subset N of M.

(g) N is S-invariant if $sn \in N$ for all $s \in S, n \in N$.

Lemma 1.4.2. Let M be an R-module and $N \subseteq M$ with $M = RN$. Then

$$\phi: \bigoplus_{n \in N} R/ A_{R}(n) \to M, \quad (r_n + A_{R}(n))_{n \in N} \mapsto \sum_{n \in N} r_n \cdot n$$

is a well defined onto R-linear homomorphism. If $|N| = 1$, then ϕ is an isomorphism.

Proof. Readily verified. \qed

Definition 1.4.3. Let M be an R-module, $N \subseteq M$ and $I \subseteq R$.

(a) N is called R-closed in M if $N = A_{M}(J)$ for some $J \subseteq R$.

(b) $N^\circ := A_{M}(A_{R}(N))$ is the closure of N in M with respect to R.

(c) I is M-closed in R if $I = A_{R}(U)$ for some $U \subseteq M$.

(d) $I^\circ := A_{R}(A_{M}(I))$ is the closure of I in R with respect to M.

Lemma 1.4.4. Let M be an R-module, $I \subseteq R$ and $N \subseteq M$.

(a) 0 and M are closed in M.

(b) R is closed and $0^\circ = A_{R}(M)$.

(c) Let $J \subseteq R$ with $I \subseteq J$ and $P \subseteq M$ with $N \subseteq P$. Then $A_{R}(J) \subseteq A_{R}(I)$ and $A_{R}(P) \subseteq A_{R}(N)$. In particular, $I^\circ \subseteq J^\circ$ and $N^\circ \subseteq P^\circ$.

(d) $I \subseteq A_{R}(N)$ if and only if $in = 0$ for all $i \in I, n \in N$ and if and only if $N \subseteq A_{M}(I)$.

(e) $A_{R}(N)$ is a left ideal in R.

(f) If N is R-invariant, then $A_{R}(N)$ is an ideal in R.

(g) $A_{M}(I)$ is an an $\text{End}_{R}(M)$-submodule of M.

(h) If I is right ideal, then $A_{M}(I)$ is an R-submodule of M.

(i) $A_{R}(N) = A_{R}(N^\circ)$ and $N^{\circ \circ} = N^\circ$.

1.4. Jacobson Radical
(j) $A_M(I) = A_M(I^0)$ and $I^{00} = I^0$.

(k) N^0 is a smallest R-closed subset of M containing N. In particular, N is R-closed in M if and only if $N = N^0$.

(l) I^0 is the smallest M-closed subset of R containing I. In particular, I is M-closed in R if and only if $I = I^0$.

(m) $A_R(RN)$ is the largest right ideal of R contained in $A_R(N)$.

(n) M is faithful module for $R/ A_R(M)$ via $(r + A_R(M)) \cdot m = rm$.

Proof. Let $s, \tilde{s} \in A_R(N), m, \tilde{m} \in A_M(I)$ and $r \in R$.

(a): $0 = A_M(1)$ and $M = A_M(0)$.

(b): $R = A_R(0)$ and since $A_M(0) = M$, $0^0 = A_R(M)$.

(c): This follows immediately from the definition of $A_R(N)$ and $A_M(I)$.

(d): Obvious.

(e): Since $(s \pm \tilde{s})N \subseteq sN + \tilde{s}N = 0$, $A_R(N)$ is closed under addition and additive inverses. Moreover, $(rs)N = r(sN) = r0 = 0$ and so $A_R(N)$ is a left ideal.

(f): If N is R-invariant we have $(sr)N = s(rN) \subseteq aN = 0$ and so (e) holds.

(g): $I(m \pm \tilde{m}) \subseteq Im + I\tilde{m} = 0$. Also $0 \in A_M(I)$. Let $\alpha \in \text{End}_R(M)$. Then Moreover, $I(\alpha(m)) = \alpha(Im) = \alpha(0) = 0$ and so (d) holds.

(h): $I(Im) = (Ir)m \subseteq Im = 0$.

(i): From $N^0 = A_M(A_R(N))$ we get $N \subseteq N^0$ and $A_R(N) \subseteq A_R(N^0)$. Form $N \subseteq N^0$ we get $A_R(N^0) \subseteq A_R(N)$. Thus $A_R(N) = A_R(N^0)$ and so

$$N^0 = A_M(A_R(N^0)) = A_M(A_R(N)) = N^0.$$

(j): From $I^0 = A_R(A_M(I))$ we get $I \subseteq I^0$ and $A_M(I) \subseteq A_M(I^0)$. From $I \subseteq I^0$ we get $A_M(I^0) \subseteq A_M(I)$. Thus $A_R(N) = A_R(N^0)$ and so

$$I^{00} = A_R(A_M(I^0)) = A_R(A_M(I)) = I^0.$$

(k): By definition of N^0 we have $N^0 = A_M(A_R(N))$. Thus N^0 is closed. Suppose $N \subseteq W$ for some R-closed subset W of M. Then $W = A_M(J)$ for some $J \subseteq R$. Hence $N \subseteq W = A_M(J)$ and (j) gives $J \subseteq A_R(N)$. Now (e) implies $A_M(A_R(N)) \subseteq A_M(J)$, that is $N^0 \subseteq W$.

(l). By definition of I^0 we have $I^0 = A_R(A_M(I))$. Thus I^0 is closed. Suppose that $I \subseteq J$ for some M-closed subset J of R. Then $J = A_R(W)$ for some $W \subseteq M$. Hence $I \subseteq J = A_R(W)$ and (j) gives $W \subseteq A_R(I)$. Now (e) implies $A_R(A_M(I)) \subseteq A_R(W)$, that is $I^0 \subseteq J$.

(m) Since RN is an R-submodule, (j) implies that $A_R(RN)$ is an ideal in R. Now let J be a right ideal of R with $J \subseteq A_R(N)$. Then $N \subseteq A_R(J)$. By (j) $A_M(J)$ is an R-submodule of M and so $RN \subseteq A_M(J)$. Thus $J \subseteq A_R(RN)$.

(n) Readily verified. \hfill \Box

Corollary 1.4.5. Let M be an R-module. Then
Theorem 1.4.8. Let \(R \) be a non-zero ring and let \(A_R \) of \(R \).

Proof. Let \(N \subseteq M \) and \(I \subseteq R \) be closed. By 1.4.4(m) \(N = N^\circ = A_M(A_R(N)) \) and by 1.4.4(m) \(I = I^\circ = A_R(A_M(I)) \). So the maps given in the corollary are inverse to each other. If \(N \) is an \(R \)-submodule, \(A_R(N) \) is an ideal. If \(I \) is an ideal, when \(A_M(I) \) is an \(R \)-submodule.

Lemma 1.4.6. Let \(M \) be an \(R \)-module and \(0 \neq m \in M \).

(a) If \(M \) is simple, then \(M = Rm \).

(b) If \(M = Rm \), then \(M \cong R/\mathbb{A}_R(m) \).

(c) If \(M = Rm \), then \(M \) is a simple \(R \)-module if and only if \(\mathbb{A}_R(m) \) is a maximal left ideal in \(R \).

(d) If \(M \) is a simple \(R \)-module, then \(M \cong R/\mathbb{A}_R(m) \) and \(\mathbb{A}_R(m) \) is a maximal left ideal in \(R \).

Proof. (a): Just observe that \(Rm \) is a non-zero \(R \)-submodule of \(M \).

(b): Just recall from 1.4.2 that \(Rm \cong R/\mathbb{A}_R(m) \).

(c): By (b) \(M \cong R/\mathbb{A}_R(m) \). Also the \(R \)-submodules of \(R/\mathbb{A}_R(m) \) are all the \(J/\mathbb{A}_R(m) \), where \(J \) a left ideal of \(R \) containing \(\mathbb{A}_R(m) \).

(d): By (a) \(M = Rm \). So (d) follows from (a) and (c).

Definition 1.4.7. Let \(R \) be a ring.

(a) \(J(R) \) is the intersection of the maximal left ideals in \(R \). \(J(R) \) is called the Jacobson radical of \(R \).

(b) Let \(M \) be an \(R \)-module. Then \(\mathcal{J}_M(R) \) is the intersection of the maximal \(R \)-submodules of \(M \), with \(\mathcal{J}_M(R) = M \) if \(M \) has no maximal \(R \)-submodule.

Note that \(\mathcal{J}_R(R) = J(R) \).

Theorem 1.4.8. Let \(R \) be a non-zero ring and let \(S(R) \) be the class of simple \(R \)-modules. Then

\[
J(R) = \bigcap_{S \in S(R)} \mathbb{A}_R(S).
\]

In particular, \(J(R) \) is proper ideal of \(R \).

Proof. Let \(\mathcal{M}(R) \) be the set of maximal left ideal of \(R \) and for \(S \in S(R) \) let \(\mathcal{M}_S(R) := \{\mathbb{A}_R(s) \mid 0 \neq s \in S\} \).

By 1.4.6 \(\mathbb{A}_R(s) \) is a maximal ideal of \(R \) for each \(0 \neq s \in S \) and so \(\mathcal{M}_S(R) \subseteq \mathcal{M}(R) \). Note also that \(\mathbb{A}_R(S) = \bigcap \mathcal{M}_S(R) \).

Let \(I \in \mathcal{M}(R) \). Then \(R/I \in S(R) \). Note that \(\mathbb{A}_R(1 + I/I) = \{r \in R \mid r + I = I\} = I \) and so \(\mathbb{A}_R(R/I) \subseteq \mathbb{A}_R(1 + I/I) = I \). Hence

\[
\bigcap_{I \in \mathcal{M}(R)} \mathcal{M}(R) = \bigcap_{I \in \mathcal{M}(R)} I \supseteq \bigcap_{I \in \mathcal{M}(R)} \mathbb{A}_R(R/I) \supseteq \bigcap_{S \in S(R)} \mathbb{A}_R(S) = \bigcap_{S \in S} \mathcal{M}_S(R) \supseteq \mathcal{M}(R).
\]

Thus equality holds everywhere and the lemma is proved.
Lemma 1.4.9. Suppose that M is a semisimple R-module, then $I_M(R) = 0$.

Proof. Let S be a set of simple R-submodules of M with $M = \bigoplus S$. For $S \in S$ define $S^* := \sum_{S \neq T \in S}T$. Then $M/S^* \cong S$ and so S^* is a maximal R-submodule of M. Observe that $\bigcap_{S \in S} S^* = 0$ and so $I_M(R) = 0$. \hfill \Box$

Lemma 1.4.10. Let M and R-module and F a finite set of maximal R-submodules of M with $\bigcap F = 0$. Choose $N \subseteq F$ minimal with $\bigcap N = 0$. Then the map

$$\phi : M \to \bigoplus_{N \in M} M/N, \quad m \mapsto (m + N)_{N \in N}$$

is an R-isomorphism. In particular, M is semisimple.

Proof. Clearly ϕ is R-linear. Let $N \in N$ and $m \in \ker \phi$. Then $m + N = 0_{M/N} = N$ and so $m \in N$. Thus $m \in \bigcap N = 0$ and ϕ is 1-1. Let $N \in N$ and $N^* := \bigcap\{T \in N \mid T \neq N\}$ with $N^* := M$ if $N = \{N\}$. The minimality of N implies $N^* \neq 0$. Since ϕ is 1-1, also $\phi(N^*) \neq 0$. Put $W := \bigoplus_{N \in N} M/N$ and view M/N as a subgroup of W. Note that $0 \neq \phi(L^*) \leq M/L$ and the simplicity of M/L implies $M/L = \phi(L^*) \leq \text{Im} \phi$. Thus $W = \sum_{N \in N} M/N \leq \text{Im} \phi$ and so ϕ is onto. \hfill \Box

Corollary 1.4.11. Let M be an R-module with DCC. Then M is semisimple if and only if $I_M(R) = 0$.

Proof. If M is semisimple, then $I_M(R) = 0$ by Lemma 1.4.9. Suppose now that $I_M(R) = 0$ and let M be the set of maximal R-submodules of M. Then $\bigcap M = I_M(R) = 0$. Since M fulfills DCC, 1.2.8 implies that there exists a finite subset F of M with $\bigcap F = \bigcap M = 0$. So Lemma 1.4.10 shows that M is semisimple. \hfill \Box

1.5 Simple modules for algebras

Lemma 1.5.1 (Schur I). Let M, N be simple R-modules and $f \in \text{Hom}_R(M, N)$. If $f \neq 0$, then f is R-isomorphism. In particular, $\text{End}_R(M)$ is a division ring.

Proof. Since $f \neq 0$, $\ker f \neq M$. Also $\ker f$ is an R-submodule and so $\ker f = 0$ and f is 1-1. Similarly, $\text{Im} f \neq 0$, $\text{Im} f = N$ and so f is onto. So f is a bijection and has an inverse f^{-1}. An easy computation shows that $f^{-1} \in \text{Hom}_R(N, M)$. Choosing $N = M$ we see that $\text{End}_R(M)$ is a division ring. \hfill \Box

Definition 1.5.2. Let R be ring.

(a) An R-ring is pair (A, \cdot) such that (A, \cdot) is an R-module, A is a ring and $r(ab) = (ra)b$ for all $r \in R$, $a, b \in A$.

(b) An R-algebra is pair (A, \cdot) such that (A, \cdot) is an R-ring and $(ra)b = a(rb)$ for all $r \in R, a, b \in A$.

Example 1.5.3. Let R be a commutative ring and M an R-module. Then $\text{End}_R(M)$ is an R-algebra via $(ra)(m) = r(a(m))$ for all $r \in R, a \in \text{End}_R(M)$ and $m \in M$. If M is a free R-module with finite basis B, then $\text{End}_B(M)$ is a free R-module with basis $(\phi_{ab})_{(a, b) \in B \times B}$ where $\phi_{ab} : M \to M$ is the unique R-linear function with $\phi_{ab}(c) = \delta_{ac}b$ for all $c \in B$.

Lemma 1.5.4. Let R be a ring and A an R-ring.

(a) The function $\rho : R \to A, r \mapsto r1_A$ is a homomorphism of rings.

(b) A is a right R-module via $ar := a(r1_A)$ for all $a \in A, r \in R$.
\[ra = (r1_A)a, (ar)b = a(rb), a(br) = (ab)r \text{ and } (ra)s = r(as) \text{ for all } r, s \in R, a, b \in A. \]

(d) Suppose \(A \) is an \(R \)-algebra. Then \(\text{Im} \rho \subseteq Z(A) \).

(c) Let \(M \) be a simple \(R \)-module, \(N \) an \(R \)-closed subset of \(M \) and \(m \in M \). Since \(M \) is simple this gives (c).

(e) Let \(\phi : A \to \text{End}(M) \) be the homomorphism corresponding the \(A \)-module \(M \). Then \(\phi \circ \rho : R \to \text{End}(M) \) is a homomorphism and so (e) holds.

Definition 1.5.5. Let \(R \) ring and \(M \) an \(R \)-module. Then \(R \)-subspaces of \(M \) are \(R \)-closed.

\[\text{dim}_R \mathbb{K} = n \text{ is finite dimensional over } \mathbb{K}, \text{ so is } \mathbb{D}. \]

\[\mathbb{D} : \text{By 1.5.1} \mathbb{D} \text{ is a division ring. Since } \mathbb{K} \text{ is finite, then also } \mathbb{D} \text{ is finite. Thus Wedderburn’s Theorem implies that } \mathbb{D} \text{ is a field.} \]

\[\mathbb{E} : \text{Let } d \in \mathbb{D}. \text{ Put } \mathbb{F} := \mathbb{K}|M \cong \mathbb{K} \text{ and let } \mathbb{F} \text{ be the subring of } \mathbb{D} \text{ generated by } \mathbb{E} \text{ and } d. \text{ Then } \mathbb{F} \text{ is a } \mathbb{A} \text{-field extension of } \mathbb{E}. \text{ Since } \mathbb{K} \text{ is algebraically closed, we conclude that } \mathbb{F} = \mathbb{E}. \text{ So } d \in \mathbb{E} \text{ and } \mathbb{K} = \mathbb{E}. \]

Lemma 1.5.7. Let \(M \) be a simple \(R \)-module, \(N \) an \(R \)-closed subset of \(M \) and \(m \in M \setminus \mathbb{A} \). Put \(J := \mathbb{A}_R(N) \) and \(m \in M \setminus \mathbb{N} \). Then \(M = \mathbb{J}m \) and the function
\[J/\mathbb{A}_J(m) \to M, \quad j + \mathbb{A}_J(m) \mapsto jm \]
is a well defined \(R \)-isomorphism.

Proof. Since \(N \) is closed, \(N = N^\circ = \mathbb{A}_R(J) \). Since \(m \notin N \) this gives \(Jm \neq 0 \). By 1.4.4 \(J \) is a left ideal in \(R \) and so \(Jm \) is an \(R \)-submodule of \(M \). Since \(M \) is simple this gives \(M = Jm \). It follows that \(\rho : J \to M, j \mapsto jm \) is an onto \(R \)-linear function with \(\ker \rho = \mathbb{A}_J(m) \).

Lemma 1.5.8. Let \(M \) be simple \(R \)-module and \(\mathbb{D} := \text{End}_R(M) \). Let \(V \leq W \) be \(\mathbb{D} \)-submodules of \(M \) with \(\text{dim}_\mathbb{D}(W/V) \) finite. If \(V \) is \(R \)-closed in \(M \), also \(W \) is \(R \)-closed in \(M \). In particular, all finite dimensional \(\mathbb{D} \)-subspaces of \(M \) are \(R \)-closed.
Proof. By induction on \(\dim_\mathbb{D} W/V \) we may assume that \(\dim_\mathbb{D} W/V = 1 \). Then \(W = V + Dw \) for some \(w \in W/V \). Let \(I = A_R(V) \) and \(J = A_J(w) \). We will show that \(W = A_M(J) \). So let \(m \in A_M(J) \). Then \(J \subseteq A_I(m) \) and hence the map \(\alpha : I/J \to M, i + J \to im \) is well-defined and \(R \)-linear. By [1.5.7] the map \(\beta : I/J \to M, i + J \to iw \) is an \(R \)-isomorphism and so has an inverse. Put \(\delta = \alpha \beta^{-1} \). Then \(\delta : M \to M \) is \(R \)-linear and \(\delta(iw) = im \) for all \(i \in I \). Hence \(\delta \in \mathbb{D} \) and

\[
 i(\delta(w) - m) = i\delta(w) - im = \delta(iw) - im = 0
\]

for all \(i \in I \). Since \(V \) is \(R \)-closed in \(M \) we know that \(V = A_M(I) \) and so \(\delta(w) - m \in V \). Thus \(m \in \delta(w) + V \subseteq W \). Clearly \(W \leq A_M(J) \) and so indeed, \(W = A_W(J) \) is closed.

Definition 1.5.9. Let \(M \) be an \(R \)-module and \(\mathbb{D} \subseteq \text{End}_R(M) \) a division ring. Then we say that \(R \) is dense on \(M \) with respect to \(\mathbb{D} \) if for each tuple \(\mathbb{D} \)-linear independent tuple \((m_i)_{i=1}^n \subseteq M^n \) and each \((w_i)_{i=1}^n \subseteq M^n \), there exists \(r \in R \) with \(rm_i = w_i \) for all \(1 \leq i \leq n \).

Theorem 1.5.10 (Jacobson’s Density Theorem). Let \(M \) be simple \(R \)-module and put \(\mathbb{D} := \text{End}_R(M) \). Then \(R \) is dense on \(M \) with respect to \(\mathbb{D} \).

Proof. Let \((m_i)_{i=1}^n \subseteq M^n \) be \(\mathbb{D} \)-linear independent and \((w_i)_{i=1}^n \subseteq M^n \). By induction on \(n \) we will show that there exists \(r \in R \) with \(rm_i = w_i \) for all \(1 \leq i \leq n \). For \(n = 0 \) there is nothing to prove. By induction there exists \(s \in R \) with \(sm_i = w_i \) for all \(1 \leq i < n \). Let \(V = \sum_{i=1}^{n-1} \mathbb{D}m_i \). Then by [1.5.8] \(V \) is closed and so by [1.5.7] there exists \(t \in A_R(V) \) with \(tm_i = w_i - sm_i \). Put \(r = s + t \). For \(1 \leq i < n \) \(rm_i = sm_i + tm_i = sm_i \). Also \(rm_i = sm_i + tm_i = sm_i + (w_i - sm_i) = w_i \) and the theorem is proved.

Corollary 1.5.11. Let \(M \) be a simple \(R \)-module, \(\mathbb{D} := \text{End}_R(M) \) and \(W \) a finite dimensional \(\mathbb{D} \)-submodule of \(M \). Put \(N_R(W) = \{ r \in R \mid rw \subseteq W \} \). Then \(N_R(W) \) is a subring of \(W \), \(W \) is a \(N_R(W) \)-submodule of \(M \), \(A_R(W) \) is an ideal in \(N_R(W) \) then

\[
N_R(W)/A_R(W) \cong N_R(W)|_W = \text{End}_\mathbb{D}(W).
\]

Proof. All but the very last statement in are readily verified. Clearly \(N_R(W)|_W \) is contained in \(\text{End}_\mathbb{D}(W) \). Let \(\phi \in \text{End}_\mathbb{D}(W) \) and choose a \(\mathbb{D} \)-basis \((v_i)_{i=1}^n \) for \(W \). By [1.5.10] there exists \(r \in R \) with \(rv_i = \phi(v_i) \). Then \(rW \subseteq W \) and so \(r \in N_R(W) \). The image of \(r \) in \(\text{End}(W) \) is \(\phi \). Thus \(\phi \in N_R(W)|_W \) and so \(N_R(W)|_W = \text{End}_\mathbb{D}(W) \).

Definition 1.5.12. A ring with no proper ideals is called simple. A direct sum of simple ring is called semisimple.

Corollary 1.5.13. Let \(R \) be a simple ring. Then there exists a simple \(R \)-module \(M \). Moreover, if \(M \) is a simple \(R \)-module and \(\mathbb{D} = \text{End}_R(M) \), then \(R \) is isomorphic to a dense subring of \(\text{End}_\mathbb{D}(M) \).

Proof. Let \(I \) be a maximal left ideal, then \(R/I \) is a simple \(R \)-module. Now let \(M \) be any simple \(R \)-module. Since \(R \) is simple, \(A_R(M) = 0 \). Thus \(R \cong R^M \) and by [1.5.10] \(R \) and so also \(R^M \) is dense on \(M \).

Proposition 1.5.14. Let \(M \) be faithful, simple \(R \)-module and put \(\mathbb{D} = \text{End}_R(M) \). Suppose that \(\dim_\mathbb{D} M \) is finite.

(a) \(R \cong R|_M = \text{End}_\mathbb{D}(M) \) as rings.

(b) Let \(n := \dim_\mathbb{D} M \). Then \(R \cong M^n \) as a left \(R \)-module.

(c) Let \(I \) be a maximal left ideal in \(R \). Then \(I = A_R(m) \) for some \(0 \in m \in M \) and \(R/I \cong M \)

(d) The \(M \)-closed subsets of \(R \) are exactly the left ideal of \(R \).
1.5. SIMPLE MODULES FOR ALGEBRAS

(c) The R-closed subsets of M are exactly the \mathcal{D}-subspaces of M.

(f) The map $I \rightarrow A_R(I)$ is a bijection between the left ideals of R and the \mathcal{D}-subspaces of M with inverse $N \rightarrow A_M(N)$.

(g) Each simple R-module is isomorphic to M.

(h) R is a simple ring.

Proof. (a) Note that $N_R(M) = R$ and $A_R(M) = 0$ and so (a) follows from 1.5.11.

(b) Observe first that M is a simple R-module. Let \mathcal{B} be a basis for M over \mathcal{D} and let $b \in \mathcal{B}$. Then by 1.4.6 $A_R(b)$ is a maximal ideal in R and $R/ A_R(b) \cong M$. Let E be a subset of \mathcal{B}.

By 1.5.8 \mathcal{E} is R-closed in M. Note that also M is R-closed.

So \mathcal{B} is minimal in \mathcal{B} with respect to $\bigcap_{b \in \mathcal{B}} A_R(b) = 0$. Since M is a simple R-module we know that $M \cong R/ A_R(e)$ and $A_R(e)$ is a maximal left ideal in R. Thus 1.4.10 implies

$$R \cong \bigoplus_{b \in \mathcal{B}} R/ A_R(b) \cong M^n.$$

(c) By (b) $R \cong M^n$ and so 1.1.26(d) shows that $R/I \cong M^k$ for some $1 \leq k \leq n$. Since R/I is a simple R-module we get $k = 1$. So $R/I \cong M$. Let $\psi : R/I \rightarrow M$ be an R-isomorphism and put $m = \phi(1 + I / I)$. Then

$$I = A_R(1 + I / I) = A_R(m).$$

(d) By 1.4.4(e) any M-closed subset of R is an ideal in R. Conversely, let I be an M-closed ideal in R. Then by 1.4.4(b) $A_R(N)$ is a maximal ideal in R containing I. Since R is a semisimple R-module 1.4.7 show that R/I is semisimple. Thus 1.4.9 implies that $I_{R/I} = 0$. Hence $\bigcap_{I \in \mathcal{I}} = I$. By (c), for each $J \in M$ there exists $m_j \in M$ with $J = A_R(m_j)$. Put $N := \{x \in M | J \in \mathcal{I}\}$. Then

$$A_R(N) = \bigcap_{J \in \mathcal{I}} A_R(m_j) = \bigcap_{J \in \mathcal{I}} J = I.$$
Proof. Without loss $M \neq 0$ and $D = D|M$. Put $F := \text{End}_{\text{End}D}(M)$. Note that M is a simple $\text{End}D(M)$-module and so [1.5.1] is a division ring.

(a) Let B be a \mathbb{D}-basis for M. Since $M \neq 0$ we can choose $m \in B$. Define $\phi \in \text{End}D(M)$ by $\phi(b) = \delta_{bm}m$ for all $b \in B$. Then $\phi(M) = Dm$. Let $f \in F$. Then

$$f(\phi(M)) = \phi(f(M)) \leq \phi(M) = Dm.$$

Thus $fm = dm$ for some $d \in F$. Hence $(f - d)m = 0$. Note that $m \neq 0$, $f - d \in F$ and F is a division ring. Thus $f - d = 0$. Hence $f = d$ and $F = D$.

(b) Since $\mathbb{D} \subseteq F$ and M is finite dimensional over \mathbb{D} we see that M is finite dimensional over \mathbb{F}. Also M is a faithful simple $\text{End}_{\mathbb{D}}(M)$ and so [1.5.14] shows that $\text{End}_{\mathbb{D}}(M)$ is a simple rings.

\begin{definition}
A ring R is called Artinian if it fulfills the DCC on left ideals.
\end{definition}

\begin{lemma}
Let R be an Artinian ring and M a simple R-module. Then M is finite dimensional over $\mathbb{D}D = \text{End}_{\mathbb{D}}(M)$.
\end{lemma}

\begin{proof}
Suppose for a contradiction that M is infinite dimensional over \mathbb{D}. Then there exists an infinite strictly ascending chain

$$M_1 \leq M_2 \leq M_3 \leq \ldots$$

of finite dimensional \mathbb{D}-subspaces. By [1.5.8] each M_i is closed. Thus by [1.4.9]

$$A_R(M_1) \geq A_R(M_2) \geq A_R(M_3) \geq \ldots$$

is a strictly descending chain of left ideals in R, contradicting the DCC conditions on Artinian rings.

\end{proof}

\begin{lemma}[Chinese Remainder Theorem]
Let R be ring and I a finite set of ideals in R. Suppose that $\bigcap I = \emptyset$ and $I + J = R$ for all $I \neq J \in I$. Let $I \in I$ and put $I^* := \bigcap \{I \setminus \{I\}$.

(a) $R = I \bigoplus I^*$.

(b) $I = \bigoplus_{I \in I \setminus \{I\}} I^*$.

(c) $R = \bigoplus_{I \in I} I^*$.

(d) The function $I^* \to R/I$, $r \mapsto r + I$ is an isomorphisms of rings.

(e) The function $R \to \bigoplus_{I \in I} R/I$, $r \mapsto (r + I)_{I \in I}$ is an isomorphism of rings.
\end{lemma}

\begin{proof}
(a) and (b): Let $J := I \setminus \{I\}$ and let $\emptyset \neq N \subseteq J$. We claim that $R = I + \bigcap N$. If $|N| = 1$, this holds by assumption. Let $J \in N$ and put $S := \bigcap N \setminus \{J\}$. By induction $R = I + S = I + J$. As R has an identity ,

$$R = R^2 = (I + S)(I + J) = I^2 + SJ + IJ + S J.$$

Since I is an ideal, $I^2 + SJ + IJ \leq I$. Since S and J are ideals $SJ \leq S \cap J = \bigcap N$. So $R = I + \bigcap N$, proving the claim.

For $N = J$ we conclude that $R = I + I^*$. Since $I \cap I^* = \bigcap I = 0$ we have $R = I \oplus I^*$. Thus (c) holds. In particular, I has an identity and so is I is a ring. Note that $\bigcap_{J \in J}(I \cap J) = \bigcap I = 0$ and $J^* = \bigcap_{K \in J \setminus \{J\}} (I \cap J)$. Moreover for distinct, $I, J, K \in I$ we have

$$I = RI = (J + K)I = JI + KI = (I \cap J) + (I \cap K).$$

By induction (c) holds for R replaced by I and I by $\{I \cap J \mid J \in J\}$. This gives (b).
1.5. SIMPLE MODULES FOR ALGEBRAS

(c) follows from (a) and (b).
(d) follows from (a).
(e): Since \mathfrak{I} is 1-1, the function is 1-1. Note that $I^* + J/I = 0$. Also by (a) $I^* + I/I = R/I$ hence the image of I^* in $\bigoplus_{I \in T} R/I$ is R/I. Thus the function is onto.

\[\square \]

Lemma 1.5.19. Let S be a finite set rings and $R = \bigoplus S$. For $S \in S$ put $S^* := \bigoplus S \setminus \{S\}$.

(a) Let I be left ideal in R. Then $I = \bigoplus_{S \in S} I \cap S$.

(b) Let I be a minimal left ideal of R. Then $I \subseteq S$ for some $S \in S$. Moreover, I is a minimal left ideal of S.

(c) Let I be a maximal left ideal of R. Then $S^* \subseteq I$ for some $S \in S$. Moreover, $I = (I \cap S) \oplus S^*$ and $I \cap S$ is a maximal ideal in S.

(d) Let M be a simple R-module. Then $S^* \subseteq A_R(M)$ for some $S \in S$. Moreover, M is a faithful simple R-module.

(e) $J(R) = \bigoplus_{S \in S} J(S)$.

Proof.

(a): Note that $I = RI = \bigoplus_{S \in S} SI$. It follows that $I \cap S = SI$ and so (a) holds.

(b) and (c) follow immediately from (a).

(d): By (1.4.6) $M \cong R/I$ for some maximal left ideal I in R. By (c), $S^* \subseteq I$ for some $S \in S$. Note that $S^* R \subseteq S^* \subseteq I$ and so $S^* \subseteq A_R(R/I) = A_R(M)$.

(e) Follows from (c).

\[\square \]

Corollary 1.5.20. Let R be a semisimple ring and let S be a (finite) set of simple rings with $R = \bigoplus S$. For $S \in S$ put $S^* := \bigoplus S \setminus \{S\}$. Then

(a) Let I be an ideal in R. Put $I := \{S \in S \mid S \subseteq I\}$. Then $I \subseteq S$ and $I = \bigoplus I$.

(b) S is the set of minimal ideals of R.

(c) $\{S^* \mid S \in S\}$ is the set of maximal ideals of R.

(d) Let M be a simple R-module, then $A_R(M) = S^*$ for some $S \in S$. In particular, M is a faithful simple S-module.

(e) $J(R) = 0$.

Proof.

(a) Let I be an ideal in R and $S \in S$. Then $S \cap I$ is an ideal in the simple ring S. Thus either $S \cap I = 0$ or $S \cap I = S$. Hence $I = \{S \cap I \mid S \cap I \neq 0\}$. By (1.5.19a) $R = \bigoplus_{S \in S} I \cap S$ and so (a) holds.

(b) and (c) follows immediately from (a).

(d) By (1.5.19d) $S^* \subseteq A_R(M)$ for some $S \in S$. Since $A_R(M)$ is a proper ideal of R and S^* is a maximal ideal this gives $A_R(M) = S^*$.

(e) Let $S \in S$. By (1.4.8) $J(S)$ is a proper ideal of R. Since S is simple this gives $J(S) = 0$. By (1.5.19) we have $J(R) = \bigoplus_{S \in S} J(S)$ and so $J(R) = 0$.

\[\square \]
Theorem 1.5.21 (Wedderburn-Artin). Let R be an Artinian ring with $J(R) = 0$. Let \mathcal{M} be a set of representatives for the isomorphism classes of simple R-modules and let $M \in \mathcal{M}$. Put

$$A_R^*(M) := \bigcap \{A_R(P) \mid M \neq P \in \mathcal{M}\} \quad \text{and} \quad D_M := \text{End}_R(M).$$

Then

(a) \mathcal{M} is finite.

(b) M is finite dimensional over D_M.

(c) $A_R^*(M) \cong R|_M = \text{End}_{D_M}(M)$.

(d) $R = \bigoplus_{M \in \mathcal{M}} A_R^*(M) \cong \bigoplus_{M \in \mathcal{M}} R|_M = \bigoplus_{M \in \mathcal{M}} \text{End}_{D_M}(M)$

(e) $A_R(M) = \bigoplus_{P \in M \setminus \{M\}} A_R^*(P)$.

(f) R is a semisimple ring.

Proof. Note that M is a faithful simple $R/A_R(M)$-module. By [1.5.17] M is finite dimensional over D_M. Thus [1.5.14] shows that

$$R/A_R(M) \cong R|_M = \text{End}_{D_M}(M),$$

$R/A_R(M)$ is a simple ring, and M is, up to isomorphism, the unique simple $R/A_R(M)$-module. In particular, $A_R(M)$ is a maximal ideal of R.

Let $N \in \mathcal{M}$ with $A_R(M) \subset A_R(N)$. Since $A_R(M)$ is a maximal ideal of R this gives $A_R(M) = A_R(N)$. Hence both N and M are simple $R/A_R(M)$-modules. It follows that $N \cong R$ and so $N = M$.

So if $N \in \mathcal{M}$ with $N \neq M$, then $A_R(M) \subsetneq A_R(N)$ and since $A_R(N)$ is a maximal ideal of R we get $A_R(M) + A_R(N) = R$.

By [1.4.8] $\bigcap_{M \in \mathcal{M}} A_R(M) = J(R) = 0$. Since R is Artinian, DCC holds for the left ideals in R and so [1.2.8] shows there exists a finite subset \mathcal{N} of \mathcal{M} with $\bigcap_{N \in \mathcal{N}} A_R(N) = \bigcap_{M \in \mathcal{M}} A_R(M) = 0$. We proved that the hypothesis of [1.5.18] is fulfilled for $J := \{A_R(N) \mid N \in \mathcal{N}\}$. For $N \in \mathcal{N}$ put $N^* := \bigcap_{P \in \mathcal{N} \setminus \{N\}} A_R(P)$. Then

$$R = \bigoplus_{N \in \mathcal{N}} N^*, \quad N^* \cong R/A_R(N), \quad \text{and} \quad A_R(N) = \bigoplus_{P \in \mathcal{N} \setminus \{N\}} P^*.$$

In particular, N^* is a simple ring for each $N \in \mathcal{N}$ and R is semisimple. Since $R = \bigoplus_{N \in \mathcal{N}} N^*$ and $A_R(M)$ is a maximal ideal of R we conclude from [1.5.20] that

$$A_R(M) = \bigoplus_{P \in \mathcal{N} \setminus \{N\}} P^* = A_R(N)$$

for some $N \in \mathcal{N}$. As seen above this implies $M = N$. Hence $\mathcal{N} = \mathcal{M}$ and so \mathcal{M} is finite. Moreover, $A_R^*(M) = M^*$ and the lemma is proved. \square

Proposition 1.5.22. Let R be a ring. Then the following statements are equivalent.

(a) Every R-module is semisimple.

(b) R is semisimple as a left R-module.

(c) R is Artinian and $J(R) = 0$.

(d) R is an Artinian and semisimple ring.
1.5. SIMPLE MODULES FOR ALGEBRAS

Proof. (a) \implies (b): Obvious.

(b) \implies (a): Suppose \(R \) is semisimple as a left \(R \)-module and let \(M \) be an \(R \)-module. Let \(m \in M \). Then \(Rm \cong R/A_R(m) \). Since \(R \) is semisimple as an \(R \)-module, also \(R/A_R(m) \) is semisimple, see \[1.1.28\]. Thus \(Rm \) is a semisimple \(R \)-module and so the sum of its simple \(R \)-submodules. Since this holds for all \(m \in R \), also \(R \) is the sum of its simple \(R \)-submodules. Thus \[1.1.27\] implies that \(M \) is semisimple.

(c) \implies (d): Since \(R \) is a semisimple \(R \)-module, \[1.4.9\] shows that \(J(R) = J_R(R) = 0 \). Moreover, \(R \) is the sum of its simple \(R \)-submodules and so there exists a finite set \(I \) of simple \(R \)-submodules with \(1 \in \sum_i c_i I_i \). But then \(R = RI \leq \sum_i I_i \) and so \(R = \sum_i I_i \). Let \(W \) be an \(R \)-submodule of \(R \). The by \[1.1.26\] \(W \cong \bigoplus_i J_i \) for some \(J_i \subseteq I_i \) and so there exists a set of simple \(R \)-submodules \(\mathcal{A} \) of \(W \) with \(W = \bigoplus \mathcal{A} \). Each \(A \in \mathcal{A} \) is simple and so directly indecomposable. Also \(\text{End}_R(A) \) is a division ring and so a local ring. Thus \[1.2.14\] shows that \(|\mathcal{A}| \) is independent of the choice of \(\mathcal{A} \). Define \(d_W := |\mathcal{A}| \). If \(V \) is a proper \(R \)-submodules of \(R \), then \(1.1.26 \) implies that \(W = V \oplus U \) for some non-zero \(R \)-submodules of \(U \). It follows that \(d_W = d_V + d_U \) and so \(d_V < d_W \). It follows that \(R \) fulfills DCC on \(R \)-submodules and so is an Artinian ring.

(c) \implies (b): Since \(R \) is Artinian, \(R \) fulfills DCC on \(R \)-submodules of \(R \). Note that \(J_R(R) = J(R) = 0 \) and so \[1.4.11\] shows that \(R \) is a semisimple \(R \)-module.

(c) \implies (d): This is \[1.5.21\].

(d) \implies (c): By \[1.5.20\] we know that \(J(R) = 0 \) for any semisimple ring \(R \).

Corollary 1.5.23. Let \(R \) be a simple ring. Then the following are equivalent.

(a) \(R \) is Artinian.

(b) \(R \cong \text{End}_D(M) \) for some division ring \(D \) and some finite dimensional \(D \)-space \(M \).

(c) \(R \) has a minimal left ideal.

(d) \(R \) is semisimple as a left \(R \)-module.

Proof. (a) \implies (b): Since \(R \) is a simple ring and \(J(R) \) is a proper ideal in \(R \) we know that \(J(R) = 0 \). Hence \(R \cong \bigoplus_{M \in \mathcal{M}} \text{End}_D(M) \) for a finite set of simple \(R \)-modules \(\mathcal{M} \). Since \(R \) is a simple rings we get \(|\mathcal{M}| = 1 \) and so \(b \) holds.

(b) \implies (a): Without loss \(R = \text{End}_D(M) \). By \[1.5.15\] we have \(D = \text{End}_D(M) \). Since \(R \) is simple ring, \(M \) is a faithful \(R \)-module. As \(\text{dim}_D M \) is finite we can apply rf[unique simple] \(e \) and conclude that \(U \to A_R(U) \) is an inclusion reversing bijection between the \(D \)-subspaces of \(M \) and the left ideal of \(R \). Note that there exists a maximal \(D \)-subspace of \(M \). Then \(A_R(U) \) is a minimal left ideal in \(R \).

(c) \implies (d): Let \(I \) be a minimal left ideal in \(R \). Then \(I \) is a simple \(R \)-module. For each \(r \in R \), the function \(\alpha : I \to R, i \mapsto ir \) is \(R \)-linear. Since \(I \) is simple \(R \)-module either ker \(\alpha = I \) or ker \(\alpha = 0 \). Hence either \(Ir = 0 \) or \(Ir \cong I \). In the latter case \(Ir \) is a simple \(R \)-submodule of \(R \). Thus \(IR \) is a sum of simple \(R \)-submodules. Hence \[1.1.26\] \(IR \) shows that \(IR \) is a semisimple \(R \)-module. Note that \(IR \) is non-zero ideal in \(R \) and since \(R \) is simple we get \(IR = R \). So \(R \) is a semisimple \(R \)-module.

(d) \implies (a): By \[1.5.22\] any ring \(R \), which semisimple as a left \(R \)-module, is Artinian.

Since there do exist non-Artinian simple rings, we conclude that there exists simple rings without minimal left ideals and in particular that semisimple rings do not need to be semisimple as a left \(R \)-module.

Corollary 1.5.24. Let \(K \) be a field and \(G \) a finite group with char \(K \nmid |G| \). Then \(K[G] \) is a semisimple, Artinian ring with \(1(K[G]) = 0 \).
Proof. By 1.3.1 all \(\mathbb{K}G \)-modules are semisimple. So the Corollary follows from 1.5.22. \(\square \)

Corollary 1.5.25. Let \(\mathbb{K} \) be an algebraically closed field and \(R \) a finite dimensional \(\mathbb{K} \)-algebra with \(1(R) = 0 \). Let \(M \) be a set of representatives for the isomorphism classes of simple \(R \)-modules. Then \(M \) is finite, each \(M \in M \) is finite dimensional over \(\mathbb{K} \) and

\[
R \cong \bigoplus_{M \in M} \text{End}_\mathbb{K}(M).
\]

Proof. Since \(\dim_{\mathbb{K}} R \) is finite, \(R \) is Artinian. Let \(M \in M \) and \(0 \neq m \in M \). Then \(M \cong R/\text{Ann}_R(m) \). Thus \(\dim_{\mathbb{K}} M \leq \dim_{\mathbb{K}} R < \infty \). Since \(\mathbb{K} \) is algebraically closed 1.5.6 shows that \(\text{End}_\mathbb{K}(M) = \mathbb{K} \). The Corollary follows from 1.5.21. \(\square \)

Proposition 1.5.26. Let \(R \) be an Artinian ring. Then \(J(R) \) is nilpotent, that is \(J(R)^n = 0 \) for some \(n \in \mathbb{N} \).

Proof. Put \(J := J(R) \) and choose \(n \in \mathbb{N} \) with \(K := J^n \) minimal. If \(K^2 = 0 \), then \(J^{2n} = 0 \) and \(J \) is nilpotent. So suppose for a contradiction that \(K^2 \neq 0 \). Put \(A := \{ a \in K \mid Ka = 0 \} = \text{Ann}_K(K) \). Then \(A \) is an ideal in \(K \) with \(A \neq K \) and we can choose a left ideal \(L \) of \(R \) minimal with \(A \leq L \leq K \). Then \(L/A \) is a simple \(R \)-module. Hence by 1.4.8 \(J \leq \text{Ann}_R(L/A) \) and so \(JL \leq A \). It follows that \(KJL = 0 \). By minimality of \(K \), \(K = J^{n+1} = KJ \). Thus \(KL = 0 \), so \(L \leq A \) contrary to the choice of \(L \). \(\square \)

1.6 Tensor Products

Definition 1.6.1. Let \(R \) be a commutative ring and \(W \) an \(R \)-module. Furthermore let \((M_i)_{i \in I} \) be a family of \(R \)-modules and \(f : \bigtimes_{i \in I} M_i \to M \) a function. Let \(J \) and \(K \) be subset of \(I \) with \(I = J \cup K \) and \(J \cap K = \emptyset \).

(a) \(M_J := \bigtimes_{i \in J} M_i \).

(b) \(\iota_{J,K} : M_J \times M_K \to M_{J}, ((m_j), (m_k)) \to (m_i) \)

(c) For \(m \in M_K \) define \(f_m : M_J \to W, n \to f(\iota_{J,K}(n,m)) \).

(d) \(f \) is called \(R \)-multilinear if for all \(i \in I \) all \(m \in M_{I_{\neq i}} \), \(f_m : M_i \to M \) is \(R \)-linear.

We usually will identify \((n,m) \in M_J \times M_K \) with \(\iota_{J,K}(n,m) \). In particular, we will write \(f(n,m) \) for \(f(\iota_{J,K}(n,m)) \) and so \(f_m(n) = f(n,m) \).

Definition 1.6.2. Let \(R \) be a commutative ring, \((M_i)_{i \in I} \) a family of \(R \)-modules and \(f : M_i \to W \) an \(R \)-multilinear function. Suppose that for all \(R \)-multilinear functions \(g : M_i \to U \) there exists unique \(R \)-linear map \(h : W \to U \) with \(g = h \circ f \). Then \(f \) is called a tensor product of \((M_i)_{i \in I} \) over \(R \).

Lemma 1.6.3. Let \(R \) be a commutative ring and \((M_i)_{i \in I} \) a family of \(R \)-modules. Then there exists a tensor map \(f : M_i \to W \) over \(R \) and \(f \) is unique up to isomorphism.

Proof. Let \(F \) be a free \(R \)-module with basis \((a(m))_{m \in M_i} \). Let \(Z \) be the \(R \)-submodule generated by all the \(a(ru + sv, n) - ra(u, n) - sa(v, n), r, s \in R, i \in I, u, v \in M_i \) and \(n \in M_{I_{\neq i}} \). Put \(W := F/Z \) and define \(f(m) = a(m) + Z \) for all \(m \in M_i \). Then clearly \(f \) is \(R \)-multilinear. Now let \(g : M_i \to N \) be \(R \)-multilinear. Then there exists a unique \(R \)-linear function \(\tilde{h} : F \to N \) with \(\tilde{h}(a(m)) = g(m) \) for all \(m \in M_i \). Since \(g \) is \(R \)-multilinear, \(Z \leq \ker \tilde{h} \) and so there exists an \(R \)-linear \(h : M \to N \) with \(h(a(m) + W) = g(m) \) for all \(m \in M_i \). Hence \(g = h \circ f \). The uniqueness of \(h \) is readily verified. So \(f \) is tensor product of \((M_i)_{i \in I} \) over \(R \).

That \(f \) is unique up to isomorphism is obvious. \(\square \)
1.6. TENSOR PRODUCTS

Notation 1.6.4. Let R be a commutative ring, and $f : M_I \to W$ be a tensor product for the family of R-modules $(M_i)_{i \in I}$. Then

(a) $\bigotimes_{i \in I} M_i := \bigotimes M_i := W$.

(b) Let $m \in M_I$. Then $\otimes m := \bigotimes_{i \in I} m_i := f(m)$.

(c) Let $g : M_I \to N$ be R-multilinear and h the unique R-linear function $W \to N$ with $g = h \circ f$. Then $\otimes g := h$.

Lemma 1.6.5. Let R be a commutative ring and a $(M_i)_{i \in I}$ a finite family of R-modules.

(a) If $M_i = R$ for all $i \in I$, then $\bigotimes_{i \in I} R \to R, (r_i) \mapsto \prod_{i \in I} r_i$ is a tensor product of $(M_i, i \in I)$.

(b) Suppose for each $i \in I$, $M_i = \bigoplus \mathcal{W}_i$ for some set \mathcal{W}_i of R-submodules of M_i.

\[
\bigotimes_{i \in I} M_i \cong_{R} \bigoplus_{i \in I} \left(\bigotimes_{i \in I} \mathcal{W}_i \biggm{\text{where } (W_i)_{i \in I} \in \bigotimes_{i \in I} \mathcal{W}_i} \right) .
\]

(c) Suppose that for each $i \in I$, M_i is a free R-module with basis \mathcal{B}_i. Then $\bigotimes_{i \in I} M_i$ is a free R-module with basis

\[\bigotimes_{i \in I} \mathcal{B}_i := (\otimes b \mid b \in \bigotimes \mathcal{B}_i).\]

(d) If $I = \emptyset$, then $f : \bigotimes_{I} R \to R, () \mapsto 1$ is a tensor product of $()$.

(e) If $I = \{i\}$, then id_M is a tensor product for $(M_i)_{i \in I}$ over R.

Proof. (a) Define

\[f : R^I \to R, \ (r_i) \mapsto \prod_{i \in I} r_i .\]

Then f is R-multilinear. Let $g : R^I \to N$ be R-multilinear. Define $n := g((1)_{i \in I})$ and

\[h : R \to N, \ r \mapsto rn .\]

Then $g = h \circ f$ and h is unique with this property. So (a) holds.

(b) For $i \in I$ and $W_i \in \mathcal{W}_i$ let $\pi_{W_i} : M_i \to W_i$ be the projection according to $M_i = \bigoplus \mathcal{W}_i$. Define

\[f : M_I \to \bigoplus \left(\bigotimes_{i \in I} W_i \biggm{\text{where } (W_i)_{i \in I} \in \bigotimes_{i \in I} \mathcal{W}_i} \right), \ (m_i) \mapsto \left(\bigotimes_{i \in I} \pi_{W_i}(m_i) \biggm{\text{where } (W_i)_{i \in I} \in \bigotimes_{i \in I} \mathcal{W}_i} \right) .\]

Note that for given $i \in I$ and $m_i \in M_i$, $\pi_{W_i}(m_i) = 0$ for almost all $W_i \in \mathcal{W}_i$. Hence also $\bigotimes_{i \in I} \pi_{W_i}(m_i) = 0$ for almost all $(W_i)_{i \in I} \in \bigotimes_{i \in I} \mathcal{W}_i$. Thus f is a well-defined R-multilinear function.

Now let $g : M_I \to N$ be R-multilinear. For $W = (W_i)_{i \in I} \in \bigotimes_{i \in I} \mathcal{W}_i$ let g_W be the restriction of g to $\bigotimes_{i \in I} W_i$. Then there exists a unique R-linear function $h_W : \bigotimes_{i \in I} W_i \to N$ with $g_W(w) = h_W(\otimes w)$ for all $w \in \bigotimes_{i \in I} W_i$. Define

\[h : \bigoplus \left(\bigotimes_{i \in I} W_i \biggm{\text{where } W \in \bigotimes_{i \in I} \mathcal{W}_i} \right) \to N, \ \left(a_W \right)_{W \in \bigotimes_{i \in I} \mathcal{W}_i} \mapsto \sum_{W \in \bigotimes_{i \in I} \mathcal{W}_i} h_W(a_W) .\]
Then it is easy to check that $g = h \circ f$ and h is unique with this property. So (b) holds.

(c) Let $b_i \in B_i$, then by \(\bigoplus_{i \in I} Rb_i \) is a free R-module of rank 1 with basis $\bigoplus_{i \in I} b_i$. Moreover, $M_i = \bigoplus_{b \in B_i} Rb$ and so (c) follows from (b).

(d) Note here that the direct product \bigtimes_{\varnothing} of the empty family of sets is a set with one element, namely the empty tuple $()$. Given an R-module N and $g : \bigtimes_{\varnothing} \to N, () \to n$. Define $h : R \to N, r \to rn$. Then $g = h \circ f$.

(e) is readily verified. \(\square \)

Lemma 1.6.6. Let R be a commutative ring, $(M_i)_{i \in I}$ a family of R-modules and Δ be a partition of I. Then there exists a unique R-linear function

\[
\rho : \bigotimes_{i \in I} M_i \to \bigotimes_{D \in \Delta} \left(\bigotimes_{i \in D} M_i \right) \quad \text{with} \quad \otimes_{i \in I} m_i \mapsto \otimes_{D \in \Delta} (\otimes_{i \in D} m_i).
\]

Moreover, if Δ is finite, then ρ is an isomorphism.

Proof. Observe that the function

\[
M_I \to \bigotimes_{D \in \Delta} \left(\bigotimes_{i \in D} M_i \right) \quad (m_i)_{i \in I} \mapsto \otimes_{D \in \Delta} (\otimes_{i \in D} m_i)
\]

is R-multilinear. Thus the uniqueness and existence of ρ follows from the definition of the tensor product.

To show that ρ is an isomorphism, if Δ is finite we may assume by induction that $|\Delta| = 2$. Say $\Delta = \{J, K\}$. Then $I = J \cup K$ and $J \cap K = \varnothing$. Let $q \in M_K$. Then

\[
f_q : M_J \to \bigotimes_{i \in J} M_i, \quad p \mapsto \otimes (p, q)
\]

is R-multilinear and we obtain an R-linear function

\[
\otimes f_q : \bigotimes_{i \in J} M_i \to \bigotimes_{i \in J} M_i, \quad \otimes p \mapsto \otimes (p, q).
\]

Hence for $a \in \bigotimes M_J$ we can define a R-multilinear function

\[
g_a : M_K \to \bigotimes_{i \in K} M_i, \quad q \mapsto (\otimes f_q)(a)
\]

and obtain an R-linear function

\[
\otimes g_a : \bigotimes_{i \in K} M_i \to \bigotimes_{i \in K} M_i, \quad \otimes q \mapsto (\otimes f_q)(a).
\]

This now gives rise to a R-bilinear function

\[
h : \bigotimes M_J \times \bigotimes M_K \to \bigotimes M_I, \quad (a, b) \mapsto (\otimes g_a)(b)
\]

and then a R-linear function

\[
\otimes h : \bigotimes M_J \otimes \bigotimes M_K \to \bigotimes M_I, \quad a \otimes b \mapsto (\otimes g_a)(b).
\]

For $p \in M_J, q \in M_K$ we have

\[
(\otimes h)(\otimes p \otimes \otimes q) = (\otimes g_{\otimes p})(\otimes q) = (\otimes f_q)(\otimes p) = \otimes (p, q)
\]

and so $\otimes h$ is inverse to ρ. \(\square \)
1.7. INDUCED AND COINDUCED MODULES

For finite Δ we will usually identify \(\bigotimes_{i \in \Delta} (\bigotimes_{j \in J} M_i) \) with \(\bigotimes_{i \in I} M_i \) via the map \(\rho \) of the preceding lemma. In particular, if \(I = J \cap K \) with \(J \cap K = \emptyset \) and \(\rho = (m_i)_{i \in J} \times (m_j)_{j \in J} \) and \(q = (m_k)_{k \in K} \in \bigotimes_{i \in I} M_i \) then

\[
(\otimes \rho) \otimes (\otimes q) = \otimes (\rho, q) = \otimes_{i \in I} m_i.
\]

Definition 1.6.7. Let \(R \) be a ring, \(X \) a right \(R \)-module and \(Y \) a left \(R \)-module, \(Z \) a \(\mathbb{Z} \)-module and \(f : X \times Y \to Z \) a function.

(a) \(f \) is called \(R \)-balanced if it is \(\mathbb{Z} \)-multilinear and for all \(x \in X, y \in Y \) and \(r \in R \), \(f(xr, y) = f(x, ry) \).

(b) Suppose that \(f \) is balanced and that for each \(R \)-balanced map \(g : X \times Y \to N \), there exists a unique \(\mathbb{Z} \)-linear map, \(h : Z \to N \) with \(g = h \circ f \). Then \(f \) is called a tensor map of \(X \) and \(Y \) over \(R \) and \(Z \) is called a tensor product of \(X \) and \(Y \) over \(R \).

Lemma 1.6.8. Let \(X \) be a right- and \(Y \) a left \(R \)-module. Then there exists a tensor product for \(X \) and \(Y \) over \(R \) and \(Z \) is a \(\mathbb{Z} \)-module and \(f : X \times Y \to Z \) a function.

Proof. Let \(F := X \otimes \mathbb{Z} Y \) and \(W \) the \(\mathbb{Z} \)-subspace generated by the \((xr) \otimes y - x \otimes (ry), x \in X, y \in Y \) and \(r \in R \). Put \(Z := F / W \) and define \(f : X \times Y \to X, (x, y) \mapsto x \otimes y + W \). \(\square \)

We denote the tensor product of \(X \) and \(Y \) over \(R \) by \(X \otimes_R Y \). We reader might convince themselves that in the case of a commutative ring our two notation of tensor product agree. More precisely suppose that \(X \) and \(Y \) are left \(R \)-modules. Let \(\hat{X} \) be a the right \(R \)-module, define by \(\hat{X} = X \) as abelian groups and \(xr = rx \) for all \(x \in X, r \in R \). Then the tensor product for \(X \) and \(Y \) over \(R \) is also the tensor product for \(\hat{X} \) and \(Y \) over \(R \).

Lemma 1.6.9. Let \(R \) be a ring, \(X \) a free right \(R \)-module with basis \(B \) and \(Y \) a left \(R \)-module. Then the function

\[
Y_B \to X \otimes \mathbb{S} Y \quad (\gamma_b)_{b \in B} \mapsto \sum_{b \in B} b \otimes y_b
\]

is a \(\mathbb{Z} \)-isomorphism.

Proof. Since \(B \) is an \(S \)-basis for the right \(S \)-module \(X \) we have \(X = \bigoplus_{b \in B} bS \) and the function \(S \to bS, \ s \mapsto bs \) is an isomorphism of \(S \)-modules. Moreover, by \(S \otimes W = W \) with \(s \otimes w = sw \). Hence we obtained a sequence of \(\mathbb{Z} \)-isomorphism

\[
\begin{align*}
X \otimes_S Y &= (\bigoplus_{b \in B} bS) \otimes_R Y \cong \bigoplus_{b \in B} bS \otimes_S Y \cong \bigoplus_{b \in B} S \otimes_S Y = \bigoplus_{b \in B} Y = Y_B \\
\sum_{b \in B} b \otimes y_b &\mapsto (b1 \otimes y_b)_{b \in B} \mapsto (1 \otimes y_b)_{b \in B} = (y_b)_{b \in B}
\end{align*}
\]

\(\square \)

1.7 Induced and Coinduced Modules

Definition 1.7.1. Let \(S \) be a ring, \(R \) an \(S \)-ring, \(W \) an \(S \)-module and \(M \) an \(R \)-module. Recall from 1.5.4 that \(M \) is an \(S \)-module.

(a) Let \(f : W \to M \) be \(S \)-linear. We say that \(f \) is the function induced from \(W \) to \(R \) provided that whenever \(N \) is an \(R \)-module and \(g : W \to N \) is \(S \)-linear, then there exists a unique \(R \)-linear function \(h : M \to N \) with \(g = h \circ f \). In this case \(M \) is called the \(R \)-module induced from \(W \) to \(R \) and is denoted by \(W \downarrow^R \). \(f \) is denoted by \(f^S \) and \(h \) by \(g^S \).

(b) Let \(f : M \rightarrow W \) be \(S \)-linear. We say that \(f \) is coinduced from \(W \) to \(R \) provided that whenever \(N \) is an \(R \)-module and \(g : N \rightarrow W \) is \(S \)-linear, then there exists a unique \(R \)-linear function \(h : N \rightarrow M \) with \(g = f \circ h \). In this case \(M \) is called the \(R \)-module coinduced from \(W \) to \(R \) and is denoted by \(W \otimes_{S} R \). \(f \) is denoted by \(\pi_{S}^{R}(W) \) and \(h \) by \(g \otimes_{S} R \).

Lemma 1.7.2. Let \(S \) be a ring, \(R \) an \(S \)-ring and \(W \) an \(S \)-module. Recall from 1.5.4(b) that \(R \) is a right \(S \)-module.

(a) There exists a unique \(R \)-module structure

\[
R \times R \otimes_{S} W \rightarrow R \otimes_{S} W \quad \text{with} \quad (r, t \otimes w) \mapsto rt \otimes w
\]

for all \(r, t \in R, w \in W \).

(b) The function

\[
f : W \rightarrow R \otimes_{S} W, \quad w \mapsto 1 \otimes w
\]

is induced from \(W \) to \(R \).

(c) Any function induced from \(W \) to \(R \) is isomorphic to \(f \).

Proof.

(a) Let \(r \in R \) and define

\[
\alpha_{r} : R \times W \rightarrow R \otimes_{S} W, \quad (t, w) \mapsto rt \otimes w.
\]

Let \(t \in R, s \in S \) and \(w \in W \). Then

\[
\alpha_{r}(ts, w) = r(ts) \otimes w = (rt)S \otimes w = rt \otimes sw = \alpha_{r}(t, sw)
\]

and so \(\alpha_{r} \) is \(S \)-balanced. Hence the universal property of the tensor product gives rise to uniquely determined function

\[
\otimes \alpha_{r} : R \otimes_{S} W \rightarrow R \otimes_{S} W, \quad t \otimes w \mapsto rt \otimes w
\]

This yields a function

\[
f : R \times R \otimes_{S} W \rightarrow R \otimes_{S} W, \quad (r, a) \mapsto \alpha_{r}(a).
\]

Then \(f(r, t \otimes w) = \alpha_{r}(t \otimes w) = rt \otimes w \) and (a) holds.

(b) Let \(N \) be an \(R \)-module and \(g : W \rightarrow N \) an \(S \)-linear function. Then the function \(R \times W \rightarrow N, (r, w) \mapsto r(g(w)) \) is \(S \)-balanced. So by definition of the tensor product there exists a \(\mathbb{Z} \)-linear function

\[
h : R \otimes_{S} W \rightarrow N, \quad r \otimes w \mapsto r(g(w)).
\]

Then \(h(f(w)) = h(1 \otimes w) = 1(g(w)) = g(w) \) and so \(h \circ f = g \). Moreover

\[
r(h(t \otimes w)) = r(t(g(w))) = (rt)(g(w)) = h(rt \otimes w) = h(r(t \otimes w)).
\]

and so \(h \) is \(R \)-linear. Thus (b) holds.

(c) is obvious. \(\square \)

Lemma 1.7.3. Let \(S \) be a ring, \(R \) an \(S \)-ring and \(W \) an \(S \)-module. Recall that \(R \) is an \(S \)-module.
1.7. INDUCED AND COINDUCED MODULES

(a) $\text{Hom}_S(R, W)$ is an R-module via $(ta)(r) = \alpha(rt)$ for all $r, t \in R, \alpha \in \text{Hom}_S(R, W)$.

(b) The function

$$f: \text{Hom}_S(R, W) \rightarrow W, \quad \alpha \mapsto \alpha(1)$$

is S-linear and coinduced from W to R.

(c) Any function coinduced from W to R is isomorphic to f.

Proof. (a) We first will verify that ta is S-linear. Let $s \in S$ and $r \in R$. Then

$$(ta)(sr) = \alpha((sr)t) = \alpha(s(rt)) = s(\alpha(rt)) = s((ta)(r)).$$

So indeed $ta \in \text{Hom}_S(R, W)$. To check that this is an R-module structure let $u \in R$. Then

$$(ut)\alpha(r) = \alpha(r(ut)) = \alpha((ru)r) = (ta)(ru) = (u(\alpha))(r).$$

So $(ut)\alpha = u(\alpha)$ and (a) is proved.

(b) We have

$$f(sa) = (sa)(1) = \alpha(s1) = s(\alpha(1)) = s(f(\alpha)),$$

and so f is S-linear. Let N be an R-module and $g: N \rightarrow W$ be S-linear. Define

$$h: N \rightarrow \text{Hom}_S(R, W) \quad \text{by} \quad (h(n))(r) = g(rn).$$

for all $n \in N$ and $r \in R$. For $n \in N, r \in R$ and $s \in S$ we have

$$(h(n))(sr) = g((sr)n) = g(srn) = s(g(rn)) = s((h(n))(r))$$

and so $h(n)$ is indeed S-linear. Also

$$f(h(n))(1) = g(1n) = g(n)$$

and so $f \circ h = g$.

(c) Obvious. □

Proposition 1.7.4 (Frobenius Reciprocity). Let S be a ring, R an S-ring, W an S-module and V an R-module.

(a) The function $\text{Hom}_R(W \uparrow^R_S, V) \rightarrow \text{Hom}_S(W, V), \alpha \mapsto \alpha \circ \iota^R_S(W)$ is a \mathbb{Z}-isomorphism with inverse $\beta \mapsto \beta \uparrow^R_S$.

(b) The function $\text{Hom}_R(V, W \downarrow^R_S) \rightarrow \text{Hom}_S(V, W), \alpha \mapsto \pi^S_R(W) \circ \alpha$ is a \mathbb{Z}-isomorphism with inverse $\beta \mapsto \beta \downarrow^R_S$.

Proof. The functions in question are clearly \mathbb{Z}-linear.

(a) Put $\iota := \iota^R_S(W)$ and $M := W \uparrow^R_S$. By definition of an induced function, for each $\beta \in \text{Hom}_S(W, V)$ there exists a unique $\alpha \in \text{Hom}_S(W, V)$ with $\beta = \alpha \circ \iota$, namely $\alpha = \beta \uparrow^R_S$. This gives (a).

(b) Put $\pi := \pi^S_R(W)$ and $M := W \downarrow^R_S$. By definition of a coinduced function, for each $\beta \in \text{Hom}_S(V, W)$ there exists a unique $\alpha \in \text{Hom}_S(V, W)$ with $\beta = \pi \circ \alpha$, namely $\alpha = \beta \downarrow^R_S$. This gives (b). □
Lemma 1.7.5. Let S be a ring, R an S-ring and W an S-module.

(a) Suppose that R, as a right S-module, is free with basis \(B \). Put \(\iota := \iota^S(W) \). Then the function

\[
W_B \rightarrow W^*_S, \quad (w_b)_{b \in B} \rightarrow \sum_{b \in B} b(\iota(w_b))
\]

is a \(\mathbb{Z} \)-isomorphism. In particular, \(\iota \) is 1-1.

(b) Suppose that R, as an S-module, is free with basis \(B \). Put \(\pi := \pi^S(W) \). Then the function

\[
W \rightarrow W^*_S, \quad \alpha \mapsto (\pi(\alpha))_{b \in B}
\]

is a \(\mathbb{Z} \)-isomorphism. In particular, \(\pi \) is onto.

Proof. (a) By 1.7.2 we may assume that \(W^*_S = R \otimes_S W \) and \(\iota(w) = 1 \otimes w \). Then \(b(\iota(w_b)) = b(1 \otimes w_b) = b \otimes w_b \) and the function in (a) becomes

\[
W_B \rightarrow R \otimes_S W, \quad (w_b)_{b \in B} \rightarrow \sum_{b \in B} b \otimes w_b
\]

By 1.6.9 this function is a \(\mathbb{Z} \)-isomorphism.

(b) By 1.7.3 we may assume that \(W = \text{Hom}_S(R, W) \) and \(\pi(\alpha) = \alpha(1) \) for \(\alpha \in \text{Hom}_S(R, W) \). For \(b \in B \) we get \(\pi(b \alpha) = (b \alpha)(1) = \alpha(1b) = \alpha(b) \) and so the function in (b) becomes

\[
\text{Hom}_S(R, W) \rightarrow W^*_S, \quad \alpha \mapsto (\alpha(b))_{b \in B}
\]

This function is clearly \(\mathbb{Z} \)-linear and by definition of a free \(S \)-module, for each \((w_b)_{b \in B} \) there exists a unique \(\alpha \in \text{Hom}_S(R, W) \) with \(\alpha(b) = w_b \) for all \(b \in B \). So the function is a bijection. \(\square \)

1.8 Absolutely Simple Modules

Lemma 1.8.1. Let \(R \) be commutative ring and let \(A \) and \(B \) be \(R \)-algebras. Then there exists a unique \(R \)-multilinear binary operation

\[
A \otimes_R B \times (A \otimes_R B) \rightarrow A \otimes_R B \text{ with } (a \otimes b) \cdot (c \otimes d) = (ac) \otimes (bd)
\]

for all \(a, c \in A, b, d \in B \). Moreover, \(A \otimes_R B \) is \(R \)-algebra.

Proof. For a fixed \((c, d) \in A \times B \), the function

\[
A \times B \rightarrow A \otimes B, \quad (a, b) \rightarrow (ac) \otimes (bd)
\]

is \(R \)-multilinear and we obtain a uniquely determined \(R \)-linear map

\[
f_{cd} : A \otimes B \rightarrow A \otimes B, \quad a \otimes b \rightarrow (ac) \otimes (bd).
\]

The map \(A \times B \rightarrow \text{Hom}_R(A \otimes B, A \otimes B), \quad (c, d) \rightarrow f_{cd} \) is \(R \)-multilinear and so we obtain a uniquely determined \(R \)-linear map

\[
f : A \otimes B \rightarrow \text{Hom}_R(A \otimes B, A \otimes B), \quad c \otimes d \rightarrow f_{cd}.
\]

For \(x, y \in A \otimes B \) define \(xy = f(y)(x) \). The lemma is now readily verified. \(\square \)
Lemma 1.8.2. Let R be a commutative ring, B an R-algebra, A and R-module and M an A-module.

(a) $A \otimes_R M$ is an B-module via
\[T \times A \otimes_R M \rightarrow A \otimes_R M \quad \text{with} \quad (b, a \otimes m) \mapsto a \otimes bm. \]
for all $a \in A, b \in B, m \in M$.

(b) Suppose M is a simple B-module. Then $A \otimes_R M$ is a semisimple B-module and each simple B-submodule of $A \otimes_R M$ is isomorphic to M.

(c) Suppose that
(i) M and N are simple B-modules.
(ii) $A \otimes_R M \neq 0$
(iii) $A \otimes_R M$ and $A \otimes_R N$ are isomorphic B-modules.

Then M and N are isomorphic B-modules.

Proof. (a) is readily verified.

Let $a \in A$. Then the function
\[\phi_a : M \rightarrow A \otimes_R M, m \mapsto a \otimes m. \]

is a B-linear. Since M is a simple B-module, we conclude that either $\text{Im} \, \phi_a = \text{Im} \, \phi_a \cong_B M$. Put $S := \{\text{Im} \, \phi_a \mid a \in A, \text{Im} \, \phi_a \neq 0\}$. Then $A \otimes_R M = \sum S$ and each element of S is a simple B-module isomorphic to M. Hence $[1.1.26g]$ shows that $A \otimes_R M$ is a semisimple B-module. Moreover, by $[1.1.26h]$ each simple B-submodule of $A \otimes_R M$ is isomorphic to an element of S and so isomorphic to M.

By (b) $A \otimes_R M$ is a semisimple B-module and by hypothesis, $A \otimes_R M \neq 0$. Hence $A \otimes_R M$ contains a simple B-submodule S. By (b) $S \cong_B M$. As $A \otimes_R M \cong_B A \otimes_R N$ we know that S is isomorphic to a simple B-submodule of $A \otimes_R N$. Thus (b) shows that $S \cong_B N$ and so also $M \cong_B N$. \[\square\]

Lemma 1.8.3. Let $F \leq \mathbb{K}$ be a field extension, A a finite dimensional F-algebra and $B := \mathbb{K} \otimes_F A$.

(a) Let T be a simple B-module. Then T is a semisimple A-module and any two simple T-submodules of S are isomorphic.

(b) Let S be a simple A-module. Then there exists a simple B-module with S as an A-submodule.

(c) The function
\[S(B) \rightarrow S(A), \quad T \mapsto [S] \]

where $T \in \mathcal{T}$, S a simple A-submodule of T and $[S]$ is the class of A-modules isomorphic to S, is a well-defined and surjective.

(d) The number of isomorphism classes of simple A-modules is less or equal to the number of isomorphism classes of simple B-modules.
Let \(0 \neq t \in T \). Since \(\dim_T A \) is finite, also \(\dim_T At \) is finite. Let \(S \) be a non-zero \(A \)-submodule of \(At \) with \(\dim_T S \) minimal. Then \(S \) is a simple \(B \)-submodule of \(T \). Observe that \(\sum_{k \in K} kS \) is non-zero \(B \)-submodule of \(T \) and so \(T = \sum_{k \in K} kS \). Note also that each \(kS \), \(k \in K \) is isomorphic to \(S \) as \(A \)-module. Hence (a) holds.

Put \(U := K \otimes_T S \). Since \(S \) is a simple \(A \)-module and \(\dim_T S \) is finite, also \(\dim_K U \) is finite and there exist a simple \(B \)-submodule \(T \) of \(U \). By (a) \(T \) contains a simple \(A \)-submodule \(S \). Also by 1.8.2(b) any simple \(A \)-submodule of \(U \) is isomorphic to \(U \). So \(S_A \) and (b) follows.

By (c) the function is well-defined and by (b) the function is surjective.

\[\square \]

Lemma 1.8.4. Let \(R \) be a commutative ring, let \(A \) and \(B \) be \(R \)-algebras and let \(M \) be \(B \)-module. Then \(A \otimes_R M \) is an \(A \otimes_R B \)-module via

\[A \otimes_R B \times A \otimes_R M \to A \otimes_R M \quad \text{with} \quad (a \otimes b, c \otimes m) \mapsto ac \otimes bm. \]

for all \(a, c \in S, b \in B, m \in M \).

Proof. Readily verified. \[\square \]

Definition 1.8.5. Let \(K \) be a field, \(A \) a \(K \)-algebra and \(M \) an \(A \)-module. Then \(M \) is called an absolutely simple \(A \)-module over \(K \) provided that \(F \otimes_K M \) is a simple \(F \otimes_K A \)-module for all fields \(F \) with \(K \leq F \).

Lemma 1.8.6. Let \(K \) be a field, \(A \) an \(K \)-algebra and \(M \) a simple \(A \)-module. Then \(M \) is absolutely simple over \(K \) if and only if \(\text{End}_A(M) = K \).

Proof. \(\implies \): Suppose \(M \) is absolutely simple over \(K \) and let \(F \) be a subfield of \(\text{End}_A(M) \) with \(K \leq F \). Note that the function \(F \otimes_K M \to M, (f, m) \mapsto f(m) \) is \(K \)-multilinear and so we obtain a \(K \)-linear function

\[\alpha : F \otimes_K M \to M, \quad \text{with} \quad f \otimes m \mapsto f(m). \]

Also observe that \(M \) is an \(F \otimes_K A \)-module via \((f \otimes a) \cdot m = f(am) \) for all \(f \in F, a \in A, m \in M \). We claim that \(\alpha \) is \(F \otimes_K A \)-linear. For this let \(f, g \in F, a \in A \) and \(m \in M \). Then

\[\alpha((f \otimes a)(g \otimes m)) = \alpha(fg \otimes am) = (fg)(am) = f(g(am)) = f((f \otimes a)(g \otimes m)) = (f \otimes a)(g \otimes m). \]

So \(\alpha \) is indeed \(F \otimes_K A \)-linear. In particular, \(\ker \alpha \) is an \(F \otimes_K A \)-submodule of \(F \otimes_K M \). Let \(1 \otimes M = \{ 1 \otimes m \mid m \in M \} \) and observe that \(f|_{1 \otimes M} \) is onto. Thus \(F \otimes_K M = 1 \otimes M + \ker \alpha \). Since \(M \) is absolutely simple over \(K \) we know that \(F \otimes_K M \) is a simple \(F \otimes_K A \)-module. It follows that \(\ker \alpha = 0 \) and so \(F \otimes M = 1 \otimes M \). Let \(B \) be a \(F \)-basis for \(M \). Then \(1 \otimes B \) is an \(F \)-basis for \(F \otimes_K M \) and spans \(1 \otimes M \) as a \(K \)-space. Hence \(F = K|_M \). Let \(d \in D := \text{End}_A(M) \) and \(F(d) \) be the subdivision ring of \(D \) generated by \(K|_M \) and \(d \). Since \(K|_M \leq Z(D) \), \(F \) is a field. So \(d \in F = K|_M \) and thus \(D = K|_M \).

\(\iff \): Suppose that \(\text{End}_A(M) = K|_M \). Then Jacobson’s Density Theorem shows that \(A \) is dense on \(M \) with respect to \(K \). Let \(F \) be a field extension of \(K \) and let \(v, w \in F \otimes_K M \) with \(v \neq 0 \). We will show that \(w = bv \) for some \(b \in F \otimes_K A \). For this choose \(e_1, \ldots, e_n, f_1, \ldots, f_m \) in \(F \) and \(v_1, \ldots, v_n, w_1, \ldots, w_m \in M \) with

\[v = \sum_{i=1}^n e_i \otimes v_i \quad \text{and} \quad w = \sum_{j=1}^m f_j \otimes w_j. \]
We choose \(n \) minimal with respect to these properties. Then \((v_i)_{i=1}^n \) is linearly independent over \(\mathbb{K} \) and \(e_1 \neq 0 \). Let \(1 \leq j \leq m \). Since \(A \) is dense on \(M \) with respect to \(\mathbb{K} \), there exist \(a_j \in A \) with \(a_j v_1 = w_j \) and \(a_j v_i = 0 \) for all \(2 \leq i \leq n \). Put \(b := \sum_{j=1}^{m} \frac{v_j}{e_1} \otimes a_j \in \mathbb{F} \otimes_{\mathbb{K}} A \). Then

\[
 bv = \left(\sum_{j=1}^{m} \frac{f_j}{e_1} \otimes a_j \right) \left(\sum_{i=1}^{n} e_i \otimes v_i \right) = \sum_{j=1}^{m} \sum_{i=1}^{n} \left(\frac{f_j}{e_1} \otimes a_j \right) (e_i v_i) = \sum_{j=1}^{m} \sum_{i=1}^{n} \left(\frac{f_j}{e_1} e_i \right) (a_j v_i) = \sum_{j=1}^{m} f_j w_j = w,
\]

and so \(w \in (\mathbb{F} \otimes_{\mathbb{K}} A)v \). We conclude that \((\mathbb{F} \otimes_{\mathbb{K}} A)v = \mathbb{F} \otimes_{\mathbb{K}} M \) and so \(\mathbb{F} \otimes_{\mathbb{K}} M \) is a simple \(\mathbb{F} \otimes_{\mathbb{K}} A \)-module. \(\square \)

Corollary 1.8.7. Let \(\mathbb{K} \) be a field, \(A \) a \(\mathbb{K} \)-algebra and \(M \) a simple \(A \)-module. Let \(\mathbb{F} \) be a maximal subfield of \(\text{End}_A(M) \). Then \(\mathbb{K}|M \leq \mathbb{F} \) and \(M \) is an absolutely simple \(\mathbb{F} \otimes_{\mathbb{K}} A \)-module over \(\mathbb{F} \).

Proof. Let \(\mathbb{D} = \text{End}_A(M) \). We have \(\text{End}_{\mathbb{F} \otimes_{\mathbb{K}} A}(M) = \text{End}_A(M) \cap \text{End}_\mathbb{F}(M) = C_\mathbb{F}(\mathbb{F}) \). Note that \(\mathbb{F} \leq \mathbb{Z}(C_\mathbb{F}(\mathbb{F})) \) and the maximality of \(\mathbb{F} \) implies that \(C_\mathbb{F}(\mathbb{F}) = \mathbb{F} \). It follows that \(\mathbb{K}|M \leq \mathbb{F} \) and \(\text{End}_{\mathbb{F} \otimes_{\mathbb{K}} A}(M) = \mathbb{F} \). Now 1.8.6 shows that \(M \) is an absolutely simple \(\mathbb{F} \otimes_{\mathbb{K}} A \)-module over \(\mathbb{F} \). \(\square \)

Corollary 1.8.8. Let \(\mathbb{K} \) be a algebraically closed field, \(A \) a \(\mathbb{K} \)-algebra and \(M \) a simple \(A \)-module. If \(M \) is finite dimensional over \(\mathbb{K} \), then \(M \) is an absolutely simple \(A \)-module over \(\mathbb{K} \).

Proof. By 1.5.6 \(\text{End}_A(M) = \mathbb{K} \) and so 1.8.6 implies that \(M \) is absolutely simple over \(\mathbb{K} \). \(\square \)

1.9 Systems of Imprimitivity and Clifford Theory

Definition 1.9.1. Let \(R \) be a ring, \(G \) a group and \(M \) an \(R[G] \)-module.

(a) A system of imprimitivity for \(R[G] \) on \(M \) is a tuple \((M_b)_{b \in \mathcal{B}} \) such that

(i) \(\mathcal{B} \) is a \(G \)-set.

(ii) For \(b \in \mathcal{B} \), \(M_b \) is a non-zero \(R \)-submodule of \(M \).

(iii) \(gM_b = M_{gb} \) for all \(g \in G, b \in \mathcal{B} \).

(iv) \(M = \bigoplus_{b \in \mathcal{B}} M_b \).

(b) A system of imprimitivity is called proper if \(|\mathcal{B}| > 1 \).

(c) An \(R[G] \)-module with a proper system of imprimitivity is called imprimitive.

(d) An \(R[G] \)-module \(M \) is called primitive if \(M \) is simple and not imprimitive.

Example 1.9.2. Let \(G \) be a group acting on a set \(\mathcal{B} \) and let \(R \) be a ring. Let \(M \) be free \(R \)-module with basis \((m_b)_{b \in \mathcal{B}} \). Note that \(M \) is a \(R[G] \)-module via \(gm_b = m_{gb} \) for \(g \in G \) and \(b \in \mathcal{B} \). Then \((Rm_b)_{b \in \mathcal{B}} \) is a system of imprimitivity for \(R[G] \) on \(M \).

Remark 1.9.3. Let \(G \) be group, \(R \) a ring and \(M \) an \(R[G] \)-module. Let \(\mathcal{B} \) be a \(G \)-invariant set of non-zero \(R \)-submodules of \(M \) with \(M = \bigoplus \mathcal{B} \). Then \((B)_{b \in \mathcal{B}} \) is a system of imprimitivity for \(R[G] \) on \(M \).

Lemma 1.9.4. Let \(R \) be a ring, \(G \) a group, \(M \) an \(R[G] \)-module and \((M_b)_{b \in \mathcal{B}} \) a system of imprimitivity for \(R[G] \) on \(M \). Fix \(a \in \mathcal{B} \) and let \(W_a \) be non-zero \(R[C_G(a)] \)-module of \(M_a \). Put \(W := R[G]W_a \). Then

(a) \(W \cap M_{ga} = gW_a \) for all \(g \in G \).

(b) \(W \leq \sum_{b \in Ga} M_b \).
Let $b \in G$ and choose $g \in G$ with $b = ga$. Define $W_g := gW_a$. Since $C_G(a)W_a = W_a$, this is well defined. By definition of system of imprimitivity $M_b = gM_a$ and so $W_b \leq M_b$. Thus

$$W = R[G]W_a = GW_a = \sum_{g \in G} gW_a = \sum_{b \in G} W_b = \bigoplus_{b \in G} W_b$$

Hence $W \cap M_b = W_b$ for all $b \in \mathcal{B}$ and the lemma is proved. \qed

Notation 1.9.5. Let R be ring, G a group, $H \leq G$ and W an R_rG_s-module. Then we write $W \twoheadrightarrow_{H}^G$ for $W \twoheadrightarrow_{R}^G \twoheadrightarrow_{H}^G$.

Lemma 1.9.6. Let R be ring, G a group, $H \leq G$ and W is a non zero R_rG_s-module. Put $V := W \twoheadrightarrow_{H}^G$ and $\iota := \iota_H^G(W)$. Let T be a transversal to H in G.

(a) $T \iota(W) = g\iota(W)$ for all $T = gH \in G/H$.

(b) Let T be a transversal to H in G. Then the function $\alpha : W_T \rightarrow V$, $(w_t)_{t \in T} \mapsto \sum_{t \in T} (t(w_t))$

is a \mathbb{Z}-isomorphism

(c) ι is 1-1.

(d) $V = \bigoplus_{t \in T} t(W)$ and $(T \iota(W))_{T \in G/H}$ is a system of imprimitivity for $R[G]$ on V.

Proof. (b): Since ι is $R[H]$-linear, we have $(gH)\iota(W) = g(\iota(HW)) = g\iota(W)$.

(c) and (a): Note that

$$R[G] = \bigoplus_{g \in G} Rg = \bigoplus_{t \in T} \bigoplus_{h \in H} Rh = \bigoplus_{t \in T} \left(\bigoplus_{h \in H} Rh \right) = \bigoplus_{t \in T} tR[H]$$

and so T is a basis for $R[G]$ as a right $R[H]$-module. Hence (c) and (a) follows from 1.7.5(a)

(d): For $t \in T$ define $W_t := \{ w \in W_T \mid w_s = 0 \text{for all } s \in T \setminus \{t\} \}$. Then $W_T \bigoplus_{t \in T} W_t$ and $\alpha(W_t) = t(W)$. Since α is a \mathbb{Z}-isomorphism this gives

$$V = \bigoplus_{t \in T} t(W)$$

Since $T \rightarrow G/H, \rightarrow tH$ is a bijection and, by (a), $t(W) = (tH)\iota(W)$ this gives

$$V = \bigoplus_{T \in G/H} T \iota(W)$$

\qed

Lemma 1.9.7. Let R be ring, G a group, V an $R[G]$-module and $(V_b)_{b \in \mathcal{B}}$ a system of imprimitivity for $R[G]$ on V. Let $b \in \mathcal{B}$.

(a) V_b is an $R[C_G(b)]$-submodule of V.

(b) Since ι is $R[H]$-linear, we have $(gH)\iota(W) = g(\iota(HW)) = g\iota(W)$.

(c) and (a): Note that

$$R[G] = \bigoplus_{g \in G} Rg = \bigoplus_{t \in T} \bigoplus_{h \in H} Rh = \bigoplus_{t \in T} \left(\bigoplus_{h \in H} Rh \right) = \bigoplus_{t \in T} tR[H]$$

and so T is a basis for $R[G]$ as a right $R[H]$-module. Hence (c) and (a) follows from 1.7.5(a)

(d): For $t \in T$ define $W_t := \{ w \in W_T \mid w_s = 0 \text{for all } s \in T \setminus \{t\} \}$. Then $W_T \bigoplus_{t \in T} W_t$ and $\alpha(W_t) = t(W)$. Since α is a \mathbb{Z}-isomorphism this gives

$$V = \bigoplus_{t \in T} t(W)$$

Since $T \rightarrow G/H, \rightarrow tH$ is a bijection and, by (a), $t(W) = (tH)\iota(W)$ this gives

$$V = \bigoplus_{T \in G/H} T \iota(W)$$

\qed
Proof. Put \(\rho := \mathcal{C}_G(b)(V_b) \). Then there exists a unique \(R[G] \)-linear function

\[
\rho : \quad V_b \mathcal{C}_G(b) \rightarrow V \quad \text{with} \quad \rho(v) \rightarrow v
\]

for all \(v \in V_b \).

(c) \(\rho \) is 1-1 and \(\text{Im} \rho = \sum_{a \in Gb} V_a \).

(d) Suppose \(G \) acts transitively on \(\mathcal{B} \). Then \(\rho \) is an isomorphism of \(R[G] \)-modules.

\[\text{Proof.} \quad \text{Put} \ H := \mathcal{C}_G(b) \text{ and } W := V_b \text{ and } \mathcal{T} \text{ be a left transversal for } H \text{ on } G. \]

(1): For \(h \in H \) we have \(hV_b = V_{hb} = V_b \). Also by definition of a system of imprimitivity we know that \(V_b \) is an \(R \)-submodule for \(V \). Hence \(W \) is an \(R[H] \)-submodule of \(V \).

(2): Let \(j : W \rightarrow V \), \(w \rightarrow w \) be the inclusion function. The uniqueness and existence of \(\rho \) follows from the definition of the induced module, namely \(\rho = j \mathcal{C}_{G} \).

(3) Let \(u \in W \, \mathcal{C}_{G} \). By \text{1.9.6 b} we know that \(u = \sum_{r \in \mathcal{T}} t(\iota(w_r)) \) for some \((w_r)_{r \in \mathcal{T}} \in W_\mathcal{T} \). So

\[
(*) \quad \rho(u) = \rho \left(\sum_{r \in \mathcal{T}} t(\iota(w_r)) \right) = \sum_{r \in \mathcal{T}} \rho(t(\iota(w_r))) = \sum_{r \in \mathcal{T}} tw_r.
\]

Since \(w_r \in V_b \) we have \(tw_r \in V_{yb} \). Thus \((*) \) shows that \(\text{Im} \rho \subseteq \sum_{a \in Gb} V_a \). Let \(a \in Gb \) and \(m \in V_a \). Then \(a = sb \) for some \(s \in \mathcal{T} \). Note that \(t^{-1}m \in V_b \). By \((*) \) \(\rho(t(\iota(t^{-1}m))) = tt^{-1}m = m \). Hence \(V_a \subseteq \text{Im} \rho \) and so \(\text{Im} \rho = \sum_{a \in Gb} V_a \).

Suppose that \(u \in \ker \rho \). Since \(\mathcal{T} \) is transversal to \(\mathcal{C}_G(b) \) we have \(tb \neq sb \) for all \(t, s \in \mathcal{T} \) with \(t \neq s \). Recall that \(V = \bigoplus_{g \in \mathcal{B}} V_b \), \(tw_r \in V_{yb} \) and \(\rho(u) = 0 \). Hence \((*) \) shows that \(tw_r = 0 \) for all \(r \in \mathcal{T} \). Hence also \(w_r = 0 \) and \(u = 0 \). So \(\rho \) is 1-1.

(4): If \(G \) acts transitively on \(\mathcal{B} \), then \(Gb = \mathcal{B} \) and so \((3) \) shows that \(\text{Im} \rho = \sum_{a \in \mathcal{B}} V_a = V \). So \(\rho \) is onto. By \((1) \) \(\rho \) is also 1-1 and so \((4) \) holds.

\[\text{Definition 1.9.8.} \quad \text{Let } R \text{ be a ring and } M \text{ an } R\text{-module.} \]

(a) Let \(\alpha \in \text{Aut}(R) \). Then \(\alpha M \) denotes the \(R \)-module with \(M = \alpha M \) as an abelian group and

\[
r \alpha \cdot m := \alpha^{-1}(r)m
\]

for all \(r \in R, m \in M \).

(b) Let \(G \text{ group, } N \cong G, W \text{ an } R[N]\text{-module and } g \in G \). Then \(\alpha N \) := \(\alpha N \text{ where } \alpha \text{ is unique automorphism of } R[N] \) with \(\alpha(r) = r \) and \(\alpha(g) = g \alpha^{-1}g^{-1} \) for all \(r \in R, n \in N \). So

\[
\alpha \left(\sum_{n \in N} r_n n \right) = \sum_{n \in N} r_{g^{-1}ng} n, \quad r \alpha \cdot w = r w, \quad n \alpha \cdot w = (g^{-1}ng)w
\]

for all \(r \in R, n \in N \) and \(w \in W \).

(c) \([M] \) denotes the isomorphism class of \(M \), that is the class of all \(R \)-modules isomorphic to \(M \).

(d) Let \(M \) be an isomorphism class of \(R \)-modules and \((a, \in) \text{Aut}(R) \). Then \(\alpha M := \{ \alpha M \mid M \in M \} \).

\[\text{Remark 1.9.9.} \quad \text{Let } R \text{ be an ring, let } V \text{ and } W \text{ be } R\text{-modules and let } \alpha, \beta \in \text{Aut}(R). \text{ Then} \]

\[\ldots\]
(a) \(\text{Hom}_R(V, W) = \text{Hom}_R(\mathbb{V}, \mathbb{W}) \). In particular, \(V \cong_R W \) if and only if \(\varphi V \cong_R \varphi W \).

(b) Let \(\mathcal{M} \) be a isomorphism class of \(R \)-modules, \(a \in \text{Aut}(R) \) and \(M \in \mathcal{M} \). Then \(a\mathcal{M} = [aM] \).

(c) \(\rho(\mathbb{V}) = \varphi \mathbb{V} \).

(d) \(\text{Aut}(R) \times \mathbb{S}(R) \to \mathbb{S}(R), (\alpha, \mathcal{S}) \to \alpha\mathcal{S} \) is a well-defined action of \(\text{Aut}(R) \) on \(\mathbb{S}(R) \).

Proof. (a): Should be obvious.

(b): Follows from (a).

(c): \(r \varphi \beta \cdot v = (\alpha \beta)^{-1}(r)w = (\beta^{-1}(\alpha^{-1}(r)))v = \alpha^{-1}(r) \beta \cdot v = r \varphi(\beta) \cdot v \).

(d) follows from (a) and (c). \(\square \)

Lemma 1.9.10. Let \(G \) be a group, \(N \trianglelefteq G \), \(V \) an \(RG \)-module, \(W \) an \(RN \)-submodule of \(V \) and \(g \in G \). Then \(gW \) is an \(R[N] \)-submodule of \(V \) isomorphic to \(\varphi W \).

Proof. Define \(\rho : \varphi W \to V \), \(w \to gw \). Then clearly \(\rho \) is 1-1, \(\text{Im} \rho = gW \) and \(\rho \) is \(R \)-linear. Now let \(n \in N \) and \(w \in W \). Then
\[
\rho(n \cdot w) = \rho((g^{-1}ng)w) = gg^{-1}ngw = ngw = n(\rho(w)).
\]
Thus \(\rho \) is \(R[N] \)-linear. Note that \(gW = \text{Im} \rho \) and so \(gW \) is an \(R[N] \)-submodule of \(V \) isomorphic to \(\varphi W \). \(\square \)

Theorem 1.9.11 (Clifford). Let \(R \) be a ring, \(G \) a group, \(N \trianglelefteq G \) and \(M \) an \(R[G] \)-module. Let
\[
\mathbb{S} := \{ S \in \mathbb{S}(R[N]) \mid M_S \neq 0 \}.
\]
Recall here that for an isomorphism class \(S \) of simple \(R[N] \)-module, \(M_S = \sum_{S \in \mathbb{S}} S \in \mathbb{S} \mid S \cong_{R[N]} M \).

(a) \(gM_S = M_S \) for all \(S \in \mathbb{S} \) and \(g \in G \).

(b) \(\mathbb{S} \) is a \(G \)-invariant subset of \(\mathbb{S}(R) \). In particular, \(G \) acts on \(\mathbb{S} \).

(c) \((M_S)_{S \in \mathbb{S}} \) is a system of imprimitivity for \(G \) on \(M_S \). Here \(M_S = \sum_{S \in \mathbb{S}} M_S \) is the sum of simple \(R[N] \)-submodule of \(V \), and so the largest semisimple \(R[N] \)-submodule of \(M \).

(d) \(N_G(M_S) = N_G(S) = \{ g \in G \mid S \cong_{R[N]} gS \} \) for all \(S \in \mathbb{S} \) and \(S \in \mathbb{S} \).

(e) Suppose that \(\mathbb{S} \neq \emptyset \) and let \(S \in \mathbb{S} \). Then \(M \) is a simple \(RG \)-module if and only if each of the following holds:

\(i \). \(M \) is a semisimple \(R[N] \)-module.

\(ii \). \(G \) acts transitively on \(\mathbb{S} \).

\(iii \). \(M_S \) is a simple \(R[N_G(S)] \)-module.

(f) Suppose that \(M \) is a simple \(RG \)-module, \(\mathbb{S} \neq \emptyset \) and \(S \in \mathbb{S} \). Then \(M \cong_{R[G]} M_S^G \).

Proof. (a) Let \(S \in \mathbb{S} \) and \(S \in \mathbb{S} \). By 1.9.10, \(gS \cong gS \) and so \(gS \in gS \). Thus \(gS \leq M_S \) and so \(gM_S \leq M_S \).

By 1.9.9, \(\varphi^{-1}(\mathbb{S}) = \mathbb{S} \) and so also \(gM_S \leq M_S \). Thus (a) holds.

(b) Let \(S \in \mathbb{S} \) and \(g \in G \). By (a) \(M_S = M_S \neq 0 \) and so \(gS \in \mathbb{S} \).

(c) Note that \(M_S \) is a semisimple \(R \)-module and \((M_S)_S = M_S \). Hence 1.1.30 shows that
Let \(M_S = \bigoplus_{S \in \mathcal{S}(R[N])} M_S = \bigoplus_{S \in \mathcal{S}} M_S \).

Together with (a) and (b) this gives (c).

Let \(g \in G \) and \(S \in \mathcal{S} \). Then \(gM_S \subseteq M_S \) if and only if \(M_S \subseteq M_S \), see (a). As \(M_S \cap M_T = 0 \) for \(T \in \mathcal{S} \), the latter holds if and only if \(gS = S \).

Suppose first that \(M \) is a simple \(RG \)-module. By assumption \(\mathcal{S} \neq \emptyset \) and so \(M_S \neq 0 \). From (a) we know that \(M_S \) is \(G \)-invariant and so an \(R[G] \)-submodule of \(M \). Since \(M \) a simple for \(R[G] \)-module this gives \(M_S = M \). In particular, \(M \) is a semisimple \(R[N] \)-module. Let \(S \in \mathcal{S} \) and let \(W_S \) a nonzero \(N_G(S) \)-submodule of \(M_S \). Put \(W := R[G]W_S \). Since \(M \) is a simple \(R[G] \)-module we get \(W = M \). By 1.9.4 \(M = W \leq \sum_{T \in \mathcal{S}} M_T \). As \(M = M_S = \bigoplus_{T \in \mathcal{S}} M_T \) this gives \(S \cong G \). Thus \(G \) acts transitively on \(\mathcal{S} \). By 1.9.4 \(W_S = W \cap M_S = M_S \) and so \(M_S \) is a simple \(R[N_G(S)] \)-module.

Suppose now that (e:i)-(e:iii) hold. Let \(W \) be a zero \(R[G] \)-submodule of \(M \). By (e:i), \(M \) and so also \(W \) is a semisimple \(R[N] \)-module. In particular, there exist a simple \(R[N] \)-submodule \(T \) of \(W \). By (e:ii) \(G \) acts transitively on \(\mathcal{S} \), so \(T \) is \(S \) for some \(g \in G \). Thus \(gT \leq W \cap M_S \). It follows that \(W \cap M_S \neq 0 \). By (e:iii) \(M_S \) is a simple \(R[N_G(S)] \)-module and we conclude that \(M_S = W \cap M_S \leq W \). As \(G \) acts transitively on \(\mathcal{S} \) this implies \(M_T \leq W \) for all \(T \in \mathcal{S} \). Since \(M \) is a semisimple \(R[N] \)-module, we conclude that \(M = M_S = \sum_{T \in \mathcal{S}} M_T \leq W \). Thus \(M = W \) and \(M \) is a simple \(RG \)-module.

By (e:iv) \(M \) is a semisimple \(R[N] \)-module. So \(M = M_S \) and (c) shows that \((M_S)_{S \in \mathcal{S}} \) is a system of imprimitivity for \(R[G] \) on \(M \). Now 1.9.7 implies that \(M \cong R[G] \bigoplus_{N_G(S)} M_S \).

\[\square \]

1.10 The number of simple modules of finite group

Definition 1.10.1. Let \(p \) be an integer. An element \(g \) in a group \(G \) is called \(p \)-singular if \(p \) divides \(|g| \). Otherwise \(g \) is called \(p \)-regular. A conjugacy class is called \(p \)-regular if all its elements are \(p \)-regular.

The goal of this section is to show that if \(K \) is an algebraically closed field, \(G \) is a finite group and \(p := \text{char } K \) then the number of isomorphism classes of simple \(K[G] \)-modules equals the number of \(p \)-regular conjugacy classes.

Definition 1.10.2. Let \(R \) be ring and \(p := \text{char } R \). Then

\[S(R) = \langle xy - yx \mid x, y \in R \rangle_{\mathbb{Z}}. \]

Let \(\overline{p} = p \) if \(p \neq 0 \) and \(\overline{p} = 1 \) if \(p = 0 \).

\[T(R) := \{ r \in R \mid r^{\overline{m}} \in S(R) \text{ for some } m \in \mathbb{N} \} . \]

Lemma 1.10.3.

(a) Let \(G \) be a group, \(n \in \mathbb{Z}^+ \) and \(a_1, \ldots, a_n \in G \). Then for all \(i \in \mathbb{N} \) \(a_{i+1} a_{i+2} \ldots a_{i+n} \) is conjugate \(a_1 a_2 \ldots a_n \) in \(G \).

(b) Let \(R \) be a ring, \(n \in \mathbb{Z}^+ \) and \(a_1, \ldots, a_n \in R \). Then for all \(i \in \mathbb{N} \),

\[a_{i+1} a_{i+2} \ldots a_{i+n} \equiv a_1 a_2 \ldots a_n \pmod{S(R)} . \]

Proof. (a) We have \(a_i^{-1} a_1 a_2 \ldots a_n a_1 = a_2 \ldots a_n a_1 \). So (a) follows by induction on \(n \).

(b) \(a_1 \cdot a_2 \ldots a_n - a_2 \ldots a_n \cdot a_1 \in S(R) \). So (b) follows by induction on \(n \). \[\square \]
Lemma 1.10.4. Let \(R \) be a commutative ring and \(G \) a group. Then \(S(R[G]) \) is the set of all \(a = \sum_{g \in G} a_g g \in R[G] \) with \(\sum_{g \in C} a_g = 0 \) for each conjugacy class \(C \) of \(G \).

Proof. Let \(U \) be the set of all \(a \in R[G] \) with \(\sum_{g \in C} a_g = 0 \) for each conjugacy class \(C \) of \(G \). Note that both \(S(R) \) and \(U \) are \(R \)-submodules of \(R[G] \).

As an \(R \)-modules \(S(R) \) is generated by \(gh - hg, g, h \in G \). By 1.10.3 \(gh \) and \(hg \) are conjugate in \(G \). Thus \(gh - hg \in U \) and so \(S(R) \subseteq U \).

As an \(R \)-module \(U \) is generated by \(g - h, g \) and \(h \) conjugate elements of \(G \). Let \(h = aga^{-1} \) with \(a \in G \). Then

\[
g - h = a^{-1} \cdot ag = ag \cdot a^{-1}
\]

Thus \(g - h \in S(R) \) and so \(U \subseteq S(R) \). \(\square \)

Lemma 1.10.5. Let \(R \) be a ring with \(p := \text{char } R \) a prime.

(a) \((a + b)^p \equiv a^p + b^p \pmod{S(R)} \) for all \(a, b \in R \) and \(m \in \mathbb{N} \).

(b) \(T(R) \) is \(Z(R) \)-submodule of \(R \).

(c) Suppose that \(R = \bigoplus_{i=1}^s \mathbb{R}i_{i=1} \) as a ring. Then \(S(R) = \bigoplus_{i=1}^s S(R_i) \) and \(T(R) = \bigoplus_{i=1}^s T(R_i) \).

(d) Let \(I \) be an ideal in \(R \). Then \(S(R/I) = (S(R) + I)/I \).

(e) Let \(I \) be a nilpotent ideal in \(R \). Then \(I \leq T(R) \), \(T(R/I) = T(R)/I \) and \(R/T(R) \equiv (R/I)/T(R/I) \).

Proof.

(a) Let \(H = \langle h \rangle \) be cyclic group of order \(p \) and \(D := \times_{i=1}^p \{a, b\} \). Note that \(H \) acts on the set \(D \) via \(h(d_i)_{i=1}^p = (d_{i+1})_{i=1}^p \). Then \(H \) has exactly two fixed-points on \(D \) namely the constant sequences \((a)^n_{i=1} \) and \((b)^n_{i=1} \). Since the length of any orbit of \(H \) divides \(|H| \), all other orbits have length \(p \). Let \(C \) be an orbit of length \(p \) for \(H \) on \(D \). For \(d = (d_1, \ldots, d_p) \in D \) put \(\prod d = d_1d_2 \ldots d_p \in R \). Then by 1.10.3

\[
\prod c \equiv \prod d \pmod{S(R)}
\]

for all \(c, d \in C \) and so

\[
\sum_{c \in C} \prod c = p \prod d \equiv 0 \pmod{S(R)}
\]

Let \(O \) be the set of orbits of \(H \) on \(D \). Then

\[
(a + b)^p \equiv \sum_{c \in D} \prod c \equiv \sum_{C \in O} \sum_{c \in C} \prod c \equiv a^p + b^p \pmod{S(R)}
\]

Hence (a) holds for \(m = 1 \). Now (a) now follows by induction on \(m \).

(b) Follows from (a).

(c) Obvious.

(d) Obvious.

(e) Since \(I \) is nilpotent, \(I^k = 0 \) for some positive integer \(k \). Choose \(m \) with \(p^m \geq k \). Then for all \(i \in I \), \(i^{p^m} = 0 \in S(R) \) and so \(i \in T(R) \). Thus \(I \leq T(R) \). Since \((S(R) + I)/I = S(R)/I \) we have \(T(R)/I \leq T(R/I) \).

Conversely let \(t + I \in T(R/I) \). Then \(t^{p^l} \in S(R) + I \) for some \(l \in \mathbb{Z}^+ \). Since both \(S(R) \) and \(I \) are in \(T(R) \), (b) shows that \(S(R) + I \leq T(R) \). Thus \(t^{p^l} \in T(R) \) and so also \(t \in T(R) \). \(\square \)
1.10. THE NUMBER OF SIMPLE MODULES OF FINITE GROUP

Lemma 1.10.6. Let \(\mathbb{F} \) be an integral domain and let \(G \) be a periodic group. Put \(p := \text{char} \mathbb{F} \) and let \(C_p \) be the set of \(p \)-regular conjugacy classes of \(G \). For \(C \in C_p \) choose \(g_C \in C \). Then \(\mathbb{F}[G]/T(\mathbb{F}[G]) \) is a free \(\mathbb{F} \)-module with basis

\[
(g_C + T(\mathbb{F}[G]))_{C \in C_p}
\]

In particular, if \(\mathbb{F} \) is a field, then \(\dim_{\mathbb{F}} \mathbb{F}[G]/T(\mathbb{F}[G]) \) is the number of \(p \)-regular conjugacy classes of \(G \).

Proof. Let \(g \in G \) and let \(a, b \in G \) such that \(g = ab \), \([a, b] = 1\), \(a^{p^n} = 1 \) and \(b \) is \(p \)-regular. Then \(g^{p^n} = b^{p^n} \) and so,

\[
(g - b)^{p^n} \equiv 0 \pmod{S(\mathbb{F}[G])}
\]

Thus \(g - b \in T(\mathbb{F}[G]) \). Put \(C := \langle b \rangle \). By Lemma 1.10.4 \(b - g_C \equiv g_C \in S(\mathbb{F}[G]) \subseteq T(\mathbb{F}[G]) \). It follows that

\[
g \equiv g_C \pmod{T(\mathbb{F}[G])}
\]

and so

\[
(g_C + T(\mathbb{F}[G]))_{C \in C_p}
\]

generates \(\mathbb{F}[G]/T(\mathbb{F}[G]) \) as an \(\mathbb{F} \)-module.

Let \(r \in \mathbb{F} \) with \(\sum_{C \in C_p} r_C g_C \in T(\mathbb{F}[G]) \). Then there exists \(m \in \mathbb{N} \) with

\[
(\sum_{C \in C_p} r_C g_C)^{p^n} \in S(\mathbb{F}[G])
\]

Since \(g_C \) is \(p \)-regular, \(p \nmid |g_C| \). Since \(\mathbb{F} \) is an integral domain either \(p = 0 \) or \(p \) is a prime. Hence \(\gcd(p, |g_C|) = 1 \). So \(\bar{p} \) is invertible in \(\mathbb{Z}/|g_C|\mathbb{Z} \). Thus \(\bar{p} \) has finite order in the groups of multiplicative units \(\mathbb{Z}/|g_C|\mathbb{Z} \) and so there exists \(m_C \in \mathbb{Z}^+ \) such that

\[
|g_C| (|\bar{p}|^m - 1).
\]

Put \(k := m \prod_{C \in C_p} m_C \). It follows that \(m_C \mid k \), \((|\bar{p}|^m - 1) \mid (|\bar{p}|^k - 1) \), \(|g_C|^{|\bar{p}|^k - 1} \) and so \(g_C^{\bar{p}^k} = g_C \). Also \(m \mid k \) and \((\ast) \) implies that \((\sum_{C \in C_p} r_C g_C)^{\bar{p}^k} \in S(\mathbb{F}[G]) \). Since

\[
\sum_{C \in C_p} r_C^{\bar{p}^k} g_C = \sum_{C \in C_p} r_C g_C^{\bar{p}^k} \equiv 0 \pmod{S(\mathbb{F}[G])}
\]

Thus \(\sum_{C \in C_p} r_C^{\bar{p}^k} g_C \in S(\mathbb{F}[G]) \). Now \(1.10.4 \) shows that \(r_C^{\bar{p}^k} = 0 \) for all \(C \in C_p \). Since \(\mathbb{F} \) is an integral domain this gives \(r_C = 0 \) and so

\[
(g_C + T(\mathbb{F}[G]))_{C \in C_p}
\]

is linearly independent over \(\mathbb{F} \).

\(\Box \)

Lemma 1.10.7. Let \(R \) be a commutative ring and \(n \in \mathbb{Z}^+ \). Put \(p := \text{char} R \). Let \(M_n(R) \) be the ring of \(n \times n \) matrices with coefficients in \(R \).

(a) \(S(M_n(R)) \) consists of the trace zero matrices and \(M_n(R)/S(M_n(R)) \cong_R R \).

(b) Suppose \(p \) is a prime. Then \(T(M_n(R)) = \{ a \in M_n(R) \mid \text{tr}(a)^{\bar{p}^m} = 0 \text{ for some } m \in \mathbb{N} \} \).

(c) If \(R \) is an integral domain, then \(S(M_n(R)) = T(M_n(R)) \) and \(M_n(R)/T(M_n(R)) \cong_R R \).
Proof. (a): Let $x, y \in M_n(R)$. Since R is commutative, $\text{tr}(xy) = \text{tr}(yx)$ and so $\text{tr}(xy - yx) = 0$. Thus $S(M_n(R)) \leq \ker \text{tr}$.

For $1 \leq i, j \leq n$ put $E_{ij} = (\delta_{ij} \delta_{ji})$. Then $\ker \text{tr}$ is, as an R-module, generated by the matrices E_{ij} and $E_{ii} - E_{jj}$ with $i \neq j$. Note that

$$E_{ij} = E_{ii}E_{ij} - E_{ij}E_{ii} \quad \text{and} \quad E_{ii} - E_{jj} = E_{ij}E_{ji} - E_{ji}E_{ij}.$$

So both E_{ij} and $E_{ii} - E_{jj}$ are in $S(M_n(R))$. Thus $S(M_n(R)) \leq \ker \text{tr}$. Observe that $M_n(R) = RE_{11} \oplus \ker \text{tr}$ as an R-module and so $M_n(R)/\ker \text{tr} \cong_R RE_{11} \cong_R R$.

(b): Suppose now that p is a prime and let $a \in M_n(R)$. Put

$$b := \text{tr}(a)E_{11} \quad \text{and} \quad c := a - b.$$

Then $\text{tr}(a) = \text{tr}(b)$ and $\text{tr}(c) = 0$, so $c \in S(M_n(R)) \subseteq T(M_n(R))$. By $1.10.5(b)$ $T(M_n(R))$ is an additive subgroup of $M_n(R)$. Thus $a \in T(M_n(R))$ if and only if $b \in T(M_n(R))$. Note that $b^{p^n} = \text{tr}(a)^{p^n}E_{11}$, so $\text{tr}(b^{p^n}) = \text{tr}(a)^{p^n}$. It follows that $b \in T(M_n(R))$ if and only if $b^{p^n} \in S(M_n(R))$ (for some $m \in \mathbb{N}$) if and only if $\text{tr}(a)^{p^n} = 0$. So (b) holds.

(c): Suppose R is an integral domain. Then $\text{tr}(a)^{p^n} = 0$ for some $m \in \mathbb{N}$ if and only if $\text{tr}(a) = 0$. Together with (a) and (b) this gives (c). \qed

Theorem 1.10.8. Let G be a finite group and K an algebraically closed field. Put $p := \text{char } K$. Then the number of isomorphism classes of simple $K[G]$-modules equals the number of p-regular conjugacy classes.

Proof. By $1.10.6$ the number of p-regular conjugacy classes of G is $\dim_K K[G]/T(K[G])$.

Put $A := K[G]/J(K[G])$. By $1.4.8 A \leq A_{K[G]}(M)$ for each simple $K[G]$-modules M and it follows that the number of isomorphism classes of simple $K[G]$-modules is equal to the number of isomorphism classes of simple A-modules.

By $1.5.26$ $J(K[G])$ is nilpotent and so by $1.10.5(c)$, $K[G]/T(K[G]) \cong A/T(A)$. Observe that A is an Artinian ring with $J(A) = 0$. Hence $1.5.25$ gives

$$A \cong \bigoplus_{i=1}^{n} M_{d_i}(K)$$

where n is the number of isomorphism classes of simple A and $d_i \in \mathbb{Z}^+$ and so by $1.10.5(c)$

$$T(A) = \bigoplus_{i=1}^{n} T(M_{d_i}(K)).$$

Thus

$$A/T(A) \cong \bigoplus_{i=1}^{n} M_{d_i}(K)/T(M_{d_i}(K)).$$

By $1.10.7(c)$, $M_{d_i}(K)/T(M_{d_i}(K)) \cong K$ and so $A/T(A) \cong K^n$. Thus

$$\dim_K K[G]/T(K[G]) = \dim_K A/T(A) = n$$

and the theorem is proved. \qed
Chapter 2

Representations of the Symmetric Groups

2.1 The Symmetric Groups

Notation 2.1.1. For \(n \in \mathbb{Z}^+ \) let \(I_n := \{1, 2, \ldots, n\} \) and \(\text{Sym}(n) := \text{Sym}(I_n) \). Let \(g \in \text{Sym}(n) \). Let \(O(g) := \{O_1, \ldots, O_k\} \) be the sets of orbits for \(\langle g \rangle \) on \(I_n \). Let \(n_i = |O_i| \) and choose notation such that \(n_1 \geq n_2 \geq n_3 \geq \ldots \geq n_k \). Define \(n_i = 0 \) for all \(i > k \). Then the sequence \(\{n_i\}_{i=1}^{\infty} \) is called the cycle type of \(g \).

Pick a \(i_0 \in O_i \) and for \(j \in \mathbb{Z} \) define \(a_{ij} := g^j(a_{i0}) \). Note that \(a_{ij} = a_{ik} \) if and only if \(j \equiv k \pmod{n_i} \). We denote the element \(g \) by

\[
g = (a_{11}, a_{12}, \ldots, a_{1n_1}) (a_{21}, a_{22}, \ldots, a_{2n_2}) \cdots (a_{k1}, a_{k2}, \ldots, a_{kn_k}).
\]

Lemma 2.1.2. Let \(n \in \mathbb{Z}^+ \). Two elements in \(\text{Sym}(n) \) are conjugate if and only if they have the same cycle type.

Proof. Let \(g \) be as above and \(h \in \text{Sym}(n) \). Then

\[
hgh^{-1} = (h(a_{11}), h(a_{12}), \ldots, h(a_{1n_1}))(h(a_{21}), h(a_{22}), \ldots, h(a_{2n_2})) \cdots (h(a_{k1}), h(a_{k2}), \ldots, h(a_{kn_k}))
\]

and the lemma is readily verified \(\square \)

Definition 2.1.3. Let \(p, n \in \mathbb{Z}^+ \).

(a) For \(B \subseteq \mathbb{Z} \) let \(B^\infty := B^\mathbb{Z}^+ \) be set of all infinite sequence \(b = (b_i)_{i=1}^\infty \) with \(b_i \in B \). Let \(B_{\mathbb{Z}^+} = B_{\mathbb{Z}^+}^\mathbb{Z}^+ \) be set of all infinite sequence \(b \in B^\mathbb{Z}^+ \) with \(b_i = 0 \) for almost all \(i \in \mathbb{Z}^+ \).

(b) \(\lambda \in \mathbb{N}_\infty \) is called non-increasing if \(\lambda_i \geq \lambda_{i+1} \) for all \(i \in \mathbb{Z}^+ \).

(c) An (additive) partition of \(n \) is a non-increasing sequence \(\lambda \in \mathbb{N}_\infty \) with \(n = \sum_{i=1}^\infty \lambda_i \).

(d) An partition \(\lambda \) of \(n \) is called \(p \)-singular, if there exists \(i \in \mathbb{N} \) with \(0 \neq \lambda_{i+1} = \lambda_{i+2} = \ldots = \lambda_{i+p} \). Otherwise \(\lambda \) is called \(p \)-regular. Any additive partition is called 0-regular.

(e) A multiplicative partition of \(n \) is a sequence \(\mu \in \mathbb{N}_\infty \) with \(n = \prod_{i=1}^\infty \mu_i \).

(f) A multiplicative partition \(\mu \) of \(n \) is called \(p \)-singular if \(\mu_i \geq p \) for some \(i \in \mathbb{Z}^+ \). \(\mu \) is called \(p \)-regular if \(\mu_i \leq p - 1 \) for all \(i \in \mathbb{Z}^+ \). Any multiplicative partition is called 0-regular.
(g) If \(\lambda \in \mathbb{N}_\infty \), then \(\hat{\lambda} \in \mathbb{N}_\infty \) is defined by \(\hat{\lambda}_i = |\{ j \in \mathbb{Z}^+ \mid \lambda_j = i\}| \) for each \(i \in \mathbb{Z}^+ \).

Example 2.1.4. \(\lambda = (4, 4, 4, 3, 1, 1, 1, 0, 0, 0, \ldots) \) is a partition of 22. We denote this partition by \((4^3, 3^2, 1^4)\)
\[
\hat{\lambda} = (4, 0, 2, 3, 0, 0, \ldots) \text{ is a multiplicative partition of 22.}
\]
\(\lambda \) and \(\hat{\lambda} \) are \(p \)-singular for \(p = 1, 2, 3 \) and 4 and \(p \)-regular for \(p = 0 \) and for any \(p \geq 5 \).

The cycle-type of any elements of Sym\((n) \) is partition of \(n \).

Remark 2.1.5. Let \(p \in \mathbb{N} \) and \(n \in \mathbb{Z}^+ \). The function \(\lambda \rightarrow \hat{\lambda} \) is bijection the partition of \(n \) and the multiplicative partition of \(n \). A partition \(\lambda \) of \(n \) is \(p \)-regular if and only if \(\hat{\lambda} \) is \(p \)-regular.

Lemma 2.1.6. Let \(p = 0 \) or a positive prime. Let \(n \in \mathbb{Z}^+ \). Then the number of \(p \)-regular conjugacy classes of Sym\((n) \) equals the number of \(p \)-regular (multiplicative) partitions of Sym\((n) \).

Proof. For \(p = 0 \) this is obvious. So suppose \(p \) is prime. Let \(g \in \text{Sym}(n) \) and \(\lambda \) its cycle-type. Then \(g \) is \(p \)-regular if and only if none of positive \(\lambda_j \)’s are divisible by \(p \) and if and only if \(\hat{\lambda}_i = 0 \) for all \(i \in \mathbb{Z}^+ \) with \(p | i \).

Put \(A := \mathbb{Z}^+ \setminus p \mathbb{Z}^+ \). We conclude that the \(p \)-regular conjugacy classes of Sym\((n) \) are in 1-1 correspondence with the sequences \(j \in \mathbb{N}_A \) with \(\sum_{i=1}^{\infty} i j_i = n \).

Put \(B := \{0, \ldots, p - 1\} \). Observe that \(p \)-regular multiplicative partition of \(n \) is just a sequence \(j \in B_\infty \) with \(\sum_{i=1}^{\infty} i j_i = n \).

Let
\[
f := \prod_{i=1}^{\infty} (1 - x^{p i}) \prod_{i=1}^{\infty} (1 - x^i)
\]
viewed as an element of \(\mathbb{Z}[[x]] \), the integral domain of formal integral power series.

We compute \(f \) in two different ways:

1. \[
f = \prod_{i=1}^{\infty} (1 - x^{p i}) \prod_{i=1}^{\infty} (1 - x^i) = \prod_{i \in A} \frac{1}{1 - x^i} = \prod_{i \in A} \sum_{j=0}^{\infty} x^{ij} = \prod_{j \in B_\infty} \sum_{i \in A} x^{ij} = \sum_{j \in B_\infty} \sum_{i=1}^{\infty} x^{ij}.
\]

Thus the coefficient of \(x^n \) in \(f \) is the number \(j \in \mathbb{N}_A \) with \(\sum_{i=1}^{\infty} i j_i = n \) and so equal to number of \(p \)-regular conjugacy classes in Sym\((n) \).

2. Let \(B = \{0, 1, \ldots, p - 1\} \).

\[
f = \prod_{i=1}^{\infty} \frac{1 - x^{ip}}{1 - x^{i}} = \prod_{i=1}^{\infty} \sum_{j=0}^{p-1} x^{ij} = \sum_{j \in B_\infty} \prod_{i=1}^{\infty} x^{ij} = \sum_{j \in B_\infty} x^{\sum_{i=1}^{\infty} ij_i}.
\]

Thus the coefficient of \(x^n \) in \(f \) is the number of \(j \in B_\infty \) with \(\sum_{i=1}^{\infty} i j_i = n \) and so equal to the \(p \)-regular multiplicative partitions of \(n \).

\[\square\]

Corollary 2.1.7. Let \(n \in \mathbb{Z}^+ \) and \(\mathbb{K} \) an algebraically closed field. Put \(p := \text{char} \mathbb{K} \). Then the following numbers are equal:

(a) The numbers of \(p \)-regular partitions of \(n \).

(b) The numbers of \(p \)-regular conjugacy classes of Sym\((n) \).
2.1. THE SYMMETRIC GROUPS

(c) The number of isomorphism classes of simple $\mathbb{K}[\text{Sym}(n)]$-modules.

Proof. By $2.1.6$ the first two numbers are equal. By $1.10.8$ the last two numbers are equal. □

Our goal now is to find an explicit 1-1 correspondence between of p-regular partitions of n and the simple $\mathbb{K}[\text{Sym}(n)]$-modules. We start by associating a $\mathbb{K}[\text{Sym}(n)]$-module M_λ to each partition λ of n. But this modules is not simple. In later section we will determine a simple section of M_λ.

Definition 2.1.8. Let I be a set of size n and λ a partition of n. A λ-partition of I is a sequence

$$\Delta = (\Delta_i)_{i=1}^\infty$$

of subsets of I such that

(i) $I = \bigcup_{i=1}^\infty \Delta_i$

(ii) $\Delta_i \cap \Delta_j = \emptyset$ for all $1 \leq i < j < \infty$.

(iii) $|\Delta_i| = \lambda_i$.

Example 2.1.9. $\{1, 3, 5\}, \{2, 4\}, \{6\}, \emptyset, \emptyset, \ldots$ is a $(3, 2, 1)$ partition of I_6. We will denote such a partition as

\[
\begin{array}{ccc}
1 & 3 & 5 \\
2 & 4 \\
6
\end{array}
\]

The lines in this array are a reminder that the order of the elements in the row does not matter. So

\[
\begin{array}{ccc}
1 & 3 & 5 \\
2 & 4 \\
6
\end{array} = \begin{array}{ccc}
3 & 1 & 5 \\
4 & 2 \\
1
\end{array}
\]

On the otherhand since sequences are ordered

\[
\begin{array}{ccc}
1 & 3 & 5 \\
2 & 4 & 6 \\
1 & 3 & 5
\end{array} \neq \begin{array}{ccc}
1 & 3 & 5 \\
2 & 4 \\
6
\end{array}
\]

Notation 2.1.10. Let $n \in \mathbb{Z}^+$, λ a partition of n and F a commutative ring. M^λ is the set of λ-partitions of I_n. Note that $\text{Sym}(n)$ acts on M^λ via

$$\pi \Delta = (\pi(\Delta_i))_{i=1}^\infty$$

for $\pi \in \text{Sym}(n)$ and $\Delta \in M_\lambda$.

$M^\lambda := M^\lambda_F := F_M^\lambda$. We identify $\Theta \in M_\lambda$ with $(\delta_{\Delta\Theta})_{\Delta \in M_\lambda} \in M^\lambda$. Then M^λ is a free F-module with basis M^λ and $v = \sum_{\Delta \in M_\lambda} v_{\Delta}$ for all $v \in M^\lambda$.

Recall from Example 1.1.17 that group action of $\text{Sym}(n)$ on M_λ extends to $F[\text{Sym}(n)]$-module structure on M^λ.

$\langle \cdot \mid \cdot \rangle = \langle \cdot \mid \cdot \rangle F$ is the unique F-bilinear form on M^λ with orthonormal basis M^λ. So $\langle v \mid w \rangle = \sum_{\Delta \in M_\lambda} v_{\Delta} w_{\Delta}$ for all $v, w \in M^\lambda$.

Remark 2.1.11. Let $n \in \mathbb{Z}^+$, λ a partition of n and F a commutative ring.
(a) \(\langle \cdot | \cdot \rangle \) is Sym(n)-invariant, that is \(\langle \pi v | \pi w \rangle = \langle v | w \rangle \) for all \(\pi \in \text{Sym}(n) \), \(v, w \in M^A \).

(b) \(\langle \cdot | \cdot \rangle \) is symmetric, that is \(\langle v | w \rangle = \langle w | v \rangle \) for all \(v, w \in M^A \).

(c) \(v = \sum_{\Delta \in M^P} \langle v | \Delta \rangle \Delta \) for all \(v \in M^A \).

(d) \(\langle \cdot | \cdot \rangle \) is non-degenerate, that is \(\langle v | w \rangle = 0 \) for all \(v \in M_A \) such that \(\langle v | w \rangle = 0 \) for all \(w \in M^A \), then \(v = 0 \).

2.2 Diagrams, Tableaux and Tabloids

Definition 2.2.1. Let \(D \subseteq \mathbb{Z}^+ \times \mathbb{Z}^+ \)

(a) Let \((i, j), (k, l) \in \mathbb{Z}^+ \times \mathbb{Z}^+ \). Then \((i, j) \leq (k, l) \) provided that \(i \leq k \) and \(j \leq l \)

(b) \(D \) is called a Ferrers diagram if \(e \in D \) for all \(d \in D \) and \(e \in \mathbb{Z}^+ \times \mathbb{Z}^+ \) with \(e \leq d \).

(c) The elements of a Ferrers diagram are called the nodes of the diagram.

(d) The \(i \)-th row of \(D \) is \(D_i := D \cap ([i] \times \mathbb{Z}^+) \) and the \(j \)-column of \(D \) is \(D^j := D \cap (\mathbb{Z}^+ \times \{j\}) \).

Definition 2.2.2.

For \(\lambda \in \mathbb{Z}^{+\infty} \) define

\[
\boxed{[\lambda] := \{(i, j) \in \mathbb{Z}^+ \times \mathbb{Z}^+ \mid 1 \leq j \leq \lambda_i\}}.
\]

Lemma 2.2.3.

(a) Let \(D \) be a Ferrers diagram and \(i, j \in \mathbb{Z}^+ \). Then \((i, j) \in D \) if and only if \(j \leq \lambda(D)_i \) and if and only if \(i \leq \lambda'(D)_j \).

(b) The function \(D \to \lambda(D) \) is a bijection between the Ferrers diagrams of size \(n \) and the partitions of \(n \) with inverse \(\lambda \to [\lambda] \).

(c) Let \(\lambda \) be a partition of \(n \) and let \(i, a, b \in \mathbb{Z}^+ \). If \(a \leq i \) and \(b \leq \lambda_i \), then \((a, b) \in [\lambda] \). If \(a \geq i \) and \(b > \lambda_i \), then \((a, b) \notin D \).

Proof. (a): Let \(k \) be maximal in \(\mathbb{Z}^+ \) with \((i, k) \in D \) (with \(k = 0 \) if \(D_i = \emptyset \)). If \(j \leq k \), then \((i, j) \leq (i, k) \) and so \((i, j) \in D \). If \(j > k \), the maximal choice of \(k \) shows that \((i, j) \notin D \). So

\[
(i, j) \in D \iff j \leq k.
\]

It follows that \(k = |D_i| = \lambda(D)_i \). So the first statement in (a) holds. By symmetry, also the second one holds.

(b): Let \(D \) be a Ferrers diagram of size \(n \). Put \(\mu = \lambda(D) \). We will first show \(\mu \) is partition of \(n \). Note that

\[
\sum_{i=1}^{\infty} \mu_i = \sum_{i=1}^{\infty} |D_i| = |D| = n.
\]

To show that \(\mu \) is non-increasing, let \(i, k \in \mathbb{Z}^+ \) with \(k \leq i \). Then \((k, \mu_i) \leq (i, \mu_i) \). Since \(\mu_i \leq \mu_k \), (a) shows that \((i, \mu_i) \in D \). Hence the definition of a Ferrers diagram implies \((k, \mu_i) \in D \). By (a) this means \(\mu_i \leq \mu_k \). Hence \(\mu \) is non-increasing and so \(\mu \) a partition of \(n \).

Let \(\lambda \) be partition of \(n \). Let \((i, j) \in [\lambda] \) and \((a, b) \in \mathbb{Z}^+ \times \mathbb{Z}^+ \) with \((a, b) \leq (i, j) \). Then

\[
a \leq i \leq \lambda_j \leq \lambda_b.
\]
and so \((a, b) \in [\lambda]\). Thus \([\lambda]\) is a Ferrers diagram. Observe that \(|[\lambda]|_i = \lambda_i\) and so \(\lambda([\lambda]) = \lambda\). By \((a)\), \([\lambda(D)] = D\) and so \((b)\) is proved.

\((c)\): Suppose \(a \leq i\) and \(b \leq \lambda_i\). Since \(\lambda\) is non-increasing we have \(\lambda_i \leq \lambda_{ia}\). As \(b \leq \lambda_i\) this gives \(b \leq \lambda_{ia}\) and so \((a, b) \in [\lambda]\).

Suppose \(a \geq i\) and \(b > \lambda_i\). Since \(\lambda\) is non-increasing we have \(\lambda_i \geq \lambda_{ia}\). As \(b > \lambda_i\) this gives \(b > \lambda_{ia}\) and so \((a, b) \notin [\lambda]\). □

Example 2.2.4.

![Diagram]

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 \\
1 & x & x & x & x & x \\
2 & x & x & x & & \\
3 & x & x & & & \\
4 & x & x & & & \\
5 & x & & & & \\
6 & x & & & & \\
7 & & & & & \\
\end{array}
\]

\([5, 3^2, 2^1, 1] =

Definition 2.2.5. Let \(\lambda\) and \(\mu\) be partitions of \(n\).

(a) We say that \(\lambda\) dominates \(\mu\) and write \(\lambda \trianglerighteq \mu\) if

\[
\sum_{i=1}^{j} \lambda_i \geq \sum_{i=1}^{j} \mu_i
\]

for all \(j \in \mathbb{Z}^+\).

(b) We write \(\lambda > \mu\) provided that there exists \(i \in \mathbb{Z}^+\) with \(\lambda_i > \mu_i\) and \(\lambda_j = \mu_j\) for all \(1 \leq j < i\). ‘\(>\)’ is called the lexicographic ordering.

Remark 2.2.6. (a) \(\trianglerighteq\) is a partial ordering on the partitions of \(n\).

(b) ‘\(>\)’ is a total ordering on the partitions of \(n\).

(c) Let \(\lambda\) and \(\mu\) be partitions of \(n\) with \(\lambda \triangleright \mu\). Then \(\lambda > \mu\).

Proof. \((a)\) and \((b)\) are obvious. For \((c)\) let \(i \in \mathbb{Z}^+\) be minimal with \(\lambda_i \neq \mu_i\). Then

\[
\sum_{j=1}^{i-1} \lambda_j = \sum_{j=1}^{i-1} \mu_j \quad \text{and} \quad \sum_{j=1}^{i} \lambda_j > \sum_{j=1}^{i} \mu_i.
\]

It follows that \(\lambda_i > \mu_i\), \(\lambda_j > \mu_j\) and \(\lambda > \mu\). □

Example 2.2.7. The dominant ordering for \(n = 6\):
Definition 2.2.8. (a) Let \(D \subseteq \mathbb{Z}^+ \times \mathbb{Z}^+ \). Then \(D' := \{(j, i) \mid (i, j) \in D\} \). \(D' \) is called the conjugate of \(D \).

(b) Let \(\lambda \) be a partition of \(n \). Then \(\lambda' := \lambda'([\lambda]) \), so \(\lambda'_j \) is the number of nodes in column \(j \) of \([\lambda]\). \(\lambda' \) is called the conjugate of \(\lambda \).

Example 2.2.9. Let \(\lambda = (5, 3^3, 2^2, 1) \) and \(D = [\lambda] \). Then

\[
\begin{array}{cccccc}
 & 1 & 2 & 3 & 4 & 5 \\
1 & x & x & x & x & x \\
2 & x & x & x \\
3 & x & x & x \\
4 & x & x & x \\
5 & x & x \\
6 & x & x \\
7 & x \\
\end{array}
\]

\[
\lambda = (5, 3^3, 2^2, 1) = \lambda(D)
\]

\[
\lambda' = \lambda'(\lambda) = (7, 6, 4, 1^2) = \lambda(D')
\]

Lemma 2.2.10. Let \(D \) be a Ferrers diagram of size \(n \) and \(\lambda \) a partition of \(n \).

(a) \(D' \) is a Ferrers diagram of size \(n \) and \(D'' = D \).

(b) \((D_i)' = (D'_i)' \) and \((D''_i)' = (D'_i)' \), for all \(i \in \mathbb{Z}^+ \).
(c) \(\lambda(D') = \lambda'(D) \) and \(\lambda(D) = \lambda'(D') \).

(d) \(\lambda' = \lambda([\lambda']) \) and \([\lambda'] = [\lambda]' \). In particular, \(\lambda' \) is a partition of \(n \).

Proof.

(a): Follows immediately from the definition of a Ferrers diagram.

(b): Is obvious.

(c): Follows from (d).

(d) By definition, \(\lambda' = \lambda'([\lambda]) \) and by (c) \(\lambda'([\lambda]) = \lambda([\lambda']) \). By [2.2.3(b)] \(\lambda \) is a Ferrers diagram, so by (a) \([\lambda'] \) is a Ferrers diagram and then by [2.2.3(b)] \(\lambda([\lambda']) = [\lambda]' \) is a partition of \(n \).

By (d) \(\lambda([\lambda']) = \lambda'([\lambda]) = \lambda' \) and so using [2.2.3(b)] \(r \lambda s = r \lambda s 1 \). □

Lemma 2.2.11. Let \(\lambda \) and \(\mu \) be partitions of \(n \). Then \(\lambda \trianglerighteq \mu \) if and only if \(\lambda' \trianglerighteq \mu' \).

Proof. Fix \(j \in \mathbb{Z}^+ \) and put \(i = \mu_j \). Define the following subsets of \(\mathbb{Z}^+ \times \mathbb{Z}^+ \):

\[
\begin{align*}
\text{Top} & := \{(a, b) \mid a \leq i\} & \text{Bottom} & := \{(a, b) \mid a > i\} \\
\text{Left} & := \{(a, b) \mid b \leq j\} & \text{Right} & := \{(a, b) \mid b > i\}
\end{align*}
\]

Since \(\lambda \) dominates \(\mu \):

(1) \[|\text{Top} \cap [\lambda]| = \sum_{a=1}^i \lambda_i \geq \sum_{a=1}^i \mu_i = |\text{Top} \cap [\mu]| \]

Let \((a, b) \in \text{Top} \cap \text{Left} \). Then \(a \leq i = \mu_j \) and \(b \leq j \). Thus by [2.2.3(c)] \((b, a) \in [\mu'] = [\mu] \) and so \((a, b) \in [\mu] \). Hence \(\text{Top} \cap \text{Left} \subseteq [\mu] \) and so

(2) \[|\text{Top} \cap \text{Left} \cap [\lambda]| \leq |\text{Top} \cap \text{Left}| = |\text{Top} \cap \text{Left} \cap [\mu]| \]

Let \((a, b) \in \text{Bottom} \cap \text{Right} \). Then \(a > i = \mu_j \) and \(b > j \). Thus by [2.2.3(c)] \((b, a) \notin [\mu'] = [\mu] \) and so \((a, b) \notin [\mu] \). Hence \(\text{Bottom} \cap \text{Right} \cap [\mu] = \emptyset \) and so

(3) \[|\text{Bottom} \cap \text{Right} \cap [\lambda]| = 0 = |\text{Bottom} \cap \text{Right} \cap [\mu]| \]

From (1) and (2) we conclude

(4) \[|\text{Top} \cap \text{Right} \cap [\lambda]| = |\text{Top} \cap \text{Right} \cap [\mu]| \]

(3) and (4) imply:

\[|\text{Right} \cap [\lambda]| \geq |\text{Right} \cap [\mu]| \]

Since \(|[\lambda]| = n = |[\mu]| \) we conclude

\[|\text{Left} \cap [\lambda]| \geq |\text{Left} \cap [\mu]| \]

Thus \(\sum_{c=1}^l \lambda'_c \leq \sum_{c=1}^l \mu'_c \) and \(\lambda' \trianglelefteq \mu' \). □
Definition 2.2.12. Let λ be a partition of n. A λ-tableau is a bijection $t : [\lambda] \to I_n$.

Notation 2.2.13.

\[
\begin{array}{c}
5 \\
1 \\
4 \\
2 \\
3
\end{array}
\]

denotes the $(3, 2)$-tableau t with

\[
(1, 1) \mapsto 4, \quad (1, 2) \mapsto 1, \quad (1, 3) \mapsto 4, \quad (2, 1) \mapsto 2, \quad (2, 2) \mapsto 3.
\]

Definition 2.2.14. Let t be a λ-tableau. Then

\[
\Delta(t) := \left(t([\lambda]_i)\right)_{i=1}^{\infty} \text{ and } \Delta'(t) := \left(t([\lambda]'_i)\right)_{i=1}^{\infty}.
\]

$\Delta(t)$ is called the row partition of t and $\Delta'(t)$ the column partition of t. $t([\lambda]_i)$ is called the i-th row of t and $t([\lambda]'_j)$ the j-th column of t.

The functions row, col, row, and col, are defined by

\[
\begin{aligned}
\text{row} : & \mathbb{Z}^+ \times \mathbb{Z}^+ \to \mathbb{Z}^+, \quad (i, j) \mapsto i, \\
\text{col} : & \mathbb{Z}^+ \times \mathbb{Z}^+ \to \mathbb{Z}^+, \quad (i, j) \mapsto i
\end{aligned}
\]

\[
\text{row}_t := \text{row} \circ t^{-1} : I_n \to \mathbb{Z}^+, \quad \text{and} \quad \text{col}_t := \text{col} \circ t^{-1} : I_n \to \mathbb{Z}^+
\]

\leq_t is the partial ordering on I_n defined by $a \leq b$ if $t^{-1}(a) \leq t^{-1}(b)$.

Example 2.2.15. If

\[
t = \begin{array}{c}
2 \\
4 \\
3 \\
6 \\
1 \\
5 \\
7
\end{array}
\]

then

\[
\Delta(t) = \begin{array}{c}
2 \\
4 \\
3 \\
6 \\
1 \\
5 \\
7
\end{array} \quad \text{and} \quad \Delta'(t) = \begin{array}{c}
2 \\
4 \\
3 \\
6 \\
1 \\
4 \\
7
\end{array}
\]

Remark 2.2.16. Let t be a λ-tableau.

(a) $\Delta(t)$ is a λ-partition of I_n and $\Delta'(t)$ is a λ'-partition of I_n.

(b) \leq_t, when restricted to row or column of t, is a total ordering.

(c) Let $i, j \in \mathbb{Z}^+$ and $a \in I_n$. Then

\[
\begin{aligned}
\text{row}_t(a) & = i \text{ if and only if } a \in \Delta(t)_i, \\
\text{col}_t(a) & = j \text{ if and only if } a \in \Delta'(t)_j.
\end{aligned}
\]

Definition 2.2.17. Let s, t be λ-tableaux.

(a) s and t are called row-equivalent if $\Delta(t) = \Delta(s)$. Any equivalence class of this relation is called a tabloid and the tabloid containing t is denoted by $\text{tab}(t)$.
2.2. DIAGRAMS, TABLEAUX AND TABLOIDS

Example 2.2.18. If \(t = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} \) then
\[
\pi(t) = \begin{pmatrix} 1 & 4 & 4 & 1 \\ 2 & 3 & 3 & 2 \end{pmatrix}
\]

Lemma 2.2.19. Let \(\lambda \) be partition of \(n \), let \(\pi \in \text{Sym}(n) \) and let \(s, t \) be \(\lambda \)-tableaux.

(a) \(\text{Sym}(n) \) acts transitively on the set of \(\lambda \)-tableaux via \(\pi t = \pi \cdot t \).

(b) \(\pi(\Delta(t)) = \Delta(\pi t) \).

(c) \(s \) and \(t \) are row-equivalent if and only if \(\pi s \) and \(\pi t \) are row-equivalent. In particular, \(\text{Sym}(n) \) acts on the set of \(\lambda \)-tabloids via \(\pi \pi t = \pi t \).

(d) \(\text{row}_{\pi t} = \text{row}_t \circ \pi^{-1} \) and \(\text{col}_{\pi t} = \text{col}_t \circ \pi^{-1} \). In particular, \(\text{row}_{\pi t} \circ \pi = \text{row}_t \) and \(\text{col}_{\pi t} \circ \pi = \text{col}_t \).

(e) \(s \) and \(t \) are row-equivalent if and only if \(\text{row}_s = \text{row}_t \).

Proof. (a) Clearly \(\pi t = \pi \cdot t \) defines an action of \(\text{Sym}(n) \) on the set of \(\lambda \)-tableaux. Since \(s \) and \(t \) are bijections from \([\lambda] \rightarrow I_n \), we see that \(\rho := s \circ t^{-1} \in \text{Sym}(n) \). Then \(\rho \circ t = s \) and so the action is transitive.

(b) Set \(D := [\lambda] \). Then \(\Delta(t) = (t(D_i))_{i=1}^{\infty} \) and
\[
\pi(\Delta(t)) = \pi\left((t(D_i))_{i=1}^{\infty}\right) = \left((\pi t(D_i))_{i=1}^{\infty}\right) = \Delta(\pi t).
\]

(c) \(s \) is row-equivalent to \(t \) iff \(\Delta(s) = \Delta(t) \) and so iff \(\pi(\Delta(s)) = \pi(\Delta(t)) \). So by (b) iff \(\Delta(\pi s) = \Delta(\pi t) \) and iff \(\pi t \) and \(\pi s \) are row-equivalent.

(d) \(\text{row}_{\pi t} = \text{row} \circ (\pi \circ t)^{-1} = (\text{row} \circ t^{-1}) \circ \pi^{-1} = \text{row}_t \circ \pi^{-1} \).

(e) Note that \(\text{row}_t = \text{row}_s \) if and only if \(\text{row}^{-1}_t(i) = \rho_s(i)^{-1} \) for all \(i \in \mathbb{Z}^+ \). Also \(\Delta(t) = \Delta(s) \) if and only if \(\Delta(t)_i = \Delta(s)_i \) for all \(i \in \mathbb{Z}^+ \).

Let \(i \in \mathbb{Z}^+ \) and \(a \in I_n \). By 2.2.16(a) we have \(\text{row}_t(a) = i \) if and only if \(a \in \Delta(t)_i \). Hence \(\text{row}^{-1}_t(i) = \Delta(t)_i \) and by (c) holds. \(\square \)

Remark 2.2.20. Let \(\Delta = (\Delta_i)_{i=1}^{\infty} \) be a \(\lambda \)-partition of \(I_n \). Let \(\pi \in \text{Sym}(n) \). Then
\[
C_{\text{Sym}(n)}(\Delta) = \{ \pi \in \text{Sym}(n) \mid \pi \Delta = \Delta \} = \{ \pi \in \text{Sym}(n) \mid \pi(\Delta_i) = \Delta_i \text{ for all } i \in \mathbb{Z}^+ \}
\]
\[
= \bigcap_{i=1}^{\infty} N_{\text{Sym}(n)}(\Delta_i) = \times_{i=1}^{\infty} \text{Sym}(\Delta_i).
\]

In particular, \(C_{\text{Sym}(n)}(\Delta) \) has order
\[
\lambda! := \prod_{i=1}^{\infty} \lambda_i!.
\]
Definition 2.2.21. Let t be a tableau. Then

$$R_t := C_{\text{Sym}(\Delta(t))} \quad \text{and} \quad C_t := C_{\text{Sym}(\Delta'(t))}.$$

R_t is called the row-stabilizer and C_t the column-stabilizer of t.

Example 2.2.22. If

$$t = \begin{bmatrix} 2 & 4 & 3 \\ 6 & 1 \\ 5 & 7 \end{bmatrix}$$

then

$$R_t = \text{Sym}\{2, 3, 4\} \times \text{Sym}\{1, 6\} \times \text{Sym}\{5, 7\}, \quad \text{and} \quad C_t = \text{Sym}\{2, 5, 6\} \times \text{Sym}\{4, 1, 7\} \times \text{Sym}\{3\}.$$

Lemma 2.2.23. Let s and t be λ-tableaux. Then s and t are row-equivalent if and only if $s = \pi t$ for some $\pi \in R_t$.

Proof. Then by 2.2.19(a), $s = \pi t$ for some $\pi \in \text{Sym}(n)$. Then s is row-equivalent to t if and only if $\Delta(t) = \Delta(\pi t)$. By 2.2.19(b), $\Delta(\pi t) = \pi(\Delta(t))$ and so s and t are row equivalent iff $\Delta(t) = \pi(\Delta(t))$, that is if $\pi \in R_t$. \hfill \square

Lemma 2.2.24. Let A and B be totally ordered sets and $\rho : A \to B$ be a 1-1 functions. Suppose that A is finite. Then there exists a unique $\alpha \in \text{Sym}(A)$ such that $\rho \circ \alpha$ is strictly increasing.

Proof. Without loss $B = \rho(A)$. Then ρ is a bijection. Put $n = |A| = |B|$ and let $A = \{a_1, \ldots, a_n\}$ with $a_1 < a_2 < \ldots < a_n$ and $B = \{b_1, \ldots, b_n\}$ with $b_1 < b_2 < \ldots < b_n$. Define $\beta : A \to B, a_i \mapsto b_i$ and observe that β is the unique strictly increasing function from A to B. Let $\alpha \in \text{Sym}(n)$. Then $\rho \circ \alpha$ is strictly increasing if and only if $\rho \circ \alpha = \beta$ and so if and only if $\alpha = \rho^{-1} \circ \beta$. \hfill \square

Lemma 2.2.25. Let λ and μ be partitions of n, t a λ-tableau and s a μ-tableau. Suppose that $|C \cap R| \leq 1$ for any column C of s and any row R of t. (That is, no two entrees from the same column of s lie in the same row of t.)

(a) $\mu \succeq \lambda$.

(b) Suppose in addition that $\lambda = \mu$. Then there exists a λ-tableau r such that t is row-equivalent to r, and r is column-equivalent to s.

Proof. Let $C_j := \Delta'(s)_j$ be column of s. Let $a, b \in C_j$ with $\text{row}_i(a) = \text{row}_i(b) =: i$. Then a and b are both in $C_j \cap \Delta(t)_i$. By hypothesis $|C_j \cap \Delta(t)_i| \leq 1$ and $a = b$. Thus the restriction $\text{row}_i|_{C_j}$ 1-1. Recall from 2.2.16 that (C_j, \preceq_s) is a totally ordered set. Since also \mathbb{Z}^+ is totally ordered we conclude from 2.2.24 that there exists a (unique) $\beta_j \in \text{Sym}(C_j)$ such that $\rho_s \circ \beta_j$ is increasing. Define $\beta \in \text{Sym}(n)$ by $\beta(a) := \beta_j(a)$ if $a \in C_j$. Put $r := \beta s$.

2.2. DIAGRAMS, TABLEAUX AND TABLOIDS

To illustrate this construction we compute \(r \) in an example:

\[
\begin{array}{cccccccc}
3 & 6 & 7 & 1^3 & 2^3 & 3^1 & 4^2 & 7^1 & 6^1 & 3^1 & 4^2 \\
\hline
r : & 5 & 4 & s : & 5^2 & 6^1 & r : & 5^2 & 2^3 \\
& 2 & 1 & & 7^1 & & & 1^3
\end{array}
\]

here the superscript \(i \) in \(a' \) indicates that \(a \) appears in Row \(i \) of \(t \).

Note that \(\beta \in C_s \), so \(r \) is column equivalent to \(s \). For \(a \in I_n \), define \(a' = \beta^{-1}(a) \). Then

\[
r^{-1}(a) = (\beta s)^{-1}(a) = s^{-1}(\beta^{-1}(a)) = s^{-1}(a')
\]

Considering the first coordinate, gives row, \(r(a) = \text{row}_s(a') \). Let \(a, b \in C_j \). It follows that

\[
\text{row}_r(a) < \text{row}_r(b) \iff \text{row}_s(a') < \text{row}_s(b')
\]

Since \(\beta \in C_s \), we have \(a', b' \in C_j \). Hence \(s^{-1}(a') = (\text{row}_s(a'), j) \) and \(s^{-1}(b') = (\text{row}_s(b'), j) \). Hence

\[
\text{row}_s(a') < \text{row}_s(b') \iff s^{-1}(a') < s^{-1}(b')
\]

By definition of \(<_s \)

\[
s^{-1}(a') < s^{-1}(b') \iff a' <_s b'.
\]

Restricted to \(C_j \), we have \(\text{row}_r \circ \beta = \text{row}_s \circ \beta \) and so \(\text{row}_r \circ \beta \) is increasing on \(C_j \). Thus

\[
a' <_s b' \iff (\text{row}_r \circ \beta)(a') < (\text{row}_r \circ \beta)(b')
\]

Using that \(\beta(a') = a \) and \(\beta(b') = b \) we conclude that

\[
\text{row}_r(a) < \text{row}_r(b) \iff \text{row}_r(a) < \text{row}_r(b)
\]

Since \(\text{row}_r(r(i, j)) = i \) for all \(1 \leq i \leq \mu_j \) we have

\[
\text{row}_r(r(1, j)) < \text{row}_r(r(2, j)) < \ldots < \text{row}_r(r(\mu_j, j))
\]

and so

\[
\text{row}_r(r(1, j)) < \text{row}_r(r(2, j)) < \ldots < \text{row}_r(r(\mu_j, j)).
\]

A trivial induction argument shows that \(\text{row}_r(r(i, j)) \geq i = \text{row}_r(r(i, j)) \). Since \(r \) is a bijection and so onto, this shows \(\text{row}_r(a) \geq \text{row}_r(a) \) for all \(a \in I_n \). Let \(a \in \bigcup_{i=1}^{k} \Delta(t)_i \). Then \(\text{row}_r(a) \leq k \). Put \(i := \text{row}_r(a) \). Then \(a \in \Delta(t)_i \) and \(i = \text{row}_r(a) \leq \text{row}(a) \leq k \) and \(a \in \Delta(t)_i \). Thus

\[
(*) \quad \bigcup_{i=1}^{k} \Delta(t)_i \subseteq \bigcup_{i=1}^{k} \Delta(r)_i
\]

Since \(\Delta(t) \) is a \(\lambda \)-partition and \(\Delta(r) = \Delta(s) \) is a \(\mu \)-partition, \(|\Delta(t)_i| = \lambda_i \) and \(|\Delta(r)_i| = \mu_i \). So computing the size of the sets (*) we get
\[
\sum_{i=1}^{k} \lambda_i \leq \sum_{i=1}^{k} \mu_i
\]

So indeed \(\mu \succeq \lambda \).

(b) Suppose that \(\lambda = \mu \). Then also \(\sum_{i=1}^{k} \lambda_i = \sum_{i=1}^{k} \mu_i \) and the sets in (*) have equal size. Hence (*) implies that

\[
\bigcup_{i=1}^{k} \Delta(t)_i = \bigcup_{i=1}^{k} \Delta_r(i)
\]

Since \(\Delta(t) \) and \(\Delta(r) \) are partitions this gives

\[
\Delta(t)_k = \left(\bigcup_{i=1}^{k} \Delta(t)_i \right) \setminus \left(\bigcup_{i=1}^{k-1} \Delta(t)_i \right) = \left(\bigcup_{i=1}^{k} \Delta(r)_i \right) \setminus \left(\bigcup_{i=1}^{k-1} \Delta(r)_i \right) = \Delta(r)_k.
\]

Hence \(\Delta(t) = \Delta(r) \) and so \(r \) and \(t \) are row equivalent. As seen above \(s \) and \(r \) are column-equivalent and so (b) holds. \(\square \)

2.3 The Specht Module

Hypothesis 2.3.1. In the section \(n \) is a positive integer, \(F \) is a non-zero commutative ring and \(\lambda \) a partition of \(n \).

Definition 2.3.2. Let \(G \) be a group, \(R \) a ring and \(f \in R[G] \).

(a) \(f \) is called multiplicative, if \(f_{ab} = f_a f_b \) for all \(a, b \in G \).

(b) \(f \) is called a class function if \(f_a = f_b \) for any conjugate elements \(a, b \in G \).

(c) Let \(H \subseteq G \). Then \(f_H := \sum_{h \in H} f_h \).

Example 2.3.3. Define

\[
\text{sgn} := \text{sgn}^n_F : \text{Sym}(n) \to F, \quad \pi \mapsto \begin{cases} 1_F & \text{if } \pi \text{ is even} \\ -1_F & \text{if } \pi \text{ is odd} \end{cases}
\]

Then

\[
\text{sgn} = \sum_{\pi \in \text{Sym}(n)} \text{sgn}(\pi) \pi \in F[\text{Sym}(n)]
\]

and for \(A \subseteq \text{Sym}(n) \)

\[
\text{sgn}_A = \sum_{\pi \in A} \text{sgn}(\pi) \pi \in F[\text{Sym}(n)].
\]

Lemma 2.3.4. Let \(G \) be a group, \(R \) a ring and \(f \in R[G] \). Suppose that \(f \) is multiplicative.

(a) Let \(A, B \subseteq G \) such that function \(A \times B \to G, (a, b) \mapsto ab \) is 1-1, then \(f_{AB} = f_A f_B \).

(b) Let \(A \leq B \leq G \) and \(T \) a left-transversal to \(A \) in \(B \). Then \(f_B = f_T f_A \).

(c) Let \(A_1, A_2, \ldots, A_n \subseteq G \) and put \(A := \langle A_i \mid 1 \leq i \leq n \rangle \). If \(A = \times_{i=1}^{n} A_i \), then \(f_A = f_{A_1} f_{A_2} \cdots f_{A_n} \).
Proof. (a) Since the function \((a, b) \to ab\) is \(1 - 1\), every element in \(AB\) can be uniquely written as \(ab\) with \(a \in A\) and \(b \in B\). Thus
\[
f_{A}f_{B} = \sum_{a \in A} f_{a}a \cdot \sum_{b \in B} f_{b}b = \sum_{a \in A, b \in B} f_{a}f_{b}ab = \sum_{c \in AB} f_{a}c = f_{AB}
\]

(b) Observe that \(T \times A \to G, (t, a) \to ta\) is a bijection and \(TA = B\). So (b) is a special case of (a).

(c): For \(n = 2\) this is a special case of (a). The general case follows by induction on \(n\). \(\square\)

Lemma 2.3.5. Let \(G\) be a group and \(R\) a ring. Then
\[
gf_{H}g^{-1} = f_{gHg^{-1}}
\]
for all class functions \(f \in R[G]\), all \(H \subseteq G\) and all \(g \in G\).

Proof.
\[
gf_{H}g^{-1} = g \left(\sum_{h \in H} f_{h}h \right) g^{-1} = \sum_{h \in H} f_{h}ghg^{-1} = \sum_{h \in H} f_{ghg^{-1}}ghg^{-1} = \sum_{k \in gHg^{-1}} f_{k}k = f_{gHg^{-1}}
\]

Remark 2.3.6. Let \(\lambda\) be a partition of \(n\). Observe that the function
\[
\tilde{t} \mapsto \Delta(t)
\]
is a well-defined bijection between the \(\lambda\)-tabloids and the \(\lambda\)-partitions of \(I_{n}\). We often identify \(\tilde{t}\) with \(\Delta(t)\). In particular, \(\tilde{t} \in M^{\lambda}\).

Definition 2.3.7. Let \(t\) be \(\lambda\)-tableau.

(a) \(k_{t} := \text{sgn}_{C_{t}} \equiv \sum_{\pi \in C_{t}} \text{sgn}(\pi)\pi \in F[\text{Sym}(n)]\).

(b) \(e_{t} := k_{\tilde{t}} = \sum_{\pi \in C_{t}} \text{sgn}(\pi)\tilde{\pi} \in M^{\lambda}\). \(e_{t}\) is called the \(\lambda\)-polytabloid associated to \(t\).

Example 2.3.8. Let \(t = \begin{array}{ccc}
3 & 2 & 5 \\
1 & 4 & \end{array}\).

Then
\[
C_{t} = \text{Sym}\{1, 3\} \times \text{Sym}\{2, 4\}
\]
\[
k_{t} = \left(1 - (13)\right) \cdot \left(1 - (24)\right) = 1 - (13) - (24) + (13)(24).
\]

and
\[
e_{t} = \begin{array}{ccc}
\frac{3}{1} & \frac{2}{4} & \frac{5}{3} \\
\frac{1}{4} & \frac{5}{3} & \frac{2}{1} \end{array} - \begin{array}{ccc}
\frac{1}{3} & \frac{2}{4} & \frac{5}{2} \\
\frac{3}{1} & \frac{2}{4} & \frac{5}{2} \end{array} + \begin{array}{ccc}
\frac{1}{3} & \frac{2}{4} & \frac{5}{2} \\
\frac{3}{1} & \frac{2}{4} & \frac{5}{2} \end{array}.
\]

Remark 2.3.9. Let \(t\) and \(s\) be \(\lambda\)-tableau.

(a) Suppose \(t\) and \(s\) are row- and column-equivalent. Then \(t = s\).
(b) Let \(t \) be a \(\lambda \)-tableau and \(\alpha, \beta \in C \), with \(\alpha \neq \beta \). Then \(\overline{\alpha t} \neq \overline{\beta t} \).

Proof. (a): For all \(a \in I_n \), \(a \) lies in the same row and column of \(t \) as of \(s \). So \(t = s \).

(b): Suppose \(\overline{\alpha t} = \overline{\beta t} \). Then \(\alpha t \) and \(\beta t \) are row-equivalent. Since \(\alpha, \beta \in C \), \(\alpha t \) and \(\beta t \) are also column-equivalent. So (a) shows that \(\alpha t = \beta t \). Since \(t \) is a bijection this gives \(\alpha = \beta \). \(\square \)

Lemma 2.3.10. Let \(s \) and \(t \) be \(\lambda \)-tableaux. Then the following statements are equivalent.

(a) \(|R \cap C| \leq 1 \) for all rows \(R \) of \(t \) and all columns \(C \) of \(s \).

(b) There exists a \(\lambda \)-tableau which is row-equivalent to \(t \) and column-equivalent to \(s \).

(c) \(\bar{I} \cap |s| \neq \emptyset \).

(d) \(|\bar{I} \cap |s| | = 1 \).

(e) \(\bar{I} = \overline{\pi s} \) for some \(\pi \in C_x \).

(f) \((\bar{I} | e_s) = \pm 1 \).

(g) \((\bar{I} | e_s) \neq 0 \).

Proof. (a) \(\implies \) (b): See 2.2.25(b).

(b) \(\implies \) (a): Suppose \(\pi \) is a \(\lambda \)-partition which is row-equivalent to \(t \) and column-equivalent to \(s \). Let \(R \) be a row of \(t \) and \(C \) a column of \(s \). Then \(R \) is a row of \(r \) and \(C \) is a column of \(r \). Hence \(|R \cap C| \leq 1 \).

(b) \(\iff \) (c): Just recall the \(\bar{I} \) is the set of \(\lambda \)-tableaux which are row-equivalent to \(t \) and that \(|s| \) is the set of \(\lambda \)-tableaux which are column-equivalent to \(s \).

(c) \(\iff \) (d): If \(u, r \in \bar{I} \cap |s| \), then \(u \) is row- and column-equivalent to \(r \) and so \(u = r \).

(b) \(\iff \) (d): Let \(r \) be a \(\lambda \)-tableau and \(\pi \in \text{Sym}(n) \) with \(r = \pi s \). Then \(r \) is row equivalent to \(t \) if and only if \(\bar{I} = \bar{r} \) and if and only if \(\bar{I} = \overline{\pi s} \). Also \(r \) is column-equivalent to \(s \) if and only if \(\pi \in C_x \).

(c) \(\iff \) (e) \(\iff \) (f): Recall that \(e_s = \sum_{\pi \in C_x} \text{sgn}(\pi)\overline{\pi s} \) and that the \(\overline{\pi s} \), \(\pi \in C_x \), are pairwise distinct. Also \(\{\bar{I} | r \text{ a \(\lambda \)-tableau}\} \) is an orthonormal basis for \(M^\lambda \). If \(\bar{I} = \overline{\pi s} \) for some \(\pi \in C_x \) we conclude that \((\bar{I} | e_s) = \text{sgn}(\pi) = \pm 1 \neq 0 \). If \(\bar{I} \neq \overline{\pi s} \) for all \(\pi \in C_x \), then \((\bar{I} | e_s) = 0 \neq \pm 1 \). \(\square \)

Definition 2.3.11. (a) \(S^\lambda \) is the \(F \)-submodule of \(M^\lambda \) spanned by the \(\lambda \)-polytabloids. \(S^\lambda \) is called the Specht module associated to \(\lambda \).

(b) \(F^\lambda \) is the left ideal in \(F[\text{Sym}(n)] \) generated by the \(k_t \), \(t \) a \(\lambda \)-tableau.

(c) For \(W \subseteq M^\lambda \) define \(W^\perp := \{m \in M^\lambda \ | \ (w | m) = 0 \text{ for all } w \in W\} \).

(d) \(D^\lambda := S^\lambda / (S^\lambda \cap S^{\lambda \perp}) \).

Example 2.3.12. Suppose \(n \geq 2 \). Let \(\lambda = (n - 1, 1) \) and let \(t \) be \(\lambda \)-tableau of shape \(t = \begin{array}{cccc} i & \cdots & \cdots & j \\ \vdots & \ddots & \ddots & \vdots \\ j & \cdots & \cdots & i \end{array} \).

Then \(C_t = \text{Sym}(i, j) = \{1, (i, j)\} \), \(k_t = 1 - (i, j) \) and

\[
e_t = \begin{array}{cccc} i & \cdots & \cdots & j \\ \dfrac{j}{i} & \ddots & \ddots & \dfrac{i}{j} \\ \dfrac{j}{i} & \cdots & \cdots & \dfrac{i}{j} \end{array}
\]
For \(i \in I_n \) let \(x_i \) be the \(\lambda \)-partition

\[
x_i := (I_n \setminus \{i\}, \{i\}) = \frac{1}{i} \begin{array}{cccc}
1 & 2 & \ldots & i - 1 & i + 1 & \ldots & n \\
\end{array}
\]

Then \(M^{(n-1,1)} \) is the free \(F \)-module with basis \((x_i)_{i=1}^n \). Moreover, \(e_i = x_j - x_i \). Thus

\[
S := S^{(n-1,1)} = \langle x_j - x_i \mid i \neq j \in I_n \rangle_F = \left\{ \sum_{i=1}^n f_i x_i \mid f_i \in F, \sum_{i=1}^n f_i = 0 \right\} = (x_1 + x_2 + \ldots + x_n)^\perp = x^\perp,
\]

where \(x = x + 1 + x_2 + \ldots + x_n \).

Note that \((\sum_{i=1}^n x_i x_i) = f_i - f_j \) so

\[
S^\perp = \{ \sum_{i=1}^n f_i x_i \mid f_i = f_j \text{ for all } i \neq j \in I_n \} = Fx.
\]

Hence

\[
S \cap S^\perp = \{ fx \mid f \in F, nf = 0 \}.
\]

Assume that \(F \) is an integral domain and put \(p := \text{char } F \). If \(p \nmid n \), then \(S \cap S^\perp = 0 \) and so \(D^4 = S^\perp \). If \(p \mid n \), then \(S^\perp \leq S \) and so \(D^4 = S/S^\perp \).

Suppose that \(n = 2 \) and \(p = 2 \). Then \(\lambda = (1,1) \) and \(\lambda \) is 2-singular. Also \(S = \langle x_1 - x_2 \rangle_F = \langle x_1 + x_2 \rangle_F = S^\perp \) and so \(D^4 = 0 \).

Suppose \((n,p) \neq (2,2) \). We claim that \(\lambda \) is \(p \)-regular. Assume that \(n > 2 \) then \(n - 1 \neq 1 \) and so \(\lambda \) is \(p \)-regular. Assume that \(n = 2 \), then \(\lambda = (1,1) \). Note that \(p = 0 \) or \(p > 2 \) and so again \(\lambda \) is \(p \)-regular.

If \((n,p) \neq (2,2) \) and \(F \) is a field, then \[1.1.17\] shows that \(D^4 \) is a simple \(F[\text{Sym}(n)] \)-module.

Lemma 2.3.13. Let \(\pi \in \text{Sym}(n) \) and \(t \) a tableau.

(a) \(\pi k \pi^{-1} = k_t \)
(b) \(\pi e_t = e_{\pi t} \).
(c) \(\text{Sym}(n) \) acts transitively on the set of \(\lambda \)-polytabloids.
(d) \(S^\perp \) is a \(F[\text{Sym}(n)] \)-submodule of \(M^4 \).
(e) If \(\pi \in C_t \), then \(k_\pi = k_t, \pi k_t = k_\pi, \text{sgn}(\pi)k_t = \text{sgn}(\pi)k_\pi \) and \(\pi e_t = e_{\pi t} = \text{sgn}(\pi)e_t \).
(f) Let \(s \) and \(t \) be column-equivalent \(\lambda \)-tableaux. Then \(e_s = \pm e_t \).

Proof. (a): We have \(C_t = \pi C_\pi \pi^{-1} \) and so by \[2.3.3\] applied to the class function \(\text{sgn} \) on \(\text{Sym}(n) \),

\[
k_\pi = \text{sgn}_{C_\pi} = \text{sgn}_{\pi C_\pi \pi^{-1}} = \pi C_\pi \pi^{-1} = \pi k_\pi \pi^{-1}
\]

(b): Using (a)

\[
e_{\pi t} = k_{\pi t} e_t = \pi k_t \pi^{-1} e_t = \pi k_\pi = e_t
\]

(c): By \[2.2.19\] \(\text{Sym}(n) \) act transitively on the set of \(\lambda \)-tableaux. Hence (b) implies that \(\text{Sym}(n) \) also transitively on the set of \(\lambda \)-polytabloids.
CHAPTER 2. REPRESENTATIONS OF THE SYMMETRIC GROUPS

(F) Follows from (E).

Since \(\pi \in C_r \), \(C_{\pi r} = \pi C_r \pi^{-1} = C_r \). Thus

\[
k_i = C_i^{-} = C_{\pi r}^{-} = \pi k_i \pi^{-1}.
\]

In particular, \(\pi k_i = k_i \pi \).

Moreover, \(C_i \to C_{\beta} \), \(\beta \mapsto \beta \pi \) is a bijection and so

\[
k_i = \sum_{\alpha \in C_i} \text{sgn}(\alpha)\alpha = \sum_{\beta \in C_i} \text{sgn}(\beta \pi)\beta \pi = \sum_{\beta \in C_i} \text{sgn}(\beta)\beta \pi = \text{sgn}(\pi)k_i \pi
\]

Multiplying with \(\text{sgn}(\pi) \) from the left gives

\[
\text{sgn}(\pi)k_i = k_i \pi.
\]

Hence

\[
\pi e_r = e_{\pi r} = k_{\pi r} \pi = k_i \pi = \text{sgn}(\pi)k_i \pi = e_r.
\]

(E) By the column version of 2.2.23 there exists \(\pi \in C_r \) with \(s = \pi t \). Hence by \(e_r = e_{\pi r} = \text{sgn}(\pi) e_r \).

\[\Box\]

Lemma 2.3.14. Let \(\lambda \) and \(\mu \) be partitions of \(n \).

(a) Suppose \(s \) is a \(\mu \)-tableau and \(t \) is a \(\lambda \)-tableau with \(k_s \pi \neq 0 \). Then \(|R \cap C| \leq 1 \) for any row \(R \) of \(t \) and any column \(C \) of \(s \). In particular, \(\lambda \leq \mu \).

(b) Suppose that \(F^\mu M^\lambda \neq 0 \). Then \(\lambda \leq \mu \).

(c) Suppose \(r, s, t \) are \(\lambda \)-tableaux such that \(r \) is row-equivalent to \(t \) and column-equivalent to \(s \). Then \(k_s \pi = e_r = \pm e_s \). In particular, \(k_i e_r = e_r \).

(d) Suppose \(t \) and \(s \) are \(\lambda \)-tableau with \(k_s \pi \neq 0 \). Then \(k_t \pi = \pm e_s \).

Proof. (a) Otherwise there exists \(i \neq j \in I_\lambda \) such that \(i \) and \(j \) are in the same row of \(t \) and in the same column of \(s \). Put \(H := \text{Sym}\{i, j\} = \{1, (i, j)\} \). Since \(i \) and \(j \) are the same row of \(t \) we have \((i, j) \pi \pi = \pi = \pi \) and so

\[
H^{-1} \pi = \pi + \text{sgn}(i, j)(i, j) \pi \pi = \pi - \pi = 0.
\]

Since \(i, j \) are in the same column of \(s \) we have \(H \leq C_s \). Choose transversal \(T \) to \(H \) in \(C_s \). By 2.3.4(b) we get

\[
k_i = C_i^{-} = T^{-} H^{-}
\]

and so

\[
k_s \pi = (\text{sgn}_T \text{sgn}_H) \pi = \text{sgn}_T(\text{sgn}_H \pi) = 0
\]

contrary to our assumption. The second statement now follows from 2.2.25.

(F) Follows from (E).

(F) : Since \(r \) and \(s \) are column equivalent we know that \(C_r = C_s \) and \(e_s = \pm e_r \). In particular, \(k_r = k_s \).

Since \(r \) and \(t \) are row equivalent we have \(\pi = \pi \). Thus

\[
k_s \pi = k_t \pi = e_s = \pm e_r.
\]

(F) Apply (F) with \(\lambda = \mu \). Then 2.2.25 shows that there exists a \(\lambda \)-tableau \(r \) which is row equivalent to \(t \) and columns equivalent to \(s \). Thus (F) follows from (E).

\[\Box\]
Lemma 2.3.15. Let V and W be F-modules and $s : V \times W \to F$ an F-bilinear function. Let $\alpha : V \to V$ and $\beta : W \to W$ be F-linear and suppose that
\[s(\alpha v, w) = s(v, \beta w) \]
for all $v \in V$ and $w \in W$. Then
\[\ker \alpha \subseteq (\Im \beta) \]
with equality if $W \perp = 0$.

Proof. Let $v \in V$. Then
\[v \in \ker \alpha \quad \iff \quad \alpha v = 0 \]
\[\implies \quad s(\alpha v, w) = 0 \text{ for all } w \in W \]
\[\iff \quad s(v, \beta w) = 0 \text{ for all } w \in W \]
\[\iff \quad v \in (\Im \beta) \]
Moreover, if $W \perp = 0$, the \implies becomes an \iff.

Definition 2.3.16. Let R be ring and G a group. For $a \in R \rtimes G$ define $a^\circ := \sum_{g \in G} a g g^{-1}$. For $A \subseteq R[G]$ define $A^\circ = \{ a^\circ \mid a \in A \}$.

Lemma 2.3.17. Let G be a group, let V and W be $R \rtimes G$-modules and let $s : V \times W \to F$ be an G-invariant F-bilinear function. Then
\[(a) \quad (av \mid w) = (v \mid a^\circ w) \text{ for all } a \in F[G], v \in V \text{ and } w \in W. \]
\[(b) \quad \text{Let } B \subseteq F[G]. \quad \text{Then } A_V(B) \subseteq (B \circ W) \]
\[\text{with equality if } W \perp = 0. \]

Proof. (a): Let $g \in G$, $v \in V$ and $w \in W$. Then
\[s(gv, w) = s(g^{-1}g, g^{-1}w) = s(v, g^{-1}w) = s(v, g^\circ w) \]
As s is F-bilinear, this gives (a).

(b): Let $a \in F[G]$. By (a) $s(av, w) = s(v a^\circ, w)$ and so 2.3.15 shows that $A_V(a) \subseteq (a^\circ W) \perp$ with equality of $W \perp = 0$. Hence
\[A_V(B) = \bigcap_{b \in B} A_V(b) \subseteq \bigcap_{b \in B} (b^\circ W) \perp = \left(\bigcup_{b \in B} b^\circ W \right) \perp = (B^\circ W) \perp \]
with equality if $W \perp = 0$.

Lemma 2.3.18. Let $\mathbb{F} \leq \mathbb{K}$ be an extension of rings and V an \mathbb{F}-space. For an \mathbb{F}-subspace U put
\[\overline{U} := \langle k \otimes u \mid k \in \mathbb{K}, u \in U \rangle \leq \mathbb{K} \otimes \mathbb{F} V \]
\[(a) \quad \text{Let } U \text{ be an } \mathbb{F}-\text{subspace of } V. \quad \text{Then } \mathbb{K} \times U \to \overline{U}, (k, u) \to k \otimes u \text{ is a tensor product of } \mathbb{K} \text{ and } U \text{ over } \mathbb{F}. \]
(b) Let U be an F-subspace of V. Then $\mathbb{K} \times V/U \rightarrow \overline{V/U}, (k, u + U) \mapsto (k \otimes u) + \overline{U}$ is a tensor product of \mathbb{K} and V/U over F.

(c) Let U be a set of F-subspaces of V. Then

$$\bigcap_{\text{set } U} U = \bigcap_{\text{set } U} \overline{U}$$

(d) Let $s : V \otimes W \rightarrow F$ be an F-bilinear form and extend s to a bilinear form

$$\tilde{s} : \mathbb{K} \otimes_F V \times \mathbb{K} \otimes_F W \rightarrow \mathbb{K} \text{ with } (k \otimes v, l \otimes w) \mapsto kl s(v, w).$$

Let X an F-subspace of V. Then $X^\perp = \overline{X}$.

Proof. (a) and (b): Let $V = U \oplus W$ for some F-subspace W of V. Then $K \otimes F V = \mathbb{K} \otimes F U \oplus \mathbb{K} \otimes F W$. Note that \overline{U} is the direct summand $\mathbb{K} \otimes F U$ and $\mathbb{K} \otimes F V/\overline{U} \cong \mathbb{K} \otimes F W$. This gives (a) and (b).

(c): Suppose first that $U = \{U_1, U_2\}$. Then there exists F-subspaces X_i of U_i with $U_i = X_i \oplus (U_1 \cap U_2)$. Observe that $U_1 + U_2 = (U_1 \cap U_2) \oplus X_1 \oplus X_2$. Then $U_1 = U_1 \cap U_2 \oplus X_1 \cap X_2$ and $U_1 + U_2 = U_1 \cap U_2 \oplus X_1 \oplus X_2$ and so $U_1 \cap U_2 = U_1 \cap U_2$. So (c) holds if $|U| = 2$. By induction it holds if U is finite.

Let W be finite dimensional F-subspace of V. The also \overline{W} is finite dimensional over \mathbb{K}. So we can choose finite subset U_X of U such that

$$\overline{W} \cap \bigcap_{\text{set } U} U = \overline{W} \cap \bigcap_{\text{set } U} \overline{U} \quad \text{and} \quad W \cap \bigcap_{\text{set } U} U = W \cap \bigcap_{\text{set } U} \overline{U}.$$

Since $\{W\} \cup U_w$ is finite, the proven finite case of (c) shows that

$$\overline{W} \cap \bigcap_{\text{set } U} U = W \cap \bigcap_{\text{set } U} \overline{U}$$

and so

$$\overline{W} \cap \bigcap_{\text{set } U} \overline{U} = W \cap \bigcap_{\text{set } U} U.$$

Let W be the set of finite dimension F-subspaces of V. Observe that $V = \bigcup_{W \in W} W$ and $\overline{V} = \bigcup_{W \in W} \overline{W}$. Hence

$$\bigcap_{\text{set } U} U = \bigcup_{W \in W} \left(\overline{W} \cap \bigcap_{\text{set } U} \overline{U} \right) = \bigcup_{W \in W} \left(W \cap \bigcap_{\text{set } U} \overline{U} \right) = \bigcap_{\text{set } U} \overline{U}$$

(c) Let U be the set of 1-dimensional F-subspaces of X. Let $U \in U$. Note that $\tilde{s}(k \otimes u, lw) = 0$ for all $k, l \in \mathbb{K}, u \in U$ and $w \in U^\perp$. Since \tilde{s} is \mathbb{Z}-bilinear this gives $\tilde{s}(\overline{u}, \overline{w}) = 0$ for all $\overline{u} \in \overline{U}$ and $\overline{w} \in \overline{U^\perp}$. Thus $U^\perp \leq \overline{U}$. If $U^\perp = V$ this gives $U^\perp = \overline{V}$. Suppose $U^\perp \neq \overline{U}$. Let $u \in U$ and $w \in W$ with $s(u, w) \neq 0$. Then also $s(1 \otimes u, 1 \otimes w) \neq 0$ and so $\overline{U} \neq \overline{W}$. Since U is 1-dimensional over F we have $U = Fu$ and so $U^\perp = u^\perp$. It follows that U^\perp is the kernel of the F-linear function $W \rightarrow F, w \mapsto s(u, w)$ and so W/\overline{U}^\perp is 1-dimensional. By (d) $W/\overline{U}^\perp = \mathbb{K} \otimes_F W/\overline{U}^\perp$ and so $\overline{W}/\overline{U}^\perp$ is 1-dimensional over \mathbb{K}. As $\overline{U}^\perp \leq \overline{U} \leq \overline{W}$ this shows that $\overline{U}^\perp = \overline{U}$. Observe that $X = \langle U \in U \rangle_F$ and $\overline{X} = \langle \overline{U} \mid U \in U \rangle_F$. Thus
Lemma 2.3.19. Let λ and μ be partitions of n and t an λ-tableau. Then

(a) $k_i = k_i^2$

(b) $(k_i M^\mu)^\perp = A_{M^\mu}(k_i)$.

(c) $k_i M^4 = Fe_t$ and $A_{M^\mu}(k_i) = e_t^\perp$.

(d) $(k_i v \mid w) = (v \mid k_i w)$ for all $v, w \in M^\mu$.

(e) $k_i v = (v \mid e_i) e_i$ for all $v \in M^4$.

Proof. (a) $k_i^2 = \sum_{\pi \in C_i} \text{sgn}(\pi) \pi^{-1} = \sum_{\pi \in C_i} \text{sgn}(\pi-1) \pi^{-1} = \sum_{\pi \in C_i} \text{sgn}(\pi) \pi = k_i$.

(b) Recall that $(\cdot \mid \cdot)$ is a Sym(n)-invariant non-degenerate F-bilinear form on M^μ. Hence 2.3.17(b) shows that $A_{M^\mu}(k_i) = (k_i M^\mu)^\perp$. By (a) $k_i = k_i^2$ and so (b) holds.

(c) Let s be a λ-tableau. By 2.3.14 $k_i e_s = 0$ or $k_i e_s = \pm e_s$. Also $k_i e_t = e_t$. Since S^4 is spanned by e_t, this gives $k_i M^4 = Fe_t$. Hence by (b) $A_{M^\mu}(k_s) = Fe_t^\perp = e_t^\perp$.

(d) By 2.3.17(a) we have $(k_i v \mid w) = (v \mid k_i^2 w)$ and by (a) $k_i = k_i^2$.

(e) By (c) $k_i v = fe_t$ for some $f \in F$. Note also that $(e_t \mid \bar{t}) = 1$. So

$$(v \mid e_t) = (v \mid k_i \bar{t}) = (k_i v \mid \bar{t}) = (fe_t \mid \bar{t}) = f (e_t \mid \bar{t}) = f.$$

Lemma 2.3.20. $F^4 M^4 = S^4$ and $A_{M^4}(F^4) = S^4\perp$.

Proof. This follows immediately from 2.3.19(a) and 2.3.19(c). □

Lemma 2.3.21. Suppose F is a field and let V be an $F[\text{Sym}(n)]$-submodule of M^4. Then either $(F^4 V = S^4$ and $S^4 \leq V)$ or $(F^4 V = 0$ and $S^4 \leq V)$.

Proof. If $F^4 V = 0$, then by 2.3.20 $V \leq A_{M^4}(F^4) = S^4\perp$.

So suppose $F^4 V \neq 0$. Let T^4 be the set of λ-tableaux. As F^4 is generated by the $k_i, t \in T^4$ we conclude that $k_i V \neq 0$ for some λ-tableau t. By 2.3.19 $k_i M^4 = Fe_t$. Hence $0 \neq k_i V \leq Fe_t$. Since F is a field and kS is an F-submodule of V, we conclude that $k_i V = Fe_t$. Let $\pi \in \text{Sym}(n)$. Since V is $\text{Sym}(n)$-invariant we have $\pi^{-1} V = V$. Then

$$k_{\pi} V = \pi k_i \pi^{-1} V = \pi k_i V = \pi Fe_t = F\pi e_t = F e_\pi.$$

By 2.3.13(a) $\text{Sym}(n)$ acts transitively T^4, so $k_i V = Fe_t$ for all $t \in T^4$. Thus

$$F^4 V = F[\text{Sym}(n)] \{ k_i \mid t \in T^4 \} V = F[\text{Sym}(n)] \{ e_t \mid t \in T^4 \} = S^4.$$

Note that $F^4 V \leq V$, so $S^4 \leq V$. □
Proposition 2.3.22. Suppose that F is a field and $D^3 \neq 0$. Then D^3 is a simple $F[\text{Sym}(n)]$-module.

Proof. Let W be an $F[\text{Sym}(n)]$-submodule of D^3. Then $W = \langle S^3 \rangle$ for some $F[\text{Sym}(n)]$-submodule V of S^3. By 2.3.21 $S^3 \leq V$ or $V \leq S^3$. In the first case $V = S^3$ and in the second case $V = S^3 \cap S^3$. Hence $W = D^3$ or $W = 0$. As $D^3 \neq 0$, this shows that D^3 is a simple $F[\text{Sym}(n)]$-module. \hfill \square

Lemma 2.3.23. Suppose F is a field, that $D^3 \neq 0$ and that either $\text{char} F \neq 0$ or $\text{char} F > n$. Then $S^3 \cap S^3 = 0$. In particular, $S^3 \cong D^3$ as an $F[\text{Sym}(n)]$-module.

Proof. Note that $\text{char} F \neq n! = |\text{Sym}(n)|$ and so Maschke’s Theorem [1.3.1] shows that $S^3 = U \oplus (S^3 \cap S^3)$ for some $F[\text{Sym}(n)]$-submodule U of S^3. Since $D^3 \neq 0$ we have $U \neq 0$ and so $U \leq S^3$. Hence 2.3.21 shows that $S^3 \leq U$. Thus $S^3 \cap S^3 \leq U \cap S^3 = 0$. \hfill \square

Lemma 2.3.24. Suppose F is a field. Then $F^3 D^3 = D^3$.

Proof. By 2.3.21 either $F^3 S^3 = S^3$ or $S^3 \leq S^3$. In the first case $F^3 D^3 = D^3$ and in the second $D^3 = 0$ and again $F^3 D^3 = D^3$. \hfill \square

Proposition 2.3.25. Let λ and μ be partitions of n. Suppose that F is a field and $D^3 \neq 0$.

(a) Suppose that D^3 is isomorphic to an $F[\text{Sym}(n)]$-section of M^μ. Then $\lambda \leq \mu$.

(b) If D^3 and D^μ are isomorphic $F[\text{Sym}(n)]$-modules, then $\lambda = \mu$.

Proof. (a) By 2.3.24 $F^3 D^3 = D^3 \neq 0$. Since D^3 isomorphic to an $F[\text{Sym}(n)]$ section of M^μ this gives $F^3 M^\mu \neq 0$. So 2.3.14(b) shows that $\lambda \leq \mu$.

(b) Suppose that $D^3 \cong D^\mu$ as $F[\text{Sym}(n)]$-modules. Then D^μ is isomorphic to $F[\text{Sym}(n)]$-section of M^λ and D^3 is isomorphic to $F[\text{Sym}(n)]$-section of M^λ. Thus (a) shows that $\lambda \leq \mu$ and $\mu \leq \lambda$. Hence $\lambda = \mu$. \hfill \square

Lemma 2.3.26. Let $\mathbb{K} \subseteq \mathbb{K}$ be a field extension.

(a) $M^3_\mathbb{K}$ is an $\mathbb{F}[\text{Sym}(n)]$-submodule of $M^3_{\mathbb{K}}$.

(b) $M^3_\mathbb{K} = \mathbb{K} M^3_\mathbb{F} \cong \mathbb{K} \otimes_{\mathbb{F}} M^3_\mathbb{F}$.

(c) $S^3_\mathbb{K} = \mathbb{K} S^3_\mathbb{F} \cong \mathbb{K} \otimes_{\mathbb{F}} S^3_\mathbb{F}$.

(d) $S^3_\mathbb{K} = \mathbb{K} S^3_\mathbb{F} \cong \mathbb{K} \otimes_{\mathbb{F}} S^3_\mathbb{F}$.

(e) $S^3_\mathbb{K} \cap S^3_\mathbb{F} = \mathbb{K} (S^3_\mathbb{F} \cap S^3_\mathbb{F}) = \mathbb{K} \otimes_{\mathbb{F}} (S^3_\mathbb{F} \cap S^3_\mathbb{F})$.

(f) $D^3_\mathbb{K} \cong \mathbb{K} \otimes_{\mathbb{F}} D^3_\mathbb{F}$.

Proof. (a) $M^3_\mathbb{K}$ is an $\mathbb{F}[\text{Sym}(n)]$-submodule of $M^3_{\mathbb{K}}$.

(b) Recall that $M^3_\mathbb{F}$ is a \mathbb{F}-basis for $M^3_\mathbb{F}$ and a \mathbb{K}-basis for $M^3_{\mathbb{K}}$. Thus (b) holds.

For an \mathbb{F} subspace U of $M^3_\mathbb{F}$ let $\overline{U} = \langle k \otimes u \mid k \in \mathbb{K}, u \in U \rangle_{\mathbb{F}} \subseteq \mathbb{K} \otimes_{\mathbb{F}} M^3_\mathbb{F}$. Note that tensor products are only defined up to isomorphism. So we may write $M^3_{\mathbb{K}} = \mathbb{K} \otimes_{\mathbb{F}} M^3_\mathbb{F}$. Then $\overline{U} = \mathbb{K} U$. By 2.3.18(a) we have $\overline{U} \cong \mathbb{K} \otimes_{\mathbb{F}} U$. Thus

\[\mathbb{K} U = \overline{U} \cong \mathbb{K} \otimes_{\mathbb{F}} U. \]
2.4. STANDARD BASIS FOR THE SPECHT MODULE

Let \mathcal{P}^λ be the set of λ-polytabloids. Then $S^\lambda_{\mathbb{K}} = \langle \mathcal{P}^\lambda \rangle_{\mathbb{K}}$ and $S^\lambda_{\mathbb{F}} = \langle \mathcal{P}^\lambda \rangle_{\mathbb{F}}$. As $\mathbb{F} \subseteq \mathbb{K}$ this gives $S^\lambda_{\mathbb{K}} = \mathbb{K}S^\lambda_{\mathbb{F}}$. Hence

\[S^\lambda_{\mathbb{K}} = \mathbb{K}S^\lambda_{\mathbb{F}} \quad \text{(**) \quad \text{So (c) holds.}} \]

\[S^\lambda_{\mathbb{F}} \cong S^\lambda_{\mathbb{F}} \quad \text{(*) \quad \text{by 2.3.26(f)}} \]

\[S^\lambda_{\mathbb{K}} \cong \mathbb{K}S^\lambda_{\mathbb{F}} \quad \text{(*) \quad \text{by 2.3.26(f)}} \]

\[D^\lambda_{\mathbb{F}} = S^\lambda_{\mathbb{F}} / \langle S^\lambda_{\mathbb{K}} \rangle \quad \text{(**) \quad \text{by 2.3.26(f)}} \]

Lemma 2.3.27. Let \mathbb{F} be a field. Then $D^\lambda_{\mathbb{F}}$ is an absolutely simple $\mathbb{F}[\text{Sym}(n)]$-module.

Proof. Let $\mathbb{F} \subseteq \mathbb{K}$ be a field extension. By 2.3.26(f), $\mathbb{K} \otimes_{\mathbb{F}} D^\lambda_{\mathbb{F}} = D^\lambda_{\mathbb{K}}$ and by 2.3.22 $D^\lambda_{\mathbb{K}}$ is a simple $\mathbb{K}[\text{Sym}(n)]$-module. Note also that $\mathbb{K}[\text{Sym}(n)] = \mathbb{K} \otimes_{\mathbb{F}} \mathbb{F}[\text{Sym}(n)]$. Hence $\mathbb{K} \otimes_{\mathbb{F}} D^\lambda_{\mathbb{F}}$ is a simple $\mathbb{K} \otimes_{\mathbb{F}} \mathbb{F}[\text{Sym}(n)]$-module. Thus, by definition, $D^\lambda_{\mathbb{F}}$ is absolutely simple $\mathbb{F}[\text{Sym}(n)]$-module.

\[\square \]

2.4 Standard basis for the Specht module

We continue to assume:

Hypothesis 2.4.1. In the section n is a positive integer, F is a non-zero commutative ring and λ a partition of n.

Lemma 2.4.2. Let G be a groups and A and B subgroups of B. Let \mathcal{R} be transversal to $A \cap B$ to A. Then \mathcal{R} is also as transversal to B in AB. In particular, the function $\mathcal{R} \times B \to AB, (r, b) \mapsto rb$ is a bijection.

Proof. Recall from the second isomorphism theorem that the function $A/A \cap B \to AB/B, a(A \cap B) \mapsto AB/B$ is a bijection. As \mathcal{R} is a transversal to $\lambda \cap B$ in A, we conclude that \mathcal{R} is also a transversal to B in AB. \[\square \]

Proposition 2.4.3.

(a) Let $\alpha, \beta \in \text{Sym}(n)$ with $\alpha C_\gamma = \beta C_\gamma$. Then $\text{sgn}(\alpha)\alpha e_\gamma = \text{sgn}(\beta)\beta e_\gamma$.

(b) Let $H \subseteq \text{Sym}(n)$ and \mathcal{R} a transversal to $H \cap C_\gamma$ in H. Then

\[\text{sgn}_{H \cap C_\gamma} = \text{sgn}_{\mathcal{R}e_\gamma}. \]

(c) Let $Z \subseteq I_n$ such that $|Z| > |C|$ for all columns C of n with $|Z \cap C| \neq \emptyset$. Then $\text{sgn}_{\text{Sym}(Z)C_\gamma} = 0$.

\[\text{sgn}_{\text{Sym}(Z)C_\gamma} = 0. \]
Proof.

(a) Pick \(p \in C_i \) with \(\alpha = \beta p \). Then
\[
\sgn(\alpha) \alpha e_i = \sgn(\alpha p) \alpha p e_i = (\sgn(\alpha) \alpha)(\sgn(\rho) p e_i) = \sgn(\alpha) \alpha e_i,
\]
and so (a) holds.

(b) By 2.4.2 \(R \times C_i \to HC_i, (\alpha, \beta) \mapsto \alpha \beta \) is a bijection. Thus using 2.3.4(a)
\[
\sgn_{HC_i}^\lambda = \sgn_R \sgn_{C_i}^\lambda = \sgn_R e_i.
\]

(c) Set \(J = \{ j \in I_n \mid Z \cap \Delta'(t)_j \neq \emptyset \} \). Put \(k := \max \{ \lambda'_j \mid j \in J \} \) and \(D := \bigcup_{j \in J} [\lambda'_j] \). Observe that \(t(D) = \bigcup_{j \in J} \Delta'(t)_j \), so \(Z \subseteq t(D) \). Thus \(t(D) \) is invariant under \(\text{Sym}(Z) \). As \(C_i \) fixes all columns of \(t \), \(t(D) \) is also invariant under \(C_i \). Let \(\alpha \in \text{Sym}(Z)/C_i \). Then \((\alpha t)(D) = \alpha(t(D)) = t(D) \). Hence
\[
Z \subseteq t(D) = (\alpha t)(D) = \bigcup_{j \in J} \Delta'(\alpha t)_j.
\]

As \(\alpha t \) is \(\lambda \)-tableau and \(k \geq \lambda'_j \) for all \(j \in J \), this shows that \(Z \) is contained in the first \(k \)-rows of \(\alpha t \). As \(|Z| > k \) there exist distinct \(y, z \in Z \) which lie in the same row of \(\alpha t \). Choose such \(y \) and \(z \) and then \(z \) minimal and define \(\pi_y := (y, z) \in \text{Sym}(Z) \) and \(\alpha' := \pi_y \alpha \). Then \(\alpha' \in \text{Sym}(Z)/C_i \). Observe that \(\alpha t \) and \(\alpha' t \) have the same rows. So \(\alpha t \alpha'^{-1} = \alpha'^{-1} \alpha t \) and \(\pi_{y'} = \pi_y \). Thus \(\alpha'' = \pi_{y'} \alpha' = \pi_y \pi_{y'} \alpha = \alpha \). Note also that \(\alpha \neq \alpha' \).

Hence we can partition \(\text{Sym}(Z)/C_i \) into pairs \(\{ \alpha, \alpha' \} \). Since
\[
\sgn(\alpha) \alpha \mathbf{I} + \sgn(\alpha') \alpha' \mathbf{I} = \sgn(\alpha) \mathbf{I} + \sgn(\alpha') \alpha' \mathbf{I} = \sgn(\alpha) \mathbf{I} - \sgn(\alpha) \mathbf{I} = 0
\]
this shows that
\[
\sgn_{\text{Sym}(Z)/C_i}^\lambda \mathbf{I} = \sum_{\alpha \in \text{Sym}(Z)/C_i} \sgn(\alpha) \alpha \mathbf{I} = 0.
\]

\[\Box\]

Definition 2.4.4. Let \(t \) be a \(\lambda \)-tableau and \(Z \subseteq I_n \).

(a) \(\text{row}_Z := \text{row}_t \). Note here that \(\text{row}_t \) only depends on \(\mathbf{I} \), so this is well-defined.

(b) \(t \) is row-increasing on \(Z \) if \(\text{row}_t \) is increasing on \(Z \cap R \) for each row \(R \) of \(t \). We say that \(t \) is row-increasing if \(t \) is row-increasing on \(I_n \).

(c) \(t \) is columns-increasing on \(Z \) if \(\text{col}_t \) is increasing on \(Z \cap C \) for each column \(C \) of \(t \). We say that \(t \) is column-increasing if \(t \) is columns-increasing on \(I_n \).

Remark 2.4.5. Let \(t \) be a \(\lambda \)-tableau and \(D \subseteq [A] \). Then \(t \) is row increasing on \(t(D) \) if and only if \(t \) is increasing on \(D \cap R \) for each row \(R \) of \([A] \).

Definition 2.4.6. Let \(t \) be a \(\lambda \)-tableau and \(Z \subseteq I_n \).

(a) \(\mathcal{R}_{Z \lambda} \) is the set of all \(\pi \in \text{Sym}(Z) \) such that \(\pi t \) is column-increasing on \(Z \).

(b) \(G_{Z \lambda} := \mathcal{R}_{Z \lambda} \) is called a Garnir element of \(F[\text{Sym}(n)] \).

Lemma 2.4.7. Let \(t \) be a \(\lambda \)-tableau and \(Z \subseteq I_n \).

(a) Let \(C \) be the set of columns of \(t \). Then \(\text{Sym}(Z) \cap C_t = \times_{C \in C} \text{Sym}(Z \cap C) \).

(b) \(\mathcal{R}_{Z \lambda} \) is a transversal to \(\text{Sym}(Z) \cap C_t \) in \(\text{Sym}(Z) \).
(c) Suppose that \(|Z| > |Z \cap C|\) for all columns \(C\) of \(t\) with \(Z \cap C \neq \emptyset\). Then
\[
G_Z t e_t = \sum_{\pi \in R_Z} \text{sgn}(\pi)e_{\pi t} = 0.
\]

Proof. (a) follows from \(C_t = \times_{C \in C} \text{Sym}(C)\).

(b) Let \(\pi \in \text{Sym}(Z)\) and let \(C\) be a column of \(\pi t\). Since the restriction of \(\text{row}_{\pi t}\) to \(Z \cap C\) is 1-1, \(2.2.24\) shows that there exists a unique element \(\beta_C \in \text{Sym}(Z \cap C)\) such that \(\text{row}_{\pi t} \circ \beta_C^{-1}\) is increasing on \(Z \cap C\).

By \(2.2.19\) \(\text{row}_{\pi t} \circ \beta_C^{-1} = \text{row}_{\beta_C \pi t}\). Define \(\beta \in \text{Sym}(Z)\) by \(\beta|_C = \beta_C\) for all columns \(C\) of \(\pi t\). Observe that \(\pi t\) and \(\beta \pi t\) have the same columns. Hence \(\beta\) is the unique element of \(\text{Sym}(Z) \cap C_t\) such that \(\beta \pi t\) is column-increasing on \(Z\).

Thus \(\pi \pi t\) is the unique element of \(R_Z\) contained in the coset \(\pi(\text{Sym}(Z) \cap C_t)\). (c) Since \(R_Z\) is a transversal to \(\text{Sym}(Z) \cap C_t\) in \(\text{Sym}(Z)\) we can apply \(2.4.3\). Thus
\[
G_Z t e_t = \text{sgn}_{R_Z} e_t \text{Sym}(Z)C_t = 0.
\]

\(\square\)

Example 2.4.8. Consider \(n = 4, \lambda = (2^2), t = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}, Z = \{1, 2, 3, 4\}\). For a tableau \(s\) write \(e(s)\) for \(e_t\). Then \(G_Z t e_t = 0\) gives
\[
e(\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}) - e(\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}) + e(\begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}) + e(\begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}) - e(\begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}) + e(\begin{pmatrix} 3 & 1 \\ 4 & 2 \end{pmatrix}) = 0\]

To confirm

\[
\begin{array}{cccccccc}
+ & 1 & 3 & - & 1 & 2 & + & 1 & 2 \\
2 & 4 & & & & & & \\
- & 2 & 3 & & 3 & 2 & - & 4 & 2 \\
& 1 & 4 & & 1 & 4 & & 1 & 3 \\
& & & & & & & & \\
- & 1 & 4 & & 1 & 4 & & 1 & 3 \\
& 2 & 4 & & 2 & 3 & & 3 & 2 \\
& & & & & & & & \\
& 2 & 3 & & 3 & 2 & & 4 & 2 \\
& & & & & & & & \\
+ & 1 & 3 & & 1 & 2 & + & 1 & 2 \\
& 2 & 1 & & 2 & 1 & & 3 & 1 \\
& & & & & & & & \\
\end{array}
\]
\[
= 0
\]

Lemma 2.4.9. Let \(\lambda\) be a partition of \(n\) and \(t\) a \(\lambda\)-tableau.

(a) \(\tilde{t}\) contains a unique row-increasing tableau.

(b) \(|t|\) contains a unique column-increasing tableau.
Definition 2.4.10.
(a) A standard tableau is a row- and column-increasing tableau.

(b) A tabloid is standard if it contains a standard tableau.

(c) If \(t \) is a standard tableau, then \(e_t \) is called a standard polytabloid.

Remark 2.4.11.
A standard tabloid contains a unique standard tableau.

Proof. Let \(t \) be a standard tableau. By Lemma 2.4.9(a) \(t \) is the unique row-increasing tableau in \(\tilde{t} \), and so also the unique standard tableau in \(\tilde{t} \).

Our goal now is to show that \(S^I \) is a free \(F \)-module with basis the standard \(\lambda \)-polytabloids.

For this we introduce a total order on the tabloids

Definition 2.4.12.
(a) Let \(\tilde{I} \) and \(\tilde{J} \) be the distinct \(\lambda \)-tabloids. Let \(i \in I_n \) be maximal with \(\text{row}_{\tilde{I}}^\lambda(i) \neq \text{row}_{\tilde{J}}^\lambda(i) \). Define \(\tilde{I} < \tilde{J} \) if \(\text{row}_{\tilde{I}}^\lambda(i) < \text{row}_{\tilde{J}}^\lambda(i) \).

(b) Let \(|I| \) and \(|J| \) be distinct column equivalence classes of \(\lambda \)-tabloids. Let \(i \in I_n \) be maximal with \(\text{col}_{\tilde{I}}^\lambda(i) \neq \text{col}_{\tilde{J}}^\lambda(i) \). Define \(\tilde{I} < \tilde{J} \) provided that \(\text{col}_{\tilde{I}}^\lambda(i) < \text{col}_{\tilde{J}}^\lambda(i) \).

Lemma 2.4.13. \(< \) is a total ordering on the set of \(\lambda \)-tabloids.

Proof. Any tabloid \(\tilde{t} \) is uniquely determined by the tuple \((\text{row}_{\tilde{I}}^\lambda(i))_{i=1}^n \). Moreover the ordering is just a lexicographic ordering in terms of its associated tuple.

Lemma 2.4.14. Let \(A \) and \(B \) be totally ordered sets and let \(f : A \to B \) be a function. Suppose that \(A \) is finite and that \(\pi \in \text{Sym}(A) \) with \(f \neq f \circ \pi \). Let \(a \in A \) be maximal such that \(f(a) \neq f(\pi a) \). If \(f \) is non-decreasing then \(f(a) \geq f(\pi a) \) and if \(f \) is non-increasing then \(f(a) < f(\pi a) \).

Proof. The second assertion follows from the first by reversing the ordering on \(B \). So suppose that \(f \) is non-decreasing. Let \(J := \{ j \in A \mid f(j) > f(a) \} \) and let \(j \in J \). If \(j \leq a \), then also \(f(j) \leq f(a) \), since \(f \) is non-decreasing. Thus \(j > a \) and the maximal choice of \(a \) implies that \(f(\pi j) = f(j) \). As \(f(j) > f(a) \) this gives \(f(\pi j) > f(a) \). Hence \(\pi j \in J \), so \(\pi(j) \subseteq J \).

Since \(J \) is finite and \(\pi \) is 1-1 this implies \(\pi(J) = J \). As \(\pi \) is a bijection we conclude that \(\pi(I \setminus J) = I \setminus J \).

Note that \(a \notin J \). So also \(\pi a \notin J \). Thus \(f(\pi a) \leq f(a) \). By choice of \(a \) we have \(f(\pi a) \neq f(a) \), thus \(f(\pi a) < f(a) \).

Remark 2.4.15. The above lemma is false if \(I \) is not finite (even if there exists a maximal \(a \)). Define

\[
\begin{align*}
&f : \mathbb{Z} \to \{0,1\}, \quad i \mapsto \begin{cases} 0 & \text{if } i \leq 0 \\ 1 & \text{if } i \neq 0 \end{cases} \quad \text{and} \quad \\
&\pi : \mathbb{Z} \to \mathbb{Z}, \quad i \mapsto i + 1.
\end{align*}
\]

Then \(f \) is non-decreasing and \(a = 0 \) is the unique element in \(\mathbb{Z} \) with \(f(a) \neq f(\pi a) \). But \(f(a) = f(0) = 0 < 1 = f(1) = f(\pi a) \).

Definition 2.4.16. Let \(F \) be a commutative ring, \(G \) a group and \(V \) an \(F[G] \)-module.

(a) The dual \(V^* \) of \(V \) is the \(F[G] \)-module defined by \(V^* := \text{Hom}_F(V,F) \) as an \(F \) module and

\[
(g \phi)(v) = \phi(g^{-1}v)
\]

for all \(g \in G, \phi \in V^* \) and \(v \in V \).
(b) \(V \) is called self-dual if \(V \cong V^* \) as an \(F[G] \)-module.

Lemma 2.4.17. Let \(F \) be a commutative ring, \(G \) a group, \(V \) and \(F[G] \)-module and \(s : V \times V \to F \) a \(G \)-invariant, \(F \)-bilinear, symmetric form on \(V \).

(a) is readily verified.

Let \(g \) and so \(g \).

Lemma 2.4.17.

Let \(F \) be a commutative ring, \(G \) a group, \(V \) and \(F[G] \)-module and \(s : V \times V \to F \) a \(G \)-invariant, \(F \)-bilinear, symmetric form on \(V \).

(a) Let \(W \) be an \(F[G] \)-submodule of \(V \).

Then \[
\overline{s}_W : W/W \cap W^\perp \times W/W \cap W^\perp \to F, \quad (v + (W \cap W^\perp), w + (W \cap W^\perp)) \mapsto s(v, w)
\]

is a well-defined \(G \)-invariant, \(F \)-bilinear, non-degenerate, symmetric form of \(W/W \cap W^\perp \).

(b) Suppose \(s \) is non-degenerate. Then the function \[
\Phi : V \to V^*, \quad v \mapsto (w \mapsto s(v, w))
\]

is a well-defined, \(R[G] \)-monomorphism. If, in addition, \(F \) is a field and \(\dim_F V \) is finite, then \(\Phi \) is an \(R[G] \)-isomorphism and \(V \) is self-dual.

Proof. \(\square \) It is easy to verify that \(\Phi \) is well-defined and \(F \)-linear. Note that \(\ker \Phi = V^\perp = 0 \) and so \(\Phi \) is injective. Let \(g \in G \) and \(v, w \in V \). Then

\[(g \Phi(v))(w) = \Phi(v)(g^{-1}w) = s(g^{-1}v, w) = s(gv, w) = \Phi(gv)(w)\]

and so \(g \Phi = \Phi(gv) \). Thus \(\Phi \) is \(F[G] \)-linear.

Suppose now that \(F \) is a field and \(\dim_F V \) is finite. Then \(\dim_F V = \dim_F V^* \) and since \(\Phi \) is \(F \)-monomorphism, we conclude that \(\Phi \) is an \(F \)-isomorphism and so also an \(F[G] \)-isomorphism. \(\square \)

Lemma 2.4.18. Let \(V \) be a free \(R \)-module with totally ordered basis \(\mathcal{B} \) and let \(\mathcal{L} \subseteq V \setminus \{0\} \). For \(v \in V \) define \((v_b)_{b \in \mathcal{B}} \in F_{\mathcal{B}} \) by \(v = \sum_{b \in \mathcal{B}} v_b b \). Let \(b \in \mathcal{B} \) and \(v \in V \). We say that \(b \) is involved in \(v \) with respect to \(\mathcal{B} \) if \(v_b \neq 0 \). If \(v \neq 0 \) let \(b_v \) be maximal element of \(\mathcal{B} \) involved in \(v \).

Put \(C := \{ b_l \mid l \in \mathcal{L} \} \) and \(\mathcal{D} := \mathcal{B} \setminus C \). Let \((\cdot, \cdot) \) be the unique \(F \)-bilinear form on \(V \) with orthonormal basis \(\mathcal{B} \). Suppose that

(i) \(\mathcal{L} \) is finite.

(ii) the \(b_l, l \in \mathcal{L} \), are pairwise distinct, and

(iii) \(v_b \) is a unit in \(F \) for all \(l \in \mathcal{L} \).

Then

(a) \(\mathcal{L} \cup \mathcal{D} \) is an \(F \)-basis for \(V \). In particular, \(V = F \mathcal{L} \oplus F \mathcal{D} \).

(b) \(V = FC \oplus \mathcal{L}^\perp \), that is for each \(v \in V \) there exists a unique \(e_v \in v + FC \) such that \(e_v \in \mathcal{L}^\perp \).

(c) \((e_d)_{d \in \mathcal{D}} \) is an \(F \)-basis for \(\mathcal{L}^\perp \).

(d) Let \(v \in F \mathcal{D} \). Then \(v = \sum_{d \in \mathcal{D}} (e_v, d) d \). In particular, \(F \mathcal{D} \cap \mathcal{L}^\perp = 0 \).

(e) \(\mathcal{L}^{\perp \perp} = F \mathcal{L} \).

(f) Suppose \(\mathcal{L} \) is finite. Then

\[
\Phi : \quad V/\mathcal{L}^\perp \to (F \mathcal{L})^*, \quad v + \mathcal{L}^\perp \mapsto (w \mapsto (v, w))
\]

is an \(F \)-isomorphism.
Proof. Replacing $l \in \mathcal{L}$ by $v^{-1}l$ we may assume that $v_b = 1$ for all $l \in \mathcal{L}$.

(a) Note that \mathcal{D} is an F-basis for $F^{\mathcal{D}}$ and

$$F^{\mathcal{D}} = \{ v \in V \mid v_b = 0 \text{ for all } l \in \mathcal{L} \}$$

Let $0 \neq (f_l)_{l \in \mathcal{L}} \in F^{\mathcal{L}}$ and put $v := \sum_{l \in \mathcal{L}} f_l l$. We will show that $v \notin F^{\mathcal{D}}$. Note that this implies that $\mathcal{L} \cup \mathcal{D}$ is linearly independent over F.

Choose $k \in \mathcal{L}$ such that b_l is maximal (in the totally ordered set \mathcal{B}) with respect to $f_k \neq 0$. Let $l \in \mathcal{L}$ with $l \neq k$ and $f_l \neq 0$. It follows that $b_k > b_l$ and so $l_b = 0$. Hence $v_{b_l} = f_k v_{b_k} = f_k \neq 0$. Hence $v \notin F^{\mathcal{D}}$ and $\mathcal{L} \cup \mathcal{D}$ is linearly independent.

Next let $m \in V$. We will show that $m \in F \mathcal{L} + F^{\mathcal{D}}$. Note that this implies that $\mathcal{L} \cup \mathcal{D}$ spans V and so $\mathcal{L} \cup \mathcal{D}$ is a basis for V.

If $m_{b_l} = 0$ for all $l \in \mathcal{L}$, then $m \in F^{\mathcal{D}}$ and we are done. Otherwise pick $k \in \mathcal{L}$ such that b_k is maximal with $m_{b_k} \neq 0$. Put $w := m - m_{b_k} k$. Then $w_{b_k} = 0$ for all $l \in \mathcal{L}$ with $b_l \geq b_k$. Induction on b_k shows that $w \in F \mathcal{L} + F^{\mathcal{D}}$. So also $m \in F \mathcal{L} + F^{\mathcal{D}}$ and (a) is proved.

(b) Let $k, l \in \mathcal{L}$ with $b_k < b_l$. Then b_l is not involved in k. Thus

$$(b_l | k) = 0.$$

Also the coefficient of b_k in k is equal to 1, so

$$(b_k | k) = 1.$$

We will now show that

$$FC \cap \mathcal{L}^\perp = 0.$$

For this let $m \in FC$ with $m \neq 0$. Then $m = \sum_{l \in \mathcal{L}} m_l b_l$ with $m_l \in F$. Choose $k \in \mathcal{L}$ such that b_k minimal subject to $m_k \neq 0$. Let $l \in \mathcal{L}$. If $b_l < b_k$, the minimality of b_k gives $m_l = 0$ and so $(m b_l | k) = 0$. If $b_l = b_k$, then $k = l$ and so $(m b_l | k) = m_k (b_l | k) = m_k$. If $b_l > b_k$, then $(b_l | k) = 0$ and so $(m b_l | k) = 0$. Thus $(m | k) = m_k \neq 0$, so $m \notin \mathcal{L}^\perp$.

Let $\mathcal{L} = \{ l_1, l_2, \ldots, l_n \}$ and $b_i := b_{l_i}$ such that $b_1 < b_2 < \ldots < b_n$. Let $0 \leq i \leq n$. We will inductively define $e_i \in V$ such that

$$e_i \in v + F\{ b_1, \ldots, b_i \} \quad \text{and} \quad e_i \in \{ l_1, \ldots, l_i \}^\perp$$

For $i = 0$ just choose $e_0 := b$. Suppose $i < n$ and that (**) holds. Define

$$e_{i+1} := e_i - (e_i | l_{i+1}) b_{i+1}.$$

Let $1 \leq k \leq i$. Then $(b_{i+1} | l_k) = 0$ and $(e_i | l_k) = 0$, so $(e_{i+1} | l_k) = 0$. Since $(b_{i+1} | l_{i+1}) = 1$ we also have $(e_{i+1} | l_{i+1}) = 0$. Thus (**) also holds for $i + 1$.

Put $e_n := e_n$. Then $e_n \in v + FC$ and $e_n \in \mathcal{L}^\perp$. By (**), e_n is unique.

(c) Since \mathcal{B} is linearly independent over F also $(d + FC)_{d \in \mathcal{D}}$ is linearly independent. Thus also $(e_d + FC)_{d \in \mathcal{D}}$ is linearly independent and so $(e_d)_{d \in \mathcal{D}}$ is linearly independent.

Let $m = \sum_{d \in \mathcal{D}} m_d b_d \in \mathcal{L}^\perp$. Let $d \in \mathcal{D}$. Since $e_d \in d + FC$ we have $e_d + FC = d + FC$. Also $e_d + FC = 0 + FC$ for all $c \in C$. Hence

$$m + FC = \sum_{d \in \mathcal{D}} m_d d + \sum_{c \in C} m_c c + FC = \sum_{d \in \mathcal{D}} m_d e_d + FC.$$
2.4. STANDARD BASIS FOR THE SPECHT MODULE

and so

\[m - \sum_{d \in D} m_de_d \in FC \cap \mathcal{L}^\perp \quad \square \]

Thus \(m = \sum_{d \in D} m_de_d \) and so \((e_d)_{d \in D}\) is an \(F \)-basis for \(\mathcal{L}^\perp \).

Let \(d \in D \) and \(v \in FD \). Note that \(FC \leq FD^\perp \). As \(v \in e_d + FC \) this gives \((e_d \mid d) = (v \mid d) \). Since \(\mathcal{B} \) is an orthonormal basis for \(V \), \((v \mid d) = v_d \) and so \(v = \sum_{d \in D} v_d = \sum_{d \in D} (e_d \mid d) \).

Recall that \(e_d \in \mathcal{L}^\perp \). If \(v \in \mathcal{L}^\perp \) we get \((e_d \mid d) = 0 \) for all \(d \in D \) and so \(v = 0 \).

By (a) \(V = FL + FD \). Note that \(FL \leq \mathcal{L}^\perp \) and the modular law implies that

\[\mathcal{L}^\perp = FL + (\mathcal{L}^\perp \cap FD) \quad \square \quad FL + 0 = FL. \]

By (2.4.17) we know that \(\Phi \) is a well-defined, \(F \)-linear and 1-1. So we just need to show that \(\Phi \) is onto.

For \(0 \neq b_\alpha \in (FL)^* \) define \(b_\alpha := \min \{ b \mid I, \alpha(l) \neq 0 \} \) and let \(k \in L \) with \(\alpha(k) \neq 0 \) and \(b_\alpha = b_k \). Define \(\beta := \alpha - \alpha(k)\Phi(b_k) \). Let \(l \in L \).

If \(b_k < b_\alpha \), then \(\alpha(l) = 0 \) and \(\Phi(b_k)(l) = (b_k \mid l) = 0 \). So \(\beta(l) = 0 \). Also

\[\beta(k) = (\alpha(k) - \alpha(k)(b_k \mid k) = (\alpha(k) - \alpha(k)1 = 0 \]

Thus either \(\beta = 0 \) or \(b_\beta > b_\alpha \). By downwards induction on \(b_\alpha \) we may assume that \(\beta \in \text{Im } \Phi \). Hence also \(\alpha \in \text{Im } \Phi \). Thus \(\Phi \) is onto. \(\square \)

Lemma 2.4.19. Let \(t \) be a \(\lambda \)-tableau and \(\pi \in \text{Sym}(n) \).

(a) Suppose that \(\text{row}_i \) is non-decreasing on each (non-trivial) orbit of \(\pi \) on \(I_\pi \). Then \(\pi \alpha \leq \pi \).

(b) Suppose that \(\text{row}_i \) is non-increasing on each (non-trivial) orbit of \(\pi \) on \(I_\pi \). Then \(\pi \alpha \geq \pi \).

Proof. We will prove (a) and (b) simultaneously. Without loss \(\pi \alpha \neq \pi \).

Let \(i \) be maximal in \(I_\pi \) with \(\text{row}_i(i) \neq \text{row}_\pi(i) \). Let \(X \) be the orbit of \(\pi \) on \(I_\pi \) containing \(i \). Under the hypothesis of (a), \(\text{row}_i \) is non-decreasing on \(X \), and under the hypothesis of (b), \(\text{row}_i \) is non-increasing on \(X \). Recall from (2.4.17) that \(\text{row}_\pi = \text{row}_i \circ \pi^{-1} \). Hence we can apply 2.4.14 with \((\text{row}_i \mid X, \pi^{-1} \mid X) \) in place of \((f, \pi)\). If \(\text{row}_i \) is non-decreasing on \(X \) we get \(\text{row}_\pi(i) = \text{row}_i(\pi^{-1}i) < \pi^{-1}(i) \) and if \(\text{row}_i \) is non-decreasing on \(X \), we conclude that \(\text{row}_\pi(i) = \text{row}_i(\pi^{-1}i) > \pi^{-1}(i) \).

Thus \(\pi \alpha \leq \pi \) and \(\pi \alpha \geq \pi \), respectively. \(\square \)

Lemma 2.4.20. Let \(t \) be column-increasing \(\lambda \) tableau. Then \(\pi \) is the maximal tableau involved in \(e_t \).

Proof. Let \(\overline{x} \) be a tableau involved in \(e_t \). Then \(\overline{x} = \pi \alpha \) for some \(\pi \in C_t \). Note that each orbit of \(\pi \) on \(I_\pi \) is contained in a column of \(t \). As \(t \) is column-increasing we conclude that \(\text{row}_i \) is increasing (and so also non-decreasing) on each orbit of \(\pi \). Thus 2.4.19 shows that \(\overline{x} = \pi \alpha \leq \pi \). \(\square \)

Theorem 2.4.21. (a) The set standard \(\lambda \)-polytabloids is \(F \)-basis of \(S^\lambda \). In particular, \(S^\lambda \) is a free \(F \)-module of rank the equal to number of the nonstandard \(\lambda \)-polytabloids.

(b) \(S^{\lambda \perp} = S^\lambda \).

(c) \(M^\lambda /S^{\perp} \cong (S^\lambda)^* \) as an \(F[\text{Sym}(n)] \)-module.
Proof. Let \(\mathcal{A} \) be the set of standard \(\lambda \)-tableaux and let \(\mathcal{L} := \{ e_t \mid t \in \mathcal{A} \} \) be the set standard polytableaux.

Let \(a \in \mathcal{A} \). Since \(a \) is column increasing 2.4.19[a] shows that \(\overline{a} \) is the maximal tabloid involved in \(e_a \). Let \(b \in \mathcal{A} \) with \(b \neq a \). Then both \(a \) and \(b \) are row increasing. Hence \(a \) is unique row-increasing tableau in \(\overline{a} \) and \(b \notin \overline{a} \). Thus \(\overline{a} \neq \overline{b} \) Hence we can apply 2.4.18 to \((M^d, M^d, \mathcal{L})\) in place of \((V, B, \mathcal{L})\). In particular, \(\mathcal{L} \) is linearly independent, \(\mathcal{L}^{\perp \perp} = F \mathcal{L} \) and \(M^d/\mathcal{L}^{\perp \perp} \cong (S^d)^\ast \) as an \(F \)-module.

Let \(t \) be \(\lambda \)-tableau. We will show by downwards induction on \(|t| \) that \(e_t \in F \mathcal{L} \). Since \(e_t = \pm e_s \) for any \(s \in |t| \) may assume that \(t \) is column-increasing. If \(t \) is also row-increasing, then \(t \) is standard tableaux and \(e_t \in \mathcal{L} \subseteq F \mathcal{L} \). So suppose \(t \) is not row-increasing. Then there there exists \((i, j) \in [\lambda] \) such that also \((i, j + 1) \in [\lambda] \) and

\[t(i, j) > t(i, j + 1). \]

Define

\[X = \{ t(k, j) \mid i \leq k \leq j' \}, \quad Y := \{ t(k, j + 1) \mid 1 \leq k \leq j \} \quad \text{and} \quad Z := X \cup Y \]

Then

\[|Z| = |X| + |Y| = (j' - (i - 1)) + i > j' + 1 > j' + 1 > j' + 1. \]

Hence 2.4.3 shows that

\[0 = G_Z e_t = \sum_{\pi \in \mathcal{R}_Z} \text{sgn}(\pi)e_{\pi t}. \]

Since row, is increasing on \(X \) and on \(Y \), \(t(i, j) \) is the minimal element of \(X \) and \(t(i, j + 1) \) is the maximal element of \(Y \). Thus \(x \geq t(i, j) > t(i, j + 1) \geq y \) for all \(x \in X \) and \(y \in Y \). Since \(\text{col}_\lambda(x) = j < j + 1 = \text{col}_\lambda(y) \) we conclude that \(\text{col}_\lambda \) is non-increasing on \(Z = X \cup Y \).

Let \(1 \neq \pi \in \mathcal{R}_Z \). Observe that any non-trivial orbit of \(\pi \) on \(L_\pi \) is contained in \(Z \). Hence the column version of 2.4.19 shows that \(|\pi t| > |t| \). Since \(t \) is column-increasing, \(1 \in \mathcal{R}_Z \). Since \(\mathcal{R}_Z \) is a transversal to \(\text{Sym}(Z) \cap C_\lambda \in \text{Sym}(Z) \) we have \(\pi C_\lambda \neq 1 C_\lambda \), so \(\pi \neq C_\lambda \) and \(|t| \neq |\pi t| \). Thus \(|\pi t| > |t| \). Hence, by downwards induction, \(e_{\pi t} \in F \mathcal{L} \). Thus

\[e_t = - \sum_{1 \neq \pi \in \mathcal{R}_Z} \text{sgn}(\pi)e_{\pi t} \in F \mathcal{L}. \]

Since \(S^d \) is spanned by the \(\lambda \)-polytabloids this gives \(S^d = F \mathcal{L} \) and so \(\mathcal{L} \) is an \(F \)-basis for \(S^d \). In particular, \(S^d \) is a free \(F \)-module of rank \(|\mathcal{L}| \).

As seen above, \(\mathcal{L}^{\perp \perp} = F \mathcal{L} \) so

\[S^d^{\perp \perp} = (F \mathcal{L})^{\perp \perp} = \mathcal{L}^{\perp \perp} = F \mathcal{L} = S^d. \]

\[\square \]

2.5 \(p \)-regular partitions

Definition 2.5.1. Let \(\lambda \) be a partition of \(n \). Then

\[g^d := \gcd\{(e_t, e_s) \mid t, s \lambda \text{-tableaux}\} \]

Lemma 2.5.2. Let \(\lambda \) be a partition of \(n \). Then \(D^d = 0 \) iff char \(F \mid g^d \).
Proof. Since $S^λ$ is spanned by the $λ$-polytabloid we have

\[D^λ = 0 \]

\[⇐⇒ S^λ = S^λ \cap S^{λ⊥} \]

\[⇐⇒ S^λ \perp S^λ \]

\[⇐⇒ e_t \perp e_s \quad \text{for all $λ$-tableaux } s, t \]

\[⇐⇒ (e_t \mid e_s) = 0 \quad \text{for all $λ$-tableaux } s, t \]

\[⇐⇒ \text{char } F \mid (e_t \mid e_s) \quad \text{for all $λ$-tableaux } s, t \]

\[⇐⇒ \text{char } F \mid g^λ \]

Lemma 2.5.3. Recall that $\hat{λ}_j = \{|i \mid λ_i = j\}$. Then $g^λ$ divides $\prod_{j=1}^∞ (\hat{λ}_j!)$ and $\prod_{j=1}^∞ \hat{λ}_j!$ divides $g^λ$ in \mathbb{Z}.

Proof. Define two $λ$-tabloids \overline{t} and \overline{s} to be equivalent if

\[\{Δ(t)_i \mid i \in \mathbb{Z}^+\} = \{Δ(s)_i \mid i \in \mathbb{Z}\}, \]

that is, if \overline{t} and \overline{s} have the rows but in possible different orders. Define

\[Z_j := \{i \in \mathbb{Z}^+ \mid λ_i = j\} \quad \text{and} \quad Z = (Z_j)_{j=1}^∞. \]

Then Z is an ordered partition of \mathbb{Z}^+. For $π \in \text{Sym}(\mathbb{Z}^+)$ define

\[πZ = (π(Z_j))_{j=1}^∞ \quad \text{and} \quad \text{Sym}(Z) = \{π \in \text{Sym}(\mathbb{Z}^+) \mid πZ = Z\}. \]

Note that

\[\text{Sym}(Z) = \bigtimes_{j=1}^∞ \text{Sym}(Z_j) \quad \text{and} \quad |\text{Sym}(Z)| = \hat{λ}! = \prod_{j=1}^∞ \hat{λ}_j! \]

Observe that \overline{t} and \overline{s} are equivalent if and only if there exists $π = π(\overline{t}, \overline{s}) \in \text{Sym}(\mathbb{Z}^+)$ with $Δ(t)_{πi} = Δ(s)_i$ for all $i \in \mathbb{Z}^+$. Then

\[λ_{πi} = |Δ_{πi}| = |Δ_i(s)| = λ_i. \]

Thus $πZ = Z$ and $π \in \text{Sym}(Z)$. Conversely if $π \in \text{Sym}(Z)$ then there exists a unique tabloid \overline{t} with $Δ_i(s) = Δ_{πi}(t)$ and \overline{t} is equivalent to \overline{s}.

Hence

1°. Each equivalence class of $λ$-tabloids contains $\hat{λ}!$-tabloids.

Let M be the set of $λ$-tabloids. For a $λ$-tabloid \overline{t} and a $λ$-tableau t let $e_t(\overline{t})$ be the coefficient of \overline{t} in e_t. So

\[e_t = \sum_{r \in M} e_t(\overline{r})\overline{r}. \]

Next we show:
2°. Let \(\overline{t} \) and \(\overline{s} \) be equivalent \(\lambda \)-tabloids. Then there exists \(\delta(\overline{t}, \overline{s}) \in \{\pm 1\} \) such that

\[
e_i(\overline{s}) = \delta(\overline{t}, \overline{s})e_i(\overline{t}).
\]

for any \(\lambda \)-tableaux \(t \).

Let \(\pi = \pi(\overline{t}, \overline{s}) \). Let \(\pi_j \) be the restriction of \(\pi \) to \(Z_j \) and define

\[
\delta := \prod_{j \in J} \text{sgn}(\pi_j)^i.
\]

If neither \(\overline{t} \) nor \(\overline{s} \) is involved in \(t \), then both sides in (2) are zero. So we may assume that \(\overline{t} \) is involved in \(e_i \). Then \(\overline{t} = \overline{\rho} \) for some \(\rho \in C_i \). Put \(r = \rho t \). Define \(\pi^* \in \text{Sym}(n) \) by

\[
\pi^*(r(i, j)) = r(\pi(i), j).
\]

for all \((i, j) \in [\lambda] \). Since \(\lambda_i = \lambda_{ni} \) for all \(i \in \mathbb{Z}^+ \), this is well defined. Then

\[
\text{sgn}(\pi^*) = \delta, \quad \pi^* \in C_i, \quad \pi^* \rho \in C_i, \quad \text{and} \quad \overline{s} = \overline{\pi^* \rho} = \overline{\pi^* \overline{r}}
\]

Hence the coefficient of \(\overline{t} \) in \(e_i \) is \(\text{sgn}(\rho) \) and the coefficient of \(\overline{s} \) in \(e_i \) is \(\text{sgn}(\pi^* \rho) = \text{sgn}(\pi^*) \text{sgn}(\rho) = \delta \text{sgn}(\rho) \).

3°. \(\lambda! \) divides \(g^1 \).

Let \(t, u \) be \(\lambda \)-tableaux. We need to show that \(\lambda! \) divides \((e_i | e_u) \). Let \(\mathcal{A} \) be the set of equivalence classes of \(\lambda \)-tabloids and for \(A \in \mathcal{A} \) pick \(\overline{\lambda} \in A \).

\[
(e_i | e_u) = \left(\sum_{\overline{t} \in \mathcal{M}} e_i(\overline{t}) \left| \sum_{\overline{t} \in \mathcal{M}} e_u(\overline{t}) \overline{t} \right) \right).
\]

Let \(\overline{\lambda} \in A \) be the set of equivalence classes of \(\lambda \)-tabloids and for \(A \in \mathcal{A} \) pick \(\overline{\lambda} \in A \).

\[
(e_i | e_u) = \sum_{\overline{t} \in \mathcal{M}} e_i(\overline{t}) e_u(\overline{t})
\]

= \sum_{A \in \mathcal{A}, A \in A} |A| e_i(\overline{\lambda}) e_u(\overline{\lambda})

Thus (3) holds.

Fix a \(\lambda \)-tableau \(t \) Define \(\sigma \in \text{Sym}(n) \) by \(\sigma(t(i, j)) = t(i, \lambda_i + 1 - j) \) and put \(\overline{t} = \sigma t \). So \(\overline{t} \) is the tableaux obtained by reversing the rows of \(t \). We will show that \((e_i | e_t) = \prod_{i=1}^{\lambda} (\lambda_i)! \). Since \(g^1 \) divides \((e_i | e_t) \) this will complete the proof of the lemma.
Put

\[U_i := U_i(t) := \bigcup_{k \in \mathbb{Z}_n} \Delta(t) \]

So \(U_i \) is the union of the rows of \(t \) of size \(i \). Note that \(U_i = U_i(\tilde{t}) \). Also put

\[U_i^j := U_i^j(t) := U_i(t) \cap \Delta^j(t) \quad \text{and} \quad U := (U_i^j)_{(i,j) \in \mathbb{Z}^+ \times \mathbb{Z}^+} \]

Then \(U \) is a partition of \(I_n \) refining both \((U_i^j)_{i=1}^n \) and column partition \(\Delta^j(t) \). In particular, \(\text{Sym}(U) \leq C_t \).

Observe that

\[U_i = U_i(\tilde{t}) \quad \text{and} \quad U_i^j := U_i^j(\tilde{t}) = U_i^{i+1-j} = \sigma(U_i^j). \]

In particular, \(U \) is also a partition of \(I_n \) refining the columns partition \(\Delta^j(\tilde{t}) \). Let \(m = \lambda_1 \). Then

\[
\begin{array}{cccccccc}
U_m^1 & U_m^2 & \cdots & U_m^j & \cdots & \cdots & U_m^{m-1} & U_m^m \\
U_{m-1}^1 & U_{m-1}^2 & \cdots & U_{m-1}^j & \cdots & \cdots & U_{m-1}^{m-1} & U_{m-1}^m \\
\vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots & \vdots \\
U_{i+1}^1 & U_{i+1}^2 & \cdots & U_{i+1}^j & \cdots & \cdots & U_{i+1}^{m-1} & \vdots \\
\vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots & \vdots \\
U_i^1 & U_i^2 & \cdots & U_i^j & \cdots & \cdots & U_i^{m-1} & \vdots \\
\vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots & \vdots \\
U_1^1 & U_1^2 & \cdots & U_1^j & \cdots & \cdots & U_1^{m-1} & \vdots \\
\end{array}
\]

and

\[
\begin{array}{cccccccc}
U_m^1 & U_m^2 & \cdots & U_m^j & \cdots & \cdots & U_m^{m-1} & U_m^m \\
U_{m-1}^1 & U_{m-1}^2 & \cdots & U_{m-1}^j & \cdots & \cdots & U_{m-1}^{m-1} & \vdots \\
\vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots & \vdots \\
U_{i+1}^1 & U_{i+1}^2 & \cdots & U_{i+1}^j & \cdots & \cdots & U_{i+1}^{m-1} & \vdots \\
\vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots & \vdots \\
U_i^1 & U_i^2 & \cdots & U_i^j & \cdots & \cdots & U_i^{m-1} & \vdots \\
\vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots & \vdots \\
U_1^1 & U_1^2 & \cdots & U_1^j & \cdots & \cdots & U_1^{m-1} & \vdots \\
\end{array}
\]
Since U refines the columns of t and of \bar{t} we have
\[
\text{Sym}(U) \subseteq C_t \quad \text{and} \quad \text{Sym}(U) \subseteq C_{\bar{t}}
\]
Note that $|U_i^j(t)| = \tilde{\lambda}_i$ if $j \leq i$ and $U_i^j(t) = \emptyset$ otherwise. Thus

4°. $|\text{Sym}(U)| = \prod_{(i,j) \in \mathbb{Z}^+ \times \mathbb{Z}^+} |U_i^j(t)|! = \prod_{i=1}^{\infty} (\tilde{\lambda}_i)!$.

Next we show:

5°. Let $\pi \in \text{Sym}(U)$. Then $\epsilon_i(\pi) = \epsilon_j(\pi) = \text{sgn}(\pi)$.

Since $\pi \in C_t$ we have $\epsilon_i(\pi) = \text{sgn}(\pi)$.

Since $\pi \in C_{\bar{t}}$ we have $\epsilon_j(\pi) = \text{sgn}(\pi)$.

Since σ fixes the rows of t, $\pi \sigma \pi^{-1}$ fixes the rows of πt. Thus
\[
\pi \sigma \pi^{-1} \pi t = \pi \sigma \pi^{-1} = \pi \bar{t}
\]
and so (5°) holds.

6°. Let $\pi \in C_t$ such that πt is involved in e_l. Then $\pi \in \text{Sym}(U)$.

Since πt is involved in e_l there exists $\hat{\pi} \in C_t$ with $\pi t = \pi \hat{\pi} t$. Hence row$_{\pi t} =$ row$_{\pi \hat{\pi} t}$. Since t and \bar{t} are row-equivalent, row$_i =$ row$_{\bar{t} i}$. So
\[
\text{row}_i \circ \pi^{-1} = \text{row}_{\pi \hat{\pi} t} = \text{row}_{\pi \hat{\bar{\pi}} t} = \text{row}_i \circ \bar{\pi}^{-1}
\]
Put $\alpha := \pi^{-1}$ and $\bar{\alpha} := \pi^{*^{-1}}$.

(*) $\alpha \in C_t, \quad \bar{\alpha} \in C_{\bar{t}}$ and row$_i \circ \alpha =$ row$_i \circ \bar{\alpha}$

We will show that $\alpha(U_i^j) = U_i^j = \bar{\alpha}(U_i^j)$ for all i, j. The proof uses double induction. First on j and then downwards on i. So let $i, j \in \mathbb{Z}^+$ and assume inductively that

(*) $\alpha(U_i^j) = U_i^j = \bar{\alpha}(U_i^j)$

whenever $l < j$ or $l = j$ and $k > i$. Observe that
\[
\Delta'(t)_j = \bigcup_{k=1}^{\infty} U_k^j
\]
Since $\alpha \in C_t$, we have $\alpha(\Delta'(t)_j) = \Delta'(t)_j$. Since $\alpha(U_{k_j}) = \alpha(U_{k_j})$ for all $k > i$ this implies $\alpha(\bigcup_{k=1}^{i} U_i^j) = \bigcup_{k=1}^{i} U_k^j$. In particular,

(*) $\alpha(U_i^j) \subseteq \bigcup_{k=1}^{i} U_k^j \subseteq \bigcup_{k=1}^{i} U_k$.

Put $\tilde{j} := i + 1 - j$. Then $\tilde{U}_i^j = U_i^j$ and so U_i^j is contained in column \tilde{j} of \bar{t}. We have
Recall that $\tilde{U}_k^j = U_k^{i+1-j}$. If $k < i$, then $k + 1 - j < i + 1 - (i + 1) - j = j$ and the induction assumption implies that α fixes U_k^{i+1-j}. So $\alpha \left(\tilde{U}_k^j \right) = \tilde{U}_k^j$ for all $k < i$. As $\tilde{\alpha} \in C_i$ we know that $\tilde{\alpha}$ fixes $\Delta'(t)_j$. It follows that $\tilde{\alpha} \left(\bigcup_{k=i}^{\infty} \tilde{U}_k^j \right) = \bigcup_{k=i}^{\infty} \tilde{U}_k^j$.

In particular,

$$\tilde{\alpha} \left(U_i^j \right) = \tilde{\alpha} \left(\tilde{U}_i^j \right) \subseteq \bigcup_{k=i}^{\infty} \tilde{U}_k^j \subseteq U_k$$

As row$_i \circ \alpha = \text{row}_i \circ \tilde{\alpha}$ this implies

$$(+) \quad \alpha(U_i^j) \subseteq \bigcup_{k=i}^{\infty} U_k.$$

From $**$ and $(+)$ we that $\alpha(U_i^j) \subseteq U_i$. As $\text{row}_i \circ \alpha = \text{row}_i \circ \tilde{\alpha}$ this gives $\tilde{\alpha}(U_i^j) \subseteq U_i$. Since $\alpha \in C_i$ and $\tilde{\alpha} \in C_i$ this implies $\alpha(U_i^j) = U_i^j$ and $\tilde{\alpha}(U_i^j) = U_i^j$.

We proved that $\alpha(U_i^j) = U_i^j$ for all $i, j \in \mathbb{Z}^+$. So $\alpha \in \text{Sym}(U)$ and thus also $\pi = \alpha^{-1} \in \text{Sym}(U)$. This completes the proof of (6).

Let \mathcal{N} be the set of λ-tabloids involved in e_i and e_i. Then

$$\langle e_i | e_i \rangle = \sum_{T \in \mathcal{N}} e_i(T)e_i(T)$$

The λ-tabloids involved in e_i are $\overline{T}, \pi \in C_i$. By (6), \overline{T} is involved in e_i if and only if $\pi \in \text{Sym}(U)$, so $\mathcal{N} = \{ \overline{T} | \pi \in \text{Sym}(U) \}$. Thus

$$\langle e_i | e_i \rangle = \sum_{\pi \in \text{Sym}(U)} e_i(\overline{T})e_i(\overline{T}) \otimes \sum_{\pi \in \text{Sym}(U)} \sgn(\pi)\sgn(\pi) = \sum_{\pi \in \text{Sym}(U)} 1 = |\text{Sym}(U)| \prod_{i=1}^{\infty} (\hat{\lambda}_i!)^i.$$

As g^d divides $\langle e_i | e_i \rangle$ this shows that g^d divides $\prod_{i=1}^{\infty} (\hat{\lambda}_i!)^i$. \hfill \square

Proposition 2.5.4. Suppose F is an integral domain and put $p := \text{char} F$. Then $D^4 \neq 0$ iff λ is p-regular.

Proof. By [2.5.2]

$$D^4 = 0 \iff p|g^4$$

By [2.5.3] we know that

$$\prod_{i=1}^{\infty} \hat{\lambda}_i! | g^4 \text{ and } g^4 | \prod_{i=1}^{\infty} (\hat{\lambda}_i!)^i.$$

Since F is an integral domain, $p = 0$ or p is a prime. It follows that
CHAPTER 2. REPRESENTATIONS OF THE SYMMETRIC GROUPS

\[p|g^\lambda \iff p|\lambda_i \text{ for some } i \in \mathbb{Z}^+ \]

Observe that

\[p|\lambda_i! \iff p \neq 0 \text{ and } p \leq \lambda_i \]

Thus

\[D^i = 0 \iff p \neq 0 \text{ and } p \leq \lambda_i \text{ for some } i \in \mathbb{Z}^+. \]

Hence \(D^i = 0 \) if and only if \(p \neq 0 \) and the multiplicative partition \(\lambda \) is \(p \)-singular. Thus \(D^i \neq 0 \) if and only if \(\lambda \) is \(p \)-regular. By 2.1.5 \(\lambda \) is \(p \)-regular if and only if \(\lambda \) is \(p \)-regular. □

Theorem 2.5.5. Let \(F \) be a field and \(n \) a positive integer. Put \(p := \text{char } F \).

(a) Let \(\lambda \) be a \(p \)-regular partition of \(n \). Then \(D^\lambda \) is an absolutely simple, self-dual \(F \text{Sym}_p n \)-module.

(b) Let \(I \) be a simple \(F \text{Sym}_p n \)-module. Then there exists a unique \(p \)-regular partition \(\lambda \) of \(n \) with \(I \cong D^\lambda \).

Proof.

(a) By 2.5.4 \(D^\lambda \neq 0 \). As \(D^\lambda = S^\lambda/(S^\lambda \cap S^\lambda) \), 2.4.17(a) shows that \(s \) induces a symmetric, non-degenerate \(G \)-invariant \(F \)-bilinear form on \(D^\lambda \). Hence 2.4.17(b) implies that \(D^\lambda \) is self-dual. By 2.3.27 \(D^\lambda \) is absolutely simple.

(b) If \(\lambda \) and \(\mu \) are distinct \(p \)-regular partitions then by 2.3.25 and (a), \(D^\lambda \) and \(D^\mu \) are non-isomorphic simple \(FSym(n) \)-modules. Let \(\bar{F} \) be an algebraic closure of \(F \). By 1.8.3(d) the number of isomorphism classes of simple \(FSym(n) \)-modules is less or equal to the number isomorphism classes of simple simple \(\bar{F} \text{Sym}_p n \)-modules. The latter number is by 1.10.8 equal to the number of \(p \)-conjugacy classes and so by 2.1.6 equal to the number of \(p \)-regular partitions of \(n \). So (b) holds. □

2.6 Series of \(R \)-modules

Definition 2.6.1. Let \(R \) be a ring and \(M \) and \(R \)-module. Let \(S \) be a set of \(R \)-submodules of \(M \). Then \(S \) is called an \(R \)-series on \(M \) provided that:

(i) \(0 \in S \) and \(M \in S \).

(ii) \(S \) is totally ordered with respect to inclusion.

(iii) For all \(\emptyset \neq T \subseteq S \), \(\bigcap T \in S \) and \(\bigcup T \in S \).

Definition 2.6.2. Let \(R \) be a ring, \(M \) an \(R \)-module and \(S \) an \(R \)-series on \(M \).

(a) For \(U \subseteq M \) define

\[U^- := \bigcup\{D \in S \mid D \subseteq U\} \quad \text{and} \quad U^+ := \bigcap\{D \in S \mid U \subseteq D\}. \]

(b) If \(A \in S \) with \(A \neq A^- \), then \((A^-, A) \) is called a jump of \(S \) and \(A/A^- \) a factor of \(S \).

(c) \(S \) is called a composition series for \(R \) on \(S \) provided that all factors of \(S \) are simple \(R \)-modules.
Example 2.6.3. Let $(p_i)_{i=1}^{\infty}$ be any sequence of prime integers. Then
\[\mathbb{Z} > p_1 \mathbb{Z} > p_1 p_2 \mathbb{Z} > \ldots > p_1 p_2 \ldots p_{i-1} \mathbb{Z} > p_1 p_2 \ldots p_i \mathbb{Z} > \ldots > 0 \]
is composition series for \mathbb{Z} on \mathbb{Z} with factors isomorphic to $\mathbb{Z}/p_i \mathbb{Z}$, $i \in \mathbb{Z}^+$.
If $p_i = p$ for a fixed prime p, then all factors are isomorphic to $\mathbb{Z}/p \mathbb{Z}$.
If p_i is the i-th positive prime, then all $\mathbb{Z}/p_i \mathbb{Z}$, p a prime, occur as a composition factors.

Lemma 2.6.4. Let R be a ring, M an R-module, S an R-series on M.

(a) Let $A, B \in S$ with $B \subseteq A$. Then (B, A) is a jump iff $A = C$ or $B = C$ for all $C \in S$ with $B \subseteq C \subseteq A$.

(b) Let $U \subseteq M$. Then there exists a unique $A \in \mathcal{U}$ minimal with $U \subseteq A$. If U is finite and contains a non-zero element then $A^- \neq A$ and $A \cup U \subseteq A^-$.

(c) Let $0 \neq m \in M$. Then there exists a unique jump (B, A) if S with $v \in A$ and $v \notin B$.

Proof. (a) Suppose first that (B, A) is a jump. Then $B = A^-$. Let $C \in S$ with $B \subseteq C \subseteq A$ Suppose $C \subseteq A$. Then $C \subseteq A^- = B$ and $C = B$.

Suppose next that $A = C$ or $B = C$ for all $C \in S$ with $B \subseteq C \subseteq A$. Since $B \subseteq A$, $B \subseteq A^-$. Let $C \in S$ with $C \subseteq A$. Since S is totally ordered, $C \subseteq B$ or $B \subseteq C$. In the latter case, $B \subseteq C \subseteq A$ and so by assumption $B = C$. So in any case $C \subseteq B$ and thus $A^- \subseteq B$. We conclude that $B = A^-$ and so (B, A) is a jump.

(b) Put $A = \bigcup \{ S \in S \mid U \subseteq S \}$. By $A \in S$ and so clearly is minimal with respect to $U \subseteq A$ and is unique with respect to this property. Suppose now that U is finite and contains a non-zero element. Then $A \neq 0$. Suppose that $A = A^-$. Then for each $u \in U$ we can choose $B_u \in S$ with $u \in B_u$ and $B_u \subseteq A$. Since U is finite \{B_u, u \in U\} has a maximal element B. Then $U \subseteq B \subseteq A$, contradicting the minimality of A.

Thus $A \neq A^-$ and by minimality of A, $U \subseteq A$.

(c) Follows from (b) applied to $U = \{ m \}$.

Lemma 2.6.5. Let R be a ring, M a free R-module with basis \mathcal{B} and S be an R-series on M. Then the following four statements are equivalent. One of the following holds:

(a) For each $A \in S$, $A \cap \mathcal{B}$ spans A over R.

(b) For each $B \in S$, $(a + B \mid a \in \mathcal{B} \setminus B)$ is R-linear independent in V/B. Then

(c) For each jump (B, A) of S, $(a + B \mid a \in \mathcal{B} \cap A \setminus B)$ is R-linear independent in A/B.

(d) For all $A, B \in S$ with $B \subseteq A$, $(a + B \mid a \in \mathcal{B} \cap A \setminus B)$ is an R-basis for A/B.

Proof. (a) \Rightarrow (b): $(r_a) \in \bigoplus_{a \in \mathcal{B} \setminus A} R$ with $\sum_{a \in \mathcal{B} \cap A} r_a a \in B$. Then by (a) applied to B there exists $(r_a) \in \bigoplus_{a \in \mathcal{B} \cap A}$ with $\sum_{a \in \mathcal{B} \cap A} r_a a = \sum_{a \in \mathcal{B} \cap A} r_a a$.

Since \mathcal{B} is linearly independent over R this implies $r_a = 0$ for all $a \in \mathcal{B}$ and so (b) holds.

(b) \Rightarrow (c): Obvious.

(c) \Rightarrow (a): Let $a \in A$. Since \mathcal{B} spans M over R there exists a finite subset C of \mathcal{B} and $(r_c) \in \bigoplus_{c \in C} R^d$ with $a = \sum_{c \in C} r_c c$. Let $D \in S$ be minimal with $C \subseteq D$. Then (D^-, D) is a jump and $C \setminus D^- \neq \emptyset$. Suppose that $D \subseteq A$. Since S is totally ordered, $A \subseteq D^-$. Thus

$$0_{D/D^-} = a + D^- = \sum_{c \in C} r_c c + D^- = \sum_{c \in C \setminus D^-} r_c c + D^-$$
a contradiction to \((c) \).

\[a \implies (d): \] (a) implies that \(\{ a + B \mid a \in \mathcal{A} \} \) and so also \(\{ a + B \mid a \in \mathcal{A} \} \) spans \(A/B \). Since (a) implies (b), \(\{ a + B \mid a \in \mathcal{B} \} \) and so also \(\{ a + B \mid a \in \mathcal{B} \cap A \} \) is \(R \)-linear independent. So (d) holds.

\[d \implies (a): \] Just apply (d) with \(B = 0 \). □

2.7 The Branching Theorem

Definition 2.7.1. Let \(\lambda \) be partition of \(n \)

(a) A node \(d \in [\lambda] \) is called removable if \([\lambda] \setminus \{d\}\) is a Ferrers diagram.

(b) \(d_i = (r_i, c_i), 1 \leq i \leq k \) are the the removable nodes of \([\lambda]\) ordered such that \(r_1 < r_2 < \ldots < r_k \).

(c) \(\lambda^{(i)} := \lambda ([\lambda] \setminus \{d_i\}) \) and \(\lambda \downarrow := \{ \lambda^{(i)} \mid 1 \leq i \leq k \} \)

(d) \(e \in \mathbb{Z}^+ \rightarrow \mathbb{Z}^+ \) is called an exterior node of \([\lambda]\) if \([\lambda] \cup \{e\}\) is a Ferrers diagram. \(\lambda \uparrow \) is the set of partitions of \(n + 1 \) obtained by extending \([\lambda]\) by an exterior node.

Lemma 2.7.2. Let \(\lambda \) be a partition of \(n \) and \((i, j) \in D \). Then the following are equivalent

(a) \((i, j) \) is a removable node of \([\lambda]\).

(b) \(j = \lambda_i \) and \(\lambda_i > \lambda_{i+1} \).

(c) \(i = \lambda'_j \) and \(\lambda'_j > \lambda'_{j+1} \).

(d) \(j = \lambda_i \) and \(i = \lambda'_{j} \).

Proof. Obvious. □

Definition 2.7.3. Let \(t \) be a \(\lambda \)-tableau.

(a) We say that \(t \) is restrictable if \(t^{-1}(n) \) is a removable node of \([\lambda]\). If this is the case, we define

\[t \downarrow := t|_{t^{-1}(\lambda_{n-1})}. \]

(b) \(\tilde{t} \) is called restrictable if \(\tilde{t} \) contains a restrictable tableau \(s \). In this case we define \(\tilde{t} \downarrow := s \downarrow \). Observe that this is well-defined.

Lemma 2.7.4. Let \(t \) be a \(\lambda \)-tableau and \(\pi \in \text{Sym}(n - 1) \)

(a) If \(t \) is restrictable then \(t \downarrow \) is a tableau.

(b) If \(t \) is standard, then \(t \) is restrictable and \(t \downarrow \) is standard.

(c) \(t \) is restrictable if \(\pi t \) is restrictable. If this is this case, then \((\pi t) \downarrow = \pi(t \downarrow) \).

(d) \(\tilde{t} \) is restrictable if \(\tilde{\pi} \tilde{t} \) is restrictable. If this is this case, then \((\tilde{\pi} \tilde{t}) \downarrow = \pi(\tilde{t} \downarrow) \).

Proof. Obvious. □
2.7. THE BRANCHING THEOREM

Theorem 2.7.5. Let $1 \leq i \leq k$. For a λ-tableau t put $R_i(t) := \Delta(t)_{ri}$. Let W_i be the F-submodule of S^d spanned by all e_i where t is a restrictable λ-tableau with $n \in R_i(t)$. Define $V_0 := 0$ and inductively $V_i = V_{i-1} + W_i$. Then
\[0 = V_0 < V_1 \ldots < V_{k-1} < V_k = S^d \]
as a series of $F[\text{Sym}(n-1)]$-submodules of S^d and
\[V_i/V_{i-1} \cong S^{d(i)} \]
as an $F[\text{Sym}(n-1)]$-module.

Proof. Clearly the set of restrictable λ tableaux t with $n \in R_i(t)$ is invariant under the action of $\text{Sym}(n-1)$. Thus each V_i is an $F[\text{Sym}(n-1)]$ submodule of S^d. Also $V_{i-1} \subseteq V_i$ and it remains to show that $V_i/V_{i-1} \cong S^{d(i)}$. For this define an F-linear function

\[\theta_i : M^d \rightarrow M^{d(i)}, \quad \tilde{t} \rightarrow \begin{cases} \tilde{t} \downarrow & \text{if } n \text{ is in row } R_i(t) \\ 0 & \text{otherwise} \end{cases} \]

Observe that θ_i commutes with the action of $\text{Sym}(n-1)$ and so θ_i is $F[\text{Sym}(n-1)]$ linear. Let $1 \leq j \leq i \leq k$. Let λ be a restrictable tableau with $n \in R_j(t)$ and $\pi \in C_j$. Then $\pi(n) \in \Delta(t)_{wi}$ for some $u \leq j$ with $u = j$ if and only if $\pi(n) = n$. If follows that $\pi(n) \in R_i(t)$ if and only if $\pi \in \text{Sym}(n-1)$ and $i = j$ and so if and only if $i = j$ and $\pi \in C_i$. Thus

\[\theta_i(e_s) = \begin{cases} e_\tilde{s}_{\tilde{i}} & \text{if } j = i \\ 0 & \text{if } j < i \end{cases} \]

In particular, $\theta_i(V_{i-1}) = 0$ and $\theta_i(V_i) \subseteq S^{d(i)}$.

If s is a $\lambda^{(i)}$-tableau, then $s = t \downarrow$ for a (unique) restrictable λ tableau t with $n \in R_i(t)$. Then $\theta_i(e_s) = e_s$ and so $\theta_i(V_i) = S^{d(i)}$.

Hence

\[V_{i-1} \subseteq V_i \cap \ker \theta_i \quad \text{and} \quad V_i/V_i \cap \ker \theta_i \cong \text{Im} \theta_i = S^{d(i)} \]

Let B be the set of standard λ-polytabloids and B_i the e_i with t standard and n in row r_i. Then by (1) $\theta_i(B_i)$ is the standard basis for $S^{d(i)}$ and so is linear independently. Thus also the image of B_i in $V_i/V_i \ker \theta_i$ is linearly independent. Consider the series of F-modules

\[0 = V_0 \subseteq V_1 \cap \ker \theta_1 \subseteq V_1 \subseteq V_2 \cap \ker \theta_2 \subseteq V_2 \subseteq \ldots \subseteq V_{k-1} \subseteq V_k \cap \ker \theta_k \subseteq V_k \subset S^d \]

Each $e_i \in B_i$ lies in a unique B_i and so in $V_i/(V_i \cap \ker \pi_i)$. Thus $B \cap V_i \cap \ker \theta_i \subseteq V_{i-1}$. So we can apply 2.6.5 to the series of F-modules and conclude that $V_i \cap \ker \theta_i/V_{i-1}$ is as the emptyset as an R-basis. Hence $V_{i-1} = V_i \cap \ker \theta_i$. For the same reason $V_k = S^d$ and theorem now follows from (3).

Theorem 2.7.6 (Branching Theorem). Let F be a field and λ a partition of n. Put $p := \text{char } F$.

(a) Suppose that $p = 0$ or $p \geq n$. Then
\[S^d \downarrow_{\text{Sym}(n-1)} = \bigoplus_{\mu \in \Delta} S^\mu \]
(b) Suppose that \(p = 0 \). Then

\[
S^d \uparrow \text{Sym}(n+1) = \bigoplus_{\mu \in \mathcal{P}} S^\mu
\]

Proof. By 2.7.5 there exists a series of \(F[\text{Sym}(n-1)] \)-submodules

\[
0 = V_0 < V_1 \ldots < V_{k-1} < V_k = S^d
\]
of \(S^d \) with

\[
V_i / V_{i-1} \cong S^{d(i)}
\]
as an \(F[\text{Sym}(n-1)] \)-module.

Suppose that \(\text{char } F = 0 \) or \(\text{char } F \geq n \). Then \(\text{char } F \not| (n-1)! = |\text{Sym}(n-1)| \) and so Maschke’s Theorem 1.3.1 implies for each \(1 \leq i \leq k \) there exists an \(F[\text{Sym}(n-1)] \)-submodule \(U_i \) of \(V_i \) with \(V_i = V_{i-1} \oplus U_i \). Then

\[
S^d = \bigoplus_{i=1}^k U_i \cong \bigoplus_{i=1}^k V_i / V_{i-1} \cong \bigoplus_{\mu \in \mathcal{P}} S^{d(i)} = \bigoplus_{\mu \in \mathcal{P}} S^\mu.
\]

Put \(p := \text{char } F \) and let \(\mathcal{P} \) be the set of of \(n+1 \). Then by 2.5.5 \(D\mu, \mu \in \mathcal{P} \) is a set of representatives for the isomorphism classes of simple \(F[\text{Sym}(n)] \)-modules. By 2.3.23 we know that \(D\mu \cong S^\mu \) as an \(F[\text{Sym}(n)] \)-module. Also by Maschke’s Theorem 1.3.1 \(S^d \uparrow \text{Sym}(n+1) \) is a semisimple \(F[\text{Sym}(n+1)] \)-module. Hence

\[
(*) S^d \uparrow \text{Sym}(n+1) \cong \bigoplus_{\mu \in \mathcal{P}} (S^\mu)^{n_\mu}
\]

for some \(n_\mu \in \mathbb{N} \).

Let \(\eta, \mu \in \mathcal{P} \). By 2.3.27 \(D\eta \) is an absolutely simple \(F[\text{Sym}(n+1)] \)-module over \(F \) and so 1.8.6 shows that \(\text{End}_{F[\text{Sym}(n+1)]}(D\eta) = F[D\eta] \). As \(S^{\eta} \cong D\eta \) we conclude that

\[
(**) \dim_F \text{Hom}_{F[\text{Sym}(n+1)]}(S^\mu, S^{\eta}) = \begin{cases} 1 & \text{if } \eta = \mu \\ 0 & \text{if } \eta \neq \mu \end{cases}
\]

and \((*) \) implies

\[
\dim_F \text{Hom}_{F[\text{Sym}(n+1)]}(S^d \uparrow \text{Sym}(n+1), S^{\eta}) = n_\eta.
\]

By Frobenius’ Reciprocity 1.7.4 we have

\[
\text{Hom}_{F[\text{Sym}(n+1)]}(S^d \uparrow \text{Sym}(n+1), S^{\eta}) \cong \text{Hom}_{F[\text{Sym}(n)]}(S^d, S^{\eta} \downarrow \text{Sym}(n)).
\]

and so

\[
(* *) \dim_F \text{Hom}_{F[\text{Sym}(n)]}(S^d, S^{\eta} \downarrow \text{Sym}(n)) = n_\eta.
\]

By \((*) \) applied to \(\text{Sym}(n+1) \) in place of \(\text{Sym}(n) \) we get

\[
S^{\eta} \downarrow \text{Sym}(n) \cong \bigoplus_{\mu \in \mathcal{P}} S^\mu.
\]

Hence \((**) \) applied to \(\text{Sym}(n) \) gives
2.8. The dual of a Specht module

Definition 2.8.1. Let R be a ring, G a group, M an $R[G]$-module and $\epsilon: G \rightarrow \mathbb{Z}/(R)\mathbb{Z}$ a multiplicative homomorphism. Then M_ϵ is the $R[G]$-module with $M_\epsilon = M$ as an R-module and

$$g \cdot_\epsilon m = \epsilon(g)m$$

for all $g \in G, m \in M$.

Proposition 2.8.2.

$$(S^\lambda)^* \cong M^\lambda / S^\lambda_{\epsilon} \cong S^\lambda_{\epsilon}$$

as an $F[\text{Sym}(n)]$-module.

Proof. By [2.4.21](#) know that $(S^\lambda)^* \cong M^\lambda / S^\lambda\perp$ as an $F[\text{Sym}(n)]$-module. So we only need to prove the second statement.

Fix a λ tableau s. Let $\pi \in R_s$. Note that $R_s = C_{\pi'}$, so $\pi \in C_{\pi'}$ and [2.3.13](#) shows that $\pi e_{\pi'} = \text{sgn}(\pi)e_{\pi'}$. Thus

$$\pi \cdot_{\text{sgn}} e_{\pi'} = \text{sgn}(\pi)\pi e_{\pi'} = \text{sgn}(\pi)\text{sgn}(\pi)e_{\pi'} = e_{\pi'}$$

Hence there exists a unique $F[\text{Sym}(n)]$-function

$$(*) \quad \alpha_s : M^\lambda \rightarrow M^\lambda_{\epsilon} \quad \text{with} \quad 3 \rightarrow e_{\pi'}$$

Let t be any λ-tabloid. Then the exists $\pi \in \text{Sym}(n)$ with $\pi s = t$ (namely $\pi = ts^{-1}$) and so

$$\alpha_s(t) = \alpha_s(\pi t) = \alpha_s(\pi s) = \pi \cdot_{\text{sgn}} e_{\pi'} = \text{sgn}(\pi)\pi e_{\pi'} = e_{\pi'}$$

Comparing with $(*)$ yields

$$n_\eta = \begin{cases} 1 & \text{if } \lambda \in \eta \downarrow \\ 0 & \text{if } \lambda \not\in \eta \downarrow \end{cases}$$

Observe that $\lambda \in \eta \downarrow$ if and only if $\eta \in \lambda \uparrow$. So

$$n_\eta = \begin{cases} 1 & \text{if } \eta \in \lambda \uparrow \\ 0 & \text{if } \eta \not\in \lambda \uparrow \end{cases}$$

It follows that

$$S^\lambda_{\epsilon} = \bigoplus_{\mu \in \lambda} (S^\mu)^{\eta_{\mu}} = \bigoplus_{\mu \in \lambda} S^\mu$$

\square
that is

\[(**\ast\ast) \quad \alpha_s(\overline{t}) = \text{sgn}(ts^{-1}) e_x\]

Observe that \((**\ast\ast)\) implies

\[(**\ast\ast\ast) \quad \text{Im } \alpha_s = S^{\lambda'_x}_{\text{sgn}}\]

Since \(\lambda'' = \lambda\) we also obtain a unique \(FSym(n)\) linear function

\[(+\ast) \quad \alpha_x : M^{\lambda'}_{\text{sgn}} \rightarrow M^d, \quad \overline{t} \mapsto \text{sgn}(ts^{-1}) e_t\]

Then

\[(+\ast\ast) \quad \text{Im } \alpha_x = S^d.\]

We claim that \(\alpha_x\) is the adjoint of \(\alpha_s\), that is

\[(+\ast\ast\ast) \quad \left(\begin{array}{c|c} \alpha_s(\overline{t}) & \overline{r} \\ \hline \overline{t} & \alpha_x(\overline{r}) \end{array} \right) = \left(\begin{array}{c} \text{sgn}(ts^{-1}) e_x \\ \hline \text{sgn}(ts^{-1}) e_t \end{array} \right)\]

for all \(\lambda\)-tableaux \(t, r\).

Indeed suppose that \(\overline{r}\) is involved in \(\alpha_s(\overline{t})\). Since \(\alpha_s(\overline{t}) = \text{sgn}(ts^{-1}) e_x\) we conclude that there exits \(\beta \in C_x\) with \(\overline{r} = \beta \overline{r}'\). Thus

\[
\left(\begin{array}{c|c} \alpha_s(\overline{t}) & \overline{r} \\ \hline \overline{t} & \alpha_x(\overline{r}) \end{array} \right) = \left(\begin{array}{c} \text{sgn}(ts^{-1}) e_x \\ \hline \text{sgn}(ts^{-1}) e_t \end{array} \right) = \text{sgn}(ts^{-1}) \text{sgn}(\beta).
\]

Since \(\overline{r} = \beta \overline{r}'\), there exists \(\delta \in R_x\) with \(\delta r' = \beta r\). Observe that \(\delta \in C_x, \beta \in R_t\) and \(\delta r = \beta t\). Thus \(\overline{t} = \overline{r} = \overline{t}\). Hence \(\overline{t}\) is involved in \(e_t\) and

\[
\left(\begin{array}{c} \overline{t} \\ \hline \alpha_x(\overline{r}) \end{array} \right) = \text{sgn}(rs^{-1}) \text{sgn}(\delta).
\]

From \(\delta r = \beta t\) we get \(\delta rs^{-1} = \beta ts^{-1}\). Thus

\[
\text{sgn}(rs^{-1}) \text{sgn}(\delta) = \text{sgn}(ts^{-1}) \text{sgn}(\beta)
\]

and so \((+\ast\ast\ast)\) holds.

By \((+\ast\ast\ast)\) we can apply \ref{2.3.15} and conclude that

\[
\ker \alpha_s = (\text{Im } \alpha_x)^\perp \cong S^{\lambda'_x}_{\text{sgn}}
\]

Hence the Isomorphism Theorem gives

\[
M^d/S^{\lambda'_x}_{\text{sgn}} = M^d/\ker \alpha_s \cong \text{Im } \alpha_s \cong S^{\lambda'_x}_{\text{sgn}}
\]

\[\square\]
Lemma 2.8.3. Let G be a group, let F a commutative ring and let V and W be $F[G]$-modules. Then $V \otimes_F W$ is an $F[G]$-module via
\[g(v \otimes w) = gv \otimes gw \]
for all $g \in G$, $v \in V$ and $w \in W$.

Proof. Readily verified. □

Lemma 2.8.4. Let F be a commutative ring, G a group, M a $F[G]$-module and $\epsilon : G \to \mathbb{Z}$ a multiplicative homomorphism. View F as an $F[G]$-module via $gr = r$ for all $g \in G$, $r \in F$. Then
\[M_\epsilon \cong F_\epsilon \otimes_F M \]
as an $F[G]$-module.

Proof. Observe first that there exists an F-isomorphism
\[\alpha : F_\epsilon \otimes_F M \to M, \quad r \otimes m \mapsto rm. \]
Moreover, if $g \in G$, $r \in F$ and $m \in M$ then
\[\alpha(g(r \otimes m)) = \alpha((g \cdot \epsilon r) \otimes gm) = \alpha(\epsilon(g)r \otimes gm) = \epsilon(g)rgm = \alpha(r \otimes m) \]
and so α is an $F[G]$-isomorphism. □

Corollary 2.8.5. (a) $M^{(n)} = S^{(n)} \cong F$ as an $F[\text{Sym}(n)]$-module

(b) $S^{(1^r)} \cong F_{\text{sgn}}$ as an $F[\text{Sym}(n)]$-module

(c) $(S^\lambda)^* \cong S^{(1^r)} \otimes_F S^\lambda$ as an $F[\text{Sym}(n)]$-module

Proof. (a) Observe $12\ldots n$ is the unique (n)-tabloid. Also $e_t = \underbrace{12\ldots n}$ for all (n)-tableaux t.

By 2.8.2
\[F \cong F^* \cong S^{(n)*} \cong S^{(n)^*}_{\text{sgn}} = S^{(1^r)}_{\text{sgn}}. \]

\[S^\lambda \cong S^\lambda_{\text{sgn}} \cong F_\epsilon \otimes_F S^\lambda \cong S^{(1^r)} \otimes_F S^\lambda. \]
Bibliography

[La] S.Lang *Algebra*