Group Theory Lecture Notes for MTH 912/913 08/09

Ulrich Meierfrankenfeld

May 1, 2013

Contents

1	Bas	ic Concepts for Infinite Groups	5						
	1.1	Classes of Groups and Operators	5						
	1.2	Varieties	9						
	1.3	Series	12						
	1.4	Hyper Sequences	21						
	1.5	Radical Classes	38						
	1.6	Finitely generated groups	41						
	1.7	Locally \mathcal{X} -groups	44						
2	Loc	cally nilpotent and locally solvable groups 4							
	2.1	Commutators	47						
	2.2	Locally nilpotent groups	48						
	2.3	The generalized Fitting Subgroup	52						
	2.4	Chieffactors of locally solvable groups	54						
	2.5	Polycyclic groups	55						
3	Gro	oups with MIN	59						
	3.1	Basic properties of groups with MIN	59						
	3.2	Locally solvable groups with MIN	60						
	3.3	Locally finite groups with finite involution centralizer	60						
	3.4	Locally finite groups with MIN	66						
	3.5	J_1	80						
\mathbf{A}	Set	Theory	91						
	A.1	The basic language of sets theory	91						
	A.2	The Axioms of Set Theory	93						
	A.3	Well ordered sets and the Recursion Theorem	95						
	A.4	Ordinals	97						
	A.5	The natural numbers	99						
	A.6	Cardinals	102						

в	Homework							
	B.1	Homework 3 from MTH912	103					
	B.2	Homework 4 from MTH912	104					

Chapter 1

Basic Concepts for Infinite Groups

1.1 Classes of Groups and Operators

Definition 1.1.1. [class of groups] A class of groups is class \mathcal{X} such that

- (i) [i] Each member of \mathcal{X} is a group.
- (ii) [ii] If $G \in \mathcal{X}$ and $H \cong G$ then $H \in \mathcal{X}$.
- (iii) [iii] All trivial groups are in \mathcal{X} .

For example each of the following are classes of groups:

- $[\mathbf{a}] \ \mathcal{F}$, the class of finite groups.
- [b] \mathcal{F}_{π} , the class of finite π -groups (here π is a set of primes, and a finite group G is a π -group if all prime divisors of |G| are in π .
- $[\mathbf{c}] \ \mathcal{C}$, the class of cyclic groups.
- $[\mathbf{d}] \ \mathcal{A}$, the class of abelian groups.
- $[\mathbf{e}] \quad \mathcal{G}$, the class of finitely generated groups.
- $[\mathbf{f}] \ \mathcal{T}$, the class of trivial groups.

Definition 1.1.2. [extensions] Let \mathcal{X} and \mathcal{Y} be classes of groups.

- (a) [a] The members of \mathcal{X} are called \mathcal{X} -groups.
- (b) [c] We say that \mathcal{X} is a subclass of \mathcal{Y} and write $\mathcal{X} \leq \mathcal{Y}$ if $A \in \mathcal{Y}$ for all $A \in \mathcal{X}$.
- (c) [b] \mathcal{XY} denotes the class of all groups G such that there exists $A \leq G$ with $A \in \mathcal{X}$ and $G/A \in \mathcal{Y}$. A \mathcal{XY} -group is also called a \mathcal{X} -by- \mathcal{Y} group.

Consider the subnormal series

$$1 \trianglelefteq \langle (12)(34) \rangle \trianglelefteq \langle (12)(34), (13)(24) \rangle \trianglelefteq \operatorname{Alt}(4) \trianglelefteq \operatorname{Sym}(4)$$

The factors of this series are isomorphic to

$$C_2, C_2, C_3, C_2$$

Thus Sym(4) is a member of $((\mathcal{CC}), \mathcal{C})\mathcal{C}$.

Note that Sym(4) has no non-trivial cyclic subgroup. It follows that Sym(4) is not a member of $\mathcal{C}((\mathcal{CC}))$. hence the associate law does not hold for products of classes og groups. To save parentheses we use the following convention for products. Let $a_1, a_2, \ldots a_n$ in a set with a binary operation. Then

$$a_1 \cdot a_2 \cdot a_3 = a_1(a_2a_3)$$

and inductively

$$a_1 \cdot a_2 \cdot a_3 \cdot \ldots \cdot a_n = a_1(a_2 \cdot a_3 \cdot \ldots \cdot a_n)$$

Lemma 1.1.3. [char ext] Let $\mathcal{X}_1, \mathcal{X}_2, \mathcal{X}_n$ be classes of groups and G a group.

(a) [a] $G \in \mathcal{X}_1 \mathcal{X}_2 \dots \mathcal{X}_n$ if and only if there exists a subnormal series

$$1 \trianglelefteq G_1 \trianglelefteq G_2 \trianglelefteq \dots G_{n-1} \trianglelefteq G_n$$

of G such that $G_i/G_{i+1} \in \mathcal{X}_i$ for all $1 \leq i \leq n$.

(b) [b] $G \in \mathcal{X}_1 \cdot \mathcal{X}_2 \cdot \ldots \cdot \mathcal{X}_n$ if and only if there exists a normal series

$$1 \trianglelefteq G_1 \trianglelefteq G_2 \trianglelefteq \dots G_{n-1} \trianglelefteq G_n$$

of G such that $G_i/G_{i+1} \in \mathcal{X}_i$ for all $1 \leq i \leq n$. (Recall here that "normal series" means that each G_i is normal in G.

(c) $[\mathbf{c}] \quad \mathcal{X}_1 \cdot \mathcal{X}_2 \cdot \ldots \cdot \mathcal{X}_n \leq \mathcal{X}_1 \mathcal{X}_2 \ldots \mathcal{X}_n$

Proof. (a) and (b) follows easily from the definitions. Since every normal series is a subnormal series, (c) follows from (a) and (b). \Box

Definition 1.1.4. [operation] An operation \mathbf{A} on the classes of groups is a rule which assigns to each class of group \mathcal{X} a class of group $\mathbf{A}\mathcal{X}$ such that

- (i) [a] $\mathbf{A}\mathcal{T} = \mathcal{T}$.
- (ii) [b] $\mathcal{X} \leq \mathbf{A}\mathcal{X}$ for each class of groups \mathcal{X} .
- (iii) [c] $\mathbf{A}\mathcal{X} \leq \mathbf{A}\mathcal{Y}$ for each classes of groups \mathcal{X}, \mathcal{Y} with $\mathcal{X} \leq \mathcal{Y}$.

For a class of group \mathcal{X} let $\mathbf{S}\mathcal{X}$ the class of all groups which are isomorphic to a subgroup of \mathcal{X} -group.

For a class of group \mathcal{X} let $\mathbf{H}\mathcal{X}$ the class of all groups which are isomorphic to a homomorphic image of a \mathcal{X} -group.

Then both \mathbf{S} and \mathbf{H} are operations.

Define $\mathcal{X}^0 := \mathcal{T}$ and inductively, $\mathcal{X}^{n+1} := \mathcal{X}^b \mathcal{X}$. Also put $\mathbf{P}\mathcal{X} := \bigcup_{n=0}^{\infty} \mathcal{X}^n$. Then \mathbf{P} is an operation. Then members of $\mathbf{P}\mathcal{X}$ are called poly- \mathcal{X} -groups.

Lemma 1.1.5. [char solvable] Let G be a group and $n \in N$. Then the following are equivalent.

- (a) $[\mathbf{a}] \quad G \in \mathcal{A}^n$.
- (b) [b] $G^{(n)} = 1$.
- (c) [c] $G \in \underbrace{\mathcal{A} \cdot \mathcal{A} \cdot \ldots \cdot \mathcal{A}}_{n-times}$.

Here $G^{(n)}$ is inductively defined as $G^{(0)} := G$ and $G^{n+1} = [G^n, G^n]$. Also we often use G' for $G^{(1)}$, G'' for $G^{(2)}$ and so on.

Proof. (a) \implies (b): Suppose $G \in \mathcal{A}^n$. Since $\mathcal{A}^n = \mathcal{A}^{n-1}\mathcal{A}$ there exists $H \trianglelefteq G$ with $H \in \mathcal{A}^{n-1}$ and $G/H \in \mathcal{A}$. Hence G/H is abelian and so $G' \le H$. By induction on n, $H^{(n-1)} = 1$ and so

$$G^{(n)} = (G')^{(n-1)} \le H^{(n-1)} = 1$$

(b) \implies (c): Suppose $G^{(n)} = 1$ and consider the normal series

$$1 = G^{(n)} \trianglelefteq G^{(n-1)} \trianglelefteq \dots G^{(1)} \le G^0 = G$$

Since $G^{(i-1)}/G^{(i)}$ is abelian, 1.1.3(b) shows that $G \in \underbrace{\mathcal{A} \cdot \mathcal{A} \cdot \ldots \cdot \mathcal{A}}_{n-\text{times}}$. (c) \Longrightarrow (a): Suppose that $G \in \underbrace{\mathcal{A} \cdot \mathcal{A} \cdot \ldots \cdot \mathcal{A}}_{n-\text{times}}$. Then by 1.1.3(c), $G \in \mathcal{A}^n$.

Definition 1.1.6. [def:solvable] A group G is called in solvable if and only if its is polyabelian, that is if $G \in \mathbf{PA}$.

Combining 1.1.5 and 1.1.3 we see G is solvable iff G has a subnormal series with abelian quotients, iff $G^{(n)} = 1$ for some $n \in \mathbb{N}$ and iff G has a normal series with abelian factors.

Definition 1.1.7. [A-closed] Let A and B be operations.

- (a) [a] A class of groups \mathcal{X} is called A-closed if $A\mathcal{X} = \mathcal{X}$.
- (b) [b] The operation **AB** is defined by $(\mathbf{AB})\mathcal{X} = \mathbf{A}(\mathbf{B}\mathcal{X} \text{ for all classes of groups } \mathcal{X}$.

(c) [c] A is called an closure operation if for all classes of groups \mathcal{X} , $\mathbf{A}\mathcal{X}$ is A-closed.

 \mathcal{X} is **S** closed if and only if every subgroup of an \mathcal{X} -group is a \mathcal{X} -group. The classes of groups $\mathcal{F}, \mathcal{G}, \mathcal{A}, \mathcal{F}_{\phi}$, all are **S** and **H** closed. **A** is a closure operator iff $\mathbf{A}(\mathbf{A}\mathcal{X}) = \mathbf{A}\mathcal{X}$ for all classes of groups \mathcal{X} and so iff $\mathbf{A} = \mathbf{A}^2$.

Definition 1.1.8. [def: subdirect product]

- (a) [a] Let $(G_i, i \in I)$ be a family of groups and H a subgroup of $\times_{i \in I} G_i$ such that for all $i \in I$ the projection of H onto G_i is onto. Then H is called a subdirect product of $(G_i, i \in I)$. More generally we will also call any group isomorphic to a subdirect product a subdirect product.
- (b) [b] Let X be a class of groups. Then RX is the class of all groups which are isomorphic to subdirect product of a family of X-groups. The members of RX are called residually X-groups.

Lemma 1.1.9. [subdirect product] let G be a group.

- (a) [a] Let $(G_i, i \in I)$ be a family of normal subgroups of G. Then $G / \bigcap_{i \in I} G_i$ is a subdirect product of $(G/G_i, i \in I)$.
- (b) [b] Let $(H_i, i \in I)$ be a family of groups Then G is isomorphic to a subdirect product of $(G_i, i \in I)$ iff there exists a family of $(G_i, i \in I)$ of normal subgroups of G such that $\bigcap_{i \in I} G_i = 1$ and $G/G_i \cong G_i$ for all $i \in I$.
- (c) [c] G is a residually \mathcal{X} group iff for all $1 \neq a \in G$ there exists a normal subgroup G_a of G such that $a \notin G_a$ and $G/G_a \in \mathcal{X}$.

Proof. (a) Define $\alpha : G \to X_{i \in I} G/G_i, h \to (aG_i, i \in I)$. Then ker $\alpha = \bigcap_{i \in I} G_i = 1$. Also the image of α is clearly of subdirect product of $(G/G_i, i \in I)$. So $G/\bigcap_{i \in I} G_i \cong G/\ker \alpha \cong$ Im α is a subdirect product of $(H_i, i \in I)$.

(b) Suppose there exists a family of $(G_i, i \in I)$ of normal subgroups of G such that $\bigcap_{i \in I} G_i = 1$ and $G/G_i \cong G_i$ for all $i \in I$. Then by (a) $G \cong G/\bigcap_{i \in I} G_i$ is a subdirect product of $(G/G_i, i \in I)$. Since $\bigotimes_{i \in I} G/G_i \cong \bigotimes_{i \in I} H_i$, G is also a subdirect product of $(H_i, i \in I)$

Suppose next that G is a subdirect product of $(H_i, i \in I)$. Let G_i be the kernel of the project of H onto G_i . Then clearly $\bigcap_{i \in I} G_i = 1$ and $G/G_i \cong H_i$.

(c) Suppose G is a residually \mathcal{X} groups. G is a subdirect product of a family $(H_i, i \in I)$ of \mathcal{X} groups. By (b) there exists a family $(G_i, i \in I)$ of normal subgroups of G with $\bigcap_{i \in I} G_i = 1$ and $G/G_i \cong H_i$. Thus G/G_i is an \mathcal{X} groups. Let $1 \neq a \in G$. Since $\bigcap_{i \in I} G_i = 1$ there exists $i \in I$ with $a \notin G_i$. So the second statement in (c) holds with $G_a = G_i$.

Suppose next that for each $1 \neq a \in G$ there exists a normal subgroup G_a of G such that $a \notin G_a$ and $G/G_a \in \mathcal{X}$. Then $\bigcap_{a \in G^{\sharp}} G_a = 1$ and so by (b), G is a subdirect product of the family of \mathcal{X} -groups, $(G_a, a \in G^{\sharp})$. Thus G is residually \mathcal{X} .

1.2 Varieties

We will consider classes of groups which are \mathbf{R} and \mathbf{H} closed. It will turn out that these are exactly the so called varieties of groups:

Let I be a set. Recall that a free group on I is a groups generated by a family $x = (x_i, i \in I)$ of elements such that for each group G and each family of elements $y = (y_i, i \in I) \in G^I$, there exists a unique homomorphism $\alpha_y : F \to G$ with $\alpha_y(x_i) = y_i$ for all $i \in I$. The call the elements of F words in $(x_i, i \in I)$. Note that each word $\theta \in F$ can be uniquely written as

$$\theta = x_{m_1}^{i_1} \dots x_{i_k}^{m_k}$$

where k is a non-negative integer, $i_l \in I, i_l \neq i_{l+1}$ and m_l is a non-zero integer. Also

$$\alpha_y(\theta) = y_{m_1}^{i_1} \dots y_{i_k}^{m_k}$$

We will also write $\theta(y)$ for $\alpha_y(\theta)$. If θ is a word and G is group define

$$\theta(G) := \langle \alpha_y(\theta) \mid y \in G^I \rangle = \langle \theta(y) \mid y \in G^I \rangle$$

For example $1_F(G) = 1$, $x_1(G) = G$, $[x_1, x_2](G) = G'$, and $[[x_1, x_2], [x_3, x_3](G) = G''$ More generally if $W \subseteq F$ is a set of words we define

$$W(G) = \langle G^{\theta} \mid \theta \in W = \langle \alpha_y(\theta) \mid y \in G^I, \theta \in W \rangle$$

The variety $\mathcal{V}(\theta)$ defined by θ is the class of all groups G such that $\theta(G) = 1$, so $G \in \mathcal{V}(\theta)$ if and only if

$$y_{i_1}^{m_1} \dots y_{i_k}^{m_k} = 1$$
 for all $y \in G^k$

For example $\mathcal{V}(1)$ is the class \mathcal{D} of all groups, $\mathcal{V}(x_1)$ is the class \mathcal{T} of trivial groups and $\mathcal{V}([x_1, x_2])$ is the class \mathcal{A} of abelian groups.

More generally if W is a set of words the variety $\mathcal{V}(W)$ defined by W is the class of all groups G such that W(G) = 1. And a variety of groups is the variety defined by some sets of words.

Lemma 1.2.1. [onto hom] Let I be a set, $J \subseteq I$, F a free group on I, H a groups and $y \in H^J$. Suppose that $|I \setminus J| \ge |H|$. Then there exists an onto homomorphism $\beta : F \to H$ with $\beta(x_j) = y_j$ for all $j \in J$.

Proof. Since $|I \setminus J| \ge |H|$ there exists an onto function $\tau : I \setminus J \to J$. Define $z \in H^I$ by $z_i = \tau(i)$ of $i \notin J$ and $z_i = y_i$ if $i \in J$. Then the lemma holds with $\beta = \alpha_z$.

Definition 1.2.2. [def:wx] Let \mathcal{X} be a class of groups and F a free group of infinite rank on $(x_i, i \in \mathbb{Z}^+)$.

$$W(\mathcal{X}) = \{ w \in F \mid w(G) = 1 \text{ for all } G \in \mathcal{X} \}$$

Proposition 1.2.3. [char variety] Let \mathcal{X} be class of groups. The the following are equivalent:

- (a) $[\mathbf{a}] \ \mathcal{X} \text{ is } \mathbf{H} \text{ and } \mathbf{R} \text{ closed.}$
- (b) [b] $\mathcal{X} = \mathcal{V}(W(\mathcal{X}))$
- (c) $[\mathbf{c}] \quad \mathcal{X} \text{ is a variety of groups.}$

Proof. It is easy to verify that a variety of groups is **H** and **R** closed (see Homework 1). Also (b) implies (c). So we just need to show that (a) implies (b). Assume \mathcal{X} is **H** and **R** closed and put $W = W(\mathcal{X})$. Clearly $\mathcal{X} \leq \mathcal{V}(W)$. So we just need to show that any $G \in \mathcal{V}(W)$ is an \mathcal{X} -group. Note that for any $\theta \in F \setminus W$ there exists a \mathcal{X} -group H_{θ} with $\theta(H_{\theta}) \neq 1$. Let I be an infinite set with cardinality larger that |G| and any $|H_{\theta}|, \theta \in F \setminus W$ (For example $J = \biguplus_{\theta \in T} H_{\theta} \uplus \mathbb{N} \uplus G$.) Let F_I be a free group on $(z_i, i \in I)$. By 1.2.1 there exists an onto homomorphism $\alpha : F_I \to G$. Put $M = \ker \alpha$. We will now show

1°. [1] Let $a \in F_I \setminus M$, then there exists $K_a \leq F_I$ with $F_I/K_a \in \mathcal{X}$ and $a \notin K_a$.

Indeed let $a = z_{i_1}^{m_1} \dots z_{i_k}^{m_k}$ with $i_l \in I$ and $m_k \in \mathbb{Z}^{\sharp}$. Since \mathbb{Z}^+ is infinite, there exists $j_1, \dots, j_k \in I$ with $i_s = i_t$ if and only if $j_s = j_t$. Put

$$\theta := x_{j_1}^{m_1} \dots x_{j_k}^{m_k} \in F$$

 $u_i = z_i M \in F_I / M$ and $u = (u_i)_{i \in I} \in (F_I / M)^I$. Then

$$\theta(u) = u_{j_1}^{m_1} \dots u_{j_k}^{m_k} = z_{i_1}^{m_1} \dots z_{i_k}^{m_k} M = aM \neq 1_{F/M}$$

Hence $\theta(F_I/M) \neq 1$ and since $F_I/M \cong G$ also $\theta(G) \neq 1$. As $\rho(G) = 1$ for all ρinW this implies that $\theta \in F \setminus W$. Since $\theta(H_\theta) \neq 1$ there exists $y \in H^I_\theta$ with $\theta(y) \neq 1$. Since I is infinite

$$|I \setminus \{i_l \mid 1 \le l \le k\}| = |I| \ge |H_{\theta}|$$

Thus 1.2.1 there exists an onto homomorphism $\beta : F_I \to H_\theta$ with $\beta(z_l) = y_l$ for all $l \in \{i_1, \ldots, i_k\}$. Then

$$\beta(a) = y_{j_1}^{m_1} \dots y_{j_k}^{m_k} = \theta(y) \neq 1$$

and so $a \notin \ker \beta$. Also $F_I / \ker \beta \cong \operatorname{Im} \beta = H_{\theta} \in \mathcal{X}$ and so (1°) holds with $K_a := \ker \beta$.

Put $K := \bigcap_{a \in F_i \setminus M} K_a$. If $a \in F_I \setminus M$, then $a \notin K_a$ and so also $a \notin K$. Thus $K \leq M$. By 1.1.9(a), F_I/K is a subdirect product of the family of \mathcal{X} groups $(F_I/K_a, a \in F_I \setminus M)$. Since \mathcal{X} is **R**-closed this means that F_I/K is a \mathcal{X} -group. Since \mathcal{X} is **H**-closed, any quotient of F_I/K is also a \mathcal{X} -group. As

$$G \cong F_I/M \cong F_I/K/M/K$$

we conclude that $G \in \mathcal{X}$ and so $\mathcal{X} = \mathcal{V}(W)$.

Definition 1.2.4. [def:hom] Let H and G be groups.

- (a) $[\mathbf{a}]$ Hom(H, G) is the set of homomorphism from H to G.
- (b) [b] End(G) is the set of endomorphism of G, that is End(G) = Hom(G,G).
- (c) [c] A subgroup A of G is called fully invariant in G, if $\alpha(A) \leq A$ for all $\alpha \in \text{End}(G)$.
- (d) [d] A subgroup A of G is called characteristic in G if $\alpha(A) \leq A$ for all $\alpha \in Aut(G)$.

See Homework 1 for example if subgroups which are characteristic but not fully invariant.

Lemma 1.2.5. [hom fg] Let F be a free group on the set I, $W \subseteq F$ and G a group.

(a) [a]
$$\operatorname{Hom}(F,G) = \{\alpha_y \mid y \in G^I\}.$$

(b) [b] End(F) = {
$$\alpha_y \mid y \in G^I$$
}.

- (c) $[\mathbf{c}] \quad W(G) = \langle \beta(W) \mid \beta \in \operatorname{Hom}(F,G) \rangle.$
- (d) $[\mathbf{d}] \quad W(F) = \langle \beta(W) \mid \beta = \operatorname{End}(F) \rangle$.

Proof. (a) follows immediately from a definition a free group. (b) is the special case F = G in (a). (c) follows from (a) and the definition of W(G). (d) is the special case F = G in (c).

Lemma 1.2.6. [full invariant] Let F be a free group and $W \leq F$. Then the following are equivalent.

- (a) $[\mathbf{a}] \quad W = W(F).$
- (b) $[\mathbf{b}]$ W is fully invariant in F.

Proof. By definition, W is full invariant in F iff $\beta(W) \leq W$ for all $\beta \in \text{End}(\mathbb{F})$ and so if and only if $\langle \beta(W) \mid \beta \in \text{End}(\mathbb{F}) \rangle \leq W$. Since $W = \text{id}_F(W) \leq \langle \beta(W) \mid \beta \in \text{End}(\mathbb{F}) \rangle$, this holds iff $W = \langle \beta(W) \mid \beta \in \text{End}(\mathbb{F}) \rangle$ and so by 1.2.5(d), iff W = W(F).

1.3 Series

Definition 1.3.1. [def:action]

- (a) [a] An actions (of groups) is a triple (A, G, α) , where A and G are groups and α : $A \to \operatorname{Aut}(G)$ is a homomorphism. We usually will write g^a for $g.a\alpha$ and call (A, G) an action. We also will say that say that A acts on G and that G is an A-group.
- (b) [b] Suppose A acts on G. A subgroup H of G is called A-invariant if $H^a = H$ for all $a \in A$. We also will say that H is an A-subgroup
- (c) [c] We say that an action of A on G is simple, if there exists no proper normal Asubgroup of G. In this case we call G a simple A-group.
- (d) [d] An action is called faithful if α is 1-1.
- (e) [e] If G is an A-group, $S \subseteq G$ and $T \subseteq A$, then $C_S(T) = \{s \in S \mid s^t = s \text{ for all } t \in T\}$ and $C_T(S) = \{t \in T \mid s^t = s \text{ for all } s\}$. $C_A(G)$ is called the kernel of the action. Note here that $C_A(G) = \ker \alpha$.

Definition 1.3.2. [def:series] Let G be a group, A a group acting on G, H an A-invariant subgroup of G and H am A-invariant subgroup of G. An A-series from H to G is set \mathcal{N} such that

- (i) [i] If $D \in \mathcal{N}$ then D is an A- subgroup of G containing H.
- (*ii*) [**ii**] $H \in \mathcal{N}$ and $G \in \mathcal{N}$.
- (iii) [iii] \mathcal{N} is totally ordered with respect to inclusion, that is if $D, E \in \mathcal{N}$ then $D \leq E$ or $E \leq D$.
- (iv) [iv] \mathcal{N} is closed under intersections and unions, that is if $\emptyset \neq \mathcal{M} \subseteq \mathcal{N}$, then $\bigcap \mathcal{M} \in \mathcal{N}$ and $\bigcup \mathcal{M} \in \mathcal{N}$.
- (v) $[\mathbf{v}]$ For $D \in \mathcal{N} \setminus H$ define $D^- : \bigcup \{E \in \mathcal{N} \mid E < D\}$. Then $D^- \trianglelefteq D$.
 - A A-series of G is a A-series from 1 to G.
 - A series from H to G is a 1-series from H to G.

Observe that a finite series of G is such a set of subgroups $\{N_0, N_1, N_2, \dots, N_k\}$ of G such

$$1 = N_0 \trianglelefteq N_1 \trianglelefteq N_2 \trianglelefteq \dots N_{k-1} \trianglelefteq N_k = G$$

Let \mathbb{K} be a field, Ω a set and V a \mathbb{K} -space with basis $(v_i, i \in \Omega)$, Observe that $\operatorname{Sym}(\Omega)$ acts on V via $v_i^g = v_{ig}$ for all $i \in \Omega$, $g \in \operatorname{Sym}(\Omega)$. Let $V_0 = \{\sum_{i \in \Omega} \lambda_i v_i \mid \sum_{i \in \Omega} \lambda_i = 0\}$. Then

$$0 \leq V_0 \leq V$$

is a normal $Sym(\Omega)$ -series on V. Let p be a prime, then

$$0\dots p^{k+1}\mathbf{Z} \le p^k\mathbf{Z} \le \dots p^2\mathbf{Z} \le p\mathbf{Z} \le \mathbf{Z}$$

is a normal series of Z.

Definition 1.3.3. [def:basic series] Let G be a group, A a group acting on G, H an A-subgroup of G, and \mathcal{N} an A-series from H to G

- (i) [a] If $D \in \mathcal{N} \setminus \{H\}$ with $D \neq D^-$ then D/D^- is called a factor of \mathcal{N} and (D^-, D) is called a jump of \mathcal{N}
- (ii) [b] \mathcal{N} is called a normal if $D \leq in G$ for all $D \in \mathcal{N}$.
- (iii) [c] \mathcal{N} is called an A-composition series from H to G if each factor of \mathcal{N} is a simple A-group,
- (iv) [d] \mathcal{N} is called an A-chief series from H to G if \mathcal{N} is a normal and no proper subgroup of a factor of \mathcal{N} is invariant under A and G.
- (v) [e] \mathcal{N} is called ascending if \mathcal{N} is well-ordered with respect to inclusion, that is every non empty subset of \mathcal{N} has a minimal element.
- (vi) [f] \mathcal{N} is called descending if \mathcal{N} is well-ordered with respect to reverse inclusion, that is every non empty subset of \mathcal{N} has maximal element.

The series

$$0 \dots p^{k+1} \mathbf{Z} \le p^k \mathbf{Z} \le \dots p^2 \mathbf{Z} \le p \mathbf{Z} \le \mathbf{Z}$$

is a descending compositions series for Z. We claim that Z does not have an ascending compositions series. Indeed, let \mathcal{N} be any ascending series of Z and let D be the minimal element of $\mathcal{N} \setminus \{1\}$. Then $D^- = 1$ and so $D \cong D/D^-$ is isomorphic to a factor of \mathcal{N} . Since D is a non-trivial subgroup of Z, $D \cong Z$ and so D is not simple. Thus \mathcal{N} is not a composition series.

Lemma 1.3.4. [easy jumps] Let \mathcal{N} be a series from H to G.

- (a) [a] Let $B, T \in \mathcal{N}$ with B < T, then (B, T) is a jump of \mathcal{N} if and only if C = B or C + T for any $C \in \mathcal{N}$ with with $B \leq C \leq T$.
- (b) [b] Let $X \subseteq G$ with $X \nsubseteq H$. Put $B_X := \bigcup \{D \in \mathcal{N} \mid X \nsubseteq D\}$ and $T_x = \bigcap \{E \in \mathcal{N} \mid X \subseteq E\}$. Then $B_X \cup X \subseteq T_X$ and one of the following holds:
 - 1. [1] $X \subseteq B_X = T_X$ and X is infinite.

2. [2] $X \nsubseteq B_X < T_X$ and (B_X, T_X) is the unique jump of \mathcal{N} with $X \subseteq T_X$ and $X \nsubseteq B_X$.

Proof. (a) Let (B,T) is a jump and suppose $C \in \mathcal{N}$ with $B \leq C \leq T$. Since (B,T) is a jump, $B = T^-$. If $C \neq T$ then $C \leq T^- = B$ by definition of T^- . Thus C = B.

Suppose now that C = B or C = T for all $C \in \mathcal{N}$ with $B \leq C \leq T$. Let $D \in \mathcal{N}$ with D < T. The $B \leq D$ or $D \leq B$. In the former case we have $B \leq D < T$ and so the assumption of (B.T) implies B = D. So in any case $D \leq B$ and thus $T^- \leq B$. Since B < T, we also have $B \leq T^-$ and so $B = T^-$ and $(B,T) = (T^-,T)$ is a jump of \mathcal{N} .

(b) Let $D \in \mathcal{N}$ with $X \nsubseteq D$ and $E \in \mathcal{N}$ with $X \subseteq E$. Then $E \nsubseteq D$ and so $D \subseteq E$. Thus $B_X \subseteq T_X$. Clearly $X \subseteq T_X$.

Suppose that $X \subseteq B_X$. Then $T_X \subseteq B_X$ and so $T_X = B_X$. Moreover for each $x \in X$ there exists $D_x \in \mathcal{N}$ with $x \in D_x$ but $X \notin D_x$. Let $D = \bigcup_{x \in X} D_x$. Then $X \subseteq D$ and so $D \neq D_x$ for all $x \in X$. Since \mathcal{N} is totally ordered this implies that X is infinite.

Suppose next that $X \nsubseteq B_X$. Then $B_X \subset T_X$. Let $D \in \mathcal{N}$ with $B_X \leq D \leq T_X$. If $X \subseteq D$, then $T_X \leq D$ and so $D = T_X$. If $X \nsubseteq D$, then $D \leq B_X$ and so $D = B_X$. Hence by (a), (B_X, T_X) is a jump.

Now let (B,T) be any jump with $X \subseteq T$ and $X \nsubseteq B$. Then by definition of B_X and T_X ,

$$B \le B_X < T_X \le T$$

Since (B,T) is a jump, (a) implies $B = B_X$ and $T = T_X$.

Lemma 1.3.5. [completion] Let S be a set and \mathcal{N} a chain of subsets of § (That is every member of \mathcal{N} is a subset of S and if $D, E \in \mathcal{N}$ then $D \subseteq E$ or $E \subseteq D$). Let $\mathcal{N}^* = \{\bigcap \mathcal{M}, \bigcup \mathcal{M} \mid \emptyset \neq \mathcal{M} \subseteq \mathcal{N}\}$. Then \mathcal{N}^* complete chain of subsets of S, that is \mathcal{N}^* is a chain of subsets of \mathcal{N} and is closed under unions and intersections.

Proof. Let $D \in \mathcal{N}^*$. Then there exists $\mathcal{D} \subseteq \mathcal{N}$ with $D = \bigcap \mathcal{D}$ or $D = \bigcup \mathcal{D}$. In the first case put $\tilde{D} = \{A \in \mathcal{N} \mid D \subseteq A\}$ and note that $D = \bigcap \tilde{\mathcal{D}}$. In second case put $\tilde{D} = \{A \in \mathcal{N} \mid A \subseteq D\}$ and notet that $D = \bigcap \tilde{\mathcal{D}}$. D is either the intersection of a subset of \mathcal{N} which is closed under supersets or the unions of subset of \mathcal{N} which is closed under supersets.

We will first show that

1°. [1] \mathcal{N}^* is a chain.

For this let $D, E \in \mathcal{N}^*$. Suppose first that $D = \bigcap \mathcal{D}, E = \bigcap \mathcal{E}$ with \mathcal{D}, \mathcal{E} subsets of \mathcal{N} . Suppose $D \notin \mathcal{E}$. Then there exists $B \in \mathcal{E}$ with $D \notin B$. Since $D \subseteq A$ for all $A \in \mathcal{D}$, we get $A \notin B$ and so $B \subseteq A$ for all $A \in \mathcal{D}$. Thus $B \subseteq \bigcap \mathcal{D}$ and so also $E \subseteq D$.

Suppose next that $D = \bigcap \mathcal{D}$ and $E = \bigcup \mathcal{E}$ with \mathcal{D}, \mathcal{E} subsets of \mathcal{N} . Suppose $D \notin E$. Then $D \notin B$ for all $B \in \mathcal{E}$. Thus $A \notin B$ for all $A \in \mathcal{D}$ and so $B \subseteq A$. Since this holds for all $A \in \mathcal{D}$ and all $B \in \mathcal{E}, E = \bigcup \mathcal{E} \subseteq \mathcal{D} = D$.

Suppose next that $D = \bigcup \mathcal{D}$ and $E = \bigcup \mathcal{E}$ with \mathcal{D}, \mathcal{E} subsets of \mathcal{N} . Suppose $D \notin E$. Then $A \notin E$ for some $A \in \mathcal{E}$. It follows that $A \notin B$ for all $B \in \mathcal{B}$ and so $B \subseteq A$. Thus $E = \bigcup \mathcal{R} \subseteq A$ and so also $E \subseteq D$. Thus (1°) holds.

Next let \mathcal{M} be a nonempty chain in \mathcal{N}^* . Let $\mathcal{M} = \{D_i \mid i \in I\} \cup \{E_j \mid j \in J\}$ such that $D_i = \bigcap \mathcal{D}_i$, where $\mathcal{D}_i \subseteq \mathcal{N}$ is closed under supersets, and $E_j = \bigcup \mathcal{E}_j$, where $\mathcal{E}_j \subseteq \mathcal{N}$ is closed under subsets.

 2° . $[2] \cap \mathcal{M} \in \mathcal{N}^*$.

Put $D = \bigcap_{i \in I} D_i$ and $E = \bigcap_{j \in J} E_j$. Then $\bigcap \mathcal{M} = D \cap E$. Observe that $D = \bigcap (\bigcup_{i \in I} D_i)$ and so $D \in \mathcal{N}^*$. If $E \in \mathcal{N}^*$, the since \mathcal{N}^* is a chain $D \cap E = D$ or $D \cap E = E$. In either case $D \cap E \in \mathcal{N}^*$. So to complete the proof of (2°) to show that $E \in \mathcal{N}^*$.

Put $\mathcal{E} = \bigcap_{i \in J} \mathcal{E}_i$. We claim that

(*)
$$\bigcup \mathcal{E} \le E \le \bigcap (\mathcal{N} \setminus \mathcal{E})$$

Indeed let $A \in \mathcal{E}$. Then $A \in \mathcal{E}_j$ for all $j \in J$ and so $A \leq \bigcap \mathcal{E}_j = E_j$ and $A \leq \bigcap_{j \in J} E_j = E_j$. E. Thus $\bigcup \mathcal{E} \leq E$.

Also if $B \in \mathcal{N} \setminus \mathcal{E}$, the $B \notin \mathcal{E}_k$ for some $k \in J$. Since \mathcal{E}_k is closed under subsets, this means $B \notin X$ and $X \subseteq B$ for all $X \in \mathcal{E}_k$. Thus $E_k = \bigcup \mathcal{E}_k \leq B$ and $E = \bigcap_{j \in J} E_j \leq E_k \leq B$. Since thus holds for all $B \in \mathcal{N} \setminus \mathcal{E}$, $E \leq \bigcap (\mathcal{N} \setminus \mathcal{E})$. So (*) is proved.

If $\bigcap \mathcal{N} \setminus \mathcal{E} \subseteq E$ we conclude that $E = \bigcap \mathcal{N} \setminus \mathcal{E} \in \mathcal{N}^*$.

So suppose that $\bigcap \mathcal{N} \setminus \mathcal{E} \nsubseteq E$. Since $E = \bigcap_{j \in J} E_j$ this means that $\bigcap \mathcal{N} \setminus \mathcal{E} \subseteq E_k$ for some $k \in J$. Let $A \in \mathcal{N} \subseteq \mathcal{E}$. It follows that $A \nsubseteq E_k$ and hence $A \nsubseteq B$ for $B \in \mathcal{E}_k$. In particular, $A \notin \mathcal{E}_k$. We proved that $\mathcal{N} \setminus \mathcal{E} \subset \mathcal{N} \setminus \mathcal{E}_k$ and so $\mathcal{E}_k \subseteq \mathcal{E}$. As $\mathcal{E} \subseteq \mathcal{E}_k$, we have $\mathcal{E}_k = \mathcal{E}$. Thus

$$E = \bigcap_{j \in J} E_j \le E_k = \bigcup \mathcal{E}_k = \bigcup \mathcal{E}$$

and (*) gives $E = \bigcup \mathcal{E} \in \mathcal{N}^*$.

 $\mathbf{3}^{\circ}$. $[\mathbf{3}] \qquad \bigcup \mathcal{M} \in \mathcal{N}^{*}$.

Put $D = \bigcup_{i \in I} D_i$ and $E = \bigcup_{j \in J} E_j$. Then $\bigcup \mathcal{M} = D \cup E$. Observe that $E = \bigcup \bigcup_{i \in I} \mathcal{E}_i$ and so $E \in \mathcal{N}^*$. If $D \in \mathcal{N}^*$, then since \mathcal{N}^* is a chain $D \cup E = D$ or $D \cup E = E$. In either case $D \cup E \in \mathcal{N}^*$. So to complete the proof of (3°) to remains show that $D \in \mathcal{N}^*$.

Put $\mathcal{D} = \bigcap_{i \in I} \mathcal{D}_i$. We claim that

$$(**) \qquad \qquad \bigcup (\mathcal{N} \setminus \mathcal{D}) \le D \le \bigcap \mathcal{D}$$

Indeed let $A \in \mathcal{D}$. Then $A \in \mathcal{D}_i$ for all $i \in I$ and so $D_i \bigcup \mathcal{D}_i \leq A$. Thus $D = \bigcup \mathcal{D} \leq A$ and so $D \leq \bigcap \mathcal{D}$. Also if $B \in \mathcal{N} \setminus \mathcal{D}$, then $B \notin \mathcal{D}_k$ for some $k \in I$. Since \mathcal{D}_k is closed under supersets, this means $X \notin B$ and $B \subseteq X$ for all $X \in \mathcal{D}_k$. Thus $B \leq \bigcap \mathcal{D}_k = D_k$ and $B \leq D_k \leq \bigcup_{i \in I} D_i = D_i$. Since thus holds for all $B \in \mathcal{N} \setminus \mathcal{E}$, $\bigcup (\mathcal{N} \setminus \mathcal{D}) \leq D$. So (**) holds.

If $D \leq \bigcup (\mathcal{N} \setminus \mathcal{D})$ we conclude that $D = \bigcup \mathcal{N} \setminus \mathcal{D} \in \mathcal{N}^*$.

So suppose that $D \nleq \bigcup \mathcal{N} \setminus \mathcal{D}$. Since $D = \bigcup_{i \in I} D_i$ this means that $D_k \nleq \bigcup \mathcal{N} \setminus \mathcal{D}$ for some $k \in I$. Let $A \in \mathcal{N} \subseteq \mathcal{D}$. It follows that $D_k \nsubseteq A$. Since $D_k = \bigcap \mathcal{D}_k$, $B \nsubseteq A$ for $B \in \mathcal{D}_k$. In particular, $A \notin \mathcal{D}_k$. We proved that $\mathcal{N} \setminus \mathcal{D} \subset \mathcal{N} \setminus \mathcal{D}_k$ and so $\mathcal{D}_k \subseteq \mathcal{D}$. As $\mathcal{D}subseteq\mathcal{D}_k$, we have $\mathcal{D}_k = \mathcal{D}$. Thus

$$D = \bigcup_{i \in I} D_k \ge D_k = \bigcap \mathcal{D}_k = \bigcap \mathcal{D}$$

and (**) gives $D = \bigcap \mathcal{D} \in \mathcal{N}^*$.

Lemma 1.3.6. [char comp] Let G be an A-group and \mathcal{N} an A-series from H to G. Order the set of A-series from H to G by inclusion.

- (a) [a] If N is a maximal A-series from H to G, then N is an A-composition series from H to G.
- (b) [b] Suppose \mathcal{N} is normal. Then \mathcal{N} is a maximal normal series from H to G if and only if \mathcal{N} is a chief-series from H to G.
- (c) $[\mathbf{c}]$ There exists a maximal A-series from H to G containing \mathcal{N} . In particular, there exists a A-composition series from H to G containing \mathcal{N} .
- (d) [d] Suppose \mathcal{N} is normal. There exists a maximal normal A-series from H to G containing \mathcal{N} . In particular, there exists a A-series from H to G containing \mathcal{N} .

Proof. (a) Suppose cN is a maximal A-series from H to G. Let (B,T) be a jump of \mathcal{N} and let \overline{D} be a A-invariant normal subgroup of T/B. Then $\overline{D} = D/B$ for normal A-subgroup of G with $B \leq D \leq T$. It is readily verified that $\mathcal{N} \cup \{D\}$ is an A-series from H to G. So the maximality of \mathcal{N} shows that $D \in \mathcal{N}$ and so D = B or D = T. Thus T/B is a simple A-group and \mathcal{N} is an A-composition series.

(b) If \mathcal{N} is a maximal normal series from H to G, then the argument in (a) shows that \mathcal{N} a chief-series. (Alternatively let A * G be the free product of A and G. Then A * G acts on G and a normal A-series from H to G is the same as A * G series. Also an A * G-composition series is the same an A-chiefseries.)

Now let \mathcal{N} be a A-chief series from H to Gb and \mathcal{M} a normal A-series from H to G with $\mathcal{N} \subseteq \mathcal{M}$. Let $M \in \mathcal{M} \setminus \{H\}$. Put $T = \bigcap \{E \in \mathcal{N} \mid M \leq E\}$ and $B = \bigcup \{D \in \mathcal{N} \mid M \not\leq D\}$. Since \mathcal{N} is totally order $M \not\leq D$ for $E \in \mathcal{N}$ implies $D \leq M$. Thus $B \leq M \leq T$. If M = T, then $M \in \mathcal{N}$. So suppose $M \neq T$. Then also $B \neq T$ and by ??(??), (B,T) is a jump of \mathcal{N} . Since \mathcal{M} is normal, M/B is G and A-invariant subgroup of T/B. Since \mathcal{N} is a A-chiefseries, this implies M/B = 1 and so $M = B \in \mathcal{N}$.

Thus $\mathcal{M} = \mathcal{N}$.

(c) By (a) it suffices to proof that \mathcal{N} is contained in a maximal A-series from H to G. Let $(\mathcal{M}_i, i \in I)$ be a chain of A-series from H to G. Let $\mathcal{M} = \bigcup_{i \in I} \mathcal{M}_i$ and observe that \mathcal{M} is a chain of A subgroups of G containing H and G. Let \mathcal{M}^* be the set of intersection and unions of non-subsets of \mathcal{M} . Using 1.3.5 we conclude that \mathcal{M}^* is a set of A-invariant subgroups of G which is closed under intersection and unions. We claim that \mathcal{M}^* is an A-series. 1.3.2(i)-iv are obvious. So let (B,T) be a jump of \mathcal{M}^* . We need to show that $B \leq T$. For $i \in I$ define $B_i := \bigcup \{D \in \mathcal{N}_i \mid T \nleq D\}$ and $T_i = \bigcup \{E \in \mathcal{N}_i \mid T \nleq E\}$. Since \mathcal{M}^* is a chain, $B_i = \bigcup \{D \in \mathcal{N}_i \mid D < T\}$. Thus $B_i \leq B < T \leq T_i$. Thus by 1.3.4(b), (B_i, T_i) is a jump of \mathcal{N}_i and so $B_i \leq T_i$. In particular, $B_i \leq T$. By definition of \mathcal{M}^* , $B = \bigcup \mathcal{B}$ or $B = \bigcap \mathcal{B}$ for non-empty subset \mathcal{B} of \mathcal{M} . Suppose first that $B = \bigcup \mathcal{B}$. Let $D \in \mathcal{B}$, then $D \in \mathcal{N}_i$ for some $i \in I$. Since $D \leq B < T$ we get $B \leq B_i$. It follows that

$$B = \bigcup \mathcal{B} \le \bigcup_{i \in I} B_i \le D$$

and so $B = \bigcup_{i \in I} B_i$. Since each B_i is normal in T we conclude that $B \leq T$.

Suppose next that $B = \bigcap \mathcal{B}$. Since $T \nleq B$, there exists $D \in \mathcal{B}$ with $T \nleq D$. Since \mathcal{M}^* is chain this gives D < T and so $D \leq B$. Thus $D \leq B = \bigcap \mathcal{B} \leq D$ and B = D. So B is a union of members of \mathcal{M} and so we are done by the previous case.

(d) Either use the same argument as in (c) or apply (c) to A * G.

Definition 1.3.7. [def:class of action]

- (a) [b] Two actions (A, G) and (A^*, G^*) are called isomorphic and we write $(A, G) \cong (A^*, G^*)$ if there exist isomorphisms $\beta : A \to A^*$ and $\gamma :\to G^*$ with $g^a \gamma = (g\gamma)^{a\beta}$ for all $g \in G$ and $a \in A$.
- (b) $[\mathbf{c}]$ A class of actions is class \mathcal{X} such that
 - (a) $[\mathbf{a}]$ The members of \mathcal{X} are faithful actions
 - (b) [b] If $D \in \mathcal{X}$ and $D^* \cong D$ then $D^* \in \mathcal{X}$.
 - $(c) [\mathbf{c}] (1,1) \in \mathcal{X}.$
- (c) [d] If \mathcal{X} and \mathcal{Y} are classes of groups, then $[\mathcal{X}, \mathcal{Y}]$ denotes of class of all faithful actions (A, G) with $A \in \mathcal{X}$ and $H \in \mathcal{Y}$

Definition 1.3.8. [def:xa series] Let \mathcal{X} be a class of actions.

- (a) [z] We say that A acts \mathcal{X} on a group G, or that G is a $\mathcal{X} A$ group, if $(A/C_A(G), G) \in \mathcal{X}$.
- (b) [a] An A-series \mathcal{N} from H to G is called called \mathcal{X} -A-series if each factor of \mathcal{N} is an $\mathcal{X} A$ -group.
- (c) [b] We say that A acts poly- \mathcal{X} on G, or that G is poly \mathcal{X} Agroup, if there exists G is exists a finite normal \mathcal{X} A-series on G.

- (d) [c] We say that A acts hyper- \mathcal{X} on G, or that G is hyper $\mathcal{X} A$ -group, if there exists an ascending normal $\mathcal{X} A$ -series on G.
- (e) [d] We say that A acts hypo- \mathcal{X} on G, or that G is hypo \mathcal{X} -group, if there exists G is exists descending normal $\mathcal{X} A$ -series on G.
- (f) [e] If A = G acting by conjugation on G we drop the prefix A in (b) to (c).

We usually write $[\mathcal{X}, *]$ in place of $[\mathcal{X}, \mathcal{D}]$ and $[\mathcal{X}, 1]$ in place of $[\mathcal{X}, \mathcal{T}]$. Recall here that \mathcal{T} denotes the calls of trivial groups and \mathcal{D} the class of all groups.

If \mathcal{X} is the calls of simple actions, then an $\mathcal{X} - A$ -series is just an A-composition series.

If \mathcal{X} is a class of groups, then a poly $[*, \mathcal{X}] - 1$ -group is just a poly- \mathcal{X} -group. So a poly $[*, \mathcal{A}] - 1$ -group, is a poly abelian group, that is a solvable group. A hyper $[*, \mathcal{X}]$ -group, is called an hyper \mathcal{X} -group and a hypo $[*, \mathcal{X}] - 1$ -group, is called an hype \mathcal{X} -group. Note that a hyper \mathcal{X} -group is a group with normal ascending series all of whose factors are \mathcal{X} -groups.

A poly [1, *]-groups is called nilpotent. So a group is nilpotent if and only if there exists a finite normal ascending series

$$N_0 = 1 \le N_1 \le N_2 \le \ldots \le N_{k-1} \le N_k = G$$

such that $(G/C_G(E) \in [1, *]$ for all factors E of the series. Note that thus just means that $G/C_G(E) = 1$, that is G centralizes E. In other words, $[N_i, G] \leq N_{i-1}$ for all $1 \leq i \leq k$.

A hyper [1, *]-groups is called a hypercentral group and a hypo [1, *]-group is called a hypocentral group. So a hypercentral group is a group G with a normal series all of whose factors are centralized by G.

Consider the chief-series

$$1 \leq \operatorname{Alt}(3) \leq \operatorname{Sym}(3)$$

of Sym(3). The factors of this series are $E_1 = \text{Alt}(3)/1 \cong C_3$ and $E_2 = \text{Sym}(3)/\text{Alt}(3) \cong C_2$. Moreover, $C_{\text{Sym}(3)}(E_1) = \text{Alt}(3)$, $\text{Sym}(3)/C_{\text{Sym}(3)}(E_1) \cong C_2$, $C_{\text{Sym}(3)}(E_2) = \text{Sym}(3)$ and $\text{Sym}(3)/C_{\text{Sym}(3)}(E_2) = 1$. So the group induced on each of the factors is abelian and so Sym(3) is an poly- $[\mathcal{A}, *]$ -group.

Consider the chief-series

$$1 \leq K := \langle (12)(34), (13)(23) \rangle \leq \operatorname{Alt}(4) \leq \operatorname{Sym}(4)$$

of Sym(4). The factors of this series are $E_1 := K/1 \cong C_2 \times C_2$, $E_1 = Alt(4)/K \cong C_3$ and $E_2 = Sym(4)/Alt(4) \cong C_2$. Moreover, $C_{Sym(4)}(E_1) = K,Sym(4)/C_{Sym(4)}(E_1) \cong Sym(3)$, $C_{Sym(4)}(E_2) = Alt(4)$, $Sym(4)/C_{Sym(4)}(E_2) \cong C_2$, $C_{Sym(4)}(E_3) = Sym(4)$ and $Sym(4)/C_{Sym(4)}(E_3) = 1$. Since the group induced on E_1 is not abelian, we conclude that Sym(4) is not poly- $[\mathcal{A}, *]$ -group.

We will later see that every poly- $[\mathcal{A}, *]$ group is solvable. So the class of poly- $[\mathcal{A}, *]$ groups is a proper subclass of \mathcal{S} .

Lemma 1.3.9. [factors of an ascending series]. Let \mathcal{N} be an A-series from H to G, and M an A-subgroup of G.

- (a) [a] Define $\mathcal{N} \wedge M := \{D \cap M \mid D \in \mathcal{N}\}$. Then \mathcal{N} is an A-series from $H \cap M$ to M. If (\tilde{B}, \tilde{T}) is a jump of $\mathcal{N} \wedge M$ then there a jump (B, T) of M such that $\tilde{B} = B \cap M$, $\tilde{T} = T \cap M$ and $\tilde{T}/\tilde{B} \cong (T \cap M)B/B$ as an A-group. In particular, any factor of $\mathcal{N} \wedge M$ is isomorphic to an A-subgroup of a factor of \mathcal{N} .
- (b) [b] Suppose $M \leq G$ and \mathcal{N} is ascending. Then $\overline{\mathcal{N}} := \mathcal{N}M/M := \{DM/M \mid D \in \mathcal{N}\}$ is an ascending A-series from HM/M to G/M. Moreover, if $(\overline{B},\overline{T})$ is a jump of $\overline{\mathcal{N}}$, then there exists a jump (B,T) of \mathcal{N} with $\overline{B} = BM/M, \overline{T} \cong TM/M$ and $\overline{T}/\overline{B} \cong$ $T/(T \cap M)B$. In particular, each factor of $\overline{\mathcal{N}}$ is isomorphic to an A-quotient of a factor of \mathcal{N} .

Proof. (a) Readily verified.

(b) The first three axioms of an A series are obvious. Let $\overline{\mathcal{M}}$ be an non-empty subset of \overline{N} and define $\mathcal{M} = \{D \in \mathcal{N} \mid DN/N \in \overline{\mathcal{M}}.$

1°. [1] Put $B = \bigcup \mathcal{M}$. Then $\bigcup \mathcal{M} = BM/M$.

Let $x \in BM/M$, then x = eM for some $e \in B$. Pick $D \in \mathcal{M}$ with $e \in D$. Then $x = eM \in DM/M \in \overline{\mathcal{M}}$. and so $BM/M \subseteq \bigcup \overline{\mathcal{M}}$.

Conversely if $\overline{e} \in \bigcup \overline{\mathcal{M}}$, the $\overline{e} \in \overline{D}$ for some $\overline{D} \in \overline{\mathcal{M}}$. Note that $\overline{D} = DM/M$ for some $D \in \mathcal{M}$ and then $\overline{e} = eM$ for some $e \in D$. Thus $e \in B$ and $\overline{e} \in BM/M$. Hence $\bigcup \mathcal{M} \subseteq BM/M$ and (1°) holds.

2°. [2] Let T be the minimal element \mathcal{M} (which exists since \mathcal{N} is well ordered). Then $\bigcap \overline{\mathcal{M}} = TM/M$.

Let $\overline{D} \in \overline{\mathcal{M}}$. Then $\overline{D} = DM/M$ for some $D \leq \mathcal{M}$. Since T is the minimal element of \mathcal{M} we get $T \leq D$ and so $TM/M \leq DM/M = \overline{D}$ and $TM/M \leq \bigcap \overline{\mathcal{M}}$.

Conversely, $T \in \mathcal{M}$ and so $TM/M \leq \overline{\mathcal{M}}$. Hence $\bigcap \overline{\mathcal{M}} \leq TM/M$ and (2°) is proved.

By (1°) and (2°) , \mathcal{M} is closed under unions and intersection.

Noe let $(\overline{B},\overline{T})$ be a jump of $\overline{c}M$. Let $B = \bigcup \{D \in \mathcal{N} \mid DM/M = B$. Then (for example by (1°) applied with $\overline{\mathcal{M}} = \{\overline{B}\}$, $BM/M = \overline{B}$. Let T be minimal in \mathcal{N} with $TM/M = \overline{T}$. Since $BM/M = \phi B < \overline{T} = TM/M$ we have BM < TM and so $T \nleq B$. Since \mathcal{N} is totally ordered, B < T. We claim that (B,T) is a jump of \mathcal{N} so let $D \in \mathcal{N}$ with $B \le D \le T$. Then $\overline{B} = BM/M \le DM/M \le TM/M = \overline{T}$ and since $(\overline{B},\overline{T})$ is a jump of $\overline{\mathcal{N}}$ we conclude that $DM/M = \overline{B}$ or $DM/M = \overline{T}$. In the first case the definition of B shows that $D \le B$ and so D = B. In the second case the minimality of T gives, $T \le D$ and so D = T. Hence (B,T) is a jump. Since \mathcal{N} is a series this implies that $B \le T$. Hence also $\overline{B} = BM/M \le TM/M = \overline{T}$ and so $\overline{\mathcal{N}}$ is a series.

We compute

$$\overline{B}/\overline{T} = TM/M/BM/M \cong TM/BM = T(BM)/BM$$

$$\cong T/T \cap BM = T/(T \cap B)M \cong T/B/(T \cap M)B/B$$

and so also the remaining statements in (b) are proved.

Definition 1.3.10. [def:s for action] Let \mathcal{X} be a class of actions.

- (a) [a] [id, **S**] \mathcal{X} denotes the class of all actions isomorphic to an action $(A/C_A(H), H)$, where $(A, G) \leq \mathcal{X}$ and H is an A-subgroup of G.
- (b) [c] $[\mathbf{S}, \mathrm{id}]\mathcal{X}$ denotes the class of all actions isomorphic to an action (B, G), where $(A, G) \leq \mathcal{X}$ and B is a A-subgroup of G.
- (c) [d] $\mathbf{S}\mathcal{X}$ denotes the class of all actions isomorphic to an action $(B/C_B(H), H)$, where $(A, G) \leq \mathcal{X}, B \leq A$ and H is an B-subgroup of G.
- (d) [b] $\mathbf{H}\mathcal{X}$ denotes the class of all actions isomorphic to an action $(A/C_A(H), G/H)$, where $(A, G) \leq \mathcal{H}$ and H is a normal A-subgroup of G.

Note that $\mathbf{S}\mathcal{X} = [\mathrm{id}, \mathbf{S}][\mathbf{S}, \mathrm{id}]\mathcal{X}$, but in general $\mathbf{S}\mathcal{X} \neq [\mathbf{S}, \mathrm{id}][\mathrm{id}, \mathbf{S}]\mathcal{X}$.

Corollary 1.3.11. [s h a hyp] Let \mathcal{X} be a class of actions, A a group, G a hyper $\mathcal{X} - A$ -group and M an A-subgroup of G.

- (a) [a] If \mathcal{X} is [id, **S**] closed, then M is a hyper $\mathcal{X} A$ -group.
- (b) [b] If \mathcal{X} is **H**-closed and $M \leq G$, then G/M is a hyper $\mathcal{X} A$ -group.

Proof. This follows immediately from 1.3.9.

Corollary 1.3.12. [s hyp] Let \mathcal{X} be class of groups, G a hyper \mathcal{X} -group and $M \leq G$.

- (a) [a] If \mathcal{X} is S-closed, then Hyp(\mathcal{X}) is S-closed.
- (b) [b] If \mathcal{X} is **H**-closed, then Hyp(\mathcal{X}) is **H**-closed.

Proof. (a) Since S is [**S**, id] closed, M acts hyper \mathcal{X} on G. So (a) follows from 1.3.11(a). (b) By ??(??), G acts hyper \mathcal{X} on G/M. Since M acts trivially on G/M, also G/M acts hyper \mathcal{X} in G/M.

Corollary 1.3.13. [zg cap n]

- (a) [a] Subgroups and quotients of hypercentral groups are hypercentral.
- (b) [b] Let M be a normal subgroup of the hypercentral group G, then G acts hyper centrally on G. In particular, $M \cap Z(G) \neq 1$.

Proof. Since [1, *] is **S** and **H** closed, we can apply the previous two corollaries.

1.4 Hyper Sequences

Definition 1.4.1. [def:ascending sequence] Let G be an A-group, H an A-subgroup of G. Then an A-sequence from H to G is a sequence $(G_{\alpha})_{\alpha \in \text{Ord}}$ of A-subgroups of G such that

(a) [a] $G_0 = H$ and there exists $\delta \in \text{Ord with } G_\beta = G$ for all $\beta \geq \delta$.

(b) [b] $G_{\alpha} \leq G_{\alpha+1}$

(c) [c] If α is limit ordinal, then $G_{\alpha} = \bigcup_{\alpha < \beta} G_{\beta}$.

Lemma 1.4.2. [ascending ord] Let \mathcal{N} be an ascending A-series from H to G. Then there exists an A-sequence $(G_{\alpha})_{\alpha \in \text{Ord}}$ from H to G with $\mathcal{N} = \{G_{\alpha} \mid \alpha \in \text{Ord}\}.$

Proof. Since \mathcal{N} is well ordered with respect to inclusion we conclude from Homework 3, that there exists an ordinal δ and an isomorphism of ordered sets, $F : \delta \to \mathcal{N}, \alpha \to G_{\alpha}$. Define $\Phi : \operatorname{Ord} \to \mathcal{N}$ by $\Phi(\alpha) = H_{\alpha}$ if $\alpha < \delta$ and $\Phi(\beta) = G$ if $\delta < \beta$. Since 0 is the element of δ and H the minimal element of \mathcal{N} we have $G_0 = F(0) = H$. Since F preserved the order we have $\alpha \leq \beta$ if and only if $G_{\alpha} \leq G_{\beta}$. Since either $\beta \leq \alpha$ or $\alpha + \leq \beta$ we conclude that either $G_{\alpha} = G_{\alpha+1}$ or $(G_{\alpha}, G_{\alpha+1})$ is a jump of \mathcal{N} . In both cases $G_{\alpha} \leq G_{\alpha+1}$.

Now let α be a limit ordinal and put $M := \bigcup_{\beta < \alpha} G_{\beta}$. Then $M \in \mathcal{N}$ and $M \leq G_{\alpha}$ and so $M = G_{\gamma}$ for some γ in $\gamma \in \delta$. Since $G_{\gamma} \leq G_{\alpha}$ we have $\gamma \leq \alpha$. If $\gamma = \alpha$ we are done. So suppose $\gamma < \alpha$. Then also $\gamma + 1 < \alpha$ and so $G_{\gamma+1} \leq M \leq G_{\gamma} \leq G_{\gamma+1}$. Thus $G_{\gamma} = G_{\gamma+1}$. Since F is a bijection, this gives $\gamma + 1 \notin \delta$. Thus $G = G_{\gamma+1} = M \leq G_{\alpha} \leq G$. So again $M = G = G_{\alpha}$ and all parts of the definition of a A-sequence from H to G are verified. \Box

Lemma 1.4.3. [ord ascending] Let G be an A-group, H an A-subgroup of G and and $(G_{\alpha})_{\alpha \in \text{Ord}}$ a sequence of A-sequence from A to G. Then $\mathcal{N} := \{G_{\alpha} \mid \alpha \in \text{Ord}\}$ is an ascending A-series from H to G. Moreover, the jumps of \mathcal{N} are exactly the pairs $(G_{\alpha}, G_{\alpha+1})$, where α is an ordinal with $G_{\alpha} \neq G_{\alpha+1}$.

Proof. Note that $\mathcal{N} = \{G_{\alpha} \mid \alpha \leq \delta\}$, so \mathcal{N} is the image of a set under function and thus a set. From (??) and (??) we have $G_{\alpha} \leq G_{\beta}$ for all $\alpha \leq \beta$ and so \mathcal{N} is totally ordered with respect to inclusion. So (??) gives $H \in \mathcal{N}, G \in \mathcal{N}$ and $H \leq G_{\alpha}$ for all $\alpha \in \text{Ord.}$

Let \mathcal{M} be a non empty subset \mathcal{N} and let $M = \{ \alpha \in \text{Ord} \mid \alpha \in \mathcal{M}.$ Then M has minimal element m and so $\bigcup \mathcal{M} = G_m \in \mathcal{N}$

Suppose that $\delta \leq \beta$ for some $\beta \in \text{Ord.}$ Then $\bigcup \mathcal{M} = G \in \mathcal{N}$.

Suppose that $\beta < \delta$ for all $\beta \in \text{Ord.}$ Then M has a least upper bound γ . If $\gamma \in M$, then $\bigcup \mathcal{M} = G_{\gamma} \in \mathcal{N}$. If $\gamma \notin M$ the for all $\beta < \delta$ there exists $\beta^* \in \delta$ with $\beta < \beta^* < \delta$. In particular δ is limit ordinal and

$$G_{\gamma} = \bigcup_{\beta < \delta} G_{\beta} \le \bigcup_{\beta < \delta} G_{\beta^*} \le \bigcup \mathcal{M} \le \bigcup_{\beta < \delta} G_{\beta} = G_{\gamma}$$

Hence again $\bigcup_{\beta < \delta} = G_{\gamma} \in \mathcal{N}$. We show that \mathcal{N} is closed under intersections.

Noe let $D \in \mathcal{N}$ with $D \neq H$ and let $\alpha \in \text{Ord}$ be minimal with G_{α} . The $G_{\beta} < D$ if and only if $\beta < \alpha$. Thus

$$D^- = \bigcup \{ E \in \mathcal{N} \mid E < D \} = \bigcup_{\beta < \alpha} G_\beta$$

If α is a limit ordinal, the latter unions is G_{α} and if α is a successor it is $(G_{\alpha-1})$. So if (D^-, D) is a jump then α is a successor, $(D, D^-) = (G_{\alpha-1}, G_{\alpha}), G_{\alpha-1} \neq G_{\alpha}$ and $D^- = G_{\alpha-1} \trianglelefteq G_{\alpha} = D$. In particular, \mathcal{N} is an ascending series.

If α is an ordinal with $G_{\alpha} \neq G_{\alpha+1}$ the clearly $(G_{\alpha}, G_{\alpha+1})$ is a jump of \mathcal{N} . So also the second statement of the lemma holds.

Note that we allow $G_{\alpha} = G_{\beta}$ for distinct $\alpha, \beta \in \text{Ord.}$ So a given ascending A-series corresponds to more than then one A-sequence. We will use all the notation introduces from ascending A -series. For example an hyper A-sequence is a normal A-sequence, that is a A-sequence with $G_{\alpha} \leq G$ for all $\alpha \in \text{Ord.}$

Definition 1.4.4. [def:strongly hyper] Let \mathcal{X} be class of groups and G an A-group. We say that A acts strongly hyper- \mathcal{X} on G or that G is a strongly-hyper $\mathcal{X} - A$ group, if for all normal A-subgroups, M of G with $M \neq G$ there exists an normal A-subgroup M^* of G with $(A/C_A(M^*/M), M^*/M) \in \mathcal{X}$.

Lemma 1.4.5. [strong hyper] Let \mathcal{X} be a class of actions and G an A-group.

(a) [a] If A acts strongly hyper- \mathcal{X} on G, then A acts hyper- \mathcal{X} on G.

(b) [b] If \mathcal{X} is **H**-closed that A acts strongly hyper- \mathcal{X} on G iff A act hyper \mathcal{X} on G.

Proof. (a) By the definition of strongly-hyper and the axiom of choice we can choose a function $M \to M^*$ on the normal subgroups of G such that $M^* = G$ if M = G and $M < M^*$ with $(A/C_A(M^*/M), M^*/M) \in \mathcal{X}$ if $M \neq G$. If f is any function which is a set, define $\tau(f) = \bigcup \{f(M) * \} \mid M \in \text{Dom}(f) \}$ provided that all members of Dom(f) are normal A-subgroups A and $\tau(f) = 0$ otherwise.

By the 'Recursion' Theorem ?? for each ordinal α there exists function F such that $\tau(F \mid (\text{Ord}_{\alpha})) = F(\alpha)$ for all ordinals α . Put $N_{\alpha} = F(\alpha)$. Then a moments thought reveals that

$$\begin{cases} N_{\alpha} = 1 & \text{if } \alpha = 0\\ N_{\beta}^{*} & \text{if } \alpha = \beta + 1\\ \bigcup_{\beta < \alpha} N_{\beta} & \text{if } \alpha \text{ is a limit ordinal} \end{cases}$$

Let α be an ordinal with $|\alpha| > |G|$. If $G \neq M_{\beta}$ for all $\beta \leq \alpha$ we get $|G| \leq |\alpha|$, a contradiction. Thus $G_{\alpha} = G$ and it follows that $\mathcal{N} = \{G_{\alpha} \mid \alpha\}$ is an hyper A-series on G with factors $N_{\alpha+1}/N_{\alpha} = N_{\alpha}^*/N_{\alpha}$. Thus A acts \mathcal{X} in each factor of \mathcal{N} and so \mathcal{N} is hyper $\mathcal{X} - A$ -series.

(b) Suppose A acts hyper \mathcal{X} on G and let M be a normal A-subgroup of G. By ?? G/M is a hyper $\mathcal{X} - A$ -group. In particular, G/M has a non-trivial normal $\mathcal{X} - A$ -subgroup, M^*/M . Thus A acts strongly \mathcal{X} on G. Together with (a) this gives (b).

Notation 1.4.6. [not:f] F denotes the free group on $(x_i)_{i\in 1}^{\infty}$. The elements of F are called words.

Definition 1.4.7. [almost decreasing] Let $W = (W_i)_{i=1}^{\infty} \in W^{\infty}$ be a sequence of sets of words.

- (a) [a] W is decreasing if $W_{i+1}(F) \leq W_i(F)$ for all i.
- (b) [b] W is almost decreasing if for all $i, j \in \mathbb{Z}^+$ there exists $k \geq j$ with $W_k(F) \leq W_i(F)$.
- (c) $[\mathbf{c}] \quad \mathcal{V}(W) = \bigcup_{i=1}^{\infty} \mathcal{V}(W_i).$

Lemma 1.4.8. [trivial dec] Let G be group.

- (a) [a] Let V, W be sets of words with $V(F) \leq W(F)$). Then $V(G) \leq V(W)$.
- (b) [b] Let $W = (W_i)I = 1^{\infty}$ be almost decreasing sequence of sets words. Then $(W_i(G))_{i=1}^{\infty}$ is almost decreasing, that is for $i, j \in \mathbb{Z}^+$ there exists $k \ge j$ with $W_k(G) \le W_i(G)$.

Proof. (a) Let $g \in V(G)$. Then $g \in V(H)$ for some finitely generated subgroup H of G. Since H is countable, there exists an onto homomorphism $\alpha : F \to H$. Then

$$g \in V(H) = \alpha(V(F))) \le \alpha(W(V)) = W(H) \in W(G)$$

(b) follows from (a)

Lemma 1.4.9. [sdp] Let G be an A-group then there exists a group H such that $A \leq H$, $G \leq H$, H = GA, $A \cap G = 1$ and the actions of G on A is the same as the action of G on A by conjugation in H. Moreover, H is unique up to an isomorphism centralizing A and G.

Proof. Suppose first that H is such a group. Let $x, y \in H$. Then there exists $a, b \in A$ and $g, h \in H$ with x = ga and y = bh. Then $xy = (ga)(hb) = gaha^{-1}ab = gh^{a^{-1}}ab$ and so the multiplication on H is unique determined.

Conversely, let $H = G \times A$ as a set and define the multiplication on $H \times A$ by

$$(g,a)(h,b) = (gh^{a^{-1}},ab)$$

Identify g with (g, 1) and a with (1, a). Then is readily verified that H has all the required properties.

Lemma 1.4.10. [largest normal] Let \mathcal{V} be an variety and G an A-group. Then there exists unique largest normal A-subgroups M of G such that $A/C_A(M) \in \mathcal{V}$.

Proof. Let H = GA be the semidirect product of A and G. Let $W = W(\mathcal{V})$ and put $M = \langle C_G(\langle W(A)^H \rangle).$

Definition 1.4.11. [def:h class] Let G be an A-group and $W = (W_i)_{i \in \mathbb{Z}^+}$ a sequence of sets of words.

(a) [a] Define $H_{\alpha} = \operatorname{Hyp}_{\alpha}^{W}(A, G)$ inductively as follows:

$$\begin{aligned} H_{\alpha} &= 1 & \text{if } \alpha = 0 \\ H_{\alpha} &= \bigcup_{\beta < \alpha} H_{\beta} & \text{if } 0 \neq \alpha \text{ is a limit ordinal} \\ H_{\alpha}/H_{\alpha-1} &= C_{H_{\alpha}/H_{\alpha-1}}(\langle W_k(A)^G \rangle) & \text{if } \alpha = \beta + k \text{ with} \\ \alpha &= 0 \text{ or limit ordinal and } k \in \mathbb{Z}^+. \end{aligned}$$

(b) [b] $\delta = \delta^W(A, G)$ is the least ordinal such that $H_{\delta} = H_{\beta}$ for all $\beta \geq \delta$. Moreover, $\operatorname{Hyp}^W(A, G) := H_{\delta}$

Note that if $\alpha = \beta + k$, $(\beta = 0 \text{ or a limit ordinal and } k \in \mathbb{Z}^+)$, then $H_{\alpha}/H_{\alpha-1}$ is the largest normal $(\mathcal{V}(W_k), *)$ -A-subgroup of $G/H_{\alpha-1}$

Define $\operatorname{Hyp}_{\alpha}^{W}(G) = \operatorname{Hyp}_{\alpha}^{W}(G,G)$, where G is acting on G by conjugation and $\operatorname{Hyp}^{W}(G) = \operatorname{Hyp}^{W}(G,G)$. As above if there is no doubt about the group action (A,G) and the sequence W in question we write H_{α} for $\operatorname{Hyp}_{\alpha}^{W}(A,G)$.

Proposition 1.4.12. [g=s] Let (AG) be a group action and $W = (W_i)_{i \in \mathbb{Z}^+}$ a sequence of sets of words.

- (a) [a] $(H_{\alpha})_{\alpha}$ is a hyper- $(\mathcal{X}(W), *) A$ sequence for G on Hyp^W(G).
- (b) [b] Let M be a normal-A-subgroup and $(M_{\alpha})_{\alpha}$ be a hyper- $(\mathcal{X}(W), *) A$ -sequence on M such that each M_{α} is normal in G.
 - (a) [a] For every ordinal α there exists an ordinal α^* with $M_{\alpha} \leq H_{\alpha^*}$. In particular, $M \leq \operatorname{Hyp}^W(A, G)$.
 - (b) [b] If W is almost decreasing we can choose α^* such that $\alpha^* = \alpha + n_\alpha$ for some $n_\alpha \in \mathbb{N}$ and $n_\alpha = 0$ if α is a non-successor.
- (c) [c] G is a hyper- $(\mathcal{X}(W), *)$ -A-group if and only if $G = \operatorname{Hyp}^W(A, G)$.

Proof. (a) Let $\alpha = \beta + k$ for some non-successor β and some $k \in \mathbb{Z}^+$. Then $W_k(A)$ centralizes $H_{\alpha}/H_{\alpha-1}$. Hence $A/C_A(H_{\alpha}/H_{\alpha-1}) \in \mathcal{V}(W_k) \subseteq \mathcal{X}(W)$ and (a) holds.

(b) By induction we may assume that for all $\beta < \alpha$ there exists β^* with $M_{\beta} \leq H_{\beta^*}$. Moreover if W is almost decreasing we assume that $\beta^* = \beta + n_{\beta}$ for some $n \in \mathbb{N}$ with $n_{\beta} = 0$ if β is a non-successor.

Suppose first that α is a limit ordinal. Put $\alpha^* = \bigcup_{\beta < \alpha} \beta^*$. Then α^* is an ordinal and

$$M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta} \subseteq \bigcup_{\beta < \alpha} H_{\beta^*} \le H_{\alpha^*}.$$

Moreover, if for all $\beta < \alpha$, $\beta^* = \beta + n_\beta$ for some $n_\beta \in \mathbb{N}$ then $b^* < \alpha^*$ and so $\alpha^* = \alpha$. So (b:a) and (b:b) hold for α .

Suppose next that $\alpha = \beta + k$ for some non-successor β and some $k \in \mathbb{Z}^+$. Since $(M_{\alpha})_{\alpha}$ is hyper- $(\mathcal{X}(W), *)$, $A/C_A(M_{\alpha}/M_{\alpha-1}) \in \mathcal{X}(W)$ and so $A/C_A(M_{\alpha}/M_{\alpha-1}) \in \mathcal{V}(W_i)$ for some $i \in \mathbb{Z}^+$. Thus $[M_{\alpha}, W_i(A)] \leq M\alpha - 1$.

Assume that W is almost decreasing. By induction we may assume $M_{\alpha-1} \leq H_{\alpha-1+n_{\alpha-1}}$ for some $n_{\alpha-1} \in \mathbb{Z}^+$. Since W is almost decreasing there exists $n \in \mathbb{Z}^+$ with $n \geq k + n_{\alpha-1}$ and $W_n(A) \leq W_i(G)$. Then

$$[M_{\alpha}, W_n(A)] \le [M_{\alpha}, W_i(A)] \le M_{\alpha - 1} \le H_{\alpha - 1 + n_{\alpha - 1}} = H_{\beta + k - 1 + n_{\alpha - 1}} \le H_{\beta + n - 1}.$$

Since M_{α} and $H_{\beta+n-1}$ are normal in G, this gives $[M_{\alpha}, \langle W_n(A)^G \rangle] \leq H_{\beta+n-1}$ and so $M_{\alpha} \leq H_{\beta+n} = H_{\alpha+n-k}$. Hence (b:b) holds with $n_{\alpha} = n - k$.

Assume next that W is not almost decreasing. Let γ be the smallest limit ordinal with $(\alpha - 1)^* \leq \gamma$. Then

$$[M_{\alpha}, W_i(G)] \le M_{\alpha-1} \le H_{(\alpha-1)^*} \le H_{\gamma} \le H_{\gamma+i-1}$$

and so $M_{\alpha} \leq H_{\gamma+i}$. Thus (b:a) holds.

(c) Follows from (a) and (b).

If $W_i = \{x_1\}$ for all *i*, then $\mathcal{X}(W) = \mathcal{T}$ and so $(H_\alpha)_\alpha$ is a hypercentral series for A on $\operatorname{Hyp}^W(G, A)$. If A = G acting by conjugation we write $Z(G_\alpha)$ for H_α . $(Z(G_\alpha)_\alpha)$ is called the hypercentral series for G and $Z_{\operatorname{Ord}}(G) := \operatorname{Hyp}^W(G, A)$ is called the hypercenter of G. If $G = Z_{\operatorname{Ord}}(G)$, then G is called hypercentral. Note that $Z_1(G) = Z(G), Z_2/Z(G) = Z(G/Z_2(G))$ and $Z_\omega(G) = \bigcup_{i < \omega} Z_i(G)$.

For a prime p let $C_{p^{\infty}} = \{x \in C \mid x^{p^k} = 1 \text{ for some } k \in N\}$. The set C_{p^k} of elements of order dividing p^k is a cyclic group of order p^k . So $C_{p^{\infty}}$ can is union of the countable sequence

$$1 \le C_p \le C_{p^2} \le C_{p^3} \le \dots$$

From $C_{p^{k+1}}/C_p \cong C_{p^k}$ we conclude that $C_{p^{\infty}}/C_p \cong C_{p^{\infty}}$. So $C_{p^{\infty}}$ is isomorphic to a proper quotient of itself.

Let $\tau \in \operatorname{Aut}(C_{p^{\infty}})$ with $x^{\tau} = x^{-1} = \overline{x}$ for all $x \in C_{p^{\infty}}$ and let $D_{2p^{\infty}}$ be the semidirect product of $C_{p^{\infty}}$ with $\langle tau \rangle$. Note that $D_{2p^k} := C_{p^k} \langle \tau \rangle$ is a dihedral group of order $2p^k$. So

So $D_{p^{\infty}}$ can be viewed as union of the countable sequence

$$1 \leq D_p \leq D_{p^2} \leq D_{p^3} \leq \dots$$

If p is odd, then $Z(D_{2p^{\infty}}) = 1$ and so also $Z_{Ord}(D_{2p^{\infty}}) = 1$. If p = 2, then $Z(D_{2p^{\infty}}) = C_2$. Also $D_{2p^{\infty}}/C_2 \cong D_{2p^{\infty}}$ and inductively we conclude that

$$\mathbf{Z}_k(\mathbf{D}_{2p^{\infty}}) = \mathbf{C}_{p^k}$$

for all $i > \omega$. Thus

$$\mathbf{Z}_{\omega}(\mathbf{D}_{2p^{\infty}})\bigcup_{i\in\omega}\mathbf{C}_{p^{k}}=\mathbf{C}_{p^{\infty}}$$

Since $D_{2p^{\infty}}/C_{p^{\infty}} \cong \langle \tau \rangle = C_2$ we have

$$\mathbf{Z}_{\omega+1}(\mathbf{D}_{2p^{\infty}}) = \mathbf{D}_{2p^{\infty}}$$

So $D_{2p^{\infty}}$ is hypercentral with hypercentral length $\omega + 1$.

Define $\phi_1 = x_1, \phi_2 = [x_1, x_2], \phi_3 = [[x_1, x_2], [x_3, x_4]]$ and so on. Also let $W_i = \{\phi_i\}$. Then $W_i(G) = G^{(i-1)}$, the i - 1'th commutator group of W_i . So $\mathcal{X}(W)$ is the class of solvable groups. The series $(H_{\alpha})_{\alpha}$ is called the hyper (solvable,*)-series for G.

Suppose p is odd. Then $W_1(D_{2p^{\infty}}) = D_{2p^{\infty}}, W_2(D_{2p^{\infty}} = D'_{2p^{\infty}} = C_{p^{\infty}} \text{ and } W_3(D_{2p^{\infty}}) = D''_{2p^{\infty}} = 1$. So

 $H_1 = \mathbb{Z}(\overline{D}2p^{\infty}) = 1, H_2 = \langle \mathbb{C}_{D_{2p^{\infty}}}(\mathbb{C}_{p^{\infty}}) = \mathbb{C}_{p^{\infty}} \text{ and } H_3 = \mathbb{D}_{2p^{\infty}}.$ So $\mathbb{D}_{2p^{\infty}}$ is a hyper-(solvable,*) group.

Lemma 1.4.13. [direct sums] Let \mathcal{X} be a class of groups and G an A- group. Suppose that there exists a hyper A-series \mathcal{N} on G such that for each factor E of \mathcal{N} there exists a G-invariant hyper- $\mathcal{X} - A$ series on E. Then A acts hyper- \mathcal{X} on G.

Proof. Let \mathcal{N} be a hyper A-series on F. By assumption and the axiom of choice, the exists a function $E \to \mathcal{N}_E$ which associates to each factor E of \mathcal{N} a G-invariant hyper \mathcal{X} -A-series on of E. If E is factor of \mathcal{N} then E = T/B for a unique jump (B,T) of \mathcal{N} . Put

$$\mathcal{M}_E = \{ D \mid B \le D \le T, D/B \in \mathcal{N}_E \}$$

and $\mathcal{M} = \mathcal{N} \cup \bigcup \{\mathcal{M}_E \mid E \text{ a factor of } \mathcal{N}.$ Note that \mathcal{M} is a set.

1°. [0] Let (B,T) be a jump of cN and E = T/B. Then \mathcal{M}_E is a G-invariant hyper $\mathcal{X} - A$ series from B to T.

Since \mathcal{N}_E is G-invariant hyper $\mathcal{X} - A$ series from 1 to E, this follows from the homomorphism theorems.

Recall that for $N \in \mathcal{N}$, $N^- = \bigcup \{E \in \mathcal{N} \mid E < N\}$. For each $D \in \mathcal{M}$ pick $D \in \mathcal{M}$ minimal with $D \leq \tilde{D}$.

2°. [.1] Let (B,T) be a jump of \mathcal{N} and $D \in \mathcal{M}$ with $B \leq D \leq T$. then either $D = B = \tilde{D}$ or $B \neq D$ and $(B,T) = (\tilde{D}^-, \tilde{D})$.

If D = B, then $B = \tilde{D}$. So suppose $B < D \leq T$. Since $D \leq T$, the minimality of \tilde{D} gives $\tilde{D} \leq T$. So $B < \tilde{D} \leq T$ and since (B,T) is a jump, $\tilde{D} = T$. Hence $B = T^- = \tilde{D}^-$.

3°. [.2] $D^- \leq D \leq \tilde{D}$ and either $D = \tilde{D} = \tilde{D}^-$ or $D^- < D \leq \tilde{D}$ and $D \in \mathcal{M}_{\tilde{D}/\tilde{D}^-}$.

If $D \in \mathcal{N}$, then clearly $\tilde{D} = D$ and (2°) holds. So suppose $D \notin \mathcal{N}$. Then $D \in \mathcal{M}_{T/B}$ for some jump $(B,T) \in \mathcal{T}$. Then $B \leq D \leq T$ and since $D \notin \mathcal{N}, B \neq D$. So by (3°), $(B,T) = (\tilde{D},\tilde{D})$ and (3°) holds.

 4° . [1] \mathcal{M} is totally ordered.

Let $D, E \in \mathcal{M}$. Suppose first that $\tilde{D} = \tilde{E}$. Then $\tilde{D}^- \leq E \leq \tilde{D}$. If $\tilde{D}^- = \tilde{D}$ this gives D = E and if $\tilde{D}^- \neq \tilde{D}$, then by ?? both D and E are in $\mathcal{M}_{\tilde{D}/\tilde{D}^-}$. So by (1°), $D \leq E$ or $E \leq D$.

Now suppose that $\tilde{D} \neq \tilde{E}$ and without loss $\tilde{D} < \tilde{E}$. Then $D \leq \tilde{D} \leq \tilde{E}^- \leq E$ and so $D \leq E$.

Let \mathcal{D} be a non-empty subsets of \mathcal{M} .

5°. [2] \mathcal{D} has a minimal element D^* . In particular, $\bigcup \mathcal{D} = D^* \in \mathcal{M}$.

Let M be the minimal element of $\{\tilde{D} \mid D \in \mathcal{D}\}$ and pick $E \in \mathcal{D}$ with $M = \tilde{E}$. If $D \in \mathcal{D}$, then $M \leq \tilde{D}$ and since $\tilde{D}^- \leq D$, $M^- \leq D$. If $M^- = M$, then $E = M^-$ and E is the minimal element of \mathcal{D} . If $M^- \neq M$, then by (1°) the non empty set $\{E \in \mathcal{D} \mid M^- \leq E \leq M\}$ has a minimal element D^* . But then D^* is also a minimal element of \mathcal{D} .

 6° . $[3] \qquad \bigcup \mathcal{D} \in \mathcal{M}$

Put $M = \bigcup_{D \in \mathcal{D}} \tilde{D}$. Then $M \in \mathcal{N}$. Let $E \in \mathcal{N}$ with E < M. The there exists $D \in \mathcal{D}$ with $\tilde{D} \nleq E$. So $E < \tilde{D} \le D$. It follows that $M^- \le \bigcup \mathcal{D}$. If $M^- = \bigcup \mathcal{D}$ we are done. If $M^- = \bigcup \mathcal{D}$. Then $\mathcal{E} := \{E \in \mathcal{D} \mid E \nleq M^-\}$ is not empty. Observe that $M^- < E \le M$ for all $E \in \mathcal{E}$. Thus $\bigcup \mathbb{E} = \bigcup \mathcal{D}$ and $\mathcal{E} \in \mathcal{M}_{M/M^-}$. By (1°), \mathcal{M}_{M/M^-} is closed under unions and so $\bigcup \mathcal{D} = \bigcup \mathcal{E} \in \mathcal{M}_{M/M^-} \subseteq \mathcal{M}$. Thus (6°) holds.

7°. [4] Let (B,T) be a jump of \mathcal{M} . Then (B,T) is jump of some \mathcal{M}_E , E a factor of \mathcal{N} . In particular, $B \leq T$ and T/B is an $\mathcal{X} - A$ -group.

Suppose first that $\tilde{T}^- \neq T$. Then $\tilde{T}^- < T$ and since (B,T) is a jump of $\tilde{T}^- \leq B \leq T \leq \tilde{T}$. Thus by (3°) both B and T are in $\mathcal{M}_{\tilde{T}/\tilde{T}^-}$ and so (B,T) is a jump of $\mathcal{M}_{\tilde{T}/\tilde{T}^-}$

Suppose next that $\tilde{B} \neq B$. Then $B < \tilde{B}$ and since (B,T) is a jump $T \leq \tilde{B}$. Thus $B^- \leq T \leq B$ and so by (3°) both B and T are in $\mathcal{M}_{\tilde{B}/\tilde{B}^-}$ and so (B,T) is a jump of $\mathcal{M}_{\tilde{B}/\tilde{B}^-}$.

Suppose finally that $\tilde{T} = T$ and $\tilde{B} = B$. Then both B and T are in \mathcal{N} and so (B,T) is a jump of \mathcal{N} , but then $T^- = B \neq T$, a contradiction.

The lemma is now a direct consequence of (4°) - (7°) .

Lemma 1.4.14. [direct hyp] Let \mathcal{X} be a class of actions, A a group and G an A-group. Let $(G_i, i \in I)$ a non empty family normal hyper- $\mathcal{X} - A$ groups of G with $G = \langle G_i \mid i \in I \rangle$. Suppose that either \mathcal{X} is \mathbf{H} closed or $G = \bigoplus_{i \in I} G_i$. Then G is a hyper- $\mathcal{X} - A$ -group.

Proof. Without loss $G_i \neq 1$ for all $i \in I$. Pick $m \in I$ and choose some well ordering on $I \setminus m$. Well order I such that I has a maximal element. For $i \in I$ define $G_i^+ = \langle G_j \mid j \leq i \rangle$ and $G_i^- = \langle G_j \mid j < i \rangle$. We claim that $\mathcal{N} = \{G_i^-, G_i^+ \mid i \in I\}$ is hyper A-series on $\bigoplus_{i \in I} G_i$ with factors all the $G_i^+/G_i^- \cong G_i/G_i \cap G_i^-$, where $i \in I$ with $G_i \nleq G_i^-$.

Let $i < j \in I$. Then $G_i^- \leq G_i^+ \leq G_j^- \leq G_j^+$ and so \mathcal{N} is totally ordered. Let \mathcal{M} be non-empty subset of \mathcal{N} . Let *i* be minimal in *I* with $G_i^{\epsilon} \in \mathcal{D}$ for some $\epsilon \in \{\pm\}$. If $G_i^- \in \mathcal{N}$ choose $\epsilon = -$. Then G_i^{ϵ} is the minimal element of \mathcal{M} and $G_{i^{\epsilon}} = \bigcup \mathcal{D}$. Next let k be minimal with $\bigcup \mathcal{D} \leq G_k^+$. Let i < k. Then $\bigcup \mathcal{D} \nleq G_i^+$ and so the exists $j \in I$ and $\delta \in \{\pm\}$ with $G_j^{\delta} \in \mathcal{D}$ and $G_j^{\delta} \nleq G_i^+$. Thus $i \leq j$ and so $G_i^- \leq G_j^{\delta} \leq \bigcup \mathcal{D}$.

Suppose first that $\{l \in I \mid l < k\}$ has no maximal element. Let $g = \prod_{i \in I} g_i \in G_k^-$ (where $g_i \in G_i$ and only finitely many g_i are non trivia. Let t be maximal with $g_t \neq 1$. Then t < l and so there exists $l \in I$ with t < l < k. Then $g \in G_t^- \leq \bigcup \mathcal{D}$. Hence $G_k^- \leq \bigcup \mathcal{D} \leq G_i^+$. If $G_k^+ \in \mathcal{D}$ we get $\bigcup \mathcal{D} = G_k^+$ and if $G_k^+ \notin \mathcal{D}$ we get $\bigcup \mathcal{D} = G_k^-$.

Suppose $\{l \in I \mid l < k\}$ has maximal element j. Since $\bigcup \mathcal{D} \nleq G_j^+$ we must have $G_k^- \in \mathcal{D}$ or $G_k^+ \in \mathcal{D}$. In either case we again have $\bigcup \mathcal{D} = G_k^+$ and $\bigcup \mathcal{D} = G_k^-$.

Thus \mathcal{N} is closed under unions. Let $D \in \mathcal{N}$ with $D \neq D^- := \{\bigcup E \in \mathcal{N} \mid E < D\}$. Pick $k \in I$ minimal with $D = G_k^{\epsilon}$ for some $\epsilon \in \{pm\}$, where we choose $\epsilon = -$ if $D = G_k^-$ for some $\epsilon \in \{\pm\}$. By minimality of $k, G_j^+ < D$ for all j < k. Thus

$$G_k^i = \langle G_j \mid j < k \rangle \le \langle G_j^+ \mid j < k \rangle \le D^-$$

In particular, $G_k^- < D$ and so $G_k^- = D^-$, $D = G_k^+$, $G_k \not\leq G_k^-$ and

$$D/D^- \cong G_k^+/K_k^- = G_k G_k^-/G_k^- \cong G_k/G_k \cap G_k^-$$

Conversely if $k \in I$ with $G_k \nleq G_k^-$, then (G_k, G_k^-) is clearly a jump of \mathcal{N} .

This proves the claim. If \mathcal{X} is **H** closed then by ??(??), $G_k/G_k \cap G_k^-$ is an hyper $\mathcal{X} - A$ group. If $G = \bigoplus_{i \in I} G_i$, then $G_k/G_k \cap G_k^- \cong G_k$. So again $G_k/G_k \cap G_k^-$ is an hyper $\mathcal{X} - A$ group. In either case 1.4.13 completes the proof.

Proposition 1.4.15. [residually g] Let \mathcal{X} be any class of groups.

- (a) [a] Suppose X is closed under quotients. Then hypercentral-by-X groups are hyper-(X,*) and nilpotent-by-X groups are poly-(X,*).
- (b) [b] Hyper- $(\mathcal{X}, *)$ groups are hypercentral-by- $\mathbf{R}\mathcal{X}$). If \mathcal{X} is closed under finite subdirect products then poly- $(\mathcal{X}, *)$ -groups are nilpotent-by- \mathcal{X} .
- (c) [c] If \mathcal{X} is closed under quotients and finite subdirect products, then the nilpotent-by- \mathcal{X} -groups are exactly the finitely hyper-($\mathcal{C}G$, *) groups.

Proof. (a) Let $H \leq G$ such that H is hypercentral and $G/H \in \mathcal{X}$. Let \mathcal{Z} be the hypercentral series for H. Then \mathcal{Z} is G-invariant. If Z is a factor of \mathcal{Z} , then [Z, H] = 1 and so $G/C_G(Z)$ is a quotient of G/H. Thus $G/C_G(Z) \in \mathcal{X}$. Also $G/C_G(G/H)$ is a quotient of G/H and so $\mathcal{Z} \cup \{G\}$ is a hyper- $(\mathcal{X}, *)$ series for G. If H is nilpotent, \mathcal{Z} is finite and (a) is proved.

(b) Let $\mathcal{M} = (M_{\alpha})_{\alpha}$ be a hyper- $(\mathcal{X}, *)$ -sequence for G and put

$$H = \bigcap \{ C_G(E) \mid E \text{ a factor of } \mathcal{M} \}.$$

Since $G/C_G(E) \in \mathcal{X}$ for all factors E of \mathcal{M} , G/H is subdirect product of \mathcal{X} -groups and so an $\mathbb{R}\mathcal{X}$ -group. Moreover $(M_{\alpha} \cap H)_{\alpha}$ is a hypercentral series for H and so H is hypercentral. If \mathcal{M} is finite and \mathcal{X} is closed under finite subdirect products, then $G/H \in \mathcal{X}$ and H polycentral, that is nilpotent. So (b) holds.

(c) Follows from (a) and (b).

Proposition 1.4.16. [hyper gw] Let \mathcal{V} be a variety and W a set of words with $\mathcal{V} = \mathcal{V}(W)$. Let G be a group. Then the following are equivalent

- (a) $[\mathbf{a}]$ G is hyper- $(\mathcal{V}), *$) group.
- (b) $[\mathbf{b}]$ G is hypercentral by \mathcal{V} .
- (c) $[\mathbf{c}]$ W(G) is a hypercentral group.

Proof. (a) \Longrightarrow (b): Suppose G is hyper- (\mathcal{V}) , *). Then by 1.4.15 G is hypercentral by $\mathbb{R}\mathcal{V}$. Since varieties are **R**-closed, G is hypercentral by \mathcal{V} .

(b) \implies (c): Suppose M is a normal subgroup of G such that M is hypercentral and $G/M \in \mathcal{V}$. Then W(G/M) = 1 and so $W(G) \leq M$. Since subgroups of hypercentral groups are hypercentral, W(G) is hypercentral.

(c) \implies (b): Note that $G/W(G) \in \mathcal{V}$. So if W(G) is hypercentral G is hypercentral by \mathcal{V} .

(b) \implies (a): If G is hypercentral by \mathcal{V} , then by 1.4.15 G is hyper- $(\mathcal{V}, *)$.

Definition 1.4.17. [almost decreasing] Let $W = (W_i)_{i=1}^{\infty} \in \mathcal{P}(F)^{\infty}$ be a sequence of sets of words.

- (a) [a] W is decreasing if $W_{i+1}(F) \leq W_i(F)$ for all i.
- (b) [b] W is almost decreasing if for all $i, j \in \mathbb{Z}^+$ there exists $k \ge j$ with $W_k(F) \le W_i(F)$.
- (c) [c] $\mathcal{X}(W) = \bigcup_{i=1}^{\infty} \mathcal{V}(W_i).$

Lemma 1.4.18. [trivial dec] Let G be group.

- (a) [a] Let $V, W \in \mathcal{P}(W)$ with $V(F) \leq W(V)$. Then $V(G) \leq W(G)$.
- (b) [b] Let $W \in \mathcal{P}(W)^{\infty}$ be almost decreasing. Then $(W_i(G))_{i=1}^{\infty}$ is almost decreasing, that is for $i, j \in \mathbb{Z}^+$ there exists $k \geq j$ with $W_k(G) \leq W_i(G)$.

Proof. (a) Let $g \in V(G)$. Then $g \in V(H)$ for some finitely generated subgroup H of G. Let $\alpha : F \to H$ be an onto homomorphism. Then

$$g \in V(H) = V(\alpha(F)) = \alpha(V(F)) \le \alpha(W(F))) = W(\alpha(F)) = W(H) \le W(G)$$

and so $V(G) \leq W(G)$.

(b) follows from (a).

Definition 1.4.19. [def:outer]

(a) [a] For i = 1, 2 let w_i be a word and $m_i = m(w_i)$. Put

$$[w_1, w_2] := [w_1((x_i)_{i=1}^{m_1}), w_2((x_{m_1+i})_{i=1}^{m_2})] \in F(m_1 + m_2)$$

 $[w_1, w_2]$ is called the outer commutator of w_1 and w_2 .

- (b) [c] Let $w \in F^n$, $n \in \mathbb{N} \cup \{\infty\}$. Then $\check{w} \in F^{n+1}$ is inductively defined as follows: $\check{w}_1 = x_1$ and $\check{w}_{i+1} = [\check{w}_i, w_i]$.
- (c) [d] Let $W \in \mathcal{P}(W)^n$, $n \in \mathbb{N} \cup \{\infty\}$. Then $\check{W} \in \mathcal{P}(W)^{n+1}$ is inductively defined as follows: $\check{W}_1 = \{x_1\}$ and $\check{W}_{i+1} = \{[v,w] \mid v \in \check{W}_i, w \in W_i\}$.

For example, $\lceil x_1 x_2^3, x_1 x_2^2 \rceil = \lceil x_1 x_2^3, x_3 x_4^2 \rceil$. Note that $m(\lceil w_1, w_2 \rceil) = m_1 + m_2$. Also $\check{W}_{i+1} = \{\check{w}_{i+1} \mid w \in \times_{i=1}^i W_j\}$. To improve readability we sometimes write \check{w} for \check{w} .

Lemma 1.4.20. [basic check] Let G be a group, $w \in F^{\infty}$, $g \in G^{\infty}$ and $i \in \mathbb{Z}^+$.

(a) [c] Put $n = m(\check{w}_i)$ and $m = m(w_i)$. Then

$$\check{w}_{i+1}(g) = [\check{w}_i(g), w_i((g_{n+j})_{j=1}^m)].$$

- (b) [b] Let $N \leq G$. If $\check{w}_i(g) \in N$ then also $\check{w}_j(g) \in N$ for all $j \geq i$.
- (c) [a] Let $W \in \mathcal{P}(W)^{\infty}$. Then $\check{W}_{i+1}(G) = \check{W}_i(G), W_i(G)] \leq \check{W}_i(G) \cap W_i(G)$. In particular, \check{W} is decreasing.

Proof. (a) By definition $\check{w}_{i+1} = \lceil \check{w}_i, w_i \rceil$. So (a) follows from the definition of the outer commutator.

(b) and (c) follow from (a).

Definition 1.4.21. [def:h words]

- (a) [a] Let $W \in \mathcal{P}(F)^{\infty}$. Then $\operatorname{Hyp}(W)$ is the class of groups G such that for all $g \in G^{\infty}$ and all $w \in X_{i=1}^{\infty} W_i$ there exists $n \in \mathbb{Z}^+$ with $\check{w}_n(g) = 1$.
- (b) [b] Let \mathcal{X} be a class of actions. Then Hyp \mathcal{X} is the class of hyper- $\mathcal{X}D$ -groups. Poly \mathcal{X} is the class of Poly- \mathcal{X} -groups.

Lemma 1.4.22. [cX check] Let $W \in \mathcal{P}(F)^{\infty}$. Then for all $i \in \mathbb{Z}^+$, $\mathcal{V}(W_i) \leq \mathcal{V}(\check{W}_{i+1})$. In particular, $\mathcal{X}(W) \subseteq \mathcal{X}(\check{W})$.

Proof. Let $G \in \mathcal{V}(W_i)$. Then $W_i(G) = 1$. Hence by ??(??) $\check{W}_{i+1}(G) = [\check{W}_i(G), W_i(G)] = 1$ and so $G \in \mathcal{V}(\check{W}_{i=1})$. It follows

$$\mathcal{X}(W) = \bigcup_{i=1}^{\infty} \mathcal{V}(W_i) \subseteq \bigcup_{i=1}^{\infty} \mathcal{V}(\check{W}_{i+1}) \subseteq \mathcal{X}(\check{W})$$

Theorem 1.4.23. [h and check] Let $W \in \mathcal{P}(F)^{\infty}$. Then

- (a) [a] $\mathcal{X}(W) \subseteq \operatorname{Poly}(\mathcal{X}(W), *)$ with equality if W is almost decreasing.
- (b) [b] $\operatorname{Hyp}(W) \subseteq \operatorname{Hyp}(\mathcal{X}(W), *)$ with equality if W is almost decreasing.

Proof. (a) Suppose $G \in \mathcal{X}(\check{W})$. Then $G \in \mathcal{V}(\check{W}_n)$ for some $n \in \mathbb{Z}^+$. Thus $\check{W}_n(G) = 1$. Then by 1.4.20(c) we obtain a finite series

(*)
$$1 = \check{W}_n(G) \le \check{W}_{n-1}(G) \le \dots \le \check{W}_2(G) \le \check{W}_1(G) = G$$

there the last equality holds since $(W_1) = \{x_1\}$.

Observe that $[\check{W}_i(G), W_i(G)] \leq \check{W}_{i+1}(G)$ and so $W_i(G) \leq C_G(\check{W}_{i+1}(G)/\check{W}_i(G))$. Hence

$$G/C_G(\check{W}_{i+1}(G)/\check{W}_i(G) \in \mathcal{V}(W_i) \subseteq \mathcal{X}(W)$$

and (*) is a poly $(\mathcal{X}(W), *)$ -series. Thus the first statement in (a) holds.

To prove the first statement in (b), let G be a group which is not hyper- $(\mathcal{X}(W), *)$. We will show that G is also not contained in Hyp(\check{W}). Since every strongly hyper $(\mathcal{X}(W), *)$ group is hyper $(\mathcal{X}(W), *)$ (see ??) we conclude that there there exists $N \triangleleft G$ such $N^*/N = 1$, whenever $N \leq N^* \leq G$ with $(G/C_G(N^*/N), N^*/N) \in (\mathcal{X}(W), *)$. This implies

(*)
$$C_{G/N}(W_n(G)) = 1 \text{ for all } n \in \mathbb{Z}^+.$$

Let $g_1 \in G \setminus N$. Note that $x_1(g_1) = g_1 \notin N$. Suppose inductively that we already found $(g_i)_{i=1}^{n_k} \in G^{n_k}$ and $w_i \in W_i, 1 \leq i < k$ with $\check{w}_k((g_i)_{i=1}^{n_k}) \notin N$, where $(\check{w}_i)_{i=1}^k) = (w_i)_{i=1}^{k-1}$. Then by (*) $[\check{w}_k((g_i)_{i=1}^{n_k}), W_k(G)] \notin N$ and there exist $w_k \in W_k$ and $(g_{n_k+j})_{j=1}^{m(w_k)} \in G^{m(w_k)}$ with $[\check{w}_k(g_i)_{i=1}^{n_k}, w_k((g_{n_k+j})_{j=1}^{m(w_k)})] \notin N$. Put $n_{k+1} = n_k + m(w_k)$. Then by 1.4.20(a),

$$\check{w}_{k+1}((g_i)_{i=1}^{n_{k+1}}) \notin N.$$

where $w_{k+1} = \lceil \check{w}_k, w_k \rceil$. Put $g = (g_i)_{i=1}^{\infty}$ and $w = (w_i)_{i=1}^{\infty}$. Then $\check{w}_k(g) \neq 1$ for all k and so $G \notin \operatorname{Hyp}(W)$. Thus $\operatorname{Hyp}(W) \subseteq \operatorname{Hyp}(\mathcal{X}(W), *)$.

Suppose next that W is almost decreasing. We will prove the second assertions in (a) and (b) simultaneously. Let G be hyper- $(\mathcal{X}(W), *)$ and and let $(M_{\alpha})_{\alpha \leq \rho}$ be any hyper- $(\mathcal{X}(W), *)$ sequence on G, with ρ finite in proof of (a). For the proof of (a) ρ let $V_i = W_i$ and $H_i = G$ for all $i \in \mathbb{Z}^+$. For the proof of (b) let $g \in G^{\infty}$, $w \in X_{i=1}^{\infty} W_i$ infinite pick $w_i \in W_i$ and $g_i \in G$ and put $H_i = \{g_i\}$ and $V_i = \{w_i\}$

Let $g \in \bigvee_{i=1}^{\infty} H_i$ and $w \in \bigvee_{i=1}^{i} nftyV_i$. Then $\check{w}_1(g_1) = g_1 \in G = A_\rho$. So we can choose an ordinal α minimal such that there exists $n \in \mathbb{Z}^+$ with $\check{w}_n(g) \in G_\alpha$ for all $w \in \bigvee_{i=1}^{\infty} V_i$ and $g \in \bigvee_{i=1}^{\infty} H_i$.

We will show that $\alpha = 0$. Suppose for $\alpha = \beta + 1$ for some ordinal β . Since $G/C_G(A_{\alpha}/A_{\beta}) \in \mathcal{X}(W)$, there exists $m \in \mathbb{Z}^+$ with $[M_{\alpha}, W_m(G)] \leq M_{\beta}$. Since W is almost decreasing we may assume $m \geq n$. Let $w \in \chi_{i=1}^{\infty} V_i$. Then $\check{w}_n(g) \in M_{\alpha}$ and $m \geq n$. So by 1.4.20(b), $\check{w}_m(g) \in M_{\alpha}$. Hence

$$\check{w}_{m+1}(g) \in [\check{w}_m(g), W_m(G)] \le [M_\alpha, W_m(G)] \le A_\beta$$

for all $w \in \bigvee_{i=1}^{\infty} V_i$ and $g \in \bigvee_{i=1}^{\infty} H_i$, a contradiction to the minimal choice of α . Thus α is a limit ordinal.

Suppose that $\alpha \neq 0$. Then ρ is infinite and so by our choice of V_i , $|V_i| = 1$ and there exists a unique $w \in \bigvee_{i=1}^{\infty} V_i$. Since $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$ there exists $\beta < \alpha$ with $\check{w}_n(g) \in A_{\beta}$, a contradiction to the choice of α .

Thus $\alpha = 0$ and so $\check{w}_n(g) = 1$ for all $w \in \bigvee_{i=1}^{\infty} V_i$.

If ρ is finite, $V_i = W_i$ and $H_i = G_i$. Thus $\check{W}_n(G) = 1$ and $G \in \mathcal{X}(\check{W})$. So (a) is proved. In any case, $\check{w}_n(g) = 1$ shows that $G \in \text{Hyp}(W)$ and (b) holds.

The following example shows that the inclusions in 1.4.23 may be proper if W is not almost decreasing:

Let G = Sym(3), $x = x_1$, $W_1 = \{x^2\}$ and $W_i = \{x\}$ for $i \ge 2$. Then $w = (x^2, x, x, x, ...)$ is the unique element in $\chi_{i=1}^{\infty} W_i$. Also $1 \le \text{Alt}(3) \le \text{Sym}(3)$ is a finite hyper- $(\mathcal{X}(W), *)$ series. Thus $\text{Sym}(3) \in \text{Poly}(\mathcal{X}(W), *) \subseteq \text{Hyp}(\mathcal{X}(W), *)$.

Put g = ((12), (123), (12), (12), (12), ...). Then $\check{w}_1(g) = g_1 = (12), \check{w}_2(g) = [(12), (123)^2] = (123), \check{w}_3(g) = [(123), (12)] = (123)$ and so for all $n \ge 2, \check{w}_n(g) = (123)$. Thus $w_n(g) \ne 1$ for all n and Sym(3) \notin Hyp(\check{W}). Since $\mathcal{X}(\check{W}) \subseteq$ Hyp(\check{W}) we see that $\mathcal{X}(\check{W}) \ne$ Poly($\mathcal{X}(W), *$) and Hyp($\check{W}) \ne$ Hyp($\mathcal{X}(W, *)$.

Lemma 1.4.24. [char hyp] Let $W \in \mathcal{P}(F)^{\infty}$. Then there exists $V \in \mathcal{P}(F^{\infty}$ such that

- (a) [a] $\mathcal{X}(W) = \mathcal{X}(V)$.
- (b) $[\mathbf{b}]$ V is almost decreasing
- (c) [c] $\operatorname{Poly}(\mathcal{X}(W), *) = \mathcal{X}(\check{V}).$
- (d) [d] $\operatorname{Hyp}(\mathcal{X}(W), *) = \operatorname{Hyp}(V).$

Proof. Define

$$V = (W_1, W_1, W_2, W_1, W_2, W_3, W_1, W_2, W_3, W_4, W_1, \ldots).$$

Then clearly V is almost decreasing. For any $W \mathcal{X}(W)$ only depends on $\{W_i \mid i \in \mathbb{Z}^+\}$ and so $\mathcal{X}(W) = \mathcal{X}(V)$. Thus by 1.4.23

$$\mathcal{X}(\check{V}) = \operatorname{Poly}(\mathcal{X}(W), *) \text{ and } \operatorname{Hyp}(V) = \operatorname{Hyp}(\mathcal{X}(W), *).$$

Next we will give an example of a sequence $W \in \mathcal{P}(F)^{\infty}$, a group $G \in \text{Hyp}(\mathcal{X}(W), *)$, $g \in G^{\infty}$ and $v \in \bigotimes_{i=1}^{\infty} \check{W}_i$ such that $v_n(g) \neq 1$ for all $n \in \mathbb{Z}^+$. (Note that this does not contradict ?? since our v will not be of the form $v = \check{w}$ for some $w \in \bigotimes_{i=1}^{\infty} W_i$.

Put $W_1 = \{x_i \mid i \in \mathbb{Z}^+ \text{ and for } i \geq 2 \text{ put } W_i = \{x_1\}$. The for all $i \in \mathbb{Z}^+$, $\mathcal{V}(W)i) = \mathcal{T}$, the class of trivial groups. Hence also $\mathcal{X}(W) = \mathcal{T}$ and $\operatorname{Hyp}(\mathcal{X}(W), *)$ is the class of hypercentral groups. Put $G = D_{22^{\infty}} = C_{2^{\infty}} \langle \tau \rangle$. As seen before G is hypercentral group. Let $h_i \in C_{2^{\infty}}$ with $|h_i| = 2^i$ and put $g_i = h_i \tau$.

Note that $\check{W}_1 = \{x_1\}, \, \check{W}_2 = \{\lceil x_1, x_i \rceil \mid i \in \mathbb{Z}^+\} = \{[x_1, x_k] \mid 2 \le k \in \mathbb{Z}^+\}$ and for any $i \ge 2$,

$$W_i = \{ [x_1, x_k, x_{k+1}, \dots, x_{k+i-2}] \mid 2 \le k \in \mathbb{Z}^+ \}$$

Define $v_1 := x_1$ and for $i \ge 0$:

$$v_i := [x_1, x_{2i}, x_{2i+1}, \dots, x_{3i-2}]$$

and $v_i \in \check{W}_i$ for all $i \in \mathbb{Z}^+$.

Define $g_{i,0} := [g_1, g_i]$ and inductively $g_{i,j} := [g_{i,j-1}, g_{i+j}]$. Then $v_i(g) = g_{i,i-2}$. We will show by induction in j, that $g_{i,j}$ has order 2^{i-j-1} .

For j = 0,

$$g_{i,0} = [g_1, g_i] = g_1^{-1} g_i^{-1} g_1 g_i = \tau^{-1} h_1^{-1} \tau^{-1} h_i^{-1} h_1 \tau h_{2i} \tau = h_1 h_i^{-1} h_1 h_i^{-1} = h_i^{-2}$$

and $g_{i,0}$ has oder 2^{i-1} . Suppose inductively that $g_{i,j}$ has order 2^{i-j-1} and $g_{i,j} \in C_{2^{\infty}}$. Then g_{i+j+1} inverts $g_{i,j}$ via conjugation and so

$$g_{i,j+1} = [g_{i,j}, g_{i+j+1}] = g_{i,j}^{-1}g_{i,j}^{-1} = g_{i,j}^{-2}$$

Thus $g_{i,j+1} \in C_{2^{\infty}}$ and $g_{i,j+1}$ has order $2^{i-j-2} = 2^{i-(j+1)-1}$.

In particular $v_i(g) = g_{i,i-2}$ has order $2^{i-(i-2)-1} = 2$. Thus $v_i(g) \neq 1$ for all $i \geq 2$. Also $v_1(g) = g_1 = \tau h_1 \neq 1$ and so $v_i(g) \neq 1$ all $i \in \mathbb{Z}^+$.

Definition 1.4.25. [def:phi]

- (a) [a] $\tau(0) = (x_1)_{i=1}^{\infty}$ and inductively $\tau(i+1) = \tau(i)$.
- (b) [d] ϕ is the unique sequence of words with $\phi = \check{\phi}$. So $\phi_1 = x_1$ and inductively $\phi_{i+1} = [\phi_i, \phi_i]$.

It might be worthwhile to list the first few terms of the above sequence of words:

x_1	x_1	x_1	x_1	$\tau(0)$:
$[[[x_1, x_2], x_3], x_4]$	$[[x_1, x_2], x_3]$	$[x_1, x_2]$	x_1	$\tau(1)$:
$[[[x_1, x_2], [x_3, x_4]], [[x_5, x_6], x_7]]]$	$[[x_1, x_2], [x_3, x_4]]$	$[x_1, x_2]$	x_1	$\tau(2):$
$[[[x_1, x_2], [x_3, x_4]], [[x_5, x_6], [x_7, x_8]]]$	$[[x_1, x_2], [x_3, x_4]]$	$[x_1, x_2]$	x_1	ϕ :

Lemma 1.4.26. [gw]

(a) [a] Let $\mathcal{T}(0)$ be the class of trivial groups and inductively let $\mathcal{T}(n+1)$ be the class of nilpotent-by- $\mathcal{T}(n)$ groups. Then $\mathcal{X}(\tau(n)) = \mathcal{N}(n)$. In particular, $\mathcal{X}(\tau(1))$ the class of nilpotent groups.

- (b) [b] $\mathcal{V}(\phi_i)$ the class of solvable groups of derived length less than i. $\mathcal{X}(\phi)$ is the class of solvable groups.
- (c) [c] Hyp($\tau(i)$) is the class of hyper ($\mathcal{T}(i), *$)-groups. In particular, Hyp($\tau(0)$) is the class of hypercentral groups, and $\mathcal{T}(1)$ is the class of hyper-(nilpotent, *) groups.
- (d) [d] Hyp(ϕ) is the class of hyper (solvable, *) groups.

Proof. (a) Let $w \in F^{\infty}$ be almost decreasing. By 1.4.23(a), $\mathcal{X}(\check{w}) = \text{Poly}(\mathcal{X}(w), *)$ and so by 1.4.15(c):

(*) $\mathcal{X}(\check{w})$ is the class of nilpotent-by- $\mathcal{X}(w)$ groups.

Clearly $\mathcal{X}(\tau(0))$ is the class of trivial groups. Since $\tau(1) = \tau(0)$, (*) says that $\mathcal{X}(\tau(1))$ is the class of nilpotent-by-trivial groups and $\mathcal{X}(\tau(1)) = \mathcal{T}(1)$. Inductively suppose that $\mathcal{X}(\tau(n)) = \mathcal{T}(n)$. Then (*) implies that $\mathcal{X}(\tau(n+1))$ is the class of nilpotent-by- $\mathcal{T}(n)$ groups. Thus $\mathcal{X}(\tau(n+1)) = \mathcal{T}(n+1)$ and (a) holds.

(b) We have $G = x_1(G) = \phi(G) = {}^{G}0$ and so inductively

$$\phi_{i+1}(G) = [\phi_i(G), \phi_i(G)] = [{}^{G_i} - 1, {}^{G_i} - 1] = {}^{G_i}.$$

Hence $\mathcal{X}(\phi_i)$ is the class of solvable groups of derived length less than i and (b) holds.

- By ??(??), Hyp $(\tau(n)) =$ Hyp $(\mathcal{X}(\tau(n), *)$. So rf c follows from (a).
- By ??(??), Hyp (ϕ) = Hyp $(\mathcal{X}(\phi), *)$. So rf d follows from (b).

We will now construct various examples of groups which are hyper- $(\mathcal{X}, *)$ for some class of groups \mathcal{X} . By 1.4.15 we know that any such group is hypercentral-by-(residually \mathcal{X}). The next proposition gives a partial converse:

Example 1.4.27. [main construction] Let \mathcal{X} be a class of groups, $(H_i, i \in I)$ a family of \mathcal{X} -groups and H a subdirect product of $(H_i, i \in I)$. For $i \in I$ let A_i be an H_i -group. Suppose that

- (i) [a] H is hyper- $(\mathcal{X}, *)$.
- (ii) [b] For each $i \in I$, A_i is abelian and H_i acts faithfully on A_i .
- (iii) [c] For each $1 \neq N \leq H$, there exists $i \in I$ such that N does not act hypercentrally on A_i .

Put $A = \bigoplus A_i$. Note that H acts on A_i via its projection onto H_i and so also acts on A.Let G = AH be the semidirect product of A and G Then G is hyper- $(\mathcal{X}, *)$ -group. Moreover, any hypercentral normal subgroup of G is contained in A.

Proof. Since $G/C_G(A_i) \cong H_i \in \mathcal{X}$, G acts hyper- $(\mathcal{X}, *)$ on A_i . So by 1.4.13, G is acts hyper- $(\mathcal{X}, *)$ on A. Also $G/A \cong H$ is hyper- $(\mathcal{X}, *)$ group and hence by 1.4.13 G is a hyper- $(\mathcal{X}, *)$ group.

Let $M \leq G$ with $M \nleq A$. Then AM = AN for some $1 \neq N \leq H$. By (iii) there exists $i \in I$ such that N does not act hypercentrally on A_i . So N also does not act hypercentrally on $[A_i, N]$. Since A is abelian, $[A_i, N] = [A_i, M] \leq M$ and M does not act hypercentrally on $[A_i, M]$. Thus M is not hypercentral.

Lemma 1.4.28. [hypercentral extension] Let \mathcal{X} be a class of groups and H a group. Suppose H is a residually \mathcal{X} -group and a hyper- $(\mathcal{X}, *)$ -group. Then there exists a hyper- $(\mathcal{X}, *)$ group G and an abelian normal subgroup A of G such that $G/A \cong H$ and such that every hypercentral normal subgroup of G is contained in A.

Proof. Put $\mathcal{M} = \{M \leq H \mid G/M \in \mathcal{X}\}$. Since H is residually- \mathcal{X} , $\bigcap \mathcal{M} = 1$. In particular, H is a subdirect product of $(G/M)_{M \in \mathcal{M}}$. For $M \in \mathcal{M}$ put $A_M = \mathbb{Z}[G/M]$. Then A_M is an abelian group with G/M acting faithfully on A_M by right multiplication. Let $1 \neq N \leq H$ and choose $M \in \mathcal{M}M$ with $N \nleq M$. Then N does not act hypercentrally on A_M (indeed if NM/M is infinite, $C_{A_M}(N) = 0$ and if NM/M is finite, choose a prime p with $p \nmid |NM/M|$ and observe that N does not act hypercentrally on A_M/pA_M .)

So 1.4.27 completes the proof.

Corollary 1.4.29. [not hypercentral x] Let \mathcal{X} be a class of groups which is closed under homomorphic images but not under direct sums. Then there exists a hyper $(\mathcal{X}, *)$ groups which is not hypercentral by \mathcal{X} .

Proof. Let $(H_i, i \in I$ be a family of \mathcal{X} groups such that $H = \bigoplus_{i=1}^{\infty} H_i$ is not an \mathcal{X} -group. Then H is a subdirect product of \mathcal{X} groups and so a residually \mathcal{X} -group. Each H_i is a \mathcal{X} -groups it also is a hyper $(\mathcal{X}, *)$ group. Hence by 1.4.14, H is hyper $(\mathcal{X}, *)$. By ?? there exists a hyper $(\mathcal{X}, *)$ -group G and an abelian normal subgroup A of G with $G/A \cong H$ and such that every hypercentral normal subgroup of G is contained in A. Suppose for a contradiction that G is hypercentral by \mathcal{X} and let M be a hypercentral normal subgroup of G such that $G/M \in \mathcal{X}$. Then $M \leq A$ and $H \cong G/A \cong G/M/A/M$. Since \mathcal{X} is **H**-closed, we conclude that $H \in \mathcal{X}$, a contradiction.

Corollary 1.4.30. [more hypercental x] Let $W \in \mathcal{P}(F)^{\infty}$ and suppose $\mathcal{X}(W) \neq \mathcal{V}(W_i)$ for all $i \in \mathbb{Z}^+$. Then there exists a hyper $(\mathcal{X}(W), *)$ -group which is not hypercentral by $\mathcal{X}(W)$.

Proof. For $i \in \mathbb{Z}^+$ pick $H_i \in \mathcal{X}(W) \setminus \mathcal{V}(W_i)$ and put $\bigoplus_{i \in I} H_i$. Since $W_i(H_i) \neq 1$ we have $W_i(H) \neq 1$. Thus $H \notin \mathcal{X}(W)$. H is a direct sum of $\mathcal{X}(W)$ -group and so a residual $\mathcal{X}(W)$ -group. Since H_i is a $\mathcal{X}(W)$ -group and so a $(\mathcal{X}(W), *)$ -group we conclude that from 1.4.14 that H is hyper $(\mathcal{X}(W), *)$. The corollary now follows from 1.4.29

Since there are solvable groups of arbitrary derived length and nilpotent groups of arbitrary class, the preceding corollary shows that there exists hyper (solvable,*) groups which are not hypercentral by solvable and hyper (nilpotent, *) groups which are not hypercentral by nilpotent.

Definition 1.4.31. [def:locally cx] Let \mathcal{X} be a class of groups and G a group. We say that G is locally \mathcal{X} , if for each finite subset I of G there exists $H \leq H$ with $I \subseteq H$ and $H \in \mathcal{X}$. The class of all locally \mathcal{X} groups is denoted by $\mathbf{L}\mathcal{X}$.

Observe that if \mathcal{X} is closed under subgroups, then G is locally \mathcal{X} if and only every finitely generated subgroup of G is an \mathcal{X} -group.

Proposition 1.4.32. [schreier-reidemeister] Let G be finite generated subgroup and H a subgroup of finite index in G. Then H is finitely generated.

Proof. Let X be a finite generating set for G with $x^{-1} \in X$ for all $x \in X$. For $T \in G/H$ pick $r_T \in T$ such that $r_H = 1$. Then $T = Hr_T$. Let $T \in G/H$ and $x \in X$. Then $r_T x \in (Hr_T)x = Tx = Hr_{Tx}$ and so there exists $h(T, x) \in H$ by

$$r_T x = h(T, x) r_{Tx}$$

Define $K = \langle h(T, x) \mid T \in G/H, x \in X \rangle$. We claim that

(*)
$$g \in Kr_{Hg}$$
 for all $g \in G$

For this let $g = x_1 x_2 \dots x_n$ with $x_i \in X$ and $n \in \mathbb{N}$. If n = 0, then g = 1 and so $g \in K = K = K_{r_{H_1}}$.

Suppose n > 0 and let $d = x_1 x_2 \dots x_{n-1}$. Then $g = dx_n$ and by induction on n, $d \in Kr_{Hd}$.

Thus

$$g = dx_n \in Kr_{Hd}x_n = Kh(Hd, x_n)r_{Hdx_n} = Kr_{Hg}$$

So (*) holds. If $g \in H$ we conclude $g \in Kr_{Hg} = Kr_H = K1 = K$. So $H \leq K$. Since $K \leq H$, this gives K = H and so H is finitely generated.

Let n be minimal number of generators of G and i = |G/H|. The preceding proof shows that H can be generated by 2ni elements. It can be shown that G is generated by (n-1)i+1elements (Reidemeister-Schreier Theorem).

Corollary 1.4.33. [If by If] The class $L\mathcal{F}$ of locally finite groups is closed under subgroups, quotients and extensions.

Proof. The first two assertions are obvious. Let G be a group and M a normal subgroup of G such that M and G/M are locally finite. Let S be a finite subset of G and $F = \langle S \rangle$. Then $FM/M = \langle sM \mid s \in S \rangle$ is finite generated and since G/M is finite, FM/M is finite. Hence also $F/F \cap M$ is finite and 1.4.32 implies that $F \cap M$ is finitely generated. Since M is locally finite, $F \cap M$ is finite. Hence F is finite and M is locally finite.

Definition 1.4.34. [def:p-group] Let G be a group and p a prime. Then G is called a p-group, if all elements of G have order a power of p.
Note that by Cauchy's Theorem, a finite group if a p-group if and only if it has order a power of p.

Lemma 1.4.35. [rg] Let R be a non-zero ring, G a group and H a non-trivial subgroup of G. Let R[G] be the group of G over R and note that G acts on the abelian group R[G] via $(\sum_{k\in G} r_k k)g = \sum_{k\in G} r_g kg$. Put $R_0[G] = \{\sum_{q\in G} r_g g \in R[G] \mid \sum_{q\in G} r_g = 0\}/$

- (a) [a] Suppose H is infinite. Then $C_{R[G]}(H) = 0$. In particular, H does not act hypercentrally on R[G].
- (b) [b] Suppose that $|H|r \neq 0$ for all $0 \neq r \in R^{\sharp}$. Then $C_{R_0[H]}(H) = 0$. In particular, H does not act hypercentrally on R[G].

Proof. Let $a = \sum r_g g \in C_{R[G]}(H)$. Then $r_g = r_{gh}$ for all $g \in G, h \in H$.

(a) If H is infinite, we get that conclude that $r_g = r_k$ for infinitely many $k \in G$. Since $r_g = 0$ for all but finitely many g, this implies $r_g = 0$ and so a = 0.

(b) Suppose H is finite and $|H|r \neq 0$ for all $r \in R_0[H]$. Let $a = \sum r_h h \in C_{R_0[H]}(H)$ Then $r_h = r_1$ for all $h \in H$. Since $r \in R_0[H]$ this gives $0 = \sum_{h \in H} r_h = |H|r_1$ and so $r_1 = 0$. Hence a = 0.

Lemma 1.4.36. [easy zp=1] Let p be a prime and P a p-group with Z(P) = 1. Then P has no non-trivial, finite normal subgroup. In particular, if $P \neq 1$, P is infinite.

Proof. Suppose M is a non-trivial finite subgroup of P. Then $P/C_P(M)$ is also finite and acts on P. Since both $P/C_P(M)$ and M are p-groups, this gives $C_P(M) \neq 1$, a contradiction to Z(M) = 1.

Example 1.4.37. $[\mathbf{zp}=1]$ Let p be a prime and k an integer with k > 1. Then there exists a locally finite, solvable p-group of derived length k with trivial center.

Proof. If k = 2 let B be any infinite abelian p-group (for example $\bigoplus_{i \in \mathbb{N}} \mathbb{C}_p$. If k > 2 let B be any infinite, locally finite, solvable p-group of derived length k - 1, which exists by induction (since by 1.4.36 a non-trivial p-group with trivial center is necessarily infinite). Put $A = \mathbb{F}_p[B]$. Then A is elementary abelian p group and B acts faithfully on A be right multiplication. Put G = AB, the semidirect product. Since B acts faithfully on A, $\mathbb{C}_G(A) = A$ and so $\mathbb{Z}(G) = \mathbb{C}_A(G) = \mathbb{C}_A(B)$. Since B is infinite, 1.4.35(a) gives $\mathbb{C}_A(B) = 1$ and so $\mathbb{Z}(G) = 1$. Since $B^{(k-1)} = 1$ we have $G^{(k-1)} \leq A$ and so $G(k) \leq A' = 1$. Suppose that $G^{(k-1)} = 1$. Since $B^{(k-2)} \leq G^{(k-2)}$ and $G^{(k-2)}$ is a normal subgroup

Suppose that $G^{(k-1)} = 1$. Since $B^{(k-2)} \leq G^{(k-2)}$ and $G^{(k-2)}$ is a normal subgroup of G, we have $[A, B^{(k-2)}]B^{(k-2)} \leq G^{(k-2)}$. Thus $[A, B^{(k-2)}, B^{(k-2)}] \leq G^{(k-1)} = 1$ and $B^{(k-2)}$ acts hyper-centrally on A. But by 1.4.36, $B^{(k-2)}$ is infinite, and so 1.4.35(a) gives a contradiction.

Thus $G^{(k-1)} \neq 1$ and G is solvable of derived length k.

Since both A and $B \cong G/A$ are locally finite p-groups, (??) implies that G is a locally finite p-group.

Example 1.4.38. [example] For each prime p there exists a locally finite, hyper (solvable, *) p-group which is not hypercentral-by-solvable.

Proof. For $1 < k \in \mathbb{N}$ let H_k be a solvable *p*-group of derived length k with $Z(H_k) = 1$ (see 1.4.37). Let $A_k = \mathbb{F}_p H_k$ and $H = \bigoplus_{k=2}^{\infty} H_k$. Let $1 \neq N \leq H$ and choose k such that the projection N_k of N in H_k is not trivial. By ?? N_k is infinite. Hence by 1.4.35(a), N does not act hypercentrally on A_k . Put $A = \bigoplus A_k$ and G = AH. 1.4.27 now completes the proof.

1.5 Radical Classes

Definition 1.5.1. [def:delta asc] Let δ be a well ordered class, G a group and H a subgroup of G. We say that H is δ -ascending in G if the exists $\beta \in \delta$ and an ascending sequence $(H_{\beta})_{\beta \leq \delta}$ from H to G. If H is an Ord-ascending subgroup of G, we write HascG and say that H is an ascending subgroup of G. H is an ω -ascending subgroup of G, we write $H \leq \subseteq G$ and say that H is an subnormal subgroup of G.

Definition 1.5.2. [def:radical] Let \mathcal{X} be a class of groups and G a group.

- (a) [a] $\rho_{\mathcal{X}}(G)$ is group generated by all the normal \mathcal{X} -subgroups of G.
- (b) [b] \mathcal{X} is called \mathbf{N}_0 closed if any group generated by finitely many normal \mathcal{X} -subgroups is a \mathcal{X} subgroup.
- (c) $[\mathbf{c}] \ \mathcal{X}$ is called **N** closed if any group generated by normal \mathcal{X} -subgroups is a \mathcal{X} subgroup.
- (d) [d] \mathcal{X} is called \mathbf{N} closed if any group generated by ascending \mathcal{X} -subgroups is a \mathcal{X} subgroup.
- (e) [e] \mathcal{X} is called \mathbf{S}_n -closed if every normal subgroup of an \mathcal{X} -group is a \mathcal{X} -group.

Observe that \mathcal{X} is N-closed if and only if $\rho_{\mathcal{X}}(G)$ is \mathcal{X} -group for all groups G.

Lemma 1.5.3. [asc and rho] Let \mathcal{X} be an N-closed class of groups, δ a well-ordered class and G a group. Suppose that whenever $\beta \in \delta$ is a limit ordinal, KascLascG and $(M_{\alpha})_{\alpha \leq \delta}$ is an ascending sequence from K to L such that $M_{\alpha} \in \mathcal{X}$ for all $\alpha < \delta$, then $L \in \mathcal{X}$. Then $\rho_{\mathcal{X}}(G)$ contains all δ -ascending \mathcal{X} -subgroups of G. In particular, if in addition, $\delta > 1$, then $\rho_{\mathcal{X}}(G)$ is the group generated by all the δ -ascending subgroups of G.

Proof. Let H be an δ ascending subgroup of G and let $(H_{\alpha})_{\alpha \leq \beta}$, $\beta \in \delta$ be an ascending sequence from H to G. For $\alpha \leq \beta$, define $\overline{H}_{\alpha} = \langle H^{H_{\alpha}} \rangle$.

We claim that $(H_{\alpha})_{\alpha \leq \beta}$ is a ascending series from H to $\langle H^G \rangle$. Since $H \leq H_{\alpha} \leq H_{\alpha+1}$, $\overline{H}_{\alpha+1} \leq H_{\alpha}$. So $\overline{H}_{\alpha} \leq \overline{H}_{\alpha+1}$. Also if α is a limit ordinal, then

$$\overline{H}_{\alpha} = \langle H^{H_{\alpha}} \rangle = \langle H^{\bigcup_{\gamma < \alpha} H_{\alpha}} \rangle = \bigcup_{\gamma < \alpha} \langle H^{H_{\gamma}} \rangle = \bigcup_{\gamma < \alpha} \overline{H}_{\gamma}$$

So $(\overline{H}_{\alpha})_{\alpha \leq \beta}$ is a ascending series from $H = \langle H^H \rangle$ to $\langle H^G \rangle$. Next we will use induction on α to show that $\overline{H}_{\alpha} \in \mathcal{X}$ for all $\alpha \leq \delta$. Suppose first that $\alpha = 0$, then $\overline{H}_{\alpha} = H \in \mathcal{X}$.

Suppose next that $\alpha = \gamma + 1$ for some ordinal γ , then by induction, \overline{H}_{γ} is a normal \mathcal{X} subgroup of H_{γ} . Let $g \in H_{\alpha}$. Then g normalizes H_{γ} and so $\overline{H}_{\gamma}^{g}$ is a normal \mathcal{X} -subgroup of H_{γ} . Thus

$$\overline{H}_{\alpha} = \langle H^{H_{\alpha}} \rangle = \langle \overline{H}_{\gamma}^{H_{\alpha}} \rangle = \langle \overline{H}_{\gamma}^{g} \mid g \in H_{\alpha} \rangle$$

is generated by normal \mathcal{X} -subgroups. Since \mathcal{X} is N-closed, $\overline{H}_{\alpha} \in \mathcal{X}$.

Suppose that α is a limit ordinal. Then $(\overline{H})_{\gamma \leq \alpha}$ is an ascending sequence from H to \overline{H}_{α} . By induction \overline{H}_{γ} is an \mathcal{X} groups for all $\gamma < \alpha$ and so by the assumption of the lemma, $\overline{H}_{\alpha} \in \mathcal{X}$.

We proved that $\overline{H}_{\alpha} \in \mathcal{X}$ for all $\alpha \leq \beta$. In particular, $\langle H^G \rangle = \overline{H}_{\beta} \in \mathcal{X}$. Thus $\langle H^G \rangle$ is a normal \mathcal{X} subgroups of G and so $\langle H^G \rangle \leq \rho_{\mathcal{X}}(G)$. Hence also $H \leq \rho_{\mathcal{X}}(G)$.

Corollary 1.5.4. [rho and subnormal] Let \mathcal{X} be an N closed class of groups. Then $\rho_{\mathcal{X}}(G)$ is the group generated by all the subnormal \mathcal{X} -subgroups of G.

Proof. Note that ω does not contain a limit ordinal. So the condition in 1.5.3 holds vacuously for $\delta = \omega$.

Corollary 1.5.5. [ncx] Let \mathcal{X} be class of groups, and let $\mathbf{N}\mathcal{X}$ be the class of groups which are generated by subnormal \mathcal{X} groups. Then $\mathbf{N}\mathcal{X}$ is the smallest \mathcal{N} -closed class of groups containing \mathcal{X} , that is $\mathbf{N}\mathcal{X}$ is \mathbf{N} -closed and every \mathbf{N} -closed class of groups containing \mathcal{X} also contains $\mathbf{N}\mathcal{X}$.

Proof. Let G be a group generated by a family \mathcal{M} of normal $\mathbf{N}\mathcal{X}$ -groups. Then each $M \in \mathcal{M}$ is generated by a family \mathcal{N}_M of subnormal \mathcal{X} -subgroups of M. Note that each $N \in \mathcal{N}_M$ is subnormal in G and so $\bigcup_{M \in \mathcal{M}} \mathcal{N}_M$ is a family of subnormal subgroups of G generating G. Thus $G \in \mathbf{N}\mathcal{X}$ and $\mathbf{N}\mathcal{X}$ is **N**-closed.

Now let \mathcal{Y} be any **N**-closed class of groups with $\mathcal{X} \subseteq \mathcal{Y}$. Let $G \in \mathbf{N}\mathcal{Y}$. Then G is generate by subnormal \mathcal{X} groups, and so also by subnormal \mathcal{Y} -subgroups. Thus 1.5.4, $G \leq \rho_{\mathcal{Y}}(G)$. Hence $G = \rho_Y(G)$ and so $G \in \mathcal{Y}$.

Corollary 1.5.6. [cap subnormal] Let \mathcal{X} be an N- and S_n-closed class of groups. Let G be a group and $H \leq \subseteq G$. Then

 $\rho_{\mathcal{X}}(H) = \rho_{\mathcal{X}}(G) \cap H.$

Proof. Note that $\rho_{\mathcal{X}}(G) \cap H$ is subnormal subgroup of the \mathcal{X} group $\rho_{\mathcal{X}}(G)$. Since \mathcal{X} is \mathbf{S}_n -closed, $\rho_{\mathcal{X}}(G) \cap H$ is an \mathcal{X} group. Since $\rho_{\mathcal{X}}(G) \cap H$ is normal in H this gives $\rho_{\mathcal{X}}(G) \cap H \leq \rho_{\mathcal{X}}(H)$.

Conversely, $\rho_{\mathcal{X}}(H)$ is a subnormal \mathcal{X} subgroup of G and so by 1.5.4 $\rho_{\mathcal{X}}(H) \leq \rho_{\mathcal{X}}(G)$. Thus $\rho_{\mathcal{X}}(H) \leq \rho_{\mathcal{X}}(G) \cap H$ and the corollary holds. **Definition 1.5.7.** [def:radical class] A class \mathcal{X} of groups is called radical if it is \mathbf{N} and \mathbf{H} closed, and if for every group G

$$\rho_{\mathcal{X}}(G/\rho_{\mathcal{X}}(G)) = 1$$

Lemma 1.5.8. [char radical] A class of group is radical if and only if its N, H and P closed.

Proof. Let \mathcal{X} be class of groups which is **N** and **H**-closed.

Suppose first that \mathcal{X} is radical and let G be a group which is \mathcal{X} -by- \mathcal{X} . Then there exists $M \leq G$ such that M and G/M are \mathcal{X} -group. Then $M \in \rho_{\mathcal{X}}(G)$ and

$$G/\rho_{\mathcal{X}}(G) \cong G/M / \rho_{\mathcal{X}}(G)/M$$

Since G/M is an \mathcal{X} -group and \mathcal{X} is **H**-closed we conclude that $G/\rho_{cX}(G)$ is an \mathcal{X} groups. Thus

$$G/\rho_{\mathcal{X}}(G) \le \rho_{\mathcal{X}}(G/\rho_{\mathcal{X}}(G)) = 1$$

and so $G = \rho_{cX}(G) \in \mathcal{X}$. Thus \mathcal{X} is closed under extension, that is **P**-closed.

Suppose next that \mathcal{X} is closed under extensions and let G be any group. Let M be the inverse image of $\rho_{\mathcal{X}}(G/\rho_{\mathcal{X}}(G))$ in G. Then M is a normal subgroups of G and both $\rho_{\mathcal{X}}(G)$ and $M/\rho_{\mathcal{X}}(G)$ are \mathcal{X} groups. Thus M is a normal \mathcal{X} subgroup of G and so $M \leq \rho_{\mathcal{X}}(G)$. Thus $M = \rho_{\mathcal{X}}(G)$ and $\rho_{\mathcal{X}}(G/\rho_{\mathcal{X}}(G)) = M/\rho_{\mathcal{X}}(G) = 1$. Thus \mathcal{X} is a radical class. \Box

Definition 1.5.9. [def rad cx] Let \mathcal{X} be a class of groups. Then $\operatorname{rad} \mathcal{X} = \operatorname{Hyp}(\mathbf{H}\mathcal{X})$). So $\operatorname{rad} \mathcal{X}$ is the class of all groups with ascending normal series all of whose factors are homomorphic images of an \mathcal{X} group.

Lemma 1.5.10. [char rad cx] Let \mathcal{X} be a class of groups. Then rad \mathcal{X} is the smallest radical class containing \mathcal{X} , that is rad \mathcal{X} is a radical class and contains all radical classes containing \mathcal{X} .

Proof. By ??(??), $\operatorname{rad} \mathcal{X}$ is **H**-closed. By 1.4.14, $\operatorname{rad} \mathcal{X}$ is **N**-closed and by 1.4.13, $\operatorname{rad} \mathcal{X}$ is **P** closed. So by 1.5.8, $\operatorname{rad} \mathcal{X}$ is a radical class.

Now let \mathcal{Y} be radical class with $\mathcal{X} \subseteq \mathcal{Y}$. Let $G \in \operatorname{rad} \mathcal{X}$ and choose a hyper-(*, $\mathbf{H}\mathcal{X}$)sequence $(G_{\alpha})_{\alpha \leq \beta}$ for G.So each We will show by induction that $G_{\alpha} \in \mathcal{Y}$ for all ordinals $\alpha \leq \beta$. If $\alpha = 0$, this is obvious. Suppose $\alpha = \delta + 1$ is a successor. Then by induction $G_{\delta} \in \mathcal{Y}$. Since $\mathcal{X} \subseteq \mathcal{Y}$ and \mathcal{Y} is **H**-closed, $\mathbf{H}\mathcal{H} \subseteq \mathcal{Y}$. Thus $G_{\alpha}/G_{\delta} \in \mathcal{Y}$. Since \mathcal{Y} is **P** closed this gives $G_{\alpha} \in \mathcal{Y}$.

Suppose α is limit ordinal. Then $G_{\alpha} = \bigcup_{\delta < \alpha} G_{\delta} = \langle G_{\delta} | \delta < \alpha \rangle$. By induction $G_{\delta} \in \mathcal{Y}$ and since \mathcal{Y} is **N**-closed, $G_{\alpha} \in \mathcal{Y}$.

We proved that each $G_{\alpha} \in \mathcal{Y}$. In particular $G = G_{\beta} \in \mathcal{Y}$ and so $\operatorname{rad} \mathcal{X} \subseteq \mathcal{Y}$.

Definition 1.5.11. [def:central extension] Let G be a group and H be group. We say that G is a central extension of H if there exists $Z \leq Z(G)$ with $G/Z \cong H$. If \mathcal{X} is a class of groups, then $\mathbb{C}\mathcal{X}$ is class of central extensions of \mathcal{X} -groups.

Proposition 1.5.12. [cgrho] Let \mathcal{X} be a H-, S_n - and C-closed class of groups. Let $G \in \operatorname{rad} \mathcal{X}$ and put $H = \rho_{\mathcal{X}}(G)$. Then $C_G(H) \leq H$.

Proof. Since \mathcal{X} is **H**-closed and $G \in \operatorname{rad}\mathcal{X}$, there exists a hyper \mathcal{X} -sequence $(G_{\alpha})_{\alpha \leq \beta}$ for G. We claim that $C_G(H) \cap G_{\alpha} \leq H$ for all $\alpha \leq \beta$. This is obvious for $\alpha = 0$. So suppose $\alpha > 0$ and $C_G(H) \cap G_{\delta} \in \mathcal{X}$ for all $\delta < \alpha$. If α is limit ordinal, then

$$\mathcal{C}_G(H) \cap G_\alpha = \mathcal{C}_G(H) \cap \bigcap_{\delta < \alpha} = \bigcap_{\delta < \alpha} (\mathcal{C}_G(H) \cap G_\delta) \le H$$

So suppose $\alpha = \delta + 1$ for some ordinal delta. Put $D = C_G(H) \cap G_{\alpha} = C_G(H) \cap G_{\delta+1}$. Then DG_{δ}/G_{δ} is an normal subgroup of the \mathcal{X} -group $G_{\delta+1}/G_{\delta}$. Since \mathcal{X} is \mathbf{S}_n -closed, DG_{δ}/G_{δ} is \mathcal{X} group. Hence also $D/D_{\cap}G_{\delta}$ is an \mathcal{X} -group. Note the

$$[D, D_{\cap}G_{\delta}] \leq [C_G(H), C_G(H) \cap G_{\delta}] \leq [C_G(H), H] = 1$$

and so $D \cap G_{\delta} \leq \mathbb{Z}(D)$. Thus D is a central extension of an \mathcal{X} group. Since \mathcal{X} is a \mathcal{C} -closed, $D \in \mathcal{X}$. Thus D is a normal \mathcal{X} subgroup of G and so $D \leq H$.

Thus the claim holds. In particular, $C_G(H) = C_G(H) \cap G = C_G(H) \cap G_\beta \leq H$.

1.6 Finitely generated groups

Definition 1.6.1. [def:rang] Let G be an A-group.

- (a) [a] Let c be a cardinal. Then G is c A-generated if the exists a subset I of G with $G = \langle I^A \rangle$ and $|I| \leq c$. We will also say that G is an c-generated A-group. Such an I is called c A-generating set for G.
- (b) [b] $r^{A}(G)$ is the least cardinal c such that G is c A-generated.
- (c) [c] If G is called finitely A-generated $r^A(G) \in \mathbb{N}$.
- (d) $[\mathbf{d}]$ rank^A(H) = sup{ $r^{A}(H) \mid H \leq G, r^{A}(G) \in \mathbb{N}$ }.
- (e) [e] If A = 1, we drop A in the previous notations.

Lemma 1.6.2. [factor and r] Let G be an A-group, H an A-subgroups and M a normal A-subgroup of G with HM.

- (a) [a] There exists an $r^A(G)$ -generated A-subgroup K of G with $G = \langle H, K \rangle$.
- (b) [b] $r^{HA}(M) \le r^{A}(G) + r^{HA}(H \cap M).$

Proof. (a): Let $I \subseteq G$ with $|I| = r^A(G)$ and $G = \langle I^A \rangle$. For $i \in I$ pick $h_i \in H$ and $m_i \in M$ with $i = h_i m_i$. Put $K = \langle m_i^A \mid i \in I \rangle$. Then K is an $r^A(G)$ -generated A-subgroup of M. Also

$$G = \langle I^A \rangle = \langle h_i m_i^A \mid i \in I \rangle \le \langle H, m_i^A \mid i \in I = > = \langle H, K \rangle \le G$$

and so (a) holds.

(b): Let K be as in (a). Then $G = \langle H, K \rangle = H \langle K^H \rangle$. Since $\langle K^H \rangle \leq M$ this gives $M = (H \cap M) \langle K^H \rangle$. Observe that $\langle K^H \rangle$ is an $r^A(G)$ -generated HA-group and so M is an $r^A(G) + r^{HA}((H \cap M))$ generated HA-group.

Lemma 1.6.3. [simple rank] Let A be a group, G an A-group and H an A-subgroup of G.

- (a) [a] $\operatorname{rank}^{A}(H) \leq \operatorname{rank}^{A}(G)$.
- (b) [b] If H is normal in G then $\operatorname{rank}^A(G/H) \leq \operatorname{rank}^A(G)$.
- (c) [c] If H is normal in G then $\operatorname{rank}^{A}(G) \leq \operatorname{rank}^{A}(H) + \operatorname{rank}^{A}(G/H)$.

Proof. (a) and (b) are obvious. For (c) let L be a finitely A-generated A-subgroup of G. LH/H is an rank^A(G/H) – A-subgroup of G/H and so there exists a finite subset I of Lwith $LH/H = \langle I^A \rangle H/H$ and $|I| \leq \operatorname{rank}^A(G/H)$. Then $L = \langle I^A \rangle (L \cap H)$. By 1.6.2(a), there exists a |I| - A-generated subgroup K of $L \cap H$ with $L = \langle I^A, K \rangle$. Since $K \leq H$, Kis rank^A(H)-generated and so $r^A(L) \leq \operatorname{rank}^A(G/H) + \operatorname{rank}^A(H)$.

Definition 1.6.4. [presentation] Let G be a group and c a cardinal.

- (a) [a] A presentation of rank c for G is an onto homomorphism $\phi : F \to G$, where F is a free group of rank c.
- (b) [b] A presentation $\phi: F \to G$ is called finite F has finite rank and ker ϕ is finitely F generated.
- (c) [c] A group is called finitely presented if its has a finite presentation.

Example 1.6.5. [finite groups are finitely presented]

Proof. $G \cong \langle x_g \mid x_h x_h = x_{gh}, g, h \in G \rangle$.

Lemma 1.6.6. [finitely presented quotient] Let H be a finitely generated group and $M \leq H$. if H/M is finitely presented, then M is finitely M generated.

Proof. Put G = H/M and define $\beta : H \to M, h \to hM$. Also let $\alpha : F \to G$ be a finite presentation of G. Let $(x_i, i \in I$ be basis for F and pick $h_i \in I$ with $\beta(h_i) = \alpha(x_i)$. Then there exists a unique homomorphism $\gamma : F \to H$ with $\gamma(x_i) = h_i$. then $\beta(\gamma(x_i)) = \beta(h_i) = \alpha(x_i)$ and so $\alpha = \beta \circ \gamma$. Note that $M = \ker \beta$ and $K = \operatorname{Im} \gamma$. Since $\beta(K) = \beta(\gamma(H)) = \alpha(H) = G$ we have H = KM. We compute

$$K \cap M = \{\gamma(f) \mid f \in F, \beta(\gamma(f)) = 1\} = \{\gamma(f) \mid f \in F \mid \alpha(f) = 1\} = \beta(\ker \alpha)$$

Since α is a finite presentation, ker α is finitely H generated and so $K \cap M$ is finitely K-generated. Also H is finitely generated and so by 1.6.2(b), M is finitely H-generated. \Box

Proposition 1.6.7. [all presentation finite] Let G be a finitely presented group. Then all presentation of finite rank for G are finite.

Proof. Let $\beta : H \to G$ be a finite presentation and put $M = \ker \beta$. Then H is finite generated and $H/M \cong G$ is finitely presented. By 1.6.6, M is finitely H generated and so β is a finite presentation.

Proposition 1.6.8. [extensions of finitely presented groups] The class of finitely presented groups is closed under extensions.

Proof. Let G be a group and N a normal subgroups of G such that both G/N and N are finitely presented. Let $\alpha : F \to G/N$ and $\beta : H \to N$ be finite presentation of G/N and N, respectively. Let I be a basis for F, J a basis for H, K a finite F-generating set for ker α and L a finite H-generating set for ker β . For $i \in I$ pick $g_i \in G$ with $\alpha(i) = g_i N$.Since F is free there exists a homomorphism $\alpha^* : F \to G$ with $\alpha^*(i) = g_i$. Then $\alpha^*(f)N = \alpha(f)$ for all $f \in F$.In particular $\alpha(f) = 1$ if and only if $\alpha^*(f) \in N$. If $k \in K, i \in I$ and $l \in L$, then $\alpha^*(k)$, $\beta(l)^{g_i}$ and $\beta(l)^{g_i^{-1}}$ all are in N and so $\alpha^*(k) = \beta(h_k), \beta(l)^{g_i} = \beta(h_{ki})$ and $\beta(l)^{g_i^{-1}} = \beta(\tilde{h}_{ki})$ for some $h_k, h_{ki}, \tilde{h}_{ki} \in H$. Let T be the free product of F and H, that is the free group with basis $I \biguplus J$. Note that F and H are subgroups of T. Let M be the normal subgroup of T generated by the elements

$$l \qquad l \in L$$

$$kh_k^{-1} \qquad k \in K$$

$$j^i h_{ki}^{-1} \qquad j \in Ji \in I$$

$$j^{i^{-1}} \tilde{h}_{ji}^{-1} \qquad j \in J, i \in I$$

Let $\gamma : T \to G$ be the homomorphism defined by $\gamma(i) = g_i = \alpha^*(i)$ for $i \in I$ and $\gamma(j) = \beta(j)$ for $j \in J$. We will show that γ is onto and ker $\gamma = M$. Observe that this implies that γ is a finite presentation for G.

Note that $\gamma \mid F = \alpha^*$ and $\gamma \mid K = \beta$. Thus $N = \beta(K) = \gamma(K) \leq \text{Im } \gamma$. Since α is onto, $\alpha^*(F)N = G$ and so $\gamma(F)N = G$ and $\text{Im } \gamma = G$.

Also $\gamma(l) = \beta(l) = 1$ for all $l \in L$, $\gamma(kh_k^{-1}) = \alpha^*(k)\beta(h_k)^{-1} = 1$, $\gamma(j^i h_{ki}^{-1}) = \beta(j)^{g_i}\beta(h_{ji}^{-1} = 1, \gamma(j^{i-1}\tilde{h}_{ji}^{-1}) = \beta(j)^{g_i^{-1}})\beta(\tilde{h}_{ji}^{-1} = 1)$. So all the generators of M are in $\ker \gamma$ and so $M \leq \ker \gamma$.

Since $j^i M = h_{ji} M \in HM$ and $j^{i^{-1}} M = \tilde{h}_{ji} M \in HM$ for all $j \in I$ and $i \in M$ we see that HM is normalized by $\langle I, J \rangle = T$. It follows that $T = \langle F, H \rangle = FHM$. For $k \in K$ we have $k \in h_k M \in HM$ and so ker $\alpha \leq HM$.

Let $t \in \ker \gamma$, then t = fhm for some $f \in F, h \in H$ and $m \in M$. Then $1 = \gamma(t) = \gamma(f)\gamma(h)\gamma(m) = \alpha^*(f)\beta(h) \in \alpha^*(f)N$. Thus $\alpha^*(f) \in N$ and so $\alpha(f) = 1$ and $f \in \ker \alpha \in HM$. Hence $t = fhm \in HM$ and we may assume that f = 1. Thus $1 = \beta(h)$ and $h \in \ker \beta$. Since $l \in M$ for all $l \in L$ we see that $\ker \beta \leq M$ and thus $t = hm \in M$.

Corollary 1.6.9. [polycyclic are finitely presented] All polycyclic groups are finitely presented. More generally all poly-(cyclic or finite) groups are finitely presented.

Proof.

1.7 Locally \mathcal{X} -groups

Definition 1.7.1. [def:directed set]

- (a) [a] A partially ordered set (I, <) is called direct if for all $i, j \in I$ there exists $k \in I$ with $i \leq k$ and $j \leq k$.
- (b) [b] A local system for a group G is a set \mathcal{L} of subgroups such that $G = \bigcup \mathcal{L}$ and (\mathcal{L}, \subset) is directed.

Note that a partially ordered set is directed if and only if every non-empty subset has an upper bound.

Lemma 1.7.2. [local system]

- (a) [a] Let G be a group with a local system \mathcal{L} . Then each finitely generated subgroup of G is contained in member of \mathcal{L} .
- (b) [b] Let X be a class of groups. Then every group with a local system of X-groups is a local X-group. In particular a union of a chain of X-groups is a local X-group.
- (c) $[\mathbf{c}] \ \mathcal{L}$ is a closure operation.

Proof. (a) Let S be a finite subset of G. Since $G = \bigcup \mathcal{L}$, for each $s \in S$ there exists $L_s \in \mathcal{L}$ with $s \in \mathcal{L}$. Since \mathcal{L} is directed, there exists an upper bound L for $\{L_s \mid s \in S\}$ in \mathcal{L} . Thus $s \in L_s \subseteq L$ and $\langle S \rangle \leq L$.

(b) follows immediately from (a).

(c) Let \mathcal{X} be a class of groups. Let G be a group which is locally \mathcal{LX} . Let S be a finite subset of G. Then there exists a \mathcal{LX} -subgroup H of G with $S \subseteq H$. Since H is locally \mathcal{X} , there exists a subgroup K of H with $S \subseteq K$. Thus $G \in \mathcal{LX}$.

Proposition 1.7.3. [n and l] An L-closed class of groups is N_0 if and only if its is Nclosed *Proof.* The one direction is obvious. So suppose \mathcal{X} is an \mathbf{L} and \mathbf{N}_0 closed class of group. We will first show that it is bN closed. For this let G be a group which is generated by normal \mathcal{N} subgroups. Let \mathcal{L} be the set of subgroups of G which are generated by finitely many normal \mathcal{X} -subgroups. Note that \mathcal{L} is a local system for G. Since \mathcal{X} is \mathbf{N}_0 -closed, $\mathcal{L} \subseteq \mathcal{X}$. So by 1.7.2(b), G is locally \mathcal{X} . Since \mathcal{X} is \mathcal{L} closed, $G \in \mathcal{X}$ and so \mathcal{X} is \mathcal{B} -closed.

Now let G be group which is generated by ascending \mathcal{X} -subgroups. By 1.7.2(b), the unions of any chain of \mathcal{X} subgroups of G is $\mathbf{L}\mathcal{X}$ -group and so an \mathcal{X} -group. Thus the assumptions of 1.5.3 are fulfilled for $\delta = \text{Ord}$. Hence all ascending \mathcal{X} -subgroups of G are contained in $\rho_{\mathcal{X}}(G)$. So $G = \rho_{\mathcal{X}}(G) \in \mathcal{X}$.

Lemma 1.7.4. [easy locally] Let \mathcal{X} be an S-closed class of groups and G a group. Then the following are equivalent.

- (a) $[\mathbf{a}]$ G is locally \mathcal{X} .
- (b) [b] Every finitely generated subgroup of G is an \mathcal{X} -group.
- (c) $[\mathbf{c}]$ G is locally $\mathcal{X} \cap \mathcal{F}$ (recall here that \mathcal{F} is the class of finitely generated groups.

Proof. (a) \implies (b): Let *S* ⊆ *G* be finite. Since *G* is locally \mathcal{X} , *S* ≤ *H* for some \mathcal{X} subgroup of *G*. Since \mathcal{X} is **S**-closed, $\langle S \rangle$ is an \mathcal{X} -group. (b) \implies (c): and (c) \implies (??): are obvious.

Chapter 2

Locally nilpotent and locally solvable groups

2.1 Commutators

Lemma 2.1.1. [commutator formulas] Let G be a group and x, y, z in G. Then

- (a) [a] $[x,y] = x^{-1}x^y = y^{-x}y$
- (b) [b] $[x, yz] = [x, z]^y [x, z]$
- (c) [c] $[xy, z] = [x, z]^y [y, z]$
- (d) $[\mathbf{d}] [x, y]^{-1} = [y, x].$
- (e) [e] $[x^{-1}, y] = [x, y]^{-x^{-1}}$.
- (f) $[\mathbf{f}] [x, y^{-1}, z]^{y} [y, z^{-1}, x]^{z} [z, x^{-1}, y]^{x}$.

Proof. Readily verified.

Definition 2.1.2. [def:comm groups] Let G be a group.

- (a) [a] Let $X, Y \subseteq G$. The $[X, Y] := \langle [x, y] \mid x \in X, y \in U \rangle$.
- (b) [b] Let $X_1, X_2, \ldots X_n$ be subsets of G inductively define,

$$[X_1] = \langle X_1 \rangle$$
 and $[X_1, X_2, \dots, X_n] := [[X_1, X_2, \dots, X_{n-1}], X_n]$

Lemma 2.1.3. [comm 1] Let X and Y be subsets of a groups G.

- (a) [a] If $1 \in Y$, then $\langle X^Y \rangle = \langle X, [X, Y] \rangle$.
- (b) [b] If Y is a subgroup of G, then [X, Y] is Y-invariant.

Proof. (a)

$$\begin{split} \langle X^Y \rangle &= \langle x^y \mid x \in X, y \in Y \rangle = \langle x[x,y] \mid x \in X, y \in Y \rangle \le \langle X, [X,Y] \rangle \\ &= \langle z, [x,y] \mid z \in x, z \in X, y \in Y \rangle = \langle z, x^{-1}x^y \mid x, z \in X, y \in Y \rangle \le \langle X^Y \rangle \end{split}$$

where, in the last inequality we used that $X \subseteq \langle X^Y \rangle$ since $1 \in Y$. (b) Let $x \in X$ and $y, z \in Y$. Then

$$[x, zy] = [x, y]^z [x, z]$$

and so

$$[x,y]^{z} = [x,zy][x,z]^{-1} \in [X,Y]$$

where in the last assertion we used that Y and [X, Y] are subgroups of G.

Lemma 2.1.4. [comm 2] Let X and Y be subsets of a group G and put $H = \langle X \rangle$ and $K = \langle Y \rangle$. Then

$$[H,Y] = \langle [X,Y]^H \rangle$$

and

$$[H,K] = \langle [X,Y]^{HK} \rangle$$

Proof. Put $L = \langle [X,Y]^H \rangle$. By ??(??), [H,Y] is H-invariant. Since $[X,Y] \leq [H,Y]$, this gives $L \leq [H, Y]$. Since L is H acts on the cosets of L in G by conjugation, indeed $(Lg)^h = Lg^h$. Also Lg is fixed-point of $h \in H$ iff $Lg = lg^h$ and iff $[h, g] = g^{-h} \in L$. So all elements of X fix all $Ly, y \in Y$. Hence also $H = \langle X \rangle$ fixes all $Ly, y \in Y$ and so $[h, y] \in L$ for all $h \in H, y \in Y$. Thus $[H, Y] \leq L$ and L = [H, Y].

This proves the first statement.

For the second, we use the fist statement twice:

$$[H,K] = \langle [H,Y]^K \rangle = \langle \langle [X,Y]^H \rangle^K \rangle = \langle [X,Y]^{HK} \rangle$$

2.2Locally nilpotent groups

Definition 2.2.1. [L] et G be a group and α and ordinal. Define subgroups $Z_{\alpha}(G)$ and $\gamma_{\alpha}(G)$ inductively a follows:

$$Z_0(G) = 1, Z_{\alpha}(G)/Z_{\alpha-1} = Z(G/Z_{\alpha-1}(G)), \text{ if } \alpha \text{ is a successor and } Z_{\alpha}(G) = \bigcup_{\beta < \alpha} Z_{\beta}(G) \text{ if } \alpha \text{ is a limit ordinal}$$

 $\gamma_0(G) = G, \gamma_\alpha(G) = [\gamma_{\alpha-1}(G), G], \text{ if } \alpha \text{ is a successor and } Z_\alpha(G) = \bigcap_{\beta < \alpha} Z_\beta(G) \text{ if } \alpha \text{ is a limit ordinal}$

 $(\mathbb{Z}_{\alpha})_{\alpha}$ is called the upper central series of G and $(\gamma_{\alpha}(G))_{\alpha})$ the lower centrals series of G.

Lemma 2.2.2. [char nilpotent] Let $n \in \mathbb{N}$ and G a group. Then the following statements are equivalent:

- (a) $[\mathbf{a}] \quad G = \mathbf{Z}_n(G).$
- (b) [b] There exists a finite ascending normal series

 $1 = A_0 \le A_1 \le \dots A_{n-1} \le A_n = G$

of G with $[A_i, G] \leq A_{i-1}$ for all $1 \leq i \leq n$.

(c) [c] $\gamma_n(G) = 1.$

Proof. (a) \Longrightarrow (b): Just put $A_i = Z_i(G)$.

(b) \Longrightarrow (a): We claim that $A_i \leq Z_i(G)$. This is clearly true for i = 0. Suppose that $A_i \leq Z_i(G)$. Then $[A_{i+1}, G] \leq A_i \leq Z_i(G)$ and so $A_{i+1} \leq Z_{i+1}(G)$. This proves the claim and so $G = A_N \leq Z_n(G)$.

(b) \implies (c): We claim that $\gamma_i(G) \leq A_{n-i}$. Indeed this is true for i = 0. Suppose $\gamma_i(G) \leq A_{n-i}$. Then

$$\gamma_{i+1}(G) = [\gamma_i(G), G] \le [A_{n-i}, G] \le A_{n-(i+1)}$$

Thus the claim holds and $\gamma_n(G) \le A_0 = 1$ (c) \implies (b): Just put $A_i = \gamma_{n-i}(G)$.

Definition 2.2.3. [def:nilpotent] Let G be a group. Then G is called nilpotent if $\gamma_n(G) = 1$ for some $n \in \mathbb{Z}_n(G)$. The smallest such n is called the nilpotency class of G. $\mathcal{N} \downarrow \uparrow$ denotes the class of nilpotent groups.

Lemma 2.2.4. [nilpotent and no] Let K and L be nilpotent normal subgroups of a group G of nilpotency class k and l, respectively. Then KL is nilpotent of class at most k + l. In particular, $\mathcal{N} \uparrow is \mathbf{N}_0$ closed.

Proof. If k = 0 or l = 0, then K = 1 or L = 1 and the lemma holds. Now suppose k > 0 and l > 0. Note that KZ(L)/Z(L) has nilpotency class at most k and L/Z(L) has nilpotency class l - 1. So by induction KL/Z(L) class at most k + l - 1. Thus $\gamma_{k+l-1}(KL) \leq Z(L)$. By symmetry, $\gamma_{k+l-1}(KL) \leq Z(K)$. Since $Z(K) \cap Z(L) \leq Z(KL)$ we conclude that

$$[\gamma_{k+l}(KL), KL] \le [\mathbf{Z}(KL), KL] = 1$$

Definition 2.2.5. [c generated] Let c be a cardinality. Then a group G is called cgenerated if there exists a subset T of G with $G = \langle T \rangle$ and $|T| \leq c$.

Lemma 2.2.6. [polycyclic] Let G be a group with an ascending sequence $(G_{\alpha})_{\alpha \leq \beta}$ all of whose factors are cyclic. Then every subgroups of G can is $|\beta|$ -generated. In particular, all polycyclic groups are finitely generated.

Proof. For $\alpha < \beta$, $G_{\alpha+1}/G_{\alpha}$ is cyclic and so there exists g_{α} with $G_{\alpha+1} = \langle g_{\alpha} \rangle G_{\alpha}$. We claim that for all $\gamma \leq \alpha$, $G_{\gamma} = \langle g_{\delta} | \delta < \gamma \rangle$. This is obvious of $\gamma = 0$ Suppose the claim is true for all ordinal less than γ . $\gamma = \alpha + 1$, then

$$G_{\gamma} = \langle g_{\alpha} \rangle G_{\alpha} = \langle g_{\alpha} \rangle \langle g_{\delta} \mid \delta < \alpha \rangle = \langle g_{\delta} \mid \delta < \gamma \rangle$$

If γ is a limit ordinal, then

$$G_{\gamma} = \bigcup_{\alpha < \gamma} G_{\alpha} = \bigcup_{\alpha < \gamma} \langle g_{\delta} \mid \delta < \alpha \rangle = \langle g_{\delta} \mid \delta < \gamma \rangle$$

So the claim holds. In particular, $G = G_{\beta}$ is $|\beta$ generated. If $H \leq G$, then $(H \cap G_{\alpha})_{\alpha \leq \beta}$ is an ascending series with cyclic factors and so also H is |beta|-generated.

Proposition 2.2.7. [fg and nil] Let G be a nilpotent n-generated group of class d > 0 and suppose G can be generated by n elements. Put $m := \sum_{i=1}^{d} n^{d}$. Then $\gamma_{d-1}(G)$ is n^{d} -generated and G is polycyclic of length m. In particular, every subgroup of G is m-generated.

Proof. Suppose d = 1. Then G is abelian and so polycyclic of length at most n. Also $\gamma_{d-1}(G) = G$ and so can be generated by $n^d = n$ elements. Thus proposition holds in this case.

So suppose d > 1 and put $D = \gamma_{d-1}(G)$ and $E = \gamma_{g-2}(G)$. Then $D \leq Z(G)$ and D = [E, G]. Moreover by induction, E/D is generated by n^{d-1} elements and G/D is polycylic of length at most $\sum_{i=1}^{d-1} n^i$. So there exists $S \subseteq E$ with $|S| \leq n^{d-1}$ and $E/D = \langle SD | s \in S \rangle$. Note that $E = \langle S \rangle D$. Let $T \subseteq G$ with $G = \langle T \rangle$ and |T| = n. Then

$$D = [E, G] = [\langle S \rangle D, \langle T \rangle] = [\langle S \rangle, \langle T \rangle] = \langle [S, T] \rangle^{\langle S \rangle \langle T \rangle} = [S, T]$$

where the last equality holds since $[S,T] \leq [E,G] \leq D \leq Z(G)$. Thus D is generated by $|S||T| \leq n^{d-1}n$ elements. Since D is abelian, D is polycyclic of length n^d . Since G/D is polycyclic of length $\sum_{i=1}^{d-1} n^i$, G is polycyclic of length

$$n^d + \sum_{i=1}^{d-1} n^i = \sum_{i=1}^d n^d$$

The last statement now follows from 2.2.6.

Theorem 2.2.8. [hirsch-plotkin] Let \mathcal{X} be a S- and N₀-closed class of finitely generated groups. Then $\mathbf{L}\mathcal{X}$ is \mathbf{N} -closed. In particular, for all groups G, $\rho_{\mathbf{L}\mathcal{X}}(G)$ is locally $\mathcal{X}(G)$ and contains all ascending locally \mathcal{X} -subgroups of G.

Proof. We will first show that $\mathbf{L}\mathcal{X}$ is \mathbf{N}_0 -closed. For this let L and M be normal locally \mathcal{X} -subgroups of a group H. We need to show that LM is locally \mathcal{X} .

So let S be a finite subsets of LM and choose finite subsets X and Y of L and M respectively with $S \subseteq \langle H, K \rangle$, where $H = \langle X \rangle$ and $K = \langle Y \rangle$. Note that [X, Y] is finitely generated and $[X, Y] \leq [H, K] \leq [L, M] \leq L \cap M$ and so $\langle [X, Y], H \rangle = \langle [X, Y], X \rangle$ is a finitely generated subgroup of L. Since L is locally \mathcal{X} we conclude that $\langle [X, Y], H \rangle$ is an \mathcal{X} group. Since \mathcal{X} is **S**-closed also $[H, Y] = \langle [X, Y]^H \rangle$ is an \mathcal{X} group. In particular, [H, Y]is finitely generated. Hence

$$\langle K^H \rangle = [H, K]K = \langle [H, Y]^K \rangle K = \langle [H, Y], Y \rangle$$

is a finitely generated subgroup of M. Thus $\langle K^H \rangle$ is \mathcal{X} -group. By symmetry also $\langle H^K \rangle$ is \mathcal{X} -group. Since \mathcal{X} is \mathbf{N}_0 -closed we conclude from $\langle H, K \rangle = \langle H^K \rangle \langle K^H \rangle$ that $\langle H, K \rangle$ is an \mathcal{X} groups. Since $S \subseteq \langle H, K \rangle$ this completes the proof that LM is locally \mathcal{X} .

Hence $\mathbf{L}\mathcal{X}$ is \mathbf{N}_0 -closed. Since $\mathbf{L}\mathcal{X}$ is \mathbf{L} -closed, 1.7.3 implies that $\mathbf{L}\mathcal{X}$ is also \mathbf{N} -closed. \Box

Definition 2.2.9. [def:fitting] let G be groups.

- (a) [a] $F(G) = \rho_{Nil}(G)$. So F(G) is is the group generated by the all the nilpotent normal subgroups of G. F(G) is called the Fitting subgroups of G.
- (b) [b] $HP(G) = \rho_{LNil}(G)$. So F(G) is is the group generated by the all the locally nilpotent normal subgroups of G. HP(G) is called the Hirsch-Plotkin radical of G.

Corollary 2.2.10 (Hirsch-Plotkin). **[hp]** Let G be a group. HP(G) is the largest ascending locally nilpotent subgroups of G, that is HP(G) is locally nilpotent and contains all ascending, locally nilpotent subgroups of G.

Proof. Let $\mathcal{X} = \operatorname{Nil} \cap \mathcal{F}$, the class of finitely generated subgroups. By 2.2.7 and since subgroups of nilpotent are nilpotent, \mathcal{X} is **S**-closed. Note that Nil and \mathcal{F} are \mathbf{N}_0 -closed and so also \mathcal{X} is \mathbf{N}_0 -closed. Thus the assumption of ?? are fulfilled and so $\rho_{\mathbf{L}\mathcal{X}}(G)$ is the largest ascending, locally \mathcal{X} subgroup of G. By 1.7.4, $\mathbf{L}\mathcal{X} = \mathbf{L}$ Nil and the Corollary is proved. \Box

Lemma 2.2.11. [cghp] Let G be a group.

(a) [a] If G is hyper abelian, then $C_H(F(G)) \leq F(G)$.

(b) [b] If G is hyper (locally-nilpotent), then $C_G(HG(G) \leq HP(G))$.

Proof. (a) Note that G is hyper abelian, if and only if G is hyper nilpotent and if and only if $G \in \operatorname{radNil}$. Let K be a group such that K/Z(K) is nilpotent. Then $\gamma_n(K) \leq Z(K)$ and $\gamma n + 1(G) \leq [Z(K), K] = 1$. Thus Nil is closed under central extension. Clearly Nil is **H** and **S**_n-closed and so the lemma follows from 1.5.12.

(b) Observe that G is hyper (locally nilpotent) just means $G \in \text{radLNil}$. Since Nil is closed under central extensions, also LNil is closed under extensions. Clearly LNil is H and \mathbf{S}_n -closed and so the lemma follows from 1.5.12.

Let G be a finite group. Then G is locally nilpotent iff G is nilpotent. So F(G) = HP(G) is the largest normal nilpotent subgroup of G. Also G is hyper abelian iff G is solvable and iff G is hyper (locally nilpotent). So for finite groups, both parts of the previous lemma say that $C_G(\mathbb{F}(G)) \leq \mathbb{F}(G)$ for every finite solvable group.

2.3 The generalized Fitting Subgroup

Definition 2.3.1. $[def:f^*g]$ Let G be group.

- (a) [a] G is called quasisimple, if G is perfect and G/Z(G) is simple.
- (b) [b] A component of G is a quasi simple ascending subgroup of G.
- (c) $[\mathbf{c}] \in \mathbf{E}(G)$ is the subgroup of G generated by all the components of G.
- (d) $[\mathbf{d}]$ $\mathbf{F}^*(G) = \mathrm{HP}(G)\mathbf{E}(G)$. $\mathbf{F}^*(G)$ is called the general Fitting subgroup of G.

Lemma 2.3.2. [basic quasimple] Let K be quasisimple group and $M \leq K$.

(a) $[\mathbf{a}]$ M = K or $M \leq Z(K)$.

(b) [b] If $M \neq K$, then Z(K/M) = Z * K)/M and K/M is quasisimple.

Proof. (a) We may assume $M \notin Z(K)$. Since K/Z(K) is simple this gives K/Z(K) = MZ(K)/Z(K) and K = MZ(K). Since K is perfect $K = [K, K] = [MZ(K), MZ(K)] = [M, M] \leq M$ and so K = M. (b) Suppose $M \neq K$. Then by (a) $M \leq Z(K)$. Let D be the inverse image of Z(K/M) in K. Then $Z(K) \leq D$. Also $[D, K, K] \leq [M, K] = 1$ and so also [K, D, K] = 1. The Three Subgroups Lemma implies that [K, K, D] = 1. Since K is perfect we conclude [D, K] = 1, $D \leq Z(K)$ and D = Z(K). Hence $K/Z(M)/Z(K/Z(M)) = K/Z(M)/Z(K)/Z(M) \cong K/Z(K)$. The latter group is simple and so K/Z(M) is quasisimple. □

Lemma 2.3.3. $[f^* \text{ and } asc]$ Let G be a group and M an ascending subgroup of G.

- (a) $[\mathbf{a}]$ HP(M) = HP $(G) \cap M$.
- (b) [b] A subgroup of M is a component of M iff its a component of G. In particular, $E(M) \leq E(G)$ and $F^*(M) \leq F^*(G)$.

Proof. (a) Since $\operatorname{HP}(M) \leq M \operatorname{asc} G$ we conclude from 2.2.10 that $\operatorname{HP}(M)$ is an ascending locally nilpotent subgroup of G and $\operatorname{HP}(M) \leq \operatorname{HP}(G)$. Also $\operatorname{HP}(G) \cap M$ is locally nilpotent normal subgroup of M and so $\operatorname{HP}(G) \cap M \leq \operatorname{HP}(M)$.

(b) If K is a component of M, then K is a quasisimple ascending subgroup of M. Since $M \operatorname{asc} G$ we get $K \operatorname{asc} G$ and so K is a component of G.

Lemma 2.3.4. [easy cf^*] Let G be a group.

(a) [a] $C_{F^*(G)}(E(G)) = HP(G).$

(b) [b] If M is subnormal in G, then $F^*(M) = M \cap F^*(G)$.

Proof. Put $F = F^*(G)$. (a) By ?? [HP(G), E(G)] = 1. Since F = HP(G)E(G) this gives $C_F(E(G))) = HP(G)C_{E(G)}E(G)) = HP(G)Z(E(G))$. Since Z(E(G)) is an abelian normal subgroup of G, $Z(E(G)) \leq HP(G)$ and (a) holds.

(b) Put E = E(M). By ?? HP(G) and all components of G which are not contained in M centralizes all the components of M. Thus $F = C_F(E)E$ and so $(F \cap M) = (C_F(E) \cap M)E$. Put $D = C_F(E) \cap M$. Let K be a component of G with $K \nleq M$. Then by ??, [K, M] = 1. Thus D centralizes all components of G and so by (a) $D \le C_F(E(G)) = \text{HP}(G)$. Hence D is locally nilpotent and thus $D \le \text{HP}(M) \le F^*(H)$. So also $F \cap M = DE \le F^*(M)$. Since $F^*(M) \le F$, (b) holds.

Lemma 2.3.5. $[f^* \text{ and factors}]$ Let G be a group.

- (a) [a] If $M \leq G$ then $F^*(G)M/M \leq F^*(G/M)$.
- (b) [b] If $M \leq Z(G)$. Then $F^*(G)/M = F^*(G/M)$.

Proof. (a) $\operatorname{HP}(G)M/M$ is locally nilpotent normal subgroup of G/M and so $\operatorname{HP}(G)M/M \leq \operatorname{HP}(G/M)$. Let K be a component of G. If $K \leq M$, then definitely $KM/M \leq \operatorname{E}(G/M)$. $K \leq M, K \cap M < K$ and by 2.3.2, $KM/M \cong K/K \cap M$ is quasisimple. Thus KM/M is a component of K. Hence $\operatorname{E}(G)M/M \leq \operatorname{E}(G/M)$ and (a) holds.

(b) Let H be the inverse image of $\operatorname{HP}(G/M)$ in G. Since H/M is locally nilpotent and $M \leq \operatorname{Z}(H)$, H is locally nilpotent and so $H \leq \operatorname{HP}(G)$. Thus $H = \operatorname{HP}(G)$.

Now let L be the inverse image of a component of G/M in G and put K = L'. Since L/M is perfect, L/M = KM/M and so L = KM. Thus L' = K' = L and so K is perfect. Let D/M = Z(L/M). Then $D \notin K$ and so using ??, $D \cap K \leq Z(K) \leq Z(L) \cap K \leq D \cap K$. Hence $D \cap K = Z(K)$ and $K/Z(K) = K/K \cap D \cong KD/D = L/D \cong L/M/Z(L/M)$. Therefore K/Z(K) is simple and K is a component of G. Since $M \leq HP(G)$ we get $L = KM \leq F^*(G)$. It follows that $F^*(G/M) \leq F^*(G)/M$. Together with (a) this gives (b).

Theorem 2.3.6. $[cf^*g]$ Let \mathcal{F}^* be the class of all groups H which are a central product of quasi-simple and locally nilpotent groups. Let G be group,

- (a) [a] $G \in \mathcal{F}^*$ if and only if $G = F^*(G)$.
- (b) [b] \mathcal{F}^* is \mathbf{S}_n -, H-, C- and N-closed.
- (c) $[\mathbf{c}] \quad \rho_{\mathcal{F}^*}(G) = \mathcal{F}^*(G).$
- (d) $[\mathbf{d}]$ If $G \in \operatorname{rad} \mathcal{F}^*$, then $C_G(\mathcal{F}^*(G)) \leq \mathcal{F}^*(G)$.

Proof. (a): If $G \in \mathcal{F}^*$ then clearly $G = F^*(G)$. Conversely, by ??, $\mathcal{F}^*(G)$ is the central product of HP(G) and the components of G, so (a) holds.

(b) and (c): By ??(??), \mathcal{F}^* is \mathbf{S}_n -closed. By 2.3.5, \mathcal{F}^* is \mathbf{H} and \mathbf{C} closed. Also if $N \leq G$ with $N = \mathbf{F}^*(N)$, then by ??(??), $N = \mathbf{F}^*(N) \leq \mathbb{F}^*(G)$. This shows that $\rho_{\mathcal{F}^*}(G) = \mathbb{F}^*(G)$ and that \mathcal{F}^* is **N**-closed.

(d) By (b) and 1.5.12, $C_G(\rho_{\mathcal{F}^*}(G)) \leq \rho_{\mathcal{F}^*}(G)$. Thus (d) follows from (c).

Definition 2.3.7. [def:min] We say that a group G fulfills MIN if every non-empty sets of subgroups of G has a minimal element.

Corollary 2.3.8. [cf*] Let G be a group with MIN, then $G \in \operatorname{rad} \mathcal{F}^*$. In particular, $C_G(\mathcal{F}^*(G)) \leq \mathcal{F}^*(G)$.

Proof. Let $M \leq G$ with $G \neq M$. Then G/M fulfills min and so G/M has a minimal normal subgroup E. Then E is simple and so either |E| is a prime or E is quasisimple. In the first case $E \leq \operatorname{HP}(G/M)$ and in the second $E \leq \operatorname{E}(G/M)$. In either case $\operatorname{F}^*(G/M) \neq 1$. So G is strongly hyper \mathcal{F}^* and hence by ??(??), G is a hyper \mathcal{F}^* -group. Thus $G \in \operatorname{rad}\mathcal{F}^*$. The second statement now follows from ??.

2.4 Chieffactors of locally solvable groups

Proposition 2.4.1. [chieffactors in locally nilpotent] let G be group.

(a) $[\mathbf{a}]$ If G locally nilpotent group, then G centralizes all chief-factors of G.

(b) [b] If G locally solvable group, then G all chief-factors of G are abelian.

Proof. Let T/B be a chieffactor of G. Replacing G be G/B we may assume that B = 1 and so T is minimal normal subgroup of G. Let H = G in (a) and H = T in (b). We need to show that [T, H] = 1. So suppose $[T, H] \neq 1$. Since T is a minimal normal subgroup of G, T = [T, H]. Pick $1 \neq t \in T$. Then $T = \langle t^G \rangle$ and so $t \in [T, H] = [t^G, H]$. Thus there exists $g_1, g_2, \ldots, g_n \in G$ and $h_1, h_2, \ldots, h_m \in H$ with

$$t \in [t^{\langle g_1, \dots, g_n \rangle}, \langle h_1, h_2, \dots, h_m \rangle]$$

(a) Suppose G is locally nilpotent and put $D = \langle g_1, \ldots, g_n, h_1, h_2, \ldots, h_n \rangle$. Then $t \in [\langle t^D \rangle, D]$. Since G is locally nilpotent, D is nilpotent and we can choose k minimal with $t \in \mathbb{Z}_k(D)$. Then

$$t \in [\langle t^D \rangle, D] \le [Z_k(D), D] \le Z_{k-1}(D)$$

a contradiction to the minimal choice of k.

(b) Suppose G is locally solvable and so $H = T = \langle t^G \rangle$. We we can choose $g_{jk} \in G$ with $h_j \in \langle t^{\langle g_{jk}, \dots, g_{jt_j} \rangle} \rangle$. Put $D = \langle g_i, g_{jk} \mid 1 \le i \le n, 1 \le j \le m, 1 \le k \le t_j \rangle$. Then

$$t \in [\langle t^D \rangle, \langle t^D \rangle] = \langle t^D \rangle'$$

Since G is locally solvable, D is solvable and we can choose k maximal with $t \in G^{(k)}$. Then

$$t \in \langle t^D \rangle' < (G^{(k)})' = G^{(k+1)}$$

a contradiction to the maximality of k.

2.5 Polycyclic groups

Definition 2.5.1. [def:c-series] Let G be a group. A c-series for G is finite series for G each of whose factors are isomorphic to \mathbb{Z}_p or Z. A strong c-series for G is a c-series of minimal length. A supersolvable series is a finite normal series all whose factors are cyclic. A group is called supersolvable if its has a supersolvable series.

Definition 2.5.2. [def:isomorphic set of groups] Let \mathcal{M} and \mathcal{N} be sets of groups, we say that \mathcal{M} is isomorphic to \mathcal{N} if there exists a bijection $\phi : \mathbb{M} \to \mathcal{N}$ with $\mathcal{M} \cong \phi(\mathcal{M})$ for all $\mathcal{M} \in \mathcal{M}$. We say that two series of a group have isomorphic factors, if the sets of factors of the two series are isomorphic.

Definition 2.5.3. [def:refinement] Let \mathcal{A} be a series for the group G. A refinement of \mathcal{A} is a series \mathcal{B} of G with $\mathcal{A} \subseteq \mathcal{B}$.

Proposition 2.5.4. [refinement] Let \mathcal{A} and \mathcal{B} be ascending series of the group G. Define $\mathcal{A}^* = \{(A \cap B)A^- \mid A \in \mathcal{A}, B \in \mathcal{B}\}$ and $\mathcal{B}^* = \{(B \cap A)B^- \mid B \in \mathcal{B}, A \in \mathcal{A}\}$. Then \mathcal{A}^* is an ascending refinement of \mathcal{A} , \mathcal{B}^* is an ascending refinement of \mathcal{B} and \mathcal{A}^* and \mathcal{B}^* have isomorphic factors. Moreover, the sets of factors of both \mathcal{A}^* and \mathcal{B}^* are isomorphic to

$$\{A \cap B/(A^- \cap B)(A \cap B^-) \mid A \in \mathcal{A}, B \in \mathcal{B}, A \cap B \neq (A^- \cap B)(A \cap B^-)\}$$

Proof. We will first show that \mathcal{A}^* is totally ordered. Let $X_1, X_2 \in \mathcal{A}^*$ and pick $A_i \in \mathcal{A}, B_i \in \mathcal{B}$ with $X_i = (A_i \cap B_i)A_i^-$. Without loss $A_1 \leq A_2$. Note that $A_i^- \leq X_i \leq A_i$. So if $A_1 < A_2$, then $X_1 \leq A_1 \leq A_2^- \leq X_2$. So suppose $A_1 = A_2$ and without loss $B_1 \leq B_2$. Then $X_1 \leq X_2$ and so \mathcal{A}^* is totally ordered.

Note that $A = (A \cap G)A^- \in \mathcal{A}^*$ for all $A \in \mathcal{A}$ and so \mathcal{A}^* .

Let $X = (A \cap B)A^- \in \mathcal{A}^*$. Since \mathcal{B} is well ordered we may assume that B is minimal in \mathcal{B} with $X = (A \cap B)A^-$. Since \mathcal{B} is well ordered we may assume that B is minimal in \mathcal{B} with We will compute $X^- = \bigcup \{D \in \mathcal{A}^* \mid D < A\}$. If $A = A^-(\text{in }\mathcal{A})$ then $X = A = \bigcup \{D \in \mathcal{A} \mid D < A\} \leq X^-$ and so $X = X^-$. Suppose next that $A \neq A^-$. Let $E \in \mathcal{B}$ with E < B. By the minimal choice of B, $(A \cap E)A^- < (A \cap B)A^-$ and so $(A \cap E)A^- \leq X^-$. It follows that $(A \cap B^-)A^- \leq X^-$. So if $B = B^-$, then $X = X^-$. So suppose $B \neq B^-$. Let $\tilde{A} \in \mathcal{A}$ and $\tilde{B} \in \mathcal{B}$ with $(\tilde{A} \cap \tilde{B})\tilde{A}^- \leq X$. Then either $\tilde{A} \leq A^-$ or $\tilde{A} = A$ and $\tilde{B} \leq B^-$. In either case $(\tilde{A} \cap \tilde{B})\tilde{A}^-) \leq (A \cap B^-)A^-$ and so $X^- = (A \cap B^-)A^-$. Since $A^- \leq A$ and $B^- \leq B$ we have $X^- = A \cap B^- A^- (A \cap B)A^- = X$ and so \mathcal{A}^* .

Let \mathcal{M} be a non-empty subset of \mathcal{A}^* . Choose $A \in \mathcal{A}$ minimal with $(A \cap E)A^- \in \mathcal{M}$ for some $E \in \mathcal{B}$ and then choose $B \in \mathcal{B}$ minimal with $(A \cap B)A^- \in \mathcal{M}$. Then $(A \cap B)B^-$ is

the minimal element of \mathcal{M} . So \mathcal{A}^* is well ordered and $\bigcap \mathcal{M} = (A \cap B)B^- \in \mathcal{A}^*$. If $G \in \mathcal{M}$, then $\bigcup \mathcal{M} = G \in \mathcal{A}^*$. If $G \notin \mathcal{M}$ pick X minimal in \mathcal{A}^* with M < X, for all $M \in \mathcal{M}$. Then clearly $\bigcup \mathcal{M} = X^- \in \mathcal{A}^*$. Thus \mathcal{A}^* is a series for G and so an ascending refinement of \mathcal{A} . Also the factors of \mathcal{A}^* are exactly the groups $|(A \cap B)A^-/(A \cap B^-)A^-$ where $A \in \mathcal{A}$, $B \in \mathcal{B}$ with $A \neq A^-$, $B \neq B^-$ and $(A \cap E)A^- < (A \cap B)A$ for all $E \in \mathcal{B}$ with E < B. Observe that these are exactly the groups $|(A \cap B)A^-/(A \cap B^-)A^-$ where $A \in \mathcal{A}$, $B \in \mathcal{B}$ and $(A \cap B)A^- \neq (A \cap B^-)A^-$.

Now

$$(A \cap B)A^{-}/(A \cap B^{-})A^{-} = (A \cap B)(A \cap B^{-})A^{-}/(A \cap B^{-})A^{-}$$
$$\cong (A \cap B)/((A \cap B) \cap (A \cap B^{-})A^{-}))$$
$$= (A \cap B)/((A \cap B^{-})(A \cap B \cap B^{-}))$$
$$= (A \cap B)/((A \cap B^{-})(A \cap B^{-}))$$

and so the set of factors of \mathcal{A}^* is isomorphic to the set

$$\{A \cap B/(A^- \cap B)(A \cap B^-) \mid A \in \mathcal{A}, B \in \mathcal{B}, A \cap B \neq (A^- \cap B)(A \cap B^-)\}$$

Observe that the last set is symmetric in A and B and all parts of the propositions are proved.

Lemma 2.5.5. [same number of infinite factors] Any two c-series of a polycyclic group have the same number of infinite factors.

Proof. Let \mathcal{A} and \mathcal{B} be the *c*-series of the group *G*. By 2.5.4 we may assume that $\mathcal{A} \subseteq \mathcal{B}$. Let (X, Y) be a jump of \mathcal{A} and consider the series

$$X = X_0 < X_1 < \dots X_n = Y$$

where X_0, \ldots, X_n are the members of \mathcal{B} with $X \leq X_i \leq Y$. If |Y/X| is cyclic of prime order then n = 1 and $X_1/X_0 = Y/X$. If $Y/X \cong \mathbb{Z}$, then $X_1/X_0 \cong \mathbb{Z}$ while X_i/X_{i-1} is finite for $2 \leq i \leq n$. So each infinite factor of \mathcal{A} gives rise to exactly one infinite factor of \mathcal{B} . \Box

Lemma 2.5.6. [cag cap kag] Let G be a group acting on the abelian group A. Let $g \in G$ with finite order n. Then $C_A(g) \cap [V, g]$ has exponent dividing n.

Proof. Let $a \in C_A(g) \cap [V, g]$. Since A is abelian, $[A, g] = \{[a, g] \mid a \in A\}$ and so there exists $b \in V$ with a = [b, g]. We claim that $a^m = [b, g^m]$ for all $m \in Z^+$. By definition this is true for m = 1. Note that $a^m \in C_A(g)$ and so by 2.1.1(b)

$$[b, g^{m+1}] = [b, g^m g] = [b, g][b, g^m] = aa^m = a^{m+1}$$

It follows that $a^n = [b, g^n] = [b, 1] = 1$.

Proposition 2.5.7. [supersolvabe] Let G be supersolvable group. Then

- (a) [a] There exists a strong c series $1 = G_0 < G_1 < G_2 < G_n$ and $0 \le l \le n$ such that G_i/G_{i-1} is has odd prime order for all $1 \le i \le l$ and G_i/G_{i-1} has order 2 or infty for all $l < i \le n$.
- (b) [b] G has a unique maximal finite subgroup of odd order.
- (c) $[\mathbf{c}]$ Any two strong c-series have isomorphic factors.

Proof. Let $A: 1 = H_0 < H_1 < H_2 < H_n$ be a strong c series for G and choose a c-series

$$\mathcal{B}: 1 = G_0 < G_1 < G_2 < G_n$$

and $a \leq b \in \mathbb{N}$ such that:

- (a) \mathcal{A} and \mathcal{B} have isomorphic factors.
- (b) G_i/G_{i-1} has odd order for all $1 \le i \le a$.
- (c) G_i/G_{i-1} has order 2 or ∞ for $a < i \le b$.
- (d) If $b \neq n$, then G_{b+1}/G_b has odd prime order.
- (e) a is maximal and then b is minimal.

Suppose that $b \neq n$. Then by maximality of $a, a \neq b$. Put Put $B = \bigcap G_{b-1}^{G_{b+1}}, \overline{G_b + 1} = G_{b+1}/B, p = |G_{b+1}/G_{b-1} \text{ and } m = |G_b/G_{b11}.$ Then $G_{b+1}/G_{b-1} \cong \mathbb{Z}_p, G_b/G_{b-1}$ is cyclic of order m, p is an odd prime and $m \in \{2, \infty\}$. Note that $G'_b \leq G_{b-1}$ and since $G'_b \leq G_{b+1}, G'_b \leq B$. Thus $\overline{G_b}$ is abelian.

If m = 2, then $G_b^m \leq G_{b-1}$ and so $G_b^m \leq B$ and $\overline{G_b}$ is an elementary abelian 2-group.

Suppose $m = \infty$ and let $x \in G_b \setminus B$. Then there exists $g \in G_{b+1}$ with $x \not\leq G_{b-1}^g$. Since $G_b/G_{b-1}^g \cong \mathbb{Z}, xG_{b-1}^g$ has infinite order in G_b/G_{b-1}^g . Hence also \overline{x} has infinite order. So for either possibility of m, any non-trivial elements of $\overline{G_b}$ has order m.

Suppose for a contradiction the $D := [G_b, G_{b+1}]B \neq B$. Let $S_0 \leq S_1 \leq \ldots S_m = G$ be supersolvable series for G and pick k minimal with $S_k \cap D \nleq B$. Then $\overline{E} := (S_k \cap D)B/B \cong$ $S_k \cap D/S_k \cap B$ and since $S_{k-1} \cap D = S_{k-1} \cap D$, \overline{E} is a quotient of

$$S_k \cap D/S_{k-1} \cap D = S_k \cap D/(S_k \cap D) \cap S_{k-1} \cong (S_k \cap D)S_{k-1}/S_{k-1}$$

Thus \overline{E} is isomorphic to a section of the cyclic group S_k/S_{k-1} . Hence \overline{E} is non-trivial cyclic subgroup of \overline{G}_b . Since non-trivial elements of \overline{G}_b have order m, \overline{E} is cyclic of order m. It follows that $\operatorname{Aut}(\overline{E})$ has order at most two. Observe that G_{b+1} acts on \overline{E} . G_b centralizes \overline{G}_b and so also \overline{E} and $G_{b+1}/G_b \cong \mathbb{Z}_p$ has order coprime to 2. Thus G_{b+1} centralizes \overline{E} . So $\overline{E} \leq [\overline{G}_b, G_{b+1}] \cap C_{\overline{G}_b}(G_{b+1})$. Thus by ?? \overline{E} has exponent dividing $p = |G_{b+1}/G_b|$ a contradiction since \overline{E} is cyclic of order m.

We proved that $[G_b, G_{b+1}] \leq B \leq G_{b-1}$. So $G_{b-1} = B \leq G_{b+1}$ and $\overline{G}_b \leq \mathbb{Z}(\overline{G}_{b+1})$. Since G_{b+1}/G_b is cyclic we conclude that \overline{G}_{b+1} is abelian. If \overline{G}_{b+1} is cyclic, then

$$G_0 \leq \ldots G_{b-1} \leq G_{b+1} \leq \ldots G_n$$

is a *c*-series for *G*, a contradiction since \mathcal{A} and so also \mathcal{B} is a *c*-series of minimal length. Thus $\overline{G_{b+1}}$ is not cyclic and there exist $\overline{K} \leq \overline{G_{b+1}}$ with

$$\overline{G_{b+1}} = \overline{G_b} \times \overline{K}$$

Let K be the inverse image of \overline{K} in G_{b+1} . The $K \leq G_{b+1}$, $K/G_{b-1} \cong \mathbb{Z}_p$ and G_{b+1}/K is cyclic of order m.

Consider the series

$$G_0 \leq \ldots G_{b-1} \leq K \leq G_{b+1} \leq \ldots \leq G_n$$

If b - 1 = a, we get a contradiction to the maximality of a and if a < b - 1, we get a contradiction to the minimality of b.

This show that n = b and so (a) holds.

Note that $H := G_l$ is a subgroup of odd order. Let g be any non-trivial element of odd order in G and pick $1 \le t \le n$ minimal with $g \in G_t$. Then gG_{t-1} is non-trivial elements of odd order in G_t/G_{t-1} . So G_t/G_{t-1} cannot by cyclic of order 2 or ∞ and so $t \le l$ and $g \in G_l = H$. Thus H is the unique maximal finite subgroup of odd order in G and (b) is proved.

For any odd prime p let s_p the number of factors of \mathcal{A} isomorphic to \mathbb{Z}_p . Then s_p is also the number of factors of \mathcal{B} isomorphic to \mathbb{Z}_p and so $|H| = \prod\{p^{s_p} \mid p \text{ an odd prime}\}$. Thus s_p is independent of the choice of the strong *c*-series \mathcal{A} . By 2.5.5 any two strong *c*-series also have the same number of factors isomorphic to \mathbb{Z} . By definition, any two strong *c*-series have the same number of total factors. It follows that they also have the same number of factors isomorphic to \mathbb{Z}_2 . So (c) holds.

Chapter 3

Groups with MIN

3.1 Basic properties of groups with MIN

Recall that a group with MIN is a group such that every non-empty set of subgroups has a minimal element.

Lemma 3.1.1. [basic min] Let G be a group with MIN.

(a) $[\mathbf{a}]$ Every section of G fulfills MIN.

(b) [b] G is periodic, that is every element in G has finite order.

Proof. (a) Let $B \leq A \leq G$ and \mathcal{M} a non-empty set of subgroups of A/B. Let $D \leq G$ be minimal with $B \leq D \leq A$ and $D/B \in \mathcal{M}$. Then D/B is a minimal element of \mathcal{M} . (b) Let $g \in G$. By (a) $\langle g \rangle$ fulfills MIN and so $\langle g \rangle \not\cong \mathbb{Z}$. Thus $\langle g \rangle$ is finite.

Lemma 3.1.2. [min and com] Let G be a group with MIN. Then every series for G is an ascending series.

Proof. Just recall that by definition a series is ascending if every non-empty subset of the series has a minimal element. \Box

Definition 3.1.3. [def:gcird] Let G be a group. Then G° is the intersection of all the subgroups of finite index in G.

Lemma 3.1.4. [gcirc and min] Let G be a group with MIN. Then G° is the unique minimal subgroups of finite index in G.

Proof. Let A minimal subgroups of finite index in G and B an arbitrary subgroup of index in G. $|A/A \cap B| = |AB/B| \le |G/B|, G/A \cap B| \le |G/A||G/B|$. So $A \cap B|$ has finite index in A and so by minimality of A and B. $A = A \cap B \le B$. So A is the unique minimal subgroup of finite index and $A = G^{\circ}$

Lemma 3.1.5. [basic gcirc] Let G be a group and $H \leq G$. Then $H^{\circ} \leq G^{\circ}$.

Proof. Let $F \leq G$ with |G/F| finite. Then $|H/H \cap F| = |HF/F| \leq |G/F|$ and so $H^{\circ} \leq H \cap F \leq F$. Since this holds for all such $F, H^{\circ} \leq G^{\circ}$.

3.2 Locally solvable groups with MIN

Definition 3.2.1. [def:divisible] A group A is called divisible of it is abelian and for all $a \in A$ and $n \in \mathbb{Z}^+$ where exists $b \in A$ with $b^n = a$.

 \mathbb{Q} and $C_{p^{\infty}}$ are divisible. \mathbb{Z} is not divisible and all non-trivial divisible groups are infinite.

Lemma 3.2.2. [basis divisible] Let A be an abelian group and D a divisible subgroup of A. Then $A = D \oplus K$ for some $K \leq A$.

Proof. By Zorn's lemma there exists a subgroup *K* of *A* maximal with respect to *D*∩*A* = 0. Let *a* ∈ *A* and let *m* ∈ N. Then $a^m \in DK$ if and only of $a^m = dk$ for some $d \in D, k \in K$ and so iff $a^m K \cap D \neq \emptyset$ and iff $a^m D \cap K \neq \emptyset$. Let *n* be the order of *aDK* in *A*/*DK*. If $n = \infty$ we conclude that $a \notin K$ and $| < a \rangle K \cap D = 1$, a contradiction to the maximality of *K*. Thus $n \in \mathbb{Z}^+$. Then $a^n = dk$ for some $d \in D$ and $k \in K$. Since *D* is divisible, $d = b^n$ for some $b \in D$. Put $e = ab^{-1}$. If $e^m K \cap D \neq \emptyset$ we get $e^m D \cap K \neq \emptyset$ and since aD = eD, $a^m D \cap K \neq emptyset$ and $a^m \in DK$, $n \mid m$ and m = nl for some $l \in \mathbb{Z}$. Thus $e^m = (ab-1)^{(nl)} = (a^n b^{-n})^l = (a^n d^{-1})^l = k^k \in K$. It follows that $e^m \leq D \cap K = 1$ and so $\langle e \rangle K \cap D = 1$. By maximality of *K*, this gives $e \in K$ and so $a = eb \in KD$. Thus A = DK and $AD \oplus K$.

3.3 Locally finite groups with finite involution centralizer

Proposition 3.3.1. [brauer fowler] Let H be a finite group, t an involution in H. Then there exist a non-trivial normal subgroup N of Gwith $|G/C_G(N) \leq (2|C_H(t)|^2)!$ and $N \leq [t,G]$.

Proof. Put $\mathcal{D} = \{(x,y) \mid x, y \in t^H \mid x \neq y\}$. Note that $xy \neq 1$ for all $(x,y) \in \mathcal{D}$. For $a \in H^{\sharp}$, but $\mathcal{D}(a) = \{x, y\} \in \mathcal{D} \mid xy = a\}$ and $k = \{\max | \mathcal{D}(h) \mid a \in G^{\sharp}$. Put h = |H|. Then $|cC| = |H/C_H(t)| = \frac{h}{c}$ and

$$\frac{h}{c}(\frac{h}{c}-1) = |\mathcal{C}|(|\mathcal{C}|-1) = |\mathcal{D}| = \sum_{a \in H^{\sharp}} |\mathcal{D}(a)| \le (h-1)k$$

and so

$$\frac{h^2}{c^2} \le hk - k + \frac{h}{c} \le h(1\frac{1}{c} \le 2h$$

and so

$$\frac{h}{k} \le 2c^2$$

Pick $a \in H^{\sharp}$ with $|\mathcal{D}(a)| = k$ If $(x, y) \in \mathcal{D}(a)$ then $y = x^{-1}a = xa$, so y uniquely determined by x. Moreover x inverts a = xy. So if (\tilde{x}, \tilde{y}) is another element of $\mathcal{D}(a)$, then $xy^{-1} \in C_G(a)$. Thus $|\mathcal{D}(a)| \leq |C_H(a)|$. It follows that

$$|a^H| = |H/C_H(a)| \le \frac{h}{k} \le c^2$$

Since $H/C(H(a^H))$ is isomorphic to a subgroup $Sym(a^H)$ we conclude that $H/C_H(a^H)| \leq 1$ $(2c^2)!$. Put $N = \langle a^G \rangle$. Then $|H/C_H(N)| \leq (2c^2)!$. Let $x = t^r$ and $y = x^s$ for some $r, s \in K$. Then $a = xy = x^{-1}x^s = [x, s] = [t^r, s]$. Since $[t, K] \leq K$ this gives and $N \leq [t, G]$ and the lemme is proved.

Lemma 3.3.2. [brian] Let K be a group, $M \leq K$, $\overline{K} = K/M$ and $h \in K$. Then $|C_{\overline{K}}(\overline{h})| \leq K$. $|C_K(h)|$. Moreover if $|C_{\overline{K}}(\overline{h})| = |C_K(h)|$, then $Mh \subseteq h^K$.

Proof. Define $A \leq K$ by $M \leq A$ and $A/M = C_{\overline{K}}(\overline{h})$. Note that $C_K(h) \leq A$. Consider the map

$$\tau: A \to H, a \to h^a$$

Since $[\overline{h}^{\overline{a}} = \overline{h} \text{ for all } a \in A \text{ we have } h^a \in Ma \text{ and so } \operatorname{Im} \tau \subseteq Mh.$ Note that $\tau(a) = \tau(b)$ iff $h^a = h^b$ iff $h^{ba^{-1}} = h$ iff $ba^{-1} \in C_K(h)$ iff $b \in a^{-1}C_K(h)$. Thus $\tau^{-1}(d) = |C_K(h)|$ for all $d \in \operatorname{Im} \tau$ and

$$|A| = |C_K(h)| |\operatorname{Im} \tau| \le |C_K(h)| |Mh| ||C_K(h)|M|$$

and so

$$|C_{\overline{K}}(\overline{h})| = |A/M| \le |C_K(h)|$$

If $|C_{\overline{K}}(\overline{h})| = |C_K(h)|$ we conclude that $Mh = \operatorname{Im} \tau = h^A \subseteq h^K$. Note tat

Lemma 3.3.3. [h1 bound] Let H be group acting on an abelian group A. Then $A/C_A(G)$ is bounded in terms of $|G/C_G(A)|$ and [A, G].

Proof. Without loss $C_G(A) = 1$. For $g \in G$ we have $A/C_A(g) \cong [A, g] \leq [A, G]$ and so $|A/C_A(g)| \leq [A,G]$. Since $G/C_A(G)$ embeds into $X_{g \in G} A/C_A(G)$, the lemma is proved. \Box

Proposition 3.3.4. [g mod zl] Let G be a finite group and $t \in G$ with $t^2 = 1$. Put L = [t, G]. Then $|G/Z_{Ord}(L)|$ is bounded in terms of $|C_G(t)|$

Proof. The proof is by induction on $C_G(t)$. Replacing G be $G/\mathbb{Z}_{Ord}(L)$ we may assume that $\mathbb{Z}(L) = 1$. By 3.3.1 there exists a non-trivial normal subgroup N of G such that $N \leq L$ and $G/C_G(N)$ is $|C_G(t)|$ -bounded. Without loss N is a minimal normal subgroup of G. If t inverts N, then L centralizes N and so $L \leq \mathbb{Z}(L) = 1$, a contadiction. Hence there exists $n \in N$ such that t does not invert n. Since n = (nt)t we conclude that (nt) does not have order two. So $nt \notin t^G$. Put $\overline{G} = G/N$. Then 3.3.2 implies that $|C_{\overline{G}}(t)| < |C_G(t)|$. Let $Z/N = \mathbb{Z}_{Ord}(\overline{L})$. Then by induction G/Z is bounded in terms of $|C_{\overline{g}}(\overline{t})$. Put $D = C_Z(N)$. Since $|Z/D| \leq |G/C_G(N)$ we conclude that Z/D and so also G/D are bounded in terms of $|C_G(t)|$.

It remains to bound the order of D. So suppose that $D \neq 1$ and let M be any nontrivial normal subgroup of G contained in D. Suppose that $M \cap D = 1$. Then $M \cong MN/N \leq ZN/N = Z_{\text{Ord}}(\overline{L})$ and so $C_M(L) = 1 \neq 1$, a contradiction to Z(L) = 1. Thus $M \cap N \neq N$. Since N is a minimal normal subgroup of G this gives $N \leq M$. Thus N is the uniuqe minimal normal subgroup of G contained in D. In particular $N \leq D$ and so N is abelian. Since t does not invert N there a prime p and an elements of n of order p in $C_N(t)$. By minimility of N, $N = \langle n^G \rangle$. It follows that N is an elementary abelian p group and $|N| \leq p^{|G/C_G(N)|} \leq |C_G(t)|^{|G/C_G(N)|}$. Thus |N| is $|C_G(t)|$ -bounded. Since Z/N is nilpotent and $N \leq Z(D)$, D is nilpotent. Observe that $N \cap O_{p'}(D) = 1$ and so $O_{p'}(D) = 1$. Thus D is a p-group and we conclude that $[D, O^p(L)] \leq N$. If $C_D(O^p(L)) \neq 1$, then also $C_D(L) = 1$, a contradiction. Thus $C_D(O^p(L)) = 1$. From $[O^p(L), D, D] \leq [D, N] = 1$ and the Three subgroup lemma we get $[D', O^p(L)] = 1$ and so D is abelian. Since |G/D| is bounded, we conclude that $O^p(L)/C_{O^p(L)}(D)$ is bounded. ?? now shows that $|D| = |D/C_D(O^p(L))|$ is bounded.

Lemma 3.3.5. [nilpotent and maximal abelian] Let P be a hypercentral groups and A a maximal abelian normal subgroup of P. Then $C_P(A) = A$.

Proof. Let $h \in C_P(A)$ with $[h, P] \leq A$. Then $\langle h \rangle A$ is an abelian normal subgroup of P and so by maximality of $A, h \in A$. Since P is hypercental this implies $C_P(A) = A$. \Box

Lemma 3.3.6. [2-group with small centralizer] Let P be a locally finite 2-group and $t \in P$ $t^2 = 1$ and with $|C_P(t)|$ finite. Then there exists a integer n such that t inverts P^n and n and P/P^n are bounded in terms of $|C_P(t)|$

Proof. Without loss P is finite. Let A be a maximal normal abelian subgroup of P and put $m = |C_P(t)|$. Let $m = 2^k$. Since $A/C_A(t) \cong [A, t]$ we have $|A/[A, t]| = |C_A(t)| ||C_P(t)|$ and so $A^m \leq [A, t]$. Note that t inverts [A, t] and so also A^m and $[\Omega_1 A(t), t]$. Thus $[\Omega_1 A(t), t] \leq C_{\Omega_1(A)}(t)$ and $|\Omega_1(A)| = |[\Omega_1 A(t), t]||C_{\Omega_1(A)}(t)| \leq |C_P(t)|^2 = m^2 = 2^{2k}$.

If follows that A has rank at most 2k. and so A/A^m has order at most $m^{2k} = 2^{2k^2}$. order. Hence also $P/C_P(A/A^m)$ has m-bound order. Put $E = C_P(A^m) \cap C_P(A/A^m)$. By $3.3.2 \ P/[P,t]$ has order at most m and since [P,t] centralizes A^m , $P/C_P(A^m)$ has order at most m. Put $E = C_P(A^m) \cap C_P(A/A^m)$. Then P/E has m-bound order. Let $a \in A$ and $e \in E$. Then $[a, e]^m = [a^m, e] = 1$ and so $[a, e] \leq \Omega_k(A)$. Since $|\Omega_k(A)|$ and A/A^m have order at most 2^{2k^2} we conclude that $E/C_E(A)$ has order at most $24k^4$. Thus $P/A = P/C_P(A)$ has *m*-bounded order. Hence $P^l \leq A$ for some *m*-bounded integer *k*. Then $P^{lm} \leq A^m$ and *t* inverts P^{lm} . Since $A^{lm} \leq A$, $|A/P^{lm}$ has order at most $(lm)^k$ and so $|P/P^{lm}|$ is *lm*-bounded.

Lemma 3.3.7. [coprime action] Let p be a prime and G a finite group acting a finite p-group P.Define $O^p(G) = \langle x \in G \mid x \text{ is a } p' \text{element} \rangle$

- (a) [a] $G/O^p(G)$ is a p-group and so $O^p(G)$ is the unique smallest normal subgroup of G whose quotient is a p-group.
- (b) $[\mathbf{c}] [P, O^p(G)] = [P, O^p(G); n] \text{ for all } n \in \mathbb{Z}^+.$
- (c) [d] The exists $n \in \mathbb{Z}^+$ with [P,G;n] = 0 if and only if $[P.O^p(G)] = 1$ and if and only if $G/C_G(P)$ is a p-group.

Proof. (a) Let $x \in G$, then x = yz where y is a p element and z is p'-elemenst. Thus $xO^p(G) = yO^p(G)$ and so $G/O^p(G)$ is a p-group.

Lemma 3.3.8. [more coprime] Let P be a p-group acting on a p'-group Q.

- (a) [a] Let $R \leq S \leq Q$ be P-invariant subgroups of Q. Then $C_{S/R}(P) = C_S(P)R/R$.
- (b) [b] Let $1 = Q_0 \trianglelefteq Q_1 \le Q_2 \trianglelefteq \ldots \trianglelefteq Q_n = Q$ be a P invariant subnormal series of Q. Then

$$|C_Q(P)| = \prod_{i=1}^n |C_{Q_i/Q_{i-1}}(P)|$$

Proof. (a) Let $T/R = C_{S/R}(Q)$. Then $C_S(R)Q \leq T$ and $[T, P] \leq R$. By Homework 1, $T = C_T(P)[T, T] \leq C_S(P)Q \leq T$ and so $T = C_S(P)Q$.

(b). This clearly holds for n = 1. Suppose n > 1 and put k = n - 1. Then

$$\begin{aligned} |C_Q(P)| &= |C_Q(P)/C_{Q_k}(R)||C_{Q_k}(R)| &= |C_Q(R)/C_Q(R) \cap Q_k||C_{Q_k}(R)| \\ &= ||C_Q(R)Q_k/Q_k||C_{Q_k}(R)| &= |C_{Q/Q_k}(R)||C_{Q_k}(R)| \\ &= |C_{Q/Q_k}(R)||\prod_{i=0}^k |C_{Q_i/Q_{i-1}}(P)| &= \prod_{i=1}^n |C_{Q_i/Q_{i-1}}(P)| \end{aligned}$$

Proposition 3.3.9. [nilpotent by finite] Let G be a locally finite group and $t \in G$ with $t^2 = 1$. Then there exists a postive integer n such that n and $|G/Z_n([G,t])|$ are bounded in terms of $|C_G(t)|$. In particular, G is nilpotent by finite.

Proof. Put L = [t, G] and $Z = Z_{\text{Ord}}(L)$.

Suppose first that G is finite let n be minimal with $Z_n(L) = Z$. By 3.3.4 |G/Z| is bounded in terms of $C_G(t)$. So we just need to show that n is bounded. Let r and s be minimal with $O_2(Z) \leq Z_s(L)$ and $O(Z) \leq Z_r(L)$. Then $n = \max(r, s)$. By 3.3.6 there exists an integer m such that $O_2(Z)^m$ has bounded index in $O_2(Z)$ and $O_2(Z)^m$ is inverted by t. Then L centralizies $O_2(Z)^m$ and s is bounded.

For $1 \le j \le s$ put $Z_i = Z_i(L) \cap (Z)$. Then $Z_i/Z_{i-1} = C_{O(Z)/Z_i-1}(L)$ and $1 = Z_0 < Z_1 < Z_2 < \ldots < Z_r = O(Z)$. Let $i \in Z^+$ with $2i \le t$. Then L does not centralizes Z_{2i}/Z_{2i-2} , t does not inverts Z_{2i}/Z_{2i-2} , $C_{Z_{2i}/Z_{2i-2}}(t) \ne 0$ and by Homework 1, $C_{Z_2i}(t) \le Z_{2i-1}$. Thus

$$0 < C_{Z_2}(t) < C_{Z_4}(t) < \dots$$

and we conclude that s is bounded in terms of $|C_G(t)|$.

So the proposition holds for finite groups. In particular there exist bounded integers n and m such that $|H/Z_n([[H,t])| \le m$ for all finite subgroups H of G. For a finite subgroup subgroup H of G define

 $k(H) = \sup\{||H/H \cap Z_n([[K,t]))|| H \le K \le G, K \text{ finite}, H \cap [t,G] = H \cap [t,K]\}$

Observe that since $H \cap [t, G]$ is a finite subgroup, there exists a finite subgroup K of G with $H \leq K$ and $H \cap [t, G] \leq [t, K]$. Hence $H \cap [t, G] = H \cap [t, K]$ and k(H) is well defined. Also

$$|H/H \cap Z_n([[K,t])| = |HZ_n([[K,t]/Z_n([[K,t])| \le |K/Z_n([[K,t])| \le m))| \le m)$$

and so $k(H) \leq m$ and there exists a finite subgroup H^* of G with $H \leq H^* \leq G$, $H \cap [t, G] = H \cap [t, H^*]$ and $|H/H \cap Z_n([[H^*, t]] = k(H))$.

Put $k = \max\{k(H) \mid H \leq G, H \text{ finite}\}$. Then also $k \leq M$. Put

$$\mathcal{L} = \{ H \le G \mid H \text{ finite } k(H) = k \}$$

and for $L \in \mathcal{L}$ define

$$\mathcal{F}(L^*) = \{ H \le G \mid L^* \le H, H \text{ finite} \}$$

We will prove next

1°. [1] Let $L \in \mathcal{L}$ and $H \in \mathcal{F}(L^*)$. Then $L \cap [G, t] = L \cap [H, t], \ L \cap Z_n([[L^*, t]) = L \cap Z_n([H^*, t]))$ and $|L/L \cap Z_n([H^*, t]) = k$

Indeed we have

$$L \cap [G,t] = L \cap [L^*,t] \le L \cap [H,t] \le L \cap [H^*,t] \le L \cap [G,t]$$

and so $L \cap [G, t] = L \cap [L^*, t] = L \cap [H, t] = L \cap [H^*, t]$ Thus $[L \cap Z_n([H^*, t]), L^*; n] \leq Z_n([H^*, t]), H^*; n] = 1$ and hence

$$L \cap Z_n([H^*, t]) \le \mathbb{L} \cap Z_n([L^*, t])$$

Therefore,

$$k = k(L) = |L/L \cap Z_n([L^*, t])| \le |L/L \cap Z_n(H^*, t]| \le k(L)$$

and (1°) is proved.

2°. [2] Let
$$L \in \mathcal{L}$$
 and $H \in \mathcal{F}(L^*)$. Then $k(H) = k$ and $H = L(H \cap Z_n([H^*, t]))$.
By (1°) we have

$$k = |L/L \cap Z_n([[H^*, t]]) = |LZ_n([[H^*, t]])/Z_n([[H^*, t]])$$

$$\leq |HZ_n([[H^*, t]]/Z_n([[H^*, t]]) = k(H) \leq k$$

Thus k = k(H), and $HZ_n([[H^*, t]) = LZ_n([[H^*, t]]))$. Thus $H = L(H \cap Z_n([[H^*, t]]))$ and (2°) holds.

3°. [3] Put $Z = \bigcup_{L \in \mathcal{L}} L \cap Z_n([L^*, t])$. Then Z is a normal subgroup of G.

Let $L_1, L_2 \in \mathcal{L}$ and put $H = \langle L_1^*, L_2^* \rangle$. Then by (2°), $H \in \mathcal{L}$ and by (??), $L_i \cap Z_n([L_i^*, t]) \leq H \cap Z_n([t, H]) \leq Z$. Thus

$$\langle L_1 \cap Z_n([L_1^*, t], L_2 \cap Z_n([L_2^*, t])) \rangle \le Z$$

and so Z is subgroup of G. Since \mathcal{L} is invariant under G, also Z is invariant under G.

4°. [4] G = LZ for all $L \in \mathcal{L}$ and $|G/Z| \le k \le m$.

Let $g \in G$ and put $H = \langle L^*, g \rangle$. Then by (2°) , $H \in \mathcal{L}$ and $g \in H = L(H \cap Z_n[H^*, t]) \leq LZ$. Thus G = LZ and so $G/Z| = |L/L \cap Z| \leq |L/L \cap Z_n([L^*, t])| = k \leq m$.

5°. [**5**]
$$Z \leq Z_n([G,t]).$$

Clearly $Z \leq [G, t]$ and so we only need to show that [Z, [G, t]; n] = 1. This holds if an only if [z, F; n] = 1 for all $z \in Z$ and all finite subgroups F of [G, t]. Pick $L \in \mathcal{L}$ with $z \in L \cap Z_n([L^*, t])$ and then $H \leq G$ with H finite, $L^* \leq H$ and $F \leq [H, t]$. Then using (1°), $z \in L \cap Z_n([L^*, t]) = L \cap Z_n([H^*, t])$ and so $[z, F; n] \leq [Z_n([H^*, t]), [H^*, t]; n] = 1$. So (5°) hold.

By (4°) and (5°), $G/Z_n([G,t])| \leq m$ and the theorem is proved.

Corollary 3.3.10. [infinite centralizer] Let H be an infinite locally finite simple group and t an involution in H. Then $C_H(t)$ is infinite.

Proof. This follows immediately from 3.3.9

3.4 Locally finite groups with MIN

This section is entirely devoted the proof of the following Theorem

Theorem 3.4.1. [If with min] Every locally finite group which fulfills MIN is a cernikov group.

Suppose the theorem is false.

Step 1. [step 1] There exists an infinite locally finite simple groups G all of whose proper subgroups are Cernikoóvgroups.

Proof. Let G_0 be a locally finite group with MIN which is not Cernikoóv. Let G_1 be a subgroup of G_0 minimal with respect to not being Cernikoóv. ?? implies that G_1 has a component K with K/Z(K) infinite. Put G = K/Z(K). By minimality of G-1, all proper subgroups of G_1 and so also of G are Cernikoóvgroups.

Step 2. [step 2] G is not a 2'-group.

Proof. Otherwise the Odd Order Theorem implies that all finite subgroups of G are solvable. But then G is locally solvable and all chief factor of G are abelian, a contradiction.

Let \mathcal{P} be the set of all positive primes, $\pi \subseteq \mathcal{P}$, \mathcal{D}_{π} be the set of maximal divisible abelian π -subgroups of G and $\mathcal{D} = \mathcal{D}_{\pi}$.

Step 3. [step 3] Let H be proper subgroup of G and put $H_{\pi} = \{x \in H^{\circ} \mid x \text{ is a } \pi - element.$ Then H_{π} contains every divisible abelian π -subgroup of H and is contained in every maximal π -subgroup of H.

Proof. Let D be a divisible abelian π -subgroup of H. Then $D = D^{\circ} \leq H^{\circ}$ and so $D \leq H_{\pi}$.

Let M be maximal π -subgroup of H. Since H_{π} is normal in H, $H_{\pi}M$ is π -subgroup of G and so $M = H_{\pi}M$ by maximality of M.

Step 4. [step 4] Let $1 \neq D \in \mathcal{D}_{\pi}$ and $D \leq H < G$. Then $D = H_{\pi}$ and $H \leq N_G(D)$. So $N_G(D)$ is the unique maximal subgroup of G containing D.

Proof. We have $D \leq H_{\pi}$ and so by maximality of D, $D = H_{\pi}$. Since $H_{\pi} \leq H$, $H \leq N_G(D)$.

Step 5. [step 5] Let $D \in D_{\pi}$ and E a divisible abelian π subgroup of G. Then $E \leq D$ or $E \cap D = 1$.

Proof. Assume that $E \cap D \neq 1$. Then $D \neq 1$. Put $H = C_G(E \cap D)$. Since G is simple, $E \cap D \not \trianglelefteq G$ and so $H \neq G$. Note that $\langle E, D \rangle \leq H$ and by Step 4, $D = H_{\pi}$. Thus by Step 3, $E \leq D$. **Step 6.** [step 6] Every every non-trivial divisible abelian subgroup A of G lies in a unique maximal divisible abelian subgroup \overline{A} of G. If in addition A is a π -group, then \overline{A}_{π} is the unique maximal divisible abelian π -subgroup of G containing A.

Proof. Let $D, E \in \mathcal{D}$ with $A \leq D$ and $A \leq E$. Then $A \leq D \cap E$. By Step 5 D = E. Now suppose A and B are divisible by groups with $A \leq B$. Then $A \leq \overline{B}$ and so $\overline{B} = \overline{A}$ and $B \leq \overline{A}_{\pi}$.

Step 7. [step 7] Let D be non-trivial divisible abelian subgroup of G. Then $N_G(D) \leq N_G(\overline{D})$ and if $D \in \mathcal{D}_{\pi}$, then $N_G(D) = N_G(\overline{D})$.

Proof. Let $g \in N_G(D)$. Then $D \leq \overline{D}^g \in \mathcal{D}$ and so $\overline{D} = \overline{D}^g$ by the uniqueness of \overline{D} . So the first statement holds. For the second observe that $D = \overline{D}_{\pi}$ and so $N_G(\overline{D}) \leq N_G(D)$. \Box

Step 8. [step 19]

- (a) $[\mathbf{a}]$ Every maximal subgroup of G is infinite.
- (b) [b] Every proper infinite subgroup R of G lies in a unique maximal subgroup \tilde{R} of G, namely $\tilde{R} = B_G(\overline{R^\circ})$.
- (c) [c] If M_1 and M_2 are maximal subgroups of G with $M_1 \cap M_2$ infinite, then $M_1 = M_2$.
- (d) [d] Let M be a maximal subgroup of G and $H \leq G$ with $M \cap H$ infinite. Then $H \leq M$.

Proof. (a) Suppose F be a finite subgroup of G and let $g \in G \setminus F$. Then $\langle F, g \rangle$ is finite, $F < \langle F, g \rangle < G$ and so F is not maximal.

- (b) Let $R \leq M < G$. Then $R^{\circ} \leq M^{\circ} \leq \overline{R^{\circ}}$ and so $\overline{R^{\circ}} = \overline{M^{\circ}}$. Thus $M \leq N_G(\overline{R^{\circ}})$.
- (c) By (b) $M_1 \cap M_2$ is contained in a unique maximal subgroup and so $M_1 = M_2$.

(d) By (b) H lies in a maximal subgroup \tilde{M} of G. Then $H \cap M \leq M \cap \tilde{M}$ and so by (c), $M = \tilde{M}$. Thus $H \leq M$.

Step 9. [char max] Let M < G. Then following are equivalent.

- (a) $[\mathbf{a}]$ M is a maximal subgroup of G.
- (b) [c] $1 \neq M^{\circ} \in \mathcal{D}$ and $M = N_G(M^{\circ})$.
- (c) [b] $M = N_G(D)$ for some set of prime π and some $1 \neq D \in D_{\pi}$.

Proof. (a) \implies (c): Suppose M is maximal in G. By Step 8(a), M is infinite and so $M^{\circ} \neq 1$. By Step 8(b), $M = N_G(\overline{M^{\circ}})$ and so $\overline{M^{\circ}} \leq M$ and thus $M^{\circ} = \overline{M^{\circ}} \in \mathcal{D}$.

(c)
$$\implies$$
 (b): Just set $\pi = \mathcal{P}$ and $D = M^{\circ}$.
(b) \implies (a): See Step 4.

Definition 3.4.2. [omega] Let H be a group. Then $\Omega_n^m(H) = \langle x \in H \mid x^{m^n} = 1 \rangle$. If H is a p group for some prime p, then $\Omega_m(H) = \Omega_m^p(H)$.

Step 10. [step 9] Let p be a prime and $1 \neq D \in \mathcal{D}_p$. Let T be p-subgroup of G with $\Omega_2(D) \leq T$. Then $T \leq N_G(D)$ and $|T/T \cap D| \leq |N_G(D)/\overline{D}|_p$.

Proof. Since $D \leq N_G(\Omega_2(D))$, Step 4 implies $N_G(\Omega_2(D)) \leq N_G(D)$. Since T is a Cernikoóvpgroup, $1 \neq Z(T)$. Observe that $[\Omega_2(D), Z(T)] = 1$ and $Z(T) \leq N_G(\Omega_2(D)) \leq N_G(D)$. Thus by ??, [D, Z(T)] = 1. We have $D \leq C_G(Z(T)) < G$ and so usingStep 4, $T \leq C_G(Z(T)) \leq N_G(D)$. Since $D = \overline{D}_p$, D/D_p is p'-group and so $T \cap D \leq D_p$. Thus $T/T \cap D = T/T \cap oD \cong T\overline{D}/\overline{D} \leq N_G(D)/\overline{D}$ and Step 13 is proved. \Box

Lemma 3.4.3. [cernikov and sylow] Let H be a Cernikoóvgroup and p a prime, then H acts transitively on $Syl_p(H)$.

Proof. Note that $H_p \leq H$ and H_p is a *p*-group. Let $T \in \text{Syl}_p(H)$. Then H_pS is a *p*-group and so $H_p \leq S$. Since H°/H_p is a *p'*-group, $S \cap H^{\circ} = H_p$. Thus $|S/H_p| = |SH^{\circ}/H^{\circ}|$ and so S/H_p is finite. Note that S/H_p is a Sylow *p*-subgroup of H/H_p . We conclude from ?? that all Sylow *p*-subgroups of H/H_p are conjugate in H/H_p . Hence all Sylow *p*-subgroups of *H* are conjugate.

Step 11. [scirc] Let $S \in Syl_p(G)$. then $S^{\circ} \in \mathcal{D}_p$ and $S^{\circ} = \overline{S^{\circ}}_p$

Proof. Since S° is a divisible abelian *p*-goup, $S^{\circ} \leq \overline{S^{\circ}}_{p}$. Pick $D \in \mathcal{D}_{p}$ with $\overline{S^{\circ}}_{p} \leq D$. By Step 4, *D* is unique and so *S* normalizes *D*. Thus *SD* is *p*-group and so $D \leq S$ by maximality of *S*. Hence $D \leq S^{\circ}$ and so $S_{p} = \overline{S^{\circ}}_{p} = D$.

Step 12. [transitive on syl] Let $H \leq G$. Then H acts transitively on $Syl_p(H)$.

Proof. If $H \neq G$, then H is a Cernikoóvgroup and we are done by 3.4.3.

So suppose G = H and let S_1 and S_2 be Sylow *p*-subgroups of G. If S_1 or S_2 is finite we are done by ??. So we may assume that $S_i^{\circ} \neq 1$ for i = 1 and 2. Put $E_i = \Omega_2(S_i^{\circ})$ and $L = \langle E_1, E_2 \rangle$. Then L is a finite group and so by Sylow's Theorem $\langle E_1, E_2^g \rangle$ is a *p*-group for some $g \in L$. Thus by Step 13 $E_2^g \leq N_G(S^{\circ})$ and so E_2^g is contained in a Sylow *p*-subgroup of $N_G(S_1^{\circ})$. By the first paragraph of the proof $E_2^{gh} \leq S_1$ for some $h \in N_G(S_1^{\circ})$. Hence by Step 13, $S_1 \leq N_G(S_2^{\circ gh})$ and then by the first paragraph, $S_2^{ghk} = S_1$ for some $k \in N_G(S_2^{\circ gh})$. \Box

Step 13. [step 9] Let p be a prime. Then G acts transitively on \mathcal{D}_p .

Proof. Let $D_1, D_2 \in \mathcal{D}_p$ and pick $S_i \in \text{Syl}_p(G)$ with $D_i \leq S_i$. Then $S_1^g = S_2$ for some $g \in G$. Since $D_i = S_i^\circ$, this gives $D_1^g D_2$.

Definition 3.4.4. [def rank] Let H be a locally finite group and p a prime. Then $m_p(G) = \sup\{k \in \mathbb{N} \mid \text{ there exists} A \leq H \text{ with } A \cong C_p^k\}.$

Step 14. [step 12] Let p be prime. Then $m_p(G)$ is finite.

Proof. Let $S \in \text{Syl}_p(G)$. Every elementary abelian subgroup of G is contained in Sylow p-subgroup and so conjugate to a subgroup of S. Thus $m_p(G) = m_p(S)$. By ??, $k := m_p(S^\circ)$ is finite. Put $|S/S^\circ| = p^l$ and let A be an elementary abelian subgroup of S. Then $|S^\circ \cap A| \leq p^k$ and $AS^\circ/S^\circ| \leq p^l$. Thus $|A| \leq p^{k+l}$ and so $m_p(S) \leq k+l$. \Box

Theorem 3.4.5. [walter feit] Let H be a finite simple group and with dihedral Sylow 2 subgroups. Then $H \cong Alt(7)$ or $L_2(p^k)$, where p is an odd prime and $|p^k| > 3$.

Lemma 3.4.6. [12p] Let $H \cong L_2(p^k)$, p an odd prime.

- (a) [a] Let $T \in \text{Syl}_p(H)$. Then T is elementary abelian p group of rank k and $|N_H(T)/C_H(T)| = \frac{p^k 1}{2}$.
- (b) [b] Let A be an elementary abelian r subgroup of H, where r is an odd prime, $r \neq p$. Then $|N_H(T)/C_H(T)| \leq 2$.

Proof. Readily verified.

Step 15. [s is not dihedral] S be a Sylow 2-subgroup of G. Then $S \not\cong D_{22^k}$ for $k \in \mathbb{Z}^+ \cup \infty$.

Proof. Suppose $S \cong D_{22^k}$. If |S| = 2 let R = S otherwise pick $R \leq S$ with $R \cong C_2 \times C_2$. choose $R \leq H_1 < H_2 < H_3 < \ldots H_n < \ldots$ with $(H_i, 1) \in \mathcal{K}$ and $|H_1| \geq 7!$. Let $S_i \in Syl_2(H_i)$ with $R \leq S_i$. By Step 12 there exists $g \in G$ with $S_i \leq S^g$. It follows that S - i is either a dihedral group or cyclic. Since $R \leq S_i$, S_i is a dihedral group. Thus by 3.4.5, $H_i \cong L_2(p_i^{k_i}, p_i \text{ an odd prime or Alt}(7)$. Since $|H_i| \geq |7!$, $H \ncong Alt(7)$ and $H \ncong L_2(5)$. So by 3.4.5 $H_i \cong L_2(p_i^{k_i}, p_i^{k_i} > 5$. Let $p = p_1$ and $A \in Syl_p(H_1)$. Then by $??(??) |N_{H_1}/C_{H_1}(A)| = \frac{p^{k_1}-1}{2} > \frac{5-1}{2} = 2$. Thus ??(??) implies that $p = p_i$ for all i. Since $H_i < H_{i+1}, k_i < k_{i+1}$. Since $m_p(G) \ge m_p(H_i) = k_i$, this gives $m_p(G) = \infty$ a contradiction to ??

Definition 3.4.7. [def:strongly p-embedded] Let H be a locally finite group, p a prime and M a subgroup of H. Then M is called strongly p-embedded if

- (i) [i] M is not a p'-group.
- (ii) [ii] $M \cap M^g$ is p'-group for all $g \in H \setminus M$.

Theorem 3.4.8. [bender] Let H be a finite group with a proper strongly 2-embedded subgroup. The one of the following holds:

- 1. [1] [z, H] has odd order for all involutions z of H.
- 2. [2] $H/O(H) \leq f(m_2(H))$ where $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ is some function independent of H.

Proof. Suppose first that $m_2(H) = 1$. Then H has a unique class of involution and $[x, z] \neq 1$ for all involutions x, z in H with $x \neq z$. Thus Glauberman's Z^* theorem shows that [z, H] has odd order.

Suppose next that $m_2(H) \geq 2$. Then Bender's strongly embedded theorem shows that $H/O(H) \cong L_2(q), S_2(q)$ or $U_3(q)$, where $q = 2^k$ for some $k \in \mathbb{Z}^+$. It follows that $m_2(H) = k$ and $|H/O(H)| \leq q^9 = 2^{9k} = 2^{m_2(H)}$.

Step 16. [step 13] G has no proper strongly 2-embedded subgroup.

Definition 3.4.9. [def:kegel cover] Let H be locally finite group. Then a Kegel cover \mathcal{K} for H is a set of pairs of subgroup of H such that

- (i) [1] If $(K, M) \in \mathcal{K}$ then $M \leq K \leq H$, K is finite and K/M is simple.
- (ii) [2] If F is a finite subgroup of H, then there exists $(K, M) \in \mathcal{K}$ with $F \leq K$ and $F \cap M = 1$.

Theorem 3.4.10. [kegel] Every locally finite simple group has a Kegel cover.

Proof. Let *H* be a locally finite group. Define *K* to be the set of all pairs (*K*, *M*) such that $M \leq K \leq H$, *K* is finite and *K*/*M* is simple. *F* be a non-trivial finite subgroup of *H*. Let $1 \neq f \in F$. Since *H* is simple $H = \langle f^H \rangle$ and so there exists a finite subset I_f of *H* with $F \leq \langle f^{I_F} \rangle$. But $F^* = \langle F, I_f \mid f \in F^{\sharp} \rangle$. Then $F \leq \langle f^{F^*} \rangle$ for all $f \in F^{\sharp}$. Put $K = \langle F^{F^{**}} \rangle$. Let *N* be the intersection of the maximal normal subgroups of *K*. Then *N* is characteristic subgroup of *K* and $N \neq K$. Since *F*^{**} normalizes *K* it also normalizes *N*. If $F \leq N$ we get $K = \langle F^{F^{**}} \rangle \leq N$, a contradiction. Thus $F \nleq N$ and there exists a maximal normal subgroup *M* of *K* with $F \nleq M$. Note that $(K, M) \in \mathcal{K}$ and $F \leq H$. Suppose that $F \cap M \neq 1$ and pick $f \in F^{\sharp}$. Then $f \in F^*$ and so $F^* \leq \langle f^{F^{**}} \rangle \leq K$. Hence $F \leq \langle f^{F^*} \rangle \leq \langle M^H \rangle = M$, a contradiction. Thus $F \cap M = 1$ and \mathcal{K} is a Kegel cover. □

Step 17. [step 14] There exists a finite subgroup Q of G such that M = 1 for all finite subgroups M of G with $Q \leq N_G(M)$ and $Q \cap M = 1$.

Proof. Suppose not. Put $L_1 = M_1$ be a arbitrary non-trivial finite subgroup of G and assume inductively that we already define finite subgroups $L_i, M_i, 1 \le i \le n$ in G. By assumption there exists non-trivial finite subgroup M_{n+1} of G with $L_n \le N_G(M_{n+1})$ and $L_n \cap M_{n+1} = 1$. Put $L_{n+1} = L_n M_{n+1}$.

Define $H_n = \langle M_i \mid i \in \mathbb{Z}^+, i \geq n \rangle$. Then clearly

$$H_1 \ge H_2 \ge H_3 \ge \dots$$

Fix $n \ge 2$. We will now show that $L_{n-1} \cap H_n = 1$. Let $g \in L_{n-1} \cap H_n$. For $m \ge n$ define $R_m = \langle M_i \mid n \le i \le m \rangle$. Then $H_n = \bigcup_{m=n}^{\infty} R_m$ and so we can choose m minimal with $x \in R_m$. Suppose that $m \ne n$. Then $R_m = \langle R_{m-1}, M_m \rangle$. Note that $R_{m-1} \le L_{m-1}$ and so R_{m-1} normalizes M_m and $R_m = R_{m-1}M_n$. Since $x \in L_{n-1} \le L_{m-1}$ and $R_{m-1} \le L_{m-1}$ we get

$$x \in L_{m-1} \cap R_{m-1}M_n = R_{m-1}(L_{m-1} \cap M_n) = R_{m-1}$$

a contradiction to the minimal choice of m. Thus $m = n, x \in R_n = M_n$ and $x \in L_{n-1} \cap M_n = 1$.

So $L_{n-1} \cap H_n = 1$ and so $H_{n-1} > H_n$, a contradiction since G fulfills MIN.

Step 18. [simple cover] Let F be a finite subgroup of G and $m \in \mathbb{Z}^+$. Then there exists a finite simple subgroup K of G with F < K and $|K| \ge m$.

Proof. Let Q be as in Step 17. Since G is infinite there exists $I \subseteq G$ with $|I| \ge m$ and $F \subseteq I$. Put $R = \langle I, Q \rangle$. Then R is finite and by 3.4.10 there exists a finite subgroup K of G and maximal normal subgroup M of G with $R \le K$ and $R \cap M = 1$. Then $Q \le K \le N_G(M)$ and $Q \cap M = 1$. Thus by Step 17, M = 1. So K is simple. Since $F \subset I \subseteq R \le K$, F < K. Since $|I| \ge m$, $|K| \ge m$ and so ??

Lemma 3.4.11. [normalizer condition]

- (a) [a] Let S be a nilpotent group and $T \leq S$. If $N_S(T) = T$, then T = S.
- (b) [b] Let S be a locally nilpotent group and T a finitely generated subgroup of S. If $N_S(T) = T$, then S = T.

Proof. (a) Let $Z_0 \leq Z_1 \leq \ldots \leq Z_n$ be the upper central series of S. Note that $Z_0 \leq T$. Assume inductively that $Z_i \leq T$. Then

$$[Z_{i+1}, T] \le [Z_{i+1}, S] \le Z_i \le T$$

and so $Z_{i+1} \leq N_S(T) = T$. Thus $S = Z_n \leq T$ and T = S.

(b) Let $s \in S$ and put $R = \langle T, s \rangle$. Then R is finitely generated and so R is nilpotent. Also $T \leq N_R(T) \leq N_S(T) = T$ and so by (a), R = T. Thus $s \in T$ and S = T.

Proposition 3.4.12. [char strongly p-embedded] Let H be a locally finite group, p a prime and $M \leq H$. Suppose that

- (a) [i] M is not a p' group and $M\neg H$.
- (b) [ii] If $x \in M$ has order P, then $C_G(x) \leq M$.
- (c) [iii] Let S be a Sylow p-subgroup of G.
 - 1. [1] If S is finite, then $N_G(S) \leq H$.
 - 2. [2] If S is infinite, then each $h \in H \setminus M$, $M \cap M^h$ has finite Sylow p-subgroups.

Then M is a strongly p-embedded subgroup of H.

Proof. Suppose not and let $h \in H \setminus M$ such that $M \cap M^h$ is not a p' group. Let $T \in Syl_p(H \cap H^g)$ and $S \in Syl_p(T)$. By (c:1), T is finite. Suppose that $S \neq T$. Then by ??(??), $N_S(T) \neq T$ and so there exists $T < P \leq N_S(T)$ with P finite. Thus there exists $1 \neq x \in C_T(P)$. Then by (b), $P \leq C_H(x) \leq M$ and thus $T < P \leq H \cap M^h$, a contradiction since P is p-groups and T is a Sylow p-subgroup of $H \cap H^\gamma$.

Thus T = S and so $T \in \operatorname{Syl}_p(M^g)$. In particular, M has finite Sylow p-groups. It follows that M^g acts transitively on $\operatorname{Syl}_p(M^g)$. Since $T \leq M$, $T^h \leq M^g$ and $T^h \in \operatorname{Syl}_p(M^g)$. Thus $T^{hk} = T$ for some $k \in M^h$. Then $hk \in N_H(T)$ and so by (c:2), $hk \in M$. Thus $M = M^{hk} = (M^h)^k = M^h$ and so $k \in M$ and $h = (hk)k^{-1} \in M$, contrary to the choice of h.

Lemma 3.4.13. [dihedral] Let x and y be non-conjugate involution in a group H. Then |xy| has even order, $\langle xy \rangle$ contains a unique involution u, and any involution in $\langle x, y \rangle$ is either equal to u or conjugate to x or to y.

Proof. This follows easily from the fact that $\langle x, y \rangle$ is dihedral group.

Step 19. [step 20] Let \mathcal{M} be a finite set of maximal subgroups of G and K a non empty G-invariant subset of G^{\sharp} . Then $K \setminus \bigcup \mathcal{M}$ is infinite.

Proof. Suppose that $K \setminus \bigcup \mathcal{M}$ is finite. If K is finite, $\langle K \rangle$ would be a non-trivial finite normal subgroups of G, a contradiction, since G is infinite and simple. So K and $K \cap \bigcup \mathcal{M}$ are infinite. Since \mathcal{M} is finite, there exists $M \in \mathcal{M}$ such that $K \cap M$ is infinite. Let $g \in G$. Then $(K \cap M)^g = K \cap M^g$ is infinite and so there exists $N \in \mathcal{M}$ with $K \cap M^g \cap N$ infinite. Hence by ??(??), $M^g = M \in \mathcal{M}$. Thus M^G is finite. Then also $G/\mathcal{C}_G(M^G)$ is finite and $\mathcal{C}_G(M^G)$ is a normal subgroup of finite index in G. Hence $\mathcal{C}_G(M^G) = G$ and $M \leq G$, a contradiction

For $z \in \mathcal{I}_{\infty}$ let H_x be the unique maximal subgroup of G containing $C_G(z)$. p

Lemma 3.4.14. [lemma 14] Let D be a divisible abelian group and $\alpha \in Aut(D)$ with $\alpha^2 = id_D$. If $C_D(\alpha)$ is finite, then α inverts D.

Proof. Observe that the map $\tau : D \to D, d \to dd^{\alpha}$ is a homomorphism with $\operatorname{Im} \tau \leq C_D(\alpha)$. Thus $D/\ker \alpha$ is finite. Since divisible groups of no proper subgroup of finite index, $D = \ker \tau$ and so $dd^{\alpha} = 1$ for all $d \in D$. Hence $d^{\alpha} = d^{-1}$.

Step 20. [step 15] Let $z \in \mathcal{I}$ and M a maximal subgroup of G with $z \in M \nleq H_z$. Then z inverts M° .

Proof. If $C_{M^{\circ}}$ is finite, then by Step 17 z inverts M° . So suppose $C_{M^{\circ}}(z)$ is infinite. Since $C_{M^{\circ}}(z) \leq H_z \cap M$, ??(??) gives $M = H_z$.
Step 21. [step 16] Let $A \leq G$ be a fours group (that is $A \cong C_2 \times C_2$) and M a maximal subgroup of G containing A. Then $M = H_x$ for some $x \in A^{\sharp}$. If $C_G(A)$ is infinite, then M is the unique maximal subgroup of G containing A.

Proof. Let $A^{\sharp} = \{a, b, c\}$. If a does not inverts M° , then by (??), $M = H_a$. Similarly if b does not inverts M° , then $M = H_{\circ}$. If a and b inverts M° , then ab = c centralizes M° and so $M = H_c$.

Thus $M = H_x$ for some $1 \neq x \in A$. Suppose $C_G(A)$ is infinite. Then $C_G(A) \leq C_G(x) \leq H_x = M$ and so M is the unique maximal subgroup containing $C_G(A)$.

Step 22. [cga not in hz] Let $1 \neq z \in \Omega_1 Z(S)$. There exists $a \in S$ with |a| = 2 and $H_a \neq H_z$.

Proof. Suppose first that $N_G(S) \leq H_z$ and pick $g \in N_G(S) \setminus H_z$. Then $z^g \in S$ and $H_{z^g} = H_z^g \neq H_z$.

Suppose next that $N_G(S) \leq H_z$. Since H_z is not strongly 2-embedded there exists $b \in H_z$ with $\beta = 2$ and $C_G(b) \leq H_z$. Then $H_b \neq H_z$. Also *a* is conjugate to an element *a* of *S* and so Step 22 holds.

Step 23. [rank less than 2] $m_2(S^\circ) \leq 1$.

Proof. Let $D = \overline{S^c irc}$ and $M = N_G(D)$. Let y be any involution in M. Put $A = \Omega_1(D)$. Since $S^\circ \leq C_G(A)$, $C_G(A)$ is infinite. Since $m_2(S^\circ) > 1$, A contains a fours group. Thus A is contained in a unique maximal subgroup of G. We claim that $H_y = M$. If y does not invert M° , then by Step 20, $M = H_y$. If y inverts M° , then $A \leq C_G(y) \leq H_y$ and again $H_y = M$. Thus $C_G(y) \leq H_y \leq M$.

Let $g \in G \setminus M$. If $M \cap M^g$ is infinite then ?? implies that $M = M^g$ and $D = D^g$ and $g \in N_G(D) = M$. Thus $M \cap M^g$ is finite and so by ?? M is a strongly 2-embedded on G, a contradiction to Step 16.

Lemma 3.4.15. [transitive on coset] Let H be a group, A and abelian subgroup of G with $A = A^2$ and $y \in N_G(A)$. If y inverts A, then A acts transitively in Ay.

Proof. Note that also y^{-1} inverts A. Let $a \in A$. Since $A = A^2$, $a^{-1} = b^2$ for some $b \in A$. Then $y^b = b^{-1}yb = b^{-1}yby^{-1}y = b^{-1}b^{y^{-1}}y = b^{-1}b^{-1}y = (b^2)^{-1}y = ay$.

Step 24. [step 18] Suppose $m_2(S^\circ) \ge 1$. Then G acts transitively on $\{x \in I \mid D_x \text{ is a not} 2' - group\}$.

Proof. Put $\mathcal{I}^* = \{x \in I \mid D_x \text{ is a not} 2' - \text{group. Since } m_2(S^\circ) = 1, S^\circ \text{ has a unique involution } x.$

Note that $S^{\circ} = (D_x)_2$ and so x is the unique involution in D_x and D_x is not a 2'-group. Thus $x \in \mathcal{I}^*$ and $x \in Z(H_x)$. Suppose that G does not act transitively on cI^* and pick an involution y in G. which is not conjugate to x. Since G is simple $G = \langle x^G \rangle$ and so $x^g \notin H_y$. Thus $x \notin H_y^{g^{-1}}$ and replacing y by $y^{g^{-1}}$ we may assume that $x \notin H_y$.

Since x and y are not conjugate there exists a unique involution $u \in \langle xy \rangle$. Then $u \in C_G(y) \leq H_y$. By ??, Since $(D_y)_2 \leq S^h$ for some $h \in G$. Since $y \in \mathcal{I}^*$, $(D_y)_2$ is a nontrivial divisible group. hence $(D_y)^2 = S^{\circ h}$. Thus $D_y \cap D_x^h \neq 1$, $D_y = D_x^h$ and x^h is the unique involution in D_y . Thus by u and y centralizes x^h . Put $A = \langle y, x^h \rangle$. Since $y \notin x^G$, A is a fours group. Since $C_G(y)$ is infinite, also $C_{D_y}(y)$ is infinite and so $C_G(A)$ is infinite. Thus by Step 21, A lies in a unique maximal subgroup of G. Note that $A \leq H_y$ and $A \leq C_G(u) \leq H_u$. Thus $H_y = H_u$ and $x \leq C_H(u) \leq H_u = H_y$, a contradiction. \Box

Step 25. [s is finite] S is finite.

Proof. Suppose S is infinite, then by Step 23 $m_2(S^\circ) = 1$. Let $x \in S^\circ$ with |x| = 2.

Suppose that $C_S(S^\circ) \neq S^\circ$ and pick $S^\circ \leq T \leq C_S(S^\circ)$ with $|T/S^\circ| = 2$. Then T is abelian and so by ??, $T = S^\circ \times K$ for some $L \leq T$. $y \in K$ with |x| = |y| = 2. Since $S^\circ \leq D_x \cap D_y$ we have $D_x = D_y$. Hence D_y is not a 2'-group and by Step 24 $y = x^g$ for some $g \in G$. Thus $D_x = D_y = D_x^g$. Since $x \in S^\circ = (D_x)_p$ this gives $y = x^g \in (D_x^g)_p = (D_x)_p = S^\circ$, a contradiction.

Hence $C_S(S^{\circ}) = S^{\circ}$. Put $S_0 = \{z \in S^{\circ} \mid z^4 = 1\}$. By ??, $C_S(S_0) = C_S(S^{\circ}) = S^{\circ}$. Since $|S_0| = 4$ we conclude that $|S/S^{\circ}| \le 2$.

Suppose that x is the only involution in S. Let y be any involution in H_x . Note Then $y^h \in S$ for some $h \in H_x$ and so $y^h = x$. Thus $C_G(y) = C_G(x^{h^{-1}}) \leq H_x$. Let $g \in G$ with $|H_x \cap H_x^g| = \infty$. Then by ??, $D_x = D_x^g$ and so $g \in N_G(D_x) = H_x$. 3.4.12 now shows that H_x is a strongly 2-embedded subgroup, a contradiction to ??

Theorem 3.4.16. [brauer] Let H be a finite simple group, T a Sylow 2-subgroup of G and $x_0, x_1, x_2 \in T$ with $|x_1| = |x_2| = 2$. Then one of the following holds:

- (a) [1] For $0 \le i \le 2$, there exists $y_i \in S \cap x_i^G$ with $y_1y_2 = y_0$ and $C_T(y_0) \in Syl_2(C_G(y_0))$.
- (b) [2] $|H| \leq \alpha(s_0, s_1, s_2)$, where $s_i = |C_H(x_i)/O(C_H(x_i))$ and $\alpha : \mathbb{Z}^3 \to \mathbb{Z}^+$ is a function independent of H.
 - Let $1 \neq z \in \Omega_1 \operatorname{Z}(S)$.

Step 26. [brauer step] For all $1 \neq x_0 \in S$ there exists $y_1, y_2 \in S \cap z^G$ and $y_0 \in S \cap y_0^G$ with $y_1y_2 = y_0$ and $C_S(y_0) \in \text{Syl}_2(C_G(y_0))$.

Proof. Put $x_i = z$ for i = 1, 2 and for $0 \le i \le 2$ define $t_i = C_G(x_i)/C_G(x_i)^{\circ}|$. Put $m = \max\{\alpha(s_0, s_1, s_2) \mid 1 \le s_i \le t_i\}$. Pick $T \in \text{Syl}_2(C_G(x_0))$ and let H be finite simple subgroup of G with $\langle T, S \rangle \le H$ and |H| > m. Put $s_i = |C_H(x_i)/O(C_H(x_i))$. Since S is finite, $C_G(x_i)^{\circ}$ is a 2' group and so $C_H(x_i) \cap C_G(x_i)^{\circ} \le O(C_H(x_i))$. Hence

$$s_i = |\mathcal{C}_H(x_i)/\Omega(\mathcal{C}_H(x_i))| \le |\mathcal{C}_H(x_i)/\mathcal{C}_H(x_i) \cap C_G(x_i)^\circ| \le \mathcal{C}_H(x_i)\mathcal{C}_G(x_i)^\circ)/\mathcal{C}_G(x_i)^\circ| \le t_i$$

and so $|H| > m > \alpha(s_0, s_1, s_2)$. Thus by 3.4.16 there exists $y_i \in S \cap x_i^H$ such that $y_1 y_2 = y_0$ and $C_S(y_0) \in \operatorname{Syl}_2(C_H(y_0))$. Since $T \leq C_H(x_0)$ we get $C_S(y_0)| \geq |T|$ and so $C_S(y_0) \in \operatorname{Syl}_2(C_G(y_0))$.

Step 27. [2 central fours group] There exists a fours group $E \leq S$ in G with $z \in E$ and $E^{\sharp} \in z^{G}$.

Proof. By Step 26 applied with $x_0 = z$, there exists $y_i \in z^G \cap S$ with $y_1y_2 = y_0$. Put $F = \langle y_1, y_2 \rangle$. Then $F^{\sharp} \subseteq z^G$. Moreover, $y_1^g = z$ for some $g \in G$ and so $z \in F^g \leq C_G(z)$. Since S is a Sylow 2-subgroup of $C_G(z)$ and so by Step 12 there exists $h \in C_G(z)$ with $E := F^{gh} \leq S$. Also $z = z^h \in E$.

Lemma 3.4.17. [centralizer of hyper planes] Let B be finite elementary abelian p group acting on a locally finite abelian p'-group D. Then $D = \langle C_D(X) | X \leq B, |H/X| = p \rangle$.

Proof. See MTH913 Homework 1.

Step 28. [step CGA] Let $A \leq S$ be a fours group and suppose that A is contained in more than one maximal subgroup of G. Then $\Omega_1^2(C_G(A)) = A$ and there exists $d \in z^G \cap S$ with $z \notin C_S(A)$. In particular, $A \nleq Z(S)$.

Proof. Suppose there exists an involution $b \in C_G(A) \setminus A$. Put $B = \langle A, b \rangle$. Then $B \cong C_2^3$. Let M_1 and M_2 be two distinct maximal subgroups of G containing A. By Step 21, $M_i = H_{a_i}$ for some $a_i \in A$. Thus $B \leq C_G(a_i) \leq M_i$. By ?? $M_i^\circ = \langle C_{M_i^\circ}(X) | X \leq B, |B/X| = 2 \rangle$. Thus there exists $B_i \leq B$ with $|B/B_i| = 2$ and $C_{M^\circ}(B_i)$ infinite. The B_i is a foursgroup and by Step 21, B_i is contained in a unique maximal subgroup of G, a contradiction to $B_i \leq M_1 \cap M_1$.

Thus $\Omega_1^2(C_G(A)) = A$. Suppose S is elementary abelian. Then $S \leq \Omega_1(C_S(A)) = A$ and so $S \cong D_4$, a contradiction. So there exists $x_0 \in S$ with $|x_0| > 2$. By Step 26 there exists involutions $y_1, y_2 \in S \cap z^G$ and $y_0 \in S \cap x_0^g$ with $y_1 y_2 = y_0$. Suppose y_1 and y_2 are in $C_S(A)$. Then $y_0 \in \langle y_1, y_2 \rangle \leq \Omega_1(C_S(A)) = A$ and so $y_0^2 = 1$, a contradiction. Thus one of y_1 and y_2 is not in $C_S(A)$.

Step 29. [s in a unique maximal] H_z is the unique maximal subgroup of G containing S.

Proof. Suppose $S \leq M$ with $M \neq H_z$. If $|\Omega_1 Z(S)| \geq 4$, we can choose $A \leq \Omega_1 Z(S)$ with |A| = 4, a contradiction to Step 28. Thus $\Omega_1 Z(S) = \langle z \rangle$. By Step 20, z inverts M° . Thus $\Omega_1 Z(S) \cap C_S(M^\circ) = 1$. Since $C_S(M^\circ)$ is normal in S this implies $C_S(M^\circ) = 1$. Let E be as in Step 27 and let $E \setminus \langle z \rangle = \{a, b\}$. If a inverts M° we get $b = az \in C_S(M^\circ)$, a contradiction. Thus a does not invert M° and by Step 21, $M = H_a$. By symmetry, $M = H_b$. Thus a and b invert D_z and so ab = z centralizes D_z . Since $a \in z^G$, a centralizes $D_a = M^\circ$, again a contradiction.

Let $e \in S$ be an involution in S with $H_e \neq H_z$. If $H_e \in H_z^G$, put x = a. If $H_e \notin H_z^G$, then choose $g, h \in G$ with $e = z^g z^h$ and put $x = e^{g^{-1}}$. In either case put $A = \langle x, z \rangle, y = zx$ and $\mathcal{A} = \{a \in A \mid H_a \in H_z^G\}$. Let $T \in \text{Syl}_2(H_x \cap H_y)$.

Step 30. [basic a] A is a foursgroup, $A = \langle x, z \rangle$, $H_x \neq H_z$ and $|\mathcal{A}| \geq 2$.

Proof. If $H_e \in H_z^G$, then $a = e, a \in \mathcal{A}$, $H_a = H_e \neq H_z$, $a \in S \leq C_G(z)$ and $A = \langle a, z \rangle$ is a fours group.

If $H_e \notin H_z^G$, then $x = e^{g^{-1}} = (z^g z^h)^{g^{-1}} = zz^{hg^{-1}}$ and so $y = zx = z^{hg^{-1}} \in z^G$. Thus zx has order two and A is fours group. Also $H_y = H_z^{hg^{-1}} \in H_z^G$ and so $y \in \mathcal{A}$. Since $H_x = H_e^{g^{-1}} \notin H_z^G$, $H_x \neq H_z$.

For $a \in A^{\sharp}$ pick $S_a \in \text{Syl}_2(H_a)$ with $T \cap H_a \leq S_a$ and define $T_a = N_{S_a}(C_{S_a}(A))$.

Step 31. [omega t] Let

- (a) $[\mathbf{a}] \quad \mathcal{A} = A^{\sharp} \subseteq z^G.$
- (b) [b] $A = \Omega_1 \operatorname{Z}(T) = \Omega_1(T)$ and $C_{S_a}(A) = T$
- (c) [c] $\Omega_1 \operatorname{Z}(S_a) = \Omega_1 \operatorname{Z}(T_a) = \langle a \rangle$
- (d) [d] $T_a = N_{S_a}(T) = N_{S_a}(A)$ and $|T_a/T| = 2$.
- (e) [e] $N_G(T)/N_G(T) \cap C_G(A) \cong \operatorname{Sym}(A^{\sharp})$

Proof. Let $a \in \mathcal{A}$. By definition of \mathcal{A} , H_a is conjugate to H_z and so contains a Sylow 2subgroup of G. Thus S_a is Sylow 2 subgroup of G. By $??S_a \neq C_{S_a}(A)$ and $A = \Omega_1(C_{S_a}(A))$. Thus also $T_a \neq (C_{S_a})(A)$ and $A \trianglelefteq T_a$. It follows that $1 < C_A(T_a) < A$ and so there exists a unique $1 \neq a^* \in C_A(T_a)$. Note that both $\Omega_1 \operatorname{Z}(S_a)$ and $\Omega_1 \operatorname{Z}(T_a)$ are contained in $\Omega_1(C_{S_a}(A))$ and so also in $C_A(T_a)$. Thus $\Omega_1 \operatorname{Z}(S_a) = \Omega_1 \operatorname{Z}(T_a) = \langle a^* \rangle$ Then $S_a \leq C_G(a^*)$ and so by ?? $H_{a^*} = H_a$. If $a \neq a^*$ we get $A^{\sharp} = \{a^*, a, a^t\}$, where $t \in T_a \setminus C_{S_a}(A)$. Since $t \in H_a$ this gives $H_a^t = H_a = H_{a^*}$ and Step 21 implies that H_a is the unique maximal subgroup of Gcontaining A, a contradiction, since $A \leq H_x \cap H_y$. Thus $a = a^*$.

Since $|\mathcal{A}| \geq 2$, we can choose $b \in \mathcal{A}$ with $b \neq a$. Note that T_a acts as the two cycle with fix-point a on A^{\sharp} and T_b as the 2 cycle with fix point b. Thus $\langle T_a, T_b \rangle$ acts as $\text{Sym}(\mathcal{A}^{\sharp})$ on A^{\sharp} . So all elements in A^{\sharp} are conjugate in G and $\mathcal{A} = A^{\sharp} \subseteq z^G$.

Suppose now that $a \in \mathcal{A}$ with $T \leq H_a$. Note that $C_{S_a}(A) \leq H_x \cap H_z$ and $\langle T, C_{S_a}(A) \rangle \leq S_a$. Since T is a Sylow 2 subgroup of $H_x \cap H_z$ we conclude that $C_{S_a}(A) = C_T(A)$. Also $|N_{S_a}(A)/C_{S_a}(A)| \leq 2$ and so $N_{S_a}(A) = T_a C_{S_a}(A) = T_a$.

If $A \nleq Z(T)$, then $N_T(C_T(A)) \neq C_T(A)$ and since $|T_a/C_{S_a}(A)| = 2$, $T_a = N_T(C_T(A))$. This hold for a = z and x and so $T_x = T_z$ centralizes $\langle x, z \rangle = A$, a contradiction.

Thus $A \leq Z(T)$, $C_{S_a}(A) = C_T(A) = T$ and $T_a = N_{S_a}(T)$. Hence $\langle T_a, T_b \rangle \leq N_G(T)$ and $\Omega_1 Z(T) \leq \Omega_1(T) \leq \Omega_1^2(C_G(A)) = A \leq \Omega_1 Z(T)$. So $N_G(T)$ acts transitively on A^{\sharp} and thus $T \leq H_a$ for all $a \in A^{\sharp}$. **Definition 3.4.18.** [def:quasidihedral] Let n be positive integer. Then $QD_{8n} := \langle s, t | s^2 = 1, (ss^t)^{2n} = 1, t^2 = (ss^t)^n \rangle$. QD_{8n} is called the quasidihedral group of order 8n.

Lemma 3.4.19. [char quasidihedral] Let P be a finite 2-group and A a fours group in P with $C_P(A) = A$. Then P is a dihedral or quasidihedral group.

Proof. Observe that $Z(P) \leq C_P(A) \leq A$. If $A \leq Z(P)$, then $P \leq C_P(A) \leq S$ and we are done. So suppose $A \not\leq Z(P)$ and pick $1 \neq a \in A \setminus Z(P)$ and $1 \neq z \in Z(P)$. Then $C_P(a) = C_P(\langle a, z \rangle) = C_P(A) + A$. Let $D \leq P$ such that D is dihedral group maximal with respect to $A \leq D$. If D = P we are done. So suppose $D \neq P$.

Let $Q = N_P(D)$. Then D < Q. Let $\mathcal{A} = \{t \in D \setminus Z(P) \mid t^2 = 1\}$. Put |D| = 4n. Then $|^{\mathcal{A}}| = 2n$. Note that Q acts on \mathcal{A} and so

$$2n = |cA| \ge |a^Q| = |Q/C_Q(a)| = |Q/A| = |Q/D||D/A| \ge 24n4 = 2n$$

It follows that $\mathcal{A} = a^Q$ and |Q/D| = 2. Let $b \in \mathcal{A}$ with $\langle a, b \rangle = D$. Then there exists $t \in Q$ with $a^t = b$. Put x = ab. Then either |D| = 4 and x = z or |D| > 4 and $\langle x \rangle$ is the unique cylcic subgroup of order 2n in D. In either case $X \leq Q$. So also $Y = \langle x^2 \rangle \leq Q$. Consider $\overline{Q} = Q/Y$. Then $\overline{t}^2 \in C_{\overline{D}}(t) = \overline{X}$ and replacing t by at if necessary we may assume that \overline{t} has order 2. Thus $t^2 \in Y$ and so $t^2 = x^l$ for some even integer with $0 \leq l < 2n$. Thus $b^t = a^{t^2} = x^{-l}ax^l = aa^{-1}x^{-l}ax^l = ax^{l}x^{l} = ax^{2l}$ and so $x^t = (ab)^t = bax^{2l} = x^{-1}x^{2l} = x^{2l-1}$. Since t centalizes $t^2 = x^l$ this means $x^l = (x^l)^t = x^{l(2l-1)}$ and so $x^{l(2l-2)} = 1$. Since x has order m we conclude $2n \mid l(2l-2) = 2l(l-1)$. Since m is power of 2 and l is even , we infer $2n \mid 2l$ and so $n \mid l$. As $0 \leq l < 2n$ we have l = 0 or l = n. If $t^2 = 1$ and in the second case $t^2 = x^n$. In either case $b^t = ax^{2n} = a$. Observer that $Q = D\langle t \rangle = \langle a, b, t \rangle = \langle a, t \rangle$. So if $t^2 = 1$ then Q is a dihedral group, a contradiction to the maximality of D. Hence $t^2 = x^n$ and Q is a quasi dihidral group or order 8n. Sine l = n and l is even, Q has order at least 16. group.

Put $E = \langle D^{N_P(Q)} \rangle$. Then $D \leq E \leq Q$ and E is generated by involutions. By Homework 1, Q is not generated by involutions. Since $|Q/D| \leq 2$ this gives E = D and so $D \leq N_P(Q)$, $N_P(Q) = Q$ and Q = P.

Theorem 3.4.20. [semidihedral] If H is a finite simple group with quasidihedral Sylow 2-subgroup of order at least 16, then $H \cong M_{11}$, $L_3(p^k)$ or $U_3(p^k)$, where p is an odd prime.

Proof.

Lemma 3.4.21. [basic semidihedral] Let $H \cong L_3(q \text{ or } U_3(q), q \text{ a power of an odd prime.}$ and $t \in H$ with |t| = 2. $C_H(t)$ has a normal subgroup isomorphic to $SL_2(q)$. Moreover, $|H| \leq q^{18}$.

Proof. Put $\mathbb{K} = \mathbb{F}_q$ and define $GL_n^+(\mathbb{K}) = GL_n(\mathbb{K})$ and $GL_n^-(\mathbb{K}) = GU_n(\mathbb{K})$. Put $\tilde{H} = GL^{\epsilon}(\mathbb{K})$ and $V = \mathbb{F}^3$, where $\mathbb{F} = \mathbb{K}$ in the $L_3(q)$ case and $\mathbb{F} = \mathbb{K}_{q^2}$ in the $U_3(\mathbb{K})$. Then $\tilde{H}/Z(\tilde{H})$. Note that $|H| \leq |GL_3(q^2)| = (q^6 - 1)(q^6 - q^2)(q^6 - q^4) \leq q^{18}$. Since $Z(SL_3^{\epsilon}(\mathbb{K}))$ has order dividing 3, there exists a unique element of order two \tilde{t} in $Z(SL_3^{\epsilon}(\mathbb{K}))$ which maps

which maps to t. Since $|\tilde{t}| = 2$ and det $\tilde{t} = 1$ and char $\mathbb{K} \neq 2$ we have $V = [V, \tilde{t}] \oplus C_V(\tilde{t})$ with dim $[V, \tilde{t}] = 2$ and dim $C_V(\tilde{2}) = 1$. 2-dimensional. In the $GU_3(\mathbb{K})$ case, $[V, \tilde{t}] \perp C_V(t)$ and so this direct sum is an orthogonal sum. It follows that $C_{\tilde{H}}(\tilde{t}) = GL^{\epsilon}([V, \tilde{t}]] \times GL^{\epsilon}(C_V(\tilde{t})) \cong GL_2^{\epsilon}(\mathbb{K}) \times GL_1^{\epsilon}(\mathbb{K})$. It follows that $C_{\tilde{H}}(\tilde{t})$ has a normal subgroup K isomorphic to $SL_2^{\epsilon}(\mathbb{K})$. K centralizes $C_V(\tilde{t})$, and since the elements of $Z(\tilde{H})$ acts by scalar multiplication on V, and $K \cap Z(\tilde{H})$. Thus $K \cong KZ(\tilde{H})/Z(\tilde{H})$ and so $C_H(t)$ has a subgroup isomorphic to $SL_2^{\epsilon}(\mathbb{K})$. Since $SU_2(\mathbb{K}) \cong SL_2(\mathbb{K})$, the lemma is proved. \Box

Step 32. [step semidihedral] S is not a quasidihedral group.

Proof. Suppose S is a quasidihedral group. By ?? S is not a dihedral group and so $|S| \ge 16$. Pick a finite simple subgroup H of G with $|H| > (|C_G(z)/D_z|)^{18}$. and $S \le H$. Since $|M_{11}| = 11 \cdot 10 \cdot 9 \cdot 8 \le 2^{18} < |H|$, we conclude from 3.4.20 that $H \cong L_3^{\epsilon}(q)$, q a power of an odd prime and $q > |C_G(z)/D_z|$. Let $K \le C_H(z)$ with $K \cong SL_2(q)$. Then Z(K) has order two, and Z(K) is the unique minimal normal subgroup of K. Since D_z is 2'-group, $Z(K) \nleq D_z$ and so $K \cap D_z = 1$. Hence $|KD_z/D_z| \ge |K| > q > |C_G(z)/D_z|$, a contradiction.

Step 33. [t not a] $T \neq A$.

Proof. Otherwise $C_{S_a}(A) = T = A$ and by ??, S_a is a dihedral or quasidihedral group, a contradiction to ?? and ??

Step 34. [z centralizes hz] Let $a, b \in A^{\sharp}$ with $a \neq b$.

- (a) [a] $H_a \neq H_b$.
- (b) [b] z centralizes D_z .
- (c) [c] Let $C^*_G(D_z)$ be the set of elements in G which centralize or inverts D_z . Then $t \in C^*_G(D_z)$ and $[H_z, t] \leq C_G(D_z)$ for all $t \in z^G \cap H_z$
- (d) [d] $C_G(D_a) \cap C_G(D_b) = 1.$

Proof. (a) By Step 31 there exists $g \in N_G(T)$ with $x^g = a$ and $z^g = b$. Since $H_x \neq H_z$, $H_a \neq H_b$.

(b) From (a) and Step 20 both x and xz invert D_z and so z = x(xz) centralizes D_z .

(c) If $H_z = H_t$ then by (b), t centralizes $D_t = D_z$. And if $H_t \neq H_z$, then by Step 20 t inverts D_z . So $t \in C^*_{H_z}(D_z)$.

Since $C_G^*(D_z)$ is a normal subgroup of H_z and $C_G^*(D_z)/C_G(D_z)| \leq 2$ we have $[C_G^*(D_z), G] \leq C_G(D_z)$. and so (c) holds.

(d) Suppose that $X := C_G(D_a) \cap C_G(D_b) \neq 1$. Then $\langle D_a, D_b \rangle \leq C_G(X)$ and so $D_a = X^\circ = D_b$. Hence also $H_a = N_G(D_a) = H_b$, contradiction.

Step 35. [ngt] For each $a \in A^{\sharp}$ there exist $t_a \in z^{\cap}T_a \setminus T$ such that if $S_a \neq T_a$, then $[T, t_a] \leq \langle a \rangle$. For any such $t'_a s$ and any $a, b \in A^{\sharp}$ with $a \neq b$:

(a) [b] Put $k := t_a t_b$. Then $a^k = c$, $c^k = b$, $b^k = a$, $k^3 = 1$ and $C_T(k) = 1$.

(b) [c]
$$T = [T, t_a][T, t_b].$$

Proof. We first show that existence of t_a . Suppose first that $S_a \neq T_a$. Pick $s_a \in N_{S_a}(T_a) \setminus T_a$. If $A^{s_a} \leq T$, then $A^{s_a} \leq \Omega_a(T) = A$. Thus $A = A^{s_a}$ and $s_a \in N_{S_a}(A)$. So by Step 31 $s_a \in T_a$, a contradiction. Thus $A^{s_a} \neq T$ and $\langle a \rangle \leq T \cap A^{s_a}$. Since $A \leq T_a$ also $A^{s_a} \leq T_a$ and so $[T, A^{t_a}] \leq T \cap A^{t_a} = \langle a \rangle$.

If $S_a = T_a$ the existence of t_a follows from Step 28.

Since t_a acts as the cycle (b, c) and t_b as the cycle (a, c) in A^{\sharp} , k acts as (b, c)(a, c) = (a, c, b) on A^{\sharp} . Thus $k^3 \in C_G(A) \leq H_a$. By (??) Step 34(c), $k^6 = [k^3, t_a] \in C_G(D_a)$. By symmetry, $k^6 in C_G(D_b)$ and so by Step 34(d), $k^6 = 1$. Thus $k^3 \in \Omega_1^2(C_G(A)) = A$. Since $C_A(k) = 1$ this implies $k^3 = 1$. Since $\Omega_1(T) = A$ and $C_A(k) = 1$, $C_T(k)$ contains no element of order 2 and so $C_T(k) = 1$

(b) By Homework 1, since |k| is coprime to |T|, $T = C_T(k)[T, k] =][T, k]$. Thus $T = [T, k] \leq [T, \langle t_a, t_b \rangle] = [T, t_a][T, t_b] \leq T$ and (b) holds.

Step 36. [t normal in s] $T \leq S_a$ for all $1 \neq a \in A$.

Proof. By Step 35, $T = [T, t_a][T, t_b] \leq A$ and so T = A, a contradiction to Step 33

Step 37. [step c] For $a \in A^{\sharp}$ define $C_a = C_T(D_a)$ and Then $C_a = [T, t_a]$, $T = C_a \times C_b$ and T is abelian.

Proof. By Step 34(??) $[T, t_a] \leq C_G(D_a)$ and since t_a normalizes C_a , $[T, t_a] \leq C_a$. Thus by Step 35(??), $T = C_a C_b$. By Step 34(d), $C_a \cap C_b = 1$. Since both C_a and C_b are normal in T this implies $[C_a, C_b] = 1$ and $T = C_a \times C_b$. Moreover, C_c is centralized by C_a and C_b and so $C_c \leq Z(T)$. The same holds for C_a and C_b and so $T = C_a \times C_b$ is abelian.

Step 38. [sz] Z(S) has order two.

Proof. Let $x_0 \in Z(S)$. Then $S \leq C_G(x_0)$. By Step 26, there exists $y_1, y_2 \in z^G \cap S$ and $y_0 \in x_0^G$ with $x_0 = y_1y_2$ and $C_S(y_0) \in \text{Syl}_2(C_G(y_0))$. Since $C_G(x_0)$ and so also $C_G(y_0)$ contains a Sylow 2-subgroup of G, we conclude that $C_S(y_0) = S$. Thus $[y_0, y_1] = 1$. Since $y_0 = y_1y_2, y_1$ inverts y_0 and so y_0 has order two. Hence $x_0 \in \Omega_1 Z(S) = \langle z \rangle$.

Step 39. [step contradiction] The final contradiction.

Proof. Let $d \in C_b$. Then dd^{t_a} is centralizes by $C\langle t_a \rangle = T\langle t_a \rangle = S_a$ and so $dd^t \in \mathbb{Z}(S)$. Thus dd^t has order at most two. Since $C = C_b \times C_b^{t_a}$, $|d| = |d^t|$. Thus $d^2 = 1$. So $d \in C_b$ and $C_b \leq A$. By symmetry, $C_a \leq A$ and so $T = C_a \times C_b = A$, a contradiction to Step 33

3.5 J_1

In this section we prove:

Theorem 3.5.1 (Janko). **[j1]** Let G be a finite group of even order and $t \in G$ with |t| = 2. Suppose that all involutions in G are conjugate and $C_G(t) \cong C_2 \times \text{Alt}(5)$. Then $|G| = 2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19 = 11(11+1)(11^3-1) = 175,560$. Moreover such a group exits and is unique up to isomorphism.

Before we start the proof we will prove need to prove a few lemmas from finite group theory.

Lemma 3.5.2. [even more coprime action] Let A be a finite abelian p-group acting on an finite p' group Q.

- (a) [a] $Q = \langle C_Q(B) | B \leq A, A/B cyclic \rangle.$
- (b) [b] If $A \cong C_p \times C_p$, then

$$|Q| = \frac{\prod\{|C_Q(B)| \mid B \le A, |B| = p\}}{|C_Q(A)|^p}$$

Proof. Let H = QA be the semidirect product of A and Q. Let q be a prime dividing the order of Q and $S \in \text{Syl}_q(Q)$. Then by the Frattini argument, $H = QN_H(S)$. Then |A| divides $N_H(S)$ and so $N_H(S)$ contains a Sylow p-subgroup, \tilde{A} of H. Choose $h \in H$ with $\tilde{A}^h = A$. Then A normalizes S^h . So if (a) and (b) holds whenever Q is a q-group for some prime $q \neq p$, then it also for any arbitray p' group. Thus we may and do assume that Q is a q-group.

(a) Put $\overline{Q} = Q/Q'$. Then \overline{Q} is abelian and so by , Since \overline{Q} is a p'-group, $\overline{Q}^{p^m} = \overline{Q}$ for all $m \in \mathbb{Z}^+$. Hence by Homework 1

$$\overline{Q} = \langle C_{\overline{Q}}(B) \mid B \leq A, A/B \text{cyclic} \rangle$$

By 3.3.8, $C_{\overline{B}} = \overline{C_Q(B)}$ and thus

$$Q = \langle C_Q(B) | | B \le A, A/B \text{cyclic} \rangle Q'$$

By the induction on -Q—,

$$Q' = \langle C_{Q'}(B) | | B \le A, A/Bcyclic \}$$

and so (a) holds.

(b) Let M a maximal A invariant normal subgroup of Q and define $\overline{Q} = Q/M$ and $\mathcal{B} = \{B \leq A \mid A/B \text{ is cyclic} C_{\overline{Q}}(B) \neq 1.$

By (a) $\overline{Q} = \langle C_{\overline{Q}}(B) | B \in \mathcal{B} \rangle$ and so $|\mathcal{B}| \ge 1$. Since \overline{Q}' is a proper A invariant normal subgroup of \overline{Q} , the maximality of M implies that $\overline{Q}' = 1$ and so \overline{Q} is abelian. Let $B \in \mathcal{B}$,

3.5. J_1

then $C_{\overline{Q}}(B)$ is a non-trivial A-invariant normal subgroup of \overline{Q} . Thus $C_{\overline{Q}}(B) = C_{\overline{Q}}(B)$. We claim that (b) holds for \overline{Q} in place of Q. Suppose first that $|\mathcal{B}| = 1$. Then $|C_{\overline{Q}}(B)| = |\overline{Q}|$ while $|C_{\overline{Q}}(C)| = 1$ for each of subgroup C of A with |C| = p and $C \neq B$. In particular, $|C_{\overline{Q}}(A)| = 1$ and so

$$\frac{\prod\{|C_{\overline{Q}}(D)| \mid D \leq A, |D| = p\}}{|C_{\overline{Q}}(A)|^p}\} = \frac{|\overline{Q}|1^p}{1^p} = |\overline{Q}|$$

and the claim holds in this case.

Suppose next that $|\mathcal{B}| \geq 2$ and let $B_1, B_2 \in \mathcal{B}$ with $B_1 \neq B_2$. Then $A = B_1B_2$ and since B_1 and B_2 centralize \overline{Q} , A centralizes \overline{Q} . Thus $|C_{\overline{Q}}(B)| = |\overline{Q}|$ for each of the p + 1subgroups of order p in A. Also $C_{\overline{Q}}(A)| = |\overline{Q}|$ and thus

$$\frac{\prod\{|C_{\overline{Q}}(D)| \mid D \leq A, |D| = p\}}{|C_{\overline{Q}}(A)|^p} = \frac{|\overline{Q}|^{p+1|}}{|\overline{Q}|^p} = |\overline{Q}|^{p+1|}$$

and again the claim holds.

By induction on |Q| we also have

$$\frac{\prod\{|C_M(D)| \mid D \le A, |D| = p\}}{|C_M(A)|^p}$$

Since $|Q| = |M||\overline{M}|$ and $|C_Q(X)| = |C_M(X)||C_{\overline{Q}}(X)$ for any $X \leq A$ we conclude that (b) holds.

Definition 3.5.3. [def:weakly closed]

- (a) [a] Let G be a group, and $A \leq H \leq G$. Then A is called weakly closed in H with respect to G if $A^g = A$ for all $g \in G$ with $A^g \leq H$. (That is if A is the only conjugate of A in G contained in H.
- (b) [b] Let p a prime, and A a p subgroup of finite group G. Then A is called a weakly closed subgroup of G if there exists a Sylow p-subgroup S of G with $A \leq S$ such that A is weakly closed in S with respect to G.

Lemma 3.5.4. [char weakly closed] Let p be a prime, G a finite group and A a p-subgroup of G. Then the following are equivalent.

- (a) $[\mathbf{a}]$ A is a weakly closed subgroup of G.
- (b) [b] Each Sylow p subgroup of G contains exactly one conjugate of A in G
- (c) $[\mathbf{c}]$ Each p-subgroup of G contains at most one conjugate of A in G

Proof. Suppose (a) holds. Then there exists some Sylow p subgroup S of G such that $A \leq S$ and A is weakly closed in S with respect to G. So S contains a unique G-conjugate of A (namely A). Since any two Sylow subgroups are conjugate in G we see that (a) holds.

Suppose (b) holds and let T be a p subgroup of G. Then $T \leq S$ for some Sylow p-subgroup of G. By (a), S contains a unique conjugate of A in G and so T contains at most one conjugate of A in G. Thus (c) holds.

Suppose (c) holds and let S be a Sylow p-subgroup of G with $A \leq S$. Then by (c), A is weakly closed in S with respect to G and so (c) holds.

Lemma 3.5.5. [weakly closed and conjugate] Let A be a weakly closed p-subgroup of a finite group G and $A \leq H \leq G$. If $g \in G$ with $A^g \leq H$. Then $A^g = A^h$ for some $h \in H$.

Proof. Let $A \leq S \in \text{Syl}_p(H)$ and $A^g \leq T \in \text{Syl}_p(H)$. By Sylow's Theorem, $S^h = T$ for some $h \in H$ and so both A^h and A^g are G-conjugates of A in T. Thus by 3.5.4, $A^h = A^g$. \Box

Lemma 3.5.6. [control fusion] Let A be a weakly closed p-subgroup of a finite group G and X and Y A-invariant subsets of A. If $X^g = Y$ for some $g \in G$, then $X^h = Y$ for some $h \in N_G(A)$.

Proof. Observe $A \leq N_G(X)$ and $A \leq N_G(Y)$. Hence also $A^g \leq N_G(X^g) = N_G(Y)$. So be 3.5.5, $A^{gl} = A$ for some $l \in N_G(Y)$. Hence $gl \in N_G(A)$ and $X^{gl} = Y^l = Y$.

Corollary 3.5.7. [fusion for abelian] Let G be a finite group and $S \in Syl_2(G)$. Suppose S is abelian and $x^g \in S$ for some $g \in G$ and $x \in S$. Then $x^g = x^h$ for some $h \in N_G(S)$.

Proof. Just observe that S is weakly closed an, since S is abelian, $\{x\}$ and $\{x^g\}$ are S invariant subsets of S. So we can apply 3.5.6

Lemma 3.5.8. [tompson transfer] Let G be a finite group, $S \in Syl_2(G)$, $T \leq S$ with |S/T| = 2 and $x \in S$. Then one of the following holds:

1. [a] $x^g \in T$ for some $g \in G$.

2. [b] $y^g \in S \setminus T$ for some $y \in \langle x^2 \rangle$ and some $g \in G$.

3. [c] G has a subgroup H with |G/H| = 2 and $x \notin H$.

Proof. We assume without loss that neither (1) nor (2) holds. Consider the action of G on G/T by right multiplication. We will show that x induces an odd permutation on G/T. Then (3) hold with H consisting of all the elements in G which induces an even permutation on G/T.

Define $\Phi: G/T \to G/S, Tg \to Sg$. Since Sg = STg, this is well defined. Observe that for all $g, h \in G$,

$$\Phi((Tg)h) = \Phi(T(gh)) = S(gh) = (Sg)h = \Phi(Tg)h$$

and so Φ is G equivariant.

Put $X = \langle x \rangle$. Let A be an orbit for X on G/S of size m and put $m = \Phi^{-1}(A)$. Since Φ is G-equivariant, B is X-invariant. Since |S/T| = 2, $|\Phi^{-1}(\alpha)| = 2$ for all $\alpha \in G/S$ and so |B| = 2m. Pick $\beta = Tg \in B$ and put $\alpha = \Phi(\beta) = Sg$. Observe that $C_X(\alpha) = X \cap S^g$ and $C_X(\beta) = X \cap T^g$. We will show

3.5. J_1

 1° . [1] One of the following holds:

- $I [\mathbf{I}] X^{g^{-1}} \cap S = X^{g^{-1}} \cap T$ and X has two orbits of length m on B.
- II [II] $X^{g^{-1}} \cap S \neq X^{g^{-1}} \cap T$ and X has an orbits of length 2m on B.

Suppose first that $X^{g^{-1}} \cap S = X^{g^{-1}} \cap T$. Then also $X \cap S^g = X \cap T^g$, $C_X(\alpha) = C_X(\beta)$ and

$$|\beta X| = |X/C_X(\beta)| = |X/C_X(\alpha)| = |\alpha X| = |A| = m$$

Suppose next that $X^{g^{-1}} \cap S \neq X^{g^{-1}} \cap T$. Then also $X \cap S^g \neq X \cap T^g$, $|S^g / \cap X / T^g \cap X| = 2$ and $|C_X(\alpha)/C_X(\beta)| = 2$. Thus

$$|\beta X| = |X/C_X(\beta)| = 2|X/C_X(\alpha)| = 2|\alpha X| = 2|A| = 2m$$

So (1) holds.

This allows us the determine the orbits of X on G/T in terms of the orbits X on G/T: Suppose that |A| > 1. Then $X \neq X \cap S^{g^{-1}}$ and so $X^{g^{-1}} \cap S \neq X$ and $X^{g^{-1}} \cap S \leq \langle x^2 \rangle$. Since by assumption (2) fails, we conclude that $X^{g^{-1}} \cap S \leq X^{g^{-1}} \cap T$. Hence by (1°), X has two orbits of length m on B. Thus x is an even permutation on B. Since this holds for all non-trivial orbits for X on G/S, x is an even permutation on $\Phi^{-1}(\operatorname{Supp}_{G/S}(X))$.

Suppose next that |A| = 1. Then $X \leq S^g$ and so $x^{g^{-1}} \in S$. Since (1) fails, we get $x^{g^{-1}} \notin T$ and so $X^{g^{-1}} \cap S = X^{g^{-1}} \neq X^{g^{-1}} \cap T$. Thus by (1°), X has an orbits of length 2 on B. Since this holds for each trivial orbit on A in G/S, X has $|\operatorname{Fix}_{G/S}(X)|$ orbits of length 2 on $\Phi^{-1}(\operatorname{Fix}_{G/S}(X))$. Observe that |G/S| is odd, while $|\operatorname{Supp}_{G/S}(X)|$ is even. Hence $|\operatorname{Fix}_{G/S}(X)|$ is odd and so X has an odd number of orbits of length two on $\Phi^{-1}(\operatorname{Fix}_{G/S}(X))$. It follows that X is an odd permutation on $\Phi^{-1}(\operatorname{Fix}_{G/S}(X))$ and so also on G/S. \Box

Lemma 3.5.9. [burnside] Let G be finite group and $S \in Syl_2(G)$. Suppose that $S \leq Z(N_G(S))$. Then G = O(G)S.

Proof. Since $S \leq N_G(S)$ we have $S \leq Z(S)$ and so S is abelian. We will first show:

1°. [1] If $a \in S$ and $g \in G$ with $a^g \in S$, then $a^g = a$.

By ??, $a^g = a^h$ for some $h \in N_G(S)$. Since $S \leq Z(N_G(S))$ this gives $a^g = a$. So (1°) is proved.

If S = 1, then G = O(G) and the lemma holds. So suppose $S \neq 1$ and pick $T \leq S$ with |S/T| = 2 and $x \in S \setminus T$.

Let $g \in G$ with $x^g \in S$. Then by (1°), $x^g = x \notin T$ and ??thompson transfer]a does not hold.

Let $y \in \langle x^2 \rangle$ and $g \in G$ with $y^g \in S$. Then by (1°), $y^g = y$. Since |S/T| = 2, $x^2 \in T$ and so $y^g = y \in T$. So also ??thompson transfer]b does not hold

Thus ??thompson transfer]c must hold and there exist a subgroup H of G with |G/H| = 2. Then G = HS, $H \trianglelefteq G$ and $H \cap S$ is a Sylow 2-subgroup of H. We claim that $H \cap S \le Z(N_G(H \cap S))$. For this let $a \in H \cap S$ and $g \in N_G(H \cap S)$. Then $a^g \in H \cap S \le S$ and so by (1°) , $a^g = a$. Thus indeed $H \cap S \le Z(N_G(H \cap S))$. By induction on |G| we conclude that $H = O(H)(H \cap S)$. Since $H \trianglelefteq G$, $O(H) \le O(G)$ and so $G = HS = O(H)(H \cap S)S = O(G)S$.

We now start the proof of Janko's Theorem. So let G be a finite group of even order with a unique conjugacy class of involutions and $z \in G$ with $z^2 = 1$ and $C_G(z) \cong C_2 \times \text{Alt}(5)$. Let $S \in \text{Syl}_2(C_G(z))$. For $t \in G$ with $t^2 = 1$, define $G_t = C_G(t)$ and $K_t = G'_t \cong \text{Alt}(5)$. So $K_t \cong \text{Alt}(5)$ and $G_t = \langle t \rangle \times K_t$.

Step 1. [j1-1]

- (a) [a] $S \cong C_2 \times C_2 \times C_2$.
- (b) [b] $S \in \operatorname{Syl}_2(G)$.
- (c) $[\mathbf{c}]$ $C_G(B) = S$ for all $B \leq S$ with $|B| \geq 4$.
- (d) $[\mathbf{d}] |N_G(S)| = 2^3 \cdot 3 \cdot 7.$

Proof. (a) Just observe that $\langle (12)(34), (14)(23) \rangle$ is a Sylow 2 subgroup of Alt(5) and is isomorphic to $C_2 \times C_2$.

(b) Let $T \in \text{Syl}_2(G)$ with $S \leq T$ and pick $1 \neq t \in \Omega_1 \mathbb{Z}(T)$. Then $T \leq C_G(t)$ and $C_G(t) \cong C_2 \times \text{Alt}(5)$. Thus $|T| \leq 8$ and S = T.

(c) Without loss |B| = 4. Pick $1 \neq b \in B$. Then $C_G(B) = C_{G_b}(B)$. Since $G_b = \langle b \rangle \times K_b$ we have $B = \langle b \rangle \times (B \cap K_t)$ and $C_{G_b}(B) = \langle b \rangle \times C_{K_b}(B \cap K_b)$. Alt(5) has a unique class of involutions and $C_{\text{Alt}(5)}((12)(34)) = \langle (12)(34), (13)(24) \rangle$ has order 4. This $C_G(B)$ has order eight and $C_G(B) = S$.

(d) Let $s \in S^{\sharp}$. Then |s| = 2 and so there exists $g \in G$ with $z^g = s$. By ??, $z^h = s$ for some $h \in N_G(S)$. Thus $N_G(S)$ acts transitively on S^{\sharp} and so $|N_G(S)/N_G(S) \cap G_z| = |S^{\sharp} = 7$. Also $N_G(S) \cap G_z = \langle z \rangle \times N_{K_z}(S \cap K_z)$. Since $N_{\text{Alt}(5)}(\langle 12 \rangle (34), (13)(24) \rangle = \text{Alt}(4)$ we conclude that $N_G(S) \cap G_z \cong C_2 \times \text{Alt}(4)$ has order $2^3 \cdot 7$. Thus $N_G(S)$ has order $2^3 \cdot 3 \cdot 7$.

For $x \in G$ let $G_t = N_G(\langle x \rangle)$ and $0_t = O(G_t)$. In order to count the involutions in G we need to compute G_d where d is an element of order 3 in G_z . For this we have to investigate subgroup L of G such that $O(L) \neq 1$ and 4||L|. Let L be such a group, Y = O(L), $A \in \text{Syl}_2(L)$ and for $a \in A^{\sharp}$ put $Y_a = C_Y(a)$.

Step 2. [j1-2]

- (a) [a] For $a \in A \sharp$, Y_a has order 1, 3 or 5.
- (b) [b] |A| = 4.
- (c) $[\mathbf{c}] |Y| = \prod_{a \in A^{\sharp}} |Y_a| = 3^x 5^y$ for some $x, y \in \mathbb{N}$ with $x + y \leq 3$.

3.5. J_1

Proof. (a) Observe that Y_a is a subgroup of odd order in G_a . Thus $Y_a \leq K_a \cong Alt(5)$). By Lagrange's Y_a has order 1, 3, 5, 15. Since Alt(5) is simple it has no subgroup of index 4 and so $|Y_a| \neq 15$.

(b) Suppose that |A| = 8 and let $B \leq A$ such that |A/B| is cyclic. Then B has order at least 4 and so by Step 1, $C_G(B)$ has order eight. Thus $C_Y(B) = 1$. Hence

$$Y = \langle C_Y(B) \mid B \leq A, A/B \text{ is cylic } \rangle = 1$$

a contradiction.

(c) By 3.5.2

$$|Y| = \prod (|C_Y(B)| | B \le A, |B| = 2) = \prod_{a \in A^{\sharp}} |Y_a|$$

Together with (a) this gives (c).

Step 3. [j1-3] One of the following holds:

- 1. [a] L = YA and $N_L(A) = A$.
- 2. [b] Y is elementary abelian of order p^3 for some $p \in \{3,5\}$, Y is a minimal normal subgroup of L and $N_L(A) \cong Alt(4)$.

Proof. Since $|C_G(A)| = 8$ and A is a Sylow 2 subgroup of L, $C_L(A) = A$. Moreover $N_L(A)/C_L(A)$ is isomorphic to subgroup of odd order of $Aut(A) \cong Sym(3)$ and so $N_L(A) = C_L(A) = A$ or $N_L(A)/A \cong C_3/$

Suppose first that $N_L(A) = A$. Then $A \leq Z(N_L(A))$ and by 3.5.9, L = O(L)A = YA. So (1) holds.

Suppose next that $N_L(A)/A \cong C_3$. Then $N_L(A) \cong \operatorname{Alt}(4)$ and $N_L(A)$ acts transitively on A^{\sharp} . Let $1 \neq a \in A$ and put $p = |Y_a|$. Then $p \in \{1, 3, 5\}$ and $|Y_b| = p$ for all $b \in A^{\sharp}$. Hence $|Y| = p^3$ and $p \in \{3, 5\}$. So Y is a p-group. Let D be a minimal normal subgroup of L contained in Y. Since $D = \langle C_D(a) \mid a \in \mathbb{A}^{\sharp} \rangle$ we get $C_D(a) \neq 1$ for some $a \in A^{\sharp}$. Since $|Y_a| = p$ this gives $Y_a \leq D$ and since $N_L(A)$ acts transitively on A^{\sharp} , $Y_a \leq D$ for all $a \in A^{\sharp}$. Thus $|D| = p^3$ and Y = D. In particular, $Y = \Omega_1 Z(Y)$ and so Y is elementary abelian. \Box

Step 4. [j1-4] Let D be a non-trivial A-invariant subgroup of G of odd order.

- (a) [a] If $D \leq L$, the $D \leq Y$.
- (b) [b] If D is not elementary abelian or 3^3 or 5^3 , then $N_G(D) = O(N_G(D))A$ and every subgroup of odd order normalizing D is contained in $O(N_G(D))$.

Proof. (a) If L = YA, this is obvious. So suppose $L \neq YA$. Then $|Y| = p^3$. Since $DY \leq O(DYA)$ we conclude from Step 2 that applied to DYA in place of L, that Y = O(DYA) and so $D \leq Y$.

(b) Put $\tilde{L} = N_G(D)$. Then D is a non-trivial normal subgroup of \tilde{L} contained in $O(\tilde{L})$. Thus Step 3 applied to \tilde{L} shows that $\tilde{L} = O(\tilde{L})A$ and so (b) holds.

Step 5. [j1-4.3] Let $D \leq Y$ with $|D| = p^2$, $p \in \{3, 5\}$. Then $D \leq Y$ and if $|Y| \neq p^3$, then $D \leq L$.

Proof. If D = Y, this is obvious. So suppose $D \neq Y$. If $|D| = p^3$, then $D < N_Y(D) \leq Y$ and so $D \leq Y$. If $|Y| \neq p^3$ the by Step 2, $|D| = p^2q$ where $q \in \{3, 5\}$ with $p \neq q$. Thus D is a Sylow *p*-subgroup of Y and the number of Sylow *p*-subgroup of Y divides q and is equal to 1 (mod p). Since $3 \not\equiv 1 \pmod{5}$ and $5 \not\equiv 1 \pmod{3}$ we conclude that D is the unique Sylow *p* subgroup of Y. Thus $D \leq L$.

Step 6. [j1-4.6] Let $p \in \{2,3\}$ and for i = 1, 2 let $D_i \leq G$ with $|D_i|$ and $|C_G(D_i)|$ even. Let $t_i \in C_G(D_i)$ with $|t_i| = 1$. Then there exists $g \in G$ with $t_1^g = t_2$ and $D_1^g = D_2$. In particular, D_1 and D_2 are conjugate in G.

Proof. Since all involutions in G are conjugate, there exists $h \in G$ with $t_1^h = t_2$. Then both D_2 and D_1^h are contained in $C_G(t_2)$. Since $C_G(t_2) \cong C_2 \times \text{Alt}(5)$, the Sylow p subgroups of G have order p. Thus D_2 and D_1^h are Sylow p-subgroups of $C_G(t_2)$ and so there exists $l \in C_G(t_2)$ with $D_1^{hl} = D_2$. Also $t_1^{hl} = t_2^l = t_2$ and so the lemma holds with g = hl. \Box

Step 7. [j1-5] Suppose |Y| does not divide 15 and put $Y^* = C_G(Y)$ and $L^* = N_G(L^*)$. Then $L \leq L^*$, $Y \leq Y^*$, $Y^* = O(L^*)$ and $L^* \neq Y^*A$.

Proof. Since |Y| does not divide 15 and |Y| = $3^x 5^y$ with $x + y \leq 3$ there exists $p \in \{3, 5\}$ with $p^2 \mid |Y|$. Let D be a Sylow p-subgroup of Y. If $|Y| \neq p^3$, then $|D| = p^2$ and so by Step 5, $D \leq L$. If $|Y| = p^3$, then D = Y and again $D \leq L$. Since D is a p-group, $\Omega_1 Z(D) \neq 1$ and so there exists $a \in A^{\sharp}$ with $C_{\Omega_1 Z(D)}(a) \neq 1$ and so $Y_a \leq \Omega_1 Z(D)$. Since $|D| \geq p^2$ there exists $b \in A^{\sharp}$ with $C_D(b) \notin Y_a$. Then $b \neq a$. Put $E = Y_a Y_b$. Since $Y_a \leq Z(D)$, $E \cong C_p \times C_p$. By ?? $Y \leq N_G(E)$ and so by Step 4, $Y \leq F := O(N_G(E))$. By Step 6 there exists $g \in G$ with $a^g = b$ and $Y_a^g = Y_b$. Let $e \in \{a, b\}$. Then E is a subgroup of odd order in G_e and so by Step 4, $E \leq O_e := O(N_G(Y_e))$. So by Step 6, $E \leq O_e$. Thus another application of Step 4 shows that $O_e \leq F$. Observe that F/E has order 1, 3 or 5, $E \leq O_a \cap O_b$ and $|O_a| = |O_b|$. Thus either $E = O_a = Q_b$ or $F = O_a = O_b$. In any case $O_a = Q_b$ and so $g \in \tilde{L} := N_G(O_a)$. Put $\tilde{Y} = O(\tilde{L})$. Since $a^g = b$, $\tilde{L} \neq \tilde{Y}A$. Hence by Step 3, \tilde{Y} is elementary abelian of order p^3 and $\tilde{Y} = O_a = O_b$. Since $YQ_a \leq F$, this gives $\tilde{Y} = F$ and $Y \leq \tilde{Y}$. Since Y has order at least p^2 , $C_G(Y)$ has odd order. Since $\tilde{Y} \leq C_G(Y)$ we conclude from Step 2, that $\tilde{Y} = C_G(Y) = O(N_G(Y))$. In particular, $L \leq N_G(\tilde{Y})$ and the lemma is proved.

Step 8. [j1-6] |Y| divides 15.

Proof. Suppose not. Then we can apply Step 7 and replacing L by L^* we may assume that $|Y| = p^3$, $L = N_G(Y)$ and $L \neq YA$. Let $a \in A^{\sharp}$. Then $|Y_a| = p$. By Step 4, $N_G(Y_a) = O(N_G(Y_a))A$ and it follows that $Y = O(N_G(Y_A))$ and $N_G(Y_a) = YA$. By Step 3 $N_L(A) \cong \text{Alt}(4)$ and so there exists $d \in N_L(A)$ with |d| = 3. Put $b = a^d$ and $c = b^d$. Then $A^{\sharp} = \{a, b, c\}$ and $Y = Y_a \times Y_b \times Y_c$. Let $1 \neq y_a \in Y_a$ and put $y_b = y_a^d$, $y_c = y_b^c$ and $y = y_a y_b y_c$. Since d has order three, $y \in C_Y(d)$. Also $y_e \in Y_e$, $y \neq 1$ and |y = p. Since $Y\langle d \rangle \leq C_G(y)$, $C_G(y)$ has order divisible by $3p^3$ and so $\langle y \rangle$ is not conjugate to Y_a .

3.5. J_1

 $\tilde{S} = C_G(A)$. Then $|\tilde{S}| = 8$ and d normalizes \tilde{S} . Thus d centralizes an element \tilde{a} of order 2 in \tilde{S}^{\sharp} . In $G_{\tilde{a}}$ we see that there exists a subgroup \tilde{A} of order 4 inverting d. Thus $\tilde{L} = N_G(\langle d \rangle)$ is divisible by 4. From Step 4 we conclude that $y \in \tilde{Y} := O(N_G(\langle d \rangle))$.

Suppose that p = 5. Then 15 divides \tilde{Y} and by Step 7 we conclude that $|\tilde{Y}| = 15$. Thus $\langle y \rangle$ is the unique subgroup of order 5 in \tilde{Y} , \tilde{A} normalizes $\langle y \rangle$ and so $[y, \tilde{b}] = 1$ for some $\tilde{b} \in \tilde{A}^{\sharp}$. But then $\langle y \rangle$ is conjugate to Y_a , a contradiction.

Thus p = 3. We will show that $L = YN_L(A)$. For this we investigate the action of Lon the set \mathcal{P} of subgroups of order 3 of Y. Note that $|\mathcal{P}| = 13$. $N_L(A)$ has three orbits \mathcal{P}_3 , \mathcal{P}_4 and \mathcal{P}_6 on \mathcal{P} of size 3, 4 and 6 respectively. Indeed $\mathcal{P}_2 = \{Y_e \mid e \in A^{\sharp}\}, \mathcal{P}_4 = \langle y \rangle^{N_L(A)}$ and $\mathcal{P}_6 = \langle y_a y_b \rangle^{N_L(A)}\}$. Since $\langle y \rangle$ is not conjugate to Y_a in G there are three possibilities for the orbits of L on \mathcal{P} :

- (a) \mathcal{P}_3 , \mathcal{P}_4 and \mathcal{P}_6 .
- (b) $\mathcal{P}_3 \cup \mathcal{P}_6$ and \mathcal{P}_4 .
- (c) \mathcal{P}_3 and $\mathcal{P}_4 \cup \mathcal{P}_6$.

In any case there exists $i \in \{3, 4\}$ such that \mathcal{P}_i is an orbit for L on \mathcal{P} . Put $Q = C_L(\mathcal{P}_i)$. Then L/Q is isomorphic to a subgroup of Sym(i) and $N_L(A)Q/Q \cong \text{Alt}(i)$. Thus $|L/N_L(A)Q| \leq 2$. Since A is a Sylow 2 subgroup of L we get $L = N_L(A)Q$. Note that $|Q/C_Q(U)| \leq 2$ for all $U \in \mathcal{P}_i$ and so $Q/C_Q(Y)|$ is a 2-group. Since $Y = C_G(Y)$ this gives $Q = C_Q(Y)(Q \cap A) \leq YA$ and $L = N_L(A)YA = N_L(A)Y$.

Note that this implies that \mathcal{P}_3 is an orbit for L on \mathcal{P} . Let $g \in G$ with $Y_a \leq Y$. Then by Step 4, $Y \leq O(N_G(Y_a)^g)$ and $Y = O(N_G(Y_a)) = Y^g$. So $g \in N_G(Y) = L$ and $Y_a^g \in \mathcal{P}_3$. So Y contains exactly three G conjugates of Y_a and these three conjugate generate Y. Since $\langle d \rangle$ is conjugate to Y_a the same is true for \tilde{Y} .

Put $R = C_Y(d)\langle d \rangle = \langle y, d \rangle$. Then $R \leq \tilde{Y}$ and Then $R < N_{YR}(R) = N_Y(R)R$. So $N_Y(R) \neq C_Y(d)$ and $|N_Y(R)/C_Y(d)| = 3$. Also $[N_Y(R) \cap N_Y(\langle d \rangle), \langle d \rangle] \leq Y \cap \langle d \rangle = 1$ and so $|\langle d \rangle^{N_Y(R)}| \geq 3$. Hence R contains at least G-three conjugate of Y_A . But the R contains all G conjugates of Y_A in \tilde{Y} and so $R = \tilde{Y}$, a contradiction. \Box

Step 9. [j1-7] $L \cong D_{12}, D_{20} \text{ or } D_6 \times D_{10}.$

Proof. By Step 8, |Y| = 3,5 or 15 and so by Step 3, L = YA. So L has order 12, 20 or 60 and the lemma follows.

Step 10. [j1-8] For p = 3,5 let S_p be a Sylow p subgroups of $C_G(z)$. The one of the following holds.

- 1. [a] $N_G(S_3) \cong D_{12}$ and $N_G(S_5) \cong D_{20}$.
- 2. **[b]** $N_G(S_3) \cong D_6 \times D_1 0 \cong N_G(S_5).$

Proof. Let $p \in \{2,3\}$. Then by Step 9, $N_G(S_p) \cong D_{4p}$ or $D_6 \times D_{10}$. So either (2) holds or $N_G(S_p) \cong D_6 \times D_{10}$. Suppose the latter and let $\{p,q\} = \{3,5\}$. Then $N_G(S_p)$ as a normal Sylow q subgroup T_q . Moreover $N_G(S_p) \cap C_G(T_q)$ contains an involution and so T_q is conjugate to S_q . Thus also $N_G(S_q) \cong D_6 \times D_{10}$ and (1) holds. \Box

Proposition 3.5.10. [bender counting] Let G be a finite group of even order and \mathcal{J} the set of involutions in G and $\mathcal{I} = \{t \in \mathcal{J} \mid H \cap H^t \neq 1\}$. Let H be a subgroup of G. Let $j_n = |\{U \in G/H \mid U \neq H, |U \cap \mathcal{J}| = n\}|$ and $i_n = |\{U \in G/H \mid U \neq H, |U \cap \mathcal{I}| = n\}|$. For $\mathcal{K} = \{\mathcal{I}, \mathcal{J}\}$ put $\mathcal{K}_n = \{t \in \mathcal{K} \mid t \notin H, |Ht \cap \mathcal{I}| = n\}$. Let m be the number of orbits of H on $\mathcal{J}_1 \setminus \mathcal{I}_1$. Put $c = \frac{|G|}{|\mathcal{I}|}$ and h = |H|. Then

- (a) [a] For all $t \in \mathcal{J} \setminus H$, $Ht \cap \mathcal{I} = \{ht \mid h \in H \cap H^t, h^t = h^{-1}\}$. In particular $\mathcal{I}_n = \mathcal{J}_n$ for all $n \geq 2$.
- (b) [b] Let $U = Hg \in G/H$ with $U \neq H$ and put $l = |U \cap \mathcal{J}|$. Then $U \cap \mathcal{I} \subseteq \mathcal{J}_l$. Moreover, either $H \cap H^g \neq 1$ and $U \cap cI \subseteq \mathcal{I}_l$ or $H \cap H^g = 1$, $l \leq 1$ and $U \cap \mathcal{I} \subseteq \mathcal{J}_l \setminus \mathcal{I}_l$.
- (c) [c] For all $n \in \mathbb{Z}^+$, $|\mathcal{J}_n| = nj_n$ and $\mathcal{I}_n = |ni_n|$. In particular $i_n = j_n$ for all $n \ge 2$.
- (d) [d] $j_1 = i_1 + mh$ and $|\mathcal{J}| = |\mathcal{I}| + mh$.
- (e) $[\mathbf{e}] |\mathcal{J}| = |\mathcal{J} \cap H| + \sum_{n=1}^{\infty} nj_n = |\mathcal{J} \cap H| + |mh + \sum_{n=1}^{\infty} ni_n$
- (f) $[\mathbf{f}] |G/H| = 1 + \sum_{n=0}^{n} j_n = 1 + j_0 + mh + \sum_{n=1}^{n} i_n$
- (g) [g] $h((h-c)m+j_0) = |\mathcal{J} \cap H|c-h + \sum_{n=1}^{\infty} (nc-h)i_n$

Proof. (a) Let $h \in H$. Since $ht \notin H$, $ht \neq 1$ and so |ht| = 2| iff $(ht)^2 = 1$. Since $(ht)^2 = htht = hh^t$, we have $(ht)^2 = 1$ if and only if $h^t = h^{-1}$. Observe that $h^t = h^{-1}$ implies $h \in H \cap H^t$. So if $t \in \mathcal{J}_n$ for some $n \geq 2$, then $H \cap H^t$ contains at least two elements inverted by t and so $H \cap H^t \neq 1$ and $t \in \mathcal{I}$. Thus $Ht \cap \mathcal{J} = H \cap cI$ and $t \in \mathcal{I}_n$.

(b) Observe that U = Ht for all $t \in U \cap \mathcal{J}$. Thus $|Ht \cap \mathcal{J}| = |U \cap \mathcal{J}| = l$ and so $U \cap \mathcal{J} \subseteq \mathcal{J}_l$. Observe also that $H \cap H^t = H \cap H^g$. So if $H \cap H^g \neq 1$, then $U \cap \mathcal{J} \subseteq \mathcal{I}_n$ and if $H \cap H^g = 1$, then $U \cap \mathcal{J} \subseteq \mathcal{J}_n \setminus \mathcal{I}_n$. In the latter case, (a) implies $n \leq 1$.

(c) Obvious.

(d) Let $t \in \mathcal{J}_1 \setminus \mathcal{I}_1$. Then $C_H(t) \leq H \cap H^t = 1$ and so all orbits of |H| on $\mathcal{J}_1 \setminus \mathcal{I}_1$ have length h = |H|. Hence $|\mathcal{J}_1 \setminus \setminus \mathcal{I}_1| = mh$ and so $|\mathcal{J}_1| = |\mathcal{I}_1| + |\mathcal{J}_1 \setminus \mathcal{I}_1| = i_1 + mh$. Since $\mathcal{J}_n = \mathcal{I}_n$ for all $n \geq 2$ this implies

$$|\mathcal{J} \setminus H| = \sum_{n=1} |\mathcal{J}_n| = mh + \sum_{n=1} |\mathcal{I}_n| = mh + |\mathcal{I}|$$

- (e) This follows from (c) and (d).
- (f) This follows from (c) and (d).
- (g) Note that $c|\mathcal{J}| = |G| = h|G/H|$. So by (e) and (f):

3.5. J_1

$$c\left(|\mathcal{J} \cap H| + mh + \sum_{n=1}^{\infty} ni_n\right) = h\left(1 + j_0 + mh + \sum_{n=1}^n i_n\right)$$

and so (g) holds.

Lemma 3.5.11. [computing in] Retain the assumption and notation from 3.5.10. For $g \in G$ and $K \leq H$ with $K^g = K$ define $g_K \in Aut(K)$ by $k^{g_K} = k^g$. Define

$$\Xi = \{ (K, s) \mid 1 \neq K \le H, s \in Aut(K), s^2 = 1 \}.$$

Note the H acts on Ξ via $(K, s)^g = (K^g, s^g)$, where $s^g \in \operatorname{Aut}(K^g)$ is defined by $l(s^g) = (l^{g^{-1}})^s)^g$. Let Λ be the set of orbits for H on Ξ and $\lambda, \mu \in \Lambda$ Let $(K, s) \in \lambda$ and define

$$\begin{aligned} a_{\lambda} &= |\{(L,t) \in \mathcal{I} \setminus H \mid 1 \neq L \leq H, t \in J \setminus H, L^{t} = L, (L,t_{L}) \in \lambda\}| \\ b_{\lambda} &= |\{t \in \mathcal{I} \setminus H \mid (H \cap H^{t}, t_{H \cap H^{t}}) \in \lambda\}| \\ n_{\lambda} &= |\{k \in K \mid k^{s} = k^{-1}\}| \\ r_{\mu\lambda} &= |\{L \leq K \mid L^{s} = L, (L,s_{L}) \in \mu\}| \end{aligned}$$

Then

(a) [a] Let
$$(K,s) \in \lambda$$
. Then $a_{\lambda} = |H/N_H(K)| \cdot |\{t \in N_G(K) \setminus H \mid (K,t_K) \in \lambda\}|.$

- (b) [b] Let $\mu \in \Lambda$. Then $b_{\mu} = a_{\mu} \sum_{\mu \neq \lambda \in \Lambda} r_{\mu\lambda} b_{\lambda}$.
- (c) $[\mathbf{c}]$ $i_n = \frac{1}{n} \sum (b_\lambda \mid \lambda \in \Lambda, n_\lambda = n).$

Proof. Define

$$A_{\lambda} = \{ (L,t) \in \mathcal{I} \setminus H \mid 1 \neq L \leq H, t \in J \setminus H, L^{t} = L, (L,t_{L}) \in \lambda \}$$

$$B_{\lambda} = \{ t \in \mathcal{I} \setminus H \mid (H \cap H^{t}, t_{H \cap H^{t}}) \in \lambda \}$$

Appendix A

Set Theory

A.1 The basic language of sets theory

A simple term is a set or a variable. A formula is any expression which can be obtained in finite steps according to the following rules:

(a) [**a**]

$$x = y$$
 and $x \in y$

are formulas, where x and y are simple terms.

(b) **[b]** If ϕ and ψ are formulas and x a variable, then

$$(\neg \phi)$$
$$(\phi \to \psi)$$
$$(\phi \lor \psi)$$
$$(\exists x \phi)$$

are formulas.

These formulas are pronounced as follows: x = y: x is equal to y. $x \in y$: x is an element of y. $(\neg \phi)$: not ϕ $(\phi \rightarrow \psi)$: ϕ is equivalent to ψ . $(\phi \lor \psi)$: ϕ or ψ . $(\exists x \phi)$: there exists x such that ϕ .

We use following abbreviations: $(\forall x\phi)$ means $(\neg(\exists x(\neg\phi)))$ $(\phi \land \psi)$ means $(\neg(\exists x((\neg \phi)) \lor (\neg \psi))))$

 $(\phi \to \psi)$ means $((\neg \phi) \lor \psi)$

 $\exists x(\phi) \text{ means } (\exists y(\forall x(x=y \leftrightarrow \phi))), \text{ where } y \text{ is any variable not appearing in } \phi.$

 $(\exists (x \in y)\phi)$ means $(\exists x (x \in y \land \phi)).$

 $(\forall (x \in y)\phi)$ means $(\forall x(x \in y \to \phi))$.

Let ϕ be a formula and v a variable. We inductively define the terminologies, 'v is free variable of ϕ ' and 'free appearance of "x" in ϕ If ϕ is x = y or $x \in y$, then any x or y equal to v is called a free appearance of x in ϕ . Any variable is called free variable of ϕ .

If ϕ is $\neq \psi$ then a free variable of ϕ is free variable of ψ . A free appearance of v in ψ is free appearance of v in ψ .

If ϕ is $(\psi \leftrightarrow \tau \text{ or } (\psi \lor \tau, \text{ then a free variable of } \phi \text{ is a free variable of } \psi \text{ or of } \tau$. A free appearance of v in ϕ is free appearance of v in ψ or in τ .

If $\phi \equiv (\exists x\psi)$, then v is a free variable of ϕ if $v \neq x$ and v is a free variable of ψ . If $v \neq x$, then any free appearance of v in ψ is a free appearance of v in ϕ .

A variable which is not free variable of ϕ is called a bound variable of ϕ .

Now let ϕ a formula, v a variable. ϕ and t a simple term. Then $\phi(v \searrow t)$ is the formula obtained to replacing all free appearances of v by t. More formally $\phi(v \searrow t)$ is inductively defined

Let r, s be simple terms distinct v and let \diamond is one of $=, \in$, Then

If $\phi \equiv r \diamond s$ then $\phi(v \searrow t) \equiv r \diamond s$. If $\phi \equiv v \diamond s$ then $\phi(v \searrow t) \equiv t \diamond s$. If $\phi \equiv r \diamond v$ then $\phi(v \searrow t) \equiv r \diamond v$. If $\phi \equiv v \diamond v$ then $\phi(v \searrow t) \equiv t \diamond t$. If $\phi \equiv (\neq \psi)$, then $\phi(v \searrow t) \equiv (\neq \psi(v \searrow t))$.

Let \diamond is one of \rightarrow or \lor . If $\phi \equiv (\psi \diamond \tau)$, then $\phi(v \searrow t) \equiv (\psi[v \searrow t] \diamond \tau[v \searrow t)$

If $\phi \equiv (\exists x\psi)$ and x is a variable different from v, then $\phi(v \searrow t) \equiv (\exists s\psi(v \rightarrow t))$. If $\phi \equiv (\exists v\psi)$ then $\phi(v \searrow t) \equiv (\exists v\psi)$.

We will often use the following more convenient notion: We use the symbol $\phi(v)$ in place of ϕ and from then on $\phi(t)$ denotes the formula $\phi(v \searrow t)$. So $\phi(v)$ is a formulas with a distinguished variable v.

A class A is just a formula $\phi(v)$ with a free distinguished variable v. But we think about A as the collection of all sets which fulfill ϕ and write

$$A = \{x \mid \phi(x)\}$$

Any set s can be viewed as the class

$$\{x \mid x \in s\}$$

The class $V := \{x \mid x = x\}$ is called the universe. Every set is a member of the universe. The class $\emptyset := \{x \mid x \neq x\}$ is called the empty class. The empty class has no members.

We introduce an extended language: A simple class term is a variable, a set or a class. Now a class formula is defined in the save way as a formula: just replace 'simple term' by 'simple class term'.

Any class formula Φ has a corresponding set formula $\tilde{\Phi}$ inductively defined as follows: Let A and B be simple class terms, and s a simple set term. If A is a set or variable, let $\phi(v)$ be the formula $v \in A$, where v is a variable distinct from A. If A is a class, let $\phi(v)$ be the formula used to define A. Also u is a variable different from s and not involved in ϕ and ψ .

If $\Phi \equiv A = B$, then $\Phi = \forall u(\phi(u) \leftrightarrow$

psi(u). If $\Phi \equiv s \in B$, where s is a set term, then $\tilde{\Phi} \equiv \psi(s)$. If $\Phi \equiv A \in B$ and A is a class, then $\tilde{\Phi} \equiv (\exists u(u = A \land u \in B))$, If $\Phi \equiv \Psi \leftrightarrow \Sigma$, then $\tilde{\Phi} \equiv \tilde{\Psi} \leftrightarrow \tilde{\Sigma}$. If $\Phi \equiv \Psi \lor \Sigma$, then $\tilde{\Phi} \equiv \tilde{\Psi} \lor \tilde{\Sigma}$. If $\Phi \equiv (\neg \Psi)$, then $\tilde{\Phi} \equiv (\neg \Psi)$. If $\Phi \equiv (\neg \Psi)$, then $\tilde{\Phi} \equiv (\exists x \Psi)$, then $\tilde{\Phi} \equiv (\exists s \tilde{\Psi})$.

 $\tilde{\Phi}$ is called the translation of Φ . Note that if s and t are sets terms then s = t is translated into $\forall u(u \in s \leftrightarrow u \in t)$. This is justified be the following Axioms of Set Theory

Set Axiom 1
$$\forall x \forall y (x = y \leftrightarrow (\forall z (z \in x \leftrightarrow z \in y)))$$

Definition A.1.1. [def:int]

- (a) [a] Let $\Phi(x)$ a class formula. Then $\{x \mid \Phi(x) \text{ denotes the class } \{x \mid \tilde{\Phi}(x)\}$ defined by the translated formula $\tilde{\Phi}(x)$.
- (b) [b] Let A be class. Then $\bigcap A := \{x \mid (\forall a \in A) x \in a\}.$
- (c) [c] Let A be a class. Then $\bigcup A := \{x \mid (\exists a \in A) x \in a\}$

If $A = \{x \mid \phi(x)\}$, then

$$\bigcap A \equiv \{x \mid (\forall a \in A)x \in a\} = \{x \mid \forall a(a \in A \to x \in A\} = \{x \mid \forall a(\phi(a) \to x) \in a\}$$

and

$$\bigcup A \equiv \{x \mid (\exists a \in A)x \in a\} = \{x \mid \exists a(x \in A)\} = \{x \mid \exists a(\phi(a) \land x \in a)\}$$

A.2 The Axioms of Set Theory

To continue we need

Set Axiom 2
$$\forall x \forall y \exists z \forall w (w \in z \leftrightarrow (w = x \lor w = y))$$

Note that this just says that for any sets x and y, there exists a set z whose elements are exactly x and y. We denote this set by $\{x, y\}$. The special case x = y, show that there exists a set $\{x\}$ whose only element is x.

Definition A.2.1. [def:ordered pair] Let a, b be sets. Then (x, y) denotes the set $\{\{x\}, \{x, y\}\}$. (x, y) is called the ordered pair x and y.

Lemma A.2.2. [ordered] Let a, b, c, d be sets. Then (a, b) = (c, d) if and only if a = b and c = d.

Proof. See Homework 2

Definition A.2.3. [def:relation]

- (a) [a] A relation is a class R such that all members of R are ordered pairs. If x and y are sets then xRy means $(x, y) \in R$. Dom $(R) := \{a \mid aRb \text{ for someb}\}$ and Ran $(R) := \{b \mid aRb \text{ for some } a\}$.
- (b) [b] A function is a relation F such that b = c for all sets a, b, c such that $(a, b) \in F$ and (a, c) is in F. F(a) = b means that $(a, b) \in F$. Also if F is a function and A a class then $\{F[A] := \{b \mid a \in A, b = F[a]\}$. F[A] is called the image of A under F. $FA|_{:=} \{(a, b) \mid a \in A, b = F(a)\}.$

Lemma A.2.4. [int class] Let A be a class.

- (a) [a] If $A = \emptyset$, then $\bigcap \emptyset = V$.
- (b) [b] If $A \neq \emptyset$, then $\bigcap A$ is a set.
- *Proof.* (a) If $\bigcap \emptyset = \{x \mid x \in y \text{ for all } y \in \emptyset\} = \{x \mid y \in V\}$. (b) Let $a \in A$. Then $\bigcap A \subseteq a$.Since $\bigcap A$ is a class, A.2.5 implies that $\bigcap A$ is a set. \Box

If A and B are classes we define $A \subseteq B$ to mean $(\forall x (x \in A \to x \in B))$. We are able to state all the Axioms of Set Theory :

- Set Axiom 1 [1] $\forall x \forall y (x = y \leftrightarrow (\forall z (z \in x \leftrightarrow z \in y)))$, that is two sets are equal if and only if they have the same elements.
- Set Axiom 2 [2] $\forall x \forall y \exists z \forall w (w \in z \leftrightarrow (w = x \lor w = y))$ (That is for all sets x and y there exists a set z with exactly x and y as elements.
- **Set Axiom 3** [3] For all sets x, $\{y \mid y \subseteq x\}$ is a set.
- **Set Axiom 4** [4] For all sets $x, \bigcup x$ is a set.
- **Set Axiom 5** [5] For all functions F and all sets x, F[x] is a set.
- **Set Axiom 6** [6] There exists a set z such that $\emptyset \in z$ and for all $x \in z$ also $x \cup \{x\} \in z$.
- Set Axiom 7 [7] For all non-empty classes A, there exists $x \in A$ such that $y \notin A$ for all $y \in x$.

(6) includes the statement that the empty class is a set. Indeed $\emptyset \in z$, means that there exists a set x with $x = \emptyset$ and $x \in z$. Henceforth we will call the empty class, the empty set.

Lemma A.2.5. [subclass]

- (a) [a] If x is a set and A a class, then $x \cap A$ is a class.
- (b) [b] If x is a class and A a set with $A \subseteq x$, then A is class.

(c) $[\mathbf{c}]$ A function is a set if and only if Domf is a set.

Proof. See Homework 2.

Lemma A.2.6. [compatible] Let A be a class of compatible functions, that is A is class, if $f \in A$, then f is a function and a set, and if $f, g \in A$, then f(x) = g(x) for all $x \in \text{Dom} f \cap \text{Dom} g$. Then $\bigcup A$ is a function.

Proof. Let $a \in \bigcup A$. Then $a \in f$ for some $f \in A$ and so a is an ordered pair. Now let a, b, c be sets with $(a, b) \in \bigcup A$ and $(a, c) \in \bigcup A$. The $(a, b) \in f$ and $(a, c) \in g$ for some $f, g \in A$. Thus $a \in \text{Dom} f \cap \text{Dom} g$ and so

$$b = f(a) = g(a) = c$$

So $\bigcap A$ is a function.

A.3 Well ordered sets and the Recursion Theorem

Definition A.3.1. [def:relation] Let R be a relation and A a class

- (a) [a] aRb means $(a, b) \in R$ and a AB mean $(a, b) \notin R$.
- (b) [b] R is called irreflexive on A if a Ra for all $a \in A$.
- (c) $[\mathbf{c}]$ R is transitive of A aRc for all $a, b, c \in A$ with aRb and bRc.
- (d) $[\mathbf{d}]$ T partially orders A if R is irreflexive and transitive on A.
- (e) [d] R totally orders A if R is partially orders A and for all $a \in A$ one of aRb, a = b and bRA holds.
- (f) [e] An R-minimal element of A is an element $m \in A$ such that for all $a \in A$, m = a or mRa.
- (g) [e] If x is any object that $A_x^R := \{a \in A \mid bRx\}.$

Lemma A.3.2. [trivial total orders] Suppose the relations R totally orders the class A. Then for all a, b in R exactly one of aRb, a = b and bRa holds,

Proof. By definition of a total ordering, at least one of aRb, a = b and bR holds. Id a = b, then a /Rb and b /Ra since R is irreflexive on A. If aRb and bRA, then aRa since R is transitive, a contradiction since R is irreflexive.

Definition A.3.3. [def:well orders] Let R be a relation and A a class. We say that R well-orders A if

(i) [i] R totally orders A.

95

- (ii) [ii] Every non-empty subset x of A has a RR-minimal element.
- (iii) [iii] For all $a \in A$, A_a^R is a set.

Lemma A.3.4. [minimal for class] If the relation R well orders the class A, then every non-empty subclass of A has a R-minimal element.

Proof. Let B be a subclass of $b \in B$. If b is a minimal element of B we are done. So suppose b is not a minimal element. Then there exists $a \in B$ such that neither a = b nor bRa. So aRb and thus B_b^R is not empty. not-empty. By definition of a well-ordering A_b^R is a set and so also $B_b^R = B \cap A_b^R$, since the intersection of a class with a set is a class. Since B_b^R is a set, the definition of a well ordering implies that B_b^R has a minimal element m. Since $m \in B_b^R$, we have mRb. Let $y \in B$. If yRb, then $y \in B_B^R$ and so y = m or mRy. If y = b then mRy. If bRy then mRy since R is transitive on A. Thus m is a minimal element of B.

Definition A.3.5. [def:segment] Let R be a relation, A a class and B a subclass of A.

- (a) [a] B is called in initial R-segment of A if $a \in B$ for all $b \in B$ and $a \in A$ with aRb.
- (b) [b] B is called an R-section of A if $B = A_a^R$ for some $a \in A$.

With this definition the last condition on a well-ordered class says that every section is a se

Lemma A.3.6. [union of segments] Let R be a relation, A a class and T a non-empty class of initial R-segments of A. Then $\bigcup T$ and $\bigcap T$ are initial R-segment of A.

Proof. Observe first that $\bigcup T$ is a subclass of A. Let $b \in \bigcup T$ and $a \in A$ with aRb. Then $b \in B$ for some $B \in T$. Thus $a \in B$ since B is an initial R-segment of A. Hence $a \in \bigcup T$ and so $\bigcup T$ is an initial R-segment of A.

A similar proof shows that $\bigcap T$ is an initial *R*-segment of *A*.

Lemma A.3.7. [segments] Let R be relation which well orders the class A and let B be an initial R-segment of A. Then B = A or B is an R-section of A. In particular, B = A or B is a set.

Proof. Suppose $B \neq A$. Then $A \setminus B$ is a non-empty subclass of A and so has a R-minimal element m. Let $a \in A$. We claim that aRm if and only if $a \in B$. If aRm, then $a \notin A \setminus B$, since m is the minimal element of $A \setminus B$. Thus $a \in B$. If a = m, then $a \notin B$ since $m \in A \setminus B$. Suppose mRa and $a \in B$. Since B is an initial segment this gives $m \in B$, a contradiction. Thus proves the claim and so $B = A_m^R$ and B is an R-section of A.

Theorem A.3.8 (Recursion Theorem). [recursion] Let R be a relation which well-orders the class A. Let τ be a function with domain the universe V. Then there exists a unique function F with domain A such that for all $a \in A$

$$(*) F(a) = \tau(F \mid_{A_a^R})$$

Proof. Recall that two functions F and G are called compatible if F(x) = G(x) for all $x \in \text{Dom}(F) \cap \text{Dom}(G)$. Just in this proof we will call a function F recursive if its domains is an initial segment of A and $F(a) = \tau(F \mid_{A_{C}^{R}})$ for all $a \in \text{Dom}(F)$.

1° . [1] Any two recursive functions are compatible.

Let F_1 and F_2 be recursive functions and $x \in \text{Dom}(F_1) \cap \text{Dom}(F_2)$. By induction we may assume that $F_1(y) = F_2(y)$ for all $y \in \text{Dom}(F_1) \cap \text{Dom}(F_2)$ with yRx. Since $\text{Dom}(F_i)$ is an initial segment we have $A_x^R \subseteq \text{Dom}(F_1) \cap \text{Dom}(F_2)$. So the induction assumptions shows that $F_1 \mid_{A_x^R} = F_2 \mid_{A_x^R}$. Thus

$$F_1(x) = \tau(F_1 \mid_{A_x^R}) = \tau(F_2 \mid_{A_a^R}) = F_2(x)$$

So F_1 and F_2 are indeed compatible.

Observe that (1°) implies the uniqueness statement of the Theorem. To prove the existence

Let T be the class of all recursive functions whose domains are sets. Put $F = \bigcup T$.

 2° . [2] F is a recursive function.

By (1°) and A.2.6 F is a function. Observe that $\text{Dom}(F) = \bigcup \{\text{Dom}(G) \mid G \in T\}$. Since the unions of a class of initial segment is an initial segment, Dom(F) is an initial segment. Now let $x \in \text{Dom}(F)$ and $G \in T$ with $x \in \text{Dom}(G)$. Then $A_x^R \subseteq \text{Dom}(G)$ and so

$$F(x) = G(x) = \tau(G \mid_{A_{\pi}^{R}}) = \tau(F \mid_{A_{\pi}^{R}})$$

and so F is indeed a recursive function.

3°. [**3**]
$$Dom(F) = A$$
.

Suppose not. Then by A.3.7 Dom $F = A_R^x$ for some $x \in A$. Let $G = F \cup \{(x, \tau(F)\})$. Since $x \notin A_x^R = \text{Dom}(F)$ we see that G is a function. Let $y \in \text{Dom}(G)$. Then either $y \in \text{Dom}(F)$ or y = x. In the first case $A_y^R \subseteq \text{Dom}(F) \subseteq \text{Dom}(G)$ and $G(y) = F(y) = \tau(F \mid_{A_y^R}) = \tau(G \mid_{A_y^R})$. Also $A_x^R = \text{Dom}(F) \subseteq \text{Dom}(G)$ and $G(x) = \tau(F) = \tau(G \mid_{A_x^R})$. Hence in either case $A_y^R \subseteq \text{Dom}(G)$ and $G(y) = \tau(G \mid_{A_y^R})$. Thus Dom(G) is an initial segment of A and G is a recursive function. By definition of a well-ordered class, $A_R(x)$ is a set and so also Dom $(G) = A_x^R \cup \{x\}$ is a set. Thus $G \in T$. But then $x \in \text{Dom}(G) \subseteq \bigcup \{\text{Dom}H \mid H \in T\} = \text{Dom}(F) = A_x^R$, a contradiction. Thus (3°) holds.

By (2°) and (3°) F fulfills the conclusion of the theorem.

A.4 Ordinals

Definition A.4.1. [def:ordinal] An ordinal is a set α such that every elements of α is a subset of α and ' \in ' well-orders α . Ord is the class of all ordinals.

For example \emptyset , $\{\emptyset\}$, $\{\emptyset, \{\emptyset\}\}$ all are ordinals.

Lemma A.4.2. [basic ord] Let α be an ordinal.

(a) $[\mathbf{a}] \quad \beta \notin \beta \text{ for } \beta \in \alpha.$

(b) [b] $\alpha \notin \alpha$.

- (c) [c] Every elements of α is an ordinal.
- (d) $[\mathbf{d}] \quad \alpha \cup \{\alpha\}$ is an ordinal.

Proof. (a) This holds since $' \in '$ is a well-ordering and so irreflexive on α . (b) If $\alpha \in \alpha$, (b) gives $\alpha \notin \alpha$.

(c) Let α be an ordinal and $\gamma \in \beta \in \alpha$. Since β is a subset of α , γ is an element of α and so a subset of α . Let $\delta \in \gamma$. Then $\delta \in \alpha$. Since $\gamma \in \beta$ and \in is transitive on α , $\delta \in \beta$ and so γ is a subset of β . A restriction of a well ordering to a subset is a well ordering and β is an ordinal.

(d) Since $\beta \in \alpha$ for all $\beta \in \alpha$, α is a maximal element of $\alpha \cup \{\alpha\}$ with respect to \in . This easily implies that \in well orders $\alpha \cup \{\alpha\}$. If $\beta \in \alpha \cup \{\alpha\}$ the either $\beta \in \alpha$ or $\beta = \alpha$. In either case β is a subset of α and so also of $\alpha \cup \{\alpha\}$.

Notation A.4.3. [alpha+1] If α is an ordinal, we denote the ordinal $\alpha \cup \{\alpha\}$ by $\alpha + 1$. We also denote \emptyset by 0, 0+1 be 1, 1+1 by 2 and so on.

Theorem A.4.4. [ord well-ordered] $' \in '$ well-orders Ord.

Proof. Let α, β and γ be ordinals. By A.4.2(a), $\alpha \notin \alpha$ and so \in is irreflexive on Ord. If $\alpha \in \beta$ and $\beta \in \gamma$, then β is a subset of γ and so $\alpha \in \beta$ and so \in is transitive on Ord.

To show that one of $\alpha \in \beta$, $\alpha = \beta$ and $\beta \in \gamma$ holds, put $\delta = \alpha \cup \beta$. We will show that δ is a initial segment of α . So let $\epsilon \in \alpha$ and $\gamma \in \delta$ with $\epsilon \in \gamma$. Note that $\gamma \in \beta$ and so $\epsilon \in \beta$ since γ is a subset of β . Hence $\epsilon \in \alpha \cap \beta = \delta$. So δ is indeed and initial segment of α . ?? choose that either $\delta = \alpha$ or there exists $\rho \in \alpha$ with

$$\delta = \alpha_{\rho} = \{ x \in \alpha \mid x \in \rho \} = \rho$$

We proved that $\delta = \alpha$ or $\delta \in \alpha$. By symmetry, $\delta = \beta$ or $\delta \in \beta$.

Suppose that $\delta = \alpha$. Then $\alpha = \beta$ or $\delta \in \beta$ and we are done with this part of the proof. So we may assume $\delta \in \alpha$ and by symmetry also $\delta \in \beta$. But then $\delta \in \alpha \cap \beta = \delta$, a contradiction to $\delta \in \alpha$ and ??(??).

Now let x be any non-empty subset of Ord. Pick $\alpha \in x$. Suppose α is not a minimal elements of x. Then $\{\beta \in x \mid x \in \alpha\}$ is a non-empty subclass of α and so has a minimal element γ . But then γ is also an minimal element of Ord. Hence any case x has minimal element.

For any $\alpha \in \text{Ord}$, $\text{Ord}_{\alpha} = \{\beta \in \text{Ord} \mid \beta \in \alpha\} = \alpha$ and so Ord_{α} is a set. We verified all the defining properties of a well-ordered class and the Theorem is proved.

Corollary A.4.5. [intersect ordinals] Let A be non-empty class of ordinals. Then $\bigcap A$ is the minimal element of A with respect to \in .

Proof. Since Ord is well ordered with respect to \in , ?? shows that A has a minimal elements α . Let $\gamma \in A$. Then $\alpha = \gamma$ or $\alpha \in \gamma$. In any case $\alpha \subseteq \gamma$ and so $\alpha \subseteq \bigcap A$. Since $\bigcap A \subseteq \alpha$, this gives $\bigcap A = \alpha$.

Lemma A.4.6. [unions of ordinals] Let A be a class of ordinals.

- (a) [a] If $\bigcup A$ is a set, then $\bigcap A$ is an ordinal. In particular, if A is a set, then $\bigcup A$ an ordinal.
- (b) [b] If $\bigcup A$ is not a set, then $\bigcup A = \text{Ord.}$

Proof.

 $1^{\circ}. [1] \qquad \bigcup A \subseteq \text{Ord}$

Thus holds since every element of ordinal is an ordinal.

 2° . $[2] \in well$ -order $\bigcup A$.

Since \in well -orders Ord, this follows from (1°) .

3°. [3] Every element of $\bigcup A$ is a subset of $\bigcup A$.

Let $x \in \bigcup A$. Then $x \in \alpha$ for some $\alpha \in A$. Thus $x \subseteq \alpha$. Since $\alpha \subseteq A$ thus gives $x \subseteq A$ (a) If $\bigcup A$ is a set, then (2°) and (3°) shows that $\bigcup A$ is a ordinal.

(b) Suppose now that $\bigcup A$ is not a set and let δ be ordinal. Since δ is a set, and subclasses of sets are sets, we get $\bigcup A \not\subseteq \delta$. Thus there exists $\alpha \in A$ with $\alpha \not\subseteq \delta$. Note that $\alpha = \delta$ or $\alpha \in \delta$ imply $\alpha \subseteq \delta$, a contradiction. Since \in is a totally ordering on Ord we conclude that $\delta \in \alpha$ and so $\delta \in \bigcup A$. Since this holds for all ordinals, $\operatorname{Ord} \subseteq \bigcup A$. So (1°) implies (b).

A.5 The natural numbers

Definition A.5.1. [ordering] Let α and β be ordinals. We will write $\alpha < \beta$ if $\alpha \in \beta$ and $\alpha \leq \beta$ if $\alpha = \beta$ or $\alpha \in \beta$.

Lemma A.5.2. [in and sub] Let α and β be ordinals.

- (a) [a] $\alpha \in \beta$ iff $\alpha < \beta$ and iff $\alpha \subset \beta$.
- (b) [b] $(\alpha \in \beta \text{ or } \alpha = \beta)$ iff $\alpha \leq \beta$ iff $\alpha \subseteq \beta$.
- (c) [c] If $\alpha < \beta$, then $\alpha + 1 \leq \beta$. So $\alpha + 1$ is the least ordinal larger than α .

Proof. (a) The first statement is just the definition of $\alpha < \beta$. If $\alpha \in \beta$, then the definition of and ordinal implies $\alpha \subseteq \beta$. Since \in is irreflexive on Ord, $\alpha \neq \beta$ and so $\alpha \subset \beta$. Suppose now that $\alpha \subseteq \beta$. Since \in is total ordering $\alpha \in \beta, \alpha = \beta$ or $\beta \in \alpha$. The last two statements imply that $\beta \subseteq \alpha$, a contradiction to $\alpha \subseteq \beta$. Hence $\alpha \in \beta$.

- (b) follows immediately from (a).
- (c) Otherwise (b) gives $\beta \in \alpha + 1 = \alpha \cup \{\alpha\}$. So

beta $\in \alpha$ or $\beta = \alpha$, a contradiction to $\alpha \in \beta$.

Definition A.5.3. [limit ordinals] Let α be an ordinal.

- (a) [a] We say that α is an successor if $\alpha = \beta + 1$ for some ordinal β . In this case β is denoted by $\alpha 1$.
- (b) [b] We say that α is a limit ordinal, if α is neither zero, nor an ordinal.
- (c) [c] We say that α is a natural number of $\alpha + 1$ contains no limit ordinal.
- (d) $[\mathbf{d}]$ \mathbb{N} is the class of natural numbers.

Note that first $\alpha + 1$ contains no limit ordinal iff neither α nor any element of α is a limit ordinal. α is a natural numbers if and only if either $\alpha = 0$; or α is an successor and each non-zero ordinal β with $\beta \in \alpha$ is successor.

Lemma A.5.4. [natural numbers]

- (a) [a] Let α and β be ordinal with $\alpha \in \beta$. If β is a natural numbers, so is α .
- (b) [b] Let n be a natural numbers. Then n + 1 is a natural number.
- (c) [c] Let n be a non-zero natural number. Then n-1 is a natural number.

Proof. (a) Observe that $\alpha + 1 \subseteq \beta + 1$. Since $\beta + 1$ contains no limit ordinal, $\alpha + 1$ contains no limit ordinal.

(b) If $x \in n+1$, then $x \in n$ or x = n+1. In neither case x is limit ordinal.

(c) Observe first that is neither 0 nor a limit. Hence n-1 is defined. Since $n-1 \in n$, (c) follows from (a).

Lemma A.5.5. [induction on n] Let A be a class. If $0 \in A$ and $a \cup \{a\} \in A$ for all $a \in A$, then $\mathbb{N} \subseteq A$.

Proof. Note that $B := \mathbb{N} \setminus A$ is subclass of \mathbb{N} . Suppose $B \neq \emptyset$ and let n be the minimal element of B. Then $n \neq 0$. By minimality of $n, n-1 \in A$ and so also $n = (n-1) + 1 = (n-1) \cup \{n-1\} \in A$, a contradiction.

Lemma A.5.6. [n a set]

- (a) $[\mathbf{a}] \mathbb{N}$ is a set.
- (b) $[\mathbf{b}] \ \mathbb{N}$ is an ordinal, in fact \mathbb{N} is the smallest limit ordinal.

Proof. (a) By Set Axiom 6, there exists a set z such that $0 \in z$ and $z \cup \{z\} \in Z$. So by A.5.5, $\mathbb{N} \subseteq z$. Since subclasses of subsets are sets, \mathbb{N} is a set.

(b) Since \mathbb{N} is a subclass of the well-ordered class Ord, \in is a well ordering in \mathbb{N} . Let $n \in \mathbb{N}$ and $\alpha \in n$. Then by A.5.4(a), $\alpha \in \mathbb{N}$. So n is a subset of \mathbb{N} . Thus \mathbb{N} is an ordinal. Let δ be any limit ordinal. Then $0 \in \delta$ and if $\gamma \in \delta$, then $\gamma + 1 \leq \delta$ and since δ is not a successor. Thus $\gamma + 1 \in \delta$. So A.5.5 implies that $\mathbb{N} \subseteq \delta$, and so $\mathbb{N} \leq \delta$.

Definition A.5.7. [def:sum of ordinals] Let α and β be ordinals, then the ordinal $\alpha + \beta$ is inductively defined by

$$\alpha + \beta := \begin{cases} \alpha & \text{if } \beta = 0\\ (\alpha + \delta) + 1 & \text{if } \beta = \delta + 1\\ \bigcup_{\gamma < \beta} \alpha + \gamma & \text{if } \beta \text{ is a limit ordinal} \end{cases}$$

Since 1 = 0+1 is an ordinal we now have two definitions of $\alpha + 1$. But since $\alpha + (0+1) = (\alpha + 0) + 1 = \alpha + 1$, these two definitions agree.

Lemma A.5.8. [sum of ordinals] Let α, β be ordinals and $n, m \in \mathbb{N}$. Then

- (a) [a] $(\alpha + \beta) + n = \alpha + (\beta + n).$
- (b) [b] n+m=m+n and n+m is a natural number.

Proof. (a) If n = 0, thus is obvious. So suppose (a) is true for n, then

$$(\alpha + \beta) + (n + 1) = ((\alpha + \beta) + n) + 1 = (\alpha + (\beta + n)) + 1 = \alpha + ((\beta + n) + 1) = \alpha + (\beta + (n + 1)) + 1 = \alpha + (\beta + (\beta + (n + 1)) + 1 = \alpha + (\beta + (n + 1)) + 1 = \alpha + (\beta + (n + 1)) + 1 = \alpha + (\beta + (n + 1)) + 1 = \alpha + (\beta + (n + 1)) + 1 = \alpha + (\beta + (n + 1)) + 1 = \alpha + (\beta + (n + 1)) + 1 = \alpha + (\beta + (n + 1)) + 1 = \alpha + (\beta + (n + 1)) + 1 = \alpha + (\beta + (n + 1)) + 1 = \alpha + (\beta + (n + 1)) + 1 = \alpha + (\beta + (n + 1)) + 1 = \alpha + (\beta + (n + 1)) + 1 = \alpha + (\beta + (n + 1)) + \alpha + (\beta + (\beta + (n + 1)) + \alpha + (\beta + (\beta + (n + 1)) + \alpha + (\beta + (\beta + (n + 1)) + \alpha + (\beta + (\beta + (\beta$$

and so (a) also holds for n + 1.

(b) If n = m = 0, then both sides are zero. Suppose next 0 + m = m + 0. Then

$$0 + (m + 1) = (0 + m) + 1 = (m + 0) + 1 = m + 1 = (m + 1) + 0$$

So (??) holds whenever n = 0. By symmetry it also holds whenever m = 0. Suppose 1 + m = m + 1. Then

$$1 + (m+1) = (1+m) + 1 = (m+1) + 1$$

and so (b) holds whenever n = 1. Suppose (b) holds for some $n \in \mathbb{N}$ and all $m \in \mathbb{N}$

$$m + (n + 1) = (m + n) + 1 = (n + m) + 1 = n + (m + 1) = n + (1 + m) = (n + 1) + m$$

and so (b) holds for n + 1 and for all $m \in \mathbb{N}$.

Lemma A.5.9. [decompose ordinals] Let α be an ordinal then there exists a nonsuccessor β and a natural numbers n with $\alpha = \beta + n$.

Proof. Note that $\alpha = \alpha + 0$ and so there exists a least ordinal β such that $\alpha = \beta + n$ for some natural numbers n. Suppose that β is a successor and let $\delta = \beta - 1$. Then

$$\alpha=\beta+n=(\delta+1)+n=\delta+(1+n)=\delta+(n+1)$$

Since n + 1 is natural number we get a contradiction to the minimal choice of β . \Box

A.6 Cardinals

Definition A.6.1. [def:cardinals] Two sets a and b are called isomorphic, if there exits a bijection from a to b. The cardinal |a| of a set a is the least ordinal isomorphic to a.

Lemma A.6.2. [injective] Let a and b be sets, then there exists a injection from a to b if and only if $|a| \leq |b|$.

Proof. Let $F: a \to |a|$ and $G: b \to |b|$ be bijection.

Suppose first that $|a| \leq |b|$. Then $|a| \subseteq |b|$. Thus $G^{-1} \circ F$ is an injection from a to b.

Suppose next that $H : a \to b$ is a injection. Then $I = G \circ H \circ F^{-1}$ is an injection from |a| to |b|. Put d = I(|a|. Then $d \subseteq |b|$. Define $\Phi : d \to \text{Ord}$ inductively by $\Phi(e)$ is the least elements of $\text{Ord} \setminus \{\Phi(c) \mid c \in d, c < e\}$. We claim that $\Phi(e) \leq e$ for all $e \in d$. Indeed if c < e, then by induction $\Phi(e) \leq e$ and so $\Phi(e) \neq e$. Thus $\Phi(e) \leq e$ by definition of $\Phi(b)$.

Since $\Phi(e) \leq e$ and |b| is an initial segment of Ord, $\Phi(e) \in |b|$. We claim that $\Phi[d]$ is an initial segment of |b|. Indeed of $\alpha < \Phi(e)$, then $\alpha = \Phi(c)$ for some $c \in d$ with c < e. Thus $\Phi(d)$ is an ordinal, also $\Phi(d) \leq |b|$ and $\Phi(d)$ isomorphic to a. Thus $|a| \leq |\Phi(d) \leq |b|$. \Box

Corollary A.6.3. [sb] Let a and b sets. If the exits an injection from a to b and an injection from b to a, then a and b are isomorphic.

Proof. By A.6.2 $|a| \leq |b|$ and $|b| \leq |a|$. Thus |a| = |b| and a and b are both isomorphic to |a|.

Appendix B

Homework

B.1 Homework 3 from MTH912

Let \mathbb{K} be a division ring and V_1, V_2 and V_3 a left \mathbb{K} space. A function $f: V_1 \to V_2, v \to vf$ is called \mathbb{K} -linear if $v + \tilde{v} f = vf + \tilde{v}f$ and kv.fk, vf for all $v \in V$ and $k \in \mathbb{K}$. If $f: V_1 \to V_2$ and $g: V_2 \to V_3$ are \mathbb{K} -linear, then fg is the \mathbb{K} -linear function from $V_1 \to V_2$ defined by v.fg = vf.g. Hom_{\mathbb{K}} (V_1, V_2) denotes the set of all \mathbb{K} -linear map from $V_1 \to V_2$. End_{\mathbb{K}}(V) =Hom_{\mathbb{K}}(V, V). Note that End_{\mathbb{K}}(V) is a ring.

Similarly let W_1, W_2 and W_3 a left K space. A function $f: W_1 \to W_2, w \to fw$ is called K-linear if $f(w, \tilde{w}) = fw + f\tilde{w}$ and fw.k = f.w for all $w, \tilde{w} \in V$ and $k \in \mathbb{K}$. If $f: W_1 \to W_2$ and $g: W_2 \to W_3$ are K-linear, then gf is the K-linear function from $W_1 \to W_2$ defined by fg.w = f.gw. Hom_K (W_1, W_2) denotes the set of all K-linear map from $W_1 \to W_2$.

So we view function on a left vectors space to be acting from the right. while functions on a right vector space act from the left.

Let V be left- and W a right K-space. Let $s: V \times W \to \mathbb{K}$ be a K-bilinear function. So for all $v, \tilde{v} \in V, w, \tilde{w} \in W$ and $k \in \mathbb{K}, (v+\tilde{v})w = vl+\tilde{v}w, v(w+\tilde{w}) = vw+v\tilde{w}, kv.w = k.vw$ and vw.k = vw.k. Noe that just means that for each $v \in V$, the map $s_v: W \to W, w \to vw$ is K-linear and for each $w \in W$, the map $s_w: v \to vw$ is K-linear.

Put $E := \operatorname{End}_{\mathbb{K}}^{s}(V, W)$ be the set of all $(\alpha, \beta) \in \operatorname{End}_{\mathbb{K}}(V) \times \operatorname{End}_{\mathbb{K}}(W)$ such that $v\alpha.w = v.\beta w$. for all $v \in V, w \in W$. Note that V is a right E-module via $v(\alpha, \beta)v\alpha$ and W is a left E-module via $(\alpha, \beta)w = \beta w$. So if $\delta = (\alpha, \beta) \in E$ the $v\delta.w = v.\delta w$ for all $v \in V, w \in W$. Observer that E is a subring of $\operatorname{End}_{\mathbb{K}}(V) \times \operatorname{End}_{\mathbb{K}}(W)$.

Define $wv \in \operatorname{End}_{\mathbb{K}}(V_{\times}\operatorname{End}_{\mathbb{K}}(W)$ by $\tilde{v}.wv = \tilde{v}w.v$ and $wv.\tilde{w} = w.v\tilde{w}$ for all $\tilde{v} \in V, \tilde{w} \in W$. We claim that $wv \in E$. Indeed

	$(\tilde{v}(wv))\tilde{w})$	
=	$((\tilde{v}w)v)\tilde{w}$	definition of wv
=	$(\tilde{v}w)(v\tilde{w})$	$s_{\tilde{w}}$ is linear
=	$\tilde{v}(w(v\tilde{w})$	$s_{\tilde{v}}$ is linear
=	$\tilde{v}((wv)\tilde{w})$	definition of wv

So $wv \in E$.

Observe that we now have binary operation, $\mathbb{K} \times \mathbb{K} \to \mathbb{K}$, $\mathbb{K} \times V \to V$, $W \times \mathbb{K} \to W$, $V \times E \to V$, $E \times W \to W$ and $E \times E \to E$.

We say that \mathbb{K} has type (0,0), V has type (0,1), W has type (1,0) and E has type (1,1). If X has type (i,j), Y has type (k,l) and Z has type (m,n), then we have a binary operation $X \times Y \to Z$ if and only if j = k and (m,n) = (i,l). In particular, if $x, y, z \in \mathbb{K} \cup V \cup W \cup E$, then xy.z is defined if and only if xy.z is defined.

We will now show if xy.z is defined, then xy.z = x.yz. Indeed, almost all of theses equations follows immediately from the definitions, except for $wv.\alpha = w.v\alpha$ and $\alpha w.v = alpha.wv$, there $v \in V, w \in W$ and $\alpha \in E$.

Note that $wv \in E$ and so $wv.\alpha \in E$. So to show that $wv.\alpha = w.v\alpha$ we need to show that they act the same way on V and W. So let $\tilde{V} \in V$ and $\tilde{W} \in W$. Then

	$\tilde{v}((wv)\alpha)) =$	
=	$(\tilde{v}(wv)) \alpha$	definition of mult. in E
=	$(\tilde{v}w)v))lpha$	definition of wv
=	$(\tilde{v}w)(v\alpha)$	α is linear
=	$\tilde{v}(w(vlpha))$	definition of $w(v\alpha)$

B.2 Homework 4 from MTH912

Homework B.2.1. [t in m'] Let \mathbb{F} be a division ring, V a left \mathbb{F} space, W a right \mathbb{F} space, $s : V \times W \to \mathbb{F}$ a bilinear form and \mathcal{N} a series of closed \mathbb{F} -subspace of V. Let $M = M^s_{\mathcal{N}}(V, W)$ be the corresponding McLain group and let $v \in V^{\sharp}$ and $w \in W^{\sharp}$ with $t(v, w) \in M'$. Then $T_v < T_w$. Here $T_v = \bigcap \{E \in \mathcal{N} \mid v \in E\}$ and $T_w = \bigcup \{E \in \mathcal{N} w \in E^{\perp}.$

Proof. Since $t(v, w) \in M$ we have $T_v \leq T_w$. Let $B_v = \{bigcup D \mid v \notin D\}$. Then $v \notin B_v$. Since B_v is closed, $v \notin B_v^{\perp \perp}$ and so $B_v^{\perp} \nleq v^{\perp}$. Thus $[t(v, w), B_v^{\perp}] \neq 0$ and so $w \in w\mathbb{F} = [t(v, w), B_v^{\perp}]$. On the other hand (B_v, T_v) is a jump of \mathcal{N} and by ??

$$M' = \{g \in M \mid [B^{\perp}, g] \le (T^{\perp})^{-} \text{ for all jumps}(B, T) \text{ of } \mathcal{N}\}$$

Thus $w \in [t(v,w), B_v^{\perp}] \leq (T_v^{\perp})^-$. Since $(T_v^{\perp})^- = \bigcup \{D^{\perp} \mid T_v < D \in \mathcal{N}\}$ we conclude that $w \in D^{\perp}$ for some $D \in \mathcal{N}$ with $T_v < D$. Then $D \leq T_w$ and so $T_v < T_w$. \Box

Definition B.2.2. [def:component]

- (a) [a] If H is an ascending subgroup of G. the $\delta_G(H)$ is the minimal length of an ascending sequence from H to G.
- (b) [b] A component of a group is a quasisimple ascending subgroup of G.

Homework B.2.3. [basic components] Let K and L be components of a group G and M a subnormal subgroup of G.

- (a) $[\mathbf{a}] \quad K = L \text{ or } [K, L] = 1.$
- (b) [b] $K \le M$ or [K, M] = 1.

Proof. Let K be a components of G

1°. [1] Let
$$M \leq \subseteq G$$
. If $K \leq \langle K^H \rangle$, then $K \leq M$ or $[K, M] = 1$.

Suppose first that M is normal in G, that is $\delta_G(M) \leq 1$. Put $H = \langle K^G \rangle$ and assume that $K \leq M$. Then $K \cap M \leq K$ and since $K \cap M \neq K$ we get $K \cap M \leq Z(K)$. Since $H \cap M$ normalize K we have $[H \cap M, K] \leq K \cap M \leq Z(M)$ and thus $][H \cap M, K, K] = 1$. Hence also $[K, H \cap M, K] = 1$ and the Three Subgroup Lemma implies that $[K, K, H \cap M] = 1$. Since K is perfect, $[H \cap M, K] = 1$. Since H and M are normal in G and $K \leq H$, $[M, K] \leq [M, H] \leq H \cap M$ and so [M, K, K] = 1. Another application of the three subgroups lemma shows that [M, K] = 1.

Suppose nest tat $\delta_G(M) \geq 2$. The there exists $M \operatorname{asc} M^* \leq G$ with $\delta_{M^*}(M) = \delta_G(M) - 1$. If $K \neq M^*$, then by the previous paragraph, $[K, M^*] = 1$ and so also [K, M] = 1. If $K \leq M^*$, then by induction on $\delta_G(K)$ we have $K \leq M$ or [K, M] = 1. Thus (1°) is proved.

2°. [1.5] Let K and L be components of G with $K \leq \langle K^G \rangle$ and $L \leq \langle L^G \rangle$. Then K = L or [K, L] = 1.

Since $L \leq \langle L^G \rangle$, $L \leq \subseteq G$. Thus by (1°), $K \leq L$ or [K, L] = 1. By symmetry $L \leq K$ or [L, K] = 1 and so (2°) is proved.

Let $(G_{\alpha})_{\alpha < \delta_G(K)}$ be an ascending sequence from K to G.

3°. [2] Suppose that K = L or [K, L] = 1 for all $\beta < \delta$ and all components L of G_{β} with $\delta_{G_{\beta}}(K) = \delta_{G_{\beta}}(K)$. Then $K = K^g$ or $[K, K^g] = 1$ for all $g \in G$ and so $K \leq \langle K^G \rangle$.

If $\gamma \leq \delta$ be minimal with $g \in G_{\gamma}$. Note that $\gamma = 0$, γ is a limit ordinal or $\gamma = \beta + 1$ for some ordinal β . In the first case $g \in K$ and so $K = K^g$. If the second case, $g \notin \bigcup_{\alpha < \gamma} G_{\alpha} = G_{\gamma}$, a contradiction. In the third case g normalizes G_{β} and so $\delta_{G_{\beta}}(K) = \delta_{G_{\beta}}(K^g)$ and K^g is a component of G_{β} . Hence assumption of (3°) imply that $K = K^g$ or $[K, K^g] = 1$.

4°. [3] $K = L \text{ or } [K, L] = 1 \text{ for all components } K \text{ and } L \text{ of } G \text{ with } \delta_G(K) = \delta_G(L).$

Suppose inductively that $K^* = L^*$ or $[K^*, L^*] = 1$ whenever K^*, L^* are components of a group G^* and $\delta_{G^*}(K^*) = \delta_{G^*}(L^*) < \delta_G(K)$. Then the assumptions of (3°) are fulfilled. Thus $K \leq \langle K^G \rangle$. By symmetry, $L \leq \langle L^G \rangle$ and so (4°) follows from (2°).

5°. [4] Let
$$g \in G$$
. Then $K = K^g$ or $[K, K^g] = 1$. In particular, $K \leq \langle K^G \rangle$.

This follows immediately from (4°) .

(a) follows from (5°) and (2°) . (b) follows from (5°) and (1°) .

Homework B.2.4. [component and hp] Let K be a component of G. Then [K, HP(G)] =.

Proof. By ?? $K \leq HP(G)$ or [K, HP(G)] = 1. In the first case K would be locally nilpotent and so all chief-factors of K would be abelian. But K/Z(K) is a non-abelian chief-factor of K.

Definition B.2.5. [def:invert] Let H be a group acting on a abelian group A and I a subset of H and $h \in H$. We say that h inverts A of $a^h = a^{-1}$ for all $a \in A$. We say that I inverts A if each elements of I either centralizes A or inverts A.

Homework B.2.6. [basic invert] Let H be a group acting on an abelian group A.

- (a) [a] If $I \subseteq H$ with $H = \langle I \rangle$, then H inverts A if and only of I inverts I.
- (b) [b] Let $h \in H$ with $h^2 = 1$. Put $I_A(h) = \{a \in A \mid a^h = a^{-1}\}$ and $I_h^* = \{aa^h \mid a \in A\}$.
 - (a) [a] $A \cong I_A(h) \cong I_H^*(h)$ and $A/C_A(h) \cong [A, h]$ as
 - (b) [b] $I_H(a)$ is largest subgroup of A inverted by h and $I^*(h)$ is the smallest subgroup of A whose quotient is inverted by h.
 - (c) $[\mathbf{c}] [A,h] \leq \overline{I}_H(a)$ and $\overline{I}_H^* a \leq C_A(h)$.
- (c) $[\mathbf{c}]$ Suppose H is an finite elementary abelian 2-group. Then there exists a finite series

$$1 = A_0 \le A_1 \le \dots A_m = A$$

of H-invariant subgroups of A all of whose factors are inverted by A.

Proof. (a) Let $i, j \in I$. If i and j centralizes A, or i and j inverts A, then ij centralize A. If one of i and j centralizes A and the other inverts A, then ij inverts A. So the set of elements of A which centralizes or inverts A forms a subgroup of H.

(b:a) Consider the homomorphisms $A \to A, a \to aa^h$ and $A \to A, a \to a^{-1}a^h$. The first has $I_A(h)$ as kernel and $I_A(h)$ as image. The second has $C_A(h)$ as kernel and [A, h] a image.

(b:b) Readily verified.

(b:c) $(a^{-1}a^{h})^{h} = (a^{-1})^{h}a^{h^{2}} = (a^{h})^{-1}a = (a^{-1}a^{h})^{-1}$ and $(aa^{h})^{h} = (a^{h}a^{h^{2}}) = a^{h}a = aa^{h}$.

(c) Let $H = \langle h_1, h_2, \dots, h_n \rangle$ for some $h_i \in H$ and put $H_0 = \langle h_1, \dots, h_{n-1}$. By (b) h_n inverts $[A, h_n]$ and centralizes $A/[A, h_n]$. Since H is abelian, $[A, h_n]$ is H_0 invariant and so H_0 acts on $[A, h_n]$ and $A/[A, h_n]$. By induction on n there exits H_0 invariant subgroups,

$$1 = A_0 \le A_1 \le \dots A_t = [A, h_n] \le A_{t+1} \le \dots A_m = A$$

such that H_0 inverts each of the factors. Note h_n inverts each of the factors A_i/A_{i-1} for $1 \le i \le t$ and centralizes each the factors A_i/A_{i-1} , $t < i \le m$. Thus by (b), H each of the factors.

Homework B.2.7. [char subsolvable] Let G be a group with no non-trivial finite normal subgroup of odd order. Then G is super-solvable if and only if GG is finitely generated and G^2 is nilpotent.

Proof. Suppose first that G is super solvable. Then G is polycyclic and so finitely generated. Moreover, there exists a strong composition series

$$1 = G_0 \le G_1 \le \ldots \le G_k \le G_{k+1} \le G_n = G$$

such that for $1 \leq i \leq k$, G_k/G_{k-1} has odd prime order and for $k < i \leq n$, G_k/G_{k-1} is cyclic of order 2 or ∞ . Then G_k is the unique maximal subgroup of odd order. So G_k is normal in G and so by assumption, $G_k = 1$ and thus k = 0. It follows that for all $1 \leq i \leq n$, $\operatorname{Aut}(G_i/G_{i-1})$ has order at most 2. Thus G^2 centralizes G_i/G_{i-1} . Hence

$$1 = G_0 \cap G^2 \le G_1 \cap G^2 \le \dots G_n \cap G^2 = G^2$$

is a finite normal series for G^2 all of whose factor are centralized by G^2 . Thus G^2 is nilpotent.

Suppose next that G is finitely generated and G^2 is nilpotent. Note that G/G^2 is a finitely generated elementary abelian 2 group and so finite. Since subgroups of finite index in finitely generated group are finitely generated, G^2 is a finitely generated nilpotent groups. Thus every section of G^2 is finitely generated. Let

$$1 = Z_0 \le Z_1 \le Z_m = G^2$$

be the upper central series for G^2 . But $Z_{m+1} = G$. Then each Z_i is G invariant and Z_i/Z_{i-1} an finitely generated abelian group centralized by G^2 . So we can apply B.2.6 with $H = G/G^2$ and $A = Z_i/Z_{i-1}$ to obtain a G invariant series of subgroup

$$Z_{i-1} = Z_{i,0} \le Z_{i,1} \le \dots Z_{i,j_i} = Z_i$$

all of whose factors are inverted by G. Since $Z_{i,j}/Z_{i,j-1}$ is finitely generated there exists a finite series

$$Z_{i,j-1} = Z_{i,j,0} \le Z_{i,j,1} \le Z_{i,j,k_{ij}} = Z_{i,j}$$

of subgroups of $Z_{i,j}$ all of whose factors are cyclic. Since G^2 inverts $Z_{i,j}/Z_{i,j-1}$ each of $Z_{i,j,k}$ are G invariant. Thus the $Z_{i,j,k}$ from a supersolvable series for G and G is supersolvable.

Homework B.2.8. [char series for supersolvable] Let G be a supersolvable group and $p_1 > p_2 > \ldots > p_k$ the order of the strong chief-factors of odd order of G. Then there exists series

$$1 \le S_1 \le S_2 \le \dots S_k \le S_\infty \le G$$

of characteristic subgroups of G such that G/S_{∞} is a finite 2-group, S_{∞}/S_k is a torsion free nilpotent group, and for $1 \leq i \leq k$, S_i/S_{i-1} is a finite p_i -group.

Proof. Let H be the unique maximal subgroup of odd order of G. Let

$$H_0 \leq H_1 \leq \ldots \leq H_k$$

be chief-series series such that $(|H_1/H_0|, |H_2/H_1|, \ldots, |H_k/H_{k-1}|)$ is maximal in lexiographic order. Suppose that $p := |H_i/H_{i-1}| < q := |H_{i+1}/H_{i-1}$ for some $1 \le i < k$. Then H_{i+1}/H_{i-1} is a group of order pq. By Sylow's Theorem H_{i+1}/H_{i-1} has a unique Sylow q-subgroups H_i^*/H_{i-1} . But then

$$H_0 \leq H_1 \leq H_{i-1} \leq H_i^* \leq H_i \ldots \leq H_k$$

is a chief-series of G of higher lexiographic order, a contradiction.

Thus $||H_i/H_{i-1}| \le |H_{i+1}/H_{i-1}$. For $1 \le j \le k$ let i_j be maximal with $|H_{i_j}/H_{i_j-1}| = p_j$. Put $S_j = H_{i_j}$, $S_0 = 1$ and $i_0 = 0$ Then

$$S_{j-1} = H_{i_{j-1}} \le H_{i_{j-1}+1} \le \dots H_{i_j} = S_j$$

is a series all of whose factors have order p_j and so S_j/S_{j-1} is a finite p_j -group. Hence S_j is finite $\{p_1, \ldots, p_j\}$ group. Let x be $\{p_1, \ldots, p_j\}$ element in H and pick l minimal with $x \in S_l$. Then xS_{j-1} is a non-trivial $\{p_1, \ldots, p_j\}$ element in the p_l -group S_l/S_{l-1} and so $l \leq j$. Thus S_j is unique maximal subgroup $\{p_1, \ldots, p_j\}$ -subgroup of H. Hence S_j is a characteristic subgroup of H and G. Note that $S_k = H$.

Replacing G by G/H we may assume from now on that G has no non-trivial normal finite subgroups of odd order. Choose a supersolvable series

$$1 = G_0 \le G_1 \le \ldots \le G_a \le \ldots G_b \le \ldots G_n = G$$

such that

- (i) [i] $|G_i/G_{i-1}| = \infty \ 1 \le i \le a$.
- (ii) [ii] $|G_i/G_{i-1}| = 2$ for $1 \le i \le a$. equals 2 for
- (iii) [iii] $|G_{b+1}/G_b| = 2$ if b < n.
- (iv) [iv] a is maximal with respect to (i)-(iii).
- (v) $[\mathbf{v}]$ b is minimal with respect to (i)-(iv).
We claim that b = n. Suppose not. If a = b then (i)–(iii) are fulfilled with b + 1 in place of a, contradicting the maximality of a. So a < b. Put $\overline{G_{b+1}} = G_{b+1}/\overline{G_{b-1}}$. Then $\overline{G_b}$ has order 2 and $\overline{G_{b+1}}/\overline{G_b}$ is cyclic of infinite order. Pick $x \in G_b \setminus G_{b-1}$ and $y \in G_{b+1}$ with $\langle y \rangle G_b = G_{b+1}$. Suppose that $\overline{x} \in \langle \overline{y} \rangle$. Then $\overline{G_{b+1}}$ is cyclic and the series

$$G_0 \leq \dots G_a \leq \dots \leq G_{b-1} \leq G_{b+1} \leq G_n = G$$

contradiction the maximality of a (if a = b - 1) and the minimality of b if $a \neq b - 1$.

Thus $\overline{x} \notin \langle \overline{y} \rangle$ and $\overline{G}_b = \langle \overline{x} \rangle \times \langle \overline{y} \rangle$. Thus $\overline{G}_b = \langle oy^2 \rangle$. Put $A = G_{b-1} \langle y^2 \rangle$. Then $\overline{A} = \overline{G_{b+1}}^2$ is a characteristic subgroup of $\overline{G_{b+1}}$ and so A is normal in G. Note that A/G_{b-1} is cyclic of infinite order, while AG_b/A and G_{b+1}/AG_b both have order 2. Thus

$$1 = G_0 \le G_1 \le \ldots \le G_a \le \ldots \le G_{b-1} \le A \le AG_b \le G_{b+1} \ldots G_n = G$$

contradiction the maximality of a (if a = b - 1) and the minimality of b if $a \neq b - 1$.

So b = n and G/G_a is a finite of order 2^{n-a} . Let $g \in G$ be a nontrivial element of finite order and let i be minimal with $g \in G_i$. Then gG_{i-1} is an element of finite order in G_i/G_{i-1} and so i > a. Thus G_a is torsion free. Put $m = \max n - a, 1$ and $S_{\infty} = G^{2^m}$. Then S is a characteristic subgroup of G and $S_{\infty} \leq G_a \cap G^2$. By ?? G^2 is nilpotent and so S_{∞} is torsion free and nilpotent. It remains the show that S/S_{∞} has finite order. For $1 \leq i \leq a, G_i/G_{i-1}$ is cyclic of infinite order. Thus $G_i/G_i^{2^m}G_{i-1}$ has order 2^m and so $G_i/(G_i \cap S_{\infty})G_{i-1}$ has order at most 2^m . Thus $G_a/G_a \cap S_{\infty}$ has order at most 2^{ma} and G/S_{∞} has order at most $2^{ma+(n-a)}$.

Bibliography

- [Rob1] Derek J.S. Robinson, Finitess Conditions And Generalized Soluble Groups, Part I Ergebnisse Der Mathematik Und Ihrer Grenzgebiete, Band 62, Springer Verlag 1972.
- [Rob2] Derek J.S. Robinson, Finitess Conditions And Generalized Soluble Groups, Part II Ergebnisse Der Mathematik Und Ihrer Grenzgebiete, Band 63, Springer Verlag 1972.
- [Rob] Derek J.S. Robinson, A Course in the Theory of Groups Graduate Text In Mathematics 80, Springer Verlag **1993**.
- [Rot] Joseph J. Rotman, An Introduction to the Theory of Groups Graduate Text In Mathematics 148, Springer Verlag 1994.