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Chapter 1

Basic Concepts for Infinite Groups

1.1 Classes of Groups and Operators

Definition 1.1.1. [class of groups] A class of groups is class X such that

(i) [i] Each member of X is a group.

(ii) [ii] If G ∈ X and H ∼= G then H ∈ X .

(iii) [iii] All trivial groups are in X .

For example each of the following are classes of groups:

• [a] F , the class of finite groups.

• [b] Fπ, the class of finite π-groups (here π is a set of primes, and a finite group G is a
π-group if all prime divisors of |G| are in π.

• [c] C, the class of cyclic groups.

• [d] A, the class of abelian groups.

• [e] G, the class of finitely generated groups.

• [f] T , the class of trivial groups.

Definition 1.1.2. [extensions] Let X and Y be classes of groups.

(a) [a] The members of X are called X -groups.

(b) [c] We say that X is a subclass of Y and write X ≤ Y if A ∈ Y for all A ∈ X .

(c) [b] XY denotes the class of all groups G such that there exists A E G with A ∈ X and
G/A ∈ Y. A XY-group is also called a X -by-Y group.
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Consider the subnormal series

1 E 〈(12)(34)〉 E 〈(12)(34), (13)(24)〉 E Alt(4) E Sym(4)

The factors of this series are isomorphic to

C2, C2, C3, C2

Thus Sym(4) is a member of ((CC), C)C.
Note that Sym(4) has no non-trivial cyclic subgroup. It follows that Sym(4) is not a

member of C((C(CC))). hence the associate law does not hold for products of classes og
groups. To save parentheses we use the following convention for products. Let a1, a2, . . . an
in a set with a binary operation. Then

a1 · a2 · a3 = a1(a2a3)

and inductively

a1 · a2 · a3 · . . . · an = a1(a2 · a3 · . . . · an)

Lemma 1.1.3. [char ext] Let X1,X2,Xn be classes of groups and G a group.

(a) [a] G ∈ X1X2 . . .Xn if and only if there exists a subnormal series

1 E G1 E G2 E . . . Gn−1 E Gn

of G such that Gi/Gi+1 ∈ Xi for all 1 ≤ i ≤ n.

(b) [b] G ∈ X1 · X2 · . . . · Xn if and only if there exists a normal series

1 E G1 E G2 E . . . Gn−1 E Gn

of G such that Gi/Gi+1 ∈ Xi for all 1 ≤ i ≤ n. (Recall here that “normal series” means
that each Gi is normal in G.

(c) [c] X1 · X2 · . . . · Xn ≤ X1X2 . . .Xn

Proof. (a) and (b) follows easily from the definitions. Since every normal series is a sub-
normal series, (c) follows from (a) and (b).

Definition 1.1.4. [operation] An operation A on the classes of groups is a rule which
assigns to each class of group X a class of group AX such that

(i) [a] AT = T .

(ii) [b] X ≤ AX for each class of groups X .

(iii) [c] AX ≤ AY for each classes of groups X ,Y with X ≤ Y.
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For a class of group X let SX the class of all groups which are isomorphic to a subgroup
of X -group.

For a class of group X let HX the class of all groups which are isomorphic to a homo-
morphic image of a X -group.

Then both S and H are operations.
Define X 0 := T and inductively, X n+1 := X bX . Also put PX :=

⋃∞
n=0X n. Then P is

an operation. Then members of PX are called poly-X -groups.

Lemma 1.1.5. [char solvable] Let G be a group and n ∈ N. Then the following are
equivalent.

(a) [a] G ∈ An.

(b) [b] G(n) = 1.

(c) [c] G ∈ A · A · . . . · A︸ ︷︷ ︸
n−times

.

Here G(n) is inductively defined as G(0) := G and Gn+1 = [Gn, Gn]. Also we often use G′

for G(1), G′′ for G(2) and so on.

Proof. (a) =⇒ (b): Suppose G ∈ An. Since An = An−1A there exists H E G with
H ∈ An−1 and G/H ∈ A. Hence G/H is abelian and so G′ ≤ H. By induction on n,
H(n−1) = 1 and so

G(n) = (G′)(n−1) ≤ H(n−1) = 1

(b) =⇒ (c): Suppose G(n) = 1 and consider the normal series

1 = G(n) E G(n−1) E . . . G(1) ≤ G0 = G

Since G(i−1)/G(i) is abelian, 1.1.3(b) shows that G ∈ A · A · . . . · A︸ ︷︷ ︸
n−times

.

(c) =⇒ (a): Suppose that G ∈ A · A · . . . · A︸ ︷︷ ︸
n−times

. Then by 1.1.3(c), G ∈ An.

Definition 1.1.6. [def:solvable] A group G is called in solvable if and only if its is polya-
belian, that is if G ∈ PA.

Combining 1.1.5 and 1.1.3 we see G is solvable iff G has a subnormal series with abelian
quotients, iff G(n) = 1 for some n ∈ N and iff G has a normal series with abelian factors.

Definition 1.1.7. [A-closed] Let A and B be operations.

(a) [a] A class of groups X is called A-closed if AX = X .

(b) [b] The operation AB is defined by (AB)X = A(BX for all classes of groups X .
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(c) [c] A is called an closure operation if for all classes of groups X , AX is A-closed.

X is S closed if and only if every subgroup of an X -group is a X -group.

The classes of groups F ,G,A,Fφ, all are S and H closed.

A is a closure operator iff A(AX ) = AX for all classes of groups X and so iff A = A2.

Definition 1.1.8. [def: subdirect product]

(a) [a] Let (Gi, i ∈ I) be a family of groups and H a subgroup of ×i∈I Gi such that for
all i ∈ I the projection of H onto Gi is onto. Then H is called a subdirect product of
(Gi, i ∈ I). More generally we will also call any group isomorphic to a subdirect product
a subdirect product.

(b) [b] Let X be a class of groups. Then RX is the class of all groups which are isomorphic
to subdirect product of a family of X -groups. The members of RX are called residually
X -groups.

Lemma 1.1.9. [subdirect product] let G be a group.

(a) [a] Let (Gi, i ∈ I) be a family of normal subgroups of G. Then G/
⋂
i∈I Gi is a subdirect

product of (G/Gi, i ∈ I).

(b) [b] Let (Hi, i ∈ I) be a family of groups Then G is isomorphic to a subdirect product
of (Gi, i ∈ I) iff there exists a family of (Gi, i ∈ I) of normal subgroups of G such that⋂
i∈I Gi = 1 and G/Gi ∼= Gi for all i ∈ I.

(c) [c] G is a residually X group iff for all 1 6= a ∈ G there exists a normal subgroup Ga
of G such that a /∈ Ga and G/Ga ∈ X .

Proof. (a) Define α : G →×i∈I G/Gi, h → (aGi, i ∈ I). Then kerα =
⋂
i∈I Gi = 1. Also

the image of α is clearly of subdirect product of (G/Gi, i ∈ I). So G/
⋂
i∈I Gi

∼= G/ kerα ∼=
Imα is a subdirect product of (Hi, i ∈ I).

(b) Suppose there exists a family of (Gi, i ∈ I) of normal subgroups of G such that⋂
i∈I Gi = 1 and G/Gi ∼= Gi for all i ∈ I. Then by (a) G ∼= G/

⋂
i∈I Gi is a subdirect

product of (G/Gi, i ∈ I). Since ×i∈I G/Gi
∼= ×i∈I Hi, G is also a subdirect product of

(Hi, i ∈ I)

Suppose next that G is a subdirect product of (Hi, i ∈ I). Let Gi be the kernel of the
project of H onto Gi. Then clearly

⋂
i∈I Gi = 1 and G/Gi ∼= Hi.

(c) Suppose G is a residually X groups. G is a subdirect product of a family (Hi, i ∈ I)
of X groups. By (b) there exists a family (Gi, i ∈ I) of normal subgroups of G with⋂
i∈I Gi = 1 and G/Gi ∼= Hi. Thus G/Gi is an X groups. Let 1 6= a ∈ G. Since

⋂
i∈I Gi = 1

there exists i ∈ I with a /∈ Gi. So the second statement in (c) holds with Ga = Gi.

Suppose next that for each 1 6= a ∈ G there exists a normal subgroup Ga of G such that
a /∈ Ga and G/Ga ∈ X . Then

⋂
a∈G] Ga = 1 and so by (b), G is a subdirect product of the

family of X -groups, (Ga, a ∈ G]). Thus G is residually X .
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1.2 Varieties

We will consider classes of groups which are R and H closed. It will turn out that these
are exactly the so called varieties of groups:

Let I be a set. Recall that a free group on I is a groups generated by a family x = (xi, i ∈
I) of elements such that for each group G and each family of elements y = (yi, i ∈ I) ∈ GI ,
there exists a unique homomorphism αy : F → G with αy(xi) = yi for all i ∈ I. The call
the elements of F words in (xi, i ∈ I). Note that each word θ ∈ F can be uniquely written
as

θ = xi1m1
. . . xmkik

where k is a non-negative integer, il ∈ I, il 6= il+1 and ml is a non-zero integer. Also

αy(θ) = yi1m1
. . . ymkik

We will also write θ(y) for αy(θ).

If θ is a word and G is group define

θ(G) := 〈αy(θ) | y ∈ GI〉 = 〈θ(y) | y ∈ GI

For example 1F (G) = 1, x1(G) = G, [x1, x2](G) = G′, and [[x1, x2], [x3, x3](G) = G′′

More generally if W ⊆ F is a set of words we define

W (G) = 〈Gθ | θ ∈W = 〈αy(θ) | y ∈ GI , θ ∈W 〉

The variety V(θ) defined by θ is the class of all groups G such that θ(G) = 1, so G ∈ V(θ)
if and only if

ym1
i1

. . . ymkik = 1 for all y ∈ GI

For example V(1) is the class D of all groups, V(x1) is the class T of trivial groups and
V([x1, x2]) is the class A of abelian groups.

More generally if W is a set of words the variety V(W ) defined by W is the class of all
groups G such that W (G) = 1. And a variety of groups is the variety defined by some sets
of words.

Lemma 1.2.1. [onto hom] Let I be a set, J ⊆ I, F a free group on I, H a groups and
y ∈ HJ . Suppose that |I \ J | ≥ |H|. Then there exists an onto homomorphism β : F → H
with β(xj) = yj for all j ∈ J .

Proof. Since |I \ J | ≥ |H| there exists an onto function τ : I \ J → J . Define z ∈ HI by
zi = τ(i) of i /∈ J and zi = yi if i ∈ J . Then the lemma holds with β = αz.
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Definition 1.2.2. [def:wx] Let X be a class of groups and F a free group of infinite rank
on (xi, i ∈ Z+).

W (X ) = {w ∈ F | w(G) = 1 for all G ∈ X}

Proposition 1.2.3. [char variety] Let X be class of groups. The the following are equiv-
alent:

(a) [a] X is H and R closed.

(b) [b] X = V(W (X ))

(c) [c] X is a variety of groups.

Proof. It is easy to verify that a variety of groups is H and R closed (see Homework 1).
Also (b) implies (c). So we just need to show that (a) implies (b). Assume X is H and
R closed and put W = W (X ). Clearly X ≤ V(W ). So we just need to show that any
G ∈ V(W ) is an X -group. Note that for any θ ∈ F \W there exists a X -group Hθ with
θ(Hθ) 6= 1. Let I be an infinite set with cardinality larger that |G| and any |Hθ|, θ ∈ F \W
(For example J =

⊎
θ∈T Hθ ] N ]G.) Let FI be a free group on (zi, i ∈ I). By 1.2.1 there

exists an onto homomorphism α : FI → G. Put M = kerα. We will now show

1◦. [1] Let a ∈ FI \M , then there exists Ka E FI with FI/Ka ∈ X and a /∈ Ka.

Indeed let a = zm1
i1

. . . zmkik with il ∈ I and mk ∈ Z]. Since Z+ is infinite, there exists
j1, . . . , jk ∈ I with is = it if and only if js = jt. Put

θ := xm1
j1
. . . xmkjk ∈ F

ui = ziM ∈ FI/M and u = (ui)i∈I ∈ (FI/M)I .
Then

θ(u) = um1
j1
. . . umkjk = zm1

i1
. . . zmkik M = aM 6= 1F/M

Hence θ(FI/M) 6= 1 and since FI/M ∼= G also θ(G) 6= 1. As ρ(G) = 1 for all ρinW this
implies that θ ∈ F \W . Since θ(Hθ) 6= 1 there exists y ∈ HI

θ with θ(y) 6= 1. Since I is
infinite

|I \ {il | 1 ≤ l ≤ k}| = |I| ≥ |Hθ|

Thus 1.2.1 there exists an onto homomorphism β : FI → Hθ with β(zl) = yl for all
l ∈ {i1, . . . ik}. Then

β(a) = ym1
j1

. . . ymkjk = θ(y) 6= 1

and so a /∈ kerβ. Also FI/ kerβ ∼= Imβ = Hθ ∈ X and so (1◦) holds with Ka := kerβ.

Put K :=
⋂
a∈Fi\M Ka. If a ∈ FI \M , then a /∈ Ka and so also a /∈ K. Thus K ≤ M .

By 1.1.9(a), FI/K is a subdirect product of the family of Xgroups (FI/Ka, a ∈ FI \M).
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Since X is R-closed this means that FI/K is a X -group. Since X is H-closed, any quotient
of FI/K is also a X -group. As

G ∼= FI/M ∼= FI/K
/
M/K

we conclude that G ∈ X and so X = V(W ).

Definition 1.2.4. [def:hom] Let H and G be groups.

(a) [a] Hom(H,G) is the set of homomorphism from H to G.

(b) [b] End(G) is the set of endomorphism of G, that is End(G) = Hom(G,G).

(c) [c] A subgroup A of G is called fully invariant in G, if α(A) ≤ A for all α ∈ End(G).

(d) [d] A subgroup A of G is called characteristic in G if α(A) ≤ A for all α ∈ Aut(G).

See Homework 1 for example if subgroups which are characteristic but not fully invariant.

Lemma 1.2.5. [hom fg] Let F be a free group on the set I, W ⊆ F and G a group.

(a) [a] Hom(F,G) = {αy | y ∈ GI}.

(b) [b] End(F ) = {αy | y ∈ GI}.

(c) [c] W (G) = 〈β(W ) | β ∈ Hom(F,G)〉.

(d) [d] W (F ) = 〈β(W ) | β = End(F )}〉.

Proof. (a) follows immediately from a definition a free group. (b) is the special case F = G
in (a). (c) follows from (a) and the definition of W (G). (d) is the special case F = G in
(c).

Lemma 1.2.6. [full invariant] Let F be a free group and W ≤ F . Then the following are
equivalent.

(a) [a] W = W (F ).

(b) [b] W is fully invariant in F .

Proof. By definition, W is full invariant in F iff β(W ) ≤ W for all β ∈ End(F) and so if
and only if 〈β(W ) | β ∈ End(F)〉 ≤ W . Since W = idF (W ) ≤ 〈β(W ) | β ∈ End(F)〉, this
holds iff W = 〈β(W ) | β ∈ End(F)〉 and so by 1.2.5(d), iff W = W (F ).
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1.3 Series

Definition 1.3.1. [def:action]

(a) [a] An actions (of groups) is a triple (A,G, α), where A and G are groups and α :
A→ Aut(G) is a homomorphism. We usually will write ga for g.aα and call (A,G) an
action. We also will say that say that A acts on G and that G is an A-group.

(b) [b] Suppose A acts on G. A subgroup H of G is called A-invariant if Ha = H for all
a ∈ A. We also will say that H is an A-subgroup

(c) [c] We say that an action of A on G is simple, if there exists no proper normal A-
subgroup of G. In this case we call G a simple A-group.

(d) [d] An action is called faithful if α is 1-1.

(e) [e] If G is an A-group, S ⊆ G and T ⊆ A, then CS(T ) = {s ∈ S | st = s for all t ∈ T}
and CT (S) = {t ∈ T | st = s for all s}. CA(G) is called the kernel of the action. Note
here that CA(G) = kerα.

Definition 1.3.2. [def:series] Let G be a group, A a group acting on G, H an A-invariant
subgroup of G and H am A-invariant subgroup of G. An A-series from H to G is set N
such that

(i) [i] If D ∈ N then D is an A- subgroup of G containing H.

(ii) [ii] H ∈ N and G ∈ N .

(iii) [iii] N is totally ordered with respect to inclusion, that is if D,E ∈ N then D ≤ E
or E ≤ D.

(iv) [iv] N is closed under intersections and unions, that is if ∅ 6=M⊆ N , then
⋂
M∈ N

and
⋃
M∈ N .

(v) [v] For D ∈ N \H define D− :
⋃
{E ∈ N | E < D}. Then D− ED.

A A-series of G is a A-series from 1 to G.

A series from H to G is a 1-series from H to G.

Observe that a finite series of G is such a set of subgroups {N0, N1, N2, . . . Nk} of G
such

1 = N0 EN1 EN2 E . . . Nk−1 E Nk = G

Let K be a field, Ω a set and V a K-space with basis (vi, i ∈ Ω), Observe that Sym(Ω)
acts on V via vgi = vig for all i ∈ Ω, g ∈ Sym(Ω). Let V0 = {

∑
i∈Ω λivi |

∑
i∈Ω λi = 0}.

Then
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0 ≤ V0 ≤ V

is a normal Sym(Ω)-series on V . Let p be a prime, then

0 . . . pk+1Z ≤ pkZ ≤ . . . p2Z ≤ pZ ≤ Z

is a normal series of Z.

Definition 1.3.3. [def:basic series] Let G be a group, A a group acting on G, H an
A-subgroup of G, and N an A-series from H to G

(i) [a] If D ∈ N \ {H} with D 6= D− then D/D− is called a factor of N and (D−, D) is
called a jump of N

(ii) [b] N is called a normal if D E in G for all D ∈ N .

(iii) [c] N is called an A-composition series from H to G if each factor of N is a simple
A-group,

(iv) [d] N is called an A-chief series from H to G if N is a normal and no proper subgroup
of a factor of N is invariant under A and G.

(v) [e] N is called ascending if N is well-ordered with respect to inclusion, that is every
non empty subset of N has a minimal element.

(vi) [f] N is called descending if N is well-ordered with respect to reverse inclusion, that
is every non empty subset of N has maximal element.

The series

0 . . . pk+1Z ≤ pkZ ≤ . . . p2Z ≤ pZ ≤ Z

is a descending compositions series for Z. We claim that Z does not have an ascending
compositions series. Indeed, let N be any ascending series of Z and let D be the minimal
element of N \ {1}. Then D− = 1 and so D ∼= D/D− is isomorphic to a factor of N .
Since D is a non-trivial subgroup of Z, D ∼= Z and so D is not simple. Thus N is not a
composition series.

Lemma 1.3.4. [easy jumps] Let N be a series from H to G.

(a) [a] Let B, T ∈ N with B < T , then (B, T ) is a jump of N if and only if C = B or
C + T for any C ∈ N with with B ≤ C ≤ T .

(b) [b] Let X ⊆ G with X * H. Put BX :=
⋃
{D ∈ N | X * D} and Tx =

⋂
{E ∈ N |

X ⊆ E}. Then BX ∪X ⊆ TX and one of the following holds:

1. [1] X ⊆ BX = TX and X is infinite.
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2. [2] X * BX < TX and (BX , TX) is the unique jump of N with X ⊆ TX and
X * BX .

Proof. (a) Let (B, T ) is a jump and suppose C ∈ N with B ≤ C ≤ T . Since (B, T ) is a
jump, B = T−. If C 6= T then C ≤ T− = B by definition of T−. Thus C = B.

Suppose now that C = B or C = T for all C ∈ N with B ≤ C ≤ T . Let D ∈ N
with D < T . The B ≤ D or D ≤ B. In the former case we have B ≤ D < T and so
the assumption of (B.T ) implies B = D. So in any case D ≤ B and thus T− ≤ B. Since
B < T , we also have B ≤ T− and so B = T− and (B, T ) = (T−, T ) is a jump of N .

(b) Let D ∈ N with X * D and E ∈ N with X ⊆ E. Then E * D and so D ⊆ E.
Thus BX ⊆ TX . Clearly X ⊆ TX .

Suppose that X ⊆ BX . Then TX ⊆ BX and so TX = BX . Moreover for each x ∈ X
there exists Dx ∈ N with x ∈ Dx but X * Dx. Let D =

⋃
x∈X Dx. Then X ⊆ D and so

D 6= Dx for all x ∈ X. Since N is totally ordered this implies that X is infinite.

Suppose next that X * BX . Then BX ⊂ TX . Let D ∈ N with BX ≤ D ≤ TX . If
X ⊆ D, then TX ≤ D and so D = TX . If X * D, then D ≤ BX and so D = BX . Hence by
(a), (BX , TX) is a jump.

Now let (B, T ) be any jump with X ⊆ T and X * B. Then by definition of BX and
TX ,

B ≤ BX < TX ≤ T

Since (B, T ) is a jump, (a) implies B = BX and T = TX .

Lemma 1.3.5. [completion] Let S be a set and N a chain of subsets of § (That is every
member of N is a subset of S and if D,E ∈ N then D ⊆ E or E ⊆ D) . Let N ∗ =
{
⋂
M,

⋃
M | ∅ 6=M⊆ N}. Then N ∗ complete chain of subsets of S, that is N ∗ is a chain

of subsets of N and is closed under unions and intersections.

Proof. Let D ∈ N ∗. Then there exists D ⊆ N with D =
⋂
D or D =

⋃
D. In the

first case put D̃ = {A ∈ N | D ⊆ A} and note that D =
⋂
D̃. In second case put

D̃ = {A ∈ N | A ⊆ D} and notet that D =
⋂
D̃. D is either the intersection of a subset

of N which is closed under supersets or the unions of subset of N which is closed under
subsets.

We will first show that

1◦. [1] N ∗ is a chain.

For this let D,E ∈ N ∗. Suppose first that D =
⋂
D, E =

⋂
E with D, E subsets of N .

Suppose D * E . Then there exists B ∈ E with D * B. Since D ⊆ A for all A ∈ D, we get
A * B and so B ⊆ A for all A ∈ D. Thus B ⊆

⋂
D and so also E ⊆ D.

Suppose next that D =
⋂
D and E =

⋃
E with D, E subsets of N . Suppose D * E.

Then D * B for all B ∈ E . Thus A * B for all A ∈ D and so B ⊆ A. Since this holds for
all A ∈ D and all B ∈ E , E =

⋃
E ⊆ D = D.
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Suppose next that D =
⋃
D and E =

⋃
E with D, E subsets of N . Suppose D * E.

Then A * E for some A ∈ E . It follows that A * B for all B ∈ B and so B ⊆ A. Thus
E =

⋃
R ⊆ A and so also E ⊆ D. Thus (1◦) holds.

Next let M be a nonempty chain in N ∗. Let M = {Di | i ∈ I} ∪ {Ej | j ∈ J} such
that Di =

⋂
Di, where Di ⊆ N is closed under supersets, and Ej =

⋃
Ej , where Ej ⊆ N is

closed under subsets.

2◦. [2]
⋂
M∈ N ∗.

Put D =
⋂
i∈I Di and E =

⋂
j∈J Ej . Then

⋂
M = D ∩ E. Observe that D =⋂(⋃

i∈I Di
)

and so D ∈ N ∗. If E ∈ N ∗, the since N ∗ is a chain D ∩E = D or D ∩E = E.
In either case D ∩ E ∈ N ∗. So to complete the proof of (2◦) to show that E ∈ N ∗.

Put E =
⋂
j∈J Ej . We claim that

(∗)
⋃
E ≤ E ≤

⋂
(N \ E)

Indeed let A ∈ E . Then A ∈ Ej for all j ∈ J and so A ≤
⋂
Ej = Ej and A ≤

⋂
j∈J Ej =

E. Thus
⋃
E ≤ E.

Also if B ∈ N\E , the B /∈ Ek for some k ∈ J . Since Ek is closed under subsets, this means
B * X and X ⊆ B for all X ∈ Ek. Thus Ek =

⋃
Ek ≤ B and E =

⋂
j∈J Ej ≤ Ek ≤ B.

Since thus holds for all B ∈ N \ E , E ≤
⋂

(N \ E). So (*) is proved.

If
⋂
N \ E ⊆ E we conclude that E =

⋂
N \ E ∈ N ∗.

So suppose that
⋂
N \ E * E. Since E =

⋂
j∈J Ej this means that

⋂
N \ E ⊆ Ek for

some k ∈ J . Let A ∈ N ⊆ E . It follows that A * Ek and hence A * B for B ∈ Ek. In
particular, A /∈ Ek. We proved that N \ E ⊂ N \ Ek and so Ek ⊆ E . As E ⊆ Ek, we have
Ek = E . Thus

E =
⋂
j∈J

Ej ≤ Ek =
⋃
Ek =

⋃
E

and (*) gives E =
⋃
E ∈ N ∗.

3◦. [3]
⋃
M∈ N ∗.

Put D =
⋃
i∈I Di and E =

⋃
j∈J Ej . Then

⋃
M = D ∪ E. Observe that E =

⋃⋃
i∈I Ei

and so E ∈ N ∗. If D ∈ N ∗, then since N ∗ is a chain D ∪ E = D or D ∪ E = E. In either
case D ∪ E ∈ N ∗. So to complete the proof of (3◦) to remains show that D ∈ N ∗.

Put D =
⋂
i∈I Di. We claim that

(∗∗)
⋃

(N \ D) ≤ D ≤
⋂
D

Indeed let A ∈ D. Then A ∈ Di for all i ∈ I and so Di
⋃
Di ≤ A. Thus D =

⋃
D ≤ A

and so D ≤
⋂
D.
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Also if B ∈ N \D, then B /∈ Dk for some k ∈ I. Since Dk is closed under supersets, this
means X * B and B ⊆ X for all X ∈ Dk. Thus B ≤

⋂
Dk = Dk and B ≤ Dk ≤

⋃
i∈I Di =

D. Since thus holds for all B ∈ N \ E ,
⋃

(N \ D) ≤ D. So (**) holds.

If D ≤
⋃

(N \ D) we conclude that D =
⋃
N \ D ∈ N ∗.

So suppose that D �
⋃
N \ D. Since D =

⋃
i∈I Di this means that Dk �

⋃
N \ D for

some k ∈ I. Let A ∈ N ⊆ D. It follows that Dk * A. Since Dk =
⋂
Dk, B * A for B ∈ Dk.

In particular, A /∈ Dk. We proved that N \ D ⊂ N \ Dk and so Dk ⊆ D. As DsubseteqDk,
we have Dk = D. Thus

D =
⋃
i∈I

Dk ≥ Dk =
⋂
Dk =

⋂
D

and (**) gives D =
⋂
D ∈ N ∗.

Lemma 1.3.6. [char comp] Let G be an A-group and N an A-series from H to G. Order
the set of A-series from H to G by inclusion.

(a) [a] If N is a maximal A-series from H to G, then N is an A-composition series from
H to G.

(b) [b] Suppose N is normal. Then N is a maximal normal series from H to G if and
only if N is a chief-series from H to G.

(c) [c] There exists a maximal A-series from H to G containing N . In particular, there
exists a A-composition series from H to G containing N .

(d) [d] Suppose N is normal. There exists a maximal normal A-series from H to G
containing N . In particular, there exists a A-series from H to G containing N .

Proof. (a) Suppose cN is a maximal A-series from H to G. Let (B, T ) be a jump of N and
let D be a A-invariant normal subgroup of T/B. Then D = D/B for normal A-subgroup
of G with B ≤ D ≤ T . It is readily verified that N ∪ {D} is an A-series from H to G. So
the maximality of N shows that D ∈ N and so D = B or D = T . Thus T/B is a simple
A-group and N is an A-composition series.

(b) If N is a maximal normal series from H to G, then the argument in (a) shows that
N a chief-series. (Alternatively letA∗G be the free product of A and G. Then A∗G acts on
G and a normal A-series from H to G is the same as A∗G series. Also an A∗G-composition
series is the same an A-chiefseries.)

Now let N be a A-chief series from H to Gb andM a normal A-series from H to G with
N ⊆M. Let M ∈M\ {H}. Put T =

⋂
{E ∈ N |M ≤ E} and B =

⋃
{D ∈ N |M � D}.

Since N is totally order M � D for E ∈ N implies D ≤M . Thus B ≤M ≤ T . If M = T ,
then M ∈ N . So suppose M 6= T . Then also B 6= T and by ??(??), (B, T ) is a jump of N .
SinceM is normal, M/B is G and A-invariant subgroup of T/B. Since N is a A-chiefseries,
this implies M/B = 1 and so M = B ∈ N .

Thus M = N .
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(c) By (a) it suffices to proof that N is contained in a maximal A-series from H to G.
Let (Mi, i ∈ I) be a chain of A-series from H to G. Let M =

⋃
i∈IMi and observe that

M is a chain of A subgroups of G containing H and G. Let M∗ be the set of intersection
and unions of non-subsets of M. Using 1.3.5 we conclude that M∗ is a set of A-invariant
subgroups of G which is closed under intersection and unions. We claim that M∗ is an
A-series. 1.3.2(i)-iv are obvious. So let (B, T ) be a jump of M∗. We need to show that
BET . For i ∈ I define Bi :=

⋃
{D ∈ Ni | T � D} and Ti =

⋃
{E ∈ Ni | T � E}. SinceM∗

is a chain, Bi =
⋃
{D ∈ Ni | D < T}. Thus Bi ≤ B < T ≤ Ti. Thus by 1.3.4(b), (Bi, Ti)

is a jump of Ni and so Bi E Ti. In particular, Bi E T . By definition of M∗, B =
⋃
B or

B =
⋂
B for non-empty subset B of M. Suppose first that B =

⋃
B. Let D ∈ B, then

D ∈ Ni for some i ∈ I. Since D ≤ B < T we get B ≤ Bi. It follows that

B =
⋃
B ≤

⋃
i∈I

Bi ≤ D

and so B =
⋃
i∈I Bi. Since each Bi is normal in T we conclude that B E T .

Suppose next that B =
⋂
B. Since T � B, there exists D ∈ B with T � D. Since M∗

is chain this gives D < T and so D ≤ B. Thus D ≤ B =
⋂
B ≤ D and B = D. So B is a

union of members of M and so we are done by the previous case.
(d) Either use the same argument as in (c) or apply (c) to A ∗G.

Definition 1.3.7. [def:class of action]

(a) [b] Two actions (A,G) and (A∗, G∗) are called isomorphic and we write (A,G) ∼=
(A∗, G∗) if there exist isomorphisms β : A → A∗ and γ :→ G∗ with gaγ = (gγ)aβ for
all g ∈ G and a ∈ A.

(b) [c] A class of actions is class X such that

(a) [a] The members of X are faithful actions

(b) [b] If D ∈ X and D∗ ∼= D then D∗ ∈ X .

(c) [c] (1, 1) ∈ X .

(c) [d] If X and Y are classes of groups, then [X ,Y] denotes of class of all faithful actions
(A,G) with A ∈ X and H ∈ Y

Definition 1.3.8. [def:xa series] Let X be a class of actions.

(a) [z] We say that A acts X on a group G, or that G is a X −A group, if (A/CA(G), G) ∈
X .

(b) [a] An A-series N from H to G is called called X -A-series if each factor of N is an
X −A-group.

(c) [b] We say that A acts poly-X on G, or that G is poly X − Agroup, if there exists G
is exists a finite normal X −A-series on G.
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(d) [c] We say that A acts hyper-X on G, or that G is hyper X − A-group, if there exists
an ascending normal X −A-series on G.

(e) [d] We say that A acts hypo-X on G, or that G is hypo X -group, if there exists G is
exists descending normal X −A-series on G.

(f) [e] If A = G acting by conjugation on G we drop the prefix A in (b) to (c).

We usually write [X , ∗] in place of [X ,D] and [X , 1] in place of [X , T ]. Recall here that
T denotes the calls of trivial groups and D the class of all groups.

If X is the calls of simple actions, then an X −A-series is just an A-composition series.

If X is a class of groups, then a poly [∗,X ]− 1-group is just a poly-X -group. So a poly
[∗,A]− 1-group, is a poly abelian group, that is a solvable group. A hyper [∗,X ]-group, is
called an hyper X -group and a hypo [∗,X ]− 1-group, is called an hypo X -group. Note that
a hyper X -group is a group with normal ascending series all of whose factors are X -groups.

A poly [1, ∗]-groups is called nilpotent. So a group is nilpotent if and only if there exists
a finite normal ascending series

N0 = 1 ≤ N1 ≤ N2 ≤ . . . ≤ Nk−1 ≤ Nk = G

such that (G/CG(E) ∈ [1, ∗] for all factors E of the series. Note that thus just means
that G/CG(E) = 1, that is G centralizes E. In other words, [Ni, G] ≤ Ni−1 for all 1 ≤ i ≤ k.

A hyper [1, ∗]-groups is called a hypercentral group and a hypo [1, ∗]-group is called a
hypocentral group. So a hypercentral group is a group G with a normal series all of whose
factors are centralized by G.

Consider the chief-series

1 E Alt(3) E Sym(3)

of Sym(3). The factors of this series are E1 = Alt(3)/1 ∼= C3 and E2 = Sym(3)/Alt(3) ∼= C2.
Moreover, CSym(3)(E1) = Alt(3), Sym(3)/CSym(3)(E1) ∼= C2, CSym(3)(E2) = Sym(3) and
Sym(3)/CSym(3)(E2) = 1. So the group induced on each of the factors is abelian and so
Sym(3) is an poly-[A, ∗]-group.

Consider the chief-series

1 EK := 〈(12)(34), (13)(23)〉E Alt(4) E Sym(4)

of Sym(4). The factors of this series are E1 := K/1 ∼= C2 × C2, E1 = Alt(4)/K ∼=
C3 and E2 = Sym(4)/Alt(4) ∼= C2. Moreover, CSym(4)(E1) = K,Sym(4)/CSym(4)(E1) ∼=
Sym(3), CSym(4)(E2) = Alt(4), Sym(4)/CSym(4)(E2) ∼= C2, CSym(4)(E3) = Sym(4) and
Sym(4)/CSym(4)(E3) = 1. Since the group induced on E1 is not abelian, we conclude that
Sym(4) is not poly-[A, ∗]-group.

We will later see that every poly-[A, ∗] group is solvable. So the class of poly-[A, ∗]
groups is a proper subclass of S.
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Lemma 1.3.9. [factors of an ascending series]. Let N be an A-series from H to G,
and M an A-subgroup of G.

(a) [a] Define N ∧M := {D ∩M | D ∈ N}. Then N is an A-series from H ∩M to M .
If (B̃, T̃ ) is a jump of N ∧M then there a jump (B, T ) of M such that B̃ = B ∩M ,
T̃ = T ∩M and T̃ /B̃ ∼= (T ∩M)B/B as an A-group. In particular, any factor of N ∧M
is isomorphic to an A-subgroup of a factor of N .

(b) [b] Suppose M E G and N is ascending. Then N := NM/M := {DM/M | D ∈ N}
is an ascending A-series from HM/M to G/M . Moreover, if (B, T ) is a jump of N ,
then there exists a jump (B, T ) of N with B = BM/M,T ∼= TM/M and T/B ∼=
T/(T ∩M)B. In particular, each factor of N is isomorphic to an A-quotient of a factor
of N .

Proof. (a) Readily verified.

(b) The first three axioms of an A series are obvious. Let M be an non-empty subset
of N and define M = {D ∈ N | DN/N ∈M.

1◦. [1] Put B =
⋃
M. Then

⋃
M = BM/M .

Let x ∈ BM/M , then x = eM for some e ∈ B. Pick D ∈ M with e ∈ D. Then
x = eM ∈ DM/M ∈M. and so BM/M ⊆

⋃
M.

Conversely if e ∈
⋃
M, the e ∈ D for some D ∈ M. Note that D = DM/M for

some D ∈ M and then e = eM for some e ∈ D. Thus e ∈ B and e ∈ BM/M . Hence⋃
M⊆ BM/M and (1◦) holds.

2◦. [2] Let T be the minimal element M (which exists since N is well ordered). Then⋂
M = TM/M .

Let D ∈ M. Then D = DM/M for some D ≤ M. Since T is the minimal element of
M we get T ≤ D and so TM/M ≤ DM/M = D and TM/M ≤

⋂
M.

Conversely, T ∈M and so TM/M ≤M. Hence
⋂
M≤ TM/M and (2◦) is proved.

By (1◦) and (2◦), M is closed under unions and intersection.

Noe let (B, T ) be a jump of cM . Let B =
⋃
{D ∈ N | DM/M = B̃. Then (for example

by (1◦) applied with M = {B}, BM/M = B. Let T be minimal in N with TM/M = T .
Since BM/M = φB < T = TM/M we have BM < TM and so T � B. Since N is totally
ordered, B < T . We claim that (B, T ) is a jump of N so let D ∈ N with B ≤ D ≤ T . Then
B = BM/M ≤ DM/M ≤ TM/M = T and since (B, T ) is a jump of N we conclude that
DM/M = B or DM/M = T . In the first case the definition of B shows that D ≤ B and so
D = B. In the second case the minimality of T gives, T ≤ D and so D = T . Hence (B, T ) is
a jump. Since N is a series this implies that BET . Hence also B = BM/M ETM/M = T
and so N is a series.

We compute

B/T = TM/M
/
BM/M ∼= TM/BM = T (BM)/BM
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∼= T/T ∩BM = T/(T ∩B)M ∼= T/B
/

(T ∩M)B/B

and so also the remaining statements in (b) are proved.

Definition 1.3.10. [def:s for action] Let X be a class of actions.

(a) [a] [id,S]X denotes the class of all actions isomorphic to an action (A/CA(H), H),
where (A,G) ≤ X and H is an A-subgroup of G.

(b) [c] [S, id]X denotes the class of all actions isomorphic to an action (B,G), where
(A,G) ≤ X and B is a A-subgroup of G.

(c) [d] SX denotes the class of all actions isomorphic to an action (B/CB(H), H), where
(A,G) ≤ X , B ≤ A and H is an B-subgroup of G.

(d) [b] HX denotes the class of all actions isomorphic to an action (A/CA(H), G/H),
where (A,G) ≤ H and H is a normal A-subgroup of G.

Note that SX = [id,S][S, id]X , but in general SX 6= [S, id][id,S]X .

Corollary 1.3.11. [s h a hyp] Let X be a class of actions, A a group, G a hyper X −A-
group and M an A-subgroup of G.

(a) [a] If X is [id,S] closed, then M is a hyper X −A-group.

(b) [b] If X is H-closed and M E G, then G/M is a hyper X −A-group.

Proof. This follows immediately from 1.3.9.

Corollary 1.3.12. [s hyp] Let X be class of groups, G a hyper X -group and M ≤ G.

(a) [a] If X is S-closed, then Hyp(X ) is S-closed.

(b) [b] If X is H-closed, then Hyp(X ) is H-closed.

Proof. (a) Since S is [S, id] closed, M acts hyper X on G. So (a) follows from 1.3.11(a).

(b) By ??(??), G acts hyper X on G/M . Since M acts trivially on G/M , also G/M
acts hyper X in G/M .

Corollary 1.3.13. [zg cap n]

(a) [a] Subgroups and quotients of hypercentral groups are hypercentral.

(b) [b] Let M be a normal subgroup of the hypercentral group G, then G acts hyper centrally
on G. In particular, M ∩ Z(G) 6= 1.

Proof. Since [1, ∗] is S and H closed, we can apply the previous two corollaries.
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1.4 Hyper Sequences

Definition 1.4.1. [def:ascending sequence] Let G be an A-group, H an A-subgroup of
G. Then an A-sequence from H to G is a a sequence (Gα)α∈Ord of A-subgroups of G such
that

(a) [a] G0 = H and there exists δ ∈ Ord with Gβ = G for all β ≥ δ.

(b) [b] Gα EGα+1

(c) [c] If α is limit ordinal, then Gα =
⋃
α<β Gβ.

Lemma 1.4.2. [ascending ord] Let N be an ascending A-series from H to G. Then there
exists an A-sequence (Gα)α∈Ord from H to G with N = {Gα | α ∈ Ord}.

Proof. Since N is well ordered with respect to inclusion we conclude from Homework 3,
that there exists an ordinal δ and an isomorphism of ordered sets, F : δ → N , α → Gα.
Define Φ : Ord→ N by Φ(α) = Hα if α < δ and Φ(β) = G if δ < β. Since 0 is the element
of δ and H the minimal element of N we have G0 = F (0) = H. Since F preserved the
order we have α ≤ β if and only if Gα ≤ Gβ. Since either β ≤ α or α+ ≤ β we conclude
that either Gα = Gα+1 or (Gα, Gα+1) is a jump of N . In both cases Gα EGα+1.

Now let α be a limit ordinal and put M :=
⋃
β<αGβ. Then M ∈ N and M ≤ Gα and

so M = Gγ for some γ in γ ∈ δ. Since Gγ ≤ Gα we have γ ≤ α. If γ = α we are done. So
suppose γ < α. Then also γ + 1 < α and so Gγ+1 ≤ M ≤ Gγ ≤ Gγ+1. Thus Gγ = Gγ+1.
Since F is a bijection, this gives γ + 1 /∈ δ. Thus G = Gγ+1 = M ≤ Gα ≤ G. So again
M = G = Gα and all parts of the definition of a A-sequence from H to G are verified.

Lemma 1.4.3. [ord ascending] Let G be an A-group, H an A-subgroup of G and and
(Gα)α∈Ord a sequence of A-sequence from A to G. Then N := {Gα | α ∈ Ord} is an
ascending A-series from H to G. Moreover, the jumps of N are exactly the pairs (Gα, Gα+1),
where α is an ordinal with Gα 6= Gα+1.

Proof. Note that N = {Gα | α ≤ δ}, so N is the image of a set under function and thus a
set. From (??) and (??) we have Gα ≤ Gβ for all α ≤ β and so N is totally ordered with
respect to inclusion. So (??) gives H ∈ N , G ∈ N and H ≤ Gα for all α ∈ Ord.

LetM be a non empty subset N and let M = {α ∈ Ord | α ∈M. Then M has minimal
element m and so

⋃
M = Gm ∈ N

Suppose that δ ≤ β for some β ∈ Ord. Then
⋃
M = G ∈ N .

Suppose that β < δ for all β ∈ Ord. Then M has a least upper bound γ. If γ ∈ M ,
then

⋃
M = Gγ ∈ N . If γ /∈ M the for all β < δ there exists β∗ ∈ δ with β < β∗ < δ. In

particular δ is limit ordinal and

Gγ =
⋃
β<δ

Gβ ≤
⋃
β<δ

Gβ∗ ≤
⋃
M≤

⋃
β<δ

Gβ = Gγ

Hence again
⋃
β<δ = Gγ ∈ N . We show that N is closed under intersections.
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Noe let D ∈ N with D 6= H and let α ∈ Ord be minimal with Gα. The Gβ < D if and
only if β < α. Thus

D− =
⋃
{E ∈ N | E < D} =

⋃
β<α

Gβ

If α is a limit ordinal, the latter unions is Gα and if α is a successor it is (Gα−1.
So if (D−, D) is a jump then α is a successor, (D,D−) = (Gα−1, Gα), Gα−1 6= Gα and
D− = Gα−1 E Gα = D. In particular, N is an ascending series.

If α is an ordinal with Gα 6= Gα+1 the clearly (Gα, Gα+1) is a jump of N . So also the
second statement of the lemma holds.

Note that we allow Gα = Gβ for distinct α, β ∈ Ord. So a given ascending A-series
corresponds to more than then one A-sequence. We will use all the notation introduces
from ascending A -series. For example an hyper A-sequence is a normal A-sequence, that
is a A-sequence with Gα E G for all α ∈ Ord.

Definition 1.4.4. [def:strongly hyper] Let X be class of groups and G an A-group. We
say that A acts strongly hyper-X on G or that G is a strongly-hyper X −A group, if for all
normal A-subgroups, M of G with M 6= G there exists an normal A-subgroup M∗ of G with
(A/CA(M∗/M),M∗/M) ∈ X .

Lemma 1.4.5. [strong hyper] Let X be a class of actions and G an A-group.

(a) [a] If A acts strongly hyper-X on G, then A acts hyper-X on G.

(b) [b] If X is H-closed that A acts strongly hyper-X on G iff A act hyper X on G.

Proof. (a) By the definition of strongly-hyper and the axiom of choice we can choose a
function M → M∗ on the normal subgroups of G such that M∗ = G if M = G and
M < M∗ with (A/CA(M∗/M),M∗/M) ∈ X if M 6= G. If f is any function which is a set,
define τ(f) =

⋃
{f(M)∗〉 |M ∈ Dom(f)〉 provided that all members of Dom(f) are normal

A-subgroups A and τ(f) = 0 otherwise.
By the ’Recursion’ Theorem ?? for each ordinal α there exists function F such that

τ(F | (Ordα)) = F (α) for all ordinals α. Put Nα = F (α). Then a moments thought reveals
that 

Nα = 1 if α = 0

N∗β if α = β + 1⋃
β<αNβ if α is a limit ordinal

Let α be an ordinal with |α| > |G|. If G 6= Mβ for all β ≤ α we get |G| ≤ |α, a contradiction.
Thus Gα = G and it follows that N = {Gα | α} is an hyper A-series on G with factors
Nα+1/Nα = N∗α/Nα. Thus A acts X in each factor of N and so N is hyper X −A-series.

(b) Suppose A acts hyper X on G and let M be a normal A-subgroup of G. By ?? G/M
is a hyper X − A-group. In particular, G/M has a non-trivial normal X − A-subgroup,
M∗/M . Thus A acts strongly X on G. Together with (a) this gives (b).
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Notation 1.4.6. [not:f] F denotes the free group on (xi)
∞
i∈1. The elements of F are called

words.

Definition 1.4.7. [almost decreasing] Let W = (Wi)
∞
i=1 ∈ W∞ be a sequence of sets of

words.

(a) [a] W is decreasing if Wi+1(F ) ≤Wi(F ) for all i.

(b) [b] W is almost decreasing if for all i, j ∈ Z+ there exists k ≥ j with Wk(F ) ≤Wi(F ).

(c) [c] V(W ) =
⋃∞
i=1 V(Wi).

Lemma 1.4.8. [trivial dec] Let G be group.

(a) [a] Let V,W be sets of words with V (F ) ≤W (F )). Then V (G) ≤ V (W ).

(b) [b] Let W = (Wi)I = 1∞ be almost decreasing sequence of sets words. Then (Wi(G))∞i=1

is almost decreasing, that is for i, j ∈ Z+ there exists k ≥ j with Wk(G) ≤Wi(G).

Proof. (a) Let g ∈ V (G). Then g ∈ V (H) for some finitely generated subgroup H of G.
Since H is countable, there exists an onto homomorphism α : F → H. Then

g ∈ V (H) = α(V (F ))) ≤ α(W (V )) = W (H) ∈W (G)

(b) follows from (a)

Lemma 1.4.9. [sdp] Let G be an A-group then there exists a group H such that A ≤ H,
GEH, H = GA, A∩G = 1 and the actions of G on A is the same as the action of G on A
by conjugation in H. Moreover, H is unique up to an isomorphism centralizing A and G.

Proof. Suppose first that H is such a group. Let x, y ∈ H. Then there exists a, b ∈ A and
g, h ∈ H with x = ga and y = bh. Then xy = (ga)(hb) = gaha−1ab = gha

−1
ab and so the

multiplication on H is unique determined.
Conversely, let H = G×A as a set and define the multiplication on H ×A by

(g, a)(h, b) = (gha
−1
, ab)

Identify g with (g, 1) and a with (1, a). Then is readily verified that H has all the
required properties.

Lemma 1.4.10. [largest normal] Let V be an variety and G an A-group. Then there
exists unique largest normal A-subgroups M of G such that A/CA(M) ∈ V.

Proof. Let H = GA be the semidirect product of A and G. Let W = W(V) and put
M = 〈CG(〈W (A)H〉).

Definition 1.4.11. [def:h class] Let G be an A-group and W = (Wi)i∈Z+ a sequence of
sets of words.
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(a) [a] Define Hα = HypWα (A,G) inductively as follows:

Hα = 1 if α = 0

Hα =
⋃
β<αHβ if 0 6= α is a limit ordinal

Hα/Hα−1 = CHα/Hα−1
(〈Wk(A)G〉) if α = β + k with

α = 0or limit ordinal and k ∈ Z+.

(b) [b] δ = δW (A,G) is the least ordinal such that Hδ = Hβ for all β ≥ δ. Moreover,
HypW (A,G) := Hδ

Note that if α = β + k, (β = 0 or a limit ordinal and k ∈ Z+), then Hα/Hα−1 is the
largest normal (V(Wk), ∗)-A-subgroup of G/Hα−1

Define HypWα (G) = HypWα (G,G), whereG is acting onG by conjugation and HypW (G) =
HypW (G,G). As above if there is no doubt about the group action (A,G) and the sequence
W in question we write Hα for HypWα (A,G).

Proposition 1.4.12. [g=s] Let (AG) be a group action and W = (Wi)i∈Z+ a sequence of
sets of words.

(a) [a] (Hα)α is a hyper-(X (W ), ∗)−A sequence for G on HypW (G).

(b) [b] Let M be a normal-A-subgroup and (Mα)α be a hyper-(X (W ), ∗)− A-sequence on
M such that each Mα is normal in G.

(a) [a] For every ordinal α there exists an ordinal α∗ with Mα ≤ Hα∗. In particular,
M ≤ HypW (A,G).

(b) [b] If W is almost decreasing we can choose α∗ such that α∗ = α + nα for some
nα ∈ N and nα = 0 if α is a non-successor.

(c) [c] G is a hyper-(X (W ), ∗)-A-group if and only if G = HypW (A,G).

Proof. (a) Let α = β+k for some non-successor β and some k ∈ Z+. ThenWk(A) centralizes
Hα/Hα−1. Hence A/CA(Hα/Hα−1) ∈ V(Wk) ⊆ X (W ) and (a) holds.

(b) By induction we may assume that for all β < α there exists β∗ with Mβ ≤ Hβ∗ .
Moreover if W is almost decreasing we assume that β∗ = β+nβ for some n ∈ N with nβ = 0
if β is a non-successor.

Suppose first that α is a limit ordinal. Put α∗ =
⋃
β<α β

∗. Then α∗ is an ordinal and

Mα =
⋃
β<α

Mβ ⊆
⋃
β<α

Hβ∗ ≤ Hα∗ .

Moreover, if for all β < α, β∗ = β + nβ for some nβ ∈ N then b∗ < α∗ and so α∗ = α.
So (b:a) and (b:b) hold for α.

Suppose next that α = β + k for some non-successor β and some k ∈ Z+. Since (Mα)α
is hyper-(X (W ), ∗), A/CA(Mα/Mα−1) ∈ X (W ) and so A/CA(Mα/Mα−1) ∈ V(Wi) for some
i ∈ Z+. Thus [Mα,Wi(A)] ≤Mα− 1.
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Assume that W is almost decreasing. By induction we may assume Mα−1 ≤ Hα−1+nα−1

for some nα−1 ∈ Z+. Since W is almost decreasing there exists n ∈ Z+ with n ≥ k + nα−1

and Wn(A) ≤Wi(G). Then

[Mα,Wn(A)] ≤ [Mα,Wi(A)] ≤Mα−1 ≤ Hα−1+nα−1 = Hβ+k−1+nα−1 ≤ Hβ+n−1.

Since Mα and Hβ+n−1 are normal in G, this gives [Mα, 〈Wn(A)G〉] ≤ Hβ+n−1 and so
Mα ≤ Hβ+n = Hα+n−k. Hence (b:b) holds with nα = n− k.

Assume next that W is not almost decreasing. Let γ be the smallest limit ordinal with
(α− 1)∗ ≤ γ. Then

[Mα,Wi(G)] ≤Mα−1 ≤ H(α−1)∗ ≤ Hγ ≤ Hγ+i−1

and so Mα ≤ Hγ+i. Thus (b:a) holds.
(c) Follows from (a) and (b).

If Wi = {x1} for all i, then X (W ) = T and so (Hα)α is a hypercentral series for A on
HypW (G,A). If A = G acting by conjugation we write Z(Gα) for Hα. (Z(Gα)α is called
the hypercentral series for G and ZOrd(G) := HypW (G,A)) is called the hypercenter of
G. If G = ZOrd(G), then G is called hypercentral. Note that Z1(G) = Z(G), Z2/Z(G) =
Z(G/Z2(G)) and Zω(G) =

⋃
i<ω Zi(G)).

For a prime p let Cp∞ = {x ∈ C | xpk = 1 for some k ∈ N}. The set Cpk of elements

of order dividing pk is a cyclic group of order pk. So Cp∞ can is union of the countable
sequence

1 ≤ Cp ≤ Cp2 ≤ Cp3 ≤ . . .

From Cpk+1/Cp
∼= Cpk we conclude that Cp∞/Cp

∼= Cp∞ . So Cp∞ is isomorphic to a
proper quotient of itself.

Let τ ∈ Aut(Cp∞) with xτ = x−1 = x for all x ∈ Cp∞ and let D2p∞ be the semidirect
product of Cp∞ with 〈tau〉. Note that D2pk := Cpk〈τ〉 is a dihedral group of order 2pk. So

So Dp∞ can be viewed as union of the countable sequence

1 ≤ Dp ≤ Dp2 ≤ Dp3 ≤ . . .

If p is odd, then Z(D2p∞) = 1 and so also ZOrd(D2p∞) = 1.
If p = 2, then Z(D2p∞) = C2. Also D2p∞/C2

∼= D2p∞ and inductively we conclude that

Zk(D2p∞) = Cpk

for all i > ω. Thus

Zω(D2p∞)
⋃
i∈ω

Cpk = Cp∞

Since D2p∞/Cp∞
∼= 〈τ〉 = C2 we have
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Zω+1(D2p∞) = D2p∞

So D2p∞ is hypercentral with hypercentral length ω + 1.

Define φ1 = x1, φ2 = [x1, x2], φ3 = [[x1, x2], [x3, x4]] and so on. Also let Wi = {φi}.
Then Wi(G) = G(i−1), the i − 1’th commutator group of Wi. So X (W ) is the class of
solvable groups. The series (Hα)α is called the hyper (solvable,*)-series for G.

Suppose p is odd. Then W1(D2p∞) = D2p∞ , W2(D2p∞ = D′2p∞ = Cp∞ and W3(D2p∞) =
D′′2p∞ = 1. So

H1 = Z(D2p∞) = 1, H2 = 〈CD2p∞ (Cp∞) = Cp∞ and H3 = D2p∞ .

So D2p∞ is a hyper-(solvable,*) group.

Lemma 1.4.13. [direct sums] Let X be a class of groups and G an A- group. Suppose
that there exists a hyper A-series N on G such that for each factor E of N there exists a
G-invariant hyper-X −A series on E. Then A acts hyper-X on G.

Proof. Let N be a hyper A-series on F . By assumption and the axiom of choice, the exists
a function E → NE which associates to each factor E of N a G-invariant hyper X −A-series
on of E. If E is factor of N then E = T/B for a unique jump (B, T ) of N . Put

ME = {D | B ≤ D ≤ T,D/B ∈ NE}

and M = N ∪
⋃
{ME | E a factor of N .

Note that M is a set.

1◦. [0] Let (B, T ) be a jump of cN and E = T/B. Then ME is a G-invariant hyper
X −A series from B to T .

Since NE is G-invariant hyper X − A series from 1 to E, this follows from the homo-
morphism theorems.

Recall that for N ∈ N , N− =
⋃
{E ∈ N | E < N}. For each D ∈ M pick D̃ ∈ M

minimal with D ≤ D̃.

2◦. [.1] Let (B, T ) be a jump of N and D ∈M with B ≤ D ≤ T . then either D = B = D̃
or B 6= D and (B, T ) = (D̃−, D̃).

If D = B, then B = D̃. So suppose B < D ≤ T . Since D ≤ T , the minimality of D̃
gives D̃ ≤ T . So B < D̃ ≤ T and since (B, T ) is a jump, D̃ = T . Hence B = T− = D̃−.

3◦. [.2] D− ≤ D ≤ D̃ and either D = D̃ = D̃− or D− < D ≤ D̃ and D ∈MD̃/D̃−.

If D ∈ N , then clearly D̃ = D and (2◦) holds. So suppose D /∈ N . Then D ∈ MT/B

for some jump (B, T ) ∈ T . Then B ≤ D ≤ T and since D /∈ N , B 6= D. So by (3◦),
(B, T ) = (D̃,D̃) and (3◦) holds.

4◦. [1] M is totally ordered.
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Let D,E ∈ M. Suppose first that D̃ = Ẽ. Then D̃− ≤ E ≤ D̃. If D̃− = D̃ this gives
D = E and if D̃− 6= D̃, then by ?? both D and E are in MD̃/D̃− . So by (1◦), D ≤ E or
E ≤ D.

Now suppose that D̃ 6= Ẽ and without loss D̃ < Ẽ. Then D ≤ D̃ ≤ Ẽ− ≤ E and so
D ≤ E.

Let D be a non-empty subsets of M.

5◦. [2] D has a minimal element D∗. In particular,
⋃
D = D∗ ∈M.

Let M be the minimal element of {D̃ | D ∈ D} and pick E ∈ D with M = Ẽ. If D ∈ D,
then M ≤ D̃ and since D̃− ≤ D, M− ≤ D. If M− = M , then E = M− and E is the minimal
element of D. If M− 6= M , then by (1◦) the non empty set {E ∈ D |M− ≤ E ≤M} has a
minimal element D∗. But then D∗ is also a minimal element of D.

6◦. [3]
⋃
D ∈M

Put M =
⋃
D∈D D̃. Then M ∈ N . Let E ∈ N with E < M . The there exists D ∈ D

with D̃ � E. So E < D̃ ≤ D. It follows that M− ≤
⋃
D. If M− =

⋃
D we are done. If

M− =
⋃
D. Then E := {E ∈ D | E � M−} is not empty. Observe that M− < E ≤ M for

all E ∈ E . Thus
⋃
E =

⋃
D and E ∈ MM/M− . By (1◦), MM/M− is closed under unions

and so
⋃
D =

⋃
E ∈ MM/M− ⊆M. Thus (6◦) holds.

7◦. [4] Let (B, T ) be a jump of M. Then (B, T ) is jump of some ME, E a factor of N .
In particular, B E T and T/B is an X −A-group.

Suppose first that T̃− 6= T . Then T̃− < T and since (B, T ) is a jump of T̃− ≤ B ≤ T ≤
T̃ . Thus by (3◦) both B and T are in MT̃ /T̃− and so (B, T ) is a jump of MT̃ /T̃−

Suppose next that B̃ 6= B. Then B < B̃ and since (B, T ) is a jump T ≤ B̃. Thus
B− ≤ T ≤ B and so by (3◦) both B and T are in MB̃/B̃− and so (B, T ) is a jump of
MB̃/B̃− .

Suppose finally that T̃− = T and B̃ = B. Then both B and T are in N and so (B, T )
is a jump of N , but then T− = B 6= T , a contradiction.

The lemma is now a direct consequence of (4◦)-(7◦).

Lemma 1.4.14. [direct hyp]Let X be a class of actions, A a group and G an A-group.
Let (Gi, i ∈ I) a non empty family normal hyper-X −A groups of G with G = 〈Gi | i ∈ I〉.
Suppose that either X is H closed or G =

⊕
i∈I Gi. Then G is a hyper-X −A-group.

Proof. Without loss Gi 6= 1 for all i ∈ I. Pick m ∈ I and choose some well ordering on
I \m. Well order I such that I has a maximal element. For i ∈ I define G+

i = 〈Gj | j ≤ i〉
and G−i = 〈Gj | j < i〉. We claim that N = {G−i , G

+
i | i ∈ I} is hyper A-series on

⊕
i∈I Gi

with factors all the G+
i /G

−
i
∼= Gi/Gi ∩G−i , where i ∈ I with Gi � G−i .

Let i < j ∈ I. Then G−i ≤ G+
i ≤ G−j ≤ G+

j and so N is totally ordered. Let M be

non-empty subset of N . Let i be minimal in I with Gεi ∈ D for some ε ∈ {±}. If G−i ∈ N
choose ε = −. Then Gεi is the minimal element of M and Giε =

⋃
D.
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Next let k be minimal with
⋃
D ≤ G+

k . Let i < k. Then
⋃
D � G+

i and so the exists
j ∈ I and δ ∈ {±} with Gδj ∈ D and Gδj � G+

i . Thus i ≤ j and so G−i ≤ Gδj ≤
⋃
D.

Suppose first that {l ∈ I | l < k} has no maximal element. Let g =
∏
i∈I gi ∈ G

−
k (where

gi ∈ Gi and only finitely many gi are non trivia. Let t be maximal with gt 6= 1. Then t < l
and so there exists l ∈ I with t < l < k. Then g ∈ G−t ≤

⋃
D. Hence G−k ≤

⋃
D ≤ G+

i . If
G+
k ∈ D we get

⋃
D = G+

k and if G+
k /∈ D we get

⋃
D = G−k .

Suppose {l ∈ I | l < k} has maximal element j. Since
⋃
D � G+

j we must have G−k ∈ D
or G+

k ∈ D. In either case we again have
⋃
D = G+

k and
⋃
D = G−k .

Thus N is closed under unions. Let D ∈ N with D 6= D− := {
⋃
E ∈ N | E < D}.

Pick k ∈ I minimal with D = Gεk for some ε ∈ {pm}, where we choose ε = − if D = G−k for
some ε ∈ {±}. By minimality of k, G+

j < D for all j < k. Thus

Gik = 〈Gj | j < k〉 ≤ 〈G+
j | j < k〉 ≤ D−

In particular, G−k < D and so G−k = D−, D = G+
k , Gk � G−k and

D/D− ∼= G+
k /K

−
k = GkG

−
k /G

−
k
∼= Gk/Gk ∩G−k

Conversely if k ∈ I with Gk � G−k , then (Gk, G
−
k ) is clearly a jump of N .

This proves the claim. If X is H closed then by ??(??), Gk/Gk ∩G−k is an hyper X −A
group. If G =

⊕
i∈I Gi, then Gk/Gk ∩G−k ∼= Gk. So again Gk/Gk ∩G−k is an hyper X −A

group. In either case 1.4.13 completes the proof.

Proposition 1.4.15. [residually g] Let X be any class of groups.

(a) [a] Suppose X is closed under quotients. Then hypercentral-by-X groups are hyper-
(X , ∗) and nilpotent-by-X groups are poly-(X , ∗).

(b) [b] Hyper-(X , ∗) groups are hypercentral-by- RX ). If X is closed under finite subdirect
products then poly-(X , ∗)-groups are nilpotent-by-X .

(c) [c] If X is closed under quotients and finite subdirect products, then the nilpotent-by-
X -groups are exactly the finitely hyper-(CG, ∗) groups.

Proof. (a) Let HEG such that H is hypercentral and G/H ∈ X . Let Z be the hypercentral
series for H. Then Z is G-invariant. If Z is a factor of Z, then [Z,H] = 1 and so G/CG(Z)
is a quotient of G/H. Thus G/CG(Z) ∈ X . Also G/CG(G/H) is a quotient of G/H and so
Z ∪ {G} is a hyper-(X , ∗) series for G. If H is nilpotent, Z is finite and (a) is proved.

(b) Let M = (Mα)α be a hyper-(X , ∗)-sequence for G and put

H =
⋂
{CG(E) | E a factor of M}.

Since G/CG(E) ∈ X for all factors E of M, G/H is subdirect product of X -groups
and so an RX -group. Moreover (Mα ∩ H)α is a hypercentral series for H and so H is
hypercentral. IfM is finite and X is closed under finite subdirect products, then G/H ∈ X
and H polycentral, that is nilpotent. So (b) holds.

(c) Follows from (a) and (b).
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Proposition 1.4.16. [hyper gw] Let V be a variety and W a set of words with V = V(W ).
Let G be a group. Then the following are equivalent

(a) [a] G is hyper-(V), ∗) group.

(b) [b] G is hypercentral by V.

(c) [c] W (G) is a hypercentral group.

Proof. (a) =⇒ (b): Suppose G is hyper-(V), ∗). Then by 1.4.15 G is hypercentral by RV.
Since varieties are R-closed, G is hypercentral by V.

(b) =⇒ (c): Suppose M is a normal subgroup of G such that M is hypercentral and
G/M ∈ V. Then W (G/M) = 1 and so W (G) ≤M . Since subgroups of hypercentral groups
are hypercentral, W (G) is hypercentral.

(c) =⇒ (b): Note that G/W (G) ∈ V. So if W (G) is hypercentral G is hypercentral
by V.

(b) =⇒ (a): If G is hypercentral by V, then by 1.4.15 G is hyper-(V, ∗).

Definition 1.4.17. [almost decreasing] Let W = (Wi)
∞
i=1 ∈ P(F )∞ be a sequence of sets

of words.

(a) [a] W is decreasing if Wi+1(F ) ≤Wi(F ) for all i.

(b) [b] W is almost decreasing if for all i, j ∈ Z+ there exists k ≥ j with Wk(F ) ≤Wi(F ).

(c) [c] X (W ) =
⋃∞
i=1 V(Wi).

Lemma 1.4.18. [trivial dec] Let G be group.

(a) [a] Let V,W ∈ P(W ) with V (F ) ≤W (V ). Then V (G) ≤W (G).

(b) [b] Let W ∈ P(W )∞ be almost decreasing. Then (Wi(G))∞i=1 is almost decreasing, that
is for i, j ∈ Z+ there exists k ≥ j with Wk(G) ≤Wi(G).

Proof. (a) Let g ∈ V (G). Then g ∈ V (H) for some finitely generated subgroup H of G.
Let α : F → H be an onto homomorphism. Then

g ∈ V (H) = V (α(F )) = α(V (F )) ≤ α(W (F ))) = W (α(F )) = W (H) ≤W (G)

and so V (G) ≤W (G).
(b) follows from (a).

Definition 1.4.19. [def:outer]

(a) [a] For i = 1, 2 let wi be a word and mi = m(wi). Put

dw1, w2e := [w1( (xi)
m1
i=1 ) , w2( (xm1+i)

m2
i=1 ) ] ∈ F (m1 +m2)

dw1, w2e is called the outer commutator of w1 and w2.
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(b) [c] Let w ∈ Fn, n ∈ N ∪ {∞}. Then w̌ ∈ Fn+1 is inductively defined as follows:
w̌1 = x1 and w̌i+1 = dw̌i, wie.

(c) [d] Let W ∈ P(W )n, n ∈ N ∪ {∞}. Then W̌ ∈ P(W )n+1 is inductively defined as
follows: W̌1 = {x1} and W̌i+1 = {dv, we | v ∈ W̌i, w ∈Wi}.

For example, dx1x
3
2, x1x

2
2e = [x1x

3
2, x3x

2
4]. Note that m(dw1, w2e) = m1 + m2. Also

W̌i+1 = {w̌i+1 | w ∈×i
j=1Wj}. To improve readability we sometimes write w̌ for w̌.

Lemma 1.4.20. [basic check] Let G be a group, w ∈ F∞, g ∈ G∞ and i ∈ Z+.

(a) [c] Put n = m(w̌i) and m = m(wi). Then

w̌i+1(g) = [w̌i(g), wi( (gn+j)
m
j=1 )].

(b) [b] Let N EG. If w̌i(g) ∈ N then also w̌j(g) ∈ N for all j ≥ i.

(c) [a] Let W ∈ P(W )∞. Then W̌i+1(G) = W̌i(G),Wi(G)] ≤ W̌i(G) ∩Wi(G).

In particular, W̌ is decreasing.

Proof. (a) By definition w̌i+1 = dw̌i, wie. So (a) follows from the definition of the outer
commutator.

(b) and (c) follow from (a).

Definition 1.4.21. [def:h words]

(a) [a] Let W ∈ P(F )∞. Then Hyp(W ) is the class of groups G such that for all g ∈ G∞
and all w ∈×∞i=1Wi there exists n ∈ Z+ with w̌n(g) = 1.

(b) [b] Let X be a class of actions. Then HypX is the class of hyper-XD-groups. PolyX
is the class of Poly-X -groups.

Lemma 1.4.22. [cX check] Let W ∈ P(F )∞. Then for all i ∈ Z+, V(Wi) ≤ V(W̌i+1). In
particular, X (W ) ⊆ X (W̌ ).

Proof. Let G ∈ V(Wi). Then Wi(G) = 1. Hence by ??(??) W̌i+1(G) = [W̌i(G),Wi(G)] = 1
and so G ∈ V(W̌i=1). It follows

X (W ) =
∞⋃
i=1

V(Wi) ⊆
∞⋃
i=1

V(W̌i+1) ⊆ X (W̌ )

Theorem 1.4.23. [h and check] Let W ∈ P(F )∞. Then

(a) [a] X (W̌ ) ⊆ Poly(X (W ), ∗) with equality if W is almost decreasing.

(b) [b] Hyp(W ) ⊆ Hyp(X (W ), ∗) with equality if W is almost decreasing.
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Proof. (a) Suppose G ∈ X (W̌ ). Then G ∈ V(W̌n) for some n ∈ Z+. Thus W̌n(G) = 1.
Then by 1.4.20(c) we obtain a finite series

(∗) 1 = W̌n(G) ≤ W̌n−1(G) ≤ . . . ≤ W̌2(G) ≤ W̌1(G) = G

there the last equality holds since (̌W1) = {x1}.
Observe that [W̌i(G),Wi(G)] ≤ W̌i+1(G) and so Wi(G) ≤ CG(W̌i+1(G)/W̌i(G). Hence

G/CG(W̌i+1(G)/W̌i(G) ∈ V(Wi) ⊆ X (W )

and (*) is a poly (X (W ), ∗)-series. Thus the first statement in (a) holds.

To prove the first statement in (b), let G be a group which is not hyper-(X (W ), ∗). We
will show that G is also not contained in Hyp(W̌ ). Since every strongly hyper (X (W ), ∗)
group is hyper (X (W ), ∗) (see ??) we conclude that there there exists NCG such N∗/N = 1,
whenever N ≤ N∗ EG with (G/CG(N∗/N), N∗/N) ∈ (X (W ), ∗). This implies

(∗) CG/N (Wn(G)) = 1 for all n ∈ Z+.

Let g1 ∈ G \N . Note that x1(g1) = g1 /∈ N . Suppose inductively that we already found
(gi)

nk
i=1 ∈ Gnk and wi ∈ Wi, 1 ≤ i < k with w̌k( (gi)

nk
i=1 ) /∈ N , where (w̌i)

k
i=1) = (wi)

k−1
i=1 .̌

Then by (*) [w̌k( (gi)
nk
i=1 ),Wk(G)] � N and there exist wk ∈Wk and (gnk+j)

m(wk)
j=1 ∈ Gm(wk)

with [w̌k(gi)
nk
i=1, wk( (gnk+j)

m(wk)
j=1 )] /∈ N . Put nk+1 = nk +m(wk). Then by 1.4.20(a),

w̌k+1( (gi)
nk+1

i=1 ) /∈ N.

where wk+1 = dw̌k, wke. Put g = (gi)
∞
i=1 and w = (wi)

∞
i=1. Then w̌k(g) 6= 1 for all k and

so G /∈ Hyp(W ). Thus Hyp(W ) ⊆ Hyp(X (W ), ∗).

Suppose next that W is almost decreasing. We will prove the second assertions in (a)
and (b) simultaneously. Let G be hyper-(X (W ), ∗) and and let (Mα)α≤ρ be any hyper-
(X (W ), ∗) sequence on G, with ρ finite in proof of (a). For the proof of (a) ρ let Vi = Wi

and Hi = G for all i ∈ Z+. For the proof of (b) let g ∈ G∞, w ∈ ×∞i=1Wi infinite pick
wi ∈Wi and gi ∈ G and put Hi = {gi} and Vi = {wi}

Let g ∈ \/∞i=1Hi and w ∈ \/ii=1 nftyVi. Then w̌1(g1) = g1 ∈ G = Aρ. So we can choose
an ordinal α minimal such that there exists n ∈ Z+ with w̌n(g) ∈ Gα for all w ∈ \/∞i=1 Vi
and g ∈ \/∞i=1Hi.

We will show that α = 0. Suppose for α = β+1 for some ordinal β. SinceG/CG(Aα/Aβ) ∈
X (W ), there exists m ∈ Z+ with [Mα,Wm(G)] ≤ Mβ. Since W is almost decreasing we
may assume m ≥ n. Let w ∈ \/∞i=1 Vi. Then w̌n(g) ∈ Mα and m ≥ n. So by 1.4.20(b),
w̌m(g) ∈Mα. Hence

w̌m+1(g) ∈ [w̌m(g),Wm(G)] ≤ [Mα,Wm(G)] ≤ Aβ

for all w ∈ \/∞i=1 Vi and g ∈ \/∞i=1Hi, a contradiction to the minimal choice of α. Thus α is a
limit ordinal.
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Suppose that α 6= 0. Then ρ is infinite and so by our choice of Vi, |Vi| = 1 and there
exists a unique w ∈ \/∞i=1 Vi. Since Mα =

⋃
β<αMβ there exists β < α with w̌n(g) ∈ Aβ, a

contradiction to the choice of α.

Thus α = 0 and so w̌n(g) = 1 for all w ∈ \/∞i=1 Vi.

If ρ is finite, Vi = Wi and Hi = Gi. Thus W̌n(G) = 1 and G ∈ X (W̌ ). So (a) is proved.

In any case, w̌n(g) = 1 shows that G ∈ Hyp(W ) and (b) holds.

The following example shows that the inclusions in 1.4.23 may be proper if W is not
almost decreasing:

Let G = Sym(3), x = x1, W1 = {x2} and Wi = {x} for i ≥ 2. Then w = (x2, x, x, x, . . .)
is the unique element in \/∞i=1Wi. Also 1 ≤ Alt(3) ≤ Sym(3) is a finite hyper-(X (W ), ∗)
series. Thus Sym(3) ∈ Poly(X (W ), ∗) ⊆ Hyp(X (W ), ∗).

Put g = ((12), (123), (12), (12), (12), . . .). Then w̌1(g) = g1 = (12), w̌2(g) = [(12), (123)2] =
(123), w̌3(g) = [(123), (12)] = (123) and so for all n ≥ 2, w̌n(g) = (123). Thus wn(g) 6= 1 for
all n and Sym(3) /∈ Hyp(W̌ ). Since X (W̌ ) ⊆ Hyp(W̌ ) we see that X (W̌ ) 6= Poly(X (W ), ∗)
and Hyp(W̌ ) 6= Hyp(X (W, ∗).

Lemma 1.4.24. [char hyp] Let W ∈ P(F )∞. Then there exists V ∈ P(F∞ such that

(a) [a] X (W ) = X (V ).

(b) [b] V is almost decreasing

(c) [c] Poly(X (W ), ∗) = X (V̌ ).

(d) [d] Hyp(X (W ), ∗) = Hyp(V ).

Proof. Define

V = (W1,W1,W2,W1,W2,W3,W1,W2,W3,W4,W1, . . .).

Then clearly V is almost decreasing. For any W X (W ) only depends on {Wi | i ∈ Z+} and
so X (W ) = X (V ). Thus by 1.4.23

X (V̌ ) = Poly(X (W ), ∗) and Hyp(V ) = Hyp(X (W ), ∗).

Next we will give an example of a sequence W ∈ P(F )∞, a group G ∈ Hyp(X (W ), ∗),
g ∈ G∞ and v ∈ ×∞i=1 W̌i such that vn(g) 6= 1 for all n ∈ Z+. (Note that this does not
contradict ?? since our v will not be of the form v = w̌ for some w ∈×∞i=1Wi.

Put W1 = {xi | i ∈ Z+ and for i ≥ 2 put Wi = {x1}. The for all i ∈ Z+, V(W )i) = T , the
class of trivial groups. Hence also X (W ) = T and Hyp(X (W ), ∗) is the class of hypercentral
groups. Put G = D22∞ = C2∞〈τ〉. As seen before G is hypercentral group. Let hi ∈ C2∞

with |hi| = 2i and put gi = hiτ .
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Note that W̌1 = {x1}, W̌2 = {dx1, xie | i ∈ Z+} = {[x1, xk] | 2 ≤ k ∈ Z+} and for any
i ≥ 2,

W̌i = {[x1, xk, xk+1, . . . xk+i−2] | 2 ≤ k ∈ Z+}

Define v1 := x1 and for i ≥ 0:

vi := [x1, x2i, x2i+1, . . . , x3i−2]

and vi ∈ W̌i for all i ∈ Z+.
Define gi,0 := [g1, gi] and inductively gi,j := [gi,j−1, gi+j ]. Then vi(g) = gi,i−2. We will

show by induction in j, that gi,j has order 2i−j−1.
For j = 0,

gi,0 = [g1, gi] = g−1
1 g−1

i g1gi = τ−1h−1
1 τ−1h−1

i h1τh2iτ = h1h
−1
i h1h

−
i 1 = h−2

i

and gi,0 has oder 2i−1. Suppose inductively that gi,j has order 2i−j−1 and gi,j ∈ C2∞ .
Then gi+j+1 inverts gi,j via conjugation and so

gi,j+1 = [gi,j , gi+j+1] = g−1
i,j g

−1
i,j = g−2

i,j

Thus gi,j+1 ∈ C2∞ and gi,j+1 has order 2i−j−2 = 2i−(j+1)−1.
In particular vi(g) = gi,i−2 has order 2i−(i−2)−1 = 2. Thus vi(g) 6= 1 for all i ≥ 2. Also

v1(g) = g1 = τh1 6= 1 and so vi(g) 6= 1 all i ∈ Z+.

Definition 1.4.25. [def:phi]

(a) [a] τ(0) = (x1)∞i=1 and inductively τ(i+ 1) = τ(i)̌ .

(b) [d] φ is the unique sequence of words with φ = φ̌. So φ1 = x1 and inductively φi+1 =
dφi, φie.

It might be worthwhile to list the first few terms of the above sequence of words:

τ(0) : x1 x1 x1 x1

τ(1) : x1 [x1, x2] [[x1, x2], x3] [[[x1, x2], x3], x4]

τ(2) : x1 [x1, x2] [[x1, x2], [x3, x4]] [[[x1, x2], [x3, x4]], [[x5, x6], x7]]]

φ : x1 [x1, x2] [[x1, x2], [x3, x4]] [[[x1, x2], [x3, x4]], [[x5, x6], [x7, x8]]]

Lemma 1.4.26. [gw]

(a) [a] Let T (0) be the class of trivial groups and inductively let T (n + 1) be the class of
nilpotent-by-T (n) groups. Then X (τ(n)) = N (n). In particular, X (τ(1)) the class of
nilpotent groups.
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(b) [b] V(φi) the class of solvable groups of derived length less than i. X (φ) is the class of
solvable groups.

(c) [c] Hyp(τ(i)) is the class of hyper (T (i), ∗)-groups. In particular, Hyp(τ(0)) is the
class of hypercentral groups, and T (1) is the class of hyper-(nilpotent,*) groups.

(d) [d] Hyp(φ) is the class of hyper (solvable,*) groups.

Proof. (a) Let w ∈ F∞ be almost decreasing. By 1.4.23(a), X (w̌) = Poly(X (w), ∗) and so
by 1.4.15(c):

(∗) X (w̌) is the class of nilpotent-by-X (w)groups.

Clearly X (τ(0))) is the class of trivial groups. Since τ(1) = τ(0)̌ , (*) says that X (τ(1))
is the class of nilpotent-by-trivial groups and X (τ(1)) = T (1). Inductively suppose that
X (τ(n)) = T (n). Then (*) implies that X (τ(n+1)) is the class of nilpotent-by-T (n) groups.
Thus X (τ(n+ 1)) = T (n+ 1) and (a) holds.

(b) We have G = x1(G) = φ(G) = G0 and so inductively

φi+1(G) = [φi(G), φi(G)] = [Gi− 1,Gi− 1] = Gi.

Hence X (φi) is the class of solvable groups of derived length less than i and (b) holds.
By ??(??), Hyp(τ(n)) = Hyp(X (τ(n), ∗). So rf c follows from (a).
By ??(??), Hyp(φ) = Hyp(X (φ), ∗). So rf d follows from (b).

We will now construct various examples of groups which are hyper-(X , ∗) for some class
of groups X . By 1.4.15 we know that any such group is hypercentral-by-(residually X ).
The next proposition gives a partial converse:

Example 1.4.27. [main construction] Let X be a class of groups, (Hi, i ∈ I) a family
of X -groups and H a subdirect product of (Hi, i ∈ I). For i ∈ I let Ai be an Hi-group.
Suppose that

(i) [a] H is hyper-(X , ∗).

(ii) [b] For each i ∈ I, Ai is abelian and Hi acts faithfully on Ai.

(iii) [c] For each 1 6= N EH, there exists i ∈ I such that N does not act hypercentrally on
Ai.

Put A =
⊕
Ai. Note that H acts on Ai via its projection onto Hi and so also acts on A.Let

G = AH be the semidirect product of A and G Then G is hyper-(X , ∗)-group. Moreover,
any hypercentral normal subgroup of G is contained in A.

Proof. Since G/CG(Ai) ∼= Hi ∈ X , G acts hyper-(X , ∗) on Ai. So by 1.4.13, G is acts hyper-
(X , ∗) on A. Also G/A ∼= H is hyper-(X , ∗) group and hence by 1.4.13 G is a hyper-(X , ∗)
group.
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Let M E G with M � A. Then AM = AN for some 1 6= N EH. By (iii) there exists
i ∈ I such that N does not act hypercentrally on Ai. So N also does not act hypercentrally
on [Ai, N ]. Since A is abelian, [Ai, N ] = [Ai,M ] ≤ M and M does not act hypercentrally
on [Ai,M ]. Thus M is not hypercentral.

Lemma 1.4.28. [hypercentral extension] Let X be a class of groups and H a group.
Suppose H is a residually X -group and a hyper-(X , ∗)-group. Then there exists a hyper-
(X , ∗) group G and an abelian normal subgroup A of G such that G/A ∼= H and such that
every hypercentral normal subgroup of G is contained in A.

Proof. Put M = {M EH | G/M ∈ X}. Since H is residually-X ,
⋂
M = 1. In particular,

H is a subdirect product of (G/M)M∈M. For M ∈M put AM = Z[G/M ]. Then AM is an
abelian group with G/M acting faithfully on AM by right multiplication. Let 1 6= N EH
and choose M ∈MM with N �M . Then N does not act hypercentrally on AM (indeed if
NM/M is infinite, CAM (N) = 0 and if NM/M is finite, choose a prime p with p - |NM/M |
and observe that N does not act hypercentrally on AM/pAM .)

So 1.4.27 completes the proof.

Corollary 1.4.29. [not hypercentral x] Let X be a class of groups which is closed under
homomorphic images but not under direct sums. Then there exists a hyper (X , ∗) groups
which is not hypercentral by X .

Proof. Let (Hi, i ∈ I be a family of X groups such that H =
⊕∞

i=1Hi is not an X -group.
Then H is a subdirect product of X groups and so a residually X -group. Each Hi is a
X -groups it also is a hyper (X , ∗) group. Hence by 1.4.14, H is hyper (X , , ∗). By ?? there
exists a hyper (X , ∗)-group G and an abelian normal subgroup A of G with G/A ∼= H
and such that every hypercentral normal subgroup of G is contained in A. Suppose for a
contradiction that G is hypercentral by X and let M be a hypercentral normal subgroup of
G such that G/M ∈ X . Then M ≤ A and H ∼= G/A ∼= G/M

/
A/M . Since X is H-closed,

we conclude that H ∈ X , a contradiction.

Corollary 1.4.30. [more hypercental x] Let W ∈ P(F )∞ and suppose X (W ) 6= V(Wi)
for all i ∈ Z+. Then there exists a hyper (X (W ), ∗)-group which is not hypercentral by
X (W ).

Proof. For i ∈ Z+ pick Hi ∈ X (W ) \ V(Wi) and put ⊕i∈IHi. Since Wi(Hi) 6= 1 we have
Wi(H) 6= 1. Thus H /∈ X (W ). H is a direct sum of X (W )-group and so a residual X (W )-
group. Since Hi is a X (W )-group and so a (X (W ), ∗)-group we conclude that from 1.4.14
that H is hyper (X (W ), ∗). The corollary now follows from 1.4.29

Since there are solvable groups of arbitrary derived length and nilpotent groups of arbi-
trary class, the preceding corollary shows that there exists hyper (solvable,*) groups which
are not hypercentral by solvable and hyper (nilpotent, *) groups which are not hypercentral
by nilpotent.
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Definition 1.4.31. [def:locally cx] Let X be a class of groups and G a group. We say
that G is locally X , if for each finite subset I of G there exists H ≤ H with I ⊆ H and
H ∈ X . The class of all locally X groups is denoted by LX .

Observe that if X is closed under subgroups, then G is locally X if and only every finitely
generated subgroup of G is an X -group.

Proposition 1.4.32. [schreier-reidemeister] Let G be finite generated subgroup and H
a subgroup of finite index in G. Then H is finitely generated.

Proof. Let X be a finite generating set for G with x−1 ∈ X for all x ∈ X. For T ∈ G/H
pick rT ∈ T such that rH = 1. Then T = HrT . Let T ∈ G/H and x ∈ X. Then
rTx ∈ (HrT )x = Tx = HrTx and so there exists h(T, x) ∈ H by

rTx = h(T, x)rTx

Define K = 〈h(T, x) | T ∈ G/H, x ∈ X〉. We claim that

(∗) g ∈ KrHg for all g ∈ G

For this let g = x1x2 . . . xn with xi ∈ X and n ∈ N. If n = 0, then g = 1 and so
g ∈ K = K1 = KrH1 .

Suppose n > 0 and let d = x1x2 . . . xn−1. Then g = dxn and by induction on n,
d ∈ KrHd.

Thus

g = dxn ∈ KrHdxn = Kh(Hd, xn)rHdxn = KrHg

So (*) holds. If g ∈ H we conclude g ∈ KrHg = KrH = K1 = K. So H ≤ K. Since
K ≤ H, this gives K = H and so H is finitely generated.

Let n be minimal number of generators of G and i = |G/H|. The preceding proof shows
that H can be generated by 2ni elements. It can be shown that G is generated by (n−1)i+1
elements (Reidemeister-Schreier Theorem).

Corollary 1.4.33. [lf by lf] The class LF of locally finite groups is closed under subgroups,
quotients and extensions.

Proof. The first two assertions are obvious. Let G be a group and M a normal subgroup
of G such that M and G/M are locally finite. Let S be a finite subset of G and F = 〈S〉.
Then FM/M = 〈sM | s ∈ S〉 is finite generated and since G/M is finite, FM/M is finite.
Hence also F/F ∩M is finite and 1.4.32 implies that F ∩M is finitely generated. Since M
is locally finite, F ∩M is finite. Hence F is finite and M is locally finite.

Definition 1.4.34. [def:p-group] Let G be a group and p a prime. Then G is called a
p-group, if all elements of G have order a power of p.
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Note that by Cauchy’s Theorem, a finite group if a p-group if and only if it has order a
power of p.

Lemma 1.4.35. [rg] Let R be a non-zero ring, G a group and H a non-trivial subgroup of
G. Let R[G] be the group of G over R and note that G acts on the abelian group R[G] via
(
∑

k∈G rkk)g =
∑

k∈G rgkg. Put R0[G] = {
∑

g∈G rgg ∈ R[G] |
∑

g∈G rg = 0}/

(a) [a] Suppose H is infinite. Then CR[G](H) = 0. In particular, H does not act hyper-
centrally on R[G].

(b) [b] Suppose that |H|r 6= 0 for all 0 6= r ∈ R]. Then CR0[H](H) = 0 . In particular, H
does not act hypercentrally on R[G].

Proof. Let a =
∑
rgg ∈ CR[G](H). Then rg = rgh for all g ∈ G, h ∈ H.

(a) If H is infinite, we get that conclude that rg = rk for infinitely many k ∈ G. Since
rg = 0 for all but finitely many g, this implies rg = 0 and so a = 0.

(b) Suppose H is finite and |H|r 6= 0 for all r ∈ R0[H]. Let a =
∑
rhh ∈ CR0[H](H)

Then rh = r1 for all h ∈ H. Since r ∈ R0[H] this gives 0 =
∑

h∈H rh = |H|r1 and so r1 = 0.
Hence a = 0.

Lemma 1.4.36. [easy zp=1] Let p be a prime and P a p-group with Z(P ) = 1. Then P
has no non-trivial, finite normal subgroup. In particular, if P 6= 1, P is infinite.

Proof. Suppose M is a non-trivial finite subgroup of P . Then P/CP (M) is also finite and
acts on P . Since both P/CP (M) and M are p-groups, this gives CP (M) 6= 1, a contradiction
to Z(M) = 1.

Example 1.4.37. [zp=1] Let p be a prime and k an integer with k > 1. Then there exists
a locally finite, solvable p-group of derived length k with trivial center.

Proof. If k = 2 let B be any infinite abelian p-group ( for example
⊕

i∈N Cp. If k > 2 let
B be any infinite, locally finite, solvable p-group of derived length k − 1, which exists by
induction (since by 1.4.36 a non-trivial p-group with trivial center is necessarily infinite).
Put A = Fp[B]. Then A is elementary abelian p group and B acts faithfully on A be
right multiplication. Put G = AB, the semidirect product. Since B acts faithfully on A,
CG(A) = A and so Z(G) = CA(G) = CA(B). Since B is infinite, 1.4.35(a) gives CA(B) = 1
and so Z(G) = 1. Since B(k−1) = 1 we have G(k−1) ≤ A and so G(k) ≤ A′ = 1.

Suppose that G(k−1) = 1. Since B(k−2) ≤ G(k−2) and G(k−2) is a normal subgroup
of G, we have [A,B(k−2)]B(k−2) ≤ G(k−2). Thus [A,B(k−2), B(k−2)] ≤ G(k−1) = 1 and
B(k−2) acts hyper-centrally on A. But by 1.4.36, B(k−2) is infinite, and so 1.4.35(a) gives a
contradiction.

Thus G(k−1) 6= 1 and G is solvable of derived length k.

Since both A and B ∼= G/A are locally finite p-groups, (??) implies that G is a locally
finite p-group.
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Example 1.4.38. [example] For each prime p there exists a locally finite, hyper (solv-
able,*) p-group which is not hypercentral-by-solvable.

Proof. For 1 < k ∈ N let Hk be a solvable p-group of derived length k with Z(Hk) = 1 (see
1.4.37). Let Ak = FpHk and H =

⊕∞
k=2Hk. Let 1 6= N E H and choose k such that the

projection Nk of N in Hk is not trivial. By ?? Nk is infinite. Hence by 1.4.35(a), N does
not act hypercentrally on Ak. Put A =

⊕
Ak and G = AH. 1.4.27 now completes the

proof.

1.5 Radical Classes

Definition 1.5.1. [def:delta asc] Let δ be a well ordered class, G a group and H a subgroup
of G. We say that H is δ-ascending in G if the exists β ∈ δ and an ascending sequence
(Hβ)β≤δ from H to G. If H is an Ord-ascending subgroup of G, we write HascG and
say that H is an ascending subgroup of G. H is an ω-ascending subgroup of G, we write
H EE G and say that H is an subnormal subgroup of G.

Definition 1.5.2. [def:radical] Let X be a class of groups and G a group.

(a) [a] ρX (G) is group generated by all the normal X -subgroups of G.

(b) [b] X is called N0 closed if any group generated by finitely many normal X -subgroups
is a X subgroup.

(c) [c] X is called N closed if any group generated by normal X -subgroups is a X subgroup.

(d) [d] X is called Ń closed if any group generated by ascending X -subgroups is a X
subgroup.

(e) [e] X is called Sn-closed if every normal subgroup of an X -group is a X -group.

Observe that X is N-closed if and only if ρX (G) is X -group for all groups G.

Lemma 1.5.3. [asc and rho] Let X be an N-closed class of groups, δ a well-ordered class
and G a group. Suppose that whenever β ∈ δ is a limit ordinal, KascLascG and (Mα)α≤δ
is an ascending sequence from K to L such that Mα ∈ X for all α < δ, then L ∈ X . Then
ρX (G) contains all δ-ascending X -subgroups of G. In particular, if in addition, δ > 1, then
ρX (G) is the group generated by all the δ-ascending subgroups of G.

Proof. Let H be an δ ascending subgroup of G and let (Hα)α≤β, β ∈ δ be an ascending
sequence from H to G. For α ≤ β, define Hα = 〈HHα}.

We claim that (Hα)α≤β is a ascending series from H to 〈HG〉. Since H ≤ Hα E Hα+1,
Hα+1 ≤ Hα. So Hα E Hα+1. Also if α is a limit ordinal, then

Hα = 〈HHα〉 = 〈H
⋃
γ<αHα〉 =

⋃
γ<α

〈HHγ 〉 =
⋃
γ<α

Hγ
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So (Hα)α≤β is a ascending series from H = 〈HH〉 to 〈HG〉.
Next we will use induction on α to show that Hα ∈ X for all α ≤ δ.
Suppose first that α = 0, then Hα = H ∈ X .

Suppose next that α = γ + 1 for some ordinal γ, then by induction, Hγ is a normal X
subgroup of Hγ . Let g ∈ Hα. Then g normalizes Hγ and so H

g
γ is a normal X -subgroup of

Hγ . Thus

Hα = 〈HHα〉 = 〈HHα
γ 〉 = 〈Hg

γ | g ∈ Hα〉

is generated by normal X -subgroups. Since X is N-closed, Hα ∈ X .

Suppose that α is a limit ordinal. Then (H)γ≤α is an ascending sequence from H to
Hα. By induction Hγ is an X groups for all γ < α and so by the assumption of the lemma,
Hα ∈ X .

We proved that Hα ∈ X for all α ≤ β. In particular, 〈HG〉 = Hβ ∈ X . Thus 〈HG〉 is a
normal X subgroups of G and so 〈HG〉 ≤ ρX (G). Hence also H ≤ ρX (G).

Corollary 1.5.4. [rho and subnormal]Let X be an N closed class of groups. Then ρX (G)
is the group generated by all the subnormal X -subgroups of G.

Proof. Note that ω does not contain a limit ordinal. So the condition in 1.5.3 holds vacuously
for δ = ω.

Corollary 1.5.5. [ncx] Let X be class of groups, and let NX be the class of groups which
are generated by subnormal X groups. Then NX is the smallest N -closed class of groups
containing X , that is NX is N-closed and every N-closed class of groups containing X also
contains NX .

Proof. Let G be a group generated by a family M of normal NX -groups. Then each
M ∈ M is generated by a family NM of subnormal X -subgroups of M . Note that each
N ∈ NM is subnormal in G and so

⋃
M∈MNM is a family of subnormal subgroups of G

generating G. Thus G ∈ NX and NX is N-closed.

Now let Y be any N-closed class of groups with X ⊆ Y. Let G ∈ NY. Then G is generate
by subnormal X groups, and so also by subnormal Y-subgroups. Thus 1.5.4, G ≤ ρY(G).
Hence G = ρY (G) and so G ∈ Y.

Corollary 1.5.6. [cap subnormal] Let X be an N- and Sn-closed class of groups. Let G
be a group and H EE G. Then

ρX (H) = ρX (G) ∩H.

Proof. Note that ρX (G)∩H is subnormal subgroup of the X group ρX (G). Since X is Sn-
closed, ρX (G)∩H is an X group. Since ρX (G)∩H is normal in H this gives ρX (G)∩H ≤
ρX (H).

Conversely, ρX (H) is a subnormal X subgroup of G and so by 1.5.4 ρX (H) ≤ ρX (G).
Thus ρX (H) ≤ ρX (G) ∩H and the corollary holds.



40 CHAPTER 1. BASIC CONCEPTS FOR INFINITE GROUPS

Definition 1.5.7. [def:radical class] A class X of groups is called radical if it is N and
H closed, and if for every group G

ρX (G/ρX (G)) = 1

Lemma 1.5.8. [char radical] A class of group is radical if and only if its N, H and P
closed.

Proof. Let X be class of groups which is N and H-closed.

Suppose first that X is radical and let G be a group which is X -by-X . Then there exists
M E G such that M and G/M are X -group. Then M ∈ ρX (G) and

G/ρX (G) ∼= G/M
/
ρX (G)/M

Since G/M is an X -group and X is H-closed we conclude that G/ρcX(G) is an X groups.
Thus

G/ρX (G) ≤ ρX (G/ρX (G)) = 1

and so G = ρcX(G) ∈ X . Thus X is closed under extension, that is P-closed.

Suppose next that X is closed under extensions and let G be any group. Let M be the
inverse image of ρX (G/ρX (G)) in G. Then M is a normal subgroups of G and both ρX (G)
and M/ρX (G) are X groups. Thus M is a normal X subgroup of G and so M ≤ ρX (G).
Thus M = ρX (G) and ρX (G/ρX (G)) = M/ρX (G) = 1. Thus X is a radical class.

Definition 1.5.9. [def rad cx] Let X be a class of groups. Then radX = Hyp(HX )).
So radX is the class of all groups with ascending normal series all of whose factors are
homomorphic images of an X group.

Lemma 1.5.10. [char rad cx] Let X be a class of groups. Then radX is the smallest
radical class containing X , that is radX is a radical class and contains all radical classes
containing X .

Proof. By ??(??), radX is H-closed. By 1.4.14, radX is N-closed and by 1.4.13, radX is P
closed. So by 1.5.8, radX is a radical class.

Now let Y be radical class with X ⊆ Y. Let G ∈ radX and choose a hyper-(∗,HX )-
sequence (Gα)α≤β for G.So each We will show by induction that Gα ∈ Y for all ordinals
α ≤ β. If α = 0, this is obvious. Suppose α = δ + 1 is a successor. Then by induction
Gδ ∈ Y. Since X ⊆ Y and Y is H-closed, HH ⊆ Y. Thus Gα/Gδ ∈ Y. Since Y is P closed
this gives Gα ∈ Y.

Suppose α is limit ordinal. Then Gα =
⋃
δ<αGδ = 〈Gδ | δ < α〉. By induction Gδ ∈ Y

and since Y is N-closed, Gα ∈ Y.

We proved that each Gα ∈ Y. In particular G = Gβ ∈ Y and so radX ⊆ Y.
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Definition 1.5.11. [def:central extension] Let G be a group and H be group. We say
that G is a central extension of H if there exists Z ≤ Z(G) with G/Z ∼= H. If X is a class
of groups, then CX is class of central extensions of X -groups.

Proposition 1.5.12. [cgrho] Let X be a H-, Sn- and C-closed class of groups. Let G ∈
radX and put H = ρX (G). Then CG(H) ≤ H.

Proof. Since X is H-closed and G ∈ radX , there exists a hyper X -sequence (Gα)α≤β for G.
We claim that CG(H)∩Gα ≤ H for all α ≤ β. This is obvious for α = 0. So suppose α > 0
and CG(H) ∩Gδ ∈ X for all δ < α. If α is limit ordinal, then

CG(H) ∩Gα = CG(H) ∩
⋂
δ<α

=
⋂
δ<α

(CG(H) ∩Gδ) ≤ H

So suppose α = δ + 1 for some ordinal delta. Put D = CG(H) ∩Gα = CG(H) ∩Gδ+1.
Then DGδ/Gδ is an normal subgroup of the X -group Gδ+1/Gδ. Since X is Sn-closed,
DGδ/Gδ is X group. Hence also D/D∩Gδ is an X -group. Note the

[D,D∩Gδ] ≤ [CG(H),CG(H) ∩Gδ] ≤ [CG(H), H] = 1

and so D ∩ Gδ ≤ Z(D). Thus D is a central extension of an X group. Since X is a
C-closed, D ∈ X . Thus D is a normal X subgroup of G and so D ≤ H.

Thus the claim holds. In particular, CG(H) = CG(H) ∩G = CG(H) ∩Gβ ≤ H.

1.6 Finitely generated groups

Definition 1.6.1. [def:rang] Let G be an A-group.

(a) [a] Let c be a cardinal. Then G is c − A-generated if the exists a subset I of G with
G = 〈IA〉 and |I| ≤ c. We will also say that G is an c-generated A-group. Such an I is
called c−A-generating set for G.

(b) [b] rA(G) is the least cardinal c such that G is c−A-generated.

(c) [c] If G is called finitely A-generated rA(G) ∈ N.

(d) [d] rankA(H) = sup{rA(H) | H ≤ G, rA(G) ∈ N}.

(e) [e] If A = 1, we drop A in the previous notations.

Lemma 1.6.2. [factor and r] Let G be an A-group, H an A-subgroups and M a normal
A-subgroup of G with HM .

(a) [a] There exists an rA(G)-generated A-subgroup K of G with G = 〈H,K〉.

(b) [b] rHA(M) ≤ rA(G) + rHA(H ∩M).
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Proof. (a): Let I ⊆ G with |I| = rA(G) and G = 〈IA〉. For i ∈ I pick hi ∈ H and mi ∈M
with i = himi. Put K = 〈mA

i | i ∈ I〉. Then K is an rA(G)-generated A-subgroup of M .
Also

G = 〈IA〉 = 〈himA
i | i ∈ I〉 ≤ 〈H,mA

i | i ∈ I =>= 〈H,K〉 ≤ G

and so (a) holds.
(b): Let K be as in (a). Then G = 〈H,K〉 = H〈KH〉. Since 〈KH〉 ≤ M this gives

M = (H ∩M)〈KH〉. Observe that 〈KH〉 is an rA(G)-generated HA-group and so M is an
rA(G) + rHA((H ∩M) generated HA-group.

Lemma 1.6.3. [simple rank] Let A be a group, G an A-group and H an A-subgroup of
G.

(a) [a] rankA(H) ≤ rankA(G).

(b) [b] If H is normal in G then rankA(G/H) ≤ rankA(G).

(c) [c] If H is normal in G then rankA(G) ≤ rankA(H) + rankA(G/H).

Proof. (a) and (b) are obvious. For (c) let L be a finitely A-generated A-subgroup of G.
LH/H is an rankA(G/H) − A-subgroup of G/H and so there exists a finite subset I of L
with LH/H = 〈IA〉H/H and |I| ≤ rankA(G/H). Then L = 〈IA〉(L ∩ H). By 1.6.2(a),
there exists a |I| − A-generated subgroup K of L ∩H with L = 〈IA,K〉. Since K ≤ H, K
is rankA(H)-generated and so rA(L) ≤ rankA(G/H) + rankA(H).

Definition 1.6.4. [presentation] Let G be a group and c a cardinal.

(a) [a] A presentation of rank c for G is an onto homomorphism φ : F → G, where F is
a free group of rank c.

(b) [b] A presentation φ : F → G is called finite F has finite rank and kerφ is finitely F
generated.

(c) [c] A group is called finitely presented if its has a finite presentation.

Example 1.6.5. [finite groups are finitely presented]

Proof. G ∼= 〈xg | xhxh = xgh, g, h ∈ G〉.

Lemma 1.6.6. [finitely presented quotient] Let H be a finitely generated group and
M E H. if H/M is finitely presented, then M is finitely M generated.

Proof. Put G = H/M and define β : H → M,h → hM . Also let α : F → G be a
finite presentation of G. Let (xi, i ∈ I be basis for F and pick hi ∈ I with β(hi) =
α(xi). Then there exists a unique homomorphism γ : F → H with γ(xi) = hi. then
β(γ(xi)) = β(hi) = α(xi) and so α = β ◦ γ. Note that M = kerβ and K = Im γ. Since
β(K) = β(γ(H)) = α(H) = G we have H = KM . We compute
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K ∩M = {γ(f) | f ∈ F, β(γ(f)) = 1} = {γ(f) | f ∈ F | α(f) = 1} = β(kerα)

Since α is a finite presentation , kerα is finitely H generated and so K ∩M is finitely
K-generated. Also H is finitely generated and so by 1.6.2(b), M is finitely H-generated.

Proposition 1.6.7. [all presentation finite] Let G be a finitely presented group. Then
all presentation of finite rank for G are finite.

Proof. Let β : H → G be a finite presentation and put M = kerβ. Then H is finite
generated and H/M ∼= G is finitely presented. By 1.6.6, M is finitely H generated and so
β is a finite presentation.

Proposition 1.6.8. [extensions of finitely presented groups] The class of finitely pre-
sented groups is closed under extensions.

Proof. Let G be a group and N a normal subgroups of G such that both G/N and N are
finitely presented. Let α : F → G/N and β : H → N be finite presentation of G/N and N ,
respectively. Let I be a basis for F , J a basis for H, K a finite F -generating set for kerα
and L a finite H-generating set for kerβ. For i ∈ I pick gi ∈ G with α(i) = giN .Since F is
free there exists a homomorphism α∗ : F → G with α∗(i) = gi. Then α∗(f)N = α(f) for all
f ∈ F .In particular α(f) = 1 if and only if α∗(f) ∈ N . If k ∈ K, i ∈ I and l ∈ L, then α∗(k),

β(l)gi and β(l)g
−1
i all are in N and so α∗(k) = β(hk), β(l)gi = β(hki) and β(l)g

−1
i = β(h̃ki)

for some hk, hki, h̃ki ∈ H. Let T be the free product of F and H, that is the free group with
basis I

⊎
J . Note that F and H are subgroups of T . Let M be the normal subgroup of T

generated by the elements

l l ∈ L

kh−1
k k ∈ K

jih−1
ki j ∈ Ji ∈ I

ji
−1
h̃−1
ji j ∈ J, i ∈ I

Let γ : T → G be the homomorphism defined by γ(i) = gi = α∗(i) for i ∈ I and
γ(j) = β(j) for j ∈ J . We will show that γ is onto and ker γ = M . Observe that this
implies that γ is a finite presentation for G.

Note that γ | F = α∗ and γ | K = β. Thus N = β(K) = γ(K) ≤ Im γ. Since α is onto,
α∗(F )N = G and so γ(F )N = G and Im γ = G.

Also γ(l) = β(l) = 1 for all l ∈ L, γ(kh−1
k ) = α∗(k)β(hk)

−1 = 1, γ(jih−1
ki ) =

β(j)giβ(h−1
ji = 1, γ(ji

−1
h̃−1
ji ) = β(j)g

−1
i )β(h̃−1

ji = 1. So all the generators of M are in
ker γ and so M ≤ ker γ.
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Since jiM = hjiM ∈ HM and ji
−1
M = h̃jiM ∈ HM for all j ∈ I and i ∈ M we see

that HM is normalized by 〈I, J〉 = T . It follows that T = 〈F,H〉 = FHM . For k ∈ K we
have k ∈ hkM ∈ HM and so kerα ≤ HM .

Let t ∈ ker γ, then t = fhm for some f ∈ F, h ∈ H and m ∈ M . Then 1 = γ(t) =
γ(f)γ(h)γ(m) = α∗(f)β(h) ∈ α∗(f)N . Thus α∗(f) ∈ N and so α(f) = 1 and f ∈ kerα ∈
HM . Hence t = fhm ∈ HM and we may assume that f = 1. Thus 1 = β(h) and h ∈ kerβ.
Since l ∈M for all l ∈ L we see that kerβ ≤M and thus t = hm ∈M .

Corollary 1.6.9. [polycyclic are finitely presented] All polycyclic groups are finitely
presented. More generally all poly-(cyclic or finite) groups are finitely presented.

Proof.

1.7 Locally X -groups

Definition 1.7.1. [def:directed set]

(a) [a] A partially ordered set (I,<) is called direct if for all i, j ∈ I there exists k ∈ I with
i ≤ k and j ≤ k.

(b) [b] A local system for a group G is a set L of subgroups such that G =
⋃
L and (L,⊂)

is directed.

Note that a partially ordered set is directed if and only if every non-empty subset has
an upper bound.

Lemma 1.7.2. [local system]

(a) [a] Let G be a group with a local system L. Then each finitely generated subgroup of G
is contained in member of L.

(b) [b] Let X be a class of groups. Then every group with a local system of X -groups is a
local X -group. In particular a union of a chain of X -groups is a local X -group.

(c) [c] L is a closure operation.

Proof. (a) Let S be a finite subset of G. Since G =
⋃
L, for each s ∈ S there exists Ls ∈ L

with s ∈ L. Since L is directed , there exists an upper bound L for {Ls | s ∈ S} in L. Thus
s ∈ Ls ⊆ L and 〈S〉 ≤ L.

(b) follows immediately from (a).
(c) Let X be a class of groups. Let G be a group which is locally LX . Let S be a finite

subset of G. Then there exists a LX -subgroup H of G with S ⊆ H. Since H is locally X ,
there exists a subgroup K of H with S ⊆ K. Thus G ∈ LX .

Proposition 1.7.3. [n and l] An L-closed class of groups is N0 if and only if its is Ń-
closed
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Proof. The one direction is obvious. So suppose X is an L and N0 closed class of group.
We will first show that it is bN closed. For this let G be a group which is generated by
normal N subgroups. Let L be the set of subgroups of G which are generated by finitely
many normal X -subgroups. Note that L is a local system for G. Since X is N0-closed,
L ⊆ X . So by 1.7.2(b), G is locally X . Since X is L closed, G ∈ X and so X is B-closed.

Now let G be group which is generated by ascending X -subgroups. By 1.7.2(b), the
unions of any chain of X subgroups of G is LX -group and so an X -group. Thus the
assumptions of 1.5.3 are fulfilled for δ = Ord. Hence all ascending X -subgroups of G are
contained in ρX (G). So G = ρX (G) ∈ X .

Lemma 1.7.4. [easy locally] Let X be an S-closed class of groups and G a group.Then
the following are equivalent.

(a) [a] G is locally X .

(b) [b] Every finitely generated subgroup of G is an X -group.

(c) [c] G is locally X ∩ F (recall here that F is the class of finitely generated groups.

Proof. (a) =⇒ (b): Let S ⊆ G be finite. Since G is locally X , S ≤ H for some X
subgroup of G. Since X is S-closed, 〈S〉 is an X -group.

(b) =⇒ (c): and (c) =⇒ (??): are obvious.
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Chapter 2

Locally nilpotent and locally
solvable groups

2.1 Commutators

Lemma 2.1.1. [commutator formulas] Let G be a group and x, y, z in G. Then

(a) [a] [x, y] = x−1xy = y−xy

(b) [b] [x, yz] = [x, z]y[x, z]

(c) [c] [xy, z] = [x, z]y[y, z]

(d) [d] [x, y]−1 = [y, x].

(e) [e] [x−1, y] = [x, y]−x
−1

.

(f) [f] [x, y−1, z]y[y, z−1, x]z[z, x−1, y]x.

Proof. Readily verified.

Definition 2.1.2. [def:comm groups] Let G be a group.

(a) [a] Let X,Y ⊆ G. The [X,Y ] := 〈[x, y] | x ∈ X, y ∈ U〉.

(b) [b] Let X1, X2, . . . Xn be subsets of G inductively define,

[X1] = 〈X1〉 and [X1, X2, . . . , Xn] := [[X1, X2, . . . Xn−1], Xn]

Lemma 2.1.3. [comm 1] Let X and Y be subsets of a groups G.

(a) [a] If 1 ∈ Y , then 〈XY 〉 = 〈X, [X,Y ]〉.

(b) [b] If Y is a subgroup of G, then [X,Y ] is Y -invariant.

47
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Proof. (a)

〈XY 〉 = 〈xy | x ∈ X, y ∈ Y 〉 = 〈x[x, y] | x ∈ X, y ∈ Y 〉 ≤ 〈X, [X,Y ]〉

= 〈z, [x, y] | z ∈ x, z ∈ X, y ∈ Y 〉 = 〈z, x−1xy | x, z ∈ X, y ∈ Y 〉 ≤ 〈XY 〉

where, in the last inequality we used that X ⊆ 〈XY 〉 since 1 ∈ Y .
(b) Let x ∈ X and y, z ∈ Y . Then

x, zy] = [x, y]z[x, z]

and so

[x, y]z = [x, zy][x, z]−1 ∈ [X,Y ]

where in the last assertion we used that Y and [X,Y ] are subgroups of G.

Lemma 2.1.4. [comm 2] Let X and Y be subsets of a group G and put H = 〈X〉 and
K = 〈Y 〉. Then

[H,Y ] = 〈[X,Y ]H〉

and

[H,K] = 〈[X,Y ]HK〉

Proof. Put L = 〈[X,Y ]H〉. By ??(??), [H,Y ] is H-invariant. Since [X,Y ] ≤ [H,Y ], this
gives L ≤ [H,Y ]. Since L is H acts on the cosets of L in G by conjugation, indeed
(Lg)h = Lgh. Also Lg is fixed-point of h ∈ H iff Lg = lgh and iff [h, g] = g−h ∈ L. So all
elements of X fix all Ly, y ∈ Y . Hence also H = 〈X〉 fixes all Ly, y ∈ Y and so [h, y] ∈ L
for all h ∈ H, y ∈ Y . Thus [H,Y ] ≤ L and L = [H,Y ].

This proves the first statement.
For the second, we use the fist statement twice:

[H,K] = 〈[H,Y ]K〉 = 〈〈[X,Y ]H〉K〉 = 〈[X,Y ]HK〉

2.2 Locally nilpotent groups

Definition 2.2.1. [L]et G be a group and α and ordinal. Define subgroups Zα(G) and
γα(G) inductively a follows:

Z0(G) = 1,Zα(G)/Zα−1 = Z(G/Zα−1(G)), if α is a successor and Zα(G) =
⋃
β<α

Zβ(G) if α is a limit ordinal
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γ0(G) = G, γα(G) = [γα−1(G), G], if α is a successor and Zα(G) =
⋂
β<α

Zβ(G) if α is a limit ordinal

(Zα)α is called the upper central series of G and (γα(G))α) the lower centrals series of
G.

Lemma 2.2.2. [char nilpotent] Let n ∈ N and G a group. Then the following statements
are equivalent:

(a) [a] G = Zn(G).

(b) [b] There exists a finite ascending normal series

1 = A0 ≤ A1 ≤ . . . An−1 ≤ An = G

of G with [Ai, G] ≤ Ai−1 for all 1 ≤ i ≤ n.

(c) [c] γn(G) = 1.

Proof. (a) =⇒ (b): Just put Ai = Zi(G).
(b) =⇒ (a): We claim that Ai ≤ Zi(G). This is clearly true for i = 0. Suppose that

Ai ≤ Zi(G). Then [Ai+1, G] ≤ Ai ≤ Zi(G) and so Ai+1 ≤ Zi+1(G). This proves the claim
and so G = AN ≤ Zn(G).

(b) =⇒ (c): We claim that γi(G) ≤ An−i. Indeed this is true for i = 0. Suppose
γi(G) ≤ An−i. Then

γi+1(G) = [γi(G), G] ≤ [An−i, G] ≤ An−(i+1)

Thus the claim holds and γn(G) ≤ A0 = 1
(c) =⇒ (b): Just put Ai = γn−i(G).

Definition 2.2.3. [def:nilpotent] Let G be a group. Then G is called nilpotent if γn(G) =
1 for some n ∈ Zn(G). The smallest such n is called the nilpotency class of G. N〉l denotes
the class of nilpotent groups.

Lemma 2.2.4. [nilpotent and no] Let K and L be nilpotent normal subgroups of a group
G of nilpotency class k and l, respectively. Then KL is nilpotent of class at most k + l. In
particular, N〉l is N0 closed.

Proof. If k = 0 or l = 0, then K = 1 or L = 1 and the lemma holds. Now suppose k > 0 and
l > 0. Note that KZ(L)/Z(L) has nilpotency class at most k and L/Z(L) has nilpotency
class l − 1. So by induction KL/Z(L) class at most k + l − 1. Thus γk+l−1(KL) ≤ Z(L).
By symmetry, γk+l−1(KL) ≤ Z(K). Since Z(K) ∩ Z(L) ≤ Z(KL) we conclude that

[γk+l(KL),KL] ≤ [Z(KL),KL] = 1
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Definition 2.2.5. [c generated] Let c be a cardinality. Then a group G is called c-
generated if there exists a subset T of G with G = 〈T 〉 and |T | ≤ c.

Lemma 2.2.6. [polycyclic] Let G be a group with an ascending sequence (Gα)α≤β all of
whose factors are cyclic. Then every subgroups of G can is |β|-generated. In particular, all
polycyclic groups are finitely generated.

Proof. For α < β , Gα+1/Gα is cyclic and so there exists gα with Gα+1 = 〈gα〉Gα. We
claim that for all γ ≤ α, Gγ = 〈gδ | δ < γ〉. This is obvious of γ = 0 Suppose the claim is
true for all ordinal less than γ. γ = α+ 1, then

Gγ = 〈gα〉Gα = 〈gα〉〈gδ | δ < α〉 = 〈gδ | δ < γ〉

If γ is a limit ordinal, then

Gγ =
⋃
α<γ

Gα =
⋃
α<γ

〈gδ | δ < α〉 = 〈gδ | δ < γ〉

So the claim holds. In particular, G = Gβ is |β generated. If H ≤ G, then (H ∩Gα)α≤β
is an ascending series with cyclic factors and so also H is |beta|-generated.

Proposition 2.2.7. [fg and nil] Let G be a nilpotent n-generated group of class d > 0 and
suppose G can be generated by n elements.Put m :=

∑d
i=1 n

d. Then γd−1(G) is nd-generated
and G is polycyclic of length m. In particular, every subgroup of G is m-generated.

Proof. Suppose d = 1. Then G is abelian and so polycyclic of length at most n. Also
γd−1(G) = G and so can be generated by nd = n elements. Thus proposition holds in this
case.

So suppose d > 1 and put D = γd−1(G) and E = γg−2(G). Then D ≤ Z(G) and D =
[E,G]. Moreover by induction, E/D is generated by nd−1 elements and G/D is polycylic of
length at most

∑d−1
i=1 n

i. So there exists S ⊆ E with |S| ≤ nd−1 and E/D = 〈sD | s ∈ S〉.
Note that E = 〈S〉D. Let T ⊆ G with G = 〈T 〉 and |T | = n. Then

D = [E,G] = [〈S〉D, 〈T 〉] = [〈S〉, 〈T 〉] = 〈[S, T ]〉〈S〉〈T 〉 = [S, T ]

where the last equality holds since [S, T ] ≤ [E,G] ≤ D ≤ Z(G). Thus D is generated
by |S||T | ≤ nd−1n elements. Since D is abelian, D is polycyclic of length nd. Since G/D is
polycyclic of length

∑d−1
i=1 n

i, G is polycyclic of length

nd +

d−1∑
i=1

ni =

d∑
i=1

nd

The last statement now follows from 2.2.6.

Theorem 2.2.8. [hirsch-plotkin] Let X be a S- and N0-closed class of finitely generated
groups. Then LX is Ń-closed. In particular, for all groups G, ρLX (G) is locally X (G) and
contains all ascending locally X -subgroups of G.
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Proof. We will first show that LX is N0-closed. For this let L and M be normal locally
X -subgroups of a group H. We need to show that LM is locally X .

So let S be a finite subsets of LM and choose finite subsets X and Y of L and M
respectively with S ⊆ 〈H,K〉, where H = 〈X〉 and K = 〈Y 〉. Note that [X,Y ] is finitely
generated and [X,Y ] ≤ [H,K] ≤ [L,M ] ≤ L ∩M and so < [X,Y ], H〉 =< [X,Y ], X〉 is a
finitely generated subgroup of L. Since L is locally X we conclude that < [X,Y ], H〉 is an
X group. Since X is S-closed also [H,Y ] = 〈[X,Y ]H〉 is an X group. In particular, [H,Y ]
is finitely generated. Hence

〈KH〉 = [H,K]K = 〈[H,Y ]K〉K = 〈[H,Y ], Y 〉

is a finitely generated subgroup of M . Thus 〈KH〉 is X -group. By symmetry also 〈HK〉
is X -group. Since X is N0-closed we conclude from 〈H,K〉 = 〈HK〉 < KH〉 that 〈H,K〉 is
an X groups. Since S ⊆ 〈H,K〉 this completes the proof that LM is locally X .

Hence LX is N0-closed. Since LX is L-closed, 1.7.3 implies that LX is also Ń-closed.

Definition 2.2.9. [def:fitting] let G be groups.

(a) [a] F(G) = ρNil(G). So F(G) is is the group generated by the all the nilpotent normal
subgroups of G. F(G) is called the Fitting subgroups of G.

(b) [b] HP(G) = ρLNil(G). So F(G) is is the group generated by the all the locally nilpotent
normal subgroups of G. HP(G) is called the Hirsch-Plotkin radical of G.

Corollary 2.2.10 (Hirsch-Plotkin). [hp] Let G be a group. HP(G) is the largest ascending
locally nilpotent subgroups of G, that is HP(G) is locally nilpotent and contains all ascending,
locally nilpotent subgroups of G.

Proof. Let X = Nil ∩ F , the class of finitely generated subgroups. By 2.2.7 and since
subgroups of nilpotent are nilpotent, X is S-closed. Note that Nil and F are N0-closed and
so also X is N0-closed. Thus the assumption of ?? are fulfilled and so ρLX (G) is the largest
ascending, locally X subgroup of G. By 1.7.4, LX = LNil and the Corollary is proved.

Lemma 2.2.11. [cghp] Let G be a group.

(a) [a] If G is hyper abelian, then CH(F(G)) ≤ F(G).

(b) [b] If G is hyper (locally-nilpotent), then CG(HG(G) ≤ HP(G).

Proof. (a) Note that G is hyper abelian, if and only if G is hyper nilpotent and if and only
if G ∈ radNil. Let K be a group such that K/Z(K) is nilpotent. Then γn(K) ≤ Z(K) and
γn+ 1(G) ≤ [Z(K),K] = 1. Thus Nil is closed under central extension. Clearly Nil is H
and Sn-closed and so the lemma follows from 1.5.12.

(b) Observe that G is hyper (locally nilpotent) just means G ∈ radLNil. Since Nil is
closed under central extensions, also LNil is closed under extensions. Clearly LNil is H and
Sn-closed and so the lemma follows from 1.5.12.
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Let G be a finite group. Then G is locally nilpotent iff G is nilpotent. So F(G) = HP(G)
is the largest normal nilpotent subgroup of G. Also G is hyper abelian iff G is solvable and
iff G is hyper (locally nilpotent). So for finite groups, both parts of the previous lemma say
that CG(F(G)) ≤ F(G) for every finite solvable group.

2.3 The generalized Fitting Subgroup

Definition 2.3.1. [def:f*g] Let G be group.

(a) [a] G is called quasisimple, if G is perfect and G/Z(G) is simple.

(b) [b] A component of G is a quasi simple ascending subgroup of G.

(c) [c] E(G) is the subgroup of G generated by all the components of G.

(d) [d] F∗(G) = HP(G)E(G). F∗(G) is called the general Fitting subgroup of G.

Lemma 2.3.2. [basic quasimple] Let K be quasisimple group and M E K.

(a) [a] M = K or M ≤ Z(K).

(b) [b] If M 6= K, then Z(K/M) = Z ∗K)/M and K/M is quasisimple.

Proof. (a) We may assume M � Z(K). Since K/Z(K) is simple this gives K/Z(K) =
MZ(K)/Z(K) and K = MZ(K). Since K is perfect K = [K,K] = [MZ(K),MZ(K)] =
[M,M ] ≤M and so K = M . (b) Suppose M 6= K. Then by (a) M ≤ Z(K). Let D be the
inverse image of Z(K/M) in K. Then Z(K) ≤ D. Also [D,K,K] ≤ [M,K] = 1 and so also
[K,D,K] = 1. The Three Subgroups Lemma implies that [K,K,D] = 1. Since K is per-
fect we conclude [D,K] = 1, D ≤ Z(K) and D = Z(K). Hence K/Z(M)

/
Z(K/Z(M)) =

K/Z(M)/
/

Z(K)/Z(M) ∼= K/Z(K). The latter group is simple and so K/Z(M) is qua-
sisimple.

Lemma 2.3.3. [f* and asc] Let G be a group and M an ascending subgroup of G.

(a) [a] HP(M) = HP(G) ∩M .

(b) [b] A subgroup of M is a component of M iff its a component of G. In particular,
E(M) ≤ E(G) and F∗(M) ≤ F∗(G).

Proof. (a) Since HP(M) E MascG we conclude from 2.2.10 that HP(M) is an ascending
locally nilpotent subgroup of G and HP(M) ≤ HP(G). Also HP(G)∩M is locally nilpotent
normal subgroup of M and so HP(G) ∩M ≤ HP(M).

(b) If K is a component of M , then K is a quasisimple ascending subgroup of M . Since
MascG we get KascG and so K is a component of G.

Lemma 2.3.4. [easy cf*] Let G be a group.
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(a) [a] CF∗(G)(E(G)) = HP(G).

(b) [b] If M is subnormal in G, then F ∗(M) = M ∩ F ∗(G).

Proof. Put F = F∗(G). (a) By ?? [HP(G),E(G)] = 1. Since F = HP(G)E(G) this gives
CF (E(G))) = HP(G)CE(G)E(G)) = HP(G)Z(E(G)). Since Z(E(G)) is an abelian normal
subgroup of G, Z(E(G)) ≤ HP(G) and (a) holds.

(b) Put E = E(M). By ?? HP(G) and all components of G which are not contained in M
centralizes all the components of M . Thus F = CF (E)E and so (F ∩M) = (CF (E)∩M)E.
Put D = CF (E) ∩M . Let K be a component of G with K �M . Then by ??, [K,M ] = 1.
Thus D centralizes all components of G and so by (a) D ≤ CF (E(G)) = HP(G). Hence D
is locally nilpotent and thus D ≤ HP(M) ≤ F∗(H). So also F ∩M = DE ≤ F∗(M). Since
F∗(M) ≤ F , (b) holds.

Lemma 2.3.5. [f* and factors] Let G be a group.

(a) [a] If M E G then F∗(G)M/M ≤ F∗(G/M).

(b) [b] If M ≤ Z(G). Then F∗(G)/M = F∗(G/M).

Proof. (a) HP(G)M/M is locally nilpotent normal subgroup of G/M and so HP(G)M/M ≤
HP(G/M). Let K be a component of G. If K ≤ M , then definitely KM/M ≤ E(G/M).
K �M , K ∩M < K and by 2.3.2, KM/M ∼= K/K ∩M is quasisimple. Thus KM/M is a
component of K. Hence E(G)M/M ≤ E(G/M) and (a) holds.

(b) Let H be the inverse image of HP(G/M) in G. Since H/M is locally nilpotent and
M ≤ Z(H), H is locally nilpotent and so H ≤ HP(G). Thus H = HP(G).

Now let L be the inverse image of a component of G/M in G and put K = L′. Since
L/M is perfect, L/M = KM/M and so L = KM . Thus L′ = K ′ = L and so K is perfect.
Let D/M = Z(L/M). Then D � K and so using ??, D∩K ≤ Z(K) ≤ Z(L)∩K ≤ D∩K.
Hence D ∩ K = Z(K) and K/Z(K) = K/K ∩ D ∼= KD/D = L/D ∼= L/M

/
Z(L/M).

Therefore K/Z(K) is simple and K is a component of G. Since M ≤ HP(G) we get
L = KM ≤ F∗(G). It follows that F∗(G/M) ≤ F∗(G)/M . Together with (a) this gives
(b).

Theorem 2.3.6. [cf*g] Let F∗ be the class of all groups H which are a central product of
quasi-simple and locally nilpotent groups. Let G be group,

(a) [a] G ∈ F∗ if and only if G = F∗(G).

(b) [b] F∗ is Sn-, H-, C- and N-closed.

(c) [c] ρF∗(G) = F∗(G).

(d) [d] If G ∈ radF∗, then CG(F∗(G)) ≤ F∗(G).
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Proof. (a): If G ∈ F∗ then clearly G = F∗(G). Conversely, by ??, F∗(G) is the central
product of HP(G) and the components of G, so (a) holds.

(b) and (c): By ??(??), F∗ is Sn-closed. By 2.3.5, F∗ is H and C closed. Also if N EG
with N = F∗(N), then by ??(??), N = F∗(N) ≤ F∗(G). This shows that ρF∗(G) = F∗(G)
and that F∗ is N-closed.

(d) By (b) and 1.5.12, CG(ρF∗(G)) ≤ ρF∗(G). Thus (d) follows from (c).

Definition 2.3.7. [def:min] We say that a group G fulfills MIN if every non-empty sets
of subgroups of G has a minimal element.

Corollary 2.3.8. [cf*] Let G be a group with MIN, then G ∈ radF∗. In particular,
CG(F∗(G)) ≤ F∗(G).

Proof. Let M E G with G 6= M . Then G/M fulfills min and so G/M has a minimal normal
subgroup E. Then E is simple and so either |E| is a prime or E is quasisimple. In the first
case E ≤ HP(G/M) and in the second E ≤ E(G/M). In either case F∗(G/M) 6= 1. So G
is strongly hyper F∗ and hence by ??(??), G is a hyper F∗-group. Thus G ∈ radF∗. The
second statement now follows from ??.

2.4 Chieffactors of locally solvable groups

Proposition 2.4.1. [chieffactors in locally nilpotent] let G be group.

(a) [a] If G locally nilpotent group, then G centralizes all chief-factors of G.

(b) [b] If G locally solvable group, then G all chief-factors of G are abelian.

Proof. Let T/B be a chieffactor of G. Replacing G be G/B we may assume that B = 1 and
so T is minimal normal subgroup of G. Let H = G in (a) and H = T in (b). We need to
show that [T,H] = 1. So suppose [T,H] 6= 1. Since T is a minimal normal subgroup of G,
T = [T,H]. Pick 1 6= t ∈ T . Then T = 〈tG〉 and so t ∈ [T,H] = [tG, H]. Thus there exists
g1, g2, . . . , gn ∈ G and h1, h2, . . . hm ∈ H with

t ∈ [t〈g1,...gn〉, 〈h1, h2, . . . , hm〉]

(a) Suppose G is locally nilpotent and put D = 〈g1, . . . gn, h1, h2, . . . , hn〉. Then t ∈
[〈tD〉, D]. Since G is locally nilpotent, D is nilpotent and we can choose k minimal with
t ∈ Zk(D). Then

t ∈ [〈tD〉, D] ≤ [Zk(D), D] ≤ Zk−1(D)

a contradiction to the minimal choice of k.
(b) Suppose G is locally solvable and so H = T = 〈tG〉. We we can choose gjk ∈ G with

hj ∈ 〈t〈gjk,...,gjtj 〉〉. Put D = 〈gi, gjk | 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ tj〉. Then

t ∈ [〈tD〉, 〈tD〉] = 〈tD〉′
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Since G is locally solvable, D is solvable and we can choose k maximal with t ∈ G(k).
Then

t ∈ 〈tD〉′ ≤ (G(k))′ = G(k+1)

a contradiction to the maximality of k.

2.5 Polycyclic groups

Definition 2.5.1. [def:c-series] Let G be a group. A c-series for G is finite series for G
each of whose factors are isomorphic to Zp or Z. A strong c-series for G is a c-series of
minimal length. A supersolvable series is a finite normal series all whose factors are cyclic.
A group is called supersolvable if its has a supersolvable series.

Definition 2.5.2. [def:isomorphic set of groups] Let M and N be sets of groups, we
say thatM is isomorphic to N if there exists a bijection φ : M→ N with M ∼= φ(M) for all
M ∈ M. We say that two series of a group have isomorphic factors, if the sets of factors
of the two series are isomorphic.

Definition 2.5.3. [def:refinement] Let A be a series for the group G. A refinement of A
is a series B of G with A ⊆ B.

Proposition 2.5.4. [refinement] Let A and B be ascending series of the group G. Define
A∗ = {(A ∩ B)A− | A ∈ A, B ∈ B} and B∗ = {(B ∩ A)B− | B ∈ B, A ∈ A}. Then A∗
is an ascending refinement of A, B∗ is an ascending refinement of B and A∗ and B∗ have
isomorphic factors. Moreover, the sets of factors of both A∗ and B∗ are isomorphic to

{A ∩B/(A− ∩B)(A ∩B−) | A ∈ A, B ∈ B, A ∩B 6= (A− ∩B)(A ∩B−)}

Proof. We will first show that A∗ is totally ordered. Let X1, X2 ∈ A∗ and pick Ai ∈ A, Bi ∈
B with Xi = (Ai∩Bi)A−i . Without loss A1 ≤ A2. Note that A−i ≤ Xi ≤ Ai. So if A1 < A2,
then X1 ≤ A1 ≤ A−2 ≤ X2. So suppose A1 = A2 and without loss B1 ≤ B2. Then X1 ≤ X2

and so A∗ is totally ordered.
Note that A = (A ∩G)A− ∈ A∗ for all A ∈ A and so A∗.
Let X = (A ∩ B)A− ∈ A∗. Since B is well ordered we may assume that B is minimal

in B with X = (A ∩B)A−. Since B is well ordered we may assume that B is minimal in B
with We will compute X− =

⋃
{D ∈ A∗ | D < A}. If A = A−(in A) then X = A =

⋃
{D ∈

A | D < A} ≤ X− and so X = X−. Suppose next that A 6= A−. Let E ∈ B with E < B.
By the minimal choice of B, (A ∩E)A− < (A ∩B)A− and so (A ∩E)A− ≤ X−. It follows
that (A ∩ B−)A− ≤ X−. So if B = B−, then X = X−. So suppose B 6= B−. Let Ã ∈ A
and B̃ ∈ B with (Ã ∩ B̃)Ã− ≤ X. Then either Ã ≤ A− or Ã = A and B̃ ≤ B−. In either
case (Ã ∩ B̃)Ã−) ≤ (A ∩ B−)A− and so X− = (A ∩ B−)A−. Since A− E A and B− E B
we have X− = A ∩B−)A−(A ∩B)A− = X and so A∗.

Let M be a non-empty subset of A∗. Choose A ∈ A minimal with (A ∩E)A− ∈M for
some E ∈ B and then choose B ∈ B minimal with (A ∩ B)A− ∈ M. Then (A ∩ B)B− is
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the minimal element ofM. So A∗ is well ordered and
⋂
M = (A∩B)B− ∈ A∗. If G ∈M,

then
⋃
M = G ∈ A∗. If G /∈ M pick X minimal in A∗ with M < X, for all M ∈ M.

Then clearly
⋃
M = X− ∈ A∗. Thus A∗ is a series for G and so an ascending refinement

of A. Also the factors of A∗ are exactly the groups |(A∩B)A−/(A∩B−)A− where A ∈ A,
B ∈ B with A 6= A−, B 6= B− and (A ∩ E)A− < (A ∩ B)A for all E ∈ B with E < B.
Observe that these are exactly the groups |(A ∩ B)A−/(A ∩ B−)A− where A ∈ A, B ∈ B
and (A ∩B)A− 6= (A ∩B−)A−.

Now

(A ∩B)A−/(A ∩B−)A− = (A ∩B)(A ∩B−)A−/(A ∩B−)A−

∼= (A ∩B)/
(
(A ∩B) ∩ (A ∩B−)A−)

)
= (A ∩B)/

(
(A ∩B−)(A ∩B ∩B−)

)
= (A ∩B)/

(
(A ∩B−)(A ∩B−)

)
and so the set of factors of A∗ is isomorphic to the set

{A ∩B/(A− ∩B)(A ∩B−) | A ∈ A, B ∈ B, A ∩B 6= (A− ∩B)(A ∩B−)}

Observe that the last set is symmetric in A and B and all parts of the propositions are
proved.

Lemma 2.5.5. [same number of infinite factors] Any two c-series of a polycyclic group
have the same number of infinite factors.

Proof. Let A and B be the c-series of the group G. By 2.5.4 we may assume that A ⊆ B.
Let (X,Y ) be a jump of A and consider the series

X = X0 < X1 < . . .Xn = Y

where X0, . . . , Xn are the members of B with X ≤ Xi ≤ Y . If |Y/X| is cyclic of prime order
then n = 1 and X1/X0 = Y/X. If Y/X ∼= Z, then X1/X0

∼= Z while Xi/Xi−1 is finite for
2 ≤ i ≤ n. So each infinite factor of A gives rise to exactly one infinite factor of B.

Lemma 2.5.6. [cag cap kag] Let G be a group acting on the abelian group A. Let g ∈ G
with finite order n. Then CA(g) ∩ [V, g] has exponent dividing n.

Proof. Let a ∈ CA(g)∩ [V, g]. Since A is abelian, [A, g] = {[a, g] | a ∈ A} and so there exists
b ∈ V with a = [b, g]. We claim that am = [b, gm] for all m ∈ Z+. By definition this is true
for m = 1. Note that am ∈ CA(g) and so by 2.1.1(b)

[b, gm+1] = [b, gmg] = [b, g][b, gm] = aam = am+1

It follows that an = [b, gn] = [b, 1] = 1.

Proposition 2.5.7. [supersolvabe] Let G be supersolvable group. Then
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(a) [a] There exists a strong c series 1 = G0 < G1 < G2 < Gn and 0 ≤ l ≤ n such that
Gi/Gi−1 is has odd prime order for all 1 ≤ i ≤ l and Gi/Gi−1 has order 2 or infty for
all l < i ≤ n.

(b) [b] G has a unique maximal finite subgroup of odd order.

(c) [c] Any two strong c-series have isomorphic factors.

Proof. Let A : 1 = H0 < H1 < H2 < Hn be a strong c series for G and choose a c-series

B : 1 = G0 < G1 < G2 < Gn

and a ≤ b ∈ N such that:

(a) A and B have isomorphic factors.

(b) Gi/Gi−1 has odd order for all 1 ≤ i ≤ a.

(c) Gi/Gi−1 has order 2 or ∞ for a < i ≤ b.

(d) If b 6= n, then Gb+1/Gb has odd prime order.

(e) a is maximal and then b is minimal.

Suppose that b 6= n. Then by maximality of a, a 6= b. Put Put B =
⋂
G
Gb+1

b−1 , Gb + 1 =
Gb+1/B, p = |Gb+1/Gb−1 and m = |Gb/Gb11. Then Gb+1/Gb−1

∼= Zp, Gb/Gb−1 is cyclic of
order m, p is an odd prime and m ∈ {2,∞}. Note that G′b ≤ Gb−1 and since G′b E Gb+1,
G′b ≤ B. Thus Gb is abelian.

If m = 2, then Gmb ≤ Gb−1 and so Gmb ≤ B and Gb is an elementary abelian 2-group.
Suppose m =∞ and let x ∈ Gb \ B. Then there exists g ∈ Gb+1 with x � Ggb−1. Since

Gb/G
g
b−1
∼= Z, xGgb−1 has infinite order in Gb/G

g
b−1. Hence also x has infinite order. So for

either possibility of m, any non-trivial elements of Gb has order m.
Suppose for a contradiction the D := [Gb, Gb+1]B 6= B. Let S0 ≤ S1 ≤ . . . Sm = G be

supersolvable series for G and pick k minimal with Sk∩D � B. Then E := (Sk∩D)B/B ∼=
Sk ∩D/Sk ∩B and since Sk−1 ∩D = Sk−1 ∩D, E is a quotient of

Sk ∩D/Sk−1 ∩D = Sk ∩D/(Sk ∩D) ∩ Sk−1
∼= (Sk ∩D)Sk−1/Sk−1

Thus E is isomorphic to a section of the cyclic group Sk/Sk−1. Hence E is non-trivial
cyclic subgroup of Gb. Since non-trivial elements of Gb have order m, E is cyclic of order m.
It follows that Aut(E) has order at most two. Observe that Gb+1 acts on E. Gb centralizes
Gb and so also E and Gb+1/Gb ∼= Zp has order coprime to 2. Thus Gb+1 centralizes E.
So E ≤ [Gb, Gb+1] ∩ CGb(Gb+1). Thus by ?? E has exponent dividing p = |Gb+1/Gb| a

contradiction since E is cyclic of order m.
We proved that [Gb, Gb+1] ≤ B ≤ Gb−1. So Gb−1 = B EGb+1 and Gb ≤ Z(Gb+1. Since

Gb+1/Gb is cyclic we conclude that Gb+1 is abelian. If Gb+1 is cyclic, then
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G0 ≤ . . . Gb−1 ≤ Gb+1 ≤ . . . Gn
is a c-series for G, a contradiction since A and so also B is a c-series of minimal length.
Thus Gb+1 is not cyclic and there exist K ≤ Gb+1 with

Gb+1 = Gb ×K

Let K be the inverse image of K in Gb+1. The K E Gb+1, K/Gb−1
∼= Zp and Gb+1/K

is cyclic of order m.
Consider the series

G0 ≤ . . . Gb−1 ≤ K ≤ Gb+1 ≤ . . . ≤ Gn
If b − 1 = a, we get a contradiction to the maximality of a and if a < b − 1, we get a

contradiction to the minimality of b.
This show that n = b and so (a) holds.
Note that H := Gl is a subgroup of odd order. Let g be any non-trivial element of odd

order in G and pick 1 ≤ t ≤ n minimal with g ∈ Gt. Then gGt−1 is non-trivial elements
of odd order in Gt/Gt−1. So Gt/Gt−1 cannot by cyclic of order 2 or ∞ and so t ≤ l and
g ∈ Gl = H. Thus H is the unique maximal finite subgroup of odd order in G and (b) is
proved.

For any odd prime p let sp the number of factors of A isomorphic to Zp. Then sp is also
the number of factors of B isomorphic to Zp and so |H| =

∏
{psp | p an odd prime}. Thus

sp is independent of the choice of the strong c-series A. By 2.5.5 any two strong c-series also
have the same number of factors isomorphic to Z. By defintition, any two strong c-series
have the same number of total factors. It follows that they also have the same number of
factors isomorphic to Z2. So (c) holds.



Chapter 3

Groups with MIN

3.1 Basic properties of groups with MIN

Recall that a group with MIN is a group such that every non-empty set of subgroups has a
minimal element.

Lemma 3.1.1. [basic min] Let G be a group with MIN.

(a) [a] Every section of G fulfills MIN.

(b) [b] G is periodic, that is every element in G has finite order.

Proof. (a) Let B E A ≤ G and M a non-empty set of subgroups of A/B. Let D ≤ G be
minimal with B ≤ D ≤ A and D/B ∈M. Then D/B is a minimal element of M.

(b) Let g ∈ G. By (a) 〈g〉 fulfills MIN and so 〈g〉 � Z. Thus 〈g〉 is finite.

Lemma 3.1.2. [min and com] Let G be a group with MIN. Then every series for G is
an ascending series.

Proof. Just recall that by definition a series is ascending if every non-empty subset of the
series has a minimal element.

Definition 3.1.3. [def:gcird] Let G be a group. Then G◦ is the intersection of all the
subgroups of finite index in G.

Lemma 3.1.4. [gcirc and min] Let G be a group with MIN. Then G◦ is the unique min-
imal subgroups of finite index in G.

Proof. Let A minimal subgroups of finite index in G and B an arbitrary subgroup of index
in G. |A/A∩B| = |AB/B| ≤≤ |G/B|, G/A∩B| ≤ |G/A||G/B|. So A∩B| has finite index
in A and so by minimality of A and B. A = A ∩ B ≤ B. So A is the unique minimal
subgroup of finite index and A = G◦

59
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Lemma 3.1.5. [basic gcirc] Let G be a group and H ≤ G. Then H◦ ≤ G◦.

Proof. Let F ≤ G with |G/F | finite. Then |H/H ∩ F | = |HF/F | ≤ |G/F | and so H◦ ≤
H ∩ F ≤ F . Since this holds for all such F , H◦ ≤ G◦.

3.2 Locally solvable groups with MIN

Definition 3.2.1. [def:divisible] A group A is called divisible of it is abelian and for all
a ∈ A and n ∈ Z+ where exists b ∈ A with bn = a.

Q and Cp∞ are divisible. Z is not divisible and all non-trivial divisible groups are infinite.

Lemma 3.2.2. [basis divisible] Let A be an abelian group and D a divisible subgroup of
A. Then A = D ⊕K for some K ≤ A.

Proof. By Zorn’s lemma there exists a subgroup K of A maximal with respect to D∩A = 0.
Let a ∈ A and let m ∈ N. Then am ∈ DK if and only of am = dk for some d ∈ D, k ∈ K
and so iff amK ∩ D 6= ∅ and iff amD ∩K 6= ∅. Let n be the order of aDK in A/DK. If
n = ∞ we conclude that a /∈ K and | < a〉K ∩D = 1, a contradiction to the maximality
of K. Thus n ∈ Z+. Then an = dk for some d ∈ D and k ∈ K. Since D is divisible,
d = bn for some b ∈ D. Put e = ab−1. If emK ∩ D 6= ∅ we get emD ∩ K 6= ∅ and since
aD = eD, amD ∩K 6= emptyset and am ∈ DK, n | m and m = nl for some l ∈ Z. Thus
em = (ab−1)(nl) = (anb−n)l = (and−1)l = kk ∈ K. It follows that em ≤ D ∩K = 1 and so
〈e〉K ∩D = 1. By maximality of K, this gives e ∈ K and so a = eb ∈ KD. Thus A = DK
and AD ⊕K.

3.3 Locally finite groups with finite involution centralizer

Proposition 3.3.1. [brauer fowler] Let H be a finite group, t an involution in H. Then
there exist a non-trivial normal subgroup N of Gwith |G/CG(N) ≤ (2|CH(t)|2)! and N ≤
[t, G].

Proof. Put D = {(x, y) | x, y ∈ tH | x 6= y}. Note that xy 6= 1 for all (x, y) ∈ D. For
a ∈ H], but D(a) = {x, y) ∈ D | xy = a} and k = {max |D(h) | a ∈ G]. Put h = |H|. Then
|cC| = |H/CH(t)| = h

c and

h

c
(
h

c
− 1) = |C|(|C| − 1) = |D| =

∑
a∈H]

|D(a)| ≤ (h− 1)k

and so

h2

c2
≤ hk − k +

h

c
≤ h(1

1

c
≤ 2h

and so
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h

k
≤ 2c2

Pick a ∈ H] with |D(a)| = k If (x, y) ∈ D(a) then y = x−1a = xa, so y uniquely
determined by x. Moreover x inverts a = xy. So if (x̃, ỹ) is another element of D(a), then
xy−1 ∈ CG(a). Thus |D(a)| ≤ |CH(a)|. . It follows that

|aH | = |H/CH(a)| ≤ h

k
≤ c2

Since H/C(H(aH) is isomorphic to a subgroup Sym(aH) we conclude that H/CH(aH)| ≤
(2c2)!. Put N = 〈aG〉. Then |H/CH(N)| ≤ (2c2)!. Let x = tr and y = xs for some r, s ∈ K.
Then a = xy = x−1xs = [x, s] = [tr, s]. Since [t,K] E K this gives and N ≤ [t, G] and the
lemme is proved.

Lemma 3.3.2. [brian] Let K be a group, M EK, K = K/M and h ∈ K. Then |CK(h)| ≤
|CK(h). Moreover if |CK(h)| = |CK(h)|, then Mh ⊆ hK .

Proof. Define A ≤ K by M ≤ A and A/M = CK(h). Note that CK(h) ≤ A. Consider the
map

τ : A→ H, a→ ha

Since [h
a

= h for all a ∈ A we have ha ∈Ma and so Im τ ⊆Mh.

Note that τ(a) = τ(b) iff ha = hb iff hba
−1

= h iff ba−1 ∈ CK(h) iff b ∈ a−1CK(h). Thus
τ−1(d) = |CK(h)| for all d ∈ Im τ and

|A| = |CK(h)|| Im τ | ≤ |CK(h)||Mh|‖CK(h)|M |

and so

|CK(h)| = |A/M | ≤ |CK(h)|

If |CK(h)| = |CK(h)| we conlcude that Mh = Im τ = hA ⊆ hK . Note tat

Lemma 3.3.3. [h1 bouned] Let H be group acting on an abelian group A. Then A/CA(G)
is bounded in terms of |G/CG(A) and [A,G].

Proof. Without loss CG(A) = 1. For g ∈ G we have A/CA(g) ∼= [A, g] ≤ [A,G] and so
|A/CA(g)| ≤ [A,G]. Since G/CA(G) embeds into×g∈GA/CA(G), the lemma is proved.

Proposition 3.3.4. [g mod zl] Let G be a finite group and t ∈ G with t2 = 1. Put
L = [t, G]. Then |G/ZOrd(L)| is bounded in terms of |CG(t)|
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Proof. The proof is by induction on CG(t). Replacing G be G/ZOrd(L) we may assume
that Z(L) = 1. By 3.3.1 there exiss a non-trvial normal subgroup N of G such that N ≤ L
and G/CG(N) is |CG(t)|-bounded. Without loss N is a mininal normal subgroup of G. If
t inverts N , then L centralizes N and so L ≤ Z(L) = 1, a contadiction. Hence there exists
n ∈ N such that t does not invert n. Since n = (nt)t we conclude that (nt) does not have
order two. So nt /∈ tG. Put G = G/N . Then 3.3.2 implies that |CG(t)| < |CG(t). Let
Z/N = ZOrd(L)). Then by induction G/Z is bounded in terms of |Cg(t). Put D = CZ(N).
Since |Z/D| ≤ |G/CG(N) we conclude that Z/D and so also G/D are bounded in terms of
|CG(t)|.

It remains to bound the order of D. So suppose that D 6= 1 and let M be any non-
trivial normal subgroup of G contained in D. Suppose that M ∩ D = 1. Then M ∼=
MN/N ≤ ZN/N = ZOrd(L)) and so CM (L) = 1 6= 1, a contradiction to Z(L) = 1. Thus
M ∩N 6= N . Since N is a mininal normal subgroup of G this gives N ≤M . Thus N is the
uniuqe mininal normal subgroup of G contained in D. In particular N ≤ D and so N is
abelian. Since t does not invert N there a prime p and an elemenst of n of order p in CN (t).
By mimimlity of N , N = 〈nG〉. It follows that N is an elementary abelian p group and
|N | ≤ p|G/CG(N)| ≤ |CG(t)||G/CG(N). Thus |N | is |CG(t)|-bounded. Since Z/N is nilpotent
and N ≤ Z(D), D is nilpotent. Observe that N ∩Op′(D) = 1 and so Op′(D) = 1. Thus D is
a p-group and we conlcude that [D,Op(L)] ≤ N . If CD(Op(L)) 6= 1, then also CD(L) = 1,
a contradiction. Thus CD(Op(L)) = 1. From [Op(L), D,D] ≤ [D,N ] = 1 and the Three
subgroup lemma we get [D′, Op(L)] = 1 and so D is abelian. Since |G/D| is bounded, we
conclude that Op(L)/COp(L)(D) is bounded. ?? now shows that |D| = |D/CD(Op(L))| is
bounded.

Lemma 3.3.5. [nilpotent and maximal abelian] Let P be a hypercentral groups and A
a maximal abelian normal subgroup of P . Then CP (A) = A.

Proof. Let h ∈ CP (A) with [h, P ] ≤ A. Then 〈h〉A is an abelian normal subgroup of P and
so by maximality of A, h ∈ A. Since P is hypercental this implies CP (A) = A.

Lemma 3.3.6. [2-group with small centralizer] Let P be a locally finite 2-group and
t ∈ P t2 = 1 and with |CP (t) finite. Then there exists a integer n such that t inverts Pn

and n and P/Pn are bounded in terms of |CP (t)|

Proof. Without loss P is finite. Let A be a maximal normal abelian subgroup of P and
put m = |CP (t)|. Let m = 2k. Since A/CA(t) ∼= [A, t] we have |A/[A, t]| = |CA(t)|

∣∣|CP (t)|
and so Am ≤ [A, t]. Note that t inverts [A, t] and so also Am and [Ω1A(t), t]. Thus
[Ω1A(t), t] ≤ CΩ1(A)(t) and |Ω1(A)| = |[Ω1A(t), t]||CΩ1(A)(t)| ≤ |CP (t)|2 = m2 = 22k.

If follows that A has rank at most 2k. and so A/Am has order at most m2k = 22k2 .
order. Hence also P/CP (A/Am) has m-bouned order. Put E = CP (Am) ∩ CP (A/Am). By
3.3.2 P/[P, t] has order at most m and since [P, t] centralizes Am, P/CP (Am) has order at
most m. Put E = CP (Am) ∩ CP (A/Am). Then P/E has m-bouned order. Let a ∈ A and
e ∈ E. Then [a, e]m = [am, e] = 1 and so [a, e] ≤ Ωk(A). Since |Ωk(A) and A/Am have order
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at most 22k2 we conclude that E/CE(A) has order at most 24k4. Thus P/A = P/CP (A)
has m-bounded order. Hence P l ≤ A for some m-bounded integer k. Then P lm ≤ Am

and t inverts P lm. Since Alm ≤ A, |A/P lm has order at most (lm)k and so |P/P lm| is
lm-bounded.

Lemma 3.3.7. [coprime action] Let p be a prime and G a finite group acting a finite
p-group P .Define Op(G) = 〈x ∈ G | x is a p′element〉

(a) [a] G/Op(G) is a p-group and so Op(G) is the unique smallest normal subgroup of G
whose quotient is a p-group.

(b) [c] [P,Op(G)] = [P,Op(G);n] for all n ∈ Z+.

(c) [d] The exists n ∈ Z+ with [P,G;n] = 0 if and only if [P.Op(G)] = 1 and if and only
if G/CG(P ) is a p-group.

Proof. (a) Let x ∈ G, then x = yz where y is a p element and z is p′-elemenst. Thus
xOp(G) = yOp(G) and so G/Op(G) is a p-group.

Lemma 3.3.8. [more coprime] Let P be a p-group acting on a p′-group Q.

(a) [a] Let RE S ≤ Q be P -invariant subgroups of Q. Then CS/R(P ) = CS(P )R/R.

(b) [b] Let 1 = Q0 E Q1 ≤ Q2 E . . . E Qn = Q be a P invariant subnormal series of Q.
Then

|CQ(P )| =
n∏
i=1

|CQi/Qi−1
(P )|

Proof. (a) Let T/R = CS/R(Q). Then CS(R)Q ≤ T and [T, P ] ≤ R. By Homework 1,
T = CT (P )[T, T ] ≤ CS(P )Q ≤ T and so T = CS(P )Q.

(b). This clearly holds for n = 1. Suppose n > 1 and put k = n− 1. Then

|CQ(P )| = |CQ(P )/CQk(R)||CQk(R)| = |CQ(R)/CQ(R) ∩Qk||CQk(R)|

= ||CQ(R)Qk/Qk||CQk(R)| = |CQ/Qk(R)||CQk(R)|

= |CQ/Qk(R)||
∏k
i=0 |CQi/Qi−1

(P )| =
∏n
i=1 |CQi/Qi−1

(P )|

Proposition 3.3.9. [nilpotent by finite] Let G be a locally finite group and t ∈ G with
t2 = 1. Then there exists a postive integer n such that n and |G/Zn([G, t])| are bounded in
terms of |CG(t)|. In particular, G is nilpotent by finite.
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Proof. Put L = [t, G] and Z = ZOrd(L).

Supppose first that G is finite let n be minimal with Zn(L) = Z. By 3.3.4 |G/Z| is
bounded in terms of CG(t). So we just need to show that n is bounded. Let r and s be
minimal with O2(Z) ≤ Zs(L) and O(Z) ≤ Zr(L). Then n = max(r, s). By 3.3.6 there exists
an integer m such that O2(Z)m has bounded index in O2(Z) and O2(Z)m is inverted by t.
Then L centralizies O2(Z)m and s is bounded.

For 1 ≤ j ≤ s put Zi = Zi(L)∩(Z). Then Zi/Zi−1 = CO(Z)/Z[i−1(L) and 1 = Z0 < Z1 <

Z2 < . . . < Zr = O(Z). Let i ∈ Z+ with 2i ≤ t. Then L does not centralizes Z2i/Z2i−2, t
does not inverts Z2i/Z2i−2, CZ2i/Z2i−2

(t) 6= 0 and by Homework 1, CZ2i(t) � Z2i−1. Thus

0 < CZ2(t) < CZ4(t) < . . .

and we conclude that s is bounded in terms of |CG(t)|.
So the proposition holds for finite groups. In particular there exist bounded integers n

and m such that |H/Zn([[H, t])| ≤ m for all finite subgroups H of G. For a finite subgroup
subgroup H of G define

k(H) = sup{| |H/H ∩ Zn([[K, t])|
∣∣H ≤ K ≤ G,K finite, H ∩ [t, G] = H ∩ [t,K]}

Observe that since H ∩ [t, G] is a finite subgroup, there exists a finite subgroup K of G
with H ≤ K and H ∩ [t, G] ≤ [t,K]. Hence H ∩ [t, G] = H ∩ [t,K] and k(H) is well defined.
Also

|H/H ∩ Zn([[K, t])| = |HZn([[K, t]/Zn([[K, t])| ≤ |K/Zn([[K, t])| ≤ m

and so k(H) ≤ m and there exists a finite subgroup H∗ of G with H ≤ H∗ ≤ G,
H ∩ [t, G] = H ∩ [t,H∗] and |H/H ∩ Zn([[H∗, t]| = k(H).

Put k = max{k(H) | H ≤ G,H finite}. Then also k ≤M . Put

L = {H ≤ G | H finite k(H) = k}

and for L ∈ L define

F(L∗) = {H ≤ G | L∗ ≤ H,H finite

We will prove next

1◦. [1] Let L ∈ L and H ∈ F(L∗). Then L ∩ [G, t] = L ∩ [H, t], L ∩ Zn([[L∗, t]) =
L ∩ Zn([H∗, t]) and |L/L ∩ Zn([H∗, t]) = k

Indeed we have

L ∩ [G, t] = L ∩ [L∗, t] ≤ L ∩ [H, t] ≤ L ∩ [H∗, t] ≤ L ∩ [G, t]

and so L ∩ [G, t] = L ∩ [L∗, t] = L ∩ [H, t] = L ∩ [H∗, t]

Thus [L ∩ Zn([H∗, t]), L∗;n] ≤ Zn([H∗, t]), H∗;n] = 1 and hence
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L ∩ Zn([H∗, t]) ≤ L ∩ Zn([L∗, t]

Therefore,

k = k(L) = |L/L ∩ Zn([L∗, t])| ≤ |L/L ∩ Zn(H∗, t]| ≤ k(L)

and (1◦) is proved.

2◦. [2] Let L ∈ L and H ∈ F(L∗). Then k(H) = k and H = L(H ∩ Zn([H∗, t])).

By (1◦) we have

k = |L/L ∩ Zn([[H∗, t]| = |LZn([[H∗, t])/Zn([[H∗, t]|

≤ |HZn([[H∗, t]/Zn([[H∗, t]) = k(H) ≤ k

Thus k = k(H), and HZn([[H∗, t]) = LZn([[H∗, t])). Thus H = L(H ∩Zn([[H∗, t])) and
(2◦) holds.

3◦. [3] Put Z =
⋃
L∈L L ∩ Zn([L∗, t]). Then Z is a normal subgroup of G.

Let L1, L2 ∈ L and put H = 〈L∗1, L∗2〉. Then by (2◦), H ∈ L and by (??), Li ∩
Zn([L∗i , t]) ≤ H ∩ Zn([t,H]) ≤ Z. Thus

〈L1 ∩ Zn([L∗1, t], L2 ∩ Zn([L∗2, t])〉 ≤ Z

and so Z is subgroup of G. Since L is invariant under G, also Z is invariant under G.

4◦. [4] G = LZ for all L ∈ L and |G/Z| ≤ k ≤ m.

Let g ∈ G and put H = 〈L∗, g〉. Then by (2◦), H ∈ L and g ∈ H = L(H ∩ Zn[H∗, t]) ≤
LZ. Thus G = LZ and so G/Z| = |L/L ∩ Z| ≤ |L/L ∩ Zn([L∗, t])| = k ≤ m.

5◦. [5] Z ≤ Zn([G, t]).

Clearly Z ≤ [G, t] and so we only need to show that [Z, [G, t];n] = 1. This holds if an
only if [z, F ;n] = 1 for all z ∈ Z and all finite subgroups F of [G, t]. . Pick L ∈ L with
z ∈ L∩Zn([L∗, t]) and then H ≤ G with H finite, L∗ ≤ H and F ≤ [H, t]. Then using (1◦),
z ∈ L ∩ Zn([L∗, t]) = L ∩ Zn([H∗, t]) and so [z, F ;n] ≤ [Zn([H∗, t]), [H∗, t];n] = 1. So (5◦)
hold.

By (4◦) and (5◦), G/Zn([G, t])| ≤ m and the theorem is proved.

Corollary 3.3.10. [infinite centralizer] Let H be an infinite locally finite simple group
and t an involution in H. Then CH(t) is infinite.

Proof. This follows immediately from 3.3.9
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3.4 Locally finite groups with MIN

This section is entirely devoted the proof of the following Theorem

Theorem 3.4.1. [lf with min] Every locally finite group which fulfills MIN is a cernikov
group.

Suppose the theorem is false.

Step 1. [step 1] There exists an infinite locally finite simple groups G all of whose proper
subgroups are Cernikoóvgroups.

Proof. Let G0 be a locally finite group with MIN which is not Cernikoóv. Let G1 be a
subgroup of G0 minimal with respect to not being Cernikoóv. ?? implies that G1 has a
component K with K/Z(K) infinite. Put G = K/Z(K). By minimality of G−1, all proper
subgroups of G1 and so also of G are Cernikoóvgroups.

Step 2. [step 2] G is not a 2′-group.

Proof. Otherwise the Odd Order Theorem implies that all finite subgroups of G are solvable.
But then G is locally solvable and all chief factor of G are abelian, a contradiction.

Let P be the set of all positive primes, π ⊆ P, Dπ be the set of maximal divisible abelian
π-subgroups of G and D = Dπ.

Step 3. [step 3] Let H be proper subgroup of G and put Hπ = {x ∈ H◦ | x is a π−element.
Then Hπ contains every divisible abelian π-subgroup of H and is contained in every maximal
π-subgroup of H.

Proof. Let D be a divisible abelian π-subgroup of H. Then D = D◦ ≤ H◦ and so D ≤ Hπ.

Let M be maximal π-subgroup of H. Since Hπ is normal in H, HπM is π-subgroup of
G and so M = HπM by maximality of M .

Step 4. [step 4] Let 1 6= D ∈ Dπ and D ≤ H < G. Then D = Hπ and H ≤ NG(D). So
NG(D) is the unique maximal subgroup of G containing D.

Proof. We have D ≤ Hπ and so by maximality of D, D = Hπ. Since Hπ E H, H ≤
NG(D).

Step 5. [step 5] Let D ∈ Dπ and E a divisible abelian π subgroup of G. Then E ≤ D or
E ∩D = 1.

Proof. Assume that E ∩ D 6= 1. Then D 6= 1. Put H = CG(E ∩ D). Since G is simple,
E ∩D 5 G and so H 6= G. Note that 〈E,D〉 ≤ H and by Step 4, D = Hπ. Thus by Step
3, E ≤ D.
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Step 6. [step 6] Every every non-trivial divisible abelian subgroup A of G lies in a unique
maximal divisible abelian subgroup A of G. If in addition A is a π-group, then Aπ is the
unique maximal divisible abelian π-subgroup of G containing A.

Proof. Let D,E ∈ D with A ≤ D and A ≤ E. Then A ≤ D ∩ E. By Step 5 D = E. Now
suppose A and B are divisible by groups with A ≤ B. Then A ≤ B and so B = A and
B ≤ Aπ.

Step 7. [step 7] Let D be non-trivial divisible abelian subgroup of G. Then NG(D) ≤
NG(D) and if D ∈ Dπ, then NG(D) = NG(D).

Proof. Let g ∈ NG(D). Then D ≤ Dg ∈ D and so D = D
g

by the uniqueness of D. So the
first statement holds. For the second observe that D = Dπ and so NG(D) ≤ NG(D).

Step 8. [step 19]

(a) [a] Every maximal subgroup of G is infinite.

(b) [b] Every proper infinite subgroup R of G lies in a unique maximal subgroup R̃ of G,
namely R̃ = BG(R◦).

(c) [c] If M1 and M2 are maximal subgroups of G with M1 ∩M2 infinite, then M1 = M2.

(d) [d] Let M be a maximal subgroup of G and H ≤ G with M ∩H infinite. Then H ≤M .

Proof. (a) Suppose F be a finite subgroup of G and let g ∈ G \ F . Then 〈F, g〉 is finite,
F < 〈F, g〉 < G and so F is not maximal.

(b) Let R ≤M < G. Then R◦ ≤M◦ ≤ R◦ and so R◦ = M◦. Thus M ≤ NG(R◦).
(c) By (b) M1 ∩M2 is contained in a unique maximal subgroup and so M1 = M2.
(d) By (b) H lies in a maximal subgroup M̃ of G. Then H ∩M ≤ M ∩ M̃ and so by

(c), M = M̃ . Thus H ≤M .

Step 9. [char max] Let M < G. Then following are equivalent.

(a) [a] M is a maximal subgroup of G.

(b) [c] 1 6= M◦ ∈ D and M = NG(M◦).

(c) [b] M = NG(D) for some set of prime π and some 1 6= D ∈ Dπ.

Proof. (a) =⇒ (c): Suppose M is maximal in G. By Step 8(a), M is infinite and so
M◦ 6= 1. By Step 8(b), M = NG(M◦) and so M◦ ≤M and thus M◦ = M◦ ∈ D.

(c) =⇒ (b): Just set π = P and D = M◦.
(b) =⇒ (a): See Step 4.

Definition 3.4.2. [omega] Let H be a group. Then Ωm
n (H) = 〈x ∈ H | xmn = 1}. If H is

a p group for some prime p, then Ωm(H) = Ωp
m(H).
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Step 10. [step 9] Let p be a prime and 1 6= D ∈ Dp. Let T be p-subgroup of G with
Ω2(D) ≤ T . Then T ≤ NG(D) and |T/T ∩D| ≤ |NG(D)/D|p.

Proof. SinceD ≤ NG(Ω2(D)), Step 4 implies NG(Ω2(D)) ≤ NG(D). Since T is a Cernikoóvp-
group, 1 6= Z(T ). Observe that [Ω2(D),Z(T )] = 1 and Z(T ) ≤ NG(Ω2(D)) ≤ NG(D).
Thus by ??, [D,Z(T )] = 1. We have D ≤ CG(Z(T )) < G and so usingStep 4, T ≤
CG(Z(T )) ≤ NG(D). Since D = Dp, D/Dp is p′-group and so T ∩ D ≤ Dp. Thus
T/T ∩D = T/T ∩ oD ∼= TD/D ≤ NG(D)/D and Step 13 is proved.

Lemma 3.4.3. [cernikov and sylow] Let H be a Cernikoóvgroup and p a prime, then H
acts transitively on Sylp(H).

Proof. Note that Hp E H and Hp is a p-group. Let T ∈ Sylp(H). Then HpS is a p-group
and so Hp ≤ S. Since H◦/Hp is a p′-group, S ∩H◦ = Hp. Thus |S/Hp| = |SH◦/H◦| and
so S/Hp is finite. Note that S/Hp is a Sylow p-subgroup of H/Hp. We conclude from ??
that all Sylow p-subgroups of H/Hp are conjugate in H/Hp. Hence all Sylow p-subgroups
of H are conjugate.

Step 11. [scirc] Let S ∈ Sylp(G). then S◦ ∈ Dp and S◦ = S◦p

Proof. Since S◦ is a divisible abelian p-goup, S◦ ≤ S◦p. Pick D ∈ Dp with S◦p ≤ D.
By Step 4, D is unique and so S normalizes D. Thus SD is p-group and so D ≤ S by
maximality of S. Hence D ≤ S◦ and so Sp = S◦p = D.

Step 12. [transitive on syl] Let H ≤ G. Then H acts transitively on Sylp(H).

Proof. If H 6= G, then H is a Cernikoóvgroup and we are done by 3.4.3.

So suppose G = H and let S1 and S2 be Sylow p-subgroups of G. If S1 or S2 is finite
we are done by ??. So we may assume that S◦i 6= 1 for i = 1 and 2. Put Ei = Ω2(S◦i ) and
L = 〈E1, E2〉. Then L is a finite group and so by Sylow’s Theorem 〈E1, E

g
2〉 is a p-group for

some g ∈ L. Thus by Step 13 Eg2 ≤ NG(S◦) and so Eg2 is contained in a Sylow p-subgroup of

NG(S◦1). By the first paragraph of the proof Egh2 ≤ S1 for some h ∈ NG(S◦1). Hence by Step

13, S1 ≤ NG(S◦gh2 and then by the first paragraph, Sghk2 = S1 for some k ∈ NG(S◦gh2 .

Step 13. [step 9] Let p be a prime. Then G acts transitively on Dp.

Proof. Let D1, D2 ∈ Dp and pick Si ∈ Sylp(G) with Di ≤ Si. Then Sg1 = S2 for some g ∈ G.
Since Di = S◦i , this gives Dg

1D2.

Definition 3.4.4. [def rank] Let H be a locally finite group and p a prime. Then mp(G) =
sup{k ∈ N | there existsA ≤ H with A ∼= Ckp }.

Step 14. [step 12] Let p be prime. Then mp(G) is finite.
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Proof. Let S ∈ Sylp(G). Every elementary abelian subgroup of G is contained in Sylow p-
subgroup and so conjugate to a subgroup of S. Thus mp(G) = mp(S). By ??, k := mp(S

◦)
is finite. Put |S/S◦| = pl and let A be an elementary abelian subgroup of S. Then
|S◦ ∩A| ≤ pk and AS◦/S◦| ≤ pl. Thus |A| ≤ pk+l and so mp(S) ≤ k + l.

Theorem 3.4.5. [walter feit] Let H be a finite simple group and with dihedral Sylow 2
subgroups. Then H ∼= Alt(7) or L2(pk), where p is an odd prime and |pk| > 3.

Lemma 3.4.6. [l2p] Let H ∼= L2(pk), p an odd prime.

(a) [a] Let T ∈ Sylp(H). Then T is elementary abelian p group of rank k and |NH(T )/CH(T )| =
pk−1

2 .

(b) [b] Let A be an elementary abelian r subgroup of H, where r is an odd prime, r 6= p.
Then |NH(T )/CH(T )| ≤ 2.

Proof. Readily verified.

Step 15. [s is not dihedral] S be a Sylow 2-subgroup of G. Then S � D22k for k ∈
Z+ ∪∞.

Proof. Suppose S ∼= D22k . If |S| = 2 let R = S otherwise pick R ≤ S with R ∼= C2 × C2.
choose R ≤ H1 < H2 < H3 < . . .Hn < . . . with (Hi, 1) ∈ K and |H1| ≥ 7!. Let Si ∈
Syl2(Hi) with R ≤ Si. By Step 12 there exists g ∈ G with Si ≤ Sg. It follows that
S − i is either a dihedral group or cyclic. Since R ≤ Si, Si is a dihedral group. Thus
by 3.4.5, Hi

∼= L2(pkii , pi an odd prime or Alt(7). Since |Hi| ≥ |7!, H � Alt(7) and

H � L2(5). So by 3.4.5 Hi
∼= L2(pkii , pkii > 5. Let p = p1 and A ∈ Sylp(H1). Then by

??(??) |NH1/CH1(A)| = pk1−1
2 > 5−1

2 = 2. Thus ??(??) implies that p = pi for all i. Since
Hi < Hi+1, ki < ki+1. Since mp(G) ≥ mp(Hi) = ki, this gives mp(G) =∞ a contradiction
to ??

Definition 3.4.7. [def:strongly p-embedded] Let H be a locally finite group, p a prime
and M a subgroup of H. Then M is called strongly p-embedded if

(i) [i] M is not a p′-group.

(ii) [ii] M ∩Mg is p′-group for all g ∈ H \M .

Theorem 3.4.8. [bender] Let H be a finite group with a proper strongly 2-embedded sub-
group. The one of the following holds:

1. [1] [z,H] has odd order for all involutions z of H.

2. [2] H/O(H)| ≤ f(m2(H)) where f : Z+ → Z+ is some function independent of H.



70 CHAPTER 3. GROUPS WITH MIN

Proof. Suppose first that m2(H) = 1. Then H has a unique class of involution and [x, z] 6= 1
for all involutions x, z in H with x 6= z. Thus Glauberman’s Z∗ theorem shows that [z,H]
has odd order.

Suppose next that m2(H) ≥ 2. Then Bender’s strongly embeded theorem shows that
H/O(H) ∼= L2(q), Sz(q) or U3(q), where q = 2k for some k ∈ Z+. It follows that m2(H) = k
and |H/O(H)| ≤ q9 = 29k = 2m2(H).

Step 16. [step 13] G has no proper strongly 2-embedded subgroup.

Definition 3.4.9. [def:kegel cover] Let H be locally finite group. Then a Kegel cover K
for H is a set of pairs of subgroup of H such that

(i) [1] If (K,M) ∈ K then M EK ≤ H, K is finite and K/M is simple.

(ii) [2] If F is a finite subgroup of H, then there exists (K,M) ∈ K with F ≤ K and
F ∩M = 1.

Theorem 3.4.10. [kegel] Every locally finite simple group has a Kegel cover.

Proof. Let H be a locally finite group. Define K to be the set of all pairs (K,M) such
that M E K ≤ H, K is finite and K/M is simple. F be a non-trivial finite subgroup of
H. Let 1 6= f ∈ F . Since H is simple H = 〈fH〉 and so there exists a finite subset If
of H with F ≤ 〈f IF 〉. But F ∗ = 〈F, If | f ∈ F ]〉. Then F ≤ 〈fF ∗〉 for all f ∈ F ]. Put
K = 〈FF ∗∗〉. Let N be the intersection of the maximal normal subgroups of K. Then N
is characteristic subgroup of K and N 6= K. Since F ∗∗ normalizes K it also normalizes
N . If F ≤ N we get K = 〈FF ∗∗〉 ≤ N , a contradiction. Thus F � N and there exists
a maximal normal subgroup M of K with F � M . Note that (K,M) ∈ K and F ≤ H.
Suppose that F ∩M 6= 1 and pick f ∈ F ]. Then f ∈ F ∗ and so F ∗ ≤ 〈fF ∗∗〉 ≤ K. Hence
F ≤ 〈fF ∗〉 ≤ 〈MH〉 = M , a contradiction. Thus F ∩M = 1 and K is a Kegel cover.

Step 17. [step 14] There exists a finite subgroup Q of G such that M = 1 for all finite
subgroups M of G with Q ≤ NG(M) and Q ∩M = 1.

Proof. Suppose not. Put L1 = M1 be a arbitrary non-trivial finite subgroup of G and
assume inductively that we already define finite subgroups Li,Mi, 1 ≤ i ≤ n in G. By
assumption there exists non-trivial finite subgroup Mn+1 of G with Ln ≤ NG(Mn+1) and
Ln ∩Mn+1 = 1. Put Ln+1 = LnMn+1.

Define Hn = 〈Mi | i ∈ Z+, i ≥ n〉. Then clearly

H1 ≥ H2 ≥ H3 ≥ . . .

Fix n ≥ 2. We will now show that Ln−1∩Hn = 1. Let g ∈ Ln−1∩Hn. For m ≥ n define
Rm = 〈Mi | n ≤ i ≤ m〉. Then Hn =

⋃∞
m=nRm and so we can choose m minimal with

x ∈ Rm. Suppose that m 6= n. Then Rm = 〈Rm−1,Mm〉. Note that Rm−1 ≤ Lm−1 and so
Rm−1 normalizes Mm and Rm = Rm−1Mn. Since x ∈ Ln−1 ≤ Lm−1 and Rm−1 ≤ Lm−1 we
get
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x ∈ Lm−1 ∩Rm−1Mn = Rm−1(Lm−1 ∩Mn) = Rm−1

a contradiction to the minimal choice of m. Thus m = n, x ∈ Rn = Mn and x ∈
Ln−1 ∩Mn = 1.

So Ln−1 ∩Hn = 1 and so Hn−1 > Hn, a contradiction since G fulfills MIN.

Step 18. [simple cover] Let F be a finite subgroup of G and m ∈ Z+. Then there exists
a finite simple subgroup K of G with F < K and |K| ≥ m.

Proof. Let Q be as in Step 17. Since G is infinite there exists I ⊆ G with |I| ≥ m and
F ⊆ I. Put R = 〈I,Q〉. Then R is finite and by 3.4.10 there exists a finite subgroup K of G
and maximal normal subgroup M of G with R ≤ K and R∩M = 1. Then Q ≤ K ≤ NG(M)
and Q ∩M = 1. Thus by Step 17, M = 1. So K is simple. Since F ⊂ I ⊆ R ≤ K, F < K.
Since |I| ≥ m, |K| ≥ m and so ??

Lemma 3.4.11. [normalizer condition]

(a) [a] Let S be a nilpotent group and T ≤ S. If NS(T ) = T , then T = S.

(b) [b] Let S be a locally nilpotent group and T a finitely generated subgroup of S. If
NS(T ) = T , then S = T .

Proof. (a) Let Z0 ≤ Z1 ≤ . . . ≤ Zn be the upper central series of S. Note that Z0 ≤ T .
Assume inductively that Zi ≤ T . Then

[Zi+1, T ] ≤ [Zi+1, S] ≤ Zi ≤ T

and so Zi+1 ≤ NS(T ) = T . Thus S = Zn ≤ T and T = S.

(b) Let s ∈ S and put R = 〈T, s〉. Then R is finitely generated and so R is nilpotent.
Also T ≤ NR(T ) ≤ NS(T ) = T and so by (a), R = T . Thus s ∈ T and S = T .

Proposition 3.4.12. [char strongly p-embedded] Let H be a locally finite group, p a
prime and M ≤ H. Suppose that

(a) [i] M is not a p′ group and M¬H.

(b) [ii] If x ∈M has order P , then CG(x) ≤M .

(c) [iii] Let S be a Sylow p-subgroup of G.

1. [1] If S is finite, then NG(S) ≤ H.

2. [2] If S is infinite, then each h ∈ H \M , M ∩Mh has finite Sylow p-subgroups.

Then M is a strongly p-embedded subgroup of H.
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Proof. Suppose not and let h ∈ H \M such that M ∩Mh is not a p′ group. Let T ∈
Sylp(H ∩ Hg) and S ∈ Sylp(T ). By (c:1), T is finite. Suppose that S 6= T . Then by
??(??), NS(T ) 6= T and so there exists T < P ≤ NS(T ) with P finite. Thus there exists
1 6= x ∈ CT (P ). Then by (b), P ≤ CH(x) ≤M and thus T < P ≤ H ∩Mh, a contradiction
since P is p-groups and T is a Sylow p-subgroup of H ∩Hγ .

Thus T = S and so T ∈ Sylp(M
g). In particular, M has finite Sylow p-groups. It follows

that Mg acts transitively on Sylp(M
g). Since T ≤ M , T h ≤ Mg and T h ∈ Sylp(M

g).

Thus T hk = T for some k ∈ Mh. Then hk ∈ NH(T ) and so by (c:2), hk ∈ M . Thus
M = Mhk = (Mh)k = Mh and so k ∈ M and h = (hk)k−1 ∈ M , contrary to the choice of
h.

Lemma 3.4.13. [dihedral] Let x and y be non-conjugate involution in a group H. Then
|xy| has even order, 〈xy〉 contains a unique involution u, and any involution in < x, y〉 is
either equal to u or conjugate to x or to y.

Proof. This follows easily from the fact that 〈x, y〉 is dihedral group.

Step 19. [step 20] Let M be a finite set of maximal subgroups of G and K a non empty
G-invariant subset of G]. Then K \

⋃
M is infinite.

Proof. Suppose that K \
⋃
M is finite. If K is finite, 〈K〉 would be a non-trivial finite

normal subgroups of G, a contradiction, since G is infinite and simple. So K and K ∩
⋃
M

are infinite. Since M is finite, there exists M ∈M such that K ∩M is infinite. Let g ∈ G.
Then (K ∩M)g = K ∩Mg is infinite and so there exists N ∈M with K ∩Mg ∩N infinite.
Hence by ??(??), Mg = M ∈ M. Thus MG is finite. Then also G/CG(MG) is finite and
CG(MG)is a normal subgroup of finite index in G. Hence CG(MG) = G and M E G, a
contradiction

For z ∈ I∞ let Hx be the unique maximal subgroup of G containing CG(z).

p

Lemma 3.4.14. [lemma 14] Let D be a divisible abelian group and α ∈ Aut(D) with
α2 = idD. If CD(α) is finite, then α inverts D.

Proof. Observe that the map τ : D → D, d→ ddα is a homomorphism with Im τ ≤ CD(α).
Thus D/ kerα is finite. Since divisible groups of no proper subgroup of finite index, D =
ker τ and so ddα = 1 for all d ∈ D. Hence dα = d−1.

Step 20. [step 15] Let z ∈ I and M a maximal subgroup of G with z ∈M � Hz. Then z
inverts M◦.

Proof. If CM◦ is finite, then by Step 17 z inverts M◦. So suppose CM◦(z) is infinite. Since
CM◦(z) ≤ Hz ∩M , ??(??) gives M = Hz.
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Step 21. [step 16] Let A ≤ G be a fours group (that is A ∼= C2 × C2) and M a maximal
subgroup of G containing A. Then M = Hx for some x ∈ A]. If CG(A) is infinite, then M
is the unique maximal subgroup of G containing A.

Proof. Let A] = {a, b, c}. If a does not inverts M◦, then by (??), M = Ha. Similary if b
does not inverts M◦, then M = H◦. If a and b inverts M◦, then ab = c centralizes M◦ and
so M = Hc.

Thus M = Hx for some 1 6= x ∈ A. Suppose CG(A) is infinite. Then CG(A) ≤ CG(x) ≤
Hx = M and so M is the unique maximal subgroup containing CG(A).

Step 22. [cga not in hz] Let 1 6= z ∈ Ω1 Z(S). There exists a ∈ S with |a| = 2 and
Ha 6= Hz.

Proof. Suppose first that NG(S) � Hz and pick g ∈ NG(S) \ Hz. Then zg ∈ S and
Hzg = Hg

z 6= Hz.

Suppose next that NG(S) ≤ Hz. Since Hz is not strongly 2-embedded there exists
b ∈ Hz with β| = 2 and CG(b) ≤ Hz. Then Hb 6= Hz. Also a is conjugate to an element a
of S and so Step 22 holds.

Step 23. [rank less than 2] m2(S◦) ≤ 1.

Proof. Let D = Scirc and M = NG(D). Let y be any involution in M . Put A = Ω1(D).
Since S◦ ≤ CG(A), CG(A) is infinite. Since m2(S◦) > 1, A contains a fours group. Thus
A is contained in a unique maximal subgroup of G. We claim that Hy = M . If y does not
invert M◦, then by Step 20, M = Hy. If y inverts M◦, then A ≤ CG(y) ≤ Hy and again
Hy = M . Thus CG(y) ≤ Hy ≤M .

Let g ∈ G \M . If M ∩Mg is infinite then ?? implies that M = Mg and D = Dg and
g ∈ NG(D) = M . Thus M ∩Mg is finite and so by ?? M is a strongly 2-embedded on G,
a contradiction to Step 16.

Lemma 3.4.15. [transitive on coset] Let H be a group, A and abelian subgroup of G
with A = A2 and y ∈ NG(A). If y inverts A, then A acts transitively in Ay.

Proof. Note that also y−1 inverts A. Let a ∈ A. Since A = A2, a−1 = b2 for some b ∈ A.
Then yb = b−1yb = b−1yby−1y = b−1by

−1
y = b−1b−1y = (b2)−1y = ay.

Step 24. [step 18] Suppose m2(S◦) ≥ 1. Then G acts transitively on {x ∈ I | Dx is a not2′−
group}.

Proof. Put I∗ = {x ∈ I | Dx is a not2′ − group. Since m2(S◦) = 1, S◦ has a unique
involution x.

Note that S◦ = (Dx)2 and so x is the unique involution in Dx and Dx is not a 2′-group.
Thus x ∈ I∗ and x ∈ Z(Hx).
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Suppose that G does not act transitively on cI∗ and pick an involution y in G. which

is not conjugate to x. Since G is simple G = 〈xG〉 and so xg /∈ Hy. Thus x /∈ Hg−1

y and

replacing y by yg
−1

we may assume that x /∈ Hy.
Since x and y are not conjugate there exists a unique involution u ∈ 〈xy〉. Then

u ∈ CG(y) ≤ Hy. By ??, Since (Dy)2 ≤ Sh for some h ∈ G. Since y ∈ I∗, (Dy)2 is a
nontrivial divisible group. hence (Dy)

2 = S◦h. Thus Dy ∩ Dh
x 6= 1, Dy = Dh

x and xh is
the unique involution in Dy. Thus by u and y centralizes xh. Put A = 〈y, xh〉. Since
y /∈ xG, A is a fours group. Since CG(y) is infinite, also CDy(y) is infinite and so CG(A) is
infinite. Thus by Step 21, A lies in a unique maximal subgroup of G. Note that A ≤ Hy

and A ≤ CG(u) ≤ Hu. Thus Hy = Hu and x ≤ CH(u) ≤ Hu = Hy, a contradiction.

Step 25. [s is finite] S is finite.

Proof. Suppose S is infinite, then by Step 23 m2(S◦) = 1. Let x ∈ S◦ with |x| = 2.
Suppose that CS(S◦) 6= S◦ and pick S◦ ≤ T ≤ CS(S◦) with |T/S◦| = 2. Then T is

abelian and so by ??, T = S◦ × K for some L ≤ T . y ∈ K with |x| = |y| = 2. Since
S◦ ≤ Dx ∩ Dy we have Dx = Dy. Hence Dy is not a 2′-group and by Step 24 y = xg for
some g ∈ G. Thus Dx = Dy = Dg

x. Since x ∈ S◦ = (Dx)p this gives y = xg ∈ (Dg
x)p =

(Dx)p = S◦, a contradiction.
Hence CS(S◦) = S◦. Put S0 = {z ∈ S◦ | z4 = 1}. By ??, CS(S0) = CS(S◦) = S◦. Since

|S0| = 4 we conclude that |S/S◦| ≤ 2.
Suppose that x is the only involution in S. Let y be any involution in Hx. Note Then

yh ∈ S for some h ∈ Hx and so yh = x. Thus CG(y) = CG(xh
−1

) ≤ Hx. Let g ∈ G with
|Hx ∩Hg

x | = ∞. Then by ??, Dx = Dg
x and so g ∈ NG(Dx) = Hx. 3.4.12 now shows that

Hx is a strongly 2-embedded subgroup, a contradiction to ??

Theorem 3.4.16. [brauer] Let H be a finite simple group, T a Sylow 2-subgroup of G and
x0, x1, x2 ∈ T with |x1| = |x2| = 2. Then one of the following holds:

(a) [1] For 0 ≤ i ≤ 2, there exists yi ∈ S ∩ xGi with y1y2 = y0 and CT (y0) ∈ Syl2(CG(y0)).

(b) [2] |H| ≤ α(s0, s1, s2), where si = |CH(xi)/O(CH(xi)) and α : Z3 → Z+ is a function
independent of H.

Let 1 6= z ∈ Ω1 Z(S).

Step 26. [brauer step] For all 1 6= x0 ∈ S there exists y1, y2 ∈ S ∩ zG and y0 ∈ S ∩ yG0
with y1y2 = y0 and CS(y0) ∈ Syl2(CG(y0)).

Proof. Put xi = z for i = 1, 2 and for 0 ≤ i ≤ 2 define ti = CG(xi)/CG(xi)
◦|. Put

m = max{α(s0, s1, s2) | 1 ≤ si ≤ ti}. Pick T ∈ Syl2(CG(x0) and let H be finite simple
subgroup of G with 〈T, S〉 ≤ H and |H| > m. Put si = |CH(xi)/O(CH(xi). Since S is
finite, CG(xi)

◦ is a 2′ group and so CH(xi) ∩ CG(xi)
◦ ≤ O(CH(xi). Hence

si = |CH(xi)/Ω(CH(xi)| ≤ |CH(xi)/CH(xi) ∩ CG(xi)
◦| ≤ CH(xi)CG(xi)

◦)/CG(xi)
◦| ≤ ti
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and so |H| > m > α(s0, s1, s2). Thus by 3.4.16 there exists yi ∈ S ∩xHi such that y1y2 = y0

and CS(y0) ∈ Syl2(CH(y0). Since T ≤ CH(x0) we get CS(y0)| ≥ |T | and so CS(y0) ∈
Syl2(CG(y0).

Step 27. [2 central fours group] There exists a fours group E ≤ S in G with z ∈ E and
E] ∈ zG.

Proof. By Step 26 applied with x0 = z, there exists yi ∈ zG ∩ S with y1y2 = y0. Put
F = 〈y1, y2〉. Then F ] ⊆ zG. Moreover, yg1 = z for some g ∈ G and so z ∈ F g ≤ CG(z).
Since S is a Sylow 2-subgroup of CG(z) and so by Step 12 there exists h ∈ CG(z) with
E := F gh ≤ S. Also z = zh ∈ E.

Lemma 3.4.17. [centralizer of hyper planes] Let B be finite elementary abelian p group
acting on a locally finite abelian p′-group D. Then D = 〈CD(X) | X ≤ B, |H/X| = p〉.

Proof. See MTH913 Homework 1.

Step 28. [step CGA] Let A ≤ S be a fours group and suppose that A is contained in more
than one maximal subgroup of G. Then Ω2

1(CG(A)) = A and there exists d ∈ zG ∩ S with
z /∈ CS(A). In particular, A � Z(S).

Proof. Suppose there exists an involution b ∈ CG(A)\A. Put B = 〈A, b〉. Then B ∼= C3
2 . Let

M1 and M2 be two distinct maximal subgroups of G containing A. By Step 21, Mi = Hai

for some ai ∈ A. Thus B ≤ CG(ai) ≤ Mi. By ?? M◦i = 〈CM◦i
(X) | X ≤ B, |B/X| = 2〉.

Thus there exists Bi ≤ B with |B/Bi| = 2 and CM◦(Bi) infinite. The Bi is a foursgroup
and by Step 21, Bi is contained in a unique maximal subgroup of G, a contradiction to
Bi ≤M1 ∩M1.

Thus Ω2
1(CG(A)) = A. Suppose S is elementary abelian. Then S ≤ Ω1(CS(A)) = A

and so S ∼= D4, a contradiction. So there exists x0 ∈ S with |x0| > 2. By Step 26 there
exists involutions y1, y2 ∈ S ∩ zG and y0 ∈ S ∩ xg0 with y1y2 = y0. Suppose y1 and y2 are in
CS(A). Then y0 ∈ 〈y1, y2〉 ≤ Ω1(CS(A)) = A and so y2

0 = 1, a contradiction. Thus one of
y1 and y2 is not in CS(A).

Step 29. [s in a unique maximal] Hz is the unique maximal subgroup of G containing
S.

Proof. Suppose S ≤ M with M 6= Hz. If |Ω1 Z(S)| ≥ 4, we can choose A ≤ Ω1 Z(S) with
|A| = 4, a contradiction to Step 28. Thus Ω1 Z(S) = 〈z〉. By Step 20, z inverts M◦. Thus
Ω1 Z(S)∩CS(M◦) = 1. Since CS(M◦) is normal in S this implies CS(M◦) = 1. Let E be as
in Step 27 and let E\〈z〉 = {a, b}. If a inverts M◦ we get b = az ∈ CS(M◦), a contradiction.
Thus a does not invert M◦ and by Step 21, M = Ha. By symmetry, M = Hb. Thus a and
b invert Dz and so ab = z centralizes Dz. Since a ∈ zG, a centralizes Da = M◦, again a
contradiction.
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Let e ∈ S be an involution in S with He 6= Hz. If He ∈ HG
z , put x = a. If He /∈ HG

z ,
then choose g, h ∈ G with e = zgzh and put x = eg

−1
. In either case put A = 〈x, z〉, y = zx

and A = {a ∈ A | Ha ∈ HG
z }. Let T ∈ Syl2(Hx ∩Hy).

Step 30. [basic a] A is a foursgroup, A = 〈x, z〉, Hx 6= Hz and |A| ≥ 2.

Proof. If He ∈ HG
z , then a = e, a ∈ A, Ha = He 6= Hz, a ∈ S ≤ CG(z) and A = 〈a, z〉 is a

fours group.

If He /∈ HG
z , then x = eg

−1
= (zgzh)g

−1
= zzhg

−1
and so y = zx = zhg

−1 ∈ zG. Thus

zx has order two and A is fours group. Also Hy = Hhg−1

z ∈ HG
z and so y ∈ A. Since

Hx = Hg−1

e /∈ HG
z , Hx 6= Hz.

For a ∈ A] pick Sa ∈ Syl2(Ha) with T ∩Ha ≤ Sa and define Ta = NSa(CSa(A)).

Step 31. [omega t] Let

(a) [a] A = A] ⊆ zG.

(b) [b] A = Ω1 Z(T ) = Ω1(T ) and CSa(A) = T

(c) [c] Ω1 Z(Sa) = Ω1 Z(Ta) = 〈a〉

(d) [d] Ta = NSa(T ) = NSa(A) and |Ta/T | = 2.

(e) [e] NG(T )/NG(T ) ∩ CG(A) ∼= Sym(A])

Proof. Let a ∈ A. By definition of A, Ha is conjugate to Hz and so contains a Sylow 2-
subgroup of G. Thus Sa is Sylow 2 subgroup of G. By ??Sa 6= CSa(A) and A = Ω1(CSa(A)).
Thus also Ta 6= (CSa)(A) and AE Ta. It follows that 1 < CA(Ta) < A and so there exists a
unique 1 6= a∗ ∈ CA(Ta). Note that both Ω1 Z(Sa) and Ω1 Z(Ta) are contained in Ω1(CSa(A))
and so also in CA(Ta). Thus Ω1 Z(Sa) = Ω1 Z(Ta) = 〈a∗〉 Then Sa ≤ CG(a∗) and so by ??
Ha∗ = Ha. If a 6= a∗ we get A] = {a∗, a, at}, where t ∈ Ta \ CSa(A). Since t ∈ Ha this
gives Ht

a = Ha = Ha∗ and Step 21 implies that Ha is the unique maximal subgroup of G
containing A, a contradiction, since A ≤ Hx ∩Hy. Thus a = a∗.

Since |A| ≥ 2, we can choose b ∈ A with b 6= a. Note that Ta acts as the two cycle with
fix-point a on A] and Tb as the 2 cycle with fix point b. Thus 〈Ta, Tb〉 acts as Sym(A]) on
A]. So all elements in A] are conjugate in G and A = A] ⊆ zG.

Suppose now that a ∈ A with T ≤ Ha. Note that CSa(A) ≤ Hx∩Hz and 〈T,CSa(A)〉 ≤
Sa. Since T is a Sylow 2 subgroup of Hx ∩ Hz we conclude that CSa(A) = CT (A). Also
|NSa(A)/CSa(A)| ≤ 2 and so NSa(A) = TaCSa(A) = Ta.

If A � Z(T ), then NT (CT (A)) 6= CT (A) and since |Ta/CSa(A)| = 2, Ta = NT (CT (A).
This hold for a = z and x and so Tx = Tz centralizes 〈x, z〉 = A, a contradiction.

Thus A ≤ Z(T ), CSa(A) = CT (A) = T and Ta = NSa(T ). Hence 〈Ta, Tb〉 ≤ NG(T ) and
Ω1 Z(T ) ≤ Ω1(T ) ≤ Ω2

1(CG(A)) = A ≤ Ω1 Z(T ). So NG(T ) acts transitively on A] and thus
T ≤ Ha for all a ∈ A].
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Definition 3.4.18. [def:quasidihedral] Let n be positive integer. Then QD8n := 〈s, t |
s2 = 1, (sst)2n = 1, t2 = (sst)n〉. QD8n is called the quasidihedral group of order 8n.

Lemma 3.4.19. [char quasidihedral] Let P be a finite 2-group and A a fours group in
P with CP (A) = A. Then P is a dihedral or quasidihedral group.

Proof. Observe that Z(P ) ≤ CP (A) ≤ A. If A ≤ Z(P ), then P ≤ CP (A) ≤ S and we
are done. So suppose A � Z(P ) and pick 1 6= a ∈ A \ Z(P ) and 1 6= z ∈ Z(P ). Then
CP (a) = CP (〈a, z〉) = CP (A) +A. Let D ≤ P such that D is dihedral group maximal with
respect to A ≤ D. If D = P we are done. So suppose D 6= P .

Let Q = NP (D). Then D < Q. Let A = {t ∈ D \ Z(P ) | t2 = 1}. Put |D| = 4n. Then
|A| = 2n. Note that Q acts on A and so

2n = |cA| ≥ |aQ| = |Q/CQ(a)| = |Q/A| = |Q/D||D/A| ≥ 24n4 = 2n

It follows that A = aQ and |Q/D| = 2. Let b ∈ A with 〈a, b〉 = D. Then there exists t ∈ Q
with at = b. Put x = ab. Then either |D| = 4 and x = z or |D| > 4 and 〈x〉 is the unique
cylcic subgroup of order 2n in D. In either case X E Q. So also Y = 〈x2〉 E Q. Consider

Q = Q/Y . Then t
2 ∈ CD(t) = X and replacing t by at if necessary we may assume that

t has order 2. Thus t2 ∈ Y and so t2 = xl for some even integer with 0 ≤ l < 2n. Thus
bt = at

2
= x−laxl = aa−1x−laxl = axlxl = ax2l and so xt = (ab)t = bax2l = x−1x2l = x2l−1.

Since t centalizes t2 = xl this means xl = (xl)t = xl(2l−1) and so xl(2l−2) = 1. Since x has
order m we conclude 2n | l(2l− 2) = 2l(l− 1). Since m is power of 2 and l is even , we infer
2n | 2l and so n | l. As 0 ≤ l < 2n we have l = 0 or l = n. If t2 = 1 and in the second case
t2 = xn. In either case bt = ax2n = a. Observer that Q = D〈t〉 = 〈a, b, t〉 = 〈a, t〉. So if
t2 = 1 then Q is a dihedral group, a contradiction to the maximality of D. Hence t2 = xn

and Q is a quasi dihidral group or order 8n. Sine l = n and l is even, Q has order at least
16. group.

Put E = 〈DNP (Q)〉. Then D ≤ E ≤ Q and E is generated by involutions. By Homework
1, Q is not generated by involutions. Since |Q/D| ≤ 2 this gives E = D and so D E NP (Q),
NP (Q) = Q and Q = P .

Theorem 3.4.20. [semidihedral] If H is a finite simple group with quasidihedral Sylow
2-subgroup of order at least 16, then H ∼= M11, L3(pk) or U3(pk), where p is an odd prime.

Proof.

Lemma 3.4.21. [basic semidihedral] Let H ∼= L3(q or U3(q), q a power of an odd prime.
and t ∈ H with |t| = 2. CH(t) has a normal subgroup isomorphic to SL2(q). Moreover,
|H| ≤ q18.

Proof. Put K = Fq and define GL+
n (K) = GLn(K) and GL−n (K) = GUn(K). Put H̃ =

GLε(K) and V = F3, where F = K in the L3(q) case and F = Kq2 in the U3(K). Then

H̃/Z(H̃). Note that |H| ≤ |GL3(q2)| = (q6 − 1)(q6 − q2)(q6 − q4) ≤ q18. Since Z(SLε3(K))
has order dividing 3, there exists a unique element of order two t̃ in Z(SLε3(K) which maps
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which maps to t. Since |t̃| = 2 and det t̃ = 1 and charK 6= 2 we have V = [V, t̃]⊕CV (t̃) with
dim[V, t̃] = 2 and dimCV (2̃) = 1. 2-dimensional. In the GU3(K) case, [V, t̃] ⊥ CV (t) and so
this direct sum is an orthogonal sum. It follows that CH̃(t̃) = GLε([V, t̃)] × GLε(CV (t̃) ∼=
GLε2(K)×GLε1(K). It follows that CH̃(t̃) has a normal subgroup K isomorphic to SLε2(K).

K centralizes CV (t̃), and since the elements of Z(H̃) acts by scalar multiplication on V , and
K ∩ Z(H̃). Thus K ∼= KZ(H̃)/Z(H̃) and so CH(t) has a subgroup isomorphic to SLε2(K).
Since SU2(K) ∼= SL2(K), the lemma is proved.

Step 32. [step semidihedral] S is not a quasidihedral group.

Proof. Suppose S is a quasidihedral group. By ?? S is not a dihedral group and so |S| ≥ 16.
Pick a finite simple subgroup H of G with |H| > (|CG(z)/Dz|)18. and S ≤ H. Since
|M11| = 11 · 10 · 9 · 8 ≤ 218 < |H|, we conclude from 3.4.20 that H ∼= Lε3(q), q a power
of an odd prime and q > |CG(z)/Dz|. Let K ≤ CH(z) with K ∼= SL2(q). Then Z(K)
has order two, and Z(K) is the unique minimal normal subgroup of K. Since Dz is 2′-
group, Z(K) � Dz and so K ∩ Dz = 1. Hence |KDz/Dz| ≥ |K| > q > |CG(z)/Dz|, a
contradiction.

.

Step 33. [t not a] T 6= A.

Proof. Otherwise CSa(A) = T = A and by ??, Sa is a dihedral or quasidihedral group, a
contradiction to ?? and ??

Step 34. [z centralizes hz] Let a, b ∈ A] with a 6= b.

(a) [a] Ha 6= Hb.

(b) [b] z centralizes Dz.

(c) [c] Let C∗G(Dz) be the set of elements in G which centralize or inverts Dz. Then
t ∈ C∗G(Dz) and [Hz, t] ≤ CG(Dz) for all t ∈ zG ∩Hz

(d) [d] CG(Da) ∩ CG(Db) = 1.

Proof. (a) By Step 31 there exists g ∈ NG(T ) with xg = a and zg = b. Since Hx 6= Hz,
Ha 6= Hb.

(b) From (a) and Step 20 both x and xz invert Dz and so z = x(xz) centralizes Dz.

(c) If Hz = Ht then by (b), t centralizes Dt = Dz. And if Ht 6= Hz, then by Step 20 t
inverts Dz. So t ∈ C∗Hz(Dz).

Since C∗G(Dz) is a normal subgroup ofHz and C∗G(Dz)/CG(Dz)| ≤ 2 we have [C∗G(Dz), G] ≤
CG(Dz). and so (c) holds.

(d) Suppose that X := CG(Da) ∩ CG(Db) 6= 1. Then 〈Da, Db〉 ≤ CG(X) and so Da =
X◦ = Db. Hence also Ha = NG(Da) = Hb, contradiction.
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Step 35. [ngt] For each a ∈ A] there exist ta ∈ z∩Ta \ T such that if Sa 6= Ta, then
[T, ta] ≤ 〈a〉. For any such t′as and any a, b ∈ A] with a 6= b:

(a) [b] Put k := tatb. Then ak = c, ck = b, bk = a, k3 = 1 and CT (k)=1.

(b) [c] T = [T, ta][T, tb].

Proof. We first show that existence of ta. Suppose first that Sa 6= Ta. Pick sa ∈ NSa(Ta) \
Ta.If A

sa ≤ T , then Asa ≤ Ωa(T ) = A. Thus A = Asa and sa ∈ NSa(A). So by Step 31
sa ∈ Ta, a contradiction. Thus Asa 6= T and 〈a〉 ≤ T ∩ Asa . Since A E Ta also Asa E Ta
and so [T,Ata ] ≤ T ∩Ata = 〈a〉.

If Sa = Ta the existence of ta follows from Step 28.

Since ta acts as the cycle (b, c) and tb as the cycle (a, c) in A], k acts as (b, c)(a, c) =
(a, c, b) on A]. Thus k3 ∈ CG(A) ≤ Ha. By (??) Step 34(c), k6 = [k3, ta] ∈ CG(Da). By
symmetry, k6inCG(Db) and so by Step 34(d), k6 = 1. Thus k3 ∈ Ω2

1(CG(A)) = A. Since
CA(k) = 1 this implies k3 = 1. Since Ω1(T ) = A and CA(k) = 1, CT (k) contains no element
of order 2 and so CT (k) = 1

(b) By Homework 1, since |k| is coprime to |T |, T = CT (k)[T, k] =][T, k]. Thus

T = [T, k] ≤ [T, 〈ta, tb〉] = [T, ta][T, tb] ≤ T and (b) holds.

Step 36. [t normal in s] T E Sa for all 1 6= a ∈ A.

Proof. By Step 35, T = [T, ta][T, tb] ≤ A and so T = A, a contradiction to Step 33

Step 37. [step c] For a ∈ A] define Ca = CT (Da) and Then Ca = [T, ta], T = Ca × Cb
and T is abelian.

Proof. By Step 34(??) [T, ta] ≤ CG(Da) and since ta normalizes Ca, [T, ta] ≤ Ca. Thus by
Step 35(??), T = CaCb. By Step 34(d), Ca ∩ Cb = 1. Since both Ca and Cb are normal in
T this implies [Ca, Cb] = 1 and T = Ca×Cb. Moreover, Cc is centralized by Ca and Cb and
so Cc ≤ Z(T ). The same holds for Ca and Cb and so T = Ca × Cb is abelian.

Step 38. [sz] Z(S) has order two.

Proof. Let x0 ∈ Z(S). Then S ≤ CG(x0). By Step 26, there exists y1, y2 ∈ zG ∩ S and
y0 ∈ xG0 with x0 = y1y2 and CS(y0) ∈ Syl2(CG(y0). Since CG(x0) and so also CG(y0)
contains a Sylow 2-subgroup of G, we conclude that CS(y0) = S. Thus [y0, y1] = 1. Since
y0 = y1y2, y1 inverts y0 and so y0 has order two. Hence x0 ∈ Ω1 Z(S) = 〈z〉.

Step 39. [step contradiction] The final contradiction.

Proof. Let d ∈ Cb. Then ddta is centralizes by C〈ta〉 = T 〈ta >= Sa and so ddt ∈ Z(S).
Thus ddt has order at most two. Since C = Cb × Ctab , |d| = |dt|. Thus d2 = 1. So d ∈ Cb
and Cb ≤ A. By symmetry, Ca ≤ A and so T = Ca × Cb = A, a contradiction to Step
33
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3.5 J1

In this section we prove:

Theorem 3.5.1 (Janko). [j1] Let G be a finite group of even order and t ∈ G with |t| = 2.
Suppose that all involutions in G are conjugate and CG(t) ∼= C2 × Alt(5). Then |G| =
23 · 3 · 5 · 7 · 11 · 19 = 11(11 + 1)(113 − 1) = 175, 560. Moreover such a group exits and is
unique up to isomorphism.

Before we start the proof we will prove need to prove a few lemmas from finite group
theory.

Lemma 3.5.2. [even more coprime action] Let A be a finite abelian p-group acting on
an finite p′ group Q.

(a) [a] Q = 〈CQ(B) | B ≤ A,A/Bcyclic〉.

(b) [b] If A ∼= Cp × Cp, then

|Q| =
∏
{|CQ(B)| | B ≤ A, |B| = p}

|CQ(A)|p

Proof. Let H = QA be the semidirect product of A and Q. Let q be a prime dividing the
order of Q and S ∈ Sylq(Q). Then by the Frattini argument, H = QNH(S). Then |A|
divides NH(S) and so NH(S) contains a Sylow p-subgroup, Ã of H. Choose h ∈ H with
Ãh = A. Then A normalizes Sh. So if (a) and (b) holds whenever Q is a q-group for some
prime q 6= p, then it also for any arbitray p′ group. Thus we may and do assume that Q is
a q-group.

(a) Put Q = Q/Q′. Then Q is abelian and so by , Since Q is a p′-group, Q
pm

= Q for
all m ∈ Z+. Hence by Homework 1

Q = 〈CQ(B) | B ≤ A,A/Bcyclic〉

By 3.3.8, CB = CQ(B) and thus

Q = 〈CQ(B)| | B ≤ A,A/Bcyclic〉Q′

By the induction on —Q—,

Q′ = 〈CQ′(B)| | B ≤ A,A/Bcyclic}

and so (a) holds.
(b) Let M a maximal A invariant normal subgroup of Q and define Q = Q/M and

B = {B ≤ A | A/Bis cyclicCQ(B) 6= 1.

By (a) Q = 〈CQ(B) | B ∈ B〉 and so |B| ≥ 1. Since Q
′

is a proper A invariant normal

subgroup of Q, the maximality of M implies that Q
′

= 1 and so Q is abelian. Let B ∈ B,
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then CQ(B) is a non-trivial A-invariant normal subgroup of Q. Thus CQ(B) = CQ(B). We

claim that (b) holds for Q in place of Q. Suppose first that |B| = 1. Then |CQ(B)| = |Q|
while |CQ(C)| = 1 for each of subgroup C of A with |C| = p and C 6= B. In particular,
|CQ(A)| = 1 and so ∏

{|CQ(D)| | D ≤ A, |D| = p}
|CQ(A)|p

} =
|Q|1p

1p
= |Q|

and the claim holds in this case.
Suppose next that |B| ≥ 2 and let B1, B2 ∈ B with B1 6= B2. Then A = B1B2 and

since B1 and B2 centralize Q, A centralizes Q. Thus |CQ(B)| = |Q| for each of the p + 1

subgroups of order p in A. Also CQ(A)| = |Q| and thus∏
{|CQ(D)| | D ≤ A, |D| = p}

|CQ(A)|p
=
|Q|p+1|

|Q|p
= |Q|

and again the claim holds.
By induction on |Q| we also have∏

{|CM (D)| | D ≤ A, |D| = p}
|CM (A)|p

}

Since |Q| = |M ||M | and |CQ(X)| = |CM (X)||CQ(X) for any X ≤ A we conclude that
(b) holds.

Definition 3.5.3. [def:weakly closed]

(a) [a] Let G be a group, and A ≤ H ≤ G. Then A is called weakly closed in H with
respect to G if Ag = A for all g ∈ G with Ag ≤ H. (That is if A is the only conjugate
of A in G contained in H.

(b) [b] Let p a prime, and A a p subgroup of finite group G. Then A is called a weakly
closed subgroup of G if there exists a Sylow p-subgroup S of G with A ≤ S such that A
is weakly closed in S with respect to G.

Lemma 3.5.4. [char weakly closed] Let p be a prime, G a finite group and A a p-
subgroup of G. Then the following are equivalent.

(a) [a] A is a weakly closed subgroup of G.

(b) [b] Each Sylow p subgroup of G contains exactly one conjugate of A in G

(c) [c] Each p-subgroup of G contains at most one conjugate of A in G

Proof. Suppose (a) holds. Then there exists some Sylow p subgroup S of G such that A ≤ S
and A is weakly closed in S with respect to G. So S contains a unique G-conjugate of A
(namely A). Since any two Sylow subgroups are conjugate in G we see that (a) holds.
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Suppose (b) holds and let T be a p subgroup of G. Then T ≤ S for some Sylow p-
subgroup of G. By (a) , S contains a unique conjugate of A in G and so T contains at most
one conjugate of A in G. Thus (c) holds.

Suppose (c) holds and let S be a Sylow p-subgroup of G with A ≤ S. Then by (c), A is
weakly closed in S with respect to G and so (c) holds.

Lemma 3.5.5. [weakly closed and conjugate] Let A be a weakly closed p-subgroup of
a finite group G and A ≤ H ≤ G. If g ∈ G with Ag ≤ H. Then Ag = Ah for some h ∈ H.

Proof. Let A ≤ S ∈ Sylp(H) and Ag ≤ T ∈ Sylp(H). By Sylow’s Theorem, Sh = T for some

h ∈ H and so both Ah and Ag are G-conjugates of A in T . Thus by 3.5.4, Ah = Ag.

Lemma 3.5.6. [control fusion] Let A be a weakly closed p-subgroup of a finite group G
and X and Y A-invariant subsets of A. If Xg = Y for some g ∈ G, then Xh = Y for some
h ∈ NG(A).

Proof. Observe A ≤ NG(X) and A ≤ NG(Y ). Hence also Ag ≤ NG(Xg) = NG(Y ). So be
3.5.5, Agl = A for some l ∈ NG(Y ). Hence gl ∈ NG(A) and Xgl = Y l = Y .

Corollary 3.5.7. [fusion for abelian] Let G be a finite group and S ∈ Syl2(G). Suppose
S is abelian and xg ∈ S for some g ∈ G and x ∈ S. Then xg = xh for some h ∈ NG(S).

Proof. Just observe that S is weakly closed an, since S is abelian, {x} and {xg} are S
invariant subsets of S. So we can apply 3.5.6

Lemma 3.5.8. [tompson transfer] Let G be a finite group, S ∈ Syl2(G), T ≤ S with
|S/T | = 2 and x ∈ S. Then one of the following holds:

1. [a] xg ∈ T for some g ∈ G.

2. [b] yg ∈ S \ T for some y ∈ 〈x2 > and some g ∈ G.

3. [c] G has a subgroup H with |G/H| = 2 and x /∈ H.

Proof. We assume without loss that neither (1) nor (2) holds. Consider the action of G on
G/T by right multiplication. We will show that x induces an odd permutation on G/T .
Then (3) hold with H consisting of all the elements in G which induces an even permutation
on G/T .

Define Φ : G/T → G/S, Tg → Sg. Since Sg = STg, this is well defined. Observe that
for all g, h ∈ G,

Φ((Tg)h) = Φ(T (gh)) = S(gh) = (Sg)h = Φ(Tg)h

and so Φ is G equivariant.
Put X = 〈x〉. Let A be an orbit for X on G/S of size m and put m = Φ−1(A). Since

Φ is G-equivariant, B is X-invariant. Since |S/T | = 2, |Φ−1(α)| = 2 for all α ∈ G/S and so
|B| = 2m. Pick β = Tg ∈ B and put α = Φ(β) = Sg. Observe that CX(α) = X ∩ Sg and
CX(β) = X ∩ T g. We will show
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1◦. [1] One of the following holds:

I [I] Xg−1 ∩ S = Xg−1 ∩ T and X has two orbits of length m on B.

II [II] Xg−1 ∩ S 6= Xg−1 ∩ T and X has an orbits of length 2m on B.

Suppose first that Xg−1 ∩ S = Xg−1 ∩ T . Then also X ∩ Sg = X ∩ T g, CX(α) = CX(β)
and

|βX| = |X/CX(β)| = |X/CX(α)| = |αX| = |A| = m

Suppose next that Xg−1∩S 6= Xg−1∩T . Then also X∩Sg 6= X∩T g, |Sg/∩X/T g∩X| = 2
and |CX(α)/CX(β)| = 2. Thus

|βX| = |X/CX(β)| = 2|X/CX(α)| = 2|αX| = 2|A| = 2m

So (1) holds.

This allows us the determine the orbits of X on G/T in terms of the orbits X on G/T :

Suppose that |A| > 1. Then X 6= X ∩ Sg−1
and so Xg−1 ∩ S 6= X and Xg−1 ∩ S ≤ 〈x2〉.

Since by assumption (2) fails, we conclude that Xg−1 ∩ S ≤ Xg−1 ∩ T . Hence by (1◦), X
has two orbits of length m on B. Thus x is an even permutation on B. Since this holds for
all non-trivial orbits for X on G/S, x is an even permutation on Φ−1(SuppG/S(X)).

Suppose next that |A| = 1. Then X ≤ Sg and so xg
−1 ∈ S. Since (1) fails, we get

xg
−1

/∈ T and so Xg−1 ∩ S = Xg−1 6= Xg−1 ∩ T . Thus by (1◦), X has an orbits of length
2 on B. Since this holds for each trivial orbit on A in G/S, X has |FixG/S(X) orbits of
length 2 on Φ−1(FixG/S(X). Observe that |G/S| is odd, while |SuppG/S(X)| is even. Hence

|FixG/S(X)| is odd and so X has an odd number of orbits of length two on Φ−1(FixG/S(X).
It follows that X is an odd permutation on Φ−1(FixG/S(X) and so also on G/S.

Lemma 3.5.9. [burnside] Let G be finite group and S ∈ Syl2(G). Suppose that S ≤
Z(NG(S)). Then G = O(G)S.

Proof. Since S ≤ NG(S) we have S ≤ Z(S) and so S is abelian.

We will first show:

1◦. [1] If a ∈ S and g ∈ G with ag ∈ S, then ag = a.

By ??, ag = ah for some h ∈ NG(S). Since S ≤ Z(NG(S)) this gives ag = a. So (1◦) is
proved.

If S = 1, then G = O(G) and the lemma holds. So suppose S 6= 1 and pick T ≤ S with
|S/T | = 2 and x ∈ S \ T .

Let g ∈ G with xg ∈ S. Then by (1◦), xg = x /∈ T and ??thompson transfer]a does not
hold.

Let y ∈ 〈x2〉 and g ∈ G with yg ∈ S. Then by (1◦), yg = y. Since |S/T | = 2, x2 ∈ T
and so yg = y ∈ T . So also ??thompson transfer]b does not hold
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Thus ??thompson transfer]c must hold and there exist a subgroup H of G with |G/H| =
2. Then G = HS, H EG and H ∩ S is a Sylow 2-subgroup of H. We claim that H ∩ S ≤
Z(NG(H ∩ S)). For this let a ∈ H ∩ S and g ∈ NG(H ∩ S). Then ag ∈ H ∩ S ≤ S and
so by (1◦), ag = a. Thus indeed H ∩ S ≤ Z(NG(H ∩ S). By induction on |G| we conclude
that H = O(H)(H ∩ S). Since H E G, O(H) ≤ O(G) and so G = HS = O(H)(H ∩ S)S =
O(G)S.

We now start the proof of Janko’s Theorem. So let G be a finite group of even order with
a unique conjugacy class of involutions and z ∈ G with z2 = 1 and CG(z) ∼= C2 × Alt(5).
Let S ∈ Syl2(CG(z)). For t ∈ G with t2 = 1, define Gt = CG(t) and Kt = G′t

∼= Alt(5). So
Kt
∼= Alt(5) and Gt = 〈t〉 ×Kt.

Step 1. [j1-1]

(a) [a] S ∼= C2 × C2 × C2.

(b) [b] S ∈ Syl2(G).

(c) [c] CG(B) = S for all B ≤ S with |B| ≥ 4.

(d) [d] |NG(S)| = 23 · 3 · 7.

Proof. (a) Just observe that 〈(12)(34), (14)(23)〉 is a Sylow 2 subgroup of Alt(5) and is
isomorphic to C2 × C2.

(b) Let T ∈ Syl2(G) with S ≤ T and pick 1 6= t ∈ Ω1 Z(T ). Then T ≤ CG(t) and
CG(t) ∼= C2 ×Alt(5). Thus |T | ≤ 8 and S = T .

(c) Without loss |B| = 4. Pick 1 6= b ∈ B. Then CG(B) = CGb(B). Since Gb = 〈b〉×Kb

we have B = 〈b〉 × (B ∩Kt) and CGb(B) = 〈b〉 ×CKb(B ∩Kb). Alt(5) has a unique class of
involutions and CAlt(5)((12)(34)) = 〈(12)(34), (13)(24)〉 has order 4. This CG(B) has order
eight and CG(B) = S.

(d) Let s ∈ S]. Then |s| = 2 and so there exists g ∈ G with zg = s. By ??, zh = s for
some h ∈ NG(S). Thus NG(S) acts transitively on S] and so |NG(S)/NG(S)∩Gz| = |S] = 7.
AlsoNG(S)∩Gz = 〈z〉×NKz(S∩Kz). SinceNAlt(5)(〈12)(34), (13)(24)〉 = Alt(4) we conclude
that NG(S) ∩Gz ∼= C2 ×Alt(4) has order 23 · 7. Thus NG(S) has order 23 · 3 · 7.

For x ∈ G let Gt = NG(〈x〉) and 0t = O(Gt). In order to count the involutions in G we
need to compute Gd where d is an element of order 3 in Gz. For this we have to investigate
subgroup L of G such that O(L) 6= 1 and 4

∣∣|L|. Let L be such a group, Y = O(L),
A ∈ Syl2(L) and for a ∈ A] put Ya = CY (a).

Step 2. [j1-2]

(a) [a] For a ∈ A], Ya has order 1, 3 or 5.

(b) [b] |A| = 4.

(c) [c] |Y | =
∏
a∈A] |Ya| = 3x5y for some x, y ∈ N with x+ y ≤ 3.
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Proof. (a) Observe that Ya is a subgroup of odd order in Ga. Thus Ya ≤ Ka
∼= Alt(5)). By

Lagrange’s Ya has order 1, 3, 5, 15. Since Alt(5) is simple it has no subgroup of index 4 and
so |Ya| 6= 15.

(b) Suppose that |A| = 8 and let B ≤ A such that |A/B| is cyclic. Then B has order at
least 4 and so by Step 1, CG(B) has order eight. Thus CY (B) = 1. Hence

Y = 〈CY (B) | B ≤ A,A/B is cylic 〉 = 1

a contradiction.
(c) By 3.5.2

|Y | =
∏

(|CY (B)| | B ≤ A, |B| = 2) =
∏
a∈A]

|Ya|

Together with (a) this gives (c).

Step 3. [j1-3] One of the following holds:

1. [a] L = Y A and NL(A) = A.

2. [b] Y is elementary abelian of order p3 for some p ∈ {3, 5}, Y is a minimal normal
subgroup of L and NL(A) ∼= Alt(4).

Proof. Since |CG(A)| = 8 and A is a Sylow 2 subgroup of L, CL(A) = A. Moreover
NL(A)/CL(A) is isomorphic to subgroup of odd order of Aut(A) ∼= Sym(3) and so NL(A) =
CL(A) = A or NL(A)/A ∼= C3/

Suppose first that NL(A) = A. Then A ≤ Z(NL(A)) and by 3.5.9, L = O(L)A = Y A.
So (1) holds.

Suppose next that NL(A)/A ∼= C3. Then NL(A) ∼= Alt(4) and NL(A) acts transitively
on A]. Let 1 6= a ∈ A and put p = |Ya|. Then p ∈ {1, 3, 5} and |Yb| = p for all b ∈ A].
Hence |Y | = p3 and p ∈ {3, 5}. So Y is a p-group. Let D be a minimal normal subgroup of
L contained in Y . Since D = 〈CD(a) | a ∈ A]〉 we get CD(a) 6= 1 for some a ∈ A]. Since
|Ya| = p this gives Ya ≤ D and since NL(A) acts transitively on A], Ya ≤ D for all a ∈ A].
Thus |D| = p3 and Y = D. In particular, Y = Ω1 Z(Y ) and so Y is elementary abelian.

Step 4. [j1-4] Let D be a non-trivial A-invariant subgroup of G of odd order.

(a) [a] If D ≤ L, the D ≤ Y .

(b) [b] If D is not elementary abelian or 33 or 53, then NG(D) = O(NG(D))A and every
subgroup of odd order normalizing D is contained in O(NG(D)).

Proof. (a) If L = Y A, this is obvious. So suppose L 6= Y A. Then |Y | = p3. Since DY ≤
O(DY A) we conclude from Step 2 that applied to DY A in place of L, that Y = O(DY A)
and so D ≤ Y .

(b) Put L̃ = NG(D). Then D is a non-trivial normal subgroup of L̃ contained in O(L̃).
Thus Step 3 applied to L̃ shows that L̃ = O(L̃)A and so (b) holds.
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Step 5. [j1-4.3] Let D ≤ Y with |D| = p2, p ∈ {3, 5}. Then D E Y and if |Y | 6= p3, then
D E L.

Proof. If D = Y , this is obvious. So suppose D 6= Y . If |D| = p3, then D < NY (D) ≤ Y
and so D E Y . If |Y | 6= p3 the by Step 2, |D| = p2q where q ∈ {3, 5} with p 6= q. Thus D is
a Sylow p-subgroup of Y and the number of Sylow p-subgroup of Y divides q and is equal
to 1 (mod p). Since 3 6≡ 1 (mod 5) and 5 6≡ 1 (mod 3) we conclude that D is the unique
Sylow p subgroup of Y . Thus D E L.

Step 6. [j1-4.6] Let p ∈ {2, 3} and for i = 1, 2 let Di ≤ G with |Di| and |CG(Di)| even.
Let ti ∈ CG(Di) with |ti| = 1. Then there exists g ∈ G with tg1 = t2 and Dg

1 = D2. In
particular, D1 and D2 are conjugate in G.

Proof. Since all involutions in G are conjugate, there exists h ∈ G with th1 = t2. Then both
D2 and Dh

1 are contained in CG(t2). Since CG(t2) ∼= C2 × Alt(5), the Sylow p subgroups
of G have order p. Thus D2 and Dh

1 are Sylow p-subgroups of CG(t2) and so there exists
l ∈ CG(t2) with Dhl

1 = D2. Also thl1 = tl2 = t2 and so the lemma holds with g = hl.

Step 7. [j1-5] Suppose |Y | does not divide 15 and put Y ∗ = CG(Y ) and L∗ = NG(L∗).
Then L ≤ L∗, Y ≤ Y ∗, Y ∗ = O(L∗) and L∗ 6= Y ∗A.

Proof. Since |Y | does not divide 15 and |Y | = 3x5y with x + y ≤ 3 there exists p ∈ {3, 5}
with p2 | |Y |. Let D be a Sylow p-subgroup of Y . If |Y | 6= p3, then |D| = p2 and so by Step
5, D E L. If |Y | = p3, then D = Y and again D E L. Since D is a p-group, Ω1 Z(D) 6= 1
and so there exists a ∈ A] with CΩ1 Z(D)(a) 6= 1 and so Ya ≤ Ω1 Z(D). Since |D| ≥ p2 there

exists b ∈ A] with CD(b) � Ya. Then b 6= a. Put E = YaYb. Since Ya ≤ Z(D), E ∼= Cp×Cp.
By ?? Y ≤ NG(E) and so by Step 4, Y ≤ F := O(NG(E)). By Step 6 there exists g ∈ G
with ag = b and Y g

a = Yb. Let e ∈ {a, b}. Then E is a subgroup of odd order in Ge and so
by Step 4, E ≤ Oe := O(NG(Ye)). So by Step 6, E E Oe. Thus another application of Step
4 shows that Oe ≤ F . Observe that F/E has order 1, 3 or 5, E ≤ Oa ∩Ob and |Oa| = |Ob|.
Thus either E = Oa = Qb or F = Oa = Ob. In any case Oa = Qb and so g ∈ L̃ := NG(Oa).
Put Ỹ = O(L̃). Since ag = b , L̃ 6= Ỹ A. Hence by Step 3, Ỹ is elementary abelian of
order p3 and Ỹ = Oa = Ob. Since Y Qa ≤ F , this gives Ỹ = F and Y ≤ Ỹ . Since Y has
order at least p2, CG(Y ) has odd order. Since Ỹ ≤ CG(Y ) we conclude from Step 2, that
Ỹ = CG(Y ) = O(NG(Y )). In particular, L ≤ NG(Ỹ ) and the lemma is proved.

Step 8. [j1-6] |Y | divides 15.

Proof. Suppose not. Then we can apply Step 7 and replacing L by L∗ we may assume
that |Y | = p3, L = NG(Y ) and L 6= Y A. Let a ∈ A]. Then |Ya| = p. By Step 4,
NG(Ya) = O(NG(Ya))A and it follows that Y = O(NG(YA) and NG(Ya) = Y A. By Step
3 NL(A) ∼= Alt(4) and so there exists d ∈ NL(A) with |d| = 3. Put b = ad and c = bd.
Then A] = {a, b, c} and Y = Ya × Yb × Yc. Let 1 6= ya ∈ Ya and put yb = yda, yc = ycb and
y = yaybyc. Since d has order three, y ∈ CY (d). Also ye ∈ Ye, y 6= 1 and |y = p. Since
Y 〈d〉 ≤ CG(y), CG(y) has order divisible by 3p3 and so 〈y〉 is not conjugate to Ya. Put
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S̃ = CG(A). Then |S̃| = 8 and d normalizes S̃. Thus d centralizes an element ã of order 2
in S̃]. In Gã we see that there exists a subgroup Ã of order 4 inverting d. Thus L̃ = NG(〈d〉
is divisible by 4. From Step 4 we conclude that y ∈ Ỹ := O(NG(〈d〉).

Suppose that p = 5. Then 15 divides Ỹ and by Step 7 we conclude that |Ỹ | = 15. Thus
〈y > is the unique subgroup of order 5 in Ỹ , Ã normalizes 〈y〉 and so [y, b̃] = 1 for some
b̃ ∈ Ã]. But then 〈y〉 is conjugate to Ya, a contradiction.

Thus p = 3. We will show that L = Y NL(A). For this we investigate the action of L
on the set P of subgroups of order 3 of Y . Note that |P| = 13. NL(A) has three orbits P3,
P4 and P6 on P of size 3, 4 and 6 respectively. Indeed P2 = {Ye | e ∈ A]}, P4 = 〈y〉NL(A)

and P6 = 〈yayb〉NL(A)}. Since 〈y〉 is not conjugate to Ya in G there are three possibilities
for the orbits of L on P:

(a) P3, P4 and P6.

(b) P3 ∪ P6 and P4.

(c) P3 and P4 ∪ P6.

In any case there exists i ∈ {3, 4} such that Pi is an orbit for L on P. Put Q =
CL(Pi). Then L/Q is isomorphic to a subgroup of Sym(i) and NL(A)Q/Q ∼= Alt(i). Thus
|L/NL(A)Q| ≤ 2. Since A is a Sylow 2 subgroup of L we get L = NL(A)Q. Note that
|Q/CQ(U)| ≤ 2 for all U ∈ Pi and so Q/CQ(Y )| is a 2-group. Since Y = CG(Y ) this gives
Q = CQ(Y )(Q ∩A) ≤ Y A and L = NL(A)Y A = NL(A)Y .

Note that this implies that P3 is an orbit for L on P. Let g ∈ G with Ya ≤ Y . Then by
Step 4, Y ≤ O(NG(Ya)

g and Y = O(NG(Ya)) = Y g. So g ∈ NG(Y ) = L and Y g
a ∈ P3. So

Y contains exactly three G conjugates of Ya and these three conjugate generate Y . Since
〈d〉 is conjugate to Ya the same is true for Ỹ .

Put R = CY (d)〈d〉 = 〈y, d〉. Then R ≤ Ỹ and Then R < NY R(R) = NY (R)R. So
NY (R) 6= CY (d) and |NY (R)/CY (d)| = 3. Also [NY (R) ∩NY (〈d〉), 〈d〉] ≤ Y ∩ 〈d〉 = 1 and
so |〈d >NY (R) | ≥ 3. Hence R contains at least G-three conjugate of YA. But the R contains
all G conjugates of YA in Ỹ and so R = Ỹ , a contradiction.

Step 9. [j1-7] L ∼= D12, D20 or D6 ×D10.

Proof. By Step 8, |Y | = 3, 5 or 15 and so by Step 3, L = Y A. So L has order 12, 20 or 60
and the lemma follows.

Step 10. [j1-8] For p = 3, 5 let Sp be a Sylow p subgroups of CG(z). The one of the
following holds.

1. [a] NG(S3) ∼= D12 and NG(S5) ∼= D20.

2. [b] NG(S3) ∼= D6 ×D10 ∼= NG(S5).



88 CHAPTER 3. GROUPS WITH MIN

Proof. Let p ∈ {2, 3}. Then by Step 9, NG(Sp) ∼= D4p or D6 × D10. So either (2) holds
or NG(Sp) ∼= D6 × D10. Suppose the latter and let {p, q} = {3, 5}. Then NG(Sp) as a
normal Sylow q subgroup Tq. Moreover NG(Sp) ∩ CG(Tq) contains an involution and so Tq
is conjugate to Sq. Thus also NG(Sq) ∼= D6 ×D10 and (1) holds.

Proposition 3.5.10. [bender counting] Let G be a finite group of even order and J the
set of involutions in G and I = {t ∈ J | H ∩ Ht 6= 1}. Let H be a subgroup of G. Let
jn = |{U ∈ G/H | U 6= H, |U ∩ J | = n}| and in = |{U ∈ G/H | U 6= H, |U ∩ I| = n}|. For
K = {I,J } put Kn = {t ∈ K | t /∈ H, |Ht∩I| = n}. Let m be the number of orbits of H on

J1 \ I1. Put c = |G|
|I| and h = |H|. Then

(a) [a] For all t ∈ J \H, Ht ∩ I = {ht | h ∈ H ∩Ht, ht = h−1}. In particular In = Jn
for all n ≥ 2.

(b) [b] Let U = Hg ∈ G/H with U 6= H and put l = |U ∩J |. Then U ∩I ⊆ Jl. Moreover,
either H ∩Hg 6= 1 and U ∩ cI ⊆ Il or H ∩Hg = 1, l ≤ 1 and U ∩ I ⊆ Jl \ Il.

(c) [c] For all n ∈ Z+, |Jn| = njn and In = |nin|. In particular in = jn for all n ≥ 2.

(d) [d] j1 = i1 +mh and |J | = |I|+mh.

(e) [e] |J | = |J ∩H|+
∑∞

n=1 njn = |J ∩H|+ |mh+
∑∞

n=1 nin

(f) [f] |G/H| = 1 +
∑n

n=0 jn = 1 + j0 +mh+
∑n

n=1 in

(g) [g] h
(
(h− c)m+ j0

)
= |J ∩H|c− h+

∑∞
n=1(nc− h)in

Proof. (a) Let h ∈ H. Since ht /∈ H, ht 6= 1 and so |ht| = 2| iff (ht)2 = 1. Since
(ht)2 = htht = hht, we have (ht)2 = 1 if and only if ht = h−1. Observe that ht = h−1

implies h ∈ H ∩Ht. So if t ∈ Jn for some n ≥ 2, then H ∩Ht contains at least two elements
inverted by t and so H ∩Ht 6= 1 and t ∈ I. Thus Ht ∩ J = H ∩ cI and t ∈ In.

(b) Observe that U = Ht for all t ∈ U ∩ J . Thus |Ht ∩ J | = |U ∩ J | = l and so
U ∩J ⊆ Jl. Observe also that H ∩Ht = H ∩Hg. So if H ∩Hg 6= 1, then U ∩J ⊆ In and
if H ∩Hg = 1, then U ∩ J ⊆ Jn \ In. In the latter case, (a) implies n ≤ 1.

(c) Obvious.

(d) Let t ∈ J1 \ I1. Then CH(t) ≤ H ∩Ht = 1 and so all orbits of |H| on J1 \ I1 have
length h = |H|. Hence |J1 \ \I1| = mh and so |J1| = |I1| + |J1 \ I1| = i1 + mh. Since
Jn = In for all n ≥ 2 this implies

|J \H| =
∑
n=1

|Jn| = mh+
∑
n=1

|In| = mh+ |I|

(e) This follows from (c) and (d).

(f) This follows from (c) and (d).

(g) Note that c|J | = |G| = h|G/H|. So by (e) and (f):
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c

(
|J ∩H|+mh+

∞∑
n=1

nin

)
= h

(
1 + j0 +mh+

n∑
n=1

in

)
and so (g) holds.

Lemma 3.5.11. [computing in] Retain the assumption and notation from 3.5.10. For
g ∈ G and K ≤ H with Kg = K define gK ∈ Aut(K) by kgK = kg. Define

Ξ = {(K, s) | 1 6= K ≤ H, s ∈ Aut(K), s2 = 1}.

Note the H acts on Ξ via (K, s)g = (Kg, sg), where sg ∈ Aut(Kg) is defined by l(sg) =
(lg
−1

)s)g. Let Λ be the set of orbits for H on Ξ and λ, µ ∈ Λ Let (K, s) ∈ λ and define

aλ = |{(L, t) ∈ I \H | 1 6= L ≤ H, t ∈ J \H,Lt = L, (L, tL) ∈ λ}|

bλ = |{t ∈ I \H | (H ∩Ht, tH∩Ht) ∈ λ}|

nλ = |{k ∈ K | ks = k−1}|

rµλ = |{L ≤ K | Ls = L, (L, sL) ∈ µ}|

Then

(a) [a] Let (K, s) ∈ λ. Then aλ = |H/NH(K)| · |{t ∈ NG(K) \H | (K, tK) ∈ λ}|.

(b) [b] Let µ ∈ Λ. Then bµ = aµ −
∑

µ 6=λ∈Λ rµλbλ.

(c) [c] in = 1
n

∑
(bλ | λ ∈ Λ, nλ = n).

Proof. Define

Aλ = {(L, t) ∈ I \H | 1 6= L ≤ H, t ∈ J \H,Lt = L, (L, tL) ∈ λ}

Bλ = {t ∈ I \H | (H ∩Ht, tH∩Ht) ∈ λ}
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Appendix A

Set Theory

A.1 The basic language of sets theory

A simple term is a set or a variable. A formula is any expression which can be obtained in
finite steps according to the following rules:

(a) [a]

x = y and x ∈ y

are formulas, where x and y are simple terms.

(b) [b] If φ and ψ are formulas and x a variable, then

(¬φ)

(φ→ ψ)

(φ ∨ ψ)

(∃xφ)

are formulas.

These formulas are pronounced as follows:
x = y: x is equal to y.
x ∈ y: x is an element of y.
(¬φ): not φ
(φ→ ψ): φ is equivalent to ψ.
(φ ∨ ψ): φ or ψ.
(∃xφ): there exists x such that φ.

We use following abbreviations:
(∀xφ) means (¬(∃x(¬φ)))

91
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(φ ∧ ψ) means (¬(∃x((¬φ)) ∨ (¬ψ))))
(φ→ ψ) means ((¬φ) ∨ ψ)
∃!x(φ) means (∃y(∀x(x = y ↔ φ))), where y is any variable not appearing in φ.
(∃(x ∈ y)φ) means (∃x(x ∈ y ∧ φ)).
(∀(x ∈ y)φ) means (∀x(x ∈ y → φ)).
Let φ be a formula and v a variable. We inductively define the terminologies, ’v is free

variable of φ’ and ’free appearance of “x” in φ If φ is x = y or x ∈ y, then any x or y equal
to v is called a free appearance of x in φ. Any variable is called free variable of φ.

If φ is 6= ψ then a free variable of φ is free variable of ψ. A free appearance of v in ψ is
free appearance of v in ψ.

If φ is (ψ ↔ τ or (ψ ∨ τ , then a free variable of φ is a free variable of ψ or of τ . A free
appearance of v in φ is free appearance of v in ψ or in τ .

If φ ≡ (∃xψ), then v is a free variable of φ if v 6= x and v is a free variable of ψ. If
v 6= x, then any free appearance of v in ψ is a free appearance of v in φ.

A variable which is not free variable of φ is called a bound variable of φ.
Now let φ a formula, v a variable. φ and t a simple term. Then φ(v ↘ t) is the formula

obtained to replacing all free appearances of v by t. More formally φ(v ↘ t) is inductively
defined

Let r, s be simple terms distinct v and let �is one of =,∈, Then
If φ ≡ r � s then φ(v ↘ t) ≡ r � s. If φ ≡ v � s then φ(v ↘ t) ≡ t � s. If φ ≡ r � v then

φ(v ↘ t) ≡ r � v. If φ ≡ v � v then φ(v ↘ t) ≡ t � t. If φ ≡ (6= ψ), then φ(v ↘ t) ≡ ( 6=
ψ(v ↘ t)).

Let � is one of → or ∨. If φ ≡ (ψ � τ), then φ(v ↘ t) ≡ (ψ[v ↘ t] � τ [v ↘ t)
If φ ≡ (∃xψ) and x is a variable different from v, then φ(v ↘ t) ≡ (∃sψ(v → t). If

φ ≡ (∃vψ) then φ(v ↘ t) ≡ (∃vψ).
We will often use the following more convenient notion: We use the symbol φ(v) in place

of φ and from then on φ(t) denotes the formula φ(v ↘ t). So φ(v) is a formulas with a
distinguished variable v.

A class A is just a formula φ(v) with a free distinguished variable v. But we think about
A as the collection of all sets which fulfill φ and write

A = {x | φ(x)

Any set s can be viewed as the class

{x | x ∈ s}
The class V := {x | x = x} is called the universe. Every set is a member of the universe.
The class ∅ := {x | x 6= x} is called the empty class. The empty class has no members.
We introduce an extended language: A simple class term is a variable, a set or a class.

Now a class formula is defined in the save way as a formula: just replace ’simple term’ by
’simple class term’.

Any class formula Φ has a corresponding set formula Φ̃ inductively defined as follows:
Let A and B be simple class terms, and s a simple set term. If A is a set or variable, let
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φ(v) be the formula v ∈ A, where v is a variable distinct from A. If A is a class, let φ(v)
be the formula used to define A. Also u is a variable different from s and not involved in φ
and ψ.

If Φ ≡ A = B, then Φ̃ = ∀u(φ(u)↔
psi(u). If Φ ≡ s ∈ B, where s is a set term, then Φ̃ ≡ ψ(s). If Φ ≡ A ∈ B and A is a
class, then Φ̃ ≡ (∃u(u = A ∧ u ∈ B), If Φ ≡ Ψ↔ Σ, then Φ̃ ≡ Ψ̃↔ Σ̃. If Φ ≡ Ψ ∨ Σ, then
Φ̃ ≡ Ψ̃ ∨ Σ̃. If Φ ≡ (¬Ψ), then Φ̃ ≡ (¬Ψ̃). If Φ ≡ (∃xΨ), then Φ̃ ≡ (∃sΨ̃).

Φ̃ is called the translation of Φ. Note that if s and t are sets terms then s = t is
translated into ∀u(u ∈ s↔ u ∈ t). This is justified be the following Axioms of Set Theory

Set Axiom 1 ∀x∀y(x = y ↔ (∀z(z ∈ x↔ z ∈ y))

Definition A.1.1. [def:int]

(a) [a] Let Φ(x) a class formula. Then {x | Φ(x) denotes the class {x | Φ̃(x)} defined by
the translated formula Φ̃(x).

(b) [b] Let A be class. Then
⋂
A :≡ {x | (∀a ∈ A)x ∈ a}.

(c) [c] Let A be a class. Then
⋃
A :≡ {x | (∃a ∈ A)x ∈ a}

If A = {x | φ(x)}, then

⋂
A ≡ {x | (∀a ∈ A)x ∈ a} = {x | ∀a(a ∈ A→ x ∈ A} = {x | ∀a(φ(a)→ x) ∈ a}

and ⋃
A ≡ {x | (∃a ∈ A)x ∈ a} = {x | ∃a(x ∈ A} = {x | ∃a(φ(a) ∧ x ∈ a}

A.2 The Axioms of Set Theory

To continue we need

Set Axiom 2 ∀x∀y∃z∀w(w ∈ z ↔ (w = x ∨ w = y))

Note that this just says that for any sets x and y, there exists a set z whose elements
are exactly x and y. We denote this set by {x, y}. The special case x = y, show that there
exists a set {x} whose only element is x.

Definition A.2.1. [def:ordered pair] Let a, b be sets. Then (x, y) denotes the set {{x}, {x, y}}.
(x, y) is called the ordered pair x and y.

Lemma A.2.2. [ordered] Let a, b, c, d be sets. Then (a, b) = (c, d) if and only if a = b and
c = d.
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Proof. See Homework 2

Definition A.2.3. [def:relation]

(a) [a] A relation is a class R such that all members of R are ordered pairs. If x and y are
sets then xRy means (x, y) ∈ R. Dom(R) := {a | aRb for someb} and Ran(R) := {b |
aRb for some a}.

(b) [b] A function is a relation F such that b = c for all sets a, b, c such that (a, b) ∈ F
and (a, c) is in F . F (a) = b means that (a, b) ∈ F . Also if F is a function and A
a class then {F [A] := {b | a ∈ A, b = F [a]}. F [A] is called the image of A under F .
FA |:= {(a, b) | a ∈ A, b = F (a)}.

Lemma A.2.4. [int class] Let A be a class.

(a) [a] If A = ∅, then
⋂
∅ = V .

(b) [b] If A 6= ∅, then
⋂
A is a set.

Proof. (a) If
⋂
∅ = {x | x ∈ y for all y ∈ ∅} = {x|} = V.

(b) Let a ∈ A. Then
⋂
A ⊆ a.Since

⋂
A is a class, A.2.5 implies that

⋂
A is a set.

If A and B are classes we define A ⊆ B to mean (∀x(x ∈ A→ x ∈ B).
We are able to state all the Axioms of Set Theory :

Set Axiom 1 [1] ∀x∀y(x = y ↔ (∀z(z ∈ x ↔ z ∈ y)), that is two sets are equal if and
only if they have the same elements.

Set Axiom 2 [2] ∀x∀y∃z∀w(w ∈ z ↔ (w = x∨w = y)) (That is for all sets x and y there
exists a set z with exactly x and y as elements.

Set Axiom 3 [3] For all sets x, {y | y ⊆ x} is a set.

Set Axiom 4 [4] For all sets x,
⋃
x is a set.

Set Axiom 5 [5] For all functions F and all sets x, F [x] is a set.

Set Axiom 6 [6] There exists a set z such that ∅ ∈ z and for all x ∈ z also x ∪ {x} ∈ z.

Set Axiom 7 [7] For all non-empty classes A, there exists x ∈ A such that y /∈ A for all
y ∈ x.

(6) includes the statement that the empty class is a set. Indeed ∅ ∈ z, means that there
exists a set x with x = ∅ and x ∈ z. Henceforth we will call the empty class, the empty set.

Lemma A.2.5. [subclass]

(a) [a] If x is a set and A a class, then x ∩A is a class.

(b) [b] If x is a class and A a set with A ⊆ x, then A is class.
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(c) [c] A function is a set if and only if Domf is a set.

Proof. See Homework 2.

Lemma A.2.6. [compatible] Let A be a class of compatible functions, that is A is class,
if f ∈ A, then f is a function and a set, and if f, g ∈ A, then f(x) = g(x) for all
x ∈ Domf ∩Domg. Then

⋃
A is a function.

Proof. Let a ∈
⋃
A. Then a ∈ f for some f ∈ A and so a is an ordered pair. Now let a, b, c

be sets with (a, b) ∈
⋃
A and (a, c) ∈

⋃
A. The (a, b) ∈ f and (a, c) ∈ g for some f, g ∈ A.

Thus a ∈ Domf ∩Domg and so

b = f(a) = g(a) = c

So
⋂
A is a function.

A.3 Well ordered sets and the Recursion Theorem

Definition A.3.1. [def:relation] Let R be a relation and A a class

(a) [a] aRb means (a, b) ∈ R and a 6 RB mean (a, b) 6∈ R.

(b) [b] R is called irreflexive on A if a 6 Ra for all a ∈ A.

(c) [c] R is transitive of A aRc for all a, b, c ∈ A with aRb and bRc.

(d) [d] T partially orders A if R is irreflexive and transitive on A.

(e) [d] R totally orders A if R is partially orders A and for all a,∈ A one of aRb, a = b
and bRA holds.

(f) [e] An R-minimal element of A is an element m ∈ A such that for all a ∈ A, m = a
or mRa.

(g) [e] If x is any object that ARx := {a ∈ A | bRx}.

Lemma A.3.2. [trivial total orders]Suppose the relations R totally orders the class A.
Then for all a, b in R exactly one of aRb, a = b and bRa holds,

Proof. By definition of a total ordering, at least one of aRb, a = b and bR holds. Id a = b,
then a 6 Rb and b 6 Ra since R is irreflexive on A. If aRb and bRA, then aRa since R is
transitive, a contradiction since R is irreflexive.

Definition A.3.3. [def:well orders] Let R be a relation and A a class. We say that R
well-orders A if

(i) [i] R totally orders A.
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(ii) [ii] Every non-empty subset x of A has a RR-minimal element.

(iii) [iii] For all a ∈ A, ARa is a set.

Lemma A.3.4. [minimal for class] If the relation R well orders the class A, then every
non-empty subclass of A has a R-minimal element.

Proof. Let B be a subclass of b ∈ B. If b is a minimal element of B we are done. So suppose
b is not a minimal element. Then there exists a ∈ B such that neither a = b nor bRa. So
aRb and thus BR

b is not empty. not-empty. By definition of a well-ordering ARb is a set and
so also BR

b = B∩ARb , since the intersection of a class with a set is a class. Since BR
b is a set,

the definition of a well ordering implies that BR
b has a minimal element m. Since m ∈ BR

b ,
we have mRb. Let y ∈ B. If yRb, then y ∈ Bb

R and so y = m or mRy. If y = b then mRy.
If bRy then mRy since R is transitive on A. Thus m is a minimal element of B.

Definition A.3.5. [def:segment] Let R be a relation, A a class and B a subclass of A.

(a) [a] B is called in initial R-segment of A if a ∈ B for all b ∈ B and a ∈ A with aRb.

(b) [b] B is called an R-section of A if B = ARa for some a ∈ A.

With this definition the last condition on a well-ordered class says that every section is
a se

Lemma A.3.6. [union of segments] Let R be a relation, A a class and T a non-empty
class of initial R-segments of A. Then

⋃
T and

⋂
T are initial R-segment of A.

Proof. Observe first that
⋃
T is a subclass of A. Let b ∈

⋃
T and a ∈ A with aRb. Then

b ∈ B for some B ∈ T . Thus a ∈ B since B is an initial R-segment of A. Hence a ∈
⋃
T

and so
⋃
T is an initial R-segment of A.

A similar proof shows that
⋂
T is an initial R-segment of A.

Lemma A.3.7. [segments] Let R be relation which well orders the class A and let B be
an initial R-segment of A. Then B = A or B is an R-section of A. In particular, B = A
or B is a set.

Proof. Suppose B 6= A. Then A \B is a non-empty subclass of A and so has a R-minimal
element m. Let a ∈ A. We claim that aRm if and only if a ∈ B. If aRm, then a /∈ A \ B,
since m is the minimal element of A\B. Thus a ∈ B. If a = m, then a /∈ B since m ∈ A\B.
Suppose mRa and a ∈ B. Since B is an initial segment this gives m ∈ B, a contradiction.
Thus proves the claim and so B = ARm and B is an R-section of A.

Theorem A.3.8 (Recursion Theorem). [recursion] Let R be a relation which well-orders
the class A. Let τ be a function with domain the universe V . Then there exists a unique
function F with domain A such that for all a ∈ A

(∗) F (a) = τ(F |ARa )
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Proof. Recall that two functions F and G are called compatible if F (x) = G(x) for all
x ∈ Dom(F )∩Dom(G). Just in this proof we will call a function F recursive if its domains
is an initial segment of A and F (a) = τ(F |ARa ) for all a ∈ Dom(F ).

1◦. [1] Any two recursive functions are compatible.

Let F1 and F2 be recursive functions and x ∈ Dom(F1) ∩ Dom(F2). By induction we
may assume that F1(y) = F2(y) for all y ∈ Dom(F1) ∩Dom(F2) with yRx. Since Dom(Fi)
is an initial segment we have ARx ⊆ Dom(F1) ∩ Dom(F2). So the induction assumptions
shows that F1 |ARx = F2 |ARx . Thus

F1(x) = τ(F1 |ARx ) = τ(F2 |ARa ) = F2(x)

So F1 and F2 are indeed compatible.

Observe that (1◦) implies the uniqueness statement of the Theorem. To prove the
existence

Let T be the class of all recursive functions whose domains are sets. Put F =
⋃
T .

2◦. [2] F is a recursive function.

By (1◦) and A.2.6 F is a function. Observe that Dom(F ) =
⋃
{Dom(G) | G ∈ T}. Since

the unions of a class of initial segment is an initial segment, Dom(F ) is an initial segment.
Now let x ∈ Dom(F ) and G ∈ T with x ∈ Dom(G). Then ARx ⊆ Dom(G) and so

F (x) = G(x) = τ(G |ARx ) = τ(F |ARx )

and so F is indeed a recursive function.

3◦. [3] Dom(F ) = A.

Suppose not. Then by A.3.7 DomF = AxR for some x ∈ A. Let G = F ∪ {(x, τ(F )}.
Since x /∈ ARx = Dom(F ) we see that G is a function. Let y ∈ Dom(G). Then either
y ∈ Dom(F ) or y = x. In the first case ARy ⊆ Dom(F ) ⊆ Dom(G) and G(y) = F (y) =

τ(F |ARy ) = τ(G |ARy ). Also ARx = Dom(F ) ⊆ Dom(G) and G(x) = τ(F ) = τ(G |ARx ). Hence

in either case ARy ⊆ Dom(G) and G(y) = τ(G |ARy ). Thus Dom(G) is an initial segment of

A and G is a recursive function. By definition of a well-ordered class, AR(x) is a set and so
also Dom(G) = ARx ∪ {x} is a set. Thus G ∈ T . But then x ∈ Dom(G) ⊆

⋃
{DomH | H ∈

T} = Dom(F ) = ARx , a contradiction. Thus (3◦) holds.

By (2◦) and (3◦) F fulfills the conclusion of the theorem.

A.4 Ordinals

Definition A.4.1. [def:ordinal] An ordinal is a set α such that every elements of α is a
subset of α and ’∈’ well-orders α. Ord is the class of all ordinals.

For example ∅, {∅}, {∅, {∅}} all are ordinals.
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Lemma A.4.2. [basic ord] Let α be an ordinal.

(a) [a] β /∈ β for β ∈ α.

(b) [b] α /∈ α.

(c) [c] Every elements of α is an ordinal.

(d) [d] α ∪ {α} is an ordinal.

Proof. (a) This holds since ′ ∈′ is a well-ordering and so irreflexive on α. (b) If α ∈ α, (b)
gives α /∈ α.

(c) Let α be an ordinal and γ ∈ β ∈ α. Since β is a subset of α, γ is an element of α
and so a subset of α. Let δ ∈ γ. Then δ ∈ α. Since γ ∈ β and ∈ is transitive on α, δ ∈ β
and so γ is a subset of β. A restriction of a well ordering to a subset is a well ordering and
β is an ordinal.

(d) Since β ∈ α for all β ∈ α, α is a maximal element of α ∪ {α} with respect to ∈.
This easily implies that ∈ well orders α ∪ {α}. If β ∈ α ∪ {α} the either β ∈ α or β = α.
In either case β is a subset of α and so also of α ∪ {α}.

Notation A.4.3. [alpha+1] If α is an ordinal, we denote the ordinal α ∪ {α} by α + 1.
We also denote ∅ by 0, 0 + 1 be 1, 1 + 1 by 2 and so on.

Theorem A.4.4. [ord well-ordered] ′ ∈′ well-orders Ord.

Proof. Let α, β and γ be ordinals. By A.4.2(a), α /∈ α and so ∈ is irreflexive on Ord. If
α ∈ β and β ∈ γ, then β is a subset of γ and so α ∈ β and so ∈ is transitive on Ord.

To show that one of α ∈ β, α = β and β ∈ γ holds, put δ = α ∪ β. We will show that δ
is a initial segment of α. So let ε ∈ α and γ ∈ δ with ε ∈ γ. Note that γ ∈ β and so ε ∈ β
since γ is a subset of β. Hence ε ∈ α ∩ β = δ. So δ is indeed and initial segment of α. ??
choose that either δ = α or there exists ρ ∈ α with

δ = αρ = {x ∈ α | x ∈ ρ} = ρ

We proved that δ = α or δ ∈ α. By symmetry, δ = β or δ ∈ β.
Suppose that δ = α. Then α = β or δ ∈ β and we are done with this part of the

proof. So we may assume δ ∈ α and by symmetry also δ ∈ β. But then δ ∈ α ∩ β = δ, a
contradiction to δ ∈ α and ??(??).

Now let x be any non-empty subset of Ord. Pick α ∈ x. Suppose α is not a minimal
elements of x. Then {β ∈ x | x ∈ α} is a non-empty subclass of α and so has a minimal
element γ. But then γ is also an minimal element of Ord. Hence any case x has minimal
element.

For any α ∈ Ord, Ordα = {β ∈ Ord | β ∈ α} = α and so Ordα is a set. We verified all
the defining properties of a well-ordered class and the Theorem is proved.

Corollary A.4.5. [intersect ordinals] Let A be non-empty class of ordinals. Then
⋂
A

is the minimal element of A with respect to ∈.
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Proof. Since Ord is well ordered with respect to ∈, ?? shows that A has a minimal elements
α. Let γ ∈ A. Then α = γ or α ∈ γ. In any case α ⊆ γ and so α ⊆

⋂
A. Since

⋂
A ⊆ α,

this gives
⋂
A = α.

Lemma A.4.6. [unions of ordinals] Let A be a class of ordinals.

(a) [a] If
⋃
A is a set, then

⋂
A is an ordinal. In particular, if A is a set, then

⋃
A an

ordinal.

(b) [b] If
⋃
A is not a set, then

⋃
A = Ord.

Proof.

1◦. [1]
⋃
A ⊆ Ord

Thus holds since every element of ordinal is an ordinal.

2◦. [2] ∈ well-order
⋃
A.

Since ∈ well -orders Ord, this follows from (1◦).

3◦. [3] Every element of
⋃
A is a subset of

⋃
A.

Let x ∈
⋃
A. Then x ∈ α for some α ∈ A. Thus x ⊆ α. Since α ⊆ A thus gives x ⊆ A

(a) If
⋃
A is a set, then (2◦) and (3◦) shows that

⋃
A is a ordinal.

(b) Suppose now that
⋃
A is not a set and let δ be ordinal. Since δ is a set, and

subclasses of sets are sets, we get
⋃
A * δ. Thus there exists α ∈ A with α * δ. Note

that α = δ or α ∈ δ imply α ⊆ δ, a contradiction. Since ∈ is a totally ordering on Ord we
conclude that δ ∈ α and so δ ∈

⋃
A. Since this holds for all ordinals, Ord ⊆

⋃
A. So (1◦)

implies (b).

A.5 The natural numbers

Definition A.5.1. [ordering] Let α and β be ordinals. We will write α < β if α ∈ β and
α ≤ β if α = β or α ∈ β.

Lemma A.5.2. [in and sub] Let α and β be ordinals.

(a) [a] α ∈ β iff α < β and iff α ⊂ β.

(b) [b] (α ∈ β or α = β) iff α ≤ β iff α ⊆ β.

(c) [c] If α < β, then α+ 1 ≤ β. So α+ 1 is the least ordinal larger than α.

Proof. (a) The first statement is just the definition of α < β. If α ∈ β, then the definition
of and ordinal implies α ⊆ β. Since ∈ is irreflexive on Ord, α 6= β and so α ⊂ β. Suppose
now that α ⊆ β. Since ∈ is total ordering α ∈ β, α = β or β ∈ α. The last two statements
imply that β ⊆ α, a contradiction to α ⊆ β. Hence α ∈ β.

(b) follows immediately from (a).
(c) Otherwise (b) gives β ∈ α+ 1 = α ∪ {α}. So

beta ∈ α or β = α, a contradiction to α ∈ β.
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Definition A.5.3. [limit ordinals] Let α be an ordinal.

(a) [a] We say that α is an successor if α = β + 1 for some ordinal β.In this case β is
denoted by α− 1.

(b) [b] We say that α is a limit ordinal, if α is neither zero, nor an ordinal.

(c) [c] We say that α is a natural number of α+ 1 contains no limit ordinal.

(d) [d] N is the class of natural numbers.

Note that first α + 1 contains no limit ordinal iff neither α nor any element of α is a
limit ordinal. α is a natural numbers if and only if either α = 0; or α is an successor and
each non-zero ordinal β with β ∈ α is successor.

Lemma A.5.4. [natural numbers]

(a) [a] Let α and β be ordinal with α ∈ β. If β is a natural numbers, so is α.

(b) [b] Let n be a natural numbers. Then n+ 1 is a natural number.

(c) [c] Let n be a non-zero natural number. Then n− 1 is a natural number.

Proof. (a) Observe that α+ 1 ⊆ β+ 1. Since β+ 1 contains no limit ordinal, α+ 1 contains
no limit ordinal.

(b) If x ∈ n+ 1, then x ∈ n or x = n+ 1. In neither case x is limit ordinal.
(c) Observe first that is neither 0 nor a limit. Hence n− 1 is defined. Since n− 1 ∈ n,

(c) follows from (a).

Lemma A.5.5. [induction on n] Let A be a class. If 0 ∈ A and a ∪ {a} ∈ A for all
a ∈ A, then N ⊆ A.

Proof. Note that B := N \ A is subclass of N. Suppose B 6= ∅ and let n be the minimal
element of B. Then n 6= 0. By minimality of n, n − 1 ∈ A and so also n = (n − 1) + 1 =
(n− 1) ∪ {n− 1} ∈ A, a contradiction.

Lemma A.5.6. [n a set]

(a) [a] N is a set.

(b) [b] N is an ordinal, in fact N is the smallest limit ordinal.

Proof. (a) By Set Axiom 6, there exists a set z such that 0 ∈ z and z ∪ {z} ∈ Z. So by
A.5.5, N ⊆ z. Since subclasses of subsets are sets, N is a set.

(b) Since N is a subclass of the well-ordered class Ord, ∈ is a well ordering in N. Let
n ∈ N and α ∈ n. Then by A.5.4(a), α ∈ N. So n is a subset of N. Thus N is an ordinal.
Let δ be any limit ordinal. Then 0 ∈ δ and if γ ∈ δ, then γ + 1 ≤ δ and since δ is not a
successor. Thus γ + 1 ∈ δ. So A.5.5 implies that N ⊆ δ, and so N ≤ δ.
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Definition A.5.7. [def:sum of ordinals] Let α and β be ordinals, then the ordinal α+β
is inductively defined by

α+ β :=


α if β = 0

(α+ δ) + 1 if β = δ + 1⋃
γ<β α+ γ if β is a limit ordinal

Since 1 = 0+1 is an ordinal we now have two definitions of α+1. But since α+(0+1) =
(α+ 0) + 1 = α+ 1, these two definitions agree.

Lemma A.5.8. [sum of ordinals] Let α, β be ordinals and n,m ∈ N. Then

(a) [a] (α+ β) + n = α+ (β + n).

(b) [b] n+m = m+ n and n+m is a natural number.

Proof. (a) If n = 0, thus is obvious. So suppose (a) is true for n, then

(α+β)+(n+1) = ((α+β)+n)+1 = (α+(β+n))+1 = α+((β+n)+1) = α+(β+(n+1))

and so (a) also holds for n+ 1.
(b) If n = m = 0, then both sides are zero. Suppose next 0 +m = m+ 0. Then

0 + (m+ 1) = (0 +m) + 1 = (m+ 0) + 1 = m+ 1 = (m+ 1) + 0

So (??) holds whenever n = 0. By symmetry it also holds whenever m = 0.
Suppose 1 +m = m+ 1. Then

1 + (m+ 1) = (1 +m) + 1 = (m+ 1) + 1

and so (b) holds whenever n = 1.
Suppose (b) holds for some n ∈ N and all m ∈ N

m+ (n+ 1) = (m+ n) + 1 = (n+m) + 1 = n+ (m+ 1) = n+ (1 +m) = (n+ 1) +m

and so (b) holds for n+ 1 and for all m ∈ N.

Lemma A.5.9. [decompose ordinals] Let α be an ordinal then there exists a non-
successor β and a natural numbers n with α = β + n.

Proof. Note that α = α + 0 and so there exists a least ordinal β such that α = β + n for
some natural numbers n. Suppose that β is a successor and let δ = β − 1. Then

α = β + n = (δ + 1) + n = δ + (1 + n) = δ + (n+ 1)

Since n+ 1 is natural number we get a contradiction to the minimal choice of β.
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A.6 Cardinals

Definition A.6.1. [def:cardinals] Two sets a and b are called isomorphic, if there exits
a bijection from a to b. The cardinal |a| of a set a is the least ordinal isomorphic to a.

Lemma A.6.2. [injective] Let a and b be sets, then there exists a injection from a to b if
and only if |a| ≤ |b|.

Proof. Let F : a→ |a| and G : b→ |b| be bijection.
Suppose first that |a| ≤ |b|. Then |a| ⊆ |b|. Thus G−1 ◦ F is an injection from a to b.
Suppose next that H : a→ b is a injection. Then I = G ◦H ◦ F−1 is an injection from

|a| to |b|. Put d = I(|a|. Then d ⊆ |b|. Define Φ : d→ Ord inductively by Φ(e) is the least
elements of Ord \ {Φ(c) | c ∈ d, c < e. We claim that Φ(e) ≤ e for all e ∈ d. Indeed if c < e,
then by induction Φ(e) ≤ e and so Φ(e) 6= e. Thus Φ(e) ≤ e by defintion of Φ(b).

Since Φ(e) ≤ e and |b| is an initial segment of Ord, Φ(e) ∈ |b|. We claim that Φ[d] is an
initial segment of |b|. Indeed of α < Φ(e), then α = Φ(c) for some c ∈ d with c < e. Thus
Φ(d) is an ordinal, also Φ(d) ≤ |b| and Φ(d) isomorphic to a. Thus |a| ≤ |Φ(d) ≤ |b|.

Corollary A.6.3. [sb] Let a and b sets. If the exits an injection from a to b and an
injection from b to a, then a and b are isomorphic.

Proof. By A.6.2 |a| ≤ |b| and |b| ≤ |a|. Thus |a| = |b| and a and b are both isomorphic to
|a|.
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Homework

B.1 Homework 3 from MTH912

Let K be a division ring and V1, V2 and V3 a left K space. A function f : V1 → V2, v → vf
is called K-linear if v+ ṽ)f = vf + ṽf and kv.fk, vf for all v ∈ V and k ∈ K. If f : V1 → V2

and g : V2 → V3 are K-linear, then fg is the K-linear function from V1 → V2 defined by
v.fg = vf.g. HomK(V1, V2) denotes the set of all K-linear map from V1 → V2. EndK(V ) =
HomK(V, V ). Note that EndK(V ) is a ring.

Similarly let W1,W2 and W3 a left K space. A function f : W1 →W2, w → fw is called
K-linear if f(w, w̃) = fw+fw̃ and fw.k = f.w for all w, w̃ ∈ V and k ∈ K. If f : W1 →W2

and g : W2 →W3 are K-linear, then gf is the K-linear function from W1 →W2 defined by
fg.w = f.gw. HomK(W1,W2) denotes the set of all K-linear map from W1 →W2.

So we view function on a left vectors space to be acting from the right. while functions
on a right vector space act from the left.

Let V be left- and W a right K-space. Let s : V ×W → K be a K-bilinear function. So
for all v, ṽ ∈ V , w, w̃ ∈W and k ∈ K, (v+ ṽ)w = vl+ ṽw, v(w+w̃) = vw+vw̃, kv.w = k.vw
and vw.k = vw.k. Noe that just means taht for each v ∈ V , the map sv : W →W,w → vw
is K-linear and for each w ∈W , the map sw : v → vw is K-linear.

Put E := EndsK(V,W ) be the set of all (α, β) ∈ EndK(V )×EndK(W ) such that vα.w =
v.βw. for all v ∈ V,w ∈W . Note that V is a right E-module via v(α, β)vα and W is a left
E-module via (α, β)w = βw. So if δ = (α, β) ∈ E the vδ.w = v.δw for all v ∈ V , w ∈ W .
Observer that E is a subring of EndK(V )× EndK(W ).

Define wv ∈ EndK(V×EndK(W ) by ṽ.wv = ṽw.v and wv.w̃ = w.vw̃ for all ṽ ∈ V, w̃ ∈W .
We claim that wv ∈ E. Indeed
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(ṽ(wv))w̃)

= ((ṽw)v)w̃ definition of wv

= (ṽw)(vw̃) sw̃ is linear

= ṽ(w(vw̃) sṽ is linear

= ṽ((wv)w̃) definition of wv

So wv ∈ E.

Observe that we now have binary operation, K × K → K, K × V → V , W × K → W ,
V × E → V , E ×W →W and E × E → E.

We say that K has type (0, 0), V has type (0, 1), W has type (1, 0) and E has type (1, 1).
If X has type (i, j), Y has type (k, l) and Z has type (m,n), then we have a binary operation
X×Y → Z if and only if j = k and (m,n) = (i, l). In particular, if x, y, z ∈ K∪V ∪W ∪E,
then xy.z is defined if and only if xy.z is defined.

We will now show if xy.z is defined, then xy.z = x.yz. Indeed, almost all of theses
equations follows immediately from the definitions, except for wv.α = w.vα and αw.v =
alpha.wv, there v ∈ V,w ∈W and α ∈ E.

Note that wv ∈ E and so wv.α ∈ E. So to show that wv.α = w.vα we need to show
that they act the same way on V and W . So let Ṽ ∈ V and W̃ ∈W . Then

ṽ((wv)α)) =

= (ṽ(wv))α definition of mult. in E

= (ṽw)v))α definition of wv

= (ṽw)(vα) α is linear

= ṽ(w(vα)) definition of w(vα)

B.2 Homework 4 from MTH912

Homework B.2.1. [t in m’] Let F be a division ring, V a left F space, W a right F
space, s : V × W → F a bilinear form and N a series of closed F-subspace of V . Let
M = M s

N (V,W ) be the corresponding McLain group and let v ∈ V ] and w ∈ W ] with
t(v, w) ∈M ′. Then Tv < Tw. Here Tv =

⋂
{E ∈ N | v ∈ E} and Tw =

⋃
{E ∈ Nw ∈ E⊥.

Proof. Since t(v, w) ∈ M we have Tv ≤ Tw. Let Bv = {bigcupD | v /∈ D}. Then v /∈ Bv.
Since Bv is closed, v /∈ B⊥⊥v and so B⊥v � v⊥. Thus [t(v, w), B⊥v ] 6= 0 and so w ∈ wF =
[t(v, w), B⊥v ]. On the other hand (Bv, Tv) is a jump of N and by ??

M ′ = {g ∈M | [B⊥, g] ≤ (T⊥)− for all jumps(B, T ) of N}
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Thus w ∈ [t(v, w), B⊥v ] ≤ (T⊥v )−. Since (T⊥v )− =
⋃
{D⊥ | Tv < D ∈ N} we conclude

that w ∈ D⊥ for some D ∈ N with Tv < D. Then D ≤ Tw and so Tv < Tw.

Definition B.2.2. [def:component]

(a) [a] If H is an ascending subgroup of G. the δG(H) is the mimial length of an ascending
sequence from H to G.

(b) [b] A component of a group is a quasisimple ascending subgroup of G.

Homework B.2.3. [basic components] Let K and L be components of a group G and
M a subnormal subgroup of G.

(a) [a] K = L or [K,L] = 1.

(b) [b] K ≤M or [K,M ] = 1.

Proof. Let K be a components of G

1◦. [1] Let M EE G. If K E 〈KH〉, then K ≤M or [K,M ] = 1.

Suppose first that M is normal in G, that is δG(M) ≤ 1. Put H = 〈KG〉 and assume
that K ≤M . Then K∩M E K and since K∩M 6= K we get K∩M ≤ Z(K). Since H∩M
normalize K we have [H ∩M,K] ≤ K ∩M ≤ Z(M) and thus ][H ∩M,K,K] = 1. Hence
also [K,H ∩M,K] = 1 and the Three Subgroup Lemma implies that [K,K,H ∩M ] = 1.
Since K is perfect, [H ∩ M,K] = 1. Since H and M are normal in G and K ≤ H,
[M,K] ≤ [M,H] ≤ H ∩ M and so [M,K,K] = 1. Another application of the three
subgroups lemma shows that [M,K] = 1.

Suppose nest tat δG(M) ≥ 2. The there exists MascM∗ E G with δM∗(M) = δG(M)−1.
If K 6= M∗, then by the previous paragraph, [K,M∗] = 1 and so also [K,M ] = 1. If
K ≤M∗, then by induction on δG(K) we have K ≤M or [K,M ] = 1. Thus (1◦) is proved.

2◦. [1.5] Let K and L be components of G with K E 〈KG〉 and L E 〈LG〉. Then K = L
or [K,L] = 1.

Since LE 〈LG〉, L EE G. Thus by (1◦), K ≤ L or [K,L] = 1. By symmetry L ≤ K or
[L,K] = 1 and so (2◦) is proved.

Let (Gα)α≤δG(K) be an ascending sequence from K to G.

3◦. [2] Suppose that K = L or [K,L] = 1 for all β < δ and all components L of Gβ with
δGβ (K) = δGβ (K). Then K = Kg or [K,Kg] = 1 for all g ∈ G and so K E 〈KG〉.

If γ ≤ δ be minimal with g ∈ Gγ . Note that γ = 0, γ is a limit ordinal or γ = β + 1 for
some ordinal β. In the first case g ∈ K and so K = Kg. If the second case, g /∈

⋃
α<γ Gα =

Gγ , a contradiction. In the third case g normalizes Gβ and so δGβ (K) = δGβ (Kg) and Kg

is a component of Gβ. Hence assumption of (3◦) imply that K = Kg or [K,Kg] = 1.

4◦. [3] K = L or [K,L] = 1 for all components K and L of G with δG(K) = δG(L).
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Suppose inductively that K∗ = L∗ or [K∗, L∗] = 1 whenever K∗, L∗ are components of
a group G∗ and δG∗(K

∗) = δG∗(L
∗) < δG(K). Then the assumptions of (3◦) are fulfilled.

Thus K E 〈KG〉. By symmetry, L E 〈LG〉 and so (4◦) follows from (2◦).

5◦. [4] Let g ∈ G. Then K = Kg or [K,Kg] = 1. In particular, K E 〈KG〉.

This follows immediately from (4◦).

(a) follows from (5◦) and (2◦). (b) follows from (5◦) and (1◦).

Homework B.2.4. [component and hp] Let K be a component of G. Then [K,HP(G)] =.

Proof. By ?? K ≤ HP(G) or [K,HP(G)] = 1. In the first case K would be locally nilpotent
and so all chief-factors of K would be abelian. But K/Z(K) is a non-abelian chief-factor of
K.

Definition B.2.5. [def:invert] Let H be a group acting on a abelian group A and I a
subset of H and h ∈ H. We say that h inverts A of ah = a−1 for all a ∈ A. We say that I
inverts A if each elements of I either centralizes A or inverts A.

Homework B.2.6. [basic invert] Let H be a group acting on an abelian group A.

(a) [a] If I ⊆ H with H = 〈I〉, then H inverts A if and only of I inverts I.

(b) [b] Let h ∈ H with h2 = 1. Put IA(h) = {a ∈ A | ah = a−1} and I∗h = {aah | a ∈ A}.

(a) [a] A/ ∼= IA(h) ∼= I∗H(h) and A/CA(h) ∼= [A, h] as

(b) [b] IH(a) is largest subgroup of A inverted by h and I∗(h) is the smallest subgroup
of A whose quotient is inverted by h.

(c) [c] [A, h] ≤ IH(a) and I
∗
Ha ≤ CA(h).

(c) [c] Suppose H is an finite elementary abelian 2-group. Then there exists a finite series

1 = A0 ≤ A1 ≤ . . . Am = A

of H-invariant subgroups of A all of whose factors are inverted by A.

Proof. (a) Let i, j ∈ I. If i and j centralizes A, or i and j inverts A, then ij centralize A.
If one of i and j centralizes A and the other inverts A, then ij inverts A. So the set of
elements of A which centralizes or inverts A forms a subgroup of H.

(b:a) Consider the homomorphisms A→ A, a→ aah and A→ A, a→ a−1ah. The first
has IA(h) as kernel and IA(h) as image. The second has CA(h) as kernel and [A, h] a image.

(b:b) Readily verified.
(b:c) (a−1ah)h = (a−1)hah

2
= (ah)−1a = (a−1ah)−1 and (aah)h = (ahah

2
) = aha = aah.

(c) Let H = 〈h1, h2, . . . hn〉 for some hi ∈ H and put H0 = 〈h1, . . . hn−1. By (b) hn
inverts [A, hn] and centralizes A/[A, hn]. Since H is abelian, [A, hn] is H0 invariant and so
H0 acts on [A, hn] and A/[A, hn]. By induction on n there exitss H0 invariant subgroups,
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1 = A0 ≤ A1 ≤ . . . At = [A, hn] ≤ At+1 ≤ . . . Am = A

such that H0 inverts each of the factors. Note hn inverts each of the factors Ai/Ai−1 for
1 ≤ i ≤ t and centralizes each the factors Ai/Ai−1, t < i ≤ m. Thus by (b), H each of the
factors.

Homework B.2.7. [char subsolvable] Let G be a group with no non-trivial finite normal
subgroup of odd order. Then G is super-solvable if and only if GG is finitely generated and
G2 is nilpotent.

Proof. Suppose first that G is super solvable. Then G is polycyclic and so finitely generated.
Moreover, there exists a strong composition series

1 = G0 ≤ G1 ≤ . . . ≤ Gk ≤ Gk+1 ≤ Gn = G

such that for 1 ≤ i ≤ k, Gk/Gk−1 has odd prime order and for k < i ≤ n, Gk/Gk−1 is
cyclic of order 2 or ∞. Then Gk is the unique maximal subgroup of odd order. So Gk is
normal in G and so by assumption, Gk = 1 and thus k = 0. It follows that for all 1 ≤ i ≤ n,
Aut(Gi/Gi−1) has order at most 2. Thus G2 centralizes Gi/Gi−1. Hence

1 = G0 ∩G2 ≤ G1 ∩G2 ≤ . . . Gn ∩G2 = G2

is a finite normal series for G2 all of whose factor are centralized by G2. Thus G2 is nilpotent.

Suppose next that G is finitely generated and G2 is nilpotent. Note that G/G2 is a
finitely generated elementary abelian 2 group and so finite. Since subgroups of finite index
in finitely generated group are finitely generated, G2 is a finitely generated nilpotent groups.
Thus every section of G2 is finitely generated. Let

1 = Z0 ≤ Z1 ≤ Zm = G2

be the upper central series for G2. But Zm+1 = G. Then each Zi is G invariant and
Zi/Zi−1 an finitely generated abelian group centralized by G2. So we can apply B.2.6 with
H = G/G2 and A = Zi/Zi−1 to obtain a G invariant series of subgroup

Zi−1 = Zi,0 ≤ Zi,1 ≤ . . . Zi,ji = Zi

all of whose factors are inverted by G. Since Zi,j/Zi,j−1 is finitely generated there exists
a finite series

Zi,j−1 = Zi,j,0 ≤ Zi,j,1 ≤ Zi,j,kij = Zi,j

of subgroups of Zi,j all of whose factors are cyclic. Since G2 inverts Zi,j/Zi,j−1 each of Zi,j,k
are G invariant. Thus the Zi,j,k from a supersolvable series for G and G is supersolvable.
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Homework B.2.8. [char series for supersolvable] Let G be a supersolvable group and
p1 > p2 > . . . > pk the order of the strong chief-factors of odd order of G. Then there exists
series

1 ≤ S1 ≤ S2 ≤ . . . Sk ≤ S∞ ≤ G

of characteristic subgroups of G such that G/S∞ is a finite 2-group, S∞/Sk is a torsion free
nilpotent group, and for 1 ≤ i ≤ k, Si/Si−1 is a finite pi-group.

Proof. Let H be the unique maximal subgroup of odd order of G. Let

H0 ≤ H1 ≤ . . . ≤ Hk

be chief-series series such that (|H1/H0|, |H2/H1|, . . . , |Hk/Hk−1|) is maximal in lexiographic
order. Suppose that p := |Hi/Hi−1| < q := |Hi+1/Hi−1 for some 1 ≤ i < k. Then
Hi+1/Hi−1 is a group of order pq. By Sylow’s Theorem Hi+1/Hi−1 has a unique Sylow
q-subgroups H∗i /Hi−1. But then

H0 ≤ H1 ≤ Hi−1 ≤ H∗i ≤ Hi . . . ≤ Hk

is a chief-series of G of higher lexiographic order, a contradiction.

Thus ||Hi/Hi−1| ≤ |Hi+1/Hi−1. For 1 ≤ j ≤ k let ij be maximal with |Hij/Hij−1| = pj .
Put Sj = Hij , S0 = 1 and i0 = 0 Then

Sj−1 = Hij−1 ≤ Hij−1+1 ≤ . . . Hij = Sj

is a series all of whose factors have order pj and so Sj/Sj−1 is a finite pj-group. Hence Sj
is finite {p1, . . . , pj} group. Let x be {p1, . . . , pj} element in H and pick l minimal with
x ∈ Sl. Then xSj−1 is a non-trivial {p1, . . . , pj} element in the pl-group Sl/Sl−1 and so
l ≤ j. Thus Sj is unique maximal subgroup {p1, . . . , pj}-subgroup of H. Hence Sj is a
characteristic subgroup of H and G. Note that Sk = H.

Replacing G by G/H we may assume from now on that G has no non-trivial normal
finite subgroups of odd order. Choose a supersolvable series

1 = G0 ≤ G1 ≤ . . . ≤ Ga ≤ . . . Gb ≤ . . . Gn = G

such that

(i) [i] |Gi/Gi−1| =∞ 1 ≤ i ≤ a.

(ii) [ii] |Gi/Gi−1| = 2 for 1 ≤ i ≤ a. equals 2 for

(iii) [iii] |Gb+1/Gb| = 2 if b < n.

(iv) [iv] a is maximal with respect to (i)-(iii).

(v) [v] b is minimal with respect to (i)-(iv).
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We claim that b = n. Suppose not. If a = b then (i)–(iii) are fulfilled with b + 1 in
place of a, contradicting the maximality of a. So a < b. Put Gb+1 = Gb+1/Gb−1. Then Gb
has order 2 and Gb+1/Gb is cyclic of infinite order. Pick x ∈ Gb \Gb−1 and y ∈ Gb+1 with
〈y〉Gb = Gb+1. Suppose that x ∈ 〈y〉. Then Gb+1 is cyclic and the series

G0 ≤ . . . Ga ≤ . . . ≤ Gb−1 ≤ Gb+1 ≤ Gn = G

contradiction the maximality of a (if a = b− 1) and the minimality of b if a 6= b− 1.

Thus x /∈ 〈y〉 and Gb = 〈x〉×〈y〉. Thus Gb = 〈oy2〉. Put A = Gb−1〈y2〉. Then A = Gb+1
2

is a characteristic subgroup of Gb+1 and so A is normal in G. Note that A/Gb−1 is cyclic
of infinite order, while AGb/A and Gb+1/AGb both have order 2. Thus

1 = G0 ≤ G1 ≤ . . . ≤ Ga ≤ . . . ≤ Gb−1 ≤ A ≤ AGb ≤ Gb+1 . . . Gn = G

contradiction the maximality of a (if a = b− 1) and the minimality of b if a 6= b− 1.
So b = n and G/Ga is a finite of order 2n−a. . Let g ∈ G be a nontrivial element of finite

order and let i be minimal with g ∈ Gi. Then gGi−1 is an element of finite order in Gi/Gi−1

and so i > a. Thus Ga is torsion free. Put m = maxn− a, 1 and S∞ = G2m . Then S is a
characteristic subgroup of G and S∞ ≤ Ga∩G2. By ?? G2 is nilpotent and so S∞ is torsion
free and nilpotent. It remains the show that S/S∞ has finite order. For 1 ≤ i ≤ a, Gi/Gi−1

is cyclic of infinite order. Thus Gi/G
2m
i Gi−1 has order 2m and so Gi/(Gi ∩ S∞)Gi−1 has

order at most 2m. Thus Ga/Ga ∩ S∞ has order at most 2ma and G/S∞ has order at most
2ma+(n−a).
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