Group Theory
 Lecture Notes for MTH 912/913 08/09

Ulrich Meierfrankenfeld

May 1, 2013

Contents

1 Basic Concepts for Infinite Groups 5
1.1 Classes of Groups and Operators 5
1.2 Varieties 9
1.3 Series 12
1.4 Hyper Sequences 21
1.5 Radical Classes 38
1.6 Finitely generated groups 41
1.7 Locally \mathcal{X}-groups 44
2 Locally nilpotent and locally solvable groups 47
2.1 Commutators 47
2.2 Locally nilpotent groups 48
2.3 The generalized Fitting Subgroup 52
2.4 Chieffactors of locally solvable groups 54
2.5 Polycyclic groups 55
3 Groups with MIN 59
3.1 Basic properties of groups with MIN 59
3.2 Locally solvable groups with MIN 60
3.3 Locally finite groups with finite involution centralizer 60
3.4 Locally finite groups with MIN 66
$3.5 J_{1}$ 80
A Set Theory 91
A. 1 The basic language of sets theory 91
A. 2 The Axioms of Set Theory 93
A. 3 Well ordered sets and the Recursion Theorem 95
A. 4 Ordinals 97
A. 5 The natural numbers 99
A. 6 Cardinals 102
B Homework 103
B. 1 Homework 3 from MTH912 103
B. 2 Homework 4 from MTH912 104

Chapter 1

Basic Concepts for Infinite Groups

1.1 Classes of Groups and Operators

Definition 1.1.1. [class of groups] A class of groups is class \mathcal{X} such that
(i) [i] Each member of \mathcal{X} is a group.
(ii) [ii] If $G \in \mathcal{X}$ and $H \cong G$ then $H \in \mathcal{X}$.
(iii) [iii] All trivial groups are in \mathcal{X}.

For example each of the following are classes of groups:

- [a] \mathcal{F}, the class of finite groups.
- [b] \mathcal{F}_{π}, the class of finite π-groups (here π is a set of primes, and a finite group G is a π-group if all prime divisors of $|G|$ are in π.
- [c] \mathcal{C}, the class of cyclic groups.
- [d] \mathcal{A}, the class of abelian groups.
- $[\mathbf{e}] \mathcal{G}$, the class of finitely generated groups.
- [f] \mathcal{T}, the class of trivial groups.

Definition 1.1.2. [extensions] Let \mathcal{X} and \mathcal{Y} be classes of groups.
(a) [a] The members of \mathcal{X} are called \mathcal{X}-groups.
(b) $[\mathbf{c}]$ We say that \mathcal{X} is a subclass of \mathcal{Y} and write $\mathcal{X} \leq \mathcal{Y}$ if $A \in \mathcal{Y}$ for all $A \in \mathcal{X}$.
(c) $[\mathbf{b}] \mathcal{X} \mathcal{Y}$ denotes the class of all groups G such that there exists $A \unlhd G$ with $A \in \mathcal{X}$ and $G / A \in \mathcal{Y}$. $A \mathcal{X} \mathcal{Y}$-group is also called a \mathcal{X}-by- \mathcal{Y} group.

Consider the subnormal series

$$
1 \unlhd\langle(12)(34)\rangle \unlhd\langle(12)(34),(13)(24)\rangle \unlhd \operatorname{Alt}(4) \unlhd \operatorname{Sym}(4)
$$

The factors of this series are isomorphic to

$$
C_{2}, C_{2}, C_{3}, C_{2}
$$

Thus $\operatorname{Sym}(4)$ is a member of $((\mathcal{C C}), \mathcal{C}) \mathcal{C}$.
Note that $\operatorname{Sym}(4)$ has no non-trivial cyclic subgroup. It follows that $\operatorname{Sym}(4)$ is not a member of $\mathcal{C}((\mathcal{C}(\mathcal{C C})))$. hence the associate law does not hold for products of classes og groups. To save parentheses we use the following convention for products. Let $a_{1}, a_{2}, \ldots a_{n}$ in a set with a binary operation. Then

$$
a_{1} \cdot a_{2} \cdot a_{3}=a_{1}\left(a_{2} a_{3}\right)
$$

and inductively

$$
a_{1} \cdot a_{2} \cdot a_{3} \cdot \ldots \cdot a_{n}=a_{1}\left(a_{2} \cdot a_{3} \cdot \ldots \cdot a_{n}\right)
$$

Lemma 1.1.3. [char ext] Let $\mathcal{X}_{1}, \mathcal{X}_{2}, \mathcal{X}_{n}$ be classes of groups and G a group.
(a) $[\mathbf{a}] G \in \mathcal{X}_{1} \mathcal{X}_{2} \ldots \mathcal{X}_{n}$ if and only if there exists a subnormal series

$$
1 \unlhd G_{1} \unlhd G_{2} \unlhd \ldots G_{n-1} \unlhd G_{n}
$$

of G such that $G_{i} / G_{i+1} \in \mathcal{X}_{i}$ for all $1 \leq i \leq n$.
(b) $[\mathbf{b}] G \in \mathcal{X}_{1} \cdot \mathcal{X}_{2} \cdot \ldots \cdot \mathcal{X}_{n}$ if and only if there exists a normal series

$$
1 \unlhd G_{1} \unlhd G_{2} \unlhd \ldots G_{n-1} \unlhd G_{n}
$$

of G such that $G_{i} / G_{i+1} \in \mathcal{X}_{i}$ for all $1 \leq i \leq n$. (Recall here that " $n o r m a l$ series" means that each G_{i} is normal in G.
(c) $[\mathrm{c}] \mathcal{X}_{1} \cdot \mathcal{X}_{2} \ldots \cdot \mathcal{X}_{n} \leq \mathcal{X}_{1} \mathcal{X}_{2} \ldots \mathcal{X}_{n}$

Proof. (a) and (b) follows easily from the definitions. Since every normal series is a subnormal series, (c) follows from (a) and (b).
Definition 1.1.4. [operation] An operation A on the classes of groups is a rule which assigns to each class of group \mathcal{X} a class of group $\mathbf{A} \mathcal{X}$ such that
(i) $[\mathbf{a}] \mathbf{A} \mathcal{T}=\mathcal{T}$.
(ii) $[\mathbf{b}] \mathcal{X} \leq \mathbf{A} \mathcal{X}$ for each class of groups \mathcal{X}.
(iii) $[\mathbf{c}] \mathbf{A} \mathcal{X} \leq \mathbf{A} \mathcal{Y}$ for each classes of groups \mathcal{X}, \mathcal{Y} with $\mathcal{X} \leq \mathcal{Y}$.

For a class of group \mathcal{X} let $\mathbf{S} \mathcal{X}$ the class of all groups which are isomorphic to a subgroup of \mathcal{X}-group.

For a class of group \mathcal{X} let $\mathbf{H} \mathcal{X}$ the class of all groups which are isomorphic to a homomorphic image of a \mathcal{X}-group.

Then both \mathbf{S} and \mathbf{H} are operations.
Define $\mathcal{X}^{0}:=\mathcal{T}$ and inductively, $\mathcal{X}^{n+1}:=\mathcal{X}^{b} \mathcal{X}$. Also put $\mathbf{P} \mathcal{X}:=\bigcup_{n=0}^{\infty} \mathcal{X}^{n}$. Then \mathbf{P} is an operation. Then members of $\mathbf{P} \mathcal{X}$ are called poly- \mathcal{X}-groups.

Lemma 1.1.5. [char solvable] Let G be a group and $n \in \mathrm{~N}$. Then the following are equivalent.
(a) $[\mathbf{a}] G \in \mathcal{A}^{n}$.
(b) $[\mathbf{b}] G^{(n)}=1$.
(c) $[\mathbf{c}] \quad G \in \underbrace{\mathcal{A} \cdot \mathcal{A} \ldots \ldots \mathcal{A}}_{n-\text { times }}$.

Here $G^{(n)}$ is inductively defined as $G^{(0)}:=G$ and $G^{n+1}=\left[G^{n}, G^{n}\right]$. Also we often use G^{\prime} for $G^{(1)}, G^{\prime \prime}$ for $G^{(2)}$ and so on.

Proof. (a) $\Longrightarrow(\mathrm{b})$: \quad Suppose $G \in \mathcal{A}^{n}$. Since $\mathcal{A}^{n}=\mathcal{A}^{n-1} \mathcal{A}$ there exists $H \unlhd G$ with $H \in \mathcal{A}^{n-1}$ and $G / H \in \mathcal{A}$. Hence G / H is abelian and so $G^{\prime} \leq H$. By induction on n, $H^{(n-1)}=1$ and so

$$
G^{(n)}=\left(G^{\prime}\right)^{(n-1)} \leq H^{(n-1)}=1
$$

$(\mathrm{b}) \Longrightarrow(\mathrm{c})$: \quad Suppose $G^{(n)}=1$ and consider the normal series

$$
1=G^{(n)} \unlhd G^{(n-1)} \unlhd \ldots G^{(1)} \leq G^{0}=G
$$

Since $G^{(i-1)} / G^{(i)}$ is abelian, 1.1.3(b) shows that $G \in \underbrace{\mathcal{A} \cdot \mathcal{A} \ldots \mathcal{A}}_{n-\text { times }}$.
$(\mathrm{c}) \Longrightarrow(\mathrm{a}): \quad$ Suppose that $G \in \underbrace{\mathcal{A} \cdot \mathcal{A} \cdot \ldots \cdot \mathcal{A}}_{n-\text { times }}$. Then by 1.1.3(c), $G \in \mathcal{A}^{n}$.
Definition 1.1.6. [def:solvable] A group G is called in solvable if and only if its is polyabelian, that is if $G \in \mathbf{P} \mathcal{A}$.

Combining 1.1.5 and 1.1.3 we see G is solvable iff G has a subnormal series with abelian quotients, iff $G^{(n)}=1$ for some $n \in \mathrm{~N}$ and iff G has a normal series with abelian factors.

Definition 1.1.7. [A-closed] Let \mathbf{A} and \mathbf{B} be operations.
(a) $[\mathbf{a}]$ A class of groups \mathcal{X} is called \mathbf{A}-closed if $\mathbf{A} \mathcal{X}=\mathcal{X}$.
(b) $[\mathbf{b}]$ The operation $\mathbf{A B}$ is defined by $(\mathbf{A B}) \mathcal{X}=\mathbf{A}(\mathbf{B} \mathcal{X}$ for all classes of groups \mathcal{X}.
(c) [c] A is called an closure operation if for all classes of groups $\mathcal{X}, \mathbf{A} \mathcal{X}$ is \mathbf{A}-closed.
\mathcal{X} is \mathbf{S} closed if and only if every subgroup of an \mathcal{X}-group is a \mathcal{X}-group.
The classes of groups $\mathcal{F}, \mathcal{G}, \mathcal{A}, \mathcal{F}_{\phi}$, all are \mathbf{S} and \mathbf{H} closed.
\mathbf{A} is a closure operator iff $\mathbf{A}(\mathbf{A} \mathcal{X})=\mathbf{A} \mathcal{X}$ for all classes of groups \mathcal{X} and so iff $\mathbf{A}=\mathbf{A}^{2}$.

Definition 1.1.8. [def: subdirect product]

(a) [a] Let $\left(G_{i}, i \in I\right)$ be a family of groups and H a subgroup of $\times_{i \in I} G_{i}$ such that for all $i \in I$ the projection of H onto G_{i} is onto. Then H is called a subdirect product of $\left(G_{i}, i \in I\right)$. More generally we will also call any group isomorphic to a subdirect product a subdirect product.
(b) [b] Let \mathcal{X} be a class of groups. Then $\mathbf{R} \mathcal{X}$ is the class of all groups which are isomorphic to subdirect product of a family of \mathcal{X}-groups. The members of $\mathbf{R} \mathcal{X}$ are called residually \mathcal{X}-groups.

Lemma 1.1.9. [subdirect product] let G be a group.
(a) [a] Let $\left(G_{i}, i \in I\right)$ be a family of normal subgroups of G. Then $G / \bigcap_{i \in I} G_{i}$ is a subdirect product of $\left(G / G_{i}, i \in I\right)$.
(b) [b] Let $\left(H_{i}, i \in I\right)$ be a family of groups Then G is isomorphic to a subdirect product of $\left(G_{i}, i \in I\right)$ iff there exists a family of $\left(G_{i}, i \in I\right)$ of normal subgroups of G such that $\bigcap_{i \in I} G_{i}=1$ and $G / G_{i} \cong G_{i}$ for all $i \in I$.
(c) $[\mathbf{c}] G$ is a residually \mathcal{X} group iff for all $1 \neq a \in G$ there exists a normal subgroup G_{a} of G such that $a \notin G_{a}$ and $G / G_{a} \in \mathcal{X}$.

Proof. (a) Define $\alpha: G \rightarrow \times_{i \in I} G / G_{i}, h \rightarrow\left(a G_{i}, i \in I\right)$. Then $\operatorname{ker} \alpha=\bigcap_{i \in I} G_{i}=1$. Also the image of α is clearly of subdirect product of $\left(G / G_{i}, i \in I\right)$. So $G / \bigcap_{i \in I} G_{i} \cong G / \operatorname{ker} \alpha \cong$ $\operatorname{Im} \alpha$ is a subdirect product of $\left(H_{i}, i \in I\right)$.
(b) Suppose there exists a family of $\left(G_{i}, i \in I\right)$ of normal subgroups of G such that $\bigcap_{i \in I} G_{i}=1$ and $G / G_{i} \cong G_{i}$ for all $i \in I$. Then by (a) $G \cong G / \bigcap_{i \in I} G_{i}$ is a subdirect product of $\left(G / G_{i}, i \in I\right)$. Since $\times_{i \in I} G / G_{i} \cong \times_{i \in I} H_{i}, G$ is also a subdirect product of ($H_{i}, i \in I$)

Suppose next that G is a subdirect product of $\left(H_{i}, i \in I\right)$. Let G_{i} be the kernel of the project of H onto G_{i}. Then clearly $\bigcap_{i \in I} G_{i}=1$ and $G / G_{i} \cong H_{i}$.
(c) Suppose G is a residually \mathcal{X} groups. G is a subdirect product of a family $\left(H_{i}, i \in I\right)$ of \mathcal{X} groups. By (b) there exists a family $\left(G_{i}, i \in I\right)$ of normal subgroups of G with $\bigcap_{i \in I} G_{i}=1$ and $G / G_{i} \cong H_{i}$. Thus G / G_{i} is an \mathcal{X} groups. Let $1 \neq a \in G$. Since $\bigcap_{i \in I} G_{i}=1$ there exists $i \in I$ with $a \notin G_{i}$. So the second statement in (c) holds with $G_{a}=G_{i}$.

Suppose next that for each $1 \neq a \in G$ there exists a normal subgroup G_{a} of G such that $a \notin G_{a}$ and $G / G_{a} \in \mathcal{X}$. Then $\bigcap_{a \in G^{\sharp}} G_{a}=1$ and so by (b), G is a subdirect product of the family of \mathcal{X}-groups, $\left(G_{a}, a \in G^{\sharp}\right)$. Thus G is residually \mathcal{X}.

1.2 Varieties

We will consider classes of groups which are \mathbf{R} and \mathbf{H} closed. It will turn out that these are exactly the so called varieties of groups:

Let I be a set. Recall that a free group on I is a groups generated by a family $x=\left(x_{i}, i \in\right.$ $I)$ of elements such that for each group G and each family of elements $y=\left(y_{i}, i \in I\right) \in G^{I}$, there exists a unique homomorphism $\alpha_{y}: F \rightarrow G$ with $\alpha_{y}\left(x_{i}\right)=y_{i}$ for all $i \in I$. The call the elements of F words in $\left(x_{i}, i \in I\right)$. Note that each word $\theta \in F$ can be uniquely written as

$$
\theta=x_{m_{1}}^{i_{1}} \ldots x_{i_{k}}^{m_{k}}
$$

where k is a non-negative integer, $i_{l} \in I, i_{l} \neq i_{l+1}$ and m_{l} is a non-zero integer. Also

$$
\alpha_{y}(\theta)=y_{m_{1}}^{i_{1}} \ldots y_{i_{k}}^{m_{k}}
$$

We will also write $\theta(y)$ for $\alpha_{y}(\theta)$.
If θ is a word and G is group define

$$
\theta(G):=\left\langle\alpha_{y}(\theta) \mid y \in G^{I}\right\rangle=\langle\theta(y)| y \in G^{I}
$$

For example $1_{F}(G)=1, x_{1}(G)=G,\left[x_{1}, x_{2}\right](G)=G^{\prime}$, and $\left[\left[x_{1}, x_{2}\right],\left[x_{3}, x_{3}\right](G)=G^{\prime \prime}\right.$ More generally if $W \subseteq F$ is a set of words we define

$$
W(G)=\left\langle G^{\theta}\right| \theta \in W=\left\langle\alpha_{y}(\theta) \mid y \in G^{I}, \theta \in W\right\rangle
$$

The variety $\mathcal{V}(\theta)$ defined by θ is the class of all groups G such that $\theta(G)=1$, so $G \in \mathcal{V}(\theta)$ if and only if

$$
y_{i_{1}}^{m_{1}} \ldots y_{i_{k}}^{m_{k}}=1 \text { for all } y \in G^{I}
$$

For example $\mathcal{V}(1)$ is the class \mathcal{D} of all groups, $\mathcal{V}\left(x_{1}\right)$ is the class \mathcal{T} of trivial groups and $\mathcal{V}\left(\left[x_{1}, x_{2}\right]\right)$ is the class \mathcal{A} of abelian groups.

More generally if W is a set of words the variety $\mathcal{V}(W)$ defined by W is the class of all groups G such that $W(G)=1$. And a variety of groups is the variety defined by some sets of words.

Lemma 1.2.1. [onto hom] Let I be a set, $J \subseteq I, F$ a free group on I, H a groups and $y \in H^{J}$. Suppose that $|I \backslash J| \geq|H|$. Then there exists an onto homomorphism $\beta: F \rightarrow H$ with $\beta\left(x_{j}\right)=y_{j}$ for all $j \in J$.

Proof. Since $|I \backslash J| \geq|H|$ there exists an onto function $\tau: I \backslash J \rightarrow J$. Define $z \in H^{I}$ by $z_{i}=\tau(i)$ of $i \notin J$ and $z_{i}=y_{i}$ if $i \in J$. Then the lemma holds with $\beta=\alpha_{z}$.

Definition 1.2.2. [def:wx] Let \mathcal{X} be a class of groups and F a free group of infinite rank on $\left(x_{i}, i \in \mathrm{Z}^{+}\right)$.

$$
W(\mathcal{X})=\{w \in F \mid w(G)=1 \text { for all } G \in \mathcal{X}\}
$$

Proposition 1.2.3. [char variety] Let \mathcal{X} be class of groups. The the following are equivalent:
(a) $[\mathbf{a}] \mathcal{X}$ is \mathbf{H} and \mathbf{R} closed.
(b) $[\mathbf{b}] \mathcal{X}=\mathcal{V}(W(\mathcal{X}))$
(c) $[\mathbf{c}] \mathcal{X}$ is a variety of groups.

Proof. It is easy to verify that a variety of groups is \mathbf{H} and \mathbf{R} closed (see Homework 1). Also (b) implies (c). So we just need to show that (a) implies (b). Assume \mathcal{X} is \mathbf{H} and \mathbf{R} closed and put $W=W(\mathcal{X})$. Clearly $\mathcal{X} \leq \mathcal{V}(W)$. So we just need to show that any $G \in \mathcal{V}(W)$ is an \mathcal{X}-group. Note that for any $\theta \in F \backslash W$ there exists a \mathcal{X}-group H_{θ} with $\theta\left(H_{\theta}\right) \neq 1$. Let I be an infinite set with cardinality larger that $|G|$ and any $\left|H_{\theta}\right|, \theta \in F \backslash W$ (For example $J=\biguplus_{\theta \in T} H_{\theta} \uplus \mathrm{N} \uplus G$.) Let F_{I} be a free group on ($z_{i}, i \in I$). By 1.2.1 there exists an onto homomorphism $\alpha: F_{I} \rightarrow G$. Put $M=\operatorname{ker} \alpha$. We will now show
$\mathbf{1}^{\circ}$. [1] Let $a \in F_{I} \backslash M$, then there exists $K_{a} \unlhd F_{I}$ with $F_{I} / K_{a} \in \mathcal{X}$ and $a \notin K_{a}$.
Indeed let $a=z_{i_{1}}^{m_{1}} \ldots z_{i_{k}}^{m_{k}}$ with $i_{l} \in I$ and $m_{k} \in Z^{\sharp}$. Since Z^{+}is infinite, there exists $j_{1}, \ldots, j_{k} \in I$ with $i_{s}=i_{t}$ if and only if $j_{s}=j_{t}$. Put

$$
\theta:=x_{j_{1}}^{m_{1}} \ldots x_{j_{k}}^{m_{k}} \in F
$$

$u_{i}=z_{i} M \in F_{I} / M$ and $u=\left(u_{i}\right)_{i \in I} \in\left(F_{I} / M\right)^{I}$.
Then

$$
\theta(u)=u_{j_{1}}^{m_{1}} \ldots u_{j_{k}}^{m_{k}}=z_{i_{1}}^{m_{1}} \ldots z_{i_{k}}^{m_{k}} M=a M \neq 1_{F / M}
$$

Hence $\theta\left(F_{I} / M\right) \neq 1$ and since $F_{I} / M \cong G$ also $\theta(G) \neq 1$. As $\rho(G)=1$ for all $\rho i n W$ this implies that $\theta \in F \backslash W$. Since $\theta\left(H_{\theta}\right) \neq 1$ there exists $y \in H_{\theta}^{I}$ with $\theta(y) \neq 1$. Since I is infinite

$$
\left|I \backslash\left\{i_{l} \mid 1 \leq l \leq k\right\}\right|=|I| \geq\left|H_{\theta}\right|
$$

Thus 1.2.1 there exists an onto homomorphism $\beta: F_{I} \rightarrow H_{\theta}$ with $\beta\left(z_{l}\right)=y_{l}$ for all $l \in\left\{i_{1}, \ldots i_{k}\right\}$. Then

$$
\beta(a)=y_{j_{1}}^{m_{1}} \ldots y_{j_{k}}^{m_{k}}=\theta(y) \neq 1
$$

and so $a \notin \operatorname{ker} \beta$. Also $F_{I} / \operatorname{ker} \beta \cong \operatorname{Im} \beta=H_{\theta} \in \mathcal{X}$ and so $\left(1^{\circ}\right)$ holds with $K_{a}:=\operatorname{ker} \beta$.
Put $K:=\bigcap_{a \in F_{i} \backslash M} K_{a}$. If $a \in F_{I} \backslash M$, then $a \notin K_{a}$ and so also $a \notin K$. Thus $K \leq M$. By 1.1.9(a), F_{I} / K is a subdirect product of the family of \mathcal{X} groups $\left(F_{I} / K_{a}, a \in F_{I} \backslash M\right.$).

Since \mathcal{X} is \mathbf{R}-closed this means that F_{I} / K is a \mathcal{X}-group. Since \mathcal{X} is \mathbf{H}-closed, any quotient of F_{I} / K is also a \mathcal{X}-group. As

$$
G \cong F_{I} / M \cong F_{I} / K / M / K
$$

we conclude that $G \in \mathcal{X}$ and so $\mathcal{X}=\mathcal{V}(W)$.

Definition 1.2.4. [def:hom] Let H and G be groups.
(a) $[\mathbf{a}] \operatorname{Hom}(H, G)$ is the set of homomorphism from H to G.
(b) $[\mathbf{b}] \operatorname{End}(G)$ is the set of endomorphism of G, that is $\operatorname{End}(G)=\operatorname{Hom}(G, G)$.
(c) $[\mathbf{c}] A$ subgroup A of G is called fully invariant in G, if $\alpha(A) \leq A$ for all $\alpha \in \operatorname{End}(G)$.
(d) $[\mathbf{d}] A$ subgroup A of G is called characteristic in G if $\alpha(A) \leq A$ for all $\alpha \in \operatorname{Aut}(G)$.

See Homework 1 for example if subgroups which are characteristic but not fully invariant.
Lemma 1.2.5. $[$ hom $\mathbf{f g}]$ Let F be a free group on the set $I, W \subseteq F$ and G a group.
(a) $[\mathbf{a}] \operatorname{Hom}(F, G)=\left\{\alpha_{y} \mid y \in G^{I}\right\}$.
(b) $[\mathbf{b}] \operatorname{End}(F)=\left\{\alpha_{y} \mid y \in G^{I}\right\}$.
(c) $[\mathbf{c}] W(G)=\langle\beta(W) \mid \beta \in \operatorname{Hom}(F, G)\rangle$.
(d) $[\mathbf{d}] W(F)=\langle\beta(W)| \beta=\operatorname{End}(F)\}\rangle$.

Proof. (a) follows immediately from a definition a free group. (b) is the special case $F=G$ in (a). (c) follows from (a) and the definition of $W(G)$. (d) is the special case $F=G$ in (c).

Lemma 1.2.6. [full invariant] Let F be a free group and $W \leq F$. Then the following are equivalent.
(a) $[\mathbf{a}] \quad W=W(F)$.
(b) $[\mathbf{b}] W$ is fully invariant in F.

Proof. By definition, W is full invariant in F iff $\beta(W) \leq W$ for all $\beta \in \operatorname{End}(\mathbb{F})$ and so if and only if $\langle\beta(W) \mid \beta \in \operatorname{End}(\mathbb{F})\rangle \leq W$. Since $W=\operatorname{id}_{F}(W) \leq\langle\beta(W) \mid \beta \in \operatorname{End}(\mathbb{F})\rangle$, this holds iff $W=\langle\beta(W) \mid \beta \in \operatorname{End}(\mathbb{F})\rangle$ and so by 1.2.5(d), iff $W=W(F)$.

1.3 Series

Definition 1.3.1. [def:action]

(a) $[\mathbf{a}]$ An actions (of groups) is a triple (A, G, α), where A and G are groups and α : $A \rightarrow \operatorname{Aut}(G)$ is a homomorphism. We usually will write g^{a} for $g . a \alpha$ and call (A, G) an action. We also will say that say that A acts on G and that G is an A-group.
(b) [b] Suppose A acts on G. A subgroup H of G is called A-invariant if $H^{a}=H$ for all $a \in A$. We also will say that H is an A-subgroup
(c) [c] We say that an action of A on G is simple, if there exists no proper normal A subgroup of G. In this case we call G a simple A-group.
(d) $[\mathbf{d}]$ An action is called faithful if α is 1-1.
(e) [e] If G is an A-group, $S \subseteq G$ and $T \subseteq A$, then $C_{S}(T)=\left\{s \in S \mid s^{t}=s\right.$ for all $\left.t \in T\right\}$ and $C_{T}(S)=\left\{t \in T \mid s^{t}=s\right.$ for all $\left.s\right\} . C_{A}(G)$ is called the kernel of the action. Note here that $C_{A}(G)=\operatorname{ker} \alpha$.

Definition 1.3.2. [def:series] Let G be a group, A a group acting on G, H an A-invariant subgroup of G and H am A-invariant subgroup of G. An A-series from H to G is set \mathcal{N} such that
(i) [i] If $D \in \mathcal{N}$ then D is an A - subgroup of G containing H.
(ii) [ii] $H \in \mathcal{N}$ and $G \in \mathcal{N}$.
(iii) [iii] \mathcal{N} is totally ordered with respect to inclusion, that is if $D, E \in \mathcal{N}$ then $D \leq E$ or $E \leq D$.
(iv) $[\mathbf{i v}] \mathcal{N}$ is closed under intersections and unions, that is if $\emptyset \neq \mathcal{M} \subseteq \mathcal{N}$, then $\bigcap \mathcal{M} \in \mathcal{N}$ and $\cup \mathcal{M} \in \mathcal{N}$.
(v) $[\mathbf{v}]$ For $D \in \mathcal{N} \backslash H$ define $D^{-}: \bigcup\{E \in \mathcal{N} \mid E<D\}$. Then $D^{-} \unlhd D$.
$A A$-series of G is a A-series from 1 to G.
A series from H to G is a 1-series from H to G.
Observe that a finite series of G is such a set of subgroups $\left\{N_{0}, N_{1}, N_{2}, \ldots N_{k}\right\}$ of G such

$$
1=N_{0} \unlhd N_{1} \unlhd N_{2} \unlhd \ldots N_{k-1} \unlhd N_{k}=G
$$

Let \mathbb{K} be a field, Ω a set and V a \mathbb{K}-space with basis $\left(v_{i}, i \in \Omega\right)$, Observe that $\operatorname{Sym}(\Omega)$ acts on V via $v_{i}^{g}=v_{i g}$ for all $i \in \Omega, g \in \operatorname{Sym}(\Omega)$. Let $V_{0}=\left\{\sum_{i \in \Omega} \lambda_{i} v_{i} \mid \sum_{i \in \Omega} \lambda_{i}=0\right\}$. Then

$$
0 \leq V_{0} \leq V
$$

is a normal $\operatorname{Sym}(\Omega)$-series on V. Let p be a prime, then

$$
0 \ldots p^{k+1} \mathrm{Z} \leq p^{k} \mathrm{Z} \leq \ldots p^{2} \mathrm{Z} \leq p \mathrm{Z} \leq \mathrm{Z}
$$

is a normal series of Z .
Definition 1.3.3. [def:basic series] Let G be a group, A a group acting on G, H an A-subgroup of G, and \mathcal{N} an A-series from H to G
(i) [a] If $D \in \mathcal{N} \backslash\{H\}$ with $D \neq D^{-}$then D / D^{-}is called a factor of \mathcal{N} and $\left(D^{-}, D\right)$ is called a jump of \mathcal{N}
(ii) [b] \mathcal{N} is called a normal if $D \unlhd$ in G for all $D \in \mathcal{N}$.
(iii) [c] \mathcal{N} is called an A-composition series from H to G if each factor of \mathcal{N} is a simple A-group,
(iv) [d] \mathcal{N} is called an A-chief series from H to G if \mathcal{N} is a normal and no proper subgroup of a factor of \mathcal{N} is invariant under A and G.
(v) $[\mathbf{e}] \mathcal{N}$ is called ascending if \mathcal{N} is well-ordered with respect to inclusion, that is every non empty subset of \mathcal{N} has a minimal element.
(vi) $[\mathbf{f}] \mathcal{N}$ is called descending if \mathcal{N} is well-ordered with respect to reverse inclusion, that is every non empty subset of \mathcal{N} has maximal element.

The series

$$
0 \ldots p^{k+1} \mathrm{Z} \leq p^{k} \mathrm{Z} \leq \ldots p^{2} \mathrm{Z} \leq p \mathrm{Z} \leq \mathrm{Z}
$$

is a descending compositions series for Z . We claim that Z does not have an ascending compositions series. Indeed, let \mathcal{N} be any ascending series of Z and let D be the minimal element of $\mathcal{N} \backslash\{1\}$. Then $D^{-}=1$ and so $D \cong D / D^{-}$is isomorphic to a factor of \mathcal{N}. Since D is a non-trivial subgroup of $\mathrm{Z}, D \cong \mathrm{Z}$ and so D is not simple. Thus \mathcal{N} is not a composition series.

Lemma 1.3.4. [easy jumps] Let \mathcal{N} be a series from H to G.
(a) [a] Let $B, T \in \mathcal{N}$ with $B<T$, then (B, T) is a jump of \mathcal{N} if and only if $C=B$ or $C+T$ for any $C \in \mathcal{N}$ with with $B \leq C \leq T$.
(b) [b] Let $X \subseteq G$ with $X \nsubseteq H$. Put $B_{X}:=\bigcup\{D \in \mathcal{N} \mid X \nsubseteq D\}$ and $T_{x}=\bigcap\{E \in \mathcal{N} \mid$ $X \subseteq E\}$. Then $B_{X} \cup X \subseteq T_{X}$ and one of the following holds:

1. [1] $X \subseteq B_{X}=T_{X}$ and X is infinite.
2. $[\mathbf{2}] \quad X \nsubseteq B_{X}<T_{X}$ and $\left(B_{X}, T_{X}\right)$ is the unique jump of \mathcal{N} with $X \subseteq T_{X}$ and $X \nsubseteq B_{X}$.

Proof. (a) Let (B, T) is a jump and suppose $C \in \mathcal{N}$ with $B \leq C \leq T$. Since (B, T) is a jump, $B=T^{-}$. If $C \neq T$ then $C \leq T^{-}=B$ by definition of T^{-}. Thus $C=B$.

Suppose now that $C=B$ or $C=T$ for all $C \in \mathcal{N}$ with $B \leq C \leq T$. Let $D \in \mathcal{N}$ with $D<T$. The $B \leq D$ or $D \leq B$. In the former case we have $B \leq D<T$ and so the assumption of $(B . T)$ implies $B=D$. So in any case $D \leq B$ and thus $T^{-} \leq B$. Since $B<T$, we also have $B \leq T^{-}$and so $B=T^{-}$and $(B, T)=\left(T^{-}, T\right)$ is a jump of \mathcal{N}.
(b) Let $D \in \mathcal{N}$ with $X \nsubseteq D$ and $E \in \mathcal{N}$ with $X \subseteq E$. Then $E \nsubseteq D$ and so $D \subseteq E$. Thus $B_{X} \subseteq T_{X}$. Clearly $X \subseteq T_{X}$.

Suppose that $X \subseteq B_{X}$. Then $T_{X} \subseteq B_{X}$ and so $T_{X}=B_{X}$. Moreover for each $x \in X$ there exists $D_{x} \in \mathcal{N}$ with $x \in D_{x}$ but $X \nsubseteq D_{x}$. Let $D=\bigcup_{x \in X} D_{x}$. Then $X \subseteq D$ and so $D \neq D_{x}$ for all $x \in X$. Since \mathcal{N} is totally ordered this implies that X is infinite.

Suppose next that $X \nsubseteq B_{X}$. Then $B_{X} \subset T_{X}$. Let $D \in \mathcal{N}$ with $B_{X} \leq D \leq T_{X}$. If $X \subseteq D$, then $T_{X} \leq D$ and so $D=T_{X}$. If $X \nsubseteq D$, then $D \leq B_{X}$ and so $D=B_{X}$. Hence by (a), $\left(B_{X}, T_{X}\right)$ is a jump.

Now let (B, T) be any jump with $X \subseteq T$ and $X \nsubseteq B$. Then by definition of B_{X} and T_{X},

$$
B \leq B_{X}<T_{X} \leq T
$$

Since (B, T) is a jump, (a) implies $B=B_{X}$ and $T=T_{X}$.
Lemma 1.3.5. [completion] Let S be a set and \mathcal{N} a chain of subsets of § (That is every member of \mathcal{N} is a subset of S and if $D, E \in \mathcal{N}$ then $D \subseteq E$ or $E \subseteq D$). Let $\mathcal{N}^{*}=$ $\{\bigcap \mathcal{M}, \cup \mathcal{M} \mid \emptyset \neq \mathcal{M} \subseteq \mathcal{N}\}$. Then \mathcal{N}^{*} complete chain of subsets of S, that is \mathcal{N}^{*} is a chain of subsets of \mathcal{N} and is closed under unions and intersections.

Proof. Let $D \in \mathcal{N}^{*}$. Then there exists $\mathcal{D} \subseteq \mathcal{N}$ with $D=\bigcap \mathcal{D}$ or $D=\bigcup \mathcal{D}$. In the first case put $\tilde{D}=\{A \in \mathcal{N} \mid D \subseteq A\}$ and note that $D=\bigcap \tilde{\mathcal{D}}$. In second case put $\tilde{D}=\{A \in \mathcal{N} \mid A \subseteq D\}$ and notet that $D=\bigcap \tilde{\mathcal{D}} . D$ is either the intersection of a subset of \mathcal{N} which is closed under supersets or the unions of subset of \mathcal{N} which is closed under subsets.

We will first show that
$\mathbf{1}^{\circ} .[\mathbf{1}] \quad \mathcal{N}^{*}$ is a chain.
For this let $D, E \in \mathcal{N}^{*}$. Suppose first that $D=\bigcap \mathcal{D}, E=\bigcap \mathcal{E}$ with \mathcal{D}, \mathcal{E} subsets of \mathcal{N}. Suppose $D \nsubseteq \mathcal{E}$. Then there exists $B \in \mathcal{E}$ with $D \nsubseteq B$. Since $D \subseteq A$ for all $A \in \mathcal{D}$, we get $A \nsubseteq B$ and so $B \subseteq A$ for all $A \in \mathcal{D}$. Thus $B \subseteq \bigcap \mathcal{D}$ and so also $E \subseteq D$.

Suppose next that $D=\bigcap \mathcal{D}$ and $E=\bigcup \mathcal{E}$ with \mathcal{D}, \mathcal{E} subsets of \mathcal{N}. Suppose $D \nsubseteq E$. Then $D \nsubseteq B$ for all $B \in \mathcal{E}$. Thus $A \nsubseteq B$ for all $A \in \mathcal{D}$ and so $B \subseteq A$. Since this holds for all $A \in \mathcal{D}$ and all $B \in \mathcal{E}, E=\bigcup \mathcal{E} \subseteq \mathcal{D}=D$.

Suppose next that $D=\bigcup \mathcal{D}$ and $E=\bigcup \mathcal{E}$ with \mathcal{D}, \mathcal{E} subsets of \mathcal{N}. Suppose $D \nsubseteq E$. Then $A \nsubseteq E$ for some $A \in \mathcal{E}$. It follows that $A \nsubseteq B$ for all $B \in \mathcal{B}$ and so $B \subseteq A$. Thus $E=\bigcup \mathcal{R} \subseteq A$ and so also $E \subseteq D$. Thus (1°) holds.

Next let \mathcal{M} be a nonempty chain in \mathcal{N}^{*}. Let $\mathcal{M}=\left\{D_{i} \mid i \in I\right\} \cup\left\{E_{j} \mid j \in J\right\}$ such that $D_{i}=\bigcap \mathcal{D}_{i}$, where $\mathcal{D}_{i} \subseteq \mathcal{N}$ is closed under supersets, and $E_{j}=\bigcup \mathcal{E}_{j}$, where $\mathcal{E}_{j} \subseteq \mathcal{N}$ is closed under subsets.
$\mathbf{2}^{\circ}$. [2] $\bigcap \mathcal{M} \in \mathcal{N}^{*}$.
Put $D=\bigcap_{i \in I} D_{i}$ and $E=\bigcap_{j \in J} E_{j}$. Then $\bigcap \mathcal{M}=D \cap E$. Observe that $D=$ $\bigcap\left(\bigcup_{i \in I} \mathcal{D}_{i}\right)$ and so $D \in \mathcal{N}^{*}$. If $E \in \mathcal{N}^{*}$, the since \mathcal{N}^{*} is a chain $D \cap E=D$ or $D \cap E=E$. In either case $D \cap E \in \mathcal{N}^{*}$. So to complete the proof of (2°) to show that $E \in \mathcal{N}^{*}$.

Put $\mathcal{E}=\bigcap_{j \in J} \mathcal{E}_{j}$. We claim that

$$
\begin{equation*}
\bigcup \mathcal{E} \leq E \leq \bigcap(\mathcal{N} \backslash \mathcal{E}) \tag{*}
\end{equation*}
$$

Indeed let $A \in \mathcal{E}$. Then $A \in \mathcal{E}_{j}$ for all $j \in J$ and so $A \leq \bigcap \mathcal{E}_{j}=E_{j}$ and $A \leq \bigcap_{j \in J} E_{j}=$ E. Thus $\cup \mathcal{E} \leq E$.

Also if $B \in \mathcal{N} \backslash \mathcal{E}$, the $B \notin \mathcal{E}_{k}$ for some $k \in J$. Since \mathcal{E}_{k} is closed under subsets, this means $B \nsubseteq X$ and $X \subseteq B$ for all $X \in \mathcal{E}_{k}$. Thus $E_{k}=\bigcup \mathcal{E}_{k} \leq B$ and $E=\bigcap_{j \in J} E_{j} \leq E_{k} \leq B$. Since thus holds for all $B \in \mathcal{N} \backslash \mathcal{E}, E \leq \bigcap(\mathcal{N} \backslash \mathcal{E})$. So $\left(^{*}\right)$ is proved.

If $\bigcap \mathcal{N} \backslash \mathcal{E} \subseteq E$ we conclude that $E=\bigcap \mathcal{N} \backslash \mathcal{E} \in \mathcal{N}^{*}$.
So suppose that $\bigcap \mathcal{N} \backslash \mathcal{E} \nsubseteq E$. Since $E=\bigcap_{j \in J} E_{j}$ this means that $\bigcap \mathcal{N} \backslash \mathcal{E} \subseteq E_{k}$ for some $k \in J$. Let $A \in \mathcal{N} \subseteq \mathcal{E}$. It follows that $A \nsubseteq E_{k}$ and hence $A \nsubseteq B$ for $B \in \mathcal{E}_{k}$. In particular, $A \notin \mathcal{E}_{k}$. We proved that $\mathcal{N} \backslash \mathcal{E} \subset \mathcal{N} \backslash \mathcal{E}_{k}$ and so $\mathcal{E}_{k} \subseteq \mathcal{E}$. As $\mathcal{E} \subseteq \mathcal{E}_{k}$, we have $\mathcal{E}_{k}=\mathcal{E}$. Thus

$$
E=\bigcap_{j \in J} E_{j} \leq E_{k}=\bigcup \mathcal{E}_{k}=\bigcup \mathcal{E}
$$

and $\left({ }^{*}\right)$ gives $E=\bigcup \mathcal{E} \in \mathcal{N}^{*}$.
3°. $[3] \quad \bigcup \mathcal{M} \in \mathcal{N}^{*}$.
Put $D=\bigcup_{i \in I} D_{i}$ and $E=\bigcup_{j \in J} E_{j}$. Then $\bigcup \mathcal{M}=D \cup E$. Observe that $E=\bigcup \bigcup_{i \in I} \mathcal{E}_{i}$ and so $E \in \mathcal{N}^{*}$. If $D \in \mathcal{N}^{*}$, then since \mathcal{N}^{*} is a chain $D \cup E=D$ or $D \cup E=E$. In either case $D \cup E \in \mathcal{N}^{*}$. So to complete the proof of (3°) to remains show that $D \in \mathcal{N}^{*}$.

Put $\mathcal{D}=\bigcap_{i \in I} \mathcal{D}_{i}$. We claim that

$$
\begin{equation*}
\bigcup(\mathcal{N} \backslash \mathcal{D}) \leq D \leq \bigcap \mathcal{D} \tag{**}
\end{equation*}
$$

Indeed let $A \in \mathcal{D}$. Then $A \in \mathcal{D}_{i}$ for all $i \in I$ and so $D_{i} \bigcup \mathcal{D}_{i} \leq A$. Thus $D=\bigcup \mathcal{D} \leq A$ and so $D \leq \bigcap \mathcal{D}$.

Also if $B \in \mathcal{N} \backslash \mathcal{D}$, then $B \notin \mathcal{D}_{k}$ for some $k \in I$. Since \mathcal{D}_{k} is closed under supersets, this means $X \nsubseteq B$ and $B \subseteq X$ for all $X \in \mathcal{D}_{k}$. Thus $B \leq \bigcap \mathcal{D}_{k}=D_{k}$ and $B \leq D_{k} \leq \bigcup_{i \in I} D_{i}=$ D. Since thus holds for all $B \in \mathcal{N} \backslash \mathcal{E}, \bigcup(\mathcal{N} \backslash \mathcal{D}) \leq D$. So (${ }^{* *)}$ holds.

If $D \leq \bigcup(\mathcal{N} \backslash \mathcal{D})$ we conclude that $D=\bigcup \mathcal{N} \backslash \mathcal{D} \in \mathcal{N}^{*}$.
So suppose that $D \not \leq \bigcup \mathcal{N} \backslash \mathcal{D}$. Since $D=\bigcup_{i \in I} D_{i}$ this means that $D_{k} \not \leq \bigcup \mathcal{N} \backslash \mathcal{D}$ for some $k \in I$. Let $A \in \mathcal{N} \subseteq \mathcal{D}$. It follows that $D_{k} \nsubseteq A$. Since $D_{k}=\bigcap \mathcal{D}_{k}, B \nsubseteq A$ for $B \in \mathcal{D}_{k}$. In particular, $A \notin \mathcal{D}_{k}$. We proved that $\mathcal{N} \backslash \mathcal{D} \subset \mathcal{N} \backslash \mathcal{D}_{k}$ and so $\mathcal{D}_{k} \subseteq \mathcal{D}$. As \mathcal{D} subseteq \mathcal{D}_{k}, we have $\mathcal{D}_{k}=\mathcal{D}$. Thus

$$
D=\bigcup_{i \in I} D_{k} \geq D_{k}=\bigcap \mathcal{D}_{k}=\bigcap \mathcal{D}
$$

and (${ }^{* *}$) gives $D=\bigcap \mathcal{D} \in \mathcal{N}^{*}$.
Lemma 1.3.6. [char comp] Let G be an A-group and \mathcal{N} an A-series from H to G. Order the set of A-series from H to G by inclusion.
(a) [a] If \mathcal{N} is a maximal A-series from H to G, then \mathcal{N} is an A-composition series from H to G.
(b) [b] Suppose \mathcal{N} is normal. Then \mathcal{N} is a maximal normal series from H to G if and only if \mathcal{N} is a chief-series from H to G.
(c) $[\mathbf{c}]$ There exists a maximal A-series from H to G containing \mathcal{N}. In particular, there exists a A-composition series from H to G containing \mathcal{N}.
(d) [d] Suppose \mathcal{N} is normal. There exists a maximal normal A-series from H to G containing \mathcal{N}. In particular, there exists a A-series from H to G containing \mathcal{N}.

Proof. (a) Suppose $c N$ is a maximal A-series from H to G. Let (B, T) be a jump of \mathcal{N} and let \bar{D} be a A-invariant normal subgroup of T / B. Then $\bar{D}=D / B$ for normal A-subgroup of G with $B \leq D \leq T$. It is readily verified that $\mathcal{N} \cup\{D\}$ is an A-series from H to G. So the maximality of \mathcal{N} shows that $D \in \mathcal{N}$ and so $D=B$ or $D=T$. Thus T / B is a simple A-group and \mathcal{N} is an A-composition series.
(b) If \mathcal{N} is a maximal normal series from H to G, then the argument in (a) shows that \mathcal{N} a chief-series. (Alternatively let $A * G$ be the free product of A and G. Then $A * G$ acts on G and a normal A-series from H to G is the same as $A * G$ series. Also an $A * G$-composition series is the same an A-chiefseries.)

Now let \mathcal{N} be a A-chief series from H to G b and \mathcal{M} a normal A-series from H to G with $\mathcal{N} \subseteq \mathcal{M}$. Let $M \in \mathcal{M} \backslash\{H\}$. Put $T=\bigcap\{E \in \mathcal{N} \mid M \leq E\}$ and $B=\bigcup\{D \in \mathcal{N} \mid M \not \leq D\}$. Since \mathcal{N} is totally order $M \not \leq D$ for $E \in \mathcal{N}$ implies $D \leq M$. Thus $B \leq M \leq T$. If $M=T$, then $M \in \mathcal{N}$. So suppose $M \neq T$. Then also $B \neq T$ and by ??(??), (B, T) is a jump of \mathcal{N}. Since \mathcal{M} is normal, M / B is G and A-invariant subgroup of T / B. Since \mathcal{N} is a A-chiefseries, this implies $M / B=1$ and so $M=B \in \mathcal{N}$.

Thus $\mathcal{M}=\mathcal{N}$.
(c) By (a) it suffices to proof that \mathcal{N} is contained in a maximal A-series from H to G. Let $\left(\mathcal{M}_{i}, i \in I\right)$ be a chain of A-series from H to G. Let $\mathcal{M}=\bigcup_{i \in I} \mathcal{M}_{i}$ and observe that \mathcal{M} is a chain of A subgroups of G containing H and G. Let \mathcal{M}^{*} be the set of intersection and unions of non-subsets of \mathcal{M}. Using 1.3.5 we conclude that \mathcal{M}^{*} is a set of A-invariant subgroups of G which is closed under intersection and unions. We claim that \mathcal{M}^{*} is an A-series. 1.3.2(i)-iv are obvious. So let (B, T) be a jump of \mathcal{M}^{*}. We need to show that $B \unlhd T$. For $i \in I$ define $B_{i}:=\bigcup\left\{D \in \mathcal{N}_{i} \mid T \not \leq D\right\}$ and $T_{i}=\bigcup\left\{E \in \mathcal{N}_{i} \mid T \not \leq E\right\}$. Since \mathcal{M}^{*} is a chain, $B_{i}=\bigcup\left\{D \in \mathcal{N}_{i} \mid D<T\right\}$. Thus $B_{i} \leq B<T \leq T_{i}$. Thus by 1.3.4(b), $\left(B_{i}, T_{i}\right)$ is a jump of \mathcal{N}_{i} and so $B_{i} \unlhd T_{i}$. In particular, $B_{i} \unlhd T$. By definition of $\mathcal{M}^{*}, B=\bigcup \mathcal{B}$ or $B=\bigcap \mathcal{B}$ for non-empty subset \mathcal{B} of \mathcal{M}. Suppose first that $B=\bigcup \mathcal{B}$. Let $D \in \mathcal{B}$, then $D \in \mathcal{N}_{i}$ for some $i \in I$. Since $D \leq B<T$ we get $B \leq B_{i}$. It follows that

$$
B=\bigcup \mathcal{B} \leq \bigcup_{i \in I} B_{i} \leq D
$$

and so $B=\bigcup_{i \in I} B_{i}$. Since each B_{i} is normal in T we conclude that $B \unlhd T$.
Suppose next that $B=\bigcap \mathcal{B}$. Since $T \not \leq B$, there exists $D \in \mathcal{B}$ with $T \not \leq D$. Since \mathcal{M}^{*} is chain this gives $D<T$ and so $D \leq B$. Thus $D \leq B=\bigcap \mathcal{B} \leq D$ and $B=D$. So B is a union of members of \mathcal{M} and so we are done by the previous case.
(d) Either use the same argument as in (c) or apply (c) to $A * G$.

Definition 1.3.7. [def:class of action]

(a) [b] Two actions (A, G) and $\left(A^{*}, G^{*}\right)$ are called isomorphic and we write $(A, G) \cong$ $\left(A^{*}, G^{*}\right)$ if there exist isomorphisms $\beta: A \rightarrow A^{*}$ and $\gamma: \rightarrow G^{*}$ with $g^{a} \gamma=(g \gamma)^{a \beta}$ for all $g \in G$ and $a \in A$.
(b) $[\mathbf{c}]$ A class of actions is class \mathcal{X} such that
(a) [a] The members of \mathcal{X} are faithful actions
(b) $[\mathbf{b}]$ If $D \in \mathcal{X}$ and $D^{*} \cong D$ then $D^{*} \in \mathcal{X}$.
(c) $[\mathbf{c}](1,1) \in \mathcal{X}$.
(c) [d] If \mathcal{X} and \mathcal{Y} are classes of groups, then $[\mathcal{X}, \mathcal{Y}]$ denotes of class of all faithful actions (A, G) with $A \in \mathcal{X}$ and $H \in \mathcal{Y}$

Definition 1.3.8. [def:xa series] Let \mathcal{X} be a class of actions.
(a) $[\mathbf{z}]$ We say that A acts \mathcal{X} on a group G, or that G is a $\mathcal{X}-A$ group, if $\left(A / C_{A}(G), G\right) \in$ \mathcal{X}.
(b) [a] An A-series \mathcal{N} from H to G is called called \mathcal{X} - A-series if each factor of \mathcal{N} is an $\mathcal{X}-A$-group.
(c) [b] We say that A acts poly- \mathcal{X} on G, or that G is poly \mathcal{X} - Agroup, if there exists G is exists a finite normal $\mathcal{X}-A$-series on G.
(d) [c] We say that A acts hyper- \mathcal{X} on G, or that G is hyper $\mathcal{X}-A$-group, if there exists an ascending normal $\mathcal{X}-A$-series on G.
(e) [d] We say that A acts hypo- \mathcal{X} on G, or that G is hypo \mathcal{X}-group, if there exists G is exists descending normal $\mathcal{X}-A$-series on G.
(f) $[\mathbf{e}]$ If $A=G$ acting by conjugation on G we drop the prefix A in (b) to (c).

We usually write $[\mathcal{X}, *]$ in place of $[\mathcal{X}, \mathcal{D}]$ and $[\mathcal{X}, 1]$ in place of $[\mathcal{X}, \mathcal{T}]$. Recall here that \mathcal{T} denotes the calls of trivial groups and \mathcal{D} the class of all groups.

If \mathcal{X} is the calls of simple actions, then an $\mathcal{X}-A$-series is just an A-composition series.
If \mathcal{X} is a class of groups, then a poly $[*, \mathcal{X}]-1$-group is just a poly- \mathcal{X}-group. So a poly $[*, \mathcal{A}]-1$-group, is a poly abelian group, that is a solvable group. A hyper $[*, \mathcal{X}]$-group, is called an hyper \mathcal{X}-group and a hypo $[*, \mathcal{X}]-1$-group, is called an hypo \mathcal{X}-group. Note that a hyper \mathcal{X}-group is a group with normal ascending series all of whose factors are \mathcal{X}-groups.

A poly $[1, *]$-groups is called nilpotent. So a group is nilpotent if and only if there exists a finite normal ascending series

$$
N_{0}=1 \leq N_{1} \leq N_{2} \leq \ldots \leq N_{k-1} \leq N_{k}=G
$$

such that $\left(G / C_{G}(E) \in[1, *]\right.$ for all factors E of the series. Note that thus just means that $G / C_{G}(E)=1$, that is G centralizes E. In other words, $\left[N_{i}, G\right] \leq N_{i-1}$ for all $1 \leq i \leq k$.

A hyper $[1, *]$-groups is called a hypercentral group and a hypo $[1, *]$-group is called a hypocentral group. So a hypercentral group is a group G with a normal series all of whose factors are centralized by G.

Consider the chief-series

$$
1 \unlhd \operatorname{Alt}(3) \unlhd \operatorname{Sym}(3)
$$

of $\operatorname{Sym}(3)$. The factors of this series are $E_{1}=\operatorname{Alt}(3) / 1 \cong \mathrm{C}_{3}$ and $E_{2}=\operatorname{Sym}(3) / \operatorname{Alt}(3) \cong \mathrm{C}_{2}$. Moreover, $\mathrm{C}_{\mathrm{Sym}(3)}\left(E_{1}\right)=\operatorname{Alt}(3), \operatorname{Sym}(3) / \mathrm{C}_{\mathrm{Sym}(3)}\left(E_{1}\right) \cong \mathrm{C}_{2}, \mathrm{C}_{\mathrm{Sym}(3)}\left(E_{2}\right)=\operatorname{Sym}(3)$ and $\operatorname{Sym}(3) / \mathrm{C}_{\mathrm{Sym}(3)}\left(E_{2}\right)=1$. So the group induced on each of the factors is abelian and so $\operatorname{Sym}(3)$ is an poly- $[\mathcal{A}, *]$-group.

Consider the chief-series

$$
1 \unlhd K:=\langle(12)(34),(13)(23)\rangle \unlhd \operatorname{Alt}(4) \unlhd \operatorname{Sym}(4)
$$

of $\operatorname{Sym}(4)$. The factors of this series are $E_{1}:=K / 1 \cong \mathrm{C}_{2} \times \mathrm{C}_{2}, E_{1}=\operatorname{Alt}(4) / K \cong$ C_{3} and $E_{2}=\operatorname{Sym}(4) / \operatorname{Alt}(4) \cong \mathrm{C}_{2}$. Moreover, $\mathrm{C}_{\mathrm{Sym}(4)}\left(E_{1}\right)=K, \operatorname{Sym}(4) / \mathrm{C}_{\mathrm{Sym}(4)}\left(E_{1}\right) \cong$ $\operatorname{Sym}(3), \mathrm{C}_{\mathrm{Sym}(4)}\left(E_{2}\right)=\operatorname{Alt}(4), \operatorname{Sym}(4) / \mathrm{C}_{\mathrm{Sym}(4)}\left(E_{2}\right) \cong \mathrm{C}_{2}, \mathrm{C}_{\mathrm{Sym}(4)}\left(E_{3}\right)=\operatorname{Sym}(4)$ and $\operatorname{Sym}(4) / \mathrm{C}_{\mathrm{Sym}(4)}\left(E_{3}\right)=1$. Since the group induced on E_{1} is not abelian, we conclude that $\operatorname{Sym}(4)$ is not poly-[$\mathcal{A}, *]$-group.

We will later see that every poly- $[\mathcal{A}, *]$ group is solvable. So the class of poly- $[\mathcal{A}, *]$ groups is a proper subclass of \mathcal{S}.

Lemma 1.3.9. [factors of an ascending series]. Let \mathcal{N} be an A-series from H to G, and M an A-subgroup of G.
(a) [a] Define $\mathcal{N} \wedge M:=\{D \cap M \mid D \in \mathcal{N}\}$. Then \mathcal{N} is an A-series from $H \cap M$ to M. If (\tilde{B}, \tilde{T}) is a jump of $\mathcal{N} \wedge M$ then there a jump (B, T) of M such that $\tilde{B}=B \cap M$, $\tilde{T}=T \cap M$ and $\tilde{T} / \tilde{B} \cong(T \cap M) B / B$ as an A-group. In particular, any factor of $\mathcal{N} \wedge M$ is isomorphic to an A-subgroup of a factor of \mathcal{N}.
(b) [b] Suppose $M \unlhd G$ and \mathcal{N} is ascending. Then $\overline{\mathcal{N}}:=\mathcal{N} M / M:=\{D M / M \mid D \in \mathcal{N}\}$ is an ascending A-series from $H M / M$ to G / M. Moreover, if (\bar{B}, \bar{T}) is a jump of $\overline{\mathcal{N}}$, then there exists a jump (B, T) of \mathcal{N} with $\bar{B}=B M / M, \bar{T} \cong T M / M$ and $\bar{T} / \bar{B} \cong$ $T /(T \cap M) B$. In particular, each factor of $\overline{\mathcal{N}}$ is isomorphic to an A-quotient of a factor of \mathcal{N}.

Proof. (a) Readily verified.
(b) The first three axioms of an A series are obvious. Let $\overline{\mathcal{M}}$ be an non-empty subset of $\overline{\mathrm{N}}$ and define $\mathcal{M}=\{D \in \mathcal{N} \mid D N / N \in \overline{\mathcal{M}}$.

1. $[\mathbf{1}] \quad$ Put $B=\bigcup \mathcal{M}$. Then $\bigcup \mathcal{M}=B M / M$.

Let $x \in B M / M$, then $x=e M$ for some $e \in B$. Pick $D \in \mathcal{M}$ with $e \in D$. Then $x=e M \in D M / M \in \overline{\mathcal{M}}$. and so $B M / M \subseteq \bigcup \overline{\mathcal{M}}$.

Conversely if $\bar{e} \in \bigcup \overline{\mathcal{M}}$, the $\bar{e} \in \bar{D}$ for some $\bar{D} \in \overline{\mathcal{M}}$. Note that $\bar{D}=D M / M$ for some $D \in \mathcal{M}$ and then $\bar{e}=e M$ for some $e \in D$. Thus $e \in B$ and $\bar{e} \in B M / M$. Hence $\bigcup \mathcal{M} \subseteq B M / M$ and $\left(1^{\circ}\right)$ holds.
$\mathbf{2}^{\circ} .[\mathbf{2}] \quad$ Let T be the minimal element \mathcal{M} (which exists since \mathcal{N} is well ordered). Then $\bigcap \overline{\mathcal{M}}=T M / M$.

Let $\bar{D} \in \overline{\mathcal{M}}$. Then $\bar{D}=D M / M$ for some $D \leq \mathcal{M}$. Since T is the minimal element of \mathcal{M} we get $T \leq D$ and so $T M / M \leq D M / M=\bar{D}$ and $T M / M \leq \bigcap \overline{\mathcal{M}}$.

Conversely, $T \in \mathcal{M}$ and so $T M / M \leq \overline{\mathcal{M}}$. Hence $\bigcap \overline{\mathcal{M}} \leq T M / M$ and $\left(2^{\circ}\right)$ is proved.
By $\left(1^{\circ}\right)$ and $\left(2^{\circ}\right), \overline{\mathcal{M}}$ is closed under unions and intersection.
Noe let (\bar{B}, \bar{T}) be a jump of $\bar{c} M$. Let $B=\bigcup\{D \in \mathcal{N} \mid D M / M=\tilde{B}$. Then (for example by $\left(1^{\circ}\right)$ applied with $\overline{\mathcal{M}}=\{\bar{B}\}, B M / M=\bar{B}$. Let T be minimal in \mathcal{N} with $T M / M=\bar{T}$. Since $B M / M=\phi B<\bar{T}=T M / M$ we have $B M<T M$ and so $T \not \leq B$. Since \mathcal{N} is totally ordered, $B<T$. We claim that (B, T) is a jump of \mathcal{N} so let $D \in \mathcal{N}$ with $B \leq D \leq T$. Then $\bar{B}=B M / M \leq D M / M \leq T M / M=\bar{T}$ and since (\bar{B}, \bar{T}) is a jump of $\overline{\mathcal{N}}$ we conclude that $D M / M=\bar{B}$ or $D M / M=\bar{T}$. In the first case the definition of B shows that $D \leq B$ and so $D=B$. In the second case the minimality of T gives, $T \leq D$ and so $D=T$. Hence (B, T) is a jump. Since \mathcal{N} is a series this implies that $B \unlhd T$. Hence also $\bar{B}=B M / M \unlhd T M / M=\bar{T}$ and so $\overline{\mathcal{N}}$ is a series.

We compute

$$
\bar{B} / \bar{T}=T M / M / B M / M \cong T M / B M=T(B M) / B M
$$

$$
\cong T / T \cap B M=T /(T \cap B) M \cong T / B /(T \cap M) B / B
$$

and so also the remaining statements in (b) are proved.
Definition 1.3.10. [def:s for action] Let \mathcal{X} be a class of actions.
(a) $[\mathbf{a}][\mathrm{id}, \mathbf{S}] \mathcal{X}$ denotes the class of all actions isomorphic to an action $\left(A / C_{A}(H), H\right)$, where $(A, G) \leq \mathcal{X}$ and H is an A-subgroup of G.
(b) $[\mathbf{c}][\mathbf{S}, \mathrm{id}] \mathcal{X}$ denotes the class of all actions isomorphic to an action (B, G), where $(A, G) \leq \mathcal{X}$ and B is a A-subgroup of G.
(c) $[\mathbf{d}] \mathbf{S} \mathcal{X}$ denotes the class of all actions isomorphic to an action $\left(B / C_{B}(H), H\right)$, where $(A, G) \leq \mathcal{X}, B \leq A$ and H is an B-subgroup of G.
(d) $[\mathbf{b}] \mathbf{H} \mathcal{X}$ denotes the class of all actions isomorphic to an action $\left(A / C_{A}(H), G / H\right)$, where $(A, G) \leq \mathcal{H}$ and H is a normal A-subgroup of G.

Note that $\mathbf{S} \mathcal{X}=[\mathrm{id}, \mathbf{S}][\mathbf{S}, \mathrm{id}] \mathcal{X}$, but in general $\mathbf{S} \mathcal{X} \neq[\mathbf{S}, \mathrm{id}][\mathrm{id}, \mathbf{S}] \mathcal{X}$.
Corollary 1.3.11. [s h a hyp] Let \mathcal{X} be a class of actions, A a group, G a hyper $\mathcal{X}-A$ group and M an A-subgroup of G.
(a) [a] If \mathcal{X} is $[\mathrm{id}, \mathbf{S}]$ closed, then M is a hyper $\mathcal{X}-A$-group.
(b) [b] If \mathcal{X} is \mathbf{H}-closed and $M \unlhd G$, then G / M is a hyper \mathcal{X} - A-group.

Proof. This follows immediately from 1.3.9.
Corollary 1.3.12. [s hyp] Let \mathcal{X} be class of groups, G a hyper \mathcal{X}-group and $M \leq G$.
(a) [a] If \mathcal{X} is \mathbf{S}-closed, then $\operatorname{Hyp}(\mathcal{X})$ is \mathbf{S}-closed.
(b) [b] If \mathcal{X} is \mathbf{H}-closed, then $\operatorname{Hyp}(\mathcal{X})$ is \mathbf{H}-closed.

Proof. (a) Since \mathcal{S} is [\mathbf{S}, id] closed, M acts hyper \mathcal{X} on G. So (a) follows from 1.3.11(a).
(b) By ??(??), G acts hyper \mathcal{X} on G / M. Since M acts trivially on G / M, also G / M acts hyper \mathcal{X} in G / M.

Corollary 1.3.13. [zg cap n]

(a) [a] Subgroups and quotients of hypercentral groups are hypercentral.
(b) [b] Let M be a normal subgroup of the hypercentral group G, then G acts hyper centrally on G. In particular, $M \cap \mathrm{Z}(G) \neq 1$.

Proof. Since $[1, *]$ is \mathbf{S} and \mathbf{H} closed, we can apply the previous two corollaries.

1.4 Hyper Sequences

Definition 1.4.1. [def:ascending sequence] Let G be an A-group, H an A-subgroup of G. Then an A-sequence from H to G is a a sequence $\left(G_{\alpha}\right)_{\alpha \in \operatorname{Ord}}$ of A-subgroups of G such that
(a) $[\mathbf{a}] G_{0}=H$ and there exists $\delta \in \operatorname{Ord}$ with $G_{\beta}=G$ for all $\beta \geq \delta$.
(b) $[\mathbf{b}] G_{\alpha} \unlhd G_{\alpha+1}$
(c) [c] If α is limit ordinal, then $G_{\alpha}=\bigcup_{\alpha<\beta} G_{\beta}$.

Lemma 1.4.2. [ascending ord] Let \mathcal{N} be an ascending A-series from H to G. Then there exists an A-sequence $\left(G_{\alpha}\right)_{\alpha \in \operatorname{Ord}}$ from H to G with $\mathcal{N}=\left\{G_{\alpha} \mid \alpha \in \operatorname{Ord}\right\}$.

Proof. Since \mathcal{N} is well ordered with respect to inclusion we conclude from Homework 3, that there exists an ordinal δ and an isomorphism of ordered sets, $F: \delta \rightarrow \mathcal{N}, \alpha \rightarrow G_{\alpha}$. Define $\Phi: \operatorname{Ord} \rightarrow \mathcal{N}$ by $\Phi(\alpha)=H_{\alpha}$ if $\alpha<\delta$ and $\Phi(\beta)=G$ if $\delta<\beta$. Since 0 is the element of δ and H the minimal element of \mathcal{N} we have $G_{0}=F(0)=H$. Since F preserved the order we have $\alpha \leq \beta$ if and only if $G_{\alpha} \leq G_{\beta}$. Since either $\beta \leq \alpha$ or $\alpha+\leq \beta$ we conclude that either $G_{\alpha}=G_{\alpha+1}$ or $\left(G_{\alpha}, G_{\alpha+1}\right)$ is a jump of \mathcal{N}. In both cases $G_{\alpha} \unlhd G_{\alpha+1}$.

Now let α be a limit ordinal and put $M:=\bigcup_{\beta<\alpha} G_{\beta}$. Then $M \in \mathcal{N}$ and $M \leq G_{\alpha}$ and so $M=G_{\gamma}$ for some γ in $\gamma \in \delta$. Since $G_{\gamma} \leq G_{\alpha}$ we have $\gamma \leq \alpha$. If $\gamma=\alpha$ we are done. So suppose $\gamma<\alpha$. Then also $\gamma+1<\alpha$ and so $G_{\gamma+1} \leq M \leq G_{\gamma} \leq G_{\gamma+1}$. Thus $G_{\gamma}=G_{\gamma+1}$. Since F is a bijection, this gives $\gamma+1 \notin \delta$. Thus $G=G_{\gamma+1}=M \leq G_{\alpha} \leq G$. So again $M=G=G_{\alpha}$ and all parts of the definition of a A-sequence from H to G are verified.

Lemma 1.4.3. [ord ascending] Let G be an A-group, H an A-subgroup of G and and $\left(G_{\alpha}\right)_{\alpha \in \operatorname{Ord}} a$ sequence of A-sequence from A to G. Then $\mathcal{N}:=\left\{G_{\alpha} \mid \alpha \in \operatorname{Ord}\right\}$ is an ascending A-series from H to G. Moreover, the jumps of \mathcal{N} are exactly the pairs $\left(G_{\alpha}, G_{\alpha+1}\right)$, where α is an ordinal with $G_{\alpha} \neq G_{\alpha+1}$.

Proof. Note that $\mathcal{N}=\left\{G_{\alpha} \mid \alpha \leq \delta\right\}$, so \mathcal{N} is the image of a set under function and thus a set. From (??) and (??) we have $G_{\alpha} \leq G_{\beta}$ for all $\alpha \leq \beta$ and so \mathcal{N} is totally ordered with respect to inclusion. So (??) gives $H \in \mathcal{N}, G \in \mathcal{N}$ and $H \leq G_{\alpha}$ for all $\alpha \in$ Ord.

Let \mathcal{M} be a non empty subset \mathcal{N} and let $M=\{\alpha \in \operatorname{Ord} \mid \alpha \in \mathcal{M}$. Then M has minimal element m and so $\bigcup \mathcal{M}=G_{m} \in \mathcal{N}$

Suppose that $\delta \leq \beta$ for some $\beta \in$ Ord. Then $\bigcup \mathcal{M}=G \in \mathcal{N}$.
Suppose that $\beta<\delta$ for all $\beta \in$ Ord. Then M has a least upper bound γ. If $\gamma \in M$, then $\bigcup \mathcal{M}=G_{\gamma} \in \mathcal{N}$. If $\gamma \notin M$ the for all $\beta<\delta$ there exists $\beta^{*} \in \delta$ with $\beta<\beta^{*}<\delta$. In particular δ is limit ordinal and

$$
G_{\gamma}=\bigcup_{\beta<\delta} G_{\beta} \leq \bigcup_{\beta<\delta} G_{\beta^{*}} \leq \bigcup \mathcal{M} \leq \bigcup_{\beta<\delta} G_{\beta}=G_{\gamma}
$$

Hence again $\bigcup_{\beta<\delta}=G_{\gamma} \in \mathcal{N}$. We show that \mathcal{N} is closed under intersections.

Noe let $D \in \mathcal{N}$ with $D \neq H$ and let $\alpha \in \operatorname{Ord}$ be minimal with G_{α}. The $G_{\beta}<D$ if and only if $\beta<\alpha$. Thus

$$
D^{-}=\bigcup\{E \in \mathcal{N} \mid E<D\}=\bigcup_{\beta<\alpha} G_{\beta}
$$

If α is a limit ordinal, the latter unions is G_{α} and if α is a successor it is $\left(G_{\alpha-1}\right.$. So if $\left(D^{-}, D\right)$ is a jump then α is a successor, $\left(D, D^{-}\right)=\left(G_{\alpha-1}, G_{\alpha}\right), G_{\alpha-1} \neq G_{\alpha}$ and $D^{-}=G_{\alpha-1} \unlhd G_{\alpha}=D$. In particular, \mathcal{N} is an ascending series.

If α is an ordinal with $G_{\alpha} \neq G_{\alpha+1}$ the clearly $\left(G_{\alpha}, G_{\alpha+1}\right)$ is a jump of \mathcal{N}. So also the second statement of the lemma holds.

Note that we allow $G_{\alpha}=G_{\beta}$ for distinct $\alpha, \beta \in \operatorname{Ord}$. So a given ascending A-series corresponds to more than then one A-sequence. We will use all the notation introduces from ascending A-series. For example an hyper A-sequence is a normal A-sequence, that is a A-sequence with $G_{\alpha} \unlhd G$ for all $\alpha \in$ Ord.
Definition 1.4.4. [def:strongly hyper] Let \mathcal{X} be class of groups and G an A-group. We say that A acts strongly hyper- \mathcal{X} on G or that G is a strongly-hyper $\mathcal{X}-A$ group, if for all normal A-subgroups, M of G with $M \neq G$ there exists an normal A-subgroup M^{*} of G with $\left(A / C_{A}\left(M^{*} / M\right), M^{*} / M\right) \in \mathcal{X}$.

Lemma 1.4.5. [strong hyper] Let \mathcal{X} be a class of actions and G an A-group.
(a) [a] If A acts strongly hyper- \mathcal{X} on G, then A acts hyper- \mathcal{X} on G.
(b) [b] If \mathcal{X} is \mathbf{H}-closed that A acts strongly hyper- \mathcal{X} on G iff A act hyper \mathcal{X} on G.

Proof. (a) By the definition of strongly-hyper and the axiom of choice we can choose a function $M \rightarrow M^{*}$ on the normal subgroups of G such that $M^{*}=G$ if $M=G$ and $M<M^{*}$ with $\left(A / C_{A}\left(M^{*} / M\right), M^{*} / M\right) \in \mathcal{X}$ if $M \neq G$. If f is any function which is a set, define $\tau(f)=\bigcup\{f(M) *\rangle|M \in \operatorname{Dom}(f)\rangle$ provided that all members of $\operatorname{Dom}(f)$ are normal A-subgroups A and $\tau(f)=0$ otherwise.

By the 'Recursion' Theorem ?? for each ordinal α there exists function F such that $\tau\left(F \mid\left(\operatorname{Ord}_{\alpha}\right)\right)=F(\alpha)$ for all ordinals α. Put $N_{\alpha}=F(\alpha)$. Then a moments thought reveals that

$$
\begin{cases}N_{\alpha}=1 & \text { if } \alpha=0 \\ N_{\beta}^{*} & \text { if } \alpha=\beta+1 \\ \bigcup_{\beta<\alpha} N_{\beta} & \text { if } \alpha \text { is a limit ordinal }\end{cases}
$$

Let α be an ordinal with $|\alpha|>|G|$. If $G \neq M_{\beta}$ for all $\beta \leq \alpha$ we get $|G| \leq \mid \alpha$, a contradiction. Thus $G_{\alpha}=G$ and it follows that $\mathcal{N}=\left\{G_{\alpha} \mid \alpha\right\}$ is an hyper A-series on G with factors $N_{\alpha+1} / N_{\alpha}=N_{\alpha}^{*} / N_{\alpha}$. Thus A acts \mathcal{X} in each factor of \mathcal{N} and so \mathcal{N} is hyper $\mathcal{X}-A$-series.
(b) Suppose A acts hyper \mathcal{X} on G and let M be a normal A-subgroup of G. By ?? G / M is a hyper $\mathcal{X}-A$-group. In particular, G / M has a non-trivial normal $\mathcal{X}-A$-subgroup, M^{*} / M. Thus A acts strongly \mathcal{X} on G. Together with (a) this gives (b).

Notation 1.4.6. [not:f] F denotes the free group on $\left(x_{i}\right)_{i \in 1}^{\infty}$. The elements of F are called words.

Definition 1.4.7. [almost decreasing] Let $W=\left(W_{i}\right)_{i=1}^{\infty} \in \mathcal{W}^{\infty}$ be a sequence of sets of words.
(a) [a] W is decreasing if $W_{i+1}(F) \leq W_{i}(F)$ for all i.
(b) [b] W is almost decreasing if for all $i, j \in \mathbb{Z}^{+}$there exists $k \geq j$ with $W_{k}(F) \leq W_{i}(F)$.
(c) $[\mathbf{c}] \mathcal{V}(W)=\bigcup_{i=1}^{\infty} \mathcal{V}\left(W_{i}\right)$.

Lemma 1.4.8. [trivial dec] Let G be group.
(a) [a] Let V, W be sets of words with $V(F) \leq W(F))$. Then $V(G) \leq V(W)$.
(b) $[\mathbf{b}]$ Let $W=\left(W_{i}\right) I=1^{\infty}$ be almost decreasing sequence of sets words. Then $\left(W_{i}(G)\right)_{i=1}^{\infty}$ is almost decreasing, that is for $i, j \in \mathbb{Z}^{+}$there exists $k \geq j$ with $W_{k}(G) \leq W_{i}(G)$.

Proof. (a) Let $g \in V(G)$. Then $g \in V(H)$ for some finitely generated subgroup H of G. Since H is countable, there exists an onto homomorphism $\alpha: F \rightarrow H$. Then

$$
g \in V(H)=\alpha(V(F))) \leq \alpha(W(V))=W(H) \in W(G)
$$

(b) follows from (a)

Lemma 1.4.9. [sdp] Let G be an A-group then there exists a group H such that $A \leq H$, $G \unlhd H, H=G A, A \cap G=1$ and the actions of G on A is the same as the action of G on A by conjugation in H. Moreover, H is unique up to an isomorphism centralizing A and G.

Proof. Suppose first that H is such a group. Let $x, y \in H$. Then there exists $a, b \in A$ and $g, h \in H$ with $x=g a$ and $y=b h$. Then $x y=(g a)(h b)=g a h a^{-1} a b=g h^{a^{-1}} a b$ and so the multiplication on H is unique determined.

Conversely, let $H=G \times A$ as a set and define the multiplication on $H \times A$ by

$$
(g, a)(h, b)=\left(g h^{a^{-1}}, a b\right)
$$

Identify g with $(g, 1)$ and a with $(1, a)$. Then is readily verified that H has all the required properties.

Lemma 1.4.10. [largest normal] Let \mathcal{V} be an variety and G an A-group. Then there exists unique largest normal A-subgroups M of G such that $A / C_{A}(M) \in \mathcal{V}$.

Proof. Let $H=G A$ be the semidirect product of A and G. Let $W=\mathrm{W}(\mathcal{V})$ and put $M=\left\langle\mathrm{C}_{G}\left(\left\langle W(A)^{H}\right\rangle\right)\right.$.

Definition 1.4.11. [def:h class] Let G be an A-group and $W=\left(W_{i}\right)_{i \in \mathrm{Z}^{+}}$a sequence of sets of words.
(a) [a] Define $H_{\alpha}=\operatorname{Hyp}_{\alpha}^{W}(A, G)$ inductively as follows:

$$
\begin{array}{rll}
H_{\alpha} & = & 1 \\
H_{\alpha} & = & \text { if } \alpha=0 \\
H_{\alpha} / H_{\alpha-1} & = & \mathrm{C}_{H_{\alpha} / H_{\alpha-1}}\left(\left\langle W_{k}(A)^{G}\right\rangle\right)
\end{array} \begin{aligned}
& \text { if } 0 \neq \alpha \text { is a limit ordinal } \\
&
\end{aligned}
$$

(b) $[\mathbf{b}] \delta=\delta^{W}(A, G)$ is the least ordinal such that $H_{\delta}=H_{\beta}$ for all $\beta \geq \delta$. Moreover, $\operatorname{Hyp}^{W}(A, G):=H_{\delta}$

Note that if $\alpha=\beta+k,\left(\beta=0\right.$ or a limit ordinal and $\left.k \in \mathbb{Z}^{+}\right)$, then $H_{\alpha} / H_{\alpha-1}$ is the largest normal $\left(\mathcal{V}\left(W_{k}\right), *\right)$-A-subgroup of $G / H_{\alpha-1}$

Define $\operatorname{Hyp}_{\alpha}^{W}(G)=\operatorname{Hyp}_{\alpha}^{W}(G, G)$, where G is acting on G by conjugation and $\operatorname{Hyp}^{W}(G)=$ $\operatorname{Hyp}^{W}(G, G)$. As above if there is no doubt about the group action (A, G) and the sequence W in question we write H_{α} for $\operatorname{Hyp}_{\alpha}^{W}(A, G)$.
Proposition 1.4.12. $[\mathbf{g}=\mathbf{s}]$ Let $(A G)$ be a group action and $W=\left(W_{i}\right)_{i \in \mathrm{Z}^{+}}$a sequence of sets of words.
(a) $[\mathbf{a}]\left(H_{\alpha}\right)_{\alpha}$ is a hyper- $(\mathcal{X}(W), *)-A$ sequence for G on $\operatorname{Hyp}^{W}(G)$.
(b) [b] Let M be a normal-A-subgroup and $\left(M_{\alpha}\right)_{\alpha}$ be a hyper- $(\mathcal{X}(W), *)-A$-sequence on M such that each M_{α} is normal in G.
(a) [a] For every ordinal α there exists an ordinal α^{*} with $M_{\alpha} \leq H_{\alpha^{*}}$. In particular, $M \leq \operatorname{Hyp}^{W}(A, G)$.
(b) [b] If W is almost decreasing we can choose α^{*} such that $\alpha^{*}=\alpha+n_{\alpha}$ for some $n_{\alpha} \in \mathbb{N}$ and $n_{\alpha}=0$ if α is a non-successor.
(c) $[\mathbf{c}] G$ is a hyper- $(\mathcal{X}(W), *)$-A-group if and only if $G=\operatorname{Hyp}^{W}(A, G)$.

Proof. (a) Let $\alpha=\beta+k$ for some non-successor β and some $k \in \mathbb{Z}^{+}$. Then $W_{k}(A)$ centralizes $H_{\alpha} / H_{\alpha-1}$. Hence $A / \mathrm{C}_{A}\left(H_{\alpha} / H_{\alpha-1}\right) \in \mathcal{V}\left(W_{k}\right) \subseteq \mathcal{X}(W)$ and (a) holds.
(b) By induction we may assume that for all $\beta<\alpha$ there exists β^{*} with $M_{\beta} \leq H_{\beta^{*}}$. Moreover if W is almost decreasing we assume that $\beta^{*}=\beta+n_{\beta}$ for some $n \in \mathrm{~N}$ with $n_{\beta}=0$ if β is a non-successor.

Suppose first that α is a limit ordinal. Put $\alpha^{*}=\bigcup_{\beta<\alpha} \beta^{*}$. Then α^{*} is an ordinal and

$$
M_{\alpha}=\bigcup_{\beta<\alpha} M_{\beta} \subseteq \bigcup_{\beta<\alpha} H_{\beta^{*}} \leq H_{\alpha^{*}}
$$

Moreover, if for all $\beta<\alpha, \beta^{*}=\beta+n_{\beta}$ for some $n_{\beta} \in \mathbb{N}$ then $b^{*}<\alpha^{*}$ and so $\alpha^{*}=\alpha$. So (b:a) and (b:b) hold for α.

Suppose next that $\alpha=\beta+k$ for some non-successor β and some $k \in \mathbb{Z}^{+}$. Since $\left(M_{\alpha}\right)_{\alpha}$ is hyper- $(\mathcal{X}(W), *), A / \mathrm{C}_{A}\left(M_{\alpha} / M_{\alpha-1}\right) \in \mathcal{X}(W)$ and so $A / \mathrm{C}_{A}\left(M_{\alpha} / M_{\alpha-1}\right) \in \mathcal{V}\left(W_{i}\right)$ for some $i \in \mathrm{Z}^{+}$. Thus $\left[M_{\alpha}, W_{i}(A)\right] \leq M \alpha-1$.

Assume that W is almost decreasing. By induction we may assume $M_{\alpha-1} \leq H_{\alpha-1+n_{\alpha-1}}$ for some $n_{\alpha-1} \in \mathbb{Z}^{+}$. Since W is almost decreasing there exists $n \in \mathbb{Z}^{+}$with $n \geq k+n_{\alpha-1}$ and $W_{n}(A) \leq W_{i}(G)$. Then

$$
\left[M_{\alpha}, W_{n}(A)\right] \leq\left[M_{\alpha}, W_{i}(A)\right] \leq M_{\alpha-1} \leq H_{\alpha-1+n_{\alpha-1}}=H_{\beta+k-1+n_{\alpha-1}} \leq H_{\beta+n-1}
$$

Since M_{α} and $H_{\beta+n-1}$ are normal in G, this gives $\left[M_{\alpha},\left\langle W_{n}(A)^{G}\right\rangle\right] \leq H_{\beta+n-1}$ and so $M_{\alpha} \leq H_{\beta+n}=H_{\alpha+n-k}$. Hence (b:b) holds with $n_{\alpha}=n-k$.

Assume next that W is not almost decreasing. Let γ be the smallest limit ordinal with $(\alpha-1)^{*} \leq \gamma$. Then

$$
\left[M_{\alpha}, W_{i}(G)\right] \leq M_{\alpha-1} \leq H_{(\alpha-1)^{*}} \leq H_{\gamma} \leq H_{\gamma+i-1}
$$

and so $M_{\alpha} \leq H_{\gamma+i}$. Thus (b:a) holds.
(c) Follows from (a) and (b).

If $W_{i}=\left\{x_{1}\right\}$ for all i, then $\mathcal{X}(W)=\mathcal{T}$ and so $\left(H_{\alpha}\right)_{\alpha}$ is a hypercentral series for A on $\operatorname{Hyp}^{W}(G, A)$. If $A=G$ acting by conjugation we write $\mathrm{Z}\left(G_{\alpha}\right)$ for $H_{\alpha} .\left(\mathrm{Z}\left(G_{\alpha}\right)_{\alpha}\right.$ is called the hypercentral series for G and $\left.\mathrm{Z}_{\text {Ord }}(G):=\operatorname{Hyp}^{W}(G, A)\right)$ is called the hypercenter of G. If $G=\mathrm{Z}_{\mathrm{Ord}}(G)$, then G is called hypercentral. Note that $\mathrm{Z}_{1}(G)=\mathrm{Z}(G), \mathrm{Z}_{2} / \mathrm{Z}(G)=$ $\mathrm{Z}\left(G / \mathrm{Z}_{2}(G)\right)$ and $\left.\mathrm{Z}_{\omega}(G)=\bigcup_{i<\omega} \mathrm{Z}_{i}(G)\right)$.

For a prime p let $\mathrm{C}_{p^{\infty}}=\left\{x \in \mathrm{C} \mid x^{p^{k}}=1\right.$ for some $\left.k \in \mathrm{~N}\right\}$. The set $\mathrm{C}_{p^{k}}$ of elements of order dividing p^{k} is a cyclic group of order p^{k}. So $\mathrm{C}_{p \infty}$ can is union of the countable sequence

$$
1 \leq \mathrm{C}_{p} \leq \mathrm{C}_{p^{2}} \leq \mathrm{C}_{p^{3}} \leq \ldots
$$

From $C_{p^{k+1}} / \mathrm{C}_{p} \cong \mathrm{C}_{p^{k}}$ we conclude that $\mathrm{C}_{p^{\infty}} / \mathrm{C}_{p} \cong \mathrm{C}_{p^{\infty}}$. So $\mathrm{C}_{p^{\infty}}$ is isomorphic to a proper quotient of itself.

Let $\tau \in \operatorname{Aut}\left(C_{p \infty}\right)$ with $x^{\tau}=x^{-1}=\bar{x}$ for all $x \in \mathrm{C}_{p \infty}$ and let $\mathrm{D}_{2 p^{\infty}}$ be the semidirect product of $\mathrm{C}_{p^{\infty}}$ with $\langle t a u\rangle$. Note that $\mathrm{D}_{2 p^{k}}:=\mathrm{C}_{p^{k}}\langle\tau\rangle$ is a dihedral group of order $2 p^{k}$. So

So $\mathrm{D}_{p^{\infty}}$ can be viewed as union of the countable sequence

$$
1 \leq \mathrm{D}_{p} \leq \mathrm{D}_{p^{2}} \leq \mathrm{D}_{p^{3}} \leq \ldots
$$

If p is odd, then $\mathrm{Z}\left(\mathrm{D}_{2 p^{\infty}}\right)=1$ and so also $\mathrm{Z}_{\mathrm{Ord}}\left(\mathrm{D}_{2 p^{\infty}}\right)=1$.
If $p=2$, then $\mathrm{Z}\left(\mathrm{D}_{2 p^{\infty}}\right)=\mathrm{C}_{2}$. Also $\mathrm{D}_{2 p^{\infty}} / \mathrm{C}_{2} \cong \mathrm{D}_{2 p^{\infty}}$ and inductively we conclude that

$$
\mathrm{Z}_{k}\left(\mathrm{D}_{2 p^{\infty}}\right)=\mathrm{C}_{p^{k}}
$$

for all $i>\omega$. Thus

$$
\mathrm{Z}_{\omega}\left(\mathrm{D}_{2 p^{\infty}}\right) \bigcup_{i \in \omega} \mathrm{C}_{p^{k}}=\mathrm{C}_{p^{\infty}}
$$

Since $\mathrm{D}_{2 p^{\infty}} / \mathrm{C}_{p^{\infty}} \cong\langle\tau\rangle=\mathrm{C}_{2}$ we have

$$
\mathrm{Z}_{\omega+1}\left(\mathrm{D}_{2 p^{\infty}}\right)=\mathrm{D}_{2 p^{\infty}}
$$

So $\mathrm{D}_{2 p^{\infty}}$ is hypercentral with hypercentral length $\omega+1$.
Define $\phi_{1}=x_{1}, \phi_{2}=\left[x_{1}, x_{2}\right], \phi_{3}=\left[\left[x_{1}, x_{2}\right],\left[x_{3}, x_{4}\right]\right]$ and so on. Also let $W_{i}=\left\{\phi_{i}\right\}$. Then $W_{i}(G)=G^{(i-1)}$, the $i-1^{\prime}$ 'th commutator group of W_{i}. So $\mathcal{X}(W)$ is the class of solvable groups. The series $\left(H_{\alpha}\right)_{\alpha}$ is called the hyper (solvable, ${ }^{*}$)-series for G.

Suppose p is odd. Then $W_{1}\left(\mathrm{D}_{2 p^{\infty}}\right)=\mathrm{D}_{2 p^{\infty}}, W_{2}\left(\mathrm{D}_{2 p^{\infty}}=\mathrm{D}_{2 p^{\infty}}^{\prime}=\mathrm{C}_{p^{\infty}}\right.$ and $W_{3}\left(\mathrm{D}_{2 p^{\infty}}\right)=$ $\mathrm{D}_{2 p^{\infty}}^{\prime \prime}=1$. So
$H_{1}=\mathrm{Z}\left(\bar{D} 2 p^{\infty}\right)=1, H_{2}=\left\langle\mathrm{C}_{D_{2 p^{\infty}}}\left(\mathrm{C}_{p^{\infty}}\right)=\mathrm{C}_{p^{\infty}}\right.$ and $H_{3}=\mathrm{D}_{2 p^{\infty}}$.
So $\mathrm{D}_{2 p^{\infty}}$ is a hyper-(solvable, ${ }^{*}$) group.
Lemma 1.4.13. [direct sums] Let \mathcal{X} be a class of groups and G an A - group. Suppose that there exists a hyper A-series \mathcal{N} on G such that for each factor E of \mathcal{N} there exists a G-invariant hyper- $\mathcal{X}-A$ series on E. Then A acts hyper- \mathcal{X} on G.

Proof. Let \mathcal{N} be a hyper A-series on F. By assumption and the axiom of choice, the exists a function $E \rightarrow \mathcal{N}_{E}$ which associates to each factor E of \mathcal{N} a G-invariant hyper $\mathcal{X}-A$-series on of E. If E is factor of \mathcal{N} then $E=T / B$ for a unique jump (B, T) of \mathcal{N}. Put

$$
\mathcal{M}_{E}=\left\{D \mid B \leq D \leq T, D / B \in \mathcal{N}_{E}\right\}
$$

and $\mathcal{M}=\mathcal{N} \cup \bigcup\left\{\mathcal{M}_{E} \mid E\right.$ a factor of \mathcal{N}.
Note that \mathcal{M} is a set.
$\mathbf{1}^{\circ}$. [0] Let (B, T) be a jump of $c N$ and $E=T / B$. Then \mathcal{M}_{E} is a G-invariant hyper $\mathcal{X}-A$ series from B to T.

Since \mathcal{N}_{E} is G-invariant hyper $\mathcal{X}-A$ series from 1 to E, this follows from the homomorphism theorems.

Recall that for $N \in \mathcal{N}, N^{-}=\bigcup\{E \in \mathcal{N} \mid E<N\}$. For each $D \in \mathcal{M}$ pick $\tilde{D} \in \mathcal{M}$ minimal with $D \leq \tilde{D}$.
$\mathbf{2}^{\circ}$. [.1] Let (B, T) be a jump of \mathcal{N} and $D \in \mathcal{M}$ with $B \leq D \leq T$. then either $D=B=\tilde{D}$ or $B \neq D$ and $(B, T)=\left(\tilde{D}^{-}, \tilde{D}\right)$.

If $D=B$, then $B=\tilde{D}$. So suppose $B<D \leq T$. Since $D \leq T$, the minimality of \tilde{D} gives $\tilde{D} \leq T$. So $B<\tilde{D} \leq T$ and since (B, T) is a jump, $\tilde{D}=T$. Hence $B=T^{-}=\tilde{D}^{-}$.
$\mathbf{3}^{\circ}$. [.2] $\quad D^{-} \leq D \leq \tilde{D}$ and either $D=\tilde{D}=\tilde{D}^{-}$or $D^{-}<D \leq \tilde{D}$ and $D \in \mathcal{M}_{\tilde{D} / \tilde{D}^{-}}$.
If $D \in \mathcal{N}$, then clearly $\tilde{D}=D$ and $\left(2^{\circ}\right)$ holds. So suppose $D \notin \mathcal{N}$. Then $D \in \mathcal{M}_{T / B}$ for some jump $(B, T) \in \mathcal{T}$. Then $B \leq D \leq T$ and since $D \notin \mathcal{N}, B \neq D$. So by $\left(3^{\circ}\right)$, $(B, T)=(\tilde{D}, \tilde{D})$ and $\left(3^{\circ}\right)$ holds.
4°. [1] \mathcal{M} is totally ordered.

Let $D, E \in \mathcal{M}$. Suppose first that $\tilde{D}=\tilde{E}$. Then $\tilde{D}^{-} \leq E \leq \tilde{D}$. If $\tilde{D}^{-}=\tilde{D}$ this gives $D=E$ and if $\tilde{D}^{-} \neq \tilde{D}$, then by ?? both D and E are in $\mathcal{M}_{\tilde{D} / \tilde{D}^{-}}$. So by $\left(1^{\circ}\right), D \leq E$ or $E \leq D$.

Now suppose that $\tilde{D} \neq \tilde{E}$ and without loss $\tilde{D}<\tilde{E}$. Then $D \leq \tilde{D} \leq \tilde{E}^{-} \leq E$ and so $D \leq E$.

Let \mathcal{D} be a non-empty subsets of \mathcal{M}.
5°. [2] \mathcal{D} has a minimal element D^{*}. In particular, $\bigcup \mathcal{D}=D^{*} \in \mathcal{M}$.
Let M be the minimal element of $\{\tilde{D} \mid D \in \mathcal{D}\}$ and pick $E \in \mathcal{D}$ with $M=\tilde{E}$. If $D \in \mathcal{D}$, then $M \leq \tilde{D}$ and since $\tilde{D}^{-} \leq D, M^{-} \leq D$. If $M^{-}=M$, then $E=M^{-}$and E is the minimal element of \mathcal{D}. If $M^{-} \neq M$, then by $\left(1^{\circ}\right)$ the non empty set $\left\{E \in \mathcal{D} \mid M^{-} \leq E \leq M\right\}$ has a minimal element D^{*}. But then D^{*} is also a minimal element of \mathcal{D}.
6. ${ }^{\circ}$ [3] $\cup \mathcal{D} \in \mathcal{M}$

Put $M=\bigcup_{D \in \mathcal{D}} \tilde{D}$. Then $M \in \mathcal{N}$. Let $E \in \mathcal{N}$ with $E<M$. The there exists $D \in \mathcal{D}$ with $\tilde{D} \not \leq E$. So $E<\tilde{D} \leq D$. It follows that $M^{-} \leq \bigcup \mathcal{D}$. If $M^{-}=\bigcup \mathcal{D}$ we are done. If $M^{-}=\bigcup \mathcal{D}$. Then $\mathcal{E}:=\left\{E \in \mathcal{D} \mid E \not \leq M^{-}\right\}$is not empty. Observe that $M^{-}<E \leq M$ for all $E \in \mathcal{E}$. Thus $\bigcup \mathbb{E}=\bigcup \mathcal{D}$ and $\mathcal{E} \in \mathcal{M}_{M / M^{-}}$. By $\left(1^{\circ}\right), \mathcal{M}_{M / M^{-}}$is closed under unions and so $\bigcup \mathcal{D}=\bigcup \mathcal{E} \in \mathcal{M}_{M / M^{-}} \subseteq \mathcal{M}$. Thus (6°) holds.
$\mathbf{7}^{\circ}$. [4] Let (B, T) be a jump of \mathcal{M}. Then (B, T) is jump of some \mathcal{M}_{E}, E a factor of \mathcal{N}. In particular, $B \unlhd T$ and T / B is an $\mathcal{X}-A$-group.

Suppose first that $\tilde{T}^{-} \neq T$. Then $\tilde{T}^{-}<T$ and since (B, T) is a jump of $\tilde{T}^{-} \leq B \leq T \leq$ \tilde{T}. Thus by $\left(3^{\circ}\right)$ both B and T are in $\mathcal{M}_{\tilde{T} / \tilde{T}^{-}}$and so (B, T) is a jump of $\mathcal{M}_{\tilde{T} / \tilde{T}^{-}}$

Suppose next that $\tilde{B} \neq B$. Then $B<\tilde{B}$ and since (B, T) is a jump $T \leq \tilde{B}$. Thus $B^{-} \leq T \leq B$ and so by $\left(3^{\circ}\right)$ both B and T are in $\mathcal{M}_{\tilde{B} / \tilde{B}^{-}}$and so (B, T) is a jump of $\mathcal{M}_{\tilde{B} / \tilde{B}^{-}}$.

Suppose finally that $\tilde{T}-=T$ and $\tilde{B}=B$. Then both B and T are in \mathcal{N} and so (B, T) is a jump of \mathcal{N}, but then $T^{-}=B \neq T$, a contradiction.

The lemma is now a direct consequence of $\left(4^{\circ}\right)-\left(7^{\circ}\right)$.
Lemma 1.4.14. [direct hyp]Let \mathcal{X} be a class of actions, A a group and G an A-group. Let $\left(G_{i}, i \in I\right)$ a non empty family normal hyper- $\mathcal{X}-A$ groups of G with $G=\left\langle G_{i} \mid i \in I\right\rangle$. Suppose that either \mathcal{X} is \mathbf{H} closed or $G=\bigoplus_{i \in I} G_{i}$. Then G is a hyper- \mathcal{X} - A-group.

Proof. Without loss $G_{i} \neq 1$ for all $i \in I$. Pick $m \in I$ and choose some well ordering on $I \backslash m$. Well order I such that I has a maximal element. For $i \in I$ define $G_{i}^{+}=\left\langle G_{j} \mid j \leq i\right\rangle$ and $G_{i}^{-}=\left\langle G_{j} \mid j<i\right\rangle$. We claim that $\mathcal{N}=\left\{G_{i}^{-}, G_{i}^{+} \mid i \in I\right\}$ is hyper A-series on $\bigoplus_{i \in I} G_{i}$ with factors all the $G_{i}^{+} / G_{i}^{-} \cong G_{i} / G_{i} \cap G_{i}^{-}$, where $i \in I$ with $G_{i} \not \leq G_{i}^{-}$.

Let $i<j \in I$. Then $G_{i}^{-} \leq G_{i}^{+} \leq G_{j}^{-} \leq G_{j}^{+}$and so \mathcal{N} is totally ordered. Let \mathcal{M} be non-empty subset of \mathcal{N}. Let i be minimal in I with $G_{i}^{\epsilon} \in \mathcal{D}$ for some $\epsilon \in\{ \pm\}$. If $G_{i}^{-} \in \mathcal{N}$ choose $\epsilon=-$. Then G_{i}^{ϵ} is the minimal element of \mathcal{M} and $G_{i^{\epsilon}}=\bigcup \mathcal{D}$.

Next let k be minimal with $\bigcup \mathcal{D} \leq G_{k}^{+}$. Let $i<k$. Then $\bigcup \mathcal{D} \nsubseteq G_{i}^{+}$and so the exists $j \in I$ and $\delta \in\{ \pm\}$ with $G_{j}^{\delta} \in \mathcal{D}$ and $G_{j}^{\delta} \not \leq G_{i}^{+}$. Thus $i \leq j$ and so $G_{i}^{-} \leq G_{j}^{\delta} \leq \bigcup \mathcal{D}$.

Suppose first that $\{l \in I \mid l<k\}$ has no maximal element. Let $g=\prod_{i \in I} g_{i} \in G_{k}^{-}$(where $g_{i} \in G_{i}$ and only finitely many g_{i} are non trivia. Let t be maximal with $g_{t} \neq 1$. Then $t<l$ and so there exists $l \in I$ with $t<l<k$. Then $g \in G_{t}^{-} \leq \bigcup \mathcal{D}$. Hence $G_{k}^{-} \leq \bigcup \mathcal{D} \leq G_{i}^{+}$. If $G_{k}^{+} \in \mathcal{D}$ we get $\bigcup \mathcal{D}=G_{k}^{+}$and if $G_{k}^{+} \notin \mathcal{D}$ we get $\bigcup \mathcal{D}=G_{k}^{-}$.

Suppose $\{l \in I \mid l<k\}$ has maximal element j. Since $\bigcup \mathcal{D} \not \leq G_{j}^{+}$we must have $G_{k}^{-} \in \mathcal{D}$ or $G_{k}^{+} \in \mathcal{D}$. In either case we again have $\bigcup \mathcal{D}=G_{k}^{+}$and $\bigcup \mathcal{D}=G_{k}^{-}$.

Thus \mathcal{N} is closed under unions. Let $D \in \mathcal{N}$ with $D \neq D^{-}:=\{\bigcup E \in \mathcal{N} \mid E<D\}$. Pick $k \in I$ minimal with $D=G_{k}^{\epsilon}$ for some $\epsilon \in\{p m\}$, where we choose $\epsilon=-$ if $D=G_{k}^{-}$for some $\epsilon \in\{ \pm\}$. By minimality of $k, G_{j}^{+}<D$ for all $j<k$. Thus

$$
G_{k}^{i}=\left\langle G_{j} \mid j<k\right\rangle \leq\left\langle G_{j}^{+} \mid j<k\right\rangle \leq D^{-}
$$

In particular, $G_{k}^{-}<D$ and so $G_{k}^{-}=D^{-}, D=G_{k}^{+}, G_{k} \not \leq G_{k}^{-}$and

$$
D / D^{-} \cong G_{k}^{+} / K_{k}^{-}=G_{k} G_{k}^{-} / G_{k}^{-} \cong G_{k} / G_{k} \cap G_{k}^{-}
$$

Conversely if $k \in I$ with $G_{k} \not \leq G_{k}^{-}$, then $\left(G_{k}, G_{k}^{-}\right)$is clearly a jump of \mathcal{N}.
This proves the claim. If \mathcal{X} is \mathbf{H} closed then by ??(??), $G_{k} / G_{k} \cap G_{k}^{-}$is an hyper $\mathcal{X}-A$ group. If $G=\bigoplus_{i \in I} G_{i}$, then $G_{k} / G_{k} \cap G_{k}^{-} \cong G_{k}$. So again $G_{k} / G_{k} \cap G_{k}^{-}$is an hyper $\mathcal{X}-A$ group. In either case 1.4.13 completes the proof.

Proposition 1.4.15. [residually g] Let \mathcal{X} be any class of groups.
(a) [a] Suppose \mathcal{X} is closed under quotients. Then hypercentral-by- \mathcal{X} groups are hyper$(\mathcal{X}, *)$ and nilpotent-by- \mathcal{X} groups are poly- $(\mathcal{X}, *)$.
(b) [b] Hyper- $(\mathcal{X}, *)$ groups are hypercentral-by- $\mathbf{R} \mathcal{X})$. If \mathcal{X} is closed under finite subdirect products then poly- $(\mathcal{X}, *)$-groups are nilpotent-by- \mathcal{X}.
(c) [c] If \mathcal{X} is closed under quotients and finite subdirect products, then the nilpotent-by-\mathcal{X}-groups are exactly the finitely hyper- $(\mathcal{C} G, *)$ groups.
Proof. (a) Let $H \unlhd G$ such that H is hypercentral and $G / H \in \mathcal{X}$. Let \mathcal{Z} be the hypercentral series for H. Then \mathcal{Z} is G-invariant. If Z is a factor of \mathcal{Z}, then $[Z, H]=1$ and so $G / C_{G}(Z)$ is a quotient of G / H. Thus $G / C_{G}(Z) \in \mathcal{X}$. Also $G / C_{G}(G / H)$ is a quotient of G / H and so $\mathcal{Z} \cup\{G\}$ is a hyper- $(\mathcal{X}, *)$ series for G. If H is nilpotent, \mathcal{Z} is finite and (a) is proved.
(b) Let $\mathcal{M}=\left(M_{\alpha}\right)_{\alpha}$ be a hyper- $(\mathcal{X}, *)$-sequence for G and put

$$
H=\bigcap\left\{C_{G}(E) \mid E \text { a factor of } \mathcal{M}\right\}
$$

Since $G / C_{G}(E) \in \mathcal{X}$ for all factors E of $\mathcal{M}, G / H$ is subdirect product of \mathcal{X}-groups and so an $\mathbf{R} \mathcal{X}$-group. Moreover $\left(M_{\alpha} \cap H\right)_{\alpha}$ is a hypercentral series for H and so H is hypercentral. If \mathcal{M} is finite and \mathcal{X} is closed under finite subdirect products, then $G / H \in \mathcal{X}$ and H polycentral, that is nilpotent. So (b) holds.
(c) Follows from (a) and (b).

Proposition 1.4.16. [hyper gw] Let \mathcal{V} be a variety and W a set of words with $\mathcal{V}=\mathcal{V}(W)$. Let G be a group. Then the following are equivalent
(a) $[\mathbf{a}] G$ is hyper- $(\mathcal{V}), *)$ group.
(b) $[\mathbf{b}] G$ is hypercentral by \mathcal{V}.
(c) $[\mathbf{c}] W(G)$ is a hypercentral group.

Proof. $(\mathrm{a}) \Longrightarrow(\mathrm{b})$: \quad Suppose G is hyper- $(\mathcal{V}), *)$. Then by 1.4.15 G is hypercentral by $\mathbf{R} \mathcal{V}$. Since varieties are \mathbf{R}-closed, G is hypercentral by \mathcal{V}.
$(\mathrm{b}) \Longrightarrow(\mathrm{c})$: \quad Suppose M is a normal subgroup of G such that M is hypercentral and $G / M \in \mathcal{V}$. Then $W(G / M)=1$ and so $W(G) \leq M$. Since subgroups of hypercentral groups are hypercentral, $W(G)$ is hypercentral.
$(\mathrm{c}) \Longrightarrow(\mathrm{b}): \quad$ Note that $G / W(G) \in \mathcal{V}$. So if $W(G)$ is hypercentral G is hypercentral by \mathcal{V}.
$(\mathrm{b}) \Longrightarrow(\mathrm{a}): \quad$ If G is hypercentral by \mathcal{V}, then by $1.4 .15 G$ is $\operatorname{hyper}-(\mathcal{V}, *)$.
Definition 1.4.17. [almost decreasing] Let $W=\left(W_{i}\right)_{i=1}^{\infty} \in \mathcal{P}(F)^{\infty}$ be a sequence of sets of words.
(a) [a] W is decreasing if $W_{i+1}(F) \leq W_{i}(F)$ for all i.
(b) [b] W is almost decreasing if for all $i, j \in \mathbb{Z}^{+}$there exists $k \geq j$ with $W_{k}(F) \leq W_{i}(F)$.
(c) $[\mathbf{c}] \mathcal{X}(W)=\bigcup_{i=1}^{\infty} \mathcal{V}\left(W_{i}\right)$.

Lemma 1.4.18. [trivial dec] Let G be group.
(a) $[\mathbf{a}]$ Let $V, W \in \mathcal{P}(W)$ with $V(F) \leq W(V)$. Then $V(G) \leq W(G)$.
(b) [b] Let $W \in \mathcal{P}(W)^{\infty}$ be almost decreasing. Then $\left(W_{i}(G)\right)_{i=1}^{\infty}$ is almost decreasing, that is for $i, j \in \mathbb{Z}^{+}$there exists $k \geq j$ with $W_{k}(G) \leq W_{i}(G)$.
Proof. (a) Let $g \in V(G)$. Then $g \in V(H)$ for some finitely generated subgroup H of G. Let $\alpha: F \rightarrow H$ be an onto homomorphism. Then

$$
g \in V(H)=V(\alpha(F))=\alpha(V(F)) \leq \alpha(W(F)))=W(\alpha(F))=W(H) \leq W(G)
$$

and so $V(G) \leq W(G)$.
(b) follows from (a).

Definition 1.4.19. [def:outer]

(a) $[\mathbf{a}]$ For $i=1,2$ let w_{i} be a word and $m_{i}=m\left(w_{i}\right)$. Put

$$
\left\lceil w_{1}, w_{2}\right\rceil:=\left[w_{1}\left(\left(x_{i}\right)_{i=1}^{m_{1}}\right), w_{2}\left(\left(x_{m_{1}+i}\right)_{i=1}^{m_{2}}\right)\right] \in F\left(m_{1}+m_{2}\right)
$$

$\left\lceil w_{1}, w_{2}\right\rceil$ is called the outer commutator of w_{1} and w_{2}.
(b) [c] Let $w \in F^{n}, n \in \mathbb{N} \cup\{\infty\}$. Then $\check{w} \in F^{n+1}$ is inductively defined as follows: $\check{w}_{1}=x_{1}$ and $\check{w}_{i+1}=\left\lceil\check{w}_{i}, w_{i}\right\rceil$.
(c) [d] Let $W \in \mathcal{P}(W)^{n}, n \in \mathbb{N} \cup\{\infty\}$. Then $\breve{W} \in \mathcal{P}(W)^{n+1}$ is inductively defined as follows: $\quad \breve{W}_{1}=\left\{x_{1}\right\}$ and $\check{W}_{i+1}=\left\{\lceil v, w\rceil \mid v \in \check{W}_{i}, w \in W_{i}\right\}$.
For example, $\left\lceil x_{1} x_{2}^{3}, x_{1} x_{2}^{2}\right\rceil=\left[x_{1} x_{2}^{3}, x_{3} x_{4}^{2}\right]$. Note that $m\left(\left\lceil w_{1}, w_{2}\right\rceil\right)=m_{1}+m_{2}$. Also $\check{W}_{i+1}=\left\{\check{w}_{i+1} \mid w \in X_{j=1}^{i} W_{j}\right\}$. To improve readability we sometimes write \check{w} for \check{w}.
Lemma 1.4.20. [basic check] Let G be a group, $w \in F^{\infty}, g \in G^{\infty}$ and $i \in \mathbb{Z}^{+}$.
(a) $[\mathbf{c}]$ Put $n=m\left(\check{w}_{i}\right)$ and $m=m\left(w_{i}\right)$. Then

$$
\check{w}_{i+1}(g)=\left[\check{w}_{i}(g), w_{i}\left(\left(g_{n+j}\right)_{j=1}^{m}\right)\right] .
$$

(b) [b] Let $N \unlhd G$. If $\check{w}_{i}(g) \in N$ then also $\check{w}_{j}(g) \in N$ for all $j \geq i$.
(c) $[\mathbf{a}]$ Let $W \in \mathcal{P}(W)^{\infty}$. Then $\left.\breve{W}_{i+1}(G)=\breve{W}_{i}(G), W_{i}(G)\right] \leq \check{W}_{i}(G) \cap W_{i}(G)$.

In particular, \check{W} is decreasing.
Proof. (a) By definition $\check{w}_{i+1}=\left\lceil\check{w}_{i}, w_{i}\right\rceil$. So (a) follows from the definition of the outer commutator.
(b) and (c) follow from (a).

Definition 1.4.21. [def:h words]

(a) [a] Let $W \in \mathcal{P}(F)^{\infty}$. Then $\operatorname{Hyp}(W)$ is the class of groups G such that for all $g \in G^{\infty}$ and all $w \in X_{i=1}^{\infty} W_{i}$ there exists $n \in \mathbb{Z}^{+}$with $\check{w}_{n}(g)=1$.
(b) [b] Let \mathcal{X} be a class of actions. Then $\operatorname{Hyp} \mathcal{X}$ is the class of hyper- $\mathcal{X} D$-groups. Poly \mathcal{X} is the class of Poly- \mathcal{X}-groups.
Lemma 1.4.22. [cX check] Let $W \in \mathcal{P}(F)^{\infty}$. Then for all $i \in \mathrm{Z}^{+}, \mathcal{V}\left(W_{i}\right) \leq \mathcal{V}\left(\check{W}_{i+1}\right)$. In particular, $\mathcal{X}(W) \subseteq \mathcal{X}(\breve{W})$.
Proof. Let $G \in \mathcal{V}\left(W_{i}\right)$. Then $W_{i}(G)=1$. Hence by ??(??) $\check{W}_{i+1}(G)=\left[\check{W}_{i}(G), W_{i}(G)\right]=1$ and so $G \in \mathcal{V}\left(\check{W}_{i=1}\right)$. It follows

$$
\mathcal{X}(W)=\bigcup_{i=1}^{\infty} \mathcal{V}\left(W_{i}\right) \subseteq \bigcup_{i=1}^{\infty} \mathcal{V}\left(\check{W}_{i+1}\right) \subseteq \mathcal{X}(\check{W})
$$

Theorem 1.4.23. [h and check] Let $W \in \mathcal{P}(F)^{\infty}$. Then
(a) $[\mathbf{a}] \mathcal{X}(\check{W}) \subseteq \operatorname{Poly}(\mathcal{X}(W), *)$ with equality if W is almost decreasing.
(b) $[\mathbf{b}] \operatorname{Hyp}(W) \subseteq \operatorname{Hyp}(\mathcal{X}(W), *)$ with equality if W is almost decreasing.

Proof. (a) Suppose $G \in \mathcal{X}(\check{W})$. Then $G \in \mathcal{V}\left(\check{W}_{n}\right)$ for some $n \in \mathrm{Z}^{+}$. Thus $\check{W}_{n}(G)=1$. Then by 1.4.20(c) we obtain a finite series

$$
\begin{equation*}
1=\check{W}_{n}(G) \leq \check{W}_{n-1}(G) \leq \ldots \leq \check{W}_{2}(G) \leq \check{W}_{1}(G)=G \tag{*}
\end{equation*}
$$

there the last equality holds since $\left.\check{(} W_{1}\right)=\left\{x_{1}\right\}$.
Observe that $\left[\check{W}_{i}(G), W_{i}(G)\right] \leq \check{W}_{i+1}(G)$ and so $W_{i}(G) \leq C_{G}\left(\breve{W}_{i+1}(G) / \breve{W}_{i}(G)\right.$. Hence

$$
G / C_{G}\left(\check{W}_{i+1}(G) / \check{W}_{i}(G) \in \mathcal{V}\left(W_{i}\right) \subseteq \mathcal{X}(W)\right.
$$

and $\left({ }^{*}\right)$ is a poly $(\mathcal{X}(W), *)$-series. Thus the first statement in (a) holds.
To prove the first statement in (b), let G be a group which is not hyper- $(\mathcal{X}(W), *)$. We will show that G is also not contained in $\operatorname{Hyp}(\mathscr{W})$. Since every strongly hyper $(\mathcal{X}(W), *)$ group is hyper $(\mathcal{X}(W), *)$ (see ??) we conclude that there there exists $N \triangleleft G$ such $N^{*} / N=1$, whenever $N \leq N^{*} \unlhd G$ with $\left(G / C_{G}\left(N^{*} / N\right), N^{*} / N\right) \in(\mathcal{X}(W), *)$. This implies

$$
\begin{equation*}
\mathrm{C}_{G / N}\left(W_{n}(G)\right)=1 \text { for all } n \in \mathbb{Z}^{+} \tag{*}
\end{equation*}
$$

Let $g_{1} \in G \backslash N$. Note that $x_{1}\left(g_{1}\right)=g_{1} \notin N$. Suppose inductively that we already found $\left(g_{i}\right)_{i=1}^{n_{k}} \in G^{n_{k}}$ and $w_{i} \in W_{i}, 1 \leq i<k$ with $\check{w}_{k}\left(\left(g_{i}\right)_{i=1}^{n_{k}}\right) \notin N$, where $\left.\left(\check{w}_{i}\right)_{i=1}^{k}\right)=\left(w_{i}\right)_{i=1}^{k-1}$. Then by $\left(^{*}\right)\left[\check{w}_{k}\left(\left(g_{i}\right)_{i=1}^{n_{k}}\right), W_{k}(G)\right] \not \leq N$ and there exist $w_{k} \in W_{k}$ and $\left(g_{n_{k}+j}\right)_{j=1}^{m\left(w_{k}\right)} \in G^{m\left(w_{k}\right)}$ with $\left[\check{w}_{k}\left(g_{i}\right)_{i=1}^{n_{k}}, w_{k}\left(\left(g_{n_{k}+j}\right)_{j=1}^{m\left(w_{k}\right)}\right)\right] \notin N$. Put $n_{k+1}=n_{k}+m\left(w_{k}\right)$. Then by 1.4.20(a),

$$
\check{w}_{k+1}\left(\left(g_{i}\right)_{i=1}^{n_{k+1}}\right) \notin N .
$$

where $w_{k+1}=\left\lceil\check{w}_{k}, w_{k}\right\rceil$. Put $g=\left(g_{i}\right)_{i=1}^{\infty}$ and $w=\left(w_{i}\right)_{i=1}^{\infty}$. Then $\check{w}_{k}(g) \neq 1$ for all k and so $G \notin \operatorname{Hyp}(W)$. Thus $\operatorname{Hyp}(W) \subseteq \operatorname{Hyp}(\mathcal{X}(W), *)$.

Suppose next that W is almost decreasing. We will prove the second assertions in (a) and (b) simultaneously. Let G be hyper- $(\mathcal{X}(W), *)$ and and let $\left(M_{\alpha}\right)_{\alpha \leq \rho}$ be any hyper$(\mathcal{X}(W), *)$ sequence on G, with ρ finite in proof of (a). For the proof of (a) ρ let $V_{i}=W_{i}$ and $H_{i}=G$ for all $i \in \mathrm{Z}^{+}$. For the proof of (b) let $g \in G^{\infty}, w \in \times_{i=1}^{\infty} W_{i}$ infinite pick $w_{i} \in W_{i}$ and $g_{i} \in G$ and put $H_{i}=\left\{g_{i}\right\}$ and $V_{i}=\left\{w_{i}\right\}$

Let $g \in X_{i=1}^{\infty} H_{i}$ and $w \in X_{i=1}^{i} n f t y V_{i}$. Then $\check{w}_{1}\left(g_{1}\right)=g_{1} \in G=A_{\rho}$. So we can choose an ordinal α minimal such that there exists $n \in \mathbb{Z}^{+}$with $\check{w}_{n}(g) \in G_{\alpha}$ for all $w \in X_{i=1}^{\infty} V_{i}$ and $g \in X_{i=1}^{\infty} H_{i}$.

We will show that $\alpha=0$. Suppose for $\alpha=\beta+1$ for some ordinal β. Since $G / C_{G}\left(A_{\alpha} / A_{\beta}\right) \in$ $\mathcal{X}(W)$, there exists $m \in \mathbb{Z}^{+}$with $\left[M_{\alpha}, W_{m}(G)\right] \leq M_{\beta}$. Since W is almost decreasing we may assume $m \geq n$. Let $w \in X_{i=1}^{\infty} V_{i}$. Then $\check{w}_{n}(g) \in M_{\alpha}$ and $m \geq n$. So by 1.4.20(b), $\check{w}_{m}(g) \in M_{\alpha}$. Hence

$$
\check{w}_{m+1}(g) \in\left[\check{w}_{m}(g), W_{m}(G)\right] \leq\left[M_{\alpha}, W_{m}(G)\right] \leq A_{\beta}
$$

for all $w \in X_{i=1}^{\infty} V_{i}$ and $g \in X_{i=1}^{\infty} H_{i}$, a contradiction to the minimal choice of α. Thus α is a limit ordinal.

Suppose that $\alpha \neq 0$. Then ρ is infinite and so by our choice of $V_{i},\left|V_{i}\right|=1$ and there exists a unique $w \in X_{i=1}^{\infty} V_{i}$. Since $M_{\alpha}=\bigcup_{\beta<\alpha} M_{\beta}$ there exists $\beta<\alpha$ with $\check{w}_{n}(g) \in A_{\beta}$, a contradiction to the choice of α.

Thus $\alpha=0$ and so $\breve{w}_{n}(g)=1$ for all $w \in X_{i=1}^{\infty} V_{i}$.
If ρ is finite, $V_{i}=W_{i}$ and $H_{i}=G_{i}$. Thus $\mathscr{W}_{n}(G)=1$ and $G \in \mathcal{X}(\mathscr{W})$. So (a) is proved. In any case, $\check{w}_{n}(g)=1$ shows that $G \in \operatorname{Hyp}(W)$ and (b) holds.

The following example shows that the inclusions in 1.4.23 may be proper if W is not almost decreasing:

Let $G=\operatorname{Sym}(3), x=x_{1}, W_{1}=\left\{x^{2}\right\}$ and $W_{i}=\{x\}$ for $i \geq 2$. Then $w=\left(x^{2}, x, x, x, \ldots\right)$ is the unique element in $X_{i=1}^{\infty} W_{i}$. Also $1 \leq \operatorname{Alt}(3) \leq \operatorname{Sym}(3)$ is a finite hyper- $(\mathcal{X}(W), *)$ series. Thus $\operatorname{Sym}(3) \in \operatorname{Poly}(\mathcal{X}(W), *) \subseteq \operatorname{Hyp}(\mathcal{X}(W), *)$.

Put $g=((12),(123),(12),(12),(12), \ldots)$. Then $\breve{w}_{1}(g)=g_{1}=(12), \breve{w}_{2}(g)=\left[(12),(123)^{2}\right]=$ $(123), \breve{w}_{3}(g)=[(123),(12)]=(123)$ and so for all $n \geq 2, \breve{w}_{n}(g)=(123)$. Thus $w_{n}(g) \neq 1$ for all n and $\operatorname{Sym}(3) \notin \operatorname{Hyp}(\check{W})$. Since $\mathcal{X}(\check{W}) \subseteq \operatorname{Hyp}(\check{W})$ we see that $\mathcal{X}(\check{W}) \neq \operatorname{Poly}(\mathcal{X}(W), *)$ and $\operatorname{Hyp}(\check{W}) \neq \operatorname{Hyp}(\mathcal{X}(W, *)$.

Lemma 1.4.24. [char hyp] Let $W \in \mathcal{P}(F)^{\infty}$. Then there exists $V \in \mathcal{P}\left(F^{\infty}\right.$ such that
(a) $[\mathbf{a}] \mathcal{X}(W)=\mathcal{X}(V)$.
(b) $[\mathbf{b}] V$ is almost decreasing
(c) $[\mathbf{c}] \operatorname{Poly}(\mathcal{X}(W), *)=\mathcal{X}(\check{V})$.
(d) $[\mathbf{d}] \operatorname{Hyp}(\mathcal{X}(W), *)=\operatorname{Hyp}(V)$.

Proof. Define

$$
V=\left(W_{1}, W_{1}, W_{2}, W_{1}, W_{2}, W_{3}, W_{1}, W_{2}, W_{3}, W_{4}, W_{1}, \ldots\right)
$$

Then clearly V is almost decreasing. For any $W \mathcal{X}(W)$ only depends on $\left\{W_{i} \mid i \in \mathbb{Z}^{+}\right\}$and so $\mathcal{X}(W)=\mathcal{X}(V)$. Thus by 1.4.23

$$
\mathcal{X}(\check{V})=\operatorname{Poly}(\mathcal{X}(W), *) \text { and } \operatorname{Hyp}(V)=\operatorname{Hyp}(\mathcal{X}(W), *) .
$$

Next we will give an example of a sequence $W \in \mathcal{P}(F)^{\infty}$, a group $G \in \operatorname{Hyp}(\mathcal{X}(W), *)$, $g \in G^{\infty}$ and $v \in X_{i=1}^{\infty} \check{W}_{i}$ such that $v_{n}(g) \neq 1$ for all $n \in \mathrm{Z}^{+}$. (Note that this does not contradict ?? since our v will not be of the form $v=\check{w}$ for some $w \in \times_{i=1}^{\infty} W_{i}$.

Put $W_{1}=\left\{x_{i} \mid i \in \mathrm{Z}^{+}\right.$and for $i \geq 2$ put $W_{i}=\left\{x_{1}\right\}$. The for all $\left.i \in \mathrm{Z}^{+}, \mathcal{V}(W) i\right)=\mathcal{T}$, the class of trivial groups. Hence also $\mathcal{X}(W)=\mathcal{T}$ and $\operatorname{Hyp}(\mathcal{X}(W), *)$ is the class of hypercentral groups. Put $G=\mathrm{D}_{22^{\infty}}=\mathrm{C}_{2 \infty}\langle\tau\rangle$. As seen before G is hypercentral group. Let $h_{i} \in \mathrm{C}_{2 \infty}$ with $\left|h_{i}\right|=2^{i}$ and put $g_{i}=h_{i} \tau$.

Note that $\check{W}_{1}=\left\{x_{1}\right\}, \mathscr{W}_{2}=\left\{\left\lceil x_{1}, x_{i}\right\rceil \mid i \in \mathrm{Z}^{+}\right\}=\left\{\left[x_{1}, x_{k}\right] \mid 2 \leq k \in \mathrm{Z}^{+}\right\}$and for any $i \geq 2$,

$$
\check{W}_{i}=\left\{\left[x_{1}, x_{k}, x_{k+1}, \ldots x_{k+i-2}\right] \mid 2 \leq k \in \mathrm{Z}^{+}\right\}
$$

Define $v_{1}:=x_{1}$ and for $i \geq 0$:

$$
v_{i}:=\left[x_{1}, x_{2 i}, x_{2 i+1}, \ldots, x_{3 i-2}\right]
$$

and $v_{i} \in \check{W}_{i}$ for all $i \in \mathrm{Z}^{+}$.
Define $g_{i, 0}:=\left[g_{1}, g_{i}\right]$ and inductively $g_{i, j}:=\left[g_{i, j-1}, g_{i+j}\right]$. Then $v_{i}(g)=g_{i, i-2}$. We will show by induction in j, that $g_{i, j}$ has order 2^{i-j-1}.

For $j=0$,

$$
g_{i, 0}=\left[g_{1}, g_{i}\right]=g_{1}^{-1} g_{i}^{-1} g_{1} g_{i}=\tau^{-1} h_{1}^{-1} \tau^{-1} h_{i}^{-1} h_{1} \tau h_{2 i} \tau=h_{1} h_{i}^{-1} h_{1} h_{i}^{-} 1=h_{i}^{-2}
$$

and $g_{i, 0}$ has oder 2^{i-1}. Suppose inductively that $g_{i, j}$ has order 2^{i-j-1} and $g_{i, j} \in \mathrm{C}_{2 \infty}$. Then g_{i+j+1} inverts $g_{i, j}$ via conjugation and so

$$
g_{i, j+1}=\left[g_{i, j}, g_{i+j+1}\right]=g_{i, j}^{-1} g_{i, j}^{-1}=g_{i, j}^{-2}
$$

Thus $g_{i, j+1} \in \mathrm{C}_{2} \infty$ and $g_{i, j+1}$ has order $2^{i-j-2}=2^{i-(j+1)-1}$.
In particular $v_{i}(g)=g_{i, i-2}$ has order $2^{i-(i-2)-1}=2$. Thus $v_{i}(g) \neq 1$ for all $i \geq 2$. Also $v_{1}(g)=g_{1}=\tau h_{1} \neq 1$ and so $v_{i}(g) \neq 1$ all $i \in \mathrm{Z}^{+}$.
Definition 1.4.25. [def:phi]
(a) $[\mathbf{a}] \tau(0)=\left(x_{1}\right)_{i=1}^{\infty}$ and inductively $\tau(i+1)=\tau(i)^{\sim}$.
(b) $[\mathbf{d}] \phi$ is the unique sequence of words with $\phi=\check{\phi}$. So $\phi_{1}=x_{1}$ and inductively $\phi_{i+1}=$ $\left\lceil\phi_{i}, \phi_{i}\right\rceil$.

It might be worthwhile to list the first few terms of the above sequence of words:

$$
\begin{array}{rrrrr}
\tau(0): & x_{1} & x_{1} & x_{1} & x_{1} \\
\tau(1): & x_{1} & {\left[x_{1}, x_{2}\right]} & {\left[\left[x_{1}, x_{2}\right], x_{3}\right]} & {\left[\left[\left[x_{1}, x_{2}\right], x_{3}\right], x_{4}\right]} \\
\tau(2): & x_{1} & {\left[x_{1}, x_{2}\right]} & {\left[\left[x_{1}, x_{2}\right],\left[x_{3}, x_{4}\right]\right]} & \left.\left[\left[\left[x_{1}, x_{2}\right],\left[x_{3}, x_{4}\right]\right],\left[\left[x_{5}, x_{6}\right], x_{7}\right]\right]\right] \\
\phi: & x_{1} & {\left[x_{1}, x_{2}\right]} & {\left[\left[x_{1}, x_{2}\right],\left[x_{3}, x_{4}\right]\right]} & {\left[\left[\left[x_{1}, x_{2}\right],\left[x_{3}, x_{4}\right]\right],\left[\left[x_{5}, x_{6}\right],\left[x_{7}, x_{8}\right]\right]\right]}
\end{array}
$$

Lemma 1.4.26. [gw]
(a) [a] Let $\mathcal{T}(0)$ be the class of trivial groups and inductively let $\mathcal{T}(n+1)$ be the class of nilpotent-by- $\mathcal{T}(n)$ groups. Then $\mathcal{X}(\tau(n))=\mathcal{N}(n)$. In particular, $\mathcal{X}(\tau(1))$ the class of nilpotent groups.
(b) $[\mathbf{b}] \mathcal{V}\left(\phi_{i}\right)$ the class of solvable groups of derived length less than i. $\mathcal{X}(\phi)$ is the class of solvable groups.
(c) $[\mathbf{c}] \operatorname{Hyp}(\tau(i))$ is the class of hyper $(\mathcal{T}(i), *)$-groups. In particular, $\operatorname{Hyp}(\tau(0))$ is the class of hypercentral groups, and $\mathcal{T}(1)$ is the class of hyper-(nilpotent,*) groups.
(d) $[\mathbf{d}] \operatorname{Hyp}(\phi)$ is the class of hyper (solvable, *) groups.

Proof. (a) Let $w \in F^{\infty}$ be almost decreasing. By 1.4.23(a), $\mathcal{X}(\check{w})=\operatorname{Poly}(\mathcal{X}(w), *)$ and so by 1.4.15(c):

$$
\begin{equation*}
\mathcal{X}(\check{w}) \text { is the class of nilpotent-by- } \mathcal{X}(w) \text { groups. } \tag{*}
\end{equation*}
$$

Clearly $\mathcal{X}(\tau(0)))$ is the class of trivial groups. Since $\left.\tau(1)=\tau(0)^{\check{ }},{ }^{(}{ }^{*}\right)$ says that $\mathcal{X}(\tau(1))$ is the class of nilpotent-by-trivial groups and $\mathcal{X}(\tau(1))=\mathcal{T}(1)$. Inductively suppose that $\mathcal{X}(\tau(n))=\mathcal{T}(n)$. Then $\left({ }^{*}\right)$ implies that $\mathcal{X}(\tau(n+1))$ is the class of nilpotent-by- $\mathcal{T}(n)$ groups. Thus $\mathcal{X}(\tau(n+1))=\mathcal{T}(n+1)$ and (a) holds.
(b) We have $G=x_{1}(G)=\phi(G)={ }^{G} 0$ and so inductively

$$
\phi_{i+1}(G)=\left[\phi_{i}(G), \phi_{i}(G)\right]=\left[{ }_{i}-1,{ }_{i}{ }_{i}-1\right]={ }^{G}{ }_{i} .
$$

Hence $\mathcal{X}\left(\phi_{i}\right)$ is the class of solvable groups of derived length less than i and (b) holds.
By ??(??), $\operatorname{Hyp}(\tau(n))=\operatorname{Hyp}(\mathcal{X}(\tau(n), *)$. So rf c follows from (a).
By ??(??), $\operatorname{Hyp}(\phi)=\operatorname{Hyp}(\mathcal{X}(\phi), *)$. So rf d follows from (b).
We will now construct various examples of groups which are hyper- $(\mathcal{X}, *)$ for some class of groups \mathcal{X}. By 1.4.15 we know that any such group is hypercentral-by-(residually \mathcal{X}). The next proposition gives a partial converse:
Example 1.4.27. [main construction] Let \mathcal{X} be a class of groups, $\left(H_{i}, i \in I\right)$ a family of \mathcal{X}-groups and H a subdirect product of $\left(H_{i}, i \in I\right)$. For $i \in I$ let A_{i} be an H_{i}-group. Suppose that
(i) $[\mathbf{a}] H$ is hyper $-(\mathcal{X}, *)$.
(ii) [b] For each $i \in I, A_{i}$ is abelian and H_{i} acts faithfully on A_{i}.
(iii) [c] For each $1 \neq N \unlhd H$, there exists $i \in I$ such that N does not act hypercentrally on A_{i}.

Put $A=\bigoplus A_{i}$. Note that H acts on A_{i} via its projection onto H_{i} and so also acts on A.Let $G=A H$ be the semidirect product of A and G Then G is hyper- $(\mathcal{X}, *)$-group. Moreover, any hypercentral normal subgroup of G is contained in A.

Proof. Since $G / \mathrm{C}_{G}\left(A_{i}\right) \cong H_{i} \in \mathcal{X}, G$ acts hyper- $(\mathcal{X}, *)$ on A_{i}. So by 1.4.13, G is acts hyper$(\mathcal{X}, *)$ on A. Also $G / A \cong H$ is hyper- $(\mathcal{X}, *)$ group and hence by 1.4.13 G is a hyper- $(\mathcal{X}, *)$ group.

Let $M \unlhd G$ with $M \not \leq A$. Then $A M=A N$ for some $1 \neq N \unlhd H$. By (iii) there exists $i \in I$ such that N does not act hypercentrally on A_{i}. So N also does not act hypercentrally on $\left[A_{i}, N\right]$. Since A is abelian, $\left[A_{i}, N\right]=\left[A_{i}, M\right] \leq M$ and M does not act hypercentrally on $\left[A_{i}, M\right]$. Thus M is not hypercentral.

Lemma 1.4.28. [hypercentral extension] Let \mathcal{X} be a class of groups and H a group. Suppose H is a residually \mathcal{X}-group and a hyper- $(\mathcal{X}, *)$-group. Then there exists a hyper$(\mathcal{X}, *)$ group G and an abelian normal subgroup A of G such that $G / A \cong H$ and such that every hypercentral normal subgroup of G is contained in A.

Proof. Put $\mathcal{M}=\{M \unlhd H \mid G / M \in \mathcal{X}\}$. Since H is residually- $\mathcal{X}, \bigcap \mathcal{M}=1$. In particular, H is a subdirect product of $(G / M)_{M \in \mathcal{M}}$. For $M \in \mathcal{M}$ put $A_{M}=\mathbb{Z}[G / M]$. Then A_{M} is an abelian group with G / M acting faithfully on A_{M} by right multiplication. Let $1 \neq N \unlhd H$ and choose $M \in \mathcal{M} M$ with $N \not \leq M$. Then N does not act hypercentrally on A_{M} (indeed if $N M / M$ is infinite, $\mathrm{C}_{A_{M}}(N)=0$ and if $N M / M$ is finite, choose a prime p with $p \nmid|N M / M|$ and observe that N does not act hypercentrally on $A_{M} / p A_{M}$.)

So 1.4.27 completes the proof.
Corollary 1.4.29. [not hypercentral \mathbf{x}] Let \mathcal{X} be a class of groups which is closed under homomorphic images but not under direct sums. Then there exists a hyper ($\mathcal{X}, *)$ groups which is not hypercentral by \mathcal{X}.

Proof. Let $\left(H_{i}, i \in I\right.$ be a family of \mathcal{X} groups such that $H=\bigoplus_{i=1}^{\infty} H_{i}$ is not an \mathcal{X}-group. Then H is a subdirect product of \mathcal{X} groups and so a residually \mathcal{X}-group. Each H_{i} is a \mathcal{X}-groups it also is a hyper $(\mathcal{X}, *)$ group. Hence by $1.4 .14, H$ is hyper $(\mathcal{X},, *)$. By ?? there exists a hyper $(\mathcal{X}, *)$-group G and an abelian normal subgroup A of G with $G / A \cong H$ and such that every hypercentral normal subgroup of G is contained in A. Suppose for a contradiction that G is hypercentral by \mathcal{X} and let M be a hypercentral normal subgroup of G such that $G / M \in \mathcal{X}$. Then $M \leq A$ and $H \cong G / A \cong G / M / A / M$. Since \mathcal{X} is \mathbf{H}-closed, we conclude that $H \in \mathcal{X}$, a contradiction.

Corollary 1.4.30. [more hypercental \mathbf{x}] Let $W \in \mathcal{P}(F)^{\infty}$ and suppose $\mathcal{X}(W) \neq \mathcal{V}\left(W_{i}\right)$ for all $i \in \mathrm{Z}^{+}$. Then there exists a hyper $(\mathcal{X}(W), *)$-group which is not hypercentral by $\mathcal{X}(W)$.

Proof. For $i \in \mathrm{Z}^{+}$pick $H_{i} \in \mathcal{X}(W) \backslash \mathcal{V}\left(W_{i}\right)$ and put $\oplus_{i \in I} H_{i}$. Since $W_{i}\left(H_{i}\right) \neq 1$ we have $W_{i}(H) \neq 1$. Thus $H \notin \mathcal{X}(W)$. H is a direct sum of $\mathcal{X}(W)$-group and so a residual $\mathcal{X}(W)$ group. Since H_{i} is a $\mathcal{X}(W)$-group and so a $(\mathcal{X}(W), *)$-group we conclude that from 1.4.14 that H is hyper $(\mathcal{X}(W), *)$. The corollary now follows from 1.4.29

Since there are solvable groups of arbitrary derived length and nilpotent groups of arbitrary class, the preceding corollary shows that there exists hyper (solvable,*) groups which are not hypercentral by solvable and hyper (nilpotent, ${ }^{*}$) groups which are not hypercentral by nilpotent.

Definition 1.4.31. [def:locally cx] Let \mathcal{X} be a class of groups and G a group. We say that G is locally \mathcal{X}, if for each finite subset I of G there exists $H \leq H$ with $I \subseteq H$ and $H \in \mathcal{X}$. The class of all locally \mathcal{X} groups is denoted by $\mathbf{L} \mathcal{X}$.

Observe that if \mathcal{X} is closed under subgroups, then G is locally \mathcal{X} if and only every finitely generated subgroup of G is an \mathcal{X}-group.

Proposition 1.4.32. [schreier-reidemeister] Let G be finite generated subgroup and H a subgroup of finite index in G. Then H is finitely generated.

Proof. Let X be a finite generating set for G with $x^{-1} \in X$ for all $x \in X$. For $T \in G / H$ pick $r_{T} \in T$ such that $r_{H}=1$. Then $T=H r_{T}$. Let $T \in G / H$ and $x \in X$. Then $r_{T} x \in\left(H r_{T}\right) x=T x=H r_{T x}$ and so there exists $h(T, x) \in H$ by

$$
r_{T} x=h(T, x) r_{T x}
$$

Define $K=\langle h(T, x) \mid T \in G / H, x \in X\rangle$. We claim that

$$
\begin{equation*}
g \in K r_{H g} \text { for all } g \in G \tag{*}
\end{equation*}
$$

For this let $g=x_{1} x_{2} \ldots x_{n}$ with $x_{i} \in X$ and $n \in \mathrm{~N}$. If $n=0$, then $g=1$ and so $g \in K=K 1=K_{r_{H 1}}$.

Suppose $n>0$ and let $d=x_{1} x_{2} \ldots x_{n-1}$. Then $g=d x_{n}$ and by induction on n, $d \in K r_{H d}$.

Thus

$$
g=d x_{n} \in K r_{H d} x_{n}=K h\left(H d, x_{n}\right) r_{H d x_{n}}=K r_{H g}
$$

So $\left({ }^{*}\right)$ holds. If $g \in H$ we conclude $g \in K r_{H g}=K r_{H}=K 1=K$. So $H \leq K$. Since $K \leq H$, this gives $K=H$ and so H is finitely generated.

Let n be minimal number of generators of G and $i=|G / H|$. The preceding proof shows that H can be generated by $2 n i$ elements. It can be shown that G is generated by $(n-1) i+1$ elements (Reidemeister-Schreier Theorem).
Corollary 1.4.33. [lf by lf] The class $\mathbf{L} \mathcal{F}$ of locally finite groups is closed under subgroups, quotients and extensions.

Proof. The first two assertions are obvious. Let G be a group and M a normal subgroup of G such that M and G / M are locally finite. Let S be a finite subset of G and $F=\langle S\rangle$. Then $F M / M=\langle s M \mid s \in S\rangle$ is finite generated and since G / M is finite, $F M / M$ is finite. Hence also $F / F \cap M$ is finite and 1.4.32 implies that $F \cap M$ is finitely generated. Since M is locally finite, $F \cap M$ is finite. Hence F is finite and M is locally finite.

Definition 1.4.34. [def:p-group] Let G be a group and p a prime. Then G is called a p-group, if all elements of G have order a power of p.

Note that by Cauchy's Theorem, a finite group if a p-group if and only if it has order a power of p.

Lemma 1.4.35. $[\mathrm{rg}]$ Let R be a non-zero ring, G a group and H a non-trivial subgroup of G. Let $R[G]$ be the group of G over R and note that G acts on the abelian group $R[G]$ via $\left(\sum_{k \in G} r_{k} k\right) g=\sum_{k \in G} r_{g} k g$. Put $R_{0}[G]=\left\{\sum_{g \in G} r_{g} g \in R[G] \mid \sum_{g \in G} r_{g}=0\right\} /$
(a) $[\mathbf{a}]$ Suppose H is infinite. Then $\mathrm{C}_{R[G]}(H)=0$. In particular, H does not act hypercentrally on $R[G]$.
(b) [b] Suppose that $|H| r \neq 0$ for all $0 \neq r \in R^{\sharp}$. Then $\mathrm{C}_{R_{0}[H]}(H)=0$. In particular, H does not act hypercentrally on $R[G]$.

Proof. Let $a=\sum r_{g} g \in \mathrm{C}_{R[G]}(H)$. Then $r_{g}=r_{g h}$ for all $g \in G, h \in H$.
(a) If H is infinite, we get that conclude that $r_{g}=r_{k}$ for infinitely many $k \in G$. Since $r_{g}=0$ for all but finitely many g, this implies $r_{g}=0$ and so $a=0$.
(b) Suppose H is finite and $|H| r \neq 0$ for all $r \in R_{0}[H]$. Let $a=\sum r_{h} h \in \mathrm{C}_{R_{0}[H]}(H)$ Then $r_{h}=r_{1}$ for all $h \in H$. Since $r \in R_{0}[H]$ this gives $0=\sum_{h \in H} r_{h}=|H| r_{1}$ and so $r_{1}=0$. Hence $a=0$.

Lemma 1.4.36. $[$ easy $\mathbf{z p}=\mathbf{1}]$ Let p be a prime and P a p-group with $\mathrm{Z}(P)=1$. Then P has no non-trivial, finite normal subgroup. In particular, if $P \neq 1, P$ is infinite.

Proof. Suppose M is a non-trivial finite subgroup of P. Then $P / C_{P}(M)$ is also finite and acts on P. Since both $P / C_{P}(M)$ and M are p-groups, this gives $C_{P}(M) \neq 1$, a contradiction to $\mathrm{Z}(M)=1$.

Example 1.4.37. $[\mathbf{z p}=\mathbf{1}]$ Let p be a prime and k an integer with $k>1$. Then there exists a locally finite, solvable p-group of derived length k with trivial center.

Proof. If $k=2$ let B be any infinite abelian p-group (for example $\bigoplus_{i \in \mathrm{~N}} \mathrm{C}_{p}$. If $k>2$ let B be any infinite, locally finite, solvable p-group of derived length $k-1$, which exists by induction (since by 1.4.36 a non-trivial p-group with trivial center is necessarily infinite). Put $A=\mathbb{F}_{p}[B]$. Then A is elementary abelian p group and B acts faithfully on A be right multiplication. Put $G=A B$, the semidirect product. Since B acts faithfully on A, $\mathrm{C}_{G}(A)=A$ and so $\mathrm{Z}(G)=C_{A}(G)=C_{A}(B)$. Since B is infinite, 1.4.35(a) gives $C_{A}(B)=1$ and so $\mathrm{Z}(G)=1$. Since $B^{(k-1)}=1$ we have $G^{(k-1)} \leq A$ and so $G(k) \leq A^{\prime}=1$.

Suppose that $G^{(k-1)}=1$. Since $B^{(k-2)} \leq G^{(k-2)}$ and $G^{(k-2)}$ is a normal subgroup of G, we have $\left[A, B^{(k-2)}\right] B^{(k-2)} \leq G^{(k-2)}$. Thus $\left[A, B^{(k-2)}, B^{(k-2)}\right] \leq G^{(k-1)}=1$ and $B^{(k-2)}$ acts hyper-centrally on A. But by 1.4.36, $B^{(k-2)}$ is infinite, and so 1.4.35(a) gives a contradiction.

Thus $G^{(k-1)} \neq 1$ and G is solvable of derived length k.
Since both A and $B \cong G / A$ are locally finite p-groups, (??) implies that G is a locally finite p-group.

Example 1.4.38. [example] For each prime p there exists a locally finite, hyper (solvable, *) p-group which is not hypercentral-by-solvable.

Proof. For $1<k \in \mathbb{N}$ let H_{k} be a solvable p-group of derived length k with $\mathrm{Z}\left(H_{k}\right)=1$ (see 1.4.37). Let $A_{k}=\mathbb{F}_{p} H_{k}$ and $H=\bigoplus_{k=2}^{\infty} H_{k}$. Let $1 \neq N \unlhd H$ and choose k such that the projection N_{k} of N in H_{k} is not trivial. By ?? N_{k} is infinite. Hence by 1.4.35(a), N does not act hypercentrally on A_{k}. Put $A=\bigoplus A_{k}$ and $G=A H$. 1.4.27 now completes the proof.

1.5 Radical Classes

Definition 1.5.1. [def:delta asc] Let δ be a well ordered class, G a group and H a subgroup of G. We say that H is δ-ascending in G if the exists $\beta \in \delta$ and an ascending sequence $\left(H_{\beta}\right)_{\beta \leq \delta}$ from H to G. If H is an Ord-ascending subgroup of G, we write $H \operatorname{asc} G$ and say that H is an ascending subgroup of G. H is an ω-ascending subgroup of G, we write $H \unlhd \unlhd G$ and say that H is an subnormal subgroup of G.
Definition 1.5.2. [def:radical] Let \mathcal{X} be a class of groups and G a group.
(a) $[\mathbf{a}] \rho_{\mathcal{X}}(G)$ is group generated by all the normal \mathcal{X}-subgroups of G.
(b) [b] \mathcal{X} is called \mathbf{N}_{0} closed if any group generated by finitely many normal \mathcal{X}-subgroups is a \mathcal{X} subgroup.
(c) $[\mathbf{c}] \mathcal{X}$ is called \mathbf{N} closed if any group generated by normal \mathcal{X}-subgroups is a \mathcal{X} subgroup.
(d) $[\mathbf{d}] \mathcal{X}$ is called \mathbf{N} closed if any group generated by ascending \mathcal{X}-subgroups is a \mathcal{X} subgroup.
(e) $[\mathbf{e}] \mathcal{X}$ is called \mathbf{S}_{n}-closed if every normal subgroup of an \mathcal{X}-group is a \mathcal{X}-group.

Observe that \mathcal{X} is \mathbf{N}-closed if and only if $\rho_{\mathcal{X}}(G)$ is \mathcal{X}-group for all groups G.
Lemma 1.5.3. [asc and rho] Let \mathcal{X} be an \mathbf{N}-closed class of groups, δ a well-ordered class and G a group. Suppose that whenever $\beta \in \delta$ is a limit ordinal, $K \operatorname{asc} L \operatorname{asc} G$ and $\left(M_{\alpha}\right)_{\alpha \leq \delta}$ is an ascending sequence from K to L such that $M_{\alpha} \in \mathcal{X}$ for all $\alpha<\delta$, then $L \in \mathcal{X}$. Then $\rho_{\mathcal{X}}(G)$ contains all δ-ascending \mathcal{X}-subgroups of G. In particular, if in addition, $\delta>1$, then $\rho_{\mathcal{X}}(G)$ is the group generated by all the δ-ascending subgroups of G.

Proof. Let H be an δ ascending subgroup of G and let $\left(H_{\alpha}\right)_{\alpha \leq \beta}, \beta \in \delta$ be an ascending sequence from H to G. For $\alpha \leq \beta$, define $\bar{H}_{\alpha}=\left\langle H^{H_{\alpha}}\right\}$.

We claim that $\left(\bar{H}_{\alpha}\right)_{\alpha \leq \beta}$ is a ascending series from H to $\left\langle H^{G}\right\rangle$. Since $H \leq H_{\alpha} \unlhd H_{\alpha+1}$, $\bar{H}_{\alpha+1} \leq H_{\alpha}$. So $\bar{H}_{\alpha} \unlhd \bar{H}_{\alpha+1}$. Also if α is a limit ordinal, then

$$
\bar{H}_{\alpha}=\left\langle H^{H_{\alpha}}\right\rangle=\left\langle H^{\bigcup_{\gamma<\alpha} H_{\alpha}}\right\rangle=\bigcup_{\gamma<\alpha}\left\langle H^{H_{\gamma}}\right\rangle=\bigcup_{\gamma<\alpha} \bar{H}_{\gamma}
$$

So $\left(\bar{H}_{\alpha}\right)_{\alpha \leq \beta}$ is a ascending series from $H=\left\langle H^{H}\right\rangle$ to $\left\langle H^{G}\right\rangle$.
Next we will use induction on α to show that $\bar{H}_{\alpha} \in \mathcal{X}$ for all $\alpha \leq \delta$.
Suppose first that $\alpha=0$, then $\bar{H}_{\alpha}=H \in \mathcal{X}$.
Suppose next that $\alpha=\gamma+1$ for some ordinal γ, then by induction, \bar{H}_{γ} is a normal \mathcal{X} subgroup of H_{γ}. Let $g \in H_{\alpha}$. Then g normalizes H_{γ} and so \bar{H}_{γ}^{g} is a normal \mathcal{X}-subgroup of H_{γ}. Thus

$$
\bar{H}_{\alpha}=\left\langle H^{H_{\alpha}}\right\rangle=\left\langle\bar{H}_{\gamma}^{H_{\alpha}}\right\rangle=\left\langle\bar{H}_{\gamma}^{g} \mid g \in H_{\alpha}\right\rangle
$$

is generated by normal \mathcal{X}-subgroups. Since \mathcal{X} is \mathbf{N}-closed, $\bar{H}_{\alpha} \in \mathcal{X}$.
Suppose that α is a limit ordinal. Then $(\bar{H})_{\gamma \leq \alpha}$ is an ascending sequence from H to \bar{H}_{α}. By induction \bar{H}_{γ} is an \mathcal{X} groups for all $\gamma<\alpha$ and so by the assumption of the lemma, $\bar{H}_{\alpha} \in \mathcal{X}$.

We proved that $\bar{H}_{\alpha} \in \mathcal{X}$ for all $\alpha \leq \beta$. In particular, $\left\langle H^{G}\right\rangle=\bar{H}_{\beta} \in \mathcal{X}$. Thus $\left\langle H^{G}\right\rangle$ is a normal \mathcal{X} subgroups of G and so $\left\langle H^{G}\right\rangle \leq \rho_{\mathcal{X}}(G)$. Hence also $H \leq \rho_{\mathcal{X}}(G)$.

Corollary 1.5.4. [rho and subnormal] Let \mathcal{X} be an \mathbf{N} closed class of groups. Then $\rho_{\mathcal{X}}(G)$ is the group generated by all the subnormal \mathcal{X}-subgroups of G.

Proof. Note that ω does not contain a limit ordinal. So the condition in 1.5.3 holds vacuously for $\delta=\omega$.

Corollary 1.5.5. $[\mathbf{n c x}]$ Let \mathcal{X} be class of groups, and let $\mathbf{N} \mathcal{X}$ be the class of groups which are generated by subnormal \mathcal{X} groups. Then $\mathbf{N} \mathcal{X}$ is the smallest \mathcal{N}-closed class of groups containing \mathcal{X}, that is $\mathbf{N} \mathcal{X}$ is \mathbf{N}-closed and every \mathbf{N}-closed class of groups containing \mathcal{X} also contains $\mathbf{N} \mathcal{X}$.

Proof. Let G be a group generated by a family \mathcal{M} of normal $\mathbf{N} \mathcal{X}$-groups. Then each $M \in \mathcal{M}$ is generated by a family \mathcal{N}_{M} of subnormal \mathcal{X}-subgroups of M. Note that each $N \in \mathcal{N}_{M}$ is subnormal in G and so $\bigcup_{M \in \mathcal{M}} \mathcal{N}_{M}$ is a family of subnormal subgroups of G generating G. Thus $G \in \mathbf{N} \mathcal{X}$ and $\mathbf{N} \mathcal{X}$ is \mathbf{N}-closed.

Now let \mathcal{Y} be any \mathbf{N}-closed class of groups with $\mathcal{X} \subseteq \mathcal{Y}$. Let $G \in \mathbf{N} \mathcal{Y}$. Then G is generate by subnormal \mathcal{X} groups, and so also by subnormal \mathcal{Y}-subgroups. Thus 1.5.4, $G \leq \rho_{\mathcal{Y}}(G)$. Hence $G=\rho_{Y}(G)$ and so $G \in \mathcal{Y}$.

Corollary 1.5.6. [cap subnormal] Let \mathcal{X} be an \mathbf{N} - and \mathbf{S}_{n}-closed class of groups. Let G be a group and $H \unlhd \unlhd G$. Then

$$
\rho_{\mathcal{X}}(H)=\rho_{\mathcal{X}}(G) \cap H .
$$

Proof. Note that $\rho_{\mathcal{X}}(G) \cap H$ is subnormal subgroup of the \mathcal{X} group $\rho_{\mathcal{X}}(G)$. Since \mathcal{X} is $\mathbf{S}_{n^{-}}$ closed, $\rho_{\mathcal{X}}(G) \cap H$ is an \mathcal{X} group. Since $\rho_{\mathcal{X}}(G) \cap H$ is normal in H this gives $\rho_{\mathcal{X}}(G) \cap H \leq$ $\rho_{\mathcal{X}}(H)$.

Conversely, $\rho_{\mathcal{X}}(H)$ is a subnormal \mathcal{X} subgroup of G and so by 1.5.4 $\rho_{\mathcal{X}}(H) \leq \rho_{\mathcal{X}}(G)$. Thus $\rho_{\mathcal{X}}(H) \leq \rho_{\mathcal{X}}(G) \cap H$ and the corollary holds.

Definition 1.5.7. [def:radical class] A class \mathcal{X} of groups is called radical if it is \mathbf{N} and \mathbf{H} closed, and if for every group G

$$
\rho_{\mathcal{X}}\left(G / \rho_{\mathcal{X}}(G)\right)=1
$$

Lemma 1.5.8. [char radical] A class of group is radical if and only if its \mathbf{N}, \mathbf{H} and \mathbf{P} closed.

Proof. Let \mathcal{X} be class of groups which is \mathbf{N} and \mathbf{H}-closed.
Suppose first that \mathcal{X} is radical and let G be a group which is \mathcal{X}-by- \mathcal{X}. Then there exists $M \unlhd G$ such that M and G / M are \mathcal{X}-group. Then $M \in \rho_{\mathcal{X}}(G)$ and

$$
G / \rho_{\mathcal{X}}(G) \cong G / M / \rho_{\mathcal{X}}(G) / M
$$

Since G / M is an \mathcal{X}-group and \mathcal{X} is \mathbf{H}-closed we conclude that $G / \rho_{c X}(G)$ is an \mathcal{X} groups. Thus

$$
G / \rho_{\mathcal{X}}(G) \leq \rho_{\mathcal{X}}\left(G / \rho_{\mathcal{X}}(G)\right)=1
$$

and so $G=\rho_{c X}(G) \in \mathcal{X}$. Thus \mathcal{X} is closed under extension, that is \mathbf{P}-closed.
Suppose next that \mathcal{X} is closed under extensions and let G be any group. Let M be the inverse image of $\rho_{\mathcal{X}}\left(G / \rho_{\mathcal{X}}(G)\right)$ in G. Then M is a normal subgroups of G and both $\rho_{\mathcal{X}}(G)$ and $M / \rho_{\mathcal{X}}(G)$ are \mathcal{X} groups. Thus M is a normal \mathcal{X} subgroup of G and so $M \leq \rho_{\mathcal{X}}(G)$. Thus $M=\rho_{\mathcal{X}}(G)$ and $\rho_{\mathcal{X}}\left(G / \rho_{\mathcal{X}}(G)\right)=M / \rho_{\mathcal{X}}(G)=1$. Thus \mathcal{X} is a radical class.

Definition 1.5.9. [def rad cx] Let \mathcal{X} be a class of groups. Then $\operatorname{rad} \mathcal{X}=\operatorname{Hyp}(\mathbf{H} \mathcal{X}))$. So $\operatorname{rad} \mathcal{X}$ is the class of all groups with ascending normal series all of whose factors are homomorphic images of an \mathcal{X} group.

Lemma 1.5.10. [char rad cx] Let \mathcal{X} be a class of groups. Then $\operatorname{rad} \mathcal{X}$ is the smallest radical class containing \mathcal{X}, that is $\operatorname{rad} \mathcal{X}$ is a radical class and contains all radical classes containing \mathcal{X}.

Proof. By ??(??), $\operatorname{rad} \mathcal{X}$ is \mathbf{H}-closed. By 1.4.14, $\operatorname{rad} \mathcal{X}$ is \mathbf{N}-closed and by 1.4.13, $\operatorname{rad} \mathcal{X}$ is \mathbf{P} closed. So by 1.5.8 $\operatorname{rad} \mathcal{X}$ is a radical class.

Now let \mathcal{Y} be radical class with $\mathcal{X} \subseteq \mathcal{Y}$. Let $G \in \operatorname{rad} \mathcal{X}$ and choose a hyper- $(*, \mathbf{H} \mathcal{X})$ sequence $\left(G_{\alpha}\right)_{\alpha \leq \beta}$ for G.So each We will show by induction that $G_{\alpha} \in \mathcal{Y}$ for all ordinals $\alpha \leq \beta$. If $\alpha=0$, this is obvious. Suppose $\alpha=\delta+1$ is a successor. Then by induction $G_{\delta} \in \mathcal{Y}$. Since $\mathcal{X} \subseteq \mathcal{Y}$ and \mathcal{Y} is \mathbf{H}-closed, $\mathbf{H} \mathcal{H} \subseteq \mathcal{Y}$. Thus $G_{\alpha} / G_{\delta} \in \mathcal{Y}$. Since \mathcal{Y} is \mathbf{P} closed this gives $G_{\alpha} \in \mathcal{Y}$.

Suppose α is limit ordinal. Then $G_{\alpha}=\bigcup_{\delta<\alpha} G_{\delta}=\left\langle G_{\delta} \mid \delta<\alpha\right\rangle$. By induction $G_{\delta} \in \mathcal{Y}$ and since \mathcal{Y} is \mathbf{N}-closed, $G_{\alpha} \in \mathcal{Y}$.

We proved that each $G_{\alpha} \in \mathcal{Y}$. In particular $G=G_{\beta} \in \mathcal{Y}$ and so $\operatorname{rad} \mathcal{X} \subseteq \mathcal{Y}$.

Definition 1.5.11. [def:central extension] Let G be a group and H be group. We say that G is a central extension of H if there exists $Z \leq \mathrm{Z}(G)$ with $G / Z \cong H$. If \mathcal{X} is a class of groups, then $\mathbf{C} \mathcal{X}$ is class of central extensions of \mathcal{X}-groups.

Proposition 1.5.12. [cgrho] Let \mathcal{X} be a $\mathbf{H}-$, $\mathbf{S}_{n^{-}}$and \mathbf{C}-closed class of groups. Let $G \in$ $\operatorname{rad} \mathcal{X}$ and put $H=\rho_{\mathcal{X}}(G)$. Then $\mathrm{C}_{G}(H) \leq H$.

Proof. Since \mathcal{X} is \mathbf{H}-closed and $G \in \operatorname{rad} \mathcal{X}$, there exists a hyper \mathcal{X}-sequence $\left(G_{\alpha}\right)_{\alpha \leq \beta}$ for G. We claim that $\mathrm{C}_{G}(H) \cap G_{\alpha} \leq H$ for all $\alpha \leq \beta$. This is obvious for $\alpha=0$. So suppose $\alpha>0$ and $\mathrm{C}_{G}(H) \cap G_{\delta} \in \mathcal{X}$ for all $\delta<\alpha$. If α is limit ordinal, then

$$
\mathrm{C}_{G}(H) \cap G_{\alpha}=\mathrm{C}_{G}(H) \cap \bigcap_{\delta<\alpha}=\bigcap_{\delta<\alpha}\left(\mathrm{C}_{G}(H) \cap G_{\delta}\right) \leq H
$$

So suppose $\alpha=\delta+1$ for some ordinal delta. Put $D=\mathrm{C}_{G}(H) \cap G_{\alpha}=\mathrm{C}_{G}(H) \cap G_{\delta+1}$. Then $D G_{\delta} / G_{\delta}$ is an normal subgroup of the \mathcal{X}-group $G_{\delta+1} / G_{\delta}$. Since \mathcal{X} is \mathbf{S}_{n}-closed, $D G_{\delta} / G_{\delta}$ is \mathcal{X} group. Hence also $D / D_{\cap} G_{\delta}$ is an \mathcal{X}-group. Note the

$$
\left[D, D_{\cap} G_{\delta}\right] \leq\left[\mathrm{C}_{G}(H), \mathrm{C}_{G}(H) \cap G_{\delta}\right] \leq\left[\mathrm{C}_{G}(H), H\right]=1
$$

and so $D \cap G_{\delta} \leq \mathrm{Z}(D)$. Thus D is a central extension of an \mathcal{X} group. Since \mathcal{X} is a \mathcal{C}-closed, $D \in \mathcal{X}$. Thus D is a normal \mathcal{X} subgroup of G and so $D \leq H$.

Thus the claim holds. In particular, $\mathrm{C}_{G}(H)=\mathrm{C}_{G}(H) \cap G=\mathrm{C}_{G}(H) \cap G_{\beta} \leq H$.

1.6 Finitely generated groups

Definition 1.6.1. [def:rang] Let G be an A-group.
(a) [a] Let c be a cardinal. Then G is $c-A$-generated if the exists a subset I of G with $G=\left\langle I^{A}\right\rangle$ and $|I| \leq c$. We will also say that G is an c-generated A-group. Such an I is called $c-A$-generating set for G.
(b) $[\mathbf{b}] r^{A}(G)$ is the least cardinal c such that G is $c-A$-generated.
(c) [c] If G is called finitely A-generated $r^{A}(G) \in \mathrm{N}$.
(d) $[\mathbf{d}] \operatorname{rank}^{A}(H)=\sup \left\{r^{A}(H) \mid H \leq G, r^{A}(G) \in \mathrm{N}\right\}$.
(e) [e] If $A=1$, we drop A in the previous notations.

Lemma 1.6.2. [factor and \mathbf{r}] Let G be an A-group, H an A-subgroups and M a normal A-subgroup of G with $H M$.
(a) [a] There exists an $r^{A}(G)$-generated A-subgroup K of G with $G=\langle H, K\rangle$.
(b) $[\mathbf{b}] r^{H A}(M) \leq r^{A}(G)+r^{H A}(H \cap M)$.

Proof. (a): Let $I \subseteq G$ with $|I|=r^{A}(G)$ and $G=\left\langle I^{A}\right\rangle$. For $i \in I$ pick $h_{i} \in H$ and $m_{i} \in M$ with $i=h_{i} m_{i}$. Put $K=\left\langle m_{i}^{A} \mid i \in I\right\rangle$. Then K is an $r^{A}(G)$-generated A-subgroup of M. Also

$$
G=\left\langle I^{A}\right\rangle=\left\langle h_{i} m_{i}^{A} \mid i \in I\right\rangle \leq\left\langle H, m_{i}^{A}\right| i \in I=>=\langle H, K\rangle \leq G
$$

and so (a) holds.
(b): Let K be as in (a). Then $G=\langle H, K\rangle=H\left\langle K^{H}\right\rangle$. Since $\left\langle K^{H}\right\rangle \leq M$ this gives $M=(H \cap M)\left\langle K^{H}\right\rangle$. Observe that $\left\langle K^{H}\right\rangle$ is an $r^{A}(G)$-generated $H A$-group and so M is an $r^{A}(G)+r^{H A}((H \cap M)$ generated $H A$-group.

Lemma 1.6.3. [simple rank] Let A be a group, G an A-group and H an A-subgroup of G.
(a) $\left[\right.$ a] $\operatorname{rank}^{A}(H) \leq \operatorname{rank}^{A}(G)$.
(b) [b] If H is normal in G then $\operatorname{rank}^{A}(G / H) \leq \operatorname{rank}^{A}(G)$.
(c) [c] If H is normal in G then $\operatorname{rank}^{A}(G) \leq \operatorname{rank}^{A}(H)+\operatorname{rank}^{A}(G / H)$.

Proof. (a) and (b) are obvious. For (c) let L be a finitely A-generated A-subgroup of G. $L H / H$ is an $\operatorname{rank}^{A}(G / H)-A$-subgroup of G / H and so there exists a finite subset I of L with $L H / H=\left\langle I^{A}\right\rangle H / H$ and $|I| \leq \operatorname{rank}^{A}(G / H)$. Then $L=\left\langle I^{A}\right\rangle(L \cap H)$. By 1.6.2(a), there exists a $|I|-A$-generated subgroup K of $L \cap H$ with $L=\left\langle I^{A}, K\right\rangle$. Since $K \leq H, K$ is $\operatorname{rank}^{A}(H)$-generated and so $r^{A}(L) \leq \operatorname{rank}^{A}(G / H)+\operatorname{rank}^{A}(H)$.

Definition 1.6.4. [presentation] Let G be a group and c a cardinal.
(a) [a] A presentation of rank c for G is an onto homomorphism $\phi: F \rightarrow G$, where F is a free group of rank c.
(b) [b] A presentation $\phi: F \rightarrow G$ is called finite F has finite rank and $\operatorname{ker} \phi$ is finitely F generated.
(c) [c] A group is called finitely presented if its has a finite presentation.

Example 1.6.5. [finite groups are finitely presented]

Proof. $G \cong\left\langle x_{g} \mid x_{h} x_{h}=x_{g h}, g, h \in G\right\rangle$.
Lemma 1.6.6. [finitely presented quotient] Let H be a finitely generated group and $M \unlhd H$. if H / M is finitely presented, then M is finitely M generated.

Proof. Put $G=H / M$ and define $\beta: H \rightarrow M, h \rightarrow h M$. Also let $\alpha: F \rightarrow G$ be a finite presentation of G. Let $\left(x_{i}, i \in I\right.$ be basis for F and pick $h_{i} \in I$ with $\beta\left(h_{i}\right)=$ $\alpha\left(x_{i}\right)$. Then there exists a unique homomorphism $\gamma: F \rightarrow H$ with $\gamma\left(x_{i}\right)=h_{i}$. then $\beta\left(\gamma\left(x_{i}\right)\right)=\beta\left(h_{i}\right)=\alpha\left(x_{i}\right)$ and so $\alpha=\beta \circ \gamma$. Note that $M=\operatorname{ker} \beta$ and $K=\operatorname{Im} \gamma$. Since $\beta(K)=\beta(\gamma(H))=\alpha(H)=G$ we have $H=K M$. We compute

$$
K \cap M=\{\gamma(f) \mid f \in F, \beta(\gamma(f))=1\}=\{\gamma(f)|f \in F| \alpha(f)=1\}=\beta(\operatorname{ker} \alpha)
$$

Since α is a finite presentation, $\operatorname{ker} \alpha$ is finitely H generated and so $K \cap M$ is finitely K-generated. Also H is finitely generated and so by 1.6.2(b), M is finitely H-generated.

Proposition 1.6.7. [all presentation finite] Let G be a finitely presented group. Then all presentation of finite rank for G are finite.

Proof. Let $\beta: H \rightarrow G$ be a finite presentation and put $M=\operatorname{ker} \beta$. Then H is finite generated and $H / M \cong G$ is finitely presented. By 1.6.6, M is finitely H generated and so β is a finite presentation.

Proposition 1.6.8. [extensions of finitely presented groups] The class of finitely presented groups is closed under extensions.

Proof. Let G be a group and N a normal subgroups of G such that both G / N and N are finitely presented. Let $\alpha: F \rightarrow G / N$ and $\beta: H \rightarrow N$ be finite presentation of G / N and N, respectively. Let I be a basis for F, J a basis for H, K a finite F-generating set for ker α and L a finite H-generating set for ker β. For $i \in I$ pick $g_{i} \in G$ with $\alpha(i)=g_{i} N$. Since F is free there exists a homomorphism $\alpha^{*}: F \rightarrow G$ with $\alpha^{*}(i)=g_{i}$. Then $\alpha^{*}(f) N=\alpha(f)$ for all $f \in F$.In particular $\alpha(f)=1$ if and only if $\alpha^{*}(f) \in N$. If $k \in K, i \in I$ and $l \in L$, then $\alpha^{*}(k)$, $\beta(l)^{g_{i}}$ and $\beta(l)^{g_{i}^{-1}}$ all are in N and so $\alpha^{*}(k)=\beta\left(h_{k}\right), \beta(l)^{g_{i}}=\beta\left(h_{k i}\right)$ and $\beta(l)^{g_{i}^{-1}}=\beta\left(\tilde{h}_{k i}\right)$ for some $h_{k}, h_{k i}, \tilde{h}_{k i} \in H$. Let T be the free product of F and H, that is the free group with basis $I \biguplus J$. Note that F and H are subgroups of T. Let M be the normal subgroup of T generated by the elements

$$
\begin{array}{cl}
l & l \in L \\
k h_{k}^{-1} & k \in K \\
j^{i} h_{k i}^{-1} & j \in J i \in I \\
j^{i^{-1}} \tilde{h}_{j i}^{-1} & j \in J, i \in I
\end{array}
$$

Let $\gamma: T \rightarrow G$ be the homomorphism defined by $\gamma(i)=g_{i}=\alpha^{*}(i)$ for $i \in I$ and $\gamma(j)=\beta(j)$ for $j \in J$. We will show that γ is onto and $\operatorname{ker} \gamma=M$. Observe that this implies that γ is a finite presentation for G.

Note that $\gamma \mid F=\alpha^{*}$ and $\gamma \mid K=\beta$. Thus $N=\beta(K)=\gamma(K) \leq \operatorname{Im} \gamma$. Since α is onto, $\alpha^{*}(F) N=G$ and so $\gamma(F) N=G$ and $\operatorname{Im} \gamma=G$.

Also $\gamma(l)=\beta(l)=1$ for all $l \in L, \gamma\left(k h_{k}^{-1}\right)=\alpha^{*}(k) \beta\left(h_{k}\right)^{-1}=1, \gamma\left(j^{i} h_{k i}^{-1}\right)=$ $\beta(j)^{g_{i}} \beta\left(h_{j i}^{-1}=1, \gamma\left(j^{i^{-1}} \tilde{h}_{j i}^{-1}\right)=\beta(j)^{g_{i}^{-1}}\right) \beta\left(\tilde{h}_{j i}^{-1}=1\right.$. So all the generators of M are in $\operatorname{ker} \gamma$ and so $M \leq \operatorname{ker} \gamma$.

Since $j^{i} M=h_{j i} M \in H M$ and $j^{i^{-1}} M=\tilde{h}_{j i} M \in H M$ for all $j \in I$ and $i \in M$ we see that $H M$ is normalized by $\langle I, J\rangle=T$. It follows that $T=\langle F, H\rangle=F H M$. For $k \in K$ we have $k \in h_{k} M \in H M$ and so $\operatorname{ker} \alpha \leq H M$.

Let $t \in \operatorname{ker} \gamma$, then $t=f h m$ for some $f \in F, h \in H$ and $m \in M$. Then $1=\gamma(t)=$ $\gamma(f) \gamma(h) \gamma(m)=\alpha^{*}(f) \beta(h) \in \alpha^{*}(f) N$. Thus $\alpha^{*}(f) \in N$ and so $\alpha(f)=1$ and $f \in \operatorname{ker} \alpha \in$ $H M$. Hence $t=f h m \in H M$ and we may assume that $f=1$. Thus $1=\beta(h)$ and $h \in \operatorname{ker} \beta$. Since $l \in M$ for all $l \in L$ we see that $\operatorname{ker} \beta \leq M$ and thus $t=h m \in M$.

Corollary 1.6.9. [polycyclic are finitely presented] All polycyclic groups are finitely presented. More generally all poly-(cyclic or finite) groups are finitely presented.

Proof.

1.7 Locally \mathcal{X}-groups

Definition 1.7.1. [def:directed set]

(a) [a] A partially ordered set $(I,<)$ is called direct if for all $i, j \in I$ there exists $k \in I$ with $i \leq k$ and $j \leq k$.
(b) [b] A local system for a group G is a set \mathcal{L} of subgroups such that $G=\bigcup \mathcal{L}$ and (\mathcal{L}, \subset) is directed.

Note that a partially ordered set is directed if and only if every non-empty subset has an upper bound.

Lemma 1.7.2. [local system]

(a) [a] Let G be a group with a local system \mathcal{L}. Then each finitely generated subgroup of G is contained in member of \mathcal{L}.
(b) [b] Let \mathcal{X} be a class of groups. Then every group with a local system of \mathcal{X}-groups is a local \mathcal{X}-group. In particular a union of a chain of \mathcal{X}-groups is a local \mathcal{X}-group.
(c) $[\mathbf{c}] \mathcal{L}$ is a closure operation.

Proof. (a) Let S be a finite subset of G. Since $G=\bigcup \mathcal{L}$, for each $s \in S$ there exists $L_{s} \in \mathcal{L}$ with $s \in \mathcal{L}$. Since \mathcal{L} is directed, there exists an upper bound L for $\left\{L_{s} \mid s \in S\right\}$ in \mathcal{L}. Thus $s \in L_{s} \subseteq L$ and $\langle S\rangle \leq L$.
(b) follows immediately from (a).
(c) Let \mathcal{X} be a class of groups. Let G be a group which is locally $\mathcal{L X}$. Let S be a finite subset of G. Then there exists a $\mathcal{L} \mathcal{X}$-subgroup H of G with $S \subseteq H$. Since H is locally \mathcal{X}, there exists a subgroup K of H with $S \subseteq K$. Thus $G \in \mathcal{L X}$.

Proposition 1.7.3. [n and 1] An L-closed class of groups is \mathbf{N}_{0} if and only if its is \mathbf{N} closed

Proof. The one direction is obvious. So suppose \mathcal{X} is an \mathbf{L} and \mathbf{N}_{0} closed class of group. We will first show that it is $b N$ closed. For this let G be a group which is generated by normal \mathcal{N} subgroups. Let \mathcal{L} be the set of subgroups of G which are generated by finitely many normal \mathcal{X}-subgroups. Note that \mathcal{L} is a local system for G. Since \mathcal{X} is \mathbf{N}_{0}-closed, $\mathcal{L} \subseteq \mathcal{X}$. So by 1.7.2(b), G is locally \mathcal{X}. Since \mathcal{X} is \mathcal{L} closed, $G \in \mathcal{X}$ and so \mathcal{X} is \mathcal{B}-closed.

Now let G be group which is generated by ascending \mathcal{X}-subgroups. By 1.7.2(b), the unions of any chain of \mathcal{X} subgroups of G is $\mathbf{L} \mathcal{X}$-group and so an \mathcal{X}-group. Thus the assumptions of 1.5.3 are fulfilled for $\delta=$ Ord. Hence all ascending \mathcal{X}-subgroups of G are contained in $\rho_{\mathcal{X}}(G)$. So $G=\rho_{\mathcal{X}}(G) \in \mathcal{X}$.

Lemma 1.7.4. [easy locally] Let \mathcal{X} be an \mathbf{S}-closed class of groups and G a group.Then the following are equivalent.
(a) $[\mathbf{a}] G$ is locally \mathcal{X}.
(b) [b] Every finitely generated subgroup of G is an \mathcal{X}-group.
(c) $[\mathbf{c}] G$ is locally $\mathcal{X} \cap \mathcal{F}$ (recall here that \mathcal{F} is the class of finitely generated groups.

Proof. (a) $\Longrightarrow(\mathrm{b}): \quad$ Let $S \subseteq G$ be finite. Since G is locally $\mathcal{X}, S \leq H$ for some \mathcal{X} subgroup of G. Since \mathcal{X} is \mathbf{S}-closed, $\langle S\rangle$ is an \mathcal{X}-group.
$(\mathrm{b}) \Longrightarrow(\mathrm{c}): \quad$ and $(\mathrm{c}) \Longrightarrow(? ?): \quad$ are obvious.

Chapter 2

Locally nilpotent and locally solvable groups

2.1 Commutators

Lemma 2.1.1. [commutator formulas] Let G be a group and x, y, z in G. Then
(a) $[\mathbf{a}][x, y]=x^{-1} x^{y}=y^{-x} y$
(b) $[\mathbf{b}][x, y z]=[x, z]^{y}[x, z]$
(c) $[\mathbf{c}][x y, z]=[x, z]^{y}[y, z]$
(d) $[\mathbf{d}][x, y]^{-1}=[y, x]$.
(e) $[\mathbf{e}]\left[x^{-1}, y\right]=[x, y]^{-x^{-1}}$.
(f) $[\mathbf{f}]\left[x, y^{-1}, z\right]^{y}\left[y, z^{-1}, x\right]^{z}\left[z, x^{-1}, y\right]^{x}$.

Proof. Readily verified.
Definition 2.1.2. [def:comm groups] Let G be a group.
(a) $[\mathbf{a}]$ Let $X, Y \subseteq G$. The $[X, Y]:=\langle[x, y] \mid x \in X, y \in U\rangle$.
(b) [b] Let $X_{1}, X_{2}, \ldots X_{n}$ be subsets of G inductively define,

$$
\left[X_{1}\right]=\left\langle X_{1}\right\rangle \text { and }\left[X_{1}, X_{2}, \ldots, X_{n}\right]:=\left[\left[X_{1}, X_{2}, \ldots X_{n-1}\right], X_{n}\right]
$$

Lemma 2.1.3. [comm 1] Let X and Y be subsets of a groups G.
(a) [a] If $1 \in Y$, then $\left\langle X^{Y}\right\rangle=\langle X,[X, Y]\rangle$.
(b) [b] If Y is a subgroup of G, then $[X, Y]$ is Y-invariant.

Proof. (a)

$$
\begin{aligned}
& \left\langle X^{Y}\right\rangle=\left\langle x^{y} \mid x \in X, y \in Y\right\rangle=\langle x[x, y] \mid x \in X, y \in Y\rangle \leq\langle X,[X, Y]\rangle \\
= & \langle z,[x, y] \mid z \in x, z \in X, y \in Y\rangle=\left\langle z, x^{-1} x^{y} \mid x, z \in X, y \in Y\right\rangle \leq\left\langle X^{Y}\right\rangle
\end{aligned}
$$

where, in the last inequality we used that $X \subseteq\left\langle X^{Y}\right\rangle$ since $1 \in Y$.
(b) Let $x \in X$ and $y, z \in Y$. Then

$$
x, z y]=[x, y]^{z}[x, z]
$$

and so

$$
[x, y]^{z}=[x, z y][x, z]^{-1} \in[X, Y]
$$

where in the last assertion we used that Y and $[X, Y]$ are subgroups of G.
Lemma 2.1.4. [comm 2] Let X and Y be subsets of a group G and put $H=\langle X\rangle$ and $K=\langle Y\rangle$. Then

$$
[H, Y]=\left\langle[X, Y]^{H}\right\rangle
$$

and

$$
[H, K]=\left\langle[X, Y]^{H K}\right\rangle
$$

Proof. Put $L=\left\langle[X, Y]^{H}\right\rangle$. By ??(??), $[H, Y]$ is H-invariant. Since $[X, Y] \leq[H, Y]$, this gives $L \leq[H, Y]$. Since L is H acts on the cosets of L in G by conjugation, indeed $(L g)^{h}=L g^{h}$. Also $L g$ is fixed-point of $h \in H$ iff $L g=l g^{h}$ and iff $[h, g]=g^{-h} \in L$. So all elements of X fix all $L y, y \in Y$. Hence also $H=\langle X\rangle$ fixes all $L y, y \in Y$ and so $[h, y] \in L$ for all $h \in H, y \in Y$. Thus $[H, Y] \leq L$ and $L=[H, Y]$.

This proves the first statement.
For the second, we use the fist statement twice:

$$
[H, K]=\left\langle[H, Y]^{K}\right\rangle=\left\langle\left\langle[X, Y]^{H}\right\rangle^{K}\right\rangle=\left\langle[X, Y]^{H K}\right\rangle
$$

2.2 Locally nilpotent groups

Definition 2.2.1. [L]et G be a group and α and ordinal. Define subgroups $\mathrm{Z}_{\alpha}(G)$ and $\gamma_{\alpha}(G)$ inductively a follows:
$\mathrm{Z}_{0}(G)=1, \mathrm{Z}_{\alpha}(G) / \mathrm{Z}_{\alpha-1}=\mathrm{Z}\left(G / \mathrm{Z}_{\alpha-1}(G)\right)$, if α is a successor and $\mathrm{Z}_{\alpha}(G)=\bigcup_{\beta<\alpha} \mathrm{Z}_{\beta}(G)$ if α is a limit ordinal
$\gamma_{0}(G)=G, \gamma_{\alpha}(G)=\left[\gamma_{\alpha-1}(G), G\right]$, if α is a successor and $\mathrm{Z}_{\alpha}(G)=\bigcap_{\beta<\alpha} \mathrm{Z}_{\beta}(G)$ if α is a limit ordinal
$\left(\mathrm{Z}_{\alpha}\right)_{\alpha}$ is called the upper central series of G and $\left.\left(\gamma_{\alpha}(G)\right)_{\alpha}\right)$ the lower centrals series of G.

Lemma 2.2.2. [char nilpotent] Let $n \in \mathrm{~N}$ and G a group. Then the following statements are equivalent:
(a) $[\mathbf{a}] G=\mathrm{Z}_{n}(G)$.
(b) [b] There exists a finite ascending normal series

$$
1=A_{0} \leq A_{1} \leq \ldots A_{n-1} \leq A_{n}=G
$$

of G with $\left[A_{i}, G\right] \leq A_{i-1}$ for all $1 \leq i \leq n$.
(c) $[\mathbf{c}] \quad \gamma_{n}(G)=1$.

Proof. (a) $\Longrightarrow(\mathrm{b})$: Just put $A_{i}=\mathrm{Z}_{i}(G)$.
(b) \Longrightarrow (a): We claim that $A_{i} \leq \mathrm{Z}_{i}(G)$. This is clearly true for $i=0$. Suppose that $A_{i} \leq \mathrm{Z}_{i}(G)$. Then $\left[A_{i+1}, G\right] \leq A_{i} \leq \mathrm{Z}_{i}(G)$ and so $A_{i+1} \leq \mathrm{Z}_{i+1}(G)$. This proves the claim and so $G=A_{N} \leq \mathrm{Z}_{n}(G)$.
$(\mathrm{b}) \Longrightarrow(\mathrm{c})$: We claim that $\gamma_{i}(G) \leq A_{n-i}$. Indeed this is true for $i=0$. Suppose $\gamma_{i}(G) \leq A_{n-i}$. Then

$$
\gamma_{i+1}(G)=\left[\gamma_{i}(G), G\right] \leq\left[A_{n-i}, G\right] \leq A_{n-(i+1)}
$$

Thus the claim holds and $\gamma_{n}(G) \leq A_{0}=1$
$(\mathrm{c}) \Longrightarrow(\mathrm{b})$: Just put $A_{i}=\gamma_{n-i}(G)$.
Definition 2.2.3. [def:nilpotent] Let G be a group. Then G is called nilpotent if $\gamma_{n}(G)=$ 1 for some $n \in \mathrm{Z}_{n}(G)$. The smallest such n is called the nilpotency class of G. $\left.\mathcal{N}\right\rangle \downarrow$ denotes the class of nilpotent groups.
Lemma 2.2.4. [nilpotent and no] Let K and L be nilpotent normal subgroups of a group G of nilpotency class k and l, respectively. Then $K L$ is nilpotent of class at most $k+l$. In particular, $\mathcal{N}\rangle \mathfrak{\downarrow}$ is \mathbf{N}_{0} closed.

Proof. If $k=0$ or $l=0$, then $K=1$ or $L=1$ and the lemma holds. Now suppose $k>0$ and $l>0$. Note that $K \mathrm{Z}(L) / \mathrm{Z}(L)$ has nilpotency class at most k and $L / \mathrm{Z}(L)$ has nilpotency class $l-1$. So by induction $K L / Z(L)$ class at most $k+l-1$. Thus $\gamma_{k+l-1}(K L) \leq Z(L)$. By symmetry, $\gamma_{k+l-1}(K L) \leq \mathrm{Z}(K)$. Since $\mathrm{Z}(K) \cap \mathrm{Z}(L) \leq \mathrm{Z}(K L)$ we conclude that

$$
\left[\gamma_{k+l}(K L), K L\right] \leq[\mathrm{Z}(K L), K L]=1
$$

Definition 2.2.5. [c generated] Let c be a cardinality. Then a group G is called c generated if there exists a subset T of G with $G=\langle T\rangle$ and $|T| \leq c$.
Lemma 2.2.6. [polycyclic] Let G be a group with an ascending sequence $\left(G_{\alpha}\right)_{\alpha \leq \beta}$ all of whose factors are cyclic. Then every subgroups of G can is $|\beta|$-generated. In particular, all polycyclic groups are finitely generated.

Proof. For $\alpha<\beta, G_{\alpha+1} / G_{\alpha}$ is cyclic and so there exists g_{α} with $G_{\alpha+1}=\left\langle g_{\alpha}\right\rangle G_{\alpha}$. We claim that for all $\gamma \leq \alpha, G_{\gamma}=\left\langle g_{\delta} \mid \delta<\gamma\right\rangle$. This is obvious of $\gamma=0$ Suppose the claim is true for all ordinal less than $\gamma \cdot \gamma=\alpha+1$, then

$$
G_{\gamma}=\left\langle g_{\alpha}\right\rangle G_{\alpha}=\left\langle g_{\alpha}\right\rangle\left\langle g_{\delta} \mid \delta<\alpha\right\rangle=\left\langle g_{\delta} \mid \delta<\gamma\right\rangle
$$

If γ is a limit ordinal, then

$$
G_{\gamma}=\bigcup_{\alpha<\gamma} G_{\alpha}=\bigcup_{\alpha<\gamma}\left\langle g_{\delta} \mid \delta<\alpha\right\rangle=\left\langle g_{\delta} \mid \delta<\gamma\right\rangle
$$

So the claim holds. In particular, $G=G_{\beta}$ is $\mid \beta$ generated. If $H \leq G$, then $\left(H \cap G_{\alpha}\right)_{\alpha \leq \beta}$ is an ascending series with cyclic factors and so also H is |beta|-generated.

Proposition 2.2.7. [fg and nil] Let G be a nilpotent n-generated group of class $d>0$ and suppose G can be generated by n elements.Put $m:=\sum_{i=1}^{d} n^{d}$. Then $\gamma_{d-1}(G)$ is n^{d}-generated and G is polycyclic of length m. In particular, every subgroup of G is m-generated.

Proof. Suppose $d=1$. Then G is abelian and so polycyclic of length at most n. Also $\gamma_{d-1}(G)=G$ and so can be generated by $n^{d}=n$ elements. Thus proposition holds in this case.

So suppose $d>1$ and put $D=\gamma_{d-1}(G)$ and $E=\gamma_{g-2}(G)$. Then $D \leq \mathrm{Z}(G)$ and $D=$ $[E, G]$. Moreover by induction, E / D is generated by n^{d-1} elements and G / D is polycylic of length at most $\sum_{i=1}^{d-1} n^{i}$. So there exists $S \subseteq E$ with $|S| \leq n^{d-1}$ and $E / D=\langle s D \mid s \in S\rangle$. Note that $E=\langle S\rangle D$. Let $T \subseteq G$ with $G=\langle T\rangle$ and $|T|=n$. Then

$$
D=[E, G]=[\langle S\rangle D,\langle T\rangle]=[\langle S\rangle,\langle T\rangle]=\langle[S, T]\rangle\rangle^{\langle S\rangle\langle T\rangle}=[S, T]
$$

where the last equality holds since $[S, T] \leq[E, G] \leq D \leq \mathrm{Z}(G)$. Thus D is generated by $|S||T| \leq n^{d-1} n$ elements. Since D is abelian, D is polycyclic of length n^{d}. Since G / D is polycyclic of length $\sum_{i=1}^{d-1} n^{i}, G$ is polycyclic of length

$$
n^{d}+\sum_{i=1}^{d-1} n^{i}=\sum_{i=1}^{d} n^{d}
$$

The last statement now follows from 2.2.6.
Theorem 2.2.8. [hirsch-plotkin] Let \mathcal{X} be a \mathbf{S} - and \mathbf{N}_{0}-closed class of finitely generated groups. Then $\mathbf{L} \mathcal{X}$ is \mathbf{N}-closed. In particular, for all groups $G, \rho_{\mathbf{L} \mathcal{X}}(G)$ is locally $\mathcal{X}(G)$ and contains all ascending locally \mathcal{X}-subgroups of G.

Proof. We will first show that $\mathbf{L} \mathcal{X}$ is \mathbf{N}_{0}-closed. For this let L and M be normal locally \mathcal{X}-subgroups of a group H. We need to show that $L M$ is locally \mathcal{X}.

So let S be a finite subsets of $L M$ and choose finite subsets X and Y of L and M respectively with $S \subseteq\langle H, K\rangle$, where $H=\langle X\rangle$ and $K=\langle Y\rangle$. Note that $[X, Y]$ is finitely generated and $[X, Y] \leq[H, K] \leq[L, M] \leq L \cap M$ and so $<[X, Y], H\rangle=<[X, Y], X\rangle$ is a finitely generated subgroup of L. Since L is locally \mathcal{X} we conclude that $<[X, Y], H\rangle$ is an \mathcal{X} group. Since \mathcal{X} is \mathbf{S}-closed also $[H, Y]=\left\langle[X, Y]^{H}\right\rangle$ is an \mathcal{X} group. In particular, $[H, Y]$ is finitely generated. Hence

$$
\left\langle K^{H}\right\rangle=[H, K] K=\left\langle[H, Y]^{K}\right\rangle K=\langle[H, Y], Y\rangle
$$

is a finitely generated subgroup of M. Thus $\left\langle K^{H}\right\rangle$ is \mathcal{X}-group. By symmetry also $\left\langle H^{K}\right\rangle$ is \mathcal{X}-group. Since \mathcal{X} is \mathbf{N}_{0}-closed we conclude from $\langle H, K\rangle=\left\langle H^{K}\right\rangle\left\langle K^{H}\right\rangle$ that $\langle H, K\rangle$ is an \mathcal{X} groups. Since $S \subseteq\langle H, K\rangle$ this completes the proof that $L M$ is locally \mathcal{X}.

Hence $\mathbf{L} \mathcal{X}$ is \mathbf{N}_{0}-closed. Since $\mathbf{L} \mathcal{X}$ is \mathbf{L}-closed, 1.7.3 implies that $\mathbf{L} \mathcal{X}$ is also \mathbf{N}-closed.
Definition 2.2.9. [def:fitting] let G be groups.
(a) $[\mathbf{a}] \mathrm{F}(G)=\rho_{\mathrm{Nil}}(G)$. So $\mathrm{F}(G)$ is is the group generated by the all the nilpotent normal subgroups of $G . \mathrm{F}(G)$ is called the Fitting subgroups of G.
(b) [b] $\operatorname{HP}(G)=\rho_{\mathbf{L N i l}}(G)$. So $\mathrm{F}(G)$ is is the group generated by the all the locally nilpotent normal subgroups of $G . \operatorname{HP}(G)$ is called the Hirsch-Plotkin radical of G.

Corollary 2.2.10 (Hirsch-Plotkin). [hp] Let G be a group. $\mathrm{HP}(G)$ is the largest ascending locally nilpotent subgroups of G, that is $\operatorname{HP}(G)$ is locally nilpotent and contains all ascending, locally nilpotent subgroups of G.

Proof. Let $\mathcal{X}=$ Nil $\cap \mathcal{F}$, the class of finitely generated subgroups. By 2.2 .7 and since subgroups of nilpotent are nilpotent, \mathcal{X} is \mathbf{S}-closed. Note that Nil and \mathcal{F} are \mathbf{N}_{0}-closed and so also \mathcal{X} is \mathbf{N}_{0}-closed. Thus the assumption of ?? are fulfilled and so $\rho_{\mathbf{L} \mathcal{X}}(G)$ is the largest ascending, locally \mathcal{X} subgroup of G. By 1.7.4, $\mathbf{L} \mathcal{X}=\mathbf{L N i l}$ and the Corollary is proved.

Lemma 2.2.11. [cghp] Let G be a group.
(a) [a] If G is hyper abelian, then $\mathrm{C}_{H}(\mathrm{~F}(G)) \leq \mathrm{F}(G)$.
(b) [b] If G is hyper (locally-nilpotent), then $\mathrm{C}_{G}(\mathrm{HG}(G) \leq \mathrm{HP}(G)$.

Proof. (a) Note that G is hyper abelian, if and only if G is hyper nilpotent and if and only if $G \in \operatorname{radNil}$. Let K be a group such that $K / \mathrm{Z}(K)$ is nilpotent. Then $\gamma_{n}(K) \leq \mathrm{Z}(K)$ and $\gamma n+1(G) \leq[\mathrm{Z}(K), K]=1$. Thus Nil is closed under central extension. Clearly Nil is \mathbf{H} and \mathbf{S}_{n}-closed and so the lemma follows from 1.5.12.
(b) Observe that G is hyper (locally nilpotent) just means $G \in \operatorname{rad} \mathbf{L N i l}$. Since Nil is closed under central extensions, also LNil is closed under extensions. Clearly $\mathbf{L N i l}$ is \mathbf{H} and \mathbf{S}_{n}-closed and so the lemma follows from 1.5.12.

Let G be a finite group. Then G is locally nilpotent iff G is nilpotent. So $\mathrm{F}(G)=\operatorname{HP}(G)$ is the largest normal nilpotent subgroup of G. Also G is hyper abelian iff G is solvable and iff G is hyper (locally nilpotent). So for finite groups, both parts of the previous lemma say that $\mathrm{C}_{G}(\mathbb{F}(G)) \leq \mathbb{F}(G)$ for every finite solvable group.

2.3 The generalized Fitting Subgroup

Definition 2.3.1. [def:f*g] Let G be group.
(a) [a] G is called quasisimple, if G is perfect and $G / Z(G)$ is simple.
(b) $[\mathbf{b}]$ A component of G is a quasi simple ascending subgroup of G.
(c) $[\mathbf{c}] \mathrm{E}(G)$ is the subgroup of G generated by all the components of G.
(d) $[\mathbf{d}] \mathrm{F}^{*}(G)=\operatorname{HP}(G) \mathrm{E}(G) . \mathrm{F}^{*}(G)$ is called the general Fitting subgroup of G.

Lemma 2.3.2. [basic quasimple] Let K be quasisimple group and $M \unlhd K$.
(a) $[\mathbf{a}] \quad M=K$ or $M \leq \mathrm{Z}(K)$.
(b) [b] If $M \neq K$, then $\mathrm{Z}(K / M)=\mathrm{Z} * K) / M$ and K / M is quasisimple.

Proof. (a) We may assume $M \not \approx \mathrm{Z}(K)$. Since $K / Z(K)$ is simple this gives $K / \mathrm{Z}(K)=$ $M \mathrm{Z}(K) / \mathrm{Z}(K)$ and $K=M \mathrm{Z}(K)$. Since K is perfect $K=[K, K]=[M \mathrm{Z}(K), M \mathrm{Z}(K)]=$ $[M, M] \leq M$ and so $K=M$. (b) Suppose $M \neq K$. Then by (a) $M \leq \mathrm{Z}(K)$. Let D be the inverse image of $\mathrm{Z}(K / M)$ in K. Then $\mathrm{Z}(K) \leq D$. Also $[D, K, K] \leq[M, K]=1$ and so also $[K, D, K]=1$. The Three Subgroups Lemma implies that $[K, K, D]=1$. Since K is perfect we conclude $[D, K]=1, D \leq \mathrm{Z}(K)$ and $D=\mathrm{Z}(K)$. Hence $K / Z(M) / Z(K / Z(M))=$ $K / Z(M) / / \mathrm{Z}(K) / Z(M) \cong K / \mathrm{Z}(K)$. The latter group is simple and so $K / Z(M)$ is quasisimple.

Lemma 2.3.3. [\mathbf{f}^{*} and asc] Let G be a group and M an ascending subgroup of G.
(a) $[\mathbf{a}] \operatorname{HP}(M)=\operatorname{HP}(G) \cap M$.
(b) $[\mathbf{b}]$ A subgroup of M is a component of M iff its a component of G. In particular, $\mathrm{E}(M) \leq \mathrm{E}(G)$ and $\mathrm{F}^{*}(M) \leq \mathrm{F}^{*}(G)$.

Proof. (a) Since $\operatorname{HP}(M) \unlhd M \operatorname{asc} G$ we conclude from 2.2.10 that $\operatorname{HP}(M)$ is an ascending locally nilpotent subgroup of G and $\mathrm{HP}(M) \leq \operatorname{HP}(G)$. Also $\mathrm{HP}(G) \cap M$ is locally nilpotent normal subgroup of M and so $\operatorname{HP}(G) \cap M \leq \operatorname{HP}(M)$.
(b) If K is a component of M, then K is a quasisimple ascending subgroup of M. Since $M \operatorname{asc} G$ we get $K \operatorname{asc} G$ and so K is a component of G.

Lemma 2.3.4. [easy cf*] Let G be a group.
(a) $[\mathbf{a}] C_{\mathrm{F}^{*}(G)}(\mathrm{E}(G))=\operatorname{HP}(G)$.
(b) [b] If M is subnormal in G, then $F^{*}(M)=M \cap F^{*}(G)$.

Proof. Put $F=\mathrm{F}^{*}(G)$. (a) By ?? $[\mathrm{HP}(G), \mathrm{E}(G)]=1$. Since $F=\operatorname{HP}(G) \mathrm{E}(G)$ this gives $\left.\left.C_{F}(\mathrm{E}(G))\right)=\operatorname{HP}(G) C_{\mathrm{E}(G)} \mathrm{E}(G)\right)=\operatorname{HP}(G) \mathrm{Z}(\mathrm{E}(G))$. Since $\mathrm{Z}(\mathrm{E}(G))$ is an abelian normal subgroup of $G, \mathrm{Z}(\mathrm{E}(G)) \leq \mathrm{HP}(G)$ and (a) holds.
(b) Put $E=\mathrm{E}(M)$. By ?? $\mathrm{HP}(G)$ and all components of G which are not contained in M centralizes all the components of M. Thus $F=C_{F}(E) E$ and so $(F \cap M)=\left(C_{F}(E) \cap M\right) E$. Put $D=C_{F}(E) \cap M$. Let K be a component of G with $K \not \leq M$. Then by ??, $[K, M]=1$. Thus D centralizes all components of G and so by (a) $D \leq C_{F}(\mathrm{E}(G))=\operatorname{HP}(G)$. Hence D is locally nilpotent and thus $D \leq \mathrm{HP}(M) \leq \mathrm{F}^{*}(H)$. So also $F \cap M=D E \leq \mathrm{F}^{*}(M)$. Since $\mathrm{F}^{*}(M) \leq F$, (b) holds.

Lemma 2.3.5. [f* and factors] Let G be a group.
(a) [a] If $M \unlhd G$ then $\mathrm{F}^{*}(G) M / M \leq \mathrm{F}^{*}(G / M)$.
(b) [b] If $M \leq \mathrm{Z}(G)$. Then $\mathrm{F}^{*}(G) / M=\mathrm{F}^{*}(G / M)$.

Proof. (a) $\operatorname{HP}(G) M / M$ is locally nilpotent normal subgroup of G / M and so $\operatorname{HP}(G) M / M \leq$ $\operatorname{HP}(G / M)$. Let K be a component of G. If $K \leq M$, then definitely $K M / M \leq \mathrm{E}(G / M)$. $K \not 又 M, K \cap M<K$ and by 2.3.2, $K M / M \cong K / K \cap M$ is quasisimple. Thus $K M / M$ is a component of K. Hence $\mathrm{E}(G) M / M \leq \mathrm{E}(G / M)$ and (a) holds.
(b) Let H be the inverse image of $\operatorname{HP}(G / M)$ in G. Since H / M is locally nilpotent and $M \leq \mathrm{Z}(H), H$ is locally nilpotent and so $H \leq \operatorname{HP}(G)$. Thus $H=\operatorname{HP}(G)$.

Now let L be the inverse image of a component of G / M in G and put $K=L^{\prime}$. Since L / M is perfect, $L / M=K M / M$ and so $L=K M$. Thus $L^{\prime}=K^{\prime}=L$ and so K is perfect. Let $D / M=Z(L / M)$. Then $D \not \leq K$ and so using ??, $D \cap K \leq Z(K) \leq Z(L) \cap K \leq D \cap K$. Hence $D \cap K=Z(K)$ and $K / Z(K)=K / K \cap D \cong K D / D=L / D \cong L / M / Z(L / M)$. Therefore $K / Z(K)$ is simple and K is a component of G. Since $M \leq \operatorname{HP}(G)$ we get $L=K M \leq \mathrm{F}^{*}(G)$. It follows that $\mathrm{F}^{*}(G / M) \leq \mathrm{F}^{*}(G) / M$. Together with (a) this gives (b).

Theorem 2.3.6. $[\mathbf{c f} \mathbf{f} \mathbf{g}]$ Let \mathcal{F}^{*} be the class of all groups H which are a central product of quasi-simple and locally nilpotent groups. Let G be group,
(a) $[\mathbf{a}] G \in \mathcal{F}^{*}$ if and only if $G=\mathrm{F}^{*}(G)$.
(b) $[\mathbf{b}] \mathcal{F}^{*}$ is $\mathbf{S}_{n}-$, H-, C- and \mathbf{N}-closed.
(c) $[\mathbf{c}] \quad \rho_{\mathcal{F}^{*}}(G)=\mathcal{F}^{*}(G)$.
(d) $[\mathbf{d}]$ If $G \in \operatorname{rad} \mathcal{F}^{*}$, then $C_{G}\left(\mathcal{F}^{*}(G)\right) \leq \mathcal{F}^{*}(G)$.

Proof. (a): If $G \in \mathcal{F}^{*}$ then clearly $G=\mathrm{F}^{*}(G)$. Conversely, by ??, $\mathcal{F}^{*}(G)$ is the central product of $\operatorname{HP}(G)$ and the components of G, so (a) holds.
(b) and (c): By ??(??), \mathcal{F}^{*} is \mathbf{S}_{n}-closed. By 2.3.5, \mathcal{F}^{*} is \mathbf{H} and \mathbf{C} closed. Also if $N \unlhd G$ with $N=\mathrm{F}^{*}(N)$, then by ??(??), $N=\mathrm{F}^{*}(N) \leq \mathbb{F}^{*}(G)$. This shows that $\rho_{\mathcal{F}^{*}}(G)=\mathbb{F}^{*}(G)$ and that \mathcal{F}^{*} is N -closed.
(d) By (b) and 1.5.12, $C_{G}\left(\rho_{\mathcal{F}^{*}}(G)\right) \leq \rho_{\mathcal{F}^{*}}(G)$. Thus (d) follows from (c).

Definition 2.3.7. [def:min] We say that a group G fulfills MIN if every non-empty sets of subgroups of G has a minimal element.

Corollary 2.3.8. [cf*] Let G be a group with MIN, then $G \in \operatorname{rad} \mathcal{F}^{*}$. In particular, $C_{G}\left(\mathcal{F}^{*}(G)\right) \leq \mathcal{F}^{*}(G)$.

Proof. Let $M \unlhd G$ with $G \neq M$. Then G / M fulfills min and so G / M has a minimal normal subgroup E. Then E is simple and so either $|E|$ is a prime or E is quasisimple. In the first case $E \leq \operatorname{HP}(G / M)$ and in the second $E \leq \mathrm{E}(G / M)$. In either case $\mathrm{F}^{*}(G / M) \neq 1$. So G is strongly hyper \mathcal{F}^{*} and hence by ??(??), G is a hyper \mathcal{F}^{*}-group. Thus $G \in \operatorname{rad} \mathcal{F}^{*}$. The second statement now follows from ??.

2.4 Chieffactors of locally solvable groups

Proposition 2.4.1. [chieffactors in locally nilpotent] let G be group.
(a) [a] If G locally nilpotent group, then G centralizes all chief-factors of G.
(b) [b] If G locally solvable group, then G all chief-factors of G are abelian.

Proof. Let T / B be a chieffactor of G. Replacing G be G / B we may assume that $B=1$ and so T is minimal normal subgroup of G. Let $H=G$ in (a) and $H=T$ in (b). We need to show that $[T, H]=1$. So suppose $[T, H] \neq 1$. Since T is a minimal normal subgroup of G, $T=[T, H]$. Pick $1 \neq t \in T$. Then $T=\left\langle t^{G}\right\rangle$ and so $t \in[T, H]=\left[t^{G}, H\right]$. Thus there exists $g_{1}, g_{2}, \ldots, g_{n} \in G$ and $h_{1}, h_{2}, \ldots h_{m} \in H$ with

$$
t \in\left[t^{\left\langle g_{1}, \ldots g_{n}\right\rangle},\left\langle h_{1}, h_{2}, \ldots, h_{m}\right\rangle\right]
$$

(a) Suppose G is locally nilpotent and put $D=\left\langle g_{1}, \ldots g_{n}, h_{1}, h_{2}, \ldots, h_{n}\right\rangle$. Then $t \in$ $\left[\left\langle t^{D}\right\rangle, D\right]$. Since G is locally nilpotent, D is nilpotent and we can choose k minimal with $t \in \mathrm{Z}_{k}(D)$. Then

$$
t \in\left[\left\langle t^{D}\right\rangle, D\right] \leq\left[Z_{k}(D), D\right] \leq Z_{k-1}(D)
$$

a contradiction to the minimal choice of k.
(b) Suppose G is locally solvable and so $H=T=\left\langle t^{G}\right\rangle$. We we can choose $g_{j k} \in G$ with $h_{j} \in\left\langle t^{\left\langle g_{j k}, \ldots, g_{j_{j}}\right\rangle}\right\rangle$. Put $D=\left\langle g_{i}, g_{j k} \mid 1 \leq i \leq n, 1 \leq j \leq m, 1 \leq k \leq t_{j}\right\rangle$. Then

$$
t \in\left[\left\langle t^{D}\right\rangle,\left\langle t^{D}\right\rangle\right]=\left\langle t^{D}\right\rangle^{\prime}
$$

Since G is locally solvable, D is solvable and we can choose k maximal with $t \in G^{(k)}$. Then

$$
t \in\left\langle t^{D}\right\rangle^{\prime} \leq\left(G^{(k)}\right)^{\prime}=G^{(k+1)}
$$

a contradiction to the maximality of k.

2.5 Polycyclic groups

Definition 2.5.1. [def:c-series] Let G be a group. A c-series for G is finite series for G each of whose factors are isomorphic to \mathbb{Z}_{p} or \mathbb{Z}. A strong c-series for G is a c-series of minimal length. A supersolvable series is a finite normal series all whose factors are cyclic. A group is called supersolvable if its has a supersolvable series.

Definition 2.5.2. [def:isomorphic set of groups] Let \mathcal{M} and \mathcal{N} be sets of groups, we say that \mathcal{M} is isomorphic to \mathcal{N} if there exists a bijection $\phi: \mathrm{M} \rightarrow \mathcal{N}$ with $M \cong \phi(M)$ for all $M \in \mathcal{M}$. We say that two series of a group have isomorphic factors, if the sets of factors of the two series are isomorphic.
Definition 2.5.3. [def:refinement] Let \mathcal{A} be a series for the group G. A refinement of \mathcal{A} is a series \mathcal{B} of G with $\mathcal{A} \subseteq \mathcal{B}$.

Proposition 2.5.4. [refinement] Let \mathcal{A} and \mathcal{B} be ascending series of the group G. Define $\mathcal{A}^{*}=\left\{(A \cap B) A^{-} \mid A \in \mathcal{A}, B \in \mathcal{B}\right\}$ and $\mathcal{B}^{*}=\left\{(B \cap A) B^{-} \mid B \in \mathcal{B}, A \in \mathcal{A}\right\}$. Then \mathcal{A}^{*} is an ascending refinement of $\mathcal{A}, \mathcal{B}^{*}$ is an ascending refinement of \mathcal{B} and \mathcal{A}^{*} and \mathcal{B}^{*} have isomorphic factors. Moreover, the sets of factors of both \mathcal{A}^{*} and \mathcal{B}^{*} are isomorphic to

$$
\left\{A \cap B /\left(A^{-} \cap B\right)\left(A \cap B^{-}\right) \mid A \in \mathcal{A}, B \in \mathcal{B}, A \cap B \neq\left(A^{-} \cap B\right)\left(A \cap B^{-}\right)\right\}
$$

Proof. We will first show that \mathcal{A}^{*} is totally ordered. Let $X_{1}, X_{2} \in \mathcal{A}^{*}$ and pick $A_{i} \in \mathcal{A}, B_{i} \in$ \mathcal{B} with $X_{i}=\left(A_{i} \cap B_{i}\right) A_{i}^{-}$. Without loss $A_{1} \leq A_{2}$. Note that $A_{i}^{-} \leq X_{i} \leq A_{i}$. So if $A_{1}<A_{2}$, then $X_{1} \leq A_{1} \leq A_{2}^{-} \leq X_{2}$. So suppose $A_{1}=A_{2}$ and without loss $B_{1} \leq B_{2}$. Then $X_{1} \leq X_{2}$ and so \mathcal{A}^{*} is totally ordered.

Note that $A=(A \cap G) A^{-} \in \mathcal{A}^{*}$ for all $A \in \mathcal{A}$ and so \mathcal{A}^{*}.
Let $X=(A \cap B) A^{-} \in \mathcal{A}^{*}$. Since \mathcal{B} is well ordered we may assume that B is minimal in \mathcal{B} with $X=(A \cap B) A^{-}$. Since \mathcal{B} is well ordered we may assume that B is minimal in \mathcal{B} with We will compute $X^{-}=\bigcup\left\{D \in \mathcal{A}^{*} \mid D<A\right\}$. If $A=A^{-}($in $\mathcal{A})$ then $X=A=\bigcup\{D \in$ $\mathcal{A} \mid D<A\} \leq X^{-}$and so $X=X^{-}$. Suppose next that $A \neq A^{-}$. Let $E \in \mathcal{B}$ with $E<B$. By the minimal choice of $B,(A \cap E) A^{-}<(A \cap B) A^{-}$and so $(A \cap E) A^{-} \leq X^{-}$. It follows that $\left(A \cap B^{-}\right) A^{-} \leq X^{-}$. So if $B=B^{-}$, then $X=X^{-}$. So suppose $B \neq B^{-}$. Let $\tilde{A} \in \mathcal{A}$ and $\tilde{B} \in \mathcal{B}$ with $(\overline{\tilde{A}} \cap \tilde{B}) \tilde{A}^{-} \leq X$. Then either $\tilde{A} \leq A^{-}$or $\tilde{A}=A$ and $\tilde{B} \leq B^{-}$. In either case $\left.(\tilde{A} \cap \tilde{B}) \tilde{A}^{-}\right) \leq\left(A \cap B^{-}\right) A^{-}$and so $X^{-}=\left(A \cap B^{-}\right) A^{-}$. Since $A^{-} \unlhd A$ and $B^{-} \unlhd B$ we have $\left.X^{-}=A \cap B^{-}\right) A^{-}(A \cap B) A^{-}=X$ and so \mathcal{A}^{*}.

Let \mathcal{M} be a non-empty subset of \mathcal{A}^{*}. Choose $A \in \mathcal{A}$ minimal with $(A \cap E) A^{-} \in \mathcal{M}$ for some $E \in \mathcal{B}$ and then choose $B \in \mathcal{B}$ minimal with $(A \cap B) A^{-} \in \mathcal{M}$. Then $(A \cap B) B^{-}$is
the minimal element of \mathcal{M}. So \mathcal{A}^{*} is well ordered and $\bigcap \mathcal{M}=(A \cap B) B^{-} \in \mathcal{A}^{*}$. If $G \in \mathcal{M}$, then $\bigcup \mathcal{M}=G \in \mathcal{A}^{*}$. If $G \notin \mathcal{M}$ pick X minimal in \mathcal{A}^{*} with $M<X$, for all $M \in \mathcal{M}$. Then clearly $\bigcup \mathcal{M}=X^{-} \in \mathcal{A}^{*}$. Thus \mathcal{A}^{*} is a series for G and so an ascending refinement of \mathcal{A}. Also the factors of \mathcal{A}^{*} are exactly the groups $\mid(A \cap B) A^{-} /\left(A \cap B^{-}\right) A^{-}$where $A \in \mathcal{A}$, $B \in \mathcal{B}$ with $A \neq A^{-}, B \neq B^{-}$and $(A \cap E) A^{-}<(A \cap B) A$ for all $E \in \mathcal{B}$ with $E<B$. Observe that these are exactly the groups $\mid(A \cap B) A^{-} /\left(A \cap B^{-}\right) A^{-}$where $A \in \mathcal{A}, B \in \mathcal{B}$ and $(A \cap B) A^{-} \neq\left(A \cap B^{-}\right) A^{-}$.

Now

$$
\begin{aligned}
(A \cap B) A^{-} /\left(A \cap B^{-}\right) A^{-} & =(A \cap B)\left(A \cap B^{-}\right) A^{-} /\left(A \cap B^{-}\right) A^{-} \\
& \left.\cong(A \cap B) /\left((A \cap B) \cap\left(A \cap B^{-}\right) A^{-}\right)\right) \\
& =(A \cap B) /\left(\left(A \cap B^{-}\right)\left(A \cap B \cap B^{-}\right)\right) \\
& =(A \cap B) /\left(\left(A \cap B^{-}\right)\left(A \cap B^{-}\right)\right)
\end{aligned}
$$

and so the set of factors of \mathcal{A}^{*} is isomorphic to the set

$$
\left\{A \cap B /\left(A^{-} \cap B\right)\left(A \cap B^{-}\right) \mid A \in \mathcal{A}, B \in \mathcal{B}, A \cap B \neq\left(A^{-} \cap B\right)\left(A \cap B^{-}\right)\right\}
$$

Observe that the last set is symmetric in A and B and all parts of the propositions are proved.

Lemma 2.5.5. [same number of infinite factors] Any two c-series of a polycyclic group have the same number of infinite factors.

Proof. Let \mathcal{A} and \mathcal{B} be the c-series of the group G. By 2.5.4 we may assume that $\mathcal{A} \subseteq \mathcal{B}$. Let (X, Y) be a jump of \mathcal{A} and consider the series

$$
X=X_{0}<X_{1}<\ldots X_{n}=Y
$$

where X_{0}, \ldots, X_{n} are the members of \mathcal{B} with $X \leq X_{i} \leq Y$. If $|Y / X|$ is cyclic of prime order then $n=1$ and $X_{1} / X_{0}=Y / X$. If $Y / X \cong \mathbb{Z}$, then $X_{1} / X_{0} \cong \mathrm{Z}$ while X_{i} / X_{i-1} is finite for $2 \leq i \leq n$. So each infinite factor of \mathcal{A} gives rise to exactly one infinite factor of \mathcal{B}.

Lemma 2.5.6. [cag cap kag] Let G be a group acting on the abelian group A. Let $g \in G$ with finite order n. Then $\mathrm{C}_{A}(g) \cap[V, g]$ has exponent dividing n.

Proof. Let $a \in C_{A}(g) \cap[V, g]$. Since A is abelian, $[A, g]=\{[a, g] \mid a \in A\}$ and so there exists $b \in V$ with $a=[b, g]$. We claim that $a^{m}=\left[b, g^{m}\right]$ for all $m \in Z^{+}$. By definition this is true for $m=1$. Note that $a^{m} \in C_{A}(g)$ and so by 2.1.1(b)

$$
\left[b, g^{m+1}\right]=\left[b, g^{m} g\right]=[b, g]\left[b, g^{m}\right]=a a^{m}=a^{m+1}
$$

It follows that $a^{n}=\left[b, g^{n}\right]=[b, 1]=1$.
Proposition 2.5.7. [supersolvabe] Let G be supersolvable group. Then
(a) [a] There exists a strong c series $1=G_{0}<G_{1}<G_{2}<G_{n}$ and $0 \leq l \leq n$ such that G_{i} / G_{i-1} is has odd prime order for all $1 \leq i \leq l$ and G_{i} / G_{i-1} has order 2 or infty for all $l<i \leq n$.
(b) [b] G has a unique maximal finite subgroup of odd order.
(c) $[\mathbf{c}]$ Any two strong c-series have isomorphic factors.

Proof. Let ${ }^{A}: 1=H_{0}<H_{1}<H_{2}<H_{n}$ be a strong c series for G and choose a c-series

$$
\mathcal{B}: 1=G_{0}<G_{1}<G_{2}<G_{n}
$$

and $a \leq b \in \mathbb{N}$ such that:
(a) \mathcal{A} and \mathcal{B} have isomorphic factors.
(b) G_{i} / G_{i-1} has odd order for all $1 \leq i \leq a$.
(c) G_{i} / G_{i-1} has order 2 or ∞ for $a<i \leq b$.
(d) If $b \neq n$, then G_{b+1} / G_{b} has odd prime order.
(e) a is maximal and then b is minimal.

Suppose that $b \neq n$. Then by maximality of $a, a \neq b$. Put Put $B=\bigcap G_{b-1}^{G_{b+1}}, \overline{G_{b}+1}=$ $G_{b+1} / B, p=\mid G_{b+1} / G_{b-1}$ and $m=\mid G_{b} / G_{b 11}$. Then $G_{b+1} / G_{b-1} \cong \mathrm{Z}_{p}, G_{b} / G_{b-1}$ is cyclic of order m, p is an odd prime and $m \in\{2, \infty\}$. Note that $G_{b}^{\prime} \leq G_{b-1}$ and since $G_{b}^{\prime} \unlhd G_{b+1}$, $G_{b}^{\prime} \leq B$. Thus $\overline{G_{b}}$ is abelian.

If $m=2$, then $G_{b}^{m} \leq G_{b-1}$ and so $G_{b}^{m} \leq B$ and $\overline{G_{b}}$ is an elementary abelian 2-group.
Suppose $m=\infty$ and let $x \in G_{b} \backslash B$. Then there exists $g \in G_{b+1}$ with $x \not \leq G_{b-1}^{g}$. Since $G_{b} / G_{b-1}^{g} \cong \mathrm{Z}, x G_{b-1}^{g}$ has infinite order in G_{b} / G_{b-1}^{g}. Hence also \bar{x} has infinite order. So for either possibility of m, any non-trivial elements of $\overline{G_{b}}$ has order m.

Suppose for a contradiction the $D:=\left[G_{b}, G_{b+1}\right] B \neq B$. Let $S_{0} \leq S_{1} \leq \ldots S_{m}=G$ be supersolvable series for G and pick k minimal with $S_{k} \cap D \not \leq B$. Then $\bar{E}:=\left(S_{k} \cap D\right) B / B \cong$ $S_{k} \cap D / S_{k} \cap B$ and since $S_{k-1} \cap D=S_{k-1} \cap D, \bar{E}$ is a quotient of

$$
S_{k} \cap D / S_{k-1} \cap D=S_{k} \cap D /\left(S_{k} \cap D\right) \cap S_{k-1} \cong\left(S_{k} \cap D\right) S_{k-1} / S_{k-1}
$$

Thus \bar{E} is isomorphic to a section of the cyclic group S_{k} / S_{k-1}. Hence \bar{E} is non-trivial cyclic subgroup of \bar{G}_{b}. Since non-trivial elements of $\overline{G_{b}}$ have order m, \bar{E} is cyclic of order m. It follows that $\operatorname{Aut}(\bar{E})$ has order at most two. Observe that G_{b+1} acts on $\bar{E} . G_{b}$ centralizes \bar{G}_{b} and so also \bar{E} and $G_{b+1} / G_{b} \cong \mathrm{Z}_{p}$ has order coprime to 2 . Thus G_{b+1} centralizes \bar{E}. So $\bar{E} \leq\left[\bar{G}_{b}, G_{b+1}\right] \cap C_{\bar{G}_{b}}\left(G_{b+1}\right)$. Thus by ?? \bar{E} has exponent dividing $p=\left|G_{b+1} / G_{b}\right|$ a contradiction since \bar{E} is cyclic of order m.

We proved that $\left[G_{b}, G_{b+1}\right] \leq B \leq G_{b-1}$. So $G_{b-1}=B \unlhd G_{b+1}$ and $\bar{G}_{b} \leq \mathrm{Z}\left(\bar{G}_{b+1}\right.$. Since G_{b+1} / G_{b} is cyclic we conclude that $\overline{G_{b+1}}$ is abelian. If $\overline{G_{b+1}}$ is cyclic, then

$$
G_{0} \leq \ldots G_{b-1} \leq G_{b+1} \leq \ldots G_{n}
$$

is a c-series for G, a contradiction since \mathcal{A} and so also \mathcal{B} is a c-series of minimal length. Thus $\overline{G_{b+1}}$ is not cyclic and there exist $\bar{K} \leq \overline{G_{b+1}}$ with

$$
\overline{G_{b+1}}=\overline{G_{b}} \times \bar{K}
$$

Let K be the inverse image of \bar{K} in G_{b+1}. The $K \unlhd G_{b+1}, K / G_{b-1} \cong \mathrm{Z}_{p}$ and G_{b+1} / K is cyclic of order m.

Consider the series

$$
G_{0} \leq \ldots G_{b-1} \leq K \leq G_{b+1} \leq \ldots \leq G_{n}
$$

If $b-1=a$, we get a contradiction to the maximality of a and if $a<b-1$, we get a contradiction to the minimality of b.

This show that $n=b$ and so (a) holds.
Note that $H:=G_{l}$ is a subgroup of odd order. Let g be any non-trivial element of odd order in G and pick $1 \leq t \leq n$ minimal with $g \in G_{t}$. Then $g G_{t-1}$ is non-trivial elements of odd order in G_{t} / G_{t-1}. So G_{t} / G_{t-1} cannot by cyclic of order 2 or ∞ and so $t \leq l$ and $g \in G_{l}=H$. Thus H is the unique maximal finite subgroup of odd order in G and (b) is proved.

For any odd prime p let s_{p} the number of factors of \mathcal{A} isomorphic to Z_{p}. Then s_{p} is also the number of factors of \mathcal{B} isomorphic to Z_{p} and so $|H|=\prod\left\{p^{s_{p}} \mid p\right.$ an odd prime $\}$. Thus s_{p} is independent of the choice of the strong c-series \mathcal{A}. By 2.5 .5 any two strong c-series also have the same number of factors isomorphic to Z . By defintition, any two strong c-series have the same number of total factors. It follows that they also have the same number of factors isomorphic to Z_{2}. So (c) holds.

Chapter 3

Groups with MIN

3.1 Basic properties of groups with MIN

Recall that a group with MIN is a group such that every non-empty set of subgroups has a minimal element.

Lemma 3.1.1. [basic min] Let G be a group with MIN.
(a) [a] Every section of G fulfills MIN.
(b) $[\mathbf{b}] G$ is periodic, that is every element in G has finite order.

Proof. (a) Let $B \unlhd A \leq G$ and \mathcal{M} a non-empty set of subgroups of A / B. Let $D \leq G$ be minimal with $B \leq D \leq A$ and $D / B \in \mathcal{M}$. Then D / B is a minimal element of \mathcal{M}.
(b) Let $g \in G$. By (a) $\langle g\rangle$ fulfills MIN and so $\langle g\rangle \nsupseteq \mathrm{Z}$. Thus $\langle g\rangle$ is finite.

Lemma 3.1.2. [min and com] Let G be a group with MIN. Then every series for G is an ascending series.

Proof. Just recall that by definition a series is ascending if every non-empty subset of the series has a minimal element.

Definition 3.1.3. [def:gcird] Let G be a group. Then G° is the intersection of all the subgroups of finite index in G.

Lemma 3.1.4. [gcirc and min] Let G be a group with MIN. Then G° is the unique minimal subgroups of finite index in G.

Proof. Let A minimal subgroups of finite index in G and B an arbitrary subgroup of index in G. $|A / A \cap B|=|A B / B| \leq \leq|G / B|, G / A \cap B|\leq|G / A|| G / B \mid$. So $A \cap B \mid$ has finite index in A and so by minimality of A and $B . A=A \cap B \leq B$. So A is the unique minimal subgroup of finite index and $A=G^{\circ}$

Lemma 3.1.5. [basic gcirc] Let G be a group and $H \leq G$. Then $H^{\circ} \leq G^{\circ}$.
Proof. Let $F \leq G$ with $|G / F|$ finite. Then $|H / H \cap F|=|H F / F| \leq|G / F|$ and so $H^{\circ} \leq$ $H \cap F \leq F$. Since this holds for all such $F, H^{\circ} \leq G^{\circ}$.

3.2 Locally solvable groups with MIN

Definition 3.2.1. [def:divisible] A group A is called divisible of it is abelian and for all $a \in A$ and $n \in \mathbb{Z}^{+}$where exists $b \in A$ with $b^{n}=a$.
\mathbb{Q} and $C_{p^{\infty}}$ are divisible. \mathbb{Z} is not divisible and all non-trivial divisible groups are infinite.
Lemma 3.2.2. [basis divisible] Let A be an abelian group and D a divisible subgroup of A. Then $A=D \oplus K$ for some $K \leq A$.

Proof. By Zorn's lemma there exists a subgroup K of A maximal with respect to $D \cap A=0$. Let $a \in A$ and let $m \in \mathbb{N}$. Then $a^{m} \in D K$ if and only of $a^{m}=d k$ for some $d \in D, k \in K$ and so iff $a^{m} K \cap D \neq \emptyset$ and iff $a^{m} D \cap K \neq \emptyset$. Let n be the order of $a D K$ in $A / D K$. If $n=\infty$ we conclude that $a \notin K$ and $|<a\rangle K \cap D=1$, a contradiction to the maximality of K. Thus $n \in \mathrm{Z}^{+}$. Then $a^{n}=d k$ for some $d \in D$ and $k \in K$. Since D is divisible, $d=b^{n}$ for some $b \in D$. Put $e=a b^{-1}$. If $e^{m} K \cap D \neq \emptyset$ we get $e^{m} D \cap K \neq \emptyset$ and since $a D=e D, a^{m} D \cap K \neq$ emptyset and $a^{m} \in D K, n \mid m$ and $m=n l$ for some $l \in \mathrm{Z}$. Thus $\left.e^{m}=(a b-1)^{(} n l\right)=\left(a^{n} b^{-n}\right)^{l}=\left(a^{n} d^{-1}\right)^{l}=k^{k} \in K$. It follows that $e^{m} \leq D \cap K=1$ and so $\langle e\rangle K \cap D=1$. By maximality of K, this gives $e \in K$ and so $a=e b \in K D$. Thus $A=D K$ and $A D \oplus K$.

3.3 Locally finite groups with finite involution centralizer

Proposition 3.3.1. [brauer fowler] Let H be a finite group, t an involution in H. Then there exist a non-trivial normal subgroup N of Gwith $\mid G / C_{G}(N) \leq\left(2\left|C_{H}(t)\right|^{2}\right)$! and $N \leq$ $[t, G]$.

Proof. Put $\mathcal{D}=\left\{(x, y)\left|x, y \in t^{H}\right| x \neq y\right\}$. Note that $x y \neq 1$ for all $(x, y) \in \mathcal{D}$. For $a \in H^{\sharp}$, but $\left.\mathcal{D}(a)=\{x, y) \in \mathcal{D} \mid x y=a\right\}$ and $k=\left\{\max |\mathcal{D}(h)| a \in G^{\sharp}\right.$. Put $h=|H|$. Then $|c C|=\left|H / C_{H}(t)\right|=\frac{h}{c}$ and

$$
\frac{h}{c}\left(\frac{h}{c}-1\right)=|\mathcal{C}|(|\mathcal{C}|-1)=|\mathcal{D}|=\sum_{a \in H^{\sharp}}|\mathcal{D}(a)| \leq(h-1) k
$$

and so

$$
\frac{h^{2}}{c^{2}} \leq h k-k+\frac{h}{c} \leq h\left(1 \frac{1}{c} \leq 2 h\right.
$$

and so

$$
\frac{h}{k} \leq 2 c^{2}
$$

Pick $a \in H^{\sharp}$ with $|\mathcal{D}(a)|=k$ If $(x, y) \in \mathcal{D}(a)$ then $y=x^{-1} a=x a$, so y uniquely determined by x. Moreover x inverts $a=x y$. So if (\tilde{x}, \tilde{y}) is another element of $\mathcal{D}(a)$, then $x y^{-1} \in C_{G}(a)$. Thus $|\mathcal{D}(a)| \leq\left|C_{H}(a)\right|$. . It follows that

$$
\left|a^{H}\right|=\left|H / C_{H}(a)\right| \leq \frac{h}{k} \leq c^{2}
$$

Since $H / C\left(H\left(a^{H}\right)\right.$ is isomorphic to a subgroup $\operatorname{Sym}\left(a^{H}\right)$ we conclude that $H / C_{H}\left(a^{H}\right) \mid \leq$ $\left(2 c^{2}\right)$!. Put $N=\left\langle a^{G}\right\rangle$. Then $\left|H / C_{H}(N)\right| \leq\left(2 c^{2}\right)$!. Let $x=t^{r}$ and $y=x^{s}$ for some $r, s \in K$. Then $a=x y=x^{-1} x^{s}=[x, s]=\left[t^{r}, s\right]$. Since $[t, K] \unlhd K$ this gives and $N \leq[t, G]$ and the lemme is proved.

Lemma 3.3.2. [brian] Let K be a group, $M \unlhd K, \bar{K}=K / M$ and $h \in K$. Then $\left|C_{\bar{K}}(\bar{h})\right| \leq$ $\mid C_{K}(h)$. Moreover if $\left|C_{\bar{K}}(\bar{h})\right|=\left|C_{K}(h)\right|$, then $M h \subseteq h^{K}$.

Proof. Define $A \leq K$ by $M \leq A$ and $A / M=C_{\bar{K}}(\bar{h})$. Note that $C_{K}(h) \leq A$. Consider the map

$$
\tau: A \rightarrow H, a \rightarrow h^{a}
$$

Since $\left[\bar{h}^{\bar{a}}=\bar{h}\right.$ for all $a \in A$ we have $h^{a} \in M a$ and so $\operatorname{Im} \tau \subseteq M h$.
Note that $\tau(a)=\tau(b)$ iff $h^{a}=h^{b}$ iff $h^{b a^{-1}}=h$ iff $b a^{-1} \in C_{K}(h)$ iff $b \in a^{-1} C_{K}(h)$. Thus $\tau^{-1}(d)=\left|C_{K}(h)\right|$ for all $d \in \operatorname{Im} \tau$ and

$$
|A|=\left|C _ { K } (h) \left\|\operatorname{Im} \tau\left|\leq\left|C_{K}(h)\right|\right| M h\left|\| C_{K}(h)\right| M \mid\right.\right.
$$

and so

$$
\left|C_{\bar{K}}(\bar{h})\right|=|A / M| \leq\left|C_{K}(h)\right|
$$

If $\left|C_{\bar{K}}(\bar{h})\right|=\left|C_{K}(h)\right|$ we conlcude that $M h=\operatorname{Im} \tau=h^{A} \subseteq h^{K}$. Note tat
Lemma 3.3.3. [h1 bouned] Let H be group acting on an abelian group A. Then $A / C_{A}(G)$ is bounded in terms of $\mid G / C_{G}(A)$ and $[A, G]$.

Proof. Without loss $C_{G}(A)=1$. For $g \in G$ we have $A / C_{A}(g) \cong[A, g] \leq[A, G]$ and so $\left|A / C_{A}(g)\right| \leq[A, G]$. Since $G / C_{A}(G)$ embeds into $\times_{g \in G} A / C_{A}(G)$, the lemma is proved.

Proposition 3.3.4. [g $\bmod \mathbf{z l}]$ Let G be a finite group and $t \in G$ with $t^{2}=1$. Put $L=[t, G]$. Then $\left|G / \mathrm{Z}_{\mathrm{Ord}}(L)\right|$ is bounded in terms of $\left|C_{G}(t)\right|$

Proof. The proof is by induction on $C_{G}(t)$. Replacing G be $G / \mathrm{Z}_{\mathrm{Ord}}(L)$ we may assume that $\mathrm{Z}(L)=1$. By 3.3.1 there exiss a non-trvial normal subgroup N of G such that $N \leq L$ and $G / C_{G}(N)$ is $\left|C_{G}(t)\right|$-bounded. Without loss N is a mininal normal subgroup of G. If t inverts N, then L centralizes N and so $L \leq \mathrm{Z}(L)=1$, a contadiction. Hence there exists $n \in N$ such that t does not invert n. Since $n=(n t) t$ we conclude that $(n t)$ does not have order two. So $n t \notin t^{G}$. Put $\bar{G}=G / N$. Then 3.3.2 implies that $\left|C_{\bar{G}}(t)\right|<\mid C_{G}(t)$. Let $\left.Z / N=\mathrm{Z}_{\mathrm{Ord}}(\bar{L})\right)$. Then by induction G / Z is bounded in terms of $\mid \mathrm{C}_{\bar{g}}(\bar{t})$. Put $D=C_{Z}(N)$. Since $|Z / D| \leq \mid G / C_{G}(N)$ we conclude that Z / D and so also G / D are bounded in terms of $\left|C_{G}(t)\right|$.

It remains to bound the order of D. So suppose that $D \neq 1$ and let M be any nontrivial normal subgroup of G contained in D. Suppose that $M \cap D=1$. Then $M \cong$ $\left.M N / N \leq Z N / N=\mathrm{Z}_{\mathrm{Ord}}(\bar{L})\right)$ and so $C_{M}(L)=1 \neq 1$, a contradiction to $Z(L)=1$. Thus $M \cap N \neq N$. Since N is a mininal normal subgroup of G this gives $N \leq M$. Thus N is the uniuqe mininal normal subgroup of G contained in D. In particular $N \leq D$ and so N is abelian. Since t does not invert N there a prime p and an elemenst of n of order p in $C_{N}(t)$. By mimimlity of $N, N=\left\langle n^{G}\right\rangle$. It follows that N is an elementary abelian p group and $|N| \leq p^{\mid} G / C_{G}(N)\left|\leq\left|C_{G}(t)\right|^{\mid G / C_{G}(N)}\right.$. Thus $| N \mid$ is $\left|C_{G}(t)\right|$-bounded. Since Z / N is nilpotent and $N \leq Z(D), D$ is nilpotent. Observe that $N \cap O_{p^{\prime}}(D)=1$ and so $O_{p^{\prime}}(D)=1$. Thus D is a p-group and we conlcude that $\left[D, O^{p}(L)\right] \leq N$. If $C_{D}\left(O^{p}(L)\right) \neq 1$, then also $C_{D}(L)=1$, a contradiction. Thus $C_{D}\left(O^{p}(L)\right)=1$. From $\left[O^{p}(L), D, D\right] \leq[D, N]=1$ and the Three subgroup lemma we get $\left[D^{\prime}, O^{p}(L)\right]=1$ and so D is abelian. Since $|G / D|$ is bounded, we conclude that $O^{p}(L) / C_{O^{p}(L)}(D)$ is bounded. ?? now shows that $|D|=\left|D / C_{D}\left(O^{p}(L)\right)\right|$ is bounded.

Lemma 3.3.5. [nilpotent and maximal abelian] Let P be a hypercentral groups and A a maximal abelian normal subgroup of P. Then $\mathrm{C}_{P}(A)=A$.

Proof. Let $h \in C_{P}(A)$ with $[h, P] \leq A$. Then $\langle h\rangle A$ is an abelian normal subgroup of P and so by maximality of $A, h \in A$. Since P is hypercental this implies $\mathrm{C}_{P}(A)=A$.

Lemma 3.3.6. [2-group with small centralizer] Let P be a locally finite 2-group and $t \in P t^{2}=1$ and with $\mid C_{P}(t)$ finite. Then there exists a integer n such that t inverts P^{n} and n and P / P^{n} are bounded in terms of $\left|C_{P}(t)\right|$

Proof. Without loss P is finite. Let A be a maximal normal abelian subgroup of P and put $m=\left|C_{P}(t)\right|$. Let $m=2^{k}$. Since $A / C_{A}(t) \cong[A, t]$ we have $|A /[A, t]|=\left|C_{A}(t)\right|| | C_{P}(t) \mid$ and so $A^{m} \leq[A, t]$. Note that t inverts $[A, t]$ and so also A^{m} and $\left[\Omega_{1} A(t), t\right]$. Thus $\left[\Omega_{1} A(t), t\right] \leq C_{\Omega_{1}(A)}(t)$ and $\left|\Omega_{1}(A)\right|=\left|\left[\Omega_{1} A(t), t\right]\right|\left|C_{\Omega_{1}(A)}(t)\right| \leq\left|C_{P}(t)\right|^{2}=m^{2}=2^{2 k}$.

If follows that A has rank at most $2 k$. and so A / A^{m} has order at most $m^{2 k}=2^{2 k^{2}}$. order. Hence also $P / C_{P}\left(A / A^{m}\right)$ has m-bouned order. Put $E=C_{P}\left(A^{m}\right) \cap C_{P}\left(A / A^{m}\right)$. By 3.3.2 $P /[P, t]$ has order at most m and since $[P, t]$ centralizes $A^{m}, P / C_{P}\left(A^{m}\right)$ has order at most m. Put $E=C_{P}\left(A^{m}\right) \cap C_{P}\left(A / A^{m}\right)$. Then P / E has m-bouned order. Let $a \in A$ and $e \in E$. Then $[a, e]^{m}=\left[a^{m}, e\right]=1$ and so $[a, e] \leq \Omega_{k}(A)$. Since $\mid \Omega_{k}(A)$ and A / A^{m} have order
at most $2^{2 k^{2}}$ we conclude that $E / C_{E}(A)$ has order at most $24 k^{4}$. Thus $P / A=P / C_{P}(A)$ has m-bounded order. Hence $P^{l} \leq A$ for some m-bounded integer k. Then $P^{l m} \leq A^{m}$ and t inverts $P^{l m}$. Since $A^{l m} \leq A, \mid A / P^{l m}$ has order at most $(l m)^{k}$ and so $\left|P / P^{l m}\right|$ is $l m$-bounded.

Lemma 3.3.7. [coprime action] Let p be a prime and G a finite group acting a finite p-group P.Define $O^{p}(G)=\langle x \in G| x$ is a p^{\prime} element \rangle
(a) $[\mathbf{a}] G / O^{p}(G)$ is a p-group and so $O^{p}(G)$ is the unique smallest normal subgroup of G whose quotient is a p-group.
(b) $[\mathbf{c}]\left[P, O^{p}(G)\right]=\left[P, O^{p}(G) ; n\right]$ for all $n \in \mathrm{Z}^{+}$.
(c) $[\mathbf{d}]$ The exists $n \in \mathrm{Z}^{+}$with $[P, G ; n]=0$ if and only if $\left[P . O^{p}(G)\right]=1$ and if and only if $G / C_{G}(P)$ is a p-group.

Proof. (a) Let $x \in G$, then $x=y z$ where y is a p element and z is p^{\prime}-elemenst. Thus $x O^{p}(G)=y O^{p}(G)$ and so $G / O^{p}(G)$ is a p-group.

Lemma 3.3.8. [more coprime] Let P be a p-group acting on a p^{\prime}-group Q.
(a) [a] Let $R \unlhd S \leq Q$ be P-invariant subgroups of Q. Then $C_{S / R}(P)=C_{S}(P) R / R$.
(b) [b] Let $1=Q_{0} \unlhd Q_{1} \leq Q_{2} \unlhd \ldots \unlhd Q_{n}=Q$ be a P invariant subnormal series of Q. Then

$$
\left|C_{Q}(P)\right|=\prod_{i=1}^{n}\left|C_{Q_{i} / Q_{i-1}}(P)\right|
$$

Proof. (a) Let $T / R=C_{S / R}(Q)$. Then $C_{S}(R) Q \leq T$ and $[T, P] \leq R$. By Homework 1 , $T=C_{T}(P)[T, T] \leq C_{S}(P) Q \leq T$ and so $T=C_{S}(P) Q$.
(b). This clearly holds for $n=1$. Suppose $n>1$ and put $k=n-1$. Then

$$
\begin{array}{rlll}
\left|C_{Q}(P)\right| & =\left|C_{Q}(P) / C_{Q_{k}}(R) \| C_{Q_{k}}(R)\right| & & =\left|C_{Q}(R) / C_{Q}(R) \cap Q_{k}\right|\left|C_{Q_{k}}(R)\right| \\
& =\| C_{Q}(R) Q_{k} / Q_{k}| | C_{Q_{k}}(R) \mid & = & \left|C_{Q / Q_{k}}(R)\right|\left|C_{Q_{k}}(R)\right| \\
& =\left|C_{Q / Q_{k}}(R) \| \prod_{i=0}^{k}\right| C_{Q_{i} / Q_{i-1}}(P) \mid & & \prod_{i=1}^{n}\left|C_{Q_{i} / Q_{i-1}}(P)\right|
\end{array}
$$

Proposition 3.3.9. [nilpotent by finite] Let G be a locally finite group and $t \in G$ with $t^{2}=1$. Then there exists a postive integer n such that n and $\left|G / Z_{n}([G, t])\right|$ are bounded in terms of $\left|C_{G}(t)\right|$. In particular, G is nilpotent by finite.

Proof. Put $L=[t, G]$ and $Z=Z_{\text {Ord }}(L)$.
Supppose first that G is finite let n be minimal with $Z_{n}(L)=Z$. By 3.3.4 $|G / Z|$ is bounded in terms of $C_{G}(t)$. So we just need to show that n is bounded. Let r and s be minimal with $O_{2}(Z) \leq \mathrm{Z}_{s}(L)$ and $O(Z) \leq Z_{r}(L)$. Then $n=\max (r, s)$. By 3.3.6 there exists an integer m such that $O_{2}(Z)^{m}$ has bounded index in $O_{2}(Z)$ and $O_{2}(Z)^{m}$ is inverted by t. Then L centralizies $O_{2}(Z)^{m}$ and s is bounded.

For $1 \leq j \leq s$ put $Z_{i}=Z_{i}(L) \cap \overline{(Z)}$. Then $Z_{i} / Z_{i-1}=\mathrm{C}_{O(Z) / Z_{[i-1}}(L)$ and $1=Z_{0}<Z_{1}<$ $Z_{2}<\ldots<Z_{r}=O(Z)$. Let $i \in Z^{+}$with $2 i \leq t$. Then L does not centralizes $Z_{2 i} / Z_{2 i-2}$, t does not inverts $Z_{2 i} / Z_{2 i-2}, C_{Z_{2 i} / Z_{2 i-2}}(t) \neq 0$ and by Homework $1, C_{Z_{2 i} i}(t) \not \leq Z_{2 i-1}$. Thus

$$
0<C_{Z_{2}}(t)<C_{Z_{4}}(t)<\ldots
$$

and we conclude that s is bounded in terms of $\left|C_{G}(t)\right|$.
So the proposition holds for finite groups. In particular there exist bounded integers n and m such that $\mid H / Z_{n}([[H, t]) \mid \leq m$ for all finite subgroups H of G. For a finite subgroup subgroup H of G define

$$
k(H)=\sup \left\{| | H / H \cap Z_{n}([[K, t])| | H \leq K \leq G, K \text { finite }, H \cap[t, G]=H \cap[t, K]\}\right.
$$

Observe that since $H \cap[t, G]$ is a finite subgroup, there exists a finite subgroup K of G with $H \leq K$ and $H \cap[t, G] \leq[t, K]$. Hence $H \cap[t, G]=H \cap[t, K]$ and $k(H)$ is well defined. Also

$$
\mid H / H \cap Z_{n}\left([[K , t]) | = | H Z _ { n } \left(\left[[K, t] / Z_{n}\left([[K, t])|\leq| K / Z_{n}([[K, t]) \mid \leq m\right.\right.\right.\right.
$$

and so $k(H) \leq m$ and there exists a finite subgroup H^{*} of G with $H \leq H^{*} \leq G$, $H \cap[t, G]=H \cap\left[t, H^{*}\right]$ and $\mid H / H \cap Z_{n}\left(\left[\left[H^{*}, t\right] \mid=k(H)\right.\right.$.

Put $k=\max \{k(H) \mid H \leq G, H$ finite $\}$. Then also $k \leq M$. Put

$$
\mathcal{L}=\{H \leq G \mid H \text { finite } k(H)=k\}
$$

and for $L \in \mathcal{L}$ define

$$
\mathcal{F}\left(L^{*}\right)=\left\{H \leq G \mid L^{*} \leq H, H\right. \text { finite }
$$

We will prove next
$\mathbf{1}^{\circ}$. [1] Let $L \in \mathcal{L}$ and $H \in \mathcal{F}\left(L^{*}\right)$. Then $L \cap[G, t]=L \cap[H, t], L \cap Z_{n}\left(\left[\left[L^{*}, t\right]\right)=\right.$ $L \cap Z_{n}\left(\left[H^{*}, t\right]\right)$ and $\mid L / L \cap Z_{n}\left(\left[H^{*}, t\right]\right)=k$

Indeed we have

$$
L \cap[G, t]=L \cap\left[L^{*}, t\right] \leq L \cap[H, t] \leq L \cap\left[H^{*}, t\right] \leq L \cap[G, t]
$$

and so $L \cap[G, t]=L \cap\left[L^{*}, t\right]=L \cap[H, t]=L \cap\left[H^{*}, t\right]$
Thus $\left.\left[L \cap Z_{n}\left(\left[H^{*}, t\right]\right), L^{*} ; n\right] \leq Z_{n}\left(\left[H^{*}, t\right]\right), H^{*} ; n\right]=1$ and hence

$$
L \cap Z_{n}\left(\left[H^{*}, t\right]\right) \leq \mathbb{L} \cap Z_{n}\left(\left[L^{*}, t\right]\right.
$$

Therefore,

$$
k=k(L)=\left|L / L \cap Z_{n}\left(\left[L^{*}, t\right]\right)\right| \leq\left|L / L \cap Z_{n}\left(H^{*}, t\right]\right| \leq k(L)
$$

and $\left(1^{\circ}\right)$ is proved.
2. [2] Let $L \in \mathcal{L}$ and $H \in \mathcal{F}\left(L^{*}\right)$. Then $k(H)=k$ and $H=L\left(H \cap Z_{n}\left(\left[H^{*}, t\right]\right)\right)$.

By $\left(1^{\circ}\right)$ we have

$$
\begin{array}{rcccc}
k & = & \mid L / L \cap Z_{n}\left(\left[\left[H^{*}, t\right] \mid\right.\right. & = & \mid L Z_{n}\left(\left[\left[H^{*}, t\right]\right) / Z_{n}\left(\left[\left[H^{*}, t\right] \mid\right.\right.\right. \\
& \leq \mid H Z_{n}\left(\left[\left[H^{*}, t\right] / Z_{n}\left(\left[\left[H^{*}, t\right]\right)\right.\right.\right. & = & k(H) \leq k
\end{array}
$$

Thus $k=k(H)$, and $H Z_{n}\left(\left[\left[H^{*}, t\right]\right)=L Z_{n}\left(\left[\left[H^{*}, t\right]\right)\right)\right.$. Thus $H=L\left(H \cap \mathrm{Z}_{n}\left(\left[\left[H^{*}, t\right]\right)\right)\right.$ and $\left(2^{\circ}\right)$ holds.
3. [3] Put $Z=\bigcup_{L \in \mathcal{L}} L \cap Z_{n}\left(\left[L^{*}, t\right]\right)$. Then Z is a normal subgroup of G.

Let $L_{1}, L_{2} \in \mathcal{L}$ and put $H=\left\langle L_{1}^{*}, L_{2}^{*}\right\rangle$. Then by (2 $\left.2^{\circ}\right), H \in \mathcal{L}$ and by (??), $L_{i} \cap$ $Z_{n}\left(\left[L_{i}^{*}, t\right]\right) \leq H \cap Z_{n}([t, H]) \leq Z$. Thus

$$
\left\langle L_{1} \cap Z_{n}\left(\left[L_{1}^{*}, t\right], L_{2} \cap Z_{n}\left(\left[L_{2}^{*}, t\right]\right)\right\rangle \leq Z\right.
$$

and so Z is subgroup of G. Since \mathcal{L} is invariant under G, also Z is invariant under G.
4. [4] $\quad G=L Z$ for all $L \in \mathcal{L}$ and $|G / Z| \leq k \leq m$.

Let $g \in G$ and put $H=\left\langle L^{*}, g\right\rangle$. Then by $\left(2^{\circ}\right), H \in \mathcal{L}$ and $g \in H=L\left(H \cap Z_{n}\left[H^{*}, t\right]\right) \leq$ $L Z$. Thus $G=L Z$ and so $G / Z\left|=|L / L \cap Z| \leq\left|L / L \cap Z_{n}\left(\left[L^{*}, t\right]\right)\right|=k \leq m\right.$.
5°. $[\mathbf{5}] \quad Z \leq Z_{n}([G, t])$.
Clearly $Z \leq[G, t]$ and so we only need to show that $[Z,[G, t] ; n]=1$. This holds if an only if $[z, F ; n]=1$ for all $z \in Z$ and all finite subgroups F of $[G, t]$. . Pick $L \in \mathcal{L}$ with $z \in L \cap Z_{n}\left(\left[L^{*}, t\right]\right)$ and then $H \leq G$ with H finite, $L^{*} \leq H$ and $F \leq[H, t]$. Then using $\left(1^{\circ}\right)$, $z \in L \cap Z_{n}\left(\left[L^{*}, t\right]\right)=L \cap Z_{n}\left(\left[H^{*}, t\right]\right)$ and so $[z, F ; n] \leq\left[Z_{n}\left(\left[H^{*}, t\right]\right),\left[H^{*}, t\right] ; n\right]=1$. So (5°) hold.

By $\left(4^{\circ}\right)$ and $\left(5^{\circ}\right), G / Z_{n}([G, t]) \mid \leq m$ and the theorem is proved.

Corollary 3.3.10. [infinite centralizer] Let H be an infinite locally finite simple group and t an involution in H. Then $C_{H}(t)$ is infinite.

Proof. This follows immediately from 3.3.9

3.4 Locally finite groups with MIN

This section is entirely devoted the proof of the following Theorem
Theorem 3.4.1. [lf with min] Every locally finite group which fulfills MIN is a cernikov group.

Suppose the theorem is false.
Step 1. [step 1] There exists an infinite locally finite simple groups G all of whose proper subgroups are Cernikoóvgroups.

Proof. Let G_{0} be a locally finite group with MIN which is not Cernikoóv. Let G_{1} be a subgroup of G_{0} minimal with respect to not being Cernikoóv. ?? implies that G_{1} has a component K with $K / Z(K)$ infinite. Put $G=K / Z(K)$. By minimality of $G-1$, all proper subgroups of G_{1} and so also of G are Cernikoóvgroups.

Step 2. [step 2] G is not a 2^{\prime}-group.
Proof. Otherwise the Odd Order Theorem implies that all finite subgroups of G are solvable. But then G is locally solvable and all chief factor of G are abelian, a contradiction.

Let \mathcal{P} be the set of all positive primes, $\pi \subseteq \mathcal{P}, \mathcal{D}_{\pi}$ be the set of maximal divisible abelian π-subgroups of G and $\mathcal{D}=\mathcal{D}_{\pi}$.

Step 3. [step 3] Let H be proper subgroup of G and put $H_{\pi}=\left\{x \in H^{\circ} \mid x\right.$ is a π-element. Then H_{π} contains every divisible abelian π-subgroup of H and is contained in every maximal π-subgroup of H.

Proof. Let D be a divisible abelian π-subgroup of H. Then $D=D^{\circ} \leq H^{\circ}$ and so $D \leq H_{\pi}$.
Let M be maximal π-subgroup of H. Since H_{π} is normal in $H, H_{\pi} M$ is π-subgroup of G and so $M=H_{\pi} M$ by maximality of M.

Step 4. [step 4] Let $1 \neq D \in \mathcal{D}_{\pi}$ and $D \leq H<G$. Then $D=H_{\pi}$ and $H \leq N_{G}(D)$. So $N_{G}(D)$ is the unique maximal subgroup of G containing D.

Proof. We have $D \leq H_{\pi}$ and so by maximality of $D, D=H_{\pi}$. Since $H_{\pi} \unlhd H, H \leq$ $N_{G}(D)$.

Step 5. [step 5] Let $D \in D_{\pi}$ and E a divisible abelian π subgroup of G. Then $E \leq D$ or $E \cap D=1$.

Proof. Assume that $E \cap D \neq 1$. Then $D \neq 1$. Put $H=C_{G}(E \cap D)$. Since G is simple, $E \cap D \nsubseteq G$ and so $H \neq G$. Note that $\langle E, D\rangle \leq H$ and by Step $4, D=H_{\pi}$. Thus by Step $3, E \leq D$.

Step 6. [step 6] Every every non-trivial divisible abelian subgroup A of G lies in a unique maximal divisible abelian subgroup \bar{A} of G. If in addition A is a π-group, then \bar{A}_{π} is the unique maximal divisible abelian π-subgroup of G containing A.

Proof. Let $D, E \in \mathcal{D}$ with $A \leq D$ and $A \leq E$. Then $A \leq D \cap E$. By Step $5 D=E$. Now suppose A and B are divisible by groups with $A \leq B$. Then $A \leq \bar{B}$ and so $\bar{B}=\bar{A}$ and $B \leq \bar{A}_{\pi}$.

Step 7. [step 7] Let D be non-trivial divisible abelian subgroup of G. Then $N_{G}(D) \leq$ $N_{G}(\bar{D})$ and if $D \in \mathcal{D}_{\pi}$, then $N_{G}(D)=N_{G}(\bar{D})$.

Proof. Let $g \in \mathrm{~N}_{G}(D)$. Then $D \leq \bar{D}^{g} \in \mathcal{D}$ and so $\bar{D}=\bar{D}^{g}$ by the uniqueness of \bar{D}. So the first statement holds. For the second observe that $D=\bar{D}_{\pi}$ and so $\mathrm{N}_{G}(\bar{D}) \leq \mathrm{N}_{G}(D)$.

Step 8. [step 19]

(a) [a] Every maximal subgroup of G is infinite.
(b) [b] Every proper infinite subgroup R of G lies in a unique maximal subgroup \tilde{R} of G, namely $\tilde{R}=B_{G}\left(\overline{R^{\circ}}\right)$.
(c) $[\mathbf{c}]$ If M_{1} and M_{2} are maximal subgroups of G with $M_{1} \cap M_{2}$ infinite, then $M_{1}=M_{2}$.
(d) [d] Let M be a maximal subgroup of G and $H \leq G$ with $M \cap H$ infinite. Then $H \leq M$.

Proof. (a) Suppose F be a finite subgroup of G and let $g \in G \backslash F$. Then $\langle F, g\rangle$ is finite, $F<\langle F, g\rangle<G$ and so F is not maximal.
(b) Let $R \leq M<G$. Then $R^{\circ} \leq M^{\circ} \leq \overline{R^{\circ}}$ and so $\overline{R^{\circ}}=\overline{M^{\circ}}$. Thus $M \leq N_{G}\left(\overline{R^{\circ}}\right)$.
(c) By (b) $M_{1} \cap M_{2}$ is contained in a unique maximal subgroup and so $M_{1}=M_{2}$.
(d) By (b) H lies in a maximal subgroup \tilde{M} of G. Then $H \cap M \leq M \cap \tilde{M}$ and so by (c), $M=\tilde{M}$. Thus $H \leq M$.

Step 9. [char max] Let $M<G$. Then following are equivalent.
(a) $[\mathbf{a}] M$ is a maximal subgroup of G.
(b) $[\mathbf{c}] \quad 1 \neq M^{\circ} \in \mathcal{D}$ and $M=N_{G}\left(M^{\circ}\right)$.
(c) $[\mathbf{b}] \quad M=N_{G}(D)$ for some set of prime π and some $1 \neq D \in D_{\pi}$.

Proof. (a) $\Longrightarrow(\mathrm{c}): \quad$ Suppose M is maximal in G. By Step 8(a), M is infinite and so $M^{\circ} \neq 1$. By Step $8(\mathrm{~b}), M=N_{G}\left(\overline{M^{\circ}}\right)$ and so $\overline{M^{\circ}} \leq M$ and thus $M^{\circ}=\overline{M^{\circ}} \in \mathcal{D}$.
$(\mathrm{c}) \Longrightarrow(\mathrm{b}): \quad$ Just set $\pi=\mathcal{P}$ and $D=M^{\circ}$.
$(\mathrm{b}) \Longrightarrow(\mathrm{a}): \quad$ See Step 4 .
Definition 3.4.2. [omega] Let H be a group. Then $\left.\Omega_{n}^{m}(H)=\langle x \in H| x^{m^{n}}=1\right\}$. If H is a p group for some prime p, then $\Omega_{m}(H)=\Omega_{m}^{p}(H)$.

Step 10. [step 9] Let p be a prime and $1 \neq D \in \mathcal{D}_{p}$. Let T be p-subgroup of G with $\Omega_{2}(D) \leq T$. Then $T \leq \mathrm{N}_{G}(D)$ and $|T / T \cap D| \leq\left|N_{G}(D) / \bar{D}\right|_{p}$.

Proof. Since $D \leq \mathrm{N}_{G}\left(\Omega_{2}(D)\right)$, Step 4 implies $\mathrm{N}_{G}\left(\Omega_{2}(D)\right) \leq \mathrm{N}_{G}(D)$. Since T is a Cernikoóvpgroup, $1 \neq \mathrm{Z}(T)$. Observe that $\left[\Omega_{2}(D), \mathrm{Z}(T)\right]=1$ and $\mathrm{Z}(T) \leq \mathrm{N}_{G}\left(\Omega_{2}(D)\right) \leq \mathrm{N}_{G}(D)$. Thus by ??, $[D, \mathrm{Z}(T)]=1$. We have $D \leq \mathrm{C}_{G}(\mathrm{Z}(T))<G$ and so usingStep $4, T \leq$ $\mathrm{C}_{G}(\mathrm{Z}(T)) \leq \mathrm{N}_{G}(D)$. Since $D=\bar{D}_{p}, D / D_{p}$ is p^{\prime}-group and so $T \cap D \leq D_{p}$. Thus $T / T \cap D=T / T \cap o D \cong T \bar{D} / \bar{D} \leq N_{G}(D) / \bar{D}$ and Step 13 is proved.

Lemma 3.4.3. [cernikov and sylow] Let H be a Cernikoóvgroup and p a prime, then H acts transitively on $\operatorname{Syl}_{p}(H)$.

Proof. Note that $H_{p} \unlhd H$ and H_{p} is a p-group. Let $T \in \operatorname{Syl}_{p}(H)$. Then $H_{p} S$ is a p-group and so $H_{p} \leq S$. Since H° / H_{p} is a p^{\prime}-group, $S \cap H^{\circ}=H_{p}$. Thus $\left|S / H_{p}\right|=\left|S H^{\circ} / H^{\circ}\right|$ and so S / H_{p} is finite. Note that S / H_{p} is a Sylow p-subgroup of H / H_{p}. We conclude from ?? that all Sylow p-subgroups of H / H_{p} are conjugate in H / H_{p}. Hence all Sylow p-subgroups of H are conjugate.

Step 11. $[\mathbf{s c i r c}]$ Let $S \in \operatorname{Syl}_{p}(G)$. then $S^{\circ} \in \mathcal{D}_{p}$ and $S^{\circ}=\bar{S}^{\circ}{ }_{p}$
Proof. Since S° is a divisible abelian p-goup, $S^{\circ} \leq \bar{S}^{\circ}{ }_{p}$. Pick $D \in \mathcal{D}_{p}$ with $\bar{S}^{\circ}{ }_{p} \leq D$. By Step 4, D is unique and so S normalizes D. Thus $S D$ is p-group and so $D \leq S$ by maximality of S. Hence $D \leq S^{\circ}$ and so $S_{p}={\overline{S^{\circ}}}_{p}=D$.

Step 12. [transitive on syl] Let $H \leq G$. Then H acts transitively on $\operatorname{Syl}_{p}(H)$.
Proof. If $H \neq G$, then H is a Cernikoóvgroup and we are done by 3.4.3.
So suppose $G=H$ and let S_{1} and S_{2} be Sylow p-subgroups of G. If S_{1} or S_{2} is finite we are done by ??. So we may assume that $S_{i}^{\circ} \neq 1$ for $i=1$ and 2 . Put $E_{i}=\Omega_{2}\left(S_{i}^{\circ}\right)$ and $L=\left\langle E_{1}, E_{2}\right\rangle$. Then L is a finite group and so by Sylow's Theorem $\left\langle E_{1}, E_{2}^{g}\right\rangle$ is a p-group for some $g \in L$. Thus by Step $13 E_{2}^{g} \leq N_{G}\left(S^{\circ}\right)$ and so E_{2}^{g} is contained in a Sylow p-subgroup of $\mathrm{N}_{G}\left(S_{1}^{\circ}\right)$. By the first paragraph of the proof $E_{2}^{g h} \leq S_{1}$ for some $h \in N_{G}\left(S_{1}^{\circ}\right)$. Hence by Step $13, S_{1} \leq \mathrm{N}_{G}\left(S_{2}^{\circ g h}\right.$ and then by the first paragraph, $S_{2}^{g h k}=S_{1}$ for some $k \in \mathrm{~N}_{G}\left(S_{2}^{\circ g h}\right.$.

Step 13. [step 9] Let p be a prime. Then G acts transitively on \mathcal{D}_{p}.
Proof. Let $D_{1}, D_{2} \in \mathcal{D}_{p}$ and pick $S_{i} \in \operatorname{Syl}_{p}(G)$ with $D_{i} \leq S_{i}$. Then $S_{1}^{g}=S_{2}$ for some $g \in G$. Since $D_{i}=S_{i}^{\circ}$, this gives $D_{1}^{g} D_{2}$.

Definition 3.4.4. [def rank] Let H be a locally finite group and p a prime. Then $m_{p}(G)=$ $\sup \left\{k \in \mathrm{~N} \mid\right.$ there exists $A \leq H$ with $\left.A \cong C_{p}^{k}\right\}$.

Step 14. [step 12] Let p be prime. Then $m_{p}(G)$ is finite.

Proof. Let $S \in \operatorname{Syl}_{p}(G)$. Every elementary abelian subgroup of G is contained in Sylow p subgroup and so conjugate to a subgroup of S. Thus $m_{p}(G)=m_{p}(S)$. By ??, $k:=m_{p}\left(S^{\circ}\right)$ is finite. Put $\left|S / S^{\circ}\right|=p^{l}$ and let A be an elementary abelian subgroup of S. Then $\left|S^{\circ} \cap A\right| \leq p^{k}$ and $A S^{\circ} / S^{\circ} \mid \leq p^{l}$. Thus $|A| \leq p^{k+l}$ and so $m_{p}(S) \leq k+l$.

Theorem 3.4.5. [walter feit] Let H be a finite simple group and with dihedral Sylow 2 subgroups. Then $H \cong \operatorname{Alt}(7)$ or $L_{2}\left(p^{k}\right)$, where p is an odd prime and $\left|p^{k}\right|>3$.

Lemma 3.4.6. [12p] Let $H \cong L_{2}\left(p^{k}\right)$, p an odd prime.
(a) [a] Let $T \in \operatorname{Syl}_{p}(H)$. Then T is elementary abelian p group of rank k and $\left|N_{H}(T) / C_{H}(T)\right|=$ $\frac{p^{k}-1}{2}$.
(b) [b] Let A be an elementary abelian r subgroup of H, where r is an odd prime, $r \neq p$. Then $\left|N_{H}(T) / C_{H}(T)\right| \leq 2$.

Proof. Readily verified.
Step 15. [s is not dihedral] S be a Sylow 2-subgroup of G. Then $S \nsubseteq D_{22^{k}}$ for $k \in$ $Z^{+} \cup \infty$.

Proof. Suppose $S \cong D_{22^{k}}$. If $|S|=2$ let $R=S$ otherwise pick $R \leq S$ with $R \cong C_{2} \times C_{2}$. choose $R \leq H_{1}<H_{2}<H_{3}<\ldots H_{n}<\ldots$ with $\left(H_{i}, 1\right) \in \mathcal{K}$ and $\left|H_{1}\right| \geq 7$!. Let $S_{i} \in$ $\operatorname{Syl}_{2}\left(H_{i}\right)$ with $R \leq S_{i}$. By Step 12 there exists $g \in G$ with $S_{i} \leq S^{g}$. It follows that $S-i$ is either a dihedral group or cyclic. Since $R \leq S_{i}, S_{i}$ is a dihedral group. Thus by 3.4.5, $H_{i} \cong L_{2}\left(p_{i}^{k_{i}}, p_{i}\right.$ an odd prime or Alt(7). Since $\left|H_{i}\right| \geq \mid 7!, H \not \equiv \operatorname{Alt}(7)$ and $H \nsubseteq L_{2}(5)$. So by 3.4.5 $H_{i} \cong L_{2}\left(p_{i}^{k_{i}}, p_{i}^{k_{i}}>5\right.$. Let $p=p_{1}$ and $A \in \operatorname{Syl}_{p}\left(H_{1}\right)$. Then by ??(??) $\left|N_{H_{1}} / C_{H_{1}}(A)\right|=\frac{p^{k_{1}}-1}{2}>\frac{5-1}{2}=2$. Thus ??(??) implies that $p=p_{i}$ for all i. Since $H_{i}<H_{i+1}, k_{i}<k_{i+1}$. Since $m_{p}(G) \geq m_{p}\left(H_{i}\right)=k_{i}$, this gives $m_{p}(G)=\infty$ a contradiction to ??

Definition 3.4.7. [def:strongly p-embedded] Let H be a locally finite group, p a prime and M a subgroup of H. Then M is called strongly p-embedded if
(i) $[\mathbf{i}] M$ is not a p^{\prime}-group.
(ii) [ii] $M \cap M^{g}$ is p^{\prime}-group for all $g \in H \backslash M$.

Theorem 3.4.8. [bender] Let H be a finite group with a proper strongly 2-embedded subgroup. The one of the following holds:

1. $[\mathbf{1}][z, H]$ has odd order for all involutions z of H.
2. [2] $H / O(H) \mid \leq f\left(m_{2}(H)\right)$ where $f: \mathrm{Z}^{+} \rightarrow \mathrm{Z}^{+}$is some function independent of H.

Proof. Suppose first that $m_{2}(H)=1$. Then H has a unique class of involution and $[x, z] \neq 1$ for all involutions x, z in H with $x \neq z$. Thus Glauberman's Z^{*} theorem shows that $[z, H]$ has odd order.

Suppose next that $m_{2}(H) \geq 2$. Then Bender's strongly embeded theorem shows that $H / O(H) \cong L_{2}(q), S z(q)$ or $U_{3}(q)$, where $q=2^{k}$ for some $k \in \mathrm{Z}^{+}$. It follows that $m_{2}(H)=k$ and $|H / O(H)| \leq q^{9}=2^{9 k}=2^{m_{2}(H)}$.

Step 16. [step 13] G has no proper strongly 2-embedded subgroup.
Definition 3.4.9. [def:kegel cover] Let H be locally finite group. Then a Kegel cover \mathcal{K} for H is a set of pairs of subgroup of H such that
(i) [1] If $(K, M) \in \mathcal{K}$ then $M \unlhd K \leq H, K$ is finite and K / M is simple.
(ii) [2] If F is a finite subgroup of H, then there exists $(K, M) \in \mathcal{K}$ with $F \leq K$ and $F \cap M=1$.

Theorem 3.4.10. [kegel] Every locally finite simple group has a Kegel cover.
Proof. Let H be a locally finite group. Define \mathcal{K} to be the set of all pairs (K, M) such that $M \unlhd K \leq H, K$ is finite and K / M is simple. F be a non-trivial finite subgroup of H. Let $1 \neq f \in F$. Since H is simple $H=\left\langle f^{H}\right\rangle$ and so there exists a finite subset I_{f} of H with $F \leq\left\langle f^{I_{F}}\right\rangle$. But $F^{*}=\left\langle F, I_{f} \mid f \in F^{\sharp}\right\rangle$. Then $F \leq\left\langle f^{F^{*}}\right\rangle$ for all $f \in F^{\sharp}$. Put $K=\left\langle F^{F^{* *}}\right\rangle$. Let N be the intersection of the maximal normal subgroups of K. Then N is characteristic subgroup of K and $N \neq K$. Since $F^{* *}$ normalizes K it also normalizes N. If $F \leq N$ we get $K=\left\langle F^{F^{*} *}\right\rangle \leq N$, a contradiction. Thus $F \not \leq N$ and there exists a maximal normal subgroup M of K with $F \not \leq M$. Note that $(K, M) \in \mathcal{K}$ and $F \leq H$. Suppose that $F \cap M \neq 1$ and pick $f \in F^{\sharp}$. Then $f \in F^{*}$ and so $F^{*} \leq\left\langle f^{F^{* *}}\right\rangle \leq K$. Hence $F \leq\left\langle f^{F^{*}}\right\rangle \leq\left\langle M^{H}\right\rangle=M$, a contradiction. Thus $F \cap M=1$ and \mathcal{K} is a Kegel cover.

Step 17. [step 14] There exists a finite subgroup Q of G such that $M=1$ for all finite subgroups M of G with $Q \leq N_{G}(M)$ and $Q \cap M=1$.

Proof. Suppose not. Put $L_{1}=M_{1}$ be a arbitrary non-trivial finite subgroup of G and assume inductively that we already define finite subgroups $L_{i}, M_{i}, 1 \leq i \leq n$ in G. By assumption there exists non-trivial finite subgroup M_{n+1} of G with $L_{n} \leq N_{G}\left(M_{n+1}\right)$ and $L_{n} \cap M_{n+1}=1$. Put $L_{n+1}=L_{n} M_{n+1}$.

Define $H_{n}=\left\langle M_{i} \mid i \in \mathrm{Z}^{+}, i \geq n\right\rangle$. Then clearly

$$
H_{1} \geq H_{2} \geq H_{3} \geq \ldots
$$

Fix $n \geq 2$. We will now show that $L_{n-1} \cap H_{n}=1$. Let $g \in L_{n-1} \cap H_{n}$. For $m \geq n$ define $R_{m}=\left\langle M_{i} \mid n \leq i \leq m\right\rangle$. Then $H_{n}=\bigcup_{m=n}^{\infty} R_{m}$ and so we can choose m minimal with $x \in R_{m}$. Suppose that $m \neq n$. Then $R_{m}=\left\langle R_{m-1}, M_{m}\right\rangle$. Note that $R_{m-1} \leq L_{m-1}$ and so R_{m-1} normalizes M_{m} and $R_{m}=R_{m-1} M_{n}$. Since $x \in L_{n-1} \leq L_{m-1}$ and $R_{m-1} \leq L_{m-1}$ we get

$$
x \in L_{m-1} \cap R_{m-1} M_{n}=R_{m-1}\left(L_{m-1} \cap M_{n}\right)=R_{m-1}
$$

a contradiction to the minimal choice of m. Thus $m=n, x \in R_{n}=M_{n}$ and $x \in$ $L_{n-1} \cap M_{n}=1$.

So $L_{n-1} \cap H_{n}=1$ and so $H_{n-1}>H_{n}$, a contradiction since G fulfills MIN.
Step 18. [simple cover] Let F be a finite subgroup of G and $m \in \mathrm{Z}^{+}$. Then there exists a finite simple subgroup K of G with $F<K$ and $|K| \geq m$.

Proof. Let Q be as in Step 17. Since G is infinite there exists $I \subseteq G$ with $|I| \geq m$ and $F \subseteq I$. Put $R=\langle I, Q\rangle$. Then R is finite and by 3.4.10 there exists a finite subgroup K of G and maximal normal subgroup M of G with $R \leq K$ and $R \cap M=1$. Then $Q \leq K \leq N_{G}(M)$ and $Q \cap M=1$. Thus by Step 17, $M=1$. So K is simple. Since $F \subset I \subseteq R \leq K, F<K$. Since $|I| \geq m,|K| \geq m$ and so ??

Lemma 3.4.11. [normalizer condition]

(a) [a] Let S be a nilpotent group and $T \leq S$. If $\mathrm{N}_{S}(T)=T$, then $T=S$.
(b) [b] Let S be a locally nilpotent group and T a finitely generated subgroup of S. If $\mathrm{N}_{S}(T)=T$, then $S=T$.

Proof. (a) Let $Z_{0} \leq Z_{1} \leq \ldots \leq Z_{n}$ be the upper central series of S. Note that $Z_{0} \leq T$. Assume inductively that $Z_{i} \leq T$. Then

$$
\left[Z_{i+1}, T\right] \leq\left[Z_{i+1}, S\right] \leq Z_{i} \leq T
$$

and so $Z_{i+1} \leq \mathrm{N}_{S}(T)=T$. Thus $S=Z_{n} \leq T$ and $T=S$.
(b) Let $s \in S$ and put $R=\langle T, s\rangle$. Then R is finitely generated and so R is nilpotent. Also $T \leq \mathrm{N}_{R}(T) \leq \mathrm{N}_{S}(T)=T$ and so by (a), $R=T$. Thus $s \in T$ and $S=T$.

Proposition 3.4.12. [char strongly p-embedded] Let H be a locally finite group, p a prime and $M \leq H$. Suppose that
(a) [i] M is not a p^{\prime} group and $M \neg H$.
(b) [ii] If $x \in M$ has order P, then $C_{G}(x) \leq M$.
(c) [iii] Let S be a Sylow p-subgroup of G.

1. [1] If S is finite, then $N_{G}(S) \leq H$.
2. [2] If S is infinite, then each $h \in H \backslash M, M \cap M^{h}$ has finite Sylow p-subgroups.

Then M is a strongly p-embedded subgroup of H.

Proof. Suppose not and let $h \in H \backslash M$ such that $M \cap M^{h}$ is not a p^{\prime} group. Let $T \in$ $\operatorname{Syl}_{p}\left(H \cap H^{g}\right)$ and $S \in \operatorname{Syl}_{p}(T)$. By (c:1), T is finite. Suppose that $S \neq T$. Then by ??(??), $\mathrm{N}_{S}(T) \neq T$ and so there exists $T<P \leq N_{S}(T)$ with P finite. Thus there exists $1 \neq x \in C_{T}(P)$. Then by (b), $P \leq C_{H}(x) \leq M$ and thus $T<P \leq H \cap M^{h}$, a contradiction since P is p-groups and T is a Sylow p-subgroup of $H \cap H^{\gamma}$.

Thus $T=S$ and so $T \in \operatorname{Syl}_{p}\left(M^{g}\right)$. In particular, M has finite Sylow p-groups. It follows that M^{g} acts transitively on $\operatorname{Syl}_{p}\left(M^{g}\right)$. Since $T \leq M, T^{h} \leq M^{g}$ and $T^{h} \in \operatorname{Syl}_{p}\left(M^{g}\right)$. Thus $T^{h k}=T$ for some $k \in M^{h}$. Then $h k \in N_{H}(T)$ and so by (c:2), $h k \in M$. Thus $M=M^{h k}=\left(M^{h}\right)^{k}=M^{h}$ and so $k \in M$ and $h=(h k) k^{-1} \in M$, contrary to the choice of h.

Lemma 3.4.13. [dihedral] Let x and y be non-conjugate involution in a group H. Then $|x y|$ has even order, $\langle x y\rangle$ contains a unique involution u, and any involution in $<x, y\rangle$ is either equal to u or conjugate to x or to y.

Proof. This follows easily from the fact that $\langle x, y\rangle$ is dihedral group.
Step 19. [step 20] Let \mathcal{M} be a finite set of maximal subgroups of G and K a non empty G-invariant subset of G^{\sharp}. Then $K \backslash \bigcup \mathcal{M}$ is infinite.

Proof. Suppose that $K \backslash \bigcup \mathcal{M}$ is finite. If K is finite, $\langle K\rangle$ would be a non-trivial finite normal subgroups of G, a contradiction, since G is infinite and simple. So K and $K \cap \bigcup \mathcal{M}$ are infinite. Since \mathcal{M} is finite, there exists $M \in \mathcal{M}$ such that $K \cap M$ is infinite. Let $g \in G$. Then $(K \cap M)^{g}=K \cap M^{g}$ is infinite and so there exists $N \in \mathcal{M}$ with $K \cap M^{g} \cap N$ infinite. Hence by ??(??), $M^{g}=M \in \mathcal{M}$. Thus M^{G} is finite. Then also $G / \mathrm{C}_{G}\left(M^{G}\right)$ is finite and $\mathrm{C}_{G}\left(M^{G}\right)$ is a normal subgroup of finite index in G. Hence $\mathrm{C}_{G}\left(M^{G}\right)=G$ and $M \unlhd G$, a contradiction

For $z \in \mathcal{I}_{\infty}$ let H_{x} be the unique maximal subgroup of G containing $C_{G}(z)$.
p
Lemma 3.4.14. [lemma 14] Let D be a divisible abelian group and $\alpha \in \operatorname{Aut}(D)$ with $\alpha^{2}=\operatorname{id}_{D}$. If $C_{D}(\alpha)$ is finite, then α inverts D.

Proof. Observe that the map $\tau: D \rightarrow D, d \rightarrow d d^{\alpha}$ is a homomorphism with $\operatorname{Im} \tau \leq \mathrm{C}_{D}(\alpha)$. Thus $D / \operatorname{ker} \alpha$ is finite. Since divisible groups of no proper subgroup of finite index, $D=$ $\operatorname{ker} \tau$ and so $d d^{\alpha}=1$ for all $d \in D$. Hence $d^{\alpha}=d^{-1}$.

Step 20. [step 15] Let $z \in \mathcal{I}$ and M a maximal subgroup of G with $z \in M \not \leq H_{z}$. Then z inverts M°.

Proof. If $C_{M^{\circ}}$ is finite, then by Step $17 z$ inverts M°. So suppose $C_{M^{\circ}}(z)$ is infinite. Since $C_{M^{\circ}}(z) \leq H_{z} \cap M, ? ?(? ?)$ gives $M=H_{z}$.

Step 21. [step 16] Let $A \leq G$ be a fours group (that is $A \cong C_{2} \times C_{2}$) and M a maximal subgroup of G containing A. Then $M=H_{x}$ for some $x \in A^{\sharp}$. If $C_{G}(A)$ is infinite, then M is the unique maximal subgroup of G containing A.

Proof. Let $A^{\sharp}=\{a, b, c\}$. If a does not inverts M°, then by (??), $M=H_{a}$. Similary if b does not inverts M°, then $M=H_{\circ}$. If a and b inverts M°, then $a b=c$ centralizes M° and so $M=H_{c}$.

Thus $M=H_{x}$ for some $1 \neq x \in A$. Suppose $C_{G}(A)$ is infinite. Then $C_{G}(A) \leq C_{G}(x) \leq$ $H_{x}=M$ and so M is the unique maximal subgroup containing $C_{G}(A)$.

Step 22. [cga not in hz] Let $1 \neq z \in \Omega_{1} \mathrm{Z}(S)$. There exists $a \in S$ with $|a|=2$ and $H_{a} \neq H_{z}$.

Proof. Suppose first that $N_{G}(S) \not \leq H_{z}$ and pick $g \in N_{G}(S) \backslash H_{z}$. Then $z^{g} \in S$ and $H_{z}=H_{z}^{g} \neq H_{z}$.

Suppose next that $N_{G}(S) \leq H_{z}$. Since H_{z} is not strongly 2-embedded there exists $b \in H_{z}$ with $\beta \mid=2$ and $C_{G}(b) \leq H_{z}$. Then $H_{b} \neq H_{z}$. Also a is conjugate to an element a of S and so Step 22 holds.

Step 23. [rank less than 2] $m_{2}\left(S^{\circ}\right) \leq 1$.
Proof. Let $D=\overline{S^{c} \text { irc }}$ and $M=\mathrm{N}_{G}(D)$. Let y be any involution in M. Put $A=\Omega_{1}(D)$. Since $S^{\circ} \leq C_{G}(A), C_{G}(A)$ is infinite. Since $m_{2}\left(S^{\circ}\right)>1, A$ contains a fours group. Thus A is contained in a unique maximal subgroup of G. We claim that $H_{y}=M$. If y does not invert M°, then by Step $20, M=H_{y}$. If y inverts M°, then $A \leq C_{G}(y) \leq H_{y}$ and again $H_{y}=M$. Thus $C_{G}(y) \leq H_{y} \leq M$.

Let $g \in G \backslash M$. If $M \cap M^{g}$ is infinite then ?? implies that $M=M^{g}$ and $D=D^{g}$ and $g \in N_{G}(D)=M$. Thus $M \cap M^{g}$ is finite and so by ?? M is a strongly 2 -embedded on G, a contradiction to Step 16.

Lemma 3.4.15. [transitive on coset] Let H be a group, A and abelian subgroup of G with $A=A^{2}$ and $y \in \mathrm{~N}_{G}(A)$. If y inverts A, then A acts transitively in $A y$.

Proof. Note that also y^{-1} inverts A. Let $a \in A$. Since $A=A^{2}, a^{-1}=b^{2}$ for some $b \in A$. Then $y^{b}=b^{-1} y b=b^{-1} y b y^{-1} y=b^{-1} b^{y^{-1}} y=b^{-1} b^{-1} y=\left(b^{2}\right)^{-1} y=a y$.

Step 24. [step 18] Suppose $m_{2}\left(S^{\circ}\right) \geq 1$. Then G acts transitively on $\left\{x \in I \mid D_{x}\right.$ is a not2'group $\}$.

Proof. Put $\mathcal{I}^{*}=\left\{x \in I \mid D_{x}\right.$ is a not2 2^{\prime} - group. Since $m_{2}\left(S^{\circ}\right)=1, S^{\circ}$ has a unique involution x.

Note that $S^{\circ}=\left(D_{x}\right)_{2}$ and so x is the unique involution in D_{x} and D_{x} is not a 2^{\prime}-group. Thus $x \in \mathcal{I}^{*}$ and $x \in Z\left(H_{x}\right)$.

Suppose that G does not act transitively on $c I^{*}$ and pick an involution y in G. which is not conjugate to x. Since G is simple $G=\left\langle x^{G}\right\rangle$ and so $x^{g} \notin H_{y}$. Thus $x \notin H_{y}^{g^{-1}}$ and replacing y by $y^{g^{-1}}$ we may assume that $x \notin H_{y}$.

Since x and y are not conjugate there exists a unique involution $u \in\langle x y\rangle$. Then $u \in \mathrm{C}_{G}(y) \leq H_{y}$. By ??, Since $\left(D_{y}\right)_{2} \leq S^{h}$ for some $h \in G$. Since $y \in \mathcal{I}^{*},\left(D_{y}\right)_{2}$ is a nontrivial divisible group. hence $\left(D_{y}\right)^{2}=S^{\circ h}$. Thus $D_{y} \cap D_{x}^{h} \neq 1, D_{y}=D_{x}^{h}$ and x^{h} is the unique involution in D_{y}. Thus by u and y centralizes x^{h}. Put $A=\left\langle y, x^{h}\right\rangle$. Since $y \notin x^{G}, A$ is a fours group. Since $C_{G}(y)$ is infinite, also $C_{D_{y}}(y)$ is infinite and so $C_{G}(A)$ is infinite. Thus by Step 21, A lies in a unique maximal subgroup of G. Note that $A \leq H_{y}$ and $A \leq C_{G}(u) \leq H_{u}$. Thus $H_{y}=H_{u}$ and $x \leq C_{H}(u) \leq H_{u}=H_{y}$, a contradiction.

Step 25. [s is finite] S is finite.
Proof. Suppose S is infinite, then by Step $23 m_{2}\left(S^{\circ}\right)=1$. Let $x \in S^{\circ}$ with $|x|=2$.
Suppose that $C_{S}\left(S^{\circ}\right) \neq S^{\circ}$ and pick $S^{\circ} \leq T \leq C_{S}\left(S^{\circ}\right)$ with $\left|T / S^{\circ}\right|=2$. Then T is abelian and so by ??, $T=S^{\circ} \times K$ for some $L \leq T . y \in K$ with $|x|=|y|=2$. Since $S^{\circ} \leq D_{x} \cap D_{y}$ we have $D_{x}=D_{y}$. Hence D_{y} is not a 2^{\prime}-group and by Step $24 y=x^{g}$ for some $g \in G$. Thus $D_{x}=D_{y}=D_{x}^{g}$. Since $x \in S^{\circ}=\left(D_{x}\right)_{p}$ this gives $y=x^{g} \in\left(D_{x}^{g}\right)_{p}=$ $\left(D_{x}\right)_{p}=S^{\circ}$, a contradiction.

Hence $C_{S}\left(S^{\circ}\right)=S^{\circ}$. Put $S_{0}=\left\{z \in S^{\circ} \mid z^{4}=1\right\}$. By ??, $C_{S}\left(S_{0}\right)=C_{S}\left(S^{\circ}\right)=S^{\circ}$. Since $\left|S_{0}\right|=4$ we conclude that $\left|S / S^{\circ}\right| \leq 2$.

Suppose that x is the only involution in S. Let y be any involution in H_{x}. Note Then $y^{h} \in S$ for some $h \in H_{x}$ and so $y^{h}=x$. Thus $C_{G}(y)=C_{G}\left(x^{h^{-1}}\right) \leq H_{x}$. Let $g \in G$ with $\left|H_{x} \cap H_{x}^{g}\right|=\infty$. Then by ??, $D_{x}=D_{x}^{g}$ and so $g \in N_{G}\left(D_{x}\right)=H_{x}$. 3.4.12 now shows that H_{x} is a strongly 2 -embedded subgroup, a contradiction to ??

Theorem 3.4.16. [brauer] Let H be a finite simple group, T a Sylow 2 -subgroup of G and $x_{0}, x_{1}, x_{2} \in T$ with $\left|x_{1}\right|=\left|x_{2}\right|=2$. Then one of the following holds:
(a) [1] For $0 \leq i \leq 2$, there exists $y_{i} \in S \cap x_{i}^{G}$ with $y_{1} y_{2}=y_{0}$ and $C_{T}\left(y_{0}\right) \in S y l_{2}\left(C_{G}\left(y_{0}\right)\right)$.
(b) $[\mathbf{2}]|H| \leq \alpha\left(s_{0}, s_{1}, s_{2}\right)$, where $s_{i}=\mid C_{H}\left(x_{i}\right) / O\left(C_{H}\left(x_{i}\right)\right)$ and $\alpha: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{+}$is a function independent of H.
Let $1 \neq z \in \Omega_{1} \mathrm{Z}(S)$.
Step 26. [brauer step] For all $1 \neq x_{0} \in S$ there exists $y_{1}, y_{2} \in S \cap z^{G}$ and $y_{0} \in S \cap y_{0}^{G}$ with $y_{1} y_{2}=y_{0}$ and $C_{S}\left(y_{0}\right) \in \operatorname{Syl}_{2}\left(C_{G}\left(y_{0}\right)\right)$.
Proof. Put $x_{i}=z$ for $i=1,2$ and for $0 \leq i \leq 2$ define $t_{i}=\mathrm{C}_{G}\left(x_{i}\right) / \mathrm{C}_{G}\left(x_{i}\right)^{\circ} \mid$. Put $m=\max \left\{\alpha\left(s_{0}, s_{1}, s_{2}\right) \mid 1 \leq s_{i} \leq t_{i}\right\}$. Pick $T \in \operatorname{Syl}_{2}\left(C_{G}\left(x_{0}\right)\right.$ and let H be finite simple subgroup of G with $\langle T, S\rangle \leq H$ and $|H|>m$. Put $s_{i}=\mid \mathrm{C}_{H}\left(x_{i}\right) / O\left(\mathrm{C}_{H}\left(x_{i}\right)\right.$. Since S is finite, $C_{G}\left(x_{i}\right)^{\circ}$ is a 2^{\prime} group and so $\mathrm{C}_{H}\left(x_{i}\right) \cap \mathrm{C}_{G}\left(x_{i}\right)^{\circ} \leq O\left(C_{H}\left(x_{i}\right)\right.$. Hence

$$
s_{i}=\left|\mathrm{C}_{H}\left(x_{i}\right) / \Omega\left(\mathrm{C}_{H}\left(x_{i}\right)\left|\leq\left|\mathrm{C}_{H}\left(x_{i}\right) / \mathrm{C}_{H}\left(x_{i}\right) \cap C_{G}\left(x_{i}\right)^{\circ}\right| \leq \mathrm{C}_{H}\left(x_{i}\right) \mathrm{C}_{G}\left(x_{i}\right)^{\circ}\right) / C_{G}\left(x_{i}\right)^{\circ} \mid \leq t_{i}\right.\right.
$$

and so $|H|>m>\alpha\left(s_{0}, s_{1}, s_{2}\right)$. Thus by 3.4.16 there exists $y_{i} \in S \cap x_{i}^{H}$ such that $y_{1} y_{2}=y_{0}$ and $C_{S}\left(y_{0}\right) \in \operatorname{Syl}_{2}\left(C_{H}\left(y_{0}\right)\right.$. Since $T \leq C_{H}\left(x_{0}\right)$ we get $C_{S}\left(y_{0}\right)\left|\geq|T|\right.$ and so $C_{S}\left(y_{0}\right) \in$ $\operatorname{Syl}_{2}\left(C_{G}\left(y_{0}\right)\right.$.

Step 27. [2 central fours group] There exists a fours group $E \leq S$ in G with $z \in E$ and $E^{\sharp} \in z^{G}$.

Proof. By Step 26 applied with $x_{0}=z$, there exists $y_{i} \in z^{G} \cap S$ with $y_{1} y_{2}=y_{0}$. Put $F=\left\langle y_{1}, y_{2}\right\rangle$. Then $F^{\sharp} \subseteq z^{G}$. Moreover, $y_{1}^{g}=z$ for some $g \in G$ and so $z \in F^{g} \leq C_{G}(z)$. Since S is a Sylow 2-subgroup of $C_{G}(z)$ and so by Step 12 there exists $h \in C_{G}(z)$ with $E:=F^{g h} \leq S$. Also $z=z^{h} \in E$.

Lemma 3.4.17. [centralizer of hyper planes] Let B be finite elementary abelian p group acting on a locally finite abelian p^{\prime}-group D. Then $\left.D=\left\langle C_{D}(X)\right| X \leq B,|H / X|=p\right\rangle$.

Proof. See MTH913 Homework 1.
Step 28. [step CGA] Let $A \leq S$ be a fours group and suppose that A is contained in more than one maximal subgroup of G. Then $\Omega_{1}^{2}\left(C_{G}(A)\right)=A$ and there exists $d \in z^{G} \cap S$ with $z \notin \mathrm{C}_{S}(A)$. In particular, $A \notin \mathrm{Z}(S)$.

Proof. Suppose there exists an involution $b \in C_{G}(A) \backslash A$. Put $B=\langle A, b\rangle$. Then $B \cong C_{2}^{3}$. Let M_{1} and M_{2} be two distinct maximal subgroups of G containing A. By Step 21, $M_{i}=H_{a_{i}}$ for some $a_{i} \in A$. Thus $B \leq \mathrm{C}_{G}\left(a_{i}\right) \leq M_{i}$. By ?? $\left.M_{i}^{\circ}=\left\langle\mathrm{C}_{M_{i}^{\circ}}(X)\right| X \leq B,|B / X|=2\right\rangle$. Thus there exists $B_{i} \leq B$ with $\left|B / B_{i}\right|=2$ and $C_{M^{\circ}}\left(B_{i}\right)$ infinite. The B_{i} is a foursgroup and by Step 21, B_{i} is contained in a unique maximal subgroup of G, a contradiction to $B_{i} \leq M_{1} \cap M_{1}$.

Thus $\Omega_{1}^{2}\left(C_{G}(A)\right)=A$. Suppose S is elementary abelian. Then $S \leq \Omega_{1}\left(C_{S}(A)\right)=A$ and so $S \cong D_{4}$, a contradiction. So there exists $x_{0} \in S$ with $\left|x_{0}\right|>2$. By Step 26 there exists involutions $y_{1}, y_{2} \in S \cap z^{G}$ and $y_{0} \in S \cap x_{0}^{g}$ with $y_{1} y_{2}=y_{0}$. Suppose y_{1} and y_{2} are in $C_{S}(A)$. Then $y_{0} \in\left\langle y_{1}, y_{2}\right\rangle \leq \Omega_{1}\left(C_{S}(A)\right)=A$ and so $y_{0}^{2}=1$, a contradiction. Thus one of y_{1} and y_{2} is not in $C_{S}(A)$.

Step 29. [s in a unique maximal] H_{z} is the unique maximal subgroup of G containing S.

Proof. Suppose $S \leq M$ with $M \neq H_{z}$. If $\left|\Omega_{1} \mathrm{Z}(S)\right| \geq 4$, we can choose $A \leq \Omega_{1} \mathrm{Z}(S)$ with $|A|=4$, a contradiction to Step 28. Thus $\Omega_{1} \mathrm{Z}(S)=\langle z\rangle$. By Step 20, z inverts M°. Thus $\Omega_{1} \mathrm{Z}(S) \cap C_{S}\left(M^{\circ}\right)=1$. Since $C_{S}\left(M^{\circ}\right)$ is normal in S this implies $C_{S}\left(M^{\circ}\right)=1$. Let E be as in Step 27 and let $E \backslash\langle z\rangle=\{a, b\}$. If a inverts M° we get $b=a z \in C_{S}\left(M^{\circ}\right)$, a contradiction. Thus a does not invert M° and by Step 21, $M=H_{a}$. By symmetry, $M=H_{b}$. Thus a and b invert D_{z} and so $a b=z$ centralizes D_{z}. Since $a \in z^{G}, a$ centralizes $D_{a}=M^{\circ}$, again a contradiction.

Let $e \in S$ be an involution in S with $H_{e} \neq H_{z}$. If $H_{e} \in H_{z}^{G}$, put $x=a$. If $H_{e} \notin H_{z}^{G}$, then choose $g, h \in G$ with $e=z^{g} z^{h}$ and put $x=e^{g^{-1}}$. In either case put $A=\langle x, z\rangle, y=z x$ and $\mathcal{A}=\left\{a \in A \mid H_{a} \in H_{z}^{G}\right\}$. Let $T \in \operatorname{Syl}_{2}\left(H_{x} \cap H_{y}\right)$.

Step 30. [basic a] A is a foursgroup, $A=\langle x, z\rangle, H_{x} \neq H_{z}$ and $|\mathcal{A}| \geq 2$.
Proof. If $H_{e} \in H_{z}^{G}$, then $a=e, a \in \mathcal{A}, H_{a}=H_{e} \neq H_{z}, a \in S \leq C_{G}(z)$ and $A=\langle a, z\rangle$ is a fours group.

If $H_{e} \notin H_{z}^{G}$, then $x=e^{g^{-1}}=\left(z^{g} z^{h}\right)^{g^{-1}}=z z^{h g^{-1}}$ and so $y=z x=z^{h g^{-1}} \in z^{G}$. Thus $z x$ has order two and A is fours group. Also $H_{y}=H_{z}^{h g^{-1}} \in H_{z}^{G}$ and so $y \in \mathcal{A}$. Since $H_{x}=H_{e}^{g^{-1}} \notin H_{z}^{G}, H_{x} \neq H_{z}$.

For $a \in A^{\sharp}$ pick $S_{a} \in \operatorname{Syl}_{2}\left(H_{a}\right)$ with $T \cap H_{a} \leq S_{a}$ and define $T_{a}=N_{S_{a}}\left(C_{S_{a}}(A)\right)$.
Step 31. [omega t] Let
(a) $[\mathbf{a}] \mathcal{A}=A^{\sharp} \subseteq z^{G}$.
(b) $[\mathbf{b}] \quad A=\Omega_{1} \mathrm{Z}(T)=\Omega_{1}(T)$ and $C_{S_{a}}(A)=T$
(c) $[\mathbf{c}] \Omega_{1} \mathrm{Z}\left(S_{a}\right)=\Omega_{1} \mathrm{Z}\left(T_{a}\right)=\langle a\rangle$
(d) $[\mathbf{d}] T_{a}=N_{S_{a}}(T)=N_{S_{a}}(A)$ and $\left|T_{a} / T\right|=2$.
(e) $[\mathbf{e}] \quad N_{G}(T) / N_{G}(T) \cap C_{G}(A) \cong \operatorname{Sym}\left(A^{\sharp}\right)$

Proof. Let $a \in \mathcal{A}$. By definition of \mathcal{A}, H_{a} is conjugate to H_{z} and so contains a Sylow 2subgroup of G. Thus S_{a} is Sylow 2 subgroup of G. By ?? $S_{a} \neq C_{S_{a}}(A)$ and $A=\Omega_{1}\left(C_{S_{a}}(A)\right)$. Thus also $T_{a} \neq\left(C_{S_{a}}\right)(A)$ and $A \unlhd T_{a}$. It follows that $1<C_{A}\left(T_{a}\right)<A$ and so there exists a unique $1 \neq a^{*} \in C_{A}\left(T_{a}\right)$. Note that both $\Omega_{1} \mathrm{Z}\left(S_{a}\right)$ and $\Omega_{1} \mathrm{Z}\left(T_{a}\right)$ are contained in $\Omega_{1}\left(C_{S_{a}}(A)\right)$ and so also in $C_{A}\left(T_{a}\right)$. Thus $\Omega_{1} \mathrm{Z}\left(S_{a}\right)=\Omega_{1} \mathrm{Z}\left(T_{a}\right)=\left\langle a^{*}\right\rangle$ Then $S_{a} \leq C_{G}\left(a^{*}\right)$ and so by ?? $H_{a^{*}}=H_{a}$. If $a \neq a^{*}$ we get $A^{\sharp}=\left\{a^{*}, a, a^{t}\right\}$, where $t \in T_{a} \backslash C_{S_{a}}(A)$. Since $t \in H_{a}$ this gives $H_{a}^{t}=H_{a}=H_{a^{*}}$ and Step 21 implies that H_{a} is the unique maximal subgroup of G containing A, a contradiction, since $A \leq H_{x} \cap H_{y}$. Thus $a=a^{*}$.

Since $|\mathcal{A}| \geq 2$, we can choose $b \in \mathcal{A}$ with $b \neq a$. Note that T_{a} acts as the two cycle with fix-point a on A^{\sharp} and T_{b} as the 2 cycle with fix point b. Thus $\left\langle T_{a}, T_{b}\right\rangle$ acts as $\operatorname{Sym}\left(\mathcal{A}^{\sharp}\right)$ on A^{\sharp}. So all elements in A^{\sharp} are conjugate in G and $\mathcal{A}=A^{\sharp} \subseteq z^{G}$.

Suppose now that $a \in \mathcal{A}$ with $T \leq H_{a}$. Note that $C_{S_{a}}(A) \leq H_{x} \cap H_{z}$ and $\left\langle T, C_{S_{a}}(A)\right\rangle \leq$ S_{a}. Since T is a Sylow 2 subgroup of $H_{x} \cap H_{z}$ we conclude that $C_{S_{a}}(A)=C_{T}(A)$. Also $\left|N_{S_{a}}(A) / C_{S_{a}}(A)\right| \leq 2$ and so $N_{S_{a}}(A)=T_{a} C_{S_{a}}(A)=T_{a}$.

If $A \not \leq Z(T)$, then $N_{T}\left(C_{T}(A)\right) \neq C_{T}(A)$ and since $\left|T_{a} / C_{S_{a}}(A)\right|=2, T_{a}=N_{T}\left(C_{T}(A)\right.$. This hold for $a=z$ and x and so $T_{x}=T_{z}$ centralizes $\langle x, z\rangle=A$, a contradiction.

Thus $A \leq Z(T), C_{S_{a}}(A)=C_{T}(A)=T$ and $T_{a}=N_{S_{a}}(T)$. Hence $\left\langle T_{a}, T_{b}\right\rangle \leq N_{G}(T)$ and $\Omega_{1} \mathrm{Z}(T) \leq \Omega_{1}(T) \leq \Omega_{1}^{2}\left(C_{G}(A)\right)=A \leq \Omega_{1} \mathrm{Z}(T)$. So $N_{G}(T)$ acts transitively on A^{\sharp} and thus $T \leq H_{a}$ for all $a \in A^{\sharp}$.

Definition 3.4.18. [def:quasidihedral] Let n be positive integer. Then $Q D_{8 n}:=\langle s, t|$ $\left.s^{2}=1,\left(s s^{t}\right)^{2 n}=1, t^{2}=\left(s s^{t}\right)^{n}\right\rangle . Q D_{8 n}$ is called the quasidihedral group of order $8 n$.

Lemma 3.4.19. [char quasidihedral] Let P be a finite 2-group and A a fours group in P with $C_{P}(A)=A$. Then P is a dihedral or quasidihedral group.

Proof. Observe that $Z(P) \leq C_{P}(A) \leq A$. If $A \leq Z(P)$, then $P \leq C_{P}(A) \leq S$ and we are done. So suppose $A \not \leq Z(P)$ and pick $1 \neq a \in A \backslash Z(P)$ and $1 \neq z \in Z(P)$. Then $C_{P}(a)=C_{P}(\langle a, z\rangle)=C_{P}(A)+A$. Let $D \leq P$ such that D is dihedral group maximal with respect to $A \leq D$. If $D=P$ we are done. So suppose $D \neq P$.

Let $Q=N_{P}(D)$. Then $D<Q$. Let $\mathcal{A}=\left\{t \in D \backslash Z(P) \mid t^{2}=1\right\}$. Put $|D|=4 n$. Then $\left.\right|^{A} \mid=2 n$. Note that Q acts on \mathcal{A} and so

$$
2 n=|c A| \geq\left|a^{Q}\right|=\left|Q / C_{Q}(a)\right|=|Q / A|=|Q / D \| D / A| \geq 24 n 4=2 n
$$

It follows that $\mathcal{A}=a^{Q}$ and $|Q / D|=2$. Let $b \in \mathcal{A}$ with $\langle a, b\rangle=D$. Then there exists $t \in Q$ with $a^{t}=b$. Put $x=a b$. Then either $|D|=4$ and $x=z$ or $|D|>4$ and $\langle x\rangle$ is the unique cylcic subgroup of order $2 n$ in D. In either case $X \unlhd Q$. So also $Y=\left\langle x^{2}\right\rangle \unlhd Q$. Consider $\bar{Q}=Q / Y$. Then $\bar{t}^{2} \in C_{\bar{D}}(t)=\bar{X}$ and replacing t by at if necessary we may assume that \bar{t} has order 2. Thus $t^{2} \in Y$ and so $t^{2}=x^{l}$ for some even integer with $0 \leq l<2 n$. Thus $b^{t}=a^{t^{2}}=x^{-l} a x^{l}=a a^{-1} x^{-l} a x^{l}=a x^{l} x^{l}=a x^{2 l}$ and so $x^{t}=(a b)^{t}=b a x^{2 l}=x^{-1} x^{2 l}=x^{2 l-1}$. Since t centalizes $t^{2}=x^{l}$ this means $x^{l}=\left(x^{l}\right)^{t}=x^{l(2 l-1)}$ and so $x^{l(2 l-2)}=1$. Since x has order m we conclude $2 n \mid l(2 l-2)=2 l(l-1)$. Since m is power of 2 and l is even, we infer $2 n \mid 2 l$ and so $n \mid l$. As $0 \leq l<2 n$ we have $l=0$ or $l=n$. If $t^{2}=1$ and in the second case $t^{2}=x^{n}$. In either case $b^{t}=a x^{2 n}=a$. Observer that $Q=D\langle t\rangle=\langle a, b, t\rangle=\langle a, t\rangle$. So if $t^{2}=1$ then Q is a dihedral group, a contradiction to the maximality of D. Hence $t^{2}=x^{n}$ and Q is a quasi dihidral group or order $8 n$. Sine $l=n$ and l is even, Q has order at least 16. group.

Put $E=\left\langle D^{\mathrm{N}_{P}(Q)}\right\rangle$. Then $D \leq E \leq Q$ and E is generated by involutions. By Homework $1, Q$ is not generated by involutions. Since $|Q / D| \leq 2$ this gives $E=D$ and so $D \unlhd N_{P}(Q)$, $N_{P}(Q)=Q$ and $Q=P$.

Theorem 3.4.20. [semidihedral] If H is a finite simple group with quasidihedral Sylow 2-subgroup of order at least 16 , then $H \cong M_{11}, L_{3}\left(p^{k}\right)$ or $U_{3}\left(p^{k}\right)$, where p is an odd prime.

Proof.
Lemma 3.4.21. [basic semidihedral] Let $H \cong L_{3}\left(q\right.$ or $U_{3}(q), q$ a power of an odd prime. and $t \in H$ with $|t|=2$. $C_{H}(t)$ has a normal subgroup isomorphic to $S L_{2}(q)$. Moreover, $|H| \leq q^{18}$.

Proof. Put $\mathbb{K}=\mathbb{F}_{q}$ and define $G L_{n}^{+}(\mathbb{K})=G L_{n}(\mathbb{K})$ and $G L_{n}^{-}(\mathbb{K})=G U_{n}(\mathbb{K})$. Put $\tilde{H}=$ $G L^{\epsilon}(\mathbb{K})$ and $V=\mathbb{F}^{3}$, where $\mathbb{F}=\mathbb{K}$ in the $L_{3}(q)$ case and $\mathbb{F}=\mathbb{K}_{q^{2}}$ in the $U_{3}(\mathbb{K})$. Then $\tilde{H} / Z(\tilde{H})$. Note that $|H| \leq\left|G L_{3}\left(q^{2}\right)\right|=\left(q^{6}-1\right)\left(q^{6}-q^{2}\right)\left(q^{6}-q^{4}\right) \leq q^{18}$. Since $\mathrm{Z}\left(S L_{3}^{\epsilon}(\mathbb{K})\right)$ has order dividing 3 , there exists a unique element of order two \tilde{t} in $\mathrm{Z}\left(S L_{3}^{\epsilon}(\mathbb{K})\right.$ which maps
which maps to t. Since $|\tilde{t}|=2$ and $\operatorname{det} \tilde{t}=1$ and char $\mathbb{K} \neq 2$ we have $V=[V, \tilde{t}] \oplus C_{V}(\tilde{t})$ with $\operatorname{dim}[V, \tilde{t}]=2$ and $\operatorname{dim} C_{V}(\tilde{2})=1$. 2-dimensional. In the $G U_{3}(\mathbb{K})$ case, $[V, \tilde{t}] \perp C_{V}(t)$ and so this direct sum is an orthogonal sum. It follows that $C_{\tilde{H}}(\tilde{t})=G L^{\epsilon}([V, \tilde{t})] \times G L^{\epsilon}\left(C_{V}(\tilde{t}) \cong\right.$ $G L_{2}^{\epsilon}(\mathbb{K}) \times G L_{1}^{\epsilon}(\mathbb{K})$. It follows that $C_{\tilde{H}}(\tilde{t})$ has a normal subgroup K isomorphic to $S L_{2}^{\epsilon}(\mathbb{K})$. K centralizes $C_{V}(\tilde{t})$, and since the elements of $Z(\tilde{H})$ acts by scalar multiplication on V, and $K \cap Z(\tilde{H})$. Thus $K \cong K Z(\tilde{H}) / Z(\tilde{H})$ and so $C_{H}(t)$ has a subgroup isomorphic to $\mathrm{SL}_{2}^{\epsilon}(\mathbb{K})$. Since $S U_{2}(\mathbb{K}) \cong S L_{2}(\mathbb{K})$, the lemma is proved.

Step 32. [step semidihedral] S is not a quasidihedral group.
Proof. Suppose S is a quasidihedral group. By ?? S is not a dihedral group and so $|S| \geq 16$. Pick a finite simple subgroup H of G with $|H|>\left(\left|C_{G}(z) / D_{z}\right|\right)^{18}$. and $S \leq H$. Since $\left|M_{11}\right|=11 \cdot 10 \cdot 9 \cdot 8 \leq 2^{1} 8<|H|$, we conclude from 3.4.20 that $H \cong L_{3}^{\epsilon}(q), q$ a power of an odd prime and $q>\left|C_{G}(z) / D_{z}\right|$. Let $K \leq C_{H}(z)$ with $K \cong S L_{2}(q)$. Then $\mathrm{Z}(K)$ has order two, and $\mathrm{Z}(K)$ is the unique minimal normal subgroup of K. Since D_{z} is 2^{\prime} group, $Z(K) \not \leq D_{z}$ and so $K \cap D_{z}=1$. Hence $\left|K D_{z} / D_{z}\right| \geq|K|>q>\left|C_{G}(z) / D_{z}\right|$, a contradiction.

Step 33. [t not a] $T \neq A$.
Proof. Otherwise $C_{S_{a}}(A)=T=A$ and by ??, S_{a} is a dihedral or quasidihedral group, a contradiction to ?? and ??

Step 34. [z centralizes hz] Let $a, b \in A^{\sharp}$ with $a \neq b$.
(a) $[\mathbf{a}] H_{a} \neq H_{b}$.
(b) $[\mathbf{b}] z$ centralizes D_{z}.
(c) $[\mathbf{c}]$ Let $C_{G}^{*}\left(D_{z}\right)$ be the set of elements in G which centralize or inverts D_{z}. Then $t \in C_{G}^{*}\left(D_{z}\right)$ and $\left[H_{z}, t\right] \leq C_{G}\left(D_{z}\right)$ for all $t \in z^{G} \cap H_{z}$
(d) $[\mathbf{d}] \quad C_{G}\left(D_{a}\right) \cap C_{G}\left(D_{b}\right)=1$.

Proof. (a) By Step 31 there exists $g \in N_{G}(T)$ with $x^{g}=a$ and $z^{g}=b$. Since $H_{x} \neq H_{z}$, $H_{a} \neq H_{b}$.
(b) From (a) and Step 20 both x and $x z$ invert D_{z} and so $z=x(x z)$ centralizes D_{z}.
(c) If $H_{z}=H_{t}$ then by (b), t centralizes $D_{t}=D_{z}$. And if $H_{t} \neq H_{z}$, then by Step $20 t$ inverts D_{z}. So $t \in C_{H_{z}}^{*}\left(D_{z}\right)$.

Since $C_{G}^{*}\left(D_{z}\right)$ is a normal subgroup of H_{z} and $C_{G}^{*}\left(D_{z}\right) / C_{G}\left(D_{z}\right) \mid \leq 2$ we have $\left[C_{G}^{*}\left(D_{z}\right), G\right] \leq$ $C_{G}\left(D_{z}\right)$. and so (c) holds.
(d) Suppose that $X:=C_{G}\left(D_{a}\right) \cap C_{G}\left(D_{b}\right) \neq 1$. Then $\left\langle D_{a}, D_{b}\right\rangle \leq C_{G}(X)$ and so $D_{a}=$ $X^{\circ}=D_{b}$. Hence also $H_{a}=N_{G}\left(D_{a}\right)=H_{b}$, contradiction.

Step 35. [ngt] For each $a \in A^{\sharp}$ there exist $t_{a} \in z^{\cap} T_{a} \backslash T$ such that if $S_{a} \neq T_{a}$, then $\left[T, t_{a}\right] \leq\langle a\rangle$. For any such $t_{a}^{\prime} s$ and any $a, b \in A^{\sharp}$ with $a \neq b$:
(a) [b] Put $k:=t_{a} t_{b}$. Then $a^{k}=c, c^{k}=b, b^{k}=a, k^{3}=1$ and $C_{T}(k)=1$.
(b) $[\mathbf{c}] T=\left[T, t_{a}\right]\left[T, t_{b}\right]$.

Proof. We first show that existence of t_{a}. Suppose first that $S_{a} \neq T_{a}$. Pick $s_{a} \in N_{S_{a}}\left(T_{a}\right) \backslash$ T_{a}.If $A^{s_{a}} \leq T$, then $A^{s_{a}} \leq \Omega_{a}(T)=A$. Thus $A=A^{s_{a}}$ and $s_{a} \in N_{S_{a}}(A)$. So by Step 31 $s_{a} \in T_{a}$, a contradiction. Thus $A^{s_{a}} \neq T$ and $\langle a\rangle \leq T \cap A^{s_{a}}$. Since $A \unlhd T_{a}$ also $A^{s_{a}} \unlhd T_{a}$ and so $\left[T, A^{t_{a}}\right] \leq T \cap A^{t_{a}}=\langle a\rangle$.

If $S_{a}=T_{a}$ the existence of t_{a} follows from Step 28.
Since t_{a} acts as the cycle (b, c) and t_{b} as the cycle (a, c) in A^{\sharp}, k acts as $(b, c)(a, c)=$ (a, c, b) on A^{\sharp}. Thus $k^{3} \in C_{G}(A) \leq H_{a}$. By (??) Step $34(\mathrm{c}), k^{6}=\left[k^{3}, t_{a}\right] \in C_{G}\left(D_{a}\right)$. By symmetry, $k^{6} i n C_{G}\left(D_{b}\right)$ and so by Step $34(\mathrm{~d}), k^{6}=1$. Thus $k^{3} \in \Omega_{1}^{2}\left(C_{G}(A)\right)=A$. Since $C_{A}(k)=1$ this implies $k^{3}=1$. Since $\Omega_{1}(T)=A$ and $C_{A}(k)=1, C_{T}(k)$ contains no element of order 2 and so $C_{T}(k)=1$
(b) By Homework 1, since $|k|$ is coprime to $\left.|T|, T=C_{T}(k)[T, k]=\right][T, k]$. Thus
$T=[T, k] \leq\left[T,\left\langle t_{a}, t_{b}\right\rangle\right]=\left[T, t_{a}\right]\left[T, t_{b}\right] \leq T$ and (b) holds.
Step 36. [t normal in s] $T \unlhd S_{a}$ for all $1 \neq a \in A$.
Proof. By Step $35, T=\left[T, t_{a}\right]\left[T, t_{b}\right] \leq A$ and so $T=A$, a contradiction to Step 33
Step 37. [step c] For $a \in A^{\sharp}$ define $C_{a}=C_{T}\left(D_{a}\right)$ and Then $C_{a}=\left[T, t_{a}\right], T=C_{a} \times C_{b}$ and T is abelian.

Proof. By Step $34(? ?)\left[T, t_{a}\right] \leq C_{G}\left(D_{a}\right)$ and since t_{a} normalizes $C_{a},\left[T, t_{a}\right] \leq C_{a}$. Thus by Step $35(? ?), T=C_{a} C_{b}$. By Step $34(\mathrm{~d}), C_{a} \cap C_{b}=1$. Since both C_{a} and C_{b} are normal in T this implies $\left[C_{a}, C_{b}\right]=1$ and $T=C_{a} \times C_{b}$. Moreover, C_{c} is centralized by C_{a} and C_{b} and so $C_{c} \leq Z(T)$. The same holds for C_{a} and C_{b} and so $T=C_{a} \times C_{b}$ is abelian.

Step 38. $[\mathbf{s z}] Z(S)$ has order two.
Proof. Let $x_{0} \in \mathrm{Z}(S)$. Then $S \leq C_{G}\left(x_{0}\right)$. By Step 26, there exists $y_{1}, y_{2} \in z^{G} \cap S$ and $y_{0} \in x_{0}^{G}$ with $x_{0}=y_{1} y_{2}$ and $C_{S}\left(y_{0}\right) \in \operatorname{Syl}_{2}\left(C_{G}\left(y_{0}\right)\right.$. Since $C_{G}\left(x_{0}\right)$ and so also $C_{G}\left(y_{0}\right)$ contains a Sylow 2-subgroup of G, we conclude that $C_{S}\left(y_{0}\right)=S$. Thus $\left[y_{0}, y_{1}\right]=1$. Since $y_{0}=y_{1} y_{2}, y_{1}$ inverts y_{0} and so y_{0} has order two. Hence $x_{0} \in \Omega_{1} \mathrm{Z}(S)=\langle z\rangle$.

Step 39. [step contradiction] The final contradiction.
Proof. Let $d \in C_{b}$. Then $d d^{t_{a}}$ is centralizes by $C\left\langle t_{a}\right\rangle=T\left\langle t_{a}>=S_{a}\right.$ and so $d d^{t} \in \mathrm{Z}(S)$. Thus $d d^{t}$ has order at most two. Since $C=C_{b} \times C_{b}^{t_{a}},|d|=\left|d^{t}\right|$. Thus $d^{2}=1$. So $d \in C_{b}$ and $C_{b} \leq A$. By symmetry, $C_{a} \leq A$ and so $T=C_{a} \times C_{b}=A$, a contradiction to Step 33

$3.5 J_{1}$

In this section we prove:
Theorem 3.5.1 (Janko). [j1] Let G be a finite group of even order and $t \in G$ with $|t|=2$. Suppose that all involutions in G are conjugate and $C_{G}(t) \cong C_{2} \times \operatorname{Alt}(5)$. Then $|G|=$ $2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19=11(11+1)\left(11^{3}-1\right)=175,560$. Moreover such a group exits and is unique up to isomorphism.

Before we start the proof we will prove need to prove a few lemmas from finite group theory.
Lemma 3.5.2. [even more coprime action] Let A be a finite abelian p-group acting on an finite p^{\prime} group Q.
(a) $[\mathbf{a}] \quad Q=\left\langle C_{Q}(B)\right| B \leq A, A / B$ cyclic \rangle.
(b) [b] If $A \cong C_{p} \times C_{p}$, then

$$
|Q|=\frac{\prod\left\{\left|C_{Q}(B)\right||B \leq A,|B|=p\}\right.}{\left|C_{Q}(A)\right|^{p}}
$$

Proof. Let $H=Q A$ be the semidirect product of A and Q. Let q be a prime dividing the order of Q and $S \in \operatorname{Syl}_{q}(Q)$. Then by the Frattini argument, $H=Q N_{H}(S)$. Then $|A|$ divides $N_{H}(S)$ and so $N_{H}(S)$ contains a Sylow p-subgroup, \tilde{A} of H. Choose $h \in H$ with $\tilde{A}^{h}=A$. Then A normalizes S^{h}. So if (a) and (b) holds whenever Q is a q-group for some prime $q \neq p$, then it also for any arbitray p^{\prime} group. Thus we may and do assume that Q is a q-group.
(a) Put $\bar{Q}=Q / Q^{\prime}$. Then \bar{Q} is abelian and so by, Since \bar{Q} is a p^{\prime}-group, $\bar{Q}^{p^{m}}=\bar{Q}$ for all $m \in \mathrm{Z}^{+}$. Hence by Homework 1

$$
\left.\bar{Q}=\left\langle C_{\bar{Q}}(B)\right| B \leq A, A / B \text { cyclic }\right\rangle
$$

By 3.3.8, $C_{\bar{B}}=\overline{C_{Q}(B)}$ and thus

$$
\left.Q=\left\langle C_{Q}(B)\right| \mid B \leq A, A / B \text { cyclic }\right\rangle Q^{\prime}
$$

By the induction on $-\mathrm{Q}-$,

$$
\left.Q^{\prime}=\left\langle C_{Q^{\prime}}(B)\right| \mid B \leq A, A / B \text { cyclic }\right\}
$$

and so (a) holds.
(b) Let M a maximal A invariant normal subgroup of Q and define $\bar{Q}=Q / M$ and $\mathcal{B}=\left\{B \leq A \mid A / B\right.$ is $\operatorname{cyclic} C_{\bar{Q}}(B) \neq 1$.

By (a) $\bar{Q}=\left\langle C_{\bar{Q}}(B) \mid B \in \mathcal{B}\right\rangle$ and so $|\mathcal{B}| \geq 1$. Since \bar{Q}^{\prime} is a proper A invariant normal subgroup of \bar{Q}, the maximality of M implies that $\bar{Q}^{\prime}=1$ and so \bar{Q} is abelian. Let $B \in \mathcal{B}$,
then $C_{\bar{Q}}(B)$ is a non-trivial A-invariant normal subgroup of \bar{Q}. Thus $C_{\bar{Q}}(B)=C_{\bar{Q}}(B)$. We claim that (b) holds for \bar{Q} in place of Q. Suppose first that $|\mathcal{B}|=1$. Then $\left|C_{\bar{Q}}(B)\right|=|\bar{Q}|$ while $\left|C_{\bar{Q}}(C)\right|=1$ for each of subgroup C of A with $|C|=p$ and $C \neq B$. In particular, $\left|C_{\bar{Q}}(A)\right|=1$ and so

$$
\left.\frac{\prod\left\{\left|C_{\bar{Q}}(D)\right||D \leq A,|D|=p\}\right.}{\left|C_{\bar{Q}}(A)\right|^{p}}\right\}=\frac{|\bar{Q}| 1^{p}}{1^{p}}=|\bar{Q}|
$$

and the claim holds in this case.
Suppose next that $|\mathcal{B}| \geq 2$ and let $B_{1}, B_{2} \in \mathcal{B}$ with $B_{1} \neq B_{2}$. Then $A=B_{1} B_{2}$ and since B_{1} and B_{2} centralize \bar{Q}, A centralizes \bar{Q}. Thus $\left|C_{\bar{Q}}(B)\right|=|\bar{Q}|$ for each of the $p+1$ subgroups of order p in A. Also $C_{\bar{Q}}(A)|=|\bar{Q}|$ and thus

$$
\frac{\prod\left\{\left|C_{\bar{Q}}(D)\right||D \leq A,|D|=p\}\right.}{\left|C_{\bar{Q}}(A)\right|^{p}}=\frac{|\bar{Q}|^{p+1 \mid}}{|\bar{Q}|^{p}}=|\bar{Q}|
$$

and again the claim holds.
By induction on $|Q|$ we also have

$$
\left.\frac{\prod\left\{\left|C_{M}(D)\right||D \leq A,|D|=p\}\right.}{\left|C_{M}(A)\right|^{p}}\right\}
$$

Since $|Q|=|M||\bar{M}|$ and $\left|C_{Q}(X)\right|=\left|C_{M}(X)\right| \mid C_{\bar{Q}}(X)$ for any $X \leq A$ we conclude that (b) holds.

Definition 3.5.3. [def:weakly closed]

(a) [a] Let G be a group, and $A \leq H \leq G$. Then A is called weakly closed in H with respect to G if $A^{g}=A$ for all $g \in G$ with $A^{g} \leq H$. (That is if A is the only conjugate of A in G contained in H.
(b) [b] Let p a prime, and A a p subgroup of finite group G. Then A is called a weakly closed subgroup of G if there exists a Sylow p-subgroup S of G with $A \leq S$ such that A is weakly closed in S with respect to G.

Lemma 3.5.4. [char weakly closed] Let p be a prime, G a finite group and A a p subgroup of G. Then the following are equivalent.
(a) $[\mathbf{a}] A$ is a weakly closed subgroup of G.
(b) $[\mathbf{b}]$ Each Sylow p subgroup of G contains exactly one conjugate of A in G
(c) $[\mathbf{c}]$ Each p-subgroup of G contains at most one conjugate of A in G

Proof. Suppose (a) holds. Then there exists some Sylow p subgroup S of G such that $A \leq S$ and A is weakly closed in S with respect to G. So S contains a unique G-conjugate of A (namely A). Since any two Sylow subgroups are conjugate in G we see that (a) holds.

Suppose (b) holds and let T be a p subgroup of G. Then $T \leq S$ for some Sylow p subgroup of G. By (a), S contains a unique conjugate of A in G and so T contains at most one conjugate of A in G. Thus (c) holds.

Suppose (c) holds and let S be a Sylow p-subgroup of G with $A \leq S$. Then by (c), A is weakly closed in S with respect to G and so (c) holds.

Lemma 3.5.5. [weakly closed and conjugate] Let A be a weakly closed p-subgroup of a finite group G and $A \leq H \leq G$. If $g \in G$ with $A^{g} \leq H$. Then $A^{g}=A^{h}$ for some $h \in H$.

Proof. Let $A \leq S \in \operatorname{Syl}_{p}(H)$ and $A^{g} \leq T \in \operatorname{Syl}_{p}(H)$. By Sylow's Theorem, $S^{h}=T$ for some $h \in H$ and so both A^{h} and A^{g} are G-conjugates of A in T. Thus by 3.5.4, $A^{h}=A^{g}$.

Lemma 3.5.6. [control fusion] Let A be a weakly closed p-subgroup of a finite group G and X and $Y A$-invariant subsets of A. If $X^{g}=Y$ for some $g \in G$, then $X^{h}=Y$ for some $h \in N_{G}(A)$.

Proof. Observe $A \leq N_{G}(X)$ and $A \leq N_{G}(Y)$. Hence also $A^{g} \leq N_{G}\left(X^{g}\right)=N_{G}(Y)$. So be 3.5.5, $A^{g l}=A$ for some $l \in N_{G}(Y)$. Hence $g l \in N_{G}(A)$ and $X^{g l}=Y^{l}=Y$.

Corollary 3.5.7. [fusion for abelian] Let G be a finite group and $S \in \operatorname{Syl}_{2}(G)$. Suppose S is abelian and $x^{g} \in S$ for some $g \in G$ and $x \in S$. Then $x^{g}=x^{h}$ for some $h \in N_{G}(S)$.

Proof. Just observe that S is weakly closed an, since S is abelian, $\{x\}$ and $\left\{x^{g}\right\}$ are S invariant subsets of S. So we can apply 3.5.6

Lemma 3.5.8. [tompson transfer] Let G be a finite group, $S \in \operatorname{Syl}_{2}(G), T \leq S$ with $|S / T|=2$ and $x \in S$. Then one of the following holds:

1. $[\mathbf{a}] x^{g} \in T$ for some $g \in G$.
2. [b] $y^{g} \in S \backslash T$ for some $y \in\left\langle x^{2}\right\rangle$ and some $g \in G$.
3. [c] G has a subgroup H with $|G / H|=2$ and $x \notin H$.

Proof. We assume without loss that neither (1) nor (2) holds. Consider the action of G on G / T by right multiplication. We will show that x induces an odd permutation on G / T. Then (3) hold with H consisting of all the elements in G which induces an even permutation on G / T.

Define $\Phi: G / T \rightarrow G / S, T g \rightarrow S g$. Since $S g=S T g$, this is well defined. Observe that for all $g, h \in G$,

$$
\Phi((T g) h)=\Phi(T(g h))=S(g h)=(S g) h=\Phi(T g) h
$$

and so Φ is G equivariant.
Put $X=\langle x\rangle$. Let A be an orbit for X on G / S of size m and put $m=\Phi^{-1}(A)$. Since Φ is G-equivariant, B is X-invariant. Since $|S / T|=2,\left|\Phi^{-1}(\alpha)\right|=2$ for all $\alpha \in G / S$ and so $|B|=2 m$. Pick $\beta=T g \in B$ and put $\alpha=\Phi(\beta)=S g$. Observe that $C_{X}(\alpha)=X \cap S^{g}$ and $C_{X}(\beta)=X \cap T^{g}$. We will show
$\mathbf{1}^{\circ} .[1]$ One of the following holds:
$I[\mathbf{I}] \quad X^{g^{-1}} \cap S=X^{g^{-1}} \cap T$ and X has two orbits of length m on B.
II [II] $X^{g^{-1}} \cap S \neq X^{g^{-1}} \cap T$ and X has an orbits of length $2 m$ on B.
Suppose first that $X^{g^{-1}} \cap S=X^{g^{-1}} \cap T$. Then also $X \cap S^{g}=X \cap T^{g}, C_{X}(\alpha)=C_{X}(\beta)$ and

$$
|\beta X|=\left|X / C_{X}(\beta)\right|=\left|X / C_{X}(\alpha)\right|=|\alpha X|=|A|=m
$$

Suppose next that $X^{g^{-1}} \cap S \neq X^{g^{-1}} \cap T$. Then also $X \cap S^{g} \neq X \cap T^{g},\left|S^{g} / \cap X / T^{g} \cap X\right|=2$ and $\left|C_{X}(\alpha) / C_{X}(\beta)\right|=2$. Thus

$$
|\beta X|=\left|X / C_{X}(\beta)\right|=2\left|X / C_{X}(\alpha)\right|=2|\alpha X|=2|A|=2 m
$$

So (1) holds.
This allows us the determine the orbits of X on G / T in terms of the orbits X on G / T :
Suppose that $|A|>1$. Then $X \neq X \cap S^{g^{-1}}$ and so $X^{g^{-1}} \cap S \neq X$ and $X^{g^{-1}} \cap S \leq\left\langle x^{2}\right\rangle$. Since by assumption (2) fails, we conclude that $X^{g^{-1}} \cap S \leq X^{g^{-1}} \cap T$. Hence by (1°), X has two orbits of length m on B. Thus x is an even permutation on B. Since this holds for all non-trivial orbits for X on $G / S, x$ is an even permutation on $\Phi^{-1}\left(\operatorname{Supp}_{G / S}(X)\right)$.

Suppose next that $|A|=1$. Then $X \leq S^{g}$ and so $x^{g^{-1}} \in S$. Since (1) fails, we get $x^{g^{-1}} \notin T$ and so $X^{g^{-1}} \cap S=X^{g^{-1}} \neq X^{g^{-1}} \cap T$. Thus by (1°), X has an orbits of length 2 on B. Since this holds for each trivial orbit on A in $G / S, X$ has $\mid \operatorname{Fix}_{G / S}(X)$ orbits of length 2 on $\Phi^{-1}\left(\operatorname{Fix}_{G / S}(X)\right.$. Observe that $|G / S|$ is odd, while $\left|\operatorname{Supp}_{G / S}(X)\right|$ is even. Hence $\left|\operatorname{Fix}_{G / S}(X)\right|$ is odd and so X has an odd number of orbits of length two on $\Phi^{-1}\left(\operatorname{Fix}_{G / S}(X)\right.$. It follows that X is an odd permutation on $\Phi^{-1}\left(\operatorname{Fix}_{G / S}(X)\right.$ and so also on G / S.

Lemma 3.5.9. [burnside] Let G be finite group and $S \in \operatorname{Syl}_{2}(G)$. Suppose that $S \leq$ $Z\left(N_{G}(S)\right)$. Then $G=O(G) S$.

Proof. Since $S \leq N_{G}(S)$ we have $S \leq Z(S)$ and so S is abelian.
We will first show:
$\mathbf{1}^{\circ}$. [1] If $a \in S$ and $g \in G$ with $a^{g} \in S$, then $a^{g}=a$.
By ??, $a^{g}=a^{h}$ for some $h \in N_{G}(S)$. Since $S \leq Z\left(N_{G}(S)\right)$ this gives $a^{g}=a$. So ($\left.1^{\circ}\right)$ is proved.

If $S=1$, then $G=O(G)$ and the lemma holds. So suppose $S \neq 1$ and pick $T \leq S$ with $|S / T|=2$ and $x \in S \backslash T$.

Let $g \in G$ with $x^{g} \in S$. Then by $\left(1^{\circ}\right), x^{g}=x \notin T$ and ??thompson transfer]a does not hold.

Let $y \in\left\langle x^{2}\right\rangle$ and $g \in G$ with $y^{g} \in S$. Then by $\left(1^{\circ}\right), y^{g}=y$. Since $|S / T|=2, x^{2} \in T$ and so $y^{g}=y \in T$. So also ??thompson transfer]b does not hold

Thus ??thompson transfer]c must hold and there exist a subgroup H of G with $|G / H|=$ 2. Then $G=H S, H \unlhd G$ and $H \cap S$ is a Sylow 2-subgroup of H. We claim that $H \cap S \leq$ $Z\left(N_{G}(H \cap S)\right)$. For this let $a \in H \cap S$ and $g \in N_{G}(H \cap S)$. Then $a^{g} \in H \cap S \leq S$ and so by $\left(1^{\circ}\right), a^{g}=a$. Thus indeed $H \cap S \leq Z\left(N_{G}(H \cap S)\right.$. By induction on $|G|$ we conclude that $H=O(H)(H \cap S)$. Since $H \unlhd G, O(H) \leq O(G)$ and so $G=H S=O(H)(H \cap S) S=$ $O(G) S$.

We now start the proof of Janko's Theorem. So let G be a finite group of even order with a unique conjugacy class of involutions and $z \in G$ with $z^{2}=1$ and $C_{G}(z) \cong C_{2} \times \operatorname{Alt}(5)$. Let $S \in \operatorname{Syl}_{2}\left(C_{G}(z)\right)$. For $t \in G$ with $t^{2}=1$, define $G_{t}=C_{G}(t)$ and $K_{t}=G_{t}^{\prime} \cong \operatorname{Alt}(5)$. So $K_{t} \cong \operatorname{Alt}(5)$ and $G_{t}=\langle t\rangle \times K_{t}$.
Step 1. [j1-1]
(a) $[\mathbf{a}] S \cong C_{2} \times C_{2} \times C_{2}$.
(b) $[\mathbf{b}] S \in \operatorname{Syl}_{2}(G)$.
(c) $[\mathbf{c}] \quad C_{G}(B)=S$ for all $B \leq S$ with $|B| \geq 4$.
(d) $[\mathbf{d}]\left|N_{G}(S)\right|=2^{3} \cdot 3 \cdot 7$.

Proof. (a) Just observe that $\langle(12)(34),(14)(23)\rangle$ is a Sylow 2 subgroup of Alt(5) and is isomorphic to $C_{2} \times C_{2}$.
(b) Let $T \in \operatorname{Syl}_{2}(G)$ with $S \leq T$ and pick $1 \neq t \in \Omega_{1} \mathrm{Z}(T)$. Then $T \leq C_{G}(t)$ and $C_{G}(t) \cong C_{2} \times \operatorname{Alt}(5)$. Thus $|T| \leq 8$ and $S=T$.
(c) Without loss $|B|=4$. Pick $1 \neq b \in B$. Then $C_{G}(B)=C_{G_{b}}(B)$. Since $G_{b}=\langle b\rangle \times K_{b}$ we have $B=\langle b\rangle \times\left(B \cap K_{t}\right)$ and $C_{G_{b}}(B)=\langle b\rangle \times C_{K_{b}}\left(B \cap K_{b}\right)$. Alt(5) has a unique class of involutions and $C_{\text {Alt(5) }}((12)(34))=\langle(12)(34),(13)(24)\rangle$ has order 4. This $C_{G}(B)$ has order eight and $C_{G}(B)=S$.
(d) Let $s \in S^{\sharp}$. Then $|s|=2$ and so there exists $g \in G$ with $z^{g}=s$. By ??, $z^{h}=s$ for some $h \in N_{G}(S)$. Thus $N_{G}(S)$ acts transitively on S^{\sharp} and so $\left|N_{G}(S) / N_{G}(S) \cap G_{z}\right|=\mid S^{\sharp}=7$. Also $N_{G}(S) \cap G_{z}=\langle z\rangle \times N_{K_{z}}\left(S \cap K_{z}\right)$. Since $N_{\text {Alt }(5)}(\langle 12)(34),(13)(24)\rangle=$ Alt(4) we conclude that $N_{G}(S) \cap G_{z} \cong C_{2} \times \operatorname{Alt}(4)$ has order $2^{3} \cdot 7$. Thus $N_{G}(S)$ has order $2^{3} \cdot 3 \cdot 7$.

For $x \in G$ let $G_{t}=N_{G}(\langle x\rangle)$ and $0_{t}=O\left(G_{t}\right)$. In order to count the involutions in G we need to compute G_{d} where d is an element of order 3 in G_{z}. For this we have to investigate subgroup L of G such that $O(L) \neq 1$ and $4||L|$. Let L be such a group, $Y=O(L)$, $A \in \operatorname{Syl}_{2}(L)$ and for $a \in A^{\sharp}$ put $Y_{a}=C_{Y}(a)$.
Step 2. [j1-2]
(a) [a] For $a \in A \sharp, Y_{a}$ has order 1,3 or 5 .
(b) $[\mathbf{b}]|A|=4$.
(c) $[\mathbf{c}]|Y|=\prod_{a \in A^{\sharp}}\left|Y_{a}\right|=3^{x} 5^{y}$ for some $x, y \in \mathbb{N}$ with $x+y \leq 3$.

Proof. (a) Observe that Y_{a} is a subgroup of odd order in G_{a}. Thus $\left.Y_{a} \leq K_{a} \cong \operatorname{Alt}(5)\right)$. By Lagrange's Y_{a} has order $1,3,5,15$. Since Alt(5) is simple it has no subgroup of index 4 and so $\left|Y_{a}\right| \neq 15$.
(b) Suppose that $|A|=8$ and let $B \leq A$ such that $|A / B|$ is cyclic. Then B has order at least 4 and so by Step $1, C_{G}(B)$ has order eight. Thus $C_{Y}(B)=1$. Hence

$$
\left.Y=\left\langle C_{Y}(B)\right| B \leq A, A / B \text { is cylic }\right\rangle=1
$$

a contradiction.
(c) By 3.5.2

$$
|Y|=\prod\left(\left|C_{Y}(B)\right||B \leq A,|B|=2)=\prod_{a \in A^{\sharp}}\left|Y_{a}\right|\right.
$$

Together with (a) this gives (c).
Step 3. [j1-3] One of the following holds:

1. [a] $L=Y A$ and $N_{L}(A)=A$.
2. [b] Y is elementary abelian of order p^{3} for some $p \in\{3,5\}, Y$ is a minimal normal subgroup of L and $N_{L}(A) \cong \operatorname{Alt}(4)$.

Proof. Since $\left|C_{G}(A)\right|=8$ and A is a Sylow 2 subgroup of $L, C_{L}(A)=A$. Moreover $N_{L}(A) / C_{L}(A)$ is isomorphic to subgroup of odd order of $\operatorname{Aut}(A) \cong \operatorname{Sym}(3)$ and so $N_{L}(A)=$ $C_{L}(A)=A$ or $N_{L}(A) / A \cong C_{3} /$

Suppose first that $N_{L}(A)=A$. Then $A \leq Z\left(N_{L}(A)\right)$ and by 3.5.9, $L=O(L) A=Y A$. So (1) holds.

Suppose next that $N_{L}(A) / A \cong C_{3}$. Then $N_{L}(A) \cong \operatorname{Alt}(4)$ and $N_{L}(A)$ acts transitively on A^{\sharp}. Let $1 \neq a \in A$ and put $p=\left|Y_{a}\right|$. Then $p \in\{1,3,5\}$ and $\left|Y_{b}\right|=p$ for all $b \in A^{\sharp}$. Hence $|Y|=p^{3}$ and $p \in\{3,5\}$. So Y is a p-group. Let D be a minimal normal subgroup of L contained in Y. Since $D=\left\langle C_{D}(a) \mid a \in \mathbb{A}^{\sharp}\right\rangle$ we get $C_{D}(a) \neq 1$ for some $a \in A^{\sharp}$. Since $\left|Y_{a}\right|=p$ this gives $Y_{a} \leq D$ and since $N_{L}(A)$ acts transitively on $A^{\sharp}, Y_{a} \leq D$ for all $a \in A^{\sharp}$. Thus $|D|=p^{3}$ and $Y=D$. In particular, $Y=\Omega_{1} \mathrm{Z}(Y)$ and so Y is elementary abelian.

Step 4. $[\mathbf{j} 1-4]$ Let D be a non-trivial A-invariant subgroup of G of odd order.
(a) [a] If $D \leq L$, the $D \leq Y$.
(b) [b] If D is not elementary abelian or 3^{3} or 5^{3}, then $N_{G}(D)=O\left(N_{G}(D)\right) A$ and every subgroup of odd order normalizing D is contained in $O\left(N_{G}(D)\right)$.

Proof. (a) If $L=Y A$, this is obvious. So suppose $L \neq Y A$. Then $|Y|=p^{3}$. Since $D Y \leq$ $O(D Y A)$ we conclude from Step 2 that applied to $D Y A$ in place of L, that $Y=O(D Y A)$ and so $D \leq \underset{\sim}{Y}$.
(b) Put $\tilde{L}=N_{G}(D)$. Then D is a non-trivial normal subgroup of \tilde{L} contained in $O(\tilde{L})$. Thus Step 3 applied to \tilde{L} shows that $\tilde{L}=O(\tilde{L}) A$ and so (b) holds.

Step 5. [j1-4.3] Let $D \leq Y$ with $|D|=p^{2}, p \in\{3,5\}$. Then $D \unlhd Y$ and if $|Y| \neq p^{3}$, then $D \unlhd L$.

Proof. If $D=Y$, this is obvious. So suppose $D \neq Y$. If $|D|=p^{3}$, then $D<N_{Y}(D) \leq Y$ and so $D \unlhd Y$. If $|Y| \neq p^{3}$ the by Step $2,|D|=p^{2} q$ where $q \in\{3,5\}$ with $p \neq q$. Thus D is a Sylow p-subgroup of Y and the number of Sylow p-subgroup of Y divides q and is equal to $1(\bmod p)$. Since $3 \not \equiv 1(\bmod 5)$ and $5 \not \equiv 1(\bmod 3)$ we conclude that D is the unique Sylow p subgroup of Y. Thus $D \unlhd L$.

Step 6. $[\mathbf{j} 1-4.6]$ Let $p \in\{2,3\}$ and for $i=1,2$ let $D_{i} \leq G$ with $\left|D_{i}\right|$ and $\left|C_{G}\left(D_{i}\right)\right|$ even. Let $t_{i} \in C_{G}\left(D_{i}\right)$ with $\left|t_{i}\right|=1$. Then there exists $g \in G$ with $t_{1}^{g}=t_{2}$ and $D_{1}^{g}=D_{2}$. In particular, D_{1} and D_{2} are conjugate in G.

Proof. Since all involutions in G are conjugate, there exists $h \in G$ with $t_{1}^{h}=t_{2}$. Then both D_{2} and D_{1}^{h} are contained in $C_{G}\left(t_{2}\right)$. Since $C_{G}\left(t_{2}\right) \cong C_{2} \times \operatorname{Alt}(5)$, the Sylow p subgroups of G have order p. Thus D_{2} and D_{1}^{h} are Sylow p-subgroups of $C_{G}\left(t_{2}\right)$ and so there exists $l \in C_{G}\left(t_{2}\right)$ with $D_{1}^{h l}=D_{2}$. Also $t_{1}^{h l}=t_{2}^{l}=t_{2}$ and so the lemma holds with $g=h l$.

Step 7. [j1-5] Suppose $|Y|$ does not divide 15 and put $Y^{*}=C_{G}(Y)$ and $L^{*}=N_{G}\left(L^{*}\right)$. Then $L \leq L^{*}, Y \leq Y^{*}, Y^{*}=O\left(L^{*}\right)$ and $L^{*} \neq Y^{*} A$.

Proof. Since $|Y|$ does not divide 15 and $|Y|=3^{x} 5^{y}$ with $x+y \leq 3$ there exists $p \in\{3,5\}$ with $p^{2}| | Y \mid$. Let D be a Sylow p-subgroup of Y. If $|Y| \neq p^{3}$, then $|D|=p^{2}$ and so by Step $5, D \unlhd L$. If $|Y|=p^{3}$, then $D=Y$ and again $D \unlhd L$. Since D is a p-group, $\Omega_{1} \mathrm{Z}(D) \neq 1$ and so there exists $a \in A^{\sharp}$ with $C_{\Omega_{1} \mathrm{Z}(D)}(a) \neq 1$ and so $Y_{a} \leq \Omega_{1} \mathrm{Z}(D)$. Since $|D| \geq p^{2}$ there exists $b \in A^{\sharp}$ with $C_{D}(b) \nsubseteq Y_{a}$. Then $b \neq a$. Put $E=Y_{a} Y_{b}$. Since $Y_{a} \leq Z(D), E \cong C_{p} \times C_{p}$. By ?? $Y \leq N_{G}(E)$ and so by Step $4, Y \leq F:=O\left(N_{G}(E)\right)$. By Step 6 there exists $g \in G$ with $a^{g}=b$ and $Y_{a}^{g}=Y_{b}$. Let $e \in\{a, b\}$. Then E is a subgroup of odd order in G_{e} and so by Step $4, E \leq O_{e}:=O\left(N_{G}\left(Y_{e}\right)\right)$. So by Step $6, E \unlhd O_{e}$. Thus another application of Step 4 shows that $O_{e} \leq F$. Observe that F / E has order 1,3 or $5, E \leq O_{a} \cap O_{b}$ and $\left|O_{a}\right|=\left|O_{b}\right|$. Thus either $E=O_{a}=Q_{b}$ or $F=O_{a}=O_{b}$. In any case $O_{a}=Q_{b}$ and so $g \in \tilde{L}:=N_{G}\left(O_{a}\right)$. Put $\tilde{Y}=O(\tilde{L})$. Since $a^{g}=b, \tilde{L} \neq \tilde{Y} A$. Hence by Step $3, \tilde{Y}$ is elementary abelian of order p^{3} and $\tilde{Y}=O_{a}=O_{b}$. Since $Y Q_{a} \leq F$, this gives $\tilde{Y}=F$ and $Y \leq \tilde{Y}$. Since Y has order at least $p^{2}, C_{G}(Y)$ has odd order. Since $\tilde{Y} \leq C_{G}(Y)$ we conclude from Step 2, that $\tilde{Y}=C_{G}(Y)=O\left(N_{G}(Y)\right)$. In particular, $L \leq N_{G}(\tilde{Y})$ and the lemma is proved.

Step 8. $[\mathbf{j 1 - 6]}|Y|$ divides 15.
Proof. Suppose not. Then we can apply Step 7 and replacing L by L^{*} we may assume that $|Y|=p^{3}, L=N_{G}(Y)$ and $L \neq Y A$. Let $a \in A^{\sharp}$. Then $\left|Y_{a}\right|=p$. By Step 4, $N_{G}\left(Y_{a}\right)=O\left(N_{G}\left(Y_{a}\right)\right) A$ and it follows that $Y=O\left(N_{G}\left(Y_{A}\right)\right.$ and $N_{G}\left(Y_{a}\right)=Y A$. By Step $3 N_{L}(A) \cong \operatorname{Alt}(4)$ and so there exists $d \in N_{L}(A)$ with $|d|=3$. Put $b=a^{d}$ and $c=b^{d}$. Then $A^{\sharp}=\{a, b, c\}$ and $Y=Y_{a} \times Y_{b} \times Y_{c}$. Let $1 \neq y_{a} \in Y_{a}$ and put $y_{b}=y_{a}^{d}, y_{c}=y_{b}^{c}$ and $y=y_{a} y_{b} y_{c}$. Since d has order three, $y \in C_{Y}(d)$. Also $y_{e} \in Y_{e}, y \neq 1$ and $\mid y=p$. Since $Y\langle d\rangle \leq C_{G}(y), C_{G}(y)$ has order divisible by $3 p^{3}$ and so $\langle y\rangle$ is not conjugate to Y_{a}. Put
$\tilde{S}=C_{G}(A)$. Then $|\tilde{S}|=8$ and d normalizes \tilde{S}. Thus d centralizes an element \tilde{a} of order 2 in \tilde{S}^{\sharp}. In $G_{\tilde{a}}$ we see that there exists a subgroup \tilde{A} of order 4 inverting d. Thus $\tilde{L}=N_{G}(\langle d\rangle$ is divisible by 4. From Step 4 we conclude that $y \in \tilde{Y}:=O\left(N_{G}(\langle d\rangle)\right.$.

Suppose that $p=5$. Then 15 divides \tilde{Y} and by Step 7 we conclude that $|\tilde{Y}|=15$. Thus $\langle y>$ is the unique subgroup of order 5 in \tilde{Y}, \tilde{A} normalizes $\langle y\rangle$ and so $[y, \tilde{b}]=1$ for some $\tilde{b} \in \tilde{A}^{\sharp}$. But then $\langle y\rangle$ is conjugate to Y_{a}, a contradiction.

Thus $p=3$. We will show that $L=Y N_{L}(A)$. For this we investigate the action of L on the set \mathcal{P} of subgroups of order 3 of Y. Note that $|\mathcal{P}|=13 . N_{L}(A)$ has three orbits \mathcal{P}_{3}, \mathcal{P}_{4} and \mathcal{P}_{6} on \mathcal{P} of size 3,4 and 6 respectively. Indeed $\mathcal{P}_{2}=\left\{Y_{e} \mid e \in A^{\sharp}\right\}, \mathcal{P}_{4}=\langle y\rangle^{N_{L}(A)}$ and $\left.\mathcal{P}_{6}=\left\langle y_{a} y_{b}\right\rangle^{N_{L}(A)}\right\}$. Since $\langle y\rangle$ is not conjugate to Y_{a} in G there are three possibilities for the orbits of L on \mathcal{P} :
(a) $\mathcal{P}_{3}, \mathcal{P}_{4}$ and \mathcal{P}_{6}.
(b) $\mathcal{P}_{3} \cup \mathcal{P}_{6}$ and \mathcal{P}_{4}.
(c) \mathcal{P}_{3} and $\mathcal{P}_{4} \cup \mathcal{P}_{6}$.

In any case there exists $i \in\{3,4\}$ such that \mathcal{P}_{i} is an orbit for L on \mathcal{P}. Put $Q=$ $C_{L}\left(\mathcal{P}_{i}\right)$. Then L / Q is isomorphic to a subgroup of $\operatorname{Sym}(i)$ and $N_{L}(A) Q / Q \cong \operatorname{Alt}(i)$. Thus $\left|L / N_{L}(A) Q\right| \leq 2$. Since A is a Sylow 2 subgroup of L we get $L=N_{L}(A) Q$. Note that $\left|Q / C_{Q}(U)\right| \leq 2$ for all $U \in \mathcal{P}_{i}$ and so $Q / C_{Q}(Y) \mid$ is a 2-group. Since $Y=C_{G}(Y)$ this gives $Q=C_{Q}(Y)(Q \cap A) \leq Y A$ and $L=N_{L}(A) Y A=N_{L}(A) Y$.

Note that this implies that \mathcal{P}_{3} is an orbit for L on \mathcal{P}. Let $g \in G$ with $Y_{a} \leq Y$. Then by Step $4, Y \leq O\left(N_{G}\left(Y_{a}\right)^{g}\right.$ and $Y=O\left(N_{G}\left(Y_{a}\right)\right)=Y^{g}$. So $g \in N_{G}(Y)=L$ and $Y_{a}^{g} \in \mathcal{P}_{3}$. So Y contains exactly three G conjugates of Y_{a} and these three conjugate generate Y. Since $\langle d\rangle$ is conjugate to Y_{a} the same is true for \tilde{Y}.

Put $R=C_{Y}(d)\langle d\rangle=\langle y, d\rangle$. Then $R \leq \tilde{Y}$ and Then $R<N_{Y R}(R)=N_{Y}(R) R$. So $N_{Y}(R) \neq C_{Y}(d)$ and $\left|N_{Y}(R) / C_{Y}(d)\right|=3$. Also $\left[N_{Y}(R) \cap N_{Y}(\langle d\rangle),\langle d\rangle\right] \leq Y \cap\langle d\rangle=1$ and so $\mid\left\langle d>^{N_{Y}(R)}\right| \geq 3$. Hence R contains at least G-three conjugate of Y_{A}. But the R contains all G conjugates of Y_{A} in \tilde{Y} and so $R=\tilde{Y}$, a contradiction.

Step 9. $[\mathbf{j 1 - 7}] L \cong D_{12}, D_{20}$ or $D_{6} \times D_{10}$.
Proof. By Step $8,|Y|=3,5$ or 15 and so by Step $3, L=Y A$. So L has order 12, 20 or 60 and the lemma follows.

Step 10. $[\mathbf{j 1 - 8}]$ For $p=3,5$ let S_{p} be a Sylow p subgroups of $C_{G}(z)$. The one of the following holds.

1. [a] $N_{G}\left(S_{3}\right) \cong D_{12}$ and $N_{G}\left(S_{5}\right) \cong D_{20}$.
2. [b] $N_{G}\left(S_{3}\right) \cong D_{6} \times D_{1} 0 \cong N_{G}\left(S_{5}\right)$.

Proof. Let $p \in\{2,3\}$. Then by Step $9, N_{G}\left(S_{p}\right) \cong D_{4 p}$ or $D_{6} \times D_{10}$. So either (2) holds or $N_{G}\left(S_{p}\right) \cong D_{6} \times D_{10}$. Suppose the latter and let $\{p, q\}=\{3,5\}$. Then $N_{G}\left(S_{p}\right)$ as a normal Sylow q subgroup T_{q}. Moreover $N_{G}\left(S_{p}\right) \cap C_{G}\left(T_{q}\right)$ contains an involution and so T_{q} is conjugate to S_{q}. Thus also $N_{G}\left(S_{q}\right) \cong D_{6} \times D_{10}$ and (1) holds.

Proposition 3.5.10. [bender counting] Let G be a finite group of even order and \mathcal{J} the set of involutions in G and $\mathcal{I}=\left\{t \in \mathcal{J} \mid H \cap H^{t} \neq 1\right\}$. Let H be a subgroup of G. Let $j_{n}=\left|\left\{U \in G / H|U \neq H,|U \cap \mathcal{J}|=n\} \mid\right.\right.$ and $i_{n}=|\{U \in G / H|U \neq H,|U \cap \mathcal{I}|=n\} \mid$. For $\mathcal{K}=\{\mathcal{I}, \mathcal{J}\}$ put $\mathcal{K}_{n}=\{t \in \mathcal{K}|t \notin H,|H t \cap \mathcal{I}|=n\}$. Let m be the number of orbits of H on $\mathcal{J}_{1} \backslash \mathcal{I}_{1}$. Put $c=\frac{|G|}{|\mathcal{I}|}$ and $h=|H|$. Then
(a) [a] For all $t \in \mathcal{J} \backslash H, H t \cap \mathcal{I}=\left\{h t \mid h \in H \cap H^{t}, h^{t}=h^{-1}\right\}$. In particular $\mathcal{I}_{n}=\mathcal{J}_{n}$ for all $n \geq 2$.
(b) [b] Let $U=H g \in G / H$ with $U \neq H$ and put $l=|U \cap \mathcal{J}|$. Then $U \cap \mathcal{I} \subseteq \mathcal{J}_{l}$. Moreover, either $H \cap H^{g} \neq 1$ and $U \cap c I \subseteq \mathcal{I}_{l}$ or $H \cap H^{g}=1, l \leq 1$ and $U \cap \mathcal{I} \subseteq \mathcal{J}_{l} \backslash \mathcal{I}_{l}$.
(c) $[\mathbf{c}]$ For all $n \in \mathrm{Z}^{+},\left|\mathcal{J}_{n}\right|=n j_{n}$ and $\mathcal{I}_{n}=\left|n i_{n}\right|$. In particular $i_{n}=j_{n}$ for all $n \geq 2$.
(d) $[\mathbf{d}] \quad j_{1}=i_{1}+m h$ and $|\mathcal{J}|=|\mathcal{I}|+m h$.
(e) $[\mathbf{e}]|\mathcal{J}|=|\mathcal{J} \cap H|+\sum_{n=1}^{\infty} n j_{n}=|\mathcal{J} \cap H|+\mid m h+\sum_{n=1}^{\infty} n i_{n}$
(f) $[\mathbf{f}]|G / H|=1+\sum_{n=0}^{n} j_{n}=1+j_{0}+m h+\sum_{n=1}^{n} i_{n}$
(g) $[\mathbf{g}] h\left((h-c) m+j_{0}\right)=|\mathcal{J} \cap H| c-h+\sum_{n=1}^{\infty}(n c-h) i_{n}$

Proof. (a) Let $h \in H$. Since $h t \notin H$, ht $\neq 1$ and so $|h t|=2 \mid$ iff $(h t)^{2}=1$. Since $(h t)^{2}=h t h t=h h^{t}$, we have $(h t)^{2}=1$ if and only if $h^{t}=h^{-1}$. Observe that $h^{t}=h^{-1}$ implies $h \in H \cap H^{t}$. So if $t \in \mathcal{J}_{n}$ for some $n \geq 2$, then $H \cap H^{t}$ contains at least two elements inverted by t and so $H \cap H^{t} \neq 1$ and $t \in \mathcal{I}$. Thus $H t \cap \mathcal{J}=H \cap c I$ and $t \in \mathcal{I}_{n}$.
(b) Observe that $U=H t$ for all $t \in U \cap \mathcal{J}$. Thus $|H t \cap \mathcal{J}|=|U \cap \mathcal{J}|=l$ and so $U \cap \mathcal{J} \subseteq \mathcal{J}_{l}$. Observe also that $H \cap H^{t}=H \cap H^{g}$. So if $H \cap H^{g} \neq 1$, then $U \cap \mathcal{J} \subseteq \mathcal{I}_{n}$ and if $H \cap H^{g}=1$, then $U \cap \mathcal{J} \subseteq \mathcal{J}_{n} \backslash \mathcal{I}_{n}$. In the latter case, (a) implies $n \leq 1$.
(c) Obvious.
(d) Let $t \in \mathcal{J}_{1} \backslash \mathcal{I}_{1}$. Then $C_{H}(t) \leq H \cap H^{t}=1$ and so all orbits of $|H|$ on $\mathcal{J}_{1} \backslash \mathcal{I}_{1}$ have length $h=|H|$. Hence $\left|\mathcal{J}_{1} \backslash \backslash \mathcal{I}_{1}\right|=m h$ and so $\left|\mathcal{J}_{1}\right|=\left|\mathcal{I}_{1}\right|+\left|\mathcal{J}_{1} \backslash \mathcal{I}_{1}\right|=i_{1}+m h$. Since $\mathcal{J}_{n}=\mathcal{I}_{n}$ for all $n \geq 2$ this implies

$$
|\mathcal{J} \backslash H|=\sum_{n=1}\left|\mathcal{J}_{n}\right|=m h+\sum_{n=1}\left|\mathcal{I}_{n}\right|=m h+|\mathcal{I}|
$$

(e) This follows from (c) and (d).
(f) This follows from (c) and (d).
(g) Note that $c|\mathcal{J}|=|G|=h|G / H|$. So by (e) and (f):

$$
c\left(|\mathcal{J} \cap H|+m h+\sum_{n=1}^{\infty} n i_{n}\right)=h\left(1+j_{0}+m h+\sum_{n=1}^{n} i_{n}\right)
$$

and so (g) holds.
Lemma 3.5.11. [computing in] Retain the assumption and notation from 3.5.10. For $g \in G$ and $K \leq H$ with $K^{g}=K$ define $g_{K} \in \operatorname{Aut}(K)$ by $k^{g_{K}}=k^{g}$. Define

$$
\Xi=\left\{(K, s) \mid 1 \neq K \leq H, s \in \operatorname{Aut}(K), s^{2}=1\right\}
$$

Note the H acts on Ξ via $(K, s)^{g}=\left(K^{g}, s^{g}\right)$, where $s^{g} \in \operatorname{Aut}\left(K^{g}\right)$ is defined by $l\left(s^{g}\right)=$ $\left.\left(l^{g^{-1}}\right)^{s}\right)^{g}$. Let Λ be the set of orbits for H on Ξ and $\lambda, \mu \in \Lambda$ Let $(K, s) \in \lambda$ and define

$$
\begin{aligned}
a_{\lambda} & =\left|\left\{(L, t) \in \mathcal{I} \backslash H \mid 1 \neq L \leq H, t \in J \backslash H, L^{t}=L,\left(L, t_{L}\right) \in \lambda\right\}\right| \\
b_{\lambda} & =\left|\left\{t \in \mathcal{I} \backslash H \mid\left(H \cap H^{t}, t_{H \cap H^{t}}\right) \in \lambda\right\}\right| \\
n_{\lambda} & =\left|\left\{k \in K \mid k^{s}=k^{-1}\right\}\right| \\
r_{\mu \lambda} & =\left|\left\{L \leq K \mid L^{s}=L,\left(L, s_{L}\right) \in \mu\right\}\right|
\end{aligned}
$$

Then
(a) $[\mathbf{a}] \operatorname{Let}(K, s) \in \lambda$. Then $a_{\lambda}=\left|H / N_{H}(K)\right| \cdot\left|\left\{t \in N_{G}(K) \backslash H \mid\left(K, t_{K}\right) \in \lambda\right\}\right|$.
(b) $[\mathbf{b}]$ Let $\mu \in \Lambda$. Then $b_{\mu}=a_{\mu}-\sum_{\mu \neq \lambda \in \Lambda} r_{\mu \lambda} b_{\lambda}$.
(c) $[\mathbf{c}] \quad i_{n}=\frac{1}{n} \sum\left(b_{\lambda} \mid \lambda \in \Lambda, n_{\lambda}=n\right)$.

Proof. Define

$$
\begin{aligned}
& A_{\lambda}=\left\{(L, t) \in \mathcal{I} \backslash H \mid 1 \neq L \leq H, t \in J \backslash H, L^{t}=L,\left(L, t_{L}\right) \in \lambda\right\} \\
& B_{\lambda}=\left\{t \in \mathcal{I} \backslash H \mid\left(H \cap H^{t}, t_{H \cap H^{t}}\right) \in \lambda\right\}
\end{aligned}
$$

Appendix A

Set Theory

A. 1 The basic language of sets theory

A simple term is a set or a variable. A formula is any expression which can be obtained in finite steps according to the following rules:
(a) $[\mathbf{a}]$

$$
x=y \text { and } x \in y
$$

are formulas, where x and y are simple terms.
(b) [b] If ϕ and ψ are formulas and x a variable, then

$$
\begin{gathered}
(\neg \phi) \\
(\phi \rightarrow \psi) \\
(\phi \vee \psi) \\
(\exists x \phi)
\end{gathered}
$$

are formulas.
These formulas are pronounced as follows:
$x=y: x$ is equal to y.
$x \in y: x$ is an element of y.
$(\neg \phi):$ not ϕ
$(\phi \rightarrow \psi): \phi$ is equivalent to ψ.
$(\phi \vee \psi): \phi$ or ψ.
$(\exists x \phi)$: there exists x such that ϕ.
We use following abbreviations:
$(\forall x \phi)$ means $(\neg(\exists x(\neg \phi)))$
$(\phi \wedge \psi)$ means $(\neg(\exists x((\neg \phi)) \vee(\neg \psi))))$
$(\phi \rightarrow \psi)$ means $((\neg \phi) \vee \psi)$
$\exists!x(\phi)$ means $(\exists y(\forall x(x=y \leftrightarrow \phi)))$, where y is any variable not appearing in ϕ.
$(\exists(x \in y) \phi)$ means $(\exists x(x \in y \wedge \phi))$.
$(\forall(x \in y) \phi)$ means $(\forall x(x \in y \rightarrow \phi))$.
Let ϕ be a formula and v a variable. We inductively define the terminologies, ' v is free variable of ϕ ' and 'free appearance of " x " in ϕ If ϕ is $x=y$ or $x \in y$, then any x or y equal to v is called a free appearance of x in ϕ. Any variable is called free variable of ϕ.

If ϕ is $\neq \psi$ then a free variable of ϕ is free variable of ψ. A free appearance of v in ψ is free appearance of v in ψ.

If ϕ is $(\psi \leftrightarrow \tau$ or $(\psi \vee \tau$, then a free variable of ϕ is a free variable of ψ or of τ. A free appearance of v in ϕ is free appearance of v in ψ or in τ.

If $\phi \equiv(\exists x \psi)$, then v is a free variable of ϕ if $v \neq x$ and v is a free variable of ψ. If $v \neq x$, then any free appearance of v in ψ is a free appearance of v in ϕ.

A variable which is not free variable of ϕ is called a bound variable of ϕ.
Now let ϕ a formula, v a variable. ϕ and t a simple term. Then $\phi(v \searrow t)$ is the formula obtained to replacing all free appearances of v by t. More formally $\phi(v \searrow t)$ is inductively defined

Let r, s be simple terms distinct v and let \diamond is one of $=, \in$, Then
If $\phi \equiv r \diamond s$ then $\phi(v \searrow t) \equiv r \diamond s$. If $\phi \equiv v \diamond s$ then $\phi(v \searrow t) \equiv t \diamond s$. If $\phi \equiv r \diamond v$ then $\phi(v \searrow t) \equiv r \diamond v$. If $\phi \equiv v \diamond v$ then $\phi(v \searrow t) \equiv t \diamond t$. If $\phi \equiv(\neq \psi)$, then $\phi(v \searrow t) \equiv(\neq$ $\psi(v \searrow t))$.

Let \diamond is one of \rightarrow or \vee. If $\phi \equiv(\psi \diamond \tau)$, then $\phi(v \searrow t) \equiv(\psi[v \searrow t] \diamond \tau[v \searrow t)$
If $\phi \equiv(\exists x \psi)$ and x is a variable different from v, then $\phi(v \searrow t) \equiv(\exists s \psi(v \rightarrow t)$. If $\phi \equiv(\exists v \psi)$ then $\phi(v \searrow t) \equiv(\exists v \psi)$.

We will often use the following more convenient notion: We use the symbol $\phi(v)$ in place of ϕ and from then on $\phi(t)$ denotes the formula $\phi(v \searrow t)$. So $\phi(v)$ is a formulas with a distinguished variable v.

A class A is just a formula $\phi(v)$ with a free distinguished variable v. But we think about A as the collection of all sets which fulfill ϕ and write

$$
A=\{x \mid \phi(x)
$$

Any set s can be viewed as the class

$$
\{x \mid x \in s\}
$$

The class $V:=\{x \mid x=x\}$ is called the universe. Every set is a member of the universe. The class $\emptyset:=\{x \mid x \neq x\}$ is called the empty class. The empty class has no members.
We introduce an extended language: A simple class term is a variable, a set or a class. Now a class formula is defined in the save way as a formula: just replace 'simple term' by 'simple class term'.

Any class formula Φ has a corresponding set formula $\tilde{\Phi}$ inductively defined as follows: Let A and B be simple class terms, and s a simple set term. If A is a set or variable, let
$\phi(v)$ be the formula $v \in A$, where v is a variable distinct from A. If A is a class, let $\phi(v)$ be the formula used to define A. Also u is a variable different from s and not involved in ϕ and ψ.

If $\Phi \equiv A=B$, then $\tilde{\Phi}=\forall u(\phi(u) \leftrightarrow$
psi(u). If $\Phi \equiv s \in B$, where s is a set term, then $\tilde{\Phi} \equiv \psi(s)$. If $\Phi \equiv A \in B$ and A is a class, then $\tilde{\Phi} \equiv(\exists u(u=A \wedge u \in B)$, If $\Phi \equiv \Psi \leftrightarrow \Sigma$, then $\tilde{\Phi} \equiv \tilde{\Psi} \leftrightarrow \tilde{\Sigma}$. If $\Phi \equiv \Psi \vee \Sigma$, then $\tilde{\Phi} \equiv \tilde{\Psi} \vee \tilde{\Sigma}$. If $\Phi \equiv(\neg \Psi)$, then $\tilde{\Phi} \equiv(\neg \tilde{\Psi})$. If $\Phi \equiv(\exists x \Psi)$, then $\tilde{\Phi} \equiv(\exists s \tilde{\Psi})$.
$\tilde{\Phi}$ is called the translation of Φ. Note that if s and t are sets terms then $s=t$ is translated into $\forall u(u \in s \leftrightarrow u \in t)$. This is justified be the following Axioms of Set Theory

Set Axiom 1

$$
\forall x \forall y(x=y \leftrightarrow(\forall z(z \in x \leftrightarrow z \in y))
$$

Definition A.1.1. [def:int]

(a) [a] Let $\Phi(x)$ a class formula. Then $\{x \mid \Phi(x)$ denotes the class $\{x \mid \tilde{\Phi}(x)\}$ defined by the translated formula $\tilde{\Phi}(x)$.
(b) $[\mathbf{b}]$ Let A be class. Then $\bigcap A: \equiv\{x \mid(\forall a \in A) x \in a\}$.
(c) $[\mathbf{c}]$ Let A be a class. Then $\bigcup A: \equiv\{x \mid(\exists a \in A) x \in a\}$

If $A=\{x \mid \phi(x)\}$, then

$$
\bigcap A \equiv\{x \mid(\forall a \in A) x \in a\}=\{x \mid \forall a(a \in A \rightarrow x \in A\}=\{x \mid \forall a(\phi(a) \rightarrow x) \in a\}
$$

and

$$
\bigcup A \equiv\{x \mid(\exists a \in A) x \in a\}=\{x \mid \exists a(x \in A\}=\{x \mid \exists a(\phi(a) \wedge x \in a\}
$$

A. 2 The Axioms of Set Theory

To continue we need

Set Axiom 2

$$
\forall x \forall y \exists z \forall w(w \in z \leftrightarrow(w=x \vee w=y))
$$

Note that this just says that for any sets x and y, there exists a set z whose elements are exactly x and y. We denote this set by $\{x, y\}$. The special case $x=y$, show that there exists a set $\{x\}$ whose only element is x.
Definition A.2.1. [def:ordered pair] Let a, b be sets. Then (x, y) denotes the set $\{\{x\},\{x, y\}\}$. (x, y) is called the ordered pair x and y.
Lemma A.2.2. [ordered] Let a, b, c, d be sets. Then $(a, b)=(c, d)$ if and only if $a=b$ and $c=d$.

Proof. See Homework 2

Definition A.2.3. [def:relation]

(a) $[\mathbf{a}] A$ relation is a class R such that all members of R are ordered pairs. If x and y are sets then $x R y$ means $(x, y) \in R . \operatorname{Dom}(R):=\{a \mid a R b$ for some $\}$ and $\operatorname{Ran}(R):=\{b \mid$ aRb for some $a\}$.
(b) [b] A function is a relation F such that $b=c$ for all sets a, b, c such that $(a, b) \in F$ and (a, c) is in F. $F(a)=b$ means that $(a, b) \in F$. Also if F is a function and A a class then $\{F[A]:=\{b \mid a \in A, b=F[a]\} . F[A]$ is called the image of A under F. $F A \mid:=\{(a, b) \mid a \in A, b=F(a)\}$.

Lemma A.2.4. [int class] Let A be a class.
(a) [a] If $A=\emptyset$, then $\bigcap \emptyset=V$.
(b) $[\mathbf{b}]$ If $A \neq \emptyset$, then $\bigcap A$ is a set.

Proof. (a) If $\bigcap \emptyset=\{x \mid x \in y$ for all $y \in \emptyset\}=\{x \mid\}=V$.
(b) Let $a \in A$. Then $\bigcap A \subseteq a$.Since $\bigcap A$ is a class, A. 2.5 implies that $\bigcap A$ is a set.

If A and B are classes we define $A \subseteq B$ to mean $(\forall x(x \in A \rightarrow x \in B)$.
We are able to state all the Axioms of Set Theory :
Set Axiom 1 [1] $\forall x \forall y(x=y \leftrightarrow(\forall z(z \in x \leftrightarrow z \in y))$, that is two sets are equal if and only if they have the same elements.

Set Axiom 2 [2] $\forall x \forall y \exists z \forall w(w \in z \leftrightarrow(w=x \vee w=y))$ (That is for all sets x and y there exists a set z with exactly x and y as elements.

Set Axiom 3 [3] For all sets $x,\{y \mid y \subseteq x\}$ is a set.
Set Axiom $4[4]$ For all sets $x, \bigcup x$ is a set.
Set Axiom 5 [5] For all functions F and all sets $x, F[x]$ is a set.
Set Axiom 6 [6] There exists a set z such that $\emptyset \in z$ and for all $x \in z$ also $x \cup\{x\} \in z$.
Set Axiom $7[\mathbf{7}]$ For all non-empty classes A, there exists $x \in A$ such that $y \notin A$ for all $y \in x$.
(6) includes the statement that the empty class is a set. Indeed $\emptyset \in z$, means that there exists a set x with $x=\emptyset$ and $x \in z$. Henceforth we will call the empty class, the empty set.
Lemma A.2.5. [subclass]
(a) [a] If x is a set and A a class, then $x \cap A$ is a class.
(b) [b] If x is a class and A a set with $A \subseteq x$, then A is class.
(c) $[\mathbf{c}]$ A function is a set if and only if $\operatorname{Dom} f$ is a set.

Proof. See Homework 2.
Lemma A.2.6. [compatible] Let A be a class of compatible functions, that is A is class, if $f \in A$, then f is a function and a set, and if $f, g \in A$, then $f(x)=g(x)$ for all $x \in \operatorname{Dom} f \cap \operatorname{Domg}$. Then $\bigcup A$ is a function.

Proof. Let $a \in \bigcup A$. Then $a \in f$ for some $f \in A$ and so a is an ordered pair. Now let a, b, c be sets with $(a, b) \in \bigcup A$ and $(a, c) \in \bigcup A$. The $(a, b) \in f$ and $(a, c) \in g$ for some $f, g \in A$. Thus $a \in \operatorname{Dom} f \cap \operatorname{Dom} g$ and so

$$
b=f(a)=g(a)=c
$$

So $\bigcap A$ is a function.

A. 3 Well ordered sets and the Recursion Theorem

Definition A.3.1. [def:relation] Let R be a relation and A a class
(a) $[\mathbf{a}] a R b$ means $(a, b) \in R$ and $a \quad R B$ mean $(a, b) \notin R$.
(b) $[\mathbf{b}] R$ is called irreflexive on A if a $R a$ for all $a \in A$.
(c) $[\mathbf{c}] R$ is transitive of A aRc for all $a, b, c \in A$ with aRb and bRc.
(d) [d] T partially orders A if R is irreflexive and transitive on A.
(e) [d] R totally orders A if R is partially orders A and for all $a, \in A$ one of $a R b, a=b$ and bRA holds.
(f) $[\mathbf{e}] A n R$-minimal element of A is an element $m \in A$ such that for all $a \in A, m=a$ or mRa.
(g) [e] If x is any object that $A_{x}^{R}:=\{a \in A \mid b R x\}$.

Lemma A.3.2. [trivial total orders]Suppose the relations R totally orders the class A. Then for all a, b in R exactly one of $a R b, a=b$ and $b R a$ holds,

Proof. By definition of a total ordering, at least one of $a R b, a=b$ and $b R$ holds. Id $a=b$, then $a / R b$ and $b / R a$ since R is irreflexive on A. If $a R b$ and $b R A$, then $a R a$ since R is transitive, a contradiction since R is irreflexive.

Definition A.3.3. [def:well orders] Let R be a relation and A a class. We say that R well-orders A if
(i) [i] R totally orders A.
(ii) [ii] Every non-empty subset x of A has a $R R$-minimal element.
(iii) [iii] For all $a \in A, A_{a}^{R}$ is a set.

Lemma A.3.4. [minimal for class] If the relation R well orders the class A, then every non-empty subclass of A has a R-minimal element.

Proof. Let B be a subclass of $b \in B$. If b is a minimal element of B we are done. So suppose b is not a minimal element. Then there exists $a \in B$ such that neither $a=b$ nor $b R a$. So $a R b$ and thus B_{b}^{R} is not empty. not-empty. By definition of a well-ordering A_{b}^{R} is a set and so also $B_{b}^{R}=B \cap A_{b}^{R}$, since the intersection of a class with a set is a class. Since B_{b}^{R} is a set, the definition of a well ordering implies that B_{b}^{R} has a minimal element m. Since $m \in B_{b}^{R}$, we have $m R b$. Let $y \in B$. If $y R b$, then $y \in B_{R}^{b}$ and so $y=m$ or $m R y$. If $y=b$ then $m R y$. If $b R y$ then $m R y$ since R is transitive on A. Thus m is a minimal element of B.

Definition A.3.5. [def:segment] Let R be a relation, A a class and B a subclass of A.
(a) $[\mathbf{a}] B$ is called in initial R-segment of A if $a \in B$ for all $b \in B$ and $a \in A$ with $a R b$.
(b) $[\mathbf{b}] B$ is called an R-section of A if $B=A_{a}^{R}$ for some $a \in A$.

With this definition the last condition on a well-ordered class says that every section is a se

Lemma A.3.6. [union of segments] Let R be a relation, A a class and T a non-empty class of initial R-segments of A. Then $\bigcup T$ and $\bigcap T$ are initial R-segment of A.

Proof. Observe first that $\bigcup T$ is a subclass of A. Let $b \in \bigcup T$ and $a \in A$ with $a R b$. Then $b \in B$ for some $B \in T$. Thus $a \in B$ since B is an initial R-segment of A. Hence $a \in \bigcup T$ and so $\bigcup T$ is an initial R-segment of A.

A similar proof shows that $\bigcap T$ is an initial R-segment of A.
Lemma A.3.7. [segments] Let R be relation which well orders the class A and let B be an initial R-segment of A. Then $B=A$ or B is an R-section of A. In particular, $B=A$ or B is a set.

Proof. Suppose $B \neq A$. Then $A \backslash B$ is a non-empty subclass of A and so has a R-minimal element m. Let $a \in A$. We claim that $a R m$ if and only if $a \in B$. If $a R m$, then $a \notin A \backslash B$, since m is the minimal element of $A \backslash B$. Thus $a \in B$. If $a=m$, then $a \notin B$ since $m \in A \backslash B$. Suppose $m R a$ and $a \in B$. Since B is an initial segment this gives $m \in B$, a contradiction. Thus proves the claim and so $B=A_{m}^{R}$ and B is an R-section of A.

Theorem A.3.8 (Recursion Theorem). [recursion] Let R be a relation which well-orders the class A. Let τ be a function with domain the universe V. Then there exists a unique function F with domain A such that for all $a \in A$

$$
\begin{equation*}
F(a)=\tau\left(\left.F\right|_{A_{a}^{R}}\right) \tag{*}
\end{equation*}
$$

Proof. Recall that two functions F and G are called compatible if $F(x)=G(x)$ for all $x \in \operatorname{Dom}(F) \cap \operatorname{Dom}(G)$. Just in this proof we will call a function F recursive if its domains is an initial segment of A and $F(a)=\tau\left(\left.F\right|_{A_{a}^{R}}\right)$ for all $a \in \operatorname{Dom}(F)$.
$\mathbf{1}^{\circ}$. [1] Any two recursive functions are compatible.
Let F_{1} and F_{2} be recursive functions and $x \in \operatorname{Dom}\left(F_{1}\right) \cap \operatorname{Dom}\left(F_{2}\right)$. By induction we may assume that $F_{1}(y)=F_{2}(y)$ for all $y \in \operatorname{Dom}\left(F_{1}\right) \cap \operatorname{Dom}\left(F_{2}\right)$ with $y R x$. Since $\operatorname{Dom}\left(F_{i}\right)$ is an initial segment we have $A_{x}^{R} \subseteq \operatorname{Dom}\left(F_{1}\right) \cap \operatorname{Dom}\left(F_{2}\right)$. So the induction assumptions shows that $\left.F_{1}\right|_{A_{x}^{R}}=\left.F_{2}\right|_{A_{x}^{R}}$. Thus

$$
F_{1}(x)=\tau\left(\left.F_{1}\right|_{A_{x}^{R}}\right)=\tau\left(\left.F_{2}\right|_{A_{a}^{R}}\right)=F_{2}(x)
$$

So F_{1} and F_{2} are indeed compatible.
Observe that $\left(1^{\circ}\right)$ implies the uniqueness statement of the Theorem. To prove the existence

Let T be the class of all recursive functions whose domains are sets. Put $F=\bigcup T$.
$\mathbf{2}^{\circ}$. [2] F is a recursive function.
By $\left(1^{\circ}\right)$ and A.2.6 F is a function. Observe that $\operatorname{Dom}(F)=\bigcup\{\operatorname{Dom}(G) \mid G \in T\}$. Since the unions of a class of initial segment is an initial segment, $\operatorname{Dom}(F)$ is an initial segment. Now let $x \in \operatorname{Dom}(F)$ and $G \in T$ with $x \in \operatorname{Dom}(G)$. Then $A_{x}^{R} \subseteq \operatorname{Dom}(G)$ and so

$$
F(x)=G(x)=\tau\left(\left.G\right|_{A_{x}^{R}}\right)=\tau\left(\left.F\right|_{A_{x}^{R}}\right)
$$

and so F is indeed a recursive function.
3°. [3] $\operatorname{Dom}(F)=A$.
Suppose not. Then by A.3.7 Dom $F=A_{R}^{x}$ for some $x \in A$. Let $G=F \cup\{(x, \tau(F)\}$. Since $x \notin A_{x}^{R}=\operatorname{Dom}(F)$ we see that G is a function. Let $y \in \operatorname{Dom}(G)$. Then either $y \in \operatorname{Dom}(F)$ or $y=x$. In the first case $A_{y}^{R} \subseteq \operatorname{Dom}(F) \subseteq \operatorname{Dom}(G)$ and $G(y)=F(y)=$ $\tau\left(\left.F\right|_{A_{y}^{R}}\right)=\tau\left(\left.G\right|_{A_{y}^{R}}\right)$. Also $A_{x}^{R}=\operatorname{Dom}(F) \subseteq \operatorname{Dom}(G)$ and $G(x)=\tau(F)=\tau\left(\left.G\right|_{A_{x}^{R}}\right)$. Hence in either case $A_{y}^{R} \subseteq \operatorname{Dom}(G)$ and $G(y)=\tau\left(\left.G\right|_{\left.A_{y}^{R}\right)}\right.$. Thus $\operatorname{Dom}(G)$ is an initial segment of A and G is a recursive function. By definition of a well-ordered class, $A_{R}(x)$ is a set and so also $\operatorname{Dom}(G)=A_{x}^{R} \cup\{x\}$ is a set. Thus $G \in T$. But then $x \in \operatorname{Dom}(G) \subseteq \bigcup\{\operatorname{Dom} H \mid H \in$ $T\}=\operatorname{Dom}(F)=A_{x}^{R}$, a contradiction. Thus (3°) holds.

By $\left(2^{\circ}\right)$ and $\left(3^{\circ}\right) F$ fulfills the conclusion of the theorem.

A. 4 Ordinals

Definition A.4.1. [def:ordinal] An ordinal is a set α such that every elements of α is a subset of α and ' \in ' well-orders α. Ord is the class of all ordinals.

For example $\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}$ all are ordinals.

Lemma A.4.2. [basic ord] Let α be an ordinal.
(a) $[\mathbf{a}] \beta \notin \beta$ for $\beta \in \alpha$.
(b) $[\mathbf{b}] \quad \alpha \notin \alpha$.
(c) $[\mathbf{c}]$ Every elements of α is an ordinal.
(d) $[\mathbf{d}] \alpha \cup\{\alpha\}$ is an ordinal.

Proof. (a) This holds since ' ϵ^{\prime} is a well-ordering and so irreflexive on α. (b) If $\alpha \in \alpha$, (b) gives $\alpha \notin \alpha$.
(c) Let α be an ordinal and $\gamma \in \beta \in \alpha$. Since β is a subset of α, γ is an element of α and so a subset of α. Let $\delta \in \gamma$. Then $\delta \in \alpha$. Since $\gamma \in \beta$ and \in is transitive on $\alpha, \delta \in \beta$ and so γ is a subset of β. A restriction of a well ordering to a subset is a well ordering and β is an ordinal.
(d) Since $\beta \in \alpha$ for all $\beta \in \alpha, \alpha$ is a maximal element of $\alpha \cup\{\alpha\}$ with respect to \in. This easily implies that \in well orders $\alpha \cup\{\alpha\}$. If $\beta \in \alpha \cup\{\alpha\}$ the either $\beta \in \alpha$ or $\beta=\alpha$. In either case β is a subset of α and so also of $\alpha \cup\{\alpha\}$.

Notation A.4.3. [alpha+1] If α is an ordinal, we denote the ordinal $\alpha \cup\{\alpha\}$ by $\alpha+1$. We also denote \emptyset by $0,0+1$ be $1,1+1$ by 2 and so on.
Theorem A.4.4. [ord well-ordered] ${ }^{\prime} \in \epsilon^{\prime}$ well-orders Ord.
Proof. Let α, β and γ be ordinals. By A.4.2(a), $\alpha \notin \alpha$ and so \in is irreflexive on Ord. If $\alpha \in \beta$ and $\beta \in \gamma$, then β is a subset of γ and so $\alpha \in \beta$ and so \in is transitive on Ord.

To show that one of $\alpha \in \beta, \alpha=\beta$ and $\beta \in \gamma$ holds, put $\delta=\alpha \cup \beta$. We will show that δ is a initial segment of α. So let $\epsilon \in \alpha$ and $\gamma \in \delta$ with $\epsilon \in \gamma$. Note that $\gamma \in \beta$ and so $\epsilon \in \beta$ since γ is a subset of β. Hence $\epsilon \in \alpha \cap \beta=\delta$. So δ is indeed and initial segment of α. ?? choose that either $\delta=\alpha$ or there exists $\rho \in \alpha$ with

$$
\delta=\alpha_{\rho}=\{x \in \alpha \mid x \in \rho\}=\rho
$$

We proved that $\delta=\alpha$ or $\delta \in \alpha$. By symmetry, $\delta=\beta$ or $\delta \in \beta$.
Suppose that $\delta=\alpha$. Then $\alpha=\beta$ or $\delta \in \beta$ and we are done with this part of the proof. So we may assume $\delta \in \alpha$ and by symmetry also $\delta \in \beta$. But then $\delta \in \alpha \cap \beta=\delta$, a contradiction to $\delta \in \alpha$ and ? ? (??).

Now let x be any non-empty subset of Ord. Pick $\alpha \in x$. Suppose α is not a minimal elements of x. Then $\{\beta \in x \mid x \in \alpha\}$ is a non-empty subclass of α and so has a minimal element γ. But then γ is also an minimal element of Ord. Hence any case x has minimal element.

For any $\alpha \in \operatorname{Ord}, \operatorname{Ord}_{\alpha}=\{\beta \in \operatorname{Ord} \mid \beta \in \alpha\}=\alpha$ and so $\operatorname{Ord}_{\alpha}$ is a set. We verified all the defining properties of a well-ordered class and the Theorem is proved.

Corollary A.4.5. [intersect ordinals] Let A be non-empty class of ordinals. Then $\bigcap A$ is the minimal element of A with respect to \in.

Proof. Since Ord is well ordered with respect to \in, ?? shows that A has a minimal elements α. Let $\gamma \in A$. Then $\alpha=\gamma$ or $\alpha \in \gamma$. In any case $\alpha \subseteq \gamma$ and so $\alpha \subseteq \bigcap A$. Since $\bigcap A \subseteq \alpha$, this gives $\bigcap A=\alpha$.

Lemma A.4.6. [unions of ordinals] Let A be a class of ordinals.
(a) [a] If $\bigcup A$ is a set, then $\bigcap A$ is an ordinal. In particular, if A is a set, then $\bigcup A$ an ordinal.
(b) [b] If $\bigcup A$ is not a set, then $\bigcup A=$ Ord.

Proof.
$\mathbf{1}^{\circ}$. [1] $\bigcup A \subseteq \operatorname{Ord}$
Thus holds since every element of ordinal is an ordinal.
$\mathbf{2}^{\circ}$. [2] \in well-order $\bigcup A$.
Since \in well -orders Ord, this follows from (1°).
$\mathbf{3}^{\circ}$. [3] Every element of $\bigcup A$ is a subset of $\bigcup A$.
Let $x \in \bigcup A$. Then $x \in \alpha$ for some $\alpha \in A$. Thus $x \subseteq \alpha$. Since $\alpha \subseteq A$ thus gives $x \subseteq A$
(a) If $\bigcup A$ is a set, then $\left(2^{\circ}\right)$ and $\left(3^{\circ}\right)$ shows that $\bigcup A$ is a ordinal.
(b) Suppose now that $\bigcup A$ is not a set and let δ be ordinal. Since δ is a set, and subclasses of sets are sets, we get $\bigcup A \nsubseteq \delta$. Thus there exists $\alpha \in A$ with $\alpha \nsubseteq \delta$. Note that $\alpha=\delta$ or $\alpha \in \delta$ imply $\alpha \subseteq \delta$, a contradiction. Since \in is a totally ordering on Ord we conclude that $\delta \in \alpha$ and so $\delta \in \bigcup A$. Since this holds for all ordinals, Ord $\subseteq \bigcup A$. So (1°) implies (b).

A. 5 The natural numbers

Definition A.5.1. [ordering] Let α and β be ordinals. We will write $\alpha<\beta$ if $\alpha \in \beta$ and $\alpha \leq \beta$ if $\alpha=\beta$ or $\alpha \in \beta$.

Lemma A.5.2. [in and sub] Let α and β be ordinals.
(a) $[\mathbf{a}] \alpha \in \beta$ iff $\alpha<\beta$ and iff $\alpha \subset \beta$.
(b) $[\mathbf{b}] \quad(\alpha \in \beta$ or $\alpha=\beta)$ iff $\alpha \leq \beta$ iff $\alpha \subseteq \beta$.
(c) $[\mathbf{c}]$ If $\alpha<\beta$, then $\alpha+1 \leq \beta$. So $\alpha+1$ is the least ordinal larger than α.

Proof. (a) The first statement is just the definition of $\alpha<\beta$. If $\alpha \in \beta$, then the definition of and ordinal implies $\alpha \subseteq \beta$. Since \in is irreflexive on Ord, $\alpha \neq \beta$ and so $\alpha \subset \beta$. Suppose now that $\alpha \subseteq \beta$. Since \in is total ordering $\alpha \in \beta, \alpha=\beta$ or $\beta \in \alpha$. The last two statements imply that $\beta \subseteq \alpha$, a contradiction to $\alpha \subseteq \beta$. Hence $\alpha \in \beta$.
(b) follows immediately from (a).
(c) Otherwise (b) gives $\beta \in \alpha+1=\alpha \cup\{\alpha\}$. So
beta $\in \alpha$ or $\beta=\alpha$, a contradiction to $\alpha \in \beta$.

Definition A.5.3. [limit ordinals] Let α be an ordinal.
(a) [a] We say that α is an successor if $\alpha=\beta+1$ for some ordinal β.In this case β is denoted by $\alpha-1$.
(b) [b] We say that α is a limit ordinal, if α is neither zero, nor an ordinal.
(c) $[\mathbf{c}]$ We say that α is a natural number of $\alpha+1$ contains no limit ordinal.
(d) $[\mathbf{d}] \mathbb{N}$ is the class of natural numbers.

Note that first $\alpha+1$ contains no limit ordinal iff neither α nor any element of α is a limit ordinal. α is a natural numbers if and only if either $\alpha=0$; or α is an successor and each non-zero ordinal β with $\beta \in \alpha$ is successor.

Lemma A.5.4. [natural numbers]

(a) [a] Let α and β be ordinal with $\alpha \in \beta$. If β is a natural numbers, so is α.
(b) [b] Let n be a natural numbers. Then $n+1$ is a natural number.
(c) [c] Let n be a non-zero natural number. Then $n-1$ is a natural number.

Proof. (a) Observe that $\alpha+1 \subseteq \beta+1$. Since $\beta+1$ contains no limit ordinal, $\alpha+1$ contains no limit ordinal.
(b) If $x \in n+1$, then $x \in n$ or $x=n+1$. In neither case x is limit ordinal.
(c) Observe first that is neither 0 nor a limit. Hence $n-1$ is defined. Since $n-1 \in n$, (c) follows from (a).

Lemma A.5.5. [induction on n] Let A be a class. If $0 \in A$ and $a \cup\{a\} \in A$ for all $a \in A$, then $\mathbb{N} \subseteq A$.

Proof. Note that $B:=\mathbb{N} \backslash A$ is subclass of \mathbb{N}. Suppose $B \neq \emptyset$ and let n be the minimal element of B. Then $n \neq 0$. By minimality of $n, n-1 \in A$ and so also $n=(n-1)+1=$ $(n-1) \cup\{n-1\} \in A$, a contradiction.

Lemma A.5.6. [n a set]
(a) $[\mathbf{a}] \mathbb{N}$ is a set.
(b) [b] \mathbb{N} is an ordinal, in fact \mathbb{N} is the smallest limit ordinal.

Proof. (a) By Set Axiom 6, there exists a set z such that $0 \in z$ and $z \cup\{z\} \in Z$. So by A.5.5, $\mathbb{N} \subseteq z$. Since subclasses of subsets are sets, \mathbb{N} is a set.
(b) Since \mathbb{N} is a subclass of the well-ordered class Ord, \in is a well ordering in \mathbb{N}. Let $n \in \mathbb{N}$ and $\alpha \in n$. Then by A.5.4(a), $\alpha \in \mathbb{N}$. So n is a subset of \mathbb{N}. Thus \mathbb{N} is an ordinal. Let δ be any limit ordinal. Then $0 \in \delta$ and if $\gamma \in \delta$, then $\gamma+1 \leq \delta$ and since δ is not a successor. Thus $\gamma+1 \in \delta$. So A.5.5 implies that $\mathrm{N} \subseteq \delta$, and so $\mathrm{N} \leq \delta$.

Definition A.5.7. [def:sum of ordinals] Let α and β be ordinals, then the ordinal $\alpha+\beta$ is inductively defined by

$$
\alpha+\beta:= \begin{cases}\alpha & \text { if } \beta=0 \\ (\alpha+\delta)+1 & \text { if } \beta=\delta+1 \\ \bigcup_{\gamma<\beta} \alpha+\gamma & \text { if } \beta \text { is a limit ordinal }\end{cases}
$$

Since $1=0+1$ is an ordinal we now have two definitions of $\alpha+1$. But since $\alpha+(0+1)=$ $(\alpha+0)+1=\alpha+1$, these two definitions agree.
Lemma A.5.8. [sum of ordinals] Let α, β be ordinals and $n, m \in \mathrm{~N}$. Then
(a) $[\mathbf{a}](\alpha+\beta)+n=\alpha+(\beta+n)$.
(b) $[\mathbf{b}] n+m=m+n$ and $n+m$ is a natural number.

Proof. (a) If $n=0$, thus is obvious. So suppose (a) is true for n, then
$(\alpha+\beta)+(n+1)=((\alpha+\beta)+n)+1=(\alpha+(\beta+n))+1=\alpha+((\beta+n)+1)=\alpha+(\beta+(n+1))$
and so (a) also holds for $n+1$.
(b) If $n=m=0$, then both sides are zero. Suppose next $0+m=m+0$. Then

$$
0+(m+1)=(0+m)+1=(m+0)+1=m+1=(m+1)+0
$$

So (??) holds whenever $n=0$. By symmetry it also holds whenever $m=0$.
Suppose $1+m=m+1$. Then

$$
1+(m+1)=(1+m)+1=(m+1)+1
$$

and so (b) holds whenever $n=1$.
Suppose (b) holds for some $n \in \mathbb{N}$ and all $m \in \mathbb{N}$

$$
m+(n+1)=(m+n)+1=(n+m)+1=n+(m+1)=n+(1+m)=(n+1)+m
$$

and so (b) holds for $n+1$ and for all $m \in \mathbb{N}$.
Lemma A.5.9. [decompose ordinals] Let α be an ordinal then there exists a nonsuccessor β and a natural numbers n with $\alpha=\beta+n$.

Proof. Note that $\alpha=\alpha+0$ and so there exists a least ordinal β such that $\alpha=\beta+n$ for some natural numbers n. Suppose that β is a successor and let $\delta=\beta-1$. Then

$$
\alpha=\beta+n=(\delta+1)+n=\delta+(1+n)=\delta+(n+1)
$$

Since $n+1$ is natural number we get a contradiction to the minimal choice of β.

A. 6 Cardinals

Definition A.6.1. [def:cardinals] Two sets a and b are called isomorphic, if there exits a bijection from a to b. The cardinal $|a|$ of a set a is the least ordinal isomorphic to a.
Lemma A.6.2. [injective] Let a and b be sets, then there exists a injection from a to b if and only if $|a| \leq|b|$.

Proof. Let $F: a \rightarrow|a|$ and $G: b \rightarrow|b|$ be bijection.
Suppose first that $|a| \leq|b|$. Then $|a| \subseteq|b|$. Thus $G^{-1} \circ F$ is an injection from a to b.
Suppose next that $H: a \rightarrow b$ is a injection. Then $I=G \circ H \circ F^{-1}$ is an injection from $|a|$ to $|b|$. Put $d=I(|a|$. Then $d \subseteq|b|$. Define $\Phi: d \rightarrow \operatorname{Ord}$ inductively by $\Phi(e)$ is the least elements of Ord $\backslash\{\Phi(c) \mid c \in d, c<e$. We claim that $\Phi(e) \leq e$ for all $e \in d$. Indeed if $c<e$, then by induction $\Phi(e) \leq e$ and so $\Phi(e) \neq e$. Thus $\Phi(e) \leq e$ by defintion of $\Phi(b)$.

Since $\Phi(e) \leq e$ and $|b|$ is an initial segment of $\operatorname{Ord}, \Phi(e) \in|b|$. We claim that $\Phi[d]$ is an initial segment of $|b|$. Indeed of $\alpha<\Phi(e)$, then $\alpha=\Phi(c)$ for some $c \in d$ with $c<e$. Thus $\Phi(d)$ is an ordinal, also $\Phi(d) \leq|b|$ and $\Phi(d)$ isomorphic to a. Thus $|a| \leq|\Phi(d) \leq|b|$.

Corollary A.6.3. [sb] Let a and b sets. If the exits an injection from a to b and an injection from b to a, then a and b are isomorphic.

Proof. By A.6.2 $|a| \leq|b|$ and $|b| \leq|a|$. Thus $|a|=|b|$ and a and b are both isomorphic to $|a|$.

Appendix B

Homework

B. 1 Homework 3 from MTH912

Let \mathbb{K} be a division ring and V_{1}, V_{2} and V_{3} a left \mathbb{K} space. A function $f: V_{1} \rightarrow V_{2}, v \rightarrow v f$ is called \mathbb{K}-linear if $v+\tilde{v}) f=v f+\tilde{v} f$ and $k v . f k, v f$ for all $v \in V$ and $k \in \mathbb{K}$. If $f: V_{1} \rightarrow V_{2}$ and $g: V_{2} \rightarrow V_{3}$ are \mathbb{K}-linear, then $f g$ is the \mathbb{K}-linear function from $V_{1} \rightarrow V_{2}$ defined by $v . f g=v f . g . \operatorname{Hom}_{\mathbb{K}}\left(V_{1}, V_{2}\right)$ denotes the set of all \mathbb{K}-linear map from $V_{1} \rightarrow V_{2} . \operatorname{End}_{\mathbb{K}}(V)=$ $\operatorname{Hom}_{\mathbb{K}}(V, V)$. Note that $\operatorname{End}_{\mathbb{K}}(V)$ is a ring.

Similarly let W_{1}, W_{2} and W_{3} a left \mathbb{K} space. A function $f: W_{1} \rightarrow W_{2}, w \rightarrow f w$ is called \mathbb{K}-linear if $f(w, \tilde{w})=f w+f \tilde{w}$ and $f w . k=f . w$ for all $w, \tilde{w} \in V$ and $k \in \mathbb{K}$. If $f: W_{1} \rightarrow W_{2}$ and $g: W_{2} \rightarrow W_{3}$ are \mathbb{K}-linear, then $g f$ is the \mathbb{K}-linear function from $W_{1} \rightarrow W_{2}$ defined by $f g . w=f . g w . \operatorname{Hom}_{\mathbb{K}}\left(W_{1}, W_{2}\right)$ denotes the set of all \mathbb{K}-linear map from $W_{1} \rightarrow W_{2}$.

So we view function on a left vectors space to be acting from the right. while functions on a right vector space act from the left.

Let V be left- and W a right \mathbb{K}-space. Let $s: V \times W \rightarrow \mathbb{K}$ be a \mathbb{K}-bilinear function. So for all $v, \tilde{v} \in V, w, \tilde{w} \in W$ and $k \in \mathbb{K},(v+\tilde{v}) w=v l+\tilde{v} w, v(w+\tilde{w})=v w+v \tilde{w}, k v . w=k . v w$ and $v w . k=v w . k$. Noe that just means taht for each $v \in V$, the map $s_{v}: W \rightarrow W, w \rightarrow v w$ is \mathbb{K}-linear and for each $w \in W$, the map $s_{w}: v \rightarrow v w$ is \mathbb{K}-linear.

Put $E:=\operatorname{End}_{\mathbb{K}}^{s}(V, W)$ be the set of all $(\alpha, \beta) \in \operatorname{End}_{\mathbb{K}}(V) \times \operatorname{End}_{\mathbb{K}}(W)$ such that $v \alpha . w=$ $v . \beta w$. for all $v \in V, w \in W$. Note that V is a right E-module via $v(\alpha, \beta) v \alpha$ and W is a left E-module via $(\alpha, \beta) w=\beta w$. So if $\delta=(\alpha, \beta) \in E$ the $v \delta . w=v . \delta w$ for all $v \in V, w \in W$. Observer that E is a subring of $\operatorname{End}_{\mathbb{K}}(V) \times \operatorname{End}_{\mathbb{K}}(W)$.

Define $w v \in \operatorname{End}_{\mathbb{K}}\left(V_{\times} \operatorname{End}_{\mathbb{K}}(W)\right.$ by $\tilde{v} . w v=\tilde{v} w . v$ and $w v . \tilde{w}=w . v \tilde{w}$ for all $\tilde{v} \in V, \tilde{w} \in W$. We claim that $w v \in E$. Indeed

$$
\begin{aligned}
& (\tilde{v}(w v)) \tilde{w}) \\
= & ((\tilde{v} w) v) \tilde{w} \quad \text { definition of } w v \\
= & (\tilde{v} w)(v \tilde{w}) \quad s_{\tilde{w}} \text { is linear } \\
= & \tilde{v}\left(w(v \tilde{w}) \quad s_{\tilde{v}}\right. \text { is linear } \\
= & \tilde{v}((w v) \tilde{w}) \quad \text { definition of } w v
\end{aligned}
$$

So $w v \in E$.
Observe that we now have binary operation, $\mathbb{K} \times \mathbb{K} \rightarrow \mathbb{K}, \mathbb{K} \times V \rightarrow V, W \times \mathbb{K} \rightarrow W$, $V \times E \rightarrow V, E \times W \rightarrow W$ and $E \times E \rightarrow E$.

We say that \mathbb{K} has type $(0,0), V$ has type $(0,1), W$ has type $(1,0)$ and E has type $(1,1)$. If X has type $(i, j), Y$ has type (k, l) and Z has type (m, n), then we have a binary operation $X \times Y \rightarrow Z$ if and only if $j=k$ and $(m, n)=(i, l)$. In particular, if $x, y, z \in \mathbb{K} \cup V \cup W \cup E$, then $x y . z$ is defined if and only if $x y . z$ is defined.

We will now show if $x y . z$ is defined, then $x y . z=x . y z$. Indeed, almost all of theses equations follows immediately from the definitions, except for $w v \cdot \alpha=w \cdot v \alpha$ and $\alpha w \cdot v=$ alpha.wv, there $v \in V, w \in W$ and $\alpha \in E$.

Note that $w v \in E$ and so $w v . \alpha \in E$. So to show that $w v . \alpha=w . v \alpha$ we need to show that they act the same way on V and W. So let $\tilde{V} \in V$ and $\tilde{W} \in W$. Then

$$
\begin{aligned}
&\tilde{v}((w v) \alpha))= \\
&=(\tilde{v}(w v)) \alpha \\
&=(\tilde{v} w) v)) \alpha \\
&= \text { definition of mult. in } E \\
&=(\tilde{v} w)(v \alpha) \\
&= \alpha \text { is lininear of } w v \\
&(w(v \alpha)) \\
& \text { definition of } w(v \alpha)
\end{aligned}
$$

B. 2 Homework 4 from MTH912

Homework B.2.1. [t in m’] Let \mathbb{F} be a division ring, V a left \mathbb{F} space, W a right \mathbb{F} space, $s: V \times W \rightarrow \mathbb{F}$ a bilinear form and \mathcal{N} a series of closed \mathbb{F}-subspace of V. Let $M=M_{\mathcal{N}}^{s}(V, W)$ be the corresponding McLain group and let $v \in V^{\sharp}$ and $w \in W^{\sharp}$ with $t(v, w) \in M^{\prime}$. Then $T_{v}<T_{w}$. Here $T_{v}=\bigcap\{E \in \mathcal{N} \mid v \in E\}$ and $T_{w}=\bigcup\left\{E \in \mathcal{N} w \in E^{\perp}\right.$.

Proof. Since $t(v, w) \in M$ we have $T_{v} \leq T_{w}$. Let $B_{v}=\{$ bigcup $D \mid v \notin D\}$. Then $v \notin B_{v}$. Since B_{v} is closed, $v \notin B_{v}^{\perp \perp}$ and so $B_{v}^{\perp} \not \leq v^{\perp}$. Thus $\left[t(v, w), B_{v}^{\perp}\right] \neq 0$ and so $w \in w \mathbb{F}=$ $\left[t(v, w), B_{v}^{\perp}\right]$. On the other hand $\left(B_{v}, T_{v}\right)$ is a jump of \mathcal{N} and by ??

$$
M^{\prime}=\left\{g \in M \mid\left[B^{\perp}, g\right] \leq\left(T^{\perp}\right)^{-} \text {for all } \operatorname{jumps}(B, T) \text { of } \mathcal{N}\right\}
$$

Thus $w \in\left[t(v, w), B_{v}^{\perp}\right] \leq\left(T_{v}^{\perp}\right)^{-}$. Since $\left(T_{v}^{\perp}\right)^{-}=\bigcup\left\{D^{\perp} \mid T_{v}<D \in \mathcal{N}\right\}$ we conclude that $w \in D^{\perp}$ for some $D \in \mathcal{N}$ with $T_{v}<D$. Then $D \leq T_{w}$ and so $T_{v}<T_{w}$.

Definition B.2.2. [def:component]

(a) [a] If H is an ascending subgroup of G. the $\delta_{G}(H)$ is the mimial length of an ascending sequence from H to G.
(b) [b] A component of a group is a quasisimple ascending subgroup of G.

Homework B.2.3. [basic components] Let K and L be components of a group G and M a subnormal subgroup of G.
(a) $[\mathbf{a}] K=L$ or $[K, L]=1$.
(b) $[\mathbf{b}] K \leq M$ or $[K, M]=1$.

Proof. Let K be a components of G
$\mathbf{1}^{\circ}$. [1] Let $M \unlhd \unlhd G$. If $K \unlhd\left\langle K^{H}\right\rangle$, then $K \leq M$ or $[K, M]=1$.
Suppose first that M is normal in G, that is $\delta_{G}(M) \leq 1$. Put $H=\left\langle K^{G}\right\rangle$ and assume that $K \leq M$. Then $K \cap M \unlhd K$ and since $K \cap M \neq K$ we get $K \cap M \leq \mathrm{Z}(K)$. Since $H \cap M$ normalize K we have $[H \cap M, K] \leq K \cap M \leq \mathrm{Z}(M)$ and thus $][H \cap M, K, K]=1$. Hence also $[K, H \cap M, K]=1$ and the Three Subgroup Lemma implies that $[K, K, H \cap M]=1$. Since K is perfect, $[H \cap M, K]=1$. Since H and M are normal in G and $K \leq H$, $[M, K] \leq[M, H] \leq H \cap M$ and so $[M, K, K]=1$. Another application of the three subgroups lemma shows that $[M, K]=1$.

Suppose nest tat $\delta_{G}(M) \geq 2$. The there exists M asc $M^{*} \unlhd G$ with $\delta_{M^{*}}(M)=\delta_{G}(M)-1$. If $K \neq M^{*}$, then by the previous paragraph, $\left[K, M^{*}\right]=1$ and so also $[K, M]=1$. If $K \leq M^{*}$, then by induction on $\delta_{G}(K)$ we have $K \leq M$ or $[K, M]=1$. Thus $\left(1^{\circ}\right)$ is proved.
$\mathbf{2}^{\circ}$. [1.5] Let K and L be components of G with $K \unlhd\left\langle K^{G}\right\rangle$ and $L \unlhd\left\langle L^{G}\right\rangle$. Then $K=L$ or $[K, L]=1$.

Since $L \unlhd\left\langle L^{G}\right\rangle, L \unlhd \unlhd G$. Thus by $\left(1^{\circ}\right), K \leq L$ or $[K, L]=1$. By symmetry $L \leq K$ or $[L, K]=1$ and so $\left(2^{\circ}\right)$ is proved.

Let $\left(G_{\alpha}\right)_{\alpha \leq \delta_{G}(K)}$ be an ascending sequence from K to G.
$\mathbf{3}^{\circ}$. [2] Suppose that $K=L$ or $[K, L]=1$ for all $\beta<\delta$ and all components L of G_{β} with $\delta_{G_{\beta}}(K)=\delta_{G_{\beta}}(K)$. Then $K=K^{g}$ or $\left[K, K^{g}\right]=1$ for all $g \in G$ and so $K \unlhd\left\langle K^{G}\right\rangle$.

If $\gamma \leq \delta$ be minimal with $g \in G_{\gamma}$. Note that $\gamma=0, \gamma$ is a limit ordinal or $\gamma=\beta+1$ for some ordinal β. In the first case $g \in K$ and so $K=K^{g}$. If the second case, $g \notin \bigcup_{\alpha<\gamma} G_{\alpha}=$ G_{γ}, a contradiction. In the third case g normalizes G_{β} and so $\delta_{G_{\beta}}(K)=\delta_{G_{\beta}}\left(K^{g}\right)$ and K^{g} is a component of G_{β}. Hence assumption of $\left(3^{\circ}\right)$ imply that $K=K^{g}$ or $\left[K, K^{g}\right]=1$.
4. $\cdot[\mathbf{3}] \quad K=L$ or $[K, L]=1$ for all components K and L of G with $\delta_{G}(K)=\delta_{G}(L)$.

Suppose inductively that $K^{*}=L^{*}$ or $\left[K^{*}, L^{*}\right]=1$ whenever K^{*}, L^{*} are components of a group G^{*} and $\delta_{G^{*}}\left(K^{*}\right)=\delta_{G^{*}}\left(L^{*}\right)<\delta_{G}(K)$. Then the assumptions of $\left(3^{\circ}\right)$ are fulfilled. Thus $K \unlhd\left\langle K^{G}\right\rangle$. By symmetry, $L \unlhd\left\langle L^{G}\right\rangle$ and so $\left(4^{\circ}\right)$ follows from (2°).
$\mathbf{5}^{\circ}$. [4] Let $g \in G$. Then $K=K^{g}$ or $\left[K, K^{g}\right]=1$. In particular, $K \unlhd\left\langle K^{G}\right\rangle$.
This follows immediately from $\left(4^{\circ}\right)$.
(a) follows from $\left(5^{\circ}\right)$ and $\left(2^{\circ}\right)$. (b) follows from $\left(5^{\circ}\right)$ and $\left(1^{\circ}\right)$.

Homework B.2.4. [component and hp] Let K be a component of G. Then $[K, \operatorname{HP}(G)]=$.
Proof. By ?? $K \leq \operatorname{HP}(G)$ or $[K, \operatorname{HP}(G)]=1$. In the first case K would be locally nilpotent and so all chief-factors of K would be abelian. But $K / \mathrm{Z}(K)$ is a non-abelian chief-factor of K.

Definition B.2.5. [def:invert] Let H be a group acting on a abelian group A and I a subset of H and $h \in H$. We say that h inverts A of $a^{h}=a^{-1}$ for all $a \in A$. We say that I inverts A if each elements of I either centralizes A or inverts A.

Homework B.2.6. [basic invert] Let H be a group acting on an abelian group A.
(a) [a] If $I \subseteq H$ with $H=\langle I\rangle$, then H inverts A if and only of I inverts I.
(b) $[\mathbf{b}]$ Let $h \in H$ with $h^{2}=1$. Put $\mathrm{I}_{A}(h)=\left\{a \in A \mid a^{h}=a^{-1}\right\}$ and $\mathrm{I}_{h}^{*}=\left\{a a^{h} \mid a \in A\right\}$.
(a) $[\mathbf{a}] \quad A / \cong \mathrm{I}_{A}(h) \cong \mathrm{I}_{H}^{*}(h)$ and $A / C_{A}(h) \cong[A, h]$ as
(b) $[\mathbf{b}] \mathrm{I}_{H}(a)$ is largest subgroup of A inverted by h and $\mathrm{I}^{*}(h)$ is the smallest subgroup of A whose quotient is inverted by h.
(c) $[\mathbf{c}][A, h] \leq \bar{I}_{H}(a)$ and $\bar{I}_{H}^{*} a \leq \mathrm{C}_{A}(h)$.
(c) [c] Suppose H is an finite elementary abelian 2-group. Then there exists a finite series

$$
1=A_{0} \leq A_{1} \leq \ldots A_{m}=A
$$

of H-invariant subgroups of A all of whose factors are inverted by A.
Proof. (a) Let $i, j \in I$. If i and j centralizes A, or i and j inverts A, then $i j$ centralize A. If one of i and j centralizes A and the other inverts A, then $i j$ inverts A. So the set of elements of A which centralizes or inverts A forms a subgroup of H.
(b:a) Consider the homomorphisms $A \rightarrow A, a \rightarrow a a^{h}$ and $A \rightarrow A, a \rightarrow a^{-1} a^{h}$. The first has $\mathrm{I}_{A}(h)$ as kernel and $\mathrm{I}_{A}(h)$ as image. The second has $\mathrm{C}_{A}(h)$ as kernel and $[A, h]$ a image.
(b:b) Readily verified.
(b:c) $\left(a^{-1} a^{h}\right)^{h}=\left(a^{-1}\right)^{h} a^{h^{2}}=\left(a^{h}\right)^{-1} a=\left(a^{-1} a^{h}\right)^{-1}$ and $\left(a a^{h}\right)^{h}=\left(a^{h} a^{h^{2}}\right)=a^{h} a=a a^{h}$.
(c) Let $H=\left\langle h_{1}, h_{2}, \ldots h_{n}\right\rangle$ for some $h_{i} \in H$ and put $H_{0}=\left\langle h_{1}, \ldots h_{n-1}\right.$. By (b) h_{n} inverts $\left[A, h_{n}\right]$ and centralizes $A /\left[A, h_{n}\right]$. Since H is abelian, $\left[A, h_{n}\right]$ is H_{0} invariant and so H_{0} acts on $\left[A, h_{n}\right]$ and $A /\left[A, h_{n}\right]$. By induction on n there exitss H_{0} invariant subgroups,

$$
1=A_{0} \leq A_{1} \leq \ldots A_{t}=\left[A, h_{n}\right] \leq A_{t+1} \leq \ldots A_{m}=A
$$

such that H_{0} inverts each of the factors. Note h_{n} inverts each of the factors A_{i} / A_{i-1} for $1 \leq i \leq t$ and centralizes each the factors $A_{i} / A_{i-1}, t<i \leq m$. Thus by (b), H each of the factors.

Homework B.2.7. [char subsolvable] Let G be a group with no non-trivial finite normal subgroup of odd order. Then G is super-solvable if and only if $G G$ is finitely generated and G^{2} is nilpotent.

Proof. Suppose first that G is super solvable. Then G is polycyclic and so finitely generated. Moreover, there exists a strong composition series

$$
1=G_{0} \leq G_{1} \leq \ldots \leq G_{k} \leq G_{k+1} \leq G_{n}=G
$$

such that for $1 \leq i \leq k, G_{k} / G_{k-1}$ has odd prime order and for $k<i \leq n, G_{k} / G_{k-1}$ is cyclic of order 2 or ∞. Then G_{k} is the unique maximal subgroup of odd order. So G_{k} is normal in G and so by assumption, $G_{k}=1$ and thus $k=0$. It follows that for all $1 \leq i \leq n$, $\operatorname{Aut}\left(G_{i} / G_{i-1}\right)$ has order at most 2 . Thus G^{2} centralizes G_{i} / G_{i-1}. Hence

$$
1=G_{0} \cap G^{2} \leq G_{1} \cap G^{2} \leq \ldots G_{n} \cap G^{2}=G^{2}
$$

is a finite normal series for G^{2} all of whose factor are centralized by G^{2}. Thus G^{2} is nilpotent.
Suppose next that G is finitely generated and G^{2} is nilpotent. Note that G / G^{2} is a finitely generated elementary abelian 2 group and so finite. Since subgroups of finite index in finitely generated group are finitely generated, G^{2} is a finitely generated nilpotent groups. Thus every section of G^{2} is finitely generated. Let

$$
1=Z_{0} \leq Z_{1} \leq Z_{m}=G^{2}
$$

be the upper central series for G^{2}. But $Z_{m+1}=G$. Then each Z_{i} is G invariant and Z_{i} / Z_{i-1} an finitely generated abelian group centralized by G^{2}. So we can apply B.2.6 with $H=G / G^{2}$ and $A=Z_{i} / Z_{i-1}$ to obtain a G invariant series of subgroup

$$
Z_{i-1}=Z_{i, 0} \leq Z_{i, 1} \leq \ldots Z_{i, j_{i}}=Z_{i}
$$

all of whose factors are inverted by G. Since $Z_{i, j} / Z_{i, j-1}$ is finitely generated there exists a finite series

$$
Z_{i, j-1}=Z_{i, j, 0} \leq Z_{i, j, 1} \leq Z_{i, j, k_{i j}}=Z_{i, j}
$$

of subgroups of $Z_{i, j}$ all of whose factors are cyclic. Since G^{2} inverts $Z_{i, j} / Z_{i, j-1}$ each of $Z_{i, j, k}$ are G invariant. Thus the $Z_{i, j, k}$ from a supersolvable series for G and G is supersolvable.

Homework B.2.8. [char series for supersolvable] Let G be a supersolvable group and $p_{1}>p_{2}>\ldots>p_{k}$ the order of the strong chief-factors of odd order of G. Then there exists series

$$
1 \leq S_{1} \leq S_{2} \leq \ldots S_{k} \leq S_{\infty} \leq G
$$

of characteristic subgroups of G such that G / S_{∞} is a finite 2-group, S_{∞} / S_{k} is a torsion free nilpotent group, and for $1 \leq i \leq k, S_{i} / S_{i-1}$ is a finite p_{i}-group.

Proof. Let H be the unique maximal subgroup of odd order of G. Let

$$
H_{0} \leq H_{1} \leq \ldots \leq H_{k}
$$

be chief-series series such that $\left(\left|H_{1} / H_{0}\right|,\left|H_{2} / H_{1}\right|, \ldots,\left|H_{k} / H_{k-1}\right|\right)$ is maximal in lexiographic order. Suppose that $p:=\left|H_{i} / H_{i-1}\right|<q:=\mid H_{i+1} / H_{i-1}$ for some $1 \leq i<k$. Then H_{i+1} / H_{i-1} is a group of order pq. By Sylow's Theorem H_{i+1} / H_{i-1} has a unique Sylow q-subgroups H_{i}^{*} / H_{i-1}. But then

$$
H_{0} \leq H_{1} \leq H_{i-1} \leq H_{i}^{*} \leq H_{i} \ldots \leq H_{k}
$$

is a chief-series of G of higher lexiographic order, a contradiction.
Thus $\left|\left|H_{i} / H_{i-1}\right| \leq\right| H_{i+1} / H_{i-1}$. For $1 \leq j \leq k$ let i_{j} be maximal with $\left|H_{i_{j}} / H_{i_{j}-1}\right|=p_{j}$. Put $S_{j}=H_{i_{j}}, S_{0}=1$ and $i_{0}=0$ Then

$$
S_{j-1}=H_{i_{j-1}} \leq H_{i_{j-1}+1} \leq \ldots H_{i_{j}}=S_{j}
$$

is a series all of whose factors have order p_{j} and so S_{j} / S_{j-1} is a finite p_{j}-group. Hence S_{j} is finite $\left\{p_{1}, \ldots, p_{j}\right\}$ group. Let x be $\left\{p_{1}, \ldots, p_{j}\right\}$ element in H and pick l minimal with $x \in S_{l}$. Then $x S_{j-1}$ is a non-trivial $\left\{p_{1}, \ldots, p_{j}\right\}$ element in the p_{l}-group S_{l} / S_{l-1} and so $l \leq j$. Thus S_{j} is unique maximal subgroup $\left\{p_{1}, \ldots, p_{j}\right\}$-subgroup of H. Hence S_{j} is a characteristic subgroup of H and G. Note that $S_{k}=H$.

Replacing G by G / H we may assume from now on that G has no non-trivial normal finite subgroups of odd order. Choose a supersolvable series

$$
1=G_{0} \leq G_{1} \leq \ldots \leq G_{a} \leq \ldots G_{b} \leq \ldots G_{n}=G
$$

such that
(i) $[\mathbf{i}]\left|G_{i} / G_{i-1}\right|=\infty 1 \leq i \leq a$.
(ii) $\left[\right.$ ii] $\left|G_{i} / G_{i-1}\right|=2$ for $1 \leq i \leq a$. equals 2 for
(iii) $[$ iii $]\left|G_{b+1} / G_{b}\right|=2$ if $b<n$.
(iv) $[\mathbf{i v}] a$ is maximal with respect to (i)-(iii).
(v) $[\mathbf{v}] b$ is minimal with respect to (i)-(iv).

We claim that $b=n$. Suppose not. If $a=b$ then (i)-(iii) are fulfilled with $b+1$ in place of a, contradicting the maximality of a. So $a<b$. Put $\overline{G_{b+1}}=G_{b+1} / G_{b-1}$. Then $\overline{G_{b}}$ has order 2 and $\overline{G_{b+1}} / \overline{G_{b}}$ is cyclic of infinite order. Pick $x \in G_{b} \backslash G_{b-1}$ and $y \in G_{b+1}$ with $\langle y\rangle G_{b}=G_{b+1}$. Suppose that $\bar{x} \in\langle\bar{y}\rangle$. Then \bar{G}_{b+1} is cyclic and the series

$$
G_{0} \leq \ldots G_{a} \leq \ldots \leq G_{b-1} \leq G_{b+1} \leq G_{n}=G
$$

contradiction the maximality of a (if $a=b-1$) and the minimality of b if $a \neq b-1$.
Thus $\bar{x} \notin\langle\bar{y}\rangle$ and $\bar{G}_{b}=\langle\bar{x}\rangle \times\langle\bar{y}\rangle$. Thus $\overline{G_{b}}=\left\langle o y^{2}\right\rangle$. Put $A=G_{b-1}\left\langle y^{2}\right\rangle$. Then $\bar{A}={\overline{G_{b+1}}}^{2}$ is a characteristic subgroup of $\overline{G_{b+1}}$ and so A is normal in G. Note that A / G_{b-1} is cyclic of infinite order, while $A G_{b} / A$ and $G_{b+1} / A G_{b}$ both have order 2 . Thus

$$
1=G_{0} \leq G_{1} \leq \ldots \leq G_{a} \leq \ldots \leq G_{b-1} \leq A \leq A G_{b} \leq G_{b+1} \ldots G_{n}=G
$$

contradiction the maximality of a (if $a=b-1$) and the minimality of b if $a \neq b-1$.
So $b=n$ and G / G_{a} is a finite of order 2^{n-a}. . Let $g \in G$ be a nontrivial element of finite order and let i be minimal with $g \in G_{i}$. Then $g G_{i-1}$ is an element of finite order in G_{i} / G_{i-1} and so $i>a$. Thus G_{a} is torsion free. Put $m=\max n-a, 1$ and $S_{\infty}=G^{2^{m}}$. Then S is a characteristic subgroup of G and $S_{\infty} \leq G_{a} \cap G^{2}$. By ?? G^{2} is nilpotent and so S_{∞} is torsion free and nilpotent. It remains the show that S / S_{∞} has finite order. For $1 \leq i \leq a, G_{i} / G_{i-1}$ is cyclic of infinite order. Thus $G_{i} / G_{i}^{2^{m}} G_{i-1}$ has order 2^{m} and so $G_{i} /\left(G_{i} \cap S_{\infty}\right) G_{i-1}$ has order at most 2^{m}. Thus $G_{a} / G_{a} \cap S_{\infty}$ has order at most $2^{m a}$ and G / S_{∞} has order at most $2^{m a+(n-a)}$.

Bibliography

[Rob1] Derek J.S. Robinson, Finitess Conditions And Generalized Soluble Groups, Part I Ergebnisse Der Mathematik Und Ihrer Grenzgebiete, Band 62, Springer Verlag 1972.
[Rob2] Derek J.S. Robinson, Finitess Conditions And Generalized Soluble Groups, Part II Ergebnisse Der Mathematik Und Ihrer Grenzgebiete, Band 63, Springer Verlag 1972.
[Rob] Derek J.S. Robinson, A Course in the Theory of Groups Graduate Text In Mathematics 80, Springer Verlag 1993.
[Rot] Joseph J. Rotman, An Introduction to the Theory of Groups Graduate Text In Mathematics 148, Springer Verlag 1994.

