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Preface

These are the lecture notes for the classes MTH 818 in Fall 2012 and MTH 819 in Spring 2013.
The notes were originally based on Hungerford’s Algebra [Hun], but by now the content and proofs
have diverged from Hungerford.

The lecture notes will be updated frequently.
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Chapter 1

Group Theory

1.1 Latin Squares

Definition 1.1.1. Let I, J be sets C a class. An I × J matrix in C is a function M ∶ I × J → C.. We
will write Mi j for the image of (i, j) under M. Mi j is called the i j-coefficient of M. We denote M by
[Mi j] i∈I

j∈J
.

Definition 1.1.2. Let G be a set and φ a function such that G ×G is contained in the domain of G.

(a) If a,b ∈ G we write ab or aφb for φ(a,b). φ is called a binary operation on G (or closed on G,
if ab ∈ G for all a,b ∈ G. In this case the pair (G, φ) is called a magma.

(b) 1 ∈ G is called an identity element if 1a = a1 = a for all a ∈ G.

(c) We say that (G, φ) is a Latin square if for all a,b in G there exist unique elements x, y in G so
that

ax = b and ya = b

(d) The multiplication table of (G, φ) is the matrix G ×G-matrix [ab]a∈G
b∈G

.

(e) The order of (G, φ) is the cardinality ∣G∣ of G.

We remark that (G, φ) is a latin square if and only if each a ∈ G appears exactly once in each
row and in each column of the multiplication table.

If there is no confusion about the binary operation in mind, we will just write G for (G, φ) and
call G a magma.

If (G, φ) is a magma, we can restrict φ to a function

φ̃ ∶ G ×G → G, (a,b)→ ab

Then (G, φ̃) is also a magma

Definition 1.1.3. Let G and H be magma and α ∶ G → H a function.

9



10 CHAPTER 1. GROUP THEORY

(a) α is called a (magma) homomorphism if α(ab) = α(a)α(b), for all a,b ∈ G.

(b) α is called an isomorphism if α is a homomorphism and there exists a homomorphism β ∶ H → G
with α ○ β = idH and β ○ α = idG.

(c) α is an automorphism if G = H and α is an isomorphism.

(d) If G and H are monoid, α is called a monoid-homomorphism if α is magma-homomorphism
and α(1G) = 1H .

(e) If G and H are groups, , α is called a group -homomorphism if α is magma-homomorphism.

Definition 1.1.4. Let G and H be magmas.

(a) The opposite magma Gop is defined by Gop = G as a set and

g ⋅op h = hg.

(b) An magma anti homomorphismα ∶ G → H is a magma homomorphism α ∶ G → Hop. So
α(ab) = α(b)α(a).

Lemma 1.1.5. (a) Let G be a magma. Then G has at most one identity.

(b) Let α ∶ G → H be a magma homomorphism. Then α is an isomorphism if and only if α is a
bijection.

Proof. (a) Let 1 and 1∗ be identities. Then

1 = 11∗ = 1∗.

(b) Clearly any isomorphism is a bijection. Conversely, assume α is a bijection and let β be its
inverse map. We need to show that β is a homomorphism. For this let a,b ∈ H. Then as α is a
homomorphism

α(β(a)β(b)) = α(β(a))α(β(b)) = ab = α(β(ab)).

Since α is 1-1 ( or by applying β) we get

β(a)β(b) = β(ab).

So β is an homomorphism. �

1.1.6 (Latin Squares of small order). Below we list (up to isomorphism) all Latin square of order at
most 5 which have an identity element 1. It is fairly straightforward to obtain this list, although the
case ∣G∣ = 5 is rather tedious). We leave the details to the reader, but indicate a case division which
leads to the various Latin squares.

Order 1,2 and 3:
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1

1 1

1 a

1 1 a

a a 1

1 a b

1 1 a b

a a b 1

b b 1 a

Order 4: Here we get two non-isomorphic Latin squares. One for the case that a2 ≠ 1 for
some a ∈ G and one for the case that a2 = 1 for all a ∈ G.

(1)

1 a b c

1 1 a b c

a a b c 1

b b c 1 a

c c 1 a b

(2)

1 a b c

1 1 a b c

a a 1 c b

b b c 1 a

c c b a 1

Order 5: This time we get lots of cases:

Case 1: There exists 1 ≠ a ≠ b with a2 = 1 = b2.
Case 2 There exists 1 ≠ a with a2 ≠ 1, aa2 = 1 and (a2a)2 = 1.
Case 3 There exists 1 ≠ a with a2 ≠ 1, aa2 = 1 and (a2a)2 ≠ 1
Case 4 There exists 1 ≠ a with a2 ≠ 1, a2a = 1 and (aa2)2 = 1.
This Latin square is anti-isomorphic but not isomorphic to the one in case 2. Anti-isomorphic

means that is there exists bijection α with α(ab) = α(b)α(a)).
Case 5 There exists 1 ≠ a with a2 ≠ 1, a2a = 1 and (aa2)2 ≠ 1.
This Latin square is isomorphic and anti-isomorphic to the one in case 3.
Case 6 There exists 1 ≠ a with a2 ≠ 1, a2a = aa2 ≠ 1
Case 7 There exists 1 ≠ a with a2 ≠ 1 = (a2)2.
Case 8 There exists 1 ≠ a with (a2)2 ≠ 1 and 1 ≠ a2a ≠ aa2 ≠ 1.
In this case put c = aa2. Then c2 ≠ 1 and either cc2 = 1 or c2c = 1. Moreover (c2c)2 ≠ 1

respectively (cc2)2 ≠ 1 and the latin square is isomorphic to the one in Case 3.

(1)

1 a b c d

1 1 a b c d

a a 1 c d b

b b d 1 a c

c c b d 1 a

d d c a b e

(2)

1 a b c d

1 1 a b c d

a a b 1 d c

b b c d a 1

c c d a 1 b

d d 1 c b a

(3)

1 a b c d

1 1 a b c d

a a b 1 d c

b b c d 1 a

c c d a b 1

d d 1 c a b

(4)

1 a b c d

1 1 a b c d

a a b c d 1

b b 1 d a c

c c d a 1 b

d d c 1 b a
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(5)

1 a b c d

1 1 a b c d

a a b c d 1

b b 1 d a c

c c d 1 b a

d d c a 1 b

(6)

1 a b c d

1 1 a b c d

a a b c d 1

b b c d 1 a

c c d 1 a b

d d 1 a b c

(7)

1 a b c d

1 1 a b c d

a a b c d 1

b b d 1 a c

c c 1 d b a

d d c a 1 b

(8)

1 a b c d

1 1 a b c d

a a b c d 1

b b d a 1 c

c c 1 d x y

d d c 1 y x

{x, y} = {a,b}

1.2 Semigroups, monoids and groups

Definition 1.2.1. Let G be a magma.

(a) The binary operation on G is called associative if

(ab)c = a(bc)

for all a,b, c ∈ G. If this is the case we call G a semigroup.

(b) G is a monoid if it is a semigroup and has an identity.

(c) Suppose G is a monoid and let a,b ∈ G with ab = 1. Then a is called a left inverse of b and b is
called a right inverse of a.

(d) Suppose that G is a monoid. Then a ∈ G is called invertible if there exists a−1 ∈ G with

aa−1 = 1 = a−1a.

Such an a−1 is called an inverse of a.

(e) A group is a monoid in which every element is invertible.

(f) G is called abelian (or commutative) if

ab = ba

for all a,b ∈ G.

Example 1.2.2. Let Z+ denote the positive integers and N the non-negative integers. Then (Z+,+)

is a semigroup, (N,+) is a monoid and (Z,+) is a group. (Z, ⋅) and (R, ⋅) are monoids. Let
R∗ = R ∖ {0}. Then (R∗, ⋅) is a group. The integers modulo n under addition is another example.
We denote this group by (Z/nZ,+). All the examples so far have been abelian.

Note that in a group a−1b is the unique solution of ax = b and ba−1 is the unique solution of
ya = b. So every group is a Latin square with identity. But the converse is not true. Indeed of the
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Latin squares listed in section 1.1 all the once of order less than five are groups. But of Latin squares
of order five only the one labeled (6) is a group.

Let K be a field and V a vector space over K. Let EndK(V) the set of all K-linear maps from V
to V . Then EndK(V) is a monoid under compositions. Let GLK(V) be the set of K-linear bijection
from V to V . Then GLK(V) is a group under composition, called the general linear group of V . It is
easy to verify that GLK(V) is not abelian unless V has dimension 0 or 1.

Let I be a set. Then the set Sym(I) of all bijection from I to I is a group under composition,
called the symmetric group on I. If I = {1, . . . ,n} we also write Sym(n) for Sym(I). Sym(n)
is called the symmetric group of degree n. Sym(I) is not abelian as long as I has at least three
elements.

Above we obtained various examples of groups by starting with a monoid and then considered
only the invertible elements. This works in general:

Lemma 1.2.3. Let G be a monoid.

(a) Suppose that a,b, c ∈ G, a is a left inverse of b and c is right inverse of b. Then a = c and a is an
inverse.

(b) An element in G has an inverse if and only if it has a left inverse and a right inverse.

(c) Each element in G has at most one inverse.

(d) If x and y are invertible, then x−1 and xy are invertible. Namely x is an inverse of x−1 and y−1x−1

is an inverse of xy.

(e) Let U(G) be the set of invertible elements in G, then U(G) is a group.

Proof. (a)
a = a1 = a(bc) = (ab)c = 1c = c

(b) and (c) follow immediately from (a).
(d) Clearly x is an inverse of x−1. Also

(y−1x−1)(xy) = y−1(x−1(xy)) = y−1((x−1x)y) = y−1(1y) = y−1y = e

Similarly (xy)(y−1x−1) = 1 and so y−1x−1 is indeed an inverse for xy.
(e) By (d) U(G) is closed under multiplication. Since the multiplication is associative on G, its

also associative on U(G). Since 1 ∈ U(G), U(G) is a monoid. By (d) x−1 ∈ U(G) for all x ∈ U(G)

ad so x has an inverse in U(G). Hence U(G) is a group. �

Corollary 1.2.4. Let G be a group. Then G is isomorphic to its opposite group Gop, in fact the map
x→ x−1 is an anti-automorphism of G and an isomorphism G → Gop.

Proof. This follows from 1.2.3(d). �

Definition 1.2.5. Let G be a magma, n a positive integer and a1, . . . ,an ∈ G. Let z ∈ G. Inductively,
z is called a product of (a1, . . . ,an) if either
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(a) n = 1 and z = a1; or

(b) n > 1 and there exist an integer k with 1 ≤ k < n, a product x of (a1 . . . ,ak) and a product y of
(ak+1 . . . ,an) such that z = xy.

Also z is called the standard product of (a1, . . . ,an) if either

(a) n = 1 and z = a1; or

(b) n > 1 and z = san where s is the standard product of (a1, . . . ,an−1).

If G has an identity e, then e is called the product and the standard product of the empty tuple
().

Example 1.2.6. Products of tuple of length less or equal to four.

Let G be magma and a,b, c,d ∈ G.
The only product of (a) is a.
The only product of (a,b) is ab,
The products of (a,b, c) are a(bc) and (ab)c.
The products of (a,b, c,d) are a(b(cd)), a((bc)d), (ab)(cd), (a(bc))d and ((ab)c)d.

Theorem 1.2.7 (General Associativity Law). Let G be a semigroup and a1, . . . ,an ∈ G. Then any
product of (a1, . . . ,an) is equal to the standard product.

Proof. The proof is by complete induction on n. For n = 1 the only product of (a1) is a1, which is
also the standard product.

So suppose n ≥ 2 and that any product of a tuple of length less than n is equal to its standard
product. Let z be any product of (a1, . . . ,an). Then by definition of ‘product’ there exist an integer
1 ≤ m < n, a product x of (a1, . . . ,am) and a product y of (am+1, . . . ,an) such that z = xy.

Suppose first that m = n − 1. By induction x is the standard product of (a1, . . . ,an−1). Also
z = xan and so by definition z is the standard product of (a1, . . . ,an).

Suppose next that m < n − 1. Again by induction y is the standard product of (am+1, . . . ,an) and
so y = san, where s is the standard product of (am+1 . . . ,an−1). Hence

z = xy = x(san) = (xs)an

As xs is a product of (a1, . . .an−1), we are done by the m = n − 1 case. �

One of the most common ways to define a group is as the group of automorphism of some
object. For example above we used sets and vector spaces to define the symmetric groups and the
general linear group.

If the object is a magma G we get a group which we denote by Aut(G). So Aut(G) is the set of
all automorphisms of the magma G. The binary operation on Aut(G) is the composition.

We will determine the automorphism for the Latin squares in 1.1. As the identity element is
unique it is fixed by any automorphism. It follows that the Latin square of order 1 or 2, have no
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non-trivial automorphism ( any structure as the trivial automorphism which sends every element to
itself).

The Latin square of order three has one non-trivial automorphism. It sends

e→ e a→ b b→ a.

Consider the first Latin square of order 4. It has two elements with x≠2e, namely a and c. So again
we have a unique non- trivial automorphism:

e→ e a→ c b→ b c→ a.

Consider the second Latin square of order 4. Here is an easy way to describe the multiplication:
ex = x, xx = e and xy = z if {x, y, z} = {a,b, c}. It follows that any permutation of {e,a,b, c} which
fixes e is an automorphism. Hence the group of automorphism is isomorphic to Sym(3),

Consider the Latin square of order 5 labeled (1). The multiplication table was uniquely deter-
mine by any pair x ≠ y of non-trivial elements with x2 = y2 = e. But x2 = e for all x. So every
e ≠ x ≠ y ≠ e there exists a unique automorphism with

a→ x b→ y

Thus the group of automorphisms has order 12. The reader might convince herself that also the set
of bijection which are automorphisms or anti-automorphisms form a group. In this case it has order
24. That is any bijection fixing e is an automorphism or anti-automorphism.

Consider the Latins square of order five labeled (2). This multiplication table is uniquely deter-
mine by any element with x2 ≠ e, xx2 = e and (x2x)2 = e. a, b and d have this property and we get
two non-trivial automorphism:

e→ e,a→ b b→ d, c→ c d → a and e→ e,a→ d b→ a, c→ c d → b

That is any permutation fixing e and c and cyclicly permuting a,b,d is an automorphism. Consider
the Latins square of order five labeled (3). This time only a itself has the defining property. It
follows that no non-trivial automorphism exists. But it has an anti-isomorphism fixing a,b and d
and interchanging a and c.

The Latin square (4) and (5) had been (anti-)-isomorphic to (2) and (3). So consider (6). All
non-trivial elements have the defining property. So there are 4 automorphisms. They fix e and
cyclicly permute (a,b, c,d).

Finally consider the Latin square (7). Here a, c,d have the defining property. So there are 3
automorphism. They fix e and b and cyclicly permuted (a, c,d). Here all bijections fixing a and b
are automorphism or anti-automorphism.

It might be interesting to look back and consider the isomorphism types of the groups we found
as automorphism of Latin squares. Z/nZ for n = 1,2,3,4, Sym(3) and a group of order 12. We will
later see that Sym(4) has a unique subgroup of order 12 called Alt(4). So the group of order 12
must be isomorphic to Alt(4).

Another class of objects one can use are graphs. We define a graph to be a tuple (Γ,−), where
Γ is a set and ” − ” is an anti-reflexive, symmetric relation on Γ. The elements are called vertices,
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If a and b are vertices with a − b we say that a and b are adjacent. An edge is a pair of adjacent
vertices. An automorphism of the graph Γ is an bijection α ∈ Sym(Γ) such that a − b if and only
if α(a) − α(b). In other words a bijection which maps edges to edges. Aut(Γ) is the set of all
automorphisms of Γ under composition.

As an example let Γ4 be a square:

u u

uu

1 2

34

The square has the following automorphisms: rotations by 0,90,180 and 270 degrees, and
reflections on each of the four dotted lines. So Aut(Γ4) has order 8.

To describe Aut(Γ4) as a subset of Sym(4) we introduce the cycle notation for elements of
Sym(I) for a finite set I. We say that π ∈ Sym(I) is a cycle of length if the exists a1 . . .am ∈ I such
that

π(a1) = a2, π(a2) = a3, . . . , π(am−1) = am, π(am) = a1

and π( j) = j for all other j ∈ I.
Such a cycle will be denoted by

(a1a2a3 . . .am)

The set {a1, . . .am} is called the support of the cycle. Two cycles are called disjoint if their supports
are disjoint.

It is clear that every permutations can be uniquely written as a product of disjoint cycle.

π = (a1
1a1

2 . . .a
1
m1

) (a2
1a2

2 . . .a
2
m2

) . . . (ak
1ak

2 . . .a
k
mk

)

One should notice here that disjoint cycles commute and so the order of multiplication is irrele-
vant. Often we will not list the cycles of length 1.

So (135)(26) is the permutation which sends 1 to 3, 3 to 5,5 to 1, 2 to 6, 6 to 2 and fixes 4 and
any number larger than 6.

With this notation we can explicitly list the elements of Aut(Γ4):
The four rotations: e, (1234), (13)(24), (1432)
And the four reflections: (14)(23), (13), (12)(34), (24).

1.3 The projective plane of order 2

In this section we will look at the automorphism group of the projective plane of order two.

Definition 1.3.1. Let E = (P ,L,R) be a triple such that P and L are non-empty disjoint sets and
R ⊆ P × L. The elements of P are called points, the elements of L are called lines and we say a
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point P and a line l are incident if (P, l) ∈ R. E is called a projective plane if it has the following
three properties

(PP1) Any point is incident with at least 3 lines and any line is incident with at least three points.

(PP2) Any two distinct points are incident with a unique common line.

(PP3) Any two distinct lines are incident with a unique common point.

If P and Q are distinct points in a projective plane, then PQ denotes the unique line incident
with P and Q. And if l and k are distinct lines lk denotes the unique point incident with l and k.

Lemma 1.3.2. Let E = (P ,L,R) be a projective plane. Define

R∗ = {(l,P) ∣ (P, l) ∈R} and E∗ = (L,P ,R∗).

Then E∗ is a projective plane, called the dual plane of E .

Proof. (PP0) for E implies (PP0) for E∗, (PP1) for E implies (PP2) for E∗ and (PP2) for E implies
(PP1) for E∗. �

Lemma 1.3.3. Let E be a projective plane.

(a) For each point P there exists a line l not incident with P,

(b) For each line l there exists a point P not incident with l.

(c) There exists three non-collinear points, that is three points which are not incident with a com-
mon line.

(d) Let P and Q be points. Then there exists a line l which is neither incident with P nor with Q.

(e) There exists a cardinality q such that each point is incident with exactly q + 1 lines and each
line is incident with exactly q + 1 points. q is called the order of E .

Proof. (a) By (PP0) there exists a line r incident with P. By (PP0) there exist a point Q incident with
r and distinct from P. By (PP0) there exists a line l incident with Q and distinct from r. Suppose
that P is incident with l. Then P and Q are both incident with l and with r. But then (PP1) shows
that l = r, a contradiction. So l is not incident with P.

(b) Follows from (a) applied to the dual plane of E .
(c) Since L is not empty, there exists a line l. By (PP0) there exists distinct points P and Q

incident with l. By (b) there exists a point R not incident with l. Suppose that k is a line incident
with P, Q and R. Then both Q and R are incident with r and with l. Hence r = l and P is incident
with l, a contradiction. Thus P, Q and R are non-collinear.

(d) If P = Q, this is (a). So suppose P ≠ Q and let k = PQ. By (b) there exists a point R not
incident with k. By (PP0), R is incident with at least three lines and so the exists a line l incident
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with R and distinct from PR and QR. Since R is incident with l we conclude that neither P nor Q is
incident with l,

(e) For a point P let ∆(P) be the set of lines incident with P. For a line l ∆(l) be the set of points
incident with l. We will first show that

1○. Let P be a point and l a line not incident with P. Then ∣∆(P)∣∣ = ∣∆(l)∣.

Let Q ∈ ∆(l). Since P is not incident with l, P ≠ Q and so PQ is a line incident with P. Hence
we obtain a function

α ∶ ∆(l)→ ∆(P),Q→ QP

Applying this result to the dual plane we get a function

β ∶ ∆(P)→ ∆(l), k → kl

Note that Q is a point incident with QP and l and so Q = (QP)l. Thus β(α(Q)) = Q and
β ○ α = id∆(l). Thus result applied to the dual plane gives α ○ β = id∆(P) and so α is a bijection with
inverse β. Thus (1○) holds.

2○. Let P and Q be points. Then ∣∆(P)∣ = ∣∆(Q)∣.

By (d) there exist a line l neither incident with P nor with Q. Thus using (1○) twice ∣∆(P)∣ =

∣∆(l)∣ = ∣∆(Q)∣.

Now let P be a point and put c = ∣∆(P)∣. If Q is any point, then (2○) shows ∆(Q)∣ = c. If l is any
line, we can choose a point R not incident with l and so by (1○), ∣∆(l) = ∣∆(R)∣ = c. Thus (e) holds
with q = c − 1. �

Lemma 1.3.4. Let E be a projective plane of order q. Then E has exactly q2 + q + 1 points and
q2 + q + 1 lines.

Proof. Let P be a point. Any other point lies on exactly one of the q+ 1 lines incident with P. Each
of whose q+1 lines has q points distinct from P and so the number points is 1+(q+1) ⋅q = q2+q+1
points. Note that also the dual of E is a projective plane of order q. So the dual has q2 +q+1 points,
i.e E has q2 + q + 1 lines. �

1.3.5 (Projective planes of order 2). Let E = (P ,L,R) be a projective plane of order plane. Let
A,B,C be any three points which are not collinear. We will show that the whole projective plane
can be uniquely described in terms of the tuple (A,B,C). Let P and Q be distinct points. Then PQ
is incident with exactly three points and so there exits a unique point incident with PQ distinct from
P and Q. We denote this unique point by P + Q.

Since A,B and C are non-collinear, AB,BC and AC are three distinct lines. Since two distinct
lines have exactly on point in common

A,B,C,A + B,A +C,B +C are six distinct points.
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Moreover, these are exactly the points which are incident to of the lines AB,BC and AC. Since
E has seven points there exists exactly one more point D and D is not incident with any of the lines
AB,BC and AC. Thus AD is distinct from AB,AC and BC. So none of B and C is incident with AD.
Also neither A nor D is incident with BC. So B +C is the only point on BC which can be incident
with AD, and A + D is the only point on AD which can be incident with BC. So A + D = B +C and
the points incident with AD are A,D and B +C. By symmetry the points incident with BD are B,D
and A +C and with CD are C, D and C + D. In particular,

AB,BC,AC,AD,BD,CD are six distinct lines.

So there exists one more line d. Note that each of A,B,C and D is incident with three of the six
lines distinct from d and so cannot be incident with d. Thus the three points incident with d must be
A + B,A +C and B +C. So we determined all points, all lines and their incidence:
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Definition 1.3.6. Let E = (P ,L,R) be a projective plane.

(a) An automorphism of E is a bijection α ∶ P ∪L→ P ∪L such that

(i) If P is a point, then α(P) is point.

(ii) If l is a line, then α(l) is a line.

(iii) Let P be a point and l a line. Then P is incident to l if and only if α(P) is incident to α(l).

(b) Aut(E) is the set of automorphisms of E together with the binary operation defined by compo-
sition.

Note that an automorphism α of E is uniquely determined by its effect on the points. Namely, if
l = PQ is a line, then α(l) is incident with α(P) and α(Q). So α(l) = α(P)α(Q).

If α, β ∈ Aut(E), then it is easy to see that also α ○ β and α−1 are also automorphism of E .
Moreover, idP∪L ∈ Aut(E) and composition of function is associative. Hence (Aut(E), ○) is a
group.
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Lemma 1.3.7. Let E be a projective plane of order two and (A,B,C) and (Ã, B̃, C̃) be triples of
non-collinear points. Then there exists a unique automorphism α of E with

α(A) = Ã, α(B) = B̃ and α(C) = C̃

Proof. It is readily verified that the unique automorphism α ∶ P ∪L→ P ∩L is given by

A→ Ã B→ B̃ C → C̃ A + B→ Ã + B̃ B +C → B̃ + C̃

A +C → Ã + C̃ D→ D̃ AB→ ÃB̃ BC → B̃C̃

AC → ÃC̃ AD→ ÃD̃ BD→ B̃D̃ CD→ C̃D̃ d → d̃

.

Here D is the point not incident with any of lines AB,AC,BC. d is the line not incident with any of
the points A,B and C. D̃ and d̃ are defined similarly (replacing each symbol X by X̃.) �

Corollary 1.3.8. Let E be a projective plane of order two. Then ∣Aut(E)∣ = 168.

Proof. Fix a triple (A,B,C) of non-collinear points. 1.3.7 show that there exists a bijection between
∣Aut(E) and the set of triples (Ã, B̃, C̃) of non-collinear points.

Now Ã can be any one of the seven points, B̃ is any of the six points different from Ã, and C̃ is
any of the four points not incident to ÃB̃. So there are 7 ⋅ 6 ⋅ 4 = 168 triples of non-collinear points.
Hence

∣Aut(E)∣ = 7 ⋅ 6 ⋅ 4 = 168.

�

1.3.9 (The group associated to the projective plane of order 2). Let E = (P ,L,R) be a projective
plane of order 2. We will construct a group of order 8 associated to E . Let G = {0} ∪P , where 0 is
an arbitrary element not in P . Define a binary operation + on G as follows:

● 0 + g = g = g + 0 if g ∈ G.

● P + P = e if P is a point

● P + Q is the third point on PQ if P and Q are distinct points.

Then G is an abelian group. Indeed, 0 is the identity, each elements is its own inverse and the
operation is clearly commutative. Checking that the operation is associative takes a little bit of
effort: Let P,Q,R ∈ G.

If one of P,Q,R is equal to 0, then P+ (Q+R) and (P+Q)+R both are equal to the sum of the
other two.

So suppose that P,Q and R are points. If two of the points are equal, we will show that both
(P + Q) + R and P + (Q + R) are equal to third point. So let S and T be points. Then

T + (S + S ) = (S + S ) + T = 0 + T = T

Also
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S + (S + T) = S + (T + S ) = (T + S ) + S = (S + T) + S

If S = T , this is equal to S and so to T as required. So suppose S ≠ T . Note (S +T)T = S T and
T is the point on S T distinct from S and S + T . Thus again (S + T) + S = T .

It remains to consider the case where P, Q and R are three distinct points.
If P,Q,R are collinear, then P +Q = R and so (P +Q) + R = R + R = 0. Similarly P + (Q + R) =

P + P = 0.
Suppose that P,Q,R are non-collinear. Then (P + Q) + R and P + (Q + R) both are equal to the

unique point not incident with any of the lines PQ,PR and QR.

1.4 Subgroups, cosets and counting

Definition 1.4.1. Let (G,∗) and (H, ⋅) be groups. Then (H, ⋅) is called a subgroup of (G,∗) pro-
vided that:

(i) H ⊆ G.

(ii) a ∗ b = a ⋅ b for all a,b ∈ H.

Note that, if (H, ⋅) is a subgroup of (G,∗), then also (H,∗) is a subgroup of (G,∗).

Lemma 1.4.2. Let (G,∗) be a group and (H, ⋅) a subgroup of (G,∗). Then

(a) 1H = 1G where 1H is the identity of H with respect to ⋅ and 1G is the identity of G with respect
to ∗. In particular, 1G ∈ H.

(b) a ∗ b ∈ H for all a,b ∈ H.

(c) Let a ∈ H. Then the inverse of a in H with respect to ⋅ is the same as the inverse of a in G with
respect to ∗. In particular, a−1 ∈ H.

Proof. (a)
1H ∗ 1H = 1H ⋅ 1H = 1H = 1H ∗ 1G

Multiplying with the inverse of 1H in G from the left gives that 1H = 1G.
(b) Let a,b ∈ H. Then by definition of a subgroup a ∗ b = a ⋅ b. Since ∗ is a binary operation of

H, a ⋅ b ∈ G and a ∗ b ∈ H.
(c) Let b be the inverse of a in H with respect to ⋅ and c the inverse of a in G with respect to ∗.

Then

a ∗ b = a ⋅ b = 1H = 1G = a ∗ c

Multiplying with the inverse of a in G from the left gives b = c. �

Lemma 1.4.3. Let (G,∗) be a group and H ⊆ G. Then (H,∗) is a subgroup of (G,∗) if and only if
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(i) 1G ∈ H;

(ii) H is closed under multiplication, that is for all a,b ∈ H, ab ∈ H; and

(iii) H is closed under inverses, that is for all a ∈ H, a−1 ∈ H.

Proof. Suppose first that (i), (ii) and (iii) hold. We will first verify that (H,∗) is a group.
By (ii), ∗ is a binary operation on H. Since ∗ is associative on G, it associative on H. Since

1G ∈ H and 1G is an identity for ∗ on G, its also an identity for ∗ on H.
Let h ∈ H. Then by (iii), h−1 ∈ H and so h−1 is an inverse for h with respect to ∗ in H.
So (H,∗) is a group. Since H ⊆ G and the same operation is used for H and G, conditions (i)

and (ii) of a subgroup are fulfilled. So indeed, (H,∗) is a subgroup of (G,∗).
Suppose now that (H,∗) is a subgroup of (G,∗). Then 1.4.2 shows that (i), (ii) and (iii) hold. �

Let (G,∗) be a group and (H, ⋅) a subgroup of G. Slightly abusing notation we will often just
say that H is a subgroup of G. We also write H ≤ G if H is a subgroup of G.

Lemma 1.4.4. Let G be a group and H a subset of G. Define the relation ∼H on G by

a ∼H b if and only if a−1b ∈ H

Then

(a) e ∈ H if and only ∼H is reflexive.

(b) H is closed under inverses if and only if ∼H is symmetric.

(c) H is closed under multiplication if and only if ∼H is transitive.

In particular, H is a subgroup of G if and only ∼H is an equivalence relation.

Proof. (a) Suppose that e ∈ H. Let a ∈ G. Then a−1a = e ∈ H. So a ∼H a and ∼ is reflexive.
Suppose ∼H is reflexive. Then e ∼H e and so e = e−1e ∈ H.
(b) Suppose H is closed under inverses. Let a,b ∈ G with a ∼H b. Then a−1b ∈ H and so also

b−1a = (a−1b)−1 ∈ H. Thus b ∼H a. Hence ∼H is symmetric.
Suppose that ∼H is symmetric. Let h ∈ H. Then e−1h = h ∈ H and so e ∼H h. Since ∼ H is

symmetric, h ∼H e and so h−1 = h−1e ∈ H.
(c) Suppose H is closed under multiplication. Let a,b, c ∈ G with a ∼H b and b ∼H c. Then

a−1b ∈ H and b−1c ∈ H and so, since H is closed under multiplication,

a−1c = (a−1b)(b−1c) ∈ H

Thus a ∼H c and ∼H is transitive.
Suppose ∼ H is transitive. Let a,b ∈ H. Then (a−1)−1e = ae = a ∈ H and e−1b = b ∈ H. So

a−1 ∼H e and e ∼H b. Since ∼H is transitive, this gives a−1 ∼H b. Thus ab = (a−1)−1b ∈ H and H is
closed under multiplication �
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Definition 1.4.5. Let I be a set and ∼ a relation on I.
For a ∈ I put

[a]∼ ∶= {b ∈ I ∣ a ∼ b

[a]∼ is called the class of ∼ associated to a.

I/∼= {[a]∼ ∣ a ∈ I}

is set of classes of I.
If ∼ is a an equivalence relation, the classes of ∼ is also called the equivalence class of ∼

containing a.
We will often write [a] for [a]∼.

Lemma 1.4.6. Let ∼ be a equivalence relation on the set I.

(a) Each i ∈ i lies in a unique equivalence class of ∼, namely [i]∼.

(b) ∣i∣ = ∑c∈i/∼ ∣c∣.

Proof. (a) Let a ∈ i. since ∼ is reflexive, a ∼ a. So a ∈ [a] and a is contained in an equivalence
class of i. Now let c be any equivalence class of ∼ with a ∈ C. We need to show that C = [a]. By
definition of an equivalence class, C = [b] for some b ∈ I. Since a ∈ C = [b] we have b ∼ a

Let c ∈ [a]. Then a ∼ c. Since ∼ is transitive, b ∼ c and so c ∈ [b]. Hence [a] ⊆ [b].
We proved that if a ∈ [b] then [a] ⊆ [b]. Since b ∼ a and ∼ is symmetric we have a ∼ b and

b ∈ [a]. Thus [b] ⊆ [a].
Hence [b] = [a] and (a) holds.
(b) follows immediately from (a). �

Definition 1.4.7. Let G be a magma, g ∈ G and A,B ⊆ G.

(a) gA = {ga ∣ a ∣ a ∈ A and Ag = {ag ∣ a ∈ A}.

(b) B/A = {bA ∣ b ∈ B}.

(c) Suppose G is a group and A a subgroup of G. Then

(a) gA is called the (left) coset of A in G containing g.

(b) Ag is called a right coset of A in G.

(c) ∣G/A∣ is called the index of A in G.

Proposition 1.4.8. Let H be a subgroup of G and g ∈ G.

(a) gH is the equivalence class of ∼H containing g.

(b) g lies in a unique coset of H in G, namely in gH.

(c) ∣gH∣ = ∣H∣.
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Proof. (a) We have

a ∈ gH ⇐⇒ a = gh for some h ∈ H ⇐⇒ g−1a = h for some h ∈ H

⇐⇒ g−1a ∈ H ⇐⇒ g ∼H a ⇐⇒ a ∈ [g]

So gH = [g].
(b) This follows from (a) and 1.4.6.
(c) Define f ∶ H → gH,h → gh. Then by definition of gH, f is onto. If gh = gh′ for some h,h′,

then h = h′. Hence f is 1-1. This gives (c). �

Theorem 1.4.9 (Lagrange). Let H be a subgroup of G. Then ∣G∣ = ∣G/H∣ ⋅ ∣H∣. In particular if G is
finite, the order of H divides the order of G.

Proof.
∣G∣

1.4.6(b)
= ∑

C∈G/∼H

∣C∣
1.4.8(c)
= ∑

C∈G/H
∣C∣

1.4.8(c)
= ∑

C∈G/H
∣H∣ = ∣G/H∣ ⋅ ∣H∣

�

1.4.10 (Cycle Notation). We will often use cycle notation to denoted elements of Sym(n):
For 1 ≤ j ≤ l and 1 ≤ i ≤ k j let 1 ≤ ai, j ≤ n such that for each 1 ≤ m ≤ n there exists a unique

1 ≤ j ≤ l and 1 ≤ i ≤ kl with m = ai, j. Then

(a1,1,a2,1,a3,1, . . .ak1,1)(a1,2,a2,2 . . .ak2,2) . . . (a1,l,a2,l . . .akl,l)

denotes the element π ∈ Sym(n) with

π(ai, j) = ai+1, j and π(ak j, j) = a1, j

for all 1 ≤ i < k j and 1 ≤ j ≤ l.
(a1, j,a2, j, . . . ,ak j, j) is called a cycle of length k j of π. If n is understood, we will not bother to

list the cycles of length 1. Also we will often drop the separating comas in the cycle. For example
in Sym(9),

(2975)(13)(48)

denotes the permutation with

1→ 3,2→ 9,3→ 1,4→ 8,5→ 2,6→ 6,7→ 5,8→ 4,9→ 7

Example 1.4.11. Let G = Sym(3) and H = {(1), (12)}. Then

(1) ○ H = H = {(1), (12)} = (12) ○ H

(123) ○ H = {(123) ○ (1), (123) ○ (12)} = {(123), (13)} = (13) ○ H

(132) ○ H = {((132) ○ (1), (132) ○ (12)} = {(132), (23)} = (23) ○ H
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Hence

∣G∣ = 6, ∣G/H∣ = 3 and ∣H∣ = 2

So by Lagrange’s

6 = 3 ⋅ 2

Definition 1.4.12. (a) Let I be set, then P(I) denotes the power set of G, that is the set of subsets
of I.

(b) Let G be a magma. For H,K ⊆ G put

HK = {hk ∣ h ∈ H, k ∈ K}.

(c) Let G be a group. For H ⊆ G define H−1 = {h−1 ∣ h ∈ H}.

Lemma 1.4.13. Let G be a magma.

(a) P(G) is magma under the operation (A,B)→ AB.

(b) If G is associative, so is P(G).

(c) If e is an identity for G, then {e} is an identity for P(G).

(d) If G is a monoid, so is P(G).

(e) If G is a group and A,B ⊆ G, then (AB)−1 = B−1A−1.

Proof. Let A,B,C ⊆ G.
(a) By definition, AB is a subset if G and so the P(G) is closed under the operation (A,B) →

(A,B).
(b) We have

(AB)C = {(ab)c ∣ a ∈ A,b ∈ B, c ∈ C} = {a(bc) ∣ a ∈ A,b ∈ B, c ∈ C} = A(BC)

(c) Obvious.
(d) follows from (a), (b), (c)
(e) (AB)−1 = {(ab)−1 ∣ a ∈ A,b ∈ B} = {b−1a−1 ∣ b ∈ B,a ∈ A} = B−1A−1. �

Lemma 1.4.14. Let G be a group, H a subset of G and K a subgroup of G.

(a) (gk)K = gK for all g ∈ G, k ∈ K.

(b) KK = K and K−1 = K.

(c) H/K = HK/K
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(d) The map α ∶ H/H∩K → H/K,h(H∩K)→ hK is a well defined bijection. Moreover, α(C) = CK
for all C ∈ H/H ∩ K.

(e) ∣HK∣ = ∣HK/K∣ ⋅ ∣K∣ = ∣H/H ∩ K∣ ⋅ ∣K∣.

(f) If G is finite and H is a subgroup of K, then ∣HK∣ =
∣H∣∣K∣

∣H∩K∣

Proof. (a) Since K is closed under multiplication kK ⊆ K. Let l ∈ K. Then l = k(k−1l) ∈ kK and so
K ⊆ kK. Thus K = kK and so also (gk)K = g(kK) = gK.

(b) By (a), kK = K for all k ∈ K and so KK = K. Since K is closed under inverse K−1 ⊆ K. Since
k = (k−1)−1 and k−1 ∈ K, K ⊆ K−1. Hence K = K−1.

(c) Since e ∈ K, H ⊂ HK and so H/K ⊆ HK/K. Let h ∈ H and k ∈ K. Then by (d) (hk)K = hK ∈

H/K and so HK/K ⊆ H/K.
(d) Let C ∈ H/H ∩ K. Then C = h(H ∩ K) for some h ∈ H. We compute

CK = (h(H ∩ K))K = h((H ∩ K)K) = hK

so α(C) = CK and the definition of α is independent of the choice of h. Clearly α is onto.
Finally if hK = jK for some h, j ∈ H, then h−1 jK = K, h−1 j ∈ K and so h−1 j ∈ H ∩ K and

h(H ∩ K) = j(H ∩ K). Thus α is 1-1.
(e) Note that HK = ⋃h∈H hK. Hence

∣HK∣ = ∑
C∈H/K

∣C∣ = ∣H/K∣ ⋅ ∣K∣
(d)
= ∣H/H ∩ K∣ ⋅ ∣K∣.

(f) By Lagrange’s ∣H∣ = ∣H/H ∩ K∣ ⋅ ∣H ∩ K∣. So if G is finite, ∣H/H ∩ K∣ =
∣H∣

∣H∩K∣
and thus (f)

follows from (e). �

1.5 Equivalence Relations

Definition 1.5.1. Let ∼ be a relation on the set J and let f ∶ I → J be a function. Then ∼ f is the
relation on I defined by

i ∼ f k ⇐⇒ f i ∼ f k

for all i, k ∈ I.

Lemma 1.5.2. Let ∼ be a relation on the set J and let f ∶ I → J be a function.

(a) If ∼ is reflexive, so is ∼ f .

(b) If ∼ is symmetric, so is ∼ f .

(c) If ∼ is transitive, so is ∼ f .

(d) If ∼ is equivalence relation so is ∼ f .
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Proof. (c) Suppose ∼ is transitive and le a,b, c ∈ I with a ∼ f b and b ∼ f c. Then f a ∼ f b and
f b ∼ f a. Since ∼ is transitive, f a ∼ f c and so a ∼ f c. Thus ∼ f is transitive.

The proofs for (a) and (b) are similar and somewhat easier. (d) follows from (a)-(c). �

Lemma 1.5.3. Let I be a set and ∼ a relation on I. Define

≈=⋂{≋ ∣ ≋ an equivalence relation on I with ∼⊆≋}

Then

(a) ≈ is an equivalence relation on I, called the equivalence relation generated by ∼.

(b) Let a,b ∈ I. Then a ≈ b if and only if there exists n ∈ N and a sequence of elements (x0, x1, . . . xn)

in I such that x0 = a, xn = b and for each 1 ≤ i ≤ n either xi−1 ∼ xi or xi ∼ xi−1.

Proof. Straightforward. �

Definition 1.5.4. Let f ∶ I → J be a function, ∼ a relation on I and ≋ a relation J.
(∼,≋) is called f -invariant if for all a,b ∈ I:

a ∼ b Ô⇒ f (a) ≋ f (b)

Lemma 1.5.5. Let ∼ a relation on the set I and ≈ the equivalence relation generated by ∼. Let ≋ be
a equivalence relation on the set J and f ∶ I → J a function.

(a) If (∼,≋) is f -invariant, then also (≈,≋) is f -invariant.

(b) If f (a) = f (b) for all a,b ∈ I with a ∼ b, then f (a) = f (b) for all a,b ∈ I with a ≈ b.

Proof. (a) Let a,b ∈ I with a ∼ b. Then f a ≋ f b and so a ≋ f b. Thus ∼⊆≋ f . By 1.5.2 ≋ f is an
equivalence relation on I and so by definition of ≈, ≈⊆≋ f . Thus a ≈ b implies a ≋ f b, that is f a ≋ f b.

(b) Just apply (a) with ≋ the equality relation. �

Lemma 1.5.6. Let f ∶ I → J be a function, ∼ a relation on I and ≋ a relation on J.

(a) (∼,≋) is f -invariant if and only ∼⊆≋ f .

(b) (≋ f ,≋) is f -invariant.

(c) (∼,=) is f -invariant if and only if ∼⊆= f .

(d) (= f ,=) is f -invariant.

Proof. (a) (∼,≋) is f invariant if and only if

a ∼ b Ô⇒ f (a) ≋ f (b)

and so if and only if

a ∼ b Ô⇒ a ≋ f b

(b) follows from (a).
(c) and (d): Just apply (a) and (b) with ≋ the equality relation. �
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Lemma 1.5.7. Let f ∶ I → J be a function, ∼ a relation on f and ≋ a relation on J. Suppose (∼,≋)

is f -invariant. Then

(a) f ([a]∼) ⊆ [ f a]≋ for all a ∈ I.

(b) Suppose I ⊆ Dom(∼) and ≋ is an equivalence relation on J. Then

f ∶ I/∼ → J/≋, [a]∼ → [ f a]≋

is a well-defined function.

Proof. (a) Let x ∈ f ([a]∼). Then x = f b for some b ∈ I with a ∼ b. Since a ∼ b we have f a ≋ f b
and so x = f b ∈ [ f a]≋.

(b) Let a,b ∈ I with [a]∼ = [b]∼. Since I ⊆ Dom(∼), there exists c ∈ I with a ∼ c. Then
c ∈ [a]∼ = [b]∼ and so b ∼ c. Hence f a ≋ f c and f b ≋ f c. Since ≋ is an equivalence relation, this
gives f a ≋ f b and [ f a]≋ = [ f b]≋. �

Lemma 1.5.8 (Isomorphism Theorem for Sets). Let f ∶ I → J be a function. Then the function

f ∶ I/= f → Im f , [a]= f → f a

is a well-defined bijection.

Proof. Let a,b ∈ I. Then

f (a) = f (b) ⇐⇒ a = f b ⇐⇒ [a]= f = [b]= f

and so f is well-defined and 1-1. f is clearly onto and so the lemma holds. �

1.6 Normal subgroups and the isomorphism theorem

Example 1.6.1. Let G = Sym(3) and H = {(1), (12)}. Then

(23) ○ H = {(23), (132)} and H ○ (23) = {(23), (123)}

So (23) ○ H ≠ H ○ (23).

Note that gH = Hg if and only if gHg−1 = H. We therefore introduce the following notation:

Definition 1.6.2. Let G be a group, a,b ∈ G and D ⊆ G.

(a) ab = aba−1. ab is called the conjugate of b under a.

(b) aD = aDa−1 = {ada−1 ∣ d ∈ D} = {ad ∣ d ∈ D}.

(c) The function ia ∶ G → G,g → ag is called the inner automorphism of G induced by a. ia is also
called conjugation by a
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Lemma 1.6.3. Let N ≤ G. Then the following statements are equivalent:

(a) gN = N for all g ∈ G.

(b) gN = Ng for all g ∈ G.

(c) Every left coset is a right coset.

(d) Every left coset is contained in a right coset.

(e) gN ⊆ N for all g ∈ G.

(f) gn ∈ N for all g ∈ G, n ∈ N.

Proof. Suppose (a) holds. Then gNg−1 = N for all g ∈ G. Multiplying with g from the right we get
gN = Ng.

Suppose (b) holds. Then the left cosets gN equals the right coset Ng. so (c) holds.
Clearly (c) implies (d)
Suppose that (d) holds. Let g ∈ G. Then gN ⊆ Nh for some h ∈ G. Since g ∈ gN we conclude

g ∈ Nh. By 1.4.8(b), Ng is the unique right coset of N containing g and so and Ng = Nh Thus
gN ⊆ Ng. Multiplying with g−1 from the right we get gNg−1 ⊆ N. Thus (e) holds.

Clearly (e) implies (f).
Finally suppose that (f) holds. Then gNg−1 ⊆ N for all g ∈ G. This statement applied to g−1

in place of g gives g−1Ng ⊆ N. Multiplying with g from the left and g−1 from the right we obtain
N ⊆ gNg−1. Hence N ⊆ gN and gN ⊆ N. So N = gN and (a) holds. �

Definition 1.6.4. Let G be a group and N ≤ G. We say that N is normal in G and write N ⊴ G if N
fulfills one (and so all) of the equivalent conditions in 1.6.3.

Example 1.6.5. 1. From 1.6.1 we have (2,3)Sym(2) ≠ Sym(2)(2,3) and so Sym(2) is not a
normal subgroup of Sym(3).

2. Let H = {(1), (123), (132)}. Then H is a subgroup of Sym(3). By Lagrange’s

∣Sym(3)/H∣ =
∣Sym(3)∣

∣H∣
=

6
3
= 2

Hence H has exactly two cosets in H. One of them is

H = {(1), (123), (132)}

Since each element of Sym(3) lies in a unique coset of H, the other coset must be

Sym(3) ∖ H = {(12), (13), (23)}

The same argument shows that H and Sym(3) ∖ H are the only right cosets of Sym(3). Thus
every coset is a right coset and so H is normal in Sym(3).
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3. Let n be a positive integer, let GLn(R) the set of invertible n×n-matrices with coefficients in R and
let SLn(R) the set of n × n-matrices with coefficients in R and determinant 1. Note that GLn(R)

is a group under matrix multiplication and SLn(R) is a subgroup of GLn(R). GLn(R) is called a
general linear group and SLn(R) a special linear group. Let A ∈ GLn(R) and B ∈ SLn(R). Then

det(ABA−1) = det(A)det(B)det(A−1) = det(A)det(B)det(A)−1 = det B = 1

and so ABA−1 ∈ SLn(R). Thus SLn(R) is a normal subgroup of GLn(R).

Lemma 1.6.6. Let G and H be monoid and φ ∶ G → H a magma-homomorphism. Then the following
are equivalent.

(a) φ(1) = 1, that is φ is a monoid-homomorphism.

(b) φ(1) is (left,right, ) invertible

(c) There exists g in G such that φ(g) is (left,right, ) invertible.

Proof. (a) Ô⇒ (b): Suppose that φ(1) = 1. Then φ(1)φ(1) = φ(1 ⋅ 1) = φ(1) = 1 and φ(1) is
invertible.

(b)Ô⇒ (c): Obvious.
(c) Ô⇒ (a): Suppose g ∈ G such that φ(g) is left-invertible in H and choose h ∈ H with

hφ(g) = 1. Then

φ(1) = 1φ(1) = (hφ(g))φ(1) = h(φ(g)φ(1)) = hφ(g) = 1

�

Lemma 1.6.7. Let φ ∶ G → H be a monoid homomorphism. Suppose g ∈ G and g′ is (left,right, )
inverse of g in G. Then φ(g′) is a (left,right, ) inverse of φ(g) in G.

Proof. By symmetry it suffices to tread the case where g′ is left inverse of g. Then

φ(g′)φ(g) = φ(g′g) = φ(1) = 1

�

We will now start to establish a connection between normal subgroups and homomorphism.

Lemma 1.6.8. Let φ ∶ G → H be a group homomorphism.

(a) φ(1G) = 1H , that is φ is a monoid-homomorphism.

(b) φ(a−1) = φ(a)−1.

(c) φ(ga) = φ(g)φ(a).

(d) If A ≤ G then φ(A) ≤ H.
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(e) If B ≤ H then φ−1(B) ≤ G.

(f) Put kerφ ∶= {g ∈ G ∣ φ(g) = 1H}. Then kerφ is a normal subgroup of G.

(g) If N ⊴ G, and φ is onto, φ(N) ⊴ H.

(h) If M ⊴ H, φ−1(M) ⊴ G.

Proof. Except for (c), (f) and (??) this is Exercise 2 on Homework 2.

(c) φ(ga) = φ(gag−1) = φ(g)φ(a)φ(g−1)
(b)
= φ(g)φ(a)φ(g)−1 = φ(g)φ(a).

(f) This follows from (h) applied to the normal subgroup M = {1H} of H.
�

Lemma 1.6.9. Let φ ∶ G → H be a homomorphism of groups.

(a) Let a,b ∈ G. Then φ(a) = φ(b) if and only if a kerφ = b kerφ.

(b) The relations =φ on G is the same as the relation ∼kerφ.

(c) φ is 1-1 if and only if kerφ = {1G}.

Proof. Let a,b ∈ G. Then

a =φ b

⇐⇒ φ(a) = φ(b)

⇐⇒ φ(a)−1φ(b) = 1H

⇐⇒ φ(a−1b) = 1H

⇐⇒ a−1b ∈ kerφ

⇐⇒ a ∼kerφ b

⇐⇒ g kerφ = k kerφ

Thus (a) and (b) hold.
(c) By (a) φ is 1-1 if and only if {a} = a{kerφ} for all a ∈ A and so if and only f ker phi =

{1G}. �

Lemma 1.6.10. Let G be a group and N ⊴ G. Let T,S ∈ G/N and a,b ∈ G with T = aN and S = bN.

(a) TS ∈ G/N, namely (aN)(bN) = (ab)N.

(b) T−1 ∈ G/N, namely (aN)−1 = a−1N.

(c) T N = T = NT.

(d) TT−1 = N = T−1T.
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(e) G/N is a group under the binary operation G/N ×G/N → G/N, (T,S )→ TS .

(f) The map πN ∶ G → G/N, g→ gN is an onto homomorphism with kernel N.

Proof. (a) (aN)(bN) = a(Nb)N = a(bN)N = abNN = abN.
(b) (aN)−1 = N−1a−1 = Na−1 = a−1N.
(c) We have N = eN and so by (a) T N = (aN)(eN) = (ae)N = aN = T . Similarly NT = T .
(d) By (a) and (b) TT−1 = (aN)(a−1)N = (aa−1)N = eN = N. Similarly T−1T = N.
(f) By (a) the map G/N ×G/N → G/N, (T,S )→ TS is a well-defined binary operation on G/N.

By 1.4.13 multiplication of subsets is associative. By (c) N is an identity element and by (f), T−1 is
an inverse of T . Thus (e) holds.

(f) We have

πN(ab) = abN = (aN)(bN) = πN(a)πN(b)

So πN is a homomorphism. Clearly πN is onto. We have

kerπN = {a ∈ G ∣ πN(a) = 1G/N} = {a ∈ G ∣ aN = N} = {a ∈ G ∣ a ∈ N} = N

�

Theorem 1.6.11 (The Isomorphism Theorem). Let φ ∶ G → H be a homomorphism of groups. The
map

φ ∶ G/kerφ→ φ(H), g kerφ→ φ(g)

is a well-defined isomorphism. Moreover, φ = φ ○ πkerφ.

Proof. Since a kerφ = b kerφ if and only of a =φ b, 1.5.8 shows that φ is a well-defined bijection.
We have

φ(((g kerφ)(k kerφ)) = φ(gk kerφ) = φ(gk) = φ(g)φ(k) = φ(g kerφ)φ(k kerφ)

and so φ is a homomorphism.
Also

(φ ○ πkerφ)(g) = φ(πkerφ(g)) = φ(g kerφ) = φ(a)

and so φ = φ ○ πkerφ �

The Isomomorphism Theorem can be summarized in the following diagram:
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Example 1.6.12. Define det ∶ GLn(R)→ (R∖ {0}, ⋅),A→ det(A). Since det(AB) = det(A)det(B),
det is a homomorphism. It is easy to see that det is onto. Also ker det = SLn(R). So 1.6.8(f) gives
a new proof that SLn(R) is a normal subgroup of GLn(R). Moreover the Isomorphism Theorem
implies

GLn(R)/SLn(R) ≅ (R ∖ {0}, ⋅)

1.7 Group Actions

Definition 1.7.1. Let (G, ⋅) be a magma and S a set. Let ∗ be a function such that G×S is contained
in the domain of ∗. For g ∈ G and s ∈ S , write g∗ s for ∗(g, s). ∗ is called an magma action of G on
S if

(A0) g ∗ s ∈ S for all g ∈ G, s ∈ S .

(A1) (a ⋅ b) ∗ s = a ∗ (b ∗ s) for all a,b ∈ G, s ∈ S .

A G-set is a set S together with a magma-action of G on S .

Definition 1.7.2. Let (G, ⋅) be a monoid and S a set. A magma action ∗ of (G, ⋅) on S is called a
monoid-action if

(A2) 1G ∗ s = s for all s ∈ S .

In the case that (G, ⋅) is group, a monoid-action of (G, cdot) is also called a group-action.

We will often just write as for a ∗ s. The three axioms of a monoid action then read as ∈ S ,
1s = s and (ab)s = a(bs).

Example 1.7.3. Let (G, ⋅) be a group,
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1. Note the similarity between the definition of a group action and the definition of a group. In
particular, we see that the operation ⋅ of group G defines an action of G on G, called the action
by left multiplication. Indeed, since ⋅ is a closed operation (A0)- holds. Since 1G is an identity,
(A2) holds and since ⋅ is associative (A1) holds.

2. The function
⋅op ∶ G ×G → G, (a, s)→ s ⋅ a

is not an action ( unless G is abelian). Indeed

(a ⋅ b) ⋅op s = s ⋅ (a ⋅ b) = (s ⋅ a) ⋅ b = b ⋅op (a ⋅op s)

But observe that ⋅op is an action of Gop on G.

To obtain an action of G on G define

⋅r ∶ G ×G, (a, s)→ sa−1.

Then (ab) ⋅r s = s(ab)−1 = sb−1a−1 = a ⋅r (b ⋅r s) and ⋅r is indeed an action. This action is called
the action of G on G by right multiplication.

3. G acts on G via conjugation:

c ∶ G ×G → G, (a,g)→ ag

Indeed 1g = g and (ab)g =
a
(bg).

4. Let ∗ be an action of G on the set I and let H ≤ G. Then ∗ is also an action of H on I. In particular,
we obtain actions of H on G by left multiplication, right multiplication and by conjugation.

5. Let I be a set. Then Sym(I) acts on I via

Sym(I) × I → I, (π, i)→ π(i)

Indeed, idI(i) = i for all i in I and α(β(i)) = (αβ)(i) for all α, β ∈ Sym(I), i ∈ I.

6. Let G be a group. Then Aut(G) acts on G via

Aut(G) ×G → G, (α,g)→ α(g)

Indeed by (3), Sym(G) acts on G and so by (4) also the subgroup Aut(G) of Sym(G) acts on
G.

Notation 1.7.4. Let ∗ and ◇ be actions of the magma G on the set S . We will write ∗ ≡ ◇ if g∗s = g◇s
for all g and s ∈ S .
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Note that ∗ ≡ ◇ if and only if the restrictions of ∗ and ◇ to G × S ,S are equal. Often we will be
sloppy and consider two action with ∗ ≡ ◇ to be equal.

We will now show that an action of magma G on S can also by thought of as an homomorphism
from G to Fun(S ,S ).

Definition 1.7.5. Let A,B be sets.

(a) Fun(A) is the class of function with domain A. Fun(A,B) is the set of function from A to B.

(b) Let f ∈ Fun(A × B). For a ∈ A define fa ∈ Fun(B) by

fa(b) = f (a,b)

for all b ∈ B. Define fA ∶ A→ Fun(B),a→ fa. fA is called the function on A associated to f .

Then we view f as binary operation and use the notion a∗b for f (a,b), we will use the notation
a∗ for fa, so a∗(b) = a ∗ b.

(c) Let g ∶ A→ Fun(B) a function. Define gA×B ∈ Fun(A × B) by

gA×B(a,b)→ g(a)(b)

for all (a,b) ∈ A × B. gA×B is called the function on A × B associated to g.

Lemma 1.7.6. Let A,B be sets.

(a) Let f ∈ Fun(A × B), Then ( fA)A×B = f .

(b) Let g ∶ A→ Fun(B) be a function. Then (gA×B)A = f .

Proof. Let a ∈ A and b ∈ B.
(a)

( fA)A×B(a,b) = fA(a)(b) = fa(b) = f (a,b)

and so ( fA)A×B = f .
(b)

(gA×B)A(a)(b) = (gA×B)a(b) = gA×B(a,b) = g(a)(b)

and so (gA×B)A = g. �

Lemma 1.7.7. Let G be a magma, S a set, ∗ ∈ Fun(G × S ) and ∗G ∶ G → Fun(S ) the function on
G associated to ∗.

(a) ∗ is an magma-action of G on S if and only if Φ is a magma-homomorphism from G to
Fun(S ,S ).

(b) Suppose G is monoid. Then ∗ is a monoid-action if and only if Φ is a monoid-homomorphism
from G to Fun(S ,S ).
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(c) Suppose G is a group. Then ∗ is a group-action if and only if Φ is a homomorphism from G to
Sym(S ).

Proof. Let g,h ∈ G and s ∈ S .
(a) Since g∗(s) = g ∗ s, (A0) holds if and only if g∗ is a function from S to S for all g ∈ G and

if and only if ∗G is a function from G to Fun(S ,S ).
So we may assume that:

1○. (A0) holds and ∗G is a function from G to Fun(S ,S ).

Since

(g∗ ○ h∗)(s) = g ∗ (h ∗ s)and (gh)∗(s) = (gh) ∗ s

we see that (A1) holds if and only if ∗G is a homomorphism from G to Fun(S ,S ). Thus (a)
holds.

(b) Suppose G is a monoid. Since 1∗(s) = 1∗ s, (A2) holds if and only if ∗G(1) = idS . Together
with (a) this gives (b).

(c) Suppose that now that G is a group. Recall that a group-action for G is the same as monoid
action for G.

Assume first that ∗ is an monoid-action of G on S . Then by (b) ∗G is a monoid- homomorphism
from G to Fun(S ,S ). Since each element in G is invertible, 1.6.7 shows that ∗G(g) is invertible for
all g ∈ G. Thus ∗G(g) ∈ Sym(S ) and ∗G is homomorphism from G to Sym(S ).

Assume next that ∗G is a homomorphism from G → Sym(G). Then by 1.6.8(a) ∗G is a monoid-
homomorphism and so (b) ∗ is an monoid-action of G on S .

�

Example 1.7.8. 1. Let (G, ⋅) be a group. For a ∈ G, define g⋅ ∶ G → G,g → ag. Then by 1.7.3(1)
and 1.7.7 the map

Φ ∶ G → Sym(G), g→ g⋅

is a homomorphism. If Φ(a) = idG, then a = a1 = Φ(a)(1) = idG(1) = 1 and so Φ is 1-1. Thus
G ≅ Φ(G). In particular, G is isomorphic to a subgroup of a symmetric group. This is known as
Cayley’s Theorem.

2. Let G be group. Recall that for g ∈ G, ig is the map

ig ∶ G → G,a→ ga

By 1.7.3(1) G acts G by conjugation, the corresponding homomorphism is

iG ∶ G → Sym(G),g→ ig

3. The homomorphism corresponding to the action of Sym(I) on I is idSym(I). Indeed ∗π(i) =

π ∗ i = π(i) and so ∗π = π for all π ∈ Sym(I).
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Definition 1.7.9. Let ∗ by an action of the group G on the set S , H ⊆ G,g ∈ G, s ∈ S and T ⊆ S .
Then

(a) Stab∗H(T) = {h ∈ H ∣ g ∗ t = t for all t ∈ T} and Stab∗H(s) = {h ∈ H ∣ h ∗ s = s}. Stab∗H(T) is
called the stabilizer of T in H.

(b) We g ∗ s = s we say that g fixes s or that s is a fixed-point of g. If h ∗ s = s for all h ∈ H we say
H fixes s or that s is a fixed-point H of G.

(c) Fix∗T(H) = {t ∈ T ∣ h ∗ t = t for all t ∈ T} and FixT(g)) = {t ∈ T ∣ g ∗ t = t}. So FixT(H) is the
set of fixed-points of H in T .

(d) g ∗ T = {g ∗ t ∣ t ∈ T}, H ∗ s = {h ∗ s ∣ h ∈ H}, H ∗ T = {h ∗ t ∣ h ∈ H, t ∈ T

(e) ∗ is called a faithful action of G on S if Stab∗G(S ) = {e}. In this case we also say that S is a
faithful G-set.

(f) T is called H-invariant with respect to ∗ if h ∗ T = T for all h ∈ H. T is called g-invariant if
g ∗ T = T.

(g) N∗
H(T) = {h ∈ H ∣ hT = T}. N∗

H(T) is called the normalizer of T in H with respect to ∗.

(h) H∗S = {h∗ ∣ h ∈ H}. Note that G∗S = Im∗G.

We will often just write StabH(S ) in place of Stab∗H(S ), but of course only if its clear from the
context what the underlying action ∗ is. We will also sometimes use HS or H∗ for H∗S .

Lemma 1.7.10. (a) StabG(S ) = ker∗G ⊴ G.

(b) G/StabG(S ) ≅ G∗S ≤ Sym(S ).

(c) S is a faithful G-set if and only if Φ∗ is 1-1. So if S is faithful, G is isomorphic to the subgroup
G∗S of Sym(S ).

(d) Let H ≤ G and T an H-invariant subset of S , ∗ is also an action of H on T .

(e) The map
∗P ∶ G ×P(S )→ P(S ), (g,T)→ g ∗ T

is an action of H on P(S ).

(f) Let T ⊆ S . Then StabG(T)∗S = StabG∗S (T).

(g) Let s ∈ S , then StabG(T)∗S = StabG∗S (T).



38 CHAPTER 1. GROUP THEORY

Proof. (a) Let g ∈ G, then

g ∈ StabG(S )

⇐⇒ gs = s for all g ∈ G

⇐⇒ g∗(s) = s for all g ∈ G

⇐⇒ g∗ = idS

⇐⇒ Φ∗(g) = idS

⇐⇒ g ∈ ker Φ∗

(b) Since G∗ = Im Φ∗, this follows from (a) and the First Isomorphism Theorem.
(c) - (e) are readily verified.
(f) Let g ∈ G and t ∈ T then g ∗ t = t if and only if g∗(t) = t. So (f) holds.
(g) follows from (f) applied with T = {s}. �

Lemma 1.7.11. Let ∗ be an action of the group G on the set S . Let H ⊆ G, T ⊆ S , g,h ∈ G and
s, t ∈ S .

(a) g ∗ s = g ∗ t if and only if s = t.

(b) h fixes t if and only if gh fixes g ∗ t.

(c) H fixes t if and only if gH fixes g ∗ t.

(d) StabG(g ∗ t) = gStabG(t).

(e) StabG(g ∗ T) = gStabG(T).

(f) FixS (
gH) = g ∗ FixS (H).

(g) FixS (
gh) = g ∗ FixS (h).

Proof. (a) This holds since by 1.7.7(c), g∗ is a bijection.
(b)

gh fixes gt

⇐⇒ (ghg−1) ∗ (g ∗ t) = g ∗ t

⇐⇒ ((ghg−1)g) ∗ t = g ∗ t

⇐⇒ (gh) ∗ t = g∗

⇐⇒ g ∗ (h ∗ t) = g ∗ t

⇐⇒ h ∗ t = t

⇐⇒ h fixes t

Since g∗ is bijection for each s ∈ S there exists a unique t ∈ S with s = g∗ t. Thus the remaining
statement now follow from (b). �

Lemma 1.7.12. Let G be a group acting on the set S . Let s ∈ S and T ⊆ S .

(a) StabG(T) is a subgroup of G.
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(b) StabG(s) is a subgroup of G.

(c) NG(T) is a subgroup of G.

Proof. (a) 1t = t for all t ∈ T and so 1 ∈ StabG(T). Let g,h ∈ StabG(T). Then gt = t and ht = t for
all t ∈ T . Thus

(gh)t (GA2
= g(ht) = gt = t

and so gh ∈ StabG(T).
From gt = t we get g−1(gt) = g−1t. So by (GA2), (g−1g)t = g−1t and et = g−1t. Thus by (GA1),

t = g−1t. Hence g−1 ∈ StabG(T). 1.4.3 now implies that StabG(T) is a subgroup of G.

Note that StabG(s) = StabG({s}). Thus (b) follows from (c).
(c) We have

N∗
G(T) = {g ∈ G ∣ gT = T} = Stab∗PG (T).

(Note that on the left hand side T is treated as a subset of the G-set S , and in the right hand side,
T is treated as an element of the G-set P(S ).) Thus (c) follows from (b). �

Example 1.7.13. Consider the action c of a group G on itself. be conjugation and let A ⊆ G. Let
g ∈ G. Then

g ∈ Stabc
G(A)

⇐⇒ g c a = a for all a ∈ A

⇐⇒ ga = a for all a ∈ A

⇐⇒ gag−1 = a for all a ∈ A

⇐⇒ ga = ag for all a ∈ A

Define

CG(A) ∶= {g ∈ G ∣ ga = ag for all a ∈ A}

Then we proved CG(A) = Stab∗(A) and so by 1.7.12(a), CG(A) ≤ G.
The center Z(G) if G is defined as

{g ∈ G ∣ ga = ga for all a ∈ A}

So

Z(G) = CG(G) = Stabc
G(G)

and so by 1.7.10(a)

Z(G) ⊴ G and G/Z(G) ≅ Gc ≤ Sym(G)
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Definition 1.7.14. Let ∗ ∶ G × S → S be a magma action.

(a) ∼∗ is the equivalence relation on S generated by {(s,gs) ∣ s ∈ S ,g ∈ G}.

(b) The equivalence classes of ∼∗ are called the orbits of G on S with respect to ∗.

(c) The set of orbits of G on S is denoted by S /∗G.

(d) We say that G acts transitively on S if G has exactly one orbit on S .

Lemma 1.7.15. Let ∗ be an magma-action of the non-empty magma G on the set S . Let s, t ∈ S .

(a) Suppose ∗ is a group-action. Then

s ∼∗ t ⇐⇒ gs = t for some g ∈ G

(b) Suppose G is abelian. Then

s ∼∗ t ⇐⇒ gs = ht for some g,h ∈ G

Proof. Le ∼ be the relation {(s,gs) ∣ s ∈ S ,g ∈ G} on G. By definition ∼∗ is the equivalence relation
generated by ∼.

(a) Suppose ∗ is a group action. We just need need to show that ∼ is an equivalence relation.
Since s = es, s ∼ s and ∼ is reflexive.
If t = as, then

a−1t = a−1(as) = (a−1a)s = es = s

Thus s ∼ t implies t ∼ s and ∼ is symmetric.
Finally if s = at and t = br then s = at = a(br) = (ab)r. Thus s ∼ t and t ∼ r implies s ∼ r and ∼

is reflexive.

(b) Define the relation ≈ on S by

s ≈ t if gs = ht for some g,h ∈ G

Suppose gs = ht for some g,h ∈ G. Since s ∼ gs and t ∼ ht = gs we conclude that s ∼∗ t and so
≈⊆∼∗. So we just need to show ≈ is an equivalence relation. Let s ∈ S . Since G is not-empty there
exists g ∈ G and so gs = gs and s ≈ s. ≈ is clearly symmetric. Suppose that r, s, t ∈ G with r ≈ s and
s ≈ t. Then gr = hs and ks = lt for some g,h, k, l ∈ H. Thus

(kg)r = k(gr) = k(hs) = (kh)s = (hk)s = h(ks) = h(lt) = (hl)t

and so r ≈ t.
�

Lemma 1.7.16. Let G be a group acting on the non-empty set S . Let s ∈ S . Then the orbit of G on
S containing s is Gs = {gs ∣ g ∈ G}.
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Proof. Let O be the orbit of G on T containing s and let t ∈ S . Then

t ∈ O

⇐⇒ t ∼∗ s

⇐⇒ t = gs for some g ∈ G

⇐⇒ t ∈ Gs

�

Lemma 1.7.17. Let G be a group acting on the non-empty set S . Then following are equivalent:

(a) For each s, t ∈ S there exists g ∈ G with t = gs.

(b) There exists s ∈ S with S = Gs.

(c) S is an orbit for G on S .

(d) G acts transitively on S .

Proof. (a)Ô⇒ (b): Suppose (a) holds. Since S is not empty there exists s ∈ S . Let t ∈ T . By (a)
there exists g ∈ G with t = gs. So t ∈ Gs and S = Gs.

(b)Ô⇒ (c): By 1.7.16 Gs is an orbit for G on S . So if S = Gs, S is an orbit for G on S .
(c)Ô⇒ (d): Suppose S is an orbit for G on S . Since distinct orbits are disjoint we conclude

that S is the only orbit for G on S . Thus G acts transitively on S .
(d) Ô⇒ (a): Suppose that G acts transitively on S and let s, t ∈ G. By 1.7.16 Gs is an orbit

for G in S and since G acts transitively, Gs is the only orbit. Since t lies is some orbit, this means
that t ∈ Gs and so t = gs for some g ∈ G. �

Example 1.7.18. Let G be group and H ≤ G.

1. The right cosets of H are the orbits for the action of H on G by left multiplication. So H acts
transitively on G by left multiplication if and only if H is the only coset of H in G and so if and
only if G = H.

2. The left cosets of H are the orbits for the action of H on G by the right multiplication. (Note
here that since H = H−1, gH−1 = gH.) Again this action is transitive if and only if G = H.

3. The orbit of G on G containing h with respect to the action by conjugation id Gh = {cgh ∣ g ∈ H}.
This orbit is called the conjugacy class of G containing h. Note that Ge = {e} and so the action
by conjugation is transitive if and only if G = {e}.

4. Let I be a non-empty set. Then Sym(I) acts transitively on I.
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5.
∗G/H ∶ G ×G/H → G/H, (g,T)→ gT

is a well -defined transitive action of G on G/H.

Indeed, if T = tH, then g(tH) = (gT) ∈ G/H. So ∗G/H is well-defined. Its straightforward to
verify that ∗G/H is indeed an action. Also

G ∗G/H H = {gH ∣ g ∈ G} = G/H,

and so G acts transitively on G/H. This action is called the action of G on G/H by left multipli-
cation.

We will show that any transitive action of G is isomorphic to the action on the coset of a suitable
subgroup. But first we need to define isomorphism for G-sets.

Definition 1.7.19. Let G be a group, ∗ an action of G on the set S , △ an action of G on the set T
and α ∶ S → T a function.

(a) α is called G-equivariant with respect to ∗ and △ if

α(g ∗ s) = g△α(s)

for all g ∈ G and s ∈ S .

(b) α is called a G-isomorphism from (S ,∗) to (T,△) if α is a bijection and α is G-equivariant
with respect to ∗ and △ .

(c) We say that (S ,∗) and (T,△) are G-isomorphic and write

(S ,∗) ≅ (T,△), or S ≅G T

if there exists a G-isomorphism from (S ,∗) to (T,△).

Lemma 1.7.20. Let S be a G-set, s ∈ S and put H = StabG(s).

(a) The map
α ∶ G/H → S , aH → as

is well defined, G-equivariant and one 1-1

(b) α is an G-isomorphism if and only if G acts transitively on S

(c) ∣Gs∣ = ∣G/StabG(s)∣.
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Proof. (a) Let a,b ∈ G. Then

aH = bH

⇐⇒ a−1b ∈ H

⇐⇒ a−1b ∈ StabG(s)

⇐⇒ (a−1b)s = s

⇐⇒ a((a−1b)s)) = as

⇐⇒ bs = as

The forward direct shows that α is well-defined and the backward direction shows that α is 1-1.
Also

α(a(bH)) = α((ab)H) = (ab)s = a(bs) = aα(bH)

So α is G-equivariant.
(b) By (a) α is a G-isomorphism if and only if α is onto. We have

Imα = {α(gH) ∣ g ∈ G} = {gs ∣ g ∈ G} = Gs

So α is onto if and only if S = Gs and so if and only if G is transitive on S .
(c) Since α is 1-1, ∣G/H∣ = ∣ Imα∣ = ∣Gs∣. �

Lemma 1.7.21. Suppose that G acts transitively on the sets S and T . Let s ∈ S and t ∈ T. Then S
and T are G-isomorphic if only if StabG(s) and StabG(t) are conjugate in G.

Proof. Suppose first that α ∶ S → T is a G-isomorphism. Let g ∈ G. Since α is 1-1 and G-
equivariant:

gs = s⇐⇒ α(gs) = α(s)⇐⇒ gα(s) = α(s)

So StabG(s) = StabG(α(s)). Since G is transitive on T , there exists g ∈ G with gα(s) = t. Thus

StabG(t) = StabG(gα(s)) = gStabG(α(s)) = gStabG(s).

Conversely suppose that gStabG(s) = StabG(t) for some g ∈ G. Then StabG(gs) = gStabG(s) =
StabG(t) and so by 1.7.20(b) applied to S and to T :

S ≅G G/StabG(gs) = G/StabG(t) ≅G T.

�

Definition 1.7.22. Let G be a group and S a G-set. A subset R ⊆ S is called a set of representatives
for the orbits of G on S , provided that R contains exactly one element from each G-orbit. In other
words if the map R→ S /G, r → Gr is a bijection.

An orbit O of G on S is called trivial if ∣O∣ = 1.
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Let R be an set of representatives for the orbits of G on S and any trivial orbit {s}. Then s must
be in R. Thus FixS (G) ⊆ R and R ∖ FixG(R) is a set of representatives for the non-trivial G-orbits.

Proposition 1.7.23 (Orbit Equation). Let G be a group acting on the set S and let R ⊆ S be a set of
representatives for S /G. Then

∣S ∣ =∑
r∈R

∣G/StabG(r)∣ = ∣FixS (G)∣ + ∑
r∈R∖FixS (G)

∣G/StabG(r)∣.

Proof. Since the orbits are the equivalemce classes of an equivalence relation S is the disjoint union
of its orbit. Thus

∣S ∣ = ∑
O∈S /G

∣O∣ =∑
r∈R

∣Gr∣

By 1.7.20d, ∣Gr∣ = ∣G/StabG(r)∣ and so

∣S ∣ =∑
r∈R

∣G/StabG(r)∣

Also

S = ∑
r∈FixS (G)

∣Gr∣ + ∑
r∈R∖FixS (G)

∣Gr∣ = ∣FixS (G)∣ + ∑
r∈R∖FixS (G)

∣G/StabG(r)∣

�

Corollary 1.7.24 (Class Equation). Let G be a group and R be a set of representatives for the
conjugacy classes of G. Then

G =∑
r∈R

∣G/CG(r)∣ = ∣Z(G))∣ + ∑
r∈R∖Z(G)

∣G/CG(r)∣

Proof. Let c be the action of G on G be conjugation. Then

Fixc
G(G) = {g ∈ G ∣ hg = g for all h ∈ G} = {g ∈ G ∣ hg = gh for all h ∈ G} = Z(G)

and by 1.7.13 Stabc
G(a) = CG(a). So the Class Equation follows from the orbit equation. �

To illustrate the class equation we will determine the conjugacy classes in Sym(n).

Definition 1.7.25. Let π ∈ Sym(n). For i ∈ Z+ let λi be the number of cycle of length i of π. Then
the cycle type of π to be sequence (λi)

∞
i=1. Alternatively we will write the cycle type as 1λ12λ23λ3 . . .

and often will not list terms iλi for which λi = 0.

For example the cycle type of

(1,7,3)(2,6)(4)(5,8,10)(9,13,16)(11)(14,15)(16,17)

in Sym(17) is (2,3,3,0,0, . . .) = 122333.
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Proposition 1.7.26. (a) Let µ, π ∈ Sym(n) and suppose that µ has cycle notation

(a11,a12, . . . ,a1k1)(a21,a22, . . . ,a2k2) . . . (al1,al2, . . . ,alkl)

Then the cycle notation for πµ is

(π(a11), π(a12), . . . , π(a1k1))(π(a21), π(a22), . . . , π(a2k2)) . . . (π(al1), π(al2), . . . π(alkl))

(b) Two elements in Sym(n) are conjugate if and only if they have the same cycle type.

Proof. (a) We have

(πµ)(π(ai j)) = (π ○ µ ○ π−1)(π(ai j)) = π(µ(ai j)) =

⎧⎪⎪
⎨
⎪⎪⎩

π((ai, j+1)) if j ≠ ki

π(ai,1) if j = ki

So (a) holds.
(b) By (a) µ and πµ have the same cycle type. Conversely suppose that µ and σ in Sym(n) have

the same cycle type. Then σ has cycle notation

σ = (b11,b12, . . .b1k1)(b21,b22, . . .b2k2) . . . (bl1,bl2, . . .blkl)

Note that for each 1 ≤ k ≤ n there exist unique i, j with k = ai, j and unique s, t with k = bs,t. So
we can define π ∈ Sym(n) by π(ai j) = bi j. Then by (a) πµ = σ and so elements of the same cycle
type are conjugate. �

Example 1.7.27. 1. (1,3,5)(2,7)(1,4,3)(2,6,7)(5,8) = (3,4,5)(7,6,2)(1,8)

2. Let µ = (1,3)(2)(4,7)(5,6,8) and σ = (3,5)(8)(1,7)(2,4,6)

Define π ∈ Sym(8) by

π(1) = 3, π(3) = 5, π(2) = 8, π(4) = 1, π(7) = 7, π(5) = 2, π(6) = 4 and π(8) = 6

Then πµ = σ.

Example 1.7.28. By 1.7.26 has three conjugacy classes corresponding to the cyles types 13, 1121

and 31. So R = {(1), (13), (123)} is a set of representatives for the conjugacy class of Sym(3). A
straight forward calculation shows that

CSym(3)((1)) = Sym(3), CSym(3)((13)) = {(1), (13)}, CSym(3)((123)) = {(1), (123), (132)}

The orders of these centralizers are

6,2,3.

Sym(3) has order 6 and since ∣G/CG(r)∣ = ∣G∣

∣CG(r)∣ the class equation now says

6 =
6
6
+

6
2
+

6
3
= 1 + 2 + 3
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Example 1.7.29. The conjugacy classes of Sym(4) are:

Cycle type elements number of elements

14 (1) 1

1221 (12), (13), (14), (23), (24), (34) 6

1131 (123), (132), (124), (142), (134), (143), (234), (243) 8

22 (12)(34), (13)(24), (14)(23) 3

41 (1234), (1243), (1324), (1342), (1423), (1432) 6

A set of representatives for the conjugacy classes

{(1), (12), (123), (12)(34), (1234)}

and their centralizers:

r CSym(4)(r) ∣CSym(4)(r)∣

(1) Sym(4) 24

(12) (1), (12), (34), (12)(34) 4

(123) (1)(123), (132) 3

(12)(34) (1), (12), (34), (12)(34), (1324), (13)(24), (1423), (14)(23) 8

(1234) (1), (1234), (13)(24), (1432)) 4

So the orbit equation says

24 =
24
24

+
24
4
+

24
3
+

24
8
+

24
4

and so

24 = 1 + 6 + 8 + 3 + 6

The Orbit Equations become particular powerful if G is a finite p-group:

Definition 1.7.30. Let G be finite group and p a prime. Then G is called a p-group provided that
that is ∣G∣ = pk for some k ∈ N.

Proposition 1.7.31 (Fixed-Point Equation). Let p be a prime and P a p-group acting on a finite set
S . Then

∣S ∣ ≡ ∣FixS (P)∣ (mod p).
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Proof. Let R be a set of representatives for S /P and let r ∈ R ∖ FixS (P). Then StabP(r) � P. By
Lagrange’s Theorem ∣P/StabP(r)∣ divides ∣P∣. Since ∣P∣ is a power of p and ∣P/StabP(r)∣ ≠ 1 we get

∣P/StabP(r)∣ ≡ 0 (mod p).

So by the Orbit Equation 1.7.23

∣S ∣ = ∣FixS (P)∣ + ∑
r∈R∖FixS (P)

∣P/StabP(r)∣ ≡ ∣FixS (P)∣ (mod p)

�

Corollary 1.7.32. Let P be a prime and P a finite p-group acting on finite set S .

(a) If p does not divide S , then FixS (P) ≠ ∅.

(b) If p divides ∣S ∣ and P has at least one fixed-point on S , than P has more than one fixed point on
S .

Proof. This follows immediately from ∣S ∣ ≡ FixS (P) (mod p). �

Example 1.7.33. Let G be a finite group and let H = {e,h} be any group of order 2. Define an
action of H on the set G by

e ∗ g = g h ∗ g = g−1

Since h ∗ (h ∗ g) = (g−1)−1 = g = e ∗ g, this is indeed an action. Note that

FixG(H) = {g ∈ G ∣ g = g−1} = {g ∈ G ∣ g2 = 1G}

Let t be the number of elements of order 2 in G. Then ∣FixG(H)∣ = t + 1. By the Fixed-Point
Equation

∣FixG(H)∣ ≡ ∣G∣ (mod 2)

and so

t ≢ ∣G∣ (mod 2)

So a group of even order has an odd number of elements of order 2. In particular it has an
element of order 2.

Example 1.7.34. Let E = (P ,L,R) be a projective plane of order. and T a 2-subgroup of Aut(E).
Since the number of points is odd, 1.7.32 implies that T fixes a point P. LetA be the set of lines

incident with P. Since T fixes P, T acts on A. Since ∣A∣ = 3 is odd we conclude that FixA(T) ≠ ∅.
Hence T fixes a line l incident with P. Thus

T ≤ StabAut(E)({P, l})
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By Homework 2#6 StabAut(E)({P, l}) has order eight, and so is a 2-group. We conclude that the
2-subgroups of Aut(E) are exactly the subgroups fixing a point and a line, which are incident.

By definition of Aut(E), if (P, l) ∈ R and α ∈ Aut(E), the (α(P), α(l) ∈ R. So Aut(E) acts on
R. Let (P, L) ∈R. Let O be the orbit of Aut(E) onR containing (P, l). Then

∣O∣ = ∣Aut(E)/StabAut(E)((P, l))∣ =
168

8
= 21.

On the otherhand, E has seven lines and each line is incident with 3 points and so ∣R∣ = 21.
Hence O =R and Aut(E) acts tranistively onR.

Definition 1.7.35. Let G be a group and H ⊆ G. Then

NG(H) = Nc(H) = {g ∈ G ∣ gH = H}

WNG(H) = {a ∈ G ∣ H ⊆ aH}. NG(H) is called the normalizer of H in G and WNG(H) the
weak normalizer of H in G.

Lemma 1.7.36. Let G be a group and H a finite subset of G. Then NG(H) = WNG(H).

Proof. Let g ∈ G. As conjugation is an bijection, ∣H∣ = ∣gH∣. So for finite H, H ⊆ gH if and only if
H = gH. �

Lemma 1.7.37. Let G be a group, H ≤ G and a ∈ G. With respect to the action of G on G/H be left
multiplication:

StabG(aH) = aH and FixG/H(H) = WNG(H)/H.

Proof. Let g ∈ G. Then gH = H if and only if g ∈ H. Hence Stab∗G(H) = H and so by 1.7.11(d)

StabG(aH) =
aStab∗G(H) = aH.

Note that H fixes aH if and only if H ⊆ Stab∗G(aH). That is if and only if H ≤ aH and if and
only if a ∈ WNG(H). So also the second statement holds. �

Lemma 1.7.38. Let P be a non-trivial finite p-group.

(a) Z(P) is non-trivial.

(b) If H � P then H � NP(H).

Proof. (a) Consider first the action of P on P by conjugation. Then FixP(P) =

opZ(P) and by1.7.31

0 ≡ ∣P∣ ≡ ∣Z(P)∣ (mod p)..

Thus ∣Z(P)∣ ≠ 1.
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(b) Consider the action of H on P/H be left multiplication. By 1.7.37, 1.7.31 and 1.7.36

0 ≡ ∣P/H∣ ≡ ∣FixP/H(H)∣ = ∣N∗
P(H)/H)∣ = ∣NP(H)/H (mod p).

So ∣NP(H)/H∣ ≠ 1. �

Lemma 1.7.39. Let p be a prime and P a p-group.

(a) Let H ≤ P. Then there exists n ∈ N and for 0 ≤ i ≤ n, Hi ≤ P with

H = H0 ⊴ H1 ⊴ H2 ⊴ . . . ⊴ Hn−1 ⊴ Hn = P

and ∣Hi/Hi−1∣ = p for all 1 ≤ i ≤ n.

(b) Let m be a divisor of ∣P∣. Then P has a subgroup of order m.

Proof. (a) The proof is by induction on ∣P/H∣. If ∣P/H∣ = 1, then P = H and (a) holds with n = 0 and
H0 = H = P. So suppose H ≠ P. The by 1.7.38(b), H ≰ NP(H). Hence there exits e ≠ x ∈ NP(H)/H.
Let ∣x∣ = pl and put y = xpl−1

. Then ∣y∣ = p. By the Correspondence Theorem (Homework 4#1),
there exists H1 ≤ NG(H) with H1/H = ⟨y⟩/ Then H ⊴ H1 and ∣H1/H∣ = ∣⟨y⟩∣ = ∣y∣ = p. Since
∣P/H1∣ < ∣P/H∣ (a) now follwos by induction.

(b) Apply (a) with H = {e}. Then ∣Hi∣ = pi and (b) holds. �

As a further example how actions an set can be used we give a second proof that Sym(n) has
normal subgroup of index two. For this we first establish the following lemma.

Lemma 1.7.40. Let ∆ be a finite set and ∼ a equivalence relation on ∆ such that each equivalence
class has size at most 2. Put

Ω = {R ⊆ ∆ ∣ R contains exactly one element from each equivalence class of ∼}.

Define the relation ≈ on Ω by R ≈ S if and only if ∣R ∖ S ∣ is even. Then ≈ is an equivalence relation.
If ∼ is not the equality relation, ≈ has exactly two equivalence classes.

Proof. For d ∈ ∆ let d̃ be the equivalence class of ∼ containing d and let ∆̃ be the set of equivalence
classes. For A ∈ Ω and X ∈ ∆̃, let XA be the unique element of X contained in A. A,B ∈ Ω and define

∆̃AB = {X ∈ ∆̃ ∣ XA ≠ XB}.

Let d ∈ A. Then d = d̃A and d ∈ B if and only if d = d̃B. Hence d̃A = d̃B if and only if d ∈ B. Thus

(∗) d̃ ∈ ∆̃AB ⇐⇒ d̃A ≠ d̃B ⇐⇒ d ∈ B

By definition of Ω, the map

A ∖ ∆d → d̃
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is a bijection. By (*) the image of A ∖ B under this map is ∆AB. Thus ∣A ∖ B∣ = ∣∆̃AB∣ and so

A ≈ B⇐⇒ ∆̃AB is even.

Observe that ∆̃AB = ∆̃BA and so ≈ is symmetric. Since ∣A ∖ A∣ = 0 is even, ≈ is reflexive.
Let R,S ,T ∈ Ω and X ∈ ∆̃. If XR ≠ XS , then X = {XR,XS } and so XT is either equal to XR or to

XS , but not both. Hence XR ≠ XS exactly if XR = XT ≠ XS or XR ≠ XT = XS . Hence
Thus

∆̃RT = (∆̃RS ∖ ∆̃S T) ∪ (∆̃S T ∖ ∆̃RS )

and so

(∗) ∣∆̃RT ∣ = ∣∆̃RS ∣ + ∣∆̃S T ∣ − 2∣∆̃RS ∩ ∆̃S T ∣.

If R ≈ S and S ≈ T , the right side of (∗) is an even number. So also the left side is even and
R ≈ T . Thus ≈ is transitive and so an equivalence relation.

Suppose now that ∼ is not the equality relation. Then there exists r, t ∈ ∆ with r ∼ t and r ≠ t.
Let R ∈ Ω with r ∈ R. Put T = (R ∪ {t}) ∖ {r}. Then T ∈ Ω and ∣T ∖ R∣ = 1. Thus R and T are not
related under ≈. Let S ∈ Ω. Then the left side of (∗) is odd and so exactly one of ∣∆̃RS ∣ and ∣∆̃S T ∣

is even. Hence S ≈ R or S ≈ T . Thus ≈ has exactly two equivalence classes and all the parts of the
lemma are proved. �

Definition 1.7.41. Let G be a magma acting on the set I and ∼ and ≈ relation on I. Then (∼,≈) is
called G-invariant if for all g ∈ G,a,b ∈ I:

a ∼ b Ô⇒ ga ≈ gb

∼ is called G-invariant if (∼,∼) is G-invariant.

Note that (∼,≈) is G-invariant s if and only if (∼,≈) is g∗ invariant for all g ∈ G, where g∗ ∶ I →
I, i→ gi.

Lemma 1.7.42. Let ∗ be an action if the magma G on the set I, ∼ a relation on I and ≈ the equiva-
lence relation generated by ∼. Suppose that ∼ or (∼,≈) is G-invariant. Then

∗/≈∶ G × I/≈ → I/≈, (g, [a]≈) → [ga]≈

is a well-defined action of G in I/≈.

Proof. If ∼ is G-invariant also (∼,≈) is G-invariant. So we may assume that (∼,≈) is H-invariant.
Let g ∈ G. Then (∼,≈) is g∗-invariant. Thus by 1.5.5(a) also (≈,≈) is g∗-invariant and so by 1.5.7(b)
the function

I/≈ → I/≈, [a]≈ → [ga]≈

is well-defined. Hence also ∗/! ≈ is well-defined. Let g,h ∈ G and a ∈ I. Then n

(gh)[a]≈ = [(gh)a]≈ = [g(ha)]≈ = g[ha]≈ = g(h[a]≈)

and so ∗/≈ is a magma action. �
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Proposition 1.7.43. Let n ≥ 2 be an integer. Define

∆ = {(i, j) ∣ 1 ≤ i, j ≤ n, i ≠ j}

Define the relation ∼ on ∆ by

(i, j) ∼ (k, l) if (k, l) = (i, j) or (k, l) = ( j, i)

Then ∼ is an equivalence relation on ∆ such that each equivalence classes has size 2. Define

Ω = {R ⊆ Ω ∣ ∣R ∩ X∣ = 1 for all X ∈ ∆/∼}

Define the relation ≈ on

A ≈ B if ∣A ∖ B∣ is even

Then ≈ is an equivalence relation on Ω with exactly two equivalence classes. Moreover,

(a) Sym(n) acts on ∆, ∆/∼, Ω and Ω/≈.

(b) Define Alt(n) = StabSym(n)(Ω/≈). and let π ∈ Sym(n). Then π ∈ Alt(n) if and only if the set

{(i, j) ∣ 1 ≤ i < j ≤ n, π(i) > π( j)}

has even size.

(c) (1,2) ∉ Alt(n).

(d) Alt(n) is a normal subgroup of index two in Sym(n).

Proof. (a) Let π ∈ Sym(n) and (i, j) ∈ ∆, then π(i) ≠ π( j) and so π(i) ≠ π( j). Thus ∆ is a Sym(n)-
invariant subset of S × S and so Sym(n) act on ∆. If (i, j) = (k, l) or (i, j) = (l, k), then then also
(π(i), π( j)) = (π(k), π(l)) or ((π(i), π( j)) = (π(l), π(k)). So ∼ is Sym(n)-invariant and Sym(n)
acts on ∆/∼.

Let R ∈ Ω and X ∈ ∆/∼. Then Y = π−1(X) ∈ ∆/∼ and so

∣πR ∩ X∣ = ∣πR ∩ πY ∣ = ∣π(R ∩ Y)∣ = ∣R ∩ Y ∣ = 1

So π(R) ∈ Ω and Sym(n) acts on Ω. If A,B ∈ Ω with A ≈ B, then ∣π(A) ∖ π(B)∣ = ∣π(A ∖ B∣ =

∣A ∖ B∣ is even and so πA ≈ πB. Thus ≈ is Sym(n)-invariant and so Sym(n) acts Ω/≈.
(b) Put R = {(i, j) 1 ≤ i < j ≤ n} and observe that R ∈ Ω. If π(R) ≈ R, then π fixes [R]≈ and since

≈ has only two equivalence classes, π also has to fix the other class. Hence π ∈ Alt(n). If π(R) ≉ R,
then π does not fix [R]≈ and so π ∉ Alt(n). Thus

π ∈ Alt(n)⇐⇒ ∣πR ∖ R∣ is even

We have
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∣πR ∖ R∣ = ∣{πr ∣ r ∈ R, πr /∈ R}∣ = ∣{r ∣ r ∈ R, ∣ πr ∉ R}∣ = ∣{(i, j) ∣ 1 ≤ i < j ≤ n, π(i) > π( j)}∣

and so (b) holds.
(c) Let 1 ≤ i < j ≤ n. If i > 2, then (1,2)(i) = i < j = (1,2)( j). If i = 2, then (1,2)i =

1 < j = (1,2)( j). If i = 1 and j > 2, then (1,2)(i) = 2 < j = (1,2) j. If i = 1 and j = 2, then
(1,2)(i) = 2 > 1 = (1,2)2. So (1,2)(i) > (1,2)( j) if and only if (i, j) = (1,2). So by (b),
(1,2) ∉ Alt(n).

(d) By 1.7.10

Alt(n) = StabSym(n)(Ω/≈) ⊴ Sym(n) and Sym(n)/Alt(n) ≅ Sym(n)Ω/≈ ≤ Sym(Ω/≈)

Since ∣Ω/≈ ∣ = 2 also ∣Sym(Ω/≈)∣ = 2. Thus ∣Sym(n)/Alt(n)∣ ≤ 2. By (c), (1,2) ∉ Alt(n). So
Sym(n) ≠ Alt(n) and ∣Sym(n)/Alt(n)∣ = 2. �

Example 1.7.44. The goal of this example is to find a subgroup of Sym(6) whihc is isomorphic
to Sym(5) but acts tranistively on {1, . . . ,6}. For this let J be the set of subgroups of order five in
Sym(5). Let F ∈ J and (1) ≠ f ∈ F. Then ∣ f ∣ divides F∣ = 5 and so ∣ f ∣ = 5, F = ⟨ f ⟩ and any f is a
five cycle. So f = (abcde) for some pairwise a,b, c,d, e. Since thare are 5! choices for a,b, c,d, e
but (abcde) = (bcdea) . . . (eabcbde) there are 5!

5 == 24 5-cycle in Sym(4). Each F ∈ J contains
four 5-cycles and F1 ∩ F2 = {(1)} for F1 ≠ F2 ∈ J. Thus ∣J∣ = 24

4 = 6. For i = 1,2 let Let Fi ∈ J and
(1) ≠ fiF. By 1.7.26(b), f2 = g f1 for some g ∈ Sym(5). Thus

gF1 =
g⟨ f1⟩ = ⟨g f1⟩ = f2⟩ = F2

and so Sym(5) acts tranistively on J. Note that Sym(5)J ≤ Sym(5)F for any F ∈ J. Since
∣S ym(5)/Sym(5)F = ∣ = ∣J∣ = 6, Sym(5)F has order 24 and so ∣Sym(5)J ∣ ≤ 24. Since Sym(5)J is
normal in Sym(5) and the only normal subgroups of Sym(5) are {(1)}, Alt(5) and Sym(5), we
conclude that Sym(5)J = {(1)}. So Sym(5) acts faithfully on J. Thus Sym(J) contains a subgroup
isomorphic to Sym(5) and acting transitively on J. Since ∣J∣ = 6 it follows that Sym(6) contains a
subgroup H isomorphic to Sym(5) which acts transitively on {1,2, . . . ,6}.

On the other hand by 1.10.15 H fixes the point i = H in the Sym(6)-set I = Sym(6)/H. This
seems to be contradictory, but isn’t. The set I is a set with six elements on which Sym(6) acts
but it is not isomorphic to the set {1,2,3,4,5,6}. So Sym(6) has two non-isomorphic action on
sets of size six. Indeed this also follows from Homework 4#4: Let α ∶ Sym(6) → Sym(6) be an
isomorphism which is not inner. Let ∗α be the corresponding action of Sym(6) on {1, . . . ,6}. It is
fairly easy to see that since α is not inner, ∗α is not isomorphic the standard action of Sym(6) on
{1, . . . ,6}. (see Homework 5#1).

1.8 Generation of subgroups and cyclic groups

Definition 1.8.1. Let D be a class and I set.
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(a) Fun(I) is the class of all functions with domain I. Fun(I,D) is the set of all functions from I to
D.

(b) An I-tuple is function with domain I. An I-tuple in D is a function from I to D.

(c) A D-family is an I-tuple in D for some set I.

Notation 1.8.2. Let f be an I-tuple. Then we denote f by ( fi)i∈I , where fi is the image of i under f .

Lemma 1.8.3. Let G be a group and (Gi)i∈I a family of subgroups of G. Then⋂i∈I Gi is a subgroup.
If each Gi, i ∈ I is normal in G, so is ⋂i∈I Gi.

Proof. Since e ∈ Gi for all i, e ∈ ⋂i∈I Gi. Let a,b ∈ ⋂i∈I Gi. Then ab ∈ Gi and a−1 ∈ Gi for all i ∈ I.
Hence ab ∈ ⋂i∈I Gi and a−1 ∈ ⋂i∈I Gi. Thus ⋂i∈I Gi is a subgroup of G.

Suppose in addition that each Gi is normal in G and let g ∈ G and a ∈ ⋂i∈I Gi. Then ga ∈ Gi and
so ga ∈ ⋂i∈I Gi. Thus ⋂i∈I Gi is normal in G. �

Definition 1.8.4. Let G be a group and J ⊆ G.

(a) The subgroup ⟨J⟩ of G generated by J is defined by

⟨J⟩ = ⋂
J⊆H≤G

H.

(b) The normal subgroup ⟨G J⟩ of G generated by J is defined by

⟨G J⟩ = ⋂
J⊆H⊴G

H.

(c) If (Ji)i∈I is a family of subsets of J we write ⟨Ji ∣ i ∈ I⟩ for ⟨⋃i∈I J⟩.

(d) J ⊆ G is called normal if gJ = J for all g ∈ G.

Lemma 1.8.5. Let I be a subset of G.

(a) Let α ∶ G → H be a group homomorphism. Then α(⟨I⟩) = ⟨α(I)⟩.

(b) Let g ∈ G. Then g⟨I⟩ = ⟨gI⟩.

(c) If I is normal in G, so is ⟨I⟩.

(d) ⟨I⟩ = ⟨I−1⟩.

(e) ⟨I⟩ consists of all products of elements in I ∪ I−1.

(f) ⟨GI⟩ = ⟨gI ∣ g ∈ G⟩ and consists of all products of elements in ⋃g∈G
g
(I ∪ I−1).
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Proof. (a) Let A = ⟨I⟩ and B = ⟨α(I)⟩). As α(A) is a subgroup of H and contains α(I) we have
B ≤ α(A). Also α−1(B) is a subgroup of G and contains I. Thus A ≤ α−1(B) and so α(A) ≤ B.
Hence B = α(A).

(b) Apply (a) to the homomorphism ig ∶ G → G, x→ gx.
(c) Follows from (b).
(d) Let H be a subgroup of G. Then H is closed under inverses and so I ⊆ H if and only of

I−1 ⊆ H. Thus (f) follows from the definition of ⟨I⟩.
(e) Let H be the subset of G consists of all products of elements in I ∪ I−1, that is all elements

of the form a1a2 . . .an, with n ≥ 0 and ai ∈ I ∪ I−1 for all 1 ≤ i ≤ n. Here if n = 0 we define a1 . . .an

to be e. Clearly H is contained in any subgroup of G containing I. Thus H ⊆ ⟨I⟩. Now it is readily
verified that H is also a subgroup containing I and so ⟨I⟩ ≤ H.

(f) Note that ⋃g∈G
gI is a normal subset of G. Hence by (c) H ∶= ⟨gI ∣ g ∈ G⟩ is normal subgroup

of G. So ⟨GI⟩ ≤ H. If I ⊆ K ⊴ G, then gI ⊆ K for all g ∈ G. Thus also H ≤ K and so H ≤ ⟨GI⟩. It is
also contained in every normal subgroup containing I and we get ⟨GI⟩ = H. The second statement
now follows from (e). �

Lemma 1.8.6. Let G be a group.

(a) Let A,B be subgroups of G. Then AB is a subgroup of G if and only if AB = BA.

(b) If K,H ≤ G and K ≤ NG(H), then KH is a subgroup of G and ⟨K,H⟩ = KH.

(c) Let Ki, i ∈ I be a family of subsets of G. If each Ki ≤ NG(H) for each i ∈ I, then ⟨Ki ∣ i ∈ I⟩ ≤
NG(H).

Proof. (a) Note that

(∗) (AB)−1 = B−1A−1 = BA.

If AB is a subgroup of G, then AB = (AB)−1 and (*) shows that AB = BA.
Conversely suppose that AB = BA. Then (*) shows that AB is closed under inverses. Also

e = ee ∈ AB and
(AB)(AB) = A(BA)B = A(AB)B = A2B2 ⊆ AB.

So AB is closed under multiplication.
(b) Let k ∈ K. Then kH = H, kHk−1 = H, kH = Hk and so HK = KH. So by (a) HK is a

subgroup of G. Hence ⟨H,K⟩ ≤ HK ≤ ⟨H,K⟩ and (b) holds.
(c) Since Ki ⊆ NG(H) for all i ∈ I and NG(H) is subgroup of G we have ⟨Ki ∣ i ∈ I⟩ ≤ NG(H)

and (c) holds. �

Definition 1.8.7. Let G be a group and a,b ∈ G and A,B ⊆ G.

(a) [a,b] ∶= aba−1b−1. [a,b] is called the commutator of a and b

(b) [A,B] = ⟨[a,b] ∣ a ∈ A,b ∈ B⟩. [A,B] is called the commutator group of A and B.

(c) −ab = (ab)−1 =
a
(b−1)
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Lemma 1.8.8. Let G be a group and a,b ∈ G.

(a) [a,b] = e if and only if ab = ba.

(b) [a,b] = abb−1 = a ⋅ −ba

(c) [a,b]−1 = [b,a].

(d) [A,B] = [B,A] for any A,B ⊆ G.

Proof. (a): [a,b] = e ⇐⇒ aba−1b−1 = e. Multipliying with ba from the right the latter equation is
equivalent to ab = ba.

(b) [a,b] = (aba−1b−1 = abb−1 and [a,b] = a(ba−1b−1) = a(−ba).
(c) [a,b]−1 = (aba−1b−1)−1 = (b−1)−1(a−1)−1b−1a−1 = bab−1a−1 = [b,a].
(d) Using (c) and 1.8.5(d)

[A,B] = ⟨[a,b] ∣ a ∈ A,b ∈ B⟩ = ⟨[a,b]−1 ∣ a ∈ A,b ∈ B⟩ = ⟨[b,a] ∣ a ∈ A,b ∈ B⟩ = [B,A].

�

Lemma 1.8.9. Let G be a group.

(a) Let N ≤ G. Then N ⊴ G if and only if [G,N] ≤ N.

(b) Let A,B ⊴ G. Then [A,B] ≤ A ∩ B.

(c) Let A,B ⊴ G with A ∩ B = {e}. Then [A,B] = {e} and ab = ba for all a ∈ A,b ∈ B.

Proof. (a) gn ∈ N ⇐⇒ gnn−1 ∈ N ⇐⇒ [g,n] ∈ N. Thus (a) holds.
(b) By (a) [A,G] = [G,A] ≤ A and [G,B] ≤ B. Thus

[A,B] ≤ [A,G] ∩ [G,B] ≤ A ∩ B

(c) By (b), [A,B] ≤ A ∩ B = {e}. Thus for all a ∈ A,b ∈ B, [a,b] = e and so by 1.8.8(a) we have
ab = ba. �

Definition 1.8.10. Let G be a group.

(a) G is called cyclic if G = ⟨x⟩ for some x ∈ G.

(b) Let x ∈ G. Then ∣x∣ ∶= ∣⟨x⟩∣. ∣x∣ is called the order of x in G.

We will now determine all cyclic groups up to isomorphism and investigate their subgroups and
homomorphisms.

Lemma 1.8.11. (a) Let H be a subgroup of (Z,+) Then H = nZ for some n ∈ N.

(b) Let n,m ∈ N. Then nZ ≤ mZ if and only if m divides n.
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Proof. (a) If H = {0}, then H = 0Z. So we may assume that H ≠ {0}. Since H is a subgroup, m ∈ H
implies −m ∈ H. So H contains some positive integer. Let n be the smallest such. Let m ∈ H and
write m = rn + s, r, s ∈ Z with 0 ≤ s < n. We claim that rn ∈ H. rn ∈ H if and only if −rn ∈ H. So we
may assume r > 0. But then

rn = n + n + . . . + n
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r−times

and as n ∈ H, rn ∈ H. So also s = m− rn ∈ H. Since 0 ≤ s < n, the minimal choice of n implies s = 0.
Thus m = rn ∈ nZ and H = nZ.

(b) nZ ≤ mZ if and only if n ∈ mZ. So if and only if m divides n. �

Lemma 1.8.12. Let G be a group and g ∈ G. Then φ ∶ Z→ G, n→ gn is the unique homomorphism
from (Z,+) to G which sends 1 to g.

Proof. More or less obvious. �

Definition 1.8.13. For r ∈ Z+ ∪ {∞} define r∗ =
⎧⎪⎪
⎨
⎪⎪⎩

r if r <∞
0 if r =∞

.

This definition is motivated by the following lemma:

Lemma 1.8.14. Let n ∈ N. Then ∣Z/nZ∣∗ = n.

Proof. If n ≠ 0, then ∣Z/nZ∣ = n and n∗ = n. If n = 0, then ∣Z/0Z∣ =∞ and ∞∗ = 0. �

Lemma 1.8.15. Let G = ⟨x⟩ be a cyclic group and put n = ∣G∣∗

(a) The map
Z/nZ→ G, m + nZ→ xm

is a well-defined isomorphism.

(b) Let H ≤ G and put m = ∣G/H∣∗. Then m divides n, and H = ⟨xm⟩.

Proof. (a) By 1.8.12 the map φ ∶ Z → G,m → gm is a homomorphism. As G = ⟨x⟩, φ is onto. By
1.8.11 kerφ = tZ for some non-negative integer t. By the isomorphism theorem the map

φ ∶ Z/tZ→ G,m + tZ→ xm.

is a well defined isomorphism. Hence Z/tZ ≅ G. Thus t = ∣Z/tZ∣∗ = ∣G∣∗ = n and (a) is proved.
(b) By 1.8.11 φ−1(H) = sZ for some s ∈ N. Since kerφ = φ−1(e) ≤ φ−1(H) we have nZ ≤ sZ.

Thus 1.8.11 implies that s divides n. As φ is onto, φ(sZ) = H and so

H = φ(sZ) = φ(⟨s⟩) = ⟨φ(s)⟩ = ⟨xs⟩

It follows that

φ(sZ/nZ) = φ(⟨s + nZ⟩) = ⟨φ(s + nZ)⟩ = ⟨xs⟩ = H
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and since φ is an isomorphism,

∣G/H∣ = ∣Z/nZ/sZ/nZ∣ = ∣Z/sZ∣.

Thus s = m and (b) is proved. �

Lemma 1.8.16. Let G = ⟨x⟩ be a cyclic group. Let H be any group and y ∈ H. Put n = ∣G∣∗ and
m = ∣y∣∗. Then there exists a homomorphism G → H with x→ y if and only if m divides n.

Proof. Exercise. �

1.9 Direct products and direct sums

Definition 1.9.1. Let (S i)i∈I be a family of sets. Then ×i∈I S i is the set of all I-tuples f with
f (i) ∈ S i for all i ∈ I. For i ∈ I define

πi ∶×
i∈I

S i → S i, f ↦ f (i)

Then πi is called the projection of×i∈I S i onto S i.

Definition 1.9.2. Let (S i)i∈I be a family of sets. A direct product of (S i)i∈I is pair (S , (πi)i∈I), where
S is a set and (π)i∈I is a family of functions πi ∶ S → S i, with the following property:

Whenever T is a set and (αi ∶ T → S )i∈I is family of functions, then there exists a unique function
α ∶ T → S such that αi = πi ○ α for all i ∈ I.

Note that αi = πi ○ α means that the diagram

T S

S i

∃!α

αi πi

commutes for all i ∈ I.

Lemma 1.9.3. Any family of sets (S i)i∈I has a direct product (S , (πi ∶ S → Gi)i∈I). Moreover, if
(T, (αi ∶ T → S i)i∈I) is also direct product of (S i)i∈I , then there exists a bijection α ∶ T → S with
αi = πi ○ α for all i ∈ I.

Proof. We will first show the existence. Let S =×i∈I S i and for i ∈ I let πi be the projection of S
onto S i. We will show that (S , (πi)i∈I) is a direct product of (S i)i∈I .

For this let T a set and (αi ∶ T → S i)i∈I a family of functions. Let α ∶ T → S be a function. Then
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πi ○ α = αi for all i ∈ I

⇐⇒ πi(α(t)) = αi(t) for all i ∈ I, t ∈ T

⇐⇒ α(t)(i) = αi(t) for all i ∈ I, t ∈ T

⇐⇒ α(t) = (αi(t))i∈I for all t ∈ T

So α ∶ T → S , (αi(t))i∈I is the unique function from T → S with α ○ πi for all i ∈ I. Thus (πi)i∈I

is indeed a direct product of (S i)i∈I .
To prove the uniqueness assertion let (T, (αi ∶ T → S i)i∈I) also be direct product of (S i)i∈I .

Since (S , (πi)i∈I) is a direct product. there exists a function α ∶ T → S with αi = πi ○ α for all i ∈ I.
We need to show that α is bijection.

Since (T, (αi)i∈I) is a direct product there exists a function β ∶ S → T with πi = αi ○ β for all
i ∈ I. Consider the composition α ○ β ∶ S → S . We have

πi ○ (α ○ β) = (πi ○ α) ○ β = αi ○ β = πi

also

πi ○ idS = πi

Hence the diagrams

S S

S i

α ○ β

πi πi

and

S S

S i

idS

πi πi

commute. So by the uniqueness assertion in the definition of a direct product we conclude that
α ○ β = idS . By symmetry also β ○ α = idT . Thus α is a bijection. �

1.9.4 (Further Products of Sets). Let (S i)i∈I . We will investigate what happens to Definition 1.9.2
in we reverse some or all of the arrows:

(1)

T S

S i

∃!α

αi πi

Here we can just choose S = ∅ and so also πi = ∅ and α = ∅.

(2)
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T S

S i

∃!α

αi πi

This diagram makes no sense, since the composition of any two functions which can be com-
posed is in the reverse direction of the third.

(3)

T S

S i

∃!α

αi πi

Here we can choose S = {s} and define πi and α by πi(si) = s = α(t) for all si ∈ S i, t ∈ T .
(4)

T S

S i

∃!α

αi πi

As in (1) choose S = πi = α = ∅.
(5)

T S

S i

∃!α

αi πi

Diagram makes no sense (just as (2)).
(6)

T S

S i

∃!α

αi πi

As in (3) choose S = {s} and define πi and α by πi(si) = s = α(t) for all si ∈ S i, t ∈ T .
(7)
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T S

S i

∃!α

αi πi

This is the only interesting case (other than the direct product). Let S = ⊍i∈I S i, the disjoint
union of the S i, i ∈ I. So

S = {(i, s) ∣ i ∈ I, s ∈ S i}.

Define

πi ∶ S i → S , s→ (i, s)

and for a given family αi ∶ S i → T ,

α ∶ S → T, (i, s)↦ αi(s)

(S , (π)i∈S ) is called the coproduct of the family (S i)i∈I .

We now will look at the direct product of groups and in section 1.12 at the coproduct of groups.

Definition 1.9.5. Let (Gi)i∈I be a family of groups. A direct product of the (Gi)i∈I is a pair
(G, (πi)i∈I) where G is a group and (πi)i∈I is a family of group homomorphism πi ∶ G → Gi with the
following property:

Whenever H is a group and (αi ∶ H → Gi)i∈I is family of group homomorphism, then there exists
a unique homomorphism α ∶ H → G such that αi = πi ○ α for all i ∈ I.

Just as for sets, the definition can be summarized in the following commutative diagram

H G

Gi

∃!α

αi πi

Lemma 1.9.6. Any family of groups (Gi)i∈I has a direct product (G, (πi ∶ G → Gi)i∈I). Moreover, if
(H, (αi ∶ H → Gi)i∈I) is also a direct product of (Gi)i∈I , then there exists an isomorphism α ∶ H → G
with αi = πi ○ α for all i ∈ I.

Proof. We will first show the existence. As a set let G =×i∈I Gi and for i ∈ I let πi be the projection
of G onto Gi. Define a binary operation on G by

(∗) ( f g)(i) = f (i)g(i)
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for all f ,g ∈ I. It is a routine exercise to verify that G is a group under this operation.
By definition of πi (*) can be rewritten as

πi( f g) = πi( f )πi(g)

and so πi is a homomorphism.
Let H a group and (αi ∶ H → Gi)i∈I a family of a family of group homomorphism. Since (πi)i∈I

is the set-theoretic direct product of (Gi)i∈I there exist a unique function α ∶ H → G with αi = πi ○α,
namely α(h) = (αi(h))i∈I for all i ∈ I. Then for all h, k ∈ H:

α(hk) = (αi(hk))i∈I = (αi(h)αi(k))i∈I = (αi(h))i∈I(αi(k))i∈I = α(h)α(k)

and so α is a homomorphism.
The proof of the uniqueness statement is the same is for sets. Essentially one just need to replace

“function” by “homomorphism” everywhere in the proof. �

Definition 1.9.7. Let (Gi)i∈I be a family of groups.

(a) For g ∈×i∈I Gi define
Supp(g) ∶= {i ∈ I ∣ g(i) ≠ 1Gi}

g is called almost trivial if Supp(g) is finite.

(b) ⊕i∈I Gi is the set of all almost trivial elements in×i∈I Gi. ⊕i∈I Gi is called the

direct sum of (Gi)i∈I .

Definition 1.9.8. Let G be a group.

(a) A family (ai)i∈I of elements in G is called commuting if aia j = a jai for all i, j ∈ I.

(b) Let (ai)i∈I be an almost trivial, commuting family of elements in G. Then

∏
i∈I

ai = ai1ai2 . . .aik

where i1, i2 . . . ik are the pairwise distinct elemenst of I with ai j ≠ 1. Note that since aia j = a jai,
this definition does not dependent on the order the i1, . . . ik are chosen.

Lemma 1.9.9. Let (Gi)i∈I be a family of groups. For j ∈ I define ρ j ∶ G j →⊕i∈I Gi by

ρ j(g)(i) =
⎧⎪⎪
⎨
⎪⎪⎩

g if i = j
1Gi if i ≠ j

for all g ∈ Gi.

(a) ⊕i∈I Gi is a subgroup of×i∈I Gi.

(b) For all j ∈ I, ρ j is a 1-1 homomorphism.
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(c) [ρi(Gi), ρ j(G j)] = 1 for all i ≠ j ∈ I.

(d) Let g ∈ ⊕i∈I Gi. Then there exist a uniquely determined almost trivial family (hi)i∈I ∈×i∈I Gi

with g =∏i∈I ρi(hi). Namely h = g.

(e) ⊕i∈I Gi = ⟨ρi(Gi) ∣ i ∈ I}⟩

Proof. (a) This follows since Supp(a−1) = Supp(a) and Supp(ab) ⊆ Supp(a) ∪ Supp(b).
(b) This is readily verified.
(c) Let j ≠ k ∈ I, g j ∈ G j and gk ∈ Gk. Then

(ρ(g j)ρ(gk))(i) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

g j if i = j
gk if i = k
1 if j ≠ i ≠ k

= (ρ(gk)ρ(g j))(i)

Thus ρ j(g j)ρk(gk) = ρk(gk)ρ j(g j) and (c) holds.
(d) Just observe that by the definition of ρ j(h j)

(∏
i∈I
ρi(hi))

j

= h j.

(e) By (d) g =∏i∈I ρi(gi) ∈ ⟨ρi(Gi) ∣ i ∈ I⟩. Thus (e) holds. �

Lemma 1.9.10. Let (Gi)i∈I be family of groups, H a group and (αi ∶ Gi → H)i∈I a family of
homomorphism such that

(∗) αi(gi)α j(g j) = α j(g j)αi(gi)

for all i ≠ j ∈ I, gi ∈ Gi and g j ∈ G j. Then there exists a unique homomorphism

α ∶⊕
i∈I

Gi → H with αi = α ○ ρi for all i ∈ I

Moreover,

α(gi)i∈I) =∏
i∈I
αi(gi)

for all (gi)i∈I) ∈⊕i∈I Gi.

H G

Gi

∃!α

αi ρi
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Proof. Let (gi)i∈I ∈ ⊕i∈I Gi. If gi = 1Gi , then α(gi) = 1H and so (αi(gi))i∈I is almost trivial. By (*)
this family is commuting and so we obtain a function

α ∶⊕
i∈I

Gi → H, (gi)i∈I →∏
i∈I
αi(gi)

Let (g′i)i∈I ∈ ⊕i∈I Gi. By (*) αi(gi)α j(g′j) = α j(g′j)αi(gi) for all i ≠ j ∈ J and so an straightfor-
ward induction arguments shows

(∏
i∈I
αi(g′i))(∏

i∈I
αi(gi)) =∏

i∈I
(αi(gi)αi(g′i))

Since αi is a homomorphism, αi(gi)αi(g′i) = αi(gig′i) and we conclude that α is a homomor-
phism.

Let i ∈ I and g ∈ G. Then ρi(g) j = 1G j for all i ≠ j ∈ J. So α j(ρi(g) j) = 1H and thus
α(ρi(g)) = αi(g) . Hence αi = α ○ ρi.

To show uniqueness let β ∶⊕i∈I Gi → G be a homomorphism with αi = β ○ ρi for all i ∈ I. Then

β((gi)i∈I) = β(∏
i∈I
ρi(gi)) =∏

i∈I
β(ρi(gi)) =∏

i∈I
αi(gi) = α((gi)i∈I)

and so α is unique. �

Definition 1.9.11. Let G be a group and (Gi)i∈I a family of subgroups of G. We say that G is the
internal direct sum of (Gi)i∈I and write

G =
int
⊕
i∈I

Gi

provided that

(i) Gi ⊴ G for all i ∈ I.

(ii) G = ⟨Gi ∣ i ∈ I⟩.

(iii) For each i, Gi ∩ ⟨G j ∣ i ≠ j ∈ I⟩ = 1.

Proposition 1.9.12. Let G be a group and (Gi)i∈I a family of subgroups of G. Suppose that G is the
internal direct sum of (Gi)i∈I .

Then the map

α ∶⊕
i∈I

Gi → G, (gi)i∈I →∏
i∈I

gi

is a well-defined isomorphism.

Proof. For i ∈ I put Gi ∶= ⟨G j ∣ i ≠ j ∈ I⟩. Let g ∈ G. Since G j ⊴ G we have gG j = G j and so using
1.8.5(b) we compute

gGi = ⟨gG j ∣ i ≠ j ∈ I⟩ = ⟨G j ∣ i ≠ j ∈ I⟩ = Gi
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Thus Gi ⊴ G. By 1.9.11(iii), Gi ∩ Gi = {e} and so by 1.8.9(c) ab = ba for all a ∈ Gi,b ∈ Gi. If
j ≠ i ∈ I then G j ≤ Gi and so gig j = g jgi for all gi ∈ Gi and g j ∈ G j. So by 1.9.10 α is a well-defined
homomorphism and α(ρi(gi)) = gi. Thus Gi ≤ Imα. Since Imα is a subgroup of G we conclude
⟨Gi ∣ i ∈ I⟩ ≤ Imα. Hence 1.9.11(ii), Imα = G and so α is onto.

Suppose that
∏
i∈I

gi =∏
i∈I

ai

for some (gi)∈I , (ai)i∈I ∈⊕i∈I . Then

aig−1
i = ∏

i≠ j∈I
a−1

j g j

Note that the left side is in Gi and the right side in Gi. Since Gi ∩Gi = {e} we conclude that
aig−1

i = e and so ai = gi. Thus α is 1-1 and the lemma is proved. �

Note that the preceeding lemma implies that if G =⊕int
i∈I Gi then G is canonically isomorphic to

⊕i∈I Gi. For this reason we will often abuse language and write G = ⊕i∈I Gi to indicated that G is
the internal direct sum of (Gi)i∈I .

Example 1.9.13. Let G = {(1), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)} ≤ Sym(4). Let G1 = {(1), (1,2)(3,4)}
and G2 = {(1), (1,3)(2,4)}. Since G is abelian, G1 and G2 are normal subgroup of G. Since
(1,2)(3,4) ○ (1,3)(2,4) = (1,4)(2,3), ⟨G1,G2⟩ = G. Moreover, G1 ∩G2 = {(1)} and so G is the
internal direct sum of G1 and G2. Note that Gi ≅ Z/2Z. Thus

G = G1 ⊕G2 ≅ Z/2⊕Z/2Z.

1.10 Sylow p-subgroup

Hypothesis 1.10.1. Throughout this section G is a finite group and p a prime.

Definition 1.10.2. (a) A p-subgroup of G is a subgroup P ≤ G which is a p-group.

(b) A Sylow p-subgroup S of G is a maximal p-subgroup of G. That is S is a p-subgroup of G and
if S ≤ Q for some p-subgroup Q, then S = Q.

(c) Sylp(G) is the the set of all Sylow p-subgroups of G.

Let n ∈ Z+ and n = pkm with k ∈ N, m ∈ Z+ and p ∤ m, then np = pk. np is called the p-part of n.
Often a Sylow p-subgroup is defined to be a subgroup of order ∣G∣p. This turns out to be equivalent
to our definition (see 1.10.3(b) and 1.10.9(c)), but I prefer the above definition for two reason: 1.
It is easy to see that Sylow p-subgroups exists ( see the next lemma). 2. The given definition also
makes sense for infinite groups ( allthough infinite groups may not have a Sylow p-subgroup).

Lemma 1.10.3. (a) Any p-subgroup of G is contained in a Sylow p-subgroup of G. In particular,
Sylp(G) is not empty.
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(b) Let S ≤ G with ∣S ∣ = ∣G∣p. Then S is a Sylow p-subgroup of G.

Proof. (a) Let P be a p-sugroups and let S be a p-subgroup of G such that ∣S ∣ is maximal with
respect to P ≤ S . We claim that S ∈ Sylp(G). For this let Q be a p-subgroup of G with S ≤ Q. Then
also P ≤ Q and so by maxiality of ∣S ∣, ∣Q∣ ≤ ∣S ∣. Since S ≤ Q this gives S = Q and so S ∈ Sylp(G).

In particular, {e} is contained in a Sylow p-subgroup of G and so Sylp(G) ≠ ∅.
(b) Let Q be a p-subgroup of G with S ≤ Q. By Lagrange’s, ∣Q∣ divides ∣G. Since ∣Q∣ is a power

of p, ∣Q∣ divides ∣G∣p = ∣S ∣. Thuse ∣Q∣ ≤ ∣S ∣ and S = Q. So S ∈ Sylp(G). �

Example 1.10.4. 1. Let G = Sym(5). Then ∣G∣ = 5! = 120 = 23 ⋅ 3 ⋅ 5. Thus by 1.10.3(b),

⟨(123)⟩ ∈ Syl3(G)

⟨(12345)⟩ ∈ Syl5(G)

Dih8 ∈ Syl2(G)

Here Dih8 = ⟨(14)(23), (13)⟩ is the automorphism groups of the square
r r
rr

1 2

34

2. E be a projective plane of order two and G = Aut(E). Then ∣G∣ = 168 = 23 ⋅ 3 ⋅ 7. Let P be a point
incident to the line l. Then StabG({P, l}) is a Sylow 2-subgroups of G.

Lemma 1.10.5. Let G be a finite group, p a prime and S a p-subgroup of G. Then S ∈ Sylp(G) if
and only if NG(S )/S has a non-trivial p-subgroup.

Proof. We will prove the contrapositive.
Suppose first that S ∉ Sylp(G). Then there exists a p-subgroup T of G with S � T . Then by

1.7.38, S � NT(S ). Thus NT(S )/S is a non-trivial p-subgroup of NG(S )/S .
Suppose A is a non-trivial p-subgroup of NG(S ). Let T be the inverse image of A under the

natural homomorphism from NG(S ) → NG(S )/S . Then T is a subgroup of G and ∣T ∣ = ∣T/S ∣∣S ∣ =

∣A∣∣S ∣. Thus T is a p-subgroup of G with S ≠ T . Hence S is not a Sylow p-subgroup. �

Lemma 1.10.6. Let I and J be sets. Then Sym(I) acts on JI via π ∗ f = f ○ π−1 for all π ∈ Sym(I)
and f ∈ JI .

Proof. Readily verified. �

Proposition 1.10.7 (Cauchy). If p divides ∣G∣, then G has an element of order p

Proof. Let x = (1,2, . . . , p) ∈ Sym(p) and X = ⟨x⟩. Then X is a subgroup order p of Sym(p). By
1.10.6 Sym(p) acts on Gp and so also X acts on Gp. Observe that

x ∗ (a1, . . . ,ap) = (ap,a1 . . . ,ap−1)



66 CHAPTER 1. GROUP THEORY

Consider the subset
T = {(a1, . . . ,ap) ∈ Gp ∣ a1a2 . . .ap = e}.

of Gp Note that we can choose the first p − 1 coordinates freely and then the last one is uniquely
determined. So ∣T ∣ = ∣G∣p−1.

We claim that T is X-invariant. For this note that

apa1 . . .ap−1 =
ap(a1 . . .ap)

Si if a1 . . .ap = e also apa1 . . .ap−1 = e. Thus x ∈ NX(S ) and so also X ≤ NG(S ). Hence T is indeed
X-invariant and so X acts on T .

From 1.7.31 we have

∣T ∣ ≡ ∣FixT(X)∣ (mod p)

As p divides ∣G∣, it divides ∣T ∣ and so also ∣FixT(X)∣. Hence there exists some (a1,a2, . . .ap) ∈

FixS (X) distinct from (e, e, . . . , e). But being in FixS (X) just means a1 = a2 = . . .ap. Being in S
implies ap

1 = a1a2 . . .ap = e. Therefore a1 has order p. �

The following easy lemma is crucial for our approach to the theory of Sylow p-subgroups.

Lemma 1.10.8. Let P ∈ Sylp(G) and α ∈ Aut(G). Then α(P) ∈ Sylp(G). In particular, G acts on
Sylp(G) by conjugation.

Proof. Since α is an bijection, ∣P∣ = ∣α(P)∣ and so α(P) is a p-group. Let Qbe a p-subgroup of
G with α(P) ≤ Q. Then α−1(Q) is a p-subgroup of G with P ≤ α−1(Q) and the maximality of P
implies P = α−1(Q). Thus α(P) = Q and α(P) is indeed a maximal p-subgroup of G.

Let g ∈ G. Then gP = ig(P) ∈ Sylp(G). Thus Sylp(G) is subset of P(G) invariant under the
action by conjugation. Therefore G acts on Sylp(G) be conjugation. �

Theorem 1.10.9 (Sylow’s Theorem). Let G be a finite group, p a prime and P ∈ Sylp(G).

(a) All Sylow p-subgroups are conjugate in G.

(b) ∣Sylp(G)∣ = ∣G/NG(P)∣ ≡ 1 (mod p).

(c) ∣P∣ = ∣G∣p.

Proof. Let S = GP ∶= {gP ∣ g ∈ G}. So S is the set of Sylow p-subgroups conjugate to P. First we
show

1○. P has a unique fixed-point on S and on Sylp(G), namely P itself

Indeed, suppose that P fixes Q ∈ Sylp(G). Then P ≤ NG(Q) and PQ is a subgroup of G. Now

∣PQ∣ =
∣P∣∣Q∣

∣P∩Q∣
and so PQ is a p-group. Hence by maximality of P and Q, P = PQ = Q.

2○. S ≡ 1 (mod p).
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By (1○) FixS(P) = 1 and by Fixed-Point Formula 1.7.31 ∣S ∣ ≡ ∣FixS(G)∣ (mod p). So (2○)
holds.

3○. Sylp(G) = S and so (a) holds

Let Q ∈ Sylp(G). Then ∣FixS(Q)∣ ≡ ∣S ∣ ≡ 1 (mod p). Hence Q has a fixed-point T ∈ S . By (2○)
applied to Q, this fixed-point is Q. So Q = T ∈ S.

4○. (b) holds.

By (2○) and (5○) ∣Sylp(G)∣ = ∣S ∣ ≡ 1 (mod p). Note that N NG(P) is the stabilizer of P in G with
respect to conjugation. As G is transitive on S we conclude from 1.7.20(c) that ∣S ∣ = ∣G/NG(P)∣.
Thus (b) holds.

5○. p does not divides ∣NG(P)/P∣.

By 1.10.5 NG(P)/P has no non-trivial p-subgroup and so by Cauchy’s theorem ∣NG(P)/P is
not divisible by p.

By (b) and (5○), p divides neither ∣G/NG(P)∣ nor ∣NG(P)/P∣. Since

∣G∣ = ∣G/NG(P)∣ ⋅ ∣NG(P)/P∣ ⋅ ∣P∣

we get that p does not divide ∣G/P∣. Hence ∣G∣p divides ∣P∣. By Lagrange’s ∣P∣ divides ∣G∣ and so
also ∣G∣p. Thus ∣P∣ = ∣G∣p. and (c) holds. �

Corollary 1.10.10. Let G be a finite group, p a prime and P ∈ Sylp(G)

(a) Let Q be a p-subgroup of G. Then Q ∈ Sylp(G) if and only if ∣Q∣ = ∣G∣p and if and only if p
does not divide ∣G/Q∣.

(b) Let R ≤ H ≤ G with p ∤ ∣G/H∣. Then R ∈ Sylp(H) if and only if R ∈ Sylp(G).

(c) P ⊴ G if and only if P is the unique Sylow p-subgroup of G.

(d) Let sp ∶= ∣Sylp(G)∣. Then sp divides ∣G∣

∣G∣p
,sp ≡ 1 (mod p) and sp∣Gp∣ divides ∣G∣.

Proof. (a) Since ∣Q∣ is a power of p, ∣Q∣ = ∣G∣p if and only if p does not divide ∣G∣

∣Q∣
. If ∣Q∣ = ∣G∣p then

by 1.10.3(b), Q ∈ Sylp(G) and if Q ∈ Sylp(G) then by 1.10.9(c), ∣Q∣ = ∣G∣p.
(b) Note that ∣H∣p = ∣G∣p and so (b) follows from (c).
(c) Since all Sylow p-subgroups are conjugate, Sylp(G) = {gP ∣ g ∈ G}. Hence Sylp(G) = {P}

if and only if P = gP for all g ∈ G.
(d) By 1.10.9(b), sp = ∣G/NG(P)∣ ≡ 1 (mod p). Also

∣G∣

∣G∣p
=

∣G∣

∣P∣
=

∣G∣

∣NG(P)∣

∣NG(P)∣

∣P∣
= sp ⋅

∣NG(P)∣

∣P∣

So sp divides ∣G∣

∣G∣p
. �
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Lemma 1.10.11. Let G be a finite group, p a prime M ⊴ G.

(a) Let H ≤ G. Then H ∈ Sylp(G) if and only if HM/M ∈ Sylp(G) and H ∩ M ∈ Sylp(G).

(b) Let π ∶ G → M,g→ gM be the natural homomorphism and for R ≤ G let R̂ = π−1(R). Put

A = {(R,Q) ∣ R ∈ Sylp(G/M),Q ∈ Sylp(R̂)}.

Then

α ∶ Sylp(G)→ A, P→ (PM/M,P)

is a well-defined bijection.

(c) Let P ∈ Sylp(G). Then ∣Sylp(G)∣ = ∣Sylp(G/M)∣ ⋅ ∣Sylp(PM)∣

Proof. (a) Note that ∣H∣ = ∣H/H ∩ M∣∣H ∩ M∣ = ∣HM/M∣∣H ∩ M∣ and ∣G∣p = ∣G/M∣p∣M∣p. It follows
that ∣H∣p = ∣G∣p if and only if ∣HM/M∣p = ∣G/M∣p and ∣H ∩ M∣p = ∣Mp∣. So (a) holds.

(b) By (a) PM/M ∈ Sylp(G/M) also P ∈ Sylp(PM) and so α is well defined. Clearly α is 1-1.
Let R ∈ Sylp(G/M) and Q ∈ Sylp(R̂). Since ∣R̂∣ = ∣R∣∣M∣,

∣Q∣ = ∣R̂∣p = ∣R∣p∣M∣p = ∣G/M∣p∣M∣p = ∣G∣p

So Q ∈ Sylp(M). By (a) QM/M ∈ Sylp(R̂/M) = R and since R is a p-group, QM/M = R. Thus
α(Q) = (QM/M,Q) = (R,Q) and α is onto.

By (b) ∣Sylp(G)∣ = ∣A∣. Let R,T ∈ Sylp(G/M). Then R = aT for some a ∈ G/M. Let a = gM with
g ∈ G. Then R̂ =

g
T̂ and since conjugation is an automorphism, ∣Sylp(R̂)∣ = ∣Sylp(T̂)∣ = ∣Sylp(PM)∣.

Thus

∣Sylp(G)∣ = ∣A∣ = ∑
R∈Sylp(G/M)

∣Sylp(R̂)∣ = ∑
R∈Sylp(G/M)

∣Sylp(PM)∣ = ∣Sylp(G/M)∣ ⋅ ∣S ylp(PM)∣

�

Lemma 1.10.12. Let G be a finite group, p a prime, P ∈ Sylp(G) and M ⊴ G. Then the following
statements are equivalent

(a) M ≤ StabG(Sylp(G))

(b) P ⊴ PM.

(c) P is the unique Sylow p-subgroup of PM.

(d) ∣Sylp(G)∣ = ∣Sylp(G/M)∣
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(e) The map
β ∶ Sylp(G)→ Sylp(G/M) Q→ QM/M

is a bijection.

Proof. (a) Ô⇒ (b): If M ≤ StabG(Sylp(G)), then M ≤ NG(P). Since also P ≤ NG(P) we
conclude that PN ≤ N)G(P) and so P ⊴ PN.

(b)Ô⇒ (c): If P ⊴ PM, 1.10.10(c) shows that P is the unique Sylow p-subgroup of G.
(c) Ô⇒ (d): If P is the unique Sylpw p-subgroup of PM, then ∣S ylp(PM)∣ = 1 and so by

1.10.11(c)

∣Sylp(G)∣ = ∣Sylp(G/M)∣ ⋅ ∣Sylp(PM)∣ = ∣Sylp(G/M)∣

(d) Ô⇒ (e): Since the map α in 1.10.11(c) is a bijection, β is onto. So if ∣Sylp(G)∣ =

∣Sylp(G/M)∣, β is a bijection.
(e) Ô⇒ (a): Suppose β is a bijection. Let m ∈ M. Then PmM = PM and since β is 1-1,

Pm = P. So M fixes all P ∈ nSylp(G), that is M ≤ StabG(Sylp(G)). �

Lemma 1.10.13. Let G be a finite group, p a prime, P ∈ Sylp(G) and M ⊴ G with M ≤ StabG(Sylp(G)).
Then

(a) P ∩ M ⊴ G.

(b) PM ⊴ G if and only of P ⊴ G and if and only if P ≤ StabG(Sylp(G)).

Proof. (a) By 1.10.12 P ⊴ MP. Since M ⊴ G this gives M ∩ P ⊴ M. By 1.10.11 P ∩ M ∈ Sylp(M)

and so by So by 1.10.10(c), M ∩ P is the only Sylow p-subgroup of N. Let g ∈ G. Then by 1.10.8
gN ∩ P is a Sylow p-subgroup of M and so equal to M ∩ P. Thus M ∩ P ⊴ G.

(b) Suppose that PM ⊴ G. By 1.10.12 P is the only Sylow p-subgroup of PM and so P ⊴ G. Sup-
pose that P ⊴ G. The Sylp(G) = {P} and so P ≤ G = StabG(Sylp(G)). Put M̃ = StabG(Sylp(G)).
If P ≤ M̃, then PM̃ = M̃ ⊴ G and so P ⊴ G. �

Lemma 1.10.14. Let G be a finite group of order 2n with n odd. Then G index a normal subgroup
of index 2.

Proof. By Cayley’s Theorem 1.7.8(1), G is isomorphic to G⋅, (the image of G in Sym(G) under the
homomorphism Φ⋅ corresponding the action ⋅ of G and G by left multiplication. Let t ∈ G be an
element of order 2. Since tg ≠ g for all g ∈ G, t and so also t⋅ = Φ⋅(t) has no fixed-points on G.
Hence t⋅ has n-cycles of length 2 and so t⋅ is an odd permutation. Thus G⋅ ≰ Alt(G) and G⋅ ∩Alt(G)

is normal subgroup of index 2 in G⋅. �

The following lemma is an example how the actions on a subgroup can be used to identify the
subgroup.

Lemma 1.10.15. Let n be an integer with n ≥ 3. Let G = Sym(n) or Alt(n) and suppose ∗ is a
faithful action of G in the set I with ∣I∣ ≤ n. Then
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(a) If G = Sym(n), then G∗ = Sym(I) and StabG(i) ≅ StabG(i)∗ = StabSym(I)(i) ≅ Sym(n − 1) for
all i ∈ I.

(b) If G = Alt(n), then G∗ = Alt(I) and StabG(i) ≅ StabG(i)∗ = StabAlt(I)(i) ≅ Alt(n − 1) for all
i ∈ I.

Proof. By assumption, G acts faithfully on I and so G is isomorphic to the subgroup G∗ of Sym(I).
In particular, ∣G∗∣ = ∣G∣ and so

∣I∣! = ∣Sym(I)∣ ≥ ∣G∗∣ = ∣G∣ ≥
n!
2
.

Since ∣I∣ ≤ n and n ≥ 3 this gives ∣I∣ = n and ∣Sym(I)∣ = ∣Sym(n)∣.
Hence ∣Sym(I)/G∗∣ = ∣Sym(n)/G∣ ≤ 2. By ?? Alt(I) is the unique subgroup of index two in

Sym(I). Thus either G = Sym(n) and G∗ = Sym(I) or G = Alt(n) and G∗ = Alt(I). Let i ∈ I.
Suppose G = Alt(n). Then

StabG(i)
Φ∗ 1-1
≅ StabG(i)∗

1.7.10(g)
= StabG∗(i) = StabAlt(I)(i) ≅ Alt(I ∖ {i}) ≅ Alt(n − 1)

and similar statement with Alt replaced by Sym. So (a) and (b) holds. �

Corollary 1.10.16. Let H be a finite group of order 60 with exactly six Sylow 5-subgroups. Then
H ≅ Alt(5).

Proof. By ?? we may assume that H is a subgroup of G = Alt(6). Let I = G/H and i = H ∈ I. Note
that G acts on I be left multiplication and H = StabG(i). Put M = StabG(I). Then M ≤ StabG(i) = H.
By ?? H is simple and so M = 1 or M = H.

If M = H, then H ⊴ G and since 5 ∤ G/H, Syl5(G) = Syl5(H). But Alt(6) has 6⋅5⋅4⋅3⋅2
5 = 36 ⋅ 4

5-cycles and so 36⋅4
5−1 = 36 Sylow 5 subgroups, a contradiction since H has only 6 Sylow 5-subgroups.

Thus M = 1. Hence G acts faithfully on I and since ∣I∣ = ∣G∣

∣H∣
= 6, 1.10.15 shows that H =

StabG(i) ≅ Alt(5). �

Lemma 1.10.17. (a) Let G be a group of order 12. Then either G has unique Sylow 3-subgroup or
G ≅ Alt(4).

(b) Let G be group of order 15. Then G ≅ Z/3Z ×Z/5Z.

(c) Let G be a group of order 30. Then G has a unique Sylow 3-subgroup and a unique Sylow
5-subgroup.

Proof. (a) By ??a the number of Sylow 3 subgroups divides 12
3 is 1 (mod 3). Thus ∣Syl3(G)∣ = 1

or 4. In the first case we are done. In the second case let N = StabG(Syl3(G)). By ??, G/N still has
4 Sylow 3-subgroups. Thus ∣G/N∣ ≥ 4 ⋅ 3 = 12 = ∣G∣, N = {e} and G is isomorphic to a subgroup of
order 12 in Sym(4). Such a subgroup is normal and so G ≅ Alt(4) by 1.11.9.
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(b) The numbers of Sylow 5-subgroups is 1 (mod 5) and divides 15
3 = 5. Thus G has a unique

Sylow 5-subgroup S 5. Also the number of Sylow 3 subgroups is 1 (mod 3) and divides 15
3 = 5.

Thus G has a unique Sylow 3-subgroup S 3. Then S 3 ∩ S 5 = 1, ∣S 3S 5∣ = 15 and so G = S 3S 5. Hence
by 1.9.12

G ≅ S 3 × S 5 ≅ Z/3Z ×Z/5Z ≅ Z/15Z

where the latter isomorphism holds since we just proved that any group of order 15 is isomorphic to
Z/3Z ×Z/5Z.

(c) By 1.10.14 any group which as order twice an odd number has a normal subgroup of index
two. Hence G has a normal subgroup of order 15. This normal subgroup contains all the Sylow 3
and Sylow 5-subgroups of G and so (c) follows from (b). �

Lemma 1.10.18. Let G be a group of order 120. Then one of the following holds:

(a) G has a unique Sylow 5-subgroup.

(b) G ≅ Sym(5).

(c) ∣Z(G)∣ = 2 and G/Z(G) ≅ Alt(5).

Proof. Let P ≤ Syl5(G) and put I = Syl5(G).
If ∣I∣ = 1, (a) holds.
So suppose that ∣I∣ > 1. Then by??(??), ∣I∣ ≡ 1 (mod 5) and ∣I∣ divides ∣G/P∣ = 24. The numbers

which are larger than 1, are less or equal to 24 and are 1 (mod 5) are 1,6,11,16 and 21. Of these
only 6 divides 24. Thus ∣I∣ = 6. Let φ ∶ G → Sym(I) be the homomorphism corresponding to the
action of G on I. Put N = kerφ and H = φ(G). Then H is subgroup of Sym(I) ≅ Sym(6) and
H ≅ G/N. By ??(??), G/N (and so also H) has exactly six Sylow 5-subgroups. In particular the
order of H is a multiple of 30. By 1.10.17c, ∣H∣ ≠ 30.

Suppose that ∣H∣ = 120. Then N = 1 and so G ≅ H in this case. Now H ≤ Sym(I) ≅ Sym(6).
Thus 1.10.15(a) implies G ≅ H ≅ Sym(5).

Suppose next that ∣H∣ = 60. If H ≰ Alt(I), then H ∩Alt(I) is a group of order 30 with six Sylow
5-subgroups, a contradiction to 1.10.17. Thus H ≤ Alt(I) ≅ Alt(6). So by 1.10.15(b), H ≅ Alt(5).
Since ∣N∣ = 2 and N ⊴ G, N ≤ Z(G). Also φ(Z(G)) is a abelian normal subgroup of H ≅ Alt(5) and
so φ(Z(G)) = e. Hence N = Z(G) and

G/Z(G) = G/N ≅ H ≅ Alt(5).

�

1.11 Normal Subgroups of Symmetric Groups

In this section we will investigate the normal subgroups of symmetric group Sym(n), n a positive
integer. We start by defining a particular normal subgroup called the alternating group Alt(n).



72 CHAPTER 1. GROUP THEORY

1.11.1 (Alternating Groups). Put
ei = (δi j)

n
j=1 ∈ Rn.

Then (ei ∣ 1 ≤ i ≤ n) is a basis of Rn. So for π ∈ Sym(n) we can define α(π) ∈ GLn(R) by
α(π)(ei) = eπ(i) for all 1 ≤ i ≤ n. Define α ∶ Sym(n) → GLn(R), π → α(π). Let π, µ ∈ Sym(n) and
1 ≤ i ≤ n. Then

α(µ ○ π)(ei) = eµ(π(i)) = α(µ)(eπ(i)) = α(µ)(α(π)(ei)) = (α(µ) ○ α(π))(ei).

So α(µ ○ π) = α(µ) ○ α(π) and α is a homomorphism. Now define sgn = det ○α ∶ Sym(n) →
(R ∖ {0}, ⋅), π → det(α(π)). Since both det and α are homomorphisms, sgn is a homomorphism.
Also if x = (i, j) ∈ Sym(n) is a 2-cycle it is easy to see that det(α(x)) = −1.

Since

(a1,a2, . . .ak) = (a1,a2)(a2,a3) . . . (ak−1,ak)

and sgn is a homomorphism,

sgn((a1,a2, . . .ak)) = sgn((a1,a2))sgn((a2,a3)) . . . sgn((ak−1,ak)) = (−1)k−1

Using that sgn is a homomorphism one more time we get

sgn((a11,a12, . . .a1k1)(a21,a22, . . .a2k2) . . . (al1,al2, . . .alkl)) =

(−1)k1−1(−1)k2−1 . . . (−1)kl−1

This implies

sgn(x) =
⎧⎪⎪
⎨
⎪⎪⎩

1 if x has an even number of even cycles
−1 if x has an odd number of even cycles

An permutation π with sgnπ = 1 is called an even permutation and a permutation with sgn(π) =
−1 is called an odd permutation.

Define Alt(n) = ker sgn. Then Alt(n) is a normal subgroup of Sym(n), Alt(n) consists of all
permutation which have an even number of even cycles and if n ≥ 2,

Sym(n)/Alt(n) ≅ sgn(Sym(n)) = {1,−1} ≅ Z/2Z.

In particular,

∣Alt(n)∣ =
n!
2

for all n ≥ 2.
We have Alt(2) = {(1)}.

Alt(3) = {(1), (1,2,3), (1,3,2)}

and
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Alt(4) = {(1), (1,2,3), (1,3,2), (1,2,4), (1,4,2), (1,3,4), (1,4,3), (2,3,4), (2,4,3)

(1,2)(3,4), (1,3)(2,4), (1,4)(2,3)}

Before continuing to investigate the normal subgroup of Sym(n) we introduce conjugacy classes
in arbitrary groups.

Definition 1.11.2. We say that two elements x, y in G are conjugate in G if y = gx = gxg−1 for some
g ∈ G. It is an easy exercise to verify that this is an equivalence relation. The equivalence classes
are called the conjugacy classes of G. The conjugacy class containing x is G x ∶= {xg ∣ g ∈ G}.

Proposition 1.11.3. A subgroup of G is normal if and only if it is the union of conjugacy classes of
G.

Proof. Let N ≤ G. The following are clearly equivalent:

N ⊴ G
gn ∈ N for all n ∈ N,g ∈ G
Gn ⊆ N for all n ∈ N

N = ⋃n∈N
Gn

N is a union of conjugacy classes

�

1.11.4 (Normal sugroups of Sym(3)). Lets now investigate the normal subgroups of Sym(3). We
start by listing the conjugacy classes

e 1 element

(123), (132) 2 elements

(12), (13), (23) 3 elements

Let e ≠ N ⊴ Sym(3). If N contains the 2-cycles, then ∣N∣ ≥ 4. Since ∣N∣ divides ∣Sym(3)∣ = 6
we get ∣N∣ = 6 and N = Sym(3).

If N does not contain the 2-cycles we get N = {e, (123), (132)} = Alt(3).
So the normal subgroups of Sym(3) are

(1),Alt(3), and Sym(3)
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1.11.5 (Normal subgroups of Sym(4)). The conjugacy classes of Sym(4) are:

e 1 element

(123), (132), (124), (142), (134), (143), (234), (243) 8 elements

(12)(34), (13)(24), (14)(23) 3 elements

(12), (13), (14), (23), (24), (34) 6 elements

(1234), (1243), (1324), (1342), (1423), (1432) 6 elements

Let N be a proper normal subgroup of Sym(4). Then ∣N∣ divides 24 = ∣Sym(4)∣. Thus ∣N∣ =

2,3,4,6,8 or 12. So N contains 1,2,3,5,7 or 11 non-trivial elements. As N ∖ {e} is a union
of conjugacy classes, ∣N∣ − 1 is a sum of some of the numbers 3,6,6 and 8. In particular, ∣N∣ −

1 ≥ 3 and so ∣N∣ − 1 ∈ {3,5,7,11}. Thus ∣N∣ − 1 is odd. Since 3 is the only of the possible
summands which is odd, we conclude that 3 is one of the summands. So K ⊆ N, where K =

{e, (12)(34), (13)(24), (14)(23)}. Then ∣N ∖ K∣ ∈ {0,3,8} and ∣N ∖ K∣ is a sum of some of the
numbers 6,6 and 8. It follows that ∣N ∖ K∣ = 0 or 8. In the first case N = K and in the second case,
N consist of K and the 3-cycles and so N = Alt(4). Note also that (12)(34) ○ (13)(24) = (14)(23)
and so K is indeed a normal subgroup of Sym(4).

Thus the normal subgroups of Sym(4) are

{(1)}, {(1), (12)(34), (13)(24), (14)(23)}, Alt(4) and Sym(4).

Let us determine the quotient group Sym(4)/K. No non-trivial element of K fixes ”4”. So
Sym(3) ∩ K = {e} and

∣Sym(3)K∣ =
∣Sym(3)∣∣K∣

∣Sym(3) ∩ K∣
=

6 ⋅ 4
1

= 24 = ∣Sym(4)∣.

Thus Sym(3)K = Sym(4). And

S ym(4)/K = Sym(3)K/K ≅ Sym(3)/(Sym(3) ∩ K) = Sym(3)/{e} ≅ Sym(3)

So the quotient of Sym(4) by K is isomorphic to Sym(3).
Counting arguments as above can in theory be used to determine the normal subgroups in all

the Sym(n)’s, but we prefer to take a different approach.

Lemma 1.11.6. (a) Alt(n) is the subgroup of Sym(n) generated by all the 3-cycles.

(b) If n ≥ 5 then Alt(n) is the subgroup of Sym(n) generated by all the double 2-cycles.

(c) Let N be a normal subgroup of Alt(n) containing a 3-cycle. Then N = Alt(n).

(d) Let n ≥ 5 and N a normal subgroup of Alt(n) containing a double 2-cycle. Then N = Alt(n).
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Proof. (a) By induction on n. If n ≤ 2, then Alt(n) = {(1)} and (a) holds . So we may assume
n ≥ 3. Let H be the subgroup of Sym(n) generated by all the 3-cycles. Then H ≤ Alt(n) and by
induction Alt(n − 1) ≤ H. Let g ∈ Alt(n). If g(n) = n, n ∈ Alt(n − 1) ≤ H. So suppose g(n) ≠ n.
Since n ≥ 3, there exists 1 ≤ a ≤ n with a ≠ n and a ≠ g(n). Let h be the 3-cycle (g(n),n,a). Then
(hg)(n) = h(g(n)) = n. Hence hg ∈ Alt(n − 1) ≤ H and so also g = h−1(hg) ∈ H. We proved that
g ∈ H and so Alt(n) ≤ H and H = Alt(n).

(b) Let h = (a,b, c) be a 3-cycle in Sym(n). Since n ≥ 5, there exist 1 ≤ d < e ≤ n distinct from
a,b and c. Note that

(a,b, c) = (a,b)(d, e) ○ (b, c)(d, e)

and so the subgroup generated by the double 2-cycles contains all the 3-cycles. Hence (b) follows
from (a).

(c) Let h = (a,b, c) be a 3-cycle in N and g any 3-cycle in Sym(n). By (a) it suffices to prove
that g ∈ N. Since all 3-cycles are conjugate in Sym(n) there exists t ∈ Sym(n) with th = g. If
t ∈ Alt(n) we get g = th ∈ N, as N is normal in Alt(n).

So suppose that t /∈ Alt(n). Then t(a,b) ∈ Alt(n). Note that h−1 = (c,b,a) = (b,a, c) and so
(a,b)

(h−1) = (a,b)(b,a, c) = (a,b, c) = h. Thus

t(a,b)
(h−1) =

t
(
(a,b)

(h−1)) = th = g

As the left hand side is in N we get g ∈ N.

(d) This is very similar to (c) : Let h = (a,b)(c,d) be a double 2-cycle in N and let g be
any double 2-cycle in Sym(n). Then g = th for some t ∈ Sym(n). Note that also g = t(a,b)h and
either t ∈ Alt(n) or t(a,b) ∈ Alt(n). Since N ⊴ Alt(n) we conclude that g ∈ N and so by (b),
N = Alt(n). �

Definition 1.11.7. Let G be a group. Then G is called simple if G ≠ {e} and {e} and G are the only
normal subgroup of G.

Proposition 1.11.8. Let n ≥ 5. Then Alt(n) is simple.

Proof. If n > 5 we assume by induction that Alt(n − 1) is simple. Let N be a non-trivial normal
subgroup of Alt(n).

Case 1. N contains an element g ≠ e with g(i) = i for some 1 ≤ i ≤ n.

Let H = {h ∈ Alt(n) ∣ h(i) = i}. Then H ≅ Alt(n − 1), g ∈ H ∩ N and so H ∩ N is a non-trivial
normal subgroup.

We claim that H ∩ N contains a 3-cycle or a double 2-cycle. Indeed if n = 5, then n − 1 = 4 and
the claim holds as every non-trivial element in Alt(4) is either a 3-cycle or a double 2-cycle. So
suppose that n > 5. Then by the induction assumption H ≅ Alt(n − 1) is simple. Since H ∩ N is a
non-trivial normal subgroup of H, this implies H ∩ N = H and again the claim holds.

By the claim N contains a 3-cyle or a double 2-cycle. So by 1.11.6(c),d we conclude N = Alt(n).

Case 2. N contains an element g with a cycle of length at least 3.
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Let (a,b, c, . . .) be a cycle of g of length at least 3. Let 1 ≤ d ≤ n be distinct from a,b and c. Put
h = (adc)g. Then h has the cycle (d,b,a, . . .). Also as N is normal in Alt(n), h ∈ N. So also hg ∈ N.

We compute (hg)(a) = h(b) = a and (hg)(b) = h(c) ≠ h(d) = b. So hg ≠ (1). Hence by (Case
1) ( applied to hg in place of g), N = Alt(n).

Case 3. N contains an element g with at least two 2-cycles.

Such a g has the form (ab)(cd)t where t is a product of cycles disjoint from {a,b, c,d}. Put
h = (abc)g. Then h = (bc)(ad)t. Thus

gh−1 = (ab)(cd)tt−1(bc)(ad) = (ac)(bd).

As h and gh−1 are in N, (Case 1) (or 1.11.6(d)) shows that N = Alt(n).

Now let e ≠ g ∈ N. As n ≥ 4, g must fulfill one of the three above cases and so N = Alt(n). �

Proposition 1.11.9. Let N ⊴ Sym(n). Then either N = {e},Alt(n) or Sym(n), or n = 4 and
N = {e, (12)(34), (13)(24), (14)(23)}.

Proof. For n ≤ 2, this is obvious. For n = 3 see 1.11.4 and for n = 4 see 1.11.5. So suppose n ≥ 5.
Then N ∩Alt(n) is a normal subgroup of Alt(n) and so by 1.11.8, N ∩Alt(n) = Alt(n) or {e}.

In the first case Alt(n) ≤ N ≤ Sym(n). Since ∣Sym(n)/Alt(n)∣ = 2, we conclude N = Alt(n) or
N = Sym(n).

In the second case we get

∣N∣ = ∣N/N ∩Alt(n)∣ = ∣NAlt(n)/Alt(n)∣ ≤ ∣Sym(n)Alt(n)∣ ≤ 2.

Suppose that ∣N∣ = 2 and let e ≠ n ∈ N. As n2 = e, n has a 2-cycle (ab). Let a ≠ c ≠ b with 1 ≤ c ≤ n.
The (abc)n has cycle (bc) and so n ≠ (abc)n. A contradiction to N = {e,n} and N ⊴ Sym(n). �

Lemma 1.11.10. The abelian simple groups are exactly cyclic groups of prime order.

Proof. Let A be an abelian simple group and e ≠ a ∈ A. Then ⟨a⟩ ⊴ A and so A = ⟨a⟩ is cyclic.
Hence A ≅ Z/mZ for some m ≥ 0. If m = 0, 2Z is a normal subgroup. Hence m > 0. If m is not a
prime we can pick a divisor 1 < k < m. But then kZ/mZ is a proper normal subgroup. �

1.12 Coproducts and free groups

Having looked at the direct product and direct sum of groups we now define the coproduct of a
family of groups:

Definition 1.12.1. Let (Gi)i∈I be a family of groups. A coproduct of (Gi)i∈I is a pair (G, (ρi)i∈I),
where G is a group and each ρi, i ∈ I, is homomorphism from Gi to G, with the following property:

Whenever H is a group and (αi ∶ Gi → H)i∈I a family of homomorphisms, then there exists a
unique homomorphism α ∶ G → H with αi = α ○ ρi for all i ∈ I.

As usual we summarize the definition in a commutative diagram:
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H G

Gi

∃!α

αi ρi

On an intuitive level this group is the largest group which contains the Gi’s and is generated by
them. Notice also that the defintion of the coproduct is nearly identical to the defintion of the direct
product. The difference is that all the arrows are reversed, that is a map fro A to B is replaced by a
map from B to A. But it turns out the the coproduct is much harder to construct. We will proceed in
three steps:

Step 1 Construction of coproduct X set-theoretic coproduct of (Gi)i∈I .

Step 2 Construction of the free monoid W for X.

Step 3 Definition of an equivalence relation ≈ on W.

The coproduct then will defined as W/≈.

Definition 1.12.2. Let (S i)i∈I be a family of sets. A (set-theoretic) coproduct of (S i)i∈I of (S i)i∈I is
pair (S , (ιi)i∈I) where S is a set and each ιi, i ∈ I is function ιi ∶ S i → S , with the following property:

Whenever T is a set and ( fi ∶ S i → T)i∈I is a family of functions, then there exists a unique
function f ∶ S → T with fi = f ○ ιi for all i ∈ I.

T S

S i

∃! f

fi ιi

Lemma 1.12.3. Let (S i)i∈I be a family of sets. Let (S , (ιi)i∈I) be a coproduct of (S i)i∈I , T a set and
( fi ∶ S i → T) a family of function. Let f ∶ S → T be the unique function with fi = f ○ ιi for all i ∈ I.
Then f is bijection, if and only if (T, ( fi)i∈I) is a coproduct of (S i)i∈I .

Proof. Let R be a set, (gi ∶ S i → R)i∈I a family of functions and g ∶ T → R a function. Then

(∗) gi = g ○ fi for all i ∈ I

if and only if gi = (g ○ f ) ○ ιi for all i ∈ I and so if and only if

(∗∗) g ○ f = h

where h ∶ S → R is the unique function with g = h ○ ιi for all i ∈ I.
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If ι is a bijection, then g = h○ f −1 is the unique function fulfilling (**) and so (T, ( fi)i∈I) is a
coproduct of (S i)i∈I .

Suppose now that (T, ( fi)i∈I) is a coproduct of (S i)i∈I . Then there exists a unique function
g ∶ T → S with ιi = g ○ fi for all i ∈ I. The unique function h ∶ S → S with ιi = h ○ ιi is h = idS .
Since (*) is equivalent to (**) this shows that g ○ f = idS . By symmetry f ○ g = idT and so f is a
bijection. �

Definition 1.12.4. Let (S i)i∈I be a family of sets.

(a)
⊍
i∈I

S i = {(s, i) ∣ i ∈ I, s ∈ S i}

⊍i∈I S i is called the disjoint union of (S i)i∈I ..

(b) We say that (S i)i∈I is pairwise disjoint if S i ∩ S j = ∅ for all i, j ∈ I with i ≠ j.

(c) Let S be a set. We say that S is the internal disjoint union of (S i)i∈I and write

S =
int
⊍
i∈I

S i

if S = ⋃i∈I S i and (S i)i∈I is pairwise disjoint.

Lemma 1.12.5. Let (S i)i∈I be a set. Put S = ⊍i∈I S i and for i ∈ I define ιi ∶ S i → S , s → (s, i). Then
(S , (ιi)i∈I) is a set-theoretic coproduct of (S i)i∈I .

Proof. Let T be a set and ( fi ∶ S i → T) be a family of function. Let f ∶ S → T be a function. Then
the following are equivalent:

fi = f ○ ιi for all i ∈ I

⇐⇒ fi(s) = f (ιi(s)) for all i ∈ I, s ∈ S i

⇐⇒ fi(s) = f (i, s) for all (i, s) ∈ S

Thus the function

f ∶ S → T, (i, s)→ fi(s)

is the unique function from S to I with fi = f ○ ιi for all i ∈ I. So (S , (ιi)i∈I is indeed a coproduct
of (S i)i∈I . �

Lemma 1.12.6. Let (S i)i∈I be a family of subset of the set S . Define

ι ∶⊍
i∈i

S i → S , (s, i)→ s

Then the following statements are equivalent
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(a) For each s ∈ S there exist a unique i ∈ I with s ∈ S i.

(b) S = ⊍int
i∈I S i.

(c) ι is a bijection.

(d) (S , (idS i)i∈I) is a coproduct of (S i)i∈I .

Proof. (a)⇐⇒ (b) : The existence statement in (a) holds if and only if S = ⋃i∈I S i. The unique-
ness statement holds holds if and only if S i ∩ S j ≠ ∅ implies i = j, that is if and only if (S i)i∈I is
pairwise disjoint.

(b)⇐⇒ (c) : Let s ∈ S . Then s = ι(r, i) for some (r, i) ∈ ⊍i∈I S i if and only if s = r and s ∈ S i

for some i ∈ R. Thus ι−1(s) = {(s, i) ∣ i ∈ I, s ∈ S i}. Hence ι is onto if and only if S = ⋃i∈I S i and ι is
1 − 1 if and only if S i ∩ S j ≠ ∅ implies i = j.

(c)⇐⇒ (d) : By 1.12.3 (c) and (d) are equivalent. �

Definition 1.12.7. Let I be a set. A free monoid for I is pair (W, ρ), where W is a monoid and
ρ ∶ I →W is a function, with the following property

Whenever M is monoid and β ∶ I → M is a function then there exists a unique homomorphism
of monoids γ ∶ W → M with β = γ ○ ρ.

M W

I

∃!γ

β ρ

Proposition 1.12.8. Let I be a set and let MI be the set of all tuples (i1, i2, . . . , in), where n ∈ N and
i j ∈ I for all 1 ≤ j ≤ n. For i = (i1, i2, . . . , in) and j = ( j1, . . . jm) in MI define

i j = (i1, i2, . . . , in, j1, . . . jm)

Then

(a) MI is a monoid.

(b) The map ρ ∶ I → MI , i→ (i) is 1-1.

(c) (MI , ρ) is a free monoid for I.

Proof. (a) The binary operation is clearly associative and () is an identity element.
(b) Obvious.
(c) Let M be a monoid and β ∶ I → M a function. Define γ((i1, . . . , in)) = β(i1)β(i2) . . . β(in))

where as usually the empty product is defined to be 1M. This is clearly a homomorphism and
β = γ ○ ρ.
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Conversely if δ ∶ MI → M is a homomorphism with β = δ ○ ρ. Then

δ((i1, i2, . . . in)) = δ(ρ(i1)ρ(i2) . . . ρ(in)) = δ(ρ(i1))δ(ρ(i2)) . . . δ(ρ(in)) = β(i1) . . . β(in)

So γ is a unique. Thus (MI , ρ) is indeed a free monoid on I. �

Remark 1.12.9. Let I be a set. By 1.12.8 there exists a free monoid (MI , ρ) and ρ is 1-1. So we can
identify i ∈ I with ρ(i) and obtain a free monoid of the form (MI , idI). Then each element w ∈ MI

can be uniquely written as

w = i1i2 . . . in

with n ∈ N and i1, . . . , in ∈ I. n is called the length of w and is denoted by l(w). Moreover, the
multiplication is given by

(i1 . . . in)( j1 . . . jm) = i1 . . . in j1 . . . jm

Lemma 1.12.10. Let (G, ⋅) be a magma, ∼ a relation on G and ≈ the equivalence relation on G
generated by ∼. Suppose that ab ≈ ac and ba ≈ ca for all a,b, c ∈ G with b ∼ c.

(a) The map ∗ ∶ G/≈ ×G/≈→ G/≈, ([a], [b])→ [ab] is a well-defined binary operation.

(b) If ⋅ is associative, then ∗ is associative.

(c) If 1 is an identity in G, then [1] is an identity in G/≈.

(d) Suppose G is a monoid and H is a subset of G such

(i) G is generated by H as a monoid.

(ii) For each h ∈ H there exists h′ ∈ G with hh′ ≈ 1 ≈ hh′.

Then G/≈ is a group.

Proof. (a) Let a,b, c,d ∈ G with a ≈ c and b ≈ d. Define f ∶ G → G, x → xb. Since x ∼ y implies
xb ∼ yb, 1.5.5 shows that a ≈ c implies ab ≈ cb. Choosing f ∶ G → G, x → cx instead, shows that
b ≈ d implies cb ≈ cd. Since ≈ is transitive this gives ab ≈ cd and so ∗ is well-defined.

(b) and (c) follows easily from the definition of ∗.
(d) Let h ∈ H. Then [hh′] = [1] = [hh′] and so [h] is invertible in G/≈. Put

K ∶= {g ∈ G ∣ [g] is invertible in G/≈}

Then H ⊆ K and e ∈ K. let a,b ∈ K. Then by 1.2.3(d), [ab] = [a][b] is invertible. Hence ab ∈ K
and K is a submonoid of G. Thus (d:i) implies K = G. Hence every [g] for g ∈ G is invertible.
Together with (b) and (c) we conclude that G/≈ is a group. �

Theorem 1.12.11. Let (Gi)i∈I be a family of groups. Let (X, (ιi)i∈I) be coproduct of the family of
sets (Gi)i∈I and put G●

i = ιi(Gi). (So X = ⊍i∈I Gi = ⊍
int
i∈I G●

i ). Let 1i = ιi(1Gi). Let (W, idX) be a free
monoid on X. We denote the binary operation on W by ∗ and the binary operation on G●

i (for i ∈ I)
by ⋅. Define the relation ∼ on W by v ∼ w if one of the following holds:
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(i) There exist x, y ∈ W, i ∈ I and a,b ∈ G●
i with w = x ∗ a ∗ b ∗ y and v = x ∗ (a ⋅ b) ∗ y

(ii) There exists x, y ∈ W and i ∈ I with w = x ∗ 1i ∗ y and v = x ∗ y.

Let ≈ be the equivalence relation on W generated by ∼. Then W/≈ is a group under the well-defined
operation

W/≈ × W/≈ →W/≈, [v][w]→ [vw].

Moreover,
ρi ∶ Gi →W/≈, g→ [ιi(g)]

is a group homomorphism and

(W/≈, (ρi)i∈I)

is a coproduct of the family of groups (Gi)i∈I .

Proof. To simplify notation we assume without loss that the Gi’s are pairwise disjoint. So ιi = idGi

and X = ⊍int
i∈I Gi.

Note that the defintion of ∼ implies that if u, v,w ∈ W with v ∼ w, then also u ∗ v ∼ u ∗ w and
v ∗ u ∼ w ∗ u. Thus by 1.12.10 W/≈ is a monoid with identity [()].

Let i ∈ I and a,b ∈ Gi. We will apply (i) and (ii) with x = y = (). By (i)

(1) a ∗ b ∼ a ⋅ b and so [a] ∗ [b] = [a ⋅ b]

By (ii)

1i ∼ () and so [1i] = [()]

If follows that a ∗ a−1 ≈ a ⋅ a−1 = 1i ≈ (). Thus by 1.12.10(d) W/≈ is a group.
Define ρi ∶ Gi →W/≈,g→ [g]. Then by (1), ρi is a homomorphism.
Now let H be a group and (αi ∶ Gi → H)i∈I a family of homomorphism. Define β ∶ X → H by

β(x) = αi(w) if i ∈ I with x ∈ Gi. Note here that i is uniquely determined since the Gi’s are pairwise
disjoint. By 1.12.8(c) there exists a unique homomorphism γ ∶ W → H with γ(x) = β(x) for all
x ∈ X and so γ(a) = αi(a) for all a ∈ Gi.

We claim that γ(v) = γ(w) whenever v ≈ w. By 1.5.5 applied with f = γ and ≋==, it suffices to
show that γ(v) = γ(w) whenever v ∼ w.

Suppose first that (i) holds. Then w = x ∗ a ∗ b ∗ y and v = x ∗ (a ⋅ b) ∗ y for some x, y ∈ W, i ∈ I
and a,b ∈ Gi Hence

γ(w) = γ(x)γ(a)γ(b)γ(y) = γ(x)(αi(a)αi(b))γ(y) =

γ(x)αi(a ⋅ b)γ(y) = γ(x)γ(a ⋅ b)γ(y) = γ(v).
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Suppose next that (ii) holds. Then w = x ∗ 1i ∗ y and v = x ∗ y for some x, y ∈ W and i ∈ I Hence

γ(w) = γ(x)γ(1i)γ(y) = γ(x)αi(1i)γ(y) = γ(x)1Hγ(y) = γ(x)γ(y) = γ(v).

By the claim we get a well defined map α ∶ W/≈→ H, [w] → γ(w). Also as γ is a homomor-
phism, α is, too.

Suppose now that δ ∶ W/≈ H is a homomorphism with αi = δ○ρi for all i ∈ I. Define δ∗ ∶ W → H
be δ∗(w) = δ([w]). Let x ∈ X. Then x ∈ Gi for some i ∈ I. We have δ∗(x) = δ(ρi(x)) = αi(x) =
β(x) = γ(x) and since W is the free monoid on X, δ∗ = γ. Thus for all w ∈ W, δ([w]) = δ∗(w) =

γ(w) = α([w]), and so α is unique. �

Lemma 1.12.12. Let (G, (ρi)i∈I) be a coproduct of the family of groups (Gi)i∈I .

(a) Each ρ j, j ∈ I, is 1-1.

(b) G = ⟨ρi(Gi) ∣ i ∈ I⟩.

Proof. (a) Fix j ∈ I. For i ∈ I we will define homomorphism Gi → G j as follows:
If i = j put αi = idGi .
If i ≠ j define αi by αi(g) = 1G j for all g ∈ Gi.
Then by definition of the coproduct there exists a homomorphism α ∶ G → G j with αi = α ○ ρi

for all i ∈ I. For i = j we conclude,

idG j = α ○ ρ j

Note that this implies that ρ j is 1-1.
(b) Let H = ⟨ρi(Gi) ∣ i ∈ I⟩. Then (ρi)i∈I is also a family of homomorphism ρi ∶ Gi → H.

Thus there exists a homomorphism α ∶ G → H with ρi = α ○ ρi for all i ∈ I. Note that α is also a
homomorphism from G to G, and that idG is a homomorphism from G to G with ρi = idG ○ ρi for all
i ∈ I. So by the uniqueness assertion in the definition of a coproduct, α = idG. Hence

G = Im idG = Imα ≤ H ≤ G

So indeed G = H = ⟨ρi(Gi) ∣ i ∈ I⟩. �

Proposition 1.12.13. Let (Gi)i∈I be a pairwise disjoint family of groups. Let 1i be the identity in Gi.
Let X = ⋃i∈I Gi and let (W, idX) be a free monoid for X. Let ≈ be the equivalence relation introduced
in 1.12.11. Let w ∈ W and let n ∈ N, ik ∈ I and xk ∈ Gik with w = x1 . . . xn. Call w reduced if

(i) xk ≠ 1ik for all 1 ≤ k ≠ n.

(ii) ik−1 ≠ ik for all 2 ≤ k ≤ n.

Then for each w ∈ W there exists a unique reduced wr ∈ W with w ≈ wr. So if Wr is the set of
reduced elements, the function

Wr →W/≈, u→ [u]
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is a bijection with well-defined inverse

W/≈ → Wr, [w]→ wr

Proof.

1○. Let w ∈ W. Then w is reduced if and only if there does not exists v ∈ W with v ∼ w.
Indeed, let w = x1 . . . xn with xk ∈ X. Then definition of ∼ shows that there exists v ∈ W with

v ∼ w if and only if either xk = 1ik for some 1 ≤ k ≤ n or ik−1 = ik for some 2 ≤ k ≤ n. Note that this
just means that w is not reduced.

Define the relation ≤ on W by v ≤ w if there exists m ∈ N and an m-tuple (v0, v1, . . . , vm) in W
such that

v0 = v, vm = w and vk−1 ∼ vk for all 1 ≤ k ≤ m

The following assertion follow immediately from the definitions:

2○.

(a) ≤ is reflexive and transitive.

(b) If v ≤ w, then l(v) ≤ l(w), with equality if and only if v = w.

(c) v ≤ w implies v ≈ w.

Next we prove:

3○. For each w ∈ W there exists a reduced word v ∈ W with v ≤ w.

Choose v ∈ V with v ≤ w and l(v) minimal. If v is not reduced, then by (1○), u ∼ v for some
u ∈ W. But then l(u) = l(v) − 1 < l(v) and u ≤ w, a contradiction to the choice of v.

4○. Let v1, v2,w ∈ W with v1 ∼ W and v2 ∼ w. Then there exists v ∈ W with v ≤ v1 and v ≤ v2.

Let l ∈ {1,2}. Since vl ∼ w, one of the following holds:

(li) There exist dl, el ∈ W, jl ∈ J and al,bl ∈ G jl with w = dl ∗ al ∗ bl ∗ el and vl = dl ∗ (al ⋅ bl) ∗ el.

(lii) There exist dl, el ∈ W, jl ∈ J with w = dl ∗ 1 jl ∗ el and vl = dl ∗ el.

Since we have two cases for l = 1 and l = 2 each, we will have two consider four different cases:

Case 1. (1i) and (2i) holds, that is

w = d1 ∗ a1 ∗ b1 ∗ e1 v1 = d1 ∗ (a1 ⋅ b1) ∗ e1

w = d2 ∗ a2 ∗ b2 ∗ e2 v2 = d2 ∗ (a2 ⋅ b2) ∗ e2
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We may assume without loss that l(d2) ≥ l(d1).
Suppose first that l(d2) ≥ l(d1) + 2. Then d2 = d1 ∗ a1 ∗ b1 ∗ d for some d ∈ W. Thus

w = d1 ∗a1 ∗b1 ∗d∗a2 ∗b2 ∗e2, v1 = d1 ∗(a1 ⋅b1)∗d∗a2 ∗b2 ∗e2, v2 = d1 ∗a1 ∗b1 ∗d∗(a2 ⋅b2)∗e2

Put

v = d1 ∗ (a1 ⋅ b1) ∗ d ∗ (a2 ⋅ b2) ∗ e2.

Then v ∼ v1 and v ∼ v2 and so (4○) hold.
Suppose that l(d2) = l(d1) + 1. Then d2 = d1 ∗ a1 and b1 = a2. Thus

w = d1 ∗ a1 ∗ b1 ∗ b2 ∗ e2, v1 = d1 ∗ (a1 ⋅ b1) ∗ b2 ∗ e2, v2 = d1 ∗ a1 ∗ (b1 ⋅ b2) ∗ e2

Choose v = d1 ∗ (a1 ⋅ b1 ∗ b2) ∗ e2. Then v ∼ v1 and v ∼ v2 and (4○) holds.
Suppose that l(d2) = l(d1). Then d1 = d2, v1 = v2 and we can choose v = v1 = v2.

Case 2. (1i) and (2ii) holds, that is

w = d1 ∗ a1 ∗ b1 ∗ e1 v1 = d1 ∗ (a1 ⋅ b1) ∗ e1

w = d2 ∗ 1 j2 ∗ e2 v2 = d2 ∗ e2

Suppose first that l(d1) > l(d2). Then d1 = d2 ∗ 1 j2 ∗ d for some d ∈ W. Thus

w = d2 ∗ 1 j2 ∗ d ∗ a1 ∗ b1 ∗ e1, v1 = d2 ∗ 1 j2 ∗ d ∗ (a1 ⋅ b1) ∗ e1, v2 = d2 ∗ d ∗ a1 ∗ b1 ∗ e1

Put v = d2 ∗ d ∗ (a1 ⋅ b1) ∗ e1. Then v ∼ v1 and v ∼ v2. So (4○) holds.
Suppose that l(d1) = l(d2). Then d1 = d2, j1 = j2 and a1 = 1 j1 = 1 j2 .
Thus

w = d1 ∗ 1 j1 ∗ b1 ∗ e2, v1 = d1 ∗ (1 j1 ⋅ b1) ∗ e2 v2 = d1 ∗ b1 ∗ e2

Thus v1 = v2 and we can choose v1 = v2.
If l(d1) + 1 = l(d2) we have 1 j2 = b1 and similar argument as in case l(d1) = l(d2) shows that

v1 = v2 (In fact fact we could apply the l(d1) = l(d2) result to opposite groups of W and Gi to treat
this case.)

The case l(d1) + 2 ≥ l(d2) is similar to l(d1) < l(d2) case. and can also by deduced from that
case by looking at the opposite groups.

Case 3. (1ii) and (2i) holds

Follows from the previous case with the roles of v1 and v2 interchanged.
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Case 4. (1ii) and (2i) holds, that is

w = d1 ∗ 1 j1 ∗ e1 v1 = d1 ∗ e1

w = d2 ∗ 1 j2 ∗ e2 v2 = d2 ∗ e2

We may assume that l(d2) ≥ l(d1).
Suppose that l(d1) = l(d2), then d1 = d2 and v1 = v2. So we can choose v = v1 = v2.
So suppose l(d2) > l(d1). Then d2 = d11 j1d for some d ∈ W and so

w = d1 ∗ 1 j1 ∗ d ∗ 1 j2 ∗ e2, v1 = d1 ∗ d ∗ 1 j2 ∗ e2 v2 = d1 ∗ 1 j1 ∗ d ∗ e2

Put v = d1 ∗ d ∗ e2. Then v ∼ v1 and v ∼ v2 and so (4○) also holds in this last sub case.

5○. For each w ∈ W there exists a unique reduced word wr ∈ W with wr ≤ w.

The existence has been established in (3○). For the uniqueness let z1 and z2 be reduced with
zi ≤ w.

If z1 = w then w is reduced. So there does not exist y ∈ W with y ∼ w and so z2 ≤ w implies
z2 = w = z1. So we may assume that z1 ≠ w ≠ z2.

By definition of ≤ there exist vi ∈ W with zi ≤ vi ∼ w.
By (4○) there exists v ∈ W with v ≤ v1 and v ≤ v2. By (3○) there exist a reduced z ∈ W with z ≤ v.

Since ≤ is transitive, z ≤ vl for l = 1,2. Since also zl is reduced with zi ≤ vi and since vi has length
less than w, we conclude by induction that z = zl. Thus z1 = z = z2 and (5○) is proved.

6○. Let v,w ∈ W. Then v ≈ w if and only vr = wr.

If vr = wr, then v ≈ vr = wr ≈ w and so v ≈ w.
Suppose that v ∼ w. Since vr ≤ v and ≤ is transitive, vr ≤ w. Since vr is reduced, (5○) gives that

vr = vw. We have shows that v ∼ w implies vr ∼ wr. By 1.5.5 applies with f ∶ W → W,w → wr and
≋== we conclude that also v ≈ w implies vr = wr.

7○. Let w ∈ W then wr is the unique reduced word with w ≈ wr.

Let v ∈ W be reduced. Then vr = v and so by (6○), v ≈ w if and only if v = wr. �

1.12.14 (Products of reduced elements). Note that Wr is usually not closed under multiplication
(unless all Gi but one of the Gi’s are trivial. But it is not difficult to figure out what the reduction
of the product is. Indeed let x = x1x1 . . . xn and y = y0y1 . . . ym be reduced words. Let 0 ≤ s ≤

min(n,m + 1) be maximal with y−1
t = xn−t for all 0 ≤ t < s. Then

xy ≈ x1x2 . . . xn−sysys+1 . . . ym

If s = n, s = m + 1 or xn−s and ys are not contained in a common Gi this is the reduction of xy.
On the other hand if xn−s and ys both are contained in Gi, then

xy ≈ x1, . . . xn−s−1(xn−s ⋅ ys)ys+1 . . . ym
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By maximality of s, xn−s ⋅ ys ≠ 1i and it is easy to seen that the element on the right hand side of the
last equation is reduced, and so is the reduction of xy.

Remark 1.12.15. Coproducts also exists for semigroups and for monoids. Indeed, everything we
did for groups carries over with one exception though. In case of semigroups we do not include the
empty tuple in the sets of words and omit 1.12.11(ii) in the definition of v ∼ w.

Example 1.12.16. Let A ≅ B ≅ Z/2Z. We will compute D = A∐B. To simply notation we identify
x ∈ A ∪ B with its image in D. In particular 1 ∶= 1G = 1A = 1B, ρA = idA and ρB = idB. Let 1 ≠ a ∈ A
and 1 ≠ b ∈ B. Then every elements in D has one of the following forms:

1

(ab)(ab) . . . (ab)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

(ba)(ba) . . . (ba)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

b (ab)(ab) . . . (ab)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

a (ba)(ba) . . . (ba)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

Put z = ab. Then z−1 = b−1a−1 = ba. So the above list now reads

z0, zn, z−n,bzn, and az−n.

Note that

bzn = b(ab)n = (aa)b(ab)n = a(ab) = (ab)n+1 = azn+1

and so

D = {zn,azn ∣ n ∈ Z}.

It is also easy to compute the product of two elements in D: Observe that

zna = a(ba)n−1ba = az−n

and so

zn ∗ zm = zn+m, zn ∗ azm = azm−n, azn ∗ zm = azn+m, azn ∗ azm = aaz−nzm = zm−n



1.12. COPRODUCTS AND FREE GROUPS 87

This can be combined in one formula: Define ε(0) = 1 and ε(1) = −1. Then for n,m ∈ Z and
i, j ∈ {0,1}:

(aizn) ∗ (a jzm) = ai+ jzε( j)n+m

By now we determined the complete multiplication table of D. D is called the infinite dihedral
group.

We will know constructed a second group D̃ and show that it is isomorphic to D. Define

ã ∶ Z→ Z m→ −m

b̃ ∶ Z→ Z m→ 1 −m

Then ã, b̃ ∈ Sym(Z), ã is a reflection at 0 and b̃ is the reflection at 1
2 Put D̃ = ⟨ã, b̃⟩. Since both ã

and b̃ have order two, there exist homomorphism,αA ∶ A → D̃ and αB ∶ B → D̃ with αA(a) = ã and
αB(b) = b̃. Hence by the definition of the co-product, there exists a homomorphism β ∶ D→ B̃ with
αA = β ○ ρA and αB = β ○ ρB. Then

β(a) = β(ρA(a)) = αA(a) = ã

and similarly β(b) = b̃.
Hence

β(D) = β(⟨a,b⟩) = ⟨β(a), β(b)⟩ = ⟨ã, b̃⟩ = D̃

So β is onto. Put z̃ = ã ○ b̃. Then

z̃(m) = ã(b̃(m)) = ã(1 −m) = m − 1

So z̃ is the translation by −11. Also z̃ j(m) = m − n and (ãz̃ j)(m) = ã(m − j) = j − m. Thus z j is
translation by − j and ãz̃n is the reflection at j

2 .
We have β(z) = β(ab) = β(a)β(b) = ãb̃ = z̃ and so also β(aiz j) = β(a)i(̃b) j = ãiz̃ j. Since the

ãiz̃ j, i = 0,1, j ∈ Z are pairwise distinct, we conclude that β is 1-1. Thus β is an isomorphism and

D ≅ D̃

Let Z = ⟨z⟩. Then Z ≅ (Z,+) and Z has index two in G1 ∗ G2. In particular, Z ⊴ D. Also
za = aza = aaba = ba = z−1. Thus

(zn)a = z−n and zna = az−n.

In particular, if A ≤ Z then both Z and a normalize D and A ⊴ G.
Here is a property of D which will come in handy later on:

All elements in D ∖ Z are conjugate to a or b.
Indeed znaz−n = znzna = z2na and znbz−n = z2nb = z2nbaa = z2n+1a. So z2na is conjugate to a and

z2n+1a is conjugate to b.
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Fix n ∈ Z. Consider the relation zn = e. Put N = ⟨zn⟩. Then N ⊴ D and so

∐
i∈{1,2}

Gi/⟨(ab)n = e⟩ = D/N

Since Z/D ≅ Z/nZ, D/N has order 2n. D/N is called the dihedral group of order 2n, or the
dihedral group of degree n.

Suppose now that D̄ is any group generated by two elements of order two, ā and b̄. Then there
exists a homomorphism α ∶ D → D̄ sending a to ā and b to b̄. Let z̄ = āb̄ and Z̄ = ⟨z̄⟩. Since neither
a nor b are in kerα and all elements in D ∖ Z are conjugate to a or b, kerα ≤ Z. Thus kerα = ⟨zn⟩

for some n ∈ N and so D̄ ≅ D/kerα = D/N. So any group generated by two elements of order 2 is a
dihedral group.

Definition 1.12.17. Let I be a set. A free group generated by I is pair (F, ρ), where F is group and
ρ ∶ I → FI is a function, with the following property:

Whenever H is a group and α ∶ I → H is a function, then there exists a unique homomorphism
β ∶ F → H with α = β ○ ρ.

H F

I

∃!β

α ρ

Lemma 1.12.18. Let I be a set. Then there exists a free group generated by I.

Proof. For i ∈ I let Gi = (Z,+) and let (F, (ρi)i∈I) be a coproduct of (Gi)i∈I . Define ρ ∶ I → F,
i→ ρi(1). Now let H be a group and α ∶ I → H be function. Define

αi ∶ Gi → H,m→ α(i)m.

Since hn+m = hnhm for all h ∈ H,n,m ∈ Z, αi is a homomorphism. So by definition of the coproduct
of (Gi)i∈I there exists a unique homomorphism β ∶ FI → H, with αi = β ○ ρi. Then

α(i) = αi(1) = β(ρi(1)) = β(ρ(i))

and so α = β ○ ρ. Suppose also γ ∶ F → H fulfills α = γ ○ ρ. Then for all m ∈ Gi,

αi(m) = α(i)m = γ(ρ(i))m = γ(ρi(1)m) = γ(ρi(m))

Hence αi = γ ○ ρi and so by the uniqueness assertion in the definition of the coproduct β = γ. �

Lemma 1.12.19. Let (F, ρ) be a free group generated by I. Then ρ is 1-1.
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Proof. Let H be any non-trivial group and 1 ≠ h ∈ H. Let j ∈ J and define α ∶ I → H by

α( j) =
⎧⎪⎪
⎨
⎪⎪⎩

h if i = j
1 if i ≠ j

Then there exists a homomorphism β ∶ F → H with α = β ○ ρ. Then for i ∈ I with i ≠ j.

β((ρ(i)) = α(i) = 1 ≠ h = α( j)β((ρ(i))

and so ρ(i) ≠ ρ( j). �

In view of the preceding lemma we can identify i ∈ I with ρ(i) in F. This gives rise to the
following

Notation 1.12.20. Let I be a set. Then FI is a group with I ⊆ FI such that (FI , idI) is a free group
generated by I.

1.12.21 (Reduced words in free groups). Let I be a set and Gi = ⟨i⟩ = {im ∣ m ∈ Z}, the subgroup of
FI generated by I. Then by proof of 1.12.18 Gi ≅ Z and FI is the co-product of the (Gi)i∈I . So by
1.12.13 each element in FI can be uniquely written as g1g2 . . .gk where k ∈ N, g j ∈ Gi j , g j ≠ 1Gi j

for

all 1 ≤ j ≤ k and i j−1 ≠ i j for all 2 ≤ j < k. Since Gi j = ⟨i j⟩ we have g j = im j
j for some 0 ≠ n j ∈ Z.

Thus every element w in FI can be uniquely written as

(∗) w = in1
1 in2

2 . . . ink
n

where k ∈ N, i j ∈ I,0 ≠ n j ∈ Z and i j−1 ≠ i j. (*) is called
is called the reduced form of w. G be group and g = (gi)i∈I a family of elements of G. Then by

definition of the free group there exists a unique homomorphism β ∶ FI → G with g = β ○ idI . Note
that g = β ○ idI just means β(i) = gi for all i ∈ I. Thus

β(in1
1 in2

2 . . . ink
k ) = gn1

i1 gn2
i2 . . .g

nk
ik

Definition 1.12.22. Let I be a set.

(a) A group relation is an ordered pair (v,w) with v,w ∈ FI . We will usually denoted such an
ordered pair by v ≡ w.

(b) Let G be a group and g ∈ GI . We say that g fulfills the relation v ≡ w provided that β(v) = β(w),
where β is the unique homomorphism from FI to G with beta∣I = g.

Let v,w ∈ FI with v = in1
1 . . . ink

k and w = jm1
1 . . . jml

l . Then g = (gi)i∈I fulfills the relation

in1
1 . . . ink

k ≡ jm1
1 . . . jml

l

if and only if

gn1
i1 . . .g

nk
ik = gm1

j1 . . .g
ml
jl
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Example 1.12.23. Let I = {a,b}, G = Sym(3) and consider the relation aba−1 ≡ b−1.
Do ga = (12) and gb = (123) fulfill the relation? In other words is

(12) ○ (123) ○ (12)−1 ?
= (123)−1

The left hand side is (213) and the right hand side is (321), both of which are equal to (132).
So the answer is yes.

Do ha = (12) and hb = (23) fulfill the relation?

(12) ○ (23) ○ (12)−1 ?
= (23)−1

The left side is (13) the right side is (23), so this time the answer is no.

Definition 1.12.24. Let I be a set andR a set of group relations on I. Then a group with generators
I and relationsR is a pair (G,g), where G is a group and g ∈ GI such that

(a) f fulfills all the relations inR.

(b) Whenever H is a group and h ∈ HI fulfills all the relations in R, then there exists a unique
homomorphism δ ∶ G → H with h = δ ○ g.

Lemma 1.12.25. Let I be a set and R a set of group relations on I. Then there exists a group G
with generators I and relationsR.

Proof. Note that the relation v ≡ w is fulfilled if and only if the relation vw−1 ≡ 1 is fulfilled. So we
may assume thatR = {r ≡ 1 ∣ r ∈ R} for some subset R of FI . Put

N ∶= ⟨FI R⟩,

so N is the intersection of all the normal subgroup of FI containing R. Put G = FI/N and let gi = iN
for i ∈ N. Note that

πN ∶ FI → G,w→ wN

is the unique homomorphism from FI to G with πN(i) = gi = iN. Also

πN(r) = rN = N = 1G

for all r ∈ R and so g = (gi)i∈I fulfills all the relation inR.
Now let H be a group and let h ∈ HI fulfill all the relations in R. Let β ∶ FI → H be the unique

homomorphism with β∣I = h. Let r ∈ R. Since h fullfills all the relations r ≡ 1, we have β(r) = 1.
Hence r ∈ kerβ and R ⊆ kerβ. Since kerβ ⊴ FI and N = ⟨FI R⟩, N ≤ ker ′. It follows that the map

δ ∶ G → H,wN → β(w)

is a well-defined homomorphism. Also δ(gi) = δ(iN) = β(i) = hi.
It remains to show that uniqueness δ. So let α ∶ G → H be a homomorphism with α(gi) = hi.

Then (α ○ πN)(i) = α(gi) = hi and so α ○ πN = β by uniqueness of β. Hence for all w ∈ FI ,
α(wN) = (α ○ πN)(w) = β(w) and so α = δ. �
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Remark 1.12.26. Let (G,g) be a group with generators I and relationsR. Then G = ⟨gi ∣ i ∈ I⟩.

Proof. This follows from the construction above but can also be proven directly from the definition:
Let H = ⟨gi ∣ i ∈ I⟩. Since g = (gi)i∈I is a family of elements in H fulfilling the relationsR, there

exists a homomorphism α ∶ G → H with α(gi) = gi for all i ∈ I. Note that α is also a homomorphism
from G to G, and that idG is a homomorphism from G to G with idG(gi) = gi for all i ∈ I. It follows
that idG = α and so

G = Im idG = Imα ≤ H ≤ G

So indeed G = H = ⟨gi ∣ i ∈ I⟩. �

1.12.27 (Notation in groups with generators and relation). Let I be a set and R a set of group
relations on I. Then

G = ⟨I ∣R⟩

means that G is a group and there exists a family of elements (gi)i∈I in G such that (G, (gi)i∈I) is
group with generators I and relationsR. So if

(∗) in1
1 . . . ink

k ≡ jm1
1 . . . jml

l

is one of the relation inR then

(∗∗) gn1
i1 . . .g

nk
ik = gm1

j1 . . .g
ml
jl .

In practical computation is often quite cumbersome to work with elements with subscripts. We
therefore often just write a for the element ga in G. This should be only done if this is clearly from
the context that the computation are done in G and that a no longer stands for the element a in FI .
Note also that this is not an identification, since the map I → G,a → ga is (in general) not 1-1. The
advantage of this convention is that, replacing all ga by a, the equation (**) now turns into the easier

(∗ ∗ ∗) in1
1 . . . ink

k = jm1
1 . . . jml

l .

So the group relation (*) in FI turns into the actual equality (***) in G.

Example 1.12.28. 1. We will show that

G ∶= ⟨a,b, c ∣ ab ≡ c,ab ≡ ba, c2 ≡= a, c3 ≡= b, c5 ≡ 1⟩

is the trivial group.

We will follow the conventions of 1.12.27 and just write a for ga, b for gb and c for gc, that is
we treat a,b, c as elements of G, rather than elements of F{a,b,c}. Then the relations defining G
become actual equalities and so c = ab = c2c3 = c5 = e. Hence also a = c2 = e and b = c2 = e.
Thus G = 1.
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2. The group
G = ⟨a,b ∣ a2 ≡ 1,b2 ≡ 1⟩

is the infinite dihedral group. To see that let Ha = ⟨ha⟩ and Hb = ⟨hb⟩ be cyclic groups of order
2 and H = Ha∐Hb. Let Ga = ⟨ga⟩ ≤ G and Gb = ⟨gb⟩ ≤ G. Since g2

a = g2
b = 1. There exists

homomorphism αa ∶ Ha → Ga and αb ∶ Hb → Gb with αa(ha) = ga and αb(hb) = gb. So by
defintion of the coproduct, there exists unique homomorphism α ∶ H → G with α(ha) = ga and
α(hb) = gb. Conversely, since (ga,gb) fulfills the relation a2 ≡ 1 and b2 ≡ 1, there exists a unique
homomorphism β ∶ G → H, with β(ga) = ha and β(gb) = hb. It is now easy to see that α ○β = idG

and β ○ α = idH . So G ≅ H.

Informally what we just proved is that the ’largest’ group generated by two elements of order
two is same as the ’largest’ groups generated by two groups of order two.

3. The group
⟨a,b ∣ a2 = 2,b2 = e, (ab)n = e⟩

is the called the dihedral group Dih2n of degree n or the dihedral group of order 2n

Let F = F{a,b} and K = ⟨
F
{a2,b2} and N = ⟨

F
{a2,b2, (ab)n}⟩. Then by (2), F/K is the infinite

dihedral group. For x ∈ F let x = xK. Put z = ab and y = (ab)n. Then N = K⟨Fy⟩. By 1.12.16,
az = z−1a. If follows that az = z−1, ay = y−1 and ay⟩ = ⟨ay⟩ = ⟨y−1⟩ = ⟨o y⟩. Hence a and z
normalizes ⟨y⟩. Since F = ⟨a, z⟩, ⟨y⟩ is normal in F. Hence K⟨y⟩ is normal in F and N = K⟨y⟩.
Thus

F/N ≅ F/N = F/⟨y⟩ = F/⟨zn⟩

By 1.12.16 F = {aiz j ∣ i ∈ 0,1, j ∈ Z}. Since (aiz j)znm = aizl+nm we see that

aiz jN = akzlN < ri = k and j ≡ k (mod n)

Thus F/N = {aiz jN ∣ 0 ≤ i ≤ 1,0 ≤ j < n} and so ∣F/N has order 2.

We will now construct a second group which is isomorphic to F/N. This is similar to construc-
tion of the group D̃ in Example 1.12.16. The only difference is that we repalce Z by Z/n mbZ
where n is an integer with n ≥ 2.

Define ã ∶ Z/nZ → Z/nZ,m → −m and b̃ ∶ Z/nZ → Z/nZ,m → 1 −m. Put z̃ = ã ○ b̃. Then as in
1.12.16

z̃(m) = m + 1, z̃ j(m), = m − j, ãz̃ j(m) = j −m

Put G̃ = ⟨ã, b̃⟩. Since the calculation are done modulo n we conclude that

∣z̃∣ = n, D̃ = {ãiz̃ j ∣ 0 ≤ 1 ≤ i,0 ≤ j < n}, and ∣D̃∣ = 2n
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So (ã, b̃) fulfills the relations for G and so there exists a unique homomorhism β ∶ G → G̃ with
β(aN) = ã and β(bN) = b̃. Then β(aiz jN) = ãib̃ j and so β is a bijection. Thus G ≅ G̃.

Here is a more geometric version of the above. Let ξ = e
2πi
n ∈ C and Un = {ξi ∣ 0 ≤ i < n}. So Un

is the set of n-roots of unity in C and the map Z/nZ,+) → (Un, ⋅), i → ξi is an isomorphism. z̃ j

corresponds to clockwise rotation by j
n 2π radiants and ãzi correponds to the reflection at the line

through 0 and ξ
j
2 . Note that if j is even xi

j
2 is in Un, while if j is odd xi

j
2 is the midpoint on the

unit circle between ξ
j−1
2 and ξ

j+1
2 .

4.
G ∶= ⟨a,b ∣ a3 ≡ 1,b3 ≡ 1, (ab)2 ≡ 1⟩

To determine G let z = ab. Then z2 = 1. We compute

a2
z ⋅ az ⋅ z = a2(ab)a−2 ⋅ a(ab)a−1 ⋅ ab = a3b(a−2a2)b(a−1a)b = a3b3 = 1.

Since z2 = 1 this implies

a2
z = az ⋅ z = z ⋅ az, z = a2

z ⋅ az = az ⋅ a2
z and az = a2

z ⋅ z = z ⋅ a2
z

Thus

K ∶= {1, z, az, a2
z}

is a subgroup of G. Now

a
(a2

z) = a3
z = 1z = z.

and so a ∈ NG(K). Put A = ⟨a⟩. Then A ≤ NG(K) and so AK is a subgroup of G. It contains a
and z = ab and so also b = a−1z. Thus G = ⟨a,b⟩ = AB. Since a3 = 1, ∣A∣leq3. Also ∣K∣ ≤ 4 and so
∣G∣ ≤ ∣A∣∣K∣ ≤ 12.

Put

H = Alt(4), ha = (123) hb = (124)

Then h3
a = 1,h3

b = 1, hahb = (123)(124) = (13)(24) and (hahb)
2 = 1. So (ha,hb) fulfills the

relations and so there exists a homomorphism

α ∶ G → Alt(4) with a→ (123),b→ (124)

Put L = ⟨123, (124)⟩. Then L has more than one Sylow 3-subgroup and so has at least four Sylow
3 subgroup. Hence ∣L∣ ≥ 12 and L = Alt(4). Since L ≤ Imα, α is onto. Since ∣G∣ ≤ 12 = ∣Alt(4)∣
we conclude that α is a isomorphism. Thus
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G ≅ Alt(4)

5. Let (Gi)i∈I be a pairwise disjoint family of groups. Then

⟨⋃
i∈I

Gi ∣ a ∗ b ≡ a ⋅ b for all i ∈ I,a,b ∈ Gi,a ∗ b ≡ b ∗ a for all i, j ∈ I, i ≠ j,a ∈ Gi,b ∈ G j⟩

is ⊕i∈I Gi

6. Let I be a set, then

⟨I ∣ i j ≡ ji for all i, j ∈ I⟩

is ⊕i∈I Z and is denote by ZI . This group is called the free abelian group on the set I. Using
additive notation, each elements of ZI can be uniquely written as

∑
i∈I

nii

where (ni)i∈I is an almost zero sequence of integers and

∑
i∈I

nii +∑
i∈I

mii =∑
i∈I

(ni +mi)i

Definition 1.12.29. Let (M, ⋅) be a magma and (FM,∗, idM) a free group on the set M. Let (G, ρ)
be the group with generators (m)m∈M and relations

a ∗ b ≡ a ⋅ b, a,b ∈ M

Then (G, ρ) is called the group generated by the magma M.

Lemma 1.12.30. (G, ρ) be a group generated by the magma M. Let H be group and α ∶ M → H a
homomorphism. Then there exists a unique homomorphism β ∶ G → H with α = β ○ ρ.

Proof. Let a,b ∈ M. Then α(ab) = α(a)α(b) and so (H, α) fulfills the relations a∗b ≡ a⋅b,a,b ∈ M.
So the lemma follows from the definition of a group with generators and relations. �

Lemma 1.12.31. Let G be group. Then (G, idG) is the group generated by the magma G.

Proof. Let H be a group and α ∶ G → H be a homomorphism. Then α is the unique homomorphism
from G to H with α = α ○ idG. So the lemma follows from 1.12.30. �
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1.13 Fractions

Definition 1.13.1. Let G and H be magma. A (G,H)-biset is triple (A,∗,◇) such that

(a) ∗ is a action of G on A.

(b) ◇ is a right action of H on A.

(c) g ∗ (a ◇ h) = (g ∗ a) ◇ h for all g ∈ G,a ∈ A and h ∈ H.

Lemma 1.13.2. Let G and H be magma and A an (G,H)-biset. Then the function

G × A/H → A/H, (g, [a]) → [ga]

is a well defined action of G on the set A/H of orbits of H on A.

Proof. Let ∼= {(a,ah) ∣ a ∈ A,h ∈ H} and ≈ the equivalence relation on A generated by ∼. Then
by definition the orbit [a] of H on A containing a is [a]≈. Let a,b ∈ A with a ∼ b and g ∈ G. Then
b = ah for some h ∈ H and

gb = g(ah) = (ga)h

Thus ga ∼ gb and so ∼ is G-invariant. The lemma now follows from 1.7.42. �

Definition 1.13.3. Let H be magma, A a right H-set, B an H set.

(a) Let ∼H be the relation

{ ( (ah,b) , (a,hb) ) ∣ a ∈ A,h ∈ H,b ∈ B}

Let ≈H be the equivalence relation on A × B generated by ∼H . Define

a ×H b = [(a,b)]≈H and A ×H B = A × B/ ≈H

A ×H B is called the balanced product of A and B over H.

(b) A function f ∈ Fun(A × B) is called H-balanced if (∼H ,=) is f -invariant, that is f (ah,b) =

f (a,hb) for all a ∈ A,h ∈ H and b ∈ B.

Lemma 1.13.4. Let H be magma, A a right H-set, B an H set and f ∈ Fun(A × B) an H-balanced
function. Then

f ∈ Fun(A ×H B), a ×H b→ f (a,b)

is a well-defined function.

Proof. Since (∼H ,=) is f -invariant, 1.5.5 shows that (≈H ,=) is f -invariant. Thus f is well-defined.
�
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Lemma 1.13.5. Let G and H be magma, A a (G,H)-biset and B an H-set. Then

∗ ∶ G × (A ×H B)→ A ×H B, (g,a ×H b)→ ga ×H b

is a well-defined action of G on A ×H B.

Proof. Let g ∈ G. Define

fg ∶ A × B→ A × B, (a,b)→ (ga,b).

Since

fg(ah,b) = (g(ah),b) = (ga)h,b) ∼H (ga,hb) = fg(a,hb)

(∼H ,≈H) is fg-invariant. Hence by 1.5.5 also (≈H ,≈H) is fg-invariant and so ∗ is well-defined.
Note also that

(gg′) ∗ (a ×H b) = ((gg′)a) ×H b = (g(g′a)) ×H b = g ∗ ((g′a) ×H b) = g ∗ (g′ ∗ (a ×H b))

and so ∗ is an action of G on A ×H B. �

Lemma 1.13.6. Let X be a non-empty abelian semigroup and ∗ a magma action of X on set S . Let
∼ be the relation on X × S defined by

(x, s) ∼ (zx, zs) for all x, z ∈ X, s ∈ S

Let ≈ be the relation on X × S defined by

(x, s) ≈ (y, t) if there exists z ∈ X with zxt = zys

For x ∈ X and s ∈ S put s
x = [(x, s)]≈ and X−1S = (X × S )/≈= { s

x ∣ s ∈ S , x ∈ X}. Then

(a) ≈ is the equivalence relation on X × S generated by ∼.

(b) Let (s, x), (t, y) ∈ X × S . Then

sy = xt Ô⇒
s
x
=

t
y

(c) α ∶ X × X−1S → X−1S , (y, s
x)→

ys
x is well-defined action of X on X−1S .

(d) β ∶ X × X−1S → X−1S , (y, s
x)→

s
yx is well-defined action of X on X−1S .

(e) For all y ∈ X, the function yα ∶ X−1S → X−1S , s
x →

ys
x is inverse to the function yβ ∶ X−1S →

X−1S , s
x →

s
yx .
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(f) For all y, z ∈ X and s
x ∈ X−1S ,

(yα ○ zβ)(
s
x
) =

ys
zx

= (zα ○ xβ)(
s
x
)

and yα ○ zβ = zβ ○ yα.

(g) Let x ∈ X. Then map τ ∶ S → X−1S , s → xs
x is a X-equivariant and independent of the choice of

x ∈ X.

(h) τ(s) = τ(t) if and only if zs = zt for some z ∈ X.

(i) τ is 1-1 if and only if z∗ is 1-1 for all z ∈ X.

(j) s
x = xβ(τ(s)) for all x ∈ X, s ∈ S .

(k) Suppose ◇ is an action of X on the set S̃ , ρ ∶ S → S̃ is X-equivariant and x◇ is invertible for
each x ∈ X. Then

γ ∶ S −1X → S̃ ,
g
s
→ (x◇)−1(ρ(s))

is well-defined and is the unique X-equivariant map from S −1X to S̃ with ρ = γ ○ τ.

Proof. Note first that ∼ is just the relation associated to the magma-action

X × (X × S )→ (X × S ), (z, (x, s) → (zx, zs)

of X on X × S . Let ≋ by the equivalence relation generated by ∼.

(a) Let (x, s), (y, t) ∈ X × S . By 1.7.15(b)

(x, s) ≋ (y, t) ⇐⇒ (ux,us) = (vy, vt) for some u, v ∈ X

Suppose this holds. Then ux = vy and us = vt. Thus

u(xt) = (ux)t = (vy)t = (yv)t = y(vt) = y(us) = (yu)s = (uy)s = u(ys)

and so using z = u we see that (x, s) ≈ (y, t). Hence ≋⊆≈.
Conversely suppose that z(xt) = z(ys) for some z ∈ X. Put u = zy and v = zx. Then

ux = (zy)x = z(yx) = z(xy) = (zx)y = vy and us = (zy)s = z(ys) = z(xt) = (zx)t = vt

and so (x, s) ≈ (y, t) and ≈⊆≋.

(b) Note that xt = ys implies xxt = xys and using z = x we see that (x, s) ≈ (y, t). Since ≈ is an
equivalence relation, this gives (b).
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(c) Observe that X acts on X × S via y ∗ (x, s) = (yx, s) and since X is abelian, X acts on X × S
from the right via (x, s)z = (zx, zs). Moreover,

(y ∗ (x, s))z = (yx, s)z = (zyx, zs) = (y(zx), zs) = y ∗ (zx, zs) = y ∗ (x, s)z.

X × S is an X,X)-biset and the assertion follows from 1.13.2.

(d) Observe that X acts on X × S via y ⋅ (x, s) = (x, ys)
Moreover,

(y ⋅ (x, s))z = (x, ys)z = (zx, zys) = (zx, y(zs)y ⋅ (zx, zs) = y ⋅ ((x, s)z)

So X × S is an (X,X)-biset and the assertion follows from 1.13.2.

(f):

(yα ○ zβ)(
s
x
) = yα(zβ(

s
x
)) = yα(

s
zx

) =
ys
zx

= zβ(
ys
x
) = zβ(yα(

s
x
)) = (zα ○ xβ)(

s
x
)

and so (f) holds.

(e) Since (x, s) ∼ (yx, ys), ys
yx =

s
x . Thus (e) follows from (f).

(g)
τ(ys) =

ysx
x

= y
sx
x
= yτ(s)

and so τ is X equivariant. Note that x(ys) = y(xs) and so by (b) xs
x = ys

y . Thus τ is independent of x.

(h) Suppose zs = zt for some z in X. Then τ(s) = zs
z = zt

z = τ(z). Suppose next that τ(s) = τ(t).
Then xs

x = xt
x and so yxxs = yxxt for some y ∈ X. Thus zs = zt for z = yxx.

(i) follows immediately from (h).

(j) xβ(τ(s)) = xβ( xs
x ) = xs

xx =
s
x .

(k) Consider the function:

µ ∶ X × S → S̃ , (x, s)→ (x◇)−1(ρ(s))

If (x, s) ∼ (y, t), then (y, t) = (zx, zt) for some z ∈ X. Thus

µ(y, t) = (y◇)−1(ρ(t)) = (zx)◇)−1(ρ(zs)) = (z◇x◇)−1(z ◇ ρ(x))

= ((x◇)−1 ○ (z◇)−1)(z◇(ρ(x)) = (x◇)−1(ρ(s)) = µ(x, s)

Since ≈ is the equivalence relation generated by ∼, 1.5.5(b) shows that γ is well-defined.
Since X is abelian, xy = yx and so also x◇ ○ y◇ = y◇ ○ x◇. Since x◇ is invertible this implies

y◇ ○ (x◇)−1 = (x◇)−1 ○ y◇
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Thus

γ(y
s
x
) = γ(

ys
x
) = (x◇)−1(ρ(ys) = (x◇)−1(y◇(s)) = y◇((x◇)−1(s)) = y ◇ γ(

x
s
)

and so γ is X-equivariant.
Suppose next that δ ∶ X−1S → S̃ is X-equivariant with ρ = δ ○ τ. Then

x ◇ δ(
s
x
) = δ(x

s
x
) = δ(

xs
x
) = δ(τ(s)) = ρ(s)

and so

δ(
s
x
) = (x◇)−1(ρ(s)) = γ(s)

Hence γ is unique. �

Lemma 1.13.7. Let G be a non-empty semigroup, and S a non-empty subsemigroup of G. Let

∼ = {((g, s), (gu, su)) ∣ g ∈ G, s,u ∈ S}

and note that ∼ is a relation on G × S . Let ≈ be the relation on G × S defined by

(a, s) ≈ (a′, s′) if there exists u ∈ S with as′u = a′su

Then ≈ is the equivalence relation generated by ∼. For a ∈ G and s ∈ S put a
s = [(a, s)]≈ and

S −1G = (G × S )/≈. Then

(a)

S −1G × S −1G → S −1G, (
a
s
,

b
t
) →

as
bt

is a well defined associative binary operation on S −1G.

(b) For each s ∈ S , s
s is an identity in S −1G.

(c) For each s, t ∈ S , s
t is an inverse of t

s .

(d) Let s ∈ S . Then map τ ∶ G → S −1G,g → gs
s is a homomorphism and independent of the choice

of s ∈ S .

(e) τ(g) = τ(h) if and only if gu = hu for some u ∈ S .

(f) τ is 1-1 if and only if the Cancellation Law holds for elements in S .

(g) For all g ∈ G, s ∈ S , a
s = τ(a)τ(s)−1.
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(h) Let H be a commutative monoid and α ∶ G → H be a homomorphism such that each α(s), s ∈ S
is invertible in H. Then

β ∶ S −1G → H,
g
s
→ α(g)α(s)−1

is well-defined and is the unique homomorphism from S −1H to G with α = β ○ τ.

Proof. �



Chapter 2

Rings

2.1 Rings

Definition 2.1.1. A ring is a tuple (R,+, ⋅) such that

(a) (R,+) is an abelian group.

(b) (R, ⋅) is a semigroup.

(c) For each r ∈ R both left and right multiplication by r are homomorphisms of (R,+)

2.1.2 (Ring Axioms). Unwinding definitions we see that a ring is a set R together with two binary
operations + ∶ R × R→ R, (a,b)→ a + b and ⋅ ∶ R × R→ R, (a,b)→ ab such that

(R1) (a + b) + c = a + (b + c) for all a,b, c ∈ R

(R2) There exists 0R ∈ R with 0R + a = a = a + 0R for all a ∈ R.

(R3) For each a ∈ R there exists −a ∈ R with a + (−a) = 0R = (−a) + a.

(R4) a + b = b + a for all a,b ∈ R.

(R5) a(bc) = (ab)c for all a,b, c ∈ R.

(R6) a(b + c) = ab + ac for all a,b, c ∈ R.

(R7) (a + b)c = ab + ac for all a,b, c ∈ R.

Definition 2.1.3. Let R and S be rings.

(a) A ring homomorphism is a function φ ∶ R→ S such that

φ ∶ (R,+)→ (S ,+) and φ ∶ (R, ⋅)→ (S , ⋅)

are homomorphism of semigroups

101
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(b) A ring homomorphism φ ∶ R→ S is called an isomorphism if there exists a ring homomorphism
ψ ∶ S → T with φ ○ ψ = idS and ψ ○ φ = idR.

(c) R and S are called isomorphic and we write R ≅ S if there exists a ring isomorphism from R to
S .

Note that φ ∶ R → S is an homomorphism if and only if φ(r + s) = φ(r) + φ(s) and φ(rs) =

φ(r)φ(s) for all r, s ∈ R.

Definition 2.1.4. Let (R,+⋅) be a ring.

(a) An identity in R is an element 1R which is an identity for ⋅, what is 1Rr = r = r1R for all r ∈ R. If
there exists an identity in R we say that R is a ring with identity.

(b) R is called commutative if ⋅ is commutative, that is rs = sr for all r, s ∈ R.

In the following lemma we collect a few elementary properties of rings.

Lemma 2.1.5. Let R be a ring.

(a) 0a = a0 = 0 for all a ∈ R

(b) (−a)b = a(−b) = −(ab) for all a,b ∈ R.

(c) (−a)(−b) = ab for all a,b ∈ R.

(d) (na)b = a(nb) = n(ab) for all a,b ∈ R,n ∈ Z.

(e) (∑n
i=1 ai)(∑

m
j=1 b j) = ∑

n
i=1∑

m
j=1 aib j

Proof. This holds since since right and left multiplication by elements in R are homomorphisms of
(R,+). For example any homomorphism sends 0 to 0. So (a) holds. We leave the details to the
reader. �

Example 2.1.6. 1. (Z,+, ⋅) and (C,+, ⋅) are rings

2. Let V be a vector space over R. Let EndR(V) be set of R-linear maps from V to V . Then
(EndR(V),+, ○) is a ring called the endomorphism ring of V over R.

3. Let (A,+) be any abelian group. Define ⋅0 ∶ A → A, (a,b) → 0R. Then (A,+, ⋅0) is a ring, called
the ring on A with zero-multiplication.

4. Let (A,+) be an abelian group and End(A) the set of endomorphisms of A, (that is the homo-
morphisms from A to A). Define

(α + β)(a) = α(a) + β(a) and (α ○ β)(a) = α(β(a))

We will show that (End(A),+, ○) is a ring (called the endomorphism ring of A.)
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Let α, β, γ ∈ End(A) and a,b ∈ A. Then

(α + β)(a + b) = α(a + b) + β(a + b) = (α(a) + α(b)) + (β(a) + β(b))

= (α(a) + β(a)) + (α(b) + β(b)) = (α + β)(a) + (α + β)(b)

and so α + β ∈ End(A)

Composition of homomorphisms are homomorphisms and so α ○ β ∈ End(a). The addition
in End(A) is associative, since the addition on A is associative. The map A → A,a → 0, is
the identity elements. Since A is abelian, the map −idA ∶ a → −a is homomorphism. The
(−idA) ○ α ∶ A→ A,a→ −α(a) is the additive inverse of α. Composition is always associative.

We compute

((α + b) ○ γ) = (α + β)(γ(a)) = α(γ(a)) + β(γ(a))

= (α ○ γ)(a) + (α ○ γ)(a) = (α ○ γ + β ○ γ)(a)

and

(γ ○ (α + b))a = γ((α + β)a) = γ(αa + βa)

= γ(αa) + γ(βa) = (γ ○ α)a + (γ ○ β)a

= (γ ○ α + γ ○ β)a

So End(A) is indeed a ring.

5. Up to isomorphism there is unique ring with one element:

+ 0

0 0

⋅ 0

0 0

6. Up to isomorphism there are two rings of order two :

+ 0 1

0 0 1

1 1 0

⋅ 0 1

0 0 0

1 0 n

.

Here n ∈ {0,1}. For n = 0 this is a ring with zero-multiplication. For n = 1 this is (Z/2Z,+, ⋅).
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7. Rings of order 3 up to isomorphism:

+ 0 1 −1

0 0 1 −1

1 1 −1 0

−1 −1 0 1

⋅ 0 1 −1

0 0 0 0

1 0 n −n

−1 0 −n n

Indeed if we define n = 1 ⋅ 1, then (−1) ⋅ 1 = −(1 ⋅ 1) = −n. Here n ∈ {0,1,−1}. For n = 0 this
is a ring with zero multiplication. For n = 1 this is (Z/3Z,+, ⋅). For n = −1 we see that −1 is
an identity and the ring for n = −1 is isomorphic to the ring with n = 1 case under the bijection
0↔ 0, 1↔ −1.

8. Direct products and direct sums of rings are rings. Indeed, let (Ri, i ∈ I) be a family of rings. For
f ,g ∈×i∈I Ri define f + g and f g by

( f + g)(i) = f (i) + g(i) and ( f g)(i) = f (i)g(i).

With this definition both×i∈I Ri and ⊕i∈I Ri are rings.

If a is an identity in×i∈I Ri or ⊕i∈I Ri, then for all i ∈ I, ai is identity in Ri

If each Ri has an identity 1i, then (1i)i∈I is an identity of×i∈I Ri.

If 1i ≠ 0i for infinitely many i ∈ I, then (1i)i∈I is not in ⊕i∈I Ri and ⊕i∈I Ri does not have an
identity.

If each Ri is commutative then both×i∈I Ri and ⊕i∈I Ri are commutative.

2.2 Group Rings

Definition 2.2.1. Let R be a ring and G a semigroup. The semigroup ring R[G] of G over R is
defined as follows:

As an abelian group we put R[G] = ⊕g∈G R. For elements r = (rg)g∈G and s = (sg)g∈G of R[G]

define rs ∈ R[G] by
(rs)g = ∑

(k,l)∈G×G
kl=g

rksl

for all g ∈ G.
Note that since the Supp(r) and Supp(s) are finite, these sums are defined. Also Supp(rs) ⊆

Supp(r)Supp(s) and so Supp(rs) is finite and rs ∈ R[G].
For r ∈ R and g ∈ G we denote the element ρg(r)1 in R[G] by rg so

(rg)g = r and (rg)h = 0R for h ≠ g
1see 1.9.9
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Lemma 2.2.2. Let R be a ring and G a semigroup.

(a) (R[G],+, ⋅) is a ring.

(b) For each a ∈ RG there exist uniquely determined rg ∈ R, g ∈ G with rg = 0R for almost all g ∈ G
and

a = ∑
g∈G

rgg

(c) ∑g∈G rgg +∑g∈G sgg = ∑g∈G(rg + sg)g.

(d) ∑k∈G rkk ⋅ ∑l∈G sll = ∑k∈G,l∈G(rksl)kl.

(e) If R and G have identities, then 1R1G is an identity in R[G].

(f) If R and G are commutative, R[G] is too.

Proof. This is Homework 5#1. �

Definition 2.2.3. A sesquiring is a triple (R,G, ⋅) where R is a ring, G is a semigroup and ⋅ is the
binary operation on R ×G defined by

(a,g) ⋅ (a′,g′) = (aa′,gg′).

for all a,a′ ∈ R and g,g′ ∈ G.
So (R ×G, ⋅) is the direct product of the semigroups (R, ⋅) and G.

Definition 2.2.4. Let (R,G) be a sesquiring and S a ring. A function

f ∶ R ×G → S

is called a sesquihomomorphism if

(i) f is a multiplicative homomorphism, that is

f (aa′,gg′) = f (a,g) f (a′,g′)

for all a,a′ ∈ R,g,g′ ∈ G.

(ii) f is an additive homomorphism in the first coordinate. This means that for for each g ∈ G, the
function fg ∶ R→ S ,a→ f (a,g) is an additive homomorphism, that is

f (a + a′,g) = f (a,g) + f (a′,g)

for all a,a′ ∈ R, g ∈ G.

Lemma 2.2.5. Let R,S ,T be rings and G and H semigroups.

(a) The map ι ∶ R ×G → R[G], (r,g)→ r is a sesquihomomorphism.
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(b) The map ρ = ρR,G ∶ R ×G → R[G], (r,g)→ rg is a sesquihomomorphism.

(c) Let φ ∶ S × H → T be a sesquihomomorphism, δ ∶ R → S a ring homomorphism and ε ∶ G → H
a semigroup homomorphism. Then

φ ○ (δ × ε) ∶ R ×G → S , (r,g)→ φ(δ(r), ε(g))

is a sesquihomomorphism.

(d) Let φ ∶ R ×G → S be a sesquihomomorphism and δ ∶ S → T be a ring homomorphism. Then

δ ○ φ ∶ R × S → T, (r,g)→ δ(φ(r,g))

is a sesquihomomorphism.

(e) Suppose
τ ∶ R ×G → S , σ ∶ S × H → T

are sesquihomomorphisms. Define

φ ∶ R × (G × H)→ T, (r,g,h)→ σ(τ(r,g),h)

Then φ is a sesquihomomorphism.

Proof. (a) ι is clearly a multiplicative homomorphism. (cf. 1.9.6). Also ιg = idR for all g ∈ G and so
ιg is an additive homomorphism.

(b) By 2.2.2 (ag)(a′g′) = (aa′)(gg′) and ag + a′g = (a + a′)g. So ρ is a sesquihomomorphism.
(c) Note that both δ and δ ○ ε ∶ R ×G → S × H, (r,g) → (δ(r), ε(g)) are multiplicative homo-

morphisms. So also α ∶= φ ○ (δ × epsilon) is a multiplicative homomorphism. Note that for g ∈ G,
αg = δ ○ φε(g). Since both δ and φε(g) are additive homomorphism, so is αg.

(d) β ∶= δ ○ φ is the composition of two multiplicative homomorphisms and so a multiplicative
homomorphism. βg = δ ○ φg and so βg is an additive homomorphism.

(e) Note that

δ ∶ R × (G × H)→ R ×G, (r,g,h)→ (r,g) and ε ∶ R × (G × H)→ H(r,g,h)→ h.

are multiplicative homomorphisms. Hence also the composition τ○δ and the direct product (τ○δ)×ε
are multiplicative homomorphism. Thus also

φ = σ ○ ((τ ○ δ) × ε)

is a multiplicative homomorphism.
Also

φ(g,h)(r) = σ(τ(r,g),h) = σh(τ(r,g)) = σh(τg(r))

and so φ(g,h) = σh ○τg is the composition of two additive homomorphisms and so a homomorphism.
�
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Lemma 2.2.6. Let (R,G) be a sesquiring.

(a) Whenever S is a ring and φ ∶ R ×G → S is a sesquihomomorphism, then

α ∶ R[G]→ S , ∑
g∈G

rgg → ∑
g∈G

φ(rg,g)

is the unique ring homomorphism from R[G] to S with φ = α ○ ρ.

S R[G]

R ×G

∃!α

φ ρ

(b) Let α ∶ R[G]×S be a ring homomorphism. Then φ = α○ρ is a sesquihomomorphism from R×G
to S .

Proof. (a) Suppose first α ∶ R[G] → S is a ring homomorphism with φ = α ○ ρ. Then α(rg) =

α(ρ(r,g)) = φ(r,g) for all r ∈ R, g ∈ G and so

(∗) α(∑
g∈G

rgg) = ∑
g∈G

α(rgg) = ∑
g∈G

φ(r,g)

Thus α is unique. It remains to verify the function

α ∶ R[G]→ S , ∑
g∈G

rgg→ ∑
g∈G

φ(r,g)

is homomorphism.
We compute

α(∑
g∈G

rgg +∑
g∈G

sgg) = α(∑
g∈G

(rg + sg)g) = ∑
g∈G

φ(rg + sg,g)

= ∑
g∈G

(φ(rg,g) + φ(sg,g)) = ∑
g∈G

φ(rg,g) +∑
g∈G

φ(sg,g)

= α(∑
g∈G

rgg) + α(∑
g∈G

sgg)
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α(∑
k∈G

rkk ⋅∑
l∈G

sll) = α(∑
g∈G

( ∑
(k,l)∈G×G

kl=g

rksl)g) = ∑
g∈G

φ

⎛
⎜
⎜
⎜
⎝

∑
(k,l)∈G×G

kl=g

rksl,g

⎞
⎟
⎟
⎟
⎠

= ∑
g∈G

⎛
⎜
⎜
⎜
⎝

∑
(k,l)∈G×G

kl=g

φ(rksl,g)

⎞
⎟
⎟
⎟
⎠

= ∑
g∈G

⎛
⎜
⎜
⎜
⎝

∑
(k,l)∈G×G

kl=g

φ(rksl, kl)

⎞
⎟
⎟
⎟
⎠

= ∑
(k,l)∈G×G

φ(rksl, kl) = ∑
(k,l)∈G×G

φ(rk, k)φ(sl, l)

=∑
k∈G

φ(rk, k) ⋅ ∑
l∈G
φ(sl, l) = α(∑

k∈G
rkk) ⋅ α(∑

l∈G
sll)

(b) By 2.2.5(a) is a sesquihomomorphism. Since α is a homomorphism, 2.2.5(d) shows that
α ○ ρ is a sesquihomomorphism.

�

Example 2.2.7. Let (R,G) be a sesquiring. Then

α ∶ R[G]→ R, ∑
g∈G

rgg→ ∑
g∈G

rg

is a ring homomorphism. If G ≠ ∅, α is onto.

By 2.2.5(a) φ ∶ R ×G → R, (r,g) → r is a sesquihomomorphism. Thus 2.2.6 implies that α is a
homomorphism.

Lemma 2.2.8. Let (R,G) be a sesquiring and S a ring. Let β ∶ R → S be a ring homomorphism
and γ ∶ G → S a multiplicative homomorphism such that

β(r)γ(g) = γ(g)β(r)

for all r ∈ R, g ∈ G. Define
φ ∶ R ×G → S , (r,g)→ β(r)γ(g)

Then φ is a sesquihomomorphism. Moreover

α ∶ R[G]→ S , ∑
g∈G

rgg→ ∑
g∈G

β(r)γ(g)

is the unique ring homomorphism with α(rg) = β(r)γ(g) for all r ∈ R, g ∈ G.

Proof.
β(ab)γ(gh) = (β(a)β(b))(γ(g)γ(h)) = (β(b)γ(g))(β(b)γ(h))

and
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β(a)γ(g) + β(b)γ(g) = (β(a) + β(b))γ(g) = β(a + b)γ(g)

So φ is a sesquihomomorphism. The second statement now follows from 2.2.6 �

Lemma 2.2.9. Let (R,G) be sesquiring and S ring. Suppose R and G have identities and φ ∶ R×G →
S is a sesquihomomorphism. Define

β ∶ R→ S , r → φ(r,1G) and γ ∶ G → S ,g→ φ(1R,g)

Then

(a) β is a ring homomorphism.

(b) γ is a multiplicative homomorphism.

(c) β(1R) = γ(1G).

(d) β(r)γ(g) = φ(r,g) = γ(g)β(r) for all r ∈ R, g ∈ G

Proof. Since φ is a multiplication homomorphism and 1 ⋅ 1 = 1, both β and γ are multiplicative
homomorphism. Since φ is an additive homomorphism in the first coordinate, β is a additive homo-
morphism. So (a) and (d) hold.

(c): β(1R) = φ(1R,1G) = γ(1G).
(d):

β(r)γ(g) = φ(r,1)φ(1,g) = φ(r1,1g) = φ(r,g) = φ(1r,g1) = φ(1,g)φ(r,1) = γ(g)β(r)

�

Example 2.2.10. Let R and S be rings with zero homomorphism. Let G be semigroup and (αg)g∈G

a family of additive homomorphism from R to S . Define

α ∶ R ×G → S , (r,g)→ αg(r)

Then α is a sesquihomomorphism.

Since each αg is an additive homomorphism, α is an additive homomorphism in the first coor-
dinate. Note that αg(0R) = 0S for all g ∈ G and so

α(ab,gh) = α(0,gh) = αgh(0) = 0 = α(a,g)α(b,h)

for all a,b ∈ R, g,h ∈ R.

Corollary 2.2.11. Let (R,G) and (S ,H) be sesquirings, β ∶ R → S a ring homomorphism and
γ ∶ G → H a semigroup homomorphism. Then

R[G]→ S [H], ∑
g∈G

rgg→ ∑
g∈G

β(r)γ(g)

is the unique ring homomorphism α ∶ R[G]→ S [H] with α(rg) = β(r)γ(g) for all r ∈ R, g ∈ G.
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Proof. Define φ ∶ R ×G → S [H](r,g) → β(r)γ(g). Note that φ = ρS ,H ○ (β × γ) and so by 2.2.5 φ
is a sesquihomomorphism. So the Corollary follows from 2.2.6. �

2.2.12 (Identities in Group Rings). If R[G] has an identity and G ≠ ∅, then α ∶ R[G]→ R,∑g∈G rgg→
∑g∈G rg is an onto homomorphism and so α(1R[G]) is an identity in R. But G does not have to have
an identity:

Let R be any ring with an identity: Let G = {a,b, i} as a set. Define a multiplication by

xy =
⎧⎪⎪
⎨
⎪⎪⎩

x if x = y
i if x ≠ y

Then

(xy)z = (xy)z =
⎧⎪⎪
⎨
⎪⎪⎩

x if x = y = z
i otherwise

Hence the binary operation is associative and G is a semigroup. Put r = a + b − i ∈ R[G]. We claim
that r is an identity. We compute ar = ra = aa+ab−ai = i+a−i = a, br = rb = ba+bb−bi = i+b−i = b
and ir = ri = ia + ib − ii = i + i − i = i. Since right multiplication by r is a additive homomorphism,
{t ∈ R[g] ∣ tr = t} is a additive subgroup of R[G] and so equal to R[G]. Hence r is a right identity.
By symmetry, r is also a left identity.

Since ab = i neither a nor b is an identity in G. Since ai = i, i is not an identity. So G has no
identity.

2.2.13 (Commutative Group Rings). Suppose R[G] is commutative and G ≠ ∅. Then there exists
an onto homomorphism from R[G] to R and so R is commutative. Let r, s ∈ R and g,h ∈ G. Then

(rs)(gh) = (rg)(sh) = (sh)(rg) = (sr)(hg) = (rs)(hg).

So if rs ≠ 0 for some r, s ∈ R we get gh = hg and G is commutative.

But if rs = 0 for all r, s ∈ R then also xy = 0 for all x, y ∈ R[G]. So R[G] is commutative,
regardless whether G is or not.

Notation 2.2.14. Let T be a semigroup, t = (ti)i∈I a commuting family of elements in T , u ∈ T and
n = (ni)i∈I an almost zero family of non-negative integers. Let J = Supp(n) = {i ∈ I ∣ ni ≠ 0}. If
n ≠ 0 ( that is J ≠ 0), define

tn =∏
j∈J

tn j
j

If n = 0, define
utn = u and tnu = u

If T has an identity and n = 0 define tn = 1T .

Notation 2.2.15. (a) Let G be monoid and I a set. Then GI =⊕i∈I G.

(b) (XI , idI) is a free abelian monoid on I.
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Remark 2.2.16. Let I be set and put x = idI = (i)i∈I . Then x is a commuting family in XI and the
function

(NI ,+)→ (XI , ⋅),n→ xn

is isomorphism.

Definition 2.2.17. Let R be a ring. Let I be a set. Then the semigroup ring R[XI] is called the
polynomial ring of R in the variables I.

2.2.18 (elements in polynomial rings). Let R be a ring and I a set. Put x = idI = (i)i∈I and let
f ∈ R[XI]. Then

f = ∑
n∈NI

fnxn

for a unique almost zero family ( fn)n∈NI in R.
If I = {x1, . . . , xm} this becomes

f = ∑
(n1,...,nm)∈Nm

fn1...nm xn1
1 . . . xnm

m

Lemma 2.2.19. Let R,S be rings and s = (si)i∈I a commuting family of elements in S . Let β ∶ R→ S
be a ring homomorphism and suppose that

β(r)si = siβ(r)

for all r ∈ R, i ∈ I.

(a)
φ ∶ R ×NI , (r,n)→ β(r)sn

is a sesquihomomorphism.

(b)
βs ∶ R[XI]→ S , ∑

n∈NI

rnxn → ∑
n∈NI

β(rn)sn

is the unique homomorphism from R[XI]→ S with βs(ri) = β(r)si for all r ∈ R, i ∈ I.

Proof. (a) Since (si)i∈I is commuting,

γ ∶ N♯
I → S ,n→ sn

is a homomorphism. Applying 2.2.8 we see that the restriction of γ to R ×N♯
I is a sesquihomomor-

phism.
Since φ(a,0) = β(a) is an additive homomorphism, φ is a additive homomorphism in the first

coordinate.
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φ(a,n)φ(b,0) = β(a)snβ(b) = β(a)β(b)sn = β(ab)sn = β(ab)sn+0 = φ(ab,n + 0)

and similarly φ(a,0)φ(b,n) = φ(ab,0 + n). Finally

φ(a,0)φ(b,0) = β(a)β(b) = β(ab) = φ(ab,0 + 0)

and so φ is a multiplicative homomorphism.
(b) follows from (a) and 2.2.6(a). �

Notation 2.2.20. With the notation and assumption from 2.2.19:
If f ∈ R[XI] we write fβ(s) for βs( f ). In the special case R ⊆ S and β = idR, we write f (s) for

βidR( f ).

Remark 2.2.21. (a) With the notation and assumption from 2.2.20:

( f + g)β(s) = fβ(s) + gβ(s) and ( f g)β(s) = fβ(s)gβ(s)

for all f ,g ∈ R[XI].

(b) Suppose R is a ring with identity and I is set. View R is a subset of r by identifying r with r1 and
view I is a subset of R[XI] by identifying i with 1i. Note that x = (i)i∈I is a commuting family in
R[XI] and ri = ri for all r ∈ R. Then f (x) = f for all f ∈ R[XI].

Proof. (a) holds since βs is a homomorphism.
(b) Put β = idR. By definition βx is the unique homomorphism from R[XI] → R[XI] with

βx(ri) = β(r)xi, that is with βx(ri) = ri. Hence βx = idR[XI] and so f (x) = βx( f ) = f . �

Lemma 2.2.22. Let R and S be rings and I a set. Suppose R has an identity and φ ∶ R ×NI → S is
a sesquihomomorphism. Define

β ∶ R→ S , r → φ(r,0) and for i ∈ I, si = φ(1, i)

Then

(a) β is a homomorphism of rings.

(b) (si)i∈I is commuting family of elements in S .

(c) β(r)si = siβ(r) for all r ∈ R, i ∈ I.

(d) φ(r,n) = β(r)sn for all r ∈ R, n ∈ NI .

Proof. For n ∈ N define γ(n) = φ(1,n). By 2.2.9 β is a ring homomorphism, γ ∶ (NI ,+) → (S , ⋅) is
a homomorphism and

β(r)γ(n) = φ(r,n) = γ(n)β(n)
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for all r ∈ R, n ∈ N. In particular, (a) holds.
Note that γ(i) = si and so also (c) holds.
Since i + j = j + i, sis j = γ(i + j) = γ( j + i) = s jsi and (b) is proved.
Since γ is a homomorphism, γ(n) = γ(∑i∈I nii) =∏i∈I γ(i)ni = sn and so (d) holds. �

2.3 Elementary Properties of Rings

Definition 2.3.1. Let R be a ring and a ∈ R.

(a) R# = R ∖ {0}.

(b) a is left ( right) zero divisor if a ≠ 0R and there there exists b ∈ R# with ab = 0 (resp. ba = 0). a
is a zero divisor if a is a left or a right zero divisor.

Suppose now that R has an identity.

(c) a is called (left,right,) invertible if it is (left,right,) invertible in (R, ⋅). An invertible element is
also called a unit.

(d) U(R) is the set of units in R.

(e) R is called an integral domain if R is commutative, 1R ≠ 0R and R has no zero-divisors.

(f) R is called a division ring if 1R ≠ 0R and all it non-zero elements are invertible. A field is a
commutative division ring.

Note that a ring with identity is a zero ring (that is R = {0R} if and only if 1R = 0R. So in (e) and
(f) the condition 1R ≠ 0R can be replaced by R ≠ {0R}.

Lemma 2.3.2. Let R be a ring. Then the following statements are equivalent:

(a) R has no right zero-divisors.

(b) If a,b ∈ R with ab = 0R, then a = 0R or b = 0R.

(c) R has no left zero-divisors.

(d) The Right Cancellation Law holds, that is

a = b for all a,b, c ∈ R with c ≠ 0 and ac = bc

(e) The Left Cancellation Law holds, that is

a = b for all a,b, c ∈ R with c ≠ 0 and ca = cb
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Clearly (a) and (b) are equivalent and similarly (b) and (c) are equivalent.
Suppose that R has no left zero-divisors and a,b, c ∈ R with c ≠ 0R and ab = ac. Then

0R = ac − bc = (a − b)c

Since R has no left zero-divisors this implies a−b = 0R and so a = b. Thus the Right Cancellation
Law holds.

Suppose the Right Cancellation Law holds and let a,b ∈ R with b ≠ 0R and ab = 0R. Then
ab = 0R = 0R ⋅ b and so by the Right Cancellation Law, a = 0R. So R has no left zero-divisors. Thus
(c) and (d) are equivalent. Similarly (a) and (e) are equivalent.

Example 2.3.3. 1. R,Q and C are fields. Z is an integral domain.

2. For which n ∈ Z+ is Zn an integral domain? If n = 1, then Z1 is a zero ring and so not an integral
domains. So suppose n ≥ 2. Then 1 ≠ 0 in Zn and thuas Zn is an integral domain if and only,

n ∣ klÔ⇒ n ∣ k or n ∣ l

and so if and only if n is a prime. The following lemma implies that Z/pZ is a field for all primes
p.

3. Let R is be an integral domain and G an abelian monoid. Is R[G] an integral domain?

We will first show:

1○. Suppose there exists a,b, c ∈ G and n ∈ Z+ with a ≠ b and anc = bnc. Then c or a − b is a
zero divisor. In particular, R[G] is not an integral domain.

Assume first that an ≠ bn. Then an − bn ≠ 0 in R[G] and

(an − bn)c = anc − bnc = 0

so c is a zero divisor.

Assume next that an = bn and choose k minimal with ak = bk. Let 0 ≤ m < k and define

τ(m) =
m

∑
i=0

aibm−i

Then

(a − b)τ(m) = (a − b)
m

∑
i=0

aibm−i = am+1 − bm+1

and so
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(a − b)τ(k − 1) = 0

If τ(k − 1) ≠ 0, a − b is a zero divisor.

So suppose that τ(k − 1) = 0. Then we choose l ∈ N minimal with a jτ(l) = 0 for some j ∈ N.
Looking at the coefficients of a j+l in a jτ(l) we see that a j+l = a j+l−ibi for some 1 ≤ i ≤ l. Hence
a j+l−iai = a j+l−ibi. Put t = j + l − i. Then atai = atbi and so and

0 = atai − albi = at(ai − bi) = atτ(i − 1)(a − b)

Note that i − 1 < i ≤ l and so by minimality of l, atτ(i − 1) ≠ 0. Thus a − b is a zero divisor.

2○. Suppose that

(∗) anc ≠ bnc

for all a,b, c ∈ G and n ∈ Z+ with a ≠ b. Then R[G] is an integral domain.

We will only outline a proof (and use a couple of result proven later).

The special case n = 1 in (*) shows that the cancellation law holds in G. So by 2.7.1 there G can
be embedded an abelian group H such that H = {ab−1 ∣ a,b ∈ G}. H is a group. If (ab−1)n = 1
for some a,b ∈ G and n ∈ Z+, then an = bn, and (*) applied with c = 1, gives a = b and ab−1 = 1.
Thus H has no-nontrivial elements of finite order and since H is a group we conclude that (*)
holds for H. So we may assume from now on that G is a group.

Let r, s ∈ R[G] with r ≠ 0 and s ≠ 0. We need to show that rs ≠ 0. Let F = ⟨g,h ∈ G ∣ rg ≠ 0, sh ≠

0⟩. Replacing G by F we may assume that G is finitely generated. Since G has no non-trivial
elements of finite order a theorem proved sometime later will show that G ≅ Zm for some m ∈ N.
So we may assume that G = Zm. Since Zm+1 = Zm × Z, R[Zm+1] ≅ R[Zm][Z] (see Homework
5) and so by induction we may assume that m = 1. Let x = 1 ∈ G. Then r = ∑n

i=k rixi for some
k ≤ n ∈ Z and ri ∈ R with rn ≠ 0R and s = ∑m

j=l s jx j for some l ≤ m ∈ Z and s j ∈ R with sm ≠ 0R.
Then the coefficient of xn+m in rs is rnsm and since R is an integral domain rnsm ≠ 0 and so also
xy ≠ 0.

Lemma 2.3.4. All finite integral domains are fields

Proof. Let R be a finite integral domain and a ∈ R#. As R is an integral domain, multiplication by a
is a one to one map from R# → R#. As R is finite, this map is onto. Thus ab = 1R for some b ∈ R.
Since R is commutative ba = 1 − R and so all non-zero elements are invertible. �

For a ring R we define the opposite ring Rop by (Rop,+op) = (R,+), and a ⋅op b = b ⋅ a. If R
and S are rings then a map φ ∶ R → S is called an anti-homomorphism if φ ∶ R → S op is ring
homomorphism. So φ(a + b) = φ(a) + φ(b) and φ(ab) = φ(b)φ(a).
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Let End(R) be the set of ring homomorphism. Then End(R) is monoid under composition. But
as the sum of two ring homomorphisms usually is not a ring homomorphism, End(R) has no natural
structure as a ring.

The map Z→ Z/nZ m→ m + nZ is a ring homomorphism.
For r ∈ R let Rr ∶ R → R, s → sr and Lr ∶ R → R, s → rs. By definition of a ring Ra and Lr are

homomorphisms of (R,+). But left and right multiplication usually is not a ring homomorphism.
The map L ∶ R → End((R,+)), r → Lr is a homomorphism but the map R ∶ R → End((R,+)), r →
Rr is an anti-homomorphism. Note that if R has an identity, then bothR and L are one to one.

Definition 2.3.5. (a) Let G be a group We say that G has finite exponent of there exists n ∈ Z+ with
gn = e for n for all g ∈ G. If G has finite exponent then exponent exp(G) of G is the smallest
positive integer m with gm = 1 for all g ∈ G, otherwise exp(G) =∞.

(b) Let R be a ring. If (R,+) is has finite exponent then the characteristic char R of R is the exponent
of (R,+). If (R,+) has infinite exponent then char R = 0.

Lemma 2.3.6. Let R be a ring with identity.

(a) Let n ∈ Z then n1R = 0R if and only if nr = 0R for all r ∈ R.

(b) Suppose 1R ≠ 0R and that R has no zero-divisors. Then char R is 0 or a prime.

Proof. (a) If nr = 0R then clearly n1R = 0R. So suppose n1R = 0R. Then for all r ∈ R

nr = n(1Rr) = (n1R)r = 0Rr = 0R

(b) Suppose n ∶= char R ≠ 0. If n = 1, then 0R = 1 ⋅ 1R = 1R, contrary to the assumptions. So
n > 1. Let n = st with s, t ∈ Z+. Then

0R = n1R = (st)1R = st1R1R = (s1R)(t1R)

Since R has no zero divisors we conclude that s1R = 0R or t1R = 0R. The minimality n implies
s = n or t = n. Hence n is a prime. �

Let r ∈ R. If R has an identity we define r0 = 1. If R does not have an identity we will use the
convention r0s = s for all s ∈ R.

Lemma 2.3.7 (Binomial Theorem). Let R be ring, a1,a2 . . . ,an ∈ R and m ∈ Z+.

(a)

(
n

∑
i=1

ai)
m =

n

∑
i1=1

n

∑
i2=1

. . .
n

∑
im=1

ai1ai2 . . .aim

(b) If aia j = a jai for all 1 ≤ i, j ≤ n, then

(
n

∑
i=1

ai)
m = ∑

{(mi)∈Nn∣∑
n
i=1 mi=m}

(
m

m1,m2, . . . ,mn
)am1

1 am2
2 . . .amn

n
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Proof. (a) Follows form 2.1.5e and induction on m.
For (b) notice that ai1 . . .aim = am1

1 am2
2 . . .amn

n , where mk = ∣{ j ∣ i j = k}∣. So (b) follows from (b)
and a simple counting argument. �

Lemma 2.3.8. Let n,m, k ∈ Z+.

(a) If gcd(m, k) = 1 or gcd(n,m) = 1, then gcd( f , k) = 1 for some f ∈ Z with f ≡ n (mod m).

(b) There exists f ∈ Z so that gcd( f , k) = 1 and f n ≡ gcd(n,m) (mod m)

Proof. (a) Suppose first that gcd(m, k) = 1. Then 1 − n = lm + sk for some integers l, s. Thus
1 = (n + lm) + sk. Put f = n + lm, then gcd(n + lm, k) = 1.

Suppose next that gcd(n,m) = 1. Write k = k1k2 where gcd(k1,m) = 1 and all primes dividing
k2 also divide m. By the first part there exists l ∈ Z with gcd(n+ lm, k1) = 1. Now any prime dividing
k1, divides m and (as gcd(n,m) = 1), does not divide m. Hence it also does not divide m + lm. Thus
gcd(n + lm, k) = gcd(n + lm, k1) = 1.

(b) Let d = gcd(n,m). Replacing n be n
d and m by m

d we may assume that d = 1. Then n∗n ≡ 1
(mod m) for some n∗ ∈ Z. Since gcd(n∗,m) = 1 we can apply (a) to n∗,m and k. So there exists f
with gcd( f , k) = 1 and f ≡ n∗ (mod m). Then also f n ≡ 1 (mod m). �

Lemma 2.3.9. Let R be a ring with (R,+) cyclic. Then R is isomorphic to exactly one of the
following rings:

1. Z with regular addition but zero-multiplication.

2. (nZ/nmZ,+, ⋅), where m ∈ N,n ∈ Z+ and n divides m.

Proof. Let m ∈ N so that (R,+) ≅ (Z/mZ,+) and let a be generator for (R,+). So a ⋅ a = na for
some n ∈ Z. Then for all k, l ∈ Z, (ka) ⋅ (la) = klna and so the multiplication is uniquely determine
by n. Note that (−a)(−a) = na = (−n)(−a). So replacing a be −a we may assume that n ∈ N. Also
if m > 0 we may choose 0 < n ≤ m.

Suppose first that n = 0. Then by our choice m = 0 as well. So (R,+) ≅ (Z,+) and rs = 0 for all
r, s ∈ R.

Suppose next that n > 0. Then the map

nZ/nmZ→ R, nk + nmZ→ ka

is an isomorphism. If m = 0, these rings are non-isomorphic for different n. Indeed R2 = nR and so
∣R/R2∣ = n. Therefore n is determined by the isomorphism type R.

For m > 0, various choices of n can lead to isomorphic rings. Namely the isomorphism type
only depends on d = gcd(n,m). To see this we apply 2.3.8 to obtain f ∈ Z with gcd( f ,m) = 1 and
f n ≡ d (mod m). Then 1 = e f + sm for some e, s ∈ Z and so f +mZ is invertible. Hence also f a is
a generator for (R,+) and

( f a) ⋅ ( f a) = f 2na = ( f n)( f a) = d( f a).

Also R2 = dR and ∣R/R2∣ = m
d . So d is determined by the isomorphism type of R. �
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2.4 Ideals and homomorphisms

Definition 2.4.1. Let (R,+, ⋅) be ring.

(a) A subring of R is a ring (S ,△ ,◻) such that S ⊆ R, and

s△ t = s + t and s ◻ r = s ⋅ t

for all s, t ∈ S

(b) A left (right) ideal in R is a subring I of R so that rI ⊆ I (Ir ⊆ I) for all r ∈ R.

(c) An ideal in R is a subring of R which is left and right ideal in R.

Lemma 2.4.2. Let (R,+, ⋅) be a ring and S ⊆ R. The (S ,+, ⋅) is a subring of R if and only if

(i) 0R ∈ S .

(ii) a + b ∈ S for all a,b ∈ S .

(iii) −a ∈ S for all a ∈ S .

(iv) ab ∈ S for all a,b ∈ S .

Proof. Straightforward and we leave the few details to the reader. �

Example 2.4.3. 1. Let n ∈ Z. Then nZ is an ideal in Z.

2. Let V be a vector space over R. Let W be any subset Define

Ann(W) = {α ∈ EndR(V) ∣ α(w) = 0V for all w ∈ W}.

Ann(W) is called the annihilator of W in End(W). We will show that Ann(W) is left ideal in
EndR(V).

Let α, β ∈ Ann(W), γ ∈ EndR(V) and w ∈ W, then

0EndR(V)(w) = 0W

(α + β)(w) = α(w) + β(w) = 0V + 0V = 0V

(γ ○ α)(w) = γ(α(w) = γ(0V) = 0V

and so by 2.4.2 Ann(W) is an ideal.

Lemma 2.4.4. Let φ ∶ R→ S be a ring homomorphism.

(a) If T is a subring of R, φ(T) is a subring of S .

(b) If T is a subring of S then φ−1(T) is a subring of R.
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(c) kerφ an ideal in R.

(d) If I is an (left,right) ideal in R and φ is onto, φ(I) is a (left,right) ideal in S .

(e) If J is a (left,right) ideal in S , then φ−1(J) is an (left,right) ideal on R.

Proof. Straight forward. �

Example 2.4.5. Let (R,G) be a sesquiring with G ≠ ∅.

(a) By Example 2.2.7

α ∶ R[G]→ R,∑ rgg→∑ rg.

is an onto ring homomorphism. The kernel of α is

R○[G] ∶= {∑ rgg ∣∑ rg = 0}

R○[G] is called the augmentation ideal of R[G].

(b) Let β ∶ R → S be a ring homomorphism and γ ∶ G → H a semigroup homomorphism. Then by
2.2.8

α ∶ R[G]→ S [H], ∑
g∈G

rgg→ ∑
g∈G

β(rg)γ(g)

is a ring homomorphism. What is the image and the kernel of γ? Clearly α(R[G]) = β(R)[γ(G)].
Let I = kerβ. To compute kerα note that

α
⎛

⎝
∑
g∈G

rgg
⎞

⎠
= ∑

h∈H
β
⎛

⎝
∑

g∈γ−1(h)
rg
⎞

⎠
h

and so
∑
g∈G

rgg ∈ kerα ⇐⇒ ∑
g∈γ−1(h)

rg ∈ I for all h ∈ γ(G).

If γ is a group homomorphism we can describe kerα just in terms of I = kerβ and N ∶= kerγ.
Indeed the γ−1(h)’s (h ∈ γ(G)) are just the cosets of N and so

∑
g∈G

rgg ∈ ker g ⇐⇒ ∑
g∈T

rg ∈ I for all T ∈ G/N.

Definition 2.4.6. Let R be a ring and A,B ⊆ R. Then

(a) ⟨A⟩ is subgroup of (R,+) generated by A.
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(b)

(A) =⋂{I ∣ I is an ideal in R,A ⊆ I}

(A) =⋂{I ∣ I is a left ideal in R,A ⊆ I}

(A) =⋂{I ∣ I is right ideal in R,A ⊆ I}

(A), (A), ⟨A) are called the ideal, left ideal and right ideal, respectively, in R generated by A.

Lemma 2.4.7. Let R be a ring, A,B,C ⊆ R and r ∈ R.

(a) ⟨A,B⟩ = ⟨A⟩ + ⟨B⟩.

(b) r⟨A⟩ = ⟨rA⟩ and ⟨A⟩r = ⟨Ar⟩.

(c) ⟨AB⟩ = ⟨A⟨B⟩⟩ = ⟨⟨A⟩⟨B⟩⟩ = ⟨⟨A⟩B⟩.

(d) If A is a left ideal, then ⟨AB⟩ is a left ideal.

(e) If B is a right ideal, then ⟨AB⟩ is a right ideal.

(f) If A is a left ideal in R and B is right ideal, then ⟨AB⟩ is an ideal in R.

(g) If (Ai)i∈I be a family of (left,right, ) ideals of R, then ⟨Ai, i ∈ I⟩ is a (left,right, ) ideal.

(h) Let (Ai)i∈I be a family of (left,right, ) ideals of R, then ⋂i∈I Ai is a (left,right) ideal.

(i) (A) is a left ideal in R, (A) = ⟨RA,A⟩ and if R has a left identity then (A) = ⟨RA⟩.

(j) (A) is a right ideal in R, (A) = ⟨AR,A⟩ and if R has a right identity then (A) = ⟨AR⟩.

(k) (A) is an ideal in R, (A) = ⟨RAR,RA,AR,A⟩ and R has an identity, then (A) = ⟨RAR⟩.

(l) If R is commutative ⟨(A)(B)⟩ = (AB).

Proof. Let r ∈ R,a ∈ A and b ∈ B.
(a) Since + is commutative, ⟨A⟩ + ⟨B⟩ is an additive subgroup of R and so (a) holds.

(b) Since left and right multiplication by r are additive homomorphism, (d) follow from conclude
from 1.8.5(c).

(c) By (b) a⟨B⟩ = ⟨aB⟩ ≤ ⟨AB⟩ and so

(∗) ⟨A⟨B⟩⟩ = ⟨AB⟩

(*) applied to opposite ring gives ⟨⟨A⟩B⟩ = ⟨AB⟩.
(*) applied to ⟨A⟩ in place of A yields ⟨⟨A⟩⟨B⟩⟩ = ⟨⟨A⟩B⟩ and so (c) holds.
(d) Since A is a left ideal RA ⊆ A. So using (c)

R⟨AB⟩ ⊆ ⟨RAB⟩ ⊆ ⟨AB⟩
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and so ⟨AB⟩ is left ideal.
(e) Apply (d) to the opposite ring.
(f) Follows from (d) and (e).
(g) Suppose (Ai)i∈I is a family of left ideal in R. Then by (c)

R⟨Ai, i ∈ I⟩ ⊆ ⟨RAi, i ∈ I⟩ ⊆ ⟨Ai, i ∈ I⟩

and so ⟨Ai, i ∈ I⟩ is a left ideal. Applying this statement to the opposite ring completes the proof of
(g).

(h) Suppose each Ai is an left ideal. By 1.8.3 ⋂i∈I Ai is subgroup of (R,+). Let a ∈ ⋂i∈I Ai. Then
a ∈ Ai and so rai ∈ Ai for all i ∈ I. Thus rai ∈ ⋂i∈I Ai and so ⋂i∈I Ai is a left ideal. Applying this
statement also to the opposite ring completes the proof of (g).

(i) Clearly ⟨RA,A⟩ is contained in every left ideal containing A, and so also (A). So it suffices
to show that ⟨RA,A⟩ is left ideal. We have

R(RA ∪ A) = RRA ∪ RA = RA

and so by (c), R⟨RA,A⟩ ⊆ ⟨RA⟩ ⊆ ⟨RA,A⟩.
If R has an left identity l, , then A = lA ⊆ RA and so ⟨RA,A⟩ = ⟨RA⟩

(j) Apply (i) to the opposite ring.
(k) By definition (A) is an intersection of ideals and so by (h), is an ideal.

(∗∗) ⟨RAR,AR,RA,A⟩ = ⟨R(AR ∪ A), (AR ∪ A)⟩

and so by (i) ⟨RAR,AR,RA,A⟩ is a left ideal and so (after applying this to the opposite ring) is
an ideal in R. ⟨RAR,AR,RA,A⟩ is contained in any ideal containing A and the first statement in (k)
holds.

If R has an identity, A ∪ AR ∪ A ∪ RAR = 1A1 ∪ 1AR ∪ 1A1 ∪ RAR = RAR and also the second
statement holds.

(l) Since R is commutative (A) = ⟨A,RA⟩ and so using (c)

⟨(A)(B)⟩ = ⟨⟨A,RA⟩⟨B,RB⟩⟩ = ⟨AB,RAB,ARB,RARB⟩ = ⟨AB,RAB,RRAB⟩ = ⟨AB,RAB⟩ = (AB)

�

Lemma 2.4.8. Let I be an ideal in the ring R.

(a) The binary operations

+⋅R/I ∶ R/I × R/I → R/I, (a + I,b + I) → (a + b) + I and

⋅R/I ∶ R/I × R/I → R/I, (a + I,b + I) → ab + I

are well-defined.
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(b) (R/I,+R/I , ⋅R/I) is a ring.

(c) The map
π ∶ R→ R/I, r → r + I

is a ring homomorphism with kernel I.

Proof. (a) That +R/I is well-defined follows from 1.6.10. i, j ∈ I. Then (a+i)(b+ j) = ab+ib+a j+i j.
As I is an ideal, ib + a j + i j ∈ I and so (a + i)(b + j) + I = ab + I. Thus also ⋅R/N is well-defined.

(b) By 1.6.10 (R/I,+) is a group. The remaining axiom of a ring are readily verified.
(c) By 1.6.10 is a well-defined homomorphism of abelian groups with kerπ = I. Since

φ(ab) = ab + I = (a + I) ⋅R/I (b + I) = π(a) ⋅R/I π(b)

and so π is ring homomorphism. �

Remark 2.4.9. (a) Let A,B ∈ R/I. Note that A,B is are subsets of R and so A ⋅ B = {a ⋅ b ∣ a ∈ A,b ∈

B}. In general, A ⋅R/I B is not equal to A ⋅ B.

(b) If a,b are elements of R/I denoted by lower case letters, then ab is understood to mean a ⋅R/I b
and not a ⋅ b.

Consider for example R = Z and A = B = I = 2Z. Then

2Z ⋅ 2Z = 4Z and 2Z ⋅Z/2Z 2Z = (0 + 2Z) ⋅Z/2Z (0 + 2Z) = 0 + 2Z = 2Z

Theorem 2.4.10 (The Isomomorphism Theorem for Rings). Let φ ∶ R → S be a ring homomor-
phism. Then the map

φ ∶ R/kerφ→ φ(R), r + kerφ→ φ(r)

is a well-defined isomorphism of rings.

Proof. By the Isomorphism Theorem for groups 1.6.11, this is a well-defined isomorphism for the
additive groups. We have

φ((a + kerφ)(b + kerφ)) = φ(ab + kerφ) = φ(ab) = φ(a)φ(b) = φ(a + kerφ)φ(b + kerφ)

and φ is a ring isomorphism. �

We will see below that any ring R can be embedded into a ring S with an identity. This embed-
ding is somewhat unique. Namely suppose that R ≤ S and S has an identity. Then for n,m ∈ Z and
r, s ∈ R we have (n1+r)+)(m1+s) = (n+m)1+(r+s) and (n1+r)(m1+s) = (nm)1+(mr+ns+rs). So
already Z1+R is a ring with 1, contains R and the addition and multiplication on Z1+R is uniquely
determined. But there is some degree of freedom. Namely Z1 + R does not have to be a direct sum.

Let R̂ = Z × R as abelian groups. We make R̂ into a ring by defining

(n, r) ⋅ (m, s) = (nm,ns +mr + rs).
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Then (1,0) is an identity in R̂. The map φ ∶ R̂ → S , (n, r) → n1 + r is a homomorphism with image
Z1 + R. Let us investigate kerφ. (n, r) ∈ kerφ iff r = −n1. Let kZ be the inverse image of Z1 ∩ R in
Z. Also put t = k1 and Dk,t = {(lk,−lt) ∣ l ∈ Z}. Then kerφ = Dk,t. Hence R̂/Dk,t ≅ Z1 + R.

Now which choices of k ∈ Z and t ∈ R can really occur? Note that as t = −n1, tr = kr = rt. This
necessary condition on k and t turns out to be sufficient:

Let k ∈ Z. t ∈ R is called a k-element if tr = rt = kr for all r ∈ R. Note that a 1-element is an
identity, while a 0-element is an element with tR = Rt = 0. Also if a and b are k-elements, then a− b
is a 0-element. So if a k-elements exists it unique modulo the zero elements.

Suppose now that t is a k-element in R. Define Dt,k has above. We claim that Dk,t = Z(k,−t) is
an ideal in R. For this we compute( using rt = kr)

(n, r) ⋅ (k,−t) = (nk, kr − nt − rt) = (nk, kr − nt − kr) = (nk,−nt) = n(k,−t).

So Dk,t is a left ideal. Similarly, Dt,k is a right ideal. Put Rk,t = R̂/Dk,t. Then Rk,t is a ring with
identity, contains R ( via the embedding r → (0, r) + Dk,t) and fulfills Z1 ∩ R = kZ1 = Zt.

Note that if t is an k-element and s an l-element, then −t is an −k element and t + s is an (k + l)-
element. Therefore the sets of k ∈ Z for which there exists a k-element is a subgroup of Z and so
of the form iZ for some i ∈ N. Let u be a i-element. Ri,u is in some sense the smallest ring with a
identity which contains R. Also if R has no 0-elements, u and so Ri,u is uniquely determined.

For example if R = nZ, then i = n = u and Ri,u ≅ Z. Indeed R̂ = Z×nZ, Dnn = {( jn,− jn) ∣ j ∈ Z},
R̂ = Z(1,0)oplusDn,n and the map Rn,n → Z, ( j, r) + Dn,n → j + r is an isomorphism between Rn.n

and Z.
Next we will show that R can be embedded into a ring with identity which has same character-

istic as R. Put n = char R, then 0 is an n-element. Also Dn,0 = nZ × {0} and Rn,0 ≅ Z/nZ × R as
abelian groups. So Rn,0 has characteristic n. On the other hand R̂ = R0,0 always has characteristic 0.

Definition 2.4.11. Let I be an ideal in the ring R with I ≠ R.

(a) I is prime ideal if for all ideals A,B in R

AB ⊆ I Ô⇒ A ≤ I or B ≤ I

(b) I is a maximal ideal if for each ideal A of R.

I ⊆ A ⊆ R Ô⇒ A = I or A = R.

Example 2.4.12. Let I be an ideal in Z with I ≠ Z. Then I is a subgroup of Z and so I = nZ for
some n ∈ N with n ≠ 1. Let A = aZ and B = bZ with a,b ∈ N. Then AB = abZ and so AB ≤ I if and
only if n ∣ ab. Also nZ ≤ aZ if and only if n ∣ a. Thus I is a prime ideal if and only if

n ∣ abÔ⇒ n ∣ a or n ∣ a

This is this is case if and only if n = 0 or n is a prime. So the prime ideals in Z are {0} and pZ,
p a prime.

I is a maximal ideal if and only if nZ ≤ aZ implies nZ = aZ or aZ = Z. So if and only if a ∣ n
implies n = a or n = 1. This is the case if and only if n is a prime. So the maximal ideals in Z are
pZ, p a prime.
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Lemma 2.4.13. Let P be an ideal in the ring R with P ≠ R. Suppose that for all a,b ∈ R,

ab ∈ P Ô⇒ a ∈ P or b ∈ P

then P is a prime ideal

Proof. Let A and B are ideals in R with AB ≤ P. We need to show that A ≤ P or B ≤ P. So suppose
A ≰ P and pick a ∈ A ∖ P. Since ab ∈ P for all b ∈ B we conclude b ∈ P and B ≤ P. �

Lemma 2.4.14. Let P be an ideal in the commutative ring R with P ≠ R. Then the following
statements are equivalent:

(a) R is a prime ideal.

(b) For all a,b ∈ R,
ab ∈ P Ô⇒ a ∈ P or b ∈ P

(c) R/P has no zero divisors.

Proof. (a)Ô⇒ (b): Suppose that P is prime ideal and let a,b ∈ R with ab ∈ P. By 2.4.7(l)

⟨(a)(b)⟩ = (ab) ⊆ P

As P is prime ideal, (a) ⊆ P or (b) ⊆ P. Hence a ∈ P or b ∈ P.

By 2.4.13 (b) implies (a).
Since (b) and (c) are clearly equivalent, the lemma is proved. �

Lemma 2.4.15. Let R be a non-zero commutative ring with identity and P an ideal in R. Then P is
prime ideal if and only if R/P is an integral domain.

Proof. If P is a prime ideal or if R/P is an integral domain we have that R ≠ P. So the lemma
follows from 2.4.13c. �

Lemma 2.4.16. Let R be a ring and M be chain of ideal in R. (So M is a set of ideal and if
A,B ∈M, then A ⊆ B or B ⊆ A). Then ⋃M is an ideal in R.

Proof. Put M = ⋃M. SinceM ≠ ∅, there exists C ∈M. Hence 0 ∈ C ⊆ M. Let a,b ∈ M. Then
there exist A,B ∈ C with a ∈ A and B ∈ C. Since C is chain, A ⊆ B or B ⊆ A. Say A ⊆ B. Then both a
and b are contained in B and so a + b ∈ B ⊆ M. Also if r ∈ R, then −a, ra and ar all are in A and so
in M. Thus M is an ideal in R. �

Remark 2.4.17. A similar argument show that the union of a chain of subgroups is a subgroup and
the union of a chain of subrings is a subring. See A.6.6 in the appendix for a common proof of these
facts.

Theorem 2.4.18. Let R be a ring with identity and I an ideal in R with I ≠ R. Then I is contained
in a maximal ideal. In particular, every non-zero ring with identity has a maximal ideal.
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Proof. The second statement follows from the first applied to the zero ideal.
To prove the first statement we apply Zorn’s lemma A.3.8. For this letM be the set of ideals J

of R with I ⊆ J ⊊ R. OrderM by inclusion and let C be a nonempty chain inM. So ∅ ≠ C ⊆M

and if A,B ∈ C, then A ⊆ B or B ⊆ A. Let M = ⋃C. By 2.4.16 M is an ideal
Since C ≠ ∅ we can choose C ∈ C. Since I ⊆ C, I ⊆ M. Since (1) = R, 1 ∉ C for all C ∈ C and so

1 ∉ M. Hence M ≠ R and M ∈M. Since C ⊆ M for all C ∈M, M is an upper bound forM. Thus
by Zorn’s LemmaM has a maximal element J. If J ⊆ A for some ideal A ≠ R, then I ⊆ A, A ∈M

and so by maximality of M inM, A = J. Thus J is a maximal ideal of R containing I. �

Theorem 2.4.19. Let M be a maximal ideal in the ring R. Then M is a prime ideal if and only
R2 ⊈ M. In particular if R is a ring with ⟨R2⟩ = R or a ring with identity then every maximal ideal
is a prime ideal.

Proof. We will show that R2 ⊆ M if and only if M is not a prime ideal.
Suppose R2 = RR ⊆ M. Since R is an ideal in R and R ⊈ M, we conclude that M is not a prime

ideal.
Suppose that M is not a prime ideal. Then AB ⊆ M for some ideals A and B with A ⊈ M

and B ⊈ M. By 2.4.7(g), A + M and B + M are ideals in R. So the maximality of M implies
R = A + M = B + M. Thus R2 = (A + M)(B + M) ⊆ AB + M ⊆ M.

If R has an identity, then ⟨R2⟩ = R and if ⟨R2⟩ = R, then R2 ⊈ M. So the second statement follows
from the first. �

Definition 2.4.20. Let R be a ring.

(a) A subring of S of R is called proper, if S ≠ 0 and S ≠ R.

(b) R is called simple if R2 ≠ 0 and R has no proper ideals.

Lemma 2.4.21. (a) Let R be a division ring. Then R has no proper left or right ideals. In particular,
R is simple.

(b) Let R be commutative ring. Then R is simple if and only if R is a field.

Proof. (a) Let I be an non-zero left ideal in R and pick 0 ≠ i ∈ I. Then 1 = i−1i ∈ Ri ⊆ R and so
R = R1 ⊆ I. Similarly R has no proper right ideals. Since 0 ≠ 1 = 12 ∈ R2, R2 ≠ 0 and so R is simple.

(b) Let R be simple commutative ring. Then R2 ≠ 0 and we can choose a ∈ R with Ra ≠ 0. Since
R is commutative, Ra is an ideal in R and so R = Ra. Hence any r ∈ R there exists ra ∈ R with
r = raa. Then raa = (raa)(aa) = ra(aaa) = raa = r and so 1 = aa is an identity in R. Note that 1a

is an inverse of a and so a is invertible. We proved that any element in a ∈ R with Ra ≠ 0 is a unit.
Since 1b = b ≠ 0 for all 0 ≠ b ∈ R, this shows that all non-zero elements are units. Since R ≠ 0, 1 ≠ 0
and so R is a field.

If R is a field, then by (a), R is simple. �

Lemma 2.4.22. Let R be a ring and M an ideal in R. Then R/M is simple if and only if M is a
maximal ideal with R2 ⊈ M.
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Proof. In both cases M ≠ R and so we may assume M ≠ R. We have (R/M)2 ≠ 0R/M if and only if
R2 ⊈ M. R/M has no proper ideals if and only if there does not exist an ideal J with I ⊊ J ⊊ R and
so if and only if M is a maximal ideal. �

If I is an ideal we will write a ≡ b (mod I) if a+ I = b+ I, that is if a−b ∈ I. If R = Z and I = nZ
then a ≡ b (mod nZ) is the same as a ≡ b (mod n).

Theorem 2.4.23 (Chinese Remainder Theorem). Let (Ai, i ∈ I) be a family of ideals in the ring R.

(a) The map θ ∶
R/⋂

i∈I
Ai →∏

i∈Ai

R/Ai

r +⋂
i∈I

Ai → (r + Ai)i∈I

is a well defined monomorphism.

(b) Suppose that I is finite, R = R2 + Ai and R = Ai + A j for all i ≠ j ∈ I. Then

(a) If ∣I∣ > 1, then R = Ai +⋂i≠ j∈I A j.

(b) θ is an isomorphism.

(c) For i ∈ I let bi ∈ R be given. Then there exists b ∈ R with

b ≡ bi (mod Ai) for all i ∈ I

Moreover, b is unique (mod ⋂i∈I Ai).

Proof. (a) The map r → (r+Ai)i∈I is clearly a ring homomorphism with kernel⋂i∈I Ai. So (a) holds.

(b:a) For ∅ ≠ J ⊆ I put AJ = ⋂ j∈J A j. We will show by induction on ∣J∣ that

R = Ai + AJ

for all ∅ ≠ J ⊆ I ∖{i}. Indeed if ∣J∣ = 1 this is part of the assumptions. So suppose ∣J∣ > 1, pick j ∈ J
and put K = J ∖ { j}. Then by induction R = Ai + AK and R = Ai + A j. Note that as A j and AK are
ideals, A jAK ⊆ A j ∩ AK = AJ Thus

R2 = (Ai + A j)(Ai + AK) ⊆ Ai + A jAK ⊆ Ai + AJ

Hence R = Ai + R2 = Ai + AJ .

(b:b) By (a) we just need to show that θ is onto. For ∣I∣ = 1, this is obvious. So suppose I∣ ≥ 2.
Let

x = (xi)i∈I ∈∏
i∈Ai

R/Ai.
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We need to show that x = θ(b) for some b ∈ R. Let xi = bi + Ai for some bi ∈ R. By (ba), we may
choose bi ∈ ⋂ j∈i≠I A j. So bi ∈ A j for all j ≠ i. Thus

θ(bi) j =

⎧⎪⎪
⎨
⎪⎪⎩

xi if j = i
0 if j ≠ i

Put b∑i∈I bi. Then θ(b) j = x j and so θ(b) = x.

(b:c) This is clearly equivalent to (b:b) �

The special case R = Z is an elementary result from number theory which was know to Chinese
mathematicians in the first century A.D. To state this result we first need to observe a couple of facts
about ideals in Z.

Let n,m be positive integers. gcd(n,m) denotes the greatest common divisor and lcm(n,m) the
least common multiple of n and m. Then

nZ ∩mZ = lcm(n,m)Z

and
nZ +mZ = gcd(n,m)Z

In particular n and m are relatively prime if and only if nZ + mZ = Z. So part (b:c) of the Chinese
Remainder Theorem translates into:

Corollary 2.4.24. Let m1, . . .mn be positive integers which are pairwise relatively prime. Let
b1, . . . ,bn be integers. Then there exists an integer b with

b ≡ bi (mod mi) for all 1 ≤ i ≤ n

Moreover, b is unique (mod m1m2 . . .mn)

2.5 Factorizations in commutative rings

Definition 2.5.1. Let R be a commutative ring and a,b ∈ R.

(a) We say that a divides b and write a ∣ b, if (b) ⊆ (a).

(b) We say that a and b are associate and write a ∼ b, if (a) = (b)

(c) We say that a is proper if 0 ≠ (a) ≠ R.

(d) a is a generator (of R) if (a) = R.

Lemma 2.5.2. Let R be a commutative ring and a,b ∈ R.

(a) a ∼ b⇐⇒ a ∣ b and b ∣ a.
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(b) The relation ∣ on R is reflexive and transitive.

(c) The relation ∼ on R is an equivalence relation.

(d) a ∣ b if and only if b ∈ (a).

(e) If a is a generator of R, then b is a generator if and only if a ∼ b,

(f) If R has an identity, then a ∣ b if and only if b = ra for some r ∈ R.

Proof. Obvious. �

Lemma 2.5.3. Let R be a commutative ring and u ∈ R. The following are equivalent

(a) u ∣ r for all r ∈ R.

(b) u is a generator of R.

(c) u ∣ r for some generator r of R.

Proof. (a)⇐⇒ (b) : u is a generator if and only if (u) = R if and only if r ∈ (u) for all r ∈ R and if
only if r ∣ u for all r ∈ R.

(b)Ô⇒ (c): Just observe that u ∼ u.
(c)Ô⇒ (b): If u ∣ r for some generator r, then R = (r) ⊆ (u) and so R = (u). �

Lemma 2.5.4. Let R be a commutative ring with identity. Let u ∈ R. Then the following statements
are equivalent

(a) u is a generator.

(b) Ru = R.

(c) u is unit.

(d) ur ∣ r for all r ∈ R.

(e) ur ∼ r for all r ∈ R.

(f) u is not contained in any maximal ideals of R.

Proof. (a)⇐⇒ (b) : Since R is a commutative ring with identity, (u) = Ru. So u is a generator if
and only Ru = R.

(b)Ô⇒ (c): Since Ru = R, 1 = ru for some r ∈ R. Since R is commutative, ur = 1 and so u is
a unit.

(c) Ô⇒ (d): Since R is a unit, su = 1 for some s ∈ R. Hence r = 1r = (su)r = s(ur) and so
ur ∣ r.

(d)Ô⇒ (e): Note that r ∣ ur and so ur ∣ r implies ur ∼ r.
(e) Ô⇒ (f): Using r = 1 in (e) we get u ∼ 1. Thus (u) = (1) = R and so u is not contained in

any maximal ideal of R.
(f) Ô⇒ (a): If (u) ≠ R, 2.4.18 shows that (u) is contained in a maximal ideal, contrary the

assumption. So (u) = R and u is a generator. �
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Lemma 2.5.5. Let R be a commutative ring with identity and a,b ∈ R♯. Suppose b is not a zero-
divisor.

(a) Let b = ua. Then a ∼ b if and only if u is a unit.

(b) Let a,b ∈ R. Then a ∼ b if and only if b = ua for a unit u in R.

Proof. (a) The ”if” part follows from 2.5.4(d).
So suppose that b ∼ a. Then a = vb for some v ∈ R. Thus 1b = b = ua = u(vb) = (uv)b and so

(1 − uv)b = 0. Since b is not a zero-divisor, uv = 1. So u is a unit.

(b) Suppose a ∼ b. Then a ∣ b and so b = ua for some u ∈ R. Thus (a) shows a ∼ b.
The converse follows directly from (a). �

Corollary 2.5.6. Let R be an integral domain. The equivalence classes of ∼ are the orbits of U(R)

on R with respect to action by left multiplication.

Proof. Note first that by 1.2.3(e), (U(R), ⋅) is a group and since (R, ⋅) is associative U(R) acts on R
by left multiplication. The corollary now follows from 2.5.5(b). �

Definition 2.5.7. Let R be a ring.

(a) An ideal I is called a principal ideal if its generated by one element, that is I = (r) for some
r ∈ R.

(b) R is called a principal ideal ring if every ideal is a principal ideal.

(c) R is principal ideal domain (PID), if R is an integral domain and a principal ideal ring.

(d) An ideal I in R s called finitely generated if I = (F) for some finite subset F of R.

Definition 2.5.8. Let R be a commutative ring and c a proper element. c is called a prime if for all
a,b ∈ R

c ∣ ab Ô⇒ c ∣ a or c ∣ b.

Lemma 2.5.9. Let p be proper element in the commutative ring R. Then following are equivalent:

(a) p is a prime

(b) (p) is a prime ideal

(c) R/(p) has no zero-divisor.

Proof. Let d ∈ R. Then p ∣ d if and only if (d) ⊆ (p) and so if and only if d ∈ (p). Thus for all
a,b ∈ R

p ∣ ab Ô⇒ p ∣ a or p ∣ b

if and only if

ab ∈ (p) Ô⇒ a ∈ (p) or b ∈ (p)

Thus the lemma follows from 2.4.14 �
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Definition 2.5.10. Let R be a commutative ring and c a proper element in R.

(a) c is called irreducible if for all a,b ∈ R

c ∼ ab Ô⇒ a is a generator or b is a generator

(b) c is called weakly irreducible if for all a,b ∈ R

c ∼ ab Ô⇒ a ∼ c or b ∼ c

(c) c is called divisor simple if for all a in R

a ∣ c Ô⇒ a ∼ c or a is a generator

Remark 2.5.11. Let R be a commutative ring and c ∈ R. Then c is divisor simple if and only if (c)
is a maximal element in the set of proper principal ideal of R.

Proof. Both statement just say that if a ∈ R then

(c) ⊆ (a) Ô⇒ (c) = (a) or (a) = R.

�

Remark 2.5.12. Let R be a commutative ring and a,b associate elements in R. Then a is a prime
(irreducible,weakly irreducible,divisor-simple, proper) if and only if b is.

Proof. A glance at the definitions of these terms show that they only depended on (a). �

Example 2.5.13. For any proper (a,b) ∈ Z2×Z determine whether a is a prime, irreducible, weakly
irreducible and/or divisor simple.

(a,b) irreducible divisor-simple weakly irreducible prime

(1, p) Yes Yes Yes Yes

(0,1) No Yes Yes Yes

(1,0) No No Yes Yes

otherwise No No No No
here p is a prime integer.

Lemma 2.5.14. Let c be a proper element in the commutative ring R

(a) If c is divisor-simple, then c is irreducible or c ∼ c2.

(b) If c is divisor simple, then c is weakly irreducible or R has a generator and (c) = ⟨R2⟩ ≠ R.

(c) If c is a prime, then c is weakly irreducible.
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Proof. (a) Suppose c is divisor simple and c is not irreducible. Then there exists a,b ∈ R such that
c ∼ ab and neither a nor b is a generator. Note that a ∣ c and b ∣ c. Since c is divisor simple and
neither a and b are generators, a ∼ c and b ∼ c. Thus (a) = (c) = (b) and so

(c) = (ab) = ⟨(a)(b)⟩ = ⟨(c)(c)⟩ = (c2)

So indeed c ∼ c2.
(b) Suppose c is divisor simple and c is not weakly irreducible. Then there exists a,b ∈ R such

that c ∼ ab and neither a nor b is associated to c. Note that a ∣ c and b ∣ c. Since c is divisor simple
and neither a and b are associated to c, a and b are generators. Thus (a) = R = (b) and so

(c) = (ab) = ⟨(a)(b)⟩ = ⟨R2⟩

Since c is proper, (c) ≠ R and so (b) is proved
(c) Let a,b ∈ R with p ∼ ab. Since p ∣ p = ab and p is a prime, p ∣ a or p ∣ b. Since a ∣ p and

b ∣ p, p ∼ a or p ∼ b. So p is weakly irreducible. �

Lemma 2.5.15. Let c be a proper element in the commutative ring R with identity.

(a) c is irreducible if and only if c is divisor-simple and c ≁ c2.

(b) If c is divisor simple, then c is weakly irreducible.

(c) If c is weakly irreducible and not a zero-divisor, then c is irreducible.

Proof. (a) Suppose c is irreducible Let a ∈ R with a ∣ c. Then c = ab for some a,b ∈ R Since c is
irreducible a or b is a generator. If b is a generator, then by 2.5.4, c = ab ∼ a. So a ∼ c or a is a
generator. Thus c is divisor simple.

Suppose that c ∼ c2. Since c is irreducible, c is a generator, a contradiction since c is proper.
Thus c ≁ c2 and the forward direction of (a) is proved. The backwards direction follows from

2.5.14(a).
(b) Since R has an identity, R = R2 and so (b) follows from 2.5.14(a).
(c) Suppose c is weakly irreducible and not a zero-divisor. Let a,b ∈ R with c ∼ ab. Since c

is weakly irreducible, c ∼ a or c ∼ b. Say, c ∼ b. Then b = rc and c = sab for some r, s ∈ R.
So 1c = sab = sarc = (sra)c. Since c is not a zero divisor, sra = 1 and so a is a unit and thus a
generator. Hence c is irreducible.

�

Lemma 2.5.16. Let R be commutative ring with identity and c ∈ R a proper non-zero divisor.

(a) c is irreducible if and only if c is divisor-simple, if and only if c is weakly irreducible and if and
only if (p) is a maximal proper principal ideal.

(b) If c is a prime, c is irreducible.

Proof. (a) Since c is not a zero-divisor and not a unit 2.5.5 shows that c ≁ c2. So (a) follows from
2.5.15 and 2.5.11

(b) By 2.5.14 the prime c is weakly irreducible and so by (b) c is irreducible. �
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Lemma 2.5.17. Let R be principal ideal domain. Then the following are equivalent

(a) p is a prime

(b) p is irreducible.

(c) (p) is a maximal ideal.

(d) R/(p) is a field.

Proof. (a)Ô⇒ (b): This is 2.5.16(b)
(b)Ô⇒ (c): By 2.5.16(a) (p) is a maximal proper principal ideal. Since every ideal in a PID

is a principal ideal, (p) is a maximal ideal. So (c) holds.
(c)Ô⇒ (d): This follows from 2.4.22.
(d)Ô⇒ (a): By 2.4.19, (p) is a prime ideal. So by 2.5.9 p is a prime. �

Proposition 2.5.18. Let R be an commutative ring with identity and a ∈ R. Suppose that

a = p1 ⋅ . . . ⋅ pm and a = q1 ⋅ . . . ⋅ qn

where m,n ∈ Z+, pi is a non-zero-dividing prime for 1 ≤ i ≤ m and q j is divisor-simple for 1 ≤ j ≤ n.
Then n = m and there exists π ∈ Sym(m) with pi ∼ qπ(i) for all 1 ≤ i ≤ m.

Proof. Note that pm ∣ a. Since pm is a prime, pm ∣ q j for some 1 ≤ j ≤ n. Since q j is divisor-simple
e and pm is not a unit, q j ∼ pm and so uq j = pm for some unit u ∈ R. Without loss, j = n.

Suppose n = 1. If m = 1 we are done. So suppose for a contradiction that m > 1. Then

(p1 . . . pm−1)pm = a = qm ∼ pm.

Thus by 2.5.5(a), p1 . . . pm−1 is a unit and so divides 1. Hence also p1 divides 1 and so p1 is a
unit, a contradiction.

Suppose n > 1. Then pm−1 pm = pm−1(uqn) = (upm−1)qn. By 2.5.5(a) upm−1 ∼ pm−1. Also
qn ∼ pm and so by 2.5.16, upm−1 and qn are non-zero-dividing primes. So replacing pm by qn and
pm−1 by upm−1 we may assume that qn = pm.

Put b = p1 . . . pm−1 if m > 1 and b = 1 if m = 1. Then

(q1 . . .qn−1)pm = (q1 . . .qn−1)qn = a = (p1 . . . pm−1)pm = bpm.

Since pm is not a zero-divisor this implies

q1 . . .qn−1 = b

Suppose that m = 1. Then b = 1 and so q1 is a unit, a contradiction.
Thus m > 1 and

q1 . . .qn−1 = p1 . . . pm−1

So by induction on n, n−1 = m−1 and there exists µ ∈ Sym(m−1) with pi ∼ qµ(i) for all 1 ≤ i ≤ m−1.
Defining π ∈ Sym(m) by π(m) = m and π(i) = µ(i) for 1 ≤ i ≤ m−1 we see that the lemma holds. �

Definition 2.5.19. A unique factorization domain (UFD) is an integral domain in which every
proper element is a product of primes.



2.5. FACTORIZATIONS IN COMMUTATIVE RINGS 133

Lemma 2.5.20. Let R be a UFD and r ∈ R. Then r is a prime if and only if r is irreducible.

Proof. By 2.5.16 each prime in R is irreducible. Now let r be irreducible. Then by definition of a
UFD, r = p1 . . . pn where each pi is a prime. Then by 2.5.18 n = 1 and so r = p1 is a prime. �

Our next goals is to show that every PID is a UFD. For this we need a couple of preparatory
lemmas.

Lemma 2.5.21. Let I be chain of ideals in the ring R. If ⋃I is finitely generated as an ideal, then
⋃I ∈ I.

Proof. Suppose that ⋃I = (F) for some finite F ⊆ ⋃I. For each f ∈ F there exists I f ∈ I with
f ∈ I f . Since I is totally ordered, the finite set {I f ∣ f ∈ F} has a maximal element I. Then I ∈ I,
F ⊆ I and so

⋃I = (F) ⊆ I ⊆⋃I.

Thus ⋃I = I ∈ I. �

Lemma 2.5.22. Let R be an integral domain and I a non-empty set of principal ideals. Then one
of the following holds:

1. ⋂I = 0 and there exists a family (Ik)k∈N in I such that

I0 ⊋ I1 ⊋ . . . ⊋ Ik ⊋ Ik+1 ⊋ . . .

with ⋂k∈N Ik = 0.

2. I has a minimal element.

3. There exists a family (Jk)k∈N of principal ideal in R such that

J0 ⊊ J1 ⊆ . . . ⊊ Jk ⊊ Jk+1 ⊊ . . .

and ⋃k∈N Jk is not finitely generated.

Proof. Assume that (2) does not hold. Then by A.4.10 (applied to the ordering on I by reverse
inclusion) there exists a family (Ik)k∈N in I such that

I0 ⊋ I1 ⊇ . . . ⊋ Ik ⊋ Ik+1 ⊋ . . .

If⋂k∈N Ik = 0, also⋂I = 0 and so (1) holds. So we may assume that there exists 0 ≠ a ∈ ⋂k∈N Ik.
Since each In is a principal ideal, In = (an) for some an ∈ R. Since a ∈ In, a = rnan for some rn ∈ R.
Since

(an+1) = In+1 ⊊ In = (an)),

an+1 = snan for some non-unit sn in R. Thus
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rnan = a = rn+1an+1 = rn+1snan = rn+1snan

Since R is an integral domain,

rn = rn+1sn

Since sn is not a unit, this gives

(rn) ⊊ (rn+1)

Put Jn = (rn). Then Jn ⊊ Jn+1 and 2.5.21 shows that ⋃n∈N Jn is not finitely generated. So (3)
holds. �

Lemma 2.5.23. Let R be a ring in which every ideal is finitely generated.

(a) Any nonempty set of ideals in R has a maximal member.

(b) Suppose in addition that R is an integral domain. Then every non-empty set of principal ideals
with nonzero intersection has a minimal member.

Proof. (a) Otherwise A.4.10 implies that there exists an infinite strictly ascending chain of ideals

J0 ⊊ J1 ⊆ . . . ⊊ Jk ⊊ Jk+1 ⊊ . . .

in R. But then 2.5.21 shows that ⋃∞k=1 Jk is not finitely generated, a contradiction.
(b) Let I be a non-empty set principal ideal in R with ⋂I ≠ 0. By 2.5.22, ⋂I = 0, I has a min-

imal element or 2.5.22 as an infinite ascending chain of ideals. By assumption the first possibility
does not holds. By (a), the last possibility does not holds and so I has a minimal element. �

Lemma 2.5.24. Every principal ideal domain is a unique factorization domain.

Proof. Let S be the set of proper elements in R which can be written as a product of primes. Let a
be proper in R. We will first show

1○. a is divisible by a prime.

By 2.5.23(a) there exists a maximal ideal I with with (a) ⊂ I. Since R is a PID, I = (s) for some
s ∈ R. Then by 2.5.17 s is a prime. Since (a) ⊆ (s), s ∣ a and (1○) holds.

2○. Put S = {(s) ∣ s ∈ S , s ∣ a}. Then S ≠ ∅ and (a) ⊆ ⋂S ≠ 0.

By (1○) there exists a prime s with s ∣ a. Then s ∈ S and so (2○) holds.

By (2○) and 2.5.23b, S has a minimal member, say (b) with b ∈ S . Since b ∣ a, a = ub for some
u ∈ R.

Suppose that u is not a unit. Then by (1○) applied to u, there exists a prime p dividing a. Then
pb divides a and pb ∈ S . Thus (pb) ∈ S and since p is not a unit (pb) ⊊ (b), a contradiction to the
minimal choice of (b)

Thus u is a unit and a ∼ b. Since b is a product of primes and any associate of a prime is a prime,
we conclude that a is a product of primes. �
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2.6 Euclidean Rings

Definition 2.6.1. Let R be a ring.

(a) A pre-Euclidean function on R is a function d ∶ R → Λ, where Λ is a well-ordered set 2, such
that for all a,b ∈ R with b ≠ 0

(i) d(0) < d(b) and

(ii) if d(b) ≤ d(a), then there exists t ∈ (b) with d(a − t) < d(a)

(b) R is called an Euclidean domain if R is an integral domain and there exists an pre-Euclidean
function on R.

Example 2.6.2. 1. Let d ∶ Z → N,m → ∣m∣ be the absolute value function. Let a,b ∈ Z and
0 < ∣b∣ ≤ ∣a∣. If a and b are both positive or both negative, then ∣a − b∣ < ∣a∣. If one of a,b is
positive and the other negative, then ∣a + b∣ > ∣a∣. So d is a pre-Euclidean function. Thus Z is an
Euclidean domain.

2. Let F be any field, Λ = {−∞} ∪N. Let 0 ≠ f ,g ∈ F[x] of degree n and m respectively. Suppose
that n < m. Let a and b be the leading coefficients of f and g, respectively. ba−1xm−n f is a
polynomial of degree m and leading coefficient b. Thus g−ba−1xm−n f has degree less than g and
so d is a pre-Euclidean function.

Note also that f g is a polynomial of degree xn+m with leading coefficient ab. Thus f g ≠ 0 and so
F[x] is an integral domain. Hence F[x] is a Euclidean domain.

Lemma 2.6.3. Let d ∶ R→ Λ be a pre-Euclidean function on a ring R. Let a,b ∈ R with b ≠ 0. Then
there exist s ∈ (b) and r ∈ R and

a = s + r and d(r) < d(b).

Proof. Since Λ is well-ordered we can choose s ∈ (b) with

(∗) d(a − s) = min{d(a − t) ∣ t ∈ (b)}

Put r = a − s and suppose that d(r) ≥ d(b). Then r ≠ 0 and by the definition of a pre-Euclidean
function there exists t ∈ (b) such that d(r − t) < d(r). But r − t = (a − s) − t = a − (s + t). Since
s + t ∈ (b) and we obtain a contradiction (*). Hence d(r) < d(b) and the lemma is proved. �

Definition 2.6.4. Let R be an ring, Λ a well-ordered set and d ∶ R → Λ a function such that for all
a,b ∈ R with b ≠ 0:

(i) d(0) < d(b).

(ii) If 0 ≠ a ∈ (b), then d(b) ≤ d(a).

2see A.3.9 in the appendix for the definition of a well ordered set
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(iii) There exist s ∈ (b) and r ∈ R with

a = s + r and d(r) < d(b).

Then d is called a Euclidean function

Lemma 2.6.5. Let R be a ring and d a pre-Euclidean function on R. Let b ∈ R. If b = 0 define
d∗(b) = d(b), otherwise put

d∗(b) = min{d(s) ∣ 0 ≠ s ∈ (b)}.

Then d∗ is a Euclidean function.

Proof. We need to verify the conditions (i)- (iii) in the definition of an Euclidean function.
Let a ∈ R. Since a ∈ (a):

(1) d∗(a) ≤ d(a)

For any x ∈ R, choose x∗ ∈ (x) with x∗ ≠ 0 and

(2) d∗(x) = d(x∗)

Note that x∗ = 0 if and only if x = 0. Let 0 ≠ b ∈ R.

(i): By definition of a pre-Euclidean function d(0) < d(b∗) and so d∗(0) < d∗(b).

(ii): Let 0 ≠ a ∈ (b). Then a∗ ∈ (a) ⊆ (b) and so by definition of d∗,

d∗(a) = d(a∗) ≥ d(b∗) = d∗(b).

(iii): By 2.6.3 there exists s ∈ (b∗) and r ∈ R with

a = s + r and d(r) < d(b∗).

Since b∗ ∈ (b), s ∈ (b∗) ⊆ (b).

d∗(r) ≤ d(r) < d(b∗) = d∗(b)

and so d∗ is indeed an Euclidean function. �

Theorem 2.6.6. Let d be a pre-Euclidean function on the ring R and I a non-zero left ideal in R.
Let 0 ≠ b ∈ I with d(b) minimal, then I = (b). In particular every Euclidean domain is a PID.

Proof. Let 0 ≠ b ∈ I with d(b) minimal. Let a ∈ I. By 2.6.3 there exist s ∈ (b) and r ∈ R such that
a = s + r and

d(r) < d(b)

Since r = a− s and both a, s are in I we get r ∈ I. So the minimal choice of d(b) implies r = 0. Thus
a = s ∈ (b) and so I = (b). �
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Definition 2.6.7. Let R be a commutative ring, r ∈ R and A ⊆ R.

(a) We say that r is a common divisor of A and write r ∣ A if r ∣ a for all a ∈ A.

(b) We say that r is a greatest common divisor and write r ∼ gcd A if r is common divisor of A and
s ∣ r for all common divisor s of A.

(c) We say that A is relatively prime if all commons divisors of A are units.

We remark that in a general commutative ring a given set of elements might not have a greatest
common divisor.

Lemma 2.6.8. Let R be a commutative ring, r ∈ R and A ⊆ R.

(a) r ∣ A if and only if (A) ⊆ (r).

(b) r is a gcd of A if and only if for all s ∈ R

s ∣ A ⇐⇒ s ∣ r.

Proof. (a) By definition of dividing, r ∣ a if and only if (a) ⊆ (r). Since (r) is an ideal, (a) ⊆ (r) for
all a ∈ A if and only if (A) ⊆ (r). Thus (a) holds.

(b) Suppose r is a gcd. If s ∣ A, then s ∣ r by definition of a gcd. If s ∣ r, then since r ∣ A also
s ∣ A.

Suppose for all s ∈ R we have s ∣ A ⇐⇒ s ∣ r. Since r ∣ r we get r ∣ A. Also s ∣ r for all s with
s ∣ A and so r is a gcd of A. �

Lemma 2.6.9. Let R be a commutative ring and A ⊆ R

(a) A has a common divisor in R if and only if A is contained in a principal ideal of R.

(b) Suppose that A has a common divisor in R and let I be the intersection of the principal ideal
containing A. Then A has a greatest common divisor if and only if I is principal ideal. In
the case the greatest common divisor are exactly the generators of I. In particular, greatest
common divisors are unique up to associates.

Proof. Let r ∈ R.
(a) This holds since r is a common divisor of A if and only if A ⊆ (r).
(b) Let K be the set of principal ideal containing A. r is a greatest common divisors of A if and

only if A ⊆ (r) and (r) ⊆ (s) for all common divisor s of A. So r is a greatest common divisor if and
only if (r) ∈ K and (r) ⊆ K for all K ∈ K. Thus if and only if ⟨r⟩ = I. �

Lemma 2.6.10. Let R be a commutative ring, A ⊆ R and r ∈ (A). Then the following are equivalent.

(a) r is a common divisor of A.

(b) (A) = (r).
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(c) r is a greatest common divisor of A.

Proof. (a)Ô⇒ (b): Suppose r is a common divisor of A. Then (A) ⊆ (r). Since r ∈ (A) we have
(r) ⊆ (A) and (r) = (A).

(b) Ô⇒ (c): If (A) = (r), (A) is the intersection of the principal ideal containing (A) and (c)
follows from 2.6.9

(c)Ô⇒ (a): is obvious. �

Lemma 2.6.11. Let R be an integral domain Let P a set of representatives for the primes in R, that
is P is a set of primes and each prime in R is associate to exactly one element in P . Put p = (p)p∈P .
Recall that

NP = ⊕
p∈P

N and pn = ∏
p∈P

pnp ,

where n = (np)p∈P ∈ NP . The function

U(R) ×NI → R♯, (u,n)→ upn

is 1-1 homomorphism from the semigroup (U(R), ⋅)× (NI ,+) to the semigroup (R♯, ⋅). The function
is onto if and only if R is a UFD.

Proof. The function is clearly a homomorphism. If upn = vpm, the uniqueness of prime factor-
ization shows that n = m. So pn = pm and since R is an integral domain, u = v. So the map is
1-1.

If the function is onto each proper element is associated to a product or primes and so is a
product of primes.

Suppose R is a UFD and let a ∈ R♯. If a is a unit, a = ap0. Suppose a is not a unit. Since R is a
UFD, a = q1 . . .qm for some primes q1, . . . ,qm. Choose pi ∈ P with pi ∼ qi. Then qi = ui pi for some
unite ui. Put u = ∏m

i=1 ui and for p ∈ P let np = {1 ≤ i ≤ m ∣ pi = p} and n = (np)p∈P . Then a = upn

and so the map is onto. �

Lemma 2.6.12. Let R be a UFD and P a set of representatives for the primes in R, that is P is a set
of primes and each prime in R is associate to exactly one element in P. Put p = (p)p∈P. Let a,b ∈ R♯

and B ⊂ R♯ with B ≠ ∅. Let (u(a),n(a)) ∈ U(R) ×NP be defined by

a = u(a)pn(a).

For n,m ∈ NI define
n ≤ m if np ≤ mp for all p ∈ P

Define
n(B) = inf

b∈B
n(b) that is np(B) = inf

b∈B
np(b) for all p ∈ P.

(a) a ∣ b if and only if n(a) ≤ n(b).

(b) a ∣ B if and only if n(a) ≤ n(B).



2.6. EUCLIDEAN RINGS 139

(c) Let p ∈ P. Then

np(b) = max{k ∈ N ∣ pk ∣ b} and np(B) = max{k ∈ N ∣ pk ∣ B}

(d) pn(B) ∼ gcd(B).

Proof. (a) a divides b if and only if b = ad for some d ∈ R. Since b ≠ 0, d ≠ 0 and so d = vpm

for some v ∈ U(R) and m ∈ NI . Thus a ∣ b if and only if there exist v ∈ U(R) and m ∈ NI with
u(b) = u(a)v and n(b) = n(a) + m. Since u(b) and u(a) are units, there exists a unique v ∈ U(R)

with u(b) = u(a)v, namely v = u(b)−1u(a). There exists m ∈ NI with n(b) = n(a)+m if and only if
n(b) − n(a) ∈ NI , that is n(a) ≤ n(b).

(b) a ∣ B if and only if a ∣ b for all b ∈ B. By (a) this holds if and only if n(a) ≤ n(b) for all b ∈ B
and so if and only if n(a) ≤ n(B).

(c) Let q ∈ P. Then nq(pk) = 0 for q ≠ p and np(pk) = k. Thus by (a) and (b), pk ∣ b if only if
k ≤ np(b) and pk ∣ B if and only if k ≤ np(B). Thus (c) holds.

(d) Note that n (pn(B)) = n(B). Thus by (a) and (b) a ∣ pn(B) if and only if n(a) ≤ n(B) and if
and only if a ∣ B. So (d) follows from 2.6.8(b).

�

Here are a couple of concrete examples which might help to understand some of the concepts
we developed above.

First let R = Z[i], the subring of C generated by i. R is called the ring of Gauian integers.

Note that R = Z + Zi. We will first show that R is an Euclidean ring. Indeed, put φ(a1 + a2i) =
a2

1 + a2
2. Then φ(xy) = φ(x)φ(y) and φ(x) ∈ Z+. So (ER1) holds. Let x, y ∈ R with x ≠ 0. Put

z = y
x ∈ C. Then y = zx. Also there exists d = d1+d2i ∈ C with q ∶= z−d ∈ R and ∣di∣ ≤

1
2 . In particular,

φ(d) ≤ 1
2

2
+ 1

2
2
= 1

2 . Put r = y − qx then r = zx − qx = (z − q)x = dx. So φ(r) = φ(d)φ(x) ≤ 1
2φ(x).

Hence also (ER2) holds.
Let a be a prime in R and put P = (a). Since φ(a) = āa ∈ P, P ∩Z ≠ 0. Also 1 /∈ P and so P ∩ Z

is a proper ideal in Z. Since R/P has no zero divisors, Z+P/P ≅ Z/P∩Z has no zero divisors. Thus
P ∩ Z = pZ for some prime integer p. Let Q = pR. Then Q ≤ P ≤ R. We will determine the zero
divisors in R/Q. Indeed suppose that ab ∈ Q but neither a nor b are in Q. Then p2 divides φ(ab).
So we may assume that p divides φ(a). Hence a2

1 = −a2
2 (mod p). If p divides a1 it also divides a2,

a contradiction to a /∈ Q. Therefore we can divide by a2 (mod p) and conclude that the equation
x2 = −1 has a solution in Z/pZ. Conversely, if n2 ≡ −1 (mod p) for some integers n we see that
(up to associates) n + i + Q and n − i + Q are the only zero divisors.

Suppose that no integer n with n2 ≡ −1 (mod p) exists. Then R/Q is an integral domain and so
a field. Hence Q = P and a ∼ p in this case.

Suppose that n is an integer with n2 ≡ −1 (mod p). As P is a prime ideal and (n + i)(n − i) ∈
Q ≤ P, one of n ± i is in P. We conclude that a ∼ n ± i.

Next let R = Z[
√

10]. We will show that R has some irreducible elements which are not primes.
In particular, R is neither UFD, PID or Euclidean. Note that R = Z + Z

√
10. For r ∈ R define

r1, r2 ∈ Z by r = r1 + r2
√

10. Define r̃ = r1 − r2
√

10 and N(r) = rr̃ = r2
1 − 10r2

2. N(r) is called
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the norm of r. We claim that r → r̃ is a ring automorphism of R. Clearly it is an automorphism of
(R,+). Let r, s ∈ R. Then

rs = (r1 + r2
√

10)(s1 + s2
√

10) = (r1s1 + 10r2s2) + (r1s2 + r2s2)
√

10

It follows that r̃s = r̃ s̃. In particular,

N(rs) = rsr̃s = rsr̃ s̃ = rr̃ss̃ = N(r)N(s)

and N ∶ R→ Z is a multiplicative homomorphism. Let r be a unit in R. Since N(1) = 1, we conclude
that N(r) is unit in Z and so N(r) = ±1. Conversely, if N(r) = ±1, then r−1 = r̃

N(r) = N(r)r̃ ∈ R and

r is a unit. For example 3 +
√

10 is unit with inverse −3 +
√

10. As
√

10 is not rational, N(r) ≠ 0
for r ∈ R#.

We claim that all of 2,3, f ∶= 4 +
√

10 and f̃ are irreducible. Indeed suppose that ab is one of
those numbers and neither a nor b are units. Then N(a)N(b) ∈ {4,9,6} and so N(a) ∈ {±2,±3}
and

N(a) ≡ 2,3 (mod 5)

But for any x ∈ R we have
N(a) ≡ a2

1 ≡ 0,1,4 (mod 5)

So indeed 2,3, f and f̃ are primes. Note that 2 ⋅ 3 = 6 = − f f̃ . Hence 2 divides f f̃ but (as f and f̃
are irreducible) 2 divides neither f nor f̃ . So 2 is not a prime. With the same argument none of 3, f
and f̃ are not primes.

We claim that every proper element in R is a product of irreducible. Indeed let a be proper in
R and suppose that a is not irreducible. Then a = bc with neither b nor c units. Then as N(a) =

N(b)N(c) both b and c have smaller norm as a. So by induction on the norm, both b and c can be
factorized into irreducible.

Since R has irreducibles which are not primes, we know that R can not be a PID. But let us
verify directly that I = (2, f ) = 2R + f R is not a principal ideal. First note that f f̃ = −6 ∈ 2R. Since
also 2 f ∈ 2R we I f̃ ∈ 2R. Since 4 does not divide N( f ), f /∈ 2R and so I does not contain a unit.
Suppose now that h is a generator for I. Then h is not a unit and divides f . So as f is irreducible,
h ∼ f and I = ( f ). But every element in ( f ) has norm divisible by N( f ) = 6, a contradiction to
2 ∈ I and N(2) = 4.

2.7 Localization

Let R be a commutative ring and ∅ ≠ S ⊆ R.In this section we will answer the following question:
Does there exists a commutative ring with identity R′ so that R is a subring of R′ and all elements

in S are invertible in R ?
Clearly this is not possible if 0 ∈ S or S contains zero divisors. It turns out that this condition

is also sufficient. Note that if all elements in S are invertible in R′, also all elements in the sub-
semigroup of (R, ⋅) generated by S are invertible in R′. So we may assume that S is closed under
multiplication.
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Lemma 2.7.1. Let X be non-empty multiplicatively closed subset of the commutative ring R. For
r ∈ R and x ∈ S denote the element rx ∈ R[X] by r/x. Put

I = ( rz/xz −
r/x ∣ r ∈ R, x, z ∈ X )

Let r, s ∈ R and x, y ∈ X. Put

X−1R = R[X]/I and
r
x
= r/x + I.

(a) r
x

s
y =

rs
xy .

(b) r
x +

s
y =

ry+sx
xy .

(c) X−1R = { r
x ∣ r ∈ R, x ∈ X}.

(d) x
x is an identity in X−1R.

(e) y
x is an inverse of x

y in X−1R.

(f) The map φ = φR
X ∶ R→ X−1R, r → rx

x is a ring homomorphism and independent of x.

(g) r
x = φ(x)−1φ(r).

(h) Let S be a commutative ring with identity and β ∶ R → S a ring homomorphism such that β(x)
is invertible for all x ∈ X. Then

βX ∶ X−1S → S ,
a
x
→ β(x)−1β(a)

is a well defined function and is the unique homomorphism from X−1R to S with β = βX ○ φ.

(i) r
x =

s
y if and only if there exists z ∈ X with ryz = sxz.

(j) kerφ = {r ∈ R ∣ rx = 0 for some x ∈ X}. In particular, if R ≠ 0, φ is 1-1 if and only if no element
of X is zero or a zero-divisor.

Proof. Let r, s ∈ R and x, y, z ∈ X. By definition of R[X],

r/x
s/y =

rs/xy and r/x +
s/x =

r+s/x

and so also
r
x

s
y
=

rs
xy

and
r
x
+

s
x
=

r + s
x

In particular (a) holds. By definition of r
x and I,

rz
xz

=
r
x
.
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Thus
r
x
+

s
y
=

ry
xy
+

sx
yx

=
ry
xy
+

sx
xy

=
ry + sx

xy

and (b) is proved.

(c) Put

W = {r/x ∣ r ∈ R, x ∈ X} and T = {w + I ∣ w ∈ W} = {
r
x
∣ r ∈ R, x ∈ X} .

Note that R[X] = ⟨W⟩ and so X−1R = ⟨T ⟩. By (c), T is closed under addition. It also closed under
negatives and so X−1R = T .

(d) b
y

x
x =

bx
yx =

b
y .

(e) x
y

y
x =

xy
xy , which by (d) is an identity in X−1R.

(f) rx
x = rxy

xy = ry
y and so φ is independent of the choice of r. φ is the composition of the additive

homomorphisms r → rx, s→ s/x and a→ a + I. Thus φ is an additive homomorphism.

φ(r)φ(s) =
rx
x

sx
x
=

rsxx
xx

= φ(rs)

and so φ is also a multiplicative homomorphism.

(g)
r
x
=

rxx
xxx

=
rx
x

x
x2 = φ(r)φ(x)−1

(h) Define γ ∶ X → S , x → β(x)−1. Then γ is multiplicative homomorphism and so 2.2.8 there
exits a unique homomorphism δ ∶ R[X]→ S with

δ (r/x) = β(r)γ(x) = β(r)β(x)−1

Note that

δ (ry/xy) = β(ry)β(xy)−1 = β(r)β(y)(β(x)β(y))
−1

= β(r)β(y)β(y)−1β(x)−1 = β(r)β(x)−1 = δ (r/x)

and so ry/xy −
r/x ∈ ker δ. Since ker δ is an ideal in R this gives I ⊆ ker δ. Defining α(a+ I) = δ(a) we

see that α is well-defined homomorphism. Moreover

α(φ(r)) = α (rx/x) = β(rx)β(x)−1 = β(r)β(x)β(x)−1 = β(r)

and so β = α ○ φ.
Conversely suppose that ρ ∶ X−1R → S is a homomorphism from X−1R with β = ρ ○ φ. Define

µ = ρ ○ πI . So µ(a) = ρ ∗ a + I). Since φ(x) and ρ(φ(x)) = β(x) are invertible, 1.6.7 shows that

ρ(φ(x)−1) = (ρ(φ(x))−1 = β(x)−1
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Thus

µ (r/x) = ρ (πI (
r/x)) = ρ(

r
x
) = ρ (φ(r)φ(x)−1) = ρ(φ(r))ρ(φ(x))

−1
= β(r)β(x)−1

So µ = δ. Hence ρ(a + I) = µ(a) = δ(a) = α(a + I) and thus ρ = α.

(i) Suppose first that there exist z ∈ X with ryz = sxz. Then

r
x
=

r(yz)
x(yz)

=
sxz
xyz

=
s(xz)
y(xz)

=
s
y

For the converse we will first determine exactly when an element of R[X] is contained in I.
Let J consists of all a ∈ R[X] such that there exists d ∈ X and n = (nx)x∈X ∈ XX with

(i) xnx = d for all x ∈ X with ax ≠ 0, and

(ii) ∑x∈X axnx = 0.

Let a,a′ ∈ J and choose d,d′ and n,n′ according the definition of J.
Then

a + I = (∑
x∈X

ax/x) + I =∑
a∈X

ax

x
=∑

x∈X

axnx

xnsx
=∑

x∈X

axnx

d
=
∑x∈X axnx

d
=

0
d
= I

and so a ∈ I. Thus J ⊆ I.
Define

mx =

⎧⎪⎪
⎨
⎪⎪⎩

nxd′ if ax ≠ 0
n′xd if ax = 0

If ax ≠ 0 and a′x ≠ 0, then nxd′ = nxxn′x = n′xd. In particular, the setup is symmetric in a and a′.
If ax ≠ 0, then xmx = xnxd′ = dd′. By symmetry, xmx = dd′ if a′x ≠ 0 and so xmx = dd′, whenever

ax + a′x ≠ 0. We compute

∑
x∈X

(ax + a′x)mx = ∑
x∈X
ax≠0

axmx + ∑
x∈X
a′x≠0

a′xmx = (∑
x∈X

axnx)d′ + (∑
x∈X

a′xnx)d = 0d′ + 0d = 0

and so a + a′ ∈ J.
Put V = {rz/xz −

r/x ∣ r ∈ R, x, z ∈ X}. We will show that V ⊆ J.
If x ≠ xz, choose d = xxz, nx = xz and nxz = x. Then xnx = d = xznxz and

rznxz − rnx = rzx − rxz = 0

and so rz/xz −
r/x ∈ J.

If x = xz, then rz/xz −
r/x =

rz/x −
r/x =

rz−r/x. Put nx = x and d = x2 = nxx. Then

(rz − r)x = rzx − rx = rx − rx = 0
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and so again rz/xz −
r/x ∈ J. Thus V ⊆ J. Note that

s/y (
rz/xz −

r/x) =
rsz/xyz −

rs/xy

and so WV ⊆ V ⊆ J. Using that J is an additive subgroup of R[X] we get

I = ⟨R[X]V,V⟩ = ⟨⟨W⟩V,V⟩ = ⟨WV,V⟩ = ⟨V⟩ ≤ J

Since J ⊆ I, this proves J = I.

Now suppose that r
x =

s
y . Then r

x −
s
y = 0, rx−sy

xy = 0 and rx−sy/xy ∈ I = J. Thus there exists nxy ∈ X
with (rx − sy)nxy = 0 and so rxnxy = synxy. Thus (i) holds.

(g) If rx = 0 for some r ∈ X, then φ(r) = rx
x = 0. If r ∈ kerφ then r

x x = 0 and so rxy = 0 for some
y ∈ X. Since xy ∈ X, this gives shows

kerφ = {r ∈ R ∣ rx = 0 for some x ∈ X}

φ is not 1-1 if and only if there exists 0 ≠ r ∈ R with r ∈ kerφ and so if and only if there exists
0 ≠ r ∈ R and x ∈ X with rx = 0. This holds if and only if 0 ∈ X or X contains a zero divisor.

�

Corollary 2.7.2. Let G be a commutative semigroup and X a non-empty semisubgroup of G. Let R
be a commutative ring with identity 1 ≠ 0. Identify g ∈ G with 1g ∈ R[G].

(a) Put

X−1G = {
g
x
∣ g ∈ G, x ∈ X} ⊆ X−1(R[G])

Then X−1G is multiplicatively closed subgroup of X−1(R[G]) and so a semigroup. This semi-
group is (up to isomorphism) independent of the ring R.

(b) There exists a homomorphism

α ∶ R[X−1G]→ X−1(R[G]) with α(r
g
x
) =

rg
x

for all r ∈ R,g ∈ G and x ∈ X.

(c) There exists a homomorphism

β ∶ X−1(R[G])→ R[X−1G] with β(
rg
x
) = r

g
x

for all r ∈ R,g ∈ G and x ∈ X.

(d) α and β are inverse to each other and so are isomorphism.
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Proof. (a) g
x

h
y = gh

xy for all g,h ∈ G, x, y ∈ X. So X−1G is multiplicatively closed and the multipli-
cation on X−1G is completely determined by the multiplication of G and independent of R. . Since
g
x =

h
y if and only if gyz = hxz for some z ∈ X, also the set X−1G is independent of R.
(b) Fix x ∈ X and define

ρ ∶ R→ X−1(R[G]), r →
rx
x

Then

ρ(r + s) =
(r + s)x

x
=

rx + sx
x

=
rx
x
+

sx
x
= ρ(r) + ρ(s)

and

ρ(rs) =
(rs)x

x
=

(rs)xx
xx

=
(rx)(sx)

xx
=

rx
x

sx
s
= ρ(r)ρ(s)

and ρ is ring homomorphism. idX−1G is a multiplicative homomorphism from X−1G to X−1(R[G])

and so by 2.2.8 there exist a ring homomorphism

α ∶ R[X−1G]→ X−1(R[G]), with α(ru) = ρ(r)u

for all r ∈ R, u ∈ X−1G. Thus
Note that rx

x = rxy
xy = ry

y for y ∈ R and so ρ is independent of x. We have

α(r
g
x
) = ρ(r)

g
x
=

rx
x

g
x
=

rgx
xx

=
rg
x

and so (b) holds.
(c) φ∣G is a homomorphism for G to X−1G. idR is a homomorphism from R to R and so by 2.2.11

thee exists a unique homomorphism

γ ∶ R[G]→ R[X−1G] with γ(rg) = rφ(g)

Since γ(x) = γ(1x) = 1φ(x) = φ(x) is invertible in R[X−1G] we conclude that there exists a
unique homomorphism

β ∶ X−1(R[G])→ R[X−1G]

with β(φ(a)) = γ(a) for all a ∈ R[G]. Moreover, β (a
x) = γ(a)γ(x)−1. So

β((
rg
x
) = γ(rg)γ(x)−1 = rφ(g)φ(x)−1 = r

g
x

and (c) holds.
(d) Note that (α ○ β) ( rg

x ) = rg
x and since X−1(R[G]) is generated by these elements α ○ β is the

identity function in X−1(R[G]. Similarly β ○ α is the identity function on R[X−1G]. �

Definition 2.7.3. Let G be a magma. We say that the left cancellation law holds for g ∈ G if for all
a,b ∈ G:

ga = gbÔ⇒ a = b



146 CHAPTER 2. RINGS

Note that if R is a ring and 0 ≠ r ∈ R then the left cancellation holds for r if and only if r is not a
left zero divisor.

Lemma 2.7.4. Let G be semigroup and let S be the set of elements in G for which the left cancella-
tion law holds. Then S is a subsemigroup of G.

Proof. Let s, t ∈ S . Define ls ∶ G → G,g → sg. Then ls and lt are 1-1. Since G is associative
ls ○ lt = lst. Since compositions of 1-1 functions are 1-1, st ∈ S .

�

Definition 2.7.5. Let R be a commutative ring.

(a) Ř is the set of all non-zero, non zero divisors.

(b) Suppose that Ř ≠ ∅. Ř−1R is called the complete ring of fraction of R3.

(c) If R has no zero divisors, then R♯ −1R is called the field of fraction of R and is denoted by FR.

Example 2.7.6. (a) FZ = Q.

(b) Let 0 ≠ n ∈ Z. Then FnZ = Q.

(c) Let F be a field. Let I be a set and let (XI , idI) be a free abelian monoid. Then the field of
fraction of F[XI] is denoted by F(XI). So

F(XI) = {
f
g

∣ f ,g ∈ F[XI],g ≠ 0}

If R is a commutative ring without zero divisors, then FR(XI) is the field of fractions of R[XI].

We will now spend a little but of time to investigate the situation where S does contain some
zero divisors.

Define

φ∗ ∶ S −1R→ φ(S )−1φ(R),
r
s
→
φ(r)
φ(s)

We claim that φ∗ is a well defined isomorphism. For this we prove the following lemma.

Lemma 2.7.7. Let α ∶ R→ R′ be a homomorphism of commutative rings and S and S ′ multiplicative
subsets of R and R′ respectively. Suppose that α(S ) ⊆ S ′.

(a) α(S ) is a multiplicative subset of R′.

(b)

α∗ ∶ S −1R→ S ′−1R′,
r
s
→
α(r)
α(s)

is a well defined homomorphism.
3Note that by 2.7.4 Ř is a multiplicatively closed
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(c) Suppose that S ′ = α(S ). Then

kerα∗ = {
r
s
∣ r ∈ R, s ∈ S ,S r ∩ kerα ≠ ∅} and α∗(S −1R) = α(S )−1α(R)

Proof. (a) Just note that α(s)α(t) = α(st) for all s, t ∈ S .
(b) Note that φS ′(α(s)) is invertible. Hence α∗ is nothing else as the homomorphism given by

?? applied to the homomorphism:
φS ′ ○ α ∶ R→ S ′−1R′

(c) Let r
s ∈ kerα∗. As seen above this means t′α(r) = 0 for some t′ ∈ S ′. By assumption t′ = α(t)

for some t ∈ T . Thus r
s = 0 if and only if tr ∈ kerα for some t ∈ S .

That α∗(S −1R) = α(S )−1α(R) is obvious. �

Back to the map φ∗. By the previous lemma φ∗ is a well defined homomorphism and onto. Let
r
s ∈ kerφ∗. Then tr ∈ kerφ for some and t ∈ S . As kerφ = RS , t̃tr = 0 for some t̃ ∈ S . Hence r ∈ RS

and r
s = 0. Therefore φ∗ is one to one and so an isomorphism.

Note also that φ(R) ≅ R/RS . Let R̄ = R/RS and S̄ = S +RS /RS . As φ∗ is an isomorphism we get

S −1R ≅ S̄ −1R̄

We have R̄S̄ = 0. So in some sense we can always reduce to the case where S has no zero divisors.

Definition 2.7.8. Let R be a commutative ring, X a multiplicatively closed subset of R and I be an
ideal in R.

(a) A ⊆ R and Y ⊆ X. Then A
Y = { a

y ∣ a ∈ A, y ∈ Y} ⊆ X−1R.

(b)
{r ∈ R ∣ rx ∈ I for some x ∈ X}

is called the X−1-closure of I

(c) I is called X−1-closed if r ∈ I for all r ∈ R with rX ∩ I ≠ ∅.

Note that rx ∈ I for some x ∈ X if and only if rX ∩ I ≠ ∅. So I is X−1 closed if and only if I is
equal to the X−1-closure of I.

Proposition 2.7.9. Let X be a multiplicative subset of the commutative ring R and φ = φR
X . Let I be

an ideal in R and J an ideal in X−1R.

(a) I
X is an ideal in X−1R

(b) Put K = φ−1(J). Then K is an ideal in R with J = K
X . Moreover, for r ∈ R and x ∈ X,

r ∈ K ⇐⇒
r
x
∈ J



148 CHAPTER 2. RINGS

(c) φ−1 ( I
X ) is the X−1-closure of I.

(d) φ−1(J) is X−1-closed.

(e) The X−1-closure of X is X−1-closed.

(f) The map

I →
I
X

is a bijection from the set of X−1-closed ideals in I to the set of ideals to X−1R. The inverse is
given by

J → φ−1(J)

(g) If I ≠ R and I is X−1-closed then I ∩ X = ∅.

(h) If I is a prime ideal, then is X−1-closed if an only if I ∩ X = ∅.

(i) I → I
X is a bijection between the prime ideals I of R with I ∩ X = ∅ and the prime ideals in

X−1R.

Proof. (a) Let i, j ∈ I, x, y ∈ X and r ∈ R. Then 0 = 0
x ∈

I
X . i

x +
j
y =

iy+ jx
xy ∈ I

X and r
x

i
y =

ri
xy ∈

I
X .

(b) Inverse images of ideals under homomorphism are ideal and so K is ideal.
Since φ(r) is associated to φ(r)φ(x)−1 in X−1R,

φ(r) ∈ J ⇐⇒ φ(r)φ(x)−1 ∈ J

and so

r ∈ K ⇐⇒
r
x
∈ J

In particular, J = K
X and (b) holds.

(c) Put E = φ−1 ( I
X ). Let x ∈ X. By (b) r ∈ E if and only if r

x ∈
I
X and so if and only if r

x =
i
y for

some i ∈ I, y ∈ X. This holds if and only if ryz = ixz for some i ∈ I, y, z ∈ X.
If rxz = iyz for some i ∈ I, y, z ∈ X, then xz ∈ X and iyz ∈ I. Hence r(xz) ∈ I and so r is in the

X−1-closure of I.
Conversely, if rx = i for some x ∈ X and i ∈ I, then rxxx = ixx. Choose y = xx and z = x we see

that r ∈ E.
(d) By (b) K

X = I
X and so φ−1 (K

X ) = K. So by (c) K is equal to its X−1-closure.

(e) Follows from (c) and (d)
(f) Follows from (a) to (e).
(g) Since I ≠ R and I → I

X is a bijection, I
X ≠ R−1X. Thus I

X contains no units and so I ∩ X = ∅.
(h) The forward direction follows from (g). So suppose I ∩ X = ∅ and suppose r ∈ R and x ∈ X

with rx ∈ I. Since I ∩ X = ∅, x ∉ I and since I is a prime ideal we conclude that r ∈ I. Thus I is
X−1-closed.
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(i) By (h) we can replace the conditions I ∩ X = ∅ by I is X−1-closed. Let I be an X−1-closed
ideal in R. Since I → I

X is a bijection, I = R if and only if I
X = X−1R. Let r, s ∈ R and x, y ∈ X. Since

I is X−1-closed, we can apply (b) with K = I and J = I
X . Thus

r ∈ I ⇐⇒
r
x
∈

I
X

s ∈ I ⇐⇒
s
y
∈

I
X

sr ∈ I ⇐⇒
rs
xy

∈
I
X

Hence

rs ∈ I Ô⇒ r ∈ I or s ∈ I

if and only if

r
x

s
y
∈

X
I

Ô⇒
r
x
∈

I
X

or
s
y
∈

I
X

Hence I is a prime ideal in R if and only if I
X is a prime ideal in X−1R.

�

Definition 2.7.10. Let R be a commutative ring and P a prime ideal in R. The ring

(R ∖ P)−1R

is called is called the localization of R at the prime P and is denoted by RP. For A ⊆ R we write AP

for A
P .

Note here that by 2.4.13 R ∖ P is a multiplicatively closed. So (R ∖ P)−1R is defined.
Recall that RP also denotes⊕p∈P R. But hopefully it will always be clear from the context what

is meant.
If S is a subring of R with P ⊊ S , then P is also a prime ideal in S . Then S P = S

P ⊆ RP should
not be confused with S P = (S ∖ P)−1S .

Theorem 2.7.11. Let P be a prime ideal in the commutative ring.

(a) The map Q → QP is a bijection between the prime ideals of R contained in P and the prime
ideals in RP.

(b) PP is the unique maximal ideal in RP.
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Proof. (a) Put X = R ∖ P and let Q a prime ideal in R. Then Q ∩ X = ∅ if and only if Q ⊆ P. Thus
(a) follows from 2.7.9(i).

(b) Let I be a maximal ideal in RP. Since RP has an identity, 2.4.19 I is prime ideal. Thus by (a)
I = QP for some Q ⊆ P. Since I ⊆ PP and I is maximal we get I = PP. �

Definition 2.7.12. A local ring is a commutative ring with identity and an ideal M ≠ R such that
I ⊆ M for all proper ideals I of M.

Remark 2.7.13. A commutative ring with identity is a local ring if and only if its has a unique
maximal ideal M.

Proof. Suppose R is a local ring. Then the ideal M is the definition of a local ring is the unique
maximal ideal of R.

Suppose R has a unique maximal ideal M. Let I be a proper ideal in R. Then by 2.4.18 I is
contained in a maximal ideal of R and so I ⊆ M. �

Lemma 2.7.14. Let R be a commutative ring and M an ideal in R with M ≠ R. Then the following
statements are equivalent:

(a) I ⊆ M for all ideal I of R with I ≠ R.

(b) M contains all proper elements.

(c) M is the set of non-generators.

Proof. (a)Ô⇒ (b): Let r ∈ R be proper. Then (r) ≠ R and so (r) ⊆ M.
(b)Ô⇒ (c): The elements in R ∖ M are neither proper nor zero and so are generators. Since

M ≠ R, M does not contain any generators and so M is the set of non-units in R.
(c)Ô⇒ (a): Let I be an ideal in R with I ≠ R. Let i ∈ I. Then (i) ⊆ I and so i is not a generator.

Hence i ∈ M and I ⊆ M. �

Example 2.7.15. Let R be a UFD and p a prime in R. Determine the ideals in R(p).

Let X = R ∖ (p). Then for r ∈ R, r ∈ X if and only if p ∤ r. Thus
Then

R(p) = {
r
x
∈ FR ∣ r, x ∈ R, p ∤ x}

Let I be a non-zero ideal in R. Put n = np(I), so n ∈ N+ is maximal with pn ∈ I. We claim that I
is X−1-closed if and only if I = (pn).

Suppose first that I is X−1-closed and choose 0 ≠ i ∈ I with np(i) = n. Then i = apn for some
a ∈ R with p ∤ a. Then a ∈ X and apn ∈ I and since I is X−1 closed, pn ∈ I. So also (pn) ⊆ I. Since
pn ∣ I, I ⊆ (pn) and thus I = (pn).

Suppose next that I = (pn). So r ∈ I if and only if pn ∣ i. Let x ∈ X and r ∈ R with xr ∈ I. Then
pn ∣ xr and since p ∤ x, pn ∣ r. Thus r ∈ I and I is X−1-closed.

So the non-zero ideal in R(p) are (pn)(p), n ∈ nN. Note that this is just the ideal in R(p) generate

by pn

1 . Thus R(p) is a PID with a unique prime p
1 .
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2.8 Polynomials rings, power series and free rings

Let R be a ring and G a semigroup. In the definition of the semigroup ring R[G] we had to use
the direct sum rather than the direct product since otherwise the definition of the products of two
elements would involve infinite sums. But suppose G has the following property

(FP) ∣{(a,b) ∈ G ×G ∣ ab = g}∣ is finite for all g ∈ G

Then we can define the power semigroup ring of G over R, R[[G]]by

(R[[G]],+) = (∏
g∈G

R,+)

and
(rg)g∈G ⋅ (sg)g∈G = ( ∑

(h,k)∈G×G∣hk=g
rhsk)g∈G

If G is a group then it fulfills (FP) if and only if G is finite. So we do not get anything new.
But there are lots of infinite semigroups with (FP). For example G = N. R[[N]] is isomorphic to
R[[x]] the ring of formal power series. Other semigroups with (FP) are the free (abelian) monoids
(or semigroups) over a set

Let I be a set. Then the power semigroup ring

R[[⊕
i∈I

N]]

is called the ring of formal power series over R in the variables I and is denoted by R[[I]]. The
elements of R[[I]] are called formal power series. We use the same exponential notation as for the
ring of polynomials. Every formal power series can be uniquely written as a formal sum

f =∑
α∈I

fαxα

Here fα ∈ R. But in contrast to the polynomials we do not require that almost all fα are zero.
If I = {1} the formal power series have the form:

f =
∞

∑
n=0

fnxn = f0 + f1x + f2x2 . . . fnxn . . .

with fn ∈ R. Note that there does not exist an analog for ?? for formal power series, since the
definition of Φy( f ) involves an infinite sum.

Lemma 2.8.1. Let R be ring with identity and f ∈ R[[x]].

(a) f is a unit if and only if f0 is.

(b) If R is commutative and f0 is irreducible, then f is irreducible.
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Proof. (a) Note that ( f g)0 = f0g0 and 10 = 1 so if f is a unit so is f0. Suppose now that f0 is a unit.
We define g ∈ R[[x]] by defining its coefficients inductively as follows g0 = f −1

0 and for n > 0,

gn = − f −1
0 ∑ i = 0n−1 fn−igi

. Note that this just says ∑n
i=0 fn−igi = 0 for all n > 0. Hence f g = 1. Similarly f has a left inverse h

by1.2.3 g = h is a left inverses.

(b) Suppose that f = gh. Then f0 = g0h0. So as f0 is irreducible, one of g0, f0 is a unit. Hence
by (a) g or h is a unit. �

As an example we see that 1 − x is a unit in R[[x]]. Indeed

(1 − x)−1 = 1 + x + x2 + x3 + . . . .

Lemma 2.8.2. Let D be a division ring.

(a) (x) = { f ∈ D[[x]] ∣ f0 = 0}

(b) The elements of (x) are exactly the non-units of D[[x]].

(c) Let I be a left ideal in D[[x]]. Then I = xkD[[x]] = (xk) for some k ∈ N.

(d) Every left ideal in D[[x]] is a right ideal and D[[x]] is a principal ideal ring.

(e) (x) is the unique maximal ideal in D[[x]].

(f) If D is a field, D[[x]] is a PID and a local ring.

Proof. (a) is obvious and (b) follows from 2.8.1.
(c) Let k ∈ N be minimal with xk ∈ I. Let f ∈ I and let n be minimal with fn ≠ 0. Then

f = xng for some g ∈ D[[x]] with g0 ≠ 0. Hence g is unit and xn = g−1 f ∈ I. So k ≤ n and
f = (xn−kg)xk ∈ D[[x]]xk = (xk). Thus I = (xk).

(d),(e) and (f) follow immediately form (c). �

2.9 Factorizations in polynomial rings

Definition 2.9.1. Let R be a ring and I a set, (XI , idI) a free abelian monoid on I and J ⊆ I. Define

degJ ∶ R[I]→ N ∪ {−∞}, f → max
n∈NI
fn≠0

∑
j∈J

n j

with degJ f = −∞ if f = 0. deg f = degI( f ).

If I = J⊍K, then XI = XJ ×XK and so R[XI] is canonical isomorphic to R[XK][XJ] and degJ( f )
is the degree of f viewed as polynomial in the variables J with coefficients in R[XK].

Lemma 2.9.2. Let R be a ring, I a set and f ,g ∈ R[I].
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(a) deg( f + g) ≤ max(deg f ,deg g) with equality unless h(g) = −h( f ).

(b) If f and g are homogeneous, then f g is homogeneous. Also either deg( f g) = deg( f ) + deg(g)
or f g = 0.

(c) h( f g) = h( f )h(g) unless h( f )h(g) = 0.

(d) R[I] has no zero divisors if and only if R has no zero divisors.

(e) deg f g ≤ deg f + deg g with equality if R has no zero divisors.

Proof. (a),(b) and (c) are readily verified.
(d) If R has zero divisors, then as R is embedded in R[I], R[I] has zero divisors.
Suppose next that R has no zero divisors. Let f ,g ∈ R[I]#. We need to show that f g ≠ 0. By (c)

we may assume that f and g are homogeneous.
Consider first the case that ∣I∣ = 1. Then f = axn, g = bxm and f g = (ab)xn+m. Here a,b ∈ R#

and so ab ≠ 0. Thus also f g ≠ 0. If I is finite, R[I] = R[I ∖ {i}][i] and so by induction R[I] has no
zero divisors.

For the general case just observe that f ,g ∈ R[J] for some finite subset J of I.
(e) If R has no zero divisors, (d) implies h( f )h(g) ≠ 0. Thus by (b) and (c),

deg f = deg h( f g) = deg h( f )h(g) = deg h( f ) + deg h(g) = deg f + deg g.

�

Lemma 2.9.3. Let R be a ring, P an ideal in R and I a set.

(a) Let P[I] = { f ∈ R[I] ∣ fα ∈ P for all α ∈ I}. Then P[I] is an ideal in R[I] and

R[I]/P[I] ≅ (R/P)[I]

(b) If R has an identity, P[I] = P ⋅ R[I] is the ideal in R[I] generated by P.

Proof. (a) Define φ ∶ R[I] → (R/P)[I],∑α∈I fαxα → ∑α∈I( fα + P)xα. By ?? φ is a ring homomor-
phism. Clearly φ is onto and kerφ = P[I] so (a) holds.

(b) Let p ∈ P then pxα ∈ P ⋅ R[I]. Thus P[I] ≤ P ⋅ R[I]. The other inclusion is obvious. �

Corollary 2.9.4. Let R be a commutative ring with identity, I a set and p ∈ R. Then p is a prime in
R if and only if p is a prime in R[I].

Proof. R is a prime if and only if R/pR is an integral domain. So by 2.9.2d if and only if (R/pR)[I]
is an integral domain. So by 2.9.3 if and only if R[I]/pR[I] is a prime ideal and so if and only if p
is a prime in R[I]. �

Theorem 2.9.5 (Long Divison). Let R be a ring and f ,g ∈ R[x]. Suppose that the leading coefficient
of g is a unit in R. Then there exist uniquely determined q, r ∈ R with

f = qg + r and deg r < deg g
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Proof. Let h( f ) = axn and h(g) = bxm. If n < m, we conclude that q = 0 and r = f is the unique
solution.

So suppose that m ≤ n. Then any solution necessarily has h( f ) = h(q)h(g) and so s(q) =

ab−1xn−m. Now f = qg − r if and only if

f − ab−1xn−mg = (q − ab−1xn−m)g + r

So uniqueness and existence follows by induction on deg f . �

Let R be a ring and f ∈ R[x]. Define the function

f r ∶ R→ R, c→ ∑
α∈N

fαcα

The function f r is called the right evaluation of f . Note here that as R is not necessarily
commutative , fαcα might differ from cα f α. If R is commutative f r = f id.

The map f → f r is an additive homomorphism but not necessarily a multiplicative homomor-
phism. That is we might have ( f g)r(c) ≠ f r(c)gr(c). Indeed let f = rx and g = sx. Then
f g = (rs)x2, ( f g)r(c) = rsc2 and f r(c)gr(c) = rcsc.

Lemma 2.9.6. Let R be a ring, f ,g ∈ R[x] and c ∈ R. If gr(c)c = cgr(c) then

( f g)r(c) = f r(c)gr(c).

Proof. As f → f r is a additive homomorphism we may assume that f = rxm for some r ∈ R, m ∈ N.
Thus

f g = ∑
α∈N

rgαxα+m

and so

( f g)r(c) = ∑
α∈N

rgαcα+m =

= r(∑
α∈N

gαcα)cm = rgr(c)cm = rcmgr(c) = f r(c)gr(c)

�

Corollary 2.9.7. Let R be a ring with identity, c ∈ R and f ∈ R[x].

(a) Then there exists a unique q ∈ R[x] with

f = q(x − c) + f r(c).

(b) f r(c) = 0 if and only if f = q(x − c) for some q ∈ R[x].
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Proof. (a) By2.9.5 f = q ⋅ (x − c) + r with deg r < deg(x − c) = 1. Thus r ∈ R. By 2.9.6

f r(c) = qr(c)(c − c) + r = r

Hence r = f r(c). The uniqueness follows from 2.9.5

(a) follows from (b). �

Corollary 2.9.8. Let R be an commutative ring with identity and c ∈ R.

(a) R[x]/(x − c) ≅ R.

(b) x − c is a prime if and only R is an integral domain.

Proof. Proof. Consider the ring homomorphism idc ∶ R[x] → R, f → f (c) (see ?? Clearly idc is
onto. By 2.9.7b ker idc = (x − c) so (b) follows from the Isomorphism Theorem for rings.

(b) Note that x− c is a prime if and only if R[x]/(x− c) has non-zero divisors. Thus (a) follows
from (b). �

Corollary 2.9.9. Let F be a field. Then F[x] is an Euclidean domain. In particular, F[x] is a PID
and a UFD. The units in F[x] are precisely the nonzero elements in F.

Proof. Just note that by 2.9.5 K[x] is a Euclidean domain. �

Let R be a subring of the commutative ring S . Write R → S for the inclusion map from R to S .
Let I be a set, f ∈ R[I] and c ∈ S I . We say that c is a root of f if

f R→S (c) = 0.

Let R be any ring, f ∈ R[x] and c ∈ R. We say that c is a root of f if f r(c) = 0. Note that for R
commutative this agrees with previous definition of a root for f in R.

Theorem 2.9.10. Let D be an integral domain contained in the integral domain E. Let 0 ≠ f ∈ D[x].
Let m ∈ N be maximal so that there exists c1, . . . cm ∈ E with

m

∏
i=1

x − ci ∣ f

in E[x]. Let c be any root of f in E. Then c = ci for some i. In particular, f has at most deg f
distinct roots in E.

Proof. Let f = g∏m
i=1 x − ci with g ∈ E[x]. By maximality of m, x − c ∤ g. By 2.9.8 x − c is a prime

in E[x] and so

x − c ∣
m

∏
i=1

x − ci

By 2.5.18, x − c ∼ x − ci for some i. Thus x − c = x − ci and c = ci. �
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We remark that the previus theorem can be false for non-commuative divison rings. For example
the polynomial x2 + 1 = 0 has at infinitely many roots in the division ring H of quaternions, namely
any ai + b j + ck with a2 + b2 + c2 = 1.

Let R be a ring, f ∈ R[x] and c b a root of f in D. Then by 2.9.10 We can write f has f = g(x−c)m

with m ∈ Z+, g ∈ R[x] and so that c is not a root of g. m is called the multiplicity of the root g. If
m ≥ 2 we say that c is a multiple root

As a tool to detect multiple roots we introduce the formal derivative f ′ of a polynomial f ∈ R[x].

f ′ ∶= ∑
α∈Z+

n fαxα−1

Put f [0] = f and inductively, f [k+1] = ( f [k])′ for all k ∈ N.

Lemma 2.9.11. Let R be a ring, f ,g ∈ R[x] and c ∈ R. Then

(a) (c f )′ = c f ′

(b) ( f + g)′ = f ′ + g′.

(c) ( f g)′ = f ′g + f g′.

(d) If f f ′ = f ′ f , ( f n)′ = n f n−1 f ′.

Proof. (a) and (b) are obvious.
(c) By (b) we may assume that f = rxm and g = sxn are monomials. We compute

( f g)′ = (rsxn+m)′ = (n +m)rsxn+m−1

f ′g + f g′ = mrxm−1sxn + rxmnsxn−1 = (n +m)rsxm+n−1

Thus (c) holds.
(d) follows from (c) and induction on n. �

Lemma 2.9.12. Let R be a ring with identity, f ∈ R[x] and c ∈ R a root of f .

(a) Suppose that f = g(x − c)n for some n ∈ N and g ∈ R[x]. Then

f [n](c) = n!g(c).

(b) c is a multiple root of f if and only if f ′(c) = 0.

(c) Suppose that (deg f )! is neither zero nor a zero divisor in R. Then the multiplicity of the root c
is smallest number m ∈ N with f [m](c) ≠ 0.

Proof. (a) We will show that for all 0 ≤ i ≤ n, there exists hi ∈ R[x] with

f [i] =
n!

(n − i)!
g(x − c)n−i + hi(x − c)n−i+1
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For i = 0 this is true with h0 = 0. So suppose its true for i. Then using 2.9.11

f [i+1] = ( f [i])′ =
n!

(n − i)!
(g′(x − c)n−i + g(n − i)(x − c)n−i−1) + h′i(x − c)n−i+1 + hi(n − i + 1)xn−i

This is of the form n!
(n−i−1)! g(x − c)n−i−1 plus a left multiple of (x − c)n−i. So the statements holds

for i + 1.
For i = n we conclude f [n] = n!g + hn(x − a) Thus (a) holds.
(b) Since c is a root, f = g(x − a) for some g ∈ R[x]. So by (a) applied to n = 1, f ′(c) = g(c).

Thus (b) holds.
(c) Let m the multiplicity of c has a root of f . So f = g(x− c)m for some g ∈ R[x] with g(c) ≠ 0.

Let n < m. Then f = (g(x − c)m−n)(x − c)n and (a) implies f [n](c) = 0. Suppose that f [m](c) = 0.
Then by (a), m!g(c) = 0. As m ≤ deg f we get (deg f )! g(c) = 0. Thus by assumption g(c) = 0, a
contradiction. This f [m](c) ≠ 0 and (c) holds. �

Consider the polynomial xp in Z/pZ[x]. Then (xp)′ = pxp−1 = 0. This shows that the condition
on (deg f )! in part (c) of the previous theorem is necessary.

Let D be an UFD, I a set and f ∈ D[I]. We say that f is primitive if 1 is a greatest common
divisor of the coefficents of f .

Lemma 2.9.13. Let D be a UFD, F its field of fractions and I a set. Let f ∈ F[I]. Then there exists
a f ,b f ∈ D and f ∗ ∈ D[I] so that

(a) f ∗ is primitive in D[I].

(b) a f and b f are relatively prime.

(c) f = a f
b f

f ∗.

Moreover a f ,b f and f ∗ are unique up to associates in D.

Proof. We will first show the existence. Let f = ∑α∈I fαxα with fα ∈ F. Then fα = rα
sα

with
rα, sα ∈ D. Here we choose sα = 1 if fα = 0. Let s =∏α∈I sα. Then s f ∈ D[I]. Let r = gcdα∈I s fα and
f ∗ = r−1s f . Then f ∗ ∈ D[I], f ∗ is primitive and f = r

s f ∗. Let e the a greates common divisor of r
and s and put a f =

r
e and b f =

s
e . Then (a),(b) and (c) hold.

To show uniqueness suppose that f = a
b f̃ with a,b ∈ D relative prime and f̃ ∈ D[I] primitive.

Then

ba∗f = b f a f̃

Taking the greatest common divisor of the coefficents on each side of this equation we see that ba f

and b f a are associate in D. In particular, a divides ba f and as b is realtively prime to a, a divides
a f . By symmetry a f divides a and so a = ua f for some unit u in D. Similarly b = vb f for some unit
v ∈ D. Thus vb f a f f ∗ = ub f a f f̃ . As D is an integral domain we conclude f̃ = u−1v f ∗. �
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Let f be as in the previuos theorem. The fraction c f =
a f
b f

is called the content of f . Note that
c f ∈ F and f = c f f ∗.

Lemma 2.9.14. Let D be a UFD, F its field of fraction, I a set and f ,g ∈ F[I]#.

(a) c f g = uc f cg for some unit u ∈ D.

(b) ( f g)∗ = u−1 f ∗g∗

(c) The product of primitive polynomials is primitive.

(d) If f ∣ g in F[I], then f ∗ ∣ g∗ in D[I].

(e) Suppose f is primitive. Then f is irreducible in D[I] if and only if its irreducible in F[I]

(f) Suppose f is primitive.Then f is a prime in D[I] if and only if it is a prime in F[I].

Proof. Note that f g = c f cg f ∗g∗. So (a), (b) and (c) will follow once the show that the product of
two primitive polynomials is primitive. Suppose not. Then there exist primitive f ,g ∈ D[I] and a
prime p in D dividing all the coefficients of f g. But then p ∣ f g in D[I]. By 2.9.4 p is prime in D[I]
and so p divides f or g in D[I]. A contradiction as f and g are primitive.

(d) Suppose that f ∣ g. Then g = f h for some h ∈ F[I]. By (b) g∗ = f ∗h∗ and so (d) holds.
(e) Suppose that f is irreducible in F[I] and f = gh with g,h ∈ D[x] Then by (a) both g and h

are primitive. On the other hand since f is irreducible in F[I], one of g or h is a unit in F[I] and so
in F. It follows that one of g and h is a unit in D. So f is also irreducible in D[I].

Suppose that f is irreducible in D[I] and f = gh for some g,h ∈ F[x]. Then f = f ∗ ∼ g∗h∗ and
as f is irreducible in D[I], one of g∗,h∗ is a unit in D. But then one of g and h is in F and so a unit
in F[I].

(f) Suppose that f is prime in D[I] and that f ∣ gh in F[I]. By (d) f = f ∗ ∣ g∗h∗ and as f is a
prime in D[I] we may assume f ∣ g∗. As g∗ divides g in F[I] f does too. So f is a prime in F[I].

Suppose that f is a prime in F[I] and f ∣ gh in D[I] for some g,h ∈ D[I]. Then as f is a prime
in F[I] we may assume that f ∣ g in F[I]. But (d) f = f ∗ ∣ g∗ in D[I]. As g∗ divides g in D[I], f
does too . So f is a prime in D[I]. �

Theorem 2.9.15. Let D be a UFD and I a set, then D[I] is a UFD.

Proof. Let f be in D[I]. We need to show that f is the product of primes. Now f ∈ D[J] for some
finite f and by 2.9.4 a prime factorization in D[J] is a prime factorization in D[I]. So we may
assume that J is finite and then by induction that ∣I∣ = 1.

Note that f = c f f ∗ with f ∗ ∈ D[x] primitive and c f ∈ D. As D is a UFD, c f is a product of
primes in D and by2.9.4 also a prodcut of primes in D[x]. So we may assume that f is primitive.
Suppose that f = gh with g,h ∈ D[x] with neither g nor h a unit. As f is primitive, g and h both
have positive degree smaller than f . So by induction on deg f both g and h are a product of primes.
So we may assume that f is irreducible. Let F = FD. By 2.9.13 f is irreducible in F[x]. As F[x] is
Euclidean, f is a prime in F[x]. Hence by 2.9.13 f is a prime in D[x]. �



Chapter 3

Modules

3.1 Modules and Homomorphism

In this section we introduce modules over a ring. It corresponds to the concept of group action in
the theory of groups.

Definition 3.1.1. Let (R,+, ⋅) be a ring and (M,+) an abelian group. A ring action of R on M is a
function ∗ with R × M ⊆ Dom(∗) such that such that for all r, s ∈ R and a,b ∈ M:

(M0) r ∗ a ∈ M.

(M1) r ∗ (a + b) = ra + rb.

(M2) (r + s) ∗ a = ra + sa.

(M3) r ∗ (s ∗ a) = (r ⋅ s)a.

In this case (M,+,∗) is called an R-module.

Abusing notation we will call M an R-module and write ra for r ∗ a.

Lemma 3.1.2. Let R be a ring, M an abelian group, ∗ ∈ Fun(R × M) and ∗R ∶ R → Fun(M) the
associated function on R. Then ∗ is ring action of R on M if and only if ∗R is ring homomorphism
from R to End(M).

Proof. (M0) holds if and only if r∗ is a function from M to M for all r ∈ R, that is if and only if ∗R

is a function from R to Fun(M.M).
Assuming that (M0) holds:
(M1) holds if and only if r∗ is a homomorphism for all r ∈ R, that is if and only if ∗R is a function

from R to End(M).
Suppose now that (M0) and (M1) hold:
(M2) holds if and only if (r + s)∗ = r∗ + s∗ and (M3) holds if and only if (rs)∗ = r∗ ○ s∗ for all

r, s ∈ R. So (M2) and (M3) holds if and only of ∗R is ring homomorphism from R to End(M).

�

159
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Example 3.1.3. Let R be a ring and A an abelian group.

1. A is a Z-module via n ∗ a = na for all n ∈ Z and a ∈ A.

2. A is an End(A)-module via φm = φ(m) for all φ ∈ Φ, m ∈ M.

3. A is an R-module via, ra = 0R for all r ∈ R, a ∈ A.

4. R is an R-module via left multiplication.

5. Let (Mi)i∈I be a family of R-modules. Then×i∈I Mi and ⊕i∈I Mi are R-modules via

r ∗ (mi)i∈I = (r ∗i mi)i∈I

Definition 3.1.4. Let (R,G) be a sesquiring. An (R,G)-sesquimodule is triple (M,+,∗), where
(M,+) is an abelian group and ∗ is a function with R ×G × M ⊆ Dom(∗), such that the following
holds for all a,a′ ∈ R,g,g′ ∈ G and m,m′ ∈ M:

(SM 0) a ∗ g ∗m ∈ M.

(SM 1) a ∗ g ∗ (m +m′) = a ∗ g ∗m + a ∗ g ∗m′.

(SM 2) a ∗ g ∗ (a′ ∗ g′ ∗m) = (aa′) ∗ (gg′) ∗m.

(SM 3) (a + a′) ∗ g ∗m = a ∗ g ∗m + a′ ∗ g ∗m,

Lemma 3.1.5. Let (R,G) be a sesquiring and M an abelian group.

(a) Let ∗ ∈ Fun(R ×G × M) and ∗R×G ∶ R ×G → Fun(M) the associated function on R ×G. Then
(M,∗) is an (R,G)-sesquimodule if and only if ∗R×G is a sesquihomomorphism from R ×G to
End(M).

(b) There exist natural 1-1 correspondences between the class of (R,G)-sesquimodules, the class of
sesquihomomorphisms from (R,G) to endomorphism rings of abelian groups, the class of ho-
momorphisms from R[G] to endomorphism rings of abelian groups and the class R[G]-modules.

Proof. (a) Observe that (SM0) holds if and only if ∗R×G is function from R ×G to Fun(M,M).
Assume that (SM0) holds.
Note that (SM1) holds if and only if each (a,g)∗ is an homomorphism, that is if and only if

∗R×G is a function from R ×G to End(M,M).
Assume that (SM0) and (SM1) holds.
(SM2) holds if and only if (aa′,gg′)∗ = (a,g)∗ ○ (a′,g′)∗ and so if and only if ∗R×G is a

multiplicative homomorphism.
(SM3) holds if and only if (a+ a′,g)∗ = (a,g)∗ + (a′,g)∗, that is ∗R×G is an additive homomor-

phism in the first coordinate.
(b) (a) provides a 1-1 correspondence between the class of (R,G)-sesquimodules and the class

of sesquihomomorphisms from (R,G) to endomorphismrings of abelian groups.
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2.2.6 provides a 1-1 correspondence between class of sesquihomomorphisms from (R,G) to en-
domorphism rings of abelian groups and the class of homomorphisms from R[G] to endomorphism
rings of abelian groups.

3.1.2 provides a 1-1 correspondence between class of homomorphisms from R[G] to endomor-
phism rings of abelian groups and the class R[G]-modules.

�

Example 3.1.6. Let R be a ring, M an R-module and G a group acting on the set Ω. Define

∗ ∶ R ×G × MΩ → MΩ

by

(r ∗ g ∗ f )(ω) = r ⋅ f (g−1ω)

for all r ∈ R,g ∈ G, f ∈ Mω. Then (M,∗) is an (R,G) sesquimodule. So M is also an R[G] module
via

((∑
g∈G

rgg) f)(ω) = ∑
g∈G

rg ⋅ f (g−1ω)

Definition 3.1.7. Let C be class, R a ring and I and J sets.

(a) An I × J-matrix is an I × J-tuple. An I × J-matrix in C is an I × J-tuple in C. MIJ(C) is the class
of all I × J matrix in C.

(b) Let i ∈ I, j ∈ J and A an I × J-matrix. Then Ai, j = A(i, j). Ai, is the J-tuple (Ai, j) j∈J . Ai, is called
Row i of A. A, j is the I-tuple (Ai, j) j∈J . A, j is called Column j of A. We will also write Ai j for
Ai, j and Ai for Ai,.

(c) Let A be an I × J-matrix. We will use any of the following to denote A:

[Ai j]i∈I, j∈J [Ai j] i∈I
j∈J

[Ai j]i, j [Ai j] [Ai,]i∈I [A, j], j∈J

Definition 3.1.8. Let R be a ring, I, J,K sets, A an I×J-matrix in R, B an J×K-matrix in R, x, y ∈ RJ

and r ∈ R.

(a) We say that A has almost trivial rows A, if Ai ∈ RJ for all i ∈ I. A has almost trivial columns if
A, j ∈ RI for all j ∈ J. MI

J(R) is the set of I × J-matrices in R with almost trivial row. MI
J(R)

is the set of I × J-matrices in R with almost trivial columns, MIJ is the set of I × J-matrices in
R with almost trivial rows and almost trivial columns.

(b) rx ∶= (rx j) j∈J , xr ∶= (x jr) j∈J , rA = [rAi j] i∈I
j∈J

and Ar = [Ai jr] i∈I
j∈J

.

(c) If x ∈ RJ or y ∈ RJ , then x ● y ∶= ∑ j∈J x jy j and so x ⋅ y ∈ R,

(d) If A ∈ MI
J(R) or x ∈ RJ , then Ax ∶= (Ai ● x)i∈I and so Ax ∈ RI .



162 CHAPTER 3. MODULES

(e) If x ∈ RJ or B ∈ MJ
K(R) then xB ∶= (x ● B,k)k∈K and so xB ∈ RK .

(f) If A ∈ MI
J(R) or B ∈ MJ

K(R) then AB ∶= [Ai ● B,k] i∈I
k∈K

and so AB ∈ MIK(R)

Lemma 3.1.9. Let R be a ring, I, J,K sets, A an I × J-matrix in R, B an J × K-matrix in R and
x ∈ RJ .

(a) Ax = ∑ j∈J A, jx j. In particular if A ∈ MI
J(R), then Ax ∈ RI .

(b) xB = ∑ j∈J x jB j. In particular, if B ∈ MJ
K(R) then xB ∈ RK .

(c) Suppose that A ∈ MI
J(R) or B ∈ MJ

K(R). Then AB = [AB,k],k∈K and AB = [AiB]i∈I .

(d) Suppose A ∈ MI
J(R) and B ∈ MJ

K(R). Then AB ∈ MI
K(R).

(e) Suppose A ∈ MI
J(R) and B ∈ MJ

K(R). Then AB ∈ MI
K(R)

Proof. Readily verified. �

Remark 3.1.10. If A ∈ MIJ(R) and B ∈ MJ
K , then AB does not have to be in MI

K . Consider for
example the case I = J, R has an identity, A = [δi j] is the I × I identity matrix and B ∈ MJ

K(R) ∖

MJK(R). Then AB = B /∈ MI
K(R).

Definition 3.1.11. Let V and W be R-modules and f ∶ V → W be a function. Then f is called
R-linear if f is an (R, ⋅)-equivariant homomorphism, that is

f (a + b) = f (a) + f (b) and f (ra) = r f (a).

for all a,b ∈ V and r ∈ R.

Definition 3.1.12. Let R be a ring with identity and M an R-modules.

(a) M is a unitary R-module provide that
1Rm = m

for all m ∈ M.

(b) If R is a division ring and M is unitary then M is called a vector space over R.

Definition 3.1.13. Let R be a ring and V and W R-modules.

(a) HomR(V,W) denotes the set of R-linear maps from V to W.

(b) EndR(V) = HomR(V,V).

Lemma 3.1.14. Let R be a ring.

(a) Let f ∶ U → V and g ∶ V →W be R-linear. Then g ○ f is R-linear.

(b) Let f ∶ V →W and g ∶ V →W be R-linear. Then f + g is R-linear.
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(c) Let f ∶ V →W be R-linear. Then − f ∶ V → V, v→ −( f (v)) is R-linear.

(d) HomR(V,W) a subgroup of Hom(V,W).

(e) Let V be an R-module. Then EndR(V) is a subring of End(V).

Proof. (a) Composition of homomorphism are homomorphism and composition of equivariant
functions are equivariant.

(b) Sums of homomorphisms are homomorphism. Also

( f + g)(rv) = f (rv) + g(rv) = r f (v) + r(g(v) = r( f (v) + g(v)) = r( f + g)(v)

(c) Negatives of homomorphisms are homomorphism. Also

(− f )(rv) = −( f (rv)) = −(r( f (v))) = r(−( f (v))) = r((− f )(v))

(d) and (e) follow from (a), (b) and (c). �

Lemma 3.1.15. Let R be a ring with identity and I and J sets.

(a) For A ∈ MI
J(R), define

αA ∶ RI → RK , x→ xA

Then
Φ ∶ MI

J(R)→ HomR(RI ,RJ),A→ αA

is well-defined isomorphism of abelian groups.

(b) Φ ∶ MI
I(R)→ EndR(RI),A→ αA is an anti-isomorphism of rings.

(c) For A = [Ai j] i∈I
j∈J

∈ MIJ(R) define AT ∈ MJI(R) by (AT)
ji = Ai j for all i ∈ I, j ∈ J. Then

AT = [Ai j] j∈J
i∈I

= [Ai],i∈I = [A, j] j∈J and (AT)
T
= A

Moreover,

TIJ ∶ MIJ(R)→MJI(R), A→ AT

TI
J ∶ MI

J(R)→MJ
I(R), A→ AT

TI
J ∶ MI

J(R)→MJ
I(R), A→ AT

are well-defined isomorphisms of abelian groups.

(d) Let K be a set, A ∈ MIJ(R) and B ∈ MJK(R). If A ∈ MI
J or B ∈ MJ

K , then

(AB)T = BT ⋅Rop AT

where ⋅Rop denotes the multiplication of matrices with coefficients in Rop.
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(e) TI
J ∶ MI

J(R)→MJ
I(Rop), A→ AT is an anti-isomorphism of rings.

Proof. It is readily verified that αA is R-linear and Φ is a homomorphism of abelian group. To show
that Φ is a bijection we find an inverse. For k ∈ I define ek = (δik)i∈I ∈ RI . Let α ∈ EndR(RI ,RJ) and
define

Aα ∶= [α(ei)]i∈I

Since α(ei) ∈ RJ , Aα ∈ MI
J . Also for x ∈ RI

xAα = x[α(ei)]i∈I =∑
i∈I

xiα(ei) = α(∑
i∈I

xiei) = α(x)

and so Φ(Aα) = α.
Conversely if A ∈ MI

J(R), then

[αA(ei)]i∈I = [eiA]i∈I = [∑
k∈K

δikAk]i∈I = [Ai]i∈I = A

So the function

Ψ ∶ Hom(RI ,RJ)→MI
J(R), α→ Aα

is inverse to Φ.

(b) Let A,B ∈ MI
I(R) and x ∈ RI . Then

(αA ○ αB)(x) = αA(αB(x)) = (xB)A = x(BA) = αBA(x)

(b) now follows from (a).

(c) Note that (AT)T = A. So all of the functions are bijections. They are clearly additive
homomorphism. Note that Column i of AT is row i of A. So if A has almost trivial rows, AT has
almost trivial columns. Thus the functions are well-defined.

(d)

(AB)T = ([Ai ● B,k] i∈I
k∈K

)
T
= [Ai ● B,k]k∈K

i∈I
= [B,k ●Rop Ai]k∈K

i∈I
= [(BT)

k ●Rop (AT)
,i]k∈K

i∈I
= BT ⋅Rop AT

(e) Follows from (c) and (d)
�

Lemma 3.1.16. Let R be a ring and V an R-module. Let G be a semigroup acting R-linearly on V,
that is for all r ∈ R,g,h ∈ G,a,b ∈ V:

(gh)v = g(hv), g(v +w) = gv + gw, and g(rv) = r(gm)

Then V is an R ×G-sesquimodule via

R ×G × V → V, (r,g, v)→ r(gv)
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Proof. Let ∗R and ∗G be the homomorphism from R and G to End(V) obtained from the action of
R and G on V . Note that r(gv) = g(rv) means

∗R(r) ○ ∗G(g) = ∗G(g) ○ ∗R(r)

So by 2.2.8 shows that map

R ×G → End(V), (r,g)→ ∗R(r) ○ ∗G(g)

is a sesquihomomorphism. So the lemma follows from 3.1.5 �

Definition 3.1.17. Let R be a ring and (V,+,∗) an R-module. An R-submodule of (V,+,∗) is a
R-module (W,△ , ◻ ) such that

(i) W ⊆ V.

(ii) a△b = a + b for all a,b ∈ W.

(iii) r ◻ a = r ∗ a for all r ∈ R, a ∈ W.

Note that if (W,△ , ◻ ) is a submodule of V , then (W,△ , ◻ ) ≡ (W,+,∗).

Lemma 3.1.18. Let R be a ring, V an R-module and W an R-submodule of W. Then

∗V/W ∶ R × V/W → V/W, (r, v +W)→ rv +W

is a well-defined ring action of R on (V/W,+V/W). Moreover the map

π ∶ V → V/W, v→ v +W

is an onto R-homomorphism with kerπ = W.

Proof. Let v, v′ ∈ V with v +W = v′ +W. Then v − v′ ∈ W and so also

rv − rv′ = r(v − v′) ∈ W

Thus rv +W = rv′ +W. So ∗V/W is well-defined. Straight forward calculations show that ∗V/W is a
ring action.

By 1.6.10(f), π is a well-defined onto homomorphism of abelian groups with kerπ = W. We
have

π(rv) = rv +W = r(v +W) = rπ(v)

and so π is R-linear. �

Lemma 3.1.19. Let R be a ring and f ∶ V →W be R-linear,

(a) Let X be an R-submodule of V. Then f (X) is an R-submodule of W.
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(b) Let Y be an R-submodule of W. Then f −1(Y) is an R-submodule of V.

(c) Im f is R-submodule of W.

(d) ker f is an R-submodule of V.

Proof. (a) Since f an homomorphism of abelian groups, f (X) is a subgroup of W. Also if r ∈ R
and x ∈ X, then rx ∈ X and so r f (x) = f (rx) ∈ f (X)

(b) f −1(Y) is an additive subgroup of V . If x ∈ f −1(Y), then f (rx) = r( f (x)) ∈ rY ⊆ Y . So
rx ∈ f −1(Y).

(c) and (d) follow from (a) and (b) applies to X = V and Y = {0}. �

Theorem 3.1.20 (Isomorphism Theorem for Modules). Let R be a ring and f ∶ V →W an R-linear
map. Then

f ∶ V/ker f → f (W), v + ker f → f (v)

is a well-defined R-linear isomorphism.

Proof. By the isomorphism theorem for groups 1.6.11, this is a well defined isomorphism of abelian
groups. We just need to check that it is R-linear. So let r and v ∈ V . Then

f (r(v + ker f )) = f (rv +W) = f (rv) = r f (v) = r f (v + ker f ).

�

Definition 3.1.21. Let R be a ring, M an R-module, S ⊆ R and X ⊂ M.

(a) ⟨X⟩ is the subgroup of (M,+) generated X.

(b) S X = {sx ∣ s ∈ S , x ∈ X}

(c) AnnS (X) = {s ∈ S ∣ sx = 0M for all x ∈ X}. AnnS (X) is called the annihilator of X in S

(d) AnnX(S ) = {x ∈ X ∣ sx = 0M for alls ∈ S }. AnnX(S ) is called the annihilator of X in S .

(e) ⟨X⟩R ∶= ⋂{W ∣ W is an R submodule of M,X ⊆ M}. ⟨X⟩R is called R-submodule of M generated
by X.

(f) M is called finitely generated if M = ⟨I⟩R for some finite subset I of R.

Lemma 3.1.22. Let R be a ring, M an R-module, S ,T ⊆ R, X,Y ⊆ M, r ∈ R and m ∈ M.

(a) S (T X) = (S T)X) and we will just write S T X for S (T X).

(b) r⟨X⟩ = ⟨rX⟩ and ⟨S ⟩x = ⟨S x⟩.

(c) ⟨S X⟩ = ⟨S ⟨X⟩⟩ = ⟨⟨S ⟩⟨X⟩⟩ = ⟨⟨S ⟩X⟩.

(d) If S is a left ideal in R, then ⟨S X⟩ is a R-submodule.
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(e) Let (Xi)i∈I be a family of R-submodules of M. Then ⟨Xi, i ∈ I⟩ is an R-submodule of M.

(f) Let (Xi)i∈I be a family of R-submodules of M. Then ⋂i∈I Xi is a R-submodule of M.

(g) ⟨X⟩R is R-submodule of M, ⟨X⟩R = ⟨RX,X⟩ and if M is unitary, ⟨X⟩R = ⟨RX⟩.

(h) If S is an additive subgroup of R and X = ⟨xi ∣ i ∈ I⟩ for family (xi)i∈I in X then

⟨S X⟩ = {∑
i∈I

sixi ∣ s ∈ S I}

(i) If (Xi)i∈I is a family of subsets of M, then ⟨Xi, i ∈ I⟩R = ⟨⋃i∈I Xi⟩R.

Proof. (a)

S (T X) = {s(tx) ∣ s ∈ S , t ∈ T, x ∈ X} = {(st)x ∣ s ∈ S , t ∈ T, x ∈ X} = (S T)X.

(b) Since left multiplication by r and right multiplication by x are additive homomorphism, (b)
follows from 1.8.5(c).

(c) Let s ∈ S and x ∈ X By (b) s⟨X⟩ = ⟨sX⟩ ≤ ⟨S X⟩ and so

(∗) ⟨S ⟨X⟩⟩ = ⟨S X⟩

By (b) ⟨S ⟩x = ⟨S x⟩ ≤ ⟨S X⟩ and so ⟨⟨S ⟩X⟩ = ⟨S X⟩.
(*) applied to ⟨S ⟩ in place of S yields ⟨⟨S ⟩⟨X⟩⟩ = ⟨⟨S ⟩X⟩ and so (c) holds.

(d) Since S is a left ideal, RS ⊆ S . So

R⟨S X⟩ ⊆ ⟨R(S X)⟩ = ⟨(RS )X⟩ ⊆ ⟨S X⟩

and so ⟨S X⟩ is an R-submodule.

(e) R⟨Xi, i ∈ I⟩ ⊆ ⟨RXi, i ∈ I⟩ ⊆ ⟨Xi, i ∈ I⟩.

(f) Suppose each Xi is an R-submodule. By 1.8.3 ⋂i∈I Xi is subgroup of (R,+). Let x ∈ ⋂i∈I Xi.
Then x ∈ Xi and so rx ∈ Ai for all i ∈ I. Thus rx ∈ ⋂i∈I Xi and so ⋂i∈I Xi is an R-submodule.

(g) By (f), ⟨X⟩R is an R-submodule. Clearly ⟨RX,X⟩ is contained in any R-submodule containing
X. So ⟨RX,X⟩ ≤ ⟨X⟩R. We have

R⟨RX,X⟩ ⊆ ⟨R(RX),RX >⊆ ⟨RX⟩ ⊆ ⟨RX,X⟩

and so ⟨RX,X⟩ is an R-submodule containing X. Hence ⟨RX,X⟩ = ⟨X⟩R.
If M is unitary X = 1X ⊆ RX and so ⟨RX,X⟩ = ⟨RX⟩

(h) Note that
⟨S X⟩ = ⟨S ⟨xi ∣ i ∈ I⟩⟩ = ⟨S xi ∣ i ∈ I⟩.

and by (b), S xi is a subgroup of M. Hence (h) holds. �
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Lemma 3.1.23. Let R be a ring and A an additive subgroup of R. Put

IR(A) = ⟨J ⊆ A ∣ J is an ideal in R⟩

Then IR(A) is an ideal of R contained in A, called the largest ideal of R contained in A.

Proof. By 2.4.7(g) IR(A) is an ideal in R. Since A is an additive subgroup of R, IR(A) ⊆ A. �

Lemma 3.1.24. Let R be ring, M an R-module, S ⊆ R and X ⊆ M. Then

(a) S ⊆ AnnR(X) if and only if X ⊆ AnnM(X).

(b) Let m ∈ M. Then the map
R→ M, r → rm

is R-linear and the map

R/AnnR(m)→ Rm, r +AnnR(m)→ rm

is a well-defined isomorphism of R-modules.

(c) AnnR(X) is a left ideal in R.

(d) Let I be a right ideal in R. Then AnnM(I) is R-submodule in M.

(e) If X is a R-submodule of M, then AnnR(X) is an ideal in R

(f) AnnR(⟨X⟩R) = IR(AnnR(X)).

(g) Suppose that one of the following holds:

1. R is commutative.

2. All left ideals in R are also right ideals.

3. AnnR(X) is a right ideal.

Then AnnR(X) = AnnR(⟨X⟩R).

Proof. (a) Both statements are equivalent to S X = {0}.
(b) and (c) Consider the map

f ∶ R→ M, r → rm.

Let r, s ∈ R. Then f (r + s) = (r + s)m = rm + sm = f (r) + f (s). Also for r, s ∈ R

f (rs) = (rs)m = r(sm) = r f (s)

So f is R-linear. Since AnnR(m) = ker f , (d) follows from the Isomorphism Theorem 3.1.20.
In particular, AnnR(m) is a left R-submodule of R and so a left in R. Hence also AnnR(X) =

⋂x∈X AnnR(x) is a left ideal in R and (c) holds.
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(d) Since left multiplication by r ∈ R is additive homomorphism, AnnM(r) is an additive sub-
group of R. Hence also AnnM(I) = ⋃i∈I AnnM(i) is an additive subgroup. Since

I(RAnnM(I)) = (IR)AnnM(I) = IAnnM(I) = 0.

RAnnM(I) ⊆ AnnM(I) and so AnnM(I) is R-submodule of M.

(e) By (b) AnnR(X) is left ideal. We have

(AnnR(X)R)X = AnnR(X)(RX) ⊆ AnnR(X)X = 0

and so AnnR(X)R ⊆ AnnR(X).

(f) Put I = IR(AnnR(X)). Then I is an ideal of R and I ⊆ AnnR(X) and so X ⊆ AnnM(I). By
(d), AnnM(I) is a submodule of M and so ⟨X⟩R ≤ AnnR(I). Thus I ⊆ AnnR(⟨X⟩R).

Since ⟨X⟩R is an R-submodule of M, (e) show that AnnR(⟨X⟩R) is an ideal in R. Since X ⊆ ⟨X⟩R,
AnnR(⟨X⟩) ⊆ AnnR(X) and so the definition of I implies AnnR(⟨X⟩R) ⊆ I.

(g) Recall that by (b) AnnR(X) is an left ideal in R.
Note that (g:1) implies (g:2), and (g:2) implies (g:3) So in any case AnnR(X) is a right ideal and

thus also ideal in AnnR(X). Thus AnnR(X) = IR(AnnR(X)) and (g) follows from (f). �

Example 3.1.25. Let I be non-empty set, K a ring with identity, R = MI
I(K) and M = KI . Then

M is an R-module by left multiplication. Let e j = (δi j)i∈I ∈ KI and A ∈ R. Then Ae j = A, j, the
j’th column of A. So AnnR(e j) consists of all matrices in R whose j’th column is 0. Let k ∈ KI

and pick A ∈ R with A, j = k. Then k = Ae j ∈ ⟨e j⟩R and we conclude that Re j = ⟨e j⟩R = KI . Hence
AnnR(⟨e j⟩R) = AnnR(KI) = 0. So if ∣I∣ ≥ 2 and K ≠ 0,

AnnR(⟨e j⟩)R) ≠ AnnR(e j)

Note also that by 3.1.24(d),

R/AnnR(e j) ≅ Re j = KI

as an R-module.

Lemma 3.1.26. Let R be a ring and J a left ideal in R. View R/J is an R-module by left multiplica-
tion.

(a) AnnR(R/J) = {a ∈ R ∣ aR ⊆ J}.

(b) Suppose that R has an identity. Then

AnnR(1 + J) = J and AnnR(R/J) = IR(J)

Proof. Let a,b ∈ R. Then a ∈ AnnR(b+ J) if and only if ab+ J = J and so if and only if ab ∈ J. This
gives (a) and the first statement in (b). Since R/J = ⟨1 + J⟩R, the last assertion in (b) follows from
the first and 3.1.24(f). �
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3.2 Free modules and torsion modules

Definition 3.2.1. Let V be an R-module and v = (vi)i∈I a family of elements in V

(a) V is called free R-module with respect to v if V is unitary and for all unitary R-modules W and
all family of elements (wi)i∈I in W there exists a unique R-linear map f ∶ V →W with f (vi) = wi

for all i ∈ I.

(b) v is called R-linearly independent, if for all r ∈ RI ,

∑
i∈I

rivi = 0 Ô⇒ r = 0

(c) v is called a R-spanning family for all u ∈ V there exists r ∈ RI with u = ∑i∈I rivi.

(d) v is called an R-basis for V if v is an R-linearly independent R-spanning family.

(e) Let c be a cardinality. Then we say that V is free of rank c if V is a free R-module with respect
to w for some set J and some w ∈ V J with ∣J∣ = c.

Lemma 3.2.2. Let R be a ring, V an R-module and v = (vi)i∈I a family of elements in V. Define

fv ∶ RI → V, r →∑
i∈I

rivi

(a) fv is R-linear.

(b) fv is 1-1 if and only if v is R-linearly independent.

(c) fv is onto if and only if v spans V.

Proof. (a) Let i ∈ I. Observe that the functions RI → R, r → ri and R → V , r → rvi are R-linear.
Hence also the composition fi ∶ RI → V, r → rivi and the sum f = ∑i∈I fi are R-linear.

(b) v is linearly independent if and only if ker fv = 0 and so if and only if fv is 1-1.

(c) Follows directly from the definition of a spanning. �

Lemma 3.2.3. Let V be a unitary R-module and v = (vi)i∈I a family of elements in V. Then the
following statements are equivalent.

(a) v is a basis for V.

(b) The map fv ∶ RI → V, r → ∑i∈I rivi is an R-isomorphism.

(c) For each u ∈ V there exists a uniquely determined r ∈ RI with u = ∑i∈I rivi.

(d) V is free R-module with respect to v
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Proof. (a)⇐⇒ (b) : Follows from 3.2.2.
(b)⇐⇒ (c) : Since fv is F-linear, f is an R-isomorphism if and only if f is a bijection. So (c)

and (b) are equivalent.
(b) Ô⇒ (d): Suppose fv is isomorphism and let W be an unitary R-module and w = (wi)i∈I

a family in W. Define fw ∶ RI → W, r → ∑i∈I riwi. Then by 3.2.2 fw and so also g ∶= ○ f −1
v is

R-linear. Let ei = (δi j) j∈J . Since V and W are unitary, fv(ei) = 1vi = vi and fw(ei) = wi. Hence and
g(vi) = wi. If g̃ ∶ V → W is linear with g̃(vi) = wi for all i ∈ I, then vi ∈ ker(g − g̃). Since ker(g − g̃)
is an R-submodule of V and v spans V , ker(g − g̃) = V and so g = g̃.

(d)Ô⇒ (a): Let r ∈ RI with ∑i∈I rivi = 0V . Fix j ∈ I. Then (δi j)i∈I is a family of elements in
R and since V is free with respect to v there exists an R-linear map f j ∶ V → R with f j(vi) = δi j for
all i ∈ I. Then

0R = f j(0V) = f j(∑
i∈I

rivi) =∑
i∈I

ri f j(vi) =∑
i∈I

riδi j = r j

So v is linearly independent. Let W = ⟨vi ∣ i ∈ I⟩R. Then v is a family of elements in W and since
V is free with respect to v, there exists an R-linear h ∶ V →W with h(vi) = vi for all i ∈ I. Thus h and
idV are R-linear functions from V to V with h(vi) = vi = idV(vi) for all i ∈ I. Thus by the uniqueness
statement in the definition of free module, h = idV . Thus V = Im idV = Im h ≤ W and W = V . So v
spans V and v is a basis. �

We will now investigate when all submodules of free R-modules are free. First an example.

Example 3.2.4. Let R = Zn with n ∈ Z+, n not a prime. Let V = Zn, viewed as an Zn-module by
left multiplication. Let n = pq with 1 < q < n. Then qZn is a proper submodule of Zn, but since
p(qZn) = 0 and p ≢ 0 (mod n), qZn is not a free R-module.

An obvious necessary condition for all submodules of all free modules for a ring R to be free is
that all submodules of R itself are free. The next theorem shows that this condition is also sufficient.

Theorem 3.2.5. Let R be a ring with identity.

(a) Suppose that all left ideals in R are free as R-modules. Then all R-submodule of all free R-
modules are free.

(b) Suppose R is a PID and V is a free R-module of rank r. Then every R-submodule of V is free of
rank less or equal to r.

Proof. Let B ⊆ V . We say that B is an R-basis for V if (b)b∈B is basis for V .
(a) Let M be a free R- module with basis B ⊆ M and A an R-submodule in M. According to the

well ordering principal (A.3.11) we can choose a well ordering ≤ on B. For b ∈ B define

M∗
b = ⟨e ∈ B ∣ e < b⟩R and Mb = ⟨e ∈ B ∣ e ≤ b⟩R

Note that Mb = M∗
b ⊕ Rb. Put Ab = Mb ∩ A and A∗b = M∗

b ∩ A. Then

Ab/A∗b = Ab/Ab ∩ M∗
b ≅ Ab + M∗

b /M∗
b ≤ Mb/M∗

b ≅ Rb ≅ R.
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By assumption every submodule of R is free and so Ab/A∗b is free. Let Eb ⊆ Ab such that (e+A∗b)e∈Eb

is a basis for Ab/A∗b . Let E = ⋃b∈B Eb. We claim that E is a basis for A.
Let 0 ≠ m ∈ M. Then m = ∑b∈B rbb for some 0 ≠ r ∈ RB. Choose bm ∈ B maximal with respect

rbm ≠ 0. Then m ∈ Mbm and m ∉ M∗
bm

. So bm is minimal in B with m ∈ Mbm . If b ∈ B and e ∈ Eb, then
be = b.

Now suppose that ∑e∈E see = 0 for some 0 ≠ s ∈ RE . Define

b = max{be ∣ e ∈ E, se ≠ 0}

Let e ∈ E with se ≠ 0. If be = b, then e ∈ Eb. If be ≠ b, then be < b and so e ∈ A∗b Thus

0 + A∗b = (∑
e∈E

see) + A∗b = ∑
e∈Eb

se(e + A∗b).

Since se ≠ 0 for at least one e ∈ Eb, this contradicts the linear independence of the (e + A∗b)e∈Eb .
Hence E is linear independent. Let b ∈ B we will show by induction on b, that Ab ≤ ⟨E⟩R.

Suppose inductively that Ac ≤ ⟨E⟩R for all c < b. If v ∈ A∗b , then bv < b and so c ∈ ⟨E⟩R be the
induction assumption. Hence A∗b ≤ ⟨E⟩R. Let w ∈ Ab. Since (e + A∗b)e∈Eb spans Ab/A∗b , there exists
t ∈ REb with

w + A∗b = ∑
e∈Eb

tee + A∗b .

Put u = ∑e∈Eb
tee. Then u ∈ ⟨E⟩R and w − u ∈ A∗b ⊆ ⟨E⟩R. Hence also w = (w − u) + u ∈ ⟨E⟩R. Thus

Ab ⊆ ⟨E⟩R.
If 0 ≠ a ∈ A, then a ∈ Aba ⊆ ⟨E⟩R. So E spans A and E is a basis for A.

(b) Let I be a left ideal in R. Then I = Ri for some i ∈ R. Since R is an integral domain,
AnnR(i) = {0R} and so by 3.1.24(b), R ≅ R/AnnR(i) ≅ Ri. Then I is free of rank at most 1. Hence
∣Eb∣ ≤ 1 for all b ∈ B. Thus ∣E∣ ≤ ∣B∣ and (b) holds. �

The proof of the previous theorem is abstract in the sense that it shows the existence of basis,
but does not provide a method to compute the basis. Using the proof to find a basis for a submodule
A of the free module M with basis B one has to be able to:

(i) Find a well-ordering on B; and

(ii) For each b ∈ B find basis (e + A∗b)e∈Eb for Ab/A∗b .

If B happens to be finite, (i) is no problem and if R is Euclidean domain, one can use the
Euclidean Algorithm to carry out (ii).

Example 3.2.6. Find a Z-basis for the Z-submodule A of Z3 spanned by

a = ((6,15,4), (9,10,3), (15,10,1))

We choose the basis (e1, e2, e3) for Z3 and the ordering e3 < e2 < e1. Then M∗
3 = 0, M3 =

M∗
2 = 0 × 0 × Z, M2 = M∗

1 = 0 × Z × Z and M1 = Z3. Then A1/A1
3 = A/A∗1 is isomorphic the (left)
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ideal (6,10,15) = ( gcd(6,10,15)) = (3) of Z. Note that (9,10,3) − (6,15,4) = (3,−5,−1) maps
to 3 under this isomorphism So we can choose E3 = {d3} where d1 = (3,−5,−1). Note also that
(a1,d1,a3) spans A.

By construction 3 divides first coordinate of each elements of the spanning family of A . So we
can subtract multiple of d1 from a1 and a3 to obtain the following spanning family for A2

b = ((0,25,6), (0,35,6))

Thus A2/A∗2 is isomorphic to the ideal (25,40) = ( gcd(25,35)) = (5) of Z. To obtain a spanning
set for A2 with a element whose second coordinate is 5 we imitate the Euclidean algorithm. Subtract
the first element from the second to obtain the spanning set

((0,25,6), (0,10,0))

Then subtract to twice the second element from the first

((0,5,0), (0,10,6))

So we can choose d2 = (0,5,6) and then d3 = (0,10,0) − 2(0,5,6) = (0,0,−12). So the basis
for A is

((0,0,−12), (0,5,6), (3,−5,−1))

It should now be apparent that for a Euclidean domain R we obtain a Gaussian elimination pro-
cess to compute a basis for any submodule of Rn giving by a spanning family. View your spanning
family as rows of matrix. Starting at the first column use the Euclidean algorithm and row operation
to obtain a leading entry in a column which divides all of entries of the column. Move the row of
with the leading entry to the first row. Use further row operation to make all other entries in that
column zero. Ignore the first row from now on and proceed with the column to the left.

Row operations one can use: Interchange any two columns, add a multiply of a row to another
row, and multiply a row by a unit.

In matrix form the above example looks like this

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6 15 4

9 10 3

15 10 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−R1 + R2→ R2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6 15 4

3 −5 −1

15 10 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

R1↔ R2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 −5 −1

6 15 4

15 10 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−2R1 + R2→ R2

−5R1 + R3→ R3

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 −5 −1

0 25 6

0 35 6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−R2 + R3→ R3

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 −5 −1

0 25 6

0 10 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−2R3 + R2→ R2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 −5 −1

0 5 6

0 10 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−2R2 + R3→ R3

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 −5 −1

0 5 6

0 0 −12

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Remark 3.2.7. Let R be a commutative ring with identity and suppose that every (left) ideal in R is
a free R-module. Then R is a PID.



174 CHAPTER 3. MODULES

Proof. Let a,b ∈ R#. Then ba − ab = 0 and so (a,b) is linearly dependent. Hence every non-zero
ideal in R is free of rank 1 and so a principal ideal. Let a,b ∈ R♯ and (v) a basis for Rb. Then
0 ≠ av ∈ aRb = Rab and so ab ≠ 0. Thus R is also an integral domain and so a PID. �

Corollary 3.2.8. Let R be a PID and M a unitary R-module and W an R-submodule of M. If
M = ⟨I⟩R for some I ⊆ M, then W = ⟨J⟩ for some J ⊆ W with ∣J∣ ≤ ∣I∣. In particular, if M is finitely
generated as an R-module, so is M.

Proof. Let m = (i)i∈I . Then m spans M and fm ∶ RI → M, r → ∑i∈I rii is onto. Let A = f −1
m (W). By

3.2.5 A has a basis (ak)k∈K with ∣K∣ ≤ ∣I∣. Since fm is onto, fm(A) = M. Thus

M = fm(A) = fm(⟨ak ∣ k ∈ K⟩R) = ⟨ fm(ak) ∣ k ∈ K⟩R

and the corollary holds with J = fm(K). �

Definition 3.2.9. Let M be an R-module and m ∈ M.

(a) m ∈ M is called a torsion element if Rm = 0 or AnnR(m) ≠ 0, that is rm = 0 for some r ∈ R♯

(b) M is called a torsion module if all elements are torsion elements.

(c) M is called torsion free if 0M is the only torsion element.

(d) M is called a faithful R-module if AnnR(M) = 0, that is if the canonical homomorphism from R
to End(M) is 1-1.

(e) M is a bounded R-module if R is not-faithful, that is rM = 0 for some r ∈ R♯.

Note that m is not a torsion element if and only if Rm ≠ 0 and (m) is linearly independent.

Example 3.2.10. Let R = Z.

1. Consider M = Z2⊕Z3. Since 2(1,0) = (2,0) = (0,0), (1,0) is a torsion element. Also 3(0,1) =
(0,3) = (0,0) and so (0,1) is a torsion element. In fact 6(a,b) = (2(3a),3(2b)) = (0,0) for all
(a,b) ∈ M and so M is bounded.

2. Consider ZI . If rz = 0 for some 0 ≠ r ∈ Z and z ∈ ZI , then rzi = 0 for all i ∈ I and so zi = 0 and
z = 0. Hence ZI is torsion-free.

3. Consider M = ⊕i∈Z+ Zi. Let m = (mi)i∈Z+ ∈ M. By definition of the direct sum there exists
k ∈ Z+ with mi = 0 for all i > k. We claim that k!m = 0M. Indeed of i ≤ k, then i ∣ k! and so
k!mi = 0 in Zi. And if i > k, then mi = 0 and again k!mi = 0. Thus M is a torsion module.

But M is not bounded, indeed suppose that r ∈ Z+ with rm = 0M for all m ∈ M. Let i ∈ Z+ and
pick m ∈ M with mi = 1. From rm = 0 we get 0 = rmi = r1 = r in Zi and so i ∣ r. Hence ∣r∣ ≥ i for
all i ∈ Z+, a contradiction.

Lemma 3.2.11. Let R be an integral domain and F a finite set of non-zero ideals in R. Then
⋂F ≠ 0.
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Proof. Since R is an integral domain, ∏F∈F F ≠ 0. Since ∏F∈cα F ⊆ ⋂F the lemma holds. �

Lemma 3.2.12. Let M be a module for the integral domain R.

(a) Let I be a finite set of torsion elements in M. Then ⟨I⟩R is a bounded R-submodule of M.

(b) Let T(M) be the set of torsion elements in M. Then T(M) is R-submodule of M.

(c) M/T(M) is torsion free.

Proof. (a) Since each i ∈ i is a torsion element, AnnR(i) ≠ 0 for all i ∈ I. Thus by 3.2.11

AnnR(I) =⋂
i∈I

AnnR(i) ≠ 0

By 3.1.24(g) AnnR(⟨I⟩R) = AnnR(I). and so AnnR(⟨I⟩R) ≠ 0.

(b) Since R0M = 0M, 0M ∈ T(M). If x, y ∈ T(M) and r ∈ R, then by (a), x+y ∈ T(M),−x ∈ T(M)

and rx ∈ T(M). Thus T(M).

(c) Let x ∈ M/T(M) be a torsion element. Pick m ∈ M with x = m + T(M) and r ∈ R♯ with
rx = 0M/T(M). Then rm ∈ T(M) and so s(rm) = 0M for some s ∈ R♯. Hence (sr)m = 0M and as
R is an integral domain, sr ≠ 0R. So m ∈ T(M), x = m + T(M) = 0M/T(M) and M/T(M) is torsion
free. �

Theorem 3.2.13. Let R be a ring and M an R-module.

(a) Any linearly independent subset of M lies in a maximal linear independent subset.

(b) Let L be a maximal linear independent subset of M. Then M/⟨RL⟩ is a torsion module, and if
M is unitary, ⟨RL⟩ is free R-module with basis L.

Proof. (a) Let E be a linearly independent subset of M. Let L be the set of linearly independent
subsets of M containing E. Since E ∈ L, L ≠ ∅. Order L by inclusion. Let C be a non-empty chain
in L and put D = ⋃C.

We will show that D is linearly independent. For this let r ∈ RD with ∑d∈D rdd = 0V . Let
F = {d ∈ D ∣ rd ≠ 0} and note that F is finite. Let f ∈ F. Since f ∈ D = ⋃C, there exists C f ∈ C with
f ∈ Ci. Since {C f ∣ f ∈ F} is a finite it has maximal element C. Then f ∈ C f ⊆ C for all f ∈ F. Then

0 = ∑
d∈D

rdd = ∑
d∈F

rdd = ∑
d∈C

rdd

and since C is linearly independent, rd = 0 for all d ∈ D. Hence also r f = 0 for all f ∈ F. So F = ∅

and r = 0. Thus D is linearly independent, D ∈ L and D is an upper bound for C.
Thus the assumptions of Zorn’s Lemma A.3.8 are fulfilled and we conclude that L contains a

maximal element L. Then L is a maximal linearly independent subset of M containing E.

(b) Put W = ⟨RL⟩. Let v ∈ V . We need to show that v + W is a torsion element. If v ∈ L, then
Rv ⊆ W and so R(v +W) = 0v/W and v +W is a torsion element. So suppose v ∉ L. By maximality
of L {v} ∪ L is linearly dependent. Hence there exist s ∈ R and r ∈ RL such that
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sv +∑
l∈L

rll = 0

and at least one of s and r is not zero.
If s = 0, then since L is linearly independent, r = 0, a contradiction. Thus s ≠ 0 and sv =

−∑l∈L rll ∈ ⟨RL⟩. Hence s(v +W) = 0V/W and V/W is a torsion module.
If V is unitary, then W = ⟨L⟩R and so L is basis for W. �

We remark that if L is a maximal linear independent subset of the unitary R-module M, then ⟨L⟩
does not have to be a maximal free submodule. Indeed the following example shows that M does
not even have to have a maximal free submodule. (Zorn’s lemma does not apply as the union of a
chain of free submodules might not be free)

Example 3.2.14. Let R = Z and M = Q with Z acting on Q by left multiplication. As Q has no zero
divisors, Q is torsion free. In particular, every non-zero element a is linearly independent. We claim
{a} is a maximal linearly independent subset. Indeed, let a,b ∈ Q♯. Then a = n

m and b = p
q with

n, p ∈ Z and m,q ∈ Z♯. Then

(mp)a + (−nq)b = mp
n
m
− nq

p
q
= pn − np = 0

and (a,b) is linearly dependent.
We conclude that every non-zero free submodule of Q is of the form Za,a ∈ Q♯. Since Za � Za

2
we see that Q has no maximal free Z-submodule. In particular, Q is not free Z-module.

Q as a Z module has another interesting property: every finitely generated submodules is cyclic
Indeed, if A is generated by ni

mi
,1 ≤ i ≤ k, put m = lcm1≤i≤k mi. Then mA ≅ A and mA ≤ Z. So mA

and A are cyclic.

Corollary 3.2.15. Let D be a division ring and V a unitary D-module.

(a) V is torsion free.

(b) If V is a torsion module, then V = 0.

(c) Every linear independent subset of V is contained in a basis of V.

(d) V has a basis and so is a free D-module.

Proof. (a) Let d ∈ D♯ and v ∈ V with dv = 0V . Since D is a division ring ed = 1D for some e ∈ D.
Thus v = 1Dv = edv = e0V = 0V and so V is torsion free.

(b) This follows from (a).
(c) Let L be linearly dependent subset of V . By 3.2.13 L is contained in a maximal linearly

dependent subset B. Also by 3.2.13, V/⟨RB⟩ is a torsion module. So (b) applied to V/⟨RB⟩ is a
zero-module and so V = ⟨RB⟩ and B is a basis for V .

(d) By (c) applied to L = ∅, V has a basis and so by 3.2.3 V is free. �

Lemma 3.2.16. Let f ∶ A→ B be group homomorphism and D ≤ B. Put F = ker f . Then
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(a) f ∣D∶ D→ B is onto if and only if f is onto and A = FD.

(b) f ∣D is 1-1 if and only if F ∩ D = 1.

(c) f ∣D ∶ D→ B is bijection if and only if f is onto, A = FD and F ∩ D = 1.

Proof. (a) Suppose first that f ∣D is onto. Then also f is onto. Let a ∈ A. Then f (a) = f (d) for
some d ∈ D. Thus ad−1 ∈ ker f = F and a = ad−1d ∈ FD.

Suppose next that f is onto and A = FD. Let b ∈ B. Since f is onto, b = f (a) for some a ∈ A.
Since A = FD, a = cd for some c ∈ F and d ∈ D. Thus b = f (a) = f (cd) = f (c) f (d) = 1 f (d) =
f (d) and so f ∣D is onto.

(b) is obvious and (c) follows from (a) and (b). �

Lemma 3.2.17. Let R be a ring, V a unitary R-module and W an R-submodule of V. If V/W is a
free R-module, then there exists an R-submodule F of V with V = F ⊕W. Moreover, F ≅ V/W and
so F is a free R-module.

Proof. Let V/W be free with respect to the family (xi)i∈I in V/W. By the axiom of choice there
exists a family (vi)i∈I with vi ∈ xi for all i ∈ I. Then xi = vi +W for all i ∈ I. The definition of a free
module implies that there exists an R-linear map f ∶ V/W → V with f (x)i) = vi for all i ∈ I. Define
g ∶ V/W → V/W, x → f (x) + W. Then g(xi) = vi + W = xi for all i ∈ I and so by the uniqueness
assertion in the definition of a free module, g = idV/W . Define h ∶ V → V, v → f (v + W). Then for
v ∈ V ,

h(v) +W = f (v +W) +W = g(v +W) = v +W

Finally define k = idW − h. Then k(v) = v− h(v) ∈ W for all v ∈ V and so k is function from V to
W. If w ∈ W, then h(w) = f (w +W) = f (0V/W = 0 and so

k∣W = idW − h∣W = idW

3.2.16 now shows that V = F⊕W for the R-submodule F = ker k of V . The second isomorphism
theorem gives V/W = (F ⊕W)/W ≅ F/F ∩W = F/0 ≅ F and the lemma is proved. �

Lemma 3.2.18. Let D be a division ring, V a D-module and W a D-submodule. Then there exists a
D-submodule K of V with V = K ⊕W.

Proof. By 3.2.15(b), V/W is a free D-module and so the lemma follows from 3.2.17. �

Lemma 3.2.19. Let M be a torsion free R-module for the integral domain R. Suppose that one of
the following holds:

1. M is finitely generated.

2. If N is a submodule of M such that M/N is a torsion module, then M/N is bounded.

Then there exists a free R-submodule W such that M is isomorphic to a submodule W. In particular,
M is isomorphic to a submodule of free R-module.
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Proof. Suppose (1) holds and let N be an R-submodule of M such that M/N is a torsion module.
Then M/N is a finitely generated torsion module and 3.2.12 implies that M/N is bounded. Hence
condition (1) implies condition (2).

So we may assume that (2) holds. By 3.2.13 there exists a free submodule W of V such that
M/W is torsion. By (2) there exists r ∈ R♯ with rx = 0M/W . Hence rM ≤ W.

Consider the map
α ∶ M →W,m→ rm.

Since R is commutative, α is a R-linear. As M is torsion free, α is 1-1. Thus M ≅ α(M) = rM ≤

W. �

3.3 Modules over PIDs

Definition 3.3.1. Let R be a PID, M an R-module, X ⊆∈ M and r ∈ R. Then we say that X has
R-exponent r and write r ∼ expR(X) if AnnR(X) = (r).

Example 3.3.2. Let A be abelian group. Then A is a Z-module and expZ(X) ∼ exp(X) for all
X ≤ A. Moreover, expZ(a) ∼ ∣a∣ for all a ∈ A.

Lemma 3.3.3. Let R be PID, M an R-module and X ⊆ M. Then

expR(⟨X⟩R) = expR(X) = lcm
x∈X

expR(x)

Proof.
AnnR(⟨X⟩R) = AnnR(X) = ⋂

x∈X
AnnR(x) = ⋂

x∈X
((expR(x)) = ( lcm

x∈X
expR(x))

�

Lemma 3.3.4. Let R be PID, M an R-module, m ∈ M and e ∈ R with e ∼ expR(m). Then

(a) Rm ≅ R/(e) as an R-module.

(b) Let r ∈ R. Then e ∣ r if and only if rm = 0.

(c) Suppose M is unitary, m ≠ 0 and e = pl for some prime p and some l ∈ N. Then p ∣ r for all
r ∈ AnnR(M).

Proof. (a) By 3.1.24(b), Rm ≅ R/AnnR(m). Since AnnR(m) = (e), (a) holds.
(b) Follows from AnnR(m) = (e).
(c) Since M is unitary, 1m ≠ 0 and so AnnR(m) ≠ R and l ≥ 1. Thus p ∣ e and(c) follows from

(b). �

Theorem 3.3.5. Let R be a PID and p ∈ R a prime. Suppose that M is a unitary R-module with
pkM = {0M} for some k ∈ N. Then M is a direct sum of non-zero cyclic submodules of M.
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Proof. The proof is by induction on k. If k = 0, then, since M is unitary, M = {0} and the theorem
holds.

So suppose k > 0. Since pk−1(pM) = pkM = {0M} we conclude by induction on k that there
exist non-zero cyclic submodules Ai, i ∈ I of pM with M = ⊕i∈I Ai. Since Ai is cyclic Ai = ⟨ai⟩R =

Rai for some ai ∈ Ai. Thus

1○. pM =⊕i∈I Rai

Since Ai is non-zero, ai ≠ 0. Since ai ∈ pM there exists bi ∈ B with ai = pbi. Put

B = ⟨bi ∣ i ∈ I⟩R =∑
i∈I

Rbi.

We will show

2○. B =⊕i∈I Rbi

For this let r ∈ RI with

(∗) ∑
i∈I

ribi = 0M.

We need to show that ribi = 0M for all i ∈ I. From (*) we have

∑
i∈I

riai =∑
i∈I

ri pbi = p∑
i∈I

ribi = p0M = 0M.

Thus (1○) implies that riai = 0M for all i ∈ I. By 3.3.4(c), p ∣ ri and so ri = ti p for some ti ∈ R.
Then ribi = ti pbi = tiai and

(∗∗) ribi = tiai.

Substitution into (*) gives:

∑
i∈I

tiai = 0M.

Thus by (1○), tiai = 0M and by (**) ribi = 0M. Hence (2○) holds.

3○. M = AnnM(p) + B.

We have pB = p∑i∈I Rbi = ∑i∈I Rpbi = ∑i∈I Rai = pM. Define α ∶ M → pM,m→ pm. Then α is
R-linear and α(B) = pM. Thus by 3.2.16(a) M = kerα + B = AnnM(p) + B.

4○. R/Rp is a field and AnnM(p) is module for R/Rp.

Since p is a prime, R/Rp is a field by 2.5.17. Since Rp ≤ AnnR(AnnM(p)), AnnM(p) is an
R/Rp module via (r + Rp)m = rm.

5○. There exists an R-submodule D of AnnM(p) with AnnM(p) = D⊕AnnB(p) and M = D⊕ B.
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Since R/Rp is a field we conclude from 3.2.18 that AnnM(p) = D ⊕ AnnB(p) for some R/Rp
submodule D of AnnM(p). Then D is also an R-submodule of AnnM(p). We have

M = AnnM(p) + B = D +AnnB(p) + B = D + B

and
D ∩ B = D ∩AnnM(p) ∩ B = D ∩AnnB(p) = {0M}.

So M = D⊕ B.

We now can complete the proof of the theorem. By 3.2.15(b), the R/Rp-module D has a basis
(d j) j∈J . Then

D =⊕
j∈J

R/pR ⋅ d j =⊕
j∈J

Rd j.

Together with (2○) and (5○) we get

M = D⊕ B =⊕
j∈J

Rd j ⊕ ⊕
i∈I

Rbi

�

Theorem 3.3.6. Let M be a finitely generated module for the PID R. Then there exists a free
submodule F ≤ M with M = F ⊕ T(M).

Proof. By 3.2.12, M/T(M) is torsion free, so by 3.2.19 M/T(M) is isomorphic to a submodule
of a free module. Hence by 3.2.5 M/T(M) is free. Thus by 3.2.17 M = F ⊕ T(M) for a free
R-submodule F of M. �
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Definition 3.3.7. Let R be a PID, P a set of representatives for the associate classes of primes in R
and Q ⊆ P.

(a) Let 0 ≠ r ∈ R. Then r is called a Q-elements if r ∼∏q∈Q qnq for some n ∈ NQ. (Here we interpret
the empty product as 1, so a ∅-element is a unit.)

(b) Let M be an R-module. Then m ∈ M is called an Q-element if expR(m) is a Q-elements. MQ is
the set of Q-elements in M.

Theorem 3.3.8. Let R be a PID, M a unitary torsion R module R, P a set of representatives for the
associated classes of primes in R and Q,T ⊆ P. Put Q′ = P ∖ Q. Then

(a) Let m ∈ M. Then m is a Q-elements if and only if rm = 0 for some Q-elements r ∈ R.

(b) MQ is an R-submodule of M.

(c) M/MQ has no-nonzero Q-elements and all elements of M/MQ are Q′-elements.

(d) MQ ∩ MR = MQ∩R.

(e) M∅ = 0 and so MQ ∩ MQ′ = 0.

(f) MQ =⊕q∈Q Mq.

(g) M =⊕p∈P Mp.

Proof. (a) This holds since expR(m)∣r for all r ∈ R with rm = 0.
(b) Let x, y be Q-elements. Then expR(⟨x, y⟩R) = lcm ( expR(x), expR(y)) is a Q-element in R.

Hence (a) shows that all elements in ⟨x, y⟩R are Q-elements. Hence ⟨x, y⟩R ⊆ MQ and MQ is an
R-submodule of M.

(c) Let m + MQ be a Q-elements. Then em ∈ MQ for some Q-elements e ∈ R. So em is a Q-
element and f (em) = 0 for some Q-elements f in R. Then f e is a Q-element in R and ( f e)m = 0.
So m ∈ MQ and m + MQ = 0M/MQ .

Now let w be any elements of M/MQ and d ∼ expR(w). Then d ∼ e f for some Q-element e and
Q′-element f . Then e( f w) = 0, f w is a Q-element and f w = 0 and w is a Q′-element.

(d) By the uniqueness of prime factorization r ∈ R is a Q ∩ T element if and only if r is a Q and
a T -elements. So (d) holds.

(e) If m is ∅-element in M, then um = 0 for some unit u. Then also 1m = u−1um = 0 and since
M is unitary, m = 0.

(f) Let W = ∑q∈Q MQ. Let q ∈ Q. By (c) all elements in M/Mq are q′-elements. Thus also all
elements in M/W are q′ elements and so Q′-elements. Thus all elements of MQ/W are Q and Q′-
elements. Hence (e) applied to M/W shows that MQ/W = 0 and so W = MQ. Thus MQ = ∑q∈Q MQ.
Now

Mq ∩∑
t∈Q
t≠q

Mt ⊆ Mq ∩ Mq′ = 0
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and so MQ = ∑q∈Q Mq.
(g) Since M is a torsion-module, M = MP. So (g) follows from (f) applied with P = Q. �

Lemma 3.3.9. Let R be a ring, and (Mi)i∈I a family of non-zero R-modules. If ⊕i∈I Mi is finitely
generated, then I is finite.

Proof. Let A be a finite subset of M ∶= ⊕i∈I Mi with M = ⟨A⟩R. By definition of “direct sum” each
m is a tuple (mi)i∈I with almost all mi zero. So for a ∈ A we can choose a finite subset Ja of I with
ak = 0 for all k ∈ I ∖ Ja. Put J = ⋃a∈A Ja. Then J is finite. We will show that J = I. For this let i ∈ I
and put W = {m ∈ M ∣ mi = 0}. Then W is a R-submodule of M and since Mi ≠ 0, W ≠ M. Since
M = ⟨A⟩R we get A ⊈ W and so ai ≠ 0 for some a ∈ A. Thus i ∈ Ja ⊆ J, I = J and I is finite. �

Theorem 3.3.10. Let M be a finitely generated module for the PID R. Then M is direct sum of
finitely many cyclic R-modules. Moreover, each of the summand can be chosen be isomorphic to R
or R/pkR for some prime ideal p ∈ R and some k ∈ Z+. In other words,

M ≅ R⊕ R⊕ . . .⊕ R
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k-times

⊕R/pk1
1 R ⊕ R/pk2

2 R ⊕ . . . ⊕ R/pkn
n R

for some k,n ∈ N, k1, k2 . . . , kn ∈ Z+ and primes p1, p2, . . . , pn ∈ R.

Proof. By 3.3.6, M = F ⊕ T(M), where F is a free R-module. So F is a direct sum of copies of R.
Also by 3.3.8 T(M) =⊕p∈P Mp, where P is set of representatives for the associate classes of primes
in R. Let p ∈ P. Since M is finitely generated and MP is a homomorphic image of M, Mp is finite
generated. Thus Mp = ⟨I⟩R for some finite subset I of MP. For i ∈ I pick li ∈ N with pli i = {0M}

and put l = maxi∈I li. Then plMp = {0M}. Thus by 3.3.5 Mp is the direct sum of non-zero cyclic
submodules. By 3.3.4 each of these cyclic submodules is isomorphic to R/pkR for some k ∈ Z+.

It follows that M is a direct sum modules of the form R or R/pkR, p ∈ P, k ∈ Z+. Since M is
finitely generated, 3.3.9 this direct sum is a finite direct sum. �

Corollary 3.3.11. (a) Let A be a finitely generated abelian group. Then A is the direct sum of cyclic
groups.

(b) Let A be an elementary abelian p-group for some prime p. (That is A is abelian and pA = 0).
Then A is the direct sum of copies of Z/pZ.

Proof. Note that an abelian group is nothing else as a module over Z. So (a) follows from 3.3.10
and (b) follows from 3.3.5 and 3.3.4

(b) can also by proved by observing that A is also a module over the field Z/pZ and so has a
basis. �

3.4 Jordan Canonical Form

Definition 3.4.1. Let R be a ring, V and W R-modules, A ∈ EndR(V) and B ∈ EndR(W). We say
that A and B are similar over R if there exists a R-linear isomorphism Φ ∶ V →W with Φ○A = B○Φ.
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We leave it as an exercise to show that ”similar” is an equivalence relation. Also the condition
Φ ○ A = B ○Φ is equivalent to B = Φ ○ A ○Φ−1.

Remark 3.4.2. Let R be a ring and V a module over R. Let A ∈ EndR(V). ∗∗R ∶ α ∶ R →

EndZ(V), r → r∗ be the ring homomorphism associated to the action of R on M. we will usu-
ally right ridV for α(r). Since A is R-linear, A commutes with each r∗, r ∈ R and so by 2.2.19(b)
there exists a unique ring homomorphism αA ∶ R[x] → EndZ(V) with r → r∗ and x → A. Let
f = ∑n

i=0 fixi ∈ R[x]. We will write f (A) for αA( f ). Then f (A) = ∑n
i=0 f ∗i Ai. It follows that V is a

R[x]-module with

f v = f (A)(v) =
n

∑
i=0

fi(Ai(v)).

To indicate the dependence on A we will sometimes write VA for the R[x] module V obtain in
this way.

Lemma 3.4.3. Let R be a ring and V and W R-modules. Let A ∈ EndR(V). and B ∈ EndR(V). Then
the R[x]-modules VA and WB are isomorphic if and only if A and B are similar over R.

Proof. Suppose first that VA and VB are isomorphic. Then there exists an R[x]-linear isomorphism
Φ ∶ V →W. In particular Φ is R-linear and Φ(xv) = xΦ(v) for all v ∈ V . By definition of VA and WB

thus means Φ(A(v)) = B(Φ(v) and so A and B and are similar.
Conversely, if A and B are similar there exists an R-linear isomorphism Φ ∶ V →W with Φ ○A =

B ○ Φ. Hence Φ(rv) = rΦ(v) and Φ(xv) = xΦ(v) for all r ∈ R and v ∈ V . Since Φ is Z-linear this
implies Φ( f v) = f Φ(v) for all f ∈ R[x]. Hence Φ is an R[x]-linear isomorphism. �

Definition 3.4.4. Let R be a ring with identity, V and W free R-modules with basis v = (vi)i∈I and
w = (w j) j∈J , respectively. Let A ∈ EndR(V). Then the matrix M = Mvw(A) of A with respect to v
and w is matrix in MI

J(R) defined by by

A(vi) =∑
j∈J

Mi jw j

for all i ∈ I.

Lemma 3.4.5. Let R be a ring, V and W R-modules, A ∈ EndR(V) and B ∈ EndR(W). Suppose that
V is free with basis v = (vi)i∈I . Then A and B are similar if and only if there exists a basis w = (wi)i∈I

for W with
Mvv(A) = Mww(B)

Proof. Let M = Mvv(A). Let Φ ∶ V → W be R-linear and wi ∈ W with wi = Φ(vi) for all i ∈ I. We
compute

(∗) Φ(A(vi)) = Φ(∑
j∈J

Mi jv j) =∑
j∈J

Mi jΦ(v j) =∑
j∈J

Mi jw j
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Ô⇒: Suppose first that A and B are similar. Then there exists an R-linear isomorphism Φ ∶

V → W with Φ ○ A = B ○ Φ. Define wi = Φ(vi) and w = (wi)i∈I . As I is a basis for V and Φ is an
R-isomorphism, w is a basis for W. We compute

B(wi) = B(Φ(vi)) = Φ(A(vi))
(*)
= ∑

j∈J
Mi jw j

Hence Mww(B) = M = Mvv(A).

⇐Ô: Suppose conversely that there exists a basis w = (wi)i∈I with Mvv(A) = Mww(B).
Let Φ ∶ V → W be the unique R-linear map from V to W with Φ(vi) = wi for all i ∈ I. As v and

w are R-bases, Φ is an R- isomorphism. Moreover,

(Φ ○ A)(vi) = Φ(A(vi))
(*)
= ∑

j∈J
Mi jw j = Bwi = B(Φ(vi)) = (B ○Φ)(vi)

Since V is free with respect to (vi)i∈I this implies Φ ○ A = B ○Φ and so A and B are similar. �

Lemma 3.4.6. Let R be a ring and f = ∑n
i=0 aixi a monic polynomial of degree n > 0. Let I = R[x] f

be the left ideal in R[x] generated by f . Let A ∈ EndR(R[x]/I) be defined by A(h + I) = hx + I.

(a) (xi)i∈N is a basis for R[x] as a left R-module.

(b) For 0 ≤ i < n let hi be a monic polynomial of degree i in R[x]. Then (hi + I)n−1
i=1 is basis for

R[x]/I.

(c) The matrix of A with respect the basis (xi + I)n−1
i=0 of R[x]/I is

M( f ) ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 . . . 0 0

0 0 1 . . . 0 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋮

0 0 0 . . . 1 0

0 0 0 . . . 0 1

− f0 − f1 − f2 . . . − fn−2 − fn−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(d) Suppose that f = gm for some monic polynomial g of degree s and some m ∈ Z+. Let Es1 be the
s× s-matrix in K with Es1

i j = 0 if (i, j) ≠ (s,1) and Es1
s1 = 1. Then the matrix of A with respect to

the basis

(1 + I, x + I, . . . xs−1,g + I, xg + I, . . . , xs−1g + I, . . . ,gm−1 + I, xgm−1 + I, xs−1gm−1 + I)

of R[x]/I is
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M(g,m) ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M(g) Es1 0 . . . 0 0 0

0 M(g) Es1 ⋱ 0 0 0

0 0 M(g) ⋱ 0 0 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

0 0 ⋱ ⋱ M(g) Es1 0

0 0 0 ⋱ 0 M(g) Es1

0 0 0 . . . 0 0 M(g)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Proof. (a) is obvious as any polynomial can be uniquely written as R-linear combination of the xi.
(b): We will first show by induction on deg h that every h + I,h ∈ R[x] is a R linear combination

of the hi,0 ≤ i < n. Since f is monic, long division of polynomials shows that h = q f + r for
some q, r ∈ R[x] with deg r < deg f = n. Since h + I = r + I we may assume that h = r and so
i ∶= deg h < n. Let a be the leading coefficient of h. Then deg h − ahi < deg h and so by induction is
a linear combination of the hi’s.

Suppose now that ∑n−1
i=0 λi(hi + I) = 0 + I for some λi ∈ K, not all 0. Then h ∶= ∑n−1

i=0 λihi ∈ I. Let
j be maximal with λ j ≠ 0. Then clearly j = deg h and the leading coefficient of h is λ j. In particular
h ≠ 0.

Note that all non-zero polynomials in I have degree larger or equal to n. But this contradicts
0 ≠ h ∈ I and deg h = j < n. Thus (b) holds.

(c) is the special case g = f and m = 1 of (d). So it remains to prove (d). Note that deg xig j =

i + js. Hence by (b) (xig j + I)0≤i<s,0≤ j<m is a basis for R[x]/I.
Let yi, j ∶= xig j + I. Then

A(yi, j) = xi+1g j + I.

Thus
A(yi, j) = yi+1, j for all 0 ≤ i < s − 1,0 ≤ j < m.

As g is monic gs = 1 and so xs = g +∑s−1
i=0 (−gi)xi.

Hence

A(ys−1, j) = xsg j + I = (g j+1 +
s−1

∑
i=0

(−gi)xig j) + I = (g j+1 + I) +
s−1

∑
i=0

(−gi)yi, j.

If j < m − 1, g j+1 + I = y0, j+1 and so

A(ys−1, j) = y0, j+1 −
s−1

∑
i=0

(−gi)yi, j.

If j = m − 1 then g j+1 = gm = f ∈ I and so
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A(ys−1,m−1) =
s−1

∑
i=0

(−gi)yi,m−1

Thus (d) holds. �

Theorem 3.4.7 (Jordan Canonical Form). Let K be a field, V a non-zero finite dimensional vector
space over K and A ∈ EndK(V). Then there exist irreducible monic polynomials f1, . . . , ft ∈ K[x] ,
positive integers m1, . . .mt and a basis

(yi jk)0≤i<deg fk ,0≤ j<mk ,1≤k≤t

of V such that the matrix of A with respect to this basis is

M( f1,m1 ∣ . . . ∣ ft,mt) ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M( f1,m1) 0 . . . 0 0

0 M( f2,m2) ⋱ 0 0

⋮ ⋱ ⋱ ⋱ ⋮

0 0 ⋱ M( ft−1,mt−1) 0

0 0 . . . 0 M( ft,mt)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Proof. View V as a K[x]-module by f v = f (A)(v) for all f ∈ K[x] and v ∈ V ( see before 3.4.3).
Since K[x] is a PID (see 2.6.6) we can use Theorem 3.3.10. Thus VA is the direct sum of modules
Vk, 1 ≤ k ≤ t with Vk ≅ K[x]/( f mk

k ), where fk ∈ K[x] is either 0 or prime, and mk ∈ Z+. By 3.4.6(a)
K[x] is infinite dimensional over K. As V is finite dimensional, fk ≠ 0. So we may choose fk to be
irreducible and monic. By 3.4.6(cb), Vk has a basis yi jk, 0 ≤ i < deg fk,0 ≤ j < mk so that the matrix
of A ∣Vk with respect to this basis is M( fk,mk). Combining the basis for Vk, 1 ≤ k ≤ t, to a basis for
V we see that the theorem is true. �

The matrix M( f1,m1 ∣ f2,m2 ∣ . . . ∣ ft,mt) from the previous theorem is called the Jordan
canonical form of A. We should remark that our notion of the Jordan canonical form differs slightly
from the notion found in most linear algebra books. It differs as we do not assume that all the roots
of the minimal polynomial ( see below) of A are in K. Note that if K contains all the roots then
fk = x− λk and M( fk) is the 1× 1 matrix (λk) and E1s is the 1× 1 identity matrix. So the obtain the
usual Jordan canonical form.

We remark that the pairs ( fk,mk),1 ≤ k ≤ t are unique up to ordering. Indeed let f be an
irreducible monic polynomial of degree s and m a positive integer. Then the number of k’s with
( fk,mk) = ( f ,m) is d

s where d is the dimension of the K-space

ker f m(A)/ker f m(A) ∩ Im f (A)

We leave the details of this computation to the dedicated reader.
The following two polynomials are useful to compute the Jordan canonical form of A. The

minimal polynomial mA and the characteristic polynomial χA.



3.5. EXACT SEQUENCES 187

mA is defined has the monic polynomial of minimal degree with mA(A) = 0. i.e mA is monic
and (mA) is the kernel of the homomorphism αA ∶ K[x]→ EndK(V). mA can be computed from the
Jordan canonical form. For each monic irreducible polynomial let e f be maximal so that ( f , e f ) is
one of the ( fk,mk) ( with e f = 0 if f is not one of the fk. )Then

mA =∏ f e f

The characteristic polynomial is defined as

χA = (−1)n f m1
1 f m2

2 . . . f mk
k

where n is the dimension of V . The importance of the characteristic polynomials comes from the
fact that χA can be computed without knowledge of fk’s. Indeed

χA = det(A − xidV).

To see this we use the Jordan canonical form of f . Note that

det(A − xidV) =
t

∏
k=1

det(M( fk,mk) − xI)

and
det(M( f ,m) − xI) = (det(M( f ) − xI))m.

Finally its is easy to verify that

det(M( f ) − xI) = (−1)deg f f .

3.5 Exact Sequences

Definition 3.5.1. Let (A,≤) be partially ordered set and B ⊂ A.

(a) B is called a segment of A if c ∈ A for all a,b ∈ B and all c with a ≤ c ≤ b.

(b) B− = {a ∈ B ∣ a < b for some b ∈ B}.

Definition 3.5.2. Let I be a segment of integers and R be a ring. An I- sequence of R-linear maps is
a pair ((Ai)i∈I , ( fi)i∈I−) such such that for i ∈ I, Ai, i ∈ I is an R-module and for i ∈ I−, fi ∶ Ai → Ai+1
is an R-linear function. We denote such a sequence by

. . .
fi−2
Ð→ Ai−2

fi−1
Ð→ Ai−1

fi
Ð→ Ai

fi+1
Ð→ Ai+1

fi+2
Ð→ . . .

Such a sequence is called exact if

Im fi = ker fi+1

for all i ∈ I−−.
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Example 3.5.3. (a) The sequence

0→ A
f
Ð→ B

is exact if and only if f is 1-1

(b)

A
f
Ð→ B→ 0

is exact if and only if f is onto.

(c) The sequence

0→ A
f
Ð→ B→ 0

is exact if and only if f is an isomorphism.

(d) A sequence of the form

0→ A
f
Ð→ B

g
Ð→ C → 0

is called a short sequence. It is exact if and only if then f is 1-1, ker g = Im f and g is onto.
In this case A ≅ Im f , C = Im g and by the isomorphism Theorem, B/ker g ≅ C.. So B has a
submodule which isomorphic to A and whose quotient is isomorphic to C.

Definition 3.5.4. Given two I-sequences of R-linear maps

A ∶
fi−1
Ð→ Ai−1

fi
Ð→ Ai

fi+1
Ð→ and B ∶

gi−1
Ð→ Bi−1

gi
Ð→ Bi

gi+1
Ð→

(a) A homomorphism h ∶ A → B from A to B is a family (hi)i∈I of functions such that for i ∈ I,
hi ∶ Ai → Bi is R-linear and for all i ∈ I+

gi ○ hi−1 = hi ○ fi

In other words, the diagram

fi−1
ÐÐÐ→ Ai−1

fi
ÐÐÐ→ Ai

fi+1
ÐÐÐ→ Ai+1

fi+2
ÐÐÐ→

×
×
×
Ö

hi−1

×
×
×
Ö

hi

×
×
×
Ö

hi+1

gi−1
ÐÐÐ→ Bi−1

gi
ÐÐÐ→ Bi

fi+1
ÐÐÐ→ Bi+1

gi+2
ÐÐÐ→

.

commutes.

(b) The homomorphism (idAi)i∈A from A to A is denoted by idA.

(c) If α = (αi)i∈I and (βi)i∈I are family of functions, then β ○ α = (βi ○ αi)i∈I .
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Example 3.5.5. Let 0 ÐÐÐ→ A
f

ÐÐÐ→ B
g

ÐÐÐ→ C ÐÐÐ→ 0 be a short exact sequence of R-
modules. Then g is onto and so by the First Isomorphism Theorem g ∶ B/ker g→ C,b+ker g→ g(b)
is an isomorphism. Put D ∶= Im g = ker g. It follows that

0 ÐÐÐ→ A
f

ÐÐÐ→ B
g

ÐÐÐ→ C ÐÐÐ→ 0
×
×
×
Ö

f
XXXXXXX

×
×
×
Ö

g−1

0 ÐÐÐ→ D ÐÐÐ→
idD

B ÐÐÐ→
πB,D

B/D ÐÐÐ→ 0

is an isomorphism of short exact sequences.

Lemma 3.5.6. Let R be a ring and I a segment of integers. Let A,B and C be I-sequences of
R-linear maps.

(a) Let α ∶ A→ B and β ∶ B → C be homomorphism. Then β ○ α ∶ A→ C is a homomorphism.

(b) Let α = (αi)i∈I ∶ A → B be a homomorphism. Then α is an isomorphism if and only if each
αi, i ∈ I is a R-isomorphism and if and only if each αi, i ∈ I is a 1-1 and onto.

Proof. Readily verified. �

Theorem 3.5.7 (Short Five Lemma). Given a homomorphism of short exact sequences:

0 ÐÐÐ→ A
f

ÐÐÐ→ B
g

ÐÐÐ→ C ÐÐÐ→ 0
×
×
×
Ö
α

×
×
×
Ö
β

×
×
×
Ö
γ

0 ÐÐÐ→ A′
f ′

ÐÐÐ→ B′
g′

ÐÐÐ→ C′ ÐÐÐ→ 0

.

Then

(a) If α and γ are 1-1, so is β.

(b) If α and γ are onto, so is β.

(c) If α and γ are isomorphisms, so is β.

Proof. (a) Let b ∈ B with β(b) = 0. Then also g′(β(b)) = 0 and as the diagram commutes γ(g(b)) =
0. As γ is 1-1 g(b) = 0. As ker g = Im f , b = f (a) for some a ∈ A. Thus β( f (a)) = 0 and so
f ′(α(a)) = 0. As f ′ is one 1-1, α(a) = 0. As α is 1-1, a = 0. So b = f (a) = 0 and β is 1-1.

(c) Let b′ ∈ B′. As γ and g are onto, so is γ ○ g. So there exists b ∈ B with g′(b′) = γ(g(b)). As
the diagram commutes γ(g(b)) = g′(β(b)). Thus

d′ ∶= b′ − β(b) ∈ ker g′

As ker g′ = Im f ′, d′ = f ′(a′) for some a′ ∈ A′. Since α is onto So a′ = α(a)) for some a ∈ A.
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b′ − β(b) = d′ = f ′(a′) = f ′(a′(α(a)) = β( f (a)

and so b′ = β(b) + β( f (a)) = β(b + f (a)). Thus β is onto.

(c) follows from (a) and (b). �

Definition 3.5.8. Let V be an R-module, Then a direct summand of V is an R-submodule U of V
such that V = U ⊕W for some R-submodule W of V.

Theorem 3.5.9. Given a short exact sequence 0 → A
f
Ð→ B

g
Ð→ C → 0. Then the following three

statements are equivalent:

(a) There exists a R-linear map γ ∶ C → B with g ○ γ = idC .

(b) There exists a R-linear map η ∶ B→ A with η ○ f = idA.

(c) There exists a R-linear map τ ∶ B→ A⊕C such that

0 ÐÐÐ→ A
f

ÐÐÐ→ B
g

ÐÐÐ→ C ÐÐÐ→ 0
XXXXXXX

×
×
×
Ö
τ

XXXXXXX

0 ÐÐÐ→ A
ρ1

ÐÐÐ→ A⊕C
π2

ÐÐÐ→ C ÐÐÐ→ 0

is an isomorphism of short exact sequences.

(d) Im f is a direct summand of B.

Proof. (a)Ô⇒ (c): Consider the diagram

0 ÐÐÐ→ A
ρ1

ÐÐÐ→ A⊕C
π2

ÐÐÐ→ C ÐÐÐ→ 0
XXXXXXX

×
×
×
Ö
( f ,γ)

XXXXXXX

0 ÐÐÐ→ A
f

ÐÐÐ→ B
g

ÐÐÐ→ C ÐÐÐ→ 0
where ( f , γ) ∶ A⊕C → B, (a, c)→ f (a) + γ(c). We have

( f , γ)(ρ1(a)) = ( f , γ)(a,0) = f (a) + γ(0) = f (a) = f (idA(a))

By exactness, g( f (a) = 0 and since g ○ γ = idC , g(γ(c)) = c. Thus

g(( f , γ)(a, c)) = g( f (a) + γ(c)) = g( f (a)) + g(γ(c)) = 0 + c = c = idC(c) = idC(π2(a, c))

So the diagram commutes. Since idA and idC are isomorphism, the Short Five Lemma 3.5.7
implies that the diagram is an isomorphism.

(c)Ô⇒ (b): Define η = π1 ○ τ. Then
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η ○ f = (π1 ○ τ) ○ f = π1 ○ (τ ○ f ) = π1 ○ ρ1 = idA

(b) Ô⇒ (d): Since η ○ f = idA, η ○ f is a bijection. Thus η ∣Im f is a bijection and 3.2.16(c)
shows that B = Im f ⊕ ker η.

(d)Ô⇒ (a): Suppose that B = Im f⊕D for some R-submodule D of B. Then also B = ker g⊕D
and 3.2.16(c) shows that g ∣D∶ D→ C is a bijection. Put γ = (g ∣D)

−1. Then g○γ = idC and (a) holds.
�

Definition 3.5.10. A short exact sequence which fulfills the four equivalent conditions in 3.5.9 is
called split.

Lemma 3.5.11. Let R be ring.

(a) Let V be an R-module. Then there exists an R-module W with W ≅ V ⊕W.

(b) Let (Vi)i∈I be a family of R-modules. Then there exists an R-module W with W ≅ Vi⊕W. for all
i ∈ I.

(c) Let V be an R-module and U an R-submodule of V. Then there exists an R-module W such that
U ≤ V ≤ W, V is a direct summand of W and W ≅ U ⊕ W/U. Moreover, if U is not a direct
summand of V, U is also not a direct summand of W.

Proof. (a) Put W = VZ+ . Then V ⊕W = V ⊕ VZ+ ≅ VN ≅ VZ+ = W.
(b) Let i ∈ I. By (a) there exists an R-module Wi with Wi ≅ Vi ⊕Wi. Put W =⊕ j∈I W j. Then

Vi ⊕W = Vi ⊕⊕
j∈I

W j ≅ Vi ⊕Wi ⊕⊕
j∈J
j≠i

W j ≅ Wi ⊕⊕
j∈J
j≠i

W j ≅⊕
j∈I

W j = W

(c) According to (b) there exists a R-module W with W ≅ V ⊕ W and W ≅ (U ⊕ V/U) ⊕ W.
Replacing W be an isomorphic R-module we may assume that W = V ⊕Z for some submodule Z of
W with Z ≅ W. Then

W/U = (V ⊕ D)/U ≅ (V/U)⊕ D ≅ V/U ⊕W

and so

U ⊕W/U ≅ U ⊕ V/U ⊕W ≅ W

Suppose U is a direct summand of W and say W = U ⊕ E. Since U ≤ V ≤ W, this gives
V = U ⊕ (V ∩ E) and so U is also a direct summand of V . �

To make the last two theorems a little more transparent we will restate them in an alternative
way. First note that any short exact sequence can be viewed as pair of R modules D ≤ M. Indeed,
given D ≤ M we obtain a short exact sequence

0 ÐÐÐ→ D ÐÐÐ→ M ÐÐÐ→ M/D ÐÐÐ→ 0
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Here D → M is the inclusion map and M → M/D is the canonical epimorphism. Conversely, every
short exact sequence is isomorphic to one of this kind:

0 ÐÐÐ→ A
f

ÐÐÐ→ B
g

ÐÐÐ→ C ÐÐÐ→ 0
×
×
×
Ö

f
XXXXXXX

×
×
×
Ö

ḡ−1

0 ÐÐÐ→ Im f ÐÐÐ→ B ÐÐÐ→ B/ Im f ÐÐÐ→ 0

Secondly define a homomorphism Φ ∶ (A ≤ B) → (A′ ≤ B′) to be a homomorphism Φ ∶ B → B′

with Φ(A) ≤ A′

Such a Φ corresponds to the following homomorphism of short exact sequences:

0 ÐÐÐ→ A ÐÐÐ→ B ÐÐÐ→ B/A ÐÐÐ→ 0
×
×
×
Ö

ΦA

×
×
×
Ö

Φ
×
×
×
Ö

ΦB/A

0 ÐÐÐ→ A′ ÐÐÐ→ B′ ÐÐÐ→ B′/A′ ÐÐÐ→ 0

Here ΦA ∶ A → A′ ∶ a → Φ(a) and ΦB/A ∶ B/A → B′/A′ ∶ b + A → Φ(b) + A′. Since Φ(A) ≤ A′ both
of these maps are well defined.

Lets translate the Five Lemma into this language:

Lemma 3.5.12. Let Φ ∶ (A ≤ B)→ (A′ ≤ B′) be a homomorphism.

(a) If ΦA and ΦB/A are one to one, so is Φ.

(b) If ΦA and ΦB/A are onto so is Φ.

(c) If ΦA and ΦB/A are isomorphism, so is Φ.

Proof. This follows from the five lemma, but we provide a second proof.
(a) As ker ΦB/A = 0, ker Φ ≤ A. So ker Φ = ker ΦA = 0.
(b) As ΦB/A is onto, B′ = Φ(B) + A′. As Φ(A) = A′ we conclude B′ = Φ(B).
(c) Follows from (a) and (b). �

The three conditions on split exact sequences translate into:

Lemma 3.5.13. Given a pair of R-modules A ≤ B. The following three conditions are equivalent.

(a) There exists a homomorphism γ ∶ B/A→ B with b̄ = γ(b̄) + A for all b̄ ∈ B.

(b) There exists a homomorphism η ∶ B→ A with η(a) = a for all a ∈ A.

(c) There exists a R-submodule K of B with B = A⊕K.

Proof. Again this follows from 3.5.9 but we give a second proof:
(a)⇒ (c): Put K = γ(B/A). Then clearly K+A = B. Also if γ(b+A) ∈ A we get b+A = A = 0B/A.

Thus γ(b + A) = 0 and K ∩ A = 0.
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(b)⇒ (c) Put K = ker η. The clearly K ∩ A = 0. Also if b ∈ B. Then η(b) ∈ A and η(b − η(b)) =
η(b) − η(b) = 0. Thus b = η(b) + (b − η(b)) ∈ A + B. Thus B = A + K.

(c)⇒ (a): Define γ(k + A) = k for all k ∈ K.
(c)⇒ (b): Define η(a + k) = a for all a ∈ A, k ∈ K �

Finally if A is a R-submodule of B we say that B splits over A if the equivalent conditions in the
previous lemma hold.

3.6 Homomorphisms and Tensor Products

Definition 3.6.1. Let R and S be rings. Then an (R,S )-bimodule is a triple (M,∗,◇) such that
(M,∗) is an R-module, (M,◇) is an right S -module and

(r ∗m) ◇ s = r ∗ (m ◇ s)

for all r ∈ R,m ∈ M, s ∈ S .

Example 3.6.2. 1. Let R be a ring. Then R is an (R,R)-bimodule by left and right multiplication.

2. Let R be a ring and M an R-module. Then M is an (R,Z)-bimodule.

3. Let R be a ring and M a right R-module. Then M is an (Z,R)-bimodule.

4. Let R be a commutative ring and M an R-module. Note that M is a right R-module via mr = rm
for all m ∈ M, r ∈ R and M is an (R,R)-bimodule.

5. Let R be a ring and M a right R-module. Then φ(mr) = φ(m)r for all φ ∈ EndR(M), m ∈ M, r ∈ R
and so M is an (EndR(M),R)-bimodule.

6. Let R be a ring and M an R-module. Note that M is right Rop-module via mr = rm. Then M is
an (EndR(M),Rop)-bimodule.

Lemma 3.6.3. Let R and S be rings, M an abelian group, (M, ●) a left R-module and (M,◇) a right
S -module. Then the following are equivalent:

(a) (M, ●,◇) is an (R,S )-bimodule.

(b) ●R is a homomorphism from R to EndS (M), that is for each r ∈ R the function

r● ∶ M → M,m→ rm

is S -linear.

(c) ◇S is a anti-homomorphism from S to to EndR(M), that is for each s ∈ S the function

s◇ ∶ M → M,m→ ms

is R-linear.
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Proof. (a)⇐⇒ (b) : Just observe that

r●(ms) = (r●m)s

⇐⇒ r(ms) = (rm)s

for all r ∈ R,m ∈ m and s ∈ S .
(a)Ô⇒ (c): Apply the fact that (a) and (b) are equivalent to the opposite rings. �

Lemma 3.6.4. Let R be a ring and A,B and T be R-modules. Let φ ∶ A→ B be R-linear.

(a) The function
φ∗ ∶ HomR(B,T)→ HomR(A,T), f → f ○ φ.

is Z-linear.

(b) The function
φ̌ ∶ HomR(A,T)→ HomR(B,T), f → φ ○ f .

is Z linear.

(c) Suppose ψ ∶ B→ C is R-linear function. Then

(ψ ○ φ)̌ = φ̌ ○ ψ̌ and (φ ○ ψ)∗ = ψ∗ ○ φ∗.

Proof. (a) Since compositions of R-linear functions are R-linear, φ∗ is well-defined. By A.2.3(b),
φ∗ is Z-linear.

(b) Since compositions of R-linear functions are R-linear, φ̌ is well-defined. By A.2.3(a), φ̌ is
Z-linear.

(c) follows from A.1.8. �

Lemma 3.6.5. (a) Let T and S be rings, A an (T,S )-bimodule and B a right S -module Then
HomS (A,B) is an right T-module via (φt)a = φ(ta) for all φ ∈ HomS (A,B), a ∈ A and t ∈ T.

(b) Let R and S be rings, A a right S -module and B an (R,S )-bimodule. Then HomS (A,B) is an
left-R-module (rφ)m = rφ(m) for all φ ∈ HomS (A,B), m ∈ M and r ∈ R.

(c) Let R, S and T be rings, A an (T,S )-bimodule and B an (R,T)-module. Then HomS (A,B) is
an (R,T)-bimodule via the actions in (a)nd (b).

Proof. Put Ã = HomS (A,B)

(a) We claim that

σ ∶ EndS (A)→ EndZ(Ã), α→ α∗ = (φ→ φ ○ α)

is well defined ring anti-homomorphism. Indeed 3.6.4(a) shows that σ is well-defined. 3.6.4(b)
implies that σ is an additive homomorphism and 3.6.4(c) shows that σ is a multiplicative antihomo-
moprhism.
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Let ● ∶ T × A→ A be the ring action of T on A. By 3.6.3, ●T is a ring homomorphism from T to
EndS (A). Thus we obtain an anti ring-homomorphism

σ ○ ●T ∶ T → EndZ(Ã), t → (t●)∗

Let t ∈ T and φ ∈ Ã and a ∈ A. Note that (φt)a = φ(tm) = φ(t●a) and so

φt = φ ○ t● = (t●)∗φ = ((σ ○ ●T)t)φ

So action of T on Ã given in (a) is exactly the right ring action associated to the anti homomor-
phism σ ○ ◇T .

(b) We claim that

ρ ∶ EndS (A)→ EndZ(Ã), α→ α̌ = (φ→ α ○ φ)

is well defined ring homomorphism. Indeed 3.6.4(b) shows that ρ is well-defined. 3.6.4(a) implies
that ρ is an additive homomorphism and 3.6.4(c) shows that ρ is a multiplicative homomorphism.

Let ◻ ∶ R× A→ A be the ring action of R on A. By 3.6.3, ◻R is a ring homomorphism from R to
EndS (A).

Thus we obtain a ring-homomorphism

ρ ○ ◻R ∶ R→ EndZ(Ã), r → (r◻)̌

Let r ∈ R and φ ∈ Ã and a ∈ A. Note that (rφ)a = r(φa) = r◻(φa) and so

rφ = r◻ ○ φ = (r◻)̌ φ = ((ρ ○ ◻T)r)φ

So action of R on Ã given in (b) is exactly the ring action associated to the ring-homomorphism
ρ ○ ◻T .

(c) Let r ∈ R, φ ∈ Ã and t ∈ T . Then

(rφ)t = (r◻ ○ φ) ○ t● = r◻ ○ (φ ○ t●) = r(φt)

�

Corollary 3.6.6. Let R be a ring and B an abelian group.

(a) Let A a right R-module. Then HomZ(A,B) is an left R-module via (rφ)a = φ(ar) for all
r ∈ R,a ∈ A, and φ ∈ HomZ(A,B).

(b) Suppose B is left R-module. Then HomR(R,B) is an R-module via (rφ)a = φ(ar) for all a, r ∈ R
and φ ∈ HomR(R,B).

(c) HomZ(R,B) is an R-module via (rφ)a = φ(ar) for all a, r ∈ R and φ ∈ HomR(R,B).
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Proof. (a) Note that A is a (Z,R)-bimodule and B is a left Z-module. So (a) follows from 3.6.5(a)
with left and right modules interchanged.

(b) Note that R is an (R,R)-bimodule. So (a) follows from 3.6.5(a) with left and right modules
interchanged.

(c) Since R is a right R-module, this is the special case A = R in (a). �

Definition 3.6.7. Let f ∶ A × B→ D be a function.

(a) Suppose R is a ring and A and D are left R-module. Then f is called R-linear in the first
coordinate if for all b ∈ B, fb ∶ A→ D,a→ f (a,b) is R-linear.

(b) Suppose T is a ring and B and D are right R-module. Then f is called T-linear in the second
coordinate if for all a ∈ A, fa ∶ B→ A,b→ f (a,b) is R-linear.

(c) Suppose R and S are ring, A is left R-module, B is right T-module and D is a (R,T)-bimodule.
Then f is called (R,S )-bilinear if f is R-linear in the first coordinate and S -linear in the second
coordinate. In the special case R = S we will use the term R-bilinear for (R,R)-bilinear.

(d) Suppose R, S ,T are ring A is (R,S )-bimodule, B is a (S ,T)-bimodule and D is an (R,T)-
bimodule. Then f is called (R,S ,T)-linear if f is (R,S )-bilinear and

f (as,b) = f (a, sb)

for all a ∈ A, s ∈ S and b ∈ B.

(e) Suppose S is a ring, A is left S =module, B is a right S -module and D is an abelian group. Then
f is called S -balanced if f is (Z,S ,Z)-linear.

Definition 3.6.8. Let f ∶ A×B→ C be an (R,S ,T)-linear function. Then (C, f ) is called an (R,S )-
tensor product of A and B over R if for all all (R,S ,T)-linear function g ∶ A × B→ D there exists a
unique (R,T)-linear function

ḡ ∶ C → D with g = g ○ f .

A × B

D

C
f

g ∃! g

If R = T = Z we just say tensor product for (Z,Z)-tensor product.

Notation 3.6.9. Let R be a ring, A a right R-module and B an R-module. Let (C, f ) be tensor
product of A and B over R. Then we write A ⊗R B for C and ⊗ for f . Abusing notation, each of
(A⊗R B,⊗), A⊗R B and ⊗ are called the tensor product of A and B over R.
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Example 3.6.10. 1. Let R be a ring. Compute R⊗R R.

We claim the multiplication that the multiplication

⋅ ∶ R × R→ R, (a,b)→ ab

is a tensor product for R and R over R. Since ⋅ is distributive, ⋅ is Z-linear. Since ⋅ is associative,
⋅ is R-balanced.

Let D be an abelian group, g ∶ R × R → D an R-balanced function and h ∶ R → D a Z-linear
function. Then g = h ○ ⋅ if and only if

h(ab) = g(a,b)

for all a,b ∈ R. Choosing a = 1 we see that h(b) = g(1,b) and so h is unique. Define h(b) =
g(1,b). Using that g is R-balanced we compute

h(ab) = g(1,ab) = g(1a,b) = g(a,b)

and so ⋅ is indeed an tensor product of R and R over R. Hence R⊗ RR = R.

2. Let R be a ring and M an R-module. Compute R⊗R M.

We claim the ring action of R on M

∗ ∶ R × M → M, (a,m)→ am

is a tensor product for R and M over R. It follows immediately from the definition of an ring
action that ∗ is R-balanced. So R⊗R M = R.

Let D be an abelian group, g ∶ R × M → D an R-balanced function and h ∶ M → D a Z-linear
function. Then g = h ○ ∗ if and only if

h(am) = g(a,m)

for all a ∈ R and m ∈ M. Choosing a = 1 we see that h(m) = h(1m) = g(1,m) and so h is unique.
Define h(m) = g(1,m) and using that g is R-balanced we compute

h(am) = g(1,am) = g(1a,m) = g(a,m)

and so ∗ is indeed an tensor product of R and M over R.

3. Let R be a ring and M an right R-module. Compute M ⊗R R.

Again the ring action ∗ ∶ M × R→ M, (m,a)→ am is tensor product. So M ⊗R R = M.

Theorem 3.6.11. Let R be a ring, A be a right and B a left R-module. Then there exits a tensor
product of A and B over R.
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Proof. LetR be the set consisting of the following relations on A × B

(a,b) + (a′,b) ≡ (a + a′,b) a,a′ ∈ A,b ∈ B

(a,b) + (a,b′) ≡ (a,b + b′) a ∈ A,b,b′ ∈ B

and

(ar,b) ≡ (a, rb) a ∈ A,b ∈ B, r ∈ R

Let D be an abelian group and g ∶ A × B → D a function. Note that g is R-balanced if and only
if (g(a,b))

(a,b)∈A×B fulfills the relationsR.

Let (X, (x(a,b))
(a,b)∈A×B) be an abelian group with generators A×B and relationsR. We claim

that

⊗ ∶ A × B→ X, (a,b)→ x(a,b)

is a tensor product of A and B over R.
Since (x(a,b))

(a,b)∈A×B fulfills the relation, ⊗ is R-balanced. Let D be an abelian group and

g ∶ A× B→ D be an R-balanced map. Then (g(a,b))(a,b)∈A×B) fulfills the relationsR and so by the
definition of a group with generators and relations, there exists a unique homomorphism (of abelian
groups) g ∶ X → D with g(x(a,b)) = g(a,b) for all (a,b) ∈ A × B. So (X,⊗) is indeed a tensor
product of A and B over R. �

Lemma 3.6.12. Let R,S ,T be rings.

(a) Suppose A is (R,S )-bimodule and B an S -module. Then there exists a unique ring action of R
on A⊗S B with

r(a⊗ b) = ra⊗ b

for all a,A,b ∈ B.

(b) Suppose A is a right S -module and B is (S ,T)-bimodule. Then there exists a unique right ring
action of T on A⊗S B with

(a⊗ b)t = a⊗ bt

for all a,A,b ∈ B and t ∈ T.

(c) Suppose A is (R,S )-bimodule and B is (S ,T)-bimodule. Then A ⊗S B is an (R,T)-bimodule
via the actions in (a) and (b). Moreover ⊗ is a (R,T)-tensor product for A and B over S .

Proof. (a) For r ∈ R define
φr ∶ A × B→ A⊗ B, (a,b)→ ra⊗ b
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We claim that φr is R-balanced. Indeed since a → ra-Z-linear and ⊗ is Z-linear in the first coordi-
nate, φr is Z-linear in the first coordinate. Since ⊗ is Z-linear in second coordinate, so is φr. Also
since A is (R,S )-bimodule and ⊗ is S -balanced:

φr(as,b) = r(as)⊗ b = (ra)s⊗ b = ra⊗ sb = φr(a, sb)

for all a ∈ A, s ∈ S ,b ∈ B. So φr is S -balanced and so by the definition of a tensor product there
exists a unique Z-linear function:

r∗ ∶ A⊗S B→ A⊗ B

with φr = Φr ○ ⊗, that is Φr(a⊗ b) = ra⊗ b.
Define

∗ ∶ R × (A⊗ B) → A⊗ B, (r,u)→ r∗(u)

Since r∗ is Z-linear, ∗ is Z-linear in the second coordinate.

(u∗ + v∗)(a⊗ b) = ua⊗ b + va⊗ b = (ua + va)⊗ b = (u + v)⊗ b

and since u∗ + v∗ is Z-linear the definition of (u + v)∗ implies u∗ + v∗ = (u + v)∗.
Also

(u∗ ○ v∗)(a⊗ b) = u∗(va⊗ b) = u(va)⊗ b = (uv)a⊗ b

and since u∗ ○ v∗ is Z-linear the definition of (uv)∗ implies u∗ ○ v∗ = (uv)∗. Thus ∗ is a ring action
of R on A⊗S B.

(b) Apply (a) to the opposite rings.

(c) Let r ∈ R, t ∈ T . Then

(r(a⊗ b))t = (ra⊗ b)t = ra⊗ bt = r(a⊗ bt) = r(a⊗ b)t

for all a ∈ A and b ∈ B. So the definition of the tensor products show (rm)t = r(mt) for all
m ∈ A⊗R B. Thus A⊗R B is an (R,T)-bimodule. By definition of a tensor product, ⊗ is S -balance
and in particular, Z-bilinear. The definition of the action of R and T on A ×R B shows that ⊗ is
R-linear in the first coordinate and T -linear in the second coordinate. Thus ⊗ is (R,S ,T)-linear.

To show that ⊗ is an (R,T)-tensor product of A and B over S , let D be an (R,T)-bimodule and
g ∶ A × B → D be an (R,S ,T)-linear function. By definition of tensor product there exist a unique
Z-linear function g ∶ A⊗ B→ D with g = g ○ ⊗ and it remains to verify that g is (R,T)-linear.

Let r ∈ R and r◻ ∶ D→ D,d → rd. Then both g ○ r∗ and r◻ are Z-linear. Also

(g ○ r∗)(a⊗ b) = g(ra,b) = r(g(a,b)) = (r◻ ○ g)(a⊗ b)

Thus the definition of the tensor product shows that g ○ r∗ = r◻ ○ g. Thus g is R-linear. By
symmetry g is T -linear and so g is indeed (R,T)-linear. �
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Lemma 3.6.13. Let R, S ,T be rings, A an (R,S )-bimodule, B an (S ,T)-bimodule and D an (R,T)-
bimodule. Let f ∶ A × B → D be a function. Let fA and fB be the corresponding functions on A
and B (see 1.7.5, so for a ∈ A, fa = fA(a) is the function B → C,b → f (a,b).) Then the following
statements are equivalent.

(a) f is (R,S ,T)-linear.

(b) fA is a (R,S )-linear functions from A to HomT(B,D)

(c) fB is a (S ,T)-linear function from B to HomR(A,D).

Proof. f is T -linear in the second coordinate if and only if fa is T -linear for each a ∈ A and so if
and only if fA is a function from A to HomT(B,D).

We have

f (ra,b) = r( f (a,b)) for all a ∈ A,b ∈ B, r ∈ R

⇐⇒ fra b = r( fab) for all a ∈ A,b ∈ B, r ∈ R

⇐⇒ frab = (r fa)b for all a ∈ A,b ∈ B, r ∈ R

⇐⇒ fra = r fa for all a ∈ Ar ∈ T

⇐⇒ fA(ra) = r( fAa) for all a ∈ A, r ∈ R

So f is R-linear in the first coordinate if and only if fA is R-linear.

f (as,b) = f (a, sb) for all a ∈ A,b ∈ B, s ∈ S

⇐⇒ ( fA(as))b = ( fAa)(sb) for all a ∈ A,b ∈ B, s ∈ S

⇐⇒ ( fA(as))b = (( fAa)s)b for all a ∈ A,b ∈ B, s ∈ S

⇐⇒ fA(ar) = ( fAa)r for all a ∈ A, s ∈ S

So f is S -balanced if and only if fA is S -linear. Hence (a) and (b) are equivalent. By symmetry
(a) and (c) are equivalent. �

Theorem 3.6.14. Let R, S ,T be rings. A an (R,S )-bimodule, B an (S ,T)-bimodule and D an
(R,T)-bimodule. Let ⊗ ∶ A × B → A ⊗S B be the tensor product of A and B over R. Then of the
following maps are Z-isomorphisms:

(a) ⊗∗ ∶ HomR,T(A⊗S B,D)→ HomR,S ,T(A × B,D), f → f ○ ⊗.

(b) HomR,S ,T(A × B,D)→ HomR,S (A,HomT(B,C)), f → fA.

(c) HomR,S ,T(A × B,D)→ HomS ,T(B,HomR(A,C)), f → fB.
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Proof. Note first that by 3.6.12 ⊗ is an (R,T)-tensor product for A and B over S .(a) Let f ∈

HomR,T(A⊗S B,D). Since ⊗ is (R,S ,T)-linear and f is (R,T)-linear. f ○ ⊗ is (R,S ,T( Hence ⊗∗

is well defined.
By definition of (R,T)- tensor product ⊗∗ is 1-1 and onto. By A.2.3(b), ⊗∗ is Z-linear. So (a)

holds.

(b) By 3.6.13 the function is a bijection and by A.2.5 its Z-linear. Thus (b) holds. By symmetry
also (c) holds. �

Lemma 3.6.15. Let R be a ring and M an R-module. Then the function

Ev1 ∶ HomR(R,M)→ M, φ→ φ1.

is a R-isomorphism with inverse

Γ ∶ M → HomR(R,M),m→ (r → rm)

Proof. By A.2.8 Ev1 is Z-linear. Let φ ∈ HomR(R,M)) and r ∈ R. Then

Ev1(rφ) = (rφ)1 = φ(1r) = φ(r1) = r(φ1) = r(Ev1φ)

and so Ev1 is R-linear.

By 3.1.24(b), r → rm is R-linear. Hence Γ is well-defined.
To show that Ev1 and Γ are inverse to each other we compute:

Ev1(Γm) = (Γm)1 = 1m = m

and
(Γ(Ev1φ))r = r(Ev1φ) = r(φ1) = φ(r1) = φr

�

Definition 3.6.16. Let R and S be rings and A and B (R,S )-bimodule. A function f ∶ A → B is
called (R,S )-linear if it is R-linear and S -linear.

Lemma 3.6.17. Let R,S and T be rings. α ∶ A → A′ an (R,S )-linear function and β ∶ B → B′ and
(S ,T)-linear map. Then there exists a unique (R,T)-linear function

α⊗ β ∶ A⊗S B→ A′ ⊗S B′, with a⊗ b→ αa⊗ βb

for all a ∈ A,b ∈ B.

Proof. Consider the function Φ ∶ A × B → A′ × B′, (a,b) → αa ⊗ βb. Since α is R linear and ⊗ is
R-linear in the first coordinate, Φ is R-linear in the first coordinate. By symmetry, Φ is T -linear in
the second coordinate. Let a ∈ A,b ∈ B and s ∈ S . Then

Φ(as,b) = α(as)⊗ βb = (αa)s⊗ βb = αa⊗ sβb = αa⊗ β(sb) = Φ(a, sb)

and so Φ is also S -balanced. Since A ⊗S B is an (R,T)-tensor product over S , the lemma follows
from the definition of an (R,T)-tensor product. �
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Lemma 3.6.18. Let (R,S ,T) be rings and suppose that S is an (R,S )-bimodule with S acting by
right multiplication. Let α ∶ B→ B′ be an (S ,T)-linear function.

(a) B is an (R,T) module via rb = (r1S )b for all r ∈ R, b ∈ B.

(b) α is (R,T)-bilinear.

Proof. (a) By 3.6.10(2)
⊗ ∶ S × B→ B, (s,b)→ sb

is the tensor product of S and B over S . Thus by 3.6.12 B is an (R,T)-bimodule via

rb = r(1S ⊗ b) = (r1S )⊗ b = (r1S )b.

(b) Note that idS is (R,S )-linear. So by 3.6.17 idS ⊗ α is (R,T)-linear. We have

(idS ⊗ α)a = (idS ⊗ α)(1⊗ a) = 1⊗ αa = αa

So α = idS ⊗ α and (b) holds. �

Lemma 3.6.19. Let R, S and T be rings. Suppose S is an (R,S )-bimodule with S acting by right
multiplication. Let B be an (S ,T)-bimodule and D an (R,T)-bimodule. For an (R,T)-bimodule E
define

Ê = HomS (S ,E) and Ev1 ∶ Ê → E, δ→ δ1

(a) D̂ is an (S ,T)-bimodule.

(b) The map

ˇEv1 ∶ HomS ,T(B, D̂)→ HomR,T(B,D), φ→ Ev1 ○ φ

is well-defined Z-isomorphism.

(c) Let β ∶ D→ E be (R,T)-linear. Then the following diagram is commutative:

HomS ,T(B, D̂)
ˇEv1

ÐÐÐ→ HomR,T(B,D)
×
×
×
Ö

ˇ̌β
×
×
×
Ö
β̌

HomS ,T(B, Ê)
ˇEv1

ÐÐÐ→ HomR,T(B,E))

(d) Let η ∶ B→ C be (S ,T)-linear. Then the following diagram is commutative:

HomS ,T(B, D̂)
ˇEv1

ÐÐÐ→ HomR,T(B,D)
Õ
×
×
×
η∗

Õ
×
×
×
η∗

HomS ,T(C, D̂)
ˇEv1

ÐÐÐ→ HomR,T(C,D)
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Proof. (a) follows from 3.6.12(c).

(b) By 3.6.14 applies with A = S and using that S ⊗S B = B we have Z-isomorphism

HomR,T(B,D) = HomR,T(S ⊗S B,D) ÐÐÐ→ HomR,S ,T(S × B,D) ÐÐÐ→ HomS ,T(B, D̂)

f ÐÐÐ→ f ○ ⊗ ÐÐÐ→ ( f ○ ⊗)B

Let f ∈ HomR,T(B,D) and b ∈ B. Then

( ˇEv1(( f ○ ⊗)B))b = (Ev1 ○ ( f ○ ⊗)B)b = Ev1( f ○ ⊗)Bb) = ( f ○ ⊗)(b,1) = f (b⊗ 1) = f (b)

So ˇEv1 is inverse of isomorphism f → ( f ○ ⊗)B.

(c) Using A.1.8 and A.1.9

ˇEv1 ○
ˇ̌β = (Ev1 ○ β̌)̌ = (β ○ Ev1)̌ = β̌ ○ ˇEv1

(d) By A.1.8 β∗ ○ ˇEv1 = ˇEv1 ○ β
∗. �

Proposition 3.6.20. Let R be ring and D a fixed left R-module. For a left R-module E define
E† = HomR(E,D).

Let S be a ring, A be an (R,S )-bimodule, and B a left S -module. Then

Ξ ∶ (A⊗S B)† → HomS (A,B†), f → ( f ○ ⊗)A

is a Z-isomorphism with inverse

Θ ∶ HomS (A,B†)→ (A⊗S B)†, α→ (a⊗ b→ (αa)b)

Proof. 3.6.14 applied with T = Z, Ξ is a Z-isomorphism. Let α ∈ HomS (A,B†). Then α = Ξ f =

( f ○ ⊗)A for some f ∈ (A⊗S B)†. Then

f (a⊗ b) = ( f ○ ⊗)(a,b) = (( f ○ ⊗)A a)b = (αa)b = (Θα)(a⊗ b)

Hence Θ(α) = f and Θ is the inverse of Ξ. �

3.7 Projective and injective modules

In this section all rings are assumed to have an identity and all R-modules are assumed to be unitary.

Notation 3.7.1. (a) φ ∶ A↠ B means that φ is an onto function from A to B.

(b) φ ∶ A↣ B means that φ is an 1-1 function from A to B.
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Definition 3.7.2. Let P be a module over the ring R. We say that P is projective provided for all
R-linear function β ∶ P → B and all onto R-linear functions α ∶ A ↠ B there exists a R-linear
function γ ∶ P→ B with β = α ○ γ.

P

B

A

β α
Ô⇒

P

B

A

β α

γ

Lemma 3.7.3. Any free module is projective.

Proof. Let V be a free module with basis (vi)i∈I . Given α ∶ A ↠ B and β ∶ V → B. Let i ∈ I. Since
α is onto, β(vi) = α(ai) for some ai ∈ A. By the definition of a free module there exists γ ∶ V → A
with γ(vi) = ai. Then

α(γ(vi) = α(ai) = β(vi).

So by the uniqueness assertion in the definition of a free module α ○ γ = β. �

Lemma 3.7.4. (a) Every module is isomorphic to a quotient of a free module.

(b) Every module is isomorphic to a quotient of projective module.

Proof. (a) Let R be a ring and M be an R-module. Let V be a free R-module with basis (vm)m∈M.
Then there exists an R-linear map g ∶ V → M with g(vm) = m for all m ∈ M. Then g is clearly onto.
(b) Since free modules are projective, this follows from (a). �

Lemma 3.7.5. Any direct summand of a projective module is projective.

Proof. Let P be projective and P = P1⊕P2 for some submodules Pi of P. We need to show that P1
is projective. Given aR-linear maps α ∶ A↠ B and β ∶ P1 → B. Since P is projective there exists an
R-linear map γ̃ ∶ P→ A with

α ○ γ̃ = β ○ π1

Put γ = γ̃ ○ ρ1. Then
α ○ γ = α ○ γ̃ ○ ρ1 = β ○ π1 ○ ρ1 = β

P

P1

B

A

π1

ρ1

β ○ π1

γ̃

β α

γ̃ ○ ρ1
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�

Theorem 3.7.6. Let P be a module over the ring R. Then the following are equivalent:

(a) P is projective.

(b) Every short exact sequence 0→ A
f
Ð→ B

g
Ð→ P→ 0 splits.

(c) P is (isomorphic to) a direct summand of a free module.

Proof. (a)Ô⇒ (b): Since P is projective we have

P

P

B

idP g Ô⇒

P

B

A

idP g

γ

So g ○ γ = idP and the exact sequence is split by 3.5.9.

(b)Ô⇒ (c): By 3.7.4 the exists a free module F and onto R-linear map g ∶ F → P. This yields
the a short exact sequence:

0→ ker g→ F
g
→ P→ 0

By assumption the sequence split and so by 3.5.9 F ≅ ker g⊕P. Thus P is isomorphic to a direct
summand of a free module. Any module isomorphic to free module is free and so P is also a direct
summand of a free module.

(c)Ô⇒ (a): Suppose P is a direct summand of a free module F. By 3.7.3 F is projective. So
P is the direct summand of and projective module and so by 3.7.5 also F is projective. �

Lemma 3.7.7. Let R be ring such that every left ideal in R is a free R-module. Let M be an R-
module. Then M is a projective if and only if M is free.

Proof. Suppose first that M is projective. Then by 3.7.6 M is a direct summand of a free R-module
F. By 3.2.5, since all left ideal in R are free, all submodules of the free module F are free. Thus M
is free.

Conversely, if M is a free R-module, then by 3.7.3 M is free. �

Corollary 3.7.8. Direct sums of projective modules are projective.

Proof. Let (Pi)i∈I be a family of projective R-modules. By 3.7.6 for each i ∈ I there exists a free
R-module Fi and an R-submodule Qi of Fi with Fi = Pi ⊕ Qi. Then

⊕
i∈I

Fi ≅⊕
i∈I

Mi ⊕⊕
i∈I

Qi

Note that ⊕i∈I Fi is a free R-module. So ⊕i∈I Mi is a direct summand of a free module and so
projective. �
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Next we will dualize the concept of projective modules.

Definition 3.7.9. Let J be a module over the ring R. We say that J is injective provided for all
R-linear function β ∶ B→ J and all 1-1 R-linear functions α ∶ B↣ A there exists a R-linear function
γ ∶ A→ J with β = γ ○ α.

J

B

A

β α
Ô⇒

J

B

A

β α

γ

Above we showed that free modules are projective and so every module is isomorphic to a
quotient of a projective module. To dualize this our first goal is to find a class of injective R-
modules that every R-module is isomorphic to submodule of member of that class the class. We
do this into step steps: First we find injective modules for R = Z. Then we use those find injective
modules for an arbitrary ring (with identity).

To get started we prove the following lemma, which makes it easier to verify that a given module
is injective.

Lemma 3.7.10. Let J be a module over the ring R. Then J is injective if and only if for left ideal I
of R and all R-linear functions β ∶ I → J there exists an R-linear function γ ∶ R→ J with γ ∣I= β.

J

I

R

β idI
Ô⇒

J

I

R

β idI

γ

Proof. Given R-linear maps α ∶ B ↣ A and β ∶ B → J, we need to find an R-linear map γ ∶ B → J
with β = γ ○ α. Without loss, B ≤ A and α = idB. Then β = γ ○ α just means γ ∣B= β.

So we are trying to extend β to A to a linear map γ ∶ B → J. We will use Zorn’s lemma find
a maximal extension of β. For this let M be the set of all R-linear maps D → J, where D an
R-submodule of A with B ≤ D and δ ∣B= β. OrderM by (δ1 ∶ D1 → J) ≤ (δ2 ∶ D2 → J) if

D1 ⊆ D2 and δ2 ∣D1= δ1

We claim that every chain {δk ∶ Dk → J ∣ k ∈ K} inM has an upper bound. Let D = ⋃k∈K Dk

and define δ ∶ D → J by δ(d) = δk(d) if d ∈ Di for some k ∈ K. It is easy to verify that δ is well
defined, δ ∈M and δ is an upper bound for {δk ∶ Dk → J ∣ k ∈ K}.

Hence by Zorn’s lemma,M has a maximal element δ ∶ D→ J. 1

1We did note not use our assumptions on J yet. Maximal extensions always exists.
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Let a ∈ A. We will show that a ∈ D. For this consider the R-linear map:

µ ∶ D⊕ R→ A, (d, r)→ d + ra.

Let I = π2(ker mu) be the projection of kerµ onto R. Since kerµ is am R-submodule of D⊕ R, I is
a R-submodule of R, that is I is left ideal in R. We claim that

kerµ = {(−ia, i) ∣ i ∈ I}.

Indeed, let (d, r) ∈ kerµ. Then d + ra = 0 and so d = −ra and (d, r) = (−ra, r). Moreover,
r = π2(d, r) ∈ I. Conversely, let i ∈ I. Then i = π2(d, r) for some (d, r) ∈ kerµ. Then i = r,
d = −ra = −ia and so (−ia, i) = (d, r) ∈ kerµ. This proves the claim.

Consider the R-linear map

I → J, i→ δ(ia).

By assumption this map can be extended to an R-linear map

ε ∶ R→ J with ε(i) = δ(ia) for all i ∈ I

Define

η ∶ D⊕ R→ J, (d, r)→ δ(d) + ε(r).

Then η is R-linear. Also for i ∈ I,

η(−ia, i) = −δ(ia) + ξ(i) = −δ(ia) + δ(ia) = 0.

Hence kerµ ≤ ker η and we obtain a R-linear map

η ∶ (D⊕R)/kerµ→ J, (d, r) + kerµ→ δ(d) + ε(r).

By the Isomorphism Theorem µ ∶ (D⊕R)/ker→ D+ ra, (d, r)→ d + ra is an isomorphism and we
obtain an R-linear map

τ = η ○ µ ∶ D + Ra→ J with τ(d + ra) = δ(d) + ξ(r) for all d ∈ D, r ∈ R

Then τ(d) = δ(d) and so τ ∈M, The maximal choice of δ implies that D+Ra = D. Thus a ∈ D.
Since this holds for all a ∈ A, D = A

Thus D = A and J is injective. The other direction of the lemma is obvious. �

Definition 3.7.11. Let R be a ring and M an R-module. M is called R-divisible if rM = M for all
non-zero r in R.

Remark 3.7.12. Let R be a ring and suppose R has a non-zero divisible module. Then R has no
zero-divisors.
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Proof. Let R be a ring and M a divisible R-module. Suppose that ab = 0 for some non-zero a,b ∈ R.

M = bM = a(bM) = (ab)M = 0M = 0

�

Lemma 3.7.13. Let R be a ring and M a divisible R-module,

(a) Let S be subring of R. Then M is a divisible S -module.

(b) Any R-quotient of M is a divisible R-module.

Proof. Follows directly from the definition of a divisible module. �

Example 3.7.14. (a) Let R be a ring. Then R is divisible as a left R-module if and only if R is a
division ring.

(b) Let R be an integral domain. Then field of fraction, FR is divisible as an R-module.

Lemma 3.7.15. Let R be a ring and M an R-module.

(a) If R has no zero-divisors and M is injective, then M is divisible.

(b) If R is a PID, then M is injective if and only of M is divisible.

Proof. (a) Let 0 ≠ t ∈ R and m ∈ M Consider the map

Rt → M, rt → rm

Since R has non-zero divisors this is a well defined R-linear map. As M is injective this map can be
extended to an R-linear map γ ∶ R→ M. Then

tγ(1) = γ(t1) = γ(1t) = 1m

So Thus m ∈ tM and M = tM. Hence M is divisible.
(b) Suppose that M is divisible. Let I be a ideal in R and β ∶ I → M an R-linear map. As R is a

PID, I = Rr for some t ∈ R. As M is divisible, β(t) = tm for some m ∈ M. Define

γ ∶ R→ M, r → rm.

Then γ is R-linear and γ(rt) = rtm = β(rt). We showed that the condition of 3.7.10 are fulfilled. So
M is injective. �

Proposition 3.7.16. Let R be a integral domain.

(a) Every R module can be embedded into an divisible R-module.

(b) If R is a PID, then every R-module can be embedded into a injective module.
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Proof. (a) Let M an R- module. By 3.7.4(b), M is isomorphic to a quotient of a free R-module. So

M ≅ A/B,

where A = ⊕i∈I R for some set I and B is a submodule of A. Let D = ⊕i∈I FR. Then B ≤ A ≤ D and
A/B is a submodule of D/B isomorphic to M. Since FR is divisible, 3.7.13 shows that D and D/B
are divisible. Thus (a) holds.

(b) By 3.7.15 divisible R-modules for PID’s are injective. So (b) follows from 3.7.15. �

Remark 3.7.17. (a) Let R be a ring and A be an abelian group. Define

Â = HomZ(R,A) and Ev1 ∶ Ã→ A, δ→ δ1.

Let M be an R-module. The fact that

Ěv1 ∶ HomR(M, Â)→ HomZ(M,A), φ→ Ev1 ○ φ

is a bijection just means that for all Z-linear maps α ∶ M → A there exist a unique R-linear map
φ ∶ M → Â with α = Ev1 ○ φ:

M

Â

A
α

Ev1∃! φ

Let R be a ring and I a set. Let V be an R-module and v = (vi)i∈I a family in V. Let A be a projective
Z-module. Then by 3.7.7 A is a free module with basis say (ai)i∈I . Obbserve that there exists a
unique Z-linear map τ ∶ A → V with τ(ai) = vi for all i ∈ I. Moreover, V is free R-module with
basis (vi)i∈I if and only if for all Z-linear functions α ∶ A → M there exists a unique R-linear map
φ ∶ V → M with α = α̃ ○ τ:

M

V

A
α

τ∃! φ

The remarks shows that the class of free R-modules is “dual” to the class of R-modules

{HomR(R,A) ∣ Aan injective Z-module}.
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We proved above that every free module is projective and every module is the quotient of a free
module. We will now proceed to prove the dual versions of these two statements: HomR(R,A) is
an injective R-module for any injective Z-module A and any injective R-module is isomorphic to a
submodule of HomR(R,A) for some injective Z-module A.

Lemma 3.7.18. Let R and S be rings and D an injective R-module. Suppose that S is an (R,S )-
bimodule with S acting by right multiplication and put D̂ = HomS (S ,D). Then D̂ is an injective
S -module.

Proof. Let β̂ ∶ B → D̂ and α ∶ B → A be S -linear functions with α 1-1. Put β = Ev1 ○ β̂. By 5.3.9 α
is R-linear and since D is injective there exists an R-linear function γ ∶ A → D with β = γ ○ α. By
3.6.19 Ěv1 is onto and so γ = Ev1 ○ γ̂ for some S -linear function γ̂ ∶ A→ Ď. Then

Ev1 ○ (γ̂ ○ α) = (Ev1 ○ γ̂) ○ α = γ ○ α = β = Ev1 ○ β̂

Since Ěv1 is 1-1 this gives γ̂ ○ α = β and so D̂ is projective. �

Theorem 3.7.19. Let R be a ring and M an R-module.

(a) There exists a divisible Z-module A such that M is isomorphic to submodule of HomZ(R,A).

(b) Every M is the submodule of an injective R-module.

Proof. (a) Let M be a R-module. By 3.7.16 the Z-module M is a Z-submodule of some divisible Z-
module A. Note that HomR(R,M) is an R-submodule of HomZ(R,A). By 3.6.15 M ≅ HomR(R,M)

as an R-module and so M is isomorphic to an R-submodule of HomZ(R,A).

(b) If A is a divisible Z-module, 3.7.15 shows that A is an injective Z-module. By 3.6.19 (applied
to (Z,R) in place of (R,S )) HomZ(R,A) is an injective R-module and so (b) follows from (a). �

Lemma 3.7.20. (a) Direct summands of injective modules are injective.

(b) Direct products of injective modules are injective.

Proof. Let R be a ring.
(a) Let J = J1 ⊕ J2 with J injective. Given α ∶ B ↣ A and β ∶ B → J1. As J is injective there

exists γ̃ ∶ A→ J with

γ̃ ○ α = ρ1 ○ β.

Put γ = π1 ○ γ̃. Then

γ̃ ○ α = π1 ○ γ̃ ○ α = π1 ○ ρ1 ○ α = α.
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J1 ⊕ J2

J1

B

A

π1

ρ1

ρ1 ○ β

γ̃

β α

π1 ○ γ̃

(b) Suppose that (Ji)i∈I is a family of injective R-modules. Given R-linear maps α ∶ B ↣ A and
β ∶ B→ ⨉i∈I Ji. Let i ∈ I. Since Ji is injective there exist an R-linear function γi ∶ A→ Ji with

γi ○ α = πi ○ β

By the universal property of ⨉∈I Ji there exists an R-linear function

γ = (γi)i∈I ∶ A→⨉
i∈I

Ji, a→ (γi(a))i∈I

with
πi ○ γ = γi

for all i ∈ I. Hence
πi ○ γ ○ α = γi ○ α = πi ○ β

and so γ ○ α = β. Hence ∏i∈I Ji is injective.

Ji

⨉i∈I Ji

B

A

πi

πi ○ β

γi

β α

(γi)i∈I

�

Theorem 3.7.21. Let J be a module over the ring R. Then the following are equivalent:

(a) J is injective .

(b) Every short exact sequence 0→ J
f
Ð→ B

g
Ð→ C → 0 splits.
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(c) There exists a divisible abelian group A such that J is isomorphic to a direct summand of
HomZ(R,A).

Proof. (a)Ô⇒ (b): Since J is injective we have

J

J

B

idJ f
Ô⇒

J

J

A

idJ f

η

So η ○ f = idJ and the exact sequence is split by 3.5.9.

(b) Ô⇒ (c): By 3.7.19 there exists a divisible abelian group A such that J is isomorphic to
a submodule of Ã = HomZ(R,A). So the exists a 1-1 R-linear function f ∶ J → Ã and we obtain a
short exact sequence:

0→ J
f
→ Ã

πIm f
→ Ã/ Im f → 0

By assumption the sequence split and so by 3.5.9 Ã ≅ J ⊕ Ã/ Im f . So (b) holds.
(c) Ô⇒ (a): By 3.7.18 HomZ(R,A) is injective and so by 3.7.20 any direct summand of

HomZ(R,A) is injective. �

3.8 The Functor Hom

Lemma 3.8.1. Let R be a ring. Given a sequence A
f
Ð→ B

g
Ð→ C of R-modules. Then the following

two statements are equivalent:

(a)

A
f
Ð→ B

g
Ð→ C

is exact and A splits over ker f (thats is, ker f is a direct summand of A).

(b) For all R-modules D,

HomR(D,A)
f̌
Ð→ HomR(D,B)

ǧ
Ð→ HomR(D,C)

is exact.

Proof. We first compute ker ǧ and Im f̌ . Let β ∈ HomR(D,B). Then g ○ β = 0 if and only if
Imβ ≤ ker g. Thus

ker ǧ = HomR(D,ker g).
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Also
Im f̌ = { f ○ α ∣ α ∈ HomR(D,A)} ≤ HomR(D, Im f ).

(a) Ô⇒ (b): Suppose first that (a) holds. Then ker g = Im f and A = ker f ⊕ K for some
R-submodule K of A. It follows that f ∣K ∶ K → Im f is an isomorphisms. Let φ ∈ HomR(D, Im f ).
Put

α = ( f ∣K)
−1 ○ φ.

Then α ∈ HomR(D,A) and f ○α = φ. Thus φ ∈ Im f̌ . Since this holds for all φ ∈ HomR(F, Im f )
we conclude

Im f̌ = HomR(D, Im f ) = HomR(D,ker g) = ker ǧ.

(b)a Suppose next that (b) holds. Choose D = A. Since the sequence in (b) is exact, Im f̌ = ker ǧ.
Hence

f = f ○ idA ∈ Im ǧ = ker ǧ = HomR(D,ker g)

and so Im f ≤ ker g.

Bext choose D = ker g. Then Im idD = ker ǧ and so so

idD ∈ ker ǧ = Im ǧ ≤ HomR(D, Im f )

and so ker g = Im idD ≤ Im f .
Hence ker g = Im f and the sequence in (a) is exact. Also idD ∈ Im f̌ and so

idIm f = idD = f ○ γ

for some γ ∈ Hom(Im f ,A). Thus 3.5.9 shows that the exact sequence

0 ker f
idker f
→ A

f
→ Im f → 0

is split. Thus ker f is a direct summand of A. �

Here is the dual version of the previous lemma:

Lemma 3.8.2. Let R be a ring. Given a sequence A
f
Ð→ B

g
Ð→ C. Then following two statements

are equivalent:

(a)

A
f
Ð→ B

g
Ð→ C

is exact and C splits over Im g.
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(b) For all R-modules D,

HomR(A,D)
f ∗
←Ð HomR(B,D)

g∗
←Ð HomR(C,D)

is exact.

Proof. Dual to the proof of3.8.1. See Homework 2. �

The following three theorem are immediate consequences of the previous two:

Theorem 3.8.3. Let R be ring. Given a sequence of R-linear maps A
f
Ð→ B

g
Ð→ C. the following

are equivalent

(a)

0→ A
f
Ð→ B

g
Ð→ C

is exact.

(b) For every R module D,

0→ Hom(D,A)
f̌
Ð→ Hom(D,B)

ǧ
Ð→ Hom(D,C)

is exact.

Proof. �

Theorem 3.8.4. Let R be ring. Then the following are equivalent

(a)

A
f
Ð→ B

g
Ð→ C → 0

is exact.

(b) For every R module D,

HomR(A,D)
f ∗
←Ð HomR(B,A)

g∗
←Ð HomR(C,A)← 0

is exact.

Proof. See Homework 2 �

Theorem 3.8.5. Let R be a ring. Given a sequence of R-linear maps A
f
Ð→ B

g
Ð→ C. Given a

sequence of R-modules 0→ A
f
Ð→ B

g
Ð→ C → . Then the following three statements are equivalent:

(a)

0Ð→ A
f
Ð→ B

g
Ð→ C Ð→ 0

is exact and splits.



3.8. THE FUNCTOR HOM 215

(b) For all R-modules D,

0Ð→ HomR(D,A)
f̌
Ð→ HomR(D,B)

ǧ
Ð→ HomR(D,C)Ð→ o

is exact.

(c) For all R-modules D,

0←Ð HomR(A,D)
f ∗
←Ð HomR(B,D)

g∗
←Ð HomR(C,D)←Ð 0

is exact.

Proof. See Homework 2. �

Theorem 3.8.6. Let R be a ring, A and R-module and (Bi)i∈I be family of R-modules. Then as
abelian groups:

(a) HomR(⊕i∈I Bi,A) ≅ ⨉i∈I HomR(Bi,A)

(b) HomR(A,⨉i∈I Bi) ≅ ⨉i∈I HomR(A,Bi)

(c) Suppose A is finitely generated as an R-module. Then HomR(A,⊕i∈I Bi) ≅⊕i∈I HomR(A,Bi)

Proof. See Homework 2. �

Lemma 3.8.7. Let R and S be rings. Let φ ∶ A→ A′ be R-linear and let B a (R,S )-bimodule. Then

(a) HomR(A,B) is a right S -module by

( f s)(a) = f (a)s.

(b)
φ∗ ∶ HomR(A′,B)→ HomR(A,B), f → f ○ φ

is S -linear.

(c) HomR(B,A) is a left S -module with action of S given by

(s f )(b) = f (bs)

(d)
φ̌ ∶ HomR(B,A)→ HomR(B,A′), f → φ f

is S linear.

Proof. Straightforward. �
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Let R be a ring and M a R-module. The dual of M is the module

M∗ ∶= HomR(M,R)

As R is an (R,R)-bimodule, M∗ is a right R-module. The elements of M∗ are called linear func-
tionals on M.

From 3.8.6 we have
(⊕

i∈I
Mi)

∗ ≅∏
i∈I

M∗
i

By 3.6.15 R∗ =≅ R, (but the reader should be aware that here R is a right R-module that is the
action is given by right multiplication.)

We conclude
F(I)∗ ≅ RI

and so if I is finite then F(I)∗ is isomorphism to the free right-module on I.
An R-module M is called cyclic of M = Rm for some m ∈ M.

Lemma 3.8.8. Let R be a ring and M = Rm a cyclic R modules. Let I = AnnR(m) and J = {r ∈ R ∣

Ir = 0}.

(a) J is an right ideal in R.

(b)
τ ∶ M∗ → J, f → f (m)

is an isomorphism of right R-modules.

Proof. (a) Let j ∈ J, r ∈ R and i ∈ I. Then i( jr) = (i j)r = 0r = 0 and so jr ∈ J. Thus (a) holds.
(b) Let a ∈ AnnR(m). Then a f (m) = f (am) = f (0) = 0 and so f (m) ∈ J. So τ is well defined.

It is clearly Z-linear and
( f r)(m) = f (m)r

So τ( f r) = τ( f )r and τ is right R-linear.
Let j ∈ J. Then I j = 0 and so the map

ξ( j) ∶ M → R, rm→ r j

is well defined and R-linear.

τ(ξ( j) = ξ( j)(m) = ξ( j)(1m) = 1 j = j

and
(ξ(τ( f )))(rm) = rτ( f ) = r f (m) = f (rm)

and so ξ(τ( f )) = f and τ is a bijection. �
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If R is commutative, left and right modules are the same. So we might have that M ≅ M∗

as R-modules. In this case M is called self-dual. For example free modules of finite rang over a
commutative ring are self-dual. Let R be a ring, the double dual of a module M is M∗∗ ∶= (M∗)∗.

Define

ϑ ∶ M → M∗∗, ϑ(m)( f ) = f (m).

It is readily verified that ϑ is R-linear. If M = FR(I) is free of finite rang we see that ϑ is an
isomorphism. If M = FR(I) is free of infinite rang, then ϑ is a monomorphism but usually not an
isomorphism.

In general ϑ does not need to be one to one. For example if R = Z, n ∈ Z+ and M = Z/nZ, then it
is easy to see that M∗ = 0. Indeed let φ ∈ M∗ and m ∈ M. Then nm = 0 and so nφ(m) = φ(nm) = 0.
Thus φ(m) = 0 Since M∗ = 0, also M∗∗ = 0.

Let us investigate kerϑ in general. Let m ∈ M then ϑ(m) = 0 if and only if φ(m) = 0 for all
φ ∈ M∗.

3.9 Tensor products

Lemma 3.9.1. Let R be a ring, A a right R-module, B a left R-module, E an right R-submodule of
A and F = ⟨e⊗ b ∣ e ∈ E,b ∈ B⟩ ≤ A⊗R B. Then

⊗E ∶ A/E × B→ (A⊗R B)/F, (a + E,b)→ a⊗ b + F

is a well defined tensor product of A/E and B over R.

Proof. We will first verify that ⊗I is well defined: Let a ∈ A, e ∈ E and b ∈ B. Then e⊗ b ∈ F and so

(a + e)⊗ b + I = a⊗ b + e⊗ b + F = a⊗ b + F

Since ⊗ is R-balanced also ⊗I is R-balanced.
Suppose now that f ∶ A/E × B→ D is R-balanced.
Consider the function

g ∶ A × B→ D, (a,b)→ f (a + E,b)

Since f is Z-bilinear and πE is Z-linear, g is Z-bilinear. Since f is R-balanced and πR-is R-linear,
g is R-balanced. So there exists a unique Z-linear function

g ∶ A⊗ B→ D with g(a⊗ b) = g(a,b) = f (a + E,b)

Let e ∈ E and b ∈ B. Then

g(e⊗ b) = f (e + E,b) = f (0A/E ,b) = 0

and so ε ⊗ b ∈ ker g. Since g is Z-linear this give F ≤ ker g and we obtain a well defined Z-linear
map
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f ∶ (A⊗ B)/F → D,u + F → g(u)

Then f (a + E ⊗E b)) = f (a⊗ b + F) = g(a⊗ b) = g(a,b)
If h ∶ A ⊗ B/F → D is a Z-linear function with h(a ⊗ b + F) = f (a + E,b), then h = f ○ πF ∶

A⊗F → D is Z-linear function with (h○πF)(a⊗b) = g(a,b), Thus h○πF = g and so also h = f . �

Corollary 3.9.2. Let R be a ring and I a right ideal in R.

(a) Let M be a left R-module. Then

⊗ ∶ R/I × M → M/⟨IM⟩, (r + I,m)→ rm + ⟨IM⟩

is a well-defined tensor product of R/I and M over R.

(b) Let J a left ideal in R . Then

⊗ ∶ R/I × R/J → R/(I + J), (r + I, s + J)→ rs + (I + J).

is a tensor product for (R/I,R/J) over R.

Proof. (a) By 3.6.10(2) ∗ ∶ R × M → M, (r,m) → rm is a tensor product of R and M over R. Note
that F ∶= ⟨i ∗m ∣ i ∈ I,m ∈ M⟩ = ⟨IM⟩ and so (a) follows from 3.9.1.

(b) We apply (a) to M = R/J. Then ⟨IM = ⟨IR⟩+J/J = (I+J)/J. Since R/J/(I+J)/J ≅ R/I+J,
we see that (b) holds.

�

Example 3.9.3. 1. Let R be a PID and a,b ∈ R. Then Ra + Rb = R gcd(a,b) and so

R/Ra⊗R R/Rb = R/gcd(a,b)R

In particular, if gcd(a,b) = 1, then R/Ra⊗R R/Rb = 0.

2. Let K be set and R a ring. Let S = MKK(R). Then RK is a left and right S -module by left and
right multiplication. Fix k ∈ K. Put

I = {A ∈ S ∣ ekA = 0} and {A ∈ S ∣ Aes}

Since S ek = RK = ekS the left R-module RK is isomorphic to S /J and the right R-module RK is
isomorphic to S /I. Thus

RK ⊗S RK ≅ S /I ⊗S S /J ≅ S /(I + J)

Since

I = {A ∈ S ∣ Akl = 0 for all l ∈ K} and J = {A ∈ S ∣ Alk = 0 for all l ∈ K}
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we have

I + J = {A ∈ S ∣ Akk = 0}

Thus S /(I + J) ≅ R. It follows that

RK × RK → R, (a,b)→ ab =∑
i∈I

aibi

is a tensor product of RK and RK over S .

Proposition 3.9.4. Let D be a right R-module and

A
f
Ð→ B

g
Ð→ C → 0

an exact sequence of left R-linear functions. Then

D⊗R A
idD⊗ f
Ð→ D⊗R B

idD⊗g
Ð→ D⊗C → 0

is exact sequence of Z-linear maps.

Proof. Put X = Im f = ker g and consider the sequences

(1) A/ker f
f
Ð→ Im f

idX
Ð→ B

πX
Ð→ B/X

g
Ð→ C

and

(2) D⊗R A/ker f
idD⊗ f
Ð→ Im f

idD⊗idX
Ð→ D⊗R B

idD⊗πX
Ð→ D⊗ B/X

idD⊗g
Ð→ D⊗C

Put E = ⟨d ⊗ x ∣ d ∈ d, x ∈ X⟩ ≤ D ⊗R B and note that E = Im(idD ⊗ idX). By 3.9.1 D ⊗ B/X =

(D⊗ B)/E and d⊗ (b+X) = (d⊗b+E). Thus idD⊗πX = πE and so ker idD⊗πX = E and idD⊗πX

is onto.

Since the first and the the last functions in (1) are isomorphisms, also the first and last function
in (2) are isomorphisms. It follows that

Im(idD ⊗ f ) = Im(idF ⊗ f = Im(idD ⊗ idX) = E = ker(idD ⊗ πX) = ker(idD ⊗ g)

and idD ⊗ g is onto. �

Example 3.9.5. Let R = Z, A = Z8, B = Z4, E = 2A and F = ⟨e⊗ b ∣ e ∈ E,b ∈ B⟩. Then
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F = ⟨2a⊗ b ∣ a ∈ A,b ∈ B⟩ = 2⟨a⊗ b ∣ a ∈ A,b ∈ B⟩ = 2(A⊗R B)

A⊗R B = Z8 ⊗Z Z4 = Zgcd(8,4) = Z4

(A⊗R B)/F = Z8/2Z8 ≅ Z2

A/E = Z8/2Z8 ≅ Z2

(A/E)⊗R ≅ Z2 ⊗Z Z4 = Zgcd(2,4) = Z2

So (A/E)⊗ R and A⊗R B/F are indeed isomorphic.
Consider

σ ∶ E ⊗R B→ A⊗R B,a⊗ b→ a⊗ b

Note that the image of σ is F ≅ Z2. But E = 2A ≅ Z4 and so E ⊗R B ≅ Z4 ⊗Z4 = Zgcd(4,4) = Z4.
Thus σ is not 1-1

Lemma 3.9.6. Let R be a ring.

(a) Let (Ai)i∈I be a family of right R-modules and (B j) j∈J a family of left R-modules. Then

h ∶⊕
i∈I

Ai ×⊕
j∈J

B j → ⊕
(i, j)∈I×J

Ai ⊗R B j, ((ai)i∈I , (b j) j∈J)→ (ai ⊗ b j)(i, j)∈I×J

is a tensor product of ⊕i∈I Ai and ⊕ j∈J B j over R.

(b) Let I and J be sets. Then

RI ×R RJ → RI×J , ((ai)i∈I , (b j) j∈J)→ (aib j)(i, j)∈I×J

is a tensor product for RI and RJ over R.

(c) Let R and S be rings with R ≤ S . Let I be a set and view S as an (S ,R)-bimodule. Then

S ⊗R FR(I) ≅ FS (I)

as S -module.

Proof. Note that h is R-balanced. Let f ∶⊕i∈I Ai ×⊕ j∈J B j → D be a R-balanced function. For i ∈ I
and j ∈ J define

fi j = f ○ (ρi, ρ j) ∶ Ai × B j → D, (ai,b j)→ f (ρiai, ρ jb j)

Since ρi is Z-linear and fi j is Z-linear in the first coordinate. Z-linear in the first coordinate. By
symmetry, f is Z-linear in the second coordinate. Since ρi R-linear and f is R-balanced, fi j is R-
balanced. Thus the exists unique Z-linear function f i j ∶ Ai ⊗RB j → D with f i(ai ⊗ b j) = fi, j(ai,b j)

for all ai ∈ Ai and b j ∈ B j. Define
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f ∶ ⊕
(i, j)∈I×J

Ai ⊗R B j → D, (ui j)(i, j)∈I×J → ∑
(i, j)∈I×J

f i j(ui j)

Then f is clearly Z-linear and

( f ○ h)((ai)i∈I , (b j) j∈J) = f ((ai ⊗ b j)(i, j)∈I×J) = ∑
(i, j)∈(I,J)

f i j(ai ⊗ b j) = ∑
(i, j)∈(I,J)

fi j(ai,b j)

= ∑
(i, j)∈(I,J)

f (ρiai, ρ jb j) = f
⎛

⎝
∑
i∈I
ρiai,∑

j∈J
ρ jb j

⎞

⎠
= f ((ai)i∈I , (b j) j∈J)

and so f = f ○ h.
Since⊕(i, j)∈I×J Ai ⊗R B j is generated by the ai ⊗ b j, f is unique with respect to f = f ○ h. So (a)

holds.
(b) Since R × R→ R, (a,b)→ ab is a tensor product of R and R over R, (b) follows from (a).
(c) As S ⊗R R ≅ S , (c) follows from (a). �

Lemma 3.9.7. Let A be a right R-module, B a (R,S )-bimodule and C a left S -module. Then there
exists Z-linear isomorphism

(A⊗R B)⊗S C → A⊗R (B⊗S C) with (a⊗ b)⊗ c→ a⊗ (b⊗ c)

for all a ∈ A,b ∈ B, c ∈ C.

Proof. Let c ∈ C. Then the function

A × B→ A⊗ (B⊗C), (a,b)→ a⊗ (b⊗ c)

is R-balanced and we obtain a Z-linear function

fc ∶ A⊗R B→ A⊗ (B⊗C), with fc(a⊗ b) = a⊗ (b⊗ c)

Then the function

f ∶ A⊗R B ×C → A⊗ (B⊗C), (u, c)→ fcu

is S -balanced and we obtain an Z-linear function

F ∶ (A⊗R B)⊗S C → A⊗R (B⊗S C) with F(u⊗ c) = fcu

Then F((a⊗ b)⊗ c) = fc(a⊗ b) = a⊗ (b⊗ c). By symmetry there exists Z-linear function

G ∶ A⊗R (B⊗S C)→ (A⊗R B)⊗S C) with G(a⊗ (b⊗ c)) = (a⊗ b)⊗ c

F and G are clearly inverse to each other the lemma is proved. �
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In future we will just write A ⊗R B ⊗S C for any of the two isomorphic tensor products in the
previous lemma. A similar lemma holds for more than three factors. A ⊗R B ⊗S C can also be
characterized through (R,S )-balanced maps from A × B×C → T , where T is an abelian group. We
leave the details to the interested reader.

Lemma 3.9.8. Let R be a ring, I and ideal in R, A be a right R-module and B a left R-module.
Suppose that AI = 0 and UB is zero and observe that A and B are modules for R/I. Then

A⊗R/I B = A⊗R B

Proof. Just observe that a function f ∶ A×B→ D is R-balanced if and only if it is R/I-balanced. �

Lemma 3.9.9. Let R be a commutative ring and A,B,C,D R-modules.

(a) There exists a unique R-linear function

HomR(A,C)⊗R HomR(B,D)→ HomR(A⊗R B,C⊗R D) with α⊗β→ α⊗β = (a⊗b→ αa⊗βb)

(b) For an R-module E put E∗ = HomR(E,R). There exists a unique R-linear function

σ ∶ A∗ ⊗R B∗ → (A⊗R B)∗, α⊗ β→ α ⋅ β = (a⊗ b→ (αa)(βb))

Proof. (a) Just observe that the function (α, β)→ α⊗ β is R-balanced.

(b) Since ⋅ ∶ R × R → R, (a,b) → ab is the tensor product of R and R over R, this follows from
(a) applied with C = D = R.

�

Example 3.9.10. Let R be a ring, I be a left ideal in R and M an R-module. Compute HomR(R/I,M).

Let πI ∶ R→ R/I, r → r + I be the natural epimorphism. Then by 3.8.1 the function

π∗I ∶ HomR(R/I,M)→ HomR(R,M), φ→ φ ○ πI

is 1-1 and

Imπ∗I = {α ∈ HomR(R,M) ∣ I ≤ ker a}.

By 3.6.15

M → HomR(R,M),m→ (r → rm)

is an R- isomorphism.
Note that I ⊆ ker(r → rm) if and only im = 0 for all i ∈ M and so if and only if m ∈ AnnM(I).

Thus

AnnM(I)→ HomR(R/I,M),m→ (r + I → rm)

is a well-defined R isomorphism.
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Example 3.9.11. Let R be a commutative ring

(a) Let I and J sets. Compute the map σ ∶ R∗I ⊗R R∗J → (RI ⊗R RJ)
∗.

(b) Let I1 and I2 be ideal in R. Compute the map σ ∶ (R/I1)
∗ ⊗ (R/I2)

∗ → (R/I1 ⊗ R/I2)
∗.

(a) We have

(RI)
∗ = HomR(⊕

i∈I
R,R) ≅⨉

i∈I
HomR(R,R) ≅⨉

i∈I
R = RI

and
(RI ⊗ RJ)

∗ = (RI×J)
∗ ≅ RI×J

Using these isomorphism σ turns into the function

RI ⊗R RJ → RI×J , (ri)i∈I ⊗ (s j) j∈J → (ris j)(i, j)∈I×J

(b) Put Jk = AnnR(Ik). By example 3.1.15,

(R/Ik)
∗ = HomR(R/Ik,R) ≅ AnnR(Ik) = Jk

and by 3.9.2 R/I1 ⊗ R/I2 = R/(I1 ∩ I2) and so

(R/I1 ⊗ R/I2)
∗ = (R/(I1 ∩ I2))

∗ = AnnR(I1 + I2) = AnnR(I1) ∩AnnR(I2) = J1 ∩ J2.

Thus σ turns into the function

σ ∶ J1 ⊗R J2 → J1 ∩ J2 ( j1, j2)→ j1 j2.

Lemma 3.9.12. Let R and S be rings and M an (R,S )-bimodule. Let

T =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎣

r m

0 s

⎤
⎥
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRRRR

r ∈ R,m ∈ M, s ∈ S

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

Define an addition and multiplication on T by

⎡
⎢
⎢
⎢
⎢
⎢
⎣

r1 m1

0 s1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

r2 m2

0 s2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

r1 + r2 m1 +m2

0 s1 + s2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

and
⎡
⎢
⎢
⎢
⎢
⎢
⎣

r1 m1

0 s1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

r2 m2

0 s2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

r1r2 r1m2 +m1s2

0 s1s2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(a) As an additive magma, T ≅ R⊕ M ⊕ S and we identify R, M with there images in T .
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(b) T is a ring.

(c) M is an ideal in T , T/M ≅ R × S , S M = MR = MM = 0, the action of R on M by left
multiplication is the same as the action of M as left R-module, and the action of S on M by
right multiplication is the same as the action of S on M as a right S -module.

(d) Annleft
T (M) = AnnR(M) + M + S and Annright

T (M) = R + M +AnnS (M)

The ring T is denoted by R ⋊ M ⋉ S .

Proof. (a) should be obvious.

(b) By (a) T is abelian group under addition. It is rather obvious that the distributive laws holds
and so it remains to verify that the multiplication is associative:

⎛
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎣

r1 m1

0 s1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

r2 m2

0 s2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎠
⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

r3 m3

0 s3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

r1r2 r1m2 +m1s2

0 s1s2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

r3 m3

0 s3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

r1r2r3 r1r2m3 + r1m2s3 +m1s2s3

0 s1s2s3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

and

⎡
⎢
⎢
⎢
⎢
⎢
⎣

r1 m1

0 s1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⋅
⎛
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎣

r2 m2

0 s2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

r3 m3

0 s3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎠
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

r1 m1

0 s1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

r2r3 r2m3 +m2s3

0 s2s3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

r1r2r3 r1r2m3 + r1m2s3 +m1s2s3

0 s1s2s3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(c) Identifying R,S and T with the images in T the formula for multiplication looks as follows:

(r1 +m1 + s1) ⋅ (r2 +m2 + s2) = r1r2 + (r1m2 + +m1s2) + s1s2

Thus

r1 ⋅ r2 = r1r2 r ⋅m = rm r ⋅ s = 0

m ⋅ r = 0 m1 ⋅m2 = 0 m ⋅ s = 0

s ⋅ r = 0 s ⋅m = 0 s1 ⋅ s2 = s1s2

This gives (c). (d) follows from (c). �
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Example 3.9.13. Let R be commutative ring and M a faithful R-module. Let

U =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎣

r m

0 r

⎤
⎥
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRRRR

r ∈ R,m ∈ M

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

≤ T = R ⋉ M ⋊ R

Show that U is commutative ring and M is an ideal in U. Compute the function

σ ∶ (U/M)∗ ⊗U (U/M)∗ → (U/M ⊗U/M)∗

Identify r ∈ R with

⎡
⎢
⎢
⎢
⎢
⎢
⎣

r m

0 r

⎤
⎥
⎥
⎥
⎥
⎥
⎦

in U and m ∈ M with

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 m

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. Then U = R+M. r1 ⋅ r2 = r1r2, r ⋅m =

rm = m ⋅ r and m1 ⋅m2 = m2 ⋅m1 = 0. Thus U is commutative and AnnU(M) = AnnR(M) + M = M.
Thus by Example 3.9.11(b), σ is the function

M ×R M → M, (m1,m2)→ m1 ⋅m2 = 0

So σ is the zero function.

3.10 Composition series

Definition 3.10.1. Let R be a ring, M an R-module and C a set of R-submodules in R. We say that
C is a R-series on M provided that

(a) C is a chain, that is for any A,B ∈ C, A ≤ B or B ≤ A.

(b) 0 ∈ C and M ∈ C.

(c) C is closed under unions and intersections, that is if D ⊆ C, then

⋃D ∈ C and ⋂D ∈ C.

For example any finite chain

0 = M0 < M1 < M2 < M3 < . . . < Mn−1 < Mn = M

of R-submodules of M is an R-series.
If R = M = Z and p is a prime then

0 < . . . < pk+1Z < pkZ < pk−1Z < . . . < pZ < Z

is a Z-series. More generally, if n1,n2,n3, . . . is any sequence of integers larger than 1, then

0 < n1 . . .nk+1Z < n1 . . .nkZ < . . . < n1n2Z < n1Z < Z

is a Z series on Z.
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Definition 3.10.2. Let R be a ring, M an R-module and C an R-series on M.

(a) A jump in C is a pair (A,B) with A,B ∈ C, A � B and so so that

D ≤ A or B ≤ D for all D ∈ C.

Jump(C) is the set of all jumps of C.

(b) If (A,B) is a jump of C then B/A is called a factor of C.

(c) C is a R-composition series on M provided that all the factors of C are simple R-modules.

Let C be R-series on M. For B ∈ C define

B− =⋃{A ∈ C ∣ A � B}.

Note that B− ∈ C and B− ≤ B.
Suppose that B− ≠ B. Let D ∈ C. Then B ≤ D or D � B. In the latter case, D ≤ B− and so (B−,B)

is a jump of C.
Conversely, if (A,B) is a jump it is easy to see that A = B−. Thus

Jump(C) = {(B−,B) ∣ B ∈ C,B− ≠ B}.

Consider the series

0 < n1 . . .nk+1Z < n1 . . .nkZ < . . . < n1n2Z < n1Z < Z.

As n1 . . .nk+1)Z/n1 . . .nkZ ≅ Z/nkZ as R-modules, this series is a composition series if and only
if each nk is a prime. If we chose nk = p for a fixed prime p we get a composition series all of whose
factors are isomorphic. On the other hand we could choose the nk to be pairwise distinct primes and
obtain a composition series so that now two factors are isomorphic.

Proposition 3.10.3. Let R be a ring and M a R-module. LetM be the set of chains of R-submodules
in M. OrderM by inclusion and let C ∈M. Then C is a composition series if and only if C is a
maximal element inM.

Proof. Ô⇒ Suppose that C is a composition series but is not maximal in M. Then C ⊊ D for
some D ∈M. Hence there exists D ∈ D ∖ C. We will show that there exists a jump of C so that
the corresponding factor is not simple, contradicting the assumption that C is a composition series.
Define

D+ =⋂{E ∈ C ∣ D ≤ E} and D− =⋃{E ∈ C ∣ E ≤ D}.

As C is closed under unions and intersections both D+ and D− are members of C. In particular,
D− ≠ D ≠ D+. From the definition of D+, D ≤ D+, also D− ≤ D and so

D− � D � D+.
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Thus D/D+ is a proper R-submodule of D+/D− and it remains to verify that (D−,D+) is a jump.
For this let E ∈ C. As D is totally ordered, E ≤ D or D ≤ E. In the first case E ≤ D− and in the
second D+ ≤ E.

⇐Ô Let C be a maximal element ofM. We will first show that

(*) Let E be an R-submodule of G such that for all C ∈ C, E ≤ C or C ≤ E. Then E ∈ C.

Indeed, under these assumptions, {E} ∪ C is a chain of submodules and so the maximality of C
implies E ∈ C.

From (*) we conclude 0 ∈ C and M ∈ C. Let D ⊆ C and put E = ⋃D. We claim that E fulfills
the assumptions of (*). For this let C ∈ C. If C ≤ D for some D ∈ D then C ≤ D ≤ E. So suppose
that C ≰ D for each D ∈ D. As C is totally ordered, D ≤ C for each D ∈ D. Thus E ≤ D. So we can
apply (*) and E ∈ C. Thus C is closed under unions.

Similarly, C is closed under intersections. Thus C is a series and it remains to show that all its
factors are simple. So suppose that (A,B) is a jump of C so that B/A is not simple. Then there exists
a proper R-submodule Ē of B/A. Note that Ē = E/A for some R-submodule E of M with

A � E � B.

As (A,B) is a jump, E /∈ C. Let C ∈ C. Then C ≤ A or B ≤ C. So C ≤ E or E ≤ C. Thus by (*),
E ∈ C, a contradiction �

Corollary 3.10.4. Every R-modules has a composition series.

Proof. LetM be as in 3.10.3. We leave it as an routine application of Zorn’s Lemma A.3.8 to show
thatM has a maximal element. By 3.10.3 any such maximal element is a composition series. �

In the next lemma we will find series for direct sums and direct products of modules. For this
we first need to introduce the concept of cuts for a totally ordered set (I,≤).

We say that J ⊆ I is a cut of I if for all j ∈ J and all i ∈ I with i ≤ j we have i ∈ J. Let Cut(I) be
the set of all cuts of I. Note that ∅ ∈ Cut(I) and I ∈ Cut(I). Order Cut(I) by inclusion. We claim
that Cut(I) is totally ordered. Indeed, let J,K ∈ Cut(I) with K /⊆ J. Then there exists k ∈ K ∖ J. Let
j ∈ J. Since k /∈ J and J is a cut, k /≤ j. Since I is totally ordered, j < k and since K is a cut, j ∈ K.
So J ⊆ K and Cut(I) is totally ordered.

Let i ∈ I and put i+ = { j ∈ I ∣ j ≤ i}. Note that i+ is a cut of I. The map I → Cut(I), i → i+ is an
embedding of totally ordered sets. Put i− = { j ∈ I ∣ j < i}. Then also i− is a cut.

We leave it as an exercise to verify that unions and intersection of arbitrary sets of cuts are cuts.

As an example consider the case I = Q ordered in the usual way. Let r ∈ R and define r− = {q ∈

Q ∣ q < r}. Clearly r− is a cut. We claim that every cut of Q is exactly one of the following cuts:

∅; Q; q+ (q ∈ Q); r− (r ∈ R)
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Indeed, let be J be a non-empty cut of Q. If J has no upper bound in Q, then J = Q. So suppose
that J has an upper bound. By a property of the real numbers, every bounded non-empty subset of
R has a least upper bound. Hence J has a least upper bound a. Then J ⊆ r+.

If r ∈ J, then r ∈ Q and r+ ⊆ J ⊆ r+. So J = r+.
If r /∈ J we have J ⊆ r−. We claim that equality holds. Indeed let q ∈ r−. As r is a least upper

bound for J, q is not an upper bound for J and so q < j for some j ∈ J. Thus q ∈ J and J = r−.

Lemma 3.10.5. Let (I,≤) be a totally ordered set and R a ring. For i ∈ I let Mi be a non zero
R-module. Let M ∈ {⊕ i ∈ IMi,∏i∈I Mi. For J a cut of I define

M+
J = {m ∈ M ∣ mi = 0∀i ∈ I ∖ J}

and if J ≠ ∅,
M−

J = {m ∈ M ∣ ∃ j ∈ J with mi = 0∀i ≥ j}.

Put M−
∅ = 0.

(a) For all k ∈ I, M−
k+ = M+

k− and M+
k+/M+

k− ≅ Mk.

(b) Let M =⊕i∈I Mi. Then

(a) C ∶= {M+
J ∣ J ∈ J ∈ Cut(I)} is an R-series on M.

(b) Jump(C) = {(M+
k− ,M

+
k+) ∣ k ∈ I}.

(c) C an R-composition series if and only if each Mk, k ∈ I is a simple R-module.

(c) Let M =∏i∈I Mi Then

(a) C ∶= {M+
J ,M

−
J ∣ J ∈ J ∈ Cut(I)} is an R-series on M.

(b) Jump(C) ∶= {(M−
J ,M

+
J ) ∣ ∅ ≠ J ∈ Cut(I)}.

(c) C is an R-composition series if and only if each non-empty subset ofI has a maximal element
and each Mk, k ∈ I is a simple R-module.

Proof. (a) The first statement follows directly from the definitions. For the second note that the map
Mk+ → Mk,m→ mk is onto with kernel Mk− .

(b) & (c) Note that M−
J ≤ M+

J .
Let Cut∗(I) be the set of cuts without a maximal element. So

Cut(I) = {k+ ∣ k ∈ K} ∪Cut∗(I).

Let J ∈ Cut∗(I). We claim that M−
J = M+

J if M =⊕i∈I Mi and M−
J ≠ M+

J if M =∏i∈I Mi.
So suppose first that M =⊕i∈I Mi and let 0 ≠ m ∈ M+

J and pick k ∈ J maximal with mk ≠ 0 ( this
is possible as only finitely many mi’s are not 0). Since J has no maximal element there exists j ∈ J
with k < j. Then mi = 0 for all i ≥ j and so m ∈ M−

J .
Suppose next that M = ∏i∈I Mi. For j ∈ J pick 0 ≠ m j ∈ M j. For i ∈ I ∖ J let mi = 0. Then

(mi) ∈ M+
J but (mi) /∈ M−

J .
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From the claim we conclude that in both cases

C ∶= {M+
J ,M

−
J ∣ J ∈ Cut(I)}

We will show now that C is a chain. For this let J and K be distinct cuts. Since Cut(I) is totally
ordered we may assume J ⊂ K. Then

M−
J ≤ M+

J ≤ M−
K ≤ M+

K .

and so C is totally ordered.
Also 0 = M+

∅ and M = M+
I .

Let D be a subset of C. We need to show that both ⋂D and ⋃D are in D. Let D ∈ D. Then
D = MεD

JD
for some JD ∈ Cut(I) and εD ∈ {±}.

Put J = ⋂D∈D JD. Suppose first that M−
J ∈ D.

Then M−
J ⊆ D for all D ∈ D and

⋂D = M−
J .

So suppose that M−
J /∈ D. Then M+

J ≤ D for all D ∈ D and so M+
J ⊆ ⋂D. We claim that

⋂D = M+
J .

Indeed, let m ∈ ⋂D and i ∈ I ∖ J. Then i /∈ JD for some D ∈ D. As

m ∈ D = MεD
JD
≤ M+

JD

we get mi = 0. Thus m ∈ M+
J , proving the claim.

So C is closed under arbitrary unions.
Let K = ⋃{JD ∣ D ∈ D}.
Suppose that M+

K ∈ D. Then M ⊆ M+
K for all D ∈ D and

⋃D = M+
K .

So suppose that M+
K /∈ D. Then ⋃D ⊆ M−

K . We claim that

⋃D = M−
K .

If K = ∅ each JD is the empty set. So we may assume K ≠ ∅. Let m ∈ M−
K . Then by definition

there exists k ∈ K with mi = 0 for all i ≥ k. Pick D ∈ D with i ∈ JD. Then

m ∈ M−
JD
≤ MεD

JD
= D ≤⋃D.

So the claim is true and C is closed under unions.
Hence C is an R-series on M.
Next we investigate the jumps of C. As seen above every cut is of the form (B−,B) for some

B = Mε
J ∈ C with B ≠ B−.
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Suppose first that J = k+ for k ∈ I. As M−
k+ = M+

k− we may and do assume ε = +. Thus
M−

k+ = M+
k− = (M+

k+)
− and M+

k− ,M
+
k+) is a jump with factor isomorphic to Mk.

Suppose next that J ∈ Cut∗(I). Then M−
J = ⋃ j∈J M j+ ≤ (M−

J )
−. We conclude that (M+

J )
− =

(M−
J )=M−

J . If M = ⊕i∈I Mi then as seen above M−
J = M+

J . So we only get a jump if ε = + and
M = M =∏i∈I Mi.

The factor M+
J /M−

J can be describes as follows. Identify M+
J with ∏ j∈J M j. Define x, y ∈

∏ j∈J M j to be equivalent if and only if there exists j ∈ J with xi = yi for all i ∈ J with j ≤ i. It is easy
to check that this is an equivalence relation, indeed x and y are equivalent if and only if y − x ∈ M−

J .
In particular, M+

J /M−
J is the set of equivalence classes. We claim that M+

J /M−
J is never a simple

module. For this let J = J1 ∪ J2 with J1 ∩ J2 = ∅ so that for each j1 ∈ J1 there exists j2 ∈ J2 with
j1 < j2, and vice versa. ( We leave the existence of J1 and J2 as an exercise). Then M+

J /M−
J is the

direct sum of the images of ∏ j∈Ji
M j in M+

J /M−
J .

Finally we claim that every non-empty subset of I has a maximal element if and only if every
non-empty cut of I has a maximal element. One direction is obvious. For the other let J be a non-
empty subset of I and define J∗ = {i ∈ I ∣ i ≤ j for some j ∈ J}. Clearly J∗ is a cut and J ⊆ J∗.
Suppose J∗ has a maximal element k. Then k ≤ j for some j ∈ J. As j ∈ J∗ we conclude j ≤ k and
so j = k and k is the maximal element of J.

It is now easy to see that (bc) and(cc) hold and all parts of the lemma are proved. �

Corollary 3.10.6. Let R be a ring and I a set. Let M be one of FR(I) and RI . Then there exists an
R-series C of on M so that all factors of C are isomorphic to R and ∣Jump(C)∣ = ∣I∣. Moreover, if R
is a division ring C is a composition series.

Proof. By the well-ordering principalA.3.11 there exists a well ordering ≤∗ be a well ordering on
I. Define a partial order ≤ on I by i ≤ j if and only if j ≤∗ i. Then every non-empty subset of I has
a maximal element and all non empty cuts of I are of the form k+, k ∈ K. The result now follows
from 3.10.5 �

As an example let R = Q. If I = Q we see that the countable vector space FQ(Q) as an uncount-
able composition series. But note that the number of jumps is countable. If I = Z− we conclude
that uncountable vector space QZ− as a countable composition series. So the number of jumps in a
composition series can be smaller than the dimensions of the vector space. But the next proposition
shows that the number of jumps never exceeds the dimension.

Proposition 3.10.7. Let D be a division ring and V a vector space over D. Let C be a D series on
V, and B a D-basis for V. Then

∣JumpC∣ ≤ B.

In particular, any two basis for V have the same cardinality.

Proof. Choose some well ordering on B. Let 0 ≠ v ∈ V . Then v = ∑b∈B db(v)b with db(v) ∈ D,
where almost all db(v),b ∈ B are zero. So we can choose h(v) ∈ B maximal with respect to
dh(v)(v) ≠ 0.

Define a map
φ ∶ Jump(C)→ B
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(A,B)→ min{h(v) ∣ v ∈ A ∖ B}

We claim that φ is one to one. Indeed suppose that (A,B) and (E,F) are distinct jumps with
b = φ((A,B)) = φ((E,F)). As C is totally ordered and (A,B) and (E,F) are jumps we may assume
A ≤ B ≤ E ≤ F. Let v ∈ B ∖ A with h(v) = b and db(v) = 1. Let w ∈ F ∖ E with h(w) = b and
db(w) = 1. Since v ∈ A ∈ E, w − v ∈ F ∖ E. Also db(w − v) = 1 − 1 = 0 and so h(w − v) < b a
contradiction to b = φ(E,F).

So φ is one to one and ∣Jump(C)∣ ≤ ∣B∣.
The second statement follows from the first and 3.10.6. �

Lemma 3.10.8. Let C be a series for R on M.

(a) Let 0 ≠ m ∈ M. Then there exists a unique jump (A,B) of C with m ∈ B and m /∈ A.

(b) Let D,E ∈ C with D < E. Then there exists a jump (A,B) in C with

D ≤ A < B ≤ E

Proof. (a) Let B = ⋂{C ∈ C ∣ m ∈ C} and A = ⋃{C ∈ C ∣ m /∈ C}.
(b) Let m ∈ E ∖ D and let (A,B) be as in (a). �

The following lemma shows how a series can be reconstructed from its jumps.

Lemma 3.10.9. Let R be a ring, M an R-module and C an R-series on M. Let Ĉ = {C ∈ C ∣ C ≠ C−.
Then the map

α ∶ Cut(Ĉ)→ C, K →⋃K

is a bijection.

Proof. Note first that as C is closed under unions α(K) is indeed in C. We will show that the inverse
of α is

β ∶ C → Cut(Ĉ), D→ {A ∈ Ĉ ∣ A ≤ D}.

It is easy to verify that β(D) is a cut.
Clearly, K ⊆ β(α(K)). Let E ∈ Ĉ with E /∈ K. Then as K is a cut, A < E for all A ∈ K. But then

A ≤ E− and so α(K) ≤ E− < E. Thus E /≤ α(K) and E /∈ β(α(K)). Hence β(α(K)) = K.
Clearly α(β(D) ≤ D. Suppose that α(β(D)) < D. Then by 3.10.8b there exists a jump (A,B)

of C with α(β(D)) ≤ A < B ≤ D. But then B ∈ β(D) and so B ≤ α(β(D)), a contradiction. �

Lemma 3.10.10. Let C be a series for R on M and W an R-submodule in M. Then

(a)
C ∩W ∶= {D ∩W ∣ D ∈ C}

is an R-series on M.



232 CHAPTER 3. MODULES

(b) Let
JumpW(C) = {(A,B) ∈ Jump(C) ∣ A ∩W ≠ B ∩W}.

Then the map
JumpW(C)→ Jump(C) ∩W, (A,B)→ (A ∩W,B ∩W)

is a bijection. Moreover,

B ∩W/A ∩W ≅ (B ∩W)+A/A ≤ B/A

(c) If C is a R-composition series on M then C ∩ W is a R-composition series on W. Moreover,
there exists an embedding φ ∶ Jump(C ∩ W) → Jump(C), so that so corresponding factors are
R-isomorphic. The image of φ consists of all the jumps (A,B) of C with B = A + (B ∩W).

Proof. (a) Clearly C∩W is a chain of R-submodules in W. Also 0 = 0∩W ∈ C∩W, W = M∩W ∈ C∩W
and its is easy to verify thatM ∩W is closed under unions and intersections.

(b) Let (A,B) ∈ JumpW(C). We will first verify that (A ∩ W,B ∩ W) is a jump of C ∩ W. Let
D ∈ C ∩ W. Then D = E ∩ W for some E ∈ C. As (A,B) is a jump, E ≤ A or B ≤ E. Thus
D = E ∩W ≤ A ∩W or B ∩W ≤ E ∩W = D. To show that the map is bijective we will construct its
inverse. For D ∈ C ∩W define

D− =⋃{C ∈ C ∣ C ∩W ≤ D} and D+ =⋂{C ∈ C ∣ D ≤ C ∩W}.

Then it easy to verify that D+ ∩ W = D = D− ∩ W. Let (D,E) be a jump in C ∩ W. Let C ∈ C.
Since (D,E) is a jump in C∩W, C∩W ≤ D or E ≤ C∩W. In the first case C ≤ D+ and in the second
E− ≤ C. So (D+,E−) is a jump of C. It is readily verified that maps (D,E) → (D+,E−) is inverse
to the map (A,B)→ (A ∩W,B ∩W).

The last statement in (b) follows from

B ∩W/A ∩W = (B ∩W)/(B ∩W) ∩ A ≅ (B ∩W)+A)/A.

(c) Note that A ∩W ≠ B ∩W if and only if (B ∩W)+A/A ≠ 0. Since C is a composition series,
B/A is simple. Thus (B ∩ W)+A/A ≠ 0 if and only if B = (B ∩ W) + A. Thus by (b) all factors of
C ∩W are simple and C ∩W is a R-composition series on W. �

Theorem 3.10.11 (Jordan-Hölder). Let R be a ring and M a module. Suppose R has a finite com-
position series C on M and that D is any composition series for R on M. Then D is finite and there
exists a bijection between the set of factors of C and the set of factors of D sending a factor of C to
an R-isomorphic factor of D.

Proof. Let W be the maximal element ofD−M. ThenD−M and ( by 3.10.10 C∩W are composition
series for W. By induction on ∣D∣, D ∩W is finite and has the same factors as D − M.

For E ∈ C ∩ W define E+ and E− as in 3.10.10. Let calE = {E+,E− ∣ E ∈ D ∩ W. Then E is a
finite series on M. Since W+ = M /≤ W we can choose L ∈ E minimal with respect to L /≤ W. Then
L = Eε for some E ∈ C ∩W and ε ∈ {±}. Suppose first that L = E−. Since 0− = 0 ≤ W, E ≠ 0 and so
there exists F ∈ C ∩W such that (F,E) is a jump in C ∩W. But then (F+,E−) ∈ JumpW(C), F+ ≤ W
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and by 3.10.10c, E− = F++(E−∩W) ≤ W a contradiction. So E+ = L ≠ E−. By 3.10.8b there exists
a jump (A,B) of C with E− ≤ A < B ≤ E+. Then E = E− ∩W ≤ A∩W ≤ B∩W ≤ E+ ∩W = E and so
E = A∩W = B∩W. So by definition (see 3.10.8b), (A,B) /∈ JumpW(C). Also B /≤ W and so as M/W
is simple, M = B+W. If A /≤ W, then also M = A+W and B = B∩M = B∩(A+W) = A+(B∩W) ≤ A
a contradiction. Hence A ≤ W and A = B ∩W. Thus

B/A = B/B ∩W ≅ B +W/W = M/W

We claim that Jump(C) = JumpW(C) ∪ {(A,B)}. So let (X,Y) be a jump of C not contained in
JumpW(C). By 3.10.10c, Y /≤ X + (Y ∩ W) and so also Y /≤ X + W. Thus Y /≤ W and X ≤ W. As
A ≤ W, Y /≤ A. As (A,B) is a jump B ≤ Y . As B /≤ W, B /≤ X and so X ≤ A. Thus X ≤ A < B ≤ Y and
as (X,Y) is a jump, (A,B) = (X,Y).

By 3.10.10c, the factors of JumpW(C) are isomorphic to the factors of C ∩ W and so with the
factors of D − M. As B/A ≅ M/W it only remains to show that D is finite. But thus follows from
3.10.9. �
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Chapter 4

Fields

4.1 Extensions

Definition 4.1.1. Let F be an integral domain, K a subfield of F and a ∈ F.

(a) F is called an extension of K. We will also say that K ≤ F is an extension.

(b) If F is a field, F is called field extension of K % li c A vector space over K is a unitary K-module.
A vector space over K is also called a K-space.

(c) The extension K ≤ F is called a finite if dimK F finite, where F is viewed as a K space by left
multiplication.

(d) If S is a ring, R a subring if S and I ⊆ R, then

R[I] ∶=⋂{T ∣ T is a subring of S with R ∪ I ⊆ S }

R[I] is called the subring of S generated by R and I.

(e) If F is a field and I ⊆ F, then

K(I) ∶=⋂{T ∣ T is a field of F with K ∪ I ⊆ F}

K(I) is called the subfield of F generated by K and I.

(f) A polynomial f ∈ K[x] is called monic if its leading coefficient is 1K.

(g) Φa = ΦK
a denotes the unique ring homomorphism

Φa ∶ K[x]→ K[a], with Φa(x) = a and Φa(k) for all k ∈ K..

So Φa( f ) = f (a).

(h) The unique zero or monic polynomial ma = mK(a) ∈ K[x] with ker Φa = K[x]ma is called the
minimal polynomial of a over K.

235
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(i) a is called algebraic over K if ma ≠ 0F .

(j) The extension K ⊆ F is called algebraic if all b ∈ F are algebraic over K.

(k) a is called transcendental over K if ma = 0F .

Lemma 4.1.2. Let K ≤ F be an extension and a ∈ F. Then one of the following holds

1. Φa is not 1-1, dimK K[a] = deg ma is finite, ma is monic and irreducible, K[a] = K(a) is a field, a
is algebraic over K, and (ai)0≤i<deg ma is a basis for K[a].

2. Φa is an isomorphism, dimK K[a] = ∞, ma = 0K, a is not invertible in K[a], a is transcendental
over K, (ai)i∈N is a basis for K[a].

Proof. Since F is an integral domain, K[a] is an integral domain. Clearly Φa is onto and so
K[x]/K[x]ma ≅ K[x]/ker Φa ≅ K[a]. Thus by 2.5.9 K[x]ma is a prime ideal.

Suppose first that ma ≠ 0. Then a is algebraic over K[a] and Φa is not 1-1. Note that by 2.5.9 ma

is a prime. By Example 2.6.2(2), K[x] is am Euclidean domain and so also a PID. So we conclude
from 2.5.17 that ma is irreducible and K[a] ≅ K[x]/K[x]ma is a field. Let f ∈ K[x]. As K[x] is a
Euclidean domain, f ≡ g (mod ma) for a unique polynomial g ∈ K[x] with deg g < deg ma. Also
g is a unique K-linear combination of (xi)0≤i<deg ma and so (xi + K[x]ma)0≤i<deg ma is a basis for
K[x]/K[x]ma. Hence (ai)0≤i<deg ma is basis for K[a]. Thus (1) holds.

Suppose next that ma = 0. Then a is transcendental. Moreover, Φa is 1-1 and so an isomorphism.
Since x is not invertible in K[x] and (xi, i ∈ N) is a basis for K we conclude that a is not invertible
in K[a] and (ai, i ∈ N) is a basis for K[a]. So (2) holds in this case. �

Lemma 4.1.3. Any finite extension is algebraic.

Proof. Let K ≤ F be an extension and a ∈ F. Then dimK K[a] ≤ dimK F <∞ and 4.1.2 implies that
a is algebraic over K. �

Lemma 4.1.4. (a) Let R be a ring and (S i)i∈I a non-empty family of subring (subfields) of R. Sup-
pose that for each i, j ∈ I there exists k ∈ I with S i ∪S j ⊆ S k. Then ⋃i∈I S i is a subring (subfield)
of R.

(b) Let S be a ring, R a subring of S and I ⊆ S . Then

R[I] =⋃{R[J] ∣ J ⊆ I, J is finite}.

(c) Let K ≤ F be a field extension and I ⊆ F. Then

K(I) =⋃{K(J) ∣ J ⊆ I, J is finite}.

Proof. (b) Let T = ⋃i∈I S i. Let a,b ∈ T . Then a ∈ S i and b ∈ S j for some i, j ∈ I. By assumption,
S i∪S j ⊆ S k for some k ∈ I. Then −a, a+b, ab and (if a ≠ 0 and S i is a field) a−1 all are contained in
S k and so in T . Since I ≠ ∅ and 0 is contained in any subring of R, 0 ∈ T . So T is indeed a subring
(subfield) of R.
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(c) Let J,K be finite subsets of I. Then J ∪ K is finite and R[J] ∪ R[K] ⊆ R[J ∪ K]. Thus (c)
follows from (b).

(a) also follows from (b). �

Lemma 4.1.5. Let R be a ring. M an R-module and S a subring of R. Let r = (ri)i∈I be a family of
elements in R and m = (m j) j∈J family of elements in M. Put w = (rim j)(i, j)∈I×J .

(a) If R = ⟨r⟩S and M = ⟨m⟩R, then M = ⟨w⟩S

(b) If r is linearly independent over S and m is linearly independent over R, then w is linearly
independent over S .

(c) If r is an S -basis for R and m is an R-basis for M, then w is an S -basis for M.

Proof. (a) M = ⟨m⟩R = ⟨Rm⟩ = ⟨⟨S r⟩m⟩ = ⟨S w⟩ = ⟨w⟩S .

(b) Suppose that ∑(i, j)∈I×J si jrim j = 0, for some s ∈ S I×J .

∑
j∈J

(∑
i∈I

si jri)m j = 0

Since m is linearly independent over R, we conclude ∑i∈I si jri = 0 for all j in J. As r is linearly
independent over S we get si j = 0 for all (i, j) ∈ I × J. Thus (b) holds.

(c) follows from (a) and (b). �

Corollary 4.1.6. Let K ≤ E be a field extension.

(a) Let V a vector space over E. Then

dimK V = dimK E ⋅ dimE V.

(b) Let K ≤ E be a field extension and E ≤ F an extension. Then

dimK F = dimK E ⋅ dimE F.

(c) If E ≤ F are finite, also K ≤ F is finite.

Proof. (a) follows from 4.1.5(c). (b) is a special case of (a). (c) follows from (b). �

Lemma 4.1.7. Let K ≤ F be an extension, let a ∈ F be algebraic over K and let f ∈ K[x].

(a) f (a) = 0 if and only if ma ∣ f in K[x].

(b) If f is irreducible then f (a) = 0 if and only if f ∼ ma in K[x]. That is if and only if f = kma for
some k ∈ K♯.

(c) ma is the unique monic irreducible polynomial in K[x] with a as a root.
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Proof. (a) Since f (a) = Φa( f ), f (a) = 0 if and only if a ∈ ker Φa. Since ker Φa = K[x]ma, this
holds if and only if ma ∣ f .

(b) Let f be irreducible with f (a) = 0, then ma ∣ f . Since f is irreducible we get ma ∼ f . By
2.5.5 this means f = kma for some unit k in K[x]. It is easy to see that the units in K[x] are exactly
the non-zero constant polynomials. So k ∈ K♯.

(c) If in addition f is monic, then since also ma is monic we conclude k = 1 and f = ma. �

Lemma 4.1.8. Let K ≤ E be a field extension, E ≤ F an extension and b ∈ F. If b is algebraic over
K, then b is algebraic over E and mE

b divides mK
b in E[x].

Proof. Note that mK
b (b) = 0 and mK

b ∈ E[x]. So by 4.1.7 mE
a divides mK

b in E[x]. Since b is algebraic
over K, mK

b ≠ 0 and so also mE
b ≠ 0. Hence b is algebraic over E. �

Lemma 4.1.9. Let F be a field and f ∈ F[x] a non-zero polynomial.
Then there an integer m with 0 ≤ m ≤ deg f , a1, . . .am ∈ F and q ∈ F[x] such that

(a) f = q ⋅ (x − a1) ⋅ (x − a2) ⋅ (x − am).

(b) q has no roots in F.

(c) {a1,a2, . . .am} is the set of roots of f .

In particular, the number of roots of f is at most deg f .

Proof. Suppose that f has no roots. Then the theorem holds with q = f and m = 0.
The proof is by induction on deg f . Since polynomials of degree 0 have no roots, the theorem

holds if deg f = 0.
Suppose now that theorem holds for polynomials of degree k and let f be a polynomial of degree

k + 1. If f has no root we are done by the above. So suppose f has a root a. By 2.6.3 there exists
g, r ∈ F[x] with f = g⋅(x−a)+t and deg r < deg(x−a) = 1. Thus r ∈ F and 0 = f (a) = g(a)⋅(a−a)+r.
Thus r = 0 and

(∗) f = g ⋅ (x − a)

Then deg g = k and so by the induction assumption there exists an integer n with 0 ≤ n ≤ deg g,
a1, . . .an ∈ F and q ∈ F[x] such that

(i) g = q ⋅ (x − a1) ⋅ (x − a2) ⋅ (x − an)

(ii) q has no roots in F.

(iii) {a1,a2, . . .an} is the set of roots of g.

Put m = n + 1 and am = a. From f = g ⋅ (x − a) = g ⋅ (x − am) and (i) we conclude that (a) holds.
By (ii), (b) holds.

Let b ∈ F. Then b is a root if and only if f (b) = 0R and so by (*) if and only g(b)(b − a) = 0F .
Since F is an integral domain this holds if and only if g(b) = 0 or b − a = 0F . From a = am and (iii)
we conclude that the roots of f are {a1,a2 . . . ,am}. So also (c) holds. �
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Definition 4.1.10. Let K be a field and f ∈ K[x]. We say that f splits over K if

f = k0(x − k1)(x − k2) . . . (x − kn)

for some n ∈ N and ki ∈ K,0 ≤ i ≤ n..

Lemma 4.1.11. Let K be a field and f ∈ K[x]♯.

(a) Suppose K ≤ E is a field extension, f ∈ K[x] is irreducible and E = K[a] for some root a of f in
E, then the map

K[x]/ f K[x]→ E,h + f K[x]→ h(a)

is ring isomorphism.

(b) If f is not constant, then there exists a finite field extension K ≤ E such that f has a root in E
and dimK E ≤ deg f .

(c) There exists a finite field extension K ≤ F such that f splits over and dimK F ≤ (deg f )!.

Proof. (a) By 4.1.7(b), f ∼ ma. Thus ker Φa = maK[x]. Also h(a) = Φa(h) and (a) follows from
Isomorphism Theorem of Rings.

(b) Let g be an irreducible divisor of f in K[x]. Put E = K[x]/gK[x]. Then E is a field For
h ∈ K[x] put h = h + gK[x] ∈ E. Note that the map h → h is a ring homomorphism. Put a = x.
We identify k ∈ K with k ∈ E. Then K is a subfield of E and (ai)

deg g−1
i=0 is a K basis for E. Thus

dimK E = deg g ≤ deg f . Let f = ∑n
i=0 kixi with ki ∈ K. Then

f (a) =
n

∑
i=0

kiai =
n

∑
i=0

kixi =
n

∑
i=0

kixi = f .

Since g ∣ f , f ∈ gK[x] and so f = 0E. Thus f (a) = 0E and a is a root of f in E.
(c) Let E be as in (b) and e a root of f in E. Then f = (x − e)g for some g ∈ E[x] with

deg g = deg f − 1. By induction on deg f there exists a field extension E ≤ F such that g splits over
F and dimE F ≤ (deg g)! = (deg f − 1)!. Then f splits over F and

dimK F = dimK E ⋅ dimE F ≤ (deg f − 1)! deg f = deg f !.

�

Example 4.1.12. Let f = x2 + 1 ∈ R[x]. Then f has no root in R and so is irreducible over R. Thus
E = R[x]/(x2 + 1)R[x] is a field. For h ∈ R[x] let h = h + f R[x] ∈ E. We also identify r ∈ R with r
in E. Put i = x. Then i is a root of f in E and so i2 + 1 = 0 and i2 = −1. Moreover 1, i is an R basis
for F. Let a,b, c,d ∈ R. Then (a + bi) + (c + di) = (a + b) + (c + d)i and

(a + bi)(c + di) = ac + bdi2 + (ad + bc)i = (ac − bd) + (ad + bc)i

Hence E is isomorphic the field C of complex numbers.
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Definition 4.1.13. Let K ≤ F be an extension. Then

A(K,F) = {b ∈ F ∣ b is algebraic over K}

Lemma 4.1.14. Let K ≤ F be an extension and A ⊆ F be a set of elements in F algebraic over K.

(a) If A is finite, K ≤ K[A] is a finite field extension

(b) K ≤ K[A] is an algebraic field extension.

(c) A(K,F) is a subfield of F.

Proof. (a) By induction on ∣A∣. If ∣A∣ = 0 , K[A] = K. So suppose A ≠ ∅ and let a ∈ A. Put
B = A∖ {a}. By induction K ≤ K[B] is finite field extension. As a is algebraic over K, a is algebraic
over K[B] (see 4.1.8) Thus by 4.1.2 K[B] ≤ K[B][a] is finite field extension. Hence by 4.1.6(b) also
K ≤ K[B][a] is finite. Since K[B][a] = K[A] we conclude that (a) holds.

(b) Let b ∈ K[A]. By 4.1.4(b), b ∈ K[B] for some finite B ⊆ A. By (a) K ≤ K[B] is finite and so
also algebraic (4.1.6(b)). So b is algebraic over K.

(c) Follows from (b) applied with A the set of all elements in F which are algebraic over K. �

Proposition 4.1.15. Let K ≤ E and E ≤ F be algebraic field extensions. Then K ≤ F is algebraic.

Proof. Let b ∈ F and m = mE
b . Let m = ∑n

i=0 eixi and A = {e0, e2 . . . , en}. Then A is a finite subset of
E.

Since K ≤ E is algebraic, 4.1.14 implies that K ≤ K[A] is finite. Also m ∈ K[A][x] and so b is
algebraic over K[A]. Hence (by 4.1.2) K[A] ≤ K[A][b] is finite. By 4.1.5c, K ≤ K[A][b] is finite
and so by 4.1.6 also algebraic. Thus b is algebraic over K. �

Proposition 4.1.16. Let K be a field and P a set of non constant polynomials over K. Then there
exists an algebraic extension K ≤ F such that each f ∈ P has a root in F.

Proof. Suppose first that P is finite. Put f =∏g∈P g. 4.1.11(c), there exists a finite extension E of K
such that f splits over E. Then each g ∈ P has a root in E.

In the general case, let R = K[XP] be the polynomial ring of P over K. Let I be the ideal in R
generated by f (x f ), f ∈ P.

Suppose for a contradiction that that I = R. Then 1 ∈ I and so 1 = ∑ f ∈P r f f (x f ) for some r ∈ RP.
Let Q = { f ∈ P ∣ r f ≠ 0}. Then

(∗) 1 = ∑
f ∈Q

r f f (x f )

Then by the finite case there exists a field extension K ≤ E such that each f ∈ Q has a root e f ∈ E.
For f ∈ P ∈ Q let e f ∈ E be arbitray.

Φ ∶ K[XP]→ E
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be the unique ring homomorphism with Φ(x f ) = e f for f ∈ P and Φ(k) = k for all k ∈ K. Since
f (x f ) = ∑n

i=0 kixi
f for some ki ∈ K we have Φ( f (x f )) = ∑n

i=0 kiei
f = f (e f ) = 0 for all f ∈ Q. So

applying Φ to (*) we get

1 = Φ(1) = ∑
f ∈Q

Φ(r f ) f (e f ) = 0

a contradiction.
Hence I ≠ R and by 2.4.18 I is contained in a maximal ideal M of R. Put F = R/M. Then by

2.4.21 F is a field. Since M ≠ R, M contains no units. Thus K ∩ M = 0. Thus the map K → F, k →
k + M is a 1-1 ring homomorphism. So we may view K as a subfield of F by identifying k with
k + M. Put a f = x f + M. Then f (a f ) = f (x f ) + M. But f (x f ) ∈ I ⊆ M and so f (a f ) = M = 0F. �

Lemma 4.1.17. Let K be a field. Then the following statements are equivalent.

(a) Every non-constant polynomial over K has a root in K.

(b) Every polynomial over K splits over K.

(c) Every irreducible polynomial in K[x] has degree one.

(d) K has no proper algebraic extension (that is if K ≤ F is an algebraic extension, then K = F.)

(e) K has no proper finite extension (that is if K ≤ F is a finite extension, then K = F.)

Proof. (a)Ô⇒ (b): Let f ∈ K[x]. If deg f = 0, f splits. So suppose deg f > 0. Then by (a), f has
root a ∈ K and so f = (x − a)g for some g ∈ K[x]. By induction on deg f , g splits over K and so also
f splits over K.

(b)Ô⇒ (c): Let f be irreducible. Since f is irreducible, f is neither 0 nor a unit. So deg f > 0.
If (b) holds, f splits over K and so is divisible by some x− a, a ∈ K. Since f is irreducible, f ∼ x− a
and so deg f = deg x − a = 1.

(c)Ô⇒ (d): Let K ≤ E be algebraic and e ∈ E. Since mK
e irreducible, (c) implies that mK

e has
degree 1. Since mK

e is monic this gives mK
e = x− a for some a ∈ K. Since e is a root of mK

e , e = a ∈ K.
Thus K = E.

(d)Ô⇒ (e): Just observe that by 4.1.6(a), every finite extension is algebraic.
(e) Ô⇒ (a): Let f ∈ K. By 4.1.11 f has a root a in some finite extension E of K. By

assumption E = K. So a ∈ K and (a) holds. �

Definition 4.1.18. Let K be a field.

(a) K is algebraically closed if K fulfills one ( and so all) of four equivalent statement in 4.1.17.

(b) An algebraic closure of K is a algebraically closed, algebraic extension of K.

Lemma 4.1.19. Let K ≤ E be an algebraic field extension. Then the following two statements are
equivalent.

(a) E is an algebraic closure of K.
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(b) Every polynomials over K splits over E.

Proof. If E is algebraic closed, every polynomial over E and so also every polynomial over K splits
over E. Thus (a) implies (b).

So suppose (a) holds. Let F be an algebraic extension of E. Let a ∈ F. Since K ≤ E and E ≤ K
are algebraic we conclude from 4.1.15 that K ≤ F is algebraic. Thus mK

a is not zero and has a as a
root. By assumption, mK

a splits over E and so a ∈ E. Thus E = F. Hence by 4.1.17 and definition, E
is algebraically closed. �

Theorem 4.1.20. Every field has an algebraic closure.

Proof. Let K be a field and P the set of non-constant polynomial in K[x]. Define

FK = {K[XP]/I ∣ I a maximal ideal in K[XP] with f (x f ) ∈ I for all f ∈ P}

By (the proof of) 4.1.16 if F ∈ FK then K ≤ F is a algebraic field extension and each non-zero
polynomial in K[x] has a root in F. By A.4.11 there exists family of fields (Ki)i∈N with K0 = K and
Ki+1 = FK. Let E = ⋃∞i=0 Ki. By A.6.6 E is a field. By 4.1.15 and induction each Ki is algebraic over
K0. So also K0 ≤ E is algebraic. Let f ∈ E[x]. Then f ∈ Ki[x] for some i. Hence f has a root in Ki+1
and so in E. Thus by 4.1.17 E is algebraically closed. �

Definition 4.1.21. Let K be a field and P a set of polynomials over K. A splitting field for P over K
is an extension E of K such that

(a) Each f ∈ P splits over E.

(b) E = K[A], where A ∶= {a ∈ E ∣ f (a) = 0 for some 0 ≠ f ∈ P}.

Corollary 4.1.22. Let K be a field and P a set of polynomials over K. Then there exists a splitting
field for P over K.

Proof. Let K be a algebraic closure for K, B ∶= {a ∈ K̄ ∣ f (a) = 0 for some f ∈ P} and put E = K[B].
Then E is a splitting field for P over K. �

Corollary 4.1.23. Let K ≤ F be a field extension. Then F is an algebraic closure of K if and only if
F is the splitting field of K[x] over K.

Proof. Suppose F is an algebraic closure of K. Then each f ∈ K[x] splits over K. Also K ≤ F is
algebraic and so each a ∈ F is a root of some noon-zero f ∈ K[x]. So F is the splitting field of K[x]
over F.

Now suppose that F is a splitting field of K[x] over K. Then 4.1.19 shows that F is an algebraic
closure of K. �
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4.2 Splitting fields, Normal Extensions and Separable Extensions

Lemma 4.2.1. Let φ ∶ K1 → K2 be a 1-1 homomorphism of fields. Then

(a) There exists a unique homomorphism φ̃ ∶ K1[x]→ K2[x] with φ̃(k) = φ(k) and φ̃(x) = x.

(b) φ̃ (∑∞
i=0 aixi) = ∑∞

i=0 φ(ai)xi for all ∑i=0 aixi ∈ K1[x]

(c) φ̃ is 1-1 and if φ is an isomorphism, φ̃ is an isomorphism.

We will usually just write φ̃ for φ.

Proof. (a) and (b) follow from 2.2.19. (c) is readily verified. �

Lemma 4.2.2. Let φ ∶ K1 → K2 be an isomorphism of fields and for i = 1 and 2 let Ki ≤ Ei be a field
extension. Let f1 ∈ K1[x] be irreducible and put f2 = φ( f1). Suppose ei is a root of fi in Ki. Then
there exists a unique isomorphism ψ ∶ K1[e1]→ K2[e2] with ψ ∣K1= φ and ψ(e1) = e2.

Proof. Using 4.1.11(a) we have the following three isomorphism:

K1[e1] ≅ K1[x]/ f1K1[x] ≅ K2[x]/ f2K2[x] ≅ K2[e2]

g(e1) → g + f1K1[x] → φ(g) + f2K2[x] → φ(g)(e2)

Let ψ be the composition of these three isomorphism. Then

ψ ∶ e1 → x + f1K1[x]→ x + f2K2[x]→ e2

and for k ∈ K1,
ψ ∶ k → k + f1K1[x]→ φ(k) + f2K2[x]→ φ(k)

This shows the existence of ψ. If ψ̃ is any such ring homomorphism then

ψ̃
⎛

⎝

deg f−1

∑
i=0

aiei
1
⎞

⎠
=

deg f−1

∑
i=0

φ(ai)ei
2

and so ψ is unique. �

Definition 4.2.3. Let K be a field and F and E extensions of K.

(a) A K-homomorphism from F to E is a K-linear ring homomorphism from F to E. K-isomorphisms
and K-automorphisms are defined similarly.

(b) AutF is the set of automorphism of F and AutKF is the set of K-automorphism of F.

(c) E is an intermediate field of the extension K ≤ F if K is a subfield of E and E is a subfield of F.

Lemma 4.2.4. Let F be a field, E an integral domain and φ ∶ F→ E a non-zero ring homomorphism.
Then φ is 1-1 and φ(1F) = 1E.
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Proof. Since φ is non-zero, kerφ ≠ 0. Since kerφ is an ideal and F has no proper ideals, kerφ = 0
and so φ is 1-1.

We have
φ(1F)φ(1F) = φ(1F 1F) = φ(1F) = 1Eφ(1F).

Since φ is 1-1, φ(1F) ≠ 0E . Since E is an integral domain the Cancellation Law implies
φ(1F) = 1E �

Lemma 4.2.5. Let K ≤ F and K ≤ E be field extensions and φ ∶ F → K a non-zero ring homomor-
phism. Then φ is K-linear if and only if φ ∣K= idK.

Proof. Let k ∈ K and a ∈ F. If φ is K-linear , then

φ(k) = φ(k1F) = kφ(1F) = k1E = k

and if φ ∣K= idK, then

φ(ka) = φ(k)φ(a) = kφ(a).

�

Lemma 4.2.6. Let K ≤ F be a field extension. Then Aut(F) is a subgroup of Sym(F) and AutK(F)

is a subgroup of Aut(F).

Proof. Readily verified. �

Lemma 4.2.7. Let K be a field field and P a set of polynomials. Let E1 and E2 be splitting fields for
P over K

(a) For i = 1,2 let Li be an intermediate field of K ≤ Ei and let δ ∶ L1 → L2 be a K-isomorphism.
Then there exists a K-isomorphism ψ ∶ E1 → E2 with ψ∣Li = δ.

(b) E1 and E2 are K-isomorphic.

(c) Let f ∈ K[x] be irreducible and suppose that, for i = 1 and 2, ei is a root of f in Ei. Then there
exists a K-isomorphism ψ ∶ E1 → E2 with ψ(e1) = ψ(e2).

(d) Let f ∈ K[x] be irreducible and let e and d be roots of f in E1. Then there exists ψ ∈ AutK(E1)

with ψ(e) = d.

(e) Any two algebraic closures of K are K-isomorphic.

Proof. LetM be the set of all K-linear isomorphism φ ∶ F1 → F2 where, for i = 1 and 2, Fi is an
intermediate field of K ≤ Ei. OrderM by (φ ∶ F1 → F2) ≤ (ψ ∶ L1 → L2) if F1 ⊆ L1 and ψ ∣F1= φ.
LetM∗ = {φ ∈M ∣ δ ≤ φ}. Since δ ∈M∗,M∗ is not empty.

It is easy to verify that ≤ is a partial ordering on M. Let C = {ψs ∶ Fs1 → Fs2 ∣ s ∈ S } be a
chain inM∗. Define Fi = ⋃s∈S Fsi and define φ ∶ F1 → F2 by φ(a) = φs(a) if s ∈ S with a ∈ Fs1.
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It is straightforward to verify that Fi is a field, φ is well-defined and φ is a isomorphism. Moreover,
φs ≤ φ for all s ∈ S and so φ is an upper bound for C.

Zorn’s Lemma A.3.8 implies thatM∗ has a maximal element φ ∶ F1 → F2. It remains to show
that Fi = Ei. For this put

Ai = {ei ∈ Ei ∣ f (ei) = 0 for some 0 ≠ f ∈ P}

By definition of a splitting field, Ei = K[Ai]. Since K ≤ Fi ≤ Ei we just need to show that Ai ⊆ Fi.
So let e1 ∈ A1 and 0 ≠ f ∈ P with f (e1) = 0. Let f1 be an irreducible divisor of f in F1[x]

with f1(e1) = 0. Put f2 = φ( f1). Since f1 divides f in F1[x], f2 divides φ( f ) in F2[x]. Since
f ∈ K[x] and φ is a K-homomorphism, φ( f ) = f . Thus f2 divides f in F2[x]. Since f splits over
E2, also f2 splits over E2 and so f2 has a root e2 ∈ E2. By 4.2.2 there exists a field isomorphism
ψ ∶ F1[e1] → F2[e2] with ψ∣F1 = φ. The maximality of φ implies F1 = F1[e1]. Thus e1 ∈ F1. So
A1 ⊆ F1 and F1 = E1. Hence F1 is a splitting field for P over K. Since φ is a K-isomorphism we
conclude that F2 is a splitting field for P = φ(P) over K. Since F2 ⊆ E2 this implies A2 ⊆ F2 and
F2 = E2.

(b) Apply (b) to δ = idK.
(c) By 4.2.2 there exists a K-linear isomorphisms δ ∶ K[e1] → K[e2] with δ(e1) = e2. By (a) δ

can be extended to an isomorphism ψ ∶ E1 → E2. So (a) holds.
(d) Follows from (c) with E2 = E1.
(e) By 4.1.23 an algebraic closure of K is a splitting field of K[x]. So (e) Follows from (b) with

P = K[x]. �

Definition 4.2.8. Let E ≤ F be field extension and H ≤ Aut(F).

(a) E is called H-stable if h(e) ∈ E for all h ∈ H, e ∈ E.1

(b) If E is H-stable, then HE ∶= {h∣E ∣ h ∈ H}.

(c) E ≤ F is called normal if E ≤ F is algebraic and each irreducible f ∈ E[x], which has a root in
F, splits over F.

Lemma 4.2.9. Let K ≤ E ≤ F be field extensions. If K ≤ F is normal, also E ≤ F is normal.

Proof. Let f ∈ E[x] be irreducible and suppose f has root b in F. Since K ≤ F is algebraic, mb
K ≠ 0.

By 4.1.8 mb
E divides mK

b in E[x]. Since f is irreducible, f ∼ mE
b in E[x] and so f divides mK

b . Since
K ≤ F is normal, mK

b splits over F and so also f splits over F. Thus E ≤ F is normal. �

Lemma 4.2.10. (a) Let K ≤ E ≤ F be field extensions and suppose that E is the splitting field for
some set P of polynomials over K. Then E is AutK(F) stable.

(b) Let K ≤ E ≤ F be field extensions and suppose that F is the splitting field for some set of
polynomials over K. If E is AutK(F)-stable, then E ≤ K is normal.

(c) K ≤ E is normal if and only if E is a splitting field of some set of polynomials over K.
1Since also h−1(E) ⊆ E, this is equivalent to h(E) = E for all h ∈ H
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(d) Let K ≤ E ≤ F be field extensions. Suppose K ≤ F is normal. Then K ≤ E is normal if and only if
E is AutK(F) stable.

Proof. (a) Let A = {e ∈ E ∣ f (e) = 0 for some 0 ≠ f ∈ P}. Let 0 ≠ f ∈ P , e a root of f in E and
φ ∈ AutK(F). Then φ(e) is a root of φ( f ) = f and as f splits over E, φ(e) ∈ E. Thus φ(A) ⊆ E.
By definition of a splitting field, E = K[A] and so φ(E) = φ(K)[φ(A)] = K[φ(A)] ≤ E. So E is
AutK(F)-stable.

(b) Let e ∈ E and f = mK
e . Let L be a splitting field for f over E and let d be a root of f in F. By

assumption F is the splitting field of some P ⊆ K[x] over F. Then L is the splitting field for P∪ { f}
over K and so by 4.2.7(d) there exists φ ∈ AutK(L) with φ(e) = d. By (a), F is AutK(L)-stable and
so φ ∣F∈ AutK(F). Since E is AutK(F)-stable this implies d = φ(e) = φ ∣F (e) ∈ E and so d ∈ E.
Hence f splits over E and K ≤ E is normal.

(c) Suppose first that K ≤ E is normal. Let P be the set of irreducible polynomials in K[x] with
roots in E. By definition of normal each f ∈ P splits over E. Also K ≤ E is algebraic and so if e ∈ E
is then e is the root of mK

e ∈ P. Thus E is the splitting field of P over K.

Suppose next that E is the splitting field for some of polynomials over K. Then E is AutK(E)-
stable and (b) applied with F = E shows that K ≤ E is normal.

(d) In view of (c), the forward direction of (d) follows from (a) and the backwards direction
from (b). �

Lemma 4.2.11. Let K ≤ E be an algebraic field extension. Then the following two statements are
equivalent:

(a) K ≤ E is normal.

(b) If E ≤ L is a field extension, e ∈ E and g is a monic divisors of mK
e in E[x], then g ∈ E[x].

Proof. (a)Ô⇒ (b): Since K ≤ E is normal, mK
e splits over E and so

mK
e = (x − e1)(x − e2) . . . (x − en)

for some e1, . . . en ∈ E. Since g is monic and divides mK
e we get

g = (x − ei1)(x − ei2) . . . (x − eik)

for some 1 ≤ i1 < . . . < ik ≤ n and so g ∈ E[x].

(b)Ô⇒ (a): Let f be an irreducible polynomial in K[x] with a root e ∈ E. Then f = kmK
e for

some k ∈ K. Let L be a splitting field for f over E and let a be a root of f in L. Then a is also a root
of mK

e and thus x − a divides mK
e in L[x]. Hence (b) implies x − a ∈ E[x] and so a ∈ E. Thus f splits

over E and K ≤ E is normal. �

Lemma 4.2.12. Let K ≤ L be an algebraic field extension and E and F intermediate fields of K ≤ L.
Suppose that K ≤ E is normal, then mF

b = mF∩E
b for all b ∈ E.
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Proof. Let By 4.1.8, mF
e divides mK

3 in L[x] As K ≤ E is normal 4.2.11 shows that mF
e ∈ E[x]. Hence

mF
e ∈ (E ∩ F)[x]. Since mF

e is irreducible in F[x] it is also irreducible in (E ∩ F)[x]. Since mF
e is

monic and has b as a root we conclude from 4.1.7(c) that mF
e = mF∩E

b . �

Definition 4.2.13. Let K be a field, k ∈ N and f = ∑n
i=0 fixi ∈ K[x].

(a) Let E a splitting field of f over K and e a root of f in E. Let m ∈ N be maximal such that (x−e)m

divides f in E[x] (with m =∞ if f = 0). Then m is called the multiplicity of e as a root of f . If
m > 1, then e is called a multiple root of f .

(b) f [k] ∶= ∑n
i=k (

i
k) fixi−k is called the k-th derivation of f . 2

(c) f ′ ∶= f [1] is called the derivative of f .

Lemma 4.2.14. Let K be a field and f ,g ∈ K[x] and k ∈ N.

(a) The function
K[x]→ K[x], f → f [k]

is K-linear.

(b) ( f g)[k] = ∑k
i=0 f [i]g[k−i].

(c) Let a ∈ K. Then ( f (x + a))[k] = f [k](x + a).

(d) ( f k)′ = k f k−1 f ′.

Proof. (a) is obvious.

(b) By (a) we may assume that f = xm and g = xn We compute

(xmxn)[k] = (xm+n)[k] = (
m + n

k
)xm+n−k

and

∑
i+ j=k

(xm)[i](xn)[ j] = ∑
i+ j=k

(
m
i
)xm−i(

n
j
)xn− j =

⎛

⎝
∑

i+ j=k
(

m
i
)(

n
j
)
⎞

⎠
xn+m−k

Let A and B be disjoint set of size m and n respectively. Then a subsets of size k of A ∪ B
intersects A in i-elements and B in j elements. It follows that

∑
i+ j=k

(
m
i
)(

n
j
) = (

n +m
k

)

and so (c) holds.

(c) Define Φ ∶ K[x] → K[x], f → f (x + a) and observe that Φ is a K-linear homomorphism. It
follows that

2Note that k! f [k] is the k-th derivative of f
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A ∶= { f ∈ K[x] ∣ Φ( f [k]) = Φ( f )[k] for all k ∈ N}

is a K-subspace of K[x]. We claim that A is closed under multiplication. Indeed let f ,g ∈ A. Then
by (b)

Φ (( f g)[k])= Φ
⎛

⎝
∑

i+ j=l
f [i]g[ j]⎞

⎠
= ∑

i+ j=k
Φ ( f [i])Φ (g[ j]) = ∑

i+ j=k
Φ( f )[i]Φ(g)[ j]

= (Φ( f )Φ(g))
[k]

= Φ( f g)[k]

So f g ∈ A. Hence A is closed under multiplication and so subring of F[x].
If k ≥ 2, then both x[k] and (x + a)[k] are equal to 0. Also x[1] = 1 = (x + a)[1] and 1[k] = 0 for

all k ≥ 1. Thus both 1 and x are in A and since A is a subring and K-subspace of F[x], F[x] = A.

(d) By (b), ( f g)′ = f ′g + f g′ and so by induction on k:

( f f k)′ = f ′ f k + f ( f k)′ = f ′ f k + f (k f k−1 f ′) = (k + 1) f k f ′

�

Lemma 4.2.15. Let K be a field, f ∈ K[x] and c ∈ K.

(a) Suppose that f = g ⋅ (x − c)k for some k ∈ N and g ∈ K[x]. Then f [k](c) = g(c).

(b) Let m ∈ N. Then (x − c)m divides f in K[x] if and only if f [i](c) = 0 for all 0 ≤ i < m.

(c) The multiplicity of c as a root of f is smallest m ∈ N with f [m](c) ≠ 0.

(d) c is a multiple root of f if and only if f ′(c) = 0 = f (c).

Proof. (a) We compute

f [k] = (g⋅(x−c)k)[k] =
k

∑
i=0

g[i] ⋅((x−c)k)[k−i] =
k

∑
i=0

g[i] ⋅(
k

i − k
)(x−c)i = g+(x−c)

k

∑
i=1

(
k
i
)g[i](x−c)i−1

and so f [k](c) = g(c).

(b) This is certainly true for m = 0. Suppose its true for m and that (x − c)m divides f in K[x]
(or equally well that f [i](c) = 0 for all 0 ≤ i < m.) Then f = g ⋅ (x− c)m for some g ∈ K[x]. Note that
(x − c)m+1 divides f if and only if x − c divides g and so if and only if g(c) = 0. By (a) this holds if
and only of f [m+1](c) = 0. Thus (b) holds for m + 1 and so for all m ∈ N.

(c) and (b) follow from (d). �
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Example 4.2.16. Consider the polynomial f = xp in Zp[x]. Then 0 is a root of multiplicity p of f .
Also f [k] = (p

k)xp−k and so 0 is root of f [k] for all 0 ≤ k < p. Finally f [p] = (p
p)x0 = 1 and so 0 is not

a root of f [p].
Note that for any g ∈ Zp[x] the p-derivative of g is p!g[p] = 0 since p = 0 in Zp. So higher

derivatives cannot be used to compute the multiplicity of a root in fields of positive characteristic.

Definition 4.2.17. Let K ≤ F be a field extension.

(a) An irreducible polynomial f ∈ K[x] is called separable over K if f has no multiple roots (in a
splitting field of f ). An arbitrary polynomial in K[x] is called separable over K if f = 0 or all
irreducible divisors of f in F[x] are separable over K.

(b) b ∈ F is called separable over K, if b is algebraic over K and mK
b is separable over K.

(c) K ≤ F is called separable if each b ∈ F is separable over K.

Lemma 4.2.18. Let K be a field, K an algebraic closure of K and suppose that char K = p with
p ≠ 0.

(a) For each n ∈ Z+, the map FrobK
pn ∶ K→ K, k → kpn

is a 1-1 ring homomorphism.

(b) For each b ∈ K and n ∈ Z+ there exists a unique d ∈ K̄ with dpn
= b. We will write bp−n

for d.

(c) For each n ∈ Z+, FrobK
pn ∶ K→ K, k → kpn

is a field automorphism.

(d) For each n ∈ Z, the map FrobK
pn ∶ K→ K, k → kpn

is a 1-1 ring homomorphism.

(e) If f ∈ K[x] and n ∈ N, then f pn
= Frobpn( f )(xpn

).

Proof. (a) Clearly (ab)p = apbp. Note that p divides (p
i) for all 1 ≤ i < p. So by the Binomial

Theorem (a+b)p = ap +bp. Hence Frobp is a ring homomorphism. If a ∈ K with ap = 0, then a = 0.
So ker Frobp = 0 and Frobp is 1-1. Since Frobpn = Frobn

p, (a) holds.
(b) Let d be a root of xpn

− b = 0. Then dpn
= b. The uniqueness follows from (a).

(c) Let n ∈ N. Note that FrobK
p−n is an inverse of Frobκpn . Thus (c) follows from (a).

(d) Follows from (c).
(e) Let f = ∑aixi. Then Frobpn( f ) = ∑apn

i xi and so

Frobpn( f )(xpn
) =∑apn

i xpni = (∑aixi)
pn

= f pn

�

Example 4.2.19. Let K = Zp(x), the field of fractions of the polynomial ring Zp[x]. If a ∈ Zp, then
ap = a. (Indeed since (Z♯

p, ⋅) is a group of order p − 1, ap−1 = 1 for all a ∈ Z♯
p. Thus ap = a). It

follows that f p = f (xp) for all f ∈ Zp[x]. Hence

Frobp(K) = {
f (xp)

g(xp)
∣ f ,g ∈ Zp[x],g ≠ 0} = Zp(xp)
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So Zp(xp) is a proper subfield of Zp(x) isomorphic to Zp(x).
Let K be an algebraic closure of K. Consider the polynomial ring K[t] over K in the indetermi-

nate t and f = tp − x ∈ K[t]. We claim that f is irreducible. Note that x
1
p is a root of f in K and

f = (t − x
1
p )p. Let g be a non-constant monic polynomial in K[x] dividing f . Then g = (t − x

1
p )k

for some 1 ≤ k ≤ p. Then x
k
p = ±g(0) ∈ K and so k = p. Thus f is irreducible. Since x

1
p is a root of

multiplicity p of f , f is not separable over K.

Lemma 4.2.20. Let K ≤ F be a field extension such that p ∶= char K ≠ 0 and b ∈ F. Suppose that
bpn

∈ K for some n ∈ N. Then

(a) b is the only root of mK
b (in any splitting field of mK

b ).

(b) If b is separable over K, b ∈ K.

(c) dpn
∈ K for all d ∈ K[b].

Proof. Put q = pn.
(a) Note that b is a root of xq − bq, so by 4.1.7 mK

b divides xq − bq = (x − b)q. Thus (a) holds.
(b) If mK

b is separable, we conclude from (a) that mK
b = x − b. Thus b ∈ K.

(c) Let φ = Frobq. Then {dq ∣ d ∈ K[b]} = φ([K[b]) = φ(K)[φ(b)] ≤ K[bq] ≤ K. �

Lemma 4.2.21. Let K ≤ E ≤ F be field extensions and b ∈ F. If b ∈ F is separable over K, then b is
separable over E

Proof. By 4.1.8 mE
b divides mK

b . As b is separable over K, mK
b has no multiple roots. So also mE

b has
no multiple roots and b is separable over E. �

Lemma 4.2.22. Let K be a field and let f ∈ K[x] be irreducible.

(a) f is separable if and only if f ′ ≠ 0.

(b) If char K = 0, all polynomials over K are separable.

Proof. (a) Let b be a root of f in splitting field of f over K. By 4.2.15(c) b is a multiple root of f if
and only if f ′(b) = 0. Since f is irreducible, f ∼ mK

b . So b is a root of f ′ if and only if f divides f ′.
As deg f ′ < deg f this the case if and only if f ′ = 0.

(b) Note that f is constant. Since char K = 0 we conclude that f ′ ≠ 0. So (b) follows from
(a) �

Lemma 4.2.23. Let K be a field and f ∈ K[x] monic and irreducible. Suppose p ∶= char K ≠ 0 and
let b1,b2, . . .bd be the distinct roots of f in an algebraic closure K of K. Let b be any root of f . Then
there exist an irreducible separable polynomial g ∈ K[x], n ∈ N and a polynomial h ∈ Frobp−n(K)[x]
such that

(a) g = Frobpn(h).
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(b) f = g(xpn
) = hpn

.

(c) g = (x − bpn

1 )(x − bpn

2 ) . . . (x − bpn

d ).

(d) h = (x − b1)(x − b2) . . . (x − bd) ∈ K[b1, . . . ,bd][x].

(e) f = (x − b1)
pn
(x − b2)

pn
. . . (x − bd)

pn
.

(f) f is separable over K if and only if n = 0.

(g) dimK[bpn
] K[b] = pn.

(h) b is separable over K if and only if K[b] = K[bp].

(i) bpn
is separable over K.

Proof. We will first show that f = g(xpn
) for some irreducible and separable g ∈ K[x] and n ∈ N. If

f is separable, this is true with g = f and n = 0. So suppose f is not separable. By 4.2.22(a) f ′ = 0.
Let m = deg f . Then f = ∑m

i=0 fixi and 0 = f ′ = ∑m
i=0 iaixi−1. Hence iai = 0 for all 0 ≤ i ≤ m and so p

divides i for all 0 ≤ i ≤ m with ai ≠ 0. In particular, m = pl for some l ∈ N. Put f̃ = ∑l
i=0 apixi. Then

f̃ (xp) = ∑l
i=0 apixpi = f . If f̃ = st for some s ∈ K[x], then f = s(xp)t(xp). Since f is irreducible we

conclude that f̃ is irreducible. By induction on deg f , f̃ = g(xpñ
) for some ñ ∈ N and an irreducible

and separable g ∈ K[x]. Put n = ñ + 1, then f = g(xpn
).

(a): Put h = Frobp−n(g) ∈ K̄[x]. Then g = Frobpn(h) and so (a) holds.

(b): By 4.2.18(e), hpn
= g(xpn

) = f . Let b ∈ K. Then b is a root of f if and only if bpn
is a root

of g. So {bpn

1 , . . . ,b
pn

d } is the set of roots of g. As Frobpn is one to one, the bpn
i are pairwise distinct.

Since g is separable, g =∏{x − e ∣ e a root of g} and so (b) holds.

(c): Since h = Frobp−n(g) follows from (b).

(d) By (b) f = hpn
and so (d) implies (e).

(f) follows from (e)

(g) Note that g is the minimal polynomial of bpn
over K, f is the minimal polynomial of b over

K and deg f = pn deg g. Thus

dimK[bpn
] K[b] =

dimK K[b]
dimK K[bpn

]
=

deg f
deg g

= pn

(h) Suppose b is not separable. Then n > 0 and bp is a root of g(xpn−1
). So dimK K[bp] ≤ pn−1

and K[b] ≠ K[bp].
Suppose that b is separable over. Then by 4.2.21 b is separable over K[bp]. So by 4.2.20,

b ∈ K[bp]. Thus K[b] = K[bp].
(i) follows since bpn

i is a root of the separable g. �

Definition 4.2.24. Let K ≤ F be a field extension
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(a) Let b ∈ F. Then b is purely inseparable over K if b is algebraic over K and b is the only root of
mK

b in a splitting field of mK
b .

(b) K ≤ F is called purely inseparable if all elements in F are purely inseparable over K.

(c) S = S(K,F) is the set of the elements in F which are separable over K.

(d) P = P(K,F) is the set of the elements in F which are purely inseparable over K.

Lemma 4.2.25. Any purely inseparable extension is normal

Proof. Let K ≤ F be an purely inseparable extension and b ∈ F. Then b is the only root of mK
β and

so mK
β splits over F. �

Lemma 4.2.26. Let K ≤ F be an algebraic field extension. Let p = char K. Put S = S(K,F) and
P = P(K,F).

(a) Let b ∈ K. If p = 0, then b is purely inseparable over K if and only b ∈ K. If p > 0 then b is
purely inseparable over K if and only if bpn

∈ K for some n ∈ N

(b) K ∩ P = S.

(c) If K ≤ F is separable and purely inseparable, then K = F.

(d) K ≤ F is purely inseparable if and only if K = S.

(e) P is a subfield of F.

(f) If K ≤ F is normal, then P ≤ F is separable.

(g) If b ∈ F is separable over K, then mP
b = mK

b .

(h) P ≤ FixFAutK(F) with equality if K ≤ F is normal.

Proof. Let b ∈ F and put f ∶= mK
b . If p > 0, then by 4.2.23 f = g(xpn

) with g ∈ K[x] irreducible and
separable. Moreover, if b1,b2, . . . ,bk are the distinct roots of f in an algebraic closure F of F, then
g = (x− bq

1)(x− bq
2) . . . (x− bq

k), where q = pn. If p = 0, then f is separable. So the same statements
holds with g = f and q = 1.

(a) If p = 0 and b ∈ K, then b is only root of x − b. If p > 0 and bpm
∈ K for some m ∈ K, then by

4.2.20(a), b is the only root of f . In either case b is purely inseparable over K.
Suppose b is purely inseparable over K. Then b is the only root of f . Then k = 1 and g = x − bq.

Since g ∈ K[x], bq ∈ K So (a) holds.

(c) Suppose b is separable and purely inseparable over F. Thus b is the only root of f and f has
no multiple root. Hence f = x − b and b ∈ K.

(b) follows from (c).
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(d) Suppose first that K = S. Note that bq is a root of the separable polynomial g and so
bq ∈ S = K. Thus by (a) , b is purely inseparable over K

Suppose K ≤ F is purely inseparable, then F = P and so S = S ∩ P = K.

(e) Let F be an algebraic closure of F. Then by (a)

P = F ∩ ⋃
n∈N

FrobF
p−n(K)

and so P is subfield of F.

(f) Since b is a root of f ∈ F and K ≤ F is normal, f splits over F. So the distinct roots b1, . . .bk of
f all are contained in F. Put h = Frob 1

q
(g). By 4.2.23(d) hq = f and h = (x−b1)(x−b2) . . . (x−bk).

Thus h splits over F and h ∈ F[x]. Also Frobq(h) = g ∈ K[x] and so dq ∈ K for each coefficient d of
f . Thus by (a) d ∈ P and hence h ∈ P[x]. Since h has no multiple roots and h(b) = 0 we conclude
that h is separable over P. Hence also b is separable over P.

(g) By 4.2.25, K ≤ P is normal. Since b ∈ S, 4.2.12 gives mP
b = mP∩S

b . By (b) S ∩ P = K and so
mP

b = mK
b .

(h) Let b ∈ P and φ ∈ AutK(F). Then φ(b) is a root of φ( f ) = f and since b ∈ P, b is the only
root of f . Thus φ(b) = b and b ∈ FixFAutK(F)

Suppose that K ≤ F is normal and b ∈ FixFAutK(F)). Since K ≤ F is normal, f splits over K. Let
b̃ be a root of f in F. Since K ≤ F is normal 4.2.10(c) implies that F is a splitting field over K of some
set of polynomials. Thus by 4.2.7(d) there exists φ ∈ AutKF with φ(b) = b̃. Since b ∈ FixF(AutKF)

we conclude that b̃ = b. Thus b is the only root of f in F and so b ∈ P. �

Lemma 4.2.27. Let K ≤ E ≤ F be field extensions and suppose that K ≤ E is purely inseparable.
Then K ≤ F is normal if and only if E ≤ F is normal.

Proof. If K ≤ F is normal, 4.2.9 shows that E ≤ F is normal.

So suppose that E ≤ F is normal. If char K = 0, then K = E. So suppose char K = p > 0. Let b ∈ E
and put f = mE

b . Since K ≤ E is purely inseparable, 4.2.26(a) shows that there exists n ∈ N with
f pm

i ∈ K for all coefficients fi of f . Hence f pn
= (Frobpn f )(xpn

) ∈ K[x]. Since b is a root of f pn
we

conclude that mK
b divides f pn

in K[x]. Since E ≤ F is normal, f splits over F. Hence also f pn
and

mK
b split over F. Thus K ≤ F is normal. �

Lemma 4.2.28. Let K ≤ F be a field extension and S = S(K,F).

(a) Let E an intermediate field of K ≤ F. Then K ≤ F is separable if and only K ≤ E and E ≤ F are
separable.

(b) K ≤ F is separable if and only if F = K[S ] for some S ⊆ S.

(c) S is an intermediate field of K ≤ F.
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Proof. Put p ∶= char K. If p = 0 then by 4.2.22(a)ll algebraic extensions are separable. Hence K ≤ F
is separable if and only if K ≤ F is algebraic. So 4.1.14 and 4.1.15 show that (a)-(c) hold. a.

So suppose p > 0. Before proving (a) and (b) we prove

(*) Let K ≤ L be a field extension, I ⊂ L and b ∈ L. If all elements in I are separable over K
and b is separable over K[I], then b is separable over K.

Let s = mK(I)
b . By 4.1.4 K(I) = ⋃{K(J) ∣ J ⊆ I, J finite}. Hence there exists a finite subset J of

I with s ∈ K[J][x]. So b is separable over K[J]. We know proceed by induction on ∣J∣. If J = ∅,
b is separable over K and (∗) holds. So suppose J ≠ ∅ and let a ∈ J. Then b is separable over
K[a][J − a] and so by induction b is separable over K[a]. Hence by 4.2.23(h), K[a][b] = K[a]bp].
Let E = K[bp]. Then b ∈ K[a][b] = K[a][bp] = E[a] and so

E[b] ≤ E[a] = E[b][a]

Since a is separable over K, 4.2.21 shows that a is separable over E. Put P = P(E,F). Then
4.2.26(g) mE

a = mP
b . Since bp ∈ E, 4.2.26(a) shows that b ∈ P. By 4.2.26(e), P is a subfield of F

and so E ≤ E[b] ≤ P. Thus mE[b]
α divides mE

a , and mP
a divides mE[b]

a . Since mE
a = mP

b this gives
mE

a = mE[b]
a and

dimE E[a] = deg mE
a = deg mE[b]

a = dimE[b] E[b][a] = dimE[b] E[a]

Since dimE E[a] = dimE E[b] ⋅ dim E[b]E[a] this implies, dimE E[b] = 1 and E[b] = E. Thus So
K[b] = K[bp][b] = E[b] = E = K[bp] and by 4.2.23(h), b is separable over K.

(a) Suppose that K ≤ E and E ≤ F. are separable. Let b ∈ F and let I = E. Then by (*), b is
separable over K. So K ≤ F is separable.

Conversely suppose K ≤ F is separable. Then clearly K ≤ E is separable. By 4.2.21 also E ≤ F
is separable.

(b) If K ≤ F is separable, then F = K[S ] with S = F. So suppose F = K[S ] with all elements in
S separable over K. Let b ∈ F = K[S ]. Then b is separable over K[S ] and so by (*), b is separable
over K. Thus K ≤ F is separable.

(c) By (b) K ≤ K[S] is separable. Thus K[S] = S and (c) holds. �

Lemma 4.2.29. Let K ≤ F be an algebraic field extension with intermediate fields E and F. Then
⟨EL⟩ is a subfield of F.

Proof. Since F is commutative,

⟨EL⟩⟨EL⟩ = ⟨ELEL⟩ = ⟨EELL⟩ ≤ ⟨EL⟩

and so ⟨EL⟩ is a subring of F. Let 0 ≠ a ∈ ⟨EL⟩. Since K ≤ F is algebraic and K ≤ ⟨EL⟩,
a−1 ∈ K[a] ≤ ⟨EL⟩ for all 0 ≠ a ∈ EL. Thus ⟨EL⟩ is a subfield of F. �

Lemma 4.2.30. Let K ≤ E ≤≤ F be field extensions. Then K ≤ F is purely inseparable if and only if
K ≤ E and E ≤ F are purely inseparable.
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Proof. We may assume that p = char K > 0. Let b ∈ F.
Suppose K ≤ F is purely inseparable. Then also K ≤ E is purely inseparable. Since mK

b has only
one root and since mE

b divides mKb, mb
E has only one root. Thus b is purely inseparable over E.

Suppose that K ≤ E and E ≤ F are purely inseparable. Then by 4.2.26(a) bpm
∈ E and then

(bpm
)n ∈ K for some m,n ∈ N. Thus bpn+m

∈ K and K ≤ F is purely inseparable. �

Lemma 4.2.31. Let K ≤ F be an algebraic field extension. Put P = P(K,F) and S = S(K,F).

(a) S ≤ F is purely inseparable.

(b) If K ≤ F is normal, then F = ⟨SP⟩.

Proof. (a) Let b ∈ F. By 4.2.23(i),bpn
is separable over K for some n ∈ N. Thus bpn

∈ S and so by
4.2.26(a)m b is purely inseparable over S.

(b) By 4.2.29 ⟨SP⟩ is a subfield of F. By (a) S ≤ F and so by 4.2.30 also ⟨SP⟩ ≤ F is purely
inseparable. Since K ≤ F is normal,4.2.26(f) implies that S ≤ F and so also SP ≤ F is separable.
4.2.26(b) applied with K = ⟨SP⟩ now shows that F = ⟨SP⟩. �

Example 4.2.32. Construct a purely inseparable field extension E ≤ F such that dimE F is an
arbitrary infinite cardinality.

Let K be a field with char K = p ≠ 0, I an arbitrary set and F = K(XI), the field of fractions of
the polynomial ring K[XI]. Put

E = K(xp
i ∣ i ∈ I)

Then xi ∈ FrobF
p−1(E) and so F ≤ FrobF

p−1(E), that is ap ∈ E for all a ∈ F. In particular, E ≤ F is
purely inseparable over E. Recall that NI = ⊕i∈I N and for n ∈ NI , xn = ∏i∈I xni

i . Also (xn)n∈NI is a
K-basis for K[XI]. Put R = {i ∈ N ∣ r < p}. We will show We will show that

(∗) (xr)r∈RI is an E − for basis for F

Let n = (ni)i∈I ∈ NI . For i ∈ I choose qi, ri ∈ N with ni = pqi + ri and 0 ≤ ri < p. Put

q = (qi)i∈I , pq = (pqi)i∈I and r = (ri)i∈I

Then q ∈ NI and r ∈ RI are unique with respect to n = pq + r. Put W = ⟨xr ∣ r ∈ RI⟩E. Since
xpq = (xq)p ∈ E we get

xn = xpq+r = xpqxr ∈ W

Thus also

K[XI] = ⟨xn ∣ n ∈ NI⟩K ≤ W

Let f ∈ F. Then f = g
h with f ,g ∈ R, g ≠ 0. Then
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f
g
= (

1
g
)

p

f gp−1

Since (1
g)

p
∈ E and f gp−1 ∈ K[XI] ∈ W we get f ∈ W and so W = F.

Thus (xr)r∈RI is spans F as E-space. To show that (xr)r∈RI is linearly independent, let e ∈ ERI

with

∑
r∈RI

er xr = 0

W e need to show that e = 0. Put S = K[xp
i ∣ i ∈ I]. Then er =

gr
hr

for some gr,hr ∈ S with hr ≠ 0.
We need to show that e = 0. Multiplying with ∏r∈RI

er≠0
hr we may assume that er ∈ S for all r ∈ RI . So

er = ∑q∈NI
krqxpq for some kr = (krq)q∈NI ∈ KNI . Thus

∑
r∈RI

∑
q∈NI

kqr xpq+r = 0

As observed above each n ∈ N can by uniquely written as pq + r with q ∈ J and r ∈ Jp. Thus the
linear independence of the (xn)n∈NI over K shows that

kqr = 0

for all q ∈ NI and r ∈ RI . Hence also er = 0 = and so (xr)r∈RI is linearly independent over E and so a
basis of F over E. In particular, dimE F = ∣RI ∣ and thus

dimE F =

⎧⎪⎪
⎨
⎪⎪⎩

p∣I∣ if ∣I∣ finite
∣I∣ if ∣I∣ infinite

Example 4.2.33. Construct a field extension K ≤ F such that P(K,F) = K and S(K,F) ≠ F. So
4.2.26(g) and 4.2.31(b) may be false if K ≤ F is not normal.

Let F4 be a splitting field for x2 + x + 1 over Z2 and a a root of x2 + x + 1 in F4. Then a ≠ 0,1
and so F4 ≠ Z2 and x2 + x + 1 is irreducible over Z2, Since (x2 + x + 1)′ = 2x + 1 = 1 ≠ 0, x2 + x + 1
is separable and so a is separable over Z2.

Let y and z be indeterminates over F4. Put E = F4(y, z), K = Z2(y2, z2), S = F4(y2, z2) and
P = F2(y, z). Note that S = K[a] and E = P[a]. Since a is separable over Z2, α is also separable
over K and P and so K ≤ S and P ≤ E are separable. separable.

By 4.2.32 applied with K = F4:
S ≤ E is purely inseparable, d2 ∈ S for all d ∈ E and

(1, y, z, yz) is a S-basis for E

and applied with K = F2:
K ≤ P is purely inseparable, d2 ∈ K for all d ∈ P and
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(1, y, z, yz) is a K-basis for P

It follows that S ≤ S(K,E) and P ≤ P(K,E) are both separable and purely inseparable. Thus
S = S(K,E) and P = P(K,E)

Put b = y + az. Then b ∉ S and b2 ∈ S. Thus x2 − b2 is the minimal polynomial of b over S. Put
F = S[b]. Then (1,b) is an S basis for F. Let d ∈ F∩P. Then there exists s, t ∈ S and k1, k2, k3, k4 ∈ K
with

s + ty + taz = s + tb = d = k1 + k2y + k3z + k4yz

Since {1, y, z, yz} is linearly independent over S we conclude that s = k1, t = k2, at = k3 and
0 = k4. So s, t and at are in K. If t ≠ 0 we get a = att−1 ∈ K, a contradiction. Thus t = 0 and d = s ∈ K.
Thus F ∩ P = K. Hence

P(K,F) = F ∩ P = K and S(K,F) = F ∩ S = S ≠ F

4.3 Galois Theory

Hypothesis 4.3.1. Throughout this section F is a field and G ≤ Aut(F).

Definition 4.3.2. Let H ≤ G and E a subfield of F.

(a) FH ∶= FixF(H).

(b) GE ∶= G ∩AutE(F).

(c) We say that H is (G,F)-closed (or that H is closed in G with respect to F) if H = GFH.

(d) E is (G,F)-closed (or that E is closed in F with respect to G) if E = FGE.

(e) ”closed” means (G,F)-closed.

(f) Stable means G-stable.

Lemma 4.3.3. Let T ≤ H ≤ G and L ≤ E ≤ F. Then

(a) FH is a subfield of F containing FG

(b) GE is a subgroup of G

(c) FH ≤ FT.

(d) GE ≤ GL.

(e) H ≤ GFH

(f) E ≤ FGE.

(g) FH is closed.

(h) GE is closed.

Proof. (a) and (b) are obvious. The remaining statements follow from A.1.13 applied to the relation
{(g,m) ∈ G × M ∣ g(m) = m}.

�
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Proposition 4.3.4. F induces an inclusion reversing bijection between the closed subgroups of G
and the closed subfields of F. The inverse is induced by G.

Proof. By 4.3.3 all closed subsets of G are subgroups and all closed subsets of F are subfields. The
proposition now follows from A.1.13(f). �

Lemma 4.3.5. Let H ≤ T ≤ G with T/H finite. Then dimFT FH ≤ ∣T/H∣.

Proof. Let k ∈ FH and W = tH ∈ T/H. Define W(k) ∶= t(k). Since (th)(k) = t(h(k)) = t(k) for all
h ∈ H, this is well defined. Define

Φ ∶ FH → FT/H , k → (W(k))W∈T/H

Let L ⊆ FH be a basis for FH over FT . We claim that (Φ(l))l∈L is linear independent in FT/H

over F. Otherwise choose I ⊆ L minimal such that (Φ(i))i∈I is linear dependent over F. Then ∣I∣ is
finite and there exists 0 ≠ ki ∈ F, with

(∗) ∑
i∈I

kiΦ(i) = 0.

Fix b ∈ I. Dividing by kb we may assume that kb = 1.
Note that (*) means

(∗∗) ∑
i∈I

kiW(i) = 0, for all W ∈ T/H.

Let s ∈ T . Then for W = tH ∈ T/H and i ∈ I,

s(W(i)) = s(t(i)) = (st)(i) = (stH)(i) = (sW)(i)

Thus applying s to (∗∗) we obtain.

∑
i∈I

s(ki)(sW)(i) = 0, for all W ∈ T/H.

As every W ∈ T/H is of the form sW ′ for some W ′ ∈ T/H, (namely W ′ = s−1W) we get

(∗ ∗ ∗) ∑
i∈I

s(ki)W(i) = 0, for all W ∈ T/H.

Subtracting (**) form (***) we conclude:

∑
i∈I

(s(ki) − ki)W(i) = 0, for all W ∈ T/H.

and so



4.3. GALOIS THEORY 259

∑
i∈I

(s(ki) − ki)Φ(i) = 0.

The coefficient of Φ(b) in this equation is s(1) − 1 = 0. The minimality of ∣I∣ now implies
that s(ki) − ki = 0 for all s ∈ T and i ∈ I. Thus s(ki) = ki and ki ∈ FT for all i ∈ I. Note that
H(i) = idF(i) = i for all i ∈ I. So using W = H in (**) we get ∑i∈I kii = 0, a contradiction to the
linear independence of L over FT .

This contradiction proves that (Φ(l))l∈L is linear independent in FT/H over F. hence

dimFT FH = ∣L∣ ≤ dimF FT/H = ∣T/H∣

So the theorem is proved. �

Note that last equality in the last equation is the only place where we used that ∣T/H∣ is finite.

Lemma 4.3.6. Let b ∈ F and H ≤ G.

(a) b is algebraic over FH if and only if Hb ∶= {φ(b) ∣ φ ∈ H} is finite.

(b) Suppose that b is algebraic over FH and let mb be the minimal polynomial of b over FH. Then

(a) mb =∏e∈Hb x − e.

(b) mb is separable and b is separable over FH.

(c) mb splits over F.

(d) Put Hb ∶= {φ ∈ H ∣ φ(b) = b}. Then

∣H/Hb∣ = deg mb = ∣Hb∣ = dimFH(FH)[b]

Proof. Put mb = mFH
b and, if Hb is finite, f =∏e∈Hb x − e.

(a) Suppose that b is algebraic over FH. Then mb ≠ 0. Let φ ∈ H. Then φ(b) is a root of
φ(mb) = mb. Since mb has only finitely many roots, Hb is finite. Note also that f divides mb in this
case.

Suppose next that Hb is finite. Since the map Hb → Hb, e → φ(e) is a bijection with inverse
e→ φ−1(e),

φ( f ) = ∏
e∈Hb

x − φ(e) = ∏
e∈Hb

x − e = f .

Hence all coefficient of f are fixed by φ and so f ∈ (FH)[x]. Clearly b is a root of f . Thus b is
algebraic over FH. Note also that mb divides f in this case.

(b) Suppose now that b is algebraic over FH. Then Hb is finite. As seen above mb divides f
and f divides mb. Since both f and mb are monic f = mb and so (b:a) hold. Since f is no multiple
roots, f is separable and so (b:b) is proved. Since f splits over F, (b:c) holds.

By 1.7.20 ∣H/Hb∣ = ∣Hb∣, By 4.1.2(1) dimFH(FH)[b] = deg mb = deg f = ∣Hb∣ and so also (b:d)
holds. �
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Corollary 4.3.7. Put K = FG and let E be an intermediate field of K ≤ F with K ≤ E algebraic.
Then E is G-stable if and only if K ≤ E is normal.

Proof. Suppose first that E is stable. Let b ∈ E and f = mK
b . By 4.3.6, f = ∏e∈Gb x − d. So f splits

over F and Gb is the set of roots of f . As E is stable, Gb ⊆ E and so f splits over E.

Suppose next that K ≤ E is normal, then by 4.2.10 E is AutK(F)-stable. Since G ≤ AutK(F), E
is also G- stable. �

Lemma 4.3.8. Let L ≤ E ≤ F with L ≤ E finite. Then

∣GL/GE∣ ≤ dimL E

Proof. If E = L, this is obvious. So we may assume E ≠ L. Pick e ∈ E ∖ L. Since L ≤ E is finite, e
is algebraic over L and since L ≤ FGL, e is also algebraic over FGL. Moreover, g = mFGL

e divides
f = mL

e . Put H = GL. By 4.3.6 ∣H/He∣ = deg g. Since FHe is subfield of F, L[e] ≤ Fe and

He ≤ G(L[e]) ≤ He

Hence He = G(L[e]) and so

∣GL/G(L[e])∣ = ∣H/He∣ = deg g ≤ deg f = dimL L[e].

By induction on dimL E,

∣G(L[e])/GE∣ ≤ dimL[e] E.

Multiplying the two inequalities we obtain the result. �

Theorem 4.3.9. (a) Let H ≤ T ≤ G with H closed and T/H finite. Then T is closed and

dimFT FH = ∣T/H∣.

(b) Let L ≤ E ≤ F with L closed and L ≤ E finite. Then E is closed and

∣GL/GE∣ = dimL E.

Proof. (a) We have

∣T/H∣
4.3.5
≥ dimFT FH

4.3.8
≥ ∣G(FT)/G(FH)∣

H closed
= ∣G(FT)/H∣

4.3.3(g)
= ∣T/H∣.

So all the inequalities are equalities. Hence T = GFT and

dimFT FH = ∣T/H∣.

(b) This time we have

dimL E
4.3.8
≥ ∣GL/GE∣

4.3.5
≥ dimFGLFGE L closed

= dimLFGE
4.3.3(f)
= ≥ dimL E
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So all the inequalities are equalities. Hence E = FGE and

dimL E = ∣GL/GE∣

�

Proposition 4.3.10. (a) Let H ≤ G with H finite. Then H is closed and dimFH F = ∣H∣.

(b) Put K = FG and let K ≤ E ≤ F with K ≤ E finite. Then E is closed and dimK E = ∣G/GE∣.

Proof. (a) Note that F{idF} = F and so GF{idF} = {idF}. Hence the trivial group is closed and
has finite index in H. So (a) follows from 4.3.9a

(b) By 4.3.3(g), K = FG is closed. Moreover, GK = G∩AutK(F) = G. Thus by 4.3.9(b), applied
with L = K, E is closed and

dimK E = ∣GK/GE∣ = ∣G/∣GE∣

�

Definition 4.3.11. A field extension L ≤ E is called Galois if L is closed in E with respect to Aut(E),
that is if L = FixE(AutL(E)).

Lemma 4.3.12. Put K = FG. Then K ≤ F is a Galois Extension. Moreover, if K ≤ F is finite, then
G = AutK(F).

Proof. By 4.3.3(h) applies with (Aut(F),G) in place of (G,H), FixF(G) is closed in F with respect
to Aut(E). So L ≤ E is Galois.

Moreover, if K ≤ F is finite, then by 4.3.10 applied to G and to AutK(F) in place of H.

∣AutK(F)∣ = dimK F = ∣G∣

Since G ≤ AutF(K), this implies G = AutF(K). �

Theorem 4.3.13 (Fundamental Theorem Of Galois Theory). Let K ≤ F be a finite Galois extension
and put G = AutK(F). Then

(a) F is inclusion reversing bijection from the set of subgroups of G to the set of intermediate field
of K ≤ F.

(b) Let H ≤ G and E = FH. Then dimE F = ∣H∣ and H = AutE(F).

Proof. (a) Since K ≤ F is Galois, K is closed. Since K ≤ F is finite, 4.3.10(b) implies that G is finite
and so by 4.3.10 all intermediate field of K ≤ F and all subgroups of G are closed. So by 4.3.4, F
induces a inclusion reversing bijection between the subgroups of G and intermediate fields of K ≤ F.

(b) By 4.3.10(a) dimE F = ∣H∣. By 4.3.12 applied to H in place of G, H = AutF(K). �

Lemma 4.3.14. Put K = FG and let E be a G-stable intermediate field of K ≤ F.
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(a) FixE(GE) = K and K ≤ E is Galois.

(b) If K ≤ E is finite, then GE = AutK(E).

Proof. (a) FixE(GE) = FixFG ∩ E = K ∩ E = K
(b) Follows from (a) and 4.3.124.3.13. �

Lemma 4.3.15. (a) Let E ≤ F and g ∈ G. Then g(GE) = G(g(E)).

(b) Let H ≤ G and g ∈ G. Then F(gH) = g(FH).

(c) Let H ⊴ G. Then FH is G-stable.

(d) Let E ≤ F and suppose E is G-stable. Then GE ⊴ G and GE ≅ G/GE.

(e) Let H ≤ G be closed. Then H ⊴ G if and only if FH is G-stable.

(f) Let E be a closed subfield of F. Then E is stable if and only if GE is normal in G.

Proof. (a) Since GE = StabG(E), (a) follows from 1.7.11(e).
(b) Since FH = FixF(H), (b) follows from 1.7.11(f)
(c) If H ⊴ G then by (b), FH = g(FH).
(d) Follows from 1.7.10(a) and b.
(e) The forward direction follows from (c). By (d), if FH is stable , then GFH ⊴ G. If H is

closed, then GFH = H and so the backward direction holds.
(f) Follows from (e) applied to H = GE. �

Lemma 4.3.16. Put K = FG and let K ≤ E ≤ F with K ≤ E algebraic. Then

(a) K ≤ E is separable.

(b) If E is closed, then the following are equivalent:

(a) GE ⊴ G.

(b) E is stable

(c) K ≤ E is normal.

Proof. (a) follows from 4.3.6(b:b) (applied to H = G and so FH = K).

(b) By 4.3.15(f) (b:a) and (b:b) are equivalent. By 4.3.7 (b:b) and (b:c) are equivalent. �

Theorem 4.3.17. Let K ≤ F be an algebraic field extension. Then the following are equivalent:

(a) K ≤ F is Galois

(b) K ≤ F is separable and normal.

(c) F is the splitting field of a set over separable polynomials over K.
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Proof. (a) Ô⇒ (b): Suppose first that K ≤ F is Galois and put G = AutK(F). Then K = FG. So
by 4.3.16(a) K ≤ F is separable. Since F is closed and GF = {idF} ⊴ G, 4.3.16(b) gives that K ≤ F is
normal.

(b) Ô⇒ (a): Suppose next that K ≤ F is normal and separable. Since K ≤ F is normal
4.2.26(h), shows that FixF(AutK(F)) = P(K,F). Since K ≤ F is separable, P(K,F) = K and so
FixF(AutK(F)) = K and K ≤ F is Galois.

(b)Ô⇒ (c): By 4.2.10(c) , F is the splitting field of some P ⊆ K[x] over K. Let 0 ≠ f ∈ P and
g an irreducible factor of f . Then g(b) = 0 for some b ∈ F. Since K ≤ F is seperable, b and so also
g is seperable over K. So f is separable over K and (c) holds.

(b) Ô⇒ (c): Suppose F is the the splitting field of a set P of separable polynomials over K.
4.2.10(c) implies that K ≤ F is normal. Put

A = {b ∈ F ∣ f (b) = 0 for some 0 ≠ f ∈ P}

By definition of a splitting field, F = K[A]. Since each f ∈ P is separable, each a ∈ A is separable
over F. Thus by 4.2.28(b), K ≤ F is separable. �

Proposition 4.3.18. Suppose that K ≤ F is algebraic and Galois. Let K ≤ E ≤ F and put G =

AutK(F) and H = G(E). Then

(a) H = AutF(E), E ≤ F is Galois and E = F(H) is closed .

(b) K ≤ E is Galois if and only if GE is normal in G.

(c) E is NG(H)-stable and NG(H)/H ≅ NG(H)E = AutK(E)

Proof. (a) We have H = GE = StabG(E) = AutAutK(F)(F) = AutE(F). By 4.3.17(a),(b) K ≤ F is
normal and separable. Hence by 4.2.9 E ≤ F is normal and by 4.2.21 E ≤ F is separable. So by
4.3.17, E ≤ F is Galois. This implies that

E = FixF(AutE(F)) = F(GE) = FH

and so E is closed.
(b) As K ≤ F is separable, K ≤ E is separable. Hence by 4.3.17 K ≤ E is Galois if and only if

K ≤ E is normal. Since E is closed, (b) now follows from 4.3.16(b).
(c) Let g ∈ NG(GE)-stable. Since F(H) = E we conclude from 4.3.15(b) that

g(E) = g(FH) = F(gH) = F(H) = E

So E is NG(GE)-stable. Hence by 1.7.10(b) NG(H)/GE ≅ NG(H)E.
Clearly NG(H)E ≤ AutE(K). Let h ∈ AutE(K). Since K ≤ F is normal, F is a splitting filed over

K and so by 4.2.7 h = g∣E for some g ∈ AutK(F). Then g(E) = E and so by 4.3.15(a),

gH = gG(E) = G(g(E)) = G(E) = H.

Thus g ∈ NG(H) and h ∈ NG(H)E. Hence (c) holds. �
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Definition 4.3.19. Let K ≤ E be an algebraic field extension. A normal closure of K ≤ E is an
extension L of E such that K ≤ L is normal and no proper proper subfield of L containing E is
normal over K.

Lemma 4.3.20. Let K ≤ E be an algebraic field extension.

(a) Suppose E = K(I) for some I ⊆ E and let E ≤ L be a field extension. Then the following are
equivalent:

(a) L is a normal closure of K ≤ E .

(b) L is a splitting field for {mK
b ∣ b ∈ I} over K.

(c) L is a splitting field for {mK
b ∣ b ∈ I} over E.

(b) There exists a normal closure L of K ≤ E and L is unique up to E-isomorphism.

(c) Let L be a normal closure of K ≤ E. Then

(a) K ≤ L is finite if and only if K ≤ E is finite.

(b) K ≤ L is Galois if and only if K ≤ L is separable and if and only if K ≤ E is separable.

(d) Let E be an algebraic closure of E. Then

(a) E is an algebraic closure of K.

(b) E contains a unique normal closure L of K ≤ E. L is called the normal closure of K ≤ E in
E.

Proof. (a) Put P = {mK
b ∣ b ∈ I}, A = {b ∈ L ∣ f (b) = 0K for some b ∈ L} and D = K(A). Note that

b ∈ A for all b ∈ I and so

(∗) E = K(I) ≤ D

Next we show:

(**) Let K ≤ F ≤ L such that K ≤ F is normal. Then D ⊆ F and K ≤ D is normal.

Note that each mK
b ,b ∈ I has a root in L, namely b. Since K ≤ F is normal each mK

b splits over L.
So A ⊆ F, D = K[A] ≤ F and D is a splitting field for P over K. Thus by 4.2.10(c), K ≤ D is normal.

(a:a)Ô⇒ (a:b): Suppose first that L is a normal closure of K ≤ E. Then K ≤ L is normal and
so by (**) K ≤ D is normal. By (*) E ≤ D and so the definition of a normal closure implies L = D.

(a:b)Ô⇒ (a:c): Suppose next L is a splitting field of P over K. Then L = K[A] = E[A] and L
is also a splitting field for P over E.

(a:c) Ô⇒ (a:a): Suppose next that L is a splitting field of P over E. Then L = E[A] and
D is a splitting field for P over E. Hence by 4.2.10(c), K ≤ D is normal. By (*) E ≤ D and so
L = E[A] ≤ D ≤ L. Thus L = D and K ≤ L is normal. If K ≤ F ≤ L and K ≤ F is normal, then by (**)
D ≤ F. Since D = L and F ≤ L we get F = L and so L is a normal closure of K ≤ E.
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(b) By (a) applied with I = E a normal closure of K ≤ E is the same as splitting field of {mK
b ∣ b ∈

E}. Thus by 4.1.22 K ≤ E has a normal closure and by 4.2.7(b), the normal closure is unique up to
K-isomorphism.

(c:a) If K ≤ E is finite, then E = K(I) for some finite subset I of E. Note the splitting field of a
finite set of polynomials over K is a finite extension of K So K ≤ L is finite by (a).

(c:b) Suppose that if K ≤ L is Galois. Then by 4.3.17 K ≤ L is separable. If K ≤ L is separable,
then also K ≤ E is separable. So suppose K ≤ E is separable, then by (a), L is the splitting field of
the set of separable polynomials {{mK

b ∣ b ∈ E} and so by 4.3.17, K ≤ L is Galois.
(d:a) Since K ≤ E and E ≤ E are algebraic, K ≤ E is algebraic (4.1.15. Also E is algebraicly

closed and thus (d:a) holds.
(d:b) Let E ≤ L ≤ E. Then by (a) L is a normal closure of K ≤ E if and only if L is generated by

K and all the roots of the mK
b ,b ∈ E. So (d:b) holds. �

Lemma 4.3.21. Let K ≤ E be a normal field extension. Put P = P(K,E) and S = S(K,E). Then
P = FixE(AutK(E)), K ≤ P is purely inseparable, P ≤ E is Galois, K ≤ S is Galois and the map

τ ∶ AutK(E)→ AutK(S), φ→ φ∣E

is an isomorphism of groups.

Proof. By definition K ≤ P is purely inseparable. By 4.2.26(e), 4.2.26 f, P = FixE(AutK(E)) and so
by 4.3.12 (applied with F = E and G = AutK(E)) P ≤ E is Galois.

Let φ ∈ AutK(E) and s ∈ S. Then φ(s) is a root of mK
s . Since s is separable over K , we conclude

that φ(s) is separable over K. So φ(s) ∈ K. Thus S is AutK(E) stable and so by 4.3.7, K ≤ S is
normal. K ≤ S is separable and thus by 4.3.17, K ≤ S is Galois. Let φ ∈ AutK(E) with φ∣S = idS.
Then S ⊆ FixF(φ). By definition of P, P ≤ FixF(φ). By 4.2.31(b), E = SP. Hence E ≤ FixE(φ)

and φ = idE. Thus τ is 1-1. Let ψ ∈ AutK(S). Since K ≤ E is normal is normal, we conclude from
4.2.7(a) that ψ = φ∣S for some φ ∈ AutK(E). So τ is onto. �

4.4 The Fundamental Theorem of Algebra

In this section we show that the field C of complex numbers is algebraically closed. Our proof is
based on the following well known facts from analysis which we will not prove:

Every polynomial f ∈ R[x] of odd degree has a root in R.
Every polynomials of degree 2 over C is reducible.
dimR C = 2.

Some remarks on this assumptions. The first follows from the intermediate value theorem and
the fact that any odd polynomial has positive and negative values. The second follows from the
quadratic formula and the fact that every complex number has a complex square root (

√
reφi =

√
re

φ
2 i). The last property follows from C = R + Ri.

Definition 4.4.1. Let s be a prime, K ≤ F a finite field extension and f ∈ K[x].
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(a) f is a s′-polynomial if s does not divide deg f

(b) K ≤ E is a s′-extension s does not divide dimK F.

Lemma 4.4.2. Let K be a field and s a prime. Then the following are equivalent.

(a) Every irreducible s′-polynomial over K has degree 1.

(b) Every s′-polynomial over K has a root in K

(c) If K ≤ E is a s′ extension then K = E.

Proof. (a) Ô⇒ (b): Let f ∈ K[x] with s ∤ deg f . Let f = f1 . . . fk with fi irreducible. Then
deg f = ∑k

i=1 deg fi and so s ∤ fi for some 1 ≤ i ≤ k. By (a) , fi has degree 1. Hence fi and so also f
has a root in K.

(b) Ô⇒ (c): Let K ≤ E be an s′-extension and b ∈ E. Then deg mK
b = dimK K[b] divides

dimK E. Hence mK
b is an irreducible s′ polynomial and so by (a) has a root d in K. As f is irreducible

we get b = d ∈ K and E = K.
(c)Ô⇒ (a): Let f be irreducible s′-polynomial. Then K[x]/ f K[x] is an extension of degree

deg f . So its is an s′-extension of K and by (c), deg f = 1. �

Lemma 4.4.3. Let K ≤ F be a finite purely inseparable extension. Put p = char K. If p = 0, then
K = F and if p ≠ 0, then dimK F = pm for some m ∈ N.

Proof. If p = 0, then K ≤ F is separable and so K = F. So suppose p ≠ 0. We proceed by induction
on dimK F. If dimK F = 1, then K = F. So suppose dimK F > 1 and let b ∈ F ∖ K. By 4.2.23
there exists n ∈ N such that bpn

is separable over K and dimK[bpn
] K[b] = pn. Since bpn

∈ F and
K ≤ F is purely inseparable, bpn

∈ K and so dimK K[b] = pn. By Homework 3#6 K[b] ≤ F is purely
inseparable and so by induction dimK[b] E = pl for some l ∈ N. Thus by the dimension formula
4.1.5(c), dimK E = pn pl = pk+l. �

Proposition 4.4.4. Let K ≤ F be an algebraic extension and s a prime. Suppose that

(i) Every s′-polynomial over K has a root in K.

(ii) All polynomials of degree s over F are reducible.

Then F is algebraically closed.

Proof. Let F be an algebraic closure of F and b ∈ F. We need to show that b ∈ F. For this let E a
normal closure of K ≤ K[b] in F. By 4.3.20(c:a), K ≤ E is finite.

Put P = P(K,E). By 4.3.21 K ≤ P is purely inseparable and P ≤ E is Galois. We will show that

(∗) P ≤ F

If char p = 0, then P = K. So suppose char K = p, p a prime. Assume first that p ≠ s, then by
4.4.3 K ≤ P is an s′-extension and so by 4.4.2 P = K. Assume next that p = s and suppose first exits
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b ∈ P ∖ F. By 4.2.26(a),bpn
∈ K for some n ∈ N. Hence we can choose n ∈ Z+ minimal with bpn

∈ F.
Put a = bpn−1. Then a ∈ P ∖ F and ap ∈ F. 4.2.20 implies deg mK

a = p = s, a contradiction to (ii).
Thus (*) holds.

Put S = S(K,E). Then by 4.3.21, K ≤ S is Galois. Put G = AutK(S). Since K ≤ E is finite, G is
finite.

By 1.10.9 there exists a Sylow s-subgroup S of G. Put L = FixS(S ). Then by the FTGT, 4.3.13
dimL S = ∣S ∣ and so

dimK L =
dimK S
dimK L

=
∣G∣

∣S ∣

Since S is a Sylow s-subgroup we conclude that K ≤ L is a s′ extension. Thus by 4.4.2 L = K
and so G = S . Thus G is a s-group. Since K ≤ S ∩ F ≤ S, 4.3.13 implies S ∩ F = FixS(H) for some
H ≤ G.

Suppose for a contradiction that H ≠ {idS}. Let T be a maximal subgroup of H. By 1.7.38(b),
T � NH(T). Since T is maximal we get T ⊴ H and ∣H/T ∣ = s. Put D = FixS(T). Then dimS∩F D =

∣H/T ∣ = p. Let d ∈ D ∖ (S ∩ F). Then deg mS∩F
d = s. By 4.2.12 mS∩F

d = mF
d and so deg mF

d = s a
contradiction to (ii).

Thus H = {idS} and so S ∩ F = FixS(idS) = S. Thus S ≤ F. Together with (*) we get SP ≤ F.
By 4.2.31(b), E = PS and so E ≤ F. Since b ∈ E we have b ∈ F. As b ∈ F was arbitrary this means,
F = F and so F is algebraically closed. �

Theorem 4.4.5. The field of complex numbers is algebraically closed.

Proof. By the three properties of R ≤ C listed above we can apply 4.4.4 with s = 2. Hence C is
algebraically closed. �

Lemma 4.4.6. Let K ≤ E be algebraic and K an algebraic closure of K. Then E is K-isomorphic to
some intermediate field Ẽ of K ≤ K.

Proof. Let E be an algebraic closure of E. Then by 4.3.20(d:a) E is an algebraic closure of K. By
4.2.7(e) there exists an K-isomorphism φ ∶ E→ K. Put Ẽ = φ(E). �

Lemma 4.4.7. Up to R-isomorphisms, C is the only proper algebraic extension of R

Proof. Note that C is an algebraic closure of R. So by 4.4.6 any algebraic extension of R is R-
isomorphic to an intermediate field E of R ≤ C. As dimR C = 2, we get E = R or E = C. �

4.5 Finite Fields

In this section we study the Galois theory of finite fields.

Lemma 4.5.1. Let F be a finite field and F0 the subring generated by 1. Then F0 ≅ Zp for some
prime p. In particular, F is isomorphic to a subfield of the algebraic closure of Zp.
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Proof. Let p = char F. Then pZ is the kernel of the homomorphism Z→ F, n→ n1F. Also F0 is its
image and so F0 ≅ Zp. �

Theorem 4.5.2. Let p be a prime, F0 a field of order p, F an algebraic closure of F0 and G ∶=

{FrobF
pn ∣ n ∈ Z}

(a) Let n ∈ Z+ and q = pn. Let Fq be the set of roots of xq − x. Then

Fq = {a ∈ F ∣ aq = a} = FixF(Frobq) = F(⟨Frobq⟩)

and Fq is a subfield field of order q.

(b) F0 = Fp = FG = FixF(Frobp).

(c) G is an infinite cyclic subgroup of Aut(F).

(d) Let E be a proper subfield of F. Then E is closed if and only if E = Fpn for some n ∈ Z+ and if
and only if F is finite.

(e) All subgroups of G are closed.

(f) G is a inclusion reversing bijection between the finite subfields of F and the non-trivial sub-
groups of G.

(g) Fpm ≤ Fpn if and only if m divides n.

(h) Let n,m ∈ Z+ and q = pn. Then Fq ≤ Fqm is a Galois extension and

AutFq(Fqm) = {Frobqi ∣ 0 ≤ i < m.}

In particular, AutFqFqm is cyclic of order m.

Proof. (a) Note that (xq − x)′ = qxq−1 − 1 = −1 has no roots and so by 4.2.15(d) xq − x has no
multiple roots. Hence ∣Fq∣ = q. Since aq − a = 0 if and only if aq = a and if and only if Frobq(a) = a
we see that (a) holds.

(b) Since F0 ≤ Fp and ∣F0∣ = p = ∣Fp∣, F0 = Fp. Also G = ⟨Frobp⟩ and so (c) follows from (a).

(c) Since Fq ≠ F, Frobq = Frobn
p ≠ idF and so Frobp has infinite order. This proves (c).

(d) Let E be a proper field of F. Then E = FH for some 1 ≠ H ≤ G. Since G = ⟨Frobp⟩. Then
H = ⟨Frobn

p⟩ = ⟨Frobpn⟩ for some n ∈ Z+ and so by (a), E = F(⟨Frobpn⟩) = Fpn .
By (b) Fpn has order pn and so is finite.
Suppose E is finite. Then F0 ≤ E is finite. finite. Since F0 is closed, 4.3.10(b) shows that E is

closed. Thus (d) holds.

(e) Let H ≤ G. If H = 1, then H is closed. So suppose H ≠ 1. Then H = ⟨Frobq⟩, where q = pn

with n ∈ Z+. Since Fq is closed we have

F(GFq) = Fq
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Note that ⟨Frobq⟩ is the only subgroup of G with fixed field of order q and so G(Fq) = ⟨Frobq⟩ = H.
Thus H is closed and (e) is proved.

(f) Since G is an inclusion reversing bijection between the non-trivial closed subgroups of G and
the proper closed subfields of F, (f) follows from (d) and (e).

(a) Note that

Fpm ≤ Fpn ⇐⇒ GFpn ≤ GFpm ⇐⇒ ⟨Frobpn⟩ ≤ ⟨Frobpm⟩.

Since Frobpn = Frobn
p and Frobp has infinite order this holds if and only if m ∣ n.

(h) Since H is abelian, all subgroups of H are normal. Hence by 4.3.16 (applied to (F,Fq,H) in
place of (F,K,G)) Fqm is H-stable. Thus by 4.3.14 ( again applied with H in place of G) Fq ≤ Fqm

is Galois and AutFqFqm = HFqm . By 4.3.15b,

HFqm ≅ H/FFqm = ⟨Frobq⟩/⟨Frobqm⟩ ≅ Z/mZ.

Thus (h) holds. �

4.6 Transcendence Basis

Definition 4.6.1. Let K ≤ F be a field extension and s = (si)i∈I a family of elements in F. We say
that (si)i∈I is algebraically independent over K if the evaluation homomorphism:

Φs ∶ K[XI]→ K[si, i ∈ I], f → f (s)

is isomorphism.
A subset S of F is called algebraically independent over K, if (s)s∈S is algebraically indepen-

dent.
s is called algebraically dependent over K if s is not algebraically independent over K.

Remark 4.6.2. Let K ≤ F be a field and s = (si)i∈I a family of elements in F.

(a) s is algebraically dependent over K if and only if Φs is not 1-1 and only if there exists 0 ≠ f ∈
K[XI] with f (s) = 0

(b) s is algebraically independent over K if and only if si ≠ s j for all i ≠ j and {si ∣ i ∈ I} is
algebraically independent over K.

(c) s is algebraically dependent over K if and only if for a finite subsets J of I, (s j) j∈J is alge-
braically independent over ∣K.

(d) Let b ∈ K. Then {b} is algebraically independent over K if and only if b is transcendental over
K.
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Lemma 4.6.3. Let K ≤ F be a field extension and s = (si)i∈I be algebraically independent family in
F over K. Then there exists a unique K-isomorphism Φ̃s ∶ K(XI) → K(si∣i ∈ I) with Φ(xi) = si for
all i ∈ I. Moreover, Φ̃s(

f
g ) = f (s)g(s)−1 for all f ,g ∈ K[XI], g ≠ 0.

Proof. Since s is algebraic independent, f (s) ≠ 0 for all 0 ≠ f ∈ K[x]. So f (s) is invertible in F.
Hence by 2.7.1(h) there exists a unique ring homomorphism

Φ̃s ∶ K(XI)→ F

with Φ̃s( f ) = f (s) for all f ∈ K[XI]. Moreover,

Φ̃s (
f
g
) = f (s)g(s)−1

Since Φ̃s is non-zero homomorphism of fields, Φ is 1-1. Clearly Im Φs = K(si ∣ i ∈ I) and so the
lemma is proved. �

Lemma 4.6.4. Let K ≤ F be a field extension.

(a) Let S and T disjoint subsets of F. Then S ∪ T is algebraically independent over K if and only if
S is algebraically independent over K and T is algebraically independent over K(S ).

(b) Let S ⊆ F be algebraically independent over K and let b ∈ F ∖ S . Then S ∪ {b} is algebraically
independent over K if and only if b is transcendental over K.

Proof. (a) By 4.6.3 S ∪ T is algebraically independent over K if and only if the there exists an
K-isomorphism

K(XS∪T)→ K(S ∪ T) with xr → r,∀r ∈ S ∪ T.

Applying 4.6.3 two more times, S is algebraically independent over K and T is algebraically
independent over K(S ) if and only if there exists K-isomorphism

K(XS )(XT)→ K(S )(T) with xs → s,∀s ∈ S and xt → t,∀t ∈ T.

Since K(S ∪T) = K(S )(T) and K(XS∪T) is canonically isomorphic to K(XS )(XT) we conclude
that (a) holds.

(b) Follows from (a) applied to T = {b}. �

Definition 4.6.5. Let K ≤ F be a field extension. A transcendence basis for K ≤ F is a algebraically
independent subset S of K ≤ F such that F is algebraic over K(S ).

Lemma 4.6.6. Let K ≤ F be field extension ,S ⊆ F and suppose that S algebraically independent
over K.

(a) S is a transcendence basis if and only if S is a maximal K-algebraically independent subset of
F.
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(b) S is contained in a transcendence basis for K ≤ F.

(c) K ≤ F has a transcendence basis.

Proof. (a) S is a maximal algebraically independent set if and only if S ∪ {b} is algebraically
dependent for all b ∈ F ∖ S . By 4.6.4b, this is the case if and only if each b ∈ F is algebraic over
K(S ).

(b) LetM be the set of K-algebraically independent subsets of F containing S . Since S ∈M,
M is not empty. OrderM by inclusion. ThenM is a partially ordered set. We would like to apply
Zorn’s lemma. So we need to show that every chain D of M has an upper bound. Note that the
elements of D are subsets on F. So we can build the union D ∶= ⋃D. Then E ⊆ D for all E ∈ D.
Thus D is an upper bound for D once we establish that D ∈M. That is we need to show that D
is algebraically independent over K. As observed before we just this amounts to showing that each
finite subset J ⊆ D is algebraically independent. Now each j ∈ J lies in some E j ∈ D. Since D is
totally ordered, the finite subset {Es ∣ j ∈ J} of D has a maximal element E. Then j ∈ E j ⊆ E for all
j ∈ J. So J ⊆ E and as E is algebraically independent, J is as well.

Hence every chain in M has an upper bound. By Zorn’s Lemma A.3.8 M has a maximal
element T . By (a) T is a transcendence basis and by definition ofM, S ⊆ T .

(c) follows from (b) applied to S = ∅. �

Proposition 4.6.7. Let K ≤ F be a field extension and S and T transcendence basis for K ≤ F. Then
∣S ∣ = ∣T ∣. ∣S ∣ is called the transcendence degree of F ≤ K and is denoted by tr-degK F.

Proof. Well order S and T . For s ∈ S define s− ∶= {b ∈ S ∣ b < s} and s+ ∶= {b ∈ S ∣ b ≤ s}.
Similarly define t± for t ∈ T . Let s ∈ S . As K(T) ≤ F is algebraic, mK(T)

s ≠ 0 and we can choose
a subset J ⊆ T such that mK(T)

s ∈ K(J). Then s is algebraic over K(J) and so also algebraic over
K(s−, J). Let j be the maximal element of J. Then J ⊆ j+ and so s is algebraic over K(s−, j+) .
Hence we can choose φ(s) ∈ T minimal such that s being algebraic over K(s−, φ(s)+). Similarly
for t ∈ T let ψ(t) ∈ S be minimal such that t is algebraic over K(t−, ψ(r)+).

We will show that functions φ ∶ S → T and ψ ∶ T → S are inverse to each other. For this let
s ∈ S . Put t = φ(s) and L ∶= K(s−, t−)

We claim that s is transcendental over L. Otherwise, there exists a finite subset J of t− such
that s is transcendental over K(s−, J). Let j be the maximal element of J. Then s is algebraic over
K(s−, j+) and j < t, a contradiction to the minimal choice of t = φ(s). t.

Thus s is transcendental over L. Note that s is algebraic over K(s−, t+) = L(t), So if t would be
algebraic over L also s would be algebraic over L, a contradiction. Hence t is transcendental over
L = K(t−, s−). Since t is algebraic over K(t−, ψ(t)+) we get ψ(t)+ ⊈ s− and so ψ(t) ≮ s.

Since s is algebraic over L(t), 4.6.6(b) implies that {t, s} is algebraic dependent over L. Since
s is transcendental over L another application of 4.6.6(b) shows that t is algebraic over L(s) =

K(s+, t−). Thus by definition of ψ, ψ(t) ≤ s. Together with ψ(t) ≮ s this gives, ψ(t) = s. Therefore
ψ ○ φ = idS . By symmetry φ ○ ψ = idT and so φ is a bijection. Hence ∣T ∣ = ∣S ∣. �

Example 4.6.8. Let K be a field and let s be transcendental over K. Let F be an algebraic closure
of K(s). Put s0 = s and inductively let si+1 be a root of x2 − si in F. Then si = s2

i+1 and so
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K(si) ≤ K(si+1). Note that si+1 is transcendental over K and so K(si) = K(s2
i+1) ≠ K(si). Put

E = ⋃∞i=0 K(si). Then K(si) ≤ E is algebraic. Thus for all i ∈ I, {si} is a transcendence basis
for E over K. We claim that that K(b) ≠ E for all b ∈ E. Indeed, b ∈ K(si) for some i and so
K(b) ≤ K(si) ⊆ E.

4.7 Algebraically Closed Fields

In this section we study the Galois theory of algebraically closed field.

Lemma 4.7.1. Let φ ∶ K1 → K2 be a field isomorphism and Fi an algebraically close field with
Ki ≤ Fi. Suppose that tr-degK1

F1 = tr-degK2
F2. Let S i be a transcendence basis for Fi over Ki and

λ ∶ S 1 → S 2 a bijection. Then there exists an isomorphism ψ ∶ F1 → F2 with ψ∣K1 = φ and ψ∣S 1 = λ.

Proof. By 4.6.3 we obtain an isomorphism δ:

K1(S 1) ÐÐÐ→ K1(XS 1) ÐÐÐ→ K2(XS 2) ÐÐÐ→ K2(S 2)

K1 ∋ k ÐÐÐ→ k ÐÐÐ→ φ(k) ÐÐÐ→ φ(k)

S 1 ∋ s ÐÐÐ→ xs ÐÐÐ→ xλ(s) ÐÐÐ→ λ(s)

Since Ki(S i) ≤ Fi is algebraic and Fi is algebraic closed, Fi is an algebraically closure of Ki(S i).
Hence by 4.2.7(a), δ extends to an isomorphism ψ ∶ F1 → F2. �

Lemma 4.7.2. Let K ≤ F be a field extension and suppose that F is algebraically closed. Then
AutK(F) acts transitively on the set of elements in F transcendental over K.

Proof. Let si ∈ F, i=1,2, be transcendental over K. By 4.6.6b there exists a transcendence basis S i

for K ≤ F with si ∈ S i. Let λ ∶ S 1 → S 2 be a bijection with λ(s1) = s2. By 4.7.1 applied with φ = idK

there exists ψ ∈ AutK(F) with ψ(s) = λ(s) for all s ∈ S 1. Then ψ(s1) = s2. �

Example 4.7.3. By results from analysis, both π and e are transcendental over Q. Since C is alge-
braically closed we conclude from 4.7.2 that there exists α ∈ AutQ(C) with α(π) = e.

Definition 4.7.4. Let K be the field and K0 the intersection of all the subfield. Then K0 is called the
base field of K. of K.

Lemma 4.7.5. Let K be the field and K0 the base field of K. Put p = char K. If char p = 0 then
K0 ≅ Q and if p is a prime then K0 ≅ Z/pZ

Proof. Let Z = {n1F ∣ n ∈ Z}. The Z is a subring and K0 is the field of fraction of Z. If p = 0, then
Z ≅ Z and so K0 ≅ Q and if p > 0, then Z ≅ Zp and K0 = Z. �

Corollary 4.7.6. (a) Let K be a field. Then for each cardinality c there exists a unique (up to K-
isomorphism) algebraically closed F with K ≤ F and tr-degK F = c. Moreover, F is isomorphic
to the algebraic closure of K(XI), where I is a set with ∣I∣ = c.
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(b) Let p = 0 or a prime and c a cardinality. Then there exists a unique (up to isomorphism)
algebraically closed field F with characteristic p and transcendence degree c over its base
field. Moreover, if K = Q ( for p = 0) and K = Zp (for p > 0) and I is a set of cardinality c, then
the algebraic closure of K(XI) is such a field.

Proof. Follows immediately from 4.7.1 �

Lemma 4.7.7. Let K be a field. Then the following are equivalent.

(a) K has no proper purely inseparable field extension.

(b) Let K be an algebraic closure of K. Then K ≤ K is Galois.

(c) All polynomials over K are separable.

(d) char K = 0 or (char K = p ≠ 0 and for each b ∈ K there exists d ∈ K with dp = b).

(e) char K = 0 or (char K = p ≠ 0 and FrobK
p is an automorphism of K.)

Proof. Put p = char K.
(a) Ô⇒ (b): Since K is the algebraic closure of K, K ≤ K is algebraic and normal. Put

P ∶= P(K,K). Since K ≤ K is normal, 4.2.26(g) implies that P ≤ K is separable. Since K ≤ P is
purely inseparable (a) gives K = P. Hence K ≤ K is normal and separable and thus by 4.3.17 K ≤ K
is Galois.

(b) Ô⇒ (c): Since K ≤ K is Galois, 4.3.17 implies that K ≤ K is separable. Let f ∈ K[x] be
irreducible. Then f has root in K. This root is separable over K and so f is separable.

(c) Ô⇒ (d): We may assume p > 0. Let b ∈ K and f an irreducible monic factor of xp − b.
Then f has a unique root in K̄ and f is separable. Thus f = x− d for some d ∈ K. Then d is a root of
xp − b and so dp = b.

(d) Ô⇒ (e): We may assume p > 0. By 4.2.18 FrobK
p is a monomorphism. By (d) Frobp is

onto.

(e)Ô⇒ (a): If p = 0, all field extensions are separable. So we may assume p > 0. Let K ≤ F
be purely inseparable. Let b ∈ F. Then d ∶= bpn

∈ K for some n ∈ N. Since FrobK
p is onto also

FrobK
pn = (FrobK

b )
n is onto. So d = epn

for some e ∈ K. Since FrobF
pn is 1-1 we get b = e ∈ K. Hence

F = K. �

Definition 4.7.8. A field K which fulfills one and so all of the equivalent conditions in 4.7.7 is called
perfect.

Lemma 4.7.9. (a) All field of characteristic 0 are perfect.

(b) All algebraically closed fields are perfect.

(c) All finite fields are perfect.
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Proof. (a) follows for example from 4.7.7(d). If K is an algebraically closed field, then Frobp

is an automorphism by 4.2.18(c). If K is a finite field, then as Frobp is 1-1, its onto and so an
automorphism. �

Lemma 4.7.10. . Let K ≤ F be a field extension and A = A(K,F).

(a) Let b ∈ F ∖ A and a ∈ A. Then a + b ∉ A.

(b) If K ≤ F is not algebraic, then F = ⟨F ∖ A⟩.

Proof. (a) Suppose a + b ∈ A. Since A is a subfield of F we get b = (a + b) − a ∈ A, a contradiction.
(b) Let a ∈ A. Since K ≤ F is not algebraic, there exists b ∈ F ∖ A. By (a), a + b ∉ A and so
a = (a + b) − b ∈ ⟨F ∖ A⟩. �

Proposition 4.7.11. Let K ≤ F field extension with F algebraically closed. Put G ∶= AutK(F),
P ∶= P(K,F) and A = A(K,F). Let K ≤ E ≤ F with E ≠ F

(a) A is an algebraic closure of K and K ≤ A is normal.

(b) If E is G-stable then GE = AutK(E).

(c) E is G-stable if and only K ≤ E is normal.

(d) FixF(G) = P.

(e) E is G-closed if and only if E ≤ F is Galois and if only if E is perfect.

(f) Suppose A ≠ F. Then AutAF is the unique minimal non-trivially closed normal subgroup of G.

Proof. (a) Note that K ≤ A is algebraic. Let f ∈ K[x] be a non-constant polynomial. Since F is
algebraically closed, f has a root b ∈ F. Then b is algebraic over K and so b ∈ A. Thus f has a root
in A and so by definition (see 4.1.18), A is an algebraic closure of K. In particular, K ≤ A is normal.

(b) By 4.7.1 every φ ∈ AutKE can be extended to some ψ ∈ AutKF. So (b) holds.

(c) Suppose K ≤ E is normal, then by 4.2.10(a), E is G-stable.
Suppose that K ≤ E is G-stable. We will first show that E ≤ A. Suppose not and pick e ∈ E ∖ A.

Then e is transcendental over K. By 4.7.2 Ge consists of all the transcendental elements in F and so
Ge = F ∖ A. As E is G-stable, Ge ⊆ E. 4.7.10 implies F = ⟨F ∖ A⟩ = ⟨Ge⟩ ≤ E, a contradiction to
E ≠ F.

Hence E ≤ A. By (b)

(∗) GA = AutK(A).

and since E is G stable we conclude that E is AutK(A)-stable. Since K ≤ A is normal, 4.2.10(d)
shows that also K ≤ E is normal.

(d) Let b ∈ F ∖ A. Then by 4.7.10 b + 1 ∈ F ∖ A and so by 4.7.2 there exists σ ∈ G with
σ(b) = b + 1 ≠ b. Thus b ∉ FixF(G) and so FixF(G) ≤ A. Thus
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(∗∗) FixF(G) = FixA(GA)
(*)
= FixA(AutK(A))

4.2.26(h)
= P

(e) E is G-closed if and only if

(1) FixF(AutE(F)) = E

and so if and only if E ≤ F is Galois. Put B = A(E,F). By (**) applied to E ≤ F in place of K ≤ F,
FixF(AutE(F)) = FixB(AutE(B)). So (1) is equivalent to

(2) FixB(AutK(B)) = B.

By definition of a Galois extension (2) holds if and only if E ≤ B is Galois. By (a) applied to
E ≤ F, B is an algebraic closure of E. So by 4.7.7 E ≤ B is Galois if and only if E is perfect. So (e)
is proved.

(f) Let H be a closed normal subgroup of G with H ≠ {idF}. By 4.3.15(e), F(H) is G-stable.
Since H ≠ G, F(H) ≠ F. By (c), K ≤ F(H) is normal and so algebraic. Hence F(H) ≤ A and

AutA(F) = G(A) ≤ G(F(H))
H-closed
= H.

By 4.3.3(h), G(A) is closed in G. By (a) K ≤ A is normal and so A is G-stable. Thus by 4.3.15(d)
G(A) is a normal subgroup of G. Since A is algebraically closed 4.7.9 shows that A is perfect and
so by (e), A is closed. Thus F(G(A)) = A ≠ F and so G(A) ≠ {idF}. Hence AutA(F) = G(A) is a
non-trivial, closed normal subgroup of G. �
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Chapter 5

Multilinear Algebra

Throughout this chapter ring means commutative ring with identity 1 ≠ 0. All modules are assumed
to be unitary. We will write (non)-commutative ring for a ring which might not be commutative.

5.1 Multilinear functions and Tensor products

Let (Mi, i ∈ I) be a family of sets. For J ⊆ I put MJ = ∏ j∈J M j and for m = (mi)i∈I ∈ MI put
mJ = (m j) j∈J MJ . If I = J∪K with L∩K = ∅, the map MI → MJ ×MK ,m→ (mJ ,mK) is a bijection.
We use this canonical bijection to identify MI with MJ × MK .

Let W be a set and f ∶ MI → W a function. Let b ∈ MK . Then we obtain a function a function
fb ∶ MJ →W,a→ f (a,b).

Definition 5.1.1. Let R a ring, Mi, i ∈ I a family of R-modules and W an R-module. Let f ∶ MI →W
be a function. f is R-multilinear if for all i ∈ I and all b ∈ MI−i the function

fb ∶ Mi →W,a→ f (a,b)

is R-linear.

Note here that fb R-linear just means f (ra,b) = r f (a,b) and f (a + ã,b) = f (a,b) + f (ã,b) for
all r ∈ R,a ∈ Mi,b ∈ MI−i and i ∈ I.

The function f ∶ Rn → R, (a1,a2, . . . ,an) → a1a2 . . .an is multilinear. But the function g ∶

Rn → R, (a1, . . . ,an)→ a1 is not R-linear.

Lemma 5.1.2. Let Mi, i ∈ I be a family of R-modules, f ∶ MI → W an R-multilinear map, I = J ⊎ K
and b ∈ MK . Then fb ∶ MJ →W is R-multilinear.

Proof. Let j ∈ J and a ∈ MJ− j. Then (a,b) ∈ MI− j and ( fb)a = f(a,b) is R-linear. So fb is R-
multilinear. �

Lemma 5.1.3. Let R a ring, Mi, i ∈ I a finite family of R-modules, W an R-module and f ∶ MI → W
be a function. Then f is multilinear if and only if

277
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f ((∑
j∈Ji

ri jmi j)i∈I) = ∑
α∈JI

(∏
i∈I

riα(i)) f ((miα(i))i∈I)

whenever (Ji, i ∈ I) is a family of sets, mi j ∈ Mi and ri j ∈ R for all i ∈ I and j ∈ Ji.

Proof. Suppose first that f is multilinear. If ∣I∣ = 1 we need to show that f (∑ j∈J r jm j) = ∑ j∈J r j f (m j)

But this follows easily from the fact that f is linear and induction on J. So suppose that ∣I∣ ≥ 2, let
s ∈ I, K = I − s. Then by induction

f ((∑
j∈Ji

ri jmi j)
definition of fb= f∑ j∈Js rs jms j((∑

j∈Ji

(ri jmi j)i∈K

= ∑
α∈JK

(∏
i∈K

riα(i) f∑ j∈Js rs jms j(miα(i))i∈K

= ∑
α∈JK

(∏
i∈K

riα(i) f (∑
j∈Js

rs jms j, (miα(i))i∈K

∑
α∈JI

∏
i∈I

riα(i) f (miα(i))

The other direction is obvious. �
Example: Suppose f ∶ M1 × M2 × M3 →W is multilinear.
Then

f (m11 + 2m12,4m21,3m31 +m32 =

= 12 f (m11,m21,m31) + 4 f (m11,m21,m32) + 24 f (m12,m21,m31) + 8 f (m12,m21,m32)

Definition 5.1.4. Let R be a ring and Mi, i ∈ I a family of R-modules. A tensor product for (Mi, i ∈ I)
over R is a R-multilinear map f ∶ MI →W so that for each multilinear map g ∶ MI → W̃ there exists
a unique R-linear ğ ∶ W → W̃ with g = ğ ○ f .

Lemma 5.1.5. Let R be a ring and (Mi, i ∈ I) a family of R-modules. Then (Mi, i ∈ I) has a tensor
product over R. Moreover, it is unique up to isomorphism, that is if fi ∶ MI → Wi, i=1,2, are tensor
products, than there exists a R-linear isomorphism g ∶ W1 →W2 with f2 = g ○ f1.

Proof. Let F = FR(MI), the free module on the set MI . So F has a basis z(m),m ∈ MI . Let D be
the R-submodule if F generated by the all the elements in F of the form

z(ra,b) − rz(a,b)

and
z(a,b) + z(ã,b) − z(a + ã,b)

where r ∈ R, a ∈ Mi, b ∈ MI−i and i ∈ I.
Let W = F/D and define f ∶ MI →W,m→ z(m) + D.
To check that f is multilinear we compute

f (ra,b) − r f (a,b) = (z(ra,b) + D) − r(z(a,b) + D) = (z(ra,b) − rz(a,b)) + D = D = 0W
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and

f (a+ã,b)− f (a,b)− f (ã,b) = (z(a+ã,b)+D)−(z(a,b)+D)−z(ã,b)+D) = (z(a+ã,b)−z(a,b)−z(ã,b))+D = D = 0W .

So f is R-.multilinear.
To verify that f is a tensor product let f̃ ∶ MI → W̃ by R-multilinear. Since F is a free with basis

z(m),m ∈ M. There exists a unique R-linear map g̃ ∶ F → W̃ with g̃(z(m)) = f̃ (m) for all m ∈ MI .
We claim that D ≤ ker g̃. Indeed

g̃(z(ra,b) − rz(a,b)) = g̃(z(ra,b) − rg̃(z(a,b) = f̃ (ra,b) − r f̃ (a,b),
Here the first equality holds since g̃ is R-linear and the second since f̃ is multilinear.
Similarly g̃(z(a + ã) − z(a,b) − z(ã,b)) = g̃(z(a + ã)) − g̃(z(a,b)) − g̃(z(ã,b)) = f̃ (a + ã) −

f̃ (a,b) − f̃ (ã,b) = 0.
Hence ker g̃ contains all the generators of D and since ker g̃ is an R-submodule of F, D ≤

ker tildeg. Thus the map g ∶ W → W̃, e+D→ g̃(e) is well defined and R-linear. Note that g( f (m)) =

g̃( f (m)) = g̃(z(m)) = f̃ (m) and so f̃ = g ○ f . To show the uniqueness of g suppose that h ∶ W → W̃
is R-linear with f̃ = h ○ f . Define h̃ ∶ F → W̃ by h̃(e) = h(e + D). Then h is R linear and
h̃(z(m)) = h(z(m) + D) = h( f (m)) = f̃ (m) = g̃(z(m)). Since z(m) is a basis for F this implies
h̃ = g̃. Thus g(e + D) = g̃(e) = h̃(e) = h(e + D) and g = h, as required.

So f is indeed a tensor product.

Now suppose that fi ∶ MI → Wi,i=1,2 are tensor products for (Mi, i ∈ I over R. Let {1,2} =

{i, j}. Since fi is a tensor product and f j is multilinear, there exists gi ∶ Wi → W j with f j = gi fi.
Then (g jgi) fi = g j(gi fi) = g j f j = fi. Note that also idWi fi = fi and so the uniqueness assertion in the
definition of the tensor product implies g jgi = idWi . Hence g1 and g2 are inverse to each other and
g1 is a R-linear isomorphism. �

Let (Mi, i ∈ I) be a family of R-modules and f ∶ MI → W a tensor product. We denote W by
⊗i∈I

R Mi f ((mi)i∈I by ⊗i∈Imi. Also if there is no doubt about the the ring R and the set I in question,
we just use the notations ⊗Mi, ⊗mi and (mi)

If I == {1,2 . . . ,n} we also write M1 ⊗M2 ⊗ . . .⊗Mn for⊗Mi and m1 ⊗m2 ⊗ . . .⊗mn for ⊗mi.
With this notation we see from the proof of 5.1.5 ⊗Mi is as an R-module generated by the ele-

ments of the form ⊗mi But these elements are not linear independent. Indeed we have the following
linear dependence relations:

(ra)⊗ b = r(a⊗ b) and (a + ã)⊗ b = a⊗ b + ã⊗ b.
Here r ∈ R,a ∈ Mi, b = ⊗ j∈Jb j with b j ∈ M j and i ∈ I.

Lemma 5.1.6. Let I be finite. Then ⊗I R = R. More precisely, f ∶ RI → R, (ri) →∏i∈I ri is a tensor
product of (R, i ∈ I).

Proof. We need to verify that f meets the definition of the tensor product. Let f̃ ∶ RI → W̃ be
R-multilinear. Define g ∶ R → tildeW, r → r f̃ ((1))), where (1) denotes the element r ∈ RI with
ri = 1 for all i ∈ I. Then clearly g is R-linear. Moreover,

f̃ ((ri)) = f̃ ((ri1)) = (∏
i∈I

ri) f̃ ((1)) = g(∏
i∈I

ri) = g( f ((ri))
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Thus f̃ = g f .
Next let g̃ ∶ R → W̃ be linear with f̃ = g̃ f . Then g̃(r) = g̃(r1) = rg̃(1) = rg̃(∏i∈I 1) =

rg( f ((1)) = r f̃ ((1)) = g(r) and so g is unique. �

Lemma 5.1.7. Let (Mi, i ∈ I) be a family of R-modules. Suppose that I is the disjoint union of
subsets I j, j ∈ J. For j ∈ J let f j ∶ MI j → W j be R-multilinear. Also let g ∶ WJ → W be R-multilinear.
Then

g ○ ( f j) ∶ MI →W,m→ g(( f j(m j))

is R-multilinear.

Proof. Let f = g ○ ( f j). Let m ∈ MI and put w j = f j(mJ). Let w = (w j) ∈ WJ . Then f (m) = g(w).
Let i ∈ I and pick j ∈ J with i ∈ I j. Put b = (mk)k∈I−i and v = (wk)k∈J . Then w = (w j, v),

m = (mi,b) and fb(mi) = f (m) = g(w j, v) = gv(w j). Let d = (ml)k∈I j−i). Then mIJ = (mi,d). Thus
w j = f j(mI j) = f j(mi,d) = ( f j)d(mi).

Hence fb(mi) = gv(w j) = gv(( f j)d(mi)). So fb = gv ○ ( f j)d. Since g is multilinear, gv is R
linear. Since f j is a multilinear product, ( f j)d is R-linear. Since the composition of R-linear maps
are R-linear, fb is R-linear. So f is R-multilinear. �

Lemma 5.1.8. Let Mi, i ∈ I be a family of R-modules, f ∶ MI → W an R-multilinear map, I = J ⊎ K
and b ∈ MK .

(a) There exists a unique R-linear map f̆b ∶ ⊗J →W with f̆b(⊗Jm j) = fb((m j)).

(b) The function fK ∶ MK → HomR(⊗
J M j,W),b→ f̆b is R-multilinear.

(c) There exists a unique R-linear map f̆K ∶⊗K Mk → HomR(⊗
J M j,W) with f̆K(⊗

Kmk)(⊗
Jm j) =

f ((mi)).

(d) There exists a unique R-bilinear map, fK,J ∶ ⊗
K Mk ×⊗

J M j → W with fK,J(⊗
Kmk,⊗

Jm j) =

f ((mi))

Proof. (a) Follows from 5.1.2 and the definition of a tensor product.
(b) Let k ∈ K, a, ã ∈ Mk, r ∈ R, b ∈ MK−a and d ∈ MJ . The (a,b) ∈ MK and (a,b,d) ∈ MI . We

compute

(r f(a,b))(⊗
Jd j) = r f (a,b,d) = f (ra,b,d) = f(ra,b)(⊗

Jd j).

By the uniqueness assertion in (b), r f(a,b) = f(ra,b). Thus fK(ra,b) = r fK(a,b)
Similarly

( f(a,b) + f(ã,b))(⊗
Jd j) = f (a,b,d) + f (ã,b,d) = f (a + ã,b,d) = f(a+ã,b))(⊗

Jd j)

and f(a,b) + f(ã,b) = f(a+ã,b). Hence fK(aã,b) = fK(a + ã,b) and fK is R-multilinear.
(c Follows from (b) and the definition of a tensor product.
(d) Define fK,J(a,b) = f̆K(a)(b). Since f̆K and f̆K(a) are R-linear and fK,J is bilinear. Thus (d)

follows from (c). �
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Lemma 5.1.9. Let R be a ring and A,B and C R-modules. Then there exists an R-isomorphism

A⊗ B⊗C → A⊗ (B⊗C)

which sends a⊗ b⊗ c→ a⊗ (b⊗ c) for all a ∈ A,b ∈ B, c ∈ C.

Proof. Define f ∶ A × B ×C → A⊗ (B⊗C), (a,b, c) → a⊗ (b⊗ c). By 5.1.7, f is multilinear. So
there exists an R-linear map f̆ ∶ A⊗ B⊗C → A⊗ (B⊗C) with g(a⊗ b⊗ c) = a⊗ (b⊗ c).

By 5.1.8 there exists an R-linear map g = ⊗{1},{2,3}: A⊗(B⊗C)→ A⊗B⊗C with g(a⊗(b⊗c)) =
a⊗ c.

Note that (g f̆ )(a ⊗ b ⊗ c) = g(a ⊗ (b ⊗ c)) = a ⊗ b ⊗ c. Since A ⊗ B ⊗C is generated by the
a⊗ b⊗ c, we get g f̆ = id. Similarly f̆ g = id and so f̆ is an R-isomorphism. �

Lemma 5.1.10. Let I be a finite set and for i ∈ I let (Mi j, j ∈ Ji) be a family of R-modules. Then
there exists an R-isomorphism,

⊗
i∈I

(⊕
j∈I j

Mi j)→ ⊕
α∈JI

(⊗
i∈I

Miαi).

with
⊗i∈I (mi j) j∈Ji → (⊗i∈I miαi)α∈JI

Proof. Let Mi = ⊕ j∈Ji Mi j and let πi j ∶ Mi → Mi j the projection map of Mi onto Mi j. Note here if
mi ∈ Mi, then mi = (mi j) j∈Ji with mi j ∈ Mi j and πi j(mi) = mi j. Let α ∈ JI =∏i∈I Ji. Define

fα ∶ MI →⊗
i∈I

Miα(i), (mi)→ ⊗i∈I miαi .

Since ⊗ is multilinear and πi j is linear, 5.1.7 implies that fα is multilinear. Hence there exists a
unique R-linear map

f̆α ∶⊗
i∈I

Mi →⊗
i∈I

Miα(i)

with f̆α(⊗mi) = ⊗miαi . We claim that for a given m = (mi) there exists only finitely many α ∈ IJ

with fα(m) ≠ 0. Indeed there exists a finite subset Ki ⊆ Ji with mi j = 0 for all j ∈ Ji ∖ Ki. Thus
α(m) = 0 for all α ∈ JI ∖ KI . Since I and Ki are finite, KI is finite. Thus

f̆ = ( f̆α)α∈JI ∶⊗
i∈I

(⊕
j∈I j

Mi j)→ ⊕
α∈JI

(⊗
i∈I

Miαi).

is R-linear with
(∗) f̆ (⊗i∈I (mi j) j∈Ji ) = (⊗i∈I miαi)α∈JI

To show that f̆ is an isomorphism, we define its inverse. For j ∈ Ji let ρi j ∶ Mi j → Mi be the
canonical embedding. So for a ∈ Mi j, ρi j(a) = (ak)k∈I j , where ak = 0 of k ≠ j and a j = a. Let α ∈ JI

and define

ρα ∶∏
i∈I

Miαi →⊗
i∈I

Mi, (miαi)→ ⊗i∈I ρiαi(miαi).
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Then ρα is R-multilinear and we obtain an R linear map

ρ̆α ∶⊗
i∈I

Miαi →⊗
i∈I

Mi

with
ρ̆α(⊗i∈I miαi) = ⊗i∈I ρiαi(miαi).

Define
ρ̆ ∶ ⊕

α∈JI

(⊗
i∈I

Miαi)→⊗
i∈I

Mi, (dα)→ ∑
α∈IJ

ρα(dα).

Then ρ̆ is R linear. We claim that ρ̆ ○ f̆ = id and f̆ ○ ρ̆ = id.
Let m = (mi) = ((mi j)) ∈ Mi. Then mi = ∑ j∈Ji

ρi j(mi j) and by multilinearity of ⊗.

⊗i∈I mi = ∑
α∈JI

⊗i∈I ρiαi(miαi)

By (*) and the definition of ρ̆.

ρ̆( f̆ (⊗i∈I mi)) = ∑
α∈IJ

ρ̆α(⊗i∈Imiαi) = ∑
α∈IJ

⊗i∈I ρiαi(mialphai) = ⊗i∈I mi.

Hence ρ̆ f̆ = id.
Let d = (dα) ∈ ⊕α∈JI(⊗i∈I Miαi). To show that ( f̆ ρ̆)(d) = d we may assume that dα = 0 for all

α ≠ β and that dβ = ⊗i∈Imiβi with miβi ∈ Miβi . Put mi j = 0 for all j ≠ βi. Then mi ∶= (mi j) = ρiβi(miβi

Then
ρ̆(d) = ∑

α∈JI

ρ̆α(dα) = ρ̆β(⊗i∈Imiβi) = ⊗i∈I ρiβi(miβi) = ⊗i∈I mi

Let α ∈ JI with α ≠ 0. Then αi ≠ βi for some i ∈ I and so miαi = 0. Hence
f̆α(ρ̆(d)) = 0 = dα if α ≠ β and f̆α(ρ̆(d) = ⊗i∈Imiβi = dβ if β = α.
Thus f̆ (ρ̆(d)) = ( f̆α(ρ̆(d)) = (dα) = d. Hence f̆ ρ̆ = id and f̆ is an isomorphism with inverse

ρ. �

Corollary 5.1.11. Let (Mi, i ∈ I) be a finite family of R-modules. Suppose that Mi is a free R-module
with basis Ai, i ∈ I. Then ⊗i∈I Mi is a free R-module with basis

(⊗i∈I ai ∣ a ∈ AI}

.

Proof. For j ∈ Ai let Mi j = R j. Then Mi = ⊕ j∈Ai Mi j. For a ∈ Ai, put Ta = ⊗i∈I Miai . Since
each Mi j ≅ R, 5.1.6 implies Ta ≅ R. More precisely, ⊗i∈Iai is a basis for Ta. By 5.1.10 ⊗i∈I Mi ≅

⊕a∈AI Ta. Hence (⊗i∈I ai ∣ a ∈ AI} is indeed a basis for ⊗i∈I Mi. �

We will denote the basis from the previous theorem by ⊗i∈IAi. If I = {1, . . . ,n} and Ai =

{ai1,ai2, . . . ,aimi} is finite we see that ⊗i∈I Mi has the basis

a1 j1 ⊗ a2 j2 ⊗ . . .⊗ an jn , 1 ≤ j1 ≤ m1, . . . ,1 ≤ jn ≤ mn.
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Lemma 5.1.12. (a) Let (αi ∶ Ai → Bi, i ∈ I) a family of R-linear maps. Then there exists a unique
R-linear map.

⊗αi ∶⊗Ai →⊗Bi

with
(⊗αi)(⊗ai) = ⊗αi(ai)

(b) Let (αi ∶ Ai → Bi, i ∈ I) and (βi ∶ Bi → Ci, i ∈ I) families of R-linear maps. Then ⊗(βi ○ αi) =

(⊗βi) ○ ⊗(αi).

Proof. (a) Define f ∶ AI → ⊗Bi, (ai) → ⊗αi(ai). By 5.1.7 f is R-multilinear. So (b) follows
from the definition of the tensor product.

(b) Both these maps send ⊗ai to ⊗(βi(αi(ai)). �

5.2 Symmetric and Exterior Powers

Let I be a finite set, R a ring and M an R-module. Let Mi = M for all i ∈ M. Then MI = MI . Let
π ∈ Sym(I) and m = (mi) ∈ MI . Define mπ ∈ M by (mπ)i = mπ(i). ( So if we view m as a function
from I → M, mpi = m ○ π) For example if π = (1,2,3), then (m1,m2,m3)π = (m2,m3,m1). Note
that for π, µ ∈ Sym(I), m(πµ) = (mπ)µ.

Definition 5.2.1. Let I be a finite set, R a ring and M an R-modules. Let f ∶ MI → W be R-
multilinear.

(a) f is symmetric if f (mπ) = f (m) for all m ∈ M, π ∈ Sym(I).

(b) f is skew symmetric if f (mπ) = (sgnπ) f (m) for all m ∈ M, π ∈ Sym(I).

(c) f is alternating if f (m) = 0 for all m ∈ MI with mi = m j for some i ≠ j ∈ I.

Lemma 5.2.2. (a) Let f ∶ MI →W be alternating. Then f is skew symmetric.

(b) Suppose that f ∶ MI → W is skew symmetric and that w ≠ −w for all 0 ≠ w ∈ W. Then f is
alternating.

(c) Let f ∶ Mn → W be multilinear with f (m) = 0 for all m ∈ Mn with mi = mi+1 for some 1 ≤ i < n.
Then f is alternating.

Proof. (a) Let π ∈ Sym(I) and m ∈ M we need to show that f (πm) = sgn f (πm). Since π is the
product of two cycles we may assume that π itself is a 2-cycle. So π = (i, j) for some i ≠ j ∈ I.
Let a = mi,b = m j, d = mI∖{i, j} and g = fd. Then m = (a,b,d), f (m) = g(a,b) and (π f )(m) =

f (b,a,d) = g(b,a).
Since f and so also g is alternating we compute

0 = g(a + b,a + b) = g(a,a) + g(a,b) + g(b,a) + g(b,b) = g(a,b) + g(b,a)

Thus f (πm) = g(b,a) = −g(a,b) = (sgnπ) f (m)
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(b) Suppose that mi = m j for some i ≠ j and let π = (i, j). Then m = πm and so f (m) = f (πm) =

(sgnπ) f (m) = − f (m) Thus by assumption on W, f (m) = 0 and f is alternating.
(c) By induction on n. Let m ∈ M with mi = m j for some 1 ≤ i < j ≤ n. Let m = (a,b) with

a ∈ Mn−1, b ∈ M. Let g = fb, that is g(d) = f (d,b) for d ∈ Mn−1. By induction g is alternating.
So if j ≠ n, f (m) = g(a) = 0. So suppose j = n. Let π = (i,n − 1). By induction and (b),
f (mπ) = g(aπ) = −g(a) = − f (m). But (mπ)n−1 = mi = m j = mn = (mπ)n and so by assumption
f (mπ) = 0. Hence also f (m) = 0. �

Definition 5.2.3. Let R be a ring, M an R-module, I a finite set and f ∶ MI → W an R-multilinear
function.

(a) f is called an Ith symmetric power of M over R provided that f is symmetric and for every
symmetric function g ∶ MI → W̃, there exists a unique R-linear map ğ ∶ W → W̃ with g = ğ ○ f .

(b) f is called an Ith exterior power of M over R provided that f is alternating and for every
alternating function g ∶ MI → W̃, there exists a unique R-linear map ğ ∶ W → W̃ with g = ğ ○ f .

Lemma 5.2.4. Let R be a ring, M an R-module and I a finite set. Then an I-th symmetric and an
I-th exterior power of M over R exist. Moreover they are unique up to R-isomorphism.

Proof. Let A be the R-submodule of ⊗I M generated by the elements ⊗m − ⊗mπ, m ∈ MI , π ∈

Sym(I). Let W = (⊗I M)/A and define f ∶ MI → W by f (m) = ⊗m + A. We claim that f is an
I-th symmetric power for M over R. So let g ∶ MI → W̃ be symmetric. Then g is multilinear and
so by the definition of a tensor product there exists a unique R-linear map g̀ ∶ ⊗I M → W̃ with
g̀(⊗m) = g(m). Since g(m) = g(mπ) for all m ∈ M, π ∈ Sym(I) we have g̀(⊗m) = g̀(⊗mπ). Thus
⊗m − ⊗mπ ∈ ker g̀. Hence also A ≤ ker g̀. So there exists a uniquely determined and well defined
R-linear map ğ ∶ W → W̃,d + A → g̀(d) for all d + A ∈ W. So f is an I-symmetric power of M over
R.

Next let B be the R-submodule of ⊗I M generated by the elements ⊗m where m ∈ M with
mi = m j for some i ≠ j ∈ I. Let W =⊗I M/B and define f ∶ MI → W by f (m) = ⊗m + B. As above
it is now a routine exercise to verify that f is an R-exterior power of M over R.

Finally the uniqueness of the symmetric and alternating powers are verified in the usual way. �

We will denote the I-th symmetric power of M over R by MI → S I M, (mi) → ∏i∈I mi. The
exterior power is denoted by MI → ⋀I M, (mi)→ ∧i∈Imi.

Lemma 5.2.5. (a) S nR ≅ R for all n ≥ 1

(b) ⋀1 R ≅ R and ⋀n R = 0 for all n ≥ 2.

Proof. (a) By 5.1.6 Rn → R, (ri) → ∏ ri is the n-th tensor power of R. Since the map is symmetric
and is also the n-th symmetric power.

(b) An alternating map in one variable is just a linear map. So ⋀R = R. Now suppose n ≥ 2,
a,b ∈ R, c ∈ Rn−2 and f ∶ Rn → W is alternating. Then f (a,b, c) = ab f (1,1, c) = 0. Hence
ΛnR = 0. �
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Lemma 5.2.6. Let (Mi, i ∈ I) be an R modules, I a finite set and suppose that I is the disjoint
unions of the subsets Ik ∈ K and Mk is an R-module with Mi = Mk for all i ∈ Ik. Let g ∶ MI → W be
multilinear. Then

(a) Suppose that for all k ∈ K and b ∈ I ∖ Ik, gb ∶ MIk
k →W is alternating. Then there exists a unique

R-linear map

ğ ∶⊗
k∈K

(
Ik

⋀Mk)→W

with
ğ(⊗ j∈J(∧i∈Ik mi) = g((mi))

for all (mi) ∈ MI .

(b) Suppose that for all k ∈ K and b ∈ I ∖ Ik, gb ∶ MIk
k → W is symmetric Then there exists a unique

R-linear map
ğ ∶⊗

k∈K
(S Ik M)→W

with
ğ(⊗ j∈J(∧i∈Ik mi) = g((mi))

for all (mi) ∈ MI .

Proof. This is easily proved using the methods in 5.1.2 and 5.1.9 �

Lemma 5.2.7. Let R be a ring, I a finite set and (M j, j ∈ J) a family of R-modules. Let ∆ = {d ∈

NJ ∣ ∑ j∈J d j = ∣I∣}. For j ∈ J let {I j
d ∣ j ∈ J} be a partition of I with ∣I j

d∣ = d j for all j ∈ J. For d ∈ ∆

put A(d) = {α ∈ Jn ∣ ∣α−1( j)∣ = d j}. For α ∈ A(d) and j ∈ J put I j
α = α

−1( j) = {i ∈ I ∣ αi = j}. Let
πα ∈ Sym(I) with πα(I j

d) = I j
α. Then

(a) The function
f ∶ (⊕

j∈J
M j)

I →⊕
d∈∆

(⊗
j∈J

S I j
d M j)

((mi j) j∈J)i∈I)→ ( ∑
α∈A(d)

⊗
j∈J

(∏
i∈I j

d

mπα(i) j) )d∈∆

is an I-th symmetric power of ⊕ j∈J M j over R.

(b) The function

f ∶ (⊕
j∈J

M j)
I →⊕

d∈∆
(⊗

j∈J

I j
d

⋀M j)

((mi j) j∈J)i∈I)→ ( ∑
α∈A(d)

sgnπα ⊗
j∈J

(⋀
i∈I j

d

mπα(i) j) )d∈∆

is an I-th exterior power of⊕ j∈J M j over R.
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Proof. (b) View each α = (αi)i∈I ∈ Jn as the function I → J, i → αi. Since {I j
d ∣ j ∈ J of I is a

partition of I, each I j
d is a subset of I and each i ∈ I is contained I j

d for a unique j ∈ J. Define αd ∈ JI

by (αd)i = j where i ∈ I j
d.

Let α ∈ JI . Note that {I j
α ∣ j ∈ J} is a partition of I. Define d = dα ∈ ∆ by (dα) j = ∣I j

α∣. So d is
unique in ∆ with α ∈ A(d). Note that I j

αd = I j
d. We will now verify that there exists a πα ∈ Sym(I)

with πα(I j
d) = I j

α. Since ∣I j
α∣ = ∣I j

d∣, there exists a bijection π j
α ∶ I j

d → I j
α.

Define πα ∈ Sym(I) by πα(i) = π
j
α(i), where i ∈ I j

d. Since π j
α(i) ∈ Iα j , α(π j

α(i)) = j. But
j = αd(i) and so α ○ πα = αd.

Conversely if π ∈ Sym(I) with α ○ π = αd then π j ∶ I j
d → I j

α, i→ π(i) is a well defined bijection.
Define

f j
d ∶ Mn →

d j

⋀M j, m→ ∧i∈I j
d
mi j

and

fd ∶ Mn →⊗
j∈J

(
d j

⋀M j), m→ ⊗ j∈J f j
d (m))

We will now show sgnπα fd ○ πalpha does not depend on the particular choice of πα. For this let
π ∈ Sym(n) with αd = α ○ π. Put σ = π−1πα and σ j = (π j)−1π j

α. So Then σ j ∈ Sym(I j
d) and and

( f j
d ○ πα(m) = f j

d (mπα) = ∧i∈I j
d
(mπα)i j = ∧i∈I j

d
(m

π
j
α(i) j =

= ∧i∈I j
d
mπ j(σ j(i)) j = (sgnσ j)(∧i∈I j

d
mπ j(i) j) = (sgnσ j)( f j

d ○ π)(m)

Thus f j
d ○ πα = (sgnσ j) f j

d ○ π Taking the tensor product over all j ∈ J and using sgnσ =

∏ j∈J sgnσ j we get fd ○ πα = sgnσ fd ○ π. But sgnπ = sgnπαsgnsigma and so

sgnπα fd ○ παsgnπ fd ○ π

So we can define fα = sgnπ fd ○ π, where π ∈ Sym(n) with αd = απ.
Let µ ∈ Sym(n) and j ∈ J. Then (αµ)(i) = j if and only if α(µ(i)) = j. Thus µ(I j

αµ) = I j
α.

Hence dαµ = dα = d. Put ρ = παµ Then

αd = (αµ) ○ ρ = α ○ (µ ○ ρ

So by definition of fα
fα(m) = (sgn(µ ○ ρ))( fd ○ (µ ○ ρ) = (sgnµ)(sgnρ)( fd ○ ρ)(mµ) = sgnµ fαµ(mµ). So we proved:

(**) fαµ(mµ) = (sgnµ) fα(m)

For d ∈ ∆ define f̄d = ∑α∈A(d) fα We will show that f̄d is alternating. By 5.1.7, f a
d lpha is

multilinear. Hence also f̄d is multilinear.



5.2. SYMMETRIC AND EXTERIOR POWERS 287

Now suppose that mk = ml for some k ≠ l ∈ I. Put µ = (k, l) ∈ Sym(I).
Let α ∈ A(d). Suppose that α = αµ, that is αk = αl. Let j = α(i). Then k, l ∈ I j

α) . Since ml = mk,
ml j = mi j Thus ∧i∈I j

α
mi j = 0 , f j

α(m) = 0 and so also fα(m) = 0.
Suppose next that α ≠ αµ. Since mk = ml, m = mµ. So by (**)

fαµ(m) = fαµ(mµ) = sgnµ fα(m) = − fα(m)

Hence fαµ(m) + fα(m) = 0. It follows that f̄d(m) = ∑α∈A(d) fα(m) = 0 and f̄d is alternating.
Now define

f = ( f̄d) ∶ Mn →⊕
d∈∆

(⊗
j∈J

d j

⋀M j), m→ ( f̄d(m))d∈∆.

To complete the proof of (b) it remains to verify that f is an I-th exterior power of M. Since
each fd is alternating, f is alternating. Let g ∶ Mn →W be alternating.

By 5.2.6 there exists a unique R-linear map

ğd ∶⊗
j∈J

(
I j
d

⋀M j)→W

with

ğd(⊗ j ∈ J ∧i∈I j
d

mi = g(m)

where m ∈ MI with mi ∈ M j for all i ∈ I j
d.

Define

ğ ∶⊕
d∈∆

(⊗
j∈J

d j

⋀M j)→W, (ud)d∈∆ →∑
d∈∆

ğd(ud)

Let m ∈ MI . Since g is multilinear,

g(m) = ∑
α∈JI

wα

where wα = g(miα(i)).
Let π = πα. Since g is alternating and αd = απ,

wα = sgnπg(mπi,αd(i))

Note that ⊗ j ∈ J ∧i∈I j
d

mi ∧i∈I j
d

mπiαd(i) = fd(mπ)) and so by definition of ğd and the previous
equation

wα = sgnπğd( fd(mπ)) = ğd( fα(m))

Thus
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g(m) = ∑
α∈JI

wα) =∑
d∈∆

∑
α∈A(d)

ğd( fα(m)) ==

=∑
d∈∆

ğd( ∑
α∈A(d)

fα(m)) =∑
d∈∆

ğd f̄d(m)) = ğ(( f̄d(m)d∈∆) = ğ( f (m))

Thus g = ğ ○ f . So f is indeed an exterior power and (b) is proved.
(a) To prove (a) we change the proof for (b) as follows: Replace⋀ by S . Replace ∧ by ⋅. Replace

every sgnlambda by 1. Finally the following argument needs to be added:
Let µ ∈ Sym(I). Then using (**) and A(d) = {αµ ∣ α ∈ A(d) we get

f̄d(m) = ∑
α∈Ad

fα(m) = ∑
α∈A(d)

fαµ(mµ) = ∑
α∈Ad

fα(mµ) = f̄d(mµ).

Thus f̄d is symmetric. �

A remark on the preceding theorem. The proof contains an explicit isomorphism. But this
isomorphism depends on on the choice of the partitions Ik

d. And the computation of the isomorphism
depends on the choice of the πα. Here is a systematic way to make these choices. Assume I =

{1, . . . ,n} and choose some total ordering on J. Let d ∈ ∆ and let Jd = { j ∈ J ∣ d j ≠ 0. Note that
∣Jd∣ ≤ ∣I∣ and so Jd is finite. Hence Jd = { j1, . . . ju with j1 < j2 < . . . < ju. To simplify notation
we write k for jk. Choose I1

d = {1,2, . . . ,d1, I2
d = {d1 + 1,d1 + 2, . . . ,d1 + d2} and so on. Now let

α ∈ A(d). So I j
d = {s + 1, s + 2, . . . s + d j, where s = ∑k< j dkDefine πα as follows. Send 1 to the

smallest i with α(i) = 1, 2 to the second smallest element with α(i) = 1, d1 to the largest element
with α(i) = 2, d1 + 1 to the smallest element with α(i) = 2 and so on.

Finally we identify ⋀I j
d M j with ⋀d j M j by identifying ∧i∈Id j vi ∈ ⋀

I j
d M j with ∧d j

t=1vs+t ∈ ⋀
d j M j,

where s = ∑k< j dk.
Let m = (mi) ∈ MI such that for all i ∈ I there exists a unique j ∈ J with mi j ≠ 0. So mi = mi j for

a unique j ∈ J. Denote this j by α(i). Then α ∈ JI . Note that f̄d(m) = 0 for all d ≠ dα. So suppose
that α ∈ A(d). Let I j

α = {i j
1, i

j
2, . . . i

j
d j
} with i j

1 < i j
2 < . . . < id j . Then since ∧ is skew symmetric there

exists ε ∈ {1,−1} with

∧m = m1,α(1) ∧m2,α(2) ∧ . . . ∧mn,α(n) =

= εmi11,1
∧mi12,1

∧ . . . ∧mid1 ,1
∧mi22,2

. . . ∧mid2 ,2
∧ . . . ∧miu1,u ∧ . . . ∧miudu

,u

Then ε = sgnπα and f̄d(m) is

ε(mi11,1
∧mi12,1

∧ . . . ∧mid1 ,1
)⊗ (mi22,2

. . . ∧mid2 ,2
)⊗ . . .⊗ (miu1,u ∧ . . . ∧miudu

,u)

For example suppose that ∣I∣ = 3 and ∣J∣ = 2. We want to compute f (m11 +m12,m21 +m22,m31 +

m32). Since f is multilinear we need to compute f (m1α(1),m2α(2),m3α(3) where α(i) ∈ J = {1,2}.
If α = (1,1,1) then dα = (3,0) and

f̄(3,0)(m11,m21,m31) = m11 ∧m21 ∧m31
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If α = (1,1,2) then dα = (2,1) and

f̄(2,1)(m11,m21,m32) = (m11 ∧m21)⊗m32

If α = (1,2,1) then dα = (2,1) and

f̄(2,1)(m11,m22,m31) = −(m11 ∧m31)⊗m22

If α = (1,2,2) then dα = (1,2) and

f̄(1,2)(m11,m22,m32) = m11 ⊗ (m22 ∧m32)

If α = (2,1,1) then dα = (2,1) and

f̄(2,1)(m11,m21,m32) = (m21 ∧m31)⊗m12

If α = (2,1,2) then dα = (1,2) and

f̄(1,2)(m12,m21,m32) = −m21 ∧ (m12 ⊗m32)

If α = (2,2,1) then dα = (1,2) and

f̄(1,2)(m12,m22,m31) = m31 ⊗ (m12 ∧m22)

If α = (2,2,2) then dα = (0,3) and

f̄(0,3)(m12,m22,m32) = m12 ∧m22 ∧m32.

Thus the four coordinates of f (m) are:
d = (3,0) ∶

m11 ∧m21 ∧m31

d = (2,1) ∶
(m11 ∧m21)⊗m32 − (m11 ∧m31)⊗m22 + (m21 ∧m31)⊗m12

d = (1,2) ∶
m11 ⊗ (m22 ∧m32) −m21 ∧ (m12 ⊗m32) +m31 ⊗ (m12 ∧m22)

d = (0,3) ∶
m12 ∧m22 ∧m32

Lemma 5.2.8. Let R be a ring, n a positive integer and M a free R-modules with basis B. Let ” ≤ ”
be a total ordering on B.

(a) (b1b2 . . .bn ∣ b1 ≤ b2 ≤ . . .bn ∈ B) is a basis for S nM.

(b) (b1 ∧ b2 ∧ . . . ∧ bn ∣ b1 < b2 < . . .bn ∈ B) is a basis for S nM).
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Proof. For b ∈ B put Mb = Rb. Then Mb ≅ R and M = ⊕b∈B Mb. We will apply 5.2.7 with
I = {1, . . . ,n} and J = B. Let ∆ be as in the statement of that theorem. Let d ∈ ∆.

(a) By 5.2.5, S t Mb ≅ R with basis bt. By 5.1.6

⊗
b∈B

(S db Mb) ≅ R

and has ⊗b∈Bbdb has a basis. (a) now follows from 5.2.7(a)
(b) By 5.2.5 ⋀t Mb = 0 for all t ≥ 2. So

⊗
b∈B

(
db

⋀Mb) ≅ R = 0

if db ≥ 2 for some b ∈ B and

⊗
b∈B

(
db

⋀Mb) ≅ R

if db ≤ 1 for all b ∈ B. Moreover, it has basis ⊗b∈B,db=1b. (b) now follows from 5.2.7(b). �

Example: Suppose M has basis {a,b, c,d}. Then S 3M has basis

d3, cd2, c2d, c3,bd2,bcd,bc2,b2d,b2c,b3,ad2,acd,ac2,abd,abc,ab2,a2d,a2c,a2b,a3

and ⋀3 M has basis

b ∧ c ∧ d,a ∧ c ∧ d,a ∧ b ∧ d,a ∧ b ∧ c

Corollary 5.2.9. Let R be a ring and n,m positive integer. Then

(a) S mRn ≅ R(
n+m+1

m )

(b) ⋀m Rn ≅ R(
n
m).

Proof. This follows from 5.2.8 �

Lemma 5.2.10. Let R be a ring and M an free R-module with finite basis A and B. Then ∣A∣ = ∣B∣.

Proof. Let n = ∣A∣. Then M ≅ Rn. So by 5.2.9(b), n is the smallest non-negative integer with
⋀n+1 M = 0. So n is uniquely determined by M and n = ∣B∣. �

Definition 5.2.11. Let R be a ring and M and free R-module with a finite basis B∣. Then ∣B∣ is called
the rank of M.
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5.3 Determinants and the Cayley-Hamilton Theorem

Lemma 5.3.1. Let I be finite set and R a ring.

(a) Let α ∶ A→ B be R-linear. Then there exists a unique R-linear map

∧Iα ∶
I
⋀A→

I
⋀B

with
∧Iα(∧ai) = ∧α(ai).

(b) Let α ∶ A→ B and β ∶ B→ C be R-linear. Then

∧I(β ○ α) = ∧Iβ ○ ∧Iα.

Proof. (a) Define g ∶ AI → ⋀I B, (ai) → ∧α(ai). If ai = a j for some i ≠ j then also α(ai) = α(bi)

and so g(a) = 0. Thus g is alternating and (a) follows from the definition of an exterior power.
(b) Both these maps send ∧ai to ∧β(α(ai)). �

Theorem 5.3.2. Let R be a ring and n a positive integer.

(a) Let R be a ring, 0 ≠ M a free R-module of finite rank n, and α ∈ EndR(V). Then there exists a
unique r ∈ R with ∧nα = rid⋀n M. We denote this r by detα.

(b)
det ∶ EndR(V)→ R, α→ detα

is a multiplicative homomorphism.

(c) There exists a unique function det ∶MR(n) → R ( called determinant) with the following two
properties:

(a) When viewed as a function in the n columns, det is alternating.

(b) Let In be the n × n idendity matrix. Then det In = 1.

(d) Let A = (ai j) ∈MR(n). Then

det A = ∑
π∈Sym(n)

sgnπ
n

∏
i=1

aiπi

(e) Let A = (ai j) ∈ MR(n) and a j = (ai j) the j-th column of A. Then ∧a j = det A ∧ e j, where
e j = (δi j) ∈ Rn.

(f) Let R be a ring, 0 ≠ M a free R-module of finite rank n, α ∈ EndR(V). and B a basis for M. Let
A =MB(α) be the matrix for α with respect to B. Then

detα = det A
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(g) Let A ∈MR(n). Then
det A = det AT

where aT
i j = a ji.

Proof. (a) By 5.2.9, ⋀I M ≅ R. Thus by 3.6.15, EndR(⋀
I M) = Rid. So (a) holds.

(b) follows from 5.3.1.
(c) Let ei = (δi j) ∈ Rn. Then by 5.2.8, e ∶= ∧n

i=1ei is a basis for ⋀n Rn. Define τ ∶ ⋀n Rn → R, re→
r. Let A ∈ MR(n) a view A as (ai)1≤i≤n with ai ∈ Rn. Define det A = τ(∧i∈Iai. Since In = (ei),
det In = 1. So det fulfills (Det Alt) and Det I. Suppose now f ∶ (Rn)n → R is alternating with
f ((ei)) = 1. Then by definition of an I-th exterior power there exists an R-linear map f̆ ∶ ⋀n Rn → R
with f = f̆ ○ ∧. Then f̆ (e) = ĕ(∧ei) = f ((ei) = 1 and so f̆ = τ and f = det . Thus (c) holds.

(d) We will apply 5.2.7 with I = J = {1, . . . ,n} and M j = Re j. So⊕ j∈J = Rn. Let δ ∈ ∆. If d j ≥ 2

for some j ∈ J then ⋀I j
d M j = 0. If d j ≤ 1 for all j, then ∑ j∈J d j = n = ∣I∣ forces d j = 1 for all j ∈ J.

Let d ∈ ∆ with d j = 1 for all j ∈ J. Also Re j → R, re j → R is an 1-st exterior power. Let α ∈ JI . Then
α ∈ A(d) if and only if ∣α−1( j)∣ = 1 for all j ∈ J. This is the case if and only of α ∈ Sym(n). Also
πα = α. Hence 5.2.7 implies that

f ∶ (Rn)n → R (mi j)→ ∑
α∈Sym(n)

n

∏
i=1

miπi

is an n-th exterior power of Rn. Note that f ((ei)) = 1. So this this choice of ⋀n Rn we have e = 1,
τ = idR and det = f . so (d) holds.

(e) was proved in (c).
(f) For A ∈ MB(R) let α = αA be the corresponding elements of EndR(M). So α(b) =

∑d∈B adbd. Let ab = (adb, the b-th column of A. Suppose that ab = ac with b ≠ c. Then α(b) = α(c)
and so (∧α)(∧b) = ∧α(b) = 0. Hence detα = 0. Also det In = det id = 1 and so A → det(αA)

fulfilled (Det Alt) and (Det I). Thus the uniqueness of det A implies det A = detα.
(g) Using (d) we compute

det AT = ∑
π∈Sym(n)

sgnπ∏
i∈I

aT
iπ(i) = ∑

π∈Sym(n)
sgnπ∏

i∈I
aπ(i)i =

= ∑
π∈Sym(n)

sgnπ∏
i∈I

aiπ−1(i) = ∑
π∈Sym(n)

sgnπ∏
i∈I

aiπ(i) = det A

�

Definition 5.3.3. Let R be a ring and s ∶ A→ B→ C R-bilinear.

(a) An s-basis for is a triple ((ad ∣ d ∈ D), (bd ∣ d ∈ D), c) such that D is a set, (ad ∣ d ∈ D) is a
basis for A, (bd,d ∈ D) is a basis for B and {c} is a basis for C with s(ad,be) = δdec for all
d, e ∈ D.

(b) We say that is s is a pairing if there exists an s-basis. s is a finite pairing if s is pairing and
rankA = rankB is finite.
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Note that if s ∶ A → B → C is a pairing, then A,B and C are free R-modules and C ≅ R as an
R-module. Also s is non-degenerate, that is s(a,b) = 0 for all b ∈ B implies a = 0, and s(a,b) = 0
for all a ∈ A implies b = 0.

The converse is only true in some special circumstances. For example if R is a field, s ∶ A →
B→ C is bilinear, dimR C = 1 and dimR A is finite, then it is not to difficult to see that s is a pairing.

But if dimR A is not finite this is no longer true in general. For example let B = A∗ = HomR(A,R)

and s(a,b) = b(a). Then dimR B > dimR A and so s is not a pairing.
For another example define s ∶ Z → Z → Z(a,b) → Z, (a,b) → 2ab. The s is not a pairing.

Indeed suppose ({a},{b}, c) is an s basis. Then c = s(a,b) = 2ab, a contradiction to Z = Zc.

Lemma 5.3.4. Let R be a ring, I, J,K finite sets with K = I ⊎ J and let s ∶ A × B → R be R-bilinear.
Let ∆ = {E ⊆ K ∣ ∣E∣ = ∣J∣} and for E ∈ ∆ choose πE ∈ Sym(K) with πE(J) = E.

(a) There exists a unique R-bilinear map

sJ
K ∶

K
⋀A ×

J
⋀B→

I
⋀A

with
sJ

K(∧ak,∧b j) = ∑
E∈∆

det(s(aπE( j),b j′) j, j′∈J) ⋀
i∈I

aπE(i)

(b) sJ
K is independent form the choice of the πE .

(c) Let α ∈ EndR(A) and β ∈ EndR(B with s(α(a),b) = s(a, β(b)) for all a ∈ A,b ∈ B. Then

(∧Iα) (sJ
K(u , (∧Jβ)(v) ) = sJ

K( (∧
Kα)(u) , v )

for all u ∈ ⋀K A andv ∈ ⋀J B.

(d) Suppose there exists a basis E = (ed,d ∈ D) for A and a basis F = ( fd,d ∈ D) for B such that
s(ed, fd′) = δdd′ . Let α ∈ DK and β ∈ DJ be one to one. Then

sJ
K((⋀

k∈K
eα(k),⋀

j∈J
fβ(k)) =

⎧⎪⎪
⎨
⎪⎪⎩

±⋀k∈K∖α−1(β(J)) eα(k) if β(J) ⊆ α(K)

= 0 if β(J) /⊆ α(K)
.

Proof. (a) and (b) We first show that

fE(a,b) ∶= sgnπE det(s(aπE( j),b j′) j, j′∈J⋀
i∈I

aπE(i)

is independent from the choice of πE . Indeed let π ∈ Sym(K) with π(J) = E. Let σ = π−1πE . Let
σJ ∈ Sym(J) be defined by σJ( j) = σ( j). Similarly define σI . Then

det(s(aπE( j),b j′)) = det(s(a(πσJ( j),b j′) = sgnσJ det(s(aπi,b j′)

and
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⋀
i∈I

aπE(i) =⋀
i∈I

aπσI(i) = sgnσI⋀
i∈I

aπ(i).

Using that sgnπ = sgnσsgnπE = sgnσIsgnσ jsgnπE and multiplying the last two equations to-
gether we obtain the claimed independence from the choice of πE .

Define

f ∶ AK × BJ →
J
⋀A, (a,b)→ ∑

E∈∆
fE(a,b)

In view of 5.2.6 it remains to show that fb and fa are alternating for all a ∈ AK and b ∈ BJ . That
fa is alternating is obvious. So suppose b ∈ BJ and a ∈ AK with ak = al for distinct k, l ∈ K. Let
E ∈ ∆ and put π = πE . If k and l are both in π(J) then det(s(aπ j,b j′)) = 0. If k, l are both in I
then ⋀i∈I aπ(i) = 0. So in both these cases fE(a,b) = 0. Suppose now that k ∈ π(I) and l ∈ π(J).
Let σ = (k, l) ∈ Sym(K) and E′ = σ(E) ≠ E. We may choose πE′ = σπ. ak = al now implies
fE′(a,b) = sgnσ fE(a,b) and so fE′(a,b) + fE(a,b) = 0. If follows that fb(a) = f (a,b) = 0 and fb
is alternating.

(c) Let a ∈ AK , b∈BJ . Note that β ○ b = (β(b j)). Let E ∈ ∆. Then

(
I
⋀α)( fE(a, β ○ b)) = (

I
⋀α)(sgnπE det(s(aπE( j), β(b j′))⋀

i∈I
aπE(i)) =

= sgnπE det(s(α(aπE( j),b j′)⋀
i∈I
α(aπE(i))) = fE(α ○ a,b)

Thus (c) holds.
(d) Suppose E ∈ ∆ and fE(a,b) ≠ 0 where a = (eα(k)) and b = ( fβ( j)). Let A = s(eα(πE( j)), fβ( j′).

Then det A ≠ 0. Let t ∈ E. Then t = πE( j) for some ∈ J and so (s(eα(t), t, α fβ( j′) j′∈J is a row of A.
This row cannot be zero and s(eα(t), t, α fβ(t′) ≠ 0 for some t′ ∈ J. But then α(t) = β(t′). It follows
that β(J) ⊆ α(I) and E = α−1β(I). Also det A = ±1 and so (ca) holds. �

Proposition 5.3.5. Let R be a ring and M an R-module.

(a) Let I, J and K finite sets with K = I ⊎ J Then there exists a unique bilinear map

∧ ∶
I
⋀M ×

J
⋀M →

K
⋀M, (a,b)→ a ∧ b

with
(∧i∈Imi) ∧ (∧ j∈Jm j) = ∧k∈K mi

for all (mi) ∈ Mk+l.

(b) Define

⋀M =
∞

⊕
i=0

i
⋀M
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and

∧ ∶⋀M ×⋀M →⋀M, (ai)
∞
i=o ∧ (b j)

∞
j=0 = (

k

∑
i=0

ai ∧ bk−i)
∞
k=0.

Then (⋀M,+,∧) is a (non)-commutative ring with R = ⋀0 M ≤ Z(⋀M).

Proof. (a) Define f ∶ MI × MJ → ⋀K M, ((ai), (a j))→ ∧k∈Kak. Clearly f(ai) and f(a j) is alternating
and so (a) follows from 5.2.6.

(b) First of all (⋀M,+) is an abelian group. By (a) ∧ is bilinear. So the distributive laws hold.
Let l,m,n be non-negative integers and mk ∈ M for 1 ≤ k ≤ l +m + n. Then

(
l
⋀
i=1

mi ∧
l+m
⋀

i=l+1
mi) ∧

l+m+n
⋀

i=l+m+1
mi =

l+m+m
⋀
i=1

mi =
l
⋀
i=1

mi ∧ (
l+m
⋀

i=l+1
mi ∧

l+m+n
⋀

i=l+m+1
mi)

and so ∧ is associative.
So (⋀M,+,∧) is indeed a (non)-commutative ring. That R ≤ Z(⋀M) follows from the fact that

∧ is R-linear. �

Lemma 5.3.6. Let R be a ring and s ∶ A × B→ C a finite pairing.

(a) The functions
sA ∶ A→ HomR(B,C),a→ sa

and
sB ∶ B→ HomR(A,C),b→ sb

are R-linear isomorphism.

(b) Let f ∈ EndR(B). Then there exists a unique f s ∈ EndR(A) with s( f s(a),b) = s(a, f (b)) for all
a ∈ A, b ∈ B.

(c) Suppose (ad,d ∈ D), (bd,d ∈ D) and (c) are s-basis for (A,B,C). Let MD( f s) = MD( f )T

Proof. Let ((ad ∣,d ∈ D), (bd ∣ d ∈ D), c) be an s basis. (a) For e ∈ D define φe ∈ HomR(B,C) by
φe(∑rdbd

= rec. Then (φd,d ∈ D) is a basis for HomR(B,C). Since s(ae,bd) = δedc. sA(e) = φe.
Hence (a) holds.

(b) Define f̃ ∈ EndR(HomR(B,C) by f̃ (φ) = φ ○ f . Let g ∈ EndR(A),a ∈ A and b ∈ B. Then

s(a, f (b)) = sA(a)( f (b)) = (( f̃ )(sA))(a)(b)

and
s(g(a),b) = sA(g(a))(b)

Hence s(a, f (b) = s(g(a),b) for all a ∈ A, b ∈ B if and only if f̃ ○ sA = sA ○ g. By (a), sA has an
inverse so f s = s−1

A f̃ sA is the unique element fulfilling (c).
(c) Let g ∈ EndR(B). Put U = M f (D) and V = Mg(D). So g(ad) = ∑h∈D vhdah and f (bd) =

∑h∈D uhdbh. Thus
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s(ae, f (bd)) = ∑
h∈D

uhd s(ae,bh) = uedc

and
s(g(ae),bd) = sumh∈Dvhes(ah,bd) = vdec

Hence s(a, f (b)) = s(g(a), f ) for all a ∈ A, b ∈ B if and only if vde = ued for all d, e ∈ D. So (c)
holds ( and we have a second proof for (b)). �

Recall that for an R-module M, M∗ denote the dual module, so M∗ = HomR(M,R).

Lemma 5.3.7. Let R be a ring, M a free module of finite rank over R and I a finite set

(a) There exists a unique R-bilinear function sI ∶ ⋀I M∗×⋀I M → R with sI(⋀φi,⋀mi) = det(φi(m j))i, j∈I .

(b) sI is a finite pairing.

(c) ⋀I M∗ ≅ (⋀I M)∗ as R-modules.

Proof. Define s ∶ M∗ × M → R, (φ,m)→ φ(m). (a) follows from 5.3.4(a) applied with A = M∗,B =

M,K = I, J = I and ”I = ∅”. And (b) follows from part (d) of the same lemma. Finally (c) is a
consequence of (b) and 5.3.6(a). �

Proposition 5.3.8. Let R be a ring and M a R-module of finite rank. Let f ∈ EndR(M). Then there
exists f ad ∈ EndR(M) with f ○ f ad = f ad ○ f = det f idM.

Proof. Consider t ∶ M × ⋀Mn−1 → ⋀Mn, (m,b) → m ∧ b. We claim that t is a finite pairing. For
this let (ai,1 ≤ i ≤ n) be a basis for M. Put bi = a1 ∧ a2 ∧ ai−1 ∧ ai+1 ∧ an. Let c = a1 ∧ . . .an. By
5.2.8, (bi,1 ≤ i ≤ n) is a basis for ⋀n−1 M and {c} is a basis for ⋀n M. Also ai ∧ b j = 0 for i ≠ j
and ai ∧ bi = (−1)i1c . ((ai), ((−1)i−1bi), c) is a t basis. Let f ad = (bigwedgen−1 f )t be given by
5.3.6(b). So f ad ∈ EndR(M) is uniquely determined by

f ad(m) ∧ b = m ∧ (
n−1
⋀ f )(b)

for all m ∈ M,b ∈ ⋀n−1 M.
In particular,

( f ad( f (m) ∧ b) = f (m) ∧ (
n−1
⋀ f )(b) = (

n
⋀ f )(m ∧ b) = (det f )(m ∧ b) = m ∧ (det f )b

Note that also (det f )m ∧ b = m ∧ (det f )b and so by 5.3.6

f ad ○ f = ((det f )id
⋀

n−1 M)t = (det f )idM

To show that also f ○ f ad = idM we use the dual M∗ of M. Recall that f ∗ ∈ EndR(M∗) is
define by f ∗(φ) = φ ○ f . It might be interesting to note that f ∗ = f s, where s is the pairing
s ∶ M∗ → M, (φ,m)→ φ(m).

Applying the above results to f in place of f ∗ we have
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f ∗ad ○ f ∗ = (det f ∗)idM∗

By 5.3.2(g) we have det f∗ = det f . So dualizing the previous statement we get

f ○ ( f ∗ad∗ = det f idM

So the proposition will be proved once we show that f ∗ad∗ = f ad or f ∗ad = f ad∗ .
To do this we will compute that matrix of f ad with respect to the basis (ai). Let D be the matrix

of f with respect to (ai) and E the matrix of ⋀n−1 f with respect to ((−1)i−1bi). We compute

(
n−1
⋀ f )(bi) = ∧h≠i f (ah) = ∧h≠i(

n

∑
k=1

dhkak

Let Di j be the matrix (dkl)k≠i,l≠ j. Then the coefficient of b j in ∧h≠i(∑
n
k=1 dhkak is readily seen to be

det Di j.
It follows that

Ei j = (−1)i−1−1 j−1 det Di j = (−1)i+ j det Di j

Let (φi) be the basis of M∗ dual to (ai). So φi(a j) = δi j. Then the matrix for f ∗ with respect to
(φi) is DT . Note that (DT)i j = (D ji)

T and so the (i, j) coefficient of the matrix of f ∗ad is

(−1)i+ j det(DT)i j = (−1)i+ j det(D ji)
T = (−1)i+ j det D ji

Thus f ∗ad has the matrix ET with respect to (φi). So does ( f ad∗. Hence f ∗ad = f ad∗ and the
proposition is proved. �

Lemma 5.3.9. Let R and S be rings with R ≤ S . Let M be an R module. Then there exists bilinear
function

⋅ ∶ S × S ⊗R M → S ⊗ M, (s, m̃)→ sm̃

with
s(t ⊗m = st ⊗m

for all s, t ∈ S and m ∈ M. Moreover, (S ⊗R M, c ⋅ 0 is an S -module.

Proof. Let s ∈ S . By 5.1.12 there exists a unique sidS ⊗ idM ∈ EndR(S ⊗R M) which sends t⊗m to
st⊗m. We will write s⊗1 for sidS ⊗idM. It is readily verified that s→ s⊗1 is a ring homomorphism.
So the lemma is proved. �

Lemma 5.3.10. Let R and S be rings with R ≤ S .Let M be a free R-module with basis B.

(a) S ⊗R M is a free S -module with basis 1⊗A ∶= {1⊗ b ∣ b ∈ B.

(b) Let α ∈ EndR(M), A the matrix of α with respect to B and s ∈ S . Then sA is the matrix of s⊗ α
with respect to 1⊗ B.
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Proof. (a) Note that M = ⊕b∈B Rb and Rb ≅ R. By 5.1.10 S ⊗R M ≅ ⊕b∈B S ⊗R Rb. Also by 5.1.6
S ⊗R b ≅ S .

(b) Let d ∈ B Then

(s⊗ α)(1⊗ d) = s⊗ α(d) = s⊗ (∑
e∈B

bede) =∑
e∈B

(sbed(1⊗ e)

So (b) holds. �

Definition 5.3.11. Let R be a ring, M a free R-module of finite rank and α ∈ EndR(M).

(a) Let S be a ring with R as a subring. Let s ∈ S . Then s⊗ α denotes the unique R-endomorphism
of S ⊗R M with

(s⊗ 1)(t ⊗m) = (st ⊗ α(m)

for all t ∈ S ,m ∈ M.

(b) Consider x⊗ 1 − 1⊗ α ∈ EndR[x](R[x]⊗R M). Then

χα = det(x⊗ 1 − 1⊗ α) ∈ R[x]

is called the characteristic polynomial of α.

(c) Let n be positive integer and A ∈ MR(n). Consider the matrix xIn − A ∈ MR[x](n). Then
χA = det(xIn − A) is called the characteristic polynomial of A.

Lemma 5.3.12. Let R be a ring, M an R-module with finite basis I, n = ∣I∣, α ∈ EndR(M) and A the
matrix of α with respect to A.

(a) χα = χA.

(b) For J ⊂ I let AJ = (ai j)i, j ∈ J. The coefficient of xm in χA is

(−1)n−m
∑

J⊂I,∣J∣=n−m
det AJ

(c) χα is monic of degree n.

Proof. (a) By 5.3.10(b) the matrix for x⊗ 1 − 1⊗ α with respect to xIn − A. Thus (a) follows from
5.3.2(f)

(b) Let D = xIn − A. Let ai be the i column of Ai. Let ei = (δi j). The D = (xei − ai). For J ⊂ I
let A∗J be the matrix with whose k-column is ak if k ∈ J and ek if k /∈ J. Then since det is multilinear

det D =∑
J⊆I

x∣I∣−∣J∣(−1)∣J∣ det A∗J

.
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Let T(J) be the matrix with

t(J)i j =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ai j if i, j ∈ J
1 if i = j /∈ J
0 otherwise

Then it is easy to see that det A∗(J) = det T(J) = det A(J) and (b) follows.
(c) Follows from (b) �

Theorem 5.3.13. Let R be a ring, M be a free R-module of finite rank. Let α ∈ EndR(M). Then

χα(α) = 0.

Proof. Define
φ ∶ R[x] × M → M, ( f ,m)→ f (α)(m).

Since φ is bilinear there exists a unique R-linear map

Φ ∶ R[x]⊗R M → M with Φ( f ⊗m) = f (α)(m).

Let β = x⊗ 1 − 1⊗ α ∈ EndR[x](R[x]⊗R M).
Let f ∈ R[x] and m ∈ M. Then

β( f ⊗m) = x f ⊗m − f ⊗ α(m) = f x⊗m − f ⊗ α(m)

and so
Φ(β( f ⊗m)) = ( f (α)α)(m) − ( f (α)(α(m)) = 0

Hence Φβ = 0.
By 5.3.8 there exists βad ∈ EndR[x](R[x]⊗R M) with β ○ βad = detβ⊗ 1.
It follows that

0 = (Φ ○ β) ○ βad = φ ○ (β ○ βad) = Φ ○ (detβ⊗ 1)

So
0 = φ((detβ⊗ 1))(1⊗m) = φ(detβ⊗m) = (detβ)(α)(m)

By definition χα = detβ and so the Cayley Hamilton Theorem is proved. �

Theorem 5.3.14. Let M be a finitely generated R-module and α ∈ EndR(M). Then there exists a
monic polynomial f ∈ R[x] with f (A) = 0.

Proof. Let I be a finite subset of M with M = RI. Let F = FR(I) be the free R-module on I. So F
has a basis (ai, i ∈ I). Let π be the unique R-linear map from F to M with ai → i for all i ∈ I. Since
M = RI, M = π(F). By 3.7.3 there exists β ∈ EndR(F) with

π ○ β = α ○ π

We claim that (*) π ○ f (β) = f (α) ○ π for all f ∈ R[x]
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For this let S = { f ∈ R[x] ∣ π ○ f (β) = f (α) ○ π}. Let f ,g ∈ S . Then

π ○ ( f g)(α) = π ○ ( f (α ○ g(α)) = (π ○ f (α) ○ g(α) = ( f (α) ○ π) ○ g(α) =

= f (α) ○ (π ○ g(α)) = f (α) ○ (g(α) ○ π) = ( f (α) ○ g(α)) ○ π) = ( f g)(α) ○ π

Since π is Z-linear, also f −g ∈ S . Thus S is a subring of R[x]. Since R and x are in S , S = R[x]
and (*) is proved. Let f = χβ. The f is monic and by 5.3.13 f (β) = 0. By (*)

f (α) ○ π = π ○ f (β) = 0

Since π is onto this implies f (α) = 0. �



Chapter 6

Hilbert’s Nullstellensatz

Throughout this chapter ring means commutative ring with identity and R is a ring. All R-modules
are assumed to be unitary.

6.1 Multilinear Maps

Definition 6.1.1. Let (Vi, i ∈ I) a family of R-modules, an R module and f ∶ ×i∈I Mi → M a
function. Let I = J ∪ K with J ∩ K = ∅,

(a) VJ ∶=× j∈J V j.

(b) If u = (u j) j∈JVJ and v = (vk)k∈K ∈ VK , then we identify (u, v) ∈ VJ×VK with the tuple w = (wi)i∈I

where wi = ui if i ∈ J and wi = vi if i ∈ K. We also write f (u, v) for f ((u, v)).

(c) For u ∈ VJ define fu ∶ VK →W, v→ f (u, v). Sometimes we will write f J
u for fu.

(d) f is called R-multilinear if for all i ∈ I and all u ∈ VI∖i,, fu ∶ Vi →W is R-linear.

(e) An R-multilinear map is called bilinear of ∣I∣ = 2 and trilinear if ∣I∣ = 3.

(f) W I =×i∈I W.

Example 6.1.2. (a) If ∣I∣ = 1 a R-multilinear map is R-linear map.

(b) Rn × Rn → R, ((ri)
n
i=1, (si)

n
i=1)→ ∑

n
i=1 risi is R-bilinear.

(c) Let V be an R-module. Note that EndR(V) is an R module via (rφ)(v) = rφ(m). Then
EndR(V) × V → V, (φ, v)→ φ(v) is R-bilinear.

Definition 6.1.3. Let V and W be R-modules and I a set. Put Vi = V for all i ∈ I and so VJ = V J for
all J ⊆ I. An R-multilinear function f ∶ V I → V is called

(a) symmetric if fu(v,w) = fu(v, v),

301



302 CHAPTER 6. HILBERT’S NULLSTELLENSATZ

(b) skew-symmetric if fu(v,w) = − fu(w, v);

(c) alternating if fu(v, v) = 0.

for all i ≠ j ∈ I, u ∈ V I∖{i, j} and v,w ∈ V.

Lemma 6.1.4. (a) Every alternating map is skew-symmetric.

(b) If f ∶ MI → N is skew symmetric and 2n ≠ 0N for all n ∈ N♯, then f is alternating.

Proof. Let i ≠ j ∈ I, u ∈ MI∖{i, j}, v,w ∈ M and put g = fu.
(a) 0 = g(v +w, v +w) = g(v, v) + g(v,w) + g(w, v) + g(w,w) = g(v,w) + g(w, v).
(b) From g(v,w) = −g(w, v) applied with v = w we get g(v, v) = −g(v, v). So 2g(u,u) = 0 and

g(u,u) = 0 �

Lemma 6.1.5. Let I be a set, (I j) j∈J a partition of I, (Vi)i∈I and (W j, j ∈ J) families of R-modules
and Z an R-module. Let f ∶ WJ → Z be R-multilinear and for each j ∈ J let g j ∶ VI j → W j be
R-multilinear. Then

VI → Z, (vi)i∈I → f((g j((vi)i∈I j)) j∈J
)

is R-multilinear.

Proof. Readily verified. �

Lemma 6.1.6. Let I be finite set, (Vi, i ∈ I) be family of R-modules and W an R-module. Suppose
that for each i ∈ I, Vi is a free R-module with basis Bi ⊆ Vi. Put Bi =×i∈I Bi ⊆ VI and let g ∶ BI →W
be a function. Then there exists a unique R-multilinear map f ∶ VI →W with f ∣BI = g.

Proof. Suppose first that f ∶ VI → W is R-multilinear with f ∣BI = g. Let v = (vi)i∈I ∈ VI . Then since
Bi is a basis for Vi there exists uniquely determined ribi ∈ R,bi ∈ Bi with

vi = ∑
bi∈Bi

ribibi

Since f is R-multilinear we conclude that

(∗)

f (v) = f ( (∑bi∈Bi
ribibi)i∈I

)

= ∑(bi)i∈I∈Bi
(∏i∈I ribi) f ( (bi)i∈I )

= ∑(bi)i∈I∈Bi
(∏i∈I ribi)g( (bi)i∈I )

So f is uniquely determined. Conversely it is readily verified that (*) defines an R-multilinear
map. If v ∈ BI , then ribi = δvibi and so ∏i∈I ribi = ∏i∈I δvibi , which is 0 unless vi = bi for all i ∈ I, in
which case it is 1. So f (v) = g(v) for v ∈ BI . �
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Proposition 6.1.7. Let n ∈ Z+, Mn(R) the ring of n × n-matrices with coefficients in R and A ∈

Mn(R). We define the determinant det(A) of A inductively on as follows: If n = 1 and A = (a),
define det(A) = a. Suppose next n > 1 and that det(B) has been defined for all (n − 1) × (n − 1)-
matrices. For 1 ≤ i, j ≤ n let Ai j be the n × n matrix defined obtained from A by deleting row i and
column j. Define

det
j
(A) ∶=

n

∑
i=1

(−1)i+ jai j det(Ai j

Then det j(A) = detl(A) for all 1 ≤ j, l ≤ n and we define det(A) = det j(A). View det function in
the n-columns :

det ∶ (Rn)n → R, ((ai j)
n
i=1)

n
j=1 → det ((ai j))

Then det is alternating and R-linear. Also det(In) = 1,

Proof. We will first show that det j(A) = detl(A). Without loss j < k. We have

det j(A) = ∑n
i=1(−1)i+ jai j det(Ai j)

= ∑n
i=1∑k=1,k≠i(−1)i+ j(−1)εai jakl det((Ai j)kl)

where (Ai j)kl) is the matrix obtained by deleting row i and k and columns j and l from A and ε is as
follows:

Observe that column l of A is column l − 1 of Ai j. If k < i, then row k of A is row k of Ai j. If
k > i, then row k of A is row k − 1 of Ai j. Hence

ε =

⎧⎪⎪
⎨
⎪⎪⎩

k + l − 1 if k < i
k + l − 2 if k > i

Similarly

detl(A) = ∑n
k=1(−1)k+lakl det(Akl)

= ∑n
k=1∑i=1,i≠k(−1)k+l(−1)ηaklai j det(Akl)i j)

where (Akl)il) is the matrix obtained by deleting row k and i and columns l and j from A and η is as
follows:

Observe that column j of A is column j of Akl. If k < i, then row i of A is row i − 1 of Akl. If
k > i, then row i of A is row i of Akl. Hence

η =

⎧⎪⎪
⎨
⎪⎪⎩

i + j − 1 if k < i
i + j if k > i

If i < k we conclude

(−1)i+ j(−1)k+l+ε = (−1)i+ j+k+l−1 = (−1)k+l(−1)η
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and if k > i then

(−1)i+ j(−1)k+l+ε = (−1)i+ j+k+l−2 = (−1)i+ j+k+l = (−1)k+l(−1)η

Thus show that det j(A) = detl(A) and so we can define det(A) = det j(A) for any 1 ≤ j ≤ n.
Clearly det j is R-linear as a function in column j of A ( with the remaining columns fixed). Since
det = det j we conclude that det is R-multilinear as a functions of its columns.

To show that det is alternating suppose that column r and column s of A are equal for some
1 ≤ r < s of A. Suppose n ≥ 3. Then we may choose j ≠ r and j ≠ s. Then for each i, Ai j has two
equal columns. Thus by induction det(Ai j) = 0R for all i and so det(A) = det j(A) = 0R.

So suppose n = 2. Then A =
⎛
⎜
⎝

a a

b b

⎞
⎟
⎠

and so det A = ab − ba = 0R. Thus det is alternating.

Suppose A = In. Then for i ≠ j, Ai j has a zero column and so det(Ai j = 0R. For i = j, Aii = In−1
and so by induction det Aii = 1R. So det In = 1R. �

Lemma 6.1.8. Let n ∈ N and A = (ai j) ∈ Mn(R). Define the Aad = (bi j) ∈ Mn(R) by bi j =

(−1)i j det(A ji). Then
AadA = det(A)In

Aad is called the adjoint of A.

Proof. Fix 1 ≤ i, j ≤ n and let D = (drs) be n × n obtained from A by replacing column i of A by
column j if A. So

drs =

⎧⎪⎪
⎨
⎪⎪⎩

ars if s ≠ i
ar j if s = i

Note that Aki = Dki. The (i, j)-coefficient of AadA is

∑n
k=1 bikak j = ∑n

k=1 ak j(−1)i+k det(Aki)

= ∑n
k=1 dki(−1)i+k det(Dki)

The definition of det = deti shows that this is equal to det D. If i = j, then D = A and so det D =

det A. If i ≠ j, then the i and j columns of D are equal and so det A = 0R. Thus AadA = det(A)In. �

Proposition 6.1.9. Let V and W be R-modules and I a finite set. Suppose V is free of finite rank
and B is a finite R-basis for V. Choose a total order on I and a total order on B. Let

BI
< = {(bi)i∈I ∣ bi < b j for all i < j ∈ I}

Let g ∶ BI
< → W be any function. Then there exists unique alternating R-multilinear function with

f ∶ V I →W with f ∣BI< = g.
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Proof. Let f ∶ V I → I be a alternating R-multilinear function with f ∣BI< = g. To show that f is unique
it suffices to show that f (b) is uniquely determined for all b = (bi)i∈I ∈ B

I , (see 6.1.6). If bi = b j for
some i ≠ j ∈ I, then since f is alternating f (b) = 0R. So suppose that bi ≠ b j ∈ i. Then there exists
a unique π ∈ Sym(I) such that b ○ π ∈ BI

< (note here that b ○ π = (bπ(i))i∈I). Observe that there exist
2-cycles π j = (a j,b j) ∈ Sym(I),1 ≤ j ≤ k such that π = π1π2 . . . πk. By 6.1.4(a), f (c ○ µ) = − f (c)
for all c ∈ V I and any two cycle µ ∈ Sym(I). f (b) = (−1)k f (b ○ π) = (−1)kg(b ○ π) and so also
f (b) is uniquely determined.

To show the existence of f we assume without loss that I = {1,2, . . . ,n} with the usual ordering.
Let v = (vi)i∈I ∈ V I . Then vi = ∑b∈B aibb for some unique aib ∈ R, i ∈ I,b ∈ B. Let A = (aib) ∈

MI×B(R). For b = (bi)i∈I ∈ B
I
< let Ab be the n × n submatrix (aib j)1≤i, j≤n of A. Define

f (v) ∶= ∑
b∈BI<

det(Ab)g(b)

Since det is an alternating it is easy to see that f is alternating and R-multilinear. Suppose v ∈ BI
<

and b ∈ BI
<. Then rib j = δdib j Thus Ab has a zero column unless each b j is equal to some di. Since

both b and d are increasing, this shows that det(Ab) = 0R for all b ≠ v. For b = v, Ab = In and so
det(Av) = 1. So f (v) = g(v) and f ∣BI< = g. �

Lemma 6.1.10. Let V and W be R-modules and I a set.

(a) Let LI(V,W) is the set of R-multilinear map from V I →W. Then LI(V,W) is an R-module via:

( f + g)(v) = f (v) + g(v) and (r f )(v) = r f (v)

for all f ,g ∈ LI(V,W), r ∈ R and v ∈ V I .

(b) V I is an R and an EndR(V)-module via u + v = (ui + vi)i∈I , rv = (rui)i∈I and sv = (s(vi))i∈I for
all u = (ui)I∈I , v = (vi)i∈I ∈ V I , r ∈ R and s ∈ EndR(V).

(c) The monoid ( EndR(V), ○) is acting on LI(V,W) on the right via

( f s)(v) = f (sv)

for all f ∈ LI(V,W), s ∈ EndR(V) and v ∈ V I .

(d) LI(V,W) is a EndR(W)-module via

(t f )(v) = t( f (v))

for all f ∈ LI(V,W), t ∈ EndR(W) and v ∈ V I .

(e) Let ⋀I(V,W) be the the set of alternating R-multilinear map from V I → W. Then ⋀I(V,W) is
an EndR(V)-invariant R-submodule of LI(V,W).

Proof. Readily verified. �
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Corollary 6.1.11. Let V and W be free R-modules with basis B and D and I a set. Suppose I and
B are finite and choose a total orderings on I and a total ordering on B. For b ∈ BI

< and d ∈ D let
f bd ∶ V I →W be the unique alternating R-multilinear map with

f bd(c) =
⎧⎪⎪
⎨
⎪⎪⎩

d if b = c
0W if b ≠ c

Then ⋀I(V,W) is a free R-module with basis ( f bd)(b,d)∈BI<×D.

Proof. Let f ∈ ⋀I(V,W) and let abd ∈ R for b ∈ BI
< and d ∈ D, almost all 0. Then

f = ∑(b,d)∈BI<×D abd f bd

⇐⇒ f (c) = ∑(b,d)∈BI<×D abd f bd(c) for all c ∈ BI
<

⇐⇒ f (c) = ∑d∈D acdd for all c ∈ BI
<

SinceD is a R-basis for B we see that there exists uniquely determined acd fulfilling the last of these
equations. �

Definition 6.1.12. Let V and W be R-modules, n ∈ N and I a set. Then ⋀I(V) = ⋀I(V,R),
⋀n(V,W) = ⋀{1,2,...,n}(V,W) and ⋀n(V) = ⋀{1,2,...,n}(V) .

Lemma 6.1.13. Let V be a free R-module of finite rank n. Let α ∈ EndR(V).

(a) There exists a unique rα ∈ R with

fα = r f for all f ∈ ⋀n(V)

(b) The map det ∶ EndR(V) → R, α → rα is a multiplicative homomorphism, that is det(αβ) =

det(α)det(β) for all α, β ∈ EndR(V).

(c) If A is the matrix of α with respect to some R-basis of V, then det(α) = det(A).

Proof. (a) LetB = {b1,b2, . . .bn} be basis for V . OrderB by b1 < b2 . . .bn and put b = (b1,b2, . . .bn).
Put I = {1,2,3 . . . ,n} order in the usual way. Then clearly BI

< = {b} and 1 is an R-basis for R. Thus
by 6.1.11 f b1 is an R-basis for ⋀n(V). Hence

f b1α = rα f bl

for a unique rα ∈ R. Also each f ∈ ⋀n(V) is of the form f = r f b1 for some r ∈ R. Since α acts
R-linearly on ⋀n(V) we conclude that (a) holds.

(b) Let α, β ∈ EndR(V) and f ∈ ⋀n(V). Then

f (αβ) = ( fα)β = (rα f )β = rbeta(rα f ) = (rβrα) f = (rαrβ) f

Hence rαβ = rαrβ and (b) holds.
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(c) We will compute det(α). We have

det(α) = rα = rα1R = rα f b1(b) = (rα f b1)(b) = ( f b1α)(b) = f b1(α(b)) = f b1((α(b j) j∈I)

Let A = (ai j) be the matrix for α with respect to B. Then α(b j) = ∑i∈I ai jbi. So

det(α) = f b1⎛

⎝
(∑

i∈I
ai jbi)

j∈J

⎞

⎠

Since f bl is alternating we see the function τ ∶ MI(R) → R,A → det(α) is alternating and R-
multilinear in the columns of A. Also if A = idn, then α = idV , det(idV) = 1R and so τ(In) = 1R.
6.1.9 shows that τ is uniquely determined and so τ = det, that is det(α) = det(A). �

Lemma 6.1.14. Let V be an R-module and I a finite set. Then V I is an MI(R)-module via

Av = (∑
i∈I

ai jv j)i∈I

for all A = (ai j)(i, j)∈I×I ∈ MI(R) and v = (v j) j∈I ∈ V I .

Proof. Let A = (ai j), B = (b jk) and C ∶= AB. Then C = (cik) with cik = ∑ j∈I ai jb jk. Let v = (vk)k∈I ∈

V I . Then

A(Bv) = A(∑k∈I b jkvk) j∈I

= (∑ j∈I ai j(∑k∈I b jkvk))
i∈I

= (∑k∈I (∑ j∈I ai jb jk)vk)
i∈I

= (∑k∈I cikvk)i∈I

= Cv = (AB)v

�

Definition 6.1.15. Let n ∈ N and A ∈ Mn(R). Note that xIn − A ∈ Mn(R[x]) and R[x] is a commu-
tative ring. So we can define

χA ∶= det(xIn − A) ∈ R[x]

χA is called the characteristic polynomial of A.

Theorem 6.1.16 (Cayley Hamilton). Let n ∈ N and A ∈ Mn(R). Then χA(A) = On, where On =

0Mn(R) is the n × n-zero matrix over R.
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Proof. By ?? the maps R[x]→Mn(R), f → f (A) is a ring homomorphism. Note that (for example
by 6.1.14) Rn is an Mn(R) module via Bv = (∑n

j=1 bi jv j)
n
i=1 for all B = (bi j) ∈ Mn(R) and all

v = (v j)
n
j=1 ∈ Rn. Thus V ∶= Rn is also an R[x] module via f v = f (A)v for all f ∈ R[x] and v ∈ V .

Note that xv = Av for all v ∈ Rn. Since V is an R[x]-module we conclude from 6.1.14 that Vn is a
Mn([R[x])-module. Put ek = (δk j)

n
j=1 ∈ V . Then

xek = Aek =
⎛

⎝

n

∑
j=1

ai jδk j
⎞

⎠

n

i=1

= (aik)
n
i=1 =

n

∑
i=1

aikei

Let D = xIn − AT ∈ Mn(R[x]) and e = (e j)
n
j=1 ∈ Vn. Then D = (di j) with di j = δi jx − a ji. Hence

De =
⎛

⎝

n

∑
j=1

di je j
⎞

⎠

n

i=1

=
⎛

⎝

n

∑
j=1

(δi jx − a ji)e j
⎞

⎠

n

i=1

=
⎛

⎝
xei −

n

∑
j=1

a jie j
⎞

⎠

n

i=1

= (xei − xei)
n
i=1 = 0Vn

Hence also Dad(De) = 0Vn and so (DadD)e = 0Vn . By 6.1.8 DadD = det(D)In we have
(DadD)e = (det(D)ei))

n
i=1. Hence det(D)ei = 0V for all 1 ≤ i ≤ n. By Homework 6#10, det(D) =

det(Dtr) = χA and so χAei = 0 for all v ∈ V . But χAei = χA(A)ei and so the i-column of χA(A) is
zero. Thus χA(A) = 0n. �

Lemma 6.1.17. Let V and W be R[x]-modules and π ∶ W → W a function. Then π is R[x]-linear if
and only if π is R-linear and π(xv) = xπ(v) for all v ∈ V.

Proof. The forward direction is obvious. So suppose π is R-linear and π(xv) = xπ(v) for all v ∈ V .
Let S = { f ∈ R[x] ∣ π( f v) = fπ(v) for all v ∈ V}. We will show that S is a subring of R[x]. Indeed
let f ,g ∈ S and v ∈ V . Then

π(( f + g)v(= π( f v + gv) = π( f v) + π(gv) = fπ(v) = gπ(v) = ( f + g)π(v)

and
π(( f g)(v) = π( f (gv)) = fπ(gv) f (gπ(v)) = ( f g)π(v))

So f + g, f g ∈ V . Similarly 0R and − f ∈ S . So S is a subring of R[x]. Since π is R-linear, R ⊆ S
and by assumption x ∈ S . Thus S = R[x] and π is R[x]-linear. �

Theorem 6.1.18. Let M be a finitely generated R-module and α ∈ EndR(M). Then there exists a
monic polynomial f ∈ R[x] with f (α) = 0EndR(M).

Proof. Let I be a finite subset of M with M = ⟨I⟩R = RI. Then for each j ∈ I there exist ai j ∈ R, i ∈ I
with α( j) = ∑i∈I ai ji. (Note here that the ai j are not necessarily unique.) View RI as an R[x]-module
via f v = f (A)v and view M as an R[x] module via f m = f (α)(m). Define π ∶ RI → M, (ri)i∈I →

∑i∈I rii. Then π is onto and R-linear. Let ei = (δi j) j∈I . By definition of π and A

xπ(e j) = x j = α( j)
n

∑
i=1

ai ji
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and

π(xe j) = π(Ae j) = π((ai j)i∈I) =∑
i∈I

ai ji

Thus xπ(e j) = π(xe j).. Since x acts R-linearly on RI and M this implies xπ(v) = pi(xv) for all
v ∈ Rn. Thus by 6.1.17, π is R[x] linear. Put f = χA. Then f is monic, f ∈ R[x], f (A) = 0 and so for
all v ∈ Rn,

f (α)(π(v)) = fπ(v) = π( f (v)) = π( f (A)v) = π(0v) = π(0) = 0.

Since π is onto we conclude that f (α) = 0. �

6.2 Ring Extensions

Definition 6.2.1. Let R and S be rings with R ≤ S and 1S = 1R. Then S is called a ring extension of
R. Such a ring extension is denoted by R ≤ S .

Definition 6.2.2. Let R ≤ S be a ring extension.

(a) Let s ∈ S . s is called integral over R if f (s) = 0 for some monic polynomial f ∈ R[x].

(b) R ≤ S is called integral if all s ∈ S are integral over R.

(c) R ≤ S is called finite if S is finitely generated as an R-module ( by left multiplication)

Example 6.2.3. (1) Suppose R ≤ S is a ring extension with R a field and S an integral domain. Let
s ∈ S . Then s is integral over R if and only if s is algebraic over R. R ≤ S is integral if and only
if its algebraic. Note that then by 4.1.14 S is a field. R ≤ S is a finite ring extension if and only
if its a finite field extension.

(2) Let R = Z and S = C. Then
√

2 is integral over Z. 1
2 is not integral over Z. Indeed suppose that

1
2 is integral over Z. Then there exists a0,a1, . . . ,an−1 ∈ Z with

a0 + a1
1
2
+ a2

1
4
+ . . .an−1

1
2

n
+

1
2n = 0

Multiplication with 2n shows that

1 = −(a02n + a12n−1 + . . . + an−12)

since the left hand side of this equation is even, we derived a contradiction.

Theorem 6.2.4. Let R ≤ S be a ring extension and s ∈ S . Then the following statements are
equivalent:

(a) s is integral over R.
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(b) R ≤ R[s] is finite.

(c) There exists a subring T of S containing R[s] such that R ≤ T is finite.

(d) There exists a faithful R[s]- module M, which is finitely generated as an R-module.

Proof. (a)Ô⇒ (b): Suppose f (s) = 0 for a monic f ∈ R[x]. Let J = {g ∈ R[x] ∣ g(s) = 0}. Then
R[s] ≅ R[x]/J and R[x] f ≤ J.

We claim that R[x]/R[x] f is finitely generated as an R-module. Indeed let g ∈ R[x]. Since f is
monic we can apply the division algorithm and so g = q f + r, where q, r ∈ R[x] with deg q < deg f .
Let n = deg f . We conclude that g + R[x] is in the R span of (xi + R[x] f )n−1

i=0 .
This proves the claim. Since R[x]/J is isomorphic to a quotient of R[x]/R[x] f , also R[X]/J

and R[s] are finitely generated as an R-module.
(b)Ô⇒ (c): Just choose T = R[s].
(c) Ô⇒ (d): Put B = T . Since 1 ∈ T , aT ≠ 0 for all 0 ≠ a ∈ R[s]. Thus T is a faithful R[s]

module.
(d)Ô⇒ (a): By 6.1.18 there exists a monic f ∈ R[x] with f (s)M = 0. Since M is faithful for

R[s], f (s) = 0. �

Corollary 6.2.5. Let R ≤ S be a finite ring extension. Then R ≤ S is integral.

Proof. This follows immediately from 6.2.4(c) applied with T = S . �

Lemma 6.2.6. Let R ≤ E and E ≤ S be finite ring extensions. Then R ≤ S is a finite ring extension.

Proof. Let I be a finite subset of E with RI = E and J a finite subset of S with S = EJ. Then by
4.1.5(aa) S = R{i j ∣ i ∈ I, J}. So also R ≤ S is finite �

Proposition 6.2.7. Let R ≤ S be a ring extension and I ⊆ S such that each b ∈ I is integral over R.

(a) If I is finite, R ≤ R[I] is finite and integral.

(b) R ≤ R[I] is integral.

(c) The set Int(R,S ) of the elements in S which are integral over R is a subring S . Moreover,
R ≤ Int(R,S ) is integral.

Proof. (a) By induction on ∣I∣. If ∣I∣ = 0 there is nothing to prove. So suppose there exists i ∈ I and
let J = I ∖ {i}. Put E = R[J]. By induction R ≤ E is finite. Since i is integral over R, f is integral
over E. Thus by 6.2.4(b), E ≤ E[i] is finite. Note that E[i] = R[J][i] = R[I] and so (a) follows from
6.2.6.

(b) By 4.1.4(b) R[I] = ⋃{R[J] ∣ J ⊆ I, ∣J∣ < ∞}. By (a) each of the extensions R ≤ R[J] are
integral. So(b) holds.

(c) Follows from (b) applied to I = Int(T,S ). �
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Definition 6.2.8. Let R ≤ S be a ring extension and let Int(R,S ) the set of elements in S which are
integral over R. Then Int(R,S ) is ca called to integral closure of R in S . If R = Int(R,S ), then R is
called Tintegrally closed in S .

If R is an integral domain and R is integrally closed in FR (the field of fraction of R), then R is
called integrally closed.

Example 6.2.9. Let A = Int(Z,C). Then A is the set of complex numbers which are the roots of
an integral monic polynomial. So A is the set of algebraic integers ( see Homework 2#6). We now
know from 6.2.7 that A is a subring of C, which generalized Homework 2#6(c). By Homework
2#6(b), A ∩ Q = Z. Thus Int(Z,Q) = Z and so Z is integrally closed. But Z is not integrally closed
in C since

√
2 ∈ A.

Lemma 6.2.10. Let R ≤ E and E ≤ S be integral ring extensions. Then R ≤ S is integral.

Proof. Let s ∈ S and let f ∈ E[x] be the monic with f (s) = 0. Let I be the set of non-zero
coefficients f . Then I is a finite subset of E and so by 6.2.7(a), R ≤ R[I] is finite. Since f ∈ R[I][x],
6.2.4 implies that R[I] ≤ R[I][s] is finite. So by 6.2.6, R ≤ R[I][s] is finite. So by 6.2.4, s is integral
over R. �

6.3 Ideals in Integral Extensions

Definition 6.3.1. Let R be ring and I an ideal in R. Then

rad I = radRI = {r ∈ R ∣ rn ∈ I for some n ∈ Z+}.

radRI is called the radical of I in R . If I = radRI, I is called a radical ideal in R.

Lemma 6.3.2. Let R be a ring and P an ideal in R.

(a) radP is an ideal in R and P ≤ radP.

(b) radP is a radical ideal.

(c) All primes ideals in R are radical ideals.

Proof. (a) Note that r ∈ radP if and only if r + P is nilpotent in R/P. By Homework 6#5 in MTH
818, the nilpotent elements of R/P form an ideal in R/P. So (a) holds.

(b) Homework 6#5 in MTH 818 R/rad R/rad R/P has no non-zero nilpotent elements.
(c) If P is a prime ideal, then R/P has no zero divisors and so also no non-zero nilpotent ele-

ments. �

Lemma 6.3.3. Let R ≤ S be an integral ring extension.

(a) Let P be an ideal in R and p ∈ P.

(a) S p ∩ R ⊆ radRP.

(b) If P is a prime ideal or a radical ideal in R, then S p ∩ R ⊆ P.
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(b) Suppose S is an integral domain

(a) Let 0 ≠ b ∈ S , then S b ∩ R ≠ 0.

(b) Let Q be a non-zero ideal in S , then Q ∩ R ≠ 0.

Proof. (a) Let s ∈ S such that r ∶= sp ∈ R. Since R ≤ S is integral there exists r0, r1 . . . rn−1 ∈ R with

sn = rn−1sn−1 + . . . + r1s + r0

Multiplying this equation with pn we obtain:

(sp)n = (rn−1 p)(sp)n−1 + . . . + r1 pn−1(sp) + r0 pn

Hence

rn = (rn−1 p)rn−1 + . . . + (r1 pn−1)r + r0 pn

As P is an ideal and riri ∈ R we have riri pn−i ∈ P for all 0 ≤ i < n. So the right side of the last
equation lies in P. Thus rn ∈ P and r ∈ radP.

(a:b) In both cases 6.3.2 implies that P = radRP. So (a:b) follows from(a:a).
(b:a) Let f ∈ R[x] be a monic polynomial of minimal degree with f (b) = 0. Let f = xg + r

where r ∈ R and g ∈ R[x] is monic of degree one less than f . Then

0 = f (b) = bg(b) + r

and so r = −g(b)b
If r = 0, we get g(b)b = 0. Since b ≠ 0 and S is an integral domain, g(b) = 0. But this

contradicts the minimal choice of deg f .
Hence 0 ≠ r = −g(b)b ∈ R ∩ S b.
(b:b) Let 0 ≠ b ∈ Q. Then by (b:a) {0} ≠ R ∩ S b ⊆ R ∩ Q. �

Theorem 6.3.4. Let R ≤ S be an integral extension and P a prime ideal in R. Put

M ∶= {I ∣ I is an ideal in R,R ∩ I ⊆ P}

OrderM by inclusion. Let Q ∈M.

(a) Q is contained in a maximal member ofM

(b) The following are equivalent:

(a) Q is maximal inM.

(b) Q is a prime ideal and R ∩ Q = P.
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Proof. PutMQ ∶= {I ∈M ∣ Q ≤ I}. Then a maximal element ofMQ is also a maximal element of
M.

(a) Since Q ∈MQ, MQ ≠ ∅. So by Zorn’s Lemma A.3.8 it remains to show that every non-
empty chain D inMQ has an upper bound inMQ. Put D = ⋃D. By 2.5.21(a) D is an ideal in S .
Let E ∈ D. Then Q ≤ E ≤ D. Moreover,

R ∩ D = ⋃
E∈D

R ∩ E ⊆ P

Thus D ∈MQ and D is an upper bound for D.
(b) For E ⊆ S put E = E + Q/Q ⊆ S /Q. Since S is integral over R, S is integral over R. (Indeed

let s ∈ S . Then s = s+Q for some s ∈ S and there exists a monic polynomial f ∈ R[x] with f (s) = 0.
The f is a monic polynomial in S [x] and f (s) = 0.

R/P = R + Q/Q/P + Q/Q ≅ R + Q/P + Q = R + (P + Q)/P + Q

≅ R/R ∩ (P + Q) = R/P + (R ∩ Q) = R/P

Since P is a prime ideal in R we conclude that P is a prime ideal in R. Let I be an ideal in S
with Q ≤ I. We have

R ∩ I ≤ P

⇐⇒ ((R + Q)/Q) ∩ I/Q ≤ P + Q/Q

⇐⇒ (R + Q) ∩ I ≤ P + Q

⇐⇒ Q + (R ∩ I) ≤ P + Q

If R ∩ I ≤ P we have Q + (R ∩ I) ≤ P + Q. If Q + (R ∩ I) ≤ P + Q, then R ∩ I ≤ (P + Q) ∩ R =

P + (Q ∩ R) ≤ P. So

R ∩ I ≤ P⇐⇒ R ∩ I ≤ I

Therefore {I ∣ I ∈MQ} = {J ≤ S ∣ J is an ideal in S ,R ∩ J ⊆ P}.
If follows that (b) holds if and only if (b) holds for (S ,R,P,Q in place of (S ,R,P,Q). Since

Q = 0 we thus may assume that Q = 0.
(b:a) Ô⇒ (b:b): Suppose that Q is not a prime ideal. As Q = 0, this means S is not an

integral domain. Hence there exists b1,b2 ∈ S ♯ with b1b2 = 0. Since Q = 0 is maximal in M,
S bi /∈ M and so R ∩ S bi ≰ P. Hence there exist si ∈ S with 0 ≠ ri ∶= sibi ∈ R ∖ P. But then
r1r2 = (s1b1)(s2b2) = (s1s2)(b1b2) = 0 ∈ P. But this contradicts the fact that P is a prime ideal in
R.

So Q is a prime ideal. Suppose that P ≠ R ∩ Q, that is P ≠ 0. Let 0 ≠ p ∈ P. Then by 6.3.3(a) ,
S p ∩ R ≤ P. Hence S p ∈M, contradiction the maximality of Q = 0. So (b:a) implies (b:b).

(b:b)Ô⇒ (b:a): Suppose now that Q is a prime ideal and P = R ∩ Q. Since Q = 0 this means
that S is an integral domain and P = 0. Let I be any non-zero ideal in S . Then by 6.3.3(b:b) R∩ I ≠ 0
and so R ∩ I ≰ P and I ∉M. ThusM = {0} and Q is maximal. �
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Corollary 6.3.5. Let R ≤ S be an integral extension.

(a) Let P be a prime ideal in R and Q an ideal in S with R∩Q ≤ P. Then there exists a prime ideal
M in S with R ∩ M = P and Q ≤ M.

(b) Let P be a prime ideal in R. Then there exists a prime ideal M in S with R ∩ M = P.

(c) Let Q1 and Q2 be prime ideals in S with R ∩ Q1 = R ∩ Q2 and Q1 ≤ Q2. Then Q1 = Q2.

(d) Let Q be a maximal ideal in S . Then Q ∩ R is a maximal ideal in R.

(e) Let P be a maximal ideal in S . Then there exists a maximal ideal M of S with R ∩ M = P.

Proof. (a) We apply 6.3.4. LetM be defined as there. By part (a) there exists a maximal element
M ofM containing Q. By part (b) M is a prime ideal and R ∩ M = P.

(b) follows from (a) applied with Q = 0.
(c) By 6.3.4, applied with P = R∩Q1 and Q = Q1 we get that Q1 is maximal inM. As Q2 ∈M

and Q1 ≤ Q2, Q1 = Q2.
(d) Since 1 ∉ Q, R ∩ Q ≠ R. So by 2.4.18, Q ∩ R is contained in a maximal ideal P of R. By

(a) there exists an ideal M in S with P = R ∩ M and Q ≤ M. Since Q is maximal, M = Q. Thus
R ∩ Q = R ∩ M = P and so R ∩ Q is a maximal ideal in R.

(e) By 2.4.19, P is a prime ideal in R. So by (b) there exists an ideal Q of S with R∩Q = P. Let
M be a maximal ideal in S with Q ≤ M. Then P = R ∩ Q ≤ R ∩ M < R and since P is a maximal
ideal in R, P = R ∩ M. �

6.4 Noether’s Normalization Lemma

Definition 6.4.1. Let K be a field. A K-algebra is a ring R with K as a subring. A K-algebra R is
called finitely generated if R = K[I] for some finite subset I of K

Theorem 6.4.2. Let K be a field and R a K-algebra. Suppose that there exists a finite subset I of R
such that K[I] ≤ R is integral. Then there exists a finite subset J of R such that J is algebraically
independent over K and K[J] ≤ R is integral.

Proof. Choose a finite subset I of R of minimal size such thatK[I] ≤ R is integral. Suppose that
u =∶ (i)i∈i is not algebraic independent over K and pick 0 ≠ f ∈ K[xi, i ∈ I] with f (u) = 0. Put
J =⊕ j∈J N. Then f = ∑α∈J kαxα, where kα ∈ K, almost all 0. Put J∗ = {α ∈ I ∣ kα ≠ 0}. Then

(1) ∑
β∈J∗

kβuβ = 0

where uβ = ∏i∈I iβi . Since J∗ is finite, we can pick c ∈ Z+ with αi < c for all α ∈ J∗ and i ∈ I. Fix
l ∈ I and let (ti) ∈ NI be a 1-1 function with tl = 0. Define

ρ ∶ J∗ → Z+, α→∑
i∈I

ctiαi
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We claim that ρ is one to one. Indeed suppose that ρ(α) = ρ(β) for α ≠ β ∈ J∗. Let I∗ = {i ∈ I ∣

αi ≠ βi and k ∈ I∗ with tk is minimal.

0 = ρ(α) − ρ(β) = ctk
⎛

⎝
αk − βk + ∑

i∈I∗∖{k}
cti−tk(αi − βi)

⎞

⎠

Since t is 1-1, tk < t j for all i ∈ I∗ ∖ {k}. So we conclude that c divides αk − βk, a contradiction
to c > α j and c > β j.

Since ρ is 1-1, we can choose α ∈ J∗ with ρ(α) < ρ(β) for all β ∈ J∗ ∖ {α}.
For i ∈ I define vi = i − lc

ti . Put S ∶= K[vi, i ∈ I]. Note that vl = l − lc
tl = l − lc

0
= l − l1 = 0. So

(2) S = K[Vi, ∈ I ∖ {l}]

We will show that l is integral over S . Let β ∈ J∗. Since i = lc
ti + vi we have

uβ =∏
i∈I

iβi =∏
i∈I

(lc
ti
+ vi)

βi .

Thus uβ = gβ(l) where gβ ∈ S [x] is a monic of degree ρ(β). Put

g ∶= ∑
β∈J∗

kβgβ ∈ S [x].

Then maximality of ρ(α) shows that g has degree ρ(α) and leading coefficient kα. Moreover,

g(l) = ∑
β∈J∗

kβgβ(l) = ∑
β∈J∗

kβuβ = 0.

Thus kα−1g is a monic polynomial over S with l as a root and so l is integral over S . Note that
i = vi + lc

t
i ∈ S [l] and thus K[I] ≤ S [l] ≤ K[I]. So K[I] = S [l] and S ≤ K[l] is integral. Since also

K[I] ≤ R is integral we conclude from 6.2.10 that S ≤ R is integral. But this contradicts (2) and the
minimal choice of ∣J∣. �

Proposition 6.4.3. Let R ≤ S be an integral extension and suppose that that R and S are integral
domains. Then S is a field if and only if R is a field.

Proof. Suppose first that R is a field. Then R ≤ S is algebraic and so by 4.1.14(c) , S is a field.
Suppose next that S is a field and let r ∈ R♯. Since S is a field, 1 ∈ S r ∩ R. Hence by 6.3.3(a:b)

applied with P = Rr, 1n ∈ Rr for some n ∈ Z+. Thus 1 = tr for some t ∈ T . Hence r is invertible in R,
and R is a field. �

Proposition 6.4.4. (a) Let K ≤ F be a field extensions such that F is finitely generated over K as a
ring. Then K ≤ F is finite. In particular, if K is algebraically closed then F = K.

(b) Let K be an algebraically closed field, A a finitely generated K-algebra and M a maximal ideal
in A. Then A = K + M.
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Proof. (a) By 6.4.2 there exists a finite subset J of K such that K[J] ≤ F is integral and J is alge-
braically independent over K. By 6.4.3, K[J] is a field. Since the units in K[J] are K we get J = ∅.
Hence K ≤ F is integral and so algebraic. Thus by 4.1.14 K ≤ F is finite.

(b) Note that A ∶= A/M is a field. Also K = (K+ M)/M is a subfield of A isomorphic to K and A
is a finitely generated K algebra. So by (a) A = K and thus A = K + M. �

6.5 Affine Varieties

Hypothesis 6.5.1. Throughout this section K ≤ F is field extension with F algebraically closed. D
is a finite set, A = K[xd,d ∈ D] and B = F[xd,d ∈ D], with A viewed as a subset of B.

Definition 6.5.2. Let S ⊆ A and U ⊆ FD.

(a) V(S )= VFD(S ) = {v ∈ FD ∣ f (v) = 0 for all f ∈ S }.

V(S ) is called an affine variety in FD defined over K, or a K-variety in FD.

(b) U ⊆ FD define J(U)∶= JA(U) = { f ∈ A ∣ f (u) = 0 for all u ∈ U}.

(c) U is called closed if U = V(J(U)) and S is called closed if S = J(V(S )).

Lemma 6.5.3. Let U ⊆ Ũ ⊆ FD and S ⊆ S̃ ⊆ A.

(a) J(U) is an ideal in R.

(b) J(Ũ) ⊆ J(U).

(c) V(S̃ ) ⊆ V(S ).

(d) U ⊆ V(J(U)).

(e) S ⊆ J(V(S )).

(f) The following are equivalent:

(a) U is K-variety in FD.

(b) U = V(S ) for some S ⊆ A.

(c) U is closed.

(d) U = V(I)) for some ideal I of A.

(g) S is closed if and only if S = J(U) for some U ⊆ FD.

(h) V(S ) = V(AS ).
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Proof. (a) Clearly 0 ∈ J(U). Let f ,g ∈ J(U), h ∈ A and u ∈ U. Then ( f − g)(u) = f (g) − g(u) = 0
and (h f )(u) = h(u) f (u) = 0. So f − g ∈ J(U) and h f ∈ J(U).

(b) and and (c) are obvious.
(d) Let u ∈ U. Then for all f ∈ J(U), f (u) = 0. So (d) holds.
(e) Similar to (d).
(f) Suppose U is K-variety in FD, then by definition U = V(S ) for some S ⊆ A. So (f:a) implies

(f:b)
Suppose U = V(S ) for some S ⊆ A. Then by (d) S ⊆ J(U) and so by (b) V(J(U)) ⊆ J(S ) = U.

By (d), U ≤ (J(U)) and hence U = V(J(U)). So (f:b) implies (f:c)
Suppose U is closed. Then U = U(J(U)). By (a) J(U) is an ideal in A and so (f:c) implies

(f:d).
Clearly (f:d) implies (f:a). So (f) holds.
(g) If S is closed then S = J(U) for U = J(S ). The other direction is similar to the implication

(f:b)Ô⇒ (f:c).
(h) Since S ⊆ AS , V(AS ) ≤ V(S ). By (e) S ⊆ J(V(S )) and by (a), J(V(S )) is an ideal. Thus

AS ⊆ J(V(S )) and so V(S ) ⊆ V(AS ). �

Example 6.5.4. (1) Suppose that ∣D∣ = 1 and so A = K[x] and FD = F. Let U be a affine K-variety
in F. Then by 6.5.3(f), U = V(I) for some ideal I in K[x]. By 2.6.6, K[x] is a PID and so there
exists f ∈ K[x] with I = K[x] f . Thus by 6.5.3(h), U = V(I) = V( f ). So U is the set of roots of
f in F. So either f = 0 and U = F or U is finite.

Now let U be any finite subsets of K and put f = ∏u∈U x − u. Then V( f ) = U and so any finite
subsets of K are is an affine K-variety in F.

If K = F we see the affine F-varieties in F are F itself and the finite subsets of F.

(2) Let K = R, F = C and D = {1,2}. Then A = K[x1, x2]. Let f = x2
1+ x1

2−1. Then V( f ) = {(a,b) ∈
C2 ∣ a2 + b2 = 1}.

(3) Let n ∈ Z+ and D = {(i, j) ∣ 1 ≤ i, j ≤ n}. Then FD = Mn(F) is the set of n × n-matrices
with coefficients in F. Write xi j for x(i, j) ∈ A and consider the matrix X ∶= (xi j) ∈ Mn(A). Put
f = det(X) ∈ A. Let u = (ui j) ∈ FD = Mn(F). Then f (u) = det u. Thus

V( f − 1) = {u ∈ Mn(F) ∣ det(u) = 1} = SLn(K)

Lemma 6.5.5. Let u ∈ FD.

(a) J(u) is the kernel of the evaluation map: Φ ∶ A→ F, f → f (u).

(b) If K ≤ F is algebraic, J(u) is a maximal ideal in A.

Proof. (a) is obvious. (b) Note that K ≤ Φ(K) ≤ F. Therefore Φ(K) is an integral domain which is
algebraic over K. So by 4.1.14 Φ(K) is an field. By (a) and the first isomorphism theorem for rings,
A/J(u) is a field and so by 2.4.22 J(u) is a maximal ideal in A. �

Lemma 6.5.6. Let M be a maximal ideal in B.
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(a) There exists u = (ud)d∈D ∈ FD with M = JB(u).

(b) M is the ideal in B generated by {xd − ud ∣ d ∈ D}.

(c) V(M) = {u}.

Proof. (a) and (b) By 6.4.4, B = F + M. Hence for each d ∈ D there exists ud ∈ F with xd − ud ∈ M.
Put u = (ud)d∈D and let I be the ideal generated by {xd − ud ∣ d ∈ D). Then xd ∈ F+ I and so F+ I is
a subring of B containing F and all xd. Hence B = F + I and B/I is a field. So I is a maximal ideal.
Since I ≤ M we get I = M and since I ≤ JB(u), I = JB(u). So M = I = JB(u).

(c) Let a ∈ V(M). Since xd − ud ∈ M, 0 = (xd − ud)(a) = ad − ud. Hence ad = ud and a = d. �

Proposition 6.5.7. Let I be an ideal in A with I ≠ A. Then V(I) ≠ ∅

Proof. By 2.4.18 I is contained in a maximal ideal P of A. Let A be the set of elements in F algebraic
over K. Then

VAD(P) ⊆ V(P) ⊆ V(I),

and so we may assume that F = A and I is maximal in A. Then K ≤ F is algebraic and so each
b ∈ F ⊆ B is integral over K and so also over A. Since B = A[F] we conclude from 6.2.7 that A ≤ B is
integral. Hence by 6.3.5, there exists a maximal ideal M of B with I = A ∩ M. By 6.5.6, V(M) ≠ ∅.
Since V(M) ⊆ V(I) the proposition is proved. �

Theorem 6.5.8 (Hilberts’ Nullstellensatz). Let I be an ideal in A. Then J(V(I)) = radI. In other
words, I is closed if and only if I is a radical ideal.

Proof. Let f ∈ radI and u ∈ V(I). Then f n ∈ I for some n ∈ Z. Thus ( f (u))n = f n(u) = 0 and since
F is an integral domain, f (u) = 0. Thus f ∈ J(V(I)) and radI ⊆ J(V(I)).

Next let 0 ≠ f ∈ J(V(I)). We need to show that f ∈ radI. Put E = D∪ { f} and put y = x f . Then
K[xe, e ∈ E] = A[y]. Let L be the ideal in A[y] generated by I and y f − 1.

Suppose for a contradiction that VFE(L) = ∅ and pick c ∈ VFE(L). Then c = (a,b) with a ∈ FD

and b ∈ F. Let g ∈ I. Then g ∈ L and 0 = g(a,b) = g(a). Thus a ∈ V(I). Since f ∈ J(V(I)) we get
f (a) = 0. Hence 0 = (y f − 1)(a,b) = b f (a) − 1 = −1 ≠ 0, a contradiction.

Thus VFE(L) = ∅. 6.5.7 implies L = A[y]. So there exist gs(y) ∈ A[y],0 ≤ s ≤ m and fs ∈ I,1 ≤

s ≤ m, with

(∗) 1 = g0(y)(y f − 1) +
m

∑
s=1

gi(y) fi.

Let FA = K(xd,d ∈ D) be the field of fractions of A. Let φ ∶ A[y] → FA be the unique ring
homomorphism with φ(a) = a for all a ∈ A and φ(y) = f −1. (see ??. Applying φ to (*) we obtain:

(∗∗) 1 = g0( f −1)( f −1 f − 1) +
m

∑
s=1

gi( f −1) fi =
m

∑
s=1

gi( f −1) fi.
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Let k ∈ Z+ with k ≥ degy gi(y) for all 1 ≤ i ≤ m. Then gi( f −1) f k ∈ A for all i and thus
gi( f −1) f k fi ∈ AI = I. So multiplying equation (**) with f k we get f k ∈ I and f ∈ radI. �

Corollary 6.5.9. Then map U → J(U) is a inclusion reversing bijection with inverse I → V(I)
between the affine K-varieties in FD and the radical ideals in A.

Proof. Let U be an affine K-variety in FD. Then by definition, U = V(S ) for some ideal S if A. So
by 6.5.3(f)(g), U and I ∶= J(U) are closed. Thus V(J(U)) = U and by Hilbert’s Nullstellensatz,
I = J(V(I)) = radI. So I is a radical ideal.

Suppose next that I is a radical ideal in A. Then by definition V(I) is a affine K-variety in FD

and by Hilbert’s Nullstellensatz, I = radI = J(V(I)).
Finally by 6.5.3(b), U → J(U) is inclusion reversing. �

We would like to show that every affine variety is of the form V(S ) for a finite subset S of A.
For this we need a little excursion:

Definition 6.5.10. A ring R is called Noetherian if every ideal in R is finitely generated as an ideal.

Theorem 6.5.11 (Hilbert’s Basis Theorem). Let R be a Noetherian ring. Then also R[xd,d ∈ D] is
Noetherian.

Proof. By induction on ∣D∣ it suffices to show that R[x] is Noetherian.
Let J be an ideal in R[x]. For n ∈ N let Jn be the set of all r ∈ R such that r = 0 or r = lead( f ) for

some f ∈ J with deg f = n. Observe that Jn is an ideal in R. Since lead(x f ) = lead( f ), Jn ⊆ Jn+1.
Let 0 ≤ n ≤ t. By 2.5.23 {Jn ∣ n ∈ N} has a maximal element say Jt, for some t ∈ N. Then Jm = Jt

for all m ≥ t. By assumption each Jn is finitely generated and so we can choose rn j,1 ≤ j ≤ kn with

(∗) Jn =
kn

∑
j=1

Rrn j.

For 0 ≤ n ≤ t and 1 ≤ j ≤ kn pick fn j ∈ J with

(∗∗) lead( fn j) = rn j.

Let I be the ideal in R[x] generated by the fn j,0 ≤ n ≤ t and 1 ≤ j ≤ kn. Note that I ⊆ J. For
m > t put kn ∶= kt, rm j ∶= rn j and fm j ∶= xm−t. Since Jm = Jt we conclude that (*) and (**) holds for
all n ∈ N. Moreover fn j ∈ I for all n, j.

We will now show that J = I. So let f ∈ J. If f = 0, f ∈ I. So suppose f ≠ 0 and let n = deg f
and s = lead( f ). By (*),

s =
kn

∑
j=1

s jrn j,

for some sk ∈ R,1 ≤ j ≤ kn. Put
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g ∶=
kn

∑
j=1

s j fn j.

Then lead(g) = s, g ∈ I and deg g = n. Thus f −g ∈ J and deg( f −g) < n. By induction on deg f ,
f − g ∈ I and so f = ( f − g) + g ∈ I. This shows that I = J and so J is a finitely generated ideal in
R[x]. �

Corollary 6.5.12. (a) A is a Noetherian ring.

(b) Let U be an affine K-variety. Then U = V(S ) for some finite subset S of A.

(c) Let V be a non-empty set of K varieties in FD. Then V has a minimal element.

Proof. (a) Clearly K is Noetherian, so (a) follows Hilbert’s Basis Theorem.
(b) By (a) J(U) is finitely generated as an ideal. So J(U) = AS for some finite subset S of A.

Thus by 6.5.3

U = V(J(U)) = V(AS ) = V(S ).

(c) Let I = {J(U) ∣ U ∈ V}. Then by (a) and 2.5.23 I has a maximal element say J(U0) for
some U0 ∈ V . Let U be in V with U ⊆ U0. Then J(U0) ⊆ J(U) and by maximality of J(U0),
J(U0) = J(U). Thus

U = V(J(U)) = V(J(U0)) = U0

and so U0 is a minimal element of U . �

Lemma 6.5.13. Let S and T be ideals in A. Then

V(S ) ∪ V(T) = V(S ∩ T) == V(S T)

Proof. Clearly V(S )∩V(T) ⊆ V(S ∩ T). Since S and T are ideals, S T ⊆ Sα′T and so V(S ∩ T) ⊆

V(S T). So it remains to show that V(S T) ⊆ V(S )∪V(T). Let u ∈ FD with v ∉ V(S )∪V(T). Then
there exists s ∈ S and t ∈ T with s(u) ≠ 0 ≠ t(u). Then (st)(u) = s(u)t(u) ≠ 0 and since st ∈ S T ,
u ∉ V(S T). So V(S T) ⊆ V(S ) ∪ V(T). �

Definition 6.5.14. An affine K-variety U in FD is called K-irreducible provided that:
Whenever U1 and U2 are K-varieties in FD with U = U1 ∪U2, then U = U1 or U = U2

Example 6.5.15. (1) Let F = C and U = V(x2 − 2y2). If K = R, then (x2 − 2y2) = (x +
√

2y)(x −
sqrt2y) and so by 6.5.13 U = V(x +

√
2y) ∪ V(x − sqrt2y) and so U is not an irreducible

R-variety.

But it can be shown that U is an irreducible Q-variety.

(2) Let F = C and K = Q. Let U = V(x2 + y2 − 4)((x − 1)2 + y2 − 4)):
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��
��
��
��

Then U is the union of two irreducible subvarieties namely the circles V(x2 + y2 − 4) and
V(x − 1)2 + y2 − 4). But U cannot be written has the disjoint union of two subvarieties.

Lemma 6.5.16. Let U be a affine K-variety in FD. Then U is K- irreducible if and only if J(U) is a
prime ideal in A.

Proof. Suppose first that J(U) is a prime ideal in A and let U1,U2 be affine K-varieties with U =

U1 ∪ U2. Then U = U1 ∪ U2 ⊆ V(J(U1)J(U2)) and so J(U1)J(U2) ⊆ J(U). Since J(U) is a
prime ideal we conclude J(Ui) ⊆ J(U) for some i ∈ {1,2}. Hence U ⊆ V(J(Ui)) = Ui ⊆ U and so
U = Ui.

Suppose next that U is irreducible and let J1 and J2 be ideal in A with J1J2 ⊆ J(U). We need to
show that Jk ⊆ J(U) for some i. Replacing Ji be Ji + J(U) we may assume that J(U) ⊆ Ji for i = 1
and 2. Then V(Ji) ⊆ Ui. By 6.5.13

V(J1) ∪ V(J2) = V(J1 ∩ J2) = V(J1J2)

Since J1J2 ≤ J(U) ≤ J1 ∩ J2 we have

V(J1 ∩ J2) ⊆ U = J(V(U)) ⊆ V(J1J2)

Thus U = V(J1) ∪ V(J2) and since U is irreducible, V(Jk) = U for some k. Thus Jk ≤ J(U)

and J(U) is a prime ideal in A. �
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Chapter 7

Simple Rings and Simple Modules

7.1 Jacobson’s Density Theorem

Definition 7.1.1. Let R be a ring and M an R-module. M is called minimal if M has no proper
R-submodule. M is called simple R-module M is minimal and RM ≠ 0.

Example 7.1.2. 1. Let I is be left ideal in R, then R/I is simple if and only if I is a maximal left
ideal in R and R2 ≰ I.

2. Let D be a division ring and V is an D-module. We will show that V is a simple EndD(V)

module. For this we first show that for each u, v ∈ V with u ≠ 0V there exists α ∈ EndD(V) with
α(u) = v. For this let B be a basis for V with u ∈ B. Then there exists a unique D-linear map
V →W with α(w) = v for all w ∈ B. In particular, α(u) = v.

Now let U be any non-zero EndD(V)-submodule of B. Let u ∈ U♯ and v ∈ V . Then by the above
there exists α ∈ EndD(V) with α(u) = v. Thus v ∈ U and U = V .

Lemma 7.1.3 (Schur’s Lemma). Let M,N be simple R-modules and f ∈ HomR(M,N). If f ≠ 0,
then f is R-isomorphism. In particular, EndR(M) is a division ring.

Proof. Since f ≠ 0, ker f ≠ M. Also ker f is an R-submodule and so ker f = 0 and f is 1-1.
Similarly, Im f ≠ 0, Im f = N and so f is onto. So f is a bijection and has an inverse f −1. An easy
computation shows that f −1 ∈ HomR(N,M)). Choosing N = M we see that EndR(M) is a division
ring. �

Definition 7.1.4. Let R be a ring and M be an R-module.

(a) Let N ⊆ M. N is called R-closed in M if N = AnnM(AnnR(N).

(b) Let I ⊆ R. I is called M-closed in R if I = AnnR(AnnM(I).

Lemma 7.1.5. Let R be a ring and M an R module. Let U ⊆ Ũ ⊆ M and S ⊆ S̃ ⊆ R.

(a) U ⊆ AnnR(S ) if and only if S ⊆ AnnM(R).

323



324 CHAPTER 7. SIMPLE RINGS AND SIMPLE MODULES

(b) AnnR(Ũ) ⊆ AnnR(U).

(c) AnnM(S̃ ) ⊆ AnnM(S ).

(d) U ⊆ AnnM(AnnR(U)).

(e) S ⊆ AnnR(AnnM(S )).

(f) U is R-closed in M if and only if U = AnnM(S ) for some S ⊆ M.

(g) S is M-closed in R if and only if S = AnnR(U) for some U ⊆ M.

(h) I → AnnM(I) is an inclusion reversing bijection between the M-closed subsets of R and R-
closed subsets of M with inverse W → AnnR(W).

Proof. This follows from A.1.13 applied to the relation {(r,m) ∈ R × M ∣ rm = 0}. �

Lemma 7.1.6. Let R be a ring and M an R-module.

(a) Let W be an R-closed subset of M (that is W = AnnM(I) for some I ⊆ R). Then W is an
EndR(M)-submodule of M.

(b) Let I be an M-closed subset of R (that is R = AnnR(W) for some W ⊆ M). Then I is left ideal in
R,

(c) Let I be an R-closed subsets of R. Then W is an R-submodule of M if and only of AnnR(W) is
an ideal in R.

(d) Let I be an M-closed subset of R. Then I is an ideal in R if and only if AnnM(I) is an R-
submodule of M.

(e) I → AnnM(I) is an inclusion reversing bijection between the M-closed ideals of R and R-closed
R-submodules of M with inverse W → AnnR(W).

Proof. (a) Let m ∈ AnnM(I), i ∈ I and φ ∈ EndR(M). Then

i(φm) = φ(im) = φ0 = 0

and so φm ∈ AnnM(I).

(b) By 3.1.24(c), AnnR(W) is a left ideal in R.

(c) If I is ideal in R, the 3.1.24(d) shows that W ∶= AnnM(I) is an R-submodule of M. If W is
an R-submodule of M, then by 3.1.24(e), AnnR(W) is an ideal in R. Since I is closed I = AnnR(W)

and so I is an ideal in R.

(d) Put I = AnnR(W). Since W is R-closed, W = AnnR(I) and (d) follows from (c).

(e) follows from (c) and 7.1.5(h). �
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Lemma 7.1.7. . Let M be a simple R-module, V a R-closed subset of M and w ∈ M ∖ V. Put
I = AnnR(V). Then M = Iw and the map β ∶ I/AnnI(w) → M, i + AnnI(w) → iw is a well defined
R-isomorphism.

Proof. Since V is closed, V = AnnR(V) and so Iw ≠ 0. By 3.1.24 I is a left ideal in R. Define

φ ∶ I → M, i→ iw

Then φ is R-linear, Imφ = Iw and kerφ = AnnI(w). Thus by Isomorphism Theorem of modules,

β ∶ I/AnnI(w)→ Im, i +AnnI(w)→ iw.

is a well-defined R-isomorphism. In particular, Iw is an R-submodule of M. Since Iw ≠ o and e
M is simple, M = Iw and the lemma is proved. �

Lemma 7.1.8. Let M be simple R-module and D = EndR(M). Let V ≤ W be D-submodules of M
with dimD(W/V) finite. If V is closed in M with respect to R, then also W is closed in M with
respect to R. In particular, all finite-dimensional D subspaces of M are closed.

Proof. By induction on dimD W/V we may assume that dimD W/V = 1. Let w ∈ W ∖ V . Then
W = V + Dw. Put I = AnnR(V) and J = AnnI(w). We will show that W = AnnR(J). So let
m ∈ AnnM(J). Then J ⊆ AnnI(m) and hence the map α ∶ I/J → M, i + J → im is well defined
and R-linear. By 7.1.7 the map β ∶ I/J → M, i + J → iw is an R-isomorphism. Put δ = αβ−1. Then
δ ∶ M → M is R-linear and δ(iw) = im for all i ∈ I. Hence δ ∈ D and

i(m − δ(w)) = im − iδ(w)) = im − δ(iw) = im − im = 0

] for all i ∈ I. Since V is closed, V = AnnM(I) and so δ(w) − m ∈ V . Thus m ∈ δ(w) + V ≤ W and
AnnM(J) ⊆ W

Since AnnM(J) is a D-submodule of M containing V and w, W = V + Dw ≤ AnnM(J). Hence
W = AnnW(J) and so by 7.1.5(f), W is R-closed in M.

Since M is a simple R-module, RM ≠ 0 and so AnnM(R) ≠ M. Since M is simple this implies
AnnM(R) = 0. So 0 is a R-closed in M. Hence the first statement of the lemma implies the second.

�

Definition 7.1.9. Let M be an R-module and D ≤ EndR(M) a division ring. Then we say that R acts
densely on M with respect to D if for each finite D-linearly independent family (mi)

n
i=1 in M and

each family (wi)
n
i=1 in M there exists r ∈ R with

rmi = wi

for all 1 ≤ i ≤ n.

Theorem 7.1.10 (Jacobson’s Density Theorem). Let R be a ring and M a simple R-module. Put
D ∶= EndR(M), then R acts densely on M with respect to D.
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Proof. Let (mi)
n
i=1 be finite D-linear independent family in M and and (wi)

n
i=1 a family of M. By

induction on n we will show that there exists r ∈ R with rmi = wi for all 1 ≤ i ≤ n. For n = 0,
there is nothing to prove. By induction there exists s ∈ R with smi = wi for all 1 ≤ i < n. Put
V = ⟨mi ∣ 1 ≤ i < n⟩D . Then by 7.1.8 V is R-closed and so by 7.1.7 there exists t ∈ AnnR(V)

with tmn = wn − smn. Put r = s + t. For 1 ≤ i < n, tmi = 0 = and so rmi = smi = wi. Also
rmi = smi + tmi = smn + (wn − smn) = wn and the theorem is proved. �

Definition 7.1.11. Let R be a ring and M an R-module.

(a) Let W ⊆ M. Then NR(W) = {r ∈ R ∣ rW ⊆ W}.

(b) R∣M is the image of R in End(M) under ∗R ∶ R→ End(M), r → (m→ rm).

Corollary 7.1.12. Let M be a simple R-module, D = EndR(M) and W a finite dimensional D-
submodule of M. . Then NR(W) is a subring of W, W is an NR(W)-submodule of M, AnnR(W) is
an ideal in NR(W) and then

NR(W)/AnnR(W) ≅ NR(W)∗W = EndD(W).

Proof. Let r, s ∈ NR(W) and w ∈ W. Then (r + s)w = rw + sw ∈ W and (rs)w = r(sw) ∈ W. Thus
NR(W) is a subring of R. Consider

Φ ∶ NR(W)→ EndD(W), r → (m→ rm)

Then ker Φ = AnnR(W) and Im Φ = NR(W)∗W = E. So the first isomorphism theorem for rings
shows that AnnR(W) is an ideal in NR(W) and NR(W)/AnnR(W) ≅ NR(W)∗W .

Let φ ∈ EndD(W) and choose a basis (mi)
n
i=1 for W over D. By 7.1.10 there exists r ∈ R with

rvi = φvi for all 1 ≤ i ≤ n. Then rW ≤ W and so r ∈ NR(W). Since both Φ(r) and φ are in EndD(W)

and map mi → φmi, Φ(r) = φ. Thus Φ is onto and NR(W)∗W = EndD(W). �

Corollary 7.1.13. Let R be ring, M be a simple R-module and put D = EndR(M)op. Suppose that
M is a finite dimensional D-module. Then

R/AnnR(M) ≅ R∣M = EndD(M)

Proof. Note that NR(M) = R. So 7.1.13 follows from 7.1.12 applied with W = M. �

7.2 Semisimple Modules

Definition 7.2.1. Let R be a ring and M an R-module. M is called a semisimple R-module if M is
the (internal) direct sum of simple R-submodules.1

1Note that this holds if and only if M is isomorphic to the external direct sum of simple R-modules
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Lemma 7.2.2. Let R be ring, M an R-module, N an R-submodule of M, S a set of simple R-
submodules of M and I ⊆ S. Suppose that

N ∩∑I = 0, ∑I =⊕I, and M = N +∑S

Then there existsM ⊆ S with I ⊆M such that

M = N ⊕⊕M

Proof. LetM be set of all sets T such that

I ⊆ T ⊆ S, N ∩∑T = 0 and ∑T =⊕T .

Since I ∈ M, M ≠ ∅. Order M by inclusion and let (Di)i∈I be a chain in M. Let D = ⋃i∈IDi.
We will show that D ∈ M (and so D is an upper bound for (Di)i∈I). If i ∈ I, then Di ∈ M and so
I ⊆ Di ⊆ S. Hence also I ⊆ D ⊆ S .

Note that (∑Di)i∈I is chain of submodules of M and so ∑D = ⋃i∈I∑Di. By definition of M,
N ∩∑Di = 0 for all i ∈ I and so also N ∩∑D = 0.

Let S ∈ D and put J = {i ∈ I ∣ S ∈ Di}. For i ∈ I define D′i = Di ∖ {S }. Also let D′ = D ∖ {S }.
Since (Di)i∈I is a chain,

D =⋃
j∈J
D j and so D′ =⋃

j∈J
D′j

Note that (∑D′j) j∈J is a chain of R-submodules of M and so ∑D′ = ⋃ j∈J∑D
′
j.

By definition ofM,∑D j =⊕D j and so S ∩∑D′j = 0 for all j ∈ J. It follows that S ∩∑D′ = 0.
Thus the definition of an internal direct sum implies ∑D =⊕D. Hence D ∈M.

We proved that every chain inM has an upper bound. So we can apply Zorn’s lemma to obtain
a maximal elementM inM. Put W = ∑M.

Suppose for a contradiction that that M ≠ N+W. By assumption M = N+∑S and so there exists
S ∈ S with S ≰ N +W. Then S ≠ (N +W) ∩ S and since S is a simple R-module, (N +W) ∩ S = 0.
So

(N +W) ∩ (S +W) = W + ((N +W) ∩ S ) = W and so N ∩ (S +W) ≤ N ∩W = 0.

Also W ∩ S = 0 implies that

∑ (M ∪ {S }) = W + S = W ⊕ S = (⊕M)⊕ S =⊕ (M ∪ {S }).

ThusM∪{S } ∈M. Since S ≰ N+W, S ∉M and we obtain a a contradiction to the maximality
ofM.

Thus

M = N +W = N ⊕W = N ⊕∑M = N ⊕⊕M

and the lemma is proved. �



328 CHAPTER 7. SIMPLE RINGS AND SIMPLE MODULES

Lemma 7.2.3. Let S a set of simple R-submodules of the R-module M. Also let N be a R-submodule
of M and suppose that M = ∑S.

(a) There exists a subsetM of S with M = N ⊕⊕M.

(b) M =⊕T for some T ⊆ S.

(c) M/N ≅⊕T for some subset T of S.

(d) M/N is semisimple.

(e) N ≅⊕T for some subset T of S .

(f) N is semisimple.

(g) If N is a simple R-module, then N ≅ S for some S ∈ S.

(h) Suppose N is a maximal N-submodule of M, then M/N ≅ S for some S ∈ S.

(i) M is semisimple R-module.

Proof. (a): This follow from 7.2.2 applied with I = ∅.

(b) follows from (a) applied with N = 0.

(c) follows from (a).

(d) follows from (c).

(e): Put W = ∑M. By (a), M = N ⊕ W and so M/W ≅ N. N ≅ M/W. So (e) follows from (c)
applied to W in place of N.

(f) follows from (e).
(g): Suppose N is simple. Then the set T from (e) only contains one element, say S . So N ≅ S

and (g) is proved.

Suppose that N is a maximal R-submodule of M. Then the set T from (b) only contains one
elements, say S . Thus M/N ≅ S .

(i) follows from (f). �

Corollary 7.2.4. Let R be a ring, M a semisimple R-module and A and B R-submodules of M with
A ≤ B. Then A/B is semisimple.

Proof. 7.2.3(f) implies that B is semisimple. Then 7.2.3(d) applied to (A,B) in place of (N,M)

shows that B/A is semisimple. �

Lemma 7.2.5. Let M a semisimple R-module and N an R-submodule of M with N ≠ M. LetM be
the set of maximal R-submodules of M containing N. Then ⋂M = N.

Proof. By 7.2.4 M/N is a semisimple R-module. Thus replacing M by M/N we may assyme that
N = 0. Let S be a set of simple R-submodules of M with M =⊕S. For S ∈ S, put S ∗ = ∑S≠T∈S T .
Then M/S ∗ ≅ S and so S ∗ is a maximal R-submodule of S . Then 0 ≤ ⋂M ⊆ ⋂S ∈S S ∗ = 0 and so
⋂M = 0 = N. �
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7.3 Simple Rings

Lemma 7.3.1. Let R be non-zero ring with identity. Then there exists a simple R-module.

Proof. Let C be non-empty chain of proper left ideal in R. Then 1 ∉ ⋃C and so C is a proper left
ideal in R. Hence by Zorn’s Lemma, R has a maximal left ideal I. Since R has an identity, R2 = R ⊈ I
and so by 7.1.2 R/I is a simple R-module. �

Proposition 7.3.2. Let R be a simple ring and M a simple R-module. Put D = EndR(M). Then M
is a faithful R-module and R is isomorphic to subring of EndD(M) acting densely on M.

Proof. By definition of a simple R-module, RM ≠ 0 and so AnnR(M) ≠ R. Since M is simple and
AnnR(M) is an ideal in M, AnnR(M) = 0. Thus R ≅ R∣M. By 7.1.10, R and so also R∣M acts densely
on M. �

Proposition 7.3.3. Let M be faithful, simple R-module and put D = EndR(M). Suppose that n ∶=

dimD M is finite.

(a) R ≅ R∣M = EndD(M).

(b) R ≅ Mn as a left R-module. In particular, R is semisimple as a left R-module.

(c) Let I be a maximal left ideal in R. Then I = AnnR(m) for some m ∈ M♯ and R/I ≅ M as an
R-module.

(d) Let I ⊆ R. Then I is closed in M with respect to R if and only if I is a left ideal.

(e) Let W ⊆ M. Then W is closed in M with respect to R if and only if W is a D-subspace M.

(f) The map I → AnnR(I) is an inclusion reversing bijection between the left ideals in R and the
D-subspaces of M with inverse M → AnnM(I).

(g) Each simple R-module is isomorphic to M.

(h) R is a simple ring with identity.

Proof. (a): Since M is faithful AnnR(M) = 0. Thus R ≅ R/AnnR(M) and (b) follows from 7.1.13.
(b) Let (mi)

n
i=1 be D basis for M. M over D. Define

γ ∶ R→ Mn, r → (rmi)
n
i=1.

Then γ is R-linear, Let (wi)
n
i=1 ∈ Mn. By the density theorem there exists r ∈ R with rmi = wi

for all 1 ≤ i ≤ n. Hence γ is onto. Let r ∈ kerγ. Then rmi = 0 for all 1 ≤ i ≤ n, Since AnnM(r) is a
D-subspace of M we conclude that AnnM(r) = M. Since M is a faithful R-module, r = 0 and so γ is
1-1. Thus γ is an R-isomorphism.
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(c) By (b) 7.2.3(h), R/I ≅ M. Note that by (a), R has an identity 1. Let φ ∶ R/I → M be an
R-isomorphism and put m = φ(1+ I). Then AnnR(m) = AnnR(1+ I) and By 3.1.26 AnnR(1+ I) = I.

(d) Let I be an left ideal in R andM the set of maximal ideals in R containing I. By (b), R is
a semisimple R-module and so 7.2.5 implies that ⋂M = I. By (c), for each J ∈ M there exists
mJ ∈ M with J = AnnR(mJ). Put N = {mJ ∣ J ∈M}. Then

AnnR(N) = ⋂
J∈M

AnnR(mJ) = ⋂
J∈M

J = I.

So I is closed in R with respect to M. By 7.1.6 each closed subset of T is a left ideal in R and so
(d) holds.

(e) Since M is finite dimensional over D, any D subspace of M is finite dimensional over D and
so by closed by 7.1.8. By 7.1.6 each closed subset of M is a D-subspace and so (e) holds.

(f) By7.1.6 I → AnnM(I) is a inclusion reversing bijection between the closed subsets of R and
the closed subsets of M with inverse W → AnnR(W). Thus (f) follows from (d) and (e).

(g) Let W be a simple R-module and w ∈ W♯. Then R/AnnR(w) ≅ Rw = W. Hence AnnR(w) is
maximal left ideal in R and so (c) W ≅ R/AnnR(w) ≅ M.

(h) Let I be an ideal in R. Then AnnM(I) is an R-submodule of M. Since M is simple,
AnnM(I) = 0 or AnnM(I) = M. By (f), I = AnnR(AnnM(I) and so I = AnnR(0) = R or
I = AnnR(M) = 0. Since R has an identity, R2 ≠ 0 and so R is simple. �

Definition 7.3.4. A ring R is called Artinian for every non-empty set of left ideals in R has a minimal
element.

Lemma 7.3.5. Let R be an Artinian ring and M a simple R-module. Then M is finite dimensional
over D = EndR(M).

Proof. Suppose that dimD M =∞. Then there exists an infinite strictly ascending series

M1 < M2 < M3 < . . . <

of finite dimensional D-subspaces. By 7.1.8 each Mi is closed. Thus

AnnR(M1) > AnnR(M2) > AnnR(M3) > . . .

is a strictly descending chain of left ideals in R, contradicting the definition of an Artinian ring. �

Theorem 7.3.6. Let R be a simple Artinian ring. Then there exists a simple R-module M, M is
unqiue up to isomorphism and if D ∶= EndR(M)op, then n = dimD M is finite and R ≅ EndD(M) ≅

Mnn(D).
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Proof. Since R is Artinian, R has a minimal left ideal M. Suppose that RM = 0 and put I = {r ∈

R ∣ Rr = 0}. Then I is an ideal in R with M ⊆ I. Since R is simple we get I = R and so R2 = 0, a
contradiction to the definition of a simple ring. Thus RM ≠ 0 and so M is a simple R-module. By
7.3.5 dimD(M) is finite and by 7.3.2 M is a faithful R-module. Thus by 7.3.3(h), M is unique up to
isomorphism and by 7.3.3(a), R ≅ EndD(M). �

Definition 7.3.7. Let R be a ring and M an R-module. Let α be an ordinal and T = (Tβ)β∈α be
family of R-submodules of M. For 0 < β ≤ α define Bβ = ⋃γ<α Tβ. Then α is called an ascending
composition series for R on M provided that

(i) T0 = 0 and Bα = M.

(ii) for each 0 < β < α, Bβ is a maximal R-submodule of Tβ.

The R-modules Tβ/Bβ, 0 < β < α are called the composition factors of T .

Example 7.3.8. 1. Let R be a ring, M an R-module, n ∈ N and

0 = T0 < T1 < T2 < . . . < Ti−1 < Ti < . . .Tn−1 < Tn = M

be finite chain of R-submodules such that Ti/Ti−1 is simple R-module for all 0 ≤ i ≤ n. Then
(Ti)0≤i<n+1 is an ascending composition series of M with Bi = Ti−1 for all 0 < i ≤ n + 1.

2. Let R be a ring and M an R-module and (S β)0≠β∈α a family simple R-submodules of M with
M = ⊕0<β∈α S β. For β < α define Tβ = ∑0<γ≤β S γ. Then for 0 < β ≤ α, Bβ = ∑0<γ<β S γ. So
Bα = M and for 0 < β < α, Bb ≤ Tβ, Tβ = Bβ ⊕ S β and Tβ/Bβ ≅ S β. In particular, (Tβ)β∈α is a
composition series for R.

3. Let R be a PID with field of fraction F. Let p be prime in R and

Rp∞ = {
a
pn + R ∣ a ∈ R,n ∈ N} ⊆ F/R.

For n ∈ N define

Tn = {
a
pn + R ∣ a ∈ R,n ∈ N} ⊆ F/R

Then (Tn)n∈N is an ascending R-composition series for Rp∞ , and for all 0 ≠ n ∈ N, Bn = Tn−1
and Tn/Bn ≅ R/pR.

Lemma 7.3.9. Let R be a ring, M an R-module and let T,B,T∗,B∗ be R submodules of M. Suppose
that

T = (T ∩ T∗) + B, T∗ = (T ∩ T∗) + B∗ and T ∩ B∗ = T∗ ∩ B

Then
T/B ≅ (T ∩ T∗)/(B ∩ B∗) ≅ T∗/B∗

as R-modules.
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Proof. Since T ∩ B∗ = T∗ ∩ B we have T∗ ∩ B = B∩ B∗ and (T ∩T∗)∩ B = T∗ ∩ B = B∩ B∗. Using
T = (T ∩ T ) + B and the Second Isomorphism Theorem for modules:

T/B = (T ∩ T∗) + B/B ≅ (T ∩ T∗)/(T ∩ T∗) ∩ B = (T ∩ T∗)/(B ∩ B∗)

By symmetry, also T∗/B∗ ≅ (T ∩ T∗)/(B ∩ B∗). �

Lemma 7.3.10. Let R be a ring, M an R-module and let T,B,T∗,B∗ be R submodules of M. Suppose
B is a maximal R-submodule of T and B∗ is a maximal R-submodule of T∗. Then the following
statements are equivalent:

(a) (T ∖ B) ∩ T∗ ≠ ∅ and (T ∖ B) ∩ B∗ = ∅.

(b) T = (T + T∗) + B, T∗ = (T ∩ T∗) + B∗ and T ∩ B∗ = T∗ ∩ B.

(c) (T∗ ∖ B∗) ∩ T ≠ ∅ and (T∗ ∖ B∗) ∩ B = ∅.

Proof. Note first that (a) is equivalent to

(∗) T ∩ T∗ ⊈ B and T ∩ B∗ ⊆ B

Suppose that (*) holds. Suppose for a contradiction that T∗ ∩ B ≰ B∗. Since B∗ is maximal
R-submodule of T∗, T∗ = (T∗ ∩ B) + B∗. Since T∗ ∩ B ≤ T ∩ T∗ the modular law implies

T ∩ T∗ = (T∗ ∩ B) + ((T ∩ T∗) ∩ B∗) ≤ B + (T ∩ B∗) ≤ B

a contradiction.
Hence T∗ ∩ B ≤ B∗. Together with T ∩ B∗ ≤ B, this gives T∗ ∩ B = B∩ B∗ = T ∩ B∗. So the last

statement in (b) holds. Also since T∗ ∩B ≤ B∗ and T ∩T∗ ≰ B we conclude that T ∩T∗ ≰ B∗. Since
B is a maximal R-submodule of T∗ and B∗ is maximal R-submodule of T∗ we get T = (T ∩T∗)+B
and T∗ = (T ∩ T∗) + B∗. Thus (b) holds.

Suppose that (b) holds. Since T = (T ∩ T∗) + B we get T ∩ T∗ ≰ B and since T ∩ B∗ = T∗ ∩ B,
T ∩ B∗ ≤ B. So (*) holds.

We proved that (*) is equivalent to (b). Hence (a) is equivalent to (b). By symmetry, (c) is
equivalent to (b) and the lemma is proved. �

If (a) and (b) are equivalent, then by symmetry also (c) and (b) are equivalent.

Theorem 7.3.11 (Jordan-Hölder). Let R be a ring, M and R-module and suppose (Tβ)β∈α and
(T∗

β )β∈α∗ are ascending R-composition series for M. Then there exists a bijection Φ ∶ α ∖ {0} →
α∗ ∖ {0} such that

Tβ/Bβ ≅ T∗
Φβ/B∗Φβ

for all 0 < β < α,
In particular, ∣α∣ = ∣α∗∣ and if α is finite, α = α∗.
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Proof. Let 0 < β < α. Then Tβ ∖ Bβ ≠ ∅. Since M = B∗α∗ = ⋃γ∈α∗ T∗
γ there exists γ ∈ α∗ with

(Tβ ∖ Bβ) ∩ T∗
γ ≠ ∅. So we can choose Φβ ∈ α∗ minimal with

(Tβ ∖ Bβ) ∩ T∗
Φβ ≠ ∅.

Note that Φβ ≠ 0.
Let γ ∈ α∗. If γ < Φβ, then by minimality of Φβ, (Tβ ∖ Bβ) ∩ T∗

γ = ∅. Since B∗β = ⋃γ∈β T∗
γ this

gives (Tβ ∖ Bβ) ∩ B∗Φβ = ∅. If Φβ < γ, then ∅ ≠ (Tβ ∖ Bβ) ∩ Tγ ⊆ (Tβ ∖ Bβ) ∩ B∗γ . It follows that

γ = Φβ ⇐⇒ ( (Tβ ∖ Bβ) ∩ T∗
γ ≠ ∅ and (Tβ ∖ Bβ) ∩ B∗γ = ∅ )

For 0 ≠ γ ∈ α∗ let Φ∗γ ∈ α be minimal with (T∗
γ ∖ B∗γ) ∩ TΦ∗γ ≠ ∅. By symmetry.

β = Φ∗γ ⇐⇒ ( (T∗
γ ∖ B∗γ) ∩ Tβ ≠ ∅ and (T∗

γ ∖ B∗γ) ∩ Bβ = ∅ )

Thus by 7.3.10 γ = Φβ if and only if β = Φ∗γ. Hence Φ is a bijection with inverse Φ∗. If γ = Φβ,
7.3.10 also shows that

Tβ = (Tβ ∩ T∗
γ ) + Bβ, T∗

γ = (Tβ ∩ T∗
γ ) + B∗γ , Tβ ∩ B∗γ = T∗

γ ∩ Bβ

and so by 7.3.9

Tβ/Bβ ≅ T∗
γ /B∗γ

as R-modules. �

Corollary 7.3.12. Let R be a ring, M a semisimple R-module and suppose S and T are sets of
simple R-submodules of M with M = ⊕S and M = ⊕T . Then there exists a bijection Φ ∶ S → T

such that for all S in S, S ≅ ΦS as an R-module.

Proof. By 7.3.8(3) there exists ascending series for M with factors S and T respectively. Thus the
corollary follows from the Jordan Hölder Theorem 7.3.11 �

Definition 7.3.13. Let R be a ring and M an R module.

(a) We say that a class S of R-modules is closed under isomorphism if T ∈ S . whenever S and T
are R-modules with S ∈ S and S ≅R T.

(b) Let S be class of simple R-modules. Then M is called S-semisimple of M is semisimple and any
simple R-submodule is isomorphic to S ∈ S.

(c) Let S be a simple R-module. Then M is called S - homogeneous if M is a semisimple R-module
and any simple R-submodule of M is isomorphic to M.

Note that M is S -homogeneous if and only if M is {S }-semisimple.

Lemma 7.3.14. Let R be a ring, M an R-module S a class of simple R-modules closed under
isomorphism. Then the following statements are equivalent.
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(a) M is S-semisimple.

(b) M =⊕T for some set of T of R-submodules of M with T ⊆ S.

(c) M = ∑T for some set of T if R-submodules with T ⊆ S.

(d) M ≅⊕T for some subset of T of S.

Proof. (a)Ô⇒ (b): Since M is semisimple M =⊕T for some set of simple R-submodules of R.
Since M is S-semisimple, each T ∈ T is contained in S and so T ⊆ S . So (b) holds.

(b)Ô⇒ (c): Obvious.

(c)Ô⇒ (a): By 7.2.3(i), M is semisimple. By 7.2.3(g), each simple R-submodule is isomor-
phic to one T ∈ T and so is contained in S.

(b)⇐⇒ (d) : Obvious. �

Lemma 7.3.15. Let R be a ring, S a class of simple R-module, M an S -homogeneous R module. If
N is a S-semisimple, then both N and M/N are S-semisimple. R-modules.

Proof. By 7.2.3(f), N is semisimple. Any simple R-submodule of N is also an R-submodule of M
and so isomorphic to some S ∈ S.

Let M = ∑R for some set of simple R-submodules of V . The by 7.2.3(c) M/N ≅⊕T for some
subset T ofR. Each element of T is contained inR and so isomorphic to some S ∈ S. Hence M/N
is S-semisimple by 7.3.14(d). �

Remark 7.3.16. Let R be a ring, M and R-module and D = EndR(M)op. Then M is a right D-module
via mα = αm for all m ∈ R and α ∈ D and M is a (R,D)-bimodule.

Proof. Since EndR(M) is subring of End(M), M is a left EndR(M)-module and so a right D-
module. Moreover, for all r ∈ R,m ∈ M and α ∈ D we have

r(mα) = r(αm) = r(αm) = r(mα)

and so M is a (R,D)-bimodule. �

Lemma 7.3.17. Let R be a ring, S a simple R-module and put D = EndR(M)op. Let U and Ũ be
vector spaces over D and let V an S -homogeneous R-module.

(a) S ⊗D U is an S -homogeneous R-module.

(b) The function
U → HomR(S ,S ⊗D U),u→ (s→ s⊗ u)

is an D-isomorphism.

(c) The function
HomD(Ũ,U)→ HomR(S ⊗D Ũ,S ⊗D U), α→ idS ⊗ α

is a Z-isomorphism.
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(d) The function
EndD(U)→ EndR(S ⊗D U), α→ idS ⊗ α

is a ring homomorphism

(e) The function
S ×HomR(S ,V)→ V, (s, α)→ αs

is a (R,Z)-tensor product for HomR(S ,V) and V over D.

(f) The function U → S⊗RU is inclusion preserving bijection between the D-subspaces of HomR(S ,V)

and the R-submodules of V with inverse W → HomR(S ,W).

(g) {αS ∣ 0 ≠ α ∈ HomR(S ,V)} is the set simple R-submodules of V.

Proof. By Schur’s Lemma D is a division ring and so by 3.2.15 U has a D-basis u = (ui)i∈I . Thus
by 3.2.3 U ≅ DI = ⊕I D as an D-module for some set I. So also Ĩ ≅ DĨ for some set Ĩ. By 7.3.14
V ≅ S J as an R-module for some set J.

(a) We have
S ⊗D U ≅ S ⊗D ⊕

i∈I
D =⊕

i∈I
S ⊗D D =⊕

i∈I
S = S I

and so S ⊗D U is S -homogeneous by 7.3.14.
(b) Since S is simple S = Rm for all 0 ≠ m ∈ S . Thus S is a finitely generated R-module and we

can apply 3.8.6(c). So

HomR(S ,S ⊗D U) ≅ HomR(S ,⊕
i∈I

S ) =⊕
i∈I

HomR(S ,S ) =⊕
i∈I

D ≅ U

Let u = ∑i∈I diui ∈ U. Under the above chain isomorphism

(s→ s⊗ u) → (s→ (sdi)i∈I) → (s→ sdi)i∈I → (di)i∈I → u

So the function in (b) is indeed an isomorphism.

(c) We have

HomR(S ⊗D Ũ,S ⊗D U) ≅ HomR(⊕
i∈Ĩ

S ,S ⊗D U) ≅⨉
i∈Ĩ

HomR(S ,S ⊗D U) ≅⨉
i∈Ĩ

U

≅⨉
i∈Ĩ

HomD(D,U) ≅ HomD(⊕
i∈Ĩ

D,U) ≅ HomD(Ũ,U)

Let (ũ)i∈Ĩ be a D-basis for Ũ. Let α ∈ HomD(U, Ũ) and define for i ∈ Ĩ define αi ∈ HomD(D,U)

by α(ũid) = αi(d) for all d ∈ D. Put vi = α(ũi) = αi(1). Then under the above chain of isomorphism

idS ⊗ α → ⨉
i∈I

(idS ⊗ αi) → (idS ⊗ αi)i∈I → (vi)i∈Ĩ

→ (αi)i∈I → ⨉
i∈Ĩ
αi → α
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So the function in (c) is indeed an isomorphism.

(d) By (c) applied with Ũ = 0 the function is a Z-isomorphism. Let α, β ∈ EndD(U). Then
(idS ⊗ α) ○ (idS ⊗ β) = idA ⊗ (α ○ β) and so the function a ring homomorphism.

(e) Let s ∈ S , α ∈ HomR(S ,V) and d ∈ D. Since S is a (R,D)-bimodule, the opposite version of
3.6.5(a) shows that HomR(S ,V) is a left D-module via

(dα)s = α(sd)

In particular, the function in (e) is D-balanced. The function is also R-linear in the first coordi-
nate and so by 3.6.12(c) there exists an R-linear function Φ ∶ S ⊗D HomR(S ,V) with Φ(s⊗α) = αs
for all s ∈ S , α ∈ HomR(S ,V). T

S ⊗D HomR(S ,V) ≅ S ⊗D HomR(S ,⊕
j∈J

S ) ≅⊕
j∈J

(S ⊗D HomR(S ,S )) =⊕
j∈J

(S ⊗D D) =⊕
j∈J

S ≅ V

Let τ ∶ V → S I be an R-isomorphism, s ∈ S and α ∈ HomR(S ). For j ∈ J let τ j = π j ○ τ. So
τv = (τ jv) j∈J . Note also that τ j ○ α ∈ EndR(S ) = D and so s(τ j ○ α) = (τ j ○ α)s = τ j(αs). Thus the
above chain of isomorphism:

s⊗ α → s⊗ τ ○ α → (s⊗ (τ j ○ α)) j∈J = (s(τ j ○ α)) j∈J = (τ j(αs)) j∈J → αa

So Φ is an isomorphism and (e) is proved.

(f): By (e) V = S ⊗D HomR(S ,V). So if U is a D-submodule of HomR(S ,V), then S ⊗D U
is and R-submodule of V . Also if W is an R-submodule of V , HomR(S ,W) is D-submodule of
HomR(S ,V).

Let u ∈ U. Then u ∈ HomR(S ,V). Let s ∈ S . Then by (e), s⊗ u = us. So function s→ (s⊗ u) is
just u. Thus the isomorphism in (b) is the identity function on U. Hence U = HomR(S ,S ⊗D U).

By 7.3.15 W is S -homogeneous. So (e) applied with W in place of V gives S ⊗D HomR(S ,W) =

W. So the functions in (f) are inverse to each other. �

Proposition 7.3.18. Let R be a ring and S a set of representatives for the simple R-modules. Let
M be an R-module, N an R-submodule of M and P ⊆ S. For S ∈ S let MS be the sum of the
R-submodules of M isomorphic to S . Define MP = ∑S ∈S MS , so MP is the sum of R-submodules
isomorphic to some member of P .

(a) N-is P-semisimple of only if N ≤ MP .

(b) Let S ∈ S. Then N is S -homogeneous if and only if N ≤ MS .

(c) N is a semisimple R-module if and only if N ≤ MS .



7.3. SIMPLE RINGS 337

(d) Let Q ⊆ S. Then

MP ∩ MQ = MP∩Q and MP∪Q = MP + MQ.

(e) MP =⊕S ∈P MS .

(f) NP = MP ∩U.

(g) If N is semisimple, then

N = ⊕
S ∈S

(MS ∩ N)

Proof. (a) By 7.3.14 N is P-homogeneous if and only if N is the sum of submodules isomorphic to
a member of P . Hence MP is P-semisimple and contains any P-semisimple R-submodule of M.
By 7.3.15 any submodule of the P-semisimple module MP is P-semisimple.

(b) N is S -homogeneous if and only if N is {S }-semisimple. So (a) implies (b).

(c) N is semisimple if and only if N is S-semisimple. So (a) implies (c).

(d) Observe that N is P ∩Q-semisimple if and only if N is P-semisimple and Q-semisimple.
Thus by (a), N ≤ MP∩Q if and only if N ≤ MP ∩ MQ. Thus MP∩Q = MP ∩ MQ. The second
statement in (d) follows immediately from the definition of P ∪Q.

(e) By definition MP = ∑S ∈P MS . Let S ∈ P . Since {S } ∩ (P ∖ {S } = ∅, (d) gives

MS ∩ ∑
S≠T∈P

MT = M{S} ∩ MP∖{S} = M∅ = 0

So (e) holds by definition of an internal direct sum.
(f) Let U be an R-submodule of N. By (a) applied to N and to M, U is P-semisimple if and only

if U ≤ N and if and only if U ≤ N ∩ MP . Thus NP = N ∩ MP .
(g) Since N is semisimple, N = NS . By (e) applied to N in place of M, N = NS =⊕S ∈S NS . By

(g), NS = MS ∩ N and so (g) holds. �

Proposition 7.3.19. Let R be a ring and S a set of representatives for the simple R-modules. Let M
and N be R-modules. For S ∈ S define DS = EndR(S )op and M̃S = HomS (R,M).

(a) HomR(MS ,N) = HomR(MS ,NS ).

(b) ÑS = HomR(S ,NS ).

(c) Suppose M is semisimple. Then the function

HomR(M,N)→ ⨉
S ∈S

HomR(MS ,NS ), α → (α∣MS )S ∈S

is a Z-isomorphism and
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HomR(M,N) ≅ ⨉
S ∈S

HomDS (M̃S , ÑS )

as abelian groups.

(d) Suppose M is semisimple. Then the function

EndR(M)→⊕
S ∈S

HomR(MS ), α → (α∣MS )S ∈S

is a ring isomorphism and

EndR(M) ≅ ⊕
S ∈S

EndDS (M̃S )

as rings.

Proof. (a) Let α ∈ HomR(MS ,N). Then Im a ≅ MS /kerα. Since MS is S -homogeneous, 7.3.15
shows that MS /kerα is S -homogeneous. Hence also Imα is S -homogeneous. Thus 7.3.18(b) shows
that Imα ≤ NS .

(b) Follows from (a) applied with M = S .

(c) Since M is semisimple, 7.3.18(g) shows that M =⊕S ∈§ MS . Hence using (a) and 3.8.6(a)

HomR(M,N) = HomR(⊕S ∈S ,N) ≅ ⨉
S ∈S

HomR(MS ,N) = ⨉
S ∈S

HomR(MS ,NS )

By (b) ÑS = Hom(S ,NS ). Since NS is S -homogeneous 7.3.17(f) show that NS = S ⊗DS ÑS . By
symmetry MS = S ⊗DS M̃S and so by 7.3.17(d)

HomR(MS ,NS ) ≅ EndDS (MS ,NS )

Thus (c) holds.

(d) follows (c) and observing that the relevant functions are multiplicative homomorphism. �

Definition 7.3.20. Let R be ring.

(a) Let M be an R-module. A submodule N of M is called regular if M = ⟨RM⟩ + N. JM(R) is the
intersection of the regular maximal R-submodules of M, with JM(R) = M if M has no regular
maximal R-submodule. JM(R) is called the Jacobson radical of the R-module M.

(b) Define
J(R) =⋂{AnnR(S ) ∣ S a simple R-module}

J(R) is called the Jacobson radical of R.

Remark 7.3.21. Let R be ring.
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(a) Let M be an R-module and N a maximal R-submodule if M. Then N is a regular R-submodule
if and only if RM ⊈ N, if and only if M/N is simple, and if and only if AnnR(M/N) ≠ R.

(b) Suppose R has an identity and I is maximal left ideal in R. Then AnnR(R/I) ≤ I.

Proof. (a) Since N is maximal R-submodule of R, either M = ⟨RM⟩ + N or RM ⊆ N. Thus N is
regular if and only if RM ⊈ N, if and only if AnnR(M/N) ≠ R, if and only if R(M/N) ≠ 0 and if and
only if M/N is simple.

(b) Just observe that I = AnnR(1 + I/I). �

Lemma 7.3.22. Let R be a ring and M an R-module.

(a) Let I be an ideal of R with I ≤ AnnR(M) and note that M is an R/I module. Then

JM(R) = JM(R/I).

(b) Let U be an R-submodule of M. Then

JM/U ≤ (JM(R) +U)/U

and if U ≤ JM(R) then

JM/U = JM(R)/U.

In particular, JM/JM(R)(R) = 0.

(c) Let I be an ideal of R. Then

J(R/I) ≤ J(R) + I/I,

and if I ≤ J(R), then
J(R/I) = J(R)/I.

In particular, J(R/J(R)) = 0.

Proof. (a) Just note that a regular maximal R-submodule of M is the same as regular maximal
R/I-submodule of M.

(b) Let N be an R-submodule of M with U ≤ N ≤ M. Then U is maximal regular submodule of
M if and only if N/U is regular maximal regular R-submodule of M/N. Taking intersection shows
that the first statement in (b) holds. If U ≤ JM(R) then U ≤ N for all regular maximal submodule of
M and so (b) holds.

(c) Note that every simple R/I module is also a simple R-module. So the first statements holds.
If I ≤ J(R), then every simple R-module is also an R/I module and so (c) holds. �

Lemma 7.3.23. Let R be a ring and M an R-module.
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(a) Then JM(R) = 0 if and only if M isomorphic to a subdirect product of simple R-modules, that
is if and only if there exists family (S i)I∈I of simple R-modules and a 1-1 R-linear function
φ ∶ M → ⨉i∈I S i such that πi ○ φ ∶ M → S i is onto for all i ∈ I.

(b) JM(R) = 0 for all semisimple R-modules.

Proof. (a) Let B be the set regular maximal R-submodules of M. Then JM(R) = ⋂B.
Suppose first that JM(R) = 0 and let B be the set regular maximal R-submodules of M. Define

φ ∶ M → ⨉
B∈B

M/MB,m→ (m + B)B∈B

Then

kerφ = ⋂
B∈B

B = JM(R) = 0

Hence φ is 1-1. Also M/B is a simple R-module and πB ○ φ is onto for all B ∈ B. Thus M is
isomorphic to a subdirect product of simple R-modules.

Suppose next that (S i)i∈I is family of simple R-modules and φ ∶ M → ⨉I∈I S i is 1-1 R-linear
map such that πi ○φ is onto for all i ∈ I. Then S i = Im(πi ○φ) ≅ M/ker(πi ○φ) is a simple R-module
and so ker(πi ○ φ) is a regular maximal R-submodule of M. Moreover

JM(R) =⋂B ⊆⋂
i∈I

ker(πi ○ φ) = kerφ = 0.

and so JM(R) = 0.

(a) A semisimple R-module is a direct sum of simple R-modules and so also a subdirect product
of semisimple R-modules. Thus (a) follows from (b). �

Lemma 7.3.24. Let R be a ring. Let S be set of representatives for the isomorphism classes of
simple R-modules. Then

J(R) =⋂{AnnR(S ) ∣ S a minimal R-module} and J(R) = AnnR(⊕S)

In particular, J(R) = 0 if and only if R has a faithful semisimple R-module.

Proof. The first statement holds since AnnR(S ) = R for all minimal R-modules. For the second just
observe that AnnR(⊕S) = ⋂S ∈S AnnR(S ). �

Lemma 7.3.25. Let R be a ring. Then JR(R) ≤ J(R) with equality if R has an identity.

Proof. Let M be simple R-module and 0 ≠ m ∈ R. Then R/AnnR(m) ≅ Rm = M is simple and
so AnnR(m) is a regular maximal R-submodule of R. So JR(R) ≤ AnnR(m) and hence JR(R) ≤

AnnR(M) and JR(R) ≤ J(R). Suppose now that R has an identity and let I be (regular) maximal
submodule of R. Then R/I is a simple R-module and so J(R) ≤ AnnR(R/I) ≤ AnnR(1+ I/I) = I. So
J(R) ≤ JR(R). �
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Theorem 7.3.26 (Artin-Wedderburn). Let R be an Artinian ring with J(R) = 0. Let S be set of
representatives for the isomorphism classes of simple R-modules. Put M =⊕S and D = EndR(M).
For S ∈ S put DS = EndR(S )op and nS = dimDS S . Then S is finite and

R ≅ R∣M = EndD(M) ≅ ⊕
S ∈S

EndDS (S ) ≅ ⊕
S ∈S

MnS nS (DS )

where all the isomorphism are ring isomorphism.

Proof. By 7.3.19(d) EndR(M) ≅ ⊕S ∈S EndR(S ) and so D ≅ ⊕S ∈S DS . It follows that MS is maxi-
mal homogeneous D-submodule of M and applying 7.3.19(d) to D in place of R the function

EndD(M)→⊕
S ∈S

EndDS S , α→ (α∣MS )S ∈S

is ring isomorphism.
Let S ∈ S. Then by 7.3.5 nS is finite and hence by 7.1.13 R/AnnR(S ) ≅ R∣S = EndDS (S ),

R/AnnR(S ) has an identity, R/AnnR(S ) is a simple ring and any simple R/AnnR(S ) -module is
isomorphic to S . In particular, since R has an identity, R = R2 +AnnR(S ).

Let S ,T ∈ S. If AnnR(S ) ≤ AnnR(T). Then both T and S are simple modules for R/AnnR(S ).
Thus S and T are isomorphic as R/AnnR(S )-module and so also as R-modules. Thus S = T .
So if S ≠ T then AnnR(T) < AnnR(S ) + AnnR(T) and since R/AnnR(T) is a simple ring R =

AnnR(S ) +AnnR(T).
Since J(R) = 0, ⋂S ∈S AnnR(S ), The Chinese remainder theorem 2.4.23 now shows that the

function

R→⊕
S ∈S

R/AnnR(S ), r → (r +AnnR(S ))S ∈S

is an isomorphism. Thus

R ≅ ⊕
S ∈S

R/AnnR(S ) ≅ ⊕
S ∈S

EndDS (S ) ≅ EndD(M)

Note the composition of the isomorphism is just homomorphism from R to End(M) given by
ring action of R on M and so has image R∣M. Thus R∣M = EndD(M).

Finally, EndDS (S ) ≅ MnS nS (DS ) and so all parts of the Theorem are proved.
�

Lemma 7.3.27. Let R be a ring, I a nilpotent ideal in R and S simple R-module. Then IS = 0. In
particular, I ≤ J(R).

Proof. Since I is nilpotent, In = 0 for some n ∈ Z+. Hence also InS = 0 and we can choose m ∈ Z+

minimal with ImS = 0. If m = 1, then IS = 0. So suppose m = k + 1 for some k ∈ Z+. By minimality
of m, IkS ≠ 0. Note that ⟨IkS ⟩ is an R-submodule of S and since S is simple, S = ⟨IkS ⟩. Thus

IS ⊆ ⟨IS ⟩ = ⟨IIkS ⟩ = ⟨ImS ⟩ = ⟨0⟩ = 0

and the lemma holds. �
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Proposition 7.3.28. Let R be an Artinian ring. Then J(R) is nilpotent, that is J(R)n = 0 for some
n ∈ N.

Proof. Put J = J(R) and choose n ∈ N with K ∶= ⟨Jn⟩ minimal. If K2 = 0, then J2n = 0 and J is
nilpotent. So suppose for a contradiction that K2 ≠ 0. Put A ∶= {a ∈ K ∣ Ka = 0} = AnnK(K).
Then A is an ideal in K with A ≠ K and we can choose left ideal L of R in K minimal with A ≠ L.
Then either L/A is a simple R-module or RL ⊆ A. In either case JL ⊆ A and so KJL = 0. Thus also
⟨KJ⟩L = 0. By minimality of K, K = ⟨Jn+1⟩ = ⟨KJ⟩. Thus KL = 0, contrary to the choice of L. �

Proposition 7.3.29. Let R be a ring with identity. Then the following statements are equivalent:

(a) R is semisimple R-module (by left multiplication).

(b) R is direct sum a finite family of simple R-modules.

(c) R is Artinian and J(R) = 0.

(d) There exists a finite setM of maximal left ideals with ⋂M = 0.

(e) All unitary R-modules are semisimple.

(f) All short exact sequence of unitary R-modules split.

(g) All unitary R-modules are projective.

(h) All unitary R-modules are injective.

(i) Each maximal R-submodule of R is a direct summand of R (as an R-module).

Proof. (a) Ô⇒ (b): Suppose R is semisimple R-module. Then R = ⊕S for some set of S if
simple R-submodules of R, Then 1R∑S ∈S eS for some almost zero family (es)s∈§ with es ∈ S for all
s ∈ S. Put T = {S ∈ S ∣ eS ≠ 0}. Then 1R = ∑T∈T et and so R = R1R ⊆ ∑T∈T Ret ⊆ ∑T . Hence
R =⊕T and (b) holds.

(b) Ô⇒ (c): Let S be a finite set of simple R-submodules of R with R = ⊕S. Then R is
a semisimple R module and since R has an identity, R is a faithful R-module. Hence by 7.3.24
J(R) = 0.

Let I be an R-submodule of R. Then by 7.2.3(e), I ≅ ⊕T for some subset T of S. Define
deg(I) = ∣T ∣ and note that by 7.3.12, this does not depended on the choice of T . We claim that
deg(I) < deg(K) for all R-submodules K of I with I < K. Indeed by 7.2.3(f), K is semisimple
R-module and so by 7.2.3(a), K = I ⊕ L for some R-submodule L of K. It follows that deg(K) =

deg(I) + deg(L) > deg I.
Now let I be any non-empty set of left ideals in R. Choose I ∈ I with deg I minimal. The claim

implies that I is minimal element of I and so R is Artinian.

(c)Ô⇒ (d): Let B be the set of maximal left ideal of R. Then

⋂B ⊆ JR(R) ≤ J(R) = 0
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Since R is Artinian we can choose a finite subset M of B with ⋂M minimal. Then for all
B ∈ B,

B ⊇⋂ (M ∪ {B}) ⊆⋂M.

The minimality of ⋃M shows that ⋂M ⊆ B and so ⋂M ⊆ ⋂B = 0.

(d)Ô⇒ (a): Define
φ ∶ R→ ⨉

M∈M

R/M, r → (r + M)M∈M.

Then φ is R-linear and kerφ = ⋂M = 0. So φ is 1-1. Since R as an identity, each R/M, M ∈M is
a simple R-module. SinceM is finite we conclude that ⨉M∈M R/M = ⊕M∈M R/M is semisimple.
Hence by 7.2.3(f) also φ(R) is semisimple. Since φ is 1-1 this shows that R is semisimple as an
R-module.

(a) Ô⇒ (e): Let T be the sum of simple M-submodules of R. Then by 7.2.3(i), T is a
semisimple R-module and so it suffices to show that m ∈ T for all 0 ≠ m ∈ M. Since M is unitary
m ∈ Rm. Now Rm ≅ R/AnnR(m). Since R is semisimple, 7.2.3(c) shows that R/AnnR(m) is
semisimple. So Rm ≤ T and m ∈ T .

(e)Ô⇒ (f): Let 0 ÐÐÐ→ A
f

ÐÐÐ→ B
g

ÐÐÐ→ C ÐÐÐ→ 0 be a short exact of sequence of
unitary R-modules. If (e) holds, then B is a semisimple R-module and so by 7.2.3(a), Im f is a direct
summand of B. Hence by 3.5.9 the short exacts sequence splits.

(f) ⇐⇒ (g) : Note that (f) holds if and only if for all unitary R-modules C all short exact
sequences

0 ÐÐÐ→ A
f

ÐÐÐ→ B
g

ÐÐÐ→ C ÐÐÐ→ 0
of unitary R-modules split. By 3.7.6 this holds if an only if all unitary R-modules C are projective.

(f) ⇐⇒ (h) : Note that (f) holds if and only if for all unitary R-modules A all short exact
sequences

0 ÐÐÐ→ A
f

ÐÐÐ→ B
g

ÐÐÐ→ C ÐÐÐ→ 0
of unitary R-modules split. By 3.7.21 this holds if an only if all unitary R-modules A are injective.

(f) Ô⇒ (i): Let M be maximal R-submodule of R. Then by assumption the short exact
sequence 0→ M → R→ R/A→ 0 splits and so by 3.5.9, M is a direct summand of R.

(i)Ô⇒ (a): Let T be the sum of the simple R-submodules of R. Suppose that T ≠ R. Since R
has an identity, T is contained in a maximal left ideal M if R. By assumption R = M ⊕ S for some
R-submodule S of R. Then S ≅ R/M is simple and so S ≤ T . Then the S ≤ T ∩ S ≤ M ∩ S , a
contradiction.

�

Lemma 7.3.30. Let R be a ring and F a subring of R. Suppose that F is a division ring and R is a
finite dimensional vector space over F as F-module by left multiplication.
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(a) R is an Artinian ring.

(b) Any simple R-module is, as an F-module, a finite-dimensional vector space.

Proof.

LetM be non-empty set of left ideal in R. Then each M ∈M is F-subspace of R. Since R is finite
dimensional over R we can choose M ∈M with dimF minimal. Then M is a minimal element of
M and soM is finite dimensional.

Let S be a simple R-module and choose 0 ≠ s ∈ S . Then S ≅ R/AnnR(s). Since R is a finite
dimensional E-space also R/AnnR(s) and S are finite dimensional F-spaces. �

Definition 7.3.31. Let F be a field. An F-algebra is a ring R with identity such that F is a subring of
Z(R) and 1F = 1R. R is called a finite dimensional F-algebra if R is finite-dimensional as F-module
by left multiplication.

Lemma 7.3.32. Let D be a division ring and F an algebraically closed subfield of Z(D). If dimF D
is finite then F = D.

Proof. Let d ∈ D. Since da = ad for all d ∈ D we conclude from 2.2.19 that the function

Φ ∶ F[x]→ D, f → f (d)

is a homomorphism. Since F[x] is infinite dimensional over F and D is finite dimensional Φ is
not 1-1. So we can choose 0 ≠ f ∈ Φ of minimal degree with f (d) = 0. Then deg f ≠ 0 and
since f is algebraically closed, f = (x − a) ⋅ g for some g ∈ F[x]. By minimality g(d) ≠ 0. Since
0 = f (d) = (d − a) ⋅ g(a) and D is a division ring we conclude that d − a = 0 and so d = a ∈ F. �

Lemma 7.3.33. Let F be a field and R a finite dimensional F-algebra. Let S be set of representatives
for the simple R-modules. Let S ∈ S. Put DS = EndR(S )op, nS = dimDS S and let F∣S be the image
of F in End(S ).

(a) F ≅ F∣S as a ring, F∣S ≤ Z(DS ) and DS is finite dimensional over F∣S .

(b) If F is algebraically closed, F∣S = DS .

(c) If F is algebraically closed and J(R) = 0 then

R ≅ ⊕
S ∈S

EndF(S ) ≅ ⊕
S ∈S

MnS nS (F)

Proof. (a) By 7.3.30(b), S is a finite dimensional vector space over F. Since S ≠ 0 this shows that
S is a faithful S -module and so F ≅ F∣S . For r ∈ R let r̃r ∶ S → S , s → rs be the image r in End(S ).
Let g ∈ End(S ) and s ∈ S . Then

r(gs) = r̃(gs) = (r̃ ○ g)s and g(rs) = g(r̃)s = (g ○ r̃)s

Hence
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(∗) g ∈ DS ⇐⇒ r̃ ○ g = g ○ r̃for allr ∈ R

Let f ∈ F. Recall that F ≤ Z(R). So (*) applied with g = f̃ shows that f̃ ∈ DS . Thus F∣S ≤ DS .
Applying (*) with r = f now shows that F∣S ≤ Z(DS ).

Since F ≤ R, DS = EndR(S ) ≤ EndF(S ). Since S is finite dimensional over F, also EndF(S )

and DS are finite dimensional over F (and so also over F∣S .

follows from (a) and Lemma 7.3.32.

By 7.3.30(a) R is an Artinin ring. Since J(R) = 0 the Artin-Wedderburn-Theorem 7.3.26 shows that

R ≅ ⊕
S ∈S

EndDS (S ) ≅ ⊕
S ∈S

MnS nS (DS )

Thus (c) follows from (b). �

Theorem 7.3.34 (Maschke). Let F be a field and G a finite group and put n = ∣G∣. Let V be an
F[G]-module and W be an F[G]-submodule of V.

(a) There exists an F[G]-submodule U of V with W ∩U = AnnW(n) and nV ≤ W +U.

(b) If char F does not divide n, then W is a direct summand of V as an F[G]-module.

Proof. Let T be an F-subspace of V with V = W ⊕ T . Let α be the projection of V on W, so
α∣W = idW and Imα = W. Define

β ∶ V → V, v→ ∑
g∈G

g−1(α(gv))

Then β is F-linear and for all h ∈ G.

β(hv) = ∑
g∈G

g−1α(ghv) = ∑
g∈G

hh−1gα(gh)) = h∑∑
g∈G

(gh)α(gh)) = h∑
g∈G

gα(gv) = hβ(v)

So β is F[G]-linear. In particular, U ∶= kerβ is an F[G]-subspace of V . Let w ∈ W. Then also
gw ∈ W and so α(gw) = gw for all g ∈ G. Then

β(w) = ∑
g∈G

g−1α(gw) = ∑
g∈G

g−1gw = ∑
g∈G

w = nw

So w ∈ kerα if and only if nw = 0. Thus U ∩W = AnnW(n).
Let v ∈ V . Since α(gv) ∈ W and W is F[G]-submodule, g−1α(gv) ∈ W and so also β(v) ∈ W.

β(β(v)) = nβ(v) = β(nv)

Thus nv − β(v) ∈ kerβ and nv = β(v) + (nv − β(v)) ∈ Imβ + kerβ ≤ W +U. So nV ≤ W +U and
(a) is proved.



346 CHAPTER 7. SIMPLE RINGS AND SIMPLE MODULES

(a) Suppose char F does not divide n. Then n1F ≠ 0 and so (n1F) is invertible in F. It follows
that AnnV(n) = AnnV(n1F) = 0 and nV = (n1F) = V . So (a) gives W ∩ U = 0 and V = W + U. So
V = W ⊕U and W is a direct summand of V . �

Corollary 7.3.35. Let F be field and G a finite group. Suppose that char F ∤ ∣G∣. Then F[G] is an
Artinian ring with J(F[G]) = 0.

Proof. Note that F[G] is a finite dimensional F-algebra and so by 7.3.30, F[G] is an Artinian ring.
By 7.3.34(b) any maximal left ideal in F[G] is a direct summand of F[G] has left F[G]-module and
so 7.3.29 implies that J(F[G]) = 0. �



Chapter 8

Representations of finite groups

8.1 Semisimple Group Algebra

Definition 8.1.1. Let R be a ring and V and W R-modules.

(a) FHomR(V,W) = { f ∈ HomR(V,W) ∣ Im f ⊆ ⟨I⟩R for some finite I ⊆ W}.

(b) FEndR(V) = FHomR(V,V).

Lemma 8.1.2. Let R,S ,T be rings, V an (R,S )-bimodule and W an (R,T) bimodule. Put V∗ =

HomR(V,R).

(a) FHomR(V,W) is an (S ,T)-submodule of HomR(V,W).

(b) There exists a unique Z-linear function

Φ = Φ(V,W) ∶ V∗ ⊗R W → FHomR(V,W), with α⊗ v → ( v→ (αv)w )

Moreover Φ is (S ,T)-linear.

(c) Let f ∶ Ṽ → V and h ∶ W → W̃ be R-linear. Put Φ̃ = Φ(Ṽ , W̃). Then

Φ̃(α ○ f ,hw) = h ○Φ(α,w) ○ f

for all α ∈ V∗ and w ∈ W.

Proof. (a) Let f ,g ∈ FHomR(V,W), s ∈ S and t ∈ T . Then Im f ⊆ ⟨I⟩R and Im g ⊆ ⟨J⟩R for some
finite subsets I and J is W. Then Im( f +g) ⊆ Im f + Im g ≤ ⟨I ∪ J⟩R. Im(s f ) = f (V s) ⊆ Im f ⊆ ⟨I⟩R
and Im( f t) = (Im f )t ≤ ⟨I⟩Rt = ⟨It⟩R.

(b) Let α ∈ V∗ and w ∈ V . Since α and R → W, r → rw are both R-linear, the composition
φ(a,w) ∶ V → W v → (αv)w is also R-linear. Note that Im(φ(a,w)) ≤ Rw ≤ ⟨w⟩R and so φ(a,w) ∈

FHomR(V,W). So we obtain a function:

347
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φ ∶ V∗ ×W → FHomR(V,W), (α,w)→ φ(a,w)

Note that φ is Z-bilinear. Let r ∈ R, s ∈ S , t ∈ T , v ∈ V and w in W. Then

φ(αr,w)v = ((αr)v)w = ((αv)r)w = (αv)(rw) = φ(α, rw)v

φ(sα,w)v = ((sα)v)w = (α(vs))w = φ(α,w)(vs) = (sφ(α,w))v

and

φ(α,wt)v = (αv)(wt) = ((αv)w)t = (φ(α,w)v)t = (φ(α,w)t)v

Hence

φ(αr,w) = φ(α, rw), φ(sα,w) = sφ(α,w) φ(α,wt) = φ(α,w)t

So φ is (S ,R,T)-linear. The uniqueness and existence of Φ now follows from definition of a tensor
product. Moreover, by Lemma 3.6.12 V∗ ⊗R W is also an (S ,T)-tensor product of V∗ and W over
R and so Φ is (S ,T)-linear.

(c) Let u ∈ Ṽ . Then

(Φ̃(α ○ f ,hw))u = ((α ○ f )u)(hw) = (α( f u))(hw)) = h((α( f u))w)

= h((Φ(α,w))( f u)) = (h ○Φ(α,w) ○ f)u

�

Lemma 8.1.3. Let R be a ring, V an R-module and W a free R-module with basis (wi)i∈I . Let
πi ∈ HomR(W,R) be defined by w = ∑i∈I(πiw)wi for all w ∈ W. Let f ∈ HomR(V) and define
fi = πi ○ f .

(a) f ∈ FHomR(V,W) if and only of ( fi)i∈I is almost 0.

(b) The function

FHomR(V,W)→⊕
i∈I

V∗, f → ( fi)i∈I

is a well defined Z isomorphism.

(c) The function

Ψ ∶ FHomR(V,W)→ V∗ ⊗W, f →∑
i∈I

fi ⊗wi

is inverse to the function Φ ∶ V∗ ⊗R W, α⊗w→ (v→ (αv)w).
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Proof. (a) For K ⊆ I put WK = ⟨wk ∣ k ∈ K⟩R. We claim that that f ∈ FHomR(V,W) and only if
Im f ⊆ WK for some finite K ⊆ I. The backwards direction is obvious. Suppose now that Im f ⊆ ⟨L⟩R

for some finite subsets L of V . Then for each l ∈ L the exists a finite subset Kl of I with l ∈ WKl . Put
K = ⋃l∈L WKl . Then l ∈ WK for all l ∈ L and so Im f ⊆ ⟨L⟩R ⊆ WK . This proves the claim.

Note that Im f ⊆ WK if and only if πi(Im f ) = 0 for all i ∈ I ∖ K and if and only if fi = 0 for
all i ∈ I ∖ K. The above claim now shows that f ∈ FHomR(V,W) if and only if there exists a finite
subset K of I with fi = 0 for all i ∈ I ∖K and so if and only if ( fi)i∈I is almost trivial. Thus (a) holds.

(b) Since the function HomR(V,W) → ⨉i∈I V∗, f → ( fi)i∈I is an Z-isomorphism, (b) follows
from (a).

(c) We have

Φ(∑
i∈I

fi ⊗wi)v =∑
i∈I

( fiv)wi =∑
i∈I

(πi( f v))wi = f v

and so Φ(Ψ( f )) = f .
Let α ∈ V∗, v ∈ V and w ∈ W. Put f = Φ(α⊗w).

πi( f v) = πi((αv)w) = (αv)(πiw) = (α ⋅ (πiw))v

So fi = α ⋅ (πw) and

∑
i∈I

fi ⊗wi =∑
i∈I

(α ⋅ (πiw))⊗wi =∑
i∈I
α⊗ (πiw)wi = α⊗∑

i∈I
(πiw)wi = α⊗w

and so Ψ(Φ(α⊗w)) = α⊗w. �

Lemma 8.1.4. Let R be a commutative ring and V a free R-module with basis (wi)i∈I . Let f ∈

EndR(V) and let be A the matrix of f with respect to (wi)i∈I .

(a) There exists a unique Z-linear function

tr ∶ FEndR(V)→ R with (v→ (αv)w)→ αw

for all w ∈ V and α ∈ HomR(V,R).

(b) Let g ∈ FEndR(V). Then tr( f ○ g) = tr(g ○ f ).

(c) Let h ∶ V → U be an R-isomorphism and g ∈ FEndR(V). Then tr(h ○ g ○ h−1) = tr(g).

(d) f ∈ FEndR(V) if and only almost all columns of A are zero.

(e) Suppose f ∈ FEndR(V) and define tr(A) = ∑i∈I Aii. Then tr( f ) = tr(A).

Proof. (a) Let r ∈ R, α ∈ V∗ and w in V . Since R is commutative,

(αr)w = (αw)r = r(αw) = α(rw)
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and so the function V∗×R V → R, (α,w)→ αw is R-balanced. So the exists unique Z-linear function

Λ ∶ V∗ ⊗R V → R with α⊗w→ αw

for all α ∈ V∗ and w ∈ V . By 8.1.2 there exists a Z isomorphism

Φ ∶ V∗ ×R V → HomR(V,W) with α⊗w → (v→ (αv)w)

Thus (a) holds with tr = Λ ○Φ−1.

(b) Note that V is an (R,EndR(V)op)-bimodule and so by 8.1.2 Φ is (EndR(V),EndR(V))-
linear. Hence for all α ∈ V∗, w ∈ V .

tr( f ○Φ(α⊗ v)) = tr(Φ(α ○ f , v)) = (α ○ f )v = α( f v)) = tr(Φ(α⊗ f v)) = tr(Φ(a⊗ v) ○ f )

The uniqueness assertion in (a) now implies that tr( f ○ g) = tr(g ○ f ) for all g ∈ FEndR(V)

(c) Put Φ̃ = Φ(U,U) and let α ∈ V∗ and w ∈ V . By 8.1.2(c)

h ○Φ(α,w) ○ h−1 = Φ̃(α ○ h−1,hw).

and so

tr(h ○Φ(α⊗w) ○ h−1) = tr(Φ̃(α ○ h−1,hw)) = (α ○ h−1)(hw)

= α(h−1(hw)) = α(w) = tr(Φ(α⊗w))

The uniqueness assertion in (a) now implies that tr(h ○ g ○ h−1) = tr(g) for all g ∈ FEndR(V).

(d) Define πi and fi as in 8.1.3. Since f wi = ∑ j∈I Ai jw j, f jwi = π j( f wi) = Ai j. Note f j = 0 if and
only if f jwi = 0 for all i ∈ I and so if and only if column j of A is zero. So by 8.1.3(a), f ∈ FEndR(V)

if and only if almost all columns of A are zero.

(e) By 8.1.3(c) , f = Φ(∑ j∈I f j ⊗w j) and so and

tr( f ) =∑
j∈I

f jw j =∑
j∈J

A j j

�

Remark 8.1.5. Let R be a ring with identity and suppose there exists elements a,b in R such that
a is invertible and ab ≠ ba. Then the trace of the 1-1 matrix [b] is b, while the trace of the 1-1
matrix [a][b][a]−1 is aba−1. So for non-commutative ring similar matrix can have distinct trace. In
particular, there does not exists a canonical definition of the trace of R-linear functions.

Hypothesis 8.1.6. For the remainder of this chapter G is a finite group and K is an algebraically
closed field with char K ∤ ∣G∣. S = S(K[G]) is a set representatives for the isomorphism classes of
simple K[G] modules. For S ∈ S put dS = dimK S and AS = ⋂S≠T∈S AnnK[G](T). Let eS is be the
multiplicative identity of AS .

Let C be the set of conjugacy classes of G , that is the set of orbits of G acting on G by conjuga-
tion. For H ⊆ G put aH = ∑h∈H h ∈ K[G]. For C ∈ C choose gC ∈ C.
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Theorem 8.1.7. Let S ∈ S.

(a) J(K[G]) = 0 and all unitary K[G]-modules are semisimple.

(b) K[G] =⊕S ∈S AS .

(c) AS ≅ K[G]∣S = EndK(S ) is simple ring and dimK AS = d2
S .

(d) EndK[G](S ) = K ∣S for all S ∈ S .

(e) ∣G∣ = ∑S ∈S d2
S .

(f) Then Z(AS ) = KeS and (eS )S ∈S is a basis for Z(K[G]) over K

(g) Let b = ∑g∈G bgg ∈ K[G]. Then b ∈ Z(K[G]) if and only if bg = bh for any conjugate g,h ∈ G.

(h) (aC)C∈C is a K- basis for Z(K[G]).

(i) ∣S ∣ = dimK Z(K[G]) = ∣C∣.

Proof. (a) By 7.3.35 J(R) = 0 and so by 7.3.29 all K[G]-modules are semisimple.

Since J(R) = 0, (b), (c) and (d) follow from 7.3.33(c)
(e) Follows immediately from (b) and (c).
(f) Since K is commutative, K∣S ≤ EndK(S ) and by Exercise 3(d) on Homework 6. EndEndK(S )(S ) =

K∣S . Thus Z(EndK(S )) = K∣S = KS idS . Since AS is isomorphic to EndK(S ), this gives Z(AS ) =

KeS . Using (b) we get

Z(K[G]) = Z((⊕
S ∈S

AS ) = ⊕
S ∈S

Z(AS ) = ⊕
S ∈S

KeS

and so (f) holds.
(g) Let b = ∑g∈G bgg ∈ K[G]. Then the following are equivalent:

b ∈ Z(K[G])

ab = ba ∀b ∈ K[G]

bh = hb ∀h ∈ G

hbh−1 = b ∀h ∈ G

∑g∈G bghgh−1 = ∑g∈G bgg ∀h ∈ G

∑g∈G bh−1ghg = ∑b∈G kgg ∀h ∈ G

bh−1gh = kg ∀h ∈ G

bg = bh ∀C ∈ C,g,h ∈ C

So (g) holds.
(i) follows immediately from (f) and (h). �
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Definition 8.1.8. Let α ∈ Hom(G,K♯), so α is homomorphism form G to the multiplicative group
(K♯, ⋅). The S α is the K[G] with S α = K as a K-module and gk = α(g)k for all g ∈ G and k ∈ K.

Lemma 8.1.9. (a) Every 1-dimensional unitary K[G]-module is simple.

(b) Let S be a 1-dimensional simple K[G]-module. Then there exists a unique α ∈ Hom(G,K♯) with
S ≅ S α has K[G]-module.

Proof. (a) A 1-dimensional K[G]-module has no proper K-subspace and so also no proper K[G]-
submodules. (b) Pick 0 ≠ s ∈ S . Let g ∈ G. Since dimK S is 1-dimensional here exists α(g) ∈ K♯ with
gs = α(g)s. Let k ∈ K. Since K ≤ Z(K[G]), g(ks) = (gk)s = (kg)s = k(ks) = k(α(g)s) = α(g)(ks).
So α(g) does not depend on the choice of s, the function S α → S , k → ks is a K[G]-isomorphism
and α is unique such that S α ≅ S . �

Lemma 8.1.10. Suppose G is abelian.

(a) ∣G∣ = ∣C∣ = ∣S.

(b) All simple K[G]-modules are 1-dimensional over K.

(c) For each simple K[G-module S there exists a unique α ∈ Hom(G,K♯) with S ≅ S α as an K[G]-
module.

(d) ∣Hom(G,K♯)∣ = ∣G∣.

(e) Let V be any unitary K[G]-module. Then there exists a K-basis (vi)i∈I and a family (αi)i∈I in
Hom(G,K♯) with

gvi = αi(g)vi

for all g ∈ G, i ∈ I. In particular, then matrix of g∣V with respect to (vi)i∈I is diagonal.

Proof. (a) Since G is abelian, hg = g for all h,g ∈ G and so C = {{g} ∣ g ∈ G}. Thus ∣C∣ = ∣G∣. By
8.1.7(i), ∣C∣ = ∣S ∣ and so (a) holds.

(b)8.1.7(e), ∣G∣ = ∑S ∈S d2
S . Since dS ≥ 1 and ∣S ∣ = ∣G∣ this gives dS = 1 for all S ∈ S.

(c) By (a) S is 1-dimensional and so (c) follows from 8.1.9

(d) By (c) ∣Hom(G,K♯)∣ = ∣S and so (d) follows from (a).

(e) By 8.1.7(g), V is a semisimple K[G]-module and so V =⊕i∈I Vi for a family (Vi)i∈I of simple
R-submodules of V . For i ∈ I let 0 ≠ vi ∈ Vi. By (c) Vi is 1-dimensional over K and so (vi)i∈I is a
K-basis for V . By (c) Vi ≅ S αi for some αi ∈ Hom(G,K♯) and so gvi = α(g)vi. �

Lemma 8.1.11. Suppose G is abelian and G =⊕m
i=1 Gi for some family (Gi)

n
i=1 of cyclic subgroups

of G. Let gi ∈ G with Gi = ⟨gi⟩.
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(a) Let α ∈ Hom(G,K♯) and define ξi = α(gi). Then ξ∣gi∣ = 1 and

α(
n

∏
i=1

gli
i ) =

n

∏
i=1
ξli

i

for all l ∈ Zn.

(b) Let (ξi)
m
i=1 be a family of elements in K♯ with ξ∣gi∣

i = 1. Define

α ∶ G → K♯,
m

∏
i=1

gli
i →

n

∏
i=1
ξli

i

Then α is a well-defined homomorphism and α(gi) = ξi for all 1 ≤ i ≤ m.

Proof. Readily verified. �

8.2 Characters

Definition 8.2.1. Let M be a finite dimensional K[G]-submodule. Recall that for r ∈ K[G], r∣M is
the function

r∣M ∶ M→ M,m→ rm

and note that r∣M ∈ EndK(M). Define

trM ∶ K[G]→ K, r → tr(r∣M)

and let

χM ∶ K[G]→ K,g→ tr(g∣M)

be the restriction of trM to G. χM is called the character of the K[G]-module M.
The S × C matrix

[χS (gC)]S ∈S
C∈C

is called the character table of G over K.

Definition 8.2.2. (a) A class function is a function f ∶ G → K which is constant on every conjugacy
class. (So f (g) = f (gc) for all C ∈ C and g ∈ C.)

(b) Func(G,K) denotes the set of all class function.

(c) For any function f ∶ G → K, f̃ denotes the unique K-linear function

f̃ ∶ K[G]→ K, with f̃ (g) = f (g) for all g ∈ G

(So f̃ (∑kg g) = ∑ kg f (g))
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Lemma 8.2.3. Let M be a finite dimensional unitary K[G]-module.

(a) χM(1) = dimK V.

(b) Let α ∈ Hom(G,K♯). Then χS α = α.

(c) Let g ∈ G and let (α)m
i=1 be a family in Hom(⟨g⟩,K♯) with M ≅ ⊕m

i=1 S αi as a K[⟨g⟩]-module.
Then m = dimK V and

χM(g) =
m

∑
i=1
αi(g)

In particular χM(g) is a sum of m ∣g∣-th root of unities in K.

Proof. (a) Since M is a unitary module, 1∣M = idM and so χ(1) = tr(idM) = dimK M.

(b) Note the matrix of g∣M with respect to the basis 1 of S α is the 1 × 1- matrix [α(g)]. So
χM(g) = α(g).

(c) Note that the matrix of g with respect to the standard basis of ⊕m
i=1 S αi = Km is the diagonal

matrix
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α1(g) 0 . . . 0 0

0 α2(g) ⋱ 0 0

⋮ ⋱ ⋱ ⋱ ⋮

0 0 ⋱ αm−1(g) 0

0 0 . . . 0 αm(g)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and so χM(g) = ∑m
i=1 αi(g). �

Lemma 8.2.4. Let f ∈ Fun(G,K). Then f ∈ Func(G,K) if and only if ∑g∈G f (g)g ∈ Z(K(G)).

Proof. This follows immediately from 8.1.7(g). �

Remark 8.2.5. By definition K[G], as a set, consists of all almost-zero functions from G to K.
Since G is finite K[G] = Fun(G,K). On other words there is no difference between the element
∑g∈G kgg ∈ K[G] and the function g→ kg in K. 8.2.4 now says that Func(G,K) = Z(K[G]).

Also if f ∈ Fun(G,K) = K[G], then f̃ is in K[G]∗ = HomK(K[G],K) and the function

K[G]→ K[G]∗, f → f ∗

is K-isomorphism.

Lemma 8.2.6. Let M be a KG-module.

(a) χM is a class function.

(b) If N is an KG-module isomorphic to M, then χN = χM.
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(c) If (Mi)
m
i=1 be a family of R-submodules of M with M =⊕m

i=1 Mi. Then

χM =
m

∑
i=1
χMi

Proof. (a) Let h,g ∈ G. Since ∗M is a homomorphism and using 8.1.4(c) we have

χM(hg) = tr(h∣M ○ g∣M ○ h∣−1
M ) = tr(g∣M) = χM(g)

(b) Let φ ∶ M → N be K[G]-isomorphism. Then g∣N = φ ○ g∣M ○ φ−1 and a similar calculation as
in (a) proved (b).

(c) For g ∈ G. For 1 ≤ i ≤ m let Bi be a basis for Mi and Ai matrix of g∣Mi with respect to Bi. Put
B = ⋃m

i=1Bi. Then B is basis for M and the matrix A of g∣M with respect to B is the block diagonal
matrix

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1 0 . . . 0 0

0 A2 ⋱ 0 0

⋮ ⋱ ⋱ ⋱ ⋮

0 0 ⋱ Am−1 0

0 0 . . . 0 Am

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and so

χM(g) = tr(A) =
m

∑
i=1

tr(Ai) =
m

∑
i=1
χMi(g).

�

Lemma 8.2.7. Let I be finite G-set and recall from 3.1.6 that KI is a K[G]-module via g f = f ○g−1∣I
for all f ∈ KI and g ∈ K. Then

χKI(g) = ∣FixI(g)∣.

Proof. For i ∈ I let vi = (δi j) j∈I in KI , then (vi)i∈I is a basis for KI and gvi = vgi for all g ∈ G. 1

Hence matrix of g∣KI with respect to the basis (vi)i∈I is

A = [δgi, j]i∈I
j∈I

In particular, Aii = 1 if gi = i and Aii = 0 if gi ≠ i. In other words Aii = 1 of i ∈ FixI(g) and Aii = 0
if i ∉ FixI(g). It follows that

χKI(g) =∑
i∈I

Aii = ∑
i∈FixI(g)

1 = ∣FixI(g)∣

1Thus g∑i∈I kivi = ∑i∈I kivgi.
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�

Lemma 8.2.8. Let g ∈ G.

(a) K[G] ≅ ∑S ∈S S dS as K[G]-module by left multiplication.

(b) χK[G] = ∑S ∈S dSχS .

(c) χK[G](1) = ∣G∣.

(d) If g ≠ 1, then χK[G](g) = ∑S ∈S dSχS (g) = 0.

Proof. (a): By 8.1.7(b), K[G] ≅ ⊕S ∈S AS as a ring and by 7.3.3(b), AS ≅ S dS as a left AS -module.
So (a) holds.

(b) follows from (a) and 8.2.6(c).

(c) and (d): View G as a G-set by left multiplication and note that K[G] = KG as K[G]-module.
Thus by 8.2.7 χK[G](g) = ∣FixG(g)∣. Note that FixG(1) = G and if 1 ≠ g ∈ G, then FixG(g) = ∅.
Thus (c) and (d) hold. �

Lemma 8.2.9. Let S ∈ S and C ∈ C.

(a) eS = dS
∣G∣ ∑g∈G χS (g−1)g = dS

∣G∣ ∑C∈C χS (g−1
C )aC .

(b) aC = ∑S ∈S
∣C∣

dS
χS (gC)eS .

Proof. (a) Let eS = ∑g∈G kgg with kg ∈ K. Let h ∈ G. Then heS = ∑g∈G kghg. Hence by 8.2.8(c), (d),
χK[G](hg) = ∣G∣ if h = g−1 and 0 otherwise. So

(∗) χ̃K[G](heS ) = kh−1 ∣G∣.

On the other hand

(∗∗) eS ∣T = 0 for all S ≠ T ∈ S and eS ∣S = idS

Thus

χ̃T(heS ) = 0 and χ̃S (heS ) = χS (h).

By 8.2.8(b)

χK[G] = ∑
S ∈S

dSχS and so χ̃K[G](heS ) = dSχS (h).

Hence (*) implies
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kh−1 =
dS

∣G∣
χS (h) and so kh =

dS

∣G∣
χS (h−1).

Thus (a) holds.

(b) By 8.1.7 aC = ∑S ∈S lS eS for some lS ∈ K. By (**) χ̃T(eS ) = δS T dS and so

lT dT = χ̃T(aC) =∑
g∈C

χT(g) = ∣C∣χT(gC).

So lT = ∣C∣
χT (gC)

dT
. �

Theorem 8.2.10 (Orthogonality Relations). (OR 1) For all S ,T ∈ S ,

∑
C∈C

1
∣CG(gC)∣

χS (gC)χT(g−1
C ) =

1
∣G∣

∑
g∈G

χS (g)χT(g−1) = δS T

(OR 2) For all C,D ∈ C,
∑
S ∈S

χS (gC)χS (g−1
D ) = ∣CG(gC)∣δCD.

Proof. Note first that

(∗) ∣C∣ =
∣G∣

∣CG(gC)∣

for all C ∈ C. Let A and B be the matrices for the change of bases for Z(KG) from (aC)C∈C to
(eS )S ∈S and back. Then by 8.2.9

A = [
dS

∣G∣
χS (g−1

C )]
S C

and B = [
∣C∣

dS
χS (gC)]

CS
.

Since AB = IS we get for all T,S ∈ S

δS T = ∑
C∈C

dT

∣G∣
χT(g−1

C )
∣C∣

dS
χS (gC) =

1
∣G∣

dT

dS
∑
C∈C

∣C∣χT(g−1
C )χS (gC)

=
1
∣G∣

dT

dS
∑
C∈C

∑
g∈C

χT(g−1)χS (g) =
1
∣G∣

dT

dS
∑
g∈G

χT(g−1)χS (g)

Together with (*) this gives (1).

Since BA = IC we get for all C,D ∈ C

∑
S ∈S

∣C∣

dS
χS (gC)

dS

∣G∣
χS (g−1

D ) = δCD.
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and so

∑
S ∈S

χS (gC)χS (g−1
D ) =

∣G∣

∣C∣
δCD.

Together with (∗) this gives (2). �

8.3 Integral Extensions

Definition 8.3.1. Let R and S be commutative rings with identity such that R ≤ S and 1R = 1S . Then
s is called integral over R if there exists a monic polynomial f ∈ R[x] with f (s) = 0. A(R,S ) is the
set of elements of S integral over R.

Lemma 8.3.2. Let R and S be commutative rings with identities such that R ≤ S and 1R = 1S .

(a) Let s ∈ S . Then s is integral over R if and only of R[s] is finitely generated as an R-module by
left multiplication.

(b) If R is a PID, then A(R,S ) is subring of R.

Proof. (a) Suppose first that f (s) = 0 for some monic polynomial f ∈ R[x]. Put m = deg f and let
g ∈ R[x]. Then g = q f + r for some q, r ∈ R[x] with deg r < m. It follows that g(s) = r(s) and so
R[s] = ⟨si ∣ 0 ≤ i < m⟩R.

Suppose next that R[s] is finitely generated as an R-module. Then there exists f1, . . . , fn ∈ R[x]
with R[s] = ⟨ fi(s) ∣ 1 ≤ i ≤ n⟩R. Put m = max1≤i≤n deg fi. Then R[s] = ⟨si ∣ 0 ≤ i ≤ m⟩. It follows
that sm+1 = ∑m

i=0 risi for some ri ∈ R and so s is integral over R.

(b) Let a,b ∈ S be integral over R. Then b is also integral over R[a]. Thus by (a) R[a] is a
finitely generated R-module and R[a,b] is a finitely generated R[a]-module. Hence 4.1.5(a) implies
R[a,b] is a finitely generated R-module. Since R is a PID, 3.2.8 shows that every R-submodule of
R[a,b] is finitely generated. It follows that R[s] is a finitely generated R-module for all s ∈ R[a,b].
Hence R[a,b] ⊆ A(R,S ) and A(R,S ) is a subring of F.

�

Lemma 8.3.3. Let R be a PID and F a field containing R. Put

FR = {ab−1 ∣ a,b ∈ R,b ≠ 0}2 and A = A(R,F).

(a) A ∩ FR = R.

(b) Let a ∈ A. Then mFR
a ∈ R[x].

2Note that FR is a field of fraction of R.
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Proof. (a) See Lemma L on the solutions of Homework 3.

(b) Let E be splitting field of ma = mFR
a over F and f ∈ R[x] a monic polynomial in R[x] with

f (a) = 0. Then ma divides f in E[x] and so each root of ma is also a root of f . It follows that all
roots of ma are integral over R and so are contained in B ∶= A(R,E). Since B is a subring of E and
ma =∏

m
i=1(x − ai) with ai ∈ B, ma ∈ B[x]. By (a) B ∩ FR = R and since ma ∈ FR[x], ma ∈ R[x]. �

Lemma 8.3.4. Let R be a PID and V and W finitely generated unitary R-module.

(a) HomR(V,W) is a finitely generated R-module.

(b) Let α ∈ EndR(V). Then there exist a monic polynomial f ∈ F[x] with f (α) = 0,

Proof.

Since V is finitely generated, V = ⟨v1, . . . , vn⟩R for some finite family (vi)
n
i=1 in V . Note that the

R-linear function

π ∶ Rn → V, (ri)
n
i∈1 →

n

∑
i=1

rivi

is onto and so the R-linear function

HomR(V,W)→ HomR(Rn,W), α→ α ○ π

is 1-1. Also

HomR(Rn,W) ≅ HomR(R,W)n ≅ Wn

and so HomR(Rn,W) is a finitely generated R-module. Since R is PID any R-submodule of HomR(Rn,W)

is finitely generated and so also HomR(V,W) is finitely generated.

Let S = R∣V be the image of R in EndR(V). By (a), EndR(V) is a finitely generated R-module
and since R is a PID also the submodule S [α] of End − R(V) is a finitely generated R-module. It
follows that S [α] is a finitely generated S module and so by 8.3.2(a) there exists a monic polynomial
g = ∑n

i=0 gixi ∈ S [x] with g(α) = 0. Then gi = fi∣M for some fi ∈ R with fn = 1. Put f = ∑m
i=0 fixi.

Then f (α) = g(α) = 0. �

8.4 Complex character

Lemma 8.4.1. Let λ, λ1, . . . λd be roots of unity on C. Put a = ∑d
i=1 λi.

(a) λ is algebraic integer, ∣λ∣ = 1 and λ = λ−1.

(b) a is an algebraic integer, that is a is integral over Z.

(c) ∣a∣ ≤ d.

(d) ∣a∣ = d if and only if λ1 = λ2 = . . . = λd.
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(e) a = d if and only if λ1 = λ2 = . . . = λd = 1.

(f) If a
d is an algebraic integer, then either a = 0 or ∣a∣ = d.

Proof. (a) Let m ∈ Z+ with λm = 1. Then λ is a root of xm = 1 and so an algebraic integer. Also
(λλ)m = λmλm = 1 and since λλ is a positive real number, λλ = 1. So ∣λ∣ = 1, λλ = 1 and λ = λ−1.

(b) By (d) λi ∈ A(Z,C) for all 1 ≤ i ≤ d. By 8.3.2(b), A(Z,C) is a subring of C and so (b) holds.

(c) By the tringualar inequality and (a)

(∗) ∣a∣ ≤
d

∑
i=1

∣λi∣ =
d

∑
i=1

1 = d

(d) Equality holds in (*) if and only if there exists ri ∈ R≥0, 1 ≤ i ≤ d with λi = riλ1. Then

1 = ∣λi∣ = ∣riλ1∣ = ri∣λi∣ = r11 = r1

and so λi = λ1 for all 1 ≤ i ≤ d.

(e) If a = d, (d) shows that λi = λ1 for all 1 ≤ i ≤ d and so d = a = dλ1 and λ1 = 1.
(f) Let n ∈ N with λn

i = 1 for all 1 ≤ i ≤ d. Let F be splitting field of xn − 1 over Q in C.
Then Q ≤ F is normal and separable and so Galois. Let f be the minimal polynomial of a

d over Q,
H = AutQ(F) and E = {h a

d) ∣ h ∈ H}. Since Q ≤ F is Galois, FixF(H) = Q and 4.3.6(b:a) shows that

f =∏
e∈E

x − e

Put k =∏e∈E e. If e ∈ R then e = h( a
d) for some h ∈ H. Note that

h(a) =
d

∑
i=1

h(λi)

and each h(λi is a root of unity in C. So by (d), ∣h(a)∣ ≤ d and ∣e∣ = ∣h( a
d)∣ ≤ 1. Thus

∣k∣ =∏
e∈E

∣e∣ ≤ 1.

Suppose now that a
d is an algebraic integer. Then by 8.3.3(b) f ∈ Z[x]. Since the constant

coefficient of f is (−1)dk we get k ∈ Z. Since ∣k∣ ≤ 1 this gives k = 0,1 or −1. In the first case, since
f is irreducible, f = x and so also a

d = 0 and a = 0. If ∣k∣ = 1 we get ∣e∣ = 1 for all e ∈ E. In particular,
∣ a
d ∣ = 1 and so ∣a∣ = d. �

Lemma 8.4.2. Let M be a finite dimensional unitary C[G]-module and put dM = dimC M and
M∗ = HomC(M,C).

(a) χM(g) is an algebraic integer for all g ∈ G.

(b) χM(g−1) = χM(g).
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(c) χM = χM∗

(d) ∣χM(g)∣ ≤ dM.

(e) ∣χM(g)∣ = dM if and only if g acts as a scalar on M, that is gM = λidM for some λ ∈ C.

(f) χM(g) = dM if and only if g ∈ StabG(M).

Proof. Put d = dM. By 8.1.10(e) applied to ⟨g⟩ in place of G there exists a C basis (vi)
d
i=1 of M with

gvi = λivi

for all 1 ≤ i ≤ d, where λi = αi(g) for some αi ∈ Hom(⟨g⟩,C♯). In particular, λi is ∣g∣-root of
unity and so λ−i = λ. Also the matrix A of g∣M with respect to (vi)

d
i=1 is a d × d-diagonal matrix with

diagonal entries λi,1 ≤ i ≤ d.
(a) We have χM(g) = ∑m

i=1 λi and so by 8.4.1(b), χM(g) is an algebraic integer.

(b) The matrix of g−1∣M is A−1 = A and so χM(g−1) = tr(A) = trA = χM(g).

(c) Define φi ∈ M∗ by φi(v j) = δi j. Then (φi)
n
i=1 is C basis for M∗. We compute

(gφi)(v j) = φi(g−1v j) = φi(λ
−1
j v j) = λ jφi(v j) = λiδi j

and so gφi = λiφi. So the matrix of g∣M∗ with respect to (φi)
d
i=1 is A and so (c) holds.

(d) Since χM(g) = ∑d
i=1 λi, this follows from 8.4.1(d).

(e) By 8.4.1(e) ∣χM(g)∣ = d if and only if λ1 = λ2 = . . . = λd and so if and only if A = λ1 Idd and
if and only if g ∣M= λ1idM.

(f) By 8.4.1(e) χM(g) = d if and only if λ1 = λ2 = . . . = λd = 1 and so if and only if A = Idd, if
and only if g ∣M= idM and if and only if g ∈ StabG(M). e. �

Lemma 8.4.3. (aC)C∈D is a Z-basis for Z(Z[G]). In particular, there exists integers kCDE , C,D,E ∈

C with

aCaD = ∑
E∈C

kCDEaE .

for all C,D,E.

Proof. Let b ∈ Z(Z(G)). Then bg = gb for all g ∈ G and so b ∈ Z(C[G]). It follows that b =

∑C∈C kcaC for some unique kC ∈ C. Since b ∈ Z(Z(G)), kC ∈ Z for all C ∈ C and so the first
statement holds. For the second just observe that aCaD ∈ Z(Z[G]). �

Lemma 8.4.4. Suppose K = C and let C ∈ C and S ∈ S. Then aC ∣S =
∣C∣

dS
χS (gC)idS and ∣C∣

dS
χS (gC)

is an algebraic integer.
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Proof. By 8.2.9(b) aC = ∑T∈S
∣C∣

dT
χT(gC)eT . Since eT ∣S= δS T idS the first statement holds.

Define αC ∶ Z[G]) → Z(G)),b → aCb. By 8.3.4(b) there exists a monic polynomial f ∈ Z[x]
with f (αC) = 0. Then f (aC)b = 0 for all b ∈ Z[G]. In particular, f (aC)1 = 0 and f (aC) = 0. Hence
also f (aC) ∣S= 0 and the first statement shows that

0 = f (aC)∣S = f (
∣C∣

dS
χS (gC)idS ) = f (

∣C∣

dS
χS (gC))idS

so f ( ∣C∣

dS
χS (gC)) = 0. Hence ∣C∣

dS
χS (gC) is the root of a monic integral polynomial in C and so an

algebraic integer.
�

Proposition 8.4.5. Suppose K = C. Then dS divides ∣G∣ for all S ∈ S .

Proof. By the first orthogonality relation 8.2.10(1) applied with S = T ,

1
∣G∣

∑
C∈C

1
∣CG(gC)∣

χS (gC)χS (g−1
C ) = 1.

Multiplication with ∣G∣

dS
gives:

∑
C∈S

∣C∣χS (gc)

∣dS ∣
χS (g−1

C ) =
∣G∣

dS
.

By 8.4.4 ∣C∣χS (gc)

∣dS ∣
is an algebraic intgeger, by 8.4.2(a), χS (g−1

C ) is an algebraic integer and so by

8.4.1(b), also ∣G∣

dS
is an algebraic integer. Hence by 8.4.1(c), ∣G∣

dS
is an integer. �

The next lemma shows how the class algebra constants can be computed from the character
table.

Lemma 8.4.6. (a) For all C,D,E ∈ C:

kCDE =
∣G∣

∣CG(gC)∣∣CG(gD)∣
∑
S ∈S

1
dS
χS (gc)χS (gD)χS (gE)

(b) For all C,D ∈ C

aCaD =
∣G∣

∣CG(gC)∣∣CG(gD)∣
∑
S ∈S

χS (gc)χS (gD)

dS
χS

Proof. (a) By definition of the kCDF ,

aCaD = ∑
F∈C

kCDFaF

and so also
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ρS (aC)ρS (aD) = ∑
F∈C

kCDFρ(aF)

Thus 8.4.4 gives

∣C∣χS (gC)

dS

∣D∣χS (gD)

dS
= ∑

F∈C
kCDF

∣F∣χS (gF)

dS

Thus
∣C∣∣D∣

dS
χS (gC)χS (gD) = ∑

F∈C
∣F∣kCDF

Multiplying with χS (gE) and summing over all S ∈ S gives

∣C∣∣D∣∑
S ∈S

1
dS
χS (gC)χS (gD)χS (gE) = ∑

F∈C
∣F∣kCDF ∑

S ∈S
χS (gF)χS (gE)

(2nd Orthogonality relation) = ∑
F∈C

∣F∣kCDF ∣CG(gE)δEF

= ∣E∣kCDE ∣CG(gE)∣

Since ∣X∣ =
∣G∣

∣CG(gX)∣
for X = C,D and E, (a) holds.

(b) Note that kCDE is real valued. So (b) follows from (a). �

8.5 Burnside’s paqb Theorem

In this short section we will show that all finite groups of order paqb are solvable, where p and q are
primes and a and b are integers.

Definition 8.5.1. Let χ be a character of G over C. Then

kerχ = {g ∈ G ∣ χ(g) = χ(1)}

Z(χ) = {g ∈ G ∣ ∣χ(g)∣ = χ(1)}

Lemma 8.5.2. Suppose K = C and let S ∈ S . Then

(a) kerχS = StabG(S ).

(b) Z(χS ) consists of all g ∈ G which act as scalars on S . Moreover, Z(χS )/kerχS = Z(G/kerχS ).

Proof. (a) follows from 8.4.2(f).

(b) The first part of (b) follows from 8.4.2(e). For the second statement note that G/kerχS ≅ G∣M
and so we may assume that G ⊆ EndK(M).

Then Z(G) = G ∩ EndKG(S ). By 8.1.7(d) EndKG(S ) = K∣S and so Z(G) = G ∩ K∣S . Thus also
the second statement in (b) holds. �
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Lemma 8.5.3. Suppose K = C and there exist S ∈ S and C ∈ S with gcd (dS , ∣C∣) = 1. Then either
χ(gC) = 0 or C ⊆ Z(χS ).

Proof. Since gcd (dS , ∣C∣) = 1 there exist integers a,b with adS + b∣C∣ = 1. Multiplying with χS (gC)

dS
gives

aχS (gC) + b
∣C∣χS (gC)

dS
=
χS (gC)

dS
.

By 8.4.4,8.4.2(a) and 8.4.1(b) the left side of this equation is an algebraic integer. The right side
is the sum of dS roots of unity devided by dS . So by 8.4.1(f), χS (gC) = 0 or ∣χS (gC)∣ = dS = χS (1).
In the second case C ⊆ Z(χS ). �

Proposition 8.5.4. Suppose there exits C ∈ C with ∣C∣ = pt for some prime p and some t ∈ N. If
K = C and G ≠ 1, then there exists S ∈ S with C ⊆ Z(χS ) and kerχS ≠ G.

Proof. Let T be the unique simple module in S with StabG(T) = G (so dimK T = 1 and gt = t for
all g ∈ G, t ∈ T .) Since G ≠ 1, ∣S ∣ = ∣C∣ ≠ 1 and S ≠ {T}. If C = {1}, the proposition holds for any
T ≠ S ∈ S.

So suppose C ≠ {1}. The Second Orthogonality Relation applied with D = {1} gives

∑
S ∈S

χS (gC)χS (1) = 0

and so

1 = − ∑
T≠S ∈S

χS (gC)dS .

Put A = A(Z,C). By 8.4.1(c), 1
p ∉ A. Thus 1 /∈ pA and the preceeding equation shows that there

exists T ≠ S ∈ S with χS (gC)dS ∉ pA. Then χS (gC) ≠ 0 and since χS (gC) ∈ A we conclude that p
does not divide dS in Z. Since ∣C∣ = pt we get gcd (dS , ∣C∣) = 1 and the proposition follows from
8.5.3. �

Definition 8.5.5. A group H is called solvable if there exists a finite chain of subgroups

A0 = 1 ⊴ A1 ⊴ . . . ⊴ An−1 ⊴ An = H

of H such that Ai/Ai−1 is abelian for all 1 ≤ i ≤ n.

Theorem 8.5.6 (Burnside’s pa pb-Theorem). Let p and q be primes, a,b ∈ N and G a finite group of
order paqp. Then G is solvable.

Proof. By induction on ∣G∣. Since trivial groups are solvable, the theorem holds for G∣ = 1. Suppose
∣G∣ ≠ 1 and say qb ≠ 1. Let Q be a Sylow q-subgroup of G. Then Q ≠ 1 and by 1.7.38(a) Z(Q) ≠ 1.
Choose 1 ≠ g ∈ Z(Q). Then qb ∣ ∣CG(g)∣ and so ∣G/CG(g)∣ = pt for some 0 ≤ t ≤ a. Put C = Gg. Then
∣C∣ = pt and by 8.5.4 C ⊆ Z(χ) for some character χ of G over C with kerχ ≠ G. Thus by induction
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kerχ is solvable. By 8.5.2, Z(χ)/kerχ is abelian and so solvable. Since C ⊆ Z(χ), Z(χ) ≠ 1. Hence
G/Z(χ) has smaller order than G and by induction also G/Z(χ) is solvable. Thus

1 ⊴ ker(χ)◁ Z(χ) ⊴ G

is a subnormal series of G with all factors solvable. The definition of a solvable group now shows
that G is solvable. �
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Appendix A

Set Theory

A.1 Relations and Function

Definition A.1.1. Let x and y be objects. Then (x, y) = {{x},{x, y}}. (x, y) is called the ordered
pair of x and y.

Lemma A.1.2. Let a,b, c,d be objects. Then (a,b) = (c,d) if and only of a = c and b = d.

Proof. We first show

1○. Let ã, b̃, c̃ and d̃ be objects with ã = c̃ and {ã, b̃} = {c̃, d̃}. Then b̃ = d̃.

Since b̃ ∈ {ã, b̃} and {ã, b̃} = {c̃, d̃}, we have b̃ ∈ {c̃, d̃}. So b̃ = c̃ or b̃ = d̃. In the second
case (1○) holds. Thus we may assume b̃ = c̃. Since ã = c̃ this gives b̃ = ã. Since d̃ ∈ {c̃, d̃} and
{c̃, d̃} = {ã, b̃}, d̃ ∈ {ã, b̃} and so d̃ = ã or d̃ = b̃. Since b̃ = ã either case gives d̃ = b̃ and so also
b̃ = d̃. Thus (1○) is proved.

Suppose now that that (a,b) = (c,d). By the definition of an ordered pair, (a,b) = {{a},{a,b}}
and (c,d) = {{c},{c,d}}. Thus

(∗) {{a},{a,b}} = {{c},{c,d}}.

Since {a} ∈ {{a},{a,b}}, (*) implies {a} ∈ {{c},{c,d} and so {a} = {c} or {a} = {c,d}.
Since c ∈ {c} and c ∈ {c,d} either case gives c ∈ {a}. Thus

(∗∗) c = a.

Hence also {a} = {c} and so (*) shows that the assumptions of (1○) are fulfilled for ã = {a},
b̃ = {a,b}, c̃ = {c} and d̃ = {c,d}. Thus (1○) implies {a,b} = {c,d}. Since a = c, another application
of (1○) gives b = d. �

Definition A.1.3. (a) A relation R is a class all of whose members are ordered pairs.

367
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(b) If R is relation then R̀ = {(b,a) ∣ (a,b) ∈ R}. R̀ is called the opposite of R.

(c) Let R be a class. Then
Dom(R) = {x ∣ (y, x) ∈ R for some y}

Dom(F) is called the domain of F.

Im(R) = {y ∣ (y, x) ∈ R for some x}

Im R is called the image of R.

(d) Let R be a relation and x, y objects. Then we say that x is in R-relation to y and write xRy if
(x, y) ∈ R.

(e) A function is a relation F such that for all x, y, z, (y, x) ∈ F and (z, x) ∈ F imply y = z.

(f) Let F be a function and x ∈ Dom(F). Then Fx denotes the unique object such that (Fx, x) ∈ F.
So y = Fx if and only if yFx. We will also use the notations F(x) and Fx for Fx.

(g) Let A and B be classes. We says that F is a function from A to B and write F ∶ A → B, if F is a
function, A = Dom(F) and Im(F) ⊆ B.

Example A.1.4. (a) Let A be any class. Then idA = {(a,a) ∣ a ∈ A} is a function from A to A,
called the identity function on A.

(b) Let A and B be classes with A ⊆ B. Then idA is a function from A to B.

Definition A.1.5. Let R and S be relations. Then R ○ S is the relation defined by

R ○ S = {(a, c) ∣ aRb and bS c for some b}

Lemma A.1.6. (a) Let R, S and T be relations. Then

R ○ (S ○ T) = {(a,d) ∣ aRb,bS c and cTd for some c,d} = (R ○ S ) ○ T

(b) Let f and g be functions. Then f ○ g is a function,

Dom( f ○ g) = {a ∈ Dom f ∣ ga ∈ Dom f} = {a ∣ a ∈ Dom f and ga ∈ Dom f}

and

( f ○ g)a = f (ga)

f or all a ∈ Dom( f ○ g).

(c) Let R ∶ A→ B and S ∶ B→ C be functions. Then S ○ R is a function from A to C and

(S ○ R)a = S (Ra)

for all a ∈ A.
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Proof. Readily verified. �

Definition A.1.7. Let R be a relation.

(a) Ř is the function with domain the class of all functions and ŘS = R ○ S for all functions S .

(b) Let R∗ is the function with domain the class of all functions and R∗S = S ○ R for all functions
S .

(c) Let a be an object. Then Eva is the function with domain the class of all functions f with
a ∈ Dom f and Eva f = f a.

Lemma A.1.8. Let R and S be relations. Then

(R ○ S )̌ = Ř ○ Š

(R ○ S )∗ = S ∗ ○ R∗

and

R∗ ○ Š = Š ○ R∗

Proof. Let T be a function. Then

(R ○ S )̌ T = (R ○ S ) ○ T = R ○ (S ○ T) = R ○ (Š T) = Ř(Š T) = (Ř ○ Š )T

(R ○ S )∗T = T ○ (R ○ S ) = (T ○ R) ○ S = (R∗T) ○ S = S ∗(R∗T) = (S ∗ ○ R∗)T

and

(R∗ ○ Š )T = R∗(Š T) = (S ○ T) ○ R = S ○ (T ○ R) = Š (R∗T) = (Š ○ R∗)T

�

Lemma A.1.9. Let f be function and a an object. Then

Eva ○ f̌ = f ○ Eva

Proof. Note that the domain of both functions is contain in the class of functions. Let g be a
function. Then g ∈ Dom f̌ . Thus g ∈ Dom(Eva ○ f̌ ) if and only if f̌ g ∈ Dom(Eva), if and only if
g ○ f ∈ Dom(Eva) and if and only if a ∈ Dom( f ○ g). In this case

(Eva ○ f̌ )g = Eva( f̌ g) = ( f̌ g)a = ( f ○ g)a

g ∈ Dom( f ○ Eva) if and only if (g ∈ Dom(Eva) and Evag ∈ Dom f ). This holds if and only if a
is in the domain of g and ga is in the domain of f and so if and only if a ∈ Dom( f ○ g). In this case

( f ○ Eva)g = f (Evag) = f (ga) = ( f ○ g)a

�
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Proposition A.1.10. Let A and B be partially ordered sets and f ∶ A → B and g ∶ B → A be
functions. Suppose that f and g are non-decreasing and for all a ∈ A,b ∈ B

(∗) f a ≤ b ⇐⇒ a ≤ gb

Put
Ã = {a ∈ A ∣ f (ga) = a} and B̃ = {b ∈ B ∣ g( f b) = b.}

(a) a ≤ g( f a) for all a ∈ A.

(b) f (gb) ≤ b for all b ∈ B.

(c) Ã = Im g

(d) B̃ = Im f .

(e) The function f ∣Ã∶ Ã→ B̃ is a well-defined bijection with well-defined inverse g ∣B̃∶ B̃→ Ã.

Proof. Observe first that the assumption of the lemma are fulfilled for (B,A,g, f ,≥) in place of
(A,B, f ,g,≤). Hence (a) implies (b) and (c) implies (d).

(a) : Note that f a ≤ f a and so by (*) applied with b = f a, a ≤ g( f a). Thus (a) and so also (b)
holds.

(c): If a = g( f a), then a = gb for b = ga. So suppose a = gb for some b ∈ B. (b) implies
f a = f (gb) ≤ b. Since g is non-decreasing this gives g( f a) ≤ gb = a. By (a) a ≤ g( f a) and so
a = g( f a). Thus (c) and so also (d) holds.

(e) By (c) f a ∈ B̃ for all a ∈ Ã and so functions are well-defined. By definition of Ã and B̃ they
are inverse to each other. �

Definition A.1.11. Let R be a relation and A and B be sets.

(a) RAB denotes the set
RAB = {a ∈ A ∣ aRb for all b ∈ B}

RAB is called the R-complement of B in A.

(b) Let D ⊆ B. We say that D is A-closed in B with respect to R if

D = R̀B(RAD)

Example A.1.12. (a) Let A and B be sets and ≠ the unequal relation. Then ≠A B = A ∖ B.

(b) Let G be a group and R the commuting relation on G. (So aRb if a,b ∈ G and ab = ba). Then
RAB = CA(B).

(c) Let G be group acting on a set S . Let R = {(g, s) ∈ G × S ∣ gs = s}. Let A ⊆ G and T ⊆ S . Then
RT S = StabA(T) and R̀T A = FixT(A).
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(d) Let S be a ring, M an R-module, I ⊆ S and W ⊆ M. Put R = {(s,m) ∈ S × M ∣ sm = 0}. Then
RS (W) = AnnS (W) and R̀M(I) = AnnM(I).

Proposition A.1.13. Let R be relation and A and B sets. Let C ⊆ C̃ ⊆ A and D ⊆ D̃ ⊆ B.

(a) C ⊆ RAD, if and only of cRd for all c ∈ C,d ∈ D, if and only if dR̀c for all d ∈ D, c ∈ C and if and
only if D ⊆ R̀BC.

(b) RAD = ⋂d∈D RA{d} and R̀BC = ⋂c∈C R̀B{c}

(c) RAD̃ ⊆ RAD and R̀BC̃ ⊆ R̀BC.

(d) D ⊆ R̀B(RAD) and C ⊆ RA(R̀BC).

(e) D is A-closed in B with respect to R if and only if D = R̀BE for some E ⊆ A. C is B-closed in A
with respect to R̀ if and only if C = RAF for some F ⊆ B.

(f) Let A be set of all subsets of A which are B-closed in A with respect to R̀ and B be set of all
subsets of B which are A-closed in B with respect to R. Then

A→ B, C → R̀BC

is well-defined, inclusion reversing, bijection with well-defined inclusion reversing, inverse

B → A, D→ RAD

Proof. (a) and (b) follow immediately from the definition of RAB.

(c) follows from (a).

Partial order the set of subsets of A by inclusion and the set of subsets of B by reverse inclusion.
Then (a) and (c) show that the assumptions of A.1.10 are fulfilled. Hence (d) to (f) hold. �

A.2 Functions and Magma

Definition A.2.1. Let A be a set, (B,+) a magma and f ,g ∶ A→ B be functions. Define

f + g ∶ A→ B, a→ f (a) + f (b)

Remark: Here and below I’m using the symbol + for the binary operations since the main
applications will be to the additive group of the ring. But I will only sometimes assume that “+” is
commutative.

Lemma A.2.2. (a) Let f ∶ A→ B and g ∶ B→ C be magma homomorphisms. Then g○ f is a magma
homomorphism.
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(b) Let A,B be sets and C a magma. Let f ∶ A→ B and g,h ∶ B→ C be functions. Then

(g + h) ○ f = g ○ f + h ○ f

(c) Let A be a set, B and C magma. Let f ,g ∶ A → B be functions and h ∶ B → C a magma
homomorphism. Then

h ○ ( f + g) = h ○ f + h ○ g

(d) Let f ∶ A → B and g ∶ A → B be magma homomorphism and suppose that (w + x) + (y + z) =
(w + y) + (x + z) for all w, x, y, z ∈ B.1 Then f + g is a magma homomorphism.

Proof. Let x, y ∈ A.
(a)

( f ○ g)(x + y) = f (g(x + y)) = f ((g(x) + g(y)) = f (g(x)) + f (g(y)) = ( f ○ g)(x) + ( f ○ g)(y)

(b)

((g+h)○ f )(x) = (g+h)( f (x)) = g( f (x))+h( f (x)) = (g○ f )(x)+ (h○ f )(x) = (g○ f +h○ f )(x)

(c)

(h ○ ( f + g))(x) = h(( f + g)(x)) = h( f (x) + g(x)) = h( f (x)) + h(g(x))

= (h ○ f )(x) + (h ○ g)(x) = (h ○ f + h ○ g)(x)

(d)

( f + g)(x + y) = f (x + y) + g(x + y) = ( f (x) + f (y)) + (g(x) + g(y))

= ( f (x) + g(x)) + ( f (y) + g(y)) = ( f + g)(x) + ( f + g)(y)

�

Lemma A.2.3. (a) Let f ∶ A→ B a magma homomorphism and C a set. Then

f̌ ∶ Fun(C,A)→ Fun(C,B), g→ f ○ g.

is a magma homomorphism.

(b) Let f ∶ A→ B a function and C a magma. Then

f ∗ ∶ Fun(B,C)→ Fun(A,C),g→ g ○ f

is a magma homomorphism.

1This holds for example if B is an abelian semigroup. If B has an identity it holds if and only if B is an abelian monoid.
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Proof. (a) follows from A.2.2(b) and (b) from A.2.2(a). �

Lemma A.2.4. Let A and B be sets. Note that Fun(A,A) is a monoid under composition.

(a) The function

Fun(B,B)→ Fun(Fun(A,B),Fun(A,B)), f → f̌ = (g→ f ○ g)

is homomorphism of monoids,

(b) The function

Fun(A,A)→ Fun(Fun(A,B),Fun(A,B)), f → f ∗ = (g→ g ○ f )

is anti-homomorphism of monoids.

Proof. By A.2.2(c) the function in (a) is a magma homomorphism and the function in (b) is a
magma anti-homomorphism. Since g ○ idA = g = idB ○ g for all g ∈ Fun(A,B), the functions are
(anti) homomorphism of monoids. �

Lemma A.2.5. Let A,B be sets and C a magma. Then the function

Fun(A × B,C)→ Fun(A,Fun(B,C)), f → fA

is magma isomorphism.

Proof. Let f ,g ∶ A × B→ C be function and a ∈ A, b ∈ B. Then

( f + g)a b = ( f + g)(a,b) = f (a,b) + g(a,b) = fa b + ga b

Thus ( f + g)a = fa + ga for all a ∈ A and ( f + g)A = fA + gA. �

Definition A.2.6. Let f ∶ A × B→ C be functions.

(a) Suppose B and C are magma. Then f is called magma-homomorphism in the second coordinate
if

f (a,b + b̃) = f (a,b) + f (a, b̃)

for all a ∈ A and b, b̃ ∈ B.

(b) Suppose A,B and C are magma. Then f is called a magma bihomomorphism if f is a magma
homomorphism in the first and second coordinate.

Lemma A.2.7. Let f ∶ A×B→ C be a function and suppose B and C are magma. Then the following
are equivalent:

(a) f is a magma-homomorphism in the second coordinate.

(b) fa is magma -homomorphism for all a ∈ A.
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(c) fA is a function from A to Hom(B,C).

(d) fB is a magma homomorphism from B to Fun(A,C).

Proof. (a)⇐⇒ (b) :

f (a,b + b̃) = f (a,b) + f (a, b̃) for all a ∈ A,b, b̃ ∈ B

⇐⇒ fa(b) = fa(b̃) for all a ∈ A,b, b̃ ∈ B

(b)⇐⇒ (c) : Obvious.

(a)⇐⇒ (d) :

f (a,b + b̃) = f (a,b) + f (a, b̃) for all a ∈ A,b, b̃ ∈ B

⇐⇒ fb+b̃(a) = fb(a) + fb̃(a) for all a ∈ A,b, b̃ ∈ B

⇐⇒ fb+b̃ = fb + fb̃ for all b, b̃ ∈ B

�

Example A.2.8. Let A be a set and B a magma.
Consider the function

π ∶ Fun(A,B) × A → B, ( f ,a)→ f a

Then for f ∈ Fun(A,B) and a ∈ A, π f a = π( f ,a) = f a and so π f = f . Thus πFun(A,B) = idFun(A,B)
is a magma homomorphism. Thus π is magma homomorphism in the first coordinate. Hence for all
a ∈ A,

πa ∶ Fun(A,B)→ B, f → f a

is a magma homomorphism and we obtain a function:

πA ∶ A→ Hom(Fun(A,B),B), a→ πa

Lemma A.2.9. Let A,B,C be magma and f ∶ A × B → C a function. Then the following are
equivalent:

(a) f is a magma bihomomorphism.

(b) fA is a magma homomorphism from A to Hom(B,C).

(c) fB is a magma homomorphism from B to Hom(A,C).

Proof. By A.2.7 f is a magma homomorphism in the second coordinate if and only if fA is function
from A to Hom(B,C); and f is magma homomorphism in first coordinate if and only if fA magma
homomorphism from A to Fun(B,C). So (a) and (b) are equivalent. By symmetry also (a) and (c)
are equivalent. �
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A.3 Zorn’s Lemma

This chapter is devoted to prove Zorn’s lemma: Let M be a nonempty partially ordered set in which
every chain has an upper bound. Then M has a maximal element.

To be able to do this we assume throughout this lecture notes that the axiom of choice holds:

Hypothesis A.3.1 (Axiom of choice). Let I be a non-empty set and (Ai)i∈I a family of non-empty
sets. Then

⨉
i∈I

Ai ≠ ∅

Note that this means that there exists a function f with domain I and f (i) ∈ Ai for all i ∈ I.
Naively this just means that we can pick an element from each of the sets Ai.

Definition A.3.2. A partially ordered set is a set M together with a reflexive, anti-symmetric and
transitive relation ” ≤ ”. That is for all a,b, c ∈ M

(a) a ≤ a (reflexive)

(b) a ≤ b and b ≤ aÔ⇒ a = a (anti-symmetric)

(c) a ≤ b and b ≤ cÔ⇒ a ≤ c (transitive)

Definition A.3.3. Let (M,≤) be a partially ordered set, a,b ∈ M and C ⊆ M.

(a) a are called comparable if a ≤ b or b ≤ a.

(b) (M,≤) is called totally ordered if any two elements are comparable.

(c) C is called a chain if any two elements in C are comparable.

(d) An upper bound m for C is an element m in M such that that c ≤ m for all c ∈ C.

(e) An element m ∈ M is called a smallest element (or a least element) of C if m ∈ C and m ≤ c for
all c ∈ C.

(f) An element m ∈ C is called a largest element (or a greatest) elements of C if m ∈ C and c ≤ m
for all c ∈ C.

(g) An element m ∈ C is called a maximal element of C if c = m for all c ∈ C with m ≤ c.

(h) An element m ∈ C is called a minimal element of C if c = m for all c ∈ C with c ≤ m.

(i) A function f ∶ M → M is called increasing if a ≤ f (a) for all a ∈ M.

Lemma A.3.4. Let M be partially ordered set and A ⊆ M. Then A has at most one least element.

Proof. Let a and b be least elements of A. Since a ∈ A and b a least element of A, b ≤ a. By
symmetry b ≤ a. Since ≤ is anti-symmetric, a = b. �
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As the main step toward our proof of Zorn’s lemma we show:

Lemma A.3.5. Let M be a non-empty partially ordered set in which every non-empty chain has a
least upper bound. Let f ∶ M → M be an increasing function. Then f (m0) = m0 for some m0 ∈ M.

Proof. Since M ≠ ∅ we can choose a ∈ M. Let B ∶= {m ∈ M ∣ a ≤ m}. If b ∈ B, then a ≤ b and
b ≤ f (b). So a ≤ f (b) and f (b) ∈ B. Note also that the least upper bound of any non-empty chain
in B is contained in B. So replacing M by B we may assume that

1○. a ≤ m for all m ∈ M.

Define a subset A of M to be closed if:

(Cl i) a ∈ A

(Cl ii) f (b) ∈ A for all b ∈ A.

(Cl iii) If C is a non-empty chain in A then its least upper bound is in A.

Since M is closed, there exists at least one closed subset of M.

2○. Let D be chain in M and suppose D is closed. Then D has a least upper bound d in M and
f (d) = d.

By (i), D is not empty and so D has a least upper bound d. By (iii), d ∈ D and by (ii), f (d) ∈
D. Since d is a upper bound for D, f (d) ≤ d and since f is increasing, d ≤ f (d). Since ≤ is
antisymmetric f (d) = d.

In view of(2○) we just have to find a closed chain in M. For this let A be the intersection of all
the closed subsets of M and observe that A itself is closed.

e ∈ A is called extreme if

(Ex) f (b) ≤ e for all b ∈ A with b < e

Note that a is extreme, so the set E of extreme elements in A is not empty.

3○. Let e be extreme and b ∈ A. Then b ≤ e or f (e) ≤ b. In particular, e and b are comparable.

To prove (3○) put
Ae = {b ∈ A ∣ b ≤ e or f (e) ≤ b}

We need to show that Ae = A. Since A is the unique minimal closed set this amounts to proving that
Ae is closed.

Clearly a ∈ Ae. Let b ∈ Ae. If b < e, then as e is extreme, f (b) ≤ e and so f (b) ∈ Ae. If b = e,
then f (e) = f (b) ≤ f (b) and again f (b) ∈ Ae. If f (e) ≤ b, then f (e) ≤ b ≤ f (b) and f (e) ≤ f (b)
by transitivity. So in all cases f (b) ∈ Ae.

Let D be a non-empty chain in Ae and m its least upper bound. If d ≤ e for all d in D, then e is
an upper bound for D and so m ≤ e and m ∈ Ae. So suppose that d ≰ e for some d ∈ D. As d ∈ Ae,
f (e) ≤ d ≤ m and again m ∈ Ae.

We proved that Ae is closed. Thus Ae = A and (3○) holds.
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4○. E is closed

As already mentioned, a ∈ E. Let e ∈ E. To show that f (e) is extreme let b ∈ A with b < f (e).
By (3○) b ≤ e or f (e) ≤ b. In the latter case is b < b, a contradiction. If b < e, then since e is extreme,
f (b) ≤ e ≤ f (e). If e = b, then f (b) = f (e) ≤ f (e). So f (e) is extreme.

Let D be a non-empty chain in E and m its least upper bound. We need to show that m is
extreme. Let b ∈ A with b < m. As m is a least upper bound of D, b is not an upper bound and there
exists e ∈ D with e ≰ b. By (3○), e and b are comparable and so b < e. As e is extreme, f (b) ≤ e ≤ m
and so m is extreme. Thus E is closed.

As E is closed and E ⊆ A, A = E. Hence by (4○) , any two elements in A are comparable. So A
is a closed chain and by (2○), the lemma holds. �

As an immediate consequence we get:

Corollary A.3.6. Let M be a non-empty partially ordered set in which every non-empty chain has
a least upper bound. Then M has a maximal element.

Proof. Suppose not. For m ∈ M let Um = {u ∈ M ∣ m < u}. Then Um is not empty and so by the
Axiom of choice there exists

f ∈ ⨉
m∈M

Um

Then f is a function from M to M and m < f (m) for all m ∈ M. But this contradicts A.3.5. �

Lemma A.3.7. Let M be any partial ordered set. Order the set of chains in M by inclusion. Then
M has a maximal chain.

Proof. LetM be the set of chains in M. The union of a chain inM is clearly a chain in M and is a
least upper bound for the chain. Thus by A.3.6M has a maximal element. �

Theorem A.3.8 (Zorn’s Lemma). Let M be a nonempty partially ordered set in which every chain
has an upper bound. Then M has a maximal element.

Proof. By A.3.7 there exists a maximal chain C in M. By assumption C has an upper bound m. Let
l ∈ M with m ≤ l. Then C ∪{m, l} is a chain in M and the maximality of C implies l ∈ C. Thus l ≤ m,
m = l and m is maximal element. �

As an application of Zorn’s lemma we prove the Well-Ordering Principal.

Definition A.3.9. (a) A totally ordered set M is called well-ordered if every non-empty subset of
M has a minimal element.

(b) We say that a set T can be well-ordered if there exists a relation ≤ on T such that (T,≤) is a
well ordered set.
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Example A.3.10. Let J be a non-empty well-ordered set and let (I j) j∈J a family of non-empty well
-ordered sets. Let m j be the minimal element of I j. For a,b ∈ ⨉ j∈J I j define

Supp(a) = { j ∈ J ∣ a j ≠ m j} J(a,b) = { j ∈ J ∣ a j ≠ b j}.

Put
K = {a ∈⨉

j∈J
I j ∣ ∣Supp(a)∣ is finite}.

Note that J(a,b) ⊆ Supp(a) ∪ Supp(b) and so J(a,b) is finite for all a ≠ b ∈ K and we can
define j(a,b) ∈ J = max J(a,b). Define an ordering on K by

a < b ⇐⇒ a ≠ b and a j < b j where j = j(a,b)

We claim that this is a well ordering on K.
Suppose a < b and b < c and let j = j(a,b) and k = j(b, c). If j ≤ k, then al = bl = cl for all l > k

and ak ≤ bk < ck so a < c. And if j > k, then al = bl = cl for all l > j and a j < b j = c j and again a < c.
So K is totally ordered.

Let A be a non-empty subset of K. Suppose A has no minimal element. Note that if b,a ∈ A
with b < a and j = j(a,b), then b j < a j. So a j ≠ m j and j(a,b) ∈ Supp(a). Thus we can define

j(a) = max
b∈A
b<a

j(a,b) and j = min
a∈A

j(a)

Under all a ∈ A with j(a) = j pick one with a j minimal Let b < a. Then j(a,b) ≤ j(a) and so
ak = bk for all k > j = j(a). Let c < b. Then c < a and so also ak = ck and an thus j(b, c) ≤ j. Thus
j(b) ≤ j and by minimality of j, j(b) = j. The minimality of a j implies b j = a j. Since also c < a,
we get c j = b j and so j(c,b) < j. Thus implies j(b) < j, a contradiction.

Theorem A.3.11 (Well-ordering principal). Every set M can be well ordered.

Proof. Let W be the set of well orderings α = (Mα,≤α) with Mα ⊆ M. As the empty set can be well
ordered, W is not empty. For α, β ∈ W define α ≤ β if

< 1 Mα ⊆ Mβ

< 2 ≤β∣Mα=≤α.

< 3 a ≤β b for all a ∈ Mα,b ∈ Mβ ∖ Mα

It is easy to see that ≤ is a partial ordering on W. We would like to apply Zorn’s lemma to obtain
a member in W. For this let A be a chain in W. Put M∗ = ⋃α∈AMα and for a,b ∈ M∗ define a ≤∗ b
if there exists α ∈ A with a,b ∈ Mα and a ≤α b. Again it is readily verified that ≤∗ is a well-defined
partial ordering on M∗. To show that ≤∗ is a well-ordering, let I be any non-empty subset of M∗ and
pick α ∈ A so that I∩Mα ≠ ∅. Let m be the least element of I∩Mα with respect to ≤α. We claim that
m is also the least element of I with respect to ≤∗. Indeed let i ∈ I. If i ∈ Mα, then m ≤α i by choice
of m. So also m ≤∗ i. If i /∈ Mα, pick β ∈ A with i ∈ Mβ. As A is a chain, α and β are comparable.
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As i ∈ Mβ ∖ Mα we get α < β and (< 3) implies m ≤β i. Again m ≤∗ i and we conclude that (M∗,≤∗)

is a well-ordered set and so an element of W. Observe that (M∗,≤∗) is an upper bound for A in W.
So by Zorn’s Lemma there exists a maximal element α ∈ W. Suppose that Mα ≠ M and pick

m ∈ M∖Mα. Define the partially ordered set (M∗,≤∗) by M∗ = Mα∪{m}, ≤∗∣Mα×Mα=≤α and i <∗ m
for all i ∈ Mα. Then (M∗,≤∗) is contained in W and α < (M∗,≤∗), a contradiction to the maximality
of α.

Thus Mα = M and ≤α is a well-ordering on M. �

Remark A.3.12 (Induction). The well ordering principal allows to prove statement about the ele-
ments in an arbitrary set by induction.

This works as follows. Suppose we like to show that a statement P(m) is true for all elements
m in a set M. Endow M with a well ordering ≤ and suppose that we can show

P(a) is true for all a < m Ô⇒ P(m) is true

then the statement is to true for all m ∈ M.
Indeed suppose not and put I = {i ∈ M ∣ P(i) is false }. Then I has a least element m. Put then

P(a) is true for all a < i and so P(i) is true by the induction conclusion.

A.4 Ordinals

Definition A.4.1. Let a,b be sets. Then a ∈ b means a ∈ b or a = b.

Definition A.4.2. An ordinal is a set S such that

(i) Each element of S is a subset of S .

(ii) ∈ is a well-ordering on S .

Example A.4.3. The following sets are ordinals:

∅,{∅},{∅,{∅}},{∅,{∅},{∅,{∅}}}, ...

If we denote ∅ by 0, {∅} by 1,{∅,{∅}} by 2 and so on, then

n + 1 = n ∪ {n} = {0,1,2, . . . ,n}.

Lemma A.4.4. Let α, β and γ be a ordinal.

(a) Define α + 1 = α ∪ {α}. Then α + 1 is an ordinal.

(b) Every element of ordinal is an ordinal.

(c) Exactly one of β ∈ α,α = β and β ∈ α holds.

(d) If α ∈ β and β ∈ γ. Then α ∈ γ.
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(e) α ∈ β if and only if α ⊊ β and if and only if α + 1 ∈ β.

(f) α ∈ b if and only if α ⊆ β and if and only if α ∈ β + 1.

(g) Let A be a non-empty set of ordinals, then ⋂A is an ordinal. Moreover, ⋂A ∈ A and so ⋂A is
the minimal element of A.

(h) Let A be a set of ordinals. Then ⋃A is an ordinal.

Proof. (a) Let x ∈ α + 1. Then x ∈ α or x = α. If x ⊆ α and so also x ⊆ α + 1. Then x = α, then
again x ⊆ α. So every element of α+1 is a subset of α. Now let y by any non-empty subset of α+1.
If y = {α}, then α is a minimal element of y. If y ≠ {α}, then y ∖ {α} is a subset of α and so has
minimal element m with respect to ∈. Then m ∈ α and so m is also a minimal element of y. Since
z ∈ α for all z ∈ α + 1 with z ≠ α it is readily verified that ’∈’ is a total ordering on α + 1.

(b) Let β ∈ α and γ ∈ β. Since β is subset of α, γ is an element and so also a subset of α. If
δ ∈ γ, we conclude that δ ∈ α. Since δ ∈ γ and γ ∈ β and ’∈’ is a transitive relation on α have that
δ ∈ β. Thus γ is a subset of β. Since ’∈’ is a well-ordering on α and β is a subset of α, ’∈’ is also a
well-ordering on α.

(c) Let γ ∈ α. By induction (on the elements of α + 1) we may assume that γ ∈ β, γ = β or β ∈ γ.
If γ = β, then β ∈ α. If β ∈ γ then β ∈ α, since γ is a subset of α. So we may assume that γ ∈ β for
all γ ∈ α. Thus α ⊆ β. We also may assume that α ≠ β and so there exist δ minimal in β with δ ∉ α.
Let η ∈ δ. Then η ∈ β and so η ∈ α by minimality of δ. Thus δ ⊆ α. Since δ ∉ α and γ is both and
element of α and a subset of α, δ ≠ γ and δ ∉ γ. As both δ and γ are in β and ’∈’ is an ordering on β
we conclude that γ ∈ δ. Thus α ⊆ δ and so α = δ ∈ β.

(d) This follows since β is a subset of γ
(e) and (f): If α ∈ β, then since β is an ordinal. α ⊆ β. Also no set is an element of itself and so

α ≠ β and
Suppose now that α ⊊ β. Then α ≠ β. Note also that β ∉ β and so β ∉ α. Thus (c) implies α ∈ β

and so α + 1 = α ∪ {α} ⊆ β.
Thus

α ∈ β ⇐⇒ α ⊊ β

and so also
α ∈ β ⇐⇒ α ⊆ β

Thus

α + 1 ∈ β ⇐⇒ α + 1 ⊆ β ⇐⇒ α ⊆ β and α ∈ β ⇐⇒ α ⊆ β and α ⊊ β ⇐⇒ α ⊊ β

and

α ∈ β + 1 ⇐⇒ α ∈ β or α = β ⇐⇒ α ∈ β

So (e) and (f) are proved.
(g) Any subset of a well-ordered set is well-ordered. So ⋂A is well-ordered with respect to ’∈.

Let x ∈ ⋂A. Then x ∈ a for all a ∈ A and so x ⊆ a for all a ∈ A. Hence x ⊆ ⋃A. Thus ⋃A is an
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ordinal. If ⋂A ≠ a for all a ∈ A, then ⋂A ⊊ a and by (e), ⋂A ∈ a for all a ∈ A. Hence ⋂A ∈ ⋂A, a
contradiction to (e).

(h) Let x1, x2, x3 ∈ ⋃A. Then xi ∈ ai for some ai ∈ A. Then xi ⊆ ai and so xi ⊆ A. By (c) and
(d) there exists a ∈ {a1,a2,a3} with ai ≤ a for all a. Thus x1, x2, x3 ∈ a. Since ’∈’ is an ordering on
a we conclude that ’∈’ is also an ordering on ⋃A. Let d be a non-empty subset of ⋃A and define
B = {a ∈ A ∣ d ∩ a ≠ ∅}t. By (g), B has a minimal element b. Then b ∩ d has a minimal element m
and m is also a minimal element of d. Thus ’∈’ is a well-ordering on ⋃A. �

Definition A.4.5. (a) Let A be a set. ∣A∣ is the smallest ordinal such that there exist a bijection from
A to ∣A∣. ∣A∣ is called the cardinality of A.

(b) A cardinal is the cardinality of some set.

(c) ℵ0 is the smallest ordinal such that α + 1 ∈ ℵ0 for all α ∈ ℵ0.

(d) An ordinal α is called finite of α ∈ ℵ0.

(e) A set A is called finite if ∣A∣ is finite, otherwise its called infinite. A is called countable infinite if
∣A∣ = ℵ0. A is called countable if its finite or countable infinite. A is called uncountable if is not
countable, that is ℵ0 ∈ ∣A∣.

(f) ω1 is the smallest uncountable cardinal, that is ω1 is the smallest cardinal with ℵ0 ∈ ω1.

Lemma A.4.6. (a) ω1 has no maximal element.

(b) Any countable subset of ω1 has an upper bound in ω1.

Proof. Note first that by minimal choice of ω1, all elements of ω1 are countable.
(a) Let α ∈ ω1. Since α is countable, also α+ 1 is countable. So α+ 1 ≠ ω1. Note that ω1 ∉ α+ 1

and so by A.4.4(c) , α + 1 ∈ ω1. So α is not maximal in ω1 and so ω1 has no maximal elements.
(b) Let A be a countable subset of ω1 and put α = ⋃A. By A.4.4 α is an ordinal. Also all

elements of ω1 are subsets of ω1 and so α is a subset of ω1. Since countable unions of countable
sets are countable, α is countable. The minimal choice of ω1 shows that α ∈ ω1 Let b ∈ A. Then
β ⊆ α and so by A.4.4(f) β ∈ α. Thus α is an upper bound for A. �

Definition A.4.7. Let G be a function and α an ordinal.

(a) Let f ∈ Fun(α). Then f is called G-defined if for all β ∈ α, f ∣β ∈ Dom(G) and f (β) = G( f ∣β).

(b) G is called an α-defining function if f ∈ Dom(G) for all β ∈ α and all G-defined f ∈ Fun(β).

Lemma A.4.8. Let α be an ordinal and G an α-defining function. Then there exists a unique G-
defined function f ∈ Fun(α).

Proof. Put
I = {γ ∈ α ∣ there exists a unique G-defined gγ ∈ Fun(γ)}

Let β ∈ α with β ⊆ I. We will show that β ∈ I. Define f ∈ Fun(β) by f (γ) = G(gγ) for all γ ∈ β.
Note here that γ ∈ I. Also gγ ∈ Dom(G) since gγ is G-defined and G is an α-defining function.



382 APPENDIX A. SET THEORY

1○. Suppose γ ∈ β and h ∈ F(γ) is G-defined. Then h = f ∣γ.

Let δ ∈ γ. Then h∣δ is G-defined and since δ ∈ β ⊆ I, h∣δ = gδ. Since h is G-defined

h(δ) = G(h∣δ) = G(gδ) = f (δ).

2○. f is G-defined.

Let γ ∈ β. Then gγ is G-defined and (1○) implies f ∣γ = gγ and so

f ∣γ ∈ Dom(G) and f (γ) = G(gγ) = G( f ∣γ)

Thus f is G-defined.
Conversely let h ∈ Fun(β) be G-defined. Then by (1○) h = f . So f is the unique G-defined

function on β .

We proved that β ∈ I for all β ∈ α with β ⊆ I. Thus α ∈ I and the theorem is proved. �

Corollary A.4.9. Let H ∶ A→ A be function and a ∈ A. Then there exists a unique family (ai)i∈N in
A with with a0 = a and Hai = ai+1 for all i ∈ N.

Proof. Let i ∈ N and f ∈ Fun(i,A). If i = 0 define G( f ) = a. If i > 0 define G f = H( f (i− 1)). So G
is function from ⋃i∈N Fun(i,A) to A.

We claim that G is an N-defining function. Let i ∈ N and let f ∈ Fun(i) be G-defined. Then
f ∣i−1 is G-defined and so by induction on i, f ∣i−1 is contained in the domain of G. So f j ∈ A for all
j < i − 1. Also f (i − 1) = H( f (i − 1)) ∈ A. Hence f ∈ Fun(i,A) and so f ∈ Dom(G).

We proved that G is an N-defining function. Thus by A.4.8 there exists unique G-defined f ∈

Fun(N). If i ∈ Z+, then f i = G( f ∣i) = H( f (i − 1)) ∈ D. Also f 0 = G( f ∣∅) = G(∅) = a.
Suppose (bi)i∈N is another family in A with a = a0 and Hai = ai+1. Then b0 = a = a0 and if

ai = bi, then ai+1 = Hai = Hbi = bi+1. So by induction, ai = bi for all i ∈ N. �

Corollary A.4.10. Let (M,≤) be a non-empty partially ordered set and suppose there does not exist
a strictly increasing function h ∶ N→ M. Then M has a maximal element.

Proof. Suppose not. Then for each m ∈ M, Mm = {n ∈ M ∣ m < n} is not empty. By the axiom of
choice there exists g ∈ ⨉m∈M Mm. So g ∶ M → M is a strictly increasing function. Let m ∈ M. So by
A.4.8 there exist a function h ∶ N→ M with h(0) = m and h(i+ 1) = g(hi)) < hi for all i ∈ N. Hence
h is strictly increasing, contrary to the assumption. �

Corollary A.4.11. Let C be a class of sets and F ∈ Fun(C) such that ∅ ≠ F(a) ⊆ C for all a ∈ C.
Let a ∈ C. Then there exist a family (ai)i∈N in C with a0 = a and ai+1 ∈ F(ai) for all i ∈ N.

Proof. Let D be the class of subsets of C. For A ∈ D define H(A) = ⋃a∈A F(a). Then H(A) ⊆ C

for all A ∈ D and so H(A) ∈ D. Thus by A.4.9 there exists a family (Di)i∈N in D with D0 = {a}
and H(Di) = Di+1 for all i ∈ N. Thus D = ⋃i∈N Di is a subset of D with a ∈ D. By axiom of choice
×d∈D F(s) ≠ ∅. So there exist function T ∈ Fun(D) with Td ∈ F(d) for all. Let d ∈ D. Then d ∈ Di

for some i ∈ I and so Td ∈ F(d) ⊆ H(Di) = Di+1. So Td ∈ D for all d ∈ D. Another application of
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A.4.9 provides a family (ai)i∈N with a0 = a and T(ai) = ai+1 for all i ∈ N. Thus ai+1 = T(ai) ∈ F(di)

and the corollary is proved. �

Corollary A.4.12. Let D be a class of sets, α an ordinal and D ∈ D. Suppose that ⋃γ∈β Dγ ∈ D for
all β ∈ α and all increasing families (Dγ)γ∈β in D. Let H ∶ D → D be an increasing function. Then
there exists a unique family (Dβ)β∈α in D such that

(a) D0 = D,

(b) H(Di) = Di+1 for all i ∈ α with i + 1 < α.

(c) Di = ⋃ j<i D j if j ∈ α is limit ordinal.

Proof. Let γ ∈ α and f ∶ γ → D be an increasing function. Define G f ∈ D as follows:
If γ = 0, define G f = D. If γ = ρ + 1, define G f = H( fρ) and if γ is a non-zero limit ordinal

define G f = ⋃δ∈γ fγ.
Note that

1○. G is a function from ⋃γ∈α Funinc(γ,D) to D.

Next we show:

2○. Let β ∈ α and let f ∈ Fun(β) G-defined.

(a) f (0) = D.

(b) f (γ + 1) = H( fγ) for all γ < β with γ + 1 < β.

(c) f (γ) = ⋃δ<γ f δ if γ < β is a limit ordinal.

(d) Then f is an increasing function from β to D.

If β = 0, this is obvious. So suppose β ≠ 0 and let γ ∈ β.
Then by definition of a G-defined function, f ∣γ∈ Dom(G) and

fγ = G( f ∣γ)

In particular, fγ ∈ D and f ∣γ is an increasing function from γ to D. Thus f is a function from
β to D.

(a) f (0) = G( f ∣0) = G(0) = D.
(b) Suppose γ + 1 < β. Then

f (γ + 1) = G( f ∣γ+1) = H(( f ∣γ+1)γ) = H( f (γ))

(c) Suppose γ is a limit ordinal. Then

f (γ) = G( f ∣γ) = ⋃
δ<γ

( f ∣γ)δ = ⋃
δ<γ

f δ

(d) Let δ ∈ γ. If γ is a limit ordinal, (c) shows that f δ ⊆ fγ. So suppose γ = ρ + 1. Since f ∣γ is
increasing f δ ⊆ fρ. By (b) and since H is increasing

fρ ⊆ H( fρ) = f (ρ + 1) = f (γ) So again f δ ⊆ fγ and f is increasing. Thus also (d) holds.
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3○. G is an α-defining function.

Let β ∈ α, and f ∈ Fun(β) is G-defined. Then by (d) f is an increasing function from β to D and
so f ∈ Dom(G). Hence (3○) holds.

By (3○) and A.4.8 there exists a unique G-defined function f ∈ Fun(α). (2○) now shows that the
lemma holds for ( f i)i∈α. �

A.5 Cantor-Bernstein

Lemma A.5.1. Let A and B be sets and suppose there exist 1-1 functions f ∶ A → B and g ∶ B→ A.
Then there exists a bijection h ∶ A→ B.

Proof. Put C = g(B), D = g( f (A)) and α = g ○ f . Then α is 1-1, D = α(A), D ⊆ C ⊆ A. Since g is a
bijection from B to C, its suffices to construct a bijection from A to C.

Let E = {αk(a) ∣ a ∈ A ∖C, k ∈ N}. Define

β ∶ A→ A, a→
⎧⎪⎪
⎨
⎪⎪⎩

α(a) if a ∈ E
a of a ∈ A ∖ E

Let e ∈ E. Then by definition of β, β(e) = α(e). By definition of E, e = αk(x) for some x ∈ A∖C
and some k ∈ N. Thus β(e) = α(e) = αk+1(b) ∈ E.

Let a,b ∈ A with β(a) = β(b). Suppose first that a ∉ E. Then β(b) = β(a) = a ∉ E. Since
β(e) ∈ E for all e ∈ E, this gives b ∉ E and so a = β(b) = b. Suppose that a ∈ E. Then also b ∈ E and
so α(a) = β(a) = β(b) = α(b). Since α is 1-1, this gives a = b.

So β is 1-1. If a ∈ E, then β(a) = α(a) ∈ D ⊆ C. Suppose a ∈ A ∖ E. If x ∈ A ∖ C, then
x = α0(x) ∈ E. Thus a ∈ C and so β(a) = a ∈ C. Hence β(A) ⊆ C.

Now let c ∈ C. If c ∈ E, then c = αk(b) for some b ∈ A∖C and k ∈ N. Since c ∈ C, c ≠ b = α0(b)
and so k > 0. Then x = αk−1(b) ∈ E and β(x) = α(x) = αk(b) = c. So c ∈ β(A).

Suppose that c ∉ E. Then β(c) = c and again ∈β(A). Thus C ⊆ β(A). So β(A) = C and β is a
bijection from A to C. �

A.6 Algebraic Structure

Definition A.6.1. Let (S i)i∈I be a family of set. Define

⊛
i∈I

S i = ⨉
i∈I

S i≠∅

S i

Definition A.6.2 (Structures). Let S be set.

(a) Let I and K be sets. An I-ary operation on S with constants K is a function f such that S I ⊛ K
is contained in the domain of S .

Such an operation is called closed on S if
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f (x) ∈ S

for all x ∈ S I ⊛ K.

(b) An operation on S is an I-ary operation on S with constants K for some set I and K.

(c) A structure G on S is set of triple (I,K, f ) such that f is closed I-ary operation with constants
K on S .

(d) Let G be a structure on S . A subset T of S is called G-closed if G is a structure on T , that is

f (x) ∈ T

for all (I,K, f ) ∈ G and x ∈ T I ⊛ K.

A G-closed subsets of S is also called a G-subset of S .

Example A.6.3. (a) Let G be a group. Let G be the structure in G consisting of

f1 ∶ G ×G ⊛ ∅ → G (a,b) → ab

f2 ∶ G ⊛ ∅ → G a → a−1

f3 ∶ ∅ ⊛ {0} → G 0 → eG

f4 ∶ G ⊛ G → G (a,b) → ba

Here the set on the right side of ⊛ is the set of constants.

Then T ⊆ G is G-closed if and only if

ab = f1(a,b) ∈ T for all a,b ∈ T

a−1 = f2(a) ∈ T for all a ∈ T

eG = f3(0) ∈ T
ba = f4(a,b) ∈ T for all a ∈ T,b ∈ G

So the G-closed subsets of G are the normal subgroups of G. If we remove the function f4 from
G, the G-closed subsets of G is would be subgroups of G.

(b) Consider a group G acting on a set S . Let G be the structure on S given by

f1 ∶ S ⊛G → S , (s,g)→ gs

Let T ⊆ S . Then T is G-closed if and only if

gt = f1(t,g) ∈ T for all t ∈ T,g ∈ G
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So T is G-closed if and only if T is G-invariant.

(c) Consider a ring R. Let G be the structure on R given by

f1 ∶ R × R ⊛ ∅ → R (a,b) → a + b

f2 ∶ R ⊛ ∅ → R a → −a

f3 ∶ ∅ ⊛ {0} → R 0 → 0R

f4 ∶ R ⊛ R → R (a,b) → ba

Let I ⊆ R. Then I is G-closed if and only if

a + b = f1(a,b) ∈ T for all a,b ∈ T

−a = f2(a) ∈ T for all a ∈ T

0R = f3(0) ∈ T

ba = f4(a,b) ∈ T for all a ∈ T,b ∈ R

So the G- subsets of R are just the left ideals in R.

If we replace f4 by

f5 ∶ R × R⊛∅→ R, (a,b)→ ab

the closed subsets will be the subrings.

If we replace f4 by

f6 ∶ R⊛ R→ R, (a,b)→ ab

the G-subsets will be the right ideals in R. If we use f4 and f6, the G-closed subsets will be the
ideals

Proposition A.6.4. G be a structure on the set S and (Tq)q∈Q a non-empty family of G-closed
subsets of S . Then ⋂q∈Q Tq is G-closed.

Proof. Put T = ⋂q∈Q Tq. Let (I,K, f ) ∈ G and x = (y, k) ∈ T I⊛K. Let q ∈ Q and note that yi ∈ Tq

for all i ∈ I. Thus x ∈ T I
q⊛K and since Tq is G-closed we get f (x) ∈ Tq. Since this holds for all

q ∈ Q, f (x) ∈ T . Thus T is G-closed. �

Definition A.6.5. A family (Tq)q∈Q of sets is called directed if for each q, p ∈ Q there exists r ∈ Q
with Tq ∪ Tp ⊆ Tr.
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Proposition A.6.6. Let G be a structure on the set S and (Tq)q∈Q a non-empty family of G-closed
subsets of S . Suppose that

(i) (Tq)q∈Q is directed.

(ii) I is finite for all (I,K, f ) ∈ G.

Then ⋃q∈Q Tq is G-subset of S .

Proof. Put T = ⋃q∈Q Tq. Fix (I,K, f ) ∈ G and let x = (y, k) ∈ T I⊛K. Then for each i ∈ I there
exists qi ∈ Q with yi ∈ Tqi . Since I is finite and (Tq)q∈Q is directed we can choose q ∈ Q with Tqi ⊆ Tq

for all i ∈ I. Thus yi ∈ Tq for all i ∈ I and so x ∈ T I
q⊛K. Since Tq is G-closed we get f (x) ∈ Tq ⊆ T .

Thus T is G-closed . �

Corollary A.6.7. (a) Let G be a group and (Gq)q∈Q a non-empty family of (normal, ) subgroups of
G. Then ⋂q∈Q Tq is a (normal, )subgroup of G.

(b) Let G be a group and (Gq)q∈Q a non-empty directed family of (normal, )subgroups of G. Then
⋃q∈Q Tq is a (normal, ) subgroup of G.

(c) Let R be a ring and (Iq)q∈Q a non-empty family of (left,right, ) ideals in R. Then ⋂q∈Q Iq is an
(left,right, ) ideal in R.

(d) Let R be a ring and (Iq)q∈Q a non-empty direct family of (left,right, ) ideals in R. Then ⋃q∈Q Iq

is an (left,right, )ideal in R.

Definition A.6.8. Let G-be a structure of the set S and T a subset of G. The set

⟨T ⟩G ∶=⋂{H ∣ T ⊆ H ⊆ S ,H is G-closed}

is called the G-subset generated by T , or the G-closure of T .
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Appendix B

Categories

B.1 Definition and Examples

In this chapter we give a brief introduction to categories.

Definition B.1.1. A category Cat is a triple of (C,Hom,Com) such that

(i) C is class;

(ii) Hom is a function from C × C to the class of sets;

(iii) Com is a function with domain C × C × C such that for each A,B,C ∈ C, Com(A,B,C) is a
function

Com(A,B,C) ∶ Hom(B,C) ×Hom(A,B)→ Hom(A,C)

(iv) the elements of C are called the objects of Cat.

(v) If A and B are objects and f ∈ Hom(A,B) are then the triple ( f ,A,B) id called a morphism
from A to B and is denoted by f ∶ A→ B. (Note here that f does not have to be a function from
A to B.

(vi) For objects A,B,C and morphisms f ∶ A → B and g ∶ B → C we denote Com(A,B,C)(g, f )
by g ○ f . (Note that this is a bit ambiguous, since g ○ f also depends on A,B and C, but this
should not lead to confusion). g ○ f is called the composition of g and f . If f = ( f ,A,B) and
g = (g,B,C) we write g ○ f for (g ○ f ,A,C). Note that the notation g ○ f is unambiguous.

(vii) If f ∶ A→ B, g ∶ B→ C and h ∶ C → D are morphisms then

h ○ (g ○ f ) = (h ○ g) ○ f

(viii) For each object A there exists a morphism from A to A, denoted by idA, such that for all
morphism f ∶ A→ B and g ∶ B→ A

f ○ idA = f and idA ○ g = g

389
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Definition B.1.2. Let Cat be a category..

(a) A morphism f ∶ A→ B is called an equivalence if there exists a morphism g ∶ B→ A with

f ○ g = idB and g ○ f = idA

(b) Two objects A and B are called equivalent if there exists an equivalence f ∶ A→ B.

Remark B.1.3. Let Cat be a category.

(a) The composition of two equivalences in a category is an equivalence.

(b) Let A be an object. Then (Hom(A,A),Com(A,A,A)) is a monoid. f ∶ A→ A is an equivalence
if an only if f is invertible in Hom(A,A). So the set of equivalences from A to A form a group.

Proof. Straightforward. �

Example B.1.4. 1. Let S be the class of all sets. Let Hom(A,B) = Fun(A,B) be the set of all
functions from A → B. Let Com(A,B,C) be regular composition. Then (S ,Hom,Com) is a
category called the category of sets. A morphism in this category is an equivalence if an only if
it is a bijection.

2. The class of all groups with morphisms the group homomorphisms and the regular composition
is a category called the category of groups.

3. By Remark B.1.3 a category with one objects is essentially the same thing as a monoid.

4. Let G be a monoid. Let C = G. For a,b ∈ G define Hom(a,b) = {x ∣ xa = b}. So x ∶ a → b means
xa = b. Define composition by multiplication. If x ∶ a→ b and y ∶ b→ c are morphisms then

(yx)a = y(xa) = yb = c

and so yx is indeed morphism from a to c. Note that eG is the identity in Hom(a,a) for all a ∈ G.
So (C,Hom,Com) is category.

5. The class of all partially ordered sets with morphisms the increasing functions and regular com-
position is category.

6. Let (I,≤) be a partially ordered set. Let a,b ∈ I. If a > b define Hom(a,b) = ∅. If a ≤ b let
Hom(a,b) have a single element, which we denote by ”a→ b”. Define composition by

(b→ c) ○ (a→ b) = (a→ c).

this is well defined as partial orderings are transitive. Associativity is obvious. Since ≤ q is
reflexive a→ a is an identity for A. So (I,Hom,Com) is a category.

Conversely, suppose Cat is a category such that C is a set and ∣Hom(A,B)∣ ≤ 1 for all A,B ∈ C.
Define A ≤ B if ∣Hom(A,B)∣ = 1. Then (C,≤) is a partially ordered set.
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7. Let Cat be any category. Let D be the class of morphisms in Cat. Given morphisms f ∶ A → B
and g ∶ C → D in C define Hom(f,g) to be the sets of all pairs (a,b) where a ∶ A → C and
b ∶ B→ D are morphism such that g ○ a = b ○ f , that is the diagram:

A
a

ÐÐÐ→ C

f
×
×
×
Ö

×
×
×
Ö

g

B
b

ÐÐÐ→ D

commutes.

If h ∶ E → F is a further morphism and (c,d) ∈ Hom(g,h) define (a,b) ○ (c,d) = (a ○ c,b ○ d).
Then (a,b) ○ (c,d) ∈ Hom(f,h):

A
a

ÐÐÐ→ C
c

ÐÐÐ→ E

f
×
×
×
Ö

×
×
×
Ö

g
×
×
×
Ö

h

B
b

ÐÐÐ→ D
d

ÐÐÐ→ F

The resulting category is called the category of morphisms for Cat.

8. Let Cat be a category. The opposite category Catop is defined as follows: The objects of Catop

are the objects of Cat.

Homop(A,B) = Hom(B,A) for all objects A,B.

f ∈ Homop(A,B) will be denoted by

f ∶ A
op
→ B or f ∶ A← B.

f
op
○ g = g ○ f .

The opposite category is often also called the dual or arrow reversing category. Note that two
objects are equivalent in C if and only if they are equivalent in Cop.

B.2 Universal Objects and Products

Definition B.2.1. (a) An object I in a category is called universal ( or initial) if for each object C
of C there exists a unique morphism I → C.

(b) An object I in a category is called couniversal ( or terminal) if for each object C of C there exists
a unique morphism C → I.

Note that I is initial in C if and only if its terminal in Cop.

The initial and the terminal objects in the category of groups are the trivial groups.
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Let I be a partially ordered set. A object in CI is initial if an only if its a least element. Its
terminal if and only if its a greatest element.

Let G be a monoid and consider the category C(G). Since g ∶ e → g is the unique morphism
form e to G, e is a initial object. e is a terminal object if and only if G is a group.

Theorem B.2.2. [uniuni] Any two initial (resp. terminal) objects in a category I are equivalent.

Proof. Let A and B be initial objects. In particular, there exists f ∶ A → B and g ∶ B → A. Then
idA and g ○ f both are morphisms A → A. So by the uniqueness claim in the definition of an initial
object, idA = g ○ f , by symmetry idB = f ○ g.

Let A and B be terminal objects. Then A and B are initial objects in Cop and so equivalent in
Cop. Hence also in C. �

Definition B.2.3. Let C be a category and (Ai, i ∈ I) a family of objects in C. A product for (Ai, i ∈ I)
is an object P in C together with a family of morphisms πi ∶ P→ Ai such that any object B and family
of homomorphisms (φi ∶ B → Ai, i ∈ I) there exists a unique morphism φ ∶ B → P so that πi ○ φ = φi

for all i ∈ I. That is the diagram commutes:

P -φ
B

Ai

@
@
@@R

�
�

��	
πi φi

commutes for all i ∈ I.

Any two products of (Gi, i ∈ I) are equivalent in C. Indeed they are the terminal object in the
following category E

The objects in E are pairs (B, (φi, i ∈ I)) there B is an object and (φi ∶ B → Ai, i ∈ I) is a family
of morphism. A morphism in E from (B, (φi, i ∈ I)) to (D, (ψi, i ∈ I) is a morphism φ ∶ B→ D with
φi = ψi ○ φ for all i ∈ I.

A coproduct of a family of objects (Gi, i ∈ I) in a category C is its product in Cop. So it is an
initial object in the category E . This spells out to:

Definition B.2.4. Let C be a category and (Ai, i ∈ I) a family of objects in C. A coproduct for
(Ai, i ∈ I) is an object P in C together with a family of morphisms πi ∶ Ai → B such that for any
object B and family of homomorphisms (φi ∶ Ai → B, i ∈ I) there exists a unique morphism φ ∶ P→ B
so that φ ○ πi = φi for all i ∈ I.
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