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Chapter 1

Preface
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1.1 Sets

Naively a set S is collection of objects such that for each object x either x is contained in S
or x is not contained in S. We use the symbol ’∈’ to express containment. So x ∈ S means
that x is contained in S and x /∈ S means that x is not contained in S. Thus we have

For all objects x : x ∈ S or x /∈ S.

You might think that every collection of objects is a set. But we will now see that this
cannot be true. For this let A be the collection of all sets. Suppose that A is a set. Then A
is contained in A. This already seems like a contradiction . But a set may be contained in
itself. So we need to refine our argument. We say that a set S is nice if S is not contained
in S. Now let B be the collection of all nice sets. Suppose that B is a set. Then either B
is contained in B or B is not contained in B.

Suppose that B is contained in B. Since B is the collection of all nice sets we con-
clude that B is nice. The definition of nice now implies that B is not contained in B, a
contradiction.

Suppose that B is not contained in B. Then by definition of ’nice’, B is a nice set. But
B is the collection of all nice sets and so B is contained in B, again a contradiction.

This shows that B cannot be a set. Therefore B is a collection of objects, but is not a
set.

What kind of collections of objects are sets is studied in Set Theory.

The easiest of all sets is the empty set denoted by {} or ∅. The empty set is defined by

For all objects x : x 6∈ ∅.

So the empty set has no members.

Given an object s we can form the singleton {s}, the set whose only member is s:

For all objects x : x ∈ {s} if and only if x = s

If A and B is a set then also its union A ∪B is a set. A ∪B is defined by

For all objects x : x ∈ A ∪B if and only if x ∈ A or x ∈ B.
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The natural numbers are defined as follows:

0 := ∅

1 := 0 ∪ {0} = {0} = {∅}

2 := 1 ∪ {1} = {0, 1} = {∅, {∅}}

3 := 2 ∪ {2} = {0, 1, 2} = {∅, {∅}, {∅, {∅}}}

4 := 4 ∪ {4} = {0, 1, 2, 3} = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}
...

...
...

...
...

...
...

n+ 1 := n ∪ {n} = {0, 1, 2, 3, . . . n}

One of the axioms of set theory says that the collection of all the natural numbers

{0, 1, 2, 3, 4, . . .}

is a set. We denote this set by N.
Addition on N is defined as follows: n+ 0 := n, n+ 1 := n ∪ {n} and inductively

n+ (m+ 1) := (n+m) + 1.

Multiplication on N is defined as follows: n · 0 := n, n · 1 := n and inductively

n · (m+ 1) := (n ·m) + n.

1.2 Functions and Relations

We now introduce two important notations which we will use frequently to construct new
sets from old ones. Let I1, I2, . . . In be sets and let Φ be some formula which for given
elements i1 ∈ I1, i2 ∈ I2, . . . , in ∈ In allows you to compute a new object Φ(i1, i2, . . . , in).
Then

{Φ(i1, i2, . . . , in) | i1 ∈ I1, . . . , in ∈ In}

is the set defined by

x ∈ {Φ(i1, i2, . . . , in) | i1 ∈ I1, . . . , in ∈ In}

if and only

there exist objects i1, i2, . . . , in with i1 ∈ I1, i2 ∈ I2, . . . , in ∈ In and x = Φ(i1, i2, . . . , in) .

In Set Theory it is shown that {Φ(i1, i2, . . . , in) | i1 ∈ I1, . . . , in ∈ In} is indeed a set.
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Let P be a statement involving a variable t. Let I be set. Then

{i ∈ I | P (i)}

is the set defined by

x ∈ {i ∈ I | P (i)} if and only if x ∈ I and P is true for t = x.

Under appropriate conditions it is shown in Set Theory that {i ∈ I | P (i)} is a set.

Let a and b be objects. Then the ordered pair (a, b) is defined as (a, b) := {{a}, {a, b}}.
We will prove that

(a, b) = (c, d) if and only if a = c and b = d.

For this we first establish a simple lemma:

Lemma 1.2.1. [a=b] Let u, a, b be objects with {u, a} = {u, b}. Then a = b.

Proof. We consider the two cases a = u and a 6= u.
Suppose first that a = u. Then b ∈ {u, b} = {u, a} = {a} and so a = b.
Suppose next that a 6= u. Since a ∈ {u, a} = {u, b}, a = u or a = b. But a 6= u and so

a = b.

Proposition 1.2.2. [ordered pairs] Let a, b, c, d be objects. Then

(a, b) = (c, d) if and only if a = c and b = d.

Proof. Suppose (a, b) = (c, d). We need to show that a = c.
We will first show that a = b. Since

{a} ∈ {{a}, {a, b}} = (a, b) = (c, d) = {{c}, {c, d}},

we have
{a} = {c} or {a} = {c, d}.

In the first case a = c and in the second c = d and again a = c.
From a = c we get {{{a}, {a, b}} = {{c}, {c, d} = {{a}, {a, d}. So by 1.2.1 {a, b} = {a, d}

and applying 1.2.1 again, b = d.

If I and J are sets we define I × J := {(i, j) | i ∈ I, j ∈ J}.
A relation on I and J is a triple r = (I, J,R) where R is a subset I × J . If i ∈ I and

j ∈ J we write irj if (i, j) ∈ R.
For example let R := {(n,m) | n,m ∈ N, n ∈ m} and let < be the triple (N,N, R). Let

n,m ∈ N. Then n < m if and only if n ∈ m. Since m = {0, 1, 2, . . . ,m − 1} we see that
n < m if and only if n is one of 0, 1, 2, 3, . . . ,m− 1.

A function from I to J is a relation f = (I, J,R) on I and J such that for each i ∈ I
there exists a unique j ∈ J with (i, j) ∈ R. We denote this unique j by f(i). So for i ∈ I
and j ∈ J the following three statements are equivalent:
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ifj ⇐⇒ (i, j) ∈ R ⇐⇒ j = f(i).

We denote the function f = (I, J,R) by

f : I → J, i→ f(i).

So R = {(i, f(i)) | i ∈ I}.
For example

f : N→ N, m→ m2

denotes the function (N,N, {(m,m2) | n ∈ N})
Informally, a function f from I to J is a rule which assigns to each element i of I a

unique element f(i) in J .
A function f : I → J is called 1-1 or injective if i = k whenever i, k ∈ I with f(i) = f(k).
f is called onto or surjective if for each j ∈ I there exists i ∈ I with f(i) = j. Observe

that f is 1-1 and onto if and only if for each j ∈ J there exists a unique i ∈ I with f(i) = j.
If f : I → J and g : J → K are functions, then the composition g ◦ f of g and f is the

function from I to K defined by (g ◦ f)(i) = g(f(i)) for all i ∈ I.
idI denotes the function idI , I → T, i→ i. idI is called the identity function on I.
A function f : I → J is called bijective if there exists a function g : J → I with f◦g = idJ

and g ◦ f = idI .

Lemma 1.2.3. [char bijective] A function f : A→ B is bijective if and only if it’s 1− 1
and onto.

Proof. =⇒: Suppose first that f is bijective. Then by definition there exists a function
g : B → A with f ◦ g = idB and g ◦ f = idA. To show that f is 1-1, let a, d ∈ A with
f(a) = f(d). Then

a = idI(a) = (g ◦ f)(a) = g(f(a)) = g(f(d)) = (g ◦ f)(d) = idA(d) = d

and so f is 1-1.
To show that f is onto, let b ∈ B. Put a = g(b). Then a ∈ A and

f(a) = f(g(b)) = (f ◦ g)(b) = idB(b) = b

and so f is onto.

⇐=: Suppose that f is 1 − 1 and onto. Let b ∈ B. Since f is onto, there exists b′ ∈ A
such that

f(b′) = b

Since f is 1-1, b′ is unique. Thus we can define

g : B → A, b→ b′
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Let b ∈ B. Then

(f ◦ g)(b) = f(g(b)) = f(b′) = b = idB(b)

and so

f ◦ g = idB

Let a ∈ A and put b = f(a). Since f(a) = b we have a = b′ and so

(g ◦ f)(a) = g(f(a)) = g(b) = b′ = a = idA(a)

Thus g ◦ f = idA. Hence f is bijective.

1.2.4 (Well-Defined Functions). [well-defined]

We will often define a function from A to B as follows

(∗) f : A→ B,P(i)→ Q(i)

where P(i) and Q(i) are formulas involving a variable i which runs through some index
set I. So a better version of (*) is

(∗∗) f : A→ B,P(i)→ Q(i) for i ∈ I

(**) can be turned into a precise definition:

(∗ ∗ ∗) f = (A,B,R) where R = {(P(i),Q(i)) | i ∈ I}

We see now that in order for (*) to really define a function from A to B the following
conditions must be met

(i) [i] It must be clear from the context what the index set I is, or I must be explicitly
stated as in (**).

(ii) [ii] For each i ∈ I, P(i) is an element of A. In particular, it must the possible to
evaluate P(i) for each i in I.

(iii) [iii] For each i ∈ I, Q(i) is an element of B. In particular, it must the possible to
evaluate Q(i) for each i in I.

(iv) [iv] For each a ∈ A there exists i ∈ I with P(i) = a.

(v) [v] If i, j ∈ I with P(i) = P(j), then Q(i) = Q(j).
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If all of the above five conditions are met we say that f as in (*) is a well-defined function.
The following examples might help to understand the concept ’well-defined’: Consider

f : R→ R, x2 → 1
x

Already Condition (i) is not quite fulfilled. But let’s assume that I = R. Then (ii) is
fulfilled, but (iii) is not, since 1

0 is not defined. We fix this problem by choosing I = R \ 0.
Then (i)-(iii) are fulfilled, but (iv) is not, since a negative number is not the square of a
real number. So let’s consider

g : R+ → R, x2 → 1
x

for x ∈ R \ {0},

where R+ is the set of positive real numbers.
Now (i)-(iv) holds, but (v) fails since 12 = (−1)2 but 1

1 6=
1
−1 . Also this problem can be

overcome:

h : R+ → R, x2 → 1
x

for x ∈ R+

Now all five conditions are met and h is a well-defined function.
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Groups

2.1 Definition and Examples

Definition 2.1.1. [def:binary op] Let G be a set. A binary operation on G is a function
∗ : G × G → A, where A is some set. We denote the image of (s, t) under ∗ by s ∗ t. A
binary operation ∗ is called closed if

a ∗ b ∈ G for all a, b ∈ G

Z denotes the set of integers, so Z = {0,±1,±2,±3, . . .}. Q denotes the set of rational
numbers, so Q = { nm | n,m ∈ Z,m 6= 0}. R is the set of real numbers and C = {a + ib |
a, b ∈ R} is the set of complex numbers. We assume that the reader is familiar with the
basic properties of integers and rational, real and complex numbers.

Example 2.1.2. [ex:binary op]

(a) [1] + : Z× Z, (n,m)→ n+m is a closed binary operation.

(b) [2] � : Z \ {0} × Z \ {0} → Q, (n,m) → n
m is a binary operation on Z, but is not

closed, since for example 1� 2 = 1
2 is not contained in Z.

Definition 2.1.3. [def:group] Let ∗ be a binary operation on a set G. Then (G, ∗) is a
groupprovided that

(i) [i] a ∗ b ∈ G for all a, b ∈ G, that is ∗ is closed.

(ii) [ii] (a∗b)∗c = a∗(b∗c) for all a, b, c ∈ G (such a binary operation is called associative).

(iii) [iii] There exists e ∈ G with a ∗ e = a = e ∗ a for all a ∈ G. Such e is called an
identity an identity in G with respect to ∗.

(iv) [iv] For all a ∈ G there exists b ∈ G with a ∗ b = e = b ∗ a. Such b is called an inverse
of a in G with respect to ∗.

13
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Example 2.1.4. [ex:groups]

(a) [a] (Z,+) is a group.

(b) [b] (N,+) is not a group since the positive integers have no inverses.

(c) [c] (R,+) is a group.

(d) [d] (R, ·) is not a group, since 0 does not have an inverse.

(e) [e] Let S = {x ∈ C | ||x|| = 1} where ||a + ib|| =
√
a2 + b2. Then (S, ·) is a group.

Indeed, let x, y ∈ S. Then ||xy|| = ||x|| · ||y|| = 1 · 1 and so S is closed under multipli-
cation. Multiplication of complex numbers is associative. ||1|| = 1 and so 1 ∈ S and
(S, ·) has an identity. For x = a+ ib define x = a− ib. Then xx = a2 + b2 = ||x||2. So
if x ∈ S, then x is an inverse of x in S.

Lemma 2.1.5. [symmetric group] Let I be a set and define

Sym(I) := {f : I → I | f is bijective }

Then (Sym(I), ◦) is a group. Sym(I) is called the symmetric group on I

Proof. We need to verify the four axioms of a group.
(i): To show that ◦ is closed on Sym(I), let f, g ∈ Sym(I). Then f and g are bijective

and so by 1.2.3 f and g are 1-1 and onto. We will show that also f ◦ g is 1-1 and onto. Let
i, j ∈ I with (f ◦ g)(i) = (f ◦ g)(j). Then

f(g(i)) = f(g(j))

Since f is 1-1 this implies, g(i) = g(j). As g is 1-1, we conclude that i = j and so f ◦ g is
1-1.

Let k ∈ I. Since f is onto there exists j ∈ I with f(j) = k. Since g is onto, there exists
i ∈ I with g(i) = j. Thus

(f ◦ g)(i) = f(g(i)) = f(j) = k

and so f ◦ g is onto. We proved that f ◦ g is 1-1 and onto. Hence by 1.2.3, f ◦ g is bijective.
It follows that f ◦ g ∈ Sym(I) and so ◦ is closed on Sym(i).

(ii): To show that ◦ is associative, let f, g, h ∈ Sym(I). let i ∈ I. Then

(f ◦ (g ◦ h))(i) = f((g ◦ h)(i)) = f(g(h(i)))

and
((f ◦ g) ◦ h)(i) = (f ◦ g)(h(i)) = f(g(h(i)))

(f ◦ (g ◦ h))(i) = ((f ◦ g) ◦ h)(i)



2.1. DEFINITION AND EXAMPLES 15

for all i ∈ I. This just means that f ◦ (g ◦ h) = (f ◦ g) ◦ h and so ◦ is associative.
(iii): We have

(f ◦ idI)(i) = f(idI(i)) = f(i)

and so f = f ◦ idI . Similarly, idI ◦ f = f and so idI is an identity element in Sym(I) with
respect to ◦.

(iv): Let f ∈ Sym(I). Then f is bijective and so by definition there exists g : I → I
with f ◦ g = idI = γ ◦ f .

If follows that g is bijective, g ∈ Sym(I) and g is an inverse of f in Sym(I) with respect
to ◦.

We verified the four axioms of a group and so (Sym(I), ◦) is a group.

If n is a positive integer, then Sym(n) := Sym({1, 2, 3, . . . , n}). Elements of Sym(I) are
also called permutations of I. So a permutation of I is just a 1-1 and onto function from I
to itself.

Let π ∈ Sym(n). Then we denote π by
1 2 3 . . . n− 1 n

π(1) π(2) π(3) . . . π(n− 1) π(n)

 .

For example  1 2 3 4 5

2 1 4 5 3


denotes the permutation of π of [1 . . . 5] with π(1) = 2, π(2) = 1, π(3) = 4, π(4) = 5 and
π(5) = 3.

Almost always we will use the more convenient cycle notation:

(a1,1, a2,1, a3,1, . . . ak1,1)(a1,2, a2,2 . . . ak2,2) . . . (a1,l, a2,l . . . akl,l)

denotes the permutation π with π(ai,j) = ai+1,j and π(akj ,j) = a1,j for all 1 ≤ i < kj and
1 ≤ j ≤ l. For example

(1, 3)(2, 4)

denotes the permutation with π(1) = 3, π(3) = 1, π(2) = 4 and π(4) = 2 and

(1, 3, 5)(2, 4)(6)

denotes the permutation with
π(1) = 3, π(3) = 5, π(5) = 1, π(2) = 4, π(4) = 2 and π(6) = 6.
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Usually we skip cycles of length 1 in the cycle notation. So (1, 3, 4) = (1, 3, 4)(2). Note
that the cycle notation is not unique, for example

(1, 2, 4)(3, 5) = (2, 4, 1)(3, 5) = (4, 1, 2)(5, 3)

As a further example we compute (1, 2) ◦ (1, 3) and (1, 3) ◦ (1, 2). In the following

i
π−→ j

means that π(i) = j. We have

1
(1,3)−→ 3

(1,2)−→ 3

3
(1,3)−→ 1

(1,2)−→ 2

2
(1,3)−→ 2

(1,2)−→ 1

and so
(1, 2) ◦ (1, 3) = (1, 3, 2)

Also

1
(1,2)−→ 2

(1,3)−→ 2

2
(1,2)−→ 1

(1,3)−→ 3

3
(1,2)−→ 3

(1,3)−→ 1

and so
(1, 3) ◦ (1, 2) = (1, 2, 3)

In particular, we see that (1, 2) ◦ (2, 3) 6= (2, 3) ◦ (1, 3). We call a group abelian if
a ∗ b = b ∗ a for all a, b ∈ G. Sym(n) for n ≥ 3 is an example of a non-abelian group.

2.2 Elementary Properties of Groups

The remaining assertions are proved similarly.

Lemma 2.2.1 (Cancellation Law). [cancellation] Let G be a group and a, b, c ∈ G. Then

ab = ac

⇐⇒ b = c

⇐⇒ ba = ca .
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Proof. Suppose first that

(1) ab = ac

Since G is a group there exists an inverse d of a in G. So

(2) da = e

Multiplying (1) from the left with d gives:

d(ab) = d(ac)

Since multiplication is associative we conclude

(da)b = (da)c

Using (2) this implies

eb = ec

and since e is an identity

b = c

If b = c, then clearly ab = ac. So the first two statements are equivalent. Similarly the
last two statements are equivalent.

Lemma 2.2.2. [a-1a] Let (G, ∗) be a group.

(a) [a] G has a unique identity.

(b) [b] Each a ∈ G has a unique inverse a−1.

(c) [c] (a−1)−1 = a for all a ∈ G.

(d) [d] (ab)−1 = b−1a−1 for all a, b ∈ G.

Proof. (a) Let e and f be identities of G with respect to ∗. We need to show that e = f .
Consider hf . Since e is an identity hf = e. Since f is an identity, ef = f . Hence e = f .

(b) Let b and c be inverse of a. Then ab = e and ac = e. So ab = ac and by the
Cancellation Law 2.2.1, b = c. So a has a unique inverse.

(c) By definition of a−1 we have aa−1 = e = a−1a. Hence a is an inverse of a−1 and so
(a−1)−1 = a.

(d) We compute:

(ab)(b−1a−1) = ((ab)b−1)a−1 = (a(bb−1))a−1 = (ae)(a−1) = aa−1 = e
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and similarly

(b−1a−1)(ab) = e

So b−1a−1 is an inverse of ab, that is (ab)−1 = b−1a−1.

2.3 Subgroups

Definition 2.3.1. [defsubgroup] Let (G, ∗) and (H, ·) be groups. Then (H, ·) is called a
subgroup of (G, ∗) provided that:

(i) [i] H ⊆ G.

(ii) [ii] a ∗ b = a · b for all a, b ∈ H.

Lemma 2.3.2. [properties subgroup] Let (G, ∗) be a group and (H, ·) a subgroup of
(G, ∗). Then

(a) [a] eH = eG where eH is the identity of H with respect to · and eG is the identity of G
with respect to ∗. In particular, eG ∈ H.

(b) [b] a ∗ b ∈ H for all a, b ∈ H.

(c) [c] Let a ∈ H. Then the inverse of a in H with respect to · is the same as the inverse
of a in G with respect to ∗. In particular, a−1 ∈ H.

Proof. (a)
eH ∗ eH = eH · eH = eH = eH ∗ eG

So the Cancellation law 2.2.1 implies that eH = eG.
(b) Let a, b ∈ H. Then by definition of a subgroup a∗b = a ·b. Since · is closed, a ·b ∈ H

and so a ∗ b ∈ H.
(c) Let b be the inverse of a in H with respect to · and c the inverse of a in G with

respect to ∗. Then

a ∗ b = a · b = eH = eH = a ∗ c

So by the Cancellation Law 2.2.1 b = c.

Lemma 2.3.3. [char subgroup] Let (G, ∗) be a group and H ⊆ G. Suppose that

(i) [a] e ∈ H

(ii) [b] H is closed under multiplication, that is for all a, b ∈ H, ab ∈ H

(iii) [c] H is closed under inverses, that is for all a ∈ H, a−1 ∈ H.

Define · : H ×H → G, (a, b)→ a ∗ b. Then (H, ·) is a subgroup of (G, ∗).
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Proof. We will first verify that (H, ·) is a group.
By (ii), · is closed.
Let a, b, c ∈ H. Then since H ⊆ G, a, b, c are in H. Thus since ∗ is associative,

(a · b) · c = (a ∗ b) ∗ c = a ∗ (b ∗ c) = a · (b · c)

and so · is associative.
By (i), e ∈ H. Let h ∈ H. Then e · h = e ∗ h = h and similarly h · e = h for all h ∈ h.

So e is an identity of H with respect to ·.
Let h ∈ H. Then by (iii), h−1 ∈ H. Thus h ·h−1 = h∗h−1 = e and similarly h−1 ·h = e.

Thus h−1 is an inverse of h with respect to ·.
So (H, ·) is a group. By assumption H is a subset of G and by definition of ·, a · b = a∗ b

for all a, b ∈ H. So (H, ·) is a subgroup of (G, ∗).

Let (G, ∗) be a group and H be a subset of G. We denote the binary operation, H×H →
G, (a, b) → a ∗ b by ∗ |H . So if H fulfills the three conditions in 2.3.3 then (H, ∗ |H) is a
subgroup of (G, ∗). Slightly abusing notation, we will often say that (H, ∗) is a subgroup of
(G, ∗) or even sloppier that H is a subgroup of G.

Example 2.3.4. [ex:subgroup]

1. [1] The even integers under addition form a subgroup of the integers under addition.
Indeed we have

(i) [1i] 0 is an even integer.

(ii) [1ii] The sum of two even integers is an even integer.

(iii) [1iii] The negative of an even integer is an even integer.

So we see that the three conditions of 2.3.3 are fulfilled.

2. [2] Let n be an integer and put nZ = {nk | k ∈ Z}. So nZ consists of all the multiples
of n. Then (nZ,+) is a subgroup of (Z,+). Indeed for k, l ∈ nZ we have

(i) [2i] 0 = n · 0 ∈ nZ.

(ii) [2ii] nk + nl = n(k + l) ∈ nZ.

(iii) [2iii] −nk = n(−k) ∈ nZ

So again the three conditions of 2.3.3 are fulfilled.

3. [3] Let (G, ∗) be any group. Then (G, ∗) is a subgroup of G and also ({e}, ∗) is a
subgroup of (G, ∗).

4. [4] Let S = {x ∈ C | ||x|| = 1}. By 2.1.4(e), (S, ·) is a group and so by definition of a
subgroup, (S, ·) is a subgroup of (C \ {0}, ·).
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5. [5] Let I be a set and J a subset of I. Define

StabSym(I)(J) := {α ∈ Sym(I) | α(j) = j for all j ∈ J}

StabSym(I)(J) called the stabilizer of J in Sym(I). We claim that StabSym(I)(J) is a
subgroup of Sym(I). To verify this put H := StabSym(I)(J). Let δ ∈ Sym(I). The
definition of H implies that

δ ∈ H ⇐⇒ δ(j) = j for all j ∈ J.

Let α, β ∈ H and j ∈ J . Then

α(j) = j and β(j) = j

We compute

(i) [5i] idI(j) = j and so idI ∈ H.

(ii) [5ii] (α ◦ β)(j) = α(β(j)) = α(j) = j and so α ◦ β ∈ H.

(iii) [5iii] Applying α−1 to both sides of α(j) = j we get α−1(α(j)) = α−1(j). Since
α ◦ α−1 = idI this gives j = α−1(j) and so α−1 ∈ H.

Thus by 2.3.3 H is a subgroup of Sym(I).

6. [6] Let G be a group and I a subset of G. Define

CG(I) := {g ∈ G | g ∗ i = i ∗ g for all i ∈ I}

CG(I) is called the centralizer of I in G. We will use 2.3.3 to show that CG(I) is a
subgroup of G. let i ∈ I.

(i) [6i] e ∗ i = i = i ∗ e and so e ∈ CG(I).

(ii) [6ii] Let a, b ∈ CG(I). Then a ∗ i = i ∗ a and b ∗ i = i ∗ b and so

(a ∗ b) ∗ i = a ∗ (b ∗ i) = a ∗ (i ∗ b) = (a ∗ i) ∗ b = (i ∗ a) ∗ b = i ∗ (a ∗ b)

Hence a ∗ b ∈ CG(I).

(iii) [6iii] Let a ∈ CG(I). Then a ∗ i = i ∗ a. Multiplication with a−1 from the left and
then from the right gives

(a−1 ∗ (a ∗ i)) ∗ a−1 = (a−1 ∗ (i ∗ a)) ∗ a−1

Using the associative law a few times we get

((a−1 ∗ a) ∗ i) ∗ a−1 = a−1 ∗ (i ∗ (a ∗ a−1))
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and so
(e ∗ i) ∗ a−1 = a− ∗ (i ∗ e)

and
i ∗ a−1 = a−1 ∗ i

Hence a−1 ∈ CG(I).

Thus by 2.3.3 CG(I) is a subgroup of G.

Since the last two example have been rather abstract we now work out a couple of special
cases.

7. [7] What is H := CSym(5)({2, 5})? By definition H consists of all permutations α of
{1, 2, 3, 4, 5} which fix 2 and 5, (that is α(2) = 2 and α(5) = 5).

H = { (1)(2)(3)(4)(5) , (1, 3)(2)(4)(5) , (1, 5)(2)(3)(4) , (1, 4)(2)(3)(5) ,

(1, 3, 4)(2)(5) , (1, 4, 3)(2)(5) }

Note that H is essentially the same as Sym({1, 3, 4}).

8. [8] Let G be the set of invertible 2×2 matrices over R. Then G is a group under matrix

multiplication. Let A :=

1 0

0 −1

. What is CG({A})? Let B =

a b

c d

. We have

B ∈ CG(A)⇐⇒ AB = BA

Since

AB =

1 0

0 −1

a b

c d

 =

 a b

−c −d


and

BA =

a b

c d

1 0

0 −1

 =

a −b

c −d


So

AB = BA⇐⇒ a = a, b = −b,−c = c, d = d⇐⇒ b = c = 0

Thus

CG({A}) =


a 0

0 d

∣∣∣∣∣∣ a, d ∈ R \ {0}
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Lemma 2.3.5. [intersection] Let (Hi | i ∈ I) be a family of subgroups of G. Then
⋂
i∈I

Hi

is a subgroup of G.

Proof. Recall first that by definition of the intersection of subsets:

a ∈
⋂
i∈I

Hi ⇐⇒ a ∈ Hi for all i ∈ I

Since e ∈ Hi for all i ∈ I, e ∈
⋂
i∈I Hi.

Let a, b ∈
⋂
i∈I Hi. Then a, b ∈ Hi for all i ∈ I and so since H is a subgroup of G,

ab ∈ Hi and a−1 ∈ Hi for all i. Hence ab ∈
⋂
i∈I Hi and a−1 ∈

⋂
i∈I Hi. Thus

⋂
i∈I Hi is a

subgroup of G.

Definition 2.3.6. [def:generated] Let G be a group.

(a) [a] H ≤ G means that H is a subgroup of G.

(b) [b] Let A ⊆ G. Then

〈A〉 :=
⋂
{H | A ⊆ H ≤ G}

〈A〉 is called the subgroup of G generated by A.

Lemma 2.3.7. [generated] Let G be a group and A be a subset of I. Then

〈A〉 = {a1a2 . . . an | n ∈ N, ai ∈ A ∪A−1}

where A−1 := {a−1 | a ∈ A}, and if n = 0, a1 . . . an is defined to be e.

Proof. Let B := {a1a2 . . . an | n ∈ N, ai ∈ A ∪ A−1}. We will first show that B ⊆ 〈A〉. For
this let A ⊆ H ≤ G, n ∈ N and ai ∈ A ∪ A−1 for 1 ≤ i ≤ n. Since H is closed under
inverses, ai ∈ H. Since H is closed under multiplication, a1 . . . an ∈ H (note that this is
also true for n = 0 since e ∈ H. Thus B ≤ H for any such H. Since 〈I〉 is the intersection
of all such H’s, B ⊆ 〈I〉.

Next we will show that B is a subgroup of G. Choose n = 0 we see that e ∈ B. If
b = a1a2 . . . an ∈ B, then

b−1 = a−1
n . . . a−1

1

Moreover a−1
i ∈ A∪A−1 and so b−1 ∈ B. So B is closed under inverses. Clearly B is closed

under multiplication and so B is a subgroup of G. Taking n = 1 we see that A ⊆ 〈A〉.
Hence B is a subgroup of G containing A. Since 〈I〉 is the intersection of such subgroups,
〈I〉 ⊆ B.

From 〈I〉 ⊆ B and B ⊆ 〈I〉 we have 〈I〉 = B

Example 2.3.8. [ex:generated]
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1. [1] Let G be a group and g ∈ G. Define 〈g〉 := 〈{g}〉. We can apply 2.3.7 to A = {g}.
Then A ∪A−1 = {g, g−1}. Hence each element of 〈g〉 has the form

gg . . . g︸ ︷︷ ︸
n1-times

g−1g−1 . . . g−1︸ ︷︷ ︸
n2-times

gg . . . g︸ ︷︷ ︸
n3-times

g−1g−1 . . . g−1︸ ︷︷ ︸
n4-times

. . .

After cancelling adjacent g and g−1 we see that this equals

gg . . . g︸ ︷︷ ︸
n-times

or g−1g−1 . . . g−1︸ ︷︷ ︸
m-times

,

depending on whether there are more g or g−1-terms. We denote this element by gn and
g−m respectively. Hence

〈g〉 = {gn | n ∈ Z}

2. [2] Let g = (12345) ∈ Sym(5). We compute

g0 = (1)

g1 = (12345)

g2 = (13524)

g3 = (14253)

g4 = (15432)

g5 = (1) = g0

g6 = (12345) = g
...

g−1 = (15432) = g4

g−2 = (14253) = g3

g−3 = (13524) = g2

g−4 = (12345) = g

g−5 = (1) = g0

g−6 = (15432) = g4

...

Thus
〈(12345) = {(1), (12345), (13524), (14253), (15432)}
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2.4 Lagrange’s Theorem

Definition 2.4.1. [def:equiv rel] A relation ∼ on a set I is called an equivalence relation
provided that

(i) [i] ∼ is reflexive, that is a ∼ a for all a ∈ I.

(ii) [ii] ∼ is symmetric, that is if a, b ∈ I with a ∼ b, then b ∼ a.

(iii) [iii] ∼ is transitive, that is if a, b, c ∈ I with a ∼ b and b ∼ c, then a ∼ b.

Example 2.4.2. [ex:equiv rel]

1. [1] ≤ is reflexive and transitive but not symmetric on N. Hence ≤ is not an equivalence
relation.

2. [2] Let f : I → J be a function and for i, k ∈ I define the relation ∼ on I by i ∼ k if
f(i) = f(k). Then ∼ is an equivalence relation on I.

3. [3] Let G be a group and H a subgroup of G. Define the relation ∼H on I by a ∼H b if
a−1b ∈ H. We will verify that ∼ is an equivalence relation. For this let a, b, c ∈ G.

(i) [3i] a−1a = e ∈ H . So a ∼H a and ∼H is reflexive.
(ii) [3ii] Suppose a ∼H b. Then a−1b ∈ H and so also (a−1b)−1 ∈ H. Thus b−1a ∈ H

and b ∼H a. So ∼ is symmetric.
(iii) [3iii] Suppose a ∼H b and b ∼H c. Then a−1b ∈ H and b−1c ∈ H. Hence also

(a−1b)(b−1c) ∈ H and a−1c ∈ H. Thus a ∼H c and ∼H is transitive.

Thus ∼ is an equivalence relation.

Lemma 2.4.3. [equiv rel] Let ∼ be an equivalence relation on the set I. For a ∈ I put
[i] := {j ∈ I | i ∼ j}. [i] is called the equivalence class of ∼ determined i. Let I/ ∼ be the
set of equivalence classes of I. So

I/ ∼= {[i] | i ∈ I}

(a) [a] Each i ∈ I lies in a unique equivalence class of ∼, namely [i].

(b) [b] |I| =
∑

C∈I/∼ |C|.

Proof. (a) Let a ∈ I. Since ∼ is reflexive, a ∼ a. So a ∈ [a] and a is contained in an
equivalence class of I. Now let C be an equivalence class of ∼ with a ∈ C. We need to
show that C = [a]. By definition of an equivalence class, C = [b] for some b ∈ I. Since
a ∈ C = [b] we have b ∼ a

Let c ∈ [a]. Then a ∼ c. Since ∼ is transitive, b ∼ c and so c ∈ [b]. Hence [a] ⊆ [b].
We proved that if a ∈ [b] then [a] ⊆ [b]. Since b ∼ a and ∼ is symmetric we have a ∼ b

and b ∈ [a]. Thus [b] ⊆ [a].
Hence [b] = [a] and (a) holds.
(b) follows immediately from (a).
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Definition 2.4.4. [def:coset] Let H be a subgroup of the group G and g ∈ G. Then

gH := {gh | h ∈ H}

gH is called the (left) coset of H in G determined by g.
G/H is the set of cosets of H in H. So

G/H = {gH | g ∈ G}

Proposition 2.4.5. [prep lagrange] Let H be a subgroup of G and g ∈ G.

(a) [a] gH is the equivalence class of ∼H containing g.

(b) [b] g lies in a unique coset of H in G, namely in gH.

(c) [c] |gH| = |H|.

Proof. (a) We have

a ∈ gH ⇐⇒ a = gh for some h ∈ H ⇐⇒ g−1a = h for some h ∈ H

⇐⇒ g−1a ∈ H ⇐⇒ g ∼H a ⇐⇒ a ∈ [g]

So gH = [g].
(b) This follows from (a) and 2.4.3
(c) Define f : H → gH, h → gh. Then by definition of gH, f is onto. If gh = gh′ for

some h, h′, then h = h′ by the Cancellation Law 2.2.1. Hence f is 1-1. This gives (c).

Theorem 2.4.6 (Lagrange). [lagrange] Let H be a subgroup of the group G. Then

|G| = |G/H| · |H|

In particular, if G is finite, then the order of any subgroup of G divides the order of G.

By 2.4.5 |C| = |H| for all C ∈ G/H. By 2.4.3(b) applied to the equivalence relation ∼H
we have

|G| =
∑

C∈G/H

|C| =
∑

C∈G/H

|H| = |G/H| · |H|

Example 2.4.7. [ex:lagrange] Let G = Sym(3) and H = 〈(1, 2)〉 = {(1), (1, 2)}. Then

(1) ◦H = H = {(1), (1, 2)}

(1, 2, 3) ◦H = {(1, 2, 3) ◦ (1), (1, 2, 3) ◦ (1, 2)} = {(1, 2, 3), (1, 3)}

(1, 3, 2) ◦H = {((1, 3, 2) ◦ (1), (1, 3, 2) ◦ (1, 2)} = {(1, 3, 2), (2, 3)}
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Each element of Sym(3) lies in one of these three cosets, so this must be all the cosets. It
might also be worthwhile to point out that

H = (1, 2) ◦H

since H is a coset of H containing H. Similarly

(1, 2, 3) ◦H = (1, 3) ◦H and (2, 3) ◦H = (1, 3, 2) ◦H

Hence

|G| = 6, |G/H| = 3 and |H| = 2

So by Lagrange’s

6 = 3 · 2

Definition 2.4.8. [def:order] Let G be a group.

(a) [a] G is called cyclic if there exists g ∈ G with G = 〈g〉.

(b) [b] Let g ∈ G. Then |g| := |〈g〉|. |g| is called the order of g.

Lemma 2.4.9. [order] Let G be a group, g ∈ G and put n := |g|.

(a) [a] If n is infinite, then gm 6= e for all 0 6= m ∈ Z. Moreover, gi 6= gj for all i 6= j ∈ Z.

(b) [b] Suppose n is finite.

(a) [a] n is the smallest positive integer with gn = e.

(b) [b] Let m ∈ Z and let d be the remainder of m when divided by n. Then gm = gd.

(c) [c] 〈g〉 = {e, g, g2, . . . , gn−1} and gi 6= gj for all 0 ≤ i < j < n.

(d) [d] Let m ∈ Z. Then gm = e if and only if n divides m.

(c) [c] Suppose G is finite. Then

(a) [a] n is finite.

(b) [b] n divides |G|.
(c) [c] g|G| = e.

Proof. Suppose there exists a positive integer with gk = e. We will show that

(1) 〈g〉 = {e, g, . . . , gk−1}

For this let h ∈ 〈g〉. Then by 2.3.8(1), h = gm for some m ∈ Z. let m = kl + d with
l, d ∈ Z and 0 ≤ d < k. Then
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(2) gm = gkl+d = gklgd = (gk)lgd = elgd = gd

Thus (1) holds. It follows that

(3) n = |〈g〉| ≤ k

(a) Suppose that n is infinite. Then (3) shows that there does not exist a positive integer
k with gk = e. In other words, gk 6= e for all k ∈ Z+. Then also g−k = (gk)−1 6= e. if
i, j ∈ Z with gi = gj , then gi−j = gi(gj)−1 = e and so i− j = 0 and i = j. Thus (a) holds.

(b) Suppose now that n is finite. Then the elements

e, g, g2, . . . , gn

cannot be pairwise distinct (since otherwise 〈g〉 would contain n+ 1 distinct elements) and
so there exists 0 ≤ s < t ≤ n with gs = gt. Then gt−s = gt(gs)−1 = e. So by (3) applied to
k = t− s, n ≤ t− s. Since 0 ≤ s < t ≤ n this implies s = 0, t = n. In particular gi 6= gj for
all 0 ≤ i < j < n. Moreover, gn = e. Together with (3) we conclude that n is the smallest
positive integer with gn = e. From (1) and (2) applied with n = k we see that (b) holds.

(c) Suppose that G is finite. Since 〈g〉 ≤ G also 〈g〉 is finite. So n is finite. Since 〈g〉 is
a subgroup of G, Lagrange’s Theorem says that n = |〈g〉| divides |G|. Hence the remainder
of |G| when divided by n is 0. Thus by (b:b), g|G| = g0 = e. So also (c) is proved.

Example 2.4.10. [ex:cyclic] Let G = Sym(4). Let g ∈ Sym(4). Then by 2.4.9, |g| is
the smallest positive integer n with gn = e = (1). Moreover n divides |G| = 4! = 24 and
〈g〉 = {(1), g, g2, . . . , gn−1}. We verify this for a few particular choices of g.

(a) [a] g = (1). Then g1 = (1), |g| = 1, 1 indeed divides 24 and 〈(1)〉 = {(1)}.

(b) [b] g = (12). Then g1 6= (1) but g2 = (1) . So |g| = 2. 2 does indeed divide 24 and
〈(12)〉 = {(1), (12)}.

(c) [c] g = (123). Then g2 = (132) and g3 = (1). So |g| = 3. 2 does indeed divide 24 and
〈(123)〉 = {(1), (123), (132)}.

(d) [d] g = (1234). Then g2 = (13)(24), g3 = (1432) and g4 = (1). So |g| = 4. 4 does
indeed divide 24 and 〈(1234)〉 = {(1), (1234), (13)(24)), (1423)}.

(e) [e] g = (12)(34). Then g2 = (1). So |g| = 2. 2 does indeed divide 24 and 〈(12)(34)} =
{(1), (12)(34)}.

We will later see that the above example in some sense represents all the possible ele-
ments of Sym(4). In particular Sym(4) has elements of order 1, 2, 3 and 4, but of no other
order. So even though 6, 8, 12 and 24 are divisors of |Sym(4)|, Sym(4) does not have
elements of order 6, 8, 12 or 24.
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Definition 2.4.11. [def:product] Let G be a group, I, J ⊆ G and g ∈ G.

(a) [a] IJ := {ij | i ∈ I, j ∈ J}.

(b) [b] gI := {gi | i ∈ I} and Ig = {ig | i ∈ I}.

(c) [c] If K ≤ G and H is a union of cosets of K, then H/K := {C ∈ G/K | C ⊆ H} =
{hK | h ∈ H}

Lemma 2.4.12. [ab] Let G be a group, A,B,C subsets of G and g, h ∈ G. Then

(a) [a] A(BC) = {abc | a ∈ A, b ∈ B, c ∈ C} = (AB)C.

(b) [b] A(gh) = (Ag)h, (gB)h = g(Bh) and (gh)C = g(hC).

(c) [c] Ae = A = Ae = (Ag)g−1 = g−1(gA).

(d) [d] A = B if and only if Ag = Bg and if and only if gA = gB.

(e) [e] A ⊆ B if and only if Ag ⊆ Bg and if and only if gA ⊆ gB.

(f) [f] If A is subgroup of G, then AA = A and A−1 = A.

(g) [g] (AB)−1 = B−1A−1.

(h) [h] (gB)−1 = B−1g−1 and (Ag)−1 = g−1A−1.

Proof. (a)

A(BC) = {ad | a ∈ A, d ∈ BC} = {a(bc) | a ∈ A, b ∈ B, c ∈ C}

= {(ab)c | a ∈ A, b ∈ B, c ∈ C} = {fc | f ∈ AB, c ∈ C} = (AB)C .

(b) Observe first that

A{g} =
{
ab | a ∈ A, b ∈ {g}

}
=
{
ag | a ∈ A

}
= Ag,

and {g}{h} = {gh}. So the first statement in (b) follows from (a) applied with B = {g}
and C = {h}. The other two statements are proved similarly.

(c) Ae = {ae | a ∈ A} = {a | a ∈ A} = A. Similarly Ae = A. By (b) (Ag)g−1 =
A(gg−1) = Ae = A. Similarly g(g−1A) = A.

(d) Clearly A = B implies that Ag = Bg. If Ag = Bg, then by (b)

A = (Ag)g−1 = (Bg)g−1 = B.

So A = B if and only if Ag = Bg and (similarly) if and only if gA = gB.
(e) Suppose that A ⊆ B and let a ∈ A. Then a ∈ B and so ag ∈ Bg. Hence Ag ⊆ Bg.

If Ag ⊆ Bg we conclude that (Ag)g−1 ⊆ (Bg)g−1 and by (c), A ⊆ B. Hence A ⊆ B if and
only if Ag ⊆ Bg. Similarly, A ⊆ B if and only if gA ⊆ gB
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(f) Since a subgroup is closed under multiplication, ab ∈ A for all a, b ∈ A. So AA ⊆ A.
Also e ∈ A and so A = eA ⊆ AA. Thus AA = A.

Since A is closed under inverses, A−1 = {a−1 | a ∈ A} ⊆ A. Let a ∈ A, then a−1 ∈ A
and a = (a−1)−1. So a ∈ A−1 and A ⊆ A−1. Thus A = A−1.

(g)

(AB)−1 = {d−1 | d ∈ AB} = {(ab)−1 | a ∈ A, b ∈ B}

= {b−1a−1 | a ∈ A, b ∈ B} = {cd | c ∈ B−1, d ∈ A−1}

= B−1A−1

(h) By (g) applies with A = {g}:

(gB)−1 =
(
{g}B

)−1 = B−1{g}−1 = B−1{g−1} = B−1g−1

Similarly, (Ag)−1 = g−1A−1.

Lemma 2.4.13. [order formula] Let G be a group and H and K subgroups of G. Then

(a) [a] The map α : H/H ∩K → HK/K, h(H ∩K)→ hK is a well-defined bijection.

(b) [b] |HK| = |HK/K| · |K| = |H/H ∩K| · |K|.

(c) [c] If G is finite, then |HK| = |H|·|K|
|H∩K| .

Proof. (a) Let h, l ∈ H. Then also h−1l ∈ H. We have

hK = lK

⇐⇒ h−1l ∈ K − 2.4.5

⇐⇒ h−1l ∈ K ∩H − since h−1d ∈ H

⇐⇒ h(H ∩K) = l(H ∩K) − 2.4.5

If h(H ∩K) = l(H ∩K) this shows that hK = lH and so α is well defined. If α(h(H ∩
K)) = α(l(H ∩K) we have hK = lK and so we get h(H ∩K) = l(H ∩K). Thus α is 1-1.

Note that H = {hk | h ∈ H, k ∈ K} =
⋃
h∈H hK is a union of cosets of K and so

HK/K is defined. Moreover, HK/K = {hK | h ∈ H} = {α(h(H ∩K)) | h ∈ H}. So α is
onto and (a) holds.

(b)

|HK/K| =
⋃

C∈HK/K

|C| = |HK/K| · |K| = |H/H ∩K| · |K|

(c) By Lagrange’s |H| = |H/H ∩K| · |H ∩K|. So |H/H ∩K| = |H|
|H∩K| and (c) follows

from (b).
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2.5 Normal subgroups

Just as we have defined (left) cosets one can define right cosets:

Definition 2.5.1. [def:right coset] Let G be a group and H ≤ G and g ∈ G. Then
Hg = {hg | h ∈ H} is called a right coset of H in G.

In general a right coset of H is not a left coset as the following example shows:

Example 2.5.2. [ex:left right] Let G = Sym(3) and H = {(1), (12)} Then

(23) ◦H = {(23), (132)} and H ◦ (23) = {(23), (123)}

So (23) ◦H 6= H ◦ (23).
Suppose now thatH◦(23) is a left coset ofH. Note that by 2.4.5(b), (23) is contained in a

unique left coset of H, namely (23)◦H. Since (23) ∈ H◦(23) we conclude H◦(23) = (23)◦H.
This contradiction shows that H ◦ (23) is not a left coset.

Note that gH = Hg if and only if gHg−1 = H. We therefore introduce the following
notation:

Definition 2.5.3. [def:conjugation] Let G be a group. For a, b ∈ G put

ab := aba−1

and for I ⊆ G put
aI := aIa−1 = {ai | i ∈ I}.

The map
ih : G→ G, b→ ab

is called conjugation by a and ab is called the conjugate of b under a.

Lemma 2.5.4. [basicnormal] Let N ≤ G. Then the following statements are equivalent:

(a) [a] gN = N for all g ∈ G.

(b) [b] gN = Ng for all g ∈ G.

(c) [c] Every left coset is a right coset

(d) [d] Every left coset is contained in a right coset.

(e) [e] gN ⊆ N for all g ∈ G.

(f) [z] gn ∈ N for all g ∈ G, n ∈ N .
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Proof. Suppose (a) holds. Then gNg−1 = N for all g ∈ G. Multiplying with g from the
right we get gN = Ng.

Suppose (b) holds. Then the left coset gN equals the right coset Ng. so (c) holds.
Clearly (c) implies (d)
Suppose that (d) holds. Let g ∈ G. Then gN ⊆ Nh for some h ∈ G. Since g ∈ gN

we conclude g ∈ Nh. By 2.4.5(b), Ng is the unique right coset of N containing g and so
Ng = Nh Thus gN ⊆ Ng. Multiplying with g−1 from the right we get gNg−1 ⊆ N . Hence
(e) holds.

Clearly (e) implies (f).
Finally suppose that (f) holds. Then gNg−1 ⊆ N for all g ∈ G. This statement applied

to g−1 in place of g gives g−1Ng ⊆ N . Multiplying with g from the left and g−1 from the
right we obtain N ⊆ gNg−1. Hence N ⊆ gN and gN ⊆ N . So N = gN and (a) holds.

Definition 2.5.5. [def:normal] Let G be a group and N ≤ G. We say that N is normal
in G and write N E G if N fulfills one (and so all) of the equivalent conditions in 2.5.4

Example 2.5.6. [ex:normal]

1. [1] Let H = {(1), (12)} ≤ Sym(3). From 2.5.2 we have (2, 3) ◦ H 6= H ◦ (2, 3) and so
Sym(2) is not a normal subgroup of Sym(3).

2. [2] Let H = 〈(123)〉 = {(1), (123), (132)}. By Lagrange’s

|Sym(3)/H| = |Sym(3)|
|H|

=
6
3

= 2.

Hence H has exactly two cosets in H. One of them is

H = (1)H = {(1), (123), (132)}

Since each element of Sym(3) lies in a unique coset of H, the other coset must be

Sym(3) \H = {(12), (13), (23)}

The same argument shows that H and Sym(3) \H are the only right cosets of Sym(3).
Thus every coset is a right coset and so H is normal in Sym(3).

3. [3] Let n be a positive integer, let GLn(R) the set of invertible n × n-matrices with
coefficients in R and let SLn(R) the set of n × n-matrices with coefficients in R and
determinant 1. Note that GLn(R) is a group under matrix multiplication and SLn(R)
is a subgroup of GLn(R). GLn(R) is called a general linear group and SLn(R) a special
linear group. Let A ∈ GLn(R) and B ∈ SLn(R). Then

det(ABA−1) = det(A) det(B) det(A−1) = det(A) det(B) det(A)−1 = detB = 1

and so ABA−1 ∈ SLn(R). Thus SLn(R) is normal subgroup of GLn(R).
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4. [4] Let G be any abelian group and H ≤ G. Let h ∈ H and g ∈ G. Then

ghg−1 = gg−1h = eh = h ∈ H

and so H EG. Hence every subgroup of an abelian group is normal.

2.6 Homomorphisms and the Isomorphism Theorems

Definition 2.6.1. [def:hom] Let (G, ∗) and (H, ·) be groups and φ : G→ H a function.

(a) [a] φ is called a homomorphism of groups if

φ(a ∗ b) = φ(a) · φ(b) for all , a, b ∈ G

(b) [b] φ is called an isomorphism if φ is a bijective isomorphism.

(c) [c] We say that G and H are isomorphic and write G ∼= H if there exists an isomor-
phism ψ : G→ H.

(d) [d] If φ : G → H is a homomorphism, then kerφ = {a ∈ G | φ(a)} = eH . kerφ is
called the kernel of φ.

Example 2.6.2. [ex:hom]

1. [5] Define φ : (R,+) → (R \ {0}, ·) , r → er. (Here e = 2.718... is the Euler constant).
Since er+s = eres, φ is a homomorphism.

2. [2] Define α : (C \ {0}, ·) → (R+, ·), a + ib → a2 + b2. A direct calculation shows that
α(xy) = α(x)α(y) for all x, y ∈ C \ {0}.

3. [3] Define β : (Z,+)→ ({1,−1}, ·), n→

{
1 if n is even
−1 if n is odd

We will show that β is a homomorphism. Let n,m ∈ Z.

If n and m is even, then also n+m is even. Thus β(n) = β(m) = β(n+m) = 1 and so
β(n+m) = 1 = 1 · 1 = β(n)β(m).

If n is even and m is odd , then n+m is odd. Thus β(n) = 1, β(m) = β(n+m) = −1
and so β(n+m) = −1 = 1 · (−1) = β(n)β(m).

If n is odd and m is even , then n+m is odd. Thus β(m) = 1, β(n) = β(n+m) = −1
and so β(n+m) = −1 = −1 · 1 = β(n)β(m).

If n is odd and m is odd , then n+m is even. Thus β(n) = β(b) = −1, β(n+m) = −1
and so β(n+m) = 1 = −1 · (−1) = β(n)β(m).

Thus β is a homomorphism. ( A second way to show that β is a homomorphism is to
realize that β(n) = (−1)n.
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4. [4] Define γ : GLn(R)→ (R \ {0}, ·), A→ det(A). Since det(AB) = det(A) det(B), γ is
a homomorphism.

5. [1] Let G be a group and g ∈ G. Define α : (Z,+) → G,n → gn. Then α is a
homomorphism. Rather than giving a formal proof by induction we contend ourselves
with an informal argument. We have

gngm = g · g · g . . . g︸ ︷︷ ︸
n−times

· g · g · g . . . g︸ ︷︷ ︸
m−times

= g · g · g . . . g︸ ︷︷ ︸
(n+m)−times

= gn+m

so α(n)α(m) = gngm = gn+m = α(n+m).

Lemma 2.6.3. [basichom] Let φ : G→ H be a group homomorphism.

(a) [a] φ(eG) = eH .

(b) [b] φ(a−1) = φ(a)−1.

(c) [c] φ(ga) = φ(g)φ(a).

(d) [d] If A ≤ G then φ(A) ≤ H.

(e) [e] If B ≤ H then φ−1(B) ≤ G.

(f) [g] φ is 1-1 if and only if kerφ = {eG}.

(g) [h] If N E G, and φ is onto, φ(N) E H.

(h) [i] If M E H, φ−1(M) E G.

(i) [f] kerφ is a normal subgroup of G.

Proof. (a) We have eHφ(eG) = φ(eG) = φ(eGeG) = φ(eG)φ(eH). So by the Cancellation
Law eH = φ(eG).

(b) φ(a)φ(a−1) = φ(aa−1) = φ(eG) = eH = φ(a)φ(a)−1. So by the Cancellation Law,
φ(a−1) = φ(a)−1.

(c) φ(ga) = φ(gag−1) = φ(g)φ(a)φ(g−1)
(b)
= φ(g)φ(a)φ(g)−1 = φ(g)φ(a).

(d) Since eG ∈ A, eH = φ(eH) ∈ φ(A). Let x, y ∈ φ(A). Then x = φ(a) and y = φ(b)
for some a, b ∈ A. Since A is a subgroup of G, ab ∈ A and a−1 ∈ A. Thus

xy = φ(a)φ(b) = φ(ab) ∈ φ(A)

and
x−1 = φ(a)−1 = φ(a−1) ∈ φ(A)

So φ(A) is a subgroup of H.
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(e) Since eH ∈ B we have φ(eG) = eH ∈ B and so eG ∈ φ−1(B). Let a, c ∈ φ−1(B).
Then φ(a), φ(c) ∈ B. Thus

φ(ac) = φ(a)φ(c) ∈ B

and
φ(a−1) = φ(a)−1 ∈ B

So ac ∈ φ−1(B) and a−1 ∈ φ−1(B).
(f) Suppose first that φ is 1-1 and let a ∈ kerφ. Then

φ(a) = eH = φ(eG)

and since φ is 1-1, a = eG. So kerφ = {eG}.
Suppose next that kerφ = {eG} and let a, b ∈ G with φ(a) = φ(b). Then

φ(a−1b) = φ(a)−1φ(b) = φ(a)−1φ(a) = eH .

Hence a−1b ∈ kerφ = {eG}, a−1b = eG and so a = b. Thus φ is 1-1.
(g) By (d), φ(N) is a subgroup of H. Let m ∈ φ(N) and h ∈ H. Then m = φ(n) for

some n ∈ N and since φ is onto, h = φ(g) for some g ∈ G. Since N is normal in G, gn ∈ N .
Hence

hm = φ(g)φ(n)
(c)
= φ(gn) ∈ φ(N)

Thus φ(N)EH.
(f) By (e) φ−1(M) is a subgroup of G. Let g ∈ G and n ∈ φ−1(N). Then φ(n) ∈M and

so also φ(g)φ(m) ∈M . Thus by (c), φ(gn) ∈M and gn ∈ φ−1(M). Thus φ−1(M)EH.
(i) This follows from (h) applied to the normal subgroup M = {eH} of H.

Example 2.6.4. [ex:basic hom] By Example 2.6.2(4), det is a homomorphism. Note
that

kerφ = {A ∈ GLn(R) | det(A) = 1} = SLn(R)

So by 2.6.3(i), SLn(R) is a normal subgroup of GLn(R).

Lemma 2.6.5. [basicG/N] Let G be a group and N E G. Let T, S ∈ G/N and a, b ∈ G
with T = aN and S = bN .

(a) [a] TS ∈ G/N , namely (aN)(bN) = (ab)N .

(b) [b] T−1 ∈ G/N , namely (aN)−1 = a−1N .

(c) [e] TN = N = NT .

(d) [f] TT−1 = N = T−1T .
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(e) [c] G/N is a group under the binary operation G/N×G/N → G/N, (T, S)→ TS. The
identity element of G/N is eG/N = N .

(f) [d] The map πN : G→ G/N, g → gN is an onto homomorphism with kernel N .

Proof. (a) (aN)(bN) = a(Nb)N = a(bN)N = abNN = abN .
(b) (aN)−1 = N−1a−1 = Na−1 = a−1N .
(c) We have N = eN and so by (a) TN = (aN)(eN) = (ae)N = aN = T . Similarly

NT = T .
(d) By (a) and (b) TT−1 = (aN)(a−1)N = (aa−1)N = eN = N . Similarly T−1T = N .
(f) By G/N × G/N → G/N, (T, S) → TS is a well-defined operation on G/N . By

2.4.12(b) multiplication of subsets is associative. By (c) N is an identity element and by
(f), T−1 is an inverse of T . Thus (e) holds.

(f) We have
πN (ab) = abN = (aN)(bN) = πN (a)πN (b)

So πN is a homomorphism. Clearly πN is onto. We have

kerπN = {a ∈ G | πN (a) = eG/N} = {a ∈ G | aN = N} = {a ∈ G | a ∈ N} = N

Example 2.6.6. [ex:g/n]

(a) [1] By 2.5.6(2) 〈(1, 2, 3)〉 is a normal subgroup of Sym(3) and

Sym(3)/〈(1, 2, 3)〉 =
{
{(1), (1, 2, 3), (1, 3, 2)}, {(1, 2), (1, 3), (2, 3)}

}
The Multiplication Table is

∗ {(1), (1, 2, 3), (1, 3, 2)} {(1, 2), (1, 3), (2, 3)}

{(1), (1, 2, 3), (1, 3, 2)} {(1), (1, 2, 3), (1, 3, 2)} {(1, 2), (1, 3), (2, 3)}

{(1, 2), (1, 3), (2, 3)} {(1, 2), (1, 3), (2, 3)} {(1), (1, 2, 3), (1, 3, 2)}

Let N = 〈(1, 2, 3)〉. Then Sym(3)/N = {(1) ◦ N, (1, 2) ◦ N} and we can rewrite the
multiplication table as

∗ (1) ◦N (1, 2) ◦N

(1) ◦N (1) ◦N (1, 2) ◦N

(1, 2) ◦N (1, 2) ◦N (1) ◦N
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(b) [2] Let G be a group. Then G is a normal subgroup of G. Note that G is the only
coset of G. So G/G = {G} and so G/G is a group with just one element.

(c) [3] Let G be a group. The {e} is a normal subgroup of G. g{e} = {g} and so
G/{e} = {{g} | g ∈ G}. We have {g}{h} = {gh} and it follows that the map

G→ G/{e}, g → {g}

is an isomorphism. Hence

G ∼= G/{e}

(d) [4] Let n be an integer. Then nZ = {nm | m ∈ Z} is a subgroup of Z, with respect to
addition. Namely nZ = 〈n〉 Since nZ = −n(Z) we may assume n ≥ 0. . If n = 0, then
nZ = {0}. If n = 1 then then nZ = Z. So let’s assume n > 1. What are the the cosets
of nZ? We have

a+ nZ = b+ nZ

⇐⇒ a− b ∈ Z

⇐⇒ n | a− b

For any a ∈ Z there exists unique integers q, r with a = qn+ r and 0 ≤ r < n. So there
exists a unique integer r with 0 ≤ r < n and n | a − r. That is there exists a unique
integer r with 0 ≤ r < n and a+ nZ = r + nZ. Thus

Z/nZ = {r + nZ | 0 ≤ r < n}

and if 0 ≤ r, s < n then

r + nZ = s+ nZ ⇐⇒ r = s

In particular, |Z/nZ| = |n|.
Since Z is abelian, nZ is a normal subgroup of Z. So we obtain the quotient group
Z/nZ. The elements of Z/nZ are called the integers modulo n. For n = 3 we obtain
the following addition table, where we wrote a for a+ nZ.

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1
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Corollary 2.6.7. [normal=ker] Let B be a group and N ⊆ G. Then N is a normal
subgroup of G if and only if there exist a group H and a homomorphism φ : G → H with
kerφ = N .

Proof. Suppose first that N EG. Then by 2.6.5(d), N = kerπN .
Suppose next that there exist a group H and a homomorphism φ : G → H with

kerφ = N . Then by 2.6.3(i), kerφEG and so N EG.

Theorem 2.6.8 (First Isomorphism Theorem). [first iso] Let φ : G→ H be a homomor-
phism of groups. Then

φ : G/ kerφ→ Imφ, g kerφ→ φ(g)

is a well-defined isomorphism of groups. In particular

G/ kerφ ∼= Imφ.

Proof. Put N = kerφ and Let a, b ∈ G. Then

gN = hN

⇐⇒ g−1h ∈ N −

⇐⇒ φ(g−1h) = eH − Definition of N = kerφ

⇐⇒ φ(g)−1φ(h) = eH − φ is a homomorphism, 2.6.3(b)

⇐⇒ φ(h) = φ(g) − Multiplication with φ(g) from the left,

Cancellation law

So

(∗) gN = hN ⇐⇒ φ(g) = φ(h).

Since gN = hN implies φ(g) = φ(h) we conclude that φ is well-defined.
Let S, T ∈ G/N . Then there exists g, h ∈ N with S = gN and T = hN .
Suppose that φ(T ) = φ(S). Then

φ(g) = φ(gN) = φ(S) = φ(T ) = φ(hN) = φ(h),

and so by (*) gN = hN . Thus S = T and φ is 1-1.
Let b ∈ Imφ. Then there exists a ∈ G with b = φ(a) and so φ(aN) = φ(a) = b.

Therefore φ is onto.
Finally

φ(ST ) = φ(gNhN) = φ(ghN) = φ(gh) = φ(g)φ(h) = φ(gN)φ(hN) = φ(S)φ(T )

and so φ is a homomorphism. We proved that φ is a well-defined, 1-1 and onto homomor-
phism, that is a well-defined isomorphism.
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The First Isomorphism Theorem can be summarized in the following diagram:

G

g

Imφ

φ(g)
G/ kerφ

g kerφ

φ πN

φ

∼=

�
�

��	

@
@
@@R

�

�
�
�

�
�
��	

@
@
@
@
@
@@R

�

Example 2.6.9. [ex:iso1]

1. [1] Let G be a group and g ∈ G. Define

φ : Z→ G,m→ gm.

By Example 2.6.2(5) φ is a homomorphism from (Z,+) to G. We have

(1) Imφ = {φ(m) | m ∈ Z} = {gm | m ∈ Z} 2.3.8(2)
= 〈g〉,

and

(2) kerφ = {m ∈ Z | φ(m) = e} = {m ∈ Z | gm = e}.

If g has finite order, put n = |g|. Otherwise put n = 0. We claim that

(3) kerφ = nZ.

Indeed if |g| = ∞ then by Lemma 2.4.9(a), gm 6= e for all 0 6= m ∈ Z. Hence kerφ =
{0} = 0Z = nZ.

So suppose |g| <∞. Let m ∈ Z and let d be the remainder of m when divided by n. By
Lemma 2.4.9(b), gm = gd and gd = e if and only if d = 0. Thus m ∈ kerφ if and only if
d = 0 and so if and only if n | m and m ∈ nZ. Thus (3) holds.

By the First Isomorphism Theorem

Z/ kerφ ∼= Imφ

and so by (1) and (3).

Z/nZ ∼= 〈g〉.

In particular, if G = 〈g〉 is cyclic then G ∼= Zn. So every cyclic group is isomorphic to
(Z,+) (in the n = 0 case ) or (Z/nZ,+), n > 0.
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2. [2] Let S = {c ∈ C | ||c|| = 1}. By 2.1.4(e) , (S, ·) is a group. Define

φ : (R,+)→ (S, ·), r → e2πri

We have e2πrie2πsi = e2πri+2πsi = e2π(r+s)i and so φ is a homomorphism. Since e2πri =
cos 2πr + i sin 2πr we see that φ is onto and φ(r) = 1 if an only if r is an integer. So
kerφ = Z and the First Isomorphism Theorem tells us:

R/Z ∼= S.

3. [3] The map det : GLn(R) → (R \ {0}, ·), A → detA is an onto homomorphism with
ker det = SLn(R). This is by the First Isomorphism Theorem

GLn(R)/SLn(R) ∼= (R \ {0}, ·)

Theorem 2.6.10 (Second Isomorphism Theorem). [second iso] Let G be a group, N a
normal subgroup of G and A a subgroup of G. Then A∩N is a normal subgroup of A, AN
is a subgroup of G, N is a normal subgroup of AN and the map

A/A ∩N → AN/N, a(A ∩N)→ aN

is a well-defined isomorphism. In particular,

A/A ∩N ∼= AN/N.

Proof. By 2.3.5 A ∩ N is a subgroup of G and so also of A. Let n ∈ A ∩ N and a ∈ A.
Then an ∈ A ∩ N and so A ∩ N E A. We have (AN)(AN) = A(NA)N = AANN = AN
and (AN)−1 = A−1N−1 = NA = AN and so AN is a subgroup of G. Since N E G also
N EAN . By 2.4.13(a), the map

α : A/A ∩N → AN/N, h(A ∩N)→ hN

is a well-defined bijection.
Since

α(a(A ∩N) · b(A ∩N)) = α(ab(A ∩N)) = abN = (aN)(bN) = α(a(A ∩N))α(b(A ∩N))

α is a homomorphism. Thus α is a well-defined isomorphism.

The Second Isomorphism Theorem can be summarized in the following diagram.
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H ∩N

{e}

Example 2.6.11. [ex:iso2] Let G = GL2(R), N = SL2(R) and

A =


r 0

s 1

∣∣∣∣∣ r, s ∈ R, r 6= 0


Then A ≤ G and

B := A ∩N =


1 0

s 1

∣∣∣∣∣ r, s ∈ R, r 6= 0


Let g ∈ G and put a =

det g 0

0 1

. Then a ∈ A, det a = det g and det a−1g = 1.

So a−1g ∈ N and g = aa−1g ∈ AN . Thus AN = G and so by the second Isomorphism
Theorem

A/B = A/A ∩N ∼= AN/N = G/N
2.6.9(3)∼= (R \ {0}, ·)
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Note that 1 0

s 1

1 0

t 1

 =

 1 0

s+ t 1


and so

(R,+)→ B, s→

1 0

s 1


is an isomorphism. Thus

B ∼= (R,+).

Theorem 2.6.12 (Correspondence Theorem). [third iso] Let N be a normal subgroup of
the group G. Put

S(G,N) = {H | N ≤ H ≤ G} and S(G/N) = {F | F ≤ G/N}.

Let
π : G→ G/N, g → gN

be the natural homomorphism.

(a) [z] Let N ≤ K ≤ G. Then π(K) = K/N .

(b) [y] Let F ≤ G/N . Then π−1(F ) =
⋃
T∈F T .

(c) [e] Let N ≤ K ≤ G and g ∈ G. Then g ∈ K if and only if gN ∈ K/N .

(d) [a] The map
β : S(G,N)→ S(G/N), K → K/N

is a well-defined bijection with inverse

α : S(G/N)→ S(G,N), F → π−1(F ).

In other words:

(a) [a] If N ≤ K ≤ G, then K/N is a subgroup of G/N .

(b) [b] For each subgroup F of G/N there exists a unique subgroup K of G with N ≤ K
and F = K/N . Moreover, K = π−1(F ).

(e) [b] Let N ≤ K ≤ G. Then K EG if and only if K/N EG/N .

(f) [c] Let N ≤ H ≤ G and N ≤ K ≤ G. Then H ⊆ K if and only if H/N ⊆ K/N .
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(g) [d] (Third Isomorphism Theorem) Let N ≤ H EG. Then the map

ρ : G/H → (G/N)
/

(H/N), gH → (gN) ∗ (H/N)

is a well-defined isomorphism.

Proof. (a) π(K) = {π(k) | k ∈ K} = {kN | k ∈ N} = K/N .
(b) Let g ∈ G. Then

g ∈ π−1(F )

⇐⇒ π(g) ∈ F − definition of π−1(F )

⇐⇒ gN ∈ F − definition of π

⇐⇒ gN = T for some T ∈ F

⇐⇒ g ∈ T for some T ∈ F − T ∈ G/N, 2.4.5(b)

⇐⇒ g ∈
⋃
T∈F T − definition of union

(c) If g ∈ K then clearly gN ∈ K/N . If gN ∈ K/N then gN = kN for some k ∈ K and
so g ∈ gN = kN ⊆ K. So g ∈ K if and only if gN ∈ K/N .

(d) Let N ≤ K ≤ G and F ≤ G/N . By (a) K/N = π(K) and so by 2.6.3(d) K/N is
a subgroup of N . Hence β is well-defined. By 2.6.3(e) π−1(F ) ≤ G. Also if n ∈ N , then
π(n) = nN = N = eG/N ∈ F and so n ∈ π−1(N). Thus N ≤ π−1(N) and π−1(N) ∈
S(G,N). This shows that α is well-defined. We compute

α(β(K)) = π−1(K/N) = {g ∈ G | π(g) ∈ K/N}

= {g ∈ G | gN ∈ K/N} (e)
= {g ∈ G | g ∈ K} = K

Since π is onto we have π(π−1(F )) = F and so β(α(F )) = F . Hence α is an inverse of
β and so β is a bijection.

(e) Suppose that K E N . Then since π is onto, 2.6.3(g) implies K/N = π(K) E N .

Suppose that K/N E G/N . We have π−1(K/N) = α(β(K))
(g)
= K and so by 2.6.3(h)

K EN .
(f) Let h ∈ H. By (c) h ∈ K if and only if hN ∈ K/N and so H ⊆ K if and only if

H/N ⊆ K/N .
(g) Let

η : G/N → G/N
/
H/N, T → T ∗ (H/N)

be the natural homomorphism. Consider the composition:

η ◦ π : G→ G/N
/
H/N, g → (gN) ∗ (H/N).
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Since η and π are homomorphisms, also η ◦ π is a homomorphism. Since both η and π
are onto, η ◦ π is onto. So

(1) Im η ◦ π = G/N
/
H/N.

We now compute ker(η ◦ π):

g ∈ ker(η ◦ π)

⇐⇒ (η ◦ π)(g) = e
(G/N)

/
(H/N)

− Definition of ker(η ◦ π)

⇐⇒ η(π(g)) = e
(G/N)

/
(H/N)

− Definition of ◦

⇐⇒ π(g) ∈ ker η − Definition of ker η

⇐⇒ π(g) ∈ H/N − 2.6.5(f)

⇐⇒ gN ∈ H/N − Definition of π

⇐⇒ g ∈ H − (c)

Thus

(2) ker(η ◦ π) = H.

By the First Isomorphism Theorem 2.6.8

ρ : G/ ker(η ◦ π)→ Im(η ◦ π), g ker(η ◦ π)→ (η ◦ π)(g)

is a well-defined isomorphism. Thus by (1) and (2)

ρ : G/H → (G/N)
/

(H/N), gH → (gN) ∗ (H/N).

is a well-defined isomorphism.

Example 2.6.13. [ex:third iso] By Homework 2#1 the subgroups of Sym(3) are

(1) {1}, 〈(12)〉, 〈(13)〉, 〈(23)〉, 〈(123)〉, Sym(3).

Let A = {(1), (12)(34), (13)(24), (14)(23)} and K = {f ∈ Sym(4) | f(4) = 4} ∼= Sym(3).
By Homework 2#7 AESym(4) and the map φ : K → Sym(4)/A, h→ hA is an isomorphism.
Thus we can obtain the subgroups of Sym(4)/A by computing φ(H) for each subgroup H
of K:
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φ({1)}) = {(1)A}

=
{
{(1), (12)(34), (13)(24), (14)(23)}

}
φ(〈(12)〉) = {(1)A, (12)A}

=
{
{(1), (12)(34), (13)(24), (14)(23)},

{(12), (34), (1324), (1423)}
}

φ(〈(13)〉) = {(1)A, (13)A}

=
{
{(1), (12)(34), (13)(24), (14)(23)},

{(13), (1234), (24), (1432)}
}

φ(〈(23)〉) = {(1)A, (23)A}

=
{
{(1), (12)(34), (13)(24), (14)(23)},

{(23), (1342), (1243), (14)}
}

φ(〈(123)〉) = {(1)A, (123)A, (132)A}

=
{
{(1), (12)(34)(13)(24)(14)(23)},

{(123), (134), (243), (142)},

{(132), (234), (124), (143)}
}

φ(K) = Sym(4)/A
By 2.6.12 taking the unions over the sets of cosets in (7) gives us the subgroups of

Sym(4) containing A:

(3)

A = {(1), (12)(34), (13)(24), (14)(23)}

X1 = {(1), (12)(34), (13)(24), (14)(23), (12), (34), (1324), (1423)}

D4 = {(1), (12)(34), (13)(24), (14)(23), (13), (1234), (24), (1432)}

X2 = {(1), (12)(34), (13)(24), (14)(23), (23), (1342), (1243), (14))

Alt(4) := {(1), (12)(34), (13)(24), (14)(23), (123), (134),

(243), (142), (132), (234), (124), (143)}

Sym(4)

By Example 2.5.6, 〈(1, 2)〉 is not normal in Sym(3), while 〈(1, 2, 3)〉 is normal. Similarly
neither 〈(1, 3)〉 nor 〈(2, 3)〉 is normal in Sym(3). Thus the normal subgroups of Sym(3) are
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(10) {(1)}, Alt(3) := 〈(1, 2, 3)〉, Sym(3).

So by 2.6.12 the normal subgroups of Sym(4) containing A are

(11) A, Alt(4), Sym(4).

Example 2.6.14. [lines in the plane]

Consider the group R× R with respect to addition. Then the line

L = {(2y, y) | y ∈ R}

is a subgroup of R× R. What are the cosets of L?

a+ L = {a+ l | l ∈ L}

and so from the picture
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we see that a+ L is the line through a parallel to L.

Let P and Q be two lines parallel to L. The picture
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illustrates that P + Q is also a line parallel to L. So the set of lines parallel to L form a
group under addition, namely (R× R)/L.

Consider the map α which sends each line parallel to L to its intersection with the
x-axis. More concretely, α sends the line (x, 0) + L to x. It is easy to see that this map is
a bijection and a homomorphism so

R× R/L ∼= R

By Example 2.6.9(2), Z is a normal subgroups of R with R/Z ∼= S. The inverse image
of Z under α in R× R/L is

F := {(z, 0) + L | z ∈ Z}

By the Correspondence Theorem F corresponds to the subgroup

H :=
⋃
M∈F

M

of R× R. We have
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H =
⋃
z∈Z(z, 0) + L =

⋃
z∈Z{(z, 0) + (2y, y) | y ∈ R} = {(2y + z, y) | z ∈ Z, y ∈ R}

= {(x, y) ∈ R× R | x− 2y ∈ Z}

The difference between F = H/L and H is that H is a set of points, while F is the set
of lines parallel to L formed by these points.

From the Third Isomorphism Theorem we have

(R× R)/H ∼= (R× R)/L
/

(R× R)/H = (R× R)/L
/
F ∼= R/Z ∼= S

and so

(R× R)/H ∼= S.

Definition 2.6.15. [def:direct product] Let (Gi | i ∈ I) be a family of groups. Define

×
i∈I

Gi = {(gi)i∈I | gi ∈ Gi for all i ∈ I}

and
∗ :×

i∈I
Gi ××

i∈I
Gi →×

i∈I
Gi, ((gi)i∈I , (hi)i∈I)→ (gihi)i∈I

Then (×i∈I Gi, ∗) is called the direct product of (Gi | i ∈ I).

Lemma 2.6.16. [direct product] Let (Gi, i ∈ I) be a family of groups.

(a) [a] ×i∈I Gi is a group.

(b) [b] For each j ∈ J the group πj :×i∈I Gi → Gj , (gi)i∈I → gj is an onto homomor-
phism.

(c) [c] For j ∈ I and g ∈ Gj let ρj(g) := (hi)i∈I where

hi =

{
g if i = j

eGi if i 6= j

Then the map ρj : Gj →×i∈I Gi, g → ρj(g), is a 1-1 monomorphism

Proof. To simply notation we write (gi) for (gi)i∈I .
(a): We have

((fi) ∗ (gi)) ∗ (hi) = (figi) ∗ (hi) = ((figi)hi) = (fi(gihi)) = (fi) ∗ (gihi) = fi ∗ ((gi) ∗ (hi))
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So ’*’ is associative. Put ei = eGi . Then (ei) ∗ (gi) = (eigi) = (gi) = (giei) = (gi) ∗ (ei)
and so (ei) is an identity. Also (gi) ∗ (g−1

i ) = (gig−1
i ) = (ei) = (g−1

i ) ∗ (gi) and so each
(gi) ∈×i∈I Gi has an inverse. So (a) holds.

(b) and (c):
Let g ∈ Gj then (πj ◦ ρj)(g) = πj((hi)) = hj = g. Hence πj ◦ ρj = idgj . This implies

that πj is onto and ρj is 1-1.
πj((gi)(hi)) = πj((gihi)) = gjhj = φj((gi))φj((hi)). So πj is a homomorphism.
Let j ∈ I and g, h ∈ Gj . For x ∈ ×i∈G define xi = πi(x) and so x = (xi)i∈I . Then

ρj(g)j = gj , ρj(h)j = hj and so

(ρj(g)ρj(h))j = gh = ρj(gh)

If i 6= j, then ρj(g)i = e, ρj(g)i = e and so

(ρj(g)ρj(h))i = ee = e = ρi(gh)

Thus ρj(g)ρj(g) = ρj(gh) and ρj is a homomorphism.

Definition 2.6.17. [def:com] Let G be group and a, b ∈ G. Then

[a, b] := aba−1b−1

[a, b] is called the commutator of a and b.

Note here that this is not the same definition as on homework 2. But it is easy to see
that the results of Homework two are still correct with the new definition of [a, b].

Example 2.6.18. [iso3 and direct] Let G be a group and A and B be normal subgroups
of G such that A ∩B = {e} and 〈A,B〉 = G. Let a ∈ A and b ∈ B. Then

[a, b] = aba−1b−1 = ab · b−1

Since B EG, ab ∈ B. So B is closed under multiplication and inverses we conclude that
[a, b] = ab · b−1 ∈ B. Now

[a, b] = aba−1b−1 = a · ba−1

Since AEG, a−1 ∈ A, ba−1 ∈ A and [a, b] = a · ba−1 ∈ A. Thus

[a, b] ∈ A ∩B = {e}

and so by Homework 2, ab = ba. Thus

(∗) ab = ba for all a ∈ A, b ∈ B

Define
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Φ : A×B → G, (a, b)→ ab

Then

Φ((a, b) · (c, d)) = Φ((ac, bd)) = (ac)(bd) = a(cb)d = a(bc)d = (ab)(cd) = Φ((a, b))Φ(c, d)

Thus Φ is a homomorphism. Hence Im Φ ≤ G. Note that Φ(a, e) = ae = a and so
A ≤ Im Φ. Also Φ((e, b)) = eb = b and B ≤ Im Φ. Thus

G = 〈A,B〉 ≤ Im Φ ≤ G

and so

G = Im Φ = {Φ(a, b) | (a, b) ∈ A×B} = {ab | a ∈ A, b ∈ B} = AB

In particular Φ is onto. Let (a, b) ∈ ker Φ. Then ab = Φ((a, b)) = e and so b = a−1.
Since b ∈ B and a−1 ∈ A we have b = a−1 ∈ A ∩ B = {e}. Thus b = e, a−1 = e, a = e
and (a, b) = (e, e) = eA×B. So ker Φ = {eA×B} and by 2.6.3(f), Φ is 1-1. Thus Φ is an
isomorphism and

G ∼= A×B

Let C E A. Let π1 : A × B → A, (a, b) → a. Since π1 is onto, π−1
1 (C) E A × B. Since

π1(a, b) = a, (a, b) ∈ π−1(C) if and only if a ∈ C. So

π−1
1 (C) = C ×B

Since Φ is an isomorphism and C × B E A× B, Φ(C × B)EG. We have Φ(C × B) =
{Φ(c, b) | c ∈ C, b ∈ B} = {cb | c ∈ C, b ∈ B} = CB. Thus CB EG. By the correspondence
theorem CB/B EG/B and

G/B
/
CB/B ∼= G/CB

By the Second Isomorphism Theorem and Example 2.6.6(c):

A ∼= A/{e} = A/A ∩B ∼= AB/B = G/B

So by Homework 3 we obtain an isomorphism

α : A→ G/B, a→ a = a{e} = a(A ∩B)→ aB

Note that α(C) = {cB | c ∈ C} = C/B and so

G/B
/
CB/B ∼= A/C
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Thus by Homework 3,
A/C ∼= G/CB = AB/CB

Since Φ(C ×B) = CB this implies

A/C ∼= (A×B)/(C ×B)

Example 2.6.19. [ex:di8]

Consider the square
1 s 2s

3s4 s
.

Let D4 be the set of all permutations of {1, 2, 3, 4} which map the edges (of the square)
to edges.

For example (1, 3)(2, 4) maps the edge {1, 2} to {3, 4}, {2, 3} to {4, 1}, {3, 4} to {1, 2}
and {4, 1} to {2, 3}. So (1, 3)(2, 4) ∈ D4.

But (1, 2) maps {2, 3} to {1, 3}, which is not an edge. So (1, 2) /∈ D4.
Which permutations are in D4? We have counterclockwise rotations by 0◦, 90◦, 180◦ and

270◦:

(1), (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2),

and reflections at y = 0, x = 0, x = y and x = −y:

(1, 4)(2, 3), (1, 2)(3, 4), (2, 4), (1, 3)

Are these all the elements of D4? Let’s count the number of elements. Let π ∈ D4. Then
π(1) can be 1, 2, 3,or 4. So there are 4 choices for π(1), π(2) can be any of the two neighbors
of π(1). So there are two choices for π(2). π(3) must be the neighbor of π(2) different
from π(1). So there is only one choice for π(3). π(4) is the point different from π(1), π(2)
and π(3). So there is also only one choice for π(4). Altogether there are 4 · 2 · 1 · 1 = 8
possibilities for π. Thus |D4| = 8 and

D4 = {(1), (1234), (13)(24), (1432), (14)(23), (12)(34), (24), (13)}.

If α, β ∈ Sym(4) maps edges to edges, then also α◦β and α−1 map edges to edges. Hence
D4 is a subgroup of Sym(4). (Note that we already encountered this group in 2.6.13). D4

is called the dihedral group of degree 4.

2.7 Group Actions

Definition 2.7.1. [defgroupaction] An action of a group (G, ·) on a set S is a function

� : G× S → S, (a, s)→ a � s

such that
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(GA1) [ga1] e � s = s for all s ∈ S.

(GA2) [ga2] (a · b)s = a � (b � s) for all a, b ∈ G, s ∈ S.

A G-set is a set S together with an action of G on S.

We will often just write, as for a � s. So the two axioms of a group action then read
es = e and (ab)s = a(bs).

Example 2.7.2. [ex:action]

1. [1] Note the similarity between the definition of a group action and the definition of a
group. In particular, we see that the the binary operation of a group · : G × G → G
defines an action of G on G, called the action by left multiplication. Indeed since e is an
identity, 2.7.1((GA1)) holds and since · is associative 2.7.1((GA2)) holds.

2. [2] The function
G×G(a, s)→ a ∗ s := sa

is not an action (unless G is abelian) since (ab) ∗ s = sab = (a ∗ s)b = (b ∗ a)s. For this
reason we define the action of G on G by right multiplication as

·r : G×G, (a, s)→ sa−1.

Then (ab) ·r s = s(ab)−1 = sb−1a−1 = a ·r (b ·r s) and ·r is indeed an action.

3. [5] G acts on G via conjugation:

G×G→ G, (a, g)→ ag

Indeed eg = g and (ab)g = a(bg).

4. [9] Consider the map

� : G×G→ G, (a, g)→ a2g

Then a � (b � g) = a2(b2g) = (a2b2)g and (ab) � g = (ab)2g. So � is an action if and only
if a2b2 = (ab)2 for all a, b ∈ G, and so if and only if G is abelian.

5. [6] Let I be a set. Then Sym(I) acts on I via

Sym(I)× I → I, (π, i)→ π(i)

Indeed, idI(i) = i for all i in I and α(β(i)) = (αβ)(i) for all α, β ∈ Sym(I), i ∈ I.
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6. [8] Let G be a group and H ≤ G. Then G acts on G/H via left multiplication:

� : G×G/H → G/H, (a, T )→ aT

To see that this is well-defined we need to show that aT ∈ G/H for all a ∈ G and
T ∈ G/H. Note that T = cH for some c ∈ G. So aT = a(cH) = (ac)H ∈ G/H.

By 2.4.12(c) eT = T and so (GA1) holds. Let a, b ∈ G then by 2.4.12(b), a(bT ) = (ab)T
and so (GA2) holds. Hence � is an action.

The next lemma shows that an action of G on S can also be thought of as a homomor-
phism from G to Sym(S).

Lemma 2.7.3. [action=hom] Let G be a group and S a set.

(a) [a] Let � : G× S → S an action of G on S. For g ∈ G define

φ�g : S → S, s→ gs

Then φ�g ∈ Sym(S) and the map

Φ� : G→ Sym(S), g → φ�g

is a homomorphism.

Φ� is called the homomorphism corresponding to �,

(b) [b] Let Φ : G→ Sym(S) be a homomorphism. Define

�Φ : G× S → S, (g, s)→ Φ(g)(s)

then �Φ is an action of G on S.

�Φ is called the action corresponding to Φ

(c) [c] Φ�Φ = Φ and �Φ� = �.

Proof. To simplify notation we just write φg for φ�g. (a) (GA1) into φe(s) = gs = s and so
φe = idS . By (GA2)

(φg ◦ φh)(s) = g(hs) = (gh)s = φgh(s)

and so

φg ◦ φh = φgh

Hence Φ is a homomorphism. We still need to verify that φg ∈ Sym(S). But this follows
from

idS = φe = φgg−1 = φg ◦ φg−1
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and so also φg−1 ◦ φg = idS . So φg−1 is an inverse for φg and φg ∈ Sym(S).
(b) Since Φ is a homomorphism Φ(e) = eSym(S) = idS and so e�Φs = Φ(e)(s) = idS(s) =

s. So (GA1) holds. Also

(gh) �Φ s = Φ(gh)(s) = (Φ(g) ◦ Φ(h))(s) = Φ(g)(Φ(h)(s)) = γ �Φ (h �Φ s)

and so also (GA2) holds.
(c) g �Φ� s = Φ�(g)(s) = g � s and
Φ�Φ(g)(s) = g �Φ s = Φ(g)(s).

Example 2.7.4. [ex:action ii]

1. [3] The homomorphism corresponding to the action � : Sym(I)× I → I, (π, i)→ π(i) is

idSym(I) : Sym(I)→ I, π → π

Indeed, for π ∈ Sym(I) and i ∈ I we have

Φ�(π)(i) = φ�π(i) = π � i = π(i)

Thus Φ�(π) = π.

2. [1] Let G be a group. By 2.7.2(1) · : G × G → G, (a, g) → ag is an action of G on G.
We have

φ·a : G→ G, g → ag

and

Φ· : G→ Sym(G), a→ φa

By 2.7.3(a) Φ· is a homomorphism. If Φ·(a) = idG, then

a = ae = φ·a(e) = Φ·(a)(e) = idG(e) = e

and so Φ· is 1-1. Thus G ∼= Φ·(G). In particular, G is isomorphic to a subgroup of a
symmetric group. This is known as Cayley’s Theorem.

Example 2.7.5. [ex:cayley] Define Zn = Z/nZ. Let G = Z2 × Z2. Put

a = (0, 0), b = (1, 0), c = (0, 1) and d = (1, 1).

Then G = {a, b, c, d}. Write φg for φ+
g . For each g ∈ G we will compute φg.

For x ∈ G we have φa(x) = (0, 0) + x = x. So

φa = idG = (a)(b)(c)(d).
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φb(a) = b+ a = (1, 0) + (0, 0) = (1, 0) = b.
φb(b) = b+ b = (1, 0) + (1, 0) = (0, 0) = a.
φb(c) = b+ c = (1, 0) + (0, 1) = (1, 1) = d.
φb(d) = b+ d = (1, 0) + (1, 1) = (0, 1) = c.
Thus

φb = (a, b)(c, d).

φc(a) = c+ a = (0, 1) + (0, 0) = (0, 1) = c.
φc(c) = c+ c = (0, 1) + (0, 1) = (0, 0) = a.
φc(b) = c+ b = (0, 1) + (1, 0) = (1, 1) = d.
φc(d) = c+ d = (0, 1) + (1, 1) = (1, 0) = b.
Thus

φc = (a, c)(b, d).

φd(a) = c+ a = (1, 1) + (0, 0) = (1, 1) = d.
φd(d) = d+ d = (1, 1) + (1, 1) = (0, 0) = a.
φd(b) = d+ b = (1, 1) + (1, 0) = (0, 1) = c.
φd(c) = d+ c = (1, 1) + (0, 1) = (1, 0) = b.
Thus

φd = (a, d)(b, c).

(We could also have computed φd as follows: Since d = a+ c, φc = φa ◦φb = (a, b)(c, d)◦
(a, c)(b, d) = (a, d)(b, c))

Hence
(Z2 × Z2,+) ∼= ({(a), (a, b)(c, d), (a, c)(b, d), (a, d)(b, c)}, ◦).

Using 1, 2, 3, 4 in place of a, b, c, d we conclude

(Z2 × Z2,+) ∼= ({(1), (12)(34), (13)(24), (14)(23)}, ◦)

Definition 2.7.6. [def:stabilizer] Let � be an action of the group G on the set I, H ⊆ G,
g ∈ G, s ∈ S and T ⊆ S. Then

(a) [a] Stab�H(T ) = {h ∈ H | ht = t for all t ∈ T} and Stab�H(s) = {h ∈ H | hs = s}.
Stab�H(T ) is called the stabilizer of T in H with respect to �.

(b) [b] FixT (H) = {t ∈ T | ht = t for all h ∈ H} and FixT (g) = {t ∈ T | gt = t}. The
elements of FixT (H) are called the fixed-points of H in T with respect to �.

(c) [c] g � T = {gt | t ∈ T} and H � s = {hs | h ∈ H}.

(d) [d] � is called a faithful action if StabG(S) = {e}. In this case we also say that S is a
faithful G-set.

(e) [e] T is called H-invariant (with respect to �) if hT = T for all h ∈ H. T is called
g-invariant if gT = T .
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(f) [f] NH(T ) = {h ∈ H | hT = T}. NH(T ) is called the normalizer of T in H.

(g) [g] G� := Im Φ�.

We will often just write StabH(S) in place of Stab�H(S), Hs for H � s and gT for g � T ,
but of course only if it’s clear from the context what the underlying action � is.

Example 2.7.7. [ex:stab] Let � be the action of Sym(5) on {1, 2, 3, 4, 5}. Then

StabSym(5)(4) = {π ∈ Sym(5) | π(4) = 4} = Sym({1, 2, 3, 5}) ∼= Sym(4)

StabSym(5)({2, 4}) = {π ∈ Sym(5) | π(2) = 2, π(3) = 2} = Sym({1, 3, 5}) ∼= Sym(3)

and
NSym(5)({1, 3, 5}) = {π ∈ Sym(5) | π({1, 3, 5}) = {1, 3, 5} }
∼= Sym({1, 3, 5})× Sym({2, 4}) ∼= Sym(3)× Sym(2)

Lemma 2.7.8. [basic action] Let � be an action of the group G on the set S.

(a) [a] Stab�G(S) = ker Φ� EG.

(b) [b] G/Stab�G(S) ∼= G� ≤ Sym(S).

(c) [c] S is a faithful G-set if and only if Φ� is 1− 1. So if S is faithful, G is isomorphic
to a subgroup of Sym(S).

(d) [d] Let H ≤ G and T an H-invariant subset of S, then

� |H,T : H × T → T, (h, t)→ ht

is an action of H on T .

(e) [e] Let P(S) be the set of subsets of S. Then

�P : G× P(S)→ P(S), (g, T )→ g � T

is an action of G on P(S).

Proof. (a) Let g ∈ G, then

g ∈ StabG(S)

⇐⇒ gs = s for all g ∈ G −definition of Stab

⇐⇒ φ�g(s) = s for all g ∈ G −definition of φ�g

⇐⇒ φ�(g) = idS −definition of idS

⇐⇒ Φ�(g) = idS −definition of Φ�

⇐⇒ g ∈ ker Φ� −definition of ker
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(b) Since G� = Im Φ�, this follows from (a) and the First Isomorphism Theorem.
(c) By 2.6.3(f), Φ� is 1-1 if and only if ker Φ� = {e} and so by (a) if and only if

StabG(S) = {e}, that is if and only if G acts faithfully on I.
(d) See Homework 4#6.
(e) See Homework 4#5.

Lemma 2.7.9. [stabilizers are subgroups] Let � : G × S → S be a group action. Let
s ∈ S and T ⊆ S.

(a) [a] Stab�G(T ) is a subgroup of G.

(b) [b] Stab�G(s) is a subgroup of G.

(c) [c] N�G(T ) is a subgroup of G.

Proof. (a) et = t for all t ∈ T and so e ∈ StabG(T ). Let g, h ∈ StabG(T ). Then gt = t and
ht = t for all t ∈ T . Thus

(gh)t
(GA2)

= g(ht) = gt = t

and so gh ∈ StabG(T ).
From gt = t we get g−1(gt) = g−1t. So by (GA2), (g−1g)t = g−1t and et = g−1t. Thus

by (GA1), t = g−1t. Hence g−1 ∈ StabG(T ). 2.3.3 now implies that StabG(T ) is a subgroup
of G.

(b) Note that StabG(s) = StabG({s}). Thus (b) follows from (a).
(c) We have

N�G(T ) = {g ∈ G | gT = T} = Stab�PG (T ).

(Note that on the left hand side T is treated as a subset of the G-set S, and in the right
hand side, T is treated as an element of the G-set P(S). Thus (c) follows from (b).

Example 2.7.10. [ex:stabilizer] Let G be a group, let � be the action of G on G by
conjugation and let A ⊆ G. Let g ∈ G. Then

g ∈ Stab�G(A)

⇐⇒ g � a = a for all a ∈ A

⇐⇒ ga = a for all a ∈ A

⇐⇒ gag−1 = a for all a ∈ A

⇐⇒ ga = ag for all a ∈ A

⇐⇒ g ∈ CG(A)

So Stab�G(A) = CG(A) and by 2.7.9(a), CG(A) ≤ G, but of course we already proved this
in 2.3.4(6).
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Define Z(G) = {g ∈ G | ga = ag for all a ∈ A}. Then

Z(G) = CG(G) = Stab�G(G)

and so by 2.7.8(a), Z(G)EG.

Lemma 2.7.11. [orbits] Let � : G× S → S be a group action. Define a relation ∼� on S
by s ∼� t if and only t = as for some a ∈ G. Then ∼� is an equivalence relation on S.

Proof. We write ∼ for ∼�. Since s = es, s ∼ s and ∼ is reflexive.
If t = as, then

a−1t = a−1(as) = (a−1a)s = es = s

Thus s ∼ t implies t ∼ s and ∼ is symmetric.
Finally if s = at and t = br then s = at = a(br) = (ab)r. Thus s ∼ t and t ∼ r implies

s ∼ r and ∼ is reflexive.

Definition 2.7.12. [def:orbits] Let � : G× S → S be a group action.

(a) [a] The equivalence classes of ∼� are called the orbits of G on S with respect to �.

(b) [b] The set of orbits is denoted by S/�G.

(c) [c] We say that G acts transitively on S if G has exactly one orbit on S.

Lemma 2.7.13. [easy orbits] Let G be a group acting on a set S and let s ∈ S. Then the
orbit of G on S containing s is Gs = {gs | g ∈ G}.

Proof. The orbit of G containing s is the equivalence class of ∼� containing s. So

[s] = {t ∈ S | s ∼� t} = {t ∈ S | t = gs for some g ∈ G} = Gs

Example 2.7.14. [ex:orbits] Let (G, ·) be group and H ≤ G.

1. [1] What are the orbits for the action · |H of H on G by left multiplication? Let h ∈ G.
Then

H · g = {h · g | h ∈ H} = Hg

So the orbits of H on G with respect to the action by left multiplication are the right
cosets H of G in H.
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2. [2] What are the orbits for the action ·r |H of H on G by right multiplication? Let
h ∈ G. Then

H ·r g = {h ·r g | h ∈ H} = {g · h−1 | h ∈ H} = {g · h | h ∈ H} = gH

So the orbits of H on G with respect to the action by right multiplication are the left
cosets H in G

3. [3] What are the orbits for the action ·c of G on G by conjugation? Let a ∈ G. Then

G ·c a = {g ·c a | g ∈ G} = {ga | g ∈ G}

Define Ga := {ga | g ∈ G}. Ga is called the conjugacy class of G containing a. So the
conjugacy classes are just the orbits of G on G with respect to the action of G on G by
conjugation. Two elements of G lie in the same conjugacy class if and only if they are
conjugate.

As an example consider G = Sym(n).

By Proposition B on Homework 2 two elements of Sym(n) are conjugate if and only
if they have the same cycle type. So a conjugacy class of Sym(n) consists of all the
elements of a fixed cycle type. For n = 4 we obtain the following conjugacy classes:

type conjugacy class C |C|

14 {(1)} 1

1221 {(12), (13), (14), (23), (24), (34)} 6

1131 {(123), (132), (124), (142), (134), (143), (234), (243)} 8

22 (12)(34), (13)(24), (14)(23)} 3

41 {(1234), (1243), (1324), (1342), (1423), (1432)} 6

4. [4] Let I be a non-empty set and i ∈ I. Then

Sym(I)i = {π(i) | π ∈ Sym(I)} = I.

Indeed, let j ∈ I. If i = j, then j = idI(i). If i 6= j, put π = (i, j), then j = π(i). So
j ∈ Sym(I)i and Sym(I)(i) = I.

Hence Sym(I) acts transitively on I.

5. [5] The action � : G×G/H → G/H, (g, T )→ gT of G on G/H be left multiplication is
transitive. Indeed,

G �H = {gH | g ∈ G} = G/H.
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Lemma 2.7.15. [trivial orbits] Let � be an action of the group G on the non-empty set
S. Then the following are equivalent:

(a) [a] For each s, t ∈ S there exists g ∈ G with t = gs.

(b) [b] There exists s ∈ S with S = Gs.

(c) [c] G acts transitively on S.

Proof. (a) =⇒ (b): Since S is non-empty there exists s ∈ S. Let t ∈ S. Then by (a),
t = gs for some g ∈ T . Thus t ∈ Gs and so S ⊆ Gs ⊆ S. Therefore S = Gs.

(b) =⇒ (c): By 2.7.13 Gs is an orbit for G on S. By assumption S = Gs and so S is
an orbit. Since distinct orbits are disjoint, S is the only orbit of G on S. So by definition,
G is transitive.

(c) =⇒ (a): Since G has a unique orbit on S, [s] = [t]. So t ∈ [s] = Gs and t = gs for
some g ∈ G.

We will show that any transitive action of G is isomorphic to the action on the cosets
of a suitable subgroup. But first we need to define isomorphism for G-sets.

Definition 2.7.16. [def:g-equi] Let G be a group, � an action of G on the set S, 4 an
action of G on the set T and α : S → T a function.

(a) [a] α is called G-equivariant if

α(g � s) = g4α(s)

for all g ∈ G and s ∈ S.

(b) [b] α is called a G-isomorphism if α is G-equivariant and a bijection.

(c) [c] If there exists a G-isomorphism from S to T we say that � is isomorphic to 4 or
that S and T are isomorphic G-sets and write

� ∼= 4, (S, �) ∼= (T,4), or S ∼=G T

Lemma 2.7.17. [transorbits] Let S be a G-set, s ∈ S and put H = StabG(s).

(a) [a] The map
α : G/H → S, aH → as

is well-defined, G-equivariant and 1-1.

(b) [b] α is a G-isomorphism if and only if G acts transitively on S

(c) [c] Stab(as) = aH for all a ∈ G.

(d) [d] |Gs| = |G/StabG(s)|.
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Proof. (a) Let a, b ∈ G. Then

aH = bH

⇐⇒ a−1b ∈ H

⇐⇒ a−1b ∈ StabG(s)

⇐⇒ (a−1b)s = s

⇐⇒ a−1(bs) = s

⇐⇒ bs = as

The forward direction shows that α is well-defined and the backward direction shows
that α is 1-1.

Also
α(a(bH)) = α((ab)H) = (ab)s = a(bs) = aα(bH)

So α is G-equivariant.
(b) By (a) α is a G-isomorphism if and only if α is onto. We have

Imα = {α(gH) | g ∈ G} = {gs | g ∈ G} = Gs

So α is onto if and only if S = Gs and so if and only if G is transitive on S.
(c)

g ∈ StabG(as)⇐⇒ g(as) = as⇐⇒ a−1gas = s⇐⇒ a−1ga ∈ H ⇐⇒ g ∈ aHa−1 = aH

(d) Since α is 1-1, |G/H| = | Imα| = |Gs|.

Lemma 2.7.18. [char g-sets] Suppose that G acts transitively on the sets S and T . Let
s ∈ S and t ∈ T . Then S and T are G-isomorphic if only if StabG(s) and StabG(t) are
conjugate in G.

Proof. Suppose first that α : S → T is a G-isomorphism. Let g ∈ G. Since α is 1-1 and
G-equivariant:

gs = s⇐⇒ α(gs) = α(s)⇐⇒ gα(s) = α(s)

So StabG(s) = StabG(α(s)). Since G is transitive on T , there exists g ∈ G with gα(s) =
t. Thus

StabG(t) = StabG(gα(s)) = gStabG(α(s)) = gStabG(s).

Conversely suppose that gStabG(s) = StabG(t) for some g ∈ G. Then StabG(gs) =
gStabG(s) = StabG(t) and so by 2.7.17(b) applied to S and to T :

S ∼= G/StabG(gs) = G/StabG(t) ∼= T.
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Example 2.7.19. [ex:iso g-sets]

1. [1] Let (G, ·) be a group. Is the action · of G on G by left multiplication isomorphic to
the action ·c of G on G by conjugation?

We have G · e = Ge = G and so · is a transitive action.

We have G·ce = Ge = {ge | g ∈ G} = {e} and so ·c is not transitive unless G = {e}. So
for G 6= {e}, · and ·c are not isomorphic.

2. [2] Let (G, ·) be a group. Is the action · of G on G by left multiplication isomorphic to
the action ·r of G on G by right multiplication?

We have G·re = {g·re | g ∈ G} = {eg−1 | g ∈ G} = {g−1 | g ∈ G} = G. So both · and
·r are transitive. Thus we can use 2.7.18 to decide whether · and ·r are isomorphic. We
have

Stab·G(e) = {g ∈ G | ge = e} = {e}

and
Stab·rG(e){g ∈ G | g·re = e} = {g ∈ G | eg−1 = e} = {e}

So the stabilizers are equal and thus conjugate. Hence by 2.7.18 · and ·r are isomorphic.
We can use 2.7.17(b) we find a concrete isomorphism. Namely we obtain the following
isomorphism of G-sets:

G/{e} → (G, ·), g{e} → ge = g

and
G/{e} → (G, ·r), g{e} → g·re = eg−1 = g−1

So the map

(G, ·)→ (G, ·r), g → g−1

is a G-isomorphism viewed from G viewed as a G-set under left multiplication and to G
viewed as a G-set under right multiplication.

3. [3] Let T = {(12)(34), (14)(23), (13)(24)}. By Homework 4#7 Sym(4) acts on T by
conjugation that is

� : Sym(4)× T → T, (π, t)→ πt

is a well-defined action of Sym(4). We will first show that Sym(4) is transitive on T . We
have

(1)(12)(34) = (12)(34), (13)(12)(34) = (32)(14) = (14)(23) and (14)(12)(34) = (42)(31) = (13)(24)
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Thus by 2.7.15(b) Sym(4) acts transitively on T .

Let π ∈ Sym(4). Then π ∈ StabSym(4)((13)(24)) if and only if π(13)(24) = (13)(24), that
is if and only if (π(1)π(3))(π(2)π(4)) = (13)(24). This is the case if and only if either
π({1, 3}) = {1, 3} and π({2, 4}) = {2, 4} or π({1, 3}) = {2, 4} and π({2, 4}) = {1, 3}.

Now this holds if and only if whenever {i, j} is not an edge of the square
1 s 2s

3s4 s
then

π({i, j}) is not a edge. Finally this is the case if and only if whenever {i, j} is an edge
of the square then π({i, j}) is also an edge. Thus

StabSym(4)((13)(24)) = D4

Since Sym(4) is transitive on T we conclude from 2.7.17(b) that

T ∼=Sym(4) Sym(4)/D4

Definition 2.7.20. [def:rep] Let G be a group and S a G-set. A subset R ⊆ S is called a
set of representatives for the orbits of G on S, provided that R contains exactly one element
from each G-orbit. Note that this holds if and only if the map R → S/G, r → Gr is a
bijection.

An orbit O of G on S is called trivial if |O| = 1.

Lemma 2.7.21. [trivial trivial] Let G be a group acting on a set S and let s ∈ S. Then
the following are equivalent.

(a) [a] s ∈ FixS(G).

(b) [b] G = StabG(s).

(c) [c] Gs = {s}.

(d) [d] {s} is an orbit for G on S.

(e) [e] s is contained in any set of representatives for S/G.

(f) [f] |F/StabG(s)| = 1.

Proof. (a)-(c) all just say that gs = s for all g ∈ G. The orbit containing s is Gs. So (c)
and (d) are equivalent.

If {s} is an orbit clearly any set of representative for S/G must contain s. Now suppose
{s} is not an orbit. Then there exists t ∈ Gs with s 6= t. Let R be a set of representatives
for S/G with t ∈ R. Then s /∈ R. Thus (d) and (e) are equivalent.

Clearly (b) and (f) are equivalent and the lemma is proved.



2.7. GROUP ACTIONS 63

Proposition 2.7.22 (Orbit Equation). [orbiteq] Let G be a group, S a G-set and R ⊆ S
be a set of representatives for S/G.

|S| =
∑
r∈R
|G/StabG(r)| = |FixS(G)|+

∑
r∈R\FixS(G)

|G/StabG(r)|.

Proof. Since the orbits are the equivalence classes of an equivalence relation S is the disjoint
union of its orbit. Thus

|S| =
∑

O∈S/G

|O| =
∑
r∈R
|Gr|

By 2.7.17d, |Gr| = |G/StabG(r)| and so

|S| =
∑
r∈R
|G/StabG(r)|

If r ∈ FixS(G), then StabG(r) = G and |G/StabG(r)| = 1. So

|S| =
∑

r∈FixS(G) |G/StabG(r)|+
∑

r∈R\FixS(G) |G/StabG(r)|

=
∑

r∈FixS(G) 1 +
∑

r∈R\FixS(G) |G/StabG(r)|

= |FixS(G)|+
∑

r∈R\FixS(G) |G/StabG(r)|

.

Example 2.7.23. [ex:orbits equation] Let P = P({1, 2, 3, 4}) be the set of subsets of
{1, 2, 3, 4}. Then D4 acts on P. We first compute the orbits: Sets of size 0: one orbit:

∅

Sets of size 1: one orbit:

{1}, {2}, {3}.{4}

Sets of size 2: two orbits

edges: {1, 2}, {2, 3}, {3, 4}, {4, 1}

non edges {1, 3}, {3, 4}

Sets of size 3: one orbit:

{1, 2, 3}, {1, 3, 4}, {1, 2, 4}, {1, 2, 3}

Sets of size 4: one orbit:
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{1, 2, 3, 4}

So

R = {∅, {1}, {1, 2}, {1, 3}, {2, 3, 4}, {1, 2, 3, 4}}

is a set of representatives for the orbits of D4 on P.
We compute

StabD4(∅) = D4

StabD4({1}) = {(1), (24)}

StabD4({1, 2}) = {(1), (12)(34)}

StabD4({13)}) = {(1), (24), (13), (13)(24)}

StabD4({2, 3, 4}) = {(1), (24)}

StabD4({1, 2, 3, 4}) = D4

The orders of these groups are 8, 2, 2, 4, 2, 2, 8. So the orbit equation says:

|P| = 8
8 + 8

2 + 8
2 + 8

4 + 8
2 + 8

8

16 = 1 + 4 + 4 + 2 + 4 + 1

Note that each of the summands is the length of one of the orbits.

Corollary 2.7.24 (Class Equation). [classeq] Let G be a group and R be a set of repre-
sentatives for the conjugacy classes of G. Then Fix·cG(G) = Z(G) and

|G| =
∑
r∈R
|G/CG(r)| = |Z(G)|+

∑
r∈R\Z(G)

|G/CG(r)|

Proof. Recall that ·c is the action of G on G be conjugation. Then

Fix·cG(G) = {g ∈ G | hg = g for all h ∈ G} = {g ∈ G | hg = gh for all h ∈ G} = Z(G)

and by 2.7.10 Stab·cG(a) = CG(a). So the Class Equation follows from the orbit equation.

Example 2.7.25. [ex:class equation] By Proposition B in the Solutions to Homework
2, Sym(3) has exactly three conjugacy classes corresponding to the cycle types 13, 1121 and
31. So R = {(1), (13), (123)} is a set of representatives for the conjugacy class of Sym(3).
A straight forward calculation shows that

CSym(3)((1)) = Sym(3), CSym(3)((13)) = {(1), (13)}, CSym(3)((123)) = {(1), (123), (132)}



2.7. GROUP ACTIONS 65

The orders of these centralizers are

6, 2, 3.

Sym(3) has order 6 and since |G/CG(r)| = |G|
|CG(r)| the class equation now says

6 =
6
6

+
6
2

+
6
3

= 1 + 2 + 3

The Orbit Equation becomes particularly powerful if G is a finite p-group:

Definition 2.7.26. [def:p-group] Let G be a finite group and p a prime. Then G is called
a p-group provided that |G| = pk for some k ∈ N.

Proposition 2.7.27 (Fixed-Point Equation). [Smodp] Let p be a prime and P a p-group
acting on a finite set S. Then

|S| ≡ |FixS(P )| (mod p).

Proof. Let R be a set of representatives for the orbits of P on S and r ∈ R\FixS(P ). Then
StabP (r) � P . By Lagrange’s Theorem |P/StabP (r)| divides |P |. Since |P | is a power of p
and |P/StabP (r)| 6= 1 we get

|P/StabP (r)| ≡ 0 (mod p).

So by the Orbit Equation 2.7.22

|S| = |FixS(P )|+
∑

r∈R\FixS(P )

|P/StabP (r)| ≡ |FixS(P ) (mod p)

Example 2.7.28. [ex:fixed-point eq] Consider the action of D4 on the set P of subsets
of {1, 2, 3, 4}. By Example 2.7.23 FixP(D4) = {∅, {1, 2, 3, 4}} . Thus

|P| = 8 and |FixP(D4)| = 2

So by the Fixed-Point Equation

8 ≡ 2 (mod 2)

Lemma 2.7.29. [CenterP] Let P be a p-group with P 6= {e}. Then Z(P ) 6= {e}.

Proof. Consider the action ·c of G on G by conjugation. By 2.7.27

|P | ≡ |Fix·cP (P )| (mod p).

Since |P | = pk and |P | 6= 1 we have p | |P | and so |P | ≡ 0 (mod p). By 2.7.24 Fix·cP (P ) =
Z(P ) and so

0 ≡ Z(G) (mod p).

Hence |Z(P )| 6= 1 and Z(P ) 6= {e}.
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2.8 Sylow p-subgroup

Hypothesis 2.8.1. [hyp:sylow] Throughout this section G is a finite group and p a prime.

Definition 2.8.2. [def:sylow] A p-subgroup of G is a subgroup P ≤ G which is a p-group.
A Sylow p-subgroup S of G is a maximal p-subgroup of G. That is S is a p-subgroup of G
if and if S ≤ Q for some p-subgroup Q, then S = Q. Let Sylp(G) be the set of all Sylow
p-subgroups of G.

Definition 2.8.3. [def:p-part] Let n be a positive integer and p a prime. Then np is the
p-part of n, that is the largest power of p dividing n. np′ is the p′-part of n, that is the
largest integer m with m | n and p - m. So np = pk for some k ∈ N, n = npnp′ and p - np′.

Lemma 2.8.4. [easy sylow]

(a) [a] If P is a p-subgroup of G, then |P | ≤ |G|p.

(b) [c] Let P be a p-subgroup of G and S is a p-subgroup such that |S| is maximal with
respect to P ≤ S. Then S ∈ Sylp(G). In particular, P is contained in a Sylow p-
subgroup of G.

(c) [d] G has at least one Sylow p-subgroup of G.

(d) [b] If S ≤ G with |S| = |G|p, then S is a Sylow p-subgroup of G.

Proof. (a) Since P is a p-group, |P | = pn for some n ∈ N. By Lagrange’s Theorem, |P |
divides |G| and so pn divides pkl. Since p - l we conclude that n ≤ k and so |P | = pn ≤ pk.

(b) Let Q be a p-subgroup of G with S ≤ Q. Then also P ≤ Q and so by maximality of
|S|, |Q| ≤ |S|. Since S ≤ Q we get S = Q and so S ∈ Sylp(G).

(c) By (d), {e} is contained in a Sylow p-subgroup. So G must have a Sylow p-subgroup.
(d) By (a) |S| ≥ |P | for all p-subgroups of G. Thus by (b) applied with P = {e},

S ∈ Sylp(G).

Example 2.8.5. [ex:sylow]

(a) [3] |Sym(3)| = 3! = 6 = 2 · 3. 〈(1, 2)〉 has order 2 and so by 2.8.4(d), 〈(1, 2)〉 is a Sylow
2-subgroup of Sym(3).

〈(1, 2, 3)〉 has order 3 and so is a Sylow 3-subgroup of Sym(3).

(b) [4] |Sym(4)| = 4! = 24 = 23 · 3. D4 is a subgroup of order eight of Sym(4) and so D4

is a Sylow 2-subgroup of Sym(4).

〈(1, 2, 3)〉 is a Sylow 3-subgroup of Sym(4).

(c) [5] |Sym(5)| = 5! = 5 · 24 = 23 · 3 · 5. So D4 is a Sylow 2-subgroup of Sym(5), 〈(1, 2, 3)〉
is a Sylow 3-subgroup of Sym(5) and 〈(1, 2, 3, 4, 5)〉 is a Sylow 5-subgroup of Sym(5).



2.8. SYLOW P -SUBGROUP 67

Lemma 2.8.6. [n choose pk] Let n and k be positive integers and p a prime. Suppose
that pk divides n. Then

(
n
pk

)
p

= np
pk

.

Proof. Since (
n

pk

)
=

n

pk

pk−1∏
i=1

n− i
pk − i

it suffices to show that the p-parts of n − i and pk − i are identical for all 1 ≤ i < pk − 1.
Let 0 < i < pk. Then pk divides n and pk and so divides neither n− i nor pk − i. So the p
parts of n− i and pk− i are at most pk−1. The lemma now follows since (n− i)− (pk− i) =
(m− 1)pk.

Lemma 2.8.7. [inner aut] Let G be a group and a ∈ G. Then the map

ia : G→ G, g → ag

is an isomorphism of G. In particular if H ≤ G, then aH ≤ H and H ∼= aH.

Proof. Note that ia = φ·cg , where ·c is the action of G in G by conjugation. Thus by 2.7.3,
ia is a bijection. We have

ia(gh) = a(gh)a−1 = (aga−1)(aha−1) = ia(g) ib(h)

and so ia is a homomorphism.
Since aH = ia(H) we conclude from 2.6.3(d) that aH ≤ G. The restriction H → aH,h→

ah is a 1-1 and onto homomorphism and so H ∼= aH.

Theorem 2.8.8. [sylow of order gp] Let G be a finite group, p a prime and k non-
negative integer such that pk divides |G|. Then there exists a subgroup S of G with |S| = pk.
In particular there exists P ≤ G with |P | = |G|p and P ∈ Sylp(G).

Proof. Let P be the set of all subsets of G of size pk. If X ∈ P and g ∈ G, then by the
Cancellation law |gX| = |X| = pk. So gX ∈ P. Thus

� : G× P → P, (g,X)→ gX

is an action of G on P. Let R be a set of representatives for the orbits of G on P. By the
orbit equation,

|P| =
∑
R∈R
|G/Stab�G(R)|.

Let |G|p = pk+r. By 2.8.6 |P| =
(|G|
pk

)
p

= pr. Hence there exists R ∈ R such that pr+1

does not divide |G/Stab�G(R)|. Put S = Stab�G(R). Then pr+1 does not divide |G||S| and so
pk divides S. Let r ∈ R. Then Sr ⊆ R. Since |R| = pk we conclude that |S| = |Sr| ≤ pk.
Thus |S| = pk.



68 CHAPTER 2. GROUPS

In the case |G|p = pk we see that there exists a subgroup P of G with |P | = |G|p. Hence
by 2.8.4(c), P ∈ Sylp(G).

Lemma 2.8.9. [Products of subgroups] Let A and B be subgroups of G.

(a) [a] AB is a subgroup of G if and only if AB = BA.

(b) [b] If A ≤ NG(B) then AB is a subgroup of G.

Proof. (a) Suppose AB is a subgroup of G. Then AB = (BA)−1 = B−1A−1 = BA.
Suppose next that AB = BA. Then e = ee ∈ AB, (AB)(AB) = A(BA)A = A(AB)B =

(AA)(BB) = AB and (AB)−1 = B−1A−1 = BA = AB. So AB is a subgroup of G.
(b) If A ≤ NG(B) then aB = Ba for all a ∈ A. Thus AB = BA and AB is a subgroup

by (a).

Theorem 2.8.10. [Sylow’s Theorem] Let G be a finite group and p a prime. Let sp =
|Sylp(G)| be the number of Sylow p-subgroups of G.

(a) [a] Any two Sylow p-subgroups of G are conjugate in G. In other words G acts transi-
tively on Sylp(G) and if P,Q ∈ Sylp(G) then Q = gP for some g ∈ G.

(b) [b] Let S ≤ G. Then S is a Sylow p-subgroup of G if and only if |S| = |G|p.

(c) [c] Let S ∈ Sylp(G). Then sp = |G/NG(S)|.

(d) [d] sp divides |G|p′ and sp ≡ 1 (mod p).

Proof. We will first show that

1◦. [0] G acts on Sylp(G) by conjugation, that is the map

� : G× Sylp(G)→ Sylp(G), (g, S)→ gS

is a well-defined action of G on Sylp(G).

Since G acts on G by conjugation G also acts on P(G) be conjugation. So we only need
to show that Sylp(G) is G-invariant with respect to conjugation, that is if S ∈ Sylp(G) and
g ∈ G we need to show that gS ∈ Sylp(G). By 2.8.7 |gS| = |S| and thus gS is a p-subgroup
of G. Let T be a p-subgroup of G with gS ≤ T . Then S ≤ g−1

T and so by maximality of S,
S = g−1

T and gS = T . Thus gS is indeed a maximal p-subgroup of G. So (1◦) holds.

Let P ∈ Sylp(G) and put S = GP := {gP | g ∈ G}. So S is the set of Sylow p-subgroups
conjugate to P .

2◦. [1] P has a unique fixed-point on S and on Sylp(G), namely P itself.

Indeed, suppose that P fixes Q ∈ Sylp(G). Then gQ = Q for all g ∈ P , P ≤ NG(Q) and
by 2.8.9(b) PQ is a subgroup of G. Now |PQ| = |P ||Q|

|P∩Q| and so PQ is a p-group. Hence by
maximality of P and Q, P = PQ = Q.
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3◦. [2] |S| ≡ 1 (mod p).

By (2◦) Fix�S(P ) = 1 and by Fixed-Point Formula 2.7.27 |S| ≡ |FixS(G)| (mod p). So
(3◦) holds.

4◦. [3] S = Sylp(G).

Let Q ∈ Sylp(G). Then by The Fixed-point equation and (3◦): |FixS(Q)| ≡ |S| ≡ 1
(mod p). Hence Q has a fixed-point T ∈ S. By (3◦) applied to Q, this fixed-point is Q. So
Q = T ∈ S and S = Sylp(G)

We are now able to prove (a)-(d).

(a) By (a) S is the unique orbit for G on Sylp(G). So G acts transitively on Sylp(G)
and (a) holds

(b): By 2.8.4(d), any subgroup of order |G|p is a Sylow p-subgroup. Let S ∈ Sylp(G).
By 2.8.8 there exists P ∈ Sylp(G) with |P | = |G|p. By (a) S = gP for some g ∈ G and so
|S| = |P | = |G|p and (b) holds.

(c) Note that NG(P ) = {g ∈ G | gP = Stab�G(P )}. So by 2.7.17(d) that

sp = |Sylp(G)| = |S| = |G/NG(P )|.
(d) By (3◦) and (4◦) |Sylp(G)| = |S| ≡ 1 (mod p). Note that P ≤ NG(P ). So by (c),

(b) and Lagrange’s

|G|p′ =
|G|
|G|p

=
|G|
|P |

=
|G|

|NG(P )|
|NG(P )|
|P |

= |G/NG(P )| · |NG(P )/P | = sp · |NG(P )/P |

Hence sp divides |G|p′ .

Example 2.8.11. [ex:sylow thm] Let G be a group of order 21. Then s7 has to divide
21
7 = 3 and is 1 mod 7. Thus s7 = 1 and G has exactly one Sylow 7-subgroup S7. Let
g ∈ G. Then gS7 also is a Sylow 7-subgroup and so gS7 = S7 and S7 EG. s3 divides 21

3 = 7
and s3 = 1 or s3 = 7.

Case 1. [s3=1] s3 = 1.

Then G has a unique Sylow 3-subgroup S3 and S3 E G. Note that |S3 ∩ S7| divides
|S3| = 3 and |S7| = 7. Thus |S3 ∩ S7| = 1 and S7 ∩ S3 = {e}. Hence

|S3S7| =
|S3||S7|
|S3 ∩ S7|

=
21
1

= 21 = |G|

and so G = S7S3 = 〈S7, S3〉. Hence Example 2.6.18

G ∼= S3 × S7

By Homework 5#1, S3
∼= Z3 and S7

∼= Z7. Thus

G ∼= Z3 × Z7
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Case 2. [s7=1] s3 = 1.

Let S3 ∈ Syl3(G). Then |G/NG(S3)| = 7 and so NG(S3) = S3. Since |A ∩ B| = 1 for
distinct Sylow 3-subgroup A and B of G we conclude that

StabG(Syl3(G)) =
⋂

A∈Syl3(G)

NG(A) =
⋂

A∈Syl3(G)

A = {e}.

Hence G acts faithfully on Syl3(G) and since |Syl3(G)| = 7 G is isomorphic to a subgroup
of Sym(7). So let’s assume that G ≤ Sym(Z7). Since Sym(7) has a unique conjugacy class
of elements of order 7, namely the seven cycles, we may assume that S7 = 〈(0123456)〉.

By the Fixed-Point Equation,

7 = |Z7| ≡ |FixZ7(S3)| (mod 3)

and so S3 a fixed-point on Z7. With out loss S3 fixes 0. Let t ∈ S3 and put s = (0123456) ∈
S7. Then ts ∈ S7 and so ts = si for some 1 ≤ i ≤ 6. Let j ∈ Z7. Note that s(a) = a+ 1 for
all a ∈ Z7 and so s2(a) = a+ 2 and sj(a) = a+ j. Thus

t(j) = t(sj(0)) = (tsjt−1t)(0) = sij(t(0)) = sij(0) = ij

It follows that t2(j) = i2j and t3(j) = i3j . Since t ∈ S3 and |S3| = 3 we have t3 = idZ7 .
Thus i3j = j for all j ∈ Z7 and so i3 ≡ 1 mod 7. We have 13 = 1, 23 = 8 ≡ 1 (mod 7) ,
33 = 27 ≡ −1 (mod 7). Also (−x)3 = −x3 and so 43 ≡ (−3)3 = −(−1) = 1, 53 = (−2)3 =
−1 and 63 = (−1)3 = −1. Thus i = 1, 2 or 4. Since i unique determines t and |S3| has
order three S3 consists of the three permutations, ti : j → i3j for i ∈ {1, 2, 4}. Note that S7

consists of the permutations sk : j → j + k for k ∈ Z7. As above we have S7S3 = G. Note
that (sk ◦ ti)(j) = sk(ti(j)) = sk(ij) = ij + k. Thus G consists of all the permutations

Z7 → Z9, j → ij + k for i ∈ {1, 2, 4}, k ∈ Z7}

So up to isomorphism there exists a unique group of order 21 with seven Sylow 3-
subgroups.

Also observe that t2 = (124)(365) and so

G = 〈(0123456), (124)(365)〉
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Rings

3.1 Definitions and Examples

Definition 3.1.1. [def:ring] A ring is a tuple (R,+, ·) such that R is a set, + and · are
binary operation on R and

(Ax 1) [1] + is closed, that is a+ b ∈ R for all a, b ∈ R.

(Ax 2) [2] a+ (b+ c) = (a+ b) + c for all a, b, c ∈ R.

(Ax 3) [3] a+ b = b+ a for all a, b ∈ R.

(Ax 4) [4] There exists an element 0R ∈ R such that a+ 0R = a = 0R + a for all a ∈ R.

(Ax 5) [5] For each a ∈ R there exists an element b ∈ R with a+ b = 0R.

(Ax 6) [6] · is closed, that is a · b ∈ R for all a, b ∈ R.

(Ax 7) [7] a(bc) = (ab)c for all a, b, c ∈ R.

(Ax 8) [8] a(b+ c) = (ab) + (ac) and (a+ b)c = (ac) + (bc) for all a, b, c ∈ R.

Note the first five axioms just say that (R,+) is an abelian group.

Definition 3.1.2. [def:commutative] Let R be a ring. Then R is called commutative if

(Ax 9) [9] ab = ba for all a, b ∈ R.

Definition 3.1.3. [def:identity] Let R be a ring. An element 1R in R is called an identity
in R if

(Ax 10) [10] 1R · a = a = a · 1R for all a ∈ R.

Example 3.1.4. [ex:rings]

1. [1] (Z,+, ·), (Q,+, ·) (R,+, ·) and (C,+, ·) all are commutative rings with identity.

71
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2. [1.1] (2Z,+, ·) is a commutative ring without an identity.

3. [1.5] Let A be an abelian group and End(A) the set of endomorphisms of A, (that is the
homomorphisms from A to A). Define (α+β)(a) = α(a)+β(a) and (α◦β)(a) = α(β(a)).
We will verify that the 7 axioms of a ring hold for (End(A),+, ◦).
Let α, β, γ ∈ End(A) and a, b ∈ A. Then

(Ax 1):

(α+ β)(a+ b) = α(a+ b) + β(a+ b) = α(a) + α(b) + β(a) + β(b)and
(α+ β)(a) + (α+ β(b)) = α(a) + β(a) + α(b) + β(b)

Since
A

is abelian we conclude that α+ β is a homomorphism and so + is closed

(Ax 2) (α+ (β+γ))(a) = α(a) + (β(a) +γ(a)) = (α(a) +β(a)) +γ(a) = ((α+β) +γ)(a).

(Ax 3) (α+ β)(a) = α(a) + β(a) = β(a) + α(a) = (β + α)(a).

(Ax 4) Let τ0 : A → A, a → 0A. Then τ0 ∈ End(A) and (τ0 + α)(a) = τ0(a) + α(a) =
0A + α(a). Hence τ0 is an additive identity.

(Ax 5) Define δ : A→ A, a→ −α(a). Since A is abelian, −(a+ b) = (−a) + (−b) and so
δ is a homomorphism. Also (δ+α)(a) = δ(a) +α(a) = α(a) +α(a) = 0A = τ0(a) and so
δ is an additive inverse of α in End(A).

(Ax 6) By Homework 3#1, α ◦ β is a homomorphism.

(Ax 7) This holds since composition of functions is associative.

(Ax 8) (α ◦ (β + γ))(a) = α((β + γ)(a)) = α(β(a) + γ(a)) = α(β(a) + α(γ(a)) =
(α ◦ β)(a) + (α ◦ γ)(a) = ((α ◦ β) + (α ◦ γ))(a)

and ((α + β) ◦ γ)(a) = (α + β)(γ(a)) = α(γ(a)) + β(γ(a)) = (α ◦ γ)(a) + (β ◦ γ)(a) =
((α ◦ γ) + (α ◦ γ))(a).

So End(A) is indeed a ring, called the endomorphism ring of A.

4. [2] Let R be any ring and n ∈ Z+. Let Mnn(R) be the set of all n × n matrices with
coefficients in R. So each A ∈ Mnn(R) is a tuple (aij)ij with aij ∈ R for all 1 ≤ i, j ≤ n.
Define

(aij)ij + (bij)ij = (aij + bij)ij

(aij)ij · (bjk)jk = (
n∑
j=1

aijbjk)ik

Straightforward calculation show that (Mnn(R),+, ·) is a ring.
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Mnn(R) is usually not commutative. Suppose for example that a ∈ R with a2 6= 0.

a 0

0 0

 ·
0 a

0 0

 =

0 a2

0 0

 6=
0 0

0 0

 =

0 a

0 0

 ·
a 0

0 0


5. [7] Let (A,+) be any abelian group. Define ·0 : A → A, (a, b) → 0R. Then (A,+, ·0) is

a ring, called the ring on A with zero-multiplication.

6. [3] Rings with one element:

+ 0

0 0

· 0

0 0

7. [4] Rings with two elements :

+ 0 1

0 0 1

1 1 0

· 0 1

0 0 0

1 0 n

Here n ∈ {0, 1 for n = 0 we have a ring with zero-multiplication For n = 1 this is
(Z/2Z,+, ·).

8. [5] Rings with three elements:

+ 0 1 −1

0 0 1 −1

1 1 −1 0

−1 −1 0 1

· 0 1 −1

0 0 0 0

1 0 n −n

−1 0 −n n

Indeed if we define n = 1 · 1, then (−1) · 1 = −(1 · 1) = −n. Here n ∈ {0, 1,−1}. For
n = 0 this is a ring with zero multiplication. For n = 1 this is (Z/3Z,+, ·). For n = −1
we see that −1 is an identity and the ring for n = −1 is isomorphic to the ring with
n = 1 case under the bijection 0↔ 0, 1↔ −1.

9. [6] Direct products are rings. Indeed, let (Ri, i ∈ I) be a family of rings. For (fi), (gi) ∈
×i∈I Ri

(fi) + (gi) = (fi + gi) and(fi) · (gi) = (fi · gi)
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With this definition
⊕

i∈I Ri is a ring. If each Ri has an identity 1i, then (1i)i∈I is an
identity of×i∈I Ri.

If each Ri is commutative then×i∈I Ri has an identity.

3.2 Elementary Properties of Rings

Definition 3.2.1. [def:negative] Let R be a ring and a ∈ A. Then −a denotes the unique
element of R with

a+ (−a) = 0R

−a is called the negative or additive inverse of a. For a, b ∈ R, define a− b := a+ (−b).

Proposition 3.2.2. [basic ring] Let R be a ring and a, b, c ∈ R. Then

1. [a] −0R = 0R

2. [b] a · 0R = 0R = 0R · a.

3. [c] a · (−b) = −(ab) = (−a) · b.

4. [d] −(−a) = a.

5. [e] a− a = 0R.

6. [f] −(a+ b) = (−a) + (−b).

7. [g] −(a− b) = (−a) + b = b− a.

8. [h] (−a) · (−b) = ab.

9. [i] a · (b− c) = ab− ac and (a− b) · c = ac− bc.

If R has an identity

10. [j] (−1R) · a = −a = a · (−1R).

Proof. (1) By (Ax 4) 0R + 0R = 0R and so by Definition 3.2.1 −0R = 0R.

(2) We compute

0R + a · 0R
(Ax 4)

= a · 0R
(Ax 4)

= a · (0R + 0R)
(Ax 8)

= a · 0R + a · 0R
and so then by Cancellation Law for groups 2.2.1 a · 0R = 0R. Similarly 0R · a = 0R.

(3) We have

ab+ a · (−b) (Ax 8)
= a · (b+ (−b)) Def −b= a · 0R

(2)
= 0R

So by Definition 3.2.1 −(ab) = a · (−b).
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(4) This holds by 2.2.2(c).

(5) a− a = a+ (−a) = 0R.

(6) By 2.2.2 −(a + b) = (−b) + (−a) and since addition is commutative, −(a + b) =
(−a) + (−b).

and so by definition −(a+ b) = (−a) + (−b).

(7)

−(a− b) = −(a+ (−b)) (6)
= (−a) + (−(−b)) (4)

= (−a) + b
(Ax 3)

= b+ (−a) = b− a
.

(8) (−a) · (−b) (3)
= a · (−(−b)) (4)

= a · b.

(9) a · (b−c) Def b-c= a · (b+(−c)) (Ax 8)
= a · b+a · (−c) (3)

= ab+(−(ac)) Def ab–ac= ab−ac.
Similarly (a− b) · c = ab− ac.

(10) a+ ((−1R) · a) Ax 10= 1R · a+ (−1R) · a (Ax 8)
= (1R + (−1R)) · a Def –= 0R · a

(2)
= 0R

Hence by Definition 3.2.1 −a = (−1F ) · a. Similarly −a = a · (−1F ).

Definition 3.2.3. [def:unit] Let R be a ring with identity.

(a) [a] u in R is called a unit in R if there exists v ∈ R with

uv = vu = 1R

In this case u is also called invertible and v is called an inverse of u.

(b) [b] R is called an integral domain provided that R is commutative, 1R 6= 0R and
whenever a, b ∈ R with ab = 0R, then a = 0R or b = 0R.

(c) [c] R is called a division ring if 1R 6= 0R and every non-zero element is a unit.

(d) [d] A field is a commutative division ring.

Example 3.2.4. [ex:integral domain]

1. [1] Consider (Z,+, ·). The units in Z are 1 and −1. So Z is not a field, but it is an
integral domain.

2. [2] All non-zero elements in Q are invertible. So Q is a field. Q is also an integral
domain.
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3. [3] For which n ∈ Z+ is Zn an integral domain? If n = 1, then Z1 is a zero ring and so
not an integral domain. So suppose n ≥ 2. Then 1 6= 0 in Zn and thus Zn is an integral
domain if and only,

n | kl =⇒ n | k or n | l

and so if and only if n is a prime.

We will show below that every finite integral domain is a field. It follows that Zp is a
field for all primes p.

Proposition 3.2.5. [field is int] Every field is an integral domain.

Proof. Let F be a field. Then by definition, F is a commutative ring with identity. Let
a, b ∈ F with ab = 0F . Suppose that a 6= 0F . Then by the definition of a field, a is a unit.
Thus a has an inverse a−1. So we compute

0F = a−1 · 0F = a−1 · (a · b) = (a−1 · a) · b = 1F · b = b

So b = 0F .
We proved that if a 6= 0F , then b = 0F . So a = 0F or b = 0F and F is an integral

domain.

Proposition 3.2.6 (Cancellation Law). [int and cancel] Let R be an integral domain and
a, b, c ∈ R with a 6= 0R. Then

ab = ac

⇐⇒ b = c

⇐⇒ ba = ca

Proof. Suppose ab = ac. Then ab − ac = 0R and so a(b − c) = 0R. Since a 6= 0R and R is
an integral domain, b− c = 0R. Thus b = c.

If b = c then clearly ab = ac.
Finally since R is commutative, ba = ca implies ab = ac.

Theorem 3.2.7. [finite int] Every finite integral domain is a field.

Proof. Let R be a finite integral domain. Then R is a commutative ring with identity
and 1R 6= 0R. So it remains to show that every a ∈ R with a 6= 0R is a unit. Set
S := {ar | r ∈ R}. Define

α : R→ S, r → ar

By the Cancellation Law 3.2.6 α is 1-1. By definition of S, α it is also onto. So α is a
bijection and |R| = |S|. Since S ⊆ R and R is finite we conclude R = S. In particular,
1R ∈ S and so there exists b ∈ R with 1R = ab. Since R is commutative we also have
ba = 1R and so a is a unit.
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3.3 Homomorphism and Ideals

Definition 3.3.1. [ringhom] Let (R,+, ·) and (S,4,�) be rings.

(a) [a] A ring homomorphism from R to S is a map φ : R→ S such that for all a, b ∈ R

φ(a+ b) = φ(a)4φ(b) and φ(a · b) = φ(a) �φ(b)

(b) [b] A bijective ring homomorphism is called a ring isomorphism.

(c) [d] If there exists a ring isomorphism from R to S, we say that R and S are isomorphic
and we write R ∼= S.

Definition 3.3.2. [def:subring] Let (R,+, ·) be a ring.

(a) [a] A subring of R is a ring (S,4,�) such that S is a subset of R and

s4 t = s+ t and s� r = s · t

for all s, t ∈ R.

(b) [b] A left (right) ideal in R is a subring I of R such that ri ∈ I (ir ⊆ I) for all
r ∈ R, i ∈ I.

(c) [c] I is an ideal in R if I is a left ideal and a right ideal in R.

Lemma 3.3.3. [subring] Let R be a ring and S ⊆ R such that

(i) [i] 0R ∈ S.

(ii) [ii] a+ b ∈ S for all a, b ∈ S.

(iii) [iii] −a ∈ S for all a ∈ S.

(iv) [iv] ab ∈ S for all a, b ∈ S.

Define +S : S × S → S, (a, b) → a + b and ·S : S × S, (a, b) → a · b. Then (S,+S , ·S) is a
subring of S.

If S fulfills (i),(ii), (iii) and

(iv′) [ivp] rb ∈ S for all r ∈ R, b ∈ S,

then S is a left ideal.

If S fulfills (i),(ii), (iii) and

(iv′′) [ivpp] ar ∈ S for all r ∈ R, a ∈ S,

then S is a right ideal in G

If S fulfills, (i),(ii), (iii) , ((iv′)) and ((iv′′)) then S is an ideal.
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Proof. Straightforward and we leave the few details to the reader.

Example 3.3.4. [ex:ideals]

1. [1] Let A be any subgroup of (Z,+). Then by Homework 2#2b, A = nZ for some n ∈ N.
Since A is a subgroup of (Z,+) conditions i,ii,iii on an ideal are fulfilled. If a ∈ A and
r ∈ Z, then a = nm for some m ∈ Z and so ra = ar = (nm)(r) = n(mr) ∈ nZ = A. So
A is an ideal in Z.

2. [3] Let I be any non-zero ideal in (Q,+, ·). We will show that I = Q. Indeed let a ∈ I
with a 6= 0 and b ∈ Q. Then b = (ba−1)a and since I is an ideal, b ∈ I. Thus I = Q.
Hence the only ideal in Q are {0} and Q. The same argument shows that if D is a
division ring the only left ideals in D are {0D} and D.

3. [2] Let R be a ring and n ∈ Z+. Let Rn = {(vi)ni=1 | vi ∈ R}. For v = (vi) ∈ Rn and
A = (aij)ij ∈ Mnn(R) define

Av :=

 n∑
j=1

aijvj

n

i=1

So if we view (vi)i as a column vector (that is an n × 1-matrix ) this is just matrix
multiplication. Put ~0 = 0Rn = (0R)ni=1, S = Mnn(R) and define

AnnS(v) = {A ∈ S | Av = ~0},

AnnS(v) is called the annihilator of v in S.

We will show that AnnS(v) is an ideal in S. Let A,B ∈ AnnS(v) and C ∈ S. Then

0Sv = ~0

(A+B)v = Av +Bv = ~0 +~0 = ~0

(−A)v = −(Av) = −~0 = ~0

(CA)v = C(Av) = A~0 = ~0

Hence 0S , A+B, −A and CA all are in AnnS(v) and so by 3.3.3 AnnS(v) is a left ideal
in R.

We remark that usually AnnS(v) is not a right ideal. Suppose for example that n = 2
and there exists a ∈ R with a3 6= 0, where we just wrote 0 for 0R. Put

v =

0

a

 , A =

a 0

0 0

 and B =

0 a

0 0
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Then

Av =

a 0

0 0

0

a

 =

0 0

0 0

 and

ABv =

a 0

0 0

0 a

0 0

0

a

 =

a 0

0 0

a2

0

 =

a3

0


So A ∈ AnnS(v) but AB /∈ AnnS(v). This show that AnnS(v) is not a right ideal.

Now suppose that n = 2, R has an identity 1R = 1 and v =

1

0

. Then

a b

c d

1

0

 =

a
c

 and so

AnnS(v) =


0 b

0 d

∣∣∣∣∣∣ b, d ∈ R


This is a left ideal. Similarly 
0 0

c d

∣∣∣∣∣∣ b, d ∈ R


is a right ideal.

Lemma 3.3.5. [basicring hom] Let φ : R→ S be a ring homomorphism.

(a) [a] If T is a subring of R, φ(T ) is a subring of S.

(b) [b] If T is a subring of S then φ−1(T ) is a subring of R.

(c) [c] kerφ an ideal in R.

(d) [d] If I is a (left,right) ideal in R and φ is onto, φ(I) is a (left,right) ideal in S.

(e) [e] If J is a (left,right) ideal in S, then φ−1(J) is a (left,right) ideal on R.

Proof. (a) By 2.6.3(d), φ(T ) is a subgroup of (S,+). Let a, b ∈ φ(T ). Then a = φ(x) and
b = φ(y) for some x, y ∈ T . Since T is a subring of R. xy ∈ T and so

ab = φ(x)φ(y) = φ(xy) ∈ T
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Hence T is a subring of S
(b) Similar to (a) and we skip the details.
(c) By 2.6.3(i), kerφ is a subgroup of (R,+). Let a ∈ kerφ and r ∈ R. Then

φ(ra) = φ(r)φ(a) = φ(r)0S = 0S

and so ra ∈ kerφ. Similarly ar ∈ kerφ and so kerφ is an ideal.
(d) Suppose T is a left ideal in R. By (a), φ(R) is a subring of R. Let s ∈ S and

a ∈ φ(T ). Then a = φ(t) for some t ∈ T and since φ is onto, s = φ(r) for some r ∈ R. Since
T is left ideal, rt ∈ T . Thus

sa = φ(r)φ(t) = φ(rt) ∈ φ(T )

Hence φ(T ) is a left ideal in S. Similarly if T is a right ideal, φ(T ) is a right ideal of S. It
follows that if I is an ideal in R, then φ(I) is an ideal in S.

(e) Similar to (d).

Definition 3.3.6. [def:a+b] Let R be a ring and A,B ⊆ R. Then

(a) [a] A+B := {a+ b | a ∈ A, b ∈ B}.

(b) [b] 〈A〉 is the subgroup of (R,+) generated by A.

(c) [c] For 1 ≤ i ≤ n let Ai ⊆ R. Then

A1A2 . . . An := 〈a1a2 . . . an | ai ∈ Ai, 1 ≤ i ≤ n〉

(d) [d] (A) =
⋂
{I | I is an ideal in R,A ⊆ I}. (A) is called the ideal in R generated by

A.

One should observe that for subsets A and B of a group we defined AB = {ab | a ∈
A, b ∈ B}. This differs from the definition of AB for subsets of a ring.

Lemma 3.3.7. [easy ideal] Let R be a ring and A,B,C ⊆ R.

(a) [y] 〈A〉 = {
∑m

i=1 niai | m ∈ N, ai ∈ A}.

(b) [w] If A or B is a subgroup of (R,+), then AB = {
∑n

i=1 aibi | m ∈ N, ai ∈ A, bi ∈ B}.

(c) [z] A(BC) = ABC = (AB)C.

(d) [x] A is an ideal in R if and only if A is subgroup of (R,+) and RA ⊆ A.

(e) [a] If A is a left ideal, then AB is a left ideal.

(f) [b] If B is a right ideal, then AB is a right ideal.

(g) [c] If A is a left ideal in R and B is right ideal, then AB is a ideal in R.
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(h) [v] If A and B are subgroup of (R,+) then A+B is a subgroup of (R,+).

(i) [d] If A and B are (right,left) ideals then A+B is a (left,right) ideal.

(j) [e] Let (Ai, i ∈ I) be a family if (left,right) ideals of R, then
⋂
i∈I Ai is a (left,right)

ideal.

(k) [f] (A) is an ideal.

Proof. Let r ∈ R, a ∈ A, b ∈ B and c ∈ C.
(a) Let D = {

∑m
i=1 niai | m ∈ N, ai ∈ A}. It is readily verified that D is a subgroup of

(R,+) and contains A. So 〈A〉 ⊆ D by the definition of 〈A〉. Since 〈A > is closed under
addition and negatives, D ⊆ 〈A〉 and (a) holds.

(b) Since AB = 〈ab | a ∈ A, b ∈ B〉 we conclude from (a) that

AB = {
m∑
i=1

ni(aibi) | m ∈ N, ai ∈ A, bi ∈ B}

If A is a subgroup of (R,+), then niai ∈ A and if B is a subgroup of R then nibi ∈ B.
Since ni(aibi) = (niai)bi = ai(nibi) its is easy to see that (b) holds.

(c) We have abc = a(bc) ∈ A(BC). Since A(BC) is a subgroup of (R,+) we conclude

ABC = 〈abc | a ∈ A, b ∈ B, c ∈ C〉 ⊆ A(BC)

Let d ∈ BC. Then by (a) and definition of BC, d =
∑m

i=1 bici for some bi ∈ B, ci ∈ C.

ad = a
m∑
i=1

bici =
∑
i=1

abici ∈ ABC

Since ABC is a subgroup of (R,+) we conclude A(BC) ≤ ABC. Thus A(BC) = ABC
and similarly (AB)C = ABC.

(d) If A is left ideal, A is a subgroup of R and ra ∈ A. Hence also RA ⊆ A. Suppose
now that A is a subgroup of R and RA ⊆ A. Then ra ∈ A and so by 3.3.3 A is an left ideal.

(e) Note that RA is a subgroup of (R,+). Also R(RA) = (RR)A ⊆ RA and so by (d),
RA is a left ideal in A.

(f) Similar to (e).
(g) Follows from (e) and (f).
(h) Since (R,+) is abelian, A + B = B + A. Thus by 2.8.9, A + B is a subgroup of

(R,+).
(i) Suppose A and B are left ideals. By (h), A + B is a subgroup of (R,+). Since A

and B are left ideal, ra ∈ A and rb ∈ B. Hence r(a+ b) = ra+ rb ∈ A+ B and so A+ B
is a left ideal. The remaining statements are proved similarly.

(j) Suppose each Ai is an left ideal. By 2.3.5
⋂
i∈I Ai is subgroup of (R,+). Let

a ∈
⋂
i∈I Ai. The a ∈ Ai and so rai ∈ Ai for all i ∈ I. Thus rai ∈

⋂
i∈I Ai and so

⋂
i∈I Ai

is a left ideal. The remaining statements are proved similarly.
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(k) By definition (A) is the intersection of the ideals containing A and so by (j), is an
ideal.

Lemma 3.3.8. [ideals with id] Let R be a ring with identity and A ⊆ R.

(a) [u] A is a left ideal in R if and only if RA ⊆ A and if and only if RA = A.

(b) [g] RA =
⋂
{I | A ⊆ I, I is a left ideal in R}.

(c) [h] AR =
⋂
{I | A ⊆ I, I is a right ideal in R}.

(d) [i] (A) = RAR.

Proof.

[u] If A is a left ideal, then by 3.3.7(d), RA ⊆ A. Suppose RA ⊆ A. Since A = 1RA ⊆ RA
we get A = RA. Suppose that A = RA. Then RA ⊆ A and since RA is a subgroup of
(R,+), A is a subgroup of (R,+). Thus by 3.3.7(d), A is a left ideal in R.

(b) Let K =
⋂
{I | A ⊆ I, I is a left ideal inR}. Clearly RA ⊆ I for each left ideal

containing A and so RA ≤ K. By 3.3.7(e), RA is a left ideal. Since R has an identity,
A ⊆ RA and so K ≤ RA.

If R has an identity, the 〈A〉 = 1RA ≤ RA.
(c) and (d) are proved similarly to (b).

Lemma 3.3.9. [RmodI] Let I be an ideal in the ring R.

(a) [a] The binary operations

+·R/I : R/I ×R/I → R/I, (a+ I, b+ I) → (a+ b) + I and

·R/I : R/I ×R/I → R/I, (a+ I, b+ I) → ab+ I

are well-defined.

(b) [b] (R/I,+R/I , ·R/I) is a ring.

(c) [c] The map
π : R→ R/I, r → r + I

is a ring homomorphism with kernel I.

Proof. (a) That +R/I is well-defined follows from 2.6.5. i, j ∈ I. Then (a + i)(b + j) =
ab+ ib+ aj + ij. As I is an ideal, ib+ aj + ij ∈ I and so (a+ i)(b+ j) + I = ab+ I. Thus
also ·R/N is well-defined.

(b) By 2.6.5 (R/I,+) is a group. The remaining axioms of a ring are readily verified.
(c) By 2.6.5 is a well-defined homomorphism of abelian groups with kerπ = I. Since

φ(ab) = ab+ I = (a+ I) ·R/I (b+ I) = π(a) ·R/N π(b)

and so π is a ring homomorphism.
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A little warning: Let a, b ∈ R/I. Then a ·R/I b is usually not equal to a · b. (Note that
a, b are subsets of R and so a · b = 〈xy | x ∈ a, y ∈ b〉.) For example consider R = Z and
a = b = I = 2Z. Then

2Z · 2Z = 4Z and 2Z ·Z/2Z 2Z = (0 + 2Z) ·Z/2Z (0 + 2Z) = 0 + 2Z

Nevertheless we still usually just write ab for a ·R/N b if its clear from the context that
are viewing a, b as elements of R/I and not has subsets of R.

Theorem 3.3.10 (The Isomorphism Theorem for Rings). [iso rings] Let φ : R → S be a
ring homomorphism. Then the map

φ : R/ kerφ→ φ(R), r + kerφ→ φ(r)

is a well-defined isomorphism of rings.

Proof. By the Isomorphism Theorem for groups 2.6.8, this is a well-defined isomorphism
for the additive groups. We have

φ((a+ kerφ)(b+ kerφ)) = φ(ab+ kerφ) = φ(ab) = φ(a)φ(b) = φ(a+ kerφ)φ(b+ kerφ)

and φ is a ring isomorphism.

3.4 Polynomials Rings

3.4.1 (Definition and Notation). [poly]

Let R be a ring, Let R[x] the set of all sequence f = (fi)∞i=1 with fi ∈ R and such that
there exists n ∈ N with fi = 0R for all i > n. For f = (fi)i and g = (gi)i in R[x] define

(fi)i + (gi)i = (fi + gi)i

(fi)i · (gj)j = (
∑k

i=0 figk−i)k

Then it is easy but somewhat tedious to verify that (R[x],+, ·) is a ring, called the
polynomial ring over R.

Let r ∈ R and m ∈ N and consider the sequence (hi)i with fm = r and hi = 0R for
i 6= m. So

(hi)i = (0R, 0R, 0R, . . . , 0R, r, 0R, . . .)

with the r in position m We denote this sequence by rxm. Be aware that we did not define
that x but only what the symbol rxm stands for. Then

(fi) =
∞∑
i=0

fix
i
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Note that since almost all of the fixi are equal to zero, this seemingly infinite sum is
finite and makes sense.

Addition and multiplication now read:

∑∞
i=0 fix

i +
∑∞

i=0 gixi =
∑∞

i=0(fi + gi)xi∑∞
i=0 fix

i ·
∑∞

j=0 gjxj =
∑

k=0

(∑k
i=0 figk−i

)
xk

and hence

∞∑
i=0

fix
i ·
∞∑
j=0

gjx
j =

∞∑
i=0

∞∑
j=0

figjx
i+j

Observe that the map r → rx0 is a 1-1 ring homomorphism from R to R[x]. We therefore
can identify r with rx0. So r is identified with the sequence

(r, 0R, 0R, 0R, . . .)

and R becomes a subring of R[x]. Also 0R[x] = 0R.
Suppose that R has an identity. Then 1R is also an identity in R[x]. Denote 1Rx1 by x.

So x is the sequence (0R, 1R, 0R, 0R, . . .). Then xm = 1Rxk and r · xm = (rx0) · (1Rxm) =
(r · 1R)x0+m = rxm.

If 0R 6= f ∈ R[x], then we can write f =
∑m

i=0 fix
i with fm 6= 0R. m is called the degree

of f and is denoted by deg f . If f = 0R we define deg f = −∞.

Lemma 3.4.2. [poly universal] Let α : R→ S be a ring homomorphism and s ∈ R such
that α(r)s = sα(r) for all r ∈ R.

(a) [a] The map

αs : R[x]→ S,
∞∑
i=0

fix
i →

∞∑
i=0

α(fi)si

is a ring homomorphism. ( Here we defined ts0 = t for all t ∈ R. )

(b) [b] Suppose that R and S are rings with identity and α(1R) = 1S. Then αs is the
unique ring homomorphism from R[x] to S with

αs(r) = α(r) and αs(x) = s

for all r ∈ R.

Proof. (a)
Let f =

∑∞
i=0 fix

i and g =
∑∞

i=0 gix
i be elements of R[x]. Then



3.4. POLYNOMIALS RINGS 85

αs(f + g) = αs
(∑∞

i=0(fi + gi)xi
)

=
∑∞

i=0 α(fi + gi)si

=
∑∞

i=0(α(fi) + α(gi))si =
(∑∞

i=0 α(fi)si
)

+
(∑∞

i=0 α(gi)si
)

= αs(f) + αs(g)

and

αs(fg) = αs

(∑∞
k=0

(∑k
i=0 figk−i

)
xk
)

=
∑∞

k=0 α
(∑k

i=0 figk−i
)
sk

=
∑∞

k=0

∑k
i=0 α(fi)α(gk−i)si+(k−i) =

∑∞
k=0

∑k
i=0 α(fi)siα(gk−i)sk−i

=
∑∞

i=0

∑∞
j=0 α(fi)siα(gj)sj =

(∑∞
i=0 α(fi)si

)
·
(∑∞

j=0 α(gj)sj
)

= αs(f)αs(g)

Thus αs is a homomorphism.
(b) We have

αs(r) = αs(rx0)α(r)s0 = α(r)1S = α(r)

and
αs(x) = αS(1R)x1) = α(1R)s1 = 1Ss = s

and αs fulfills the requirements on αs.
Now let β : R[x] → S be any ring homomorphism from R[x] to S with β(r) =

α(r) and β(x) = s for all r ∈ R. If T is any ring with identity we define t0 = 1T for
all t ∈ T . We claim that β(xi) = si for all i ∈ N. Indeed β(x0) = β(1R) = α(1R) = 1S = s0

and inductively

β(xi+1) = β(xi)β(x) = sis = si+1

Thus

β(
∞∑
i=0

fix
i) =

∑
i=0

β(fi)β(xi) =
∞∑
i=0

α(fi)si

Thus β = αs.

Example 3.4.3. [ring of functions] Let R be a ring and I a set. Let RI be the set of all
functions from I to R. For f, g ∈ RI define f + g and fg in RI by (f + g)(r) = f(r) + g(r)
and (fg)(r) = f(r)g(r). Then (RI ,+, ·) is a ring, called the ring of functions from R to R.
Indeed we put Ri = R for all i ∈ R, then RI is precisely the direct product×i∈I Ri.

Lemma 3.4.4. [poly as function] Let R be a commutative ring. For f =
∑∞

i=0 fix
i ∈

R[x] define

f∗ : R→ R, r →
∑
i=0

fir
i
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∗ : R[x]→ RR, f → f∗

is a ring homomorphism, that is (f + g)∗ = f∗ + g∗ and (fg)∗ = f∗g∗ for all f, g ∈ R[x].

Proof. Note that f∗(r) = idr(f), in the notation of 3.4.2 with α = idR. So idr is a homo-
morphism and thus

(f + g)∗(r) = idr(f + g) = idr(f) + idr(g) = f∗(r) + g∗(r) = (f∗ + g∗)(r)
(fg)∗(r) = idr(fg) = idr(f)idr(g) = f∗(r)g∗(r) = (f∗g∗)(r)

Example 3.4.5. [ex f*] The table below lists the functions corresponding to the polyno-
mials of degree less than or equal to 2 with coefficients in Z2.

f 0 1 x x+ 1 x2 x2 + 1 x2 + x x2 + x+ 1

f∗(0) 0 1 0 1 0 1 0 1

f∗(1) 0 1 1 0 1 0 0 1

We conclude that x∗ = (x2)∗. So two distinct polynomials can lead to the same poly-
nomial function. Also (x2 + x)∗ is the zero function but x2 + x is not the zero polynomial.

3.5 Euclidean Rings

Definition 3.5.1. [def:pre-euclidean] Let R be a commutative ring.

(a) [c] R] := R \ {0R}

(b) [a] A function
d : R→ N

is called a pre-Euclidean function provided that for all a, b ∈ R

(a) [a] d(r) = 0 if and only if r = 0R; and

(b) [b] If 0 < d(b) ≤ d(a), then there exists t ∈ R with d(a− tb) < d(a)

(c) [b] R is called an Euclidean domain if R is an integral domain and there exists an
pre-Euclidean function on R.

Example 3.5.2. [ex:euclidean]

1. [1] Let d : Z→ Z,m→ |m| be the absolute value function. Let a, b ∈ Z and 0 < |b| ≤ |a|.
If a and b are both positive or both negative, then |a− b| < |a|. If one of a, b is positive
and the other is negative, then |a+ b| > |a|. So d is a pre-Euclidean function.
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2. [2] Let F be any field, for f =
∑n

i=0 fix
i ∈ F [x] let d(f) ∈ N be minimal with fi = 0 for

all i ≥ d(f). So d(f) = 0 if f = 0F and d(f) = deg(f) + 1 if f 6= 0. Let 0F 6= f, g ∈ F[x]
of degree n and m respectively. Suppose that d(f) < d(g)). Then also n < m. Let a
and b be the leading coefficients of f and g, respectively. ba−1xm−nf is a polynomial of
degree m and leading coefficient b. Thus g − ba−1xm−nf has degree less than g and so
d is a pre-Euclidean function.

Lemma 3.5.3 (Division Algorithm). [division algorithm] Let d be a pre-Euclidean func-
tion on a commutative ring R. Let a, b ∈ R with b 6= 0R. Then there exist s, r ∈ R
with

a = qb+ r and d(r) < d(b).

Proof. If d(a) < d(b) we can choose q = 0 and r = a.
So suppose that d(b) ≤ d(a). Then by the definition of a pre-Euclidean function there

exists t ∈ R such that d(a− tb) < d(a). By induction on d(a) there exists r̃, q̃ ∈ R with

a− tb = q̃b+ r̃

with d(r̃) < d(r). So we can choose q = q̃ + t and r = r̃.

Note that the proof of 3.5.3 provides a concrete algorithm to compute q and r (provided
one has a method to find t ∈ R with d(a − tb) < d(a) whenever a, b ∈ R with b 6= 0R and
d(a) ≥ d(b0). This algorithm is called the division algorithm

Example 3.5.4. [ex:division algorithm] As an example we consider the ring R = Z2[x],
a = x5 + x2 + 1 and b = x3 + x + 1. Then the division algorithm is nothing else but long
division of polynomials:

x2 + 1

x3 + x+ 1 x5 + x2 + 1

x5 + x3 + x2

x3 + 1

x3 + x + 1

x

So a = qb+ r where q = x2 + 1 and r = x.

Definition 3.5.5. [def:euclidean] Let R be ring. A function d : R → N is called an
Euclidean function if for all a ∈ R and b ∈ R#:

(i) [c] d(a) = 0 if and only if a = 0R.

(ii) [a] if ab 6= 0R then d(ab) ≥ d(b).
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(iii) [b] There exist q, r in R with

a = qb+ r and d(r) < d(b).

Lemma 3.5.6. [pre-euclidean gives euclidean] Let d be a pre-euclidean function on the
ring R with identity. Let a ∈ R. If a = 0R define d∗(a) = 0, otherwise put

d∗(a) = min{d(b) | 0R 6= b ∈ Ra}.

Then d∗ is a Euclidean function.

Proof. If x ∈ R with x 6= 0R pick x∗ ∈ Rx with x 6= 0R and d(x) minimal. Then by
definition of d∗, d∗(x) = d(x∗). Since R has an identity, a = 1Ra ∈ Ra and so d∗(a) ≤ d(a).
We need to verify the conditions ii-iii in the definition of a Euclidean function.

(ii): If a = 0R, then d∗(a) = 0. If a 6= 0R, then also a∗ 6= 0R and so by definition of a
pre-Euclidean function, d∗(a) = d(a∗) 6= 0R.

(ii): Rab ⊆ Rb and so by definition of d∗(b), d∗(b) ≤ d(e) for all e ∈ Rab. In particular,
d∗(b) ≤ d∗(ab).

(iii): Let a, b ∈ R with b 6= 0R. Pick b∗ ∈ Rb with d∗(b) = d(b∗). By 3.5.3 there exists
q̃ and r̃ with

a = q̃b∗ + r∗ and d(r̃) < d(b∗).

Since b∗ ∈ Rb, b∗ = tb for some t ∈ R. Put q = q̃t and r = q̃. Then

a = q̃b∗ + r̃ = q̃ta+ r̃ = qb+ r

and
d∗(r) ≤ d(r) < d(b∗) = d∗(b).

So d∗ is indeed a Euclidean function.

Definition 3.5.7. [def:principal] Let R be a commutative ring.

(a) [a] An ideal I in R is called a principal ideal if I = Ra for some a ∈ R.

(b) [b] R is a principal ideal ring if every ideal is a principal ideal.

(c) [c] R is a principal ideal domain (PID) if R is an integral domain and a principal ideal
domain.

Example 3.5.8. [ex:pid]

1. [1] Let I be an ideal in Z. Then by 3.3.4(1), I = nZ for some n ∈ Z. Since Z is
commutative, I = Zn and so I is a principal ideal ring. By 3.2.4(1), Z is an integral
domain and so Z is a principal ideal domain.
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2. [2] Let R = Z[x] and define I = {f ∈ Z[x] | f∗(0) ∈ 2Z}. So I consists of all polynomials
whose constant coefficient is even. We will show that I is an ideal and that I is not a
principal ideal. By 3.4.2(a), the map id0 : Z[x]→ Z, f → f∗(0) is a ring homomorphism.
Since z∗(0) = z for all z ∈ Z, id0 is onto. Note that I = id−1

0 (2Z). Since 2Z is an ideal
in Z we conclude from 3.3.5(e), that I is an ideal in R.

Suppose for a contradiction that I = Rf for some R ∈ I. Since 2 ∈ I, 2 = gf for some
g ∈ R. Then both g and f are non-zero. Let n = deg f , m = deg g, a is the leading
coefficient of f and b is the leading coefficient of g. Then gf = abxn+m+ terms of lower
degree. Since ab 6= 0, gf has degree n+m. Since gf = 2, deg gf = 0 and so n+m = 0.
Since n,m ∈ N this gives n = m = 0 and so f = a, g = b and ab = 2. Since f ∈ I,
a = f∗(0) is even. Hence for all h ∈ R# , hf = fh = ah and the leading coefficient of hf
is even. Thus hf 6= x and so x /∈ Rf . This is a contradiction since x ∈ I and I = Rf .

Theorem 3.5.9. [Euclidean implies PID] Every Euclidean domain is a principal ideal
domain. More precisely if I is a non zero ideal in the Euclidean domain R and 0 6= a ∈ I
with d(a) minimal, then I = Ra.

Proof. Let R be an integral domain and d a pre-Euclidean function on R. Let I be an ideal
in R. We need to show that I = Rb for some b ∈ R.

If I = {0}, then I = R0R.
So suppose that I 6= {0R}. Let 0R 6= b ∈ I with d(b) minimal. Let a ∈ I. By 3.5.3 there

exist s, r ∈ R such that a = sb+ r with

d(r) < d(b)

Since r = a− sb and both a, b are in I we get r ∈ I. So the minimal choice of d(b) implies

r = 0R or d(r) ≥ d(b)

The two displayed statements imply r = 0R. Thus a = sb and so a ∈ Rb. Since a ∈ I was
arbitrary, I ⊆ Rb. Clearly Rb ⊆ I and so I = Rb is a principal ideal.

3.6 Primes in Integral Domains

Definition 3.6.1. [def:divide] Let R be an integral domain and a, b ∈ R.

(a) [a] We say that a divides b and write a | b if b = ra for some r ∈ R.

(b) [b] We say that a and b are associate and write a ∼ b if a | b and b | a.

(c) [d] We say that a is proper if a is neither zero nor a unit.

(d) [e] A proper element a is irreducible if a = bc with b, c ∈ R implies that b or c is a
unit.

(e) [f] A proper element a is a prime if a | bc with b, c ∈ R implies a | b or a | c.
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Lemma 3.6.2. [divide] Let R be an integral domain and a, b, c, d ∈ R.

(a) [a] a | b if and only if b ∈ Ra and if and only if Rb ⊆ Ra.

(b) [b] If a | b and b | c then a | c.

(c) [c] a ∼ b if and only if Ra = Rb.

(d) [d] ∼ is an equivalence relation.

(e) [e] Let a ∼ b and c ∼ d. Then a | c if and only if b | d.

Proof. (a) Suppose a | b. Then b = ra for some r ∈ R and so b ∈ Ra.
Suppose b ∈ Ra. Since Ra is an left ideal, Rb ⊆ Ra.
Suppose Rb ⊆ Ra. The b = 1Rb ∈ Ra and so b = ra for some r ∈ R and a | b.
(b) If a | b and b | c then by (a) Rc ⊆ Rb ⊂ Ra and so a | c.
(c) By (a) a | b and b | a if and only if Rb ≤ Ra and Ra ≤ Rb. So if and only if Ra = Rb.
(d) By (c) a ∼ b if and only if Ra = Rb. So by 2.4.2(2) ∼ is an equivalence relation.
(e) Since a ∼ b, Ra = Rb and since c ∼ d, Rc = Rd. So both a | c and b | d are

equivalent to Rc ⊆ Ra.

Lemma 3.6.3. [easy unit] Let R be an integral domain and a ∈ R. The the following are
equivalent

(a) [a] a is a unit.

(b) [b] a | 1R.

(c) [c] a ∼ 1R.

(d) [d] Ra = R.

Proof. Suppose a is a unit. Then ba = 1R for some r ∈ R and a | 1−R.
Suppose a | 1r. Since a = a1−R, 1R | a and so a ∼ 1R.
Suppose a ∼ 1R. Then by 3.6.2(c), Ra = R1R = R.
Suppose Ra = R. Then 1R = ba for some b ∈ R. Since R is commutative, ab = 1R and

so a is a unit.

Lemma 3.6.4. [unit and sim] Let R be an integral domain and a, b ∈ R with b 6= 0R.
Then b ∼ ab if and only if a is a unit.

Proof. Suppose that a is a unit. Then ca = 1R for some c ∈ R. Thus b = 1Rb = (ca)b =
c(ab) and so ab | a. Clearly b | ab and so b ∼ ab.

Suppose that b ∼ ab. Then b = c(ab) for some c ∈ R and so 1Rb = b = c(ab) = (ca)b.
By the Cancellation Law 3.2.6 ca = 1R. So a is a unit.

Lemma 3.6.5. [char irr] Let R be integral domain and a a proper element in R. Then a
is irreducible if and only if for all b ∈ R, b | a implies that b is a unit or a ∼ b.
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Proof. Suppose that a is irreducible and b | a. Then a = rb for some r ∈ R. Thus by the
definition of irreducible, r is a unit or b is a unit. If r is a unit then by 3.6.4 a ∼ b. So b is
a unit or a ∼ b.

Conversely suppose that b ∼ a implies that b is a unit or b ∼ a. Let a = xy with
x, y ∈ R. Then x | a and so x is a unit or x ∼ a. If x ∼ a = xy then by 3.6.4 y is a unit.
So x is a unit or y is a unit. Thus a is irreducible.

Lemma 3.6.6. [primes are irreducible] All primes in an integral domain are irreducible.

Proof. Let a be a prime in the integral domain R. The by definition a is proper. Suppose
that a = bc with b, c ∈ R. Then a | bc and since a is a prime, a | b or a | c. Say a | c. Since
also c | a we get bc = a ∼ c and so by 3.6.4 c is a unit. Thus a is irreducible.

Definition 3.6.7. [def:gcd] Let R be an integral domain, A ⊆ R and b ∈ R.

(a) [a] We say that b is a common divisor of A and write b | A if b | a for all a ∈ A.

(b) [b] We say that d is a greatest common divisor of A if d is a common divisor for A
and b | d for all common divisors of b of A.

Note that we do not claim the existence of greatest common divisors. Indeed this is
false in arbitrary integral domains.

Example 3.6.8. [ex:gcd] Consider the ring Z. The divisors of 24 are

±1,±2,±3,±4,±6,±8,±12,±24

The divisors of 20 are

±1,±2,±4,±5,±10,±20

So the common divisors of {20, 25} are

±1,±2,±4

Hence the greatest common divisors of {20, 25} are

±4

So we see that a set can have more than one greatest common divisor. But note that 4
and −4 are associated.

Lemma 3.6.9. [gcd is unique up to associates] Let R be an integral domain, A ⊆ R
and a any greatest common divisor for A. Let b ∈ R. Then b is a greatest common divisor
of A if and only if a ∼ b.
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Proof. Suppose first that b is a greatest common divisor of A. Since a is a common divisor
for A and b is a greatest common divisor b | a. By symmetry a | b and so a ∼ b.

Suppose next that a ∼ b. Then b | a. Since a | d for all d ∈ A, we get from 3.6.2(b) that
b | d for all d ∈ A. So b is a common divisor of A. Let e be any common divisor of A. Then
e | a and since a | b we get e | b . Thus b is a greatest common divisor of A.

Lemma 3.6.10. [sum divides] Let R be an integral domain, A ⊆ R and b a common
divisor of A in R. Then b | x for all x ∈ RA.

Proof. Let a ∈ A. Then b | a and so a ∈ Rb. Thus A ⊆ Rb and since Rb is an ideal,
RA ⊆ Rb. Since x ∈ RA we conclude x ∈ Rb and so b | x.

Proposition 3.6.11. [gcd in PID’s] Let R be a PID and A ⊆ R.

(a) [a] A has a greatest common divisor.

(b) [b] Let d ∈ R. Then d is a greatest common divisor of A if and only if Rd = RA.

(c) [c] Let d be a greatest common divisor of A. Then

d = r1a1 + r2a2 + . . .+ rnan

for some n ∈ N, ai ∈ A and ri ∈ R.

Proof. (a) Since R is a PID and RA is an ideal in R, there exists e ∈ R with Re = RA.
Then a ∈ Re for all a ∈ R and so e is a common divisor of A. Let b be any common divisor
of A. Since e ∈ RA, 3.6.10 gives b | e. Hence e is a greatest common divisor of A.

(b) Let d ∈ R. Then by 3.6.9 d is a greatest common divisor if and only if d ∼ e. So by
3.6.2(c) if and only if Rd = Re = RA.

(c) By (b), d ∈ Rd = RA and so by 3.3.7(b), d = r1a1 + r2a2 + . . . + rnan for some
n ∈ N, ai ∈ A and ri ∈ R.

Proposition 3.6.12. [in PiD’s irreducible = prime] An element in a PID is a prime
if and only if its is irreducible.

Proof. Let a ∈ R be proper. If a is a prime then a is irreducible by 3.6.6.
So suppose a is irreducible and let b, c ∈ R with a | bc. By 3.6.11 there exists a greatest

common divisor d for a and b. Then d | a and so by 3.6.5, d is a unit or d ∼ a. If d ∼ a,
then a | d and d | b and so a | b. So suppose that d is a unit. Then 1R ∼ d and by 3.6.9 1R
is a gcd for a and b. Thus by 3.6.11 1R = ra + sb for some r, s ∈ R. Hence c = rac + sbc.
Since a divides bc and a we conclude that a divides c. We showed that a | b or a | c and so
a is prime.

Example 3.6.13. [ex:gcd in pid]
We have gcd(20, 24) = ±4 and 24 = 20 + 4. So 4 = 24− 20 = 1 · 24 + (−1) · 20.
For a more complicated example consider 63 and 37. We have
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63 = 37 + 26

37 = 26 + 11

26 = 2 · 11 + 4

11 = 2 · 4 + 3

4 = 1 · 3 + 1

3 = 3 · 1 + 0

So according to Homework 6#7 1 is a gcd of 63 and 37. To compute 1 as a linear combination
of 63 and 37, we use a backtracking method:

1 = 4− 3

3 = 11− 2 · 4

1 = 4− (11− 2 · 4) = 3 · 4− 11

4 = 26− 2 · 11

1 = 3 · (26− 2 · 11)− 11 = 3 · 26− 7 · 11

11 = 37− 26

1 = 3 · 26− 7 · (37− 26) = 10 · 26− 7 · 37

26 = 63− 37

1 = 10 · (63− 27)− 7 · 37 = 10 · 63− 17 · 37

So 1 = 10 · 63− 17 · 37.

Lemma 3.6.14. [prime and associate] Let R be an integral domain and a, b ∈ R with
a ∼ b.

(a) [a] a is proper if and only if b is proper.

(b) [b] a is a prime if and only if b is a prime.

Proof. Note that by 3.6.2(c), Ra = Rb. So it suffices to show the properties ’proper’ and
’prime’ only depended on Ra.

(a) a is proper if and only if a 6= 0R and a is not a unit. By 3.6.3 this is the case if and
only if Ra 6= {0R} and Ra 6= R.

(b) By (a) we may assume that a and b are proper. Then a is prime if and only if a | bc
implies a | b or a | c. This is the case if and only if bc ∈ Ra implies b ∈ Ra or c ∈ Ra.

Lemma 3.6.15. [divide and irreducible] Let R be an integral domain and q, b ∈ R.
Suppose that q | b and q is a prime.
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(a) [a] If b is irreducible, then q ∼ b and b is a prime.

(b) [b] If b = b1 . . . bn with n ∈ Z+ and bi ∈ R, then q | bi for some 1 ≤ i ≤ n.

(c) [c] If b = p1 . . . pn with n ∈ Z+ and each pi, 1 ≤ i ≤ n is irreducible in R, then q ∼ pi
for some 1 ≤ i ≤ n.

Proof. (a) Since b is irreducible and q | b we conclude from 3.6.5, q is a unit or q ∼ b. But
a is a prime and so not a unit. Hence q ∼ b. Thus by 3.6.14(b), b is a prime.

(b) If n = 1, then b = b1. So suppose n > 1 and let a = b1 . . . bn1 . Then b = abn and
since q | b and q is a prime, q | a or q | bn. In the first case we conclude by induction on n,
that q | bi for some 1 ≤ i ≤ n− 1. So (b) holds.

(c) By (b), q | pi for some 1 ≤ i ≤ n and so by (a), q ∼ pi.

Proposition 3.6.16. [Uniqueness of prime factorizations] Let R be an integral do-
main and a ∈ R. Suppose that a = p1 · . . . · pn and a = q1 . . . qm where n,m ∈ Z+, pi is a
irreducible for 1 ≤ i ≤ n and qj are is a prime for 1 ≤ i ≤ n. Then n = m and there exists
π ∈ Sym(n) with qi ∼ pπ(i) for all 1 ≤ i ≤ n.

Proof. . Note that qm | a. Hence by 3.6.15(c), qm ∼ pi for some 1 ≤ i ≤ n. Without loss,
i = n. Then pn ∼ qm and so upn = qm for some unit u ∈ R.

Suppose n = 1. If m = 1 we are done. So suppose for a contradiction that m > 1.
Then(q1 . . . qm−1)qm = a = pm ∼ qm. Thus by 3.6.4, q1 . . . qm−1 is a unit and so divides
1R. Hence also q1 divides 1R and so q1 is a unit. A contradiction since q1 is a prime and so
proper.

Suppose n > 1. Then qm−1qm = qm−1(upn) = (uqm−1)pn. By 3.6.4 uqm−1 ∼ qm−1 and
by 3.6.14, qm−1 is a prime and pn are primes. So replacing qm by pn and qm−1 by uqm−1

we may assume that pn = qm. Put b = q1 . . . qm−1 if m > 1 and b = 1R if m = 1. Then

(p1 . . . pn−1)pn = a = (q1 . . . qm−1qm = bqm

Since R is an integral domain, R has no non-zero zero-divisors and so the Cancellation
Law 3.2.6 implies

p1 . . . pn−1 = b

Suppose that m = 1. Then b = 1R and so p1 is a unit, a contradiction since p1 is
irreducible and so proper.

Thus m > 1 and

p1 . . . pn−1 = q − 1 . . . qm−1

So by induction on n, n − 1 = m − 1 and there exists µ ∈ Sym(n − 1) with qi ∼ pµ(i)

for all 1 ≤ i ≤ n − 1. Define π ∈ Sym(n) by π(n) = n and π(i) = µ(i) for 1 ≤ i ≤ n − 1.
Then the Lemma holds.
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Definition 3.6.17. [def:ufd] A unique factorization domain (UFD) is an integral domain
in which each proper element is a product of primes.

Lemma 3.6.18. [In UFD’s irreducible=primes] An element in a UFD is a prime if
and only if its is irreducible.

Proof. Let a be an irreducible element in the UFD R. Since a is a product of primes, there
exists a prime p with p | a. Hence by 3.6.15(a), a is a prime.

If a is a prime, then a is irreducible by 3.6.6

Lemma 3.6.19. [divisor in Euclidean domains] Let R be an Euclidean domain with
Euclidean function d. Let a, b ∈ R# with a | b.

(a) [a] d(a) ≤ d(b).

(b) [b] a ∼ b if and only d(a) = d(b).

Proof. (a) b = ra for some r ∈ R. Since b 6= 0R the definition of an Euclidean function
implies d(b) ≥ d(a).

(b) Suppose a ∼ b. Then a | b and b | a. By (a), d(a) ≤ d(b) and d(b) ≤ d(a). Thus
d(a) = d(b).

So suppose that d(a) = d(b). By(a)

d(b) = d(a) = min{d(e) | e ∈ Ra.e 6= 0R}

Thus by 3.5.9 Ra = Rb. Hence by 3.6.3 a ∼ b.

Proposition 3.6.20. [Euclidean domains are UFD] Every Euclidean domain is a UFD.

Proof. Let R be a Euclidean domain with Euclidean function d. By 3.5.9 R is a PID and
so by 3.6.12 every irreducible element in R is a prime. So it suffices to show that each
proper element a is a product of irreducible elements. If a is irreducible we are done. So
suppose a = bc with neither b nor c units. Then by 3.6.4 a � b and a � c. Hence by
3.6.19(b), d(a) 6= d(b) and d(a) 6= d(c). So by 3.6.19(a), d(b) < d(a) and d(c) < d(a). Thus
by induction of d(a), b and c are products of irreducible elements. Thus also a is.
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3.7 The Gaussian integers

Definition 3.7.1. [def:s adjoint i] Let R be a ring, S a subring of R and I a subset. Then
S[I] denotes the intersection of all subrings of R containing S and I. Note that S[I] itself
is a subring if R and is the smallest subring of R containg S and I. S[I] is pronounced ”S
adjoint I”. If I = {i1, i2, . . . , in} we also write S[i1, i2, . . . in] for S[I].

Definition 3.7.2. [def:gauss]

(a) [a] The subring Z[i] of C is called the ring of Gaussian integers.

(b) [b] A prime in Z[i] is called an Gaussian prime.

(c) [c] For x = a+bi ∈ C let x = a−bi and d(x) = xx̄ = a2+b2. The map :: C→ C, x→ x
is is called complex conjugation.

In this section we will show that Z[i] is an Euclidean domain and will determine the
primes in Z[i].

Lemma 3.7.3. [the elements in Z[i]] Z[i] = Z+ Zi = {a+ bi | a, b ∈ Z}

Proof. Since Z[i] is a subring of C and contains Z and i, Z+Zi ⊆ Z[i]. Since (a+ bi) + (c+
di) = (a+ c) + (b+ d)i and (a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i, Z+ Zi is also closed
under addition and multiplication. Hence Z+ Zi is a subring of C containing Z and i. So
Z[i]] ⊆ Z+ Zi.

Lemma 3.7.4. [Properties of complex conjugation]

(a) [a] Complex conjugation is ring automorphism of C.

(b) [b] Restricted to Z[i], complex conjugation is a ring automorphism of Z[i]

(c) [c] d(x) = xx and d(xy) = d(x)d(y) for all x, y ∈ C.

(d) [d] Let x ∈ C. Then d(x) ≥ 0 with equality if and only if x = 0.

(e) [e] d(x) ∈ N for all x ∈ Z[i]

Proof. (a) Since a+ bi = a− bi = a+ bi, is an inverse of and so complex conjugation is a
bijection. Let a, b, c, d ∈ R. Then

a+ bi+c+ di = (a−bi)+(c−di) = (a+c)−(b+d)i = (a+ c) + (b+ d)i = (a+ bi) + (c+ di)

and

a+ bi·c+ di = (a−bi)·(c−di) = (ac+bd)−(ac+bc)i = (ac+ bd)− (ac+ bc)i = (a+ bi) · (c+ di)
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So is a ring homomorphism. Thus (a) holds.
(b) Observe that x ∈ Z[i] for all x ∈ Z[i]. Thus the restriction of to Z[i] is l its own

inverse and ring homomorphism.
(c) Let x = a+ bi with a, b ∈ R. Then d(x) = a2 + b2 = (a+ bi)(a− bi) = xx.

d(xy) = (xy)xy = xyxy = (xx)(yy) = d(x)d(y)

(d) Clearly d(x) = a2 + b2 ≥ 0 and d(x) = 0 if and only if a = b = 0 and so if and only
if x = 0.

(e) Obvious.

Lemma 3.7.5. [approximation by gaussian integers] Let x ∈ C then there exists y ∈
Z[i] with d(x− y) ≤ 1

2 .

Proof. Let x = x1 + x2i with xi ∈ R. Then there exists yi ∈ Z with |xi − yi| ≤ 1
2 (Just

round xi to the nearest integer). Let y = y1 + y2i. Then

d(x− y) = (x1 − y1)2 + (x2 − y2)2 ≤ 1
2

2

+
1
2

2

=
1
2

Lemma 3.7.6. [Gaussian integers form an Euclidean domain] Z[i] is an Euclidean
domain with Euclidean function on d.

Proof. Since C is a field, C is an is an integral domain. Hence also Z[i] is a integral domain.
It remains to show that d is an Euclidean function. Let a, b ∈ Z[i]#. Then d(a) and d(b)
are positive integers and so

d(ab) = d(a)d(b) ≤ d(b)

By 3.7.5 there exists s ∈ Z[i] with d(ab − s) ≤
1
2 < 1. Put r = a− sb. Then

d(r) = d(b(
a

b
− s)) = d(b)d(

a

b
− s) < d(b)

and

a = sb+ r

So d is an Euclidean function.

Lemma 3.7.7. [units in gaussian integers] Let a be a Gaussian integer. Then the fol-
lowing are equivalent:

(a) [a] a is a unit in Z[i].

(b) [b] d(a) = 1
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(c) [c] a is one of 1,−1, i and −i.

Proof. (a) =⇒ (b): Suppose that ab = 1 for some b ∈ Z[i]. Then d(a)d(b) = d(ab) =
d(1) = 1. Since d(a) and d(b) are non-negative integers we conclude that d(a) = 1.

(b) =⇒ (c): Let a = x + iy with x, y ∈ Z. Then x2 + y2 = d(a) = 1 and so
{|x|, |y|} = {0, 1}. So either x = 0 and y = ±1 or y = 0 and x = ±1. Thus a = ±1,±i.

(c) =⇒ (a): In each case d(a) = 1. Thus aa = 1 and a is a unit.

Lemma 3.7.8. [associates and unit] Let R be an integral domain and a, b ∈ R. Then
a ∼ b if and only if a = ub for some unit u in R.

Proof. Suppose first that a ∼ b. Then b | a and so a = ub for some u ∈ R. If b 6= 0R, then
by 3.6.4 u is a unit. If b = 0R, then also a = 0R and a = 1Rb. So in both cases a = ub for a
unit b in R.

Suppose next that a = ub for a unit u ∈ R. Then b = u−1b. Hence a | b and b | a and
so a ∼ b.

Lemma 3.7.9. [associates of Gaussian integers] Let x, y ∈ Z and a = x + yi. Then
the associates of a in Z[i] are a = x+ yi,−a = −x− yi, ia = −y + xi and −ia = y − xi.

Proof. Let b ∈ Z[i]. By 3.7.8 n ∼ a if and only if b = ua for some unit u in Z[i] and so by
3.7.7 if and only if b is one of a,−a, ia,−ia

Lemma 3.7.10. [Gaussian primes] Let a be a Gaussian prime. Then there exists an
positive prime integer p such that one of the follwing holds:

(a) [a] d(a) = p2, a ∼ p and p is a Gaussian prime.

(b) [b] d(a) = p, a 6∼ p and p is not a Gaussian prime.

Proof. Since d(a is a positive integer, d(a) = p1p2 . . . pn where each pi is a positive prime
integer. Since d(a) = aa, a divides d(a). Since a is a Gaussian prime we conclude from
3.6.15(b) that a | pi (in Z[i]) for some 1 ≤ i ≤ n. Put p = pi. Then a | p and p | d(a).

Hence a = pb for some b ∈ Z[i] and so p2 = d(p) = d(ab)
3.7.4(c)

= d(a)d(b).
Thus d(a) divides d(p) = p2 in Z. Since a is not a unit, we from 3.7.7 that d(a) > 1 and

so d(a) ∈ {p, p2}.
If d(a) = p2 we get d(b) = 1. So by 3.7.7 b is a unit and a ∼ p. Since a is a Gaussian

prime, 3.6.14(b) implies that p is a Gaussian prime. Thus (a) holds in this case.
If d(a) = p then d(b) = p. So 3.7.7 b is not a unit and by 3.6.4 p � bp = a. Since a

divides p and a is neither p nor a ∼ p we conclude from 3.6.5 that p is not irreducible. Thus
by 3.6.6 p is not a prime. hence (b) holds in this case.

Lemma 3.7.11 (Wilson). [Wilson’s Lemma] Let p be prime. Then (p−1)! ≡ −1 (mod p)
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Proof. If p = 2, then (p− 1)! = 1! = 1 ≡ −1 (mod 2). So suppose that p is odd.
Let i ∈ Zp with i 6= 0. Since Zp is a field i has an inverse i−1. For n ∈ nZ let

ñ = n+ φZ ∈ Zp We have

i = i−1

⇐⇒ i2 = 1̃

⇐⇒ (i− 1̃)(i+ 1̃) = 0̃0

⇐⇒ i− 1̃ = 0̃ or i+ 1̃ = 0̃

⇐⇒ i = 1̃ or i = −1̃

Let k = |Z]p|−2
2 = p−3

2 . Then we can choose a1, . . . ak ∈ Zp with

Z]p \ {1̃,−1̃} = {ai, a−1
i | 1 ≤ i ≤ k}

Thus

∏
i∈Z]p

i = 1̃ · −1̃ ·
k∏
i=1

aia
−1
i = −1̃

Since Z]p = {ñ | 1 ≤ n ≤ p− 1} we get

(p− 1)! ≡
p−1∏
n=1

n ≡ −1 (mod p)

Theorem 3.7.12. [More on Gaussian primes] Let p be a prime integer. Then the fol-
lowing are equivalent:

(a) [a] p is not a Gaussian prime.

(b) [b] There exists a Gaussian prime a with p = aa.

(c) [c] There exists integers a and b with p = a2 + b2.

(d) [d] p = 2 or p ≡ 1 mod 4.

(e) [e] There exists an integer x with x2 ≡ −1 mod p.

Proof. (a) =⇒ (b):
Since p is not a unit and Z[i] is Euclidean and so a UFD, p is a product of Gaussian

primes. In particular there exists a Gaussian prime a with a | p. Hence d(a) divides
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d(p) = p2 in Z. If d(a) = p2, then by 3.7.10 p is a Gaussian prime, a contradiction to (a).
Since a is not a unit, d(a) 6= 1 and so d(α) = p.

(b) =⇒ (c):
Let α = a+ ib with a, b ∈ Z. Then p = αα = a2 + b2.
(c) =⇒ (d):
Let a = 2k + u and b = 2l + v with k, l ∈ Z and u, v ∈ {0, 1}. Then

p = a2 + b2 = 4k2 + 4k + u2 + 4l2 + 4l + v2 ≡ u+ v mod 4

If u+ v is even, then p is even and so p = 2.
If u+ v is odd, then u+ v = 1 and so p ≡ 1 mod 4.
(d) =⇒ (e): If p = 2 we can choose x = 1. So suppose that p ≡ 1 mod 4. Put

x = p−1
2 !. Since p−1

2 is even we conclude

x = (−1) · (−2) · . . . · (−p− 1
2

)

≡ (p− 1) · (p− 2) · . . . · p+ 1
2

mod p

So 3.7.11 implies Thus x2 ≡ (p− 1)! ≡ −1 mod p.
(e) =⇒ (a):
Suppose that p is a Gaussian prime. Since x2 ≡ −1 mod p we get that p | x2 + 1 =

(x + i)(x − i). Since p is a Gaussian prime, p has devide x + i or x − i. Since p = p we
conclude that p divides x+ i and x− i and so also (x+ i)− (x− i) = 2i. But then d(p) = p2

divides d(2i) = 4 and so p = 2. But 2 = (1 + i)(1− i) and neither 1 + i nor 1− i is a unit.
Thus p = 2 is not irreducible and so also not a prime in Z[i].

Note that part (c) and (d) of the previous theorem say that an integral prime is the sum
of two integral squares if and only if its 2 or 1 mod 4.

3.8 Constructing fields from rings

Lemma 3.8.1. [field of fractions] Let R be an integral domain. Then there exists a field
F such that R is a subring F and R is not contained in any proper subfield of F . Moreover,
F = {ab−1 | a, b ∈ R, b 6= 0R} and if K is any other such field then there exists a unique
ring isomorphism α : F → K with α(r) = r for all r ∈ R. F is called the field of fractions
of R and denoted by FR.

Proof. Informally F consists of all ab with a, b ∈ R and b 6= 0R. Addition and multiplication
are defined by

(∗) a

b
+
c

d
=
ad+ bc

bd
and

a

b

c

d
=
ac

bd
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Moreover two fraction a
b and c

d are equal if ad = bc.
But what really is a

b ? We will define a fraction as an equivalence class of pairs (a, b):

Let D = R×R] = {(a, b) | a, b ∈ R | b 6= 0R. Define the relation ≈ on D by (a, b) ≈ (c, d)
if ad = bc. We will show that ≈ is a equivalence relation. Since R is commutative, ab = ba
and so (a, b) ≈ (a, b) for all (a, b) ∈ D. Thus ≈ is reflexive. If ad = bc then cb = da and
so (c, d) ≈ (a, b). Thus ≈ is symmetric. Suppose now that (a, b) ≈ (c, d) and (c, d) ≈ (e, f)
with (a, b), (c, d), (e, f) ∈ D. Then ad = bc and cf = de. Hence also adf = bcf and
bcf = bde. Thus adf = bde and (af)d = (be)d. Since d 6= 0R, the Cancellation Law 3.2.6
implies that af = bd and so (a, f) ≈ (b, e). Hence ≈ is transitive and so an equivalence
relation. For (a, b) ∈ D let a

b be the equivalence class of ≈ containing (a, b). So

a

b
= {(c, d) | c, d ∈ R, d 6= 0R, ad = bc}

Let F = D/ ≈ be the set of equivalence class of ≈. So

F = {a
b
| a, b ∈ R, b 6= 0R}

We use (*) to define addition and multiplication on F , but we must verify that this defini-
tion does not depend on the choice of the representatives. So let (a, b), (c, d), (ã, b̃), (c̃, d̃) ∈ D
with

(∗∗) ab̃ = ãb cd̃ = c̃d

We need to show that

ad+ bc

bd
=
ãd̃+ b̃c̃

b̃d̃
= and

a

b

c

d
=
ãc̃

b̃d̃

This is true if and only if

(ad+ bd)(c̃d̃) = (ãc̃+ b̃d̃)(cd) and abc̃d̃ = cdãb̃

and so if and only if

(ad̃)(cc̃) + (bc̃)(dd̃) = (ãd)(cc̃) + (b̃c)(dd̃) and (ad̃)(bc̃) = (ãc)(db̃)

But the latter equation follows easily from (**). Thus addition and multiplication is
well defined. Some routine calculation show that F is a commutative ring with 0F = 0R

1R

and 1F = 1R
0R

. Since 0ROR = OR 6= 1R = 1R1R, 0F 6= 1F . a
b = 0R if and only if

a = a1R = b0R = 0R. a
b = 1F if and only if a = a1R = b1R = b. If a 6= 0R, then (b, a) ∈ D

and b
a ·

a
b = ab

ab = 1F . So every non-zero element in F has an inverse and F is a field.
It is easy to check that the map σ : R → F, | r → r

1R
is a 1-1 ring homomorphism. So

we may identify r with r
1R

and view R has a subfield of F . We have
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a

b
=

a

1R
1R
b

= ab−1

and so F = {ab−1 | a, b ∈ R, b 6= 0R}.
Now let K be any field containing R with R not contained in any proper subfield of K.

Define α : F → K, ab → ab−1. We need to show that α is well defined. Indeed if ad = bc
in R then also ab−1 = cd−1 in K. It is easy to see that α is a ring homomorphism. By
Homework 1#1, 1R = 1K and so for r ∈ R we have α(r) = α( r

1R
) = r1−1

R = r1−1
K = r.

Since α(1R) = 1R = 1K 6= 0R we conclude from Homework 1#2, that α is 1-1 and α(F )
is a subfield of K. Since R = α(R) ⊆ α(F ) we conclude, from the assumption that R is
not contained in a proper subfield of K, that α(F ) = K. So α is onto. Hence α is an ring
isomorphism.

Definition 3.8.2. [def:ordered ring] Let R be a ring. An ordering on R is a subset R+

such that

(i) [i] If r ∈ R then exactly one of the following holds:

r ∈ R+, r = 0R,−r ∈ R+

(ii) [ii] Let x, y ∈ R+, then x+ y ∈ R+ and xy ∈ R+.

Given an ordering R+ of R, we define the relation < on R be x ≤ y if y − x ∈ R+ and
the relation ≤ by x ≤ y if x = y or x ≤ y.

Definition 3.8.3. [def:partial] Let ≤ be a relation on the set I.

(a) [a] ≤ is called antisymmetric if a ≤ b and b ≤ a implies a = b.

(b) [b] ≤ is called a partial ordering if ≤ is reflexive, anti-symmetric and transitive.

(c) [c] ≤ is called a total ordering if ≤ is a partial ordering and for all x, y ∈ R we have
x ≤ y or y ≤ x.

Lemma 3.8.4. [ordered rings] Let R+ be an ordering on the ring R. Then

(a) [a] x, y ∈ R, then exactly one of the following holds:

x < y, x = y, y < x

(b) [z] Let x, y, z ∈ R. Then x < y if and only if x+ z ≤ y + z.

(c) [y] Let a, b, c, d ∈ R with a < b and c < d, then a+ c < c+ d.

(d) [b] Let x, y ∈ R and r ∈ R+,

(a) [a] x < y if and only if rx < ry.
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(b) [b] x = y if and only if rx = ry.

(c) [c] x ≤ y if and only if rx ≤ ry.

(e) [c] < is transitive and ≤ is total ordering on R.

(f) [d] Let n ∈ Z+ and a ∈ R+. Then na ∈ R+ . In particular na 6= 0R.

(g) [e] Suppose R has an identity and 1R 6= 0R. Then 1R ∈ R+. Moreover, if u ∈ R+ is a
unit, then u−1 ∈ R+.

Proof. (a) By definition of an ordering exactly one of the following holds:

y − x ∈ R+, y − x = 0R,−(y − x) ∈ R+

(a)
Since −(y − x) = x− y we conclude that exactly one of the following holds:

x ≤ y, x = y, y ≤ x

(d) If x < y, then y − x ∈ R+ and so also r(y − x) ∈ R+. Thus ry − rx = r(y − x) ∈ R+

and so ry < rx. If x = y then rx = ry and if y > x, ry > rx.
So if rx < ry we conclude that x 6= y and y 6< and so x < y. Thus (d:a) holds. If

rx = ry we conclude that neither x < y nor y < x and so x = y. So (d:b) holds.
(d:c) follows from (d:a) and (d:c)
(b) This follows from (y + z)− (x+ z) = y − x.
(c) (a+ c)− (b+ d) = (a− b) + (c− d) ∈ R+ since both a− b and c− d are in R+. Thus

a+ c < b+ d.
(e) Suppose x < y and y < z. Then y − x ∈ R+ and z − y ∈ R+. Thus also z − x =

(z − y) + (y − x) ∈ R+ and x < z. Hence < is transitive
Clearly ≤ is reflexive. Suppose that x ≤ y, y ≤ x and x 6= y. Since x ≤ y, this means

x < y and since y ≤ x, y < x, a contradiction to (a). S
Suppose x ≤ y and y ≤ z. If x = y or y = z, then clear x ≤ z. So suppose x < y and

y < z. Then x < z and so x ≤ z. The ≤ is transitive. Hence ≤ is a partial ordering. By
(a), x ≤ y or y ≤ x and so ≤ is a total ordering.

(f) If 1a = a ∈ R+. Suppose na ∈ R+ for some n ∈ Z+. Then (n+ 1)a = na+ a ∈ R+.
So (f) follows from the principal of induction.

(g). Suppose that 1R /∈ R+. Since 1R 6= 0R, −1R ∈ R+ and so 1R = (−1R)(−1R) ∈ R+,
a contradiction. Thus 1R ∈ R+. Let u ∈ R+ be a unit. Then u0R = 0R < 1R = uu−1 and
so by (e), 0R < u−1. Thus u−1 ∈ R+.

Definition 3.8.5. [def:archimedian] An ordering R+ on a ring R is called Archimedean,
if for all a, b ∈ R+ there exists n ∈ Z+ with a ≤ nb.

Definition 3.8.6. [def:complete] Let I be a set, J ⊆ I, m ∈ I and ≤ a partial ordering
on I.
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(a) [a] m is called an upper bound for J if j ≤ m for all j ∈M .

(b) [b] J is called bounded if there exists an upper bound for J in I.

(c) [c] m is called a least upper bound if m is an upper bound for J and m ≤ k for all
upper bounds k ∈ J .

(d) [d] ≤ is called a complete if every non-empty bounded subset of I has a least upper
bound.

Lemma 3.8.7. [ordered field of fraction] Let R be an integral domain with field of frac-
tion F . Suppose R+ is an ordering on R and put F+ = a

b | a, b ∈ R
+}.

(a) [a] F+ is an ordering on F and F+ ∩R = R+.

(b) [b] If a, c ∈ R and b, d ∈ R+, then a
b <

c
d if and only if ad < bc.

(c) [c] R+ is Archimedean so is F+.

Proof. (a) Let x ∈ F then x = a
b for some a, b ∈ R, b 6= 0R. If a = 0R, then x = 0F . If

a, b ∈ R+ or −a,−b ∈ R+, then b
=
−a
−b ∈ R

+ and if a ∈ R+ and −b ∈ R+ or −a ∈ R+ and
b ∈ R+, then −a

b = −a
b = a

−b ∈ R
+.

Suppose now that x ∈ F+ and −x ∈ F+. Then x = a
b and −x = c

d with a, b, c, d ∈ F.
Thus a

b = −c
d and ad = −bc. Put ab ∈ R+ and cd ∈ R+. So −cd /∈ R+ and ad 6= −bc, a

contradiction. Also x 6= 0R for all x with x ∈ F+ and so also x 6= 0R for all x with −x ∈ F+.
Thus exactly one of x ∈ F+, x = 0R,−x ∈ F+ holds.

let a, b, c, d ∈ R+, Then ad, bc, ac, bd and ad+ bc all are in R+ and so a
b + c

d = ad+bc
db and

a
b
c
d = ac

bd are in F+. Thus F+ is an ordering.
Let r ∈ R with r

1R
∈ F+. Then r

1 = a
b with a, b ∈ R+. Thus rb = a > 0R = 0Rb and so

r > 0R by 3.8.4(d:a).
(b) By 3.8.4(d:a), a

b <
c
d if and only if bdab < bd cd and so if and only if ad < bc.

(c) Suppose now that R+ is Archimedean and let a, b, c, d ∈ R+. Then ac and ad, bc ∈ R+

and since R+ is Archimedean, ad ≤ nbc for some n ∈ Z+. Thus by (b), a
b ≤ n

c
d .

3.8.8 (Real Numbers). [real numbers]

Let F be a field with a Archimedean ordering F+. Let S be the set of all subsets A of
R such that

(i) [a] A 6= ∅ and A 6= F .

(ii) [b] If a ∈ A and b ∈ Q with b ≤ a, then b ∈ A.

Let S be the set of all A ∈ S such that

(iii) [c] A has no maximal element, that is for each a ∈ A there exists c ∈ A with a < c.
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Put 2R = 21R = 1 + r + 1R. By 3.8.4 2R and 2−1
R ∈ R+.

1◦. [1] Let x, y ∈ F with x < y. Put z = x+y
2R

. Then x < z < y.

Indeed z − x = x+y
2R
− x = y−x

2R
= (y − x)2−1

R ∈ R+ and similarly y − z ∈ F+. So (1◦)
holds.

For r ∈ F let Ar = {a ∈ F | a < r}. Since r − 1R ∈ Ar, Ar 6= ∅ and since r /∈ Ar,
Ar 6= F . If a ∈ Ar then a < a+r

2R
< r and so a is not a maximal element of Ar. If b ∈ F

with b ≤ a, then also b < r and so b ∈ A+ r. Thus Aq ∈ S. Next we show

2◦. [2] The map F → S, r → Ar is 1-1.

Let r, s ∈ F with r 6= s. Without loss r < s. Then r ∈ As and r /∈ Ar. Thus Ar 6= As
and the map is 1-1.

3◦. [3] Let A ∈ S and b ∈ F \A. Then a < b for all a ∈ A.

If b ≤ a for some a ∈ A we would get b ∈ A, a contradiction. Thus b � a and so a < b
for all a ∈ A.

4◦. [4] Let A ∈ S and B ∈ S. Define A ⊕ B = A + B = {a + b | a ∈ A, b ∈ B}. Then
A+B ∈ S.

Since both A and B are proper subsets there exists a ∈ A, b ∈ B, x ∈ F \A and y ∈ F \B
with A⊕+B is not empty. Then a+ b ∈ A⊕B. So A⊕B 6= emptset. By (3◦), a < x and
b < y. Hence by 3.8.4(c), a + b < x + y. Thus a + b 6= x + y and x + y /∈ A + B. Thus
A ⊕ B 6= S. Let a ∈ A, b ∈ B. Since a is not maximal in A there exists exists c ∈ A with
a < c Then a+ b < c+ b and so a+ b is not maximal in A⊕B. Let z ∈ F with z ≤ a+ b.
Then z − a ≤ b and so z − a ∈ B. Thus z = (z − a) = a ∈ A⊕B. So A⊕B ∈ S.

5◦. [5] Let a ∈ F+ and B ∈ S, then there exists b ∈ B and c ∈ R\B with with c− b = a.

Pick d ∈ B and e ∈ F \ B. Since F+ is Archimedean there exists n ∈ Z+ with
e− d ≤ na. Hence d+ na /∈ F and we can choose m ∈ Z+ minimal with c := d+ma /∈ B.
Put b = d+ (m− 1)a. Then b ∈ B and b+ a = c.

6◦. [6] Let A ∈ S and B ∈ S. Define A 	 B = {a − c | a ∈ A | c ∈ R \ B}. Then
A	B ∈ S and B ⊕ (A	B) = A.

Let B̃ = {−c | c ∈ R \ B}. Since B proper subset of F , R \ B is a proper subset of
F and also B̃ = −(R \ B) is a proper subset. Let d ≤ −c for some d ∈ F and c ∈ R \ B.
Then c ≤ −d and since c /∈ B, −d /∈ B. Thus d = −(−d) ∈ B̃. So B̃ ∈ S and by (4◦),
A	B = A+ B̃ ∈ S

Let a ∈ A, b ∈ B and c ∈ F \B. Then b < c, b− c < 0F and b+ (a− c) = a+ (b− c) < a.
Thus b+ (a− c) < a and B⊕ (A	B) ⊆ A. Since a is not maximal in A, there exists d ∈ A
with a < d. By (4◦) there exists x ∈ B and y ∈ R \C with y− x = d− a. So x− y = a− d
and a = (a− d) + d = x− y + d = (x+ d)− y ∈ B ⊕ (A	−B).
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7◦. [7] F− = A0F ∈ S and A+ F− = A for all A ∈ S.

The first statement is obvious. Let a ∈ A and b ∈ F−. Then a+ b < a and so a+ b ∈ A.
Since a is a not a maximal element of A, there exists c ∈ A with c � a and so c < a. Then
a = a+c

2R
+ c−a

2F
∈ A+ F− and so A = A+ F−.

8◦. [8] (S,+) is an abelian group. The identity is F− and the additive inverse of A ∈ S
is 	A := F− 	A.

By 2.4.12(a), ” + ” is associative. Clearly A + B = B + A. By (7◦), F− is an additive
identity and by (6◦), 	A is an additive inverse of A.

For A ⊆ F put A+ = A ∩ F+. Let S+ = {A ∈ S | A+ 6= ∅ and S+ = S ∩ S+. Put
S− = S \ S+ ∪ F−} and S=S ∩ S−. Let F−0 = {a ∈ F | a ≤ 0F }. If A,B ∈ S+ define
A � B = A+B+ ∪ F−0 . If A = F− or B = F− define A � B = F−. If A ∈ S and B∈§−
define A�B = 	(A� (	B)) and if A ∈ S− and B ∈ S define A�B = 	((	A)�B).

9◦. [9] A�B ∈ S for all A ∈ S,B ∈ S.

By definition of � is suffices to treat the case where A,B ∈ S+. As in (4◦) one shows that
A+B+ is a proper subset of F+, A+B+ does not have a maximal element and x ∈ A+B+

whenever x ∈ F+ with x ≤ ab for some a ∈ A+, b ∈ B+.

10◦. [10] Put 1S = A1R . Then 1S �A = A for all A ∈ S.

Since 	(	A) = A it suffices to treat the case A ∈ S+. If b < 1F and a ∈ A+, then
ba < 1Fa = a and so ba ∈ A. Thus 1S ⊗A ⊆ A. Since a is not maximal element of A, there
exists c ∈ A with a < c. Then ac−1 < 1− F and so a = ac−1c ∈ 1S ⊗A. Hence 1S ·A = A.

11◦. [11] Let B ∈ S+ and e ∈ F with 1F < e. Then there exists x ∈ B+ and y ∈ F \B
with yx−1 = e.

Pick b ∈ B+. Since 1F < e, b < eb and so eb− b ∈ F+. Thus by (5◦) there exists c ∈ B
and d ∈ R \B with d− c = eb− b. let x = max(b, c) and y = ex. Then x ∈ B. Since b ≤ x
and e− 1F ∈ F+ we b(e− 1F ) ≤ x(e− 1− F ) and so

d− c = eb = b = (e− 1F )b ≤ (e− 1F )x = ex− x = y − x

Also c ≤ b and thus

d = (d− c) + c ≤ (y − x) + x = y

Since d /∈ B we get y /∈ B. Also yx−1 = exx−1 = e and (11◦) holds.

Let A ∈ S and B ∈ S]. Suppose B ∈ S+ and define B̂ = (F \B)−1∪F−0 . Then B̂ ∈ S+.
Define A

B = A⊗ B̂. If B ∈ S− define A
B = 	 A

	B .

12◦. [12] Let A ∈ S and B ∈ S]. Then A
B ∈ S and B � A

B = A.
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Suppose B ∈ S+. The there exists b ∈ B+ and b−1 /∈ B̂. Thus B̂ 6= ∅. Let c ∈ F \ B.
Then c ∈ F+ and c−1 ∈ B̂+. Thus B̂+ 6= ∅. Let d ∈ F+ with d ≤ c−1. Then c ≤ d−1 and
since c /∈ B, d−1 /∈ B. Thus d = (d−1)−1 ∈ B̂. So B̂ ∈ S and by (9◦), A

B = A� B̂ ∈ S+.
To prove B� A

B = A it suffices to consider the case A,B ∈ S+. Let a ∈ A+, b ∈ B+ and
c ∈ F \B. Then b < c, bc−1 < 1F and a(bc−1) < a. Thus abc−1 ∈ A and B · AB ⊆ A. Since
a is not maximal in A, there exists d ∈ A with a < d. hence 1F < da−1. By (11◦) there
exists x ∈ B+ and y ∈ F \B with yx−1 = da−1. Then ad−1 = xy−1 and

a = ad−1d = (yx−1d = xdy−1 ∈ B � A

B
.

Hence A = B � A
B .

13◦. [13] (S,⊕,�) is a field.

By (10◦) 1S is a identity with respect to �. By (12◦), B · 1SB = 1S and so 1S
B is an inverse

of B ∈ S]. By (2◦) 1S = A1F 6= A0F = 0F . The associative law and commutative law for ·
and the distributive laws are readily verified. So S is a field.

14◦. [14] S+ is an ordering on S. Moreover, A < B if and only if A ( B.

Let A ∈ S. Note that

	A = F− 	A = {c− d | c ∈ F−, d ∈ F \A}

If A ∈ S+, then A+ 6= ∅ and so A 6= 0S = F−. Also 	A ⊆ F− and so 	A /∈ S+.
If A = 0S , then neither A nor −	A = A is in S+.
Suppose A /∈ S+ and A 6= F−. Then A+ = ∅ and so A ⊆ F−0 . Since A has no maximal

element, 0F 6 A. Thus A ⊆ F−. Since A 6= F− there there exists e ∈ F− \ A. Then
e

2F
− e = − e

2F
∈ F+ ∩ (	A) and so 	A ∈ S+.

We conclude that exactly one of A ∈ S
+
, A = 0S and 	A ∈ S

+ holds. The other
properties of an ordering are readily verified.

We have

A < B

⇐⇒ B 	A ∈ S+

⇐⇒ b− d ∈ S+ for some b ∈ B, d ∈ F \A

⇐⇒ d < b for some b ∈ B, d ∈ F \A

We will show that the last statement is equivalent to A ( B.
If d < b for some b ∈ B, d ∈ F \ A, then by (3◦), b /∈ A and again by (3◦) a < b for

all a ∈ A. So using (3◦) one more time a ∈ B and thus A ⊆ B. Since b /∈ A, A 6= B and
A ( B.

Conversely suppose A ( B and let d ∈ B \ A. Since B has no maximal element d < b
for some b ∈ B. Thus (14◦) holds.
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15◦. [15] S+ is Archimedean.

To show that S+ is Archimedean let A,B ∈ S+. Pick b ∈ B+ and d ∈ F \ A. Then
since F+ is Archimedean, a ≤ nb. Then nb + b /∈ A and so nB * A. Thus nB � A and
A < nB. So S+ is Archimedean.

16◦. [16] S+ is complete.

Let B be a non-empty bounded subset of S. Define M =
⋃
B. Since B is not empty

there exists B ∈ B. Then B ∈ S and so B 6= ∅. Since B ⊆M , M 6= ∅.
Let K be any upper bound for B. Define B ⊆ K for all B ∈ B and so M ⊆ K and

M ≤ K. Since K 6= F we get M 6= F and so M is a proper subset if F . Let a ∈ F and
b ∈ M with a ≤ b. Then b ∈ B for some B ∈ B. So a ∈ B and a ∈ M . Suppose d is an
maximal element of M . Then d ∈ B for some B ∈ B and d is maximal element of B, a
contradiction. Thus M ∈ S. Since B ≤M for all B ∈ B, M is an upper bound. We already
proved M ≤ K for all upper bounds of B and so M is a least upper bound.

Lemma 3.8.9. [irreducible-maximal] Let c be a proper element in the integral domain
R. Then the following are equivalent

(a) [1] c is irreducible.

(b) [2] For all a ∈ R,
a | c =⇒ a ∼ c or a is a unit

(c) [3] Rc is maximal in the set of proper principal ideals, that if a ∈ R with Ra 6= R and
Rc ≤ Ra, then Rc = Ra.

Proof. (a) =⇒ (b): See 3.6.5.
(b) =⇒ (c): Since c is proper, Rc 6= R. Suppose Rc ⊆ Ra for some a ∈ R with

Ra 6= R. Then c | a. Thus by (b), a ∼ c or a is a unit. If a is a unit, the Ra = R by 3.6.3,
a contradiction. Hence a ∼ c and so Ra = Rc by 3.6.2(d). Thus (c) holds.

(c) =⇒ (a): Let a, b ∈ R with and c = ab. Then Rc ⊆ Rb and so by (c), Ra = Rc or
Ra = R In the first case a ∼ c and so by 3.6.4 b is a unit. In the second case a is a unit by
3.6.3 Hence c is irreducible.

Lemma 3.8.10. [char max] Let R be a commutative ring with identity 1R 6= 0R. Let M
be a ideal in R with R 6= M . Then R/M is a field if and only if M is a maximal ideal in
R.

Proof. Since M 6= R, 1R 6 inM and so 1R/M = 1R +M 6= 0R +M = 0R/M .
Suppose first that R/M is a field and let I be an ideal in R with M ( R. Pick r ∈M \R.

Since R/M is a field, r +M has an inverse s+M in R/M . Then

rs+M = (r +M)(s+M) = 1R/M = 1R +M
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and so 1R = rs+m for some m ∈M . Since M is an ideal and both r and m are in M we
get rs ∈M and then 1R ∈M . Then R = R1R ⊆M and M = R.

Suppose next that M is a maximal ideal in R and let 0R/M 6= x ∈ R/M . Then x = r+M
for some r ∈ R with r 6= M . By 3.3.7 Rr + M is an ideal in R. Since r ∈ Rr + M ,
M ( Rr+M and so by maximality of M , R = Rr+M . Thus 1R = sr+m for some s ∈M .
Then

(s+M)(r +M) = rs+ +m = (1R −m) +M = 1R +M = 1R/M

and so x = r +M is invertible in R/M . Thus R/M is a field.

Lemma 3.8.11. [constructing fields] Let R be a PID and 0R 6= a ∈ R. Then the
following are equivalent:

(a) [a] a is a prime

(b) [b] a is irreducible

(c) [c] Ra is a maximal ideal in R.

(d) [d] R/Ra is a field.

(e) [e] R/Ra is an integral domain.

Proof. (a) =⇒ (b): By 3.6.12 every prime in a PID is irreducible.
(b) =⇒ (c): . Since a is irreducible, a is proper. Thus by 3.8.9 Ra is maximal among

the proper principal ideals. Since R is a PID, every ideal is principal and so Ra is a maximal
ideal.

(c) =⇒ (d): See 3.8.10.
(d) =⇒ (e): By 3.2.5 every field is an integral domain.
(e) =⇒ (a): Let a, b ∈ R with c | ab. Then ab ∈ Rc and so

(a+Rp)(b+Rc) = ab+Rc = Rp = 0R/Rc

Since R/Rc is an integral domain we get a+Rc = 0Rc = Rc or b+Rp = 0Rc = Rc. Hence
a ∈ Rc or b ∈ Rc and so c | a or c | b. Thus c is a prime.

Lemma 3.8.12. [basic deg] Let R be an integral domain and f, g ∈ R[x]. Then

(a) [a] deg(f + g) ≤ max(deg f, deg g).

(b) [b] deg(fg) = deg f + deg g.

(c) [c] R[x] is an integral domain.

(d) [d] If f divides g in R[x] and g 6= 0F , then deg f ≤ deg g.

(e) [e] Let f is a unit if and only if f ∈ R and f is a unit in R.
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Proof. If f = 0R or g = 0R, the statements about f and g are readily verified. So suppose
f 6= 0R and g 6= 0R. Let f =

∑∞
i=0 fix

i and g =
∑∞

i=0 gix
i with fi, gi ∈ R, almost all 0. Let

n = deg f and m degm. Then fn 6= 0R and gm 6= 0R. if
(a) Let d = max(n.m). Then fi = 0+R = gi for all i > d and so f+g =

∑s
i=0(fi+gi)xi.

Thus deg f + g ≤ d.
(b) and (c) We have fg =

∑
n=0

∑m
i=0 figjx

i+k. Thus the coefficient of xk is 0R for all
k > n+m and the coefficient of xn+m is fngm. Since R is an integral domain fngm 6= 0R.
Thus deg(fg) = n+m− deg f + deg g and fg 6= 0R. Thus (b) and (c) hold.

(d) Let g = fh with h ∈ R[x]. Since g 6= 0R also h 6= 0R. Thus deg h ≥ 0 and so by (b)
deg f ≤ deg f + deg h = deg(fh) = deg g.

(e) Suppose fg = 1K. Then f 6= 0R 6= g and by (b) deg f+deg g = deg)fg) = deg 1R = 0.
Thus deg f = 0 = deg g and f, g ∈ R. So if f is a unite in K[x], then f is a unit in R. The
converse is obvious.

Lemma 3.8.13. [fields from poly] Let K be a field and let f ∈ K[x] with deg f ≥ 1. For
g ∈ K[x], let g = g + fK[x]. Put E := K[x]/fK[x]

(a) [f] K[x] is a Euclidean domain and so also a PID and a UFD.

(b) [a] E is a field if and only if f is irreducible and if and only if E is an integral domain.

(c) [b] The map π : K[x]→ E, g → g is a ring homomorphism with kerπ = fK[x].

(d) [d] For each e ∈ E[x] there exists a unique g ∈ K[x] with deg g < deg f and e = g.
Morever, if e = h for some h ∈ K[x], then g is the remainder of h, then divided by f .

(e) [c] The map π|K: K→ E, k → k is a 1-1 ring homomorphism.

(f) [e] In view of (e) we may identify k ∈ K with k ∈ E. So K is a subring of E and
f ∈ E[x]. Then x is a root of f in E.

Proof. (a) By Example 3.5.2(2), K[x] is an Euclidean ring and by 3.8.12(c), K[x] is an
integral domain. Thus K[x] is an Euclidean domain. Hence by 3.5.9 K[x] is a PID and
3.6.20 K[x] is a UFD.

(b) By (a) K[x] is a PID. Thus (b) follows from 3.8.11.
(c) See 3.3.9(c).
(d) Let g ∈ K[x]. By the division algorithm 3.5.3 there exists q, r ∈ K[x] with g = qf+r

and deg r < deg f . Since qf ∈ fK[x], g + fK[x] = (qf + r0 + fK[x] and so g = r.
Suppose now that s ∈ K[x] with deg s < deg f and s = g. Then deg s − r < deg f

and s = r. Thus s − r = tf for some t ∈ degK[x]. If s − r 6= 0R then by 3.8.12(d),
deg f ≤ deg s− r a contradiction. Thus r − s = 0K and r = s.

(e) By (c), πK is a ring homomorphism. Let k, l ∈ K with k = l. Then deg k = deg l =
0 < deg f and so by (d), k = l.

(f) Let f =
∑n

i=0 kix
i with k)i ∈ K. Then
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f(x) =
n∑
i=0

kix
i =

n∑
i=0

kix
i =

n∑
i=0

kixi = f

Since f ∈ fK[x], we have f = f + fK[x] = K[x] = 0E. Hence f(x) = 0E) and x is a root
of f in E.

Definition 3.8.14. [def:root] Let R be a commutative ring with identity.

(a) [a] A proper r in R is called reducible if r = st for some proper elements s and t in
R, that is if R is not irreducible.

(b) [b] Let f ∈ R[x] and a ∈ R. Then a is a root of f if f(a) = 0R.

Lemma 3.8.15. [factor theorem] Let K be a field, a ∈ K and f ∈ K[x].

(a) [a] There exists q ∈ K[x] with f = q · (x− a) + f(a).

(b) [c] If g ∈ K[x] divides f and a is a root of g, then a is a root of f .

(c) [b] x− a divides f if and only if f(a) = 0K.

(d) [d] If deg f = 1, f has a root in K.

Proof. (a) By the Division Algorithm 3.5.3 f = q · (x − a) + r for some q, r ∈ K[x] with
deg t < deg(x− a) = 1. Thus r ∈ K and

f(a) = q(a)(a− a) + r(a) = q(a)0K + r = r

(b) Let f = gh with h ∈ K[x]. Then f(a) = g(a)h(a) = 0Kh(a) = 0K.
(c) If f(a) = 0R, then by (a), f = q · (x− a) for some q ∈ K[x]. Thus q | f . If x− a | f

then by (b), a is a root of f .
(d) Let f = bx+ c with b ∈ K], c ∈ K. Then f = b(x− (− c

b) and − c
b is a root of f .

Corollary 3.8.16. [deg 3 irr] let K be a field and f ∈ K[x] .

(a) [a] f is proper id and only if f /∈ K, that is deg f ≥ 1.

(b) [c] Suppose f is irreducible. Then f has a root in F if and only if deg f = 1.

(c) [d] Suppose deg f ∈ {2, 3}. Then f is irreducible if and only if f has no root in K.

Proof. (a) By 3.8.12(e), f is a unit if and only if f ∈ K]. So f is 0F or a unit if and only if
f ∈ K

(b) By 3.8.15(c), a is a root of f if and only if f = (x− a)g for some g ∈ K[x].
If deg f = 1, then f has a root. (3.8.15(d)).
If f = (x− a)g then since f is irreducible, x− a or g is a unit. x− a is not and so g is

a unit and g ∈ K. Thus deg f = 1.
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(c) If f is irreducible then by (b), f has no root in K. Suppose f is not irreducible.
Then f = gh with g and h proper. Since deg g + deg h = deg(gh) = deg f ≤ 3 we get
deg g = 1 or deg h = 1. Say deg g = 1. Then by 3.8.15 g has a root and since g divides f ,
f has a root in K.

Example 3.8.17. [ex:field from poly]

(1) [1] Let K be a field and let f = x2 + rx + s be a polynomial of degree two which
has no root on K. Then by 3.8.16(c), f is irreducible and we can apply 3.8.13. In
particular, E := K[x]/(fK[x] is a a field. For g ∈ K[x] put g = g + fK[x]. Then the
map K→ E, k → k is a 1-1 homomorphism and so we may identify k with k. Put t = x.
If e ∈ E the e = g for some g ∈ K[x] with deg g < deg f = 2. So g = a + bx for some
a, b ∈ K. Thus

e = a+ bx = a+ bx = a+ bd

Thus

E = {a+ bt | a, b ∈ K

Moreover, for a, b, c, d ∈ K.

a+ bt = c+ td⇐⇒ a = c c=d

The addition in E is easy:

(a+ bt) + (c+ dt) = (a+ c) + (b+ d)t

To determine the multiplicatio we compute

(a+ bt) · (c+ dt) = ac+ (bc+ ad)t+ bdt2

t2 must be of the form u+ vt for some u, v ∈ K. Since f ∈ fK[x] we have f = 0K and
so

0K = x2 + rx+ s = t2 + rt+ s

(So t is a root of f in K).) Hence t2 = −rt− s and

(a+bt)·(c+dt) = ac+(bc+ad)t+bdt2 = ac+(bc+ad)t−bdrt−bds = (ac−sbd)+(bc+ad)−rbd
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(2) [2] For a more concrete version of (1) consider the case K = R and f = x2 + 1. (So
r = 0 and s = 1.) Since a2 + 1 > 0 for all a ∈ R, x2 + 1 has no roots in R. We have

E = {a+bt | a, b ∈ R}, (a+bt)+(c+dt) = (a+c)+(b+d)t and (a+bt)(c+dt) = (ac−bd)+(ad = bc)T

Note also that t2 = −1. The field E is called the field of complex numbers and denoted
by C.

(3) [3] Now consider K = Z2. Are there any monic polynomials of degree 2 without a
root?

f f(0) f(1) roots

x2 0 1 0

x2 + x 0 0 0, 1

x2 + 1 0 1 1

x2 + x+ 1 1 1 0

So there is only one choice for f namely f = x2 + x+ 1 and so r = s = 1. Hence

E = {0, 1, t, t+1}, (a+bt)+(c+dt) = (a+c)+(b+d)t and (a+bt)(c+dt) = (ac+bd)+(ad = bc+bd)

This gives the following addition and multiplication table:

+ 0 1 t t+ 1

0 0 1 t t+ 1

1 1 0 t+ 1 t

t t t+ 1 0 1

t+ 1 t+ 1 t 1 0

· 0 1 t t+ 1

0 0 0 0 0

1 0 1 t t+ 1

t 0 t t+ 1 1

t+ 1 0 t+ 1 1 t
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Chapter 4

Field Theory

4.1 Vector Spaces

Definition 4.1.1. [def:vector space] Let K be a field. A vector space over K (or a K-
space ) is a tuple (V,+, �) such that

(i) [i] (V,+) is an abelian group.

(ii) [ii] � : K× V → V is a function called scalar multiplication .

(iii) [iii] a � (v + w) = (a � v) + (a � w) for all a ∈ K, v, w ∈ V .

(iv) [iv] (a+ b) � v = (a � v) + (b � v) for all a, b ∈ K, v ∈ V .

(v) [v] (ab) � v = a � (b � v) for all a, b ∈ K, v ∈ V .

(vi) [vi] 1K � v = v for all v ∈ V

An element of a vector space is called a vector. We usually just write kv for k � v.

Example 4.1.2. [ex:vector space] Let K be a field.

(1) [2] Let n ∈ N. Then Kn is an K-space via k � (a1, . . . , an) = (ka1, . . . , kan) for all
k, a1, . . . , an ∈ K.

(2) [3] The ring K[x] of polynomials with coefficients in K is a K-space via

k � (a0 + a1x+ . . . anx
n) = (ka0) + (ka1)x+ . . . (kanxn)

for all k, a0, . . . , an ∈ K.

Definition 4.1.3. [def:list] Let A be a set.

115



116 CHAPTER 4. FIELD THEORY

(a) [a] A list in A is a function f : {1, 2, 3, . . . , n} → A, where n ∈ N and A is set. Put
ai = f(i), 1 ≤ i ≤ n. Then the list f will be denoted by

(a− 1, a2, . . . , an) or (ai)ni=1

In the case n = 0, f is called the empty list and is denoted by ().

(b) [b] Let A = (ai)ni=1 and B = (bj)mj=1 be list in A. Then

(A,B)

denotes the list
(a1, a2, . . . , an, b1, b2, . . . , bm)

(c) [c] Let A = (ai)ni=1 and B = (bj)mj=1 be list in A. Then we say that A is contained in
A or that A is a sublist of B if there exists 1 ≤ j1 < j2 < . . . < jn ≤ m with

a1 = aj1 , a2 = bj2 , . . . an = bjn

Definition 4.1.4. [def:basis] Let K be a field and V and K-space. Let L = (v1, . . . , vn) ∈
V n be a list of vectors in V .

(a) [a] L is called K-linearly independent if

a1v1 + av2 + . . . avn = 0V

for some a1, a2, . . . , an ∈ K implies a1 = a2 = . . . = an = 0K.

(b) [b] Let (a1, a2 . . . , an) ∈ Kn. Then a1v1 + a2v2 + . . . + anvn is called a K-linear
combination of L.

SpanK(L) = {a1v1 + a2v2 + . . . anvn | (a1, . . . , an) ∈ Kn}

is called the K-span of L. So SpanK(L) consists of all the K-linear combination of L.
We consider 0V to be a linear combination of the empty list () and so SpanK

(
()
)

= {0V }.

(c) [c] We say that L spans V , if V = SpanK(L), that is if every vector in V is a linear
combination of L.

(d) [d] We say that L is a basis of V if L is linearly independent and spans V .

(e) [e] We say that L is a linearly dependent if it is not linearly independent, that is, if
there exist k1, . . . , kn ∈ K, not all zero such that

k1v1 + kv2 + . . .+ kvn = 0V .

Example 4.1.5. [ex:basis]
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(1) [1] Put ei = (0K, . . . , 0K, 1K, 0K, . . . , 0K) ∈ Kn where the 1K is in the i-position. Then
(e1, e2, . . . , en) is a basis for Kn, called the standard basis of Kn.

(2) [4] K[x] has no K-basis: Given a list (f1, f2 . . . , fn) of polynomials over K. Let mi =
deg fi and m = maxni=1mi. Then each K-=linear combination of (f1, . . . , fn) has degree
at most m. So (f1, . . . , fn) does not span K[x] and K[x] has no K-basis.

(3) [2] (1K, x, x
2, . . . xn) is a basis for Kn[x], where Kn[x] is set of all polynomials with

coefficients in K and degree at most n.

(4) [3] The empty list () is a basis for the K-space {0K}.

Lemma 4.1.6. [char basis] Let K be a field, V a K-space and L = (v1, . . . , vn) a list of
vectors in V . Then L is a basis for V if and only if for each v ∈ V there exist uniquely
determined k1, . . . , kn ∈ K with

v =
m∑
i=1

kivi.

Proof. =⇒ Suppose that L is a basis. Then L spans v and so for each v ∈ V there exist
k1, . . . , kn with

v =
m∑
i=1

kivi.

Suppose that also l1, . . . , ln ∈ K with

v =
m∑
i=1

livi.

Then
m∑
i=1

(ki − li)vi =
m∑
i=1

kivi −
m∑
i=1

livi = 0V .

Since L is linearly independent we conclude that ki− li = 0K and so ki = li for all 1 ≤ i ≤ n.
So the ki’s are unique.

⇐=: Suppose each v in V is a unique linear combination of L. Then clearly L spans V .
Let k1, . . . , kn ∈ K with

m∑
i=1

kivi = 0V

Since also
m∑
i=1

0Kvi = 0V

the uniqueness assumption gives k1 = k2 = . . . = kn = 0K. Hence L is linearly independent
and thus a basis for V .
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Lemma 4.1.7. [not in span] Let K be field and V a K-space. Let L = (v1, . . . , vn) be
a list of vectors in V . Suppose the exists 1 ≤ i ≤ n such that vi is linear combination of
(v1, . . . , vi−1, vi+1, . . . , vn). Then L is linearly dependent.

Proof. By assumption,

vi = k1v1 + . . .+ ki−1vi−1 + ki+1vi+1 + . . .+ knvn

for some kj ∈ K. Thus

k1v1 + . . .+ ki−1vi−1 + (−1K)vi + ki+1vi+1 + . . .+ knvn = 0V

and L is linearly dependent.

Lemma 4.1.8. [min-max] Let K be field, V an K-space and L = (v1, v2, . . . vn) a finite
list of vectors in V . Then the following three statements are equivalent:

(a) [a] L is basis for V .

(b) [b] L is a minimal spanning list, that is L spans V but for all 1 ≤ i ≤ n,

(v1, . . . , vi−1, vi+1, . . . , vn)

does not span V .

(c) [c] L is maximal linearly independent list, that is L is linearly independent, but for all
v ∈ V , (v1, v2, . . . , vn, v) is linearly dependent.

Proof. We will show that (a)⇐⇒ (b) and (a) ⇐⇒ (c).
(a) =⇒ (b): Since L is basis, it spans V . Since L is linearly independent 4.1.7 implies

that vi is not in the span of (v1, . . . , vi−1, vi+1, . . . , vn) and so (v1, . . . , vi−1, vi+1, . . . , vn) does
not span V .

(b) =⇒ (a): By assumption, L spans V so we only need to show that L is linearly
independent. Suppose not. Then

∑n
i=1 kivi = 0V for some k1, k2, . . . , kn ∈ K, not all 0K.

Relabeling we may assume k1 6= 0K. Thus

v1 = −k−1
1

(
n∑
i=2

kivi

)
.

Let v ∈ V . Then v =
∑n

i=1 aivi for some ai ∈ K and so

v = a1

(
−k−1

1

(
n∑
i=2

kivi

))
+

n∑
i=2

aivi =
n∑
i=2

(ai − a1k
−1
1 ki)vi.

Thus (v2, . . . , vn) spans V , contrary to the assumptions.
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(a) =⇒ (c): Let v ∈ V . Since L spans V , v is a linear combination of L and so by
4.1.7 (v1, v2, . . . , vn, v) is linearly dependent.

(c) =⇒ (a): By assumption L is linear independent, so we only need to show that L
spans V . Let v ∈ V . By assumption (v1, . . . , vn, v) is linearly dependent and so(

n∑
i=1

aivi

)
+ av = 0V

for some a1, a2, . . . , an, a in K not all 0K. If a = 0K, then since L is linearly independent,
ai = 0K for all 1 ≤ i ≤ n, contrary to the assumption. Thus a 6= 0 and

v =
n∑
i=1

(−a−1ai)vi.

So L spans V .

Definition 4.1.9. [def:linear] Let K be a field and V and W K-spaces. A K-linear map
from V to W is function

f : V →W

such that

(a) [a] f(u+ v) = f(u) + f(v) for all u, v ∈W

(b) [b] f(kv) = kf(v) for all k ∈ K and v ∈ V .

A K-linear map is called a K-isomorphism if it is 1-1 and onto.
We say that V and W are K-isomorphic and write V ∼=K W if there exists a K-

isomorphism from V to W .

Example 4.1.10. [ex:linear]

(1) [a] The map K2 → K, (a, b)→ a is K-linear.

(2) [b] The map K3 → K2, (a, b, c)→ (a+ 2b, b− c) is K-linear.

(3) [x] Let V be a K-space and l ∈ K. Then the map f : V → V, v → lv is K-linear.
Indeed, f(u+ v) = l(u+ v) = lu+ lv = f(u) + f(v) and

f(kv) = l(kv) = (lk)v = (kl)v = k(lv) = kf(v)

for all u, v ∈ V, k ∈ K.

(4) [c] We claim that the map f : K→ K, k → k2 is K-linear if and only if K = {0K, 1K}.
Indeed, if K = {0K, 1K}, then k = k2 for all k ∈ K and so f is K-linear.

Conversely, suppose f is K-linear. Then for all k ∈ K,

k2 = f(k) = f(k · 1K) = kf(1K) = k12
K = k
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So 0K = k2−k = k(k−1K). Since K is a field and hence an integral domain we conclude
that k = 0K or k = 1K. Hence K = {0K, 1K}.

(5) [y] Let V and W be K-spaces. Then the map V →W, v → 0W is K-linear.

(6) [e] For f =
∑n

i=0 fix
i ∈ K[x] define

f ′ =
n∑
i=1

ifix
i−1.

Then
D : K[x]→ K[x], f → f ′

is a K-linear map.

Lemma 4.1.11. [invertible] Let K be a field and V and W be K-spaces. Suppose that
(v1, v2, . . . , vn) is basis of V and let w1, w2, . . . wn ∈W . Then

(a) [a] There exists a unique K-linear map f : V →W with f(vi) = wi for each 1 ≤ i ≤ n.

(b) [b] f(
∑n

i=1 kivi) =
∑n

i=1 kiwi, for all k1, . . . , kn ∈ K.

(c) [c] f is 1-1 if and only if (w1, w2, . . . , wn) is linearly independent.

(d) [d] f is onto if and only if (w1, w2, . . . , wn) spans W .

(e) [e] f is an isomorphism if and only if (w1, w2, . . . , wn) is a basis for W .

Proof. (a) and (b): If f : V →W is K-linear with f(vi) = wi, then

(1) f

(
n∑
i=1

aivi

)
=

n∑
i=1

aif(vi) =
n∑
i=1

aiwi.

So (b) holds. Moreover, since (v1, . . . vn) spans V , each v in V is of the form
∑

i=1 aivi
and so by (1), f(v) is uniquely determined. So f is unique.

It remains to show the existence of f . Since (v1, . . . , vn) is a basis for V , any v ∈ V can
by uniquely written as v =

∑
i=1 aivi. So we obtain a well-defined function

f : V →W,
n∑
i=1

aivi →
n∑
i=1

aiwi.

It is now readily verified that f is K-linear and f(vi) = wi. So f exists.
(c) From (b)

(2) ker f = {v ∈ V | f(v) = 0W } =

{
n∑
i=1

kivi

∣∣∣∣∣
n∑
i=1

kiwi = 0W , k1, k2 . . . , kn ∈ K

}
.
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Hence

f is 1-1

⇐⇒ ker f = {0V } − 2.6.3(f)

⇐⇒ {
∑n

i=1 kivi |
∑n

i=1 kiwi = 0W , k1, k2, . . . , kn ∈ K} = {0V } − (2)

⇐⇒ k1 = . . . = kn = 0K for all k1, . . . , kn ∈ K with
∑n

i=1 kiwi = 0W − (v1, . . . , vn) is linearly indep.

⇐⇒ (w1, . . . , wn) is linearly indep. − definition of linearly indep.

So (c) holds.
(d)

Im f = {f(v) | v ∈ V } =

{
n∑
i=1

aiwi

∣∣∣∣∣a1, . . . an ∈ K

}
= Span(w1, w2, . . . , wn).

f is onto if and only if Im f = W and so if and only if (w1, . . . , wn) spans W .
(e) follows from (c) and (d).

Corollary 4.1.12. [v iso kn] Let K be a field and W a K-space with basis (w1, w2 . . . , wn).
Then the map

f : Kn →W, (a1, . . . an)→
n∑
i=1

aiwi

is a K-isomorphism. In particular,
W ∼=K Kn.

Proof. By Example 4.1.5(1), (e1, e2, . . . , en) is basis for Kn. Also f(ei) = wi and so by
4.1.11(e), f is an isomorphism.

Definition 4.1.13. [def:subspace] Let K be a field, V a K-space and W ⊆ V . Then W
is called a K-subspace of V provided that

(i) [i] 0V ∈W .

(ii) [ii] v + w ∈W for all v, w ∈W .

(iii) [iii] kw ∈W for all k ∈ K, w ∈W .

Proposition 4.1.14 (Subspace Proposition). [subspaces prop] Let K be a field, V a
K-space and W an K-subspace of V .

(a) [a] Let v ∈ V and k ∈ K. Then 0Kv = v, (−1K)v = −v and k0V = 0V .

(b) [b] W is a subgroup of V with respect to addition.
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(c) [c] W together with the restriction of the addition and scalar multiplication to W is a
well-defined K-space.

Proof. (a) I will just write 1 for 1K and 0 for 0K. Then

0 � v + 0V = 0 � v = (0 + 0) � v = (0 � v) + (0 � v).

So by the Cancellation Law 2.2.1, 0 � v = 0V .
Hence

0V = 0 � v = (1 + (−1)) � v = (1 � v) + (−1) � v = v + (−1) � v.

So (−1) � v = −v.

0V + k � 0V = k � 0V = k � (0V + 0V ) = k � 0V + k � 0V

and so by the Cancellation Law 2.2.1, k � 0V = 0V .
(b) By definition of a K-subspace, W is closed under addition and 0V ∈W . Let w ∈W .

Since W is closed under scalar multiplication, (−1) � v ∈W . So by (a), −v ∈W . Hence W
is closed under additive inverses. So by the Subgroup Proposition 2.3.3, W is a subgroup
of V with respect to addition.

(c) Using (b) this is readily verified and the details are left to the reader.

Proposition 4.1.15 (Quotient Space Proposition). [quotient spaces] Let K be field, V
a K-space and W a K-subspace of V .

(a) [a] V/W := {v +W | v ∈ V } together with the addition

+V/W : V/W × V/W → V/W, (u+ V, v +W )→ (u+ v) +W

and scalar multiplication

�V/W : K× V/W → V/W, (k, v +W )→ kv +W

is a well-defined vector space.

(b) [b] The map φ : V → V/W, v +W is an onto and K-linear. Moreover, kerφ = W .

Proof. (a) By Theorem 2.6.5 (V/W,+V/W ) is a well-defined group. We have

(u+W ) + (v +W ) = (u+ v) +W = (v + u) +W = (v +W ) + (v +W )

and so (V/W,+V/W ) is an abelian group. Thus Axiom (i) of a vector space holds.
Let k ∈ V and u, v ∈ V with u + W = v + W . Then u − v ∈ W and since W is a

subspace, k(u−v) ∈W . Thus ku−kv ∈W and ku+W = kv+W . So �V/W is well-defined
and Axiom (ii) of a vector space holds. The remaining four axioms (iii)-(vi) are readily
verified.
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(b) By 2.6.5 φ is an homomorphism of abelian groups and kerφ = W . Let k ∈ K and
v ∈ V . Then

φ(kv) = kv +W = k(v +W ),

and so φ is a K-linear map.

Lemma 4.1.16. [span and quotient] Let K be field, V a K-space, W a subspace of V .
Suppose that (w1, . . . , wl) is a list of vector on W of W and (v1, . . . , vl) a list of vector in
V . Suppose that (w1, w2, . . . , wk, v1, v2, . . . vl) spans V . Then (v1 +W, v2 +W, . . . , vl +W )
is spans V/W .

Proof. Let T ∈ V/W . Then T = v + W for some v ∈ V . (v1 + W, v2 + W, . . . , vl + W ) is
spans there exist a1, . . . , ak, b1, . . . bk ∈ K with

v =
k∑
i=1

aiwi +
l∑

j=1

bjvj .

Since
∑k

i=1 aiwi ∈W we conclude that

T = v +W =

(
k∑
i=1

bivi

)
+W =

k∑
i=1

bi(vi +W ).

Therefore (v1 +W, v2 +W, . . . , vl +W ) is a spanning list for V/W .

Lemma 4.1.17. [basis and quotients] Let K be field, V a K-space, W a subspace of V .
Suppose that (w1, . . . , wl) be a basis for W and let (v1, . . . , vl) be a list of vectors in V . Then
the following are equivalent

(a) [a] (w1, w2, . . . , wk, v1, v2, . . . vl) is a basis for V .

(b) [b] (v1 +W, v2 +W, . . . , vl +W ) is a basis for V/W .

Proof. Put B = (w1, w2, . . . , wk, v1, v2, . . . vl).
(a) =⇒ (b): Suppose that B is a basis for V . Then B spans V and so by 4.1.17

(v1 +W, v2 +W, . . . , vl +W ) is a spanning list for V/W .
Now suppose that b1, . . . bl ∈ K with

l∑
j=1

bi(vi +W ) = 0V/W .

Then (
∑l

j=1 bivi) +W = W and
∑l

j=1 bivi ∈ W . Since (w1, w2, . . . , wk) spans W there
exist a1, a2 . . . , ak ∈ K with

l∑
j=1

bivi =
k∑
i=1

aiwi,
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and so
k∑
i=1

(−ai)wi +
l∑

j=1

bjvj = 0V .

Since B is linearly independent, we conclude that −a1 = −a2 = . . . = −ak = b1 = b2 =
. . . = bl = 0K. Thus (v1 +W, v2 +W, . . . , vl +W ) is linearly independent and so a basis for
V/W .

(b) =⇒ (a): Suppose (v1 +W, v2 +W, . . . , vl +W ) is a basis for W . Let v ∈ V . Then
v +W =

∑l
j=1 bi(vi +W ) for some b1, . . . bl ∈ K. Thus

v −
l∑

i=1

bivi ∈W,

and so

v −
l∑

i=1

bivi =
k∑
i=1

aiwi

for some a1, . . . , ak ∈ K. Thus

v =
k∑
i=1

aiwi +
l∑

j=1

bjvj ,

and B is a spanning list.
Now let a1, . . . , ak, b1, . . . bk ∈ K with

(∗)
k∑
i=1

aiwi +
l∑

j=1

bjvj = 0V .

Since
∑k

i=1 aiwi ∈W , this implies

l∑
j=1

bj(vj +W ) = 0V/W .

Since (v1 +W, v2 +W, . . . , vl +W ) is linearly independent, b1 = b2 = . . . = bl = 0. Thus
by (*)

k∑
i=1

aiwi = 0V ,

and since (w1, . . . , wk) is linearly independent, a1 = . . . = ak = 0K.
Hence B is linearly independent and so a basis.
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Lemma 4.1.18. [cluing basis] Let K be a field, V a K-space, Let L a linearly independent
list of vectors in V and and S is spanning list of vectors in V . Put W = Span(L). Then
there exists a sublist T of S such that

(a) [a] (L, T ) is a basis for V .

(b) [b] (v +W )v∈T is a basis for V/W .

Proof. By 4.1.16 (v +W )v∈S spans V/W . So we can choose a sublist T minimal such that
(v + W )v∈T spans V/W . Then by 4.1.6 (v + W )v∈T is a basis for V/W . Note that L is a
basis for W and so by 4.1.17, (L, T ) is a basis for V .

Lemma 4.1.19. [dimension] Let K be field, V a K-space and (v1, . . . , vn) and (w1, . . . wm)
be bases for V . Then n = m.

Proof. The proof is by induction on min(n,m). If n = 0 or m = 0, then V = {0V }. So V
contains no non-zero vectors and n = m = 0.

So we may assume that 1 ≤ n ≤ m. Put W = Span(w1). By 4.1.18 there exists
a sublist say (v1, v2 . . . vk) of (v1, . . . , vn) such that (w1, v1, . . . , vk) is a basis for V and
(v1 +W, . . . , vk +W ) is a basis for V/W . By 4.1.8(b), (w1, v1, . . . , vn) is linearly dependent.
Thus k < n. So by induction any basis for V/W has size k. Since w1 is a basis for W and
(w1, . . . , wn) is a basis for V , 4.1.17 implies that (w2 +W, . . . , wm +W ) is a basis for V/W .
Thus m− 1 = k and so m = k + 1 ≤ n ≤ m. So m = k + 1 = n.

Definition 4.1.20. [def:dimension] A vector space V over the field K is called finite
dimensional if V has a finite basis (v1, . . . , vn). n is called the dimension of K and is
denoted by dimK V . (Note that this is well-defined by 4.1.19).

Lemma 4.1.21. [finite span] Let K be a field and V an K-space with a finite spanning
list S = (v1, v2, . . . , vn). Then some sublist of S is a basis for V . In particular, V is finite
dimensional and dimK V ≤ n.

Proof. By 4.1.18 applied with L the empty list, some sublist of S is a basis.

Corollary 4.1.22. [extent independent] Let V be a finite dimensional vector space over
the field K and L = (w1, . . . , wk) be linearly independent list of vectors in V . Then L is
contained in a basis of V and so

k ≤ dimK V.

Proof. By 4.1.18 applied with S a basis for V , L is contained in a basis for V .

The next lemma is the analogue of Lagrange’s Theorem for vector spaces:

Theorem 4.1.23 (Dimension Formula). [dim formula] Let V be a vector space over the
field K. Let W be an K-subspace of V . Then V is finite dimensional if and only if both W
and V/W are finite dimensional. Moreover, if this is the case, then

dimK V = dimKW + dimK V/W.
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Proof. Suppose first that V and V/W are finite dimensional. Let (w1, w2 . . . wk) be basis
for W and (v1 +W, . . . vl +W ) a basis for V/W .

Then by 4.1.17 (w1, . . . , wl, v1, . . . , vl) is basis for V .V Thus V is finite dimensional and

dimK V = k + l = dimKW + dimK V/W.

Suppose next that V is finite dimensional. Let L = (w1, . . . , wk) be a linear independent
sublist of W . By 4.1.22 k ≤ dimK V . So we can choose L with k maximal. Then L is a
maximal linearly independent list of vectors in W and so by 4.1.6, L is a basis of V . Thus W
is finite dimensional. By 4.1.18 applied with S a basis for V , V/W is finite dimensional.

Remark 4.1.24. [rm:iso and rank]

(a) [1] We will work out the connected between the Dimension Formula and Lagrange’s
Theorem. Let K be a field, V a finite dimensional K space, W a K-subspace of V ,
n = dimK V, k = dimKW and l = dimK V . Then the dimension formula says that

n = k + l

By Theorem D on Homework 2, V ∼=K Kn and so |V | = |Kn| = |K|n, |W ||K|k and
|V/W | = |K|l. Thus

|V | = |K|n = |K|k+l = |K|k · |K|l = |W | · |V/W |

So the Dimension formula implies Lagrange’s Theorem (for vector spaces). If |K| is
finite, the converse is true. But if |K| is infinite, |K|n = |K| for all n ∈ Z+ , so
|K|n = |K|k+l does not imply k = l.

(b) [2] For those of you familiar with matrices you might have seen the Rank Theorem
(see for example [Lay, Theorem 14, Chapter 4]):

rankA+ dim NulA = n

where A is an m × n matrix, rankA is dimension of the column space ColA of A and
NulA = {v ∈ Km | Av = ~0}.
This formula essentially is equivalent to the the First Isomorphism Theorem for vector
spaces (see Homework 3#2). Indeed let f be the K-linear map Kn → Km, v → Av.
Then

NulA = ker f and ColA = Im f

The First Isomorphism Theorem for vector spaces says:
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Kn/ ker f ∼=K Im f.

By Theorem D on Homework 2, this is equivalent to

dimK(Kn/ ker f) = dimK Im f,

and so by the dimension formula to

dimKn − dim ker f = dimK Im f,

that is to

n− dim NulA = rankA

4.2 Field Extensions

Definition 4.2.1. [def:subfield] Let F be a field and K a subset of F. K is a called a
subfield of F provided that

(i) [i] a+ b ∈ K for all a, b ∈ K.

(ii) [ii] 0F ∈ K.

(iii) [iii] −a ∈ K for all a ∈ K.

(iv) [iv] ab ∈ K for all a, b ∈ K.

(v) [v] 1F ∈ K.

(vi) [vi] a−1 ∈ K for all a ∈ K with a 6= 0F.

If K is a subfield of F we also say that F is an extension field of K and that K ≤ F is a
field extension.

Note that (i), (ii) and (iii) just say that K is subgroup of F with respect to addition and
(iv),(v),(vi) say that K \ {0F} is a subgroup of F \ {0F} with respect to multiplication. Note
also a subfield of F is a field.

Example 4.2.2. [ex:extension]

(a) [1] Q ≤ R and R ≤ C are field extensions.

(b) [2] Let F be a field. By 3.8.12 F[x] is an integral domain. We denote the field of
fraction of F[x] by F(x). So

F(x) =
{
f

g

∣∣∣∣f, g ∈ F[x], g 6= 0F

}
and F ≤ F(x) is a field extension.
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Lemma 4.2.3. [extension are spaces] Let K ≤ F be a field extension. Then F is vector
space over K, where the scalar multiplication is given by

K× F→ F, (f, k)→ fk

Proof. Using the axioms of a field it is easy to verify the axioms of a vector space.

Definition 4.2.4. [finite extensions] A field extension K ≤ F is called finite if F is a
finite dimensional K-space. dimK F is called the degree of the extension K ≤ F

Example 4.2.5. [ex:finite]

(1) [1] (1, i) is an R-basis for C and so R ≤ C is a finite field extension of degree 2.

(2) [2] Let K be a field. Then K ≤ K(x) is not finite. Indeed by 4.1.5(2) K[x] is not finite
dimensional over K and so by 4.1.23 also F(x) is not finite dimensional over K.

Lemma 4.2.6. [dim formula for extensions] Let K ≤ F be a field extension and V a
F-space. Then with respect to the restriction of the scalar multiplication to K, V is an
K-space. If V is finite dimensional over F and K ≤ F is finite, then V is finite dimensional
over K and

dimK V = dimK F · dimF V.

Proof. It is readily verified that V is indeed on K-space. Suppose now that V is finite
dimensional over F and that K ≤ F is finite. Then there exist a F-basis (v1, . . . , vn) for V
and an K-basis (k1, . . . , km) for F. We will show that

B := (kivj | 1 ≤ i ≤ m, 1 ≤ j ≤ n)

is an K-basis for V .
To show that B spans V over K, let v ∈ V . Then since (v1, . . . , vn) spans V over F there

exists l1, . . . , ln ∈ F with

(1) v =
n∑
j=1

ljvj .

Let 1 ≤ j ≤ n. Since (k1, . . . , km) spans F over K there exists a1j , . . . amj ∈ K with

(2) li =
m∑
i=1

aijki.

Substituting (2) into (1) gives
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v =
m∑
j=1

(
n∑
i=1

aijki

)
vj =

m∑
j=1

n∑
i=1

aijkivj .

Thus B spans V .
To show that B is linearly independent over K, let aij ∈ K for 1 ≤ i ≤ m and i ≤ j ≤ n

with
m∑
j=1

n∑
i=1

aijkivj = 0V .

Then also

m∑
j=1

(
n∑
i=1

aijki

)
vj = 0V .

Since
∑m

i=1 aijki ∈ F and (v1, . . . , vn) is linearly independent over F we conclude that
for all 1 ≤ j ≤ n:

m∑
i=1

aijki = 0F.

Since (k1, k2, . . . , km) is linearly independent over K this implies aij = 0K for all 1 ≤ i ≤
m and all 1 ≤ j ≤ m. Thus B is a basis for V over K, V is finite dimensional over K and

dimK V = mn = dimK F · dimF V.

Here is a second proof for the preceding lemma: By Lemma D on Homework 3, V ∼=F Fn
and F ∼=K Km. Hence V ∼=K (Km)n ∼=K Kmn. Thus dimK V = mn.

Example 4.2.7. [ex:dim formula extensions] Since (1, 0) and (0, 1) is a C-basis for C2

and (1, i) is a R basis for C. So
(
(1, 0), (i, 0), (0, 1), (0, i)

)
is an R-basis for C. This can also

be directly verified: Let a, b, c, d ∈ R. Then

(a+ bi, c+ di) = a(1, 0) + b(i, 0) + c(0, 1) + d(0, i)

So we see that there exists exactly one way to write (a+ bu, c+di) has a linear combination
of
(
(1, 0), (i, 0), (0, 1), (0, i)

)
Corollary 4.2.8. [finite by finite] Let K ≤ F and F ≤ E be finite field extensions. Then
also K ≤ E is a finite field extension and

dimK E = dimK F · dimF E.

Proof. By 4.2.3 E is a F-space. So the Corollary follows from 4.2.6 applied with V = E.
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Lemma 4.2.9. [associate poly] Let K be a field and f ∈ K[x]]. Then there exists unique
monic polynomial g ∈ K[x] with f ∼ g.

Proof. Let l be the leading coefficient of f and put g = l−1f . Then g is monic and g ∼ f .
Let h also be a monic polynomial with f ∼ h. Then g ∼ h and so g = kh for k ∈ K[x]. By
3.6.4 k is a unit in K[x] and then by 3.8.12(e), k ∈ K. Since both g and h are monic k = 1K
and g = h.

Lemma 4.2.10. [fx principal] Let K be a field and I a non-zero ideal in K[x].

(a) [a] There exists a unique monic polynomial p ∈ K[x] with I = K[x]p.

(b) [b] K[x]/I is an integral domain if and only if p is irreducible and if and only if K[x]/I
is field.

Proof. (a) By 3.8.13(a), K[x] is a PID. Hence I = K[x]f for some polynomial f ∈ K[x]. By
4.2.9 f ∼ p for unique polynomial g ∈ K[x]. By 3.6.2(c) f ∼ p if and only if I = K[x]p. So
(a) holds.

(b) This follows from (a) and 3.8.13(b)

Definition 4.2.11. [def:fa] Let K ≤ F be a field extension and a ∈ F. If there exists a
non-zero f ∈ K[x] with f(a) = 0K then a is called algebraic over K. Otherwise a is called
transcendental over K.

Example 4.2.12. [ex:algebraic]

(1) [1]
√

2 is the a root of x2 − 2 and so
√

2 is algebraic over Q.

(2) [2] i is a root of x2 + 1 so i is algebraic over Q.

(3) [3] π is not the root of any non-zero polynomial with rational coefficients. So π is
transcendental. The proof of this fact is highly non-trivial and beyond the scope of this
lecture notes. For a proof see Appendix 1 in [Lan].

(4) [4] Let y be an indeterminate over K and K(y) the field of fraction of the polynomial
ring K[y]. The y is transcendental over K. Indeed f =

∑n
i=0 kix

i ∈ K[x]]. Then ki 6= 0K
for some i and so also f(y) =

∑n
i=0 kiy

i 6= 0K.

Although complex numbers which are transcendental over Q are hard to come by, there
are many more transcendental number then algebraic numbers. To see we will have short
look at the cardinality of sets.

4.2.13 (Cardinalities). [cardinality] Let A and B be sets. We say that A and B have
the same cardinality and write |A| = |B| if there exists a bijection :A → B. We write
|A| ≥ |B| if either B = ∅ or there exists an onto map f : A → B. We write |A| ≤ |B| if
there exists a 1-1 map from A to B. It is easy to see that |A| ≥ |B| if and only if |B| ≤ |A|.
Indeed suppose f : A → B is onto. For each b ∈ B pick b̃ ∈ A with f(b̃) = b. Define



4.2. FIELD EXTENSIONS 131

g : B → A, b → B̃. If b̃ = d̃, then b = f(b̃) = f(d̃) = d and so g is 1-1. Suppose now that
g : B → A is 1-1 and B 6= ∅. Pick b0 ∈ B and let a ∈ A. If a = g(b) for some b ∈ B, define
ã = b. Note that ã is well defined since f is 1-1. If a /∈ g(B) define ã = b0. Then the map
f : A→ B, a→ ã is onto, since f(g(b)) = b for all b ∈ B.

A more difficult fact is that |A| ≤ |B| and |B| ≤ |A| implies |A| = |B|. This fact is called
the Theorem of Schröder Bernstein. For a proof see for example [Hun, Theorem 0.8.6].

We write |A| < |B| if |A| ≤ |B| but |A| 6= |B|.
We will know compare the cardinality of various infinite sets:
|N| = |Z+|, since N→ Z+, n→ n+ 1 is a bijection.

|N| = |Z| since Z→ N, n→

{
2n if n ≥ 0
2|n| − 1 if n < 0

is a bijection.

We will now show that |Z+| < |R|. Since |Z+| ⊆ R, |Q| ≤ R|. Suppose that |Z+| = |R|.
Then |Z+| ≥ |[0, 1)| where [0, 1) = {r ∈ R, 0 ≤ r < 1). Thus there function an onto function
f : Z+ → [0, 1).

We have

f(1) = 0.a11a12a13a14 . . .

f(2) = 0.a21a22a23a24 . . .

f(3) = 0.a31a32a33a34 . . .
...

...
...

f(n) = 0.an1an2an3an4 . . .
...

...
...

where aij ∈ N with 0 ≤ aij < 9. Define s = 0.s1s2s3s4 . . . ∈ [0, 1) by si = 5 if aii 6= 5 and
si = 0 if aii = 5. Then si 6= aii for all i ∈ Z+. It follows that s 6= f(i) for all i ∈ Z+, a
contradiction to the assumption that f is onto.

Proposition 4.2.14. [phia hom] Let K ≤ F be a field extension and a ∈ F.

(a) [a] The map φa : K[x]→ F, f → f(a) is a ring homomorphism.

(b) [b] Imφa = K[a] and so K[a] = {f(a) | f ∈ K[x]}.

(c) [c] φa is 1-1 if and only if kerφa = {0K} and if and only if a is transcendental.

Proof. (a) See 3.4.2(a).
(b) By 3.3.5(a), Imφa is a subring of F. Since φa(k) = k and φa(x) = a for all k ∈ K,

K ∪ a ⊆ K[a] and so K[a] ⊆ Imφa be definition of K[a]. Let f =
∑i

i=0 kix ∈ K[x]. Then

φa(f) = f(a) =
n∑
i=0

kia
i ∈ K[a]
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and so Imφa ⊆ K[a] and (b) holds,
(c) By 2.6.3(f) φa is 1-1 if and only if kerφa = {0K}. Now

kerφa = {f ∈ K[x] | φa(f) = 0F} = {f ∈ K[x] | f(a) = 0F},

and so kerφa = {0K} if and only if there does not exist a non-zero polynomial f with
f(a) = 0F, that is if and only if a is transcendental.

Proposition 4.2.15. [transcendental] Let K ≤ F be a field extension and a ∈ F. Suppose
that a is transcendental over K. Then

(a) [a] φ̃a : K[x]→ K[a], f → f(a) is an isomorphism of rings.

(b) [b] For all n ∈ N, (1, a, a2, . . . , an) is linearly independent over K.

(c) [c] K[a] is not finite dimensional over K and K ≤ F is not finite.

(d) [d] a−1 /∈ K[a] and K[a] is not a subfield of F.

Proof. (a) By 4.2.14(c), φ̃a is 1-1 and by 4.2.14(b), φ̃a is well-defined and onto.
(b) Let b0, b1, . . . , bn ∈ K with

∑n
i=0 bia

i = 0K. Then f(a) = 0K where f =
∑n

i=0 bix
i.

Since a is transcendental f = 0K and so b0 = b1 = . . . = bn = 0K. Thus (1K, a, . . . , a
n) is

linearly independent over K.
(c) Suppose K[a] is finite dimensional over K and put n = dimKK[a]. Then by (b)

(1, a, a2, . . . , an) is linearly independent over K. This list has length n+ 1 and so by 4.1.22

n+ 1 ≤ dimF K[a] = n,

a contradiction.
So K[a] is not finite dimensional over K. Suppose K ≤ F is finite, then by 4.1.23 also

K[a] is finite dimensional over K, a contradiction.
(d) Suppose a−1 ∈ K[x]. Then a−1 = f(a) for some f ∈ K[x]. Thus af(a)−1K = 0F and

so a is root of the non-zero polynomial xf−1K. But then a is algebraic, a contradiction.

Theorem 4.2.16. [algebraic] Let K ≤ F be a field extension and a ∈ F. Suppose that a
is algebraic over K. Then

(a) [z] There exists a unique monic polynomial ma = mK
a ∈ K[x] with kerφa = maK[x].

(b) [a] φa : K[x]/(ma) → K[a], f + maK[x] → f(a) is a well-defined isomorphism of
rings.

(c) [b] ma is irreducible.

(d) [c] K[a] is a subfield of F.

(e) [d] Put n = degma. Then (1, a, . . . , an−1) is an K-basis for K[a]
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(f) [e] dimKK[a] = degma.

(g) [f] Let g ∈ K[x]. Then g(a) = 0F if and only if ma | g in K[x].

(h) [g] ma is the unique monic irreducible polynomial in K[x] with a as a root.

Proof. (a) By 4.2.14(c), kerφa 6= {0K}. By 4.2.14(a) is a ring homomorphism and so 3.3.5(c)
kerφa is an ideal in K[x]. Thus by 4.2.10, kerφa = maK[x] for a unique monic polynomial
ma ∈ K[x].

(b): By definition of ma, kerφa = maK[x]. By 4.2.14(a) φa is a ring homomorphism
and so (b) follows from the Isomorphism Theorem of Rings 3.3.10.

(c) and (d): Since F is an integral domain, K[a] is an integral domain. So by (b),
K[x]/(ma) is an integral domain. Hence by 4.2.10(b), ma is irreducible and K[x]/(ma) is a
field. By (b) also K[a] is a field. So (c) and (d) hold.

(d) Let T ∈ K[x]/maK[x]. Hence by 3.8.13(d) there exists unique polynomial f ∈ K[x]
of degree less than n with T = f , where f = f +maK[x]. Let f =

∑n−1
i=0 kix

i with ki ∈ K.
Then the ki are unique in K with

T =
n−1∑
i=0

kixi =
n−1∑
i=0

kixi

Thus by 4.1.6

1, x, x2, . . . , xi

is a basis for K[x]/maK[x]. Since φa(xi) = ai and since φa is an isomorphism we conclude
from 4.1.11(e) that

(1, a, a2, . . . , an−1)

is a basis for K[a].
(f) Follows from (e).
(g) g(a) = 0F if and only if φa(a) = 0F if and only if g ∈ kerφa if and only if g ∈ maK[x]

and if and only if ma | g in K[x].
(h) By (c), ma is irreducible. Also ma is monic and has a as a root. Let f ∈ K[x] be

monic and irreducible with f(a) = 0K. Then by (h), ma | f . Since f is irreducible and ma

is not a unit, ma ∼ f . Thus by 4.2.9 ma = f .

Definition 4.2.17. [def:minimal polynomial] Let K ≤ F be a field extension and let
a ∈ K be algebraic over K. The unique monic polynomial ma ∈ K[x] with kerφa = (ma) is
called the minimal polynomial of a over K.

Example 4.2.18. [ex: minimal polynomial]
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(1) [a] It is easy to see that x3 − 5 has no root on Q. Thus x3 − 2 is irreducible in Q[x]
(see 3.8.16(c)). So 4.2.16(h) implies that x3 − 5 is the minimal polynomial of 3

√
5 over

Q. Hence by 4.2.16(e) (
1, 3
√

5, ( 3
√

5)2
)

=
(

1, 3
√

2), 3
√

25
)

is a basis for Q[ 3
√

5]. Thus

Q[ 3
√

5] = {a+ b
3
√

2 + c
3
√

25 | a, b, c ∈ Q}.

(2) [b] Let ξ = e
2π
3
i = cos(2π

3 ) + i sin(2π
3 ) = −1

2 +
√

3
2 i.

&%
'$
J
J
J
JJ

uu
u1

iξ

Then ξ3 = 1 and ξ is a root of x3 − 1. x3 − 1 is not irreducible, since (x3 − 1) =
(x− 1)(x2 + x+ 1). So ξ is a root of x2 + x+ 1. x2 + x+ 1 does not have a root in Q
and so is irreducible in Q[x]. Hence the minimal polynomial of ξ is x2 + x+ 1. Thus

Q[ξ] = {a+ bξ | a, b ∈ Q}.

Lemma 4.2.19. [iso transitive]

(a) [a] Let α : R→ S and β : S → T be ring isomorphisms. Then

β ◦ α : R→ T, r → β(α(r))

and
α−1 : S → R, s→ α−1(s)

are ring isomorphism.

(b) [b] Let R and S be rings, I an ideal in R and α : R → S a ring isomorphism. Put
J = α(I). Then

(a) [a] J is an ideal in S.

(b) [b] β : I → J, i→ α(i) is a ring isomorphism.

(c) [c] γ : R/I → S/J, r + I → α(i) + J is a well-defined ring isomorphism.

(d) [d] α
(
aR
)

=
(
α(a)S for all a ∈ R.

(c) [c] let σ : R→ S a ring isomorphism. Then

σ̃ : R[x]→ S[x],
n∑
i=1

fix
i →

n∑
i=1

σ(i)xi

is a ring isomorphism. In the following we will just write σ for σ̃.
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Proof. Readily verified.

Corollary 4.2.20. [extending isomorphism] Let σ : F1 → F2 be a field isomorphism.
For i = 1, 2 let Fi ≤ Ei be a field extension and suppose ai ∈ Fi is algebraic over Fi with
minimal polynomial pi. Suppose that σ(p1) = p2. Then there exists a field isomorphism

σ̌ : F1[a1]→ F2[a2]

with
ρ(a1) = a2 and ρ |F1= σ

Proof. By 4.2.19(c) σ : F1[x] → F2[x], f → σ(f) is a ring isomorphism. By 4.2.19(b:a)
σ(p1F1[x]) = σ(p1)F2[x] = p2F2[x] and so by 4.2.19(b:c)

(1) F1[x]/p1F1[x]→ F2[x]/p2F2[x], f + p1F1[x]→ σ(f) + p2F2[x]

is a ring isomorphism. By 4.2.16(b) for i = 1, 2

Fi[x]/piFi[x]→ Fi[ai], f + piFi[x],→ f(ai)

is a ring isomorphism.
Composing the three isomorphism in (1) and (2) we obtain the isomorphism

ρ : F1[x] → F1[x]/p1F1[x] → F2[x]/(p2) → F2[x]

f(a1) → f + p1F1[x] → σ(f) + p2F2[x] → σ(f)(a2)

For f = k ∈ F1 (a constant polynomial) we have σ(f) = σ(k), f(a1) = k and σ(f)(a2) =
σ(k). So ρ(k) = σ(k).

For f = x we have σ(x) = x, f(a1) = a1 and σ(x)(a2) = a2. So ρ(a1) = a2.

Example 4.2.21. [ex:find auto]

(1) [1] Let

K1 = K2 = R, F1 = F2 = C, σ = idR, p1 == p2 = x2 + 1, a1 = i, a2 = −i.

Note that C = K[i] = K[−i], x2 + 1 is the minimal polynomial of i and −i over R and
σ(x2 + 1) = x2 + 1. Hence the assumptions of 4.2.20 are fulfilled and we conclude that
there exists a field isomorphism

σ̌ : C→ C, r → r for all r ∈ R, i→ −i

Let a, b ∈ R. Then
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σ̌(a+ bi) = σ̌(a) + σ̌(b)σ̌(−i) = a+ b(−i) = a− bi

This shows σ̌ is complex conjugation.

(2) [2] Let

K1 = K2 = Q, F1 = F2 = C, σ = idQ, p1 = p2 = x3−2, ξ = e2πi3a1 = 3
√

2, a2 = ξ
3
√

2.

Again the assumptions of 4.2.20 are fulfilled and we obtain a field isomorphism

σ̌ : Q[ 3
√

2]→ Q[ξ 3
√

2, q → q for all q ∈ Q, 3
√

2→ ξ
3
√

2

For a, b, c ∈ Q we have

σ̌(a+ b
3
√

2 + c
4
√

4)→ σ(a+ bξ
3
√

2 + cξ2 3
√

4)

4.3 Splitting Fields

Definition 4.3.1. [def:algebraic] A field extension K ≤ F is called algebraic if each k ∈ F
is algebraic over K.

Example 4.3.2. [ex:algebraic 2]

1. [1] Let c = a+bi ∈ C. Then (x−c)(x−c) = x2+(c+c)x+cc) = x2+2ax+(a2+b2) ∈ R[x].
So c is the root of non-zero polynomial. Hence c is algebraic and R ≤ C is algebraic.

2. [2] π is transcendental over Q. So Q ≤ R is not algebraic.

3. [3] Let K be a field, then K ≤ K(x) is not algebraic since, x is transcendental over K,
see 4.2.12(4).

Lemma 4.3.3. [finite imp algebraic] Any finite field extension is algebraic.

Proof. Let K ≤ F be a finite field extension. Let a ∈ F. Suppose that a is transcendental
over K. Then by 4.2.15(c), K ≤ F is not finite, a contradiction.

Definition 4.3.4. [def:splitting fields] Let K ≤ F be field extensions and f ∈ K[x]. We
say that f splits in F if there exists a0, a1 . . . an ∈ F with

(i) [i] f = a0(x− a1)(x− a2) . . . (x− an).

We say that F is a splitting field for f over K if f splits in F and

(ii) [ii] F = K[a1, a2, . . . , an].
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Proposition 4.3.5. [existence of splitting fields] Let K be a field and f ∈ K[x]. Then
there exists a splitting field F for f over K. Moreover, K ≤ F is finite of degree at most n!.

Proof. The proof is by induction on deg f . If deg f ≤ 0, then f = a0 for some a0 ∈ K and so
K is a splitting field for f over K. Now suppose that deg f = k+ 1 and that the proposition
holds for all fields and all polynomials of degree k. Let p be a monic irreducible divisor of
f and put E = K[x]/pK[x]. By 4.2.10 E is a field. We identify a ∈ K with a+ pK[x]. Then
K is a subfield of E. Let h ∈ K[x]. Put h = h + pK[x] ∈ E and b := x + pK[x] ∈ E. Then
h =

∑n
i=0 kix

i for some ki ∈ K and so

h(b) =
n∑
i=0

kib
i =

n∑
i=0

kix
i =

n∑
i=0

kixi = h

Thus

K[b]
4.2.14(b)

= {h(b) | h ∈ K[x]} = {h | h ∈ K[x]} = {h+ pK[x] | h ∈ K[x]} = E

Since p | f , f ∈ pK[x]. So f = f + pK[x] = pK[x]0E. Hence f(b) = f = 0E and b is
a root of f in E. By 3.8.15 f = (x − b) · g for some g ∈ E[x] with deg g = k. So by the
induction assumption there exists a splitting field F for g over E with dimE F ≤ k!. Hence
exist a0, . . . , ak ∈ F with

(i) [a] g = a0(x− a1)(x− a2) . . . (x− ak);

(ii) [b] F = E[a1, a2, . . . , ak]; and

(iii) [c] dimF E ≤ k!

Since f = g · (x− b) and E = K[b] we conclude that

(iv) [d] f = a0(x− a1)(x− a2) . . . (x− ak)(x− b), and

(v) [e] F = K[b][a1, a2, . . . , ab] = K[a1, . . . , an, b].

Thus F is a splitting field for f over K. By 4.2.16(h), p is the minimal polynomial for b
over E and dimK E = dimKK[b] = deg p ≤ deg f = k + 1 and so by 4.2.8 and (iii)

dimK F = dimF E · dimE F ≤ (k + 1) · k! = (k + 1)!

So the theorem also holds for polynomials of degree k+1 and so for all polynomials.

Theorem 4.3.6. [unique splitting] Suppose that

(i) [i] σ : K1 → K2 is an isomorphism of fields;

(ii) [ii] For i = 1 and 2, fi ∈ K[x] and Fi a splitting field for fi over Ki; and
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(iii) [iii] σ(f1) = f2

Then there exists a field isomorphism

σ̌ : F1 → F2 with σ̌ |K1= σ.

Suppose in addition that

(iv) [iv] For i = 1 and 2, pi is an irreducible factor of fi in K[x] and ai is a root of pi in
Fi; and

(v) [v] σ(p1) = σ(p2).

Then σ̌ can be chosen such that

σ(a1) = a2.

Proof. The proof is by induction on deg f . If deg f ≤ 0, then F1 = K1 and F2 = K2 and so
the theorem holds with σ = σ̌.

So suppose that deg f = k+1 and that the lemma holds for all fields and all polynomials
of degree k. If (iv) and (v) hold let pi and ai as there.

Otherwise let p1 be any irreducible factor of f1. Put p2 = σ(p1). By 4.2.19(c), σ :
F1[x]→ F2[x] is a ring isomorphism. Thus p2 is a irreducible factor of σ(f1) = f2. Since fi
splits over F, there exists a root ai for pi in Fi.

Put Ei = Fi[ai]. By 4.2.20 there exists a field isomorphism ρ : E1 → E2 with ρ(a1) = a2

and ρ |K1= σ. By the factor theorem fi = (x − ai) · gi for some gi ∈ Ei[x]. Since ρ |K1= σ
and f1 has coefficients in K1, ρ(f1) = σ(f1) = f2. Thus

(x− a2) · g2 = f2 = ρ(f1) = ρ
(
(x− a1) · g1

)
= big(x− ρ(a2)

)
· ρ(g1) = (x− a2) · ρ(g1),

and so by the Cancellation Law g2 = ρ(g1). Since Fi is a splitting field for fi over Fi, Fi
is also a splitting field for gi over Ei. So by the induction assumption there exists a field
isomorphism σ̌ : F1 → F2 with σ̌ |Ei= ρ. We have σ̌(a1) = ρ(a1) = a2 and σ̌ |K1= ρ |K1= σ.

Thus the Theorem holds for polynomials of degree k + 1 and so by induction for all
polynomials.

Example 4.3.7. [ex:splitting field] Let ξ = e
2πi
3 ∈ C. Then the roots of x3 − 2 are

3
√

2, ξ 3
√

2, ξ2 3
√

2 and so

F := Q[ 3
√

2, ξ 3
√

2, ξ2 3
√

2] = Q[ 3
√

2, ξ]

is splitting field of x3 − 2 over Q. Let σ = idQ. By 4.3.6 there exists a automorphism σ̌ of
F with σ̌|Q= idQ and σ̌( 3

√
2) = ξ 3

√
2.

Put K1 = Q[ 2
√

] and K2 = Q[ξ 2
√

]. Then by Homework 4#5
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σ̌(K1) = σ̌(Q[ 3
√

2]) = σ̌(Q)[σ̌( 3
√

2)] = Q[ξ 3
√

2] = K2

and so we obtain a field isomorphism

τ : K1 → K2, a→ σ̌(a)

Note that τ(q) = q for all q ∈ Q and τ( 3
√

2) = ξ 3
√

2.
Since x3−2 has a root in Q[ 3

√
2], it is not irreducible over Q[ 3

√
2]. We will now determine

its irreducible factors. For this let α be any root of x3 − 2. Then

x2 + αx + α2

x− α x3 − 2

x3 − αx2

αx2 − 2

αx2 − α2x

α2x − 2

α2x − α3

0

Thus x3−2 = (x−α)(x2+αx+α2). Put g1 = x2+ 3
√

2x+ 3
√

4 and g2 = x2+ξ 3
√

2, x+ξ2 3
√

4.
Then x3 − 2 = (x − 3

√
2)g1 and τ(g1) = g2. Also the roots of g1 are ξ 3

√
2 and ξ2 3

√
2. Note

that that ξ /∈ R and also ξ2 /∈ R. Hence neither ξ 3
√

2 nor ξ2 3
√

2 is in K1 = Q[ 3
√

2]. Thus
g1 is irreducible over K1. It follows that also g2 = τ(g1) is irreducible over K2 = τ(K1).
Note that F is a splitting field for x3 = 2 over Ki and gi is an irreducible factor of x3 − 2.
Since ξ 3

√
2 is a root of g1 and 3

√
2 is a root of g2 we conclude from 4.3.6 that there exists

isomorphism τ̌ : F → F with τ̌ |K1= τ and τ̌(ξ 3
√

2) 3
√

2. Since τ(ξ 3
√

4) is a root of g2 we get
τ̌(ξ 3
√

4) = ξ 3
√

4.
Also

τ̌(ξ) = τ̌

(
ξ 3
√

2
3
√

2

)
=
τ̌(ξ 3
√

2)
τ̌( 3
√

2)
=

3
√

2
ξ 3
√

2
=

1
ξ

= ξ2 = ξ

4.4 Separable Extension

Definition 4.4.1. [def:sep] Let K ≤ F be a field extension.

(a) [a] Let f ∈ K[x]. If f is irreducible, then f is called separable over K provided that f
does not have a double root in its splitting field over K. In general, f is called separable
over K provided that all irreducible factors of f in K[x] are separable over K.
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(b) [b] a ∈ F is called separable over F if a is algebraic over K and the minimal polynomial
of a over K is separable over K.

(c) [c] K ≤ F is called separable over K if each a ∈ F is separable over K.

Example 4.4.2. [ex:sep]

(1) [1] Let K be any field. Then x2 = x · x, x is irreducible and x has not multiple roots.
So x and x2 are separable over K.

(2) [2] Let K be any field. Let f = x2 +x+1 ∈ K[x]. We will show that f is separable over
K. For this let a, b be elements in a splitting field for f over K with f = (x− a)(x− b).
Since (x− a)(x− b) = x2 + x+ 1 we have a+ b = −1 and ab = 1.

If a 6= b, then f has not multiple roots and so f is separable.

Suppose that a = b. Then 2a = −1. Thus charK 6= 0 and a = −1
2 . Moreover

1 = ab = a2 = 1
4 and so 4 = 1 and 3 = 0. Thus charK = 3 and a = −1

2 == 1
−1 = 1. If

follows that f = (x+ 1)2. Since x+ 1 is separable, f is separable.

(3) [3] Let y be an indeterminate over Z2, that is Z2 ≤ Z2(y) is a transcendental field
extension. Put

F = Z2(y) = {ab−1 | a, b ∈ Z2[y], b 6= 0Z2}

and
K = Z2(y2).

Note that K is a subfield of F. It is not to difficult to see that y /∈ K. Since −1Z2 = 1Z2 ,

x2 − y2 = (x− y)(x+ y) = (x− y)2.

So y is a double root of x2 − y2. Since y /∈ K, x2 − y2 has no root in K and so by
3.8.16(c) is irreducible in K[x]. Hence by 4.2.16(h) x2 − y2 is the minimal polynomial
of t over K. Since y is a double root of x2 − y2, x2 − y2 is not separable. So also y is
not separable over K and F is not separable over K.

Lemma 4.4.3. [sep] Let E ≤ F and K ≤ E be a field extensions.

(a) [a] Let a ∈ F be algebraic over K. Then a is algebraic over E. Moreover, if mE
a is the

minimal polynomial of a over E, and mK
a is the minimal polynomial of a over K, then

mE
a divides mK

a in E[x].

(b) [b] If f ∈ K[x] is separable over K, then f is separable over E.

(c) [c] If a ∈ F is separable over K, then a is separable over E.

(d) [d] If K ≤ F is separable, then also E ≤ F and F ≤ E are separable.
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Proof. (a) Since mK
a (a) = 0K and mE

a ∈ K[x] ⊆ E[x], a is algebraic over E. Moreover, by
4.2.16(g), mE

α divides mK
α in E[x].

(b) Let f ∈ K[x] be separable over K. Then f = p1p2 . . . pk for some irreducible
pi ∈ K[x]. Moreover, pi = qi1qi2 . . . qili for some irreducible qij ∈ E[x]. Since f is separable,
pi has no double roots. Since qij divides pi also qij has no double roots. Hence qij is
separable over E and so also f is separable over E.

(c) Since a is separable over E, mK
a has no double roots. By (a) mE

a divides mK
a and so

also mE
a has no double roots. Hence a is separable over E.

(d) Let a ∈ F. Since K ≤ F is separable, a is separable over K. So by (c), a is separable
over E. Thus E ≤ F is separable. Let a ∈ E. Then a ∈ F and so a is separable over K.
Hence K ≤ E is separable.

4.5 Galois Theory

Definition 4.5.1. [def:aut fk] Let K ≤ F be field extension. AutK(F) is the set of all field
isomorphism α : F→ F with α |K= idK.

Lemma 4.5.2. [autfk] Let K ≤ F be a field extension. Then AutK(F) is a subgroup of
Sym(F).

Proof. Clearly idF ∈ AutK(F). Let α, β ∈ AutK(F). Then by 4.2.19(a) α ◦ β is a field
isomorphism. If a ∈ K, then α(β(a)) = α(a) = a and so (α ◦ β) |K= idK. So α ◦ β ∈
AutK(F). By 4.2.19(a) α−1 is a field isomorphism. Since α |K= idK also α−1 |K= idK and
so α−1 ∈ AutK(F). Hence by 2.3.3, AutK(F) is a subgroup of Sym(F).

Example 4.5.3. [ex:aut fk] What is AutR(C)?
Let σ ∈ AutR(C) and a, b ∈ R. Since σR = idR we have σ(a) = a and σ(b) = b. Thus

(∗) σ(a+ bi) = σ(a) = σ(b)σ(i) = a+ bσ(i).

So we need to determine σ(i). Since i2 = −1, we get

σ(i)2 = σ(i2) = σ(−1) = −1.

Thus σ(i) = i or −i. If σ(i) = i, then (*) shows that σ = idC and if σ(i) = −i, (*)
shows that σ is complex conjugation. By Example 4.2.21, complex conjugation is indeed
an automorphism of C and thus

AutR(C) = {idC , complex conjugation}.

Note here that |Aut)R(C)| = 2 = dimRC.
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Definition 4.5.4. [def: fix kh] Let K ≤ F be a field extension and H ⊆ AutF(K). Then

FixF(H) := {k ∈ F | σ(k) = k for all σ ∈ H}.

FixF(H) is called the fixed-field of H in F.

Lemma 4.5.5. [fix h] Let K ≤ F be a field extension and H a subset of AutK(F). Then
FixF(H) is subfield of F containing K.

Proof. By definition of AutK(F), σ(a) = a for all a ∈ K, σ ∈ H. Thus K ⊆ FixF(H). In
particular, 0K, 1K ∈ FixF(H).

Let a, b ∈ FixF(H) and σ ∈ H. Then

σ(a+ b) = σ(a) + σ(b) = a+ b,

and so a+ b ∈ FixF(H).

σ(−a) = −σ(a) = −a,

and so −a ∈ FixF(H).

σ(ab) = σ(a)σ(b) = ab,

and so ab ∈ FixF(H). Finally if a 6= 0K, then

σ(a−1) = σ(a)−1 = a−1,

and so a−1 ∈ FixF(H).
Hence FixF(H) is a subfield of F.

Example 4.5.6. [ex:fix h] By Example 4.5.3, AutR(C) = {idC, σ}, where σ is complex
conjugation. Thus AutRC has two subgroups namely, {idC} and {idC, σ}. We will compute
the fixed field for both this subgroups. Clearly

FixC({idC}) = C.

Also a + bi is fixed by σ if and only if a + bi = a − bi, if and only if b = 0, that if and
only if a+ bi ∈ R.

FixC(AutR(C)) = R.

Let E be a field with R ≤ E ≤ C. Then by 4.2.8

2 = dimRC = dimR E · dimEC

and so either dimR E = 1 or dimEC = 1. Thus E = R or E = C. So see that the is a 1-1
correspondence between the subgroup of AutR(C) and the fields between R and C.
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Proposition 4.5.7. [acts on roots] Let K ≤ F be a field extension and 0K 6= f ∈ K[x].

(a) [a] Let a ∈ F and σ ∈ AutK(F). Then σ(f(a)) = f(σ(a)).

(b) [b] The set of roots of f in F is invariant under AutK(F). That is if a is a root of f
in F and σ ∈ AutK(F), then σ(a) is also a root of f in F.

(c) [c] Let a ∈ F. Then StabAutK(F)(a) = AutK(a)(F).

(d) [d] Let a be root of f in F. Then

|AutK(F)/AutK[a](F)| = |{σ(a) | σ ∈ AutK(F)}|.

Proof. (a) Let f =
∑n

i=0 fix
i. Then

σ(f(a)) = σ

(
n∑
i=0

fia
i

)
=

n∑
i=0

σ(fi)σ(a)i =
n∑
i=0

fiσ(a)i = f(σ(a)).

(b) Let a be a root of f in F then f(a) = 0F and so by (a)

f(σ(a)) = σ(f(a)) = σ(0F) = 0F.

(c) Put H = StabAutK(F)(a) = {σ ∈ AutK(F) | σ(a) = a}. Then clearly AutK[a](F) ⊆ H.
Note that a ∈ FixF(H) and by 4.5.5 FixF(H) is a subfield of F containing K. So K(a) ⊆
FixF(H) and thus H ⊆ AutK(a)(F). Therefore H = AutK(a)(F).

(d) By 2.7.17(d)

|AutK(F)/StabAutK(F)(a)| = |{σ(a) | σ ∈ AutK(F)}|,

and so (d) follows from (c).

Theorem 4.5.8. [ftg i] Let K be a field and F the splitting field of a separable polynomial
over K. Then

|AutK(F)| = dimK F.

Proof. The proof is by induction on dimK F. If dimK F = 1, then F = K and AutK(F) =
{idK}. So the theorem holds in this case. Suppose now that theorem holds for all finite
field extensions of degree less than dimK F. Let f ∈ K[x] be separable polynomial with F
as splitting field and let a be a root of f with a /∈ K. Let R be the set of roots of f in F.
Since ma has no double roots, |R| = degma and so by 4.2.16(f),

(1) |R| = dimKK[a].

Put
S = {σ(a) | σ ∈ AutK(F)}.
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We will show that S = R. Let b ∈ R. Then by 4.3.6 applied with K1 = K2 = K,F1 = F2 =
F, σ = idK, f1 = f2 = f , p1 = p2 = ma, a1 = a and a2 = b, there exists a field isomorphism
σ̌ : F→ F with

σ̌ |K= σ = idK and σ̌(a) = b.

Then σ̌ ∈ AutK(F) and so b = σ̌(a) ∈ S. Hence

R ⊆ S.

By 4.5.7(b), σ(a) is a root of f for each σ ∈ AutK(F). Thus S ⊆ R and

(2) R = S.

By 4.5.7(d)

|AutK(F)/AutK[a](F)| = |{σ(a) | σ ∈ AutK(F)}| = |S|,

and so by (1) and (2)

(3) |AutK(F)/AutK[a](F)| = dimKK[a].

Observe that F is a splitting field for f over K[a] and that by 4.4.3(b), f is separable
over K[a]. Moreover, by 4.2.8

dimK[a] F =
dimK F

dimK[a](F)
< dimK F,

and so by induction

(4) |AutK[a](F)| = dimK[a] F.

Multiplying (3) with (4) gives

(5) |AutK(F)/AutK[a](F)| · |AutK[a](F)| = dimKK[a] · dimK[a] F.

So by Lagrange’s Theorem and Corollary 4.2.8,

|AutK(F)| = dimK F.
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Example 4.5.9. [ex:ftg i] By Example 4.2.18 x3 − 2 is the minimal polynomial of 3
√

2
over Q and dimQQ

[
3
√

2
]

= 3. The other roots of x3−2 are ξ 3
√

2 and ξ2 3
√

2, where ξ = e
2π
3
i.

Also by Example 4.2.18 ξ is a root of x2 + x+ 1. Since ξ /∈ R, ξ /∈ Q
[

2
√

2
]
. Thus x2 + x+ 1

is the minimal polynomial of ξ over Q
[

3
√

2
]
. Put F = Q

[
3
√

2, ξ
]
. Then dimQ[ 3√2] F = 2 and

so

dimQ F = dimQQ
[

3
√

2
]
· dimQ[ 3√2] F = 3 · 2 = 6

Note that
F = Q

[
3
√

2, ξ 3
√

2, ξ2 3
√

2
]
,

and so F is the splitting field of x3 − 2 over Q. Let R =
{

3
√

2, ξ 3
√

2, ξ2 3
√

2
}

, the set of roots
of x3 − 2. By 4.5.7, R is AutQ(F)-invariant and so by 2.7.8(d), AutQ(F) acts on R. The
homomorphism associated to this action is

α : AutK(F)→ Sym(R), σ → σ |R .

Let σ ∈ kerα. Then R ⊆ FixF(σ). Since FixF(σ) is a subfield of F containing Q, this
implies FixF(σ) = F and so σ = idF. Thus by 2.6.3(f) α is 1-1. By 4.5.8 |AutK(F)| =
dimQ F = 6. Since also |Sym(R)| = 6 we conclude that α is a bijection and so

AutK(F) ∼= Sym(R) ∼= Sym(3).

Lemma 4.5.10. [bounded deg] Let K ≤ F be a field extension and G a finite subgroup
of AutK(F) with FixF(G) = K. Then K ≤ F is finite and dimK F ≤ |G|.

Proof. Put m = |G| and let G = {σ1, σ2, . . . , σm} with σ1 = idF.
Let (a1, a2, . . . , an) be K-linearly independent list in F and let C1, C2, . . . , Cn be the

columns of the matrix

(σi(aj)) =


a1 a2 . . . an

σ2(a1) σ2(a2) . . . σ2(an)
...

...
...

...

σm(a1) σm(a2) . . . σm(an)

 .

Claim: (C1, C2, . . . , Cn) is linearly independent over F.

Before we prove the Claim we will show that Lemma follows from the Claim. Since Fm
has dimension m over F, 4.1.22 implies that any F-linear independent list in Fm has length
at most m. So if (C1, C2, . . . , Cn) is linearly independent, then n ≤ m and dimK F ≤ |G|.

Suppose now that the Claim is false and under all the K linearly independent list
(a1, . . . , an) for which (C1, C2 . . . , Cn) is linearly dependent over F choose one with n as
small as possible. Then there exist l1, l2 . . . ln ∈ F not all zero with
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(1)
n∑
j=1

lkCj = ~0.

If l1 = 0F, then
∑n

j=2 ljCj = ~0 and so also (a2, . . . , an) is a counterexample. This
contradicts the minimal choice of n.

Hence l1 6= 0F. Note that also
∑n

j=1 l
−1
1 ljCj = ~0. So we may assume that l1 = 1K.

Suppose that lj ∈ K for all 1 ≤ j ≤ n. Considering the first coordinate in the equation
(1) we conclude

n∑
j=1

ljaj = 0K,

a contradiction since (a1, . . . , an) is linearly independent over K. So there exists 1 ≤ k ≤ n
with lk /∈ K. Note that l1 = 1K ∈ K and so k > 1. Without loss k = 2. So l2 /∈ K. Since
FixF(G) = K, l2 /∈ FixF(G) and so there exists ρ ∈ G with ρ(l2) 6= l2. Note that (1) is
equivalent to the system of equation

n∑
j=1

ljσ(aj) = 0K for all σ ∈ G.

Applying ρ to each of these equation we conclude

n∑
j=1

ρ(lk)(ρ ◦ σ)(aj) = 0K for all σ ∈ G.

Since σ = ρ ◦ (ρ−1 ◦ σ) these equations with ρ−1 ◦ σ in place of σ give

n∑
j=1

ρ(lj)σ(aj) = 0K for all σ ∈ G,

and so

(2)
n∑
j=1

ρ(lj)Cj = ~0.

Subtracting (1) from (2) gives

n∑
j=1

(ρ(lj)− lj)Cj = ~0.

Since l1 = 1K = ρ(1K), ρ(l1)− l1 = 0K and so
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(3)
n∑
j=2

(ρ(lj)− lj)Cj = ~0.

Since ρ(l2) 6= l2, ρ(l2)− l2 6= 0K. So not all the coefficient in (3) are zero, a contradiction
to the minimal choice of n.

Proposition 4.5.11. [compute min poly] Let K ≤ F be a field extension and G a finite
subgroup of AutK(F) with FixF(G) = K. Let a ∈ F. Then a is algebraic over K. Let
a1, a2, . . . an be the distinct elements of Ga = {σ(a) | σ ∈ G}. Then

ma = (x− a1)(x− a2) . . . (x− an).

In particular, ma splits over F and F is separable over K.

Proof. Put q = (x− a1)(x− a2) . . . (x− an). Then q ∈ F[x]. We will show that q ∈ K[x].
Let σ ∈ G. Then

(1) σ(q) = σ
(
(x− a1)(x− a2) . . . (x− an)

)
=
(
x− σ(a1)

)(
x− σ(a2)

)
. . .
(
x− σ(an)

)
.

Let b ∈ Ga. Then b = ρ(a) for some ρ ∈ G and so σ(b) = σ(ρ(a)) = (σ ◦ ρ)(a) ∈ Ga.
Thus the map Ga→ Ga, b→ σ(b) is a bijection with inverse b→ σ−1(b). Hence(

x− σ(a1)
)(
x− σ(a2)

)
. . .
(
x− σ(an)

)
= (x− a1)(x− a2) . . . (x− an) = q.

Thus by (1)

(2) σ(q) = q.

Let q =
∑n

i=0 qix
i with qi ∈ F. Then

n∑
i=0

qix
i = q

(2)
= σ(q) = σ

(
n∑
i=0

qix
i

)
=

n∑
i=0

σ(qi),

and so

qi = σ(qi) for all 0 ≤ i ≤ n, σ ∈ G.

It follows that for all 0 ≤ i ≤ n,

qi ∈ FixF(G) = K.

Hence q ∈ K[x].
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Since a = idF(a) is one of the ai’s we have q(a) = 0K. Thus 4.2.16(g) implies that ma | q.
By 4.5.7 each ai is a root of ma and so q divides ma in F[x]. Since ma and q both are monic
we conclude that ma = q. So

ma = (x− a1)(x− a2) . . . (x− an).

Since each ai ∈ F, ma splits over F. Since the ai’s are pairwise distinct, ma is separable.
So a is separable over F. Since a ∈ F was arbitrary, K ≤ F is separable.

Example 4.5.12. [ex:min poly] Let σ be complex conjugation and G = 〈σ〉 = {idC, σ}.
Then by Example 4.5.6, FixC(G) = R and so we can apply 4.5.11 to the extension R ≤ C.
Let d ∈ C, then d = a+ bi for some a, b ∈ R. Thus

Gd = {idC(a+ bi), σ(a+ bi) =} = {a+ bi, a− bi}

Suppose that d ∈ R, then b = 0, d = a+ bi = a− bi and so by 4.5.11

md = x− d

Suppose next that d /∈ R. Then b 6= 0, a+ bi 6= a− bi and by 4.5.11

md = (x− (a+ bi))(x− (a− bi) = x2 − 2ax+ (a2 + b2)

Definition 4.5.13. [def:normal ext] let A K ≤ F be a field extension.

(a) [a] K ≤ F is called normal if K ≤ F is algebraic and ma splits over F over each a ∈ F.

(b) [b] K ≤ F is called Galois if K ≤ F is finite, separable and normal.

(c) [c] An intermediate field of K ≤ F is a subfield E of F with K ⊆ E.

Theorem 4.5.14. [galois] Let K ≤ F be a field extension. Then the following statements
are equivalent.

(a) [a] F is the splitting field of a separable polynomial over K.

(b) [b] AutK(F) is finite and K = FixF(AutK(F)).

(c) [c] K = FixF(G) for some finite subgroup G of AutK(F).

(d) [d] K ≤ F is Galois.

Proof. (a) =⇒ (b): By 4.5.8 AutK(F) is finite of order dimK F. Put E := FixF(AutK(F)).
Then AutK(F) ⊆ AutE(F) ⊆ AutK(F) and so

(1) AutK(F) = AutE(F).
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Since F is the splitting field of a separable polynomial f over K, F is also the splitting
field of f over E. By 4.4.3 f is separable over E and so we can apply 4.5.8 to E ≤ F and
K ≤ F. Hence

dimE F ≤ dimK E · dimE F
4.2.8= dimK F

4.5.8= |AutK(F)| (1)
= |AutE(F)| 4.5.8= dimE F.

Hence equality must hold everywhere in the above inequalities. Thus dimE F = dimK F
and so dimK E = 1 and E = K.

(b) =⇒ (c): Just put G = AutK(F).
(c) =⇒ (d): By 4.5.10 K ≤ F is finite and by 4.5.11, ma splits over F and is separable.

Thus K ≤ F is finite, normal and separable.
(d) =⇒ (a): Since K ≤ F is finite there exists a basis (k1, k2, . . . , kn) for F over K.

Then F ⊆ K[a1, a2 . . . , an] ⊆ F and

(2) F = K[a1, a2 . . . , an].

Let mi be the minimal polynomial of ai over K. Since K ≤ F is separable, mi is separable
over K. Since K ≤ F is normal, pi splits over K. Put m = m1m2 . . .mn. Then m is
separable and splits over F. Let a1, a2, . . . , an, an+1, . . . , ak be the roots of f in F then by
(1), F ⊆ K[a1, a2 . . . , ak] ⊆ F and so

F = K[a1, a2 . . . , ak].

Thus F is a splitting field of m over K. Since m is separable, (a) holds.

Lemma 4.5.15. [fix and conjugation] Let K ≤ F be a field extension. Let σ ∈ AutK(F)
and let E be subfield of F containing K. Then

σAutE(F)σ−1 = Autσ(E)(F)

Proof. Let ρ ∈ AutK(F). Then

ρ ∈ Autσ(E)(F)

⇐⇒ ρ(k) = k for all k ∈ σ(E) − Definition of Autσ(E)(F)

⇐⇒ ρ(σ(e)) = σ(e) for all e ∈ E − Definition of σ(E)

⇐⇒ σ−1(ρ(σ(e)) = e for all e ∈ E − σ is a bijection

⇐⇒ (σ−1ρσ)(e) for all e ∈ E − Definition of σ−1ρσ

⇐⇒ σ−1ρσ ∈ AutE(F) − Definition of AutE(F)

⇐⇒ ρ ∈ σAutE(F)σ−1 − 2.4.12(c)



150 CHAPTER 4. FIELD THEORY

Lemma 4.5.16. [char normal extension] Let K ≤ F be a Galois extension and E an
intermediate field of K ≤ F. The following are equivalent:

(a) [a] K ≤ E is normal.

(b) [b] K ≤ E is Galois.

(c) [c] E is invariant under AutK(F), that is σ(E) = E for all σ ∈ AutK(F).

Proof. (a) =⇒ (b): Suppose K ≤ E is normal. Since K ≤ F is separable, 4.4.3(d) implies
that K ≤ E is separable. Since K ≤ F is finite, 4.1.23 implies that K ≤ E is finite. Thus
K ≤ E is Galois.

(b) =⇒ (c): Suppose K ≤ E is Galois. Let a ∈ E and σ ∈ AutK(F). By 4.5.7 σ(a) is
a root of ma. Since K ≤ E is normal, ma splits over E. Hence all roots of ma are contained
in E and so σ(a) ∈ E. Thus σ(E) ⊆ E and also σ−1(E) ⊆ E. Therefore E ⊆ σ(E) and
σ(E) = E.

(c) =⇒ (a): Suppose that E is invariant under AutK(F) and let a ∈ E. Put G =
AutK(F). By 4.5.14 K = FixF(G) and G is finite. So by 4.5.11 ma splits over F and if
b is a root of ma, then b = σ(a) for some σ ∈ G. Since E is invariant under AutK(F),
b = σ(a) ∈ E. So ma splits over E and K ≤ E is normal.

Theorem 4.5.17 (Fundamental Theorem of Galois Theory). [ftg] Let K ≤ F be a Galois
extension. Let E be an intermediate field of K ≤ F and G ≤ AutK(K).

(a) [e] E ≤ F is Galois.

(b) [a] The map
G : E→ AutE(F)

is a inclusion reversing bijection between to intermediate fields of K ≤ F and the sub-
groups of AutK(F). The inverse of G is given by

F : G→ FixF(G).

(c) [b] |G| = dimFixF(G) F and dimE F = |AutE(F)|.

(d) [c] K ≤ E is normal if and only if AutE(F) is normal in AutK(F).

(e) [d] If K ≤ E is normal, then the map

AutK(F)/AutE(F)→ AutK(E), σAutE(F)→ σ|E

is a well-defined isomorphism of groups.
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Proof. (a) Since F is the splitting field of a separable polynomial f over K, F is also the
splitting field of f over E. By 4.4.3(b), f is separable over E and so

(*) F is the splitting field of a separable polynomial over
E.

Thus by 4.5.14 E ≤ F is Galois.
(b) We will show that the two maps are inverses to each other. By (a) and 4.5.14

(1) FixF(AutE(F)) = E, that is F(G(E)) = E

Put L = FixF(G). Then G ≤ AutL(F). By (*) applied to L in place of E, F is the
splitting field of a separable polynomial over L. So we can apply 4.5.8 and get

(2) |AutL(F)| 4.5.8= dimL F
4.5.10
≤ |G| ≤ |AutL(F)|,

It follows that equality holds everywhere in (2). In particular, |G| = |AutL(F)| and G =
AutL(F), that is

(3) AutFixF(G)(F) = G, that is G(F(G)) = G

By (1) and (3) G and F are inverse to each other. If D is a field with E ≤ D ≤ F, then
clearly AutD(K) ⊆ AutE(F) and so G is inclusion reversing.

(c) Since equality holds in (2), dimL F = |G| and the first statement in (c) holds. Put
H = AutE(F). By (b), E = FixF(H) and so the first statement in (c) applies to H in place
of G gibes the second statement in (c).

(d) We have

K ≤ E is normal

⇐⇒ σ(E) = E for all σ ∈ AutK(F) − 4.5.16

⇐⇒ Autσ(E)(F) = AutE(F) for all σ ∈ AutK(F) − (b)

⇐⇒ σAutE(F)σ−1 = AutE(F) for all σ ∈ AutK(F) − 4.5.15

⇐⇒ AutE(F)EAutK(F)

(e) Since K ≤ E is normal 4.5.16 implies that E is AutK(F)-invariant. So by 2.7.8(d)
AutK(F) acts on E. The homomorphism associated to this action is

α : AutK(F)→ Sym(E), σ → σ |E .

In particular, σ |E is a bijection from E to E. Clearly σ |E is a homomorphism. Thus
σ |E is a field isomorphism. Moreover, (σ |E) |K= σ |K= idK and so σ |E∈ AutK(F). Thus
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Imα ⊆ AutE(F). Let ρ ∈ AutE(F). By (*) F is splitting field of some polynomial over E.
Then by 4.3.6 (applied with K1 = K2 = E, F1 = F2 = F, f1 = f2 = f and σ = ρ) there
exists a field isomorphism ρ̌ : F→ F with ρ̌|E= ρ. Since ρ̌|K= ρ|E= idK, ρ̌ ∈ AutK(F). Then
ρ = α(ρ̌) and so ρ ∈ Imα and Imα = AutK(E).

Note that σ ∈ kerα if and only if α|E= idE. So kerα = AutE(F). Hence (e) follows from
the First Isomorphism Theorem.

Example 4.5.18. [ex:ftg] Let F be the splitting field of x3 − 2 over Q in C. Put

ξ = e
2π
3
i, a = 3

√
2, b = ξ

3
√

2, and c = ξ2 3
√

2.

By Example 4.5.9

F = Q[a, ξ], dimQ F = 6 and AutQ(F) ∼= Sym(R) ∼= Sym(3),

where R = {a, b, c} is the set of roots of x3 − 2. For (x1, . . . , xn) a cycle in Sym(R) let
σx1...xn be the corresponding element in AutQ(F). So for example σab is the unique element
of AutQ(F) with σab(a) = b, σab(b) = a and σab(c) = c. Then by Example 2.6.13 the
subgroup of AutQ(F) are

{idF}, 〈σab〉, 〈σac〉, 〈σbc〉, 〈σac〉, 〈σabc〉,AutQ(F)

We now compute the corresponding intermediate fields:
Observe that

FixF({idF}) = F.

〈σab〉 has order 2. Hence by the FTGT 4.5.17(c), dimFixF(〈σab)〉 F = 2. Since dimQ F = 6,
4.2.8 implies that dimQ FixF(〈σab〉) = 3. Since c is fixed by σab and dimQQ[c] = deg pc =
deg(x3 − 2) = 3 we have

FixF(〈σab〉) = Q[c] = Q
[
ξ2 3
√

2
]
.

Similarly,

FixF(〈σac〉) = Q[b] = Q
[
ξ

3
√

2
]

and
FixF(〈σbc〉) = Q[a] = Q

[
3
√

2
]
.

Note that dimQQ[ξ] = 2 and so dimQ[ξ] F = 3. Hence |AutQ[ξ](F)| = 3. Since AutQ(F)
has a unique subgroup of order 3 we get AutQ(F) = 〈σabc〉 and so

FixF(〈σabc〉) = Q[ξ].

Let us verify that σabc indeed fixes ξ. From b = aξ we have ξ = a−1b and so
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σabc(ξ) = σabc(a−1b) = (σabc(a))−1σabc(b) = b−1c = ξ.

Finally by 4.5.14
FixF(AutQ(F)) = Q.

Note that the roots of x2 +x+ 1 are ξ and ξ2. So Q[ξ] is the splitting field of x2 +x+ 1
and Q ≤ Q[ξ] is a normal extension, corresponding to the fact that 〈σabc〉 is normal in
AutK(F).

Since ma = x3 − 2 and neither b or c are in Q[a], ma does not split over Q[a]. Hence
Q ≤ Q[a] is not normal, corresponding to the fact that 〈σbc〉 is not normal in AutK(F).

4.6 Fundamental theorem of Algebra

Definition 4.6.1. [def:algebraic closed] Let K be a field. K is called algebraically closed
if every polynomial in K[x] splits over K.

The goal of this section is to show that C is algebraically closed. This proof is based on
the following properties of R and C:

Lemma 4.6.2. [real props]

(a) [a] Let f ∈ R[x] be a polynomial of odd degree. Then f has root in R.

(b) [b] Let u ∈ C. Then u = v2 for some v ∈ C.

Proof. (a) This follows from the Intermediate Value Theorem from Calculus.
(b) Let u = a+ ib with a, b ∈ R. Put

c :=

√
1
2

(
a+

√
a2 + b2

)
, d := sgn(b)

√
1
2

(
−a+

√
a2 + b2

)
and v := c+ di.

Then

v2 = (c+ di)2 = (c2 − d2) + 2cd

c2 − d2 =
1
2
(
(a+

√
a2 + b2)− (−a+

√
a2 + b2)

)
=

1
2

2a = a

and

2cd = sgn(b)2
√

1
2

2
√(

a+
√
a2 + b2

)(
−a+

√
a2 + b2

)
= sgn(b)

√
−a2 + (a2 + b2) = sgn(b)|b| = b

So indeed v2 = u.
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Corollary 4.6.3. [real extensions]

(a) [a] Let R ≤ F be a finite field extension with dimR F odd. Then R = F.

(b) [b] There does not exist a field extension C ≤ F with dimC F = 2.

Proof. (a) Let a ∈ K. Then R[a] is a subfield of K and so by the dimension formula 4.2.8

dimR F = dimRR[a] · dimR[a] F

Since dimR F is odd, we conclude that dimRR[a] is odd. Hence by 4.2.16 the minimal
polynomial ma for a over R has odd degree (namely dimRR[a])). Thus by 4.6.2(a), ma has
a root b ∈ R. Since ma is irreducible over R we get ma = x − b and a = b ∈ R. Since this
holds for all a ∈ F, F = R.

(b) Suppose for a contradiction that C ≤ F is a field extension with dimFC = 2. Let
a ∈ F\C. Then F = C[a] and so mC

a has degree two. By 4.6.2(b) and the quadratic formula,
mC
a has a root in C, a contradiction since mC

a is irreducible.

Definition 4.6.4. [def:derivative] Let K be a field and f =
∑n

i=0 kix
i ∈ K[x]. then

f ′ :=
∑n

i=1 ikix
i−1. f ′ is called the derivative of f .

Lemma 4.6.5. [diru] Let K be a field and f, g ∈ K[x]

(a) [a] The derivative function K[x]→ K[x], f → f ′ is K-linear.

(b) [c] (fg)′ = f ′g + fg′.

Proof. (a) is obvious. (b) By (a) we may assume that f = xm and g = xn

(fg)′ = (xn+m)′ = (n+m)xn+m−1

f ′g + fg′ = mxm−1xn + xmnsxn−1 = (n+m)xm+n−1

Thus (b) holds.

Lemma 4.6.6. [mroots] Let K be a field, f ∈ K[x] with f 6= 0K and c ∈ K. Then c is a
double root of f if and only if f(c) = 0K and f ′(c) = 0.

Proof. In both cases c is a root of f and so f = g · (x − c) for some g ∈ K[x]. Thus
f ′ = g′ · (x− c) + g · (x− c) and so f ′(c) = g(c). Thus c is a root of f ′ if and only if c is a
root of g and if and only if c is a double root.

Lemma 4.6.7. [char sep] Let K be a field and f an irreducible polynomial over K. Then
f is separable if and only if f ′ 6= 0K.
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Proof. Without loss f is monic. Let E be a splitting field of f over K and a a root of f in
E. Note that f is the minimal polynomial of a over K. Then

a is a double root of f

⇐⇒ f ′(a) = 0K − 4.6.6

⇐⇒ f
∣∣∣f ′ in K[x] − 4.2.16(g)

⇐⇒ f ′ = 0K − deg f ′ < deg f

Thus f has a double root if and only if f ′ = 0K.

Example 4.6.8. [ex:char sep] Let y be an indeterminate over Z2. Put K = Z2(y). By
Example 4.4.2(3), f := x2 − y2 is irreducible over K. Note that f ′ = 2x = 0Z2 . So by 4.6.7
x2 − y2 is not separable over K, which of course we already proved in 4.4.2(3) by showing
that y is the only root of x2 − t2.

Definition 4.6.9. [def:chr] Let R be a ring. If there exists n ∈ Z+ with nr = 0R for all
n ∈ R, then charR is the minimal such that n. Otherwise charR = 0. charR is called the
characteristic of R.

Lemma 4.6.10. [basic chr] Let R be a ring with identity and put p = charF.

(a) [a] The map α : Z→ R,n→ n1R is a ring homomorphism with kerα = pZ.

(b) [d] Let n ∈ Z. Then n1R = 0R if and only if p | n in Z.

(c) [b] If R is an integral domain, then p = 0 or p is prime integer.

(d) [c] If R is an integral domain, n ∈ Z and r ∈ R], then nr = 0R if and only if p | n in
Z.

Proof. (a) By Lemma B(e) on the Solutions of Homework 2, α is ring homomorphism. Let
n ∈ Z. If nr = 0R for all r ∈ R, then n1R = 0R. If n1R = 0R, then nr = n(1Rr) = (n1R)r =
0Rr = 0R. So n ∈ kerα if and only if n1R = 0R and if and only if nr = 0R for all r ∈ R.
Since kerα is an ideal Z, kerα = mZ for some m ∈ N. If m = 0, then there does not exists
n ∈ Z+ with nr = 0R for all r ∈ R and so charR = 0. If m 6= 0, then m is the smallest
positive integer in kerα and again m = charR.

(b) follows immediately from (a).
(c) By (a) and the First Isomorphism Theorem of Rings, Zp is isomorphic to subring

of R. Since R is an integral domain, we conclude that Zp is an integral domain. Hence by
Example 3.2.4(3), p = 0 or p is a prime.

(d) We have
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nr = 0R

⇐⇒ n(1Rr) = 0R

⇐⇒ (n1R)r = 0R

⇐⇒ n1R = 0R − r 6= 0R, R is an Integral domain

⇐⇒ p | n in Z − (a)

Corollary 4.6.11. [sep chr 0] Let K be a field with charK = 0.

(a) [a] Let f ∈ K[x]. Then f ′ = 0K if and only if f ∈ K.

(b) [b] All polynomials over K are separable.

Proof. (a) If f ∈ K then clearly f ′ = 0K. So suppose f /∈ K. Then f =
∑n

i=0 kix
i ∈ K[x]

with kn 6= 0 and n ≥ 1. By 4.6.10(d), nan 6= 0K and so f ′ =
∑n

i=1 iaix
i−1 has degree n− 1.

Thus f ′ 6= 0K
(b) Let f ∈ K[z] be irreducible. Then f /∈ K and by (a), f ′ 6= 0K. Thus by 4.6.7, f

is separable. So all irreducible polynomial over K. By definition of separable an arbitrary
polynomial is separable, if all its irreducible divisors are separable. So (b) holds.

Theorem 4.6.12 (Fundamental Theorem of Algebra). [fta] C is algebraically closed.

Proof. Let f ∈ C[x] and let D be a splitting field of f over C. We need to show that D = C.
Note that R ≤ D is finite and so there exists a R-basis (b1, b2, . . . , bn) for D. It follows that
D = R[b1, b2, . . . , bn]. Let mi be the minimal polynomial of bi over R and put g =

∏n
i=1mi.

Let F be a splitting field of g over D. We claim that F is also a splitting field for g over
R. Indeed let U be the set of roots of g in F. Then F = D[U ]. Since bi ∈ U for all i we
conclude that D = R[b1, . . . , bn] ⊆ R[U ]. Thus both D and U are contained in R[U ] and so
F = D[U ] ≤ R[U ] ≤ F. Hence F = R[U ] and F is a splitting field of g over R. By 4.6.11,
g is separable over R and so by 4.5.14, R ≤ F is Galois. Let G = AutR(F) and let S be a
Sylow 2-subgroup of G. Put E = FixF(S). By the Fundamental Theorem of Galois Theory
4.5.17 dimE F = |S| and so by the dimension formula,

dimR E =
dimR F
dimE F

=
|G|
|S|

By Sylow’s Theorem 2.8.10 |G||S| is odd. Hence dimR E is odd and by 4.6.3(a), R = E.
Hence by the FTGT,

S = AutE(F ) = AutR(F) = G
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Hence G is a 2-group. Put H = AutC(F). Suppose for a contradiction that |H| 6= {idF}.
Then by 2.8.8, H has a subgroup P of order |H|2 . Put L = FixF(P ). By the FTGT and the
dimension formula

dimC L =
|H|
|P |

= 2,

a contradiction to 4.6.3(b). Thus H = {idF} and so

C = FixF(AutC(F) = F.

Since C ≤ D ≤ F also C = D and so C is algebraically closed.

4.7 Geometric Construction

Definition 4.7.1. [def:plane]

(a) [a] E := R2. E is called the plane and the elements of E are called points.

(b) [b] For e = (a, b) ∈ E, ||e|| :=
√
a2 + b2. ≤ (e) is called the length of e.

(c) [c] For ∈ E dist(e, d) := ||e− d||. dist(e, d) is called the distance of d from e.

(d) [d] Let e ∈ E and r ∈ R+
0 . Put Cr(e) = {d ∈ R | dist(d, e) = r}. Then Cr(e) is called

circle of radius r and center e.

(e) [e] Let a, b ∈ E with a 6= b. Put L(a, b) := {a+ r(b− a) | r ∈ R. Then L(a, b) is called
the line through a and b.

(f) [f] Let a, b, c ∈ E with b 6= a 6= c. We say that the line L(a, b) is perpendicular to the
line L(a, c), if d1e1 + d2 = 0, where b− a = (d1, d2) and c− a = (e1, e2) with di, ei ∈ R.

Definition 4.7.2. [def:construction] Let T ⊆ E.

(a) [a] D+
T := {dist(s, t) | s, t ∈ T}

(b) [b] CT := Cr(e) | e ∈ E, r ∈ D+
T }.

(c) [c] LT := {L(s, t) | s, t ∈ T | s 6= t.

(d) [d] T ∗ consists of all s ∈ T such that there exists A 6= B ∈ CT ∪ LI with s ∈ A ∪B.

(e) [e] S0 := {(0, 0), (0, 1)} and inductively define Si+1 := Si+1.

(f) [f] S :=
⋃∞
i=0 Si, D

+ := DS, D := D+
S ∪D

−
S and C := CS , L := LS. The elements of S

are called constructable points, the elements of D constructable numbers, the elements
of C constructable circles and the elements of L are called constructable lines.
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This definition can be summarized as follows: (0, 0), (0, 1) are constructable points. Let
s, t be constructable points and r non-negative constructable numbers. The the distance
between s and t is a constructable number. If s 6= t, the line through s and t is constructable.
The circle with radius r and center s is constructable. Finally the intersection points of
a constructable line or circle with a distinct constructable line or circle are constructable
points.

Lemma 4.7.3. [perp line] Let A be a constructable point and l a constructable line. Then
the unique line through A and perpendicular to l is constructable.

Lemma 4.7.4. [points numbers] A point is constructable if and only if both its coor-
dinates are constructable. A number r in R is constructable if and only if (0, r) is con-
structable.

Lemma 4.7.5. [const field] D is a subfield of R and
√
d ∈ D for all d ∈ D with d ≥ 0.

Lemma 4.7.6. [quadratic extensions] Let K subfield of R and (u, v) ∈ E. If (u, v) ∈
(E2)∗ then dimE E[u, v]] ≤ 2.

Proof. Suppose first that (a, b) ∈ E2. The (a, b) in F1 ∩ F2, there Fi is a line through two
points in E2 or Fi is a circle with center in E2 and radius in E.

Suppose first that F1 and F2 are both lines. The the points on F1 ∩F2 are the solutions
of a system of linear equation

a1x+ b1y = c1 and a2x+ b2y + c2

with ai, bi, ci ∈ E. It follows that u, v ∈ E and so dimE E[u, v] = 1
Suppose next that F1 is line and F2 is a circle. Then the points in F1 ∩ F2 are the

solution of the system of equation

ax+ by = c and (x− d)2 + (y − e)2 = f

with a, b, c, d, e, f ∈ E and (a, b) 6= (0, 0). Without loss b 6= 0 and so y = (c − ax)b−1.
In particular, v ∈ E[u] and E[u, v] = E[u]. Moreover, u is a root of degree two polynomial
(x− d)2((c− ax)b−1 − e)2 = f . Thus dimE E[u] ≤ 2.

Suppose finally that both F1 and F2 are circles. The the points on in F1 ∩ F2 are the
solutions of

(x− a)2 + (y − b)2 = c and (x− d)2 + (y − e)2 = f

That is of

(x2 − 2xa− 2yb+ y2 = c− a2 − b2 and x2 − 2xd− 2ye+ y2 = f − d2 − e2

Subtracting this two equations gives

(2d− 2a)x+ (2e− 2b)y = c+ d2 + e2 − a2 − b2 − f
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Note that (a, d) 6= (b, e) otherwise either F1 = F2 or F1 ∩ F2 = ∅. So this last equation
is the equation of a line L through two points in E2. Hence F1 ∩ F2 = F1 ∪ L and we are
done by the previous case.

Lemma 4.7.7. [subnormal series] Let p a positive prime integer, G a finite p-group and
H ≤ G. The there exists a chain of subgroups

H0 = H EH1 EH2 . . .EHn−1 EHn = G

with |Hi/Hi−1| = p for all 1 ≤ i ≤ n.

Proof. The proof is by induction on |G| · |G/H|. If |G/H| = 1, then G = H and the lemma
holds.

So we assume that G 6= H. In particular, |G| 6= 1 and so by 2.7.29 |Z(G)| 6= 1. Thus by
2.8.8 there exists T ≤ Z(G) with |T | = p. Note that T EG.

Suppose first T ≤ H. Then since |G/T | < |G| and |G/T |
/
|H/T | = |G/H we conclude

by induction that there exists a chain of subgroups

H/T = H0 EH1 EH2 . . .EHn−1 EHn = G/T

By the Correspondence Theorem 2.6.12 Hi = Hi/T for some Hi ≤ G and the lemma
holds in this case.

Suppose next that T � H. Then H ≤ HT ≤ G and |HT/H| = |T/T ∩H| = |T | = p.
Moreover G/HT | < |G| and so by induction there exists a chain of subgroups

HT = H1 EH2 . . .EHn−1 EHn = G

with |Hi/Hi−1| = p for all 2 ≤ i ≤ n. Again the lemma holds.

Example 4.7.8. [ex:subnormal] Let G = D4 = 〈(13), (12)(34)〉 ≤ Sym(4) and p = 2.
Since |D4| = 8, D4 is a 2-group. If A ≤ B ≤ D4 with |A/B| = 2, then by A E B since A
and B \A are the left cosets and also the right cosets of A in B.
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D4

〈(13), (24)〉
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〈(1234)〉 〈(12)(34), (14)(23)〉
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@
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Theorem 4.7.9. [char constructable] Let a ∈ R and K a subfield of D. The the following
are equivalent.

(a) [a] a is constructable

(b) [b] There exist n ∈ N and finite sequence of field extensions

K = K0 ≤ K1 ≤ K2 ≤ Kn ≤ R

with dimKi−1 Ki = 2 for all 1 ≤ i ≤ n and a ∈ Kn.

(c) [e] a is algebraic over K and if F is the splitting field for mK
a over K in C, then

dimK F = 2n for some n ∈ N.

(d) [d] a is algebraic over K and if F is the splitting field for mK
a over K in C, then AutK(F)

is a 2-group.

(e) [c] There exists n ∈ N and a finite sequence of field extensions

K = K0 ≤ K1 ≤ K2 ≤ Kn = K[a]

with dimKi−1 Ki = 2 for all 1 ≤ i ≤ n.

Proof. (a) =⇒ (b): Suppose a is constructable. Then (0, a) is constructable. Hence there
exists a finite sequence of elements e0 = (0, 0), e1 = (1, 0), e2, e3 . . . en = (0, a) in R2 such
that for each 2 ≤ j ≤ n aj there exists F1(j), F2(j) such that ej ∈ F1(j) ∪ F2(j) and Fi(j)
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is either a line through two points of Ej−1 := {e0, e1, . . . , ej−1 or a circle with center in Ej
and radius the distance of between two points of Ej−1. Let ei = (ai, bi) and define K0 = K
and for i > 0, Ki = Ki=1[ai, bi]. Then by 4.7.6 dimKj−1 Kj ≤ 2. Removing all Ki with
Ki = Ki−1 we see that (b) holds.

(b) =⇒ (c): Suppose (b) holds. Let ai ∈ Ki \ Kii− 1. Then Ki = Ki[i − 1][ai]. Put
f =

∏n
j=1m

Q
aj and let E be a splitting field of f over K in C. Note that K ≤ E and ai ∈ E so

by induction Ki = Ki−1[ai] ≤ E for all 1 ≤ i ≤ n. By 4.6.11, f is separable and so by 4.5.14
K ≤ E is Galois. Put G = AutK(E) and let H = 〈T ≤ G | |T | is an oddprime}. Then H
is a normal subgroup of G. Put L = FixE(H). We we show by induction on i that Ki ≤ L
for all 0 ≤ i ≤ n. For n = 0, K0 = K ≤ L. Suppose now that i > 0 and Ki−1 ≤ E. Since
dimKi−1 Ki = 2, aiis the root of a polynomial of degree 2 over Ki−1. Thus degmL

ai = 2. let
R be the set roots of mL

ai in E. Then |R| ≤ 2. and by 4.5.7 H acts R. Let T ≤ G such
that |T | = p, p an odd prime. The all the non-trivial orbits of T on R have length p. But
p ≥ |R| and so T acts trivially on R. Thus ai ∈ FixE(T ) for all such T . Thus ai ∈ L and
Ki = Ki−1[ai] ≤ L.

Hence ai ∈ L for all 1 ≤ i ≤ n. Note that H is a normal subgroup of G and by the
FTGT 4.5.17(d), K ≤ L is normal. Thus each mQmai splits over L. Hence f splits over
L and since L ≤ E and E is a splitting field for f over K we conclude that L = E. Hence
H = {idE}. So G contains no subgroup of odd prime order. Thus by 2.8.8 implies that
G is a 2-group. The FTGT 4.5.17 shows that dimK F = |G| = 2k for some k ∈ N. Note
that a ∈ Kn ≤ qE and since K ≤ E is normal, mK

a splits over E. Thus F ≤ E and by the
dimension formula 4.2.8 dimK F divides dimK E. So (c) holds.

For the remaining parts note that by 4.6.11 mK
a is separable and so by 4.5.14 K ≤ F is

Galois.
(c) =⇒ (d): This follows immediately immediately from FTGT.
(d) =⇒ (e): Put G = AutK(F) and H = AutK[a](F). Then G is a 2-group and so by

4.7.7 there exists a chain of subgroups

H0 = H EH1 EH2 . . .EHn−1 EHn = G

with |Hi/Hi−1| = 1 for all 1 ≤ i ≤ n. Put Ki = FixF(Hn−i. Then by the FTGT 4.5.17,
K0 = FixF(Hn) = FixF(AutK(F) = K, Kn = FixF(H0) = FixF(AutK(K[a]) = K[a].

K = K0 ≤ K1 ≤ . . .Kn−1 ≤ Kn = F

and dimKi−1 Ki = |Hn−i+1/Hn−i| = 2. So (e) holds.
(e) =⇒ (a): We will show by induction on i that all elements in Ki are constructable.
By assumption K0 = K ≤ D. Suppose now that 0 ≤ i < n and Ki ≤ D. let a ∈ Ki+1.

If a ∈ Ki, then a ∈ D. If a /∈ Ki, then since dimKi Ki+1 = 2, mKi
a has degree 2. So a

is the root of polynomial of degree two with coefficients in Ki. By the quadratic formula,
a = b+ c

√
d for some b, c, d ∈ Ki. Since b, c, d ∈ D we conclude from 4.7.5

√
d ∈ D and since

D is a field a = b+ c
√
d ∈ D. Thus Ki+1 ≤ D. This shows that Kn ⊆ D and since a ∈ Kn,

a is constructable.
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Lemma 4.7.10. [q in d] Q ≤ D and so 4.7.9 can be applied to K = Q.

Proof. We have 0, 1 ∈ D. If n ∈ D ∩ Z then also n+ 1 ∈ D ∩Z and −n ∈ D ∩ Z. So Z ≤ D.
Finally if n,m ∈ Z with m 6= 0, then n

m = nm−1 ∈ Z.

Example 4.7.11. [ex:constructable]

(1) [1] We have Q ≤ Q[
√

2] ≤ Q[ 4
√

2] and both of these extension have degree 2. So by
4.7.9(e), 4

√
2 is constructable. Also by Homework 4#8, the splitting field of x4 − 2 has

degree 8 over Q and so by 4.7.9(c), 4
√

2 is constructable.

(2) [2] Let F be the splitting field of x3− 2 over Q. By Example 4.5.9i AutQ(F) ∼= Sym(3).
So AutQ(F) is not a 2-group and thus by 4.7.9(d), 3

√
2 is not constructable. In particular,

it is impossible to double a cube, that is to construct a cube whose volumes is twice
the volume of a given cube.

(3) [3] π is transcendental and so not constructable. Thus it is impossibly to square a
circle, that is to construct a square whose area is the same is the are of a given circle.

(4) [4] Let 0 ≤ α ≤ π. We say that α is a constructable angle if the exists a triangle
consisting of constructable points and α as one of the angles. It is easy to see α con-
structable angle if and only if cosα is a constructable number. We will now investigate
the question whether an angle α can be trisected, that is given an constructable angle
is also β := α

3 constructable? For this the first sort out the connection between cosα
and cosβ.

Recall from your favorite trig class:

sin(α+ β) = sin(α) cos(β) + cos(α) sin(β)

and
cos(α+ β) = cos(α) cos(β)− sin(α) sin(β)

Thus cos(2β) = cos2(β)− sin2(β) = 2 cos2(β)− 1 and sin(2β) = 2 sin(β) cos(β) hence

cos(3β) = cos(β + 2β) = cos(β) cos(2β)− sin(β) sin(2β)

= cos(β)(2 cos2(β)− 1)− 2 sin2(β) cos(β) = 2 cos3(β)− cos(β)− 2(1− cos2(β)) cos(β)

= 2 cos3(β)− cos(β)− 2 cos(β) + 2 cos3(β) = 4 cos3(β)− 3 cos(β)

Thus cos(α) = 4 cos3(β) + 3 cos(β). Multiplication by 2 gives:

8 cos3(β) + 6 cos(β)− 2 cos(α) = 0
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Put a = 2 cos(α), b = 2 cos(β) and K = Q[a]. Then a is constructable, K ≤ D, β is
constructable angle if and only if b is a constructable number. Moreover, b is root of
the polynomial

x3 + 3x− a

over K.

Suppose that x3− 2x− a has no root on K. Then x3 + 2x− a is irreducible over K and
so dimKK[a] = 3. Thus by 4.7.9(e), a is not constructable.

Suppose that x3 − 2x− a has a root in K. Then the irreducible factors of x3 − 2x− a
over K have degree 1 or 2 and so dimKK[a] ≤ 2. Thus 4.7.9(e), a constructable. We
proved

(*) Let α be a constructable angle and put a = 2 cosα. Then α can be trisected if
and only if f := x3 − 2x− a has a root in Q[a].

Let α = π. Then cosα = −1, a = −2, f = x3 − 3x+ 2 and Q[a] = Q. Since f(1) = 0,
π
3 is constructable. (Which is obvious since cos π3 = 1

2 .

Let α = π
2 . Then cosα = 0, a = 0, f = x3 − 3x and Q[a] = Q. Since f(0) = 0, π

6 is
constructable. (Which is again obvious since cos π6 =

√
3

2 .)

Let α = π
3 . Then cosα = 1

[ 2], a = 1, f = x3 − 3x− 1 and Q[a] = Q. Suppose f has a
root q ∈ Q. Let q = n

m where n,m ∈ Z, m > 0 and gcdnm = 1. Then

n

m

3
− 3

n

m
− 1 = 0 and n3 = 3nm2 + 3m3

Thus m | n and since gcdnm = 1, m = 1. Thus n3−n− 1 = 0, n(n2− 1) = 1. So n | 1,
n = ±1 and n(n2 − 1) = 0 , a contradiction. Thus f has no root in Q and so π

3 cannot
be trisected.

Our next goal is to determine for which n ∈ Z+, the angle 2π
n is constructable. Note

that this is the case if and only if regular n-gon can be constructed. To do this we will have
to develop quit a bit of theory first.

Lemma 4.7.12. [ideals and poly] Let R be a commutative ring and I an ideal in R. Let
R = R/I. For r ∈ R put r = r = I and for f =

∑n
i=0 rix

i put f =
∑n

i=0 rix ∈ R[x]. Then

πx : R[x]→ R[x], f → f

is an onto ring homomorphism with kernel I[x] = {
∑n

i=0 aix
i | ai ∈ I}.
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Proof. Let π : R → R/I, r → r. Then by 3.3.9(c), π is an onto ring homomorphism with
kerπ = I. Thus by 3.4.2(a), the map

πx : R[x]→ R[x],
n∑
i=0

rix
i →

n∑
i=0

π(ri)xi

is a well-defined ring homomorphism. Note that πx(f) = f . We have

f ∈ kerπx

⇐⇒ πx(f) = 0R

⇐⇒
∑n

i=0 π(ri)xi = 0R

⇐⇒ π(ri) = 0R for all 0 ≤ i ≤ n

⇐⇒ ri ∈ kerπ for all 0 ≤ i ≤ n

⇐⇒ ri ∈ I for all 0 ≤ i ≤ n

⇐⇒ f ∈ I[x]

So kerπx = I[x].
Let g =

∑n
i=0 aix

i ∈ R[x]. Then ai = ri + I for some ri ∈ R. Put f =
∑n

i=0 rix
i. Then

f ∈ R[x], f = g and πs is onto.

Definition 4.7.13. [def:content] Let R be a PID and f =
∑n

i=0 aix
i ∈ R[x]. Then

cont(f) = gcd(a0, a1, . . . , an). cont(f) is called the content of f . (Note here that contf is
only defined up to associates). f is called primitive if cont(f) = 1R.

Example 4.7.14. [ex:content] Let R = Z and f = 12x2 + 9x+ 15. Then

cont(f) = gcd(12, 9, 15) = 3

and so f is not primitive.
Let g = 12x3 + 9x2 + 4x+ 6. Then

cont(g) = gcd(12, 9, 4, 6) = 1

and so g is primitive.

Lemma 4.7.15. [primitive poly] Let R be a PID and f ∈ R[x]]. Then there exists
c ∈ R and a primitive polynomial g ∈ R[x] with g = cg. Moreover, c and g are unique up
to associates and c ∼ cont(f).

Proof. Put c := contf and let f =
∑n

i=0 aix
i. Then c | ai for all i and so there exists bi ∈ R

with ai = cbi. Put g =
∑n

i=0 bixi. Then clearly cg = f . Let d = cont(g). Then d | bi and
so dc | ai for all i ∈ I. Thus by definition of cont and gcd, dc | c. Since c | dc we conclude
c ∼ dc and so by 3.6.4 d is a unit in R. Thus g is primitive.



4.7. GEOMETRIC CONSTRUCTION 165

Now suppose that f = eh with e ∈ R, h ∈ R[x] with h primitive. Let h =
∑n

i−0 hix
i.

Then ai = ehi. So e | ai for all i and so e | c. Hence c = er for some r ∈ R. Thus
eh = f = erg so since R[x] is an integral domain, h = rg. Thus r | hi for all i. Since h is
primitive we conclude that r is a unit. Thus h ∼ g and e ∼ c = cont(f).

Lemma 4.7.16 (Gauss). [gauss primitive] Let R be a PID and f and g primitive poly-
nomials in R[x]]. Then fg is primitive.

Proof. We will show the contrapositive. So let f, g ∈ R[x]] such that fg is not primitive.
Then cont(fg) � 1R. Since R is a PID and so a UFD there exists prime p in R with
p | contfg = 0. So p divides all coefficients of fg. We apply 4.7.12 with I = Rp. Then
fg = 0R. Hence also φfg = 0R. Since p is a prime we conclude from 3.8.11 that R is an
integral domain. Thus by 3.8.12(c), R[x] is an integral domain. Thus f = 0R or g = 0R.
Hence f ∈ Rp[x] or g ∈ Rp[x]. Thus p divides all the coefficients of f or of g and so f or g
is not primitive.

Lemma 4.7.17. [irreducible] Let R be a PID with field of fractions F. Let f ∈ R[x] be
primitive. Then f is irreducible in R[x] if and only if f is irreducible in F[x].

Proof. Suppose first that f is irreducible in F[x] and let f = gh with g, h ∈ R[x]. then g
or h is a unit in F[x]. Say g is unit in F[x]. Then by 3.8.12(e), g ∈ F, that is deg g = 0
and g ∈ R. Since f is primitive we conclude that g ∼ 1 in R. So g is a unit in R and f is
irreducible in R[x].

Suppose next that f is irreducible in R[x] and let f = gh with g, h ∈ F[x]. Note that
there exists a such that a ∈ R with ag ∈ R[x]. By 4.7.15 agãg̃ with ã ∈ R, g̃ ∈ R[x] and g̃
primitive. Similarly bh ∈ R[x] and bh = b̃h̃ with b̃ ∈ R, h̃ ∈ R[x] and h̃ primitive. Then

abf = abfg = (ãg̃)(b̃h̃) = ãb̃g̃h̃

By Gauss’ Lemma 4.7.16 g̃h̃ is primitive. 4.7.15 now shows that f ∼ g̃h̃. Since f is
irreducible in R[x] we conclude that g̃ or h̃ is a unit in R[x]. So g̃ or h̃ has degree 0 and so
g or h has degree 0. Thus f is irreducible in R[x].

Example 4.7.18. [ex:gauss]

(1) [1] Put f = 3x2 + 6x+ 9. Then f = 3(x2 + 2x+ 3). Since neither 3 nor x2 + 2x+ 3 is
a unit in Z[x], f is not irreducible over Z[x]] ( Note here that by 3.8.12(e) the units in
Z[x] are the units in Z. So 1 and −1 are the only units in Z[x]. )

We claim that f is irreducible in Q[x]. Bu 3.8.16(c), f is irreducible in Q[x] if and only
if f has a root in Q. Since

f = 3(x2 + 2x+ 3) = 3((x+ 1)2 + 2)

f(a) > 0 for all a ∈ Q and f has not root. So f is irreducible in Q[x] by not irreducible
in Z[x]. This shows that the assumption that f is primitive in 4.7.17 is necessary.
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(2) [2] Is f = x4 +x3 +x2 +x+ 1 irreducible in Q[x]? Since f is primitive, this is the case
if and only if f is irreducible in Q[x]. Suppose f = gh with g, h ∈ Z[x] with neither g
nor a h a unit in Z[x] and deg g ≤ deg h. We have 1 = lead(f) = lead(g)lead(h) and
so lead(g) = lead(h) = ±1. Replacing g by lead(g)g and h be lead(h)h we may assume
that g and h are monic. Since g is not a unit we get deg g ≥ 1.

Since 1 = f(0) = g(0)h(0) we have g(0) = h(0) = ±1.

Suppose deg g = 1. Then g = x+g(0) and −g(0) = ±1 is a root of f . But f(1) = 5 and
f(−1) = 1, a contradiction. Hence 2 ≤ deg g ≤ deg h. Since deg g + deg h = deg f = 4
we get deg g = deg h = 2. Thus g = x2 +ax+ b and h = x2 + cx+ b for some a, b, c ∈ Z.
Hence

x4 + x3 + x2 + x+ 1 = f = gh = x4 + (a+ c)x3 + (b+ ac+ b)x2 + (bc+ ba)x+ b2

Thus a + c = 1, 2b + ac = 1 and b(a + c) = 1. Thus b = 1, 2 + ac = 1, ac = −1,
a = −c = ±1 and 1 = a+ c = a− a = 0, a contradiction.

Thus contradiction shows that f is irreducible in Z[x] and so also in Q[x].

Corollary 4.7.19 (Eisenstein’s Criterion). [eisenstein] Let R be a PID with field of frac-
tion F, p a prime in R and f =

∑n
i=0 anx

n ∈ R[x]. Suppose that an = 1R, p | ai for all
0 ≤ i < n and p2 - a0. Then f is irreducible in R[x] and F[x].

Proof. Since an = 1F, f is primitive. So by 4.7.17 it suffices to show that f is irreducible in
R[x]. Suppose for a contradiction that f = gh with g, h ∈ R[x] neither g nor h a unit. Since
lead(g)lead(h) = lead(f) = 1R we may assume that both g and h are monic. In particular,
deg g ≤ 1 and deg h ≥ 1. Let I = pR and define R, r and f has in 4.7.12. Since p | ai
for all 0 ≤ i < n we have a0 = 0R for all 0 ≤ i < n. Thus f = xn. By 3.8.11, R is a
field. Thus by Example 3.5.2(2), R[x] is Euclidean and by 3.6.20, R[x] is a UFD. Since x is
irreducible in R[x], we conclude that g = xk and h = xl where k, l ∈ Z+ with n = k + l. It
follows that g(0R) = 0R, h(0R) = 0R and so p divides g(0R) and h(0R). Hence p2 divides
f(0R) = g(0R)h(0R), a contradiction to f(0R) = a0 and the assumptions.

Definition 4.7.20. [def:euler] Let n ∈ Z+.

(a) [a] Z∗n := {a ∈ Zn | |a| = n}, where |a| is the order of a in (Zn,+).

(b) [b] φ(n) := |Z∗n|.

(c) [c] The function φ : Z+ → Z+ is called the Euler function.

Lemma 4.7.21. [subgroups of zn] Let n ∈ Z+.

(a) [a] The subgroups of Zn are kZm = kZ/nZ, 1 ≤ k ≤ n, k | n.
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(b) [b] kZn ∼= Zn
k

and Zn/kZn ∼= Zk for all 1 ≤ k ≤ n, k | n. Here the first isomorphism
is an isomorphism of abelian groups and the second an isomorphism of rings.

(c) [c] Let a, b ∈ Z+ with gcd(a, b) = 1. Then the map Zab → Za × Zb, k + abZ →
k + aZ, k + bZ) is a well-defined isomorphism of rings.

Proof. (a) See Homework 2#2 in MTH 418.
(b) The map α : Z→ Zn, m→ km+ nZ is a homomorphism of abelian group. Clearly

Imα = kZn. We have m ∈ kerα if and only if km+ nZ = 0Zn and so if and only if n | km.
Since k | n, this is the case if and only if n

k | m and m ∈ n
kZ. So kerα = n

kZ and so by the
first Isomorphism Theorem for Groups:

Z/
k

n
Z = Z/ kerα ∼= Imα = kZn

So the first statement in (b) holds. By the Third Isomorphism Theorem for Rings:

Zn/kZn = Z/nZ
/
Z/nZ ∼= Z/kZ = Zk

(c) Define β : Z→ Zα ×Zb, k → (k+ aZ, k+ βZ). Then β is a homomorphism of rings.
k ∈ kerα if and only if a | k and b | k. Since gcd ab = 1, this is the case if and only if ab | k.
So kerα = abZ. Thus by the First Isomorphism Theorem of Rings, Zab = Z/abZ ∼= Imα.
Thus | Imα| = ab and since Za × Zb| = ab we get Imα = Za × Zb and so (c) holds.

Lemma 4.7.22. [euler] Let n ∈ Z+.

(a) [a] Z∗n = {a ∈ Zn | Zn = 〈a〉} = {m+ nZ | 0 ≤ m < n, gcd(n,m) = 1}.

(b) [z] φ(n) = |{m | 0 ≤ m < n, gcd(n,m) = 1}|.

(c) [b] n =
∑

1≤d≤n,d|n φ(d).

(d) [c] φ(n) = n−
∑

1≤d<n,d|n φ(d).

(e) [d] Suppose a, b ∈ Z+ with gcd(a, b) = 1. Then φ(ab) = φ(a)φ(b).

(f) [e] Let k, p ∈ N, p a prime. Then φ(pk) = pk − pk−1 = pk−1(p− 1).

(g) [f] Let n =
∏t
i=1 p

ki
i , where p1, p2 . . . pt are distinct positive prime integers and ki ∈ N.

Then

φ(n) =
t∏
i=1

pki−1
i (pi − 1) = n

t∏
i=1

(1− 1
pi

)

Proof. (a) Let a ∈ Zn. Then by definition |a| = 〈a〉. Since 〈a〉 = Zn if snd only if 〈a〉 = |Zn|
we get |a| = n if and only if 〈a〉 = Zn. So the first equality in (a) holds.

Let a = m+ nZ where m ∈ Z with 0 ≤ m < n. Then by 4.7.21(a) 〈a〉 6= Zn if and only
if 〈a〉 = kZ/nZ for some 1 < k ≤ n with k | n; if and only if k | m for some 1 < k ≤ n with
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k | n and so if and only if gcd(k,m) 6= 1. Thus 〈a〉 = Zn if and only if gcdmn = 1. This
gives the second equality.

(b) follows immediately from (a).
(c) For 1 ≤ d ≤ n with d | n define Zn,d = {a ∈ Zn | |a| = d}. Let a ∈ Zn, a ∈ Zn,d if

and only if |〈a〉| = d and so by 4.7.21(a) if and only if a ∈ n
dZn and |a| = d. By 4.7.21(b),

n
dZn ∼= Zd and so

|Zn,d| = {a ∈∈
n

d
Zn, |a| = |{b ∈ Zd | |b| = d}| = |Z∗m| = φ(d).

Since each a ∈ Zn lies in a unique Zn,d namely Zn,|a| we conclude

n = |Zn| =
∑

1≤d≤n,d|n

|Zn.d| =
∑

1≤d≤n,d|n

φ(d)

and so (c) holds.
(d) follows immediately from (c).
(e) By 4.7.21(c), Zab ∼= Za × Zb. Hence

(∗) φ(ab) = {k ∈ Zab | |k| = ab}| = |{e ∈ Za × Zb | |e| = ab}|.

Let e = (s, t) ∈ Za × Zb and k ∈ Z+. Put u = |s|, v = |t|. Then u | a, v | b. Since
gcd(a, b) = 1 we conclude that gcd(u, v) = 1. Note that ke = (0Za , 0Zb) if and only if
ks = 0Za and kt = 0Zb ; if and only if u | l and v | k and if and only if uv | k. Thus |e| = uv.
It follows that |e| = ab if and only if |s| = |a| and |t| = a, b. Thus

{e ∈ Za × Zb | |e| = ab} = {(s, t) | s ∈ Za, |s| = a, t ∈ Zb, |t| = b} = Z∗a × Z∗b
Together with (*)

φ(ab) = |Z∗a × Z∗b | = |Z∗a ||Z∗b | = φ(a)φ(b)

(f) The subgroups of Zpk are plZpk , 0 ≤ l ≤ k and so every proper subgroup of Zpk
is contained in pZp. Let a ∈ Zpk . It follows that 〈a〉 = Zpk if and only if a /∈ pZpk . By
4.7.21(b), pZpk ∼= Zpk−1 and so pZpk | = pk−1. Thus by (a)

φ(pk) = |{a ∈ Zpk | 〈a〉 = Zpk}| = |Zpk \ pZpk | = pk − pk−1 = pk−1(p− 1)

(g) follows from (f), (e) and induction on k.

Example 4.7.23. [ex:euler] We have φ(24) = φ(233) = 22(2−1)30(3−1) = 4 ·2 = 8. Lets
us verify this by determining integers 0 ≤ k < 24 with gcd(k, 24). Note that gcd(k, 24) = 1
if and only if 2 - k and 3 - k.

6 0, 1, 6 2, 6 3, 6 4, 5, 6 6, 7, 6 8, 6 9, 610, 11, 612, 13, 614, 615, 616, 17, 618, 19, 620, 621, 622, 23

So there are indeed 8 such numbers.
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Definition 4.7.24. [root of unity] Let n ∈ Z+ and K a field.

(a) [a] ξ ∈ K] is an n’th -root of unity if ξn = 1K and a primitive n’th root of unity if
|ξ| = n, where |ξ| is the multiplicative order of n.

(b) [b] UnK) is the set of n-root of unities in K and U∗n(K) is the set of primitive n-roots
of unities in K.

(c) [c] Let F be a splitting field for xn − 1K over K. Then

ΦK
n :=

∏
ξ∈U∗n(F)

x− ξ ∈ F[x]

is called the n-cyclotomic polynomial over K.

(d) [e] Φn := ΦQ
n

Lemma 4.7.25. [freshman]Let R be a commutative ring and p a positive prime integer
with pa = 0R for all a ∈ R. Then

(a) [a] The map α : R→ R, a→ ap is a ring homomorphism. In particular, a+b)p = ap+bp

and (a− b)p = ap − bp for all a, b ∈ R.

(b) [b] ap = a for all a ∈ Zp.

(c) [c] Let f ∈ Zp[x]. Then f(xp) = fp.

Proof. (a) Let i be an integer with 0 < i < p. Then p divides neither i! nor (p− i)! and so
p divides

(
p
i

)
= p!

i!(p−i) !. Since pa = 0R for all a ∈ R we conclude that
(
p
i

)
a = 0R for all a in

R. Thus by the Binomial Theorem A.1.3 we conclude

(a+ b)p =
p∑
i=0

(
p

i

)
aibp−i = ap + bp.

Clearly also (ab)p = apbp and so α is a ring homomorphism. It follows that (a − b)p =
α(a− b) = α(a)− α(b) = ap − bp.

(b) Since Zp is a field, (Z]p, ·) is a group of order p− 1. Thus ap−1 = 1Zp for all a ∈ Zp.
Thus ap = a for all a ∈ Zp.

(c) Let f =
∑n

i=0 aix
i with ai ∈ Zp. Then

fp
(a)
=
∑

+i = 0napi x
pi =

(b)
=

n∑
i=0

ai(xp)i = f(xp)

Lemma 4.7.26. [not coprime cyclotomic] Let K be a field and n ∈ Z+. Suppose p :=
charK 6= 0 let n = pknp′ for some k, n′ ∈ N with p - np′.
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(a) [a] U∗n(K) = Un′(K).

(b) [b] If p | n, then U∗n(K) = ∅.

Proof. (a) Let ξ ∈ Z∗n and put m = |ξ|. Let m = prl with r, l ∈ N and p - l. Then

0K = ξp
rl − 1K = (ξl − 1)p

r

Thus ξl = 1F and |ξ| = l. Since m | n, l | n′ and so ξ ∈ Un′(K).
(b) follows immediately from (a).

Proposition 4.7.27. [cyclotomic] Let K be a field, n ∈ Z+ and suppose that charK - n.
Put ZK = {n1K | n ∈ Z+} and let F be a splitting field for xn − 1K over K.

(a) [a] xn − 1K =
∏
d∈Z+,d|n,Φ

K
n .

(b) [b] ΦK
n = xn−1Q

d|n,1≤n<d ΦK
n

.

(c) [c] |U∗n(F)| = deg ΦK = φ(n). In particular there exists a primitive n-root of unity in
F. with |ξ| = n

(d) [d] ΦK
n ∈ ZK[x] ⊆ K[x].

(e) [e] For n ∈ Z let n = n1K ∈ ZK. For f =
∑n

i=0 zix
i ∈ Z[x] let f =

∑n
i=0 zix

i ∈ ZF[x].
Then Φn = ΦK

n .

Proof. (a) Since charK - n, n1K 6= 0K. Also (xn − 1K)′ = nxn−1 and n1K 6= 0K. So 0K is
the only root of (xn − 1)′. Since 0K is not a root of xn − 1K we conclude from 4.6.6 that
xn − 1K has not double roots. Thus

xn − 1K =
∏

ξ∈Un(F)

x− ξ.

Since Un(F) is the disjoint union of the U∗d (F), 1 ≤ d ≤ n, d - n we conclude that (a)
holds.

(b) follows from (a) and the division algorithm.
(c) Follows from (b) and 4.7.22(d) and induction on n.
(d) Note that each ΦK

d , 1 ≤ d < n, d - n is a monic. By induction we may assume that
Φd ∈ ZF[x]. Thus (d) follows from (b) and the division algorithm.

(e) Again this follows from (b) and induction on n.

Example 4.7.28. [ex:cyclotomic]

1. [1] We will compute Φn for all 1 ≤ n ≤ 8.

Φ1 = x− 1.

Φ2 = x2−1
x−1 = x+ 1.



4.7. GEOMETRIC CONSTRUCTION 171

Φ3 = x3−1
x−1 = x2 + x+ 1.

Φ4 = x4−1
(x−1)(x+1) = x4−1

x2−1
= x2 + 1.

Φ5 = x5−1
(x−1) = x4 + x3 + x2 + x+ 1.

Φ6 = x6−1
(x−1)(x+1)(x2+x+1)

= x6−1
(x3−1)(x+1)

= x3=1
x+1 = x2 − x+ 1

Φ7 = x7−1
(x−1) = x6 + x5x4 + x3 + x2 + x+ 1.

φ8 = x8−1
(x−1)(+1)(x2+1)

= x8−1
x4−1

= x4 + 1.

2. [2] We compute Φpk where p, k ∈ Z+, p a prime.

We have

Φp =
xp − 1
x− 1

= xp−1 + xp−2 + . . .+ x+ 1

The divisors of pk+1 are pi, 0 ≤ i ≤ k + 1. Also

k∏
i=0

Φpi = xp
k − 1

and so

Φpk+1 =
xp

k+1−1

xpk − 1
=

(xp
k
)p − 1

xpk − 1
= Φp(xp

k
) = xp

k(p−1) + xp
k(p−2) + . . .+ xp

k
+ 1.

For example Φ27 = Φ3(x9) = x18 + x9 + 1.

Lemma 4.7.29. [zn and un] Let n ∈ Z+ and K a field and suppose ξ ∈ K is a primitive
n-th root of unity.

(a) [a] Un(K) = 〈ξ〉 and so Un(K) is a cyclic group of order n.

(b) [b] The map τ : (Zn,+)→ (Un(K), ·), k + nZ→ ξk is isomorphism of groups.

(c) [c] Un(K)∗ = τ(Z∗n) = {ξk | 0 ≤ k < n, gcd(k, n) = 0}.

Proof. (a) Since each a ∈ Un(K) is a root of xn − 1K in K, |Un| ≤ n. Since |ξ| = n and
ξ ∈ Un(K), Un(K) = 〈ξ〉.

(b) Follows from (a) and Example 2.6.9.
(c) We have

Un(K)∗ = {µ ∈ Un(K) | |µ| = n} (b)
= {τ(a) | a ∈ Zn, |a| = n}

4.7.22(a)
= {τ(k + nZ) | 0 ≤ k < n, gcd(k, n) = 1} = {ξk | 0 ≤ k < n, gcd(k, n) = 1}
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Example 4.7.30. [ex:all primitive] Let ξ be a primitive 24th root if unity in a field F.
Then by 4.7.29(c)

ξ, ξ5, ξ7, ξ11, ξ13, ξ17, ξ19, ξ23

are all the primitive 24th roots of unities in F.

Corollary 4.7.31. [finite in field] Let F be a field and G a finite subgroup of order n of
(F], ·). Then G = Un(F) and G is cyclic.

Proof. Since |G| = n we have gn = eG = 1F for all g ∈ G. Thus G ⊆ Un(F). Note that

n = |G| ≤ |Un(F)| =
∑

1≤d≤n,d|n

|U∗d (F)| ≤
∑

1≤d≤n,d|n

φ(d) = n

So equality holds everywhere and so G = Un(F) and |U∗n(F)| = φ(n) ≥ 1. Thus F has a
primitive roots of unity ξ and by 4.7.29 Un(F) = 〈ξ〉.

Proposition 4.7.32. [phin irr] Let n ∈ Z+. Then Φn is irreducible in Q[x].

Proof. Since Φn is monic, Φn is a primitive polynomial in Z[x]. So by 4.7.17 it suffices to
show that Φn is irreducible in Z[x]. Let g be an irreducible factor of Φn in Z[x]. Then
Φn = gh for some h ∈ Z[x]. Since leadg · leadh = leadΦn = 1 we may assume that g and h
are monic. Let F be a splitting field of xn − 1 over Q. Let U be the set of roots of g in F.
Since Φn =

∏
ξ∈U∗n(F) x− ξ, U ⊆ U∗n(F) and g =

∏
ξ∈U x− ξ. We will show that U = U∗n(F).

Note that this will implies that g = Φn and so Φn is irreducible.
Let ξ ∈ U and let p prime integer with 1 < p < n, Then gcd(p, n) = 1 and so by

4.7.29(c), ξp is a primitive n-root of unity. Suppose for a contradiction that ξp is not a root
of g. Then ξp is a root of h. Then h(ξp) = 0 and so ξ is a root of h(xp). Since g is a monic
irreducible polynomial with ξ as a root, g is the minimal polynomial of ξ over Q. Hence g
divides h(xp) in Q[x]. Since g and h(xp) are in Z[x] and g is monic, the Division algorithm
shows that g divides h(xp) in Z[x]. Thus h(xp) = gk for some k ∈ Z[x]. Let I = Rp and
define R, r and f has before. Using 4.7.25(c) we conclude

h
p = h(xp) = gk

Let l be an irreducible factor of γ. Since R[x] is a PID we conclude l divides h in R[x].
Since Φn divides xn − 1 in Z[x], gh = Φn divides xn − 1 in R[x]. It follows that l2 divides
xn − 1 in R[x]. Thus xn − 1 has a double root. But since p - n, (xn − 1)′ = nxn−1 6= 0 and
so xn − 1 does not have a double root.

This contradiction shows that ξp is a root of g and so ξp ∈ U . We proved:

(*) If ξ ∈ U and p is prime integer with 1 ≤ p < n, then ξp ∈ U .

Now let η ∈ U∗n(|F ). Then by 4.7.29, η = ξk for some k ∈ N with k ≤ n and gcd(k, n) =
1. We will show by complete induction on k that η ∈ U . Suppose k = 0. Then gcd(0, n) = 1
shows that n = 1. Thus η = ξ0 = 1 = ξ ∈ U . If k = 1, then η = ξ ∈ U . So suppose k > 1.
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The there exists a prime p ∈ Z+ with p | k. Since k < n, p < n. Let k = pl with l ∈ Z+.
Then l > k and so by induction ξl ∈ U . By (*) applied to ξl in place of ξ we conclude that
(ξl)p ∈ U and so η = ξk = ξpl = (ξl)p ∈ U .

Thus shows that U = U∗n(F ) and so g = Φn. Thus Φn is irreducible in Z[x] and so also
in Q[x].

Lemma 4.7.33. [aut xn-1] Let K be a field and n ∈ Z+ such that char p - Z. Let F be a
splitting field of xn − 1K over K. Then

(a) [a] F = K[ξ] for any ξ ∈ U∗n(F).

(b) [b] K ≤ F is Galois.

(c) [c] AutK(F) is isomorphic to a subgroup of (Z∗n, ·). In particular, AutK(F) is abelian.

(d) [d] If K = Q, then dimK F = φ(n) and AutK(F) ∼= (Z∗n, ·).

Proof. (a) By 4.7.29(a), Un(F) = 〈ξ〉 ⊆ K[ξ]. Thus

F = K[Un(F)] ⊆ K[ξ] ⊆ F

So (a) holds.
(b) Since charF - n, xn − 1F is separable. Thus by 4.5.14, K ≤ F is Galois.
(c) Let σ ∈ AutK(F). Then |σ(ξ)| = |xi| = n and σ(ξ) ∈ U (

nK). Let τ be as in 4.7.29
and define f(σ) = τ−1(σ(ξ). The f(α) ∈ Z∗n and f(σ) = k + nZ if and only if σ(ξ) = ξn.
We will show that f : AutK(F) → (Z∗n, ·) is a homomorphism. So let σ, µ ∈ Aut)K(F) and
f(σ) = k + nZ and f(µ) = l + nZ for some k, l ∈ Z. Then

(σ ◦ µ)(ξ) = σ(µ(ξ)) = σ(ξl)) = σ(ξ)k = (ξk)l = ξkl

and so

f(σ ◦ µ) = kl + nZ = (k + nZ)(l + nZ) = f(σ)f(µ).

Thus f is a homomorphism. Let σ ∈ ker f . Then f(σ) = 1 + nZ and σ(ξ) = ξ1 = ξ.
Thus FixF(σ) is a subfield of F containing K and ξ. Hence by (a), σ = idF and so f is 1-1.

(d) By 4.7.32, Φn is irreducible over Q. Thus Φn is an irreducible monic polynomial
with ξ as a root. Hence Φn is the minimal polynomial of ξ over Q and

dimK F = dimKK[ξ] = deg Φn = φ(n).

So by 4.5.8, |AutK(F)| = φ(n) = |Z∗n| and so f must be onto. Hence f is an isomorphism
and (d) holds.

Lemma 4.7.34. [n root constructable] Let n ∈ Z+. Then 2π
n is an constructable angle

if and only if n = 2kp1p2p3 . . . pm, where k ∈ N and p1, p2, . . . , pm are pairwise distinct
Fermat primes. Here a prime p is called a Fermat prime, if p = 2t + 1, for some t ∈ Z+.
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Proof. Let ξ = e
2π
n . Then ξ is a primitive n-root of unity in C. Put F = Q[ξ]. Then by

4.7.33 F is a splitting field for xn − 1 over Q, Q ≤ F is Galois and dimQ F = φ(n). Put
a = cos(2π

n and b = sin(2π
n . Then ξ = a + bi and so a = 1

2(ξ + ξ). Since xi is also a
n-root of unity, ξ ∈ F and so also a ∈ F. Put E = Q[a]. By 4.7.33 AutQ(F) is abelian
and so all subgroups of AutQ(F) are normal. Thus by the FTGT, K ≤ E is normal. Thus
mQ
a splits over E and so E is a splitting field for a over Q. Note that ξξ = a2 + b2 = 1.

Thus (x − ξ)(x − ξ) = x2 − 2ax + 1 ∈ E[x]. Hence either ξ ∈ E or dimE E[xi] = 2. Thus
dimE F ≤ 2. Thus

dimQ F = dimQ F or dimQ F = 2 dimQ E

We have

2π
n is a constructable angle

⇐⇒ a is a constructable

⇐⇒ dimQ E is a power of 2 −4.7.9

⇐⇒ dimQ F is a power of 2

⇐⇒ φ(n) is a power of 2.

Let n = 2kpn1
1 pn2

2 . . . pnmm , where k,m ∈ N, p1, p2 . . . , pm are pairwise distinct primes and
n1, . . . , nm ∈ Z+.

If k = 0, then φ(n) =
∏n
i=1 p

ni−1
i (pi − 1) and if k > 0, φ(n) = 2k−1

∏n
i=1 p

ni−1
i (pi − 1)

if follows that φ(n) is a power of 2 if and only if ni = 1 and pi − 1 is a power of 2 for all
1 ≤ i ≤ m.

4.7.35 (Fermat primes). [fermat] For which n ∈ N is 2n + 1 a prime?

20 + 1 = 2 yes
21 + 1 = 2 + 1 = 3 yes
22 + 1 = 4 + 1 = 5 yes
23 + 1 = 8 = 1 = 9 no
24 + 1 = 16 + 1 = 17 yes
25 + 1 = 32 + 1 = 33 no
26 + 1 = 64 + 1 = 65 no
27 + 1 = 128 + 1 = 129 no
28 + 1 = 256 + 1 = 257 yes.

It seems that 2n + 1 is a prime if and only if n is a power of 2. But only the forward
direction turns out to be true. If 2n+1 is a prime, then n is a power of 2. Indeed suppose n
is not a power two. Then n = rs, r, s ∈ Z+, r < n and s odd. Since an−bn

a−b =
∑n−1

i=0 a
ibn−i,

a−b divides an−bn for any integers a, b. Since 2n+1 = 2rs+1 = (2r)s− (−1)s we conclude
that 2r − (−1) divides 2n − 1. Since 1 < 2r + 1 < 2n + 1 we conclude that 2n + 1 is not a
prime, Thus if 2n + 1 is a prime, then n is a power of 2.
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216 + 1 = 65537 is a prime.
232 + 1 = 4294967297 = 641 · 6700417
264 + 1 = 18446744073709551617 = 27417 · 67280421310721
No Fermat Primes other than the first five is known. For the first five explicit con-

struction of corresponding m-gon are known. The last one, m = 216 + 1, took 10 years to
construct (Hermes, around 1900)

Here is an fairly easy proof that 641 divides 232 + 1:
641 = 625 + 16 = 54 + 24. Hence

611 | (54 + 24)228 = 54228 + 232.

641 = 640+1 = 5 ·128+1 = 5 ·27 +1 and so 641 divides (5 ·27 +1)(5 ·27−1) = 52 ·214−1.
Hence

641 | (52 · 214 − 1)(52 · 214 + 1) = 54228 − 1.

Thus

641 | (54228 + 232)− (54228 − 1) = 232 + 1

4.8 Wedderburn’s Theorem

Lemma 4.8.1. [nt for wedderburn] Let q, n,m ∈ Z+ with q ≥ 2. Suppose that qm − 1
divides qn − 1 in Z. Then m | n and if m < n then Φn(q) | q

n−1
qt−1 .

Proof. Let n = km+ r with k, r ∈ N and 0 ≤ r < m. Then qm − 1 divides qkm − 1 and so
also

(qn − 1)− (qkm − 1) = qkm+r − qkm = qkm(qr − 1)

Since gcd(qm − 1, qkm) = 1 we conclude that qm − 1 divides qr − 1. Since qr − 1 < qm − 1
this implies qr − 1 = 0 and so r = 0 and m | n.

Suppose now that m < n. Put f :=
∏

1≤d<n.d|n,d-m Φd. Then f ∈ Z[x] and

xn − 1 =
∏

1≤d≤n,d|n

Φd = Φn

∏
1≤d≤m,d|m

∏
1≤d<n,d|n,d-n

= Φn · (xm − 1) · f

Thus xn−1
xm−1 = f · Φn and so

qn − 1
qm − 1

= f(q)Φn(q)

Theorem 4.8.2 (Wedderburn). [wedderburn] Every finite division ring is a field
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Proof. Let D be a finite division ring and put K = Z(D) = {a ∈ D | ad = de for all d ∈ D}.
Then K is a subfield of D containing 0D, 1D. Note that K] = Z(D]). Put q := |K|. Then q ≤
2. Let R be a set of representatives for the conjugacy classes of D] and put T := R\Z(D]).
Then by the class equation 2.7.24

(∗) |D]| = |K]|+
∑
t∈T
|D]/CD](t)|.

For r ∈ R let CD(r) := {a ∈ D | ar = ra}. So CD(t)] = CD](t). Note that D is a K
space via left multiplication. Since D is finite, D is a finite dimensional K-space. We claim
that CD(r) is a K-subspace of D. . Indeed if a, b ∈ CD(r) and k ∈ K, then

(a+ b)r = ar + br = ra+ rb = r(a+ b)

and

(ka)r = k(ar) = k(ra) = (ra)k = r(ak) = r(ka).

Put nr = dimD CD(r). Then CD(r) ∼= Fnr as a K-space and so

|CD(r)| = qnr .

Put n = n1D . Then |D| = |CD(1D) = qn. (*) now gives

(∗∗) qn − 1 = (q − 1) +
∑
t∈T

qn − 1
qnt − 1

.

Let t ∈ T . Then t /∈ Z(D) and so CD(t) 6= D and nt < n. 4.8.1 shows that Φn(q) divides
qn−1
qnt−1 . Also Φn | xn − 1 and so Φn(q) | qn − 1. Hence and implies that Φn(q) | q − 1 in Z.
Thus

(∗ ∗ ∗) |Φn(q)| ≤ q − 1.

Put U = U∗n(C). Then Φn =
∏
ξ∈U (x− ξ) and so

|Φn(q)| =

∣∣∣∣∣∣
∏
ξ∈U

(q − ξ)

∣∣∣∣∣∣ =
∏
ξ∈U
|q − ξ|

Let ξ ∈ U . From the picture
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��
��rrξ

q − 1 (q, 0)
```

```̀
|q − ξ|

@@
1

we conclude that |Φn(q)| ≥ |ξ − q| > q − 1
unless ξ = 1. Thus (***) gives ξ = 1 and n = 1. Hence dimFD = 1 and F = D. So D is a
field.
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Appendix A

A.1 The Binomial Theorem

Definition A.1.1. [def:binomial] Let n, k ∈ N with k ≤ n.

(a) [a] 0! = 1 and inductively (n+ 1)! := (n+ 1)n!.

(b) [b]
(
n
k

)
:= n!

k!(n−k)! .

Lemma A.1.2. [binomial] Let m, k ∈ N with k ≤ n.

(a) [a]
(
n
k

)
=
(
n

n−k
)
,
(
n
0

)
= 1 =

(
n
n

)
and

(
n
1

)
= n =

(
n
n−1

)
.

(b) [b] Suppose n, k ≥ 1. Then

(
n

k

)
=
(
n− 1
k

)
+
(
n− 1
k − 1

)
Proof.

[a] Readily verified.

[b] (
n−1
k

)
+
(
n−1
k−1

)
= (n−1)!

k(n−1−k) + (n−1)!
(k−1)!(n−k)! = (n−1)!

(k−1)!(n−1−k)!

(
1
k + 1

n−k

)
= (n−1)!

(k−1)!(n−1−k)!
(n−k)+k
k(n−k) = (n−1)!

(k−1)!(n−1−k)!
n

k(n−k)

= n!
k!(n−k)! =

(
n
k

)

Lemma A.1.3. [binomial theorem] Let R be a ring with identity and a, b ∈ R with
ab = ba. Let n ∈ N. Then

(a+ b)n =
n∑
i=0

(
n

i

)
aibn−i

179
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Proof. If n = 0 the both sides are equal to 1R. So suppose n > 1 and that the lemma holds
for n− 1.

Then

(a+ b)n = (a+ b)(a+ b)n−1

= (a+ b)
(∑n−1

i=0

(
n−1
i

)
aibn−1−i

)
=

(∑n−1
i=0

(
n−1
i

)
ai+1bn−1−i

)
+
(∑n−1

i=0

(
n−1
i

)
aibn−i

)
=

(∑n
i=1

(
n−1
i−1

)
aibn−i

)
+
(∑n−1

i=0

(
n−1
i

)
aibn−i

)
=

(
n−1
n−1

)
anb0 +

(∑n−1
i=1

((
n−1
i−1

)
+
(
n−1
i

))
aibn−i

)
+
(
n−1

0

)
a0bn

=
(
n
n

)
anb0 +

(∑n−1
i=1

(
n
i

)
aibn−1

)
+
(
n
0

)
a0bn

=
∑n

i=0

(
n
i

)
aibn−i
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