1. Let G be a group, $N \trianglelefteq G$ and $A \leq G$. Suppose that $A \cap N = \{e\}$ and G/N is abelian. Show that A is abelian.
2. Find all elements of the subgroup \(\langle (13)(25), (14)(25) \rangle \) of Sym(5).
3. Let G be a group and $N \trianglelefteq G$. Suppose that G/N has exactly five subgroups of order 9. Show that there exist exactly five subgroup F of G such that $N \leq F$ and $|F/N| = 9$.
4. Let \(G \) be a group and \(N \trianglelefteq G \). Let \(x \in G \) and put \(M = xN \). Show that the map
\[
\alpha : G/N \to G/M, \, gN \mapsto xgM
\]
is a well-defined isomorphism.
5. Let A and B be subgroups of $\text{Sym}(5)$ with $|A| = 24$ and $|B| = 10$. Show that $\langle A, B \rangle = \text{Sym}(5)$.
