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Preface

These are the Lecture Notes for the class MTH 417 in Spring 10 at Michigan State University. The
notes are based on Jones and Jones, Elementary Number Theory [Text Book].
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Chapter 1

Set Theory

1.1 Induction and the Well Ordering Principal

Let N = {0, 1, 2, 3, 4, 5, 6, . . .}. So N is the natural numbers, that is the set of all non-negative integers.
Just for fun, let us define what we mean with the symbols, 0, 1, 2, 3 and so on.
We define 0 the empty set: 0 := {}. 1 is the set whose only element is the empty set, so

1 := {{}} = {0}. 2 is the set whose elements are 0 and 1: 2 := {0, 1} = {{}, {{}}}. Observe that 2
is the unions of the set {0} and {1}. Since 1 = {0} we have 2 = 1 ∪ {1}. Suppose we already define
a natural number n. Then we define

n+ 1 := n ∪ {n}

So n+ 1 has all the elements of n, plus one more: {n}. It follows that

n+ 1 = {0, 1, 2, 3, . . . , n}

The natural numbers will be the main object of interest in the class. The most of important tool
to prove statement about the natural numbers

Axiom 1 (Principal of Induction). [pi] Let P (n) be a statement involving the variable n. Suppose
that

(I1) [1] P (1) is true.

(I2) [2] If P (n) is true for a natural number n, then also P (n+ 1) is true.

Then P (n) is true for all n.

Since this is not a logic class, we will not define what we really mean with ’P (n) be a statement
involving the variable n’ and ’P (n)’ is true. Instead, here is an equivalent version of a the Principal
of induction, purely in set theoretic terms:

Axiom 2 (Principal of Induction, Set Theoretic Version). [pis] Let A be a set of natural numbers.
Suppose that

(I1S) [1] 1 ∈ A.

(I2S) [2] If n ∈ A then n+ 1 ∈ A. true.
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8 CHAPTER 1. SET THEORY

Then n ∈ A for all n ∈ N (that is A = N.).

Lets us prove that the two version are equivalent. Indeed if P (n) is statement, then define

A = {n ∈ N | P (n)}

Conversely if A is a set of natural number, define P (n) to be statement

P (n) : n ∈ A

In both cases we see that

P (n) is true ⇐⇒ n ∈ A

and so

P (1)true⇐⇒ 1 ∈ A,

P (n) is true for a natural number n, then also P (n+ 1) is true .
⇐⇒

If n ∈ A then n+ 1 ∈ A.

and

P (n) is true for all natural numbers.
⇐⇒

n ∈ A for all n ∈ N

This shows what the two versions of the principal of inductions are indeed equivalent.
Often we will use the following more powerful version of the principal of inductions:

Axiom 3 (Principal of Strong Induction). [psi] Let P (n) be a statement involving the variable n.
Suppose that for all n ∈ N,

(SI) [2] If P (k) is true for a natural number k with k < n, then also P (n) is true.

Then P (n) is true for all positive integers n.

Also the Principal Strong Induction has a set theoretic version:

Axiom 4 (Principal of Strong Induction, Set Theoretic Version). [psis] Let A be a set of natural
numbers. Suppose that for all n ∈ N,

(SIS) [sis] If k ∈ A for all k ∈ N with k < n, then n ∈ A.

Then n ∈ A for all n ∈ N (that is A = N.).

The same argument as above, shows that Principal of Strong Induction is equivalent to its set
theoretic version,

As we will prove below, all of the above principal of inductions are equivalent to

Axiom 5 (Well Ordering Principal). [L]et A be a non-empty set of natural numbers. Then A has
a least element, that is there exists m ∈ A with m ≤ a for all m ∈ A.

Theorem 1.1.1. [equivalence of induction] The following are equivalent:
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(a) [a] The Principal of Induction.

(b) [b] The Principal of Strong Induction.

(c) [c] The Principal of Induction, Set Theoretic version.

(d) [d] The Principal of Strong Induction,Set Theoretic version.

(e) [e] The Well Ordering Principal.

Proof. We already have seen that (a) and (c) are equivalent, and that (b) and (d) are equivalent.
So it suffices to show that the last three statements are equivalent.

(c) =⇒ (d): Let A be set such that n ∈ A whenever n ∈ N with k ∈ A for all k ∈ N with
k < n. But

B = {n ∈ N | k ∈ A for all k ∈ N with k < n}

The clearly 1 ∈ B and if n ∈ B, then n ∈ A by assumptions. If k < n+ 1. then k < n or k = n
and so n + 1 ∈ B. The Principal of induction implies n ∈ B for all n ∈ N and since n < n = 1,
n ∈ A for all n ∈ A.

(d) =⇒ (e): Let A be a set and A has no least element. Put B = N \A. Let n ∈ B such that
k ∈ B for all k ∈ N with k < n. Then k /∈ A for all k with k < n and so n ≤ a for all a ∈ A. Since
A has no least element n /∈ A and so n ∈ B. The Principal of Strong Induction now implies that
B = N and so A = N \B = ∅.

(e) =⇒ (c): Let A be set with 1 ∈ A and n+ 1 ∈ A whenever n ∈ A. Let B = N \A. Suppose
that B has a least element m. Since 1 ∈ A, m 6= 1. Thus m > 1, m−1 ∈ N and m−1 < m. Since m
is minimal elements of B, m−1 /∈ B and so m−1 ∈ A. Hence m = (m−1) + 1 ∈ A, a contradiction
to m ∈ B. Thus B has no least element and the Well Ordering Principal shows that B = ∅. Thus
A = N \B = N.

1.2 Equivalence Relations

Definition 1.2.1. [def:relation] Let A be a set.

(a) [a] A relation on A is a subset R of A×A. Let a, b ∈ A we will write aRb if (a, b) ∈ R.

(b) [b] A relation R in A is called

(a) [a] reflexive if aRa for all a ∈ R.

(b) [b] symmetric if bRa for all a, b ∈ R with aRb.

(c) [c] transitive if aRc for all a, b, c ∈ R with aRb and bRc.

(d) [d] an equivalence relation if R is reflexive, symmetric and transitive.

(c) [c] Let R be relation on A and a ∈ A. Then [a]R := {b ∈ R | aRb}. if there is no doubt about
the relation in mind. We just write [a] for [a]R,

(d) [d] Let R be an equivalence relation on A and a ∈ A. Then [a]R is called an equivalence class
of R. A/R := {[a]R | a ∈ A}. So A/R is the set of equivalence classes of R.

Lemma 1.2.2. [basic equivalence] Let R be an equivalence relation on A and a, b ∈ R. Then the
following statements are equivalent
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(a) [a] aRb

(b) [b] b ∈ [a].

(c) [c] [a] ∩ [b] 6= ∅.

(d) [d] [a] ⊆ [b]

(e) [e] a ∈ [b]

(f) [f] [b] ⊆ [a]

(g) [g] [a] = [b].

(h) [h] bRa.

In particular, a lies in a unique equivalence class of R, namely [a].

Proof. (a) =⇒ (b): If aRb, then by definition of [a], b ∈ [a].
(b) =⇒ (c): Since R is reflexive, bRb and so b ∈ [b]. Thus b ∈ [a] ∩ [b] and [a] ∩ [b] 6= ∅.
(c) =⇒ (d): Let c ∈ [a] ∩ [b] and d ∈ [b]. Then aRd, aRc and bRc. Since R is symmetric, we

get dRa, aRc and cRb. Since R is transitive, this gives dRc and then dRb and bRd. Hence d ∈ [b]
and so [a] ⊆ [b].

(d) =⇒ (e): Since R is reflexive, aRa and a ∈ [a]. Since [a] ⊆ [b], a ∈ [b].
(e) =⇒ (f): Apply Steps ’(b) =⇒ (c): ’ and ’(c) =⇒ (d): ’ with to (b, a) in place of (a, b).
(f) =⇒ (g): We have b ∈ [b] ⊆ [a] and so [a] ∩ [b] 6= ∅. Step ’(c) =⇒ (d): ’ implies [b] ⊆ [a].

So [a] = [b].
(g) =⇒ (h): a ∈ [a] = [b] and so bRa.
(h) =⇒ (a): This hold since R is symmetric.
Since (c) and (g) are equivalent, a ∈ [b] if and only if [b] = [a]. So [a] is the unique equivalence

class containing a.



Chapter 2

Divisibility

2.1 The Division Algorithm

Theorem 2.1.1 (Division Algorithm). [division algorithm] Let a and b be integers with b 6= 0.
Then there exists unique integers q and r with

a = qb+ r and 0 ≤ r < |b|

Proof. Let A = {a− kb | k ∈ Z}. Put k = − |b|b |a|. Then k = ±a and so k ∈ Z. Since b 6= 0, |b| ≥ 1
and so

a− kb = a− (−|b|
b
|a|)b = a+ |a||b| ≥ a+ |a| ≥ 0

If follows that A ∩ N 6= ∅ and so by the Well Ordering Principal, A ∩ N has a least element r.
Then r ≥ 0 and r = a− qb for some a ∈ Z. Suppose that |b| ≤ r. Then

0 ≤ r − |b| = a− qb− |b| = a− (q +
|b|
b

)b

Thus r − |b| ∈ A ∩ N, a contradiction since r − |b| < r and r is the least element of A ∩ N.
This show the existence of q and r. To show uniqueness, let q, q̃, r, r̃ ∈ Z with

a = qb+ r, 0 ≤ r < |b|, a = q̃b+ r and 0 ≤ r̃ < |b|
Thus qb+ r = a = q̃b+ r̃ and so

(∗) (q − q̃)b = r̃ − r

Since 0 ≤ r̃ and r < |b| we have −|b| = 0 − |b| < r̃ − r and and since r̃ < |b| and 0 ≤ r,
r− r̃ < |b|− 0 = |b|. Hence −|b〈r̃− r < |b| and by ( *) −|b| < (q− q̃)b < |b|. Therefore |q− q̃||b| < |b|
and dividing by |b| gives |q − q̃| ≤ 1. Since q − q̃ is an integer, this implies q − q̃ = 0. (*) r̃ − r = 0
and thus q = q̃ and r = r̃. So q and r are indeed unique.

q is called the integer quotient and r the remainder of a when divided by b.

Lemma 2.1.2. [n2mod4] Let n be an integer. Then the remainder of n2 when divided by 4 is 0 or
1.

11
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Proof. By the division algorithm n = 2q+r with 0 ≤ r < 1. The r = 0 or 1 and so r = r2. Moreover,

n2 = (2q + r)2 = 4q2 + 4qr + r2 = 4(q2 + qr) + r

Since 0 ≤ r < 4, we see that r is the remainder of n2, when divided by 4.

Definition 2.1.3. [def:divide] Let a and b be integers. Then we say that a divides b and write a|b
if there exists an integer n with b = am.

Instead of saying that a divides b, we will often use the expression a is a factor of b or b is a
multiple of a.

Let a be any integer. Then a|a, a| − a, a|0 and 1|a. But 0|a if and only if a = 0.

Lemma 2.1.4. [basic divide] Let a, b and c be integers.

(a) [a] If a|b and b|c, then a|c.

(b) [b] If a|b and a|c, then a|b+ c.

(c) [c] If a | b and b 6= 0, then |a| ≤ |b|.

Proof. (a) By definition of dividing we have b = ka and c = lb for some integers k and l. Thus

c = lb = l(ka) = (lk)a

Since l and k are integers also lk is an integer and thus a | c, by the definition of divide.
(b) By definition of dividing we have b = ka and c = la for some integers k and l. Thus

b+ c = ka+ la = (k + l)a

Since l and k are integers also k + l are integers and thus a|b+ c, by the definition of divide.
(c) I By definition of dividing we have b = ka for some integer k. Since 0a = 0 and b 6= 0, k 6= 0.

Since k is an integer this gives |k| ≥ 1 and so |b| = |ka| = |k||a| ≥ 1|a| = |a|.

Corollary 2.1.5. [divide linear comb] Let a, b1, b2, . . . bk, l1, l2, . . . lk be integers with a|bi for all
1 ≤ i ≤ k. Then

a|l1b1 + l2b2 + . . .+ lkbk

Proof. Since a|ak and ak|lkbk, 2.1.4(a), shows that a|akbk. In particular, the statement holds for
k = 1. Assume inductively that the statements holds for k−1. Then a|l1b1 + l2b2 . . . lk−1bk−1. Since
also a | akbk, 2.1.4(b) shows

a|(l1b1 + l2b2 . . . lk−1bk−1) + lkbk

and so the statements also hold for k.

Lemma 2.1.6. [greatest element] Let A be a set of non-empty set of integers numbers and suppose
there exists k ∈ Z with a ≤ k for all a ∈ A. Then A has a greatest element, that is there exists d ∈ A
with a ≤ d for all a ∈ A.

Proof. Let B = {k−a | a ∈ A}. Since a ≤ k, k−a ∈ N. Thus B is non-empty set of natural number
and so by the Well ordering principal has a least element b. Then b = k − d for some d ∈ A. The
k − d ≤ k − a for all a ∈ A and so a ≤ d.
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Definition 2.1.7. [def:gcd] Let A be a set of integers and d an integer.

(a) [a] We say that d is a common divisor if A and write d|A, if d|a for all d ∈ A.

(b) [b] Div(A) = {d ∈ Z | d | A} is the set of common divisor of A.

(c) [c] We say that d is a greatest common divisor of A, if d is a greatest element of Div(A), that
is if

(i) [i] d | a for all a ∈ A, and

(ii) [ii] If e ∈ A with e | a for all a ∈ A, then e ≤ d

If d and e are greatest common divisors of a set of integers A, then d ≤ e and e ≤ d. So e = d.
This shows that A has at most one greatest common divisor.

Lemma 2.1.8. [gcd] Let A be a set of integers. Then A has a greatest common divisor if and only
if A * {0}.

Proof. Suppose first that A ⊆ {0}. Since n|0 for all n ∈ Z we conclude that Div(A) = Z and so
Div(A) does not have a greatest element.

Suppose next that A * {0}. Then there exists a ∈ A with a 6= 0. Since n | a for all n ∈ Div(A)
we get n ≤ |a| for all n ∈ Div(A) and so be 2.1.6, Div(A) has a greatest element.

Notation 2.1.9. [not:gcd] Let A be a set of integers. If A ⊆ {0} then gcd(A) = 0 and if A * {0}
then gcd(A) is the greatest common divisor of A.

Lemma 2.1.10. [equal gcd] Let a, b, q and r be integers with a = qb+r. Then Div(a, b) = Div(b, r)
and gcd (a, b) = gcd (b, r).

Proof. Let m ∈ Div(a, b). The m divides a and b and also r = a− rb. Thus Div(a, b) ⊆ Div(b, r).
Now let m ∈ Div(b, r). The m divides b and r and also a = qb + r. Thus Div(b, r) ⊆ Div(a, b).

This proves the first statement. The second follows from the first.

Lemma 2.1.11. [gcd a0] Let a ∈ Z. Then gcd (a, 0) = |a|.

Proof. Note that Div(a, 0) = Div(a) = Div(|a|). If a 6= 0, then b ≤ |a| for all b ∈ Div(|a|) and so
gcd (a, 0) = |a|. If a = 0, then Div(|a|) = Z and gcd (a, 0) = 0 = |a|.

Theorem 2.1.12 (Bezout). [bezout] Let a and b be integers and let E−1 and E0 be the equations

E−1 : a = 1 a + 0 b

E0 : b = 0 a + 1 a

and suppose inductively we defined equation Ek,−1 ≤ k ≤ i of the form

Ek : rk = xk a + yk b

If ri 6= 0, let Ei+1 be equation obtained by subtracting qi+1 times equation Ei from Ei−1 where qi+1

is the integer quotient of ri−1 when divided by ri. Let m ∈ N be minimal with rm = 0 and put
d = rm−1, x = xm−1 and y = ym−1.

(a) [a] gcd (a, b) = |d|
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(b) [b] x, y ∈ Z and d = xa+ yb,

Proof. Observe that ri+1 = ri−1 − qi+1ri, xi+1 = xi−1 − qi+1xi and yi+1 = yi−1 − qi+1xi. So
inductively ri+1, xi+1, yi+1 are integers and ri+1 is the remainder of ri−1 the divided by ri. So
ri+1 < |ri| and the algortithm will terminate in finitely many steps.

From ri−1 = qi+1ri + ri+1 and 2.1.10 we have gcd (ri−1, ri) = gcd (ri, ri+1) and so

gcd (a, b) = gcd (r−1, r0) = gcd (r0, r1) = . . . = gcd (rm−1, rm) = gcd (d, 0) = |d|

So (a) holds. Since each xi and yi are integers, x and y are integers. d = xa + yb is just the
equation Em−1.

Example 2.1.13. [ex:bezout] Let a = 1492 and b = 1066. Then

1492 = 1 · 1492 + 0 · 1066

1066 = 0 · 1492 + 1 · 1066

426 = 1 · 1492 − 1 · 1066

214 = −2 · 1492 + 3 · 1066

212 = 3 · 1492 − 4 · 1066

2 = −5 · 1492 + 7 · 1066

0

So gcd (1492, 1066) = 2 and 2 = −5 · 1492 + 7 · 1066

Corollary 2.1.14. [linear eq] Let a, b, c be integers. Then the equation

xa+ yb = c

has integral solution if and only if gcd (a, b) |c.

Proof. Suppose first that c = ax+by for some x, y ∈ Z. Since gcd (a, b) divides a and v, we conclude
from 2.1.5 that gcd (a, b) divides c.

Suppose next that gcd (a, b) |c. then c = k gcd (a, b) for some k ∈ Z. By 2.1.12, gcd (a, b) = ua+vb
for some u, v ∈ Z and hence c(ku)a+ (kv)b .

Definition 2.1.15. [def:lcm] Let A be a set of integers and m ∈ Z.

(a) [a] We say that m is a common multiple of A and write A|m if a|m for all a ∈ A.

(b) [b] Mult(A) = {m ∈ Z | A|m} is the set of common multiples if A.

(c) [c] If Mult(A)∩Z+ 6= ∅ then lcm(A) is the least element of Mult(A)∩Z+. If Mult(A)∩Z+ = ∅,
then lcm(A) = 0. lcm(A) is called the least common multiple of A.

If A = ∅ then Mult(∅) = Z and so lcm(A) = 1. If A = {a1, a2, . . . , an} is a non-empty of non-zero
integers, then |a1a2 . . . an| ∈ Mult(A) ∩ Z+ and so lcm(A) ∈ Z+. If A is infinite or A contains 0,
then Mult(A) = {0} and so lcm(A) = 0.

Lemma 2.1.16. [gcd lcm] Let a and b be integers.
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(a) [a] gcd (a, b) lcm(a, b) = |ab|.

(b) [b] Let m ∈ Z. Then a|m and b|m if an only if lcm(a, b)|m.

Proof. If a = 0 and b = 0 this is readily verified. So assume that (a, b) 6= 0. Replacing a and b by
|a| and |b| we may assume that a ≥ 0 and b ≥ 0. d = gcd (a, b) and l = ab

d . We first prove

1◦. [1] l ∈ Z+ and l divides a and b.

Note that l = b
da = a

db. Since d|a and d|b, (1◦) holds.

2◦. [2] If m ∈ Z with a|m and b|m, then l|m.

By 2.1.12, d = xa+ yb for some integers x and y. Thus

m

l
=
m
ab
d

=
md

ab
=
m(xa+ yb

ab
=
m

b
x+

m

a
y

Since a|m and b|m, both m
b and m

a are integers. Hence also m
l = m

b x+ m
a y is an integer and so l|m.

3◦. [3] l = lcm(a, b) and so (a) holds.

By (1◦), l is a common multiple of a and b. If m is any common multiple of a and b, then by
(2◦), l | m. so by 2.1.4(c), l = |l| ≤ |m|. Thus l is the least element of Mult(a, b) ∩ Z+ and so
l = gcd (a, b).

It remains to prove (b). By (3◦) and (2◦), lcm(a, b) divides any common multiple of a and b.
Conversely suppose that lcm(a, b) | m for some m ∈ Z. Since a and b divide m we conclude (see
2.1.4(a)) that a and b divide m. Thus (b) holds.

Corollary 2.1.17. [lcm and mult] Let A be a finite set of integers.

(a) [a] If A = B ∪ C for some subsets B and C, then

lcm(A) = lcm(lcm(B), lcm(C))

(b) [b] Let m ∈ Z. Then A|m if and only if lcm(A)|m.

Proof. We will prove (a) and (b) simultaneously by induction on |A|. If |A| = 0, the A = ∅ = B = C,
A|m for all m ∈ Z and lcm(A) = 1. So both (a) and (b) hold.

So suppose |A| > 0 and let A = B ∪ C for subsets B and C of A. If A = B = C, then clearly
(a) holds. So we may assume that B 6= A. and so by induction lcm(B)|m for all m ∈ Mult(B). In
particular, lcm(B)| lcm(A). Assume that C = A. It follows that lcm(lcm(B), lcm(C)) = lcm(C) =
lcm(A) and again (b) holds. Assume C 6= A, then by induction also lcm(C)|m for all m ∈ Mult(C)
Hence

Mult(A) = Mult(B ∪ C) = Mult(B) ∩Mult(C) = Mult(lcm(B)) ∩Mult(lcm(C))

and so by 2.1.16

Mult(A) = Mult(lcm(lcm(B), lcm(C))

It follows that lcm(lcm(B), lcm(C)) is the smallest possible integer in Mult(A). Hence lcm(A) =
lcm(lcm(B), lcm(C)) and
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(∗) MultA = Mult(lcm(A))

If |A| = 1, then A = {a} for some a ∈ A and lcm(A) = |a|. So (b) holds in this case. If |A| > 1,
then A = B ∪ C for some subsets B,C with B 6= A 6= C. Thus (*) implies that (b) holds.

Definition 2.1.18. [defc:coprime] Let a, b ∈ Z then a and b are called coprime if gcd (a, b) = 1.

Corollary 2.1.19. [coprime] Let a, b, c be integers with a and b coprime. Then

(a) [a] If a|c and b|c, then ab|c.

(b) [b] If a|bc, then a|c.

Proof. (a) Since a and b are coprime, we have gcd (a, b) = 1. So by 2.1.16(a), lcm(a, b) = |ab| and
by 2.1.16(b), lcm(a, b) | c. So |ab||c and ab|c.

(b) By 2.1.12 there exists x, y ∈ Z with xa+ yb = gcd (a, b) = 1. Hence

c = c1 = c(ax+ by) = (cx)a+ y(bc)

Since a divides a and bc, 2.1.5 shows that a|c.

Lemma 2.1.20. [ax+by=c] Let a, b, c be integers with (a, b) 6= (0, 0) and put d = gcd (a, b). Then
the equation ax + by = c has an integral solution, if and only if d|c. In this case, if (x0, y0) is a
particular solution , thene (x, y) is an solution if and only if

x = x0 + n
b

d
and y = y0 − n

a

d

for some n ∈ Z.

Proof. The first statement we already proved, see 2.1.14. So suppose (x0, y0) is a solution. Then

a

(
x0 + n

b

d

)
+ b

(
y0 − n

a

d

)
= ax0 + by0 +

anb

a
− bna

d
= ax0 + by0 = c

So x = x0 + n bd and y = y0 − nad is indeed a solution. Conversely suppose that (x, y) is integral
solution. Then

ax+ by = c = ax0 + by0

and so
a(x− x0) = −b(y − y0)

and

(∗) (x− x0)
a

d
= −(y − y0)

b

d

Since gcd
(
a
d ,

b
d

)
= 1 we conclude from 2.1.19(b), that b

d

∣∣(x− x0). Thus

x− x0 = n
b

d
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for some n ∈ Z. Substituting into (*) gives n bd
a
d = −(y − y0) bd and so

y − y0 = −na
d

So
x = x0 + n

b

d
and y = y0 − n

a

d

for some n ∈ Z.

Example 2.1.21. [ex:ax+by=c] Consider the equation 1492x+ 1066y = 6.

By 2.1.13 gcd (1492, 1066) = 2 and −5 · 1492 + 7 · 1066 = 2. Since 6
2 = 3 ∈ Z, we get

−15 · 1492 + 21 · 1066 = 6.

So x0 = −15 and y0 = 21 is a particular solution. Also 1492
2 = 746 and 1066

2 = 533. Hence

x = −15 + 533n and y = 21− 746n

is the general solution.
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Chapter 3

Primes

3.1 Prime decompositions

Definition 3.1.1. [def:prime] An integer p is called a prime if p > 1 and 1 and p are the only
positive divisors of p.

Lemma 3.1.2. [basic prime] Let p be a prime and a, b ∈ Z. Then

(a) [a] p|a or gcd (a, p) = 1.

(b) [b] If p|ab, then p|a or p|b.

Proof. (a) Let d = gcd (a, p). Then d|p and since p is a prime, d = p or d = 1. If d = 1 we have
gcd (a, p) = 1. If d = p, then p | a.

(b) We may assume that p - a. Thus by (a), gcd (a, p) = 1 and so by 2.1.19(b), p | b.

Corollary 3.1.3. [p divide product] Let p be a prime and a1, . . . ak integers. If p divides a1a2 . . . ak,
then p divides ai for some 1 ≤ i ≤ k.

Proof. By induction on k. If k = 1, the statement is obvious. Suppose now that k > 1. Then p
divides (a1 . . . ak−1)ak and so by 3.1.2(b), p|a1 . . . ak−1 or a1 | ak. In the first case, by induction,
p | ai for some 1 ≤ i ≤ k − 1.

Theorem 3.1.4. [prime decomposition] Let n be an integer with n > 1. Then there exists
uniquely determined positive integers k, p1, p2, . . . pk, e1, . . . ek such that

(a) [a] pi is a prime for all 1 ≤ i ≤ k.

(b) [b] p1 < p2 < . . . < pk.

(c) [c] n = pe11 p
e2
2 . . . pekk

Proof. We will first show the existence. If n is a prime, choose k = 1, p1 = n and e1 = 1. So suppose
n is not a prime. Then n = ab for some integers, 1 < a, b < n. By induction the theorem holds for
a and b in place of n and it so also for n.

To prove uniqueness, suppose n = pe11 . . . pekk = qf11 . . . qfll , where k, l, e1, . . . ek, f1, . . . , fl are
positive integers and p1, . . . , pk, q1, . . . ql are primes. Then q1|n = pe11 . . . pekk and so by 3.1.3, q1 | pi

19
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for some 1 ≤ i ≤ pk. Since pi is a prime and q1 > 1 this gives q1 = pi. hence p1 ≤ pi ≤ qi and by
symmetry, q1 ≤ p1. Hence p1 = q1. Thus

pe1−1
1 pe22 . . . pekk = n

p1
= n

q1
= qf1−1

1 qe22 . . . qfll .
By induction we conclude that k = l, e1 − 1 = f1 − 1, qi = pi and ei = fi for all 2 ≤ i ≤ k.

Corollary 3.1.5. [prime divisor] Let n ∈ Z with n > 1. Then there exist a prime p with p | n.

Proof. Just choose p = p1 in 3.1.4

Corollary 3.1.6. [prime and divide] Let p1, . . . pk be pairwise distinct primes and e1, . . . ek,
f1 . . . fk be non-negative integers. Put

a = pe11 . . . pekl and b = pfe1 . . . pfkk

(a) [a] a | b of if and only if ei ≤ fi for all 1 ≤ i ≤ k.

(b) [b] gcd (a, b) = pg11 . . . pgkk , where gi = min(ei, fi).

Proof. (a): Suppose first that ei ≤ fi and put d = pf1−e11 . . . pfk−ekk . Then d ∈ Z and ad = b. So
a | b.

Suppose next that a | b. Then b = ad for some d ∈ Z+.By 3.1.4 d = ps11 . . . pskk q
t1
1 . . . qtll , where

p1, . . . pk, q1 . . . ql are pairwise distinct primes si ∈ N, tj ∈ Z+ and l ∈ N. Thus

pf11 . . . pfkk = b = ad = p1e1 + s1 . . . p
ek+sk
k qt11 . . . qtll

The uniqueness of prime factorizations now shows that fi = ei + si and so ei ≤ si.
(b) Let c = ps11 . . . pskk with si ∈ N. By (a), c divides a and b iff si ≤ ei and si ≤ fi, iff si ≤ gi iff

c | pg11 . . . pgkk . Thus (b) holds.

Lemma 3.1.7. [powers and primes] Let a = a1 . . . ak where a1, a1 . . . ak are pairwise coprime
positive integers and let m ∈ Z+.

(a) [a] Let p be a prime with pm | a. Then pm|ai for some 1 ≤ i ≤ k.

(b) [b] There exists b ∈ Z+ with a = bm if and only if there exist bi ∈ Z+, 1 ≤ i ≤ k, with ai = bki .

Proof. (a) By 3.1.3 there exists 1 ≤ i ≤ k with p | ai. If m = 1, we are done. So suppose m > 1.
Since the aj ’s are pairwise coprime p - aj for all j 6= i. Note that

pm−1|a1a2 . . . ai−1
ai
p
ai+1 . . . ak

Since pm−1 - aj for j 6= i we conclude by induction on m that pm−1 | aip and so pm|ai.
(b) The backwars directions is obvious. So suppose a = bm for some b ∈ Z+. If b = 1, then a = 1

and ai = 1 for all 1 ≤ i ≤ k. So (a) holds with bi = 1. Thus we may assume that b > 1 and so there
exists a prime p with p | b. Then pm | bm = a and so by (a), pm | ai for some i. Then(

b

p

)p
= a1a2 . . . ai−1

ai
pi
ai+1 . . . al

By induction in a we conclude that there exists cj ∈ Z+ with

a1 = cm1 , . . . ai−1 = cmi−1,
ai
p

= cpi , ai+1 = cpi+1, . . . ak = ck

Put bj = cj for j 6= i and bi = pcj . Then (b) holds.
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Corollary 3.1.8. [m root] Let n,m ∈ Z+. Then m
√
n ∈ Q if and only if m

√
n ∈ Z.

Proof. The backwards direction is obvious. So suppose that m
√
n ∈ Q. Then m

√
n = a

b with a, b ∈ Z+

and gcd (a, b) = 1. Thus
(
a
b

)m = n and so

am = bmn

Since n | am and a and b are coprime we conclude that b and n. Hence also bm and n are coprime,
and by 3.1.7(b) n = cm for some c ∈ Z+. This m

√
n = c ∈ Z.

3.2 On the number of primes

Lemma 3.2.1. [infinitely many primes]

(a) [a] Let p1, p2, . . . , pn be primes. Then there exists a prime p with p | p1p2 . . . pn + 1 and p 6= pi
for all 1 ≤ i ≤ n.

(b) [b] Let n ∈ Z+. Then there exists at least n primes less or equal to 22n−1
.

(c) [c] There are infinitely may primes.

Proof. (a): By 3.1.5 there exists a prime dividing p dividing p1p2 . . . pn + 1. If p = pi for some i,
then p would divide, p1 . . . pn and so also 1 = (p1 . . . pn + 1) − (p1 . . . pn), a contradiction. Thus
p 6= pi for all 1 ≤ i ≤ n and (a) is proved.

(b) Note that 2 is a prime less or equal to 2 = 221−1
. So (b) holds for n = 1. Suppose inductively

that (b) holds for all 1 ≤ i ≤ n. Then there exists n pairwise distinct primes primes p1, p2, . . . pn
with pi ≤ 22i−1

. Let p be as in (a). Then

p ≤ p1p2 . . . pn + 1

≤ 220
221

222
. . . 22n−1

+ 1
= 220+21+22+...2n−1

+ 1
= 22n−1 + 1
≤ 22n+1

So (b) also holds for n+ 1 and (b) is proved.
(c) follows immediately from (b).

Lemma 3.2.2. [primes 3 mod 4] There exists infinitely many primes of the form 4q + 3, q ∈ N.

Proof. Observe first that 3 is such a prime. Now suppose p1, p2 . . . , pn are distinct primes with
pi = 4qi + 3 for some qi ∈ N. By 3.1.4

4p1p2 . . . pn − 1 = t1 . . . t2 . . . tk

for some primes t1, t2 . . . tk. By the remainder theorem ti = 4mi + ri for some mi, ri ∈ Z with
0 ≤ ri ≤ 3. Since 4p1p2 . . . pn + 2 is odd also each ti and ri is odd. Thus ri ∈ {1, 3}. Suppose for a
contratiction that ri = 1 for all 1 ≤ i ≤ k. Then

t1t2 . . . tk = (4m1 + 1)(4m2 + 1) . . . (4mk + 1)
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and so by the distributative law, t1 . . . tl = 4m+ 1 for some m ∈ Z. But this contradicts

4m+ 1 = t1t2 . . . tk = 3p1p2 . . . pn + 2− 1

and so 4 | 1− (−1) = 2, a contradiction.
Hence ri = 3 for some 1 ≤ i ≤ ti. Since ti divides 4p1 . . . pk and ti - −1, ti 6= pj for all 1 ≤ j ≤ n.

Therefore ti is another prime of the form 4q + 3 and the Lemma is proved.

3.3 Fermat and Mersenne Primes

Definition 3.3.1. [def:fermat]

(a) [a] A prime p is called a Fermat prime if p = 2n + 1 for some n ∈ N.

(b) [b] A prime p is called a Mersenne prime if p = 2n − 1 for some n ∈ N .

(c) [c] Let n ∈ N . Then Fn = 22n + 11. Fn is called a Fermat number.

(d) [d] Let p be a prime. Then Mp = 2p−1. Mp is called a Mersenne number.

Lemma 3.3.2. [binom] Let a and b be integers and m ∈ Z+. Then a− b divides am − bm.

Proof.

(a− b) (am−1 + am−2b+ . . .+ abm−2 + bm−1)

= am +am−1b+ . . .+ abm−1

−am−1b− . . .− abm−1 − bm

= am − bm

Lemma 3.3.3. [fermat primes] All odd Fermat primes are Fermat numbers. That is if n ∈ Z+

such that 2n + 1 is a prime, then n = 2m for some m ∈ N and 2n + 1 = Fm.

Proof. Let n = 2mk with m ∈ N, k ∈ Z+ and k odd. Put a = 22m .

2n + 1 = 22mk + 1 = ak + 1 = ak − (−1)k

By 3.3.2 a+ 1 = (a− (−1) divides ak − (−1)k = 2n + 1. Note that a ≥ 2 and so a+ 1 > 1. Since
2n + 1 is a prime, a+ 1 = 2n + 1 = ak + 1. Hence a = ak and since a ≥ 2, k = 1 Thus n = 2m and
2n + 1 = 22n+1 = Fm.

The first five Fermat numbers all are Fermat primes:
F0 = 21 + 1 = 3
F1 = 22 + 1 = 5
F2 = 24 + 1 = 17
F3 = 28 + 1 = 257,
F4 = 216 + 1 = 65, 537.
But no other odd Fermat primes are known.
We will show that F5 is not a prime, by proving that 641 divides F5 = 232 + 1.
Observe that
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641 = 16 + 625 = 24 + 54

and
641 = 5 · 128 + 1 = 4 · 27 + 1

Thus

232 = 24 · 228 = (641− 54) · 228

= (641 · 228)− (5 · 27)4 = (641 · 228)− (641− 1)4

= 641 · 228 − 6414 + 4 · 6413 − 6 · 6412 + 4 · 641− 1

Hence 232 = 641m− 1 for some m ∈ Z and so 641m = 232 + 1.
So F5 indeed is not a prime.

Lemma 3.3.4. [fn relation] Let n ∈ Z+.

(a) [a] Fn − 2 = (Fn−1 − 2)Fn−1.

(b) [b] Fn − 2 = F0F1F2 . . . Fn−1.

(c) [c] Let m ∈ N with m < n. Then gcd (Fn, Fm) = 1.

Proof. Observe first that Fn − 2 = (22n + 1)− 2 = 22n − 1. We compute

(Fn−1 − 2)Fn−1 = (22n−1
− 1)(22n−1

+ 1) = (22n−1
)2 − 1 = 22n − 1 = Fn − 2

and so (b) holds.
We have F1 − 2 = 5 − 2 = 3 = F0 and so (b) holds for n = 1. Thus (b) follows from (a) and

induction on n
Let d = gcd (Fn, Fm). Since Fn is odd, d is odd. As m < n and d | Fm we conlcude from (b),

that d | Fn − 2. Since also d | Fn, d divides Fn − (Fn − 2) = 2. Since d is odd this gives d = 1 and
(c) is proved.

Proposition 3.3.5. [mersenne] Let a, n be integers such that a > 1, n > 1 and an − 1 is a prime.
Then a = 2 and n is a prime. So an − 1 = 2n − 1 = Mn is a Mersenne prime and a Mersenne
number.

Proof. Since n > 1 there exist a prime p with p | n. Put b = a
n
p . Then bp − 1 = an − 1 is a prime

By 3.3.2, b − 1 divides bp − 1. Since b > 1 and p > 1, bp − 1 > b − 1 and since bp − 1 is a prime,
b− 1 = 1. Thus b = 2. Since b = a

n
p we conlude that a = 2, np = 1 and n = p is a prime.

Lemma 3.3.6. [check prime] Let n be an integer with n > 1. Then n is not a prime if and only
of the exits a prime p with p | n and p ≤

√
n.

Proof. The backwards direction is obvious. So suppose n is not a prime. Then there exists a ∈ Z
with 1 < a < n and a | n. Thus n = ab for some b ∈ Z. Note that also 1 < b < n and interchaning
a and b if necessary, we may assume that a ≤ b. Then a2 ≤ ab = n and so a ≤

√
n. By 3.1.5 there

exists a prime p with p | a. Then p | n and p ≤ a ≤
√
n.
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Chapter 4

Congruences

4.1 The Ring Zn
Definition 4.1.1. [modulo n] Let n ∈ Z. Define the relation ≡n on Z by

≡n := {(a, b) ∈ Z× Z
∣∣n|b− a}

If a ≡n b we say that a and b are congruent modulo n and write

a ≡ b (mod n)

Note that a ≡n b iff a ≡ b (mod n) and iff n divides b− a.

Lemma 4.1.2. [mod equiv] Let n ∈ Z. Then ≡n is an equivalence relation on Z.

Proof. Let a, b, c ∈ Z. Note that 0n = 0 = a− a. So n | a− a, a ≡ a (mod n) and ≡n is reflexive.
Suppose a ≡ b (mod n). Then n | (b − a) and so also n | (−1)(b − a) = a − b. Thus b ≡ a

(mod n) and ≡n is symmetric.
Suppose that a ≡ b (mod n) and b ≡ c (mod n). Then n | (b − a) and n | (c − b). Hence also

n | (b− a) + (c− b) = (c− a) and a ≡ c (mod n). Thus ≡n is reflexive.

Definition 4.1.3. [def:congruence class] Let n ∈ Z.

(a) [a] [a]n := {b ∈ Z | a ≡ b (mod n)}. [a]n is called the congruence class of a modulo n.

(b) [b] Zn= {[a]n | a ∈ Z}.

Note that [a]n is the equivalence class of ≡n containing a.
If n = 0, then n | b− a if and only if b− a = 0, that is b = a. So [a]0 = {a} and Z0 is essentially

the same as Z.
If n = 1, then n | b− a for all a, b ∈ Z. So [a] = Z and Z1 has just one element, namely Z.
Observe that n | b− a if and only if −n | b− a. Hence ≡n=≡−n.

Lemma 4.1.4. [modulo and remainder] Let a, b ∈ Z and n ∈ Z+. Then the following are
equivalent.

(a) [a] [a]n = [b]n

25
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(b) [b] a ≡ b (mod n)

(c) [c] b = a+ kn for some k ∈ Z.

(d) [d] a and b have the same remainder when divided by n.

Proof. By 1.2.2 (a) and (b) are equivalent.
(b) =⇒ (c): If a ≡ b mod n, then n | b− a, b− a = kn for some k ∈ Z and b = a+ kn. So (c)

holds.
(c) =⇒ (d): Let a = qn + r with q, r ∈ Z and 0 ≤ r < |n|. Then b = a + kn = (q + k)n + r

and so r is also the remainder of b when divided by n.
(d) =⇒ (b): Let r be the (same) remainder of a and b divided by n. Then a = qn + r and

b = q̃n+ r for some q, q̃ ∈ Z. Thus b− a = (q̃ − q)n and so n | b− a and a ≡ b (mod n).

Corollary 4.1.5. [zn] Let n ∈ Z with n ≥ 1. Then

(a) [a] Zn = {[0]n, [1]n, . . . [n− 1]n}.

(b) [b] Let [r]n 6= [s]n for all 0 ≤ r < s < n.

(c) [c] |Zn| = n.

Proof. (a): Let a ∈ Z and r the remainder of a when divided by n. Then [a]n = [r]n and so (a)
holds. (b): Follows from 4.1.4.

(c) follows from (a) and (b).

Lemma 4.1.6. [ring zn] Let a, b, a′, b′, n ∈ Z with

a ≡ a′ (mod n) and b ≡ b′ (mod n)

Then

a′ + b′ ≡ a+ b (mod n)

a′ − b′ ≡ a− b (mod n)

a′b′ ≡ ab (mod n)

Proof. Since a ≡ a′ (mod n) and b ≡ b′ (mod n) there exist k, l ∈ Z with a′ = a+kn and b′ = b+ln.
Thus

a′ + b′ = a+ b+ (k + l)n
a′ − b′ = a− b+ (k − l)n
a′b′ = ab+ (al + kb+ kln)n

and so the Lemma holds.

Definition 4.1.7. [def:ring zn] Let n be an integers. The binary operations ”+”,”-” and ”·” on
Zn are defined by

[a]n + [b]n = [a+ b]n

[a]n − [b]n = [a− b]n
[a]n[b]n = [ab]n
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Note that by 4.1.6 these binary operation are well defined.

Lemma 4.1.8. [polynomials modulo n] Let f ∈ Z[x] and a,b ∈ Z. If a ≡ b (mod n), then also
f(a) ≡ f(b) (mod n).

Proof. Let f =
∑n
i=0 cnx

n with ci ∈ Z. If n = 0, then f(a) = c0 = f(b) and the lemma holds. So
suppose n ≥ 1 and put g =

∑n−1
i=0 ci+1x

i. Then f = c0 + xg. By induction on n, g(a) ≡ g(b) ≡ p
mod n. Also c0 ≡ c0 (mod n) and a ≡ b (mod n). Hence by 4.1.6

f(a) ≡ c0 + ag(a) ≡ c0 + bg(b) ≡ f(b) (mod n)

Example 4.1.9. [ex:no root] The polynomial f = x5 − x2 + x− 3 has no root in Z.

We compute modulo 4

f(−1) ≡ −1− 1− 1− 3 ≡ −6 6≡ 0 (mod 4)
f(0) ≡ −3 6≡ 0 (mod 4)
f(1) ≡ 1− 1 + 1− 3 ≡ −2 6≡ 0 (mod 4)
f(2) ≡ 32− 4 + 2− 3 ≡ 27 6≡ 0 (mod 4)

Now let n be any integer. Then n is congruent to one of −1, 0, 1, or 2 modulo 4. Hence 4.1.8
and the above calculation, f(n) 6≡ 0 (mod 4). Thus f(n) is not a multiple of 4 and in particular,
f(n) 6= 0.

4.2 Solving One Congruence

Lemma 4.2.1. [divide congruence] Let a, b, n, t ∈ Z such that t divides a, b and n and t 6= 0.
Then

a ≡ b (mod n)

⇐⇒ a
t ≡

b
t (mod

n

t
)

Proof. We have

a ≡ b (mod n)

⇐⇒ b− a = kn for some k ∈ Z

⇐⇒ b
t −

a
t = k nt for some k ∈ Z

⇐⇒ a
t ≡

b
t (mod n

t )

Lemma 4.2.2. [cancel modulo n] Let a, b, n, t ∈ Z and suppose that gcd (n, t) = 1. Then

a ≡ b (mod n)
⇐⇒ at ≡ bt (mod n)
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Proof. We have

a ≡ b (mod n)

⇐⇒ n | b− a

⇐⇒ n | (b− a)t since gcd (n, t) = 1(2.1.19(b))

⇐⇒ n | bt− at

⇐⇒ at ≡ bt (mod n)

Lemma 4.2.3. [congruence] Let a, b and n be integers with n 6= 0 and put d = gcd (a, n). Then
the linear congruence

ax ≡ b (mod n)

has a solution if and only if d|b. If d|b and x0 is a solution, then x is a solution if and only if
x = x0 + tnd for some t ∈ Z. In particular, the solutions form exactly d congruence classes modulo
n, namely [x0 + tnd ]n, 0 ≤ t < d.

Proof.

xa ≡ b (mod n) for some x ∈ Z

⇐⇒ ax = b− ny for some x, y ∈ Z

⇐⇒ ax+ ny = b for some x, y ∈ Z

So by 2.1.20 ax+ ny = b has a solution if and only if d | b. Hence also xa ≡ b (mod n) has solution
if and only if d | b. Also if (x0, y0) is a particular solution of ax+ ny = b, the (x, y) is a solution of
ax+ ny = b if and only if

x = x0 + t
n

d
and y = y0 − t

a

d

for some t ∈ Z. Thus then x is a solution of xa ≡ b (mod n)if and only if x = x0 + tnd for some
t ∈ Z. We have

y x0 + tnd ≡ x0 + t′ (mod n)

⇐⇒ tnd ≡ t
′ n
d (mod n)

⇐⇒ t ≡ t′ (mod d) − divide by n
d , (4.2.1)

So the solutions of ax ≡ b (mod n) from exactly d congruence classes modulo n, namely [x0 +
tnd ]n, 0 ≤ t < d.

We will now introduce two methods to find the solution of a linear congruence ax ≡ b (mod n).

Method 1:

Step 1: Compute d = gcd (a, b). Check whether d divides b. If d does not divide b, the linear
congruence has no solution. If d divides b, continue with Step 2.

Step 2: So assume now that d | b. In view of 4.2.1 we can divide the linear congruence by d to
obtain an equivalent congruence
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a

d
x =

b

d
(mod

n

d
)

Step 3: In view of Step 2 we now assume that gcd (a, n) = 1. Compute e = gcd (a, b). Since
e | a and gcd (a, n) = 1 we have gcd (e, n) = 1. So in view of 4.2.2 we can divide by e and obtain an
equivalent congruence

a

e
x ≡ b

e
(mod n)

Step 4: If a = ±1, then x is a solution of ax ≡ b (mod n) if and only if x ≡ ±b (mod n) and
we are done. Otherwise continue with Step 5.

Step 5a: Find an integer c such that gcd (c, n) = 1 and the remainder (or least absolute
remainder) r of ca when divided by n is smaller than |a|. Let s be the remainder of cb modulo n.
Then by 4.2.2 we obtain equivalent congruence

cn ≡ cn (mod n)

and

r ≡ s (mod n)

To find c, one can either take some guesses or use the Euclidean algorithm to find a solution of
ax+ ny = 1 and then use c = x (which gives a remainder of 1 then ca is divided by n)

Instead of Step 5a one can also use

Step 5b: Find an integer c such that gcd (a, b+ cn) 6= 1 and use the equivalent congruence

a ≡ b+ cn (mod n)

Note that such a c always exists: Since gcd (a, n) = 1, the equation ny ≡ −b (mod a) has a so-
lution. Choose c to be a solution of this equation, then a divides b+ cn and so gcd (a, b+ cn) = |a|.
For calculations by hand, it is best to take some guesses for c rather than solving that equation.

After Step 5a or Step 5b go back to Step 3. Note that in both case (Step 5a and Step5b) the
absolute value of a will have decreased and so this procedure will find the solution in finitely many
steps.

Example 4.2.4. [ex:method 1] Solving 30x ≡ 18 (mod 14) using Method 1

Step 1: gcd (30, 14) = 2 and 2 | 18. So there are solutions.
Step 2: Dividing by 2 we obtain

15x ≡ 9 (mod 7)

Step 3 gcd (15, 9) = 3. Dividing by 3 we obtain:

5x ≡ 3 (mod 7)

Step 4 Since 5 6= ±1, we have to continue.
Step 5b We choose c = 1 and add 1 · 7 to 3 to obtain
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5x ≡ 10 (mod 7)

Step 3 gcd (5, 10) = 5. Divide by 5:

x ≡ 2 (mod 7)

Step 4 The solution is x ≡ 2 (mod 7).

Method 2: Method 1 works well for small numbers, where one easily compute gcd’s and take
good guesses in Step 5. Method 2 is a deterministic algorithm similar to the Euclidean algorithm
2.1.12

Observe first that nx ≡ 0 (mod n) for all x in Z. So the linear congruence ax ≡ b (mod n) is
equivalent to the system of two linear congruences

C−1 : nx ≡ 0 (mod n)

C0 : ax ≡ b (mod n)

Suppose inductively that we already defined linear congruences Ck : rkx ≡ bk (mod n) for
−1 ≤ k ≤ i. If ri 6= 0, let Ci+1 be the linear congruence obtain by subtracting qi+1 times congruence
Ci−1 from Ci, where qi+1 is the integer quotient of ri−1 then divided by ri. So ri+1 is the remainder
of ri−1 when divided by ri.

Let m be minimal with rm = 0. Comparing with the Euclidean algorithm we see that rm−1 = d,
where d0 gcd (a, n). Note that the system (Ci−1, Ci) is equivalent to (Ci, Ci+1). Since the linear
congruence ax ≡ b (mod n) is equivalent to the system (C−1, C0) its is also equivalent to the system
(Cm−1, Cm):

Cm−1 : dx ≡ bm−1 (mod n)

Cm : 0x ≡ bm (mod n)

By 4.2.3 the latter has a solution if and only if d | bm−1 and n mod bm. In this case 4.2.1 shows
that the solution is

x ≡ bm−1

d
(mod

n

d
)

Example 4.2.5. [ex:method 2] Solving 30x ≡ 18 (mod 14) using Method 2.

14x ≡ 0 (mod 14)

30x ≡ 18 (mod 14)

(q2 = 0) 14x ≡ 0 (mod 14)

(q3 = 2) 2x ≡ 18 (mod 14)

(q4 = 7) 0x ≡ −7 · 18 (mod 14)

The last congruence always holds. Dividing the second two last congruence by 2 we obtain the
solution:
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x ≡ 9 (mod 7)

which of course is the same as

x ≡ 2 (mod 7)

4.3 Solving Systems of Linear Congruences

Corollary 4.3.1. [lcm and congruence] Let A be finite set of integers. and x, y ∈ Z. then

x ≡ y (mod a) for all a ∈ A

if and only if
x ≡ y (mod lcm(A))

Proof. Note that the following are equivalent

x ≡ y (mod a) for all a ∈ A

a|y − x for all a ∈ A

A|y − x

lcm(A)|y − x by (2.1.17)

x ≡ y (mod lcm(A))

Corollary 4.3.2. [unique congruence] Let n1, n2, . . . , nk be non-zero integers and let a1, a2, . . . ak
be any integers. Suppose that the system of congruences

x ≡ ai (mod ni) for 1 ≤ i ≤ k

has a solution. Then the solutions form a single congruence class modulo lcm(n1, n2, . . . , nk)

Proof. Let x0 is a solution of the system of congruences. x ∈ Z is a solution if and only if x ≡ ai
(mod ni) for all 1 ≤ i ≤ k. Since x0 ≡ ai (mod pj), this is the case if and only if x ≡ x0 (mod )ni
for all i. By 4.3.1 this holds if and only if x ≡ x0 (mod lcm(n1, n2, . . . , nk)).

Theorem 4.3.3 (Chinese Remainder Theorem). [chinese] Let n1, n2, . . . , nk be pairwise coprime
non-zero integers and let a1, a2, . . . ak be any integers. Then the system of congruences

x ≡ ai (mod ni) for 1 ≤ i ≤ k

has a solution and the solutions form unique congruence modulo n1n2 . . . nk.

Proof. We will first show that the system has a solution. For this put n = n1 . . . nk and ci = n
ni

=
n1 . . . ni−1ni+1 . . . nk. Since ni is coprime to each nj , j 6= i, ni is also coprime to cj . Thus by 4.2.3
the equation cix ≡ ai (mod ni) has a solution di. Put

x0 := c1d1 + c2d2 + . . .+ ckdk
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We claim that x0 is a solution of the system of congruence. Let 1 ≤ i, j ≤ k with i 6= j. Since
ni | cj we have cjdj ≡ o (mod ni). Also by choice of di, cidi ≡ ai (mod ni). Thus

c0 ≡ 0 + 0 + . . .+ 0 + ai + 0 + . . . 0 ≡ ai (mod ni)

and
x0 is a solution.
Since the ni are pairwise coprime, lcm(n1, n2, . . . , nk) = n1n2 . . . nk, Thus the second statement

follows from 4.3.2

Example 4.3.4. [ex:chinese] Find all solutions of

x ≡ 2 (mod 3), x ≡ 3 (mod 5), x ≡ 2 (mod 7)

n1 = 3 n2 = 5 n3 = 7

a1 = 2 a2 = 3 a3 = 2

c1 = 5 · 7 = 35 c2 = 3 · 7 = 21 c3 = 3 · 5 = 15

35d1 ≡ 2 (mod 3) 21d2 ≡ 3 (mod 5) 15d3 ≡ 2 (mod 7)

−d1 ≡ 2 (mod 3) d2 ≡ 3 (mod 5) d3 ≡ 2 (mod 7)

d1 = −2 d2 = 3 d3 = 2

So x0 = −2 · 35 + 3 · 21 + 2 · 15 = −70 + 63 + 30 = 23 is a solution. 3 · 5 · 7 = 5 · 21 = 105 and so
x is a solution if and only if

x ≡ 23 (mod 105)

Example 4.3.5. [ex:linear chinese] Find all solutions of

3x ≡ 4 (mod 7), 5x ≡ 13 (mod 19)

We will first solve each of the congruence by themselves , using Method 2 from above.

C−1 7x ≡ 0 (mod 7) 19x ≡ 0 (mod 19)

C0 3x ≡ 4 (mod 7) 5x ≡ 13 (mod 19)

C1 q2 = 2 x ≡ −8 (mod 7) q2 = 4 −x ≡ −52 (mod 19)

C1 x ≡ −1 (mod 7) x ≡ −5 (mod 19)

C2 q3 = 3 0x ≡ 7 (mod 7) q3 = 5 0x ≡ 38 (mod 19)

So we have to solve the system of congruences

x ≡ −1 (mod 7), x ≡ −5 (mod 19)

We use the method from the Chinese remainder theorem
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n1 = 7 n2 = 19

a1 = −1 a2 = −5

c1 = 19 c2 = 7

19d1 ≡ −1 (mod 7) 7d2 ≡ −5 (mod 19)

−2d1 ≡ 6 (mod 7) 7d2 ≡ 14 (mod 19)

d1 = −3 d2 = 2

Thus x0 = (−3) · 19 + 2 · 7 = −57 + 14 = −43 is a particular solution. 7 · 19 = 133 and so x is a
solution if and only if

x ≡ −43 (mod 133)

Theorem 4.3.6 (General Chinese Remainder Theorem). [general chinese] Let n1, n2, . . . nk be
non-zero integers and a1, . . . , ak arbitray integers. Then the system of congruence

x ≡ ai (mod ni), 1 ≤ k

has a solution if and only if

ai ≡ aj (mod gcd (ni, nj) ), for all 1 ≤ i < j ≤ k

In this case the set of solutions forms a single congruence class modulo lcm(n1, n2, . . . , nk).

Proof. The second statement follows from 4.3.2. For the forward direction of the first stament let
x0 be a solution of the system of congruence. Then for each 1 ≤ i < j ≤ n..

ai ≡ x0 (mod ni) and aj ≡ x0 (mod nj)

Since gcd (ni, nj) divides ni and nj this gives

ai ≡ x0 (mod gcd (ni, nj)) and aj ≡ x0 (mod gcd (ni, nj))

Thus also

ai ≡ aj (mod gcd (ni, nj))

For the backward direction of the first statement let P the set of primes which devide at least
one of the ni’s. Then there exist non-zero integers eip, 1 ≤ i ≤ k, p ∈ P such that

ai =
∏
p∈P

peip

For p ∈ P define ep = max(eip | 1 ≤ i ≤ k) and pick 1 ≤ ip ≤ k with ep = eipp. Set bp = aip . By
the Chinese Remainder Theorem the system of congruences

x ≡ bp (mod pep), p ∈ P

has a solution, say x0. We will show that x0 is also a solution of the original system of congruences.
For this let 1 ≤ i ≤ k and p ∈ P . Then
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x0 ≡ bp (mod pep)

and since eip ≤ ep also

(∗) x0 ≡ aip (mod peip)

By assumption

ai ≡ aip (mod gcd
(
ni, nip

)
)

Note that peip divides ni and since eip ≤ ep = eipp, p
eip also devides nip . Thus

ai ≡ aip (mod peip)

Together with (*) this gives

x0 ≡ ai (mod peip)

for all p ∈ P . Note that lcm(peip , p ∈ P ) is
∏
p∈P p

eip = ni. Thus 4.3.1 gives

x0 ≡ ai (mod ni)

This holds for all 1 ≤ i ≤ k and so x0 is indeed a solution of x ≡ ai (mod ni), 1 ≤ i ≤ k.

Example 4.3.7. [ex:general chinese]

x ≡ 5 (mod 12) and x ≡ 11 (mod 18)

12 = 223, 18 = 2 · 32, gcd (12, 18) = 2 · 3 = 6, lcm(12, 18) = 2232 = 36

Since 11− 5 = 6 is divisible 6, we see that the system of linear congruence has a solution. 22|12
and 32|18, so the system is equivalent to

x ≡ 5 (mod 4) and x ≡ 11 (mod 9)

and so to

x ≡ 1 (mod 4) and x ≡ 2 (mod 9)

We use the algorithm from the Chinese remainder theorem to solve the system

a1 = 1 a2 = 2

c1 = 9 c2 = 4

9d1 ≡ 1 (mod 4) 4d2 ≡ 2 (mod 9)

d1 ≡ 1 (mod 4) 8d2 ≡ 4 (mod 9)

−d2 = 4 (mod 9)

d1 = 1 d2 = −4
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So

c1d1 + c2d2 = 9 · 1 + 4 · −4 = 9− 16 = −7

is a solution. This x is a solution if and only if

x ≡ −7 (mod 36)

4.4 Polynomial congruences

Let f ∈ Z[x] and n a non-zero integer. In this section we provide an algorithm to solve the polynomial
congruence

f(x) ≡ 0 (mod n)

It follows from 4.1.8, that if x0 is a solution, then also any number congruent to x0 modulo n is
a solutions. So the set of solutions is a union of congruence classes modulo n.

We first consider the case n = pe, where p is a prime and e ∈ Z+. Observe that if xi is a solution
of f(x) ≡ 0 (mod pi), then xi is also a solution of f(x) ≡ 0 (mod pi−1). This allows an inductive
approach:

Given a solution xi of f(x) ≡ 0 (mod pi) we need to find all solutions xi+1 ∈ Z such that

(∗) f(xi+1) ≡ 0 (mod pi+1) and xi+1 ≡ xi (mod p)i.

Unfortunately our inductive approach does not work for i = 0 and we therefore assume that we
are somehow able to solve the congruence f(x) ≡ 0 (mod p). For small primes p, this can be done
by computing f(i) for all 0 ≤ i < p.

Suppose now that i ≥ 1. Since xi+1 ≡ xi (mod pi)

xi+1 = xi + kip
i

for some ki ∈ Z.
Let f =

∑m
l=0 alx

l with m ∈ N and al ∈ Z. Note that

xli+1 = (xi + kip
i)l =

l∑
t=0

(
l

t

)
ktip

itxl−ti

If t ≥ 2, then it ≥ 2i ≥ i+ 1 and so pit ≡ 0 (mod pi+1). Thus

xli+1 ≡
1∑
t=0

(
l

t

)
ktip

itxl−ti ≡ xli + kip
ilxl−1

i (mod pi+1)

and so

f(xi+1) ≡
∑m
l=0 alx

l
i+1 (mod pi+1)

≡
∑m
l=0 al(x

l
i + kip

ixl−1
i ) (mod pi+1)

≡
(∑

l=0 alx
l
i

)
+ kip

i
(∑m

l=0 allx
l−1
i

)
(mod pi+1)

≡ f(xi) + ki+1
p f ′(xi) (mod pi+1)
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Since f(xi) ≡ 0 (mod pi) we have f(xi) = qip
i for some qi ∈ Z. Thus

f(xi+1) ≡ 0 (mod pi+1)

qip
i + kop

if ′(xi) ≡ 0 (mod pi+1)

qi + kif
′(xi) ≡ 0 (mod p)

kif
′(xi) ≡ −qi (mod p)

So (*) holds if and only of

(∗∗) kif
′(xi) ≡ −qi (mod p)

So there are three cases to consider:

Case 1 f ′(xi) 6≡ 0 mod p

Then ki is uniquely determined by (**) modulo p and so there xi+1 is uniquely determined by
(*) modulo pi+1.

Case 2 f ′(xi) ≡ 0 mod p and qi 6≡ 0 (mod p).
Then (**) does not holds for ant ki and so also (*) does not hold for any xi+1.

Case 3 f ′(xi) ≡ 0 mod p and qi ≡ 0 (mod p).

Then (**) holds for all ki and so there are (modulo p) p choices for ki which fulfill (**). So any
xi+1 with xi+1 ≡ xi (mod pi) fulfills (**) and there are (modulo pi+1) p choices for xi+1 which fulfill
(*).

Note that xi ∼= x1 (mod p) and so by 4.1.8 f ′(x1) ≡ f ′(xi). So (**) is equivalent to

(∗ ∗ ∗) kif
′(x1) ≡ −qi (mod p)

So it suffices it compute f ′(x1)

Example 4.4.1. [ex:polynomial congruence] Find all solutions of x3−x2 +4x+1 ≡ 0 (mod 53)

Put f(x) = x3 − x2 + 4x+ 1. We start with the congruence

f(x) ≡ 0 (mod 5)

We have

f(0) ≡ 03 − 02 + 4 · 0 + 1 ≡ 1 (mod 5)

f(1) ≡ 13 − 12 + 4 · 1 + 1 ≡ 5 (mod 5)

f(2) ≡ 23 − 22 + 4 · 2 + 1 ≡ 13 (mod 5)

f(−2) ≡ (−2)3 − (−2)2 + 4 · (−2) + 1 ≡ −19 (mod 5)

f(−1) ≡ (−1)3 − (−1)2 + 4 · (−1) + 1 ≡ −5 (mod 5)
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So the solutions of f(x) ≡ 0 (mod 5) are

x1 ≡ 1 (mod 5) and x1 ≡ −1 (mod 5)

Before proceeding, let’s compute:

f ′(x) = 3x2 − 2x+ 4 ≡ 3x2 − 2x− 1 (mod 5)

Thus f ′(1) ≡ 3− 2− 1 ≡ 0 (mod 5) and f ′(−1) = 3 + 2− 1 = −1 (mod 5), We record:

f ′(1) ≡ 0 (mod 5) and f ′(−1) ≡ −1 (mod 5)

We now compute all solutions of

f(x) ≡ 0 (mod 52)

Let x2 = x1 + 5k1 and f(x1) = 5q1. We need to solve

k1f
′(x1) ≡ −q1 (mod 5)

If x1 = 1, then f(x1) = 5 = 1 · 5 and f(x1) ≡ 0 (mod 5). Thus q1 = 1 and we get

k1 · 0 ≡ −1 (mod 5)

This has no solution.
If x1 − 1, the f(x1) = −5 = −1 · 5 and f(x1) ≡ −1 (mod 5). Thus q1 = −1 and we get

k1 · (−1) ≡ −(−1) (mod 5)

Thus k1 ≡ −1 (mod 5) and so x2 ≡ x1 + 5k1 ≡= −1 + 5(−1) ≡ −6 (mod 25). So f(x) ≡ 0
(mod 52) has a unique solution modulo 52 namely

x2 ≡ −6 (mod 52)

We are now able to compute all solutions of

f(x) ≡ 0 (mod 53)

We have x2 = −6, x3 = x2 + 25k2, f(x2) = (−6)3 − (−6)2 + 4(−6) = 1 = −216− 36− 24 + 1 =
−215 − 60 = −275 = (−11)2̇5. So q2 = −11. Also f ′(−6) ≡ f ′(−1) ≡ −1 (mod 5). So the
congruence k2f

′(x2)
equiv − q2 (mod 5) is

−k2 ≡ −(−11) (mod 5)

and so k2 ≡ −11 ≡ −1 (mod 5). So x3 ≡ x2 + 25k2 ≡ −6− 25 ≡ −31 (mod 53)
So f(x) ≡ 0 (mod 53) has a unique solution modulo 53 namely

x3 ≡ −31 (mod 53)

Solving f(x) ≡ 0 (mod n) for an arbitrary n ∈ Z+:



38 CHAPTER 4. CONGRUENCES

If n is not a prime power, write n = pe11 . . . pekk . Then solve the equation f(x) ≡ 0 (mod peii ).
Say xi1, . . . xiri are the solutions. Then for each 1 ≤ ji ≤ ri, 1 ≤ i ≤ k use the Chinese Remainder
Theorem to solve

x ≡ xiji (mod peii ), 1 ≤ i ≤ k

to obtain the r1r2 . . . rk solutions of f(x) ≡ 0 (mod n).



Chapter 5

Groups

5.1 Basic Properties of Groups

Definition 5.1.1. [def:binary operation]

(a) [a] A binary operation on a set S is a function ∗ : S × S → T . We denote the image of (a, b)
under ∗ by a ∗ b or ab.

(b) [b] A binary operation ∗ : S × S → T is called

(a) [a] closed if a ∗ b ∈ S for all a, b ∈ S.

(b) [b] associative if its closed and a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ S.

(c) [c] commutative if a ∗ b = b ∗ a for all a, b ∈ S.

(c) [c] Let ∗ be a binary operation on the set S. An identity for ∗ is an element e ∈ S with
a ∗ e = a = e ∗ a for all a ∈ S.

(d) [d] Let ∗ be a binary operation on S and e an identity for ∗. Let a and b ∈ S. Then b is called
an inverse of a with respect to ∗ if a ∗ b = e = b ∗ a. If a has an inverse in S then a is called
invertible with respect to ∗.

(e) [e] Let ∗ be a binary operation on the set G. Then (G, ∗) is called a group if

(i) [i] ∗ is closed;

(ii) [ii] ∗ is associative;

(iii) [iii] ∗ has an identity e in G; and

(iv) [iv] each element a ∈ G is invertible with respect to ∗.

(f) [f] A group (G, ∗) is called abelian if ∗ is commutative.

(N,+) is closed, associative, commutative and has an identity. But 0 is the only element with
an inverse.

(Z,+) is a abelian group.
(N,−) is not closed, not associative, not commutative and has no identity. (so we can’t even talk

about inverses)
Let R∗ be the set of non-zero real numbers. Then (R∗, ·) is a group.

39
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Lemma 5.1.2. [unique identity] Let ∗ be a binary operation on the set S with and identity e.

(a) [a] e is the only identity of ∗.

(b) [b] If a ∈ S is invertible and ∗ is associative, then a has a unique inverse in S. We will denote
the unique inverse by a−1.

Proof. (a) Let f be an identity in S. Then ef = e since e is an identity and ef = f since f is an
identity. So e = f .

(b) Let b and c be inverse of a. Then

b = eb = (ca)b = c(ab) = ce = c

Lemma 5.1.3 (Cancellation Law). [cancellation] Let G be a group and a, b, c ∈ G. Then

ab = ac

⇐⇒ b = c

⇐⇒ ba = ac

Proof. Suppose ab = ac. Then a−1(ab) = a−1(ac) and so (a−1a)b = (a−1a)c, eb = ec and b = c.
If b = c, then clearly ab = ac. So the first two statements are equivalent. Similary, the last two

statement are equivalent.

Corollary 5.1.4. [eq in group] Let G be a groups and a, b ∈ G. Then

(a) [a] The equation ax = b has a unique solution in G, namely x = a−1b.

(b) [b] (a−1)−1 = a.

(c) [c] (ab)−1 = b−1a−1.

Proof. (a): By the Cancellation Law, ax = b if and only if a−1(ax) = a−1b and so if and only if
x = a−1b.

(b) By definition of a−1,

aa−1 = e = a−1a

and so

a−1a = e = aa−1

Hence a = (a−1)−1.
(c) (ab)(b−1a−1) = ((ab)b−1)a−1 = (a(bb−1))a−1 = (ae)a−1 = a−1 = e = (ab)(ab)−1 and so by

(a) b−1a−1 = (ab)−1.

Definition 5.1.5. [def:subgroup] Let G be a group and H a subset of G. Then H is called an
subgroup of G and we write H ≤ G provided that

(i) [a] e ∈ H;

(ii) [b] ab ∈ H for all a, b ∈ H; and
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(iii) [c] a−1 ∈ H for all a ∈ H

Note that if H is a subgroup of G, then H together with ∗ |H×H is a group.
For n ∈ Z let nZ = {nm | n ∈ Z}. Then nZ is subgroup of Z with respect to addition. Also

a ∈ nZ if and only if n|a.

Definition 5.1.6. [def:cosets] Let G be a group and H ≤ G

(a) [a] The relation ≡H on G is defined by a ≡H b if ab−1 ∈ H.

(b) [b] For a ∈ H, Ha = {ha | h ∈ H}. Ha is called the right coset of H in G containing a.

(c) [c] G/H = {Ha | a ∈ G}.

Consider for example the subgroup nZ of (Z,+). Let a, b ∈ Z. Then the inverse of b with respect
of ” + ” is −b. So

a ≡nZ b

⇐⇒ a+ (−b) ∈ nZ
⇐⇒ a− b ∈ nZ
⇐⇒ n|a− b
⇐⇒ a ≡n b

Lemma 5.1.7. [equiv h] Let G be a groups and H a subgroup of G. Then ≡H is an equivalence
relation of G.

Proof. Let a, b, c ∈ G. Then aa−1 = e ∈ H and so a ≡H a. So ≡H is reflexive.
If a ≡H b, then ab−1 ∈ H and so also (ab−1)−1 ∈ H. Now (ab−1)−1 = (b−1)−1a−1 = ba−1 and

so ba−1 ∈ H and b ≡H a. Thus ≡H is symmetric.
Suppose that a ≡H b and b ≡H c. Then ab−1 ∈ H and bc−1 ∈ H. Thus (ab−1)(bc−1 ∈ H. Since

(ab−1)(bc−1) = ((ab−1)b)c−1 = (a(b−1b))c−1 = (ae)c−1 = ac−1

we have ac−1 ∈ H and so a ≡H c. Thus ≡H is transitive and hence an equivalence relation.

Theorem 5.1.8 (Lagrange’s Theorem). [lagrange] Let G be a groups and H a subgroup of G.
Then

|G| = |G/H| · |H|

So if G is finite, then |H| divides |G|.

Proof. Since each element of G lies in exactly one equivalence class of ≡H and G/H is the set of
equivalence classes of ≡H we have

|G| =
∑

T∈G/H

|T |

We will show that |T | = |H| for all T ∈ G/H. Indeed, let g ∈ G with T = Hh and define

α : H → Hg, h→ hg
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If t ∈ T, then by definition Hg, t = hg for some h ∈ H and so t = α(h). Thus α(h) = t and α is
onto. let h, k ∈ H with α(h) = α(k). Then hg = kg and so by the Cancellation Law, h = k. Thus
α is 1-1.

Since α is 1-1 and onto, |H| = |T |. Thus

|G| =
∑

T∈G/H

|T |
∑

T∈G/H

|H| = |G/H| · |H|

Definition 5.1.9. [def:order] Let G be a group and g ∈ G.

(a) [z] For n ∈ Z+ define gn inductively by g0 = e and gn+1 = gbg. Also define g−n = (g−1)n.

(b) [a] 〈g〉 := {gn|n ∈ Z}. 〈g〉 is called the subgroup of G generated by G.

(c) [b] G is called cyclic if G = 〈h〉 for some h ∈ G. Such an h is called a generator for G.

(d) [c] We say that g has finite order if there exists n ∈ Z+ with gn = e. In this case the smallest
such n is called the order of g and is denoted by |g|. If no such n exists we say that g has infinite
order and write |g| =∞.

(e) [d] Cn= (Zn,+).

By Homework 2, Cn is a group and [1]n has order n. Thus Cn = 〈[1]n〉 and so Cn is a cyclic
group.

Lemma 5.1.10. [order n] Let G be a group, g ∈ G and k, l ∈ Z. Then

(a) [a] gk+l = gkgl.

(b) [b] (gk)−1 = g−k.

(c) [c] gkl = (gk)l.

(d) [d] 〈g〉 is a subgroup of G.

Proof. (a) and (b) If l = 0, then gk+l = gk = gke = gkg0 = gkgl.
Suppose l = 1 and k ≥ 0. The by definition gk+l = gk+1 = gkg = gkgl. Suppose l = 1 and

k = −1. The gk+l = g1−1 = g0 = g−1g = gkgl. Suppose l = 1 and k < −1. Then

gkgl = gkg = (g−1)−k)g = (g−1)−k−1g−1g = (g−1)−(k+1) = gk+1 = gk+l.

Suppose (a) holds for some l ≥ 0. Then using the “l=1” case twice:

gk+(l+1) = g(k+l)+1 = gk+lg = (gkgl)g = gk(glg) = gkgl+1

So (a) holds for l + 1 and so by the principal of induction, for all l ∈ N and all k ∈ Z.
We conclude that for all l ∈ N, g−lgl = g−l+l = g0 = e and so (gl)−1 = g−l and (g−l)−1 = gl =

g−(−l). Thus (b) holds.
Suppose that l < 0. Then

gk+l(gl)−1 = gk+lg−l = g(k+l)+(−l) = gk

and multiplying with gl from the right give gk+l = gkgl. Thus (a)lso holds for negative l.
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(c) If l = 0, both sides are equal to e. Suppose (c) holds for some positive l ∈ N. Then

gk(l+1) = gkl+k = gkl + gk = (gk)l ∗ (gk)1 = (gk)l+1

and so (c) holds for all l ∈ N. If l < 0, then

gkl = (g−1)k(−l) = (g−1)k)−l = (g−k)−l = ((g−k)−1)l = (gk)l

(d) Let a, b ∈ 〈g〉. Then a = gk and b = al for some k, l ∈ Z. Since e = g0, e ∈ 〈g〉.
ab = gkgl = gk+l ∈ 〈g〉 and a−1 = (gk)−1 = g−k ∈ 〈g〉. Thus 〈g〉 is indeed a subgroup of G.

Lemma 5.1.11. [order n ii] Let G be a group and g ∈ G an element of finite order n. Let k, l ∈ Z.

(a) [a] gk = gl ⇐⇒ k ≡ l (mod n).

(b) [b] gk = e⇐⇒ n|k.

(c) [f] |gk| = n
gcd(k,n) .

Proof. (a) Suppose first that k ≡ l (mod n). Then k = l +mn for some m ∈ Z and so

gk = gl+mn = gl(gn)m = glem = gl.

Suppose next that gk ≡ gl (mod n). Then e = g−kgl = gl−k. let r be the remainder of l − k
when divided by n. Then l − k ≡ r (mod n) and 0 ≤ r < n. By the first paragraph

gr = gl−k = e.

Since n is the smallest positive integer with gn = e and since gr = e and r < n, r cannot be a
positive integer. Thus r = 0. Hence k − l ≡ 0 (mod n) and so k ≡ n (mod n).

(b) gk = e iff gk = g0 iff k ≡ 0 (mod n) iff n|k.
(c) Put d = gcd (k, n).

(gk)l = e

⇐⇒ gkl = e

⇐⇒ n|kl by (b)

⇐⇒ n
d |
k
d l

⇐⇒ n
d |l since gcd

(
n
d ,

n
d

)
= 1

and so |gk| = n
d .

Definition 5.1.12. [def:hom] Let G and H groups and f : G→ H a function.

(a) [a] f is called a homomorphism (of groups) if f(ab) = f(a)f(b) for all a, b ∈ G.

(b) [b] f is called an isomorphism if f is a 1-1 and onto homomorphism.

(c) [c] We say that G is isomorphic to H and write G ∼= H if there exists an isomorphism from G
to H.

Lemma 5.1.13. [order n iii] Let G be a group and g ∈ G an element of finite order n. Then
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(a) [a] 〈g〉 ∼= Cn.

(b) [b] |g| = |〈g〉|.

(c) [c] 〈g〉 = {e, g, g2, . . . , gn−1}.

Proof. (a) Define

α : Cn → 〈g〉, [k]n → gk

We will show that α is well-defined isomorphism of groups.
Let k, l ∈ Z. Then

[k]n = [l]n

⇐⇒ k ≡ l (mod n)

⇐⇒ gk = gl by (a)

The forward direction shows that α is well-defined; and the backward direction that α is 1-1. By
definition of 〈g〉 each element of 〈g〉 is of the form gk and so α is onto. We have

α([k]n + [l]n) = α([k + l]n) = gk+l = gkgl = α([k]n)α([l]n)

and so α is an homorphism. This shows that α is an isomorphism and so 〈Cn〉 ∼= 〈g〉.
(b) We have |g| = n = |Cn|

(a)
= |〈g〉.

(c) By (a) e, g, g2, . . . gn−1 are n pairwise distinct elements. By (b), 〈g〉 has exactly n elements
and so (c) holds.

Corollary 5.1.14. [lagrange for elements] Let G be a finite abelian group and g ∈ G. Then g
has finite order, |g|

∣∣|G|. and g|G| = e for all g ∈ G.

Proof. By Lagrange’s Theorem 〈g〉 divides |G| and by 5.1.10 |g| = |〈g〉|.
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The group Un of units in Zn

6.1 Fermat’s Little Theorem

Definition 6.1.1. [un] Let n ∈ Z+.

(a) [a] Then Un = {[a]n | a ∈ Z, gcd (a, n) = 1}.

(b) [b] φ(n) = |Un|.

For example U6 = {[1]6, [5]6} and φ(6) = 2.
U8 = {[1], [3], [5], [7]} and φ(8) = 4

Lemma 6.1.2. [zn*] Let n ∈ Z+.

(a) [a] (Un, ·) is an abelian group.

(b) [b] ak ≡ bl for all a ∈ Z and k, l ∈ N with k ≡ l (mod φ(n)).

(c) [c] (Euler’s Theorem) aφ(n) ≡ 1 (mod n) for all a ∈ Z with gcd (a, n) = 1.

Proof. (a) Let a, b ∈ n with gcd (a, n) = 1 = gcd (b, n). Then also gcd (ab, n) = 1 and so [a] · [b] ∈ Un
for all [a], [b] ∈ Un. Thus Un is closed with respect to ·.

Since multiplication in Z is commutative and associative, multiplication in Un is also commutative
and associative.

[1] is an identity element,
Since gcd (a, n) = 1, the equation

ax ≡ 1 (mod n)

has a solution c. Then [a][c] = 1 = [c][a] and so [a] is invertible. Un is a group. (b) By 5.1.14, |[a]|
divides |Un| = φ(n). So k ≡ l (mod φ(n)) implies k ≡ l (mod |[a]|) Hence (a) follows from 5.1.11(a).

(c) follows from (a)

Since φ(8) = 4 and 102 ≡ 2 (mod 4), 5102 ≡ 52 ≡ 25 ≡ 1 (mod 8).

Lemma 6.1.3. [little fermat] Let p be a prime.

(a) [a] Up = {[n]p | p - n} = {[1], [2], . . . , [p− 1]}

45
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(b) [b] φ(p) = p− 1

(c) [c] nk ≡ nl (mod p) for all n ∈ Z and k, l ∈ N with k ≡ l (mod p− 1) and p - n,

(d) [d] (Fermat’s Little Theorem) np−1 ≡ 1 (mod p) for all n ∈ Z with p - n.

(e) [e] np ≡ n (mod p) for all n ∈ Z.

Proof. Let n ∈ Z. Since p is a prime gcd (n, p) = 1 iff p - n. So (a) holds.
By (a) φ(p) = |Up| = p− 1. (c) and (d) follows from 6.1.2(b), (c) and (b).
To proof (e), let n ∈ Z. if p 6 |n, then by (c), np−1 ≡ 1 (mod p) and multiplying with n gives

np ≡ n (mod p). If p | n. The n ≡ 0 (mod p) and so also np ≡ 0 (mod p). So again (e). holds.

Example 6.1.4. [ex:fermat 1] Compute 1112 modulo 13 and 567 modul0 17

By Fermat’s Little Theorem 1112 ≡ 1 (mod 13).
Since 67 ≡ 3 (mod 16) we have modulo 17:

567 ≡ 53 ≡ 25 · 5 ≡ 8 · 5 ≡ 40 ≡ 6 (mod 17)

Example 6.1.5. [ex:fermat 2] Find all solutions of x13 + x7 + x3 + x+ 1 = 0 (mod 5):

We compute in Z5:

x14 + x7 + 2x+ 2 = 0
⇐⇒ x2 + x3 + 2x+ 2 = 0
⇐⇒ x3 + x2 + 2x+ 2 = 0

0 : 0 + 0 + 0 + 3 6= 0
1 : 1 + 1 + 2 + 2 = 6 6= 0
2 : 8 + 4 + 4 + 2 = 18 6= 0
−2 : −8 + 4− 4 + 2 = −6 6= 0
−1 : −1 + 1− 2 + 2 = 0

Thus x13 + x7 + x3 + x+ 1 = 0 (mod 5) if and only if x ≡ −1 (mod 5).

Lemma 6.1.6. [2l-1] Let l and m be coprime positive integers. Then 2l−1 and 2m−1 are coprime.

Proof. Let d = gcd
(
2l − 1, 2m − 1

)
. Then

(∗) 2l ≡ 1 (mod d) and 2m ≡ 1 (mod d)

Since d is odd, [2]d ∈ Ud. Let e be the order of [2]d ∈ Ud. From 5.1.11(b) and (*) we conclude
that e | l and e | m. Since gcd (l,m) = 1 this gives e = 1. Thus 21 ≡ 1 (mod d) and d|1. Thus
d = 1.

Lemma 6.1.7. [unique order 2] Let A be a finite Abelian group with a unique element t of order
2. Then ∏

a∈A
A = t
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Proof. Let a ∈ A. Then a = a−1 iff a2 = e iff a has order 1 or 2 and so iff a = e or a = t. So we can
find elements a1, a2, . . . , ak such that

A = {e, t, a1, a
−1
1 , a2, a

−1
2 , . . . ak, a

−1
k }

and each element of A is listed excatly once. Thus∏
a∈A

a = e · t · a1 · a−1
1 · . . . · ak · a

−1
k

and so ∏
a∈A

= t

Lemma 6.1.8. [order 2] Let p be an odd prime. Up has exactly one element of order 2, namely
[−1]p.

Proof. Let a ∈ Z. Then

a2 ≡ 1 (mod p)
p | a2 − 1

p |= (a+ 1)(a− 1)
p | a+ 1 or p | a− 1

a ≡ −1 (mod p) or a ≡ 1 (mod p)

Since [1]p has order 1, [−1]p is the unique element of order 2.

Lemma 6.1.9. [wilson] Let n ∈ Z with n > 1. Then n is a prime if and only if (n − 1)! ≡ −1
(mod n).

Proof. Suppose first n = p for a prime p. If p = 2. Then (p− 1)! = 1 ≡ −1 (mod n). Suppose that
p is an odd prime. Then by 6.1.8, [−1]p is the unique element of order 2 in Up and so by 6.1.7∏

a∈Up

a = [−1]p

Since Up = {[1]p, [2]p, . . . [p− 1]p} this says

[1]p[2]p . . . [p− 1]p = [−1]p

and so

(p− 1)! ≡ −1 (mod p)

Suppose next that (n − 1)! ≡ −1 (mod n) and let m | n with 1 ≤ m < n. Then (n − 1)! ≡ −1
(mod m) and m is one of the factor of (n−1)!. hence (n−1)! ≡ 0 (mod m). Thus −1 ≡ 0 (mod m),
m | 1 and m = 1. So n is a prime
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Lemma 6.1.10. [sqrt -1] Let p be an odd prime. Then

x2 + 1 ≡ 0 (mod p)

has a solution in Z if and only if p ≡ 1 (mod 4).

Proof. Let k = p−1
2 . Then p = 2k + 1 and since p is odd, k is a positive integer.

Suppose first that x2 + 1 ≡ 0 (mod p) for some x ∈ Z. Then x2 ≡ −1 (mod p) and p - x. Thus
by Fermat’s Little Theorem 6.1.3, xp−1 ≡ 1 (mod p). Since xp−1 = x2k = (x2)k ≡ (−1)k (mod p)
we conclude that (−1)k ≡ 1 (mod p). Since p is odd, this implies that k is even. So k = 2l for some
l ∈ Z and p = 2k + 1 = 4l + 1. Thus p ≡ 1 (mod 4).

Suppose next that p ≡ 1pmod4. By Wilson’s Theorem

(p− 1)! ≡ −1 (mod p)
1 · 2 · . . . · k · k + 1 · . . . · p− 2 · p− 1 ≡ −1 (mod p)
1 · 2 · . . . · k · p− k · . . . · p− 2 · p− 1 ≡ −1 (mod p)

1 · 2 · . . . · k · −k · . . . · −2 · −1 ≡ −1 (mod p)
(−1)k1 · 2 · . . . · k · k · . . . · 2 · 1 ≡ −1 (mod p)

(−1)k(k!)2 ≡ −1 (mod p)

Since p ≡ 1 (mod 4), k is even. Then (−1)k = 1 and so (k!)2 ≡ −1 (mod p). Hence x = k! is an
solutions of x2 + 1 (mod p).

Consider p = 13. Then k = 6 and

6! = 1 · 2 · 3 · 4 · 5 · 6 = (2 · 6) · (3 · 4) · 5 ≡ −1 · −1 · 5 = 5 (mod 13)

So x = 5 is a solution of x2 + 1 = 0 (mod 13). Indeed 52 = 25 ≡ −1 (mod 13)

6.2 Pseudo Primes and Carmichael Numbers

Definition 6.2.1. [def:pseudo prime] Let n ∈ Z such that n > 1 and n is not a prime. Then

(a) [a] n is called a Carmichael number if

an ≡ a (mod n)

for all integers a.

(b) [b] n is called a pseudo prime if
2n ≡ 2 (mod n)

We claim that 341 is a pseudo prime. Indeed 341 = 11 · 31 and so 341 is not a prime. Also
2341 ≡ 2 (mod 2) if and only if 2341 ≡ 2 (mod 11) and 2341 ≡ 2 (mod 31). Since 341 ≡ 1 (mod 10)
we have 2341 ≡ 22 = 1 (mod 11). Since 341 = 330 + 11, 341 ≡ 11 (mod 3)0 and so 2341 ≡ 211 =
25 · 25 · 2 ≡ 1 · 1 · 2 = 2 (mod 31). So indeed 341 is a pseudo-prime. The next lemma now shows
that there are infinite many pseudo primes:

Lemma 6.2.2. [pseudo primes] Let n be a pseudo prime. Then 2n − 1 is a pseudo prime. In
particular, there are infinitely many pseudo primes
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Proof. By 3.3.5 since n is not a prime, also 2n − 1 is not prime. Since n is a pseudo prime, 2n ≡ 2
(mod n) and so 2n = nk + 2 for some k ∈ Z. By 3.3.2, 2n − 1 divide 2nk − 1. Hence 2nk ≡ 1
(mod 2n − 1). Thus modulo 2n − 1

22n−1 = 2nk+1 = 2nk2 ≡ 2 (mod 2n − 1)

So 2n − 1 is indeed a pseudo prime.

Definition 6.2.3. [def:squarefree] n ∈ Z is called a square free if 1 is the only positive integers
m with m2 | n.

Observe that an integer large than 1 is square free if and only if its a product of distinct primes.

Lemma 6.2.4. [carmichael] Suppose n is a square free integer, n > 1 and p − 1 | n − 1 for all
prime divisors p of n. Then n is a prime or a Carmichael number.

Proof. Let n = p1p2 . . . pk, where each pi is a prime. Since n is square free, pi 6= pj for all 1 ≤ i <
j ≤ k. Thus lcm(p1, p− 2, . . . φk) = n and

an ≡ a (mod n)

for all a ∈ Z if and only if

an ≡ a (mod pi)

for all a ∈ Z and all 1 ≤ i ≤ k.
By assumption pi − 1 | n− 1 and so n ≡ 1 (mod pi). Thus by 6.1.3(c) an ≡ a1 for all a ∈ Z and

all 1 ≤ i ≤ k. If n is not a prime, we conclude that n is a Carmichael number.
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Chapter 7

Units in Rings

7.1 Basic Properties of the Group of Units

Definition 7.1.1. [def:unit] Let (R,+, ·) be a ring identity 1. Then a ∈ R is called a unit if there
exists b ∈ R with ab = 1 = ba. U(R) denotes the set consisting of all the units in R.

Lemma 7.1.2. [unit] Let R be a ring with identity. Then for each unit a in R there exists a unique
element b ∈ R with ab = 1 and a unique element c ∈ R with ca = 1. Moreover b = c. This unique
elements of R is called the inverse of R and is denoted by a−1.

Proof. By definition of a unit there exists an element with d in R with ad = da = 1. Now let b and
c be any elements in R with ab = 1 = ca. Then

b = 1b = (ca)b = c(ab) = c1 = c

With d in place of c we see that b = d and with d in place of b we also get a = d.

Lemma 7.1.3. [u(r)] Let (R,+, ·) be a ring with identity. Then (U(R), ·) is a group.

Proof. Let a, b ∈ U(R). Then (ab)(b−1a−1) = (a(bb−1))a−1 = (a1)a−1 = aa−1 = 1 and similarly
(b−1a−1)(ab) = 1. Thus ab ∈ U(R) and so U(R) is closed under multiplication.

Since R is a ring, multiplication is associative.
Since 1·1 = 1, 1 is a unit. So 1 ∈ U(R) and so U(R) has an identity with respect to multiplication.
Let a ∈ U(R). Then aa−1 = 1 = a−1a. So a is an inverse of a−1 and a−1 ∈ U(R). Thus a has a

multiplicative inverse in U(R).
We verified the four axioms of a group and so (U(R), ·) is a group.

Lemma 7.1.4. [znm] Let n and m be positive integers with gcd (n,m) = 1. Then

Znm ∼= Zn × Zm as rings

Proof. Define

α : Z→ Zn × Zm, a→ ([a]n, [a]m).

We have

51
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α(a+ b) = ([a+ b]n, [a+ b]m) = ([a]n + [b]n, [a]m + [b]m) = ([a]n, [a]m) + ([b]n, [b]m) = α(a) + α(b)

and

α(a · b) = ([a · b]n, [a · b]m) = ([a]n · [b]n, [a]m · [b]m) = ([a]n, [a]m) · ([b]n, [b]m) = α(a) · α(b)

Thus α is a ring homomorphism
Let a ∈ Z. Then

a ∈ kerα

⇐⇒ α(a) = 0

⇐⇒ ([a]n, [a]m) = ([0]n, [0]m)

⇐⇒ [a]n = [0]n and [a]m = ([0]m)

⇐⇒ n|a and m|a

⇐⇒ nm|a since gcd (n,m) = 1

⇐⇒ a = knm for some k ∈ Z

⇐⇒ a ∈ nmZ.

Thus kerα = nmZ. Hence by the First Isomorphism Theorem for Rings:

Znm = Z/nmZ = Z/ kerα ∼= Imα

In particular, | Imα| = |Znm| = nm.
Since Imα ≤ Zn × Zm and |Zn × Zm| = nm we conclude that Imα = Zn × Zm. Thus

Znm ∼= Zn × Zm.

We remark that we just obtained a new proof for the Chinese Remainder Theorem. Since α is
onto for any b, c ∈ Z there exists x ∈ Z with ([x]n, [x]m) = ([b]n, [c]m), that is with x ≡ b (mod n)
and x ≡ c (mod m). Also since kerα = nmZ, this x is unique modulo nm.

Lemma 7.1.5. [iso and units] Let R and S be rings with identity.

(a) [a] Let α : R→ S be an isomorphism of rings. Then

β : U(R)→ U(S), r → α(r)

is a well defined isomorphism of multiplicative groups.

(b) [b] U(R× S) = U(R)×U(S).
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Proof. (a): Let r ∈ R.
We claim that r is a unit in R if and only if α(r) is a unit in S. So suppose that r is a unit.

Then rt = 1 = tr for some t ∈ R. Thus

α(r)α(t) = α(rt) = α(1) = 1

and similarly α(t)α(r) = 1. Thus α(t) is a unit with inverse α(r).
Since α−1 is an isomorphism from S to R, a similar argument shows that if α(r) is unit in S

with inverse say u, then r is unit in R with inverse α−1(u).
This completes the proof of the claim. In particular, α(r) ∈ U(S) for all r ∈ U(R) and so β

is well-defined. Since α is a ring homomorphism, β is a group homomorphism. The map U(S) →
U(R), s → α−1(s) is the inverse of β and so β is a bijection. Thus β is an group isomorphism and
(a) holds.

(b): Let r ∈ R and s ∈ S. Then

(r, s) ∈ U(R× S)

⇐⇒ there exists (u, v) ∈ R× S with (r, s) · (u, v) = (1, 1) = (u, v) · (r, s)

⇐⇒ there exist u ∈ R, v ∈ S with ru = 1 = ur and sv = 1 = vs

⇐⇒ r ∈ U(R), s ∈ U(S)

⇐⇒ (r, s) ∈ U(R)×U(S)

Lemma 7.1.6. [unm] Let n and m be positive integers with gcd (n,m) = 1. Then

(a) [a] Unm ∼= Un × Um as abelian groups.

(b) [b] φ(nm) = φ(n)φ(m).

Proof. (a) By 7.1.4 we have Znm ∼= Zn × Zm as rings. Thus by 7.1.5

Unm = U(Znm) ∼= U(Zn × Zm) = U(Zn)×U(Zm) = Un × Um

(b) φ(nm) = |Unm|
(a)
= |Un × Um| = |Un| · |Um| = φ(n)φ(m).

Lemma 7.1.7. [phin]

(a) [a] Let p be a prime and e a positive integer. Then φ(pe) = pe − pe−1 = pe−1(p− 1).

(b) [b] Let n > 1 be a integer and suppose n = pe11 p
e2
2 . . . pekk , where p1, . . . , pk are pairwise distinct

primes and e1, e2, . . . ek are positive integers. Then

φ(n) = pe−1
1 (p1 − 1)pe2−1

2 (p2 − 1) . . . pek−1
k (pk − 1)

Proof. (a) Note first that φ(pe) = |Upe | = {[a]pe | 0 ≤ a < pe, gcd (a, pe) = 1}. Let 0 ≤ a < pe. Then
gcd (a, pe) 6= 1 iff p|a iff a = pb for some 0 ≤ b < pe−1. So among the pe integers a with 0 ≤ a < pe,
there are pe−1 integers with gcd (a, pe) 6= 1. Thus φ(pe) = pe − pe−1

(b) From 7.1.6(b) and induction we have

φ(n) = φ(pe11 )φ(pe2e ) . . . φ(pekk )

and so (b) follows from (a).
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7.2 Public key cryptography

We define a code to be bijection f from a set W to a set V . Given a code f , then a decoding of f
is the inverse function f−1 of f ..

Examples:

W = V = {A,B,C, ·, Z},
f : A→ B,B → C, . . . , Z → A
f−1 : A→ Z,B → A,C → B, . . . Z → Y .

W set of sequence of 5 symbols found on a regular keyboard,
f(s1s2s3s4s5) = s3s5s2s1s4
f−1(t1t2t3t4t5) = t4t3t1t5t2

W = V = Z26

f(x) = x+ 1.
f−1 = x− 1

W = V = Z26

f(x) = 5x+ 3
f−1(x) = −5(x− 3)

p a prime, 1 ≤ e < p− 1, V = Zp = W ,
f(x) = xe

f−1(x) = xg,
what is g? We need x = f−1(f(x)) = xeg. Since x1 ≡ xeg (mod p). if eg ≡ 1 (mod p − 1), we

can choose g to be a solution of ex ≡ 1 (mod p− 1) .

In a secret code f is only known to the sender and receiver. But this requires secretly sharing
information between the sender and receiver.

In a public code f(x) is know to the public, but f−1(x) is only know to the receiver. For this to
work in must be impossible to computer the inverse of f(x). (At least computing the inverse must
take to long to be useful.)

Let n, k be positive integers with gcd (k, φn) = 1 and consider the function f : Un → Un, x→ xk.
To decode f we need to find an integer l such (xk)l = x for all x ∈ Un. By Euler’s Theorem 6.1.2(c)
we just need kl ≡ 1 (mod φ(n)). Computing the inverse of k modulo φ(n) is easy. But computing
φ(n) is not easy. Indeed to find φ(n) we has to compute the prime factorization of n which does
take a very long times to do. So f is a good candidate for a public code. One chooses a few big
prime p1, p2, . . . pk, Computes the n = p1, p2 . . . pk, chooses a number k coprime to φ(n) and then
publicizes n and k. Essentially this works, since multiplying numbers is very fast, but factorizing
numbers is very slow.

7.3 The structure of the groups Un

In this section we investigate the structure of the groups Un. In particular, we will determine for
which n, Un is cyclic.
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Definition 7.3.1. [def:primitive] An element a ∈ Un is called primitive if Un = 〈a〉

Observe that Un has primitive element if and inly of Un is cyclic. Also a ∈ Un is primitive if and
only if |a| = φ(n).

Notation 7.3.2. [sum dn] Let f : Z+→ R be a function. Then∑
d|n

f(d) =
∑

d∈Z+|d|n

f(n)

Lemma 7.3.3. [sum phi n] Let n ∈ Z+. Then∑
d|n

φ(d) = n

Proof. Let D = {d ∈ Z+ | d | n}, S = {1, 2, 3, . . . , n} and d ∈ D put Sd = {s ∈ S | gcd (s, n) = n
d }.

Let s in S. The s lies in a unique Sd namely

s ∈ Sd ⇐⇒ d =
n

gcd (s, n)

So it suffices to prove that |Sd| = φ(d).

a ∈ Sd
⇐⇒ 1 ≤ a ≤ n, gcd (a, n) = n

d

⇐⇒ a = bnd , 1 ≤ b ≤ d, gcd
(
bnd , n

)
= n

d

⇐⇒ a = bnd 1 ≤ b ≤ d, gcd (b, d) = 1 divide by
n

d
Homework 1 #5

Hence |Sd| = φ(n).

Lemma 7.3.4. [order in up] Let p be a prime and d a positive divisor of p − 1. Then Up has
exactly φ(d) elements of order d. In particular Up has φ(p− 1) primitive elements and Up is cyclic.

Proof. Let Ωd = {a ∈ Up | |a| = d} and put ψ(d) = |Ωd|. We will first show that

1◦. [1] ψ(d) = 0 or ψ(d) = φ(d).

We may assume that ψ(d) 6= 0 and so there exists a ∈ Ω(d). Then (ai)d = (ad)i = 1 for all
0 ≤ i < d and so each ai is a root of the polynomial xd − 1 in Zp[x]. By 5.1.11(a), ai 6= aj for
0 ≤ i < j < p and since xd − 1 has at most d roots in Zp, So {ai | 0 ≤ i < p} is a complete set of
roots of xd − 1. Since every element of Ωd is a root of xd − 1 we conclude that

Ωd = {ai | 0 ≤ i < p, |ai| = d}

From 5.1.11(c) we have |ai| = d
gcd(i,d) and so |ai| = 1 if and only if gcd (i, d) = 1. Hence

Ωd = {ai | 0 ≤ i < p, gcd (i, d) = 1}

and so ψ(d) = |Ωd| = φ(d). Thus (1◦) holds.
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2◦. [2]
∑
d|p−1 ψ(d) = p− 1

Let a ∈ Up and d = |a|. Since ap−1 = 1, d | p− 1. Hence each of the p− 1 elements of Up lies in
exactly one of the sets Ωd, d | p− 1. Thus (2◦) holds.

From (2◦) and 7.3.3 we have ∑
d|p−1

ψ(d) = p− 1 =
∑
d|p−1

φ(d)

By (1◦) ψ(d) ≤ φ(d) for all d | p− 1 and it follows that ψ(d) = φ(d) for all d | p− 1.

Lemma 7.3.5. [order mod pn] Let a, n and p be integers with n positive and p a prime. Suppose
gcd (a, n) = 1 and p

∣∣n. Then

(a) [a] Let d = |[a]n|, the order of [a]n in Un. Then |[a]pn| is either d or dp.

(b) [b] Let m ∈ Z+ with am ≡ 1 (mod n). Then apm ≡ 1 (mod pn).

Proof. (a) Let f = |[a]pn|. Then af ≡ 1 (mod pn) and so also af ≡ 1 (mod n). Thus d | f .
Since ad ≡ 1 (mod n), ad = 1 + kn for some k ∈ Z. Thus by the binomial theorem

adp = (ad)p = (1 + kn)p =
∑
i=0

(
p

i

)
(kn)i = 1 + pkn+

p∑
i=1

(
p

i

)
kini

Observe that pn divides pkn and since p|n, it also divides ni = ni−1n for all i ≥ 2. Thus adp ≡ 1
(mod pn) and so f | dp. Since d | f , this implies f

d | p. Since p is a prime we conclude that f
d = 1

or p and so f = d or d = dp.
(b) Since am ≡ 1 (mod n), d | m. Thus dp | pm and so by (a) |a|pn | pm and so apm ≡ 1

(mod pn).

Lemma 7.3.6. [primitive elements] Let p be an odd prime and a ∈ Z.

(a) [a] If [a]p is a primitive element in Up, then [a]p2 or [a+ p]p2 is a primitive element of Up2 .

(b) [b] If [a]p2 is a primitive element in Up2 , then [a]pe is a primitive element of Upe for all e ∈ Z
with e ≥ 2.

Proof. (a) Since [a]p is a primitive element, [a]p has order p− 1. Thus by 7.3.5, [a]p2 has order p− 1
or (p− 1)p. In the latter case we are done. So suppose [a]p2 has order p− 1. Thus

(∗) ap−1 ≡ 1 (mod p2)

Note that

(a+ p)p−1 = ap−1 + (p− 1)ap−2p+ +
p−1∑
i=2

(
p− 1
i

)
ap−1−ipiap−1 ≡ 1 + (p− 1)ap−2 (mod p)2

Since p 6= 2, p - p− 1. Also p - a and so p - ap−2. Thus (a+ p)p−1 6= 1 (mod p)2 and so [a+ p]p2
does not have order p− 1. Since [a+ p]p = [a]p has order p− 1, 7.3.5, implies that [a+ p]p has order
(p− 1)p. Hence [a+ p]p2 is primitive and (a) is proved.
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(b) Thus clearly holds for e = 2. Suppose inductively that it holds for e. Then [a]pe has order
(p− 1)pe−1 and thus

a(p−1)pe−2
6= 1 (mod pe)

On the other hand 4.1.5(c) applied to n = pe−1,

a(p−1)pe−2
= 1 (mod pe−1)

Thus

a(p−1)pe−2
= 1 + kpe−1

with k ∈ Z and p - k. Thus

a(p−1)pe−1
= (1 + kpe−1)p = 1 + pkpe−1 +

(
p
2

)
k2p2(e−1) +

∑p
i=3

(
p
3

)
kipi(e−1)

= 1 + kpe + p−1
2 k2p2e−1 +

∑p
i=3

(
p
3

)
kipi(e−1)

Since e ≥ 2, 2e− 1 = (e+ 1) + (e− 2) ≤ e+ 1 and for i ≥ 3, i(e− 1) ≥ 3(e− 1) = e+ 2e− 3 ≥
e+ 4− 3 ≥ e+ 1. Thus

a(p−1)pe−1
≡ 1 + kpe (mod pe+1)

Since p - k this implies a(p−1)pe−1 6= 1 (mod p)e+1 and |[a]pe+1 | 6= (p − 1)pe−1. Since |[a]pe | =
(p− 1)pe−1 we conclude from 7.3.5 that

|[a]pe+1 | = (p− 1)pe−1p = (p− 1)p(e+1)−1

Hence (b) holds for e+ 1 and so for all e ≥ 2.

Corollary 7.3.7. [upe cyclic] Let p be an odd prime and e a positive integer. Then Upe is cyclic.

Proof. We just need to show that Upe has a primitive element. By 7.3.4, Up has a primitive element.
Thus by 7.3.6(a), Up2 has a primitive element and so by 7.3.6(a), Upe has a primitive element for all
e ≥ 2.

Example 7.3.8. [ex:primitive] Find a primitive element in U7e

Consider U7 = {1, 2, 3, 4, 5, 6}. 23 = 8 = 1 in U7 and so 2 is not a primitive element. Let d be the
order of 3 in U7. Then d divides φ(7) = 6 and so d = 2, 3 or 6. 32 = 9 = 2 6= 1 and 33 = 2 ·3 = 6 6= 1.
So d is neither 2 nor 3. Hence 3 is a primitive element in U7.

In U49 we have 34 = 81 = −17 and so 35 = −51 = −2 and 36 = −6. Hence 3 does not have order
6 in U49 and so by 7.3.5 3 has order 42. Thus 3 is a primitive element of U49 and so also in U3e for
all e ∈ Z+.

Lemma 7.3.9. [exp u2e] Let e be an integer with e ≥ 3. Then a2e−2
= 1 for all a ∈ U2e .

Proof. U8 = {±1,±3}, (±1)1 = 1, (±3)2 = 9 = 1 and a2 = a23−2
= 1 for all a ∈ U23 . Thus the

statement holds for e = 3.
Suppose inductively that a2e−2 ≡ 1 (mod 2e) for all a ∈ Z with gcd (a, 2) = 1. Then by 7.3.5(b),

a2e−1 ≡ 1 (mod 2e+1) and so the statement also holds for e+ 1.
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Notation 7.3.10. [not:exactly divide] Let p, e, a be integers with p a prime and e ≥ 0. We write
pe||a if pe|p but pe+1 6 |a.

Lemma 7.3.11. [order 5 u2e] Let e ∈ Z with e ≥ 2.

(a) [a] 2e||52e−2 − 1.

(b) [b] |[5]2e | = 2e−2.

Proof. (a) 4||5− 1 and so (a) holds for e = 2. Suppose inductively that 2e||52e−2 − 1. We

52e−1
− 1 = (52e−2

)2 − 1 = (52e−2
− 1)(52e−2

+ 1)

Since 52e−2
+ 1 ≡ 12e−2

+ 1 ≡ 2 (mod 4), 2||52e−2
+ 1. Hence 2e+1||52e−1 − 1 and (a) also hold for

e+ 1.
(b) By 52e−2 ≡ 1 (mod 2)e and so |[5]2e | divides 2e−2. For e = 2 this gives |[5]4 = 1. If e > 2,

then by (a) applies to e − 1, 2e−1||52e−3 − 1 , so 2e 6 |52e−3 − 1 and 52e−3 6≡ 1 (mod 2e). Thus (b)
holds.

Definition 7.3.12. [def:exponent] Let G be a group. We say that G has finite exponent if the
exists n ∈ Z+ with gn = e. In this case the smallest such n is denotes is called the exponent of G
and is denoted by exp(G).

If no such n exists we say that G has infinite exponent and write exp(G) =∞.

Note that Cn has exponent n and (Z,+) has infinite exponent.

Corollary 7.3.13. [exp u2e ii] Let e ∈ Z+.

(a) [a] If e ≤ 2, then exp (U2e) = 2e−1 and U2e is cyclic.

(b) [b] If e ≥ 3, then exp (U2e) = 2e−2 and U2e is not cyclic.

Proof. U2 = {1} has exponent 1 = 21−1 and is cyclic. U4 = {±1} has exponent 2 = 22−1 and is
cyclic.

Suppose e ≥ 3, then by 7.3.9, exp (U2e) ≤ 2e−2 and by 7.3.11 exp (U2e) ≥ 2e−2. Thus exp (U2e) =
2e−2. In particular U2e has no element of order 2e−1 and so is not cyclic.

Proposition 7.3.14. [ab] Let G be a finite abelian group and A and B subgroups of G. Suppose
that

(i) [i] A ∩B = {e}.

(ii) [ii] |A| · |B| = |G|.

Then G ∼= A×B.

Proof. Define α : A×B → G, (a, b)→ ab. Then for a, c ∈ A, b, d ∈ B:

α((a, b)(c, d)) = α((ac, bd)) = (ac)(bd) = (ab)(cd) = α((a, b))α((c, d))

and so α is a homomorphism.
Suppose α((a, b)) = α((c, d)). Then ab = cd and so also c−1a = db−1. Since A is a subgroup of

G, c−1a ∈ A and since B is a subgroup of G, db−1 ∈ B. So c−1a = db−1 ∈ A × B = {e} and thus
c−1a = e = db−1. It follows that a = c, b = d and α is 1-1.
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In particular

|α(A×B)| = |A×B| = |A| × |B| = |G|

Since G is finite this implies α(A×B) = G and so α is onto.
We proved that α is a 1-1 and onto homomorphism and so an isomorphism. Thus A×B ∼= G.

Lemma 7.3.15. [u2e] Let e ∈ Z+.

(a) [a] If e ≤ 2, then Ue ∼= Ce.

(b) [b] If e ≥ 3, then Ue ∼= C2 × Ce−2
2 .

Proof. (a) U2 = {[1]2} ∼= C1 and U4 = {]± 1]4} = 〈[−1]4〉 ∼= C2.
(b) Suppose e ≥ 3. Let A = 〈[−1]2e} = {[±1]2e} ∼= C2 and B = 〈[5]2e〉. By 7.3.11 [5]2e has order

2e−2 and so |B| = 2e−2 and B ∼= C2e−2 . Also |A| = 2 and so |A||B| = 2e−1 = φ(2e) = |U2e |. Let
[d]2e ∈ A ∩ B the d ≡ 5m (mod 2e) for some m ∈ N and so d ≡ 1 (mod 4). Since −1 6= 1 (mod 4),
we conclude d 6= −1 (mod 2e). Since [d]2e ∈ A this gives [d] = [1]2e . Hence A ∩ B = {[1]}2e . Thus
7.3.14 gives U2e

∼= A×B ∼= C2 × C2e−2 .

Lemma 7.3.16. [exp] Let G be a finite group.

(a) [a] exp(G) = lcm({|g|
∣∣g ∈ G}).

(b) [b] Let n ∈ Z. Then gn = e for all g ∈ G if and only if exp(G)|n.

(c) [c] exp(G)
∣∣|G|.

Proof. (a) and (b): Let n ∈ Z. Then

gn = e for all g ∈ G

⇐⇒ |g|
∣∣n for all g ∈ G by 5.1.10(b)

⇐⇒ lcm({|g|
∣∣g ∈ G})∣∣n

The smallest positive integer fulfilling the last equation is lcm({|g|
∣∣g ∈ G}) and so (a) holds.

Since |g|
∣∣|G| for all g ∈ G, (b) follows from (a) and 2.1.17(b)

(c): By 5.1.14 g|G| = e for all g ∈ G and so (c) follows from (b).

Lemma 7.3.17. [order coprime] Let G an abelian group and g1, . . . gn ∈ G be elements of finite
order. Let d = lcm(|g1|, |g2|, . . . , |gn|) and g = g1g2 . . . gn. Then

(a) [a] gd = 1.

(b) [b] If gcd (|gi|, |gj |) = 1 for all ≤ i < j ≤ n, then |g| = d.

Proof. (a) Let 1 ≤ i ≤ n. Then |gi|
∣∣d and so gdi = e. Since G is Abelian we conclude that

gd = gd1g
d
2 . . . g

d
n = e

(b) Put f = lcm(|g2|, . . . , |gn|), h = g2 . . . gn and c = |g|. Then (g1h)c = 1 and hf = 1. Thus
gc1 = (hc)−1. Put k = gc1. Then k|g1| = (g|g1|1 )c = e and kf = ((hf )c))−1 = e. So |k| divides
|g1| and f . But |g1| and f are coprime. Hence |k| = 1 and so gc1 = e. Hence |g1|

∣∣c and so also
d = lcm(|g1|, |g2|, . . . , |gn|)

∣∣c. Since gd = e, we also have c
∣∣d. and thus c = d.
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Corollary 7.3.18. [char cyclic] Let G be a finite abelian group, then G is cyclic if and only
expG = |G|.

Proof. If G is cyclic, then G has an element of order |G| and so expG = |G|.
Suppose next that expG = |G|. Let |G| = pe11 . . . pekk , where p1, . . . pk are distinct primes and

ei ∈ Z+. Since expG = lcm({|g|
∣∣g ∈ G},), there exists element hi ∈ G with peii |

∣∣|hi|. Put gi = h
|hi|
p
ei
i .

Then |gi| = peii . Put g = g1g2 . . . gk. Then by 7.3.17 g has order pe11 . . . pekk = |G| and so G is
cyclic.

Lemma 7.3.19. [order direct product] Suppose G = G1 × G2 × . . . Gk for some k ∈ Z+ and
some groups Gi.

(a) [a] Let gi ∈ Gi for 1 ≤ i ≤ k. Then

|(g1, g1, . . . .gk)| = lcm(|g1|, |g2|, . . . , |gk|)

(b) [b]
exp(G) = lcm(exp(G1), exp(G2), . . . , exp(Gk))

Proof. (a)

gn = e

⇐⇒ (g1, g2, . . . , gk)n = (e, e, . . . , e)

⇐⇒ gn1 = e, gn2 = 2 . . . , gnk = e⇐⇒ |g1|
∣∣n, |g2|∣∣n, . . . |gk|∣∣n

⇐⇒ lcm(|g1|, |g2|, . . . , |gk|)
∣∣n

Thus (a) holds.
(b) expG = lcm({|g|

∣∣g ∈ G}) = lcm({lcm(|g1|, |g2|, . . . , |gk|) | g1 ∈ g1 ∈ G1, . . . gk ∈ Gk}) =
lcm(lcm({|g1|

∣∣g1 ∈ G1}), . . . , lcm({|g1|
∣∣g1 ∈ G1, . . . , })) = lcm(exp(G1), exp(G2), . . . , exp(Gk))

Lemma 7.3.20. [cyclic] Let A and B be finite groups. Then A × B is cyclic if and only if |A| is
cyclic, |B| is cyclic and gcd (|A|, |B|) = 1.

Proof. By 7.3.18 G if cyclic if and only of exp(G) = |G|. Also

exp(A×B) = lcm(expA, expB) =
expA expB

gcd (expA, expB)
≤ |A||B|

1

and

|A×B| = |A||B|

Thus
|A×B| = exp(A×B) if and only if | expA| = |A|, expB = |B| and gcd (|A|, |B|) = 1.

Theorem 7.3.21. [structure of un] Let n ∈ Z+ and let n = 2e0pe11 . . . pekk where p1, . . . pk are
pairwise distinct odd primes, e0 ∈ N and p1, . . . pk ∈ Z+. Then

(a) [a] If e0 ≤ 1, then Un ∼= Cpe11 (p1−1) × . . .× Cpek−1
k (pk−1)

.
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(b) [b] If e0 = 2 then Un ∼= C2 × Cpe11 (p1−1) × . . .× Cpek−1
k (pk−1)

.

(c) [c] If e0 ≥ 3, then Un ∼= C2 × C2e0−2 × Cpe11 (p1−1) × . . .× Cpek−1
k (pk−1)

.

(d) [d] Un is cyclic if and only if n = 1, 2, 4, pe or 2pe, where p is an odd prime and e ∈ Z+.

Proof. By 7.1.6 and induction

Un ∼= U2e0 × Upe11 × . . . U
ek
pk

By 7.3.7 Upeii is cyclic for all 1 ≤ i ≤ k. Since |Upeii | = φ (peii ) = pei−1
i (pi − 1) we conclude and

so Upeii
∼= C

p
ei−1
i (pi−1)

.
Also by 7.3.15, |U1| = |U2| = 1, U4

∼= C2 and U2e0
∼= C2 × C2e0−2 for e0 ≥ 3. Thus (a), (b) and

(c) holds.
By 7.3.20 (and induction) Un is cyclic if and only the factors listed in (a), (b), (c) have coprime

orders. But each of the factors has even order. So Un is cyclic if and only if Un has at most one
factor. In case (a), we conclude that Un is cyclic if and only if k ≤ 1 and so n = 1, n = 2, pe11 or
2pe11 . In case (b) Un is cyclic if and only if k = 0, that is n = 4 and in case (c) Un is never cyclic.
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Chapter 8

Quadratic Residue

8.1 Square in Abelian Groups

Lemma 8.1.1. [basic hom] Let α : G→ H be a homomorphism of groups and a. Then

(a) [a] α(e) = e.

(b) [b] α(a−1) = α(a)−1

Proof. (a) α(e) = α(ee) = α(e)α(e) and multiplying with α(e)−1 gives α(e) = e. (b) α(a)α(a−1) =
α(aa−1) = α(e) = e and so α(a−1) = α(a)−1. b

Lemma 8.1.2. [ker and img] Let α : G→ H be a homomorphism. Put kerα = {g ∈ G | α(g) = e}
and Imα = {α(g) | g ∈ G}. Then kerα is a subgroup of G and Imα is a subgroups of H.

Proof. Since α(e) = e, e ∈ kerα. Let a, b ∈ kerα. Then α(ab) = α(a)α(b) = ee = e and α(a−1) =
α(a)−1 = e−1 = e. Hence ab ∈ kerα and a−1 ∈ kerα. So kerα is a subgroup of G.

Since α(e) = e, e ∈ Imα. Let s, t ∈ Imα. Then s = α(a) and t = α(b) for some a, b ∈ G. Thus
st = α(a)α(b) = α(ab) and s−1 = α(a)−1 = α(a)−1. Hence st and s−1 are in Imα and so Imα is a
subgroup of G.

Lemma 8.1.3. [coset and hom] Let α : G→ H be a homomorphism of groups and h ∈ H.

(a) [a] If α(x) = h has a solution in G, then the solutions form a coset of kerα in G.

(b) [b] If h ∈ Imα, then α(x) = h has | kerα| solutions. If h /∈ Imα, then α(x) = h has no
solutions.

(c) [c] |H| = | kerα|| Imα|.

Proof. (a) Let a be a fixed solution of α(x) = h and let b ∈ G. Then

α(b) = h

⇐⇒ α(b) = α(a)
⇐⇒ α(b)α(a)−1 = e

⇐⇒ α(ba−1) = e

⇐⇒ ba−1 = kerα
⇐⇒ b ∈ (kerα) a

63
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So the set of solutions of α(x) = h is the coset (kerα) a.
(b) Since | (kerα) a| = | kerα|, (b) follows from (a).
(c) Each a ∈ G is the solution of exactly one of the equations α(x) = h, h ∈ Imα. (namely

the equation α(x) = α(a)). By (b) each of whose equations has exactly | kerα| solutions. Hence
|G| = | kerα| · | Imα|.

Definition 8.1.4. [def:i and q] Let A be an abelian group. Then Q(A) := {a2 | a ∈ A} and
T (A) := {a ∈ A | a2 = e}.

Lemma 8.1.5. [qi=g] Let A be a finite abelian group and b ∈ A. Define α : A→ A, a→ a2. Then

(a) [z] α is a homomorphism.

(b) [a] Q(A) = kerα and T (A) = Imα. In particular, Q(A) and T (A) are subgroups of G.

(c) [b] x2 = b has a solution in A if and only if b ∈ Q(A).

(d) [c] If b ∈ Q(A), then the solutions of x2 = b in A form a coset of T (A) in A.

(e) [d] The numbers of solutions of x2 = b is either 0 or |T (A)|.

(f) [e] |A| = |Q(A)| · |T (A)|.

Proof. (a) α(ab) = (ab)2 = a2b2 = α(a)α(b). (b) a ∈ kerα iff α(a) = e iff a2 = e iff a ∈ T (A).
a ∈ Imα iff a = α(b) for some b ∈ A, iff a = b2 for some b ∈ A iff a ∈ Q(A).
(c) Follows from the definition of Q(A).
(d),(e) and (f) now follow from 8.1.3 applied to the homomorphism α : a→ a2.

Lemma 8.1.6. [q of cyclic] Let A be a cyclic group of finite order n generated g.

(a) [a] Suppose that n is even. Let a ∈ A and i ∈ Z with a = gi. Then following are equivalent

1. [a] i is even.

2. [b] a ∈ 〈g2〉.
3. [c] a ∈ Q(A).

4. [d] a
n
2 = 1

(b) [b] Q(A) = 〈g2〉 = {a ∈ A | an2 = e} is cyclic of order n
2 and T (A) = 〈g n2 〉 is cyclic of order 2.

(c) [c] Suppose n is odd. Then Q(A) = A and T (A) = {e}.

Proof. (a) Suppose i is even. Then a = gi = (g2)
i
2 ∈ 〈g2〉.

Suppose a ∈ 〈g2〉. Then a = (g2)j for some j ∈ Z and so a = (gj)2 ∈ Q(A).
Suppose a ∈ Q(A)). Then a = b2 for some b ∈ A and so a

n
2 = b2

n
2 = bn ∈ e Since |b|

∣∣|A| = n.
Suppose a

n
2 = e. Then gi

n
2 = (gi)

n
2 = a

n
2 = e and so n | in2 . Thus 2 | i and i is even.

(b) By (a) Q(A) = 〈g2〉 = {a ∈ A | an2 = e}. Since g2 has order n
gcd(2,n) = n

2 , Q(A) is cyclic of

order n
2 . Thus T (A) has order |A|

Q(A) = n
n
2

= 2. Also g
n
2 has order n

n
2

= 2 and so T (A) = 〈g n2 〉.
(c) Let a ∈ T (A). Then a2 = e and so |a|

∣∣2. Also |a| | n and so |a| is odd. Thus |a| = 1 and
a = e. So T (A) = {e}, |Q(A)| = |A|

T (A) = |A| and Q(A) = A.

Lemma 8.1.7. [q and t for direct products] Let A1, A2, . . . Ak be abelian groups and A = A1×
A2 × . . . Ak. Then
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(a) [a] Q(A) = Q(A1)×Q(A2)× . . . Q(Ak)

(b) [b] T (A) = T (A1)× T (A2)× . . . T (Ak)

Proof. (a)

Q(A) = {(a1, a2, . . . , ak)2 | (a1, a2, . . . ak) ∈ A1 × . . . Al}
= {a2

1, a
2
2, , . . . a

2
k) | a1 ∈ A1, . . . ak ∈ Ak}

= {b1, b2, . . . , bk) | b1 ∈ Q(A1), b2 ∈ Q(A2), . . . bk ∈ Q(Ak)}
= Q(A1)×Q(A2)× . . .×Q(Ak)

(b)

T (A) = {(a1, a2, . . . , al) ∈ A1 × . . .×Ak | (a1, a2, . . . ak)2 = (e, e, . . . , e)}
= {a1, a2, . . . , al) ∈ A1 × . . .×Ak | a2

1 = e, a2
2 = e, . . . , a2

k = e}
= {(a1, a2, . . . , ak) | a1 ∈ T (A1), α2 ∈ T (A2), . . . , ak ∈ T (Ak)}
= T (A1)× T (A2)× . . .× T (Ak)

Definition 8.1.8. [def:gn] If G is a group and n ∈ Z+, then Gn = G×G× . . . G︸ ︷︷ ︸
n−times

Lemma 8.1.9. [tun] Let n be a positive integer and write n = 2e0pe11 . . . pekk where 2, p1, . . . , pk are
positive integers and e0 ∈ N and e1, . . . ek ∈ Z+. Put

m =


k if e0 ≤ 1
k + 1 if e0 = 2
k + 2 if e0 ≥ 3

Then T (Un) ∼= Cm2

Proof. By 7.3.21 Un ∼= A1× . . . Am, where each Ai is a cyclic group of even order. Thus T (Ai) ∼= C2

by 8.1.6 and hence
T (Un) ∼= T (A1)× . . . T (Am) ∼= Cm2

So x2 ≡ 1 (mod n) has 2m solutions. How to find these solutions:

Case 1: n = pe, p an odd prime, e ∈ Z+. Then |T (Un)| = 2 and there are two solutions. Namely
x ≡ ±1 (mod pe)

Case 2: n = 2e, e ∈ Z+.

If e = 1, one solution: x ≡ 1 (mod 2)
If e = 2, two solutions: x ≡ ±1 (mod 4).
If e ≥ 3, four solutions: x ≡ ±1,±(1 + 2e−1) (mod 2e)
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Case 3 The general case, n = 2e0pe11 . . . pekk

For each 0 ≤ i ≤ k, use the previous two cases to compute find all the solutions of x2 ≡ 1
(mod peii ) Lets say xi1, . . . xiri are the solutions. Then for each tuple (s0, . . . sk) with 1 ≤ si ≤ ri
use the Chinese Remainder Theorem to find a solution of

x ≡ xisi (mod peii ), 0 ≤ i ≤ k

Example 8.1.10. [ex:x2=1] Find all solutions of x2 ≡ 1 (mod 20).

We have 20 = 4 · 5. The solutions of x2 ≡ 1 (mod 4) or x ≡ ±1 (mod 4) and the solutions of
x2 ≡ 1 (mod 5) are x ≡ ±1 (mod 2)0. Now

x ≡ 1 (mod 4) and x ≡ 1 (mod 5) ⇐⇒ x ≡ 1 (mod 20)

x ≡ 1 (mod 4) and x ≡ −1 (mod 5) ⇐⇒ x ≡ 9 (mod 20)

x ≡ −1 (mod 4) and x ≡ 1 (mod 5) ⇐⇒ x ≡ −9 (mod 20)

x ≡ −1 (mod 4) and x ≡ −1 (mod 5) ⇐⇒ x ≡ −1 (mod 20)

So the solutions of x2 ≡ 1 (mod 20) are x ≡ ±1,±9 (mod 20).

Definition 8.1.11. [def:lsym] Let a and n be integers and p a prime. Then

(a) [a] Qn = Q(Un) = {[b2]n | b ∈ Z, gcd (b, n) = 1}.

(b) [b]
(
a
p

)
=


0 if [a]p = [0]p
1 if [a]p ∈ Qp
−1 if [a]p /∈ Qp

In U11 we have (±1)2 = 1, (±2)2 = 4, (±3)3 = 9, (±4)2 = 16 = 5 and (±5)2 = 25 = 3. So
Q11 = {1, 3, 4, 5, 9} and

( a
11

)
=


0 if a ≡ 0 (mod 11)
1 if a ≡ 1, 3, 4, 5, 9 (mod 11)
−1 if a ≡ 2, 6, 7, 8, 10 (mod 11)

Lemma 8.1.12. [lsym and primitive] Let g be an odd prime, g a primitive element modulo p and
i ∈ N. Then (

gi

p

)
= (−1)i

Proof. By 8.1.6 [gi]p ∈ Qp if and only if i is even and so if and only of (−1)i = 1.

Lemma 8.1.13. [lsym mult] Let p be an odd prime and a, b ∈ Z. Then(
ab

p

)
=
(
a

p

)(
b

p

)
.
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Proof. Suppose that p | a or p | b. Then also p | ab and both sides of equation in question are equal
to 0.

Suppose p - a and p - b and let g be a primitive element modulo p. The there exists i, j ∈ Z with
a ≡ gi and b ≡ gj modulo p. Hence ab ≡ gigj ≡ gi+j and so by 8.1.12(

ab

p

)
=
(
gi+j

p

)
= (−1)i+j = (−1)i(−1)j =

(
gi

p

)(
gj

p

)
=
(
a

p

)(
b

p

)

Theorem 8.1.14. [ap] Let p be an odd prime p and a an integer. Then
(
a
p

)
≡ a

p−1
2 (mod p).

Proof. If p | a, then both side of the equation are equal to 0. So suppose p - a . Then [a]p ∈ Up,
[a]p = gi for some primitive element g ∈ Up and some i ∈ Z and

(
a
p

)
= (−1)i. Put h = g

p−1
2 . Then

h has order 2 and so h = [−1]p. Thus

[a
p−1
2 ]p = (gi)

p−1
2 = (g

p−1
2 )i = hi = [(−1)i]p = [

(
a

p

)
]p

Corollary 8.1.15. [-1 in qp] Let p be an odd prime, Then [−1]p ∈ Qp if and only if p ≡ 1 (mod 4).

Proof. We have (
−1
p

)
≡ (−1)

p−1
2 (mod p)

So [−1] ∈ Qp if and only if p−1
2 is even and if and only if p ≡ 1 (mod 4).

Corollary 8.1.16. [1 mod 4] There are infinitely many primes p with p ≡ 1 (mod 4).

Proof. Let p1, . . . pn be a primes with pi ≡ 1 (mod 4). Define m = (2p1p2 . . . pk)2 + 1. Since m is
odd, m is divisible by an odd prime p. Since m ≡ 0 (mod p) and m ≡ 1 (mod p)i, p 6= P − i for all
1 ≤ i ≤ n. Also m ≡ 0 (mod p) implies

2(p1 . . . pk)2 ≡ −1 (mod p)

and so [−1]p ∈ Qp. Thus 8.1.15 gives p ≡ 1 (mod 4) and so we found another prime congruent to 1
module 4.

Definition 8.1.17. [def:ah] Let G be a group, a ∈ G and H ⊆ G. Then aH = {ah | h ∈ H}.

Lemma 8.1.18 (Gauss). [ap via p] Let p be an odd prime and P = {1, 2, . . . , p−1
2 }. For x ∈ Z

and X ⊆ Z put x = [x]p and X = {[x]p | x ∈ X}. Let a ∈ Z with p - p and put µ = |aP ∩−P |. Then(
a

p

)
= (−1)µ
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Proof. In this proof, we will just write m for [m]p. Note that −P = {−1,−2, . . . ,−p−1
2 } = {p −

1, p− 2, . . . p−1
2 } and so P ∩ −P = ∅ and Up = P ∪ −P . Put H = 〈±1〉 = 〈−1〉 ≤ H. Let u, v ∈ aP

with uH = vH. The u = ±v and u = ax and v = ay for some x, y ∈ P . Thus ax = ±ay and so
x = ±y. Since P ∩ −P = ∅ this gives x = y and so also ax = ay. Thus is u = v and so the map
φa : aP → Up/H, u→ uH is 1-1. Since |aP | = |P | = p−1

2 = |Up|
2 = |Up/H|. φa is a bijection. Hence

also φ1 is a bijection and for each u ∈ aP there exist a unique i ∈ P with uH = iH. Thus u = εii
for a unique i ∈ P and εi ∈ H = {±i}. Thus aP = {εii |∈ P}.

We now compute
∏
u∈aP u in two different ways:∏

u∈aP
u =

∏
i∈P

ai = a
p−1
2

∏
i∈P

i

and ∏
u∈aP

u =
∏
i∈P

εii =
∏
i∈P

εi
∏
i∈P

i

Thus

a
p−1
2 =

∏
i∈P

εi = (−1)|{i∈P |εi=−1}|

Observe that εi = −1 if and only if εii ∈ −P and so

|{i ∈ P | εi = −1}| = |{i ∈ P | εii ∈ −P}| = |{u ∈ aP | u ∈ −P}| = |aP ∩ −P | = µ

So (
a

p

)
= a

p−1
2 = (−1)µ

Corollary 8.1.19. [2p] Let p be an odd prime. Then [2]p ∈ Qp if and only if p ≡ ±1 (mod 8).

Proof. We apply Gauss’ Lemma with a = 2. Note that [2]p ∈ Qp if and only if µ is even.
Let 1 ≤ i ≤ p−1

2 ., then 2 ≤ 2i ≤ p− 1 and so

[2i]p ∈ P
⇐⇒ 2i ≤ p−1

2

⇐⇒ i ≤ p−1
4

⇐⇒ i ≤
⌊
p−1
4

⌋
hence

µ|[2P ∩ −P | = |2P \ (2P ∩ P )| = p− 1
2
−
⌊
p− 1

4

⌋
If p ≡ 1 (mod 4), then p−1

4 is an integer and so µ = p−1
4 . Then µ is even if and only if 2 | p−1

4
and so iff 8 | p− 1 and iff p ≡ 1 (mod 8).

If p ≡ 3 (mod 4), then
⌊
p−1
4

⌋
= p−3

4 and µ = p−1
2 −

p−3
4 = p+1

4 . So µ is even if and only if 8|p+1
and iff p ≡ −1 (mod 8).
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Theorem 8.1.20. [quad rep] Let p and q be odd primes. Then

(a) [a] (
p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
4

(b) [b] If p ≡ 1 (mod 4) or q ≡ 1 (mod 4), then
(
p
q

)
=
(
q
p

)
.

(c) [c] If p ≡ 3 (mod 4) and q ≡ 3 (mod 4), then
(
p
q

)
= −

(
q
p

)
.

Proof. Put P = {1, 2 . . . , p−1
2 } and Q = {1, 2 . . . q−1

2 }. By Gauss’ Lemma(
q

p

)
= (−1)µ, where µ = |qP ∩ −P |

For x ∈ P ,

[qx]p ∈ −P
⇐⇒ [qx]p = [z]p for some z ∈ −P
⇐⇒ qx = z + py for some z ∈ −P and y ∈ Z
⇐⇒ qx− py ∈ −P for some y ∈ Z
⇐⇒ −p−1

2 ≤ qx− py < 0 for some y ∈ Z

Observe that y is uniquely determined by x. We will show that any such y is in Q. Indeed

p− 1
2
≤ qx− py < 0

implies

p− 1
2
≥ py − qx > 0

and

qx+
p− 1

2
> py > 0

Since x ≤ p−1
2 ,

0 < y <
qx+ p−1

2

p
≤
q p−1

2 + p−1
2

p
=
q + 1

2
p− 1
p

<
q + 1

2

Since y is an integer and q is odd, this gives 1 ≤ y ≤ q−1
2 and so y ∈ Q. Also since qx− py is an

integer, −p−1
2 ≤ qx− py if and only if −p2 ≤ qx− py. So

µ = |{(x, y) ∈ P ×Q | −p
2
< qx− py < 0}|

Similarly
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(
p

q

)
= (−1)ν where ν = |{(y, x) ∈ Q× P | −q

2
< py − qx < 0}|

Note that

ν = |{(x, y) ∈ P ×Q | 0 < qx− py < q

2
}|

Hence (
q

p

)
·
(
p

q

)
= (−1)µ(−1)ν = (−1)µ+ν = (−1)t

where

t = µ+ ν = |{(x, y) ∈ P ×Q | −p
2
< qx− py < 0 or 0 < qx− py < q

2
}|

Since q and p are coprime, qx = py implies q | y and so qx− py 6= 0 for all (x, y) ∈ P ×Q. Thus

t = |{(x, y) ∈ P ×Q | −p
2
< qx− py < q

2
}|

Define

I = {(x, y) ∈ P ×Q | −p
2
≥ qx− py}

and
J = {(x, y) ∈ P ×Q | qx− py ≥ q

2
}

Then

t = |P ×Q| − |I| − |J |

We will show that |I| = |J |. Define

ρ : R× R : (x, y)→ (x′, y′)

where

(x′, y′) = (
p+ 1

2
− x, q + 1

2
− y)

Note that x and y are integers if and only of x′ and y′ are integers.
Also

1 ≤ x′ ≤ p−1
2

⇐⇒ 1 ≤ p+1
2 − x ≤

p−1
2

⇐⇒ −p−1
2 ≤ −x ≤ −1

⇐⇒ 1 ≤ x ≤ p−1
2

and
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1 ≤ y′ ≤ q−1
2

⇐⇒ 1 ≤ q+1
2 − y ≤

q−1
2

⇐⇒ − q−1
2 ≤ −y ≤ −1

⇐⇒ 1 ≤ y ≤ q−1
2

Thus ρ(P ×Q) = P ×Q

qx′ − py′ ≥ q
2

⇐⇒ q(p+1
2 − x)− p( q+1

2 − y) ≥ q
2

⇐⇒ qp
2 + q

2 − qx−
pq
2 −

p
2 − py ≥

q
2

⇐⇒ −pq ≥ qx+ py

Hence (x, y) ∈ I if and only if (x′, y′) ∈ J . So ρ(I) = J and |I| = |J |.
Thus (

q

p

)(
p

q

)
= (−1)t = (−1)|P×Q|−|I|−|J| = (−1)

(p−1)(q−1)
4 −2|I| = (−1)

(p−1)(q−1)
4

Hence (a) holds. Note that (p−1)(q−1)
4 = p−1

2
q−1
2 and both p−1

2
q−1
2 . So (p−1)(q−1)

4 is odd, if and
only if both p−1

2 and q−1
2 are odd and so if and only if both p and q are congruent to 3 (mod 4).

Thus (b) and (c) hold.

Lemma 8.1.21. [qpe] Let p be an odd prime, e ∈ Z+ and a ∈ Z. Then [a]pe ∈ Qpe if and if

[a]p ∈ Qp and if and only of
(
a
p

)
= 1.

Proof. We may assume that p - a, since otherwise none of the three statement holds. Let g be
a primitive root modulo pe. Then there exists i ∈ Z+ with a ≡ gi (mod pe). Then also a ≡ gi

(mod p). In particular, g is a primitive root modulo p. Hence applying 8.1.6(a) twice, we see that
[a]pe ∈ Qpe if and only if i is even and if and only if [a]p ∈ Qp. By definition, the latter is equivalent

to
(
a
p

)
= 1.

Lemma 8.1.22. [q2e] Let e ∈ N and a ∈ Z.

(a) [a] Q2e = 〈[25]pe〉

(b) [b] [a]2 ∈ Q2 if and only of a ≡ 1 (mod 2)

(c) [c] [a]4 ∈ Q4 if and only of a ≡ 1 (mod 4).

(d) [d] If e ≥ 3, then [a]2e ∈ Q2e ≡ a ≡ 1 (mod 8)

(e) [e] Put f = min{e, 3}. Then [a]2e ∈ Q2e ≡ a ≡ 1 (mod 2)f

Proof. By the proof of 7.3.15, U2e = {[±5i]2e | i ∈ N} and so Q2e = {[±5i]2 | i ∈ N} = 〈[25]2e〉.
Hence (a) holds. (b) and (c) are obvious.
Suppose [a]2e ∈ Q2e . Then by (a) a ≡ 1 (mod 8). So suppose that a ≡ 1 (mod 8), then a ≡ ε5i

(mod 2e) for some i ∈ N and ε ∈ {1,−1}. Since e ≥ 3, 1 ≡ a ≡ ε5i (mod 8). Note that this implies
ε = 1 and i is even. So a ≡ (5

i
2 )2 (mod 2e) and [a]2e ∈ Q2e . Thus (d) holds.

(e) follows from (b)-(d).
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Lemma 8.1.23. [qn] Let n1, . . . , nk be pairwise coprime positive integers, n = n1n2 . . . nk and
a ∈ Z. Then

[a]n ∈ Qn if and only if [a]ni ∈ Qni for all 1 ≤ i ≤ k

Proof. This follows from the isomorphism

Un → Un1 × Un2 × . . .× Unk
[a]n → ([a]n1 , . . . , [a]nk)

and from

Q(Un1 × Un2 × . . .× Unk) = Qn1 ×Qn2 × . . .×Qnk

Lemma 8.1.24. [char a in qp] Let a ∈ Z, n = 2e0pe11 . . . pekk where 2, p1, . . . pk are pairwise distinct
primes, e0 ∈ N, and ei ∈ Z+ for 1 ≤ i ≤ k. Put e = min(e0, 3). Then [a]n ∈ Qn, if and only if
a ≡ 1 mod 2e and

(
a
pi

)
= 1 for all 1 ≤ i ≤ k.

Proof. By 8.1.23, [a]n ∈ Qn iff [a]peii ∈ Qpeii for all 0 ≤ i ≤ k. By 8.1.22, [a]2e0 ∈ Q2e0 if and only if

a ≡ 1 (mod 2e) and by 8.1.21, [a]peie ∈ Qpeii if and only if
(
a
pi

)
= 1.

Example 8.1.25. [ex: a in qp] Is [73]180 ∈ Q180?

180 = 22 · 32 · 5. 73 ≡ 1 (mod 4),
(

73
3

)
=
(

1
3

)
= −1 and

(
73
5

)
=
(

3
5

)
=
(

5
3

)
=
(

2
3

)
= −1. So 73 is

not a square modulo 180.



Chapter 9

Arithmetic Functions

9.1 Dirichlet Products

Definition 9.1.1. [def:arith ] An arithmetic function is a function f : Z+ → C.

Example 9.1.2. [ex:arith]

1. [1] φ : Z+ → C, n→ |Un|, the Euler function.

2. [2] τ : Z+ → C, n→
∑
d|n 1, the number divisors of n.

3. [3] σ : Z+ → C, n→
∑
d|n d, the sum of the divisors of n.

4. [4] u : Z+ → C, n→ 1, the unit function.

5. [5] N : Z+ → C, n→ n, the identity function.

6. [6] I : Z+ → C, I(1) = 1 and I(n) = 0 if n ≥ 1.

Definition 9.1.3. [def:mult] An function f is called multiplicative if its is arithmetic and f(nm) =
f(n)f(m) for all n,m ∈ Z+ with gcd (n,m) = 1.

Lemma 9.1.4. [mult]

(a) [a] u,N , φ and I are multiplicative.

(b) [b] If f and g are multiplicative functions, then fg is a multiplicative function.

(c) [c] If f is multiplicative function and n ∈ N, then fn is multiplicative function.

Proof. let n,m ∈ Z+ with gcd (n,m) = 1. (a): u(nm) = 1 = 1 · 1 = u(n)u(m)
N(nm) = nm = N(n)N(M)
By 7.1.6 φ(nm) = φ(n)φ(m).
If n = 1 and m = 1, then nm = and I(nm) = 1 = I(n)I(m). If n > 1 or m > 1, then nm > 1

and one of I(n) or I(m) is equal to 0. So I(nm) = 0 = I(n)I(m). and so (a) holds.
(b) (fg)(nm) = f(nm)g(nm) = f(n)f(m)g(n)g(m) = f(n)g(n)f(m)g(m) = (fg)(n)(fg)(m)
(c) If n = 0, then f0 = u and so f0 is multiplicative. Suppose that fn is multiplicative,

Then fn+1 = fnf . By the induction assumption, fn is multiplicative and by assumption f is
multiplicative. So by (b), fn+1 is multiplicative.

73
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Definition 9.1.5. [def:dirichlet] Let f and g be arithmetic function. Then f ∗ g is the arithmetic
function defined by

(f ∗ g)(n) =
∑
d|n

f(d)g
(n
d

)
=
∑
de=n

f(d)g(e)

f ∗ g is call the Dirichlet product of f and g. It is also called the convolution of f and g.

Lemma 9.1.6. [basic:dirichlet] Let f, g, h be arithmetic functions.

(a) [a] f ∗ g = g ∗ f .

(b) [b] (f ∗ g) ∗ h = f ∗ (g ∗ h).

(c) [c] I ∗ f = f = f ∗ I.

Proof. (a)

(f ∗ g)(n) =
∑
de=n

f(d)g(e) =
∑
ed=n

g(e)f(d) =
∑
de=n

g(d)f(e)) = (g ∗ f)(n)

(b)

((f ∗ g) ∗ h)(n) =
∑
de=n(f ∗ g)(d)h(e) =

∑
de=n (

∑
bc=d(f(b)g(c))h(d))

=
∑
de=n

∑
bc=d(f(b)g(c))h(e) =

∑
bce=n(f(b)g(c))h(e)

=
∑
bce=n f(b)(g(c)h(e)) =

∑
ba=n

∑
ce=a f(b)(g(c)h(e))

=
∑
ba=n f(b) (

∑
ce=a g(c)h(e)) =

∑
ba=n f(b)(g ∗ h)(a)

= (f ∗ (g ∗ h))(n)

(c) (I ∗ f)(n) =
∑
d|n I(d)f

(
n
d

)
= I(1)f(n1 ) = f(n). So I ∗ f = f . By (a) f ∗ I = I ∗ f and so

also f ∗ I = f .

Lemma 9.1.7. [identities] Let f be an arithmetic function.

(a) [d] (f ∗ u)(n) =
∑
d f(d).

(b) [e] u ∗ u = τ .

(c) [f] N ∗ u = σ.

(d) [g] φ ∗ u = N .

Proof. (a) (f ∗ u)(n) =
∑
d|n f(d)u(nd ) =

∑
d f(d).

(b): u ∗ u(n) =
∑
d|n u(n) =

∑
d|n 1 = τ(n)

(c): (N ∗ u)(n)
∑
d|nN(d) =

∑
d|n d = σ(n).

(d) By 7.3.3,
∑
d|n φ(d) = n and so by (a), φ ∗ u = N .

Lemma 9.1.8. [easy mult] Suppose that f is a multplicative function. Then either f = 0 or
f(1) = 1.

Proof. Suppose f 6= 0. Then f(n) 6= 0 for some n ∈ Z+. Thus f(n) = f(n1) = f(n)f(1) and so
f(1) = 1.
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Lemma 9.1.9. [dirichlet and mult] Let f and g be arithmetic function. Suppose f is non-zero
and multiplictaive. Then g is multiplicative if and only if f ∗ g is multiplicative.

Proof. We will prove the following:

1◦. [1] Let n,m ∈ Z+ with gcd (n,m) = 1. Suppose that for all divisors a of n and b of m with
(a, b) 6= (n,m) we have g(ab) = g(a)g(b). Then (f ∗ g)(nm) = (f ∗ g)(n)(f ∗ g)(m) if and only if
g(nm) = g(n)g(m).

Note that any divisor x of nm can be unique written as x = ab where a is a divisor of n and
b is a divisor of m. So if nm = xy with x, y ∈ Z+, then there exist unique a, b, c, d ∈ Z+ with
x = ab, y = cd, n = ac and m = bd. Moreover, gcd (a, b) = 1 = gcd (c, d)

Thus

(f ∗ g)(nm) =
∑

xy=nm

f(x)g(y)

=
∑

ab=x,cd=y,ac=n,bd=m

f(x)g(y)

=
∑

ac=n,bd=m

f(ab)g(cd)

= f(1)g(nm) +
∑

ac=n,bd=m,(c,d)6=(n,m)

f(a)f(b)g(c)g(d)

and

(f ∗ g)(n)(f ∗ g)(m) =

(∑
ac=n

f(a)g(c)

)(∑
bd=m

f(b)g(d)

)
= f(1)f(1)g(n)g(m) +

∑
ac=n,bd=m,(c,d)6=(n,m)

f(a)g(c)f(b)g(d)

Since f(1) = 1 = f(1)f(1) we conclude that (1◦) holds.
If g is multiplicative, (1◦) shows that f ∗ g is multiplicative. Suppose now that f ∗ g is multi-

plicative, and inductively that g(ab) = g(a)g(b) for all a, b with ab < nm and gcd (a, b) = 1. Then
(1◦) shows that g(nm) = g(n)g(m) and so g is multiplicative.

Corollary 9.1.10. [tau and sigma] Let n = pe11 p
e2
2 . . . pekk , where p1, . . . , pk are pairwise distinct

primes and e1, . . . ek ∈ Z+.

(a) [a] τ and σ are multiplicative.

(b) [b] τ(n) =
∏k
i=1(ei + 1)

(c) [c] σ(n) =
∏k
i=1

(∑ei
j=0 p

j
i

)
=
∏k
i=1

p
ei+1
i −1

pi−1 .

Proof. (a) Since u and N are multiplicative, so are τ = u ∗ u and σ = N ∗ u.
(b) and (c): In view of (a) we only need to consider the case n = pe, p a prime, e ∈ N. Then the

divisors of pe or pi, 0 ≤ i ≤ e. Thus pe has e+ 1 divisors and σ(pe) =
∑e
i=0 p

i = pi+1−1
p−1 .
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9.2 Perfect Numbers

Definition 9.2.1. [def:perfect] A positive integer n is called perfect if n =
∑
d|n,d6=n d.

Observe that n ∈ Z+ is perfect if and only of n = σ(n)− n, that is σ(n) = 2n.

Example 9.2.2. [small perfect] The first three perfect numbers

σ(6) = σ(2 · 3) = 22−1
2−1

32−1
3−1 = 3 · 4 = 12 = 2 · 6.

σ(28) = σ(22 · 7) = 23−1
2−1

72−1
7−1 = 7 · 8 = 56 = 2 · 28.

σ(496) = σ(16 · 31) = 25−1
2−1

312−1
31−1 = 3

1 · 32 = 2 · 496.

Lemma 9.2.3. [mersenne and perfect] Let n be a positive even integer. Then n is perfect if and
only if n = 2p−1(2p − 1) where p is a prime such that 2p − 1 is a prime.

Proof. Suppose first that n = 2p−1(2p − 1) where p and 2p − 1 are primes. Then

σ(n) =
2p − 1
2− 1

(2p − 1)2 − 1
(2p − 1) + 1

= (2p − 1)((2p − 1) + 1) = (2p − 1)2p = 2n

and so n is perfect.
Suppose next that n is perfect.Since n is even, n = 2p−1q where p, q ∈ Z+ with q is odd and

p ≥ 2. Hence

(∗) 2pq = 2n = σ(2p−1q) = σ(2p−1)σ(q) =
2p − 1
2− 1

σ(q) = (2p − 1)σ(q)

Thus 2p−1 | q and so q = 2p−1r for some r ∈ Z+. Substitution in (*) gives

2p(2p − 1)r = (2p − 1)σ(m)

and so

σ((2p − 1)r) = σ(q) = 2pr

Since (2p − 1)r and r are distinct divisors of (2p − 1)r we get that 2pr = (2p − 1)r + r ≤
σ((2p − 1)r)) = 2pr. Hence (2p − 1)r and r are the only divisors of q = (2p − 1)r. It follows that
r = 1 and 2p − 1 is a prime. By 3.3.5 also p is a prime.

9.3 The group of non-zero multiplicative functions

Definition 9.3.1. [def:inverse] Let f be an arithmetic function. We say f is Dirichlet-invertible
if there exists an arithmetic function g with f ∗ g = I. Such a g is called an Dirchlet-inverse of f .

Lemma 9.3.2. [inverses] Let f be an arithmetic function. Then

(a) [a] The set of Dirichlet-invertible arithmetic function together with the Dirichlet product form
an abelian group.
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(b) [b] If f is Dirichlet-invertible, it has a unique Dirchlet-inverse, (which we will denote by f−∗).
f−∗ can be computed inductively by

f−∗(1) =
1

f(1)

f−∗(n) = − 1
f(1)

∑
de=n,e 6=n

f(d)f−∗(e)

(c) [c] f is Dirichlet-invertible if and only f(1) 6= 0.

(d) [d] Suppose f is multiplicative and non-zero. Then f is Dirchlet-invertible and f∗−1 is multi-
plicative. In particular, the set of non-zero multiplicative functions is a subgroup of the group
Dirchlet-invertible functions.

Proof. (a) If f and g are Dirchlet invertible with inverse f ′ and g′. Then f is the inverse of f ′ and
g′ ∗ f ′ is the inverse of f ∗ g. Since I is an idendity with respect to ∗, and ∗ is associative and
commuative, (a) hold.

(b) This holds in any group.
(c) Suppose f is Dirchlet invertible with inverse g. Then 1 = I(1) = (f ∗ g)(1) = f(1)g(1) and

so f(1) 6= 0.
Suppose now that f(1) 6= 0. Define the aritmetic function g by g(1) = 1

f(1) and inductively for
n > 1 by

g(n) = − 1
f(1)

∑
de=n,e6=n

f(d)g(e)

Then (f ∗ g)(1) = f(1)g(1) = 1 and for n > 1,

(f ∗ g)(n) =
∑
de=n

f(d)g(e) =
∑

de=n,e 6=1

f(d)g(e) + f(1)

− 1
f(1)

∑
de=n,e 6=n

f(d)g(e)

 = 0

and so f ∗ g = I.
(d) By 9.1.8, f(1) = 1 and so by (c), f is Dirichlet invertible. Since f ∗ f−∗ = I and f and I are

multiplicative, we conclude from 9.1.9 then f−∗ is multiplcative. Also by 9.1.9, the set of non-zero
multiplicative function is closed under ’∗’ and so (d) is proved.

Definition 9.3.3. [def: fp]

(a) [a] Let p be a prime. Then the arithmetic function εp is define by εp(n) = e, where e ∈ N with
pe||n.

(b) [b] Let f be a non-zero multiplicative function and p a prime. Define function fp : N → C is
defined by fp(e) = f(pe).

Note here that fp(0) = 1 for all primes p.

Lemma 9.3.4. [fp]

(a) [a] Let f be a non-zero multiplicative function. Then f(n) =
∏
p fp(εp(n)). (Note here that

infinite product is defined, since εp(n) = 0 for almost all primes p and so fp(εp(n)) = 1 for all
all primes p.
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(b) [b] Two non-zero multiplicative functions f and h are equal, if and only fp = hp for all primes
p.

(c) [c] Let gp : N→ C , p a prime, be functions with gp(0) = 1. Define the arithmetic functions f
be f(n) =

∏
p gp(εp(n)). Then f is multiplicative and gp = fp.

(d) [d] Let f and h be non-zero multiplicative functions. Then h ∗ f = I if and only if

(∗) hp(e) = −
e−1∑
k=0

hp(k)fp(e− k) = − (fp(e) + hp(1)fp(e− 1) + . . .+ hp(e− 1)fp(1))

for all primes p and all e ∈ Z+.

Proof. (a) -(c) are obvious.
For (d), note that h ∗ f = I if and only if h = f−∗. Since f−∗ is multiplicative this holds if and

only if hp(e) = (f−∗)p(e) for all primes p and all e ∈ Z+. We have

(f−∗)p(e) = f−∗(pe) = − 1
f(1)

∑
d|pe,d6=pe

f−∗(d)f(
pe

pk
) = −

∑
k=0

f−∗p (k)fp(e− k)

Note that hp(0) = 1 = f−∗p (0) and inductively we see that hp(e) = (f−∗)p(e) for all primes p and
all e ∈ Z+ if and only if (*) holds.

Example 9.3.5. [ex:fp] Let α ∈ R. Compute (Nα)−∗.

Put f = Nα, so f(n) = nα. Then fp(k) = pkα. Let h = (Nα)−∗. Then hp(0) = 1.

hp(1) = −
0∑
k=0

hp(k)fp(1− k) = −hp(0)fp(1) = −pα

hp(2) = −
1∑
k=0

−hp(k)fp(2− k) = −(hp(0)fp(2) + hp(1)fp(1) = −(p2α + (−pαpα)) = 0

We claim that hp(e) = 0 for all e ≥ 2. For e = 2 we already proved this, so suppose hp(k) = 0
for all 2 ≤ k ≤ e− 1. Then

hp(e) = −
e−1∑
k=0

hp(k)fp(e− k) = −(hp(0)fp(e) + hp(1)fp(e− 1)) = −(peα + (−pα)p(e−1)α) = 0

So

hp(e) =


1 if e = 0
−pα if e = 1
0 if e ≥ 2

Let n = pe11 . . . pekk where p1, . . . , pk are pairwise distinct primes. If ei ≥ 2 for some 1 ≤ i ≤ k, then
hpi(ei) = 0 and so also h(n) = 0. So suppose that ei = 1 for all 1 ≤ i ≤ k. Then
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h(n) =
k∏
i=1

−piα = (−1)k(
l∏
i=1

pi)α = (−1)knα

Thus

(Nα)−∗(n) =

{
(−1)knα if n is square free and k is the number of primes dividing n
0 if n is not square free

Definition 9.3.6. [def:moebius] µ := u−∗. µ is called the Möbius function.

Lemma 9.3.7. [moebuis] Let p be a prime and n, e ∈ Z+ with n, e ≥ 2. Then

(a) [z] u ∗ µ = I.

(b) [a] µ(1) = 1.

(c) [b]
∑
d|n µd = 0 and µ(n) = −

∑
d|n,d6=n µ(d).

(d) [c] µ is multiplicative.

(e) [d] µ(p) = −1 and µ(pe) = 0.

(f) [e] If n is square free, µ(n) = (−1)k, where k is the number of prime divisors of n.

(g) [f] If n is not square free, then µ(n) = 0.

(h) [g] Let α ∈ R. Then (Nα)−∗ = µNα.

Proof. (a): This is just the defintion of µ.
(b) Follows from (h) and u(1) = I(1) = 1.
(c) Follows from (h).
(d) Since u is multiplicative, this follows from 9.3.2(d).
(e)-(g) This is the special case α = 0 in Example 9.3.5
(h) Follows from 9.3.5, (f) and (g).

Lemma 9.3.8. [moebius identities] Let f and g be arithmetic function.

(a) [a] f ∗ u = g if and only if f = g ∗ µ.

(b) [b] u = τ ∗ µ.

(c) [c] N = σ ∗ µ.

(d) [d] φ = N ∗ µ.

(e) [e] If p is a prime and e ∈ Z+, then (f ∗ µ)(pe) = f(pe)− f(pe−1).

Proof. (a) If f ∗ u = g, then g ∗ µ = (f ∗ u) ∗ µ = f ∗ (u ∗ µ) = f ∗ I = f . Similarly, if f = g ∗ µ,
then f ∗ u = g. By 9.1.7, u ∗ u = τ , N ∗ u = σ and φ ∗ u = N . Thus by (a), u = τ ∗ µ, N = σ ∗ µ
and φ = N ∗ u. So (a)-(d) hold

(f ∗ µ)(pe) = (µ ∗ f)(pe) =
∑
d|pe

µ(d)f(
pe

d
) = µ(1)f(pe) + µ(p)f(pe−1) = f(pe)− f(pe−1)
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From (d) and (e) can be used to compute φ: φ(pe) = N(pe)−N(pe−1) = pe−pe−1 = pe−1(p−1).
Of course we already know this.



Chapter 10

The Riemann Zeta function and
Dirichlet Series

10.1 The Riemann Zeta function

Definition 10.1.1. [def:zeta] ζ(s) =
∑∞
n=1

1
ns . ζ is called the Riemann Zeta function.

Lemma 10.1.2. [zeta converges] ζ(s) converges for all real numbers s with s > 1 and diverges
for all real numbers s with s ≤ 1. Moreover, lims→∞ ζ(s) = 1.

Proof. Suppose first that s > 1. We partition Z+ into subintervals Ik = {n ∈ Z | 2k ≤ n < 2k+1}.
Note that |Ik| = 2k

ζ(s) =
∑
n∈Ik

1
ns
≤
∑
n∈Ik

1
(2k)s

=
2k

2ks
=
(

1
2s−1

)k
Since 0 < 1

2s−1 < 1, we get ζ(s) =
∑∞
k=0

∑
n∈Ik

1
ns ≤

∑∞
k=0

(
1

2s−1

)k = 1
1− 1

2s−1
and so ζ(s) converges

by the comparison test.
Note that 1 ≤ lims→∞ ζ(s) ≤ lims→∞

1
1− 1

2s−1
= 1 and so lims→∞ ζ(s) = 1.

Suppose next that s ≤ 1. If s ≤ 0, then 1
ns = n−s ≥ 1 and ζ(s) diverges. So suppose 0 < s ≤ 1.

We partition Z+ into the subintervals, Jk = {n ∈ Z | 2k−1 < n ≤ 2k} and note that for k ≥ 1,
|Jk| = 2k−1.

We have

∑
n∈Jk

1
ns
≥
∑
n∈Jk

1
(2k)s

=
2k−1

(2k)s
≥ 2k−1

2k
=

1
2

Since the constant series 1
2 diverges, also ζ(s) diverges.

10.2 Evaluating ζ(2k)

To compute ζ(2k), where k is an integer, we will take to following formula from Analysis for granted:
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sin z = z
∏
n 6=0

(
1− z

nπ

)
= z

∞∏
n=1

(
1− z2

n2π2

)
Taking the natural logarithm on both sides we obtain

ln sin z = ln z +
∞∑
n=1

ln
(

1− z2

n2π2

)
Differentiating both sides with respect to gives

1
sin z

cos z =
1
z

+
∞∑
n=1

1
1− z2

n2π2

−2z
n2π

=
1
z
− 2

∞∑
n=1

z

n2π2

1
1− z2

n2π2

Use the geometric series:

z

n2π

1
1− z2

n2π2

=
z

n2π2

∞∑
k=0

(
22

n2π2

)k
=
∞∑
k=0

z2k+1

n2k+2π2k+2
=
∞∑
k=1

z2k−1

n2kπ2k

and so

(∗) cot z =
1
z
− 2

∞∑
k=1

z2k−1

n2kπ2k
=

1
z
− 2

∞∑
k=1

ζ(2k)
π2k

z2k−1

We will now compute a second expression for cot z. We start with proving that

(∗∗) cot z = −i+
1
z

−2iz
e−2iz − 1

where i =
√
−1. Canceling the z and adding i we have

cotz + i =
−2i

e−2iz − 1

Multiplying with i(e−2iz − 1)

(i cot z − 1)(e−2iz − 1) = 2

by Euler’s Formula, eix = cosx+ i sinx and so e−ix = cosx− i sinx. Thus

(i cot z − 1)(cos 2z − i sin 2z − 1) = 2

and

i cot z cos 2z + cot z sin 2z − i cot z − cos 2z + i sin 2z + 1 = 2

So it suffices to prove:

cot z sin 2z − cos 2z = 1 and (cotz cos 2z − cot z + sin 2z)i = 0

Using that cot z = cos z
sin z , sin 2z = 2 sin z cos z and cos 2z = cosz − sin2 z these two equations

transform to
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2
cos z
sin z

sin z cos z − cos2 z + sin2 z = 1 and
cos z
sin z

(cos2 z − sin2 z)− cos z
sin z

+ 2 sin z cos z = 0

Simplifying and multiplying the second equation with sin z gives

2 cos2 z − cos2 z + sin2 z = 1 and cos2 z cos z − cos z sin2 z − cos z + 2 sin2 cos z = 0

and

cos2 z + sin2 = 1 and (cos2 z + sin2 z) cos z − cos z = 0

Since cos2 z + sin2 z = 1, these last two equations are true and so (**) is proved.
Put t = −2iz. Then (**) reads

cot z = −i+
1
z

t

et − 1
Let

(∗ ∗ ∗) t

et − 1
=
∞∑
m=0

Bm
m!

tm

be the Taylor series for t
et−1 . Bm is called the m′th Bernoulli number.

Then

(∗ ∗ ∗∗) cot z = −i+
1
z

∞∑
m=0

Bm
m!

(−2iz)m = −i+
∞∑
m=0

(−2i)mBm
m!

zm−1

We now compare the coefficient of zm−1 in (*) and (****)
For m = 0 we get B0 = 1. For m = 1, −i− 2B1i = 0 and so B1 = − 1

2 . For m = 2k + 1 > 1 we
get B2k+1 = 0 and for m = 2k ≥ 2,

−2
ζ(2k)
π2k

=
(−2i)2kB2k

2k!
and so

ζ(2k) =
(−1)k−122k−1π2k

2k!
B2k

For example,

ζ(2) = π2B2, ζ(4) = −π
3
B4, and ζ(6) =

2π6

45
B6.

It remains to obtain a formula for the Bm’s. From (***) t = (et − 1)
∑∞
m=0

Bm
m! t

m. We have
et =

∑∞
n=0

tn

n! and so et − 1 =
∑
n=1

tn

n! . Thus

t =

( ∞∑
n=1

tn

n!

)( ∞∑
m=0

Bm
m!

)
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The coefficient of tr in the right hand side is

r−1∑
m=0

1
(r −m)!

1
m!
Bm =

1
r!

r−1∑
m=0

(
r

m

)
Bm

We now compare that coefficient with the coefficient of tr in t. For r = 1 we obtain B0 = 1 and
for r > 1,

r−1∑
m=0

(
r

m

)
Bm = 0

and so

Br−1 = −1
r

r−2∑
m=0

(
r

m

)
Bm

For example B1 = − 1
2

(
2
0

)
B1 = − 1

2

B2 = − 1
3

((
3
0

)
B0 +

(
3
1

)
B1

)
= − 1

3

(
1− 3

2

)
= − 3

2 · −
1
2 = 1

6 .
B3 = 0,
B4 = − 1

5

((
5
0

)
B0 +

(
5
1

)
B1 +

(
5
2

)
B2 +

(
5
3

)
B3

)
= − 1

5

(
1− 5 1

2 + 10 1
6

)
= − 1

5
6−15+10

6 = − 1
30 .

Thus

ζ(2) = π2B2 =
π2

6
and ζ(4) = −π

4

3
· − 1

30
=
π4
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10.3 Probability of being Co-Prime

In this subsection we compute the probability that two randomly chosen positive integers are co-
prime. More generally let pn be the probability that gcd (x, y) = n, where x and y are two random
integers. Then

(∗)
∞∑
n=1

pn = 1

Now

gcd (x, y) = n⇐⇒ n | x, n | y and gcd
(x
n
,
y

n

)
= 1

The probability that n | x is 1
n , the probability that n | y is 1

n and the probability that
gcd

(
x
n ,

y
n

)
= 1 is p1. Thus

pn =
1
n
· 1
n
· p1 = p1

1
n2

Substitution into (*) gives

1 =
∞∑
n=1

p1
1
n2

= p1

∞∑
n=1

1
n2

= p1ζ(2)

and so
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p1 =
1
ζ(2)

and pn =
1

n2ζ(2)
Since

ζ(2) =
π2

6
we get

p1 =
6
π2
≈ 0.608

So the probability that two randomly chosen positive integers are coprime is roughly 60%.

10.4 Dirichlet Series

Definition 10.4.1. [def:dirchlet series] Let f be a arithmetic function. Then

f̂(s) :=
∞∑
n=1

f(n)
ns

is called the Dirichlet series of f .

Example 10.4.2. [ex:dirichlet series] Dirichlet series for u, N and I.

û(s) ==
∑∞
n=1

u(n)
ns =

∑∞
n=1

1
ns = ζ(s).

N̂(s) =
∑∞
n=1

N(n)
ns =

∑∞
n=1

n
ns =

∑∞
n=1

1
ns−1 = ζ(s− 1).

Î(s) =
∑∞
n=1

I(n)
ns = 1

11 = 1.

Lemma 10.4.3. [series and convolution] Let f and g be the arithmetic function f , g and h. If
h = f ∗ g, then

f̂ ∗ g(s) = f̂(s)ĝ(s)

for all s such that both f̂(s) and ĝ(s) converge absolutely.

Proof.

f̂(s)ĝ(s) =
∞∑
n=1

f(n)
ns

∞∑
m=1

g(m)
ms

=
∞∑
n=1

∞∑
m=1

f(n)g(m)
(nm)s

=
∞∑
k=1

∑
nm=k f(n)g(m)

ks

=
∞∑
k=1

(f ∗ g)(k)
ks

= f̂ ∗ g(s)
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Corollary 10.4.4. [series and inverse] If f is Dirichlet invertible, then f̂−∗ = f̂−1 = 1
f̂
.

Proof. From f ∗ f−∗ = I we get f̂ f̂−∗ = Î = 1.

Example 10.4.5. [series for mu and phi] Dirichlet series for µ and φ:

µ̂ = û−∗ = 1
û = 1

ζ .

φ ∗ u = N and so φ̂û = N̂ and φ̂(s)ζ(s) = ζ(s− 1). Thus φ̂(s) = ζ(s)
ζ(s−1) .

10.5 Euler products

Definition 10.5.1. [def:completely mult] An arithmetic function f is called completely multi-
plicative, if f(nm) = f(n)f(m) for all n,m ∈ Z+.

Theorem 10.5.2. [euler products] Let f be an arithmetic function such that
∑∞
n=1 f(n) is abso-

lutely convergent.

(a) [a] If f is multiplicative, then

∞∑
n=1

f(n) =
∏
p

( ∞∑
i=0

f(pi)

)

(b) [b] If f is completely multiplicative, then

∞∑
n=1

f(n) =
∏
p

(
1

1− f(p)

)

Proof. (a) Let p1 = 2 and inductively let pk+1 be the smallest prime larger than pk. Put Ak =
{pe11 . . . pekk | e1, e2, . . . , ek ∈ N} and

Pk =
k∏
i=1

( ∞∑
ei=0

f(peii )

)

We need to show that limk→∞ Pk =
∑∞
n=1 f(n).

Since
∑∞
n=1 f(n) is absolutely convergent we have

P (k) =
∞∑
e1=0

∞∑
e2=0

. . .

∞∑
ek=0

f(pe11 )f((pe22 ) . . . f(pekk )

=
∞∑
e1=0

∞∑
e2=0

. . .

∞∑
ek=0

f(pe11 p
e2
2 . . . pekk )

=
∑
n∈Ak

f(n)

Note that n > pk for all n ∈ N \Ak and so
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∣∣∣∣∣Pk −
∞∑
n=1

f(n)

∣∣∣∣∣ =

∣∣∣∣∣∣
∑
n/∈Ak

f(n)

∣∣∣∣∣∣ ≤
∑
n/∈Ak

|f(n)| ≤
∞∑

n=pk+1

|f(n)

Since
∑
n=1 f(n) is absolutely convergent, limm→∞

∑∞
n=m |f(n)| = 0. Since limk→∞ pk = ∞

this implies limk→∞ |Pk −
∑∞
n=1 f(n)| = 0 and so limk→∞ Pk =

∑∞
n=1 = f(n).

(b) Suppose that f is completely multiplicative, then f(pi) = f(p)i and so

∞∑
i=0

f(pi) =
∞∑
i=0

f(p)i =
1

1− f(p)

Thus (b) follows from (a).

Corollary 10.5.3. [hat and multiplicative] Let f be an arithmetic function and s ∈ R such that
f̂(s) converges absolutely.

(a) [a] If f is multiplicative, then f̂(s) =
∏
p

(∑∞
i=0

f(pi)
pis

)
.

(b) [b] If f is absolutely multiplicative, then f̂(s) =
∏
p

1

1− f(p)ps

.

Proof. If f is (completely) multiplicative, then also f(n)
ns is (completely) multiplicative. So 10.5.3

follows from 10.5.2 applied to the arithmetic function f(n)
ns in place of f .

Example 10.5.4. [euler for u and mu] Since u is completely multiplicative and û = ζ, we have

ζ(s) =
∏
p

1
1− 1

ps

Since µ is multiplicative and
∑∞
i=0

µ(pi)
pis = 1− 1

ps we have

µ̂(s) =
∏
p

(
1− 1

ps

)
Observe that these two results match, since ζ(s) = 1

µ̂(s) .

10.6 Complex Dirichlet Series

In this section we consider the Dirichlet series f̂(s) of an arithmetic function, where we allow s to
be any complex numbers. Recall that ns for s ∈ C and n ∈ Z+ is defined as es lnn. If s = a + ib
with a, b ∈ R, then Re s := a.

Lemma 10.6.1. [abscissa] Let f be a arithmetic function. Then there exist σa(f) ∈ R∪{−∞,∞}
such that f̂(s) is absolutely convergent for all s ∈ C with Re s > σa(f) and is absolutely divergent
for all s ∈ C with Re s < σa(f).

Proof. We will first show:

1◦. [1] Let s, s̃ ∈ C with Re s̃ ≥ Re s. If f̂(s) is absolutely convergent, then also f̂(s̃) is absolutely
convergent,
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For this let s = a + ib and s̃ = ã + ib̃ with a.b, ã, b̃ ∈ R. Then ã ≥ a. Also |ns| = |na+ib| =
|nanib| = |naeib lnn| = na and so∣∣∣∣f(n)

ns̃

∣∣∣∣ =
|f(n)|
|ns̃|

=
|f(n)|
nã

≤ |f(n)|
na

=
∣∣∣∣f(n)
ns

∣∣∣∣
Hence since

∑∞
n=1 |

f(n)
ns | is convergent also

∑∞
n=1 |

f(n)
ns̃ | is convergent. Thus (1◦) holds.

Let R = {Re s | s ∈ C, f̂(s) is absolutely divergent }.

2◦. [2] Let s ∈ C such that Re s is not an upper bound for R. Then f̂(s) is absolutely divergent,

Since Re s is not an upper bound of R, there exists s̃ ∈ C with Re s < Re s̃ and s̃ is absolutely
divergent, If f̂(s) would be absolutely convergent, then (1◦) would imply that also f̂(s̃) is absolutely
convergent. So (2◦) holds.

If R = ∅, (that is f̂(s) is absolutely convergent for all s ∈ R), put σa(f) = −∞. Then lemma
holds.

So suppose R 6= ∅. If R has no upper bound, put σa(f) =∞. (2◦) shows that f̂(s) is absolutely
divergent for all s ∈ C and so the lemma hold in this case.

Suppose finally that R 6= ∅ and R has an upper bound. Then R has a least upper bound σa(f).
Let s ∈ C with Re s < σa(f). Then Re s is not an upper bound for R and so by (2◦) f̂(s) is absolutely
divergent. Now let s ∈ C with Re s > σa(f). Since σa(f) is an upper bound for R, Re s /∈ R and so
f̂(s) is absolutely convergent. So again the Lemma holds.

10.7 The Riemann Hypothesis

s ∈ C is called a root of ζ if ζ(s) = 0. Some known facts (which we will not prove)

• All negative even integers are roots of ζ, (these roots’s are called the trivial roots’s of ζ.)

• If s is a non-trivial root of ζ, then 0 ≤ Re s ≤ 1.

• There are infinitely many roots s of ζ with Re s = 1
2 .

Conjecture 10.7.1 (Riemann Hypothesis). [riemann hypothesis] If s is a non-trivial root of ζ,
then Re s = 1

2 .



Chapter 11

Sums of square

For k ∈ Z+ define Sk := {x2
1 + x2

2 + . . . + x2
k | x1, x2, . . . xk ∈ Z}. In this chapter we determine S2,

figure out all possible ways to write an elements of S2 as the sum of two integral square and show
that S4 = N. So every non-negative integer can be written as the sum of squares of four integers.

11.1 Gaussian Integers and Sums of Two Squares

Definition 11.1.1. [def:gauss]

(a) [a] Z[i] := {a+ bi | a, b ∈ Z} ⊆ C. Z[i] is called the ring of Gaussian intgers.

(b) [c] For x = a+bi ∈ C with a, b ∈ R let x = a−bi and δ(x) = a2+b2. The map cc : C→ C, x→ x
is is called complex conjugation.

Lemma 11.1.2. [the elements in Z[i]] Z[i] is a subring of C containing 1.

Proof. Clearly 0 and 1 are in Z[i]. Since (a+bi)+(c+di) = (a+c)+(b+d)i and (a+bi)·(c+di) = (ac−
bd)+(ad+bc)i, Z[i] is closed under addition and multiplication. Also −(a+bi) = (−a)+(−b)i ∈ Z[i]
and so Z[i] is a subring of C.

Lemma 11.1.3. [Properties of complex conjugation]

(a) [a] Complex conjugation is ring automorphism of C.

(b) [b] Restricted to Z[i], complex conjugation is a ring automorphism of Z[i]

(c) [c] δ(x) = xx and δ(xy) = δ(x)δ(y) for all x, y ∈ C.

(d) [d] Let x ∈ C. Then δ(x) ≥ 0 with equality if and only if x = 0.

(e) [e] δ(x) ∈ N for all x ∈ Z[i]

Proof. (a) Since a+ bi = a− bi = a + bi, cc is an inverse of cc and so complex conjugation is a
bijection. Let a, b, c, d ∈ R. Then

a+ bi+ c+ di = (a− bi) + (c− di) = (a+ c)− (b+ d)i = (a+ c) + (b+ d)i = (a+ bi) + (c+ di)

89
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and

a+ bi · c+ di = (a− bi) · (c−di) = (ac+ bd)− (ac+ bc)i = (ac+ bd)− (ac+ bc)i = (a+ bi) · (c+ di)

So cc is a ring homomorphism. Thus (a) holds.
(b) Observe that x ∈ Z[i] for all x ∈ Z[i]. Thus the restriction of cc to Z[i] is its own inverse and

is ring homomorphism.
(c) Let x = a+ bi with a, b ∈ R. Then δ(x) = a2 + b2 = (a+ bi)(a− bi) = xx. Also

δ(xy) = (xy)xy = xyxy = (xx)(yy) = δ(x)δ(y).

(d) Clearly δ(x) = a2 + b2 ≥ 0 and δ(x) = 0 if and only if a = b = 0 and so if and only if x = 0.
(e) Obvious.

Lemma 11.1.4. [char s2] S2 = {δ(z) | z ∈ Z[i]} and S2 is closed under multiplication.

Proof. S2 = {a2 + b2 | a, b ∈ Z} = {δ(a + bi) | a, b ∈ Z} = {δ(z) | z ∈ Z[i]}. Let n,m ∈ S2. Then
n = δ(x) and m = δ(y) for some x, y ∈ Z[i]. Hence nm = δ(x)δ(y) = δ(xy) ∈ S2.

Lemma 11.1.5. [prime in s2] Let p be a prime with p 6≡ 3 (mod 4). Then p ∈ S2.

Proof. If p is even, then p = 2 = 12 + 12 ∈ S2. So suppose p is odd.

1◦. [0] There exists m ∈ Z+ with 1 ≤ m < p and mp ∈ S2.

Since p 6≡ 3 (mod 4) an dp is odd, we have p ≡ 1 (mod 4). b8.1.15 [−1]p ∈ Qp and so −1 =
u2 +mp for some u,m ∈ Z with 1 ≤ u < p. Hence mp = u2 + 11 ∈ S2. Since |u| ≤ (p− 1)2 we have
u2 + 1 < p2 and so m < p.

2◦. [1] Let m ∈ Z+ with mp ∈ S2 and m < p. Then either m = 1 or there exists s ∈ Z with
1 ≤ s ≤ m

2 and sp ∈ S2.

Let mp = a2
1 + a2

2 and choose bi ∈ Z with ai ≡ bi (mod m) and |ai| ≤ m
2 . Then b21 + b22 ≡

a2
1 + a2

2 ≡ pm ≡ 0 (mod m) and so b21 + b22 = sm for some s ∈ N. Note that

b21 + b22 ≤
(m

2

)2

+
(m

2

)2

=
m2

2
and so 0 ≤ s ≤ m

2 < m.
Suppose first that s = 0, then b1 = b2 = 0 and so ai ≡ 0 (mod m). Thus m divides a1 and a2

and so m2 divides mp = a2
1 + a2

2. Hence m | p. Since p is a prime and 0 < m < p we get m = 1. So
(2◦) holds in this case.

Suppose next that s > 0. Put x = a1 − ia2 and y = b1 + ib2. Then have

spm2 = (mp)(sm) = ((−a1)2 + a2
2)(b21 + b22) = δ(x)δ(y) = δ(xy)

Since xy = (a1b1 + a2b2) + i(a1b2 − a2b1), this gives

(∗) (a1b1 + a2b2)2 + (a1b2 − a2b1)2 = spm2

Observe that modulo m:



11.1. GAUSSIAN INTEGERS AND SUMS OF TWO SQUARES 91

a1b1 + a2b2 ≡ a1a1 + a2a2 ≡ sm ≡ 0 (mod m) and a1b2 − a2b1 ≡ a1a2 − a2a1 ≡ 0 (mod m)

So dividing (*) by m2 we obtain(
a1b1 + a2b2

m

)2

+
(
a1b2 − a2b1

m

)2

= sp.

Hence sp ∈ S2 and so again (2◦) holds.

Now let m ∈ Z+ be minimal with mp ∈ S2. Then m ≤ r < p and so (2◦) shows that m = 1.
Thus p ∈ S2.

Corollary 11.1.6. [primes in s2] Let p be prime. Then p ∈ S2 if and only of p = 2 or p ≡ 1
(mod 4).

Proof. If p = 2 or p ≡ 1 (mod 4), then p ∈ S2 by 11.1.5. So suppose p ∈ S2. Then p = a2 + b2 for
some a, b ∈ Z. Then a2 ≡ 0, 1 (mod 4) and b2 ≡ 0, 1 (mod 4). Thus p ≡ 0, 1, 2 (mod 4). If p ≡ 0, 2
(mod 4), p is even and so p = 2.

Lemma 11.1.7. [approximation by gaussian integers] Let x ∈ C then there exist y ∈ Z[i] with
δ(x− y) ≤ 1

2 .

Proof. Let x = x1 + x2i with xi ∈ R. Then there exists yi ∈ Z with |xi − yi| ≤ 1
2 (Just round xi to

the nearest integer). Let y = y1 + y2i. Then

δ(x− y) = (x1 − y1)2 + (x2 − y2)2 ≤
(

1
2

)2

+
(

1
2

)2

=
1
2
.

Lemma 11.1.8. [division alg for gauss] Let a, b ∈ Z[i] with b 6= 0. Then there exist q, r ∈ Z[i]
with

a = qb+ r and δ(r) < δ(b).

Proof. By 11.1.7 there exists q ∈ Z[i] with δ(ab − q) ≤
1
2 < 1. Put r = a− qb. Then

δ(r) = δ(a− qb) = δ

(
b
a− qb
b

)
= δ(b)δ

(a
b
− q
)
< δ(b)

and

a = sb+ r.

Lemma 11.1.9. [gauss euclid] Z[i] is a Euclidean domain.

Proof. It is readily verified that Z[i] is an integral domain. By 11.1.3(d), δ(a) = 0 if and only if
a = 0. Let a, b ∈ R with ab 6= 0, then a 6= 0. Thus δ(a) ≥ 1 and so δ(ab) = δ(a)δ(b) ≥ δ(b).

By 11.1.8 also the last property of an Euclidean domain holds.
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Lemma 11.1.10. [units in gaussian integers] Let a be a Gaussian integer. Then the following
are equivalent:

(a) [a] a is a unit in Z[i].

(b) [b] δ(a) = 1

(c) [c] a is one of 1,−1, i and −i.
Proof. (a) =⇒ (b): Suppose that ab = 1 for some b ∈ Z[i]. Then δ(a)δ(b) = δ(ab) = δ(1) = 1.
Since δ(a) and δ(b) are non-negative integers we conclude that δ(a) = 1.

(b) =⇒ (c): Let a = x+ iy with x, y ∈ Z. Then x2 + y2 = δ(a) = 1 and so {|x|, |y|} = {0, 1}.
Hence either x = 0 and y = ±1 or y = 0 and x = ±1. Thus a = ±1,±i.

(c) =⇒ (b): In each case δ(a) = (±1)2 + 02 = 1.
(b) =⇒ (a): aδa = 1 and a is a unit.

Lemma 11.1.11. [associates of gaussian integers] Let x, y ∈ Z and put a = x+ yi.

(a) [a] The associates of a in Z[i] are a = x+ yi,−a = −x− yi, ia = −y + xi and −ia = y − xi.

(b) [d] The elements in Z[i] associate to a or a are ±x± yi and ±y ± xi.

(c) [b] Define Q0 := {x + yi | x, y ∈ R, x ≥ 0, y > 0} and for 0 ≤ r ≤ 3 define Qr = ir−1Q0.
If 0 6= z ∈ C, then z lies in exactly one of Qr’s. If a 6= 0, then each Qr contains exactly one
associate of a.

(d) [c] a ∼ a if and only if one of the following holds

1. [a] a = a and a = r for some r ∈ R.
2. [b] a = −a and a = ri for some r ∈ R.
3. [c] a = ia and a = r(1− i) for some r ∈ R.
4. [d] a = −ia and a = r(1 + i) for some r ∈ R.

Proof. (a): Let b ∈ Z[i]. By A.0.6(b) b ∼ a if and only if b = ua for some unit u in Z[i] and so by
11.1.10 if and only if b is one of a,−a, ia,−ia. So (a) holds.

(b) The associates of a are listed in (a) . The associates of a are

a = x− iy,−a = −a = −x+ iy, ia = −ia = y + ix, and − ia = ia = −y − ix
and so (c) holds. (c) Note the

Q1 = iQ0 = {−y + xi | x, y ∈ R, x ≥ 0, y > 0} = {x+ yi | x, y ∈ R, x < 0, y ≥ 0},

Q2 = iQ1 = {−y + xi | x, y ∈ R, x < 0, y ≥ 0} = {x+ yi | x, y ∈ R, x ≤ 0, y < 0},
and

Q3 = iQ2 = {−y + xi | x, y ∈ R, x ≤ 0, y < 0} = {x+ yi | x, y ∈ R, x > 0, y ≤ 0},
Let 0 6= z ∈ C. Clearly there exists a unique r with z ∈ Qr. If 0 ≤ s ≤ 3 then is−ra is the unique

associate of a contained in Qs.
(d) We have a ∼ a if and only if a ∈ {±a,±ia}. a = a if and only if (d:1) holds. If a = −a if and

only if (d:2) holds. a = ia if and only if x − iy = −y + ix and so if and only if x = −y and if and
only if a = r(1− i) for some r ∈ R, and so if and only if (d:3) holds. Applying complex conjugation,
we conclude tat a = −ia if and only if (d:4) holds
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Lemma 11.1.12. [gaussian primes] Let a be a Gaussian prime. Then there exists a unique prime
p with a | p. Moreover, one of the follwing holds:

1. [a] p ≡ 3 (mod 4), d(a) = p2, a ∼ a ∼ p, and p is a Gaussian prime.

2. [b] p ≡ 1 (mod 4), δ(a) = p, a � a � p, and p is not a Gaussian prime.

3. [c] p = 2, δ(a) = p, a ∼ a � p and p is not a Gaussian prime.

Proof. Since δ(a) is a positive integer, δ(a) = p1p2 . . . pn where each pi is a prime. Since δ(a) = aa,
a divides δ(a). Since a is a Gaussian prime we conclude from A.0.9(b) that a | pi (in Z[i]) for some
1 ≤ i ≤ n. So there exists a prime p with a | p.

Since a | p we have p = ab for some b ∈ Z[i] and so

(∗) p2 = δ(p) = δ(ab)
11.1.3(c)

= δ(a)δ(b)

Thus δ(a) divides δ(p) = p2 in Z. Since a is not a unit, 11.1.10 implies that δ(a) > 1 and so
δ(a) ∈ {p, p2}.

In particular, p is the only prime with a|p in Z[i].
If δ(a) = p2 we get δ(b) = 1. So by 11.1.10 b is a unit and a ∼ p. Since a is a Gaussian

prime, A.0.7(h) implies that p is a Gaussian prime. Suppose that p 6≡ 3 (mod 4). Then by 11.1.6
p = x2 + y2 for some x, y ∈ Z. Hence p = (x + iy)(x − iy). Since p is a Gaussian prime, p is
irreducible and so x+ iy or x− iy is a unit. But then by 11.1.10, 1 = x2 + y2 = p, a contradiction.
Thus p ≡ 3 (mod 4). Since a ∼ p, 11.1.11(d) shows that a ∼ a and so (1) holds in this case.

If δ(a) = p then also δ(b) = p. So by 11.1.10 b is not a unit. It follows that p is not irreducible
and so by A.0.8 p also not a Gaussian prime. Let a = x+ iy with x, y ∈ Z. Then p = δ(a) = x2 + y2

and so by 11.1.6 p 6≡ 3 (mod 4).
If p = 2, then a = ±1 ± i and so by 11.1.11(d) a ∼ a and (3) holds. Suppose a ∼ a. Since

δ(a) = p, δ(a) is not square and so a /∈ Z and a /∈ Zi. Thus 11.1.11(d) shows that a = r(1 ± i) for
some r ∈ R. Since a ∈ Z[i], r ∈ Z. Also p = δ(a) = 2r2 and since p is a prime we get r = ±1 and
p = 2. So if p ≡ 1 (mod 4), then a � a and (2) holds.

Corollary 11.1.13. [primes and gaussian primes] Let p be a prime. The one of the following
holds.

1. [a] p = 2, 2 is not a Gaussian prime, 1+i is a Gaussian prime with 1+i ∼ 1 + i and 2 ∼ (1+i)2.

2. [b] p ≡ 1 (mod 4) and there exists a Gaussian prime σ with p = δ(σ) = σσ and σ � σ.

3. [c] p ≡ 3 (mod 4) and p is a Gaussian prime.

Proof. Since every non zero, non unit in Z[i] is a product of Gaussian primes, there exists a Gaussian
prime σ with σ|p. Now apply 11.1.12.

Theorem 11.1.14. [s2] Let n ∈ Z+ and write

n = 2e
k∏
s=1

pess

l∏
t=1

qftt

where 2, p1, p2, . . . , pk, q1, q2, . . . ql are pairwise distinct primes, e ∈ N, ps ≡ 1 (mod 4), es ∈ Z+,
qt ≡ 3 (mod 4) and ft ∈ Z+. For 1 ≤ s ≤ k let σs be Gaussian prime dividing ps.
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(a) [a] n ∼ (1 + i)2e
∏k
s=1 σ

es
s σs

es
∏l
t=1 q

ft
t

(b) [b] n ∈ S2 if and only if ft is even for all 1 ≤ t ≤ l.

(c) [c] Let a, b ∈ Z and suppose n ∈ S2. Then a2 + b2 = n if and only if

a+ ib = ig(1 + i)e
k∏
s=1

σbss σs
es−bs

l∏
t=1

q
ft
2
t

for some g ∈ Z with 0 ≤ g ≤ 3 and bs ∈ Z with 0 ≤ bs ≤ es.

(d) [d] Let m =
∏k
s=1 p

es
s and suppose n ∈ S2. Then the number of pairs (a, b) ∈ Z × Z with

a2 + b2 = n is 4τ(m).

Proof. Observe that 2 ∼ (1 + i)2 and ps = δ(σs) = σsσs.

n ∼ (1 + i)2e
k∏
s=1

σess σs
es

l∏
t=1

qftt is the Gaussian prime factorization of n

and so (a) holds.
Let y ∈ Z[i] such that y divides n in Z[i]. Then any Gaussian prime dividing y also divides n

and so is associate to one of 1 + i, σs, σs and qt. Thus y is associate to

z := (1 + i)a0

k∏
s=1

σbss σs
cs

l∏
t=1

qdtt

where a0, bt, ct, dt are in N with a0 ≤ e, bt ≤ et, ct ≤ et and dt ≤ ft.
We compute δ(y):

δ(y) = δ(z) = zz =

(
(1 + i)a0

k∏
s=1

σbss σs
cs

l∏
t=1

qdtt

)
·

(
(1− i)a

k∏
s=1

σs
bsσcss

l∏
t=1

qdtt

)

= (1 + i)(1− i))a0

k∏
s=1

(σsσs)bs(σsσs)cs
l∏
t=1

(qtqt)dt = 2a
k∏
s=1

pbs+csk

k∏
t=1

q2dtt

The uniquess of prime factorization in Z now show that δ(y) = n if and only if

(∗) a = e; bs + cs = es, 1 ≤ s ≤ k; and ft = 2dt, 1 ≤ t ≤ l

In partiuclar, there exists y ∈ Z[i] with δ(y) = n if and only of ft is even for all 1 ≤ t ≤ l. Thus
(b) is proved.

Note that a and dt are uniquely determined by (*); there are es + 1 choices for bs (namely bs
is an arbitray integer with 0 ≤ bs ≤ es) and cs is uniquely determined once bs is choosen (namely
cs = es − bs). So there are

k∏
s=1

(es + 1)

choices for z. Note that this number is equal to τ(m).
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Since y ∼ z, y = igz for some 0 ≤ g ≤ 3. So we found all y ∈ Z[i] with δ(y) = n:

y = ig(1 + i)e
k∏
s=1

σbss σs
es−bs

l∏
t=1

q
ft
2
t

Thus (c) holds. In particular, there are 4τ(m) such y’s and so (d) is proved.

Lemma 11.1.15. [compare z and zi]

(a) [a] Let a, b, c ∈ Z. Then a | b+ ci in Z[i] if and only if a | b and a | c in Z.

(b) [b] Let a, b ∈ Z. Then a | b in Z if and only if a | b in Z[i]

Proof. (a) a | b + ci in Z[i] iff there exist d, e ∈ Z with b + ci = a(d + ei), iff there exists d, e ∈ Z
with b = ad and c = ae iff a | b and a | c in Z.

(b) This follows from (a) applied with c = 0.

Definition 11.1.16. [def:s*2] S∗2 = {a2 + b2 | a, b ∈ Z | gcd (a, b) = 1}.

Before determining the elements of S2, we will describe gcd (a, b) in terms of a+ ib.

Lemma 11.1.17. [gcd gauss] Let a1, a2 ∈ Z and put z = a1 + ia2. Let 2ei be the largest power of
2 dividing ai.

(a) [a] If e1 6= e2, then gcd (z, z) = gcd (a1, a2).

(b) [b] If e1 = e2, then gcd (z, z) = gcd (a1, a2) (1 + i).

(c) [c] gcd (a, b) = 1 if and only if gcd (z, z) ∈ {1, 1 + i}.

Proof. Put d = gcd (a1, a2) and c = gcd (z, z). Since d divides a1 and a2, 11.1.15(a) shows that d
divides z and z in Z[i]. Thus d | c in Z[i] and so c = fd for some f ∈ Z[i]. Since c | z and c | z we have
c | z + z and c | i(z − z). Therefore e | 2a1 and e | 2a2. It follows that fd = e | gcd (2a1, 2a2) = 2d
and so f |2. Since 2 ∼ (1 + i)2 and 1 + i is a Gaussian prime, f is associate to 1, 1 + i or 2. If
f ∼ 2, then 2d ∼ fd divides z and so by 11.1.15(a), 2d | a1 and 2d | a2. But this contradicts
gcd (a1, a2) = d. Thus f ∼ 1 or 1 + i. Hence gcd (z, z) = d(1 + i) if d(1 + i) divides z and z, and
gcd (z, z) = d otherwise. Note that d(1 + i) divides z if and only if d(1 + i) = d(1 − i) divides z.
Since d(1 + i) and d(1− i) are associate, we conclude that d(1 + i) divides z if and only if d(1 + i)
divides z and z. Since (1 + i)(1− i) = 2 we have 1

1+i = 1−i
2 and

z

d(1 + i)
=

(a1 + ia2)(1− i)
2d

=
a1 + a2

2d
+ i

a1 − a2

2d
=

1
2

(a1

d
+
a2

d

)
+ i

1
2

(a1

d
− a2

d

)
Since d divides a1 and a2, we conclude that z

d(1+i) ∈ Z[i] if and only if a1
d ≡

a2
d (mod 2). Note that

min(e1, e2) is the largest power of 2 dividing d. If e1 = e2, then both a1
d and a2

d are odd and (a)
holds. If e1 6= e2, the one of a1

d and a2
d is even and the other is odd, so (b) holds.

(c) follows immediately from (a) and (b)

Corollary 11.1.18. [primitive sum of squares]

(a) [a] Let n ∈ Z+. Then n ∈ S∗2 if and only if n is neither divisible by four nor by a prime
congruent to 3 modulo 4.
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(b) [b] Let n ∈ S∗2 and let a, b ∈ Z with n = a2 + b2 and gcd (a, b) = 1. Write

n = 2e
k∏
s=1

pess

l∏
t=1

qftt

where 2, p1, p2, . . . , pk, q1, q2, . . . ql are pairwise distinct primes, e ∈ N, pt ≡ 1 (mod 4), et ∈ Zt,
qt ≡ 3 (mod 4) and ft ∈ Z+. For 1 ≤ s ≤ k let σs be Gaussian prime dividing ps. Then a+ bi
is associated to

(1 + i)e
k∏
s=1

µess

where for 1 ≤ s ≤ k, µs ∈ {σs, σs}.

Proof. We may assume that n ∈ S2 and let a, b ∈ Z with a2 + b2 = n. Put z = a + bi. By 11.1.17
gcd (a, b) = 1 if and only if gcd (z, z) ∈ {1, 1 + i}. Choose notation as in 11.1.14. So

z = a+ ib ∼ (1 + i)e
k∏
s=1

σbss σs
es−bs

l∏
t=1

q
ft
2
t

Thus

z ∼ (1 + i)e
k∏
s=1

σes−bss σs
bs

l∏
t=1

q
ft
2
t

and

gcd (z, z) ∼ (1 + i)e
k∏
s+1

σmin(bs,es−bs)
s σs

min(bs,es−bs)
l∏
t=1

q
ft
2
t

Hence gcd (a, b) = 1 iff gcd (z, z) ∈ {1, 1 + i} iff e ≤ 1, min(bs, es − bs) = 0 and l = 0 iff e ≤ 1,
bs ∈ {0, es} and l = 0.

Thus there exist a, b ∈ Z with n = a2 + b2 and gcd (a, b) = 1 if and only if e ≤ 1 and l = 0. That
is iff 4 - n and there does not exists a prime q with q ≡ 3 (mod 4) and q | n.

Suppose now gcd (a, b) = 1. Then bs ∈ {0, es}. Put µs = σs if bs = es and µs = σs if es = 0. In
either case σbss σs

es−bs = µess and since l = 0

a+ ib ∼ (1 + i)e
k∏
s=1

µess

So (b) is proved.

Observe that if n = a2 + b2 and d = gcd (a, b), then n
d2 =

(
a
d

)2 +
(
b
d

)2
and gcd

(
a
d ,

b
d

)
= 1. So

we can compute all pairs (a, b) with n = a2 + b2 as follows: For each d ∈ Z+ such that d2 | n and d

is divisible by 2b
e
2c∏l

t=1 q
ft
2
t , use 11.1.18 to write m = n

d2 as the sum of the squares of two coprime
integers and then multiply each of the two integers with d.

Example 11.1.19. [ex:s2] Let n = 2555112. Find all a, b ∈ N with a2 + b2 = n and a ≤ b.
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Let d ∈ Z+ such that d2 | n and m := n
d2 ∈ S

∗
2 . Then d | 225211, 4 - nd2 and 11 | nd2 . Thus 4 | d,

11 | d and so d = 44 · 5x with 0 ≤ x ≤ 2. Hence m = 2 · 5y, where y = 5− 2x ∈ {5, 3, 1}.
Observe 5 = 12 + 22 and so σ = 1 + 2i is a Gaussian prime dividing 5. Let a, b ∈ Z with

n = a2 + b2 and gcd (a, b) = 1. Then n = d2m = (da)2 + (db)2. Put z = a+ ib. Then by 11.1.18, z
or z is associate to (1 + i)σy. Note that σ2 = (1 + 2i)(1 + 2i) = (1− 4) + (2 + 2)i = −3 + 4i.

For x = 2 we have d = 52 ·44 = 1100, m = 2·5 = 10, (1+i)σ = (1+i)(1+2i) = (1−2)+(2+1)i =
−1 + 3i. 10 = 12 + 32 and

n = 11002 + 33002.

For x = 1 we have d = 5·44 = 220, m = 2·53 = 250, (1+i)σ3 = (1+i)σσ2 = (−1+3i)(−3+4i) =
(3− 12) + (−4− 9) = −9− 13i ∼ 9 + 13i, 250 = 92 + 132 and

n = 19802 + 28602.

For x = 0 we have d = 44, m = 2·55 = 10·54 = 6250. (1+i)σ5 = (1+i)σ3σ2 ∼ (9+13i)(−3+4i) =
−27− 52 + (36− 39) = −79− 3i ∼ 79 + 3i. 6250 = 32 + 792 and

n = 1322 + 34762.

11.2 Sum of Four Squares

Lemma 11.2.1. [s4 s4] For i = 1 and 2 let ai, bi, ci, di ∈ R. Then

(a2
1 + b21 + c21 + d2

1)(a2
2 + b22 + c22 + d2

2) = (a1a2 + b1b2 + c1c2 + d1d2)2

+ (a1b2 − b1a2 − c1d2 + d1c2)2

+ (a1c2 + b1d2 − c1a2 − d1b2)2

+ (a1d2 − b1c2 + c1b2 − d1a2)2

Proof. The product on the left hand side is equal to

a2
1a

2
2 + a2

1b
2
2 + a2

1c
2
2 + a2

1b
2
2 + b21a

2
2 + b21b

2
2 + b21c

2
2 + b21d

2
2

+c21a
2
2 + c21b

2
2 + c21c

2
2 + c21d

2
2 + d2

1a
2
2 + d2

1b
2
2 + d2

1c
2
2 + d2

1d
2
2

The right hand side is equal two

a2
1a

2
2 + b2

1b
2
2 + c2

1c
2
2 + d2

1d
2
2 + 2a1b1a2b2 + 2a1c1a2c2 + 2a1d1a2d2 + 2b1c1b2c2 + 2b1d1b2d2 + 2c1d1c2d2

+a2
1b

2
2 + b2

1a
2
2 + c2

1d
2
2 + d2

1c
2
2 − 2a1b1a2b2 − 2a1c1b2d2 + 2a1d1b2c2 + 2b1c1a2d2 − 2b1d1a2c2 − 2c1d1c2d2

+a2
1c

2
2 + b2

1d
2
2 + c2

1a
2
2 + d2

1b
2
2 + 2a1b1c2d2 − 2a1c1a2c2 − 2a1d1b2c2 − 2b1c1a2d2 − 2b1d1b2d2 + 2c1d1a2b2

+a2
1d

2
2 + b2

1c
2
2 + c2

1b
2
2 + d2

1a
2
2 − 2a1b1c2d2 + 2a1c1b2d2 − 2a1d1a2d2 − 2b1c1b2c2 + 2b1d1a2c2 − 2c1d1a2b2

and so the lemma holds.

Corollary 11.2.2. [s4 closed] S4 is closed under multiplication.

Proof. This follows immediately from 11.2.1.
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Theorem 11.2.3. [s4=n] S4 = N, that is is every non-negative integer is the sum of the squares
of four integers.

Proof. We have 0 = 02 + 02 + 02 + 02 ∈ S4 and 1 = 12 + 02 + 02 + 02 ∈ S4. Any integer larger than
1 is a product of primes, so in view of and in view of 11.2.2 it suffices to show that every prime p is
contained in S4. 2 = 12 + 12 + 02 + 02 ∈ S4. So we may assume that p is odd.

1◦. [1] There exists m ∈ Z with 1 ≤ m < p and mp ∈ S4.

Let K := {a2 | a ∈ Zp} = Qp ∪ {[0]p}. Then |K| = |Qp| + 1 = p−1
2 + 1 = p+1

2 > p
2 . Put

L = [−1]p − K = {[−1 − n2]p | n ∈ Z}. Then |L| = |K| > p
2 . Thus |K| + |L| > p = |Zp| and so

K ∩L 6= ∅. It follows that there exist u, v ∈ Z with u2 ≡ −1− v2 (mod p) and so u2 + v2 + 1 = mp
for some m ∈ Z. Without loss |u| ≤ p

2 and |v| ≤ p
2 . Thus

mp = u2 + v2 + 1 ≤
(p

2

)2

+
(p

2

)2

+ 1 =
p2

2
+ 1 < p2

and so 1 ≤ m < p. Since mp = u2 + v2 + 11 + 02, mp ∈ S4 and (1◦) holds.

2◦. [2] Let m ∈ Z with 1 ≤ m < p with pm ∈ S4. Then either m = 1 or there exists s ∈ Z with
1 ≤ s < m and sp ∈ S4.

Pick a1, b1, c1, d1 ∈ Z with

(∗) mp = a2
1 + b21 + c21 + d2

1

For x ∈ {a, b, c, d} pick x2 ∈ Z with |x2| ≤ m
2 and x2 ≡ x1 (mod m). Then

a2
2 + b22 + c22 + d2

2 ≡ a2
1 + b22 + c21 + d2

1 ≡ pm ≡ 0 (mod m)

and so

(∗∗) sm = a2
2 + b22 + c22 + d2

2

for some s ∈ Z.

Case 1. [s=0] Suppose that s = 0.

Then x2 = 0 for all x ∈ {a, b, c, d}. Hence x1 ≡ 0 (mod m) and so m2 | x2
1. Therefore m2 divides

a2
1 + b21 + c21 + d2

1 = mp. It follows that m | p. Since 1 ≤ m < p and p is a prime, this gives m = 1
and so (2◦) holds in this case.

Case 2. [s odd] s ≥ 1 and m is even

Since |Z2| = 2 < 4, at least two of a1, b1, c1 and d1 are congruent modulo 2. So we may assume
that a1 ≡ b1 (mod 2). Thus a1 + b1 ≡ 0 (mod 2). Also k2 ≡ k (mod 2) for all k ∈ Z. Since m is
even, (*) gives

0 ≡ mp ≡ a2
1 + b21 + c21 + d2

1 ≡ a1 + b1 + c1 + d1 ≡ c1 + d1

Hence also c2 ≡ d2 (mod 2).
We compute
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(
a1 + b1

2

)2

+
(
a1 − b1

2

)2

+
(
c1 + d1

2

)2

+
(
c1 − d1

2

)2

=
2a2

1 + 2b21 + 2c21 + 2d2
1

4
=
mp

2

Thus m
2 p ∈ S4 and (2◦) holds with ’s = m

2 ’.

Case 3. [s odd] s ≥ 1 and m is odd.

Since m is odd, m
2 is not an integer and so |x2| < m

2 for all x = a, b, c, d. Thus (**) gives

sm < 4
(m

2

)2

= m2

and so s < m.
Observe that

a1a2 + b1b2 + c1c2 + d1d2 ≡ a2
1 + b21 + c21 + d2

1 ≡ mp ≡ 0 (mod m)

a1b2 − b1a2 − c1d2 + d1c2 ≡ a1b1 − b1a1 − c1d1 + d1c2 ≡ 0 (mod m)

a1c2 + b1d2 − c1a2 − d1b2 ≡ a1c1 + b1d1 − c1a1 − d1b1 ≡ 0 (mod m)

a1d2 − b1c2 + c1b2 − d1a2 ≡ a1d1 − b1c1 + c1b1 − d1a1 ≡ 0 (mod m)

Using 11.2.1 we have

spm2 = (sm)(pm) = (a2
1 + b21 + c21 + d2

1) · (a2
2 + b22 + c22 + d2

2)

= (a1a2 + b1b2 + c1c2 + d1d2)2 + (a1b2 − b1a2 − c1d2 + d1c2)2

+ (a1c2 + b1d2 − c1a2 − d1b2)2 + (a1d2 − b1c2 + c1b2 − d1a2)2

Dividing by m2 we obtain

sp =
(
a1a2+b1b2+c1c2+d1d2

m

)2
+

(
a1b2−b1a2−c1d2+d1c2

m

)2
+

(
a1c2+b1d2−c1a2−d1b2

m

)2
+

(
a1d2−b1c2+c1b2−d1a2

m

)2
Thus sp ∈ S4 and since 1 ≤ s < m, (2◦) also holds in this case.

By (1◦) we can choose m ∈ Z mininimal with 1 ≤ m < p and mp ∈ S4. (2◦) now shows that
m = 1 and p ∈ S4.

Example 11.2.4. [ex:s4] Use the proof of 11.2.3 to write 11 as the sum of squares of four integers.

We have in Z11,

K = {02, (±1)2, (±2)2, (±3)2, (±4)2, (±5)2} = {0, 1, 4, 9, 16 = 5, 25 = 3}

and

L = −(1 +K) = {−1,−2,−5,−10,−6,−4} = {10, 9, 6, 1, 5, 7}

So K ∩ L = {1, 5, 9}. Let’s choose 5 ∈ K ∩ L. Then
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42 ≡ 5 ≡ −1− 42 (mod 11)

and

42 + 42 + 12 + 02 = 33 = 3 · 11

So m = 3 and m ≥ 1 and m is odd. So we are in Case 3 of 11.2.3. We have

a1 ≡ 4 ≡ 1 (mod 3) and so a2 = 1

b1 ≡ 4 ≡ 1 (mod 3)and so b2 = 1

c1 ≡ 1 (mod 3)and so c2 = 1

d1 ≡ 0 (mod 3)and so b2 = 0

Thus

a2
2 + b22 + c22 + d2

2 = 1 + 1 + 1 + 0 = 3 = 1 · 3 = 1 ·m

So s = 1.

11 = sp =
(
a1a2+b1b2+c1c2+d1d2

m

)2
+

(
a1b2−b1a2−c1d2+d1c2

m

)2
+

(
a1c2+b1d2−c1a2−d1b2

m

)2
+

(
a1d2−b1c2+c1b2−d1a2

m

)2
=

(
4·1+4·1+1·1+0·0

3

)2 +
(

4·1−4·1−1·0+0·1
3

)2
+

(
4·1+4·0−1·1−0·1

3

)2 +
(

4·0−4·1+1·1−0·1
3

)2
= 32 + 02 + 12 + (−1)2

So

11 = 32 + 12 + 12 + 02



Chapter 12

Fermat’s Last Theorem

Fermat’s Last Theorem: Let a, b, c and n be positive integers with n ≥ 3, then

an + bc 6= cn

Fermat wrote this theorem on the margin of his copy of Diophantos’ Arithmetica around 1637,
Fermat did not give a proof, but just stated that the margin was too small to fit the proof. It took
320 years until Andrew Wiles finally gave a proof in 1993. In this chapter we will prove a couple of
special cases of Fermat’s last theorem.

Let m be a divisor of n with m ≥ 3. Then n = ml for some l ∈ Z+ and an + bn 6= cn becomes
(al)m + (bl)m 6= (cl)m. So if the Fermat’s Theorem holds for m in place of n it also holds for n.
Observe that every integer large than 3 is divisible by 4 or by odd prime. So it suffices to prove
Fermat’s last theorem for n = 4 and for n an odd prime.

If an + bn = cn and p is a prime dividing two of numbers a, b and c, then p also divides the
third and

(
a
p

)n
+
(
b
p

)n
=
(
c
p

)n
. So it suffices to prove Fermat’s last theorem for a, b and c being

pairwise coprime.

12.1 a2 + b2 = c2

Definition 12.1.1. [def:pythagorean triple] A triple (a, b, c) is called a primitive Pythagorean
triple if

(i) [i] a, b and c are pairwise coprime integers.

(ii) [ii] a2 + b2 = c2.

(iii) [iii] a is odd.

Note here that if a and b are coprime integers, then a or b is odd. So condition (iii) can always
be achieved by interchanging a and b if necessary.

Theorem 12.1.2. [pythagorean triples] Let a, b and c be integers. Then the following are equiv-
alent:
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(a) [a] (a, b, c) is a primitive Pythagorean triple.

(b) [b] There exist coprime positive integers u and v with u > v, u 6≡ v (mod 2) and

a = u2 − v2, b = 2uv and c = u2 + v2

Proof. (a) =⇒ (b): Suppose (a) holds. By 11.1.18 c2 is neither divisible by 4 nor by a prime
congruent to 3 modulo 4. Thus c is odd and c =

∏k
s=1 p

es
s , where the ps’s are primes congruent

to 1 (mod 4) and es ∈ Z+. For 1 ≤ s ≤ k let σs be a Gaussian prime with σs | ps. Then
c2 =

∏k
s=1 σ

2esσs
2es and so by 11.1.18 a + ib is associate to

∏k
s=1 µ

2es , where µs ∈ {σs, σs}. Put
µ =

∏k
s=1 µ

es
s and let µ = x + yi with x, y ∈ Z. Then a + ib is associated to µ2 = x2 − y2 + 2xyi

and so {a, b} = {|x2 − y2|, |2xy|}. Since a is odd, b = 2|x||y| and a = |x2 − y2|. Let u = max(|x|, |y|)
and v = min(|x|, |y|. Then a = u2 − v2 and b = 2uv. Hence gcd (u, v) divides a and b. Since
gcd (a, b) = 1, this gives gcd (u, v) = 1. Since ps = µsµs we have c =

∏k
s=1(µsµs)es and so

c = µµ = x2 + y2 = u2 + v2. Since c is odd, u 6≡ v (mod 2) and so (b) holds.
(b) =⇒ (a): Suppose (b) holds. We compute

a2 + b2 = (u2 − v2)2 + (2uv)2 = u4 − 2u2v2 + v4 + 4u2v2 = u4 + 2u2v2 + v4 = (u2 + v2)2 = c2

Since u 6≡ v (mod 2), a is odd, b is even and c is odd. Suppose p is a prime dividing two of a, b
and c. Then it divides all three and hence p is odd and p divides a+c

2 = u2 and c−a
2 = v2. So p

divides u and v, a contradiction to gcd (u, v) = 1. Thus a, b and c are pairwise coprime and (a, b, c)
is a primitive Pythagorean triple and (a) holds.

Example 12.1.3. [ex:pythagorean triples] Compute the Pythagorean triple associated to u = 6
and v = 5.

a = u2 − v2 = 36− 25, b = 2uv = 2 · 6 · 5 = 60 and c = u2 + v2 = 36 + 25 = 61.

12.2 a4 + b4 = c2

Theorem 12.2.1. [n=4] If a, b, c are positive integer, then a4 + b4 6= c2. In particular, Fermat’s
Last Theorem holds for n = 4.

Proof. Let a, b, c be a counter example with c minimal. If p is prime dividing, two of a, b and c,
then p divides all three and p2 divides c, thus(

a

p

)4

+
(
b

p

)4

=
(
c

p2

)2

contradiction the minimality of c. Thus a, b, c are pairwise coprime and we may assume that a is
odd. Thus by 12.1.2 there exist coprime positive integers u and v with u > v, u 6≡ v (mod 2) and

(1) a2 = u2 − v2, b2 = 2uv, and c = u2 + v2

Thus a2 + v2 = u2. Since u and v are coprime and a is odd, we conclude from 12.1.2 that there
exists coprime positive integers ũ, ṽ with ũ > ṽ, ũ 6≡ ṽ (mod 2) and
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(2) a = ũ2 − ṽ2, v = 2ũṽ, and u = ũ2 + ṽ2

Thus

(3) b2 = 2uv = 4ũṽ(ũ2 + ṽ2)

Since u and v are coprime, 2ũṽ and ũ2 + ṽ2 are coprime. Since also ũ and ṽ are coprime we
conclude that ũ, ṽ and ũ2 + ṽ2 are pairwise coprime. By (3)

(
b
2

)2
= ũṽ(ũ2 + ṽ2). Hence 3.1.7(b)

shows that each if the three coprime factors have to be square. So there exist ã, b̃, c̃ in in Z with

ũ = ã2, ṽ = b̃2, and ũ2 + ṽ2 = c̃2

Thus

ã4 + b̃4 = (ã2) + (b̃2)2 = ũ2 + ṽ2 = c̃2

Note that

c̃ ≤ (c̃2)2 = (ũ2 + ṽ2)2 = u2 < u2 + v2 = c

and we obtained a contradiction of the minimal choice of c.

12.3 ap + bp = cp

Suppose ap + bp = cp where p is an odd prime and a, b, c are positive integers. Since p is odd,
(−c)p = −cp and ap + bp + (−p)n = 0.

Thus Fermat’s Last Theorem for an odd prime p is equivalent to

ap + bp + cp 6= 0.

for all non-zero integers a, b and c. This formulation has the advantage that it is symmetric in a, b
and c.

The proof of Fermat’s Last Theorem for odd primes splits into two cases.

Case I of Fermat’s Last Theorem p divides none of a, b and c.

Case II of Fermat’s Last Theorem p divides exactly one of a, b and c.

In this section we will rule out Case II of Fermat’s Last Theorem for certain primes p. The next
Lemma makes sure that the conditions we will make on the primes is fulfilled for many primes.

Lemma 12.3.1. [q=2p+1] Let q and p be odd primes with q = 2p+ 1. Then

(a) [a] If a ∈ Z then ap ≡ 0, 1,−1 (mod q).

(b) [b] If ap + bp + cp ≡ 0 (mod q) for some a, b, c ∈ Z then q divides one of a, b, c.

(c) [c] If a ∈ Z, then p 6≡ ap (mod q).
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Proof. (a) If q | a, the a ≡ 0 (mod q). So suppose q - a. Then Fermat’s Little Theorem implies
aq−1 ≡ 1 (mod q) and so

(ap)2 ≡ a2p ≡ aq−1 ≡ 1 (mod q)

Thus ap ≡ ±1 (mod q) and (a) holds.
(b) Suppose that q divides none of a, b and c. Then ap 6≡ 0 (mod q). and so by (a), ap, bp and

cp all are congruent to ±1 modulo q. Thus ap + bp + cp is congruent to ±1 or ±3 modulo q. Since
q = 2p+ 1 ≥ 2 · 3 + 1 > 3, we conclude that ap + bp + cp 6≡ 0 (mod q).

(c) Note that 0 < p − 1 < p < p + 1 < q and so q divides none of p − 1, p and p + 1. Thus
p 6≡ 1, 0,−1 (mod q). Hence (c) follows from (a).

A prime p such that also 2p + 1 is a prime, is called a Sophie Germain prime. The first seven
Sophie Germain primes are 2, 3, 5, 11, 23, 29, and 41. Among the first 100,000 primes there are
9,667 Sophie Germain primes. It is conjectured that there are infinite many Sophie Germain primes.

Lemma 12.3.2. [an+bn] Let a, b and n be integers with n odd. Define

fn : Z× Z→ Z, (a, b) 7→
n−1∑
i=0

(−1)iaibn−1−i = an−1 − an−2b+ an−3b2 − . . .+ a2bn−3 − abn−2 + bn−1

Then

(a) [d] fn(a, b) = fn(b, a).

(b) [a] an + bn = (a+ b)fn(a, b).

(c) [b] If t is an integer with a+ b ≡ 0 (mod t), then fn(a, b) ≡ nbn−1 (mod t).

(d) [e] If t is an integer with b ≡ 0 (mod t), then fn(a, b) ≡ an−1 (mod t).

(e) [c] If a and b are coprime, then gcd (a+ b, fn(a, b)) divides n.

Proof. (a)

fn(a, b) =
n−1∑
i=0

(−1)iaibn−1−i j=n-1-i
=

n−1∑
j=0

(−1)n−1−jan−1−jbj
n− 1 even=

n−1∑
j=0

(−1)jbjan−1−j = fn(b, a).

(b) Just apply the formula bn − an = (b− a)
∑n−1
i=0 b

ian−1−i to −a and b in place of a and b:

an + bn = bn − (−a)n = (b− (−a))
n−1∑
i=0

bn−1−i(−a)i = (b+ a)fn(a, b)

(c) Since a+ b ≡ 0 (mod t), −a ≡ b (mod t) and so

fn(a, b) ≡
n−1∑
i=0

(−a)ibn−1−i ≡
n−1∑
i=0

bibn−1−i ≡
n−1∑
i=0

bn−1 ≡ nbn−1 (mod t)

(d) Since b ≡ 0 (mod t), bn−1−i ≡ 0 (mod t) for all 0 ≤ i < n−1 and so f(a, b) ≡ (−1)n−1an−1b0 ≡
an−1 (mod t).
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(e) Put t = gcd (a+ b, fn(a, b)). Then fn(a, b) ≡ 0 (mod t) and a + b ≡ 0 (mod t). Hence (c)
gives

(∗) 0 ≡ fn(a, b) ≡ nbn−1 (mod t)

Suppose p is a prime dividing t and b. Since t | fn(a, b), (b) implies p | an + bn. So p divides
(an + bn) − bn = an and p divides a and b, a contradiction. Hence t and b are coprime. By (*)
t | nbn−1 and so t | n.

Theorem 12.3.3 (Sophie Germain). [fermat for prime] Let p be an odd prime and suppose there
exists an odd prime q such that the following two statements hold:

(i) [i] If ap + bp + cp ≡ 0 (mod q) for some a, b, c ∈ Z, then q divides one of a, b, c.

(ii) [ii] If a ∈ Z, then p 6= ap (mod q).

If a, b and c are integers coprime to p, then

ap + bp + cp 6= 0

Proof. Suppose for a contradiction that a, b and c are integers coprime to p with

(1) ap + bp + cp = 0.

As usual we may assume that a, b and c are pairwise coprime.
Define fp as in 12.3.2. Then by 12.3.2(b)

(2) (−a)p = −ap = bp + cp = (b+ c)fp(b, c)

Put t = gcd (b+ c, fp(b, c)). Since b and c are coprime, 12.3.2(e) implies t | p. By (2) t | bp+ cp =
−ap. Since gcd (a, p) = 1 we conclude that t = 1. Thus

(3) b+ c is coprime to fp(b, c).

From (2), (3) and 3.1.7 we conclude that there exist integers r and u with

(4) b+ c = rp, fp(b, c) = up, and − a = ru.

By symmetry in a, b and c, there also exist integers s, t, v and w with

(5) a+ c = sp, fp(a, c) = vp, and − b = sv,

and

(6) a+ b = tp, fp(a, b) = wp, and − c = tw.

We now consider the above equations modulo q. From (1) modulo q and the assumption (i) we
conclude that q divides one of a,b and c. Without loss q divides c. Observe that
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rp + sp + (−t)p ≡ rp + sp − tp ≡ (b+ c) + (a+ c)− (a+ b) ≡ 2c ≡ 0 (mod q)

and so by (i), q must divide one of r, s and t. If q divides r, then q also divides b = rp − c, a
contradiction since b and c are coprime. By symmetry, q does not divide s and so q divides t. Hence
q divides a+ b = tp and so a+ b ≡ 0 (mod q). Thus by (6) and 12.3.2(c),

(7) wp ≡ fp(a, b) ≡ pbp−1 (mod q)

and since c ≡ 0 (mod q), (4) and 12.3.2(d) give

(8) up ≡ fp(b, c) ≡ bp−1 (mod q)

If q divides u, it also divides a = −ru. But this is a contradiction, since q divides c and a and c
are coprime. Thus there exist an integer ũ with uũ ≡ 1 (mod q) and so by (8) bp−1ũp ≡ (uũ)p ≡ 1
(mod q). Hence

(wũ)p ≡ wpũp
(7)
≡ pbp−1ũp ≡ p (mod q)

But this contradicts (ii).



Chapter 13

Continued Fractions

13.1 The Continued Fraction of a Real Number

Definition 13.1.1. [def:simple sequence of real] Let α be a real number. We will inductively
define k ∈ Z+ ∪ {∞} and the (finite or infinite) sequences of real numbers

(αn)k−1
n=0, (βn)k−1

n=0 and (qn)k−1
n=0

as follows:

α0 = α

and if αn has already been defined put

qn = bαnc and βn = αn − qn.
If βn = 0, put k = n+ 1 and so all terms of the three sequences have been defined.
If βn 6= 0, put αn+1 = 1

βn
and proceed inductively.

If the inductive definition does not terminate in finitely many steps put k =∞

The sequence (qn)k−1
n=0 is called the simple sequence associated to α.

Lemma 13.1.2. [simple sequence of real] Let α ∈ R and use the notation from 13.1.1 Let 0 ≤
n < k. Then

(a) [a] qn ∈ Z, 0 ≤ βn < 1 and αn = qn + βn ≈ qn

(b) [b] If n+ 1 < k, then αn = qn + 1
αn+1

≈ qn + 1
qn+1

(c) [c] If n ≥ 1, then βn−1 > 0, αn > 1 and qn ≥ 1.

(d) [d] If 1 < k <∞, then qk−1 > 1.

Proof. (a) We have qn = bαnc and so qn ∈ Z and qn ≤ αn < qn + 1. Since βn = αn − qn we get
0 ≤ βn < 1 and αn = qn + βn.

(b) Since n+ 1 < k, αn+1 is defined and αn+1 = 1
βn

. So (b) follows from (a).
(c) Since 1 ≤ n < k, βn−1 6= 0 and so by (a) 0 < βn−1 < 1. Thus αn = 1

βn−1
> 1 and

qn = bαnc ≥ 1. (d) Since k <∞, βk−1 = 0 and so qk−1 = αk−1. Since k− 1 > 0, (c) gives αk−1 > 1
and so (d) is proved.
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In view of the preceeding lemma we have

α = α0 = q0 +
1
α1
≈ q0 +

1
q1

α = q0 +
1

q1 +
1
α2

≈ q0 +
1

q1 +
1
q2

α = q0 +
1

q1 +
1

q2 +
1
α3

≈ q0 +
1

q1 +
1

q2 +
1
q3

Example 13.1.3. [ex:continued fraction of sqrt 2] Compute the simple sequence associated to√
2.

Let α =
√

2. Then q0 =
⌊√

2
⌋

= 1 and so β0 =
√

2− 1. Thus

α1 =
1
β0

=
1√

2− 1
=

√
2 + 1

(
√

2− 1)(
√

2 + 1)
=
√

2 + 1
2− 1

=
√

2 + 1

Hence q1 = bα1c =
⌊√

2 + 1
⌋

= 2 and β1 = α1 − q1 = (
√

2 + 1)− 2 =
√

2− 1 = β0

It follows that αi = α1 =
√

2− 1, βi = β0 =
√

2− 1 and qi = q1 = 2 for all i ≥ 1. Thus

√
2 = 1 +

1

2 +
1

2 +
1

2 +
1

2 + . . .

The first few approximations for
√

2 are

1, 1 +
1
2

= 3
2 , 1 +

1

2 +
1
2

= 1 +
1
5
2

= 1 + 2
5 = 7

5 and 1 +
1

2 +
1

2 +
1
2

= 1 +
1

2 +
2
5

= 1 +
5
12

=
17
12

.

13.2 Simple Sequences

Definition 13.2.1. [def:continued] Let k ∈ N ∪ {∞} and (q0)k−1
n=0 = q0, q1, . . . qn, . . . be sequence

of k real numbers such that qi ≥ 1 for all 1 ≤ i < k. For 0 ≤ n < k define [q0, q1, . . . , qn] inductively
by

[q0] = q0

and if n > 0

[q0, q1, . . . , qn] = q0 +
1

[q1, q2, . . . , qn]
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The sequence

[q0], [q0, q1], [q0, q1, q2], . . . , [q0, q1, . . . , qn], . . .

is called the continued fraction associated to q0, q1, q2 . . . , qn.

If this sequence converges we denote its limit by

[qn]k−1
n=0 or [q0, q1, q2, . . . , qn, . . .]

Suppose in addition that qn ∈ Z for all 0 ≤ n < k and that if k is finite and k > 1, then
qk−1 > 1. Then (qn)k−1

n=0 is called a simple sequence and its continued fraction is called a simple
continued fraction.

Note that

[q0, q1, . . . , qn] = q0 +
1

q1 +
1

q2 +
1
. . . . . . . . .

qn−2 +
1

qn−1 +
1
qn

Lemma 13.2.2. [alphai for alpha] Let α ∈ R and let (qn)k−1
n=0,(βn)k−1

n=0 and (αn)k−1
n=0 be as in

13.1.2. Then

(a) [a] (qn)k−1
n=0 is a simple sequence.

(b) [b] For all 0 ≤ i ≤ j < k, αi = [qi, qi+1, . . . , qj−1, αj ].

(c) [c] For all 0 ≤ j < k, α = [q0, q1, . . . , qj−1, αj ].

Proof. (a) By 13.1.2(a), qn ∈ Z for all n ∈ N. By 13.1.2(c), qn ≥ 1 for all n ∈ Z+, and by 13.1.2(d),
qk−1 > 1 if 1 ≤ l <∞, so (qn)∞n=0 is indeed a simple sequence.

(b) The proof is by induction on j − i. If j − i = 0, then i = j and αi = [αi] and so (b) holds in
this case. So suppose that j − i > 0 and so i < i+ 1 ≤ j < k. By 13.1.2(b) and induction

αi = qi +
1

αi+1
= qi +

1
[qi+1, . . . , qj−1, αj ]

= [qi, qi+1, . . . .qj−1, αj ]

(c) Since α = α0, this is the special case i = 0 of (a).

Lemma 13.2.3. [alt def continued] Let (qn)k−1
n=0 be a simple sequence and let 0 ≤ l ≤ n < k.

Then
[q0, q1, . . . , ql−1, [ql, ql+1, . . . qn]] = [q0, q1, . . . , qn]

Proof. If l = 0 there is nothing to prove.
So suppose l > 0 and assume inductively that [q1, . . . ql−1, [ql, ql+1, . . . qn]] = [q1, q2, . . . , qn]. Then
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[q0, q1, . . . , qn] = q0 + 1
[q1,q2,...,qn]

= q0 + 1
[q1,q2,...,ql−1,[ql...,qn]]

= [q0, q1, . . . , ql−1, [ql, ql+1, . . . qn]]

Lemma 13.2.4. [basic continued] Let (qn)k−1
n=0 be a simple sequence. Inductively define

a−2 = 0, a−1 = 1, an+1 = qn+1an + an−1,−1 ≤ n < k − 1

and
b−2 = 1, b−1 = 0, bn+1 = qn+1bn + bn−1,−1 ≤ n < k − 1

Let α be a real number with α ≥ 1.

(a) [c] an ∈ Z and bn ∈ Z for all −2 ≤ n < k.

(b) [d] The first few terms of (an)k−1
n=−2 and (bn)k−1

n=−2 are

an : 0 1 q0 q1q0 + 1 q2q1q0 + q2 + q0 . . .

bn : 1 0 1 q1 q2q1 + 1 . . .

(c) [a] [q0, q1, . . . , qn, α] = αan+an−1
αbn+bn−1

for all n ≥ −1.

(d) [b] [q0, q1, . . . qn] = an
bn

for all n ≥ 0.

Proof. (a) Observe that a−2, a−1, b−2, b−1 ∈ Z. Since qn ∈ Z for all n ∈ N, (a) follows by induction
on n.

(b) Readily verified.
(c) For n = −1 the left hand side is [α] = α. The right hand side is α·1+0

α·0+1 = α. Hence (c) holds
for n = −1. Suppose (c) holds for n, then

[q0, . . . , qn, qn+1, α] 13.2.3= [q0, . . . qn, [qn+1, α]] = [q0, . . . qn, qn+1 + 1
α ]

= (qn+1+
1
α )an+an−1

(qn+1+
1
α )bn+bn−1

= αqn+1an+an+αan−1
αqn+1bn+bn+αbn−1

= α(qn+1an+an−1)+an
α(qn+1bn+bn−1)+bn

= αan+1+an
αbn+1+bn

So (c) also hold for n+ 1.
(d) Let n ≥ −1. Applying (c) with α = qn+1 in (c) gives

[q0, q1, . . . , qn, qn+1] =
qn+1an + an−1

qn+1bn + bn−1
=
an+1

bn+1

So (d) holds for all n ≥ 0.

Lemma 13.2.5. [between]
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(a) [a] Let x, y, s, t be real number with s+ t = 1, 0 < s, t < 1 and x 6= y. Then tx+ sy lies strictly
between x and y, that is either x < sx+ ty < y or y < sx+ ty < x.

(b) [b] Let a, b, c, d be real numbers with b and d positive and a
b 6=

c
d Then a+c

b+d lies strictly between
a
b and c

d .

Proof. (a) We may assume that x < y. Then

x = (s+ t)x = sx+ tx < sx+ ty < sy + ty = (s+ t)y = y.

(b) Note that a+b
c+d = b

b+d
a
b + d

b+d
c
d . Also b

b+d + d
b+d = 1 and so (b) follows from (a).

Lemma 13.2.6. [converge] Let (qn)k−1
n=0 be a simple sequence.

(a) [a] For all −2 ≤ n < k − 1, anbn+1 − an+1bn = (−1)n+1

(b) [b] For all −2 ≤ n < k, gcd (an, bn) = 1.

(c) [c] −1 < b−1 = 0 < b0 = 1 ≤ b1 and for all 1 ≤ n < k, n ≤ bn < bn+1.

(d) [f] For all 0 ≤ n < k, an
bn
− an+1

bn+1
= (−1)n+1

bnbn+1
.

(e) [d] a0
b0
< a2

b2
< a4

b4
< . . . < a2n

b2n
< . . . < . . . < a2n+1

b2n+1
< . . . a5

b5
< a3

b3
< a1

b1
.

(f) [e] All infinite simple continued fractions converge.

Proof. (a) a−2b−1 − a−1b−2 = 0 · 0− 1 · 1 = −1 = (−1)−1. Also

anbn+1 − an+1bn = an(qn+1bn + bn−1)− (qn+1an + an−1)bn = −(an−1bn − anbn−1)

So (a) is true by induction.
(b) Follows from (a).
(c) By 13.2.4(b), −1 < 0 = b−1 < 1 = b0 ≤ q1 = b1. Suppose n ≥ 1, bn ≥ n and bn−1 > 0 ( and

observe that this is true for n = 1) then

bn+1 = qn+1bn + bn−1 > qn+1bn ≥ bn ≥ n

Thus (c) holds by induction on n.
(d) By (c), bn 6= 0 6= bn+1. So (c) follows from (a) by dividing by bnbn+1.
(e) By (d) a0

b0
− a1

b1
= −1 and so a0

b0
< a1

b1
. Let n ≥ 1. By (e) an

bn
6= an−1

bn−1
. Also

an+1

bn+1
=
qn+1an + an−1

qn+1bn + bn−1

and so by 13.2.5(b), an+1
bn+1

lies strictly between qn+1an
qn+1bn

= an
bn

and an−1
bn−1

. (e) now follows by induction.
(f) By (d) and (c) |anbn −

an+1
bn+1
| = 1

bnbn+1
≤ 1

n(n+1) . Let n < m < k. By (e) am
bm

is between an
bn

and
an+1
bn+1

. Thus ∣∣∣∣anbn − am
bm

∣∣∣∣ ≤ ∣∣∣∣anbn − an+1

bn+1

∣∣∣∣ ≤ 1
n(n+ 1)

Hence (anbn )∞n=0 is a Cauchy sequence and so converges.
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Lemma 13.2.7. [alpha i] Let (qn)k−1
n=0 be a simple sequence. Put αi = [qn]k−1

n=i . Then

(a) [a] αi = [qi, . . . , qj−1, αj ] for all 0 ≤ i ≤ j < k.

(b) [c] [qi, . . . , qj ] ≥ 1 for all 1 ≤ i ≤ j < k.

(c) [b] αi > 1 for all 1 ≤ i < k.

Proof. (a) If k is finite, this follows from 13.2.3. So we may suppose k = ∞. Since αi = [αi], (c)
holds for i = j. By induction on j − i assume that αi+1 = [qi+1, . . . , qj−1, αj ]. Then

αi = lim
l→∞

[qi, qi+1, . . . , ql] = lim
l→∞

(
qi +

1
[qi+1, . . . , ql]

)
= qi + 1

lim
l→∞

[qi+1, . . . , ql]
= qi + 1

αi+1

= qi + 1
[qi+1,...,qj−1,αj ]

= [qi, . . . , qj−1, αj ]

(b) Since [qi] = qi ≥ 1, (b) holds for i = j. So suppose i < j and by induction on j − i that
[qi+1, . . . .qj ] ≤ 1. Then 1

[qi+1,...,qj ]
> 0. Thus

[qi, . . . , qj ] = qi +
1

[qi+1, . . . , qj
> qi ≥ 1

(c) Let 1 ≤ i < k. By (c), [qi, . . . , qj ] ≥ 1 and so also αi = limj→∞[qi, . . . , qj ] ≥ 1. If i < k − 1,
then by (a) αi = [qi, αi+1] = qi + 1

αi+1
> qi ≥ 1. If i = k − 1, then αk−1 = qk−1 > 1 by definition of

a simple sequence.

Lemma 13.2.8. [simple of limit] Let (qn)k−1
n=0 be a simple sequence and put α = [qn]k−1

n=0. Then
(qn)k−1

n=0 is the simple sequence associated to α.

Proof. Define αi = [qn]k−1
n=i and let (q̃i)k̃−1

i=0 be the simple sequence associated to α. So there exist
α̃i, β̃i−1 ∈ R with α̃0 = α, α̃i = q̃i + β̃i and β̃i ∈ [0, 1) for all 0 ≤ i < k̃. Moreover, if 0 < i < k̃ − 1,
then β̃i 6= 0 and α̃i+1 = 1

βi
and if k̃ is finite, then β̃k̃−1 = 0.

Let 0 ≤ i < k. We will first show

1◦. [1] Suppose i < k̃ and αi = α̃i. Then

(a) [a] qi = q̃i.

(b) [b] If i < k − 1, then i+ 1 < k̃ and αi+1 = α̃i+1.

(c) [c] If i = k − 1, then k = k̃.

Suppose i < k − 1. Then by 13.2.7(b), α̃i = αi = [qi, αi+1] = qi + 1
αi+1

. By 13.2.7(b), αi+1 > 1

and so 1
αi+1

< 1. It follows that q̃i = qi and β̃i = 1
αi+1

6= 0. Thus k̃ 6= i + 1, k̃ > i + 1 and
α̃i+1 = 1

β̃i
= αi+1.

Suppose that i = k − 1. Then α̃k−1 = αk−1 = [qn]k−1
n=k−1 = qk−1. Thus q̃k−1 = qi, βk−1 = 0 and

k̃ = k. so (1◦) is proved.

2◦. [2] Let 0 ≤ i < k. then i < k̃ and αi = α̃i.
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Note that (2◦) holds for i = 0. So (2◦) follows from (1◦) and induction on i.
If k is finite, then by (2◦) we can apply (1◦) to i = k − 1 and so k̃ = k. If k is infinite, (2◦)

shows that k̃ > i for all i ∈ N and so k̃ =∞. In either case (1◦) and (2◦) now show qn = q̃n for all
0 ≤ i < k and so that (qn)k−1

n=0 = (q̃n)k̃−1
n=0.

Lemma 13.2.9. [rational-finite] Let α ∈ R and (qn)k−1
n=0 the associate simple sequence.

(a) [a] If k is finite, then α is rational and α = [qn]k−1
n=0.

(b) [b] α is rational if and only if k is finite.

Proof. Let (αn)k−1
n=0 be as in 13.1.1.

(a) Suppose k is finite. Then βk−1 = 0 and so αk−1 = qk−1 +βk−1 = qk−1 ∈ Z. For 0 < i < k−1,
αi = qi + 1

αi
and downwards induction on i shows that αi ∈ Q for all 0 ≤ i < k. Thus α = α0 ∈ Q.

By 13.2.2, α = [q0, . . . , qk−2, αk−1] = [q0, . . . , qk−1] and so (a) holds.
(b) If k is finite, α is rational by (a). Suppose next that α is rational and say α = x

y with
x ∈ Z, y ∈ Z+.

By the division algorithm, x = qy + r with q, r ∈ Z and 0 ≤ r < y. Then

q0 = bαc =
⌊
qy + r

y

⌋
=
⌊
q +

r

y

⌋
= q.

If r = 0, then the continued fraction of α is (q0) and so is finite. Also α = q0 = [q0].
So suppose r 6= 0. Then

α1 =
1
β1

=
1

α− q0
=

1
r
y

=
y

r
.

Since 0 < r < y we conclude by induction on y that the simple sequence of α1 is finite. Observe
that the simple sequence associated to α1 is (qn)k−1

n=1 and so k is finite.

Lemma 13.2.10. [irrational] Let α ∈ R\Q. Then the continued fraction associated to α converges
to α.

Proof. Let (qn)k−1
n=0 and (αn)k−1

n=0 be as in 13.1.1 By 13.2.9, k = ∞. Let 0 ≤ n < ∞ By 13.2.2(c),
α = [q0, . . . , qn, αn+1] and so by 13.2.4(a),

α = [q0, . . . , qn, αn+1] =
αn+1an + an−1

αn+1bn + bn−1
.

So by 13.2.5, α lies between an
bn

and an−1
bn−1

. By 13.2.4(d), the sequence (anbn )∞n=0 is the continued
fraction associated to α and so by 13.2.6(f) converges to some α̃ ∈ R. Then α̃ = limn→∞

an
bn

=
limn→∞

an−1
bn−1

Since α lies between an
bn

and an−1
bn−1

. this gives α = α̃ and the lemma is proved.

13.3 Periodic Simple Sequences

Notation 13.3.1. [not:periodic] In this section, (qn)k−1
n=0 is simple sequence, αi := [qn]k−1

n=i and
α = α0. Note that by 13.2.8 (qn)k−1

n=0 is the simple sequence associated to α.

Definition 13.3.2. [def:periodic] A simple sequence (qn)k−1
n=0 is called periodic if k =∞ and there

exist l ∈ N and m ∈ Z+ with qi = qi+m for all l ≤ i <∞.
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Lemma 13.3.3. [easy periodic] The simple sequence (qn)k−1
n=0 is periodic if and only if αl = αj

for some 0 ≤ l < j < k.

Proof. Suppose first that (qn)k−1
n=0 is periodic. Then k =∞ and there exists l ∈ N and m ∈ Z+ with

qi = qi+m for all l ≤ i < k. The (qn)∞n=l = (qn)∞n=l+m and so αl = αl+m.
Suppose next that αl = αj for some 0 ≤ l < j < k. Then

[qn]k−1
n=l = αl = αj = [qn]k−1

n=j

Hence by 13.2.8 [qn]k−1
n=l and [qn]k−1

n=j both are equal to the simple sequence associated to αl = αj .
Thus (qn)k−1

n=l = (qn)k−1
n=j . In particular, those two sequences have length and so k− l = k− j. Since

l 6= j we conclude that k = ∞. Moreover, qn = qn+(j−i) for all l ≤ n < k and thus (qn)k−1
n=0 is

periodic.

Lemma 13.3.4. [qd] Let z ∈ Q with z > 0 and
√
z /∈ Q. Define define

Q[
√
z] := {x+ y

√
z | x, y ∈ Q}/

(a) [a] Q[
√
z] is a subfield of R.

(b) [b] Let x, y, x̃, ỹ ∈ Q with x+ y
√
z = x̃+ ỹ

√
z. Then x = x̃ and y = ỹ.

(c) [c] The map σ : Q[
√
z]→ Q[

√
z], x+ y

√
z 7→ x− y

√
z is a field automorphism.

Proof. Readily verified.

Lemma 13.3.5. [periodic] (qn)k−1
n=0 is periodic if and only if α = x + y

√
z for some x, y, z ∈ Q

with y 6= 0, z ≥ 0 and
√
z /∈ Q.

Proof. Let 0 ≤ l < k. Then by 13.2.7(a) and 13.2.4(c)

(1) α = [q0, q1, . . . , ql−1, αl] =
αlal−2 + al−1

αlbl−1 + bl−2
.

=⇒: Suppose first that (qn)∞n=0 is periodic. Then by definition of periodic, k = ∞ and so by
13.2.9, α ∈ R \Q. By 13.3.3 αl = αj for some 0 ≤ l < j <∞. Thus by 13.2.7(a),

αl = [ql, . . . , qj−1, αj ] = [ql, . . . , qj−1, αl]

and so by 13.2.4(c) applied to the simple sequence (qn+l)∞n=0

αl =
rαl + s

tαl + u

for some r, s, t, u ∈ Z. Multiplying with tαl + u we get tα2
l + (u− r)αl − s = 0. So αl is the root of

quadratic polynomial with coefficients in Z. The quadratic formula now shows that αl ∈ Q[
√
z] for

some z ∈ Q.
Since Q[

√
z] is a subfield of R and since the ai’s and bi’s are integers we conclude from (1) also

α ∈ Q[
√
z]. Thus α = x + y

√
z for some x, y ∈ Q. Since α /∈ Q, y 6= 0 and

√
z /∈ Q. Since α ∈ R,

z ≥ 0.
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⇐=: Suppose next that α = x+ y
√
z for some x, y, z ∈ Q with y 6= 0, z ≥ 0 and

√
z /∈ Q. Then

α ∈ R \Q and so by 13.2.9, k =∞. For u = x, y, z let u = u1
u2

with ui ∈ Z and u2 6= 0. Since y 6= 0,
y1 6= 0. Replacing x1 by −x1 and x2 be −x2, if necessary, we may assume that x2y2z2 is positive
and so x2y

2
1y2z2 =

√
x2

2y
4
1y

2
2z

2
2 . Then

α =
x1

y1
+
x2

y2

√
z1
z2

=
x1y1y

2
2z2 + (x2y

2
1y2z2)

√
z1
z2

y2
1y

2
2z2

=
x1y1y

2
2z2 +

√
z1x2

2y
4
1y

2
2z

2
2

z2

y2
1y

2
2z2

=
x1y1y

2
2z2 +

√
x2

2y
4
1y

2
2z1z2

y2
1y

2
2z2

Put c0 = x1y1y
2
2z2, d = x2

2y
4
1y

2
2z1z2 and e0 = y2

1y
2
2z2. Then c0, d0, e0 ∈ Z, e0 6= 0 and

α0 = α =
c0 +

√
d

e0
.

Since α ∈ R\Q we get d > 0 and
√
d /∈ Q. Note that e0 divides c20 and d0. So e0 | d−c20. Inductively,

define

ci+1 = qiei − ci and ei+1 =
ci+1 +

√
d

αi+1
.

Then

(2) αi =
ci +
√
d

ei
for all i ∈ N.

We will now show that

(3) ci ∈ Z, ei ∈ Z and ei | d− c2i for all i ∈ N

This is true for i = 0 and suppose inductively it is true for i. Then qi, ei and ci are integers and so
also ci+1 is an integer. Note that αi = [qi, αi+1] = qi + 1

αi+1
and so

ei+1 = (ci+1 +
√
d) 1
αi+1

= (ci+1 +
√
d)(αi − qi)

= (ci+1 +
√
d)( ci+

√
d

ei
− qi) = (ci+1 +

√
d) ci−eiqi+

√
d

ei

= (
√
d+ ci+1)

√
d−ci+1
ei

= d−c2i+1
ei

.

Since ci+1 = qiei − ci, we have ci+1 ≡ −ci (mod ei). Since ei divides d − c2i we get d − c2i+1 ≡
d − c2i ≡ 0 (mod ei). Thus ei divides d − c2i+1. We conclude that ei+1 is an integer and since
ei+1ei = d− c2i+1, ei+1 divides d− c2i+1. Thus (3) is proved.

Next we will show that almost all ei are positive. From (1) we get
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α(αibi−1 + bi−2) = αiai−1 + ai−2.

(αbi−1 − ai−1)αi = −(αbi−2 − ai−2).

αi = −αbi−2−ai−2
αbi−1−ai−1

.

αi = − bi−2
bi−1

α− ai−2
bi−2

α− ai−1
bi−1

.

Let σ be the automorphism of Q[
√
d] with σ(x+ y

√
d) = x− y

√
d) for all x, y ∈ Q (see 13.3.4).

Applying σ to the last equation we obtain:

(∗) σ(αi) = −bi−2

bi−1

σ(α)− ai−2
bi−2

σ(α)− ai−1
bi−1

.

Observe that

lim
i→∞

σ(α)− ai−2
bi−2

σ(α)− ai−1
bi−1

=
σ(α)− α
σ(α)− α

= 1.

Thus there exists N ∈ Z+ with

(∗∗)
σ(α)− ai−2

bi−2

σ(α)− ai−1
bi−1

> 0 for all i ≥ N.

Since bi is positive for all i > 0, we conclude from (*) and (**) that σ(αi) < 0 for all i ≥ N . As
αi ≥ 1 for all i > 0, this gives

0 < αi − σ(αi) =
ci +
√
d

ei
− ci −

√
d

ei
= 2

√
d

ei
for all i ≥ N.

Thus ei > 0 for all i ≥ N .
Hence 0 < eiei+1 = d− c2i+1 and so

(4) 0 < ei ≤ d and c2i+1 ≤ d for all i ≥ N.

Thus for i > N there are only finitely many choices for the pair (ei, ci) and so also only finitely many
choices for αi. Since there are infinitely many i ≥ N this means that αi = αj for some N ≤ i < j.
Thus by 13.3.3 the simple sequence (qn)∞n=0 is periodic.

13.4 Pell’s Equation

Theorem 13.4.1 (Pell’s Equation). [pell] Let d ∈ Z+ and suppose d is not a square in Z+. Then
there exist positive integers x and y with

x2 − dy2 = 1.
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Proof. We use the notations introduced in the proof of 13.3.5 for α =
√
d. By (1) and (2) in that

proof:

√
d =

αiai−1 + ai−2

αibi−1 + bi−2
=

ci+
√
d

ei
ai−1 + ai−2

ci+
√
d

ei
bi−1 + bi−2

=
(ci +

√
d)ai−1 + eiai−2

(ci +
√
d)bi−1 + eibi−2

.

Multiplying with (ci +
√
d)bi−1 + eibi−2 gives

√
d
(

(ci +
√
d)bi−1 + eibi−2

)
= (ci +

√
d)ai−1 + eiai−2

and so

dbi−1 + (cibi−1 + eibi−2)
√
d = (ciai−1 + eiai−2) + ai−1

√
d.

Since
√
d 6∈ Q, we conclude from 13.3.4(b) that

dbi−1 = ciai−1 + eiai−2 and ai−1 = cibi−1 + eibi−2.

Subtracting bi−1-times the first equation from ai−1-times the second equation and using 13.2.6(a)
yields:

a2
i−1 − b2i−1d = ai−1cibi−1 + ai−1eibi−2 − bi−1ciai−1 − bi−1eiai−2

= −ei(ai−2bi−1 − ai−1bi−2) = −(−1)i−1ei = (−1)iei.

By (4) in 13.3.5 0 < ei ≤ d for all i ≥ N . Hence {(−1)iei | i ∈ N} is a finite set. So there exists
e ∈ Z with e 6= 0 such that

a2
i − b2i d = e

for infinitely many i ∈ N. By 13.2.6(b), gcd (ai, bi) = 1. Since (ai, bi) 6= (aj , bj) for i 6= j and we
conclude that the set

S := {(u, v) ∈ Z+ × Z+ | u2 − v2d = e, gcd (u, v) = 1}

is infinite. Define the relation ≈ on S by (u1, v1) ≈ (u2, v2) if u1 ≡ u2 (mod e) and v1 ≡ v2 (mod e).
This is an equivalence relation with at most e2 equivalence classes. Since S is infinite, one of the
equivalence classes must by infinite. In particular, there exist distinct but equivalent (u1, v1) and
(u2, v2) in S.

Put

x =
u1u2 − dv1v2

e
and y =

u1v2 − v1u2

e
.

We have

u1u2 − dv1v2 ≡ u2
1 − dv2

1 ≡ e ≡ 0 (mod e)

and

u1v2 − v1u2 ≡ u1v1 − v1u1 ≡ 0 (mod e).



118 CHAPTER 13. CONTINUED FRACTIONS

So x and y are integers.
Also

x+ y
√
d =

(u1u2 − dv1v2) + (u1v2 − v1u2)
√
d

e
=

(u1 − v1
√
d)(u2 + v2

√
d)

e

and so

x2 − y2d = (x+ y
√
d)(x− y

√
d) = (x+ y

√
d)σ(x+ y

√
d)

= (u1−v1
√
d)(u2+v2

√
d)

e σ
(

(u1−v1
√
d)(u2+v2

√
d)

e

)
= (u1−v1

√
d)(u1+v1

√
d)(u2+v2

√
d)(u2−v2

√
d)

ee

= (u2
1−v

2
1d)(u

2
2−v

2
2d)

e2 = e·e
e2 = 1.

It remains to show that x 6= 0 and y 6= 0. If x = 0 we get 1 = x2 − y2d = −y2d ≤ 0, a
contradiction. Suppose y = 0, then u1v2 = v1u2. Since gcd (u1, v1) = 1 this gives u1 | u2 and v1 | v2.
As gcd (u2, v2) = 1 we also have u2 | u1 and v2 | v1. The ui and vi are positive and so u1 = v1
and u2 = v2, a contradiction to (u1, v1) 6= (u2, v2). Thus x and y are non-zero and the theorem is
proved.



Appendix A

Euclidean Domains

Definition A.0.2. [def:euclidean]

(a) [a] An integral domain is a commutative ring R with identity 1 6= 0 such that for all a, b ∈ R
with ab = 0 we have a = 0 or b = 0.

(b) [b] An Euclidean domain is an integral domain R together with a function δ : R→ N such that
for all a, b ∈ R:

(i) [c] δ(a) = 0 if and only if a = 0R;

(ii) [a] if ab 6= 0 then δ(ab) ≥ δ(b); and

(iii) [b] if b 6= 0, then there exist q, r in R with

a = qb+ r and δ(r) < δ(b).

Such a δ is called an Euclidean function.

Definition A.0.3. [def:divide int] Let R be an integral domain and a, b ∈ R.

(a) [a] We say that a divides b and write a | b if b = ra for some r ∈ R.

(b) [b] We say that a and b are associate and write a ∼ b if a | b and b | a.

(c) [e] We say that a is irreducible if a 6= 0, a is not a unit and a = bc with b, c ∈ R implies that b
or c is a unit.

(d) [f] We say that a is a prime if a 6= 0, a is not a unit and a | bc with b, c ∈ R implies a | b or
a | c.

Proposition A.0.4 (Cancellation Law). [int and cancel] Let R be an integral domain and a, b, c ∈
R with a 6= 0. Then

ab = ac

⇐⇒ b = c

⇐⇒ ba = ca

119
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Proof. Suppose ab = ac. Then ab − ac = 0 and so a(b − c) = 0. Since a 6= 0 and R is an integral
domain, b− c = 0. Thus b = c.

If b = c then clearly ab = ac.
Finally since R is commutative, ba = ca implies ab = ac.

Lemma A.0.5. [easy unit] Let R be an integral domain and a ∈ R. The the following are equiva-
lent

(a) [a] a is a unit.

(b) [b] a | 1.

(c) [c] a ∼ 1.

Proof. Suppose a is a unit. Then ba = 1 for some r ∈ R and so a | 1.
Suppose a | 1. Since a = 1a, 1 | a and so a ∼ 1.
Suppose a ∼ 1. Then a | 1 and so ab = 1 for some b ∈ R. Thus a is a unit.

Lemma A.0.6. [unit and sim] Let R be an integral domain and a, b ∈ R.

(a) [a] If b 6= 0, then b ∼ ab if and only if a is a unit.

(b) [b] a ∼ b if and only if a = ub for some unit u in R.

Proof. (a) Suppose that a is a unit. Then ca = 1 for some c ∈ R. Thus b = 1b = (ca)b = c(ab) and
so ab | b. Clearly b | ab and so b ∼ ab.

Suppose that b ∼ ab. Then b = c(ab) for some c ∈ R and so 1b = b = c(ab) = (ca)b. By the
Cancellation Law A.0.4, ca = 1. So a is a unit.

(b) Suppose first that a ∼ b. Then b | a and so a = ub for some u ∈ R. If b 6= 0, then by (a) u is
a unit. If b = 0, then also a = 0 and a = 1b. So in both cases a = ub for a unit b in R.

Suppose next that a = ub for a unit u ∈ R. Then b = u−1a. Hence a | b and b | a and so
a ∼ b.

Lemma A.0.7. [easy divide] Let R be an integral domain and a, b, c ∈ R

(a) [a] If a | b and b | c, then a | c.

(b) [b] If a | b and a | c, then for all s, t ∈ R, a | sa+ tb.

(c) [c] ∼ is an equivalence relation.

(d) [d] If a ∼ b, then a | c if and only if a | c.

(e) [e] If a ∼ b, then c | a if and only if c | b.

(f) [r] If a ∼ b, then a = 0 if and only if b = 0.

(g) [s] If a ∼ b, then a is a unit if and only if b is a unit.

(h) [f] If a ∼ b then a is a prime if and only if b is prime.

(i) [g] If a ∼ b then a is a irreducible if and only if b is irreducible.
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Proof. (a) We have b = da and c = eb for some d, e ∈ R. Thus c = eb = e(da) = (ed)a and so a | c.
(b) We have have b = da and c = ea for some d, e ∈ R. Thus sa+ tb = s(da) + t(ea) = (sd+ te)a

and a | sa+ tb.
(c) Clearly ∼ is reflexive and symmetric. Suppose a ∼ b and b ∼ c. Then a | b and b | c. So by

(a), a | c. Similarly c | a and so a ∼ c. Hence ∼ is transitive.
(d) Suppose a | c. Since a ∼ b, we have b | a and so by (a), b | c. Similarly b | c implies a | c.
(e) Suppose c | a. Since a ∼ b, we have a | b and so by (a), c | b. Similarly c | c implies c ∼ a.

[r] Obvious.

[s] a is a unit if and only if a ∼ 1 and so if and only if b ∼ 1 and if and only if b is a unit.
(h) Suppose a is a prime and d, e ∈ R with b | de. Then by (d), a | de. Since a is a prime, a | d

or a | e. Thus by (d), b | d or b | e. Also since a is neither 0 nor a unit, b is neither 0 nor a unit and
so b is a prime.

(i) Suppose a is a irreducible and d, e ∈ R with b = de. Let u be unit in R with a = ub. The
a = (ud)e and since a is a irreducible, ud or e is a unit. Hence d or e is a unit. or a | e. Also since
a is neither 0 nor a unit, b is neither 0 nor a unit and so b is a irreducible.

Lemma A.0.8. [primes are irreducible] Let R be an integral domain and a ∈ R a prime. Then
a is irreducible.

Proof. By definition of a prime, a 6= 0 and a is not a unit. Suppose a = bc for some b, c ∈ R. Since
a | a we get a | bc and so by the definition of a prime, a | b or a | c. Without loss a | b. Since a = bc
we have b | a and so a ∼ b and bc ∼ b. Since a 6= 0 we have b 6= 0. A.0.6(a) implies that c is a unit.
So a is irreducible.

Lemma A.0.9. [divide and irreducible] Let R be an integral domain and let p be a prime in R.

(a) [a] Suppose q in R is irreducible and p | q, then q ∼ p.

(b) [b] Suppose b1, b2, . . . bn ∈ R with p | b1b2 . . . bn then p | bi for some 1 ≤ i ≤ n.

(c) [c] Suppose b1, b2, . . . bn ∈ R are irreducible and p | b1b2 . . . bn then p ∼ pi for some 1 ≤ i ≤ n.

Proof. (a) Since p | q we have q = pa for some a ∈ R. Since q is irreducible either p or a is a unit.
p is not a unit and so a is a unit. Thus A.0.6(b) implies that q ∼ p.

(b) If n = 1, then p = b1. So suppose n > 1 and put a = b1 . . . bn−1. Then b = abn and since
p | b and p is a prime, p | a or p | bn. In the first case we conclude by induction on n, that p | bi for
some 1 ≤ i ≤ n− 1. So (b) holds.

(c) By (b), p | bi for some 1 ≤ i ≤ n and so by (a), p ∼ bi.

Proposition A.0.10. [Uniqueness of prime factorizations] Let R be an integral domain and
a ∈ R. Suppose that a = p1p2 . . . pn and a = q1q2 . . . qm where n,m ∈ Z+, pi is a prime for 1 ≤ i ≤ n
and qj is a irreducible for 1 ≤ i ≤ m. Then n = m and after reordering the qi’s

p1 ∼ q1, p2 ∼ q2, . . . , pn ∼ qn

Proof. Note that pn | a. Hence by A.0.9(c), pn ∼ qi for some 1 ≤ i ≤ m. Without loss, i = m. Then
pn ∼ qm and so upn = qm for some unit u ∈ R.

Suppose m = 1. If n = 1 we are done. So suppose for a contradiction that n > 1. Then
(p1 . . . pn−1)pn = a = q1 = qm and so ((p1 . . . pn−1)pn ∼ pn. Thus by A.0.6, p1 . . . pn−1 is a unit and
so divides 1. Hence also p1 divides 1 and so p1 is a unit. A contradiction, since p1 is a prime and so
not a unit.
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Suppose m > 1. Then qm−1qm = qm−1(upn) = (uqm−1)pn. By A.0.6 uqm−1 ∼ qm−1. So uqm−1

and pn are both irreducible. Replacing qm by pn and qm−1 by uqm−1 we may assume that pn = qm.
Put b = p1 . . . pn−1 if n > 1 and b = 1 if n = 1. Then

(q1 . . . qm−1)qm = a = (p1 . . . pn−1)pn = bpn = bqm.

The Cancellation Law A.0.4 implies

q1 . . . qm−1 = b.

Suppose that n = 1. Then b = 1 and so q1 is a unit, a contradiction as q1 is irreducible.
Thus n > 1 and

p1p2 . . . pn−1 = q1 . . . qm−1.

So by induction on n, n− 1 = m− 1 and after reordering

p1 ∼ q1, p2 ∼ q2, . . . , pn−1 ∼ qn−1.

Hence also n = m and since pn = qm, the proposition is proved.

Lemma A.0.11. [divisor in Euclidean domains] Let R be an Euclidean domain. Let a, b ∈ R
with a 6= 0 6= b and a | b.

(a) [a] δ(a) ≤ δ(b).

(b) [b] a ∼ b if and only δ(a) = δ(b).

Proof. (a) Note that b = ra for some r ∈ R. Since b 6= 0 the definition of an Euclidean domain
implies δ(b) ≥ δ(a).

(b) Suppose a ∼ b. Then a | b and b | a. By (a), δ(a) ≤ δ(b) and δ(b) ≤ δ(a). Thus δ(a) = δ(b).
So suppose that δ(a) = δ(b). Let q, r ∈ R with a = qb + r and δ(r) < δ(b). Then r = a − qb

and since a | b we conclude that a | r. If r 6= 0, then (a) implies that δ(a) ≤ δ(r) < δ(b) = δ(a), a
contradiction. Thus r = 0 and b | a. So a ∼ b.

Proposition A.0.12. [Euclidean domains are UFD] Let R be a Euclidean domain. Then every
non-zero, non-unit in R is a finite product of irreducible elements.

Proof. Let a ∈ R be a non-zero and a non-unit. If a is irreducible we are done. So suppose a = bc
with neither b nor c units. Then by A.0.6(a) a � b and a � c. Hence by A.0.11(b), δ(a) 6= δ(b) and
δ(a) 6= δ(c). So by A.0.11(a), δ(b) < δ(a) and δ(c) < δ(a). Thus by induction on δ(a), b and c are
products of irreducible elements. Thus also a is.

Definition A.0.13. [def:gcd int] Let R be an integral domain and a, b, d in R. Then we say that
d is a greatest common divisor of a and b and write d ∼ gcd (a, b) if

(a) [a] d | a and d | b; and

(b) [b] if c ∈ R with c | a and c | b, then c | d.

Lemma A.0.14. [gcd is unique up to associates] Let R be an integral domain, a, b ∈ R and d
any greatest common divisor for a and b. Let e ∈ R. Then e is a greatest common divisor of a and
b if and only if d ∼ e.
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Proof. Suppose first that e is a greatest common divisor of a and b. Since d is a common divisor for
a and b and since e is a greatest common divisor d | e. By symmetry e | d and so d ∼ e.

Suppose next that d ∼ e. Then e | d. Since d | a and d | b we conclude that e | a and e | b. Let
c ∈ R with c | a and c | b. Since d ∼ gcd (a, b), c | d. Since d ∼ e we have d | e and so c | e. Thus e
is a greatest common divisor of a and b.

Proposition A.0.15. [gcd in euclid] Let R be a Euclidean domain and a, b ∈ R not both zero.
Let ∆ = {sa+ tb | s, t ∈ R, sa+ tb 6= 0}. Then ∆ 6= ∅. Moreover if d ∈ R, then d ∼ gcd (a, b) if and
only if d ∈ ∆ and δ(d) ≤ δ(e) for all e ∈ ∆. In particular, there exists greatest common divisor of a
and b.

Proof. Note that a = 1a + 0b and b = 0a + 1b. Since a 6= 0 or b 6= 0 we conclude that ∆ 6= ∅. In
particular, there exists d ∈ ∆ with δ(d)-minimal. Let s, t ∈ R with d = sa+ tb.

Let c ∈ R with c | a and c | b. By A.0.7(b), c | d.
Set q, r ∈ R with a = qd+ r and δ(r) < δ(d). Then

r = a− qd = a− q(ta+ sb) = (1− qt)a+ (−qs)b.

If r 6= 0, then r ∈ ∆ and δ(r) < δ(d), a contradiction to the minimal choice of δ(d). Thus r = 0
and so d | a. Similarly d | b and so d ∼ gcd (a, b).

Noe let e by any greatest common divisor of a and b. Then e ∼ d and so e = ud for some unit u
in R. Hence e = (us)a+ (ut)b and so e ∈ ∆. Moreover, by A.0.11(b), δ(d) = δ(e).

Lemma A.0.16. [prime and divide int] Let R be an Euclidean domain and a, b, c ∈ R with
gcd (a, b) ∼ 1 and a | bc. Then a | c.

Proof. By A.0.15 there exist s, t ∈ R with 1 = ra+ sb. Thus

c = c1 = c(ra+ sb) = (cr)a+ s(bc)

Since a | a and a | bc we conclude that a | c.

Lemma A.0.17. [prime=irr] Let R be a Euclidean domain and a ∈ R. Then a is a prime if and
only if a is irreducible.

Proof. Suppose first that a is a prime. Then by A.0.8, a is irreducible.
Suppose next that a is irreducible. Then a 6= 0 and a is not a unit. Suppose b, c ∈ R with a | bc.

Let d ∼ gcd (a, b). Then d | a and so a = de for some e ∈ R. Since a is irreducible, d is a unit or e
is a unit.

Assume that d is a unit. Then gcd (a, b) ∼ 1 and so by 3.1.6 a | c.
Assume that e is a unit. Then d ∼ a. Since d | b we get a | b.
We proved that a | b or a | c and so a is a prime.

Proposition A.0.18. [prime factors] Let R be a Euclidean domain and a ∈ R. If a 6= 0 and a
is not a unit, then there exist primes p1, p2 . . . pk in R with a = p1p2 . . . pk. Moreover, this prime
factorization is unique up to reordering and associates.

Proof. By A.0.12 a is a product of irreducible elements. By A.0.17 all irreducible elements are primes
and so a is a product of primes. By A.0.10 prime factorizations are unique.
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