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Chapter 1

Groups

1.1 Sets

Naively a set S is collection of object such that for each object x either x is contained in S or x is not
contained in S. We use the symbol '€’ to express containment. So z € S means that x is contained
in S and x ¢ S means that x is not contained in S. Thus we have

For all objects z: x€S or x¢65.

You might think that every collection of objects is a set. But we will now see that this cannot
be true. For this let A be the collection of all sets. Suppose that A is a set. Then A is contained in
A. This already seems like a contradiction But maybe a set can be contained in itself. So we need
to refine our argument. We say that a set .S is nice if S is not contained in S. Now let B be the
collection of all nice set. Suppose that B is a set.

Then

Definition of B Definition of nice

BeB — B is nice — B¢ B.

which contradicts the basis property of a set.
This shows that B cannot be a set. Therefore B is a collection of objects, but is not set.
What kind of collections of objects are sets is studied in Set Theory.

Theorem 1.1.1. Let A and B be sets, then A = B if and only if for all objects d

deA <<= deB
Theorem 1.1.2. (a) Given an object s. Then there exists a set, denoted by {s}, such tat

For all objects x: x € {s} if and only if x = s

(b) Let A and B be sets. Then there exists a set, called the unions of A and B and denoted by
An B such that

For all objects x:x € Au B if and only if t € A or x € B.

5
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(¢) Let A and B be sets. Then there exists a set, called the intersection of A and B and denoted
by An B such that

For all objects x:x e AnB if and only if x € A and x € B.

(d) Let A and B be sets. The there exists a set, called A removed B and denoted by A~ B such
that
For all objects x:x € AN B if and only if v € A and x ¢ B.

(e) There exists a set, denote called empty set and denote by {} or @, such that

For all objects x: ¢ @.

(f) Let a,b be objects. Then there exists a set, denoted by {a,b}, such that

xze{a,b} if and only if x=a orx=Dh.

Proof. @ and @: These are axioms of set theory.
and (d)) follow from the so called Replacement Axiom of set theory.
One axiom of set theory guarantees the existence of a set A. Then one can define

g=ANA

@ Define
{a,b} :={a} u{b}.

Definition 1.1.3. The natural numbers are defined as follows:

0 := 1%
1= 0u{0} = {0} = {2}
2 = 1u{l} - 0.1} - (2. {2}}
3 = 2u{2) - {0,1,2) = (2. {2}.{2.(2}})
4 = 4u{4} =

{0,1,2,3y = {2,{g},{g,{e}} {2.{2},{2,{2}}}}

n+1 := nu{n}

{0,1,2,3,...n}
One of the axioms of set theory implies that the collection of all the natural numbers

{0,1,2,3,4,...}
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is set. We denote this set by N.
Addition on N is defined as follows: n+0:=n, n+1:=nu{n} and inductively

n+(m+1):=(Mnm+m)+1.
Multiplication on N is defined as follows: n-0:=n, n-1:=n and inductively

n-(m+1):=(n-m)+n.

1.2 Functions and Relations

Theorem 1.2.1 (Principal of Substitution). Let ®(z) be formula involving a variable z. For an
object d let ®(d) be the formula obtained from ®(x) by replacing all occurrences of x by d. If a and
b are objects with a = b, then ®(a) = ®(b).

Proof. See your favorite logic book O

Example 1.2.2. Let ®(z) =22+ 32 +9. If a = 2, then the Principal of Substitution gives

a®>+3-a+9=2>+3-2+09.

We now introduce two important notations which we will use frequently to construct new sets
from old ones.

Theorem 1.2.3. Let I, Is,. .. I, be sets and let ®(x1,...,xz,) be some formula involving the variables
T1,...Tn. Then there exists a set, denoted by

(®(irsi, . yin) i1 € I1, o in € I},
such that for all objects vy,

ye{P(i1,42,..-,in) |11 €1, .. in € Iy}
if and only
there exist objects i1,i2,...,i, with i1 € I1,i2 € Ia, ... iy € I, and x = ®(i1,i2,...,1p) -
Example 1.2.4. (1) {2a|a € Z} is the set of even integers.
(2) {3a+blaecZ,be{1,2}} is the set of integers which are not divisible by 3.

Theorem 1.2.5. Let I be a set and P(x) a statement involving the variable x. Then there exists a
set, denoted by

{ie | P()},

such that for all objects a,

ae{iel|P(i)} ifandonlyif bel and P(a) is true
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Example 1.2.6.
{nezZ|n*=1}={-1,1}
Definition 1.2.7. Let a,b and ¢ be objects.
(a) The ordered pair (a,b) is defined as (a,b) :={{a},{a,b}}.
(b) The ordered triple (a,b,c) is defined as

(a,b,c) := ((a, b), c)

We will prove that
(a,b) = (¢,d) if and only if a = ¢ and b =d.
For this we first establish a simple lemma:
Lemma 1.2.8. (a) Let a be an object. Then {a,a} ={a}.
(b) Let u,a,b be objects with {u,a} = {u,b}. Then a =b.
Proof. @:
x€{a,a}
r=aorzr=a

r=a

xe{a}

11l

So shows that {a,a} = {a}.

([o): Suppose first that a = u. Then b€ {u,b} = {u,a} = {a,a} = {a} and so a = b.
Suppose next that a # u. Since a € {u,a} = {u,b} we have a = u or a = b. By assumption a # u
and so a = b. ]

Proposition 1.2.9. Let a,b,c,d be objects. Then
(a,b) = (¢,d) if and only if a=c and b =d.

Proof. ==: Suppose that (a,b) = (¢,d). The definition of an ordered pair gives

(*) {{a},{a,b}} = {{c}, {¢,d}}.
Since {a} € {{a},{a,b}} the Principal of Substitution implies
{a} e {{c} . {c,d}},

Thus
{a} ={c} or {a}={c.d}.
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In the first case we get a € {c} and so a = ¢. In the second case we get c € {a} . So ¢ =a and
again a = c.
Since a = ¢ we can apply the Principal of Substitution to the formula (*) and conclude:

{{{a},{a,b}} = {{a},{a,d}.

Now [[.2.8 shows that
{a,b} = {a,d}
Applying one more time gives b = d.
<=: Suppose a = ¢ and b = d. Then the Principal of Substitution gives (a,b) = (¢, d). O

Definition 1.2.10. Let I and J be sets.
(a) IxJ:={(i,j)|iel,jeJ}.

(b) A relation on I and J is triple r = (I, J,R) where R is a subset I x J. Ifiel and j e J we
write iry if (i,7) € R.

(c) A relation r = (I,J,R) is called 1-1 if i = k whenever i,k € I and j € R with irj and krj.
(d) A relation r = (I,J, R) is called onto if for each j € I there exists i € I with irj.

(e) A function from I to J is a relation f = (I,J,R) on I and J such that for each i € I there
exists a unique j € J with (i,7) € R. We denote this unique j by f(i).

We denote the function f = (I,J,R) by
fil—Jd, ie f(i).
(f) A function f is called bijective, it its is a 1-1 and onto.

(g) A permutation of I is a bijective function f:1 —1I.

(h) Let f:1—J and g:J — K be functions. Then the composition go f of g and f is the function
from I to K defined by (go f)(i) =g(f(i)) for alliel.

Example 1.2.11. (1) Let R:= {(n,m) | n,m € N,n e m} and let < be the triple (N,N, R). Let
n,m € N. Then n < m if and only if n € m. Since m ={0,1,2,...,m — 1} we see that n < m if
and only if n is one of 0,1,2,3,...,m — 1.

(2)

f:N=N, m->m?
denotes the function (N,N, {(m,m?) | n e N})
Remark 1.2.12. (a) Let f = (I,J,R) be a function. Then for alliel, jeJ:

ifi <= (j)eR — j=[f()
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(b) A function f: 1 — J is bijective if and only if for each j € J there exists a unique i € I with
f(@)=3j.
Remark 1.2.13. Let I,J, K be sets and F(x) and G(x) be a formulas involving the variable x.
Define R:={(F(k),G(k)) | ke K} and f:=(I,J,R). Suppose that

(i) For allieI there exist k € K with i = F(k).
(i) If k,l e K with F(k) = F(l), then G(k) = G(1).
(iii) If ke K, then F(k) el and G(k) € J.
Then f is a function from I to J. We call f a well-defined function and denote f by
f+ I—-J F(k)»G(k), (keK)

Example 1.2.14. (1)
[+ Zs—>Zy, [n]s[3n]s, (neZ)

is well-defined function. (Here for n,m € Z, [n],, is the congruence class of n modulo m.)

Indeed if [n]3 = [m]s, then 3 divides n —m. So 9 divides 3(n —m). Thus 9 divides 3n — 3m.
Hence [3n]g = [3m]g and so f is well-defined.

(2)
f: Zg g Zg, [n]g = [371]9, (TL € Z)

is not a function, since its not well-defined:
[0]3=[3]s, [3-0]s=[0]s, [3-3]s=[9]s

So [3:0]s #[3-3]s and f is not well-defined.

1.3 Definition and Examples

Definition 1.3.1. Let S be a set. A binary operation on S is a function *: S xS — 5. We denote
the image of (s,t) under x by s *t.

Definition 1.3.2. Let * be a binary operation on the set I.

(a) * is called associative if
(axb)*c=ax*(bxc)

for all a,b,ce 1.

(b) An identity of * is an element e € I with

ex1=1 and i=1%*e€

foralliel.
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(¢) Suppose e is an identity of . Let a € I. An element b of I is called an inverse of a with respect

to * provided that

ax*b=e¢ and bra=e.

If there exists an inverse of a, then a is called invertible with respect to *.

Definition 1.3.3. A group is pair (G, *) such that G is a set and
(i)
(i)
(iii) * has an identity in G.
(iv) Each a € G is invertible in G with respect to *.

* 15 a binary operation on G.

* 18 associative.

Example 1.3.4. (1)
+: ZxZ->2Z, (n,m)mn+m

is a binary operation. + is associative, 0 is a identity of + and —n is a inverse of n with respect

to +. So (Z,+) is a group.

ZxZ, (n,m)~nm

is a binary operation. - is associative, 1 is an identity of -, but 2 does not have an inverse with

respect to -. So (Z,-) is not a group.

QxQ, (n,m)wnm

is a binary operation. - is associative, 1 is an identity of -, but 0 does not have an inverse with

respect to -. So (Q,-) is not a group.
(4) Let I ={a,b,c,d} and define x: I x I - I by

bla b ¢ d
cld b a a
dla d a b

Here for x,y € I, x *» y is the entree in row z, column y. For example b * c=c and c* b =0b.

Then = is a binary operation. * is not associative. For example
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ax(d+c)=a*a=b and (axd)*c=axc=c.

Suppose that x is an identity of * in . From x * y =y for all y € I we conclude that row
x of the multiplication table must be equal to the header row of the table. This shows that
x =b. Since y *» x = x for all y € I column x must be equal to the header column. But column
b is not equal to the header column. case. Hence * does not have an identity. In particular,
(I, *) is not a group.

dla a a a

O is a binary operation on I. O is associative since x O (y O z) = a = (x O y) O 2z for any
x,y,z €{a,b,c,d}.

No row of the multiplication table is equal to the header row. Thus O does not have an identity.
In particular, (I, O) is not a group.

cld b a a

dla d a b

is not a binary operation. Indeed, according to the table, b * b = e, but e is not an element of
I. Hence I is not closed under * and so * is not a binary operation on I.

oi ZyxZy ([als[bly) =~ ["],. (ab)ezxZ
is not a binary operation. Indeed we have [0]3 = [3]3 but
2
(07 =[] = 118

but

(0¥, = (1)), = (13 # [-1]a.
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So ¢ is not well-defined.
(8) .
D QXQ_)Qv (avb)HE

is not a binary operation. Since % is not defined, & is not well-defined.

Example 1.3.5. Let I be a set. Sym([) denotes the set of all permutations of I. If f and g are
permutations of S then by also the composition fog is a permutation of I. Hence the map

o: Sym([)xSym(I), (f,9)— feog

is a binary operation on Sym([/). Observe that composition of functions is associative:
Let f:1—>J,g:J— K and h: K — L be functions. Then for all i € I,

((fog)oh)(i)=(fog)(h(i))=f(g(h(i)))
and
(folgoh))(i)=f((goh)(i))=f(g(h(:))).

Thus fo(goh)=(fog)oh.
The function
idy : 11, i1

is called the identity function on I. Let f € Sym([). Then for any i€ I,

(f oidy)(2) = f(id;s(3)) = f(4)
and so foid; = f.

(idre f)(2) =id7(f(@)) = f(4)

and so idjo f = f.
Thus id; is an identity of o in Sym([I).
Let f e Sym([I). Define
g: I-1, ]

where j is the unique element in I with f(j) =4. Let ¢ € I. Then

f(g(@)) = f(3) =i =1dr(3).

Put k := g(f (7)) = k. Then by definition of g we have f(k) = f(i). Since f is 1-1 this implies k = i.
Thus g(f(¢)) =4 = id;(i). We proved that fog =id; and go f = id;. Hence f is invertible with
inverse g. Thus (Sym([I),0) is a group, called the symmetric group on 1.

Sets of permutations will be our primary source for groups. We therefore introduce some notation
which allows us to easily work with permutations.
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Notation 1.3.6. Let n € N.

[1...n]: {ieN|1<i<n} ={1,2,3,...,n}.
Sym(n) := Sym([1...n]).

Let m € Sym(n). Then we denote w by

( 1 2 3 ... n-1 =n
w(1) w©(2) 7©(3) ... w(n-1) w(n)

1 2 3 45
2145 3

denotes the permutation m of [1...5] with w(1) =2,7(2) =1,7(3) =4,7(4) =5 and 7(5) = 3.
Almost always we will use the more convenient cycle notation:
Let a;;,1 <i < kj,1 <j <1 be elements of [1...n] such that for each m € [1...n] there exist
unique i, j with m = a; j. Then

For example

(a1,1,a2.1,a31, ... 6k, 1)(@12,a22 ... aky2) ... (17,02 ... QK1)

denotes the permutation w with

w(az‘,j) =ais1,5, and W(akj,j) = a1

forall1<i<k; and1<j<I.
(a15,a2;,...ax; ;) is called a cycle of length k; of m.
We often will omit some or all of the cycles of length 1 in the cycle notation of .

Example 1.3.7. (1)

(1 2 3 45 6)
(1,3,4)(2,6)(5) =
36 41 5 2

(2) Compute (1,3)(2,4) 0 (1,4)(2,5,6) in Sym(6).
We have
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(1,4)(2,5,6) (1,3)(2,4)

1 ~ 4 > 2
2 -~ ) > )
) - 6 > 6
6 > 2 > 4
4 - 1 > 3
3 - 3 > 1

and so
(1,3)(2,4)0(1,4)(2,5,6) = (1,2,5,6,4,3).

(3) Compute the inverse of (1,4,5,6,8)(2,3,7).

It is very easy to compute the inverse of a permutation in cycle notation. One just needs to
write each of the cycles in reversed order: The inverse of

(1747 5? 67 8)(27 37 7)

18

(8,6,5,4,1)(7,3,2)

Example 1.3.8. In cycle notation the elements of Sym(3) are

(1), (1,2,3), (1,3,2), (1,2), (1,3), (2,3).

Keep here in mind that (1) = (1)(2)(3), (1,2) = (1,2)(3) and so on. The multiplication table of
Sym(3) is as follows:

o (1) (1,2,3) (1,3,2) (1,2) (1,3) (2,3)
(1) (1) (1,2,3) (1,3,2) (1,2) (1,3) (2,3)
(1,2,3) | (1,2,3) (1,3,2) (1) (1,3) (2,3) (1,2)
(1,3,2) | (1,3,2) (1) (1,2,3) (2,3) (1,2) (1,3)
(1,2) (1,2) (2,3) (1,3) (1) (1,3,2) (1,2,3)
(1,3) (1,3) (1,2) (2,3) (1,2,3) (1) (1,3,2)
(2,3) (2,3) (1,3) (1,2) (1,3,2) (1,2,3) (1)
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4 3

Example 1.3.9. Consider the square

1 2
Let D4 be the set of all permutations of {1,2,3,4} which map the edges of the squar to edges.
For example (1,3)(2,4) maps the edge {1,2} to {3,4}, {2,3} to {4,1}, {3,4} to {1,2} and {4,1}

to {2,3}. So (1,3)(2,4) € Dy.

But (1,2) maps {2,3} to {1,3}, which is not an edge. So (1,2) ¢ Dy.
Which permutations are in D47 We have counterclockwise rotations by 0°, 90°, 180° and 270°:

(1), (1,2,3,4), (1,3)(2,4), (1,4,3,2),

and reflections at y =0, x =0, z =y, and = = —y:

(1,4)(2,3), (1,2)(3,4), (2,4),(1,3)

How many elements does Dy have: Let we Dy.

(1) can be 1, 2, 3, or 4. So there are 4 choices for 7(1).

7(2) can be any of the two neighbors of 7(1). So there are two choice for 7(2).

m(3) must be the neighbor of 7(2) different from 7(1). So there is only one choice for 7(3).
7(4) is the point different from 7(1),7(2) and 7(3). So there is also only one choice for 7(4).
All together there are 4-2-1-1 =8 possibilities for 7. Thus |Dy4| = 8 and

Dy =A{(1), (1,2,3,4,), (1,3)(2,4),(1,4,3,2), (1,4)(2,3), (1,2)(3,4), (2,4), (1,3)}.

Is (Dy,0) a group?

If a, 8 € Sym(4) maps edges to edges, then also awo 8 and the inverse of o« map edges to edges.
So Dy is closed under multiplication and inverses. Thus o is an associative binary operation on Dy,
(1) is an identity and each « in Dy is invertible. So (Dy,0o) is a group, called the dihedral group of
degree 4.

1.4 Basic Properties of Groups

Lemma 1.4.1. Let * be a binary operation on the set I, then * has at most one identity in I.

Proof. Let e and f be identities of . Then e * f = f since e is an identity and e * f = e since f is an
identity. Hence e = f. So any two identities of * are equal. O

Lemma 1.4.2. Let * be an associative binary operation on the set I with identity e. Then each a €
has at most one inverse in I with respect to *.

Proof. Let b and ¢ be inverses of a in I with respect to *. Then

b=bxe=bx(axc)=(b*xa)*c=exc=c.

and so the inverse of a is unique. O
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Example 1.4.3. Consider the binary operation

*|10 1 2
7012
111 0 0
212 0 0.

0 is an identity of *. We have 1*1 =0 and so 1 is an inverse of 1. Also 1*2=0=2%1 and so
also is an inverse of 1. Hence inverses do not have to be unique if * is not associative.

Notation 1.4.4. Let (G, *) be a group and g € G. Then g~' denotes the inverse of g in G. The
identity element is denote by eq or e. We will often just write ab for a*b. And abusing notation we
will call G itself a group.

Lemma 1.4.5. Let (G,*) be a group and define
o GxG-G, (a,b)~bx*a.
(a) < is a binary operation on H, called the opposite operation of *.
(b) o is associative.
()
)

(d) Let a€G and let a™* be inverse of b in G with respect to *, then a”
G with respect to .

Let e be an identity of * in H. Then e is an identity of .

Lis also an inverse of b in
(e) (G,o) is a group, called the opposite group of (G, *).
Proof. See Homework 1 O
Lemma 1.4.6. Let G be a group and a,be G.
(a) () =a.
(b) a(ab) =b, (ba)a™t =b, (ba ™ )a =0 and a(a™'b) = b.

Proof. @ By definition of ™!, aa™! = e and a'a = e. So a is an inverse of a7}, that is a = (a™!) 1.

a ' (ab)
= (ata)b - x is associative
= eb — definition of a™*
= b — definition of identity

So the first statement holds. The second follows from the first applied to the opposite group of
G. The last two follow from the first to applied with a replaced by ™! and so a™! replaced by a. [
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Lemma 1.4.7 (Cancellation Law). Let G be a group and a,b,c € G. Then

ab = ac
<~ b=c

<~ ba=ca .

Proof. Suppose first that ab = ac. The Principal of Substitution implies that a~*(ab) = a™(ac) and

so by a=b.

Suppose b = c. The Principal of Substitution implies that ab = ac.

So the first two statement are equivalent. This fact, applied to the opposite group, shows that
the last two statements are equivalent. O

Lemma 1.4.8. Let G be a group and a,b e G.

(a) There exists a unique x € G with ax = b, namely x = a™'b.
(

(c) b=a"t if and only if ab = e and if and only if ba = e.

(d) (ab)t=b"ta"t.
Proof. @ By azx = b if and only if a™*(ax) = a™1b and so by if and only if x = a™1b.
follows from @ applied to the opposite group.

By ab = e if and only if b = a~'e. Since e is an identity, this is the case if and only if
b=a"'. This fact, applied to the opposite group, shows that ba = e if and only if b= a™ .

@

)

b) There exists a unique y € G with ya = b, namely y = ba™? .
)
)

(ab)(ba)

= a(b(bla™l)) - = is associative
= aa™! - 1.4.6(@)
= e —  definition of a7!
So by , b la™t = (ab)7L. O

Definition 1.4.9. Let G be a group, a € G and n € N. Then
(a) a®:=e.
(b) Inductively a™! := a"a.

(c) a™:=(a"1)".
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0 2 1 3 4

We have a' = a%a = ea = a, a® = a'a = aa, a® = a®a = (aa)a, a* = a®a = ((aa)a)a and

a"=((...(((aa)a)a)...a)a)a

n-times

Lemma 1.4.10. Let G be a group, a € G and n,m € Z. Then

(b) a™ = (a™) L.
(c) a™ = (a™)™.
Before we start the formal proof here is an informal argument:

a"a™ = (aaa...a)(aaa...a) = aaa...a =a""
—_—— — — ———

n-times m-times n+m-times

a"a " =a""=a"=e, so(a")=(a")"".

a )" =(aaa...a)(aaa...a)...(aca...a)=aaa...a=a™"
—_—— — — —_—— S —

n-times n-times n-times nm-times

m-times

This informal proof has a couple of problems:
1. It only treats the case where n, m are positive.
2. The associative law is used implicitly and its not clear how.

Proof. @ We first use induction on m to treat the case where m > 0.

Suppose that m = 0. Then a"a® = a"e = a™ = "™ and @) is true.

Suppose m =1 and n > 0, then a"a' = a"a = ™! by definition of a™*!.

Suppose m =1 and n < 0. Let k:=-n. Then ke Z*, n=-kand n+1=-k+1=-(k-1). By

definition of a ¥ we have
an _ afk _ (afl)k

If k> 1, then k-1 >0 and the definition of a=**1) gives
an+1 _ a—(k—l) _ (a—l)k—l

If k=1,then n+1=0=Fk-1 and the preceeding equation still holds since all terms are equal to e.
We compute

anal _ (a—l)k’a _ ((a—l)(k—1)+1)a _ ((a—l)k—la—l)a _ (a—l)k—l _ an+l’
and so @ holds for m = 1.
Suppose inductively that @ is true for m. Then
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(1) ata™ = an+m7
and so
@
anam+1 _ an(ama) - (anam)a = vt = a(n+m)+1 - an+(m+1)‘

So @ holds for m + 1 and so by The Principal of Mathematical Induction for all m € N.

Let m be an arbitrary positive integer. From @) applied with n = —m we conclude that a™™a™ =
0

a” = e and so for all m € N,

(2) a™ = (a™)
From @ applied with n —m in place of n we have

At = a(nfm)+m —a®

Multiplying with ¢™™ from the left gives
(anfmam)afm — anafm

By (2) ™™ = (a™)~!. Hence the left hand side of the preceding equation equals a™~™. Thus

Since m is an arbitrary positive integer, —m is an arbitrary negative integer. So @ also holds for
negative integers.

(]EI): By @ a"a™™ =a""=a" = e. Thus implies (a")7! = (a™)71.
Again we first use induction on m to prove (b) in the case that m € N. For m =0 both sides
in equal e. Suppose now that holds for m € N. Then

an(m+1) — g _ gnmgn _ (an)m(an)l _ (am)m+l.

So holds also for m + 1 and so by induction for all m € N.
We compute

an(—m) _ a—(nm) _ (anm)—l _ ((an)m)—l _ (an)—m,
and so also holds for negative integers.
O

Definition 1.4.11. Let G be a group and a € G. We say that a has finite order if there exists a
positive integer n with a™ = e. The smallest such positive integer is called the order of a and is
denoted by |al.
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Example 1.4.12. Determine the order of (1,2,3,4) in Sym(4):

(1,2,3,4)2 = (1,2,3,4) 0 (1,2,3,4)) = (1,3)(2,4)
(1,2,3,4)% = (1,2,3,4)% 0 (1,2,3,4) = (1,3)(2,4) 0 (1,2,3,4) = (1,4,3,2)
(1,2,3,4)* = (1,2,3,4)% 0 (1,2,3,4) = (1,4,3,2) 0 (1,2,3,4) = (1)(2)(3)(4)

So (1,2,3,4) has order 4.

1.5 Subgroups

Definition 1.5.1. Let (G,*) be a group. A pair (H,A) is called a subgroup of (G,*) provided
that

(i) (H,A) is a group,

(ii) H <@, and

(ili) asb=axb for all a,be H.

If often just say that H is a subgroup of G and write H < G if (H,2) is a subgroup of (G,*).

Example 1.5.2. (1) (Z,+) is a subgroup of (Q,+).

(2) (Q~{0},-) is a subgroup of (R~ {0},-).

(3) (D4,0) is a subgroup of (Sym(4),o0).

(4) Sym(4) is not a subgroup of Sym(5), since Sym(4) is not subset of Sym(5).
Lemma 1.5.3. Let (H,A) be a subgroup of the group (G, *).

(a) e =eq.

(b) Let he H. Let h™t be the inverse of h in G with respect to *. Then h™' is also the inverse of
h in H with respect to A.

Proof. @ eg xeg =eg Neg =eg =eqg * eg. Thus the Cancellation Law implies that ey = eg,
@ Let b the inverse of h in H with respect to &. Then
h*b:hAb:eH:egzh*hfl
and the Cancellation Law implies b = a. ]
Proposition 1.5.4 (Subgroup Proposition). Let (G,*) be a group and H a subset of G. Define
A: HxH-— H, (a,b)w—axb.

Then (H, ) is a subgroup of (G, *) if and only if
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(i) H is closed under %, that is axbe H for all a,be H.
(ii) eq e H.

(iii) H is closed under inverses, that is a™* € H for all a € H (where a™' is the inverse of a in G
with respect to *.

Proof. =: Suppose (H,A) is a subgroup of G. Then (H,A) is a group. Hence A is a binary
operation on H and so a * b € H for all a,b € H. By @ we have eq = ey and so eq € H. Let
aecH. By a~! is also the inverse of a in H with respect to A. So a™! € H.

<—: Suppose next that , and hold. We need to show that (H, A) is a subgroup of
(G, *). By hypothesis, H € G and by definition of A we have a Ab=ax*b for all a,be H. So we just
need to show that (H,A) is a group.

Since H is closed under %, A is a well-defined function from H x H to H and so A is a binary
operation on H.

Let a,b,ce H. Since H € GG, we have a,b,c€ G. As = is associative we get

(anab)sc=(axb)*c=ax(bxc)=anr (bAc)

and so A is associative.

By ece€H. Let he H. Theneg A h=eg+h=hand hAeg=hx*eg=~hforall he H. So eg
is an identity of A in H.

Let h e H. Then by hleH. Thushaht=hxht=eqand h'ah=hlxh=eq. Soh™
is an inverse of h with respect to A.

So (H, A) is a group. O

Lemma 1.5.5. Let G be a group.
(a) Let A and B be subgroups of G. Then An B is a subgroup of G.

(b) Let (Gi)icr be a family of subgroups of G, i.e. I is a set and for each i € I,G; is a subgroup of
G. Then
NG

iel

s a subgroup of G.
Proof. Note that @ follow from (]ED if we set I ={1,2}, G; = A and G2 = B. So it suffices to prove

Let H =Ny G;. Then for g € G.

(%) geH ifand only if g€ G; for all i € I

To show that H is a subgroup of G we use|[l1.5.4
Let a,b e H. We need to show
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(i) abe H. (i) ee H (iii) a ' e H.

Since a,b € H (*) implies a,b € G; for all i € I. Since G; is a subgroup of G, ab € G; for all i € I
and so by (*), abe H. So (i) holds.

Since G is a subgroup of G, e € G; and so by (*), e € H and holds.

Since G; is a subgroup of G and a € G;, a™! € G; and so by (*), a™* € H. Thus (jii) holds. O

Definition 1.5.6. Let * be a binary operation on the set H. Let n €N and ay,...,a, € H. Induc-
tively, we call h € H a product of (a1, ...,a,) with respect to * if either

(1) n=0 and h is an identity of *.
(2) n=1 and h =ay,or
(3) There exist k€ N and z,y € H such that

(i) 0<k<n,

(iii

)

(ii) = is product of (a1,...,ax),
) y is a product of (ags1,...,an).
)

(iv) h=x *y.

Theorem 1.5.7 (General Associative Law). Let * be an associative binary operation on the set H.
Let neN and ay,...,a, € H. If h and I’ are products of (a1,...,a,) in H then h =h'. We denote
the unique product of (ay,...,a,) by

ajl *as *...*0an

Proof. The proof is by complete induction on n.
If n =0, then both h and k' are identities of * and so h = h' by
If n=1, then h=a; =h’ and again h =h'.
So suppose n > 1. Then there exist k,k’,Z" and z,y,2’,y" € H such that

(i) 0<k<nand 0< k' <n;

(ii) x is a product of (ay,...,ar), and 2’ is a product of (ay,...,ax);
(iii) y is a product of (agy1,...,an), and y' is a product of (ag/41,...,an);
(iv) h=xxyand h' =z’ »y'.

Suppose first that k = k’. Then both x and 2z’ are products of (aq,...,a;) and so by induction
x = 2'. Similarly, both y and y’ are products of (as1,...,a,) and so by induction y = y'. Hence
h=xxy=x"%y =h'.

Suppose next that k # k’. Without loss k < k’. Let z be any product of (agy1,.-.,ax).
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Y
—
a1+ -Qg Qpp1 Qs ARy 417G,
——— N ——
z Yy’
:Bl
Then both z * z and 2’ are products of (aq,...,ar) and so by induction z * z = 2’. Similarly,
z %1y and y are products of (ags1,...,a,) and so by induction z * 3’ = y. Thus

h=zsy=ax(zxy)=(zxz)ry =2’ vy =l

Definition 1.5.8. Let G be a group and I € G.

(a) (I) := Nrecg<g H, that is (I) is the intersection of all the subgroups of G containing I. (I) is
called the subgroup of G generated by I.

(b) Let ge G and neN. Then g is called a product of length n of I in G if there exist ay,...ap €1
such that g = a1 * ag * ... % ay.

(c) IV ={a'|acI}.
Lemma 1.5.9. Let G be a group and I € G.
(a) (I) is the smallest subgroup of G containing I, that is

(i) (I) is a subgroup of G.
(ii) I<(I).
(iii) If H 1is a subgroup of G and I € H, then (I) € H.

(b) The elements of (I) are exactly the products of TUT™! in G.

Proof. (a): Let H := {H < G| I ¢ H}. By definition, (I) = Nyepy H. By [L.5.5|[b) intersections
of subgroups are subgroups and so (I) is a subgroup of G. As I ¢ H for all H € H, we get
I<Ngep H=(I). Let HeH. Then g€ H for all g € Ngey H and so (I) € H.

@: Set J:=TuI™! and let P be the set of products of J in G. We will first use the Subgroup
Proposition to show that P is a subgroup of G.

Let a,b € J. Then a = ay...a, and b = by...b,, with aq,...,an,b1,...b, € J. Thus ab =
ai...apby... by, is a product of J in G, so ab € P.

e is the product of the empty family. So e € P.

Let z € J. Then either z e I and 2 ' e "' or x =y~ for some ye I andso 27! = (y 1)L =yel.
In either case ' € J. Since a™! = (a1...a,) ' = a;'...a7' we conclude that a™! € P.

We verified the three conditions of the subgroup theorem and so P is a subgroup of G.

Observe that each elements of I is a product of I, that is I ¢ P. Hence P is subgroup of GG
containing I and () shows that (I) ¢ P.

Since I ¢ (I) and (I) is closed under inverse we have ! ¢ (I). So J ¢ (I) and since (I) is closed
under multiplication we conclude that P ¢ (I). Hence (I) = P. O



1.5. SUBGROUPS 25
Example 1.5.10. (1) We compute ((1,2),(2,3)} in Sym(4). Let I ={(1,2),(2,3)}. Then

It = {i_l |Z.E I} = {(172)_17 (273)_1} = {(172)7 (2a3)} =1

and so
Tul'=1={(1,2),(2,3)}

So we have to compute all possible products of {(1,2),(2,3)}. In the following we say that g
is a new product of length k, if g is a product of length & of {(1,2),(2,3)}, but not a product
of {(1,2),(2,3)} of any length less than k. Observe that any new product of length % is of the
form hj there h is a new product of length k-1 and j is one of (1,2) and (2,3).

Products of length 0: (1)
New products of length 1: (1,2), (2,3).
Possible new products of length 2:

hj (1,2) (2,3)
(1,2) (1) (1,2,3)
(2,3) | (1,3,2) (1)

New Products of length 2: (1,2,3),(1,3,2)
Possible new products of length 3.

hj (1,2) (2,3)
(1,2,3) | (1,3) (1,2)
(1,3,2) | (2,3) (1,3)

New products of length 3: (1,3)
Possible new products of length 4:

hj (1,2) (2,3)
(1,3) |(1,2,3) (1,3,2)
(1,3,2) | (2,3) (1,3)

So there are no new products of length 4, and so also no new products of length larger than 4.
Thus

((1,2),(2,3)) ={(1,(1,2),(2,3),(1,2,3),(1,3,2),(1,3)}.
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(2) Let G be any group and a € G. Put H = {a" | n € Z}. We claim that H = (a). We first
show that H is a subgroup of G. Indeed, a"a" = a™™™, so H is closed under multiplication.
e=a’e H and (a")™' =a™, so H is closed under inverses. Thus by the Subgroup Proposition,
H is a subgroup. Observe that any subgroup of G containing a must contain H. Hence H is
the smallest subgroup of G containing a, so H = (a) byfL.5.9

(3) We will show that Dy = ((1,3),(1,2)(3,4)). For this it suffices to write every element in Dy as
a product of elements from (1,3) and (1,2)(3,4). Straightforward computation show that

(1) = empty product (1,2,3,4) = (1,3)0(1,2)(3,4)
(1,3)(2,4) = ((1,3)0(1,2)(3,4))? (1,4,3,2) = (1,2)(3,4)0(1,3)
(1,4)(2,3) = (1,3)0(1,2)(3,4)0(1,3) (1,2)(3,4) = (1,2)(3,4)

(2,4) = (1,2)(3,4)0(1,3)0(1,2)(3,4) (1,3) = (1,3)

(4) Let G be a group and g € G with |g| = n for some n € Z*. By (2),
G={¢"|meZ}.
Let m € Z. By the Division Algorithm, [Hung, Theorem 1.1] m = gn + r with ¢,r € Z and
0<r<n. Then g™ = g9 = (¢™)g" = elg" = g". Thus
(9)={9"10<r<n}.

Suppose that 0 < r < s <n. Then 0 < s —r < n and so by the definition of |g|, ¢°" # e.
Multiplication with ¢" gives ¢° # ¢". So the elements ¢",0 < r < n are pairwise distinct. Hence

[{g)| =7 =1gl.
and
g'=e <<= 1r=0 <= n|m.
1.6 Homomorphisms

Definition 1.6.1. Let f: A — B be a function. ThenIm f:={f(a)|a€ A}. Im f is called the image
of f.

Lemma 1.6.2. Let f: A— B be a function and define
g: A-Imf, aw f(a).

Then
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(a) g is onto.
(b) f is 1-1 if and only if g is 1-1 and if and only if g is bijective.

Proof. (ia)) Let b € Im f. Then by definition of Im f, b = f(a) for some a € A. Thus g(a) = f(a) = b
and so g is bijective.

()

fis 1-1
For all a,be A:  f(a)=f(b) = a=0
For all a,be A:  g(a)=g(b) =>a=0
gis 1-1

definition of 1-1
definition of g
definition of 1-1

since g is onto

Pend

g is bijective

Definition 1.6.3. Let (G,*) and (H, O) be groups.
(a) A homomorphism from (G, *) from to (H, O) is a function f:G — H such that
flaxb)=f(a) o f(b)
for all a,beG.
(b) An isomorphism from G to H is a 1-1 and onto homomorphism from G to H.
(c) If there exists an isomorphism from G to H we say that G is isomorphic to H and write G =~ H.

Example 1.6.4. (1) Let (H,*) be any group, h € H and define f:Z — H,m - h". We compute

f(n+m)=hnr""" ™ x h™ = f(n) * f(m).

So f is a homomorphism from (Z,+) to (H,*). We compute

Tm f = {f(n) [ neZ}={g" | nez} 0D ()

(2) Let F be a field and n € Z*. Let M,,(F) be the rings of n x n-matrices with coefficients in F. Let
GL,(F) be the set of invertible elements of M,,(F). Since matrix multiplication is associative,
Exercise 4 on Homework 1 shows that GL,(F) is a group under matrix multiplication. Let
F! := F\ {0} and observe that F! is a group under multiplication (by the same exercise).
For A € M, (F) let det(A) be the determinant of A. From Linear Algebra we know that
det(AB) = det(A) det(B) and that A is invertible if and only if det(A) # 0. Hence

GL,(F) - F', A det(A)
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is a homomorphism of groups. Since

EB 0 0
0 1 0 0
det|{: -~ -~ -~ :|]|l=a
0 0 1 0
[0 0 0 1]
this homomorphism is onto.
If n > 1,then
(1 0 0 0]
0 1 0 0
det||: -~ -~ -~ :f]=1
0O ... 0 1 0
ja 0 ... 0 1]

for all a € F and since |F| > 1, the function is not 1-1.

Lemma 1.6.5. Let f: G — H be a homomorphism of groups.
(a) fleg)=en.
() f(a™) = f(a)™! for allac@.
(¢) Im f is a subgroup of H.

)

(d) If f is 1-1, then
g: G-Imf, a~ f(a).

is an isomorphism. In particular, G 2 Im f.

Proof. (i)

flea) flea) "™ flegea) “=° fleq) KM enf(eq).

So the Cancellation Law implies f(eg) =epq.
B ! (&)
f@)f@™) " flaa™) L f(eq) F en
and so by , fa™) = f(a)™.

GROUPS
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We will first verify the three conditions of the Subgroup Proposition Let z,y € Im f.
Then by definition of Im f, z = f(a) and y = f(b) for some a,b e G.
(i):  wy=f(a)f(b) = f(ab) €Im f.
(ii): By (@), en = f(e¢) e Im f.
(iii): By , V= fla)t=f(a!)eImF.
So Im f fulfills all three conditions in and so Im f is a subgroup of H.

@Deﬁne
g G-Imf, aw f(a).

Since f is 1-1, [[.6.2) implies that f is bijective. Since f is homomorphism,
g(ab) = f(ab) = f(a)f(b) = g(a)g(b)
for all a,b € G and so also g is homomorphism. Hence g is an isomorphism and thus G 2 Im f. O

Definition 1.6.6. Let G be a group. Then G is called a group of permutations or a permutation
group if G < Sym([I) for some set I.

Theorem 1.6.7 (Cayley’s Theorem). Every group is isomorphic to group of permutations.
Proof. We will show that G is isomorphic to a subgroup of Sym(G). For g € G define

pg: G—-G, zw gz
Let a,b,z € G. Then

(¢a 0 ) () = Pa(Pp(2)) = a(bx) = (ab)z = Pap()

and so

®a © Db = Pap-

Since ex = x for all x € G we have

Pe =idg-

In particular,

600 Gut = Guar = b =idg  and G108, =idg

Thus ¢, is invertible and so a bijection. Thus ¢, € Sym(G) and we obtain a well-defined function

[+ G-Sym(G), g~ ¢,
Observe that
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f(ab) = ¢ap = o © ¢ = f(a) o f(b)
and so f is a homomorphism.
If f(a)= f(b), then ¢, = ¢ and so also ¢,(€) = pp(e). Thus ae = be and a =b. So f is 1-1. Hence
by [1.6.5](d), G is isomorphic to the subgroup Im f of Sym(G). O

Example 1.6.8. Let Ug be the set of units (invertible elements) in Zg, where Zg is the ring of
integers modulo 8. The multiplication table of Ug is

1 3 5 7 -1 3 5 7
111 3 5 7 111 3 5 7
313 9 15 21 and so 313 1.7 5
515 15 25 35 5|15 7 1 3
7|17 21 35 49 7|7 5 31

So

1 3 5 7
¢1= ( ) =(1)
1 3 5 7

1357

¢3 = = (13)(57)
3175
1357

¢5 = = (15)(37)
5713
1357

¢7 = ( ) = (17)(35)
7531

Thus Ug is isomorphic to the subgroup

{(1), (13)(57), (15)(37), (17)(35) }
of Sym({1,3,5,7}).

In general we see that a finite group of order n is isomorphic to a subgroup of Sym(n).
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1.7 Lagrange’s Theorem

Definition 1.7.1. Let K be a subgroup of the group G and a,b € G. Then we say that a is (left)
congruent to b modulo K and write a=b (mod K) if a™'be K.

Notice the the definition of ' = (mod K)’ given here is different than in Hungerford. In Hungerford
the above relation is called “left congruent” and denoted by ’ & (mod K)".

Example 1.7.2. Let G = Sym(3), K = ((1,2)) = {(1),(1,2)}, a = (2,3), b= (1,2,3) and ¢ = (1,3,2).
Then
a'h=(2,3)0(1,2,3)=(1,3) ¢ K

and
ate=(2,3)0(1,3,2) = (1,2) e K.
Hence
(2,3) # (1,2,3) (mod K)
and

(2,3)=(1,3,2) (modK).

/

Proposition 1.7.3. Let K be a subgroup of the group G. Then ' = (modK)' is an equivalence

relation on G.

Proof. We need to show that ' = (mod K )' is reflexive, symmetric and transitive. Let a,b,c € G.

Since ala=ee K, we have a =a (mod K) and so ' = (mod K)' is reflexive.

Suppose that a =b (mod K). Then a™'be K. Since K is closed under inverses, (a”'b)™! € K and
sobtae K. Hence b=a (modK) and = (mod K)' is symmetric.

Suppose that a =b (mod K) and b=c¢ (mod K). Then a™'be K and b~'ce K. Since K is closed
under multiplication, (a™!b)(b71c) € K and thus a 'c e K. Hence a = ¢ (mod K) and ' = (mod K)’
is transitive. U

Definition 1.7.4. Let (G, *) be a group and g € G
(a) Let A, B be subsets of G and g € G. Then
AxB:={a+blacA,be B},
grA={gralacA}

and
Axg:={a*g|lacA}.

We often just write AB,gA and Ag for A« B,g+ A and A * g.

(b) Let K be a subgroup of the group (G,*) . Then g% K called the (left) coset of K in G containing
g. Put

GIK :={g*K|geG}.
So G|K is the set of cosets of K in G.
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Example 1.7.5. Let G = Sym(3) and K = ((1,2)). Compute G/K.
We need to determine all the cosets of K in G. Note first that K = {(1),(1,2)}.

(oK ={(1)ok|keK}={(1)o(1),(1)o(1,2)} ={(1),(1,2)},
(1,2)o K ={(1,2) o (1),(1,2) o (1,2)}  ={(1,2),(1)},
(2,3) 0o K ={(2,3)0(1),(2,3) 2 (1,2)}  ={(2,3),(1,3,2)},
(1,3) o K ={(1,3)0(1),(1,3) o (1,2)}  ={(1,3),(1,2,3)},
(1,2,3) 0 K = {(1,2,3) 0 (1), (1,2,3) 0 (1,2)} = {(1,2,3), (1,3)},
(1,3,2) o K = {(1,3,2) 0 (1),(1,3,2) 0 (1,2)} = {(1,3,2), (2,3)}.

Thus
G/K:{ {(1)7(172)}7 {(2’3)7(1’3’2)}’ {(17273)7(1’3)} }

Note that each element of Sym(3) lies in exactly one of the three cosets. Also each of the cosets
has size two, that is the same size as K.

Proposition 1.7.6. Let K be a subgroup of the group G and a,be G. Then aK is the equivalence
class of ' = (mod K)' containing a. Moreover, the following statements are equivalent

(a) b=ak for some ke K. (g) aK =bK

(b) atb=k for some ke K. (h) aebK

(c) albe K. (i) b=a (mod K)

(d) a=b (mod K) (G) blae K

(e) beaK (k) bta=j for some je K.
(f) aKNnbK + & (1) a=0bj for some je K.

Proof. (@) <= (b): Let k € G. Then

b=ak
< a'b=a'(ak) - Cancellation Law
= a'b=k —[T-4-6)(B)

<= (c)):  Should be clear.
— @: Follows from the definition of ' = (mod K)'.

<= (¢): Recall that aK ={ak |k e K}. So beaK if and only if b = ak for some k € K.
We proved that statements @—@ are equivalent.
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Let [a] be the equivalence class of ' = (mod K)' containing a. We will show that [a] = Ka:

bela]
<= a=b (modK) - Definition of [b]
<~ beaK — Since @ and @ are equivalent

Hence [a] = aK by so the first statement of the lemma holds.

Moreover, Theorem now implies that Statements @— are equivalent. In particular,
is equivalent to @—. Since the statement @ is symmetric in @ and b we conclude that is also
equivalent to (ED—. O

Proposition 1.7.7. Let K be a subgroup of the group G.

Let a € G. Then a is contained in a unique coset X of K in G, namely X = aK.

(a)
(b) Let acG. Then acK if and only if oK = K.
(¢) G/K is a partition of G.
(d) Let T € G/K and a€T. Then the function

6: K->T, k-ak
is a well defined bijection. In particular, |T| = |K]|.

Proof. (&) By [A.L.4(a)), a is contained in a unique equivalence class X of = (mod K), namely [a].
As [a] = aK, this gives (a).

(]E[) Observe that K =eK. So K is a coset of K in GG. Thus @ follows from @

(c) Follows from @
@ Define
e: K->G, kw—ak

Let k,l € K with €(k) = €(l). Then ak = al and the Cancellation Law implies that k& = [.
Thus € is 1-1. Since a € T, @ gives

T=aK={ak|keK}=e(k)|keK}=Ime
Hence [1.6.2|(b) shows that § is a well-defined bijection. O
Theorem 1.7.8 (Lagrange). Let G be a finite group and K a subgroup of G. Then

|G| = |K|-|G/K].

In particular, |K| divides |G|.
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Proof. By [L.7.7d), G/K is partition of in G. Hence

Gl= > ITI.

TeG/K
By [L.7.7(d). |T| = |K] for all T € G/K and so

Gl= > ITI= > |K|=IK|-|G/K]|.
TeG/K TeG/K

O

Example 1.7.9. (1) |D4| = 8 and |[Sym(4)| = 4! = 24. Hence |Sym(4)/Dy4| = 24/8 = 3. So Dy has
three cosets in Sym(4).

(2) Let H =((1,2)) <Sym(3). Since Sym(3) has order 6 and H has order 2, |[Sym(3)/H| = 3.
(3) Since 5 does not divide 24, Sym(4) does not have subgroup of order 5.
Corollary 1.7.10. Let G be a finite group.
(a) If a € G, then |a| divides |G].
(b) If |G| =n, then a" =e for alla e G.

Proof. (@) By Example [L.5.10){)), |a| = |(a)| and by Lagrange’s Theorem, |(a)| divides |G|.
(]EI) Let m = |a|. By @) n = mk for some k € Z and so a” = a™* = (a™)k = ¥ = e. O

Definition 1.7.11. Let I be a finite set and g € Sym([I). Suppose, in cycle notation,
g="(a1,1,a2,1,a31,...ak, 1)(a1,2,022. .. Ay 2) ... (a11,027 .. Ak, 1)
with k1 > ke > ... > k; and all cycles of length 1 listed. Then
(k1,..., k)

1s called the cycle type of g.
Example 1.7.12. (1) (1,4,7,9)(2,3)(5,8) € Sym(10) has cycle type (4,2,2,1,1),

(2) The possible cycle type of elements of Sym(4) are

4), (3,1), (2,2), (2,1,1),(1,1,1,1).

Lemma 1.7.13. Let I be a finite set and g € Sym([I).

(a) Suppose g = (a1,a2,...,a) for pairwise distinct aj,1<j <k in I. Then |g|=k.

(b) Suppose g has cycle type (ki,...,k;). Then |g| =lem(k1,ka,..., k).
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Proof. Let i € I. Then

) aji1 ifi=a; for some 1<j<k
g(1) = .
otherwise

where subscript are read modulo k, that is aj.1 = a;. Hence for n e Z*:

a; ifi=a; for some 1 <j<k
g"(i) =17 g ’
7 otherwise

If follows that ¢" = id; if and only if j = j+n (modk) for all 1 < j < k and so if and only if k | n.
Thus |g| = n.

(]E[) Let

g=(a1,1,a2,1,a31,..-ak, 1)(a1,2,a22 ... Gk, 2) ... (a1,02 ... ak, ;1)

in cycle notation. For 1 < j < define

gj = (CLLj, CLQJ‘ Ce akj,j).

Then

9g=91°92°...°4
and
g"=glogyo...oq "
Hence ¢g" =id; if and only if ¢;' =ids for all 1 < j <I. As seen in @, this holds if and only if k; | n
for all 1 < j <[ and so if and only if lem(k1, ..., k) divides n. O
Example 1.7.14. We will investigate the elements of Sym(4) according to their cycle type:
Cycle type (4):

g = (a,b,c,d) where a,b,c,d are four distinct elements of Sym(4). Then |g| = 4. How many
elements of this form? There are 24 choices for the tuple (a,b,c,d) but always four of these choices
give the same elements:

(a7 b? ) d) = (ba Gy d7 a) = (Ca da a, b) = (da a, bv C).

So there are % =6 elements of cycle type (4). We can list them explicitly:

(1,2,3,4), (1,2,4,3), (1,2,3,4), (1,2,4,3), (1,4,2,3), (1,4,3,2).

Cycle type (3,1):
g=(a,b,c)(d) = (a,b,c). Then |g| =3. Always three of these choices give the same elements:

(a,b,¢) = (b,c,a) =(c,a,b)
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So there are % = 8 elements of cycle type (4). We can list them explicitly:

(1,2,3),(1,3,2),(1,2,4),(1,4,2),(1,3,4),(1,4,3),(2,3,4),(2,4,3)

Cycle type (2,2):

g =(a,b)(c,d). Then |g| = 2. Always eight of these choices give the same elements:

(a,b)(c,d) (b,a)(c,d) (a,b)(d,c)
= (¢,d)(a,b) (¢,d)(b,a) = (d,c)(a,b)

So there are % =3 elements in Sym(4) of the form (a,b)(c,d):

(b,a)(d,c)
(d,c)(b,a) .

(1,2)(3,4), (1,3)(2,4)
Cycle type (2,1,1):

g=(a,b)(c)(d) = (a,b). Then |g| =2. Always four of these choices give the same elements:

(a,0)(e)(d) = (b;a)(c)(d) = (a,b)(d)(¢) = (b, a)(d)(c).

So there are % =6 elements in Sym(4) of cycle type (2,1,1):

(1,2), (1,3),(1,4),(2,3),(2,4),(3,4)

Cycle type (1,1,1,1):

g=(a)(b)(c)(d). Then |g| = 1. All twenty-four choices of (a, b, c,d) give the same element, namely
the identity function. So

(1)(2)(3)(4)
is the only elements if cycle type (1,1,1,1).

All together there are 6 +8 +3 =6+ 1 = 24 elements in Sym(4), just the way it should be.
Definition 1.7.15. A group G is called cyclic if G = (g) for some g€ G.
Lemma 1.7.16. Let G be a group of finite order n.
(a) Let ge G. Then G =(g) if and only if |g| = n.

(b) G is cyclic if and only if G contains an element of order n.
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Proof. () Let g € G. Recall that by Example [L.5.10)[4)) , [(g)| = |g|- Since G is finite, G = (g) if and
only if |G| = [(g)|. And so if and only if n = |g|.

() From (a) we conclude that there exists g € G with |G| = (g) if and only if there exists g € G
with |g| = n. [

Example 1.7.17. (1) We compute in (Z4,+):

1+1=2+0, 1+1+1=3+0, 1+1+1+1=4=0.

Hence 1 has order 4 in (Z4,+). As |Z4] =4 this shows that Z4 is cyclic.

(2) We have a? =1 for all a € Ug. Thus (Us,-) does not have an element of order four and so Uy is
not cyclic.

Corollary 1.7.18. Any group of prime order is cyclic.

Proof. Let G be group of order p, p a prime. Let e # g € G. Then by 1.7.10@ lg| divides p. Since
g #e,|g|#1. Since p is a prime this implies |g| = p. So by 1.7.16@, G = (g) and so g is cyclic. O

Example 1.7.19. All groups of order 3 are cyclic.

Example 1.7.20. Let G = GL2(Q), the group of invertible 2 x 2 matrices with coefficients in Q and
let

1 0
g:=
1 1
Let neZ. Then
" 1 0
g =
n 1
and so
1 0
(9) = nez
n 1
Thus
gl =1Z| = 1Q| = |GI.

(See section for a primer on cardinalities). Also G # (g). So we see that [1.7.16|is not true for
infinite groups.
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1.8 Normal Subgroups

Lemma 1.8.1. Let G be a group, A, B,C subsets of G and g,h € G. Then

A c B if and only if Ag <€ Bg and if and only if gA c gB.
A t=4

(
Ac B if and only if At ¢ B71.

=
v

8
I

{ad|ae A,de BC}
{(ab)c|aec Ajbe B,ceC}

{a(bc) |ac A,be B,ceC}
{fc|feAB,ceC} = (AB)C .

(]E[) Observe first that

A{g}={ablacAbe{g}} ={ag|aec A} = Ag,

and {g}{h} = {gh}. So the first statement in (b)) follows from (a)) applied with B = {g} and C = {h}.
The other two statements are proved similarly.

Ae ={ae|aec A} ={a|aecA} = A. Similarly Ae = A. By (Ag)g™ = A(gg™!) = Ae = A.
Similarly g(g~*A) = A.

@ If A = B the Principal of Substitution gives Ag = Bg. If Ag = Bg, then by (]ED

A=(Ag)g™' = (Bg)g™ = B.
So A = B if and only if Ag = Bg and (similarly) if and only if gA = gB.

@ Suppose that A< B and let a € A. Then a € B and so ag € Bg. Hence Ag € Bg. If Ag € Bg we
conclude that (Ag)g~! c (Bg)g~! and by , A c B. Hence A ¢ B if and only if Ag ¢ Bg. Similarly,
Ac B if and only if gA c gB.
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®
A={alacA}={(a D) acA={a"|acd} =4

(g) Suppose Ac B. Let de A™!. Then d = ™! for some a € A. Then ae€ B andsod=a"'e B!
Thus At c B!
Suppose A7t ¢ B™L. Then (A1)t c(B™!)™! and @) gives A c B.

Let A < G. By the Subgroup Proposition A is e € A, A is closed under multiplication and A
is closed under inverses. Hence

A=eA={ea|acA}c AA, AA={abla,be AYcA A'={a'|acA}, A=AT)Tca™
Thus A= AA and A= AL

(AB)™' = {d"'|de AB} = {(ab)!|acAbeB)}
(2 L {blat|aeAbeB} = {cd|ceBl deA™}
- B—IA—l

() By (i) applied with A = {g}:

_ -1 _ _ _ _ -1 -
(9B)'=({9}B) =B gy ' =By} =By
Similarly, (Ag)™' =g tA%
[

Definition 1.8.2. Let N be a subgroup of the group G. N is called a normal subgroup of G and we
write N < G provided that

gN =Ng
for all g€ G.
Example 1.8.3. (1) (1,3)o{(1),(1,2)} ={(1,3),(1,2,3)} and {1, (1,2)}o(1,3) = {(1,3),(1,3,2)}.
So {(1),(1,2)} is not a normal subgroup of Sym(3).
(2) Let G be a finite group and H < G with ||%|| =2. Then by Lagrange’s Theorem |G/H| = % =2.

Let g € H. Then gives gH = H.
Let ge GNH. Then ge gH and g ¢ H. So H + gH and since |G/H| =2 we get G/H ={H,gH}.
As G/H is a partition of G this gives

goH=G~H=1{(1,2),(2,3),(1,3)}

Applying these these two results to the opposite group of G gives Hg = H for g € H and
Hg=G~ H for ge G~ H. In either case gH = Hg and so H is a normal subgroup of G.
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(3) Let H:=((1,2,3)) < G:=Sym(3). Since (1,2,3) has order three,

H=1{(1),(1,2,3),(1,2,3)%} = {(1),(1,2,3),(1,3,2)}.
Note that H has order three and G has order six. Thus shows that H <4 G.

Definition 1.8.4. A binary operation * on I is called commutative if a*xb=bx*a for alla,bel. A
group (G, *) is called abelian if * is commutative.

Lemma 1.8.5. Let G be an abelian group. Then AB = BA for all subsets A, B of G. In particular,
every subgroup of G is normal in G.

Proof.
AB={ab|laecAjbe B} ={ba|aec Abe B} = BA

If N is a subgroup of G and g € G, then gN = Ng and so N is normal in G. O

Lemma 1.8.6. Let N be a subgroup of the group G. Then the following statements are equiva-
lent:

(a) N is normal in G (that is aN = Na for all a € G).

Q

)

(b) aNa™* c N foraeG.

(¢c) NacaN forallaeG.

(d

(e

(f) ana™t € N for allae€ G and ne N.
)

N c Na forallae@.

Q

Q

)
)

Na'=N forallaeG.

(g) Every right-coset of N in G is a (left) coset of N.

Proof. We will first show that first five statements are equivalent. Let a € G. Then

a'Nac N
<~ a(a'Na)caN - 1.8.1
<~ (a(a”’N))acaN - 1.8.1
— NacaN - el
So
(*) a'NacN <= NacaNl.

Thus result applied to the opposite group gives
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(%) aNa'cN <= aNcNa
Thus

NacaN forallaeG

a'NacN forall ae G —

aNa'cNforallaeG -G -G, ar a lis a bijection
NacNa forallaeG —(*#)

o

It follows that

NacaN for all a e G
<= (NacaN) and (aN < Na) for all a e G
<= Na=alN for all a e G
Hence @—@ are equivalent.
) = (@
aN = Na
— (aN)a' = (Na)a'  {TSI@)
< aNa'=N N (%)

(@ — @): Since aNa™' = {ana™! |a e N} we get aNa™! ¢ N if and only if ana™ € N for all
meN.

() <= (g): LetacG.
Suppose @ holds. Then Na = alN and so every right-coset is a coset.

Suppose holds. Then Na is a right-coset and so also a coset. Since a = ae € Na we conclude
that both Na and aN are cosets of N in G containing a. So by Na =aN. Thus N is normal
in G. [

Definition 1.8.7. Let G be a group.

(a) An automorphism of G is a isomorphism from G to G.

(b) Let a € G. Then function
inn,: G-G, g~ aga

is called conjugation by a in G. It is also called the inner automorphism of G induced by a.

(c) Let g,h € G we say that g and h are conjugate in G if h = aga™ for some a € G.
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Proposition 1.8.8 (Normal Subgroup Proposition). Let N be a subset of the group G. Then N is
a normal subgroup of G if and only if

(i) N is closed under multiplication, that is abe N for all a,be N.

i)

(ii) eg e N.
(iii) N is closed under inverses, that is a™* € N for all a € N.

(iv) N is invariant under conjugation, that is gng™* € N for all g€ G and n e N.

Proof. By the Subgroup Proposition N is a subgroup of G if and only if , and hold.
By (]ﬂ), N is normal in G if and only if N is a subgroup of G and holds. So N is normal
subgroup if and only if — hold. O

Corollary 1.8.9. Let N be a normal subgroup of the group G, a,be G and S,T € G/N.
(a) (aN)(bN) = abN.
(b) ST e G/N.
(
(d) (aN)t=a"'N.

)

)

c) NeG/N, NS=S8 and SN = S.

)

(e) ST1eG/N, SS™1 =N and ST1S=N.

Proof. @ Since N 4 G we have bN = Nb. By NN = N and multiplication of subsets is
associative, thus
(aN)(bN) =a(Nb)N = a(bN)N =ab(NN) = abN.

(]ED follows from @

N =eN e G/N. We may assume S =aN. Then
NS =N(aN)=(Na)N =(aN)N =a(NN) =aN =S.
(d) By[1.8.1 (aN)t = N"la~t = Nat =a!N.

(EI) From @ we get S™' = (aN)t=a"'NeG/N. Also
SS™' = (aN)(a™'N) = (aNa™")N NN N
and similarly S71S = N. O
Definition 1.8.10. Let (G,*) be a group and N 9G. Then *q/n denotes the binary operation
tg/v 1 GIN xG[N -GN, (S,T)—>S*T

Note here that by (@, ST is a coset of N, whenever S and T are cosets of N. G|/N is called
the quotient group of G with respect to N.
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Theorem 1.8.11. Let G be a group and N 9G. Then (G/N,*gn) is group. The identity of G/N
18
eG/N =N = eN,

and the inverse of T'€ G|N with respect to *q/n is T

Proof. By definition * g,y is a binary operatlon on G/N. By -@) *q/N 1s associative; by -'
N is an identity for *g/y; and by -@ T~ is an inverse of 7.

Example 1.8.12. (1) Let n be an integer. Then nZ = {nm | m € Z} is subgroup of Z, with respect
to addition. Since Z is abelian, nZ is a normal subgroup of Z. So we obtain the quotient group
Z/nZ. Of course this is nothing else as Z,,, the integers modulo n, views as a group under
addition.

(2) By-. (1,2, 3)) is a normal subgroup of Sym(3). By Lagrange’s Theorem |Sym(3)/((1,2,3))|
has order 2 =2 and so Sym(3)/((1,2,3)) is a group of order 2.
Sym(3)/{(1,2,3)) = {{(1),(1,2,3),(1,3,2)}, {(1,2),(1,3),(2.3)} }
The Multiplication Table is
* ‘ {(1),(1,2,3),(1,3,2)}  {(1,2),(1,3),(2,3)}

{(1),(1,2,3),(1,3,2)} | {(1),(1,2,3),(1,3,2)}  {(1,2),(1,3),(2,3)
{(1,2),(1,3),(2,3)} | {(1,2),(1,3),(2,3)} {(1),(1,2,3),(1,3,2)}

Let N =((1,2,3)). Then Sym(3)/N ={(1)oN,(1,2)oN} and we can rewrite the multiplication
table as

* (1)oN (1,2)oN
(1)oN (1)oN (1,2)oN
(1,2)oN | (1,2)o N (1)oN

Lemma 1.8.13. Let I be a finite set and f,g € Sym(I).

(a) Suppose
g= (a171, a271, . akhl)(am, a2,2 e ak272) e (al’l, ag’l Ce akl’l)

in cycle notation. Then
fogof™=
(FCar11), flas), - Flar, 1)) (F(ar2), F(azs) - f(ary2)) - (F(ar), flasg) - flar,0))
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(b) Two elements of Sym(I) are conjugate if and only if they have the same cycle type.

Proof. (@) Just observe that
(fof ) (f(aiy)) = f(g(fl(f(aij)))) = f(9(aiy)) = f(ai1;))

@ From @ we conclude that if g has cycle-type (ki,...,k;), then also fogo f~! has cycle type

(koo k).
Conversely suppose that h € Sym(I) same the same cycle type (ki,...,k;) as g. Then

h=(b1,1,b2,1,03,1,--biy 1) (b1,2,022 ... biy2) ... (b1, b2y .. by, 1)

for some b;;. Then
fr I—>1, aye by

is a well-defined bijection from I to I. Hence f € Sym([) and @ shows that fogo f! =h. O

Example 1.8.14. (1) Consider g = (1,4,2)(3,6)(7,8,9,5) and f =(1,7,3)(2,6) in Sym(9). Then

fogof=(7,4,6)(1,2)(38,9,5)
(2) Find all conjugates of (1,2)(3,4) in Sym(4).
The conjugates of (1,2)(3,4) are the elements of cycle type (2,2), that is
(1,2)(3,4), (1,3)(2,4) (1,4)(2,3).
(3) Let g=(1,3,5)(2,4,6) and h = (1,2,5)(3,4,6). Find f € Sym(6) with fogo f~! =h.

1 35 2 46
f= =(3,5)
125 3 46

1.9 The Isomorphism Theorems

Definition 1.9.1. Let ¢ : G — H be a homomorphism of groups. Then
Kerg:={geG|d(g) =en}.

Kero is called the kernel of ¢.

Lemma 1.9.2. Let ¢ : G - H be a homomorphism of groups. Then ker ¢ is a normal subgroup of
G.



1.9. THE ISOMORPHISM THEOREMS

45

Proof. We will verify the four conditions (i)-(iv) in the Normal Subgroup Proposition [1.8.8] Let

g € G. The definition of Ker¢ shows that

(*) geKerg <= d(g9)=en
Let a,b € Ker¢. Then shows that

(%) o(a) =ey and o(b) =ep.

(i) ¢(ab) = p(a)p(b) = egen = ey and so ab € Kerg.
(ii) By d(eq) = ey and so eg € Kerg.
( (b
(

iii) By [1.6.5(b]), p(a™!) = #(a)™* = e} = ey and so a™! € Kerg.
iv) Let d € G. Then

[

¢(dad ™) = p(d)p(a)p(d) ™" = p(d)erd(d) ™" = p(d)$(d) ™" = e

and so dad™! € Ker¢.
By (i)-(iv) and Ker¢ is a normal subgroup of G.

Lemma 1.9.3. Let ¢: G -~ H be a homomorphism of groups.
(a) Let a,beG. Then

d(a) = p(b) <= a'beKer¢p <= aKerp=0bKerp <= acbKerd

(b) ¢ is 1-1 if and only if Ker¢ = {eg}.

Proof. @
¢(a) = ¢(b)
—  ¢(a)'p(b)=eg - Cancellation law
= #a o) =en {LEHM
—  ¢(ab) =ey — ¢ is a homomorphism
— a'beKere — Definition of Ker¢

Hence the first equivalence holds. The other two follow from [1.7.6]

@ Suppose ¢ is 1-1 and let a € Ker¢g. Then ¢(a) = ey = ¢(eg) and since ¢ is 1-1 we get a = eg.

So Ker¢g = {eg}.
Suppose Ker¢ = {eg}. Let a,be G with ¢(a) = ¢(b). Then by (&)

a € bKerg = b{eq} = {beg} = {b}

and so a =b. Thus ¢ is 1-1.
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Lemma 1.9.4. Let N be a normal subgroup of G and define
m: G->G[N, a~aN.

Then 7 is an onto group homomorphism with Kerm = N. m is called the natural homomorphism from
G to G/N.

Proof. Let a,beG. Then

7(ab) = abN (aN)(bN) = 7(a)d(b),

and so ¢ is a homomorphism.

If T'e G/N, then T'= aN for some a € G. Thus 7(a) =aN =T and ¢ is onto. Since ey = N the
following statements are equivalent for a € G

a € Kerg
< ¢(a)=egny - definition of Ker¢
— aN =N —  definition of ¢{1.8.11
— aeN - 1.7.7@
So Kerm = N. O

Corollary 1.9.5. Let N be a subset of the group G. Then N is a normal subgroup of G if and only
if N is the kernel of a homomorphism of groups with domain G.

Proof. By the kernel of a homomorphism is a normal subgroup; and by any normal
subgroup is the kernel of a homomorphism. O

Theorem 1.9.6 (First Isomorphism Theorem). Let ¢ : G — H be a homomorphism of groups. Then
¢: G/Kerg —»Im¢p, aKerp— ¢(a)
1s well-defined isomorphism of groups. In particular
G/Ker¢ = Im ¢.

Proof. Put N :=Ker¢ and a,b e G. By we have

(%) aN =bN <> ¢(a) = ¢(b).

The forward direction shows that ¢ is well-defined and the backward direction shows that ¢ is
1-1.
Let d € Im¢. Then d = ¢(a) for some a € G and so ¢(aN) = ¢(a) = d. Thus ¢ is onto.
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Let S,T € G/N. The S =aN and T = bN for some a,be G. Thus

3(ST) = 5(gNhN) B(ghIN) = 6(gh) = d(9)d(h) = B(gN)B(hN) = B(S)S(T)

and so ¢ is a homomorphism. We proved that ¢ is a well-defined, 1-1 and onto homomorphism, that
is ¢ is a well-defined isomorphism. O

The First Isomorphism Theorem can be summarized in the following diagram:

G

g
& / \ -
o(g) gKer¢
Im¢ = G/Ker¢p

~

Lemma 1.9.7. Let G be a group and g € G. If g has finite order put n :=|g|, otherwise put n = 0.
Consider the homomorphism

¢: Z->G, meg"
from Ezample[1.6.4(1). Then

Ker® =nZ and Im¢ = (g).

In particular,

and, if g has infinite order, then

Proof. By we already know that
Im¢ = {g™ |meZ} = (g).

We compute
Kerp={meZ|p(m)=e}={meZ|g" =e}.

Suppose that ¢ has finite order n. By 1.5.10 we have ¢ = e if and only if n | m. So Ker® =nZ.
Suppose ¢ has infinite order. Then g™ # e for all m € Z*. Since g™™ = (¢™)~! we conclude that
g™ =e if and only if m = 0. Hence Ker¢ = {0} = 0Z = nZ.

The First Isomorphism Theorem says

Z/Ker¢ 2 Im¢
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and so
Z,=Z|nZ=(g).
If g has infinite order, then Ker¢ = {0}. So by ¢ is 1-1 and hence Z 2 Im ¢ = (g). O

Corollary 1.9.8. (a) Let G be a cyclic group of finite order n. Then G = Z,,.
(b) Let G be an infinite cyclic group. Then G = Z.
(¢) Two cyclic groups are isomorphic if and only if they have the same order.
(d) Let G be a finite group of prime order p. Then G =Z,.
Proof. Let G be a cyclic group. Then by definition there exists g € G with G = (g). Let
¢p: Z->G, meg"
be the homomorphism from [1.9.7} Then

Im¢=(g)=G.

(@) Suppose G has finite order n. Then |g] |(9)| = |G|. Hence|1.9.7|shows that Z,, x Im ¢ =
G.

() If G has infinite order, then shows ZzIm¢ = G.

follows from @ and (]E[)
(d) By [1.7.18 any group of prime order is cyclic. So (d) follows from (a)). O

Definition 1.9.9. (a) Let (Aji)icr be a family of sets, that is I is a set and for each i€ I, A; is a
set. Then X;er A; denotes the sets of all functions

f:I->\JA;, with f(i)eA; foralliel
1€l

We denote such a function by (f(z))
family of sets (A;)ier-

- The set Xier A; is called the direct product of the

(b) Let (A, *;) be a family of pairs such that *; is a binary operation on A;. Define a binary
operation * on Xy A; by

(f+g)(@) = f(i) % 9(i) foralliel

or equivalently in tuple notation by

(ai)ier * (bi)ier = (@i *i bi)ier
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This binary operation is called the direct product of the family of binary operations (*;)ie; and
is denoted by
X #i.

iel

(c) If (Ai)7, is a finite family of sets, we write

A xAgx...x A,
for X A;.

Lemma 1.9.10. Let (Gj, *;)ier be a family of groups. Then

(>< Gi, X *i)
iel iel

(egi)iel‘

s a group with identity

Moreover,
(9:)ier = (97 ier
for all (gi)icr € Xier Gi.

Proof. Define G := X;ey and * := (X;es *;). Let a,b,ce G.

a=(a;)ier, b=0i)ier (Ci)ier

with a;,b;,c; € G; for all 1€ 1.

(a*b)*c= (ai)iel * (bi)iel) % (i )ier
= (@i *i bi)ier * (Ci)ier
= ((ai *i bi) i ¢i)es
= (@i *; (bi *i€i))jer
= (@i)ier * (bi *i ¢i) s
= (@i)ier * ((bz’)iel * (Ci)iel)
=ax*(b*c).

So * is associative.
-1

Put e:= (eGi)iq and a”!:= (a.

; )id. Then
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exa=(eq,)ier * (ai)ier = (e, *iai), ;= (ai)ier = a,

axe=(ai)ier * (ec,)ier = (ai *ieq, ), = (ai)ier = a,
alxa= (ai_l)iel * (@i)ier = (ai_l *i ai)ie[ - (eGi)ieI =e
a*a ' =(a;)ier * (a’;l)iel = (ai *; a’;l)id - (eGi)ieI -¢

Thus e is an identity of * and a~! is an inverse of a. Hence (G, ) is a group and the lemma is
proved. O

Example 1.9.11. Let A and B be groups and define

w: AxB-B, (ab)w~b.

Show that 7 is a homomorphism and apply the First Isomorphism Theorem to .

m((a,b)(c,d)) = w(ac, bd) = bd = 7(a, b)w(c,d),
and so 7 is an homomorphism.
Imm = {m(a,b) | (a,b) e Ax B} ={b|aecAbe B} =B,
Kerm = {(a,b) e Ax B|m(a,b) =eg}={(a,b) e AxB|b=eg}={(a,ep) |ac A} = Ax{ep}.
The First Isomorphism Theorem [1.9.6| now shows that
(Ax B)/(Ax{eg}) = B.
Example 1.9.12. Consider the subgroups
A= ((13)) = {(1),(13)} and B = ((13),(24)) = {(1), (13), (24), (13)(24))
of Dy. Then |A| =2,|B| =4 and |D4| = 8. So by we have A< B and B < Dy. But
((14)(23)) 7 0 (13) 0 (14)(23) = (2,4) ¢ A
and so A is not a normal subgroup of Dy, see [1.8.6
Lemma 1.9.13. Let G be a group, H a subgroup of G and T < H.
(a) T is a subgroup of G if and only if T is a subgroup of H.

(b) IfT <G, then T < H.
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(¢) Let a: G — F be a homomorphism of groups. Then the restriction
ag: H->F, hw~a(h).
is a a homomorphism of groups. Moreover,
Kerag = HnKera and Imapg =a(H)
and if o is 1-1, then also ap is 1-1.

Proof. @) Follow immediately from the Subgroup Group Proposition.

(]E[) Suppose T'4 G. Then T < G and @ shows that T'< H. Let h € H. Then h € G and since
T<4G we get hT'=Th. SoT < H.

Let a,be H. Then ap(ab) = a(ab) = a(a)a(b) = ag(a)ay(b) and so apy is a homomorphism.
Let g€ G. Then
g € Keray
<= geH and ag(h)=ep
< geHand a(h)=ep
<= geH and g € Kera
— g € HnKera

So Keray = H nKera.. Also Imay ={ag(h)|he H} ={a(h) |he H} = a(H).
Suppose « is 1-1. If agy(a) = ag(b), then a(a) = a(b) and so a =b. Thus ay is 1-1. O

Theorem 1.9.14 (Second Isomorphism Theorem). Let G be a group, N 4G and A< G. Then
(a) AN is a subgroup of G.

)
(b) N is a normal subgroup of AN.
(¢) AnN is a normal subgroup of A.
)

(d) The function

AJAnN - AN/N, a(AnN)w~aN
is a well-defined isomorphism.
(e) AJAnN = AN/N.

Proof. @ Let a € A, then alN = Na € NA and so AN ¢ NA. So by Homework 4#4 AN is a subgroup
of G.

() Since N < G[1.9.13|(b) implies that N 9 AN.

@ By[L97
m: G->GIN, g~—gN
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is homomorphism with Kerm = N. Hence by 1.9.13 the restriction
ma:A—>GIN, a-aN
is a homomorphism with

(%) Kermry =AnKerr=AnN

By Kerma 9 A, so An N is a normal subgroup of A.

@ We will apply the First Isomorphism Theorem to w4. For this we compute

Im7g ={ma(a)|ac A} — definition of Im
={aN |a € A} — definition of 74
={a(nN)|neN,ac A} -nN=N for all neN, see[L.7.7()
={(an)N)|neN,ac A} H1.8.1)(d)

={dN|de AN} — definition of AN
=AN/N — definition of AN/N
So
(%) Immy = AN/N.

From the First Isomorphism Theorem [1.9.6] we know that
Ta: AlKermy - Immy, aKermy —» ma(a)
is a well-defined isomorphism. Thus by and

Ta: AJ/AnN->AN/N, a(AnN)—-aN

is a well-defined isomorphism.

@ follows from @

The Second Isomorphism Theorem can be summarized in the following diagram.

GROUPS
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HN

////// hN
- =
Xfﬁf\’)

HnN

{e}

Example 1.9.15. Let
H = {f € Sym(4) | f(4) = 4

and note that H = Sym(3).

N = {(1), (1,2)(3.4), (1,3)(2,4), (1,4)(2.3)}.

By Homework 4 N is a normal subgroup of G. By Lagrange

G| 24
N|="1 =<6,
GIN| =151 =F =6

The only element f in N with f(4)=4is f=(1). Thus
() HnaN=1

Hence
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HN/N=zH/HnN - Second Isomorphism Theorem
2H{(D} - ()

*H — First Isomorphism Theorem applied to idy : H - H,h— h

In particular [HN/N| = |H|=6. Since HN/N is a subset of G/N and |G/N| =6 we conclude that
G/N =HN/N. Thus H 2 G/N and so

Sym(3) = Sym(4)/{(1),(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)}.
Lemma 1.9.16. Let ¢ : G - H be a homomorphism of groups.
(a) If A<G then ¢(A) is a subgroup of H, where ¢(A) ={¢(a)|ac A}.
(

)
b) If A< G and ¢ is onto, then ¢(A) < H.
(c) If B< H, then ¢~ Y(B) is a subgroup of G, where ¢ *(B) = {a € A| ¢(a) € A}
)

(d) If B< H, then ¢ 1(B) < G.

Proof. @ Consider the restriction ¢4 : A > H,a — ¢(a). By 1.9.13 ¢4 is a homomorphism and
and Im ¢4 = ¢(A). By [L.6.5|(d), Im¢pa < H, so ¢(A) < H.

[) By ¢(A) < H. Hence by [1.8.6(f) it suffices to show that ¢(A) is invariant under conjuga-
tion. Let be ¢p(A) and h € H. Then b = ¢(a) for some a € A and since ¢ is onto, h = ¢(g) for some
g € G. Thus

(*) hbh™" = ¢(g)p(a)p(g) ™' = ¢p(aga™).

Since A < G, [1.8.6/[f) implies aga™ € A. So shows that hbh™! € ¢(A). Thus ¢(A) is invariant
under conjugation and ¢(A) < G.

We will use the Subgroup Proposition. Let x,y € ¢~ *(B). Then

(%) 6(x) € B and ¢(y) < B.

In particular, since ¢(zy) = ¢(z)¢(y) and B is closed under multiplication we conclude that
#(zy) € B. Hence xy € "1 (B) and ¢~ (B) is closed under multiplication.

By [1.6.5() ¢(ec) = en and by the Subgroup Proposition, ey ¢ H. Thus ¢(eq) € H and
eq e 1 (B).

By (]EI) #(xz71) = ¢(2)™t. As ¢(2) € B and B is closed under inverses we get ¢(z)~! € B.
Thus ¢(z7') € B and 27! € 71 (B). Hence ¢~ (B) is closed under inverses.

We verified the three conditions of the Subgroup Proposition and so ¢~1(B) < G.
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@) By , ¢ Y (B)<G. Let € ¢ 1(B) and g € G. Then

(% % %) d(grg™") = ¢(9)p(x)p(g9) "

As B 4« H we know that B is invariant under conjugation in H. Since ¢(x) € B we get

&(g)p(x)d(g)™t € B. Hence gives gzg! € ¢71(B). Thus ¢ }(B) is invariant under con-
jugation and so @) shows that ¢~1(B) < G. O

Theorem 1.9.17 (Correspondence Theorem). Let N be a normal subgroup of the group G. Put
S(G,N)={H|N<H<G} and S(G/N)={F | F<G|N}.

Let
m:G—>GIN, g~ gN

be the natural homomorphism.

Let N<K<@G. Then n(K)=K|/N.

(a)

(b) Let F<G[N. Then 7 Y(F) =Urer T.
) Let N< K <G and g€ G. Then g€ K if and only if gN € K/N.
)

The function
B: S(G.N)=S(GIN), K KN

is a well-defined bijection with inverse

a: S(G/N)->S(G,N), F-nl(F).

In other words:

(a) If N< K <G, then K/N s a subgroup of G/N.

(b) For each subgroup F of G|N there exists a unique subgroup K of G with N < K and
F=K|N. Moreover, K = n *(F).

(e) Let N<K <G. Then K 4G if and only if K|N <G/N.
(f) Let N<H<G and N<K <G. Then H € K if and only if H/IN ¢ K/N.

(g) (Third Isomorphism Theorem) Let N < H 4 G. Then the function

p: G/H~(GIN)[(HIN), gH ~ (gN)*qn (H/N)

is a well-defined isomorphism.
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Proof. (a) m(K)={n(k)|keK}={kN|keN}=K/N.

@Letg

Ifge

€ G. Then
gen ' (F)
— (g) e F — definition of 77 }(F)
— gN e F — definition of 7
<= ¢gN =T for some T € F
<~ geTforsomeTeF - TeG/N[L77()
— ge€UrerT — definition of union
K, then clearly gN € K/N. If gN € K/N then gN = kN for some k € K and so

gegN =kN c K. Thus g€ K if and only if gN € K/N.
@ Let N < H <G and F < G/N. We will first show that 8 and « are well-defined, that is

H/N <GIN
By H
By [1.9.16

Thus N <7~
So B and

and N <7 }(F) <G.

/N =7(H) and so by [1.9.16|f) H/N < G/N.
7 1(F) <G. Also if n € N, then 7(n) =nN = N = eg/y € F and so n € 771 (N).

().

« are well-defined. We compute
a(f(H)) = n '(H/N) = {geGln(g) e H/N}
- {geGlgNeH/N}y @ {geGlgeny = H

Since 7 onto, implies W(?T_I(F)) = F and so B(«(F')) = F. Hence « is an inverse of 5 and
by [A.2.6/[d), 3 is a bijection.

@ Suppose that K a4 N. Then since 7 is onto, 1.9.16@ implies K/N = n(K) 4 N. Suppose that

By (f) 7~ '(K/N) = K and so by [L.9.16{{d) K < N.

K/N <G/N.
@Wehave
HcK
<~ heKforallhe H — definition of
<= hNeK/N forall he H = (i)
< TeK/NforalTeH/ N -H/N={hN|heH}
<~ H/NcK|N — definition of ¢
Let

n: G/N-GINJ/HIN, T —Txgy(HIN)

be the natural homomorphism. Consider the composition:
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nomi G=GIN[HIN, g~ (gN)«G[N(H|N).

Since n and 7 are homomorphism, also 7o 7 is homomorphism (see Homework 3). Since both 7
and 7 are onto, n o7 is onto (see b). So

(1) Impor=G/N[HIN.
We now compute Ker(nom):

g€ Ker(nom)

<~ (nom)(g)= e(G/N)/(H/N) Definition of Ker(n o )
—  n(n(g9)) = e(G/N)/(H/N) Definition of o
— m(g) € Kern — Definition of Kern
— w(g) e HIN - [1.94
— gN e HIN —  Definition of 7
<~ geH - @
Thus
(2) Ker(nom) = H.

By the First Isomorphism Theorem [1.9.6

p: G[Ker(nom)->Im(nomw), gKer(nomw)—> (nom)(g)

is a well defined isomorphism. Thus by (1) and (2)
p:G[H —~ (GIN)[(H|N), gH - (gN) * (H|N).

is a well-defined isomorphism.
O

Lemma 1.9.18. Consider the infinite cyclic group (Z,+) and observe that the k’th power of n in
(Z,+) is nk.

(a) LetneZ. Then (n)={nk|keZ}=nZ.

(b) Let m e Z with m +0. Then Z - mZ,k — mk is an isomorphism of groups.
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(¢c) Let H<Z. Then H =mZ for a unique m € N.

(d) Let nymeZ. Then nZ <mZ if and only if m|n in Z.

Proof. @) follows from .

@: By @ nZ is an infinite cyclic group with generator n. Hence @ follows from

Note that 0 = ez € H. If H = {0}, then H = 0Z and holds. So suppose H # {0}. Then
there exists 0 # ¢ € H. Since H is closed under inverse, —i € H and so H contains a positive integer.
Let m be the smallest positive integer contained in H. Then mZ = (m) < H. Let h € H. Then
h =gm +r for some ¢, € Z with 0 <r <n. Then r = h—gn € H. Since m is the smallest positive
integer contained in H, r is not positive. Thus r =0 and h = gm € mZ. So H = mZ. Thus is
proved.

@ By @ nZ is the smallest subgroup of Z containing n. Thus nZ ¢ Z if and only if n € mZ and
so if and only of n = mk for some k € Z.

O

Lemma 1.9.19. Let n be a positive integer and consider the cyclic group (Z,,+) of order n. Let
F<(Zy,+).

(a) F=2,,/Z, for a unique m € Z* with m|n.
(b) F=(m+2,)

(¢) Z,|F =2 Z,,.

(d) F=Zn.

Proof. @ By the Correspondence Theorem F = H/nZ for some subgroup H of Z with nZ < H. By

1.9.18@ we have H = mZ for a unique m € N. Since nZ < H = mZ we get m # 0 and m | n, see
1.9.18|[c). Thus () holds.

(o) Follows from mZ = (m) and (a)).
By the Third Isomorphism Theorem

Z,[F =2[nZ [mZ[nZ = Z|mZ = Z,,

From we get ‘Z/nZ/mZ/nZ‘ = ‘Z/mZ| = m. Note also that |Z/nZ| = n. By Lagrange
Theorem applied to the subgroup mZ/nZ of Z/nZ,
2/n2| = |2/nzZ [mZ[nZ]-|mZ/nZ]

Thus
n=m-|mZ/nZ|,
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and so n
|mZ[nZ| = —.
m

By (b) H is cyclic and so by

mZ/nZ=2Zn.

Example 1.9.20. Determine all subgroups and the corresponding quotients of Zis.
The divisors of 12 are 1,2,3,4,6, and 12 and so the subgroups are Z1o are

1Z/12Z = Z1y, 2ZJ12Z =2, 3Z/12Z=Z, 4Z/12Z=Z5, 6Z/12Z=Z,, 12Z/12Z=Z;

The corresponding quotient groups are isomorphic to

Zy, Zy, Zs, Zsy Zs, Zio

Example 1.9.21. Find all subgroups of Sym(3). Which ones are normal?

Let K < Sym(3). Then by Lagrange theorem |K|||Sym(3)| = 6 and so |[K|=1,2,3 or 6. If |K|=1
the K = {(1)}.

If |K| =2, then by K is cyclic and so by [L.7.16fa), K = (g) for some g € K. The elements
of order 2 in Sym(3) are (1,2),(1,3) and (2,3) . So K is one ((1,2)), ((1,3)) and ((2,3)).

Similarly if |K| = 3 we see K = (g) for some g € K with |g| = 3. The elements of order three
in Sym(3) are (1,2,3) and (1,3,2). Also ((1,2,3)) = {1,(1,2,3),(1,3,2)} = ((1,3,2)) and so K =

((1,2,3)).
If |[K| =6 then K =Sym(3). So the subgroups of Sym(3) are

(*) {1}, ((1,2)), ((1,3)), ((2,3)), ((1,2,3)), Sym(3).

By Example ((1,2)) is not normal in Sym(3), while ((1,2,3)) is normal. Similarly neither
((1,3)) nor ((2,3)) is normal in Sym(3). Thus the normal subgroups of Sym(3) are

(**) {(1)}7 Alt(g) = ((17273»7 Sym(3)

Example 1.9.22. Let N = ((1,2)(3,4),(1,3)(2,4)) < Sym(4). Find all subgroups of Sym(4) con-
taining V. Which ones are normal?

Put
H:={f e Sym(4) | f(4) = 4} 2 Sym(3)

By Example N < Sym(4) and
Sym(4)/N = HN/N —=— H/HnN=H/{(1)} ——— H
AN ———— h(HnN)=h{(1)} ={h} —— h
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Thus

¢: H—->Sym(4)/N, hw~ hN.

is an isomorphism. So we can obtain the subgroups of G/N by computing ¢(K) for each subgroups
K of H:

o({D}) = {(HN}
= {10, (1,2)3,4), (1,3)(2,9),(1,4)(2,3)}}
= {0, (1,2)(3,9),(1,3)(2,4), (1,4)(2,3)},
{(1,2),(3,4),(1,3,2,4),(1,4,2,3)}}
¢(((1,3))) = {(DHN,(1,3)N}
= {0, (1,2)(3,9,(1,3)(2,4), (1,4)(2,3)},
{(1,3),(1,2,3,4),(2,4), (1,4,3,2)}}
¢(((2,3)) = {(D)N,(2,3)N}

{{(1),(1,2)(3,4), (1,8)(2,4), (1,4)(2,3)},
{(2.3),(1,3,4,2),(1,2,4,3)), (1,4))}}
{(1)N,(1,2,3),(1,3,2)N}
{{(1),(1,2)(3,4),(1,3)(2,9), (1,9)(2,3)},
{(1,2,3),(1,3,4),(2,4,3), (1,4,2)},
{(1,3,2),(2,3,4),(1,2,4), (1,4,3)}}

¢(((1,2,3)))

¢(H) = Sym(4)/N
By the Correspondence Theorem [1.9.17] the function

S(Sym(4)/N) » S(Sym(4),N), F -7 (F)
is a bijection and

T (F)=UT

TeF
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So taking the unions of the above sets of cosets gives us the subgroups of Sym(4) containing N:

N= {(1,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)}
X1= {(1),(1,2)(3,4),(1,3)(2,4), (1,4)(2,3),(1,2),(3,4),(1,3,2,4), (1,4,2,3)}
Ds= {(1),(1,2)(3,4),(1,3)(2,4),(1,4)(2,3),(1,3),(1,2,3,4),(2,4),(1,4,3,2)}
Xo= {(1),(1,2)(3,4),(1,3)(2,4),(1,4)(2,3),(2,3),(1,3,4,2),(1,2,4,3)), (1,4))
Alb(4) == {(1),(1,2)(3,4),(1,3)(2,4), (1,4)(2,3),(1,2,3),(1,3,4),
(2,4,3),(1,4,2)(1,3,2),(2,3,4),(1,2,4),(1,4,3) }
Sym(4)
By the[1.9.17 F < Sym(4)/N if and only if 7~ (F') g Sym(4). So the normal subgroups of Sym(4)

containing N are
N, Alt(4), Sym(4).
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Chapter 2

Group Actions and Sylow’s Theorem

2.1 Group Action

Definition 2.1.1. Let (G, *) be group and I a set. An action of G on I is a function
o: GxI—=>1 (g,i)—goi
such that
(act:i) eci=1i foralliel.
(act:ii) go (hoi)=(g*h)oi forallg,heG, icl.

The pair (I,¢) is called a G-set. We also say that G acts on I via o. Abusing notations we often
just say that I is a G-set. Also we often just write gi for g o i.

Example 2.1.2. (1) Let (G, *) be a group. We claim that
s GxG—G, (a,g)matg

is an action of G on G.

Indeed, since e is an identity for *, we have e * g = g for all g € G and so (act:i) holds. Since
* is associative, a * (b* g) = (a * b) * g for all a,b,g € G. So also (act ii) holds. This action is
called the action of G on G by left-multiplication.

(2) Let I be a set. We claim that

o: Sym(I)xI—1, (f,i)~ f(i)

is an action of Sym(I) on I. Indeed, id; ¢ =1id;(¢) = ¢ and so (act:i) holds. Moreover,

feolgei)=[f(g(i)=(fog)(2)
for all f,g € Sym([) and i € I and so (act:ii) holds.

63
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(3) Let F be a field. Recall that GL2(F) is the group of invertible 2 x 2 matrices with coefficients
in F. We claim that

o:  GLyg(F)xF* - F?
(A,v) » Av

a bl [z ax + by
c d ’ Y cx +dy

is an action of GLa(F) on F2. Recall that the identity element in GLy(F) is the identity matrix

1 0O
I Since
1 Og|(=z 1rz + Oy z + O T
O 1r|\y Ofz + 1fy OF+y y
we conclude that (act:i) holds. Since matrix multiplication is associative, A(Bv) = (AB)v for

O 1f
all A, B € GLy(F) and v € F2. Hence (act:ii) holds.

The next lemma shows that an action of G on I is basically the same as an homomorphism from
G to Sym([).

Lemma 2.1.3. Let G be a group and I a set.
(a) Let o be an action of G on I. For a € G define
fa:r I-1, i-aoi.

Then f, € Sym(I) and the function

®.: G-Sym(I), awf,

is a homomorphism with ®,(a)(i) = aoi for alla € G and i€ I. ®, is called the homomorphism
associated to the action of G on I.

(b) Let ®:G — Sym(I) be a homomorphisms of groups. Define
op: GxI-—>1I, (g,i)~®(g)(7).
Then o is an action of G on I, called the action of G on I associated to P.
(¢) Let ¢ be an action of G on I. Then g, = o.

(d) ®:G - Sym(I) be a homomorphisms of groups. Then @, = ®.
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Proof. Let a,be G and i € I.
(d) Since fe(i) =eoi=1i we have

(*) fo=id;.
Note that
fap(i) = (ab) o i=ao (boi) = fa(fs(i) = (fao f5)(0)
and so
() Jab = fa o fo.

From applied to b=a"! we have

foofur @ fovr=£. @ iy,

and similarly f,-1 o f, =1id;. So by [A.2.6{[c]), f. is a bijection. Thus f, € Sym([).
Write ® for ®,. Then
(x#)
(ab) = fur 2 oo fy = (a) 0 (1)
and so ® is a homomorphism. Also ®(a)(i) = f,(i) = a ¢4 and so (@) holds.
@ We will write ¢ for og. By @), ®(e) = egym(ry =1id;. Thus

coi=d(e)(i)=ids(i) =
and (act:i) holds.
Also
(ab) o i =®(ab)(i) * 2™ (B(a) o B(b)(i) = D(a)(®(b)(i)) = ao (boi),
and (act:ii) holds. Thus ¢ is an action for G on I.

() Let g€ G and i € I. Then

gow, i=c(g)(i) =goi.
So o, = ¢

(d) Let g€ G and i € I. Then

Doy (9)(0) = g op i =P(g)(4)
Since this holds for all i € I we have ®,,(g) = ®(g). So ®,, = . O

Example 2.1.4. (1) We will compute the homomorphism @ associated the action of a group G
on itself by left-multiplication (see Example [2.1.2[1])). For this let a € G. Then for each g € G,
fa(g) = ag and ®(a) = f,. So @ is the homomorphism used in the proof of Cayley’s Theorem
6.7
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(2) We will compute the homomorphism & associated to the action of a Sym(I) on I (see Example

2.1.2)2)). Let a € Sym(i). Then for all i € I,
fa(@) =a<i=a(i).
So fa = a and thus ®(a) = a. Hence ® = idgym(1)-
Lemma 2.1.5. Let G be a group and H o subgroups of G. Define
ot GxGIH—>G[H, (g9,T)—gT

Then oq g is well-defined action of G on G/H. This action is called the action of G on G/H by left
multiplication.

Proof. Let a e G and T € G/H. Then T =tH for some t € G. We have
aT =a(tH) = (at)H € G/H,
s0 o/ is well defined. By el =T and hence (act:i) holds.

Let a,be G. Then (ab)T = a(bT) by and so also (act:ii) holds. O
Example 2.1.6. Let G = Sym(4) and H = D,. We will investigate the action of G on G/D, by left
multiplication. Recall first that

Dy ={(1),(1,2,3,4),(1,3)(2,4),(1,4,2,3),(1,3),(2,4),(1,2)(3,4),(1,4)(2,3)}
Put

a:=Dy, b:=(1,2)Dy, and c:=(2,3)Ds.
Since (1,2) ¢ Dy, a # b. Since (2,3) ¢ Dy, a # c and since (1,2)710(2,3) = (1,2)0(2,3) = (1,2,3) ¢

Dy, b+ c. By Lagrange’s Theorem |G/Dy| = ||D% = %4

= 3. Hence
G/Dy = {a,b,c}.

We now compute how (1,2),(2,3) and (3,4) act on G/Ds. We start with (1,2):

(1.1) (1,2)a=(1,2)Dy =b,
(1.2) (1,2)b=(1,2)(1,2)Dy = D4 = a,
and

(1,2)c = (1,2)(2,3)Dy = (1,2,3) Dy.

Is (1,2,3) Dy equal to a,b or ¢? Since the function f(; 9y : G/Dy - G[Dy, T = (1,2)T is a bijection
we must have
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(1.3) (1,2)c=c.
So (1,2,3)D4 = (2,3)Dy4. This can also be verified directly: (2,3)7'0(1,2,3) = (1,3) € D4 and so
(233)D4 = (17273)D4

Let ® be the homomorphism from G to Sym(G/D,) associated to the action of G on G/Dy =
{a,b,c}. From (1.1),(1.2) and (1.3):

(1) @((1’2)) = f(1,2) = (avb)'

Next we consider (2,3):
(2.1) (2,3)a=(2,3)Dg=c,

(2.2) (2,3)c=1(2,3)(2,3)Dy = Dy = a,
and since f(g 3) is a bijection
(2.3) (2,3)b=b.

From (2.1),(2.2) and (2,3)

(2) 0((2,3)) = fi23) = (a,0).
(3.1) (3,4)b=(3,4)(1,2) oDy =Dy =a
(3.2) (3,4)a = (3,4)(3,4)b = b

and since f(34) is a bijection,
(3.3) (3,4)c=c.

From (3.1),(3.2) and (3.3):

(3) (I)((?’a 4)) = f(3,4) = (av b)

What is Im ®? We will compute ®(g) for a few elements g € Sym(4).
Since (1,2)(2,3) =(1,2,3) and ® is a homomorphism, we have
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(4) ®((1,2,3)) = ®((1,2))®((2,3)) = (a,b) o (a,c) = (a,b,c),
and

(5) ®((1,3,2)) = ®((1,2,3)7) = @(((1,2,3)) " = (a,b,¢) ™" = (a,,b).
Clearly

(6) o((1)) = (a).

From (1)-(6), ® is onto and so the First Isomorphism Theorem shows that

G/Ker® =Im® = Sym({a, b,c}) ~ Sym(3).

In particular, |G/Ker®| = |Sym(3)| = 6. By Lagrange’s |G /Ker®| = |K|g|<1>\ = % and so |[Ker®| = 4.
What is Ker¢ ? Note that ®(1,2) = (a,b) = ®(3,4) and so
(1,2)(3,4) = (1,2) ' 0 (3,4) e Ker®

Since Ker® is a normal subgroup of G, all conjugates of (1,2)(3,4) are in Ker®. Hence all
elements of cycle type (2,2) are in Ker®, so

N :={(1),(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)} € Ker®.
Since |N| = 4 = |[Ker®| this gives N = Ker®. In particular, N < G and

Sym(4)/N = Sym(4)/Ker® = Sym({a,b,c}) = Sym(3).
Of course we already proved this once before in Example [1.9.15

Lemma 2.1.7 (Cancellation Law for Action). Let G be a group acting on the set I, a € G and
i,7€l. Then

(a) a(ai) =1i.
(b) i=j <= ai=aj.

(c) j=ai <= i=a'j.

. -1 .
Proof. @ a ' (ai) actn (a ta)i Defa™ ; acti ;.

(]EI) Clearly if i = j, then ai = aj. Suppose ai = aj. Then then a™!(ai) = a~*(aj) and so by @),
i=3.
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(E)

Definition 2.1.8. Let G be a group and (I,¢) a G-set.
(a) The relation =, (modG) on I is defined by i =, j (mod G) if there exists g € G with gi = j.

(b) Goi={goi|geG}. Goi is called the orbit of G on I (with respect to ¢) containing i. We
often write Gi for G o 1.

Example 2.1.9. (1) Let G be a group and H a subgroup of G. Then H acts on G by left
multiplication. Let g € G. Then

Hog={hog|heH}={hg|heH}=Hg
So the orbits of H on G with respect to left multiplication are the right cosets of H.
(2) Let I be a set and let ¢ be the natural action of Sym(I) on I, see Example 2.1.2{[2). Let i € I

Sym(I) oi={foilfeSym(I)}={f(i)|feSym(I)}.

Let j € I, then there exists f € Sym(I) with f(i) = 7, for example f = (i,5). So j € Sym([) i
and thus Sym(I) ¢ 7 =1I. Hence I is the only orbit of Sym(7) on I.

(3) Let N ={(1),(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)}. By Homework 4 N is a normal subgroup of
G. Hence by Homework 6,

o: Sym(4) x N - N, (g,n) > gng™"
is an action of Sym(4) on N. Let n € N, then

Sym(4) on = {gon|geSym(4)} = {gng™ | Sym(4)}.

Thus Sym(4) ¢ n consists of all conjugates of n under Sym(4), that is all the elements of the
same cycle type as n. Thus

Sym(4) o e ={e}.

and

Sym(4) ¢ (1,2)(3,4) = {(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)}.
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Lemma 2.1.10. Let ¢ be an action of the group G on the set I.
(a) = (mod@) ’an equivalence relation on I.
(b) Let i eI and let [i], the equivalence class of =, (mod G)’ containing i. Then [i]o = G o i.

Proof. Let i,j,k € I. From ei =i we conclude that i =7 (modG). So ‘= (mod G)’ is reflexive.
Suppose i = j (modG). Then j = gi for some g € G. Hence shows that ¢7'j = i. Thus
j=i (mod@), so ‘= (mod @)’ is symmetric.
Suppose i =j (modG) and j =k (modG). Then j = gi and k = hj for some g,h € G. Thus

(hg)i=h(gi)=hj=k,

andsoi=k (modG). Thus ‘= (modG)’ is transitive . It follows that ' = (mod G)’ is an equivalence
relation.

[i]lo={jel|li=j (modG)}={jel]|j=giforsome geG}={gi|geG}=Gi
O

Proposition 2.1.11. Let G be a group acting on the set I andi,j € I. Then following are equivalent.

In particular, I is the disjoint union of the orbits for G on I.

Proof. By definition of i = 7 (mod G), @) and (]ED are equivalent, and also @ and are equivalent.

By [2.1.10, Gi is the equivalence class of = (mod G) containing i. So by (b)-(h) are equivalent.
0

Definition 2.1.12. Let G be a group acting on the set I. We say that G acts transitively on I if
for all i,j € I there exists g € G with gi = j.

Corollary 2.1.13. Let G be group acting on the non-empty set I. Then the following statements
are equivalent

G acts transitively on I.

(a
(b

)
) I =Gi foralliel.
(¢) I =Gi for someiel.
)

(d) I is an orbit of G on I.
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(e) G has exactly one orbit on I.
(f) Gi=Gj for alli,jeG.

(g) i=j (modQ@G) foralli,je@.
Proof. @ — (]ED: Suppose G acts transitively on I and let 4,5 € I. Then j = gi for some g € G.
Thus j € Gi and so Gi = 1.

(]ED — : Suppose Gi =1 for all 7 € I. Since I is not empty, there exists ¢ € I. Then I = Gi
and holds.

e @: Suppose I = Gt for some i € I. By definition, G7 is an orbit of G on I and so @
holds.

@ — @: Suppose I is an orbit of G on I. Let O be any orbit of G on I. Then both O and
I are orbits for G on [ and OnI =0 # @. Thus shows that O = I. Thus [ is the only orbit
for G on I and @ holds.

@ - @: Suppose G has exactly one orbit, say O, on I and let ¢,j € I. Both Gi and Gj are
orbits for G on I and Gi = O = Gj.

@ = : Suppose Gi = Gj for all 4,5 € I. Let 4,57 € I. Then G7 = Gj and so by [2.1.11
i=j (mod@G).

— @): Suppose i =j (mod@G) for all 4,5 €. Let i,j € I. . Then i=j (mod@G) and so
j = gi for some g € G. Hence G acts transitively on 1. O

Definition 2.1.14. (a) Let G be a group and (I,¢) and (J,0) be G-sets. A function f: I — J is
called G-homomorphism if

faoi)=ao f(i)

for all a € G and i. A G-isomorphism is a bijective G-homomorphism. We say that I and J
are tsomorphic G-sets and write

IzgJ
if there exists a G-isomorphism from I to J.
(b) Let I be a G set and J< 1. Then
Stabg(J)={geG|gj=7 forall jeJ}

and foriel
Stabg (i) ={g € G | gi =i}

Stabgy (i) is called the stabilizer of i in G with respect to .
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Example 2.1.15. (1) Recall that by 2.1.2/2), Sym(n) acts on {1,2,3,...,n} via foi= f(i). We
have
Stabgy gy (1)} ={f € Sym(3) [ f(1) =1} = {(1),(2,3)}

and

Stabgyms)({2,3}) = {f € Sym(5) | f(2) =2 and f(3) = 3} = Sym({1,4,5}) = Sym(3).

(2) Consider the action
o: GxG—G, (g,h)~ghg

if G on G by conjugation. Then
Stabg(h) ={g€ G |goh=h} ={geG|ghg™" =h} = {ge G| gh=hg} = Ca(h)

Theorem 2.1.16 (Isomorphism Theorem for G-sets). Let G be a group and (I,¢) a G-set. Letie I
and put H = Stabg(i). Then
¢: GJ/H - Gi, aHw~ai

is a well-defined G-isomorphism
In particular

G/H zg Gi, |Gi|=|G/Stabg(i)| and |Gi| divides |G|

Proof. Let a,b in G. Then

ai =bi
— aYai)=at(bi) - [2.1.7]
— i=(a"tb)i - R.1.7(a)), (act ii)
— atbe H - H =Stab(i), Definition of Stab
— aH =bH - 176 %) (EI)

So ai = br if and only if aH = bH. The backward direction of this statement means that ¢ is
well defined, and the forward direction that ¢ is 1-1. Let j € Gi. Then j = gi for some g € G and so
¢(gH) = gi = j. Thus ¢ is onto. Since

o(a(bH) = ¢((ab)H) = (ab)i = a(bi) = ap(bH)

is a G-homomorphism. O
¢

Corollary 2.1.17. Let G be a group.
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(a) Let H <G. Then the action
GxG|/H—-H|H (g9,T)—gT
of G on G/H is transitive.

(b) Suppose G acts transitively on the non-empty set I. Let i € I and put H = Stabg(i). Then
G/H and I are isomorphic G-sets.

Proof. (a)) Let T € G/H. Then T = gH = g o H for some g € G. Thus G o H = G/H and [2.1.13] shows
that G acts transtively on G/H.

(]E[) By[2.1.16| G/H and Gi are isomorphic G-sets. Since G acts transitively, we know that I = G1,
see(2.1.13} Thus G/H 2y I. O

Example 2.1.18. By R.1.9[2), Sym(n) acts transitively on {1,2,...,n}. Thus Sym(n) o n =
{1,2,...n}. Set H :=Stabg ., (n). Then

(+) H = {f eSym(n) | f(n) = n} = Sym(n 1)
Then by 2.1.16]

(%) Sym(n)/H ={1,2,3...,n} as Sym(n)-sets .
Thus

Symm)l @ SymI € 1 55 yjen
Sym(n-1)] || S

SO
[Sym(n)| =7 - [Sym(n - 1)]
Since |Sym(1)| =1 = 1!, induction on n shows that [Sym(n)|=n!.

Theorem 2.1.19 (Orbit Equation). Let G' be a group acting on a finite set I. Let I,1 <k <n be
the distinct orbits of G on I. For each 1 <k <n let iy be an element of I;,. Then

11| = > Ikl = > |G/Stabg (ix).
=1

i=1
Proof. By[2.1.11] I is the disjoint union of the I;’s. Hence

(*) 1] = > -
k=1
By [2.1.11] I}, = Gy and so [2.1.16] implies
(%#) |Ix| = |Gi| = |G/[Stabg (ix)| for all 1 <k <n.

Substituting into gives the theorem. O
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Example 2.1.20. Define

H:={ feSym(5) | f({1,2}) = {1,2} }.
For example (1,2), (3,4), and (1,2)(3,5,4) are elements of H, but (1,3)(2,5) is not.
Let f e H. Then f({1,2}) = {1,2} and since f is a bijection we conclude that f({3,4,5}) =
{3,4,5}. Hence the function
H - Sym({172}) x Sym({37475})7 f = (f|{1,2} 7f|{3,4,5} )

is an isomorphism. In particular, H = Sym(2) x Sym(3) and |H|=2-6 = 12.
What are the orbits of H on {1,2,3,4,5} with respect to the action

o: Hx{1,2,3,4,5} - {1,2,3,4,5}, (f,i)~ f(i)

Let fe H. Then f(1)is 1 or 2. So Ho1={1,2}. f(3) can be 3,4 or 5 and so H o3 ={3,4,5}.

So the orbits are
{1,2} and {3,4,5}.

Next we compute the stabilizers of 1 and 3 in H.

Note that f € Stabg (1) if and only if f(1) = 1. Since f({1,2}) = {1,2}, we see that f(1) = 1
implies f(2) =2, but f|(345) is still an arbitrary element of Sym({3,4,5}). It follows that

Stabg (1) = Sym({3,4,5}) = Sym(3).

In particular, |Stabg (1) = 3! = 6.

Also f € Stabg(3) if and only if f(3) = 3. Since f({3,4,5}) = {3,4,5}, we see that f(3) =3
implies that f({4,5}) = {4,5}, thus

Stabp (3) = Sym({1,2}) x Sym({4,5}) = Sym(2) x Sym(2).
In particular, |Stabg (3)] =2!-2! = 4.
The Orbit Equation [2.1.19] implies that
|H/Stabp (1)| + |H [Stabg (3)] = [{1,2,3,4,5}].

As seen above |H| =12, |Stabgy(1)| = 6 and |H/Stabg(3)| = 4. So using Lagrange’s Theorem the
orbit equation becomes

12 12
+

that is
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2.2 Sylow’s Theorem

Definition 2.2.1. Let p be a prime and G a group. Then G is a p-group if |G| = p* for some k € N.

Example 2.2.2. Let n € Z*. Then |Z,| =n. So Z, is a p-group if and only if n is a power of p. So

Z1 is a p-group for every prime p.

Zs is a 2-group.

Zs is a 3-group.

Z, is a 2-group.

Zs is a b-group.

Zg is not a p-group for any prime p.

Z7 is a 7-group.

Zg is a 2-group.

Zg is a 3-group.

Z1p is a not a p-group for any prime p.
Definition 2.2.3. Let G be a finite group and p a prime. A p-subgroup of G is a subgroup of G
which is a p-group. A Sylow p-subgroup of G is a maximal p-subgroup of G, that is S is a Sylow
p-subgroup of G provided that

(i) S is a p-subgroup of G, and
(ii) of P is a p-subgroup of G with S < P, then S = P.
Syl,(G) denotes the set of Sylow p-subgroups of G.

Lemma 2.2.4. Let G be a finite group, p a prime and let |G| = PPl for some k e N and | € Z* with
ptl.

(a) If P is a p-subgroup of G, then |P| < p".
(b) If S < G with |S| = p¥, then S is a Sylow p-subgroup of G.

Proof. (@) Since P is a p-group, |P| = p" for some n € N. By Lagrange’s Theorem, |P| divides |G| and
so p" divides p*l. Since p + I we conclude that n < k and so |P| = p" < p*.

(]EI) Since |S| = p* and S < G, S is a p-subgroup of G. Suppose that S < P for some p-subgroup P
of G. By @) |P| < p¥ =|S|. Since P c S this implies P = S and so S is a Sylow p-subgroup of G. [
Example 2.2.5. (a) [Sym(3)|=3!=6=2-3.

((1,2)) has order 2 and so [2.2.4|(b) shows ((1,2)) is a Sylow 2-subgroup of Sym(3).
((1,2,3)) has order 3 and so is a Sylow 3-subgroup of Sym(3).

(b) |Sym(4)| =4!=24=23.3.
D, is a subgroup of order eight of Sym(4) and so Dy is a Sylow 2-subgroup of Sym(4).
((1,2,3)) is a Sylow 3-subgroup of Sym(4).
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(c) [Sym(5)|=5!=5-24=23.35.
So Dy is a Sylow 2-subgroup of Sym(5),
((1,2,3)) is a Sylow 3-subgroup of Sym(5), and
((1,2,3,4,5)) is a Sylow 5-subgroup of Sym(5).

(d) |Sym(6)|=6!=6-5!=2%.32.5,

Note that Dy x ((5,6)) is a subgroup of order 16 of Sym(6) and so is a Sylow 2-subgroup of
Sym(6).

((1,2,3)) x((4,5,6)) is a group of order 9, and so is a Sylow 3-subgroup of Sym(6).
((1,2,3,4,5)) is a Sylow 5-subgroup of Sym(6).

Proposition 2.2.6. Let G be a finite group and p a prime. Then any p-subgroup of G is contained
in a Sylow p-subgroup of G. In particular, G has a Sylow p-subgroup.

Proof. Let P be a p-subgroup. Define
m:=max{|Q| | @ is a p-subgroup of G with P < Q}.

Choose a p-subgroup S of G with P < S and |S| =m. Let @ be a p-subgroup of G with S < Q. Then
P <@ and so |Q| < m by definition of m. Since S < @ we have m = |S| < |Q|. Thus |Q| =m =|S| and
since S < @Q we get Q = S. Thus S is indeed a maximal p-subgroup of G, that is a Sylow p-subgroup.

In particular, the p-subgroup {e} of G is contained in a Sylow p-subgroup of G and so G has
Sylow p-subgroup. O

Definition 2.2.7. Let G be a group acting on a set I. Let i € I. Then i is called a fixed-point of G
on I provided that gi =i for all g € G. Fix;(G) is the set of all fized-points for G on I. So

Fix;(G) ={iel|gi=1i for all g€ G}.
Lemma 2.2.8 (Fixed-Point Formula). Let p be a prime and P a p-group acting on finite set I. Then
] = [Fix; (P)| (modp).
In particular, if p 4+ |I|, then P has a fixed-point on I.

Proof. Let I4, Is,..., I, be the distinct orbits of P on I. Let m be the number of orbits of size 1 and
choose notation such that

(*) |I|]=1for 1<li<m and |[j]>1form+1<l<n.

Fix i € I and pick 1 <l <n with i€ ;. By[2.1.11
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(%) I = Gi.
We have
i € Fix;(P)
< gi=iforallge G - Definition of Fix;(P)
— Gi = {i} — Definition of Gi
— |Gi| =1 - since i€ Gi
1| =1 - (x4
— l<m - (¥
Thus
(% * %) Fix;(P) = ILT_’LJIZ.
-1

Let m+1<1<n. By[2.1.16| || divides |P|. Since |P| is a power of p, we conclude that |I;| = p
for some t € N. As |;] # 1 we have ¢ > 1. Thus p||[;| and so

(+) || =0 (modp) forallm+1<i<n.
We compute

2 & < G o n
=== 00 =Y |0+ Y, |0 == [Fix/(P)[+ > |4,
=1 =1

l=m+1 l=m+1
and so by
|I] = |Fix;(P)| (modp).
O

Example 2.2.9. Let P =((1,2,3),(4,5,6)) <Sym(8)). Then P has order 9 and so P is a 3-group.
The orbits of P on I:={1,2,3,...,8} are {1,2,3}, {4,5,6}, {7},{8}. The fixed-points of P on I are
7 and 8. So |Fix;(P)| =2, |I| =8 and 8 =2 (mod3), as predicted by

Definition 2.2.10. Let ¢ be an action of the group G on the set I.
(a) P(I) is the set of all subsets of I. P(I) is called the power set of I.
(b) ForaeG and J<I defineao J:={aoj|jeJ}.
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(¢) op denotes the function

op: GxPU)->P), (a,J)—ao]

(d) Let JcI and H < G. Then J is called H-invariant if
hojeld
forallhe H,jeJ.

(e) Let H<G and J an H-invariant subset of I. Then op j denotes the function

omy: HxJ—J, (hj)=hoj

Lemma 2.2.11. Let ¢ be an action of the group G on the set I.
(a) op is an action of G on P(I).

(b) Let H < G and let J be a H-invariant subset of I. Then og y is an action of H on J. In
particular, ho J =J for all he H.

Proof. @ Let a,be J and J a subset [.

eJ={ejljety={jlieJ}=J
and
a(bJ) =a{bj|jeJ} ={a(bj)|jeJ}={(ab)j|jeJ}=(ab)J.
Thus op fulfills both axioms of an action.

(]E[) By eg =eq and so egj =eqj =7 for all j e J. Clearly (ab)j = a(bj) for all a,be H and
jedJ and so (]ED holds. O

Lemma 2.2.12. Let o : G - K be an isomorphism of groups and H < G. Let p be a prime.
(a) a(H) is a subgroup of K isomorphic to H.
(b) Suppose H is a p-subgroup of G. Then a(H) is a p-subgroup of K.
(¢) Suppose H is a Sylow p-subgroup of G. Then a(H) is a Sylow p-subgroup of K.

Proof. @ See Homework 643.

(]EI) By @ we have |a(H)| = |H| = p* for some k e N. So o(H) is a p-group.

By we know that a(H) is a p-subgroup of H. Let @ be p-subgroup of K with a(H) < Q.
By Homework 6#3, a~! is an isomorphism, so (]EI) applied to o' shows that o 1(Q) is a p-subgroup
of H. Since a(H) < Q we get H <o '(Q). As H is a Sylow p-subgroup of G this gives H = a™1(Q)
and so a(H) = a(a™1(Q)) = Q. Thus a(H) is a Sylow p-subgroup of G. O
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Definition 2.2.13. Let A and B be subsets of the group G.

(a) We say that A is conjugate to B in G if there evists g € G with A= gBg™".

(b) Ng(B):={geG|B=gBg'}. Ng(B) is called the normalizer of B in G.
Corollary 2.2.14. Let G be a group, H a subgroup of G and a € G. Let p be a prime.

(a) aHa ' is a subgroup of G isomorphic to H. In other words, conjugate subgroups of G are
isomorphic.

(b) Suppose H is a p-subgroup of G. Then aHa ™' is p-subgroup of G.
(c) Suppose H is a Sylow p-subgroup of G. Then aHa ™t is Sylow p-subgroup of G

Proof. By Homework 3#2 a: G - G, g~ aga™' is an isomorphism. Observe that

o(H)={a(h) |he H} ={aha™ |he H} = aHa™",
so the Corollary follows from [2.2.12] O
Lemma 2.2.15. Let G be a finite group and p a prime. Then
o GxSyl(G) > SyL,(G), (g9,P)—gPg
is a well-defined action of G on Syl,(G). This action is called the action of G on Syl,(G) by
conjugation.

Proof. By Homework 6#3 G acts on G by conjugation. So by 2.2.11@, G acts on P(G) by conjuga-
tion. By 2.2.14 we know that aHa™! € Syl (G) for all H € Syl,(G). Thus Syl,(G) is a G-invariant
subset of P(G). Hence the lemma follows from 2.2.11@ O

Lemma 2.2.16. Let G be a group.

(a) Let B< G. Then Ng(B) = Stabi(B), where ¢ is the action of G on P(G) by conjugation. In
particular, Ng(B) is a subgroup of G.
(b) Let B<G. Then B 4Ng(B).

(¢) Let B<G and A<Ng(B). Then AB <Ng(B) and, if G is finite, |AB| = @ﬂ'gi'

Proof. (g) Na(B)={geG|gBg™' =B} ={geG|goB=DB}=Staby(B).
@ By definition gBg~! = B for all g€ Ng(B). So B 4 Ng(B) by
Let a € A. Then aBa™! = B. So aB = Ba. Hence

AB={ab|beB}=|J{ab|be B} = |J aB = | J Ba = BA.
acA acA acA

So Homework 4#4 shows that AB < Ng(B). We compute
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|AB| = |AB/B||B| - Lagrange’s Theorem
=|A/An B||B| - Second Isomorphism Theorem
A
= \A‘m’B] | B — Lagrange’s Theorem

Theorem 2.2.17. Let G be a finite group and p a prime.

(a) (Second Sylow Theorem) G acts transitively on Syl,(G) by conjugation, that is if S and T are
Sylow p-subgroups of G, then S = gT'g~" for some g€ G.

(b) (Third Sylow Theorem) The number of Sylow p-subgroups of G divides |G| and is congruent to
1 modulo p.

(c) Let S eSyl,(G). Then |Syl,(G)| =|G/Ng(S)|.

Proof. By [2.2.15| G acts on Syl,(G) by conjugation. Let I be an orbit for G on Syl (G) and P e I.
Then P is a Sylow p-subgroup of G. We will first show that

(*) P has a unique fized-point on Syl,(G), namely P.

Let @ € Syl,(G). Then P fixes @ (with respect to the action by conjugation) if and only if
aQa ' =Q for all a € P.

Clearly aPa™! = P for all a € P and so P is a fixed-point for P onSyl,(G).

Now let @ be any fixed-point for P on Syl,(G). Then aQa ' =Q for all a € P and so P < Ng(Q).
Thus implies that PQ is a subgroup of G' and

1Pl 1Q)
Prql

Since P and @ are p-groups, we conclude that |P|, |Q| and |P n Q)| are powers of p. Hence also
|PQ| is a power of p. Thus PQ is a p-subgroup of G. Since P < PQ and P is a maximal p-subgroup
of G we get P = P(@). Similarly, since @ < P@ and () is a maximal p-subgroup of G we have @ = PQ.
Thus P =@ and is proved.

Next we show:

|PQ)|

(%%) |I]=1 (modp).

By (#) Fix;(P) = {P}. Hence |Fix;(P)|=1. By || = [Fix;(P)| (modp) and so holds.

Finally we prove:

(x * %) I is the unique orbit of G on Syl,(G).



2.2. SYLOW’S THEOREM 81

For this let J be an orbit for G' on Syl,(G). By applied to J in place of I we have

|J]=1 (modp)

Hence p + |J| and shows that Fix;(P) # @. Pick Q € Fix;(P). Then () implies P =Q € J.
As Pel weget InJ+@ and[2.1.11] gives J = 1.

Thus holds.

By (* » #) and [2.1.13) we conclude that G acts transitively on Syl,(G) and I = Syl,(G). In
particular, (af) holds.

By [I] =1 (modp) and so also [Syl,(G)|=1 (modp).

By [2.2.16, Ng(S) = Stabg (), where o is the action of G' on Syl (G) by conjugation. Since G
acts transitively on Sylp(G ), the Corollary [2.1.17|to the Isomorphism Theorem for G-sets shows that
Syl,(G) and G/Stab®(S) are isomorphic G-sets. Thus [Syl,(G)| = |G/Stabg (S)| = |G/Ng(S)|. Now
Lagrange’s Theorem implies that [Syl,(G)| divides |G]. O

Lemma 2.2.18. Let X be a set and n € N. Then Sym(n) acts on X" via

ao (ZE1,$2, .. .:En) = ($a—1(1),5€a—1(2), v 7xa‘1(n))'

Proof. Let € = egyp(n)- Then e (i) =iforall 1 <i<nandsoalsoeox=uxforall x e X" Thus
(act:i) holds.

Let a,b e Sym(n) and © = (21,...,2,) € X" Put y:=box and z:=ao (box) =acy. Let 1 <i<n.
Then
Yi = Ty-1(4)
and
Zi = Yam1(i) = Lo (a71(d)) T F(btea ) (i) T T(ao)~1(i)-

Hence ao (box) =2=(aob)ox and also (act:ii) holds. O
Example 2.2.19. Consider n =5 and X ={a,b,c,d,e, f}. Compute (1,5,3) ¢ (b,a,e, f,d).
Put z = (b,a,e, f,d) and h = (1,5,3). Then h~! = (1,3,5).
] 1 2 3 4 5
Rl() |3 2 5 4 1
Ty e a d o fob
Thus

(1,5,3) o (b,a,e, f,d) = (e,a,d, f,b).

So the b in the first position is moved to the fifth position, the a in the second position stays in the
second position, the e in the third position is moved to the first position and so on.
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Theorem 2.2.20 (Cauchy’s Theorem). Let G be a finite group and p a prime dividing the order of
G. Then G has an element of order p.

Proof. Let o be the action of Sym(p) on GP given in[2.2.18] Let h:=(p,p—1,...,2,1) e Sym(p) and
H :=(h). Then H is a subgroup of order p of Sym(p). Observe that

1 2 ... p-1 »p
Rt =(1,2,...,p) =
2 3 ... P 1
and so
(*) h°(917927~~79p):(92793,-'-79;9791)

Hence h fixes (g1,92,...,9p) if and only if (g2,93,...,9p,91) = (91,92,---,9p-1,9p) and so if and
only if g1 = 92,92 = 93, 9p-1 = gp, gp = 91 - Thus

(%) Fixgr(h) = {(9,9,.--,9) | g€ G}.
Put
J={(91,92,---,9p) €G" | 192 .. gp = €}.
If g1 =g2=...=gp, then gig2...g, = ¢} and so by
(x %) Fix;(H)={(9,9,---,9) | g€ G,g" = €}.

In particular

(+) (e,...,e) e Fix;(H).

Our goal is now to show that |Fix;(H)|> 1. For this we will use the Fixed-Point-Formula
for H on acting on J. But we first must make sure that H acts on J. By 2.2.11@, we need to verify
that J is H-invariant. Let (g1, 92,...9p) € J. Then

gi192...9p = €.
Multiplying with g;! from the left and g; from the right gives

9293 - - - 9pg1 = €,

and so

(92;937- . '7gp7gl) eJ.
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Thus h oz € J for all x € J. Hence ho J ¢ J. Note that h"*' o J =h" o (ho J) S h" o J. So
induction on n shows that h" o .J ¢ .J for all n e N. As H = (h) = {h? | 0<i < p} we conclude that .J

is an H-invariant subset of G". Thus by 2.2.11|(b), H acts on J and so by

(++) |J| = |Fix;(H)| (modp).

Note that |J| = |GP™'. Indeed we can choose g1,92,...,gp-1 freely and then g, is uniquely

determined, namely g, = (g1 ... gp) " Since p divides |G| we conclude that p‘ |7| and so (++])) implies

p| [Fix; (H)|.

By (e,...,e) e Fixj(H). Hence |Fixj(H)| > 1 and so |Fix;(H)| > p > 2. Thus we can choose
x € Fixyj(H) with = # (e,...,e). By there exists g € G with z = (g,...,9) and ¢’ = e. As

x % (e,...,e) we have g # e. Since g” = e we get |g|| p, see 1.5.10. As p is a prime and |g| # 1, this
gives |g| = p. O

Theorem 2.2.21 (First Sylow Theorem). Let G be a finite group, p a prime and S € Syl,(G). Let

|G| = p*l with ke N, 1€ Z* and p +1 (p* is called the p-part of |G|). Then |S| = p*. In particular,
Syl,(G) ={P <G | |P|=p"}

and G has a subgroup of order p*.

Proof. Let S € Syl,(G). Since S is a p-group we have [S| = p™ for some m € N. Put N :=Ng(S). By
we have S <4 N.

Suppose for a contradiction that p divides |[NV/S|. Then by Cauchy’s Theorem N /S has a subgroup
P of order p. By the Correspondence Theorem, there exists a subgroup @ of N with S < @ and
P =Q/S. Lagrange’s Theorem shows that

Q1 =1Q/S|IS| = [P||S| = pp™ = p™**.
Thus @ is a p-subgroup of G' with S <@ and S # Q. But this a contradicts S € Syl,(G).
Thus p does not divide |[N/S|. By [2.2.17| we have
|G/N|=[Sylp(G)| =1 (modp).
So p does not divide |G/N|. Two application of Lagrange’s Theorem give

|G| = |G/NI|IN| = |G[N|IN/S||S| = p™n, wheren :=|G/N||N/S]|

Since p divides neither G/N nor N /S, we get p + n. Since p™n = |G| = p*I conclude that p" = p*.
Thus |S| = p*.

We proved that any p-Sylow subgroup of G has order p*. Conversely by (]EI) any subgroup
of order p* of G is a Sylow p-subgroup of G, so
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SyL,(G) = {P <G | |P|=p"}.

Example 2.2.22. (1) Find the Sylow 2-subgroups of Sym(3).

(2)

We have |Sym(3)| = 3! = 2-3. The subgroups of order 2 of Sym(3) are ((1,2)),((1,3)) and
((2,3)) and so by the First Sylow Theorem

Syly(Sym(3)) = {((1,2)),{(1,3)),{(2,3))}.

Find and count the Sylow 5-subgroups of Sym(5)

We have [Sym(5)| = 5! = 23-3-5. So the Sylow 5-subgroups are the subgroups of order 5. Let
H < Sym(5) with |[H| =5. Let (1) # he H. Then |h| =5 and so h = (a,b,c,d,e) is five cycle.
There are 120 choices for the tuple (a,b,c,d,e). But any of the five cycles

(a7 b?c?d? e)7 (b7 c?d? e7 a)? (c7 d7 670/7 b)7 (d7 67 a7 b7 C)7 (67 a? b’ c7d)

is also equal to h. Hence there are % = 24 elements of order five in Sym(5). Since H = (h) any

of the four elements of order five in H uniquely determines H. Thus there are % = 6 Sylow
5-subgroups in G. Note here that 6 =1 (mod5) in accordance with the Third Sylow Theorem.

Let G be any group of order 120 and s5 the number of 5-Sylow subgroups of G. The Third Sylow
Theorem says that s5 | 120 and s5 =1 (mod5). So 5 + s5 and since 120 = 5 - 24 we conclude
that s5 | 24. The number less or equal to 24 and congruent to 1 modulo 5 are 1,6,11,16 and
21. Of these only 1 and 6 divide 24. So s5 =1 or 6.

Lemma 2.2.23. Let G be a finite group and p a prime. Let S be a Sylow p-subgroup of G. Then S
is normal in G if and only if S is the only Sylow p-subgroup of G and if and only if |Syl,(G)| = 1.

Proof. By the Second Sylow Theorem

Syl,(G) ={gSg~" | g€ G}.

So Syl,(G) = {S} if and only if S = gSg~! for all g in G and so by @ if and only if S is
0

normal in G.

Example 2.2.24. (1) ((1,2,3)) is the only Sylow 3-subgroup of Sym(3) and so ((1,2,3)) < Sym(3)

(2)

by 2223

Sym(3) has three Sylow 2-subgroups, and so ((1,2)) ¢ Sym(3) by

Definition 2.2.25. A group G is called simple if {e} and G are the only normal subgroups of G.
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Example 2.2.26. Let G be a simple group of order 168. We will show that G is isomorphic to a
subgroup of Sym(8).

Let s7 be the number of Sylow 7-subgroups of G and let S be a Sylow 7-subgroup of G. By the
First Sylow Theorem, |S| =7 and so S # {e} and S # G. Since G is simple, S ¢ G and so by
s7 # 1. Since |G| = 168 = 7-24, the Third Sylow Theorem implies that s7 =1 (mod7) and s7||G|.
Hence s7 | 24. The numbers which are less or equal to 24 and are 1 modulo 7 are 1,8,15 and 22. Of
these only 1 and 8 divide 24. As s7 # 1 we have s7 = 8.

Put I :=Syl;(G) and let ¢ : G - Sym([/) be the homomorphism associated to the action of G' on
I by conjugation (see @)) So for g in G we have ¢(g)(S) = gSg™*.

Suppose that Kerg = G. Then ¢(g) = egym(ry = id; for all g € G and so
S=6¢(9)(S)=gSg".

for all g € G. Thus by (ED, S 4 G, a contradiction, since G is simple.

Hence Ker¢ # G. By Ker¢ 4 G. Since G is simple we get Ker¢ = {e}. Thus by ¢ is
1-1 and so by [1.6.5((d),

(*) G 2z Im¢ < Sym([])

Since |I| = [Syl;(G)| = s7 = 8, there exist a bijection 8: 1 - {1,2,...,8}. Hence by Homework 3#6
there exists an isomorphism « : Sym(/) — Sym(8).

Thus Homework 6#3 shows that Im¢ = a(Im¢) < Sym(8). Since G = Im¢ we conclude G =
a(Im ¢), see Homework 6#1, and so G is isomorphic to a subgroup of Sym(8).
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Chapter 3

Field Extensions

3.1 Vector Spaces

Definition 3.1.1. Let K be a field. A vector space over K (or a K-space ) is a tuple (V,+,¢) such
that

(i) (V,+) is an abelian group.
(ii) ¢:KxV =V is a function called scalar multiplication .
(iii) ao (v+w)=(aov)+(aow) for allacK,v,weV.
(iv) (a+b)ov=(aov)+(bov) for alla,beKjveV.
(v) (ab)ov=ao(bov) foralla,beKveV.
(vi) lkov=wv forallveV
The elements of a vector space are called vectors. The usually just write kv for k o v.
Notation 3.1.2. K be field and (V,+,¢) be vector space.
(a) Oy denotes the identity of + in V.
(b) Let ve V. Then —v denotes the inverse of v with respect to +.
(¢c) Let neZ and veV. Then nv denotes the n’th power of v with respect to +.
Example 3.1.3. Let K be a field.
(1) Z; ={0} is a K-space via f ¢ 0=0 for all k € K.
(2) Let neN. Then K" is an K-space via k ¢ (a1,...,a,) = (ka,...,ka,) for all k,ay,...,a, €K

87
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(3) The ring K[z] of polynomials with coefficients in K is a K-space via
ko(ap+aix+...an,2") = (kag) + (kar)z + ... (kayz™)
for all k,ag,...,a, €K.
Lemma 3.1.4. Let K be a field and V' a field.
(a) Okv=v for allveK.
(b) (-1k)v=-v for allveV.
(¢) kOy =0y for all k e K.
)

(d) LetmneN, let aeK, let (ki,...,kn) and (l1...,1) be lists in K and let (vi,...,v,) be a list in
V. Then

CLZk‘Z‘Ui = Z(aki)vi
i-1 i-1
and N . .
Zkivi + Zlﬂ}l = Z(kl + ll)vl
i=1 i=1 i=1
Proof. 1 will just write 1 for 1x and 0 for Ok.
Oov+0y=00v=(0+0)0v=(00o0v)+(00v).
So by the Cancellation Law 0ov=0y.
Oy =00v=(1+(-1))ov=>~Nov)+(-1)ov=v+(-1)ow.
So by [L.4.8((c]), (-1) o v = —v.
(8)

Oy +koOy=koOy=ko(0y+0y)=ko0y+koly

and so by the Cancellation Law ko 0y =0y.
@ Is readily verified. O

Definition 3.1.5. Let K be a field and V' and K-space. Let L = (v1,...,v,) € V™ be a list of vectors
m V.

(a) L is called K-linearly independent if for all ay,as,...,a, € K:

avi+ave+...av, =0y = aj=as=...=a,=0k.
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(b) Let (ay,az...,a,) € K". Then ajvy + agva + ...+ ayvy, s called a K-linear combination of L.
Spang (£) = {a1v1 + agua + ... anvy, | (a1,...,a,) € K"}

is called the K-span of L. In other words, Spany (L) consists of all the K-linear combination of
L. Recall that an empty sum is defined to be Oy, so Oy is linear combination of the empty list

() and Spang(()) = {Ov}.

(c) We say that L spans V over K, if V = Spang (L), that for all v eV there exists ki,...,ky € K
with
V= kl'l}l + .. .kn’l)n.

(d) We say that L is a basis of V if L is K-linearly independent and spans V' over K.

(e) We say that L is a K-linearly dependent if it’s not linearly independent, that is, if there exist
ki,...,kn €K, not all Ox such that

k:lvl +k‘v2 +...]€Un = Ov.

Example 3.1.6. (1) Put ¢; = (Ok,...,0k, 1k,0k,...,0«) € K" where the 1k is in the i-position.
Then (eq,e2,...,6,) is a basis for K", called the standard basis of K™.

(2) (1k,x,22%,...2™) is a basis for K, [x], where K,[z] is set of all polynomials with coefficients in
K and degree at most n.

(3) The empty list () is basis for Z;.

Lemma 3.1.7. Let K be a field, V' a K-space and L = (v1,...,v,) a list of vectors in V.. Then L is

a basis for V if and only if for each v eV there exists uniquely determined ki, ..., ky € K with
m
v = Z k;v;
i=1
Proof. =: Suppose that L is a basis. Then £ spans v and so for each v € V' there exist ki,..., ky
with
m
v = Z k;v;
i-1

Suppose that also Iy, ...,1, € K with
m
U= Z liv;.
i=1
Then
m m m
Z(kz —li)vi = Zkivi - Zlivi = Oy.
i=1 =1 i=1

Since L is linearly independent we conclude that k; —[; = Ok and so k; = [; for all 1 <¢ < n. So the
k;’s are unique.
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<=: Suppose each v in V is a unique linear combination of £. Then clearly £ spans V. Let
ki,...,ky € K with

m

Z kivi = OV

i=1
Since also

m

Z OK’Ui = OV

i=1
the uniqueness assumption gives k1 = ko = ... = k, = Og. Hence L is linearly independent and thus a
basis for V. 0

Lemma 3.1.8. Let K be field and V' a K-space. Let L = (vi,...,v,) be a list of vectors in V. The
L is linearly dependent if and only if there exists 1 < i < n such that v; is linear combination of

(V1,5 Vin1, Vit 1y -+ -5 Un)-

Proof. =: Suppose L is linearly dependent. Then there exists k1, ..., k, € K, not all OK such that

Z kivi = Ov.
=1

Choose 1< <4 with k; #£0. Then

n
kil"Ui = - Z kij’Uj
j=1

i

and so

= 1

Vi = Z(ki kj)v;

j=1

J#
is a linear combination of (v1,...,vi-1, Vis1,-..,Up).

<—: Suppose next that 1 <4 <n and v; is linear combination of (v1,...,v;-1,0i41,...,0,). Then

Vi = klvl +...+ ki_lvi_l + k”lviﬂ +...+ k:nvn

for some k; € K. Thus
]{?1’01 +...+ ki_lvi_l + (_1K)'Ui + ki+1vi+1 +...+ knvn = Ov.
Since —1k # O this shows that £ is linearly dependent. O

Lemma 3.1.9. Let K be field, V' an K-space and L = (v1,v9,...vy,) a list of vectors in V.. Then the
following three statements are equivalent:

(a) L is basis for V.
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(b) L is a minimal spanning list, that is £ spans V' but for all 1 <i<n,

(V15+ 5 Vin1, Visy - -+, Un)
does not span V.

(¢) L is mazimal linearly independent list, that is L is linearly independent, but for all v e V,
(v1,v2,...,0p,v) is linearly dependent.

Proof. We will show that @ — @ and that @ — .
@ - (]ED: Suppose L is basis. Then £ spans V and L is linearly independent. By the lat-

ter implies that v; is not a linear combination of (v1, ..., Vi—1,Vit1, -, Un). SO (V1,. .., Vic1, Vitly -, Un)
does not span V. Thus £ is a minimal spanning list.

@ - @: Suppose L is a minimal spanning list. Then £ spans V so we only need to show
that L is linearly independent. Suppose not. Then by there exists 1 < ¢ < n such that v; is
linear combination of (v1,...,v;-1,Vi+1,...,0,). Without loss, ¢ = 1. Then

v = Zn: ]{Zﬂ)l)
=2

for some k; € K. Let v e V. Since £ spans V we know that

n
V= Z a;V;
i=1

for some a; € K. Thus

n n n
V=aq (Z klvz) + Z a;v; = Z(alkzi + ai)vi.
=2 =2 =2

Thus v € Span(vs,...,v,). Hence (ve,...,v,) spans V, a contradiction to the definition of a
minimal spanning list.

@ - : Suppose L is basis of V and let v € V. Then £ spans V, so v is a linear
combination of £. Thus shows that (vi,v9,...,v,,v) is linearly dependent, so £ is maximal
linear independent list.

— @: Suppose £ is maximal linear independent list. Then £ is linear independent, so
we only need to show that £ spans V. Let v € V. By assumption (v1,...,v,,v) is linearly dependent
and so

(zn: aivi) +av =0y

i-1
for some a1, as,...,a,,a in K not all Og. If a = Ok, then since L is linearly independent, a; = Ok for
all 1 <4 <n, contrary to the assumption. Thus a # 0 and
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n

v=">(-a"ta;)v;.

i=1
So L spans V. O

Definition 3.1.10. Let K be a field and V' and W K-spaces. A K-linear function from V to W is
function

fvVv-w
such that
(a) f(u+v)=f(u)+ f(v) for all u,v e W
(b) f(kv)=kf(v) for all ke K and veV.

A K-linear function is called a K-isomorphism if it’s 1-1 and onto.
We say that V and W are K-isomorphic and write V 2k W if there exists a K-isomorphism from
V to W.

Example 3.1.11. (1) The function K? - K, (a,b) + a is K-linear.
(2) The function K3 — K2, (a,b,c) = (a+2b,b - c) is K-linear.

(3) We claim that the function f:K — K, k ~ k? is K-linear if and only if K = {0k, 1k }.
Indeed, if K = {0k, 1k}, then &k = k2 for all k € K and so f is K-linear.
Conversely, suppose f is K-linear. Then for all k € K,
= f(k)=f(k-1k) =kf(lk) =klg = k
So Ok = k? — k = k(k — 1k). Since K is a field and hence an integral domain we conclude that
k =0k or k =k —1k. Hence k =0 or k = 1 and thus K= {0k, 1k }.
(4) For f=3%", fiz' e K[z] define

f/ _ Zifixi_l-

i=1
Then
D: Klz]~Klzl, frf

is a K-linear function.

Lemma 3.1.12. Let K be a field and V and W be K-spaces. Suppose that (v, va,...,v,) is basis of
V and let wi,wo,...w, € W. Then

(a) There exists a unique K-linear function f:V — W with f(v;) = w; for each 1 <i<n.

(b) f(zzl:l kivi) = Z?:l kiwi. fOT all kl, ey kn e K.
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(¢) f is 1-1 if and only if (w1, wa,...,wy) is linearly independent.
(d) f is onto if and only if (wi,wa,...,w,) spans W.
(e) f is an isomorphism if and only if (w1, wa, ..., wy,) is a basis for W.

Proof. (a) and (b): If f:V — W is K-linear with f(v;) = w;, then

(*) f(zn;kzvz) = ikif(vi) = ikzwz

for all ki,...,k, e K.

So (]E[) holds. Moreover, since (v, ...v,) spans V, each v in V' is of the form ;" k;v; and so by
, f(v) is uniquely determined. Thus f is unique.

It remains to show the existence of f. Since (v1,...,v,) is a basis for V| any v € V can by
uniquely written as v =Y ,_; k;v;. So we obtain a well-defined function

fo V=W, Y kv kw;.
=1

i=1
It is now readily verified that f is K-linear and f(v;) = w;. So f exists.

(8)

f is1-1
— Kerf = {0y} 193
<~ forallveV: f(v) =0w =— v=0y — Definition of Ker f
— forallkl,...,kneK:f(Zk:ivi):OW:> Zkivi:OV —(v1,...,v,) spans V
i=1 i=1
<~ forall ky,...,k, eK: f(Zk:ivi) =0y = ki=...=kp,=0k - (v1,...,0p) is lin. indep.
i=1
<~ fOI‘aHk?l,...,k‘nEKlZkiwi:OW :>k21:...k‘n=0|< —(]ED
i=1
— (w1,...,wy)  is linearly indep. — Definition of lin. indep.
So holds.
@ We compute
Imf={f(v)|veV} — Defintion of Im f

k1,...kzn€K} - (v1,...,v,) spans V

{f(;kwi)
{Zn:aiwi kl,...kneK} _@

i=1
= Span(wy, wa, ..., wy,) — Definition of Span
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Note that f is onto if and only if Im f = W, if and only of Span(wy,...,w,) =W, and if and only
if (w1,...,wy) spans W.

@ follows from and @ O
Corollary 3.1.13. Let K be a field and W a K-space with basis (w1, ws...,wy). Then the function

n
[+ K'> W, (a1,...an) = Y, aw;
i=1

1s a K-isomorphism. In particular,
w =k K".

Proof. By Example , (e1,€2,...,ey,) is basis for K”. Also f(e;) = w; and so by [3.1.12| f is an

isomorphism. ]

Definition 3.1.14. Let K be a field and (V,+,¢) a K-space. A K-subspace of (V,+,0) is a K-space
(W,®, 0) such that and W € V. Then W is called a K-subspace of V' provided that

(I) WcV.
(I) uew=u+w for all u,we W.
(II) kow=kow for all keK and weW.

Proposition 3.1.15 (Subspace Proposition). Let K be a field, V a K-space and W a subset of V.
Define
o:WxW->W, (uw)—->utw

and
O:KxW->W, (kw)->kouw.

Then (W, @, 0) is well-defined K-subspace of (V,+, 0) if and only if
(i) Oy e W.
(ii) v+we W for all vywe W.

(iii) kweW for all keK, weW.

Proof. Observe first that & and O are well-defined if and only if and holds. So we may
assume that and hold and that & and O are well-defined.

—: Suppose (W, ®, 0) is a K-subspace of (V,®, 0). Then (W, ®) is a subgroup of (V,+) and
the Subgroup Proposition shows that 0y € W.

<=: Suppose that holds. Let w € W. Then —w = (-1g)w € W and the the Subgroup
Proposition shows that (W, @) is a subgroup of (V,+). In particular, (W, ®) is a groups. Since (V,+)
is abelian, also (W, ®) is abelian, indeed:
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ubw=utw=wtu=waov

for all u,w € W. Similarly, all the remaining Axioms of a vector space holds for (W, ®, 0) since they
hold for (V, ¢). We leave the details to the reader. O

Proposition 3.1.16 (Quotient Space Proposition). Let K be field, V' a K-space and W a K-subspace
of V.

(a) V/W:={v+W |veV} together with the addition

tyw: VIWxVIW VW, (u+Vo+ W) e (u+v)+ W

and scalar multiplication

oyyw: KxVIW VW, (kv+ W)= kv+ W
is a well-defined vector space.

(b) The function
m: V->VIW, vev+W

is an onto and K-linear. Moreover, Ker¢p = W.

Proof. @ By Theorem [1.8.11] (V /W, +y ) is a well-defined group. We have

(u+W)+(+W)=(u+v)+W=(v+u)+W=(v+W)+(v+W)

and so (V//W,+y ) is an abelian group. Thus Axiom (i) of a vector space holds.

Let ke V and u,v € V with u+W = v+W. Then u—v € W and since W is a subspace, k(u—v) € W.
Thus ku - kv e W and ku+ W = kv+W. So oy y is well-defined and Axiom (ii) of a vector space
holds. The remaining four axioms (iii)-(vi) are readily verified.

(]E[) By 7 is an onto homomorphism of groups and Kerm = W. Let ke K and v € V. Then

w(kv) =kv+W =k(v+ W),

and so 7 is a K-linear function. O

Lemma 3.1.17. Let K be field, V' a K-space, W a subspace of V. Let (w1,...,w;) be a basis for W
and let (v1,...,v;) be a list of vectors in V. Then the following statements are equivalent

(a) (wi,wa,..., Wk, v1,v9,...0;) is a basis for V.

(b) (v1+W,va+W,...,u + W) is a basis for V|W.
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Proof. Put B := (wy,ws,...

@:@:

, WE, V1,02, .. '7Ul)'

Since B is spanning list for V' there exist a1, ..., ax, b1,...b; € K with
k l
= Z a;w; + Z b;v;
i-1 j=1

Since Zf’;l a;w; € W we conclude that

k k
T=v+W = (Zbivi)+W=Zbi(vi+W).

i=1 =1

Therefore (vy + W,vg + W, ... v+ W) is a spanning list for V/W.
Now suppose that bq,...b; € K with

l
Z bi(vi + W) = OV/W'
j=1

Then (Z§'=1 bivi) + W = W and Z§'=1 biv; € W. Since (wq,ws,...,

ai,as...,a € K with

l k
Z b;v; = Z a;w;
i=1

Jj=1
and so
k
Z -a;) wz+2b v; = 0y.
i=1 7=1

Since B is linearly independent, we conclude that —a; =
(v +Wyvg + W, ...

) = @:

2221 bi(v; + W) for some by, ...

—ag = ...

Suppose (v1 + Wyvg + W, ...,
b; € K. Thus

l
v - Zbivi eW,
i=1

and so

l k
v - Z bi’Ui = Z a; W;
i=1 1=1

for some aq,...,a; € K. Thus

k l
V= Zaiwi + Z bj'l)j,
i=1 j=1

bi=by=...=b =
,v; + W) is linearly independent and so a basis for V//W.
v+ W) is a basis for W. Let ve V. Then v+ W =

Suppose that B is a basis for V. Let T € V/W. Then T = v+ W for some v € V.

wy) spans W there exist

Ok. Thus
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and B is a spanning list.
Now let a1, ...,ak, b1,...b; € K with

k l
(*) Zaiwi-i-ij’Uj:O\/.
i=1
Since Zle a;w; € W, this implies

!
> bi(wi + W) =0y .
j=1

Since (v1 + W,vg + W, ... v+ W) is linearly independent, by = by = ... =b; =0. Thus by (*)

k
> ajw; =0y,
i=1

and since (wq,...,wy) is linearly independent, a; = ... = aj = Ok.
Hence B is linearly independent and so a basis. O

Lemma 3.1.18. Let K be field, V a K-space and (v1,...,v,) and (wi,...wy) be bases for V. Then
n=m.

Proof. The proof is by induction on min(n,m). If n =0 or m =0, then V = {0y }. So V contains no
non-zero vectors and n =m = 0.

Suppose now that n > 1 and m > 1. Without loss n < m. Put W = Span(w;). Clearly (v; +
W,...,u,+W) is a spanning list for V//W. Relabeling the v]s we may assume that (v1+W,...,vp+W)
is a minimal spanning sublist of (vy + W,... v, + W). So by @), (v1+W,...,vp+ W) is a basis
for V/W.

By @ the basis (v1,...,v,) is a maximal linearly independent list. Hence (w1, v1,...,vy)
is linearly dependent , and so cannot be a basis for V. As w; is basis for W we conclude from
that (v1 + W,..., v, + W) is not basis for V/W. It follows that k # n and so k < n. The
induction assumption now implies that any basis for V /W has size k. Since wy is a basis for W and
(w1, ..., wy) is a basis for V, implies that (wq + W,... , w,, + W) is a basis for V//W. Hence
k=m-1landsom=k+1<n<m. Thus n=m. O

Definition 3.1.19. A vector space V' over the field K is called finite dimensional if V' has a (finite)
basis (v1,...,v,). n is called the dimension of K and is denoted by dimg V. (Note that this is

well-defined by .

Lemma 3.1.20. Let K be a field and V' an K-space with a finite spanning list £ = (v1,v9,...,0,).
Then some sublist of L is a basis for V. In particular, V is finite dimensional and dimg V < n.

Proof. Let B be spanning sublist of £ of minimal length. Then B is a minimal spanning list and

B.1.9([t) shows that B is basis for V. O



98 CHAPTER 3. FIELD EXTENSIONS

The next lemma is the analogue of Lagrange’s Theorem for vector spaces:

Theorem 3.1.21 (Dimension Formula). Let V' be a vector space over the field K. Let W be an K-
subspace of V.. Then V is finite dimensional if and only if both W and V /W are finite dimensional.
Moreover, if this is the case, then

dimK V= dimK W+ dimK V/W

Proof. Suppose first that W and V /W are finite dimensional. Let (w1, ws...wy) be basis for W and
(v +W,...0p+ W) a basis for V/W.
Then by [3.1.17| (w1, ..., w;,v1,...,v;) is basis for V. Thus

(%) Vis finite dimensional and dimg V' =k + 1 = dimk W + dimg V /W.
Suppose next that V' is finite dimensional and let (z1, ..., 2,) be a basis for V. Then (z1+ W, 25 +
W,...,zp+ W) is a spanning list for V/W. So by [3.1.20

(**) V /W is finite dimensional.

It remains to show that W is finite dimensional. Let (z1,..., 2x) be a linear independent list in
W and put Z := Span(z1,...,l).. Then (z1,...,2x) is a basis for Z. By (**) know that V' /Z is finite
dimensional, so (*) gives

dimV =dimZ +dimV/Z > k

Thus we can choose k € N maximal such that there exists a linearly independent list (21, ...,2;) in
W. Then (z1,...,2;) is a maximal linear independent list in W and so shows that (z1,...,2x)
is a basis for W. ]

Corollary 3.1.22. Let V' be a finite dimensional vector space over the field K and L a linearly
independent list of vectors in V. Then L is a sublist of basis of V. In particular, L has length at
most dimg V.

Proof. Let W = Span(L). Then L is a basis for W. By |[3.1.21| V/W is finite dimensional and so has
a basis (v + Wyug + W, ... vy + W) for some list (v1,...,v;) in V. Let £ = (w1,...wg). Then|3.1.17
shows that (wi,...,wg,v1,...7;) is a basis for V. O

3.2 Simple Field Extensions
Definition 3.2.1. Let (K, +,-) be a field. A subfield of (K,+,-) is a field (F,®,®) such that

(i) FcK,

(ii) a®@b=a+0b for all a,beK.



3.2. SIMPLE FIELD EXTENSIONS 99

(iii) a®@b=a-b for all a,beK.
If F is a subfield of K we also say that K is an extension field of F and that F < K is a field extension.
Proposition 3.2.2 (Subfield Proposition). Let (K,+,) be a field and F a subset of K. Define

®: FxF-F, (a,b)~a+D.

and
©: FxF->F, (a,b)~a-b.

Then (F,®,0) is a well-defined subfield of (K,+,-) if and only of

a+0¢€ or altt a,b € . ao € or alt a,b € .
(I) beF foralla,beF (IV) abeF for all a,beF
(II) OK eF. (V) lK eF.
(1) ~a€F for all a€F. (VI) a~t e F for all a € F with a # Ok.
Proof. Readily verified. O

Example 3.2.3. Q <R and R < C are field extensions.

Lemma 3.2.4. Let F < K be a field extension. Then K is vector space over F, where the scalar
multiplication is given by

FxK=>K, (f,k)~ fk
Proof. Using the axioms of a field it is easy to verify the axioms of a vector space. O

Definition 3.2.5. A field extension F < K is called finite if K is a finite dimensional F-space.. dimg K
is called the degree of the extension F < K.

Example 3.2.6. (1,i) is an R-basis for C and so R < C is a finite field extension of degree 2. We
claim that Q < R is not finite. Indeed, by [3.1.13| every finite dimensional vector space over Q is
isomorphic to Q™ for some n € N and so by is countable. Since by R is not countable, R

is not finite dimensional over Q.

Lemma 3.2.7. Let F <K be a field extension and V a K-space. Then with respect to the restriction
of the scalar multiplication to F, V is an F-space. If V is finite dimensional over K and F < K is
finite, then V is finite dimensional over F and

dimgV = dimg K- dimg V.

Proof. 1t is readily verified that V is indeed on F-space. Suppose now that V is finite dimensional over
K and that F < K is finite. Then there exist a K-basis (v1,...,v,) for V and an F-basis (ki,...,kn)
for K. We will show that

B:=(kivj|1<i<m,1<j<n)
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is an F-basis for V.
To show that B spans V over F, let v € V. Then since (v1,...,v,) spans V over K there exists
l,...,0, € Kwith

n
(*) v = Z ljl}j.
j=1
Let 1< j <n. Since (k1,...,kn) spans K over F there exists ayj,...an; € F with

(*#) li= ) aijk;.

v= i (iaijk‘i)w = in: iaij(kwj).

Thus B spans V.
To show that B is linearly independent over F, let a;; € F for 1 <7 <m and ¢ < j <n with

i i aij(k:ivj) = Ov.

j=li=1
Then also
m n
(Z aijk‘i) ’Uj = Ov.
j=1 \i=1
Since Y%y a;jk; € K and (v1,...,v,) is linearly independent over K we conclude that for all
1<j<n:
m
Z a,-jki = OK.
i=1
Since (k1,k2,...,kn) is linearly independent over F this implies a;; = O for all 1 <i <m and all

1<j <m. Thus B is a basis for V over F, V is finite dimensional over F and
dimg V =mn = dimg K- dimg V.
O

Corollary 3.2.8. Let F < K and K < E be finite field extensions. Then also F < E s a finite field
ezxtension and

dimg E = dimg K - dimg E.

Proof. By E is a K-space. So the corollary follows from applied with V = E. O



3.2. SIMPLE FIELD EXTENSIONS 101

Before proceeding we recall a few definition and facts from ring theory.
Definition 3.2.9. Let R be a ring.

(a) Let I be a subset of R. Then I is an ideal in R if I is an additive subgroup of R and ri € I
and ir € I for allr e R andi€l.

(b) Let ae R. Then (a):=MN{I<R|I is an ideal in R,a € l}.
(c) Let ae R. Then Ra:={ra|re R}

Lemma 3.2.10. Let R is a commutative ring with identity and a € R. Then Ra = (a). In particular,
Ra is the smallest ideal of R containing a, that is

(a) Ra is an ideal of R.

(b) a € Ra.

(c) If I is an ideal of R with a € R, then Rac I.
Proof. See [Hung, Theorem 6.2]. O
Lemma 3.2.11. Let F be a field and I a non-zero ideal in F[z].

(a) There exists a unique monic polynomial p € F[x] with I = (p) = F[x]p.

(b) Flz]/I is an integral domain if and only if p is irreducible and if and only if F[x]/I is field.

Proof. @ We will first show the existence of p. Since I # {Og} we can choose s € I of minimal degree
with respect to s # Op. Put p:=lead(s)™!-s. Then s is monic, degp = degq and, since I is an ideal,
pel.

Let f e I. . By the Division Algorithm [Hung, Theorem 4.4], f = gp + r where ¢,r € F[z] with
degr < degp. Since [ is an ideal and f,p € I we get r = f —gp € I. Since degr < degp = deggq, the
minimal choice of degq shows that r = 0p. Thus f = gp € (p). Hence I € (p). Aspel and [ is an
ideal, (p) € I. Thus I = (p).

Suppose that also p € F[x] is monic with I = F[z]p. Then p € F[z]p and so p | p. Similarly p | p.
Since p and p are monic, [Hung, Exercise 4.2 4(b)] gives p = p. So p is unique.

This is [Hung, Theorem 5.10]. O

Definition 3.2.12. Let R be a commutative ring with identity, S a subring of R with 1r € S and a
n R.

(a) Then S[a]:={f(a)|feS[z]} cR.

(b) a is called algebraic over S, if there exists a non-zero f € S[xz] with f(a) =0g. Otherwise a is
called transcendental over S.

Example 3.2.13. Consider the field extension Q < C.
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(1) V2 is the a root of 22 — 2 and so v/2 is algebraic over Q.
(2) i is a root of 2% + 1 so 4 is algebraic over Q.

(3) 7 is not the root of any non-zero polynomial with rational coefficients. So 7 is transcendental.
The proof of this fact is highly non-trivial and beyond the scope of this lecture notes. For a
proof see Appendix 1 in [Lang].

Lemma 3.2.14. Let R be a commutative ring with identity, S a subring of R with 1r € S and a in
R

(a) The function ¢, : S[x] - R, f — f(a) is a ring homomorphism.
(b) Im ¢, = S[a] is a subring of R with S € R and a € S[a].
(¢) @q is 1-1 if and only if Kerg, = {0s} and if and only if a is transcendental over S.

Proof. () Let f,g € S[z]. Then

¢a(f+9) = (f+9)(a) = f(a) +g(a) = da(f) + da(9)

and similarly ¢4 (fg) = ¢a(f)da(g). We remark that the assertion (f + g)(a) = f(a) + g(a) and
(fg9)(a) = f(a)g(a) really needs a justification, but leave the the details to the reader.

@) Im ¢ = {@a(f) | f € S[z]} ={f(a) | f € S[z]} = S[a]. By Corollary 3.13 in Hungerford [Hung]
the image of a homomorphism is a subring and so S[a] is a subring of S.

Let s€ S and put f =s. Then f € S[z] and s = f(a) € S[a].
Let g = 1gx. Then g € S[x] and a = g(a) € S[a].

By [1.9.3| ¢, is 1-1 if and only if Kerg, = {Og}. Now
Kerg, = {f € S[z] | ¢a(f) =O0r} = {f € F[z]| f(a) = Or},

and so Ker¢, = {0g} if and only if there does not exist a non-zero polynomial f € S[z] with f(a) = Og,
that is if and only if a is transcendental. O

Theorem 3.2.15. Let F <K be a field extension and a € K. Suppose that a is algebraic over F. Then

)
(b) @: Flz)/(pa) = Flal, f+(pa)~ f(a) is a well-defined isomorphism of rings.
) Da is irreducible.
d) Fla] is a subfield of K.
) Put n:=degp,. Then (1,a,...,a™ ) is an F-basis for F[a]
) F

<F[a] is finite and dimg F[a] = degp,.
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(g) Let geF[z]. Then g(a) =0k if and only if ps | g in F[z].

Proof. @ By 3.2.14, Ker¢, + {Or}. By 3.2.14@ is a ring homomorphism and so by Theorem
6.10 in Hungerford [Hung], Ker¢, is an ideal in F[z]. Thus by [3.2.11} Ker¢, = (p,) for a unique

monic polynomial p, € F[z].

@: By definition of p,, Ker¢, = (p,). By 3.2.14@ @4 is a ring homomorphism and so (]ED follows
from the First Isomorphism Theorem of Rings, [Hung, Theorem 6.13].

and (d): As K is a field we know that K is an integral domain. Since F[a] is a subring of
K this shows that F[a] is an integral domain. By (b)) F[a] 2 F[z]/(p.) and so also F[z]/(p,) is an

integral domain. Hence by [3.2.11|(b)), p, is irreducible and F[z]/(p.) is a field. Since F[a] = F[z]/(pa)
also F[a] is a field. Thus () and (d)) are proved.

Let T € F[x]/(pa). Then T = f+(p,) for some f € F[x]. Let r € F[z]. By|1.7.6| f + (pa) = 7+ (pa)
if and only f = r + g for some g € (p,) and so if and only if f = r + ¢gp, for some g € F[z]. By the
Division Algorithm there exist unique ¢, € F[z] with

f=qpa+r, and degr <degp,

and we conclude that there exists a unique r € F[z] with

T=r+(p,) and degr<n.

Any 7 € F[x] with degr < n can be uniquely written as r = Y7, b;x’, where b; € F. Hence there
exist unique bg, ..., b,-1 € F with

n—1 )
T= Z bixz + (pa)a
=0

that is with

n—1

T =3 b(z"+®a))-

1=0

Thus by
(1+@a)s o+ ®a), -y "7+ (pa) )

is a F-basis for F[z]/(p,). Since ¢, is an isomorphism and ¢, (2’ + (p.)) = a’ we conclude from

BLIZE that

(1, a, at, ..., a”_l)

is a basis for F[a].

@ Follows from @

Note that g(a) = Ok if and only if ¢,(g) = Ok, if and only if g € Kerg,, if and only if g € (p,),
if and only if g = gp, for some ¢ € F[z], and if and only if p, | g in F[z]. O

Definition 3.2.16. Let F < K be a field extension and let a € F be algebraic over F. The unique
monic polynomial p, € F[x] with Kerg, = (pg) is called the minimal polynomial of a over F.
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Lemma 3.2.17. Let F <K be a field extension and a € K be algebraic over F. Then p, is the unique
monic irreducible polynomial in F[x] with p,(a) =0p.

Proof. Note that p,|p, in F[z] and so 3.2.15 shows that p,(a) = Op. By definition p, is monic

and by 3.2.15, Pq is irreducible.
Suppose now that p is a monic, irreducible polynomial in F[z] with p(a) = 0. Then 3.2.15

shows that p, | p. Since p is irreducible, the only monic polynomials dividing p are 1 and p. As p
has a root, (namely a), p, # 1. Thus p = p,. O

Example 3.2.18. (1) It is easy to see that > — 2 has no root in Q. Since x3 — 2 has degree 3,
[Mung, Corollary 4.18] implies that x3 - 2 is irreducible in Q[x]. So [3.2.17| implies that 23 — 2
is the minimal polynomial of /2 over Q. Hence by 3.2.15@

(1, ¥2,(¥2)?) = (1, ¥2), V1)
is a basis for Q[</2]. Thus
Q[V2]={a+b¥2+cV4]|a,b,ceQ}.

(2) Let § =5 = cos(¥) +isin(¥) =4 + i,

Then €2 =1 and € is a root of 3 —1. 231 is not irreducible, since (z3-1) = (z-1)(z?+z+1).
So ¢ is a root of 22 + x + 1. 2% + 2 + 1 does not have a root in Q and so is irreducible in Q[z].
Hence the minimal polynomial of ¢ is 2 + z + 1. Thus

Q€] ={a+b{|a,beQ}.
Lemma 3.2.19. (a) Let a:R— S and 5:S - T be ring isomorphisms. Then

Boa:R—T,r— f(a(r))

and
al:S >R s—al(s)

are Ting isomorphism.

(b) Let R and S be rings, I an ideal in R and a: R — S a ring isomorphism. Put J = «a(I). Then

(a) J is an ideal in S.

(b) B:1—J, i- «ai)is a ring isomorphism.

(c) v:R/I - S/J, r+1I-a(i)+J is a well-defined ring isomorphism.

(d) o(a)) = (a(a)) for all a € R. That is o functions to ideal in R generated by a to the
ideal in S generated in o(a).
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(¢) Let R and S be commutative rings with identities and o : R - S a ring isomorphism. Then

R[z] - S[x], Zn;fzxz > iga(z)ﬂnZ

is a ring isomorphism. In the following, we will denote this ring isomorphism also by o. So if

f =% fiz' € Flz], then o(f) = Tigo(fi)a'.
Proof. Readily verified.

O]

Corollary 3.2.20. Let o :K; — Ky be a field isomorphism. Fori=1,2 let K; <E; be a field extension
and suppose a; € E; is algebraic over K; with minimal polynomial p;. Suppose that o(p1) = p2. Then

there exists a field isomorphism
o: Kl[al] — KQ[CLQ]

with
plar) = az and ply,= o

Proof. By
o:Ki[z] > Kelz],  fr0(f)

is a ring isomorphism. By 3.2.19
o((p1)) = (@(p1)) = (p2)

and so by
(*) Kilz]/(p1) = Ka[z]/(2), [+ (@1) = o(f) + (p2)
is an isomorphism
By BZ.15[5)
(+0) Ki[z]/(p1) > Kila1], f+(p1) =~ f(a1)

Kalz]/(p2) = Ko[az], f+(p2) = f(az2)
both are isomorphism. Hence we obtain an isomorphism
p: Kilz] - Ki[z]/(p1) - Keo[z]/(p2) -  Kolz]

fla) »  f+m) v+ o(f)+(2) » o(f)(a2)
Let k € F1. To compute p(k), choose f =k € Ki[x]. Then

flar) =k, o(f)=0o(k)eKa, o(f)(az)=0(k)
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Thus
p(k) = o (k).

To compute p(ay), choose f =z € Ki[z]. Then

flar)=a1, o(f)=0(z)=2, o(f)(a2)=as.
So
p(ar) = as.

3.3 Splitting Fields
Definition 3.3.1. A field extension F <K is called algebraic if each k € K is algebraic over F.
Lemma 3.3.2. Any finite field extension is algebraic.

Proof. Let F < K be a finite field extension. Put n := dimgK and let a € K. By any F-linearly
independent list in K has lengthy at most n. Thus (1f,a,...,a") is F-linearly dependent and so
there exist fo,..., fn € F, not all Op, with ¥, fia’ = Op. Put f = 3%, f;z* € F[z]. Then f # 0 and
f(a) =0p. Thus a is algebraic over F. O

Example 3.3.3. R < C is algebraic but Q <R is not.

Definition 3.3.4. Let R be a commutative ring with identity, S a subring of R with 1r € S, neN
and ai,az...,a, €K. Forn =0 define S[] =S, and for n > 1, inductively define

Slay,a,...,a;] = S[a1,as,...,ax-1]lax] € R

Definition 3.3.5. Let F <K be field extensions and f € F[x]. We say that f splits in K if there exist
ai...an €K with

(i) f=lead(f)(z—a1)(z—-az)...(z—ay).
We say that K is a splitting field for f over F if f splits in K and
(ii) K=F[ay,aq,...,a,].
Example 3.3.6. Consider the extension R < C.
(1) 22+ 1= (z—-1i)(x - (=i)) and C = R[] = R[i,~i]. So C is splitting field of 2 + 1 over C.

(2) 2% = (x-0)(x-0), but C #R =R[0]. So z? splits over C, but C is not a splitting field of C over
R.

Proposition 3.3.7. Let F be a field and f € F[x]. Then there exists a splitting field K for f over F.
Moreover, F <K is finite of degree at most n!.
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Proof. The proof is by induction on deg f. If deg f <0, then f =lead(f) and so F is a splitting field
for f over F. Now suppose that deg f = k+ 1 and that the proposition holds for all fields and all
polynomials of degree k. Let p be an irreducible divisor of f and put E := F[z]/(p). By Eisa
field. We identify a € F with a + (p) in E. So F is a subfield of E. Put b:=x + (p) € F and n = deg f.
Then E = F[b]. Since p | f we have f € (p) and so f + (p) = (p) = Og. Hence

£(b) = Zobx _ ifi(m(p))i - Zofw s =+ @) =) =0,

and so b is a root of f in E. By the Factor Theorem [Hung}, 4.15] f = (2 -b) - g for some g € E[z]. As
degf =k +1 we have degg = k. So by the induction assumption there exists a splitting field K for g

over E with dimg K < k!. By [3.2.11

dimpE=degp<degf=Fk+1

and so by
dimpK = dimpE-dimg K< (k+1) -kl = (k+1)!
Moreover, there exist ay,...,ar € K with

(i) g=lead(g)(z —a1)(x-az2)... (= -ax);
(ii) K=E[a,as,...,ax]; and

Note that leadf =leadg, f = (x - b)-g and E = K[b]. Hence

(iv) g =lead(f)(z-b)(z—a1)(x -a2)...(x - ax), and
(v) K=F[b]la1,aq,...,ap] =F[b,ai,...,as].

Thus K is a splitting field for f over F.
So the theorem also holds for polynomials of degree k + 1 and, by the Principal of Mathematical
Induction, for all polynomials. O

Lemma 3.3.8. Let F be a field, f € Flx] and K a splitting field for f over F. Suppose a is a root of
f in K and put E := Fla]. Then there exists a unique g € E[x] with f = (x—a)-g and, K is a splitting
field for g over E.

Proof. Note that a is a root of f in E and so the factor theorem shows that f = (z —a)g for some
g € E. Since E[z] is an integral domain, g is unique. Since K is a splitting field for f there exists
b,ai,...,a, € K with

fi=b-(x—a1)(x—az2)...(x —ay)
Since a is a root of f we may assume that a = a;. Since

(x-a1)g=(x-a)g=f=(r—a1)-b-(x-az)...(x—-ay)
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we get,
g=b-(r—az)...(x—ay)
Note that
K=F[ai,...,a,] =F[a][asg,...,an] = E[ag,...a,]
and so K is a splitting field for g over E. O

Theorem 3.3.9. Suppose that

(i) o:F1 — Fq is an isomorphism of fields;

(ii) Fori=1 and 2, f; € Flz] and K; a splitting field for f; over F;; and

(i) o(f1) = f2
Then there exists a field isomorphism

7 : Ky = Ky with & |g,= 0.

Suppose in addition that

(iv) Fori=1 and 2, p; is an irreducible factor of f; in F[x] and a; is a root of p; in K;; and

(v) o(p1) =o(p2).

Then & can be chosen such that
o(ay) = as.

Proof. The proof is by induction on deg f. If deg f <0, then K; = F; and Ky = F5 and so the theorem
holds with ¢ = &.

So suppose that deg f = k+1 and that the lemma holds for all fields and all polynomials of degree
k.

If and hold let p; and a; as there.

Otherwise let p; be any irreducible divisor of f; in Fi[z]. Put ps := o(p1). By ,
o : Ki[z] = Kg[x] is a ring isomorphism. Thus ps is a irreducible divisor of fy. Since f; splits over
K, there exists a root a; for p; in K;.

Put E; := K;[a;]. By there exists a field isomorphism p : E; - Es with p(ay) = az and
p |r,= 0. By the factor theorem f1 = (x —ay) - g1 for some g1 € E;[z]. Put g2 := p(g1) € Ea[z]. Since
p(ay) = ag we get

fa=p(f1) = p((x = a1)-g1) = p(x = a1)p(f1) = (z - az) - go.

For [3.3.8] we conclude that E; is a splitting field for g; over E;. So by the induction assumption
there exists a field isomorphism & : K; - Ky with & |g;= p. We have d(a1) = p(a1) = a2 and
G lr=plF =0

Thus the theorem holds for polynomials of degree k+1 and so by induction for all polynomials. [
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Corollary 3.3.10. Let F be a field, f € F[z] and let K, Ky, Ky be splitting fields of f over F.
(a) There exists a field isomorphism p: Ky - Ko with p |g=idg. .

(b) Let p be an irreducible divisor of f in F[x] and let ajand ag be roots of p in K. Then there
exists a field isomorphisms p : K - K with p |g=idg and o(ay) = as.

Proof. (l): Apply with
Fl:FQZFa U:idFa f1:f2:f
[): Apply with

Fi=F2=F, K =Ky=K,o=idg, fi=fo=f, pi=p2=p
O

Example 3.3.11. By Example C is splitting field of z? + 1 over R. Moreover z2 + 1 is
irreducible over R and i and —i are roots of 2 + 1. Hence 3.3.10@ shows that there exists a field

isomorphism p: C - C with
plr=1idgr and p(i) = —i.

Let a,b€R. Then
pla+bi)=pla)+p(b)p(-i) =a+b(-i)=a-bi

This shows p is complex conjugation. In particular, complex conjugation is an isomorphism of
fields.

3.4 Separable Extension

Definition 3.4.1. Let F be a field and f € F[z].

(a) Let K be a splitting field for f over K and ay,...,a, € K with
f=lead(f)(x-a1)...(z—ay)
We say that f has a double root if a; = a; for some 1 <i<j<n.

(b) If f is irreducible in F[x], then f is called separable over F provided that f does not have a
double root. In gemeral, f is called separable over F provided that all irreducible divisors of f

in F[z] are separable over F.

(¢) Let F<K be a field extension. Then a € K is called separable over K if a is algebraic over F and
the minimal polynomial of a over F is separable over F.

(d) A field extension F <K is called separable if each a € K is separable over F.
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Example 3.4.2. Let Z5 < E be a field extension and let ¢ € E be transcendental over Zy. Put

K=2Zy(t) = {ab™" | a,be Zy[t],b# 0z,}

and
F = Zy(t%).

By Homework 11#2 F and K are subfields of E. It is easy to see that ¢ ¢ F. Since —1z, = 1z,,

-t =(z-t)(z+t)=(z-t)%

So t is a double root of 22 —t2. Since t ¢ F, 2 — 2 has no root in F and so by [Hung), Corollary
4.18] is irreducible in F[z]. Hence by 2?2 — t? is the minimal polynomial of ¢ over F. Since t
is a double root of z2 — 2, 2 — t? is not separable. So also t is not separable over F and K is not
separable over F.

Lemma 3.4.3. Let F<E and E <K be field extensions.

(a) Let a € K be algebraic over F. Then a is algebraic over E. Moreover, if pE is the minimal
polynomial of a over E, and pE s the minimal polynomial of a over F, then paE divides pr m

E[z].
(b) If f € F[z] is separable over F, then f is separable over E.
(¢) If a € K is separable over F, then a is separable over E.

(d) If F <K is separable, then also F <E and E <K are separable.

Proof. @ Since pf,(a) = O and pE € F[z] € E[2] we see that a is algebraic over E. Moreover, as a is
a root of pg. we know that pg divides pE by 3.2 @)

Let f € F[z] be separable over F. Then f = p1ps ... py for some irreducible p; € F[z]. Moreover,
Pi = Gi1Gs2 - - - @1, for some irreducible ¢;; € E[x]. Since f is separable, p; has no double roots. Since
gi; divides p; also ¢;; has no double roots. Hence g;; is separable over E and so also f is separable
over E.

Since a is separable over E, p('f has no double roots. By @ pE divides pg and so also pE has
no double roots. Hence a is separable over E.

@ Let a € K. Since F < K is separable, a is separable over F. So by , a is separable over
E. Thus E < K is separable. Let a € E. Then a € K and so a is separable over F. Hence F < E is
separable. O

3.5 Galois Theory

Definition 3.5.1. Let F <K be field extension. Autg(K) is the set of all field isomorphism o : K - K
with a |p=idE.
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Lemma 3.5.2. Let F <K be a field extension. Then Autg(K) is a subgroup of Sym(K).

Proof. Clearly idk € Autg(K). Let a, f € Autg(K). Then by [3.2.19(la)) a0 3 is a field isomorphism.
If a € F, then a(8(a)) = a(a) = a and so (a0 B) |r=ide. So ao B € Autp(K). By 3.2.19[) a7t is

a field isomorphism. Since a |r= idr also a™! |r= idr and so ™! € Autg(K). So by the Subgroup
Proposition Autg(K) is a subgroup of Sym(K). O

Example 3.5.3. What is Autg(C)?
Let o € Autg(C) and a,b € R. Since or = idgr we have o(a) = a and o(b) =b. Thus

(%) o(a+bi)=c(a)+o(b)o(i)=a+bo().

2

So we need to determine o (i). Since i* = -1, we get

o(i)? =0(i%) = o(-1) = -1.

Thus o(i) = or —i. If 0(i) =4, then (*) shows that o = id¢ and if o (i) = —i, (*) shows that o is
complex conjugation. By Example[3.3.11] complex conjugation is indeed an automorphism of C and
thus

Autgr(C) = {id¢, complex conjugation.}

Definition 3.5.4. Let F <K be a field extension and H ¢ Autk(F). Then

Fixk(H) :={keK|o(k) =k for all 0 € H}.
Fixx(H) is called the fixed-field of H in K.

Lemma 3.5.5. Let F <K be a field extension and H a subset of Autg(K). Then Fixx(H) is subfield
of K containing F.

Proof. By definition of Autg(K), o(a) = a for all a € F, 0 € H. Thus F ¢ Fixx(H). In particular,
OF, 1|: € FIXK(H)
Let a,b e Fixx(H) and o € H. Then

o(a+b)=0c(a)+o(b)=a+b,
and so a+b € Fixx(H).

o(-a)=-o0(a) = -a,

and so —a € Fixx (H).

o(ab) =o(a)o(b) = ab,
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and so ab € Fixx(H). Finally if a # O, then
o(a)=o(a) " =a,

and so a™! € Fixk(H).
Thus Fixk(H) is a subfield of K by the Subfield Proposition. O

Example 3.5.6. What is Fixc(Autr(C))?
By Example Autr(C) = {id¢, o}, where o is complex conjugation. Let a,b € R. Then
idc(a+bi) =a+bi and o(a+bi) = a - bi.

So a + bi is fixed by idc and o if and only if b = 0, that is if and only if a + b € R. Thus

Fixc(Autr(C)) =R.
Lemma 3.5.7. Let F <K be a field extension and a € K.
(a) Let o € Autg(K) and f € F[z]. Then o(f(a)) = f(a(a)).
(b) Autp(K) acts on K via ook =o(k).
(c) Define F(a) :={de™"|,d,e € F[a],e # O|}. Then Staby k(@) = Autg(y) (K)

Proof. @ Let f=Y", fix" with f; e F. Then o(f;) = f;, so

n

o(f(a)) =0 (zo f) =S o (f)o(a) = zo fio(a)i = f(o(a)).

i=0
() Just recall from that Autg(K) ¢ Sym(K) and from Example that Sym(K) acts

in K via ook =o(k).

@ Put
H := Stab g (ky(a) = {0 € Autp(K) | o(a) = a}.

Since F € F(a) and a € F(a) we have
Autp(a)(K) CH.

Note that a € Fixx(H) and by Fixk(H) is a subfield of K containing F. So by Homework 10#38,
F(a) € Fixk(H). Thus H € Autg(q)(K), so H = Autg(, (K). O

Proposition 3.5.8. Let F <K be a field extension and O # f € F[x]. Let R be the set of roots of f
m K, let a € R and let
S:={o(a)|oeAutp(K)}.

(a) Sc R. In particular, R is Autg(K) invariant and Autg(K) acts in R.

(b) Fla] =F(a),
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()
|Autr(K)/Autepq)) (K)| = 5]

Proof. (@) Let be S. Then b= o(a) for some o € Autg(K). Thus

£b) = £(o(a)) o(f(a)) = o (0k) = Ox.
Sobe Rand S c R.

(]E[) Since a is a root of f, we know that a is algebraic over F. Hence by 3.2.15 F[a] is a subfield
of K, so F[a] = F(a).

(8

|S| ={o(a) | o€ Autp(K)} — definition of S
= [Aute(K)/Stabaue ) (@) -2I1I6
= |Aute (K)/Autr) (K)| ~B.5.7(c)
= |Aute (K)/Autr,y) (K)| L)

Definition 3.5.9. Let F <K be field extension.

(a) F <K is called Galois if there exists a separable polynomial f € F[x] such that K is a splitting
field of f over F.

(b) An intermediate field of F <K is a subfield E of K with F c E.
Lemma 3.5.10. Let F'<E and E <K be field extension. If F <K is Galois, then also E < K is Galois.

Proof. Suppose F <K is Galois. Then K is the splitting field of a separable polynomial f € F[x] over
F. Hence there exists aq,...,a, € K with

f=lead(f)(z-a1)...(z-ay), and K=F[ay,...,a,]

Then
K=F[ai,...,a,] €E[a1,...a,] €K

and so K = E[ay,...,a,]. Thus K is a splitting field of f over E. By , f is separable over E
and so E < K is Galois. O

Theorem 3.5.11. Let F <K be a Galois extension. Then

|Aute(K)| = dimg K.
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Proof. The proof is by induction on dimg K. If dimgK = 1, then K = F and Autg(K) = {idg}. So the
theorem holds in this case.

Suppose now dimg K > 1 and that theorem holds for all finite field extensions of degree less than
dimg K. Let f € F[z] be separable polynomial such that K is the splitting field of f over F. Since
dimg K> 1 we have K+ F. Also K =F[ay,...,a,] where ai,...,a,, are the roots of f in K. So there
exists a root a of f in K with a ¢ F. Let p, be the minimal polynomial of a over F. Since a is a root
of f we conclude from that p,|f in F[z], and that p, is irreducible. Since f is separable this
implies that p, has no double roots. Since f splits over K, also p, splits over K. Let R be the set of
roots of p, in K. It follows that

(*) |R| = deg pa.

Put
S:={o(a)|oeAutp(K)}.

We will show that S = R.
Let b € R. Then both a and b are roots of p,. Also p, is an irreducible divisor of f. Thus by
3.3.10|(b) there exists a field isomorphism p: K — K with

p = idf and p(a)=0.
Then p € Autg(K) and so b= p(a) € S. Hence Rc S. By [3.5.8(la)) we have S ¢ R, so

(%) R=S.

We compute

[Autr (K)/Autegq) (K)| = [S] -B5.8(d)
= |R| = ()
= degpa -
=dimg Fla] -[B.2.15¢)
Thus
(% % %) |Aut|:(K)/Aut|:[a](K)| = dimg F[a].

By [3.5.10| F[a] < K is Galois. By we have

(—I—) dimg K = dimg F[a] . dim,:[a] K

Since a ¢ F we have dimgF[a] > 2 and so implies dimg[,)K < dimgK. Hence induction
assumption shows that
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(++) |Aut|:[a](K)| = dimgq) K.

[Aute(K)| = [Aute(K)/Auteg) ()] [Aute(K)| - Lagrange’s

= dimg F[a] - dimgg,) K - and (+-+)
- dimg K -

O

Example 3.5.12. By Example(3.2.18 23~2 is the minimal polynomial of /2 over Q and dimg Q [\3/5] =

3. The other roots of 23 — 2 are £/2 and £2¥/2, where ¢ := e e C, ¢>=1and € # 1. Note that
23-1=(z-1)(22+2+1). So ¢ isaroot of 2 +x+1. Since £ ¢ R, £ ¢ Q[\Z/ﬁ] Thus 22 + 2 + 1 has not
root in Q[¥/2]. It follows that x2 + 2 + 1 is irreducible over Q[%/2] and so 2% + z + 1 is the minimal
polynomial of & over Q [3/5] Put K:=Q [\3/5,5] Then dimQ[ %] K =deg(z? +2+1) =2 and so

dimQK=dimQQ[€’/§]-dimQ[%]K:3-2=6.

Note that

K=Q[V2,¢¥2,62¥2],

and so K is the splitting field of 23— 2 over Q. Let R := {\5/5, £3/2,62 €/§} be the set of roots of z3 - 2.

By R is Autg(K)-invariant and so by [2.2.11f(b), Autq(K) acts on R. The homomorphism
associated to this action is

®: Autp(K) - Sym(R), o~o|g.

By Homework 12, ® is 1-1. By [3.5.11] |Autp(K)| = dimgK = 6. Since also [Sym(R)| = 6 we
conclude that ® is a bijection, so

Autg(K) = Sym(R) = Sym(3).

Lemma 3.5.13. Let F <K be a field extension and G a finite subgroup of Autg(K) with Fixg(G) = F.
Then F <K is finite and dimg K < |G].

Proof. Put m:=|G| and let G = {01,09,...,0,} with o1 = idk.
Let n e N and let (ki,k2,...,k,) be an F-linear independent list in K. Let Cy,Cs,...,C, be the
columns of the matrix
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— ki ks En |
[Uz(kj)]lélfgs: 02(k'1) UQ(kQ) 02(kn)
(o (k1) om(k2) .. (k)]

Claim: (Cq,Cq,...,C}) is linearly independent over K.

Before we prove the Claim we will show that Lemma follows from the Claim. Since K™ has
dimension m over K, implies that any K-linear independent list in K™ has length at most
m. So if (C1,Cy,...,Cy) is linearly independent, then n < m. In particular, there exists a maximal
F-linear independent list (a1, as, ..., a;) in K. If follows that (a1, ...,a;) is an F-basis for K and [ < m.
Thus dimg K < |G|.

We now proof the Claim via a proof by contradiction. So suppose the Claim is false and under
all the F linear independent list (k1,...,k,) for which (C1,C>...,C,) is linearly dependent over K
choose one with n as small as possible. Then there exist l1,[5...[, € K not all zero with

(1) > 1,C; = 0.
j=1
If Iy = Ok, then ;5 1;C; = 0 and so also (ks,...,k,) is a counterexample. This contradicts the

minimal choice of n.

Hence [; # Ox. Note that also 2 =1 lIllej =0. So we may assume that [; = 1g.

Suppose that I; € F for all 1 < j < n. Considering the first coordinates in the equation (1) we
conclude

S 1kj = OF,
j=1

a contradiction since (k1, ..., ky) is linearly independent over F. So there exists 1 < k <n with I ¢ F.
Note that 1 = 1g € F and so k > 1. Without loss k = 2. So Iy ¢ F. Since Fixx(G) = F, ls ¢ Fixx(G)
and so there exists p € G with p(l3) # l2. Note that (1) is equivalent to the system of equation

> ljo(k;) = O for all o € G.
j=1
Applying p to each of these equation we conclude
> p(li)(poo)(k;) =0f for all o € G.
j=1

Since 0 = po (p~! 0 0) these equations with p~! o o in place of o give
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> p(lj)o(k;) = O for all o € G,
j=1

and so

n

(2) 1p(lj)Cj = 0.

7=

Subtracting (1) from (2) gives

i(p(lj) -1;)C; =0.
j=1

Since l1 = 1|: = p(lp), p(ll) - ll = 0|: and so

(3) Z(p(lj)—lj)Cj :().
j=2
Since p(l2) # l2, p(l2) —l2 # Or. So not all the coefficient in (3) are zero, a contradiction to the

minimal choice of n. O

Proposition 3.5.14. Let F <K be a field extension and let G a finite subgroup of Autg(K). Suppose
that Fixk(G) = F and let a € K. Let ay,az,...ay be the distinct elements of Ga = {o(a) |0 € G}. Let
Pa be the minimal polynomial of a over F.

(a) a is algebraic over F.
(b) pa=(x-a1)(z-az)...(x-ay).
(c) pa splits over K.

(d) F<K is separable.

Proof. Put g=(x—a1)(z—az)...(x—a,). Then g€ K[z]. We will show that ¢q € F[z].
Let 0 € G. Then

(%) o(q) = 0((:z —a1)(x-ag)...(x- an)) = (:U - J(al))(x -o(az))... (x - a(an)).
By o(b) € Ga for all b e Ga. Also o is injective. It follows that the function

®: Ga-Ga, b~ o(b)

is well-defined and injective. Since G is finite, also Ga is finite. Thus @ is a bijection. It follows that
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(Jr—o(al))(x—a(ag))...(x—o(an)) =(z-a))(z—-az)...(x—ay) =q.
Thus by

() o(q) =q
Note that ¢ = Y1\ k;z® for some ko, k1, ..., ky € K. Then

i:)kixi =q o(q) = U(ﬁgkixi) = Za(ki)a;i,

i=0
and so
ki = o(k;) for all0 <i<nand all 0 € G.

It follows that for all 0 <¢ < n,

k‘l‘ € FIXK(G) =F.

Hence g € F[z].

Since a = idk(a), there exists 1 < i <n with a = a;. Thus ¢(a) = O and implies that
Pa | ¢ in F[z]. Note that a is a root of p, and p, is irreducible. Hence shows that each b € Ga
is a root of p,. In particular, x — b divides p, in K[z]. Hence also ¢ divides p, in K[z]. We proved
that p,|q and q|p,. As p, and ¢ are both monic, we conclude that p, = ¢q. Hence

Pa=(x-a1)(z—-a2)...(x—-ay).

As a; € K for all 1 <14 <n this shows that p, splits over K. Since the a;’s are pairwise distinct, p,
is separable. So a is separable over K. Since a € K was arbitrary, F < K is separable. ]

Definition 3.5.15. Let F < K be algebraic field extension. Then F < K is called normal if for each
a €K, pg splits over K.

Theorem 3.5.16. Let F < K be a field extension. Then the following statements are equiva-
lent.

(a) F <K is Galois, that is K is the splitting field of a separable polynomial in F[x] over F.
(b) Autg(K) is finite and F = Fixk (Autg(K)).
(¢) F=Fixx(G) for some finite subgroup G of Autg(K).

(d) F<K is finite, separable and normal.
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Proof. @ - (]ED: Suppose F < K is Galois. Then [3.5.11] Autg(K) is finite of order dimg K. Let
E = Fixk (Autg(K)). Then Autg(K) ¢ Autg(K) € Autg(K) and so

(*) Autp(K) = Autg(K).
By [3.5.10| E < K is Galois. So we can apply [3.5.11|to F < K and E < K. Hence

dime K < dimg E - dime K F22 dime K B2 ) Aute(K)| % [Aute ()] B2 dime K.

Hence equality must hold everywhere in the above inequalities. Thus dimg K = dimg K and so
dimpE=1and E=F.

) = (d):  Just choose G := Autg(K).

— (d): By[3.5.13|F <K is finite. By [3.5.14] F < K is separable, and p, splits over K for all

a € F. Thus F <K is normal.

@ o @: Since F < K is finite there exists a K-basis (ai,as,...,a,) for K. Then K ¢
Flai,az2...,a,] €K. So

(%) K=F[aj,az...,a,].

Let p; be the minimal polynomial of a; over F. Since F < K is separable, p; is separable over F.
Since F < K is normal, p; splits over F. Put f := p1ps...p,. Then f is separable and splits over K.

Each a;, 1 <i <nis a root of p; and so of f. Let ai,a90,...,an,...,a, be all the roots of f in K.
Then
<)
K=" Fla1,az...,ap,] SKSFla,a2...,an] €K
and so
K =F[ay,a3...,an].
Thus K is a splitting field of f over F. O

Lemma 3.5.17. Let F < K be a field extension. Let o € Autg(K) and let E be subfield field of K
containing F. Then

JAU.tE(K)O'_l = AutU(E) (K)
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Proof. Let p € Autg(K). Then

p € Aut, ) (K)
p(k) =k for all k e o(E)
p(o(e))=o(e) for all ecE

Definition of Aut,g)(K)
Definition of o(E)

o Yp(o(e))=eforallecE — o is a bijection
(07 1po)(e) for all e E Definition of o~ po
o po € Autg(K) Definition of Autg(K)
peoAute(K)o™ - 1.8.1

Pt

O]

Lemma 3.5.18. Let F <K be a Galois extension and E an intermediate field of F < K. The following
are equivalent:

F <E is normal.

(a
(

b) F<E is Galois.

(¢) E is invariant under Autg(K), that is 0(E) € E for all o € Autg(K).

)
)
)
(d) E=0(E) for all o € Autg(K).

Proof. @) - (]ED: Suppose F < E is normal. Since F < K is separable, @ implies that F <E

is separable. Since F < K is finite, [3.1.21] implies that F < E is finite. Thus F < E is Galois by [3.5.16

() = (): Suppose F < E is Galois. Let a € E and o € Autg(K). By o(a) is a root of p,
in K. Since F < E is normal, p, splits over E. Hence all roots of p, in K are in E, so o(a) € E.

= (d): See[2:2.11({b).

(M) = (@): o(E) =E for all 0 € Autg(|K). Since F < K is Galois we conclude that [3.5.16
F = Fixx (G) for some finite subgroup G of Autg(K). So by [3.5.14] p, splits over K and if b is a root
of pg, then b=0(a) for some o € G. b=0(a) =0(E) =E. So p, splits over E and F < E is normal. [J

Theorem 3.5.19 (Fundamental Theorem of Galois Theory). Let F <K be a Galois Ezxtension. Let
E be an intermediate field of F <K and G < Autg(K).

(a) The function
E— AutE(K)

is a bijection between to intermediate fields of F < K and the subgroups of Autg(K). The inverse
of this function is given by

G - Fixk(G).
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(b) |G| = dimpiy, (o) K and dimg K = [Autg (K)|.
(¢) F<E is normal if and only if Autg(K) is normal in Autg(K).

(d) If F <E is normal, then the function

AutF(K)/AutE(K) —> AutF(E),oAutE(K) -0 |E

is a well-defined isomorphism of groups.
Proof. Let E be an intermediate field of F <K and G < Autg(K). By |3.5.10

(») E<Kis Galois.

Hence by [3.5.11

(%) Autg(K) = dimg K.

@ Since E < K is Galois, [3.5.16| shows that

(% % %) Fixk (Autg(K)) = E.

Put L := Fixk(G). Then

(+) G < Auty (K)
We compute

ok (-+)
Aut, (K] B dimek 22161 9 aut, (1)

It follows that equality holds everywhere. In particular,
(++) |G| = dimg K = dimpiy, () K

and |G| = Aut (K). As G ¢ Aut (]K), this gives G = Aut_(K), that is

(+++) Autpiy (c)(K) =G.

By and (H++) the two functions in () are inverse to each other. Thus (f]) holds.

(o) The first statement is (++]) and the second statement is ().
We have

121



122 CHAPTER 3. FIELD EXTENSIONS

F < E is normal

— o(E) =E for all o € Autg(K) - 3.5.18
= Aut,g)(K) = Autg(K) for all 0 € Aute(K) - (q
— oAute(K)o~! = Aute(K) for all o € Aute(K) — [3.5.17
—

Aute(K) < Aute(K) - 186 ﬂ)

(d) By [3.5.18| E is Autp(K)-invariant. So by [2.2.11|(b) Autg(K) acts on E. The homomorphism

associated to this action is

a: Autp(K) > Sym(E), o~ole.

In particular, o |g is a bijection from E to E. Clearly o |g is a homomorphism. Thus o |g is a
field isomorphism. Moreover, (o |g) |r= 0 |p=idr and so o |ge Autg(K). Thus Ima < Autg(K). Let
p € Autg(K). Then by applied with F1 =Fy =E, Ky =Ky =K, f; = fo = f and o = p there exists
a field isomorphism p : K — K with p |g= p. Since p |g= p [e= idr, p € Autp(K). Then p = a(p) and so
pelma and Ima = Autg(E).

Note that o € Kera if and only if a |g= idg. So Keraw = Autg(K). Hence @ follows from the First
Isomorphism Theorem.

]

Example 3.5.20. Let K be the splitting field of 22 — 2 over Q in C. Let

f=e3', a=¥2, b=€¢Y2, andc=£2Y2.
By Example [3.5.12

K=0Q[a,&], dimgK=6 and Autg(K) = Sym(R) = Sym(3),

where R = {a,b,c} is the set of roots of 2® —2. For (x1,...7,) a cycle in Sym(R) let oy, ., be
the corresponding element in Autg(K). So for example o4 is the unique element of Autg(K) with

oap(a) =b,04,(b) = a and o4p(c) = c. Then by [1.9.21| the subgroup of Autg(K) are

{idK}a (Uab0>7 Ath(K), <0ab>7 (0a0>7 (ch), (Ua0>-

Moreover, the first three (subgroups of order 1,3 or 6) are normal, while the last three (subgroups of
order 2) are not normal.

We now compute the corresponding intermediate fields:

Observe that

FiXK({idK}) =K.
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(04p) has order 2. Hence by the FTGT 3.5.19, dimpiy, ((o,,)) K = 2. Since dimgK = 6,
implies that dimg Fixk({0a)) = 3. Since c is fixed by o4, and dimg Q[c] = deg p. = deg(z® - 2) = 3 we
have

Fixk({oa)) = Qle] = Q[€¥/2].

Similarly,

Fix((0ac)) = Q[b] = Q[ V2]
and
Fixk({o0) = Qla] = Q[ ¥2] .

Note that dimg Q[£] = 2 and so dimg¢) K = 3. Hence |AutgpK| = 3. Since Autq(K) has a unique
subgroup of order 3 we get Autg(K) = (0ap) and so

Fixg ({oape)) = Q[£].

Let us verify that og. indeed fixes £&. From b = a¢ and ¢ = b¢ we have £ =a~'b=b"'¢ and so

Uabc(f) = Uabc(a_lb) = (Uabc(a))_laabc(b) =blc= €.

Finally by
FiXK(Ath(K)) =Q.

Note that the roots of 22 +  + 1 are ¢ and £2. So Q[£] is the splitting field of 2 + 2 + 1 and
Q < Q[£] is a normal extension, corresponding to the fact that (o4.) is normal in Autg(K).

Since p, = 2% — 2 and neither b or ¢ are in Q[a], p, does not split over Q[a]. Hence Q < Q[a] is
not normal, corresponding to the fact that (op.) is not normal in Autg(K).
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Appendix A

Sets

A.1 Equivalence Relations

Definition A.1.1. Let ~ be a relation on a set A. Then

2

is called reflexive if a ~ a for all a € A.

(a
(b

2

is called symmetric if b~ a for all a,be A with a ~ b.

2

18 called transitive if a ~ ¢ for all a,b,ce A with a ~b and b~ c.

14

(d is called an equivalence relation if ~ is reflerive, symmetric and transitive.

)
)
()
)
)

(e) For a € A we define [a]. :={be R|a~b}. We often just write [a] for [a].. If ~ is an

equivalence relation then [a]. is called the equivalence class of ~ containing a.
(1) Af~={[a]. |a e A}.
Remark A.1.2.

Suppose P(a,b) is a statement involving the variables a and b. Then we say that P(a,b) is a
symmetric in a and b if P(a,b) is equivalent to P(b,a). For example the statement a +b = 1 is
symmetric in a and b. Suppose that P(a,b) is a symmetric in a and b, Q(a,b) is some statement
and that

(%) For all a,b P(a,b) = Q(a,b).
Then we also have
(*%) For all a,b P(a,b) = Q(b,a).
Indeed, since (*) holds for all a,b we can use (*) with b in place of a and a in place of b. Thus
For all a,b P(b,a) = Q(b,a).

125
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Since P(b,a) is equivalent to P(a,b) we see that (**) holds. For example we can add —b to both
sides of a + b =1 to conclude that @ = 1 —b. Hence also b = 1 - a ( we do not have to repeat the
argument. )

Theorem A.1.3. Let ~ be an equivalence relation on the set A. Let a,b e A. Then the following
statements are equivalent:

(a) a~b. (c) [a]n[b] + @. (e) acelb]
(b) belal. (d) [a] =1b]. (f) b~a.

Proof. () = (b):  Suppose a ~ b. Since [a] = {be A|a~b} we get be [a].

() = (d): Suppose b € [a]. Since ~ is reflexive we have b~ b and so b € [b]. Thus b € [a]n [b]
and [a]n[b] + @.

== (d):  Suppose [a] n[b] # @. Then there exists c € [a] N [b]. We will first show that
[a] € [b]. For this let, d € [a].
celb], cela], and de€[a].

The definition of an equivalence class implies:

b~c, a~c, and a~d,

Since ~ is symmetric, this gives

b~c, c¢c~a, and a~d

Since ~ is transitive,

b~a and a~d

and then
b~d.

So d € [b]. This shows that [a] € [b]. The situation is symmetric in a and b, so we also get
[b] € [a]. Hence [a] = [b].

(d) = (): Since a is reflexive, we have a ~ a, so a € [a]. If [a] = [b] we get a € [b].

() = (@): If ae[b], the definition of [a] implies b ~ a.

@ = @: If b~ a, then a ~ b since ~ is symmetric. O
Corollary A.1.4. Let ~ be an equivalence relation on the set A.

(a) Let ae A. Then a is contained a unique equivalence class X of ~, namely X = [a]..

(b) A/~ is a partition of A, that is each elements of A is contained in a unique element of A ~.
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Proof. () Let a € A and X € A/~. We need to show that a € X if and only if X = [a]. By definition
of an equivalence class, X = [b] for some b e A. Hence

aeX
<~ ac[b] — Principal of Substitution
— [-0 -EII0.0
<= [a]=X - Principal of Substitution
(o)) follows from (@l). O

A.2 Bijections
Definition A.2.1. Let f: A — B be a function.
(a) f is called 1-1 or injective if a = ¢ for all a,c € A with f(a) = f(c).
(b) f is called onto or surjective if for all b€ B there exists a € A with f(a) =b.

(¢) f is called a 1-1 correspondence or bijective if for all b € B there exists a unique a € A with

fla)=b.
(d) Im f:={f(a)|aec A}. Im [ is called the image of f.

O]

Observe that f is 1-1 if and only if for each b in B there exists at most one a € A with f(a) = b.
So f is 1-1 correspondence if and only f is 1-1 and onto.
Also f is onto if and only if Im f = B.

Definition A.2.2. (a) Let A be a set. The identity function id4 on A is the function

idg:A—- A, a-—a.

(b) Let f: A— B and g: B — C be function. Then go f is the function

gof:A=>C, a-g(f(a)).
go f is called the composition of g and f.

Lemma A.2.3. Let f: A— B and B — C be functions.
(a) If f and g are 1-1, so is go f.

(b) If f and g are onto, so is go f.
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(¢) If f and g is a bijection, so is go f.

Proof. (a) Let x,y € A with (go f)(z) = (g0 f)(y). Then g(f(z)) = g(f(y)) Since g is 1-1, this
implies f(z) = f(y) and since f is 1-1, x =y. Hence go f is 1 - 1.

@ Let ce C. Since g is onto, there exists b € B with g(b) = ¢. Since f is onto there exists a € A
with f(a) =b. Thus

(g f)(a) =g(f(a)) =g(b) =c,

and so g o f is onto.
Suppose f and g are bijections. By @) , go fis 1-1 and by @ go f is onto. So also go f is
a bijection. O

Definition A.2.4. Let f: A — B be a function.

(a) If C c A, then f(C):={f(c)|ceC}. f(C) is called the image of C' under f.

(b) If D<c B, then f~Y(D):={ceC| f(c) e D}. f~1(D) is called the inverse image of D under f.
Lemma A.2.5. Let f: A — B be a function.

(a) Let Cc A. Then C < fL(f(C)).

(b) Let Cc A. If f is 1-1 then f71(f(C))=C.
(c) Let D<c B. Then f(fY(D))cD.
(d) Let D < B. If f is onto then f(f~(D))=D.

Proof. @ Let ce C, then f(c) € f(C) and so ce f~1(f(C)). Thus @) holds.
Let z € f71(f(C)). Then f(x) e f(C) and so f(x) = f(c) for some ce C. Since fis 1-1, z = ¢

and so f~1(f(C)) cC. By @ Cc f1(f(C)) and so (]Eb holds.
(c) Let z € f71(C). Then f(x) € C and so @ holds.

(d) Let d € D. Since f is onto, d = f(a) for some a € D. Then f(a) € D and so a € f~1(D). It
follows that d = f(a) € f(f~1(D)). Thus D c f(f~1(D)). By f(f 5(D)) ¢ D and so @) holds. [

Lemma A.2.6. Let f: A— B be a function and suppose A + &.
(a) f is 1-1 if and only if there exists a function g: B — A with go f =idy4.
(b) f is onto if and only of there exists a function g: B - A with fog=1idp.
(c) f is a bijection if and only if there exists a function g: B - A with fog=1idp and go A =idp.

Proof. =>: We first prove the 'forward’ direction of @, (]ED and . Since A is not empty, we can
fix an element ag € A. Let be B. If b e Im f choose a;, € A with f(ap) =b. If b ¢ Im f, put a; = ag.
Define

g:B—->A, b-a
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@ Suppose f is 1-1. Let a € A and put b= f(a). Then b eIm f and so f(ap) =b= f(a). Since f
is 1-1, ap = a and so g(f(a)) =g(b) =ap =a. Thus go f =ida.

() Suppose f is onto. Then B =1Im f and so f(ap) = b for all b € B. Thus f(g(b)) = f(ap) =b
and fog=idp.

Suppose f is a 1-1 correspondence. Then f is 1-1 and onto and so by @ and @, fog=idp
and go f =1id4.

<=: Now we establish the backward directions.

@ Suppose there exists g: B - A with go f =id4. Let a,c € A with f(a) = f(c).

fla) = f(o)
— 9(f(a)) = g(f(c))
= (gof)(a) = (g0 f)(a)
— ida(a) = ida(e)

Thus f(a) = f(c) implies a = ¢ and f is 1-1.

() Suppose there exists g : B » A with fog = idg. Let b € B and put a = g(b). Then
f(a) = f(g(b)) = (feg)(b) =idp(b) = b and so f is onto.

Suppose there exists g: B - A with go f =id4 and fog=idg. Then by @ and (]E[), fis1-1
and onto. So f is a 1-1 correspondence. O

A.3 Cardinalities

Definition A.3.1. Let A and B be sets. We write A ~ B if there exists a bijection from A to B.
We write A < B if there exists injection from A to B.

Lemma A.3.2. (a) »~ is an equivalence relation.
(b) If A and B are sets with A~ B, then A < B.
(c) < is reflexive and transitive.
(d) Let A and B be sets. Then A < B if and only if there exists C € B with A~ C.
Proof. @ Let A be a set. Then id 4 is a bijection and so A ~ B. Hence = is reflexive. Let
fiA->B

be a bijection. Then by there exists a bijection g: B - A. So =~ is symmetric. Let f: A - B
and g: B — C be bijections. Then by go fis a bijection and so A ~ C' and ~ is transitive.
(]E[) Obvious since any bijection is an injection.

By @ A~ A and so by (]ED A<A. @ shows that < is transitive.
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Suppose f: A — B is an injection. Then A ~Im f and Im f ¢ B.
Suppose that A ~ C for some C ¢ B. By (]ED A < C. The inclusion function from C to B shows
that C' < B. Since < is transitive we get A < B. O

Definition A.3.3. Let A be a set. Then |A| denotes the equivalence class of ~ containing. An
cardinal is a class of the form |A|, A a set. If a,b are cardinals then we write a < b if there exist sets
A and B with a=|A|, b=|B| and A < B.

Lemma A.3.4. Let A and B be sets.
(a) |A|=|B| if and only if A~ B.
(b) |A| <|B]| if and only if A < B.

Proof. () follows directly from the definition of |Al.

() If A < B, then by definition of ' <, |A| < |B|. Suppose that |A| < |B|. Then there exist sets
A" and B’ with |A| = |A|, |B| = |B’| and A’ < B’. Then also A ~ A’ and B » B’ and so by
A<B. O

Theorem A.3.5 (Cantor-Bernstein). Let A and B be sets. Then A ~ B if and only if A < B and
B<A.

Proof. If A~ B, then by [A.3.2fa) B~ C and by [A.3.2(b), A< B and B<C.
Suppose now that A < B and B < A. Since B < A, @ implies B ~ B* for some B* ¢ A.

Then by B* < A and A < B*. So replacing B by B* we may assume that B ¢ A. Since A < B,
A~ C for some C ¢ B. Let f: A— C be a bijection. Define

E:={acA|i=f"(d) for some neN,de A\ B},

and

fla) ifacekFE

g:A—>A a-— ] .
a ifa¢ B

We will show that g is 1-1 and Img = B.

Let z,y € A with g(x) = g(y). We need to show that = = y.

Case l: x¢ Fand y¢ F.

Then z = g(z) = g(y) = y.

Case2: reEFand y¢ FE.

Then z = f(d) for some d € AN B and y = g(y) = g(x) = f(z) = f**'(d). But then y € E, a

contradiction.

Case 3: v ¢ F and ye F.
This leads to the same contradiction as in the previous case.

Case 4: ze Fand ye E.
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Then f(z) =g(x) =g(y) = f(y). Since f is 1-1 we conclude that = = y.
So in all four cases x =y and g is 1-1.

We will now show that Img € B. For this let a € A.

If a € B, then g(a) = f(a) e C < B.

If a ¢ E, then a € B since otherwise a € A\ B and a = f(a) € E. Hence g(a) = a € B. Thus
Imgc B.

Next we show that B € Img. For this let b € B.

Ifb¢ E, the b=g(b) e Img.

Ifbe E, pick neN and de A~ B with b= f"(a). Since be B, b+ d and so n > 0. Observer that
fP"Yd) e E and so b= f(f*1(d)) = g(f*'(d)) eImg. Thus B cImg.

It follows that B = Img. Therefore g is a bijection from A to B and so A ~ B. O

Corollary A.3.6. Let ¢ and d be cardinals. Then c=d if and only if c<d and d < c.

Proof. Follows immediately from [A.3.5| and [A.3.4] O

Definition A.3.7. Let I be a set. Then I is called finite if the exists n € N and a bijection f: 1 —
{1,2,...,n}. I is called countable if either I is finite or there exists a bijections f:1 - Z™.

Example A.3.8. We will show that
IZ7| < IR,

where < means < but not equal. In particular R is not countable Since |[0,1)| < |R| it suffices to show
that |Z*| < |[0,1)|. Since the function Z* - [0,1 n — % is 1-1, |Z*| < |[0,1)]. So it suffices to show
that |Z*| #[0,1)].

Let f:Z* - [1,0) be function. We will show that f is not onto. Note that any r € [0,1) can be
unique written as

oo ri
T = —,
210

where 7; is an integer with 0 <r; <9, and not almost all r; are equal to 9. (almost all means all but
finitely many). For i € Z* define

o i @) <0
8(2)’_{1 it f(i)i=0

This definition is made so that s(i) # f(i); for all i € Z".

Put s:= 7% 81(52. Then for any i € Z*, s; = s(i) # f(i); and so s # f(i). Thus s ¢ Im f and f is
not onto.

We proved that there does not exist an onto function from Z* to [1,0). In particular, there does
not exist a bijection from Z* to [1,0) and |Z*| # [[1,0)|.

Lemma A.3.9. (a) Let A and B be countable sets. Then A x B is countable.
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(b) Let A be a countable set. Then B™ is countable for all positive integers n.

Proof. (i) It suffices to show that Z* x Z* is countable. Let (a,b), (c,d) € Z*. We define the relation
<on Z* xZ* by (a,b) < (c,d) if one of the following holds:

max(a,b) < max(c,d);
max(a,b) = max(c,d), and a<c; or
max(a,b) = max(c,d), a=c and b<d

So (1,1) < (1,2) < (2,1) < (2,2) < (1,3) < (2,3) < (3,1) < (3,2)) < (3,3) < (1,4) < (2,4) < (3,4) <
(4,1)<(4,2) < (4,3)<(4,4) < (1,5) <...

Let a1 = (1,1) and inductively let a,.1 smallest element (with respect to ' <’) which is larger than
an in Z* xZ*. So az = (1,2), az = (2,1), as = (2,2), a5 = (1,3) and so on. We claim that

f:Z"-2Z"xZ", n-a,

is a bijection. Indeed if n < m, then a, < a,, and so f is 1-1. Let (¢,d) € Z* x Z*. Then max(a,b) <
max(c,d) for all (a,b) with (a,b) < (¢,d). Hence there exist only finitely many (a,b)’s with (a,b) <
(¢,d). Let (x,y) be the largest of these. Then by induction (z,y) = a, for some n and so (¢,d) = an1.
Thus f is onto.

@ The proof is by induction on n. If n =1, (]ED clearly holds. So suppose that (]ED holds for n = k.
So A* is countable. Since A1 = A x AF, @ implies that A**! is countable. So by the Principal of
Mathematical Induction, (]E[) holds for all positive integers n. O
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