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Chapter N1

Vector Spaces

N1.1 Logic and Sets

In this section we will provide an informal discussion of logic and sets. We start with a
little bit of logic:
A statement is a sentence which is either true or false, for example

1. 1+1=2
2. V/2 is a rational number.

3. m is a real number.

W

. Exactly 1323 bald eagles were born in 2000 BC,

all are statements. Statement and are true. Statement is false. Statement is
probably false, but verification might be impossible. It nevertheless is a statement.

Let P and @ be statements.

“P and Q7 is the statement that P is true and Q is true.

“P or Q” is the statement that at least one of P and Q is true.

So “P or Q” is false if both P and Q are false.

“=P’ (pronounced 'not P’ or 'negation of P’) is the statement that P is false. So =P is
true if P is false. And # P is false if P is true.

“P = Q" (pronounced “P implies Q”) is the statement “# P or Q”. Note that “P—=-
Q” is true if P is false. But if P is true, then “P=— Q" is true if and only if Q is true. So
one often uses the phrase “If P is true, then Q is true” or “if P, then Q” in place of “P—=
Q”

“P<= Q” (pronounced “P is equivalent to Q") is the statement “(P and Q) or (not-P
and not-Q)”. So “P<= Q” is true if either both P and Q are true or both P and Q are
false. So one often uses the phrase “P holds if and only if Q holds”, or “P if and only if Q”
in place of “P<—= Q”

One can summarize the above statements in the following truth table:

5
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PIlQ|-P|-Q|PandQ|PorQ|P—= —Q
T|T| F | F T T T T
T|\F| F | T F T F F
F|T| T | F F T T F
F|\F| T | T F F T T

In the following we collect a few statements which are always true.

Lemma N1.1.1. Let P, Q and R be statements, let T be true statement and F a false
statement. Then each of the following statements holds.

LR 1
LR 2
LR 3
LR 4
LR 5
LR 6
LR 7
LR 8
LR 9
LR 10
LR 11
LR 12
LR 13

LR 14

LR 15

LR 16
LR 17

F = P.

P=T.

—(-P) <= P.

(P = F) = P.
PorT.

~(P and F).

(P and T) < P.

(Por F)<= P.

(P and P) < P.

(P or P) < P.

P or -P.

~(P and —P).

(P and Q) <= (Q and P).
(P or Q) <= (Q or P).
(P < Q) < ((P and Q) or (=P and ﬁQ))
(P = Q) < (-P or Q).

(P = Q) < (P and Q).
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LR 18 (P and (P — Q)) — Q.

LR 19 ((P = Q) and(Q = P)) «= (P = Q).
LR20 (P = Q) <= (-Q = ~P)

LR 21 (P <= Q) < (=P < -Q).
LR 22 (P and Q) <= (—P or ~Q)

LR 23 —(P or Q) < (=P and —Q)

LR 24 ( (P and Q) and R) (P and (Q and R)).

LR 25 (Por or R) (P or (Q or R)).

LR 26 ( (P and Q) or R) ((P or R) and (Q or R)).
LR 27 (p or Q) and R) ((P and R) or (Q and R)).
LR 28 (p:>@ and(Q:>R)> — (P = R)

LR 29 (p<:>@ and(Q<:>R)> — (P < R)

Proof. If any of these statements are not evident to you, you should use a truth table to
verify it. O

The contrapositive of the statement P = @ is the statements -@Q — —-P. (LR
says the contrapositive -QQ = =P is equivalent to P = (). Indeed, both are equivalent
to P and (—Q).

The contrapositive of the statement P <= @ is the statements =P <= —=@Q. (LR
says the contrapositive =P <= —() is equivalent to P <— Q.

The converse of the implication P = @ is the statement () = P. The converse of an
implication is not equivalent to the original implication. For example the statement if x = 0
then x is an even integer is true. But the converse (if x is an even integer, then x = 0) is
not true.

Theorem N1.1.2 (Principal of Substitution). Let ®(x) be a formula involving a variable
x. If a and b are objects with a = b, then ®(a) = ®(b).

Proof. This should be self evident. For an actual proof and the definition of a formula
consult your favorite logic book. O
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We now will have a short look at sets.
First of all any set is a collection of objects.

For example
Z:={..,-4,-3,-2,-1,-0,1,2,3,4,...}
is the set of integers. If S is a set and = an object we write x € S if x is a member of S and
x ¢ S if z is not a member of S. In particular,

(%) For all z exactly oneof x€S and x¢S holds.

Not all collections of objects are sets. Suppose for example that the collection B of all
sets is a set. Then B € B. This is rather strange, but by itself not a contradiction. So lets
make this example a little bit more complicated. We call a set S is nice, if S ¢ S. Let D
be the collection of all nice sets and suppose D is a set.

Is D a nice?

Suppose that D is a nice. Since D is the collection of all nice sets, D is a member of D.
Thus D € D, but then by the definition of nice, D is not nice.

Suppose that D is not nice. Then by definition of nice, D € D. Since D is the collection
of nice sets, this means that D is nice.

We proved that D is nice if and only if D is not nice. This of course is absurd. So D
cannot be a set.

Theorem N1.1.3. Let A and B be sets. Then

(A:B)<:>(forallx:(xeA)@)(xeB))

Proof. Naively this just says that two sets are equal if and only if they have the same
members. In actuality this turns out to be one of the axioms of set theory. O

Definition N1.1.4. Let A and B be sets. We say that A is subset of B and write A C B

if
forallz: (r € A) = (x € B)

In other words, A is a subset of B if all the members of A are also members of B.
Lemma N1.1.5. Let A and B sets. Then A = B if and only if AC B and B C A.
Proof.

A=B
= reA<=zxeB — [NT.1.3]
< (r€Ad=z€eB)and(re B=z€A) —(LR[L9)
<— ACBand BCA —definition of subset
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Theorem N1.1.6. Let S be a set and let P(x) be a statement involving the variable x.
Then there exists a set, denoted by {s € S| P(s)} such that

(t c{ses| P(s)}) — (t € S and P(t))
Proof. This follows from the so called replacement axiom in set theory. O

Note that an object ¢t is a member of {s € S | P(s)} if and only if ¢ is a member of S
and the statement P(t) is true For example

{reZ|a®=1}={1,-1}

Theorem N1.1.7. Let S be a set and let ®(z) be a formula involving the variable x such
that ®(s) is defined for all s in S. Then there exists a set, denoted by {®(s) | s € S} such
that

(t e{P(s)|se S}) = ( There exists s € S with t = <I>(s))
Proof. This also follows from the replacement axiom in set theory. O

Note that the members of {®(s) | s € S} are all the objects of the form ®(s), where s
is a member of S.

For example {2z | x € Z} is the set of even integers.

We can combined the two previous theorems into one:

Theorem N1.1.8. Let S be a set, let P(x) be a statement involving the variable x and
®(x) a formula such that ®(s) is defined for all s in S for which P(s) is true. Then there

exists a set, denoted by {CD(S) | s € S and P(s)} such that

(t € {Cb(s) | s € S and P(s)}) = <There exists s € S with (P(s) and t = @(3)))
Proof. Just define

{@(s) |s €S and P(s)} - {@(t) te{seS| cp(s)}}
O

Note that the members of {®(s) | s € S and P(s)} are all the objects of the form ®(s),
where s is a member of S for which P(s) is true.
For example

{2n|n € Z and n® = 1} = {2, -2}
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Theorem N1.1.9. Let A and B be sets.

(a) There exists a set, denoted by AU B and called A union B, such that

(re AUB) <= (x€Aorz e B)

(b) There exists a set, denoted by AN B and called A intersect B, such that

(re ANB) <= (xr € Aand z € B)

(¢) There exists a set, denoted by A\ B and called A removed B, such that
(re A\B)<= (r€Aand z ¢ B)

(d) There exists a set, denoted by () and called empty set, such that

For all x : x ¢

Proof. @ This is another axiom of set theory.
(]ED Applying [N1.1.6{ with P(z) being the statement “x € B” we can define

AUB={zecA|xe B}
Applying [N1.1.6{ with P(z) being the statement “x ¢ B” we can define
A\B={zxe€ A|z ¢ B}
@ One of the axioms of set theory implies the existence of a set A. Then we can define
D= A\ A
O

Let A be a set. Since the empty set has no members, all of its members are in A. So

Lemma N1.1.10. Let A be a set. Then () C A.

Proof. Here is a slightly more formal proof: Let x be an object. By definition of the
emptyset, = ¢ (). Thus the statement x € () is false and so by (LR [1)) the implication
(x € )) = (x € A) is true. So ) C A holds by the definition of a subset. O

Lemma N1.1.11. Let A and B be sets. Then ANB = BN A.
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Proof. Let x be an object. Then

reANB
<= xz€Aand x € B — Definition of AN B
< ze€BandzeA —(LR[14)
— reBNA — Definition of AN B
So ANB=BnA. O]

N1.2 Basic Definition
Definition 1.1. A vector space V is a triple (V,®,®) such that

(i) V is a set (whose elements are called vectors)

(ii) @ is a function ( called vector addition) , V' x V is a subset of the domain of & and

vOweV (Closure of addition)

for all v,w € V, where v ® w denotes the image of (v, w) under @;
(i1i) ® is a function (called scalar multiplication), R x V is a subset of the domain of ®

and

roveV (Closure of multiplication )

forallr € R and v € V, where r ©® v denotes the image of (r,v) under ®;
and such that the following eight statements hold:

(Ax 1) v@ow=wdv for allv,w e V; (Commutativity of Addition)
Ax2) v (wdz)=(vdw)d for allv,w,z € V; (Associativity of Addition)

(Ax 3) There exists an element in V, denoted by Oy (and called an additive identity ), such
that v Oy = v for allveV; (Existence of Additive Identity)

(Ax 4) For each v € V there exists an element in V, denoted by —v (and called an additive
inverse of v), such that v ® (—v) = Ovy; (Existence of Additive Inverse)

(Ax5) a® (v w)=(a®v)® (a®w) for alla € R and v,w € V; (Right Distributivity)

(Ax6) (a+b)Ov=(a®v)®(bOV) foralla,be R, veV; (Left Distributivity)
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(Ax7) (ab) ®©v=0a® (bO ) foralla,be R, veV; (Associativity of Multiplication)

(Ax8) 1GOv=w forallveV. (Multiplicative Identity)

Remark N1.2.2. Often slightly different version of conditions and are used in the
definition of a vector space:

(ii’) @& is a function (called vector addition) from V x V to V and v @ w denotes the
image of (v,w) under ®;

(i4i’) © is a function (called scalar multiplication) from R x V' to V and r ®v denotes the
image of (r,v) under ®;

Note that Conditions ’) and ’) imply and Conversely, if ® and © fulfill
and and one replaces @ by its restriction to' V xV and V', and © by its restriction
toRxV and V, then ’) and ’) hold. So there is no essential difference between these
two definitions of a vector space.

Notation N1.2.3. Given a vector space V = (V,®,®). We will often use the following
simplified notation, where r € R and v,w € V:

v+ w denotes v ® w
rv denotes r ® v, and

0 denotes Ov;.

Observe that we now use the same symbols for the addition and multiplication in V as
in R. So we will use this notation only in situations where it should not lead to confusion.

N1.3 Properties of Vector Spaces

Lemma N1.3.1. Let V be vector space and v,w € V. Then (v+ w) + (—w) = v.

Proof.
(vt+w)+(-w) = v+(w+(-w)) —(AxP)
= v+0 —(Ax [4)
= v —(Ax 3)

O

Theorem 1.8 (Cancellation Law). Let V' be vector space and v,w,z € V. Then the
following three statements are equivalent (that is if one of the three statements holds, all

three hold):

(a) v=w.
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(b) x+v=uz+w.
(c) v+x=w+z.

Proof. It suffices to show that @ implies (]ED, that @ implies and implies @
Indeed suppose we proved these three implications. If holds, then since @ implies (]E[),
also @ holds; and since (]ED implies also holds. Similarly, if (]ED holds, then since (]ED
implies , also holds; and since implies @ also @ holds. And if holds, then
since implies @, also @ holds; and since @ implies (]ED also (]ED holds. So any of the
statements implies the other two.

@ = (]ED: Suppose that v = w. Then x+v = x4+ w by the Principal of Substitution

and so @ implies (]E[) holds.

(]E[) = (c): Suppose that 2 +v =  + w. Then (Ax |l applied to each side of the
equation gives v +x = w + x. So @ implies .
= @: Suppose v + x = x + w. Adding —z to both sides of the equation gives

(v+z)+ (—x) = (w+z)+ (—z). Applying|N1.3.1/to both sides gives v = w. So (| implies
() and the Cancellation Law holds. O

Theorem 1.2. Let V be a vector space and v,w € V. Then
(a) 0+v=n.
(b) If v+w =, then w = 0.
(¢c) If w+v =, then w=0.
(d) 0O is the only additive identity in V.
Proof. (b)) By (Ax[1), 0+ v =v+ 0 and by (Ax[3), v+ 0 =v. Thus 0+ v = v.
@ Suppose that v +w = v. By (AX, v=v+ 0 and so
v+w=v+0

Thus by the Cancellation Law w = 0.

@ Suppose that w + v = v. Then by (AX, v+ w = v and so by (]ED, w = 0.

@ Let u be an additive identity in V. Then by definition of an additive identity,
O—i—u:O.ByO—i—u:uandsou:z. O

Theorem 1.3. Let V be a vector space and v,w € V. Then v+ w = 0 if and only if
w = —v. In particular, —v is the only additive inverse of v.

Proof. By (Ax[)), v+ (—v) = 0. Now suppose that v+ w = 0. Then v+w = v+ (—v) and
so by the Cancellation Law w = —v. So —v is the only additive inverse of v. O

Theorem 1.4. Let 'V be a vector space and v € V. Then

ORU = OV
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Proof. Since 0+ 0 = 0 in R we have 0v = (0 + 0)v. Hence by (Ax[6), Ov = Ov + Ov and so
by (]ED (applied to Ov and Ov in place of v and w), Ov = 0. ]
Theorem 1.5. Let 'V be a vector space, v € V and r,s € R. Then

(a) (—v)+v=0.

(b) r0=0.

(c) If rv =0, thenr =0 orv=0.

(d) (=1)v = —v.

(e) —v =0 if and only if v = 0.

() (=) =v.

(9) (=r)v = ~(rv) = r(~v).

(i) If v # 0 and rv = sv, then r = s.

Proof. For @, (]E[), @ and (fif) see Homework 3.
Suppose that rv = 0. We need to show that » = 0 or v = 0. If » = 0, this holds. So

we may assume that r # 0. Then by properties of the real numbers,  has an multiplicative
inverse % So

1 1
(*) —cRand —r=1
r r

We have

ﬁ
S
I
=]

—by assumption
0 —Principal of Substitution
—(Ax[7) and Part of the current theorem
—(%)
—(Ax

el

—_
<
I

S O O ==

So v =0 and is proved.
We have
0 = —v
< v+0 = 0 —Theorem 1.3 applied with w =0
= v = 0 —(Ax[3)
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[ By (Ax[M), v+ (—v) = 0 and so by (Ax[1), (—v) 4+ v = 0. Thus v is an additive
inverse of —v and so by v=—(-v).

We would like to show that (—r)v = —(rv), that is we would like to show that (—r)v
is the additive inverse of rv. We compute

ro+ (—r)v = (r+(-r)v — (Ax[6)
= 0Ov — Property of real numbers

=0 — Theorem [[.4]

Thus (—r)v is an additive inverse of rv and so by (—r)v = —(rv). Hence the first
equality in holds. To prove the second we need to verify that also r(—v) is an additive
inverse of rv:

ro+r(—v) = rlv+(—v)) 7(AX
= 70 —(Ax
=0 — Part (]ED of the current theorem

Thus r(—wv) is an additive inverse of rv and so by r(—v) = —(rv). Hence also the
second equality in holds.
O

N1.4 Subtraction

Definition 1.6. Let V be a vector space and v,w € V. Then the vector v w in 'V is
defined by
vOw=v®(—w)

As long as no confusion should arise, we will just write v — w for v & w.

Theorem 1.7. Let V be a vector space and v,w,x € V. Then each of the following
statements holds

(d) (-v) —w
(9) (v+w)—w=nw.

(—v) + (-w) = (w) + (-v) = (-w) —v = =(v + w)

(m) r(v—w)=rv—rw
(n) (r—s)v=rv—sv.
(0) (W+w)—x=v+ (w—1).

(p) v—w =0 if and only if v = w.
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(¢) (v—w)+w=n.

Proof. For the proof of and see Homework 3.

(v+w)—2 = (v+w)+(—x) —Definition of -’ see
= v+ (w4 (-z)) —(Ax])

= v+ (w—2x) —Definition of -’
(v—w)+w = (v+ (—w))+ (—(—w)) — Definition of - and [L.5(f)
= v — NL3d
v—w = 0
<— (w—w)+w = 0+w —Cancellation Law [L8
= Vo= w —@ and
(2)
(v+w)—w = (v+w)+ (—w) —Definition of -’
= v —Lemma [NT.3.7]
@
(—v) —w = (—v)+ (—w) —Definition of -’
= (-w)+(-v) —(Ax
= (—w)—w —Definition of *-’

So the first three equalities in hold. To prove the last, we will show that —(v+w) =
(—w) + (—v). For this we need to show that (—w) 4 (—v) is an additive inverse of v + w.
We compute

(w+w)+ ((~w) + (=) = (@+w)+(~w))+(-v) —(AxP)
= v+ (—v) —Lemma
=0 —(Ax

Hence (—w)+(—v) is an additive inverse of v+w and so by [L.3] (—w)+(—v) = —(v+w).
So all the elements listed in @ are equal. O
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N1.7 Function Spaces

Definition N1.7.1. Let I be the set. Then F(I) denotes the set of all functions from I to
R. For f,g € F(I) we define f + g€ F(I) by

(f +9)(@) = f(@) +g(2)
forallieI. Forr € R and f € F(i) we define rfe F(I) by

(rf)(@) =r(f(®)

foralli e I.
F(I) is the triple consisting of F(I), the above addition and the above multiplication.

Theorem N1.7.2. Let I be a set.
(a) F(I) is a vector space.
(b) The additive identity in F(I) is the function 0*€ F(I) defined by 0*(i) = 0 for alli € 1.

(c) The additive inverse of f € F(I) is the function —f defined by (—f)(i) = —(f(i)) for
allve 1.

Proof. Properties , and hold by definition of F(I). We will now verify the first
four axioms of a vector space one by one. For the remaining four, see Homework 4. From
Lemma [A.2.2] we have

(*) Let f,g € F(I). Then f = g if and only if f(i) = g(4) for all ¢ € I.
Let f,g,h € F(I) and i € I.

(Ax[L): We have

(f+9)@) = [ +g

(i) —Definition of '+’ for functions
= g(i) + f(i) —Property of R

= (g+ f)(t1) —Definition of '+’ for functions
So f+g=g+ f by (*) and (Ax[L) is proved.

(Ax[2): We have
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(( Ftrg)+ h) (i) = (f+¢)(i)+h()  —Definition of '+’ for functions
= [ f(i)+ ) + h(i) —Definition of '+’ for functions
= f(i)+ ( (i) + h(i )) —Property of R
= f@)+ (g + h)( ) —Definition of '+’ for functions
= (f (g + h)) (1) —Definition of '+’ for functions

o(f+g)+h=Ff+(g+h)by (*) and (Ax[2) is proved.

(Ax |3) Define a function, denoted by 0*, in F(I) by 0*(¢) = 0 for all . We will show
that 0* is an additive identity:

(f+0%)(i) = f(i)+0*(i) —Definition of '+’ for functions
= f(i)+0 —Definition of 0*
= f(i) —Property of R

So f+0* = f by (*) and (Ax[3) is proved.

(Ax |3) Define a function, denoted by —f, in F(I) by (—f)(i) = —f(i) for all i. We will
show that —f is an additive inverse of f.

(f + (—f)) (1) = f@)+ (—=f)(@) —Definition of '+’ for functions
= f(i)+ (—f(i)) —Definition of — f

=0 —Property of R
= 0°(7) —Definition of 0*
So f+ (—f) =0* by (*) and (Ax[d) is proved. O

N1.5 Euclidean space

Let n be a positive integer, ai,...,a, real numbers and (aj,as,...,a,) the corresponding
list of length n. Note that we can view such an list as the function from {1,2,3,...,n} to
R which maps 1 to a1, 2 to as,..., and n to a,. In fact the will use this observation to give

a precise definition of what we mean with list.

Definition N1.5.1. Let S be a set and n and m non-negative integers.
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(a) A list of length n in S is a function f:{1,....,n} — S.
(b) The list of length 0 in S is denoted by () and is called the empty list.

(c) Let s1,82,...5, €S, then (s1,S2,...,5y) denotes the unique list f with f(i) = s; for all
1<i<n.

(d) The list (t1,to,ts,...,ty) in S is called a sublist of (s1,82...,sy) if there exist integers
1<y <ig < ... <ipm < nwitht; = s for all1 < j <m. (In terms of functions: A
list g of length m is a sublist of the list f of length n if there exists a strictly increasing
function h :{1...,m} — {1,...,n} withg= foh.)

For example B = (2,4,7,9,11) is a list of length 5 in the integers and (4,9,11) is a
sublist of B of length 3.

Definition N1.5.2. Let n be non-negative integer.
(a) R™ is the set of all lists of length n in R. So R" =F({1,2,3,...,n}).
(b) R™ denotes the vector space F({1,2,3,...,n}).

Lemma N1.5.3. The vector addition and scalar multiplication in R™ can be described as
follows: Let (a1,aq,...,a,) and (b1, ba,...,by,) be elements of R™ and r € R. Then
(al,ag,...,an) + (bl,bg,...,bn) = (a1 —I—bl,ag +b2,...,an+bn)

and
r(ai,az...,a,) = (ray,rag, ... ,ray).

Proof. Let f = (a1,a9,...,ay), g = (b1,b2,...b,) and 1 < i < n. Then by Definition
N1.5.1, f(i) = a; and g(i) = b;. So by the definition of addition on R",
(f +9)(@) = f(@) +9(i) = ai + bs.
Hence by Definition [N1.5.1|(d)

f+g=1(a1+bi,a2+ba,...,an+by).

This gives the first statement.
Also by the definition of multiplication in R",

(rf)(i) =r(f()) = ra;,
and so Definition

rf = (raj,rag,...,ray).

Thus also the second statement holds. O
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N1.6 Matrices

Let n and m be positive integers, let aq1, a19,...,a1n, G421, 622, . . . , G2n,
be real numbers and

<oy @m1,Am2 - - -, Gmn

all aly ... QA1p
asl agzy ... aon
_am1 am2 ... amn_

the corresponding m x n-matrix. Note that we can view such matrix as the function from
{1,2,3,...,m} x {1,2,....n} to R which maps (1,1) to a1, (1,2) to aja, ...,(1,n) to ain,
(2,1) to ag, (2,2) to agy, ..., (2,n) to azn,. .., (m,1) to am1, (M,2) to ame, ..., and (m,n)
to amn. In fact the will use this observation to give a precise definition of what we mean
with an m X n-matrix.

Definition N1.6.1. Let n,m be positive integers.
(a) Let I and J be sets. An I x J-matrix is a function from I x J to R.

(b) Anmxn-matrizis {1,2,...,m}x{1,2,...,n}-matriz, that is a function from {1,2,...,m}x
{1,2,...,n} to R.

(c) Given real numbers aii,ai2,...,a1n, 421,022, ... A2y -« Gl Gm2 - - - s Gmp.  Lhen the
unique m X n-matric A with A(i,j) = a;; for all 1 < i < m and 1 < j < n is de-
noted by

aii a2 ... a1n
a1 agy ... aon
_am1 aAm2 ... amn_
or by
[CL' ']m,n
] li=1,5=1

(d) M(m,n) is the set of all m x n matrices. So M(m,n) =F({1,2,...,m} x{1,2,...,n})
(e) M(m,n) denotes the vector space F({1,2,...,m} x {1,2,...,n})

Lemma N1.6.2. The vector addition and scalar multiplication in M(m,n) can be described

as follows: Let [as;];2) ;_y and [bi];2) ;_; be m x n matrices and r € R. Then
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ail ai2

a1 a2

| @m1  Qm2
and

Proof. Let A = [a;;];2) ;; and B = [bjj]

Aln ail
a2n a1

. +
Amn | | Am1
ail ai2
a1 a2

r

| @m1  Qm2

a12

a22

am?2

Aln
azn
Amn |
Q1n raii
a2n raz;
QAmn | | 7@m1

a1 + bn

ao1 + bay

| @m1 + b1

rai2

rano

Tam?2

a1z + bi2

a2 + b

m2 + b2

rain

raon

TQmn
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a1p + bin

a2y, + bay,

Amn + bmn_

o Alsolet 1 <i<mand 1< j <n. Then

i=1,j=1"

by Definition [N1.6.1|[c), A(i,5) = aij and B{i, j) = bsj. So by the definition of addition in

M(m,n),

Hence by Definition N1.6.1

This gives the first statement.
Also by the definition of multiplication in M(m,n),

Thus also the second statement holds.

N1.8 Subspaces

A+ B = [aij + bij]iZ7 j—y-

(TA)(%]) = T(A<Z7.7)) = Tagj;,
and so Definition [N1.6.1(c)

rA = [Taij]?i?,jzl

Definition 1.10. Let V = (V,®,®) be a vector space and W a subset of V. Put W =

(W,®,®). Then W is called a subspace of V provided that W is a vector space.

Theorem 1.11 (Subspace Theorem). Let V' be a vector space and W a subset of V. Then

W is a subspace of V if and only if each of the following three statements holds:
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(1) Oy € W.
(2) wu+weW for all u,w e W.
(3) rwe W forallr € R and w € W.

Proof. Suppose first that W is a subspace of V. Condition (Closure of addition)
for the vector space W shows that v +w € W for all u,w € W. Similarly, Condition
(Closure of multiplication) for the vector space W shows that rw € W for all r € R,
w e W. So and hold. By W has an additive identity Ow € W. In particular,
Ow + Ow = Ow and so by [1.2]

(%) Ow = Ov
Since Ow € W, this gives (|1).

Suppose next that , and hold. We need to show that W is a vector space.

By assumption W is a subset of V' and so Condition holds for W.

By for V, @ is a function and V' x V is contained in the domain of &. Since W
is subset of V, W x W is a subset of V' x V, and so is contained in the domain of &. By
(12), u+w € W for all u,w € W and so Condition holds for W.

By for V, ® is a function and R x V' is contained in the domain of ®. Since W
is subset of V., W x W is a subset of V' x V, and so is contained in the domain of ®. By
13), v € W for all r € R and w € W and so Condition holds for W.

Since Axioms 1,2,5,6,7,8 holds for all suitable elements of R and V', and since W C V|
they clearly also hold for all suitable elements in R and W.

By , Oy € W. Since Oy is an additive identity for V', we conclude that Oy is also an
additive identity for W in W. So Axioms 3 holds for W with Ow = Ov.

Let w € W. By [L.F, —w = (=1)w. By (@), (—1)w € W and so

(**) —-weWw
Since w 4+ (—w) = Oy = Ow we conclude that
—w is the additive inverse of w in W
Hence Axiom 4 holds for W. O

Corollary N1.8.3. Let W be a subspace of the vector space V andw € W. Then Ow = Oy,
—w € W and the additive inverse of w in W 1is the same as the additive inverse of w in V.

Proof. See (*), (**) and (***) in the proof of |1.11] O
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Systems of Linear Equations

N2.1 Notation and Terminology
Definition N2.1.1. Let A = (a”)zg}] be an I x J matriz.

(a) Let K C I and L C J. Then AKX = K is the restriction of A to K x L, so AX is the
K x J- matriz (am)fgf{ AK s called the K x L submatriz of A.

(b) Leti € 1. Then a® = A?}. A’ is called Row i of A. a' is the J-list (a;j)je. a' is called
row 1 of A.

(c) Let j € J. Then a; = Afj}. a; is called Column j of A. a; is the I-list (aij)icr. aj s
called column i of A.

(d) Letie I and j € I. Then a;; = Ag}i is called the ij-Entry of A, while a;j is called the
ij-entry of A.

Note that a’ and a’, viewed as functions, have different domains: the domain of a; is
{i} x J, while the domain of a’ is J. On the other hand, the ij-entry of a’ is the same as the
j-entry of a’i (both are equal to a;j). Informally, Row i knows its position in the matrix,
but row i does not.

For example consider A = . Then row 1 of A is equal to row 2 of A. But Row 1
1 2

of A is not equal to Row 2 of A, since they have different domains. Similarly, the 12-entry
of A is equal to the 11-entry of A, but the 12-Entry of A is not equal to the 11-Entry.

Notation N2.1.2. (a) Let I be a set, n a non-negative integer and for 1 < j < n let a; be
I-list in R. Then

[al,ag, e ,an]

denotes the unique I x {1,...,n} matriz with column j equal to a; for all 1 < j < n.

23
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(b) Let J be a set, m a non-negative integer and for 1 <1i < m let a' be J-list in R. Then

al

am

denotes the unique {1,...,m} x J matriz with row i equal to a* for 1 <i < m.

Remark: Let K be a set and z a K-list in R. According to () [z] denotes the K x {1}-
matrix whose only column is z, while according to (b)), [] denotes the {1} x K matrix
whose only row is a. So the notation [z] is ambiguous and should only be used if it is clear
from the context which have the two possible matrices is meant.

Notation N2.1.3. Let I and J be sets, i,k € I, A€ M(I,J) and xz,y € F(I).

(a) R;xA denotes the I x J matriz B with b' = x and b' = a' for all 1 € I with | #i. (So
R;x A is the matriz obtained from A by replacing Row i be x.

(b) RixxyA = Rix(RryA). So RixA is the matriz obtained from A by replacing Row k be
y and then replacing Row i by x.)

Definition 2.1. Let I and J be sets. An elementary row operation on M(I,J) is one of
functions 'R; <+ R;’, cR;+ Ry — Ry and (forc#0), cR; — R;’ from M(I,J) to M(I,J)
defined as below, where i,k € I, c € R and A is an I X J matriz.

1. (R; <> Rj)A = Rya*a’A. So R; — R; interchangings row i and row k of A

2. (cR; + Ry — Ry)(A) = Ri(ca’ + a*)A. So (cR; + Ry — Ry) adds c times row i to row
k of A.

3. Suppose ¢ # 0. Then (cR; — R;)A = R;(ca’)A. So cR; — R; multiplies row A of A by
c.

Remark: Column replacements and elementary column operations are defined similarly
using the symbol C in place of R.

N2.2 Gaussian Elimination

Definition 2.2. Let A be an m xn matriz, 1 <i<m and 1 < j < n.

(a) a;j is called a leading Entry of A provided that a;; # 0 and ag; = 0 for all 1 < k < 1.
So a;; is the first non-zero entry in row ¢ of A.

(b) a; is called a leading 1 of A if a;j is a leading Entry and a;; = 1.
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Algorithm N2.2.2 (Gauss-Jordan). Let A be an {l,l+1,...,m} x{1,...,n}-matriz.

Step 1 If A is a zero matriz, the algorithm stops. If A is not the zero matriz, let j be
minimal such that a; is not a zero vector. Then let i be minimal such that a;; # 0.
So a;; 1s the first non-zero entry in the first non-zero column of A.

Step 2 Interchange row | and row i of A.
Step 3 Multiply row | of A by i of A.
Step 4 Forl <k <m, add —ay; times row | of A to row k of A.

Step 5 Apply the Gauss-Jordan algorithm to the {Il +1,...,m} x {1,...,n}-submatriz of
A.

Definition 2.3. Let A be an n X m-matriz. Then A is in row-echelon form if
(i) All leading Entries are leading 1’s.
(it) If a;; and ay; are leading 1’s with i < k, then j <.
(111) If A; is a non-zero row and Aj; is a zero row, then i < j.
Observe that the Gauss-Jordan algorithm produces a matrix in row-echelon form.
Algorithm N2.2.4 (Reduced Gauss-Jordan). Let A be an m x m matriz in echelon form.

Step 6 If A is a zero matriz, the algorithm stops. If A is not the zero matriz, let a;; be a
leading 1 with i mazimal. (So a;; is the leading 1 in the last non-zero row of A.)

Step 7 For 1 <k <, add —ay; times row i of A to row k of A.

Step 8 Apply the Reduced Gauss-Jordan algorithm to the {1,...,i—1}x{1,...,n}-submatriz
of A.

Definition 2.4. Let A be an n X m-matriz. Then A is in reduced row-echelon form if
(i) All leading Entries are leading 1’s.

(it) If a;; and ay; are leading 1’s with i < k, then j <.

(iii) If a* is a non-zero row and a’ is a zero row, then i < j.

(iv) If a;j is a leading 1, then ap; =0 for all 1 <k < m with k # 1.

Observe that Reduced Gauss-Jordan algorithm produced a matrix in reduced row-
echelon form.
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N2.3 Solving Linear Systems

Theorem N2.3.1. Let B be the reduced echelon form of the augmented matrix of system
of m linear equation in n variables x1,...,x,. Let 1 < d < n. x; is called a lead variables
if Column j of B contains a leading 1 . Otherwise x; is called a free variable. Let s be
the number of lead variables and t the number of free variables. Let xy,, ..., xy, be the free
variables where f1 < fo < ... < fy and put ye = xy,. Let xy,,11,, ..., 21, be the lead variables
where [T <l < ... <ls.

Let 1 <e<t. If x; = 2y, is a lead variable, define bj = by 41 and cje = —bg .. If x;
is a free variable, define b; =0 and cje = 1, if xj = ye, and cje = 0, if T; # Ye.

(a) n=s+t,0<s<min(m,n) and max(n —m,0) <t < n.

(b) Suppose Column n+ 1 of B contains a leading 1, then the system of the equations has
no solutions.

(¢) Suppose that Column n+ 1 of B does not contain a leading 1. Then the solution set of
the system of equations is

C11 C12 C1t by

21 22 Cot ba .
S=<wu|  f+w| |+-Fwl| [+  ||w,...,m) ER

Cnl Cn2 Cnt by,

Cle
" C2e
={yic1 +yeco + ... +ycer | (y1,...,yt) € R'}, where c. =
Cne
Moreover, if ric1 + ...1ct = S1¢1 + ... S¢ct, then r1 = 81,70 = S9,...,Tt = St.

Proof. (d): Since either variable is either a lead variable or a free variable not both n = s+t
and 0 < s,t < n. Since each Row of B contains at most one leading 1, s < m. So
t=n—s>n—m and @ holds.

@: Suppose that the last Column of B contains a leading 1. Say a; ,+1 is a leading 1.
Then the first n entries of row i of B are zero, and the equations corresponding to row i is

0z1 +0x9+...+0+ 0z, = 1.

So 0 =1 and the system of equation has no solutions.
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: Suppose now that the last column of B does nor contain a leading 1. Since B has
s leading variables, rows s + 1,89 ...s,, of B are zero rows and can be ignored. Now let
1 < d < e and let ag be the leading 1 in Row d. Since the last Column of B does not
contain a leading 1, j # n + 1 and so x; is the d’'th leading variable. So j = l;. If x}, is
any other leading variable, Condition (iv) of a matrix in reduced echelon form implies that
bgr = 0. Thus the equation corresponding to Row d of B is

zj +bap xp +bap gy + oo+ bap g = banta

and hence equivalent to

xj = —bdflel — bdf1xf2 — .= bdft.%'ft + bd,n+1
Since ye = x7,bj = bg 41 and cje = —bgy, the linear system of equation is equivalent to
() Tj =Y1¢j1 + Yocjs2 + ... +ycjr +bj, 1< j < n,x;is a lead variable

So we obtain a solution by choosing free variables y1, y2, . . . y arbitrarily and then com-
pute the leading variables x; according to (*).

Now lead x; be free variable. Then z; = 2y, = y, for some 1 < e < t. Since cj;, = 0 for
k # e and b; = 0 We conclude that

Tj = Y1¢j1 + Yacj42 + ... +yicjr +bj, 1 < j < n,x;is a lead variable

Together with (*) we conclude that

(k) T; =Yi1¢j1 +Yacjp2 + ...ty + b5, 1 <5< n

Writing (**) in vector form we conclude that solution set is

( 3\
C11 C12 C1t by
21 €22 Cot ba '
vl | Fwe| |+ w| [+ ) €R
Cnl Cn2 Cnt by
Since xf, = Ye, Ye is uniquely determined by (z1,...,z,) and so holds. O

Consider the special case ¢ = 0 in part of the previous theorem. Note that ¢t = 0
means that none of the variables are free. So all variables are lead variables. So this occurs
if the first n Columns of B contain a leading 1, but the last column does not. In this case
says that the system of equation has a unique solution namely 1 = by, 22 = ba, ..., T, = by.
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Theorem 2.6. Consider a homogeneous system of m linear equation in n variables. If
n > m, the system has infinitely many solutions. In particular, it has a non-trivial solutions.

Proof. Let t be the number of lead variables. By [N2.3.1 @), t >n —m > 0. Since the the
last column the augmented matrix is zero we can apply :N2.3.1. Since t > 0, there are
infinitely many choices for (y,...,4:) and so the system has infinitely many solutions. [J
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Dimension Theory

N7.1 Induction

In the following we will assume the following property of the natural numbers without proof:

Theorem N7.1.1 (Well Ordering Axiom). Let A be a non-empty set of natural numbers.
Then A has minimal element m, that is there exists m € A with m < a for all m € N.

Using the Well Ordering Axiom we prove:

Theorem 7.1 (Principal of mathematical induction). For eachn € N let S,, be a statement.
Suppose that

(i) Sy is true.
(ii) If n € N and S, is true, then also Syy1 is true.
Then S, is true for all n € N.

Proof. Suppose S, is false for some a € N. Put A ={n € N| S, is false}. Since S, is false,
a € A and so A is not empty. Thus by the Well Ordering Axiom A has a minimal
element m. Som € A and m < b for all b € A. Since m € A, the definition of A implies
that S, is false. By , S1 is false and so m # 1. Put n = m — 1. Since m # 1 we have
m > 2 and so n > 1. Thus n is a positive integers and n < m.

By (LR , Sy is true or S, is false. We will show that either case leads to a contra-
diction.

Suppose that S, is false. Then n € A and so since m is minimal element of A, m < n.
a contradiction since n > m.

Suppose that S, is true. Then by also Sp41 is true. Butn+1=(m—-1)+1=m
and so Sy, is true, a contradiction since m € A and so 5, is false.

We reach a contradiction to the assumption that S, is false for some a € N and so S, is
true for all a € N. O

29
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N3.1 Linear Combinations

Definition N3.1.1. Let V be a vector space, n € Ny and (v1,...v,) a list of length n in
V. Then, for 0 < k <n, Ele v; s defined inductively as follows:

(i) If k =0, then Zle v; = 0. (So the sum of the empty list is the zero vector).
(ii) If k < mn, then Zfill v; = (Z?Zl vi) + vy,
Yo, v is called the sum of (v1,...,v,). We denote this sum also by

v+ ...+ vy

Note that v{ + ... + v, = <<...((U1—|—U2)+U3)+...—|—vn2) + vp—1 ) +v,. But

thanks to the associative and commutative law, this sum is independent of the choice of the
parenthesis and also of the order of v1,v9,v3,...,v,. A detailed proof of this fact requires
a subtle induction argument which we will omit.

Definition 3.1. Let V be a vector space, B = (v1,...,v,) alistinV andr = (ri,ra,...,Ty)
a list of real numbers. Then

U1 + TU2 + ...+ TpUp

is called the linear combination of (v1,vs ..., v,) with respect to the coefficients (r1,...,my)
We sometimes denote this linear combination by Br.

N3.2 Span

Definition 3.2. Let V be a vector space.

(a) Let Z a subset of V. The span of Z, denoted by span Z is the set of linear combinations
of list in Z. So

span Z = {rivy +rova + ... + rpv, | n € Ny, (v1,...,0,) € Z", (r1,72,...,1) € R"}

(b) Let B be a list in V. The span of B, denoted by span B, is the set of all linear combi-
nations of B. So if B = (vi,...,vy), then

span B = {ryvy + rova + ... + rpvp | (r1,72,...,7) € R"}

(c) Let W be subset of V and B a list in V' or a subset of V. We say that B spans W (or
that B is a spanning list (set) of W ) if W = span B

Since 0 is the only linear combination of (), span() = span® = {0}.
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Lemma N3.2.2. Let V' be a vector space and (vi,...,vy,) a list in V. Then
span(vy, ..., v,) = span{vy, ..., vy }.

Proof. Put Z = {vy,...,v,}. Then (vy,...,v,) is a list in Z and so span(vy,...,v,) C
span /.
Let u € span Z. Then there exist a list (wy,...,wy) in Z and (r1,...,7y) in R with

(*) U="Twy+ ... +7rnWn,.

We claim that u is a linear combination of (v1,...,v,).
If m =0, then u = 0 = 0vy + ...+ Ov, and the claim holds.
Suppose the claim holds for m — 1. Then

(k) TIWL + ..o F T 1Wm—1 = 8101 + ... + SpUn
for some (s1,...,s,) € R™. Since w,, € Z, wy, = v; for some 1 <i < n and so
(k% ) TmWm = t101 + ... + U

where t; =, and t; = 0 for 1 < j <n with j # 1. We compute

U = Wit ...+ TpWn - (%)
= (rmwi+ ...+ rm_1Wn-1) + rmwmn — definition of " 4 ... 4/
(8101 + ... + SpUp) + Wi — ()

= (s1v14 ...+ spvp) + (t1vr + ...+ tpvy)  — (F*)
(s1+t1)vr + ...+ (s + tn)vn — D21

So the claim holds for m 4 1 and hence by the principal of induction for all non-negative
integers n.

Thus w is a linear combination of (v1,...,v,) and so spanZ C span(vy,...,v,). We
already proved the reverse inclusion and so the span Z = span(vy, ..., v,). O

Theorem 3.3. Let V be a vector space and Z a subset of V.
(a) span Z is a subspace of V and Z C span Z.
(b) Let W be a subspace of V with Z C W . Then spanZ C W.

Proof. @ Since () is a list in Z and Oy is a linear combination of (), Oy € span Z.

Let z,y € spanZ and a € R. Then x = rjv; + r9v2 + ... + rpv, and y = sjwi +
Sowg + ...+ Spwy, for some lists (r1,...,7,) and (s1,...,8y) in R and (vi,...,v,) and
(wi,...,wy) € Z. Thus
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T+Yy=r1v1 +1rov2 + ...+ rpUy + S1W1 + Sow2 + ...+ SpWi,

is a linear combination of the list (vq,...,vn,w1,...,wy) in Z. Thus x + y € span Z and
so span Z is closed under addition.
Also

ar = (ary)vy + (arg)vy + ... + (ary)v,

and so ax € spanZ. We verified the three conditions of the Subspace Theorem and so
span(Z) is a subspace.
If z € Z, then z = 1z is a linear combination of the list (z) in Z and so Z C span Z.

(]E[) This follows easily from the fact that W is closed under addition and scalar multi-
plication, but we will give a detailed induction proof. Let B be a list of length n in Z. We
will show by induction on the n that any linear combination of B is contained in W.

Suppose first that n = 0. Then 0 is the only linear combination of B. Also by the
Subspace Theorem 0 € W. So indeed every linear combination of B is in W.

Suppose any linear combination of a list of length n in Z is contained in W and let
(V1,.-.,Vn,vnr1) be alist of length n+1in Z. sLet (r1,...,7p, 7nr1) € R Then by the
definition of ’span’, >"1 | 7;v; € span(vi, va, ..., vy). By the induction assumption,

(1) imvi e Ww.
i=1

By the Subspace Theorem, W is closed under scalar multiplication and since v,4+1 €
Z C W, we conclude

(2) Tn+1Unt1 € W.
By the definition of ’sum’
n+1 n
(3) Z TV, = <Z Tﬂ)i> + Tn+1Un+1
i=1 i=1

By the Subspace Theorem, W is closed under addition and so (1),(2) and (3) show that
Z;:&l rv; € W.

We proved that all linear combinations of (v1,...,v,41) are in W so by the Principal of
Induction any linear combination of any list in Z is contained in W. So by the definition
of span, spanZ C W. O

In less precise terms the preceding theorem means that span Z is the smallest subspace
of V' containing Z.
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Corollary N3.2.4. Let V be a vector space, W a subspace of V and Z a spanning set for
w.

(a) If U is a subspace of W with Z C U, then U = W.

(b) Let X C W and suppose that each z in Z is a linear combination of a list in X, then
X spans W.

Proof. @ Since Z is a spanning set for W, W = span Z. Since Z C U(]E[) gives W C U.
By assumption U C W and so U = W.

(b) Put U = span X. By , U is a subspace of W. By assumption each z € Z is
linear combination of a list in X and so Z C U. Thus by @, U=W and sospan X =W
and X spans W. O

N3.3 Linear Independence

Definition 3.4. Let V be a vector space and (v1,...,v,) a list of vectors in V. We say
that (v1,...,vy,) is linearly independent if for all (r1,r2,...1,) € R™,
rvy+reve+ ... +rpv, =0 = ri=0,7=0,...,r, =0.

Lemma N3.3.2. Let 'V be a vector space, (v1,...,v,) alistinV andi € N with1 <i <n.
Then the following three statements are equivalent.

(a) There exists (r1,r2...,m) € R™ such that

TV +1rovs + ...+ vy =0

and r; # 0.
(b) v; € span(vy, ..., Vi1, Vit1,...,Un)
(c) span(vi, ..., Vi—1,Vit1,...Us) = span(vy, ..., vy)

Proof. Assume without loss that ¢ = 1.
@ — (]ED: Suppose that @ holds. Then rqvy + rove + ...+ 77, = 0. Since r; # 0
we can solve for v; and get

> T3 T
v = (—a)vg + (—E)vg +...+ (—i)vn

and so by the definition of span,

vy € span(ve,vs, ..., Up)

Thus @ holds.
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(b) = (c)): Suppose (]ED holds. Then v; € span(vg,...,v,). By @, vj €
span(va, vs, ..., v,) for all 2 < j < n. Hence v; € Span(ve,...,v,) for all 1 < i < n.

Thus by [N3.2.4] span(vy, ..., v,) = span(vy,...,v,).
(d) = @: Suppose hold, that is span(ve,...,v,) = span(vi,...,v,). Then
vy € span(ve, ..., v,) and so

V1 =1ToU2 + ...+ TpUn
for some 73,...,r, € R. Thus
(=1)vy 4+ rove + ... + rpv, = 0.

Put r1 = —1. Then r1 # 0 and rvy + rovs . .. + v, = 0. Therefore @ holds.
O

Theorem 3.5. Let 'V be a vector space and (vi,...,vy) be list of vectors in V. Then the
following are equivalent:

(a) (v1,...,v,) is linearly independent.

(b) For each v € V there exists at most one (r1,...,m,) € R"™ with

Vv ="r1v1 + 1203 + ...+ 1y,

(c) Foralll <i<nmn,

(% ¢ Span(vlv’ <oy Ui—1, Vit1, - - - 7/Un)‘

(d) For all1 <i<mn,

v; & span(vy,...,v;—1).
(e) There exists 0 < k < mn such that (vi,...,v) is linearly independent and,
v; & span(vy,...,v;—1)
forallk+1<i<n,
(f) (v1,...,vn—1) is linearly independent and v,, ¢ span(vy,...,Vn—1).

Proof. @ = (]ED: Suppose (v1,...,vy,) is linearly independent. Let v € V' and suppose
there exist (ri,...,r,) and (s1,...,8,) € R™ with v = rjv; + rovg + ... + rpv, and v =
S1V1 + S9v9 + ... + Spv,. Then

U1 + 1rovg 4 ...+ TRUy = S1U1 F S2U2 + ...+ Sy Uy,
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and so

(r1 —s1)vr + (ro — s2)va + ... + (rp, — $p)vp = 0.

Since (v1,...,v,) is linear independently this means 7] —s; =rg—s9 = ... =1, —8, =0
and so ry = 81,72 = S9,...Tn, = Sp. Thus (]ED holds.

@ — : Suppose @ holds. We will show that holds via a contradiction proof.
So assume that is false. Then there exists 1 < ¢ < n with

v; € span(vy, ..., Vi—1,Vitl,---Up)

To simplify notation we assume (without loss) that ¢ = 1 By definition of span

V1 =TU2 +12U3 + ...+ TpUp

for some 73, ...,r, € R. Thus

lvy 4+ Ovg + Ovg + ... 4+ Ov,, = Ovg + Tovg + 1303 + ... + T Uy
@ shows that 1 =0,0 =r9,...,0 =r,, a contradiction.

= (d):  Since span(vi,...,v;—1) C span(vi,...,v;—1,Vit1,...,Vy), this implica-
tion is obvious.

@ = @: If @ hold, then holds with k& = 0.

@ = @: Suppose @ holds and let (r1,72...,7,) € R with

rivy +rovg 4+ ...+ 150, =0

Since vy, ¢ span(vy,...,v,—-1), N3.3.2| shows that r,, = 0. Thus

vl +rovg 4+ ...+ 1101 =0

Since (v1,...,v,—1) is linearly independent this implies r; =r9 = ... =1r,_1 = 0. Since
also r, =0, (v1,...,vy,) is linearly dependent.
= (]ﬂ): Suppose @ holds. Let k& < ¢ < n. We will show by induction that
(v1,...,v;) is linearly independent. For ¢ = k, this holds by assumption. Suppose now that
k <i<mnand (vy,...,v) is linearly independent. By assumption, v;+1 ¢ span(vi,...,v;)
and so the already proven implication ’@) = @)’ applied with n = ¢ 4+ 1 shows that
(v1,...,v;41) is linearly independent. Thus by the principal of induction, (v1,...,v,—1) is
linearly independent. Also by assumption v,, ¢ span(vi,...,v,—1) and so (f) holds.
O
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N3.6 Coordinates

Definition 3.6. Let V be a vector space. A basis for V is a linearly independent spanning
list for V.

Theorem 3.17. Let 'V be a vector space and (v1,...,vy,) be alistin V. Then (vi,ve, ..., vy)
s a basis for V if and only of for each v € V' there exists a unique

(ri,7me,...,mn) € R™ with v =rivy + rova + ... + rpu,

Proof. By definition (v1,...,v,) is basis if and only if its spans V and is linearly independent.
By definition its spans V' if and only if for each v € V there exists a (ry,rg,...,m,) € R”
with v = riv1 +rove+...+7,0,. And by it is linearly independent if and only if for each
v in V there exists a most one (r1,72,...,7,) € R® with v = rqv; + reva + ... + rpv,. O

Definition 3.16. Let V be a vector space with a basis B = (v1,...,v,). Forv € V let
(r1,72,...,71y) be the unique list in R with v = rivy +rove+...+ryv,. Then (r1,r2,...,7y)
is called the coordinate vector of v with respect to B and is denoted by [v]g. The function
Cp: V — R" defined by Cp(v) = [v]p is called the coordinate function of V' with respect to
B.

Example N3.6.4. Let E = (ey,...,e,) be the standard basis for R™. Then [z|p = x for
all z € R™ and so Cg = idgn.

Proof. Let © = (z1,...,2,). Then

1 T 0 0
) 0 T2 0
T = = + +...+

Tn 0 0 Tn
1 0 0
0 1 0

= I + X9 +. + T

0 0 1

= riep + Treg + ...+ Tpey,

and so

[x]lp = (x1,...,2p) =z

It follows that Cg(z) = x and so Cg = idgn. O
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N3.4 Bases

Theorem N3.4.1. Let V be a vector space, (vi,...,v,) a linearly independent list in V
and Z a subset of V. Put W = span ({vl, ceyUp b U Z) and let (u1,...,u;) be a list in Z.
Then the following three statements are equivalent

(a) (V1,...,0n,u1,...,u;) s a basis for W.
(b) (u1,ug,...,u) is a list in Z minimal such that (v1,...,vp,u1,...,u;) spans W.
That s
(U1y e ey Uny ULy e ey Uyg)

spans W, but for all 1 <1 <1,

(vlw")vnaula-‘wui—laui—l-l-”vul)
does not span W
(c) (ui,ug,...,u) is a list in Z mazximal such that (v1,...,Vn,u1,...,u;) is linearly inde-
pendent.
That s
(U1, ey Upy ULy - ey Ug)

is linearly independent but for all z € Z,

(U1, ey Uny Uty e ey U, 2)
is linearly dependent.

Proof. @) e @: Let 1 < i < n. Since (v1,v2,...,Vn,u1,...u;) is linear independent,
[3.5] shows that v; ¢ span(vi,va, ..., Vp, Uty .. Uim1y. .., Uitd - - -, U). SO

(’Ul,vg, ey Uny ULy e o e Uj—15 U1 - - - ,ul).
does not span W. Since (v1,v2, ..., U, u1,...u;) is a basis of W it spans W and (]ED holds.
) = (@): Let 1 <i <l By minimality of (u1,...,w).

SPAN (U1, .« v vy Uy ULy e v U1y Wit 1y - - -, Uy ) 7 W = span(vi, ..., Up, Uty ..., up)
and so by by

Ui & SPAN(V1, .« vy Upy ULy« o vy Ui 1y Wicg 1y« -+, UL)
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and so also

i & span(vy, ..., Up, U, ..., Ui—1)

@ now shows that (v1,...,vn,u1,...,u,) is linearly independent. It also spans W
and so is a basis for W.

(@) = (d: Let z€ Z. Then z € W = span(v1,...,vy,u1,...,u) and so by 3.5
(v1,...,Un,u1,...u 2) is linearly dependent. Thus holds.

== @: Put U = span(vy,...,vn,u1,...u;) and let z € Z. We will show that
z € U. By the maximality of (u1,...,u),

(U1, .y Un,y UL, .. UL 2)

is linearly dependent. Since (v1,...,vpn, u1,... ;) is linearly independent we conclude from

B-5({) that

z € span(vy, ..., Upn, U1,...u) = U

Thus Z C U. . Since also v; € U for all 1 < i < n, shows that U = W. Thus
(v1,v2, ..., Un,u1,...u;) spans W. It also linearly independent, so its a basis for W. Hence

@ holds.

O]

Definition 3.8. A wvector space is called finite dimensional if it has a finite spanning set.
Otherwise, it is called infinite dimensional. If V is finite dimensional, the minimal size of
a spanning set is called the dimension of V' and is denoted by dim V.

Theorem 3.11 (Contraction Theorem). Any spanning list of a vector space has sublist
which is basis.

Proof. Let (w1, ws,...,wy,) be a spanning list and (u1,...,u;) a sublist minimal such that
(u1,...,u;) spans W. Then by [N3.4.1| applied with n =0, (u1,...,u;) is basis. O

Corollary N3.4.4. Let V be a finite dimensional vector space and put n = dim'V. Then
every spanning list of V' of length n is a basis for V. In particular, V has a basis of length
n.

Proof. By definition of n = dim V| V' has a spanning list D of length n and every spanning
list as length at least n.

Now let D be any spanning list of length n. By D has a sublist B which is basis.
Then B spans V and so B has length at least n. Thus D = B and so D is a basis. O

We will see later (3.10) that all bases of a finite dimensional vector space have length
dim V.

Theorem 3.13 (Expansion Theorem). Any linearly independent list in a finite-dimensional
vectors space is the sublist of a basis.
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Proof. Let (v1,...,v,) be a linearly independent list in the vector space V. Since V is finite
dimensional, V has a spanning list (w1, we, ..., w,,). Thus V = span(vi, ..., v, Wi, ..., Wy).
Let (u1,...,u;) be a sublist of (w1, ..., w,) maximal such that (vi,..., v, u1,...,u;) is lin-
early independent. Then by (v1,...,u1,...,u;) is a basis for V. O

N3.7 Col, Row and Nul
Definition N3.7.1. Let A be an m X n-matriz and x = (x1,...,z,) € R™. Then
Ax = z1a1 + xz0a0 + ... + Thap.

So Ax = Bx where B is the list of columns of A.

Let z,y € R™. Recall that according to xy is defined as y1x1 + yoxo + ... + YnTp.
Note that xy = yx. Also entry i of Ax is

r1ai1 + X202 + ... + TpQip = dx = za' = a;121 + a2 + ... + AinTy.

Definition 6.21,6.23. Let n and m be positive integer and A an m X n-matriz. Then
(a) ColA = span(ay,...,an).
(b) RowA = span(al,...,a™).
(¢) NulA = {z € R" | Az = 0}

Note here that NulA consists of the solutions of the homogeneous system of linear
equation

161 + Toas + ...+ xna, =0

Lemma 6.24. Let A be matriz and B a matriz obtained from A be sequence of elementary
row operations.

(a) NulA = NulB
(b) RowA = RowB.

Proof. @ holds since row operations do not change the solutions of an homogeneous system
of linear equations.

(]E[) A simple induction argument shows that we may assume that B is obtained from A
by just one elementary row operation. We will first show that RowB C RowA.

By definition of an elementary row operation, any row of B is either a row of A, a
non-zero scalar multiple of a row of A or the sum of a row of A and a scalar multiple of a
row of A. So any row of B is linear combination of rows of A.

In particular, all rows of A are contained in RowA = span(a',...,a™). Thus by
RowB = span(b!,...,b™) C RowA.
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Since the inverse of a elementary row operation is also an elementary row operation, we
conclude that also RowA C RowB. So RowA = RowB and @ holds.
O

Lemma N3.7.4. Let A be an m X n- matriz and B a matriz obtained from A by sequence
of elementary row operations. Let | be positive integer and 1 < j1 < jo < ... < j; < n. Put
C = Qjp, and dk = bjk'

(a) Let (x1,...,2z;) and (y1,...,Yyn) be list in R. Then

ric1+ ...tz =y161+ ... +Ypan <= v1d1 + ... + 17d; = 11 + ... + Ynbn

(b) (c1,...,¢) is basis for ColA if and only if (di,...,d;) is a basis for ColB.

Proof. @ For 1 <i <mn, put z; = xj, if i = j;, for some 1 < k <[ and z; = 0 otherwise.
Then

ricl+ ...tz =y101 + ...+ YnQn
zZ1a1 + ...+ 2Zpap = Y101 + ... + Ynan
(z1—y1)ar+ ...+ (zn —Yn)an, =0
(z1 —y1,--+,2n — Yn) € Nuld
(21 = Y1y -+, 2n — Yn) € NulB
ridy+ ...+ xdp = y1b1 4+ ...+ ynbn

1reny

So @ holds.

(]E[) By (c1,¢2,...,¢) is a basis for ColA if and only if for each v € ColA there exists
a unique x = (r1,...2;) € R with x1¢; +. .. +x;¢; = v. By definitions of ColA, (a1,...,ay)
spans ColA. So v =y1a1 + ...+ ynpay for some (yi1,...,y,) € R™. Thus zic1 +...+xc0 =0
if and only if

ric1 + ...+ x0 =y1a1 + ...+ Ynpay

Hence

1°. (c1,...,¢) is a basis for ColA if and only if for each (yi,...,yn) € R™ there exists
a unique (1, ...,2;) € RL with z1c1 + ...+ 216 = y1a1 + . .. + Ynan.

The same argument shows

2°, (di,...,dy) is a basis for ColB if and only if for each (yi,...,yn) € R™ there exists
a unique (z1,...,2;) € RE with x1dy + ... +21d; = y1by + ... + ynbp

@ now shows that (]E[) holds. O

Theorem N3.7.5. Let A be a m X n-matriz and B its reduced echelon form. Then:
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(a) Let s be the number of lead variables of A. Let x;, be the k’th lead variables of A. Then
by, = ex for all 1 < k <'s, where (e1,...,en) is standard basis for R™.

(b) The non-zero rows of B form a basis of RowA.
(c) The columns of A corresponding to the lead variables of B form a basis for ColA.

(d) Let t the number of free variables of A. Let c1,...,c; be the vectors in R™ defined in
N2.3.1. Then (ci,...,ct) s a basis for NulA.

Proof. Let 1 < k < s. Observe that by definition of the reduced echelon form, the leading
1 in row k of B is the only non-zero entry in Column I of B. Thus

1°. by, = ex for all 1 < k <s, that is by, =1 ifi =k and by, =0, ifi # 0.

In particular, @ holds.

Note (b!,...,b%) is the list of non-zero rows of B. Suppose that > ;_, 7' = 0. From
we see that that the [ entry of > 7 | rib' is ry. Sorp, = 0 for all 1 < k < s and
(b,...,b%) is linearly independent. (b!,... b%) also spans RowB and so (b',...,b%) is a
basis for RowB. By RowA = RowB and so (]ED holds.

Note that b;; =0 for all s <4 <m and 1 < j <n. Soif r = (r;)2; € ColB, then
r; = 0 for all s < ¢ < m. Thus there exists a unique (uy,...,us) € R® with r = >"7_, we;,
namely, u; = r; for all 1 <4 < s. Thus (e1,...,es) is a basis for ColB. From we
conclude that (by,,...,b;,) is a basis for Col(B). Hence by (aiy, ... a,) is a basis
for Col(A).

@ Note that NulA is the set of solutions of the linear system of equations zia; +
..y Tpan = 0. By [N2.3T] each solution can be uniquely written as a linear combination of

(c1,...,¢c). So by B3.17 ¢q,. .., ¢ is basis for NulA. O

N3.5 Dimension

Lemma N3.5.1. Let V be vector space and (v1,...,vy,) a spanning list for V.. Let w € V

and 1 < i <n and suppose that w ¢ span(vy,...Vi—1,Vit1,--.,0n). Then
(U1« vy Vie 1, Wy Vig 1y -+, Up)
spans V.
Proof. Without loss i« = 1. Since (vi,v2,...,v,) spans V, w = rjv; + ...r,v, for some
r1,72...,T € V. Since w ¢ span(va,vs, ..., v,) we have r; # 0. Observe that

(—Dw 4+ rv1 +...rv, = 0.
Thus by

span(w, va, ..., v,) = span(w, vy, Vg, ..., v,) = V.
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Theorem N3.5.2. Let 'V be vector space and let (vi,...,v,) and (w1, ..., wy) be spanning
lists for V.. Then there exists a sublist (u1,us,...,u;) of (wi,...,wy) of length at most n
which spans V.

Proof. For 0 < k <n let S; be the following statement:

Si): There exists a sublist (uy,...,u;) of (wi,...,wy,) of length at most k such that
g
(U1, U2, ..., Uy, Vgt 1, Vgt2,---,Vp) Spans V.

Note that S, is the statement we would like to prove. We will use induction to show
that S}, holds for all 0 < k < n.

Since (v1,v2,...,vy,) is a basis for V' its spans V. So Sy holds with (uq,...,u;) = (), the
empty list.

Suppose now that Sy hold and k < n. So there a sublist (ug,...,u;) of (wy,...,wy) of
length at most k& such that

(*) (Ul,ug,...,UZ,'Uk+1,'Uk+2,...7'Un) spans V.

If (uy,ug,...,u;, Vgso,...,v,) spans V, then Siiq holds with the sublist (ug,...,u;) of
(wl, ce ,’LUm).

Hence we may assume that (u1,ug, ..., u;, Vgt2,...,0,) does not span V. Since (wi, ..., wy)

spans V we conclude from that

(**) Wy ¢Spa’n(ulvu27"')ul7vk+27°"avn)

for some 1 < i < m. Thus (*), (**) and [N3.5.1| imply that (ui,...,u;, w;, Vgt2,...0y,) is a
spanning set of V. By Theorem u;j € Span(ui,ua, ..., U, Vg2, ..., U,) and so by (¥*)

w; # uj for all 1 <4 < 1. Thus (uy,...,u,w;) is (possible after reordering) a sublist of
(wi,ws ..., wy,) of length [ 4+ 1. Since [ < k, I +1 <k + 1 and so Sk1 holds.
We proved that Sy implies Si+1 and so by the Principal of induction, .S, holds. O

Theorem 3.10. Let V be a finite dimensional vector space. Then all bases of V' have length
dim V.

Proof. Let (w1, ..., wy) be a basis for V and n = dim V. Then by definition of ’dimension’
there exists a spanning list (vy, ..., v,) of length n. Since (v1,...,v,) and (wy, ..., w,,) span
V' we conclude from there exists a sublist (uj...,u;) of (wi,...,wy) of length at
most n which spans V. Since (w1, ..., wy,) is a basis for V' implies that (w1, ..., wpn)
is minimal spanning sublist of itself. So m = [ and thus m < n. Since by definition
n = dim V is the minimal length of a spanning list, m > n and therefore m = I. O

Theorem 3.9 (Comparison Theorem). Let V' be a finite dimensional vector space, U a
linear independent list in V', B a basis for V and S a spanning list for V.. Then

length U < dim V' = length B < length S
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Proof. By U is contained in a basis B’ of B. Then lengthU < length B’. By
length B’ = dim V' = length B and by definition of dim V', dim V' < length S. So
length U < length B’ = length B = dim V' < lengthS
O

Corollary N3.5.5. Let V be an n-dimensional vector space and B a list of lengthn in V.
Then the following are equivalent

(a) B is basis for V.

(b) B is linearly independent.

(¢) B spans V.

Proof. @) = (]ED: By definition any basis is linearly independent and so @ implies (]ED

@ = : Suppose B is linearly independent. Then by the Expansion Theorem
3.13] B is a sublist of a basis D. By D has length n and since B has also length n,
B=D.

== @: Suppose B spans V. Then by the Contraction Theorem B has
sublist D which is basis. By D has length n and since B has also length n, B = D.
Thus B is a basis and so B spans V. 0

Theorem 6.25. Let A be an m X n-matriz. Then
(a) dimRowA = dim ColA.
(b) dim ColA 4+ dim NulA = n.

Proof. Let s be numbers of lead variables and ¢ the numbers of free variables of A. Then
n=s+t By both RowA and ColA have a basis of length s, while NulA has a
basis of length t. O



44

CHAPTER N3. DIMENSION THEORY



Chapter N6

Linearity

N6.1 Basic definition

Definition 6.1. Let V and W be vector spaces and T : V. — W a function. We say that
T is linear function from V to W provided that

(1) T(u+v)=T(u)+T(v) for all u,v € V, and (additive)
(ii) T(rv) =rT(v) for allT € R,v € V. (homogeneous)

Notation N6.1.2. T : V — W s linear’ means that V. and W are vector spaces and T
is a linear function from V to W.

Theorem 6.2. Suppose T : V — W s linear. Then
(a) T(Ov) = Ow.
(b) T(—v) = =T (v) for allveV.

(c) T(riv1 +rova+ ...+ 1rpvy) = 11T (v1) + 12T (ve) + ... + 1T (vy) for all list (vyi,. .., vy)
inV oand (r1,...,m) in R.

(d) T(u—v)=T(u)—T() for all u,v € V.

Proof. (): T(0v) = T(0y + 0y) = T(0v) + T(0v) since T is linear. Thus T(0v) = Ow
by [L.2|(0)).

[@©): T(v) +T(—v) =T(v+ (—v)) = T(0) = 0 since T is linear and by (). Thus T'(—v)
is an additive inverse of T'(v) and so T'(—v) = —T'(v) by

(c): We prove by induction. For n = 0, says T(0) = 0, which is true by (a)).
Suppose that holds for n = k. Then

45
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T(rlvl + 1rovg 4+ ...+ T]f+11}k+1)

= T((rvy +rova+ ...+ 1vK) + rk+1vk+1> —Definition of sum of a list
= T(rivi +rova+ ...+ rpvg) + T(Tk+10k41) —Definition of linear
= T(rivy +rove + ...+ rpvE) + re1 T (vgs1) —Definition of linear

= (TlT(Ul) +roT(ve) + ...+ rkT(vk)> + rp11T(vgy1) —Induction Assumption
= rT(v1) +roT(v2) + ... + 7T (vg) + res1 T (vir1) —Definition of sum of a list
(d): See Homework 9 O

Lemma N6.1.4. Let V and W be vector spaces and T : V. — W a function. Then T is a
linear function from V to W if and only if T(au + bv) = a(T(u)) + b(T (v)) for all a,b € R
and u,v € V.

Proof. If T is linear, then by T(au+ bv) = aT'(u) + T (v) for all a,b € R.

Suppose now that T'(au + bv) = aT'(u) + bT'(v) for all a,b € R and u,v € V. Choosing
a=0b=1 we see that T'(u + v) = T'(u) + T(v) and choosing a = 0 and u = 0 we see that
T(bv) =0T (v) for all u,v € V and b € R. O

Lemma N6.1.5. Let 'V be a vector space and B = (v1,...,v,) alistinV. Let Lp : R" -V
be the function defined by

Lp(ri,...,m) =101+ ... +rpv,

for all (ri,...,ry) € R™. (In other words, Lg(r) = Br for allr € R".) Then Lp is linear
and Lp(e;) = v; for all 1 <i<n.

Proof. Let a,b € R and x,y € R". Then

(%) x=(ry,...,rm) and y=(s1,...,5).
for some real numbers r1,...,7,,81...,8,. We compute
L(ax +by) = Lp(a(ry,...,rn) +b(s1,...,5n)) - (™
= Lp(ary + bsi,...,ar, + bsy) — Definition of addition and

multiplication for R"

= (ary + bs1)vy + ... + (ary, + bsy)v, — definition of Lp
= a(riv1+...+r0y) +b(s1v1 + ...+ spv,) — Axioms of a vector space
= aLlp(ri,...,rn) +bLp(s1,...,8n) — definition of Lpg

— aLp(z) +bLp(y) - (™
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Thus Lp is linear by
Also Lp(e;) = Ovi+. . .4+0v;_1+1v;4+0v;41+. . .+0v, = 0+...40+v;+0+...40 = v;. [

Definition N6.1.6. Let A be an m x n-matrixz. Then L4 is the function from R™ to R™
defined by La(x) = Ax for all x € R.

Lemma N6.1.7. Let n,m € N and A an m x n-matriz. Then L, is linear and La(ej) = a;
forall1 <j <n.

Proof. Let B = (aj,a2,...,a,), so B is the list of columns of A. Note that B is a list in
the vector space R™. Let © = (x1,...,2,) € R™. Then by the definition of L4 and Lp:
Ly(x) = Az = 101 + ... + zpa, = Lp(x).

Then Ly = Lp (by|A.2.2) and so [N6.1.5| implies that L4 is linear and L4(e;) = a; for
all 1< j<n. 0

Remark: The book uses the notation pa for Ly.
Theorem 6.3. Suppose T : V — W and T’ : V. — W are linear.
(a) Put U ={v eV |T(v) =T (v)}. Then U is a subspace of V.

(b) Suppose that (v, ...,vy) is a spanning list for V. and T(v;) = T'(v;) for all 1 <i < n.
Then T =T'.

Proof. () By [6.2ffa), 7(0) = 0 = 7"(0) and so 0 € U. Suppose u,v € U. Then

Tu+v) = T(u)+T(w) —T islinear
= T'(u)+T'(v) —u,veU and definition of U
= T'(u+w) —T' is linear

Thus T(u+v) =T (u+v) and so u+v € U. Now let r € R and w € U. Then

T(ru) = rT(u) —T is linear
= rT'(u) —wu € U and definition of U

= T'(ru) —T'1is linear

Thus T'(ru) = T'(ru) and so ru € U. We verified the three conditions of the Subspace
Theorem and so U is a subspace of V.

Since T'(v;) = T'(v;) we have v; € U for all 1 < i < n. Since (v1,...,v,) Is a
spanning list for V' we conclude from that U = V. So T'(v) = T'(v) for allv € V
and thus T = T" (by [A.2.2). O
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N6.2 Composition and Inverses of functions
Definition N6.2.1. Let I be a set and V a vector space.
(a) F(I,V) is the set of functions from I to V.

(b) For f,g € F(I,V) define the function f + g from I to V by
(f +9)(0) = f(i) + g(d) for alli € T
(¢) Fora€R and f € F(I,V) define the function af from I to V by
(af)(i) = a(f(i)) for all i € T

(d) ¥(I,V) is the triples consisting of F(I,V) and the operations in () and (d).
Lemma NG6.2.2. Let I be a set and 'V a vector space.
(a) F(I,V) is a vector space.

(b) The additive identity in ¥(I,V) is the zero-function 0* defined by 0*(v) = Ov for all
veV.

(c) The additive inverse of f € F(I,V) is the function —f defined by (—f)(v) = —(f(v))
forallveV.

Proof. See Homework 8. O

Definition N6.2.3. Let V and W be vector spaces. Then L(V, W) is the set of linear
functions from V to W.

Theorem N6.2.4. Let V and W be vector spaces.

(a) The zero function from V to W is linear.

(b) If f and g are linear function from V to W, then also f + g is linear.
(c) Ifr € R and f:V — W s linear, then also rf is linear.

(d) L(V, W) is subspace of F(V,W).

Proof. Let v,w € V and a,b € R. Recall that the additive identity in F(I, V') is the zero
function 0* from V' to W defined by 0*(v) = Ow for all v e V. .

@ See Homework 7 .

() Let f,g: V — W be linear. Then
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(f +9)(av + bw)
= f(av + bw) + g(av + bw) — definition of addition of functions
- (a(f(v)) + b(f(w))) + (a(g(v)) n b(g(w))) _f, g linear and
= a(f(v) + g(v)) + b(f(w) + g(w)) — axioms of a vector space
- a(( f+ g)(v)) +o((f + g)(w)) _ definition of addition of functions, twice

and so f + g is linear by
Let r € R and let f: V — W be linear. Then

(rf)(av + bw)
= 7‘( flav + bw) ) — definition of scalar multiplication of functions
= 7“<a(f( w))) — f linear and [N6.1.4]
(7‘ (f( ) ( (f(w))) — axioms of a vector space
= ( rf)(v )) <(7’ H(w )) — definition of scalar multiplication of functions, twice

= a

and so by rf is linear.
@ By @), (]E[) and the three conditions in the Subspace Theorem hold. Thus the
Subspace Theorem shows that L(V, W) is a subspace of F(V, W). O

Theorem 6.7. Let f: V — W and g: W — X be linear. Then go f is linear.

Proof. See Homework 9.
O

Definition 6.29. (a) A linear function T : V. — W s called an isomorphism if there exists
a linear function T': W — V with ToT' =idy and T' o T = idy .

(b) The vector space V is called isomorphic to the vector space W if there exists an iso-
morphism T : V — W,

Theorem 6.8. Let f: V — W be linear. Then the following are equivalent:
(a) f is 1-1 and onto.

(b) f is invertible.

(c) f is invertible and f~1 : W — V is linear.

(d) f is an isomorphism.
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Proof. @) = (]ED: See

@ = : Suppose f is invertible. Let a,b € R and w,x € W. Put

(%) u=f"Hw)and v = f ().
Since f~! is the inverse of f, gives

(x%) w= f(u) and x = f(v).

Flaw+be) = 7 (a(f(@) +b(F@)) —(x4)

= f*1<f(au+bv)) —f is linear and [N6.1.4]
= au+bv —f~1 is the inverse of f, [A.5.5]

— a(Fw) +b(F @) —(x)
So f~!is linear by

= @: Suppose f is invertible and f~! : W — V is linear. By definition of an
inverse function fo f~! =idy and f~'o f =idy. By assumption f~! is linear and so f is
an isomorphism.

@ = @: Suppose that f is an isomorphism. Then by definition there exists a
linear function f': W — V with fo f/ =idy and f' o f = idy. So f’ is an inverse of f
and by [6.6] f is 1-1 and onto. O

Theorem N6.2.8. Let 'V be a vector space with a basis B = (v1,...,vy).

(a) Let z € R™ and v € V. Then Cg(v) =z if and only if v= Lp(z).

(b) Cp is the inverse of Lp; and Lp is the inverse of Cp.

(¢) Lp is an isomorphism from R™ to V; and Cp is an isomorphism from V to R™.
(d) Cp(vj) =¢€j forall1 < j < n.

Proof. (@) Let v € V and z = (r1,...,7,) € R". Then

Cp(v) = (r1,.-.,7n)
<~ [|v|Jp=(r1,...,r,) — definition of Cp
<~ v=rw+...+7r0, — definition of [v]p

<~ wv=Lg(r,...,my) — definition of Lp
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So holds.
follows from @ and
(¢

) By (b) Lp is invertible and Cp = L' By [N6.1.5, L is linear and so by [6.§ Ly is
an isomorphism and Cp = Lgl is linear. Thus also Cp is an isomorphism.

(d) By [N6.1.5| Lg(e;) = v; and thus by (a) Cp(v;) = e;. O

Theorem 6.9. Let V and W be vector spaces, B = (vi,...,v,) a basis for V and D =
(u1,...,up) a list in W. Then there exists a unique linear function T : V. — W with
T(vj) =uj for all1 < j <n, namely T = Lp o Cp.

Proof. See Exercise A on Homework 10. O

N6.6 Image and Kernel

Definition 6.19. Let T': V — W be linear. Then
kerT:={veV |T(v)=0w}.

Theorem 6.20. Let T : V — W be linear.

(a) ker T is a subspace of V and Im T is a subspace of W.

(b) Let (vi,...,v,) be a spanning list for V.. Then (T'(v1),...,T(vyn) is a spanning list for
Im T

Proof. (i) Note that kerT = {v € V | T(v) = 0*(v)} and so by ker T' is a subspace of
V.

Since T(0) = 0,0 € Im 7. Let w,z € Im T. Then w = T'(u) and x = T'(v) for some
u,v € V. Thus w+z = T(u) +T(v) = T(u+v) and so w+x € ImT. Let r € R.
Then rw = rT(u) = T'(ru) = and so rw € Im 7. So the three conditions of the Subspace
Theorem for Im T hold and Im T is a subspace of W.

(]E[) Let (v1,...,vy,) be a spanning list for V and let w € W.

welmT
= w = T(v) for some v € V — Definition of Im T
= w = T(riv; +...ryvy,) for some (rq,...,r,) € R” — since (v1,...,v,) spansV
— w=nrT(v)+...+r,T(v,) for some(ry,...,r,) € R" —T is linear and
= w € span(T'(vy),...,T(vy)) — Definition of span

Thus Im T = span(T'(v1), ..., T (vy). O
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Theorem 6.28. Let T : V — W be linear.

(a) Let u,v € v. Then T(u) =T (v) if and only if v —u € ker T".
(b) T is 1-1 if and only of ker T = {0}.

Proof. @ We have

T(u) =T(v)
— T(w)—T(u)=0 — 7D
< T(w—-u)=0 T is linear and
— v—uckerT — Definition of kerT

(o) Suppose first that 7" is 1-1 and let v € ker T. Then T'(v) = 0 = T'(0) and since T is
1-1, v = 0. Thus ker 7" = {0}.

Suppose next that kerT = {0} and let u,v € V with T(u) = T(v). Then by (@),
v —u € kerT. Since ker T = {0} this gives v — v = 0 and so by [L.7[p), v = u. So T is
1-1. O

Lemma N6.6.4. LetT : V — W be linear and suppose that 'V is finite dimensional. Then
the following three statements are equivalent:

(a) T is 1-1.

(b) For all linearly independent lists (v1,...,vyn) in V, (T(v1),...,T(vn)) is linearly inde-
pendent in W.

(c) There exists a basis (v1,...,vy,) of V such that (T(v1),...,T(vy)) is linearly indepen-
dent in W.

Proof. @ — (]ED: @ Suppose T is 1-1 and let (rq,...,r,) € R™ with

rT(v1)+...+7m,T(v,) =0.
Using [6.2] this gives:

T(’l“l’Ul + ...+ ’I”n’Un) = T(O),
and since T is 1-1, we get
v+ ... +rpv, = 0.
Since (v1,...,vy,) is linearly independent this implies 4 = 7o = ... = r, = 0. So
(T(v1),...,T(vn)) linearly independent.

(]E[) = : By[N3.4.4]V has a basis B = (v1,...,v,). Then B is linearly independent
and so by (b) (T'(v1),...,T(vy)) is linearly independent.
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= (d):  Suppose B = (v1,...,vy) is basis for V such that (T'(v1),...,T(vn)) is
linearly independent in W. Let v € kerT'. Since B spans V, v = r1v1 + ...+ rpv, for some
(r1,...,7m) € R™. Using[6.2] we get
rT(v)+ ...+ T () =T(rv1+ ... +rpvy) =T(v) =0

and since (T'(v1),...,T(vy,)) is linearly independent, 1y = 0,72 =0, ...,r, = 0. Thus v =0
and so kerT' = 0. Thus by T is 1-1. ]

Lemma N6.6.5. LetT : V — W be linear and suppose that 'V is finite dimensional. Then
the following three statements are equivalent:

(a) T is onto.

() Im T =W.

(¢) For all spanning list (vi,...,vy) of V, (T(v1),...,T(vyn)) spans W.

(d) There exists a spanning list (v,...,vn) of V such that (T(v1),...,T(v,)) spans W.

Proof. @ = (]ED : By definition T is onto if and only if Im T'= W. So @ and (]E[) are
equivalent.

@ = : Suppose Im T'= W. Let (v1,...,v,) be spanning list for V. By @
Im T = span (T'(v1), . ..,T(vy)) and since Im T'= W we conclude that (T'(v1),...,T(vy))
spans W.
= @: Suppose holds. Since V is finite dimensional, V has a spanning list
(v1,...,vp). Since () holds we conclude that (T'(v1),...,T(v,)) spans W. Thus @ holds.
= (]ED: Suppose there exists a spanning list (vy,...,v,) of V such that

(%) (T'(v1),...,T(vn)) spans W

By @ Im T = span (T'(v1),...,T(vy)) and so by (*) Im T = W. O

Corollary N6.6.6. Let T : V — W be linear and suppose V 1is finite dimensional. Then
the following are equivalent.

(a) T is invertible.
(b) For all basis (v1,...,v,) of V, (T(vl), .. ,T(vn)) is a basis for V.
(c) There exists a basis (vi,...,vn) of V such that (T'(v1),...,T(vy)) is a basis for V.

Proof. By T is invertible if and only if T is 1-1 and onto. By definition (T'(v1),...,T(v,))
is basis for W if and only if (T'(v1),...,T(v,)) is linearly independent and spans W. Thus
the corollary follows from [N6.6.4] and [N6.6.5 O
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Corollary N6.6.7. Let T : V — W be linear and suppose V and W are finite dimensional
and dim'V = dim W. Then the following are equivalent:

(a) T is invertible.
(b) T is 1-1.
(c) T is onto.

Proof. Let n =dimV = dim W and let (vi,...,v,) a basis of V. Then

T is 1-1
< (T(v1),...,T(vy)) is linearly independent —NG.6.4]
= (T(v1),...,T(vn)) spans W —{N3.5.5
= T is onto —N6.6.5]

In particular, T" is 1-1 if and only if 7" is 1-1 and onto, and so by if and only if T is
invertible. O

Corollary N6.6.8. Let V and W be finite dimensional vector spaces of equal dimension.
Let T : V. — W and S : W — V be linear. Then the following four statements are
equivalent.

(a) SoT =idy.
(b) S is an inverse of T.
(¢) T is an inverse of S
(d) ToS =idy.

Proof. () = (b):  Suppose that S oT = idy. Then by Homework Problem 6.2(9b)
T is 1-1. Since V and W have equal dimension [N6.6.7] shows that 7" is invertible. Since
S oT =idy we conclude that S =idy o T—' =T, see[A.5.3].

(]E[) = : If S is an inverse of T', then T is also an inverse of S, see

= @: If T is an inverse of S, then T o S = idy by definition of an inverse.

@ == @: Suppose T o S = idy. The result that @ implies @, applied with the
roles of T" and S interchanged, shows that 7' is an inverse of S. Thus S o T = idy, by
definition of an inverse.

O]
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Definition 5.3. Let n be a non-negative integer. I, is the n X n-matriz [e1,...,ey], S0
column j of I, is e; and

1 0 0 0 00
0 1 0 0 00
0 0 1 00
I, =
0 0 1 00
0 0 0 - 0 10
0 0 0 ... 0 0 1]

We will often just write I for I,.

Definition 5.1. Let A be an m X n-matrix and B an n X p matriz. Then AB is the
m x p-matriz whose jth column is equal to Ab;. So

A = [Aby, Abs, ..., Aby).
We denote column j of AB by (ab); and entry (i,j) of AB by (ab);j. So (ab); = Ab;
and (ab);j is entry i of Abj. Hence
(ab)ij = a'b; = anbij + aizbjo + ... + ainbnj,
and

m7p

AB = [anbij + aigbjo + ... + az’nbnj]i:m:l-

Definition 5.6. Let n and m be positive integers and A an m X n matriz.

(a) An inverse of A is an n X m matriz B with

AB =1, and BA =1,

(b) A is called invertible if A has an inverse.

Theorem 6.22. Let n and m be positive integer and A an m X n-matriz. Then
(a) ColA =Tm L.

(b) NulA =ker L 4.

Proof. @ Since eq, . .., e, spans R™, (]E[) implies that (La(ey1),...,La(en)) spans Im L 4.
Since La(e;) = Aej = aj, we get Im L4 = span(ay, ..., a,) = ColA and (@) holds.
([O) Let z € R™. Then La(z) = Az and so x € ker Ly if and only if Az = 0. O
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Lemma N6.6.13. Let n and m be positive integer and A an m X n-matriz. Then the
following are equivalent:

(a) The list of columns of A is linearly independent.
(b) NulA = {0}.
(c) La is 1-1.

Proof. We have

NulAd = {0}
— NulL, = {0} — 622
< Lyis1-1 — 6.2
<= (La(e1),...,La(ey)) is linearly independent —
— (ai,...,ay) is linearly independent —NG6.1.7

O]

Lemma N6.6.14. Let n and m be positive integer and A an m X n-matriz. Then the
following are equivalent:

(a) The list of columns of A spans R™
(b) ColA = R™.

(¢) Im Ly =R™.

(d) Ly is onto

Proof. Since ColA is the span of the columns of A, @ and are equivalent. Since
ColA =1Im Ly, (]ED and @ are equivalent. Finally, by definition of onto, L4 is onto if and
only if Im L4 = R™ and so @ and are equivalent. O

N6.3 Matrix of a Linear Function

Definition 6.12. Let T : V — W be linear. Suppose B = (v1,...,vy,) is a basis for V and
D = (wy,...,wy) is a basis for W. Let A be the m x n matriz with a; = [T'(v;)|p for all
1<j<n. So

A= [[T()]p, [T(@)]p, -, [T(wa)]lp]
Then A is called the matrixz of T with respect to B and D.

Lemma N6.3.2. Let V and W be vector spaces with bases B = (vi,...,v,) and D =
(w1, ...,wy) respectively.
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(a) (LaoCp)(v) = Alv]p for allveV.
(b) Let T : V. — W be a function then (Cp oT)(v) = [T'(v)|p for allv e V.
Proof. Let v € V. @

(LgoCg)(v)
= La(Cp(v)) —definition of composition
= La([v]B) —definition of Cp
= Afvp —definition of L4
()
(CpoT)(v)
= Cp(T(v))  —definition of composition
= [T(w)]p —definition of Cp

O]

Theorem 6.11. Let V and W be vector spaces with bases B = (vi,...,v,) and D =
(w1, ..., wy) respectively. Put n = dimV and m = dimW and let A € M(m,n). Let
T:V — W be a function. Then the following are equivalent

(a) T is linear and A is the matriz of T with respect to B and D.
(b) CpoT =LaoCp.

(c) Cpo(ToLg)=La.

(d) ToLp=LpoLa.

(¢) T=Lpo(LsoCpg).

(f) [T(v)]p = Av]g for allv e V.

(9) T(rivi+...+1rpvp) = (a1171 + ... F a1pTp)w1 + ... + (@171 + - - . + Q) Wi for all
(riy...,m) € R™.

The functions appearing in the theorem can be visualized in the following diagram

e T

w

Lp||CB Cp||Lp

R'I’L

R?’L

A
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Proof. Let B = (v1,...,v,) and 1 < j < mn.

(La o Cp)(vj)
= La(Cg(vj)) — definition of composition
) = Lue)) — NGZS
= ay m

@ = (]ED: Suppose that 7" is linear and A is the matrix of 7' (with respect to B and
D.) Then

(Cp o T)(vy)
= [T(vj)lp —N6.3.2(a)
= aj — definition of A

and so by (*) (Cp o T')(vj) = a; = (La o Cp)(v;).
Since T, L, Cp and Cp are linear, also Ly o Cg and Cp o T are linear by Since
B spans V', we conclude from that CpoT = LgoCpg. So (]E[) holds.

We will now show that @, , @ and (@ are equivalent.

CpoT =LsoCp

T=Lpo(LsoCpg) —Lp=Cp' and [A5.3([b)
T=(LpoLay)oCp — composition is associative
ToLg=LpoLsy —Lp=Cg'andA53)
Cpo(ToLg)=Ls —Lp=Cp' and[A5.3(H)

(@ — @: Suppose that @ holds. Then T'= Lp o Ly o Cg. Since Lp,L 4 and Cp
are linear and composition of linear functions are linear (see alsoT =LpoLsoCpis
linear. We compute

Tt

T(vj)
= (LpoLaoCp)(vj) - since (g holds
= Lp <(LA o C’B)(vj)> definition of composition
= Lp(aj) - ()

We proved T'(v;) = Lp(a;) and so by [N6.2.8|fa)), Cp(T'(v;)) = a;. The definition of Cp
gives [T'(v;)]p = a;j. Hence A is the matrix of T' with respect to B and D.
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<:>@): We have

CpoT =LsoCp
<= (CpoT)(v)=(LaoCp)(v)forallveV —I[A22
= [T(v)]p = Afv]p for allv e V — [N6.3.2)[a)) and (D)
Thus (]ED and (]ﬂ) are equivalent.

@ — @) :

We compute

(ToLp)(riy...,rn)
(%) = T(LB(rl, e rn)) — Definition of composition

= T(rvi+...+rpv,) — Definition of Lp

and
( % %)
(LpoLa)(ri,...m)
= Lp (LA(rl, e ,rn)) — Definition of composition
= Lp(A(ri,...,m)) — Definition of L4
= Lp(aniri+...a1nTny oy GmiT1 + .. QnTn) — Definition of Az
= (anri+...+awmrp)wi + ...+ (@mir1 + - .. + @Gmnrn)wy,  — Definition of Lp
Thus
ToLg=LpoLa
= (ToLg)(r1,...,mn) =(LaoLg)(ri,...,ry) for all (ry,...,r,) € R" —[A27D]
<~ T(rivi+...+7mvn) = (a1171 4+ ...+ a1nTn)wi + ... + (@GmiT1 + . .. + GmnTn)Wm  — (**) and (**F)

for all (r1,...,7,) € R"

Thus @ and @ are equivalent.
O

Theorem 6.10. Let n and m be positive integers, A € M(m,n) and T : R® — R™ q
function. Then the following two statements are equivalent

(a) T is linear and A is the matriz of T with respect the standard bases of R™ and R™.

(b)) T=1Ly.
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(¢) T(x) = Ax for all z € R™.

Proof. Let B and D be the standard basis for R” and R respectively. By @, and
@ the following three statements are equivalent;:

(a') T is linear and A is the matrix of T with respect the standard bases of R” and R™.
(b/) CD ol = LA OCB.
() [T(x)]p = Alz]p for all x € R™.

Observe that () is (a)).

Also since B and D are the standard bases, [x]p = = and [y|p = y for all z € R™ and
y € R™. So (') is equivalent to (d).

Moreover, Cp = idg» and Cp = idgm and so CpoT =T and Ly o Cp = L4. Thus (V')
is equivalent to (]ED and the theorem is proved. ]

N6.4 The matrices of composition and inverses

Theorem N6.4.1. (a) Let I be a set, V a vector space, f,g: I — V functions and i € I.
Then

(f £9)(i) = f(i) £ 9)(7)
(b) Let I and J be sets and V a vector space. Let f : I — J and g,h: J — V be functions
and let r € R. Then
(gth)of=gofthof and go(rf)=r(gof)

(c) LetI be a set and V and W wvector spaces. Let f,g : I — V be functions andh : V. — W
a linear function and let r € R. Then

ho(f+g)=hof+thog and ho(rf)=r(hof).

Proof. Let i € 1.
(@ (f +9)(i) = f(i) + g(i) holds by the definition of addition of functions.

(f —9)(@)
= (f+(—9)0) — definition of subtraction
= f@)+(=9)) — definition of addition of functions
= f()+(=(9()) —[N6.2.2(d)
(4)
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We have

( gth)o f) ;

(g + h)( (z)) — definition of composition
g(f@) £n(f@) @

(go f)(i) £ (ho f)(i) — definition of composition,twice

(gof+hof)(i) — ()

and so the first statement in (b)) holds by

Also

(trg)o 1))

(rg) (f(2)) — definition of composition

r(g (f (z))) — definition of scalar multiplication of functions
r((g of )(z)) — definition of composition

<r(g o f))(i) — definition of scalar multiplication of functions

and so the second statement in (b)) holds by

We have

(ho(F+9))0)

h((f + g)(z)) — definition of composition
n(£G) + 9(0)) - @

h(f(i)) = h(g(i)) — since h is linear

(ho f)(i) £ (hog)(i) — definition of composition,twice
(hofthog)i) - @

and so the first statement in () holds by Also
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((ho ) @)
= h{(rf )(z)) — definition of composition
= h(r( f (z))) — definition of scalar multiplication of functions
= r(h(f(z))) — since h is linear
= r((ho f)(i ) — definition of composition

i) — definition of scalar multiplication of functions
and so the second statement in holds by O

Lemma N6.4.2. Let V and W be vector spaces with bases B and D respectively. Let
T:V = W be linear and let A be the matriz of T with respect to B and D

(a) Let T : V — W be linear and let A" be the matriz of T" with respect to B and D. Then
A+ A is the matriz of T £ T with respect to B and D.

(b) Let r € R. Then rA is the matriz of rT with respect to B and D.

(c) Let T' : W — U be linear, E a basis for U and A’ the matrixz for T' with respect to D
and E. Then A’'A is the matriz for T' o T with respect to B and E

(d) Let T' : V.— V be linear and A’ the matriz for T' with respect to B and B. Then
T' =idy if and only if A’ = 1.

(e) Let T" : W — V be linear and A" the matriz for T' with respect to D and B. Then
T oT =idy if and only if A’A = 1. In particular, T" is an inverse of T if and only if
A’ is an inverse of A.

Proof. Let B = (v1,ve,..
@ Since Cp is linear, m. ) gives
Cpo(T+T)=CpoT+CpoT.
So Column j of the matrix of T+ 7" is

(@+T)w)| = (Coo(@£T))() = (CpoT)(w))+(CpoT)(y)
=[T()] £ [T"(vj)lp = a; +dj
Since a; + a’; also is Column j of A + A’, @ holds.
() Since Cp is linear, gives Cp o (rT) = r(Cp o T). So Column j of the

matrix of rT is
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(6T)(w))] | = (Coo (D)) wy) = r((CpoT)wy) = r{T(vs]p = ra;.
Since ra; is also Column j if A, (]ED holds.

Note that [T'(v)]p = a;. So by [6.11 [T’ (T(vj))} . A'aj and so [(T’ o T)(vj)}E =
A'aj. Thus Column j of the matrix of 7" o T is A’a;, which also is Column j of A’A. So
is proved.

(d) Suppose that 7" = idy. Then

ay = [T(vj)]s = [idv (v))]5 = [vj]B = ¢;
and so A = I,,. Suppose that A" = I,,. We just proved that also the matrix for idy is I,,.
By a linear function is uniquely determined by its matrix and so 7" = idy .
By (d), A’A is the matrix of T"oT with respect to B and B and so by (d)), 70T = idy
if and only if A’A = I. By symmetry, ToT” = idyy if and only if AA’ = I. Thus () holds. O
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Matrices

N5.1 Matrix Algebra

Theorem 5.4. Let n,m,p,q € N, A, A" € M(m,n), B,B" in M(n,p), C € M(p,q) and
r € R. Then

(a) A(BC) = (AB)C)

(b) (A+ A)B = AB+ A'B.
(¢) A(B+B')=AB+ AB'.
(d) (rA)B =r(AB) = A(rB).
(e) AI, = A=1I,A.

Proof. By an m X n matrix is essentially the same as a linear function from R" to R™.
Together with the statements in this theorem follow easily from the corresponding
results for linear function. As an example we will prove @ and @; and leave the proofs
of the remaining statements to the reader.

By[6.10] A, B and C are the matrices of L4, Lp and L¢,respectively, with respect to the
standard bases.

() By[N6.4.2 the matrices of Lyo(LgoL¢) and (LaoLpg)o Lc are A(BC) and (AB)C,
respectively. By [A.4.3|Lao (Lpo L¢) = (LaoLp)o L and so (AB)C = A(BC).

(d) By [N6.4.2|the matrices of (rLa)oLg), 7(LaoLp) and Lao(rLp) are (rA)B, r(AB)
and A(rB) respectively.

By [6.7] (rLa) o Lp) =r(Lao L) = Lao (rLp) and so (rA)B =r(AB) = A(rB). O

N5.2 Inverses

Lemma N5.2.1. Let A be ab n x n matrixz. Then the following statements are equivalent.

(a) A is invertible.
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(b) L4 is invertible.

(c) La is 1-1,

(d) L, is onto.

(e) NulA = {0}.

(f) The list of columns of A is linearly independent.
(g) ColA =R".

(h) The list of columns of A spans R™.

(i) The list of columns of A is basis of R™.

(j) dim ColA = n.

Proof. By @ @ and are equivalent.
By @, and @ are equivalent.
By@ , (E[) and @ are equivalent.
By@ @, and are equivalent.

Since @ and are equivalent, they are also equivalent to (fi)).

MATRICES

By a homework problem, ColA = R” if and only if dim ColA = n. So @ and (ED are

equivalent.

O

Remark: Since dim ColA = dim RowA the preceding theorems stays true for rows in

place of columns.

Theorem 5.13. Let A and B be n x n-matrices. Then AB = I, if and only if BA =1

and if and only if B is an inverse of A.

Proof. We have

AB =1,

Lap=idee  — NG
LaoLp=idgn —[N6.4.2([)
LpoLy=idgn —NGEF
Lpa=idsr  —[NCAZQ)
BA=1, -[NCAZ@

(|

O]

Lemma N5.2.3. Let B be a m xn matriz in reduced row-echelon form. Then the following

are equivalent.
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(a) Each column of B contains a leading 1.

(b) B has exactly n non-zero rows.

(¢) B has at least n-non zero rows.

(d) bj =e; for all 1 < j <n, where (e1,...,en) is the standard basis for R™.

Proof. Let s be the number of lead variables of A and x;, the ¢’th lead variable. Then
lh <lo < ... <ls and by @ b;, = e;. Thus B has exactly s columns containing
leading 1’s. So s < n and @, (]E[) and are equivalent.

If B = I,,, then all rows of B are non-zero and so @ implies (]ED

Suppose now that each column of B contains a leading 1. Thent = n and so (3, ...,l5) =
(1,...,n). Thus l; =i and so b; = b;, = e;. hence @ implies @ ]

Lemma Nb5.2.4. Let A be n X n matriz.
(a) A is invertible if and only if the reduced echelon form of A is I,.

(b) If A is invertible and P is an m X m matriz, the reduced row-echelon form of [A, P] is

[I,,A~1P].
(c) If A is invertible, the reduced row-echelon form of [A, I,,] is [I,,, A7Y].

Proof. @ Let B be the reduced echelon form of A and let ¢ be the number of lead variables
of B. Let A is invertible if and only if dim ColA = n. By dim ColA =t is the
number of lead variables. So A is invertible if and only if ¢ = n. Since F' is an n X n matrix,
this holds if and only row and columns contains a leading one. By this holds if and
only if B = I,,.

() Let D = [A, P and F the reduced echelon form of D. Then F = [B, H] for some
n X n matrices B and H. Note that B is the reduced echelon form of A and so by @
B =1, Thusb, =¢; forall 1 <k <n. Let 1 <j <m, then

fn+j = hj = hljel —+ ... hnjen = hljbl =+ ... hnjbn = hljfl =+ ... hnjfn
Thus by [N3.7.4(a)

pj = dn+j = hljdl + ... hnjdn = hljal + ... hnjan = Ahj
Hence P = AH and so by so A7'P = A7Y(AP) = (A"'A)P = IP = P. . Thus
F=[B,H] =[I,,A'P].
Since A~ = A~!, this follows from @ applied with P = I,,. O
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Chapter N6

Linearity (Cont.)

N6.5 Change of basis

Definition 6.16. Let V' be a vector space with basis B and B'. Then the change-of-basis

matriz from B’ to B is the matriz of idy with respect to B’ and B.

Theorem 6.15. Let V' be a vector space with basis B’ and B and P the change-of-basis

matriz from B’ to B. Then

(a) [v]p = Pv]p: for allv € V. That is the diagram

|4
Cpr Cp
Lp
R" R"™
commutes.
(b) If B' = (vi,...,vy,), then p; = [v}]5. So
P = [[vil, [o4ls. -, [vh]s

Proof. (@) Since P is the matrix of idy, gives [v]g = [idy (v)]g = P[v]p.

@ By definition of P, column j of P is [idy (v})] 5, which is equal to [v}]5.

O

Theorem 6.17. Let V be a vector space with basis B' and B, and let P be the change-of-
basis matric from B’ to B. Then P is invertible and P~ is the change of basis matriz from

B to B'.

69



70 CHAPTER N6. LINEARITY (CONT.)

Proof. Note that idy is invertible with inverse idy. By definition, P is the matrix of idy
with respect to B’ and B. So by N6.4.2@, P is invertible and P! is the matrix of idy
with respect to B and B’. Hence P! is the change-of-basis matrix from B to B’. O

Lemma N6.5.4. Let V' be vector space with basis B = (v1,...,v,). Let P an invertible

n x n matriz and put v; = Lp(p;) and B' = (v, ...,v,). Then B' is a basis for V and P

r n
is the change-of-basis matriz from B’ to B.

Proof. Since P is invertible, (p1,...,py) is a basis for R™ by [N5.2.1] By [N6.2.8| Lp is invert-
ible (with inverse Cz) and so by [N6.6.6{ B’ is basis for V. Moreover, [vi]p = Cp (LB(pj)> =
p; and so by @, P is the change-of-basis matrix from B’ to B. O

Lemma 6.18. Let T : V — W be linear. Let B and B’ be basis for V and let D and D’
be bases for W. Suppose:

(i) A is the matriz of T with respect to B and D.
(i) A" is the matriz of T with respect to B' and D'.
(iii) P is the change-of-basis matriz from B’ to B.
(iv) @ is the change-of-basis matriz from D’ to D.

Then
A =Q AP
Proof. Note by Q! is the matrix of idy with respect to D and D’. Hence

P is matrix of idy with respect to B’ and B;
A is the matrix of T" with respect to B and D; and
Q™! is the matrix of idy with respect to D and D’.

Hence by [N6.4.2l Q1 AP is the matrix of idy o T oidy with respect to B’ and D’. Since
T = idy o T oidy by this gives A’ = Q1 AP. O

The preceding theorem can be visualized in the following commutative diagram

T
|4 w
YASRAN
R’n LP R?’L LA Rm LQ - Rm

LA’

or if your prefer
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T
\%4 w
CB CD
Cp R R™ Cp
Lp LQ—]
R"™ R™
Ly

N6.8 Isomorphism

Corollary 6.30 (Classification Theorem for finite dimensional vector spaces). Let V be
finite dimensional vector space and W a vector space. Then 'V is isomorphic to W if and
only if W is finite dimensional and dimV = dim W.

Proof. =>: Suppose first that T': V. — W is an isomorphism and let B = (v1,...,v,) be
basis for V. Then by [N6.6.6| (T'(v1), ..., T(v,)) is basis for W. Thus W is finite dimensional
and dimW =n =dimV.

<=: Suppose next that W is finite dimensional and dimW = dimV. Let D =
(w1, ws ..., wy,) be basis for W. By there exists a linear function T : V — W with
T(v;) = w; for all 1 <i <n. Then

(T(v1),...,T(vn)) = (w1,...,wy) =D

is a basis for W and so by |[N6.6.6| 7" is invertible and so an isomorphism. Hence V is
isomorphic to W. O

N6.7 Rank and Nullity

Lemma N6.7.1. Let T : V — W be an isomorphism, X a subspace of V and Y a subspace
of W. Suppose that for allv €'V,

(%) vEX = TW) eEY

Define the function S : X — Y by S(x) = T(z) for allx € X. Then S is an isomorphism
and so X s isomorphic to 'Y .

Proof. By assumption, T'(z) € Y for all x € X and so also S(z) € Y for all x € X. Thus S
is indeed a function from X to Y.

Let a,b € X with S(a) = S(b). Then also T'(a) = T'(b) and since T"is 1-1, a =b. So S
is 1-1.
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Let y € Y. Since T is onto, y = T'(v) for some v € V. Then T'(v) =y € Y and by (*),
v € X. Hence S(v) =T (v) =y and S is onto.

We proved that S is 1-1 and onto, and so by Theorem S is invertible.
Let a,b € X and r, s € R. Then using

S(ra + sb) = T'(ra + sb) = rT'(a) + sT(b) = rS(a) + sS(b),

and so S is linear. We proved that S is invertible and linear. So by definition, S is an
isomorphism and X is isomorphic to Y. ]

Lemma N6.7.2. Let V and W be finite dimensional vector spaces with basis B and D
respectively. Let T :' V — W linear and let A be the matriz of T with respect to B and D.

(a) Letv € V. Thenv € ker T if and only if [v]p € NulA. In particular, ker T' is isomorphic
to NulA.

(b) Let w € W. Then w € Im T if and only if [w]p € ColA. In particular, Im T is
isomorphic to ColA.

Proof. Recall first that by Cp and Lp are isomorphisms and so are 1-1, linear and
onto.

@ Let v € V. Then

v € kerT

T(v)=0 — definition of ker T
[T(v)]p=0 — Since Cp is 1-1 and [0]p =0
Alvlp =0  — since[T(v)|p = Alv]p by [6.1]]

[v]p € NulA  — definition of NulA
Cp(v) € NulA — definition of Cp

11111

Thus the first statement in @ holds. Since C'g is an isomorphism, [N6.7.1| shows that
ker T is isomorphic to NulA.

(]E[) Let w € W. Then
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welmT
= w = T'(v) for some v € V — definition of Im T
< Cp(w)=Cp(T(v)) forsomev eV — Cpisl-1
= CD(w):LA<CB(v)> for some v € V. — since CpoT = L4 o Cp by [6.1]]
= Cp(w) = La(x) for some x € R" — Cp is onto and so

v €V if and only v = Cp(z) for some z € R"

= Cp(w) € Im Ly — definition of Im L4
= Cp(w) € ColA — since Im L4 = ColA by
— [w]p € ColA — definition of Cp

Thus the first statement in holds. Since Cp is an isomorphism, [N6.7.1| shows that
Im T is isomorphic to ColA. O

Theorem 6.27 (Dimension Theorem). Let T': V — W be a linear. If V and W are finite
dimensional, then

dimkerT +dimIm 7= dimV

Proof. Let B and D be bases for V and W, respectively. Let A be matrix of T" with respect
to B and D. Let n = dim V. By Theorem [6.25
(%) dim NulA 4 dim ColA = n =dim V'

By ker T' is isomorphic to NulA and Im T is isomorphic to ColA. Thus by

dim NulA4 = dimker 7" and dim ColA = dimIm 7.
Together with (*) this proves the theorem. O



74

CHAPTER N6. LINEARITY (CONT.)



Chapter N7

Determinants

N7.2 Definition and Properties

Definition N7.2.1. Let n be non-negative integer and o € R. A function
D:M(n,n) - R

is called an «a-based determinant function provided that if the following three statements
hold:

(i) Let A be an n x n matriz and 1 < j < n. Then the function
Dy, : R" = R, with Da,(z) = D(C;zA) for all z € R"

is linear. (So Dy, is the function obtained from D by keeping all Columns but Column
J constant.)

(11) Let A be an n x n matriz and 1 <1 < j <n. If a; = aj, then det A =0
(i) D(I) = a.
A regular determinant function is a 1-based determinant function.

In the following we will show that for each n € N and o € R there exists a unique
a-based determinant function from M(n,n) to R.

Lemma N7.2.2. Let n be positive integer, « € R, D : M(n,n) — R an a-based determinant
function, and A € M(n,n).

(a) Let 1 < j < mn andr € R. Let B be the matriz obtain by multiplying Column j of A
with r. Then D(B) = rD(A).

(b) Let 1 < j,k <n with j # k. Let B be the matrix obtain adding r-times column k of A
to Column j of A. Then D(B) = D(A).
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(¢) Let 1 < j,k < n with j # k. Let B be the matriz obtain from A by interchanging
Column j and Column k of A. Then D(B) = —D(A)

(d) If A has a zero column, then D(A) = 0.

Proof. We will just write (z) for CjzA. A = (a;) and D4, (z) = D({z)).
@ Note that B = (ra;). Since D, is linear,

D(B) = D((ra;)) = Da,(ra;) = rDa,(a;) = rD({(a;)) = D(A).
@ Note that B = (a; + rag). Since Dy, is linear,

D(B) = D((aj + mk>) = DA].(aj + ray) =Dy (aj) +7Da, (ak)
= D((aj)) +rD({ar)) =D(A)+7rD((ax)).

Note that Columns j and k of {(aj) are both equal to aj, and so Condition (ii) of a
determinant function shows that shows that D(({ax)) = 0. So D(B) = D(A).

(c) We will just write (x,y) for CjrzyA. Then A = (aj,ar) and B = (ay,a;j). We will
show how to obtain B from A via a sequence of column operation as in and (]ED

= (aj, ak)
1C,+C; — Cj (ay, + aj, ar)
(-1)C;+Cry — Cy (ar + aj, (=1)(ag + aj) + ax) = (ar + a;, —a;)
1C,+C; — Cj (—aj) + (ag + a;), —aj) = (ag, —a;)
(-1)Cr — Cy (ak, a;)

Note that all but the last operation are as in (]E[) and so do not change the determinant.
The last one multiplies the determinant by —1. So D(B) = —D(A).

@) Suppose column j is zero. Since D4, is linear, Theorem gives D(A) = D, (a;) =
DA]. (0) =0. ]

Algorithm N7.2.3. Let A be an n xn matriz and D an a-based determinant function. Let
B the reduced column echelon form of A and E1,...,E; a sequence of elementary column
operation which transforms A into B. If E; is rC; — Cj, put r; = % IfE; is rCp+Cji+ —
Cj, put r; = 1 and if E; is C; <+ Cy, put r; = —1.

(a) If B =1, then D(A) =rira...1 00
(b) If B # 1, then D(A) = 0.

Proof. Inductively define

Ag=A, A = E1(Ap), Ag = Ex(Ar), ..., A1 = Ej(A1-1)
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So A; is the matrix obtained from A; 1 via the elementary column operation E;. Thus
Al = B. Then by N7.2.2 D(AZ) = 7711 (Ai—l)- Thus D(Az_l) = TZD(Al) and so

D(A()) = TlD(Al) = T’lrgD(AQ) = 7’17‘27’3D(A3) = ...=Tr9... T’lD(Al>.

Hence

(%) D(A)=r;...mD(B)

Suppose now that B = I. By definition D(I) = a and so D(A) = 71 ...7ma by (*). Thus

@ holds.

Suppose next that B # I,,. Then by the column version of B has a zero column.
Thus D(B) = 0 by [N7.2.2] and so D(A) = 0 by (*). Thus (b holds. O

Corollary N7.2.4. Let « € R and n € N. Then there exists at most one a-based determi-
nant function from M(n,n) to R.

Proof. Let D an a-based determinant function. Then [N7.2.3tells us how to compute D(A)
and so D is unique. O

Corollary N7.2.5. Let « € R and n € N. Suppose det : M(n,n) — R is a regular
determinant function. Then adet is the unique a-based determinant function.

Proof. Let A be an n x n matrix, 1 < j <n and x € R®. Then

(adet)s;(z) = (adet)(CjzA) — definition of (ardet)a,

= «(det(CjzA) — definition of multiplication for functions
= «afdety,(z)) — definition of dety,
= (adeta;)(z) — definition of multiplication for functions

Thus (adet) 4; = adeta; by A.Q.Q} Since det 4, is linear, also (« det) 4, is linear by N6.2.4.
If a; # ay, for distinct j, k, then det A = 0 and so also (adet)(A) = a(det A) = 0. Finally
(adet)(I) = a(det(l)) = al = a and so adet is a a-based determinant function. By

adet is the unique such function. O

Corollary N7.2.6. Let A be an nxn matrixz and det a reqular determinant function. Then
the following statements are equivalent:

(a) det(A) # 0.
(b) The reduced column-echelon form of A is I.

(c) A is invertible.
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Proof. @ <= (]ED :  Let B and rq,...,7 be as in|N7.2.3] Then r; # 0 for all 4 and so
also ry...r; # 0. So if B =1, then det A = riry...1r # 0 and if the reduced B # I, then
det A = 0.

(b) <= () : This is the column version of N5.2.4@. dJ

Lemma N7.2.7. Let A be an m X n-matrix and B an n X p matriz. Let x € RP and
1 <k <p. Then Cy(Az)(AB) = A(CyxzB).

Proof. Let D = CyaB and 1 <[ < p. We need to show that
(*) Column [ of AD is equal to Column [ of A(CxzB).

Column k of D is x and so Column k of AD is Az. Column k of Cy(Az)(AB) is also
equal to Az and so (*) holds for [ = k.

If I # k, then column [ of D is b; and so Column [ of AD is Ab;. Column [ of AB is also
equal to Ab; and so (*) also holds for [ # k. O

Theorem 7.7. Let det : M(n,n) — R be a reqular determinant function and A,B €
M(n,n). Then det(AB) = det(A) det(B).

Proof. Fix A € M(n,n). Put o = det(A) and define D : M(n,n) — R by D(B) = det(AB).
We will first show that D is an a-based determinant function. Let 1 < j < n, and x € R".

Dp,(z) = D(C;xB) — definition of Dp,
= det (A(ijB)) — definition of D
= det (Cj(Ax)(AB)> N7
= det(ap),; (Az) — definition of det(sp);
= det(ap), (La(z))  — definition of L4

= (det(AB)j oLA) () — definition of composition

Hence Dp; = det(ap); oLa. By definition of a determinant function, det(4p), is linear.
By L4 is linear and so by also Dp;. linear. So D fulfills (i) in the definition of
an a-based determinant function.

Suppose that columns j and k of B are both equal to some z € R™. Then columns j
and k of AB are both equal to Az. Thus det(AB) = 0 and so D(B) = 0. Hence condition
(ii) is also fulfilled. Now D(I) = det(AI) = det(A) = v and so D is an a-based determinant
function. Thus by D = acdet. Hence

det(AB) = D(B) = (adet)(B) = adet(B) = det(A) det(B).
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The preceding theorem tells us how linear transformation effect volume. The volume
of the box spanned by vectors by, ..., b, in R" is det B where B is the matrix [by,...,by,].
Under the linear transformation L 4, this box is mapped to the box spanned by Aby, ..., Ab,.
This box has volume det[Aby, ..., Ab,| = det AB = det Adet B. Approximating the volume
of an arbitrary region in R™ by decomposing the region into small boxes we conclude that
the volume of the image of region under L4 is det A times the volume of the original region.

N7.3 Existence

Lemma N7.3.1. Let A be n x n matriz and D a determinant function. Let 1 <i < j and
define the matriz B by

ar  if1<k<i
a; Zf]{J:’L

by = b .
ap—1 ifi<k <y
ag ifj<k<n
that is
B= [al, ey A1, Qg Qs A 1y e e e s B2, A5 — 1, Ajg 1y - - .an]

Then D(B) = (—1)7~ D(A).

Proof. Observe that B can be transformed into A by the following sequence of j — i ele-
mentary row operations:

Ci+ Ciy1, Ciy1 < Cipa, ..., Ci1eCj

Each of these operation multiplies the determined by —1 and so D(B) = (=1)/7'D(A4). O

Lemma N7.3.2. Let n be a positive integer and 1 < i < n.

(a) Define o; : R™ — R by o;(a1,...,a,) = a;. Then o; is linear.

(b) Define m; : R* — R by m(ay,...,a,) = (a1,...,6;-1,0i41,...,a,). Then m; is
linear.

(c) Define 7; : R" 1 —= R" by 7i(a1,...,an_1) = (a1,...,a;_1,0,a;,...,an_1). Then 7; is
linear.

Proof. @ This can be proved by direction computation or by observing that o; = L.
(]E[) This can be proved by direction computation or by observing that m; = Lg where
B is the list (e1,...,€;-1,0,¢;,...,e,_1) in R*71,
This can be proved by direction computation or by observing that 7, = Lp, where
B is the list (61, ey €i—1,€C415- en) in R™.
O
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Theorem N7.3.3. Let n be a non-negative integer.
(a) There exists a unique regular determinant function det : M(n,n) — R.

(b) Let 1 <i<n and A an n X n-matriz. Then

det(A) = i(—l)i+jaij det(Ay;)

J=1

where Ajj is the (n —1) X (n — 1) matriz obtained from A by deleting row i and column
g

Proof. In view of we only need to show the existence of a regular determinant
function.

The proof is induction on n. For n = 0, M(n,n) has a unique element namely the empty
matrix Iy = [|. If we define det([]) = 1, then det is a regular determinant function.

So suppose n > 0 and that the theorem holds for n — 1 in place of n. Fix 1 <1¢ < n and
define a function det : M(n,n) — R by

n

(%) det(A) = Z(—l)i+jaij det(A;;)
=1

for all A € M(n,n). We need to verified that det is a regular determinant function. Fix
1 <k < n. We will show that dety, is linear. For 1 < j < k define F; = det(a,;),_,- For
k < j < n define Fj = det(4,;),. Let z € R" and put 2’ = m;(x). (So 2’ is obtained from
x by deleting entry i.) If j < k, then (CrzA);j = Cy_12’A;j and so det(CrzA)i; = Fj(a').
If £k = j, then (Ckl'A)” = Aij SO det(C’kxA)ij = det Al] If £k < j <mn, then (C’kxA)U =
Crx'Ajj and so det(CyrA);j) = Fj(z'). Let ai; be the (7, j)-entry of CyzA). So a;; = ajj if
j # k and a;; = x. Thus

det g, (z) = det(CrzA) = Z?Zl(—l)”jdij det(CrzA);j
_ Zf;ll aij Fy (@) + xp det(Ag) + 0y 4 aij Fy(2)
= YoMl Fi(mi(x)) + det(Aij)oi(x) + Y0y aij F(mi(x))
and so
k—1 n
dety, = Zaiij om; + det(A;j)o; + Z ai;Fjom;
J=1 Jj=k+1

By definition of a determinant function Fj is linear. By m; and o; are linear. So
also Fj om; is linear. Thus det 4, is a linear combination of linear functions and so is linear

by [N6.2.4] Thus Condition (i) in n the definition of a determinant function holds.



N7.4. CRAMER’S RULE 81

The (i,j) entry of I, is zero for j # i and 1 for ¢ = j. Also (I,)i;; = I,—1 and so
det(I,) = (=1)***.1-det(l,—1) = 1-1 = 1. Thus also Condition (iii) in the definition of a
determinant function holds.

If remains to show that det(A4) = 0 if A has two equal columns So suppose that columns
r and s of A are equal for some 1 <r < s <n. If j #r and j # s, then A;; has two equal
columns and so det A;; = 0. Thus

detA = (*1)“_710,” detAirJr(—l)HSais detAZ-s

(*) .
_ (—1)Z+rair<det Agy 4+ (—1)5" det AZ-S>

We have

/ /

R !/ / / / !/ i
A =[ay, .. a._y, Qg g,y ey Gy, sy Glyq, ..., Gy
/ /

n

Ais =[dl, ..., a,_y, a., a,,q, ..., a5 o, 0\ 1, Qhyq, ..., ap ]
Since a, = a]. we conclude from [N7.3.1)applied with i = r and j = s— 1, that det(4;,) =
(—1)*"""tdet(Ass) = —(—1)*""det(A;5) and so (*) shows that det A = 0. So also Condition

2 in the definition of a determinant function holds and so det is a regular determinant
function.

O]

N7.4 Cramer’s Rule

Definition N7.4.1. Let A be an n xn matriz and det : M(n,n) — R a regqular determinant
function. Then the adjoint of A is the n x n matriz B with b;; = det(Cje;A).

Theorem N7.4.2. A be an n x n matriz, and det : M(n,n) — R a regular determinant
function and B the adjoint of A.

(a) Let x € R™ and 1 <i < n. Then det(C;xA) = bj1xy + ...+ bipwy, = blx.
(b) Let x € R". Then Bx = (det(Cm:A))r}L = (det(C’le), . ,det(C’na:A)>.

=1
(¢c) Let 1 <i,j <n. Then blaj =0 ifi # j and b'a; = det(A) if i = j.

(d) BA =det(A)I. In particular, if det(A) # 0, A is invertible and A~! = mB.

(e) Let x,y € R" with Ax =y. Then (det A)x = By = (det(CwA))il. In particular, if
det A # 0, -

1 B :<det(C’iyA)>"

T det(A) det(4) ).,



82 CHAPTER N7. DETERMINANTS

Proof. @ We have dety,(e;) = det(Cie; A) = b;; = b;;1. So b' is the matrix of the linear
function det 4, with respect to the basis (ey,...,e,) for R” and the basis (1) for R. Thus

(&) follows from

(b) Since entry i of Bz is b'x, (]EI) follows from .

(c) By @ bia; = det(Cia;A). If i # j, then columns i and j of Cja;A are both equal to
aj and so b'a; = det(C;a;A) = 0. If i = j, then Cyja;A = A and so b'a; = det(A).

follows from () and BA = (biaj);fi’j:l.

(e)

From Ax =y we get

By = B(Az) = (BA)z = ((det A)I)z = (det A)(Iz) = (det A)z.
The second equality now follows from . O

Geometrically, means that the vector b' is perpendicular to the subspace of R"
spanned by (ai,...,a;—1,a;41,-..a,) and that det(A) can be computed via the dot product
of b* and q;.

Theorem N7.4.3. Let det : M(n,n) — R a regular determinant function. Let A be an
n xn matriz, 1 < i,j < n and let A;; the (n — 1) x (n — 1)-matriz obtained from A by
deleting Row i and Column j of A.

(a) det(Cje;A) = (—1)77 det(A;;).

(b) Let B be the adjoint of A. Then B = ((—1)i*d det(AjZ-) .
i=1,j=

(c) det(A) = 37, (1) aj; det(Ayj).

Proof. @)Forlgkgn—ldeﬁnel%:kifk<jand]%:k+lifj§k§n—1. For
D e M(n—1,n—1,R) let D* be the n x n matrix defined by

7i(dg) if1<k<j
di, =1 e ifk=j
Ti(dp—1) ifj <k
Then Dj; = D and dj, = 7;(dy) for all 1 <k <n—1. Put o = det(;_,).

We claim the function E : M(n—1,n—1) — R defined by E(D) = det(D*) is an a-based
determinant function. Note that

Ep,(z) = det ((Cka:D)*) = det (CI;TZ'(I‘)D*) = detDIfc (1i(z))

and thus Ep, = det D? OTi. Since both det D: and 7; are linear, Ep, is linear. If columns

k and [ of D are both equal to x € R™, then columns k and [ are both equal to 7;(z).
So E(D) = det(D*) = 0. By definition of «, E(I,,—1) = « and so E is indeed an a-based
determinant function. Hence F = a det.
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Note that 7;(er) = ex for 1 < k < i and 7;(ex) = egsq for ¢ < k <n — 1. This allows us
to compute I);_;.
For ¢ < 7,
-[7*;,71 :[617 ceey €51, €341, €542, -+ ., €5, €4, €j41, ..., En ]a

In = [ €1, ---5, €i—1, €4, €i41, --., €j—1, €5, €41, ..., En ]

and so by [N7.3.1|applied with (i, j, I, I,) in place of (i, j, A, B), det I,, = (=1)7~*det I* _,
and so o = (—1)17,

For i = j,
*
In—l = [61)"'76i—17€i76i+17"° 7en] = In
and so o =1 = (—1)"1.
For 7 > 7,
In = [ €1y «-vy €51, €5, €541, -+ €1, €, €j41, ..., €n ]7
*
Iy =lern,....,ej 1, €, €, ...,€ 2, € 1, €41, ..., €n ]

and so by applied with (4,4, I,,, I _;) in place of (i, j, A, B), det(I*_;) = (—1)" 7 det I
and a = (—1)"7.

Hence in all cases a = (—1)"/ and so E = (—1)"*7 det.

Let C be the matrix obtained from Cje;A by adding (for each 1 < k < n with k # j)
—a;, times column j to column k. Then C = A’;j and

det(CjeiA) = det C' = det AZ} = E(A@]) = (—1)i+j det Aij
and so @ holds.
(]EI) Let B be the adjoint of A. Then bj; = det(Cje;A) = (—1)"*7 det A;; and so @
holds.
Using N7.4.2@ and @ we compute

n

det A = bjaj = Z bﬂaij = Z aijbji = Z(—l)i+ja¢j det(Aij)
=1 =1 i=1
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Chapter N8

Eigenvalues and Eigenvectors

N&8.1 Definitions

Definition 8.1. Let T': V — V be linear and X € R.
(a) v €V is called an eigenvector of T' associated to \ if v # 0 and T'(v) = Av.

(b) X is called an eigenvalue of T if there exists an eigenvector of T associated to .

(c) Er(A) ={v eV |T(v) = }. (So Er(\) consists of the eigenvectors of T associated
to A and the zero vector.) Ep(N) is called the eigenspace of T' associated to

We will use the same terminology if V is replaced by R™ and T by an n x n matrix A.
So an eigenvalue for A is the same as an eigenvalue for L 4.

Theorem 8.2. Let T : V — 'V be linear, let A be an n x n matriz and let A € R.
(a) Er(X\) = ker(ANidy —T). In particular, E7()) is a subspace of V.

(b) Ea(N\) = Nul(A — A). In particular, Eo(\) is a subspace of R™.

(¢c) X is an eigenvalue of A if and only if det(A\ — A) = 0.

Proof. @) Let v € V. Then

ve Er(\)
= T(v) = Av — definition of Ep(\)
— T(v)=A(idy(v))  — definition of idy
= T = ()\ldv)(v) — definition of multiplication for functions
= (idy)) ~T() =0 —[CIR)
—  (Aidy -T)(v)=0 —
<= wveker(Aidy —T)  — definition of ker(Aidy — 1))

85



86 CHAPTER N8. EIGENVALUES AND EIGENVECTORS

By [N6.4.2| the matrix for Aidy — L 4 with respect to standard basis for R™ is A\ — A.
Hence by Theorem ker Aidy — Ly = NulAl — A. Thus using , Es(N\) =EL,(\) =
ker(Aidy — T') = Nul(\ — A)

We have

A is an eigenvalue of A
<= there exists an eigenvector of T" associated to A — definition of eigenvalue
= E4(\) # {0} — definition of E4(\)
— Nul(A — A) # {0} —([®)
= Al — A is not invertible — N52T]
— det(AI — A) =0 — N726

Definition 8.3. Let A be an n X n-matriz. Then the function x4 : R — R defined by
xa(A\) = det(A] — A)
for all A € R is called the characteristic polynomial of A.

Note that A is an eigenvalue of A if and only if det(A] — A) = 0 and so if and only if
xA(A) =0, that is if and only X is a root of x 4.

Theorem N8.1.4. Let T : V — V be linear and A1, ..., . be distinct eigenvalues of T.
For 1 <i <k let v; be an eigenvector of T associated to A\;. Then (v1,...,vx) is linearly
independent.

Proof. The proof is by induction on k. Since the empty list is linearly independent, the
theorem holds for £ = 0. Suppose it holds for k — 1. We will show that its also holds for k.
For this let (rq,...,7r;) € RF with

(*) UL+ ...+ v = 0.

Applying T to both sides and using Theorem [6.2] we get

rT(v1) + ...+ 7T (vg) = 0.

Since v; is an eigenvector associated to A;, T'(v;) = Av; and so

() riAvr + ...+ rgAgvg = 0.
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Multiplying equation (*) with A; and subtracting from (**) we obtain

71 ()\1 - )\k)'Uk—l + ...+ Tk—l()\k—l - )\k)vk_l =0.

By the induction assumption (v, ..., vg_1) is linearly independent. Hence 7;(Ai—Ag) =0
for all 1 <14 < k. Since \; # A for all 1 <4 < k we have \; — Ay # 0 and so r; = 0 for all
1 <i < k. Thus (*) implies ryvr = 0. Since vy # 0 this means r; = 0 and so (vy,...,vg) is

linearly independent.
The theorem now follows from the Principal of induction. O

Theorem 8.14. Let T : V — V be linear and Ay, ..., A\ be distinct eigenvalues of T'. For

each 1 <i <k let (uj,...,u;,) be a linearly independent list of eigenvectors of T' associated
to \;. Then

(Wity ey ULl ULy e ey ULy e v e - JUKLy - -+ Ukl )

1s linearly independent.

Proof. Let r;; € Rfor 1 <i<kand1<j <l with

11U .U, e + rtg + .+ TR Uk, = 0.

For 1 <i <k, put v; = rjquin + ... + rmi,ui,. By 8.2 Er();) is a subspace of V and so
v; € Ep(A;). Thus v; = 0 or v; is an eigenvector of T" associated to A;. Also

v1t+... v =rnun + ..o+ Uy e TEIUEL - - TR UKL, = 0.

Let (wi,...,w;) be the sublist of (v1,...,v;) consisting of the non-zero vs. Then

lui+...+1lwp=wi+...+wy=v1+...+ v =0.
If I # 0 this contradicts [N8.1.4] Thus [ =0 and so v; = 0 for all 1 < i < k. Hence

TilUil + . T U = U = 0

for all 1 <4 < k and since (w1, ..., u;,) is linearly independent we conclude that r;; = 0
for all 1 < j < l;. Thus (wir, ..., U1, U2l Ulpy -« ,Ukl, - .-, Uk, ) is indeed linearly
independent. O

N8.2 Similarity

Definition 8.4. Let A and A’ be n x n matrices. We say that A is similar to A’ and write
A ~ A if there exists an invertible n x n-matriz P with A’ = P"1AP.

Lemma N8.2.2. Let V be an n-dimensional vector space, T : V — V linear, B a basis for
V and A the matriz of T with respect to B. Let A’ be a n x n matriz. Then A’ is similar
to A if and only if there exists a basis B’ of V such that A" is the matriz of T with respect
B'.
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Proof. Suppose first A’ is the matrix of T" with respect to some basis B’ of V. Let P be
the change-of-basis matrix from B’ to B. Then by A= P71AP.

Suppose next that A’ = P~LAP for some invertible matrix n x n matrix P. Then by
NG6.5.4] there exists a basis B’ for V' such that P is the change-of-basis matrix from B’ to
B. Since A’ = P~'AP we conclude from that A’ is the matrix for A with respect to
B’ O

N8.3 Diagonalization

Definition N8.3.1. An n X n-matrix A is called diagonal if a; = aze; for all 1 < i < n.
Lemma N8.3.2. Let A be an n X n-matriz. Then the following are equivalent
(a) A is diagonal.

(b) A=[die1,...,dpey] for some (di,...,d,) € R™.

(c)
& 0 0 0 0 o0
0 d 0~ 0 0 0
0 0 dg - . 0 0
A=
0 0 dps 0 0
0 0 0 0 dpy O
(0 0 0 0 0 dy

for some (dy,...,d,) € R"
(d) aij =0 for all1 <i,j <n with i # j.
Proof. @) == (]ED: Suppose A is diagonal and put d; = a;;. Then

A = [al, ‘e ,an] = [auel, Ce ,amen] = [dlel, ce ,dnen]

(]E[) = : Suppose (]ED holds. Observe that
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-dl- | O- | 0- | 0-
0 do 0 0
0 0 0 0
diey =1 |, doea=1| |, ... , dp_1€p—1= |, dpen =
0 0 0 0
0 0 dp—1 0
0 0 0 dy,

and so hold.

— @: Should be obvious.

@ = @: Suppose @ holds and let 1 < ¢ <nand 1 < j <n. If j #£ 4, then the
j-entry of a; is a;; = 0 and the j-entry of a;;e; is a;;0 = 0. If j = 4, then the j-entry of a; is
is a;; and the j-entry of aje; is a;;1 = ay;. So a; = a;e; and A is diagonal. O

Definition N8.3.3. (a) A square matriz is called diagonalizable if its is similar to a diag-
onal matriz.

(b) Let T : V.— V be linear and suppose that V is finite dimensional. Then T is called
diagonalizable if there exists a basis B for V such that the matrixz for T with respect to
V' is diagonal.

Lemma N8.3.4. Let A be an n X n-matriz. Suppose there exists a linearly independent
list B = (vi,...,vpn) in V such that for all 1 <i < n, v; is eigenvector of A associated to
the eigenvalue \; of A. Put P = [v1,...,v,] and D = [Ae1,..., \nen]. Then

(a) B is a basis of R™.

(b) P is the change-of-basis matriz from B to the standard basis of R™.
(¢) D is the matriz of Ly with respect to B.

(d) D= P 1AP.

(e) A is diagonalizable.

Proof. @) Since dim R™ = n and B is a linearly independent list of length n in R™,
shows that B is basis.

@ Let E be the standard basis for R”. Then by (]ED the change-of-basis matrix
from B to R" is [[v1]g, ..., [vn]g]. Since [z]p =  for all z € R™, we see that @ holds.

By definition, Column 4 of the matrix of L4 with respect to B is
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[La(vi)]p = [Avi]p — definition of L4
= [MNvi]p — since v; is an eigenvector of A associated to \;
= M\fvilp — Cp is linear by
= Ne -
= d; — definition of D

and so holds.
(d) By A is the matrix of L4 with respect to E. So by (b)) and the matrix of
L 4 with respect to B is P~'AP and so @ follows from .

@ By @, D is similar to A. Since D = [Ajeq, ..., Apep, [N8.3.2| shows that D is a
diagonal matrix. Thus A is diagonalizable. O

01 0
Example N8.3.5. Let A = |1 0 0]|. Find a diagonal matriz D and an invertible

0 0 -1

matriz P with D = P~1AP.

A -1 0

det |—1 A 0l =M+ =(-1)(-1) = A+ 1A+ 1)(A—1)

0 0 A+1
and so the eigenvalues are A = 1 and A = —1. We will use the Gauss Jordan Algorithm to
compute a basis for E4(\) for A =1, —1.

For A = 1:
1 -1 0 1 -1 0

R2+ R1 — R2

-1 10 3R3 — R3 0 0 1

R2 < R3

0 0 2 0 00

So x9 is free, 1 = a9, x9 = w9 and x3 = 0. Thus (1, 1,0)) is basis for F4(1).

For A = —1:

-1 -1 0 11 0
-1 -1 0l . 77" 1o 0 0
0 00 00 0
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So z9 and x3 are is free, x1 = —x9, T2 = x9 and x3 = x3. Thus (— 1,1,0), (0,0, 1)) is basis
for E4(—1).
By [8.14]
1 1 0
B = 11,1—-11],(0
0 0 1

is linear independent. So we can apply [N8.3.4l Put

1 10 1 0 0
P=11 -1 0| andD= (0 -1 0
0 01 0 0 -1
Then D = P—1AP. To verify this statement we will show that PD = AP:

1 1 0] |1 0 O 1 -1 0
PD=11 -1 0| |0 -1 o0|=]1 1 0
0O 01,0 0 -1 0 0 -1

and

01 0|1 10 1 -1 0
AP=11 0 oO| |1 =1 0l=11 1 o0
00 —1]]0 o0 1 0 0 -1

Theorem 8.12. Let T : V — V be linear, B = (v1,...,v,) a basis for V and A the matrix
for T with respect to B. Let X\ € R.

(a) Let v €V and x € R" such that x = [v]p orv = Lg(x). Then v is an eigenvector of T
associated to A if and only if x is an eigenvector for A associated to .

(b) The following three statements are equivalent:

(a) v; is an eigenvector for T with respect to \.
(b) a; = /\iei

(c) a; = azie; and \ = aj;.



92 CHAPTER N8. EIGENVALUES AND EIGENVECTORS

(c) A is diagonal if and only if for all 1 <1i < n, v; is an eigenvector of T

Proof. (ia)) Note first that by N6.2.8a]), z = [v] 5 if and only if v = Lg(z).

Twpv = M
<~ [T(w)]s = [\]p - since Cpis 1-1
— Aplp = Avlp —[6.11{), Cp is linear
< Ar = Ar —sincex=[v|p

Recall that [v;|p = e; by [N6.2.8] Thus

v; 18 an eigenvector for 71" associated to A

<= ¢; is an eigenvector for A associated to A — @ and [v;|p = ¢;
— Ae; = Ne; — definition of eigenvector
<— a; = Ae; — since Ae; = a; by

So and are equivalent.

If a; = Ae;, then a4 is the i-entry of Ae; and so a; = A. If a; = a;;¢; and A = ay;, then
a;\e;. So and (b:c|) are equivalent.

Follows from (b))
O

Theorem IN8.3.7. Let T : V — V be linear and suppose that V is finite dimensional.
Then the following statements are equivalent:

(a) T is diagonalizable.
(b) For each basis B of V the matriz for T" with respect to B is diagonalizable.

(¢) There exists a basis B for V such that the matriz for T with respect to B is diagonal-
izable.

(d) There exists a basis for V consisting of eigenvectors of T'.
(e) The sum of the dimension of the eigenspaces of T' equals the dimension of V.

Proof. @ = : Suppose T' is diagonalizable, then there exists a basis F' for V such
that the matrix D for T with respect to F' is diagonal. Let B be any basis for V and A the
matrix for T" with respect to B. By B is similar to D and so (]ED holds.

(]E[) = : Suppose that for each basis B of V the matrix for T" with respect to B
is diagonalizable. By V has a basis B and so holds.
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= @: Suppose there exists a B basis for V such that the matrix A for T' with
respect to B is diagonalizable. Then A is similar to a diagonal matrix D and by
there exists a basis B’ of V' such that the matrix of T' with respect to B’ is D. Thus T is
diagonalizable.

@ —= @ : By definition T is diagonalizable if and only if there exists a basis B of
V such that the matrix D of T with respect to B is diagonal. By this holds if and only
if there exists a basis for V' consisting of eigenvectors of T'. So @ and @ are equivalent

@ = @ : Putn=dimV. Let \q,...,\; be the distinct eigenvalues for 7" and for
1 <i<klet (uj,...,uy,) a basis of for E7(A\;). By

B:(un,...,uul, ...... ,ukl,...,uklk)

is linearly independent. Thus by the Comparison Theorem [3.9)m := 1 +la+...+ 1 < n.

@ = @: Suppose n = m. Then by [N3.5.5( B is basis for V and so @ holds.
@ == @: Let B be basis consisting of eigenvectors of V and for 1 <i < k let B;

be the sublist of B consisting of the elements of B associated to A;. Let n; be the length of
B;. Then n = nj + ...+ ng. Note that B; is a linearly independent list in E7();) and so
n; < l; by the Comparison Theorem Thus

n=m+...4+np <h+...+hL=m<n

and n = m.

Theorem 8.8. Let A and A’ be similar n X n matrices. Then
(a) det A = det A"

(b) For all A € R, A\I — A is similar to \I — A'.

(¢c) A and A" have the same characteristic polynomial.

Proof. Let P be an invertible n x n-matrix with A’ = P~'AP and let A € R.

(a) By Exercise 7.3.12, det A’ = det(P~'AP) = det A.

(b) P~*(M\ — A)P = P~Y(\[)P — PYAP = \(P"'IP) — A’ =\ - A'.

By (b), Al — A is similar to AI — A’ and so by () det(\] — A) = det(A\ — A’). Thus
XA = X4 by N

Definition N8.3.9. Let T': V — 'V be linear and suppose that V is finite dimensional.
Then xT = x4 where A is the matrix of T with respect to some basis of V'

Note that this is well-defined by and
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Appendix A

Functions and Relations

A.1 Basic definitions

Let n be a non-negative integer and a, b, ¢, d objects. Then (a,b) denotes the ordered pair
formed by a and b. More formally, (a,b) = {{a},{a,b}}, but we will never use this formal
definition. Instead, we use the following fundamental property of ordered pairs:

(a,b) = (¢,d) if and only if a = cand ¢ = d

which can be proved from the definition and the axioms of Set Theory. a is called the first
coordinate of (a,b) and b the second coordinate of (a,b).
(a,b,c) denotes the ordered triple formed by a, b and ¢. More formally (a,b,c) =

((a,0),c).
Definition A.1.1. Let A and B be sets.

(a) A x B denotes the set
{(a,b) |a € A and b € B}.

So the elements of A x B consists of all ordered pairs whose first coordinate is in A and
the second is in B.

(b) A relation from A to B is a triple (A, B, R), denoted by ~, such that R is a subset of
A x B. Let a and b be objects. We say that a is in ~-relation to b and write a ~ b if
(a,b) € R. So a ~ b is a statement and

a ~ b if and only if (a,b) € R
(c) Let ~= (A,B,R) be a relation. A is called the domain of ~ and B is called the
codomain of ~.

Im ~={be€ B|aRb for some a € A},

95
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Colm ~= {a € A | aRb for some b € B}

Im ~ is called the Image of ~ and Colm ~ the coimage of ~.

(d) A function from A to B is a relation F' from A to B such that for all a € A there exists
a unique b in B with aFb. We denote this unique b by Fa or by F(a). So fora € A
and b € B,

b= Fa if and only if aF'b
Fa is called the image of a under F. If b= Fa also will say that F' maps a to b.
(e) We write “F': A — B is function” for “F is a function from A and B” .
(f) Let F: A — B be a function and C a subset of A. Then F[C] = {F(c)|ce C}.

Suppose for example that A = {1,2,3} and B = {4, 5, 6}.

Put R ={(1,4),(2,5),(2,6)}. Then ~= (A, B, R) is a relation from A to B with 1 ~ 4,
2 ~ 5 and 2 ~ 6. But ~ is not a function from A to B. Indeed, there does not exist an
element b in R with (1,b) € R. Also there exist two elements b in R with (2,b) € R, namely
b=25and b =6.

Put S = {(1,4),(2,5),(3,5)}. Then F = (A, B,S) is the function from A to B with
Fl=4, F2=5and F3 =5.

Note that if F' = (A, B, R) is a function then Im F' = {Fa | a € A} and Colm F' = A.
Note that the text book uses the term range for the codomain of F'. But since the term
range is often used to denote the image of F', we prefer use the terms codomain and image.

Now let A and B be arbitrary sets and suppose that ®(a) is a formula involving a
variable a and if a € A, then ®(a) is in B. Put R = {(a,®(a)) | a € A} and F = (A, B, R).
Then F' is a function from A to B. We denote this function by

F:A— B,a— ®(a).

For example

F:R—)R,T—H“z.

denotes the function from R to R with Fr = r2 for all r € R.

A.2 Equality of relations
Lemma A.2.1. Let A and B be sets.

(a) Let ~= (A, B, R) be a relation from A to B. Then R = {(a,b) | a € A,b € B,a ~ b}.
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(b) Let ~ and = be relations from A to B. Then ~== if and only if for all a € A and
b € B we have a ~ b if and only if a =~ b.

Proof. () Put S ={(a,b) |a € A,b € B,a~b}. If d € S, then by definition of S, d = (a, b)
for some a € A, b € B and a ~ b. Hence by the definition of a ~ b, (a,b) € R. Thus d € R.

If d € R the since R C A x B, d = (a,b) for some a € A and b € B. Since (a,b) € R we
conclude that a ~ b and so d = (a,b) € S.

We proved that d € S if and only if d € R and so R = 5.

(B) Let ~= (A, B,R) and ~= (A, B, T).

Suppose that ~=~ and let a € A and b € B. Then clearly a ~ b if and only if a =~ b.

Suppose that for all « € A and b € B we have a ~ b if and only if a = b. Then applying
(a) to ~ and ~,

R={(a,b)|a€ A,be B,a~b} ={(a,b)|ac A,be Biaxb} =S5

and so

~=(A,B,R)=(A,B,S) =~
O

Lemma A.2.2. Let A and B sets and [ and g functions from A to B. Then f = g if and
only if fa = ga for all a € A.

Proof. If f = g, then clearly fa = ga for all a € A.
Suppose now that fa = ga for all a € A. Let a € A and b € B.
afb
<= b= fa — definition of fa
< b=ga - since fa=ga
<= agb  — definition of ga

now show that f = g. O

A.3 Restriction of relations and function

This subsection has been used in earlier version of this lecture notes to treat subspaces, but
currently is no longer used.

Lemma A.3.1. Let ~ be relation from A to B and C and D sets. Then then there exists
a unique relation ~ from C to D such that

cxrd<<c~d

forallce C,deD.
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Proof. We will first show that existence of ~. Put S = {(¢,d) | ¢ € C,d € D,c ~ d} and
~= (A, B, R). By definition of S, S C C' x D and so = is relation from C to D. Let ¢ € C
and d € D.

Suppose that ¢ ~ d. Then (¢,d) € S and so by definition of S there exists ¢ € C' and
d € D with (¢,d) = (¢,d) and & ~ d. Hence ¢ = ¢,d = d and ¢ ~ d.

Suppose that ¢ ~ d. Then by definition of S, (¢,d) € S and so ¢ = d.

We proved that ¢ =~ d if and only if ¢ ~ d and the existence of = is established.

Assume now that also ~ is a relation from C to B with

cd<—c~d

forallce C,de D.
Then for all ce C,d € D,

crde=c~d<c~d

and by [A22.], ~=~. O

Definition A.3.2. Let ~ be relation from A to B, C and D sets and =~ the unique relation
from C to D such that ¢ = d <= c ~ d for all c € C and d € D. Then = is called the
restriction of ~ to C' and D and is denoted by ~|c p.

Lemma A.3.3. Let f: A — B be a function, C and D sets and g = f |c,p the restriction
of f to C and D.

(a) If g is a function, then C C A and gc = fc for all c € C.
(b) g is a function if and only if C C A and fc € D for all c € C.

Proof. Suppose first that g is a function and let ¢ € C. Since g is a function, there exists a
unique d € D with cgd. By definition of the restriction we conclude that cfd. In particular,
c € A and so C' C A. Moreover, by the definition of fc and gc we have fc = d and gc = d.
In particular, fc = gc and fc=d € D. So @ is proved and also the forward direction of
(@ is proved.

Suppose next that C' C A and fc € D for all c € C. Let ¢ € C and d € D. Then by
definition of g, cgd if and only if ¢ € C,d € D and cfd. Since ¢ € C this is equivalent to
d € D and cfd. Since f is a function this holds if and only if d € D and d = fe. Since
fc e D for all ¢ € C this holds if and only if d = fc. So there exists a unique element d € D
with cgd (namely d = fc) and so g is a function. O

A.4 Composition of Relations
Definition A.4.1. Let a be a relation from A to B and 8 a relation from B to C. Put

S ={(a,c) € Ax C | (aab and bBc) for some b € B}



A.4. COMPOSITION OF RELATIONS 99

and

Boa=(A,0C,S).
Then B o « is called the composition of 5 and c.

Observe that 5o« is a relation from A to C and if a € A and ¢ € C, then a(f o a)c if
and only if there exists b € B with aab and bfc.

Lemma A.4.2. Let f: A— B and g: B — C be function. Then go f is a function and
(9o fla=g(fa)
for all a € A.
Proof. Let a€ A, b€ B and c € C. Then
afb and bgc

< b= faand c=gb  —Definition of fa,gb

<= b= faand c=g(fa) —Substitution

It follows that a(g o f)c if and only if ¢ = g(fa). So go f is a function and (g o f)a =
g(fa). O

Lemma A.4.3. Let f: 1 — J,g:J — K and h : K — L be functions. Then ho(go f) =
(hog)of.

Proof. Let i € I. Then

(hOWOfﬁi
= h((g of )z) — definition of composition
= h(g( fz)) — definition of composition
= (hog)(fi) — definition of composition

= ((h o0g)o f)i — definition of composition

Thusho(gof):(hog)ofby O

Lemma A.4.4. Let f: [ — J,g:J — K and h: K — L be relations. Then ho(go f) =
(hog)of.

Proof. Let i € I and [ € L. Then
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i(h o(go f))l

— <7,(g o f)k and khl) for some k € K — definition of composition
= ( ifj and jgk) for some j € J > and khl | for some k € K — definition of composition
= ( ifj and jgk) and khl) for some j € J | for some k € K — (QR

<— ( (ifj and jgk) and k:hl) for some k € K | for some j € J — (QR@

— <ifj and (jgk and khl)) for some k € K ) for some j € J — (LR[2d)

— (ifjand ((jgk: and khl) for some k € K) for some j € J — (QR[I0)

= <z f7and j(ho g)l> for some j € J — definition of composition
= z((h og)o f)l — definition of composition

Thus ho(go f) = (hog) fby- O

A.5 Inverse of a function

Definition 6.4. Let f: A — B be a function.

(a) f is called 1-1 if, for all b € B there exists at most one a € A with fa =b. So f is 1-1
if and only
fa=fc = a=c

for all a,c € A.

(b) f is called onto if for all b € A there exists a € A with b= fa. So f is onto if and only
if B=1Im f.

(c) An inverse of f is a function g : B — A such that
fog=1idp and go f =1idp
(d) f is called invertible if there exists an inverse of f.
Lemma A.5.2. Let f: I — J be a function. Then
foidr=fandidjo f=f

Proof. See Homework 9 ]
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Lemma A.5.3. Let f: I — J be an invertible function and f’ an inverse of f.
(a) Let g : K — I be a function, then f' o (fog)=g.
(b) g: K— 1 and h: K — J be functions. Then

fog=h<=g=foh

(c) There exists a unique function f*:J — I with fo f* =idy, namely f* = f’.
(d) f' is the unique inverse of f.

(e) Let g:J — K be a function, then (go f)o f' =g.

(f) Let g: J — K and h : I — K be functions. Then

gof=h<=h=gof

(9) There exists a unique function f*:J — I with f* o f =id;, namely f* = f’.

Proof. @): f'o(fog)=(f'of)og=idjog=g.
([): Suppose that f o g = h. Then using (@),

floh=f'o(fog) =g

Suppose now that g = f’ o h. Since f is an inverse of f’ we can apply the result from
the previous line and conclude that h = f o g. Thus (]ED holds.

: Let f*:J — I be a function. By (]ED fo f*=idy if and only if f* = f
circidy, that is if and only if f* = f'.

@: This follows from .

@: Similar to @

@: Similar to (]ED

(g): Similar to (). O

Definition A.5.4. Let f : I — J be an invertible function. Then f~1 denotes the unique
inverse of f.

Lemma A.5.5. Let f : A — B and g : B — A be functions. Then the following four
statements are equivalent:

(a) g is an inverse of f.
(b) f is an inverse of g.
(c) f(gb) =0 for allbe B and g(fa) =a for all a € A.

(d) For alla € A and b € B,
fa=b <<= a=gb
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Proof. @) — : We have

g is an inverse of f
< fog=idpand go f =idy — definition of inverse function
< gof=idsand fog=idg —(LR[L3)

f is an inverse of g — definition of inverse function

So and (]ED are equivalent.

O~ ©-:

go f=idy
<= (go f)a=idya for alla € A —Equality of functions

= g(fa)=aforallaec A —Definition of composition and of id 4

Similarly f o g =1idp if and only if f(gb) = b for all b € B. So @ is equivalent to .

(d) = @: Suppose that holds and let a« € A and b € B. If fa = b, then
a = g(fa) = gb; and if a = gb, then b = f(gb) = fa. So fa = b if and only if a = gb and
thus @ holds

@ = : Suppose that @ holds.

Let a € A and put b = fa. Then @ implies gb = a and so g(fa) = a.

Let b € B and put a = gb. Then @ implies that fa = b and so f(gb) = b. Thus
holds.

We proved that () implies @ and that @ implies . Hence () and @ are equivalent.

O

Part @ is a recipe for computing the inverse of a function f : A — B. Consider for
example the function f: R — R with fz =2z + 1 for all x € R. Let x,y € R. Then

fr = Y
= 2x4+1 = Y
= 2z = y-1
= oz = 3u-1
= T = 33

So the function g : R — R defined by gy = %y — % for all y € R is an inverse for f.

Lemma A.5.6. Let f : A — B and g : B — C be invertible. Then go f is invertible with

inverse f~1o gL
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Proof. Let a € A,c € C. Then

(gofla = ¢
—  g(fa) = ¢ — definition of composition
= fa = g e — applied to the inverse of g
— a = g te) — applied to the inverse of f
— a = (f~'og e — definition of composition
So by f~log ! is the inverse of g o f. O

Theorem 6.6. Let f be a function. Then f is invertible if and only if f is 1-1 and onto.
That is f : A — B is invertible if and only if for all b € B there exists a unique a € A with
fa=0.

Proof. =>: Suppose first that f is invertible and let g be an inverse of f. Let a,c € A.

fa = fe
= ¢g(fa) =g(fc) —Substitution
= a=c twice

Thus f is 1-1. Now let b € B and put a = gb. Then a € A and by , fa =">band
f is onto.
<=: [ will give two proofs for the backward direction:

Proof 1: Suppose that f is 1-1 and onto. Since f is onto, we can choose for each b € B
an element b’ € A with fo/ =b. Define g: B —+ Aby gb=10". Let a € A and b € B. Then

fa=10
< fa=fl/ — since ft/ =0
— a=V — fisl-1
< a=gb — definition of g

So by [A.5.5(d), ¢ is an inverse of f.

Proof 2: Suppose that f is 1-1 and onto. Put S = {(fa,a) |a € A}. Then SC B x A
and so g := (B, A, S) is a relation. Let a € A and b € B. Then

bga
(*) <= (b,a) € S — Definition of bga

<= b= fa  — Definition of S
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Let b € B. Since f is onto, there exists a € A with b = fa and so by (*), bga. Let
a,c € A with bga and bge. Then by (*), fa = b= fc and since f is 1-1, a = ¢. So for each
b € B there exists a unique a € A with bga. Hence g is a function.

Let a € A and b € B. Since g is a function, a = gb if and only if bga So (*) implies that

a=gb <= b= fa

Thus by g is an inverse of f. O

Lemma A.5.8. Let f : A — B be an invertible function with inverse g : B — A. Let
C CAand D C A. Then the following are equivalent:

(a) FIC) C D and glD] < C.
(b) flc,p and g |p,c are functions.

(c) flcp and g |c.p are functions inverse to each other.
(d) f|c,p is an invertible function.

(e) fICl=D.

(f) For alla € A, a € C if and only if f(a) € D.

(9) g |p.c is an invertible function.

(h) g[D] =C

(i) For allb e B, g(b) € C if and only if b € B.

Proof. Put f = f|cpand g=yg|pc

(a) = (b):  This follows from

(b) = (c): By we get f(gd) = f(gd) = d for all d € D and g(fc) = g(fc) for
all ¢ € C. Thus f is the inverse of §.

() = (d):  This implication follows from the definition of invertible.

= : Since f is a function, m gives fc = fe for all ¢ € C. Hence

fl0l={felceCy={fc|ceC}=f[C]

Since f is invertible, shows that f is onto. So f[C] = D and then f[C] = D.

() = (@): Suppose f[C] = D. Then clearly f[C] C D. Let d € D. Since f[C] =D,
d = fc for some ¢ € C' and so gd = ¢ € C. Thus also f[C] C D.

Thus the first five statements are equivalent.

(&) = (@): Suppose (a) holds. Let a € A. If a € C then fa € f[C] C D. And if
fa € D, then a = g(fa) € g|D] C C.

@ = @: Suppose @) holds. Then clearly f[C] C D. Let d € D. Then f(gd) =d €
D and so gd € C since (fl) holds. Thus g[D] C C and () is proved.
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So also (]ﬂ) is equivalent to @

We proved that @, @ and @ are equivalent to @ This result applied with the roles
of f and g interchanged shows that also , and (fif) are equivalent of . O
A.6 Defining Sequences by Induction

Theorem A.6.1. Let I be a non-empty set, f : I — I a function and d € I. Then there
exists a unique sequence a = (a(n))zo:1 such that

(i) a(l) =d, and
(it) a(n+1) = f(a(n)) for all n € N.

Proof. For m € N let S, be the following statement:

There exists a unique list ey, = (em(n)):;1 of length m in I such that

(i) em(1) = d
(ii’) em(n+1) = f(em(n)) for alll <n <m.
Note that S; holds with e; = (d).

Suppose now that Sy holds. So there exists a unique list e, which fulfils (i") and (ii’) for
m = k. Define the list egy1 of length k£ + 1 in I by

_Jex(n) ifl<n<k

Let e = (e(n))sz be a list of length £ = 1 in I. Observe that e fulfill (i’) and (ii’) for
m =k + 1 if and only if

(i”) e(1) =d.
(ii”) e(n+1) = f(e(n)) for all 1 < n < k.
(iii*) e(k+1) = f(e(k))

By the induction assumption (i”) and (ii”) hold if and only if e(n) = ep(n) for all
1 <n <k andso (i")- (iii”) hold if and only if in addition e(k + 1) = f(ex(k)). So ep41 is
the unique list of length k + 1 which fulfills (i’) and (ii’).

Thus Si+1 holds and by the Principal of Mathematical Induction we conclude that Sy,
holds for all m € N.
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Now let b = b(n))zoz1 be sequence which fulfills H and |i Observe that b, =
(b(n))Z;1 fulfills (i") and (ii’). So the uniqueness assertions in S, implies b,, = ep,. In
particular

b(m) = ep(m) for all 1 <m < oo

[e.9]

Thus b is uniquely determined. Conversely define the infinite list a = (a(n))n:1 via

a(n) =ep(n) forall 1 <n < oo
Then a(1) = e;(1) = d and using (*) for k =n

a(n+1) = enpr(n+1) = f(en(n) = f(a(n)).
So (i) and holds for a and so a is the unique sequence which fulfills (fij) and . O



Appendix B

Logic

B.1 Quantifiers

Let P be a statement involving a variable z. Then
Vz(P) is the statement that P is true for all objects x.

Note hat Vz(P) is false if there exists an object x such that P is false. Applying this to
—P instead of P we see that Va(—P) is false if there exists an object = such that P is true.
We use this observation to define the statement Jz(P) to be —(Vz(=P)). So

Jz(P) is the statement that there exists an object x such that P is true.

The symbols V and 3 are called quantifiers. The following theorems list a few statements
involving quantifiers which are always true.

Theorem B.1.1. Let P and Q be statements and & and y variables.
QR 1 ﬁ(Vx(ﬂP)) — Jz(P).

QR 2 —|<Vx(P)> — Jz(-P).

QR 3 Va(P) < ﬂ(ﬂm(—'P))

QR 4 Va(-P) < —|<EI:U(P)>.

QR 5 Vx(Vy(P)) — v;,(v:c(P)).

QR 6 EIx(EIy(P)) = Eiy(EI:n(P)).

QR 7 V(P and Q) <= ((Va(P)) and (¥(Q)))

107
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QR 8 If Q does not involve x, then

Vz(P or Q) < ((Vm(P)) or Q).

QR 9 Jz(P or Q) <— ((EIx(P)) or (EL’B(Q)))

QR 10 If @Q does not involve x, then

Jo(P and Q) <= ((EI:I:(P)) and Q)

The statement V(z € I)(P) is defined as Vz((x € I) => P). The statement 3(z € I)(P)
is defined as 3z((x € I) and P). Note that

ﬁ(a(;c e I)(P)) — (V(:z e 1)(ﬁp))
Indeed

[

Then writing proofs we will rarely use the symbols V and 4, but rather use phrases like
”for all 7, “there exists z” or “for some x”.
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The real numbers

C.1 Definition

Definition C.1.1. The real numbers are a quadtruple (R, +,-, <) such that
(Ri) R is a set (whose elements are called real numbers)

(R ii) + is a function ( called addition) , R x R is a subset of the domain of + and

a+beR (Closure of addition)
for all a,b € R, where a ® b denotes the image of (a,b) under +;

(R iii) - is a function (called multiplication), R x R is a subset of the domain of - and

a-beR (Closure of multiplication)

for all a,b € R where a - b denotes the image of (a,b) under -. We will also use the
notion ab for a - b.

(R iv) < is a relation between R and R;

and such that the following statements hold:

(RAx1) a+b=0b+a foralla,beR. (Commutativity of Addition)
(RAx2) a+(b+c¢)=(a+b)+c forallab,ceR; (Associativity of Addition)

( R Ax 3) There exists an element in R, denoted by 0 (and called zero), such that a+0 = a
and 0 +a =a for all a € R; (Existence of Additive Identity)

(R Ax 4) For each a € R there ezists an element in R, denoted by —a (and called negative
a) such that a + (—a) =0 and (—a) +a =0; (Existence of Additive Inverse)

109
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(R Ax 5) a(b+c¢) = ab+ ac for all a,b,c € R. (Right Distributivity)
(R Ax6) (a+b)c=ac+H bec for all a,b,c € R (Left Distributivity)
(R Ax 7) (ab)ec = a(be) for all a,b,c € R (Associativity of Multiplication)
(R Ax 8) There exists an element in R, denoted by 1 (and called one), such that la = a

for all a € R. (Multiplicative Identity)

(R Ax 9) For each a € R with a # 0 there ezists an element in R, denoted by 1 (and
called ’a inverse’) such that aa™' =1 and a'a = 1;

(Existence of Multiplicative Inverse)

(R Ax 10) For all a,b € R,
(a<bandb<a)<= (a=0b)

(R Ax 11) For all a,b,c € R,
(a<bandb<c)= (a<c)

(R Ax 12) For all a,b,c € R,
(a <band 0 <c) = (ac < be)

(R Ax 13) For all a,b,c € R,
(a<b)=(a+c<b+c)

( R Ax 14) Fach bounded, non-empty subset of R has a least upper bound. That is, if S is
a non-empty subset of R and there exists u € R with s < w for all s € S, then
there exists m € R such that for all r € R,

(sgrforallseS)@)(mgr)

(R Ax 15) For all a,b € R such that b # 0 and 0 < b there exists a positive integer n such
that a < nb. (Here na is inductively defined by la = a and (n+ 1)a = na + a).

Definition C.1.2. The relations <, > and > on R are defined as follows: Let a,b € R,
then

(a) a <bifa<banda#b.
(b) a>bifb<a.
(c) a>bifb<aanda#b



Appendix D

General Commutative and
Associative Laws

D.1 Sums

Lemma D.1.1. Let V be a vector space.
(a) Let (v1,...v,) and (w1, ..., wy) be list in V.. Then

(n+...+v)+(wi+...4+wp) =v1+...+vp + w1+ ...+ wpy
(b) Let (vi,...vyn) and (wi,...,wy,) be lists of the same length in V. Then

(v1 4. o) + (w1 + o wy) = (v wr) A (Ve wp)
(¢) Let (vi,...vy) be alist in' V and r € R. Then

r(vr+...+vp) =rv ..+ U,

Proof. () The proof is by induction on m. For m = 0 the left side in (@) is (v1+...+v,)+0
and the right side is v1 + ...+ v,. So by (AX @ holds for m = 0. Suppose now that @
holds for m. Then

(V4. 4 vp) + (w1 + ..o 4+ wpt1))

= (v A vn) + Un+1> + ((wl + .o wy) + wn+1> — definition of " + ... 4/
= ((U1+ -+ ) +(w1—|—...+wn)>—|—wn+1 — (Ax

= (vl + ...+, t+w+ ...+ wm> + Wpt1 — Induction assumption
= v+...+tvt+w+...+wn1 — definition of " 4 ... +
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So the @ holds for m + 1 and thus by the principal of induction for all non-negative
integers m.

(]E[) The proof is by induction on n. For n = 0 the left side in (]ED is 0 4+ 0 and the right
side is 0 and so by (Ax (]ED holds for n = 0. Suppose now that the lemma holds for n.
Then

(vi+ ...+ Upp1) + (w1 + ...+ wpt1)
= ((vl—i-...—l—vn)—&—vnH) + <w1+...+wn+1> — definition of " 4 ... 4’/
((U1+...—|—Un)+vn+1> + ((w1+...+wn)+wn+1) — definition of "+ ...+ ./

= (vl+...+vn)+vn+1)—|—(w1+...+wn> + Wp41 —(Ax
(14 ... +v,) + (vn+1+(w1+...+wn)) +wpr1 — (Ax[2)
(v1+...+vn)+((w1+...+wn)+vn+1> +wny1 — (Ax[I)

((v1+...+vn)+(w1+...—|—wn)>+vn+1 +wny1 — (Ax[))

= ((vl + . o) + (wy —i—...—|—wn)) + (vn+1 —I—wn+1> — (Ax])
((Ul +w)+ ...+ (vn + wn)) + (Un+1 + wnH) — Induction assumption

= (vp+w1)+ ...+ (Vnt1 + wpt1) — definition of " 4 ... +

Hence (]ED holds for n + 1 and thus by the principal of induction for all non-negative
integers n.

The proof is by induction on n. For n = 0 the left side in is 70 and the right side
is 0. So by holds for n = 0. Suppose now that holds for n. Then

r(vr+ ...+ Vpy1)
= r((v1+...+vn)+vn+1> — definition of " + ... 4/

= r(vp+...4v,) +rop1 — (Ax
= (rvg+...+71vy) +rvp41 — Induction assumption
= rui+...+ 1040 — definition of " + ...+ ./

Hence holds for n + 1 and thus by the principal of induction for all non-negative
integers n O
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D.2 Linear combinations

Lemma D.2.1. Let 'V be a vector space, (v1,...vy,) a list in V and (r1,...,7my,) a list in
R™,

(a) Let (s1,...,8yn) be list in R. Then

(rivr+ ...+ 1p0n) + (s101 4 .o F Spvn) = (s1+71)01 4 - oo+ (S +Tn)Up

(b) Let s € R. Then

s(riv1 + ...+ rpvp) = (sr1)vy + ..o+ (sT0)0n
Proof. (): By D.1.Y[) (rivi + ... + rpvp) + (s101 + ... + spvp) = (r1v1 + s1v1) + ... +
(rnvn + spupn). By (Ax|6) the latter is equal to (s1 +r1)vy + ... + (Sp + ).
) By s(rvr + ...+ rpvp) = s(rv1) + ...+ s(rpvn). By (Ax[7) the latter is

equal to (sr1)vi + ...+ (s7n)vn. O
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