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Chapter N1

Vector Spaces

N1.1 Logic and Sets

In this section we will provide an informal discussion of logic and sets. We start with a
little bit of logic:

A statement is a sentence which is either true or false, for example

1. 1 + 1 = 2

2.
√

2 is a rational number.

3. π is a real number.

4. Exactly 1323 bald eagles were born in 2000 BC,

all are statements. Statement (1) and (3) are true. Statement (2) is false. Statement (4) is
probably false, but verification might be impossible. It nevertheless is a statement.

Let P and Q be statements.
“P and Q” is the statement that P is true and Q is true.
“P or Q” is the statement that at least one of P and Q is true.
So “P or Q” is false if both P and Q are false.
“¬P ’ (pronounced ’not P ’ or ’negation of P ’) is the statement that P is false. So ¬P is

true if P is false. And 6= P is false if P is true.
“P =⇒ Q” (pronounced “P implies Q”) is the statement “6= P or Q”. Note that “P=⇒

Q” is true if P is false. But if P is true, then “P=⇒ Q” is true if and only if Q is true. So
one often uses the phrase “If P is true, then Q is true” or “if P, then Q” in place of “P=⇒
Q”

“P⇐⇒ Q” (pronounced “P is equivalent to Q”) is the statement “(P and Q) or (not-P
and not-Q)”. So “P⇐⇒ Q” is true if either both P and Q are true or both P and Q are
false. So one often uses the phrase “P holds if and only if Q holds”, or “P if and only if Q”
in place of “P⇐⇒ Q”

One can summarize the above statements in the following truth table:

5



6 CHAPTER N1. VECTOR SPACES

P Q ¬P ¬Q P and Q P or Q P =⇒ Q P ⇐⇒ Q

T T F F T T T T

T F F T F T F F

F T T F F T T F

F F T T F F T T

In the following we collect a few statements which are always true.

Lemma N1.1.1. Let P , Q and R be statements, let T be true statement and F a false
statement. Then each of the following statements holds.

LR 1 F =⇒ P .

LR 2 P =⇒ T .

LR 3 ¬(¬P )⇐⇒ P .

LR 4 (¬P =⇒ F ) =⇒ P .

LR 5 P or T .

LR 6 ¬(P and F ).

LR 7 (P and T )⇐⇒ P .

LR 8 (P or F )⇐⇒ P .

LR 9 (P and P )⇐⇒ P .

LR 10 (P or P )⇐⇒ P .

LR 11 P or ¬P .

LR 12 ¬(P and ¬P ).

LR 13 (P and Q)⇐⇒ (Q and P ).

LR 14 (P or Q)⇐⇒ (Q or P ).

LR 15 (P ⇐⇒ Q)⇐⇒
(

(P and Q) or (¬P and ¬Q)
)

LR 16 (P =⇒ Q)⇐⇒ (¬P or Q).

LR 17 ¬(P =⇒ Q)⇐⇒ (P and ¬Q).
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LR 18
(
P and (P =⇒ Q)

)
=⇒ Q.

LR 19
(

(P =⇒ Q) and (Q =⇒ P )
)
⇐⇒ (P ⇐⇒ Q).

LR 20 (P =⇒ Q)⇐⇒ (¬Q =⇒ ¬P )

LR 21 (P ⇐⇒ Q)⇐⇒ (¬P ⇐⇒ ¬Q).

LR 22 ¬(P and Q)⇐⇒ (¬P or ¬Q)

LR 23 ¬(P or Q)⇐⇒ (¬P and ¬Q)

LR 24
(

(P and Q) and R
)
⇐⇒

(
P and (Q and R)

)
.

LR 25
(

(P or Q) or R
)
⇐⇒

(
P or (Q or R)

)
.

LR 26
(

(P and Q) or R
)
⇐⇒

(
(P or R) and (Q or R)

)
.

LR 27
(
P or Q) and R

)
⇐⇒

(
(P and R) or (Q and R)

)
.

LR 28
(

(P =⇒ Q) and (Q =⇒ R)
)

=⇒ (P =⇒ R)

LR 29
(

(P ⇐⇒ Q) and (Q⇐⇒ R)
)

=⇒ (P ⇐⇒ R)

Proof. If any of these statements are not evident to you, you should use a truth table to
verify it.

The contrapositive of the statement P =⇒ Q is the statements ¬Q =⇒ ¬P . (LR 20)
says the contrapositive ¬Q =⇒ ¬P is equivalent to P =⇒ Q. Indeed, both are equivalent
to P and (¬Q).

The contrapositive of the statement P ⇐⇒ Q is the statements ¬P ⇐⇒ ¬Q. (LR 21)
says the contrapositive ¬P ⇐⇒ ¬Q is equivalent to P ⇐⇒ Q.

The converse of the implication P =⇒ Q is the statement Q =⇒ P . The converse of an
implication is not equivalent to the original implication. For example the statement if x = 0
then x is an even integer is true. But the converse (if x is an even integer, then x = 0) is
not true.

Theorem N1.1.2 (Principal of Substitution). Let Φ(x) be a formula involving a variable
x. If a and b are objects with a = b, then Φ(a) = Φ(b).

Proof. This should be self evident. For an actual proof and the definition of a formula
consult your favorite logic book.



8 CHAPTER N1. VECTOR SPACES

We now will have a short look at sets.
First of all any set is a collection of objects.

For example
Z := {. . . ,−4,−3,−2,−1,−0, 1, 2, 3, 4, . . .}

is the set of integers. If S is a set and x an object we write x ∈ S if x is a member of S and
x /∈ S if x is not a member of S. In particular,

(∗) For all x exactly one of x ∈ S and x /∈ S holds.

Not all collections of objects are sets. Suppose for example that the collection B of all
sets is a set. Then B ∈ B. This is rather strange, but by itself not a contradiction. So lets
make this example a little bit more complicated. We call a set S is nice, if S /∈ S. Let D
be the collection of all nice sets and suppose D is a set.

Is D a nice?
Suppose that D is a nice. Since D is the collection of all nice sets, D is a member of D.

Thus D ∈ D, but then by the definition of nice, D is not nice.
Suppose that D is not nice. Then by definition of nice, D ∈ D. Since D is the collection

of nice sets, this means that D is nice.
We proved that D is nice if and only if D is not nice. This of course is absurd. So D

cannot be a set.

Theorem N1.1.3. Let A and B be sets. Then

(A = B)⇐⇒
(

for all x : (x ∈ A)⇐⇒ (x ∈ B)
)

Proof. Naively this just says that two sets are equal if and only if they have the same
members. In actuality this turns out to be one of the axioms of set theory.

Definition N1.1.4. Let A and B be sets. We say that A is subset of B and write A ⊆ B
if

for all x : (x ∈ A) =⇒ (x ∈ B)

In other words, A is a subset of B if all the members of A are also members of B.

Lemma N1.1.5. Let A and B sets. Then A = B if and only if A ⊆ B and B ⊆ A.

Proof.

A = B

⇐⇒ x ∈ A⇐⇒ x ∈ B − N1.1.3

⇐⇒ (x ∈ A =⇒ x ∈ B) and (x ∈ B =⇒ x ∈ A) −(LR 19)

⇐⇒ A ⊆ B and B ⊆ A −definition of subset
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Theorem N1.1.6. Let S be a set and let P (x) be a statement involving the variable x.
Then there exists a set, denoted by {s ∈ S | P (s)} such that(

t ∈ {s ∈ S | P (s)}
)
⇐⇒

(
t ∈ S and P (t)

)
Proof. This follows from the so called replacement axiom in set theory.

Note that an object t is a member of {s ∈ S | P (s)} if and only if t is a member of S
and the statement P (t) is true For example

{x ∈ Z | x2 = 1} = {1,−1}.

Theorem N1.1.7. Let S be a set and let Φ(x) be a formula involving the variable x such
that Φ(s) is defined for all s in S. Then there exists a set, denoted by {Φ(s) | s ∈ S} such
that (

t ∈ {Φ(s) | s ∈ S}
)
⇐⇒

(
There exists s ∈ S with t = Φ(s)

)
Proof. This also follows from the replacement axiom in set theory.

Note that the members of {Φ(s) | s ∈ S} are all the objects of the form Φ(s), where s
is a member of S.

For example {2x | x ∈ Z} is the set of even integers.

We can combined the two previous theorems into one:

Theorem N1.1.8. Let S be a set, let P (x) be a statement involving the variable x and
Φ(x) a formula such that Φ(s) is defined for all s in S for which P (s) is true. Then there

exists a set, denoted by
{

Φ(s) | s ∈ S and P (s)
}

such that

(
t ∈
{

Φ(s) | s ∈ S and P (s)
})
⇐⇒

(
There exists s ∈ S with

(
P (s) and t = Φ(s)

))

Proof. Just define{
Φ(s) | s ∈ S and P (s)

}
=
{

Φ(t) | t ∈ {s ∈ S | Φ(s)}
}

Note that the members of {Φ(s) | s ∈ S and P (s)} are all the objects of the form Φ(s),
where s is a member of S for which P (s) is true.

For example

{2n | n ∈ Z and n2 = 1} = {2,−2}
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Theorem N1.1.9. Let A and B be sets.

(a) There exists a set, denoted by A ∪B and called A union B, such that

(x ∈ A ∪B)⇐⇒ (x ∈ A or x ∈ B)

(b) There exists a set, denoted by A ∩B and called A intersect B, such that

(x ∈ A ∩B)⇐⇒ (x ∈ A and x ∈ B)

(c) There exists a set, denoted by A \B and called A removed B, such that

(x ∈ A \B)⇐⇒ (x ∈ A and x /∈ B)

(d) There exists a set, denoted by ∅ and called empty set, such that

For all x : x /∈ ∅

Proof. (a) This is another axiom of set theory.

(b) Applying N1.1.6 with P (x) being the statement “x ∈ B” we can define

A ∪B = {x ∈ A | x ∈ B}

(c) Applying N1.1.6 with P (x) being the statement “x /∈ B” we can define

A \B = {x ∈ A | x /∈ B}

(d) One of the axioms of set theory implies the existence of a set A. Then we can define

∅ = A \A

Let A be a set. Since the empty set has no members, all of its members are in A. So

Lemma N1.1.10. Let A be a set. Then ∅ ⊆ A.

Proof. Here is a slightly more formal proof: Let x be an object. By definition of the
emptyset, x /∈ ∅. Thus the statement x ∈ ∅ is false and so by (LR 1) the implication
(x ∈ ∅) =⇒ (x ∈ A) is true. So ∅ ⊆ A holds by the definition of a subset.

Lemma N1.1.11. Let A and B be sets. Then A ∩B = B ∩A.
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Proof. Let x be an object. Then

x ∈ A ∩B

⇐⇒ x ∈ A and x ∈ B − Definition of A ∩B

⇐⇒ x ∈ B and x ∈ A −(LR 14)

⇐⇒ x ∈ B ∩A − Definition of A ∩B

So A ∩B = B ∩A.

N1.2 Basic Definition

Definition 1.1. A vector space V is a triple (V,⊕,�) such that

(i) V is a set (whose elements are called vectors)

(ii) ⊕ is a function ( called vector addition) , V × V is a subset of the domain of ⊕ and

v ⊕ w ∈ V (Closure of addition)

for all v, w ∈ V , where v ⊕ w denotes the image of (v, w) under ⊕;

(iii) � is a function (called scalar multiplication), R × V is a subset of the domain of �
and

r � v ∈ V (Closure of multiplication)

for all r ∈ R and v ∈ V , where r � v denotes the image of (r, v) under �;

and such that the following eight statements hold:

(Ax 1) v ⊕ w = w ⊕ v for all v, w ∈ V ; (Commutativity of Addition)

(Ax 2) v ⊕ (w ⊕ x) = (v ⊕ w)⊕ x for all v, w, x ∈ V ; (Associativity of Addition)

(Ax 3) There exists an element in V , denoted by 0V (and called an additive identity), such
that v ⊕ 0V = v for all v ∈ V ; (Existence of Additive Identity)

(Ax 4) For each v ∈ V there exists an element in V , denoted by −v (and called an additive
inverse of v), such that v ⊕ (−v) = 0V; (Existence of Additive Inverse)

(Ax 5) a� (v ⊕ w) = (a� v)⊕ (a� w) for all a ∈ R and v, w ∈ V ; (Right Distributivity)

(Ax 6) (a+ b)� v = (a� v)⊕ (b� v) for all a, b ∈ R, v ∈ V ; (Left Distributivity)
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(Ax 7) (ab)� v = a� (b� v) for all a, b ∈ R, v ∈ V ; (Associativity of Multiplication)

(Ax 8) 1� v = v for all v ∈ V . (Multiplicative Identity)

Remark N1.2.2. Often slightly different version of conditions (ii) and (iii) are used in the
definition of a vector space:

(ii’) ⊕ is a function (called vector addition) from V × V to V and v ⊕ w denotes the
image of (v, w) under �;

(iii’) � is a function (called scalar multiplication) from R×V to V and r� v denotes the
image of (r, v) under �;

Note that Conditions (ii’) and (iii’) imply (ii) and (iii) Conversely, if ⊕ and � fulfill
(ii) and (iii) and one replaces ⊕ by its restriction to V ×V and V , and � by its restriction
to R× V and V , then (ii’) and (iii’) hold. So there is no essential difference between these
two definitions of a vector space.

Notation N1.2.3. Given a vector space V = (V,⊕,�). We will often use the following
simplified notation, where r ∈ R and v, w ∈ V :

v + w denotes v ⊕ w

rv denotes r � v, and

0 denotes 0V.

Observe that we now use the same symbols for the addition and multiplication in V as
in R. So we will use this notation only in situations where it should not lead to confusion.

N1.3 Properties of Vector Spaces

Lemma N1.3.1. Let V be vector space and v, w ∈ V . Then (v + w) + (−w) = v.

Proof.

(v + w) + (−w) = v + (w + (−w)) −(Ax 2)

= v + 0 −(Ax 4)

= v −(Ax 3)

Theorem 1.8 (Cancellation Law). Let V be vector space and v, w, x ∈ V . Then the
following three statements are equivalent (that is if one of the three statements holds, all
three hold):

(a) v = w.
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(b) x+ v = x+ w.

(c) v + x = w + x.

Proof. It suffices to show that (a) implies (b), that (b) implies (c) and (c) implies (a).
Indeed suppose we proved these three implications. If (a) holds, then since (a) implies (b),
also (b) holds; and since (b) implies (c) also (c) holds. Similarly, if (b) holds, then since (b)
implies (c), also (c) holds; and since (c) implies (a) also (a) holds. And if (c) holds, then
since (c) implies (a), also (a) holds; and since (a) implies (b) also (b) holds. So any of the
statements implies the other two.

(a) =⇒ (b): Suppose that v = w. Then x+v = x+w by the Principal of Substitution
N1.1.2 and so (a) implies (b) holds.

(b) =⇒ (c): Suppose that x + v = x + w. Then (Ax 1) applied to each side of the
equation gives v + x = w + x. So (b) implies (c).

(c) =⇒ (a): Suppose v + x = x + w. Adding −x to both sides of the equation gives
(v+x) + (−x) = (w+x) + (−x). Applying N1.3.1 to both sides gives v = w. So (c) implies
(a) and the Cancellation Law holds.

Theorem 1.2. Let V be a vector space and v, w ∈ V . Then

(a) 0 + v = v.

(b) If v + w = v, then w = 0.

(c) If w + v = v, then w = 0.

(d) 0 is the only additive identity in V .

Proof. (a) By (Ax 1), 0 + v = v + 0 and by (Ax 3), v + 0 = v. Thus 0 + v = v.
(b) Suppose that v + w = v. By (Ax 3), v = v + 0 and so

v + w = v + 0

Thus by the Cancellation Law 1.8, w = 0.
(b) Suppose that w + v = v. Then by (Ax 1), v + w = v and so by (b), w = 0.
(d) Let u be an additive identity in V . Then by definition of an additive identity,

0 + u = 0. By (a) 0 + u = u and so u = z.

Theorem 1.3. Let V be a vector space and v, w ∈ V . Then v + w = 0 if and only if
w = −v. In particular, −v is the only additive inverse of v.

Proof. By (Ax 4), v+ (−v) = 0. Now suppose that v+w = 0. Then v+w = v+ (−v) and
so by the Cancellation Law 1.8, w = −v. So −v is the only additive inverse of v.

Theorem 1.4. Let V be a vector space and v ∈ V . Then

0Rv = 0V
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Proof. Since 0 + 0 = 0 in R we have 0v = (0 + 0)v. Hence by (Ax 6), 0v = 0v + 0v and so
by 1.2(b) (applied to 0v and 0v in place of v and w), 0v = 0.

Theorem 1.5. Let V be a vector space, v ∈ V and r, s ∈ R. Then

(a) (−v) + v = 0.

(b) r0 = 0.

(c) If rv = 0, then r = 0 or v = 0.

(d) (−1)v = −v.

(e) −v = 0 if and only if v = 0.

(f) −(−v) = v.

(g) (−r)v = −(rv) = r(−v).

(i) If v 6= 0 and rv = sv, then r = s.

Proof. For (a), (b), (d) and (i) see Homework 3.
(c) Suppose that rv = 0. We need to show that r = 0 or v = 0. If r = 0, this holds. So

we may assume that r 6= 0. Then by properties of the real numbers, r has an multiplicative
inverse 1

r . So

(∗) 1

r
∈ R and

1

r
r = 1

We have

rv = 0 −by assumption

=⇒ 1
r (rv) = 1

r0 −Principal of Substitution

=⇒ (1r r)v = 0 −(Ax 7) and Part (b) of the current theorem

=⇒ 1v = 0 −(∗)

=⇒ v = 0 −(Ax 1)

So v = 0 and (c) is proved.
(e) We have

0 = −v

⇐⇒ v + 0 = 0 −Theorem 1.3 applied with w = 0

⇐⇒ v = 0 −(Ax 3)
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(f) By (Ax 4), v + (−v) = 0 and so by (Ax 1), (−v) + v = 0. Thus v is an additive
inverse of −v and so by 1.3, v = −(−v).

(g) We would like to show that (−r)v = −(rv), that is we would like to show that (−r)v
is the additive inverse of rv. We compute

rv + (−r)v = (r + (−r))v − (Ax 6)

= 0v − Property of real numbers

= 0 − Theorem 1.4

Thus (−r)v is an additive inverse of rv and so by 1.3, (−r)v = −(rv). Hence the first
equality in (g) holds. To prove the second we need to verify that also r(−v) is an additive
inverse of rv:

rv + r(−v) = r(v + (−v)) −(Ax 5)

= r0 −(Ax 4)

= 0 − Part (b) of the current theorem

Thus r(−v) is an additive inverse of rv and so by 1.3, r(−v) = −(rv). Hence also the
second equality in (g) holds.

N1.4 Subtraction

Definition 1.6. Let V be a vector space and v, w ∈ V . Then the vector v 	 w in V is
defined by

v 	 w = v ⊕ (−w)

As long as no confusion should arise, we will just write v − w for v 	 w.

Theorem 1.7. Let V be a vector space and v, w, x ∈ V . Then each of the following
statements holds

(d) (−v)− w = (−v) + (−w) = (−w) + (−v) = (−w)− v = −(v + w)

(g) (v + w)− w = v.

(m) r(v − w) = rv − rw

(n) (r − s)v = rv − sv.

(o) (v + w)− x = v + (w − x).

(p) v − w = 0 if and only if v = w.
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(q) (v − w) + w = v.

Proof. For the proof of (m) and (n) see Homework 3.

(o)

(v + w)− x = (v + w) + (−x) −Definition of ’-’, see 1.6

= v + (w + (−x)) −(Ax 2)

= v + (w − x) −Definition of ’-’

(q)

(v − w) + w = (v + (−w)) + (−(−w)) − Definition of ’-’ and 1.5(f)

= v − N1.3.1

(p)

v − w = 0

⇐⇒ (v − w) + w = 0 + w −Cancellation Law 1.8

⇐⇒ v = w −(q) and 1.2

(g)

(v + w)− w = (v + w) + (−w) −Definition of ’-’

= v −Lemma N1.3.1

(d)

(−v)− w = (−v) + (−w) −Definition of ’-’

= (−w) + (−v) −(Ax 1)

= (−w)− v −Definition of ’-’

So the first three equalities in (g) hold. To prove the last, we will show that −(v+w) =
(−w) + (−v). For this we need to show that (−w) + (−v) is an additive inverse of v + w.
We compute

(v + w) +
(

(−w) + (−v)
)

=
(

(v + w) + (−w)
)

+ (−v) −(Ax 2)

= v + (−v) −Lemma N1.3.1

= 0 −(Ax 4)

Hence (−w)+(−v) is an additive inverse of v+w and so by 1.3, (−w)+(−v) = −(v+w).
So all the elements listed in (d) are equal.
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N1.7 Function Spaces

Definition N1.7.1. Let I be the set. Then F(I) denotes the set of all functions from I to
R. For f, g ∈ F(I) we define f + g∈ F(I) by

(f + g)(i) = f(i) + g(i)

for all i ∈ I. For r ∈ R and f ∈ F(i) we define rf∈ F(I) by

(rf)(i) = r
(
f(i)

)
for all i ∈ I.

F(I) is the triple consisting of F(I), the above addition and the above multiplication.

Theorem N1.7.2. Let I be a set.

(a) F(I) is a vector space.

(b) The additive identity in F(I) is the function 0∗∈ F(I) defined by 0∗(i) = 0 for all i ∈ I.

(c) The additive inverse of f ∈ F(I) is the function −f defined by (−f)(i) = −
(
f(i)

)
for

all i ∈ I.

Proof. Properties 1.1(i), (ii) and (iii) hold by definition of F(I). We will now verify the first
four axioms of a vector space one by one. For the remaining four, see Homework 4. From
Lemma A.2.2 we have

(*) Let f, g ∈ F(I). Then f = g if and only if f(i) = g(i) for all i ∈ I.

Let f, g, h ∈ F(I) and i ∈ I.

(Ax 1): We have

(f + g)(i) = f(i) + g(i) −Definition of ’+’ for functions

= g(i) + f(i) −Property of R

= (g + f)(i) −Definition of ’+’ for functions

So f + g = g + f by (*) and (Ax 1) is proved.

(Ax 2): We have
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(
(f + g) + h

)
(i) = (f + g)(i) + h(i) −Definition of ’+’ for functions

=
(
f(i) + g(i)

)
+ h(i) −Definition of ’+’ for functions

= f(i) +
(
g(i) + h(i)

)
−Property of R

= f(i) +
(
g + h

)
(i) −Definition of ’+’ for functions

=
(
f + (g + h)

)
(i) −Definition of ’+’ for functions

So (f + g) + h = f + (g + h) by (*) and (Ax 2) is proved.

(Ax 3) Define a function, denoted by 0∗, in F(I) by 0∗(i) = 0 for all i. We will show
that 0∗ is an additive identity:

(f + 0∗)(i) = f(i) + 0∗(i) −Definition of ’+’ for functions

= f(i) + 0 −Definition of 0∗

= f(i) −Property of R

So f + 0∗ = f by (*) and (Ax 3) is proved.

(Ax 3) Define a function, denoted by −f , in F(I) by (−f)(i) = −f(i) for all i. We will
show that −f is an additive inverse of f .(

f + (−f)
)

(i) = f(i) + (−f)(i) −Definition of ’+’ for functions

= f(i) + (−f(i)) −Definition of − f

= 0 −Property of R

= 0∗(i) −Definition of 0∗

So f + (−f) = 0∗ by (*) and (Ax 4) is proved.

N1.5 Euclidean space

Let n be a positive integer, a1, . . . , an real numbers and (a1, a2, . . . , an) the corresponding
list of length n. Note that we can view such an list as the function from {1, 2, 3, . . . , n} to
R which maps 1 to a1, 2 to a2,. . . , and n to an. In fact the will use this observation to give
a precise definition of what we mean with list.

Definition N1.5.1. Let S be a set and n and m non-negative integers.
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(a) A list of length n in S is a function f : {1, . . . , n} → S.

(b) The list of length 0 in S is denoted by () and is called the empty list.

(c) Let s1, s2, . . . sn ∈ S, then (s1, s2, . . . , sn) denotes the unique list f with f(i) = si for all
1 ≤ i ≤ n.

(d) The list (t1, t2, t3, . . . , tm) in S is called a sublist of (s1, s2 . . . , sn) if there exist integers
1 ≤ i1 < i2 < . . . < im ≤ n with tj = sij for all 1 ≤ j ≤ m. (In terms of functions: A
list g of length m is a sublist of the list f of length n if there exists a strictly increasing
function h : {1 . . . ,m} → {1, . . . , n} with g = f ◦ h.)

For example B = (2, 4, 7, 9, 11) is a list of length 5 in the integers and (4, 9, 11) is a
sublist of B of length 3.

Definition N1.5.2. Let n be non-negative integer.

(a) Rn is the set of all lists of length n in R. So Rn = F({1, 2, 3, . . . , n}).

(b) Rn denotes the vector space F({1, 2, 3, . . . , n}).

Lemma N1.5.3. The vector addition and scalar multiplication in Rn can be described as
follows: Let (a1, a2, . . . , an) and (b1, b2, . . . , bn) be elements of Rn and r ∈ R. Then

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn)

and

r(a1, a2 . . . , an) = (ra1, ra2, . . . , ran).

Proof. Let f = (a1, a2, . . . , an), g = (b1, b2, . . . bn) and 1 ≤ i ≤ n. Then by Definition
N1.5.1(c), f(i) = ai and g(i) = bi. So by the definition of addition on Rn,

(f + g)(i) = f(i) + g(i) = ai + bi.

Hence by Definition N1.5.1(c)

f + g = (a1 + b1, a2 + b2, . . . , an + bn).

This gives the first statement.
Also by the definition of multiplication in Rn,

(rf)(i) = r
(
f(i)

)
= rai,

and so Definition N1.5.1(c)

rf = (ra1, ra2, . . . , ran).

Thus also the second statement holds.
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N1.6 Matrices

Let n and m be positive integers, let a11, a12, . . . , a1n, a21, a22, . . . , a2n, . . . , am1, am2 . . . , amn

be real numbers and 
a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . .
...

am1 am2 . . . amn


the corresponding m× n-matrix. Note that we can view such matrix as the function from
{1, 2, 3, . . . ,m} × {1, 2, . . . .n} to R which maps (1, 1) to a11, (1, 2) to a12, . . .,(1, n) to a1n,
(2, 1) to a21, (2, 2) to a22, . . ., (2, n) to a2n,. . ., (m, 1) to am1, (m, 2) to am2, . . ., and (m,n)
to amn. In fact the will use this observation to give a precise definition of what we mean
with an m× n-matrix.

Definition N1.6.1. Let n,m be positive integers.

(a) Let I and J be sets. An I × J-matrix is a function from I × J to R.

(b) An m×n-matrix is {1, 2, . . . ,m}×{1, 2, . . . , n}-matrix, that is a function from {1, 2, . . . ,m}×
{1, 2, . . . , n} to R.

(c) Given real numbers a11, a12, . . . , a1n, a21, a22, . . . a2n, . . . , am1, am2 . . . , amn. Then the
unique m × n-matrix A with A(i, j) = aij for all 1 ≤ i ≤ m and 1 ≤ j ≤ n is de-
noted by 

a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . .
...

am1 am2 . . . amn


or by

[aij ]
m,n
i=1,j=1

(d) M(m,n) is the set of all m×n matrices. So M(m,n) = F({1, 2, . . . ,m}×{1, 2, . . . , n})

(e) M(m,n) denotes the vector space F({1, 2, . . . ,m} × {1, 2, . . . , n})

Lemma N1.6.2. The vector addition and scalar multiplication in M(m,n) can be described
as follows: Let [aij ]

m,n
i=1,j=1 and [bij ]

m,n
i=1,j=1 be m× n matrices and r ∈ R. Then
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a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . .
...

am1 am2 . . . amn

+


a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . .
...

am1 am2 . . . amn

 =


a11 + b11 a12 + b12 . . . a1n + b1n

a21 + b21 a22 + b22 . . . a2n + b2n
...

... . . .
...

am1 + bm1 am2 + bm2 . . . amn + bmn


and

r


a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . .
...

am1 am2 . . . amn

 =


ra11 ra12 . . . ra1n

ra21 ra22 . . . ra2n
...

... . . .
...

ram1 ram2 . . . ramn


Proof. Let A = [aij ]

m,n
i=1,j=1 and B = [bij ]

m,n
i=1,j=1. Also let 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then

by Definition N1.6.1(c), A(i, j) = aij and B(i, j) = bij . So by the definition of addition in
M(m,n),

(A+B)(i, j) = A(i, j) +B(i, j) = aij + bij .

Hence by Definition N1.6.1(c)

A+B = [aij + bij ]
m,n
i=1,j=1.

This gives the first statement.
Also by the definition of multiplication in M(m,n),

(rA)(i, j) = r
(
A(i, j)

)
= raij ,

and so Definition N1.6.1(c)

rA = [raij ]
m,n
i=1,j=1

Thus also the second statement holds.

N1.8 Subspaces

Definition 1.10. Let V = (V,⊕,�) be a vector space and W a subset of V . Put W =
(W,⊕,�). Then W is called a subspace of V provided that W is a vector space.

Theorem 1.11 (Subspace Theorem). Let V be a vector space and W a subset of V . Then
W is a subspace of V if and only if each of the following three statements holds:
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(1) 0V ∈W .

(2) u+ w ∈W for all u,w ∈W .

(3) rw ∈W for all r ∈ R and w ∈W .

Proof. Suppose first that W is a subspace of V. Condition 1.1(ii) (Closure of addition)
for the vector space W shows that u + w ∈ W for all u,w ∈ W . Similarly, Condition
1.1(iii) (Closure of multiplication) for the vector space W shows that rw ∈W for all r ∈ R,
w ∈W . So (2) and (3) hold. By 1.1(3) W has an additive identity 0W ∈W . In particular,
0W + 0W = 0W and so by 1.2

(∗) 0W = 0V

Since 0W ∈W , this gives (1).

Suppose next that (1), (2) and (3) hold. We need to show that W is a vector space.
By assumption W is a subset of V and so Condition 1.1(ii) holds for W .
By 1.1(ii) for V , ⊕ is a function and V × V is contained in the domain of ⊕. Since W

is subset of V , W ×W is a subset of V × V , and so is contained in the domain of ⊕. By
(2), u+ w ∈W for all u,w ∈W and so Condition 1.1(ii) holds for W .

By 1.1(iii) for V , � is a function and R× V is contained in the domain of �. Since W
is subset of V , W ×W is a subset of V × V , and so is contained in the domain of ⊕. By
(3), rv ∈W for all r ∈ R and w ∈W and so Condition 1.1(ii) holds for W .

Since Axioms 1,2,5,6,7,8 holds for all suitable elements of R and V , and since W ⊆ V ,
they clearly also hold for all suitable elements in R and W .

By (1), 0V ∈W . Since 0V is an additive identity for V , we conclude that 0V is also an
additive identity for W in W . So Axioms 3 holds for W with 0W = 0V.

Let w ∈W . By 1.5, −w = (−1)w. By (3), (−1)w ∈W and so

(∗∗) −w ∈W

Since w + (−w) = 0V = 0W we conclude that

−w is the additive inverse of w in W

Hence Axiom 4 holds for W .

Corollary N1.8.3. Let W be a subspace of the vector space V and w ∈W . Then 0W = 0V,
−w ∈W and the additive inverse of w in W is the same as the additive inverse of w in V.

Proof. See (*), (**) and (***) in the proof of 1.11
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Systems of Linear Equations

N2.1 Notation and Terminology

Definition N2.1.1. Let A = (aij)
j∈J
i∈I be an I × J matrix.

(a) Let K ⊆ I and L ⊆ J . Then AK
L = K is the restriction of A to K × L, so AK

L is the

K × J- matrix (aij)
j∈L
i∈K . AK

L is called the K × L submatrix of A.

(b) Let i ∈ I. Then ai = A
{i}
J . Ai is called Row i of A. ai is the J-list (aij)j∈J . ai is called

row i of A.

(c) Let j ∈ J . Then aj = AI
{j}. aj is called Column j of A. aj is the I-list (aij)i∈I . aj is

called column i of A.

(d) Let i ∈ I and j ∈ I. Then aij = A
{i}
{j} is called the ij-Entry of A, while aij is called the

ij-entry of A.

Note that ai and ai, viewed as functions, have different domains: the domain of ai is
{i}×J , while the domain of ai is J . On the other hand, the ij-entry of ai is the same as the
j-entry of aii (both are equal to aij). Informally, Row i knows its position in the matrix,
but row i does not.

For example consider A =

1 2

1 2

. Then row 1 of A is equal to row 2 of A. But Row 1

of A is not equal to Row 2 of A, since they have different domains. Similarly, the 12-entry
of A is equal to the 11-entry of A, but the 12-Entry of A is not equal to the 11-Entry.

Notation N2.1.2. (a) Let I be a set, n a non-negative integer and for 1 ≤ j ≤ n let aj be
I-list in R. Then

[a1, a2, . . . , an]

denotes the unique I × {1, . . . , n} matrix with column j equal to aj for all 1 ≤ j ≤ n.

23
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(b) Let J be a set, m a non-negative integer and for 1 ≤ i ≤ m let ai be J-list in R. Then
a1

a2

...

am


denotes the unique {1, . . . ,m} × J matrix with row i equal to ai for 1 ≤ i ≤ m.

Remark: Let K be a set and x a K-list in R. According to (a) [x] denotes the K ×{1}-
matrix whose only column is x, while according to (b), [x] denotes the {1} × K matrix
whose only row is a. So the notation [x] is ambiguous and should only be used if it is clear
from the context which have the two possible matrices is meant.

Notation N2.1.3. Let I and J be sets, i, k ∈ I, A ∈M(I, J) and x, y ∈ F (I).

(a) RixA denotes the I × J matrix B with bi = x and bl = al for all l ∈ I with l 6= i. (So
RixA is the matrix obtained from A by replacing Row i be x.

(b) RikxyA = Rix(RkyA). So RixA is the matrix obtained from A by replacing Row k be
y and then replacing Row i by x.)

Definition 2.1. Let I and J be sets. An elementary row operation on M(I, J) is one of
functions ’Ri ↔ Rj’, ’cRi+Rk → Rk’ and (for c 6= 0), ’cRi → Ri’ from M(I, J) to M(I, J)
defined as below, where i, k ∈ I, c ∈ R and A is an I × J matrix.

1. (Ri ↔ Rj)A = Rika
kaiA. So Ri → Rj interchangings row i and row k of A

2. (cRi + Rk → Rk)(A) = Rk(cai + ak)A. So (cRi + Rk → Rk) adds c times row i to row
k of A.

3. Suppose c 6= 0. Then (cRi → Ri)A = Ri(ca
i)A. So cRi → Ri multiplies row A of A by

c.

Remark: Column replacements and elementary column operations are defined similarly
using the symbol C in place of R.

N2.2 Gaussian Elimination

Definition 2.2. Let A be an m× n matrix, 1 ≤ i ≤ m and 1 ≤ j ≤ n.

(a) aij is called a leading Entry of A provided that aij 6= 0 and akj = 0 for all 1 ≤ k < i.
So aij is the first non-zero entry in row i of A.

(b) aij is called a leading 1 of A if aij is a leading Entry and aij = 1.
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Algorithm N2.2.2 (Gauss-Jordan). Let A be an {l, l + 1, . . . ,m} × {1, . . . , n}-matrix.

Step 1 If A is a zero matrix, the algorithm stops. If A is not the zero matrix, let j be
minimal such that aj is not a zero vector. Then let i be minimal such that aij 6= 0.
So aij is the first non-zero entry in the first non-zero column of A.

Step 2 Interchange row l and row i of A.

Step 3 Multiply row l of A by 1
alj

of A.

Step 4 For l < k < m, add −akj times row l of A to row k of A.

Step 5 Apply the Gauss-Jordan algorithm to the {l + 1, . . . ,m} × {1, . . . , n}-submatrix of
A.

Definition 2.3. Let A be an n×m-matrix. Then A is in row-echelon form if

(i) All leading Entries are leading 1’s.

(ii) If aij and akl are leading 1’s with i < k, then j < l.

(iii) If Ai is a non-zero row and Aj is a zero row, then i < j.

Observe that the Gauss-Jordan algorithm produces a matrix in row-echelon form.

Algorithm N2.2.4 (Reduced Gauss-Jordan). Let A be an m×m matrix in echelon form.

Step 6 If A is a zero matrix, the algorithm stops. If A is not the zero matrix, let aij be a
leading 1 with i maximal. (So aij is the leading 1 in the last non-zero row of A.)

Step 7 For 1 ≤ k < i, add −akj times row i of A to row k of A.

Step 8 Apply the Reduced Gauss-Jordan algorithm to the {1, . . . , i−1}×{1, . . . , n}-submatrix
of A.

Definition 2.4. Let A be an n×m-matrix. Then A is in reduced row-echelon form if

(i) All leading Entries are leading 1’s.

(ii) If aij and akl are leading 1’s with i < k, then j < l.

(iii) If ai is a non-zero row and aj is a zero row, then i < j.

(iv) If aij is a leading 1, then akj = 0 for all 1 ≤ k ≤ m with k 6= i.

Observe that Reduced Gauss-Jordan algorithm produced a matrix in reduced row-
echelon form.
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N2.3 Solving Linear Systems

Theorem N2.3.1. Let B be the reduced echelon form of the augmented matrix of system
of m linear equation in n variables x1, . . . , xn. Let 1 ≤ d ≤ n. xj is called a lead variables
if Column j of B contains a leading 1 . Otherwise xj is called a free variable. Let s be
the number of lead variables and t the number of free variables. Let xf1 , . . . , xft be the free
variables where f1 < f2 < . . . < ft and put ye = xfe. Let xl1 , xl2 , . . . , xls be the lead variables
where l1 < l2 < . . . < ls.

Let 1 ≤ e ≤ t. If xj = xld is a lead variable, define bj = bd,n+1 and cje = −bd,fe. If xj
is a free variable, define bj = 0 and cje = 1, if xj = ye, and cje = 0, if xj 6= ye.

(a) n = s+ t, 0 ≤ s ≤ min(m,n) and max(n−m, 0) ≤ t ≤ n.

(b) Suppose Column n+ 1 of B contains a leading 1, then the system of the equations has
no solutions.

(c) Suppose that Column n+ 1 of B does not contain a leading 1. Then the solution set of
the system of equations is

S =


y1


c11

c21
...

cn1

+ y2


c12

c22
...

cn2

+ . . .+ yt


c1t

c2t
...

cnt

+


b1

b2
...

bn



∣∣∣∣∣∣∣∣∣∣∣∣
(y1, . . . , yt) ∈ Rt



= {y1c1 + y2c2 + . . .+ ytct | (y1, . . . , yt) ∈ Rt},where ce =


c1e

c2e
...

cne


Moreover, if r1c1 + . . . rtct = s1c1 + . . . stct, then r1 = s1, r2 = s2, . . . , rt = st.

Proof. (a): Since either variable is either a lead variable or a free variable not both n = s+t
and 0 ≤ s, t ≤ n. Since each Row of B contains at most one leading 1, s ≤ m. So
t = n− s ≥ n−m and (a) holds.

(b): Suppose that the last Column of B contains a leading 1. Say ai,n+1 is a leading 1.
Then the first n entries of row i of B are zero, and the equations corresponding to row i is

0x1 + 0x2 + . . .+ 0 + 0xn = 1.

So 0 = 1 and the system of equation has no solutions.
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(c): Suppose now that the last column of B does nor contain a leading 1. Since B has
s leading variables, rows s + 1, s2 . . . sm of B are zero rows and can be ignored. Now let
1 ≤ d ≤ e and let adj be the leading 1 in Row d. Since the last Column of B does not
contain a leading 1, j 6= n + 1 and so xj is the d’th leading variable. So j = ld. If xk is
any other leading variable, Condition (iv) of a matrix in reduced echelon form implies that
bdk = 0. Thus the equation corresponding to Row d of B is

xj + bdf1xf1 + bdf1xf2 + . . .+ bdftxft = bd,n+1

and hence equivalent to

xj = −bdf1xf1 − bdf1xf2 − . . .− bdftxft + bd,n+1

Since ye = xfebj = bd,n+1 and cje = −bdfe the linear system of equation is equivalent to

(∗) xj = y1cj1 + y2cj+2 + . . .+ ytcjt + bj , 1 ≤ j ≤ n, xj is a lead variable

So we obtain a solution by choosing free variables y1, y2, . . . yt arbitrarily and then com-
pute the leading variables xj according to (*).

Now lead xj be free variable. Then xj = xfe = ye for some 1 ≤ e ≤ t. Since cjk = 0 for
k 6= e and bj = 0 We conclude that

xj = y1cj1 + y2cj+2 + . . .+ ytcjt + bj , 1 ≤ j ≤ n, xj is a lead variable

Together with (*) we conclude that

(∗∗) xj = y1cj1 + y2cj+2 + . . .+ ytcjt + bj , 1 ≤ j ≤ n

Writing (**) in vector form we conclude that solution set is
y1


c11

c21
...

cn1

+ y2


c12

c22
...

cn2

+ . . .+ yt


c1t

c2t
...

cnt

+


b1

b2
...

bn



∣∣∣∣∣∣∣∣∣∣∣∣
(y1, . . . , yt) ∈ Rt


Since xfe = ye, ye is uniquely determined by (x1, . . . , xn) and so (c) holds.

Consider the special case t = 0 in part (c) of the previous theorem. Note that t = 0
means that none of the variables are free. So all variables are lead variables. So this occurs
if the first n Columns of B contain a leading 1, but the last column does not. In this case (c)
says that the system of equation has a unique solution namely x1 = b1, x2 = b2, . . . , xn = bn.
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Theorem 2.6. Consider a homogeneous system of m linear equation in n variables. If
n > m, the system has infinitely many solutions. In particular, it has a non-trivial solutions.

Proof. Let t be the number of lead variables. By N2.3.1(a), t ≥ n −m > 0. Since the the
last column the augmented matrix is zero we can apply N2.3.1(c). Since t > 0, there are
infinitely many choices for (y1, . . . , yt) and so the system has infinitely many solutions.



Chapter N3

Dimension Theory

N7.1 Induction

In the following we will assume the following property of the natural numbers without proof:

Theorem N7.1.1 (Well Ordering Axiom). Let A be a non-empty set of natural numbers.
Then A has minimal element m, that is there exists m ∈ A with m ≤ a for all m ∈ N.

Using the Well Ordering Axiom we prove:

Theorem 7.1 (Principal of mathematical induction). For each n ∈ N let Sn be a statement.
Suppose that

(i) S1 is true.

(ii) If n ∈ N and Sn is true, then also Sn+1 is true.

Then Sn is true for all n ∈ N.

Proof. Suppose Sa is false for some a ∈ N. Put A = {n ∈ N | Sn is false}. Since Sa is false,
a ∈ A and so A is not empty. Thus by the Well Ordering Axiom N7.1.1, A has a minimal
element m. So m ∈ A and m ≤ b for all b ∈ A. Since m ∈ A, the definition of A implies
that Sm is false. By (i), S1 is false and so m 6= 1. Put n = m − 1. Since m 6= 1 we have
m ≥ 2 and so n ≥ 1. Thus n is a positive integers and n < m.

By (LR 11), Sn is true or Sn is false. We will show that either case leads to a contra-
diction.

Suppose that Sn is false. Then n ∈ A and so since m is minimal element of A, m ≤ n.
a contradiction since n > m.

Suppose that Sn is true. Then by (ii) also Sn+1 is true. But n+ 1 = (m− 1) + 1 = m
and so Sm is true, a contradiction since m ∈ A and so Sm is false.

We reach a contradiction to the assumption that Sa is false for some a ∈ N and so Sa is
true for all a ∈ N.

29
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N3.1 Linear Combinations

Definition N3.1.1. Let V be a vector space, n ∈ N0 and (v1, . . . vn) a list of length n in
V . Then, for 0 ≤ k ≤ n,

∑k
i=1 vi is defined inductively as follows:

(i) If k = 0, then
∑k

i=1 vi = 0. (So the sum of the empty list is the zero vector).

(ii) If k < n, then
∑k+1

i=1 vi =
(∑k

i=1 vi

)
+ vn.∑n

i=1 vi is called the sum of (v1, . . . , vn). We denote this sum also by

v1 + . . .+ vn

Note that v1 + . . . + vn =

((
. . .
(
(v1 + v2) + v3

)
+ . . . + vn−2

)
+ vn−1

)
+ vn. But

thanks to the associative and commutative law, this sum is independent of the choice of the
parenthesis and also of the order of v1, v2, v3, . . . , vn. A detailed proof of this fact requires
a subtle induction argument which we will omit.

Definition 3.1. Let V be a vector space, B = (v1, . . . , vn) a list in V and r = (r1, r2, . . . , rn)
a list of real numbers. Then

r1v1 + r2v2 + . . .+ rnvn

is called the linear combination of (v1, v2 . . . , vn) with respect to the coefficients (r1, . . . , rn)

We sometimes denote this linear combination by Br.

N3.2 Span

Definition 3.2. Let V be a vector space.

(a) Let Z a subset of V . The span of Z, denoted by spanZ is the set of linear combinations
of list in Z. So

spanZ = {r1v1 + r2v2 + . . .+ rnvn | n ∈ N0, (v1, . . . , vn) ∈ Zn, (r1, r2, . . . , rn) ∈ Rn}

(b) Let B be a list in V . The span of B, denoted by spanB, is the set of all linear combi-
nations of B. So if B = (v1, . . . , vn), then

spanB = {r1v1 + r2v2 + . . .+ rnvn | (r1, r2, . . . , rn) ∈ Rn}

(c) Let W be subset of V and B a list in V or a subset of V . We say that B spans W (or
that B is a spanning list (set) of W ) if W = spanB

Since 0 is the only linear combination of (), span() = span ∅ = {0}.
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Lemma N3.2.2. Let V be a vector space and (v1, . . . , vn) a list in V . Then

span(v1, . . . , vn) = span{v1, . . . , vn}.

Proof. Put Z = {v1, . . . , vn}. Then (v1, . . . , vn) is a list in Z and so span(v1, . . . , vn) ⊆
spanZ.

Let u ∈ spanZ. Then there exist a list (w1, . . . , wm) in Z and (r1, . . . , rm) in R with

(∗) u = r1w1 + . . .+ rmwm.

We claim that u is a linear combination of (v1, . . . , vn).
If m = 0, then u = 0 = 0v1 + . . .+ 0vn and the claim holds.
Suppose the claim holds for m− 1. Then

(∗∗) r1w1 + . . .+ rm−1wm−1 = s1v1 + . . .+ snvn

for some (s1, . . . , sn) ∈ Rn. Since wm ∈ Z, wm = vi for some 1 ≤ i ≤ n and so

(∗ ∗ ∗) rmwm = t1v1 + . . .+ tnvn

where ti = rm and tj = 0 for 1 ≤ j ≤ n with j 6= 1. We compute

u = r1w1 + . . .+ rmwm − (*)

= (r1w1 + . . .+ rm−1wm−1) + rmwm − definition of ′ + . . .+′

= (s1v1 + . . .+ snvn) + rmwm − (**)

= (s1v1 + . . .+ snvn) + (t1v1 + . . .+ tnvn) − (***)

= (s1 + t1)v1 + . . .+ (sn + tn)vn − D.2.1

So the claim holds for m + 1 and hence by the principal of induction for all non-negative
integers n.

Thus u is a linear combination of (v1, . . . , vn) and so spanZ ⊆ span(v1, . . . , vn). We
already proved the reverse inclusion and so the spanZ = span(v1, . . . , vn).

Theorem 3.3. Let V be a vector space and Z a subset of V .

(a) spanZ is a subspace of V and Z ⊆ spanZ.

(b) Let W be a subspace of V with Z ⊆W . Then spanZ ⊆W .

Proof. (a) Since () is a list in Z and 0V is a linear combination of (), 0V ∈ spanZ.
Let x, y ∈ spanZ and a ∈ R. Then x = r1v1 + r2v2 + . . . + rnvn and y = s1w1 +

s2w2 + . . . + smwm for some lists (r1, . . . , rn) and (s1, . . . , sm) in R and (v1, . . . , vn) and
(w1, . . . , wm) ∈ Z. Thus
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x+ y = r1v1 + r2v2 + . . .+ rnvn + s1w1 + s2w2 + . . .+ smwm

is a linear combination of the list (v1, . . . , vn, w1, . . . , wm) in Z. Thus x + y ∈ spanZ and
so spanZ is closed under addition.

Also

ax = (ar1)v1 + (ar2)v2 + . . .+ (arn)vn

and so ax ∈ spanZ. We verified the three conditions of the Subspace Theorem and so
span(Z) is a subspace.

If z ∈ Z, then z = 1z is a linear combination of the list (z) in Z and so Z ⊆ spanZ.

(b) This follows easily from the fact that W is closed under addition and scalar multi-
plication, but we will give a detailed induction proof. Let B be a list of length n in Z. We
will show by induction on the n that any linear combination of B is contained in W .

Suppose first that n = 0. Then 0 is the only linear combination of B. Also by the
Subspace Theorem 0 ∈W . So indeed every linear combination of B is in W .

Suppose any linear combination of a list of length n in Z is contained in W and let
(v1, . . . , vn, vn+1) be a list of length n+ 1 in Z. sLet (r1, . . . , rn, rn+1) ∈ Rn+1. Then by the
definition of ’span’,

∑n
i=1 rivi ∈ span(v1, v2, . . . , vn). By the induction assumption,

(1)
n∑

i=1

rivi ∈W.

By the Subspace Theorem, W is closed under scalar multiplication and since vn+1 ∈
Z ⊆W , we conclude

(2) rn+1vn+1 ∈W.

By the definition of ’sum’

(3)
n+1∑
i=1

rivi =

(
n∑

i=1

rivi

)
+ rn+1vn+1

By the Subspace Theorem, W is closed under addition and so (1),(2) and (3) show that∑n+1
i=1 rivi ∈W .
We proved that all linear combinations of (v1, . . . , vn+1) are in W so by the Principal of

Induction any linear combination of any list in Z is contained in W . So by the definition
of span, spanZ ⊆W .

In less precise terms the preceding theorem means that spanZ is the smallest subspace
of V containing Z.
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Corollary N3.2.4. Let V be a vector space, W a subspace of V and Z a spanning set for
W .

(a) If U is a subspace of W with Z ⊆ U , then U = W .

(b) Let X ⊆ W and suppose that each z in Z is a linear combination of a list in X, then
X spans W .

Proof. (a) Since Z is a spanning set for W , W = spanZ. Since Z ⊆ U 3.3(b) gives W ⊆ U .
By assumption U ⊆W and so U = W .

(b) Put U = spanX. By 3.3(a), U is a subspace of W . By assumption each z ∈ Z is
linear combination of a list in X and so Z ⊆ U . Thus by (a), U = W and so spanX = W
and X spans W .

N3.3 Linear Independence

Definition 3.4. Let V be a vector space and (v1, . . . , vn) a list of vectors in V . We say
that (v1, . . . , vn) is linearly independent if for all (r1, r2, . . . rn) ∈ Rn,

r1v1 + r2v2 + . . .+ rnvn = 0 =⇒ r1 = 0, r2 = 0, . . . , rn = 0.

Lemma N3.3.2. Let V be a vector space, (v1, . . . , vn) a list in V and i ∈ N with 1 ≤ i ≤ n.
Then the following three statements are equivalent.

(a) There exists (r1, r2 . . . , rn) ∈ Rn such that

r1v1 + r2v2 + . . .+ rnvn = 0

and ri 6= 0.

(b) vi ∈ span(v1, . . . , vi−1, vi+1, . . . , vn)

(c) span(v1, . . . , vi−1, vi+1, . . . vn) = span(v1, . . . , vn)

Proof. Assume without loss that i = 1.

(a) =⇒ (b): Suppose that (a) holds. Then r1v1 + r2v2 + . . .+ rnvn = 0. Since r1 6= 0
we can solve for v1 and get

v1 = (−r2
r1

)v2 + (−r3
r1

)v3 + . . .+ (−rn
r1

)vn

and so by the definition of span,

v1 ∈ span(v2, v3, . . . , vn)

Thus (a) holds.
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(b) =⇒ (c): Suppose (b) holds. Then v1 ∈ span(v2, . . . , vn). By 3.3(a), vj ∈
span(v2, v3, . . . , vn) for all 2 ≤ j ≤ n. Hence vi ∈ Span(v2, . . . , vn) for all 1 ≤ i ≤ n.
Thus by N3.2.4, span(v2, . . . , vn) = span(v1, . . . , vn).

(c) =⇒ (a): Suppose (c) hold, that is span(v2, . . . , vn) = span(v1, . . . , vn). Then
v1 ∈ span(v2, . . . , vn) and so

v1 = r2v2 + . . .+ rnvn

for some r2, . . . , rn ∈ R. Thus

(−1)v1 + r2v2 + . . .+ rnvn = 0.

Put r1 = −1. Then r1 6= 0 and r1v1 + r2v2 . . .+ rnvn = 0. Therefore (a) holds.

Theorem 3.5. Let V be a vector space and (v1, . . . , vn) be list of vectors in V . Then the
following are equivalent:

(a) (v1, . . . , vn) is linearly independent.

(b) For each v ∈ V there exists at most one (r1, . . . , rn) ∈ Rn with

v = r1v1 + r2v2 + . . .+ rnvn.

(c) For all 1 ≤ i ≤ n,

vi /∈ span(v1, . . . , vi−1, vi+1, . . . , vn).

(d) For all 1 ≤ i ≤ n,

vi /∈ span(v1, . . . , vi−1).

(e) There exists 0 ≤ k < n such that (v1, . . . , vk) is linearly independent and,

vi /∈ span(v1, . . . , vi−1)

for all k + 1 ≤ i ≤ n,

(f) (v1, . . . , vn−1) is linearly independent and vn /∈ span(v1, . . . , vn−1).

Proof. (a) =⇒ (b): Suppose (v1, . . . , vn) is linearly independent. Let v ∈ V and suppose
there exist (r1, . . . , rn) and (s1, . . . , sn) ∈ Rn with v = r1v1 + r2v2 + . . . + rnvn and v =
s1v1 + s2v2 + . . .+ snvn. Then

r1v1 + r2v2 + . . .+ rnvn = s1v1 + s2v2 + . . .+ snvn,
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and so

(r1 − s1)v1 + (r2 − s2)v2 + . . .+ (rn − sn)vn = 0.

Since (v1, . . . , vn) is linear independently this means r1−s1 = r2−s2 = . . . = rn−sn = 0
and so r1 = s1, r2 = s2, . . . rn = sn. Thus (b) holds.

(b) =⇒ (c): Suppose (b) holds. We will show that (c) holds via a contradiction proof.
So assume that (c) is false. Then there exists 1 ≤ i ≤ n with

vi ∈ span(v1, . . . , vi−1, vi+1, . . . vn)

To simplify notation we assume (without loss) that i = 1 By definition of span

v1 = r2v2 + r2v3 + . . .+ rnvn

for some r2, . . . , rn ∈ R. Thus

1v1 + 0v2 + 0v3 + . . .+ 0vn = 0v1 + r2v2 + r3v3 + . . .+ rnvn.

(b) shows that 1 = 0, 0 = r2, . . . , 0 = rn, a contradiction.

(c) =⇒ (d): Since span(v1, . . . , vi−1) ⊆ span(v1, . . . , vi−1, vi+1, . . . , vn), this implica-
tion is obvious.

(d) =⇒ (e): If (d) hold, then (e) holds with k = 0.

(f) =⇒ (a): Suppose (f) holds and let (r1, r2 . . . , rn) ∈ R with

r1v1 + r2v2 + . . .+ rnvn = 0

Since vn /∈ span(v1, . . . , vn−1), N3.3.2 shows that rn = 0. Thus

r1v1 + r2v2 + . . .+ rn−1vn−1 = 0

Since (v1, . . . , vn−1) is linearly independent this implies r1 = r2 = . . . = rn−1 = 0. Since
also rn = 0, (v1, . . . , vn) is linearly dependent.

(e) =⇒ (f): Suppose (d) holds. Let k ≤ i ≤ n. We will show by induction that
(v1, . . . , vi) is linearly independent. For i = k, this holds by assumption. Suppose now that
k ≤ i < n and (v1, . . . , vi) is linearly independent. By assumption, vi+1 /∈ span(v1, . . . , vi)
and so the already proven implication ’(f) =⇒ (a)’ applied with n = i + 1 shows that
(v1, . . . , vi+1) is linearly independent. Thus by the principal of induction, (v1, . . . , vn−1) is
linearly independent. Also by assumption vn /∈ span(v1, . . . , vn−1) and so (f) holds.
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N3.6 Coordinates

Definition 3.6. Let V be a vector space. A basis for V is a linearly independent spanning
list for V .

Theorem 3.17. Let V be a vector space and (v1, . . . , vn) be a list in V . Then (v1, v2, . . . , vn)
is a basis for V if and only of for each v ∈ V there exists a unique

(r1, r2, . . . , rn) ∈ Rn with v = r1v1 + r2v2 + . . .+ rnvn

Proof. By definition (v1, . . . , vn) is basis if and only if its spans V and is linearly independent.
By definition its spans V if and only if for each v ∈ V there exists a (r1, r2, . . . , rn) ∈ Rn

with v = r1v1+r2v2+ . . .+rnvn. And by 3.5 it is linearly independent if and only if for each
v in V there exists a most one (r1, r2, . . . , rn) ∈ Rn with v = r1v1 + r2v2 + . . .+ rnvn.

Definition 3.16. Let V be a vector space with a basis B = (v1, . . . , vn). For v ∈ V let
(r1, r2, . . . , rn) be the unique list in R with v = r1v1 +r2v2 + . . .+rnvn. Then (r1, r2, . . . , rn)
is called the coordinate vector of v with respect to B and is denoted by [v]B. The function
CB : V → Rn defined by CB(v) = [v]B is called the coordinate function of V with respect to
B.

Example N3.6.4. Let E = (e1, . . . , en) be the standard basis for Rn. Then [x]E = x for
all x ∈ Rn and so CE = idRn.

Proof. Let x = (x1, . . . , xn). Then

x =


x1

x2
...

xn

 =


x1

0
...

0

+


0

x2
...

0

+ . . .+


0

0
...

xn



= x1


1

0
...

0

+ x2


0

1
...

0

+ . . .+ xn


0

0
...

1


= x1e1 + x2e2 + . . .+ xnen

and so

[x]E = (x1, . . . , xn) = x

It follows that CE(x) = x and so CE = idRn .
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N3.4 Bases

Theorem N3.4.1. Let V be a vector space, (v1, . . . , vn) a linearly independent list in V
and Z a subset of V . Put W = span

(
{v1, . . . , vn} ∪ Z

)
and let (u1, . . . , ul) be a list in Z.

Then the following three statements are equivalent

(a) (v1, . . . , vn, u1, . . . , ul) is a basis for W .

(b) (u1, u2, . . . , ul) is a list in Z minimal such that (v1, . . . , vn, u1, . . . , ul) spans W .

That is

(v1, . . . , vn, u1, . . . , ul)

spans W , but for all 1 ≤ i ≤ l,

(v1, . . . , vn, u1, . . . , ui−1, ui+1 . . . , ul)

does not span W

(c) (u1, u2, . . . , ul) is a list in Z maximal such that (v1, . . . , vn, u1, . . . , ul) is linearly inde-
pendent.

That is

(v1, . . . , vn, u1, . . . , ul)

is linearly independent but for all z ∈ Z,

(v1, . . . , vn, u1, . . . , ul, z)

is linearly dependent.

Proof. (a) =⇒ (b): Let 1 ≤ i ≤ n. Since (v1, v2, . . . , vn, u1, . . . ul) is linear independent,
3.5 shows that vi /∈ span(v1, v2, . . . , vn, u1, . . . ui−1, . . . , ui+1 . . . , ul). So

(v1, v2, . . . , vn, u1, . . . ui−1, ui+1 . . . , ul).

does not span W . Since (v1, v2, . . . , vn, u1, . . . ul) is a basis of W it spans W and (b) holds.

(b) =⇒ (a): Let 1 ≤ i ≤ l. By minimality of (u1, . . . , ul).

span(v1, . . . , vn, u1, . . . ui−1, ui+1, . . . , ul) 6= W = span(v1, . . . , vn, u1, . . . , ul)

and so by by N3.3.2,

ui /∈ span(v1, . . . , vn, u1, . . . , ui−1, ui+1, . . . , ul)
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and so also

ui /∈ span(v1, . . . , vn, u1, . . . , ui−1)

3.5(e) now shows that (v1, . . . , vn, u1, . . . , un) is linearly independent. It also spans W
and so is a basis for W .

(a) =⇒ (c): Let z ∈ Z. Then z ∈ W = span(v1, . . . , vn, u1, . . . , ul) and so by 3.5,
(v1, . . . , vn, u1, . . . ul, z) is linearly dependent. Thus (c) holds.

(c) =⇒ (a): Put U = span(v1, . . . , vn, u1, . . . ul) and let z ∈ Z. We will show that
z ∈ U . By the maximality of (u1, . . . , ul),

(v1, . . . , vn, u1, . . . ul, z)

is linearly dependent. Since (v1, . . . , vn, u1, . . . ul) is linearly independent we conclude from
3.5(f) that

z ∈ span(v1, . . . , vn, u1, . . . ul) = U

Thus Z ⊆ U . . Since also vi ∈ U for all 1 ≤ i ≤ n, N3.2.4 shows that U = W . Thus
(v1, v2, . . . , vn, u1, . . . ul) spans W . It also linearly independent, so its a basis for W . Hence
(a) holds.

Definition 3.8. A vector space is called finite dimensional if it has a finite spanning set.
Otherwise, it is called infinite dimensional. If V is finite dimensional, the minimal size of
a spanning set is called the dimension of V and is denoted by dimV .

Theorem 3.11 (Contraction Theorem). Any spanning list of a vector space has sublist
which is basis.

Proof. Let (w1, w2, . . . , wm) be a spanning list and (u1, . . . , ul) a sublist minimal such that
(u1, . . . , ul) spans W . Then by N3.4.1 applied with n = 0, (u1, . . . , ul) is basis.

Corollary N3.4.4. Let V be a finite dimensional vector space and put n = dim V. Then
every spanning list of V of length n is a basis for V . In particular, V has a basis of length
n.

Proof. By definition of n = dimV , V has a spanning list D of length n and every spanning
list as length at least n.

Now let D be any spanning list of length n. By 3.11, D has a sublist B which is basis.
Then B spans V and so B has length at least n. Thus D = B and so D is a basis.

We will see later (3.10) that all bases of a finite dimensional vector space have length
dimV .

Theorem 3.13 (Expansion Theorem). Any linearly independent list in a finite-dimensional
vectors space is the sublist of a basis.
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Proof. Let (v1, . . . , vn) be a linearly independent list in the vector space V . Since V is finite
dimensional, V has a spanning list (w1, w2, . . . , wm). Thus V = span(v1, . . . , vn, w1, . . . , wm).
Let (u1, . . . , ul) be a sublist of (w1, . . . , wm) maximal such that (v1, . . . , vn, u1, . . . , ul) is lin-
early independent. Then by N3.4.1 (v1, . . . , u1, . . . , ul) is a basis for V .

N3.7 Col, Row and Nul

Definition N3.7.1. Let A be an m× n-matrix and x = (x1, . . . , xn) ∈ Rn. Then

Ax = x1a1 + x2a2 + . . .+ xnan.

So Ax = Bx where B is the list of columns of A.

Let x, y ∈ Rn. Recall that according to 3.1 xy is defined as y1x1 + y2x2 + . . . + ynxn.
Note that xy = yx. Also entry i of Ax is

x1ai1 + x2ai2 + . . .+ xnain = aix = xai = ai1x1 + ai2x2 + . . .+ ainxn.

Definition 6.21,6.23. Let n and m be positive integer and A an m× n-matrix. Then

(a) ColA = span(a1, . . . , an).

(b) RowA = span(a1, . . . , am).

(c) NulA = {x ∈ Rn | Ax = 0}

Note here that NulA consists of the solutions of the homogeneous system of linear
equation

x1a1 + x2a2 + . . .+ xnan = 0

Lemma 6.24. Let A be matrix and B a matrix obtained from A be sequence of elementary
row operations.

(a) NulA = NulB

(b) RowA = RowB.

Proof. (a) holds since row operations do not change the solutions of an homogeneous system
of linear equations.

(b) A simple induction argument shows that we may assume that B is obtained from A
by just one elementary row operation. We will first show that RowB ⊆ RowA.

By definition of an elementary row operation, any row of B is either a row of A, a
non-zero scalar multiple of a row of A or the sum of a row of A and a scalar multiple of a
row of A. So any row of B is linear combination of rows of A.

In particular, all rows of A are contained in RowA = span(a1, . . . , am). Thus by 3.3,
RowB = span(b1, . . . , bm) ⊆ RowA.
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Since the inverse of a elementary row operation is also an elementary row operation, we
conclude that also RowA ⊆ RowB. So RowA = RowB and (a) holds.

Lemma N3.7.4. Let A be an m× n- matrix and B a matrix obtained from A by sequence
of elementary row operations. Let l be positive integer and 1 ≤ j1 < j2 < . . . < jl ≤ n. Put
ck = ajk and dk = bjk .

(a) Let (x1, . . . , xl) and (y1, . . . , yn) be list in R. Then

x1c1 + . . .+ xlcl = y1a1 + . . .+ ynan ⇐⇒ x1d1 + . . .+ xldl = y1b1 + . . .+ ynbn

(b) (c1, . . . , cl) is basis for ColA if and only if (d1, . . . , dl) is a basis for ColB.

Proof. (a) For 1 ≤ i ≤ n, put zi = xjk if i = jk for some 1 ≤ k ≤ l and zi = 0 otherwise.
Then

x1c1 + . . .+ xlcl = y1a1 + . . .+ ynan

⇐⇒ z1a1 + . . .+ znan = y1a1 + . . .+ ynan

⇐⇒ (z1 − y1)a1 + . . .+ (zn − yn)an = 0

⇐⇒ (z1 − y1, . . . , zn − yn) ∈ NulA

⇐⇒ (z1 − y1, . . . , zn − yn) ∈ NulB

⇐⇒ x1d1 + . . .+ xldl = y1b1 + . . .+ ynbn

So (a) holds.
(b) By 3.17 (c1, c2, . . . , cl) is a basis for ColA if and only if for each v ∈ ColA there exists

a unique x = (x1, . . . xl) ∈ Rl with x1c1 + . . .+xlcl = v. By definitions of ColA, (a1, . . . , an)
spans ColA. So v = y1a1 + . . .+ ynan for some (y1, . . . , yn) ∈ Rn. Thus x1c1 + . . .+xlcl = v
if and only if

x1c1 + . . .+ xlcl = y1a1 + . . .+ ynan

Hence

1◦. (c1, . . . , cl) is a basis for ColA if and only if for each (y1, . . . , yn) ∈ Rn there exists
a unique (x1, . . . , xl) ∈ Rl with x1c1 + . . .+ xlcl = y1a1 + . . .+ ynan.

The same argument shows

2◦. (d1, . . . , dl) is a basis for ColB if and only if for each (y1, . . . , yn) ∈ Rn there exists
a unique (x1, . . . , xl) ∈ Rl with x1d1 + . . .+ xldl = y1b1 + . . .+ ynbn

(a) now shows that (b) holds.

Theorem N3.7.5. Let A be a m× n-matrix and B its reduced echelon form. Then:
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(a) Let s be the number of lead variables of A. Let xlk be the k’th lead variables of A. Then
blk = ek for all 1 ≤ k ≤ s, where (e1, . . . , em) is standard basis for Rm.

(b) The non-zero rows of B form a basis of RowA.

(c) The columns of A corresponding to the lead variables of B form a basis for ColA.

(d) Let t the number of free variables of A. Let c1, . . . , ct be the vectors in Rn defined in
N2.3.1. Then (c1, . . . , ct) is a basis for NulA.

Proof. Let 1 ≤ k ≤ s. Observe that by definition of the reduced echelon form, the leading
1 in row k of B is the only non-zero entry in Column lk of B. Thus

1◦. blk = ek for all 1 ≤ k ≤ s, that is bilk = 1 if i = k and bilk = 0, if i 6= 0.

In particular, (a) holds.
Note (b1, . . . , bs) is the list of non-zero rows of B. Suppose that

∑s
i=1 rib

i = 0. From
(1◦) we see that that the lk entry of

∑s
i=1 rib

i is rk. So rk = 0 for all 1 ≤ k ≤ s and
(b1, . . . , bs) is linearly independent. (b1, . . . , bs) also spans RowB and so (b1, . . . , bs) is a
basis for RowB. By 6.24 RowA = RowB and so (b) holds.

(c) Note that bij = 0 for all s < i ≤ m and 1 ≤ j ≤ n. So if r = (ri)
m
i=1 ∈ ColB, then

ri = 0 for all s < i ≤ m. Thus there exists a unique (u1, . . . , us) ∈ Rs with r =
∑s

i=1 uiei,
namely, ui = ri for all 1 ≤ i ≤ s. Thus (e1, . . . , es) is a basis for ColB. From (1◦) we
conclude that (bl1 , . . . , bls) is a basis for Col(B). Hence by N3.7.4, (al1 , . . . , als) is a basis
for Col(A).

(d) Note that NulA is the set of solutions of the linear system of equations x1a1 +
. . . , xnan = 0. By N2.3.1 each solution can be uniquely written as a linear combination of
(c1, . . . , ct). So by 3.17 c1, . . . , ct is basis for NulA.

N3.5 Dimension

Lemma N3.5.1. Let V be vector space and (v1, . . . , vn) a spanning list for V . Let w ∈ V
and 1 ≤ i ≤ n and suppose that w /∈ span(v1, . . . vi−1, vi+1, . . . , vn). Then

(v1, . . . , vi−1, w, vi+1, . . . , vn)

spans V .

Proof. Without loss i = 1. Since (v1, v2, . . . , vn) spans V , w = r1v1 + . . . rnvn for some
r1, r2 . . . , rn ∈ V . Since w /∈ span(v2, v3, . . . , vn) we have r1 6= 0. Observe that

(−1)w + r1v1 + . . . rnvn = 0.

Thus by N3.3.2,

span(w, v2, . . . , vn) = span(w, v1, v2, . . . , vn) = V.
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Theorem N3.5.2. Let V be vector space and let (v1, . . . , vn) and (w1, . . . , wm) be spanning
lists for V . Then there exists a sublist (u1, u2, . . . , ul) of (w1, . . . , wm) of length at most n
which spans V .

Proof. For 0 ≤ k ≤ n let Sk be the following statement:

(Sk): There exists a sublist (u1, . . . , ul) of (w1, . . . , wm) of length at most k such that
(u1, u2, . . . , ul, vk+1, vk+2, . . . , vn) spans V .

Note that Sn is the statement we would like to prove. We will use induction to show
that Sk holds for all 0 ≤ k ≤ n.

Since (v1, v2, . . . , vn) is a basis for V its spans V . So S0 holds with (u1, . . . , ul) = (), the
empty list.

Suppose now that Sk hold and k < n. So there a sublist (u1, . . . , ul) of (w1, . . . , wm) of
length at most k such that

(∗) (u1, u2, . . . , ul, vk+1, vk+2, . . . , vn) spans V.

If (u1, u2, . . . , ul, vk+2, . . . , vn) spans V , then Sk+1 holds with the sublist (u1, . . . , ul) of
(w1, . . . , wm).

Hence we may assume that (u1, u2, . . . , ul, vk+2, . . . , vn) does not span V . Since (w1, . . . , wm)
spans V we conclude from N3.2.4 that

(∗∗) wi 6∈ Span(u1, u2, . . . , ul, vk+2, . . . , vn)

for some 1 ≤ i ≤ m. Thus (*), (**) and N3.5.1 imply that (u1, . . . , ul, wi, vk+2, . . . vn) is a
spanning set of V . By Theorem 3.3, uj ∈ Span(u1, u2, . . . , ul, vk+2, . . . , vn) and so by (**)
wi 6= uj for all 1 ≤ i ≤ l. Thus (u1, . . . , ul, wi) is (possible after reordering) a sublist of
(w1, w2 . . . , wn) of length l + 1. Since l ≤ k, l + 1 ≤ k + 1 and so Sk+1 holds.

We proved that Sk implies Sk+1 and so by the Principal of induction, Sn holds.

Theorem 3.10. Let V be a finite dimensional vector space. Then all bases of V have length
dimV .

Proof. Let (w1, . . . , wm) be a basis for V and n = dimV . Then by definition of ’dimension’
there exists a spanning list (v1, . . . , vn) of length n. Since (v1, . . . , vn) and (w1, . . . , wm) span
V we conclude from N3.5.2 there exists a sublist (u1 . . . , ul) of (w1, . . . , wm) of length at
most n which spans V . Since (w1, . . . , wm) is a basis for V N3.4.1 implies that (w1, . . . , wm)
is minimal spanning sublist of itself. So m = l and thus m ≤ n. Since by definition
n = dimV is the minimal length of a spanning list, m ≥ n and therefore m = l.

Theorem 3.9 (Comparison Theorem). Let V be a finite dimensional vector space, U a
linear independent list in V , B a basis for V and S a spanning list for V . Then

lengthU ≤ dimV = lengthB ≤ lengthS
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Proof. By 3.13 U is contained in a basis B′ of B. Then lengthU ≤ lengthB′. By 3.10
lengthB′ = dimV = lengthB and by definition of dimV , dimV ≤ lengthS. So

lengthU ≤ lengthB′ = lengthB = dimV ≤ lengthS

Corollary N3.5.5. Let V be an n-dimensional vector space and B a list of length n in V .
Then the following are equivalent

(a) B is basis for V .

(b) B is linearly independent.

(c) B spans V .

Proof. (a) =⇒ (b): By definition any basis is linearly independent and so (a) implies (b).

(b) =⇒ (c): Suppose B is linearly independent. Then by the Expansion Theorem
3.13, B is a sublist of a basis D. By 3.10 D has length n and since B has also length n,
B = D.

(c) =⇒ (a): Suppose B spans V. Then by the Contraction Theorem 3.11, B has
sublist D which is basis. By 3.10 D has length n and since B has also length n, B = D.
Thus B is a basis and so B spans V .

Theorem 6.25. Let A be an m× n-matrix. Then

(a) dim RowA = dim ColA.

(b) dim ColA+ dim NulA = n.

Proof. Let s be numbers of lead variables and t the numbers of free variables of A. Then
n = s + t. By N3.7.5, both RowA and ColA have a basis of length s, while NulA has a
basis of length t.
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Chapter N6

Linearity

N6.1 Basic definition

Definition 6.1. Let V and W be vector spaces and T : V → W a function. We say that
T is linear function from V to W provided that

(i) T (u+ v) = T (u) + T (v) for all u, v ∈ V , and (additive)

(ii) T (rv) = rT (v) for all r ∈ R, v ∈ V . (homogeneous)

Notation N6.1.2. ’T : V →W is linear’ means that V and W are vector spaces and T
is a linear function from V to W.

Theorem 6.2. Suppose T : V→W is linear. Then

(a) T (0V) = 0W.

(b) T (−v) = −T (v) for all v ∈ V .

(c) T (r1v1 + r2v2 + . . .+ rnvn) = r1T (v1) + r2T (v2) + . . .+ rnT (vn) for all list (v1, . . . , vn)
in V and (r1, . . . , rn) in R.

(d) T (u− v) = T (u)− T (v) for all u, v ∈ V .

Proof. (a): T (0V) = T (0V + 0V) = T (0V) + T (0V) since T is linear. Thus T (0V) = 0W

by 1.2(b).

(b): T (v) + T (−v) = T (v+ (−v)) = T (0) = 0 since T is linear and by (a). Thus T (−v)
is an additive inverse of T (v) and so T (−v) = −T (v) by 1.3.

(c): We prove (c) by induction. For n = 0, (c) says T (0) = 0, which is true by (a).
Suppose that (c) holds for n = k. Then

45
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T (r1v1 + r2v2 + . . .+ rk+1vk+1)

= T
(

(r1v1 + r2v2 + . . .+ rkvk) + rk+1vk+1

)
−Definition of sum of a list

= T (r1v1 + r2v2 + . . .+ rkvk) + T (rk+1vk+1) −Definition of linear

= T (r1v1 + r2v2 + . . .+ rkvk) + rk+1T (vk+1) −Definition of linear

=
(
r1T (v1) + r2T (v2) + . . .+ rkT (vk)

)
+ rk+1T (vk+1) −Induction Assumption

= r1T (v1) + r2T (v2) + . . .+ rkT (vk) + rk+1T (vk+1) −Definition of sum of a list

(d): See Homework 9

Lemma N6.1.4. Let V and W be vector spaces and T : V →W a function. Then T is a
linear function from V to W if and only if T (au+ bv) = a(T (u)) + b(T (v)) for all a, b ∈ R
and u, v ∈ V .

Proof. If T is linear, then by 6.3 T (au+ bv) = aT (u) + bT (v) for all a, b ∈ R.
Suppose now that T (au+ bv) = aT (u) + bT (v) for all a, b ∈ R and u, v ∈ V . Choosing

a = b = 1 we see that T (u + v) = T (u) + T (v) and choosing a = 0 and u = 0 we see that
T (bv) = bT (v) for all u, v ∈ V and b ∈ R.

Lemma N6.1.5. Let V be a vector space and B = (v1, . . . , vn) a list in V . Let LB : Rn → V
be the function defined by

LB(r1, . . . , rn) = r1v1 + . . .+ rnvn

for all (r1, . . . , rn) ∈ Rn. (In other words, LB(r) = Br for all r ∈ Rn.) Then LB is linear
and LB(ei) = vi for all 1 ≤ i ≤ n.

Proof. Let a, b ∈ R and x, y ∈ Rn. Then

(∗) x = (r1, . . . , rn) and y = (s1, . . . , sn).

for some real numbers r1, . . . , rn, s1 . . . , sn. We compute

L(ax+ by) = LB(a(r1, . . . , rn) + b(s1, . . . , sn)) − (*)

= LB(ar1 + bs1, . . . , arn + bsn) − Definition of addition and

multiplication for Rn

= (ar1 + bs1)v1 + . . .+ (arn + bsn)vn − definition of LB

= a(r1v1 + . . .+ rnvn) + b(s1v1 + . . .+ snvn) − Axioms of a vector space

= aLB(r1, . . . , rn) + bLB(s1, . . . , sn) − definition of LB

= aLB(x) + bLB(y) − (*)
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Thus LB is linear by N6.1.4.

Also LB(ei) = 0v1+. . .+0vi−1+1vi+0vi+1+. . .+0vn = 0+. . .+0+vi+0+. . .+0 = vi.

Definition N6.1.6. Let A be an m × n-matrix. Then LA is the function from Rn to Rm

defined by LA(x) = Ax for all x ∈ R.

Lemma N6.1.7. Let n,m ∈ N and A an m×n-matrix. Then LA is linear and LA(ej) = aj
for all 1 ≤ j ≤ n.

Proof. Let B = (a1, a2, . . . , an), so B is the list of columns of A. Note that B is a list in
the vector space Rm. Let x = (x1, . . . , xn) ∈ Rn. Then by the definition of LA and LB:

LA(x) = Ax = x1a1 + . . .+ xnan = LB(x).

Then LA = LB (by A.2.2) and so N6.1.5 implies that LA is linear and LA(ej) = aj for
all 1 ≤ j ≤ n.

Remark: The book uses the notation µA for LA.

Theorem 6.3. Suppose T : V→W and T ′ : V→W are linear.

(a) Put U = {v ∈ V | T (v) = T ′(v)}. Then U is a subspace of V .

(b) Suppose that (v1, . . . , vn) is a spanning list for V and T (vi) = T ′(vi) for all 1 ≤ i ≤ n.
Then T = T ′.

Proof. (a) By 6.2(a), T (0) = 0 = T ′(0) and so 0 ∈ U . Suppose u, v ∈ U . Then

T (u+ v) = T (u) + T (v) −T is linear

= T ′(u) + T ′(v) −u, v ∈ U and definition of U

= T ′(u+ v) −T ′ is linear

Thus T (u+ v) = T ′(u+ v) and so u+ v ∈ U . Now let r ∈ R and u ∈ U . Then

T (ru) = rT (u) −T is linear

= rT ′(u) −u ∈ U and definition of U

= T ′(ru) −T ′ is linear

Thus T (ru) = T ′(ru) and so ru ∈ U . We verified the three conditions of the Subspace
Theorem and so U is a subspace of V .

(b) Since T (vi) = T ′(vi) we have vi ∈ U for all 1 ≤ i ≤ n. Since (v1, . . . , vn) is a
spanning list for V we conclude from N3.2.4 that U = V . So T (v) = T ′(v) for all v ∈ V
and thus T = T ′ (by A.2.2).
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N6.2 Composition and Inverses of functions

Definition N6.2.1. Let I be a set and V a vector space.

(a) F(I, V ) is the set of functions from I to V .

(b) For f, g ∈ F(I, V ) define the function f + g from I to V by

(f + g)(i) = f(i) + g(i) for all i ∈ I

(c) For a ∈ R and f ∈ F(I, V ) define the function af from I to V by

(af)(i) = a(f(i)) for all i ∈ I

(d) F(I,V) is the triples consisting of F(I, V ) and the operations in (b) and (c).

Lemma N6.2.2. Let I be a set and V a vector space.

(a) F(I,V) is a vector space.

(b) The additive identity in F(I, V ) is the zero-function 0∗ defined by 0∗(v) = 0V for all
v ∈ V .

(c) The additive inverse of f ∈ F(I, V ) is the function −f defined by (−f)(v) = −(f(v))
for all v ∈ V .

Proof. See Homework 8.

Definition N6.2.3. Let V and W be vector spaces. Then L(V,W) is the set of linear
functions from V to W.

Theorem N6.2.4. Let V and W be vector spaces.

(a) The zero function from V to W is linear.

(b) If f and g are linear function from V to W, then also f + g is linear.

(c) If r ∈ R and f : V→W is linear, then also rf is linear.

(d) L(V,W) is subspace of F(V,W).

Proof. Let v, w ∈ V and a, b ∈ R. Recall that the additive identity in F(I, V ) is the zero
function 0∗ from V to W defined by 0∗(v) = 0W for all v ∈ V . .

(a) See Homework 7 .

(b) Let f, g : V→W be linear. Then
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(f + g)(av + bw)

= f(av + bw) + g(av + bw) − definition of addition of functions

=
(
a
(
f(v)

)
+ b
(
f(w)

))
+
(
a
(
g(v)

)
+ b
(
g(w)

))
−f, g linear and N6.1.4

= a
(
f(v) + g(v)

)
+ b
(
f(w) + g(w)

)
− axioms of a vector space

= a
(

(f + g)(v)
)

+ b
(

(f + g)(w)
)

− definition of addition of functions, twice

and so f + g is linear by N6.1.4.
(c) Let r ∈ R and let f : V→W be linear. Then

(rf)(av + bw)

= r
(
f(av + bw)

)
− definition of scalar multiplication of functions

= r
(
a
(
f(v)

)
+ b
(
f(w)

))
−f linear and N6.1.4

= a
(
r
(
f(v)

))
+ b
(
r
(
f(w)

))
− axioms of a vector space

= a
(

(rf)(v)
)

+ b
(

(rf)(w)
)
− definition of scalar multiplication of functions, twice

and so by N6.1.4 rf is linear.
(d) By (a), (b) and (c) the three conditions in the Subspace Theorem hold. Thus the

Subspace Theorem shows that L(V,W) is a subspace of F(V,W).

Theorem 6.7. Let f : V→W and g : W→ X be linear. Then g ◦ f is linear.

Proof. See Homework 9.

Definition 6.29. (a) A linear function T : V→W is called an isomorphism if there exists
a linear function T ′ : W→ V with T ◦ T ′ = idW and T ′ ◦ T = idV .

(b) The vector space V is called isomorphic to the vector space W if there exists an iso-
morphism T : V→W.

Theorem 6.8. Let f : V→W be linear. Then the following are equivalent:

(a) f is 1-1 and onto.

(b) f is invertible.

(c) f is invertible and f−1 : W→ V is linear.

(d) f is an isomorphism.
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Proof. (a) =⇒ (b): See 6.6.
(b) =⇒ (c): Suppose f is invertible. Let a, b ∈ R and w, x ∈W . Put

(∗) u = f−1(w) and v = f−1(x).

Since f−1 is the inverse of f , A.5.5 gives

(∗∗) w = f(u) and x = f(v).

Thus

f−1(aw + bx) = f−1
(
a
(
f(u)

)
+ b
(
f(v)

))
−(∗∗)

= f−1
(
f(au+ bv)

)
−f is linear and N6.1.4

= au+ bv −f−1 is the inverse of f, A.5.5

= a
(
f−1(w)

)
+ b
(
f−1(x)

)
−(∗)

So f−1 is linear by N6.1.4.
(c) =⇒ (d): Suppose f is invertible and f−1 : W → V is linear. By definition of an

inverse function f ◦ f−1 = idW and f−1 ◦ f = idV . By assumption f−1 is linear and so f is
an isomorphism.

(d) =⇒ (a): Suppose that f is an isomorphism. Then by definition there exists a
linear function f ′ : W → V with f ◦ f ′ = idW and f ′ ◦ f = idV . So f ′ is an inverse of f
and by 6.6, f is 1-1 and onto.

Theorem N6.2.8. Let V be a vector space with a basis B = (v1, . . . , vn).

(a) Let x ∈ Rn and v ∈ V . Then CB(v) = x if and only if v = LB(x).

(b) CB is the inverse of LB; and LB is the inverse of CB.

(c) LB is an isomorphism from Rn to V ; and CB is an isomorphism from V to Rn.

(d) CB(vj) = ej for all 1 ≤ j ≤ n.

Proof. (a) Let v ∈ V and x = (r1, . . . , rn) ∈ Rn. Then

CB(v) = (r1, . . . , rn)

⇐⇒ [v]B = (r1, . . . , rn) − definition of CB

⇐⇒ v = r1v1 + . . .+ rnvn − definition of [v]B

⇐⇒ v = LB(r1, . . . , rn) − definition of LB
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So (a) holds.

(b) follows from (a) and A.5.5.

(c) By (b) LB is invertible and CB = L−1B . By N6.1.5, LB is linear and so by 6.8 LB is
an isomorphism and CB = L−1B is linear. Thus also CB is an isomorphism.

(d) By N6.1.5 LB(ej) = vj and thus by (a) CB(vj) = ej .

Theorem 6.9. Let V and W be vector spaces, B = (v1, . . . , vn) a basis for V and D =
(u1, . . . , un) a list in W . Then there exists a unique linear function T : V → W with
T (vj) = uj for all 1 ≤ j ≤ n, namely T = LD ◦ CB.

Proof. See Exercise A on Homework 10.

N6.6 Image and Kernel

Definition 6.19. Let T : V→W be linear. Then

kerT := {v ∈ V | T (v) = 0W}.

Theorem 6.20. Let T : V→W be linear.

(a) kerT is a subspace of V and Im T is a subspace of W .

(b) Let (v1, . . . , vn) be a spanning list for V . Then (T (v1), . . . , T (vn) is a spanning list for
Im T .

Proof. (a) Note that kerT = {v ∈ V | T (v) = 0∗(v)} and so by 6.3, kerT is a subspace of
V .

Since T (0) = 0, 0 ∈ Im T . Let w, x ∈ Im T . Then w = T (u) and x = T (v) for some
u, v ∈ V . Thus w + x = T (u) + T (v) = T (u + v) and so w + x ∈ Im T . Let r ∈ R.
Then rw = rT (u) = T (ru) = and so rw ∈ Im T . So the three conditions of the Subspace
Theorem for Im T hold and Im T is a subspace of W .

(b) Let (v1, . . . , vn) be a spanning list for V and let w ∈W .

w ∈ Im T

⇐⇒ w = T (v) for some v ∈ V − Definition of Im T

⇐⇒ w = T (r1v1 + . . . rnvn) for some (r1, . . . , rn) ∈ Rn − since (v1, . . . , vn) spansV

⇐⇒ w = r1T (v1) + . . .+ rnT (vn) for some(r1, . . . , rn) ∈ Rn −T is linear and 6.2(d)

⇐⇒ w ∈ span(T (v1), . . . , T (vn)) − Definition of span

Thus Im T = span(T (v1), . . . , T (vn).
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Theorem 6.28. Let T : V→W be linear.

(a) Let u, v ∈ v. Then T (u) = T (v) if and only if v − u ∈ kerT .

(b) T is 1-1 if and only of kerT = {0}.

Proof. (a) We have

T (u) = T (v)

⇐⇒ T (v)− T (u) = 0 − 1.7(p)

⇐⇒ T (v − u) = 0 −T is linear and 6.2(d)

⇐⇒ v − u ∈ kerT − Definition of kerT

(b) Suppose first that T is 1-1 and let v ∈ kerT . Then T (v) = 0 = T (0) and since T is
1-1, v = 0. Thus kerT = {0}.

Suppose next that kerT = {0} and let u, v ∈ V with T (u) = T (v). Then by (a),
v − u ∈ kerT . Since kerT = {0} this gives v − u = 0 and so by 1.7(p), v = u. So T is
1-1.

Lemma N6.6.4. Let T : V→W be linear and suppose that V is finite dimensional. Then
the following three statements are equivalent:

(a) T is 1-1.

(b) For all linearly independent lists (v1, . . . , vn) in V ,
(
T (v1), . . . , T (vn)

)
is linearly inde-

pendent in W.

(c) There exists a basis (v1, . . . , vn) of V such that
(
T (v1), . . . , T (vn)

)
is linearly indepen-

dent in W.

Proof. (a) =⇒ (b): (a) Suppose T is 1-1 and let (r1, . . . , rn) ∈ Rn with

r1T (v1) + . . .+ rnT (vn) = 0.

Using 6.2 this gives:

T (r1v1 + . . .+ rnvn) = T (0),

and since T is 1-1, we get
r1v1 + . . .+ rnvn = 0.

Since (v1, . . . , vn) is linearly independent this implies r1 = r2 = . . . = rn = 0. So(
T (v1), . . . , T (vn)

)
linearly independent.

(b) =⇒ (c): By N3.4.4 V has a basis B = (v1, . . . , vn). Then B is linearly independent
and so by (b) (T (v1), . . . , T (vn)) is linearly independent.
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(c) =⇒ (a): Suppose B = (v1, . . . , vn) is basis for V such that (T (v1), . . . , T (vn)) is
linearly independent in W. Let v ∈ kerT . Since B spans V , v = r1v1 + . . .+ rnvn for some
(r1, . . . , rn) ∈ Rn. Using 6.2 we get

r1T (v1) + . . .+ rnT (vn) = T (r1v1 + . . .+ rnvn) = T (v) = 0

and since (T (v1), . . . , T (vn)) is linearly independent, r1 = 0, r2 = 0, . . . , rn = 0. Thus v = 0
and so kerT = 0. Thus by 6.28 T is 1-1.

Lemma N6.6.5. Let T : V→W be linear and suppose that V is finite dimensional. Then
the following three statements are equivalent:

(a) T is onto.

(b) Im T = W.

(c) For all spanning list (v1, . . . , vn) of V ,
(
T (v1), . . . , T (vn)

)
spans W .

(d) There exists a spanning list (v1, . . . , vn) of V such that
(
T (v1), . . . , T (vn)

)
spans W .

Proof. (a) ⇐⇒ (b) : By definition T is onto if and only if Im T = W . So (a) and (b) are
equivalent.

(b) =⇒ (c): Suppose Im T = W. Let (v1, . . . , vn) be spanning list for V . By 6.20(b)
Im T = span

(
T (v1), . . . , T (vn)

)
and since Im T = W we conclude that

(
T (v1), . . . , T (vn)

)
spans W.

(c) =⇒ (d): Suppose (c) holds. Since V is finite dimensional, V has a spanning list
(v1, . . . , vn). Since (c) holds we conclude that

(
T (v1), . . . , T (vn)

)
spans W . Thus (d) holds.

(d) =⇒ (b): Suppose there exists a spanning list (v1, . . . , vn) of V such that

(∗)
(
T (v1), . . . , T (vn)

)
spans W

By 6.20(b) Im T = span
(
T (v1), . . . , T (vn)

)
and so by (*) Im T = W .

Corollary N6.6.6. Let T : V →W be linear and suppose V is finite dimensional. Then
the following are equivalent.

(a) T is invertible.

(b) For all basis (v1, . . . , vn) of V,
(
T (v1), . . . , T (vn)

)
is a basis for V .

(c) There exists a basis (v1, . . . , vn) of V such that
(
T (v1), . . . , T (vn)

)
is a basis for V .

Proof. By 6.6, T is invertible if and only if T is 1-1 and onto. By definition
(
T (v1), . . . , T (vn)

)
is basis for W if and only if

(
T (v1), . . . , T (vn)

)
is linearly independent and spans W . Thus

the corollary follows from N6.6.4 and N6.6.5
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Corollary N6.6.7. Let T : V→W be linear and suppose V and W are finite dimensional
and dim V = dim W. Then the following are equivalent:

(a) T is invertible.

(b) T is 1-1.

(c) T is onto.

Proof. Let n = dim V = dim W and let (v1, . . . , vn) a basis of V. Then

T is 1-1

⇐⇒
(
T (v1), . . . , T (vn)

)
is linearly independent −N6.6.4

⇐⇒
(
T (v1), . . . , T (vn)

)
spans W −N3.5.5

⇐⇒ T is onto −N6.6.5

In particular, T is 1-1 if and only if T is 1-1 and onto, and so by 6.6 if and only if T is
invertible.

Corollary N6.6.8. Let V and W be finite dimensional vector spaces of equal dimension.
Let T : V → W and S : W → V be linear. Then the following four statements are
equivalent.

(a) S ◦ T = idV .

(b) S is an inverse of T .

(c) T is an inverse of S

(d) T ◦ S = idW .

Proof. (a) =⇒ (b): Suppose that S ◦ T = idV . Then by Homework Problem 6.2(9b)
T is 1-1. Since V and W have equal dimension N6.6.7 shows that T is invertible. Since
S ◦ T = idV we conclude that S = idV ◦ T−1 = T−1, see A.5.3 .

(b) =⇒ (c): If S is an inverse of T , then T is also an inverse of S, see A.5.5

(c) =⇒ (d): If T is an inverse of S, then T ◦ S = idW by definition of an inverse.

(d) =⇒ (a): Suppose T ◦ S = idW . The result that (a) implies (d), applied with the
roles of T and S interchanged, shows that T is an inverse of S. Thus S ◦ T = idV , by
definition of an inverse.
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Definition 5.3. Let n be a non-negative integer. In is the n × n-matrix [e1, . . . , en], so
column j of In is ej and

In =



1 0 0 . . . 0 0 0

0 1 0
. . . 0 0 0

0 0 1
. . .

. . . 0 0
...

. . .
. . .

. . .
. . .

. . .
...

0 0
. . .

. . . 1 0 0

0 0 0
. . . 0 1 0

0 0 0 . . . 0 0 1


We will often just write I for In.

Definition 5.1. Let A be an m × n-matrix and B an n × p matrix. Then AB is the
m× p-matrix whose jth column is equal to Abj. So

A = [Ab1, Ab2, . . . , Abp].

We denote column j of AB by (ab)j and entry (i, j) of AB by (ab)ij. So (ab)j = Abj
and (ab)ij is entry i of Abj. Hence

(ab)ij = aibj = ai1b1j + ai2bj2 + . . .+ ainbnj ,

and

AB =
[
ai1b1j + ai2bj2 + . . .+ ainbnj

]m,p

i=1,j=1
.

Definition 5.6. Let n and m be positive integers and A an m× n matrix.

(a) An inverse of A is an n×m matrix B with

AB = In and BA = Im

(b) A is called invertible if A has an inverse.

Theorem 6.22. Let n and m be positive integer and A an m× n-matrix. Then

(a) ColA = Im LA.

(b) NulA = kerLA.

Proof. (a) Since e1, . . . , en spans Rn, 6.20(b) implies that (LA(e1), . . . , LA(en)) spans Im LA.
Since LA(ej) = Aej = aj , we get Im LA = span(a1, . . . , an) = ColA and (a) holds.

(b) Let x ∈ Rn. Then LA(x) = Ax and so x ∈ kerLA if and only if Ax = 0.
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Lemma N6.6.13. Let n and m be positive integer and A an m × n-matrix. Then the
following are equivalent:

(a) The list of columns of A is linearly independent.

(b) NulA = {0}.

(c) LA is 1-1.

Proof. We have

NulA = {0}
⇐⇒ NulLA = {0} − 6.22

⇐⇒ LA is 1-1 − 6.28

⇐⇒ (LA(e1), . . . , LA(en)) is linearly independent − N6.6.4

⇐⇒ (a1, . . . , an) is linearly independent − N6.1.7

Lemma N6.6.14. Let n and m be positive integer and A an m × n-matrix. Then the
following are equivalent:

(a) The list of columns of A spans Rm

(b) ColA = Rm.

(c) Im LA = Rm.

(d) LA is onto

Proof. Since ColA is the span of the columns of A, (a) and (b) are equivalent. Since
ColA = Im LA, (b) and (d) are equivalent. Finally, by definition of onto, LA is onto if and
only if Im LA = Rm and so (d) and (c) are equivalent.

N6.3 Matrix of a Linear Function

Definition 6.12. Let T : V→W be linear. Suppose B = (v1, . . . , vn) is a basis for V and
D = (w1, . . . , wm) is a basis for W. Let A be the m × n matrix with aj = [T (vj)]D for all
1 ≤ j ≤ n. So

A =
[
[T (v1)]D, [T (v2)]D, . . . , [T (vn)]D

]
.

Then A is called the matrix of T with respect to B and D.

Lemma N6.3.2. Let V and W be vector spaces with bases B = (v1, . . . , vn) and D =
(w1, . . . , wm) respectively.
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(a) (LA ◦ CB)(v) = A[v]B for all v ∈ V .

(b) Let T : V →W be a function then (CD ◦ T )(v) = [T (v)]D for all v ∈ V .

Proof. Let v ∈ V . (a)

(LA ◦ CB)(v)

= LA(CB(v)) −definition of composition

= LA

(
[v]B

)
−definition of CB

= A[v]B −definition of LA

(b)

(CD ◦ T )(v)

= CD(T (v)) −definition of composition

= [T (v)]D −definition of CD

Theorem 6.11. Let V and W be vector spaces with bases B = (v1, . . . , vn) and D =
(w1, . . . , wm) respectively. Put n = dimV and m = dimW and let A ∈ M(m,n). Let
T : V →W be a function. Then the following are equivalent

(a) T is linear and A is the matrix of T with respect to B and D.

(b) CD ◦ T = LA ◦ CB.

(c) CD ◦ (T ◦ LB) = LA.

(d) T ◦ LB = LD ◦ LA.

(e) T = LD ◦ (LA ◦ CB).

(f) [T (v)]D = A[v]B for all v ∈ V .

(g) T (r1v1 + . . .+ rnvn) = (a11r1 + . . .+ a1nrn)w1 + . . .+ (am1r1 + . . .+ amnrn)wm for all
(r1, . . . , rn) ∈ Rn.

The functions appearing in the theorem can be visualized in the following diagram

V W

Rn Rn
LA

T

LB CB LDCD
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Proof. Let B = (v1, . . . , vn) and 1 ≤ j ≤ n.

(∗)

(LA ◦ CB)(vj)

= LA(CB(vj)) − definition of composition

= LA(ej) − N6.2.8

= aj −N6.1.7

(a) =⇒ (b): Suppose that T is linear and A is the matrix of T (with respect to B and
D.) Then

(CD ◦ T )(vj)

= [T (vj)]D −N6.3.2(a)

= aj − definition of A

and so by (*) (CD ◦ T )(vj) = aj = (LA ◦ CB)(vj).
Since T , LA, CD and CB are linear, also LA ◦ CB and CD ◦ T are linear by 6.7. Since

B spans V , we conclude from 6.3 that CD ◦ T = LA ◦ CB. So (b) holds.

We will now show that (b), (c), (d) and (e) are equivalent.

CD ◦ T = LA ◦ CB

⇐⇒ T = LD ◦ (LA ◦ CB) −LD = C−1D and A.5.3(b)

⇐⇒ T = (LD ◦ LA) ◦ CB − composition is associative

⇐⇒ T ◦ LB = LD ◦ LA −LB = C−1B and A.5.3(f)

⇐⇒ CD ◦ (T ◦ LB) = LA −LD = C−1D and A.5.3(b)

(e) =⇒ (a): Suppose that (e) holds. Then T = LD ◦ LA ◦ CB. Since LD, LA and CB

are linear and composition of linear functions are linear (see 6.7) also T = LD ◦ LA ◦CB is
linear. We compute

T (vj)

= (LD ◦ LA ◦ CB)(vj) − since (e) holds

= LD

(
(LA ◦ CB)(vj)

)
definition of composition

= LD(aj) − (*)

We proved T (vj) = LD(aj) and so by N6.2.8(a), CD(T (vj)) = aj . The definition of CB

gives [T (vj)]D = aj . Hence A is the matrix of T with respect to B and D.
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(b) ⇐⇒ (f) : We have

CD ◦ T = LA ◦ CB

⇐⇒ (CD ◦ T )(v) = (LA ◦ CB)(v) for all v ∈ V − A.2.2

⇐⇒ [T (v)]D = A[v]B for all v ∈ V − N6.3.2(a) and (b)

Thus (b) and (f) are equivalent.
(d) ⇐⇒ (g) :
We compute

(∗∗)

(T ◦ LB)(r1, . . . , rn)

= T
(
LB(r1, . . . , rn)

)
− Definition of composition

= T (r1v1 + . . .+ rnvn) − Definition of LB

and

(∗ ∗ ∗)
(LD ◦ LA)(r1, . . . rn)

= LD

(
LA(r1, . . . , rn)

)
− Definition of composition

= LD

(
A(r1, . . . , rn)

)
− Definition of LA

= LD(a11r1 + . . . a1nrn, . . . , am1r1 + . . . amnrn) − Definition of Ax

= (a11r1 + . . .+ a1nrn)w1 + . . .+ (am1r1 + . . .+ amnrn)wm − Definition of LD

Thus

T ◦ LB = LD ◦ LA

⇐⇒ (T ◦ LB)(r1, . . . , rn) = (LA ◦ LB)(r1, . . . , rn) for all (r1, . . . , rn) ∈ Rn − A.2.2

⇐⇒ T (r1v1 + . . .+ rnvn) = (a11r1 + . . .+ a1nrn)w1 + . . .+ (am1r1 + . . .+ amnrn)wm − (**) and (***)

for all (r1, . . . , rn) ∈ Rn

Thus (d) and (g) are equivalent.

Theorem 6.10. Let n and m be positive integers, A ∈ M(m,n) and T : Rn → Rm a
function. Then the following two statements are equivalent

(a) T is linear and A is the matrix of T with respect the standard bases of Rn and Rm.

(b) T = LA.
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(c) T (x) = Ax for all x ∈ Rn.

Proof. Let B and D be the standard basis for Rn and Rm respectively. By 6.11(a), (b) and
(f) the following three statements are equivalent:

(a′) T is linear and A is the matrix of T with respect the standard bases of Rn and Rm.

(b′) CD ◦ T = LA ◦ CB.

(c′) [T (x)]D = A[x]B for all x ∈ Rn.

Observe that (a′) is (a).

Also since B and D are the standard bases, [x]B = x and [y]D = y for all x ∈ Rn and
y ∈ Rm. So (c′) is equivalent to (c).

Moreover, CB = idRn and CD = idRm and so CD ◦ T = T and LA ◦CB = LA. Thus (b′)
is equivalent to (b) and the theorem is proved.

N6.4 The matrices of composition and inverses

Theorem N6.4.1. (a) Let I be a set, V a vector space, f, g : I → V functions and i ∈ I.
Then

(f ± g)(i) = f(i)± g)(i)

(b) Let I and J be sets and V a vector space. Let f : I → J and g, h : J → V be functions
and let r ∈ R. Then

(g + h) ◦ f = g ◦ f ± h ◦ f and g ◦ (rf) = r(g ◦ f)

(c) Let I be a set and V and W vector spaces. Let f, g : I → V be functions and h : V→W
a linear function and let r ∈ R. Then

h ◦ (f + g) = h ◦ f ± h ◦ g and h ◦ (rf) = r(h ◦ f).

Proof. Let i ∈ I.

(a) (f + g)(i) = f(i) + g(i) holds by the definition of addition of functions.

(f − g)(i)

= (f + (−g))(i) − definition of subtraction

= f(i) + (−g)(i) − definition of addition of functions

= f(i) + (−(g(i))) − N6.2.2(c)

= f(i)− g(i) − definition of subtraction
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(b) We have

(
(g ± h) ◦ f

)
(i)

=
(
g ± h

)(
f(i)

)
− definition of composition

= g
(
f(i)

)
± h
(
f(i)

)
−(a)

= (g ◦ f)(i)± (h ◦ f)(i) − definition of composition,twice

= (g ◦ f ± h ◦ f)(i) −(a)

and so the first statement in (b) holds by A.2.2.

Also

(
(rg) ◦ f

)
(i)

=
(
rg
)(
f(i)

)
− definition of composition

= r
(
g
(
f(i)

))
− definition of scalar multiplication of functions

= r
(

(g ◦ f)(i)
)
− definition of composition

=
(
r(g ◦ f)

)
(i) − definition of scalar multiplication of functions

and so the second statement in (b) holds by A.2.2.

(c) We have

(
h ◦ (f ± g)

)
(i)

= h
(

(f ± g)(i)
)

− definition of composition

= h
(
f(i)± g(i)

)
− (a)

= h
(
f(i)

)
± h
(
g(i)

)
− since h is linear

= (h ◦ f)(i)± (h ◦ g)(i) − definition of composition,twice

= (h ◦ f ± h ◦ g)(i) − (a)

and so the first statement in (c) holds by A.2.2. Also
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(
(h ◦ (rf)

)
(i)

= h
(

(rf)(i)
)

− definition of composition

= h
(
r
(
f(i)

))
− definition of scalar multiplication of functions

= r
(
h
(
f(i)

))
− since h is linear

= r
(
(h ◦ f)(i)

)
− definition of composition

=
(
r(h ◦ f)

)
(i) − definition of scalar multiplication of functions

and so the second statement in (c) holds by A.2.2.

Lemma N6.4.2. Let V and W be vector spaces with bases B and D respectively. Let
T : V→W be linear and let A be the matrix of T with respect to B and D

(a) Let T ′ : V→W be linear and let A′ be the matrix of T ′ with respect to B and D. Then
A±A′ is the matrix of T ± T ′ with respect to B and D.

(b) Let r ∈ R. Then rA is the matrix of rT with respect to B and D.

(c) Let T ′ : W→ U be linear, E a basis for U and A′ the matrix for T ′ with respect to D
and E. Then A′A is the matrix for T ′ ◦ T with respect to B and E

(d) Let T ′ : V → V be linear and A′ the matrix for T ′ with respect to B and B. Then
T ′ = idV if and only if A′ = I.

(e) Let T ′ : W → V be linear and A′ the matrix for T ′ with respect to D and B. Then
T ′ ◦ T = idV if and only if A′A = I. In particular, T ′ is an inverse of T if and only if
A′ is an inverse of A.

Proof. Let B = (v1, v2, . . . , vn).
(a) Since CD is linear, N6.4.1(c) gives

CD ◦ (T ± T ′) = CD ◦ T ± CD ◦ T ′.

So Column j of the matrix of T ± T ′ is

[
(T ± T ′)(vj)

]
D

=
(
CD ◦ (T ± T ′)

)
(vj) = (CD ◦ T )(vj)± (CD ◦ T ′)(vj)

= [T (vj)]± [T ′(vj)]D = aj ± a′j

Since aj ± a′j also is Column j of A±A′, (a) holds.

(b) Since CD is linear, N6.4.1(c) gives CD ◦ (rT ) = r(CD ◦ T ). So Column j of the
matrix of rT is
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[
(rT )(vj)

]
D

=
(
CD ◦ (rT )

)
(vj) = r

(
(CD ◦ T )(vj)

)
= r[T (vj ]D = raj .

Since raj is also Column j if rA, (b) holds.

(c) Note that [T (vj)]D = aj . So by 6.11
[
T ′
(
T (vj)

)]
E

= A′aj and so
[
(T ′ ◦ T )(vj)

]
E

=

A′aj . Thus Column j of the matrix of T ′ ◦ T is A′aj , which also is Column j of A′A. So
(c) is proved.

(d) Suppose that T ′ = idV . Then

a′j = [T (vj)]B = [idV (vj)]B = [vj ]B = ej

and so A = In. Suppose that A′ = In. We just proved that also the matrix for idV is In.
By 6.11 a linear function is uniquely determined by its matrix and so T ′ = idV .

(e) By (c), A′A is the matrix of T ′◦T with respect to B and B and so by (d), T ′◦T = idV

if and only ifA′A = I. By symmetry, T◦T ′ = idW if and only ifAA′ = I. Thus (e) holds.
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Chapter N5

Matrices

N5.1 Matrix Algebra

Theorem 5.4. Let n,m, p, q ∈ N, A,A′ ∈ M(m,n), B,B′ in M(n, p), C ∈ M(p, q) and
r ∈ R. Then

(a) A(BC) = (AB)C)

(b) (A±A′)B = AB ±A′B.

(c) A(B ±B′) = AB ±AB′.

(d) (rA)B = r(AB) = A(rB).

(e) AIn = A = ImA.

Proof. By 6.10 an m×n matrix is essentially the same as a linear function from Rn to Rm.
Together with N6.4.2 the statements in this theorem follow easily from the corresponding
results for linear function. As an example we will prove (a) and (d); and leave the proofs
of the remaining statements to the reader.

By 6.10 A, B and C are the matrices of LA, LB and LC ,respectively, with respect to the
standard bases.

(a) By N6.4.2 the matrices of LA ◦(LB ◦LC) and (LA ◦LB)◦LC are A(BC) and (AB)C,
respectively. By A.4.3 LA ◦ (LB ◦ LC) = (LA ◦ LB) ◦ LC and so (AB)C = A(BC).

(d) By N6.4.2 the matrices of (rLA)◦LB), r(LA ◦LB) and LA ◦(rLB) are (rA)B, r(AB)
and A(rB) respectively.

By 6.7 (rLA) ◦ LB) = r(LA ◦ LB) = LA ◦ (rLB) and so (rA)B = r(AB) = A(rB).

N5.2 Inverses

Lemma N5.2.1. Let A be ab n× n matrix. Then the following statements are equivalent.

(a) A is invertible.
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(b) LA is invertible.

(c) LA is 1-1,

(d) LA is onto.

(e) NulA = {0}.

(f) The list of columns of A is linearly independent.

(g) ColA = Rn.

(h) The list of columns of A spans Rn.

(i) The list of columns of A is basis of Rn.

(j) dim ColA = n.

Proof. By N6.4.2(e) (a) and (b) are equivalent.
By N6.6.7 (b), (c) and (d) are equivalent.
By N6.6.13 (c), (e) and (f) are equivalent.
By N6.6.14 (d), (g) and (h) are equivalent.
Since (f) and (h) are equivalent, they are also equivalent to (i).
By a homework problem, ColA = Rn if and only if dim ColA = n. So (g) and (j) are

equivalent.

Remark: Since dim ColA = dim RowA the preceding theorems stays true for rows in
place of columns.

Theorem 5.13. Let A and B be n × n-matrices. Then AB = In if and only if BA = I
and if and only if B is an inverse of A.

Proof. We have

AB = In

⇐⇒ LAB = idRn − N6.4.2(d)

⇐⇒ LA ◦ LB = idRn − N6.4.2(c)

⇐⇒ LB ◦ LA = idRn − N6.6.8

⇐⇒ LBA = idRn − N6.4.2(c)

⇐⇒ BA = In − N6.4.2(d)

Lemma N5.2.3. Let B be a m×n matrix in reduced row-echelon form. Then the following
are equivalent.
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(a) Each column of B contains a leading 1.

(b) B has exactly n non-zero rows.

(c) B has at least n-non zero rows.

(d) bj = ej for all 1 ≤ j ≤ n, where (e1, . . . , em) is the standard basis for Rm.

Proof. Let s be the number of lead variables of A and xli the i’th lead variable. Then
l1 < l2 < . . . < ls and by N3.7.5(a) bli = ei. Thus B has exactly s columns containing
leading 1’s. So s ≤ n and (a), (b) and (c) are equivalent.

If B = In, then all rows of B are non-zero and so (d) implies (b).
Suppose now that each column of B contains a leading 1. Then t = n and so (l1, . . . , ls) =

(1, . . . , n). Thus li = i and so bi = bli = ei. hence (a) implies (d).

Lemma N5.2.4. Let A be n× n matrix.

(a) A is invertible if and only if the reduced echelon form of A is In.

(b) If A is invertible and P is an m×m matrix, the reduced row-echelon form of [A,P ] is
[In, A

−1P ].

(c) If A is invertible, the reduced row-echelon form of [A, In] is [In, A
−1].

Proof. (a) Let B be the reduced echelon form of A and let t be the number of lead variables
of B. Let N5.2.1 A is invertible if and only if dim ColA = n. By N3.7.5 dim ColA = t is the
number of lead variables. So A is invertible if and only if t = n. Since F is an n×n matrix,
this holds if and only row and columns contains a leading one. By N5.2.3 this holds if and
only if B = In.

(b) Let D = [A,P and F the reduced echelon form of D. Then F = [B,H] for some
n × n matrices B and H. Note that B is the reduced echelon form of A and so by (a)
B = In. Thus bk = ek for all 1 ≤ k ≤ n. Let 1 ≤ j ≤ m, then

fn+j = hj = h1je1 + . . . hnjen = h1jb1 + . . . hnjbn = h1jf1 + . . . hnjfn

Thus by N3.7.4(a)

pj = dn+j = h1jd1 + . . . hnjdn = h1ja1 + . . . hnjan = Ahj

Hence P = AH and so by 5.13 so A−1P = A−1(AP ) = (A−1A)P = IP = P . . Thus
F = [B,H] = [In, A

−1P ].
(c) Since A−1I = A−1, this follows from (b) applied with P = In.
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Chapter N6

Linearity (Cont.)

N6.5 Change of basis

Definition 6.16. Let V be a vector space with basis B and B′. Then the change-of-basis
matrix from B′ to B is the matrix of idV with respect to B′ and B.

Theorem 6.15. Let V be a vector space with basis B′ and B and P the change-of-basis
matrix from B′ to B. Then

(a) [v]B = P [v]B′ for all v ∈ V . That is the diagram

V

Rn Rn
LP

CB′ CB

commutes.

(b) If B′ = (v′1, . . . , v
′
n), then pj = [v′j ]B. So

P =
[
[v′1]B, [v

′
2]B, . . . , [v

′
n]B

]
Proof. (a) Since P is the matrix of idV , 6.11 gives [v]B = [idV (v)]B = P [v]B′ .

(b) By definition of P , column j of P is [idV (v′j)]B, which is equal to [v′j ]B.

Theorem 6.17. Let V be a vector space with basis B′ and B, and let P be the change-of-
basis matrix from B′ to B. Then P is invertible and P−1 is the change of basis matrix from
B to B′.
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Proof. Note that idV is invertible with inverse idV . By definition, P is the matrix of idV

with respect to B′ and B. So by N6.4.2(e), P is invertible and P−1 is the matrix of idV

with respect to B and B′. Hence P−1 is the change-of-basis matrix from B to B′.

Lemma N6.5.4. Let V be vector space with basis B = (v1, . . . , vn). Let P an invertible
n × n matrix and put v′j = LB(pj) and B′ = (v′1, . . . , v

′
n). Then B′ is a basis for V and P

is the change-of-basis matrix from B′ to B.

Proof. Since P is invertible, (p1, . . . , pn) is a basis for Rn by N5.2.1. By N6.2.8 LB is invert-

ible (with inverse CB) and so by N6.6.6 B′ is basis for V . Moreover, [v′j ]B = CB

(
LB(pj)

)
=

pj and so by 6.15(b), P is the change-of-basis matrix from B′ to B.

Lemma 6.18. Let T : V →W be linear. Let B and B′ be basis for V and let D and D′

be bases for W. Suppose:

(i) A is the matrix of T with respect to B and D.

(ii) A′ is the matrix of T with respect to B′ and D′.

(iii) P is the change-of-basis matrix from B′ to B.

(iv) Q is the change-of-basis matrix from D′ to D.

Then
A′ = Q−1AP

Proof. Note by 6.17 Q−1 is the matrix of idW with respect to D and D′. Hence

P is matrix of idV with respect to B′ and B;
A is the matrix of T with respect to B and D; and
Q−1 is the matrix of idW with respect to D and D′.

Hence by N6.4.2 Q−1AP is the matrix of idW ◦T ◦ idV with respect to B′ and D′. Since
T = idW ◦ T ◦ idV by A.5.2, this gives A′ = Q−1AP .

The preceding theorem can be visualized in the following commutative diagram

V W

Rn Rn Rm Rm
LA

T

CB CDCB′ CD′

LA′

LP
LQ−1

or if your prefer
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V W

Rn

Rn Rm

Rm

LA

T

CB CD

CB′ CD′

LA′

LP LQ−1

N6.8 Isomorphism

Corollary 6.30 (Classification Theorem for finite dimensional vector spaces). Let V be
finite dimensional vector space and W a vector space. Then V is isomorphic to W if and
only if W is finite dimensional and dim V = dim W.

Proof. =⇒: Suppose first that T : V→W is an isomorphism and let B = (v1, . . . , vn) be
basis for V . Then by N6.6.6

(
T (v1), . . . , T (vn)

)
is basis for W . Thus W is finite dimensional

and dimW = n = dimV .

⇐=: Suppose next that W is finite dimensional and dimW = dimV . Let D =
(w1, w2 . . . , wn) be basis for W. By 6.9 there exists a linear function T : V → W with
T (vi) = wi for all 1 ≤ i ≤ n. Then(

T (v1), . . . , T (vn)
)

= (w1, . . . , wn) = D

is a basis for W and so by N6.6.6 T is invertible and so an isomorphism. Hence V is
isomorphic to W .

N6.7 Rank and Nullity

Lemma N6.7.1. Let T : V→W be an isomorphism, X a subspace of V and Y a subspace
of W. Suppose that for all v ∈ V ,

(∗) v ∈ X ⇐⇒ T (v) ∈ Y

Define the function S : X → Y by S(x) = T (x) for all x ∈ X. Then S is an isomorphism
and so X is isomorphic to Y .

Proof. By assumption, T (x) ∈ Y for all x ∈ X and so also S(x) ∈ Y for all x ∈ X. Thus S
is indeed a function from X to Y .

Let a, b ∈ X with S(a) = S(b). Then also T (a) = T (b) and since T is 1-1, a = b. So S
is 1-1.
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Let y ∈ Y . Since T is onto, y = T (v) for some v ∈ V . Then T (v) = y ∈ Y and by (*),
v ∈ X. Hence S(v) = T (v) = y and S is onto.

We proved that S is 1-1 and onto, and so by Theorem 6.6 S is invertible.

Let a, b ∈ X and r, s ∈ R. Then using N6.1.4

S(ra+ sb) = T (ra+ sb) = rT (a) + sT (b) = rS(a) + sS(b),

and so S is linear. We proved that S is invertible and linear. So by definition, S is an
isomorphism and X is isomorphic to Y .

Lemma N6.7.2. Let V and W be finite dimensional vector spaces with basis B and D
respectively. Let T : V→W linear and let A be the matrix of T with respect to B and D.

(a) Let v ∈ V . Then v ∈ kerT if and only if [v]B ∈ NulA. In particular, kerT is isomorphic
to NulA.

(b) Let w ∈ W . Then w ∈ Im T if and only if [w]D ∈ ColA. In particular, Im T is
isomorphic to ColA.

Proof. Recall first that by N6.2.8, CD and LB are isomorphisms and so are 1-1, linear and
onto.

(a) Let v ∈ V . Then

v ∈ kerT

⇐⇒ T (v) = 0 − definition of kerT

⇐⇒ [T (v)]D = 0 − Since CD is 1-1 and [0]D = 0

⇐⇒ A[v]B = 0 − since[T (v)]D = A[v]B by 6.11

⇐⇒ [v]B ∈ NulA − definition of NulA

⇐⇒ CB(v) ∈ NulA − definition of CB

Thus the first statement in (a) holds. Since CB is an isomorphism, N6.7.1 shows that
kerT is isomorphic to NulA.

(b) Let w ∈W . Then
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w ∈ Im T

⇐⇒ w = T (v) for some v ∈ V − definition of Im T

⇐⇒ CD(w) = CD

(
T (v)

)
for some v ∈ V − CD is 1-1

⇐⇒ CD(w) = LA

(
CB(v)

)
for some v ∈ V − since CD ◦ T = LA ◦ CB by 6.11

⇐⇒ CD(w) = LA(x) for some x ∈ Rn −CB is onto and so

v ∈ V if and only v = CB(x) for some x ∈ Rn

⇐⇒ CD(w) ∈ Im LA − definition of Im LA

⇐⇒ CD(w) ∈ ColA − since Im LA = ColA by 6.22

⇐⇒ [w]D ∈ ColA − definition of CD

Thus the first statement in (b) holds. Since CD is an isomorphism, N6.7.1 shows that
Im T is isomorphic to ColA.

Theorem 6.27 (Dimension Theorem). Let T : V→W be a linear. If V and W are finite
dimensional, then

dim kerT + dim Im T = dimV

Proof. Let B and D be bases for V and W, respectively. Let A be matrix of T with respect
to B and D. Let n = dimV . By Theorem 6.25

(∗) dim NulA+ dim ColA = n = dimV

By N6.7.2 kerT is isomorphic to NulA and Im T is isomorphic to ColA. Thus by 6.30

dim NulA = dim kerT and dim ColA = dim Im T.

Together with (*) this proves the theorem.
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Chapter N7

Determinants

N7.2 Definition and Properties

Definition N7.2.1. Let n be non-negative integer and α ∈ R. A function

D : M(n, n)→ R

is called an α-based determinant function provided that if the following three statements
hold:

(i) Let A be an n× n matrix and 1 ≤ j ≤ n. Then the function

DAj : Rn → R, with DAj (x) = D
(
CjxA

)
for all x ∈ Rn

is linear. (So DAj is the function obtained from D by keeping all Columns but Column
j constant.)

(ii) Let A be an n× n matrix and 1 ≤ i < j ≤ n. If ai = aj, then detA = 0

(iii) D(I) = α.

A regular determinant function is a 1-based determinant function.

In the following we will show that for each n ∈ N and α ∈ R there exists a unique
α-based determinant function from M(n, n) to R.

Lemma N7.2.2. Let n be positive integer, α ∈ R, D : M(n, n)→ R an α-based determinant
function, and A ∈M(n, n).

(a) Let 1 ≤ j ≤ n and r ∈ R. Let B be the matrix obtain by multiplying Column j of A
with r. Then D(B) = rD(A).

(b) Let 1 ≤ j, k ≤ n with j 6= k. Let B be the matrix obtain adding r-times column k of A
to Column j of A. Then D(B) = D(A).
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(c) Let 1 ≤ j, k ≤ n with j 6= k. Let B be the matrix obtain from A by interchanging
Column j and Column k of A. Then D(B) = −D(A)

(d) If A has a zero column, then D(A) = 0.

Proof. We will just write 〈x〉 for CjxA. A = 〈aj〉 and DAj (x) = D(〈x〉).
(a) Note that B = 〈raj〉. Since DAj is linear,

D(B) = D
(
〈raj〉

)
= DAj (raj) = rDAj (aj) = rD

(
〈aj〉

)
= D(A).

(b) Note that B = 〈aj + rak〉. Since DAj is linear,

D(B) = D
(
〈aj + rak〉

)
= DAj (aj + rak) = DAj (aj) + rDAj (ak)

= D
(
〈aj〉

)
+ rD

(
〈ak〉

)
= D(A) + rD

(
〈ak〉

)
.

Note that Columns j and k of 〈ak〉 are both equal to ak, and so Condition (ii) of a
determinant function shows that shows that D

(
〈ak〉

)
= 0. So D(B) = D(A).

(c) We will just write 〈x, y〉 for CjkxyA. Then A = 〈aj , ak〉 and B = 〈ak, aj〉. We will
show how to obtain B from A via a sequence of column operation as in (a) and (b)

A = 〈aj , ak〉

1Ck + Cj → Cj 〈ak + aj , ak〉

(−1)Cj + Ck → Ck 〈ak + aj , (−1)(ak + aj) + ak〉 = 〈ak + aj ,−aj〉

1Ck + Cj → Cj 〈(−aj) + (ak + aj),−aj〉 = 〈ak,−aj〉

(−1)Ck → Ck 〈ak, aj〉

Note that all but the last operation are as in (b) and so do not change the determinant.
The last one multiplies the determinant by −1. So D(B) = −D(A).

(d) Suppose column j is zero. Since DAj is linear, Theorem 6.2 gives D(A) = DAj (aj) =
DAj (0) = 0.

Algorithm N7.2.3. Let A be an n×n matrix and D an α-based determinant function. Let
B the reduced column echelon form of A and E1, . . . , El a sequence of elementary column
operation which transforms A into B. If Ei is rCj → Cj, put ri = 1

r . If Ei is rCk +Cj+→
Cj, put ri = 1 and if Ei is Cj ↔ Ck, put ri = −1.

(a) If B = I, then D(A) = r1r2 . . . rlα.

(b) If B 6= I, then D(A) = 0.

Proof. Inductively define

A0 = A,A1 = E1(A0), A2 = E2(A1), . . . , Al = El(Al−1)
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So Ai is the matrix obtained from Ai−1 via the elementary column operation Ei. Thus
Al = B. Then by N7.2.2 D(Ai) = 1

ri
D(Ai−1). Thus D(Ai−1) = riD(A1) and so

D(A0) = r1D(A1) = r1r2D(A2) = r1r2r3D(A3) = . . . = r1r2 . . . rlD(Al).

Hence

(∗) D(A) = r1 . . . rlD(B)

Suppose now that B = I. By definition D(I) = α and so D(A) = r1 . . . rlα by (*). Thus
(a) holds.

Suppose next that B 6= In. Then by the column version of N5.2.3 B has a zero column.
Thus D(B) = 0 by N7.2.2 and so D(A) = 0 by (*). Thus (b) holds.

Corollary N7.2.4. Let α ∈ R and n ∈ N. Then there exists at most one α-based determi-
nant function from M(n, n) to R.

Proof. Let D an α-based determinant function. Then N7.2.3 tells us how to compute D(A)
and so D is unique.

Corollary N7.2.5. Let α ∈ R and n ∈ N. Suppose det : M(n, n) → R is a regular
determinant function. Then α det is the unique α-based determinant function.

Proof. Let A be an n× n matrix, 1 ≤ j ≤ n and x ∈ Rn. Then

(α det)Aj (x) = (α det)(CjxA) − definition of (α det)Aj

= α
(

det(CjxA) − definition of multiplication for functions

= α
(

detAj (x)
)
− definition of detAj

= (α detAj )(x) − definition of multiplication for functions

Thus (α det)Aj = α detAj by A.2.2. Since detAj is linear, also (α det)Aj is linear by N6.2.4(c).
If aj 6= ak for distinct j, k, then detA = 0 and so also (α det)(A) = α(detA) = 0. Finally
(α det)(I) = α(det(I)) = α1 = α and so α det is a α-based determinant function. By
N7.2.4, α det is the unique such function.

Corollary N7.2.6. Let A be an n×n matrix and det a regular determinant function. Then
the following statements are equivalent:

(a) det(A) 6= 0.

(b) The reduced column-echelon form of A is I.

(c) A is invertible.
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Proof. (a) ⇐⇒ (b) : Let B and r1, . . . , rl be as in N7.2.3. Then ri 6= 0 for all i and so
also r1 . . . rl 6= 0. So if B = I, then detA = r1r2 . . . rl 6= 0 and if the reduced B 6= I, then
detA = 0.

(b) ⇐⇒ (c) : This is the column version of N5.2.4(a).

Lemma N7.2.7. Let A be an m × n-matrix and B an n × p matrix. Let x ∈ Rp and
1 ≤ k ≤ p. Then Ck(Ax)(AB) = A(CkxB).

Proof. Let D = CkxB and 1 ≤ l ≤ p. We need to show that

(*) Column l of AD is equal to Column l of A(CkxB).

Column k of D is x and so Column k of AD is Ax. Column k of Ck(Ax)(AB) is also
equal to Ax and so (*) holds for l = k.

If l 6= k, then column l of D is bl and so Column l of AD is Abl. Column l of AB is also
equal to Abl and so (*) also holds for l 6= k.

Theorem 7.7. Let det : M(n, n) → R be a regular determinant function and A,B ∈
M(n, n). Then det(AB) = det(A) det(B).

Proof. Fix A ∈M(n, n). Put α = det(A) and define D : M(n, n)→ R by D(B) = det(AB).
We will first show that D is an α-based determinant function. Let 1 ≤ j ≤ n, and x ∈ Rn.

DBj (x) = D(CjxB) − definition of DBj

= det
(
A(CjxB)

)
− definition of D

= det
(
Cj(Ax)(AB)

)
− N7.2.7

= det(AB)j (Ax) − definition of det(AB)j

= det(AB)j

(
LA(x)

)
− definition of LA

=
(

det(AB)j ◦LA

)
(x) − definition of composition

Hence DBj = det(AB)j ◦LA. By definition of a determinant function, det(AB)j is linear.
By N6.1.7 LA is linear and so by 6.7 also DBj . linear. So D fulfills (i) in the definition of
an α-based determinant function.

Suppose that columns j and k of B are both equal to some x ∈ Rn. Then columns j
and k of AB are both equal to Ax. Thus det(AB) = 0 and so D(B) = 0. Hence condition
(ii) is also fulfilled. Now D(I) = det(AI) = det(A) = α and so D is an α-based determinant
function. Thus by N7.2.5 D = α det. Hence

det(AB) = D(B) = (α det)(B) = α det(B) = det(A) det(B).
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The preceding theorem tells us how linear transformation effect volume. The volume
of the box spanned by vectors b1, . . . , bn in Rn is detB where B is the matrix [b1, . . . , bn].
Under the linear transformation LA, this box is mapped to the box spanned by Ab1, . . . , Abn.
This box has volume det[Ab1, . . . , Abn] = detAB = detAdetB. Approximating the volume
of an arbitrary region in Rn by decomposing the region into small boxes we conclude that
the volume of the image of region under LA is detA times the volume of the original region.

N7.3 Existence

Lemma N7.3.1. Let A be n× n matrix and D a determinant function. Let 1 ≤ i ≤ j and
define the matrix B by

bk =


ak if 1 ≤ k < i

aj if k = i

ak−1 if i < k ≤ j
ak if j < k ≤ n

,

that is

B = [a1, . . . , ai−1, aj , ai, ai+1, . . . , aj−2, aj−1, aj+1, . . . an]

Then D(B) = (−1)j−i D(A).

Proof. Observe that B can be transformed into A by the following sequence of j − i ele-
mentary row operations:

Ci ↔ Ci+1, Ci+1 ↔ Ci+2, . . . , Cj−1 ↔ Cj

Each of these operation multiplies the determined by −1 and so D(B) = (−1)j−iD(A).

Lemma N7.3.2. Let n be a positive integer and 1 ≤ i ≤ n.

(a) Define σi : Rn → R by σi(a1, . . . , an) = ai. Then σi is linear.

(b) Define πi : Rn → Rn−1 by πi(a1, . . . , an) = (a1, . . . , ai−1, ai+1, . . . , an). Then πi is
linear.

(c) Define τi : Rn−1 → Rn by τi(a1, . . . , an−1) = (a1, . . . , ai−1, 0, ai, . . . , an−1). Then τi is
linear.

Proof. (a) This can be proved by direction computation or by observing that σi = Lei .
(b) This can be proved by direction computation or by observing that πi = LB where

B is the list (e1, . . . , ei−1, 0, ei, . . . , en−1) in Rn−1.
(c) This can be proved by direction computation or by observing that τi = LB, where

B is the list (e1, . . . , ei−1, ei+1, . . . , en) in Rn.
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Theorem N7.3.3. Let n be a non-negative integer.

(a) There exists a unique regular determinant function det : M(n, n)→ R.

(b) Let 1 ≤ i ≤ n and A an n× n-matrix. Then

det(A) =

n∑
j=1

(−1)i+jaij det(Aij)

where Aij is the (n− 1)× (n− 1) matrix obtained from A by deleting row i and column
j.

Proof. In view of N7.2.4 we only need to show the existence of a regular determinant
function.

The proof is induction on n. For n = 0, M(n, n) has a unique element namely the empty
matrix I0 = []. If we define det([]) = 1, then det is a regular determinant function.

So suppose n > 0 and that the theorem holds for n− 1 in place of n. Fix 1 ≤ i ≤ n and
define a function det : M(n, n)→ R by

(∗) det(A) =

n∑
j=1

(−1)i+jaij det(Aij)

for all A ∈ M(n, n). We need to verified that det is a regular determinant function. Fix
1 ≤ k ≤ n. We will show that detAk

is linear. For 1 ≤ j < k define Fj = det(Aij)k−1
. For

k < j ≤ n define Fj = det(Aij)k . Let x ∈ Rn and put x′ = πi(x). (So x′ is obtained from
x by deleting entry i.) If j < k, then (CkxA)ij = Ck−1x

′Aij and so det(CkxA)ij = Fj(x
′).

If k = j, then (CkxA)ij = Aij so det(CkxA)ij = detAij . If k < j ≤ n, then (CkxA)ij =
Ckx

′Aij and so det(CkxA)ij) = Fj(x
′). Let ãij be the (i, j)-entry of CkxA). So ãij = aij if

j 6= k and ãik = xk. Thus

detAk
(x) = det(CkxA) =

∑n
j=1(−1)i+j ãij det(CkxA)ij

=
∑k−1

j=1 aijFj(x
′) + xk det(Aij) +

∑n
j=k+1 aijFj(x

′)

=
∑k−1

j=1 aijFj(πj(x)) + det(Aij)σi(x) +
∑n

j=k+1 aijFj(πi(x)))

and so

detAk
=

k−1∑
j=1

aijFj ◦ πi + det(Aij)σi +
n∑

j=k+1

aijFj ◦ πj

By definition of a determinant function Fj is linear. By N7.3.2 πi and σi are linear. So
also Fj ◦ πi is linear. Thus detAk

is a linear combination of linear functions and so is linear
by N6.2.4. Thus Condition (i) in n the definition of a determinant function holds.



N7.4. CRAMER’S RULE 81

The (i, j) entry of In is zero for j 6= i and 1 for i = j. Also (In)ii = In−1 and so
det(In) = (−1)i+i · 1 · det(In−1) = 1 · 1 = 1. Thus also Condition (iii) in the definition of a
determinant function holds.

If remains to show that det(A) = 0 if A has two equal columns So suppose that columns
r and s of A are equal for some 1 ≤ r < s ≤ n. If j 6= r and j 6= s, then Aij has two equal
columns and so detAij = 0. Thus

(*)
detA = (−1)i+rair detAir + (−1)i+sais detAis

= (−1)i+rair

(
detAir + (−1)s−r detAis

)
We have

Air = [ a′1, . . . , a
′
r−1, a

′
r+1, a

′
r+1, . . . , a

′
s−1, a′s, a′s+1, . . . , a

′
n ]

Ais = [ a′1, . . . , a
′
r−1, a′r, a′r+1, . . . , a

′
s−2, a

′
s−1, a

′
s+1, . . . , a

′
n ]

Since a′s = a′r we conclude from N7.3.1 applied with i = r and j = s−1, that det(Air) =
(−1)s−r−1 det(Ais) = −(−1)s−r det(Ais) and so (*) shows that detA = 0. So also Condition
2 in the definition of a determinant function holds and so det is a regular determinant
function.

N7.4 Cramer’s Rule

Definition N7.4.1. Let A be an n×n matrix and det : M(n, n)→ R a regular determinant
function. Then the adjoint of A is the n× n matrix B with bij = det(CiejA).

Theorem N7.4.2. A be an n × n matrix, and det : M(n, n) → R a regular determinant
function and B the adjoint of A.

(a) Let x ∈ Rn and 1 ≤ i ≤ n. Then det(CixA) = bi1x1 + . . .+ binxn = bix.

(b) Let x ∈ Rn. Then Bx =
(

det(CixA)
)n
i=1

=
(

det(C1xA), . . . ,det(CnxA)
)

.

(c) Let 1 ≤ i, j ≤ n. Then biaj = 0 if i 6= j and biaj = det(A) if i = j.

(d) BA = det(A)I. In particular, if det(A) 6= 0, A is invertible and A−1 = 1
det(A)B.

(e) Let x, y ∈ Rn with Ax = y. Then (detA)x = By =
(

det(CiyA)
)n
i=1

. In particular, if

detA 6= 0,

x =
1

det(A)
By =

(
det(CiyA)

det(A)

)n

i=1

.
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Proof. (a) We have detAi(ej) = det(CiejA) = bij = bij1. So bi is the matrix of the linear
function detAi with respect to the basis (e1, . . . , en) for Rn and the basis (1) for R. Thus
(a) follows from 6.11.

(b) Since entry i of Bx is bix, (b) follows from (a).

(c) By (a) biaj = det(CiajA). If i 6= j, then columns i and j of CiajA are both equal to
aj and so biaj = det(CiajA) = 0. If i = j, then CiajA = A and so biaj = det(A).

(d) follows from (c) and BA = (biaj)
n,n
i=1,j=1.

(e) From Ax = y we get

By = B(Ax) = (BA)x =
(
(detA)I

)
x = (detA)(Ix) = (detA)x.

The second equality now follows from (b).

Geometrically, (c) means that the vector bi is perpendicular to the subspace of Rn

spanned by (a1, . . . , ai−1, ai+1, . . . an) and that det(A) can be computed via the dot product
of bi and ai.

Theorem N7.4.3. Let det : M(n, n) → R a regular determinant function. Let A be an
n × n matrix, 1 ≤ i, j ≤ n and let Aij the (n − 1) × (n − 1)-matrix obtained from A by
deleting Row i and Column j of A.

(a) det(CjeiA) = (−1)i+j det(Aij).

(b) Let B be the adjoint of A. Then B =
(
(−1)i+j det(Aji

)n,n
i=1,j=1

.

(c) det(A) =
∑n

i=1(−1)i+jaij det(Aij).

Proof. (a) For 1 ≤ k ≤ n − 1 define k̂ = k if k < j and k̂ = k + 1 if j ≤ k ≤ n − 1. For
D ∈M(n− 1, n− 1,R) let D∗ be the n× n matrix defined by

d∗k =


τi(dk) if 1 ≤ k < j

ei if k = j

τi(dk−1) if j < k

Then D∗ij = D and dk̂ = τi(dk) for all 1 ≤ k ≤ n− 1. Put α = det(I∗n−1).

We claim the function E : M(n−1, n−1)→ R defined by E(D) = det(D∗) is an α-based
determinant function. Note that

EDk
(x) = det

(
(CkxD)∗

)
= det

(
Ck̂τi(x)D∗

)
= detD∗

k̂

(
τi(x)

)
and thus EDk

= detD∗
k̂
◦τi. Since both detD∗

k̂
and τi are linear, EDk

is linear. If columns

k and l of D are both equal to x ∈ Rn, then columns k̂ and l̂ are both equal to τi(x).
So E(D) = det(D∗) = 0. By definition of α, E(In−1) = α and so E is indeed an α-based
determinant function. Hence E = α det.
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Note that τi(ek) = ek for 1 ≤ k < i and τi(ek) = ek+1 for i ≤ k ≤ n− 1. This allows us
to compute I∗n−1.

For i < j,

I∗n−1 = [ e1, . . . , ei−1, ei+1, ei+2, . . . , ej , ei, ej+1, . . . , en ],

In = [ e1, . . . , ei−1, ei, ei+1, . . . , ej−1, ej , ej+1, . . . , en ]

and so by N7.3.1 applied with (i, j, I∗n−1, In) in place of (i, j, A,B), det In = (−1)j−i det I∗n−1
and so α = (−1)i+j .

For i = j,
I∗n−1 = [e1, . . . , ei−1, ei, ei+1, . . . , en] = In

and so α = 1 = (−1)i+j .
For i > j,

In = [ e1, . . . , ej−1, ej , ej+1, . . . , ei−1, ei, ei+1, . . . , en ],

I∗n−1 = [ e1, . . . , ej−1, ei, ej , . . . , ei−2, ei−1, ei+1, . . . , en ]

and so by N7.3.1, applied with (j, i, In, I
∗
n−1) in place of (i, j, A,B), det(I∗n−1) = (−1)i−j det I

and α = (−1)i+j .
Hence in all cases α = (−1)i+j and so E = (−1)i+j det.
Let C be the matrix obtained from CjeiA by adding (for each 1 ≤ k ≤ n with k 6= j)

−aik times column j to column k. Then C = A∗ij and

det(CjeiA) = detC = detA∗ij = E(Aij) = (−1)i+j detAij

and so (a) holds.
(b) Let B be the adjoint of A. Then bji = det(CjeiA) = (−1)i+j detAij and so (b)

holds.
(c) Using N7.4.2(a) and (a) we compute

detA = bjaj =

n∑
i=1

bjiaij =

n∑
i=1

aijbji =

n∑
i=1

(−1)i+jaij det(Aij)
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Chapter N8

Eigenvalues and Eigenvectors

N8.1 Definitions

Definition 8.1. Let T : V→ V be linear and λ ∈ R.

(a) v ∈ V is called an eigenvector of T associated to λ if v 6= 0 and T (v) = λv.

(b) λ is called an eigenvalue of T if there exists an eigenvector of T associated to λ.

(c) ET (λ) = {v ∈ V | T (v) = λv}. (So ET (λ) consists of the eigenvectors of T associated
to λ and the zero vector.) ET (λ) is called the eigenspace of T associated to λ

We will use the same terminology if V is replaced by Rn and T by an n× n matrix A.
So an eigenvalue for A is the same as an eigenvalue for LA.

Theorem 8.2. Let T : V→ V be linear, let A be an n× n matrix and let λ ∈ R.

(a) ET (λ) = ker(λidV − T ). In particular, ET (λ) is a subspace of V.

(b) EA(λ) = Nul(λI −A). In particular, EA(λ) is a subspace of Rn.

(c) λ is an eigenvalue of A if and only if det(λI −A) = 0.

Proof. (a) Let v ∈ V . Then

v ∈ ET (λ)

⇐⇒ T (v) = λv − definition of ET (λ)

⇐⇒ T (v) = λ
(
idV (v)

)
− definition of idV

⇐⇒ T (v) = (λidV )(v) − definition of multiplication for functions

⇐⇒ (λidV )(v)− T (v) = 0 − 1.7(p)

⇐⇒ (λidV − T )(v) = 0 − N6.4.1(a)

⇐⇒ v ∈ ker(λidV − T ) − definition of ker(λidV − T )

85
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(b) By N6.4.2 the matrix for λidV −LA with respect to standard basis for Rn is λI−A.
Hence by Theorem 6.22 kerλidV − LA = NulλI − A. Thus using (a), EA(λ) = ELA

(λ) =
ker(λidV − T ) = Nul(λI −A)

(c) We have

λ is an eigenvalue of A

⇐⇒ there exists an eigenvector of T associated to λ − definition of eigenvalue

⇐⇒ EA(λ) 6= {0} − definition of EA(λ)

⇐⇒ Nul(λI −A) 6= {0} −(b)

⇐⇒ λI −A is not invertible − N5.2.1

⇐⇒ det(λI −A) = 0 − N7.2.6

Definition 8.3. Let A be an n× n-matrix. Then the function χA : R→ R defined by

χA(λ) = det(λI −A)

for all λ ∈ R is called the characteristic polynomial of A.

Note that λ is an eigenvalue of A if and only if det(λI − A) = 0 and so if and only if
χA(λ) = 0, that is if and only λ is a root of χA.

Theorem N8.1.4. Let T : V → V be linear and λ1, . . . , λk be distinct eigenvalues of T .
For 1 ≤ i ≤ k let vi be an eigenvector of T associated to λi. Then (v1, . . . , vk) is linearly
independent.

Proof. The proof is by induction on k. Since the empty list is linearly independent, the
theorem holds for k = 0. Suppose it holds for k− 1. We will show that its also holds for k.
For this let (r1, . . . , rk) ∈ Rk with

(∗) r1v1 + . . .+ rkvk = 0.

Applying T to both sides and using Theorem 6.2 we get

r1T (v1) + . . .+ rkT (vk) = 0.

Since vi is an eigenvector associated to λi, T (vi) = λivi and so

(∗∗) r1λ1v1 + . . .+ rkλkvk = 0.
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Multiplying equation (*) with λk and subtracting from (**) we obtain

r1(λ1 − λk)vk−1 + . . .+ rk−1(λk−1 − λk)vk−1 = 0.

By the induction assumption (v1, . . . , vk−1) is linearly independent. Hence ri(λi−λk) = 0
for all 1 ≤ i < k. Since λi 6= λk for all 1 ≤ i < k we have λi − λk 6= 0 and so ri = 0 for all
1 ≤ i < k. Thus (*) implies rkvk = 0. Since vk 6= 0 this means rk = 0 and so (v1, . . . , vk) is
linearly independent.

The theorem now follows from the Principal of induction.

Theorem 8.14. Let T : V→ V be linear and λ1, . . . , λk be distinct eigenvalues of T . For
each 1 ≤ i ≤ k let (ui1, . . . , uili) be a linearly independent list of eigenvectors of T associated
to λi. Then

(u11, . . . , u1l1 , u21, . . . , u2l2 , . . . . . . , uk1, . . . , uklk)

is linearly independent.

Proof. Let rij ∈ R for 1 ≤ i ≤ k and 1 ≤ j ≤ lk with

r11u11 + . . .+ r1l1u1l1 + . . . . . .+ rk1uk1 + . . .+ rklkuklk = 0.

For 1 ≤ i ≤ k, put vi = ri1ui1 + . . . + riliuili . By 8.2 ET (λi) is a subspace of V and so
vi ∈ ET (λi). Thus vi = 0 or vi is an eigenvector of T associated to λi. Also

v1 + . . .+ vk = r11u11 + . . .+ r1l1u1l1 + . . .+ rk1uk1 . . .+ rklkuklk = 0.

Let (w1, . . . , wl) be the sublist of (v1, . . . , vk) consisting of the non-zero v′is. Then

1w1 + . . .+ 1wl = w1 + . . .+ wl = v1 + . . .+ vk = 0.

If l 6= 0 this contradicts N8.1.4. Thus l = 0 and so vi = 0 for all 1 ≤ i ≤ k. Hence

ri1ui1 + . . .+ riliuili = vi = 0

for all 1 ≤ i ≤ k and since (ui1, . . . , uili) is linearly independent we conclude that rij = 0
for all 1 ≤ j ≤ li. Thus (u11, . . . , u1l1 , u21, . . . , u2l2 , . . . . . . , uk1, . . . , uklk) is indeed linearly
independent.

N8.2 Similarity

Definition 8.4. Let A and A′ be n×n matrices. We say that A is similar to A′ and write
A ∼ A′ if there exists an invertible n× n-matrix P with A′ = P−1AP .

Lemma N8.2.2. Let V be an n-dimensional vector space, T : V→ V linear, B a basis for
V and A the matrix of T with respect to B. Let A′ be a n× n matrix. Then A′ is similar
to A if and only if there exists a basis B′ of V such that A′ is the matrix of T with respect
B′.
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Proof. Suppose first A′ is the matrix of T with respect to some basis B′ of V. Let P be
the change-of-basis matrix from B′ to B. Then by 6.18 A′ = P−1AP .

Suppose next that A′ = P−1AP for some invertible matrix n × n matrix P . Then by
N6.5.4 there exists a basis B′ for V such that P is the change-of-basis matrix from B′ to
B. Since A′ = P−1AP we conclude from 6.18 that A′ is the matrix for A with respect to
B′.

N8.3 Diagonalization

Definition N8.3.1. An n× n-matrix A is called diagonal if ai = aiiei for all 1 ≤ i ≤ n.

Lemma N8.3.2. Let A be an n× n-matrix. Then the following are equivalent

(a) A is diagonal.

(b) A = [d1e1, . . . , dnen] for some (d1, . . . , dn) ∈ Rn.

(c)

A =



d1 0 0 . . . 0 0 0

0 d2 0
. . . 0 0 0

0 0 d3
. . .

. . . 0 0
...

. . .
. . .

. . .
. . .

. . .
...

0 0
. . .

. . . dn−2 0 0

0 0 0
. . . 0 dn−1 0

0 0 0 . . . 0 0 dn


for some (d1, . . . , dn) ∈ Rn

(d) aij = 0 for all 1 ≤ i, j ≤ n with i 6= j.

Proof. (a) =⇒ (b): Suppose A is diagonal and put di = aii. Then

A = [a1, . . . , an] = [a11e1, . . . , annen] = [d1e1, . . . , dnen]

(b) =⇒ (c): Suppose (b) holds. Observe that



N8.3. DIAGONALIZATION 89

d1e1 =



d1

0

0
...

0

0

0


, d2e2 =



0

d2

0
...

0

0

0


, . . . , dn−1en−1 =



0

0

0
...

0

dn−1

0


, dnen =



0

0

0
...

0

0

dn


and so (c) hold.

(c) =⇒ (d): Should be obvious.

(d) =⇒ (a): Suppose (d) holds and let 1 ≤ i ≤ n and 1 ≤ j ≤ n. If j 6= i, then the
j-entry of ai is aij = 0 and the j-entry of aiiei is aii0 = 0. If j = i, then the j-entry of ai is
is aii and the j-entry of aiiei is aii1 = aii. So ai = aiiei and A is diagonal.

Definition N8.3.3. (a) A square matrix is called diagonalizable if its is similar to a diag-
onal matrix.

(b) Let T : V → V be linear and suppose that V is finite dimensional. Then T is called
diagonalizable if there exists a basis B for V such that the matrix for T with respect to
V is diagonal.

Lemma N8.3.4. Let A be an n × n-matrix. Suppose there exists a linearly independent
list B = (v1, . . . , vn) in V such that for all 1 ≤ i ≤ n, vi is eigenvector of A associated to
the eigenvalue λi of A. Put P = [v1, . . . , vn] and D = [λ1e1, . . . , λnen]. Then

(a) B is a basis of Rn.

(b) P is the change-of-basis matrix from B to the standard basis of Rn.

(c) D is the matrix of LA with respect to B.

(d) D = P−1AP .

(e) A is diagonalizable.

Proof. (a) Since dimRn = n and B is a linearly independent list of length n in Rn, N3.5.5
shows that B is basis.

(b) Let E be the standard basis for Rn. Then by 6.15(b) the change-of-basis matrix
from B to Rn is

[
[v1]E , . . . , [vn]E

]
. Since [x]E = x for all x ∈ Rn, we see that (b) holds.

(c) By definition, Column i of the matrix of LA with respect to B is
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[LA(vi)]B = [Avi]B − definition of LA

= [λivi]B − since vi is an eigenvector of A associated to λi

= λi[vi]B − CB is linear by N6.2.8

= λiei − N6.2.8

= di − definition of D

and so (c) holds.
(d) By 6.10 A is the matrix of LA with respect to E. So by (b) and 6.18 the matrix of

LA with respect to B is P−1AP and so (d) follows from (c).
(e) By (d), D is similar to A. Since D = [λ1e1, . . . , λnen, N8.3.2 shows that D is a

diagonal matrix. Thus A is diagonalizable.

Example N8.3.5. Let A =


0 1 0

1 0 0

0 0 −1

. Find a diagonal matrix D and an invertible

matrix P with D = P−1AP .

det


λ −1 0

−1 λ 0

0 0 λ+ 1

 = (λ+ 1)(λ2 − (−1)(−1)) = (λ+ 1)(λ+ 1)(λ− 1)

and so the eigenvalues are λ = 1 and λ = −1. We will use the Gauss Jordan Algorithm to
compute a basis for EA(λ) for λ = 1,−1.

For λ = 1: 
1 −1 0

−1 1 0

0 0 2

 R2 + R1→ R2

1
2
R3→ R3

R2↔ R3


1 −1 0

0 0 1

0 0 0


So x2 is free, x1 = x2, x2 = x2 and x3 = 0. Thus

(
1, 1, 0)

)
is basis for EA(1).

For λ = −1: 
−1 −1 0

−1 −1 0

0 0 0

 R2− R1→ R1

−R1→ R1


1 1 0

0 0 0

0 0 0
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So x2 and x3 are is free, x1 = −x2, x2 = x2 and x3 = x3. Thus
(
− 1, 1, 0), (0, 0, 1)

)
is basis

for EA(−1).

By 8.14,

B =




1

1

0

 ,


1

−1

0

 ,


0

0

1




is linear independent. So we can apply N8.3.4. Put

P =


1 1 0

1 −1 0

0 0 1

 and D =


1 0 0

0 −1 0

0 0 −1


Then D = P−1AP . To verify this statement we will show that PD = AP :

PD =


1 1 0

1 −1 0

0 0 1




1 0 0

0 −1 0

0 0 −1

 =


1 −1 0

1 1 0

0 0 −1


and

AP =


0 1 0

1 0 0

0 0 −1




1 1 0

1 −1 0

0 0 1

 =


1 −1 0

1 1 0

0 0 −1


Theorem 8.12. Let T : V→ V be linear, B = (v1, . . . , vn) a basis for V and A the matrix
for T with respect to B. Let λ ∈ R.

(a) Let v ∈ V and x ∈ Rn such that x = [v]B or v = LB(x). Then v is an eigenvector of T
associated to λ if and only if x is an eigenvector for A associated to λ.

(b) The following three statements are equivalent:

(a) vi is an eigenvector for T with respect to λ.

(b) ai = λiei

(c) ai = aiiei and λ = aii.
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(c) A is diagonal if and only if for all 1 ≤ i ≤ n, vi is an eigenvector of T .

Proof. (a) Note first that by N6.2.8(a), x = [v]B if and only if v = LB(x).

T (v)v = λv

⇐⇒ [T (v)]B = [λv]B − since CB is 1-1

⇐⇒ A[v]B = λ[v]B − 6.11(f), CB is linear

⇐⇒ Ax = λx − since x = [v]B

(b) Recall that [vi]B = ei by N6.2.8. Thus

vi is an eigenvector for T associated to λ

⇐⇒ ei is an eigenvector for A associated to λ − (a) and [vi]B = ei

⇐⇒ Aei = λei − definition of eigenvector

⇐⇒ ai = λei − since Aei = ai by N6.1.5

So (b:a) and (b:b) are equivalent.

If ai = λei, then aii is the i-entry of λei and so aii = λ. If ai = aiiei and λ = aii, then
aiλei. So (b:b) and (b:c) are equivalent.

(c) Follows from (b)

Theorem N8.3.7. Let T : V → V be linear and suppose that V is finite dimensional.
Then the following statements are equivalent:

(a) T is diagonalizable.

(b) For each basis B of V the matrix for T with respect to B is diagonalizable.

(c) There exists a basis B for V such that the matrix for T with respect to B is diagonal-
izable.

(d) There exists a basis for V consisting of eigenvectors of T .

(e) The sum of the dimension of the eigenspaces of T equals the dimension of V.

Proof. (a) =⇒ (b): Suppose T is diagonalizable, then there exists a basis F for V such
that the matrix D for T with respect to F is diagonal. Let B be any basis for V and A the
matrix for T with respect to B. By N8.2.2 B is similar to D and so (b) holds.

(b) =⇒ (c): Suppose that for each basis B of V the matrix for T with respect to B
is diagonalizable. By N3.4.4 V has a basis B and so (c) holds.
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(c) =⇒ (a): Suppose there exists a B basis for V such that the matrix A for T with
respect to B is diagonalizable. Then A is similar to a diagonal matrix D and by N8.2.2
there exists a basis B′ of V such that the matrix of T with respect to B′ is D. Thus T is
diagonalizable.

(a) ⇐⇒ (d) : By definition T is diagonalizable if and only if there exists a basis B of
V such that the matrix D of T with respect to B is diagonal. By 8.12 this holds if and only
if there exists a basis for V consisting of eigenvectors of T . So (a) and (d) are equivalent

(d) ⇐⇒ (e) : Put n = dim V. Let λ1, . . . , λk be the distinct eigenvalues for T and for
1 ≤ i ≤ k let (ui1, . . . , uili) a basis of for ET (λi). By 8.14

B = (u11, . . . , u1l1 , . . . . . . , uk1, . . . , uklk)

is linearly independent. Thus by the Comparison Theorem 3.9 m := l1+l2+ . . .+lk ≤ n.
(e) =⇒ (d): Suppose n = m. Then by N3.5.5 B is basis for V and so (d) holds.
(d) =⇒ (e): Let B be basis consisting of eigenvectors of V and for 1 ≤ i ≤ k let Bi

be the sublist of B consisting of the elements of B associated to λi. Let ni be the length of
Bi. Then n = n1 + . . . + nk. Note that Bi is a linearly independent list in ET (λi) and so
ni ≤ li by the Comparison Theorem 3.9. Thus

n = n1 + . . .+ nk ≤ l1 + . . .+ lk = m ≤ n

and n = m.

Theorem 8.8. Let A and A′ be similar n× n matrices. Then

(a) detA = detA′.

(b) For all λ ∈ R, λI −A is similar to λI −A′.

(c) A and A′ have the same characteristic polynomial.

Proof. Let P be an invertible n× n-matrix with A′ = P−1AP and let λ ∈ R.
(a) By Exercise 7.3.12, detA′ = det(P−1AP ) = detA.
(b) P−1(λI −A)P = P−1(λI)P − P−1AP = λ(P−1IP )−A′ = λI −A′.
(c) By (b), λI −A is similar to λI −A′ and so by (a) det(λI −A) = det(λI −A′). Thus

χA = χ′A by A.2.2.

Definition N8.3.9. Let T : V → V be linear and suppose that V is finite dimensional.
Then χT = χA where A is the matrix of T with respect to some basis of V

Note that this is well-defined by N8.2.2 and 8.8.
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Appendix A

Functions and Relations

A.1 Basic definitions

Let n be a non-negative integer and a, b, c, d objects. Then (a, b) denotes the ordered pair
formed by a and b. More formally, (a, b) = {{a}, {a, b}}, but we will never use this formal
definition. Instead, we use the following fundamental property of ordered pairs:

(a, b) = (c, d) if and only if a = c and c = d

which can be proved from the definition and the axioms of Set Theory. a is called the first
coordinate of (a, b) and b the second coordinate of (a, b).

(a, b, c) denotes the ordered triple formed by a, b and c. More formally (a, b, c) =
((a, b), c).

Definition A.1.1. Let A and B be sets.

(a) A×B denotes the set

{(a, b) | a ∈ A and b ∈ B}.

So the elements of A×B consists of all ordered pairs whose first coordinate is in A and
the second is in B.

(b) A relation from A to B is a triple (A,B,R), denoted by ∼, such that R is a subset of
A × B. Let a and b be objects. We say that a is in ∼-relation to b and write a ∼ b if
(a, b) ∈ R. So a ∼ b is a statement and

a ∼ b if and only if (a, b) ∈ R

(c) Let ∼= (A,B,R) be a relation. A is called the domain of ∼ and B is called the
codomain of ∼.

Im ∼= {b ∈ B | aRb for some a ∈ A},

95



96 APPENDIX A. FUNCTIONS AND RELATIONS

CoIm ∼= {a ∈ A | aRb for some b ∈ B}

Im ∼ is called the Image of ∼ and CoIm ∼ the coimage of ∼.

(d) A function from A to B is a relation F from A to B such that for all a ∈ A there exists
a unique b in B with aFb. We denote this unique b by Fa or by F (a). So for a ∈ A
and b ∈ B,

b = Fa if and only if aFb

Fa is called the image of a under F . If b = Fa also will say that F maps a to b.

(e) We write “F : A→ B is function” for “F is a function from A and B” .

(f) Let F : A→ B be a function and C a subset of A. Then F [C] = {F (c) | c ∈ C}.

Suppose for example that A = {1, 2, 3} and B = {4, 5, 6}.
Put R = {(1, 4), (2, 5), (2, 6)}. Then ∼= (A,B,R) is a relation from A to B with 1 ∼ 4,

2 ∼ 5 and 2 ∼ 6. But ∼ is not a function from A to B. Indeed, there does not exist an
element b in R with (1, b) ∈ R. Also there exist two elements b in R with (2, b) ∈ R, namely
b = 5 and b = 6.

Put S = {(1, 4), (2, 5), (3, 5)}. Then F = (A,B, S) is the function from A to B with
F1 = 4, F2 = 5 and F3 = 5.

Note that if F = (A,B,R) is a function then Im F = {Fa | a ∈ A} and CoImF = A.
Note that the text book uses the term range for the codomain of F . But since the term
range is often used to denote the image of F , we prefer use the terms codomain and image.

Now let A and B be arbitrary sets and suppose that Φ(a) is a formula involving a
variable a and if a ∈ A, then Φ(a) is in B. Put R = {(a,Φ(a)) | a ∈ A} and F = (A,B,R).
Then F is a function from A to B. We denote this function by

F : A→ B, a→ Φ(a).

For example

F : R→ R, r → r2.

denotes the function from R to R with Fr = r2 for all r ∈ R.

A.2 Equality of relations

Lemma A.2.1. Let A and B be sets.

(a) Let ∼= (A,B,R) be a relation from A to B. Then R = {(a, b) | a ∈ A, b ∈ B, a ∼ b}.
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(b) Let ∼ and ≈ be relations from A to B. Then ∼=≈ if and only if for all a ∈ A and
b ∈ B we have a ∼ b if and only if a ≈ b.

Proof. (a) Put S = {(a, b) | a ∈ A, b ∈ B, a ∼ b}. If d ∈ S, then by definition of S, d = (a, b)
for some a ∈ A, b ∈ B and a ∼ b. Hence by the definition of a ∼ b, (a, b) ∈ R. Thus d ∈ R.

If d ∈ R the since R ⊆ A×B, d = (a, b) for some a ∈ A and b ∈ B. Since (a, b) ∈ R we
conclude that a ∼ b and so d = (a, b) ∈ S.

We proved that d ∈ S if and only if d ∈ R and so R = S.
(b) Let ∼= (A,B,R) and ≈= (A,B, T ).
Suppose that ≈=∼ and let a ∈ A and b ∈ B. Then clearly a ∼ b if and only if a ≈ b.
Suppose that for all a ∈ A and b ∈ B we have a ∼ b if and only if a ≈ b. Then applying

(a) to ∼ and ≈,

R = {(a, b) | a ∈ A, b ∈ B, a ∼ b} = {(a, b) | a ∈ A, b ∈ B, a ≈ b} = S

and so

∼= (A,B,R) = (A,B, S) =≈

Lemma A.2.2. Let A and B sets and f and g functions from A to B. Then f = g if and
only if fa = ga for all a ∈ A.

Proof. If f = g, then clearly fa = ga for all a ∈ A.
Suppose now that fa = ga for all a ∈ A. Let a ∈ A and b ∈ B.

afb

⇐⇒ b = fa − definition of fa

⇐⇒ b = ga − since fa = ga

⇐⇒ agb − definition of ga

A.2.1 now show that f = g.

A.3 Restriction of relations and function

This subsection has been used in earlier version of this lecture notes to treat subspaces, but
currently is no longer used.

Lemma A.3.1. Let ∼ be relation from A to B and C and D sets. Then then there exists
a unique relation ≈ from C to D such that

c ≈ d⇐⇒ c ∼ d

for all c ∈ C, d ∈ D.
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Proof. We will first show that existence of ≈. Put S = {(c, d) | c ∈ C, d ∈ D, c ∼ d} and
≈= (A,B,R). By definition of S, S ⊆ C ×D and so ≈ is relation from C to D. Let c ∈ C
and d ∈ D.

Suppose that c ≈ d. Then (c, d) ∈ S and so by definition of S there exists c̃ ∈ C and
d̃ ∈ D with (c, d) = (c̃, d̃) and c̃ ∼ d̃. Hence c = c̃, d = d̃ and c ∼ d.

Suppose that c ∼ d. Then by definition of S, (c, d) ∈ S and so c ≈ d.
We proved that c ≈ d if and only if c ∼ d and the existence of ≈ is established.
Assume now that also ' is a relation from C to B with

c ' d⇐⇒ c ∼ d

for all c ∈ C, d ∈ D.
Then for all c ∈ C, d ∈ D,

c ≈ d⇐⇒ c ∼ d⇐⇒ c ' d

and by A.2.1, ≈='.

Definition A.3.2. Let ∼ be relation from A to B, C and D sets and ≈ the unique relation
from C to D such that c ≈ d ⇐⇒ c ∼ d for all c ∈ C and d ∈ D. Then ≈ is called the
restriction of ∼ to C and D and is denoted by ∼|C,D.

Lemma A.3.3. Let f : A→ B be a function, C and D sets and g = f |C,D the restriction
of f to C and D.

(a) If g is a function, then C ⊆ A and gc = fc for all c ∈ C.

(b) g is a function if and only if C ⊆ A and fc ∈ D for all c ∈ C.

Proof. Suppose first that g is a function and let c ∈ C. Since g is a function, there exists a
unique d ∈ D with cgd. By definition of the restriction we conclude that cfd. In particular,
c ∈ A and so C ⊆ A. Moreover, by the definition of fc and gc we have fc = d and gc = d.
In particular, fc = gc and fc = d ∈ D. So (a) is proved and also the forward direction of
(b) is proved.

Suppose next that C ⊆ A and fc ∈ D for all c ∈ C. Let c ∈ C and d ∈ D. Then by
definition of g, cgd if and only if c ∈ C, d ∈ D and cfd. Since c ∈ C this is equivalent to
d ∈ D and cfd. Since f is a function this holds if and only if d ∈ D and d = fc. Since
fc ∈ D for all c ∈ C this holds if and only if d = fc. So there exists a unique element d ∈ D
with cgd (namely d = fc) and so g is a function.

A.4 Composition of Relations

Definition A.4.1. Let α be a relation from A to B and β a relation from B to C. Put

S = {(a, c) ∈ A× C | (aαb and bβc) for some b ∈ B}
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and

β ◦ α = (A,C, S).

Then β ◦ α is called the composition of β and α.

Observe that β ◦ α is a relation from A to C and if a ∈ A and c ∈ C, then a(β ◦ α)c if
and only if there exists b ∈ B with aαb and bβc.

Lemma A.4.2. Let f : A→ B and g : B → C be function. Then g ◦ f is a function and

(g ◦ f)a = g(fa)

for all a ∈ A.

Proof. Let a ∈ A, b ∈ B and c ∈ C. Then

afb and bgc

⇐⇒ b = fa and c = gb −Definition of fa, gb

⇐⇒ b = fa and c = g(fa) −Substitution

It follows that a(g ◦ f)c if and only if c = g(fa). So g ◦ f is a function and (g ◦ f)a =
g(fa).

Lemma A.4.3. Let f : I → J, g : J → K and h : K → L be functions. Then h ◦ (g ◦ f) =
(h ◦ g) ◦ f .

Proof. Let i ∈ I. Then (
h ◦ (g ◦ f)

)
i

= h
(

(g ◦ f)i
)
− definition of composition

= h
(
g(fi)

)
− definition of composition

= (h ◦ g)(fi) − definition of composition

=
(

(h ◦ g) ◦ f
)
i − definition of composition

Thus h ◦ (g ◦ f) = (h ◦ g) ◦ f by A.2.2

Lemma A.4.4. Let f : I → J, g : J → K and h : K → L be relations. Then h ◦ (g ◦ f) =
(h ◦ g) ◦ f .

Proof. Let i ∈ I and l ∈ L. Then



100 APPENDIX A. FUNCTIONS AND RELATIONS

i
(
h ◦ (g ◦ f)

)
l

⇐⇒
(
i(g ◦ f)k and khl

)
for some k ∈ K − definition of composition

⇐⇒
((

(ifj and jgk) for some j ∈ J
)

and khl

)
for some k ∈ K − definition of composition

⇐⇒
((

(ifj and jgk) and khl
)

for some j ∈ J
)

for some k ∈ K − (QR 10)

⇐⇒
((

(ifj and jgk) and khl
)

for some k ∈ K
)

for some j ∈ J − (QR 6)

⇐⇒
((

ifj and (jgk and khl)
)

for some k ∈ K
)

for some j ∈ J − (LR 24)

⇐⇒
(
ifj and

(
(jgk and khl) for some k ∈ K

))
for some j ∈ J − (QR 10)

⇐⇒
(
ifj and j(h ◦ g)l

)
for some j ∈ J − definition of composition

⇐⇒ i
(

(h ◦ g) ◦ f
)
l − definition of composition

Thus h ◦ (g ◦ f) = (h ◦ g) ◦ f by A.2.1

A.5 Inverse of a function

Definition 6.4. Let f : A→ B be a function.

(a) f is called 1-1 if, for all b ∈ B there exists at most one a ∈ A with fa = b. So f is 1-1
if and only

fa = fc =⇒ a = c

for all a, c ∈ A.

(b) f is called onto if for all b ∈ A there exists a ∈ A with b = fa. So f is onto if and only
if B = Im f .

(c) An inverse of f is a function g : B → A such that

f ◦ g = idB and g ◦ f = idB

(d) f is called invertible if there exists an inverse of f .

Lemma A.5.2. Let f : I → J be a function. Then

f ◦ idI = f and idJ ◦ f = f

Proof. See Homework 9
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Lemma A.5.3. Let f : I → J be an invertible function and f ′ an inverse of f .

(a) Let g : K → I be a function, then f ′ ◦ (f ◦ g) = g.

(b) g : K → I and h : K → J be functions. Then

f ◦ g = h⇐⇒ g = f ′ ◦ h

(c) There exists a unique function f∗ : J → I with f ◦ f∗ = idJ , namely f∗ = f ′.

(d) f ′ is the unique inverse of f .

(e) Let g : J → K be a function, then (g ◦ f) ◦ f ′ = g.

(f) Let g : J → K and h : I → K be functions. Then

g ◦ f = h⇐⇒ h = g ◦ f ′

(g) There exists a unique function f∗ : J → I with f∗ ◦ f = idI , namely f∗ = f ′.

Proof. (a): f ′ ◦ (f ◦ g) = (f ′ ◦ f) ◦ g = idI ◦ g = g.
(b): Suppose that f ◦ g = h. Then using (a),

f ′ ◦ h = f ′ ◦ (f ◦ g) = g

Suppose now that g = f ′ ◦ h. Since f is an inverse of f ′ we can apply the result from
the previous line and conclude that h = f ◦ g. Thus (b) holds.

(c): Let f∗ : J → I be a function. By (b) f ◦ f∗ = idJ if and only if f∗ = f
circidJ , that is if and only if f∗ = f ′.

(d): This follows from (c).
(e): Similar to (a)
(f): Similar to (b).
(g): Similar to (c).

Definition A.5.4. Let f : I → J be an invertible function. Then f−1 denotes the unique
inverse of f .

Lemma A.5.5. Let f : A → B and g : B → A be functions. Then the following four
statements are equivalent:

(a) g is an inverse of f .

(b) f is an inverse of g.

(c) f(gb) = b for all b ∈ B and g(fa) = a for all a ∈ A.

(d) For all a ∈ A and b ∈ B,
fa = b ⇐⇒ a = gb
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Proof. (a) ⇐⇒ (b) : We have

g is an inverse of f

⇐⇒ f ◦ g = idB and g ◦ f = idA − definition of inverse function

⇐⇒ g ◦ f = idA and f ◦ g = idB −(LR 13)

f is an inverse of g − definition of inverse function

So (a) and (b) are equivalent.

(b) ⇐⇒ (c) :

g ◦ f = idA

⇐⇒ (g ◦ f)a = idAa for all a ∈ A −Equality of functions

⇐⇒ g(fa) = a for all a ∈ A −Definition of composition and of idA

Similarly f ◦ g = idB if and only if f(gb) = b for all b ∈ B. So (a) is equivalent to (c).

(c) =⇒ (d): Suppose that (c) holds and let a ∈ A and b ∈ B. If fa = b, then
a = g(fa) = gb; and if a = gb, then b = f(gb) = fa. So fa = b if and only if a = gb and
thus (d) holds

(d) =⇒ (c): Suppose that (d) holds.

Let a ∈ A and put b = fa. Then (d) implies gb = a and so g(fa) = a.

Let b ∈ B and put a = gb. Then (d) implies that fa = b and so f(gb) = b. Thus (c)
holds.

We proved that (c) implies (d) and that (d) implies (c). Hence (c) and (d) are equivalent.

Part (d) is a recipe for computing the inverse of a function f : A → B. Consider for
example the function f : R→ R with fx = 2x+ 1 for all x ∈ R. Let x, y ∈ R. Then

fx = y

⇐⇒ 2x+ 1 = y

⇐⇒ 2x = y − 1

⇐⇒ x = 1
2(y − 1)

⇐⇒ x = 1
2y −

1
2

So the function g : R→ R defined by gy = 1
2y −

1
2 for all y ∈ R is an inverse for f .

Lemma A.5.6. Let f : A→ B and g : B → C be invertible. Then g ◦ f is invertible with
inverse f−1 ◦ g−1.
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Proof. Let a ∈ A, c ∈ C. Then

(g ◦ f)a = c

⇐⇒ g(fa) = c − definition of composition

⇐⇒ fa = g−1c − A.5.5 applied to the inverse of g

⇐⇒ a = f−1(g−1c) − A.5.5 applied to the inverse of f

⇐⇒ a = (f−1 ◦ g−1)c − definition of composition

So by A.5.5 f−1 ◦ g−1 is the inverse of g ◦ f .

Theorem 6.6. Let f be a function. Then f is invertible if and only if f is 1-1 and onto.
That is f : A→ B is invertible if and only if for all b ∈ B there exists a unique a ∈ A with
fa = b.

Proof. =⇒: Suppose first that f is invertible and let g be an inverse of f . Let a, c ∈ A.

fa = fc

=⇒ g(fa) = g(fc) −Substitution

=⇒ a = c −A.5.5, twice

Thus f is 1-1. Now let b ∈ B and put a = gb. Then a ∈ A and by A.5.5(c), fa = b and
f is onto.
⇐=: I will give two proofs for the backward direction:

Proof 1: Suppose that f is 1-1 and onto. Since f is onto, we can choose for each b ∈ B
an element b′ ∈ A with fb′ = b. Define g : B → A by gb = b′. Let a ∈ A and b ∈ B. Then

fa = b

⇐⇒ fa = fb′ − since fb′ = b

⇐⇒ a = b′ − f is 1-1

⇐⇒ a = gb − definition of g

So by A.5.5(c), g is an inverse of f .

Proof 2: Suppose that f is 1-1 and onto. Put S = {(fa, a) | a ∈ A}. Then S ⊆ B ×A
and so g := (B,A, S) is a relation. Let a ∈ A and b ∈ B. Then

(∗)

bga

⇐⇒ (b, a) ∈ S − Definition of bga

⇐⇒ b = fa − Definition of S
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Let b ∈ B. Since f is onto, there exists a ∈ A with b = fa and so by (*), bga. Let
a, c ∈ A with bga and bgc. Then by (*), fa = b = fc and since f is 1-1, a = c. So for each
b ∈ B there exists a unique a ∈ A with bga. Hence g is a function.

Let a ∈ A and b ∈ B. Since g is a function, a = gb if and only if bga So (*) implies that

a = gb ⇐⇒ b = fa

Thus by A.5.5, g is an inverse of f .

Lemma A.5.8. Let f : A → B be an invertible function with inverse g : B → A. Let
C ⊆ A and D ⊆ A. Then the following are equivalent:

(a) f [C] ⊆ D and g[D] ⊆ C.

(b) f |C,D and g |D,C are functions.

(c) f |C,D and g |C,D are functions inverse to each other.

(d) f |C,D is an invertible function.

(e) f [C] = D.

(f) For all a ∈ A, a ∈ C if and only if f(a) ∈ D.

(g) g |D,C is an invertible function.

(h) g[D] = C

(i) For all b ∈ B, g(b) ∈ C if and only if b ∈ B.

Proof. Put f̃ = f |C,D and g̃ = g |D,C

(a) =⇒ (b): This follows from A.3.3.
(b) =⇒ (c): By A.3.3 we get f̃(g̃d) = f(gd) = d for all d ∈ D and g̃(f̃ c) = g(fc) for

all c ∈ C. Thus f̃ is the inverse of g̃.
(c) =⇒ (d): This implication follows from the definition of invertible.
(d) =⇒ (e): Since f̃ is a function, A.3.3 gives fc = f̃ c for all c ∈ C. Hence

f [C] = {fc | c ∈ C} = {f̃ c | c ∈ C} = f̃ [C].

Since f̃ is invertible, 6.6 shows that f̃ is onto. So f̃ [C] = D and then f [C] = D.

(e) =⇒ (a): Suppose f [C] = D. Then clearly f [C] ⊆ D. Let d ∈ D. Since f [C] = D,
d = fc for some c ∈ C and so gd = c ∈ C. Thus also f [C] ⊆ D.

Thus the first five statements are equivalent.

(a) =⇒ (f): Suppose (a) holds. Let a ∈ A. If a ∈ C then fa ∈ f [C] ⊆ D. And if
fa ∈ D, then a = g(fa) ∈ g[D] ⊆ C.

(f) =⇒ (a): Suppose (f) holds. Then clearly f [C] ⊆ D. Let d ∈ D. Then f(gd) = d ∈
D and so gd ∈ C since (f) holds. Thus g[D] ⊆ C and (a) is proved.
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So also (f) is equivalent to (a).

We proved that (d), (e) and (f) are equivalent to (a). This result applied with the roles
of f and g interchanged shows that also (g), (h) and (i) are equivalent of (a).

A.6 Defining Sequences by Induction

Theorem A.6.1. Let I be a non-empty set, f : I → I a function and d ∈ I. Then there
exists a unique sequence a =

(
a(n)

)∞
n=1

such that

(i) a(1) = d, and

(ii) a(n+ 1) = f
(
a(n)

)
for all n ∈ N.

Proof. For m ∈ N let Sm be the following statement:

There exists a unique list em =
(
em(n)

)m
n=1

of length m in I such that

(i’) em(1) = d.

(ii’) em(n+ 1) = f
(
em(n)

)
for all 1 ≤ n < m.

Note that S1 holds with e1 = (d).

Suppose now that Sk holds. So there exists a unique list ek which fulfils (i’) and (ii’) for
m = k. Define the list ek+1 of length k + 1 in I by

(∗) ek+1(n) =

{
ek(n) if 1 ≤ n ≤ k
f
(
ek(k)

)
if n = k + 1

Let e =
(
e(n)

)k+1

n=1
be a list of length k = 1 in I. Observe that e fulfill (i’) and (ii’) for

m = k + 1 if and only if

(i”) e(1) = d.

(ii”) e(n+ 1) = f
(
e(n)

)
for all 1 ≤ n < k.

(iii”) e(k + 1) = f
(
e(k)

)
By the induction assumption (i”) and (ii”) hold if and only if e(n) = ek(n) for all

1 ≤ n ≤ k and so (i”)- (iii”) hold if and only if in addition e(k + 1) = f
(
ek(k)

)
. So ek+1 is

the unique list of length k + 1 which fulfills (i’) and (ii’).

Thus Sk+1 holds and by the Principal of Mathematical Induction we conclude that Sm
holds for all m ∈ N.
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Now let b =
(
b(n)

)∞
n=1

be sequence which fulfills (i) and (ii). Observe that bm =(
b(n)

)m
n=1

fulfills (i’) and (ii’). So the uniqueness assertions in Sm implies bm = em. In
particular

b(m) = em(m) for all 1 ≤ m <∞

Thus b is uniquely determined. Conversely define the infinite list a =
(
a(n)

)∞
n=1

via

a(n) = en(n) for all 1 ≤ n <∞

Then a(1) = e1(1) = d and using (*) for k = n

a(n+ 1) = en+1(n+ 1) = f
(
en(n)

)
= f

(
a(n)

)
.

So (i) and (ii) holds for a and so a is the unique sequence which fulfills (i) and (ii).
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Logic

B.1 Quantifiers

Let P be a statement involving a variable x. Then

∀x(P ) is the statement that P is true for all objects x.

Note hat ∀x(P ) is false if there exists an object x such that P is false. Applying this to
¬P instead of P we see that ∀x(¬P ) is false if there exists an object x such that P is true.
We use this observation to define the statement ∃x(P ) to be ¬(∀x(¬P )). So

∃x(P ) is the statement that there exists an object x such that P is true.

The symbols ∀ and ∃ are called quantifiers. The following theorems list a few statements
involving quantifiers which are always true.

Theorem B.1.1. Let P and Q be statements and x and y variables.

QR 1 ¬
(
∀x(¬P )

)
⇐⇒ ∃x(P ).

QR 2 ¬
(
∀x(P )

)
⇐⇒ ∃x(¬P ).

QR 3 ∀x(P )⇐⇒ ¬
(
∃x(¬P )

)
.

QR 4 ∀x(¬P )⇐⇒ ¬
(
∃x(P )

)
.

QR 5 ∀x
(
∀y(P )

)
⇐⇒ ∀y

(
∀x(P )

)
.

QR 6 ∃x
(
∃y(P )

)
⇐⇒ ∃y

(
∃x(P )

)
.

QR 7 ∀x(P and Q)⇐⇒
((
∀x(P )

)
and

(
∀x(Q)

))
107
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QR 8 If Q does not involve x, then

∀x(P or Q)⇐⇒
((
∀x(P )

)
or Q

)
.

QR 9 ∃x(P or Q)⇐⇒
((
∃x(P )

)
or
(
∃x(Q)

))
QR 10 If Q does not involve x, then

∃x(P and Q)⇐⇒
((
∃x(P )

)
and Q

)
The statement ∀(x ∈ I)(P ) is defined as ∀x

(
(x ∈ I) =⇒ P

)
. The statement ∃(x ∈ I)(P )

is defined as ∃x
(
(x ∈ I) and P

)
. Note that

¬
(
∃(x ∈ I)(P )

)
⇐⇒

(
∀(x ∈ I)(¬P )

)
Indeed

¬
(
∃(x ∈ I)(P )

)
⇐⇒ ¬

(
∃x
(
(x ∈ I) and P

))
⇐⇒ ∀x

(
¬
(
(x ∈ I) and P

))
⇐⇒ ∀x

(
¬(x ∈ I) or ¬P

)
⇐⇒ ∀x

(
(x ∈ I) =⇒ ¬P

)
⇐⇒ ∀(x ∈ I)(¬P )

Then writing proofs we will rarely use the symbols ∀ and ∃, but rather use phrases like
”for all x”, “there exists x” or “for some x”.
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The real numbers

C.1 Definition

Definition C.1.1. The real numbers are a quadtruple (R,+, ·,≤) such that

(R i) R is a set (whose elements are called real numbers)

(R ii) + is a function ( called addition) , R× R is a subset of the domain of + and

a+ b ∈ R (Closure of addition)

for all a, b ∈ R, where a⊕ b denotes the image of (a, b) under +;

(R iii) · is a function (called multiplication), R× R is a subset of the domain of · and

a · b ∈ R (Closure of multiplication)

for all a, b ∈ R where a · b denotes the image of (a, b) under ·. We will also use the
notion ab for a · b.

(R iv) ≤ is a relation between R and R;

and such that the following statements hold:

( R Ax 1) a+ b = b+ a for all a, b ∈ R. (Commutativity of Addition)

( R Ax 2) a+ (b+ c) = (a+ b) + c for all a, b, c ∈ R; (Associativity of Addition)

( R Ax 3) There exists an element in R, denoted by 0 (and called zero), such that a+0 = a
and 0 + a = a for all a ∈ R; (Existence of Additive Identity)

( R Ax 4) For each a ∈ R there exists an element in R, denoted by −a (and called negative
a) such that a+ (−a) = 0 and (−a) + a = 0; (Existence of Additive Inverse)

109



110 APPENDIX C. THE REAL NUMBERS

( R Ax 5) a(b+ c) = ab+ ac for all a, b, c ∈ R. (Right Distributivity)

( R Ax 6) (a+ b)c = ac+ bc for all a, b, c ∈ R (Left Distributivity)

( R Ax 7) (ab)c = a(bc) for all a, b, c ∈ R (Associativity of Multiplication)

( R Ax 8) There exists an element in R, denoted by 1 (and called one), such that 1a = a
for all a ∈ R. (Multiplicative Identity)

( R Ax 9) For each a ∈ R with a 6= 0 there exists an element in R, denoted by 1
a (and

called ’a inverse’) such that aa−1 = 1 and a−1a = 1;

(Existence of Multiplicative Inverse)

( R Ax 10) For all a, b ∈ R,
(a ≤ b and b ≤ a)⇐⇒ (a = b)

( R Ax 11) For all a, b, c ∈ R,
(a ≤ b and b ≤ c) =⇒ (a ≤ c)

( R Ax 12) For all a, b, c ∈ R,
(a ≤ b and 0 ≤ c) =⇒ (ac ≤ bc)

( R Ax 13) For all a, b, c ∈ R,
(a ≤ b) =⇒ (a+ c ≤ b+ c)

( R Ax 14) Each bounded, non-empty subset of R has a least upper bound. That is, if S is
a non-empty subset of R and there exists u ∈ R with s ≤ u for all s ∈ S, then
there exists m ∈ R such that for all r ∈ R,(

s ≤ r for all s ∈ S
)
⇐⇒

(
m ≤ r

)
( R Ax 15) For all a, b ∈ R such that b 6= 0 and 0 ≤ b there exists a positive integer n such

that a ≤ nb. (Here na is inductively defined by 1a = a and (n+ 1)a = na+ a).

Definition C.1.2. The relations <, ≥ and > on R are defined as follows: Let a, b ∈ R,
then

(a) a < b if a ≤ b and a 6= b.

(b) a ≥ b if b ≤ a.

(c) a > b if b ≤ a and a 6= b



Appendix D

General Commutative and
Associative Laws

D.1 Sums

Lemma D.1.1. Let V be a vector space.

(a) Let (v1, . . . vn) and (w1, . . . , wm) be list in V . Then

(v1 + . . .+ vn) + (w1 + . . .+ wm) = v1 + . . .+ vn + w1 + . . .+ wm

(b) Let (v1, . . . vn) and (w1, . . . , wn) be lists of the same length in V . Then

(v1 + . . .+ vn) + (w1 + . . .+ wn) = (v1 + w1) + . . .+ (vn + wn)

(c) Let (v1, . . . vn) be a list in V and r ∈ R. Then

r(v1 + . . .+ vn) = rv1 + . . .+ rvn

Proof. (a) The proof is by induction on m. For m = 0 the left side in (a) is (v1+ . . .+vn)+0
and the right side is v1 + . . .+ vn. So by (Ax 3) (a) holds for m = 0. Suppose now that (a)
holds for m. Then

(v1 + . . .+ vn) + (w1 + . . .+ wm+1))

=
(
v1 + . . .+ vn) + vn+1

)
+
(

(w1 + . . .+ wn) + wn+1

)
− definition of ′ + . . .+′

=
(

(v1 + . . .+ vn) + (w1 + . . .+ wn)
)

+ wn+1 − (Ax 2)

=
(
v1 + . . .+ vn + w1 + . . .+ wm

)
+ wn+1 − Induction assumption

= v1 + . . .+ vn + w1 + . . .+ wm+1 − definition of ′ + . . .+ .′
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So the (a) holds for m + 1 and thus by the principal of induction for all non-negative
integers m.

(b) The proof is by induction on n. For n = 0 the left side in (b) is 0 + 0 and the right
side is 0 and so by (Ax 3) (b) holds for n = 0. Suppose now that the lemma holds for n.
Then

(v1 + . . .+ vn+1) + (w1 + . . .+ wn+1)

=
(

(v1 + . . .+ vn) + vn+1

)
+
(
w1 + . . .+ wn+1

)
− definition of ′ + . . .+′

=
(

(v1 + . . .+ vn) + vn+1

)
+
(

(w1 + . . .+ wn) + wn+1

)
− definition of ′ + . . .+ .′

=

((
v1 + . . .+ vn) + vn+1

)
+
(
w1 + . . .+ wn

))
+ wn+1 − (Ax 2)

=

(
(v1 + . . .+ vn) +

(
vn+1 + (w1 + . . .+ wn)

))
+ wn+1 − (Ax 2)

=

(
(v1 + . . .+ vn) +

(
(w1 + . . .+ wn) + vn+1

))
+ wn+1 − (Ax 1)

=

((
(v1 + . . .+ vn) + (w1 + . . .+ wn)

)
+ vn+1

)
+ wn+1 − (Ax 2)

=
(

(v1 + . . .+ vn) + (w1 + . . .+ wn)
)

+
(
vn+1 + wn+1

)
− (Ax 2)

=
(

(v1 + w1) + . . .+ (vn + wn)
)

+
(
vn+1 + wn+1

)
− Induction assumption

= (v1 + w1) + . . .+ (vn+1 + wn+1) − definition of ′ + . . .+ .′

Hence (b) holds for n + 1 and thus by the principal of induction for all non-negative
integers n.

(c) The proof is by induction on n. For n = 0 the left side in (c) is r0 and the right side
is 0. So by 1.4 (c) holds for n = 0. Suppose now that (c) holds for n. Then

r(v1 + . . .+ vn+1)

= r
(

(v1 + . . .+ vn) + vn+1

)
− definition of ′ + . . .+′

= r(v1 + . . .+ vn) + rvn+1 − (Ax 5)

= (rv1 + . . .+ rvn) + rvn+1 − Induction assumption

= rv1 + . . .+ rvn+1 − definition of ′ + . . .+ .′

Hence (c) holds for n + 1 and thus by the principal of induction for all non-negative
integers n
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D.2 Linear combinations

Lemma D.2.1. Let V be a vector space, (v1, . . . vn) a list in V and (r1, . . . , rn) a list in
Rn.

(a) Let (s1, . . . , sn) be list in R. Then

(r1v1 + . . .+ rnvn) + (s1v1 + . . .+ snvn) = (s1 + r1)v1 + . . .+ (sn + rn)vn

(b) Let s ∈ R. Then

s(r1v1 + . . .+ rnvn) = (sr1)v1 + . . .+ (srn)vn

Proof. (a): By D.1.1(b) (r1v1 + . . . + rnvn) + (s1v1 + . . . + snvn) = (r1v1 + s1v1) + . . . +
(rnvn + snvn). By (Ax 6) the latter is equal to (s1 + r1)v1 + . . .+ (sn + rn)vn.

(b) By D.1.1(c) s(r1v1 + . . . + rnvn) = s(r1v1) + . . . + s(rnvn). By (Ax 7) the latter is
equal to (sr1)v1 + . . .+ (srn)vn.
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