Quiz 12/Solutions

Take-Home due $12 / 7 / 18$ at 10:20AM

1. Compute the following (definite or indefinite) integrals:
(a) $\int_{-1}^{2} x^{7} \sqrt{x^{4}+1} \mathrm{~d} x$.
$u=x^{4}+1$,
$\mathrm{d} u=\left(x^{4}+1\right)^{\prime} \mathrm{d} x=4 x^{3} \mathrm{~d} x$.
$x^{3} \mathrm{~d} x=\frac{1}{4} \mathrm{~d} u$.
$x=-1: u=(-1)^{4}+1=1+1=2$.
$x=2: u=2^{4}+1=17$

$$
\begin{aligned}
\int_{-1}^{2} x^{7} \sqrt{x^{4}+1} \mathrm{~d} x & =\int_{-1}^{2} x^{4} \sqrt{x^{4}+1} x^{3} \mathrm{~d} x \\
& =\int_{2}^{17}(u-1) \sqrt{u} \frac{1}{4} \mathrm{~d} u \\
& =\frac{1}{4} \int_{2}^{17}(u \sqrt{u}-\sqrt{u}) \mathrm{d} u \\
& =\frac{1}{4} \int_{2}^{17}\left(u^{\frac{3}{2}}-u^{\frac{1}{2}}\right) \mathrm{d} u \\
& =\frac{1}{4}\left[\frac{2}{5} u^{\frac{5}{2}}-\frac{2}{3} u^{\frac{3}{2}}\right]_{2}^{17} \\
& =\frac{1}{2}\left[\frac{1}{5} u^{\frac{5}{2}}-\frac{1}{3} u^{\frac{3}{2}}\right]_{2}^{17} \\
& =\frac{1}{2}\left(\left(\frac{1}{5} 17^{\frac{5}{2}}-\frac{1}{3} 17^{\frac{3}{2}}\right)-\left(\frac{1}{5} 2^{\frac{5}{2}}-\frac{1}{3} 2^{\frac{3}{2}}\right)\right)
\end{aligned}
$$

(b) $\int_{-3}^{3} \sin ^{99}(x) \mathrm{d} x$.
$\sin ^{99}(-x)=(\sin (-x))^{99}=(-\sin (x))^{99}=-\sin ^{99}(x)$. So $\sin ^{99}(x)$ is an odd function and

$$
\int_{-3}^{3} \sin ^{99}(x) \mathrm{d} x=0 .
$$

(c) $\int \sec ^{2}(x) \tan ^{5}(x) \mathrm{d} x$.
$u=\tan x$
$\mathrm{d} u=(\tan x)^{\prime} \mathrm{d} x=\sec ^{2}(x) \mathrm{d} x$.

$$
\int \sec ^{2}(x) \tan ^{5}(x) \mathrm{d} x=\int(\tan x)^{5} \sec ^{2}(x) \mathrm{d} x=\int u^{5} \mathrm{~d} u=\frac{1}{6} u^{6}+C=\frac{1}{6} \tan ^{6}(x)+C .
$$

2. Compute the area of the region between the curves $y=x^{3}-4 x^{2}+4 x$ and $y=2 x^{2}-4 x$ from $x=-1$ to $x=4$.

We first sketch the graph of both curves:

Next we compute the intersection points:

$$
\begin{gathered}
x^{3}-4 x^{2}+4 x=2 x^{2}-4 x \\
x^{3}-6 x^{2}+8 x=0 \\
x\left(x^{2}-6 x+8\right)=0 \\
x(x-2)(x-4)=0
\end{gathered}
$$

So the graphs intersect at $x=0, x=2$ and $x=4$. From the sketch of the graph, $y=2 x^{2}-4 x$ is the larger function on $(-1,0)$ and on $(2,4)$, while $y=x^{3}-4 x^{2}+4 x$ is the larger function on $(0,2)$. Thus

$$
\left|\left(x^{3}-4 x^{2}+4 x\right)-\left(2 x^{2}-4\right)\right|=\left|x^{3}-6 x^{2}+8 x\right|=\left\{\begin{array}{cl}
-x^{3}+6 x^{2}-8 x & \text { if } x \text { is in }[-1,0] \\
x^{3}-6 x^{2}+8 x & \text { if } x \text { is in }[0,2] \\
-x^{3}+6 x^{2}-8 x & \text { if } x \text { is in }[2,4]
\end{array}\right.
$$

Hence

$$
\begin{aligned}
\text { Area }= & \int_{-1}^{4}\left|\left(x^{3}-4 x^{2}+4 x\right)-\left(2 x^{2}-4\right)\right| \mathrm{d} x \\
= & \int_{-1}^{0}\left(-x^{3}+6 x^{2}-8 x\right) \mathrm{d} x+\int_{0}^{2}\left(x^{3}-6 x^{2}+8 x\right) \mathrm{d} x+\int_{2}^{4}\left(-x^{3}+6 x^{2}-8 x\right) \mathrm{d} x \\
= & {\left[-\frac{1}{4} x^{4}+2 x^{3}-4 x^{2}\right]_{-1}^{0}+\left[\frac{1}{4} x^{4}-2 x^{3}+4 x^{2}\right]_{0}^{2}+\left[-\frac{1}{4} x^{4}+2 x^{3}-4 x^{2}\right]_{2}^{4} } \\
= & \frac{1}{4}\left(\left[-x^{4}+8 x^{3}-16 x^{2}\right]_{-1}^{0}+\left[x^{4}-8 x^{3}+16 x^{2}\right]_{0}^{2}+\left[-x^{4}+8 x^{3}-16 x^{2}\right]_{2}^{4}\right) \\
= & \frac{1}{4}\left(0-\left(-(-1)^{4}+8(-1)^{3}-16(-1)^{2}\right)+\left(2^{4}-8 \cdot 2^{3}+16 \cdot 2^{2}\right)-0\right. \\
& \left.+\left(-4^{4}+8 \cdot 4^{3}-16 \cdot 4^{2}\right)-\left(-2^{4}+8 \cdot 2^{3}-16 \cdot 2^{2}\right)\right) \\
= & \frac{1}{4}(-(-1-8-16)+(16-64+64)+(-256+512-256)-(-16+64-64)) \\
= & \frac{1}{4}(25+16+0+16) \\
= & \frac{57}{4}
\end{aligned}
$$

3. Find the area of the region enclosed by the curves $y^{2}+x=12$ and $y^{2}=2 y+x$.

Since its is easier to solve for x, than for y we will view x as a function of y. So the two curves are

$$
x=12-y^{2} \quad \text { and } \quad x=y^{2}-2 y
$$

We will first sketch the graph of the two curves:

Next we compute the intersection points:

$$
\begin{gathered}
12-y^{2}=y^{2}-2 y \\
2 y^{2}-2 y-12=0 \\
y^{2}-y-6=0 \\
(y+2)(y-3)=0
\end{gathered}
$$

Hence the intersection points are at $y=-2$ and $y=3$.
The larger function on the interval $[-2,3]$ is $12-y^{2}$. So

$$
\begin{aligned}
\text { Area } & =\int_{-2}^{3}\left(12-y^{2}\right)-\left(y^{2}-2 y\right) \mathrm{d} y \\
& =\int_{-2}^{3}-2 y^{2}+2 y+12 \mathrm{~d} y \\
& =\left[-\frac{2}{3} y^{3}+y^{2}+12 y\right]_{-2}^{3} \\
& =\frac{1}{3}\left[-2 y^{3}+3 y^{2}+36 y\right]_{-2}^{3} \\
& =\frac{1}{3}\left(\left(-2 \cdot 3^{3}+3 \cdot 3^{2}+36 \cdot 3\right)-\left(-2 \cdot(-2)^{3}+3 \cdot(-2)^{2}+36 \cdot(-2)\right)\right. \\
& =\frac{1}{3}(-54+27+108)-(16+12-72) \\
& =\frac{81-(-44)}{3} \\
& =\frac{125}{3}
\end{aligned}
$$

4. Find the positive number a such that the area of the region enclosed by the parabolas $y=2 a x-x^{2}$ and $y=x^{2}$ is equal to 9 .

To help sketching the two two parabolas, note that $2 a x-x^{2}=x(2 a-x)$. So $2 a x-x^{2}-0$ at $x=0$ and $x=a$.

We know compute the intersection point of the two parabolas:

$$
\begin{aligned}
& x^{2}=2 a x-x^{2} \\
& 2 x^{2}-2 a x=0 \\
& 2 x(x-a)=0
\end{aligned}
$$

So the two parabolas intersect at $x=0$ and $x=a$. The larger function on the interval $[0, a]$ is $2 a x-x^{2}$. Hence the area of the enclosed region is

$$
\int_{0}^{a}\left(2 a x-x^{2}\right)-x^{2}=\int_{0}^{a} 2 a x-2 x^{2}=\left[a x^{2}-\frac{2}{3} x^{3}\right]_{0}^{a}=a a^{2}-\frac{2}{3} a^{3}=a^{3}-\frac{2}{3} a^{3}=\frac{1}{3} a^{3}
$$

Since the area of the enclosed region is 9 we get

$$
\begin{gathered}
\frac{1}{3} a^{3}=9 \\
a^{3}=3 \cdot 9=3 \cdot 3^{2}=3^{3} \\
a=3
\end{gathered}
$$

