
MTH 132-020 Calculus I F18

Quiz 12/Solutions
Take-Home

due 12/7/18 at 10:20AM

1. Compute the following (definite or indefinite) integrals:
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x3 dx = 1
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x = −1 ∶ u = (−1)4 + 1 = 1 + 1 = 2.

x = 2 ∶ u = 24 + 1 = 17
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(b) ∫
3
−3 sin99

(x)dx.

sin99
(−x) = (sin(−x))99 = (− sin(x))99 = − sin99

(x). So sin99
(x) is an odd function and

∫

3

−3
sin99

(x)dx = 0 .

(c) ∫ sec2(x) tan5
(x)dx.

u = tanx

du = (tanx)′ dx = sec2(x)dx.

∫ sec2(x) tan5
(x)dx = ∫ (tanx)5 sec2(x)dx = ∫ u5 du =

1

6
u6 +C =
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6
tan6

(x) +C .

2. Compute the area of the region between the curves y = x3 − 4x2 + 4x and y = 2x2 − 4x from
x = −1 to x = 4.

We first sketch the graph of both curves:
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Next we compute the intersection points:

x3 − 4x2 + 4x = 2x2 − 4x

x3 − 6x2 + 8x = 0

x(x2 − 6x + 8) = 0

x(x − 2)(x − 4) = 0

So the graphs intersect at x = 0, x = 2 and x = 4. From the sketch of the graph, y = 2x2 − 4x is the
larger function on (−1,0) and on (2,4), while y = x3−4x2+4x is the larger function on (0,2). Thus

∣(x3 − 4x2 + 4x) − (2x2 − 4)∣ = ∣x3 − 6x2 + 8x∣ =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

−x3 + 6x2 − 8x if x is in [−1,0]

x3 − 6x2 + 8x if x is in [0,2]

−x3 + 6x2 − 8x if x is in [2,4]

Hence

Area = ∫
4

−1
∣(x3 − 4x2 + 4x) − (2x2 − 4)∣dx

= ∫

0

−1
(−x3 + 6x2 − 8x)dx + ∫

2

0
(x3 − 6x2 + 8x)dx + ∫

4

2
(−x3 + 6x2 − 8x)dx

= [−
1

4
x4 + 2x3 − 4x2]

0

−1
+ [

1

4
x4 − 2x3 + 4x2]

2

0
+ [−

1

4
x4 + 2x3 − 4x2]

4

2

=
1

4
([−x4 + 8x3 − 16x2]

0

−1
+ [x4 − 8x3 + 16x2]

2

0
+ [−x4 + 8x3 − 16x2]

4

2
)

=
1

4
(0 − (−(−1)4 + 8(−1)3 − 16(−1)2) + (24 − 8 ⋅ 23 + 16 ⋅ 22) − 0
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3. Find the area of the region enclosed by the curves y2 + x = 12 and y2 = 2y + x.

Since its is easier to solve for x, than for y we will view x as a function of y. So the two curves
are

x = 12 − y2 and x = y2 − 2y

We will first sketch the graph of the two curves:
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Next we compute the intersection points:

12 − y2 = y2 − 2y

2y2 − 2y − 12 = 0

y2 − y − 6 = 0

(y + 2)(y − 3) = 0

Hence the intersection points are at y = −2 and y = 3.
The larger function on the interval [−2,3] is 12 − y2. So
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= ∫
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4. Find the positive number a such that the area of the region enclosed by the parabolas
y = 2ax − x2 and y = x2 is equal to 9.

To help sketching the two two parabolas, note that 2ax−x2 = x(2a−x). So 2ax−x2 −0 at x = 0
and x = a.
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We know compute the intersection point of the two parabolas:

x2 = 2ax − x2

2x2 − 2ax = 0

2x(x − a) = 0

So the two parabolas intersect at x = 0 and x = a. The larger function on the interval [0, a] is
2ax − x2. Hence the area of the enclosed region is
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Since the area of the enclosed region is 9 we get

1

3
a3 = 9

a3 = 3 ⋅ 9 = 3 ⋅ 32 = 33

a = 3


