Quiz 9/Solutions

1. Starting with $x_{1}=0$ use one iteration of Newton's method to approximate a solution of the equation $x^{4}-2 x+1=0$.

$$
\begin{aligned}
f(x) & =x^{4}-2 x+1 \\
f^{\prime}(x) & =4 x^{3}-2
\end{aligned}
$$

Solution 1:

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=0-\frac{0^{4}-2 \cdot 0+1}{4 \cdot 0^{3}-2}=0-\frac{1}{-2}=\frac{1}{2} \text {. }
$$

Solution 2:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{4}-2 x_{n}+1}{4 x_{n}^{3}-2}=\frac{\left(4 x_{n}^{4}-2 x_{n}\right)-\left(x_{n}^{4}-2 x_{n}+1\right)}{4 x_{n}^{3}-2}=\frac{3 x_{n}^{4}-1}{4 x_{n}^{3}-2}
$$

and so

$$
x_{2}=\frac{3 \cdot 0^{4}-1}{4 \cdot 0^{3}-2}=\frac{1}{2} \text {. }
$$

Solution 2 is longer than Solution 1, but would be shorter if one is required to carry out several iterations of Newton's Method.
2. Let f be a differential function. Determine f if $f^{\prime}(x)=3 x^{2}+\sin x$ and $f(0)=-2$.

Note that f is an antiderivative of $f^{\prime}(x)=3 x^{2}+\sin x$. So

$$
f(x)=x^{3}-\cos x+C,
$$

C a constant. Since $f(0)=-2$ we get

$$
-2=f(0)=0^{3}-\cos 0+C=-1+C, \quad \text { so } \quad C=-2+1=-1 \text {. }
$$

Hence

$$
f(x)=x^{3}-\cos x-1 \text {. }
$$

3. Determine the approximation sum R_{4} for the area of the region under the curve $y=x^{4}$ from $x=1$ to $x=3$. Do not evaluate the sum and do not simplify.

To compute R_{4} we need to divide the interval $[1,3]$ into four intervals of equal length

$$
\begin{gathered}
\Delta x=\frac{3-1}{4}=0.5: \\
x_{0}=1, \quad x_{1}=1.5, \quad x_{2}=2, \quad x_{3}=2.5, \quad x_{4}=3
\end{gathered}
$$

and determine the right endpoints of each interval

$$
1.5, \quad 2, \quad 2.5, \quad 3
$$

So

$$
\begin{aligned}
R_{4} & =f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+f\left(x_{3}\right) \Delta x+f\left(x_{4}\right) \Delta x \\
& =1.5^{4} \cdot 0.5+2^{4} \cdot 0.5+2.5^{4} \cdot 0.5+3^{4} \cdot 0.5
\end{aligned}
$$

