Quiz 7/Solutions

1. $f(x)=\frac{x^{3}+1}{x^{3}-8}$.
A)

$$
\begin{gathered}
x^{3}-8=0 \\
x^{3}=8 \\
x^{3}=2^{3} \\
x=2
\end{gathered}
$$

So $f(x)$ is defined for $x \neq 2$ and the domain of f is

$$
(-\infty, 2) \cup(2, \infty)
$$

B)

$$
\begin{gathered}
y=0 \\
x^{3}+1=0 \\
x^{3}=-1 \\
x^{3}=(-1)^{3} \\
x=-1
\end{gathered}
$$

So the x-intercept is

$$
f(0)=\frac{(-1,0)}{0^{3}+1} 0^{3}-8=\frac{1}{-8}=-\frac{1}{8}
$$

and so the y-intercept is

$$
\left(0,-\frac{1}{8}\right)
$$

C)

$$
f(-x)=\frac{(-x)^{3}+1}{(-x)^{3}-8}=\frac{-x^{3}+1}{-x^{3}-8} \neq \pm \frac{x^{3}+1}{x^{3}-8}=f(x)
$$

So f has no symmetries. Since f has exactly one x-intercept, f is not periodic
D) The denominator of f is 0 for $x=2$. So we compute

$$
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} \frac{x^{3}+1}{x^{3}-8}\left(=\frac{\text { positive }}{\text { small positive }}\right)=+\infty
$$

and

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} \frac{x^{3}+1}{x^{3}-8}\left(=\frac{\text { positive }}{\text { small negative }}\right)=-\infty
$$

So

$$
\begin{array}{|c}
\hline x=2 \text { is a vertical asymptote } \\
\lim _{x \rightarrow 2^{+}} f(x)=+\infty \\
\lim _{x \rightarrow 2^{-}} f(x)=-\infty \\
\hline
\end{array}
$$

Horizontal asymptotes:

$$
\lim _{x \rightarrow \pm \infty} \frac{x^{3}+1}{x^{3}-8}=\lim _{x \rightarrow \pm \infty} \frac{x^{3}\left(1+\frac{1}{x^{3}}\right)}{x^{3}\left(1-\frac{8}{x^{3}}\right)}=\lim _{x \rightarrow \pm \infty} \frac{1+\frac{1}{x^{3}}}{1-\frac{8}{x^{3}}}=\frac{1+0}{1+0}=1
$$

Thus

$$
y=1 \text { is a horizontal asymptote }
$$

E) We compute

$$
\begin{aligned}
f^{\prime}(x) & =\left(\frac{x^{3}+1}{x^{3}-8}\right)^{\prime} \\
& =\frac{\left(x^{3}+1\right)^{\prime}\left(x^{3}-8\right)-\left(x^{3}+1\right)\left(x^{3}-8\right)^{\prime}}{\left(x^{3}-8\right)^{2}} \\
& =\frac{3 x^{2} \cdot\left(x^{3}-8\right)-\left(x^{3}+1\right) \cdot 3 x^{2}}{\left(x^{3}-8\right)^{2}} \\
& =\frac{3 x^{2} \cdot\left(\left(x^{3}-8\right)-\left(x^{3}+1\right)\right)}{\left(x^{3}-8\right)^{2}} \\
& =\frac{3 x^{2} \cdot(-9)}{\left(x^{3}-8\right)^{2}} \\
& =-27 \frac{x^{2}}{\left(x^{3}-8\right)^{2}}
\end{aligned}
$$

$f^{\prime}(x)=0$ when $x^{2}=0$ and so for $x=0$.
$f^{\prime}(x)$ is not defined when $x^{3}-8=0$ and so for $x=2$. Hence the critical numbers are

$$
x=0 \text { and } x=2
$$

Note that $f^{\prime}(x) \leq 0$ for all x. f is continuous at $x=0$, but not defined at $x=2$. Thus

$$
f(x) \text { is decreasing on }(-\infty, 2) \text { and on }(2, \infty) \text {. }
$$

and

$$
f(x) \text { is nowhere increasing }
$$

F) Since f is decreasing everywhere,
G) We compute

$$
\begin{aligned}
f^{\prime \prime}(x) & =\left(-27 \frac{x^{2}}{\left(x^{3}-8\right)^{2}}\right)^{\prime} \\
& =-27 \frac{\left(x^{2}\right)^{\prime} \cdot\left(x^{3}-8\right)^{2}-x^{2} \cdot\left(\left(x^{3}-8\right)^{2}\right)^{\prime}}{\left(\left(x^{3}-8\right)^{2}\right)^{2}} \\
& =-27 \frac{2 x \cdot\left(x^{3}-8\right)^{2}-x^{2} \cdot 2 \cdot\left(x^{3}-8\right) \cdot 3 x^{2}}{\left(x^{3}-8\right)^{4}} \\
& =-27 \frac{2 x \cdot\left(x^{3}-8\right)\left(\left(x^{3}-8\right)-3 x^{3}\right)}{\left(x^{3}-8\right)^{4}} \\
& =-54 \frac{x \cdot\left(-2 x^{3}-8\right)}{\left(x^{3}-8\right)^{3}} \\
& =108 \frac{x \cdot\left(x^{3}+4\right)}{\left(x^{3}-8\right)^{3}}
\end{aligned}
$$

So $f^{\prime \prime}$ is not defined at $x=2$. Also $f^{\prime \prime}=0$ when $x\left(x^{3}+4\right)=0$ and so for $x=0$ and $x=-\sqrt[3]{4}$.

	$(-\infty,-\sqrt[3]{4})$	$(-\sqrt[3]{4}, 0)$	$(0,2)$	$(2, \infty)$
$x^{3}+4$	-	+	+	+
x	-	-	+	+
$\left(x^{3}-8\right)^{3}$	-	-	-	+
$f^{\prime \prime}$	-	+	-	+
f	\cap	\cup	\cap	\cup

Hence

$$
f \text { is concave up on }(-\sqrt[3]{4}, 0) \text { and }(2, \infty)
$$

and

$$
f \text { is concave down on }(-\infty,-\sqrt[3]{4}) \text { and }(0,2)
$$

In particular, f changes concavity at $x=-\sqrt[3]{4}$, at $x=0$ and at $x=2$.
If $x=-\sqrt[3]{4}$, then $y=\frac{(-\sqrt[3]{4})^{3}+1}{(-\sqrt[3]{4})^{3}-8}=\frac{-4+1}{-4-8}=\frac{-3}{-12}=\frac{1}{4}$.
If $x=0$, then $y=\frac{0^{3}+1}{0^{3}-8}=\frac{1}{-8}=-\frac{1}{8}$.
If $x=2$, then y is not defined. Thus

$$
\text { the inflections points of } f \text { are }\left(-\sqrt[3]{4}, \frac{1}{4}\right) \quad \text { and } \quad\left(0,-\frac{1}{8}\right)
$$

H)

2. $f(x)=x^{1 / 3}(x-4)$
A) f is defined for all real numbers. So

The domain of f is $\quad(-\infty, \infty)$
B) $f(x)=0$ if $x^{1 / 3}=0$ or $x-4=0$, that is if $x=0$ or $x=4$. So

The x-intercepts of f are $(0,0)$ and $(4,0)$
$f(0)=0$. So

$$
\text { The } y \text {-intercept of } f \text { is } \quad(0,0)
$$

C) $f(-x)=(-x)^{1 / 3}(-x-4)=x^{1 / 3}(x+4) \neq \pm x^{1 / 3}(x-4)= \pm f(x)$. Thus

$$
f \text { has no symmetries }
$$

Since f has only two x-intercepts:

$$
f \text { is not periodic }
$$

D) f is continuous at all real numbers, so
f has no vertical asymptotes

$$
\lim _{x \rightarrow \pm \infty} f(x)=\lim _{x \rightarrow \infty} x^{1 / 3}(x-4)=\lim _{x \rightarrow \pm \infty} x^{4 / 3}\left(1-\frac{4}{x^{1 / 3}}\right)=+\infty
$$

So

$$
\lim _{x \rightarrow \pm \infty} f(x)=+\infty
$$

and
f has no horizontal asymptotes
E)

$$
\begin{aligned}
f^{\prime}(x) & =\left(x^{1 / 3}(x-4)\right)^{\prime} \\
& =\left(x^{4 / 3}-4 x^{1 / 3}\right)^{\prime} \\
& =\frac{4}{3} x^{1 / 3}-4 \cdot \frac{1}{3} x^{-2 / 3} \\
& =\frac{4}{3}\left(x^{1 / 3}-\frac{1}{x^{2 / 3}}\right) \\
& =\frac{4}{3} \frac{x-1}{x^{2 / 3}}
\end{aligned}
$$

Thus $f^{\prime}=0$ for $x=1$ and f^{\prime} is not defined at $x=0$. We have

$$
f(0)=0 \quad \text { and } \quad f(1)=1^{1 / 3}(1-4)=-3
$$

$$
\text { The critical points of } f \text { are }(0,0) \text { and }(1,-3)
$$

To compute the intervals where f is increasing and decreasing, respectively:

	$(-\infty, 0)$	$(0,1)$	$(1, \infty)$
$x-1$	-	-	+
$x^{2 / 3}$	+	+	+
f^{\prime}	-	-	+
f	\searrow	\searrow	\nearrow

Since f is continuous at 0 and 1 we conclude that

$$
f \text { is decreasing on }(-\infty, 1] \text { and increasing on }[1, \infty)
$$

F) From E) we see that

$$
-3 \text { is a local minimum value of } f \text { attained at } x=1
$$

and

$$
f \text { has no local maximum value }
$$

G)

$$
\begin{aligned}
f^{\prime \prime}(x) & =\left(\frac{4}{3}\left(x^{1 / 3}-\frac{1}{x^{2 / 3}}\right)\right)^{\prime} \\
& =\frac{4}{3}\left(\frac{1}{3} x^{-2 / 3}+\frac{2}{3} \frac{1}{x^{5 / 3}}\right) \\
& =\frac{4}{3} \cdot \frac{1}{3}\left(\frac{1}{x^{2 / 3}}+\frac{2}{x^{5 / 3}}\right) \\
& =\frac{4}{9}\left(\frac{x+2}{x^{5 / 3}}\right)
\end{aligned}
$$

So $f^{\prime \prime}=0$ at $x=-2$, and $f^{\prime \prime}$ is not defined at $x=0$.

	$(-\infty,-2)$	$(-2,0)$	$(0, \infty)$
$x+2$	-	+	+
$x^{5 / 3}$	-	-	+
$f^{\prime \prime}$	+	-	+
f	\cup	\cap	\cup

Thus

$$
f \text { is concave up on }(-\infty,-2) \text { and }(0, \infty) \text { and concave down on }(-2,0)
$$

Also f changes concavity at $x=-2$ and at $x=0$.

$$
f(-2)=(-2)^{1 / 3}(-2-4)=6 \cdot \sqrt[3]{2} \approx 7.6 \quad \text { and } \quad f(0)=0
$$

so

$$
\text { The inflections points of } f \text { are }(-2,6 \cdot \sqrt[3]{2}) \text { and }(0,0)
$$

H)

On the above graph one cannot really see that $(-2,6 \cdot \sqrt[3]{2})$ is a inflection point. The next graph uses a different view and scale and I also added the tangent line to the curve at the inflection point (the dotted red line) to make the inflection point more visible:

3. $f(x)=\frac{\sin x}{2+\cos x}$
A) Since $\cos x \geq-1$ we have $2+\cos x \geq 2+(-1)=1>0$ for all x. Thus f is defined for all real numbers. Hence

$$
\text { The domain of } f \text { is } \quad(-\infty, \infty)
$$

B) $f(x)=0$ if $\sin x=0$ and so when $x=0, \pm \pi, \pm 2 \pi, \pm 3 \pi, \ldots$

$$
\text { The } x \text {-intercepts of } f \text { are }(0,0),(\pm \pi, 0),(\pm 2 \pi, 0),(\pm 3 \pi, 0), \ldots
$$

$f(0)=0$. So

$$
\text { The } y \text {-intercept of } f \text { is } \quad(0,0)
$$

C) $f(-x)=\frac{\sin (-x)}{2+\cos (-x)}=\frac{-\sin x}{2+\cos x}=-\frac{\sin x}{2+\cos x}=-f(x)$ Thus

$$
f \text { is an odd function and is symmetric about }(0,0)
$$

Both $\sin x$ and $\cos x$ are periodic with period 2π. Thus also

$$
f \text { is periodic with period } 2 \pi
$$

Remark: Since f has period 2π we can restrict our computation to any interval of length 2π. To make use of the fact that f is symmetric about $(0,0)$ it is convenient to choose the interval to be symmetric about 0 . So for steps $E-G$ I will restrict the computation to the interval $[-\pi, \pi]$.
D) f is continuous at all real numbers, so

$$
f \text { has no vertical asymptotes }
$$

As $x \rightarrow \pm \infty$, the function $\sin x$ goes infinitely often forth and back between -1 and 1 , and $2+\cos x$ goes forth and back between 1 and 3 . Since $f(x)=\frac{\sin x}{2+\cos x}$ we conclude that $f(x)$, as $x \rightarrow \pm \infty$, will infinitely often by larger than $\frac{1}{3}$ and infinitely often be smaller than $\frac{1}{3}$. Thus

$$
\lim _{x \rightarrow \pm \infty} f(x)=\mathrm{DNE}
$$

and

$$
f \text { has no horizontal asymptotes }
$$

(More generally, any non-constant periodic function does not have a horizontal asymmptote) E)

$$
\begin{aligned}
f^{\prime}(x) & =\left(\frac{\sin x}{2+\cos x}\right)^{\prime} \\
& =\frac{\sin ^{\prime}(x) \cdot(2+\cos x)-\sin x \cdot(2+\cos x)^{\prime}}{(2+\cos x)^{2}} \\
& =\frac{\cos x \cdot(2+\cos x)-\sin x \cdot(-\sin x)}{(2+\cos x)^{2}} \\
& =\frac{2 \cos x+\cos ^{2} x+\sin ^{2} x}{(2+\cos x)^{2}} \\
& =\frac{2 \cos x+1}{(2+\cos x)^{2}} \\
& =2 \frac{\cos x-\left(-\frac{1}{2}\right)}{(2+\cos x)^{2}}
\end{aligned}
$$

Thus $f^{\prime}(x)$ is defined for all x and $f^{\prime}(x)=0$ when $\cos x=-\frac{1}{2}$. In the interval $[-\pi, \pi]: \cos x=-\frac{1}{2}$ at $x=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$ and at $x=-\frac{2 \pi}{3}$.

$$
f\left(\frac{2 \pi}{3}\right)=\frac{\sin \left(\frac{2 \pi}{3}\right)}{2+\cos \left(\frac{2 \pi}{3}\right)}=\frac{\frac{\sqrt{3}}{2}}{2-\frac{1}{2}}=\frac{\frac{\sqrt{3}}{2}}{\frac{3}{2}}=\frac{\sqrt{3}}{3}=\frac{1}{\sqrt{3}}
$$

and

$$
f\left(-\frac{2 \pi}{3}\right)=-f\left(\frac{2 \pi}{3}\right)=-\frac{1}{\sqrt{3}}
$$

$$
\text { The critical points of } f \text { in }[-\pi, \pi] \text { are }\left(-\frac{2 \pi}{3},-\frac{1}{\sqrt{3}}\right) \text { and }\left(\frac{2 \pi}{3}, \frac{1}{\sqrt{3}}\right)
$$

Observe that $\cos x>-\frac{1}{2}$ on $\left(-\frac{2 \pi}{3}, \frac{2 \pi}{3}\right)$ and $\cos x<-\frac{1}{2}$ on $\left[-\pi,-\frac{2 \pi}{3}\right)$ and $\left(\frac{2 \pi}{3}, \pi\right]$. Thus

$$
\begin{array}{c|ccc}
& {\left[-\pi,-\frac{2 \pi}{3}\right)} & \left(-\frac{2 \pi}{3}, \frac{2 \pi}{3}\right) & \left(\frac{2 \pi}{3}, \pi\right] \\
\hline \cos x-\left(-\frac{1}{2}\right) & - & + & - \\
(2+\cos x)^{2} & + & + & + \\
f^{\prime} & - & + & - \\
f & \searrow & \nearrow & \searrow
\end{array}
$$

Since f is continuous we conclude that

$$
f \text { is increasing on }\left[-\frac{2 \pi}{3}, \frac{2 \pi}{3}\right] \text { and decreasing on }\left[\pi,-\frac{2 \pi}{3}\right] \text { and }\left[\frac{2 \pi}{3}, \pi\right]
$$

F) From E) we see that

$$
-\frac{1}{\sqrt{3}} \text { is a local minimum value of } f \text { attained at } x=-\frac{2 \pi}{3}
$$

and

$$
\frac{1}{\sqrt{3}} \text { is a local maximum value of } f \text { attained at } x=\frac{2 \pi}{3}
$$

G)

$$
\begin{aligned}
f^{\prime \prime}(x) & =\left(\frac{2 \cos x+1}{(2+\cos x)^{2}}\right)^{\prime} \\
& =\frac{(2 \cos x+1)^{\prime} \cdot(2+\cos x)^{2}-(2 \cos x+1) \cdot\left((2+\cos x)^{2}\right)^{\prime}}{\left((2+\cos x)^{2}\right)^{2}} \\
& =\frac{-2 \sin x \cdot(2+\cos x)^{2}-(2 \cos x+1) \cdot 2 \cdot(2+\cos x) \cdot(-\sin x)}{(2+\cos x)^{4}} \\
& =\frac{2 \cdot(2+\cos x) \cdot \sin x \cdot-(2+\cos x)+2 \cdot(2+\cos x) \cdot \sin x \cdot(2 \cos x+1)}{(2+\cos x)^{4}} \\
& =2 \frac{(2+\cos x) \cdot \sin x \cdot(-(2+\cos x)+(2 \cos x+1))}{(2+\cos x)^{3}} \\
& =2 \frac{\sin x \cdot(\cos x-1)}{(2+\cos x)^{3}}
\end{aligned}
$$

So $f^{\prime \prime}=0$ when $\sin x=0$ or $\cos x=1$. In $[-\pi, \pi]: \sin x=0$ at $x=-\pi, 0, \pi$, and $\cos x=1$ at $x=0$.

	$(-\pi, 0)$	$(0, \pi)$
$\sin x$	-	+
$\cos x-1$	-	-
$(2+\cos x)^{3}$	+	+
$f^{\prime \prime}$	+	-
f	\cup	\cap

Thus restricted to $[\pi, \pi]$:

$$
f \text { is concave up on }(0, \pi) \text { and concave down on }(-\pi, 0)
$$

Also f changes concavity at $x=0$. Since $f(0)=0$:
The inflection point of f in $[\pi, \pi]$ is $(0,0)$
H) The graph of f on the interval $[\pi, \pi]$:

The whole graph of f :

