Quiz 7/Solutions

1. $f(x) = \frac{x^3+1}{x^3-8}$.

A)

$$x^{3} - 8 = 0$$
$$x^{3} = 8$$
$$x^{3} = 2^{3}$$
$$x = 2$$

So f(x) is defined for $x \neq 2$ and the domain of f is

$$(-\infty,2) \cup (2,\infty)$$

B)

$$y = 0$$

$$x^{3} + 1 = 0$$

$$x^{3} = -1$$

$$x^{3} = (-1)^{3}$$

$$x = -1$$

So the x-intercept is

and so the y-intercept is

$$f(0) = \frac{0^3 + 1}{0^3 - 8} = \frac{1}{-8} = -\frac{1}{8}$$
$$\boxed{\left(0, -\frac{1}{8}\right)}$$

.

C)

$$f(-x) = \frac{(-x)^3 + 1}{(-x)^3 - 8} = \frac{-x^3 + 1}{-x^3 - 8} \neq \pm \frac{x^3 + 1}{x^3 - 8} = f(x)$$

So f has no symmetries. Since f has exactly one x-intercept, f is not periodic D) The denominator of f is 0 for x = 2. So we compute

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \frac{x^3 + 1}{x^3 - 8} \left(= \frac{\text{positive}}{\text{small positive}} \right) = +\infty$$

and

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} \frac{x^3 + 1}{x^3 - 8} \left(= \frac{\text{positive}}{\text{small negative}} \right) = -\infty$$

Horizontal asymptotes:

$$\lim_{x \to \pm \infty} \frac{x^3 + 1}{x^3 - 8} = \lim_{x \to \pm \infty} \frac{x^3 \left(1 + \frac{1}{x^3}\right)}{x^3 \left(1 - \frac{8}{x^3}\right)} = \lim_{x \to \pm \infty} \frac{1 + \frac{1}{x^3}}{1 - \frac{8}{x^3}} = \frac{1 + 0}{1 + 0} = 1$$

Thus

$$y = 1$$
 is a horizontal asymptote

E) We compute

$$f'(x) = \left(\frac{x^3 + 1}{x^3 - 8}\right)'$$

= $\frac{(x^3 + 1)'(x^3 - 8) - (x^3 + 1)(x^3 - 8)'}{(x^3 - 8)^2}$
= $\frac{3x^2 \cdot (x^3 - 8) - (x^3 + 1) \cdot 3x^2}{(x^3 - 8)^2}$
= $\frac{3x^2 \cdot ((x^3 - 8) - (x^3 + 1))}{(x^3 - 8)^2}$
= $\frac{3x^2 \cdot (-9)}{(x^3 - 8)^2}$
= $-27\frac{x^2}{(x^3 - 8)^2}$

f'(x) = 0 when $x^2 = 0$ and so for x = 0. f'(x) is not defined when $x^3 - 8 = 0$ and so for x = 2. Hence the critical numbers are

x = 0 and x = 2

Note that $f'(x) \leq 0$ for all x. f is continuous at x = 0, but not defined at x = 2. Thus

$$f(x)$$
 is decreasing on $(-\infty, 2)$ and on $(2, \infty)$

and

f(x) is nowhere increasing

F) Since f is decreasing everywhere,

f has no local extrema

G) We compute

$$f''(x) = \left(-27\frac{x^2}{(x^3 - 8)^2}\right)'$$

= $-27\frac{(x^2)' \cdot (x^3 - 8)^2 - x^2 \cdot ((x^3 - 8)^2)'}{((x^3 - 8)^2)^2}$
= $-27\frac{2x \cdot (x^3 - 8)^2 - x^2 \cdot 2 \cdot (x^3 - 8) \cdot 3x^2}{(x^3 - 8)^4}$
= $-27\frac{2x \cdot (x^3 - 8)((x^3 - 8) - 3x^3)}{(x^3 - 8)^4}$
= $-54\frac{x \cdot (-2x^3 - 8)}{(x^3 - 8)^3}$
= $108\frac{x \cdot (x^3 + 4)}{(x^3 - 8)^3}$

So f'' is not defined at x = 2. Also f'' = 0 when $x(x^3 + 4) = 0$ and so for x = 0 and $x = -\sqrt[3]{4}$.

	$\left(-\infty,-\sqrt[3]{4}\right)$	$(-\sqrt[3]{4},0)$	(0, 2)	$(2,\infty)$
$x^3 + 4$	_	+	+	+
x	_	-	+	+
$(x^3 - 8)^3$	_	-	_	+
f''	_	+	_	+
f		U	\cap	U

Hence

is concave up on
$$(-\sqrt[3]{4},0)$$
 and $(2,\infty)$

f

and

f is concave down on
$$(-\infty, -\sqrt[3]{4})$$
 and $(0, 2)$

In particular, f changes concavity at $x = -\sqrt[3]{4}$, at x = 0 and at x = 2. If $x = -\sqrt[3]{4}$, then $y = \frac{(-\sqrt[3]{4})^3 + 1}{(-\sqrt[3]{4})^3 - 8} = \frac{-4 + 1}{-4 - 8} = \frac{-3}{-12} = \frac{1}{4}$. If x = 0, then $y = \frac{0^3 + 1}{0^3 - 8} = \frac{1}{-8} = -\frac{1}{8}$. If x = 2, then y is not defined. Thus

the inflections points of
$$f$$
 are $\left(-\sqrt[3]{4}, \frac{1}{4}\right)$ and $\left(0, -\frac{1}{8}\right)$

H)

2.
$$f(x) = x^{1/3}(x-4)$$

A) f is defined for all real numbers. So

The domain of f is $(-\infty, \infty)$ B) f(x) = 0 if $x^{1/3} = 0$ or x - 4 = 0, that is if x = 0 or x = 4. So The x-intercepts of f are (0,0) and (4,0)f(0) = 0. So The y-intercept of f is (0,0)

C)
$$f(-x) = (-x)^{1/3}(-x-4) = \overline{x^{1/3}(x+4) \neq \pm x^{1/3}(x-4)} = \pm f(x)$$
. Thus
 f has no symmetries

Since f has only two x-intercepts:

f is not periodic

D) f is continuous at all real numbers, so

f has no vertical asymptotes

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \infty} x^{1/3} (x - 4) = \lim_{x \to \pm \infty} x^{4/3} \left(1 - \frac{4}{x^{1/3}} \right) = +\infty$$

So

$$\lim_{x \to \pm \infty} f(x) = +\infty$$

and

f has no horizontal asymptotes

$$f'(x) = (x^{1/3}(x-4))'$$

= $(x^{4/3} - 4x^{1/3})'$
= $\frac{4}{3}x^{1/3} - 4 \cdot \frac{1}{3}x^{-2/3}$
= $\frac{4}{3}(x^{1/3} - \frac{1}{x^{2/3}})$
= $\frac{4}{3}\frac{x-1}{x^{2/3}}$

Thus f' = 0 for x = 1 and f' is not defined at x = 0. We have

$$f(0) = 0$$
 and $f(1) = 1^{1/3}(1-4) = -3$

The critical points of f are (0,0) and (1,-3)

To compute the intervals where f is increasing and decreasing, respectively:

	$(-\infty,0)$	(0, 1)	$(1,\infty)$
<i>x</i> – 1	-	_	+
$x^{2/3}$	+	+	+
f'	-	_	+
f	\checkmark	\checkmark	7

Since f is continuous at 0 and 1 we conclude that

f is decreasing on	$(-\infty, 1]$	and increasing on	$[1,\infty)$

F) From E) we see that

-3 is a local minimum value of f attained at x = 1

and

f has no local maximum value

G)

$$f''(x) = \left(\frac{4}{3}\left(x^{1/3} - \frac{1}{x^{2/3}}\right)\right)'$$
$$= \frac{4}{3}\left(\frac{1}{3}x^{-2/3} + \frac{2}{3}\frac{1}{x^{5/3}}\right)$$
$$= \frac{4}{3} \cdot \frac{1}{3}\left(\frac{1}{x^{2/3}} + \frac{2}{x^{5/3}}\right)$$
$$= \frac{4}{9}\left(\frac{x+2}{x^{5/3}}\right)$$

So f'' = 0 at x = -2, and f'' is not defined at x = 0.

	$(-\infty, -2)$	(-2, 0)	$(0,\infty)$
x + 2	-	+	+
$x^{5/3}$	_	_	+
f''	+	_	+
f	U	\cap	U

Thus

f is concave up on
$$(-\infty, -2)$$
 and $(0, \infty)$ and concave down on $(-2, 0)$

Also f changes concavity at x = -2 and at x = 0.

$$f(-2) = (-2)^{1/3}(-2-4) = 6 \cdot \sqrt[3]{2} \approx 7.6$$
 and $f(0) = 0$

 \mathbf{SO}

On the above graph one cannot really see that $(-2, 6 \cdot \sqrt[3]{2})$ is a inflection point. The next graph uses a different view and scale and I also added the tangent line to the curve at the inflection point (the dotted red line) to make the inflection point more visible:

3. $f(x) = \frac{\sin x}{2 + \cos x}$

A) Since $\cos x \ge -1$ we have $2 + \cos x \ge 2 + (-1) = 1 > 0$ for all x. Thus f is defined for all real numbers. Hence

The domain of
$$f$$
 is $(-\infty, \infty)$

B) f(x) = 0 if $\sin x = 0$ and so when $x = 0, \pm \pi, \pm 2\pi, \pm 3\pi, \ldots$

The *x*-intercepts of *f* are
$$(0,0), (\pm \pi, 0), (\pm 2\pi, 0), (\pm 3\pi, 0), ...$$

f(0) = 0. So

The *y*-intercept of *f* is
$$(0,0)$$

C) $f(-x) = \frac{\sin(-x)}{2+\cos(-x)} = \frac{-\sin x}{2+\cos x} = -\frac{\sin x}{2+\cos x} = -f(x)$ Thus
f is an odd function and is symmetric about $(0,0)$

Both $\sin x$ and $\cos x$ are periodic with period 2π . Thus also

f is periodic with period 2π

Remark: Since f has period 2π we can restrict our computation to any interval of length 2π . To make use of the fact that f is symmetric about (0,0) it is convenient to choose the interval to be symmetric about 0. So for steps E-G I will restrict the computation to the interval $[-\pi,\pi]$.

D) f is continuous at all real numbers, so

f has no vertical asymptotes

As $x \to \pm \infty$, the function $\sin x$ goes infinitely often forth and back between -1 and 1, and $2 + \cos x$ goes forth and back between 1 and 3. Since $f(x) = \frac{\sin x}{2 + \cos x}$ we conclude that f(x), as $x \to \pm \infty$, will infinitely often by larger than $\frac{1}{3}$ and infinitely often be smaller than $\frac{1}{3}$. Thus

$$\lim_{x \to \pm \infty} f(x) = \text{DNE}$$

and

 \boldsymbol{f} has no horizontal asymptotes

(More generally, any non-constant periodic function does not have a horizontal asymmptote) E)

$$f'(x) = \left(\frac{\sin x}{2 + \cos x}\right)'$$

= $\frac{\sin'(x) \cdot (2 + \cos x) - \sin x \cdot (2 + \cos x)'}{(2 + \cos x)^2}$
= $\frac{\cos x \cdot (2 + \cos x) - \sin x \cdot (-\sin x)}{(2 + \cos x)^2}$
= $\frac{2\cos x + \cos^2 x + \sin^2 x}{(2 + \cos x)^2}$
= $\frac{2\cos x + 1}{(2 + \cos x)^2}$
= $2\frac{\cos x - (-\frac{1}{2})}{(2 + \cos x)^2}$

Thus f'(x) is defined for all x and f'(x) = 0 when $\cos x = -\frac{1}{2}$. In the interval $[-\pi, \pi]$: $\cos x = -\frac{1}{2}$ at $x = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$ and at $x = -\frac{2\pi}{3}$.

$$f\left(\frac{2\pi}{3}\right) = \frac{\sin\left(\frac{2\pi}{3}\right)}{2 + \cos\left(\frac{2\pi}{3}\right)} = \frac{\frac{\sqrt{3}}{2}}{2 - \frac{1}{2}} = \frac{\frac{\sqrt{3}}{2}}{\frac{3}{2}} = \frac{\sqrt{3}}{3} = \frac{1}{\sqrt{3}}$$

and

$$f\left(-\frac{2\pi}{3}\right) = -f\left(\frac{2\pi}{3}\right) = -\frac{1}{\sqrt{3}}$$

The critical points of
$$f$$
 in $\left[-\pi, \pi\right]$ are $\left(-\frac{2\pi}{3}, -\frac{1}{\sqrt{3}}\right)$ and $\left(\frac{2\pi}{3}, \frac{1}{\sqrt{3}}\right)$

Observe that $\cos x > -\frac{1}{2}$ on $\left(-\frac{2\pi}{3}, \frac{2\pi}{3}\right)$ and $\cos x < -\frac{1}{2}$ on $\left[-\pi, -\frac{2\pi}{3}\right)$ and $\left(\frac{2\pi}{3}, \pi\right]$. Thus

Since f is continuous we conclude that

F) From E) we see that

$$-\frac{1}{\sqrt{3}}$$
 is a local minimum value of f attained at $x = -\frac{2\pi}{3}$

and

$$\left| \frac{1}{\sqrt{3}} \right|$$
 is a local maximum value of f attained at $x = \frac{2\pi}{3}$

G)

$$f''(x) = \left(\frac{2\cos x + 1}{(2 + \cos x)^2}\right)'$$

= $\frac{(2\cos x + 1)' \cdot (2 + \cos x)^2 - (2\cos x + 1) \cdot ((2 + \cos x)^2)'}{((2 + \cos x)^2)^2}$
= $\frac{-2\sin x \cdot (2 + \cos x)^2 - (2\cos x + 1) \cdot 2 \cdot (2 + \cos x) \cdot (-\sin x)}{(2 + \cos x)^4}$
= $\frac{2 \cdot (2 + \cos x) \cdot \sin x \cdot -(2 + \cos x) + 2 \cdot (2 + \cos x) \cdot \sin x \cdot (2\cos x + 1)}{(2 + \cos x)^4}$
= $2\frac{(2 + \cos x) \cdot \sin x \cdot (-(2 + \cos x) + (2\cos x + 1))}{(2 + \cos x)^3}$
= $2\frac{\sin x \cdot (\cos x - 1)}{(2 + \cos x)^3}$

So f'' = 0 when $\sin x = 0$ or $\cos x = 1$. In $[-\pi, \pi]$: $\sin x = 0$ at $x = -\pi, 0, \pi$, and $\cos x = 1$ at x = 0.

Thus restricted to $[\pi,\pi]$:

f is concave up on $(0,\pi)$ and concave down on $(-\pi,0)$

Also f changes concavity at x = 0. Since f(0) = 0:

The inflection point of f in $[\pi, \pi]$ is (0, 0)

H) The graph of f on the interval $[\pi, \pi]$:

The whole graph of f:

