Quiz 5/Solutions

1. Suppose $x y+\cos y=x^{2}$. Find y^{\prime} and $y^{\prime \prime}$ when $x=0$ and $y=\frac{\pi}{2}$.

Differentiating both sides of the $x y+\cos y=x^{2}$ with respect to x we obtain:

$$
\begin{aligned}
1 y+x y^{\prime}-\sin y y \cdot y^{\prime} & =2 x \\
x y^{\prime}-\sin y \cdot y^{\prime} & =2 x-y \\
(x-\sin y) y^{\prime} & =2 x-y \\
y^{\prime} & =\frac{2 x-y}{x-\sin y}
\end{aligned}
$$

Next we use the quotient rule to compute $y^{\prime \prime}$.

$$
\begin{aligned}
y^{\prime \prime} & =\left(\frac{2 x-y}{x-\sin y}\right)^{\prime} \\
& =\frac{(2 x-y)^{\prime}(x-\sin y)-(2 x-y)(x-\sin y)^{\prime}}{(x-\sin y)^{2}} \\
& =\frac{\left(2-y^{\prime}\right)(x-\sin y)-(2 x-y)\left(1-\cos y \cdot y^{\prime}\right)}{(x-\sin y)^{2}}
\end{aligned}
$$

When $x=0$ and $y=\frac{\pi}{2}$ we get

$$
y^{\prime}=\frac{2 \cdot 0-\frac{\pi}{2}}{0-\sin \frac{\pi}{2}}=\frac{-\frac{\pi}{2}}{-1}=\frac{\pi}{2}
$$

and

$$
\begin{aligned}
y^{\prime \prime} & =\frac{\left(2-\frac{\pi}{2}\right)\left(0-\sin \frac{\pi}{2}\right)-\left(2 \cdot 0-\frac{\pi}{2}\right)\left(1-\cos \frac{\pi}{2} \cdot \frac{\pi}{2}\right)}{\left(0-\sin \frac{\pi}{2}\right)^{2}} \\
& =\frac{\left(2-\frac{\pi}{2}\right) \cdot(-1)-\left(-\frac{\pi}{2}\right)\left(1-0 \cdot \frac{\pi}{2}\right)}{(-1)^{2}} \\
& =\frac{\frac{\pi}{2}-2+\frac{\pi}{2}}{1} \\
& =\pi-2 .
\end{aligned}
$$

2. A two piece extension ladder leaning against a wall is collapsing at a rate ot 2 feet per second at the same time as its foot is moving away from the wall at a rate of 3 feet per second. How fast is the top of ladder moving down the wall when the top is 8 feet from the ground and the foot is 6 feet from the wall.
 The ladder is collapsing at a rate of 2 ft . So

$$
\frac{\mathrm{d} z}{\mathrm{~d} t}=-2
$$

The foot of the ladder is moving away from the wall at rate of 3 ft . So

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=3
$$

We need to compute $\frac{\mathrm{d} x}{\mathrm{~d} t}$ when $x=6$ and $y=8$. From the Pythagorean Theorem

$$
x^{2}+y^{2}=z^{2}
$$

and differentiating with respect to t gives

$$
\begin{gathered}
2 x \frac{\mathrm{~d} x}{\mathrm{~d} t}+2 y \frac{\mathrm{~d} y}{\mathrm{~d} t}=2 z \frac{\mathrm{~d} z}{\mathrm{~d} t} \\
x \frac{\mathrm{~d} x}{\mathrm{~d} t}+y \frac{\mathrm{~d} y}{\mathrm{~d} t}=z \frac{\mathrm{~d} z}{\mathrm{~d} t} \\
x \frac{\mathrm{~d} x}{\mathrm{~d} t}=z \frac{\mathrm{~d} z}{\mathrm{~d} t}-y \frac{\mathrm{~d} y}{\mathrm{~d} t} \\
\frac{\mathrm{~d} x}{\mathrm{~d} t}=\frac{z \frac{\mathrm{~d} z}{\mathrm{~d} t}-y \frac{\mathrm{~d} y}{\mathrm{~d} t}}{x}
\end{gathered}
$$

For $x=8$ and $y=6$ we get

$$
z^{2}=x^{2}+y^{2}=8^{2}+6^{2}=64+16=100=10^{2}
$$

and so $z=10$. Thus

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{z \frac{\mathrm{~d} z}{\mathrm{~d} t}-y \frac{\mathrm{~d} y}{\mathrm{~d} t}}{x}=\frac{10 \cdot(-2)-6 \cdot 3}{8}=-\frac{20+18}{8}=-\frac{38}{8}=-\frac{19}{4}=-4.75
$$

Hence the top of the ladder is moving down the fall at a rate of

$$
4.75 \frac{\mathrm{ft}}{\mathrm{sec}} .
$$

3. A swimming pool is 40 ft long, 20 ft wide, 8 ft deep at the deep end and 3 ft deep at the shallow end. The bottom is rectangular. If the pool is filled at a rate of $40 \frac{\mathrm{ft}^{3}}{\mathrm{~min}}$, how fast is the water level rising when it is 3 ft deep at the deep end.

Let V be the volume of the water in the pool and h depth of the water at the deep end. We know that

$$
\frac{\mathrm{d} V}{\mathrm{~d} t}=40 \frac{\mathrm{ft}^{3}}{\min }
$$

and we need to find $\frac{\mathrm{d} h}{\mathrm{~d} t}$ when $h=3 \mathrm{ft}$. The top surface of the water forms a rectangle of length say l and width 20 . Then the water forms a triangular prism whose base triangle has area $\frac{1}{2} h l$ and has witdh 20 ft . So the volume of the water is

$$
V=\frac{1}{2} h l \cdot 20=10 h l
$$

The right triangle with height h and length l is similar to the right triangle with height 5 and length 40 (where 5 is the difference in depth of the deep and shallow end). Thus

$$
\begin{gathered}
\frac{h}{5}=\frac{l}{40} \\
l=40 \frac{h}{5}=8 h
\end{gathered}
$$

Substituting into the formula for the volume gives

$$
V=10 h \cdot 8 h=80 h^{2}
$$

Differentiating with respect to t gives

$$
\frac{\mathrm{d} V}{\mathrm{~d} t}=80 \cdot 2 h \frac{\mathrm{~d} h}{\mathrm{~d} t}=160 h \frac{\mathrm{~d} h}{\mathrm{~d} t}
$$

and so

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\frac{\mathrm{d} V}{\mathrm{~d} t}}{160 h}
$$

Recall that $\frac{\mathrm{d} V}{\mathrm{~d} t}=40$. So when $h=3$ we get

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{40}{160 \cdot 3} \frac{\mathrm{ft}}{\mathrm{~min}}=\frac{1}{12} \frac{\mathrm{ft}}{\mathrm{~min}}=1 \frac{\mathrm{in}}{\mathrm{~min}}
$$

