Quiz 3 / Solutions

1. Compute the derivative of each of the following functions:
(a) $x^{4}+\sqrt{x}$

Recall that $\left(x^{n}\right)^{\prime}=n x^{n-1}$ So

$$
\left(x^{4}+\sqrt{x}\right)^{\prime}=\left(x^{4}\right)^{\prime}+\left(x^{\frac{1}{2}}\right)^{\prime}=4 x^{3}+\frac{1}{2} x^{-\frac{1}{2}}=4 x^{3}+\frac{1}{2 \sqrt{x}} .
$$

(b) $x^{2} \cos (x)$

$$
\left(x^{2} \cos (x)^{\prime}=\left(x^{2}\right)^{\prime} \cos (x)+x^{2} \cos ^{\prime}(x)=2 x \cos (x)+x^{2}(-\sin x)=2 x \cos (x)-x^{2} \sin (x)\right.
$$

(c) $\frac{x^{2}}{\sin x}$

First solution:

$$
\left(\frac{x^{2}}{\sin x}\right)^{\prime}=\frac{\left(x^{2}\right)^{\prime} \sin (x)-x^{2} \sin ^{\prime}(x)}{(\sin x)^{2}}=\frac{2 x \sin (x)-x^{2} \cos (x)}{\sin ^{2}(x)}
$$

Second solution:

$$
\begin{aligned}
\left(\frac{x^{2}}{\sin x}\right)^{\prime} & =\left(x^{2} \csc (x)\right)^{\prime}=\left(x^{2}\right)^{\prime} \csc (x)+x^{2} \csc ^{\prime}(x) \\
& =2 x \csc (x)+x^{2}(-\csc (x) \cot (x))=2 x \csc (x)-x^{2} \csc (x) \cot (x)
\end{aligned}
$$

2. Let d be a real number and let

$$
f(x)= \begin{cases}\sin (x) & \text { if } x \leq 0 \\ d x & \text { if } x>0\end{cases}
$$

For which d is $f(x)$ differentiable at 0 ?
$f(x)$ is differentiable at 0 if and only if $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}$ exists and so if and only if

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0} \tag{*}
\end{equation*}
$$

If $x \geq 0$, the $f(x)=d x$. So the left-hand side of $\left({ }^{*}\right)$ is the derivative of $d x$ at $x=0$ and so equal to d.

If $x \leq 0$, the $f(x)=\sin (x)$. So the right-hand side of $\left(^{*}\right)$ is the derivative of $\sin (x)$ at 0 and so equal to $\cos (0)=1$.

Hence $f(x)$ is differentiable at 0 if and only if $d=1$.
3. Compute $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{7}$.

Since $\sin (x)$ is continuous everywhere, also $\frac{\sin (3 x)}{7}$ is continuous everywhere. So

$$
\lim _{x \rightarrow 0} \frac{\sin (7 x)}{3}=\frac{\sin (3 \cdot 0)}{7}=\frac{\sin (0)}{7}=\frac{0}{7}=0 .
$$

If you had to compute $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{7 x}$, the solution would be quite different:

$$
\lim _{x \rightarrow 0} \frac{\sin (3 x)}{7 x}=\lim _{x \rightarrow 0} \frac{7}{3} \frac{\sin (7 x)}{7 x}=\frac{7}{3} \lim _{x \rightarrow 0} \frac{\sin (7 x)}{7 x}=\frac{7}{3} \lim _{z \rightarrow 0} \frac{\sin (z)}{z}=\frac{7}{3} \cdot 1=\frac{7}{3} .
$$

