Quiz 2 / Solutions

1. Fill in the blanks:

Definition: Let f be a function defined on some open interval that contains the number a, except possibly at $\ldots \quad$ itself. Then we say that the limit of $f(x)$ as x approaches a is L, and write

$$
\lim _{x \rightarrow a} f(x)=\underline{L}
$$

if for every number $\epsilon>0$ there is a number $\delta>0$ such that

$$
\text { if } 0<|\underline{\underline{x-a}}|<\delta \quad \text { then } \quad|\underline{f(x)}-L|<\underline{\epsilon} \text {. }
$$

2. On which of the following intervals is the greatest integer function $\llbracket x \rrbracket$ continuous? Circle all correct answers.
(a) $(0,2)$
(b) $[0,1)$
(c) $(0,1)$
(d) $(0,1]$

Recall from class that $\llbracket x \rrbracket$ is continuous at any non-integer, $\llbracket x \rrbracket$ is right continuous at all integers, and $\llbracket x \rrbracket$ is not left continuous at any integer.

Note that $0<1<2$. As $\llbracket x \rrbracket$ is not continuous at 1 , this shows that $\llbracket x \rrbracket$ is not continuous on $(0,2)$.
Let a be a number with $0<a<1$. Then a is not an integer and so $\llbracket x \rrbracket$ is continuous at a. Also $\llbracket x \rrbracket$ is right continuous at the left endpoint 0 of $[0,1)$ and so $\llbracket x \rrbracket$ is continuous on $[0,1)$ and also continuous on $(0,1)$.

Since $\llbracket x \rrbracket$ is not left continuous are the right endpoint 1 of $(0,1 \rrbracket$, we see $\llbracket x \rrbracket$ is not continuous on $(0,1 \rrbracket$.
3. Show that there exists a number c in the open interval $\left(0, \frac{\pi}{2}\right)$ such that $2 c-\sin (c)=0.2$. (I changed the problem from the actual quiz so that is has a solution)

Let $f(x)=2 x-\sin (x)$. Then $f(x)$ is continuous everywhere. Also

$$
f(0)=2 \cdot 0-\sin (0)=0-0=0, \quad \text { and } \quad f\left(\frac{\pi}{2}\right)=2 \cdot \frac{\pi}{2}-\sin \left(\frac{\pi}{2}\right)=\pi-1 \approx 3.14-1=2.14
$$

Hence

$$
f(0)<0.2<f\left(\frac{\pi}{2}\right)
$$

and so the Intermediate Value Theorem shows that there exists c in the interval $\left(0, \frac{\pi}{2}\right)$ such that $f(c)=0.2$. Then

$$
c-\sin (c)=0.2
$$

4. Use the definition of the derivative to compute the derivative of $x^{2}-7$ at 2 .

Let $f(x)=x^{2}-7$. Then

$$
\begin{aligned}
f^{\prime}(2) & =\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left((2+h)^{2}-7\right)-\left(2^{2}-7\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(\left(2^{2}+2 \cdot 2 \cdot h+h^{2}\right)-7\right)-\left(2^{2}-7\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(4+4 h+h^{2}-7\right)-(4-7)}{h} \\
& =\lim _{h \rightarrow 0} \frac{4 h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(4+h) h}{h} \\
& =\lim _{h \rightarrow 0} 4+h \\
& =4+0 \\
& =4
\end{aligned}
$$

