Quiz 2

1. Fill in the blanks:

Definition: Let f be a \qquad defined on some \qquad interval that contains the number a, except possibly at \qquad itself. Then we say that the limit of $f(x)$ as x approaches a is L, and write

$$
\lim _{x \rightarrow a} f(x)=
$$

if for every number $\epsilon>0$ there is a number $\delta>0$ such that

$$
\text { if } \quad 0<1 \ldots \quad \mid<\delta \quad \text { then } \quad|\ldots \quad-L|<\ldots
$$

2. On which of the following intervals is the greatest integer function $\llbracket x \rrbracket$ continuous? Circle all correct answers.
(a) $(0,2)$
(b) $[0,1)$
(c) $(0,1)$
(d) $(0,1]$
3. Show that there exists a number c in the open interval $\left(0, \frac{\pi}{2}\right)$ such that $2 c-\sin (c)=0.2$. (I changed the problem from the actual quiz so that is has a solution)
4. Use the definition of the derivative to compute the derivative of $x^{2}-7$ at 2 .
